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Abstract

This thesis focuses on the development of efficient abstraction-based controller synthesis approaches for cyber-

physical systems (CPS). While abstraction-based methods for CPS design have been the subject of intensive re-

search over the last decades, the scalability of these techniques remains an issue. This thesis focuses on devel-

oping lazy synthesis algorithms for safety specifications. Safety specifications consist in maintaining the trajectory

of the system inside a given safe set. This specification is of the utmost importance in many engineering prob-

lems, often prioritized over other performance requirements. Lazy approaches outperform the classical synthesis

algorithm [Tabuada, 2009] by avoiding computations, which are non-essential for synthesis goals. Chapter 1 mo-

tivates the thesis and discusses the state of the art. Chapter 2 structures the existing lazy synthesis approaches

and emphasizes three sources of efficiency: information about a priori controllable states, priorities on inputs, and

non-reachable from initial set states. Chapter 3 proposes an algorithm, which iteratively explores states on the

boundary of the controllable domain while avoiding exploration of internal states, supposing that they are safely

controllable a priory. A closed-loop safety controller for the original problem is then defined as follows: we use the

abstract controller to push the system from a boundary state back towards the interior, while for inner states, any

admissible input is valid. Chapter 4 presents an algorithm that restricts the controller synthesis computations to

reachable states only while prioritizing longer-duration transitions. The original system is abstracted by a symbolic

model with an adaptive grid. Moreover, a novel type of time sampling is also considered. Instead of using transi-

tions of predetermined duration, the duration of the transitions is constrained by state intervals that must contain

the reachable set. Chapter 5 is dedicated to monotone transition systems. The introduced lazy synthesis approach

benefits from a monotone property of transition systems and the ordered structure of the state (input) space, and

the fact that directed safety specifications are considered. The considered class of specifications is then enriched

by intersections of upper and lower-closed safety requirements. Chapter 6 concludes the discussion and raises new

issues for future research.
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Aperçu de la thèse

Contrôleurs de sécurité pour systèmes cyber-physiques

La théorie du contrôle est un sous-domaine mathématique, dont l’objectif est de développer des approches efficaces

pour contrôler des systemes afin qu’ils se comportent de la manière désirée. Ce manuscrit est dédié à la synthèse

efficace de contrôleurs de sécurité pour les systèmes cyber-physiques (CPS) à l’aide d’approches basées sur

l’abstraction.

Le CPS est un système où des éléments informatiques collaborent pour le contrôle et la commande d’entités

physiques et la sécurité est souvent une propriété essentielle du CPS. Intuitivement, la sécurité exige que les

«mauvaises» choses ne se produisent pas et elle est de la plus haute importance dans de nombreux prob-

lèmes d’ingénierie, souvent prioritaires par rapport à d’autres exigences de performance. Les pompes à insuline

doivent protéger une personne diabétique de l’hyper ou de l’hypoglycémie [Gillis et al., 2007, Hovorka et al., 2004,

Kushner et al., 2019]. Les assistants du régulateur de vitesse adaptatif doivent garder une voiture à une dis-

tance de sécurité du véhicule précédent [Alam et al., 2014, Ames et al., 2017, Darbha, 1997]. Le contrôle du cli-

matiseur doit maintenir la température dans un bâtiment intelligent dans la plage souhaitable [Meyer et al., 2013,

Thavlov and Bindner, 2015]. Dans toutes ces applications pratiques, le comportement du système contrôlé doit sat-

isfaire aux exigences de sécurité. De plus, une spécification de sécurité apparaît souvent comme une sous-tâche

d’un problème plus complexe [Chen et al., 2015], comprenant des objectifs de contrôle donnés par un automate

hybride [Nilsson et al., 2016] ou une formule de logique temporelle linéaire [Tajvar et al., 2020].

Contrôle symbolique

La solution étudiée dans cette thèse pour résoudre ce problème de contrôle est basée sur des méthodes sym-

boliques. Le principe de ces méthodes est de créer une abstraction purement discrète du système original que

l’on représentera sous la forme d’un système de transitions fini et non-déterministe pour lequel un contrôleur

est plus facile à synthétiser grâce aux méthodes du domaine du contrôle discret. Si une relation comportemen-

tale (simulation, bisimulation, leurs versions alternées et approchées ou une relation de raffinement de rétroac-

iii



tion [Tabuada, 2009, Reissig et al., 2017]) entre l’abstraction et le modèle original peut être prouvée, cela signifie

que tous comportements du système original peuvent être reproduits dans l’abstraction. La relation de simulation

alternée implique également qu’un contrôleur discret synthétisé sur l’abstraction peut être transformé en un con-

trôleur du modèle original satisfaisant les mêmes spécifications. Nous parlons ainsi de contrôle hybride puisqu’un

contrôleur discret est appliqué à un système continu (ou hybride). Il faut noter que ce nom ne veut pas forcément

dire que cette approche ne s’utilise que pour les systèmes hybrides : elle peut être intéressante pour tous systèmes

dont les dynamiques sont trop complexes pour être contrôlées avec les méthodes classiques. Le nom de méthodes

symboliques s’explique par la première étape de la création de l’abstraction discrète, consistant en une partition

de l’espace d’état : chaque élément de cette partition peut être vu comme un symbole représentant tous les états

continus qu’il contient. Les transitions de l’abstraction symbolique sont ensuite obtenues à l’aide d’une analyse

d’atteignabilité pour laquelle on prend une approximation de l’ensemble des états continus qui peuvent être atteints

(avec une version échantillonnée du système de départ) à partir de ceux contenus dans un symbole.

Motivation et contributions principales

Le principal inconvénient des approches de synthèse basées sur l’abstraction est la faible évolutivité. En effet, les

modèles symboliques sont couramment obtenus par discrétisation d’espaces d’état et d’entrée. Des abstractions

plus précises nécessitent des paramètres d’échantillonnage plus précis et donnent lieu à des modèles symboliques

avec de nombreux états et entrées. Par conséquent, la construction d’abstractions précises requises pour une

synthèse réussie est souvent difficilement calculable. De plus, la complexité des algorithmes de synthèse de con-

trôleurs discrets dépend typiquement de la taille des modèles symboliques. Enfin, les contrôleurs de sécurité basés

sur des modèles symboliques plus grands nécessitent plus de mémoire pour leur implémentation en temps réel. Un

besoib de réductions de la complexité de calcul des approches de synthèse basées sur l’abstraction a motivé un

nombre considérable de recherches au cours de la dernière décennie et a motivé la rédaction de cette thèse. Pour

surmonter cette limitation, nous proposons d’utiliser

• des algorithmes de synthèse paresseux pour les systèmes de transitions;

• des modèles symboliques efficaces en taille.

L’idée principale des approches paresseuses pour surpasser l’algorithme de synthèse classique [Tabuada, 2009]

est de restreindre les calculs à l’essentiel pour la partie synthèse [Girard et al., 2016, Hussien and Tabuada, 2018,

Hsu et al., 2019, Nilson et al., 2017, Rungger and Stursberg, 2012]. Dans de telles approches, les abstractions

sont calculées à la volée, parallèlement à la procédure de synthèse, et la partie inexplorée du modèle sym-

bolique reste non calculée. Pour minimiser la taille des modèles symboliques on peut bénéficier de la stabilité

incrémentale [Girard et al., 2016, Pola et al., 2010, Saoud and Girard, 2018] ou de la monotonie [Kim et al., 2017,
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Sinyakov and Girard, 2020a] du système d’origine. Des abstractions efficaces ont également été proposées pour

les systèmes différentiellement plats [Liu et al., 2012] et pour les systèmes présentant un structure d’interconnexion

[Gruber et al., 2017]. En tant que solution pour la classe générale des systèmes, les abstractions multi-échelles

sont souvent considérées [Gol et al., 2013, Girard et al., 2016, Hsu et al., 2019, Nilson et al., 2017]. Nous nous

concentrerons sur eux dans le chapitre 4.

Le chapitre 2 structure les approches de synthèse paresseuses existantes et met l’accent sur trois sources

d’efficacité: les informations sur les états contrôlables a priori [Girard et al., 2016, Koenig and Likhachev, 2005], les

priorités sur les entrées [Hussien and Tabuada, 2018, Girard et al., 2016, Hsu et al., 2019, Nilson et al., 2017], et

les états non accessibles depuis l’ensemble initial [Girard et al., 2016]. Le chapitre 3 présente une nouvelle tech-

nique d’échantillonnage temporel adaptatif appliquant la structure souhaitée (liée au voisin) du modèle symbolique.

Un algorithme de synthèse paresseux pour les abstractions liées aux voisins est ensuite fourni, avec une extension

pour les abstractions avec un échantillonnage temporel arbitraire. Dans l’esprit, l’idée est proche du résultat du

théorème de Nagumo ([Blanchini, 1999]) et du principe de visée extrême ([Subbotin, 1995]). Cependant, à notre

connaissance, ces idées n’ont jamais été mises en œuvre dans le cadre de la synthèse de contrôle basée sur

l’abstraction. Le chapitre 4 adapte les idées d’exploration de modèle symbolique incrémental et de synthèse pa-

resseuse présentées dans [Girard et al., 2016] pour les systèmes de transitions déterministes aux abstractions non

déterministes. Un modèle symbolique multi-échelle avec une grille adaptative est également introduit. Le chapitre

5 présente deux classes de systèmes de transitions monotones et fournit des conditions suffisantes pour qu’une

abstraction d’un système dynamique monotone [Angeli and Sontag, 2003] soit monotone. Ensuite, des algorithmes

de synthèse paresseux pour des modèles symboliques monotones et des spécifications de sécurité dirigées (et

leurs intersections) sont présentés. Le résultat est basé sur des abstractions efficaces qui ont été introduites

dans [Kim et al., 2017].

v





Contents

1 Introduction 11

1.1 Design of Safety Critical Cyber-Physical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.1 Formal Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Literature Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 On Computation of Maximal Control-Invariant Sets . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.2 Abstraction-Based Control Synthesis (ABCS) Approaches . . . . . . . . . . . . . . . . . . . . . 14

1.2.3 Over-approximations of Reachable Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Illustrative Example: ABCS for Safety Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Motivation and Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5.1 Chapter 2. Safety Controller Synthesis for Finite Transition System . . . . . . . . . . . . . . . . 19

1.5.2 Chapter 3. Lazy Controller Synthesis Based on Safe Set Boundary Exploration . . . . . . . . . 20

1.5.3 Chapter 4. Lazy Synthesis with Adaptive Symbolic Abstractions . . . . . . . . . . . . . . . . . 21

1.5.4 Chapter 5. Lazy Synthesis for Monotone Systems and Directed Specifications . . . . . . . . . 22

1.5.5 Chapter 6. Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Safety Controller Synthesis for Finite Transition System: How to Speed-Up the Computations? 25

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Maximal Safety Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Lazy Synthesis Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.1 Source of Laziness: Information about A priory Controllable States . . . . . . . . . . . . . . . . 31

2.3.2 Source of Laziness: Inputs’ Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.3 Source of Laziness: Non Reachable from Initial Set States . . . . . . . . . . . . . . . . . . . . 35

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1



3 Lazy Symbolic Controller for Continuous-Time Systems Based on Safe Set Boundary Exploration 39

3.1 Neighbor-Linked Abstractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 Adaptive Time Sampling as Way to Enforce the Desired Structure . . . . . . . . . . . . . . . . 40

3.1.2 Maximal Safety Controller Synthesis: Inner States as a Source of Laziness . . . . . . . . . . . 42

3.2 What if the Abstraction is not Neighbor-Linked? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Controller Refinement for an Arbitrary Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Numerical Illustration: Adaptive Cruise Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Lazy Safety Controller Synthesis with Multiscale Adaptive-Sampling Abstractions 51

4.1 Multilayered Abstractions with Multi-scale Adaptive-Time Sampling . . . . . . . . . . . . . . . . . . . . 52

4.2 Synthesis of Maximal Input-State Lazy Safety Controller . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 From a Multilayered to an Adaptive Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Controller Refinement for an Abstraction with Adaptive Grid . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Numerical Illustration: Temperature Regulation in the Building . . . . . . . . . . . . . . . . . . . . . . . 61

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Efficient Controller Synthesis for Monotone Dynamical Systems and Directed Safety Specifications 65

5.1 Monotone Dynamical Systems and Directed Safety Specifications . . . . . . . . . . . . . . . . . . . . 66

5.2 Monotone Abstractions for Monotone Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.1 Monotone Transition Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.2 Box abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.3 Sparse Abstractions for (Input-)State Monotone Control Systems . . . . . . . . . . . . . . . . . 73

5.3 Maximal Safety Controller for Monotone Transition Systems and Directed Specifications . . . . . . . . 75

5.3.1 Lower-closed and Upper-closed Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.2 Lazy Synthesis for State Monotone Transition Systems . . . . . . . . . . . . . . . . . . . . . . 77

5.3.3 Lazy Synthesis for Input-State Monotone Transition Systems . . . . . . . . . . . . . . . . . . . 82

5.3.4 Controller Synthesis for Intersections of Directed Safety Specifications . . . . . . . . . . . . . . 85

5.4 Numerical Illustration: Adaptive Cruise Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.4.1 Control Objective and Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6 Conclusion and Future Work 93

6.1 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

A Reachability Analysis for Mixed-monotone Dynamic Systems 97

2



List of Figures

1.1 Illustration of an abstraction-based control synthesis approach for a safety specification. . . . . . . . . 17

1.2 The left figure illustrates adaptive time-sampling techniques: while transition duration is commonly

determined by a given time sampling parameter τ , we propose interrupting every transition stops

just before leaving NA(q). The right figure represents the result of the synthesis procedure for an

arbitrary abstraction, while the central figure shows the corresponding domain of the continuous-time

controller. In the green region, we apply any admissible input, but as soon as closed-loop trajectory

reaches the white area, we switch to the "abstract" controller, which steers us back to the controllable

domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 The left figure shows transitions with two different durations: for a control u1 we stop before leaving a

radius 1, while for a control u2 – an interval with a radius 2. We then say that action corresponding

to u1 is less valuable than the action corresponding to u2 since we prefer first to go further. The

central figure shows a 2-layered grid: a coarser level is marked with a normal line and a finer level

with a dashed line. The input up brings us from a state q′ to a state q such that q′ ⊂ q. The transition

corresponding to input (u, 2), where 2 determines the duration ends at the finest layer. The right figure

then represents the same transition but with the corresponding adaptive grid. . . . . . . . . . . . . . . 21

1.4 The left figures show two trajectories of an input-state monotone dynamical system. The right figure

provides an example of a lower-closed safety set. In all figures, a natural component-wise order on

R2 is considered for both the input and the state spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 The left figure illustrates that if the transition system is lower input state monotone, then we for any

two states q1 �Q q2 and two inputs u1 �U u2, F (q1, u1) ⊆↓ F (q2, u2). Right figure shows that a finite

lower-closed set Q (i.e. Q s.t. Q =↓ Q) can be represented by its basis Bas(Q) = {q1, q2, q3, q4}, since

Q =↓ Bas(Q). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3



2.1 Illustration of Algorithm 2.1. Algorithm 2.1 iteratively removes all unsafe actions from a transition

system until the system stops changing. An action is unsafe if it can not prevent the system from

steering into an unsafe or blocking state. Unsafe actions are marked with a red color. Blocking states

are filled with grey, the unsafe state - with black. A state q with p(q) = 1 is contoured with black, with

p(q) = 0 - with red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Illustration of Algorithm 2.2 execution.Blocking states are filled with grey. The unsafe state is black.

A state q such that p(q) = 1 are contoured with black, with p(q) = 0 - with red. Let us remark that

all transitions in the system are between neighboring states. Hence, we can restrict exploration to

those states that border with blocking or unsafe states. The unexplored elements are marked with

the dashed line, while the normal line denoted states already involved in computations. At the end

of execution, states q8, q4 stay unconsidered, but we can automatically mark them as controllable,

including all actions enabled at these states to the maximal safety controller. . . . . . . . . . . . . . . 32

2.3 Illustration of Algorithm 2.3 execution. Unsafe actions are red. Blocking states are grey. Controls

u1, u2 have priority 2, u3, u4 have priority 1. If a state is contoured with black, it has priority 2, and

the actions with priority 2 are enabled for this state. If with blue, it has priority 1, and the inputs with

priority 1 are available. If with red, then its priority is 0. We enable lower priority transitions for a

state only if it is uncontrollable with higher priority actions. Enable at the current iteration transition

marked with a normal line, while action marked with a dashed line are non-available. The actions

which remain untouched at step 9 are not included in the maximal input lazy safety controller. . . . . 35

2.4 Illustration Algorithm 2.4 execution. Unsafe actions are red, blocking states are grey, and the initial

states are marked with a double line. The computations are restricted to states, which reachable from

the initial set. States which are non-reachable from the initial set are countered with a dashed line.

Hence, states q11, q12 and q8 are not included in the domain of the maximal state lazy safety controller. 37

3.1 Illustration of the adaptive time sampling technique (right figure) compared to a fixed time sampling

approach (left figure). Black cells represent unsafe states; green and blue cells represent F (q, u1)

and F (q, u2) correspondingly. The red square represents the abstract state neighborhood NA(q).

While in the left figure, transition duration is determined by pre-fixed time sampling parameter τfix, in

the right figure, a transition stops just before leaving NA(q) (see eq. (3.2)). . . . . . . . . . . . . . . . . 41

4



3.2 Illustration lazy synthesis based on boundary exploration idea. First figure illustrates the discretization

of the original state space R2. The safe set Y is countered with blue; white cells are safe states; the

unsafe state is filled with gray. Figures 2-5 illustrate the execution of Algorithm 3.2. States filled with

white and green have priority 1; with grey - priority 0. White states belong to QEB . States contoured

with red are blocking. The inputs set U = {u1, u2}. Actions corresponding to control u1 are black,

u2 are blue. Transitions marked with red are unsafe. In opposite to normal line, the dashed line

represents transitions that haven’t been computed yet. Last figure illustrates a piece of trajectory of

a closed-loop system (1.1),(3.5)-(3.8). White states belong to QB ; green area corresponds to QI .

Normal line represents mode 0, dashed line - mode 1. . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Illustration an adaptive cruise control problem configuration with a constant time headway spacing

policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Simulation results. Left figure illustrates a safety specification. Right figure represents the domain of

the safety controller computed by Algorithm 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Simulation results. Left figures represent a disturbance realization F1 and a safety control F2. Right

figures represent a corresponding closed-loop trajectory of the dynamic system (3.9), starting at

[20, 15, 5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Illustration of transition relation on a 2-layered grid. Left figure illustrates (4.2) with a transition

F (q′, up) = q, and (4.3) with a transition F (q, u). Unsafe states are marked with black. Right fig-

ure illustrates adaptive time-sampling techniques (see (4.4)). Transitions with two different duration

are shown: for a control u1 we stop before leaving an interval with a radius 1, while for a control u2 –

an interval with a radius 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Illustration of Algorithm 4.2 execution. Unsafe actions are red. Blocking states are grey. Controls

u1, u2 have priority 2, u3, u4 have priority 1. If a state is contoured with black, it has priority 2, and

the actions with priority 2 are enabled for this state. If with blue, it has priority 1, and the inputs with

priority 1 are available. If with red, then its priority is 0. We enable lower priority transitions for a

state only if it is uncontrollable with higher priority actions. Enable at the current iteration transition

marked with a normal line, while action marked with a dashed line are non-available. Reachable from

the initial set states are countered with a normal line, non-reachable with a dashed line. The actions

marked with a dashed line in step 9 are not included in the maximal input lazy safety controller. . . . 57

4.3 Illustration of the difference between multilayered and adaptive grid. Left figure shows the successors

F (q, u) on 2-layered grid, while the right figure on the corresponding adaptive grid. . . . . . . . . . . . 60

4.4 Illustration of the considered configuration for temperature regulation problem. . . . . . . . . . . . . . 61

5



4.5 Simulation results. A grey area corresponds to the controllable domain: light states are controllable by

the actions with priority 1; dark states - with priority 2. The white area is uncontrollable. Concerning

the closed-loop trajectory, orange color corresponds to a control {0, 0}, green - to a control {0, 1},

violet - to a control {1, 0}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1 Illustration of Definitions 5.1.3 and 5.1.5. The left figures show two trajectories of an input-state

monotone dynamical system. The right figure provides an example of a lower-closed safety set. In all

figures, a natural component-wise order on R2 is considered for both the input and the state spaces. . 67

5.2 Illustration of Theorem 5.2.1. Given two states q1 �Q q2 and two inputs u1 �U u2, if the transition

system is LISM then we have that F (q1, u1) ⊆↓ F (q2, u2). . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 The first two partitions satisfy Assumption 5.2.1, while the third partition does not satisfy Assump-

tion 5.2.1. The first and third partitions satisfy Assumption 5.2.2, while the second partition does

not satisfy Assumption 5.2.2. The state-space is equipped with the component-wise partial order �

defined on R2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4 Illustration of difference between box and sparse abstractions. Left: A box abstraction for a fixed

disturbance interval [wm
1 ,w

m
2 ], m ∈ {1, . . . ,M}. Right: box (grey) and sparse (blue) abstractions for

a monotone system with a lower-closed safety specification for M = 3. . . . . . . . . . . . . . . . . . . 73

5.5 Illustration of Definition 5.3.1. A lower-closed set A and its basis Bas(A) = {a1, a2, a3, a4}. The state-

space is equipped with the component-wise partial order � defined on R2 and we have: A =↓ A =↓

Bas(A). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.6 Illustration of Algorithm 5.3. If p(q) = 1, then q either blue or white. Red states are uncontrollable (i.e.

p(q) = 0). Blue states are the basis of a set QE . The input set U = {u1, u2}. . . . . . . . . . . . . . . 79

5.7 Illustration of lazy synthesis of the maximal safety controller for a LSM transition system with lower-

closed specification. Red state are uncontrollable. White states belong to Dom(C̄). The left figure

represents the Dom(C̄) and its basis {q3, q4, q5}. Figures in the middle illustrate computation of the

sets Pre(Dom(C̄, u1,Dom(C̄))) and Pre(Dom(C̄, u2,Dom(C̄))) by Algorithm 5.4. States filled with

grey belong to QU . States contoured with colors belong to Bas(Dom(C)\QU ). States contoured with

blue and yellow are controllable by inputs u1 and u2 correspondingly (i.e. belong to QC). The right

figure illustrates the result of Theorem 5.3.2. States filled with yellow are controllable by u2, with blue

- by u1, with green - by both u1 and u2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.8 Illustration of the reordering U = {u1, . . . , u9} of the input set U = {1, 2, 3}2 with respect to the

component-wise partial order � defined on R2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.9 Illustration of the maximal safety controller C̄ for the case of a total order on the input set. U =

{u1, u2, u3} with u1 �U u2 �U u3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6



5.10 Simulation results. Maximal safety controller C̄ for a lower-closed safety specification. . . . . . . . . . 88

5.11 Simulation results. Maximal safety controller C̄ for an intersection of lower-closed and upper-closed

safety specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.1 Left figures illustrates construction of a non-deterministic abstraction. Right figures illustrates a de-

terministic one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7



List of Tables

3.1 Vehicle and safety parameters. The values are taken from [Darbha, 1997, Saoud et al., 2020]. . . . . 48

4.1 Runtime comparison when varying the number of states. . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 Runtime comparison when varying the number of states. T slm, Tcl, T scl and T s3v are the running time

of Algorithm 5.5, the classical fixed point algorithm with box abstractions [Tabuada, 2009] and with

sparse abstractions [Kim et al., 2017] and the lazy algorithm from [Hussien and Tabuada, 2018], re-

spectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Memory comparison when varying the number of states. Ms
lm, Mcl, Ms

cl and Ms
3v are the required

memory to implement the controller resulting from Algorithm 5.5, the classical fixed point algo-

rithm with box abstractions [Tabuada, 2009], the classical fixed point algorithm with sparse abstrac-

tions [Kim et al., 2017] and the lazy algorithm from [Hussien and Tabuada, 2018], respectively. . . . . 89

5.3 Runtime comparison when varying the number of inputs. T slm, Tcl, T scl and T s3v are the running time

of Algorithm 5.5, the classical fixed point algorithm with box abstractions [Tabuada, 2009] and with

sparse abstractions [Kim et al., 2017] and the lazy algorithm from [Hussien and Tabuada, 2018], re-

spectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Memory comparison when varying the number of states. Ms
lm, Mcl, Ms

cl and Ms
3v are the required

memory to implement the controller resulting from Algorithm 5.5, the classical fixed point algo-

rithm with box abstractions [Tabuada, 2009], the classical fixed point algorithm with sparse abstrac-

tions [Kim et al., 2017] and the lazy algorithm from [Hussien and Tabuada, 2018], respectively. . . . . 90

8



List of Symbols and Abbreviates

N,Z,R nonnegative integers, integers and real numbers correspondingly

Np,Rp, Zp p- dimensional vector spaces originated by N,Z,R correspondingly

L(T ,S) is a space of measurable function on T taking their values from S

s ∈ L(T ,S) is a function belonging to L(T ,S)

≺S a partial order on S

cl(X) is a closure of a set X

Σf = (T ,Rnx ,U ,W, f) a control system with a dynamic given by ẋ = f(x, u, w), u ∈ U , w ∈ W
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Chapter 1

Introduction

Cyber-physical systems (CPS) are physical and engineered systems whose operations are monitored, coordinated,

controlled and integrated by a computing and communication core [Rajkumar et al., 2010]. It is clear, that they are

to become ubiquitous in modern societies: autonomous vehicles, smart buildings, robots...many grand challenges

await in the economically vital domains of transportation, health care, manufacturing, agriculture, energy, defense,

aerospace, and buildings. The design, construction and verification of CPS pose a multitude of technical issues.

It requires a wide range of expertise from control theory to embedded software engineering to cope with the tight

interactions between the computational and physical elements of a CPS. This renders the development of a CPS

challenging and time-consuming. Moreover, since CPS are often safety-critical, a significant amount of effort must

be invested in system integration and verification to ensure the soundness of the proposed design.

A sound design of CPS, taking into account the interactions between the computational and physical elements,

requires model-based approaches. CPS models are heterogeneous: the continuous behavior is described by

differential equations (in general non-linear), while the discrete behavior is formalized with finite-state automata

frameworks. As pointed out in [Derler et al., 2012, Kim and Kumar, 2012], being able to deal with heterogeneity

is a prerequisite to the foundation of a sound framework for CPS design. During the past decade, significant

progress towards that goal has been made, notably in the area of hybrid dynamical systems. Hybrid systems are

dynamical systems exhibiting both continuous and discrete behaviors. Motivated by the multiplication of “discrete”

embedded computing devices interacting with the “continuous” physical world, the research on hybrid systems has
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rapidly developed at the interface of computer science and control since the nineties. Each discipline has brought

its models and methods, and their combination has allowed the scientific community to build the foundations of a

theory of hybrid systems. The notion of hybrid automaton [Henzinger, 2000, Lygeros et al., 2003], which is one of

the most commonly used mathematical models of hybrid systems, combines differential equations and finite-state

automata and is a typical example of this cross-fertilization. More generally, hybrid systems research has allowed

new topics at the intersection of computation and control.

Another challenging issue in developing CPS is a complex control objective that goes beyond the traditional con-

trol theory (e.g. stability, controllability, observability...). For example, one often has to address safety, reachability,

fault-tolerance, or even specifications given by some logic formula or automaton describing the acceptable temporal

behaviours of the system [Belta et al., 2017, Cassandras and Lafortune, 2009, Sinyakov and Girard, 2020b].

1.1 Design of Safety Critical Cyber-Physical Systems

As was mentioned above, CPS are safety-critical. Intuitively, safety requires that “bad” things do not happen and it

is of the utmost importance in many engineering problems, often prioritized over other performance requirements.

Insulin pumps should protect a diabetic person from hyper or hypoglycemia [Gillis et al., 2007, Hovorka et al., 2004,

Kushner et al., 2019]. Adaptive cruise control assistants should keep a car at a safe distance from the previous ve-

hicle [Alam et al., 2014, Ames et al., 2017, Darbha, 1997]. Climate control should maintain the temperature in an

intelligent building into the desirable range [Meyer et al., 2013, Thavlov and Bindner, 2015]. Satellite station keep-

ing [Weiss et al., 2018], traffic networks [Kim et al., 2017] and biochemical networks [Sontag, 2007] control, power

grids design [Kader et al., 2019]. . . in all these practical applications the behavior of the controlled system should

satisfy the safety requirements. Moreover, a safety specification often appears as a sub-task of a more complex

problem [Chen et al., 2015], including control objectives given by hybrid automaton [Nilsson et al., 2016] or linear

temporal logic formula [Tajvar et al., 2020]. Being a critical issue in designing CPS, safety specification is the main

topic of this manuscript. However, before moving forward let us formalize the considered problem.

1.1.1 Formal Problem Statement

A control system Σf = (T ,Rnx ,U ,W, f) consists of a time domain T = [0,+∞), a state space Rnx , a compact set

U ⊂ Rnu , a compact set W ⊂ Rnw , and a non-linear function f : Rnx × U ×W → Rnx , such that for any control

u ∈ L(T ,U), any disturbance w ∈ L(T ,W) and any initial condition x(0) ∈ Rnx in the whole domain Rnx there

exists a unique solution xf (t | x(0),u,w), t ∈ T of the following differential equation

ẋ(t) = f(x(t), u(t), w(t)) (1.1)
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in the sense of Caratheodory. The notation L(T ,S) is used for the space of functions s, measurable on T , such that

s(t) ∈ S, t ∈ T almost everywhere. Let us also use a bold font to denote a function s inL(T ,S).

We then call a solution xf (t | x(0),u,w), t ∈ T a trajectory of the system Σf = (T ,Rnx ,U ,W, f) corresponding

to an initial condition x(0), a control function u, and a disturbance w. When the control inputs of system Σf =

(T ,Rnx ,U ,W, f) are generated by a state-feedback controller u(t, x) : T × Rnx → U , the dynamics of the closed-

loop system, corresponding to a disturbance realization w, is given by ẋ(t) = f(x(t), u(t, x(t)), w(t)), t ∈ T , and the

trajectory of closed-loop system is denoted as xuf (t | x(0),w). The class of admissible closed-loop controls u(t, x(t))

must, however, be restricted so that the closed-loop system has a unique solution (in the sense of Caratheodory) in

the considered domain.

Problem 1.1.1. Given a control system Σ = (T ,Rnx , U,W, f) find an admissible safety controller, which keeps all

trajectories of the closed-loop system inside a safety set Y ⊂ Rnx . Here the controller is said to be admissible if

it is robust against any measurable bounded disturbance w ∈ L(T ,W ) and there exists a unique solution of the

closed-loop system.

1.2 Literature Overview

1.2.1 On Computation of Maximal Control-Invariant Sets

A fundamental concept related to safety specification is (robust) control invariant sets. By definition, a subset of the

state space is a control invariant set (or a viable set [Aubin and Frankowska, 1991]) if, for all initial conditions chosen

among its elements, we can keep the trajectory inside the set by means of proper control action. If disturbances,

in addition, are considered, then the set is known as a robust control invariant set. So, to solve a safety control

problem means to find a (robust) control invariant set included in a given safe set and there is a practical interest

in getting the invariant set, which is maximal by inclusion. The existence and uniqueness of such a set was, for

example, studied within the viability theory [Aubin and Frankowska, 1991]. Though the problem of finding maximal

control-invariant sets for arbitrary systems is intractable, there is an extensive literature on computing numerical

approximations. Polytopic projection [Blanchini, 1999, Anevlavix and Tabuada, 2019]), LMI-based Lyapunov type

analysis techniques [Khlebnikov et al., 2011], sum of squares programming [Papachristodoulou and Prajna, 2005,

Tan and Packard, 2008], Minkowski type methods [Kolmanovsky and Gilbert, 1998] and linear programming ap-

proaches [Trodden, 2016] allow us to compute convex approximations of maximal invariant sets for linear system.

For nonlinear systems the problem has been addressed with approaches based on value-function approximations

[Mitchell et al., 2005, Kurzhanski and Varaiya, 2014], a control barrier functions design [Ames et al., 2017], and in-

terval analysis techniques [Alam et al., 2014, Jaulin et al., 2001, Li and Liu, 2018a, Meyer et al., 2013]. However,

the heterogeneous dynamic of CPS and demand to incorporate the safety into more difficult control specifications
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have turned the attention of the considerable part of the research community to abstraction-based synthesis ap-

proaches [Belta et al., 2017, Tabuada, 2009].

1.2.2 Abstraction-Based Control Synthesis (ABCS) Approaches

In recent years, controller synthesis techniques based on abstractions have received considerable attention within

the control systems community. Continuous-time abstractions serve for two reasons: simplify the dynamic of the

original system [Fu et al., 2013, Dang et al., 2010] or reduce the number of dimensions [Girard and Pappas, 2007].

However, this work is dedicated to so-called symbolic model control when one creates a finite-state discrete-

time abstraction on top of the original system. The latter allows to leverage computer-science control synthesis

techniques and enrich the class of available specifications [Cormen et al., 2001]. We call the abstraction a symbolic

model since one abstract state is a symbol representing infinitely many states of the original state space. Symbolic

model control is a popular branch of the modern control theory. The dynamics of considered system varies from

simple double integrators [Fainekos et al., 2009], over linear [Wongpiromsarn et al., 2009, Rungger et al., 2013] and

piecewise affine [Yordanov et al., 2012] to nonlinear systems [Tabuada, 2009, Reissig et al., 2017, Girard, 2010,

Liu et al., 2013, Zamani et al., 2011]. The control problems range from reach-avoid [Tabuada, 2009, Girard, 2010,

Reissig et al., 2017, Zamani et al., 2011] and safety specifications [Hsu et al., 2019, Tabuada, 2009, Girard, 2010,

Saoud et al., 2020], fragments of LTL [Fainekos et al., 2009, Wongpiromsarn et al., 2009, Liu et al., 2013] to full LTL

[Tabuada and Pappas, 2006, Kloetzer and Belta, 2008].

Roughly speaking, control synthesis based on symbolic models is a three-step procedure. In the first step, the

continuous or hybrid system (together with the specification) is lifted to an abstract domain where it is substituted by a

finite transition system [Belta et al., 2017], which mimics the original dynamic. In the second step, an auxiliary prob-

lem on the abstract domain (“abstract problem”) is solved using discrete methods [Cassandras and Lafortune, 2009,

Cormen et al., 2001]. In the third step, the controller synthesized for the abstraction is refined to the concrete system

[Belta et al., 2017, Tabuada, 2009].

Behavioural Relationships

The correctness of abstraction-based approaches is usually ensured by connecting the original system with its

abstraction in terms of a system relation. The notion of simulation [Milner, 1989, Park, 1981] guarantees that an ex-

ecution is possible for the abstraction if it is possible for the concrete system. The concept of bisimulation states that

an execution is possible for the abstraction if and only if it is possible for the concrete system [Pappas, 2003]. Since

the construction of bisimilar abstractions was possible for restricted classes of systems, the notion of simulation was

relaxed by Girard and Pappas in [Girard and Pappas, 2005]. The construction of approximately bisimilar determinis-

tic abstractions was made possible for incrementally stable systems [Angeli, 2002]. An extension called alternating
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approximate bisimilarity has been proposed in [Pola et al., 2010], allowing for the construction of non-deterministic

abstractions. While in the approximate alternating (bi-)simulation relations, the refined controller needs to contain

the abstraction as a building block. The notion of feedback-refinement relation [Reissig et al., 2017], which in spirit

are the same as over-approximation relations [Liu et al., 2013], was proposed to address this shortcoming. Finally, a

first approach to construct a behavioural relationship taking into account the structural properties of dynamical sys-

tems has been recently proposed in [Kim et al., 2017], where the notion of directed alternating simulation relation

was shown to be efficient in order to deal with monotone dynamical systems [Angeli and Sontag, 2003].

Toolboxes

Various tools built on abstraction-based methods are available for the purpose of control synthesis. Tools such

as LTLMoP [Finucane et al., 2010], TuLip [Wongpiromsarn et al., 2011] are restricted to simple integrator dynamics

and piecewise affine control systems, respectively, while Pessoa [Mazo et al., 2010], CoSyMa [Mouelhi et al., 2013],

ROCS [Li and Liu, 2018b], SCOTS [Rungger and Zamani, 2016], and Co4Pro [Sinyakov and Girard, 2021] consider

nonlinear systems. The differences between Pessoa, CoSyMa and ROCS, SCOTS, Co4Pro become apparent in

terms of the type of symbolic model which is used to solve the synthesis problem. CoSyMa requires the original sys-

tem to be incrementally stable [Angeli, 2002] and computes symbolic models that are approximately bisimilar to the

original system [Girard, 2010]. Pessoa, additionally to approximately bisimilar symbolic models, supports the com-

putation of approximately alternatingly similar symbolic models [Tabuada, 2009]. However, Pessoa can not handle

nonlinear systems unless the user provides their own overapproximation function. Accepting general non-linear sys-

tems, symbolic models implemented by SCOTS are based on feedback refinement relations [Reissig et al., 2017].

The kernel of ROCS is interval branch-and-bound scheme, with limitation that customized inclusion functor has

to be provided by the user. Comparing to SCOTS and ROCS the internal rechability algorithm are improved in

Co4Pro to achive the better performance of abstraction-based approaches. Concerning the specifications SCOTS,

Pessoa, CoSyMa, ROCS natively supports the controller design to enforce invariance and reachability. LTLMoP

and TuLip support more general specifications like GR(1) [Bloem et al., 2012]. The most resent toolbox Co4Pro

supports specifications given by a discrete-time hybrid automaton.

1.2.3 Over-approximations of Reachable Sets

As previously stated, the exact reachable set of linear continuous systems can only be computed in special cases

[Lafferriere et al., 2001]. Thus, the reachable set has to be computed in an overapproximative way in order to

verify if an unsafe set is possibly reached. Several geometric representations for linear continuous systems have

been investigated: polytopes [Chutinan and Krogh, 2003], ellipsoids [Kurzhanski and Varaiya, 2014], griddy poly-

hedra [Asarin et al., 2000], zonotopes [Girard, 2005], or support functions [Girard and Guernic, 2008] which unify
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the other mentioned representations. For linear systems with disturbances zonotopes [Girard, 2005] and support

functions [Girard and Guernic, 2008] have clearly outperformed existing methods, allowing the verification of sys-

tems with more than 100 continuous state variables. The reachability analysis of non-linear or hybrid systems

has been a challenging problem over the last few decades. Many existing results are based on analysis of so-

lutions of Hamilton–Jacobi–Isaacs equation [Mitchell et al., 2005] on Taylor models [Chen et al., 2012]. However,

while aiming to provide as precise approximations as possible, these approaches are not very suitable for symbolic

model control where a considerable number of reachable sets should be estimated. For abstraction-based synthesis

we recommend to focus on simple interval over-approximations, trading accuracy for efficiency. The literature on

interval-based reachability analysis contains a wide range of methods. The main classes of approaches are sum-

marized below. Approaches based on interval arithmetics are presented in [Jaulin et al., 2001]. In other methods,

interval reachability analysis is achieved through the preservation of partial orders by the system description result-

ing from a monotonicity property of the dynamics [Angeli and Sontag, 2003]. This approach can be applied to both

monotone systems [Moor and Raisch, 2002], as well as for mixed-monotone systems [Coogan and Arcak, 2015,

Meyer et al., 2018]. Some methods focus on the propagation of the initial set over time based on an upper bound of

the growth or contraction of the distance between trajectories of a continuous-time system [Maidens and Arcak, 2014,

Reissig et al., 2017, Fan et al., 2016]. Methods based on differential inequalities bound the system dynamics by

auxiliary differential equations whose solutions define lower and upper bounds of the reachable set for the main

system [Scott and Barton, 2013, Shen and Scott, 2017]. The interested reader can find a comprehensive overview

of interval-based reachability analysis techniques many of which have been implemented in [Meyer et al., 2019] in

the recent book [Meyer et al., 2021].

1.3 Illustrative Example: ABCS for Safety Specification

Let us use Figure 1.1 to briefly explain how symbolic model control can be used to solve Problem 1.1.1. Given a

control system Σf = (T ,Rnx ,U ,W, f) and a safe set Y we aim to compute a transition system Σ = (Q,U, F ), with

finite sets of states Q and inputs U , and transition relation F ⊆ Q× U ×Q that is linked to concrete system Σf with

feedback refinement relationship. Let us introduce a finite partitioning on the state space Rnx and associate every

element of this partitioning belonging to Y (countered with red) with a safe state qi ∈ Q, i = 1, . . . , 24. In the first

sub-figure of Figure 1.1 the safe sets are filled with white color. The grey region is associated with an unsafe state

qus ∈ Q. Thus, an abstract state is considered as atomic symbol representing an infinite number of states from

Rnx . We then approximate the original set of inputs U with a finite subset U . In our particular example U = {u1, u2}

and transitions corresponding to u1 and u2 are marked with black and blue correspondingly. Introducing a time

sampling parameter τfix we then say that for all q ∈ QS = Q \ {qus}, u ∈ U, q′ ∈ Q transition (q, u, q′) ∈ F if

and only if q′ ∩ Reach(τfix | q, u) 6= ∅, where Reach(τfix | q, u) is an over-approximation of the reachable set
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Figure 1.1: Illustration of an abstraction-based control synthesis approach for a safety specification.

Reach(τfix | q, u), corresponding to an initial set q, a constant control function u : [0, t] → u, u ∈ U and admissible

disturbances w ∈ L(T ,W), i.e.

Reach(t | q, u) =
{
x ∈ Rnx | ∃x(0) ∈ q and ∃w ∈ L([0, t],W) such that xf (t | x(0),u,w) = x

}
.

Remark 1.3.1. Here we use the notation Reach(t | q, u) instead of Reach(t | q,u) to emphasize that the reachable

set corresponds to a constant control function. We will keep this logic later in the text as well.

So, to compute transition originated in a state q1 and corresponding to controls u1, u2 we have to calculate

two different reachable tubes, as it is shown in the first sub-figure. We then repeat the same procedure for every

q ∈ QS , u ∈ U to compute the whole symbolic model (the second sub-figure). Let us remark that F (q1, u1) =

{qus, q11}, and F (q1, u2) = {q6, q7, q12}, i.e., the obtained transition system is non-deterministic. To synthesize a

safety controller for the abstraction one can use the classical algorithm from [Tabuada, 2009]. According to that

algorithm, all unsafe transitions are iteratively removed from the transition system until the system stops changing.

The safety controller C : Q→ 2U is then initialised for every state q with remaining actions. A transition is unsafe if it

is not safe, while safe transitions correspond to actions, preventing the system from steering into a blocking or unsafe

state. For example in the second sub-figure of Figure 1.1 the transitions colored with black from states q1, q21 and the

transitions colored with blue from states q24 and q20 are unsafe since they steers into qus. A state is blocking if there

is no transitions allowing to leave this state (blocking states are grey). Hence, a safety controller C ensures that all

trajectories of the controlled transition system are infinitely long and belong to the safe set Dom(C) ⊆ QS ⊆ Y (sub-

figure 3 for the illustration). Here Dom(C) denotes the domain of the controller, i.e. Dom(C) = {q ∈ QS | C(q) 6= ∅}.

We then can guarantee for the original system Σf = (T ,Rnx ,U ,W, f) that all trajectories starting in Dom(C)

can be maintained within a safe set Y infinitely long. Indeed, let, for example, x(0) ∈ q1 (sub-figure 4). Since

q1 ∈ Dom(C) there is a controller u2 ∈ C(q1) and if we apply input u2 τfix seconds we end up in q6, q7 or in q12,

depending on a disturbance realization w. Let us suppose that transition finishes at q7. Since C is a safe controller
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for the transition system states q7 ∈ Dom(C) and there is a safe input u1 ∈ C(q7) such that in τ seconds it again

brings us in the Dom(C) ⊆ Y, and so on. Hence, the real-time controller for the original system is implemented

as a look-up table and, we guarantee that every τ seconds the closed-loop trajectory of Σf is in a safe set Y . To

guarantee that it doesn’t leave Y between too check-points, one either chooses τ sufficiently small, or additionally

requires that Reach(t | q, u) ∩ Y = ∅, t ∈ [0, τfix] for all q ∈ QS , u ∈ U , while constructing the symbolic model.

Let us remark that if a safe controller C enables several inputs for a state, as for example in q12, any of them

ensure safety and we can benefit from this flexibility to achieve more difficult control objectives.

1.4 Motivation and Main Contributions

The main drawback of abstraction-based synthesis approaches is poor scalability. Indeed, symbolic models are

commonly obtained through the discretization of state and input spaces. More accurate abstractions require more

accurate sampling parameters and result in symbolic models with many states and inputs. Consequently, the con-

struction of precise abstractions required for a successful synthesis is often computationally intractable. Moreover,

the complexity of the discrete controller synthesis algorithms typically depends on the size of symbolic models. Fi-

nally, safety controllers based on larger symbolic models require more memory for their real-time implementation. A

demand to reduce the computational complexity of abstraction-based synthesis approaches reasoned considerable

amount of research over the last decade and motivated writing this thesis. There are several research directions

one can explore aiming to overcome the scalability issues:

• compositional approaches as a way to overcome the curse of dimensions [Saoud, 2019];

• efficient reachability algorithms as a way to speed-up computation of symbolic models [Meyer et al., 2021].

However, let us leave these two directions out of the scope of this manuscript and focus on the following two:

• lazy synthesis algorithms for transition systems;

• size-efficient symbolic models.

The main idea of lazy approaches to outperform the classical synthesis algorithm [Tabuada, 2009] is to restrict com-

putations to the essential for the synthesis part [Girard et al., 2016, Hsu et al., 2019, Hussien and Tabuada, 2018,

Nilson et al., 2017, Rungger and Stursberg, 2012]. In such approaches, abstractions are computed on the fly, in

parallel with the synthesis procedure, and the unexplored part of the symbolic model remains uncalculated. To min-

imize the size of symbolic models one can benefit from incremental stability [Girard et al., 2016, Pola et al., 2010,

Saoud and Girard, 2018] or monotonicity [Kim et al., 2017, Sinyakov and Girard, 2020a] of the original system. Ef-

ficient abstractions were also proposed for differentially flat systems [Liu et al., 2012] and for systems exhibiting a
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sparse interconnection structure [Gruber et al., 2017]. As a solution for general class of systems multi-scale ab-

stractions are often considered [Gol et al., 2013, Girard et al., 2016, Hsu et al., 2019, Nilson et al., 2017]. We will

focus on them in Chapter 4.

Chapter 2 structures the existing lazy synthesis approaches and emphasizes three sources of efficiency: in-

formation about a priori controllable states [Girard et al., 2016, Koenig and Likhachev, 2005], priorities on inputs

[Hussien and Tabuada, 2018, Girard et al., 2016, Hsu et al., 2019, Nilson et al., 2017], and non-reachable from ini-

tial set states [Girard et al., 2016]. Chapter 3 introduces a novel adaptive time-sampling technique enforcing the de-

sired (neighbor-linked) structure of the symbolic model. A lazy synthesis algorithm for neighbor-linked abstractions

is then provided, with an extension for abstractions with arbitrary time-sampling. Chapter 4 adapts the incremental

symbolic model exploration and lazy synthesis ideas presented in [Girard et al., 2016] for deterministic transition

systems to non-deterministic abstractions. A size-efficient multi-scale symbolic model with an adaptive grid is also

introduced. Chapter 5 introduces two classes of monotone transition systems and provides sufficient conditions

for an abstraction of a monotone dynamic system [Angeli and Sontag, 2003] to be monotone. Then, lazy synthesis

algorithms for monotone symbolic models and directed safety specifications (and their intersections) are presented.

1.5 Thesis Outline

Overall work is dedicated to efficient safety controller synthesis using the abstraction based approaches. The numer-

ical implementations of Chapters 3 and 5 have been implemented in MATLAB, while the numerical implementations

of Chapters 2 have been implemented in C++. We summarize below the results illustrated in each chapter.

1.5.1 Chapter 2. Safety Controller Synthesis for Finite Transition System

In Chapter 2, we first remind the classical procedure [Tabuada, 2009] for maximal (by inclusion) safety controller

synthesis for finite transition systems (Algorithm 2.1). We then focus on lazy synthesis approaches, which out-

perform the classical algorithm in terms of efficiency. Structuring existing results, we emphasize three sources of

laziness:

• priorities on input space [Girard et al., 2016, Hsu et al., 2019, Hussien and Tabuada, 2018];

• information about a priori controllable states [Girard et al., 2016, Koenig and Likhachev, 2005].

• non-reachable from initial set states [Girard et al., 2016, Tripakis and Altisen, 1999].

We then provide three lazy synthesis algorithms which benefit from these sources. Algorithm 2.2 avoids exploration

of states and transitions which are safely controllable a priory. Algorithm 2.3 explores the lower-priority actions only
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if the safety problem is unsolvable with higher-priority actions. Based on the incremental exploration of the tran-

sition system, Algorithm 2.4 restricts computations for reachable from initial set states only. Algorithm 2.2 returns

the maximal safety controller but compute it lazily. The controllers returned by Algorithm 2.3 and Algorithm 2.4 do

not satisfy the maximality requirement, and we call them maximal input-lazy and maximal state-lazy safety con-

trollers correspondingly. Both these controllers are a particular case of the maximal lazy safety controller introduced

in [Girard et al., 2016]. Maximal input-lazy safety controller C∗ has the property that all safely controllable states

are in the domain of C∗. Moreover, if the controller enables an input, it also enables all inputs that have the same

priority and preserve safety. However, if several inputs can maintain safety, the controller enables only inputs with

the highest priority (Definition 2.3.2). Maximal state-lazy safety controller C∗ has a property that a safely controllable

state is in Dom(C∗) if and only if it is reachable from the initial set (Definition 2.3.3). Lazy synthesis approaches

explore only part of the transition system and allow us to compute the abstraction on-the-fly.

1.5.2 Chapter 3. Lazy Controller Synthesis Based on Safe Set Boundary Exploration

Chapter 3 proposes an abstraction-based approach to synthesize a safety controller solving Problem 1.1.1. The

main idea consists in creating a neighbor-linked abstraction, where only transitions between neighboring states are

allowed. To construct the abstraction with the desired structure, we interrupt every transition just before leaving

the abstract state neighborhood (Figure 1.2 (left)). This idea differs from existing time-sampling approaches, where

transitions duration is determined with a given parameter [Tabuada, 2009]. We then use Algorithm 2.2 to synthesize

the maximal safety controller lazily by iteratively exploring only those states which border the uncontrollable domain

(Theorem 3.1.1), since as soon a safe frontier is found, all internal states are controllable a priori with any admissible

input. We then show that even when abstraction is not neighbor-linked, the controller returned by Algorithm 2.2

can be refined to solve Problem 1.1.1 by using a novel control refinement scheme that interrupts the closed-loop

trajectory of the original system when it reaches a boundary state of the controllable domain (Theorem 3.3.1). Such

a refining procedure ensures that the trajectory does not over-jump the safe boundary, where we have the abstract

controller to push the system back towards the interior. In the internal set any admissible control is then allowed

(Figure 1.2 (right)).

In spirit, the idea is close to the result of Nagumo theorem ([Blanchini, 1999]) and extreme aiming principle

([Subbotin, 1995]). In simple words, Nagumo theorem says that a convex and closed set S is a positive invariant of

the system (1.1) if and only if for all x ∈ ∂S derivative ẋ points inside S or it is tangent to S, while in [Subbotin, 1995]

the authors propose to use any control input until the trajectory reaches the boundary. However, to the best of our

knowledge, these ideas has never been implemented within the abstraction-based control synthesis framework.
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Figure 1.3: The left figure shows transitions with two different durations: for a control u1 we stop before leaving a
radius 1, while for a control u2 – an interval with a radius 2. We then say that action corresponding to u1 is less
valuable than the action corresponding to u2 since we prefer first to go further. The central figure shows a 2-layered
grid: a coarser level is marked with a normal line and a finer level with a dashed line. The input up brings us from a
state q′ to a state q such that q′ ⊂ q. The transition corresponding to input (u, 2), where 2 determines the duration
ends at the finest layer. The right figure then represents the same transition but with the corresponding adaptive
grid.

1.5.3 Chapter 4. Lazy Synthesis with Adaptive Symbolic Abstractions

Chapter 4 focuses on approaches, which iteratively refine symbolic models when synthesis for coarser abstractions

has not been successful [Gol et al., 2013, Girard et al., 2016, Hsu et al., 2019, Li and Liu, 2018b]. We first construct

a multilayered symbolic model with multi-scale time sampling. On the state space of the concrete system, we

introduce several uniform Cartesian partitions embedded one into another and combine them into a multilayered

grid. We then again constrain transitions duration by intervals that must contain the reachable set. However, unlike

the adaptive-time sampling in Chapter 3, neighborhoods of different sizes are used to implement the multiple time

duration idea (Figure 1.3 (left)). We also introduce an input up, which allows switching from the current layer to

the previous (coarser) one. We also finish all non-up transitions at the finest layer. Aiming to use a lazy synthesis
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Algorithm 2.3 we define a partial order on inputs space, prioritizing transitions with a longer duration and putting

the input up on top of everything (Figure 1.3 (middle)). In addition to abstraction refining, we propose to explore

the symbolic model forwardly and thus restrict the controller synthesis computations to states that are reachable

from the initial set only. Thus, we merge Algorithm 2.3 and Algorithm 2.4 from Chapter 2 and compute a controller

inheriting properties from both maximal input-lazy and state-lazy controllers (Algorithm 4.2). Such a controller

was first considered [Girard et al., 2016], but their synthesis procedure was restricted to a deterministic transition

system. We overcome this issue in the present work. Let us remark that with lazy synthesis, we compute for a state

q transitions with a shorter duration only if q is uncontrollable with longer duration actions. We also do not compute

abstraction for states embedded in q if it is controllable. We also show in Section 4.2.1 that the multilayered grid can

be replaced with a more efficient adaptive grid. (two right sub-figures of Figure 1.3 illustrate the difference between

adaptive and multi-layered grid).

1.5.4 Chapter 5. Lazy Synthesis for Monotone Systems and Directed Specifications

Chapter 5 is devoted to monotone control systems and specifications given by lower-closed and upper-closed

sets. I.e.,it is devoted to systems whose trajectories preserve some partial orderings on their state and input

spaces [Angeli and Sontag, 2003, Kamke, 1932, Hirsch and Smith, 2004, Müller, 1927, Smith, 1995] and specifi-

cations given by sets which coincide with their lower under upper closure correspondingly, where a lower closure of

a set A ⊂ L is a set ↓ A =
⋃
a∈A ↓ a, where ↓ a = {q ∈ L | q �L a}, while an upper closure is a set ↑ A =

⋃
a∈A ↑ a,

where ↑ a = {q ∈ L | a �L q}. See Figure 1.4 for an illustration.
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′
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,u′,w′)

xf(t | x0,u,w)⇒
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Figure 1.4: The left figures show two trajectories of an input-state monotone dynamical system. The right figure
provides an example of a lower-closed safety set. In all figures, a natural component-wise order on R2 is considered
for both the input and the state spaces.

Adapting results from [Angeli and Sontag, 2003], we provide criteria for a dynamical system to be state monotone

or input-state monotone and use Example 5.1.1 to illustrate the difference between these two classes of systems.

We then present sufficient conditions on state-space partitioning ensuring that the symbolic models inherit the mono-

tonicity of the original plant (Assumptions 5.2.1, 5.2.2) and characterize state-monotone and input-state monotone
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transition systems correspondingly (Theorem 5.2.1 and its corollary). We distinguish lower and upper (input-)state

transition system (Definitions 5.2.1, 5.2.2), but until Section 5.3.4, we focus on lower (input-)state monotone sys-

tem and lower-closed safety specifications, assuming that similar results for upper (input-)state monotone system

and upper-closed safety specifications can be derived analogously. We say that a transition system Σ = (Q,U, F )

is lower state monotone if for all q1, q2 ∈ Q, for all inputs u enabled in q2 if q1 �Q q2, then u is enabled in q1 and

F (q1, u) ⊆↓ F (q2, u). And it is lower input-state monotone if for all q1, q2 ∈ Q, for all inputs u2 enabled in q2 if q1 �Q q2

and u1 �U u2, u1 ∈ U then u1 is enabled in q1 and F (q1, u1) ⊆↓ F (q2, u2). See Figure 1.5 (left) for an illustration. Any

q1

q2

q1

q2
q3

q4

Q =↓ Q = ∪4
i=1 ↓ qi

F (q1, u1)

F (q2, u2)

u2

u1

Figure 1.5: The left figure illustrates that if the transition system is lower input state monotone, then we for any two
states q1 �Q q2 and two inputs u1 �U u2, F (q1, u1) ⊆↓ F (q2, u2). Right figure shows that a finite lower-closed set Q
(i.e. Q s.t. Q =↓ Q) can be represented by its basis Bas(Q) = {q1, q2, q3, q4}, since Q =↓ Bas(Q).

finite lower-closed set can be represented by its basis [Finkel and Schnoebelen, 2001] (Figure 1.5 (right)). Hence,

to compute the domain of the maximal safety controller for a state-monotone transition system (Theorem 5.3.1), it

is enough to iteratively explore only those states, which belong to the basis of controllable domain (Algorithm 5.3).

Moreover, for lower input-state, it is sufficient to use inputs with lower priorities (Theorem 5.3.4). Let us remark

that for a lower state-monotone system if a state q is controllable with an input u then all states belonging to ↓ q are

controllable with an input u. Moreover if system is lower input-state monotone transition system then additionally

if for a state q an input u is safe then all inputs u′ � u are safe. The latter allows us to compute the maximal

safety controller for lower (input-)state monotone transition systems lazily (Theorem 5.3.2, Algorithm 5.4 and Algo-

rithm 5.5). We then enrich the class of considered specification by intersections of lower-closed and upper-closed

sets in Section 5.3.4. Let us remark that instead of using classical box abstraction we use efficient sparse abstrac-

tions proposed in [Kim et al., 2017], where the sparse transition relation FS(q, u) = max(F (q, u)), q ∈ Q, u ∈ U. In

Figure 1.5 (left) sparse successors are marked with dark blue and green for transitions F (q1, u1) and F (q2, u2).

1.5.5 Chapter 6. Conclusion and Future Work

In the last chapter, we summarize the results of the thesis and propose several directions for future research.
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Chapter 2

Safety Controller Synthesis for Finite

Transition System: How to Speed-Up the

Computations?

As mentioned in the introduction, the successful synthesis requires quite precise abstractions with many states

and inputs to be stored and a considerable number of transitions to be computed. Moreover, the complexity of

discrete methods used for abstract controller synthesis grows with the size of the symbolic model making synthesis

computationally intractable. A demand to overcome a scalability issue of symbolic model approaches reasoned a

wave of research in the last decade and motivated writing this thesis. Various methods to reduce the computational

effort were proposed. In [Kim et al., 2015, Meyer et al., 2017, Swikir and Zamani, 2019] the authors use composi-

tional approaches as a common way to tackle the curse of dimensions. However, this research branch is out of the

scope of this manuscript, and the interested reader is referred to [Saoud, 2019] and reference therein. Other works

benefit from incremental stability [Girard et al., 2016, Pola et al., 2010, Saoud and Girard, 2018] or monotonicity

[Kim et al., 2017, Sinyakov and Girard, 2020a] to minimize the size of symbolic models. Efficient abstractions were

also proposed for differentially flat systems [Liu et al., 2012] and for systems exhibiting a sparse interconnection

structure [Gruber et al., 2017]. As a solution for general class of systems multi-scale abstractions were introduced

[Gol et al., 2013, Girard et al., 2016, Hsu et al., 2019, Li and Liu, 2018b, Nilson et al., 2017]. We will return in more

detail to all these ideas in the following chapters.

This Chapter is devoted to lazy synthesis approaches for a safety specification. In such approaches, abstractions

are computed on-the-fly, restricting computations only to the essential for the synthesis part. Section 2.1 introduces

the notion of a finite transition system. Section 2.2 formulates a safety control problem for a transition system and

provides a classical algorithm synthesizing maximal safety controller. Section 2.3 starts with a literature review
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of lazy approaches. Then Subsection 2.3.1 introduces the lazy synthesis algorithm accelerating maximal safety

controller computations if the information of a priory controllable states is available. The lazy algorithm in Subsection

2.3.2 benefits from a partial order introduced on the input set. Subsection 2.3.3 proposes to restrict the computations

for reachable from initial states only while using incremental search to explore the transition system. All algorithms

in Section 2.3 are applicable for non-deterministic transition systems. Section 2.4 summarises the ideas of this

Chapter.

2.1 Preliminaries

Let us start with the main definitions.

Definition 2.1.1. A transition system is a tuple Σ = (Q,U, F ), consisting of a set of states Q, a set of inputs U , and

a transition relation F ⊆ Q× U ×Q. If sets Q,U are finite Σ = (Q,U, F ) is said to be a finite transition system.

In this thesis, we only work with finite transition systems, and from now, we will shortly call them transition

systems for simplicity. For every transition (q, u, q′) ∈ F the state q is named u-predecessor of q′ and similarly the

state q′ is named u-successor of q. For the set of all u-predecessors of the state q the notation F−1(q, u) is used,

while the set of all u-successors of a state q is denoted by F (q, u). If there is q ∈ Q, u ∈ U such that |F (q, u) | > 1,

then the transition system is called non-deterministic, otherwise it is deterministic. Since F (q, u) may be empty let

us introduce a set EnabF (q) = {u ∈ U | F (q, u) 6= ∅} of all enabled inputs at a state q ∈ Q. If EnabF (q) = ∅, then q is

said to be blocking, otherwise it is non-blocking. We also use notation BlockF (Q′) to describe the set of all blocking

states in a set Q′ ⊆ Q. If BlockF (Q) = ∅, then the transition system is called non-blocking.

Definition 2.1.2. A trajectory of a transition system Σ = (Q,U, F ) is a finite or infinite sequence of transitions

q0
u0−→ q1

u1−→ q2
u2−→ q3

u3−→ . . ., s.t. qi ∈ Q, ui ∈ U and qi+1 ∈ F (qi, ui) for all i ≥ 0.

Definition 2.1.3. A controller for a transition system Σ = (Q,U, F ) is a map C : Q→ 2U , such that C(q) ⊆ EnabF (q)

for every q ∈ Q. Let us use notation Dom(C) = {q ∈ Q | C(q) 6= ∅} for a domain of controller C. If Dom(C) = ∅ the

controller is called trivial, otherwise non-trivial.

2.2 Maximal Safety Controller

Problem 2.2.1 (Safety Specification). For a given transition system Σ = (Q,U, F ) and a safe setQS ⊆ Q, synthesize

a non-trivial controller C such that Dom(C) ⊆ QS and for any trajectory q0
u0−→ q1

u1−→ q2
u2−→ q3

u3−→ . . ., such that

q0 ∈ Dom(C) and ui ∈ C(qi), i ≥ 0 the following is satisfied: qi ∈ Dom(C) for all i ≥ 0.

A desired controller C is then called a safety controller for transition system Σ = (Q,U, F ) and a safe set QS ⊆ Q.
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Definition 2.2.1. A safety controller for a transition system Σ = (Q,U, F ) and a safe set QS ⊆ Q is a controller C

such that the following two properties hold

1. Dom(C) ⊆ QS ;

2. for all q ∈ Dom(C) for all u ∈ C(q) the following inclusion is satisfied F (q, u) ⊆ Dom(C).

Definition 2.2.2. For a given transition system Σ = (Q,U, F ) and a controller C, the controlled transition system

Σ/C = (Dom(C), U, FC) is a transition system with the reduced transition relation FC ⊆ F , such that (q, u, q′) ⊆ FC

if and only if u ∈ C(q).

Hence, if C is a non-trivial safety controller, then the controlled transition system Σ/C = (Dom(C), U, FC) is

non-blocking and all trajectories of this system belong to the safe set QS .

Lemma 2.2.1. For a given transition system Σ = (Q,U, F ), a safe set QS ⊆ Q there exists the unique maximal

safety controller C̄ such that for any safety controller C the following hold

1. Dom(C) ⊆ Dom(C̄);

2. for all q ∈ Dom(C) the inclusion C(q) ⊆ C̄(q) is satisfied.

Obviously, to solve Problem 2.2.1 means to synthesize a non-trivial safety controller and the maximal safety

controller C̄ is the most complete solution one can get. That justifies the following notion of controllability.

Definition 2.2.3. Let QS be a safe set. A state q ∈ Q of transition system Σ = (Q,U, F ) is safety controllable if and

only if q ∈ Dom(C̄). The set of safety controllable states is denoted Cont(Σ, QS).

The algorithm, proposed in [Tabuada, 2009], is the most common way to compute the maximal safety controller.

According to this algorithm, all unsafe transitions are iteratively removed from the transition system until the system

stops changing. A transition is safe if it corresponds to an action, preventing the system from steering into a blocking

or unsafe state. Otherwise, it is unsafe. The maximal safety controller is initialized to permit all transitions of the

resulting system. This simple idea admits various implementations, so let me briefly comment on Algorithm 2.1

(on page 31) and prove that it indeed returns the maximal safety controller. Let a function p : Q → {0, 1} indicates

whether a state q ∈ Q is controllable (p(q) = 1) or not (p(q) = 0), and the reduced transition relation Fp is defined

as follows: (q, u, q′) ∈ Fp if and only if p(q) 6= 0 and for all q′′ ∈ F (q, u) the equality p(q′′) 6= 0 is satisfied. First, all

safe states in QS are marked as controllable, while all states beyond the safe set as uncontrollable (lines 2-5). Then

we iteratively explore all potentially controllable states, marking as uncontrollable those which are blocking (lines

6-11). Updating the function p we automatically remove from the transition relation Fp all unsafe transitions. When

procedure stops, the reduced transition relation is used to initialize the controller C (lines 12-15).

Remark 2.2.1. In the definition of the the reduced transition relation Fp we write p(q′′) 6= 0 instead of p(”q”) = 1 to

ease comparison of the result of this section with the results of the following sections.
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Lemma 2.2.2. Let Algorithm 2.1 executes for transition systems Σ1 = (Q,U, F 1), Σ2 = (Q,U, F 2) with safety

specifications Q1
S , Q2

S correspondingly, and let C1, C2 be returned controllers. Let Q1
S ⊆ Q2

S and EnabF 1(q) ⊆

EnabF 2(q) for all q ∈ Q. If for all q ∈ Q, u ∈ EnabF 1(q) the inclusion holds F 2(q, u) ⊆ F 1(q, u) then C1(q) ⊆ C2(q)

for all q ∈ Q.

Proof. The fact that C1(q) ⊆ C2(q) for all q ∈ Q means that EnabF 1
p1

(q) ⊆ EnabF 2
p2

(q) for all q ∈ Q when the

algorithm reach the line 12. Under assumptions of the lemma about transition relations F 1 and F 2 the latter is

equivalent to p1(q) ≤ p2(q) (see the definitions of the reduced transition relations F 1
p1

and F 2
p2

). Let us now prove

that inequality holds. Since Q1
S ⊆ Q2

S at line 5 the inequality p1,0(q) ≤ p2,0(q) obviously holds for all q ∈ Q and this

give me induction base. Let p1,i(q) ≤ p2,i(q) at the beginning of i iteration of the loop 6-11. Then Q1
E,i ⊆ Q2

E,i and

since the transition relation F 1
p1,i

is included in F 2
p2,i

the set B2
i is included in B1

i from where p1,i+1(q) ≤ p2,i+1(q).

Let us also remark that if at some iteration ĩ the set B2
ĩ

is already empty, while B1
ĩ

is not then the inequality

p1,i(q) ≤ p2,̃i(q), q ∈ Q is also obviously holds for all i ≥ ĩ until Bi becomes empty as well.

Theorem 2.2.1. Let C computed by Algorithm 2.1. Then, C is the maximal safety controller.

Proof. Let us first remark that since the set Q is finite and with every iteration of the loop, all blocking states are

marked as uncontrollable and then never explore again, Algorithm 2.1 always ends its execution. Moreover since

Fp(q, u) ⊆ F (q, u) for all q ∈ Q, u ∈ U the map C is a controller for the transition system Σ = (Q,U, F ). Let us prove

that it is the maximal safety one.

Safety. Let us first show that a state q ∈ Q belongs to Dom(C) if and only if p(q) 6= 0. If q ∈ Dom(C) then

EnabFp(q) 6= 0, consequently, from the definition of Fp it follows that p(q) 6= 0. Let for a state q ∈ Q, p(q) is equal to 0,

when the execution reaches the line 12. It means that the state q was in QE at the last iteration of the loop 6-11 and

since the exit condition from the loop is B = ∅ the state q /∈ BlockFp(QE), i.e. there exists u ∈ EnabFp , consequently,

q ∈ Dom(C). Hence, from the definition of Fp it follows that for all q ∈ Dom(C) the inclusion Fp(q, u) ⊆ Dom(C) is

satisfied for all u ∈ EnabFp , i.e. for all q ∈ Dom(C) and for all u ∈ C(q) the inclusion F (q, u) ⊆ Dom(C). To prove

that Dom(C) ⊂ QS let me suppose the opposite: there exists q ∈ Dom(C) ∩ (Q \ QS). Obviously, if some state q

was marked as uncontrollable (i.e. p(q) = 0) it stays uncontrollable until the end of Algorithm 2.1 execution. Hence,

if q ∈ Q \QS then p(q) = 0, but this contradicts to q ∈ Dom(C).

Maximality. Let C̄ is the maximal safety controller for a transition system Σ = (Q,U, F ) and a safe setQS . SinceC

is a safety controller then for all q ∈ Q the following holds C(q) ⊆ C̄(q). To prove the opposite let me run Algorithm 2.1

for transition system Σ = (Q,U, FC̄) and a safe set Dom(C̄). In this case, the returned controller C̃ obviously coincide

with the maximal safety controller C̄. Since Dom(C̄) ⊆ QS and for all q ∈ Q the set EnabFC̄ (q) = EnabF (q),moreover

for all u ∈ EnabF (q) sets of successors FC̄(q, u), F (q, u) are equal, from Lemma 2.2.2 it follows that C̄(q) ⊆ C(q).

This ends the proof.
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Figure 2.1: Illustration of Algorithm 2.1. Algorithm 2.1 iteratively removes all unsafe actions from a transition system
until the system stops changing. An action is unsafe if it can not prevent the system from steering into an unsafe or
blocking state. Unsafe actions are marked with a red color. Blocking states are filled with grey, the unsafe state -
with black. A state q with p(q) = 1 is contoured with black, with p(q) = 0 - with red.

Figure 2.1 illustrates the execution of Algorithm 2.1.Starting at step 1 with a simple transition system, we first

indicate which state is unsafe. Then at step 3, the unsafe set is initialized with priority 0. Consequently, all ac-

tions steering to qus are removed from the system. At steps 4-6, we continue iteratively delete inputs, which

can not prevent safety, until at step 6, we get a non-blocking transition system, all trajectories of which belong

to QS = {q1, . . . , q15}. Though Algorithm 2.1 is sound and complete, it explores all states and all transitions making

computations too labor-intensive for many real-world problems, where a considerable number of states and inputs

should be explored. In the next section, we introduce more efficient safety synthesis algorithms and discuss their

correctness and completeness with respect to the classical synthesis approach.

2.3 Lazy Synthesis Algorithms

The obvious way to reduce the computational burden is to avoid computations, which are non-essential for synthe-

sis goals. This is a purpose for lazy synthesis algorithms [Girard et al., 2016, Nilson et al., 2017, Hsu et al., 2019,

Hussien and Tabuada, 2018, Rungger and Stursberg, 2012, Kader et al., 2019]. Unlike the classical algorithm, in

lazy approaches, the system is abstracted parallel with the controller synthesis. Hence, one can avoid calculating
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the part of the abstraction, which is not involved in the synthesis procedure. The worst-case complexity of lazy ap-

proaches usually coincides with the classical synthesis’s complexity or can be even higher, but lazy algorithms are

more efficient in practice. Lazy synthesis usually requires additional assumptions about a given transition system,

and the following three different sources of laziness are mainly considered in the literature:

• priorities on input space. In [Hussien and Tabuada, 2018], once a safe input is found for a state, the other

controls are not explored for this state. The authors start with an empty transition relation and iteratively add

new transitions essential for the synthesis purpose. At every iteration, the precomputed part of the symbolic

model is explored. Then, one randomly chooses N states from uncontrollable states, where N is a parameter

given by the user. For each chosen state, one randomly picks an unexplored input and adds the corresponding

tradition to the abstraction. The algorithm returns only the domain of the maximal safety controller and not

the whole maximal safety controller. So, in some sense, the authors introduce a random order on the set

of inputs and try to solve the problem using as higher priorities actions as possible. In [Girard et al., 2016,

Nilson et al., 2017, Hsu et al., 2019, Kader et al., 2019] the authors use multi-scale abstractions and prioritize

actions with longer duration. The idea to give different inputs different priorities is common while dealing with

more general specifications as well. For example, many path-finding algorithms explore the most promising

actions [Hart et al., 1968, Rungger and Stursberg, 2012] first. In cases when specification can not be satisfied,

the least-violating [Girard and Eqtami, 2021, Tůmová et al., 2012] actions are often favored.

• non-reachable from initial set states. In [Girard et al., 2016, Tripakis and Altisen, 1999] it is also proposed to

restrict computations only for states, which are reachable from the initial set. To do so, the authors implement

the incremental transition system exploration, which in turn enables the usage of their approach while deal-

ing with more general control problems, such as, for instance, a reach-avoid specification [Hsu et al., 2019,

Reissig et al., 2017].

• information about a priory controllable states. If, in addition, the incrementally explored transition system

is deterministic, one can mark a state as controllable as soon as a safe loop-path has been found for this

state [Girard et al., 2016]. These a priory controlled states need not be investigated in future iterations of

the synthesis algorithm. Skipping exploration of a part of the transition system is also popular when slightly

changing specifications are considered [Koenig and Likhachev, 2005].

We provide three lazy synthesis algorithms Algorithm 2.2, 2.3 and 2.4 which benefit from these sources. Algorithm

2.2 avoid exploration of states and transitions which are safely controllable a priory. Algorithm 2.3 explores the

lower-priority actions only if the safety problem is unsolvable with higher-priority actions. Based on the incremental

exploration of the transition system, Algorithm 2.4 restricts computations for reachable from initial set states only.

Algorithm 2.2 returns the maximal safety controller, but compute it lazily.The controllers returned by Algorithm 2.3

and 2.4 do not satisfy the maximality requirement, and we call them lazy controllers. Still, lazy controllers are

retaining other important properties serving as a compromise between maximality and efficiency.
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Algorithm 2.1: ClassicalSynthesisMSC(Σ, QS)
Input: Σ = (Q,U, F ) and a safe set QS

Output: MS controller C
1 begin
2 for q ∈ QS do
3 p(q) := 1;

4 for q ∈ Q \QS do
5 p(q) := 0;

6 repeat
7 QE := {q ∈ Q | p(q) 6= 0};
8 B := BlockFp(QE);
9 for q ∈ B do

10 p(q) := p(q)− 1;

11 until B = ∅;
12 for q ∈ QE do
13 C(q) := EnabFp(q);

14 for q ∈ Q \QE do
15 C(q) := ∅;
16 return C;

Algorithm 2.2: LazySynthesisMSC(Σ, QS , IEB)
Input: Σ = (Q,U, F ), a safe set QS , an indicator IEB

Output: MS controller C
1 begin
2 for q ∈ QS do
3 p(q) := 1;

4 for q ∈ Q \QS do
5 p(q) := 0;

6 repeat
7 QEB := {q ∈ Q | p(q) 6= 0 and IEB(q) = 1};
8 B := BlockFp(QEB);
9 for q ∈ B do

10 p(q) := p(q)− 1;

11 until B = ∅;
12 for q ∈ {q ∈ Q | p(q) 6= 0} do
13 C(q) := EnabFp(q);

14 for q ∈ Q \ {q ∈ Q | p(q) 6= 0} do
15 C(q) := ∅;
16 return C;

Algorithm 2.3: MILSC(Σ, QS ,�U )
Input: Σ = (Q,U, F ) and a safe set QS

Output: MILS controller C.
1 begin
2 for q ∈ QS do
3 p(q) := N ;

4 for q ∈ Q \QS do
5 p(q) := 0;

6 repeat
7 QE := {q ∈ Q | p(q) 6= 0};
8 B := BlockFp,�U

(QE);

9 for q ∈ B do
10 p(q) := p(q)− 1;

11 until B = ∅;
12 for q ∈ QE do
13 C(q) := EnabFp,�U

(q);

14 for q ∈ Q \QE do
15 C(q) := ∅;
16 return C;

Algorithm 2.4: MSLSC(Σ, QS , Qinit)
Input: Σ = (Q,U, F ), a safe set QS , an initial set Qinit

Output: MSLS controller C.
1 begin
2 for q ∈ QS do
3 p(q) := 1;

4 for q ∈ Q \QS do
5 p(q) := 0;

6 repeat
7 QR

E := ReachFp ({q ∈ Qinit | p(q) 6= 0}) ;

8 B := BlockFp(QR
E);

9 for q ∈ B do
10 p(q) := p(q)− 1;

11 until B = ∅;
12 for q ∈ QR

E do
13 C(q) := EnabFp(q);

14 for q ∈ Q \QR
E do

15 C(q) := ∅;
16 return C;

The detailed description of Algorithm 2.2, 2.3, and 2.4 is provided in Sections 2.3.1, 2.3.2 and 2.3.3 correspond-

ingly. We also illustrate the proposed approaches with Figures 2.2, 2.3 and 2.4 correspondingly.

2.3.1 Source of Laziness: Information about A priory Controllable States

This section introduces a lazy Algorithm 2.2, which benefits from information about a priory controllable states.

Definition 2.3.1. Consider Σ = (Q,U, F ) and a set QE ⊆ Q. We say that a set QEB ⊆ QE is an essential basis of

set QE if for all q ∈ QE \QEB the set EnabF (q) 6= ∅ and for all u ∈ EnabF (q) the following holds F (q, u) ⊆ QE .
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Figure 2.2: Illustration of Algorithm 2.2 execution.Blocking states are filled with grey. The unsafe state is black. A
state q such that p(q) = 1 are contoured with black, with p(q) = 0 - with red. Let us remark that all transitions in the
system are between neighboring states. Hence, we can restrict exploration to those states that border with blocking
or unsafe states. The unexplored elements are marked with the dashed line, while the normal line denoted states
already involved in computations. At the end of execution, states q8, q4 stay unconsidered, but we can automatically
mark them as controllable, including all actions enabled at these states to the maximal safety controller.

Hence, if at some iteration of Algorithm 2.1 a set QEB is an essential basis of a set QE , then all states q ∈ Q\QE

are controllable a priory at this iteration and the following result is true.

Theorem 2.3.1. Let a set QE = {q ∈ Q | p(q) 6= 0} and let at every iteration of the loop 6-11 of Algorithm 2.2 the

set QEB = {q ∈ QE | IEB(q) = 1} is essential basis of QE then the controller C computed by Algorithm 2.2 is the

maximal safety controller.

Proof. Indeed, from Definition 2.3.1 and definition of the reduced transition relation Fp it follows that for all q ∈ QE

such that IEB(q) = 0 the set EnabFp(q) 6= 0, consequently q /∈ B at every iteration of the loop 6-11.

Hence, in the general case, Algorithm 2.2 does not return a safety controller. However, if the information function

IEB : Q → {0, 1} distinguishes a priory controllable on the current iteration states from those which should be

explored, then Algorithm 2.2 synthesize the maximal safety controller. The idea is simple, but the main intrigue is

in determining the information function IEB , which is different from an indicator of a set QE = {q ∈ Q | p(q) 6= 0}.

For instance, in our illustrative example (see Figure 2.2), all states are linked only with their neighbors. Hence, itera-

tively explore only those states that surround blocking or unsafe states is enough. The latter speed up computation
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in comparison with the classical approach. Moreover, states q4, q8 were never involved in computations, and the

corresponding part of the abstraction may remain uncalculated. Of course, in a general system, transitions between

non-neighboring states are possible. Still, in Chapter 3, we show how one can ensure that the abstraction (con-

structed for the original dynamic system) has the desirable structure by using adaptive time sampling techniques.

Another way to get necessary information about a priory controllable states is to benefit from the monotonicity of the

systems as we do in Chapter 5.

2.3.2 Source of Laziness: Inputs’ Priorities

The ideas of this subsection and the following one were first introduced in [Girard et al., 2016]. However, they

were restricted to deterministic transition systems. The results provided in this manuscript are applicable for non-

deterministic systems as well.

Assumption 2.3.1. Let the set of inputs U be split into N non-intersecting subsets U = U1 ∪ U2 . . . ∪ UN and for

all u′ ∈ Ui, u′′ ∈ Uj , i < j, i, j ∈ {1, . . . , N} it holds that u′ ≺ u′′, while inputs u′, u′′ belonging to the same subset

are considered as equivalent u′ ' u′′.

I.e., it is supposed that a set of inputs U is equipped with a partial order. Then if for some state several inputs

preserve safety, it is reasonable to keep only those that have the highest priority. Here we say that an input u ∈ U

has higher priority than u′ ∈ U if and only if u � u′.

Definition 2.3.2. For a given transition system Σ = (Q,U, F ), a safety specification QS ⊆ Q a maximal inputs-lazy

safety (MILS) controller C∗ is a safety controller satisfying the following properties

1. Dom(C∗) = Cont(Σ, QS);

2. for all states q ∈ Dom(C∗):

(a) if u ∈ C∗(q) then for all u′ ∈ EnabF (q) such that u′ ' u, it holds that u′ ∈ C∗(q) if and only if F (q, u′) ⊆

Cont(Σ, QS);

(b) if u ∈ C∗(q), then for all u′ ∈ EnabF (q) with u ≺ u′, it holds that F (q, u′) ∩ Cont(Σ, QS) 6= F (q, u′).

A MILS controller is a particular case of the maximal lazy safety (MLS) controller introduced in [Girard et al., 2016].

It corresponds to a situation when an initial set coincides with a safe set. The MLS controller exists for any transition

system, and it is unique [Girard et al., 2016]. Consequently, a MILS controller exists and is unique, as well. The

term maximal refers to the fact that all safety controllable states are in Dom(C∗), and if the controller enables an

input, it also enables all inputs which have the same priority and preserve safety. The term inputs-lazy refers to the

fact that while several inputs can maintain safety, the controller enables only inputs with the highest priority. Hence,

C∗ represents a trade-off between maximal permissiveness and efficiency. Intuitively, the MILS controller C∗ can be
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obtained from the maximal safety controller C̄ by keeping, for every state, only those enabled controls which have a

higher priority. Of course, it is not the best way to find C∗ since it needs first to compute C̄.

The main idea of a more efficient algorithm for computing the MILS controller is to explore inputs with a lower

priority only if we failed to find a safe input with a higher priority. For its implementation, we introduce for every state

q ∈ Q a notion of a state priority p(q) and define for a given p : Q → {0, . . . , N} a reduced transition relation Fp,�U

such that (q, u, q′) ∈ Fp,�U if and only if p(q) ∈ {1, . . . , N}, u ∈ Up(q), (q, u, q′) ∈ F and for all q′′ ∈ F (q, u) the

equality p(q′′) 6= 0 is satisfied. Intuitively, this means that for states with priority from 1 to N, only transitions with

the same priority inputs are considered, while states with priority 0 are blocking. Starting with the highest priority for

states in a safe set QS and with the lowest one for the others (lines 2-5), we iteratively decreasing by one point the

priority of all blocking but controllable states (line 10) in the main block of Algorithm 2.3 (lines 6-11) until the reduced

transition relation Fp,�U stops changing. Then Fp,�U is used to initialize the controller C. Let us remark that if all

inputs have the same priority, Algorithm 2.3 coincides with Algorithm 2.1.

Theorem 2.3.2. Let C∗ computed by Algorithm 2.3. Then, C∗ is the MILS controller.

Proof. The proof of the fact that Dom(C∗) = {q ∈ Q | p(q) 6= 0} also as the fact that C∗ is a safety controller repeats

the proof of analogous result from the Theorem 2.2.1. Since C∗ is a safety controller Dom(C∗) ⊆ Cont(Σ, QS). To

prove that Cont(Σ, QS) ⊆ Dom(C∗) let me run the Algorithm 2.3 for the transition system Σ = (Q,U, F ) and a safe

set Cont(Σ, QS) and let the controller C∗1 is the result of the execution. Since the result analogous to Lemma 2.2.2

can be proven for Algorithm 2.3 as well the following inclusion holds C∗1 (q) ⊆ C∗(q) for all q ∈ Q. Consequently

Dom(C∗1 ) ⊆ Dom(C∗) and since Dom(C∗1 ) = Cont(Σ, QS) and we get what we want.

Let us now prove that the second property of Definition 2.3.2 is satisfied. For any q ∈ Dom(C) a control u ∈ C(q)

if and only if u ∈ EnabFp,�U (q). Then for any u′ ∈ EnabF (q) ∩ Up(q) we have: if u′ ∈ EnabFp,�U (q) then F (q, u′) =

Fp,�U (q, u′) ⊆ Dom(C) ⊆ Cont(Σ, QS), because C is a safety controller; if F (q, u′) ⊆ Cont(Σ, QS) then there is

no q′ ∈ F (q, u′) such that p(q′) = 0 and u′ ∈ EnabFp,�U (q). So, we have (2a). The (2b) follows from the fact that

we decrease the priority p of a state q, if either EnabF (q) ∩ Up(q) = ∅, or for all u ∈ EnabF (q) ∩ Up(q) there exists

q′ ∈ F (q, u) such that p(q′) = 0.

Figure 2.3 illustrates the execution of Algorithm 2.3 for a simple transition system. In opposite to previous

examples, now actions have different priorities, and we enable for a state actions u3, u4, only if it is uncontrollable

with actions u1, u2. At the beginning (step 3), all states except qus get priority 2. Then, if a state q is blocking

concerning its current priority at some step, we decrease p(q) by one point. The latter either enable for this state

actions with a lower priority (see, for example, a state q14 at step 6), or delete all unsafe inputs steering to state q (if

q get a 0 as, for example, q15 at step 7).
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Figure 2.3: Illustration of Algorithm 2.3 execution. Unsafe actions are red. Blocking states are grey. Controls u1, u2

have priority 2, u3, u4 have priority 1. If a state is contoured with black, it has priority 2, and the actions with priority
2 are enabled for this state. If with blue, it has priority 1, and the inputs with priority 1 are available. If with red,
then its priority is 0. We enable lower priority transitions for a state only if it is uncontrollable with higher priority
actions. Enable at the current iteration transition marked with a normal line, while action marked with a dashed line
are non-available. The actions which remain untouched at step 9 are not included in the maximal input lazy safety
controller.

2.3.3 Source of Laziness: Non Reachable from Initial Set States

Let us suppose that the initial set Qinit ⊆ Q is fixed. In this case, we have no interest in providing a controller for

non-reachable from Qinit states.

A state q′ ∈ Q is reachable from the state q, if q′ = q or there exists a trajectory connecting them. The set of all

reachable states from the state q is denoted by ReachF (q). This definition could be naturally extended for a subset
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Q′ of the set of states Q: ReachF (Q′) = ∪q∈Q′ ReachF (q).

Definition 2.3.3. For a given transition system Σ = (Q,U, F ), a safety specification QS ⊆ Q, and a fixed initial set

Qinit ⊆ Q a maximal states-lazy safety (MSLS) controller C∗ is a safety controller satisfying the following properties

1. Qinit ∩ Cont(Σ, QS) ⊆ Dom(C∗);

2. for all states q ∈ Dom(C∗) the input u ∈ C∗(q) if and and only if F (q, u) ⊆ Cont(Σ, QS).

3. Dom(C∗) ⊆ ReachFC∗ (Qinit ∩Dom(C∗));

An MSLS controller is a particular case of the maximal lazy safety controller introduced in [Girard et al., 2016]. It

corresponds to a situation when all inputs have the same priorities. Since the MLS controller exists for any transition

system and it is unique [Girard et al., 2016] an MSLS controller exists and is unique, as well. From Definition 2.3.2

it follows that all controllable safety states in QS , which are reachable from Qinit are in Dom(C∗) and this explain

the term maximal in the name of C∗. At the same time, the controller C∗ is called state-lazy since non-reachable

from the initial set states are not in the domain. The MSLS controller C∗ can be obtained from the maximal safety

controller C̄ by removing the states that are not reachable from initial states, but this is obviously not the most

efficient way to find C∗. The main Algorithm 2.4 from Algorithm 2.1 by line 7, thereby restricting exploration to

states, which are reachable from the initial set. Let us remark that if Qinit coincides with QS , then Algorithm 2.4

returns the maximal safety controller.

Lemma 2.3.1. Let Qzero = {q ∈ Q | p(q) = 0}. While running the Algorithm 2.4, the intersection Qzero∩Cont(Σ, QS)

is always empty.

Proof. Let us use induction to prove this fact. Before the loop 8-12, the set Qzero consists only of unsafe (see line

6) and, as a consequence, uncontrollable states. In the loop, Qzero updates only when some state q ∈ B ⊆ Q gets

at line 11 a prioryty zero. Supposing that Qizero ∩ Cont(Σ, QS) = ∅ let us show that Qi+1
zero ∩ Cont(Σ, QS) = ∅, where

Qi+1
zero = Qizero ∪ {q}. So, let us show, that q 6∈ Cont(Σ, QS). Since p(q) got value 0 either EnabF (q) = ∅, or for all

u ∈ EnabF (q) there exists q′ ∈ F (q, u) \ {q} such that p(q′) = 0, i.e q′ ∈ Qizero and q′ /∈ Cont(Σ, QS). Hence, C̄(q) is

empty and q is uncontrollable.

Theorem 2.3.3. Let C computed by Algorithm 2.4. Then, C is the MSLS controller.

Proof. We start with safety. Since Dom(C) coincide with the set QRE and all unsafe states are non-reachable we

have Dom(C) ⊆ QS . Moreover, from the definition of Reach operator we have that for all q ∈ Dom(C) and for all

u ∈ U it holds Fp(q, u) ⊆ Dom(C). Combining with the fact that for all q ∈ Dom(C) and for all u ∈ EnabFp(q) the set

Fp(q, u) coincides with F (q, u), the second requirement from Definition 2.2.1 is satisfied.

Now, let us show that all properties of MSLS controller are satisfied (see Definition 2.3.3). Let q ∈ Cont(Σ, QS)∩

Qinit. It is equivalent to q ∈ Qinit and q ∈ Cont(Σ, QS). From where, using the Lemma 2.3.1, we get that q ∈ Qinit
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Figure 2.4: Illustration Algorithm 2.4 execution. Unsafe actions are red, blocking states are grey, and the initial
states are marked with a double line. The computations are restricted to states, which reachable from the initial set.
States which are non-reachable from the initial set are countered with a dashed line. Hence, states q11, q12 and q8

are not included in the domain of the maximal state lazy safety controller.

and p(q) 6= 0. Consequently, q ∈ QRE = Dom(C) (see line 7,13), and the first property is satisfied. If a state

q ∈ Dom(C∗) then the set F (q, u) ⊆ Cont(Σ, QS) for all u ∈ C∗(q) since C∗ is a safety controller. If for an input

u′ ∈ U the set F (q, u′) ⊆ Cont(Σ, QS) then there is no q′ ∈ F (q, u′) such that p(q′) = 0 and u′ ∈ EnabFp(q) and we

have the second property. The third property follows straightforwardly from line 7.

Figure 2.4 provides an illustration of Algorithm 2.4. Assuming the set of initial states is known we restrict all

computations to states, which are reachable from Qinit = {q1, q2, q5, q6}.

2.4 Conclusion

This Chapter structured the existing lazy safety approaches and provided three lazy synthesis algorithms applicable

for a general class of non-deterministic transition systems. Algorithm 2.2 avoid exploration of states and transitions

which are safely controllable a priory. Algorithm 2.3 explores the lower-priority actions only if the safety problem is

unsolvable with higher-priority actions. Based on the incremental exploration of the transition system, Algorithm 2.4

restricts computations for reachable from initial set states only. Let us remark that Algorithms 2.2, 2.3 and 2.4 can be
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easily combined in one in order to get as maximal gain in efficiency as possible. Later in the manuscript, we provide

examples of applying these algorithms in abstraction-based control synthesis approaches. In Chapter 3, using

adaptive time-sampling techniques, we construct abstractions where transitions only between neighboring states

are allowed and then use the Algorithm 2.2 for efficient synthesis of the maximal safety controller. In Chapter 4, we

combine Algorithms 2.3 and 2.4 to synthesise a maximal input-state lazy safety controller for a multi-scale symbolic

model. In Chapter 5, we adopt ideas of Algorithms 2.2 and 2.3 to synthesize the maximal input-lazy safety controller

for monotone transition systems. We also prove that for this particular class of systems, the maximal safety controller

can be reconstructed from the maximal input-lazy safety controller without any computation.
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Chapter 3

Lazy Symbolic Controller for

Continuous-Time Systems Based on Safe

Set Boundary Exploration

In this Chapter, we propose an abstraction-based approach to synthesize a safety controller solving Problem 1.1.1.

The main idea consists in creating an abstraction with a particular geometrical structure where only transitions

between neighboring states are allowed. Let us call such transition systems neighbor-linked. Though neighbor-

linked abstractions often appear in path-finding problems [Hart et al., 1968], in the general case, symbolic models

constructed for an arbitrary dynamic system do not have the desired property. Indeed, in the existing methods,

[Mazo et al., 2010, Mouelhi et al., 2013, Wongpiromsarn et al., 2011], a time is usually sampled with a given fre-

quency, and it is the local speed of the controlled dynamic system, which determines how far away from the initial

symbolic state a transition ends. However, if all trajectories of the original plant are continuous, we can force

the desired structure by interrupting transitions just before leaving the abstract state neighborhood. Related to

event-triggered control approaches [Liu et al., 2014, Peng and Li, 2018] such adaptive time sampling technique is a

contribution of this thesis.

As it was already briefly discussed in Chapter 2, we then can benefit from the neighbor-linked structure of the

proposed abstraction and synthesize the maximal safety controller lazily by iteratively exploring only those states

which border with unsafe or blocking states. The lazy synthesis is more efficient than the classical approach;

moreover, it does not calculate the unexplored part of the abstraction. Unfortunately, using adaptive time sampling,

we lose the flexibility to discretize time and state-space independently. But what if we can restrict exploration to

boundary states even when arbitrary time sampling is used to get a symbolic model? Let us run Algorithm 3.2 for an

arbitrary transition system. Of course, in this case, there is no guarantee that the synthesized controller is safe, but
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it still can be refined to solve Problem 1.1.1. Indeed, when a closed-loop trajectory of the original system reaches

a boundary state of the controllable domain, we have the abstract controller to push the system back towards the

interior where any input, which is permissible for the original system, can be applied. In spirit, this idea is close to

the Nagumo theorem result ([Blanchini, 1999]) and extreme aiming principle ([Subbotin, 1995]), but to the best of

our knowledge, it has never been implemented within the abstraction-based control synthesis framework.

This Chapter is organized as follows. In Section 3.1 we introduce a novel adaptive time-sampling technique

and use it to construct neighbor-linked symbolic models for the original system. The particular structure of the

abstractions allows synthesizing the maximal safety controller lazily, benefiting from the information about a priori

controllable states. We then extend the proposed approach towards arbitrary transition systems from Section 3.2

by introducing a novel control refinement scheme in Section 3.3. In Section 3.4 we consider an illustrative example

(adaptive cruise control problem) to show the benefits of the approach.

3.1 Neighbor-Linked Abstractions

In Problem 1.1.1, we aim to synthesize a controller for a continuous-time control system Σf = (T ,Rnx ,U ,W, f)

that maintains all closed-loop trajectories within a safety set Y ⊂ Rnx . Let us also remind that the dynamic of

Σf = (T ,Rnx ,U ,W, f) is given by eq.(1.1): ẋ(t) = f(x(t), u(t), w(t)), t ∈ T , u(t) ∈ U ⊂ Rnu , w(t) ∈ W ⊂ Rnw ,

where U ,W are compact sets. Let us suppose for this Chapter that set Y is a compact as well. To solve the Prob-

lem 1.1.1 we use abstraction-based synthesis techniques, and this section is devoted neighbor-linked abstractions

for continuous dynamical systems. To enforce the abstraction’s desired structure, we first introduce a novel time

sampling technique allowing interrupt transitions before leaving an abstract state neighborhood. Then we define

an information function that distinguishes boundary states of a set from the inner states and proves that at every

iteration of lazy synthesis Algorithm 3.2 it is enough to explore only those states which border with the uncontrollable

domain.

3.1.1 Adaptive Time Sampling as Way to Enforce the Desired Structure

Let us first abstract the original system Σf = (T ,Rnx ,U ,W, f) with a transition system Σ = (Q,U, F ), which have a

particular geometric structure: only transitions between neighboring states are allowed.

We first introduce a finite partitioning QS = {q1, . . . , qn} on an internal approximation S of the safety set Y such

that S = ∪ni=1qi, qi ∩ qj = ∅ for all i 6= j and define a set of abstract states Q, as follows Q = QS ∪ {qus}. Here

qus = Rnx \ S is an unsafe state. We also formally define a neighborhood of a state q ∈ Q, as follows

NA(q) = {q′ ∈ Q \ {q} | cl(q) ∩ q′ 6= ∅ or q ∩ cl(q′) 6= ∅},

where cl(q) denotes a closure of a set q ⊂ Rnx . Thus, depending on the context, a symbol q represents an abstract
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Figure 3.1: Illustration of the adaptive time sampling technique (right figure) compared to a fixed time sampling
approach (left figure). Black cells represent unsafe states; green and blue cells represent F (q, u1) and F (q, u2)
correspondingly. The red square represents the abstract state neighborhoodNA(q). While in the left figure, transition
duration is determined by pre-fixed time sampling parameter τfix, in the right figure, a transition stops just before
leaving NA(q) (see eq. (3.2)).

state or a subset of the space Rnx , corresponding to this abstract state. Then for every q ∈ QS we chose a

finite number of admissible inputs US(q) = {u1, . . . , um} ⊆ U and use reachability analysis techniques to compute

corresponding transitions. Let Reach(t | q, uS) be a reachable set

Reach(t | q, uS) =
{
x ∈ Rnx | ∃x(0) ∈ q and ∃w ∈ L∞([0, t],W) such that xf (t | x(0),u,w) = x

}
.

corresponding to an initial set q, a constant control function u : [0, t] → uS , uS ∈ US(q) and admissible distur-

bances w ∈ L(T ,W). We, then define a set U = ∪q∈QSUS(q) and say that for every q ∈ Q, u ∈ U transition

(q, u, q′) ∈ F if and only if

q ∈ QS , u ∈ US(q), q′ ∈ Q, q′ ∩ Reach(τAq,u | q, u) 6= ∅, (3.1)

and for all t ∈ [0, τAq,u] the condition of a collision avoidance Reach(t | q, u)∩ (Rnx \ Y ) = ∅ is satisfied. Here, we use

the adaptive time-sampling and a transition duration defined as τAq,u = min(τ, τq,u− ε), where τ is a given parameter

which determines the maximal evolution time, while τq,u is a moment of time

τq,u = inf
t∈[0,+∞)

{
Reach(t | q, u) 6⊆ NA(q)

}
(3.2)

when the reachable set leaves the neighborhood of NA(q), we chose ε < τq,u arbitrary small to stop evolution just

before leaving. In contrast, τ should be big enough since it only manages situations when a solution stucks within

the box. Figure 3.1 illustrates the difference between fixed time sampling and adaptive time sampling techniques.

Both subfigures show two transitions originating at a state q and corresponding to two different controls u1 and u2.

However, transitions in the left figure have a pre-fixed duration τfix, while in the right, transitions interrupt just before

leaving the abstract state neighborhood.
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Algorithm 3.1: ClassicalSynthesisMSC(Σ, QS)
Input: Σ = (Q,U, F ) and a safe set QS

Output: Maximal Safety Controller C
1 begin
2 for q ∈ QS do
3 p(q) := 1;

4 for q ∈ Q \QS do
5 p(q) := 0;

6 repeat
7 QE := {q ∈ Q | p(q) 6= 0};
8 B := BlockFp(QE);
9 for q ∈ B do

10 p(q) := p(q)− 1;

11 until B = ∅;
12 for q ∈ QE do
13 C(q) := EnabFp(q);

14 for q ∈ Q \QE do
15 C(q) := ∅;
16 return C;

Algorithm 3.2: LazySynthesisMSC(Σ, QS , IEB)
Input: Σ = (Q,U, F ), a safe set QS , an indicator IEB

Output: Maximal Safety Controller C
1 begin
2 for q ∈ QS do
3 p(q) := 1;

4 for q ∈ Q \QS do
5 p(q) := 0;

6 repeat
7 QEB := {q ∈ Q | p(q) 6= 0 and IEB(q) = 1};
8 B := BlockFp(QEB);
9 for q ∈ B do

10 p(q) := p(q)− 1;

11 until B = ∅;
12 for q ∈ {q ∈ Q | p(q) 6= 0} do
13 C(q) := EnabFp(q);

14 for q ∈ Q \ {q ∈ Q | p(q) 6= 0} do
15 C(q) := ∅;
16 return C;

When the dynamic of the original system Σf = (T ,Rnx ,U ,W, f) is too complex to find exact attendance sets

its over-approximations Reach(τAq,u | q, u) are commonly used instead. Obviously, to get a whole symbolic model,

one should estimate quite a lot of reachable sets and we recommend to use simple interval over-approximations

[Meyer et al., 2021, Maidens and Arcak, 2014, Zamani et al., 2011, Reissig et al., 2017] trading accuracy for effi-

ciency. Moreover, interval estimations match well with grid-aligned partitions, which are often used in symbolic

model control [Mazo et al., 2010, Mouelhi et al., 2013, Wongpiromsarn et al., 2011]. A transition is safe if it corre-

sponds to an action preventing the system from steering into a blocking or unsafe state. Otherwise, it is unsafe.

3.1.2 Maximal Safety Controller Synthesis: Inner States as a Source of Laziness

In this section, we aim to synthesize the maximal safety controller for the constructed transition system. I.e., we are

looking for the maximal by inclusion controller C, ensuring that all closed-loop trajectories of Σ = (Q,U, F ) starting

in Dom(C) are infinite and belong to the safe set QS .

To compute the desired controller one can iteratively remove all unsafe transitions from Σ = (Q,U, F ) until

the abstraction stops changing [Tabuada, 2009]. Let a function p : Q → {0, 1} indicates whether a state q ∈ Q is

controllable (p(q) = 1) or not (p(q) = 0), and the reduced transition relation Fp is defined as follows: (q, u, q′) ∈ Fp

if and only if p(q) 6= 0 and for all q′′ ∈ F (q, u) the equality p(q′′) 6= 0 is satisfied. Then, Algorithm 3.1 returns the

maximal safety controller. This statement was proved in Chapter 2, where the classical synthesis Algorithm 3.1 was

referred to as Algorithm 2.1. However, since the abstraction Σ = (Q,U, F ) is neighbor-linked we can synthesize the

controller more efficiently. Let the information function IEB be defined by (3.3). Then, in opposite to Algorithm 3.1,

Algorithm 3.2 explores only boundary states of a set QE = {q ∈ Q | p(q) 6= 0} at every iteration of the loop 6-11.
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Tacking into account that Algorithm 3.2 coincides with Algorithm 2.2 from Chapter 2 and it is repeated here to

improve the readability of the text, let us now prove the correctness of the proposed lazy synthesis approach.

Theorem 3.1.1. For a given transition system Σ = (Q,U, F ) and a safe set QS = Q \ {qus} let at every iteration of

the loop 6-11 of Algorithm 3.2 for all q ∈ QE = {q ∈ Q | p(q) 6= 0} the information function is defined as follows

IEB(q) =


0 if NA(q) ⊆ QE

1 if NA(q) 6⊆ QE
(3.3)

Then the controller C returned by Algorithm 3.2 is the maximal safety controller for transition system Σ = (Q,U, F )

and a safe set QS = Q \ {qus}.

Proof. Indeed, F (q, U) ⊆ NA(q) for any q ∈ QE . Consequently, at every iteration of the loop 6-11 of the Algo-

rithm 3.2, the set QEB = {q ∈ QE | IEB(q) = 1} is an essential basis of QE = {q ∈ Q | p(q) 6= 0} (see Definition

2.3.1) and by Theorem 2.3.1, C is the maximal safety controller.

3.2 What if the Abstraction is not Neighbor-Linked?

In the previous section, we construct a neighbor-linked symbolic model for the original system. That allows us to use

efficient Algorithm 3.2 instead of the classical synthesis approach Algorithm 3.1 for the maximal safety controller

computation. However, with the transition relation defined in Section 3.1.1, we lost flexibility in scaling time sampling

parameters independently from space sampling parameters. In this section, we consider a more general case. Let

us define a transition relation F ∗ ⊆ Q×U ×Q as follows for every q ∈ Q, u ∈ U a transition (q, u, q′) ∈ F ∗ if and only

q ∈ QS , u ∈ US(q), q′ ∈ Q, q′ ∩ Reach(τ∗q,u | q, u) 6= ∅ (3.4)

and for all t ∈ [0, τ∗q,u) the collision avoidance condition Reach(t | q, u) ∩ (X \ S) = ∅ is satisfied. In opposite

to (3.1), in (3.4), we only assume that sampling parameter τ∗q,u is greater than zero, and it is determined for any

given q ∈ Q, u ∈ U . Such a definition does not put any requirements on a choice of time-sampling parameters

permitting us to handle fixed ([Nilsson et al., 2016]), multi-scale ([Hsu et al., 2019, Girard et al., 2016]) or adaptive

time-samplings described in the previous section in a unified way.

It is clear that if we use Algorithm 3.2 synthesize a controller C for the abstraction Σ∗(Q,U, F ∗), the safety set QS

and the information function IEB(q) defined by (3.3), there is no guarantee that C is a safety controller. However, in

the next section, we show that C can still be refined towards a continuous-time controller, which solves the original

safety problem.
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3.3 Controller Refinement for an Arbitrary Abstraction

Let C be a controller given by the Algorithm 3.2 for transition system Σ∗ = (Q,U, F ∗) and a safe set QS = Q \ {qus},

while the IEB(q) is defined as in (3.3). For every q ∈ QA \Dom(C), we define Cdur(q) = ∅, while if q ∈ Dom(C) and

u ∈ C(q), then the pair (u, τ∗u,q) ∈ Cdur(q). Hence, the controller Cdur store not only safe inputs, but a real duration

of safe transitions. Let us now define a set of border points

QB = cl
(
{x ∈ Rnx | ∃ q ∈ Dom(C) such that x ∈ q and NA(q) 6⊆ Dom(C)})

and a set of all internal points QI = Dom(C) \ QB correspondingly. We then define a quantizer, associating every

border point x ∈ QB with a state of transition system Qx(x) = {q ∈ Dom(C) | x ∈ cl(q)}. If there are several states

q ⊂ QB such that x belongs to q, let Qx(x) returns any of them.

Now we are ready to introduce a controller refinement procedure. Let us consider the control input given for all

t ∈ [tk, tk+1) by  u(t, x) ∈ U if mk = 0

u(t, x) = uk, if mk = 1
(3.5)

where  mk(t, x) = 0, if x(tk) ∈ QI

mk(t, x) = 1, if x(tk) ∈ QB
(3.6)

(uk, τk) ∈ Cdur(Qx(x(tk))), if mk(t, x) = 1 (3.7)

and the sequence of instants {tk} is given by t0 = 0 and

 tk+1 = inf{t > tk | Qx(x(t)) ∈ QB} if mk = 0

tk+1 = tk + τk if mk = 1
(3.8)

Theorem 3.3.1. For a given control system Σf = (T ,Rnx ,U ,W, f) all trajectories of closed-loop system (1.1),(3.5)-

(3.8) starting from a Dom(C) at t = 0 stays within the set S ⊆ Y for all t ∈ T no matter which disturbance

w ∈ L(T ,W) has been applied.

Proof. For any initial condition x(0) ∈ Dom(C) and any disturbance w ∈ L∞(T ,W) the closed-loop trajectory

ẋ(t) = f(x(t), u(t, x), w(t)), t ∈ T can not leave the Dom(C) without passing through the set QB , and for every state

in QB there is a controller which brings us back to the Dom(C) ⊆ S ⊆ Y (see Algorithm 3.2). The Zeno behaviour

is impossible since being in mode 0 at t = s ∈ T we can either stay in mode 0 for all t ∈ [s,+∞) or switch to mode

1. If we have switched to mode 1 we spent there at least τk seconds before switching back to mode 0.

Let us remark, that while starting inside the setQI in the mode 0 we can apply any admissible closed-loop control:

e.g. u(t, x) = v(t, x). A closed-loop control v(t, x) is admissible if the solution of ẋ(t) = f(x(t), v(t, x), w(t)), t ∈ T
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Figure 3.2: Illustration lazy synthesis based on boundary exploration idea. First figure illustrates the discretization
of the original state space R2. The safe set Y is countered with blue; white cells are safe states; the unsafe state
is filled with gray. Figures 2-5 illustrate the execution of Algorithm 3.2. States filled with white and green have
priority 1; with grey - priority 0. White states belong to QEB . States contoured with red are blocking. The inputs set
U = {u1, u2}. Actions corresponding to control u1 are black, u2 are blue. Transitions marked with red are unsafe. In
opposite to normal line, the dashed line represents transitions that haven’t been computed yet. Last figure illustrates
a piece of trajectory of a closed-loop system (1.1),(3.5)-(3.8). White states belong to QB ; green area corresponds
to QI . Normal line represents mode 0, dashed line - mode 1.

exists and v(t, x) ∈ U for all t ∈ T and x ∈ Rnx .

Let us now illustrate the ideas discussed in this Chapter. In step 1 in Figure 3.2, we introduce a Cartesian

partitioning on R2 and mark intervals q1, . . . , q24 as safe abstract states, since they are included in the safe set Y .

We then represent the region R2 \ (∪24
i=1qi) by an unsafe state qus. On step 2, we initialize qus with priority zero,

while all the others with priority 1. Then we compute transitions only for states which are bordered with the unsafe

region. Indeed, since all the internal states (marked with green) are not explored in the first iteration of the loop

6-11, there is no need to pre-compute the symbolic model for them. In step 3, the blocking state q24 gets priority

zero. Hence, we should re-update the set QEB on step 4 and compute transitions corresponding to q18 ∈ QEB . We

then re-explore all states in QEB . Since by the definition of Fp, we eliminate all transition steering into q24, states
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q21, q20 become blocking, and we reduce their priority by one point. We then re-update the set QEB on step 5 and

compute transitions originated in q14, q17 ∈ QEB . On step 5, for any state in QEB , all transitions go either to another

state in QEB or to an internal state, and we exit the loop 6-11. However, if the abstraction is not neighbor-linked,

there is no guarantee that controller C synthesized with lines 12-15 is a safety controller for abstraction. Indeed, for

internal states, we may have actions over-jumping the "controllable border." Still procedure (3.5)-(3.8) refines C to

solve the original problem in the continuous-time domain. For any x ∈ QB ⊆ Dom(C), there is an abstract input

steering the closed-loop trajectory either to QI or QB .h For any x ∈ QI , we can use any control value from U until

the trajectory reaches the border QB again. There we should switch the mode. Certainly, the trajectory may stay

in QI infinitely long, but this behavior is also safe. In step 6, we start from x ∈ q1 ∈ QB . We apply the available

abstract controller u2, and it can bring us to state q12 ∈ QI or q6 ∈ QB . Suppose that we end up on q12 ∈ QI , then

we can apply any controller until the trajectory runs into the state q4 ∈ QB . There we apply abstract input u1 and in

τ∗q4,u1
reach q3 ∈ QEB , where we use u2 for τ∗q3,u2

seconds and so on.

3.4 Numerical Illustration: Adaptive Cruise Control

As an illustrative example, let us consider the adaptive cruise control problem for two vehicles moving along a straight

line ([Darbha, 1997], [Nilsson et al., 2016]). Each vehicle is modeled as a point mass m with velocity changing

according to the law

v̇i = α(Fi, vi) = (Fi − (f0 + f1vi + f2v
2
i ))/m, i = 1, 2.

In equation above, Fi represents a net action of braking and engine torque applied to the wheels, while the second

term (f1 + f2vi + f3v
2
i ) describes aerodynamic and rolling resistance effects. The net force Fi is viewed as a control

input for the following vehicle and as a disturbance for the lead one. It is assumed that Fi ∈ [a, b], where a = −0.3mg,

b = 0.2mg, g is a gravitational constant. Such bounds are consistent with non-emergency braking and acceleration.

Figure 3.3: Illustration an adaptive cruise control problem configuration with a constant time headway spacing policy.
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Figure 3.4: Simulation results. Left figure illustrates a safety specification. Right figure represents the domain of the
safety controller computed by Algorithm 3.2.

First, we do a feedback linearization of the model for controlled vechile by introducing F2,lin = α(F2, v2). Let us

assume that the first car doesn’t violate speed restrictions v1 ∈ [0, vmax]. Since for any v2 ∈ [0, vmax], zero belongs

to [α(a, v2), α(b, v2)] we can always choose a suitable control law to do the same for the second car.

Then, we chose a feedback stabilizer as a control law F2,lin = u1 + u2(v1− v2) + u3e1,2. Here u1 ∈ R, u2, u3 ≥ 0.

The deviation e1,2 from the desirable distance between the cars changes according to the following equation

ė1,2 = (v1 − v2)− ḋdes where ddes = hv2 + r, h > 0.

Hence, the constant time headway spacing policy is considered [Darbha, 1997] (see Figure 3.3 for an illustration).

Finally, the system dynamic is described as follows

v̇1 = (F1 − f0 − f1v1 − f2v
2
1)/m

v̇2 = β(u1 + u2(v1 − v2) + u3e1,2, v2)

ė12 = v1 − v2 − hv̇2

(3.9)

where

β(z, v) =


z, if v ∈ (0, vmax)

max(z, 0), if v = 0

min(z, 0), if v = vmax

Varying the new control parameters u1, u2, u3 we want to keep the error e1,2 in a range [−hv2 − r, emax1,2 ], while

ensuring that u1 + u2(v1 − v2) + u3e1,2 ∈ [α(a, v2), α(b, v2)]. To construct a symbolic model we introduce on a set
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Table 3.1: Vehicle and safety parameters. The values are taken from [Darbha, 1997, Saoud et al., 2020].

Parameter Value Unit Parameter Value Unit
m 1370 Kg vmax 25 m/s
f0 51.0709 N h 2 s
f1 0.3494 Ns/m r 2.5 m
f2 0.4161 Ns2/m2 emax1,2 55 m

Y = [0, vmax] × [0, vmax] × [−hvmax − r, emax1,2 ] a uniform Cartesian partition. The number of intervals in every

direction is described by a given parameter npx. Intervals on the border are flat, while internal intervals whether

semi-closed from the right side or open if they are next to the right border. For example, in first direction we have

{0}, (0, η], (η, 2η], . . . , (vmax − η, vmax), {vmax}, where η = vmax/npx(1). For every state belonging to a safe set Y ,

we chose npu different admissible inputs u = [u1, u2, u3], ensuring that F2,lin ∈ [α(a, v2), α(b, v2)], and apply them τ,

τ/2, τ/4 or τ/8 seconds.

To compute the symbolic model we use interval over-approximations instead of reachable sets. Let us use

notation x = (v1, v2, e12). The system (3.9) is a mixed-monotone (see Appendix A) and hence for any given state

q = [xq, xq], any given constant control function u : [0, t] → u the following inclusion holds for a reachable set

Reach(t | q, u) robust to all admissible disturbances F1 ∈ L(T , [a, b])

Reach(t | q, u) ⊆ [xg(t | [xq, xq],u,F1), xg(t | [xq, xq],u,F1)].

In the equation above, trajectories xg(t | [xq, xq],u,F1), xg(t | [xq, x0],u,F1) are correspondingly first three and

second three components of the solution of the following system

ẋi = gi(ζi(x, x), [u, u], [b, a]), xi(0) = xqi

ẋi = gi(ζi(x, x), [u, u], [a, b]), xi(0) = xqi

where (ζi(y, z))j =


yj , j < 3

zj , j > 3, j 6= 3 + i

yi, j = 3 + i

i = 1, 3, j = 1, 6 (3.10)

Here the tight decomposition function g : R6 × (u, u)× [a, b]2 → R3 is defined as follows,

g1([y; z], [u;u], [F y1 ;F z1 ]) = (F y1 − f0 − f1v
z
1 − f2(vz1)2)/m

g2([y; z], [u;u], [F y1 ;F z1 ]) = β(u1 + u2(vy1 − v
y
2 ) + u3e

y
1,2, v

y
2 )

g3([y; z], [u;u], [F y1 ;F z1 ]) =


(1− h ∗ u2)(vy1 − vz2)− hu3e

y
1,2 − hu1, if 1− hu2 ≥ 0

(1− h ∗ u2)(vz1 − v
y
2 )− hu3e

y
1,2 − hu1, otherwise

where y = [vy1 , v
y
2 , e

y
1,2], z = [vz1 , v

z
2 , e

z
1,2]. Hence, to find a reachable set over approximation it is enough to solve

6 differential equations (3.10). Let is remark that collision avoidance condition Reach(t | q, u) ∩ (R3 \ Y ) = ∅ can

be easily verified, since as soon as one of the corners x or x violates the safety restrictions we can interrupt ODE
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Figure 3.5: Simulation results. Left figures represent a disturbance realization F1 and a safety control F2. Right
figures represent a corresponding closed-loop trajectory of the dynamic system (3.9), starting at [20, 15, 5]

solver and mark the transition as unsafe.

Setting npx = [41, 41, 41], npu = 18, τ = 1 we use the Algorithm 1 and Algorithm 2 to compute a controllers C1

and C2 for the abstraction. In our particular example, we got that the controllable domains Dom(C1) and Dom(C2)

coincide. So, both of them are represented on Figure 3.4 (right), while Figure 3.4 (left) illustrate the safe specification

in the abstract domain. However, our approach, with run-time equals to 70.3 min, is 2.58 times faster than the

classical one since it explores 19574 less states. In the Figure 3.5, a closed-loop trajectory simulated 500s for

a given disturbance is also shown. The closed-loop trajectory satisfies the safety restriction and shows a nice

behavior in terms of stability. The values of parameters shown in Table 3.1 are taken from [Saoud et al., 2020]. In

the following, the implementations has been done in MATLAB, Processor Intel Core i7-8700, 3.20 Hg, RAM 16 GB.

3.5 Conclusion

In this Chapter, we introduced a novel lazy synthesis algorithm for a finite transition system with a safety specifi-

cation. The main idea was to iteratively explore only the boundary states of the controllable domain, supposing

that internal states are safely controllable a priory. The worst-case complexity of the proposed algorithm coincides

with the complexity of the classical brute-force exploration ([Tabuada, 2009]), but our approach is more efficient in

practice. Indeed, if a controllable domain for the abstract controller is non-empty, then we have a computational gain

since we don’t explore internal states. Moreover, real-time implementation of a closed-loop controller for the original

continuous system is more memory efficient since the information for the internal states is not stored. To illustrate

the benefits of the proposed approach, we considered an adaptive cruise control problem with a constant headway

spacing policy.
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Chapter 4

Lazy Safety Controller Synthesis with

Multiscale Adaptive-Sampling

Abstractions

As a finite abstraction for an infinite system, the symbolic model is commonly obtained by discretizing time, state,

and input spaces. The smaller the sampling parameters are, the better abstractions mimic the behavior of the

concrete system. Consequently, with finer symbolic models, there is more likely a solution for the abstract control

problem when there is a solution for the original one. However, dealing with accurate abstractions costs a price.

First, increasing the number of states and inputs in the symbolic model increases the number of transitions to be

computed. Second, the complexity of discrete synthesis algorithms essentially depends on the size of symbolic

models. Third, abstraction-based controllers are implemented as look-up tables, and the memory requirements

for storing them are too high when there are too many elements in the abstraction. In this Chapter, we trade-off

between accuracy and efficiency and focus on approaches iteratively refining symbolic models when synthesis with

coarser abstractions is failed [Gol et al., 2013, Girard et al., 2016, Hsu et al., 2019, Li and Liu, 2018b].

To refine an abstraction, one can decrease the duration of transitions [Gonzalez et al., 2010] or precise the space

partitioning [Gol et al., 2013, Li and Liu, 2018b, Nilson et al., 2017] or both [Girard et al., 2016, Hsu et al., 2019]. In

the last case, one may reduce time and state discretization parameters synchronously, supposing that the du-

ration of transitions, which start from the initial states with the same size, coincide [Hsu et al., 2018]. However,

there is a common trend in the community [Hsu et al., 2019, Girard et al., 2016, Nilson et al., 2017] to permit for

the same initial state transitions with different duration in order to improve the flexibility of abstractions. Follow-

ing this trend, we consider in this Chapter abstractions allowing multiple transition duration. For such abstrac-

tions, it makes sense to synthesize the maximal inputs-lazy safety controller prioritizing those transitions which are
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longer [Girard et al., 2016, Nilson et al., 2017]. What is about state-space discretization let us refine abstraction lo-

cally [Girard et al., 2016, Hsu et al., 2019, Nilson et al., 2017, Li and Liu, 2018a] since it is more efficient than global

refinement [Hsu et al., 2018]. Indeed, usually, one should be accurate only next to the obstacles or in the regions

where the system dynamics change too fast. To react even faster to the local speed of the dynamical system, we

propose to constrain the duration of the transitions by a state neighborhood that should contain the reachable set,

as opposed to a predetermined duration [Gol et al., 2013, Girard et al., 2016, Hsu et al., 2019, Li and Liu, 2018b].

Hence, we again use adaptive time sampling described in the previous Chapter. However, this Chapter uses neigh-

borhoods of different sizes to implement the multiple time duration idea. In addition to abstraction refining, we

propose to explore the symbolic model forwardly and thus restrict the controller synthesis computations to states

that are reachable from the initial set only. This idea was proposed in ([Girard et al., 2016]), but their approach is re-

stricted to deterministic abstractions. The algorithm presented in this Chapter applies to non-deterministic symbolic

models as well.

This Chapter again provides an abstraction-based synthesis approach to solving the Problem 1.1.1. However,

unlike the previous Chapter, the initial set X0 is known, and multi-scale abstractions are considered. In section 4.1,

we construct a multilayered abstraction with multi-scale adaptive time sampling. In section 4.2.1, we introduce a

partial order on the input space, prioritizing transitions with longer duration. We also enrich the input space by an

auxiliary input up, allowing switching from a finer level of the abstraction to a coarser one and give this input the

highest priority. We then provide an efficient algorithm for computing the maximal input-state safety controller based

on two ideas. To explore inputs with a lower priority only if we failed to find a safe input with higher priority and do

not deal with non-reachable from initial set states. The proposed algorithm is implemented as a simple combination

of Algorithm 2.3 and Algorithm 2.4. In subsection 4.2.1 we show that a multilayered and an adaptive grid are equiv-

alent from the perspective of control synthesis purposes, but the adaptive grid is less time/memory consumpting.

Section 4.3 refines safety controller computed for the abstraction to the continuous-time safety controller, solving the

Problem 1.1.1. In section 4.4, we illustrate the benefits of the proposed approach synthesizing a safety controller

maintaining the temperature on the building in a comfortable range for a person.

4.1 Multilayered Abstractions with Multi-scale Adaptive-Time Sampling

In Problem 1.1.1, we aim to synthesize a controller for a continuous-time control system Σf = (T ,Rnx ,U ,W, f)

that maintains all closed-loop trajectories starting in the initial set X0 ⊂ Y within a safety set Y ⊂ Rnx . Let us also

remind that the dynamic of Σf = (T ,Rnx ,U ,W, f) is given by eq.(1.1):

ẋ(t) = f(x(t), u(t), w(t)), t ∈ T , u(t) ∈ U ⊂ Rnu , w(t) ∈ W ⊂ Rnw ,
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where U ,W are compact sets. Let us suppose for this Chapter that the set Y is a compact as well. To solve the Prob-

lem 1.1.1 we use abstraction-based synthesis techniques, and this section is devoted to multilayered abstraction

with multi-scale time sampling for continuous dynamical systems. We first abstract the state space of the concrete

system with several uniform Cartesian partitions embedded one into another. Then for every abstract state, we

allow the same abstract controllers. To define a transition relation, we use adaptive time sampling techniques intro-

duced in the previous chapter: the duration of the transitions is constrained by state intervals that should contain

the reachable set.

Let us start the construction of a symbolic model for the original plant Σf = (T,Rnx ,U ,W, f) by discretizing the

state space Rnx . Let X = [x, x) be an n-dimensional interval including a safe set Y . Given a number L > 0, and a

state space sampling parameter mx > 0, mx ∈ Nnx we introduce for every l = 1, . . . , L a uniform partition

Ql = {q ∈ 2X | ∃z ∈ Zn s.t. q = [x+ z ∗ ηl, x+ (z + 1) ∗ ηl)} (4.1)

where ηl = (x − x)/(2l−1mx) and we associate every state x ∈ X with a unique cell q ∈ Ql such that x ∈ q. We

also define for every q ∈ Ql, the center of the interval qc = x+ (z + 1
2 ) ∗ ηl. Depending on the context, we regard an

element q ∈ Ql either as an atomic symbol, representing an infinite number of states from X, or as a subset of X.

It is obvious from the definition that for any qi, qj ∈ Ql, qi 6= qj the intersection qi ∩ qj = ∅ and that X = ∪q∈Qlq.

Lemma 4.1.1. For any l = {1, . . . , L − 1} and for any q ∈ Ql there exists a unique set a states {qi}2
n

i=1, qi ∈ Ql+1

such that q = ∪2n

i=1qi.

Regarding the safety specification, an element q ∈ Ql is a safe state if and only if q ⊆ Y , an initial state if and

only if q∩X0 6= ∅. Let us denote by Ql,S a set of all safe states in Ql, and by Ql,init a set of all initial states. We then

combine all these partitions into a multilayered grid Q = ∪Ll=1Ql and use it as a set of states for the multilayered

abstraction. Obviously, the layer Q1 is the coarsest layer of Q and QL is the finest one (see eq. (4.1)). From

Lemma 4.1.1 it also follows that the partitionings Q1, . . . , QL are embedded one into another.

In the next step, a control set U is approximated by its finite subset Uµ ⊆ U . For every q ∈ Ql, uµ ∈ Uµ we

consider the set of all reachable states at the time t ∈ T :

Reach(t | q, uµ) = {x ∈ Rnx | ∃x(0) ∈ q and ∃w ∈ L∞([0, t],W) such that xf (t | x(0),u,w) = x},

corresponding to an initial set q, a constant control function u : [0, t]→ uµ and all admissible disturbances w . Since

the exact computation of reach set is rarely possible, an over-approximation Reach(t | q, uµ) is commonly used to

built symbolic models. Let us remark that we use the same inputs for all states for simplicity, and extension towards

the case when for every state q ∈ Ql its proper set of abstract inputs Uµ(q) is defined is always possible.

In this Chapter, a symbolic model with multi-scale time sampling is considered, which means that for every given
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state q ∈ Q and control uµ ∈ Uµ we construct np transitions with different duration. Let us also introduce an input up,

which allows switching from the current layer to the previous (coarser) one and define a function l : Q→ {1, . . . , L}

returning for any q ∈ Q the index of the layer to which q belongs. We now ready to define a transition relation F for

every available input in the set U = (Uµ × {1, . . . , np}) ∪ {up}.

• for any q′ ∈ Q \Q1 the transition (q′, up, q) ∈ F if and only if q ∈ Ql(q)−1 and q′ ⊂ q. See Fig.4.1 (left).

• for any q ∈ Q and any (uµ, j) ∈ Uµ × {1, . . . , np} the transition (q, (uµ, j), q
′) ∈ F if and only if

q′ ∈ QL, q′ ∩ Reach(τuµ,jq | q, uµ) 6= ∅, (4.2)

and the condition of a collision avoidance

Reach(t | q, uµ) ∩ (X \ Y ) = ∅, t ∈ [0, τuµ,jq ] (4.3)

is satisfied. Here τ
uµ,j
q = min(τl, τ

uµ,j
q − ε), where τl is a given parameter which determines the maximal

evolution time allowed at this layer, while τuµ,jq is a moment in time given by

τuµ,jq = inf
t∈[0,+∞)

{
Reach(t | q, uµ) 6⊂

[
qc − (j + 1/2) ∗ ηl, qc + (j + 1/2) ∗ ηl

)}
(4.4)

when the over-approximation of a reachable set leaves the interval with a radius (j+ 1/2)ηl and a center in qc.

We chose ε < τ
uµ,j
q arbitrary small to stop evolution just before leaving, while τl should be big enough since it

serves only to manage situations where a solution is stuck within the box. In the Fig.4.1 there is illustration of

the idea.

Such a definition of a transition duration using adaptive time-sampling is a contribution of this manuscript. Instead

of using prescribed time sampling parameters ([Girard et al., 2016], [Hsu et al., 2019]), this approach allows us to

control, approximately, where symbolic transitions finish and better analyze the behavior of the system. At the

same time, the collision avoidance condition enables to eliminate solutions, which start and end in the safe set

but passes some unsafe regions during the evolution. However, since the intersection of the reachable set with

the grid is checked at every instant of time, the authors recommend using simple interval over-approximations

[Meyer et al., 2021]), trading accuracy for simplicity of implementation. We also finish any non-up transition at the

finest layer to be more flexible while moving close to the obstacles.

Hence, in this section, we constructed a multilayered and multi-scale symbolic model Σ = (Q,U, F ) which mimics

the dynamic of the original system. In the next section, we will synthesize safety controller for the abstraction, while

supposing that specification is given by the safe set QS = ∪Ll=1Ql,S and the initial set Qinit = QL,init is also known.
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Figure 4.1: Illustration of transition relation on a 2-layered grid. Left figure illustrates (4.2) with a transition F (q′, up) =
q, and (4.3) with a transition F (q, u). Unsafe states are marked with black. Right figure illustrates adaptive time-
sampling techniques (see (4.4)). Transitions with two different duration are shown: for a control u1 we stop before
leaving an interval with a radius 1, while for a control u2 – an interval with a radius 2.

4.2 Synthesis of Maximal Input-State Lazy Safety Controller

The less restrictive safety controller one can provide for Σ = (Q,U, F ) is the maximal safety controller C̄. Still,

its computation is too labor-intensive for many real-world problems. Indeed, according to the classical synthesis

approach [Tabuada, 2009] one should first pre-compute the whole symbolic model and then iteratively remove all

unsafe transitions from Σ = (Q,U, F ) until the abstraction stops changing. However, the idea of working with a

multi-scale abstraction is to explore (and to compute) for a state q transitions with a shorter duration only if q is

uncontrollable with longer duration actions. We also do not want to compute abstraction for states embedded in q

if it is controllable. Moreover, since Qinit is known, it is reasonable to provide a controller only for states that are

reachable from the initial set. Let us relax the maximality requirement for a desirable controller. Let the input set U

be equipped with the following partial order �U

• for all (uµ, j1), (uµ, j2) ∈ Uµ × {1, . . . , np} we say (uµ, j1) ≺U (u′µ, j2) if and only if j1 < j2.

• for any (uµ, j) ∈ Uµ × {1, . . . , np} the following holds (uµ, j) ≺U up.

I.e., transitions with a longer duration are preferred to transitions with a shorter one, and control up has the highest

priority. We then aim to compute for Σ = (Q,U, F ) the maximal lazy safety (MLS) controller C∗. Where the term

maximal refers to the fact that all safety controllable initial states should be in Dom(C∗), and if the controller enables

an input, it should also enable all inputs which have the same priority and preserve safety. The term lazy refers

to the fact that when several inputs can preserve safety, the controller should enable only inputs with the highest

priority. Intuitively, C∗ can be obtained from C̄ by keeping for every state only those enabled actions, which have

a higher priority, and by removing the states that are not reachable from initial states. Certainly, it is not the best

way to find C∗. In [Girard et al., 2016] the authors propose a more efficient synthesis procedure, but their result is
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restricted to the class of deterministic transition systems. Algorithm 4.2 provided below overcomes this limitation.

Algorithm 4.1: ClassicalSynthesisMSC(Σ, QS)
Input: Σ = (Q,U, F ) and a safe set QS

Output: Maximal Safety Controller C
1 begin
2 for q ∈ QS do
3 p(q) := 1;

4 for q ∈ Q \QS do
5 p(q) := 0;

6 repeat
7 QE := {q ∈ Q | p(q) 6= 0};
8 B := BlockFp(QE);

9 for q ∈ B do
10 p(q) := p(q)− 1;

11 until B = ∅;
12 for q ∈ QE do
13 C(q) := EnabFp(q);

14 for q ∈ Q \QE do
15 C(q) := ∅;
16 return C;

Algorithm 4.2: MLSC(Σ, QS , Qinit)
Input: Σ = (Q,U, F ), a safe set QS , an initial set Qinit

Output: MSLS controller C.
1 begin
2 for q ∈ QS do
3 p(q) := N ;

4 for q ∈ Q \QS do
5 p(q) := 0;

6 repeat
7 QR

E := ReachFp,�U
({q ∈ Qinit | p(q) 6= 0}) ;

8 B := BlockFp,�U
(QR

E);

9 for q ∈ B do
10 p(q) := p(q)− 1;

11 until B = ∅;
12 for q ∈ QR

E do
13 C(q) := EnabFp,�U

(q);

14 for q ∈ Q \QR
E do

15 C(q) := ∅;
16 return C;

Theorem 4.2.1. For a given transition system Σ = (Q,U, F ), a safe setQS and an initial setQI , let C∗ be a controller

computed by Algorithm 4.2. Then, C∗ is a safety controller, satisfying the following properties:

1. Qinit ∩ Cont(Σ, QS) ⊆ Dom(C∗);

2. Dom(C∗) ⊆ ReachFC∗ (Qinit ∩Dom(C∗));

3. for all states q ∈ Dom(C∗):

(a) if u ∈ C∗(q) then for all u′ ∈ EnabF (q) such that u′ ' u, it holds that u′ ∈ C∗(q) if and only if F (q, u′) ⊆

Cont(Σ, QS);

(b) if u ∈ C∗(q), then for all u′ ∈ EnabF (q) with u ≺ u′, it holds that F (q, u′) ∩ Cont(Σ, QS) 6= F (q, u′).

Proof. Indeed, Algorithm 4.2 is a simple merge of Algorithm 2.3 and Algorithm 2.4. Consequently, the controller

synthesised by Algorithm 4.2 inherits properties from MILS and MSLS controllers.

Similar to Figures 2.3 and 2.4 from Chapter 2, Figure 4.2 illustrates the execution of Algorithm 4.2 for a simple

transition system: the input set U consist of 4 actions and inputs u1, u2 are more prioritised than u3, u4, while

the initial set is given by Qinit = {q1, q2, q3, q4}. However, let us highlight the difference between the classical

synthesis approach (Algorithm 4.1) and lazy synthesis approach (Algorithm 4.2) while dealing with multilayered and

multi-scale symbolic model Σ = (Q,U, F ). So, Algorithm 4.1 coincides with Algorithm 2.1 and hence it returns the

maximal safety controller. The function p : Q→ {0, 1} indicates whether a state q ∈ Q is controllable (p(q) = 1) or not

(p(q) = 0) and the reduced transition relation Fp is defined as follows: (q, u, q′) ∈ Fp if and only if p(q) 6= 0 and for all
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Figure 4.2: Illustration of Algorithm 4.2 execution. Unsafe actions are red. Blocking states are grey. Controls u1, u2

have priority 2, u3, u4 have priority 1. If a state is contoured with black, it has priority 2, and the actions with priority
2 are enabled for this state. If with blue, it has priority 1, and the inputs with priority 1 are available. If with red, then
its priority is 0. We enable lower priority transitions for a state only if it is uncontrollable with higher priority actions.
Enable at the current iteration transition marked with a normal line, while action marked with a dashed line are
non-available. Reachable from the initial set states are countered with a normal line, non-reachable with a dashed
line. The actions marked with a dashed line in step 9 are not included in the maximal input lazy safety controller.

q′′ ∈ F (q, u) the equality p(q′′) 6= 0 is satisfied. The same time in Algorithm 4.2 the function p : Q → {0, . . . , np + 1}

determines the priority of a state q ∈ Q. The reduced transition relation Fp,�U is defined as follows (q, u, q′) ∈ Fp,�U

if and only if p(q) ∈ {1, . . . , np + 1}, u ∈ Up(q), (q, u, q′) ∈ F and for all q′′ ∈ F (q, u) the equality p(q′′) 6= 0 is satisfied.

Here Uj ⊂ U, j = 1, . . . , np + 1 are classes of equivalency with respect to the partial order �U , i.e. Unp+1 = {up},

Uj = ∪u∈Uµ(u, j), j = 1, . . . np. Thus, unlike Algorithm 4.1 we enable shorter duration actions for a state, only if

it is uncontrollable (blocking) by longer duration inputs. Moreover, at every iteration of the loop 6-11, Algorithm 4.2
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explores only states which are reachable from Qinit with respect to the transition relation Fp,�U (line 7). Since

Qinit = QL,init and input up has the highest priority the later means that we explore q′ ⊂ q only if q is uncontrollable.

In other words if q eventually gets the priority 0 and l(q) > 1 it is replaced by 2n states qi ∈ Ql(q)+1 such that

q = ∪2n

i=1qi. Thus, the introduction of an artificial input up allows us to manipulate a multilayered grid and transitions

duration using one general framework. Let us remark that using Algorithm 4.2 it makes sense to calculate the

symbolic model on-the-fly remaining the unexplored part of the abstraction unconstructed.

4.2.1 From a Multilayered to an Adaptive Grid

However, the abstraction considered in the previous section has two significant disadvantages. First, when we run

Algorithm 4.2, we have to store a multilayered grid Q, while it is better to work with an adaptive grid consisting of

cells of different sizes. Second, for every fixed distribution of priorities of states p : Q → {0, . . . , np + 1} a reduced

transition relation Fp,�U includes a lot of auxiliary transitions which serves only for switching from a finer layer to a

coarser one. At the same time, we prefer to keep in memory only transitions directly related to the dynamic of the

original system.

For a given p let us choose as an adaptive grid QAp = Qpup(QL), where Qpup : QL → Q is defined as follows

Qpup(q) = {q′ ∈ Q | Fp,�U (q′, up) = ∅ and ∃{qi}Ni=0, qi ∈ Q, i = 0, N such that

q0 = q, q′ = qN , qj+1 = Fp,�U (qj , up), j = 0, N − 1}

and its extension for all Q ⊆ QL is Qpup(Q) = ∪q∈QQpup(q). So, a state of multilayered grid Q is included in QAp if

and only if it is reachable from the finest layer only with up transitions, and there is no possibility to go higher for this

state. Let us remark that for any qi, qj ∈ QAp , qi 6= qj the following qi ∩ qj = ∅ is satisfied, moreover X = ∪q∈QAp q.

For the associated transition relation let us introduce FAp ⊆ QAp × U × QAp such that (q, u, q′) ∈ FAp if and only

if q′ ∈ Qpup(Fp,�U (q, u)). Its definition is correct because for any q ∈ QAp , u ∈ U the set Fp,�U (q, u) either empty, or

included in QL. Let us remark that for any given p : Q → {0, . . . , np + 1}, any q ∈ QAp the set FAp (q, up) = ∅, i.e.,

in fact, FAp ⊆ QAp × U \ {up} × QAp . However we keep the redundant input up to have the same input set U since

we want to show that we can operate with a grid QAp and a transition relation FAp , instead of Q and Fp,�U while

executing the Algorithm 4.2.

Proposition 4.2.1. For any q ∈ Q, q ∈ QA,RE , where QA,RE = ReachFAp (Qpup({q ∈ Qinit | p(q) 6= 0})) if and only if

q ∈ QRE , where QRE = ReachFp,�U ({q ∈ Qinit | p(q) 6= 0}) and Fp,�U (q, up) = ∅.

Proof. Remembering that any non-up transition always finishes at the lowest layer, while input up strictly prioritized

that all the others, we have from the definition of ReachFp,�U , that q ∈ R, Fp,�U (q, up) = ∅ is equivalent to the
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existence of a trajectory

q0,0
up−−−−→

Fp,�U

q0,1
up−−−−→

Fp,�U

. . .
up−−−−→

Fp,�U

q0,n0

u1−−−−→
Fp,�U

q1,0
up−−−−→

Fp,�U

q1,1
up−−−−→

Fp,�U

. . .
up−−−−→

Fp,�U

q1,n1

u2−−−−→
Fp,�U

. . .

. . .
um−−−−→

Fp,�U

qm,0
up−−−−→

Fp,�U

qm,1
up−→ . . .

up−−−−→
Fp,�U

qm,nm = q

such that q0,0 ∈ {q ∈ Qinit | p(q) 6= 0}, qi,0 ∈ QL for all i = 0, . . . ,m and qj,nj ∈ QAp for all j = 0, . . . ,m. This is true

(see the the definition of Qpup(q)) if and only if there exist a trajectory

q0,n0

u1−−→
FAp

q1,n1

u2−−→
FAp

. . . . . .
um−−→
FAp

qm,nm = q

such that q0,n0
∈ Qpup({q ∈ Qinit | p(q) 6= 0}) and qj,nj ∈ QAp for all j = 0, . . . ,m. The last is equivalent to the fact

q ∈ QA,RE .

Proposition 4.2.2. Let us run Algorithm 4.2 for the transition system Σ = (Q,U, F ). Then at every iteration of loop

6-11 the following BlockFp,�U (QRE) = BlockFAp (QA,RE ) is satisfied.

Proof. So, q ∈ BlockFp,�U (QRE) if and only if q ∈ QRE and Fp,�U (q, u) = ∅ for any u ∈ U , which is equivalent to

q ∈ QA,RE and Qpup(Fp,�U (q, u)) = ∅ for any u ∈ U . The last is true if and only if q ∈ BlockFAp (QA,RE ).

So, we can reinitialize the priority of states p (line 11), using only knowledge about QAp and FAp . Now we

explain how to update the adaptive grid QAp and a transition relation FAp , while changing p during the evolution of

Algorithm 4.2.

After execution of lines 2-5, a state in Q is reachable from the finest layer if and only if it is safe or belonging

to QL. Hence, if we start from the coarsest layer Q1 and recursively split all unsafe states into 2n pieces until they

do not belong to the finest layer QL, we finally get a grid QAp , corresponding to the distribution of priority of states

p just before the loop 6-11 execution. Since with every iteration of the loop only states included in QAp change their

priorities (see Proposition 4.2.2), we can also update our adaptive grid QAp without direct usage of the transition

relation Fp,�U . Indeed, if a state q ∈ Q \QL gets a priority 0, then, from Lemma 4.1.1 and definition of up transition,

it follows that we should replace it by 2n states q′i ∈ Ql(q)+1, such that q = ∪2n

i=1q
′
i.

There also exists a way to compute the transition relation FAp , using only the current version of QAp .

Proposition 4.2.3. For any q ∈ QAp , u ∈ U \ {up} a state q′ ∈ QAp belongs to a set FAp (q, u) if and only if the

intersection q′ ∩ Reach(τ
uµ,j
q | q, uµ) 6= ∅, and the condition of a collision avoidance Reach(t | q, uµ) ∩ (X \ Y ) = ∅ is

satisfied for all t ∈ [0, τ
uµ,j
q ].

Proof. Let q′ ∈ FAp (q, u). From the definition of FAp , this is true if and only if q′ ∈ Qpup(Fp,�U (q, u)). From the definition

of Qpup last is equivalent to existence q′′ ∈ QL such that q′ ∈ Qpup(q′′) and q′′ ∈ Fp,�U (q, u). This is satisfied if and
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Figure 4.3: Illustration of the difference between multilayered and adaptive grid. Left figure shows the successors
F (q, u) on 2-layered grid, while the right figure on the corresponding adaptive grid.

only if there exists q′′ ∈ QL such that q′ ∈ Qpup(q′′), q′′ ∩ Reach(τ
uµ,j
q | q, uµ) 6= ∅ and the condition of a collision

avoidance Reach(t | q, uµ) ∩ (X \ Y ) = ∅ is not violated for all t ∈ [0, τ
uµ,j
q ]. From Lemma 4.1.1 and definition of up

transition the last is equivalent to q′ ∈ QAp , q′ ∩ Reach(τ
uµ,j
q | q, uµ) 6= ∅, and the condition of a collision avoidance

Reach(t | q, uµ) ∩ (X \ Y ) = ∅ is satisfied for all t ∈ [0, τ
uµ,j
q ]. That ends the proof.

We illustrate the difference between a multilayered grid and an adaptive grid in Fig. 4.3. There, unsafe states

are marked with black and successors filled with blue color. The left figure shows two uniform Cartesian partitioning

embedded one into another. For a coarser partitioning, we use a normal line; for a finer — a dashed line. The right

figure illustrates the corresponding adaptive grid.

Finally, we show that we can fully simulate the main part of Algorithm 4.2, using only adaptive grid QAp and

a transition relation FAp . It is also important to mention that the abstraction is not required to be pre-computed

but constructed on-the-fly. Let us write, C∗(q) := EnabFAp (q) for all q ∈ R∗ and empty otherwise, for a controller

initialization part (lines 12-15). It is obvious, that C∗(q) is a safety controller for a transition system Σ∗ = (Q∗, U, F∗),

where a state space Q∗ and a transition relation F∗ are correspondingly QAp and FAp after we exit the loop. Moreover,

since for any p : Q→ {0, . . . , np + 1}, any q ∈ QAp the set FAp (q, up) = ∅, the input up never appears in a final safety

controller C∗. So, we can just skip it from the earlier beginning by initializing in line 3 every safe state with priority

np, instead of np + 1.

4.3 Controller Refinement for an Abstraction with Adaptive Grid

In the previous section, we computed a safety controller C∗(q) for a transition system Σ∗ = (Q∗, Uµ×{1, . . . , np}, F∗),

which is an abstraction for the continuous time Σf = (T,Rnx ,U ,W, f). Let us now provide a safety controller for the

original plant.
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Figure 4.4: Illustration of the considered configuration for temperature regulation problem.

First of all we introduce a controller Cdur∗ : Q∗ → Uµ×T, such that for every q ∈ Q∗\Dom(C∗) we say Cdur∗ (q) = ∅,

while if q ∈ Dom(C∗) and (uµ, j) ∈ EnabF∗(q), then the pair (uµ, τ
uµ,j
q ) ∈ Cdur∗ (q). Hence, a controller Cdur∗ store

real durations of safe transitions, instead of the sizes of the boxes.

Now we are ready to refine the controller Cdur∗ to a safety controller u for the original continuous system. Let us

consider the control input given for all t ∈ [tk, tk+1) by

u(t, x) = uk where (uk, τk) ∈ Cdur∗ (Qx(x(tk))) (4.5)

and the sequence of instants {tk} is given by

t0 = 0 and tk+1 = tk + τk (4.6)

Theorem 4.3.1. For a given control system Σf = (T ,Rnx ,U ,W, f) all trajectories of closed-loop system (1.1),(4.5),

and (4.6) starting from a Dom(C) at t = 0 stays within the set S ⊆ Y for all t ∈ T no matter which disturbance

w ∈ L(T ,W) has been applied.

The statement of the theorem directly follows from the discussion above. We only remark here that the compu-

tation of the controller for the abstraction is usually implemented off-line and then stored in a control device memory,

while a controller for the continuous system is calculated online using this pre-computed information.

4.4 Numerical Illustration: Temperature Regulation in the Building

This section we consider a problem of temperature regulation in two rooms building [Girard et al., 2016]. Let each

room is equipped with a heater and let Ti is a temperature in the room i, i = 1, 2. The evolution of the temperatures

61



Figure 4.5: Simulation results. A grey area corresponds to the controllable domain: light states are controllable by
the actions with priority 1; dark states - with priority 2. The white area is uncontrollable. Concerning the closed-loop
trajectory, orange color corresponds to a control {0, 0}, green - to a control {0, 1}, violet - to a control {1, 0}.

could be described by the following system of the differential equations

Ṫ1 = α(T2 − T1) + β1(te − T1) + γ1(th1
− T1)u1

Ṫ2 = α(T1 − T2) + β2(te − T2) + γ2(th2
− T2)u2

(4.7)

Here te is temperature of external environment of the building, th1 , th2 are temperatures of the heaters, α is the

conduction factor between rooms, β1, β2 are conduction factors between external environment and the first room

and the second room correspondingly, γ1, γ2 are conduction factor between heater and rooms. We illustrate the

considered configuration in the Figure 4.4. Control parameter ui equals 1 if the room i is heated and 0 otherwise.

Temperature te is considered as a bounded disturbance.

We run our simulation for the following set of parameters

α = 1/2 ∗ 10−4W/J, β1 = 1/6 ∗ 10−4W/J, β2 = 1/11 ∗ 10−4W/J,

γ1 = 1.5 ∗ 10−4W/J, γ2 = 1.5 ∗ 10−4W/J, th1 = 30C◦, th1 = 40C◦.

A safety specification were given by an initial set X0 = [19, 23] × [19, 23], safe set Y = [19, 23] × [19, 23], and a

disturbance te ∈ [−10, 10]. We also suppose that at given instant at most one heater is switched on, i.e. a control

set U = {{0, 0}, {0, 1}, {1, 0}}. For the abstraction, we chose L = 4, nx = [4; 4], Uµ = U , and np = 2. Let us

introduce the notation A state vector x = [T1;T2]. To construct the over-approximations of reachable states we

benefit from the fact the system (4.7) is monotone, and, hence, for any given state q = [xq, xq], any given constant

control function u : [0, t] → (u1, u2), (u1, u2) ∈ Uµ the reachable set robust to any admissible disturbances Reach(t |
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Table 4.1: Runtime comparison when varying the number of states.

Grid Number of states Execution time Controllability Ratio
Adaptive grid 18 7 s 98%
Coarsest grid 9 5 s 89%

Finest grid 625 50 s 98%

q, u) ⊆ [xf (t | xq,u, tmin
e ), xf (t | xq,u, tmax

e )], where xf (t | xq,u, tmin
e ), xf (t | xq,u, tmax

e ) are trajectories of the

system (4.7), corresponding to initial values xq, xq, control function u, and constant disturbances tmin
e : [0, t]→ tmine ,

tmax
e : [0, t]→ tmaxe .

In Figure 4.5 the results of simulation are provident. We use a dark grey and a light grey for states, which are

controllable with a (uµ, 1), uµ ∈ Uµ and with a (uµ, 2), uµ ∈ Uµ correspondingly, while white region is uncontrollable.

The closed loop trajectory were simulate for 24 hours, supposing that external temperature is varying between

tmine = −10C◦ and tmaxe = 10C◦ and initial point x0 = [19.084; 19.27]. The orange color correspond to a control

{0, 0}, green to a control {0, 1}, violet to a control {1, 0}. To evaluate efficiency, we also run a simulation for two

extreme cases: L = 1, nx = [4; 4] and L = 1, nx = [25; 25], which correspond to a coarsest grid and to a finest

grid of considered four-layered adaptive grid. One can see the comparison of the results in Table 4.1, where the

controllability ratio is a capacity ratio Dom(C∗) to QS . The controllable sets coincides for the adaptive grid and the

finest grid, but we get a noticeable time and memory gain. The implementations has been done in C++, processor

Intel Core i7-8700, 2.5 Hg, RAM 16 GB.

4.5 Conclusion

In this Chapter, we present an abstraction-based approach to safety controller synthesis for continuous-time non-

linear systems. To reduce the computational burden associated with symbolic control approaches, we develop a

lazy controller synthesis algorithm, which uses the incremental forward exploration of the symbolic dynamics and

thus allows us to restrict the controller synthesis computations to reachable states only. We propose to use this

algorithm with a novel type of multilayered, multi-scale abstractions, which use adaptive sampling of time. Instead of

using transitions of predetermined duration, the duration of the transitions is constrained by state intervals that must

contain the reachable set, thus enabling a better control of the symbolic transitions. We also prioritize transitions

with longer duration and explore lower priority actions only if we can guarantee safety using a higher priority inputs.

In simple words, the proposed lazy algorithm is an alternation procedure between a forward exploration of state

space and a backward correction of the obtained transition system in order to satisfy the safety requirements. At the

beginning of every iteration, we update for every state a set of enabled inputs. The set of enabled actions depends

on the priority of the state. Then we try to find a safety controller. If a state is uncontrollable we either reduce

duration of enabled transitions or split a state in several pieces. And then start exploration again. We provide a
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simple example to illustrate the benefits of the approach.
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Chapter 5

Efficient Controller Synthesis for

Monotone Dynamical Systems and

Directed Safety Specifications

This Chapter is devoted to monotone control systems, i.e., systems whose trajectories preserve some partial order-

ings on their state and input spaces [Angeli and Sontag, 2003, Hirsch and Smith, 2004, Kamke, 1932, Müller, 1927,

Smith, 1995]. On the one hand, our interest is motivated by many practical applications in which such systems

appear. For example, traffic networks [Kim et al., 2017, Coogan et al., 2016], biological networks [Sontag, 2007,

Angeli and Sontag, 2003], blood glucose control [Gillis et al., 2007], power systems [Zonetti et al., 2019], vehicle

platoons [Nilsson et al., 2016] and temperature regulation systems [Meyer et al., 2013]. On the other hand, mono-

tone control systems are a subclass of nonlinear control systems relatively easy to analyze, and many notable results

were derived for them last decades. Extending pioneer works of [Kamke, 1932, Müller, 1927, Krasnoselskii, 1968],

Hirsch and Smith contribute to stability theory for continuous-time monotone systems and provide several ver-

ification criteria for a system to be monotone [Smith, 1988, Smith, 1995, Hirsch and Smith, 2004]. Angeli and

Sontag extend their results to systems with inputs [Angeli and Sontag, 2003]. The monotonicity property also

simplifies significally the reachability analysis of the non-linear system [Meyer et al., 2021, Ramdani et al., 2010,

Sinyakov and Girard, 2020b]. Concerning to invariance for monotone systems, relying on ideas of [Abate et al., 2009],

the authors in [Meyer et al., 2017] propose a necessary and sufficient condition for an interval to be controlled in-

variant. However, their result is restricted to monotone systems where every input affects no more than one state

variable. We overcome this limitation by using abstraction-based techniques, which allow us to compute a non-

convex safely controllable set for a general monotone dynamical system.

However, we focus on a particular class of safety specifications represented by directed (lower-closed or upper-
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closed) sets or their intersection. Our choice is inspired by the paper [Kim et al., 2017], where efficient sparse

abstractions are proposed for monotone dynamical systems and directed specifications. Going one step further, we

benefit from a particular structure and synthesize the maximal safety controller lazily.

In spirit, the closest works in the literature is [Sadraddini and Belta, 2016]. In [Sadraddini and Belta, 2016], the

authors introduce a notion of s-sequence to characterize a controlled invariant of the system. This notion is relatively

close to the notion of basis, which we use to represent directed sets in our work. However, looking at the computation

of controlled invariants as an optimization problem [Sadraddini and Belta, 2016] does not guarantee the maximality

of the obtained control invariant set. They also propose to use a simple open-loop control policy to keep a trajectory

within a safe set. Although such an approach is memory efficient, it is hardly possible to use their controller as a

start point for more general tasks (for example, obstacle-avoided reachability specification [Reissig et al., 2017] or

optimal control problems with hard constraints).

The Chapter is organized as follows. Section 5.1 introduces input-state and state monotone dynamical systems.

It also provides an illustrative example emphasizing the difference between these two classes of systems. We then

adapt results from [Angeli and Sontag, 2003] to characterize the considered objects. Subsection 5.1 is devoted

to directed safety specifications. Section 5.2 defines lower and upper (input-)state monotone transition systems,

provides a tool for their characterization, and determines the procedure, preserving the monotonicity property of the

original plant while creating a symbolic abstraction. Section 5.3 presents lazy algorithms to compute the maximal

safety controller for monotone transition systems and directed safety specification and their intersection.

5.1 Monotone Dynamical Systems and Directed Safety Specifications

In this section, we consider monotone control systems with disturbances [Meyer et al., 2017], but in contrast to the

existing terminology, we distinguish the systems whose trajectories preserve a partial order on the state-space from

those that also preserve the monotonicity of the input space. We adapt the results [Angeli and Sontag, 2003] to

provide criteria for a dynamical system to be state monotone or input-state monotone and illustrate the gap between

these two classes of systems with a simple example. We then follow the paper [Kim et al., 2017] and focus on

directed safety specifications.

Input-State and State Monotone Dynamical Systems and Their Characterization

Let us start with introducing the notions of state monotone and input-state monotone dynamical systems and with

Figure 5.1 illustrating the given definitions.

Definition 5.1.1. Let S be a compact subset of a state space Rs and let S be equipped with a partial order �S .

Then for two functions s, s′ ∈ L∞(T ,S) we say, that s �S,T s′ if the following holds s(t) �S s′(t) for all t ∈ T .
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u, w
u
′

u

w

w
′

t

x′
0

x0

xf(t | x
′
0
,u′,w′)

xf(t | x0,u,w)⇒
Y =↓ Y

Figure 5.1: Illustration of Definitions 5.1.3 and 5.1.5. The left figures show two trajectories of an input-state mono-
tone dynamical system. The right figure provides an example of a lower-closed safety set. In all figures, a natural
component-wise order on R2 is considered for both the input and the state spaces.

Definition 5.1.2. Consider a control system Σf = (T ,Rnx ,U ,W, f), where Rnx and W are equipped with partial

orders �Rnx and �W correspondingly. The system Σ = (T ,Rnx ,U ,W, f) is said to be state monotone (SM) with

respect to the partial orderings �Rnx ,�W if for all x0, x
′
0 ∈ Rnx , for all u ∈ L∞(T ,U) and for all w,w′ ∈ L∞(T ,W)

the following implication holds x0 �Rnx x
′
0,w �W,T w′ ⇒ xf (t, x0,u,w) �Rnx xf (t, x0,u,w

′), t ∈ T .

Definition 5.1.3. Consider a control system Σf = (T ,Rnx ,U ,W, f), where Rnx , U , andW are equipped with partial

orders �Rnx ,�U and �W correspondingly. The system Σ = (T ,Rnx ,U ,W, f) is input-state monotone (ISM) with

respect to the partial orderings �Rnx ,�U , and �W if for all x0, x
′
0 ∈ Rnx , u,u′ ∈ L∞(T ,U), and w,w′ ∈ L∞(T ,W)

such that x0 �Rnx x
′
0,u �U,T u′, and w �W,T w′ the following holds xf (t, x0,u,w) �Rnx xf (t, x0,u,w

′), t ∈ T .

It follows straightforwardly from the definitions above that any ISM control system is a SM control system. More-

over, any SM system can be seen as ISM, with a partial order defined as u �U u′ ⇔ u = u′. However, this trivial

order does not have any practical interest, and while speaking about ISM transition systems, we assume that there

are at least two elements in u, u′ ∈ U , such that u ≺U u′.

In this manuscript, we focus on a subclass of (input-)state monotone systems, which is called (input-) state co-

operative systems. Similar to definitions in [Angeli and Sontag, 2003] we say that an (input-)state monotone system

Σ = (T ,Rnx ,U ,W, f) is a (input-)state cooperative system if partial orders on Rnx ,U ⊆ Rnu ,W ⊆ Rnw are induced

by the positive orthants Rnx+ ,Rnu+ ,Rnw+ correspondingly. Then, adapting the Kamke-Müller condition [Kamke, 1932]

we characterize (input-) state cooperative systems, as follows.

Theorem 5.1.1. The system Σf = (T ,Rnx ,U ,W, f) with locally Lipschitz vector field f is input-state cooperative

if and only if for all i = 1, . . . , nx for all x �Rnx x, such that xi = x′i, for all u �U u′, w �W w′ the following

inequality is satisfied fi(x, u, w) ≤ fi(x
′, u′, w′), where partial orders �Rnx ,�U ,�W are induced by Rnx+ ,Rnu+ ,Rnw+

correspondingly.

Corollary 5.1.1. The system Σ = (T ,Rnx ,U ,W, f) with locally Lipschitz vector field f is state cooperative if and

only if for all i = 1, . . . , nx for all x �Rnx x, such that xi = x′i, for all u ∈ U and for all w �W w′ the following inequality

is satisfied fi(x, u, w) ≤ fi(x′, u, w′), where partial orders �Rnx ,�W are induced by Rnx+ ,Rnw+ correspondingly.
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We are now ready to provide an example illustrating the difference between SM and ISM systems.

Example 5.1.1. Let us consider a control system Σf = (T ,R2,U ,W, f), where U = {1, 2} andW = ∅. Hence, there

is no disturbance in the system’s dynamic ẋ = f(x, u), where f(x, u) defined as follows

f(x, u) =

 A1x if u = 1

A2x if u = 2
where A1 =

0.1 0.9

3 0.7

 and A2 =

0.2 2

0.1 0.7


Using the Corollary 5.1.1 we can conclude that the transition system presented above is state cooperative, while it

is not input-state cooperative for any non-trivial partial order on U .

Another well-known in the literature criterion is formulated in terms of partial derivatives of the vector field.

Theorem 5.1.2. The system Σ = (T ,Rnx ,U ,W, f) with continuously differentiable vector field f is input-state

cooperative if and only if for all x ∈ Rnx , u ∈ U , w ∈ W, for all i, j = 1, . . . , nx, j 6= i, k = 1 . . . nu, l = 1 . . . nw the

following inequalities are satisfied

∂fi
∂xj

(x, u, w) ≥ 0,
∂fi
∂uk

(x, u, w) ≥ 0,
∂fi
∂wl

(x, u, w) ≥ 0.

Corollary 5.1.2. The system Σ = (T ,Rnx ,U ,W, f) with continuously differentiable vector field f is input-state

cooperative if and only if for all x ∈ Rnx , w ∈ W, for all i, j = 1, . . . , nx, j 6= i, l = 1 . . . nw the following inequalities

are satisfied
∂fi
∂xj

(x, u, w) ≥ 0,
∂fi
∂wl

(x, u, w) ≥ 0.

Directed Safety Specifications

In this section, we introduce the notion of directed safety specifications, i.e., specifications determined by lower-

closed or upper-closed sets.

Definition 5.1.4. Let L be a partially ordered set, a lower closure of a set A ⊆ L is a set ↓ A =
⋃
a∈A ↓ a, where

↓ a = {q ∈ L | q �L a}, while an upper closure is a set ↑ A =
⋃
a∈A ↑ a, where ↑ a = {q ∈ L | a �L q}.

Definition 5.1.5. Given a partially ordered set, we say that a subset A ⊆ L is lower-closed (respectively upper-

closed) if ↓ A = A (respectively ↑ A = A).

We illustrate the Definition 5.1.5 with a lower-closed set Y in Figure 5.1. The following result shows that union

(an intersection) of a lower-closed (upper-closed) sets is lower-closed (upper-closed).

Proposition 5.1.1 ( [Reddy, 1995]). Let L be a partially ordered set, Ai ⊆ L be finite subsets satisfying Ai =↓ Ai

for all i ∈ {1, . . . , p}, p ∈ N�1. Then ↓ (∪pi=1Ai) = ∪pi=1Ai and ↓ (∩pi=1Ai) = ∩pi=1Ai. Analogously, let Ai ⊆ L be finite

subsets satisfying Ai =↑ Ai for all i ∈ {1, . . . , p}, p ∈ N�1. Then ↑ (∪pi=1Ai) = ∪pi=1Ai and ↑ (∩pi=1Ai) = ∩pi=1Ai.
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5.2 Monotone Abstractions for Monotone Dynamical Systems

In this section, we first define the class of monotone dynamical systems. We then present different types of abstrac-

tions, namely box and sparse abstractions. Finally, we show under which assumptions these abstractions preserve

the monotonicity of the original plant.

5.2.1 Monotone Transition Systems

Let us now introduce the class of monotone transition systems that preserve partial order on input and state spaces.

Definition 5.2.1. Consider a transition system Σ = (Q,U, F ) where the set of states Q is equipped with a partial

order �Q. The transition system Σ is said to be:

• Lower state monotone (LSM) if for all q1, q2 ∈ Q such that q1 �Q q2, for all u ∈ EnabF (q2) it follows, that

u ∈ EnabF (q1) and for any q′1 ∈ F (q1, u), there is q′2 ∈ F (q2, u), such that q′1 �Q q′2;

• Upper state monotone (USM) if for all q1, q2 ∈ Q such that q1 �Q q2, for all u ∈ EnabF (q1) it follows, that

u ∈ EnabF (q2) and for any q′2 ∈ F (q2, u), there is q′1 ∈ F (q1, u), such that q′1 �Q q′2.

The transition system Σ is said to be state monotone (SM) if it is both LSM and USM.

Let us remark that the concepts of USM and LSM coincide when the transition system Σ is deterministic.

Definition 5.2.2. Consider a transition system Σ = (Q,U, F ) where the set of states Q and the set of inputs U are

equipped with partial orders �Q, �U , respectively. The transition system Σ is said to be:

• Lower input-state monotone (LISM) if for all q1, q2 ∈ Q, such that q1 �Q q2, for all u2 ∈ EnabF (q2) all inputs

u1 ∈ U, such that u2 �U u1 belong to EnabF (q1), and for all q′1 ∈ F (q1, u1), there is q′2 ∈ F (q2, u2), such that

q′1 �Q q′2;

• Upper input-state monotone (UISM) if for all q1, q2 ∈ Q, such that q1 �Q q2, for all u1 ∈ EnabF (q1) all inputs

u2 ∈ U, such that u2 �U u1 belong to EnabF (q2), and for all q′2 ∈ F (q2, u2), there is q′1 ∈ F (q1, u1) such that

q′1 �Q q′2.

The transition system Σ is said to be input-state monotone (ISM) if it is both LISM and UISM.

Similar to the case of SM transition systems, the concepts of UISM and LISM coincide when the transition system

Σ is deterministic.

Characterization of Monotone Transition Systems

In this section, we provide a criterion allowing us to verify if a transition system is a lower or upper (input-)state

monotone. Let us characterize lower (input-)state monotone transition systems only while keeping in mind that
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q1

q2

F (q1, u1)

F (q2, u2)

u2

u1

Figure 5.2: Illustration of Theorem 5.2.1. Given two states q1 �Q q2 and two inputs u1 �U u2, if the transition system
is LISM then we have that F (q1, u1) ⊆↓ F (q2, u2).

analogous results hold for upper (input-)state monotone transition systems as well. We start with an auxiliary

lemma.

Lemma 5.2.1. Let L be a partially ordered set and A,B ⊆ L. The set A is included in the lower closure of the set

B (i.e. A ⊆↓ B) if and only if for any a ∈ A, there exists b ∈ B such that a �Q b.

The proof follows immediately from the fact that for any set B ⊆ L we have ↓ B = {q ∈ L | ∃ b ∈ B s.t. q �Q b}.

Theorem 5.2.1. For a transition system Σ = (Q,U, F ) the following statements are equivalent:

(i) Σ is a LISM transition system;

(ii) for all q1, q2 ∈ Q, for all u2 ∈ EnabF (q2), u1 ∈ U if q1 �Q q2 and u1 �U u2, then u1 ∈ EnabF (q1) and

F (q1, u1) ⊆↓ F (q2, u2);

Proof. Let q1, q2 ∈ Q, for all u2 ∈ EnabF (q2), u1 ∈ U , with q1 �Q q2 and u1 �U u2. Then from Lemma 5.2.1

u1 ∈ EnabF (q1) and F (q1, u1) ⊆↓ F (q2, u2) if and only if u1 ∈ EnabF (q1) and for any q′1 ∈ F (q1, u1), there exists

q′2 ∈ F (q2, u2) with q′1 �Q q′2. Hence, (i)⇔ (ii).

A graphical representation of the conditions in Theorem 5.2.1 is provided in Figure 5.2. We then have the

following corollary for LSM transition systems.

Corollary 5.2.1. For a system Σ = (Q,U, F ) the following statements are equivalent:

(i) Σ is a LSM transition system;

(ii) for all q1, q2 ∈ Q, for all u ∈ EnabF (q2) if q1 �Q q2, then u ∈ EnabF (q1) and F (q1, u) ⊆↓ F (q2, u);
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5.2.2 Box abstraction

In this part, we discuss a special class of symbolic models ΣB = (Q,U, F ), preserving the monotonicity property of

the original (input-) state monotone system Σf = (T ,Rnx ,U ,W, f).

First of all, we over-approximate the compact setW by a finite union of multi-dimensional intervals
⋃M
m=1[wm1 , w

m
2 ].

Then, we introduce a partitioning Q on Rnx . We say that a state q ∈ Q belongs to a safe set QS ⊂ Q if and only

if q ⊂ Y , otherwise the state q is unsafe, i.e., q ∈ QUS = Q \ QS . We assume that with introduced partitioning,

the set QS is a finite set. Moreover, it is supposed that the partitioning Q is grid-aligned, i.e. each element q ∈ Q

is described as a multi-dimensional semi-intervals q = [xq1, x
q
2). Choosing the set of admissible abstract inputs, as

follows U = {u1, . . . , um} ⊆ U we then use reachability analysis techniques to compute the transition relation F .

Remark 5.2.1. Consider a (input-)state monotone control system Σf = (T ,Rnx ,U ,W, f) and letW ⊆
⋃M
m=1[wm1 , w

m
2 ].

Then from Definitions 5.1.2,5.1.3 for the reachable set corresponding to an initial set q = [xq1, x
q
2), and a constant

control function u : T → u, u ∈ U the following is satisfied

Reach(t | q, u) ⊆ ∪Mm=1[xf (t | xq1,u,wm
1 ), xf (t | xq2,u,wm

2 )] for all t ∈ T ,

where for all m = 1 . . .M functions wm
1 ,w

m
2 are constant disturbances with values wm1 , wm2 correspondingly.

Let for all q ∈ QS , for all u ∈ U transition (q, u, q′) ∈ F if and only if q ∈ QS , u ∈ U, q′ ∈ Q, the intersection

q′ ∩ ∪Mm=1[xf (τ | xq1,u,wm
1 ), xf (τ | xq2,u,wm

2 )] 6= ∅, (5.1)

and for all t ∈ [0, τ ] the condition of a collision avoidance

∪Mm=1 [xf (t | xq1,u,wm
1 ), xf (t | xq2,u,wm

2 )] ∩ (Rnx \ Y ) = ∅ (5.2)

is satisfied. Where u is a constant control function with value u, functions wm
1 ,w

m
2 are constant disturbances with

values wm1 , wm2 correspondingly, τ is a fixed time sampling parameter. We illustrate the construction of the transitions

for the box abstraction in Figure 5.4. Taking into account the remark 5.2.1, we may conclude that the constructed

abstraction ΣB = (Q,U, F ), is related to the original (input-)state monotone system Σf = (T ,Rnx ,U ,W, f) with

feed-back refinement relation [Reissig et al., 2017], and a safety controller synthesised for ΣB = (Q,U, F ), can be

refined to solve the Problem 1.1.1. However, to increase the efficiency of the synthesis procedure, we are interested

in preserving monotonicity of the original system while constructing ΣB = (Q,U, F ). Let us make some additional

assumptions about partitioning QS .

Assumption 5.2.1. Let for all q, q′ ∈ Q if there exists (x, x′) ∈ q × q′ satisfying x �Rnx x
′, then xq2 �Rnx x

q′

2 .
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Figure 5.3: The first two partitions satisfy Assumption 5.2.1, while the third partition does not satisfy Assump-
tion 5.2.1. The first and third partitions satisfy Assumption 5.2.2, while the second partition does not satisfy As-
sumption 5.2.2. The state-space is equipped with the component-wise partial order � defined on R2.

Assumption 5.2.2. Let for all q, q′ ∈ Q if there exists (x, x′) ∈ q × q′ satisfying x �Rnx x
′, then xq1 �Rnx x

q′

1 .

Intuitively, Assumption 5.2.1 (respectively, Assumption 5.2.2) reflects the fact that the partitioning should preserve

the lower (respectively, upper) monotonicity property from continuous to symbolic states. Fig. 5.3 shows examples

of partitions satisfying Assumptions 5.2.1 and 5.2.2. Keeping in mind Assumptions 5.2.1 and 5.2.2, let us define a

partial order on the abstract set of states�Q as follows:

• If Assumption 5.2.1 is satisfied, then for all q1, q2 ∈ Q, q1 �Q q2 if and only if xq12 �Rnx x
q2
2 ;

• If Assumption 5.2.2 is satisfied, then for all q1, q2 ∈ Q, q1 �Q q2 if and only if xq11 �Rnx x
q2
1 ;

• If both Assumptions 5.2.1 and 5.2.2 are satisfied, then for all q1, q2 ∈ Q, q1 �Q q2 if and only if xq11 �Rnx x
q2
1

and xq12 �Rnx x
q2
2 .

In the following result, we show that, under Assumptions 5.2.1 and 5.2.2, monotonicity of the original system

Σf = (T ,Rnx ,U ,W, f) is preserved when constructing its symbolic box abstraction ΣB = (Q,U, F ).

Proposition 5.2.1. Let us consider control system Σf = (T ,Rnx ,U ,W, f). If Σf = (T ,Rnx ,U ,W, f) is an input

state cooperative system and if its symbolic box abstraction ΣB = (Q,U, F ) satisfies Assumption 5.2.1, (respectively,

Assumption 5.2.2), then ΣB = (Q,U, F ) is a LISM (respectively, UISM) transition system. Moreover, when both

Assumptions 5.2.1 and 5.2.2 are satisfied, then ΣB = (Q,U, F ) is an ISM transition system

Proof. We only provide a proof for the case of LISM, the cases of UISM and ISM can be derived similarly. We

should prove that for all q1, q2 ∈ Q and for all u1, u2 ∈ U, if q1 �Q q2 and u1 �U u2, the following is satisfied: for all

q′1 ∈ F (q1, u1) there is q′2 ∈ F (q2, u2), such that q′1 �Q q′2. Let q1, q2 ∈ Q and u1, u2 ∈ U, such that q1 �Q q2 and

u1 �U u2. Under Assumption 5.2.1, the last is equivalent to xq12 �Rnx x
q2
2 and u1 �U u2. Let q′1 ∈ F (q1, u1), from

the monotonicity of Σf = (T ,Rnx ,U ,W, f) and the construction of ΣB = (Q,U, F ), we have the existence of m ∈

{1, . . . ,M} such that xf (τ | xq12 ,u1,w
m
2 ) ∈ q′1. Let q′2 ∈ Q is such that xf (τ | xq22 ,u2,w

m
2 ) ∈ q′2. Then q′2 ∈ F (q2, u2).

Here functions u1, u2, wm
1 ,w

m
2 are constant functions with values wm1 , wm2 correspondingly Moreover, there are

x = xf (τ | xq12 ,u1,w
m
2 ) and x = xf (τ | xq22 ,u2,w

m
2 ), such that x ∈ q′1, x ∈ q′2 and since Σf = (T ,Rnx ,U ,W, f) is an

input-state monotone control system, one has x �Rnx x. Hence, from Assumption 5.2.1, xq
′
1

2 �Rnx x
q′2
2 . The last is

equivalent to q′1 �Q q′2.
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Figure 5.4: Illustration of difference between box and sparse abstractions. Left: A box abstraction for a fixed
disturbance interval [wm

1 ,w
m
2 ], m ∈ {1, . . . ,M}. Right: box (grey) and sparse (blue) abstractions for a monotone

system with a lower-closed safety specification for M = 3.

We then have the following corollary for SM systems.

Corollary 5.2.2. Let us consider control system Σf = (T ,Rnx ,U ,W, f). If Σf = (T ,Rnx ,U ,W, f) is a state

cooperative system and if its symbolic box abstraction ΣB = (Q,U, F ) satisfies Assumption 5.2.1, (respectively,

Assumption 5.2.2), then ΣB = (Q,U, F ) is a LSM (respectively, USM) transition system. Moreover, when both

Assumptions 5.2.1 and 5.2.2 are satisfied, then ΣB = (Q,U, F ) is an ISM transition system

Hence, the monotonicity property is preserved when going from the original system to its symbolic abstraction.

As soon as Assumption 5.2.1 or Assumption 5.2.2) or both is satisfied. Moreover, if the QS is lower-closed (upper-

closed) with respect two the partial order �Rnx , and Assumption 5.2.1 (respectively, Assumption 5.2.2) holds, then

the set QS is lower (respectively, upper) closed with respect to the partial order �QS . Here again, we look at the set

QS either as a subset of Rnx , or as a collection of abstracts states. Let us remark that QS can be lower-closed with

respect two the partial order �Rnx and be finite only if there is q ∈ QS such that q = (−∞, xq2).

5.2.3 Sparse Abstractions for (Input-)State Monotone Control Systems

In this section we introduce sparse abstractions for Σf = (T ,Rnx ,U ,W, f). We then show that when we are

dealing with directed specifications, sparse abstractions are equivalent to box abstraction ΣB = (Q,U, F ) from the

perspectives of synthesis. However, sparse abstractions are more efficient since they are less non-deterministic. To

define a sparse abstraction, let us introduce the operators max and min for a finite partially ordered set.

Definition 5.2.3. Let L be a partially ordered set and A ⊆ L is a finite subset. The set of minimal elements of A

is defined as min(A) = {q ∈ A | ∀q1 ∈ A, q �L q1 or (q, q1) ∈ IncL}. Similarly, the set of maximal elements of A is

defined as max(A) = {q ∈ A | ∀q1 ∈ A, q �L q1 or (q, q1) ∈ IncL}.

For a control (input-)state monotone control system Σf = (T ,Rnx ,U ,W, f) an upper-sparse abstraction is de-

fined as ΣUS = (Q,U, FUS) where sets Q,U are inherited from ΣB = (Q,U, F ) and the transition relation is defined

73



for q ∈ QS , u ∈ U as FUS(q, u) = max(F (q, u)). Right sub-figure of Figure 5.4 illustrates the difference of an

upper sparse abstraction ΣUS = (Q,U, FUS) and box abstraction ΣB = (Q,U, F ). While for a state q the set

of successors F (q, u) include all grey boxes, the set FUS(q, u) consist of two blue ones. Hence the abstraction

ΣUS = (Q,U, FUS) is less non-deterministic than ΣB = (Q,U, F ). Similarly, a lower-sparse abstraction is defined as

ΣLS(Σ) = (Q,U, FLS) where Q,U are inherited from ΣB(Σ) and the transition relation is defined for q ∈ Q, u ∈ U

as FUS(q, u) = min(F (q, u)).

Remark 5.2.2. Let us remark that the transition relation of the upper sparse abstraction ΣUS = (Q,U, FUS) can be

equivalently defined as follows: for all q ∈ QS , u ∈ U , q′ ∈ FUS if and only q′ ∈ max(∪Mm=1q
m), where qm is such that

xf (τ | xq2,u,wm
2 ) ∈ qm (see Figure 5.4 for an illustration).

Although our definition of upper-sparse abstraction is slightly different from one proposed in [Kim et al., 2017],

the transition system ΣUS = (Q,U, FUS) is still related to ΣB = (Q,U, F ) with an upper alternating simulation

relation [Kim et al., 2017].

We first show how to preserve the monotonicity when constructing upper or lower-sparse abstractions.

Proposition 5.2.2. Let the box abstraction ΣB = (Q,U, F ) of the control system Σf = (T ,Rnx ,U ,W, f) be LISM,

then its upper-sparse abstraction ΣUS = (Q,U, FUS) is also LISM. Similarly, let the box abstraction ΣB = (Q,U, F )

of the discrete-time control system Σf = (T ,Rnx ,U ,W, f) is UISM, then its lower-sparse abstraction ΣUS =

(Q,U, FUS) is also UISM.

Proof. We only provide a proof for the case of LISM, the case of UISM can be derived similarly. Consider q1, q2 ∈

Q, u1, u2 ∈ U such that q1 �Q q2, u1 �U u2 and let q′1 ∈ FUS(q1, u1) = max(F (q1, u1)), then q′1 ∈ F (q1, u1). From

Proposition 5.2.1, ΣB = (Q,U, F ) is input-state monotone, then there exists q′2 ∈ F (q2, u2) such that q′1 �Q q′2.

Coupling the last with the fact that there exists q′2 ∈ max(F (q2, u2)) such that q′2 �Q q′2 (see Definition 5.2.3), we

finally get that ΣUS = (Q,U, FUS) is ISM.

We then have the following corollary for SM systems.

Corollary 5.2.3. Let the box abstraction ΣB = (Q,U, F ) of the control system Σf = (T ,Rnx ,U ,W, f) be LSM, then

the upper-sparse abstraction ΣUS = (Q,U, FUS) is also LSM. Similarly, let the box abstraction ΣB = (Q,U, F ) of the

control system Σf = (T ,Rnx ,U ,W, f) is USM, then its lower-sparse abstraction ΣUS = (Q,U, FUS) is also USM.

Let us now show the equivalence between box and upper-sparse (respectively, lower-sparse) abstractions while

synthesizing the maximal safety controller for lower-closed (respectively, upper-closed) safety specifications.

Proposition 5.2.3. Consider the ISM control system Σf = (T ,Rnx ,U ,W, f) If QS is a lower-closed safety specifi-

cation, then the maximal safety controller C̄B for the box abstraction ΣB = (Q,U, F ) and the safety specification QS

coincides with the maximal safety controller C̄US for the upper-sparse abstraction ΣUS = (Q,U, FUS) and the safety
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specification QS . Similarly, if QS is an upper-closed safety specification, then the maximal safety controller C̄B for

the box abstraction ΣB = (Q,U, F ) and the safety specification QS coincides with the maximal safety controller C̄LS

for the lower-sparse abstraction ΣLS = (Q,U, FLS) and the safety specification QS .

Proof. We only provide a proof for the case of lower-closed safety specifications, the case of upper-closed safety

specifications can be derived similarly. Let us show that C̄B is a safety controller for ΣUS = (Q,U, FUS). Indeed,

since C̄B is a safety controller for ΣB it is obvious that Dom(C̄B) ⊆ QS . Let q ∈ Dom(C̄B), then for all u ∈ C̄B(q) the

following is satisfied FUS(q, u) ⊆ F (q, u) ⊆ Dom(C̄B). Hence, C̄B is a safety controller for ΣUS = (Q,U, FUS) and

safe set QS . Then, from the definition of maximal safety controller one has C̄B(q) ⊆ C̄US(q) for all q ∈ Q.

Let us show that C̄US is a safety controller for ΣB = (Q,U, F ). Again, it is obvious, that Dom(C̄US) ⊂ QS . Let

q ∈ Dom(C̄US), u ∈ C̄US(q) and let q′ ∈ F (q, u). Then there exists q′ ∈ FUS(q, u) = max(F (q, u)) such that q′ �Q q′.

Since FUS(q, u) ⊆ Dom(C̄US) we have that q′ ∈ Dom(C̄US). Moreover, since the safe set QS is lower-closed, we

have from Proposition 5.3.1 that Dom(C̄US) is lower-closed and one we get that q′ ∈ Dom(C̄US). Hence, C̄US is a

safety controller for ΣB = (Q,U, F ) and from the maximality of the controller C̄B , one has C̄US(q) ⊆ C̄B(q) for all

q ∈ Q.

We then have the following corollary for SM systems.

Corollary 5.2.4. Consider the sate cooperative control system Σf = (T ,Rnx ,U ,W, f). IfQS is a lower-closed safety

specification, then the maximal safety controller C̄B for the box abstraction ΣB = (Q,U, F ) and the safety speci-

fication QS coincides with the maximal safety controller C̄US for the upper-sparse abstraction ΣUS = (Q,U, FUS)

and the safety specification QS . Similarly, if QS is an upper-closed safety specification, then the maximal safety

controller C̄B for the box abstraction ΣB = (Q,U, F ) and the safety specification QS coincides with the maximal

safety controller C̄LS for the lower-sparse abstraction ΣLS = (Q,U, FLS) and the safety specification QS .

Intuitively, the result of Proposition 5.2.3 shows that we can use sparse abstractions instead of box abstraction

while working with (input-) state monotone systems and directed specifications.

5.3 Maximal Safety Controller for Monotone Transition Systems and Di-

rected Specifications

Considering a system Σ = (Q,U, F ) and a safety specification QS ⊆ Q, we solve, in this section, a synthesis

problem that consists in determining a controller, which keeps the trajectories of the system inside a safe set QS .
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Algorithm 5.1: ClassicalSynthesisMSC(Σ, QS)
Input: Σ = (Q,U, F ) and a safe set QS

Output: Maximal Safety Controller C
1 begin
2 for q ∈ QS do
3 p(q) := 1;

4 for q ∈ Q \QS do
5 p(q) := 0;

6 repeat
7 QE := {q ∈ Q | p(q) 6= 0};
8 B := BlockFp(QE);
9 for q ∈ B do

10 p(q) := p(q)− 1;

11 until B = ∅;
12 for q ∈ QE do
13 C(q) := EnabFp(q);

14 for q ∈ Q \QE do
15 C(q) := ∅;
16 return C;

Algorithm 5.2: LazySynthesisMSC(Σ, QS , IEB)
Input: Σ = (Q,U, F ), a safe set QS , an indicator IEB

Output: Maximal Safety Controller C
1 begin
2 for q ∈ QS do
3 p(q) := 1;

4 for q ∈ Q \QS do
5 p(q) := 0;

6 repeat
7 QEB := {q ∈ Q | p(q) 6= 0 and IEB(q) = 1};
8 B := BlockFp(QEB);
9 for q ∈ B do

10 p(q) := p(q)− 1;

11 until B = ∅;
12 for q ∈ {q ∈ Q | p(q) 6= 0} do
13 C(q) := EnabFp(q);

14 for q ∈ Q \ {q ∈ Q | p(q) 6= 0} do
15 C(q) := ∅;
16 return C;

We focus on the case when Σ = (Q,U, F ) is a lower or upper (input-)state monotone, and a safety specification

is directed. To synthesize the maximal safety controller [Tabuada, 2009]one can use the classical synthesis Algo-

rithm 5.1 (repeats Algorithm 2.1 from Chapter 2), where the function p : Q→ {0, 1} indicates whether a state q ∈ Q

is controllable (p(q) = 1) or not (p(q) = 0) and the reduced transition relation Fp is defined as follows: (q, u, q′) ∈ Fp

if and only if p(q) 6= 0 and for all q′′ ∈ F (q, u) the equality p(q′′) 6= 0 is satisfied. However, the classical approach is

too source-demanding for many real-world problem. This section provides a more efficient lazy synthesis approach,

benefiting from the particular structure of Σ = (Q,U, F ) and QS .

5.3.1 Lower-closed and Upper-closed Sets

Let us use operators max and min (see Definition 5.2.3) to introduce the notion of the basis for finite lower-closed

and upper-closed sets [Finkel and Schnoebelen, 2001].

Definition 5.3.1. Let L be a finite partially ordered set. Let A ⊆ L be a lower-closed (upper-closed) set. A set

B = {s1, . . . , sN} ⊆ A is said to be the basis of A, denoted B = Bas(A), if B = max(A) (B = min(A)).

The basis of a lower-closed (upper-closed) set can be used for its simpler representation. Indeed, let A is lower-

closed (upper-closed) set and let B = Bas(A), then A =
⋃
i=1,...,N ↓ ai (A =

⋃
i=1,...,N ↑ ai) and for all ai, aj ∈ B, if

ai 6= aj then (ai, aj) ∈ IncL. The existence and uniqueness of a finite basis for a finite lower-closed (upper-closed)

set follow from the fact that the relation �L is a well-quasi-order [Higman, 1952]. An illustration of the concept of

basis is given in Figure 5.5.

In the following two subsections, we consider a safety control problem for (input-)state monotone transitions

system with directed safety specifications. We show that in a particular case when the transition system is lower
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a1

a2
a3

a4

A =↓ A = ∪4

i=1
↓ ai

Figure 5.5: Illustration of Definition 5.3.1. A lower-closed set A and its basis Bas(A) = {a1, a2, a3, a4}. The state-
space is equipped with the component-wise partial order � defined on R2 and we have: A =↓ A =↓ Bas(A).

(input-)state monotone and the safe set is lower-closed, one can compute the maximal safety controller lazily.

Analogous results hold for upper (input-)state monotone transition systems with upper-closed specifications, but we

leave them unproven, taking into account to the similarity of the statements.

5.3.2 Lazy Synthesis for State Monotone Transition Systems

In this section, we aim to synthesize the maximal safety controller C̄ for a LSM transition system Σ = (Q,U, F )

and a lower-closed safety specifications QS ⊆ Q. Looking for a lazy approach, we split the synthesis procedure

into two steps. First, benefiting from the ordered structure of the state space, we efficiently compute the domain

of the maximal safety controller. And then, we calculate the controller itself using the notion of u-predecessor of a

set. Unlike the classical synthesis, where one explores all the states in QS and all the inputs U , in our approach, all

inputs are explored, but not necessarily all the states.

Domain of Maximal Safety Controller

Let us start with a characterization of the domain of the maximal safety controller for LSM transition systems and

lower-closed safety specifications.

Lemma 5.3.1. Let us run Algorithm 5.1 for a LSM transition system Σ = (Q,U, F ) and lower-closed safety specifi-

cation QS ⊆ Q, then at every iteration of loop 6-11 the set QE is lower-closed.

Proof. Indeed, at the first iteration the set QE coincides with QS and, consequently, is lower closed. Assuming that

the set QiE is lower closed let us show that the set Qi+1
E is lower-closed as well (here QiE is a set QE at ith iteration

of the loop 6-11). Since set Qi+1
E always included in its lower closure we only need to show that ↓ Qi+1

E ⊆ Qi+1
E .

Suppose the opposite. Let there is q ∈↓ Qi+1
E such that q /∈ Qi+1

E . On the one hand, since q ∈↓ Qi+1
E there exists

q′ ∈ Qi+1
E such that q ∈↓ q′. From lines 6-11 of Algorithm 5.1 we have that Qi+1

E = QiE \BlockF ip(QiE). Consequently,

q′ ∈ Qi+1
E is equivalent to q′ ∈ QiE and q′ /∈ BlockF ip(QiE). From the definition of reduced transition relation F ip, the
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Algorithm 5.3: LazySynthesisDomainMSC(Σ, QS , IEB)
Input: Σ = (Q,U, F ), a safe set QS , an indicator IEB
Output: Domain of MS controller C

1 begin
2 for q ∈ QS do
3 p(q) := 1;

4 for q ∈ Q \QS do
5 p(q) := 0;

6 repeat
7 QEB := {q ∈ Q | p(q) 6= 0 and IEB(q) = 1};
8 B := BlockFp(QEB);
9 for q ∈ B do

10 p(q) := p(q)− 1;

11 until B = ∅;
12 return {q ∈ Q | p(q) 6= 0};

latter is true if and only if pi(q′) = 1 and there is u ∈ U, such that F (q′, u) 6= ∅ and for all q′′ ∈ F (q′, u) the following

hold p(q′′) = 1, i.e. in other words, F (q′, u) ⊆ QiE .

On the other hand, q /∈ Qi+1
E if and only if either pi(q) = 0 or pi(q) = 1, but q ∈ BlockF ip(QiE). Let pi(q) = 0 then

q /∈ QiE , the same time q ∈↓ q′ and we have shown that q′ ∈ QiE . Thus, we got a contradiction to the fact that QiE is

lower closed. Let pi(q) = 1 and q ∈ BlockF ip(QiE). However, it also can not be true, since there is u ∈ U such that

F (q′, u) 6= ∅, q �Q q′ and Σ = (Q,U, F ) is lower state monotone the set F (q, u) is also non empty, moreover from

Corollary 5.2.1 we have F (q, u) ⊆↓ F (q′, u) ⊆ QiE .

Corollary 5.3.1. The domain of the maximal safety controller for a LSM transition system Σ = (Q,U, F ) and lower-

closed safety specification QS ⊆ Q is a lower-closed set.

So, at every iteration of loop 6-11, the setQE is lower-closed, and from the first sight, Bas(QE) is a nice candidate

for being the essential basis of the set QE (see Definition 2.3.1), but it is not. Indeed, we only can guarantee that

if for all q ∈ Bas(QE) there exits u ∈ U such that F (q, u) ⊆ QE then for all q ∈ QE there exits u ∈ U such that

F (q, u) ⊆ QE . The last statement is a consequence of the definition of a lower-closed set and the third item of

Corollary 5.2.1. Since Bas(QE) is not the essential basis of the set QE Algorithm 5.2 (repeats Algorithm 2.2) does

not return the maximal safety controller. Still, the following result shows that it returns a controller which domain

coincides with Dom(C̄).

Theorem 5.3.1. Let us run Algorithm 5.3 for a LSM transition system Σ = (Q,U, F ), lower-closed safety specification

QS ⊆ Q and the information function

IEB(q) =


0 if q 6∈ Bas(QE)

1 if q ∈ Bas(QE)

where QE = {q ∈ Q | p(q) 6= 0} (5.3)

Then Algorithm 5.3 returns the domain of the maximal safety controller.
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q1

q2

F (q2, u1)

F (q2, u2)

F (q1, u2)

F (q1, u1)
q1

F (q3, u2)

F (q3, u1)

F (q1, u2)

F (q1, u1)

q3

q4

F (q3, u2)

F (q3, u1)

F (q4, u1)

q3

F (q4, u2)

F (q5, u1)

F (q5, u2)

q5

q4

q5

q3

dom(C̄) = ∪5

i=3
↓ qi

Figure 5.6: Illustration of Algorithm 5.3. If p(q) = 1, then q either blue or white. Red states are uncontrollable (i.e.
p(q) = 0). Blue states are the basis of a set QE . The input set U = {u1, u2}.

Proof. Let us first remark that Algorithm 5.3 repeats Algorithm 5.2 until the line 12 and then instead of initializing a

controller C it simply returns the domain of C. Thus, it is enough to prove that Dom(C) = Dom(C̄), where C is a

controller synthesised by Algorithm 5.2 for a LSM transition system Σ = (Q,U, F ), lower-closed safety specification

QS ⊆ Q and the information function defined by (5.3). And C̄ is the maximal safety controller for or the transition

system Σ = (Q,U, F ), and safety specification QS ⊆ Q. Since we know that C̄ can be calculated with Algorithm 2.1,

let us run Algorithm 2.1 in parallel to Algorithm 5.2. Let the sets QiE,1, Q
i
E,2 contain all states from Q such that

pi1(q) 6= 0, pi2(q) 6= 0 at the beginning of ith iteration of the loop 6-11, of Algorithm 2.1 and 5.2 correspondingly.

Obviously, Q1
E,1 = Q1

E,2. Let Q1
E,i ⊆ Q2

E,i then Bi1 ⊆ Bi2 and consequently Qi+1
E,1 ⊆ Q

i+1
E,2 . Hence, by induction we get

that Dom(C̄) ⊆ Dom(C).

To show that Dom(C) ⊆ Dom(C̄) let us first prove that Dom(C) is lower-closed. At the beginning of the loop

6-11 of Algorithm 5.2 the set QE = {q ∈ Q | p(q) 6= 0} coincides with QS , and, hence, Q1
E is lower-closed. Let

at the ith iteration of the loop the set QiE = {q ∈ Q | pi(q) 6= 0} is lower-closed. Since with the information

function defined by (5.3) we reduce priorities for some states from Bas(QiE) the set Qi+1
E is also lower-closed. Thus,

Dom(C) =↓ Dom(C). Taking into account that Σ = (Q,U, F ) is LSM, we can define a new controller C̄ for Σ as

follows: C∗(q) = ∅ for all q ∈ Q \ (Dom(C)), while for all q ∈ Dom(C) we set C∗(q) = ∪{q′∈Bas(Dom(C))|q∈↓q′}C(q′).

Indeed, if an input is enabled at a state q′ ∈ Q it is also enabled for all q ∈↓ q′ and the definition of C∗ is correct. Since

Dom(C∗) = Dom(C) to end the proof it is enough to show that C∗ is a safety controller for the transition system

Σ = (Q,U, F ), and safety specification QS ⊆ Q. Indeed, Dom(C∗) = Dom(C) ⊆ QS . Moreover, for all q ∈ Dom(C∗)

for all u ∈ C∗(q) there exist q′ ∈ Bas(Dom(C∗)) such that q ∈↓ q′, F (q′, u) 6= ∅ and F (q′, u) ⊆ Dom(C) = Dom(C∗).

From Corollary 5.2.1 we have that F (q, u) ⊆↓ F (q′, u). The same time ↓ F (q′, u) ⊂ Dom(C∗) since Dom(C∗) is

lower-closed. So, C∗ is a safety controller and Dom(C∗) ⊆ Dom(C̄).

Hence, to compute the domain of the maximal safety controller for LSM transition system and lower-closed

safety specification, it is enough to explore only the basis of QE . Figure 5.6 illustrates execution of Algorithm 5.3

for a simple transition system. As soon as every state in QEB is non-blocking with respect to the reduced transition

relation Fp, i.e. for every q ∈ QEB = Bas(QE) there exists u ∈ U such that F (q, u) ⊆ QE =↓ QEB we may conclude
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Algorithm 5.4: Pre(A, u,B)

Input: A LSM transition system Σ = (Q,U, F ), lower-closed sets A,B ⊆ Q, and an input u ⊆ U .
Output: Bas(Pre(A, u,B))

1 begin
2 QU := ∅; QC := ∅;
3 repeat
4 QE := Bas(A \QU ) \ (Bas(A \QU ) ∩QC);
5 QC := QC ∪ {q ∈ QE | F (q, u) ⊆ B};
6 QU := QU ∪ (QE \ {q ∈ QE | F (q, u) ⊆ B});
7 until QE 6= ∅;
8 return QC ;

that all states in QE are safely controllable.

Maximal Safety Controller

Once Dom(C̄) controller is obtained, we can use the notion of u-predecessors of a set to compute the maximal

safety controller C̄.

Definition 5.3.2. For a transition system Σ = (Q,U, F ), sets A,B ⊆ Q and input u ∈ U , we define the set

Pre(A, u,B) of u-predecessors of a set B included in a set A, as follows Pre(A, u,B) = {q ∈ A | F (q, u) ⊆ B}

Let us now enumerate all inputs in U and introduce the sets Zi = Pre(Dom(C̄), ui,Dom(C̄)) for all ui ∈ U,

i = 1, . . . , card(U), where card(U) denotes the cardinality of the finite set U . Then the following result holds.

Theorem 5.3.2. Let C̄ be the maximal safety controller for a LSM transition system Σ = (Q,U, F ) and lower-closed

safety specification QS ⊆ Q. Then for all ui ∈ U, i = 1, . . . , card(U) the input ui ∈ C̄(q) if and only if q ∈ Zi.

Proof. Indeed, the fact that ui ∈ C̄(q) is equivalent to q ∈ Dom(C̄) and F (q, ui) ∈ Dom(C̄), which is equivalent to

q ∈ Pre(Dom(C̄), ui,Dom(C̄)) = Zi.

In the classical approach, to find Pre(A, u,B) we should check for every state q ∈ A if the set F (q, u) ⊆ B.

However, the following result provides guidelines towards a more efficient computation of the Pre(A, u,B) in case

when Σ = (Q,U, F ) is a SM transition system, and sets A,B are lower-closed.

Theorem 5.3.3. Let Σ = (Q,U, F ) be a SM transition system, and sets A,B are lower-closed. Then the set

Pre(A, u,B) is also lower-closed. Moreover, for any lower-closed set D ⊆ A the following holds: D ⊆ Pre(A, u,B) if

and only if for all q ∈ Bas(D) the set F (q, u) ⊆ B.

Proof. Indeed, if q ∈ Pre(A, u,B) then q ∈ A and F (q, u) ⊆ B. Let q′ ≤Q q. Since A is a lower-closed set, then

q′ ∈ A. Moreover, we have from Corollary 5.2.1 that F (q′, u) ⊆↓ F (q, u) ⊆↓ B = B. Hence, q′ ∈ Pre(A, u,B) and

Pre(A, u,B) =↓ Pre(A, u,B).
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Pre(dom(C̄), u2, dom(C̄))

Pre(dom(C̄), u1, dom(C̄))

Figure 5.7: Illustration of lazy synthesis of the maximal safety controller for a LSM transition system with lower-
closed specification. Red state are uncontrollable. White states belong to Dom(C̄). The left figure represents the
Dom(C̄) and its basis {q3, q4, q5}. Figures in the middle illustrate computation of the sets Pre(Dom(C̄, u1,Dom(C̄)))
and Pre(Dom(C̄, u2,Dom(C̄))) by Algorithm 5.4. States filled with grey belong to QU . States contoured with colors
belong to Bas(Dom(C) \ QU ). States contoured with blue and yellow are controllable by inputs u1 and u2 corre-
spondingly (i.e. belong to QC). The right figure illustrates the result of Theorem 5.3.2. States filled with yellow are
controllable by u2, with blue - by u1, with green - by both u1 and u2.

Let now D ⊆ A, assuming that D ⊆ Pre(A, u,B) we immediately have from the Definition 5.3.2 that F (q, u) ⊆ B

for all q ∈ Bas(D) since Bas(D) ⊆ D ⊆ Pre(A, u,B) . Now let us prove the second implication. Let for all q ∈

Bas(D) the set F (q, u) ⊆ B. First, we have that D ⊆ A. For q ∈ D, there exists q′ ∈ Bas(D) such that q ≤Q q′.

Hence, F (q′, u) ⊆ B. Since q ≤Q q′, we have from Corollary 5.2.1 that F (q, u) ⊆↓ F (q′, u) ⊆↓ B = B. Hence,

D ⊆ Pre(A, u,B).

Corollary 5.3.2. Let C̄ be the maximal safety controller for a LSM transition system Σ = (Q,U, F ) and lower-closed

safety specification QS ⊆ Q. Then for all q1, q2 ∈ Q, if q1 ≤Q q2 then C̄(q2) ⊆ C̄(q1).

Intuitively, the set Pre(A, u,B) can be seen as the maximal by inclusion lower-closed subset C of B such that

for all q ∈ Bas(C) the set F (q, u) ⊆ B. Hence, to compute we can use the following procedure. Initializing a set

QE with a set Bas(A) at line 4 of Algorithm 5.4, we first explore every element of the QE . Those q ∈ QE which are

controllable (i.e., there exist an input u ∈ U such that F (q, u) ⊆ B ) we accumulate in a set QC , all the others in a set

QU . Then, at the next iteration of loop 3-7, we shrink out all uncontrollable states from a set A and explore the basis

of what is left. However, for states belonging to Bas(A \QU )∩QC we already know that they are controllable, so we

focus on q ∈ QE = Bas(A \QU ) \ (Bas(A \QU ) ∩QC). Then there are two options. If QE is non-empty, we should

re-update the sets QU and QC (lines 5 and 6) and go for another loop iteration. While if QE is empty, we can stop

the procedure. Indeed QE = ∅ if either all states in A are uncontrollable, or we find a set of controllable states QC ,

such that for any two states q, q′ ∈ QC are incomparable with respect to the order �Q . Moreover, for all states in A
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greater than any state from QC were already explored and marked with uncontrollable. Hence, the set Pre(A, u,B)

coincides with the set ↓ QC and Bas(Pre(A, u,B)) = QC .

In Algorithm 5.4, we leave all elements, which are smaller than the basis of Pre(A, u,B), unexplored. So, we go

through all states in A only if Pre(A, u,B) is empty. This laziness gives us a gain in efficiency while computing the

maximal safety controller. Indeed, in classical synthesis approach where one explores all the states in QS and all the

inputs U , in our approach, all inputs are explored, but not necessarily all the states. Figure 5.7 illustrates the lazy syn-

thesis of maximal safety controller for a simple transition system, such that it input set U = {u1, u2}. Given Dom(C̄)

by Algorithm 5.3 we then compute two sets Z1 = Pre(Dom(C̄), u1,Dom(C̄)) and Z2 = Pre(Dom(C̄), u2,Dom(C̄))

using the Algorithm 5.4. At every iteration of the loop 3−7 we check if a state q ∈ QE is controllable with ui. If yes, we

put q intoQC , if no - intoQU . We then re-updateQE , as followsQE = Bas(Dom(C)\QU )\(Bas(Dom(C)\QU )∩QC).

The right figure illustrates the result of Theorem 5.3.2, i.e. ui ∈ C̄(q) if and only if q ∈ Zi.

5.3.3 Lazy Synthesis for Input-State Monotone Transition Systems

In this part, we propose a lazy safety synthesis algorithm that exploits ordering not only on the state, but also on the

input space. The synthesis of the maximal safety controller is done in two steps. First, we use only inputs with lower

priorities to compute the maximal safety controller’s domain Dom(C̄). Then we synthesize the maximal controller by

exploiting the inputs priorities, making it possible to compute the maximal safety controller without exploring all the

inputs. We start by providing some characterizations of the maximal safety controller for LISM transition systems.

Proposition 5.3.1. Consider a LISM transition system Σ = (Q,U, F ). Let C̄ be the maximal safety controller

enforcing the lower-closed safety specification QS ⊆ Q. The following properties hold:

(i) Dom(C̄) is lower-closed with respect to the partial order �Q;

(ii) for all q1, q2 ∈ Q, if q1 �Q q2 then C̄(q2) ⊆ C̄(q1);

(iii) for all q ∈ Q, C̄(q) is a lower-closed set with respect to the partial order �U ;

Proof. (i), (ii) The result follows immediately from Corollary 5.3.1 and Corollary 5.3.2 and the fact that any LISM

transition system is a LSM transition system.

(iii) Let q ∈ Q, u ∈ C̄(q) and u′ ∈↓ u. We have that F (q, u′) ⊆↓ F (q, u) ⊆↓ Dom(C̄) = Dom(C̄), where the

first inclusion comes from the fact that Σ is a LISM transition system, the second inclusion comes from the fact

that C̄ is a safety controller and the last equality comes from the lower-closedness of Dom(C̄). Hence, we have

F (q, u′) ⊆ Dom(C̄). Then, by maximality of C̄, u′ ∈ C̄(q).

Domain of the controller

Let us define the set Umin = min(U) with respect to partial order �U on the input set U . Then the following is true.
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Figure 5.8: Illustration of the reordering U = {u1, . . . , u9} of the input set U = {1, 2, 3}2 with respect to the
component-wise partial order � defined on R2.

Theorem 5.3.4. Let C̄ be the maximal safety controller for an LISM transition system Σ = (Q,U, F ) and lower-closed

safety specification QS ⊆ Q. Let C̄r be the maximal safety controller for the transition system Σr = (Q,Umin, F ) and

safety specification QS . Then we have Dom(C̄) = Dom(C̄r).

Proof. Let us define the controller Cr of the reduced transition system Σr and the safe set QS as follows: for

q ∈ Q, Cr(q) = C̄(q) ∩ Umin. First let us prove that Dom(Cr) = Dom(C̄). The inclusion Dom(Cr) ⊆ Dom(C̄)

follows immediately from the construction of the controller Cr. Now let q ∈ Dom(C̄) and let u ∈ C̄(q). From (iii)

in Proposition 5.3.1 we have that ↓ u ⊆ C̄(q), then there exists u′ ∈ Umin such that u′ ∈ C̄(q). Then, u′ ∈ Cr(q).

Hence, q ∈ Dom(Cr) and Dom(Cr) = Dom(C̄) and Cr is a safety controller for Σr with a specification QS . Now let

us prove that for all q ∈ Q, Cr(q) = C∗r (q). The first inclusion Cr(q) ⊆ C∗r (q) follows from maximality of the controller

C∗r . For the second inclusion, we have from maximality of C̄ and since Umin ⊆ U that C∗r (q) ⊆ C̄(q) for all q ∈ Q.

Moreover, by construction of C∗r , we have that C∗r (q) ⊆ Umin for all q ∈ Q. Then, Cr(q) = C∗r (q) for all q ∈ Q. Since

Dom(Cr) = Dom(C̄), we have that Dom(C∗r ) = Dom(C̄).

The previous result states that for computation of the domain of the maximal safety controller Dom(C̄), it is

sufficient to use inputs with lower priorities.

Maximal safety controller

It is always possible to reorder the elements of the input set U = {u1, . . . , uN} as follows: for all 1 ≤ j ≤ i ≤ N we

suppose that either uj �U ui or (ui, uj) ∈ IncU (see Fig. 5.8 for the illustration). In this section, we exploit such an

order to make synthesis for LISM transition systems more efficient. Algorithm 5.5 is based on the fact, that if a state

is uncontrollable with an input u ∈ U , it is also uncontrollable with all the inputs u′ ∈ U such that u′ >U u, so if we

failed to control a state with u, we do not need to explore u′ >U u for it. Let us now formally prove the result.
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Algorithm 5.5: Maximal Safety Controller
Input: LISM transition system Σ = (Q,U, F ), the domain of maximal safety controller Dom(C̄).
Output: Controller C.

1 begin
2 for s ∈ Q do
3 C(s) := ∅;
4 for i = 1 : N do
5 if ui ∈ Umin then
6 Si = Dom(C̄);
7 Ki = Pre(Si, ui,Dom(C̄));

8 else
9 Si = ∩uj≺UuiKj ;

10 Ki = Pre(Si, ui,Dom(C̄);

11 for s ∈ Ki do
12 C(s) := C(s) ∪ {ui};
13 return C;

Lemma 5.3.2. At every iteration of the loop 4-11 of the Algorithm 5.5 the set Ki = Pre(Si, ui,Dom(C̄)) coincides

with the set Zi = Pre(Dom(C̄), ui,Dom(C̄)).

Proof. To prove the result, we proceed by induction. For all i such that ui ∈ Umin the statement is obvious and

we have the base. Let i be such that ui /∈ Umin. Suppose that for all j < i, Zj = Kj , and let us prove that

Zi = Ki. Indeed, since for all j < i, Kj = Zj we have that Kj ⊆ Dom(C̄) for all j < i, and as a consequence

Si ⊆ Dom(C̄) (see line 8). From where Ki ⊆ Zi is immediately satisfied. At the same time, for all q ∈ Zi we have that

q ∈ Dom(C̄) and F (q, ui) ⊆ Dom(C̄). Then from Proposition 5.3.1 we have that q ∈ Dom(C̄) and for all uj ≺U ui,

F (q, uj) ⊆ Dom(C̄). Consequently q ∈ Pre(Dom(C̄), uj ,Dom(C̄)) = Zj = Kj for all j such that uj ≺U ui. Then from

the line 9 of Algorithm 5.5, we have that q ∈ Si and, as a consequence, from line 10, q ∈ Ki.

Theorem 5.3.5. Let Σ = (Q,U, F ) be a LISM transition system and let Dom(C̄) be a domain of the maximal safety

controller C̄ for a lower-closed safety specification QS ⊆ Q. Algorithm 5.5 returns the maximal safety controller C̄.

Proof. The statement follows immediately from Lemma 5.3.2, Theorem 5.3.2 and the fact that ui ∈ C(s) if and only

if s ∈ Ki (see lines 11-12 of the Algorithm 5.5).

Remark 5.3.1. In the case of a total order1 on the input set U , the set Ki ⊆ Kj for all N ≥ j ≥ i ≥ 1 (see Fig. 5.9).

For LISM transition systems and directed safety specifications, one can use the monotonicity property to rep-

resent the maximal safety controller C̄ efficiently. Indeed, we have from Proposition 5.3.1 that for a controllable

state q ∈ Dom(C̄), C̄(q) is a lower-closed set. Hence, for the state q, instead of storing all the admissible control

inputs u ∈ C̄(q), one can only store the elements of the basis of C̄(q). The latter significantly reduces the amount of

1A binary relation �L⊆ L× L is a total order if it is a partial order and for all l1, l2 ∈ L we have either l1 �L l2 or l2 �L l1.
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u1, u2, u3

Figure 5.9: Illustration of the maximal safety controller C̄ for the case of a total order on the input set. U = {u1, u2, u3}
with u1 �U u2 �U u3.

memory required to store the controller. Hence, instead of providing the maximal safety controller C̄, in practice, we

provide the maximal input-lazy controller. However, we can reconstruct MS controller from MILS controller without

any computations in a particular case of LISM systems.

5.3.4 Controller Synthesis for Intersections of Directed Safety Specifications

In the previous sections, we have presented lazy synthesis algorithms to deal with lower (input-)state monotone

transitions systems and lower-closed safety specifications. Following the duality between upper and lower-closed

sets, similar results for upper-closed safety specifications can be obtained using the same approaches.

This part aims to deal with more complex specifications described as intersections of upper and lower-closed

sets. Let us mention that from Proposition 5.1.1, the intersection of lower (respectively upper) closed sets is again a

lower (respectively upper) closed set. Hence, one can use the same approaches presented in the previous sections

to deal with unions of lower (respectively upper) closed specifications.

In this section, we focus on the synthesis of controllers for the intersection of an upper and lower-closed set,

which is a natural specification appearing in many applications such as vehicle platoons [Nilsson et al., 2016], mi-

crogrids [Zonetti et al., 2019], traffic networks [Coogan et al., 2016] and temperature regulation [Meyer et al., 2013].

The considered setup is the following. Given a (input-)state monotone transition system Σ = (Q,U, F ), a lower-

closed set QL ⊆ Q and an upper-closed set QU ⊆ Q with QL ∩QU 6= ∅, let us consider the problem of synthesizing

the maximal safety controller for the transition system Σ and safety specification QLU = QL ∩QU . We first have the

following preliminary result

Lemma 5.3.3. Consider the (input-)state monotone transition Σ = (Q,U, F ), the lower-closed QL ⊆ Q and the

upper-closed set QU ⊆ Q with QL ∩QU 6= ∅. Let us define the following safety controllers:

• C̄LU is the maximal safety controller for the transition system Σ and the safety specification QLU = QL ∩QU ;
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• C̄L is the maximal safety controller for the transition system Σ and the lower-closed safety specification QL;

• C̄U is the maximal safety controller for the transition system Σ and the upper-closed safety specification QU .

Then, for all q ∈ Q, C̄LU (q) ⊆ C̄L(q) ∩ C̄U (q).

Proof. Since QLU ⊆ QL, we have that C̄LU (q) ⊆ C̄L(q) for all q ∈ Q. Similarly, using the fact that QLU ⊆ QU we

have that C̄LU (q) ⊆ C̄U (q) for all q ∈ Q. Hence, we have that C̄LU (q) ⊆ C̄L(q) ∩ C̄U (q) for all q ∈ Q.

The idea of this section is to incrementally synthesize the controller C̄LU by proceeding in two steps: 1) synthe-

size the controllers C̄U and C̄L; 2) synthesize the maximal safety controller for the transition system Σ and safety

specification Dom(C̄L) ∩ Dom(C̄U ), where for each state q ∈ Dom(C̄L) ∩ Dom(C̄U ), we explore only the inputs

u ∈ C̄L(q) ∩ C̄U (q). The completeness of the proposed incremental synthesis concerning the classical synthesis is

shown in the following result.

Proposition 5.3.2. Under the preliminaries of Lemma 5.3.3, let us define the set Z = Dom(C̄L) ∩ Dom(C̄U ). Let

C̄Z be the maximal safety controller for the transition system Σ and safety specifications Z. Then, for all q ∈ Q,

C̄LU (q) = C̄Z(q).

Proof. Using the fact that Z = Dom(C̄L) ∩ Dom(C̄U ) ⊆ QLU = QL ∩ QU , it follows that C̄Z(q) ⊆ C̄LU (q) for all

q ∈ Q. On the other hand, we have from Lemma 5.3.3 that Dom(C̄LU ) ⊆ Dom(C̄L) ∩ Dom(C̄U ) = Z. Hence,

C̄LU (q) = C̄Z(q) for all q ∈ Q, which ends the proof.

Certainly, the attentive reader may remark that execution of both steps of the synthesis procedure proposed

above is equivalent to the execution of the most classical Algorithm 2.1 when we apply it for a pre-computed transi-

tion system. However, let us remind that in the first step, we can use more efficient sparse abstractions. And since

the symbolic model is calculated on-the-fly the latter speeds up the computations. Moreover, in some particular

cases, one can get the maximal safety controller C̄LU directly from the controllers C̄L and C̄U , without running the

second step at all.

Proposition 5.3.3. Under the preliminaries of Lemma 5.3.3, if for all q ∈ Dom(C̄L) ∩Dom(C̄U ), C̄L(q) ∩ C̄U (q) 6= ∅,

then for all q ∈ Q, C̄LU (q) = C̄L(q) ∩ C̄U (q).

Proof. The first inclusion follows from Lemma 5.3.3. To deal with the second inclusion, let us show that the controller

CLU = C̄L ∩ C̄U is a safety controller for the transition system Σ and safety specification QLU . First, we have that

Dom(CLU ) ⊆ Dom(C̄L) ∩ Dom(C̄U ) ⊆ QL ∩ QU = QLU . Hence, the first condition of Definition 2.2.1 is satisfied.

Now let q ∈ Dom(CLU ) and u ∈ CLU (q) = C̄L(q) ∩ C̄U (q), the existence of such u is guaranteed by the fact that

C̄L(q) ∩ C̄U (q) 6= ∅. Since C̄L and C̄U are safety controllers, we have that F (q, u) ⊆ Dom(C̄L) ∩ Dom(C̄U ) =

Dom(CLU ). Hence, the second condition of Definition 2.2.1 is satisfied. Then, CLU is a safety controller for the

transition system Σ and safety specification QLU . Hence, from maximality of the controller C̄LU , we have that

CLU (q) = C̄L(q) ∩ C̄U (q) ⊆ C̄LU (q), for all q ∈ Q, which ends the proof.
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5.4 Numerical Illustration: Adaptive Cruise Control

In this Chapter we again consider two vehicles moving along a straight road. Each vehicle is modeled as a point

mass m with velocity changing according to the law

mv̇ = α(F, v) = F − (f0 + f1v + f2v
2). (5.4)

In the equation above, F represents a net action of braking and engine torque applied to the wheels, while the

second term f0 + f1v + f2v
2 describes aerodynamic and rolling resistance effects. In simulations

m = 1370Kg, f0 = 51.0709N, f1 = 0.3494Ns/m f2 = 0.4161Ns2/m2.

The net force F is viewed as a control input u for the follower vehicle and a disturbance for the lead one. It is

assumed to be bounded by Fmin = −0.3mg ≤ F ≤ 0.2mg = Fmax, where g is a gravitational constant. Such a

bound is consistent with non-emergency braking and acceleration. We slightly adapt equation (5.4) to prohibit a

back motion for the follower:

mv̇ =

 α(u, v) if v > 0

max(u− f0, 0) if v = 0
(5.5)

For the leader we assume that its velocity w remains in a range [0, wmax]:

mẇ =


α(a,w) if 0 < w < wmax

max(α(a,w), 0) if w = 0

min(α(a,w), 0) if w = wmax

(5.6)

Combining (5.5) and (5.6) with the equation

ḋ = w − v, (5.7)

which describes the distance between two vehicles, we obtain the final model of the system.

5.4.1 Control Objective and Numerical Results

Lower-closed Safety Specification

We start with the objective to synthesize a controller for the follower vehicle, to keep its velocity below vmax = 30m/s

and to guarantee that the relative distance between the leader and the follower remains larger than dmin = 10m,

while assuming that the leader car acts as a disturbance a ∈ [Fmin, Fmax] and wmax = 30m/s. The following change

of coordinates: h = −d, z = −w transform the system (5.5)-(5.7) into a monotone one. Moreover, after this change
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Figure 5.10: Simulation results. Maximal safety controller C̄ for a lower-closed safety specification.

of coordinates, we get a lower-closed safety specification.

Setting a time step τ = 0.8 s, we generate a discrete-time model corresponding to the continuous-time system

(5.5)-(5.7). We also introduce a Cartesian partition on the set X, such that a safe set Y ⊂ X, and input space U

with nx = (31, 31, 31) and nu = 50 as state and input discretization parameters correspondingly. We then construct

a sparse symbolic model and use Algorithm 5.5 to synthesize the maximal safety controller C̄ for the abstraction.

Let us remind that if for a state q ∈ X an input u ∈ C̄(x), then all inputs satisfying u′ �U u are enabled by C̄ for

this state. Moreover, in our example, we have total order on the input space U . Hence, for each state, it is enough

to store only the maximal safe input to reconstruct the whole maximal safety controller (i.e. in fact we synthesize

and store maximal input-lazy safety controller). Consequently, the amount of memory required for the controller

implementation is significantly reduced. We represent the obtained maximal safety controller C̄ in Figure 5.10.

The blue color of the color bar corresponds to the minimal input Fmin = −4031.9 mKg/s2 and the yellow color

corresponds to the maximal input Fmax = 2687.9 mKg/s2. For a given state x = (w, d, v), Figure 5.10 shows

the maximal allowed control input. Let us remark that to refine the abstract controller for the original system we

can either use the classical refinement scheme (Section 1.3) or even consider a closed-loop controller u : X → U

ensuring more difficult specifications [Darbha, 1997] as soon as u(x) �U C̄(q), where q is a state such that x ∈ q.

To evaluate the performance of our approach, we compare it with the classical safety synthesis algorithm while

exploring different scenarios: we compare our approach with the box abstractions [Tabuada, 2009] and the sparse

abstractions [Kim et al., 2017]. We also provide a comparison with lazy synthesis procedure, based on three valued

abstractions [Hussien and Tabuada, 2018]. In [Hussien and Tabuada, 2018], once a safe input is found for a state,

the other controls are not explored for this state. The authors start with an empty transition relation and iteratively add

new transitions essential for the synthesis purpose. At every iteration, the precomputed part of the symbolic model

is explored. Then, one randomly chooses N3v ∈ N>0 states from uncontrollable states, where N3v is a parameter
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Table 5.1: Runtime comparison when varying the number of states. T slm, Tcl, T scl and T s3v are the running time of
Algorithm 5.5, the classical fixed point algorithm with box abstractions [Tabuada, 2009] and with sparse abstrac-
tions [Kim et al., 2017] and the lazy algorithm from [Hussien and Tabuada, 2018], respectively.

nx T slm Tcl/T
s
lm T scl/T

s
lm T s3v/T

s
lm

(15,15,15) 2.96 s 31.22 15.52 11.18
(31,31,31) 18.16 s 53.35 23.19 14.92
(63,63,63) 118.67 s 85.21 30.85 16.25

Table 5.2: Memory comparison when varying the number of states. Ms
lm, Mcl, Ms

cl and Ms
3v are the required

memory to implement the controller resulting from Algorithm 5.5, the classical fixed point algorithm with box ab-
stractions [Tabuada, 2009], the classical fixed point algorithm with sparse abstractions [Kim et al., 2017] and the
lazy algorithm from [Hussien and Tabuada, 2018], respectively.

nx Ms
lm = Ms

3v Mcl = Ms
cl Mcl/Mlm

(15,15,15) 26.4 KB 499.9 KB 18.93
(31,31,31) 232.7 KB 4729 KB 20.32
(63,63,63) 1953.5 KB 41469.3 KB 21.22

given by user. For each of chosen states, one randomly picks an unexplored input and adds the corresponding

tradition to the abstraction. The algorithm returns only the domain of the maximal safety controller and not the

whole maximal safety controller. Indeed, for every state, only one safe input is returned. Moreover, since the

usage of sparse abstractions speed-up synthesis process we also use them when implementing the approach

from [Hussien and Tabuada, 2018]. The evaluation is based on two criteria, the computation time and the memory

required to implement the maximal safety controller. We explore two different scenarios. In the first case, we vary

the state-space discretization parameter nx while keeping the input discretization parameter as a constant nu = 10.

The results of run time and memory comparison are represented in Table 5.1 and Table 5.2. In the second case, we

set nx = (31, 31, 31) and vary the input discretization parameter nu. The computational results are given in Table 5.3

and Table 5.4.

In Tables 5.1, 5.3, time T slm is a running time of Algorithm 5.5. Time Tcl is a running time of the classical

fixed point algorithm when box abstractions are used [Tabuada, 2009]. Time T scl is a running time of the classical

fixed point algorithm when sparse symbolic models are used [Kim et al., 2017]. Time T s3v is a running time of the

lazy algorithm from [Hussien and Tabuada, 2018] implemented for sparse abstractions. For the parameter N3v the

value round(0.6 ∗ nx(1) ∗ nx(2) ∗ nx(3)) have been chosen. We also store the amount of memory needed for

controllers implementation in variables Ms
lm,Mcl,Mcl and Ms

3v correspondingly. Let us remind that for ISM with

directed specifications the controllers synthesised for sparse abstractions and box abstractions coincide, hence

Mcl = Ms
cl (column 3 in Tables 3,5). However, it is obvious from columns 3 and 4 of Tables 2,4 that sparse

abstractions-based synthesis is much faster, so we repeated the result from [Kim et al., 2017]. Since our controller

and 3-valued abstractions-based controller store just one safe input for every state, their memory requirements

also coincide (column 2 in Tables 3,5). However, we store the maximal safe input for every state. We can easily

reconstruct the maximal safety controller without any computations. In contrast, the three-valued abstractions-based
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Table 5.3: Runtime comparison when varying the number of inputs. T slm, Tcl, T scl and T s3v are the running time of
Algorithm 5.5, the classical fixed point algorithm with box abstractions [Tabuada, 2009] and with sparse abstrac-
tions [Kim et al., 2017] and the lazy algorithm from [Hussien and Tabuada, 2018], respectively.

nu T slm Tcl/T
s
lm T scl/T

s
lm T s3v/T

s
lm

10 18.19 s 54.01 23.42 15.06
20 20.56 s 95.08 41.08 25.96
40 25.26 s 154.03 66.67 43.25

Table 5.4: Memory comparison when varying the number of states. Ms
lm, Mcl, Ms

cl and Ms
3v are the required

memory to implement the controller resulting from Algorithm 5.5, the classical fixed point algorithm with box ab-
stractions [Tabuada, 2009], the classical fixed point algorithm with sparse abstractions [Kim et al., 2017] and the
lazy algorithm from [Hussien and Tabuada, 2018], respectively.

nu Ms
lm = Ms

3v Mcl = Ms
cl Mcl/Mlm

10 232.7 KB 4729 KB 20.32
20 232.7 KB 6200.1 KB 26.64
40 232.7 KB 9141.8 KB 39.29

controller store just a random safe input, and to get the maximal safety controller, one should check for all the other

inputs if they allow to remain in the controllable domain. The latter is not efficient when the set of discrete inputs is

large. The numerical results highlight the practical speedups and memory efficiency that can be attained using the

lazy approach while ensuring completeness with respect to the classical safety algorithm.

Intersection of lower and upper-closed safety specifications

Let us consider another control objective to illustrate the results of Section 5.3.4. We want to synthesise a controller

for the follower vehicle, which takes its values from [Fmin, Fmax], to keep the velocity of the follower below vmax

and guarantees that the relative distance between the leader and the follower remains larger than dmin = 10m and

smaller than dmax = 150m, while assuming that the leader vehicle acts as a disturbance d ∈ [0.65 ∗ Fmin, 0.65 ∗

Fmax] and wmax = 25m/s. In this case, we can use the approach proposed in Proposition 5.3.2 to speed up the

computation by a factor of 3.7 in comparison to the classical approach, or by 5.1 if me combine the the incremental

synthesis approach with ideas from Chapter 2. Time gain is a result of using a sparse abstraction, instead of a more

common box abstraction, to find C̄L and C̄U and then use them as a warm point for the following computations.

Since our abstraction is input-state monotone and we have the total order on set of inputs, it is sufficient for every

state x to store only safe actions usmin(x), usmax(x) with minimal and maximal value, because all inputs in a range

[usmin(x), usmax(x)] are admissible. See the maximal controller in the Figure 5.11.

If we set up the parameter dmax as 200m the assumption of Proposition 5.3.3 is satisfied and C̄LU (x) = C̄L(x)∩

C̄U (x). In this case we can fully used the benefits of the Algorithm 5.5, and we are 45.7 times faster than the classical

approach. All the implementations has been done in MATLAB, Processor Intel Core i7-8700, 3.20 Hg, RAM 16 GB.
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(a) Minimal value (b) Maximal value

Figure 5.11: Simulation results. Maximal safety controller C̄ for an intersection of lower-closed and upper-closed
safety specification.

5.5 Conclusion

In this Chapter, we provide a lazy control synthesis algorithm for monotone transition systems and directed safety

specifications. Two classes of monotone transition systems are presented: state monotone transition systems and

input-state monotone transition systems. For the first class of systems, a partial order is defined only on the state

space. For the second, the input space is ordered as well. The introduced lazy synthesis approach benefits from

the ordered structure of the state (input) space and the fact that directed safety specifications are considered. To

enrich the class of the considered specifications, we also present an incremental controller synthesis framework,

which allows us to deal with intersections of upper and lower-closed safety requirements. We then compare the

proposed approach with the classical safety synthesis algorithm and illustrate the advantages, in terms of run-time

and memory efficiency, on an adaptive cruise control problem.
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Chapter 6

Conclusion and Future Work

A tendency to automate most life processes makes cyber-physical systems (CPS) are irreplaceable in modern

society. However, their design is still challenging, and one of the major issues is how to guarantee that the behav-

ior of CPS satisfies the safety constraints. Indeed, a sound synthesis of safety controllers requires model-based

approaches. At the same time, the heterogeneous nature of models motivates the usage of abstraction-based tech-

niques, which unfortunately suffer from poor scalability. In this manuscript, we improved the efficiency of abstraction-

based approaches by developing algorithms that synthesize the controllers for symbolic models lazily. The proposed

algorithms outperform the classical synthesis procedure [Tabuada, 2009] by avoiding computations, which are non-

essential for synthesis goals.

Chapter 2 introduced three lazy synthesis approaches applicable for a general non-deterministic transition sys-

tem Σ = (Q,U, F ). Algorithm 2.2 avoids exploration of states and transitions which are safely controllable a priory.

It returns the maximal safety controller but requires external knowledge about abstractions, which is not always

available. Algorithm 2.3 assumes that the input set U is equipped with a partial order and then explores the lower-

priority actions only if the problem is unsolvable with higher-priority actions. It returns the maximal input-lazy safety

controller, whose domain coincides with the maximal controllable set, but only inputs with the highest priority are

enabled among several inputs preserving safety. Algorithm 2.4 assumes that the initial set Qinit ⊂ Q is known and

avoids exploration of non-reachable part of abstraction. It returns the maximal state-lazy safety controller, whose

domain includes a safely controllable state if and only if it is reachable fromQinit. Using lazy algorithms, we can syn-

thesize the abstract controller more efficiently than with the classical Algorithm 2.1. Moreover lazy synthesis allows

us to calculate only the part of the abstraction which is involved in the synthesis procedure. Thus, the performance

of symbolic model-based approaches is improved.

In Chapter 3 we used abstraction-based techniques to synthesize a safety controller for a general continuous-

time control system. The main idea was is to create a neighbor-linked abstraction, where only transitions between

neighboring states are allowed. To enforce the desired structure of the symbolic model, we introduced a novel

93



adaptive time-sampling technique. Unlike existing approaches, where transitions duration was determined with a

given parameter, we proposed interrupting every transition before leaving the abstract state neighborhood. We then

use Algorithm 2.2 to synthesize the maximal safety controller lazily by iteratively exploring only those states that

border the uncontrollable domain. We also showed that one could restrict computations to the boundary states,

even when abstraction is not neighbor-linked. Indeed, with a novel control refinement scheme that interrupts the

closed-loop trajectory of the original system when it reaches a boundary state of the controllable domain, we can

guarantee that the closed-loop trajectory of the original system does not overjump the boundary. And since for every

boundary state, we have an abstract input that pushes the system back towards the interior, a safety behavior is

ensured. Though the gain efficiency of the proposed lazy synthesis approach was not overwhelming, the idea to

explore only boundary states still deserves to be part of others lazy synthesis approaches, for example, when we

are dealing with multi-scale abstractions as in Chapter 4.

Chapter 4 showed how to reduce the size of the symbolic models by using abstractions with adaptive grids. The

main idea is to start with a coarse partitioning on the state space and then locally refine it in uncontrollable areas.

We also used multi-scale time-sampling prioritizing transitions with a longer duration. We then benefit from a partial

order on the input set U and the fact that the initial set Qinit ⊂ Q is known to synthesize the maximal lazy safety

controller C∗. The term maximal comes from the fact that all safety controllable initial states are in Dom(C∗), and

if the controller enables an input, it also enables all inputs which have the same priority and preserve safety. The

term lazy refers to the fact that the controller enables only the most prioritized inputs among actions that maintain

safety. Hence, C∗ represents a trade-off between maximal permissiveness and efficiency. Such a controller was

first considered [Girard et al., 2016], but the synthesis procedure was restricted to a deterministic transition system.

We merged Algorithm 2.3 and Algorithm 2.4 to provide a procedure applicable for non-deterministic abstractions

as well. Usage of multi-scale abstractions with an adaptive grid showed a good performance since it allows the

construction of accurate symbolic models with less computational effort. However, manipulation with adaptive grids

requires more complex data structures (graphs, binary decision diagrams etc.) than simple matrices. The latter

motivated us to use C++ instead of Matlab for the implementations.

Chapter 5 was devoted to monotone control systems and specifications given by directed sets. We first consid-

ered two classes of control systems: state monotone or input-state monotone dynamical systems. We then showed

that an abstraction inherits monotonicity only if the state-space partitioning satisfies some restrictions. We distin-

guished lower and upper (input-)state monotone transition systems and lower and upper closed safety specifications

but focused on lower ones due to symmetry of results. A finite lower-closed set can be represented by its basis.

And we proved that to compute the controllable domain, it is enough to explore only basis states. Moreover, it is

sufficient to use inputs with lower priorities for lower input-state monotone transition systems. We then provided two

algorithms for lazily computing the maximal safety controller for lower (input-)state monotone transition systems.

These algorithms benefit from the fact that for a lower state-monotone system, if a state q is controllable with an
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input u, then all states belonging to ↓ q are controllable with an input u. Moreover, for a lower input-state monotone

transition system, if for a state q an input u is safe, then all actions u′ � u are safe. We then enriched the class of

considered specifications by intersections of lower-closed and upper-closed sets. The numerical implementations of

Chapter 5 emphasised the significant improvement in efficiency comparing to the classical algorithms. Certainly, at

first glance, it may seem that the results are too limited by a specific class of systems and specifications, but recent

research showed that such a problem statement do arrive in challenging practical applications [Smith et al., 2022].

6.1 Future Research

What priorities on inputs should be like?

In Chapter 3 we introduced a partial order on input space by prioritising actions with a longer duration. In Chapter 5

the partial order was naturally inherited from the dynamic of the original plant. However, we find inspiring the

ideas to explore the most promising actions [Hart et al., 1968, Rungger and Stursberg, 2012] first or favor least-

violating [Girard and Eqtami, 2021, Tůmová et al., 2012] actions. Moreover, one may be interested in prioritizing the

actions based on requirements of an additional specification. Another interesting trend in symbolic model control is

prioritize actions which reduce non-determinism.

Adaptive time sampling technique as a way to enforce the desired structure

Abstractions computed with pre-fixed time-sampling are hard to be analyzed since in general, they don’t have any

particular structure. The same time the results of Chapters 3 and 5 showed that geometrical patterns are the way to

ease computations. Moreover playing with transition duration one can create lattice graphs [Pivtoraiko et al., 2009],

which were advocated when dealing with systems invariant with respect to geometrical shift, like kinematics models

in robotics applications.

Another issue is that for the moment adaptive time-sampling is restricted to a continuous-time system. However,

it is interesting to investigate the applicability of such a technique when dealing with discrete-time systems: what

the relation between time and space-sampling parameters should be like.

Monotone dynamical systems and beyond...

In Chapter 5 we adopted the results designed for directed safety specifications to their intersection. However, the

incremental synthesis approach of Section 5.3.4 still includes a classical synthesis procedure as the last step. At

the same time there exists a criterion for an interval to be the controlled interval when monotone dynamical systems

are considered [Meyer et al., 2013]. Moreover, the result from [Meyer et al., 2013] allows us to synthesize a safety

controller. We believe that in combination with the ideas of this manuscript, the safety specification can be extended
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towards the union of several intervals. Another drawback of [Meyer et al., 2013] to be overcome, is an assumption

that every control component can affect no more than one state variable.

One of the practical interests to investigate monotone dynamical systems is the fact that their analysis is the first

step towards the analysis of mixed-monotone systems, which are a very general class of systems [Yang et al., 2019].

Non-linear systems are often considered through the prism of hybridization or linearisation in order to benefit from lin-

ear analysis techniques. However, we believe that addressing monotone patterns in dynamic of non-linear systems

through decomposition functions and then benefit from the results for monotone systems is a promising direction of

the research.

One important step towards more general specifications

This thesis was dedicated to safety specifications. The motivation was to develop efficient synthesis algorithms for

non-deterministic abstractions. The interest for a non-deterministic symbolic model is justified by a limited class

of systems [Girard et al., 2016] and specifications [Kim et al., 2017] for which a deterministic abstraction can be

constructed. However, when addressing other control problems, such as, for example, a reach-avoid specifica-

tion, the non-determinism in the abstraction may ruin everything, making the synthesis unsuccessful even when

the controller exists for the original plant. Indeed, if the reachable sets are growing with time, the error propa-

gates too fast (see Figure 6.1 (left)). Hence, it is hardly possible that we can target a small final set. Even in

some particular cases, the wrapping effect can be compensated by fine discretisation [Hsu et al., 2019] this re-

sults in very intensive computations. The demand to enforce determinism raised a wave of research in coupling

abstraction-based methods with local feedback controllers ensuring local stability properties of the closed-loop sys-

tems [Tabuada, 2008, Sinyakov and Girard, 2020b]. And this is a problem to pay attention for.

q q

Figure 6.1: Left figures illustrates construction of a non-deterministic abstraction. Right figures illustrates a deter-
ministic one.
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Appendix A

Reachability Analysis for Mixed-monotone

Dynamic Systems

The results of this Appendix were originally presented in [Yang et al., 2019] and provided here to ease the reading

of the main part of the manuscript.

Consider a nonlinear system of the following type:

ẋ(t) = f(t, x(t), u(t), w(t)), t ∈ [0, T ] (A.1)

Here x ∈ Rnx is a state, u ∈ U = [u, u] ⊂ Rnu is a control, w ∈ W = [w,w] is a disturbance. The set of admissible

open-loop controls is U(t, τ) = L([t, τ ], U). The set of admissible realization of disturbance isW(t, τ) = L([t, τ ],W ).

The notation L([t, τ ], S) is used for the space of all measurable on [t, τ ] functions s, such that s(p) ∈ S, p ∈ [t, τ ]

almost everywhere.

Let xf (t | x(0), û, ŵ) denote a trajectory of the system (1.1) satisfying the initial condition x(0) = x and corre-

sponding to a given control û and a disturbance ŵ. Finally, let Reach(t |, X0, û) denote the robust reachable set,

corresponding to a given control û, i.e.

Reach(t |, X0, û) = {x ∈ Rnx | ∃x0 ∈ X0,∃w ∈ W(0, t), such that xf (t | x0, û,w) = x}.

Computation of the exact reachable set for nonlinear dynamic systems is an intractable problem in the general case,

and, in practice, their over-approximations are sought after.

Definition A.0.1. Function g : T × R2nx × U2 × W 2 → Rnx is called a decomposition function for a function

f : T × Rnx × U ×W → Rnx if
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• g(t, [x;x], [u;u], [w;w]) = f(t, x, u, w);

• gi(t, [x; y], [u1;u2], [w1;w2]) is non-decreasing in xj , non-increasing in yj when i 6= j.

• gi(t, [x; y], [u1;u2], [w1;w2])) is non-decreasing in u1 and w1, non-increasing in u2 and w2.

We call f a mixed monotone function and system (1.1) a mixed monotone system if there exits such decompo-

sition function g.

Definition A.0.2. Let f be a mixed monotone function and g be a decomposition of f . Decomposition function g is

called tight if for all i ∈ {1, . . . , nx}, for all t ∈ [0, T ], for all x1, x2 ∈ Rnx , for all u1, u2 ∈ U , and all w1, w2 ∈ W such

that x1 ≤ x2, u1 ≤ u2, w1 ≤ w2, it follows that

gi(t, [x
2;x1], [u1;u2], [w2;w1]) = max

x∈[x1,x2]
min

u∈[u1;u2]
max

w∈[w1,w2]
fi(t, x, u, w)

gi(t, [x
1;x2], [u2;u1], [w1;w2]) = min

x∈[x1,x2]
max

u∈[u1;u2]
min

w∈[w1,w2]
fi(t, x, u, w)

Let us also introduce a set of notation: θ = [u, u], θ = [u, u], ω = [w,w], ω = [w,w]. And define function ζi that

map R2nx into itself:

(ζi(x, y))j =


xj , j < nx

yj , j > nx, j 6= nx + i

xi, j = nx + i

Supposing that the initial set X0 = [x0, x0] is an interval, consider a system of equations (i = 1, . . . , nx)

ẋi = gi(t, ζi(x, x), [û, û], ω), xi(0) = x0
i

ẋi = gi(t, ζi(x, x), [û, û], ω), xi(0) = x0
i

(A.2)

Denoting the components of its solution as x(t; [x0, x0], û) and x(t; [x0, x0], û), we have that

Reach(t |, X0, û) = [x(t; [x0, x0], û),x(t; [x0, x0], û)] (A.3)

is an over-approximation of the forward reachable set Reach(t |, X0, û).
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Titre: Synthèse efficace des contrôleurs de sécurité à l’aide de modèles symboliques et d’algorithmes

paresseux

Mots clés: Synthèse de contrôleur, Modèles symboliques, Méthodes formelles

Résumé: Cette thèse porte sur le développement

d’approches efficaces de synthèse de contrôleurs basées

sur l’abstraction pour les systèmes cyber-physiques

(CPS). Alors que les méthodes basées sur l’abstraction

pour la conception de CPS ont fait l’objet de recherches

intensives au cours des dernières décennies, l’évolutivité

de ces techniques reste un problème. Cette thèse se con-

centre sur le développement d’algorithmes de synthèse

paresseuse pour les spécifications de sécurité. Les spé-

cifications de sécurité consistent à maintenir la trajec-

toire du système à l’intérieur d’un ensemble sûr donné.

Cette spécification est de la plus haute importance dans

de nombreux problèmes d’ingénierie, souvent prioritaires

par rapport à d’autres exigences de performance. Les ap-

proches paresseuses surpassent l’algorithme de synthèse

classique [Tabuada, 2009] en évitant les calculs, qui ne

sont pas essentiels pour les objectifs de synthèse. Le

chapitre 1 motive la thèse et présente l’état de l’art.

Le chapitre 2 structure les approches de synthèse pa-

resseuses existantes et met l’accent sur trois sources

d’efficacité : les informations sur les états contrôlables

a priori, les priorités sur les entrées et les états non ac-

cessibles à partir de l’ensemble initial. Le chapitre 3 pro-

pose un algorithme, qui explore itérativement les états

à la frontière du domaine contrôlable tout en évitant

l’exploration des états internes, en supposant qu’ils sont

contrôlables en toute sécurité a priori. Un contrôleur

de sécurité en boucle fermée pour le problème d’origine

est alors défini comme suit : nous utilisons le contrôleur

abstrait pour repousser le système d’un état limite vers

l’intérieur, tandis que pour les états internes, toute en-

trée admissible est valide. Le chapitre 4 présente un

algorithme qui restreint les calculs de synthèse du con-

trôleur aux seuls états atteignables tout en privilégiant

les transitions de plus longue durée. Le système original

est abstrait par un modèle symbolique avec une grille

adaptative. De plus, un nouveau type d’échantillonnage

temporel est également envisagé. Au lieu d’utiliser des

transitions de durée prédéterminée, la durée des transi-

tions est contrainte par des intervalles d’état qui doivent

contenir l’ensemble accessible. Le chapitre 5 est con-

sacré aux systèmes de transition monotones. L’approche

de synthèse paresseuse introduite bénéficie d’une pro-

priété monotone des systèmes de transition et de la struc-

ture ordonnée de l’espace d’état (d’entrée), et du fait

que des spécifications de sécurité dirigées sont prises en

compte. La classe de spécifications considérée s’enrichit

alors d’intersections d’exigences de sécurité supérieures

et inférieures fermées. Le chapitre 6 conclut la discus-

sion et soulève de nouvelles questions pour les recherches

futures.



Title: Efficient Synthesis of Safety Controllers using Symbolic Models and Lazy Algorithms

Keywords: Controller synthesis, Formal methods, Symbolic models

Abstract: This thesis focuses on the development

of efficient abstraction-based controller synthesis ap-

proaches for cyber-physical systems (CPS). While

abstraction-based methods for CPS design have been the

subject of intensive research over the last decades, the

scalability of these techniques remains an issue. This

thesis focus on developing lazy synthesis algorithms for

safety specifications. Safety specifications consist in

maintaining the trajectory of the system inside a given

safe set. This specification is of the utmost impor-

tance in many engineering problems, often prioritized

over other performance requirements. Lazy approaches

outperform the classical synthesis algorithm [Tabuada,

2009] by avoiding computations, which are non-essential

for synthesis goals. Chapter 1 motivates the thesis and

discusses the state of the art. Chapter 2 structures the

existing lazy synthesis approaches and emphasizes three

sources of efficiency: information about a priori con-

trollable states, priorities on inputs, and non-reachable

from initial set states. Chapter 3 proposes an algorithm,

which iteratively explores states on the boundary of con-

trollable domain while avoiding exploration of internal

states, supposing that they are safely controllable a pri-

ory. A closed-loop safety controller for the original prob-

lem is then defined as follows: we use the abstract con-

troller to push the system from a boundary state back to-

wards the interior, while for inner states, any admissible

input is valid. Chapter 4 presents an algorithm that re-

stricts the controller synthesis computations to reachable

states only while prioritizing longer-duration transitions.

The original system is abstracted by a symbolic model

with an adaptive grid. Moreover, a novel type of time

sampling is also considered. Instead of using transitions

of predetermined duration, the duration of the transi-

tions is constrained by state intervals that must contain

the reachable set. Chapter 5 is dedicated to monotone

transition systems. The introduced lazy synthesis ap-

proach benefits from a monotone property of transition

systems and the ordered structure of the state (input)

space, and the fact that directed safety specifications

are considered. The considered class of specifications is

then enriched by intersections of upper and lower-closed

safety requirements. Chapter 6 concludes the discussion

and raises new issues for future research.
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