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Clémence Magnien, DR, CNRS
Giovanni Neglia, CR, INRIA
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Résumé

L’émergence rapide des réseaux sociaux lors des deux dernières décennies, leur im-
pact majeur sur la société actuelle, ainsi que l’accès récent à de grandes quantités de
données les concernant, a amené un fort attrait pour l’étude des réseaux complexes.
De nombreux modèles de graphes aléatoires ont été proposé afin de reproduire ces
réseaux et leurs propriétés - faible diamètre, distribution des degrés en loi de puis-
sance, présence de communautés, ... Cependant, du fait de la complexité de l’étude
théorique de leurs propriétés, les modèles proposés sont souvent conçus pour des
graphes non orientés et se concentrent sur l’émergence d’une ou deux propriétés à
la fois.

Cette thèse a pour but de développer des modèles de graphes aléatoires suffisam-
ment généraux pour reproduire de nombreuses propriétés complexes observées dans
les réseaux du monde réel. En particulier, nous présentons des modèles permettant
de construire des graphes avec des distributions de degrés quelconques, des graphes
dirigés avec un haut coefficient de clustering, et des hypergraphes avec distribution
de degrés en loi de puissance et une forte présence de communautés. Nous étudions
analytiquement et expérimentalement les propriétés des modèles présentées. Nous
développons enfin un outil utilisant les châınes de Markov pour calculer la distribu-
tion des degrés de modèles d’attachement préférentiel.

Afin de s’aider dans la construction de ces modèles, nous étudions dans cette
thèse deux réseaux complexes de grande taille : un graphe dirigé de l’ensemble
des liens d’abonnements sur le réseau social Twitter, avec 505 millions de comptes
et 23 milliards d’abonnements ; et un hypergraphe de co-publications scientifiques
extraites de la base de données Scopus, contenant 2.2 millions d’auteurs distincts
et 3.9 millions de publications. Des propriétés atypiques émergent de l’étude de ces
deux graphes, provenant en particulier de leur caractère dirigé et d’hypergraphe, et
qu’aucun modèle de la littérature ne permettait jusqu’alors de reproduire.

Mots clés : Systèmes complexes, Réseaux sociaux, Twitter, Modélisation, Graphes
dirigés, Hypergraphes.
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Abstract

The rapid emergence of social networks, their major impact on today’s society, and
the recent access to large amounts of data about them has led to a strong interest
in the study of complex networks in last decades. Many random graph models have
been proposed to reproduce these networks and their properties - small diameter,
power-law degree distribution, presence of communities, ... However, due to the
complexity of their theoretical study, the proposed models are often designed for
undirected graphs and focus on the emergence of one or two properties at a time.
This thesis aims at developing models of random graphs that are general enough
to reproduce many complex properties observed in real-world networks. In particu-
lar, we present models for constructing graphs with arbitrary degree distributions,
directed graphs with a high clustering coefficient, and hypergraphs with power-law
degree distributions and a strong presence of communities. We study analytically
and experimentally the properties of the presented models. We develop a tool us-
ing Markov chains to compute the degree distribution of preferential attachment
models. In order to help in the construction of these models, we study in this the-
sis two large complex networks: a directed network with all followings on Twitter,
with 505 million accounts and 23 billion followings; and a hypergraph of scientific
co-publications extracted from the Scopus database, containing 2.2 million authors
and 3.9 million publications. Atypical properties emerge from the study of these two
graphs, coming in particular from their directed and hypergraph character, that no
model of the literature could reproduce until now.

Keywords : Complex Networks, Social Networks, Twitter, Modeling, Directed
graphs, Hypergraphs.
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Chapter 1

Introduction

1.1 Networks and graphs

A network is defined as a group or system of interconnected people or things. This
broad definition encompasses a lot of real-world phenomena: a network may as well
represent Internet traffic, DNA interactions, food chains, financial transactions in
banks, social interactions between people, Youtube recommendations, etc. To rep-
resent this set of entities and their interactions, a mathematical tool is often used:
graphs. A graph is defined as a pair G = (V,E), where V is a set of elements
called vertices and E is a set of pairs of vertices called edges. The equivalence
between real-world networks and the mathematical tool is immediate: the vertices
correspond to the entities, while the edges correspond to the interactions between
entities. For instance for financial transactions, vertices could be banks and edges
money transfers between them.
While studying for several decades those different networks through graphs, a sur-
prising phenomenon has emerged: a lot of them have common properties, despite
their multidisciplinary domains. Those networks with non-trivial topological fea-
tures are called complex networks. In opposition to lattices or fully random graphs,
real-world networks exhibit some common features and are thus considered as com-
plex networks. The most commonly observed properties are:

• Small diameter: Any two nodes of the network can be reached following at
most O(log(N)) links, with N the size of the network. Since the experiment
of Milgram in 1967 [29], in which he studied this property in the real-world
social network by sending letters by mail (Alice knows someone who knows
someone who... who knows Bob), this property has been exhibited in a lot
of studied real-world networks from biology [2], the web [3], and many oth-
ers [46]. Actually, this property can be explained as being a consequence of
the randomness of the studied networks. Indeed, a small diameter is found
in random graphs built from the simplest random models, as the Ernós-Reyni
model [21] in which each couple of nodes has a probability p to be connected
by an edge. While lattices exhibits large diameter, randomness is sufficient to
explain the small diameter property.

• Degree distribution following a power-law: When looking at the num-
ber of occurrences of the degrees of the nodes (where the degree of a node
is defined as its number of connections), these degree distributions are often

11
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found to be heterogeneous in real-world networks. More specifically, it is often
considered as following a power-law distribution P (i) ∝ i−α, with exponent α
often observed between 2 and 3 - see for instance [31] and its references. This
means that we observe nodes with really high degrees in comparison to others;
for instance, people with really high incomes in economics, celebrities with a
lot of followers on social media, ... This phenomena has various consequences:
for instance on diffusion, an information shared by a celebrity will have a lot
of visibility, whether this information is advertisement, fake news, prevention
message, ... Also in security: for instance, if an infrastructure concentrates a
lot of internet traffic, its malfunctioning could severely impact the traffic. An
explanation for the emergence of this property is the ”rich-get-richer” phenom-
ena: the higher the degree of an entity is (e.g., the more famous is a celebrity
or a video), the more connections it will receive (e.g. because people will talk
about it, or recommendation systems will suggest it).

• High clustering: Real-world networks tend to form clusters, i.e., sets of
entities that interact more strongly with each other than with the rest of the
entities. In a graph, this amounts to a group of nodes that are highly connected
to each other and weakly connected to the rest of the network. This property
has been studied using two approaches:

– The clustering coefficient [6, 47], which is the probability for two nodes
linked by a path of length 2 to be connected. A social equivalent formu-
lation is “what is the probability that a friend of my friend is also my
friend?”. In real-world social networks, this is observed to be way higher
than what random graphs would give.

– The community detection, which looks for an efficient way to separate
nodes into communities. One of the mainly used metric is the modular-
ity [32], which looks for an efficient partitioning of nodes into distinct
communities by comparing the actual presence of a link between two
nodes with the probability that this link is present in a random graph
with the same degree distribution. Here again, modularity is observed as
way higher in real-world complex networks than in random graphs.

The presence of communities in real-world social networks is intuitive. How-
ever, finding the communities a posteriori with only an observation of the
graph is a complicated problem. This is still a highly studied field of research
due to its numerous applications: classification of nodes, link recommenda-
tions [15, 39] (e.g. in order to recommend the most suitable videos, musics or
friends) or link prediction [23] (e.g. in order to estimate the future infected
people by a contagious disease), etc.

These properties are intrinsic parts of real-world networks. It is therefore important
to know how to properly characterize, model, and analyze those properties. In
this thesis, I will focus on the two last presented properties: the power-law degree
distribution and the high clustering. I will observe them in real-world networks and
develop new models in order to build random graphs that have those properties.

12 Thibaud Trolliet



Chapter 1. Introduction

1.2 Social networks

As described earlier, complex networks are present in many fields. In this thesis I
focus on a particular type of networks: social networks. The general definition is a
network of social interactions and personal relationships. This is a broad definition,
which encompasses for instance Youtube followers’ network, scientific collaboration
network, and so on. But last decades has seen the emergence of a particular type
of social networks: the online social networks (OSNs). Those can be defined as
a dedicated website or application which enables users to communicate with each
other by posting information, comments, messages, images, etc. Facebook, Twitter,
Instagram, ... are some known examples of OSNs.

While most of them have only appeared fewer than twenty years ago, they
managed to take an important place in Today’s society. For instance, Facebook
counts 2.7 billion monthly active users in October 2020, and 1.8 billion daily active
users [36]; Twitter counts 330 million monthly active users and 145 million daily
active users [40]. In 2019, Internet users spent on average 2 hours and 25 minutes
daily on OSNs [41]. They also have a huge impact on information: for instance,
around one third of the UK and France population uses OSNs as a source of infor-
mation [10, 33].

This new media has therefore managed to establish itself as an important part
of society in just a few years. This leads to two important consequences: on one
hand, the study of those OSNs is really interesting to enlighten social phenomena:
it is the first time in history that we have access to such huge amount of social data,
enabling precise statistics on social interactions. From the study of those OSNs can
for instance emerges discovery on structural shapes of social interactions, or the way
information spreads in a social network, ... On the other hand, the really fast growth
of those OSNs makes it difficult to control the apparition of unwanted phenomena
and regulate them, leading to some drawbacks we only begin to apprehend. We can
mention for example:

• the presence of fake news: 86% of online global citizens believe they’ve been
exposed to them, and 86% of those 86% admit they have believed them at least
once [24]. They are suspected to have played major role in recent political
events, such as Brexit or the 2016 US presidential elections [11, 38].

• the strong presence of bots: non humans accounts on social media whose
purpose is often to influence opinion, either political or for marketing [7, 8].

• the apparition of a polarization: targeted recommendations are useful in order
to get information we like, but have the drawback to hide the ones we are not
interested to. This leads to a one-sided presentation of facts, consequence of
what is called the filter bubble [34]. This leads to a polarization of opinions,
in particular in the context of politics [27, 44].

OSNs have thus acquired a strong influence, both with advantages and draw-
backs. It is therefore as interesting as essential to study them. However, practicing
real experiments on OSNs may be problematic, firstly for technical reasons (they are
often very large and with limited public API to access their information), secondly
for ethical reasons (for instance experiments on the propagation of fake news can
hardly involve real human-being who will believe those informations). Therefore, it

Thibaud Trolliet 13



Study of the properties and modeling of complex social networks

is important to have realistic models of OSNs, which allow experiments to be con-
ducted on simulated networks whose properties are close to those of the real-world
networks.

In this PhD, I had the opportunity to study two very large datasets with un-
common properties. The study of those complex networks enlighten new interesting
properties and gave useful information in order to develop models building random
graphs close to real-world complex networks. The two datasets are:

• A Twitter followers’ network. Gabielkov and Legout [19] crawled in 2012
all the accounts of Twitter and the different followers they have. Each account
is then considered as a node, and an edge is put between nodes u and v if
the account associated to u follows the one associated to v. This leads to
a directed graph of around 505 million nodes and 23 billion edges, making
it one of the biggest directed network available nowadays. I studied the in-,
out-, and bidirectionnal-degree distributions, the correlations between those
in-, out-, and bidirectionnal-degrees, as well as the values of the clustering
coefficients using different definitions - see Chapters 3 and 6.

• A scientific collaboration network. This study was conducted in partner-
ship with economists from the laboratory of GREDEG and of the SKEMA
Buisness School, with the main purpose of studying the impact of research
fundings on productivity and pluridisciplinarity. They crawled data from Sco-
pus, a database of published papers in various domains, in order to get all
metadata of those papers from 1990 to 2018. From those data, I built a hy-
pergraph of co-publications, where each node is an author and each hyperedge
is a paper between authors. This leads to a hypergraph with around 2.2 mil-
lion nodes and 3.9 million hyperedges. My main study of this network had
been on its communities: I extracted a partition of communities and stud-
ied different properties of those communities such as their sizes, repartitions,
degree distributions, ... Most of those results are gathered in Section 5.5. I
propose a new hypergraph model with communities in order to reproduce the
observed properties, see Chapter 5.

Note that both those datasets have some interesting specificities, in particular,
namely being directed and being a hypergaph. A directed graph is a graph in which
edges have directions, i.e., an edge is going from a node to another. A hypergraph
is a generalisation of undirected graphs. It is defined as H = (V,E) where V is a
set of vertices and E a set of hyperedges, where a hyperedge is a set of vertices. A
graph thus is a hypergraph in which any hyperedge is of size 2.

While undirected networks have received a lot of attention and had been deeply
studied, there is still a lot to do for directed networks. For instance, most of the
introduced metrics in order to quantify the properties discussed in Section 1.1 are
suited for undirected network, such as the initial clustering coefficient definition.
However, a lot of real-world networks are actually directed: Twitter, Instagram, the
World Wide Web, the food chain network, ...

Likewise, many real-world networks would be better represented using hyper-
graphs (co-publications, chemical reactions, communication via videoconferencing
tools, ...). However, studies of real-world hypergraphs are usually done by trans-
forming the hypergraph into a graph, resulting in a loss of information during the

14 Thibaud Trolliet



Chapter 1. Introduction

process. Indeed, a hyper-edge allows to represent the simultaneous interaction be-
tween a group of individuals, when an edge only represents the interaction between
two given individuals. Let’s take the example of co-publications. To represent a co-
publication between several authors, a usual technique is to build a clique between
the different authors. This transformation leads to a loss of information when these
edges are “mixed” with those of other co-publications: it becomes impossible to
distinguish the groups of original authors. By representing them with hyper-edges,
it allows to keep the information associated with each publication.

In order to correctly model real-world networks, it is important to develop models
suitable for directed and hypergraph networks, in particular with the properties
discussed previously: a small diameter, a power-law degree distribution, and the
presence of communities.

1.3 Models of random graphs

With the will to understand the real-world interactions, plenty of models of those
networks have been proposed. A model is defined as a simple description of a
system or process that can be used in calculations or predictions of what might
happen. In other words, it is a simplified representation of the world through a few
mathematical rules, supposed to approximate the real-world laws. Those rules are
chosen such that the output of the model, a simulated network, looks as much as
possible as the real-world network we want to model. The fewer rules one chooses,
the simpler the model is, but also the further away it is from reality. Conversely,
the more complex the model, the closer the simulated networks is to reality, but the
more complicated the model is to analyze and interpret. A balance has to be found
between simplicity and realism.

A current branch of network modeling research uses graphs. In this thesis, I
focus on probabilistic models of random growing graphs (also called random
growth models). In other words, we focus on models based on probabilistic rules to
build random graphs whose sizes evolve over time. A lot of such models have been
proposed in the literature - see Chapter 2 for a quick survey. Most of them rely on
only few rules in order to stay analyzable. However, many real-world networks with
various properties do not fit in the models currently proposed:

• First of all, as discussed in Section 1.2, a lot of complex networks are not
correctly represented by an undirected graph. It is the case for networks
with interactions involving more than two entities, for which hypergraphs are
well-suited. Few models have focused on the creation of hypergraphs; the Avin
et al. [4] model is one of them.

• Most of the existing models do not recover communities. As discussed in
Section 1.1, many real-world networks have clusters, and those clusters impact
the dynamic of the network, such as diffusion [17, 12]. A few models have been
proposed in order to build graphs with communities [45, 25]; probably the best
known is the Stochastic Block Model [22] (SBM). This model sets the number
of desired communities r, then assigns each node to a random community;
finally, each pair of nodes receives an edge with a probability dependent on
a probability matrix P containing the probabilities of finding a link between

Thibaud Trolliet 15
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(a) Degree distribu-
tion of the number
of unique callers and
callees from a mobile
phone operator. [37]

(b) In-degree distri-
bution between shop-
to-shop recommenda-
tions from an online
marketplace. [42]

(c) Graphlet degree
distribution from a
biological model. [35]

(d) Degree distribu-
tion of users of Cy-
world, the largest on-
line social network of
South Korea. [1]

(e) Degree distri-
butions of users of
Flickr, an online
social network. [14]

(f) Degree distribu-
tion of the length of
the contact list in
Microsoft Messenger
network. [28]

(g) Degree distribu-
tion of the number
of friends from Face-
Book, a social net-
work. [20]

(h) Out-degree distri-
bution of the number
of followees on Twit-
ter. [43]

Figure 1.1: Degree distributions extracted from different seminal papers studying
networks from various domains.

two given communities. However, this model has the disadvantage of being
non-dynamic, and of creating a homogeneous degree distribution. More re-
cently, the geometric preferential attachment model [18] has been shown to
build graphs with both a power-law degree distribution and the presence of
communities [48].

• Finally, while most models have focus on building graphs with degree distri-
bution in power-law, a lot of real-world networks exhibit degree distributions
which are not following a power-law. In [13], Broido and Clauset study the de-
gree distribution of nearly 1000 networks from various domains, and conclude
that “fewer than 36 networks (4%) exhibit the strongest level of evidence for
scale-free structure“. As a complement, Figure 1.1 presents degree distribu-
tions from seminal papers in various fields of the literature that clearly do not
follow power-law degree distributions, to show their diversity. Models able to
build such atypic distributions remained to be done.

In this thesis, I present generalized models, able to deal with those com-
plex properties, and encompassing classic models from literature such as the
Barabási-Albert model [5], the Chung-Lu model [16], the Bollobás et al. model [9],
the Avin et al. model [4], and others. More precisely, I introduce and analyse the
following models:

• A model for directed graphs with a high value of clustering coefficient of in-
terests (icc, introduced in Chapter 3);

• A model able to build graphs with almost any wanted degree distribution;
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• A generalized preferential attachment model for hypergraphs encompassing
some classic models from literature;

• A model able to build hypergraphs with power-law degree distributions and
the presence of communities;

• A model with mixed directed and bidirectional edges in order to recover some
Twitter properties.

For any of those models, I show rigorously the shape of the degree distribution
(power-law in all cases but the model for general degree distributions). In particular,
the proof for the generalized preferential attachment model for hypergraphs gathers
under a same proof the power-law degree distribution property for a whole range of
classic preferential attachment models from the literature. I also develop a new
framework to study rigorously the k-dimensional degree distribution(s) of
some complex models, from classical ones to more complicated ones introduced
in this thesis.

1.4 Contributions of the thesis

In summary, the contributions of this thesis are the following:

• I conduct experiments on a number of online social networks, in particular:

– A Twitter followers’ network from 2012, with 505 million nodes and 23
billion edges. The directed aspect of this network brings interesting prop-
erties, such as a high presence of bidirectional edges, and a high corre-
lation between out- and bi-directional edges but low correlation between
in/out and in/bi-directional edges.

– A co-publication network from data extracted from Scopus between 1990
and 2018, transformed into a hypergraph with around 2.2 million nodes
and 3.9 million hyperedges. I study in particular the presence of commu-
nities and their specificities.

• I propose a new clustering coefficient for directed graphs with information
links, namely the clustering coefficient of interest, in order to capture the
information part present in some OSNs. I explore it - as well as the other
clustering coefficients from the previous literature - in the Twitter graph, since
Twitter is known to be both a social and information media [26, 30].

• I develop a new tool to compute rigorously the degree distribution(s) of com-
plex models, in particular those with more than one degree such as directed
networks. I apply it on classical models in order to retrieve known results
as well as to find unknown ones (for instance the bivariate distribution of the
Bollobás et al. model). I also apply it on a new 3-dimensional Twitter’s model
with both directed and bidirectionnal edges.

• I introduce several new models to represent the studied networks, in particular:

– A directed model recovering some properties of the Twitter’s network
(Chapter 6);
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– A directed model with a high value of interest clustering coefficient (Chap-
ter 3);

– A model able to build graphs with (almost) any wanted given degree
distribution (Chapter 4);

– A model for hypergraphs with power-law degree distributions and com-
munities (Chapter 5).

For each of those models, I compute rigorously the degree distributions.

The manuscript is organized as follow. In Chapter 2, I do a survey of the clas-
sical random models for graphs of the literature, and present the classical method
used to compute the degree distribution of some of those models. Chapters 3 to 6
contain the new contributions of this thesis. In Chapter 3, I introduce the new clus-
tering coefficient for directed interest networks, and study it on the Twitter graph.
In Chapter 4, I present the new model capable to build graphs with any wanted
degree distribution. In Chapter 5, I present the new model for hypergraph with
communities, study its properties and compare it to the copublications hypergraph
extracted from the Scopus data. Finally in Chapter 6, I present the new framework
to analyse the degree distribution of complex models. I conclude in Chapter 7.

1.5 List of Publications

International conferences:

• Interest Clustering Coefficient: a New Metric for Directed Networks like Twit-
ter - T.Trolliet, N.Cohen, F.Giroire, L.Hogie, S.Pérennes (Complex Networks
2020, https://hal.archives-ouvertes.fr/hal-03052083)

• A Preferential Attachment Model for any Real or Theoretical Degree Distri-
bution - F.Giroire, S.Pérennes, T.Trolliet (Complex Networks 2020, https:
//hal.archives-ouvertes.fr/hal-03052144)

National conferences:

• Coefficient de Clustering d’intérêt: une nouvelle métrique pour les graphes
dirigés comme Twitter - T Trolliet, N Cohen, F Giroire, L Hogie, S Pérennes
(Algotel 2020, https://hal.archives-ouvertes.fr/hal-02872779)

• Revisiter l’Attachement Préférentiel, et ses applications aux Réseaux Soci-
aux - G.Ducoffe, F.Giroire, S.Pérennes, T.Trolliet (Algotel 2020, https://
hal.archives-ouvertes.fr/hal-02872772)

Submitted:

• Preferential Attachment Hypergraph with High Modularity - Frédéric Giroire,
Nicolas Nisse, Thibaud Trolliet, Malgorzata Sulkowska (Submitted to WG2021,
https://hal.archives-ouvertes.fr/hal-03154836v1)

• Revisiting Preferential Attachment - Guillaume Ducoffe, Frédéric Giroire,
Stéphane Pérennes, Thibaud Trolliet
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• Interest Clustering Coefficient: a New Metric for Directed Networks like Twit-
ter - T.Trolliet, N.Cohen, F.Giroire, L.Hogie, S.Pérennes (Submitted to Jour-
nal of Complex Networks, https://arxiv.org/abs/2008.00517)

• A Preferential Attachment Model for any Real or Theoretical Degree Distribu-
tion - F.Giroire, S.Pérennes, T.Trolliet (Submitted to Theoretical Computer
Science)

• A Preferential Attachment Model for any Real or Theoretical Degree Distri-
bution - F.Giroire, S.Pérennes, T.Trolliet (Submitted to Algotel 2021)

• Modèle d’attachement préférentiel pour hypergraphes avec communautés -
Frédéric Giroire, Nicolas Nisse, Thibaud Trolliet, Malgorzata Sulkowska (Sub-
mitted to Algotel 2021)
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Chapter 2

Preliminaries

I first present a quick survey of models from the literature which will be useful
in next Chapters. Table 2.1 in Subsection 2.1.4 summarizes the properties of the
presented models. I also present in Section 2.2 a classic way to compute the degree
distribution of those models, using a recurrence relation on the degrees. Note that
this Chapter is not intended to be an exhaustive state of the art on current models in
the literature, but only to introduce some models that will help in the understanding
of this thesis.

In this Chapter, a graph is defined as G = (V,E) with V the set of vertices and
E the set of edges. We denote by n its number of nodes, m its mean-degree, and d
its diameter.

2.1 Presentation of some classic models from the

literature

2.1.1 Non-growing models

Historically, the first models of random graphs introduced in the literature were
non-growing models. Those models consider n existing nodes, and connect each
pair of nodes following rules provided by the model. Unlike random growth models,
there is no time evolution during the graph construction. All nodes are considered
as already existing and can connect with each others.

Erdős-Réyni model

Perhaps the most famous random graphs model is the one introduced by Erdős and
Réyni [14] in 1960. The Erdős-Réyni model (also often called Gn,p model) is simple:
a graph G = (V,E) is built, with |V | = n and such that each pair of nodes has a
probability p to have an edge between them. Thus, E[|E|] = p

(
n
2

)
, and the mean-

degree is m = pn. This model can be extended to directed graphs simply by putting
a direction to edges.

In this model, a single giant connected component exists if and only if p > 1/n;
if p < 1/n, then all connected components of the graph have size O(log(n)) [14].
Usually, p is chosen inversely proportional to n, so that the mean degree of the graph
m = pn stays independant of n. It is also known that graphs built with the Gn,p

model have small diameters, in d = Θ(log(n)) when m > 1 [7, 2].
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Another interesting property models might want to verify is the presence of a
high clustering coefficient. We remind that the global clustering coefficient (also
called transitivity) is defined as ([5]):

CC = 3× number of triangles in the graph

number of paths of length 2 in the graph
.

A local definition of the clustering coefficient also exists [26], see Section 3.2 for more
details. In the Erdős-Réyni model, it is easy to show that the clustering coefficient
is equal to p, thus inversely proportional to n and very low compared to real-world
networks - often observed with a clustering coefficient higher than 0.1.

Another problem is that, since every node has a constant probability p to con-
nect with every other node, the degree distribution follows a binomial law. This
homogeneous law is far from the heterogeneous degree distributions often observed
in real-world networks.

Configuration model

To overcome this, the configuration model [6, 21] proposes to put an edge between
two nodes not with an uniform probability but with a probability depending of their
degrees chosen beforehand. In this model, each node u receives deg(u) half-edges,
where deg(u) is given in the model input - it corresponds to the degree distribution
of the graph. Then all half-edges are matched uniformly at random. Here the
degree sequence is imposed as a parameter, thereby ensuring the wanted degree
distribution. As for the Erdős-Réyni model, built graphs exhibit small diameters,
in d = Θ(log(n)) for power-law degree distributions [12].

The clustering coefficient in the configuration model has been studied by Newman
and Park in [23]. For graphs with power-law degree distributions with exponent α,

they find a dependence in CC ∼ n
7−3α
α−1 . The clustering coefficient thus goes to

zero as n goes to the infinity when α > 7
3
. However, surprisingly the value of the

clustering coefficient diverges for power-law degree distributions with exponents less
than 7

3
≈ 2.33 - while it is supposed to be a probability! This surprising result is

due to the strong presence of loops and multiedges in the built graphs. In 2019, van
der Hofstad et al. [25] computed the clustering coefficient in the erased configuration
model, i.e. the configuration model with removal of loops and multiedges ∗. They
find a dependence of CC ∼ n−(3α+9)/2−2/(α−1). The clustering coefficient in this
model always stays between 0 and 1, and goes to zero when n goes to infinity.

Watts-Stogatz model

In order to have a high clustering coefficient, Watts and Strogatz proposed in
1998 [26] a tool model ables to build graphs with both a high clustering coeffi-
cient as and a small diameter. The model starts by constructing a regular ring
lattice with n nodes each connected to its K closest neighbors. Then, every half-
edge is rewired with a probability β to another node chosen uniformly randomly.
The choice of β changes the properties of the created graph: β = 0 leaves the regular

∗I also computed this clustering coefficient at the same time as van der Hofstad et al. and
arrived at the same dependence - by the time I finish writing the rigorous computation, they had
published their results.
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lattice untouched, leading to a high clustering coefficient but also a high diameter
(of the order of n), while β = 1 gives a random graph in which the diameter is of
the order of log(n) but the clustering coefficient is low. Choosing β between those
extremes enables to build graphs with a small diameter and a high clustering coeffi-
cient. However, here again, while two of the main properties are satisfied, the third
one is missing: indeed, each node has a degree K, thus, the degree distribution just
is a Dirac function centered on K.

Stochastic Block Model

From now on, we have only considered the degree distribution, the diameter, and
the clustering coefficient. In introduction, we have discussed another property often
observed in real-world networks: the strong presence of communities. Quantifying
this property is not easy and still is a subject of current research. Nowadays, the
most used metric to quantify the presence of communities in a network is the mod-
ularity. Introduced by Newman et al. in 2004 [22], the modularity is defined as
follow:

Definition 1 ([22]). Let G = (V,E) be a graph with at least one edge. For a
partition A of vertices of G its modularity score on G is defined as

qA(G) =
∑
A∈A

(
|E(A)|
|E|

−
(
vol(A)

2|E|

)2
)
,

where E(A) is the set of edges within A and vol(A) =
∑

v∈A deg(v). Modularity of
G is defined as:

q∗(G) = max
A

qA(G).

The first term of the sum is usually called edge contribution, and corresponds to
the fraction of edges inside a given community A. The second term is often called
degree tax, and corresponds to the expected fraction of edges within A that we would
have in a configuration model with the same degree distribution. A high difference
between those two terms means that the presence of edges inside the community
is not due to randomness, but rather to a strong connection between the nodes
of this community. The modularity is given by the partition of communities that
maximizes qA(G). The modularity of a graph is a value between 0 and 1: a value of
0 means that the communities are not more separated than what randomness would
give, while a value close to 1 means that the communities are really well clustered.

Since we “select” the best partition of communities, even simple random graphs
models have a non-null value of modularity. For instance, the modularity of Erdős-
Réyni graphs (for p satisfying 1/n ≤ p ≤ 0.99) is in Θ( 1√

np
) [20]. Note that comput-

ing the theoretical modularity of random graphs is a complicated problem; really
few models have an estimation of the modularity - even for the simple Erdős-Réyni
model, the estimation was only done in 2020. A survey of known model modularities
can be found in the appendix of [20].

Even if non-zero, the modularity of the models presented above is still lower than
the one observed in real-world networks, often around 0.8. To model the presence of
communities, Holland et al. introduced in 1983 the Stochastic Block Model [18]. The
idea is to assign each node to a given community, then connect the nodes according

26 Thibaud Trolliet



Chapter 2. Preliminaries

to a probability depending on their communities. The model takes as parameters the
number of nodes n, a partition set of the nodes corresponding to their communities,
and a probability matrix P of dimension r × r, with r the number of communities.
We create n nodes, each of them being assigned to a community according to the
partition set given in parameters. Then, for each pair of nodes (u, v), an edge is
created between u and v with probability Pi,j, where i (resp. j) is the community of
u (resp. v). In the extreme case where P is diagonal, we only create edges between
nodes of the same community, leading to disconnected communities.

2.1.2 Random growth model for undirected graphs

Barabási-Albert model†

The previously presented models do not take into account the dynamic evolution of
the network. In 1999, Albert and Barabási [4] proposed their famous model in which
the nodes arrive one after the other. The model is the following: we start at time
t = 0 from an initial graph G0, and we call Gt the graph at time t. At each time
step t, Gt is transformed into Gt+1 by adding a node as well as m edges attached
to this node and connected to m existing nodes chosen randomly. For each edge
added, an existing node has a probability to be chosen in proportion to its degree.

This model brings two novelties. Firstly, the random growth implies an evolution
of the network and of node degrees. Secondly, the choice of the nodes receiving the
new edges depends on the node degrees. This follows a preferential attachment
process, i.e., a process in which nodes receive new edges depending of how many
they already have. The social idea behind this is the “rich gets richer” phenomena:
the more people have (money, celebrity, ...) and the easiest it is for them to get
more.

An indirect effect of this preferential attachment process is the emergence of
an heterogeneous degree distribution: picking nodes in proportion to their degrees
implies the emergence of a degree distribution following a power-law P (i) ∝ i−3. As
discussed in introduction, a lot of real-world networks exhibit degree distributions
in power-laws, this explaining the success of this model.

As well as the degree distribution, this model also retrieves a small diameter,
with d = Θ

(
log(n)

)
when m = 1 and d = Θ

( log(n)
log(log(n))

)
when m ≥ 2 [9]. However,

the clustering coefficient stays low, CC ∼
n→+∞

m−1
8

log2(n)
n

[10].

A generalization of the Barabási-Albert model has been proposed for other pref-
erential attachment rules. For instance, Dorogovtsev et al showed in [13] that adding
an initial attractiveness, i.e., choosing nodes in proportion to deg(u) + A with A a
constant (instead of deg(u)) leads to a degree distribution following a power-law
P (i) ∝ i−(3+A). In [19], Krapivsky et al. showed that taking a non-linear prefer-
ential attachment, i.e., choosing nodes in proportion to deg(u)γ, leads to different
behavior depending of γ. For γ < 1, the degree distribution follows a stretched-
exponential distribution. For γ > 1, a single node connects to almost all other

†Note that this model is also sometimes referred as the preferential attachment model. I do not
stand with this definition, since a preferential attachment process is defined as a process in which
nodes receive new edges depending of how many they already have. Thus the Barabási-Albert
model is just a particular linear preferential attachment model. In the rest of thesis, I will thus
refer to this model as the Barabási-Albert model.
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nodes. For γ = 1, we retrieve the initial model.

Chung-Lu model

In a similar idea, Chung and Lu introduced in 2002 the following random growth
model [11]: we start with an initial graph G0. At each time step t, we add to
the existing graph either (with probability p) one new vertex u and one new edge,
attached to u and an existing node v chosen in proportion to its degree; or (with
probability 1− p) an edge between two existing nodes chosen in proportion to their
degrees.

This model is closer to real social behavior than the Barabási-Albert model. In
dynamic social networks such as OSNs, nodes continue to evolve after their arrival
time; a person creates an account (arrival of a new node), and from time to time,
connects to an existing node of the network (arrival of a new edge). In the Barabási-
Albert model, when a new node arrives, it connects to m existing nodes; after its
arrival, that node has no chance of being connected to another node that arrived
before it. The Chung-Lu model allows old nodes to connect to each other. Moreover,
in the Barabási-Albert model, nodes have at least degree m, since each node arrives
with m edges attached to it. But m also determines the mean-degree of the graph.
The mean-degree of the undirected version of the Twitter’s network is around m =
90. So modeling this network with the Barabási-Albert model would create a graph
with no nodes of degree less than 90, while in the Twitter’s network, 75% of the
nodes have degrees less than 90. The minimum degree in the Chung-Lu model is 1,
leading to more realistic degree distributions.

Since still using a linear preferential attachment, the degree distribution follows a
power-law too P (i) ∝ i−(2+ p

2−p ). I have not found any study on the distance and the
clustering coefficient of this model. The similarity with the Barabási-Albert model
may lead one to think that the distance will be similar. Regarding the clustering
coefficient, the fact that the model add edges between old nodes might change its
dependence.

Geometric Preferential Attachment Model

The last undirected model I want to present is the geometric preferential attachment
model. Flaxman et al. introduced two versions of the model, one in 2006 [15] and
one in 2007 [16]. I present here the second one. While nodes which receive new half-
edges are still chosen in proportion to their degrees, they are also chosen depending
of their proximity of the arriving node. Indeed, a geometric position is given to
each node in order to represent the proximity between nodes. This can be seen as
geographical proximity, but also in term of interests, ... The model is the following:
we start with an initial graph G0. At each time step t, a new node u is added to
the graph, with an assigned position from the surface of the sphere in R3 and of
radius 1

2
√
π
. m edges are attached to this node and connected randomly to existing

nodes such that, for every half-edge, each node v has a probability to be chosen in
proportion to degt(v)F (|u− v|), where |u− v| is the distance between nodes u and
v, and F is a function of that distance. Thus, nodes are chosen both depending of
their degree and of their proximity to the new node.

Here again, this model build graphs with power-law degree distributions, of ex-
ponents 1 +α > 3 where α is a parameter of the model. The diameter is also small,
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in O(log(n)). But one of the main interests to add the geometric aspect is to form
clusters of nodes concentrated around their localization [16]. A few models emerged
based on the same idea. For instance in [27] (with a model also called geometric
preferential attachment), Zuev et al. discuss the emergence of what they call soft
communities. In [1] Aiello et al. introduce the Spatial Preferential Attachment
model, in which the radius of a node grows as a function of its degree: thus, the
bigger the degree of the node is, the bigger is its radius, and the more chance it
has to be into the proximity neighborhood of the new nodes. They show that this
model follows a power-law degree distribution and has a modularity close to 1 [24].
However, the built graph is not connected: in fact, Aiello et al. expect that the
majority of distinct pairs of nodes (u, v) will not have a path between them.

2.1.3 Random growth model for other types of graphs

Until now, all presented models were for undirected graphs. I present here two
models built respectively for directed and hypergraph networks.

Bollobás et al. model

In 2003, Bollobás et al. proposed a model for directed graphs [8]. As in the Chung-
Lu model, there are node events (addition of a node) and edge events (addition of
a single edge). The model takes in parameter an initial graph G0, three constants
α, β, γ corresponding to the different event probabilities, and two constants δin, δout
corresponding to the initial attractiveness. We denote degin(u) (resp. degout(u)) the
in-degree (resp out-degree) of the node u.

We start with an initial graph G0. At each time step t, Gt is transformed into
Gt+1 with one of these actions:

• With probability α: a new node u is added, together with an edge going from
u to v where v is chosen in proportion to degin(v) + δin;

• With probability β: a new edge is added, going from u to v where u and v
are existing nodes chosen in proportion to degout(u) + δout and degin(v) + δin
respectively;

• With probability γ: a new node w is added, together with an edge going from
v to w where v is chosen in proportion to degout(v) + δout.

Since the model is directed, we now have a distinction between the addition of a node
with an edge leaving it (probability α), and arriving to it (probability γ) We also
have a separation between the in-degree and out-degree evolutions: in this model,
the choice of a node receiving (resp. leaving) an edge is dependent only to its in-
degree (resp. out-degree). Hence, the evolutions of its in-degree and out-degree are
independent. However, for a given node, its in-degree and out-degree are correlated,
due to its age: the older a node is, the higher both those degrees will be. But
those degrees are only correlated by the arrival age, whereas their evolutions are
uncorrelated.

This model also add an initial attractiveness for nodes, such that the nodes are
now chosen in proportion to their degrees plus an additional constant. Note that
those constants are necessary due to the directed property: indeed, a node arrives
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with either an in-degree of 1 and out-degree of 0, or vice versa. In both cases, one of
its degree needs an initial attractiveness to have a non-zero probability to be chosen
at the beginning.

This model exhibits power-law in- and out-degree distributions, of slopes 1 +
1+δin(α+γ)

α+β
and 1+ 1+δout(α+γ)

γ+β
respectively. Since the model generates directed graphs,

other metrics are a priori not well-defined: to the best of my knowledge, the study
of the directed diameter, clustering coefficient, and presence of communities in this
model still remains to be done using generalization of undirected definitions. Among
them, the study of the directed clustering coefficient is a work in progress in collabo-
ration with Guillaume Ducoffe, Frédéric Giroire, Stéphane Pérennes and Ma lgorzata
Sulkowska.

Avin et al. model

The last model I want to present is the one introduced by Avin et al. in 2019 [3].
While a lot of real-world networks are actually better represented with hypergraphs,
really few models have focused on the building of such graphs. Most of the times,
hypergraphs are transformed into graphs by replacing hyperedges with cliques.

The model proposed by Avin et al. builds hypergraphs with power-law degree
distributions‡. It is a generalization of the Chung-Lu model, with addition of hyper-
edges instead of edges. We start with an initial hypergraph H0. At each time step
t, either (with probability p) we add a node and a hyperedge that contains the new
node as well as Yt−1 existing nodes, or (with probability 1−p) we add a hyperedge
between Yt nodes. Yt is a random integer variable given as a parameter. Those Yt
(or Yt − 1) nodes are chosen independently in proportion to their degrees.

Avin et al. shows that this model gives a power-law degree distribution of ex-
ponent 2 + p

µ−p , where µ = E[Yt]. We notice that, in the particular case where
∀t, Yt = 2, we find the exponent of the Chung-Lu model. A generalization of this
model is presented in Section 5.3.1. As for the Bollobás et al. model, studying the
other properties requires a transposition of the classic undirected definitions into hy-
pergraph definitions. To the best of my knowledge, the only studied property other
that the degree distribution is the one presented in Chapter 5.7 on the modularity.

2.1.4 Summary table

Table 2.1 summarizes some properties of the models discussed in previous Sections.

2.2 Classical tools for model analysis

Degree distribution being one of the major parameters of networks, it is of crucial
importance to estimate its shape in models supposed to represent reality. It can be
noticed from the previous Sections that the degree distribution of most presented
models is well-known, and often follows a power-law. For most of them, a common
method can be used to theoretically compute it. The purpose of this Section is to
present the general idea of this method. I will not go into complicated computations
or precise details, but only give an overview on how the method works. A rigorous

‡For hypergraphs, the degree of a node is defined as the number of hyperedges it belongs to.
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application of it can be found in Section 5.3. We also use this method in Sections 3.6
and 4.3.1. Note also that Chapter 6 presents a new generic theoretical framework
to compute rigorously degree distribution(s) of a bunch of preferential attachment
models using Markov Chains. I do not detail here the related work about Markov
Chain computations since it is presented in Section 6.1.1.

To illustrate the method, I apply it on the Chung-Lu model. The general concept
can then be easily generalized. Let us remind the Chung-Lu model: we start with
a graph G0. At each time step t, the graph Gt = (Vt, Et) is transformed into Gt+1

by the following event:

• With probability p: add a new node u, pick an existing node v chosen with
probability deg(v)∑

w∈Vt
deg(w)

, and add an edge between u and v;

• With probability 1−p: pick two existing nodes u and v chosen with probability
deg(u)∑

w∈Vt
deg(w)

and deg(v)∑
w∈Vt

deg(w)
, and add an edge between u and v.

We are looking for the probability P (i) for a node to have degree i when t →
+∞. Let us call N(i, t) the number of nodes of degree i at time t, then P (i) =

lim
t→+∞

E
[
N(i,t)
|Vt|

]
.

In our example, the number of nodes at time t is a binomial concentrated around
E[|Vt|] = pt, and the number of edges is exactly |Et| = t. Here the number of edges
is fixed and the number of nodes is variable; depending of the studied model this
may change. Having random variables for |Vt| and |Et| brings some extra-steps
in the computation, that are often easily overcome thanks to the concentration of
those variables around their means. Here, if |Vt| had been a constant - as it is
the case e.g. for the Barabási-Albert model -, we could have easily taken it out
of the expectation. Instead, an extra-step has to be done in order to show that
P (i) ∼ lim

t→+∞
E[N(i,t)]
E[|Vt|] = lim

t→+∞
E[N(i,t)]

pt
- see for instance Lemma 5 for a proof of this

equivalence.
We now have to compute E[N(i, t)]. N(i, t) satisfies the following recurrence

relation:

N(i, t+ 1)−N(i, t) =pδi,1 (2.1)

+ p
i− 1∑

w∈Vt deg(w)
N(i− 1, t) (2.2)

− p i∑
w∈Vt deg(w)

N(i, t) (2.3)

+ 2(1− p) i− 1∑
w∈Vt deg(w)

N(i− 1, t) (2.4)

− 2(1− p) i∑
w∈Vt deg(w)

N(i, t), (2.5)

where δi,j is the Kronecker delta.
This equation, sometimes called master equation, gives a relation between

N(i, t+ 1), N(i+ 1, t), and N(i, t). It represents the modification of the number of
nodes of degree i between two consecutive time steps. Indeed at each time step, we
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either add a node and an edge (probability p) or an edge (probability 1 − p). Let
us consider the first case. Then, for i > 1, the number of nodes of degree i only
changes if the node chosen to be connected to the new edge is of degree i−1 (it goes
from degree i − 1 to degree i, increasing N(i, t) by 1) or if it is of degree i (it goes
from degree i to degree i + 1, decreasing N(i, t) by 1). If a node with a different
degree is chosen, then N(i, t) does not change. But we know that the probability
for a given node of degree i − 1 to be chosen is i−1∑

w∈Vt
deg(w)

. Combining all of this,

the probability that we are in the first case of the model (probability p), and pick
one of the N(i− 1, t) nodes of degree i− 1, is p i−1∑

w∈Vt
deg(w)

N(i− 1, t). This explains

the second term on the master equation’s right-hand side.
The three following terms follow from the same reasoning: the third term is the

probability for a node of degree i to be chosen in the first case of the model, the
fourth term is the probability to choose a node of degree i− 1 in the case where we
add only an edge, and the fifth term is the probability to choose a node of degree
i in the case where we add only an edge. The factor 2 comes from the fact that
we pick two existing nodes - one for each half-edge. Finally, with probability p a
new node of degree 1 is created, explaining the first term. While the terms of the
master equation can change depending on the model, for most of them, we still have
a relation between N(i, t+ 1), N(i+ 1, t) and N(i, t).

In the Chung-Lu case, the master equation can be rewritten as:

N(i, t+ 1)−N(i, t) = pδi,1 + (2− p)(i− 1)N(i− 1, t)∑
w∈Vt deg(w)

− (2− p) iN(i, t)∑
w∈Vt deg(w)

.

(2.6)

This master equation, often encounter in literature, hides some approximations.
Indeed, multiple draws may happen during the same step. Thus, when picking
two existing nodes, the same node can be chosen two times, leading to a non-zero
probability to have nodes going from degree i− 2 to i in only one time step. In the
Chung-Lu model, it might happen during the edge event (probability 1− p), where
two nodes are chosen: if we choose the same node twice, a loop will be created around
this node and its degree will be increased by two in a single time step. In Barabási-
Albert model, m nodes are chosen to receive the new edges; picking the same node
more than once will create multiedges and increase its degree by more than one.
The same phenomena occurs in many models. However those cases are rare and
can be neglected in most of the cases. Although it is often intuitively clear that
those terms do not impact the result, proving it rigorously can be really challenging.
Most of the proofs for models of the literature do not talk about those additional
terms, or just qualitatively discuss their lack of influence without rigorously proving
it. An example of how to deal with those additional terms is given in Section 5.3.2,
especially Equation 5.22.

Before taking the expectation on both sides of the equation, let us discuss about
the denominator term

∑
w∈Vt deg(w). In the case of the Chung-Lu model, since

|Et| = t, we can directly express the sum as∑
w∈Vt

deg(w) = 2|Et| = 2t.

In this case, the denominator is not a random variable. This implies that, when
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taking the expectation on both size of the master equation, it can be taken out of
the expectation. However in more general cases, two complications may appear:

• The number of edges is a random variable: thus, we have to show that it is

concentrated enough to have E
[

iN(i,t)∑
w∈V deg(w)

]
∼ E[iN(i,t)]∑

w∈V deg(w)
.

• The attachment function f(i) is not linear: then, the sum cannot be expressed
as a function of the mean-degree, thus, does not have a simple expression. This
problem appears in Chapter 4 where we use general attachment functions.

In both cases, those complications can be resolved thanks to what is called concen-
tration inequalities. For instance, Hoeffding’s inequality [17] states the following:

Lemma 1 (Hoeffding’s inequality, [17]). Let Z1, Z2, . . . , Zt be independent random
variables such that P[Zi ∈ [ai, bi]] = 1. Let δ > 0 and Z =

∑t
i=1 Zi. Then

P[|Z − E[Z]| > δ] 6 2 exp

{
− 2δ2∑t

i=1(ai − bi)2

}
.

This Lemma can be applied with Zi representing the number of half-edges added
at each time step. In most cases, this number is bounded and it is easy to find a
couple (a, b) such that ∀i,P[Zi ∈ [a, b]] = 1. Consider for instance the Barabási-
Albert model modified such that, at each time step, the number of added edges is
a random variable between 1 and m (instead of exactly m). In this model, |Et| is a
random variable. However, we know that at most 2m half-edges are added at each
time step. |Et| can be express as

∑
w∈V deg(w) =

∑t
i=1 Zi, with Zi the number

of half-edges added at time step t. Applying Lemma 1 with Z =
∑

w∈V deg(w),

δ = (m− 1)
√

2t log(t), and ∀i ai = 1 and bi = m, gives:

P[|Z − E[Z]| > δ] 6 2 exp

{
−4(m− 1)2t log(t)

(m− 1)2t

}
=

2

t4
. (2.7)

Thus, Z is highly concentrated around E[Z].
Let us come back to solving the master equation. In the Chung-Lu model case,

taking the expectation on both sides give:

E[N(i, t+ 1)]− E[N(i, t)] = pδi,1 + (2− p)(i− 1)E[N(i− 1, t)]

2t

− (2− p)iE[N(i, t)]

2t
.

(2.8)

This equation is then solved using the following lemma:

Lemma 2 ([11], Chapter 3.3). Let {at} be a sequence satisfying the recursive relation

at+1 =

(
1− bt

t

)
at + ct

where lim
t→∞

bt = b > 0 and lim
t→∞

ct = c. Then, the limit lim
t→∞

at
t

exists and

lim
t→∞

at
t

=
c

1 + b
.
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For the Chung-Lu model, for i > 1, Lemma 2 can be applied with at = E[N(i, t)],

bt = 2−p
2
× i, and ct = 2−p

2
(i− 1)E[N(i−1,t)]

t
to obtain:

lim
t→∞

E[N(i, t)]

t
= pP (i) =

lim
t→∞

2−p
2

(i− 1)E[N(i−1,t)]
t

1 + 2−p
2
i

(2.9)

=
i− 1
2

2−p + i
pP (i− 1) (2.10)

Lemma 2 can also be used for i = 1 with at = E[N(1, t)], bt = 2−p
2

, and ct = p to
obtain:

pP (1) =
p

1 + 2−p
2

. (2.11)

We now have a recurrence between P (i) and P (i−1). Iterating over P (i), we finally
get:

P (i) = P (1)
i−1∏
k=1

k

k + 1 + 2
2−p

= Γ(1 +
2

2− p
)× Γ(i)

Γ(i+ 1 + 2
2−p)

. (2.12)

We have expressed the degree distribution of the Chung-Lu model. For i high
enough, this fraction of Gamma functions can be approximated as a power-law of
exponent 1 + 2

2−p
§:

P (i) ∼
i→+∞

Γ(1 +
2

2− p
)× i−(1+ 2

2−p ). (2.13)

Taking other models with linear preferential attachments give similar results, but
with different exponents. If we go back to Equation 2.6 to keep track of the exponent,
we see that it actually comes from the terms (p + 2(1 − p)) × 1∑

w∈Vt
deg(w)

. Those

terms differ for different models, but the same method can still be used in a similar
way.

Remark 1. The main idea of Chapter 4 is to reverse the presented master equation.
Indeed, if we replace the linear attachment function by a more general function f(i),
we see that we also have a recurrence relation between f(i) and f(i − 1). We have
computed here the degree distribution P knowing the linear attachment function i;
but we can also suppose that we know the degree distribution, and solve the master
equation to compute an unknown attachment function f - see Chapter 4 for more
details about this inversion and its applications.

§Since 1 + 2
2−p = 2 + p

2−p , this result coincides with the one of Table 2.1
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Chapter 3

Interest Clustering Coefficient: a
New Metric for Directed Networks
like Twitter

3.1 Introduction

Networks appear in a large number of complex systems, whether they are social,
biological, economical or technological. Examples include neuronal networks, the
Internet, financial transactions, online social networks, ... Most “real-world” net-
works have some properties that are not due to chance and that are really different
from random networks or regular lattices. In this Chapter, we focus on the study of
the clustering coefficient of social networks. Nodes in a network tend to form highly
connected neighborhoods. This tendency can be measured by the clustering coeffi-
cient. It is classically defined for undirected networks as three times the number of
triangles divided by the number of open triangles (formed by two incident edges).
This clustering coefficient has been computed in many social networks and had been
observed as much higher than what randomness would give. Triangles thus are of
crucial interest to understand “real world” networks.

However, a large quantity of those networks are in fact directed (e.g. the web,
online social networks like Instagram, financial transactions). It is for instance
the case of Twitter, one of the largest and most influential social networks with
126 million daily active users [34]. In Twitter, a person can follow someone she
is interested in; the resulting graph, where there is a link u → v if the account
associated to the node u followed the account associated to the node v, is thus
directed. In this study, we used as main dataset the snapshot of Twitter (TS in
short) extracted by Gabielkov et al. as explained in [14] and made available by the
authors. The TS has around 505 million nodes and 23 billion arcs, making it one of
the biggest snapshots of a social network available today.

The classic definition of the clustering coefficient cannot be directly applied on
directed graphs. This is why most of the studies computed it on the so-called
mutual graph, as defined by Myers & al. in [27], i.e., on the subgraph built with
only the bidirectional links. We call mutual clustering coefficient (mcc for short)
the clustering coefficient associated with this graph. We computed this coefficient
in the TS, using both exact and approximated methods. We find a value for the
mcc of 10,7%. This is a high value, of the same order than the ones found in other
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web social networks [26, 37].

However, this classical way to operate leaves out 2/3 of the graph! Indeed, the
bidirectional edges only represents 35% of the edges of the TS. A way to avoid it is
to consider all links as undirected and to compute the clustering coefficient of the
obtained undirected graph. We call undirected clustering coefficient (ucc for short)
the corresponding computed coefficient. Such a computation in the TS gives a value
of ucc of only 0.11%. This is way lower than what was found in most undirected
social networks. It is thus a necessity to introduce specific clustering coefficients for
the directed graphs. More generally, when analyzing any directed datasets, it is of
crucial importance to take into account the information contained in its directed
part in the most adequate way.

A first way to do that is to look at the different ways to form triangles with
directed edges. Fagiolo computed the expected values of clustering coefficients con-
sidering directed triangles for random graphs in [11] and illustrated his method on
empirical data on world-trade flows. There are two possible orientations of trian-
gles: transitive and cyclic triangles, see Figures 3.1b and 3.1c. Each type of triangles
corresponds to a directed clustering coefficient :

• the transitive clustering coefficient (tcc in short), defined as:

tcc =
# transitive triangles

# open transitive triangles
,

• the cyclic clustering coefficient (ccc in short), defined as:

ccc =
3 ·# cyclic triangles

# open transitive triangles
.

We computed both coefficients for the snapshot, obtaining tcc = 1.9% and ccc =
1.7%. However, note that a large part of the transitive and cyclic triangles comes
from bidirectional triangles. When removing them, we arrive to values of tcc =
0.51% and ccc = 0.24%.

We believe those metrics miss an essential aspect of the Twitter graph: while
the clustering coefficient were defined to represent the social cliques between people,
it is not adequate to capture the information aspect of Twitter, known to be both
a social and information media [18, 27]. In this work, we go one step further in the
way directed relationships are modeled. We argue that in directed networks, the
best way to define a relation or similarity between two individuals (Bob and Alice)
is not always by a direct link, but by a common interest, that is, two links towards
the same node (e.g., Bob → Carol and Alice → Carol). Indeed, when discussing
interests, consider two nodes having similar interests. Apart from being friends,
these two nodes do not have any reason to be directly connected. However, they
would tend to be connected to the same out-neighbors. We exploit this to study
a new notion of connections in directed networks and the new naturally associated
clustering coefficient, which we name interest clustering coefficient, or icc in short,
and define as follows:

icc =
4 ·# K22s

# open K22s
,
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where a K22∗ is defined as a set of four nodes in which two of them follow the two
others, and an open K22 is a K22 with a missing link, see Figure 3.1d. We computed
the icc on the Twitter snapshot, obtaining icc = 3.6% (3.1% when removing the
bidirectional structures). This value, an order of magnitude higher than the previous
clustering coefficients computed on the non bidirectional directed graph, confirm the
interest of this metric. If the clustering coefficient of triangles are good metrics to
capture the social aspect of a graph, the interest clustering coefficient is a good
metric to capture the informational aspect.

In summary, our contributions are the following:

• We define a new clustering coefficient for graphs with interest links.

• We succeeded in computing it, both exactly and using sampling methods, for
a snapshot of Twitter with 505 million nodes and 23 billion edges.

• We additionally provide the values of the directed and undirected clustering
coefficients previously defined in the literature. We believe this is the first time
that such coefficients are computed exactly for a large directed online social
network.

• We compute this new metric as much as the previous ones on other directed
datasets to highlight the differences and interests of the different metrics.

• We then propose a new random graph model to obtain random directed graphs
with a high interest clustering coefficient. We prove this model follows power-
law in- and out-degree distributions, and analyse the interest clustering coef-
ficient value by simulation.

• Lastly, we discuss the usage of this new metric for link recommendation. The
principle is to recommend links closing a large number of K22s (instead, clas-
sically, of triangles). We discuss the strengths/weaknesses of this method for
a set of Twitter users.

The Chapter is organized as follows. We first discuss related work in Section 3.2. In
Section 3.3, we present the algorithms we used to compute the values of the interest
clustering coefficient, both exactly and by sampling. We discuss the results on the
clustering coefficients of Twitter in Section 3.4, and of other directed datasets in
Section 3.5. In Section 3.6, we propose and study a preferential attachment model
providing a high interest clustering coefficient. Lastly, we discuss the use of interest
clustering coefficient for link recommendation in Section 3.7.

3.2 Related Work

Complex networks. Even if the study of complex networks is an old field [36], it
keeps receiving a lot of attention from the research community. The reason for this is
twofold. First, a great number of very large practical systems emerged recently can
be seen as complex networks, in particular online social media networks, see [24] for a

∗The name comes from Graph Theory. A Km,n is a complete bipartite graph G = (V1 ∪V2, E)
with partitions of sizes |V1| = m and |V2| = n. We consider in this Chapter a directed version of a
K2,2.
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(a) Undirected triangles. (b) Transitive directed triangles.

(c) Cyclic directed triangles. (d) K22s.

Figure 3.1: Closed (left) and open (right) undirected and directed triangles and
K22s.

survey. Second, with the development of big data analysis, entrepreneurs, analysts or
researchers have new tools to study those huge amounts of data. Complex networks
often share common properties, like small diameter [1], small average distance [40,
3, 21], heavy tail degree distributions [8, 21], high clustering [40], communities [37],
etc.

Clustering coefficient. Among those properties, the clustering coefficient shows
that, when two people know each other, there is a high probability that those peo-
ple have common friends. The clustering coefficient has numerous important ap-
plications, such as spam detection [6], link recommendation [35, 7], information
spread [15], study of biased network samples [28], performance of some neural net-
works [16] , etc. There are different definitions of the clustering coefficient. The
local clustering coefficient of a node i, first introduced by Watts and Strogatz [40], is
defined as the probability that two neighbors of i are also connected together. This
probability can be computed as

CC(i) =
# triangles with the node i

# connected triplets centered on i
,

where (# connected triplets centered on i) =
(

deg(i)
2

)
. From here can be defined for

the whole graph a clustering coefficient as the mean of the local clustering coefficients
over all the nodes of the graph:

CCg1 =
1

n

∑
i∈V

CC(i)

Another definition was first introduced by Barrat and Weigt in [4], and is called
the global clustering coefficient, or transitivity. It is defined as

CCg = 3× # triangles in the graph

# connected triplets of vertices in the graph
.

We use the global clustering coefficient in this Chapter. The clustering coefficient
has also been defined for weighted graphs [32, 29].
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Computations for social graphs. The undirected clustering coefficient of some
social networks has been provided in the literature. It has been computed on very
large snapshots for Facebook [37], Microsoft Messenger [21], Flickr, and YouTube [26].
The local clustering coefficient has also been studied in the undirected mutual graph
of Twitter [27]. We can also cite the values given by the Network Repository
project [30], providing a large comprehensive collection of network graph data avail-
able for which it lists some basic properties. The undirected clustering coefficient is
usually much higher in social networks than in random models.

Directed graphs. All these studies only consider the undirected clustering co-
efficient, even for directed graphs like Twitter. Fagiolo introduced definitions of
directed clustering coefficients, that we named tcc and ccc [11], but those definitions
had never been computed and discussed on large datasets to our knowledge, as we
do in this Chapter. Moreover, we believe that these metrics are not the most relevant
ones for directed graphs with interest links.

Computing substructures. Researchers studied methods to efficiently compute
the number of triangles in a graph, as naive methods are computationally very
expensive on large graphs. Two families of methods have been proposed: triangle
exact counting or enumeration and estimations. In the first family, the fastest

algorithm is due to Alon, Yuster, and Zwick [2] and runs in O(m
2ω
ω+1 ), with m the

number of edges and ω the best known exponent for the fast matrix multiplication.
Its current value is 2.3728, due to an algorithm of [9] improved by [20], giving a
complexity of O(m1.41) for the AYZ algorithm. However, methods using matrix
multiplication cannot be used for large graphs because of their memory requirements.
In practice, enumeration methods are often used, see e.g., [19, 33]. A large number
of methods for approximate counting were proposed, see for example [17] and its

references. The authors obtain a running time of O(m + m3/2 logn
tε2

) and a (1 ± ε)
approximation. Methods to count rectangles and butterfly structures in undirected
bipartite networks were also proposed in [39] and in [31]. In this Chapter, we propose
an efficient enumeration algorithm to count the number of K22s and open K22s in
a very large graph. We focused on the case in which only one adjacency can be
stored, as this was our case for the TS. To the best of our knowledge, we are the
first to consider this setting.

3.3 Computing Clustering Coefficients in Twitter

We computed the interest clustering coefficient and the triangle clustering coeffi-
cients on a directed Twitter snapshot (TS in short) that we use as a typical example
of a directed social network with interest links. We used two different methods: an
exact count and an estimation using sampling techniques, either with a Monte Carlo
algorithm or with a sampling of the graph.

3.3.1 The Twitter Snapshot

In order to compute the different clustering coefficients of a real graph, the authors
of [13] gave us access to a snapshot of the graph of the followings of Twitter. The
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Figure 3.2: In- (Left) and out-degree (Right) distributions of the Twitter Snapshot.
The obtained distribution is given by the blue points; the black crosses represent
the logarithmic binning of the distribution (a mean of a given amount of points on
a logarithmic scale). The red straight line is the fit of the logarithmic binning; it
has slopes of −2.174 and −2.762 for the in and out degree distribution.

snapshot was collected between March 2012 and July 2012. With n = 505 million
nodes and m = 24 billion links collected, this graph is the largest directed social
network graph available today, to the best of our knowledge. Each node of the graph
represents an account of Twitter, and there is a link between two nodes u and v, if
the account u follows the account v. All account IDs have been anonymized. The
snapshot is a perfect case study as Twitter is a directed social network used both as
a social and an information network [27, 18]. It allows to study directed/undirected
social/interest clustering coefficients.
Degree distributions of the Twitter Snapshot. We provide in Figure 3.2 the
degree distributions of the TS. We fitted their tails to power law distributions. We
obtained P−(i) = C−i−2.17 and P+(i) = C+i−2.76, with P−(i) (respectively P+(i))
the probability that a node has in-degree (resp. out-degree) i. In the following, we
use the obtained values to compute the practical complexity of the algorithms.
Other references of the literature have also provided a power law fit for both distri-
butions, see e.g., [27]. In this work, the authors obtained exponents of values 1.35
and 1.28. However, we believe that the authors did a fit on the complete distribu-
tions and not on their tails, leading to power law exponents below 2. This is why we
preferred to only fit the tail. Another point of discussion would be to decide if the
out-degree distribution really behaves as a power law. However, the best fit of the
distributions is out of the scope of this Chapter. We just used the values provided
by our fit as a possible model of the graph, but others exist.

3.3.2 Exact Count

We computed the exact numbers of K22s and open K22s in the Twitter Snapshot.
Recall that we are discussing a dataset with hundreds of million nodes and billions
of arcs. Results are reported in Table 3.1 and discussed in Section 3.4. We also
retrieved the number of directed and undirected triangles of TS. We first discuss the
complexity of algorithms for exact counting on very large graphs. We then present
the algorithms we use and discuss the results.
In the rest of this Chapter, we call top vertices (resp. bottom vertices) of a K22 the
vertices which are destinations (resp. sources) of the K22 edges. We call a fork a
set of two edges of a K22 connected to the same vertex. We say that a fork has top
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(or bottom) vertex x if both edges are connected to x and x is a top (resp. bottom)
vertex of the K22. The same terminology applies to open K22s.

Trivial algorithm. The trivial algorithm would consider all quadruplets of vertices
with 2 upper vertices. Then, for each quadruplet, it would check the existence of a
K22 and of open K22s. There are

(
4
2

)(
n
4

)
such quadruplets. It thus gives a complexity

of O(n4). This method can thus not be considered for the TS as it would perform
6.4× 1022 iterations.

Improved algorithm. The practical complexity can be greatly improved by
only considering connected quadruplets, and by mutualizing the computations of the
common neighbors of the in-neighbors of a vertex, as explained below. The pseudo-
code is given in Algorithm 1.
The algorithm’s main loop iterates on the vertices of the graph. For each vertex x,
we consider its in-neighborhood N−(x). We then compute how many times a vertex
w (with w < x to avoid counting a K22 twice) appears in the out-neighborhoods
of the vertices of N−(x). We denote it #occ(w). We use a hash table to store the
value of #occ(w) in order to be able to do a single pass on each out-neighbor.
For a vertex w, any pair of its #occ(w) in-neighbors common with x forms a K22
with x and w as bottom vertices. There are hence

(
k
2

)
K22s with x and w as bottom

vertices. The number of K22s with x as a top vertex is then

#K22(x) =
∑

w|#occ(w)≥2

(
#occ(w)

2

)
.

The number of open K22s with x as the top vertex is computed by noticing that, for
any pair of vertices u and v of N−(x), we have d+(u)− 1 + d+(v)− 1− 1v∈N+(u) −
1u∈N+(v) open K22s containing this fork (ux, vx). We can count the number of open
K22s with x as a top vertex, u as the bottom vertex of out-degree 2 (and thus
another vertex v as the bottom vertex of out-degree 1). A vertex u ∈ N−(x) is thus
in (d+(u)−1

∑
v∈N−(x)\{u} 1v∈N+(u))(d

−(x)−1) such open K22s. The only subtlety is

that we count the number of arcs, which are between two vertices of N−(x), during
the loop on the out-neighborhoods of the vertices of N−(x). We note this number
#internalArcs. We then have:

#openK22(x) =

 ∑
u∈N−(x)

(d+(u)− 1)(d−(x)− 1)

−#internalArcs.

Lastly, the global number of K22s (resp. open K22s) in the digraph is just the sum
of the number of K22s (resp. open K22s) with a vertex x as a top vertex, as, since
we only consider K22s formed with a vertex w such that x < w, we only count each
K22 once.

Complexity of the used algorithm. The complexity thus is m+
∑

u d
+(u)(d+(u)−1).

Indeed, each edge is only considered once as an in-arc and d+−1 times as an out-arc.
Note that, in the Twitter Snapshot, the sum of the squares of the degrees is equal
to 8 · 1013. The order of the number of iterations needed to compute the number
of K22s was thus massively decreased from the 6.4 × 1033 iterations of the trivial
algorithm.
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Algorithm 1 Enumeration of K22s and open K22s

1: B
2: Input: Digraph(V,A)
3: #occ=0 . hash table
4: for x ∈ V do
5: #internalArcs← 0 . We count the number of arcs internal to N−(x) as

these arcs do not form open K22s
6: for v ∈ N−(x) do
7: #openK22s + = (d+(v)− 1)(d−(x)− 1)
8: for w ∈ N+(v) \ {x} do
9: #occ[w]+ = 1

10: if w ∈ N−(x) then . We use a second hash table to test that.
11: #internalArcs+ = 1

12: for w with #occ[w] ≥ 2 do
13: #k22+ =

(
#occ[w]

2

)
14: #openK22s − = #internalArcs
15: #occ← 0 . Done with a double loop

16: icc ← 4#K22
#openK22

Complexity on graphs following a power-law degree distribution. The complexity
of the algorithm on a graph built with preferential attachment can be computed
as follows. We consider without loss of generality that the sum of the square of
the degrees is minimum for the out-degrees (and not the in-degrees). The maxi-
mum degree is d+

max = O(n1/(α+−1)), with α+ the exponent of the out-degree power
law distribution. Thus, the sum of the squares of the degrees, when 2 ≤ α+ <

3, is
∑

v∈V (d+(v))2 = C+n
∑d+max

i=1
i2

iα+
∼

n→∞
C+n

∫ d+max

i=1
1

iα+−2
=
[

C+n

(3−α+)iα+−3

]d+max

1
'

C+n

(3−α+)d+max
α+−3

= C+

(3−α+)
n

1+ 3−α+
α+−1 , where C+ = 1∑

i∈N+ iα+
. The complexity is thus in

O(m+n
1+ 3−α+

α+−1 ). For preferential attachment graphs with exponents between 2 and
3, this gives a complexity between O(m+ n) and O(n2), to be compared to the one
of the naive method O(n4).

Counting the number of triangles. The number of transitive triangles can easily
be computed for free while counting the K22s. When iterating over the vertices of
the TS and considering the vertex x in Algorithm 1, the number internal arcs of
arcs between vertices of N−(x) corresponds to the number of transitive triangles for
which x is the top vertex. The number of open transitive triangles with x as the
top vertex is simply d−(x) · d+(x). The total number of open transitive triangles is
then just the sum of this quantity over all x. The number of cyclic triangles for x
can also be easily computed by counting the number of arcs from N+(x) to N−(x).
Each cyclic triangle is counted three times. The number of open cyclic triangles
is the same as the number of transitive triangles. We can compute the number of
undirected triangles with similar methods (either on the full (but undirected) graph
or on the mutual graph).
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Note that the fastest methods to compute triangles in graphs have a complexity of
O(m1.41), where m is the number of edges [2]. These methods rely on fast matrix
multiplications and cannot be applied for large graphs as they need to have the full
matrix in memory. Moreover, our algorithms would be faster in practice for large
complex networks as they are sparse graphs. The average indegree (or outdegree)
has a low value of 45.6 [14] in Twitter. The complexity of the matrix methods would
be of the order of 3.2 · 1014 for the TS as m = 2.3 · 1010. This is higher than the
practical complexity of computing the exact number of K22s (which is itself higher
than the complexity of computing triangles). We discuss the obtained results with
the exact count in Section 3.4.

3.3.3 Approximate Counts

As discussed later in Section 3.4, the exact count of the number of K22s and open
K22s in Twitter implies massive computations. This number can be estimated using
Monte Carlo Method and/or computations on a sample of the graph. We discuss
both methods below. One of our goals was to see how good computations made in
the literature using smaller Twitter snapshots were.

Exact icc on Twitter Samples.

We built samples of the TS to estimate the interest clustering coefficient. Several
choices can be made to build the samples. To avoid missing nodes of high degrees
(which would lead to a high variance), we sampled the arcs (and not the nodes).
Given a sampling probability p, we keep an arc in the sample with probability p.
We generated samples of different sizes corresponding to sampling probabilities from
p = 1/100 to p = 1/16000.

Estimator of the number of K22 and open K22s. Let us call A the set of occurrences
of a specific pattern (in our case, either a K22 or an open K22). The number of
occurrences of the pattern in a sample, X, is given by X =

∑
A∈AXA, where XA is

the random variable which is equal to 1 if all the arcs of pattern A are selected in
the sample and 0 otherwise.
If we note l the number of arcs of the pattern (4 for a K22 and 3 for an open K22),
we have that P [XA = 1] = pl. By linearity of the expectation, we get E[X] = pl|A|.
Thus, Y = p−lX is an unbiased estimator of |A|.
Variance. Note that the random variables XA are not independent, i.e., two K22s
can share a common link. Otherwise, the variance would simply be V(X) =∑

A∈AV[XA] = |A|pl(1 − pl) ≤ |A|pl. However, we can argue that (and we will
verify that), in practice, most of the K22s and open K22s do not share any link. It
can be used in the analysis as follows.

V[X] = E[X2]− E[X]2 = E[(
∑
A∈A

XA)2]− E[X]2 (3.1)

=
∑

(A,B)∈A

E[XAXB]− E[X]2 (3.2)

We now distinguish the couples of dependent patterns, which we note ∆ = {(A,B) |
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A ∩B 6= ∅}, from the ones of independent ones, ∆̄ = {(A,B) | A ∩B = ∅}.

V[X] =
∑

(A,B)∈∆̄

E[XAXB] +
∑

(A,B)∈∆

E[XAXB]− E[X]2 (3.3)

When A and B are independent, we have

E[XAXB] = E[XA]E[XB] = p2l.

As E[X]2 = p2l|A|2, we get

V[X] =
∑

(A,B)∈∆̄

E[XA]E[XB] +
∑

(A,B)∈∆

E[XAXB]− E[X]2 (3.4)

=
∑

(A,B)∈∆

(E[XAXB]− p2l) (3.5)

Let us now distinguish different cases. We note ∆i the set of couples of patterns
sharing 1 ≤ i ≤ l arcs. For a couple (A,B) ∈ ∆i, we have that E[XAXB] = p2l−i,
giving that

V[X] ≤
l∑

i=1

∑
(A,B)∈∆i

(p2l−i − p2l). (3.6)

Since p < 1, we get

V[X] ≤
l∑

i=1

p2l−i |∆i| . (3.7)

Note that, when all patterns are independent, |∆| = |∆l| = |A| (couples (A,A) ∈ A),
giving back the variance of the independent case, pl|A|. Chebycheff’s inequality
tells us that:

Prob[|Y − µ| ≥ kσ] ≤ 1

k2
, (3.8)

where µ is the expectation and σ is the standard deviation of X. In our case, if
we want an accuracy of ε with a probability q, we should have 1

k2
≤ 1 − q and

kσ ≤ εpl|A|, which can be rewritten as:

k2

ε2

l∑
i=1

p2l−i |∆i|
|A|2

≤ p2l. (3.9)

Lastly, to estimate the icc, we use as an estimator

Z =
4Y

Y0

, (3.10)

with Y and Yo the estimators of the number of K22s and open K22s, respectively. As
limn→∞ Y = #K22s and limn→∞ Y = #openK22s, we have that limn→∞ Z = icc.
For the precision, if Y and Yo have an accuracy of ε and εo respectively, then with
a probability q = 0.99, Z has at least an accuracy of 1+ε

1−εo ∼ε→0
1 + ε + εo with a

probability q2 ≈ 0.98.

Numerical application. We now consider the K22s of the TS. Note that we know
that |∆4|

|A|2 = 1/#K22s = 3.8× 1017. We also can notice that |∆3 = ∆4|. In the TS,
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Figure 3.3: Estimation of the K22s (Left), open K22s (Middle) and interest cluster-
ing coefficient (Right) for different sample sizes.

an edge is shared by #K22s
m

K22s on average, with m the number of links of the TS.
Thus, the average number of K22s sharing at least an edge with a K22 is between
#K22s
m

and 4 · #K22s
m

. It gives 1
m
|A|2 ≤ ∆1 + ∆2 + ∆3 + ∆4 ≤ 4

m
|A|2. The number of

overlapping K22s with i arcs is a non-increasing function of i. To make a numerical
evaluation, we suppose that most overlapping K22s share one edge and not 2 edges
in the TS. We set that |∆1| = 1

m
= 4.3 × 10−8|A|2, and |∆2| = 10−16|A|2. Now, if

we want a precision of ε = 0.1 with a probability 0.99 (that is k = 10), we need to
take a sampling probability p such that

p8 ≥ 102

10−4
(p74.3× 10−8 + p6 × 10−16 + p53.8× 10−17 + p43.8× 10−17). (3.11)

That is p ≥ 2.5 × 10−4. Thus, under these hypotheses, a sample with sampling
probability 1/2500 and larger, e.g., our 1/2000 sample, allows to estimate the number
of K22s with a precision of 10%. The number of open K22s is larger and thus, the
precision is better. It gives a precision of at least 1+1/100

1−1/100
= 0.20 for the estimation

of icc. In practice, the Chebysheff inequality and our hypothesis are pessimistic as
shown below.
Results. We present in Figure 3.3 the results of the algorithm for different sample
sizes, corresponding to sampling probabilities from p = 1/100 to p=1/16, 000. For
each sample size, we generated 30 samples. The distribution over the samples of the
interest clustering coefficient, K22s and open K22s are provided by a boxplot for
each value of p. Note that a K22 of the TS appears in a sample with a probability
of only p4, and of p3 for an open K22. The clustering coefficient of a sample is thus
an estimate of p · icc.
We observe that the clustering coefficient is well estimated using any sample for a
sampling probability of 1/1000 or larger. Indeed, for this range of probabilities, the
distribution over all samples is very concentrated and around the exact value of the
icc. Note that, for p = 1/1000, a K22 is present in the sample with a probability
of only 10−12. The expectation of the number of nodes with an edge is only 23
million nodes (over 500 million) and the number of edges also around 23 million.
Thus, a small sample (5% of the nodes and 0.1% of edges) allows to do an efficient
estimation of the icc.
For smaller values of p, the variance increases. The median estimates well the icc

for a range of p between 1/8000 and 1/1000, but samples of these sizes may have
error of 100% of the value. Lastly, for p = 1/16000, only the number of open K22s
(and not the K22s or the icc) is approximated by the median.
In conclusion, a sample with sampling probability 1/1000 is enough to efficiently
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Figure 3.4: Estimation of the clustering coefficient with Monte Carlo Method.

estimate the interest clustering coefficient, with a computation time of around 1
minute (instead of days for the whole TS) on a machine of the cluster.

Monte Carlo Method.

After a short reminder of the precision of the Monte Carlo Method, we first quickly
discuss the case of triangles to show the particularity of estimating the interest
clustering coefficient. The difficulty here is that the probability to observe a (closed
or open) K22 or a triangle is very small. In the case of triangles, this difficulty
can be easily circumvented by knowing the node degrees. This allows to select an
open triangle uniformly at random. In the case of K22s, this information is not
sufficient to select an open K22 uniformly at random. In fact, achieving this goal is
very costly, but we present a method in which, by picking only forks (as we do for
triangles), we can compute the interest clustering coefficient.

Preliminary: Precision of Monte Carlo Method. Precision of the estimation
and number of iterations. Each trial is a Bernoulli variable with probability p. We
use as an estimate Y , the mean of the random sample. Its expectation is p and its

standard deviation is

√
p(1−p)
√
n

. Due to the central limit theorem, we get that, when
n is large,

Prob

[
|Y − p| ≤ Zα/2

√
p(1− p)√

n

]
= α, (3.12)

with Zα/2 the value giving the α confidence interval a standard normal distribution.
To get with probability α an accuracy of ε of the empirical mean p (which is not

known), we should have Zα/2

√
p(1−p)
√
n

≤ εp. That is n ≥
Z2
α/2

(1−p)
pε2

. If we take

n ≥
Z2
α/2

pε2
, we have the wanted precision (and we are not doing many more iterations

when p is small). For example, to get an accuracy of 99% (ε = 0.01), with probability
α = 0.99, we should have a number of iterations such that n ≥ 75,625

p
.

Approximating the number of undirected triangles. A first direct method
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would be to select three vertices uniformly at random and check if they form a
triangle and open triangles. The problem with this method is that the probability
to form a triangle in Twitter is the number of triangles divided by the number of
triplet of nodes, i.e., 6.23×1011

(5×108)3
= 5 × 10−15. Thus the number of needed iterations

would be astronomic, 5.5 × 1019 for an accuracy of 1%, with probability α = 0.99.
We thus have to use methods selecting open triangles directly.

To estimate the undirected clustering coefficient, we need to select open (undi-
rected) triangles uniformly at random. We then test if the selected triangle is closed
or not (which is the case with probability ucc). The number of open triangles rooted

at vertex v is equal to d(v)d(v)−1
2

. We can thus perform the sampling by picking a ver-

tex v with probability
(
d(v)

2

)
/
∑

v∈V
(
d(v)

2

)
and then select two random edges adjacent

to v.

Directed triangles. The method is the same in the case of directed triangles.
We select an open triangle uniformly at random. The number of open triangles
rooted at a vertex v is d−(u)d+(u). We thus select a node u with probability
d−(u)d+(u)/

∑
v∈V d

−(v)d+(v). We then select uniformly at random an incoming
arc and an outgoing arc. Lastly, we check if the triangle is closed (which is the
case with a probability equal to tcc and to ccc respectively for transitive and cyclic
triangles).
Precision of the estimation and number of iterations. Each trial is a Bernoulli
variable with a probability p = tcc = 0.019. To get an accuracy of 1%, with
probability 0.99, we should thus do n = 4× 106 iterations.

Interest clustering coefficient. For triangles, we were able to select uniformly
at random open triangles using the node degrees. In the case of K22s, node degrees
is not sufficient to select an open K22 uniformly at random. To do so, it would
be necessary to compute the number of open K22s with u as a root. This pre-
processing is very costly: for each node, we should consider its in-neighbors, sum
their out-degrees, and compute the number of internal edges. It would be almost as
costly as doing an exact count of the number of K22s.

Another method is to select a vertex v as a root according to the square of its
in-degree (as in the case of triangles), but without knowing its number of open K22s
(first step). We then select two arcs u1v and u2v uniformly at random (second
step). We then compute the number of K22s and open K22s with the selected fork
(u1v, u2v) (third step).

For the first step, the algorithm needs a list of the node in-degrees of the TS,
which would have been computed in a preliminary step. For the second one, it then
uses the in-adjacency of v. For the third step, the out-adjacency of u1 and u2 are
necessary for the computations.

We then use the estimators introduced below. We first define

X = #K22s(u1v, u2v) and Xo = #openK22s(u1v, u2v).

We have
E[X] =

∑
forks

#K22s(fork)P(fork). (3.13)

As each fork is chosen uniformly at random and as a K22 has two forks, we get

E[X] =
∑
forks

#K22s(fork)
1

#forks
=

2#K22s

#forks
. (3.14)
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#closed #open cc
icc 25, 605, 832, 012, 451, 571 3, 138, 466, 676, 914, 054, 233 0.032634831

2.6× 1016 3.1× 1018 3.3%
tcc 2, 469, 018, 039, 988 129, 023, 573, 841, 024 0.019136178

2.5× 1012 1.3× 1014 1.9%
ccc 723, 131, 368, 202 129, 023, 573, 841, 024 0.016813936

7.2× 1011 1.3× 1014 1.7%
ucc 623, 873, 346, 660 1, 631, 948, 600, 661, 523 0.001146862

6.2× 1011 1.6× 1015 0.11%
mcc 317, 649, 850, 664 8, 924, 125, 201, 234 0.106783526

3.2× 1011 8.9× 1012 10.7%

Table 3.1: Clustering coefficients (exact and approximated count) in the TS.

Similarly,

E[Xo] =
#openK22s

#forks
. (3.15)

We may thus define two efficient unbiased estimates for #K22s and #openK22s:

Y =
#forks

2n

n∑
i=1

Xi. and Yo =
#forks

n

n∑
i=1

Xoi. (3.16)

We have E[Y ] = #K22s and E[Yo] = #openK22s. The number of forks with a

vertex v as a root is given by
(
d−(v)

2

)
. The total number of forks in the TS is thus∑

v∈V
(
d−(v)

2

)
. Lastly, as we are interested in the interest clustering coefficient, we

define

Z =
4Y

Y0

. (3.17)

As limn→∞ Y = #K22s and limn→∞ Y = #openK22s, we have that limn→∞ Z =
icc.

Experiments. We carried out two runs with 10 million iterations. It took about
2min30 for one run (60, 000 iterations per second). The value of the estimator
of the icc for the two runs is plotted as a function of the number of iterations in
Figure 3.4. We first see that the estimator converges as expected to the value of
the icc of TS represented by a straight horizontal line (and which was computed
exactly in the previous section). We also plotted the estimated standard deviation
as a function of the number of iterations. To obtain it, we did one billion iterations.
We then estimated the standard deviation σ, and plotted σ√

n
. We see that large

jumps or discontinuity happen, but only at the beginning. They correspond to the
draw of a fork with a lot of K22s and open K22s corresponding to a user who does
not have the same icc as the global network. Then, the convergence is quick.
After 300 iterations, the standard deviation is below 10% and after 1000 iterations,
we do not experience a value of the runs less precise than 10%.
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3.4 Results: Clustering coefficients in Twitter

To compute the number of K22s and open K22s, directed triangles, and undirected
triangles in the Twitter Snapshot, we used a cluster with a rack of 16 Dell C6420
dual-Xeon 2.20GHz (20 cores), with 192 GB RAM, all sharing an NFS Linux par-
tition over Infiniband. It took 51 hours to compute the exact numbers of K22s and
open K22s, corresponding to 265h of cumulative computation times on the cluster.
We reported the results in Table 3.1.

Number of K22s and triangles. We see that the numbers of K22s and open K22s
are huge, 2.6 × 1016 and 3.1 × 1018, respectively. It has to be compared with the
number of triangles which are several orders of magnitude smaller: e.g., 2.5 × 1012

and 1.3× 1014 for transitive triangles.

Clustering coefficient in the mutual graph. The mutual graph captures the
friendship relationships in the social network. The mutual clustering coefficient thus
is high (mcc = 10.7%), as cliques of friends are frequent in Twitter.

Clustering coefficients in the whole graph. We observe that icc = 3.3% >
tcc = 1.9% > ccc = 1.7% > ucc = 0.11%. Directed metrics better capture the
interest relationships in the TS as ucc is very low. The highest parameter is the
icc. It confirms the hypothesis of this Chapter that common interests between
two users are better captured by the notion of K22 than by a direct link between
these users. As expected, the second parameter is the one using transitive triangles.
Indeed, they capture a natural way for a user of finding a new interesting user, that
is, considering the followings of a following, especially after having seen retweets.
A bit surprisingly, the ccc is not very low. In fact, a large fraction of the cyclic
triangles are explained by corresponding triangles in the mutual graph (triangles of
bi-directional links).
A way to artificially take off the social influence in order to focus exclusively on the
directed interest part of the graph is to remove the (open and closed) triangles and
K22s contained in the mutual graph from the total count. Indeed, each undirected
triangle of the mutual graph induces two cyclic triangles and four transitive triangles,
and each undirected open triangle induces two open triangles. In the same way, each
undirected K22 induces two K22s and each undirected open K22 induces two open
K22s. The obtained results are shown in Table 3.2. If we take off those mutual
triangles, both the tcc and the ccc values drop to 0.51% and 0.24%, respectively,
while the icc stays about the same at 3.1%. This tends to confirm the hypothesis
that the directed triangle clusterings somehow measure the friendship part of the
TS more than the interest part.

We can even go one step further by computing the number of triangles in the graph
in which all bidirectional edges have been removed. In that case, the ccc drastically
drops to 0 (we found no cyclic triangles without at least a bidirectional arc in the
dataset!) while tcc and interest clustering coefficient stay almost the same, 3.6
and 4.2 respectively. This confirms that cyclic triangles are artificially created by
friendship relations and that the ccc gives no information about the directed part
of the graph.

Distribution of the icc and local clustering. We also provide the distribution
of the values of the interest clustering coefficient over all users (having open K22s)
in Figure 3.5. We see that the icc greatly varies between 0 and 1. A large number
of nodes have a low value of icc, e.g., 2.23 × 107 users (10.2% of the users with
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icc tcc ccc ucc
Twitter 3.1% 0.51% 0.24% 0.057%

Table 3.2: Clustering coefficients without the mutual structures.

Figure 3.5: Histogram of the distribution of the interest clustering coefficient over
all users of the Twitter Snapshot. The vertical bars indicate the value of the glocal
icc (3.3%) and the average value (7.7%) or local icc.

open K22s) have a value of 0, meaning they are part of open K22s but not of K22s.
At the opposite end, 2.4 × 104 users (0.011% of the users with open K22s) have a
value of 1, meaning that all their open K22s belong to a K22. The average value is
equal to 7.7%. This value could be used as a definition of a local icc>. Indeed, as
discussed above, the number of K22s and open K22s per user have been computed
while considering a user as a top vertex. A second local coefficient, icc⊥, can be
defined for bottom vertices.
Similarly to what was found in Facebook, the local coefficient has a larger value than
the global one. This may be due to the fact that a large number of nodes with few
K22s and open K22s (usually nodes with small degrees) only are in a single small
strongly connected community, and thus have a higher than average icc. On the
contrary, a small number of nodes with larger degrees and larger number of K22s
and open K22s may be in different communities, leading to smaller than average
icc.

3.5 Results: Other Directed Datasets

We computed the different metrics on four other directed networks: two social
networks, a web network and a citation network. The data information are gathered
in Table 3.3, while the clustering coefficients are reported in Table 3.4. We also
computed the values of the clustering coefficients without the mutual structures
(not provided here); interestingly, those values are close to the ones on the total
graphs.
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Is a Social Network N |E| |E|m
|E|

Instagram Yes 4.5× 104 6.7× 105 11%
Flickr Yes 2.3× 106 3.3× 107 62%
Web (.edu) No 6.9× 105 7.6× 106 25%
Citations No 3.8× 106 1.7× 107 0%

Table 3.3: Datasets information. N is the number of nodes, |E| the number of edges,

and |E|m
|E| the fraction of edges implied in a bidirectional link.

icc tcc ccc mcc ucc
Instagram 12.0% 15.4% 3.7% 22.6% 4.1%
Flickr 12.4% 12.2% 9.3% 13.9% 10.8%
Web (.edu) 46.3% 59.6% 18.8% 78.5% 0.69%
Citations 22.3% 9.1% 0% (none) 6.7%

Table 3.4: Clustering coefficients of the directed datasets.

We observe that the structure of each dataset is revealed by (the mix of) values of
the different clustering coefficients, as discussed below.

Instagram: Instagram is a photo and video-sharing social network. This dataset
was collected by Ferrara et al. [12] in 2014. The network is close to the Twitter
one. Nodes corresponds to the accounts, and there is a link u→ v if the account u
follows the account v. The results are quite similar to what we found for Twitter:
the icc and tcc are high and of the same order; the ccc is also high because of the
bidirectionnal edges (it drastically drops to 0.06% when removing those links). The
mcc is the highest value, while the ucc is lower than the others. This confirms that
social networks share some common characteristics.

Flickr: Flickr is an image and video hosting service, which allows you to follow
other people on the plateform to see more easily their content. The dataset was
collected in 2008 by Mislove et al. [25]. This is once again a graph of followers of
a directed social network. The values are similar to the previous one but for the
ucc, which is higher. We can notice that Flickr looks more like a social media than
Twitter and Instagram, since there is 62% of links implied in bidirectional. This
explains why the undirected clustering coefficient is not so different from the mutual
one .

Berkley-Stanford.edu web pages: The dataset was collected in 2002 by Leskovec
et al.[23]. The nodes represent the pages from berkely.edu and stanford.edu domains
and directed edges represent hyperlinks between them. The tcc, icc, and mcc are
really high. For the tcc, this is due to the very hierarchical structure of the institution
web pages. As an example, a researcher will be linking towards his group, laboratory,
and university in its website, while the group website is linking to its laboratory and
university... This strong structure translates into a high value of the tcc. As for the
icc, research and educational domains form naturally strong communities creating
large number of common neighbors for individuals of the same domain, and thus
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a high icc. Groups/teams/departments also constitutes strong social communities,
leading to a high mcc.

Citations: Collected by Leskovec et al.[22], it includes all citations made by patents
granted between 1975 and 1999. This is a good example of information network,
giving a high value of icc of 22.6%, while the tcc value is 9.1%. Indeed, research
fields and industry domains are strong communities leading to a high icc. Moreover,
it is also not rare to cite a patent and its citations (the patent acting as a survey),
explaining the tcc value. Note that there are no cyclic triangles nor bidirectional
links, because of the temporal structure of citations - a paper will only cite older
papers.

Takeaways: The following takeaways summarize the variety of informations given
by the different clustering coefficients:

• A high value of icc indicates the presence of clusters of interests such as
research communities or interest fields.

• A high value of tcc is the sign of an important local phenomena of friends’ or
acquaintances’ recommendations and/or of a high hierarchical structure in the
dataset.

• The ccc has no real social meaning. If its value can be high in a directed graph,
this is only due to the presence of bidirectional arcs and triangles. The closure
of a cyclic triangles is very rare in directed networks with no bidirectionnal
edges, confirming the general intuition.

• Directed networks have a high mcc. Indeed, their bidirectional parts (mutual
graph) have strong social communities, leading to a high clustering coefficient.

• The ucc is usually significantly lower, showing that the directed part of the
network is better understood using directed clustering coefficients.

• Directed social networks have similar mixes of values of their undirected and
directed clustering coefficients, however, with some notable differences, due to
their diverse usages and information.

3.6 Model with addition of K22s

To model complex networks, a model with a high number of triangles was introduced
in [38]. In this section, we introduce a new random graph model in which the number
of K22s is higher than classical directed random graphs. The model is based on the
model from Bollobás et al. [5] to which we add what we call a K22 event. A K22
event closes an open K22. The principle is that if a user has a common interest
with another user, and if this user has another interest, it has an increased chance
to be interested and to follow it. We then show that the in-degree and out-degree
distributions of the introduced model follow a power law (as many real networks).
Lastly, we exhibit the increase of the interest clustering coefficient of the generated
graphs with the probability of a K22 event.
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3.6.1 Presentation of the model

We recall here the events defining the classic preferential attachment model of [5]
and define the K22 event. We start with an initial graph G0 = (V0, E0). Then, at
each time step t:

• With a probability (1-p) (Bollobás et al. event):

– With a probability α, we add a node u and a link leaving this node and
reaching an existing node v chosen with a probability proportional to
din(v) + δin;

– With a probability β, we add a node v and a link reaching this node
and leaving an existing node u chosen with a probability proportional to
dout(u) + δout;

– With a probability 1−α−β, we add an edge between two existing nodes,
chosen with probability proportional to dout(u)+δout for the leaving node
u and din(v) + δin for the reached node v.

• With a probability p (K22 event):

1) We choose a random node (called u1) with a probability proportional to
its out-degree dout(u1);

2) We pick uniformly at random an out-neighbor of the node u1 (called v1);

3) We pick uniformly at random an in-neighbor of the node v1 (called u2);

4) We pick uniformly at random pick an out-neighbor of the node u2 (called
v2);

5) We add a link from u1 to v2.

The idea of the K22 event is to close an open K22; since u2 follows v1 and v2 at
the same time, v1 and v2 have a higher probability to be similar, and a person u1

following v1 has a higher chance to be interested in v2.
Note that it is possible to introduce multiedges with the K22 events. Indeed, to
make the problem tractable, we allow u1 = u2 in Step 3, or v2 = v1 in Step 4. In the
empirical study, we construct the random graphs with the multiedges and we get rid
of them at the end of the constructions. We empirically verify that the multiedges
do not impact the results in the end of the section. Indeed, most of them appear for
low degree nodes and, thus, they do not affect the tail of the degree distributions.

3.6.2 In-degree and out-degree distributions

We show in what follows that the in- and out-degree distributions of the introduced
model follow power-laws, as most real networks. More precisely:

Theorem 1. The probability P (i) (resp. P (o)) for a node to have in-degree i (resp.
out-degree o) in the new model is:

P (i) ∼
i>>1

i−(1+ 1
A

) and P (o) ∼
o>>1

o−(1+ 1
B

),

where A = p+ (1−p)(1−β)
1+(1−p)(α+β)δin

and B = p+ (1−p)(1−α)
1+(1−p)(α+β)δout

.
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Proof. We first focus on the in-degree distribution. This result is derived from the
equation giving the evolution of the number of nodes of in-degree i as a function of
time, sometimes called Master Equation.
Let G(t) = (V (t), E(t)) be the graph obtained at time t, and N(t) = |V (t)|. The
number of edges at time t is |E(t)| = t + |E0| ≈ t, while the number of nodes is
N(t) = (1− p)(α+ β)(t+ |V0|) ≈ (1− p)(α+ β)t when t is high enough. Hence, the
mean in-degree (and out-degree) of the network is m = 1

(1−p)(α+β)
.

Let us compute the in-degree distribution. Calling N(i, t) the number of nodes
of in-degree i at time t, we can write the Master Equation:

N(i, t+ 1)−N(i, t) = (1− p)αδ0,i + (1− p)βδ1,i (3.18)

+ (1− p)(1− β)
i− 1 + δin

+∞∑
i=0

N(i, t)(i+ δin)

N(i− 1, t) (3.19)

− (1− p)(1− β)
i+ δin

+∞∑
i=0

N(i, t)(i+ δin)

N(i, t) (3.20)

+ p
i− 1

+∞∑
i=0

N(i, t)i

N(i− 1, t)− p i
+∞∑
i=0

N(i, t)i

N(i, t) (3.21)

where δi,j is the Kronecker delta.
The Master Equation formulates the variation of the number of nodes with degree i
between time i and time i+1. The two first terms on the right hand side correspond
to the addition of a new node, with degree 0 or 1 (depending on if we are in the
first or second case of the Bollobás et al. event). The third and fourth terms are the
probabilities that, during the Bollobás et al. event, an edge is connected to a node
of degree (i−1) or i. This would lead to the arrival of a new node of degree i, or the
loss of one of them. Those events occur with probability (1 − p)(α + (1 − α − β)).
Finally, the last two terms correspond to the probability that an edge connects a
node of degree (i− 1) or i during the K22 event.
We now show that the probability to connect to a node (v2) of a given degree
after following an open K22 is proportional to the degree of this node. Indeed, the
probability to connect to a node (v2) of a given degree after following an open K22
is

P (x = v2) =
∑

y∈N+(v2)

P (y = u2)× 1

dout(y)
, (3.22)

where N+(v2) is the set of in-neighbors of v2, and u2 is defined in the model. Using
the same reasoning, we have

P (x = u2) =
∑

y∈N−(u2)

P (y = v1)× 1

din(y)
(3.23)

and

P (x = v1) =
∑

y∈N+(v1)

P (y = u1)× 1

dout(y)
. (3.24)

Since P (y = u1) = dout(y)
t

, we deduce that

P (x = v2) =
din(x)

t
, (3.25)
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which gives us the expected result.
Using this property and knowing that

+∞∑
i=0

i ·N(i, t) = |E(t)| = t (3.26)

and
+∞∑
i=0

N(i, t)δin = δinN(t) = (1− p)(α + β)δin, (3.27)

we can rewrite the equation as:

N(i, t+ 1) = αδ0,i + βδ1,i (3.28)

+
(
p
i− 1

1
+ (1− p)(1− β)

i− 1 + δin
1 + (1− p)(α + β)δin

)N(i− 1, t)

t
(3.29)

−
(

1 +
(
p
i

1
+ (1− p)(1− β)

i+ δin
1 + (1− p)(α + β)δin

)1

t

)
N(i, t). (3.30)

Let us call
Z ≡ 1 + (1− p)(α + β)δin. (3.31)

We need the following lemma from [10]:

Lemma 3 ([10]). If we have an equation of the form :

N(i, t+ 1) =
(

1− b(t)

t

)
N(i, t) + g(t) (3.32)

where b(t)→ b and g(t)→ g as t→ +∞, then

N(i, t)

t
→ g

b+ 1
. (3.33)

Using Lemma 3 and calling P (i) = lim
t→+∞

N(i,t)
t

, we have:

P (i) =

(
(1−p)(1−β)

Z
+p
)

(i−1)+
δin
Z

1+
(

(1−p)(1−β)
Z

+p
)
i+

δin
Z

P (i− 1). (3.34)

Let us call

A ≡ (1− p)(1− β)

Z
+ p. (3.35)

We thus have:

P (i) =
i−1+

δin
ZA

i+
δin
ZA

+ 1
A

P (i− 1) (3.36)

= P (1)
i∏

k=2

k−1+
δin
ZA

k+
δin
ZA

+ 1
A

(3.37)

=
Γ(i+

δin
ZA

)Γ( 1
A

+
δin
ZA

+2)

Γ(i+
δin
ZA

+ 1
A

+1)Γ(
δin
ZA

+1)
. (3.38)

Leading to
P (i) ∼

i>>1
i−(1+ 1

A
). (3.39)
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Figure 3.6: In- (Left) and out- (Right) degree distributions of a network built with
the new model. The obtained distribution is given by the blue points; the black
crosses represent the logarithmic binning of the distribution (a mean of a given
amount of points on a logarithmic scale). The red straight line is the fit of the
logarithmic binning; it has slope of −2.509 (resp. −2.498) for the in- (resp. out-)
degree distribution (expected slopes from analysis are −2.5).

The out-degree distribution calculation follows the same method. The master
equation is the same, except that δin and β are replaced by δout and α. The slope
of the out-degree distribution is thus:

Pout(o) ∼
o>>1

o−(1+ 1
B

),with B =
(1− p)(1− α)

1 + (1− p)(α + β)δout
+ p. (3.40)

Concentration. We have studied here the mean of the distributions. We now use
the Azuma’s inequalities to show the concentration around the mean. We have the
following result [10]: Let Xt be a martingale with |Xs − Xs−1| ≤ c for 1 ≤ s ≤ t.
Then:

P (|Xt −X0| > x) ≤ exp(−x2/2c2t). (3.41)

Let Z(i, t) be the number of vertices of degree i at time t and let Fs denote the σ-field
generated by the choices up to time s. We apply the result to Xs = E(Z(i, t)|Fs).
We have that |Xs − Xs−1| ≤ 2. Indeed, when we add an edge in the network, we
affect only the degrees of its two end-vertices. Since Z(i, 0) = E(Z(i, t)), using the
result with x =

√
t log(t), we have

P (|Z(i, t)− E(Z(i, t))| >
√
t log(t)) ≤ t−

1
8 . (3.42)

And hence, Z(i,t)
t

→
t→+∞

P (i) in probability.

The degree distributions of the model follow power-laws, with exponents between
−2 and −∞. We notice that, for p = 0, we recover the exponents of the Bollobás
et al. model −(1 + 1+(α+β)δin

1−β ) and −(1 + 1+(α+β)δout
1−α ) [5], while, when p goes to 1,

the exponent goes to −2.
Note that, similarly to the Bollobás et al. model, we cannot generate graphs

with any wanted mean-degree and fixed slopes of the power-law. Some constraints
exist in order to keep δin > 0 and δout > 0. For instance, with α = β = 0.4 and
slopes of −2.5 (the values of our experiments), p has to stay in the interval [1

6
, 2

3
].

Validation by simulations. We validate the analysis and the hypothesis by sim-
ulation. In Figure 3.6, we present the in- and out-degree distributions of a network
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Figure 3.7: Interest clustering coefficient of our new model as a function of p, the
probability of a K22 event. The value is compared with the one of the Bollobás et
al. model [5].

built with our new model as an example. The parameters are fixed to p = 0.5,
α = β = 0.4, and δin = δout = 2.0. In this case, the expected slopes are −2.5. The
fit is almost perfect: −2.509 and −2.498 for the in- and out-degree distributions.

3.6.3 Interest clustering coefficient of the new model

We show by simulation how the icc increases as p increases. We compare it with
the one of the Bollobás et al. model. Note that, when p increases, the average
degree of the model increases. Indeed, the mean degree is mnew = 1

(1−p)(α+β)
. To

compare networks with the same characteristics (mean degrees and exponents of the
in-degree distribution), we adapt the parameters of the second model with the value
of p.
Since, in the Bollobas et al. model, the mean degree is mBol = 1

α+β
, we can compare

the two models by: choosing the values of α, β, and p for our model. This imposes
a value of m. We then choose α, β for the Bollobás et al. model, so that the two
networks have the same mean degree. Finally, we choose δin so that the exponent
of the in-degree distribution stays the same in both networks. In practice, we have
fixed the exponent to −2.5 and imposed αnew = βnew = 0.4. We compare the icc

for both models for different values of p and report the results in Figure 3.7. We
used graphs of size N = 107 nodes and averaged over 10 networks for each point.
We see that the icc varies from 0.036% to 4.4% when p varies from 0.2 to 0.6.

3.7 Link Recommendation

We propose to use the K22s defined for our metric to carry out link recommendation,
as we advocate that the interest clustering coefficient is a good measure of common
user interests. For a neighbor, the principle is to recommend links closing open
K22s. We define the strength of a link as the number of open k22s it would close if
added to the graph. Links are then recommended by decreasing strengths. Typical
recommendation systems propose the strongest link to a user (e.g., Facebook) or a
top 10/top 20 list (e.g., Youtube).

We tested our method on the Twitter snapshot. We considered a population of
1000 users selected uniformly at random over the full population of Twitter’s users.
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Figure 3.8: Cumulative distribution of the max and 10th recommendation strength
over 1000 random Twitter’s users for K22 recommendation (Top) and transitive
triangle recommendation (Bottom). The left plots are a zoom on recommenda-
tions with weak strengths (≤ 20). The right plots present the complete cumulative
distribution in log scale. Beware of the y-scale for the K22 zoom left plot.

Note that we excluded users following no one. Indeed, isolated users are not inter-
esting users per se and for this study and they have no TT or K22 recommendations.

For each node, we computed its open K22s (for a node x, we follow all its
out-neighbors, then for each out-neighbor, we follow its in-neighbors, then for each
in-neighbor, we follow its out-neighbors. These last nodes (which were not already
followed by x) are the recommended nodes. We then count how many times a node
is recommended. This gives the link strength.

We compared the method with classic recommendations using triangles. For ex-
ample, on Facebook, it is frequent to have a message such as “8 of your friends know
Bob. Do you know Bob?” Connecting with Bob would close 8 open (undirected)
triangles. As we are considering a directed graph and are focusing on interest links,
we computed recommendations based on transitive triangles, as they have more so-
cial sense than cyclic triangles. For a user x, we recommend the out-neighbors of
the out-neighbors of x.

Note that there are a lot more open K22s than open triangles in the graph,
3.1× 1018 compared to 1.3× 1014. We argue in the following that it allows to make
more recommendations and most importantly better recommendations.

We report in Figure 3.8 histograms of the cumulative distribution over the 1000
random users of the strengths of the recommendation with maximum strength and
of the 10th recommendation. The top plots present K22 recommendations while the
bottom ones the TT recommendations. The right plots show the complete cumu-
lative distribution in log scale, while the left plots are a zoom on recommendations
with weak strengths (≤ 20). Beware that the y-scale of the K22 zoom left plot which
is between 0 and 0.1. Notice also the difference in x-scale for the right plots.

Top/Max recommendation. We remark that a small amount of users have TT
recommendations and no K22 recommendation. This is due to the fact that for a
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Figure 3.9: Strengths of the top 10 recommendations for 2 typical Twitter users
using (Left) K22 recommendations (Right) TT recommendations.

user with few outgoing links, it is more probable that the followed users are also
following at least one other user (providing a TT recommendation) than they are
followed by other users (necessary to provide a K22 recommendation). We do not
advocate to use only K22 recommendations, but to use it as a complementary tool.
In particular, for users with no TT and K22, recommendations would only be made
based on global social network statistics (trending topics for example).

However, when a K22 recommendation exists for a user, it has much more
strength than the TT recommendations for her. Indeed, 21% of users have TT
recommendations of strengths 0 or 1. This number is just 1.2% for K22 recommen-
dations. A recommendation of strength 1 has very good chance to be of no interest,
as it is based on the following of a single user over 500 million ones. Similarly, 28%
of users only have TT recommendations of strengths 2 or lower (to be compared
with 2.5% for K22 recommendations). This means that, for a very large portion
of users, TT recommendations are based on very few links. On the contrary, more
than 94% of users have a top K22 recommendation with strength more than 10.
We are thus able to carry out a meaningful recommendation for the vast majority of
users using K22s.

Top 10 recommendations. When considering a recommendation system propos-
ing a top 10, we see that 25% of users have their 10th TT-recommendation of
strength 1 or lower, and 35% of strength 2 or lower. There does not exist a signif-
icant top 10 list for more than one third of users. On the contrary, 94% of users
have their 10th K22-recommendation with strength higher than 10. Top 10 recom-
mendation systems can thus be implemented for most users using K22s. Moreover,
the distribution of recommendation strengths is very flat when using TT (a large
number of top recommendations have strength 1), see Figure 3.9. Thus, it is very
hard to discriminate between recommended users and to do a meaningful ranking
of recommendations. At the opposite end, the distribution usually is steep for K22.
It is thus a lot easier to establish a ranking.

Typical users. We present in Figure 3.9 the strengths of the top 10 recommenda-
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tions using K22 (Left) and TT (Right) for two typical users. For the first one (Top),
it is implicated in around 200 triangles, representing each a potential recommenda-
tion. However, the strength of the recommendations is very low, just 1 for all of
them. Recommendations for this user would be very bad for two reasons: first, they
are based on the choice of only 1 user. Second, if the recommendation system had
to propose a top 10, how would it discriminate between the 200 similar potential
ones with similar strength. On the contrary, the K22 recommendations have much
more strengths: 72 for the 1st and the 2d ones, and 52 for the 10th one. The K22
recommendations are thus much more well-grounded. For the second user (Bottom),
we observe a similar phenomenon, but with fewer recommendations. It is not even
possible to build a top 10 for her using TT as only 8 links can be proposed, and not
with a high confidence (strength 1). Conversely, the top 10 K22 recommendations
have strengths between 215 and 135.

3.8 Conclusion

In this Chapter, we introduce a new metric, the interest clustering coefficient, to
capture the interest phenomena in a directed graph. Indeed, the classical undi-
rected clustering coefficient apprehends the social phenomena that my friends tend
to be connected. However, it is not adequate to take into account directed interest
links. The interest clustering coefficient is based on the idea that, if two people
are following a common neighbor, they have a higher chance to have other common
neighbors, since they have at least one interest in common. We computed this new
metric on a network known to be at the same time a social and information media,
a snapshot of Twitter from 2012 with 505 million users and 23 billion links. The
computation was made on the total graph, giving the exact value of the interest
clustering coefficient, and using sampling methods. The value of the interest clus-
tering coefficient of Twitter is around 3.3%, higher than (undirected and directed)
clustering coefficients introduced in the literature and based on triangles, which we
also computed on the snapshot. This consolidates the idea that Twitter is indeed
used as a social and information media, and that the new metric introduced in this
Chapter captures the interest phenomena. We then proposed a new model, building
random directed networks with a high value of K22s, and a new method for link
recommendation using K22s. As a future work, we would like to investigate further
link recommendation based on the K22 structure defined for the interest clustering
coefficient: in particular, it would be interesting to carry out a real-world user case
study to investigate if users are more satisfied by such recommendations.
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Chapter 4

A Random Growth Model with
any Real or Theoretical Degree
Distribution

4.1 Introduction

Complex networks appear in the empirical study of real world networks from var-
ious domains, such that social, biology, economy, technology, ... Most of those
networks exhibit common properties, such as high clustering coefficient, commu-
nities, ... Probably the most studied of those properties is the degree distribution
(named DD in the rest of the Chapter), which is often observed as following a power-
law distribution. Random network models have thus focused on being able to build
graphs exhibiting power-law DDs, such as the well-known Barabasi-Albert model [2]
or the Chung-Lu model [7], but also models for directed networks [4] or for networks
with communities [24]. However, this is common to find real networks with DDs not
perfectly following a power-law. For instance for social networks, Facebook has been
shown to follow a broken power-law1 [13], while Twitter only has the distribution
tail following a power-law and some atypical behaviors due to Twitter’s policies, as
we report in Section 4.5.1.

It is yet crucial to build models able to reproduce the properties of real net-
works. Indeed, some studies such as fake news propagation or evolution over time
of the networks cannot always be done empirically, for technical or ethical reasons.
Carrying out simulations with random networks created with well-built models is
a solution to study real networks without directly experimenting on them. Those
models have to create networks with similar properties as real ones, while staying
as simple as possible.

In this Chapter, we propose a random growth model able to create graphs with
almost any (under some conditions) given DD. Classical models usually choose the
nodes receiving new edges proportionally to a linear attachment function f(i) = i (or
f(i) = i+b) [2, 4]. The theoretical DD of the networks generated by those models is
computed using a recurrence equation. The main idea of this Chapter is to reverse
this recurrence equation to express the attachment function f as a function of the
DD. This way, for a given DD, we can compute the associated attachment function,

1We call a broken power-law a concatenation of two power-laws, as defined in [15].
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(a) DD of the number
of unique callers and
callees from a mobile
phone operator. [25]

(b) In-DD between
shop-to-shop rec-
ommendations from
an online market-
place. [26]

(c) Graphlet DD
from a biological
model. [22]

(d) DD of users of Cy-
world, the largest on-
line social network of
South Korea. [1]

(e) DDs of users of
Flickr, an online so-
cial network. [6]

(f) DD of the length
of the contact list in
Microsoft Messenger
network. [16]

(g) DD of the number
of friends from Face-
Book, a social net-
work. [13]

(h) Out-DD of the
number of followees
on Twitter. [27]

Figure 4.1: DDs extracted from different seminal papers studying networks from
various domains.

and use it in a proposed random growth model to create graphs with the wanted
DD. The given DD can either be theoretical, or extracted from a real network.

We compute the attachment function associated with some classical DD, ho-
mogeneous ones such as the geometric distribution, and heterogeneous ones such
as exact power-law and broken power-law. We also study the undirected DD of a
Twitter snapshot of 505 million nodes and 23 billion edges, extracted by Gabielkov
et al. [11] and made available by the authors. We notice it has an atypical shape, due
to Twitter’s policies. We compute empirically the associated attachment function,
and use the model to build random graphs with this DD. A necessary condition
is that the given DD must be defined for all degrees under the (arbitrary chosen)
maximum value. However this condition can be circumvented doing an interpolation
between existing points to estimate the missing ones, as discussed in Section 4.5.
Finally, we study some connections between attachment functions and probability
distributions in Section 4.6. More precisely, we show that in our model, unless for
some really unusual cases, the probability distribution is heavy-tailed if and only if
the attachment function diverges.

The rest of the Chapter is organized as follows. We first discuss the related
work in Section 4.2. In Section 4.3, we present the new model, and invert the
recurrence equation to find the relation between the attachment function and the
DD. We apply this relation to compute the attachment function associated to some
theoretical distributions in Section 4.4. In Section 4.5 we apply our model on a
real-world DD, the undirected DD of Twitter. We finally show the link between
the divergence of the attachment function and the heavy-tailed property of the
probability distribution in Section 4.6.
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4.2 Related Work

The degree distribution has been computed for a lot of networks, in particular for
social networks such as Facebook [13] or Microsoft Messenger [16]. Note that Myers
et al. have also studied DDs for Twitter in [19], using a different dataset than the
one of [11].

Questioning the relevance of power-law fits is not new: for instance, Clauset
et al. [9] or Lima-Mendez and van Helden [17] have already deeply questioned the
myth of power-law -as Lima-Mendez and van Helden call it-, and develop tools to
verify if a distribution can be considered as a power-law or not. Clauset et al.
apply the developed tools on 24 distributions extracted from various domains of
literature, which have all been considered to be power-laws. Among them, “17 of
the 24 data sets are consistent with a power-law distribution”, and “there is only
one case in which the power law appears to be truly convincing, in the sense that it
is an excellent fit to the data and none of the alternatives carries any weight”. In
the continuity of this work, Broido and Clauset study in [5] the DD of nearly 1000
networks from various domains, and conclude that “fewer than 36 networks (4%)
exhibit the strongest level of evidence for scale-free structure“.

The study of Clauset et al. [9] only considered distributions which have a power-
law shape when looking at the distribution in log-log. As a complement, we gathered
DDs from literature which clearly do not follow power-law distributions to show their
diversity. We extracted from literature DDs of networks from various domains:
biology, economy, computer science, ... Each presented DD comes from a seminal
well cited paper of the respective domains. They are gathered in Figure 4.1. Various
shapes can be observed from those DDs, which could (by eyes) be associated with
exponential (Fig. 4.1b, 4.1c), broken power-law (Fig. 4.1a, 4.1e, 4.1g), or even some
kind of inverted broken power-law (Fig 4.1d). We also observe DDs with specific
behaviors (Fig. 4.1f, 4.1h).

The first proposed models of random networks, such as the Erdős–Rényi model [10],
build networks with a homogeneous DD. The observation that a lot of real-world
networks follow power-law DDs lead Albert and Barabasi to propose their famous
model with linear preferential attachment [2]. It has been followed by a lot of ran-
dom growth models, e.g. [4, 7] also giving a DD in power-law. A few models permit
to build networks with any DD: for instance, the configuration model [3, 20] takes as
parameter a DD P and a number of nodes n, creates n nodes with a degree randomly
picked following P , then randomly connects the half-edges of every node. Goshal
and Newman propose in [12] a model generating non-growing networks (where, at
each time-step, a node is added and another is deleted) which can achieve any
DD, using a method close to the one proposed in this Chapter. However, both of
those models generate non-growing networks, while most real-world networks are
constantly growing.

4.3 Presentation of the model

The proposed model is a generalization of the model introduced by Chung and Lu
in [7]. At each time step, we have either a node event or an edge event. During
a node event, a node is added with an edge attached to it; during an edge event,
an edge is added between two existing nodes. Each node to which the edge is
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connected is randomly chosen among all nodes with a probability proportional to a
given function f , called the attachment function. The model is as follows:

. We start with an initial graph G0.

. At each time step t:

- With probability p: we add a node u, and an edge (u, v) where the
node v is randomly chosen among all existing nodes with a probability

f(deg(v))∑
w∈V f(deg(w))

;

- With probability (1 − p): we add an edge (u, v) where the nodes u
and v are randomly chosen among all existing nodes with a probabil-
ity f(deg(u))∑

w∈V f(deg(w))
and f(deg(v))∑

w∈V f(deg(w))
.

Note that the Chung-Lu model is the particular case for which f(i) = i for all i ≥ 1.
We call generalized Chung-Lu model the proposed model where f(i) = i+ b, for all
i ≥ 1 with b > −1.

4.3.1 Connection between the attachment function and the
degree distribution

The common way to find the DD of classical random growth models is to study the
recurrence equation of the evolution of the number of nodes with degree i between
two time steps. This equation can sometimes be easily solved, sometimes not. But
what matters for us is that the common process is to start from a given model
-thus an attachment function f -, and use the recurrence equation to find the DD
P . In this section, we show that the recurrence equation of the proposed model can
be reversed such that, if P if given, we can find an associated attachment function f .

Theorem 2. Let P be a probability distribution of finite mean µ and such that the
following function h is bounded:

h(i) =
P (k > i+ 1)

P (i+ 1)
− P (k > i)

P (i)
.

In the proposed model, if p is chosen as p = 1
µ

and if the attachment function is
chosen as:

∀i ≥ 1, f(i) =
1

P (i)

∞∑
k=i+1

P (k), (4.1)

then the DD of the created graph is distributed according to P .

Remark 2. The condition on p comes from the fact that, by construction of the
model, we have E[N(t)] = pt and E(|E|(t)) = t with |E|(t) the number of edges at
time t. This leads to a mean-degree of 1

p
.

Remark 3. Note that Equation 2 can also be expressed as f(i) = P (k>i)
P (i)

.

For a given probability law, Theorem 2 can be used to compute the attachment
function which, when used in the model, will give this probability law as DD. The
remainder of this subsection is intented to prove Theorem 2.
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Proof of Theorem 2

Let N(i, t) be the random variable corresponding to the number of nodes of degree
i at time t in the graph, N(t) the total number of nodes at time t, and P (i) =

lim
t→+∞

E[N(i,t)
N(t)

] the probability that a random node has degree i in the asymptotic

DD.

Before proving Theorem 2, we need some results on the concentration of N(t)
and

∑
j≥1 f(j)N(j, t). We start with N(t). We will need the following lemma:

Lemma 4 (Chernoff bounds, consult Chapter 4.2 in [18]). Let X1, X2, . . . , Xt be
independent indicator random variables with P[Xi = 1] = pi and P[Xi = 0] = 1− pi.
Let X =

∑t
i=1Xi and µ = E[X] =

∑t
i=1 pi. Then

P[|X − µ| > δµ] ≤ 2e−µδ
2/3.

N(t) is a random variable following a binomial distribution N(t) ∼ B(t, p) + n0,
with n0 the number of nodes in the initial graph. We can thus use Lemma 11 on

N(t); since E[N(t)] = pt, setting δ =
√

9 ln t
pt

we get:

Corollary 1.

P[|N(t)− pt| >
√

9pt ln t] ≤ 2/t3. (4.2)

We also have the following result on P :

Lemma 5. P (i) ∼
t→+∞

E[N(i,t)]
pt

Proof. For more clarity in this proof let us denote N(t) as Nt and N(i, t) as Ni,t.
Let (Ω,F ,P) be the probability space on which random variables Ni,t and Nt are
defined. Thus Ni,t : Ω → R and Nt : Ω → R. Let Ω1 ⊆ Ω denote the set of all
ω ∈ Ω such that Nt(ω) ∈ (E[Nt] −

√
9pt ln t,E[Nt] +

√
9pt ln t). By Corollary 2 we

know that
∑

ω∈Ω\Ω1
P[ω] 6 2/t3. Using the fact that E[Nt] = pt and that for each ω

Ni,t(ω)

Nt(ω)
6 1 we get

E
[
Ni,t

Nt

]
=
∑
ω∈Ω

Ni,t(ω)

Nt(ω)
P[ω] =

∑
ω∈Ω1

Ni,t(ω)

Nt(ω)
P[ω] +

∑
ω∈Ω\Ω1

Ni,t(ω)

Nt(ω)
P[ω] (4.3)

6
∑
ω∈Ω

Ni,t(ω)

E[Nt]−
√

9pt ln t
P[ω] +

∑
ω∈Ω\Ω1

1 · P[ω] (4.4)

6
E[Ni,t]

E[Nt]−
√

9pt ln t
+ 2/t3 ∼ E[Ni,t]

pt
. (4.5)
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On the other hand, since Ni,t ≤ t,

E
[
Ni,t

Nt

]
>
∑
ω∈Ω1

Ni,t(ω)

Nt(ω)
P[ω] >

∑
ω∈Ω1

Ni,t(ω)

E[Nt] +
√

9pt ln t
P[ω] (4.6)

=
1

E[Nt] +
√

9pt ln t

E[Ni,t]−
∑

ω∈Ω\Ω1

Ni,t(ω)P[ω]

 (4.7)

>
1

E[Nt] +
√

9pt ln t

E[Ni,t]−
∑

ω∈Ω\Ω1

t · P[ω]

 (4.8)

>
E[Ni,t]

E[Nt] +
√

9pt ln t
− t · 2/t3

E[Nt] +
√

9pt ln t
(4.9)

∼ E[Ni,t]

pt
. (4.10)

We now discuss the concentration of
∑

j≥1 f(j)N(j, t). Let us define

Zt =
∑
j≥1

f(j)N(j, t). (4.11)

Using the following lemma from [14]:

Lemma 6 (Hoeffding’s inequality, [14]). Let X1, X2, . . . , Xt be independent random
variables such that P[Xk ∈ [ak, bk]] = 1. Let X =

∑t
k=1Xk. Then

P[|X − E[X]| > δ] 6 2 exp

{
− 2δ2∑t

k=1(ak − bk)2

}
. (4.12)

We can show that:

Lemma 7. If the following condition is satisfied:

∃K/∀i > 1, |f(i+ 1)− f(i)| 6 K (4.13)

Then:

P[|Zt − E[Zt]| >
√

32K2t ln t] = O
(

1

t4

)
. (4.14)

Proof. First, remind that Zt can either be express as Zt =
∑

j≥1 f(j)N(j, t) or
Zt =

∑
u∈Vt f(degt(u)), with degt(u) the degree of node u at time t. But Zt can also

be express as a sum of independent random variables X1 + X2 + ... + Xt, with Xk

the variation of Zk during the time step k, i.e. Xk = Zk−Zk−1. In practice, Xk can
take those different values:

• With probability p, a node and an edge are added to the graph, and Xk =
f(degk(u) + 1)− f(degk(u)) + f(1), with u the chosen node at time step k;

• With probability (1 − p), an edge is added between two existing nodes, and
Xk = f(degk(u) + 1)− f(degk(u)) + f(degk(v) + 1)− f(degk(v)), with u and
v the chosen nodes.
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Using the condition on f , we see that we can bound Xk by −2K 6 Xk 6 2K.
We can thus apply Lemma 13 with X =

∑t
k=1 Xk = Zt, ai = −2K and bi = 2K to

obtain:

P[|Zt − E[Zt]| > δ] 6 2 exp

{
− 2δ2

t(4K)2

}
. (4.15)

Now, setting δ =
√

32K2t ln t we get:

P[|Zt − E[Zt]| >
√

32K2t ln t] 6 2 exp

{
−2 · 32K2t ln t

t(4K)2

}
= O

(
1

t4

)
. (4.16)

We will finally need the following lemma from [8]:

Lemma 8 (Compare Chapter 3.3 in [8]). Let (at), (bt), (ct) be three sequences such
that at+1 = (1 − bt

t
)at + ct, lim

t→+∞
bt = b > 0, and lim

t→+∞
ct = c. Then lim

t→+∞
at
t

exists

and equals c
1+b

.

We are now ready to prove Theorem 2.

Proof of Theorem 2. During the proof, we will consider the following conditions as
true:

C1) ∃K/∀i > 1, |f(i+ 1)− f(i)| 6 K,

C2)
∑

j≥1 f(j)P (j) = µ, µ ∈ R∗+.

where we remind that P is defined as P (i) = lim
t→+∞

E[N(i,t)
N(t)

]. We will verify those

conditions are indeed satisfied for the chosen f at the end of the proof. We will
verify at the end of the proof that the first condition is equivalent to the condition
of Theorem 2, and the second condition is indeed satisfied for the chosen f .

We consider the variation of the number of nodes of degree i N(i, t) between
a time step from t to (t+1). During this time step, a node with degree i − 1
may gain a degree and thus increases by 1 the number of nodes of degree i. This
happens with a probability p+2(1−p) (the mean number of half-edges connected to

existing nodes during a time step) × f(i−1)∑
j≥1 f(j)N(j,t)

(the probability for this particular

node of degree i − 1 to be chosen). Since it is the same for all nodes of degree
i − 1, the number of nodes going from degree i − 1 to i during a time step is(
p + 2(1− p)

)
× f(i−1)∑

j≥1 f(j)N(j,t)
×N(i− 1, t). In the same way, a node with degree i

may be connected to an edge, thus becoming a node with degree i+1 and decreasing
the number of nodes of degree i. Finally, with probability p, a node of degree 1 is
added. Gathering those contributions give the following equation:

N(i, t+ 1)−N(i, t) = (4.17)

pδi,1 + (2− p) f(i− 1)∑
j≥1

f(j)N(j, t)
N(i− 1, t)− (2− p) f(i)∑

j≥1

f(j)N(j, t)
N(i, t)

where δi,j is the Kronecker delta. The first term of the right hand is the probability
of addition of a node. The second (resp. third) term is the probability that a
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node of degree i − 1 (resp. i) gets chosen to be the end of an edge. The factor
(2 − p) = p + 2(1 − p) comes from the fact that this happens with probability p
during a node event (connection of a single half-edge) and with probability 2(1− p)
during an edge event (possible connection of 2 half-edges).

We take the expectation on both sides and use Lemma 7 to obtain:

E[N(i, t+ 1)]− E[N(i, t)] = pδi,1 (4.18)

+ (2− p) f(i− 1)∑
j≥1

f(j)E[N(j, t)] +O
(√

t ln t
)E[N(i− 1, t)] (4.19)

− (2− p) f(i)∑
j≥1

f(j)E[N(j, t)] +O
(√

t ln t
)E[N(i, t)]

We denote g(i) = 2−p
p

f(i)∑
j≥1 f(j)P (j)

. We first show that g(i) = 1
P (i)

∞∑
k=i+1

P (k). We

will then show that we can choose f = g.
For i = 1, Equation 4.18 becomes:

E[N(1, t+ 1)]− E[N(1, t)] = p− (2− p) f(1)∑
j≥1

f(j)E[N(j, t)] +O
(√

t ln t
)E[N(1, t)].

(4.20)
Taking:

at =
E[N(1, t)]

p
,

bt =
(2− p)f(1)

p
∑

j≥1 f(j)E[N(j,t)]
pt

+O
(√

ln t
t

) ,
ct = 1,

we have lim
t→+∞

bt = g(1) > 0 and lim
t→+∞

ct = 1. We can thus apply Lemma 8 (and use

Lemma 5 to recognize P (1)):

lim
t→+∞

E[N(1, t)]

pt
= P (1) =

1

1 + g(1)
, (4.21)

Now, ∀i ≥ 2, taking:

at =
E[N(i, t)]

p
,

bt =
(2− p)f(i)

p
∑

j≥1 f(j)E[N(j,t)]
pt

+O
(√

ln t
t

) ,
ct =

(2− p)f(i− 1)

p
∑

j≥1 f(j)E[N(j,t)]
pt

+O
(√

ln t
t

)E[N(i− 1, t)]

pt
,

we have lim
t→+∞

bt = g(i) > 0 and lim
t→+∞

ct = g(i− 1)P (i− 1). Lemma 8 and Lemma 5

give:

lim
t→+∞

E[N(i, t)]

pt
= P (i) =

g(i− 1)P (i− 1)

1 + g(i)
. (4.22)
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Name P(i) f(i) Condition

Generalized Chung-Lu C Γ(i+b)
Γ(i+b+α)

1
α−1

i+ b
α−1

p = α−2
α+b−1

Exact Power-Law i−α

ζ(α)
ζ(α,i+1)
i−α

p = ζ(α)
ζ(α−1)

Geometric Law q(1− q)i−1 1−q
q

p = q

Broken Power-Law

{
C Γ(i+b1)

Γ(i+b1+α1)
if i ≤ d

Cγ Γ(i+b2)
Γ(i+b2+α2)

if i > d
cf. eq. 4.36& 4.37 cf. eq. 4.35

Table 4.1: Attachment functions f and conditions on p for some classical probability
distributions P . ζ(s) is the Riemann zeta function, ζ(s, q) the Hurwitz zeta function.

Iterating over Equation 4.22, we express g as a function of P :

g(i)P (i) = g(i− 1)P (i− 1)− P (i)

= g(i− 2)P (i− 2)− P (i− 1)− P (i)

= · · ·

= g(1)P (1)−
i∑

k=2

P (k)

= 1−
i∑

k=1

P (k)

=⇒ g(i) =
1

P (i)

∞∑
k=i+1

P (k) (4.23)

where we used Equation 4.21 to replace g(1)P (1).
Now, notice that:

∞∑
k=1

g(k)P (k) =
∞∑
k=1

2− p
p

f(k)∑∞
k′=1 f(k′)P (k′)

P (k) =
(2− p)
p

. (4.24)

So g(i) satisfies g(i) = 2−p
p

g(i)∑∞
k=1 g(k)P (k)

. Hence the attachment function can be

chosen as f = g.
We finally have to verify the conditions we put at the beginning of the proof are
true. The first condition is equivalent to the condition of Theorem 2 for the given
f . The second condition is given by Equation 4.24, which conclude the proof.

4.4 Application to some distributions

We now apply Equation 4.1 to compute the attachment function for some classical
distributions. We first start in Section 4.4.1 from the distribution obtained with
the generalized Chung-Lu model to show we find a linear dependence, as expected.
We then compute in Section 4.4.2 the associated attachment function of the broken
power-law distribution. We finally compute the exact power-law and geometric law
distributions in Sections 4.4.3 and 4.4.4. Table 4.1 summarizes those results.
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4.4.1 Preliminary: Generalized Chung-Lu model

As a first example, by taking a power-law DD, we should be able to find a linear
probability distribution for the generalized Chung-Lu model.

In the general Chung-Lu model, we can show that the real DD is not an exact
power-law but a fraction of Gamma function -equivalent to a power-law for high
degrees- of the form:

∀i ≥ 1, P (i) = C
Γ(i+ b)

Γ(i+ b+ α)
∼
i�1

i−α (4.25)

where C = (α − 1)Γ(b+α)
Γ(b+1)

, and α > 2. The choice of α determines the slope of the
DD, while the choice of b determines the mean-degree of the graph.

Expression of p: The condition on p from Theorem 4.1 gives:

1

p
=
∞∑
k=1

kP (k) = (α− 1)
Γ(b+ α)

Γ(b+ 1)
× α2 + α(2b− 1) + b(b− 1)

(α− 2)(α− 1)

Γ(b+ 1)

Γ(α + b+ 1)

=⇒ p =
(α− 2)

α + b− 1
(4.26)

Condition of Theorem 2: We first verify the necessary condition on P of Theo-
rem 2. Since P (X > i) = C

α−1
Γ(i+b)

Γ(i+b+α−1)
, we have:

h(i) =
P (k > i+ 1)

P (i+ 1)
− P (k > i)

P (i)
(4.27)

=
i+ b+ α

α− 1
− i+ b+ α− 1

α− 1
(4.28)

=
1

α− 1
(4.29)

Thus g(i) is constant and verify the condition. Note that this result is expected
since we know that, in this classical case, f is linear and so f(i+ 1)− f(i) is indeed
expected to be constant.

Attachment function f: Using Theorem 2:

f(i) =
1

P (i)

∑
k≥i+1

P (k) =
Γ(i+ b+ α)

Γ(i+ b)

Γ(i+ b+ 1)

(α− 1)Γ(i+ α + b)
(4.30)

=⇒ f(i) =
1

α− 1
i+

b

α− 1
(4.31)

As expected, we find a linear attachment function. To create a graph with a wanted
slope α and mean-degree p−1, one only has to choose α as the wanted slope and
b following equation 4.26. In the particular case b = 0, we recover the Chung-Lu
model of [7], with a slope of α = 2 + p

2−p as expected.
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4.4.2 Broken Power-law

We now study the case of a broken power-law, corresponding to the DD of real world
complex networks, as discussed in Section 4.2. which was the one we were interested
in initially. We consider a distribution of the form:

P (i) =

{
C Γ(i+b1)

Γ(i+b1+α1)
if i ≤ d

Cγ Γ(i+b2)
Γ(i+b2+α2)

if i > d
(4.32)

where d, b1, α1, b2, and α2 are parameters of our distribution such that α1 > 2,
α2 > 2, C a normalisation constant, and γ chosen in order to obtain continuity for
i = d. As seen in section 4.4.1, the ratio of gamma functions is close to a power-law
as soon as i gets large. Hence, this distribution corresponds to two powers-laws,
with different slopes, and a switch between the two at the value d.

We can easily find the continuity constant γ, since it verifies:

Γ(d+ b1)

Γ(d+ b1 + α1)
= γ

Γ(d+ b2)

Γ(d+ b2 + α2)
=⇒ γ =

Γ(d+ b1)Γ(d+ b2 + α2)

Γ(d+ b1 + α1)Γ(d+ b2)
. (4.33)

Constraints on C and p: The value of C can be computed by summing over all
degrees:

C =
( ∞∑
k=1

P (k)
)−1

=
( 1

α1 − 1

Γ(b1 + 1)

Γ(α1 + b1)
+

Γ(b1 + d)

Γ(α1 + b1 + d)

( b2 + d

α2 − 1
− b1 + d

α1 − 1

))−1

(4.34)

Using the condition in Theorem 4.1, p is defined by the following equation:

1

pC
=

d∑
k=1

k
Γ(k + b1)

Γ(k + b1 + α1)
+ γ

∞∑
k=d+1

k
Γ(k + b2)

Γ(k + b2 + α2)

=
α2

1 + α1(2b1 − 1) + b1(b1 − 1)

(α1 − 2)(α1 − 1)

Γ(b1 + 1)

Γ(α1 + b1 + 1)
(4.35)

− α2
1(d+ 1) + α1(b1(d+ 2) + d2 − 1) + b1(b1 − 1)− d(d+ 1)

(α1 − 2)(α1 − 1)

Γ(b1 + d+ 1)

Γ(α1 + b1 + d+ 1)

+ γ
α2

2(d+ 1) + α2(b2(d+ 2) + d2 − 1) + b2(b2 − 1)− d(d+ 1)

(α2 − 2)(α2 − 1)

Γ(b2 + d+ 1)

Γ(α2 + b2 + d+ 1)

Condition of Theorem 2: Let us call Kd = max
i≤d

g(i). From Equation 4.29 we

know that, ∀i > d, h(i) = 1
α−1

since we are in the same case than the Generalized

Chung-Lu model. Thus h is bounded by max(Kd,
1

α−1
).

Attachment function f : For the computation of the attachment function, we
have to distinguish two cases:
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Case 1: i ≥ d

f(i) =
1

P (i)

∞∑
k=i+1

P (k) =
Γ(i+ b2 + α2)

Γ(i+ b2)

∞∑
k=i+1

Γ(k + b2)

Γ(k + b2 + α2)

=
Γ(i+ b2 + α2)

Γ(i+ b2)

1

α2 − 1

Γ(i+ b2 + 1)

Γ(i+ b2 + α2)

=⇒ f(i) =
1

α2 − 1
i+

b2

α2 − 1
(4.36)

We find a linear attachment function: indeed for i > d, we only take into account
the second power-law, hence we expect to find the same result than in section 4.4.1.

Case 2: i < d

f(i) =
Γ(i+ b1 + α1)

Γ(i+ b1)

(
d∑

k=i+1

Γ(k + b1)

Γ(k + b1 + α1)
+ γ

∞∑
k=d+1

Γ(k + b2)

Γ(k + b2 + α2)

)

=
Γ(i+ b1 + α1)

Γ(i+ b1)

(
1

α1 − 1

( Γ(i+ b1 + 1)

Γ(i+ α1 + b1)
− Γ(b1 + d+ 1)

Γ(b1 + α1 + d)

)
+

γ

α2 − 1

Γ(b2 + d+ 1)

Γ(b2 + α1 + d)

)

=
i+ b1

α1 − 1
+

Γ(i+ b1 + α1)

Γ(i+ b1)

(
d+ b2

α2 − 1

Γ(b1 + d)

Γ(b1 + α1 + d)
− 1

α1 − 1

Γ(b1 + d+ 1)

Γ(b1 + α1 + d)

)

f(i) =
i+ b1

α1 − 1
+

Γ(i+ b1 + α1)Γ(d+ b1)

Γ(i+ b1)Γ(d+ b1 + α1)

( b2 + d

α2 − 1
− b1 + d

α1 − 1

)
(4.37)

In this second case, we have a linear part, in addition to a more complicated part.
Note that, for (α1, b1) = (α2, b2), i.e., when the two power-laws are equals, this
second term vanishes, letting as expected only the linear part. Figure 4.2a shows
the shape of f . We see that, while the second part is linear as discussed before, the
first part is sub-linear.

We used this attachment function to build a network using our model. The DD
is shown in Figure 4.2b: we see we built a random network with a broken power-law
distribution as wanted.

4.4.3 Exact power-law degree distribution

The DD obtained with the Chun-Lu model -and most of other classical models-
gives a power-law only for high degrees. We can ask ourselves what would be the
attachment function associated with an exact power-law degree distribution of the
form P (i) = i−α

ζ(α)
, where ζ(s) =

∑
k≥1

1
ks

is the Riemann zeta function.

Constraints on C and p: We have the following equation for p:

1

p
=

1

ζ(α)

∞∑
k=1

k1−α =
ζ(α− 1)

ζ(α)

=⇒ p =
ζ(α)

ζ(α− 1)
. (4.38)
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(a) Theoretical attachment function f (b) DD of a random network

Figure 4.2: Theoretical attachment function f and degree distribution of a random
network for the broken power-law distribution. Parameters are N = 5 · 105, b1 =
b2 = 1, α1 = 2.1, α2 = 4 and d = 100.

Condition of Theorem 2: To verify the condition, we use the fact, for α > 1 and
i > 1,

∑
k≥i+2

k−α ≤
∫

k≥i+1

k−α ≤
∑

k≥i+1

k−α. We have:

h(i) =

∑
k≥i+2

k−α

(i+ 1)−α
−

∑
k≥i+1

k−α

i−α
(4.39)

=

∫
k≥i+1

k−α((i+ 1)α − iα) (4.40)

=
1

α− 1
(i+ 1− (i+ 1)(

i+ 1

i
)−α) (4.41)

=
1

α− 1
(i+ 1− (i+ 1)(1− α

i
+ o(

1

i2
)) (4.42)

=
α

α− 1
+ o(

1

i
) (4.43)

Attachment function: Theorem 2 immediately gives:

f(i) =
1

P (i)

∞∑
k=i+1

P (k) =
ζ(α, i+ 1)

i−α
. (4.44)

4.4.4 Geometric law

We now study the geometric distribution:

∀i ≥ 1, P (i) = q(1− q)i−1. (4.45)

Constraints on p: We have:

1

p
=
∑
k≥1

kq(1− q)k−1 =
q

(1− q)
(1− q)
q2

=
1

q
=⇒ p = q. (4.46)

Condition of Theorem 2:
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(a) DD of the Twitter’s undirected network.

(b) DD of a random network with 8 · 105

nodes using the attachment function of Fig-
ure 4.3c.

(c) Attachment function f resulting from the
undirected DD of Twitter.

Figure 4.3: Modelization of the undirected Twitter’s graph.

h(i) =
(1− q)i+1

q(1− q)i
− (1− q)i

q(1− q)i−1
=

1− q
q
− 1− q

q
= 0 (4.47)

Note that this is an expected result since, for the geometric law, the attachment
function is constant.

Attachment function: The attachment function is easy to compute:

f(i) =
1

q(1− q)i−1

∑
k≥i+1

q(1− q)k−1 =
1

(1− q)i
(1− q)i+1

q
=

1− q
q

. (4.48)

4.5 Real degree distributions

The model can also be applied to an empirical DD. Indeed, we observe in Theorem 2
that f(i) only depends on the values P (i) which can be arbitrary, that is not following
any classical function. This is a good way to model random networks with an
atypical DD. As an example, we apply our model on the DD of an undirected
version of Twitter, shown as having atypical behavior due to the Twitter policies.
We start with a presentation of this DD, then apply our model to build a random
graph with this distribution.

4.5.1 Undirected DD of Twitter

For this study, we use a Twitter snapshot from 2012, recovered by Gabielkov and
Legout [11] and made available by the authors. This network contains 505 million
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nodes and 23 billion edges, making it one of the biggest social graph available nowa-
days. Each node corresponds to an account, and an arc (u, v) exists if the account
u follows the account v. The in- and out-DDs are presented in [27].

In our case, we look at an undirected version of the Twitter snapshot. We
consider the degree of each node as being the sum of its in- and out-degrees. The
distribution of this undirected graph is presented in Figure 4.3a. We notice two
spikes, around d = 20 and d = 2000. We do not know the reason of the first one
(which could be social, or due to recommendation system). The second spike is
explained by a specificity of Twitter: until 2015, to avoid bots which were following
a very large number of users, Twitter limited the number of possible followings to
max(2000, number of followers). In other words, a user is allowed to follow more
than 2000 people only if he is also followed by more than 2000 people. This leads
to a lot of accounts with around 2000 followings. This highlights the fact that some
networks have their own specificities, sometimes due to intern policies, which cannot
be modeled but by a model specifically built for them.

4.5.2 Modelization

Figure 4.3c presents the obtained form of the attachment function f computed using
Equation 4.1 with the DD of Twitter. We notice that the overall function is mainly
increasing, showing that nodes of higher degrees have a higher chance to connect
with new nodes, like in classical preferential attachment models. We also notice two
drops, around 20 and 2000. They are associated with the risings on the DD on the
same degrees: to increase the amount of nodes with those degrees, the attachment
function has to be smaller, so nodes with this degree have less chance to gain new
edges.

We finally use our model with the empirical attachment function of Figure 4.3c.
Note that, in an empirical study, P can be equal to zero for some degrees, for which
no node has this degree in the network. In Twitter, the smallest of those degrees
occurs around 18.000. In that case, f cannot be computed. To get around this
difficulty, we interpolate the missing values of P , using the two closest smaller and
bigger degrees of the missing points. Since we observe the probability distribution
on a log-log scale, we interpolate between the two points as a straight line on a
log-log scale, i.e., as a power-law function. We believe this is a fair choice since we
only look at the tail of the distribution, which looks like a straight line, and since
we interpolate between each pair of closest two points only, instead of fitting on the
whole tail of the distribution.

The DD of a random network built with our model is presented in Figure 4.3b.
For time computation reasons, the built network only has N = 2 · 105 nodes, to be
compared to the 5 · 108 nodes of Twitter. However, it is enough to verify that its
DD shape follows the one of the real Twitter’s DD: in particular we recognize the
spikes around d = 20 and d = 2000.
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4.6 Link between the attachment function and

heavy-tailed distributions

In this Section, we show a correlation between the shape of the attachment function f
and the tail of the probability function P . More precisely, we show that (under some
conditions on f), if f verifies limi→+∞f(i) = +∞, then the associated distribution
P is heavy-tailed, and if f is bounded from above, then, the associated distribution
P is not heavy-tailed.

The heavy-tailed feature of DDs is an interesting property of networks: most
of the time, real-world networks exhibit heavy-tailed DDs, while pure randomness
(as we find in the Erdos-Reyni model) build networks with homogeneous DDs. The
particular case of linear preferential attachment is known to build networks with
heavy-tailed DDs. To the best of our knowledge, this is the first time such a general
correlation is made between the attachment function of random growing models
and the heavy-tailed feature of the DD. Moreover, if the results presented here only
apply for the model proposed in Section 4.3, we believe the proofs can be extended
to most of random growing models to show similar results.

Note that we now consider the model in which we impose an attachment function
f , and we study the shape of the DD (instead of imposing a probability distribution
and study the attachment function, as we have made until now).

4.6.1 Conditions on f

First of all, f has to verify some conditions in order to give a coherent probability
distribution. For instance, choosing f(i) = iα with α > 1 build a graph in which
a dominant vertex emerges such that after n time steps, the degree of this node is
of order n, while the degrees of all other vertices are bounded [21]. Thus the DD
associated with this attachment function is not well-defined. We first express the
conditions on f . It can be summed up by:

Condition 1. In order to obtain a distribution P for the DD verifying
∑

k≥1 P (k) =
1 and

∑
k≥1 kP (k) = µ, µ ∈ R∗+, the attachment function f has to verify:

• If f converges,
+∞∑
i=1

(1+ 1
c
)−i+1

f(i)
is finite, where c = max

i≥1

(
f(i)

)
;

• If f diverges,
+∞∑
i=1

exp
(
−

i∑
k=1

1
f(k)

)
is finite.

Proof. First, we express the condition
∑

k≥1 kP (k) in an interesting form:

Lemma 9.
+∞∑
k=1

f(k)P (k) =
+∞∑
k=1

kP (k) (4.49)
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Proof. Using Equation 4.1, we have:

+∞∑
k=1

f(k)P (k) =
+∞∑
k=1

+∞∑
k′=k+1

P (k′) (4.50)

=
+∞∑
k=1

kP (k) (4.51)

We believe that this surprising equality may lead to insights into the connection
between P and f; we keep this exploration for future works.
We are now left with the study of the convergence of

∑+∞
k=1 P (k) and

∑+∞
k=1 f(k)P (k).

Iterating over Equation 4.22 to express P as a function of f gives:

P (i) = P (1)
i∏

k=2

f(k − 1)

1 + f(k)
(4.52)

We can rewrite this expression as:

P (i) = P (1)
f(1)

f(i)

i∏
k=2

f(k)

1 + f(k)
(4.53)

= P (1)
f(1)

f(i)
exp

(
ln(

i∏
k=2

f(k)

1 + f(k)
)
)

(4.54)

= P (1)
f(1)

f(i)
exp

(
−

i∑
k=2

ln(1 +
1

f(k)
)
)
. (4.55)

From now on we distinguish two cases:

1) f converges:
In this case, ∃c > 0/∀i ≥ 1, f(i) ≤ c. We have:

P (i) ≤ P (1)
f(1)

f(i)
exp

(
−

i∑
k=2

ln(1 +
1

c
)
)

(4.56)

≤ P (1)f(1)
(1 + 1

c
)−i+1

f(i)
(4.57)

=⇒
+∞∑
k=1

P (i)f(i) ≤ P (1)f(1)(c+ 1). (4.58)

So, if f converges,
∑+∞

k=1 f(k)P (k) always converges, and, by Lemma 9, the

mean of P is finite. Equation 4.57 shows that
∑

k≥1

(1+ 1
c
)−k

f(k)
has to be finite in

order to satisfy the condition on
∑+∞

k=1 P (k).

2) f diverges:

Then, we can find i0 such that
i∑

k=2

ln(1+ 1
f(k)

) ∼
i→+∞

i0∑
k=2

ln(1+ 1
f(k)

)+
i∑

k=i0+1

1
f(k)

.
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We can rewrite Equation (4.55) as:

P (i) ∼ P (1)
f(1)

f(i)
exp

(
−

i0∑
k=2

ln(1 +
1

f(k)
) +

i0∑
k=1

1

f(k)
−

i∑
k=1

1

f(k)

)
(4.59)

∼ Kf,i0

1

f(i)
exp

(
−

i∑
k=1

1

f(k)

)
, (4.60)

with Kf,i0 a constant depending of f and i0. Thus, by Lemma 9, the mean of
P is finite if and only if the following quantity is finite:

+∞∑
i=1

exp
(
−

i∑
k=1

1

f(k)

)
.

Note that the other condition, i.e., the convergence of
+∞∑
i=1

1
f(i)

exp
(
−

i∑
k=1

1
f(k)

)
,

is included in the first one. Indeed, since f diverges, there exists a constant i1
such that ∀i ≥ i10, 1

f(i)
≤ 1, and the second condition can be bounded by the

first one.

It is interesting to note that, for f(i) ∝ iα, α = 1 is the limit case for which
Condition 1 holds, as expected from the results of [21].

4.6.2 Link between the limit of f and heavy-tailed DDs

Definition 2. [23] We say that a distribution P is heavy-tailed if it decays more
slowly than an exponential, i.e.:

∀t > 0, etiP (X > i) →
i→+∞

+∞.

We show the two following theorems:

Theorem 3. Let f be an attachment function verifying Condition 1 and such that
lim
i→+∞

f(i) = +∞. Then, the associated distribution P is heavy-tailed.

Theorem 4. Let f be an attachment function verifying Condition 1 and such that
f is bounded from above by M > 0. Then, the associated distribution P is not
heavy-tailed.

To prove those theorems, we will use the following lemma:

Lemma 10. P is heavy-tailed if and only if

∀t > 0, ∃i0 > 0/ lim
i→+∞

ht,i0(i) = +∞,

where ht,i0(i) = ti+ log(f(i0))−
i−1∑
k=i0

log(1 + 1
f(k+1)

).
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Proof. We recall that P (i) = P (1)
i−1∏
k=1

f(k)
1+f(k+1)

and f(i) = 1
P (i)

∞∑
k=i+1

P (k). It implies

P (X > i) :=
∞∑

k=i+1

P (k) = f(i)P (i) = f(i)P (1)
i−1∏
k=1

f(k)

1 + f(k + 1)
. (4.61)

Let t > 0, i0 > 0. We have:

etiP (X > i) = etif(i)P (1)
i−1∏
k=1

f(k)

1 + f(k + 1)
(4.62)

= etielog(f(i))P (1)

i0−1∏
k=1

f(k)

1 + f(k + 1)

i−1∏
k=i0

elog(
f(k)

1+f(k+1)
) (4.63)

= P (1)

i0−1∏
k=1

( f(k)

1 + f(k + 1)

)
× e

ti+log(f(i))+
i−1∑
k=i0

log
(

f(k)
1+f(k+1)

)
. (4.64)

We call ht,i0(i) = ti + log(f(i)) +
i−1∑
k=i0

log( f(k)
1+f(k+1)

). P is heavy-tailed if and only if

lim
i→+∞

ht,i0(i) = +∞. But ht,i0 can also be expressed as:

ht,i0(i) = ti+ log(f(i))−
i−1∑
k=i0

log

(
1 + f(k + 1)

f(k)

)
(4.65)

= ti+ log(f(i))−
i−1∑
k=i0

log

(
f(k + 1)

f(k)
(1 +

1

f(k + 1)
)

)
(4.66)

= ti+ log(f(i))−
i−1∑
k=i0

log(f(k + 1)) +
i−1∑
k=i0

log(f(k))−
i−1∑
k=i0

log

(
1 +

1

f(k + 1)

)
(4.67)

= ti+ log(f(i))− log(f(i)) + log(f(i0))−
i−1∑
k=i0

log

(
1 +

1

f(k + 1)

)
(4.68)

= ti+ log(f(i0))−
i−1∑
k=i0

log

(
1 +

1

f(k + 1)

)
. (4.69)

Proof of Theorem 3.
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Let t > 0. By definition of the limit, ∃i0/∀i > i0, f(i) > 1
et/2−1

. So:

ht,i0(i) = ti+ log(f(i0))−
i−1∑
k=i0

log

(
1 +

1

f(k + 1)

)
(4.70)

> ti+ log(f(i0))−
i−1∑
k=i0

log

(
1 +

1

( 1
et/2−1

)

)
(4.71)

= ti+ log(f(i0))− (i− i0 − 1)
t

2
(4.72)

=
t

2
i+ log(f(i0)) + (i0 + 1)

t

2
(4.73)

→
i→+∞

+∞. (4.74)

Proof of Theorem 4.

ht,i0(i) = ti+ log(f(i0))−
i−1∑
k=i0

log

(
1 +

1

f(k + 1)

)
(4.75)

< ti+ log(f(i0))−
i−1∑
k=i0

log

(
1 +

1

M

)
(4.76)

= ti+ log(f(i0))− (i− i0 − 1) log

(
1 +

1

M

)
. (4.77)

Let t = 1
2
log(1 + 1

M
).

ht,i0(i) = −1

2
log

(
1 +

1

M

)
i+ log(f(i0)) + (i0 + 1) log(1 +

1

M
) (4.78)

→
i→+∞

−∞. (4.79)

There exists a value of t > 0 such that the limit of ht,i0 goes to −∞ for any i0, hence
P is not heavy-tailed.

Remark 4. The set of preferential attachment functions (i.e., increasing functions)
is not included nor it contains any of previous cases. Indeed, we can have a pref-
erential attachment (or a non preferential attachment function) in the first case,
as well as in the second case. Indeed, bounded increasing functions are covered by
Theorem 4 while non bounded increasing functions are covered by Theorem 3.

Remark 5. Not all functions are included in the previous cases. It remains the
cases where the limit of f is not infinite but f is not bounded either (for instance,
f(i) = 1 if i is pair, f(i) = i otherwise). However, we believe those cases are hardly
encountered in practice.

4.7 Conclusion

In this Chapter, we proposed a new random growth model picking the nodes to be
connected together in the graph with a flexible probability f . We expressed this
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f as a function of any distribution P , leading to the possibility to build a random
network with any wanted degree distribution. We computed f for some classical
distributions, as much as for a snapshot of Twitter of 505 million nodes and 23 billion
edges. We believe this model is useful for anyone studying networks with atypical
degree distributions, regardless of the domain. If the presented model is undirected,
we also believe a directed version of it, based on the Bollobás et al. model [4], can be
easily generalized from the presented one. We also believe this model can enlighten
relations between the degree distributions of networks and the attachment function
behind them, both in random growth models as well as real-world networks. To take
a step in that direction, we show that, in our model, the limit of the attachment
function f is sufficient to determine if the probability distribution of the graphs is
heavy-tailed or not. We believe this result can be extended to other models, and
hopefully lead to interesting studies on real-world networks.
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Chapter 5

Preferential attachment
hypergraph with high modularity

5.1 Introduction

We recall that it was empirically recognized that the common ground of large com-
plex networks are small diameter, high clustering coefficient, heavy tailed degree
distribution and visible community structure [5]. Surprisingly, all those character-
istics appear, no matter whether we investigate biological, social, or technological
systems.

A number of theoretical models were presented throughout last 25 years. Just
to mention the mostly investigated ones: Watts and Strogatz (exhibiting small-
world and high clustering properties [26]), Molloy and Reed (with a given degree
sequence [20]), Chung-Lu (with a given expected degree sequence [8]), Cooper-Frieze
(model of web graphs [10]), Buckley-Osthus [7] or random intersection graph (with
high clustering properties and following a power-law, [4]). None of here mentioned
graphs captures all the four properties listed in the previous paragraph, e.g., [26]
does not have a heavy tailed degree distribution, [2] and [8] models suffer from van-
ishing clustering coefficient [5], almost all of them do not exhibit visible community
structure, i.e., have low modularity.

Modularity is a parameter measuring how clearly a network may be divided
into communities. It was introduced by Newman and Girvan in [22]. A graph has
high modularity if it is possible to partition the set of its vertices into communities
inside which the density of edges is remarkably higher than the density of edges
between different communities. Modularity is known to have some drawbacks (for
thorough discussion check [18]). Nevertheless, today it remains a popular measure
and is widely used in most common algorithms for community detection [12, 3, 24].
It is well known that the real-life social or biological networks are highly modu-
lar [11, 13]. At the same time simulations show that most of existing preferential
attachment models have low modularity. Good modularity properties one finds in
geometric models, like spatial preferential attachment graphs [16, 15], however they
use additionally a spatial metric.

Finally, almost all the up-to-date complex networks models are graph models
thus are able to mirror only binary relations. In practical applications k-ary relations
(co-authorship, groups of interests or protein reactions) are often modelled in graphs
by cliques which may lead to a profound information loss.
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Results. Within this article we propose a dynamic model with high modularity
by preserving a heavy tailed degree distribution and not using a spatial metric.
Moreover, our model is a random hypergraph (not a graph) thus can reflect k-ary
relations. Preferential attachment hypergraph model was first introduced by Wang
et al. in [25]. However, it was restricted just to a specific subfamily of uniform acyclic
hypergraphs (the analogue of trees within graphs). The first rigorously studied non-
uniform hypergraph preferential attachment model was proposed only in 2019 by
Avin et al. [1]. Its degree distribution follows a power-law. However, our empirical
results indicate that this model has a weakness of low modularity (see Section 5.7.2).
To the best of our knowledge the model proposed within this article is the first
dynamic non-uniform hypergraph model with degree sequence following a power-law
and exhibiting clear community structure. We experimentally show that features of
our model correspond to the ones of a real co-authorship network built upon Scopus
database.

Chapter organisation. Basic definitions are introduced in Sec. 5.2. In Sec. 5.3,
we present a universal preferential attachment hypergraph model which unifies many
existing models (from classical Barabási-Albert graph [2] to Avin et al. preferential
attachment hypergraph [1]). In Sec. 5.4, we use it as a component in a stochas-
tic block model to build a general hypergraph with good modularity properties.
Theoretical bounds for its modularity and experimental results on a real data are
presented in Sec. 5.7. Further works are presented in Sec. 5.8.

5.2 Basic definitions and notation

We define a hypergraph H as a pair H = (V,E), where V is a set of vertices and
E is a set of hyperedges, i.e., non-empty, unordered multisets of V . We allow for
a multiple appearance of a vertex in a hyperedge (self-loops). The degree of a
vertex v in a hyperedge e, denoted by d(v, e), is the number of times v appears in
e. The cardinality of a hyperedge e is |e| =

∑
v∈e d(v, e). The degree of a vertex

v ∈ V in H is understood as the number of times it appears in all hyperedges, i.e.,
deg(v) =

∑
e∈E d(v, e). If |e| = k for all e ∈ E, H is said k-uniform.

We consider hypergraphs that grow by adding vertices and/or hyperedges at
discrete time steps t = 0, 1, 2, . . .. The hypergraph obtained at time t will be denoted
by Ht = (Vt, Et) and the degree of u ∈ Vt in Ht by degt(u). By Dt we denote the
sum of degrees at time t, i.e., Dt =

∑
u∈Vt degt(u). As the hypergraph gets large, the

probability of creating a self-loop can be well bounded and is quite small provided
that the sizes of hyperedges are reasonably bounded.

Nk,t stands for the number of vertices in Ht of degree k. We say that the degree
distribution of a hypergraph follows a power-law if the fraction of vertices of degree
k is proportional to k−β for some exponent β ≥ 1. Formally, we will interpret it as

limt→∞ E
[
Nk,t
|Vt|

]
∼ c · k−β for some positive constant c and β ≥ 1. For f and g being

real functions we write f(k) ∼ g(k) if f(k)/g(k)
k→∞−−−→ 1.

Modularity measures the presence of community structure in the graph. Its
definition for graphs introduced by Newman and Girvan in 2004 is given below.

Definition 3 ([22]). Let G = (V,E) be a graph with at least one edge. For a
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partition A of vertices of G define its modularity score on G as

qA(G) =
∑
A∈A

(
|E(A)|
|E|

−
(
vol(A)

2|E|

)2
)
,

where E(A) is the set of edges within A and vol(A) =
∑

v∈A deg(v). Modularity of
G is given by q∗(G) = maxA qA(G).

Conventionally, a graph with no edges has modularity equal to 0. The value∑
A∈A

|E(A)|
|E| is called an edge contribution while

∑
A∈A

(
vol(A)
2|E|

)2

is a degree tax.

A single summand of the modularity score is the difference between the fraction
of edges within A and the expected fraction of edges within A if we considered a
random multigraph on V with the degree sequence given by G. One can observe
that the value of q∗(G) always falls into the interval [0, 1).

Several approaches to define a modularity for hypergraphs can be found in con-
temporary literature. Some of them flatten a hypergraph to a graph (e.g., by re-
placing each hyperedge by a clique) and apply a modularity for graphs (see e.g.
[21]). Others base on information entropy modularity [27]. We want to stick to the
classical definition from [22] and preserve a rich hypergraph structure, therefore we
work with the definition proposed by Kamiński et al. in [17].

Definition 4 ([17]). Let H = (V,E) be a hypergraph with at least one hyperedge.
For ` ≥ 1 let E` ⊆ E denote the set of hyperedges of cardinality `. For a partition
A of vertices of H define its modularity score on H as

qA(H) =
∑
A∈A

(
|E(A)|
|E|

−
∑
`≥1

|E`|
|E|
·
(
vol(A)

vol(V )

)`)
,

where E(A) is the set of hyperedges within A (a hyperedge is within A if all its
vertices are contained in A), vol(A) =

∑
v∈A deg(v) and vol(V ) =

∑
v∈V deg(v).

Modularity of H is given by q∗(H) = maxA qA(H).

A single summand of the degree tax is the expected number of hyperedges within A
if we considered a random hypergraph on V with the degree sequence given by H
and having the same number of hyperedges of corresponding cardinalities.

We write that an event A occurs with high probability (whp) if the probability
P[A] depends on a certain number t and tends to 1 as t tends to infinity.

5.3 General preferential attachment hypergraph

model

In this section we generalise a hypergraph model proposed by Avin et al. in [1].
Model from [1] allows for two different actions at a single time step - attaching a
new vertex by a hyperedge to the existing structure or creating a new hyperedge
on already existing vertices. We allow for four different events at a single time
step, admit the possibility of adding more than one hyperedge at once and draw
the cardinality of newly created hyperedge from more than one distribution. The
events allowed at a single time step in our model Ht are: adding an isolated vertex,
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adding a vertex and attaching it to the existing structure by m hyperedges, adding
m hyperedges, or doing nothing. The last event “doing nothing” is included since
later we put Ht in a broader context of stochastic block model, where it serves as a
single community. “Doing nothing” indicates a time slot in which nothing associated
directly with Ht happens but some event takes place in the other part of the whole
stochastic block model.

5.3.1 Model H(H0,p,Y,X,m, γ)

General hypergraph model H is characterized by six parameters. These are:

1. H0 - initial hypergraph, seen at t = 0;

2. p = (pv, pve, pe) - vector of probabilities indicating, what are the chances that
a particular type of event occurs at a single time step; we assume pv+pve+pe ∈
(0, 1]; additionally pe is split into the sum of r probabilities pe = p

(1)
e + p

(2)
e +

. . .+p
(r)
e which allows for adding hyperedges whose cardinalities follow different

distributions;

3. Y = (Y0, Y1, . . . , Yt, . . .) - independent random variables, cardinalities of hy-
peredges that are added together with a vertex at a single time step;

4. X = ((X
(1)
1 , . . . , X

(1)
t , . . .), (X

(2)
1 , . . . , X

(2)
t , . . .), . . . , (X

(r)
1 , . . . , X

(r)
t , . . .)) - r se-

quences of independent random variables, cardinalities of hyperedges that are
added at a single time step when no new vertex is added;

5. m - number of hyperedges added at once;

6. γ > 0 - parameter appearing in the formula for the probability of choosing a
particular vertex to a newly created hyperedge.

Here is how the structure of H = H(H0, p, Y,X,m, γ) is being built. We start
with some non-empty hypergraph H0 at t = 0. We assume for simplicity that H0

consists of a hyperedge of cardinality 1 over a single vertex. Nevertheless, all the
proofs may be generalised to any initial H0 having constant number of vertices and
constant number of hyperedges with constant cardinalities. ‘Vertices chosen from
Vt in proportion to degrees’ means that vertices are chosen independently (possibly
with repetitions) and the probability that any u from Vt is chosen is

P[u is chosen] =
degt(u) + γ∑

v∈Vt(degt(v) + γ)
=

degt(u) + γ

Dt + γ|Vt|
.

For t > 0 we form Ht+1 from Ht choosing only one of the following events according
to p.

• With probability pv: Add one new isolated vertex.

• With probability pve: Add one vertex v. Draw a value y being a realization
of Yt. Then repeat m times: select y − 1 vertices from Vt in proportion to
degrees; add a new hyperedge consisting of v and y − 1 selected vertices.
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• With probability p
(1)
e : Draw a value x being a realization of X

(1)
t . Then

repeat m times: select x vertices from Vt in proportion to degrees; add a
new hyperedge consisting of x selected vertices.

• . . .

• With probability p
(r)
e : Draw a value x being a realization of X

(r)
t . Then re-

peat m times: select x vertices from Vt in proportion to degrees; add a new
hyperedge consisting of x selected vertices.

• With probability 1− (pv + pve + pe): Do nothing.

We allow for r different distributions from which one can draw the cardinality of
newly created hyperedges. Later, when Ht serves as a single community in the
context of the whole stochastic block model, this trick allows for spanning a new
hyperedge across several communities drawing vertices from each of them according
to different distributions. This reflects some possible real-life applications. Think of
an article authored by people from two different research centers. Our experimental
observation is that it is very unlikely that the number of authors will be distributed
uniformly among two centers. More often, one author represents one center, while
the others are affiliated with the second one.

5.3.2 Degree distribution of H(H0,p,Y,X,m, γ)

In this section we prove that the degree distribution of H = H(H0, p, Y,X,m, γ)
follows a power-law with β > 2. We assume that supports of random variables
indicating cardinalities of hyperedges are bounded and their expectations are con-
stant. This assumption is in accord with potential applications - think of co-authors,
groups of interest, protein reactions, ect.

Theorem 5. Consider a hypergraph H = H(H0,p, Y,X,m, γ) for any t > 0. Let

i ∈ {1, . . . , r}. Let E[Yt] = µ0, and E[X
(i)
t ] = µi. Moreover, let 1 6 Yt < t1/4 and

1 6 X
(i)
t < t1/4. Then the degree distribution of H follows a power-law with

β = 2 +
γV̄ +m · pve
D̄ −m · pve

,

where V̄ = pv + pve and D̄ = m(pveµ0 + p
(1)
e µ1 + . . .+ p

(r)
e µr) which are the expected

number of vertices added per a single time step and the expected number of vertices
that increase their degree in a single time step, respectively.

The number of vertices in Ht is a random variable following a binomial distribu-
tion. Since |V0| = 1 we have |Vt| ∼ B(t, pv + pve) + 1. Since |E0| = 1, the number of
hyperedges in Ht is a random variable satisfying |Et| ∼ mB(t, pve + pe) + 1.

Before we prove Theorem 5 we discuss briefly the concentration of random vari-
ables |Vt| (the number of vertices at time t), Dt (the sum of degrees at time t) and
Wt = Dt + γ|Vt|. We also state two technical lemmas that will be helpful later on.

Lemma 11 (Chernoff bounds, [19], Chapter 4.2). Let Z1, Z2, . . . , Zt be independent
indicator random variables with P[Zi = 1] = pi and P[Zi = 0] = 1 − pi. Let δ > 0,
Z =

∑t
i=1 Zi and µ = E[Z] =

∑t
i=1 pi. Then

P[|Z − µ| > δµ] ≤ 2e−µδ
2/3.
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Corollary 2. Since |Vt| ∼ B(t, pv + pve) + 1 setting δ =
√

9 ln t
(pv+pve)t

in Lemma 11 we

get

P[||Vt| − E[]|Vt|]| >
√

9(pv + pve)t ln t] ≤ 2/t3.

Lemma 12. If limt→∞
E[Nk,t]

t
∼ ck−β for some positive constant c then

lim
t→∞

E
[
Nk,t

|Vt|

]
∼ c

pv + pve
k−β.

(Here “∼” refers to the limit by k →∞.)

Proof. Let (Ω,F ,P) be the probability space on which random variables Nk,t and
|Vt| are defined. Thus Nk,t : Ω→ R and |Vt| : Ω→ R. Let Ω1 ⊆ Ω denote the set of

all ω ∈ Ω such that |Vt|(ω) ∈ (E|Vt| −
√

9(pv + pve)t ln t,E|Vt|+
√

9(pv + pve)t ln t).
By Corollary 2 we know that

∑
ω∈Ω\Ω1

P[ω] 6 2/t3. Using the fact that for each ω
Nk,t(ω)

|Vt|(ω)
6 1 we get

E
[
Nk,t

|Vt|

]
=
∑
ω∈Ω

Nk,t(ω)

|Vt|(ω)
P[ω] =

∑
ω∈Ω1

Nk,t(ω)

|Vt|(ω)
P[ω] +

∑
ω∈Ω\Ω1

Nk,t(ω)

|Vt|(ω)
P[ω] (5.1)

6
∑
ω∈Ω

Nk,t(ω)

E|Vt| −
√

9(pv + pve)t ln t
P[ω] +

∑
ω∈Ω\Ω1

1 · P[ω] (5.2)

6
E[Nk,t]

E|Vt| −
√

9(pv + pve)t ln t
+ 2/t3 ∼ E[Nk,t]

(pv + pve)t
. (5.3)

On the other hand, since Nk,t ≤ t,

E
[
Nk,t

|Vt|

]
>
∑
ω∈Ω1

Nk,t(ω)

|Vt|(ω)
P[ω] >

∑
ω∈Ω1

Nk,t(ω)

E|Vt|+
√

9(pv + pve)t ln t
P[ω] (5.4)

=
1

E|Vt|+
√

9(pv + pve)t ln t

E[Nk,t]−
∑

ω∈Ω\Ω1

Nk,t(ω)P[ω]

 (5.5)

>
1

E|Vt|+
√

9(pv + pve)t ln t

E[Nk,t]−
∑

ω∈Ω\Ω1

t · P[ω]

 (5.6)

>
E[Nk,t]

E|Vt|+
√

9(pv + pve)t ln t
− t · 2/t3

E|Vt|+
√

9(pv + pve)t ln t
(5.7)

∼ E[Nk,t]

(pv + pve)t
. (5.8)

Lemma 13 (Hoeffding’s inequality, [14]). Let Z1, Z2, . . . , Zt be independent random
variables such that P[Zi ∈ [ai, bi]] = 1. Let δ > 0 and Z =

∑t
i=1 Zi. Then

P[|Z − E[Z]| > δ] 6 2 exp

{
− 2δ2∑t

i=1(ai − bi)2

}
.

Thibaud Trolliet 95



Study of the properties and modeling of complex social networks

Lemma 14. Let t > 0. Let E[Yt] = µ0, and E[X
(i)
t ] = µi for i ∈ {1, 2, . . . , r}.

Moreover, let 2 6 Yt < t1/4 and 1 6 X
(i)
t < t1/4 for i ∈ {1, 2, . . . , r}. Let Wt =

Dt + γ|Vt|. Then

P[|Wt − E[Wt]| ≥ mt3/4
√

2 ln t] = O
(

1

t4

)
.

Proof. Our initial hypergraph consists of a single hyperedge of cardinality 1 over a
single vertex thus W0 = γ + 1. For t ≥ 1 we can obtain Wt from Wt−1 by adding:

1. either γ with probability pv,

2. or γ +mYt with probability pve,

3. or mX
(1)
t with probability p

(1)
e ,

4. or mX
(2)
t with probability p

(2)
e ,

5. or . . .,

6. or mX
(r)
t with probability p

(r)
e ,

7. or 0 with probability 1− pv − pve − pe.

Thus we can express Wt as the sum of independent random variables Wt = γ + 1 +
Z1 +Z2 + . . .+Zt, where E[Zi] = γV̄ +D̄ and 1 6 Zi 6 mt1/4 +γ for i ∈ {1, 2, . . . , t}
and D̄ and V̄ are defined as in Theorem 5:

V̄ = pv + pve and D̄ = m(pveµ0 + p(1)
e µ1 + . . .+ p(r)

e µr).

Now, setting δ = mt3/4
√

2 ln t in Hoeffding’s inequality (see Lemma 13) we get

P[|Wt − E[Wt]| > mt3/4
√

2 ln t] 6 2 exp

{
− 4 ·m2 · t6/4 · ln t

(t+ 1)(m · t1/4 + γ)2

}
= O

(
1

t4

)
.

Lemma 15 ([9], Chapter 3.3). Let {at} be a sequence satisfying the recursive relation

at+1 =

(
1− bt

t

)
at + ct

where bt
t→∞−−−→ b > 0 and ct

t→∞−−−→ c. Then the limit limt→∞
at
t

exists and

lim
t→∞

at
t

=
c

1 + b
.

Now we are ready to prove Theorem 5.

Theorem 5. Here we take a standard master equation approach that can be found
e.g. in Chung and Lu book [9] about complex networks or Avin et al. paper [1] on
preferential attachment hypergraphs.

Recall that Nk,t denotes the number of vertices of degree k at time t. We need
to show that

lim
t→∞

E
[
Nk,t

|Vt|

]
∼ c̃k−β (5.9)
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for some constant c̃ and β = 2 + γV̄+m·pve
D̄−m·pve . However, by Lemma 12 we know that it

suffices to show that

lim
t→∞

E[Nk,t]

t
∼ ck−β (5.10)

for some constant c.
Our initial hypergraph H0 consists of a single hyperedge of cardinality 1 over

a single vertex thus we can write N0,0 = 0 and N1,0 = 1. Now, to formulate a
recurrent master equation we make the following observation for t > 1. The vertex
v has degree k at time t if either it had degree k at time t − 1 and was not chosen
to any new hyperedge or it had degree k − i at time t − 1 and was chosen i times
to new hyperedges. Note that i can be at most min{k,mZt}, where Zt represents a

random variable chosen among Yt, X
(1)
t , . . . , X

(r)
t according to (pv, pve, p

(1)
e , . . . , p

(r)
e ).

Additionally, at each time step a vertex of degree 0 may appear as the new one with
probability pv and a vertex of degree m may appear as the new one with probability
pve. Let Ft be the σ-algebra associated with the probability space at time t. Let
Qd,k,t denote the probability that a specific vertex of degree k was chosen d times to
be included in new hyperedges at time t (this probability is expressed as a random
variable since it depends on a specific realization of the process up to time t − 1).
Let also Wt = Dt + γ|Vt|. For t > 1 we get

E[N0,t|Ft−1] = pv +N0,t−1Q0,0,t (5.11)

and when k > 1

E[Nk,t|Ft−1] = δk,mpve +Nk,t−1Q0,k,t +Nk−1,t−1Q1,k−1,t

+

min{k,mZt}∑
i=2

Nk−i,t−1Qi,k−i,t,
(5.12)

where δk,m is the Kronecker delta. We have extracted the first two terms in the above
sum since below we prove that these are the dominating terms. Taking expectation
on both sides we obtain

E[N0,t] = pv + E[N0,t−1Q0,0,t] (5.13)

and for k > 1

E[Nk,t] = δk,mpve + E[Nk,t−1Q0,k,t] + E[Nk−1,t−1Q1,k−1,t]

+

min{k,mZt}∑
i=2

E[Nk−i,t−1Qi,k−i,t].
(5.14)

Note that

Q0,k,t = pv + (1− pv − pve − pe) + pveE

[(
1− k + γ

Wt−1

)m(Yt−1)

|Ft−1

]

+ p(1)
e E

(1− k + γ

Wt−1

)mX(1)
t

|Ft−1

+ . . .

+ p(r)
e E

(1− k + γ

Wt−1

)mX(r)
t

|Ft−1


(5.15)
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while for i ∈ {1, 2, . . . , k}

Qi,k−i,t = pveE

[(
m(Yt − 1)

i

)(
k − i+ γ

Wt−1

)i(
1− k − i+ γ

Wt−1

)m(Yt−1)−i

|Ft−1

]

+ p(1)
e E

(mX(1)
t

i

)(
k − i+ γ

Wt−1

)i(
1− k − i+ γ

Wt−1

)mX(1)
t −i

|Ft−1

+ . . .

+ p(r)
e E

(mX(r)
t

i

)(
k − i+ γ

Wt−1

)i(
1− k − i+ γ

Wt−1

)mX(r)
t −i

|Ft−1

 .
(5.16)

Now, for any random variable Zt with constant expectation µ, independent of the
σ-algebra Ft−1, and such that 1 ≤ Zt < t1/4, by Bernoulli’s inequality we have

E

[(
1− k + γ

Wt−1

)mZt
|Ft−1

]
> E

[(
1− mZt(k + γ)

Wt−1

)
|Ft−1

]
= 1− mµ(k + γ)

Wt−1

.

(5.17)

On the other hand (using the fact that for x ∈ [0, 1] and n ∈ N we have (1− x)n ≤
1

1+nx
):

E

[(
1− k + γ

Wt−1

)mZt
|Ft−1

]
6 E

[
1

1 + mZt(k+γ)
Wt−1

|Ft−1

]

= E
[
1− mZt(k + γ)

Wt−1 +mZ(k + γ)
|Ft−1

]
6 E

[
1− mZt(k + γ)

Wt−1

+
(mZt(k + γ))2

W 2
t−1

|Ft−1

]
6 1− mµ(k + γ)

Wt−1

+
t1/2(m(k + γ))2

W 2
t−1

,

(5.18)

where the last inequality follows from the assumption Zt < t1/4. Now, let us consider
the master equation (5.14) for E[Nk,t] term by term. We start with the expected
number of vertices that had degree k at time t− 1 and are still of degree k at time
t. By (5.17), Lemma 14 and the fact that Nk,t−1 ≤ t we get

E[Nk,t−1Q0,k,t] > E

[
Nk,t−1

(
1− (k + γ)m(pve(µ0 − 1) + p

(1)
e µ1 + . . .+ p

(r)
e µr)

Wt−1

)]

= E
[
Nk,t−1

(
1− (k + γ)(D̄ −mpve)

Wt−1

)]
> E[Nk,t−1]

(
1− (k + γ)(D̄ −mpve)

E[Wt−1]−mt3/4
√

2 ln t

)
− t · 1

t4
.

To get the last inequality one needs to conduct calculations analogous to those from
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the proof of Lemma 12. By 5.18 and additionally using the fact that Wt−1 ≥ 1

E[Nk,t−1Q0,k,t] 6 E
[
Nk,t−1

(
1− (k + γ)(D̄ −mpve)

Wt−1

+
t1/2(pve + pe)(m(k + γ))2

W 2
t−1

)]
6 E[Nk,t−1]

(
1− (k + γ)(D̄ −mpve)

E[Wt−1] +mt3/4
√

2 ln t
+
t1/2(pve + pe)(m(k + γ))2

(E[Wt−1]−mt3/4
√

2 ln t)2

)
+
(
t+ t3/2(pve + pe)(m(k + γ))2

)
· 1

t4
.

Again, for the last inequality, proceed as in the proof of Lemma 12. Since E[Wt−1] =
D̄(t− 1) + γV̄ (t− 1) and E[Nk,t−1] 6 t, we obtain for fixed k

E[Nk,t−1Q0,k,t] = E[Nk,t−1]

(
1− (k + γ)(D̄ −mpve)

t(D̄ + γV̄ ) +O(t3/4
√

ln t)

)
+O

(
1√
t

)
. (5.19)

We treat E[Nk−1,t−1Q1,k−1,t] similarly. On one hand we have

Q1,k−1,t > pveE
[
m(Yt − 1)

k − 1 + γ

Wt−1

(
1− mYt(k − 1 + γ)

Wt−1

)
|Ft−1

]
+ p(1)

e E

[
mX

(1)
t

k − 1 + γ

Wt−1

(
1− mX

(1)
t (k − 1 + γ)

Wt−1

)
|Ft−1

]
+ . . .

+ p(r)
e E

[
mX

(r)
t

k − 1 + γ

Wt−1

(
1− mX

(r)
t (k − 1 + γ)

Wt−1

)
|Ft−1

]

> pveE
[
m(Yt − 1)

k − 1 + γ

Wt−1

|Ft−1

]
− pveE

[
Y 2
t (m(k − 1 + γ))2

W 2
t−1

|Ft−1

]
+ . . .

+ p(r)
e E

[
m(X

(r)
t )

k − 1 + γ

Wt−1

|Ft−1

]
− p(r)

e E

[
(X

(r)
t )2(m(k − 1 + γ))2

W 2
t−1

|Ft−1

]

>
pvem(µ0 − 1)(k − 1 + γ)

Wt−1

− t1/2pve(m(k − 1 + γ))2

W 2
t−1

+ . . .

+
p

(r)
e mµr(k − 1 + γ)

Wt−1

− t1/2p
(r)
e (m(k − 1 + γ))2

W 2
t−1

=
(k − 1 + γ)(D̄ −mpve)

Wt−1

− t1/2(pve + pe)(m(k − 1 + γ))2

W 2
t−1

(the last inequality follows from assumptions Yt < t1/4 and X
(i)
t < t1/4), while on

the other hand

Q1,k−1,t 6 pveE
[
m(Yt − 1)

k − 1 + γ

Wt−1

|Ft−1

]
+ . . .+ p(r)

e E
[
mX

(r)
t

k − 1 + γ

Wt−1

|Ft−1

]
6

(k − 1 + γ)(D̄ −mpve)
Wt−1

.

(5.20)

Again, by Lemma 14, the fact that Nk−1,t−1 6 t and Nk−1,t−1/Wt−1 6 1 for fixed k
we get

E[Nk−1,t−1Q1,k−1,t] = E[Nk−1,t−1]

(
(k − 1 + γ)(D̄ −mpve)
t(D̄ + γV̄ ) +O(t3/4

√
ln t)

)
+O

(
1√
t

)
. (5.21)
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The terms from equations (5.19) and (5.21) are those dominating in master equation
(5.14). For the sum of other terms we have the following upper bound when k is fixed
(the fourth inequality follows from upper bounding the sums by infinite geometric
series and the asymptotics in the last line follows from Lemma 14)

min{k,mZt}∑
i=2

E[Nk−i,t−1Qi,k−i,t] 6 t ·
k∑
i=2

E[Qi,k−i,t]

6 t · E

[
k∑
i=2

(
pveE

[(
m(Yt − 1)

i

)(
k − i+ γ

Wt−1

)i
|Ft−1

]

+ p(1)
e E

[(
mX

(1)
t

i

)(
k − i+ γ

Wt−1

)i
|Ft−1

]
+ . . .

+p(r)
e E

[(
mX

(r)
t

i

)(
k − i+ γ

Wt−1

)i
|Ft−1

])]

6 t · E

[
E

[
k∑
i=2

(
pve(mYt)

i

(
k + γ

Wt−1

)i
+ . . .

+p(r)
e (mX

(r)
t )i

(
k + γ

Wt−1

)i)
|Ft−1

]]

6 t · E

[
E

[
pve

(m(k + γ)Yt)
2

W 2
t−1

1

1− m(k+γ)Yt
Wt−1

+ . . .

+p(r)
e

(m(k + γ)X
(r)
t )2

W 2
t−1

1

1− m(k+γ)X
(r)
t

Wt−1

|Ft−1


6 t · E

pve (m(k + γ)t1/4)2

W 2
t−1

1

1− m(k+γ)t1/4

Wt−1

+ . . .

+p(r)
e

(m(k + γ)t1/4)2

W 2
t−1

1

1− m(k+γ)t1/4

Wt−1


= t · E

[
(pve + pe)(m(k + γ))2t1/2

W 2
t−1

Wt−1

Wt−1 −m(k + γ)t1/4

]
= (pve + pe)(m(k + γ))2t3/2 · E

[
1

Wt−1(Wt−1 −m(k + γ)t1/4)

]
∼ (pve + pe)(m(k + γ))2t3/2 · 1

t2
= O

(
1√
t

)
.

(5.22)

Plugging 5.19, 5.21 and 5.22 into master equation (5.13) and (5.14) we obtain

E[N0,t] = E[N0,t−1]

(
1− γ(D̄ −mpve)

t(D̄ + γV̄ ) +O(t3/4
√

ln t)

)
+ pv +O

(
1√
t

)
(5.23)
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and

E[Nk,t] = E[Nk,t−1]

(
1− (k + γ)(D̄ −mpve)

t(D̄ + γV̄ ) +O(t3/4
√

ln t)

)
+ E[Nk−1,t−1]

(
(k − 1 + γ)(D̄ −mpve)
t(D̄ + γV̄ ) +O(t3/4

√
ln t)

)
+ δk,mpve +O

(
1√
t

)
.

(5.24)

For k ≥ 0 by Lk denote the limit

Lk = lim
t→∞

E[Nk,t]

t
.

First we prove that the limit L0 exists. We apply Lemma 15 to equation (5.23) by
setting

bt =
γ(D̄ −mpve)

D̄ + γV̄ +O(t3/4
√

ln t/t)
and ct = pv +O

(
1√
t

)
.

We get

lim
t→∞

bt =
γ(D̄ −mpve)
D̄ + γV̄

and lim
t→∞

ct = pv,

therefore

L0 =
pv

1 + γ(D̄−mpve)
D̄+γV̄

=
pv

D̄+γV̄
D̄−mpve

D̄+γV̄
D̄−mpve + γ

.

Now, we assume that the limit Lk−1 exists and we will show by induction on k that
Lk exists. Again, applying Lemma 15 to equation (5.24) with

bt =
(k + γ)(D̄ −mpve)

D̄ + γV̄ +O(t3/4
√

ln t/t)

and

ct =
E[Nk−1,t−1]

t

(
(k − 1 + γ)(D̄ −mpve)
D̄ + γV̄ +O(t3/4

√
ln t/t)

)
+ δk,mpve +O

(
1√
t

)
we get

lim
t→∞

bt =
(k + γ)(D̄ −mpve)

D̄ + γV̄

and

lim
t→∞

ct = Lk−1
(k − 1 + γ)(D̄ −mpve)

D̄ + γV̄
+ δk,mpve,

therefore

Lk =
Lk−1

(k−1+γ)(D̄−mpve)
D̄+γV̄

+ δk,mpve

1 + (k+γ)(D̄−mpve)
D̄+γV̄

=
Lk−1(k − 1 + γ) + δk,mpve

D̄+γV̄
D̄−mpve

k + γ + D̄+γV̄
D̄−mpve

. (5.25)

From now on, for simplicity of notation, we put D = D̄+γV̄
D̄−mpve thus we have

L0 =
pvD

γ +D
and Lk =

Lk−1(k − 1 + γ) + δk,mpveD

k + γ +D
.
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When k ∈ {1, 2, . . . ,m− 1}, iterating over k gives

Lk = L0 ·
k∏
`=1

`− 1 + γ

`+ γ +D
=

pvD

γ +D

k∏
`=1

`− 1 + γ

`+ γ +D

and when k > m

Lk =
pvD

γ +D

(
k∏
`=1

`− 1 + γ

`+ γ +D

)
+

pveD

m+ γ +D

(
k∏

`=m+1

`− 1 + γ

`+ γ +D

)

=

(
pvD

γ +D

(
m∏
`=1

`− 1 + γ

`+ γ +D

)
+

pveD

m+ γ +D

)(
k∏

`=m+1

`− 1 + γ

`+ γ +D

)

=

(
pvD

γ +D

Γ(m+ γ)

Γ(γ)

Γ(γ +D + 1)

Γ(m+ γ +D + 1)
+

pveD

m+ γ +D

)
· Γ(m+ γ +D + 1)

Γ(m+ γ)

Γ(k + γ)

Γ(k + γ +D + 1)
,

where Γ(x) is the gamma function. Since limk→∞
Γ(k)kα

Γ(k+α)
= 1 for constant α ∈ R, we

get

lim
t→∞

E[Nk,t]

t
= Lk ∼ c · k−(1+D)

(“∼” refers to the limit by k →∞) for

c = pvD ·
Γ(γ +D)

Γ(γ)
+ pveD ·

Γ(m+ γ +D)

Γ(m+ γ)
.

Hence, by Lemma 12, we obtain

lim
t→∞

E
[
Nk,t

|Vt|

]
∼ c

pv + pve
k−(1+D).

We infer that the degree distribution of our hypergraph follows power-law with

β = 1 +D = 1 +
D̄ + γV̄

D̄ −mpve
= 2 +

γV̄ +mpve
D̄ −mpve

.

Below we present a bunch of examples showing that our theorem generalises the
results for the degree distribution of well known models.

Example 1 (Barabási-Albert graph model, [2]). In a single time step we always
add one new vertex and attach it with m edges (in proportion to degrees) to existing
structure. Thus pv = 0, pve = 1, pe = 0, V̄ = 1, Yt = 2, D̄ = 2m, γ = 0 and we get
β = 2 + m

2m−m = 3.

Example 2 (Chung-Lu graph model, [9]). In a single time step: we either (with
probability p) add one new vertex and attach it with an edge (in proportion to degrees)
to existing structure; otherwise we just add an edge (in proportion to degrees) to

existing structure. Thus pv = 0, pve = p, pe = 1−p, V̄ = p, Yt = 2, r = 1, X
(1)
t = 2,

D̄ = 2, m = 1, γ = 0 and we get β = 2 + p
2−p .
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Example 3 (Avin et al. hypergraph model, [1]). In a single time step we either
(with probability p) add one new vertex and attach it with a hyperedge of cardinality
Yt (in proportion to degrees) to existing structure; otherwise we just add a hyper-
edge of cardinality Yt to existing structure. The assumptions on Yt and the sum
of degrees Dt are: 1. limt→∞

E[Dt−1]/t
E[Yt]−pve = D ∈ (0,∞), 2. E[| 1

Dt
− 1

E[Dt]
|] = o(1/t),

3. E
[

Y 2
t

D2
t−1

]
= o(1/t). The result from [1] states that the degree distribution of the

resulting hypergraph follows a power-law with β = 1 + D. Note that in our model
limt→∞

E[Dt−1]/t
E[Yt]−pve = D̄

D̄−pve . Setting pv = 0, pve = p, pe = 1− p, V̄ = p, m = 1, γ = 0

we get β = 2 + pve
D̄−pve = 1 + D̄

D̄−pve = 1 +D.

Remark 6. Even though our result from this section may seem similar to what was
obtained by Avin et al., it is easy to indicate cases that are covered by our model but
not by the one from [1] and vice versa. Indeed, the model from [1] admits a wide
range of distributions for Yt. In particular, as authors underline, three mentioned
assumptions hold for Yt which is polynomial in t. This is the case not covered by
our model (we upper bound Yt by t1/4) but we also can not think of real-life examples
that would require bigger hyperedges. Whereas we can think of some natural examples
that break requirements from [1] but are admissible in our model. Put Yt = 2 if t is

odd and Yt = 3 if t is even. Then lim
t→∞
t - even

E[Dt−1]/t
E[Yt]−pve = 5/2

3−pve and lim
t→∞
t - odd

E[Dt−1]/t
E[Yt]−pve = 5/2

2−pve

thus the limit limt→∞
E[Dt−1]/t
E[Yt]−pve does not exist. Whereas in our model we are allowed

to put r = 2, p
(1)
e = p

(2)
e = 1/2, X

(1)
t = 2, X

(2)
t = 3 which probabilistically simulates

stated example.

5.4 Hypergraph model with high modularity

In this section we present a new preferential attachment hypergraph model which
features partition into communities. To the best of our knowledge no mathematical
model so far consolidated preferential attachment, possibility of having hyperedges
and clear community structure. We prove that its degree distribution follows a
power-law in Section 5.6, and study its modularity in Section 5.7.

We denote our hypergraph by Gt = (Vt, Et). At each time step either a new
vertex (vertex-step) or a new hyperedge (hyperedge-step) is added to the existing

structure. The set of vertices of Gt is partitioned into r communities Vt = C
(1)
t ∪̇

C
(2)
t ∪̇ . . . ∪̇ C

(r)
t . Whenever a new vertex is added to Gt it is assigned to the one of

r communities and stays there forever.
Hypergraph model G is characterized by six parameters:

1. G0 - initial hypergraph seen at time t = 0 with vertices partitioned into r
communities V0 = C

(1)
0 ∪̇ C

(2)
0 ∪̇ . . . ∪̇ C

(r)
0 ;

2. p ∈ (0, 1) - the probability of taking a vertex-step;

3. vector M = (m1,m2, . . . ,mr) with all mi positive, constant and summing up

to 1; mi is the probability that a randomly chosen vertex belongs to C
(i)
t ;

4. d-dimensional matrix Pr×...×r of hyperedge probabilities (Pi1,i2,...,id is the prob-
ability that communities i1, . . . , id share a hyperedge); d is the upper bound
for the number of communities shared by a single hyperedge;
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5. X = ((X
(1)
0 , X

(1)
1 , . . .), (X

(2)
0 , X

(2)
1 , . . .), . . . , (X

(d)
0 , X

(d)
1 , . . .)) - d sequences of

independent random variables indicating the number of vertices from a par-
ticular community involved in a newly created hyperedge;

6. γ > 0 - parameter appearing in the formula for the probability of choosing a
particular vertex to a newly created hyperedge.

We build a structure ofG(G0, p,M,X, P, γ) starting with some initial hypergraph
G0. Here G0 consists of r disjoint hyperedges of cardinality 1. All vertices are
assigned to different communities. ‘Vertices are chosen from C

(i)
t in proportion to

degrees’ means that vertices are chosen independently (possibly with repetitions)

and the probability that any u from C
(i)
t is chosen equals

P[u is chosen] =
degt(u) + γ∑

v∈C(i)
t

(degt(v) + γ)
,

(degt(v) is the degree of v in Gt). For t > 0, Gt+1 is obtained from Gt as follows:

• With probability p add one new isolated vertex and assign it to one of r
communities according to a categorical distribution given by vector M .

• Otherwise, create a hyperedge:

– according to P select N communities (N is a random variable depending

on P ) that will share a hyperedge being created, say C
(i1)
t , C

(i2)
t , . . . , C

(iN )
t ;

– assign selected communities to N random variables chosen from {X(1)
t ,

. . . , X
(r)
t } uniformly independently at random, say to X

(j1)
t , . . . , X

(jN )
t ;

– for each s ∈ {1, . . . , N} select X
(js)
t vertices from C

(is)
t in proportion to

degrees;

– create a hyperedge consisting of all selected vertices.

5.5 Study of the co-authorship hypergraph

Before showing the power-law degree distribution and the strong modularity of the
model presented in Section 5.4, we first study the co-publication hypergraph ex-
tracted from the Scopus database. The study of this graph allows us to determine
the values of the model parameters (p,M,X, P, γ) in the real co-publication graph.

5.5.1 Presentation of the network

We first present the co-publication hypergraph. This work is a collaboration with
economists from the laboratory of GREDEG and of the SKEMA Business School.
The overall goal is to study the impact of research fundings on productivity and
pluridisciplinarity. In that purpose, they crawled publication metadata in Scopus,
a transdisciplinary database of abstracts and citations of scientific publications of
the publisher Elsevier. The extraction contains all papers published from 1990 to
2018 with at least one French co-author, leading to 3.9 million papers from 2.2
million distinct authors from various disciplines such as ecology, computer science,
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Figure 5.1: Distribution of the sizes of the communities for the co-publication hy-
pergraph.

music, philosophy and so on. Note that among those papers, we only kept the ones
with fewer than 100 authors. We believe this arbitrary threshold is reasonable in
order to avoid papers which would lead to high hyperedges with no real collaboration
meaning. We cleaned those raw data in order to get rid of some singularities (papers
without authors, ...) and kept only for each paper its id, its publication date, and
the list of its authors.

We then represent those data into a hypergraph: a node corresponds to an
author, and a hyperedge corresponds to a paper written by a set of authors - e.g., a
paper with the three authors Alice, Bob, and Clara will give a hyperedge between
the three nodes associated to Alice, Bob, and Clara.

5.5.2 Study of the properties

We now compute the parameters (p,M,X, P, γ) in the co-publication hypergraph.
Those parameters will be used in Section 5.7 to compare the co-publication hyper-
graph with randomly generated hypergraphs from the model with same parameters.

Largest Connected Component

We first study the connected components. The largest connected component con-
tains the main part of the graph, with 94.22% of the nodes and 99.23% of the edges.
From now on, we thus work on this largest connected component.

Number of communities

In order to study the communities, our first idea was to use an implementation for
community detection in hypergraphs in the Julia language [23]. This implementa-
tion uses the modularity for hypergraphs from Definition 4 introduced in [17]. To
the best of our knowledge, this is the only implementation available nowadays to
find communities directly using hypergraphs properties. However, if this implemen-
tation is useful for smaller graphs, the computation on the co-publication graph with
millions of nodes and hyperedges was really long to run and returned bad-quality
partitions of the nodes, resulting into a small value of modularity.

Another way to partition the nodes into communities is to use a projection of
the hypergraph into a weighted graph, and use well-known partitioning algorithms
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Figure 5.2: Proportion of nodes contained in communities of size bigger than 100.

on this graph. Note that, since the partition into communities only concerns nodes
and not hyperedges, the same partition can be used to compute both the modularity
of the projected graph and the one of the hypergraph.

The projected graph is built such that each hyperedge is transformed into a clique
with edges of weight 1/k, with k the size of the hyperedge. Edges are weighted in
order to moderate the influence of the size of the hyperedges. Note that this chosen
weight is an arbitrary choice, and the study of other choices (such that taking weights
1 or 2/(k(k − 1))) would be interesting for future works. However, as we will see,
this projection already gives good results for partitioning. We also remind that the
projected graph is only used to find the partition, while the hypergraph is used for
the rest of the study.

To find a good partition for the nodes, we use the Leiden’s algorithm [24], known
to give faster and better results than the well-known Louvain’s algorithm [3]. We also
used the Louvain’s algorithm in order to compare both methods, and confirm that,
in our case, the Leiden’s algorithm gave better results and in a smaller amount of
time. We apply the Leiden’s algorithm in the projected graph. We obtain 595 com-
munities. Using those communities to compute the modularity on the co-publication
hypergraph using Definition 4 gives a value of 0.63. This high value confirmed that
the obtained partition reflects well the hypergraph community structure. Figure 5.1
presents the distribution of the obtained community sizes.

For the rest of the study, we decided to keep only communities with more than
one hundred nodes, in order to get rid of the communities too small to have a real
meaning. Note that those small communities only concern 0.44% of the nodes. Doing
so leaves us with a total of 47 communities. For those 47 communities, Figure 5.2
represents the proportions of the sizes of the kept communities. Note that this
corresponds to the parameter M of the model presented in Section 5.4.

Number of communities involved by a hyperedge

Having a partition for the communities, we now study how many communities each
hyperedge involves. Figure 5.3 presents the proportion of hyperedges in which ex-
actly X communities are involved. For instance, if you take a hyperedge randomly,
you have 74.4% chance that all its nodes belong to the same community. In partic-
ular, we see that 93.9% of hyperedges are contained into one or two communities.
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Figure 5.3: Number of communities implied in a hyperedge.
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Figure 5.4: Matrix P : Pi,j corresponds to the probability that a hyperedge contains
nodes of communities i and j.

This justifies the choice of a 2-dimensional matrix P in the application of the model
of Section 5.4.

Real values for the parameters of the model

Finally, we computed the different values for the parameters of the model presented
in Section 5.4:

• p = number of nodes
number of nodes+number of edges

= 0.3628;

• M is given by Figure 5.2;

• The 2 distributions for picking the sequences of random variables X are repre-
sented in Figure 5.5. Figure 5.5a (resp. Figure 5.5b) presents the distribution
of the number of papers with a given number of authors and for which authors
all belong to the same community (resp. belong to exactly two communities);

• P is presented in Figure 5.4; in particular, we note that the non-diagonal
elements sums to α = 0.208;

• γ is chosen arbitrarily.
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Figure 5.5: H(r)(n): distribution of the number of papers with n authors who belong
to exactly r communities.

5.6 Degree distribution of G(G0,p,M,X,P, γ)

We show in this section that a graph G built with the model presented in Section 5.4
have degree distributions following a power-law. A power-law degree distribution
of G comes from the fact that each community of G behaves over time as the
hypergraph model H presented in Section 5.3.1. Thus the degree distribution of
each community follows a power-law. This we prove using directly Theorem 5.

Theorem 6. Consider a hypergraph G = G(G0, p,M,X, P, γ) for all t > 0. Let

E[X
(i)
t ] = µi and 1 6 X

(i)
t < t1/4 for i ∈ {0, 1, . . . , r}. Then the degree distribution of

G follows a power-law with β = 2+γ ·minj∈{1,...,r}
{
V̄j/D̄j

}
, where V̄j is the expected

number of vertices added to C
(j)
t at a single time step and D̄j is the expected number

of vertices from C
(j)
t that increase their degree at a single time step. I.e.,

β = 2 +
γp

(1− p)µ1+...+µr
r

· min
j∈{1,...,r}

{
mj

sj

}
,

where sj is the probability that by creating a new hyperedge a community j is chosen
as the one sharing it.

Remark 7. The value sj can be derived from P ; it is the sum of probabilities of
creating a hyperedge between C(j) and any other subset of communities.

The number of vertices in Gt is a random variable satisfying |Vt| ∼ B(t, p) + r,
while for the number of hyperedges in Gt we have |Et| ∼ B(t, 1− p) + r. Note that
since |Vt| follows a binomial distribution, Lemma 12 holds also in case of Gt if we
replace pv + pve by p.

Recall that Nk,t stands for the number of vertices in Gt of degree k. For i ∈
{1, 2, . . . , r} by N

(i)
k,t we denote the number of vertices of degree k in Gt belonging

to community C
(i)
t . Thus Nk,t =

∑r
i=1N

(i)
k,t .

Lemma 16. Consider a single community C
(j)
t of a hypergraph Gt. Let E[X

(i)
t ] = µi

and 1 6 X
(i)
t < t1/4 for i ∈ {0, 1, . . . , r}. Then the degree distribution of vertices

from C
(j)
t follow a power-law with

βj = 2 +
γV̄j
D̄j
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where V̄j is the expected number of vertices added to C
(j)
t at a single time step and

D̄j is the average number of vertices from C
(j)
t that increase their degree at a single

time step, thus V̄j = pmj and D̄j = (1 − p)sj
µ1+...+µr

r
, where sj is the probability

that by creating a new hyperedge a community j is chosen as the one sharing it (we
obtain sj from matrix P - see remark below).

Proof. Note that the community C
(j)
t+1 arises from community C

(j)
t choosing at time

t only one of the following events according to p, M and P .

• With probability pmj: Add one new isolated vertex.

• With probability
(1−p)sj

r
: Select X

(1)
t vertices from C

(j)
t in proportion to their

degrees; these are vertices included in a newly created hyperedge, thus their
degrees will increase.

• . . .

• With probability
(1−p)sj

r
: Select X

(r)
t vertices from C

(j)
t in proportion to their

degrees; these are vertices included in a newly created hyperedge, thus their
degrees will increase.

• With probability 1− (pmj + (1− p)sj): Do nothing.

Now, apply Theorem 5 with pv = pmj, pve = 0, p
(1)
e = p

(2)
e = . . . = p

(r)
e =

(1−p)sj
r

and

m = 1. We get that the degree distribution of vertices from C
(j)
t follow a power-law

with

βj = 2 +
γV̄j
D̄j

= 2 +
γpmj

(1− p)sj µ1+...+µr
r

.

Theorem 6. We need to prove that limt→∞ E
[
Nk,t
|Vt|

]
∼ c̃k−β for some constant c̃ and

β as in the statement of theorem. By Lemma 12 we know that it suffices to show

limt→∞
E[Nk,t]

t
∼ ck−β for some constant c. By Lemma 12 and Lemma 16 we write

lim
t→∞

E[Nk,t]

t
= lim

t→∞

E[N
(1)
k,t ]

t
+ lim

t→∞

E[N
(2)
k,t ]

t
+ . . .+ lim

t→∞

E[N
(r)
k,t ]

t
∼ c1k

−β1 + c2k
−β2 + . . .+ crk

−βr

for some constants c1, . . . , cr and βj = 2 +
γV̄j
D̄j

. Thus limt→∞
E[Nk,t]

t
∼ ck−β, where

β = min
j∈{1,...,r}

{βj} = 2 + γ · min
j∈{1,...,r}

{
V̄j
D̄j

}
= 2 +

γp

(1− p)µ1+...+µr
r

· min
j∈{1,...,r}

{
mj

sj

}
.

In Figure 5.6 we present log-log plots of a power-law distribution fitted to the
degree distribution (DD) of the real-life co-authorship hypergraph, denoted by R.
R is the same as in Section 5.5. Left chart presents the degree distribution of the
whole R while the right one refers only to the biggest community of R found by
Leiden algorithm. We see that both those distributions can be considered in first
approximation as following a power-law in their tail. Note that this assumption has
to be rigorously checked, study that we keep for future works.

Let us also make one remark about the implementation of matrix P .
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Figure 5.6: A power-law distribution fitted to the degree distributions.

Remark 8. Observe that storing hyperedge probabilities in d-dimensional matrix P
we use much more space than we actually should. The same probabilities may repeat
many times in P . E.g., when d = 2 we get 2-dimensional symmetric matrix P such
that

∑r
i=1

∑i
j=1 pij = 1 and the the probability of creating hyperedge between two

distinct communities C(i) and C(j) is in matrix P doubled - as pij and pji. If we
allow for bigger hyperedges it may be repeated much more times. In fact we need to
store at most 2r − 1 different probabilities (one for each nonempty subset of the set
of communities) while in P we store dr values (in particular, if d = r we store rr

instead 2r − 1 values). Nevertheless, for formal proofs this notation is convenient
thus we use it at the same time underlining that implementation may be done much
more space efficiently.

5.7 Modularity of G(G0,p,M,X,P, γ)

In this section we give lower bounds for the modularity of G = G(G0, p,M,X, P, γ)
in terms of the values from matrix P . We present experimental results showing the
advantage in modularity of our model over the one in [1].

5.7.1 Theoretical results

We analyse G(G0, p,M,X, P, γ) = (V,E) obtained up to time t (this time we omit
superscripts t). Recall that each vertex from V is assigned to one of r communities,
V = C(1) ∪̇C(2) ∪̇ . . . ∪̇C(r). We obtain the lower bound for modularity deriving the
modularity score of the partition C = {C(1), C(2), . . . , C(r)}. This choice of partition
seems obvious provided that matrix P is strongly assortative, i.e., the probabilities
of having an edge inside communities are all bigger than the highest probability of
having an edge joining different communities. Note that what matters for the value
of modularity is the total sum of degrees in each community, not the distribution
of degrees. Therefore we do not use the fact that the degree distribution follows a
power-law in each community and in the whole model. We just use information from
matrix P . Thus, in fact, we derive the lower bound for the modularity of stochastic
block model with r communities.

For ` > 1 E` ⊆ E is the set of hyperedges of cardinality `. First, we state general
lower bound for the modularity of G ias a function of matrix P .
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Lemma 17. Let G = G(G0, p,M,X, P, γ) with the size of each hyperedge bounded
by d. Let pi be the probability that a randomly chosen hyperedge is within community
C(i) (i.e., all vertices of a hyperedge belong to C(i)). By si we denote the probability
that a randomly chosen hyperedge has at least one vertex in community C(i). Assume
also that with high probability |E`|/|E| ∼ a` for some constants a` ∈ [0, 1] and
vol(V )/|E| ∼ δ for some constant δ ∈ (0,∞). Then whp

lim
t→∞

q∗(G) >
r∑
i=1

pi −
r∑
i=1

∑
`>1

a`

(
(d− 1)si + pi

δ

)`
.

Proof. Let C = {C(1), C(2), . . . , C(r)}. Let also q denote the probability of adding a
new hyperedge in a single time step (hence q = 1 − p, referring to notation from
Section 5.4). Thus with high probability |E| ∼ t · q (where ‘∼’ refers to the limit by
t→∞). By Definition 4 we write

q∗(G) = max
A

qA(G) > qC(G) =
r∑
i=1

(
|E(C(i))|
|E|

−
∑
`>1

|E`|
|E|

(
vol(C(i))

vol(V )

)`)
.

We obtain that with high probability

qC(G) ∼
r∑
i=1

(
t · q · pi
t · q

−
∑
`>1

a`

(
vol(C(i))

t · q · δ

)`)
.

Note that if at a certain time step appears a hyperedge with all vertices contained
in C(i), which happens with probability q · pi, it adds up at most d to vol(C(i)). If
at a certain time step appears a hyperedge joining at least 2 communities with at
least one vertex in C(i), which happens with probability q(si − pi), it adds up at
most d− 1 to vol(C(i)). Thus we get that with high probability

lim
t→∞

q∗(G) >
r∑
i=1

pi −
r∑
i=1

∑
`>1

a`

(
t · q · (dpi + (d− 1)(si − pi))

t · q · δ

)`
=

r∑
i=1

pi −
r∑
i=1

∑
`>1

a`

(
(d− 1)si + pi

δ

)`
.

Remark 9. Note that for G being 2-uniform (thus simply a graph) this result sim-
plifies significantly to limt→∞ q

∗(G) >
∑r

i=1 pi − 1/4
∑r

i=1(si + pi)
2.

Below we state the lower bound for the modularity of G in a version in which
the knowledge of the whole matrix P is not necessary. Instead we use its two
characteristics: α - the probability that a randomly chosen hyperedge joins at least
two different communities (may be interpreted as the amount of noise in the network)
and β - the maximum value among pi’s for i ∈ {1, 2, . . . , r}. The modularity of the
model will be maximised for α = 0 (when there are no hyperedges joining different
communities) and β = 1/r (when all pi’s are equal to 1/r thus hyperedges are
distributed uniformly across communities).
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Lemma 18. By assumptions from Lemma 17 whp limt→∞ q
∗(G) >

1− α− a1

(
d
δ

)
((d− 2)α + 1)−

∑
`>2 a`

(
d
δ

)` (
(r − 1)β` + ((d− 1)α + β)`

)
,

where α = 1−
∑r

i=1 pi and β = maxi∈{1,...,r} pi.

Proof. Let C = {C(1), C(2), . . . , C(r)} and for i ∈ {1, 2, . . . , r} let s̃i be the probability
that a randomly chosen hyperedge joins at least two communities and C(i) is one of
them. Note that for si defined as in Lemma 17 (i.e., the probability that a randomly
chosen hyperedge has at least one vertex in C(i)) we get si = s̃i + pi. By Lemma 17
we get that with high probability

lim
t→∞

q∗(G) >
r∑
i=1

pi −
r∑
i=1

∑
`>1

a`

(
(d− 1)s̃i + dpi

δ

)`
= (1− α)−

∑
`>1

a`
δ`

r∑
i=1

((d− 1)s̃i + dpi)
`

= (1− α)− a1

δ

(
(d− 1)

r∑
i=1

s̃i + d

r∑
i=1

pi

)
−
∑
`>2

a`
δ`

r∑
i=1

((d− 1)s̃i + dpi)
`.

(5.26)

Now, by rk denote the probability that a randomly chosen hyperedge joins exactly
k communities. Note that

r∑
i=1

s̃i = 2r2 + 3r3 + . . .+ drd 6 d(1−
r∑
i=1

pi) = dα. (5.27)

Thus

a1

δ

(
(d− 1)

r∑
i=1

s̃i + d
r∑
i=1

pi

)
6
a1

δ
((d− 1)dα + d(1− α))

= a1

(
d

δ

)
((d− 2)α + 1).

(5.28)

Moreover,

∑
`>2

a`
δ`

r∑
i=1

((d− 1)s̃i + dpi)
` =

∑
`>2

a`
δ`

r∑
i=1

∑̀
k=0

(
`

k

)
((d− 1)s̃i)

k(dpi)
l−k

=
∑
`>2

a`
δ`

∑̀
k=0

(
`

k

)
(d− 1)kdl−k

r∑
i=1

s̃ki p
l−k
i

6
∑
`>2

a`
δ`

∑̀
k=0

(
`

k

)
(d− 1)k(dβ)l−k

r∑
i=1

s̃ki

=
∑
`>2

a`
δ`

(
r(dβ)` +

∑̀
k=1

(
`

k

)
(d− 1)k(dβ)l−k

r∑
i=1

s̃ki

)

6
∑
`>2

a`
δ`

r(dβ)` +
∑̀
k=1

(
`

k

)
(d− 1)k(dβ)l−k

(
r∑
i=1

s̃i

)k
 .
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Next, by (5.27) we get

∑
`>2

a`
δ`

r∑
i=1

((d− 1)s̃i + dpi)
` 6

∑
`>2

a`
δ`

(
r(dβ)` +

∑̀
k=1

(
`

k

)
(d− 1)k(dβ)l−k(dα)k

)

=
∑
`>2

a`
δ`

(
(r − 1)(dβ)` +

∑̀
k=0

(
`

k

)
((d− 1)dα)k(dβ)l−k

)
=
∑
`>2

a`
δ`
(
(r − 1)(dβ)` + ((d− 1)dα + dβ)`

)
=
∑
`>2

a`

(
d

δ

)` (
(r − 1)β` + ((d− 1)α + β)`

)
.

(5.29)

Finally, plugging (5.28) and (5.29) to (5.26) we get that with high probability

lim
t→∞

q∗(G) >

> 1− α− a1

(
d

δ

)
((d− 2)α + 1)−

∑
`>2

a`

(
d

δ

)` (
(r − 1)β` + ((d− 1)α + β)`

)
.

Remark 10. For G being 2-uniform, the result of Lemma 18 simplifies to

lim
t→∞

q∗(G) > 1− rβ2 − α(1 + α + 2β). (5.30)

Note that for α = 0 and β = 1/r, this bound equals 1−1/r and is tight, i.e., it is the
modularity of the graph with the same number of edges in each of its r communities
and no edges between different communities.

Remark 11. Obtained bounds work well as long as the cardinalities of hyperedges
do not differ too much. This is since deriving them we bound the cardinality of each
hyperedge by the size of the biggest one. In particular, the bounds are very good in
case of uniform hypergraphs - check experimental results below.

5.7.2 Experimental results

In this subsection we show how the modularity of our model G compares with Avin
et al. hypergraph A [1] and with a real-life co-authorship graph R. We also check
how good is our theoretical lower bound for modularity.

As discussed in Section 5.5, to get the approximation of modularity of simulated
hypergraphs we used Leiden procedure [24] - a popular community detection algo-
rithm for large networks. Calculating modularity is NP-hard [6]. Leiden is nowadays
one of the best heuristics trying to find a partition maximising modularity. There-
fore we treat its outcome partition as the one whose modularity score is quite precise
approximation of the modularity of graphs in question. Every presented modularity
score (using Definition 4) refers to a partition returned by Leiden algorithm ran on
the flattened hypergraph (i.e., a graph obtained from a hypergraph by exchanging
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Figure 5.7: Lower bound from Lemma 17 in comparison with the modularity score
obtained by Leiden algorithm on simulated uniform hypergraphs G.
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Figure 5.8: Comparison of modularity between our model G, Avin et al. hypergraph A

and real co-authorship hypergraph R.

hyperedges with cliques). We did not manage to run Leiden-like algorithm directly
for hypergraphs due to their big scale and our technical limitations.

Fig. 5.7 shows the lower bound from Lem. 17 in comparison with the modularity
of 2− and 20-uniform hypergraph G(G0, p,M,X, P, γ) on 104 vertices, where M is
uniform and matrix P has values (1−α)/47 (47 is the number of communities also in
R) on the diagonal and the rest of probability mass spread uniformly over remaining
entries. As we expected - the theoretical bound almost overlapped with the value
of modularity in this case.

We then compare the modularity of randomly generated models with the hyper-
graph R extracted from the Scopus database. We implemented our model G and
Avin’s et al. model A using the parameters (distribution of hyperedges cardinalities,
vector M , matrix P ) gathered from hypergraph R and presented in Section 5.5. Fig-
ure 5.8 compares modularities of G, A, and R. For R the value α equals 0.21. Then
the modularity of our model is around 0.69 which is very close to the modularity of
R (≈ 0.63). The modularity of A, as A does not feature communities, is very low
(≈ 0.06). Figure 5.8 shows also how the modularity of G changes with α and one
may notice that it stays at reasonably high level even when the amount of the noise
in the network grows.
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5.8 Conclusion and Further Work

We have proved theoretically and confirmed experimentally that our model exhibits
high modularity, which is rare for known preferential attachment graphs and was
not present in hypergraph models so far. While our model has many parameters and
may seem complicated, this general formulation allowed us to unify many results
known so far. Moreover, it can be easily transformed into much simpler model
(e.g., by setting some arguments trivially to 0, repeating the same distributions for
hyperedges cardinalities...).

It is commonly known that many real networks present an exponential cut-off
in their degree distribution. One possible reason to explain this phenomenon is
that nodes eventually become inactive in the network. As further work, we will
include this process in our model. The other direction of future study is making the
preferential attachment depending not only on the degrees of the vertices but also
on their own characteristic (generally called fitness).
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Chapter 6

Revisiting Preferential
Attachment with Applications to
Online Social Networks like
Twitter

6.1 Introduction

Of chief importance in network algorithmics is the testing of the new algorithms on
some representative benchmarks before deploying them at large scale. Very often,
such benchmarks are difficult, or even impossible to obtain, that is why we also need
to create synthetic ones. Various graph models have been proposed over the years
in order to describe real-life complex networks. So far, the networks considered have
ranged from physical structures (percolation), to road networks (random geometric
graphs), telecommunication networks, online social networks (e.g., Facebook), etc.
Most of the networks representing social activities exhibit common properties such
as heavy-tailed degree distributions [11], small average distances [5], community
structures [20, 23], etc. In this work, we focus on the analysis and the simulation of
preferential attachment models – for which we will first give a brief state of the art.

6.1.1 Related work

In this Chapter, we only focus on models with linear preferential attachment. For
the sake of simplicity, we therefore use the common definition of preferential attach-
ment in this Chapter: roughly, a preferential attachment model is defined as a model
in which, for a given evolving graph G, the probability for a node in G to form a new
edge depends linearly on its degree. The so-called preferential attachment paradigm
has been known for about a century [30], but it has started attracting attention
since the seminal work of Albert and Barabási [6], in which the authors proposed
an explanation to the structure and the degree sequence generated by general hu-
man inclinations. Since then, it has shown to be a great tool to describe complex
networks. In particular, it has been used since the 2000’s in order to describe the
evolution of the World-Wide Web [8]. More recently, preferential attachment pro-
cesses have gained importance in the study of online social networks, where they
can be used in order to observe, understand, influence or even manufacture social
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phenomena.

Many papers have proposed more sophisticated random models based on the
preferential attachment paradigm (see, e.g., [12, 19]). Unfortunately, while in doing
so we may better capture the properties of complex networks, the resulting equations
for these models become much harder to solve. To take a concrete example, in the
remainder of this article we will exclusively focus on the study of degree sequences in
some random (di)graph models. However, our techniques are quite general, and they
could also be applied to the study of other parameters such as the clustering. Let
us first digress on directed social networks such as Twitter – whose analysis was one
of our initial motivations for this work. So far, only a few preferential attachment
models in the literature are for directed graphs [9]. Still, some social networks
are inherently directed, and among them Twitter which is based on followers and
followed. Twitter has only been recently explored [14, 22] and our results show that
the existing models failed to reproduce some of its main features, especially the
large amount of bidirectional links and the correlation between degree distributions.
In order to better explain this peculiar structure, we introduce in this work a new
preferential attachment model taking into account these properties. While analysing
our new model, some complications have occurred due to the correlations between
the out-degree distribution and the distribution of bidirectional links. This led
us to look for a way to compute these distributions for more general preferential
attachment processes.

Our main contribution is to prove deeper connections between the analysis of
preferential attachment models and some associated homogeneous continuous-time
Markov processes. In many cases of interest, these associated processes are gener-
alized birth-death processes [1], or at least simple enough so that we can derive a
closed formula for their stationary distributions. Notably, among many other impli-
cations, these new findings allowed us to circumvent the aforementioned difficulties
in the study of our Twitter random model.

The relationship between preferential attachment and Markov chains is not that
new. In fact, some researchers now present their own variations of preferential
attachment directly within the framework of Markov theory [28]. Nevertheless, we
found that a rigorous treatment of this relationship was yet to be done. Indeed,
starting with the so called “continuum theory” [7], the dominant approach in the
literature for showing such a relationship has been mostly empirical, and it could be
summarized as follows: first consider a first-order approximation of the model (i.e.,
with some low-order terms removed from the equations); then, find some analogy
between these simplified recurrence equations and a differential equation system
so as to deduce what the solution should be; finally, validate the results obtained
through experiments [25, 24]. We note that this latter approach is a particular
case of the differential equation method, that was proved to be correct in many
interesting scenarios [29]. Unfortunately, such correctness theorems mostly apply to
finite-state random systems or under some Cauchy conditions and they can hardly
be generalized, e.g., to the infinite asymptotic degree sequence of a random graph
model. In [9], Bollobas et al. astuciously bounded the error term between the
degree sequence of their directed preferential attachment model and its first order
approximation – thereby making the relationship between the analysis of their model
and Markov theory completely rigorous. For that, they took advantage of the fact
that, in an ever growing network model (i.e., with no edge-loss), the normalized
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degree sequence is given by some infinite triangular system. Then, we can upper-
bound all the error terms by induction (see also [16] for a similar approach). We note
that such a generic method could be applied to many of the classical preferential
attachment models from the literature, and even to our Twitter random model –
as we did first. However, in practice, its application requires some cumbersome
intermediate computations. Furthermore, this approach quickly comes to an end if
one wishes to include the possibility of edge removals in these models. To the best
of our knowledge, reference [18] is the only rigorous study of a relationship between
some preferential attachment models with edge deletions and Markov theory. Some
of the models considered in this previous work do not fit in our new framework
(presented next). However, conversely we have several important models that do
not fit in the framework of [18]: such as the undirected model of Chung-Lu [2] and
the directed one of Bollobas et al [9]. Indeed, previous works, such as [16, 18],
implicitly assume the number of users in the systems (i.e., the order of the random
graph) to be deterministic – say exactly equal to t after t discrete time steps. By
allowing edge events (a.k.a., either a densification or a sparsification of the graph
without any modification of its order), this number becomes a random variable and
it makes some new low-order error terms appear which we need to consider in our
analysis. Our new framework does account for such error terms, thereby making
a new step toward a rigorous treatment of all the existing types of preferential
attachment random models in the literature.

6.1.2 Contributions

Our key contribution is a new generic theoretical framework allowing to compute,
somewhat automatically, the first order of the outcome distribution for a large class
of random processes that captures and generalizes preferential attachment processes.
In particular, all these processes are proved to be stationary up to a rescaling. This
allows us to reduce the problem of determining the degree distribution to the much
simpler computation of the fixed point of a continuous time Markov process. We
then show, both theoretically and by extensive simulations, that, for cases for which
a closed-form formula is out of reach, this fixed point can be well estimated using a
finite Markov chain acting on truncations of the distribution.

This approach can be applied to many of the existing preferential attachment
models, even to some variants with degree correlations and edge removals that have
been so far underexplored in the literature. This novel technique has similarities
with the one used by Bollobás et al. in [9] (based on linear operators), and the
so-called continuum theory [7]. In order to go beyond these prior analyses, we need
to further refine the analysis of low-order terms in our equations and to introduce
several intermediate results on the so-called Markov processes with restart [4].

We summarize our work as follows.

• The main contribution is a new theoretical framework enabling to study a large
class of density distributions, including the most standard models of prefer-
ential attachment processes and many new variations. The broad literature
on Markov chains can thus be applied to the study of many random graph
models.
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In order to illustrate the resulting benefits, we propose the following side con-
tributions:

• We first apply our framework to analyze standard models of the field, providing
their degree distributions in a fast and unified way.

• We also provide an improved analysis of the degree distributions in the classical
undirected preferential attachment models and in the directed random model
from [9]. For the latter, we believe that we are the first to determine the
joint distribution of in- and out-degrees (Proposition 6). Until now, only the
marginal distributions were known.

• We then use the framework to study two preferential attachment models which
are hard to analyze with current methods: one, because of the correlation
between its degrees, the other, because edge removals imply that one must
use a fixed point equation instead of a direct induction. For both models, we
validate the framework by comparing its results with the ones obtained by
extensive simulations.

• To introduce an accurate model for Twitter, we first report our experiments
on the degree distributions in the Twitter graph. Our analysis was performed
on the same dataset as for [13] which was made available by the authors. The
collected graph has 505 million nodes and 23 billion edges. We observe that
a constant fraction of the arcs in Twitter are bidirectional, and that their
distribution is correlated to the out-degree distribution.

• Lastly, based on our experimental results, we propose a new preferential at-
tachment model for directed graphs. We show, through an analysis of its
degree distributions, that our model better accounts for the specific properties
of Twitter.

Organization. This Chapter is organized as follows. After having introduced the
necessary requirements in Sec. 6.2, our new framework for studying the preferential
attachment processes is formally presented in Section 6.3. We then discuss in Sec-
tion 6.4 how the stationary distribution of the introduced infinite Markov process
can be efficiently computed by considering finite-state processes obtained by trunca-
tion. In Section 6.5, we then apply our framework to derive the degree distributions
of classic models, first, with a one-dimensional state space and then, with a two-
dimensional state space. In Section 6.6, we present the experiments that led us to
discover peculiar empirical properties of Twitter. Then, we describe and motivate
our new random model, and provide its joint degree distribution. We also validate
the framework through simulations. We conclude in Section 6.7.

6.2 Preliminaries

In this section, we focus on a large class of density distributions that are properly
defined in Sec. 6.2.1. Roughly, this class is a far-reaching generalization of the degree
distributions for Preferential Attachment (PA) random graph models. We show the
link between the latter models and our class of density distributions through a series
of examples.
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Finally for all the distributions considered, we introduce an associated continuous-
time Markov process in Sec 6.2.2, and some intermediate results on Markov theory.

6.2.1 Assumptions on the distribution

Let S be a countable space. A density distribution on S is a discrete-time process,
defined at any time step t ∈ N≥t0 as a sequence x(t) := (xi(t))i∈S of nonnegative
random variables indexed by S. Such a process defines a population of size s(t) :=∑

i∈S xi(t) individuals. For every i ∈ S we say that there are xi(t) individuals in state
i∗. In the particular case of preferential attachment models, this state represents the
degrees of the vertex. As examples, we take S = N for undirected graphs, whereas
we take S = N2 for digraphs — because each vertex now has an in-degree and an
out-degree. Choosing S = Nk, for some k > 2, may help in modelling more complex
situations. For instance, in order to model Twitter (Sec. 6.6), we will take S = N3

in order to better account for bidirectional edges.
In the remainder of this Chapter, we only consider the density distributions on

S that obey the following additional properties:

Property 1. s(t) follows a mean concentrated distribution such as e.g., a Bernoulli
distribution or a Poisson point process. Furthermore at any time t ≥ t0, the expected
size E[s(t)] of the population is exactly t.

Note that we could assume more generally that E[s(t)] = c · t, for some positive
c. Actually, as this will be shown by our examples (Sec. 6.2.1), we have for most PA
models E[s(t)] = c · t for some c < 1. However, we can always enforce c = 1 up to a
“rescaling” (i.e., by considering the process (xi(t)/c)i∈S).

Property 2. When a new individual appears, its initial state is chosen according
to some distribution µ : S → (0; 1). We assume that µ has finite support, or
equivalently the number of entering states for the individuals is finite.

In the particular case of PA processes, the addition of a new vertex is called
a “node event”. Two node events may differ in the way connections are made
between the new node and the existing ones. If there are only a finite number of
node events, then the number of possible entering states for an individual is finite,
and so Property 2 is always true.

Property 3. There is some fixed universal constant K such that, at time t ≥ t0,
there are no more than K individuals leaving their state for another.

Recall that for PA models, the state of a node represents its degree(s). Then,
this above Property 3 follows from the fact that only a constant-number of new edges
are added or removed at each step.

Property 4. At time t ≥ t0, an individual in state i has some probability pi,j(t) to
change to state j. We assume that all these transitions probabilities are determined
by some “evolution function” e(t): with the latter being just a tuple of random vari-
ables. Namely, we assume the existence of some fixed sequence (mi,j)i,j∈S,i 6=j, and
of some function f , such that the following hold:

∗We may think of the xi(t)’s as integer variables. However, some of the operations that we
use, e.g., scaling, may transform them into some nonnegative real numbers.
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• pi,j(t) = f(i, j, e(t)) – the transition solely depends on e(t) and on the states i
and j;

• and pi,j(t) is mean-concentrated, with its mean being equal to
mi,j
t

. More for-

mally, let υi,j(t) = c ·
(mi,j

t

)1+d
, for some universal constants c and d; we

have:
P
[ ∣∣∣pi,j(t)− mi,j

t

∣∣∣ ≤ υi,j(t)
]
≥ 1− t−d.

For example, in the case of preferential attachment processes, we may think of the
function e as a record of all types of node and edge events that have happened until
then – or more simply, as a pair that contains the number of nodes and the number
of edges. Indeed, changes of state correspond to edge addition or removal. Then,
we have (up to lower-order terms) pi,j(t) = mi,j/N(t), where the function N(t) is a
(normalized) linear function of the number of vertices and of the number of edges.
We use the error function υ in order to take account of: (i) the mean deviation of
N(t) (that depends on the number of each different events that occured, e.g., how
many node events, edge additions or deletions); and (ii) the small probability to
select a same vertex twice for an edge event, i.e., to create loops, typically of order
O(t−2).

Property 5. The transitions are local. For instance if S = Nk, then for any
i, j s.t. mi,j > 0, we may assume that the (Manhattan) distance between i and j is
bounded. More generally, we assume the existence of a sequence of increasing finite
subsets (Bn)n∈N∗ and of a constant cB s.t.:

1.
⋃
n≥1Bn = S;

2. and for every n ≥ 1 and for every i ∈ Bn, we have mi,j 6= 0 =⇒ j ∈ Bn+cB \
Bn−(cB+1).

Observe that we can assume w.l.o.g. cB = 1, and that the support of µ is contained
in B1.

Property 5 has a natural interpretation for PA models. Specifically, it also follows
from the fact that at any time step t, we can only add and/or remove a constant
number of edges. Then, a natural choice for Bn would be the set of vertices of total
degree at most n.

We stress that the behaviour of our processes mostly depend (up to lower-order
terms) on S, µ and m. Therefore, we will abusively refer to such a process as the
triple (S,m, µ) in what follows.

Examples

• Consider first the classical Barabasi-Albert model [6]. At every time step, a
new node is added and made adjacent to M existing nodes that are chosen with
probability linearly proportional to their degree. Note that, for any time step t, we
have s(t) = t and so we do not need to rescale in this case. Furthermore the sum
of the degrees is equal to 2Mt. Therefore for every j ∈ {1, . . . ,M} we have the
following transition probability:

pi,i+j(t) =

(
M

j

)(
i

2Mt

)j (
1− i

2Mt

)M−j
.
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We observe that if M > 1 and j > 1 then the latter probability is just a low-order

term that is caused by double events. It is roughly upper-bounded by 2M
(

i
2Mt

)2
.

Otherwise we have pi,i+1(t) = i/(2t) + O((i/(2t))2). Overall, we obtain a scale-
invariant process (N,m, µ) such that: µM = 1, and for every i, j ∈ N we have
that: {

mi,i+1 = i/2

mi,j = 0 if j 6= i+ 1.

• Consider now the random model introduced by Chung and Lu in [10]. At
every time step, with some probability p, a new node is added and made adjacent to
an existing node that is chosen with probability linearly proportional to its degree.
Otherwise, with probability 1 − p, two existing nodes are chosen with probability
linearly proportional to their degree and made adjacent.

Here, for any time step t, the sum of the degrees is equal to 2t, while the number
of nodes is concentrated around pt. So, in order to force E[s(t)] = 1 we need to
rescale. We get the scale-invariant process (N,m, µ) such that µ1 = 1, and for every
i, j ∈ N we have that:{

mi,i+1 = pi/2 + (1− p) · 2 · i/2 = (1− p/2) i

mi,j = 0 if j 6= i+ 1.

• The random model of Bollobás et al. [9] is a bit more complex to analyse.
Let α, β, γ, δin, δout be positive constants such that α + β + γ = 1. We denote by
d−(v) and d+(v), respectively, the in-degree and the out-degree of a given node v.
For every time step t, we have that: with probability α, a new vertex v is created
with an arc from v to an existing vertex w – chosen according to d−(w) + δin; with
probability γ, a new vertex v is created with an arc from an existing vertex w –
chosen according to d+(w) + δout – to v; otherwise, with probability β, a new arc is
added from an existing vertex u – chosen according to d−(u) + δin – to an existing
vertex w – chosen according to d+(w) + δout.

Note that, for any time t, the number of arcs is exactly t. Furthermore, by
Chernoff bounds, we have that the number of nodes s(t) is concentrated around its
mean (1−β) · t. So, after rescaling the node events (division by α+ γ = 1−β), one
finally obtains the following scale-invariant process (N2,m, µ) such that: µ(0, 1) =
1− µ(1, 0) = α/(1− β), and for every (i, j) ∈ N2 we have that:

m(i,j),(i+1,j) = (α+β)(i+δin)
1+(1−β)·δin

m(i,j),(i,j+1) = (γ+β)(j+δout)
1+(1−β)·δout

m(i,j),(k,l) = 0 otherwise.

6.2.2 Markov Process with a Reset

We refer to [15] for a standard reference book on continuous-time Markov processes.
For any conservative q-matrix A (a.k.a., transition rate matrix), we denote by XA(t)
the corresponding homogeneous Markov process. Let PA(t) = (pA(i, j, t))i,j∈S , where
pA(i, j, t) = Pr[XA(t) = j | XA(0) = i]. This parametric family of matrices (indexed
by t) satisfies both the forward and backward Kolmogorov equations, namely:

P ′A(t) = PA(t)A = APA(t).
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Given some initial distribution µ, let us also define pA(t) = (pA(i, t))i∈S as the state
distribution of the process XA, where pA(i, t) = Pr[XA(t) = i | XA(0) ∼ µ] =∑

r µr · pA(r, i, t).

The relationship between PA models and Markov theory is as follows. To any
distribution (S,m, µ) as earlier defined in Sec. 6.2.1, we can associate to it the
following continuous-time Markov process:

Definition 5. For (S,m, µ), the associated (continuous-time) Markov process on
the state space S has transition rate matrix Q = (qi,j)i,j∈S such that:

• for every i 6= j, qi,j = mi,j + µj;

• for every i, qi,i = −
∑

j 6=i qi,j (every line sums to zero).

At first glance, it might be not so clear why this above sum
∑

j 6=i qi,j should
converge. However, for every fixed i we can deduce from Property 5 that there can
be only a finite number of nonzero terms mi,j. Furthermore, there is a finite number
of nonzero µj (Property 2). Overall, the number of nonzero qi,j is finite, and so, qi,i
is well-defined.

The remainder of this section is now devoted to some intermediate results on
Markov processes, and especially those with a reset [4] of which the associated
process given by Def. 5 is a particular case.

Non-explosiveness.

The process {XA(t) | t ∈ (0;∞)} is called non-explosive if within any finite time
t, the number of jumps is finite with probability 1. A necessary and sufficient
condition for being non-explosive is that, with probability 1, the average time spent
in the n first states goes to infinity as n grows [27]. There is another definition for
this concept in terms of a moment drift function. Specifically, for a conservative
q-matrix A over the countable state space S, the function fA : S → (0;∞) is a drift
function if there exists some constants D1, D2 such that we have, for any i ∈ S:∑

j∈S

ai,j · fA(j) ≤ D1 · fA(i) and − ai,i =
∑
j 6=i

ai,j ≤ D2 · fA(i).

It is a moment function if we also have, for any increasing sequence of finite subsets
(Bn)n∈N such that

⋃
n∈N

Bn = S, lim
n→∞

infi/∈Bn fA(i) = +∞. A process is non-explosive

if and only if it has a drift moment function [26].

Invariant measure.

Next, given some conservative q-matrix M and some initial distribution µ, we denote
by Q the transition-rate matrix of the same process as defined by M but with reset
to the initial distribution µ at rate 1.

We will need the following results:

Lemma 19 ([4]). pQ(i, j, t) = e−t · pM(i, j, t) +
∫ t

0

∑
r∈S e

−s · µr · pM(r, j, s)ds.
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Lemma 20 ([4]). The distribution π s.t., for every i ∈ S we have πi =
∑

r µr
∫∞

0
e−t·

pM(r, i, t)dt is the unique invariant measure for Q. Moreover, for any i, j ∈ S we
have:

|pQ(i, j, t)− πj| ≤ e−t.

Note that Lemmas 19 and 20 are proved in [4] under the assumption that M is
honest, that is a weaker property than being non-explosive [15].

Corollary 3. pQ(t) = e−t · pM(t) +
∫ t

0
e−s · pM(s)ds.

Proof. For every i ∈ S, we have pQ(i, t) =
∑

r µr · pQ(r, i, t). By Lemma 19:∑
r

µr · pQ(r, i, t)

=
∑
r

µr ·

[
e−t · pM(r, i, t) +

∫ t

0

∑
r′∈S

e−s · µr′ · pM(r′, i, s)ds

]

=

[
e−t ·

∑
r

µr · pM(r, i, t)

]
+
∑
r

µr ·
∫ t

0

e−s ·
∑
r′

µr′ · pM(r′, i, s)ds

= e−t · pM(i, t) +
∑
r

µr ·
∫ t

0

e−s · pM(i, s)ds

= e−t · pM(i, t) +

∫ t

0

e−s · pM(i, s)ds.

6.3 Framework on Preferential attachment pro-

cesses

Given a process (S,m, µ) as in Sec. 6.2.1, let us consider the normalized state distri-
bution x̄i(t) = xi(t)/s(t) where xi(t) is the number of individuals in state i at time
t ≥ 0 and s(t) is the total number of individuals. In what follows, we aim at com-
puting the first order of this distribution. We prove, in Sec. 6.3.1, that under some
technical assumptions (always satisfied for PA models), the latter is equal to the
invariant measure of an associated Markov process (given by Def. 5). Note that in
the literature, computing the degree distributions of random graph models usually
requires the technical use of concentration inequalities (in an ad-hoc way depend-
ing on the model), and the tedious solving of a recurrence equation [9]. Our generic
framework (Theorem 7) improves upon both aspects. Specifically, we completely au-
tomate the use of concentration inequalities for a broad range of scale-invariant pro-
cesses. Furthermore, in some cases where the associated process is well-understood,
our reduction considerably simplifies the solving of our recurrence equations.

6.3.1 Reduction to a Markov process

For a given process (S,m, µ) let Q be as in Def. 5. This above Markov process
admits a unique invariant measure π that follows from previous works on Markov
processes with reset [4] — see Sec. 6.2.2 for details. In the remainder of this section,
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we prove that under some technical assumptions on the coefficients mi,j (always
satisfied for PA models), there is convergence in law of x̄(t) to π, i.e. lim

t→∞
x̄i(t) = πi

for every state i.

Theorem 7. If the following conditions are true then there is convergence in law of
x̄(t) to the unique invariant measure for Q:

1. There exists a n0 ≥ 1 s.t., for every n ≥ n0 and i ∈ Bn,
∑

j 6=imi,j ≤ n− 1;

2. For every n ≥ 1 and i ∈ Bn \Bn−1,
∑

j /∈Bnmj,i ≤
∑

j∈Bn−1
mj,i.

3. For some choice of positive λ we have, for every i ∈ S:
∑

j 6=imj,i ≤
(∑

j 6=imi,j

)
−

2λ.

We stress that all these above conditions have a very intuitive interpretation for
PA models. Indeed, we say with Cond. 1 that an individual changes her state at a
rate which is slightly sub-linear in her degree. Very roughly, Cond. 2 ensures that
it is more likely for an individual to increase her degree rather than to decrease it.
Cond. 3 implies that we leave any state i at a bigger rate than the one at which
we are entering in i — in other words, we favour the vertices with large degree.
However, in general, we see no reason why these conditions would be necessary for
having convergence in law to the invariant measure of Q. We leave as an interesting
open question what could be the necessary and sufficient conditions for having such
a convergence.

The rest of this Section is dedicated to prove Theorem 7. It is organized as
follows:

• First, we establish a recurrence relation for (E[x̄(n)])n in Sec. 6.3.2 that in-
volves the transition rate matrix Q.

• Then, we explain why we can restrict our analysis to the normalized mean
state distribution E[x̄i(t)] (Sec. 6.3.3). For that, we use classical concentration
inequalities.

• We continue by proving intermediate relationships between the processes de-
fined by Q and M = (mi,j)i,j∈S , respectively, where mi,i =

def
−
∑

j 6=imi,j

(Sec. 6.3.4). Here the key observation is that M defines the same process as
Q, but conditioned on the fact that there is no reset to the initial distribution
µ. For the process defined by Q, this reset happens at rate 1.

• Finally, in Sec. 6.3.5, we bound the absolute difference between (E[x̄(n)])n –
at discrete time step n – and the state distribution of the process defined by
Q at some continuous time Tn = Θ(log n) (exponentially smaller than n).

6.3.2 The Recurrence Equation

We start by making explicit the relationship between E[x̄(n)] and the matrix Q.

Lemma 21. For some positive constants c′, d and for every i ∈ S:∣∣∣∣ E[x̄i(n+ 1)]−
(

E[x̄i(n)] +
1

n+ 1
· (E[x̄(n)]Q)i

) ∣∣∣∣ ≤ c′ ·
(∑

j 6=imi,j +mj,i

n

)1+d

.
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Proof. By the hypothesis (i.e., Sec. 6.2.1):

E[xi(n+ 1) | x(n), e(n)] = xi(n) +
∑
j 6=i

pj,i(n) · xj(n)

−

[∑
j 6=i

pi,j(n)

]
· xi(n) (6.1)

+ µi.

Recall that we have E[E[xi(n + 1) | x(n), e(n)]] = E[xi(n + 1)]. We so obtain by
taking the expectation:

E[xi(n+ 1)] = E[xi(n)] +
∑
j 6=i

E[pj,i(n) · xj(n)]

−

[∑
j 6=i

E[pi,j(n) · xi(n)]

]
(6.2)

+ µi.

In order to simplify this above equation, let us first consider E[pj,i(n) · xj(n)]. We
use a trick from [9]. By the Property 3 we have pj,i(n) · xj(n) ≤ K = O(1). Since
pj,i(n) is mean-concentrated (Property 4) then we get that:

E[pj,i(n) · xj(n)] =

(
mj,i

n
+O

((mj,i

n

)1+d
))
· E[xi(n)] +O(n−d). (6.3)

This can be simplified using that E[xi(n)] ≤ E[s(n)] = n (Property 1). We obtain

E[pj,i(n) · xj(n)] =
mj,i
n
· E[xi(n)] + O

(
m1+d
j,i

nd

)
. Overall the equation can now be

written as:

E[xi(n+ 1)] = E[xi(n)] +
∑
j 6=i

mj,i

n
· E[xj(n)]

−

[∑
j 6=i

mi,j

n

]
· E[xi(n)] (6.4)

+ µi

+ εi(n),

where εi(n) is an error term s.t. |εi(n)| = O(
∑
j(mi,j+mj,i)

1+d

nd
).

We now normalize the equation by using the same trick as above. By Property 1,
s(n) is mean-concentrated and E[s(n)] = n. Moreover, x̄i(n) ≤ 1 = O(1) in any
case. Therefore, we have:

|E[x̄i(n)]− E[xi(n)]/n| = E[xn · |1/s(n)− 1/n|] = O(n−d). (6.5)

We divide all terms in the equation by n, that leads to:

(n+ 1) ·∆i(n) = −E[x̄i(n)] +
∑
j

mj,i · E[x̄j(n)] + µi + ηi(n), (6.6)
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where ∆i(n) = E[(x̄i(n+ 1)− x̄i(n))], and the error term ηi(n) satisfies:

|ηi(n)| = O


(∑

j 6=imj,i

)
+
(∑

j 6=imi,j

)
nd

+O


( ∑

j 6=imi,j +mj,i

)1+d

nd


≤ c′ ·

( ∑
j 6=imi,j +mj,i

)1+d

nd
, (6.7)

for some universal constant c′. Then, by using the fact that
∑

i E[x̄i(n)] = 1, the

above equation can be rewritten as follows:

(n+ 1) ·∆i(n) =
∑
j

mj,i · E[x̄j(n)]− E[x̄i(n)] + µi (6.8)

+ (µi · E[x̄i(n)]− µi · E[x̄i(n)]) + ηi(n)

=
∑
j

mj,i · E[x̄j(n)]− (1− µi) · E[x̄i(n)] (6.9)

+ (1− E[x̄i(n)]) · µi + ηi(n)

=
∑
j

mj,i · E[x̄j(n)]−

(∑
j 6=i

µj

)
· E[x̄i(n)] (6.10)

+
∑
j 6=i

µi · E[x̄j(t)] + ηi(n)

=
∑
j 6=i

(mj,i + µi) · E[x̄j(n)] (6.11)

−

(∑
j 6=i

mi,j + µj

)
· E[x̄i(n)] + ηi(n)

=
∑
j

qj,i · E[x̄j(n)] + ηi(n) (6.12)

= (E[x̄(n)]Q)i + ηi(n). (6.13)

Overall we obtain:∣∣∣∣ ∆i(n)− 1

n+ 1
· (E[x̄(n)]Q)i

∣∣∣∣ ≤ |ηi(n)|
n+ 1

(6.14)

≤ c′ ·
(∑

j 6=imi,j +mj,i

n

)1+d

. (6.15)

6.3.3 Mean Concentration

Lemma 22. There is convergence in law of x(n) to E[x(n)].

Proof. Our approach closely follows the one from [9]. First let i ∈ S be fixed, and
let E be a random outcome for the infinite sequence (e(n))n. Since s(n) (Property 1)
and the transition probabilities (Property 4) are mean-concentrated, the sequence
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(E[x̄(n) | E ])n satisfies the recurrence equation of Lemma 21 with probability 1
— up to some changes of constant for the lower-order terms. Therefore, we are
left to prove the lemma conditioned on E . For that, let n ≥ 0 be arbitrary. For
every t ∈ {0, 1, . . . , n}, we define Xt = E[xi(n) | x(t − 1), E ]. Then, (Xt)t is a
martingale, sometimes called a Doob martingale. In particular, if for some constant
C we have |Xt+1 − Xt| ≤ C, then by Azuma’s inequality, we have that xi(n) | E
(i.e., conditioned on E) is concentrated around its mean with high probability [21].
Therefore, in order to prove the lemma, it suffices to prove the existence of such a
constant C. We claim that it is a consequence of Property 3. Indeed, between the
time-steps t and t+ 1, there is a subset Vt of at most K individuals changing their
state. For any other individual (possibly not existing yet at time t), the probability
to be in state i at time n only depends on the fixed sequence E (by Property 4), and
in particular, it is independent of Vt. As a result, we have for any v1

t , v
2
t that:

|E[xi(n) | x(t− 1), Vt = v1
t , E ]− E[xi(n) | x(t− 1), Vt = v2

t , E ]|
≤ |v1

t |+ |v2
t | ≤ 2K. (6.16)

This implies that |Xt+1 −Xt| ≤ 2K.

From now on, we are left to study the (normalized) mean state distribution.

6.3.4 Euler method

We now use the results in Sec. 6.2.2 in order to derive some useful properties of
the process defined by Q (the process without a reset, defined by M , resp.). In
particular, we first observe that these two processes are non-explosive. Indeed, it
follows from the Property 5 of locality that the n first steps visited must be in the
ball Bn. Furthermore, for every n ≥ n0, the holding time for any state in Bn is
Ω(1/n). Therefore, the average time spent in the n first steps is Ω(Hn), where Hn

is the harmonic series.
In what follows, we give an alternative proof in terms of moment drift function.

Lemma 23. For every positive α, β, the function f : S → (0; +∞) s.t. for every
n ≥ 1 and i ∈ Bn \ Bn−1, f(i) = α · n + β, is a drift moment function for M . In
particular, the process defined by M is non-explosive.

Proof. For every n ≥ 1 and i ∈ Bn \ Bn−1, we have by the Property 5 of locality
that mi,j 6= 0 =⇒ j ∈ Bn+1. In particular, we have by Condition 1 of the theorem:

∑
j

mi,j · f(j) ≤

(∑
j 6=i

mj,i

)
(α · (n+ 1) + β) +mi,i · (α · n+ β)

= α · |mi,i| = O(n).

Altogether combined, these above technicalities allow us to apply some Euler
method on pQ(t). Indeed, our whole approach is inspired from the non-rigorous
continuum theory [7], and more generally from the differential equation method [29].
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Lemma 24. Let (Tn)n be an increasing sequence of positive real numbers such that
Tn+1 − Tn ∼+∞

1
n+1

. For every i ∈ S we have:∣∣∣∣ pQ(i, Tn+1)−
[
pQ(i, Tn) +

1

n+ 1
· (pQ(Tn)Q)i

] ∣∣∣∣ ≤ o

(
e−Tn

n+ 1

)
.

Proof. From the Kolmogorov’s Forward Equations, p′Q(t) = pQ(t)Q. Furthermore
for every i ∈ S we have by Taylor-Lagrange inequality:

|pQ(i, t+ h)− pQ(i, t)− hp′Q(i, t)| ≤ h2

2
sup
θ∈(0;1)

|p′′Q(i, t+ θh)|. (6.17)

We set t = Tn and h = hn = Tn+1 − Tn. By the hypothesis, hn = (1 + o(1)) · 1
n+1

.
So, we are left with bounding the following error term:

εi(n) = o(n−1) · |p′Q(i, Tn)|+ (1 + o(1))2

2(n+ 1)2
· sup
θ∈(0;1)

|p′′Q(i, Tn + θhn)| (6.18)

= o(n−1) ·

(
|p′Q(i, Tn)|+ sup

θ∈(0;1)

|p′′Q(i, Tn + θhn)|

)
. (6.19)

In order to bound this error term, we use Lemma 20. Specifically:

• For every i, j ∈ S, we have:

|p′Q(i, j, t)| = |
∑
k

qi,k · pQ(k, j, t)| = |
∑
k

qi,k · (pQ(k, j, t)− πj)| (6.20)

≤
∑
k

|qi,k| · |pQ(k, j, t)− πj| ≤

(∑
k

|qi,k|

)
· e−t (6.21)

= 2 · |qi,i| · e−t = O(f(i) · e−t), (6.22)

where f is, for some choices of α and β, the drift moment function for the
process that is given by Lemma 23. We stress that

∑
r µrf(r) is a constant

because we assume the support of µ to be finite. In particular, for some
constant C1 we have:

|p′Q(i, t)| = |
∑
r

µr · p′Q(r, i, t)| ≤
∑
r

µr|p′Q(r, i, t)| ≤ C1 · e−t. (6.23)

• In the same way, for every i, j ∈ S, we have:

|p′′Q(i, j, t)| = |
∑
k

qi,k · p′Q(k, j, t)| (6.24)

≤
∑
k

|qi,k| · |p′Q(k, j, t)| (6.25)

≤
∑
k

|qi,k| · O(f(k)e−t). (6.26)

In particular, by the Property 5 of locality, we have qi,k 6= 0 =⇒ f(k) ≤
f(i)+α, for some positive α. As a result: |p′′Q(i, j, t)| ≤ (

∑
k |qi,k|)·O(f(i)e−t) =

O(|qi,i|f(i)e−t) = O(f(i)2 · e−t). We stress that
∑

r µrf(r)2 is also a constant
since the support of µ is finite. Therefore, we obtain that for some constant
C2: |p′′Q(i, t)| ≤ C2 · e−t.

Altogether combined, we get |εi(n)| ≤ o(n−1) · (C1 + C2) · e−Tn .
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6.3.5 Proof of Theorem 7

Proof of Theorem 7
For any undefined notation in what follows, see Sec. 6.2.2. Let n1 ≥ n0 be a
large enough integer so that some asymptotic error terms can be neglected in our
calculations. For every n ≥ 1 and i ∈ Bn \Bn−1, let K(i) = C · (n+ β)1+d for some
large enough constants C, β (to be fixed by the proof). In what follows, we prove
by induction that, for every n ≥ n1 and i ∈ Bn we have:

|E[x̄n(i)]− pQ(i, log (n+ 1))| ≤ K(i)

n+ 1
·
n−1∑
t=1

1

td
, (6.27)

where d is one of the two absolute constants given by Property 4. We stress that
we have:

n∑
t=1

1

td
∼


ζ(d) = Θ(1) if d > 1

log n if d = 1
n1−d

1−d otherwise.

(6.28)

In particular, we always have lim
n→∞

1
n+1
·
∑n−1

t=1
1
td

= 0. Therefore, proving the induc-

tion hypothesis will prove the theorem. Note that for the base case, Bn1 is finite
and so for any fixed choice of β, we can always choose a constant C large enough so
that this above inequality is valid. From now on, let us assume that this inequality
holds for some n ≥ n1. We will prove that it also holds for n+ 1.

Claim 7.1.

pQ(Bn, log (n+ 1)) ≥ 1− 2e−1

n+ 1
.

Proof. We first need to lower bound pM(Bn, log (n+ 1)) (i.e., the mass in the ball
conditioned on the fact that there is no restart). For that, for any p ≥ 1 let
Lp = Bp \Bp−1. Let A = (ap,q)p,q∈N∗ be such that:

ap,p+1 = maxi∈Lp
∑

j∈Lp+1
mi,j

ap,p = −ap,p+1

ap,q = 0 otherwise.

By construction, pA([1;n], t) ≤ pM(Bn, t). Therefore, we are left lower-bounding
pA([1;n], t), or equivalently upper-bounding 1 − pA([1;n], t). We observe that 1 −
pA([1;n], t) is the probability to spend < t unit of times in the n first states of
the infinite chain indexed by N. In particular, the distribution for the total time
spent in these n states has for density function a convolution of n exponentials
with respective rates ap,p+1, p = 1 . . . n. Furthermore, ap,p+1 ≤ maxi∈Lp

∑
j 6=imi,j =

maxi∈Lp |mi,i| ≤ maxi∈Lp |qi,i| ≤ p (cf. Condition 1). By stochastic dominance we
can assume from now on ap,p+1 = p (this can only decrease pA([1;n], t)).

Let X be the sum of n exponential random variables with respective rates
1, 2, . . . , n. The density function of X is ρX(t) = n · e−t · (1 − e−t)n−1. In par-
ticular, we have:

Pr[ X < t ] =

∫ t

0

fX(s)ds = (1− e−t)n. (6.29)
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Finally, we note that 1 − pQ(Bn, t) = pQ(S \ Bn, t), and similarly 1 − pM(Bn, t) =
pM(S \Bn, t), because the processes XQ and XM are non-explosive. By Corollary 3
we so obtain that:

1− pQ(Bn, t) = pQ(S \Bn, t) (6.30)

= e−t · pM(S \Bn, t) +

∫ t

0

e−spM(S \Bn, s)ds (6.31)

= e−t · (1− pM(Bn, t)) +

∫ t

0

e−s(1− pM(Bn, s))ds (6.32)

≤ e−t · (1− pA([1;n], t)) +

∫ t

0

e−s(1− pA([1;n], s))ds (6.33)

≤ e−tPr[X < t] +

∫ t

0

e−sPr[X < s]ds (6.34)

= e−t(1− e−t)n +
1

n+ 1
(1− e−t)n+1. (6.35)

For t = log (n+ 1) we so obtain 1− pQ(Bn, t) ≤ 2e−1

n+1
. �

Since, for every i /∈ Bn we have by the Property 5 of locality xn(i) = 0, we
deduce from Claim 7.1 that we also have |E[x̄n(i)] − pQ(i, log (n+ 1))| ≤ 2e−1

n+1
. In

particular, for C, β large enough we have for every i ∈ S:

|E[x̄n(i)]− pQ(i, log (n+ 1))| ≤ K(i)

n+ 1
·
n−1∑
k=1

1

kd
. (6.36)

We then need to observe the following:

|E[x̄n+1(i)]− pQ(i, log (n+ 2))|

≤
∣∣∣∣ [( E[x̄n]− pQ(log (n+ 1)))

(
Id+

1

n+ 1
·Q
)]

i

∣∣∣∣ (6.37)

+

∣∣∣∣ E[x̄n+1(i)]− E[x̄n(i)]− 1

n+ 1
· (E[xn]Q)i

∣∣∣∣
+

∣∣∣∣ pQ(i, log (n+ 2))− pQ(i, log (n+ 1))− 1

n+ 1
· (pQ(log (n+ 1))Q)i

∣∣∣∣ .
We focus on the first error term (the two others will be handled at the end of
the proof, with Lemmas 21 and 24, respectively). Specifically, we prove that the
following small contraction occurs:

Claim 7.2. For every i ∈ Bn+1:

∣∣∣∣ [( E[x̄n]− pQ(log (n+ 1)))

(
Id+

1

n+ 1
·Q
)]

i

∣∣∣∣ ≤ K(i)

n+ 1
·
n−1∑
t=1

1

td
·
(

1− λ+ 1

n+ 1

)

with λ the constant in Cond. 3.
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Proof. Let i ∈ Bn+1 be fixed. Recall that we have:[
( E[x̄n]− pQ(log (n+ 1)))

(
Id+

1

n+ 1
·Q
)]

i

(6.38)

=

(
1− |qi,i|

n+ 1

)
· (E[x̄n(i)]− pQ(i, log (n+ 1))) (6.39)

+
1

n+ 1
·
∑
j 6=i

qj,i · (E[x̄n(j)]− pQ(j, log (n+ 1))). (6.40)

This can be rewritten by only using the coefficients mi,j, as follows:

(1− |qi,i|
n+ 1

) · (E[x̄n(i)]− pQ(i, log (n+ 1))) (6.41)

+
1

n+ 1
·
∑
j 6=i

qj,i · (E[x̄n(j)]− pQ(j, log (n+ 1))) (6.42)

= (1−
|mi,i|+

∑
j 6=i µj

n+ 1
) · (E[x̄n(i)]− pQ(i, log (n+ 1))) (6.43)

+
1

n+ 1
·
∑
j 6=i

(mj,i + µi) · (E[x̄n(j)]− pQ(j, log (n+ 1))) (6.44)

= (1− |mi,i|+ 1− µi
n+ 1

) · (E[x̄n(i)]− pQ(i, log (n+ 1))) (6.45)

+
1

n+ 1
·
∑
j 6=i

mj,i · (E[x̄n(j)]− pQ(j, log (n+ 1))) (6.46)

+
µi

n+ 1
·
∑
j 6=i

(E[x̄n(j)]− pQ(j, log (n+ 1))) (6.47)

= (1− |mi,i|+ 1− µi
n+ 1

) · (E[x̄n(i)]− pQ(i, log (n+ 1))) (6.48)

+
1

n+ 1
·
∑
j 6=i

mj,i · (E[x̄n(j)]− pQ(j, log (n+ 1))) (6.49)

+
µi

n+ 1
· (1− E[x̄n(i)]− (1− pQ(i, log (n+ 1)))) (6.50)

=

(
1− |mi,i|+ 1

n+ 1

)
· (E[x̄n(i)]− pQ(i, log (n+ 1))) (6.51)

+
1

n+ 1
·
∑
j 6=i

mj,i · (E[x̄n(j)]− pQ(j, log (n+ 1))) (6.52)

+
µi

n+ 1
· (E[x̄n(i)]− pQ(i, log (n+ 1))) (6.53)

+
µi

n+ 1
· (pQ(i, log (n+ 1))− E[x̄n(i)]) (6.54)

=

(
1− |mi,i|+ 1

n+ 1

)
· (E[x̄n(i)]− pQ(i, log (n+ 1))) (6.55)

+
1

n+ 1
·
∑
j 6=i

mj,i · (E[x̄n(j)]− pQ(j, log (n+ 1))). (6.56)

Note that we implicitly used the fact that XQ is non-explosive and so,
∑

k pQ(k, t) =
1, in order to derive this above equation. Furthermore, since |mi,i| + 1 ≤ n + 1 for
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every i ∈ Bn+1 (Condition 1), all coefficients of the above operator are nonegative.
We so obtain: ∣∣∣∣ [( E[x̄n]− pQ(log (n+ 1)))

(
Id+

1

n+ 1
·Q
)]

i

∣∣∣∣ (6.57)

≤
(

1− |mi,i|+ 1

n+ 1

)
· | E[x̄n(i)]− pQ(i, log (n+ 1)) | (6.58)

+
1

n+ 1
·
∑
j 6=i

mj,i · | E[x̄n(j)]− pQ(j, log (n+ 1)) | . (6.59)

By the induction hypothesis:∣∣∣∣ [( E[x̄n]− pQ(log (n+ 1)))

(
Id+

1

n+ 1
·Q
)]

i

∣∣∣∣ (6.60)

≤
(

1− |mi,i|+ 1

n+ 1

)
· K(i)

n+ 1
·
n−1∑
t=1

1

td
(6.61)

+
1

n+ 1
·
∑
j 6=i

mj,i ·
K(j)

n+ 1
·
n−1∑
t=1

1

td
. (6.62)

Observe that for every 1 ≤ p ≤ n+ 1, we have if i ∈ Bp \Bp−1:∑
j 6=i

mj,iK(j) = C(p+ 1 + β)1+d ·
∑
j /∈Bp

mj,i (6.63)

+ C(p− 1 + β)1+d ·
∑

j∈Bp−1

mj,i (6.64)

+ C(p+ β)1+d ·
∑

j∈Bp\(Bp−1∪{i})

mj,i (6.65)

= K(i) ·
(

1 +
1

p+ β

)1+d

·
∑
j /∈Bp

mj,i (6.66)

+K(i) ·
(

1− 1

p+ β

)1+d

·
∑

j∈Bp−1

mj,i (6.67)

+K(i) ·
∑

j∈Bp\(Bp−1∪{i})

mj,i (6.68)

Furthermore, by Taylor-Lagrange inequality we have:∣∣∣∣∣
(

1 +
1

p+ β

)1+d

− 1− 1 + d

p+ β

∣∣∣∣∣ ≤ d(1 + d)

2(p+ β)2
(6.69)

and in the same way:∣∣∣∣∣
(

1− 1

p+ β

)1+d

− 1 +
1 + d

p+ β

∣∣∣∣∣ ≤ d(1 + d)

2(p+ β)2
. (6.70)
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We so obtain the following:∑
j 6=i

mj,iK(j) − K(i) ·
∑
j 6=i

mj,i (6.71)

≤ K(i) · 1 + d

p+ β
·

 ∑
j /∈Bp

mj,i −
∑

j∈Bp−1

mj,i

 (6.72)

+K(i) · d(1 + d)

2(p+ β)2
·
∑
j 6=i

mj,i. (6.73)

The first error term above is non-positive, that follows from Condition 2. As we can
also deduce from Condition 1 that |mi,i| ≤ p+O(1), the second error term is smaller
than λK(i) for some choice of β large enough. Overall, we get from Condition 3 the
following chain of inequalities:

∑
j 6=i

mj,iK(j) ≤ K(i) ·

(∑
j 6=i

mj,i + λ

)
≤ K(i) · (|mi,i| − λ). (6.74)

We can now conclude the claim, as follows:∣∣∣∣ [( E[x̄n]− pQ(log (n+ 1)))

(
Id+

1

n+ 1
·Q
)]

i

∣∣∣∣ (6.75)

≤
(

1− 1

n+ 1

)
· K(i)

n+ 1
·
n−1∑
t=1

1

td
(6.76)

+
1

n+ 1
·
∑
j

mj,i ·
K(j)

n+ 1
·
n−1∑
t=1

1

td
(6.77)

≤ K(i)

n+ 1
·
n−1∑
t=1

1

td
− (λ+ 1)

K(i)

(n+ 1)2
·
n−1∑
t=1

1

td
. (6.78)

�

By combining the above Claim 7.2 with Lemmas 21 and 24, we obtain for n large
enough:

|E[x̄n+1(i)]− pQ(i, log (n+ 2))| (6.79)

≤
(

1− λ+ 1

n+ 1

)
· K(i)

n+ 1
·
n−1∑
t=1

1

td
(6.80)

+ c′ ·
(
|mi,i|
n

)1+d

+ o

(
1

(n+ 1)2

)
(6.81)

≤
(

1 +
1

n+ 1

)
·
(

1− λ+ 1

n+ 1

)
· K(i)

n+ 2
·
n−1∑
t=1

1

td
(6.82)

+ c′ ·
(
|mi,i|
n

)1+d

+ o

(
1

(n+ 1)2

)
(6.83)

(6.84)
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≤
(

1− λ

n+ 1
− λ+ 1

(n+ 1)2

)
· K(i)

n+ 2
·
n−1∑
t=1

1

td
(6.85)

+ c′ ·
(
|mi,i|
n

)1+d

+ o

(
1

(n+ 1)2

)
(6.86)

<

[
K(i)

n+ 2
·
n−1∑
t=1

1

td
+ c′ ·

(
|mi,i|
n

)1+d
]

(6.87)

−

[
λK(i)

(n+ 2)2
·
n−1∑
t=1

1

td
+ o

(
1

(n+ 1)2

) ]
(6.88)

<
K(i)

n+ 2
·
n−1∑
t=1

1

td
+ c′ ·

(
|mi,i|
n

)1+d

. (6.89)

Thus, for C large enough:

K(i)

n+ 2
·
n−1∑
t=1

1

td
+ c′ ·

(
|mi,i|
n

)1+d

≤ K(i)

n+ 2
·

n∑
t=1

1

td
. (6.90)

This achieves proving the induction hypothesis for n+ 1. �

6.4 A truncated process

Theorem 7 shows the link between the normalized mean state distribution and
the stationary distribution of some Markov process. The following is a classical
technique in order to define such a distribution (if it exists) as the limit of a sequence
of stationary distributions for some finite-state Markov processes – that are obtained
by truncation of the state space, and simpler to compute. Specifically, we recall
that for a scale-invariant process (S,m, µ) – as defined in Sec. 6.2.1 – we associate
some transition-rate matrix Q (cf. Definition 5). Furthermore, for the Markov
process defined by Q, there is a natural rebirth process with unit rate, to the initial
distribution µ. So, we can write Q = R + M with M being the rate matrix of the
process without a reset and R corresponding to the reset. By Lemma 20, the unique
invariant measure π of Q is defined as

∫
t∈[0,+∞]

e−t ·pM(t)dt. Note that we will reuse

this decomposition technique in Sec. 6.5 in order to compute closed formulas for
the stationary distributions in some simple cases. We are thus left to study the
properties of the state distribution pM(t) at time t conditioned on the fact that there
has been no reset.

Intuitively, what we aim at avoiding are the pathological cases where, starting
from some initial distribution of finite support, we may reach a state arbitrarily
far away in finite time with positive probability. This seemingly weaker form of
non-explosiveness can happen if, for instance, S = N and ∀i, mi,i+1 = i2. So we
shall assume that the process defined by M does not escape toward infinity too
fast. This shall allow us first to ensure that the invariant measure π is always a
stationary distribution for Q, and then to truncate this infinite chain to compute
approximations of the stationary distribution.
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Definition 6 (non-escaping process). We say that a process is non-escaping if there
exists a function ρ(·, ·) increasing in t such that ∀t, ε, pM

(
Bρ(t,ε), t

)
> 1− ε. Equiv-

alently, the process with no reset remains in a finite ball (whose radius depends on
the time elapsed) with high probability†.

This non-escaping property is sufficient to ensure the existence of a stationary
distribution, as we prove next.

Proposition 1. If the process is non-escaping, then π is a stationary distribution
for Q.

Proof. By Lemma 20 we already know that π is an invariant measure. Therefore,
in order to prove the result, it suffices to prove that ||π||1 = 1 (i.e., there is no
mass escaped toward infinity). For that, we prove that for any ε > 0, we have
||π||1 = ||

∫
t∈[0,+∞]

e−t · pM(t)dt||1 > 1 − ε. Indeed, let t1 be such that e−t1 ≤ ε/4.

Then, ||π −
∫ t1

0
e−t · pM(t)dt||1 ≤ ε/4. Moreover, according to Definition 6, there

is a finite ρ1 = ρ(t1, ε/4) such that, for any t ≤ t1, we have pM (Bρ1 , t) > 1 − ε/4.

This implies, as desired, that we have ||
∫ t1

0
e−t · pM(t)dt||1 > (1 − ε/4)

∫ t1
0
e−tdt >

(1− ε/4)2 ≈ 1− ε/2, and so ||π||1 > 1− 3ε/4.

In order to approximate the stationary distribution, we shall use a truncated
process that evolves in a finite state space and for which finding the stationary
distribution is about determining the Perron Frobenius eigenvector of a stochastic
matrix. Informally speaking, the truncated process is simply the process restricted
to a ball of some radius.

Definition 7. For Q = R+M , its truncated process at radius ρ, denoted R+Mρ,
is defined on the finite state-space Sρ = S ∩Bρ

‡by the transition-rate matrix Mρ =
(mρ

i,j)i,j∈Sρ such that: {
mρ
i,j = mi,j if i 6= j

mρ
i,i = −

∑
j 6=im

ρ
i,j.

In particular, all transitions i→ j with i ∈ Sρ, j 6∈ Sρ are replaced by loops with the
same rate.

Let πρ be the stationary distribution of R + Mρ. We prove under the following
stronger condition that we can use these finite distributions in order to approximate
π at an arbitrary precision.

Definition 8 (strongly non-escaping process). We say that the process defined by
M is strongly non-escaping if for any t > 0, there exists a function ρ′(t, ε) increasing
in t such that Pr[∃t′ < t s.t. XM(t1 + t′) /∈ Bρ′(t,ε) | XM(t1)] < ε.

Proposition 2. If the process is strongly non-escaping, then for every t, ε we have
||π − πρ′(t,ε)||1 ≤ 2(e−t + ε).

†We may choose S = Nk and the balls according to the `1-norm for our study, however the
arguments are quite general and they would apply for other norms.

‡We assume that ρ is large enough so that all initial states are in Sρ, i.e., µ(Sρ) = 1.
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Proof. By Lemma 20, ||π−pQ(t)||1 ≤ e−t, and in the same way ||πρ′(t,ε)−pR+Mρ′(t,ε)
(t)||1 ≤

e−t. Finally, we observe that pR+Mρ′(t,ε)
(t) = pQ(t) | ∀t′ ≤ t,XQ(t′) ∈ Bρ′(t,ε). Equiv-

alently, the two processes are the same conditioned on the fact that we did not
leave the ball Bρ′(t,ε).In particular, pR+Mρ′(t,ε)

(t) + ε ≥ pQ(t) > (1− ε) · pR+Mρ′(t,ε)
(t)

since we assume the process to be strongly non-escaping. This implies ||pQ(t) −
pR+Mρ′(t,ε)

(t)||1 ≤ 2ε.

6.5 Computation of the distributions in some prac-

tical cases

In this section, we illustrate our method, presented in Sec. 6.3, on some classic
one-dimensional and two-dimensional models. In particular, we provide the joint
distribution of the in- and out-degrees of the model of [9] which was not known
before.

6.5.1 One-dimensional state

We first consider a situation in which the set of states is N, with a unique entering
state 1 (µ({1}) = 1). Indeed, we observe that almost all previous studies on PA
models, and their relation to Markov theory, focused on this one-dimensional state
case. Since the only possible transition from the state i is to the state i + 1, we

now call mi
def
= mi,i+1 for better visibility. We denote by π = (Si)i∈N the stationary

distribution (if it exists). It satisfies the following recurrence equation:

(mi+1 + 1)Si+1 = miSi → Si+1 =
mi

mi+1

× 1

1 + 1
mi+1

× Si. (6.91)

It follows that Si can be expressed as:

Si = Si0 ×
mi0

mi

×
i−1∏
j=i0

1

1 + 1
mj

. (6.92)

The above partial product converges if and only if the following series converges:∑
j

ln

(
1

1 + 1
mj

)
= −

∑
j

ln

(
1 +

1

mj

)
. (6.93)

In the case mj � 1, ln
(

1 + 1
mj

)
∼ 1

mj
, and we are left to study the convergence of∑

j
1
mj

.

First case,
∑

j
1
mj

converges. In this case, the process is escaping and the system

of stationary equations is inconsistent. Indeed, if
∑

j
1
mj

converges, then Si = Θ( 1
mi

).

The latter implies that
∑

i Si converges, that proves that the stationary equations
do have a solution. But something unusual happens: the probability mi

1+mi
∼ 1− 1

mi
can be interpreted as the probability that the transition from i to i + 1 happens
before a reset transition. Therefore,∏

j≥i

(1− 1

mj

) ∼ exp(−
∑
j≥i

1

mj

) (6.94)

Thibaud Trolliet 139



Study of the properties and modeling of complex social networks

determines the nature of the probability to reach +∞ when at i. When
∑

j
1
mj

con-

verges, this probability becomes greater than 0 and there is no standard stationary
distribution. Then, the system of stationary equations is also inconsistent. Indeed,
we must have

Si0(mi0 + 1) = 1→ Si0 =
1

1 +mi0

, (6.95)

and so the series ∑
i≥i0

1

mi + 1
×

i−1∏
j=i0

1

1 + 1
mj

(6.96)

should sum to 1, which is not the case.

Example: Set i0 = 1 and mi = i2. We have

Si =
Si0
i2 + 1

i∏
j=1

1

1 + 1
i2

.

Since
sin z

z
=
∏
j

(
1− z2

π2j2

)
,

we finally obtain that §:

Si ∼
2Si0
i2 + 1

√
−1π

sin
√
−1π

∼ 2πSi0
eπ − e−π

· 1

i2
.

But this does not correspond to an actual stationary distribution, and the series Si
does not sum to 1 when we set Si0=1 = 1

2
.

Second case,
∑

j
1
mi

diverges. If
∑

j
1
mi

diverges, when m is an integrable increas-

ing function with lim
x→∞

mx =∞, we let Mi =
∫ i
i0

dt/mt. Then,(
i∑

j=i0

1

mj

)
− 1

mi0

≤Mi ≤

(
i∑

j=i0

1

mj

)
− 1

mi

.

Therefore, we have

Si = Θ

 1

mi

exp

− ∑
j∈[i0,i]

1

mj

 = Θ

(
exp (−Mi)

mi

)
,

and the stationary distribution exists if and only if
∑

i exp (−Mi) /mi converges.

Example: If we let i0 = 1 and mi = ai+ b, we find that

exp (−Mi)

mi

= exp

(
−1

a
ln(ai+ b)

)
/(ai+ b) = Θ

(
i−(1+ 1

a)
)
.

Therefore Si = Θ(i−(1+1/a)), which is the usual power law.

§We use here the notation i =
√
−1 in order to keep clear the distinction between our parameter

and the imaginary number.
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Note also that, if we denote Ci =
∑

j>i Si = 1−
∑

j≤i Si, the stability equations
imply that:

Ci = 1−
∑
j≤i

Si = miSi = mi(
∑
j≤i

Sj −
∑
j≤i−1

Sj) = mi(Ci−1 − Ci).

Thus,

Ci =
mi

mi + 1
Ci−1 → Ci = Ci0

∏
j∈[i0,i]

mj

mj + 1
.

And so, Ci behaves like exp(−
∑

j
1
mj

) and it tends towards 0 only if
∑

j
1
mj
→ +∞.

In this simple case, one can derive an exact and closed formula for the Si’s of a
generalization of the Barabási-Albert model using the Gamma function. Namely:

Proposition 3 (Folk). For mi = ai+ b, a ∈]0,+∞[ then, ∀i ≥ i0:

Si = Si0 ·
Γ
(
i+ b

a

)
Γ
(
i0 + 1 + b+1

a

)
Γ
(
i0 + b

a

)
Γ
(
i+ 1 + b+1

a

) ∼∞ [Si0 · Γ
(
i0 + 1 + b+1

a

)
Γ
(
i0 + b

a

) ]
· i−(1+ 1

a).

Moreover, the process with rate mi and return rate 1 to i0 is stable and admits Si as
stationary distribution.

Note also that S(i) ∼∞ c(a, b)i−(1+ 1
a

), where c(a, b) is a suitable constant.

Proof. We start from Equation 6.91 when one sets mi = ai+ b:

∀i ≥ i0, Si+1 =
ai+ b

a(i+ 1) + b+ 1
Si.

By induction we get:

∀i ≥ i0, Si = Si0 · Πi−1
j=i0

aj + b

a(j + 1) + b+ 1

= Si0 · Πi−1−i0
j=0

aj + (b+ ai0)

aj + (b+ 1 + a(i0 + 1))
.

Dividing by a the numerators and denominators, we get:

∀i ≥ i0, Si = Si0 ·
Πi−1−i0
j=0 (j + b+ai0

a
)

Πi−1−i0
j=0 (j + b+1+a(i0+1)

a
)
.

We can use here the Γ function since

Πn
k=0(k + β) =

Γ (n+ 1 + β)

Γ (β)
.

This leads to:

Si = Si0 ·
Γ
(
i− i0 + b+ai0

a

)
/Γ
(
b+ai0
a

)
Γ
(
i− i0 + b+1+a(i0+1)

a

)
/Γ
(
b+1+a(i0+1)

a

) .
This simplifies further as:

Si = Si0 ·
Γ
(
i+ b

a

)
Γ
(
i0 + 1 + b+1

a

)
Γ
(
i0 + b

a

)
Γ
(
i+ 1 + b+1

a

) .
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To estimate Si, we use Stirling’s formula that states that Γ(x) ∼∞
(
x
e

)x√2π
x
. We

get:

Γ

(
i+

b

a

)
∼∞
√

2π

(
i+

b

a

)i+ b
a
− 1

2

e−i−
b
a

∼∞
√

2πe−
b
a ·
(
i+

b

a

)i
· i

b
a
− 1

2 · e−i,

Γ

(
i+ 1 +

b+ 1

a

)
∼∞
√

2π

(
i+ 1 +

b+ 1

a

)i+1+ b+1
a
− 1

2

e−i−1− b+1
a

∼∞
√

2πe−1− b+1
a ·
(
i+ 1 +

b+ 1

a

)i
· i

1
2

+ b+1
a · e−i.

Combining both, we get:

Γ
(
i+ b

a

)
Γ
(
i+ 1 + b+1

a

) ∼∞ e1+ 1
a ·

(
1−

1 + 1
a

i+ 1 + b+1
a

)i

· i−(1+ 1
a) ∼∞ i−(1+ 1

a).

Altogether, we get the following asymptotic for Si:

Si ∼∞

[
Si0 ·

Γ
(
i0 + 1 + b+1

a

)
Γ
(
i0 + b

a

) ]
· i−(1+ 1

a).

6.5.2 k-dimensional state

In this Section, we prove some results on the k-dimensional state case, in particular
the joint in-out degree distribution of the Bollobás et al. model [9].

Formally, we denote el, l ∈ [k] the l-th vector of the canonical base and we
suppose that the transitions are all of the form¶ s → s + σel, σ ∈ ZZ, l ∈ [k] and
that the rate of the transition Γl,σs → s + σel depends only on σ and sl = s.el.
The process can then be considered as k parallel independent processes each taking
place in one dimension. The only correlation between these processes is the common
reset. Indeed, when this event happens, all the dimensions reset at once to some
initial state.

Proposition 4. For a process in dimension k for which the transition rates are
independent, we have:

Ss =
∑

s0∈IN
k

µ(s0)

∫
T≥0

∏
l∈[k]

Prl[sl | T, s0.el]e
−TdT,

where Prl[x | T, y] denotes the probability for the process in dimension l to be in
state x after T steps and starting from state y.

¶σ is here generic, so we can have many different “shifts” per dimension with varying rates.

142 Thibaud Trolliet



Chapter 6. Revisiting Preferential Attachment

Proof. Let us define the survival time T as the time elapsed without any reset to an
initial state. When (i) the survival time T and (ii) the initial state s0 on which that
last reset happened are fixed, the processes controlling the various directions of the
walk become independent. So conditioning on T and s0, we can express Pr[s | T, s0]
as a product:

∀s ∈ Nk,Pr[s | T, s0] =
∏
l∈[k]

Prl[sl.el | T, s0.el].

Integrating over the survival time and the initial state, we have:

Ss =
∑

s0∈IN
k

µ(s0)

∫
T≥0

Pr[s | T, s0]e−TdT

Ss =
∑

s0∈IN
k

µ(s0)

∫
T≥0

∏
l∈[k]

Pr[sl | T, s0.el]e
−TdT.

According to Proposition 4, one only has to determine the values of Prl[i |
T, i0], and, then, to integrate over the survival time. So, determining the stationary
distribution reduces to the study of several one-dimensional systems. We now study
this later case, a one-dimensional process with a unique reset point i0 (i.e. µ0({i0}) =

1) and with transitions j
m(j)−→ j + 1.

Definition 9. {Pr[i | t, i0], j
m(j)−→ j + 1} is defined as the probability to be in state i

after t steps, starting from state i0, and with transitions j −→ j + 1 at rate m(j).

Lemma 25. For a general dimension 1 process with reset at i0, one have ∀i > i0:

{Pr[i | t, i0], j
m(j)−→ j + 1} =

∫
ti0 ,...,ti−1|

∑
j∈[i0,i]

tj≤t

 ∏
j∈[i0,i−1]

m(j)e−m(j)tj

 e
−m(i)(t−

∑
j∈[i0,i−1]

tj)

dti0 . . . dti−1.

Proof. In such a system the time Tj spent in a state j < i follows an exponential
law with rate m(j) and so density m(j)e−m(j)t. Moreover, these sojourn times Tj
are independent. The distribution law for the time Ti is slightly different since we
must use the probability to stay in the state longer than Ti.

The integral appearing above is, up to a factor, a well-studied case of convolution
for which the author in [3] gave a “closed formula”. The result is stated in the
following lemma:

Lemma 26 ([3]). The convolution of measures with exponential densities e−β1 , . . . , e−βn

is:

An(t) =
∑
j∈[0,i]

e−βjt∏
l∈[0,i],l 6=j(βl − βj)

. (6.97)

Using the above result enables to go one step further in the computation of {Pr[i |
t, 0], (j

m(j)−→ j + 1)}. We omit the resulting formula here since we cannot perform
the integration over the sojourn time in the general case. Nevertheless, in the case
of affine rates, we complete the computation in the next section.
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The case of one-dimensional affine rates

We now study the case of a process in IN that starts from state i0 with affine

transition rates j
aj+b−→ j + 1 which resets to i0. We first consider the canonical case

of the process {0, j j+β−→ j + 1} instead of {0, j aj+b−→ j + 1}. We will then show that
other cases can be reduced to it.

Corollary 4. {Pr[i | t, 0], j
j+β−→ j + 1} = Γ(i+β)

i!Γ(β)
e−βt(1− e−t)i.

Proof. We get from Lemma 25, with m(j) = j + β:

{Pr[i | t, 0], j
m(j)−→ j + 1} =

= Πj∈[0,i−1](j + β)×
∫
t0,...,ti−1|

∑
j∈[0,i−1] tj≤t

e
−

∑
j∈[0,i−1]

(j+β)tj

e
−(i+β)(t−

∑
j∈[0,i−1]

tj)

dt0 . . . dti−1

= Πj∈[0,i−1](j + β)× e−βt
∫
t0,...,ti−1|

∑
j∈[0,i−1] tj≤t

e
−

∑
j∈[0,i−1]

jtj

e
−i(t−

∑
j∈[0,i−1]

tj)

dt0 . . . dti−1

= Γ(i+β)
Γ(β)

e−βtI.

Here I =
∫
t0,...,ti−1|

∑
j∈[0,i−1]tj

≤t e
−

∑
j∈[0,i−1]

jtj

e
−i(t−

∑
j∈[0,i−1]

tj)

dt0 . . . dti−1 is the convolution

of measures with exponential densities with rates j, j ∈ [0, i]. Using Lemma 26 in
the case βj = j, we obtain:

I =
∑
j∈[0,i]

e−jt∏
l∈[0,i],l 6=j(l − j)

=
∑
j∈[0,i]

(−1)j

j!(i− j)!
e−jt

=
(1− e−t)i

i!
. (6.98)

It follows that {Pr[i | t, 0], j
m(j)−→ j + 1} = Γ(i+β)

i!Γ(β)
e−βt(1− e−t)i.

Now, for general values of a, b we have:

Corollary 5.

{Pr[i | t, i0], j
aj+b−→ j + 1} =

Γ(i+ b
a
)

Γ(i0 + b
a
)(i− i0)!

e−(b+ai0)t(1− e−at)i−i0 .

Proof. By shifting the origin, the system {i0, j
aj+b−→ j+1} is equivalent to the system

{0, j ai+b′−→ j + 1} with b′ = ai0 + b. Then, by rescaling the time by a factor a, we can
replace {Pr[i | T, 0], aj + b′} by {Pr[i | aT, 0], j + b′

a
}. It follows that:

{Pr[i | t, i0], j
aj+b−→ j + 1} = {Pr[i− i0 | t, 0], j

aj+(b+ai0)−→ j + 1}

= {Pr[i− i0 | at, 0], j
j+( b

a
+i0)
−→ j + 1}.

The proof then follows from Corollary 4.
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k-dimensional independent and affine processes.

For the 2-dimensional model of Bollabás et al. [9], there are two initial states e0 =
(0, 1) and e1 = (1, 0) to which we return at rates γ = µ0(e0) and α = µ0(e1),
respectively. We study a more general‖ k-dimensional system that resets only on the
vectors {el}l∈[k] of the canonical base with reset probability distribution µ0({el}) ≥
0, l ∈ [k],

∑
l∈[k] µ0({el}) = 1 and that has rate alil+bl for the transition s

alsl+bl−→ s+el
in dimension l ∈ [k].

Proposition 5. In a k-dimensional system with rates j
alj+bl−→ j+1 and reset measure

µ0, such that
∑

l∈[k] µ0({el}) = 1, one has:

Ss =
∑
m∈[k]

µ0({em})Am,s
∫
t≥0

Hm(s, t)e−tdt, (6.99)

where Am,s is the following constant

Am,s =
Γ(sm + bm

am
)

Γ( bm
am

+ 1)(sm − 1)!
Πl 6=m

Γ(sl + bl
al

)

Γ( bl
al

)sl!

and where Hm(s, t) is defined by

Hm(s, t) = e−(bm+am)t(1− e−amt)sm−1Πl 6=me
−blt(1− e−alt)sl .

Proof. We consider the reset at em for some m ∈ [k]. In order to use Corollary 5 for
the process in dimension l ∈ [k], we have to distinguish two slightly different cases,
since i0 is either 0 or 1:

- For a dimension l 6= m, the initial state is 0, and so:

{Pr[i = sl | t, 0], j
alj+bl−→ j + 1} =

Γ(i+ bl
al

)

Γ( bl
al

)i!
e−blt (1− e−alt)i

- For the dimension l = m, the initial state is 1, so:

{Pr[i = sl | t, 1], j
alj+bl−→ j + 1} =

Γ(i+ bl
al

)

Γ( bm
am

+ 1)(i− 1)!
e−(bm+am)t(1− e−amt)i−1.

Now, using Proposition 4, we get:

Ss =
∑
m∈[k]

µ0({em})
∫
T>0

Pr[s|t, em]e−tdt,

where Pr[s|t, em] = Am,s ×Hm(s, t) with

Am,s =
Γ(sm+ bm

am
)

Γ( bm
am

+1)(sm−1)!
Πl 6=m

Γ(sl+
bl
al

)

Γ(
bl
al

)sl!

and

Hm,s(t) = e−(bm+am)t(1− e−amt)sm−1Πl∈[k],l 6=me
−blt(1− e−alt)sl .

‖Our calculation directly extends to any initial state distribution µ0.
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The function we have to integrate in Proposition 5 is of the form:

G(j0, . . . , jk−1, t) = e−ctΠh∈[k](1− e−dht)jh .

We did not manage to get its exact computation∗∗, but we are able to provide the
first-order of this integral:

Lemma 27. Let G(j0, . . . jk−1, t) = e−ctΠh∈[k](1−e−dht)jh where c and ah, bh, for h ∈
[k] are positive real numbers. Then,

I =

∫
t>0

G(j0, j1, . . . jk−1, t)dt =
Θ(1)

maxh∈[k] j
c/dh
h

.

Proof. Letting x = e−ct and performing a change of variable, we get

I =
1

c

∫
x∈[0,1]

(1− xd0/c)j0(1− xd1/c)j1 · · · (1− xdm/c)jmdx.

Next, we consider the function f(x) = (1− xa)j and remark that:

(i) ∀x ∈ [0, 1], f(x) ≤ 1;

(ii) ∀x ∈ [0, 1
j1/a

], f(x) ≥ e−1;

(iii) Beyond 1
j1/a

, f decreases so sharply that
∫
x∈[0,1]

f(x)dx =
Γ(1+ 1

a
)Γ(1+j)

Γ(1+ 1
a

+j)
=

Θ( 1
j1/a

).

Now, letting vmin = minh∈[m]
1

j
c/dh
h

, we get:

(1) I ≤ vmin (using (i) and (iii)) and

(2) I ≥ e−|[m]|vmin (using (ii)).

Remark 12. For seek of simplicity we just provide the first-order of G. However,
one can probably determine an equivalent using a more accurate saddle method. We
stress that first order formulas are already quite tedious to obtain.

Corollary 6.∫
t≥0

Hm(s, t)e−tdt =
Θ(1)

maxl∈[k] s
c/al
l

, c = 1 + am +
∑
l∈[k]

bl.

Proof. We apply Lemma 27 with c = 1+am+
∑
l∈[k]

bl, dh = ah and jh = sh−δh,m ∼sh�1

sh, where δh,m is the Kronecker symbol.

With the above estimate we can determine Ss using Proposition 5, just by sum-
ming over the dimensions. We next exemplify this process using the Bollobàs Model.

∗∗When h = 1 one can easily compute the integral using an integration by parts, that leads
to an induction similar to the one of the Γ function. The general case is possibly related to
a k-dimensional extension of the Γ function, but we fail to find any reference to this kind of
generalisation.
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Application to the model of Bollobás et al. [9]

We already mentioned the model of Bollobás et al. in Section 6.2.1. It corresponds to
a two-dimensional affine and independent process. We can thus apply Proposition 5.

Proposition 6. In the model of Bollobás et al. [9], the joint degree distribution is:

Si,j =

{
Θ(i

− 1+a0+a1+b1
a0 j

b1
a1 ) if i

− 1
a0 < j

− 1
a1

Θ(i
b0
a0 j
− 1+a0+a1+b0

a1 ) otherwise.

Proof. We saw that in the considered model the state of a node v is the vector
(d−(v), d+(v)), with two initial states e0 = (1, 0) and e1 = (0, 1) to which we return at
rates µ0(e0) = α

α+γ
and µ0(e1) = γ

α+γ
, respectively. The transitions are: s −→ s+e0 :

m(i,j),(i+1,j) = (α+β)
(1−β)

· i+δin
1+(1−β)·δin , and s −→ s + e1 : m(i,j),(i,j+1) = (γ+β)

(1−β)
· j+δout

1+(1−β)·δout .
In our context, it corresponds to the parameters:

a0
(α+β)

(1−β)(1+(1−β)·δin)
b0

(α+β)δin
(1−β)(1+(1−β)·δin)

a1
(γ+β)

(1−β)(1+(1−β)·δout) b1
(γ+β)δout

(1−β)(1+(1−β)·δout)

We can thus use Proposition 5 in this particular case:

Si,j =
α

α + γ
A0,(i,j)

∫
t≥0

H0((i, j), t)e−tdt+
γ

α + γ
A1,(i,j)

∫
t≥0

H1((i, j), t)e−tdt

We have:

A0,(i,j) =
Γ(i+ b0

a0
)

Γ( b0
a0

+ 1)(i− 1)!

Γ(j + b1
a1

)

Γ( b1
a1

)j!
= Θ(1)i

b0
a0 j

b1
a1
−1

A1,(i,j) =
Γ(j + b1

a1
)

Γ( b1
a1

+ 1)(j − 1)!

Γ(i+ b0
a0

)

Γ( b0
a0

)i!
= Θ(1)j

b1
a1 i

b0
a0
−1

and

H0((i, j), t) = Θ(1)
1

max(i
1+a0+b0+b1

a0 , j
1+a0+b0+b1

a1 )

H1((i, j), t) = Θ(1)
1

max(i
1+a1+b0+b1

a0 , j
1+a1+b0+b1

a1 )
.

Since

max(i
1+a1+b0+b1

a0 , j
1+a1+b0+b1

a1 ) =

{
i
1+a1+b0+b1

a0 if i
− 1
a0 < j

− 1
a1

j
1+a1+b0+b1

a1 otherwise,

we get

Si,j =

 Θ(i
b0
a0 j

b1
a1 ( α

α+γ
i
− 1+a0+b0+b1

a0 j−1 + γ
α+γ

i
−1− 1+a1+b0+b1

a0 )) if i
− 1
a0 < j

− 1
a1

Θ(i
b0
a0 j

b1
a1 ( α

α+γ
j
−1− 1+a0+b0+b1

a1 + γ
α+γ

i−1j
− 1+a1+b0+b1

a1 )) otherwise.
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Using the condition i
− 1
a0 < j

− 1
a1 , we can neglect one of the terms in each case, which

gives:

Si,j =

{
Θ(i

− 1+a0+a1+b1
a0 j

b1
a1 ) if i

− 1
a0 < j

− 1
a1

Θ(i
b0
a0 j
− 1+a0+a1+b0

a1 ) otherwise.

Remark 13. One can also derive a somewhat ”closed” and exact expression for
Si,j. To that aim, recall that when using Proposition 5 in the two dimensional we
had :

Si,j =
α

α + γ
A0,(i,j)

∫
t≥0

H0((i, j), t)e−tdt+
γ

α + γ
A1,(i,j)

∫
t≥0

H1((i, j), t)e−tdt

with

A0,(i,j) =
Γ(i+

b0
a0

)

Γ(
b0
a0

+1)(i−1)!

Γ(j+
b1
a1

)

Γ(
b1
a1

)j!
A1,(i,j) =

Γ(j+
b1
a1

)

Γ(
b1
a1

+1)(j−1)!

Γ(i+
b0
a0

)

Γ(
b0
a0

)i!

since Hm,s(t) = e−(bm+am)t(1− e−amt)sm−1Πl∈[k],l 6=me
−blt(1− e−alt)sl we get :

H0((i, j), t) = e−(b0+b1+a0)t(1− e−a0t)i−1(1− e−a1t)j

H1((i, j), t) = e−(b0+b1+a1)t(1− e−a1t)j−1(1− e−a0t)i

We can then expand the formula using the binomial expansion to get :

H0((i, j), t) = e−(b0+b1+a0)t
∑
l∈[i−1]

(−1)l
(
i− 1

l

)
e−a0lt ×

∑
k∈[j]

(−1)k
(
j

k

)
e−a1kt

H0((i, j), t) =
∑

l∈[i−1],k∈[j]

(−1)l+k
(
i− 1

l

)(
j

k

)
e−(a0l+a1k+b0+b1+a0)t

∫
t>0

H0((i, j), t)e−t =
∑

l∈[i−1],k∈[j]

(−1)l+k
(
i− 1

l

)(
j

k

)
1

1 + a0l + a1k + b0 + b1 + a0

Symmetrically we have∫
t>0

H1((i, j), t)e−t =
∑

l∈[j−1],k∈[i]

(−1)l+k
(
j − 1

l

)(
i

k

)
1

1 + a1l + a0k + b1 + b0 + a1

.

(6.100)
The global formula is then :

Si,j =

α

α + γ

Γ(i+ b0
a0

)

Γ( b0
a0

+ 1)

Γ(j + b1
a1

)

Γ( b1
a1

)

∑
l∈[i−1],k∈[j]

(−1)l+k

(i− 1− l)!(j − k)!l!k!

1

1 + a0l + a1k + b0 + b1 + a0

+
γ

α + γ

Γ(j + b1
a1

)

Γ( b1
a1

+ 1)

Γ(i+ b0
a0

)

Γ( b0
a0

)

∑
l∈[j−1],k∈[i]

(−1)l+k

(j − 1− l)!(i− k)!l!k!

1

1 + a1l + a0k + b1 + b0 + a1

148 Thibaud Trolliet



Chapter 6. Revisiting Preferential Attachment

(a) out-degree distribution. (b) in-degree distribution.

(c) bi-degree distribution.

Figure 6.1: The degree distributions of Twitter snapshot.

6.6 A new Preferential Attachment Model for Twit-

ter

We present here a new preferential attachment model for Twitter, whose analysis
led us to the introduction of our framework. The model takes into account some
properties exhibited by the exploration of a Twitter snapshot of 505 million nodes
and 23 billion edges, which we first report in Section 6.6.1. The model in then given
in Section 6.6.2.

6.6.1 Experiments on Twitter

We report on experiments performed on the degree distributions of the Twitter
social graph.

Dataset. To analyze the graph connecting Twitter’s users, we used the Twitter
snapshot described in [14] and made available by the authors. The authors success-
fully crawled all the Twitter accounts (except 6% of protected accounts) in 2012
and collected their followed users. The social graph built has 505 million accounts
connected with 23 billion arcs. The authors then unveiled the macroscopic structure
of the graph.

In the following, we study the degree distributions of the graph. We consider
here nodes in Twitter’s Largest Strongly Connected (LSC) component. Indeed, it
involves around half of the total users, more than 96% of the following and follower
links, and 98.05% of the tweets are for accounts in the LSC [14].

Strong presence of bi-directional links. We found that 35% of the arcs are
involved in bi-directional links. Furthermore, 71% of the vertices have at least one
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(a) out-degree versus in-degree. (b) in-degree versus bi-degree.

(c) out-degree versus bi-degree.

Figure 6.2: Heat-map of the correlations between the degree distributions in Twitter
snapshot.

bi-directional link. Moreover, these bi-directional links have an important social
meaning (e.g., friendships, ...). An adequate model for Twitter should thus take
into account bi-directional links.

Relations between node degrees: Power law and Strong Degree Corre-
lation. We studied further the relation between node degrees. It is well known in
a undirected social graph that a node with high degree has more chance to attract
new connections than a node with low degree. Is this also the case for in-, out-, and
bi-directional- degrees? As expected, we found that it is the case and we exhibit a
heavy-tail phenomena for the three of them as shown in Figure 6.1.

But more importantly and newer, does a node with high in-, out-, or bi-directional-
degree have more chance to attract arcs of the other kinds? We analyze the corre-
lations between the different degrees. To give the reader a perception of them, we
plot heat-map plots in Figure 6.2. In each plot, the considered degree distributions
are on the axes and the colours are used to indicate the number of vertices, e.g.,
dark blue means few vertices. We also quantify the correlations by computing the
Pearson coefficients between the three degree distributions.

We find a very low correlation between in-degree and out-degree (see Figure 6.2a).
Indeed, their Pearson coefficient is around 0.15. This reflects the fact that content
publishers (e.g., a celebrity) may have a lot of followers without following themselves
a lot of people. Symmetrically, this can be explained by the social fact that choosing
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Figure 6.3: Degree distributions of the Twitter model. Comparison between simu-
lations with 1 M nodes and the framework with a truncation box size of 100. Pa-
rameters: α = 0.25. β = 0.35. δin = 1. δout = 1.

to follow a large number of users does not make us more interesting. Note that this
validates random graph models such as the ones of [9] in which independence between
in- and out- degrees are supposed for the computations.

However, the relation between out-degree and bi-degree is very different and
interesting. We find a Pearson coefficient around 0.95, showing a very strong cor-
relation. This can also be observed in Figure 6.2c. Note that we expected such a
correlation. Indeed, there is a tendency in Twitter for a category of users to follow
back the people who follow them in order to gain followers, hoping that other users
will do the same [14]. But, we did not expect such a strong correlation.

For the last relation between in-degree and bi-degree, we find a very low cor-
relation (see Figure 6.2b). The value of the Pearson coefficient is 0.15. This can
be explained by the fact that very popular users do not follow back (they do not
need to do it) and that content popularity is different from friendship popularity
(bi-directional) on a social network.

Note that if we had found no correlation between out-degree and bi-degree, the
degree distribution of Twitter could have been taken into account with a very simple
model: take a random directed graph according e.g., to [9] and a random undirected
graph from [6], and merge them together. However, the strong correlation found
forces us to propose new models.

We are thus in need of a new model taking into account the large number of
bi-directional links and the degree correlation.

6.6.2 Random directed graph models

We propose a new model of preferential attachment to explain the large presence of
bi-directional links in directed Online Social Networks like Twitter.

Thibaud Trolliet 151



Study of the properties and modeling of complex social networks

Figure 6.4: Correlations between in-, out-, and bi-degrees in the model with corre-
lated bidirectional links.

We start at the initial time t0 from an initial directed graph Gt0 . The graph
then grows with two kinds of events: an arc event, during which a (single) arc or
a bi-directional (double) arc is added between two existing vertices; and a vertex
event, during which a new vertex is added, as well as a single or double arc linking it
with an existing vertex. Two important features of the model are (i) that we choose
the two ends of a bi-directional arc according to their out-degree and (ii) that we do
not consider bi-directional arcs when computing the in-degree of a node. The reason
is that we found a strong correlation between bi-degree and out-degree in Twitter,
and no correlation with the in-degree.

Model Description

We consider a model that starts with a directed graph which grows by adding single
or double arcs at each time step. Furthermore, at each step a vertex may or may not
be added. A vertex event happens with probability α and an edge event happens
with probability 1 − α. When a link appears, it is a double arc with probability γ
and a single arc with probability 1− γ.

Let t0 be the initial time, with t0 ≥ 1. We denote by G(t) the graph at time
t ≥ t0, e(t) its random number of arcs and n(t) its random number of vertices. We
define din(v) as the number of incoming arcs at a node v that are not involved in
a bi-directional relation (when the total in-degree din(v) includes them). In what
follows, the choice of a vertex v of Gt by either din+δin or dout+δout means to choose
the vertex v with some probability proportional to either din + δin or dout + δout.
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Specifically, Pr[v = vo] = dout(vo)+δout
e(t)+δoutn(t)

is according to out-degree, where dout(vo)

indicates the out-degree of the vertex vo in the graph G(t). For the in-degree, the
probabilities are similar by interchanging dout with din and δout with δin.
The graph G(t) evolves in G(t+ 1), for t ≥ t0, according to the following rules:

• (A) With probability α(1− γ), add a new vertex v together with an arc from
v to an existing vertex w, where w is chosen according to din + δin;

• (B) With probability αγ, add a new vertex v together with an arc from v to
an existing vertex w and one arc in the inverse direction, where w is chosen
according to dout + δout;

• (C) With probability (1− α)(1− γ), add a new arc from an existing vertex v
to an existing vertex w, where v and w are chosen independently, v according
to dout + δout and w according to din + δin;

• (D) With probability (1 − α)γ, add two arcs between existing vertices v and
w, where v and w are chosen independently and according to dout + δout;

We define α, γ, δin, and δout to be non-negative real numbers, with α, γ in the range
[0, 1]. Studies in [14] reveal the existence of a large number of vertices with out-
degree or in-degree equal to 0 and which are connected to other vertices. We thus
need that they can be chosen as the end of an arc with a positive probability during
the preferential attachment process. To this end, we borrow from the model in [9]
two technical constants, δin and δout. For future work, we aim at varying the value
of δin and δout for each vertex depending on its component: e.g., a vertex in the
disconnected component may have δin, δout = 0.

Now we identify the random variable xi,j,k(t) as the number of vertices in G(t)
with:

• i + k in-degree, where i indicates the number of incoming arcs that are not
involved in a bi-directional relation.

• j + k out-degree, where j indicates the number of outgoing arcs that are not
involved in a bi-directional relation.

• k indicates the number of arc pairs involved in bi-directional relations.

For sake of simplicity of the computations, we allow multiple arcs, loops and
account for bidirectional arcs that come out only from the events (B) and (C). This
is a classical way to carry out the analysis and this does not affect the results.

Computation of the model distributions: a case of three-dimensional
state.

We compute here the degree distributions in the random Twitter model. In this
situation, the stationary distribution satisfies the following recurrence equation:

c1(i− 1 + δin)(Si,j,k − Si−1,j,k)

+c2(j + k − 1 + δout)(Si,j,k − Si,j−1,k)

+c3(j + k − 1 + δout)(Si,j,k − Si,j,k−1)

+(c1 + c2 + c3)Si,j,k

= 0
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with c1 = 1−γ
1+γ+δinα

, c2 = (1−γ)(1−α)
1+γ+δoutα

, c3 = γ(2−α)
1+γ+δoutα

.

Observe that if we were only considering the two dimensions i and j + k, then
we would go back to the previous two-dimensional state case, with a0 = c1, b0 =
c1 · δin, a1 = c2 + c3, b1 = (c2 + c3) · δout. Let Ŝi,j+k be the corresponding stationary
distribution. Then,

Si,j,k = Ŝi,j+k · Pr[j | j + k].

The latter corrective term corresponds to the probability of j successful events
among k + j Bernouilli trials with c2/(c2 + c3) success probability. Hence,

Si,j,k =

(
j + k

j

)
· cj2c

k
3

(c2 + c3)j+k
· Ŝi,j+k.

6.6.3 Validation

In this Section, we validate the fast convergence of the framework with truncation
using simulations. We implement two different preferential attachment models: the
one presented in Section 6.6.2, with correlated bi-directional links, and a model of
graphs with edge removals, described below. We then compare the degree distribu-
tions given by the framework (stationary distribution of a truncated infinite Markov
chain) with the average degree distributions over sets of random graphs.

One of the advantages of the framework is that we very quickly obtain the degree
distribution for any size of graphs, when the simulations of graphs with millions of
vertices and billions of edges are taking prohibitive time.

Simulation settings. The simulation consists in building a small number (20) of
random graphs with 1 million nodes. We then average the degree distributions over
the built random graphs.

Computing the degree distributions given by the framework. To compute
the stationary distribution of the truncated chain, several methods can be used.
We tested two methods: (i) inverting the matrix using a linear solver; (ii) using
an iterative computation. Method (ii) is very slow. We thus apply Method (i) to
produce the results presented in the following. We used IBM CPLEX solver [17].
To show the efficiency of the truncation, we tested different sizes for the box used
to truncate the infinite Markov chain, see Figure 6.5.

Models with correlated bi-directional edges.
Validation of the framework. We first validate the framework by comparing the
distributions of in-degree, out-degree, and bi-degree given by the framework with the
ones obtained from simulation. We see in Figure 6.3 that framework and simulations
almost perfectly match.

Correlation. In Figure 6.4, we show the joint distributions of in- and out-degrees, of
in- and bi-degrees, and of out- and bi-degrees given by the framework. We observe
the strong correlation in the model between out and bi-degrees, as pointed out by
the ”red” diagonal in the Right plot. This is desired, as this strong correlation is
observed in Twitter. This is due to the choices of the end-vertices of bidirectional
links according to the out-degree in the model. On the contrary, in-degree and bi-
directional degree (and in-degree and out-degree) are a lot less correlated (Left and
Middle plots). This is also desired as observed on Twitter, and this is due to the
selection of the head of a directed simple link according to the in-degree of vertices

154 Thibaud Trolliet



Chapter 6. Revisiting Preferential Attachment

0 50 100 150 200 250 300

Node degree

0.0

0.2

0.4

0.6

0.8

1.0
P

ro
p

o
rt

io
n

 o
f 

a
rc

s 
d

is
co

ve
re

d

Simulation.

Box size 10

Box size 100

Box size 200

(a) in-degree

0 50 100 150 200 250 300

Node degree

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
o
rt

io
n

 o
f 

a
rc

s 
d

is
co

ve
re

d

Simulation.

Box size 10

Box size 100

Box size 200

(b) out-degree

Figure 6.5: Study of the truncation box size of the infinite Markov chain: cumulative
in-degree and out-degree distributions.

(excluding bidirectional links). We still observe a correlation between in and bi-
directional degree. This is due to the impact of the date of apparition of vertices.
Indeed, a vertex arriving at the beginning of the preferential attachment process has
more chances to have high in-, out-, and bi-degrees.

Models with edge removal. We consider a generalization of the two-dimensional
state model of Bollobás et al. [9], in which edges can be added, but also removed,
during time. In an online social graph, this would correspond to the loss of interest
from a user to the content of another user. We introduce in the model a probability
r, which is the probability for each edge to be removed at each time step. Note
that, for this model, there exists no simple recurrence equation to compute the
degree distributions of the preferential attachment model. We show in the following
that we can easily evaluate numerically the distributions using our framework.

Validation of the truncation process. We tested the precision of the truncation. We
study the cumulative proportion of arcs discovered considering nodes of in-degree
or out-degree lower than a given value. Results for three sizes of truncation boxes
are shown in Figure 6.5. We observe that the truncation works very well for degrees
up to around one third of the box size. As expected, values for degrees closer to
the box size are not very precise. A user of the framework should thus choose a box
size larger than the maximum degree she wants to observe. A precise study of the
adequate box size is left for future work.

Study of the impact of edge removal. We discuss now the impact of edge removal
on the degree distributions. We compare in Figure 6.6 the cumulative distribution
functions for different rates of edge removal, for in-degree in Figure 6.6a and out-
degree in Figure 6.6b. We see that the introduction of edge removals concentrates
the degree distribution towards low degrees. For a removal rate equal to 10 (and
also equal to the edge arrival rate), almost all nodes have an in-degree smaller than
20. With a removal rate of 0, almost 40% of nodes have an in-degree greater than
100. The effect is similar on out-degrees.
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Figure 6.6: Study of the model with edge removals. Cumulative in-degree and
out-degree distributions for different removal rates.

6.7 Conclusion and open perspectives

In this Chapter, we studied some properties of one of the biggest directed snapshots
of social networks available nowadays, a graph of the social interactions of Twitter,
made available to us by the authors of [14]. We have noticed that the graph has
a high number of bidirectional links (around 35% of the edges) and that, if the
in-degree is uncorrelated with the out- and bi-degrees, the out-degree and bi-degree
are strongly correlated.

It led us to propose a new preferential attachment model to take into account
these properties of Twitter. However, classical ways to analyze preferential attach-
ment were not powerful enough to compute the degree distributions of our model.
We thus proposed a new theoretical framework to compute the degree distributions
of a broad set of preferential attachment models. The key idea is to reduce the
computations to the analysis of the stationary distribution of a continuous Markov
process. It made it possible for us to derive both the independent or joint distri-
butions (e.g., the probability to have a given in-degree and out-degree at the same
time), for almost any model with node events and edge events (including those with
edge removals). As an example, we used this framework to compute, for the first
time in literature to our knowledge, the combined degree distribution of the Bollobás
& al. model [9], as well as our Twitter model with three correlated dimensions. We
do believe this framework can be used on an even larger set of preferential attach-
ment models. In particular, we think it would be possible to push the study of the
analytical solutions of preferential attachment models to states of dimensions Nk,
with similar computations as done in this Chapter.
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Chapter 7

Conclusion

We have discuss through those hundred and fifty pages various works which all
follow the same Ariadne’s string, namely the will to study real-world networks with
complex properties and to model them as accurately as possible. I present here
a (brief and non exhaustive) summary of the main properties highlighted by the
real-world network studies:

• Twitter network: The main results can be found in Sections 3.4, 3.3.1
and 6.6.1. This directed network exhibits:

– A high presence of bidirectional links, with around 32% of the edges
implied in a bidirectional link;

– In- and bi-degree distributions following power-law distribu-
tions. The same holds for the out degrees in the tail of the distri-
bution, while lower degrees have an atypical shape - in particular with a
huge spike around 2000, due to Twitter’s policies.

– A high correlation between in- and out-degrees and between out-
and bi-degrees, but a low correlation between in- and bi-degrees;

– A high value of the interest clustering coefficient, both in the
whole graph and the in graph without bidirectional link; other classical
directed clustering coefficients are high in the whole graph and
in the mutual graph but low in the graph without bidirectional
edges. This confirms the idea that Twitter is both a social network (due
to its high triangle clustering in bidirectional graph) and a network of
information (due to its high interest clustering coefficient in the graph
without bidirectional links).

• Copublication network: The main results can be found in Sections 5.5, 5.6
and 5.7.2. This network exhibits:

– One large connected component, containing 95% of the nodes and
99% of the hyperedges;

– 47 communities of size bigger than 100 (estimated with the Leiden
algorithm [7]);

– A high modularity both for the flatten graph (around 0.80) and the
hypergraph (around 0.63);
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– A degree distribution following a power-law (in first approxima-
tion);

– A size of communities distribution apparently following a power-
law too (see Figure 5.1). Note that, if I did not use this property in
this thesis, this assumption is used in various models such as the LFR
benchmark [4].

I also summarize the presented models in order to give an idea of which net-
works are covered by the results of this thesis. The presented models enable the
construction of:

• graphs with any wanted degree distribution (Section 4.3);

• directed graphs with a power-law degree distribution and a high value of in-
terest clustering coefficient (Section 3.6);

• directed graphs with in- and out- power-law degree distributions, high pro-
portion of bidirectional edges and correlations closed to the ones of Twitter
(Section 6.6);

• hypergraphs with a power-law degree distribution and the presence of com-
munities (Section 5.4).

If the results presented in this thesis are interesting in themselves, they also open
many perspectives which I hope to explore in future works:

Merge of the models: First of all, each presented model covers different types of
networks in order to give a panel of possibilities. In the future I would be interested
in merging the proposed models into a really general model encompassing a lot of
wanted properties. In particular, adding a general attachment function as proposed
in Chapter 4 to the model for hypergraph with communities presented in Chapter 5
would be really interesting in order to be able to build hypergraphs with communities
and general degree distributions. I expect the proof for the degree distribution of
the model without communities (Section 5.3.2) to be similar, but with a condition
on the chosen probability distribution as the one we have in Theorem 2. However,
in a similar way to what is presented in Section 5.6, the degree distribution of the
model with communities will be the sum of all communities distributions. This sum
might give unexpected results, which further work could try to deal with.

Apply the introduced tools: A few novel tools has been introduced in this thesis,
which can be applied in future works. In particular, the interest clustering coefficient
could be applied on other large directed networks with interest links, e.g. bigger
datasets than the ones used in Section 3.5 for Instagram and scientific citations
networks, but also email, phone calls or text message networks, etc. The framework
presented in Chapter 6 might be used to compute the degree distributions of other
complex models, in particular joint degree distributions of models with more than 1
dimension. For instance we are currently using it to compute the degree distribution
of a general model merging directed, undirected and bi-directional edges.

I also believe the relation between the degree distribution and the attachment
function expressed in Equation 4.1 from Theorem 2 opens a lot of perspective. I
remind Theorem 2 here:
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Figure 7.1: Attachment function obtained from Equation 4.1 for the copublication
hypergraph degree distribution. Each point is a mean on the 200 points around it.

Theorem 2. Let P be a probability distribution of mean µ and such that the
function h(i) = P (k>i+1)

P (i+1)
− P (k>i)

P (i)
is bounded. In the model proposed in Section 4.3.1,

if p = 1
µ
and the attachment function is chosen as:

∀i ≥ 1, f(i) =
P (k > i)

P (i)
, (4.1)

then the degree distribution of the created graph is distributed according to P .

To the best of my knowledge, such a general link between those essential compo-
nents of networks have never been expressed in such a general way, and the simplicity
of the relation is really promising for the emergence of concrete, simple connections. I
even hope that this might bring some knowledge on how real-world networks emerge
and under which rules they evolve. For instance, Figure 7.1 presents the computed
attachment function using Equation 4.1 for the copublication hypergraph degree
distribution. In order to get rid of the noise, I did a moving average of size 200. We
see that the attachment function indeed seems linear at the end - thus leading to a
power-law degree distribution - but that the beginning is not linear. Some deeper
studies could be conducted using those insights. This gives possible insights on how
nodes evolve in the network, supposing the evolution follows the model presented in
Section 4.3. Remind that Equation 4.1 only holds for the model proposed in Sec-
tion 4.3. However, I believe some equivalent equations can be expressed for other
random growth models.

Deeper study of the real-world networks: The two datasets we have at our
disposal are really rich in information, and further studies might highlight other
properties. Among them, studying communities in the Twitter’s network would be
really instructive. This network being directed, the definition of a community is not
straight-forward. Indeed, a link between two nodes does not mean that they are
close to each other, but that one of them is interested in the other. Two nodes will
rather belong in the same community if they share multiple common interests, i.e.,
if they have similar out-neighborhood. Studying communities thus go through a
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previous transformation of the network - see [5] for a survey of the study of directed
communities. In Twitter, we expect to have strong clusters due to languages, and
other sub-clusters inside them representing different interests - music, football, ...
Verifying those assumptions is an open future work.

Finally, the copublication network is ideal to study the impact of funding in
research. Initially, the Scopus publications dataset has been crawled under the SNIF
project, implying the Inria and I3S laboratory, the SKEMA Buisness School, and
the GREDEG research laboratory of economy, with the aim of studying the impact
of funding on productivity and multidisciplinary. The copublication graph can be
used to follow researchers that received a grant at some given time, and see how
their publications have changed from this date. Those evolutions can be compared
with researchers who have same publication behaviors but did not received a grant,
in order to compare the difference of evolution between both. The comparison can
be made using a metric focusing on the property we want to study: publication
rate, pluridisciplinarity publications, ... Some preliminary studies seem to show
that researchers who get a grant tend to do more collaborations with authors they
have never published before, in comparison to not-granted researchers with same
publication rates.

To complete this study, the model proposed in Section 5.4 can be improved
in order to introduce funding. We plan to add fitness to nodes, similarly to the
model proposed by Bianconi and Barabási in 2001 [1, 2]. Each node would have a
probability to receive a new edge proportional to its fitness. The idea is to change
the fitness of some nodes taken randomly after some time, in order to model the
arrival of grants according to those nodes. Then, we study the degree evolution of
those nodes in comparison to some nodes for which fitness didn’t changed - i.e., who
did not received grants.

Finally, we would be interested to use the copublication hypergraph to quantify
inequalities between men and women in science, and the impact of gender equality’s
policy on publications. In recent years, politic rules have been applied in order to
decrease the observed inequalities between men and women in almost all domains.
This also applied for research, with women’s only funding, equal proportions to some
board of examiners, ... The copublication network seems ideal to study the impact
those funding had on publications and collaborations, and if we observe a difference
since this gender equality’s policy has been developed.

Study of properties for directed graphs and hypergraphs: On a longer-term
vision, dealing with directed graphs and hypergraphs is an open-field in which a lot
of work remains to be done. If most of the developed tools are built for undirected
graphs, a generalization to other types of graphs often stays an open problem. This
is not an easy task: some problems for which we know simple polynomial algorithm
for undirected graphs become NP-complete for directed graphs. It is the case for
instance for the k-linkage problem which, for a graph G and k pairs of vertices of G,
decides if there are k mutually vertex-disjoint paths of G joining the pairs [6, 3]. In
some cases, the generalization of the metrics is also not straight-forward, as discussed
above for community detection. This is thus an active and important direction of
research. As a contribution to this field, Chapter 3 and Chapter 5 propose models
for hypergraphs and directed graphs. Chapter 3 focuses on directed clustering coeffi-
cients by comparing different definitions of it. I also started to compute the different
definitions of directed clustering coefficients in random directed models such as the
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directed configuration model and the directed erased configuration model (configu-
ration model with deletion of loops and multiedges). The computation is based on
the one conducted by van der Hofstad et al. [8], but has to deal with complications
coming from the directed aspect of the model (there is a correlation between in-in
degrees while not between in-out degrees). This is a work in progress in collabora-
tion with Guillaume Ducoffe, Frédéric Giroire, Stéphane Pérennes and Ma lgorzata
Sulkowska.
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