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Discipline Mathématiques appliquées
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Gabriel Stoltz Professeur à l’Ecole des Ponts
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Résumé

L’objectif de cette thèse est d’étudier l’influence des conditions périodiques et notamment les
corrections à apporter, en fonction de la période considérée, dans le calcul de certaines quantités
d’intérêt tirées de simulations de dynamique moléculaire. Ces dernières sont particulièrement
profitables pour la compréhension des phénomènes de solvatation de molécules en solution et
voient naturellement leur utilité pour l’étude de la gestion des déchets radioactifs. Nous nous
intéressons notamment à l’étude du potentiel de Force moyenne, décrit dans le formalisme de
McMillan et Mayer entre deux solutés chargés en solution. On commence par calculer analyti-
quement le potentiel d’un tel système en considérant des conditions aux bords périodiques de
période L. Le calcul se base sur les forces agissant sur l’une des particules et sur la réunion as-
tucieuse des termes de la somme obtenue. On peut finalement vérifier que, à grande distance, le
potentiel converge vers un potentiel coulombien, et on obtient un terme correctif en L−5. A partir
de simulations à partir de la méthode du Umbrella Sampling combinée à la méthode WHAM,
on corrige le potentiel de McMillan et Mayer de chlorure de sodium, et de lanthanides, à partir
du terme obtenu afin d’observer la constante d’association qui en résulte. Par ailleurs, on étudie
le coefficient de diffusion d’une particule en milieu confiné. Notre calcul repose sur le passage de
l’équation de Stokes en Fourier, ce qui nous donne des EDO avec distributions que l’on résout
pour obtenir la vitesse de la particule. Ensuite, des développements limités aboutissent au coef-
ficient de diffusion comprenant un terme correctif en L−1.

Abstract

The objective of this thesis is to study the influence of periodic conditions and in particular
the corrections to be made, depending on the period considered, in the calculation of certain
quantities of interest from molecular dynamics simulations. The latter are particularly useful
for the understanding of solvation phenomena of molecules in solution and are naturally useful
for the study of radioactive waste management. We are particularly interested in the study
of the potential of Mean Force, described in the McMillan and Mayer formalism between two
charged solutes in solution. We start by calculating analytically the potential of such a system
by considering periodic edge conditions of period L. The calculation is based on the forces acting
on one of the particles and on the clever joining of the terms of the obtained sum. We can finally
verify that, at large distances, the potential converges to a coulombic potential, and we obtain
a corrective term in L−5. From simulations using the Umbrella Sampling method combined
with the WHAM method, we correct the McMillan and Mayer potential of sodium chloride,
and lanthanides, from the term obtained in order to observe the resulting association constant.
Moreover, we study the diffusion coefficient of a particle in a confined medium. Our calculation is
based on the passage of the Stokes equation in Fourier, which gives us ODEs with distributions
that we solve to obtain the velocity of the particle. Then, limited developments lead to the
diffusion coefficient including a corrective term in L−1.
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Chapitre 1

Introduction générale

Durant ces dernières décennies, les progrès des outils informatiques ont permis aux méthodes
numériques de particulièrement se développer. Ces méthodes permettent la modélisation de sys-
tèmes complexes et d’analyser des phénomènes parfois difficilement identifiables expérimenta-
lement car apparaissant à des échelles très fines. Dans ce contexte, la dynamique moléculaire
cherche à étudier l’évolution de systèmes formés de particules fluctuant dans un milieu soumis
à des contraintes thermodynamiques (température ou pression par exemple). Ces dernières sont
particulièrement profitables pour la compréhension des phénomènes de solvatation de molécules
en solution. Ces procédés voient naturellement leur utilité pour l’étude de réactions chimiques,
et plus spécifiquement pour celle de la gestion des déchets radioactifs. En effet, la quantité de ces
derniers a beaucoup augmenté depuis les années 40, d’où la nécessité d’élaborer des stratégies
pour les traiter. Le but est de les détruire (dans des réacteurs) ou bien de garantir leur stockage.

Les méthodes de dynamique moléculaire se basent sur la thermodynamique statistique. Les quan-
tités d’intérêt macroscopique étudiées apparaissent comme des moyennes sur des ensembles ther-
modynamiques. Il convient de décrire le système d’intérêt selon les interactions en jeu d’une part,
les équations d’évolution en temps d’autre part, et, enfin, de déterminer l’ensemble thermodyna-
mique, dont la mesure de probabilité, pour le calcul des moyennes, va dépendre. Il va notamment
être possible d’obtenir des informations sur la différence d’énergie libre, et plus spécifiquement
sur la différence de Potentiel de Force Moyenne entre deux états du système. Cela constitue
des informations précieuses qui vont permettre de déduire les propriétés thermodynamiques du
système. Dans ce cadre, McMillan et Mayer ont développé un formalismes pour des systèmes de
multi-composants, adapté aux électrolytes. Ils ont ainsi pu définir un potentiel effectif (potentiel
de McMillan Mayer)traduisant l’interaction entre solutés. Celui-ci permet ensuite de calculer les
constantes reliées aux réactions chimiques (constante d’équilibre et coefficient d’activité).

Par ailleurs, dans le contexte de la gestion des déchets radioactifs, il a été envisagé un confine-
ment implanté dans la couche d’argile du Callovo-Oxfordien pour le stockage de ceux-ci. Pour
les argilites de cette zone, le transport d’eau et de solutés est essentiellement diffusif. Analyser
le coefficient de diffusion, pour quantifier le transport des différentes espèces, présente donc un
intérêt. En effet, cela permet d’obtenir des informations sur les radioéléments relâchés dans le
milieu géologique puis dans la biosphère. Ce coefficient, dans le cas simplifié d’une particule se
diffusant dans un solvant confiné, qui peut être étudié par dynamique moléculaire, peut être
calculé analytiquement à partir de modèles hydrodynamiques.

Lors des simulations moléculaires, un artifice de calculs courant est d’imposer au système étu-
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10 1. Introduction générale

dié des conditions périodiques aux bords de la boite de simulation. Cela permet notamment de
limiter les effets de surfaces et de mimer un système physique infini. Dans ces conditions, une
particule interagit non seulement avec les proches voisines, mais également avec leurs images
dans les autres boites pour les interactions à longue portée.

.

Cette thèse a pour objectif d’étudier les conséquences engendrées par les calculs pour les systèmes
en conditions périodiques et notamment les corrections à apporter, en fonction de la période consi-
dérée, dans le calcul de certaines quantités d’intérêt. Tout d’abord le comportement du potentiel
de McMillan et Mayer, d’après simulations numériques, semble, à grande distance, se rapprocher
de celui d’un potentiel Coulombien. Nous souhaitons vérifier cette hypothèse théoriquement, tout
en analysant comment les conditions périodiques modifient ce comportement. Ensuite, le coeffi-
cient de diffusion en milieu confiné est étudié et nous souhaitons observer comment les conditions
imposées influent sur son calcul.

.

Pour présenter ces travaux, le manuscrit proposé s’organise comme suit.

Le chapitre 3 s’attache, après une brève mise en contexte, à définir les diverses interactions agis-
sant dans la matière ainsi que les outils permettant l’analyse de celle-ci, puis à introduire les
notions de simulations numériques en dynamique moléculaire. Une preuve mathématique de la
formule d’Ewald est par ailleurs revisitée en fin de chapitre.

Dans le chapitre 4, la notion de différence énergie libre est plus particulièrement étudiée, et
notamment la notion de Potentiel de Force Moyenne (PMF). Les méthodes, spécifiques à la
détermination de ce dernier par simulations numériques, utilisées dans cette thèse sont ici intro-
duites : il s’agit de la méthode ”Umbrella Sampling”, couplée à la méthode ”Weighted Histogram
Analysis Method” (WHAM). Pour cette dernière, une étude mathématique est redonnée pour
aboutir à la méthode. Ensuite, est expliqué comment choisir divers paramètres utiles pour les
simulations (quelle est la période du ressort introduit dans le Umbrella Sampling ainsi que l’am-
plitude des parapluies, en fonction de la constante de raideur choisie). Pour finir, les coefficients
d’intérêts sont définis (constante d’association et coefficient osmotique).

Le chapitre 5 débute par une analyse mathématique liée au calcul du potentiel pour deux ions
dans une boite constituée, par ailleurs, de molécules d’eau et avec conditions périodiques aux
bords de la boite. Les deux ions sont supposés être assez éloignés, et donc seules les interactions
à longue portée (Coulombiennes) sont prises en compte. Un développement, qui tient compte de
la périodicité introduite dans les simulations, est alors obtenu. Pour se faire, l’idée mathématique
est tout d’abord d’étudier les forces agissant sur l’une des particules, puis de réunir de façon
astucieuse les termes de la somme obtenue. Cela permet, dans le contexte du problème, d’aboutir
à une somme qui converge. La somme des forces calculée permet ensuite de remonter au potentiel
du système étudié. Ensuite, une étude numérique, basée sur des simulations de boites d’eau salée à
partir de trois tailles différentes (Li)i=1,2,3 de boite, permet d’observer l’évolution du potentiel de
McMillan et Mayer en fonction de L (où L désigne successivement (L1), (L2), (L3)) , et d’ajuster
la courbe de celui-ci (défini à une constante près) à celle issue de notre formule obtenue. Une étude
macroscopique à partir des simulations s’ensuit également et permet d’observer les ajustements
qui découlent de notre correction. Pour finir, la courbe tirée de notre formule est également
utilisée afin d’ajuster la courbe de potentiel de McMillan et Mayer de différents chlorures de
lanthanides.
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Le but de cette partie est de permettre de calculer de façon plus précise le potentiel de McMilan
et Mayer entre deux solutés chargés en solution en tenant compte rigoureusement des conditions
aux limites périodiques.

Dans le chapitre 6, le coefficient de diffusion, pour une particule se déplaçant dans un fluide confiné
entre deux murs, est étudié en fonction de la taille considérée du système et selon également
l’influence des conditions aux limites appliquées. Tout d’abord, une méthode est introduite et
fait intervenir des équations différentielles ordinaires (EDO) avec distributions, pour le calcul en
condition non-périodique. Une comparaison de notre développement obtenu, en fonction de la
distance entre les deux murs, avec celui obtenu par la méthode dans [155] permet de valider les
calculs. Puis, une adaptation de la méthode, dans le cas de conditions périodiques, aboutit au
calcul de la vitesse de la particule ; un calcul de type Ewald, avec une double et non triple somme,
permet ensuite un développement du coefficient de diffusion dans ces conditions qui tient compte
de la période appliquée au système.
Le but de cette seconde partie est ici de permettre de calculer de façon plus précise le coefficient
de diffusion d’espèces chimiques confinées en tenant compte rigoureusement des conditions aux
limites périodiques.

Pour finir, des conclusions générales sur ce travail de thèse sont proposées et des perspectives de
poursuites de ces travaux sont introduites et détaillées.





Chapitre 2

General introduction

Over the last few decades, advances in computer tools have enabled numerical methods to par-
ticularly develop. These methods allow the modeling of complex systems and the analysis of
phenomena that are sometimes difficult to experimentally identify because they appear at very
fine scales. In this context, molecular dynamics seeks to study the evolution of systems made
up of particles fluctuating in a medium subject to thermodynamic constraints (temperature or
pressure for example). The latter are particularly beneficial for the understanding of solvation
phenomena of molecules in solution. These processes are naturally useful for the study of chemical
reactions, and more specifically for the study of radioactive waste management. Indeed, the quan-
tity of radioactive waste has considerably increased since the 1940s, hence the need to develop
strategies for its treatment. The goal is to destroy them (in reactors) or to guarantee their storage.

Molecular dynamics methods are based on statistical thermodynamics. The quantities of macro-
scopic interest studied appear as averages over thermodynamic sets. It is necessary to describe
the system of interest according to the interactions at stake on the one hand, the equations of
evolution in time on the other hand, and, finally to determine the thermodynamic set, on which
the measure of probability for the calculation of the averages, will depend. In particular, it will
be possible to obtain information on the difference in free energy, and more specifically on the
difference in Mean Force Potential between two states of the system. This constitutes valuable
information that will allow the thermodynamic properties of the system to be deduced. Within
this framework, McMillan and Mayer have developed a formalisms for multi-component systems,
adapted to electrolytes. They have thus been able to define an effective potential (McMillan
Mayer potential) reflecting the interaction between solutes. This then allows them to calculate
the constants related to chemical reactions (equilibrium constant and activity coefficient).

In addition, in the context of radioactive waste management, a confinement implanted in the
Callovo-Oxfordian clay layer has been envisaged for the storage of radioactive waste. For the
clays in this zone, the transport of water and solutes is essentially diffusive. Analysing the diffu-
sion coefficient, to quantify the transport of the different species, is therefore of interest. Indeed,
it allows to obtain information on the radioelements released in the geological environment and
then in the biosphere. This coefficient, in the simplified case of a particle diffusing in a confined
solvent, which can be studied by molecular dynamics, can be calculated analytically from hydro-
dynamic models.

During molecular simulations, a common calculation trick is to impose periodic conditions on the
edges of the simulation box on the system under study. In particular, this makes it possible to
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14 2. General introduction

limit surface effects and to mimic an infinite physical system. Under these conditions, a particle
interacts not only with its close neighbors, but also with their images in the other boxes for
long-range interactions.

.

The objective of this thesis is to study the consequences generated by the calculations for the
systems in periodic conditions and in particular the corrections to be made, according to the
considered period, in the calculation of certain quantities of interest. First of all, the behaviour
of McMillan and Mayer’s potential, according to numerical simulations, seems at a great distance
to be close to that of a Coulombian potential. We wish to theoretically verify this hypothesis,
while analyzing how periodic conditions modify this behavior. Then, the confined diffusion coef-
ficient is studied and we wish to observe how the imposed conditions influence its calculation.

.

To present this work, the proposed manuscript is organized as follows.

Chapter 3, after a brief background, defines the various interactions acting in matter as well as
the tools for its analysis, and then introduces the concepts of numerical simulations in molecu-
lar dynamics. A mathematical proof of Ewald’s formula is also revisited at the end of the chapter.

In chapter 4, the notion of free energy difference is more specifically studied, and in particular the
notion of Mean Force Potential (PMF). The methods, specific to the determination of the latter
by numerical simulations, used in this thesis are introduced : the ”Umbrella Sampling” method,
coupled with the ”Weighted Histogram Analysis Method” (WHAM). For the latter, a mathema-
tical study is given again to lead to the method. Then, is explained how to choose various useful
parameters for the simulations (what is the period of the spring introduced in the Umbrella
Sampling as well as the amplitude of the umbrellas, according to the chosen stiffness constant).
Finally, the coefficients of interest are defined (association constant and osmotic coefficient).

Chapter 5 begins with a mathematical analysis related to the calculation of the potential for two
ions in a box made of water molecules and with periodic boundary conditions. The two ions are
assumed to be quite far apart, and thus only long range interactions (Coulombic) are taken into
account. An expansion, which takes into account the periodicity introduced in the simulations,
is then obtained. To do this, the mathematical idea is first of all to study the forces acting on
one of the particles, and then to cleverly combine the terms of the sum obtained. This allows, in
the context of the problem, to come to a converging sum. The sum of the forces calculated then
makes it possible to go back to the potential of the studied system. Next, a numerical study,
based on simulations of salt water boxes from three different sizes (Li)i=1,2,3 of box, allows us
to observe the evolution of McMillan and Mayer’s potential as a function of L (where L stands
successively for (L1), (L2), (L3)), and to fit the curve of this one (defined to a constant) to the
curve obtained from our formula. A macroscopic study based on the simulations also follows
and allows us to observe the adjustments resulting from our correction. Finally, the curve from
our formula is also used to fit the McMillan and Mayer potential curve of different lanthanide
chlorides.

The purpose of this part is to allow a more accurate calculation of the potential of McMilan
and Mayer between two solution-charged solutes under strict consideration of periodic boundary
conditions.

In chapter 6, the diffusion coefficient, for a particle moving in a fluid confined between two
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walls, is studied as a function of the considered size of the system and also as a function of the
influence of the boundary conditions applied. First of all, a method is introduced using Ordinary
Differential Equations (ODE) with distributions for the calculation in non-periodic conditions. A
comparison of our expansion obtained, as a function of the distance between the two walls, with
that obtained by the method in [155] allows to validate the calculations. Then, an adaptation
of the method, in the case of periodic conditions, leads to the calculation of the velocity of the
particle ; an Ewald type calculation, with a double and not triple sum, then allows an expansion
of the diffusion coefficient under these conditions which takes into account the period applied to
the system.
The purpose of this second part is to allow a more precise calculation of the diffusion coefficient
of confined chemical species, taking into account strictly the periodic boundary conditions.

Finally, general conclusions on this thesis work are proposed and perspectives for the continuation
of this work are introduced and detailed.





Chapitre 3

From interactions of matter to numerical simulations

3.1 Motivation of this thesis

This thesis finds its motivation in the recycling and the nuclear fuel cycle as well as in the
extraction of rare earths. For radioactive elements, article L. 542-1-1 [10] of the environmental
code specifies that ”A radioactive substance is a substance that contains radionuclides, natural
or artificial, whose activity or concentration justifies a radiation protection control” A distinction
is made between radioactive materials ”for which a subsequent use is planned or envisaged”, and
on the contrary, radioactive waste ”requalified as such by the administrative authority in appli-
cation of article L. 542-13-2.”. It is also explained that the management of the latter ”includes
all activities related to the handling, pre-treatment, treatment, disposal, storage and disposal of
radioactive waste”. conditioning, storage and disposal of waste radioactive materials, excluding
off-site transport.”

The national inventory [2] lists the origin of waste essentially ”according to five economic sec-
tors : the nuclear power sector (which includes in particular nuclear power plants for electricity
production and plants dedicated to the manufacture and reprocessing of nuclear fuel and to the
recycling of part of the materials extracted from it), the research sector (particularly in the field
of civil nuclear energy and nuclear and particle physics), the defense sector (deterrence force
and activities related to the army), the non-nuclear industry sector (including the extraction of
rare earths), and the medical sector (diagnostic and therapeutic activities)”. Figure 1 shows the
distribution of radioactive waste according to these five sectors. Among these radioactive wastes
are the radioactive isotopes of long-lived actinides, which are known (provided they have a high
atomic number and a main oxidation state of +3) to have a chemical behaviour similar to that
of the lanthanides, for which specific potentials have been developed in modelling [55,60].
.
The development of computer calculations tends to allow the prediction of the behavior of chemi-
cal systems. These calculations are of interest because of their low cost and because experiments
on radioelements are particularly cumbersome. The use of mathematical models and numerical
simulation is thus a way for the National Agency for Radioactive Waste Management to study
the phenomena that exist or will exist in the storage facilities and their natural environments,
especially since it must ensure that the solutions it adopts will be safe in the very long term [3].

The study by simulation of these materials is carried out by means of statistical thermodyna-
mics. This uses statistical mathematical laws, such as the law of large numbers, to calculate
the macroscopic thermodynamic quantities of interest from a representation of the system on a

17
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Figure 1 – Breakdown of sectors from which radioactive waste comes, end 2016 (figure from [2])

microscopic scale. In chemistry, the most accurate way to describe a system is to use quantum
mechanics [41] (which takes into account the electronic cloud of particles). But if we want to
describe larger systems, we rather use the so-called classical (or molecular) level, for two main
reasons. The first is the cumbersome nature of quantum simulations, which cannot describe large
systems. The second comes from the fact that recycling and extraction are mainly driven by
weak, non-covalent interactions, for which a simple classical model is justified. In order to take
advantage of these two levels of description, the QM/MM method [158,181] has been developed ;
it is based on the description of part of the system at the quantum level and the rest at the
classical level. In order to study in a simple way our systems of interest in the framework of this
thesis, we have described them at the classical molecular scale.

Based on Newton’s second law, molecular dynamics makes it possible to explore the movements
of particles, described according to the previously mentioned scales, in order to deduce average
properties of the system.

In numerical simulations, in order to reduce surface effects, it is often necessary to impose perio-
dical conditions 1 on the edges of the simulation boxes [29]. However, these can lead to problems
of anisotropy, including in the case of short-range interactions [92, 113, 143, 144]. Long-range
interactions may be particularly affected depending on the size of the periodic system conside-
red [6, 89]. Hence the importance of trying to correct, according to the period considered, the
calculation of macroscopic properties obtained by this bias. In [185], Yeh and Hummer (as we will
see specifically in chapter 6) have for example attempted to make a correction to the calculation
of the diffusion coefficient for a particle in a free fluid, a correction which is a function of the
spatial period considered. Through this thesis, we wish to focus on the theoretical research of the
influence of periodic conditions on the calculation of quantities of interest : the Mean Force Po-
tential (which leads notably to equilibrium constants and activity coefficients) on the one hand,
and the diffusion coefficient in confined media on the other hand. Our studies thus lead us to try
to make a correction, according to the given period, for these quantities of interest.

1. In the case of the simulation of an unconfined fluid, an alternative to the periodic boundary conditions can
for example be to impose spherical boundary conditions [99]
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3.1.1 Context of radioactive waste storage

In order to manage radioactive waste, the National Agency for Radioactive Waste Management
(ANDRA), a French public institution under the supervision of the Ministries of Research, In-
dustry and the Environment, independent of the producers of radioactive waste, classifies it
according to its radioactivity and its lifespan. A distinction is made between high level waste,
long-lived medium-level waste, low-level waste, short-lived low- and medium-level waste and,
finally, very low-level waste.

Figure 2 shows their volume content at the end of 2016. It can be seen that high level waste
accounts for only a small part of the volume (0.2%), but that it contains 94.9% of the radioactivity.

Figure 2 – Volume of waste as a function of its level of radioactivity, end 2016 (figure derived
from [2])

Each category of waste has its own specific management method. Figure 3 shows these.

Figure 3 – Radioactivity of radioactive waste and methods of management (figure taken from [2])
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On December 30, 1991, the law no 91-1381 [108] on research on radioactive waste management
states that ”The management of high level and long life radioactive waste must be ensured in
respect of the protection of nature, environment and health, taking into consideration the rights
of future generations”. (Article 1)

Then, on June 28, 2006, the law no 2006-739 [109] on the program for the sustainable manage-
ment of radioactive materials and waste specifies that concerning ”the management of long-lived
radioactive waste of high or medium activity, research (...) shall be pursued along the following
three complementary lines : separation and transmutation of long-lived radioactive elements, re-
versible storage in deep geological strata, and, finally, disposal”. (Article 3)

In order to implement the second axis of the law of June 28, 2006, the project for an Industrial
Center for Deep Geological Disposal (Cigeo) [3], in Bure, is planned to store the highly radioac-
tive and long-lived waste produced by all current nuclear facilities, until their dismantling, and
by the treatment of spent fuel used in nuclear power plants.

It was necessary to find a stable geological layer, little exposed to earthquakes and erosion, and
impermeable. Researchers looked at Callovo-Oxfordian (COx) clay sites. The site is expected to
be used for more than a century (the duration of reversibility), for storage over 10,000 years.

The project provides for the digging of 15 km2 of galleries 490 m underground, in order to store
85000 m3 of radioactive waste by 2100, for a bill estimated in 2016 at 25 billion euros by the
State (34.5 billion by ANDRA) and financed according to law by the producers of radioactive
waste (EDF, CEA, Areva).
Figure 4 presents a scheme of the installations planned for the project.

While in June 2018 ANDRA begins work to clear certain parts of the Lejuc woods to allow for
the installation of Cigéo’s aeration chimneys, in September 2018 the State announces the launch
of a new public debate on the management of all of the country’s radioactive waste, between
December 2018 and March 2019, which will include the Bure site. The submission of the project,
its application for authorization for its creation, is therefore postponed to 2019, which should
push back the start of construction to 2022. Thereafter, the launch of the pilot phase is planned
for 2025 : an industrial phase that should be implemented for 10 years. It should allow the storage
of dummy then real packages to confirm the choices made in terms of storage and security, the
type of site ventilation, storage, etc. The first packages should be transported between 2030 and
2033. In 2035, routine operations are scheduled to start with the filling of the site, which will
last a century (at a rate of 5 to 10 packages per day). Finally, in 2150, the storage facility is
scheduled to close and the start of monitoring the site after closure.

.
Numerous projects have been initiated to study the behavior and properties of the [150] argil-
lites present on the site that the project plans to use for the storage of radioactive waste. These
come from the deposition of sedimentary particles resulting from the destructuring of rocks of
the continental crust. The spatial organization of the minerals in a rock controls the geometry
of the pores and thus the geometry of fluid circulation within a [50] rock. The argillites of COx
are characterized by a clayey matrix consisting mainly of a mixture of illite and illite/smectite
interlayers 2 [72]. The arrangement of these minerals form a sheet-like structure. A multi-scale

2. One can cite in particular the montmorillonites [98], which belong to the family of smectites and which are
being studied as a barrier constituent for the storage of radioactive waste
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Figure 4 – Scheme of the installations of the Cigeo project (scheme resulting from [3])
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modeling makes it possible to study the physico-chemical properties of these structures. At the
microscopic scale, the pores are thus described at the interpolar, interparticle and intergranular
scales [44,49,154] (cf figure5).

Figure 5 – Representation of the different porosity scales (figure taken from [150])

Porosity is a factor influencing the macroscopic transfer properties of particles within the clay
medium. It is necessary to understand the transport phenomena and the containment capacity
of radionuclides in order to prevent their return to the biosphere for as long as possible 3. The
pores of argillites are very small (of the order of nanometer), which gives this medium a low
permeability. Therefore, the transport of ionic solutes is mainly done by diffusion 4.

At the pore scale, the sorption phenomenon implies a (non-uniform) compensation of the negative
charges of the sheets by cations. A diffuse layer is then formed from the surface to the liquid.
This leads to the phenomenon of anionic exclusion : the porosity is accessible to cations and
neutral species, while the diffuse layer prevents the passage of anions 5.
At this level of modeling, ab initio calculations [28] or by means of classical molecular dyna-
mics [91, 112] allow to account for the diffusion, within this geometry, of ions and solvent, the
latter having to be considered as confined between the layers. Other studies are also carried out
by Brownian dynamics, a description where the solvent is considered as a continuous medium,
which allows a gain in the degrees of freedom [12,116].

.

3. In this context, microbiological studies are added to the factors likely to be involved in the transfer of
radionuclides [142]

4. The presence of faults and overpressures exerted on the rock can also generate fluid movements : the
transport is then convective [117,156]

5. In [150], a study by simulations of molecular dynamics at the quantum level leads to a precise description
that confirms this phenomenon
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On the macroscopic scale 6, porosity is considered to be uniformly distributed and averaged.
For a confined medium, interactions with the solid surface modify the mechanics and dynamics,
including diffusion-related properties [77, 157]. This is described at this scale by an effective
diffusion coefficient. The latter can be obtained, for example, using the ”though-diffusion” tech-
nique [20,51,124,137], where the diffusion of an element (the ”tracer”) is established by measuring
the concentration gradient between two reservoirs (one upstream which contains the tracer, and
the second downstream which does not ; and the sample being placed between these two reser-
voirs). Other methods of measuring the liquid phase diffusion coefficient in the laboratory consist
for example in measuring a flow at the terminals of the sample under consideration or a concen-
tration profile [159].

In an unconfined (free) fluid, the diffusion coefficient D is defined by the Fick law :

j = −D∇C (3.1)

where j is the molar flux of the diffusing species and ∇C is the local gradient of molar concen-
tration.

In a saturated porous medium, such as compacted clay, this law is written for the effective
diffusion coefficient De

7 :

j = −De∇C (3.2)

where C concentrations here are macroscopic quantities at the ends of the sample.

.
In addition, the hydrodynamic models [27] established with the Stokes equations (equations on
which we based our studies in chapter 6) can be used to model the transport of a particle in the
solvent : {

η∆u(x, y, z) = 5p(x, y, z)
∇.u(x, y, z) = 0 (3.3)

The resolution of these equations relates the speed u of the particle with the force it undergoes.
This results in the relation between the mobility µ of the particle and u by the formula :

u = µF (3.4)

where F is the external force applied to the particle.

The diffusion coefficient can then be calculated from Einstein’s relation [62] :

D = µkBT (3.5)

6. In addition to studies conducted at the microscopic and macroscopic scales, the mesoscopic scale (interme-
diate to the two previous ones) also allows to improve the understanding of the diffusion phenomenon, for example
with the Time Domain Diffusion method [43,148]

7. De is lower than D, since ”tracers” face obstacles, which are pores. These two coefficients can also be related
by the relation :

De = D ×
(
ωδ

τ2

)
where ω corresponds to porosity, δ to constrictivity, and τ to tortuosity.
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where kB is the Boltzmann constant and T is the temperature.

.
Multi-scale modeling allows the link between the microscopic and macroscopic scales, in particu-
lar by using relevant information at various levels. For example, we can cite the coarse-grained
models [53] as well as other techniques based on homogenization methods [131] 8.

.
As we have seen above, a common computational trick is to impose periodic conditions on the
edges of simulation boxes, conditions that can lead to biases in the computation of macroscopic
quantities. The phenomenon of diffusion being particularly important to quantify, the study of
the diffusion coefficient, in the simplified case of a particle diffusing in a confined solvent under
non-periodic and then periodic conditions, was the subject of chapter 6 of this thesis. It was here
calculated analytically from hydrodynamic models, taking into account the periodic boundary
conditions.

3.1.2 Context of extraction and recycling of rare earths (lanthanides)

Rare earths include 17 metals, including 15 elements in the lanthanides family (see figure 6). They
have very interesting properties mainly due to f electrons [84,133], especially optical and magne-
tic, particularly useful in the manufacture of permanent magnets, phosphors for the manufacture
of light-emitting diodes, or in medicine for Magnetic Resonance Imaging, for example. The family
of actinides, which is composed of 15 elements (see figure 6), have physico-chemical properties
similar to lanthanides, particularly the oxidation degree +3 in aqueous phase [94,138,183], which
is why studies conducted on these two families can be compared.

Because of their growing need for the development of new technologies today, and because they
are inhomogeneously distributed around the globe, component separation techniques present a
significant challenge in order to exploit these resources contained in existing technologies.

Among the methods used in industry, we can mention hydrometallurgy, which consists in dis-
solving the material to be recycled in an acidic aqueous medium, but also pyrometallurgy,
where the material is notably melted before proceeding to the extraction of the elements, for
example by a liquid-liquid extraction process (cf figure 7). The latter, also called solvent extrac-
tion, is specifically exploited in the PUREX process (Plutonium-Uranium Refining by Extrac-
tion) [102,118,133,177] for the recycling of used fuel (which contains uranium (U) and plutonium
(Pu) in particular). This process consists beforehand in a ”shearing” that allows contact between
the fuel and a nitric solution. Next, a key stage aims at a dissolution of the fuel. Uranium dioxide
dissolves rapidly in hot nitric acid, unlike plutonium dioxide, which is why it is generally mixed
solid solutions of uranium and plutonium (with a lower content than uranium) that are dissolved.
Consequently, another important step is the separation and purification of uranium and pluto-
nium by extraction, with Tributyl Phosphate (TBP) as the extractant 9 (which is effective only
in very acidic solution), diluted in an organic solvent the TetraPropylene-Hydrogen (TPH) 10.

8. Homogenization methods are particularly relevant for modeling the porous medium, which is very heteroge-
neous, for the storage of radioactive waste and for studying the behavior of radionuclides within this medium [4,74]

9. Other alternatives to TBP such as DEHiBA [126], as well as actinide extraction by DMDOHEMA [42,61],
are also being studied

10. Several recent studies focus specifically on the aggregates formed during extraction in an organic phase
solvent, these aggregates can form reverse micelles and thus induce supramolecular organization at this phase
[16,24,37,54,95,164]
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Figure 6 – Periodic Table of the Elements, showing in particular the lanthanide and actinide
families (figure from [177])

This stage consists on the one hand in the co-extraction in the organic phase of the metallic ele-
ments of interest (uranium and plutonium, which are precipitated in the form of oxides), while
maintaining the impurities in the aqueous phase. On the other hand, a second sub-step allows
the desired elements to be de-extracted in another aqueous phase. The plutonium is reduced to
the oxidation state +3 (instead of +4), with uranium as the reducing agent in the oxidation state
+4, which makes TBP ineffective for plutonium. To de-extract the uranium, the solvent phase
is brought into contact with a slightly acidic aqueous phase at high temperature. In addition,
the other minor actinides (Am, Cu, Np) and the fission products (Cs, Tc) that remain in the
aqueous solution must be separated in order to reduce the concentration of the wastes.

.

In order to optimize these industrial processes, it is necessary to understand the structural
and thermodynamic properties of the elements involved in the various stages of the adopted
process. The structure of Lanthanides in solution has already been the subject of numerous stu-
dies [21,39,78,82,114,184], such as to provide information on water ions-molecule distances or the
nature of ion-solvent and ion-ion interactions. Experimentally, this can be done using the EXAFS
(Extended X-Ray Absorption Fine Structure) method [40,93,139,175] based on X-ray spectrum
analysis. Although actinides are more difficult to analyze, as these elements are particularly oxi-
dizable, studies conducted with the XAS (X-ray Absorption Spectroscopy) method [5,32] can be
cited.

In addition to experiments, numerical studies such as by the Monte Carlo method [70,96] and by
Molecular Dynamics methods are a good way to obtain additional information. The latter can
be established at the classical level [36, 123], but other researches are carried out at the quan-
tum level for example with the Car-Parinello method [90] 11. In order to achieve these methods,
sufficiently precise interaction potentials must be established. Thus, for example, in a study on
Lanthanides in aqueous solution, one can note the important character of taking into account

11. One can also note studies carried out in intermediate with these two levels of description through the
QM/MM method [11,149], or studies drawn from multi-scale modeling such as in [127] by a large-grain approach
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the polarization 12 to obtain the La−O distance [60].

From the simulations, we will be able to calculate quantities of thermodynamic properties of
interest such as the osmotic coefficient, activity coefficients or association constants [22,23,134].
In the PUREX process, for example, for extraction with TBP in organic phase, these last ones
allow to obtain, thanks to the law of mass action, the extraction equilibrium constant. One way
to obtain these coefficients is to calculate the McMillan and Mayer potential, which corresponds
to an ion-ion potential averaged over the solvent configuration at infinite dilution. The interest
of McMillan and Mayer’s approach, compared for example to the Kirkwood-Buff theory, comes
from the gain in simulation time, in particular because the degrees of freedom are smaller.

Chapter 5 of this thesis is devoted to the study of McMillan and Mayer’s potential for a box
composed of two ions surrounded by a solvent, when considering periodic conditions at the edges
of the simulation box. Our study aims at giving a correction to the calculation of the McMillan
and Mayer potential, a correction which takes into account the period considered. This will allow
us to adjust the ensuing calculations. In addition, studies carried out on the one hand with NaCl
in aqueous phase, and on the other hand on Lanthanide salts will make it possible to observe
the adaptation of our calculations with the curves obtained by molecular simulations.

Figure 7 – Illustration of the liquid-liquid extraction technique (figure from [177])

.

3.2 Description of matter and equilibrium models

3.2.1 Description of the interactions of a system

In the following, in accordance with the choice of the General Conference on Weights and
Measures of 2018 [1], e = 1.602176634.10−19 C is the value of the elementary charge, ε0 ≈
8.854.10−12 C2 . J−1 m−1 the permittivity of the vacuum, εr la permittivité relative du milieu,

12. Polarizable models have been specifically developed for the Lanthanides [55] as well as for the actinides
[58]. These molecular dynamics models have allowed for example to study the coordination of nitrates with [57]
Lanthanides, as well as the properties of Uranyl chloride [134]
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kB = 1.380649.10−23 J.K−1 Boltzmann’s constant, T the temperature, h = 6.62607015.10−34 m2 kg . s−1

Planck’s constant.

We consider a system consisting of N particles, defined by their positions and impulses (r,p)
where r = (r1, ..., rN ) ∈ R3N and p = (p1, ...,pN ) ∈ R3N . The interactions of this system are
described by the total energy of the system [105,167,172] :

H(r,p) = Ec(p) + V(r) (3.6)

where H is the Hamiltonian of the system, with Ec its kinetic energy and V its potential energy.

We have :

Ec(p) = 1
2pTM−1p (3.7)

where M is the mass matrix of the particles in the system.

Potential energy is defined from physical bonds on the one hand, which correspond to inter-
molecular forces, and chemical bonds on the other hand, which refer to intramolecular forces
[9,55,73,133]. These forces are described according to their origin, intensity, direction and range.
The potential energy can then be written as a sum of n-body potentials Vn :

V(r1, .., rN ) =
N∑
i=1
V1(ri) +

N∑
i,j=1,i<j

V2(ri, rj) + ...+
N∑

i,j,..,z=1,i<j<...<z
Vn(ri, rj , ..., rz) (3.8)

V1 corresponds to the interaction potential with an external field (e.g. due to the volume of
the box) and V2 to the additive pair interaction potential. The other terms are called n-body
potentials [48, 85] and are associated with the interaction potential between n (with n > 2)
particles. The latter, in the case of molecular systems, are generally of lower intensity than those
of pairs (except for intramolecular terms), but they are nevertheless crucial to understand certain
properties of a system such as polarisability. In practice, the effects of these interactions between
n particles are effectively included in the effective pair potential Veff2 . We then have the following
approximation :

V(r1, .., rN ) '
N∑
i=1
V1(ri) +

N∑
i,j=1,i<j

Veff2 (ri, rj). (3.9)

.
Intramolecular interactions (see figure 8) describe forces within molecules of which they ensure in
particular their stability. The most common are those involving distances (binding energy), angles
(bending energy) and dihedrals (torsion energy). In our simulations, we used the AMOEBA
model [141], which describes intramolecular interactions by a sum of anharmonic potentials to
represent binding, angle, cross-binding angle and out-of-plane bending energies, to which a Fou-
rier series is added to express torsional rotation.

.
Intermolecular bonds, as for them, correspond to the interactions of unbound atoms. These are,
on the one hand, interactions of atoms of the same molecule separated by more than two chemical
bonds, and on the other hand, those existing between the different molecules of the system. We
differentiate the attractive forces, which ensure the cohesions of the molecules with respect to
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Figure 8 – Scheme of the main contributions to intramolecular interactions (taken from [55])

each other in the condensed phases, from the repulsive forces, forces generally at short distance
which impose a stacking structure respecting their shapes (in fact, they ensure the Pauli prin-
ciple, which prevents two particles from being in the same place at the same time).

.
The interactions described in (3.8) are of two kinds.

First of all, we distinguish electrostatic energies Velec, which are long-range interactions and
which are decomposed into a multipolar series taking into account charge-charge (Columbian
energy), charge-dipole, and dipole-dipole interactions on the one hand, and into a induced po-
larization energy for an instantaneous and fluctuating dipole on the other hand. For the latter,
polarization translates the distortion of the electronic cloud of a molecule under the effect of an
electric field created by the surrounding molecules.

.
Several force field writings exist in the literature and are used in modeling. Here is a possible
example (cf [55]) to describe lanthanides, which are widely used in solution chemistry.

The Coulombic energy potential VCoul is associated with an intense, long-range force. It is ex-
pressed as follows :

VCoul = 1
2

N∑
i=1,i6=j

zizje
2

4πε0rij
(3.10)

where, for i, j = 1, ..., N , zi is the charge number of the particle i and rij(= ‖ri − rj‖) is the
distance between the two particles i and j.

The induced polarization energy potential Vpol is written as follows :

Vpol = −1
2

N∑
i=1

µiE
0
i (3.11)

with, for i = 1, ..., N , µi = αiEi the induced moment of the particle i, where αi is the atomic
polarization and Ei is the local electric field generated on the particle i, and where E0

i is the
total electric field.

.
The interactions given in (3.8) also consist of short-range energy, including repulsive and other
energy terms. An important interaction is the van der Waals interaction VvdW . It is an interaction
in r−6, where r is the distance between two particles, and thus at short range. The dipole moment
of the particle i is designated by µi. The potential VvdW is composed of three terms :
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• the Keesom term : − µ2
1µ

2
2

3(4πε0εr)2kbTr6 , which translates a dipolar force between two permanent

dipoles whose rotations are thermally averaged 13,

• the Debye term : − µ2
1α

(4πε0εr)2r6 , which reflects an interaction between a permanent dipole and

an induced dipole. 14,

• the London term : − 3
4

hνα2

(4πε0εr)2r6 , which represents the force of dispersion ; it is a force of

quantum origin, and is the most important contribution of attractive forces. It is the interaction
force between induced dipoles.

(In these three terms, α refers to electronic polarisability and ν refers to the frequency of fluc-
tuation.)

.
In molecular simulation software, van der Waals energy is often taken into account using, for
example, a Lennard-Jones potential VLJ , which is written as follows (εij and σij being the
Lennard-Jones parameters [106]) :

VLJ =
N∑

i,j=1,i6=j
4εij

((
σij
rij

)12
−
(
σij
rij

)6
)
. (3.12)

Here, the term in r−6
ij represents the Van der Waals forces (which are attractive), and the term

in r−12
ij describes the repulsive forces between atoms at short distance, these being due to Pauli’s

principle, which forbids electrons to occupy the same region of space.

3.2.2 Statistical thermodynamics

a. Reminders on the principles of thermodynamics

Let’s first recall the fundamental principles of classical thermodynamics [67,172] :

We consider an energy system Esyst.

First Principle of Thermodynamics (Conservation of Energy) : For any thermodynamic transfor-
mation, if the system absorbs an amount Q of heat and produces an amount of work W , then its
energy changes by an amount ∆Esyst = Q−W . On the other hand, if we consider the external
energy Eext and the total energy (of the universe) Etot then :

∆Etot = ∆Esyst + ∆Eext = 0 (3.13)

(i.e. any change in the energy of the system is exactly compensated by a change in the surroun-
ding energy). For any system, we thus define a quantity that is conserved, i.e. it does not change
by visible exchanges at the macroscopic scale (work) as well as at the microscopic scale (heat).

.

13. This term is more precisely taken into account in Coulomb electronic interactions, reflecting the interactions
with the partial charges of the particles

14. This term is sometimes taken into account in polarizable forces
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Second Principle of Thermodynamics (Irreversibility of physical phenomena) : We add another
quantity that allows us to predict thermodynamics. Let Ssyst be the entropy of the system, Sext
the external entropy, and Stot the total entropy. So, for any thermodynamic transformation, we
have :

dStot = dSsyst + dSext ≥ 0 (3.14)

This reflects the fact that, for an isolated system, entropy increases [52].

For a reversible transformation, Stot is such that dStot = dQrev
T , where dQrev is the amount of

heat needed to change the temperature T by an amount dT .

.
Any system described in this framework will therefore have to verify these principles. Let us now
look more precisely at the systems studied in the framework of statistical physics.

b. Thermodynamic ensembles

We consider a microscopic system composed of N particles, described by their position and pulse,
as defined in section 2.2.1. The pair (r,p) is called the microscopic state of the system, also called
the system configuration. The possible ensemble of these pairs is called the phase space, the latter
being of dimension 6N . It is used to describe the trajectories described in time.

In statistical physics, the macroscopic state of the system is described by a measure of pro-
bability φ on the phase space. The quantities of macroscopic interest appear as averages over
thermodynamic ensembles, ensembles which represent these measurements :

Eφ(A) =
∫
R6N

A(r,p)dφ(r,p) (3.15)

where A is the observable.

In practice, in the simulations, the space of the positions is most often reduced on a range of
values D ⊂ R3 corresponding to the space accessible by the particles and then we calculate :

Eφ(A) =
∫
DN×R3N

A(r,p)dφ(r,p). (3.16)

The different ensembles of thermodynamics [35, 67, 80, 172] each represent specific experimental
conditions. According to these conditions, thanks to the principles of thermodynamics and to
statistical considerations, it will be possible to obtain the variables that are not fixed (depending
on the case, the temperature 15, the chemical potential, ...)

The microcanonics ensemble (NV E) : 16 We consider a closed and insulated system composed
of N particles, having a volume of V , and an energy E 17.

15. Negative temperatures that may be allowed [68]
16. This ensemble is fundamental to define thermodynamics, because it is the only one that accurately describes

a system and it is from it that the other ensembles are built. However, mathematically, it is little used because
the resulting calculations are analytically complicated, except for a perfect monoatomic gas.

17. N.B. : it is the only ensemble where energy is fixed. Indeed, a system that can exchange work or matter
without exchanging energy does not exist experimentally
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The φ measure associated with this ensemble is the uniform probability measure normalized over
the Γ(E) configuration set at the given E energy level, which ensemble is defined by :

Γ(E) =
{

(r,p) ∈ DN × R3N | H(r,p) = E
}

φ being thus given : dφ(r,p) = δH(r,p)−E .

The associated partition function Ψ is 18 :

Ψ = 1
N !h3N

∫
Γ(E)

δH(r,p)−Edrdp (3.17)

where h is Planck’s constant. h3N is a measure of the ”volume” of the particular state, and the
factor N ! is needed to correct the state count [17,121] 19.

The S entropy of the system is defined according to the partition function by the Boltzmann
formula :

S = kB ln(Ψ) (3.18)

where kB is Boltzmann’s constant. The other thermodynamic quantities, in particular tempe-
rature T , pressure P and chemical potential µ, can be obtained from S. Indeed, we have the
relation :

dS = 1
T
dE + P

T
dV − µ

T
dN. (3.19)

This leads us to obtain :

1
T

=
(
∂S

∂E

)
V,N

,
P

T
=
(
∂S

∂V

)
E,N

,
µ

T
=
(
∂S

∂N

)
E,V

. (3.20)

The canonical ensemble (NV T ) : This time, the system is considered to be surrounded by a
thermostat (which imposes a T temperature on the system). Here, the number N of particles
and the volume V of the system are also fixed, but the energy fluctuates.

The probability measure φ of the canonical ensemble is defined by the relation :

dφ(r,p) = Z−1 exp(−βH(r,p))drdp (3.21)

where β = 1
kBT

, H is the Hamiltonian of the system and Z is the partition function of the
canonical ensemble and has the form

Z = 1
N !h3N

∫
DN×R3N

e−βH(r,p)drdp. (3.22)

18. In fact, physically, ψ is defined as :

Ψ =
1

N !h3N

∫
E<H<E+∆E

drdp

where the energy variation ∆E is small, corresponding to the number of accessible states, i.e. compatible with
the macroscopic variables. These two formulations are equivalent within the limits of large systems

19. Some authors disagree with this argument in the case of some systems although showing that it does not
affect the study of its thermodynamics [66]
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Helmholtz free energy is defined as follows F :

F = U − TS (3.23)

where U is the internal energy of the system. We can show that :

F (N,V, T ) = −kBT ln(Z(N,V, T )). (3.24)

From F , one can, again, deduce the macroscopic quantities of interest, thanks to the relation :

dF = −SdT − PdV + µdN (3.25)

which leads us to obtain :

µ =
(
∂F

∂N

)
V,T

, P = −
(
∂F

∂V

)
N,T

, S = −
(
∂F

∂T

)
N,V

. (3.26)

The isothermal-isobaric ensemble (NPT ) : We consider here a system surrounded by a thermo-
stat imposing a temperature T , and also subjected to a barostat that imposes a pressure P . The
number of particles N is fixed. But the energy E and the volume V vary.

The ∆ partition function is defined by [172] :

∆ = βP

h3NN !

∫
e−βPV dV

∫
DN×R3N

e−βH(r,p)drdp. (3.27)

Gibbs free energy G is defined as :

G = U + PV − TS. (3.28)

We can show that :

G = −kbT ln(∆). (3.29)

From relationships :

dG = −SdT + V dP + µdN (3.30)

we can deduce from this :

µ =
(
∂G

∂N

)
T,P

, V =
(
∂G

∂P

)
N,T

, S = −G−
(
∂G

∂T

)
N,P

. (3.31)

The Grand Canonical ensemble (µV T ) : We consider a system surrounded by a reservoir of
particles (and thus here the number of particles N varies), whose chemical potential µ and tem-
perature T are imposed. The volume V of the system is also fixed.
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We consider :

ZN =
∫
DN

e−βV(r)dr. (3.32)

The partition function Q is defined by :

Q(µ, V, T ) =
∞∑
N=1

eβµN

h3NN !

∫
DN×R3N

e−βH(r,p)drdp (3.33)

=
∞∑
N=1

zN

N !ZN . (3.34)

Here we have defined the z fugacity of the system by the following relation :

z = eβµ

Λ3 (3.35)

where Λ = h
(2πmkbT )1/2 is the Broglie wavelength of a particle 20.

We define the grand potential Ξ :

Ξ = U − TS − µN. (3.36)

We can show that :

Ξ = −kbT ln(Q). (3.37)

From the relationship :

dΞ = −SdT −Ndµ− PdV (3.38)

macroscopic quantities can be obtained :

S = −
(
∂Ξ
∂T

)
V,µ

, N = −
(
∂Ξ
∂µ

)
V,T

, P = −
(
∂Ξ
∂V

)
V,T

. (3.39)

.
(N.B. : the µPT ensemble does not exist, since the three control variables are intensive, and such
an ensemble has no size, which makes no physical sense.)

.
Case of mixtures :

Until now, we have evoked the case of a system formed by a single chemical species. When there
are several chemical species, we define as many chemical potentials µi as there are species. The
preceding formulas must then be adapted.

20. To obtain the equality (3.34) we used the fact that the integral in p corresponds to the integral of a Gaussian,
hence the result
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In the canonical ensemble, the Z partition function in (3.22) is expressed, in the case of M species
each formed of Ni particles, defined on Di :

Z = 1(∏
i

Ni!
)
h3
∑

i
Ni

∫
D
N1
1 ×...×D

NM
M
×R

3
∑

i
Ni
e−βH(r1,...,rM ,p1,...,pM )dr1...drMdp1...dpM

(3.40)

with (3.24) and :

dF = −SdT − PdV +
∑
i

µidNi (3.41)

In the canonical grand ensemble, the Q partition function of (3.34) is written as follows :

Q((µi)i , V, T ) =
∑
i

∞∑
Ni=1

zNi

Ni!
ZNi (3.42)

where ZNi is given in (3.32) and zNi in (3.35).

Ξ given in (3.37) verifies here :

dΞ = −SdT −
∑
i

Nidµi − PdV. (3.43)

.
Another space, related to the work of McMillan and Mayer, is the semi-large canonical space
which allows to treat the case of mixing. We will come back to it in more detail in Chapter 4.

3.2.3 Distribution functions

Spatial distribution functions provide information on the local structure as well as on the fluc-
tuations of a fluid [127,133,172].

To begin, we place ourselves in the conditions of the canonical ensemble and consider a system
composed of N particles and volume V , and the temperature T is fixed.

Correlation function :

We define the density of n indistinguishable particles as a function of ZN defined in (3.32) :

ρ
(n)
NV T (r1, .., rn) = N !

(N − n)!ZN

∫
DN−n

e−βV(r1,..,rn)drn+1..drN . (3.44)

The correlation function is then defined according to ρ(n) and the density ρ = N
V :

g(n)(r1, .., rn) = ρ(n)(r1, .., rn)
ρn

. (3.45)
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Radial distribution function :

In case n = 2, g(2) is called the pair correlation function. It represents the probability of finding
an atom 1 at the r1 position and an atom 2 at the r2 position, normalized to 1 at long distance
(i.e. when ‖r1 − r2‖ → ∞).

We have :

g(2)(r1, r2) = N(N − 1)
ρ2ZN

∫
DN−2

e−βV(r1,..,rn)dr3..drN

= N(N − 1)
ρ2 〈δ(r1 − r’1)δ(r2 − r’2)〉r’1,...,r’N

where 〈.〉 indicates an average value.

If the system is homogeneous and isotropic, g depends only on r12, i.e. it is a radial function,
called a radial distribution function.

.
In the large canonical ensemble, that is a system with a fixed chemical potential µ, volume V
and temperature T . The density at n-body is defined here as follows :

ρ
(n)
µV T = 1

Q(µ, V, T )

∞∑
N=n

zN

(N − n)!

∫
DN−n

e−βV(r1,..,rn)drn+1..drN (3.46)

where z is the fugacity of the system given in (3.35).

The correlation function is then given by (3.45).

.
Case of mixtures :

We consider a multisystem formed of Ni particles of species i with density ρi and of Nj particles
of type j with density ρj .

The correlation function is then given by :

g(n)(r1, .., rn) = ρ(n)(r1, .., rn)
n∏
i=1

ρi

. (3.47)

The radial distribution function verifies :

g(2)(r1, r2) = Ni(Nj − δij)
ρiρj

〈δ(r1 − r’1)δ(r2 − r’2)〉r’1,...,r’N . (3.48)

.
To each well defined (minimum) well of the radial distribution function g(2) corresponds a coor-
dination sphere (see figure 9). We call coordination number CN the number of particles of species
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i around particles of type j up to a distance L, which is obtained by the formula :

CN (L) = 4πρj
∫ L

0
g(2)(rij)r2

ijdrij . (3.49)

On the figure 9 are represented the radial distribution function and the coordination number of
the oxygen of the water around an ion Na+ in solution.
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Figure 9 – Illustration of the determination of the average number of coordinations around the
ion Na+ for the first sphere in a cubic side box 53, 000A containing 4998 molecules of water and
1 ion Na+ and 1 ion Cl− : we observe a first minimum of the function gNa−O (black curve) at
about 3.2 A, which corresponds to about 6 molecules of water around Na+ (red curve)

3.3 Simulation methods

3.3.1 Molecular Dynamics

We recall Newton’s second principle concerning, in a Galilean reference frame, the sum of forces
F 21 exerted on a particle of position r, of mass m :

F = m
d2r

dt2
. (3.50)

This law allows, from the force fields that describe the system of interest, to know the trajectory
of the particles of the system over time and is at the origin of molecular dynamics. The idea
is, from the initial configuration of a N particle system, to determine the forces of the system
and then to perform the displacements of the particles from equations of motion established by
Newton’s second principle ; at this stage one can calculate the static properties of the system
(such as energy or temperature), and then pursue the dynamics iteratively.

21. F is related to the V potential of the system by the relation for every ith coordinate : Fi = −∇iV(r1, ..., rN )
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- Verlet’s integrator :

We begin by recalling that the law (3.50) can be found in Hamilton’s relationship 22 for every
ith coordinate at time t with : {

ṙi(t) = ∂H
∂pi

(r(t),p(t))
ṗi(t) = −∂H∂ri

(r(t),p(t)) (3.51)

Indeed ∂H
∂pi

= pi
m so that r̈i = ṗi

m . In addition ∂H
∂ri

= ∂V
∂ri

= −Fi.

(3.51) is in fact equivalent to the following system :{
ṙi(t) = pi(t)

m

ṗi(t) = −∂V(r(t))
∂ri

= Fi(t)
(3.52)

(3.52) is an ordinary differential equation that can be classically integrated by means of the Verlet
integrator for speed [168] : one notes (rn, pn) an approximation of (r(tn),p(tn)) for tn = n∆t,
then it comes :

pn+1/2 = pn + 0.5 ∗∆t ∗ Fn

rn+1 = xn + ∆t ∗ p
n+1/2

m
Calcul de Fn+1

pn+1 = pn+1/2 + 0.5 ∗∆t ∗ Fn+1

Note that this algorithm can also easily be find by means of Taylor-Young development of the
position and retrogressive Taylor-Young development of the velocity of the considered system
[55,133] 23.

.

- RESPA Algorithm :

In order to accelerate the calculation of the dynamics, we used the algorithm RESPA. (REference
System Propogator Algorithm [173]), which allows the forces to be processed according to their
intensity and speed of evolution.

The Hamiltonian H of a system consisting of a particle with coordinates (x, p) in phase space
and mass m, given by the formula (3.6) :

H(x, p) = p2

2m + V(x).

22. It is recalled [105] that Hamiltonian dynamics, which describe the trajectories of particles over time, have
interesting properties such as energy conservation and symplecticity of the flow gt solution of the system in (3.51),

i.e. it verifies (∇gt)tJ∇gt = J où J =
(

0 I3N
−I3N 0

)
. By this last property, it results the one of the preservation

of volume
23. In fact, originally, the more simple Verlet integrator [178] only involves Taylor-Young development of r in

t+ δt and t− δt at order 4. It allows to calculate the positions at time t+ δt , knowing them at the two previous
times t and t−δt. The speed v can, in that case, be approximated by subtracting the same two previous quantities
(taken at order 3).
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The Liouville operator is introduced 24 :

iL = ∂H

∂p

∂

∂x
− ∂H

∂x

∂

∂p
. (3.53)

So we have (since F = −∇V) : iL = p
m

∂
∂x + F (x) ∂∂p .

We know that (x, p) verifies Hamilton’s equations :{
ẋ = ∂H

∂p

ṗ = −∂H∂x
(3.54)

On the other hand, for any function f = f(x(.), p(.)) we have :

df

dt
= ∂f

∂x
ẋ+ ∂f

∂p
ṗ. (3.55)

Thus, using (3.54) and (3.55), we have the equation :

df

dt
= iLf. (3.56)

The solution to this equation is : f(t) = eiLtf(0).

.
Here, after having talked about the notion of semigroup, we will recall Trotter’s theorem [33,47,
171].

Definition 1. Let E be a normed vector space, with the associated norm ‖.‖. For an application
A ∈ L(E,E) (where we note L(E,E) the set of continuous linear applications from E to E), we
define the norm :

‖A‖ = sup
x∈E\{0}

‖Ax‖
‖x‖

.

Definition 2. Let H be an Hilbert space. A semigroup of operator is an operator family U =
{Ut ∈ L(H,H), t ∈ R+} which satisfies the following properties :
i) ∀ t, s ∈ R+ : Ut ◦ Us = Ut+s
ii) U0 = Id (where Id(x) = x for all x ∈ H)
iii) ∀ x ∈ H, t 7→ Utx is continuous from R+ in H.

Its semigroup is bounded if ‖Ut‖ ≤ 1 for all t ≥ 0.

For a semigroup U bounded on H, we note :

D(G) =
{
x ∈ H | lim

t→0,t>0

Utx− x
t

exists

}
For all semigroup U is associated a generator −G, which is an application D(G) → H defined
such as :

−Gx = lim
t→0,t>0

Utx− x
t

.

This generator is an operator.

We recall that saying that two operators A1, A2 commute means that A1 ◦A2 = A2 ◦A1.

24. Useful reminder in particular for 3.2.3 : i2 = −1
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Theorem 1 (Trotter’s Theorem). Let A and B be two generators of semigroups that do not
necessarily commute. We suppose that eA and eB are bounded on C0(RN ). Then we have :

eA+B = lim
n→∞

(
e
B
2n ◦ eAn ◦ e B2n

)n
. (3.57)

As seen in [172], since iL = ∂
∂x

p
m + ∂

∂pF (x), we can then decompose the propagator eiL∆t in the
following way :

eiL∆t '
(
e
F (x)∆t ∂

∂p
2 ◦ e

p
m∆t ∂∂x ◦ e

F (x)∆t ∂
∂p

2

)
. (3.58)

Lemma 1. We consider the differential operator c ∂∂x (where c is a constant) and a function
g ∈ C∞ (R). We can verify that :

ec
∂
∂x g(x) = g(x+ c). (3.59)

Proof. We start by expressing the exponential of the differential operator c ∂∂x in a Taylor series
and we have :

ec
∂
∂x g(x) =

∞∑
k=0

1
k!

(
c
∂

∂x

)k
g(x) (3.60)

=
∞∑
k=0

1
k!c

k ∂
kg

∂xk
(x). (3.61)

which corresponds to Taylor’s development of g(x+ c) for c in 0.

One notes (xn, pn) an approximation of (x(tn), p(tn)) for tn = n∆t. The approximation (3.58),
the lemma 1 and the propagator eiLt applied to (x, p), lead to the following algorithm :

pn+1/2 = pn + 0.5 ∗∆t ∗ Fn

xn+1 = xn + ∆t ∗ p
n+1/2

m
Calcul de Fn+1

pn+1 = pn+1/2 + 0.5 ∗∆t ∗ Fn+1

It corresponds to the Velocity Verlet algorithm.

It is now considered that the F forces of the system can be decomposed into those of short range
Fsr and those of long range Flr : F = Fsr + Flr. The first ones will be evaluated every δt time
steps, while the second ones will be calculated every n time steps, i.e. ∆t = nδt.

The Liouville operator is separated as follows : iL = iLsr + iLlr, with iLlr = Flr(x) ∂∂p et

iLsr = p
m

∂
∂x + Fsr(x) ∂∂p . We can decompose the propagator eiL∆t in the following way :

eiL∆t ' e
∆t
2 Flr

∂
∂p ◦

(
e
δt
2 Fsr

∂
∂p ◦ eδt

p
m

∂
∂x ◦ e

δt
2 Fsr

∂
∂p

)n
◦ e

∆t
2 Flr

∂
∂p . (3.62)

This then leads to algorithms of the ”multiple time step” type, where we will treat, here, the
long-range forces once, then the short-range forces n times, then again the long-range forces
once :
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pk+1/2 = pk + 0.5 ∗∆t ∗ F klr
for i=1 à n do

pk+i = pk+i−1/2 + 0.5 ∗ δt ∗ F k+(i−1)
sr

xk+i = xk+(i−1) + δt ∗ p
k+i

m
Calcul de F k+i

sr

pk+i+1/2 = pk+i + 0.5 ∗ δt ∗ F k+i
sr

end

Calcul de F k+1
lr

pk+n+1 = pk+n+1/2 + 0.5 ∗∆t ∗ F k+1
lr

The interest is that long-range forces, which vary little with time, because little with distance,
are going to be calculated more rarely, which is beneficial since the calculation costs to evaluate
them are heavy. On the other hand, the establishment of the algorithm indicates that it is better
to divide the effect of these long-range forces in two, and put the first part before calculating the
effect of short-range forces, and then the other half afterwards. For short-range forces, a smaller
time step is taken since they vary a lot with time.

.
- Berendsen’s thermostat :

In order to take into account the dependent conditions of the thermodynamic ensemble in which
the simulations are carried out, different methods imposing ”coupled” external stresses on the
equations of motion have been proposed. In our case, having carried out our simulations in the
NPT ensemble, we used the Berendsen’s thermostat [18] to treat temperature and pressure 25.
Contrary to methods such as the one proposed by Nosé [132] 26, where the Hamiltonian of the
system is modified to account for ”outside agents”, the idea is to scale up speed and positions.

For speed v, rescaling v → λv is expressed as a function of temperature T :

λT =
(

1 + ∆t
τT

(
T0

T (t) − 1
))1/2

(3.63)

where τT is a relaxation parameter, ∆t is the time step, and T0 is the reference temperature.
Thus, when the temperature T is higher than the reference temperature T (0), the velocities de-
crease, which decreases the temperature. The time to return to T (0), if the potential energy of
the system does not change (which is guaranteed in the case of a perfect gas), is of the order of τT .

For the positions x and size of the simulation box (side length l and volume V ), the rescaling is
expressed as a function of the pressure P :

λP =
(

1 + ∆t
τP
γ(P (t)− P0)

)1/3
(3.64)

where τP is a relaxation parameter, ∆t is the time step, P0 is the reference pressure and γ is an
isothermal compressibility term. Thus, when the pressure is higher than the reference pressure,
the system expands. Isothermal compressibility ensures that the equation is homogeneous, and
that the time τP is the time to return to the reference pressure at a fixed temperature.

25. In fact, this is equivalent to being in the modified NV E ensemble such that it corresponds to being in NPT
26. Contrary to Nosé type methods, in simulations with a Berendsen thermostat the fluctuations are not good,

but this does not matter in our case since they are not taken into account in our studies.
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3.3.2 Periodic boundary conditions

In order to simulate an infinite physical system, a computational trick is to add periodic condi-
tions to the edges of the (necessarily finite) simulation box under consideration. This allows,
moreover, to avoid surface effects (the number of particles ”stuck” to the surface being propor-
tional to N−1/3, where N is the number of particles of the considered system) [73,150].

Schematically, it is ”as if” we surrounded the simulation box with strictly exact copies of it, i.e.
the particles of the image boxes move exactly the same way as those of the ”main” box. This
ensures that if a particle leaves the simulation box, its exact copy enters through the opposite
side simultaneously. (cf Figure 10)

Figure 10 – 2D scheme of a simulation box with periodic boundary conditions (from [145])

Under these conditions, a particle interacts not only with the particles in the same simulation
box, but also with those in the image boxes (including its own copies).

For short-range interactions, to limit the effects of periodization on computation times, we will
impose a cutoff radius rc such that 0 < rc <

L
2 (where L is the length of one side of the main

box, which is considered cubic here) and we compute the interactions only between particles that
are at most rc away from them.

For the calculation of energy and pressure, in order to correct the bias introduced by this trun-
cation, one must add an analytically evaluated term (assuming that the correlations between
atoms have disappeared beyond the cut-off radius).

For long-range interactions (typically electrostatic interactions), Ewald’s summation technique
exploits the periodization of the system.
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3.3.3 Ewald

Principle of Ewald’s summation

We consider a system consisting of N particles, each of which is of charge qi = zie (with
i = 1, ..., N) and described by its position ri (i = 1, ..., N).

Periodic conditions at the edges of the box are considered.

Let UPBC be the energy potential of the periodic system. We have :

UPBC = 1
2

N∑
i=1

N∑
j=1

′∑
n6=(0,0,0)

qiqj
‖ri − rj + nL‖

(3.65)

where the ’ in the last sum means that one takes n 6= (0, 0, 0) if i = j.

We observe that the sum in n in UPBC converges only conditionally. To arrive at Ewald’s me-
thod, the electrostatic potential will be defined as the solution of the Poisson’s equation in the
simulation box with periodic boundary conditions.

Then, the physical idea will be to screen the load points by a Gaussian, these screened loads can
then be calculated in real space. In order to correct this screener, one compensates each time by
a Gaussian of opposite total charge, which is smooth enough to be evaluated in Fourier space
(reciprocal) [13,45,46,64,67,88,165,170]. (illustration of the strategy on the figure 11).

Figure 11 – Scheme illustrating the strategy for Ewald’s method (from [133])

.
UPBC verifies :

UPBC(r, L) = 1
2

N∑
i=1

qiφ(ri) (3.66)

where φ corresponds to a solution of Poisson’s equation

∆φ(r) = −4π
N∑
i=1

qiδ(r− ri) (3.67)
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with periodic conditions at the edges (of the simulation box).

Poisson’s equation in periodic conditions

For a simple charge particle z at position r0, the Poisson’s equation satisfied by the electrostatic
potential φ is written :

∆φ(r) = −4πzδ(r− r0) (3.68)

where we impose that φ satisfies the periodicity conditions on the faces of the simulation box
(i.e. φ(r + Lei) = φ(r), where (e1, e2, e3) is the canonical basis of R3).

The system being invariant by translation, we set r0 = 0 without loss of generality.

The equation with the periodic boundary conditions defines φ completely to within one additive
constant. This is not a physical problem since the energy is itself defined to within one additive
constant. This constant is fixed as : ∫

V

φ(r)dr = 0 (3.69)

where V is the volume of the simulation box.

To obtain a finite solution for the electrostatic field, the equation is corrected by adding a uniform
neutralizing background :

∆φ(r) = −4π
(
zδ(r)− z

V

)
. (3.70)

(We can verify :
∫
V

∆φ(r)dr = −4π
∫
V

(zδ(r)− z
V )dr = −4π(z − zV

V ) = 0).

If the system is globally neutral (i.e.
∑
qi = 0), we observe that the sum of the neutralizing funds

is zero.

We will, in what follows, establish considerations of a mathematical nature ; the reader interested
in the physical aspect of the problem will be able, if he wishes, to refer directly to theorem 2 (which
corresponds to Ewald’s formula) and then to its interpretation, which follows the demonstration.

Series and Fourier transforms in a cube

We begin with a brief reminder about the distributions [63,76,86,119,146].

Definition 3. We consider T ∈ S
′ (
R3) (where S is the space of Schwartz), i.e. a temperate

distribution. We call Fourier transform of T the distribution T̂ = FT , defined by the relation :

∀φ ∈ S
(
R3) , 〈FT, φ〉 = 〈T, Fφ〉. (3.71)

If f ∈ L1 (R3) : FTf = Tf̂ , where for k ∈ R3 :

f̂(k) =
∫
R3
f(x)eik.xdx1dx2dx3. (3.72)
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Let f be a periodic distribution of R3, period L in the three directions. We can decompose f
into a Fourier series (in the sense of distributions) :

f(r) = 1
V

∑
k

cf (k)eik.r (3.73)

with k = 2π
L m where m ∈ Z3, V = L3 and where cf (k) =

∫
V
f(r)e−ik.rdr.

It is replaced in case there is only one z charge point. (we set z = 1 in order not to make the
calculations more complicated). Since φ and δ are defined as being periodic, we can associate
them a Fourier series and we have : φ(r) = 1

V

∑
k

cφ(k)eik.r and g(r) = 1
V

∑
k

cg(k)eik.r where

g(r) = δ(r)− 1
V (here, δ istaken for N = 1 and q1 = z = 1).

The Poisson equation associated with φ gives us :

∆φ(r) = −4π
(
δ(r)− 1

V

)
(3.74)

⇔ ∆
(

1
V

∑
k

cφ(k)eik.r
)

= −4π 1
V

∑
k

cg(k)eik.r (3.75)

⇔ 1
V

∑
k

cφ(k)∆eik.r = 1
V

∑
k

−4πcg(k)eik.r (3.76)

⇔ 1
V

∑
k

cφ(k)i2k2eik.r = 1
V

∑
k

−4πcg(k)eik.r (3.77)

which expresses the equality of two series of Fourier.

By uniqueness of the Fourier coefficients, we obtain the following equations ∀k 6= (0, 0, 0) :

−k2cφ(k) = −4πcg(k)⇔ cφ(k) = 4π
k2 cg(k) (3.78)

with cg(k) =
∫
V

(δ(r)− 1
V )e−ik.rdr = 1 (since k 6= (0, 0, 0)).

To find the coefficient cφ(0), we use the condition for the additivity constant :∫
V

φ(r)ei(0,0,0).rdr =
∫
V

φ(r)dr = 0 i.e. cφ(0) = 0. (3.79)

Thus :

φ(r) = 1
V

∑
k6=(0,0,0)

4π
k2 e

ik.r (3.80)

4π
k2 being the Fourier transform associated with 1

||r|| (Coulomb’s potential).

(Given this way, φ converges only conditionally (remember that k = (k1, k2, k3) et k2 = k2
1 +

k2
2 + k2

3). Ewald’s idea will be to introduce a cut-off function to overcome this problem).
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By the principle of superposition for i 6= j, and by introducing the constant ξ (which removes
the interaction of a particle with itself introduced) defined as follows :

ξ = lim
‖r‖→0

(
φ(r)− 1

‖r‖

)
(3.81)

in order to take into account the interactions between the particle i and its own images, UPBC
is written :

UPBC = 1
2

N∑
i=1

qi

N∑
j 6=i,j=1

qjφ(ri − rj) + ξ

2

N∑
i=1

q2
i . (3.82)

Demonstration of Ewald’s formula

Theorem 2. We can rewrite UPBC and get :

UPBC = U
(r)
PBC + U

(k)
PBC + U

(s)
PBC + U

(n)
PBC (3.83)

where :

U
(r)
PBC = 1

2
∑
i,j

′∑
n

qiqj
1− erf(α‖ri − rj + nL‖)

‖ri − rj + nL‖
(3.84)

U
(k)
PBC = 1

2
∑
i,j

qiqj
1
V

∑
k6=(0,0,0)

4π
k2 e

− k2
4α2 eik.(ri−rj) (3.85)

U
(s)
PBC = − α√

π

∑
i

q2
i (3.86)

U
(n)
PBC = − π

2α2V
Q2
tot (3.87)

où Qtot =
∑
i

qi, and with α ∈ R.

Proof. We replace ourselves in the case of a particle as in 3.2. and we have seen that when we
want to resolve

∆φ(r) = −4π
(
zδ(r)− z

V

)
(3.88)

with periodic boudary conditions. (we will take, as before, z = 1) we obtain :

φ(r) = 1
V

∑
k6=(0,0,0)

4π
k2 e

ik.r.

We are going to introduce a f function so that, by adding and subtracting this function, we will
obtain two sums that converge exponentially.

We are looking for f such as :

φ(r) = 1
V

∑
k6=(0,0,0)

4π
k2 e

ik.r (3.89)

= 1
V

∑
k6=(0,0,0)

4π
k2 (1− f(k) + f(k))eik.r (3.90)

= 1
V

∑
k6=(0,0,0)

4π
k2 (1− f(k))eik.r + 1

V

∑
k6=(0,0,0)

4π
k2 f(k)eik.r (3.91)
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(provided that the sums converge, for the passage to the third equality).

Let the Gaussian function g : x 7→ α3

π3/2 e
−α2‖x‖2 , where α ∈ R.

We know that the Fourier transform of a Gaussian X = (X1, X2, X3) ∼ N(O, 1
2α2 I3) corresponds

to its characteristic function E
(
eiXk

)
, from which we derive : ĝ(k) = e−

k2
4α2 . We consider f = ĝ.

We have then : φ(r) = 1
V

∑
k6=(0,0,0)

4π
k2 (1− e−

k2
4α2 )eik.r + 1

V

∑
k6=(0,0,0)

4π
k2 e
− k2

4α2 eik.r.

We observe that the second sum in φ converges rapidly, which is not the case for the first one.
In order to deal with the latter, we will use the Poisson’s formula recalled hereafter [8] :

Lemma 2. Poisson’s Summing Formula
Let h continue admitting a Fourier transform. Then, by posing V = L3, when these sums make
sense, we have : ∑

n

h(x + nL) = 1
V

∑
k

ĥ(k)eik.x (3.92)

with k = 2π
L m where m ∈ Z3.

(In particular, with x = (0, 0, 0), we get :
∑
n
h(n) =

∑
k

ĥ(k)).

Here, we have ĥ : k 7→ 4π
k2 (1 − e−

k2
4α2 ). One observes that the formula of Poisson requires to

have the term with the Fourier transform for k = (0, 0, 0), but it does not appear in the sum
1
V

∑
k6=(0,0,0)

4π
k2 (1 − e−

k2
4α2 )eik.r. We will make a 0 equivalent of 4π

k2 (1 − e−
k2

4α2 ) then add it and

subtract it from the sum.

We have : e−
k2

4α2 ∼ 1− k2

4α2 , so that 1− e−
k2

4α2 ∼ k2

4α2 , so that 4π
k2

(
1− e−

k2
4α2
)
∼ 4πk2

4k2α2 ∼ π
α2 .

We thus set ĥ(0, 0, 0) = π
α2 and then we have :

A = 1
V

∑
k6=(0,0,0)

4π
k2

(
1− e−

k2
4α2
)
eik.r (3.93)

= 1
V

∑
k

ĥ(k)eik.r − π

V α2 . (3.94)

We would like, in order to use the Poisson formula, to know the function which has for Fourier

transform 4π
k2 e
− k2

4α2 . We know that 4π
k2 is the Fourier transform of 1

‖x‖ and that e−
k2

4α2 is that of

g. Now, we know that a Fourier transform product corresponds to the Fourier transform of the
convolution of the functions which have for Fourier transform the two factors of this product (i.e. :

we consider f1 and f2 which Fourier transform is respectively f̂1 and f̂2, then f̂1 ∗ f2 = f̂1.f̂2).

So that : ĥ is the Fourier transform of 4π
k2 ∗ g.

Lemma 3. We consider erf : r 7→ 2√
π

∫ r
0 e
−y2

dy. We have :

∆
(

1
‖x‖

erf(α‖x‖)
)

= −4α3
√
π
e−α

2‖x‖2 . (3.95)
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Proof. We set g : x 7→ 1
‖x‖ erf(α‖x‖). We have (considering the spherical coordinates (r, φ, θ)) :

∆g(r) = 1
r2

∂

∂r

(
r2 ∂

∂r
g(r)

)
(3.96)

= 1
r2

∂

∂r

(
r2
(
− 1
r2 erf(αr) + 1

r

2√
π
αe−α

2r2
))

(3.97)

= 1
r2

(
− 2√

π
αe−α

2r2
− 4α3
√
π
r2e−α

2r2
+ 2√

π
αe−α

2r2
)

(3.98)

= −4α3
√
π
e−α

2r2
. (3.99)

Lemma 4. For x ∈ R3 \ (0, 0, 0), we can get :

1
‖x‖
∗
(

4α3
√
π
e−α

2‖x‖2
)

= 1
‖x‖

erf(α‖x‖). (3.100)

Proof. Using previous lemma and by working in the sense of distributions, we have :

1
‖x‖

erf(α‖x‖) = ∆−1
(
−4α3
√
π
e−α

2‖x‖2
)

(3.101)

= δ0 ∗ (∆−1)
(
−4α3
√
π
e−α

2‖x‖2
)

(3.102)

= (∆−1δ0) ∗ 4α3
√
π
e−α

2‖x‖2 (3.103)

= 1
‖x‖
∗ 4α3
√
π
e−α

2‖x‖2 . (3.104)

Thus, thanks to Poisson’s suming formula, one obtains :

A =
∑
n

1− erf(α‖r + nL‖)
‖r + nL‖

− π

α2V
. (3.105)

We reinject A in φ and we get : φ(r) =
∑
n

1−erf(α‖r+nL‖)
‖r+nL‖ + 1

V

∑
k6=(0,0,0)

4π
k2 e
− k2

4α2 eik.r − π
α2V .

All that remains to be done is to calculate the constant ξ to get the total energy UPBC :

ξ = lim
‖r‖→0

(
φ(r)− 1

‖r‖

)
(3.106)

= lim
‖r‖→0

∑
n

1− erf(α‖r + nL‖)
‖r + nL‖

+ 1
V

∑
k6=(0,0,0)

4π
k2 e

− k2
4α2 eik.r − π

α2V
− 1
|| r ||

 (3.107)

=
∑

n6=(0,0,0)

1− erf(α‖nL‖)
‖nL‖

+ 1
V

∑
k6=(0,0,0)

4π
k2 e

− k2
4α2 − π

α2V
+ lim
‖r‖→0

(1− erf(α‖r‖)− 1)
‖r‖

(3.108)

=
∑

n6=(0,0,0)

1− erf(α‖nL‖)
‖nL‖

+ 1
V

∑
k6=(0,0,0)

4π
k2 e

− k2
4α2 − π

α2V
− lim
‖r‖→0

erf(α‖r‖)
‖r‖

. (3.109)
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We have : erf(α‖r‖)
‖r‖ = erf(α‖r‖)−0

‖r‖ = erf(α‖r‖)−erf(α‖0‖)
‖r‖ .

But erf is derivable on R \ {0} and composing it with the function derivable on R, x 7→ αx, we
have :

erf ′(αx) =
{

2√
π
αe−(αx)2

x > 0
− 2√

π
αe−(αx)2

x < 0
(3.110)

As here we have ‖r‖ > 0, we have, by definition of the right-hand derivative : lim
‖r‖→0

erf(α‖r‖)−erf(α‖0‖)
‖r‖ =

2α√
π

.

By reinjecting the value obtained for ξ and that obtained for φ, we obtain :

UPBC = U
(r)
PBC + U

(k)
PBC + U

(s)
PBC + U

(n)
PBC (3.111)

where U
(r)
PBC = 1

2
∑
i,j

′∑
n
qiqj

1−erf(α‖ri−rj+nL‖)
‖ri−rj+nL‖ ,

U
(k)
PBC = 1

2
∑
i,j

qiqj
1
V

∑
k6=(0,0,0)

4π
k2 e
− k2

4α2 eik.(ri−rj),

U
(s)
PBC = − α√

π

∑
i

q2
i

and U
(n)
PBC = − π

2α2V Q
2
tot where Qtot =

∑
i

qi, with α ∈ R.

α must be chosen in such a way that the two sums containing it converge quickly, and that a
reasonable truncation can be performed in both cases (a small α favors convergence in real space,
a large α favors convergence in Fourier space).

.
Note that U

(r)
PBC corresponds to the sum of the interactions between not only the particles of

the system, but also the image particles introduced by the periodicity, at which sum the same
interactions have been removed, but which are screened. This sum is computed in real space

(as indicated by the ”r”) because it converges rapidly. U
(k)
PBC refers to the sum of the screened

interactions (removed in the previous sum) and is computed in Fourier space. U
(s)
PBC is a term that

refers to the interactions between the particles themselves, a term that is removed as indicated

by the ”−” sign. Finally, U
(n)
PBC indicates the neutrality of the system (if the system is electrically

neutral, which translates into
∑
i

qi = 0, this term is null).



Chapitre 4

Calculation of free energy differences

This chapter defines the notion of free energy, depending on a reaction coordinate, a notion
already mentioned in the paragraph on thermodynamic ensembles. The free energy allows to
have access to all the thermodynamic quantities associated to a system. More specifically, the
notion of Potential of Mean Force is defined as well as the numerical methods used in the thesis to
calculate this quantity. At the end, it is also explained how to optimally choose some parameters
for our methods.

4.1 Reaction coordinate

A reaction coordinate allows to follow, in the space of the phases, the paths corresponding to
the reactive trajectories followed to go from the region corresponding to the ”reagents” (initial
state) to that corresponding to the ”products” (final state) [105,150].

A reaction coordinate is a function of the form :

ξ : Ω→ Rm (4.1)

where Ω is the configuration space and m ≤ 3N (ξ can correspond for example to a distance
between two sets of molecules).

A ξ is associated with a division of the phase space into sub-varieties (these are in fact the ξ level
lines) :

Σ(z) = {r ∈ Ω | ξ(r) = z}

so that :

Ω = ∪z∈RmΣ(z)

Simply related Σ (i.e. arc related and homotopic) are assumed to ensure ergodicity.

4.2 Free energy

The absolute free energy [105,167] F of a system is defined by :

−βF = ln(Z) (4.2)

49
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where Z is the partition function associated with the canonical bar, whose definition is given in
(3.22) for a system defined by its positions and impulses. (r,p) :

Z =
∫
DN×R3N

e−βH(r,p)drdp.

This quantity is very important in thermodynamics because it allows, as we have seen previously,
to obtain all the macroscopic quantities of interest of a system (energy, temperature etc.) Howe-
ver, in practice, it is very difficult to determine the absolute free energy associated with a system.

Fortunately, we are rather interested in calculating the free energy difference ∆F , in order to
observe the difference between the initial state (numbered 0) of a system and its final state
(indexed 1). In our studies, we have considered that the transition is indexed by a reaction
coordinate, supposedly known, ξ. We then have :

∆F = F (1)− F (0) = −kbT ln
(∫

DN×R3N e
−βH(r,p)δξ−x1drdp∫

DN×R3N e−βH(r,p)δξ−x0drdp

)
(4.3)

where xi is the value of the state reaction coordinate i. (It can be observed that the value of the
free energy difference depends strongly on the reaction coordinate chosen to describe the path
followed by the chemical reaction).

4.3 Potential of Mean Force

4.3.1 The Potential of Mean Force

The Potential of Mean Force (PMF) corresponds to the free energy of a system according to
its reaction coordinate. The PMF F is a function of the probability P of finding a system
at a state (the chosen reaction coordinate, averaged over all other degrees of freedom of the
system) [105,150,167]. F is given by :

−βF (x) = ln(P (x))− βF0 (4.4)

where F0 is a constant normalizing the probability P .

This is the function x 7→ F (x) given by :

F (x) = −kbT ln
(∫

DN×R3N
e−βH(r,p)δξ−xdrdp

)
. (4.5)

Its derivative, F ′(z), is the mean force. It is the mean force exerted on the system when the
reaction coordinate is kept constant and which drives the system to its final state.

4.3.2 The Potential of McMillan and Mayer

McMillan and Mayer’s potential [31, 56, 120, 174] is the potential of mean force between solutes
as a function of their distance when infinitely diluted. McMillan and Mayer showed that with
this term, one can then easily calculate the thermodynamic quantities of the solution.
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We consider the simplified case of a system composed of a solute formed of N particles and a
solvent of M particles ; the volume of the system, V , and the temperature T are also fixed.

We place ourselves beforehand in the framework of the grand canonical set for mixtures, and
thus, here, the chemical potentials of each species, respectively µ1 for the solute and µ2 for the
solvent, are fixed, in addition to V and T (but not the number of particles). Let Vsyst be the
potential of the system. We also give z1 the fugacity of the solute and z2 that of the solvent. The
partition function Q is then given by (cf (3.42)) :

Q(µ1, µ2, V, T ) =
∞∑

N,M=1

zN1 z
M
2

N !M !

∫
DN1 ×DM2

e−βVsyst(rN ,RM )drNdRM (4.6)

=
∞∑
N=1

zN1
N !

∫
DN1

∞∑
M=1

zM2
M !

∫
DM2

e−βVsyst(rN ,RM )dRMdrN . (4.7)

On the other hand, we consider the n-body g(n) correlation function, in the grand canonical set,
of this two-component system :

g(n)(r1, ..., rn) = 1
ρnQ(µ1, µ2, V, T )

∞∑
N=n+1

zN1
(N − n)!

∫
DN1

∞∑
M=1

zM2
M !

∫
DM2

e−βVsyst(rN ,RM )dRMdrN−n

(4.8)

=
(
z1

ρ

)n 1
Q(µ1, µ2, V, T )

∞∑
N=1

zN1
N !

∫
DN1

∞∑
M=1

zM2
M !

∫
DM2

e−βVsyst(rN+n,RM )dRMdrN

(4.9)

where ρ is the solute density (re-indexing was done to move to the second tie).

If the solute is diluted, i.e. z1 → 0 (i.e. µ1 → −∞). We then have :

g(n)(r1, ..., rn)|z1→0 = γn

Q(µ1 → −∞, µ2, V, T )

∞∑
M=1

zM2
M !

∫
DM2

e−βVsyst(rn,RM )dRM (4.10)

where we set : γ =
(
z1
ρ

)
|z1→0

.

We replace in (4.7) and we get :

Q(µ1, µ2, V, T ) = Q(µ1 → −∞, µ2, V, T )
∞∑
N=1

aN

N !

∫
DN1

g(N)(r1, ..., rN )drN (4.11)

where the activity has been defined as a = z1
γ = z1

(
ρ
z1

)
|z1→0

.

This expression is used to factorize the Q partition function in two terms. The first term corres-
ponds to the case where there is no solute, when the solvent has the same chemical potential as
in solution : it is therefore the great potential of the pure solvent when it has the same chemi-
cal potential as in solution. The second term (i.e. the sum) is formally equivalent to the great
potential of a system where there are only solutes 1. McMillan and Mayer’s theory simplifies the

1. In chemistry, we speak of osmotic equilibrium between the solution and the pure solvent
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calculations of statistical thermodynamics : one replaces a calculation of a partition function
on a solvent/solute mixture by the calculation of two simpler partition functions, as they are
calculated for pure solvent and pure solute. All the difficulty consists in calculating the Potential
of mean force at infinite dilution of the solute WN , also called McMillan’s and Mayer’s Potential.

WN is related to the distribution function at N -infinitely diluted bodies by the expression :

g(N)(r1, ..., rN ) = e−βW
N (r1,...,rN ). (4.12)

According to its definition, WN is calculated as free energy depending on the positions of the
solute. The only difference is the scale of the activities which must be renormalized (from z to
a) and the potential WN reflecting the interaction between the solutes averaged over the solvent
configurations.

We replace (4.12) in (4.11) and we get :

Q(µ1, µ2, V, T ) = Q(µ1 → −∞, µ2, V, T )QMM (a, V, T ) (4.13)

where QMM is the McMillan and Mayer’s partition function which is formally written as that
of a simple fluid (without the solvent) 2.

4.3.3 Practical calculation of McMillan and Mayer’s potential

McMillan and Mayer’s potential is generally calculated by considering only 2-body potentials, an
approximation valid only for a sufficiently diluted solution. Let a system with two particles (i.e.
N = 2) and surrounded by a solvent, the distance between the two particles being the reaction
coordinate. W (2) is related to the mean force potential F via the following expression :

e−βF (r)dr = e−βW
(2)(r)4πr2dr (4.14)

⇔ −βF (x) = −βW (2)(r) + ln(4π) + ln(r2) (4.15)

⇔ βW (2)(r) = βF (r) + 2 ln(r) + cste. (4.16)

Thus, McMillan and Mayer’s potential takes this entropic correction into account in the calcula-
tion of the mean force potential.

4.4 The Problem of Barriers for the Calculation of the Potential of
Mean Force

As shown in figure 12, free energy plotted against a reaction coordinate q is often made difficult
by the existence of a barrier separating two stable states A and B. The transition from A to B,
in simulation, is in this case a rare event. In order to calculate the free energy on either side of
the barrier, the system must be biased to increase the statistics of these unlikely states.

Various techniques are used to overcome these barriers. They generally consist of biasing the
system by modifying the Hamiltonian in order to achieve the passage of the barrier. We will then
present a widely used method, that of Umbrella Sampling, which is often associated with the
Weighted Histograms Analysis Method (WHAM).

2. We are talking about solute gas
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Figure 12 – Illustration of the phenomenon of balance barriers

4.5 Umbrella Sampling Method

In order to ensure that points on the trajectory followed by a system are sampled for all possible
values of a reaction coordinate, one idea is to constrain the system by means of a biased potential.

We take the following case from the case of calculating the Mean Force Potential between two
solutes, e.g. an ion Na+ and an ion Cl−, expressed as a function of their relative distance r and
averaged over solvent configurations, e.g. water. The system is contained in a cubic box with side
L and periodic conditions at the edges.

The distance between the ion Na+ and the ion Cl− is controlled by adding a harmonic force
(spring) between these two ions. This is equivalent to adding to the energy V a harmonic potential
Vr∗harm. The biased potential Vr∗bias is like this :

Vr
∗

bias : = V + Vr
∗

harm (4.17)

where :

Vr
∗

harm(r) = 1
2k(r − r∗)2 (4.18)

with k the spring stiffness constant and r∗ := ‖rNa+ − rCl−‖ is the equilibrium distance of the
spring holding the two ions. It is important to choose r∗ ≤ L

2 , because of the periodicity of the
box, otherwise the selected interaction would be the one with the closest image particle.

We vary r∗ between 2 A and up to L
2 . We then draw the histograms of the distances between

Na+ and Cl− for each r∗. Each histogram has roughly a Gaussian shape similar to an umbrella.
In order to apply the method, each umbrella has to cover distances with its neighbors, as shown
in figure 13. Umbrella sampling is indeed valid if the distances have been continuously explored.
This is the method of Umbrella Sampling [71,169].

The probabilities obtained should be de-biased in order to obtain the free energy of the real
system (without the spring energy).

Let Pb be the probability (the index ”b” indicates that the function is biased ; since here we have
added a potential that biases the original) that the chosen reaction coordinate ξ will satisfy the
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Figure 13 – Umbrella Sampling for a 36.342 A side water box with one ion Na+ and an ion
Cl−, with as reaction coordinate the distance between the two ions r∗, where r∗ = 2, 2.5, ..., 12

given constraint q :

Pb(q, r∗) =
∫
e−β(V(r)+Vr

∗
harm(ξ(r)))δ(ξ(r)− q)dNr∫

e−β(V(r)+Vr∗
harm

(ξ(r)))dNr
. (4.19)

We know that the probability without the biased potential P is :

P (q) =
∫
e−βV(r)δ(ξ(r)− q)dNr∫

e−βV(r)dNr
. (4.20)



4.6. WHAM Method 55

We have :

Pb(q, r∗) =
∫
e−β(V(r)+Vr

∗
harm(ξ(r)))δ(ξ(r)− q)dNr∫

e−β(V(r)+Vr∗
harm

(ξ(r)))dNr
(4.21)

=
∫
e−β(V(r)+Vr

∗
harm(ξ(r)))δ(ξ(r)− q)dNr∫

e−β(V(r)+Vr∗
harm

(ξ(r)))dNr

∫
e−βV(r)dNr∫
e−βV(r)dNr

(4.22)

= e−βV
r∗
harm(q)

∫
e−βV(r)δ(ξ(r)− q)dNr∫

e−βV(r)dNr

∫
e−βV(r)dNr∫

e−β(V(r)+Vr∗
harm

(ξ(r)))dNr
(4.23)

= e−βV
r∗
harm(q)P (q)

∫
e−βV(r)dNr∫

e−β(V(r)+Vr∗
harm

(ξ(r)))dNr
(4.24)

where for the second equality we have multiplied and divided by the same term
∫
e−βV(r)dNr,

which is strictly positive as an integral of a positive function and which is not zero everywhere.

We introduce : 〈e−βVr
∗
harm(ξ(.))〉 =

∫
e
−β(V(r)+Vr

∗
harm

(ξ(r)))
dNr∫

e−βV(r)dNr
, which is the average of e−βV

r∗
harm(ξ(r))

calculated in the unbiased system.

Thus, for the chosen reaction coordinate ξ and the reference value r∗ in the harmonic potential,
P is expressed as :

P (q) = eβV
r∗
harm(q)Pb(q, r∗)〈e−βV

r∗
harm(ξ(.))〉. (4.25)

This relation allows directly to obtain the free energy as a function of the reaction coordinate
with the relation (4.4), according to the biased probabilities Pb(q, r∗). Each simulation thus gives
a part of the free energy curve around its r∗ to within one constant. We then have to glue all
these small pieces of curves together in a clever way to obtain the free energy as a function of
the reaction coordinate. This is the purpose of the WHAM method 3.

4.6 WHAM Method

The method chosen, in this thesis, to ”reglue” the umbrellas sampled from the Umbrella Sam-
pling (cf figure 14) in an optimal way, in order to estimate the (unbiased) probability of finding
a system satisfying a given state (according to the chosen reaction coordinate), is the Wheighed
Histograms Analysis Method (WHAM) [7,100,151,163]).

The idea, illustrated by the figure, is that each umbrella that is untied (represented by dotted
lines) allows the average force potential to be found to within one constant. By the fact that
these umbrellas overlap, we will be able to adjust the appropriate constant to obtain the full
mean force potential (solid line). The constants will be chosen so that the PMF tends towards 0
at long distance. 4

3. Other technics can be use, such as Multistate Bennett Acceptance Ratio (MBAR) [161]. The latter can be
seen as a WHAM method with bins of histogram of width zero (see next section about WHAM method). It has
the advantage of not depending on the histogram, which avoids a bias.

4. In (4.25), eβV
r∗
harm

(q)Pb(q, r∗) corresponds to the debiated umbrella, and the term 〈e−βV
r∗
harm

(ξ(.))〉, which
is unknown, is constant within said umbrella. The goal of the method is to restick each portion of the curve
obtained with each (4.25), adjusting the constant.
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Figure 14 – Illustration of umbrellas re-gluing from the Umbrella Sampling. Each umbrella gives
an end of curve and we try to glue these ends together in the best way (figure from [150])

In what follows, we will explain the mathematical reasoning that leads to the method. To do so,
we will discretize the problem introduced in the previous section.

We assume N simulations, assumed independent, by the Umbrella Sampling method, where the
ith simulation was performed for a distance r∗i between the two ions. Each simulation has res-
pectively generated, for i = 1, ..., N , a sample of size ni, these samples having been extracted
over a sufficiently long time for them to be considered independent.

We suppose an orthonormal marker that we divide into M subdivisions (]aj , aj+1[)j=1,...,M , these
corresponding to the subdivisions used to draw the histograms of the Umbrella Sampling method.

Let (Pi,j)i=1,...,N,j=1,...,M be the matrix representing the biased probability in the th simulation
and jth subdivision, which is such that :

Pi,j = Pb(q(j), r∗i ) (4.26)

where q(j) =
(
j − 1

2
)

(aj+1 − aj).

Similarly, we define (P 0
j )j=1,...,M the vector representing the (unbiased) probability in the jth

subdivision, (Ci,j)i=1,...,N,j=1,...,M the matrix of biased factors, and (fi)i=1,...,N the vector of
normalization constants, which are such that :

P 0
j = P (q(j)) (4.27)

Ci,j = eβV
r∗
j
harm

(q(j)) (4.28)

fi = 〈e−βV
r∗
i
harm

(ξ(.))〉 (4.29)
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We deduce from (4.25) the following relation ∀i = 1, ...N :

Pi,j = fiCi,jP
0
j . (4.30)

We are looking for an optimal estimator for (P 0
j )j=1,...,M , that we will note (P̂ 0

j )j=1,...,M .

Let (ni,j)i=1,...,N,j=1,...,M be the matrix of the number of counts of the histogram for the simu-
lation i in the jth subdivision. An estimator of Pi,j is then :

P̂i,j = ni,j
ni

. (4.31)

And we make sure that ∀i = 1, ..., N :

M∑
j=1

P̂i,j = 1. (4.32)

Theorem 3. An optimal estimator for (P 0
j )j=1,...,M is then given for j = 1, ...,M by :

P̂ 0
j =

N∑
i=1

ni,j

N∑
i=1

nifiCi,j

. (4.33)

Here we will give two proofs corresponding to two approaches to the problem, and then we will
give the WHAM algorithm that we derive from them.

Proof. Approach by an optimization problem

We begin by recalling a method to solve a constrained optimization problem using a Lagrangien
(not to be confused with the Lagrangian defined in analytical mechanics, which we will see in
3.8.2).

We consider the following problem for J : Ω ⊂ Rn → R (n ∈ N∗, and Ω is an open of Rn) :

min
x∈E

J(x) (4.34)

where E =
{

x ∈ RN | g(x) = 0
}

avec g : Rn → Rm (m ∈ N∗). E is the space of constraints.

Definition 4 (Lagrangian (in the sense of optimization)). Assumes J, g of class C1. The Lagran-
gian L is the function defined on Ω× Rm by :

L(x, λ1, ..., λm) = J(x)−
m∑
i=1

λigi(x). (4.35)

The coefficients (λi)i=1,...,m are called Lagrange multipliers.

Theorem 4. It is assumed that E is a convex set and J is a convex function. Then the problem
(4.34) has a solution.



58 4. Calculation of free energy differences

By using (4.30) and (4.31), a probability estimate (unbiased) in the ith simulation and jth
subdivision is :

Ωi,j = ni,j
niCi,jfi

. (4.36)

The idea is to make a most optimal convex combination with the N estimators Ωi,j (i = 1, ..., N)

to estimate P 0
j , i.e. we want to find (ω1, ..., ωN ) such that

N∑
i=1

ωi = 1 and

P̂ 0
j =

N∑
i=1

ωiΩi,j (4.37)

has as little variance as possible.

The optimization problem is therefore the following :

min
t.q.

N∑
i=1

ωi=1

var(P̂ 0
j ). (4.38)

It is easy to verify first of all that the set of constraints C =
{
ω ∈ RN |

N∑
i=1

ωi = 1
}

is convex.

Indeed : let x, y ∈ C, and let λ ∈ (0, 1). So then :

N∑
i=1

(λxi + (1− λ)yi) = λ

N∑
i=1

xi + (1− λ)
N∑
i=1

yi = λ+ (1− λ) = 1 (4.39)

where the penultimate tie comes from the fact that x and y belong to C. Thus, (λx+(1−λ)y) ∈ C,
and thus C is quite convex.

We recall the following theorem :

Theorem 5. Let (Xk)k be a sequence of random variables following a binomial law B(k, pk).
We suppose that kpk → λ > 0. Then (Xk)k converges in law to a Poisson random variable of
parameter λ. In other words, for all l ∈ N, we have :

P (Xk = l)→ e−λλl

l! (4.40)

of expectation and variance λ.

This leads us to the following lemma :

Lemma 5. With the conditions of the problem, we have :

var(P̂ 0
j ) =

N∑
i=1

ω2
i P

0
j

niCi,jfi
. (4.41)

Proof. We have, by independence of the simulations :

var(P̂ 0
j ) =

N∑
i=1

ω2
i var(ni,j)
n2
iC

2
i,jf

2
i

. (4.42)

Since ni,j follows a binomial law, we have, for ni large, thanks to theorem 5 the result.
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We set J : (x1, ..., xN ) 7→
N∑
i=1

x2
iP

0
j

niCi,jfi
, J is convex as the sum of convex functions. Thus, (4.38)

does have a solution.

.

We put the lagrangian :

L(ω1, ..., ωN , λ) =
N∑
i=1

ω2
i P

0
j

niCi,jfi
+ λ

(
N∑
i=1

ωi − 1
)
. (4.43)

First-order conditions :

- ∀i : ∂L
∂ωi

= 0⇔ ωi = −niCi,jfiλ
2P 0
j

- ∂L
∂λ = 0 ⇔

N∑
i=1

ωi = 1, from which we derive −λ
2P 0
j

N∑
i=1

niCijfi = 1 and therefore λ = −2P 0
j

N∑
i=1

niCi,jfi

,

which allows us to obtain : ωi = niCi,jfi
N∑
k=1

nkCk,jfk

.

And then, in the end we have, for j = 1, ...,M :

P̂ 0
j =

N∑
i=1

ni,j

N∑
i=1

nifiCi,j

.

Proof. Likelihood Maximization Approach

We have, for i = 1, ..., N , that (ni,1, ..., ni,M ) follows a multinomial law (since it is a M i.i.d.
sample of binomial law).

Since the N simulations are independent, the likelihood of the model is therefore :

L(f1, ..., fN , P
0
1 , ..., P

0
M ) =

N∏
i=1

f(i)

where f(i) = ni!
M∏
k=1

ni,k!

M∏
j=1

(Pi,j)ni,j is the mass function of the simulation i (and where Pi,j =

fiCi,jP
0
j as a reminder). It is known that a good estimator can be obtained by maximizing

the likelihood, which is equivalent to maximizing the log of the likelihood (and even the log
of the likelihood deprived of the addition of the terms not containing fi (i = 1, ..., N) ni P 0

j

(j = 1, ...,M), what will be noted L).

We have : L(f1, ..., fN , P
0
1 , ..., P

0
M )=

N∑
i=1

M∑
j=1

ni,j ln(fiCi,jP 0
j ).

Knowing the constraints
M∑
j=1

fiCi,jP
0
j = 1 for i = 1, ..., N we then set the log of the Lagrangian
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M :

M(f1, ..., fN , P
0
1 , ..., P

0
M , λ1, .., λN ) =

N∑
i=1

(
M∑
j=1

ni,j ln(fiCi,jP 0
j ) + λi(

M∑
j=1

fiCi,jP
0
j − 1))

where the λi (i = 1, ..., N) are the Lagrange multipliers associated with the respective constraints.

First-order conditions :

- for i = 1, ..., N : 0 = ∂M
∂fi

=
M∑
j=1

(ni,jfi + λiCi,jP
0
j ) = ni

fi
+ λi

M∑
j=1

ci,jP
0
j

- for j = 1, ...,M : 0 = ∂M
∂P 0

j
=

N∑
i=1

(ni,j
P 0
j

+ λifiCi,j)

- for i = 1, ..., N : 0 = ∂M
∂λi

=
M∑
j=1

fiCi,jP
0
j − 1

We then have, for i = 1, ..., N : λi = −ni
M∑
j=1

fiCi,jP 0
j

= −ni,

so that, for j = 1, ...,M :

N∑
i=1

ni,j

P 0
j

=
N∑
i=1

nifiCi,j

From where one obtain, for j = 1, ...,M : P̂ 0
j =

N∑
i=1

ni,j

N∑
i=1

nifiCi,j

.

Thanks to the theorem and (4.30) and (4.32) we derive the following algorithm, which corresponds
to the WHAM algorithm :

s10 = 0
s30 = 0 for i=1 à N do

s1i = s1i−1 + ni,j
end
while ‖fi − fi−1‖ > δ do

for i=1 à N do
s2j = nifiCi,j

end

P j = s1N
s2N

for j=1 à M do
s3j = s3j−1 + Ci,jP

0
j

end
fi+1 = s3−1

end

4.7 Analysis of a spring problem, period and stiffness constant

We are interested here in the analysis of a simple spring problem, which allows the recall of two
different and interesting approaches in mechanics. By obtaining the period of the spring as a
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function of its stiffness constant, we will then be able to deduce the choice of parameters that
we will use in our simulations by Umbrella Sampling.

.
The following (P ) problem is considered in R :

Let two particles M1 and M2 with coordinates x1 and x2, with x1 < x2, and respective mass m1
and m2. It is assumed that M1 and M2 are connected by a spring of stiffness constant k (see
figure 15). We wish to determine the relations verified by their respective strength F1 et F2.

Figure 15 – Scheme representing the two particles M1 and M2, located at positions x1 and x2
respectively and connected by a spring of stiffness constant k

4.7.1 Analysis with Newton’s principles

Let U be the potential of the system. We have : U = 1
2k((x2 − x1)− d)2.

For i = 1, 2, let Fi be the force of pi applied on pj , with j 6= i. By Newton’s second principle, we
have :

Fi = miẍi. (4.44)

We know that, for i = 1, 2, we have : Fi = −dU(xi)
dxi

, so that :

F1 = k(x2 − x1 − d) = −F2. (4.45)

With (4.44) and (4.45), we thus obtain the following system of linear equations of order 2 :

(S)
{
k(x2 − x1 − d) = m1ẍ1
−k(x2 − x1 − d) = m2ẍ2

(4.46)
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Let xG be the position of the abscissa of the system’s center of gravity, i.e. xG = m1x1+m2x2
m1+m2

. We
verify that its second derivative with respect to time is zero, i.e.

ẍG = m1ẍ1 +m2ẍ2

m1 +m2
= 0 (4.47)

which means, integrating with respect to time, that m1ẋ1 +m2ẋ2 = C where C is a constant.

We introduce y tel que x1 = xG + y ; and therefore, after calculations :

y = m2

m1 +m2
(x1 − x2). (4.48)

We then obtain for the first equation of the system (S), thanks to (4.47) :

k(−m1 +m2

m2
y − d) = m1ÿ. (4.49)

We set (all the terms under the root are positive) :

ω =
√
k
m1 +m2

m1m2
. (4.50)

The solutions of (4.49) are ∀t of the form :

y(t) = r cos(ωt+ Φ)− m2d

m1 +m2
(4.51)

with r,Φ ∈ R, i.e. it is a harmonic oscillator of frequency ω, and its period T is therefore :

T = 2π
ω

= 2π
√

m1m2

k(m1 +m2) . (4.52)

4.7.2 Analysis with Hamiltonian formulation

One introduces the Lagrangian (in the sense of analytical mechanics) L associated with (P ) :

L = Ec − U. (4.53)

Here we have :

L(x1, x2, ẋ1, ẋ2) = 1
2(m1ẋ1

2 +m2ẋ2
2)− 1

2k(x2 − x1 − d)2. (4.54)

We introduce a = xG = m1x1+m2x2
m1+m2

and a′ = x2 − x1. We have then :{
ȧ = m1ẋ1+m2ẋ2

m1+m2
ȧ′ = ẋ2 − ẋ1

⇒

{
ȧ = m1ẋ1+m2ẋ2

m1+m2√
m1m2

m1+m2
ȧ′ =

√
m1m2

m1+m2
(ẋ2 − ẋ1)

⇒

{
ȧ2 = m2

1ẋ1
2+m2

2ẋ2
2+2m1m2ẋ1ẋ2

(m1+m2)2
m1m2

(m1+m2)2 ȧ
′2 = m1m2

(m1+m2)2 (ẋ2
2 + ẋ1

2 − 2ẋ1ẋ2)
(4.55)

By summing the two equations of the final system, we obtain :

ȧ2 + m1m2

(m1 +m2)2 ȧ
′2 = m2

1ẋ1
2 +m2

2ẋ2
2 + 2m1m2ẋ1ẋ2

(m1 +m2)2 + m1m2

(m1 +m2)2 (ẋ2
2 + ẋ1

2 − 2ẋ1ẋ2)

= m1(m1 +m2)
(m1 +m2)2 ẋ1

2 + m2(m1 +m2)
(m1 +m2)2 ẋ2

2

= m1

m1 +m2
ẋ1

2 + m2

m1 +m2
ẋ2

2 (4.56)
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⇔ (m1 +m2)ȧ2 + m1m2
m1+m2

a′2 = m1ẋ1
2 +m2ẋ2

2.

Let’s start again (4.54) and you get :

L(a, a′, ȧ, ȧ′) = 1
2

(
(m1 +m2)ȧ2 + m1m2

m1 +m2
ȧ′2
)
− 1

2k(a′ − d)2. (4.57)

The Hamiltonian H associated with (P ) is then :

H(a, a′, b, b′) = pȧ+ p′ȧ′ − L(a, a′, ẋ1(b), ẋ2(b′)) (4.58)

where b and b′ are associated with a transformation of Legrendre of the Lagrangian.

We take b = ∂L
∂ȧ = (m1 +m2)ȧ et b′ = ∂L

∂ȧ′ = m1m2
m1+m2

ȧ′. So that :

H(a, a′, b, b′) = b2

m1 +m2
+ m1 +m2

m1m2
b′2 −

(
1
2

(
b2

m1 +m2
+ m1 +m2

m1m2
b′
)
− 1

2k(a′ − d)2
)

(4.59)

= 1
2

(
b2

m1 +m2
+ m1 +m2

m1m2
b′
)

+ 1
2k(a′ − d)2. (4.60)

We have :

∂H

∂b
= b

m1 +m2
,
∂H

∂b′
= m1 +m2

m1m2
b′ ,

∂H

∂a
= 0 , ∂H

∂a′
= k(a′ − d). (4.61)

Hamilton’s equations of motion give us the following system of equations :
ȧ = ∂H

∂b

ȧ′ = ∂H
∂b′

ḃ = −∂H∂a
ḃ′ = −∂H∂a′

⇔


ȧ = b

m1+m2

ȧ′ = m1+m2
m1m2

b′

ḃ = 0
ḃ′ = −k(a′ − d)

(4.62)

So that : {
ẋG = C
m1m2
m1+m2

ä′ = −k(a′ − d) (4.63)

The movement of the system therefore consists of a constant velocity for the center of gravity

and a vibration for a′ = x2 − x1 of period 2π
√

m1m2
k(m1+m2

around the equilibrium position a′ = d.

On the other hand, the system writes in the form of (4.60) allows to decouple the vibration term
(a′, b′) from the translation term (a, b) in the canonical set. It can therefore be factorized. Since
we are dealing with quadratic degrees of freedom, we obtain according to the equirepartition
energy distribution theorem :

〈12k(a′ − d)2〉 = 1
2kBT. (4.64)

So this gives an idea of the amplitude of the umbrella :

σ =
√
kBT

k
. (4.65)
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4.7.3 Stiffness constant, umbrella amplitude and period for our simulations

According to the calculations of the previous problem, the period Θ of the spring is related to
the stiffness constant k of the spring by the formula :

Θ = 2π
√

m1m2

k(m1 +m2) (4.66)

where mi is the mass of the particle pi.

In the case where p1 = Na+ and p2 = Cl− we have : m1 = 23 g .mol−1 and m2 = 35.5 g .mol−1.

As the ideal stiffness constant to be applied to the spring force between the two ions, one wishes to
choose k = 10 kcal .mol−1 .A−2 (units corresponding to those of Tinker). We recall the following
conversions of measures :

1 kcal = 4, 184 kJ (4.67)

1 J = 1 kg .m2 . s−2 (4.68)

1 A = 10−10 m (4.69)

Thus, we obtain that the period of the corresponding spring is Θ ' 0.3629; ps. Thus, collecting
the positions, in order to make the histograms by Umbrella Sampling, every ps ensures that the
spring has acted well to maintain the ions at the desired distance.

Moreover, the amplitude of the umbrella is then σ = 0.2433 A.

4.8 Calculation of coefficients of interest

4.8.1 The association constant

Consider the chemical reaction in a surrounding solvent :

Cc+ +Aa− ↔ CA(c−a)+ (4.70)

where Cc+ corresponds to the cation, Aa− to the anion and CA(c−a)+ to the ion pair.

At equilibrium, this reaction verifies the law of mass action which allows the concentration of
the different species to be calculated.

The equilibrium constantK quantifies the formation of the ion pair [14,115]. Knowing the activity
coefficients (equal to 1 if the solution is diluted), it allows to calculate the proportion of the pair
by the law of mass action, which is written here :

K = 1− α
α2c

= K(c)
(
y′2±
yIP

)
(4.71)

where α is the degree of dissociation of the pair, c = ρ
2NA is the electrolyte concentration, K(c)

is the association constant, and y′± et yIP are respectively the average activity coefficient of the
free ions in solution and that of the ion pair.
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.
The ion pair association constant K(c) can be calculated by integrating the McMillan and Mayer
potential via the generalized Bjerrum equation, shown in [127,128] :

K(c) = 4πNA
∫ R

0
r2e

−VMM (r)
kBT dr (4.72)

where R is a distance to distinguish the ion pair from free ions in solution. R is generally chosen
so that the activity coefficients are close to 1.

4.8.2 The osmotic coefficient of activity of the solvent

We consider a system described within the framework of McMillan and Mayer’s theory, i.e. the
chemical potential of the solvent µw and that of the solution µs are fixed, and the temperature
T and the volume V are also fixed. We have the relation between the thermodynamic quantities
and the partition function Ω [127,133] :

dΩ = −SdT −Nwdµw −Nsdµs − PdV (4.73)

where S is the entropy, Nw and Ns are respectively the number of particles of the pure solvent
and of the solute, and P is the pressure of the solution. The latter verifies the formula :

P = Pw + Posm (4.74)

where Pw is the pressure of the pure solvent and Posm is the osmotic pressure, so called because
it is the difference between the pressure of the solution and that of the pure solvent.

The relationship between the grand canonical partition function Q, expressed as a function of
McMillan and Mayer’s potential function W (see section 4.3.2), and the osmotic pressure is as
follows :

Q(W ) = eβPosmV (4.75)

The osmotic coefficient [69,133] of the electrolyte solution at the McMillan and Mayer scale ΦMM

can be defined by the formula :

ΦMM = Posm
ρkBT

(4.76)

where ρ is the solute density. The osmotic coefficient tends towards 1 for an ideal solution, which
is the case for a very dilute solution (indeed, the denominator ρkBT corresponds to the osmotic
coefficient in the ideal case, this is obtained with the Gibbs-Duhem relation). This coefficient is
important because it then allows us to deduce the activity of the solvent. Using the Gibbs-Duhem
relation, one can deduce the activity coefficients of the solutes.

The calculation of the activity coefficients is carried out by simulating the solute gas made up of
ions and pairs interacting by the McMillan and Mayer potential. Using Monte Carlo simulations or
Brownian dynamics, these activity coefficients can then be computed numerically. Analytically,
another strategy using the MSA (Mean Spherical Approximation) integrals equations [19, 25,
26, 127, 179, 180] (whose applications can be seen in [83, 111, 152, 153]) can also be calculated
analytically and approximately, but can only be applied if the McMillan and Mayer potential
has a hard core.





Chapitre 5

Study of the Potential of McMillan and Mayer at long distance

In this chapter, we are interested in the behavior of the McMillan and Mayer potential at large
distances. During simulations, as seen for example on figure 16, it seems that the latter approaches
that of a coulombic potential. The McMillan and Mayer potential being defined to a constant,
an important issue is to adjust this constant in order to approximate the macroscopic quanti-
ties of interest (such as the association constant). One idea seems to be to choose this constant
such that the McMillan and Mayer potential fits the coulombic potential curve at large distances.

Figure 16 – Curves of various McMillan and Mayer potentials fitted to the coulombic potential
curve (from [130])

Here we wish to study the influence of the periodicity introduced in the simulations in the calcu-
lation of the potential of the considered system, and from there, we will then adjust the McMillan
and Mayer potential of our simulations in such a way that the long distance curve approaches
the obtained development.

67
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We will first study the problem from a mathematical point of view for a system formed by two
particles surrounded by a solvent. We will then obtain a development of the potential of this
system as a function of the period chosen for the sides of the simulation box. Then, we will carry
out simulations for three systems of different size, formed by an ion Na+, an ion textCl− and
N water molecules (N depending on the size of the system). We will then study the consistency
of the result that we obtained mathematically with the McMillan and Mayer potential curve of
each system. By fitting, at a large distance, the latter to our development, we will also study
some macroscopic properties associated with these systems. Furthermore, we will also evaluate
the validity of our development from McMillan and Mayer potentials obtained for lanthanide
salts.

5.1 Mathematical problem

We consider a system consisting of a ion p1 of charge q1, a ion p2 of charge q2 and surrounded by
a solvent of dielectric constant εr (we can easily verify that the system is electrically neutral).

Each particle is described by its position, which is noted as r000
1 for p1 and r000

2 for p2.

We consider that the particles are in a cubic box of side L. Periodic conditions are considered at
the edges of the box.

We call
(
pijk1

)
i,j,k∈Z∗

and
(
pijk2

)
i,j,k∈Z∗

the images of p1 and p2 by periodicity, which are des-

cribed by their position rijk1 and rijk2 respectively.

We note ‖r‖ = min
i,j,k∈Z

‖
−−−−→
rijk1 rijk2 ‖ the distance between ion p1 and p2

1.

L has been choosen so that L >> ‖r‖ (that corresponds to a system in a large box with N water
molecules, where N is large, which represents a diluted medium).

Let UPBC be the energy potential of the periodic system. We are interested in the behaviour of
UPBC as a function of r and L.

For the two ions in infinite conditions or in a vacuum, we know that, at long distances (‖r‖ being
large) the associated potential behaves like a Coulomb potential (i.e. there are only long range
interactions that prevail) and thus decreases with a factor 1

‖r‖ .

Here, we are going to prove the following theorem :

Theorem 6. Under the previous conditions, UPBC verifies :

UPBC(r, L) = q1q2

4πε0εr‖r‖

(
1 + C

(
‖r‖
L

)5
)

+ q1q2

4πε0εr

∫
S(r)

 ∑
n∈Z3\{0}

35
2

(l.n)3n

‖n‖9L5

 dl + o

(
‖r‖4

L5

)
(5.1)

1. Taking this minimum on the images allow to avoid box effects
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with C = −
(

21
∑

i>0,j≥i,k≥i+1

1
‖(i,j,k)t‖5 +

( 21
4 + 7

35/2

)
ζ(5) + 21

2
∑
i,j>0

1
‖(i,j)t‖5

)
(so that C ' −9.079945024529188),

ζ being the zeta function. For r = (x, y, z), S(r) = [a1, x]×[a2, y]×[a3, z] (a1, a2, a3 being choosen
such that the constant of that primitive is null).

The reader interested in the physical meaning of the theorem may skip the mathematical proof
which follows.

The proof of the theorem being based on clever combinations of nodes in a triple sum, we first
begin with the following definition that we will need later :

Definition 5. We define the circular permutation σ, of order 3, which is such that :

σ =
(
i j k
j k i

)
i.e. σ(i) = j, σ(j) = k and σ(k) = i.

Before begining the theorem’s proof, we concentrate attention of the lector to note that we choose
in advance to study forces acting on a particle of the considered system, instead of the potential
itself. This choice is explained by the fact that we know that opposing forces cancel each other
out, so that clever combinations of forces may simplify the calculus and allow to eliminate the
non-converging terms.

Proof. We begin by considering all the forces acting on p1, and we note F1(r, L) the resulting
sum. Knowing the periodical conditions, p1 not only suffers the p2 force but also those from the
images of p2, and so does that of its own images. In the end, for

r1l =
{

0 if l = 1
r if l = 2

we have :

F1(r, L) = q1

4πε0εr

2∑
l=1

′∑
n∈Z3

ql
‖r1l + nL‖3

(r1l + nL) (5.2)

= q1q2r

4πε0εr‖r‖3
+ q2

1
4πε0εr

∑
n∈Z3\{0}

1
‖nL‖3

nL+ q1q2

4πε0εr

∑
n∈Z3\{0}

1
‖r + nL‖3

(r + nL) (5.3)

where, in the firt equality, the ’ in the triple sum signifies that we take n 6= (0, 0, 0) if l = 1.

Lemma 6. In the relation (5.3), the first triple sum is zero for each coordinates of n.

Proof. For each coordinates of n, we use the parity of the square function and the imparity of
the identity function, and the fact that quotient of an odd and even function gives an odd function.

Physically, we can reason by observing that this term refers to the sum of the electric field created
by the images of p1. The latter satisfy a cubic symmetry for p1, so that the electric field at zero
according to x created by the images, with x > 0, is compensated by the one created by the
images with x < 0, and the same according to y and z. At last, we can conclude that this term
is null. (N.B. : regarding the images of p2, they don’t satistfy a cubic symmetry for p1, so that
the electric field created by the images of p2, which corresponds to the last term in (5.3), has
no reason to be null.)
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We note :

A(r,n, L) := 1
‖r + nL‖3

(r + nL) . (5.4)

We have :

A(r,n, L) = (r + nL)
(
‖r‖2 + 2r.nL+ n2L2)−3/2

= (r + nL) 1
‖n‖3L3

(
1 + 2 r.n

‖n‖2L
+ ‖r‖2

‖n‖2L2

)−3/2

. (5.5)

We recall the expansion for small u :

(1 + u)−3/2 = 1− 3
2u+ 15

8 u
2 − 35

16u
3 + o(u3). (5.6)

So that for L >> ‖r‖ :

A(r,n, L) =
(

r

‖n‖3L3 + n

‖n‖3L2

)(
1− 3

2
2r.n

‖n‖2L
− 3

2
‖r‖2

‖n‖2L2 + 15
8

4(r.n)2

‖n‖4L2

+ 15
8

4(r.n)‖r‖2

‖n‖4L3 − 35
16

8(r.n)3

‖n‖6L3 + o

(
‖r‖3

L3

))
(5.7)

= A1(r,n)
L2 + A2(r,n)

L3 + A3(r,n)
L4 + A4(r,n)

L5 + o

(
‖r‖3

L5

)
(5.8)

with :

A1(r,n) = n

‖n‖3
(5.9)

A2(r,n) =
(

r

‖n‖3
− 3(r.n)n
‖n‖5

)
(5.10)

A3(r,n) =
(
−3(r.n)r
‖n‖5

− 3
2
‖r‖2n

‖n‖5
+ 15

2
(r.n)2n

‖n‖7

)
(5.11)

A4(r,n) =
(
−3
2
‖r‖2r

‖n‖5
+ 15

2
(r.n)2r

‖n‖7
+ 15

2
(r.n)‖r‖2n

‖n‖7
− 35

2
(r.n)3n

‖n‖9

)
(5.12)

For the term or order 2 (in ‖n‖ ; i.e.
∑

n∈Z3\{0}

A1(r,n)
L2 ), the reader can refer to lemma (6). Same

arguments can be used for the term of order 4 in ‖n‖. For the convergence of a triple sum, we
can see that the major problem is the term or order 3 (in ‖n‖). In the following, we will treat
the terms according to their order (in ‖n‖). To do so, we want to do clever combinations with
nodes of the sums. We will consider three steps.

Step 1 : We first define the quantity B(r,n, L) such that :

B(r,n, L) := A(r,n, L) +A(r,−n, L) (5.13)

= r + nL

‖r + nL‖3
+ r− nL

‖r− nL‖3
. (5.14)
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We note :

n = (i, j, k).

In general case (conditions that we will give in the next lemma), we will associate the following
nodes (remembering that each node is combined with its opposite in B(r,n, L)) :

1) (a, b, c) and (a,−b,−c) on the one hand

2) (a,−b, c) and (a, b,−c) on the other hand.

for a = i,b = j and c = k and the same for the circular permutations (defined in the definition
3) of (i, j, k).

To avoid duplication of nodes, we have to consider the three following special cases :

Case 1 : if i = k = 0 and j > 0

In this case, we only have to consider the node (0, j, 0) and its permutations, which corres-
ponds, with their opposite of course, to only 6 different nodes . Indeed, we see that the nodes
(i,−j,−k) = (0,−j, 0) = (i,−j, k) and (i, j,−k) = (0, j, 0) are already processed in the 6 pre-
vious terms. This cases refers to the 3 symmetry axis passing through centers of two opposite
faces of a cube.

Case 2 : if i = j = k

Here, we see that permutting the coordinates of the node (i, j, k) = (i, i, i) wive give the same
one. So that, we only have to consider 4 nodes : (i, i, i), (i,−i,−i), (i,−i, i) and (i, i,−i), and
their opposite, i.e. it refers to 8 different nodes. This cases refers to the 4 symmetry axis passing
through opposite tops of a cube.

Case 3 : if k = 0 and i, j > 0

We see here that (i,−j, k) = (i,−j, 0) = (i,−j,−k) and (i, j,−k) = (i, j, 0) = (i, j, k), so that we
dont have to proceed with this nodes and their permutations. Finally, it results in considering
only 6 nodes : (i, j, k) and (i,−j,−k) and the same with the permutations of (i, j, 0) ; which re-
fers to 12 nodes, by taking their opposite ones. This cases refers to the 6 symmetry axis passing
through middles of the edges of a cube.

Conditions in the general case will result on the following lemma :

Lemma 7. To make sure to consider all nodes while avoiding duplicates, i, j, k will verify :

• i, j, k > 0
• j ≥ i and k ≥ i+ 1

Proof. To begin, as n 6= 0 and because of the first and third special cases already processed, we
easily see that i, j, k 6= 0. Moreover, because of the second special case, we will have at least i,j
or k not equal to the two others.
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Condition 1 : To see that i, j, k > 0 is a sufficient condition, four other configurations have to be
examined.

a) The simplier case is when i, j, k < 0. Only taking the opposite of (i, j, k) will give a node
(i′, j′, k′) = (−i,−j,−k) where i′, j′, k′ > 0, so that this case is already solved.

It means that at least one of the coordinate is a non-negative one. This leads to the three other
cases :

b) When i > 0 and j, k < 0

c) When i, j > 0 and k < 0

d) When i, k > 0 and j < 0.

For the sake of simplicity, we define Sabc, which is such as :

Sabc = B(r, (a, b, c), L) +B(r, (a, (−b), (−c)), L) +B(r, (a, (−b), c), L) +B(r, (a, b, (−c)), L)
(5.15)

which corresponds to the sum of the four terms we want to associate.

We easily see that :

Sijk = Si(−j)(−k) = Si(−j)k = Sij(−k) (5.16)

so that working only with the case of the condition is sufficient and avoid treating two time the
same node.

The three other final configurations that should occur (respectively when i < 0 and j, k > 0,
i, j < 0 and k > 0, and when i, k < 0 and j > 0) are solved by taking the opposite of the node
and by considering one of the three cases from above.

Condition 2 :

Here, we will see that considering j ≥ i and k ≥ i+ 1 is a sufficient condition.

a) We assume that j ≥ i. We first suppose that j = i. By the absurd, we assume that k ≤ i− 1
(the case where k = i is impossible as we saw at the begining of the proof). By taking the second
permutation in the node (i, j, k), we obtain a node (i′, j′, k′) = (k, i, j) which is such that j′ = i,
k′ ≥ i and i′ ≤ i− 1, so that j′ ≥ i′ and k′ ≥ i′ + 1. This case is already treated.

Then, we consider j > i. The case when k ≤ i−1 can be treated as the previous ones. It remains
to study the case when k = i (which is possible here seens j 6= i). By the same arguments as
earlier we can prove that this case is already solved.

b) We suppose that k ≥ i+1. By the absurd, we consider that j < i. We take the first permutation
of the node (i, j, k) and we obtain the node (i′, j′, k′) = (j, k, i), with k′ = i, i′ < i and j′ ≥ i+ 1,
so that j′ ≥ i′ + 1 and k′ > i′ i.e. k′ ≥ i′ + 1. This is the case of the condition.
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Finally, we should consider this four cases which have just been described, and therefore, for each
order in (5.8), we will decompose the triple sum into four terms.

Step 2 :

Lemma 8. The term of order 3 (in ‖n‖) in
∑

n∈Z3\{0}
A(r,n, L) (i.e.

∑
n∈Z3\{0}

A2(r,n)
L3 ) can be eli-

minated by means of our combinations.

Proof. We have :

B(r,n, L) = 2r

‖n‖3L3 −
6(r.n)n
‖n‖5L3 + f(r,n, L) + o(L−6) (5.17)

where f is a function whose term in n is of order greater than 3.

case 1 : We combine nodes (0, j, 0) and its permutations. We first remark that :

‖n‖ = |j| (5.18)

so that, by additionning the three terms, we obtain :

6r

‖n‖3L3 −
6j2r

‖n‖5L3 = 6r

‖n‖3L3 −
6r

‖n‖3L3 = 0. (5.19)

case 2 : We combine nodes (i, i, i), (i,−i,−i), (i,−i, i) and (i, i,−i). We have :

‖n‖ = 31/2|i| (5.20)

so that we obtain, by additionning the four terms (by noting r = (x, y, z)) :

8r

‖n‖3L3−

6

(xi+ yi+ zi)

ii
i

+ (xi− yi− zi)

 i
−i
−i

+ (xi− yi+ zi)

 i
−i
i

+ (xi+ yi− zi)

 i
i
−i


‖n‖5L3

= 8r

‖n‖3L3 −
24i2r

35/2|i|5L3 = 0. (5.21)

case 3 : We combine nodes (i, j, 0) and (i,−j, 0) and the same with the permutations of (i, j, 0).
We have :

‖n‖ = ‖(i, j)‖ (5.22)



74 5. Study of the Potential of McMillan and Mayer at long distance

so that we obtain, by additionning the six terms (by noting r = (x, y, z)) :

12r

‖n‖3L3−

6

(xi+ yj)

ij
0

+ (xi− yj)

 i
−j
0

+ (xj + zi)

j0
i

+ (xj − zi)

 j
0
−i


‖n‖5L3

−

6

(yi+ zj)

0
i
j

+ (yi− zj)

 0
i
−j


‖n‖5L3 (5.23)

= 12r

‖n‖3L3 −
12
(
i2 + j2

)
r

‖n‖5L3 = 0. (5.24)

General case : We combine nodes (a, b, c) = (i, j, k), (a, b, c) = (i,−j,−k), (a, b, c) = (i,−j, k),
(a, b, c) = (i, j,−k), and the same by taking the permutation of (i, j, k) and the four terms each
time and we obtain, by a similar thing that in the case 3 (by noting r = (x, y, z)) :

12r

‖n‖3L3 −
12
(
i2 + j2 + z2) r

‖n‖5L3 = 0. (5.25)

Lemma 9. By combining terms of order more than 4 (in ‖n‖) in
∑

n∈Z3\{0}
A(r,n, L) we get :

∑
n∈Z3\{0}

A(r,n, L) =
∑

i>0,j≥i,k≥i+1
84 ‖r‖2

‖(i, j, k)‖5L5 r +
∑
i>0

(
21 + 28

35/2

)
‖r‖2

|i|5L5 r

+
∑
i,j>0

42 ‖r‖2

‖(i, j)t‖5L5 r−
∑

n∈Z3\{0}

35
2

(r.n)3n

‖n‖9L5 + o

(
‖r‖3

L5

)
. (5.26)

Proof. Here, we are going to study each coordinates, distinguishing each of the four cases we
described in step 1. Each time, we will just give details for the general case (the others resulting
from the same calculations).

Let r = (x, y, z).

A. Calculus for the first coordinate :

a) Case 1 :

We combine nodes (0, j, 0) and its permutations and we obtain :

B(r, (0, j, 0), L)[x] +B(r, (j, 0, 0), L)[x] +B(r, (0, 0, j), L)[x] = 21 ‖r‖
2x

|j|5L5 + o

(
‖r‖3

L5

)
. (5.27)

b) Case 2 :
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We combine nodes (i, i, i), (i,−i,−i), (i,−i, i) and (i, i,−i) and we obtain :

B(r, (i, i, i), L)[x] +B(r, (i,−i,−i), L)[x] +B(r, (i,−i, i), L)[x] +B(r, (i, i,−i), L)[x] = 28 ‖r‖2x
35/2|i|5L5 + o

(
‖r‖3

L5

)
.

(5.28)

c) Case 3 :

We combine nodes (i, j, 0) and (i,−j, 0) and the same with the permutations of (i, j, 0) and we
obtain :

B(r, (i, j, 0), L)[x] +B(r, (i,−j, 0), L)[x] +B(r, (j, 0, i), L)[x]

+B(r, (j, 0,−i), L)[x] +B(r, (0, i, j), L)[x] +B(r, (0, i,−j), L)[x] = 42 ‖r‖2x
‖(i, j)t‖5L5 + o

(
‖r‖3

L5

)
.

(5.29)

d) General case :

We combine nodes (a, b, c) = (i, j, k) and (a, b, c) = (i,−j,−k) and we obtain :

B(r, (i, j, k), L)[x] +B(r, (i,−j,−k), L)[x] = 4x
A3
ijkL

3 − 6 ‖r‖
2x

A5
ijkL

5 + 30x
A7
ijkL

5 (x2i2 + y2j2 + z2k2 + 2yzjk)

− 12xi2

A5
ijkL

3 + 30‖r‖2

A7
ijkL

5xi
2 + o

(
‖r‖3

L5

)
. (5.30)

The same applies to (a, b, c) = (j, k, i) and (a, b, c) = (j,−k,−i) gives :

B(r, (j, k, i), L)[x] +B(r, (j,−k,−i), L)[x] = 4x
A3
ijkL

3 − 6 ‖r‖
2x

A5
ijkL

5 + 30x
A7
ijkL

5 (x2j2 + y2k2 + z2i2 + 2yzki)

− 12xj2

A5
ijkL

3 + 30‖r‖2

A7
ijkL

5xj
2 + o

(
‖r‖3

L5

)
. (5.31)

To finish, for (a, b, c) = (k, i, j) and (a, b, c) = (k,−i,−j), we get :

B(r, (k, i, j), L)[x] +B(r, (k,−i,−j), L)[x] = 4x
A3
ijkL

3 − 6 ‖r‖
2x

A5
ijkL

5 + 30x
A7
ijkL

5 (x2k2 + y2i2 + z2j2 + 2yzij)

− 12xk2

A5
ijkL

3 + 30‖r‖2

A7
ijkL

5xk
2 + o

(
‖r‖3

L5

)
. (5.32)
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The three previous factors are added together, which gives

Bijk,x1 (L) :=B(r, (i, j, k), L)[x] +B(r, (i,−j,−k), L)[x] +B(r, (j, k, i), L)[x]
+B(r, (j,−k,−i), L)[x] +B(r, (k, i, j), L)[x] +B(r, (k,−i,−j), L)[x] (5.33)

= 12x
A3
ijkL

3 − 18 ‖r‖
2x

A5
ijkL

5 + 30x
A7
ijkL

5 (x2(A2
ijk) + y2(A2

ijk) + z2(A2
ijk) + 2yz(jk + ik + ij))

(5.34)

− 12x
A3
ijkL

3 + 30‖r‖2x
A5
ijkL

5 + o

(
‖r‖3

L5

)
(5.35)

= −18 ‖r‖
2x

A5
ijkL

5 + 30‖r‖2x
A5
ijkL

5 + 60x
A7
ijkL

5 yz(jk + ik + ij) + 30‖r‖2

A5
ijkL

5x+ o

(
‖r‖3

L5

)
(5.36)

= 42 ‖r‖
2x

A5
ijkL

5 + 60x
A7
ijkL

5 yz(jk + ik + ij) + o

(
‖r‖3

L5

)
. (5.37)

In order to take into account the last nodes, we repeat the same steps of the previous calculus,
and this corresponds to calculate B(r, (a, b, c), L)[x]+B(r, (a′, b′, c′), L)[x] for (a, b, c) = (i,−j, k)
and (a′, b′, c′) = (i, j,−k) and the same with the permutations of (i, j, k). We then get :

Bijk,x2 (L) :=B(r, (i,−j, k), L)[x] +B(r, (i, j,−k), L)[x] +B(r, (j,−k, i), L)[x]
+B(r, (j, k,−i), L)[x] +B(r, (k,−i, j), L)[x] +B(r, (k, i,−j), L)[x] (5.38)

= 42 ‖r‖
2x

A5
ijkL

5 −
60x

A7
ijkL

5 yz(jk + ik + ij) + o

(
‖r‖3

L5

)
. (5.39)

Finally :

Bijk,x1 (L) +Bijk,x2 (L) = 84 ‖r‖
2x

A5
ijkL

5 + o

(
‖r‖3

L5

)
. (5.40)

B. Calculus for the second coordinate :

a) Case 1 :

We combine nodes (0, j, 0) and its permutations and we obtain :

B(r, (0, j, 0), L)[y] +B(r, (j, 0, 0), L)[y] +B(r, (0, 0, j), L)[y] = 21 ‖r‖
2y

|j|5L5 + o

(
‖r‖3

L5

)
. (5.41)

b) Case 2 :

We combine nodes (i, i, i), (i,−i,−i), (i,−i, i) and (i, i,−i) and we obtain :

B(r, (i, i, i), L)[y] +B(r, (i,−i,−i), L)[y] +B(r, (i,−i, i), L)[y] +B(r, (i, i,−i), L)[y] = 28 ‖r‖2y
35/2|i|5L5 + o

(
‖r‖3

L5

)
.

(5.42)
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c) Case 3 :

We combine nodes (i, j, 0) and (i,−j, 0) and the same with the permutations of (i, j, 0) and we
obtain :

B(r, (i, j, 0), L)[y]+B(r, (i,−j, 0), L)[y] +B(r, (j, 0, i), L)[y] +B(r, (j, 0,−i), L)[y]

+B(r, (0, i, j), L)[y] +B(r, (0, i,−j), L)[y] = 42 ‖r‖2y
‖(i, j)t‖5L5 + o

(
‖r‖3

L5

)
.

(5.43)

d) General case :

We combine nodes (a, b, c) = (i, j, k) and (a, b, c) = (i,−j,−k) and we obtain :

B(r, (i, j, k), L)[y] +B(r, (i,−j,−k), L)[y] = 4y
A3
ijkL

3 − 6 ‖r‖
2y

A5
ijkL

5 + 30y
A7
ijkL

5 (x2i2 + y2j2 + z2k2 + 2yzjk)

− 12yj2

A5
ijkL

3 −
12zjk
A5
ijkL

3 + 30‖r‖2

A7
ijkL

5 yj
2 + 30‖r‖2

A7
ijkL

5 zjk + o

(
‖r‖3

L5

)
.

(5.44)

The same applies to (a, b, c) = (j, k, i) and (a, b, c) = (j,−k,−i) gives :

B(r, (j, k, i), L)[y] +B(r, (j,−k,−i), L)[y] = 4y
A3
ijkL

3 − 6 ‖r‖
2y

A5
ijkL

5 + 30y
A7
ijkL

5 (x2j2 + y2k2 + z2i2 + 2yzki)

− 12yk2

A5
ijkL

3 −
12zik
A5
ijkL

3 + 30‖r‖2

A7
ijkL

5 yk
2 + 30‖r‖2

A7
ijkL

5 zik + o

(
‖r‖3

L5

)
.

(5.45)

To finish, for (a, b, c) = (k, i, j) and (a, b, c) = (k,−i,−j), we get :

B(r, (k, i, j), L)[y] +B(r, (k,−i,−j), L)[y] = 4y
A3
ijkL

3 − 6 ‖r‖
2y

A5
ijkL

5 + 30y
A7
ijkL

5 (x2k2 + y2i2 + z2j2 + 2yzij)

− 12yi2

A5
ijkL

3 −
12zij
A5
ijkL

3 + 30‖r‖2

A7
ijkL

5 yi
2 + 30‖r‖2

A7
ijkL

5 zij + o

(
‖r‖3

L5

)
.

(5.46)
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The three previous factors are added together, which gives

Bijk,y1 (L) :=B(r, (i, j, k), L)[y] +B(r, (i,−j,−k), L)[y] +B(r, (j, k, i), L)[y]
+B(r, (j,−k,−i), L)[y] +B(r, (k, i, j), L)[y] +B(r, (k,−i,−j), L)[y] (5.47)

= 12y
A3
ijkL

3 − 18 ‖r‖
2y

A5
ijkL

5 + 30y
A7
ijkL

5 (x2(A2
ijk) + y2(A2

ijk) + z2(A2
ijk) + 2yz(jk + ik + ij))

(5.48)

− 12y
A3
ijkL

3 −
12z

A5
ijkL

3 (ij + ik + jk) + 30‖r‖2

A5
ijkL

5 y + 30‖r‖2

A7
ijkL

5 z(ij + ik + jk) + o

(
‖r‖3

L5

)
(5.49)

= 42 ‖r‖
2y

A5
ijkL

5 + 60
A7
ijkL

5 y
2z(jk + ik + ij)− 12z

A5
ijkL

3 (ij + ik + jk)

+ 30‖r‖2

A7
ijkL

5 z(ij + ik + jk) + o

(
‖r‖3

L5

)
. (5.50)

In order to take into account the last nodes, we repeat the same steps of the previous calculus,
and this corresponds to calculate B(r, (a, b, c), L)[y] +B(r, (a′, b′, c′), L)[y] for (a, b, c) = (i,−j, k)
and (a′, b′, c′) = (i, j,−k) and the same with the permutations of (i, j, k). We then get :

Bijk,y2 (L) :=B(r, (i,−j, k), L)[y] +B(r, (i, j,−k), L)[y] +B(r, (j,−k, i), L)[y]
+B(r, (j, k,−i), L)[y] +B(r, (k,−i, j), L)[y] +B(r, (k, i,−j), L)[y] (5.51)

= 42 ‖r‖
2y

A5
ijkL

5 −
60

A7
ijkL

5 y
2z(jk + ik + ij) + 12z

A5
ijkL

3 (ij + ik + jk)

− 30‖r‖2

A7
ijkL

5 z(ij + ik + jk) + o

(
‖r‖3

L5

)
. (5.52)

Finally :

Bijk,y1 (L) +Bijk,y2 (L) = 84 ‖r‖
2y

A5
ijkL

5 + o

(
‖r‖3

L5

)
. (5.53)

C. Calculus for the third coordinate :

By similar calculations as those for the second coordinate, we get :

a) Case 1 :

For node (0, j, 0) and its permutations :

B(r, (0, j, 0), L)[z] +B(r, (j, 0, 0), L)[z] +B(r, (0, 0, j), L)[z] = 21 ‖r‖
2z

|j|5L5 + o

(
‖r‖3

L5

)
. (5.54)
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b) Case 2 :

For nodes (i, i, i), (i,−i,−i), (i,−i, i) and (i, i,−i) :

B(r, (i, i, i), L)[z] +B(r, (i,−i,−i), L)[z] +B(r, (i,−i, i), L)[z] +B(r, (i, i,−i), L)[z] = 28 ‖r‖2z
35/2|i|5L5 + o

(
‖r‖3

L5

)
.

(5.55)

c) Case 3 :

For nodes (i, j, 0) and (i,−j, 0) and the same with the permutations of (i, j, 0) :

B(r, (i, j, 0), L)[z]+B(r, (i,−j, 0), L)[z] +B(r, (j, 0, i), L)[z] +B(r, (j, 0,−i), L)[z]

+B(r, (0, i, j), L)[z] +B(r, (0, i,−j), L)[z] = 42 ‖r‖2z
‖(i, j)t‖5L5 + o

(
‖r‖3

L5

)
.

(5.56)

d) General case :

For nodes (i, j, k) and (i,−j,−k) and the same with the permutations of (i, j, k) :

Bijk,z1 (L) :=B(r, (i, j, k), L)[z] +B(r, (i,−j,−k), L)[z] +Bzjki(L) +B(r, (j,−k,−i), L)[z]
+B(r, (k, i, j), L)[z] +B(r, (k,−i,−j), L)[z] (5.57)

= 12z
A3
ijkL

3 − 18 ‖r‖
2z

A5
ijkL

5 + 30z
A7
ijkL

5 (x2(A2
ijk) + y2(A2

ijk) + z2(A2
ijk) + 2r2z(jk + ik + ij))

− 12z
A3
ijkL

3 −
12y

A5
ijkL

3 (ij + ik + jk) + 30‖r‖2

A5
ijkL

5 z + 30‖r‖2

A7
ijkL

5 y(ij + ik + jk) + o

(
‖r‖3

L5

)
(5.58)

= 42 ‖r‖
2z

A5
ijkL

5 + 60
A7
ijkL

5 yz
2(jk + ik + ij)− 12y

A5
ijkL

3 (ij + ik + jk) + 30‖r‖2

A7
ijkL

5 y(ij + ik + jk) + o

(
‖r‖3

L5

)
.

(5.59)

For nodes (i,−j, k) and (i, j,−k) and the same with the permutations of (i, j, k) :

Bijk,z2 (L) :=B(r, (i,−j, k), L)[z] +B(r, (i, j,−k), L)[z] +B(r, (j,−k, i), L)[z] +B(r, (j, k,−i), L)[z]
+B(r, (k,−i, j), L)[z] +B(r, (k, i,−j), L)[z] (5.60)

= 42 ‖r‖
2z

A5
ijkL

5 −
60

A7
ijkL

5 yz
2(jk + ik + ij) + 12y

A5
ijkL

3 (ij + ik + jk)− 30‖r‖2

A7
ijkL

5 y(ij + ik + jk) + o

(
‖r‖3

L5

)
.

(5.61)

So that finally :

Bijk,z1 (L) +Bijk,z2 (L) = 84 ‖r‖
2z

A5
ijkL

5 + o

(
‖r‖3

L5

)
. (5.62)
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Step 3 : In order to finish the proof, we remember that the potentiel of the system satisfies :

∇1UPBC(r, L) = −F1(r, L) (5.63)

= − q1q2r

4πε0εr‖r‖3
− q1q2

4πε0εr

(( ∑
i>0,j≥i,k≥i+1

84
‖(i, j, k)‖5L5 +

∑
i>0

(
21 + 28

35/2

)
1
|i|5L5

+
∑
i,j>0

42
‖(i, j)t‖5L5

)
‖r‖2r−

∑
n∈Z3\{0}

35
2

(r.n)3n

‖n‖9L5 + o

(
‖r‖3

L5

))
(5.64)

so that we get (by symmetry of the potential to determine the constante) the result :

UPBC(r, L) = q1q2

4πε0εr‖r‖

(
1 + C

(
‖r‖
L

)5
)

+ q1q2

4πε0εr

∫
S(r)

 ∑
n∈Z3\{0}

35
2

(l.n)3n

‖n‖9L5

 dl + o

(
‖r‖4

L5

)
(5.65)

with C = −
(

21
∑

i>0,j≥i,k≥i+1

1
‖(i,j,k)t‖5 +

( 21
4 + 7

35/2

)
ζ(5) + 21

2
∑
i,j>0

1
‖(i,j)t‖5

)
(so that

C ' −9.079945024529188), ζ being the zeta function. S(r) = [a1, x]× [a2, y]× [a3, z] ((a1, a2, a3)
being choosen such that the constant of that primitive is null).

First of all, we can note that the fist term of the expansion that we have obtain is one of a Cou-
lomb potential, which makes sense with the conjecture that we can see for example in [129]. The
second term takes into account the periodicity, and we can see that the larger L is the smaller
this term is, so that in fact the potential tends to the first term. This fact is in good agreement
with the case of an infinite system that we told in the beginning of that part. This is difficult
to interpret this term in a physical meaning. However, we will observ that it doesn’t match to

a dipole term as we could suppose. Indeed, we have q1q2
4πε0εr

‖r‖4
L5 = −1

4πε0εr (q1‖r‖)2 ‖r‖2
L5 (because

q1 and q2 are opposite charges) so that the term in parenthesis is a dipolar term, but the term
tends to 0 when ‖r‖ → 0, instead of ∞.

On top of that, we can observ that the larger L is the more the second term decreases towards 0,
so that our formula converges to the fisrt Coulomb term. We will verify this fact in our numerical
simulations.

In order to estimate the last term, we will place ourselves in the case where r is located on one
side of the box, then in the case where r is located on the small diagonal of the box, and to finish
in the case where r is located on the large diagonal of the box. In all three cases, we will have r
of the form r = ‖r‖u where u is a unit vector. So that :

∑
n∈Z3\{0}

−35
2

(r.n)3n

‖n‖9L5 =
∑

n∈Z3\{0}

−35
2
‖r‖3(u.n)3n

‖n‖9L5 . (5.66)

u = (1, 0, 0) or (0, 1, 0) or (0, 0, 1) in the first case (we will analyze only the first vector, as
the study of the two others can be made in the same way), u = ( 1√

2 ,
1√
2 , 0) or (0, 1√

2 ,
1√
2 ) or

( 1√
2 , 0,

1√
2 ) in the second case (we will also analyze only the first vector), and u =

(
1√
3 ,

1√
3 ,

1√
3

)
in the third case.
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We will first estimate the term
∑

n∈Z3\{0}

−35
2

(u.n)3n
‖n‖9 numerically in all three cases. The results are

shown in table 1.

unit vector u term
∑

n∈Z3\{0}

−35
2

(r.n)3n
‖n‖9

( 1 , 0 , 0 ) ( -48.8 , 0 , 0 )(
1√
2 ,

1√
2 , 0)

)
( -23.5 , -23.5 , 0 )(

1√
3 ,

1√
3 ,

1√
3

)
( -16.2 , -16.2 , -16.2 )

Table 1 – Estimation of the term
∑

n∈Z3\{0}

−35
2

(u.n)3n
‖n‖9 for three different unit vectors

Thus, in all three cases we obtain a result of the type au where a ∈ R, which is due to the
situation on a symmetrical plane of the analyzed vectors.

In polar coordinates (r, θ, φ), we know that the force on a symmetrical plane is as per :−∂U(r,θ,φ)
∂r
0
0

 . (5.67)

So that we can get here : ∫
S(r)

 ∑
n∈Z3\{0}

35
2

(l.n)3n

‖n‖9L5

 dl = a‖r‖4

4L5 (5.68)

where a = 48.8 on the first case, a = 23.5 on the second case, and a = 16.2 on the third case.

In the end we have the following expansion depending on the geometrical constant C1 :

UPBC(r, L) = q1q2

4πε0εr‖r‖

(
1 + C1

(
‖r‖
L

)5
)

+ o

(
‖r‖4

L5

)
(5.69)

C1 depends on the position of the two charges in the box :

- in the case where r is located on one side of the box : C1 = 3.12005497547

- in the case where r is located on the small diagonal of the box : C1 = −3.20494502453

- in the case where r is located on the large diagonal of the box : C1 = −5.02994502453

.
This first term of developpement with even power function can be explained by the symmetry of
the problem. Moreover, the difference in the sign of C1 can be explained in a geometrical way as
seen in figure 17. In fact, in diagonal cases, when the ions are far enough apart, each one tends
to be closer to its images (of the same sign therefore) more than with the other one located in
the same box which generates a repulsion. That is not the case in the parallel case where each
ion is always further away from its own images than from the other ion and its images.
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(b) Small diagonal case

Figure 17 – Illustration in 2D of two opposite charges which tends to be far enough apart, in
the parallel case and in small diagonal case (the third case, for large diagonal, being similar of
the second case) : the blue segment tends to be larger of the red one in the second case, whereas
in the first case it is always smaller

5.2 Numerical results

Since our goal was to test the influence of the simulation box size with periodic edge conditions
for the calculation of the Potential of Mean Force at long distance, three box sizes were used.
A first system consists of 498 water molecules and an ion Na+ and an ion Cl− contained in a
24,662 A side cube box. A second one consists of 1598 water molecules and the 2 ions, in a 36,342
A cubic side box. A last system consists of 4998 water molecules and the 2 ions, contained in a
cubic box with 53.000 A side (cf figure 18). The reaction coordinate chosen for the calculation of
the Pmf being the distance between the two ions, for each box the two ions are initially placed
at a distance l ≤ L

2 , where L is the size of one side of the simulation box. The polarizable force
field of each particle comes from the AMOEBABIO09 model [186] (Atomic multipole optimized
energetics for biomolecular simulation). And given the chosen reaction coordinate, a spring force
is added to keep the two ions at a chosen l∗ distance (illustration figure 19). The simulations
were performed with the Tinker-hp code [101] (Parallel version of the Tinker Molecular Dynamics
Code [140]).

Each system is first balanced by a L-BFGS minimization of the Cartesian set, then a simulation
of 10 ps in the isobaric-isothermal set (NPT ) where N is the number of particles according to
the box, P = 1 bar and T = 298 K with a Berendsen thermostat. A dynamic is then carried out
with the RESPA integrator on 2 ns with a time step of 2 fs. The positions of the particles are
stored every ps, i.e. 1000 times during the 2 ns.

The electrostatic interactions are evaluated with the Ewald method, with a cut-off of 7 A. A
cut-off of 9 A is also imposed for Van der Waals rays.

We run simulations with a spring of stiffness constant 10×2 kcal .mol−1 .A−2 for l∗ = 2, 2.5, ..., 10
A (it is important that l∗ ≤ Lmin

2 where Lmin = 24.662 A), that is 17 simulations for each system.

We then use Alan Grossfield’s code [182] to plot the Pmf associated with the system (be careful
that the Tinker code does not take into account the ”1/2” for added spring force). Then the Mc-
Millan and Mayer Potential (pmf with entropy correction) is plotted, correcting the Pmf, which
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(a) L=24.662 A (b) L=36.342 A

(c) L=53.000 A

Figure 18 – Representations of box made up of water molecules (thus formed of ions H+ and
ions OH−, represented ”in the background” in white) and an ion Na+ (dark blue) and an ion
Cl− (cyan) according to the size L of the box

is expressed in kcal .mol−1, by expressing it in units of kbT (where kb is Boltzmann’s constant).

Finally, the Coulombic potential is plotted, then the Coulombic potential to which the correction
for L has been added, in order to compare it, at great distance, to the McMillan and Mayer
Potential.

In what follows, in the legends, ”Coulomb” corresponds to the Coulomb potential curve between
two ions in infinite medium, and ”development” corresponds to our previous calculation for two
ions under periodic conditions.
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Figure 19 – Illustration (zoomed in) of two ions to which a spring force is applied to keep them
at a distance of 5 A during a simulation with a 36.342 A side box, here the ions are at this stage
of the simulation at a distance of 4.85 A

5.2.1 Size of a simulation box

We want to know the approximate number N of water molecules contained in a box of vo-
lume V = 1 nm3. We know that N is related to V by the formula N = nV V , where nV is
the number of particles per unit of volume, i.e. nV = nNA

V (n being the number of moles and

NA = 6.022.1023 mol−1 the amount of matter per mole).

Remember the density µ of a molecule : µ = m
V , where m is the mass of a particle ; and the molar

mass M of a particle : M = m
n . Thus we have :

nV = nNA
V

= µ

m
nNA = µNA

M
. (5.70)

Hence :

N = V µNA
M

. (5.71)

We have : 1 nm3 = 10−27 m3, µ = 103 kg .m−3 et M = 18.10−3 kg .mol−1. Thus : N = 100
3 ∼ 33.

This allowed us to approximate the number of water molecules needed to create a water box
with Packmol [136].

5.2.2 Description of the AMOEBA model

The Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) model
[141,160,186] is a polarizable force field model. Interactions are decomposed between valence and
non-valence links. The U potential of an atom is thus expressed in the following form :

U = Ubond + Uangle + Ub−a + Uoop + Utorsion + UvdW + Upermele + U indele (5.72)

where the first five terms refer to short-range valence interactions (respectively binding term,
angle, cross-bond angle, out-of-plane bending and torsional rotation), the other three terms refer
to non-valence interactions, respectively van der Waals term, and permanent and induced elec-
trostatic contributions.
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Parameter Details :

Hereafter, the parameters (cf table 2) of the AMOEBA model to describe the force field for mo-
lecules H2O are presented [147]. The dielectric constant of water in this model, when considering
periodic edge conditions, is 82± 13.

O-H bond b0(A) Kb (kcal .A−2 .mol−1)
0.9572 529.6

H-O-H angle θ0(deg) Kθ (kcal .deg−2.mol−1)
108.50 34.05

Urey-Bradley l0(A) Kl (kcal .A−2 .mol−1)
1.5537 38.25

van der Waals R0(A) ε (kcal .mol−1)
O 3.405 0.110
H 2.655 0.0135

Hreduction 0.91

polarizability α (A3)
O 0.837
H 0.496

O multipoles (a.u.)
Q -0.51966
dz 0.14279
Qxx 0.37928
Qyy -0.41809
Qzz 0.03881

H multipoles (a.u.)
Q 0.25983
dx -0.03859
dy -0.05818
Qxx -0.03673
Qyy -0.10739
Qxz -0.00203
Qzz 0.14412

Table 2 – Parameters of the AMOEBA model for water

The ions Na+ and Cl− have been described with the parameters described in table 3.

van der Waals R0(A) ε (kcal .mol−1)
N+
a 3.020 0.2600

Cl− 4.130 0.3400

polarizability α (A3)
N+
a 0.120

Cl− 4.000
charge Q (a.u.)
N+
a 1.00000

Cl− -1.00000

Table 3 – Parameters of ions

5.2.3 Study of the potential of McMillan and Mayer for Na-Cl in aqueous phase

McMillan and Mayer potential and simulation box size

Our study being on the influence of the size of the simulation box on the calculation of the
potential of mean force, hereafter, figure 20 shows the McMillan and Mayer potential for each
system composed of water molecules and a Na+ ion and a Cl− ion, the number of water molecules
depending on the size of the simulation box.
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Figure 20 – Comparison of the potential of McMillan and Mayer as a function of the size of the
simulation box

To begin with, we observe, for the three curves, that the first minimum is around 3 A (which
corresponds to the CIP (Contact Ion Pair [65]), and the second minimum is around 5 A (this is
the SIP (Solvent-shared Ion Pair [65]), the first maximum (which corresponds approximately to
the center of the whole transition state between the CIP and SIP states [65]) is around 4 A ; which
is in good agreement with the literature (cf for example the thesis of John Jairo Molina [127]
page 105, as well as [38,83,111,129]).

It can be observed that the behaviour of the curve corresponding to the 24,662 A side box differs
from that of the other two curves from a distance of about 7 A in both cases. In fact, it can be
seen that, for the 24.662 A side box, there is a very marked maximum around 8 A, in contrast
to the curves for the 36.342 A side box and the 53. A side box which begin to increase more
slightly towards 8 A ; whereas up to about 7 A, the behaviour of the three curves merges. One
explanation could be that from a certain distance, depending on the size of the box, the presence
of the images influences the behaviour of the potential.

As explained in the introduction to this chapter, McMillan and Mayer’s potential is defined by
one constant, and one of the major challenges is to choose this constant wisely. Here, we have
defined it so that the first minimum of each curve corresponds, and those, in order to be able to
compare the behaviours of these curves.

In order to calculate the macroscopic quantities of interest, McMillan and Mayer’s potential is
generally adjusted to a Coulombic potential. In what follows, we will first present the curves
resulting from our expansion, for different sizes of boxes. We wish that this expansion will serve
as a basis for us to adjust the constant of McMillan and Mayer’s potential more precisely, so that
at a great distance, it corresponds to our expansion.
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Evolution of the curve resulting from our expansion in relation to L

In this subsection, the idea was to observe the behavior of the potential expansion from our
calculations as a function of the L period, and then to compare these curves to the Coulomb
potential between the two ions (see figure 21).
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Figure 21 – Comparison of the curves resulting from our expansion as a function of the size of
the box, and with the Coulomb potential curve, for each case

It is clear, for each case, that the larger L is, the closer the associated curve is to the Coulomb
curve (which was to be expected since the obtained expansion is inversely proportional to L).

For the first case, it can be noted that the curve for L = 15 tends to look like that of a power
function a (where 0 < a < 1) from about 6 A upwards. For the last two cases, it can be noted
that the curve for L = 15 tends to look like that of a power function a (where a > 1) from
about 6 A upwards. This is because for such a L, the corrective term of our expansion is not
weak enough from this distance (knowing that in our calculations we have considered ‖r‖/L
rather low, i.e. L rather large compared to the distances studied). Then, we observe that the
curves are approaching very quickly the Coulomb curve (this is due to a high power of L to the
denominator in our correction). Thus, very quickly it approaches the behavior of two ions in an
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infinite medium (and not with periodic conditions at the edge.)

In fact, for too small box sizes (typically for L=15), the behavior of our expansion deviates too
much from that of a Coulombian potential, on the other hand for large box sizes (typically L=50),
it is very similar. Since we want to adjust McMillan and Mayer’s potential to our expansion, it
seems useful for intermediate box sizes.

.

In addition, we compared the evolution of our expansion with that of Ewald’s potential, another
way of obtaining the sum of the contributions of long-range interactions for a periodic system as
seen in chapter 3 (see on figure 22).

(a) case parallel to the box (b) case of the small diagonal of the box

(c) case of the large diagonal of the box

Figure 22 – Comparison of the curves resulting from Ewald as a function of the size of the box,
and with the Coulomb potential curve, for each case

Here, we can observe that the behavior of Ewald curve is not the same as that of our devevelop-
pement, in particular from 5 A for L = 15. We sought to understand this difference in behaviour.
To do so, we performed a fit of the (Ewald- Coulomb) curve with a function of type αxβ (seen
on figure 23).



5.2. Numerical results 89

We can note that the fit is for β near 2 in each case. That differs from our result as the first
term of our developpement is of power 4. This term of power 2 seems in fact to be the term of
spherical surface area [13], which is added when Ewald’s potential is calculated for an infinitely
extended crystal with spherical form and surrounded by a continuous medium of the dielectric
constant ε′. This one repesents the energy of surface charges at the boundaries of the crystal. It
is given by the following expression :

2π
(1 + 2ε′)

M2

Vcell
(5.73)

where M =
∑
i qiri is the dipolar moment, and Vcell is the volume of an elementary cell. In order

to verify this fact, we plotted curves for L=10 ans L=100 and we observe, in the case when the
vector is parallel to the box, that α is inversely proportional to L3, i.e. the volume of a box (cf
figure 24). Moreover, the approximate factor we found is around 2.1 ' 2π

3 so that this correction
is consisted with (5.73) (as ε′ is being taken equal to 1 in vacuum condition).

McMillan and Mayer Potential and expansion fit

We plotted the curve obtained from the formula found for the Potential that we developed from
the force field, for L = 24, 662 A on the one hand, L = 36, 342 A on the other hand, and, finally,
for L = 53, 000 A. We then fitted each respective McMillan and Mayer potential curve (see figure
25) so that it approximates the long-distance expansion, and not the Coulomb potential curve.

It can be noted that the behaviour of McMillan and Mayer’s potential is all the more similar to
the potential curve resulting from our expansion as the L is higher. For the size L = 24, 662 A,
the behaviour between these two curves is close between 8.2 and 9.1 A, then the McMillan and
Mayer potential curve tends to sag. The behaviour between the McMillan and Mayer potential
curve is similar to that of the curve in our expansion especially near 8 A for the 36,342 A side box,
with a slightly less marked sagging of the McMillan and Mayer potential from 9.2 A onwards.
Both curves have a similar behaviour from about 7.5 A for the 53,000 A side box.
We can also see that at great distance, these curves are all the more ”straightened” and close to
the behaviour of the curve resulting from our expansion and Coulomb potential (including these
latter approaches) the larger the size of the box. We can again suppose that this behavior is due
to a box size too small compared to the tracing distance (given the hypothesis of the ‖r‖ << L
theorem) and that from a certain distance, depending on the box size, the presence of the images
influences the behavior of the potential.

We can therefore conclude, on the one hand, the interest of fitting the curve for large distances
(similarity of behaviour with our expansion). On the other hand, the effect of the size of the simu-
lation box proves to be important for small sizes. Thus, for example, for the side box L = 24, 662
A, we observe a shift in the curve of our expansion of about 0.03 kT with the Coulomb poten-
tial curve. This will result in a bigger deviation for the calculation of the association constant,
because of the switch to the exponential function.

5.2.4 Macroscopic study for Na-Cl in aqueous phase

Calculation of coordination spheres

Below, figure 26 shows the radial distribution functions between Na+ ions and water molecules,
function gNa−O, on the one hand, and between Cl− ions and water molecules, function gCl−O, on
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the other hand, these functions being represented when the Na+ and Cl− ions are at a distance
d. Radial distribution functions represent the probability that a water molecule is at a distance
of r from the ion of interest. The curves in figure 26 were taken from simulations with the 53,000
A side box, and when the two ions are constrained at a distance d = 3, 4, 5, 10 A by the force of
the spring (between 5 and 10 A, the curves are very similar).

We see that gNa−O and gCl−O each have two clearly defined peaks, corresponding respectively
to the first and second hydration sphere. The maxima and minima are presented in the following
table 4 and are in good agreement with the literature [71,162] :

ion r1
max (en A) r1

min (en A) r2
max (en A) r2

min (en A)

Na+ 2.5 3.2 4.5 5.6

Cl− 3.4 4. 5.2 6.

Table 4 – Minima and maxima of the radial distribution function gNa−O and gCl−O

One observes, on the other hand, a peak of gNa−O which is lower than the others towards 2.5 A
for d = 3 A (fushia curve) because the presence of chloride leaves less room for the water mole-
cules, and for the second peak towards 4.5 A, it is lower because there again chloride prevents
the water molecules from approaching for d = 3, 4, 5. ( As explained in [71], the impact of the
distance between Na+ and Cl− occurs only on the ”weight” of the peaks (their height), and not
on the distances corresponding to the maxima and minima).

For the gCl−O curve, there is an offset of the minimizer after the first peak, located around 4.8
A and not 4 A. This is due to the small size of the Na+ ion, which does not prevent, at 4 A, that
there is a water molecule at this distance from the Cl− ion. On top of that, we will notice that
Cl− is an anion, contrary to Na+ which is a cation, so that the force that binds H2O molecules
to Cl− is weaker : H2O has to ”invert” itself to present hydrogen ions to Cl−, which hinders the
presence of oxygen. This explains why gCl−O peaks are lower than gNa−O peaks.

.

From the peaks of gNa−O and gCl−O, we can deduce the average coordination number around
each ion (cf figure 27). For Na+, it is about 6 for the first sphere and about 12 for the second, and
for Cl− it is about 6 for the first sphere and about 16 for the second. One can note the absence
of box effect here in the curves obtained.

.

Note that each peak of the radial distribution function corresponds to one of McMillan and
Mayer’s potential (figure 20) ; they correspond to the CIP, SIP and SSIP configurations.

.

On the other hand, with respect to the hydration spheres, the McMillan and Mayer potential also
represents the energy of the movement of ions between the hydration spheres. Thus, to switch
from CIP to SIP, an ion must pass an energy barrier of 1.9 kT and from SIP to SSIP about 0.6
kT. On the other hand, the reverse transition (from the third to the second coordination sphere)
shows that an ion needs only about 0.2 kT to enter its second sphere of hydration.
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Calculation of the association constant

From the ion-ion potentials calculated in the aqueous phase, we were able to evaluate the associa-
tion constant K of the ion pairs, from the Bjerrum equation (described in Chapter 4 (4.72)). The
figure 28 presents this constant associated with the simulations with the side box respectively
24.662 A, 36.342 A and 53. A. It also shows, as a comparison, the Bjerrum constant plotted, for
each box, when the McMillan and Mayer potential is corrected by the factor found in (5.1).

As seen in [127] on page 102, the cutoff distance can be defined as the inflection point in the
built-in function K. Here, this distance corresponds to about 4.3 A. We then find K when the
potential is corrected or not with our expansion. The result is given in the following table 5 in
addition of the percentage difference in each cases. It is of the same order of magnitude as the
value calculated in [127] page 110 where K = 0.48 L .mol−1.

L (en A) K (non corrected) (en L .mol−1) K (en L .mol−1) difference percentage
24.662 3.8 4.1 7%
36.342 3.95 4.1 4%
53.000 4.1 4.1 0%

Table 5 – Association constant K, corrected or not, as a function of L

On another note, we can see that the three curves obtained with the correction are merged.
This is good news because our goal is to calculate the constant in the non-periodic case, but the
correction allows us to remove the term of periodicity.

5.2.5 Comparison of our expansion with lanthanide salt potentials

In the context of this thesis, we saw that it was particularly interesting to study the Lanthanides
family. To do so, we looked at the McMillan and Mayer potentials obtained for two types of lan-
thanide salts in [127], these potentials being calculated from a cubic box formed of 27 lanthanides
LnR, 81 anions Cl− and 1498 water molecules, and for distances between an ion Ln3+ and an
ion Cl− of up to 12 A. In the first case, the lanthanides corresponded to Neodymium ions Nd3+,
and in the second to Dysprosium ions Dy3+. In both cases, the parameters of the potentials were
from [59, 130]. The parameters of the Cl− ions corresponded to those of [162], while the water
molecules had been described with the POL3 model [34, 125], where the dielectric constant is
εr = 106. MD simulations where perform with T = 300 K.

We then wished to compare these curves with those coming from our expansion, as well as with
the curve of the Coulomb potential between the two types of respective ions of the boxes, i.e.
between Nd3+ and Cl− for the first one, and Dy3+ and Cl− for the second one (cf figure 29). We
observe that the behavior of McMillan and Mayer’s potential is close to the potential resulting
from our expansion from 9.2 A in the first case, and from 8.7 A in the second case. On top of
that, we can observ a deviation ok about 0.01 KT bewteen our developpement and the Coulomb
curve from a great distance.

Moreover, we plotted the corrected or uncorrected association constant from our expansion. For
the Dy3+ ion, the association constant is obtained for a distance of about 6.5 A at 5.9 L .mol−1

in the uncorrected case and 5.85 L .mol−1 when it is corrected by our expansion. For the Nd3+

ion, the association constant is obtained for a distance of about 6.9 A at 8.8 L .mol−1 in the
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uncorrected case and 8.7 L .mol−1 when it is corrected by our expansion. Adjusting the accuracy
leads to a deviation of 1% in the first case and 2% in the second.

5.3 Conclusion

In this chapter, we have studied the theoretical behaviour of McMillan and Mayer’s potential for
two ions quite distant from each other and surrounded by a solvent, this system being contained in
a L sidebox and with periodic edge conditions. We were able to establish, under these conditions,
a fairly large expansion of this potential for L, this expansion converging towards the Coulomb
potential especially since L is important. We then performed molecular simulations using the
Tinker-hp software for different sizes of boxes containing two ions and N water molecules (N
depending on the size of the box). One of the difficulties in exploiting the potential of McMillan
and Mayer was to fit the constant, and since the simulations were performed under periodic
conditions, we were able to fit the curves from our simulations with those from our previous
expansion. A numerical comparison with a correction based on Ewald’s formula allowed us to
compare our result with another approach. Then we evaluated the association constant, in the
uncorrected case on the one hand, and corrected from the end of our expansion on the other hand.
In the end, the corrected curves for the three box sizes were merged, while a deviation between
the two types of curves (corrected or not), the smaller L is, is observed. The corrective term
resulting from our expansion would thus make it possible to obtain more precisely the association
constant in the non-periodic case, from the periodic simulations. In addition, deviations in the
behaviour of the corrected or uncorrected association constant could also be seen for lanthanide
salts. Nevertheless, considering the relatively high order of the correction term 1

L5 , the correction
is relatively weak and it can be practically neglected for large simulation boxes.



(a) case parallel to the box

(b) case of the small diagonal of the box

(c) case of the large diagonal of the box

Figure 23 – Fit of the (Ewald - Coulomb) curve, for each case
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(a) L=10

(b) L=100

Figure 24 – Fit of the (Ewald - Coulomb) curve, in the parallel case, for L=10 and L=100
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Figure 25 – Comparison of the potential of McMillan and Mayer curves and ones resulting from
our expansion
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Figure 26 – O-ion radial distribution function curve
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Figure 27 – Curves of radial distribution functions (continuous lines) and number of coordination
spheres (dot lines)
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Chapitre 6

Study of the diffusion constant in confined conditions

6.1 Introduction

In this chapter we are interested in the study of the dependence of the system size and hence the
influence of boundary conditions on the diffusion coefficient. We consider a particle, represented
by B(0, a), the closed ball centered at the origin and of radius a, moving in a fluid of viscosity η.

.
We begin by recalling notions of statistical thermodynamics. Let a particle undergoing an external
force F. Then it has a mean velocity u such that :

u = µF (6.1)

where µ is the mobility tensor of the particle. We can calculate the diffusion coefficient D with
Einstein’s relation [62] :

D = µkBT. (6.2)

.
The case of a particle moving in an unconfined fluid and with non-periodic conditions has been
solved by Stokes [15, 75, 81, 87, 122, 166] for the velocity calculation, and (6.2) gives a diffusion
constant D0 which verifies :

D0 = kBT

6πηa. (6.3)

.
We are interested in the correction of the diffusion constant with respect to D0 in a few special
cases.

We place ourselves in non-periodic conditions and consider that the fluid is confined between
two parallel walls spaced at a distance H from each other. We consider here a partial sliding
condition on the walls, by means of a sliding coefficient γ. This coefficient is defined such that
γ → 0 corresponds to non-slip conditions, and on the contrary γ → ∞ stands for total slip
conditions. Moreover, the center of the particle is located at a distance z ≤ H from one of the
walls and the particle moves parallel to the walls (cf figure 31).

101
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Figure 31 – Illustration of a particle modeled by a ball of radius a and moving in a fluid confined
between two parallel walls that are at a distance H from each other. The center of the ball is
located at a distance z from the bottom wall and the particle is moving parallel to it at a velocity
U .

An approach using the method of reflections [103, 104, 110] (reflections made in the case of one
wall at a time, and assuming that each wall acts independently of the other) leads to a correction
of the diffusion constant D‖ taking into account the distance between the two walls [155] H :

D‖ = kBT

6πηa
1

1
1− azC( zγ ) + 1

1− a
H−zC(H−zγ ) − 1

(6.4)

= D0
1

1
1− azC( zγ ) + 1

1− a
H−zC(H−zγ ) − 1

(6.5)

where C is defined as C(y) = −3
32 y

2 − 9
32y −

3
8 +

( 3
32y

3 + 3
8y

2 + 3
8y)
)
E(y) + 3

2yE(2y), with

E(y) = ey
∫∞
y

e−t

t dt. As seen in [155], in the case where γ → 0 (non-slip case), we have

C( lγ )→ 9
16 , l being the distance of the ball to one of the walls. The non-slip case is the one we

are interested in, so that we consider γ → 0.

When a/H is very small and z = αH (0 < α < 1) we have :

1
1

1− 9a
16z

+ 1
1− 9a

16(H−z)
− 1

= 1
1 +

(
9a
16z + 9a

16(H−z)

)
+ o(a/H)

(6.6)

= 1− 9
16

aH

z(H − z) + o(a/H). (6.7)
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Then when a/H is very small and z = αH (0 < α < 1) we have :

D‖ = kBT

6πηa

(
1− 9

16
aH

z(H − z) + o(a/H)
)
. (6.8)

If we suppose H large, D‖ can be written as :

D‖ = D0 −
kBT

πη

3
32

H

z(H − z) + o(1/H). (6.9)

It can be seen here that the first expansion term does not depend on a.
.
When considering periodic boundary conditions (in the three directions of space), an approxi-
mation of the Oseen type [176] coupled with Kirkwood and Riseman theory [97] leads to the
correction of a diffusion coefficient DPBC as a function of the period considered L [185] :

DPBC = D0 −
kBTξ

6πηL + o(L−1) (6.10)

where D0 is given in (6.3) and ξ ≈ 2.837297. (To do this, the authors considered an incompres-
sible fluid perturbed by a force point acting at the center of the periodic cell. The observation in
(6.9), where the first expansion term does not depend on the radius a of the ball that modeled
the particle, gives coherence to this approach. Moreover, the authors made sure, knowing the
periodicity, that the mean of the forces acting on the cell is null, i.e. they applied a correction
equivalent to a pressure gradient, of the type addition analogous to the neutralizing background
seen for Ewald in chapter 3).

Here, we will resume the study of the second case, when the particle is located at equal distance
from the two walls and with the condition of non-slip on the walls. We will adapt an approach
of the Oseen type coupled to the theory of Kirkwood and Riseman, and not assuming that each
wall acts independently of the other. We will first study the case of non-periodic conditions.
We will calculate the velocity of the particle, which moves parallel to the walls, and then the
diffusion coefficient when the walls are assumed to be quite distant from each other. We will thus
see a coherence in the expansion of this coefficient by our method, as a function of the distance
between the two walls, and the one obtained by the approach of the previous case ((6.4) taken
for z = H

2 ). Finally, we will look at this problem when considering periodic conditions.

.
Let us reshape the domain and consider here the domain Ω = R2×

[
−H2 ,

H
2
]

(where H > 0). Let
u be the velocity vector of the particle and p the fluid pressure.

On Ω \ B(0, a) the previously described problem is rewritten as the following Stokes problem :
find u, p such that {

η∆u(x, y, z) = 5p(x, y, z)
∇.u(x, y, z) = 0 (6.11)

On the edge of the ball, i.e. for (x, y, z) ∈ ∂B(0, a), we consider :

u(x, y, z) = U (6.12)

with U constant vector.
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The conditions of non-slip on the two walls are then written :

u

(
x, y,±H2

)
= (0, 0, 0) (6.13)

for (x, y) ∈ R2.

We will consider that we are far from the particle, and therefore we will be led to solve a Stokes
equation where the fluid is subjected to a point of force.

6.2 Method of calculating the diffusion constant

In the below, we will give an idea of the method as used in [185] to calculate the diffusion coeffi-
cient, adapted to our study with a particle confined between two walls, a method we will use in
sections 5.3 and 5.4.

Starting from the statement that the first correction does not involve the radius a of the ball, we
introduce two intermediate problems with point charges :
- for a fluid subjected to a point of force F, on R3, the following Stokes problem : find uoseen, p
such that {

η∆uoseen(x, y, z) = 5poseen(x, y, z)− Fδ(x, y, z)
∇.uoseen(x, y, z) = 0 (6.14)

where δ is the Dirac distribution centered in zero and with :

lim
‖(x,y,z)‖→∞

uoseen = (0, 0, 0). (6.15)

We introduce :

TOseen(x, y, z) = 1
8πη‖(x, y, z)‖

(
I3 + (x, y, z)⊗ (x, y, z)

‖(x, y, z)‖2

)
(6.16)

the Oseen tensor in R3 for a non-periodic system 1.

We have then [107] :

uoseen(x, y, z) = TOseen(x, y, z).F (6.18)

- for a fluid subjected to a point of force F, on R2 [−H2 , H2 ], the following Stokes’ problem : find
uconfine, p such that{

η∆uconfine(x, y, z) = 5pconfine(x, y, z)− Fδ(x, y, z)
∇.uconfine(x, y, z) = 0 (6.19)

1. ⊗ corresponds to the tensor product : for two vectors (x1, y1, z1) and (x2, y2, z2), we have :

(x1, y1, z1)⊗ (x2, y2, z2) =

(
x1x2 x1y2 x1z2
y1x2 y1y2 y1z2
z1x2 z1y2 z1z2

)
(6.17)
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with the non-slip conditions on the walls :

uconfine

(
x, y,±H2

)
= (0, 0, 0). (6.20)

We add to this, for z ∈
[
−H2 ,

H
2
]
, boundary conditions : typically periodic conditions, or a

far-field condition in the layer plane :

lim
‖(x,y)‖→∞

uconfine(x, y, z) = (0, 0, 0). (6.21)

Let us suppose we can express uconfine as :

uconfine(x, y, z) = T(x, y, z).F (6.22)

where T is a tensor.

Ansatz : place ourselves in the case where a/H is sufficiently small (i.e. we consider that the
radius a of the sphere is very small compared to the distance H between the two walls). D verifies
the following relation :

D = D0 + kBT

3 lim
‖(x,y,z)‖→0

Tr(T(x, y, z)−TOseen(x, y, z)) (6.23)

where D0 = kBT
6πηa is given in (6.3)

Idea :
Stokes’ equation (6.11) is here linear and so :

u(x, y, z) = usph(x, y, z) + uwalls(x, y, z) (6.24)

where usph is the velocity due to the force of the particle on the fluid, and uwalls is the velocity
created by the force of the walls.

.
Since a/H is small enough, usph is assimilated to the solution of the classical Stokes problem [166]
in the domain R3 \B(0, a) and we obtain at the surface of the sphere, i.e. for (x, y, z) ∈ ∂B(0, a) :

usph(x, y, z) = 1
6πηaF. (6.25)

.
On the other hand, in their work, Kirkwood and Riseman [97] use the fact that uwalls varies
little at the scale of the sphere if it is small. We can therefore assume that uwalls = C where C
is a constant vector. This term is calculated by assimilating the force of the particle on the fluid
(force that is applied to its surface) to a dirac at its center.

We have :

uwalls(x, y, z) = uconfine(x, y, z)− uOseen(x, y, z) (6.26)

where uconfine is given in (6.19) (case of a particle in a fluid confined between two walls) and
uOseen is given in (6.14) (case of a particle in an unconfined fluid).
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Hence, in (x, y, z) = (0, 0, 0) (point where the dirac acts, i.e. the point where the force of the
particle acts on the fluid) :

uwall|(x,y,z)=(0,0,0) = lim
‖(x,y,z)‖→0

(T(x, y, z).F− TOseen(x, y, z).F). (6.27)

And then finally, for (x, y, z) ∈ ∂B(0, a) :

u(x, y, z) = 1
6πηaF + lim

‖(x,y,z)‖→0
(T(x, y, z)− TOseen(x, y, z)).F (6.28)

i.e. u is of the form u = µ.F, where µ is the mobility tensor. According to (6.2), the diffusion
tensor D is obtained by the following :

D = µkBT

= kBT

6πηa + kBT lim
‖(x,y,z)‖→0

(T(x, y, z)− TOseen(x, y, z)). (6.29)

The diffusion coefficient D is then obtained by taking 1
3Tr(D) and finally we get (6.23).

6.3 Study in the non-periodic case

As explained in the introduction, we assume that we are at a large distance, so we consider the
following problem on Ω, find u, p which verifies (6.19) with the boundary conditions (6.20) and
the condition (6.21).

Theorem 7. Under the conditions of the problem, u is of the form :

u(x, y, z) = T1(x, y, z).F

=
∫
R2
dk

((
A2(k)(z)

1 0 0
0 1 0
0 0 0

+A3(k)(z)

0 0 0
0 0 0
0 0 1

+A4(k)(z)k∗ ⊗ k∗
)

+ i

(
A5(k)(z)

0 0 0
0 0 0
0 0 1

+A6(k)(z)

0 0 k1
0 0 k2
0 0 0

+A7(k)(z)

 0 0 0
0 0 0
k1 k2 0

))eik.(x,y).F

(6.30)

where k∗ =
(
k
0

)
and with

A2(k)(z) = 1
2‖k‖ch(‖k‖H2 )η

(
sh(‖k‖(z + H

2 ))1z≤0 − sh(‖k‖(z − H

2 ))1z>0

)
(6.31)
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A3(k)(z) = − 1
4sh(‖k‖H2 )η

(
(z + H

2 )sh(‖k‖(z + H

2 ))1z≤0 + (z − H

2 )sh(‖k‖(z − H

2 ))1z>0

)

+
(

sh(‖k‖H2 ) +
H‖k‖ch(‖k‖H2 )

2

)(
1

4‖k‖sh(‖k‖H2 )2η

(
ch(‖k‖(z + H

2 ))1z≤0

+ ch(‖k‖(z − H

2 ))1z>0

)
− (e‖k‖z + e−‖k‖z)

(
1

8‖k‖sh(‖k‖H2 )2ch(‖k‖H2 )η

+
H

64sh(‖k‖H2 )ch(‖k‖H2 )2η

(
1 + H‖k‖

2

(
sh(‖k‖H2 )
ch(‖k‖H2 ) −

ch(‖k‖H2 )
sh(‖k‖H2 )

))
1
4 −

‖k‖2H2

16

(
sh(‖k‖H2 )
ch(‖k‖H2 ) −

ch(‖k‖H2 )
sh(‖k‖H2 )

)2

)

− (e‖k‖z − e−‖k‖z)
2ch(‖k‖H2 )η

z

16sh(‖k‖H2 )2

(
1 + ‖k‖H

2

(
sh(‖k‖H2 )
ch(‖k‖H2 ) −

ch(‖k‖H2 )
sh(‖k‖H2 )

))
1
4 −

‖k‖2H2

16

(
sh(‖k‖H2 )
ch(‖k‖H2 ) −

ch(‖k‖H2 )
sh(‖k‖H2 )

)2

)
(6.32)

A4(k)(z) =
(

z

4ch(‖k‖H2 )‖k‖2η

(
ch(‖k‖(z + H

2 ))1z≤0 − ch(‖k‖(z − H

2 ))1z>0

)
+ H

16‖k‖2ch(‖k‖H2 )2η
(e‖k‖z + e−‖k‖z)

)
− (e‖k‖z + e−‖k‖z)

(
sh(‖k‖H2 )
‖k‖ch(‖k‖H2 )

− H

2

(
sh(‖k‖H2 )2

ch(‖k‖H2 )2 − 1
)) H2

128ch(‖k‖H2 )2η

1
4 −

‖k‖2H2

16

(
sh(‖k‖H2 )
ch(‖k‖H2 ) −

ch(‖k‖H2 )
sh(‖k‖H2 )

)2


+ (e‖k‖z − e−‖k‖z)

2‖k‖η

zH
32ch(‖k‖H2 )2

(
1− H‖k‖

2

(
sh(‖k‖H2 )
ch(‖k‖H2 ) −

ch(‖k‖H2 )
sh(‖k‖H2 )

))
1
4 −

‖k‖2H2

16

(
sh(‖k‖H2 )
ch(‖k‖H2 ) −

ch(‖k‖H2 )
sh(‖k‖H2 )

)2

− 1
4‖k‖3ch(‖k‖H2 )η

(
sh(‖k‖(z + H

2 ))1z≤0 − sh(‖k‖(z − H

2 ))1z>0

)
(6.33)

A5(k)(z) =
(

−1
4‖k‖sh(‖k‖H2 )η

(
(z + H

2 )ch(‖k‖(z + H

2 ))1z≤0 + (z − H

2 )ch(‖k‖(z − H

2 ))1z>0

))

+
(

Hch(‖k‖H2 )
8‖k‖sh(‖k‖H2 )2η

(
sh(‖k‖(z + H

2 ))1z≤0 + sh(‖k‖(z − H

2 ))1z>0

))

+ (e‖k‖z − e−‖k‖z)
(

H

64sh(‖k‖H2 )2η

) ( 1
sh(‖k‖H2 )‖k‖ + H

4

(
1− ch(‖k‖H2 )2

sh(‖k‖H2 )2

))
1
4 −

‖k‖2H2

16

(
sh(‖k‖H2 )
ch(‖k‖H2 ) −

ch(‖k‖H2 )
sh(‖k‖H2 )

)2

(
sh(‖k‖H2 )

+
H‖k‖ch(‖k‖H2 )

2

)
− (e‖k‖z + e−‖k‖z)

32‖k‖ch(‖k‖H2 )sh(‖k‖H2 )2η

(
1 + ‖k‖H2

(
sh(‖k‖H2 )
ch(‖k‖H2 )

−
ch(‖k‖H2 )
sh(‖k‖H2 )

))
(

sh(‖k‖H2 ) +
H‖k‖ch(‖k‖H2 )

2

)
z

1
4 −

‖k‖2H2

16

(
sh(‖k‖H2 )
ch(‖k‖H2 ) −

ch(‖k‖H2 )
sh(‖k‖H2 )

)2 (6.34)
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A6(k)(z) = − (e‖k‖z + e−‖k‖z)z
2η

H
32ch(‖k‖H2 )2

(
1− H‖k‖2

2

(
sh(‖k‖H2 )
ch(‖k‖H2 ) −

ch(‖k‖H2 )
sh(‖k‖H2 )

))
1
4 −

‖k‖2H2

16

(
sh(‖k‖H2 )
ch(‖k‖H2 ) −

ch(‖k‖H2 )
sh(‖k‖H2 )

)2

− z

4‖k‖ch(‖k‖H2 )η

(
sh(‖k‖(z + H

2 ))1z≤0 − sh(‖k‖(z − H

2 ))1z>0

)

− (e‖k‖z − e−‖k‖z)
H2

128ch(‖k‖H2 )2η

(
ch(‖k‖H2 )
sh(‖k‖H2 ) −

‖k‖H
2

(
1− ch(‖k‖H2 )2

sh(‖k‖H2 )2

))
1
4 −

‖k‖2H2

16

(
sh(‖k‖H2 )
ch(‖k‖H2 ) −

ch(‖k‖H2 )
sh(‖k‖H2 )

)2 (6.35)

The reader interested in the physical aspects of the problem may skip the mathematical proof of
the theorem. In what follows, 1z>0 corresponds to the usual Heaviside function.

Proof. Step 1 :

Soit h =

h1
h2
h3

 such as :

h(x, y, z) = η∆u(x, y, z)−5p(x, y, z) + δ(x, y, z)F (6.36)

Going to the Fourier transform in dimension two, we have for k ∈ R2 :

ĥ1(k)(z) =
∫
R2
h1(x, y, z)e−ik.(x,y)dxdy (6.37)

=
∫
R2

(
η∆u1(x, y, z)− ∂

∂x
p(x, y, z) + δ(x, y, z)F1

)
e−ik.(x,y)dxdy (6.38)

=
∫
R2

(
η

(
∂2

∂z2u1(x, y, z)− u1(x, y, z)(k2
1 + k2

2)
)
− ik1p(x, y, z) + δ(x, y, z)F1

)
e−ik.(x,y)dxdy

(6.39)

= η
(
û1(k)′′(z)− ‖k‖2û1(k)(z)

)
− ik1p̂(k)(z) + δ̂(k)(z)F1 (6.40)

where we integrated by part for the third equality and used the condition (6.21), and with :

δ̂(k)(z) = δ(z). (6.41)

Likewise :

ĥ2(k)(z) = η
(
û2(k)′′(z)− ‖k‖2û2(k)(z)

)
− ik2p̂(k)(z) + δ(z)F2. (6.42)

And to finish :

ĥ3(k)(z) = η
(
û3(k)′′(z)− ‖k‖2û3(k)(z)

)
− p̂(k)′(z) + δ(z)F3. (6.43)
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We inject (6.40), (6.42) and (6.43) into the first equation of (6.19), which gives us the following
system of equations : η

(
û1(k)′′(z)− ‖k‖2û1(k)(z)

)
= ik1p̂(k)(z)− δ(z)F1

η
(
û2(k)′′(z)− ‖k‖2û2(k)(z)

)
= ik2p̂(k)(z)− δ(z)F2

η
(
û3(k)′′(z)− ‖k‖2û3(k)(z)

)
= p̂(k)′(z)− δ(z)F3

(6.44)

On the other hand, the second equation of (6.19) translates as equality ∀z ∈ [−H2 , H2 ] :

ik1û1(k)(z) + ik2û2(k)(z) + û3(k)′(z) = 0. (6.45)

Step 2 :

We take the divergence of the first equation of (6.19) and we get :

∇.(η∆u) = ∇. (5p− δF) (6.46)

= ∆p− F.∇ (δ) . (6.47)

And then we have the equation :

∆p = F.5 δ (6.48)

(since ∇.u = 0.)

As a result :

p̂(k)′′(z)− ‖k‖2p̂(k)(z) = i (k1F1 + k2F2) δ̂(k)(z) + F3δ
′(z). (6.49)

The idea will next be to solve the equation for p̂(k) then to inject the solution obtained into the
equation for ûi(k) (i = 1, 2, 3) and next to calculate the solution of the equation obtained then.

Step 3 :

Here we will give a brief review of the computation of derivatives of distributions [30], and then
deduce a succession of lemmas on various ODE solutions that we will need later on.

Let f piecewise C1 in [a, b], and which admits, at any point where it is not continuous, a right
and a left limit.
There is thus a subdivision a = a0 < a1 < ... < ai < ... < b = an+1 such that for i = 0, ..., n the
restriction of f on the interval ]ai, ai+1[ can be extended into a class function C1 on [ai, ai+1].
We note f(a+

i ) and f(a−i ) the respective limits on the right and on the left at the point ai. Let
Tf be the distribution associated with f . We can calculate its derivative, which we note (Tf )′.

.
We remember the jump formula :

Theorem 8. The distribution (Tf )′ is given, starting from Tf ′ and jumping f in each ai, by :

(Tf )′ = Tf ′ +
n+1∑
i=0

(f(a+
i )− f(a−i ))δai. (6.50)
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This result extends to the successive derivatives in the case where f is piecewise CN on [a, b],
such as notably for the second derivative, considering the jumps of f and those of its derivative :

(Tf )′′ = Tf ′′ +
n+1∑
i=0

(f(a+
i )− f(a−i ))δ

′

ai +
n+1∑
i=0

(f
′
(a+
i )− f

′
(a−i ))δai. (6.51)

.
Beforehand we have the following lemma :

Lemma 10. Let be the following differential equation :

y′′(t)−Ay(t) = g(t) (6.52)

with A > 0 and g is a function. The solution is of the form :

y(t) = yP (t) + yH(t) (6.53)

where yP is a particular solution and yH is the solution of the homogeneous equation associated
with it :

yH(t) = αe
√
At + βe−

√
At (6.54)

with α, β ∈ C.

The first 5 following lemmas will be established for equations in the form of lemma 10.

Lemma 11. Let the following differential equation on [−H2 , H2 ] :

y′′(t)−Ay(t) = Be
√
At +B′e−

√
At + Ct+D (6.55)

with A > 0, B,B′, C,D ∈ C. The solution is in the form :

y(t) = yP (t) + yH(t) (6.56)

where yH is defined in lemma 10 and yP is a particular solution :

yP (t) = t

2
√
A

(
Be
√
At −B′e−

√
At
)
− 1
A

(Ct+D) (6.57)

with α, β ∈ C.

We remind that :

ch(
√
At) = e

√
At + e−

√
At

2 , sh(
√
At) = e

√
At − e−

√
At

2 . (6.58)

Lemma 12. Let the following differential equation on [−H2 , H2 ] :

y′′(t)−Ay(t) = Bδ(t) (6.59)

with A > 0, B ∈ C. The solution is in the form :

y(t) = yP (t) + yH(t) (6.60)

where yH is defined in lemma 10 and yP is a particular solution :
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Two choices of particular solutions yP,1 and yP,2 are :

yP,1(t) =
−Bsh(

√
A(t+ H

2 ))
2
√
Ach(

√
AH

2 )
1t≤0 +

Bsh(
√
A(t− H

2 ))
2
√
Ach(

√
AH

2 )
1t>0 (6.61)

yP,2(t) = −B
2
√
Ash(

√
AH

2 )

(
ch(
√
A(t+ H

2 ))1t≤0 + ch(
√
A(t− H

2 ))1t>0

)
(6.62)

(N.B. : yP,1 can be cancelled in ±H2 )

Proof. The homogeneous solution is shown in a classical way. Let us determine a particular
solution of (6.59). Let us look for a solution of the form :

y(t) =
(
α−ch(

√
A(t+ H

2 )) + β−sh(
√
A(t+ H

2 ))
)

1t≤0 +
(
α+ch(

√
A(t− H

2 )) + β+sh(
√
A(t− H

2 ))
)

1t>0.

(6.63)

We determine the second derivative of y with theorem 8 and we find :

y′′(t) = A

(
α−ch(

√
A(t+ H

2 )) + β−sh(
√
A(t+ H

2 ))
)

1t≤0

+A

(
α+ch(

√
A(t− H

2 )) + β+sh(
√
A(t− H

2 ))
)

1t>0

+
(

(α+ − α−)ch(
√
A(H2 )) + (−β+ − β−)sh(

√
A(H2 ))

)
δ′(t)

+
√
A

(
(−α+ − α−)sh(

√
A(H2 )) + (β+ − β+)ch(

√
A(H2 ))

)
δ(t) (6.64)

Case 1 : We take α− = α+ = 0 and we obtain by identification in the equation (6.59) :{ √
A(β+ − β−)ch(

√
A(H2 )) = B

(−β+ − β−)sh(
√
A(H2 )) = 0 (6.65)

what gives us (6.61).

Case 2 : We find (6.62) in a similar way, taking β− = β+ = 0.

Lemma 13. Let the following differential equation on [−H2 , H2 ] :

y′′(t)−Ay(t) = Bδ′(t) (6.66)

with A > 0, B ∈ C. A family of solutions is of the form :

y(t) = yP (t) + yH(t) (6.67)

where yH is defined in lemma 10 and yP is a particular solution :

yP (t) =
−Bsh(

√
A(t+ H

2 ))
2sh(
√
AH

2 )
1t≤0 −

Bsh(
√
A(t− H

2 ))
2sh(
√
AH

2 )
1t>0. (6.68)



112 6. Study of the diffusion constant in confined conditions

Lemma 14. Let the following differential equation on [−H2 , H2 ] :

y′′(t)−Ay(t) = Bsh(
√
A(t+ H

2 ))1t≤0 +B′sh(
√
A(t− H

2 ))1t>0 (6.69)

with A > 0, B,B′ ∈ C. The solution is in the form :

y(t) = yP (t) + yH(t) (6.70)

where yH is defined in lemma 10 and yP is a particular solution 2 :

yP (t) =
B
(
t+ H

2
)

ch(
√
A(t+ H

2 ))
2
√
A

1t≤0 +
B′
(
t− H

2
)

ch(
√
A(t− H

2 ))
2
√
A

1t>0

− (B +B′)
Hch

(√
AH

2

)
8
√
Ash

(√
AH

2

) (sh(
√
A(t+ H

2 ))1t≤0 + sh(
√
A(t− H

2 ))1t>0

)

+ (B′ −B) 1
4A

(
sh(
√
A(t+ H

2 ))1t≤0 − sh(
√
A(t− H

2 ))1t>0

)
+ (B′ −B) H

8
√
A

(
ch(
√
A(t+ H

2 ))1t≤0 + ch(
√
A(t− H

2 ))1t>0

)
. (6.71)

Lemma 15. Let the following differential equation on [−H2 , H2 ] :

y′′(t)−Ay(t) = Bch(
√
A(t+ H

2 ))1t≤0 +B′ch(
√
A(t− H

2 ))1t>0 (6.72)

with A > 0, B,B′ ∈ C. A family of solutions is of the form :

y(t) = yP (t) + yH(t) (6.73)

where yH is defined in lemma 10 and yP is a particular solution :

yP (t) =
B
(
t+ H

2
)

sh(
√
A(t+ H

2 ))
2
√
A

1t≤0 +
B′
(
t− H

2
)

sh(
√
A(t− H

2 ))
2
√
A

1t>0

+ (B′ −B) H

8
√
A

(
sh(
√
A(t+ H

2 ))1t≤0 + sh(
√
A(t− H

2 ))1t>0

)

− (B +B′)

 1
4A +

Hch
(√

AH
2

)
4
√
Ash

(√
AH

2

)
(ch(

√
A(t+ H

2 ))1t≤0 + ch(
√
A(t− H

2 ))1t>0

)
.

(6.74)

Finally, the following lemma is established :

Lemma 16. Let the following differential equation on [−H2 , H2 ] :

y′′(t) = A+Bδ(t) + Cδ′(t) (6.75)

with A,B,C ∈ C. The solution is in the form :

y(t) = A

2 t
2 + αt+ β + (Bt+ C)1t>0. (6.76)

2. To come to this solution, one would be tempted at first to choose to keep only the first two terms. However,
care must be taken to take into account the distribution derivative as seen in theorem 8 and the following remark
for the second derivative. This remark and the lemmas 12 and 13 can be used to establish the given solution.
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Step 4 :
Here we will use the solutions of the equations defined in step 3 first to solve the equation (6.49)
and then for (6.44).

We set beforehand :

A = F3

2sh(‖k‖H2 )
, B = k∗.F

2‖k‖ch(‖k‖H2 )
(6.77)

where k∗ =
(

k
0

)
. We then find for (6.49) using lemmas 12 and 13 :

p̂(k)(z) = αe‖k‖z + βe−‖k‖z + (−A− iB)sh(‖k‖(z + H

2 ))1z≤0 + (−A+ iB)sh(‖k‖(z − H

2 ))1z>0.

(6.78)

So that :

p̂(k)′(z) = ‖k‖
(

(−A− iB)ch(‖k‖(z + H

2 ))1z≤0 + (−A+ iB)ch(‖k‖(z − H

2 ))1z>0

)
+ ‖k‖

(
αe‖k‖t − βe−‖k‖t

)
+ 2Ash(‖k‖H2 )δ(z). (6.79)

What gives us for (6.44) using the lemmas 12, 13, 14, and 15 :

û1(k)(z) = α1e
‖k‖z + β1e

−‖k‖z − ik1
η

A
2‖k‖

((
z + H

2
)

ch(‖k‖(z + H
2 ))1z≤0 +

(
z − H

2
)

ch(‖k‖(z − H
2 ))1z>0

)
+k1

η
Bz

2‖k‖
(
ch(‖k‖(z + H

2 ))1z≤0 − ch(‖k‖(z − H
2 ))1z>0

)
− k1B

2‖k‖2η
(
sh(‖k‖(z + H

2 ))1z≤0 − sh(‖k‖(z − H
2 ))1z>0

)
+
(

F1
2‖k‖ch(‖k‖H2 )η + ik1AHch(‖k‖H2 )

4‖k‖sh(‖k‖H2 )η

)
sh(‖k‖(z + H

2 ))1z≤0

+
(

−F1
2‖k‖ch(‖k‖H2 )η + ik1AHch(‖k‖H2 )

4‖k‖sh(‖k‖H2 )η

)
sh(‖k‖(z − H

2 ))1z>0)
+ ik1z

2‖k‖η
(
αe‖k‖z − βe−‖k‖z

)
û2(k)(z) = α2e

‖k‖z + β2e
−‖k‖z − ik2

η
A

2‖k‖
((
z + H

2
)

ch(‖k‖(z + H
2 ))1z≤0 +

(
z − H

2
)

ch(‖k‖(z − H
2 ))1z>0

)
+k2

η
Bz

2‖k‖
(
ch(‖k‖(z + H

2 ))1z≤0 − ch(‖k‖(z − H
2 ))1z>0

)
− k2B

2‖k‖2η
(
sh(‖k‖(z + H

2 ))1z≤0 − sh(‖k‖(z − H
2 ))1z>0

)
+
(

F2
2‖k‖ch(‖k‖H2 )η + ik2AHch(‖k‖H2 )

4‖k‖sh(‖k‖H2 )η

)
sh(‖k‖(z + H

2 ))1z≤0

+
(

−F2
2‖k‖ch(‖k‖H2 )η + ik2AHch(‖k‖H2 )

4‖k‖sh(‖k‖H2 )η

)
sh(‖k‖(z − H

2 ))1z>0)
+ ik2z

2‖k‖η
(
αe‖k‖z − βe−‖k‖z

)
û3(k)(z) = α3e

‖k‖z + β3e
−‖k‖z − A

2η
((
z + H

2
)

sh(‖k‖(z + H
2 ))1t≤0 +

(
z − H

2
)

sh(‖k‖(z − H
2 ))1z>0

)
− iBz2η

(
sh(‖k‖(z + H

2 ))1z≤0 − sh(‖k‖(z − H
2 ))1z>0

)
+ A

2‖k‖sh(‖k‖H2 )η

(
sh(‖k‖H2 ) + H‖k‖ch(‖k‖H2 )

2

) (
ch(‖k‖(z + H

2 ))1z≤0 + ch(‖k‖(z − H
2 ))1z>0

)
+ z

2η
(
αe‖k‖z + βe−‖k‖z

)
(6.80)

Step 5 :

Here we will use the conditions (6.20) over the ”upper” and ”lower” walls (i.e. level line respecti-
vely z = H

2 et z = −H
2 ).
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We deduce from (6.20) :

û(k)
(
±H2

)
= (0, 0, 0). (6.81)

We then obtain after resolution of the systems : α1 = BHk1
8‖k‖ch(‖k‖H2 )η −

ik1H
8‖k‖η

(
(α+ β) sh(‖k‖H2 )

ch(‖k‖H2 ) + (α− β) ch(‖k‖H2 )
sh(‖k‖H2 )

)
β1 = BHk1

8‖k‖ch(‖k‖H2 )η −
ik1H
8‖k‖η

(
(α+ β) sh(‖k‖H2 )

ch(‖k‖H2 ) − (α− β) ch(‖k‖H2 )
sh(‖k‖H2 )

) (6.82)

Then :  α2 = BHk2
8‖k‖ch(‖k‖H2 )η −

ik2H
8‖k‖η

(
(α+ β) sh(‖k‖H2 )

ch(‖k‖H2 ) + (α− β) ch(‖k‖H2 )
sh(‖k‖H2 )

)
β2 = BHk2

8‖k‖ch(‖k‖H2 )η −
ik2H
8‖k‖η

(
(α+ β) sh(‖k‖H2 )

ch(‖k‖H2 ) − (α− β) ch(‖k‖H2 )
sh(‖k‖H2 )

) (6.83)

And to finish : 

α3 = −A
4‖k‖sh(‖k‖H2 )ch(‖k‖H2 )η

(
sh(‖k‖H2 ) + H‖k‖ch(‖k‖H2 )

2

)
−H

8η

((
sh(‖k‖H2 )
ch(‖k‖H2 )

)
(α− β) +

(
ch(‖k‖H2 )
sh(‖k‖H2 )

)
(α+ β)

)
β3 = −A

4‖k‖sh(‖k‖H2 )ch(‖k‖H2 )η

(
sh(‖k‖H2 ) + H‖k‖ch(‖k‖H2 )

2

)
−H

8η

((
sh(‖k‖H2 )
ch(‖k‖H2 )

)
(α− β)−

(
ch(‖k‖H2 )
sh(‖k‖H2 )

)
(α+ β)

) (6.84)

Step 6 :

Let us start again (6.45) and we then seek to identify α = α(k) and β = β(k) such that this
identity is verified. We obtain, after simplifications :

ik1

(
α1e
‖k‖z + β1e

−‖k‖z
)

+ ik2

(
α2e
‖k‖z + β2e

−‖k‖z
)

+ ‖k‖
(
α3e
‖k‖z − β3e

−‖k‖z
)

+ 1
2η

(
αe‖k‖z + βe−‖k‖z

)
= 0.

(6.85)

We deduce from (6.85)(this identity being true for any z ∈ [−H2 , H2 ]) a system by identifying the

parts in e‖k‖z and in e−‖k‖z. We then find, by posing c = ch(‖k‖H2 ) and s = sh(‖k‖H2 ) :
α =

−A
8sc

(
s+H‖k‖c

2

)
− iH‖k‖B

16c +
(
−A
4sc

(
s+H‖k‖c

2

)
+ iH‖k‖B

8c

)
‖k‖H

4 ( sc− cs )
1
4−
‖k‖2H2

16 ( sc− cs )2

β =
A

8sc

(
s+H‖k‖c

2

)
− iH‖k‖B

16c −
(
−A
4sc

(
s+H‖k‖c

2

)
− iH‖k‖B

8c

)
‖k‖H

4 ( sc− cs )
1
4−
‖k‖2H2

16 ( sc− cs )2

(6.86)

Step 7 :

Using (6.80),(6.82),(6.83),(6.84) and (6.86) gives the result.

Here we wish to evaluate the diffusion constant D in the case of the problem in section 3. We
will then be able to compare our result with the one obtained in [155].
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Theorem 9. We have for large H :

D = D0 + kBT

3 lim
‖(x,y)‖→0

Tr

(
1

2π‖(x, y)‖η −
H2(2H2 − ‖(x, y)‖2)

4πH5
(
‖(x,y)‖2
H2 + 1

)5/2
η

+ H2(8H2 − ‖(x, y)‖2)

64πH5
(
‖(x,y)‖2

4H2 + 1
)5/2 −

1
2πη‖(x, y)‖ + o

(
1
H

))
(6.87)

= D0 −
3kBT

16πHη + o

(
1
H

)
. (6.88)

Proof. To begin we have :

Tr(TOseen(x, y, z)) = 1
2πη‖(x, y, z)‖ . (6.89)

On the other hand, by taking z = 0 we have :

Tr(T1(x, y, 0)) =
∫
dk

(
sh(‖k‖H2 )

‖k‖ch(‖k‖H2 )η
− H

8η +
ch(‖k‖H2 )

4‖k‖sh(‖k‖H2 )η
+
Hch(‖k‖H2 )2

8sh(‖k‖H2 )2η

−

(
sh(‖k‖H2 ) +

H‖k‖ch(‖k‖H2 )
2

)(
1

4‖k‖sh(‖k‖H2 )2ch(‖k‖H2 )η

+
H

32sh(‖k‖H2 )ch(‖k‖H2 )2η

(
1 + H‖k‖

2

(
sh(‖k‖H2 )
ch(‖k‖H2 ) −

ch(‖k‖H2 )
sh(‖k‖H2 )

))
1
4 −

‖k‖2H2

16

(
sh(‖k‖H2 )
ch(‖k‖H2 ) −

ch(‖k‖H2 )
sh(‖k‖H2 )

)2

)

+ H

8ch(‖k‖H2 )2η
−
(‖k‖sh(‖k‖H2 )

ch(‖k‖H2 )
− H‖k‖2

2

(
sh(‖k‖H2 )2

ch(‖k‖H2 )2 − 1
))

 H2

64ch(‖k‖H2 )2η

1
4 −

‖k‖2H2

16

(
sh(‖k‖H2 )
ch(‖k‖H2 ) −

ch(‖k‖H2 )
sh(‖k‖H2 )

)2

− sh(‖k‖H2 )
4‖k‖ch(‖k‖H2 )η

)
eik.(x,y)

(6.90)

=
∫
dkC(k, H)eik.(x,y).

Let us analyze more precisely the term C(k, H).

Terms in 1
‖k‖ :

Note that :

ch(‖k‖H2 )
4‖k‖sh(‖k‖H2 )η

− 1
4‖k‖sh(‖k‖H2 )ch(‖k‖H2 )η

=
ch(‖k‖H2 )2 − 1

4‖k‖sh(‖k‖H2 )ch(‖k‖H2 )η

=
sh(‖k‖H2 )2

4‖k‖sh(‖k‖H2 )ch(‖k‖H2 )η

=
sh(‖k‖H2 )

4‖k‖ch(‖k‖H2 )η
. (6.91)
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So we have :

sh(‖k‖H2 )
‖k‖ch(‖k‖H2 )η

+
ch(‖k‖H2 )

4‖k‖sh(‖k‖H2 )η
− 1

4‖k‖sh(‖k‖H2 )ch(‖k‖H2 )η

−
sh(‖k‖H2 )

4‖k‖ch(‖k‖H2 )η
=

sh(‖k‖H2 )
‖k‖ch(‖k‖H2 )η

. (6.92)

We have :

sh(‖k‖H2 )
ch(‖k‖H2 )

− 1 =
sh(‖k‖H2 )− ch(‖k‖H2 )

ch(‖k‖H2 )
= −2
e‖k‖H + 1

. (6.93)

And so, for large H, we have :

sh(‖k‖H2 )
ch(‖k‖H2 )

= 1 + o

(
1
H

)
. (6.94)

Finally, we have : ∫ 1
‖k‖

eik.(x,y)dk = 1
2π‖(x, y)‖ . (6.95)

Terms in ”H8 ” :

We have :

Hch(‖k‖H2 )2

8sh(‖k‖H2 )2η
− H

8η =
H(ch(‖k‖H2 )2 − sh(‖k‖H2 )2)

8sh(‖k‖H2 )2η
= H

8sh(‖k‖H2 )2η
. (6.96)

So that :

Hch(‖k‖H2 )2

8sh(‖k‖H2 )2η
− H

8η −
H

8sh(‖k‖H2 )2η
= 0. (6.97)

Other terms :

First of all, let us note that :

sh(‖k‖H2 )
ch(‖k‖H2 )

−
ch(‖k‖H2 )
sh(‖k‖H2 )

=
sh(‖k‖H2 )2 − ch(‖k‖H2 )2

ch(‖k‖H2 )sh(‖k‖H2 )
= −1

ch(‖k‖H2 )sh(‖k‖H2 )
= −2

sh(‖k‖H) .

(6.98)

Thus, for large H we have :

1 + H‖k‖
2

(
sh(‖k‖H2 )
ch(‖k‖H2 )

−
ch(‖k‖H2 )
sh(‖k‖H2 )

)
= 1 + o

(
1
H

)
(6.99)

1
4 −
‖k‖2H2

16

(
sh(‖k‖H2 )
ch(‖k‖H2 )

−
ch(‖k‖H2 )
sh(‖k‖H2 )

)2

= 1
4 + o

(
1
H

)
. (6.100)
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On the other hand, we note that for large H we have ∀k 6= (0, 0) :

ch

(
‖k‖H2

)
= e‖k‖

H
2

2 + 1

2 e
‖k‖H2

2

= e‖k‖
H
2

2 + o(e‖k‖H2 ) (6.101)

sh

(
‖k‖H2

)
= e‖k‖

H
2

2 − 1

2 e
‖k‖H2

2

= e‖k‖
H
2

2 + o(e‖k‖H2 ). (6.102)

Therefore, for large H, there are terms such as :∫
H2‖k‖C
e‖k‖H

eik.(x,y)dk = CH2(2H2 − ‖(x, y)‖2)

2πH5
(
‖(x,y)‖2
H2 + 1

)5/2 (6.103)

∫
H2‖k‖C
e‖k‖2H

eik.(x,y)dk = CH2(8H2 − ‖(x, y)‖2)

64πH5
(
‖(x,y)‖2

4H2 + 1
)5/2 . (6.104)

Back to the calculation of D :

Using the ansatz (see paragraph 6.2), we have for z = 0 and large H :

D = D0 + kBT

3 lim
‖(x,y)‖→0

Tr

(
1

2π‖(x, y)‖η −
H2(2H2 − ‖(x, y)‖2)

4πH5
(
‖(x,y)‖2
H2 + 1

)5/2
η

− H2(8H2 − ‖(x, y)‖2)

128πH5
(
‖(x,y)‖2

4H2 + 1
)5/2 −

1
2πη‖(x, y)‖ + o

(
1
H

))
(6.105)

= D0 −
3kBT

16πHη + o

(
1
H

)
. (6.106)

To place ourselves in our case for the diffusion constant calculated in the paper [155], we take
δ → 0 and z = H

2 and we obtain for large H :

D = kBT

6πηa
1

2
1− 9a

8H
− 1

= kBT

6πηa
1− 9a

8H
1 + 9a

8H
= D0 −

3kT
16πηH + o

(
1
H

)
(6.107)

which is in line with our result 3.

We observe that the expansion of the diffusion constant D, constant obtained by the method
of the paper [155] or by our method, tends towards the diffusion constant D0 when H tends
towards infinity. This is interpreted by the fact that the farthest the walls are from the particle,
the less influence they have, i.e. the closer we get to the configuration of the Stokes problem for
an unconfined sphere (cf 6.3).

3. Pay attention that the expansion is in a/H, but because the first term of expansion is proportional to 1/a,

”a” does not appear in o
(

1
H

)
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On the below graph (figure 32), we can observe the behavior of D0 − 3kT
16πηH , i.e. the diffusion

constant D that we have developed in (6.106), with respect to D0, according to the H/a ratio,
i.e. the distance between the two walls and the radius of the sphere that represents the particle.
It is noted that this ratio evolves while increasing, the greater the ratio H/a is large, i.e. the
greater the distance between the two walls in relation to the radius of the sphere, and it tends
towards 1 at great distance. That is to say that when the walls are quite far enough, for the same
a radius, the sphere tends to act ”as if” it was not confined between two walls. A suggestion of
interpretation of this result is that the proximity of the particle to the walls influences the friction
of the particle, which interferes with diffusion ; therefore, if the sphere is strongly confined, it
rubs more, which slows it down. Its diffusion is then less.

Figure 32 – Curve representing the ratio
(D0− 3kT

16πηH )
D0

as a function of the ratio of the distance
between the two walls and the size of the particle

6.4 Study in the case with periodic boundary conditions

Let us consider the following problem on Ω : find u, p, periodicals in x and y, of period L, which
verify (6.19) with the condition at the edges of the walls (6.20).

Theorem 10. Under the conditions of the problem, we have u of the form :

u(x, y, z) = T2(x, y, z).F

= 1
L2A1(0, 0)(z)

1 0 0
0 1 0
0 0 0

 .F + 1
L2

∑
k6=0

((
A2(k)(z)

1 0 0
0 1 0
0 0 0

+A3(k)(z)

0 0 0
0 0 0
0 0 1


+A4(k)(z)k∗ ⊗ k∗

)
+ i

(
A5(k)(z)

0 0 k1
0 0 k2
0 0 0

+A6(k)(z)

 0 0 0
0 0 0
k1 k2 0

))eik.(x,y).F

(6.108)
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where k = 2π(m1
L ,

m2
L ) with (m1,m2) ∈ Z2, and where, for k = (k1, k2) we have k∗ = (k1, k2, 0)

and k∗ ⊗ k∗ =

 k⊗ k

(
0
0

)
(
0 0

)
0

, and with

A1(0, 0)(z) =
(

1
2η z −

z

η
1z≥0 + H

4η

)
(6.109)

where the Ai (i = 2, ..., 7) are given in theorem 7.

Here, we observe that the symmetry of the problem is ensured (with respect to the z = 0 axis).
On the other hand, we can note that (we only look at the case where z < 0, given the symmetry)
if we take the term A2 and we make expansions in order 1 for small ‖k‖ in its terms, we get :

lim
‖k‖→0

ch(‖k‖H2 ) = 1 (6.110)

sh(‖k‖(z + H

2 )) = ‖k‖(z + H

2 ) + o(‖k‖2). (6.111)

So that for small ‖k‖ :

A2(k)(z) = −z2η + H

4η + o(‖k‖2). (6.112)

We then find A1(0, 0)(z) !

Again, the reader interested in the physical aspect of the problem, not the mathematical one,
may skip the following proof.

Proof. To begin with, since u, p and δ (in the distribution space) are periodic in x and y, we can
decompose them into Fourier series :

u(x, y, z) = 1
L2

∑
k

uk(z)eik.(x,y), p(x, y, z) = 1
L2

∑
k

pk(z)eik.(x,y), δ(x, y, z) = 1
L2

∑
k

δk(z)eik.(x,y)

(6.113)

with k = 2π(m1
L ,

m2
L ) où (m1,m2) ∈ Z2, and where uk(z), pk(z) and δk(z) are the kth Fourier

coefficients of u, p and δ respectively.

Step 1 :

Using the first equation of (6.19) and invoking the uniqueness of the coefficients of a Fourier
series, we obtain the following equations for k = 2π(m1

L ,
m2
L ) : η

(
(u1

k)′′(z)− u1
k(z)(k2

1 + k2
2)
)

= ik1pk(z)− δk(z)F1
η
(
(u2

k)′′(z)− u2
k(z)(k2

1 + k2
2)
)

= ik2pk(z)− δk(z)F2
η
(
(u3

k)′′(z)− u3
k(z)(k2

1 + k2
2)
)

= (pk)′(z)− δk(z)F3

(6.114)

where δk(z) = δ(z).

(For k 6= (0, 0), we find the system of equations (6.44)).
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Using the second equation of (6.19), we have ∀z ∈ [−H2 , H2 ] :

ik1u
1
k(z) + ik2u

2
k(z) + (u3

k)′(z) = 0. (6.115)

Step 2 :

We take the divergence of the first equation of (6.19) and we obtain (similar calculations to step
2 of the proof of theorem 7) :

∆p = F.∇δ (6.116)

(since 5.u = 0.)

We then obtain :

(pk)′′(z)− pk(z)(k2
1 + k2

2) = i (k1F1 + k2F2) gk(z) + F3δ
′
k(z). (6.117)

For k 6= (0, 0), we find the equation (6.49).

The idea will then be to solve the equation for pk then to inject the solution obtained into the
equation of uik (i = 1, 2, 3) then to calculate the solution of the equation then obtained.

Step 3 :

We are interested here in the case where k 6= (0, 0). We set beforehand :

A = F3

2sh(‖k‖H2 )
, B = k∗.F

2‖k‖ch(‖k‖H2 )
(6.118)

where k∗ =
(

k
0

)
. Proceeding in the same way as in step 4 of the proof of theorem 7, we find :

pk(z) = αe‖k‖z + βe−‖k‖z + (−A− iB)sh(‖k‖(z + H

2 ))1z≤0 + (−A+ iB)sh(‖k‖(z − H

2 ))1z>0.

(6.119)

And then :

p′k(z) = ‖k‖
(

(−A− iB)ch(‖k‖(z + H

2 ))1z≤0 + (−A+ iB)ch(‖k‖(z − H

2 ))1z>0

)
+ ‖k‖

(
αe‖k‖z − βe−‖k‖z

)
+ 2Ash(‖k‖H2 )δ(z). (6.120)
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Then :

u1
k(z) = α1e

‖k‖z + β1e
−‖k‖z − ik1

η
A

2‖k‖
((
t+ H

2
)

ch(‖k‖(z + H
2 ))1z≤0 +

(
z − H

2
)

ch(‖k‖(z − H
2 ))1z>0

)
+k1

η
Bz

2‖k‖
(
ch(‖k‖(z + H

2 ))1z≤0 − ch(‖k‖(z − H
2 ))1z>0

)
− k1B

2‖k‖2η
(
sh(‖k‖(z + H

2 ))1z≤0 − sh(‖k‖(z − H
2 ))1z>0

)
+
(

F1
2‖k‖ch(‖k‖H2 )η + ik1AHch(‖k‖H2 )

4‖k‖sh(‖k‖H2 )η

)
sh(‖k‖(z + H

2 ))1z≤0

+
(

−F1
2‖k‖ch(‖k‖H2 )η + ik1AHch(‖k‖H2 )

4‖k‖sh(‖k‖H2 )η

)
sh(‖k‖(z − H

2 ))1z>0)
+ ik1z

2‖k‖η
(
αe‖k‖z − βe−‖k‖z

)
u2

k(z) = α2e
‖k‖z + β2e

−‖k‖z − ik2
η

A
2‖k‖

((
z + H

2
)

ch(‖k‖(z + H
2 ))1z≤0 +

(
z − H

2
)

ch(‖k‖(z − H
2 ))1z>0

)
+k2

η
Bz

2‖k‖
(
ch(‖k‖(z + H

2 ))1z≤0 − ch(‖k‖(z − H
2 ))1z>0

)
− k2B

2‖k‖2η
(
sh(‖k‖(z + H

2 ))1z≤0 − sh(‖k‖(z − H
2 ))1z>0

)
+
(

F2
2‖k‖ch(‖k‖H2 )η + ik2AHch(‖k‖H2 )

4‖k‖sh(‖k‖H2 )η

)
sh(‖k‖(z + H

2 ))1z≤0

+
(

−F2
2‖k‖ch(‖k‖H2 )η + ik2AHch(‖k‖H2 )

4‖k‖sh(‖k‖H2 )η

)
sh(‖k‖(z − H

2 ))1z>0)
+ ik2z

2‖k‖η
(
αe‖k‖z − βe−‖k‖z

)
u3

k(z) = α3e
‖k‖z + β3e

−‖k‖z − A
2η
((
z + H

2
)

sh(‖k‖(z + H
2 ))1z≤0 +

(
z − H

2
)

sh(‖k‖(z − H
2 ))1z>0

)
− iBz2η

(
sh(‖k‖(z + H

2 ))1z≤0 − sh(‖k‖(z − H
2 ))1z>0

)
+ A

2‖k‖sh(‖k‖H2 )η

(
sh(‖k‖H2 ) + H‖k‖ch(‖k‖H2 )

2

) (
ch(‖k‖(z + H

2 ))1z≤0 + ch(‖k‖(z − H
2 ))1z>0

)
+ z

2η
(
αe‖k‖z + βe−‖k‖z

)
(6.121)

Step 4 :

The condition (6.20) gives us, by invoking the uniqueness of the coefficients of a Fourier series :

uk

(
±H2

)
= 0 (6.122)

and then the αi, βi (i = 1, 2, 3) are given in (6.82), (6.83) and (6.84).

Step 5 :

We go back to (6.115) and then α and β are given by (6.86).

Step 6 :

Steps 3, 4 and 5 are repeated here when k = (0, 0).

First of all we have :

(p(0,0))′′(z) = F3δ
′(z). (6.123)

We then find with the lemma 14 :

p(0,0)(z) = αz + β + F31z≥0 (6.124)
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with α, β ∈ C. We replace in (6.114), and then we get thanks to the lemma 10 :
u1

(0,0)(z) = −F1
η z1z≥0 + α1z + β1

u2
(0,0)(z) = −F2

η z1z≥0 + α2z + β2
u3

(0,0)(z) = α
2η z

2 + α3z + β3

(6.125)

Using the conditions (6.122), we have :{
α1 = F1

4η
β1 = F1H

4η

{
α2 = F2

4η
β2 = F2H

4η

{
α3 = 0
β3 = −αH2

8η
(6.126)

We now use the equation (6.115) and we get for z ∈ [−H2 , H2 ] :

0 = (u3
k)′(z) = α

η
z. (6.127)

And then :

α = 0. (6.128)

And since the pressure is defined to one constant, we can take β = 0.

Step 8 :

Using (6.82),(6.83),(6.84),(6.86),(6.121),(6.126) and (6.128), we have the final result.

Let Dper be the diffusion coefficient in the case of a particle confined between two walls and
when considering periodic boundary conditions. We try to calculate :

Dper = D0 + kBT

3 lim
‖(x,y,z)‖→0

Tr(T2(x, y, z)− TOseen(x, y, z)). (6.129)

We set :

C1 =
∑

n6=(0,0)

∫
R2
e−‖(l,m)‖2

(
1
‖n‖
− 1
‖ − (l,m) + n‖

)
dldm. (6.130)

In order to verify the convergence of the series in (6.130), in what follows, we are interested in

the behavior of
∫
R2 e
−‖(l,m)‖2

(
1
‖n‖ −

1
‖−(l,m)+n‖

)
dldm when ‖n‖ is large. We have the following

lemma :

Lemma 17. When ‖n‖ is large :∫
R2
e−‖(l,m)‖2

(
1
‖n‖
− 1
‖ − (l,m) + n‖

)
dldm ∼ Cst

‖n‖3
(6.131)

which is a term associated with a convergent series, where :

Cst =
∫ ∞

0

∫ 2π

0
e−s

2
s3(1 + 4 cos(φ− θ)2)dsdφ (6.132)

is a constant which is independant of r.
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Proof. In polar coordinates, we have :

n = reiθ (6.133)

(l,m) = seiφ (6.134)

where r, s and θ, φ are respectively the module and the argument of n and (l,m). So that we get :

1
‖n‖

= 1
r

(6.135)

1
‖ − (l,m) + n‖

= 1
reiθ − seiφ

= 1
r‖1− s

r e
φ−θ‖

. (6.136)

We have :

‖1− s

r
eφ−θ‖ =

(
1− s

r
cos(φ− θ)

)2
+
(s
r

sin(φ− θ)
)2

= 1− 2s
r

cos(φ− θ) +
(s
r

)2
. (6.137)

Since ‖n‖ is large, r is large, so that s
r is small. We then have :

1
1− 2s

r cos(φ− θ) +
(
s
r

)2 = 1 + 2s
r

cos(φ− θ)−
(s
r

)2
(1 + 4 cos(φ− θ)2) + o

((s
r

)2
)
. (6.138)

So that we have :

1
‖n‖
− 1
‖ − (l,m) + n‖

= 1
r
− 1
r

(
1 + 2s

r
cos(φ− θ)−

(s
r

)2
(1 + 4 cos(φ− θ)2) + o

((s
r

)2
))

(6.139)

=
(
−2s
r2 cos(φ− θ) +

(
s2

r3

)
(1 + 4 cos(φ− θ)2) + o

(
s2

r3

))
(6.140)

and then :∫
R2
e−‖(l,m)‖2

(
1
‖n‖
− 1
‖ − (l,m) + n‖

)
dldm

=
∫ ∞

0

∫ 2π

0
e−s

2
(
−2s
r2 cos(φ− θ) +

(
s2

r3

)
(1 + 4 cos(φ− θ)2) + o

(
s2

r3

))
sdsdφ. (6.141)

The integrale of the first term is null by periodicity of the cosinus function. For the second term
we have : ∫ ∞

0

∫ 2π

0
e−s

2
(
s3

r3

)
(1 + 4 cos(φ− θ)2)dsdφ = Cst

r3 (6.142)

where Cst is a constant which is independant of r.

Theorem 11. For h = πH
L , we have :

Dper = D0 + kBT

3

(
H

8L2η
+ 1

2π2Lη
C1 + 1

η2πL
∑

(m1,m2)6=0

1
‖(m1,m2)‖e

−π2‖(m1,m2)‖2 − 1
2π1/2Lη

+ 1
8π2Hη

∑
(m1,m2)6=0

f(‖(m1,m2)‖h)h2
)

(6.143)
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where

f : x 7→ − (sh(x) + xch(x))
ch(x)

(
1

sh(x)ch(x) + x

)
+ 1

ch(x)2η

−
(
xsh(x)
ch(x) + x2

ch(x)2

)(
sh(x)2

sh(x)2ch(x)2 − x2

)
. (6.144)

Proof. Let us take z = 0 and look at Tr(T2(x, y, 0)). We have :

Tr(T2(x, y, 0)) = H

8L2η
+ 1
L2

∑
k6=0

(
sh(‖k‖H2 )

‖k‖ch(‖k‖H2 )η
− H

8η +
ch(‖k‖H2 )

4‖k‖sh(‖k‖H2 )η
+
Hch(‖k‖H2 )2

8sh(‖k‖H2 )2η

−

(
sh(‖k‖H2 ) +

H‖k‖ch(‖k‖H2 )
2

)(
1

4‖k‖sh(‖k‖H2 )2ch(‖k‖H2 )η

+
H

32sh(‖k‖H2 )ch(‖k‖H2 )2η

(
1 + H‖k‖

2

(
sh(‖k‖H2 )
ch(‖k‖H2 ) −

ch(‖k‖H2 )
sh(‖k‖H2 )

))
1
4 −

‖k‖2H2

16

(
sh(‖k‖H2 )
ch(‖k‖H2 ) −

ch(‖k‖H2 )
sh(‖k‖H2 )

)2

)

+ H

8ch(‖k‖H2 )2η
−
(‖k‖sh(‖k‖H2 )

ch(‖k‖H2 )
− H‖k‖2

2

(
sh(‖k‖H2 )2

ch(‖k‖H2 )2 − 1
))

 H2

64ch(‖k‖H2 )2η

1
4 −

‖k‖2H2

16

(
sh(‖k‖H2 )
ch(‖k‖H2 ) −

ch(‖k‖H2 )
sh(‖k‖H2 )

)2

− sh(‖k‖H2 )
4‖k‖ch(‖k‖H2 )η

)
eik.(x,y)

(6.145)

= H

8L2η
+ 1
L2

∑
k6=0

(
sh(‖k‖H2 )

‖k‖ch(‖k‖H2 )η
−

(
sh(‖k‖H2 ) +

H‖k‖ch(‖k‖H2 )
2

)
( H

32sh(‖k‖H2 )ch(‖k‖H2 )2η

(
1 + H‖k‖

2

(
sh(‖k‖H2 )
ch(‖k‖H2 ) −

ch(‖k‖H2 )
sh(‖k‖H2 )

))
1
4 −

‖k‖2H2

16

(
sh(‖k‖H2 )
ch(‖k‖H2 ) −

ch(‖k‖H2 )
sh(‖k‖H2 )

)2

)

+ H

8ch(‖k‖H2 )2η
−
(‖k‖sh(‖k‖H2 )

ch(‖k‖H2 )
− H‖k‖2

2

(
sh(‖k‖H2 )2

ch(‖k‖H2 )2 − 1
))

 H2

64ch(‖k‖H2 )2η

1
4 −

‖k‖2H2

16

(
sh(‖k‖H2 )
ch(‖k‖H2 ) −

ch(‖k‖H2 )
sh(‖k‖H2 )

)2

)eik.(x,y) (6.146)

where the second equality derives from the remarks in the proof of theorem 9.

With (6.93), we have :

sh(‖k‖H2 )
‖k‖ch(‖k‖H2 )

− 1
‖k‖

=
sh(‖k‖H2 )− ch(‖k‖H2 )
‖k‖ch(‖k‖H2 )

= −2(
e‖k‖H + 1

)
‖k‖

. (6.147)

So that :

sh(‖k‖H2 )
‖k‖ch(‖k‖H2 )

= 1
‖k‖
− 2(

e‖k‖H + 1
)
‖k‖

. (6.148)
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The double series in (6.146) then converges absolutely for all terms, except the term in 1
‖k‖ which

remains in (6.148).
In order to calculate 1

ηL2

∑
k6=0

1
‖k‖e

ik.(x,y), in what follows, we will apply an Ewald-type method,

adapted to the double (and not triple) sum.

If we go back to Ewald’s method (see Chapter 3, section 3.3.3), the physical idea here is to com-
pensate the load points by a two-dimensional Gaussian. Let the Gaussian function g : (x, y) 7→
α2

π e
−α2‖(x,y)‖2 , where α ∈ R.

We know that the Fourier transform of a Gaussian X = (X1, X2) ∼ N(O, 1
2α2 I2) corresponds to

its characteristic function E
(
eiXk

)
, from where we get : ĝ(k) = e−

k2
4α2 .

We have :

1
L2

∑
k6=0

1
‖k‖η

eik.(x,y) = 1
ηL2

∑
k6=0

1
‖k‖

(
1− e−

‖k‖2

4α2

)
eik.(x,y) + 1

ηL2

∑
k6=0

1
‖k‖

e−
‖k‖2

4α2 eik.(x,y). (6.149)

For the first sum, we wish to use the formula of Poisson. We consider ĥ : (k1, k2) 7→ 1
‖k‖

(
1− e−

‖k‖2

4α2

)
for (k1, k2) 6= (0, 0). Poisson’s formula requires to have the term of Fourier transform for (k1, k2) =
(0, 0), that is why, by extension by continuity, we set ĥ(0, 0) = 0 (which does not add or subtract
a term in the end).

Since ĥ is of type ĥ = f̂ .ĝ, then h is of type h = f ∗g (where ∗ is the convolution product). Thus,
we get :

1
ηL2

∑
k6=0

1
‖k‖

(
1− e−

‖k‖2

4α2

)
eik.(x,y) = 1

η

∑
n

(
1

2π‖(x, y) + nL‖
− 1

2π‖(x, y) + nL‖
∗ α

2

π
e−α

2‖(x,y)+nL‖2
)
.

(6.150)

Back to the calculation of Dper :

By injecting (6.150) into (6.149) and subtracting by (6.89) and then taking the limits when
‖(x, y)‖ → 0 it is still to be calculated :

ξ := lim
‖(x,y)‖→0

(
1
η

∑
n

(
1

2π‖(x, y) + nL‖
− 1

2π‖(x, y) + nL‖
∗ α

2

π
e−α

2‖(x,y)+nL‖2
)

+ 1
ηL2

∑
k6=0

1
‖k‖

e−
‖k‖2

4α2 eik.(x,y) − 1
2π‖(x, y)‖η

)
. (6.151)

We have :

ξ = 1
η

∑
n6=(0,0)

(
1

2π‖nL‖ − lim
‖(x,y)‖→0

1
2π‖(x, y) + nL‖

∗ α
2

π
e−α

2‖(x,y)+nL‖2
)

+ 1
ηL2

∑
k6=0

1
‖k‖

e−
‖k‖2

4α2 − lim
‖(x,y)‖→0

1
2π‖(x, y)‖η ∗

α2

π
e−α

2‖(x,y)‖2 . (6.152)
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Step 1 : We have :

1
2π‖(x, y)‖ ∗

α2

π
e−α

2‖(x,y)‖2 =
∫
R2

1
2π‖(x− l, y −m)‖

α2

π
e−α

2‖(l,m)‖2dldm. (6.153)

Using the Lebesgue dominated convergence theorem and then switching to polar variable we
obtain :

lim
‖(x,y)‖→0

1
2π‖(x, y)‖ ∗

α2

π
e−α

2‖(x,y)‖2 =
∫
R2

1
2π‖(l,m)‖

α2

π
e−α

2‖(l,m)‖2dldm

=
∫ ∞

0

∫ 2π

0

α2

2π2 e
−α2r2

dθdr

= α

2π1/2 . (6.154)

after recognizing the integral of a Gaussian in the second tie.

Step 2 : We have :

1
2π‖(x, y) + nL‖

∗ α
2

π
e−α

2‖(x,y)+nL‖2 =
∫
R2

1
2π‖(x− l, y −m) + nL‖

α2

π
e−α

2‖(l,m)‖2dldm.

(6.155)

So that using the Lebesgue dominated convergence theorem we have :

lim
‖(x,y)‖→0

1
2π‖(x, y) + nL‖

∗ α
2

π
e−α

2‖(x,y)+nL‖2 =
∫
R2

1
2π‖ − (l,m) + nL‖

α2

π
e−α

2‖(l,m)‖2dldm.

(6.156)

We make the change of variable (l,m)→ (lL,mL) and we get :

lim
‖(x,y)‖→0

1
2π‖(x, y) + nL‖

∗ α
2

π
e−α

2‖(x,y)+nL‖2 =
∫
R2

L

2π‖ − (l,m) + n‖
α2

π
e−α

2L2‖(l,m)‖2dldm.

(6.157)

Step 3 : For the first term of the series, the integral of a centered Gaussian and of variance
σ = 1

2α2 I2 is introduced (this integral is therefore worth 1) :

1
2π‖nL‖ =

∫
R2

1
2π‖nL‖

α2

π
e−α

2‖(l,m)‖2dldm. (6.158)

We make the change of variable (l,m)→ (lL,mL) and we get :

1
2π‖nL‖ =

∫
R2

L

2π‖n‖
α2

π
e−α

2L2‖(l,m)‖2dldm. (6.159)

Step 4 : Differentiating the results of steps 2 and 3, and using step 1 and applying the ansatz
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(see paragraph 6.2), we then find :

Dper = D0 + kBT

3

(
H

8L2η
+ L

η

α2

2π2

∑
n6=(0,0)

(∫
R2
e−α

2L2‖(l,m)‖2
(

1
‖n‖
− 1
‖ − (l,m) + n‖

)
dldm

)

+ 1
ηL2

∑
k6=0

1
‖k‖

e−
‖k‖2

4α2 − α

2π1/2η
+ 1
L2

∑
k6=0

(
−

(
sh(‖k‖H2 ) +

H‖k‖ch(‖k‖H2 )
2

)
( H

32sh(‖k‖H2 )ch(‖k‖H2 )2η

(
1 + H‖k‖

2

(
sh(‖k‖H2 )
ch(‖k‖H2 ) −

ch(‖k‖H2 )
sh(‖k‖H2 )

))
1
4 −

‖k‖2H2

16

(
sh(‖k‖H2 )
ch(‖k‖H2 ) −

ch(‖k‖H2 )
sh(‖k‖H2 )

)2

)

+ H

8ch(‖k‖H2 )2η
−
(‖k‖sh(‖k‖H2 )

ch(‖k‖H2 )
− H‖k‖2

2

(
sh(‖k‖H2 )2

ch(‖k‖H2 )2 − 1
))

 H2

64ch(‖k‖H2 )2η

1
4 −

‖k‖2H2

16

(
sh(‖k‖H2 )
ch(‖k‖H2 ) −

ch(‖k‖H2 )
sh(‖k‖H2 )

)2

)). (6.160)

We recall that k = 2π
L (m1,m2) with mi ∈ N (i = 1, 2). Doing the indexing change k→ (m1,m2)

for the series, we get :

Dper = D0 + kBT

3

(
H

8L2η
+ L

η

α2

2π2

∑
n6=(0,0)

(∫
R2
e−α

2L2‖(l,m)‖2
(

1
‖n‖
− 1
‖ − (l,m) + n‖

)
dldm

)

+ 1
η2πL

∑
(m1,m2) 6=(0,0)

1
‖(m1,m2)‖e

−π
2‖(m1,m2)‖2

L2α2 − α

2π1/2η

+ 1
L2

∑
(m1,m2)6=0

(
−

(
sh(‖(m1,m2)‖πH

L
) +

πH‖(m1,m2)‖ch(‖(m1,m2)‖πHL )
L

)
( H

32sh(‖(m1,m2)‖πHL )ch(‖(m1,m2)‖πHL )2η

(
1 + πH‖(m1,m2)‖

L

(
sh(‖(m1,m2)‖πHL )
ch(‖(m1,m2)‖πHL ) −

ch(‖(m1,m2)‖πHL )
sh(‖(m1,m2)‖πHL )

))
1
4 −

‖(m1,m2)‖2π2H2

4L2

(
sh(‖(m1,m2)‖πHL )
ch(‖(m1,m2)‖πHL ) −

ch(‖(m1,m2)‖πHL )
sh(‖(m1,m2)‖πHL )

)2

)

+ H

8ch(‖(m1,m2)‖πHL )2η

−
(
πH‖(m1,m2)‖sh(‖(m1,m2)‖πHL )

Lch(‖(m1,m2)‖πHL )
− π2H2‖(m1,m2)‖2

L2

(
sh(‖(m1,m2)‖πHL )2

ch(‖(m1,m2)‖πHL )2 − 1
))

 H
32ch(‖(m1,m2)‖πHL )2η

1
4 −

‖(m1,m2)‖2π2H2

4L2

(
sh(‖(m1,m2)‖πHL )
ch(‖(m1,m2)‖πHL ) −

ch(‖(m1,m2)‖πHL )
sh(‖(m1,m2)‖πHL )

)2

)). (6.161)
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By taking h = πH
L and by using hyperbolic trigonometry formulas, we finally get :

Dper = D0 + kBT

3

(
H

8L2η
+ L

η

α2

2π2

∑
n6=(0,0)

(∫
R2
e−α

2L2‖(l,m)‖2
(

1
‖n‖
− 1
‖ − (l,m) + n‖

)
dldm

)

+ 1
η2πL

∑
(m1,m2)6=(0,0)

1
‖(m1,m2)‖e

−π
2‖(m1,m2)‖2

L2α2 − α

2π1/2η

+ 1
L2

∑
(m1,m2) 6=0

(
− (sh(‖(m1,m2)‖h) + h‖(m1,m2)‖ch(‖(m1,m2)‖h))

( H
8ch(‖(m1,m2)‖h)η

sh(‖(m1,m2)‖h)ch(‖(m1,m2)‖h) + ‖(m1,m2)‖h

)
+ H

8ch(‖(m1,m2)‖h)2η

−
(
h‖(m1,m2)‖sh(‖(m1,m2)‖h)

ch(‖(m1,m2)‖h) + h2‖(m1,m2)‖2

ch(‖(m1,m2)‖h)2

)
 Hsh(‖(m1,m2)‖h)2

8η

sh(‖(m1,m2)‖h)2ch(‖(m1,m2)‖h)2 − ‖(m1,m2)‖2h2

)). (6.162)

We define :

f : x 7→ − (sh(x) + xch(x))
ch(x)

(
1

sh(x)ch(x) + x

)
+ 1

ch(x)2η

−
(
xsh(x)
ch(x) + x2

ch(x)2

)(
sh(x)2

sh(x)2ch(x)2 − x2

)
. (6.163)

So that :

Dper = D0 + kBT

3

(
H

8L2η
+ L

η

α2

2π2

∑
n6=(0,0)

(∫
R2
e−α

2L2‖(l,m)‖2
(

1
‖n‖
− 1
‖ − (l,m) + n‖

)
dldm

)

+ 1
η2πL

∑
(m1,m2)6=(0,0)

1
‖(m1,m2)‖e

−π
2‖(m1,m2)‖2

L2α2 − α

2π1/2η
+ H

8L2η

∑
(m1,m2)6=0

f(‖(m1,m2)‖h)
)
.

(6.164)

In order to obtain a Riemann’series for the last series, we have to multiply f by h2 so that we
get :

Dper = D0 + kBT

3

(
H

8L2η
+ L

η

α2

2π2

∑
n6=(0,0)

(∫
R2
e−α

2L2‖(l,m)‖2
(

1
‖n‖
− 1
‖ − (l,m) + n‖

)
dldm

)

+ 1
η2πL

∑
(m1,m2)6=(0,0)

1
‖(m1,m2)‖e

−π
2‖(m1,m2)‖2

L2α2 − α

2π1/2η
+ H

8L2η

1
h2

∑
(m1,m2)6=0

f(‖(m1,m2)‖h)h2
)
.

(6.165)

This being valid ∀α > 0, it is true in particular for α = 1
L (> 0) and we then obtain, recalling
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also that h = πH
L :

Dper = D0 + kBT

3

(
H

8L2η
+ 1

2π2Lη

∑
n6=(0,0)

(∫
R2
e−‖(l,m)‖2

(
1
‖n‖
− 1
‖ − (l,m) + n‖

)
dldm

)

+ 1
η2πL

∑
(m1,m2) 6=(0,0)

1
‖(m1,m2)‖e

−π2‖(m1,m2)‖2 − 1
2π1/2Lη

+ 1
8π2Hη

∑
(m1,m2) 6=0

f(‖(m1,m2)‖h)h2
)
.

(6.166)

Let interest us to the case where H/L is small. For the first four terms of (6.143), when we
multiply each term by H, we can easily see that they converges towards 0 in that case, as it
corresponds respectively to a constant multiplies by (H/L)2 and to a constant multiplies by
H/L. The term in H

L2 seems to show an attenuation of the effect of walls on the diffusion of the
particle by periodicity.

The last series being a Riemann’s series, we have for H/L→ 0 :∑
(m1,m2) 6=0

f(‖(m1,m2)‖h)h2 →
∫
R2
f(x)dx := I. (6.167)

We then have :

Dper = D0 + kBT

3
I

8π2Hη

(
1 + o

(
H

L

))
. (6.168)

For large L, we know with theorem 9 that the first term of expansion in H is :

−3kbT
16πHη (6.169)

so that it can be conjecture that 4 :

I = −9π
2 . (6.170)

If we want to obtain the second order for the expansion of Dper, we have on the one hand
the three terms in the begining of (6.143) (not the first one, but the three after it). On the
other hand, for

∫
R2 f(x)dx, we can observe the last series and decompose the integral on square

Pm1,m2 = [m1h− h
2 ,m1h+ h

2 ]× [m2h− h
2 ,m2h+ h

2 ] of size h2 and centered on point (xm1, xm2)
with xmi = mih (for i = 1, 2), and we can consider a Taylor expansion of the order 2 of f on
each Pm1,m2 i.e. : ∫

R2
f(x)dx =

∑
(m1,m2)

∫
Pm1,m2

f(x)dx (6.171)

with

f(x) =f(xm1, xm2) + (x− xm1)∂f
∂x

(xm1, xm2) + (y − xm2)∂f
∂y

(xm1, xm2) + 1
2(x− xm1)2 ∂

2f

∂x2 (xm1, xm2)

+ 1
2(y − xm2)2 ∂

2f

∂y2 (xm1, xm2) + (x− xm1)(y − xm2) ∂
2f

∂x∂y
(xm1, xm2) + o(h2). (6.172)

4. To calculate that integral, an idea might be to use a numerical integration of Gauss-Laguerre
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The integral of the second, the third and the last term of (6.172) on Pm1,m2 is null by parity on
the square. For the fourth and fifth terms, we have :∫

Pm1,m2

1
2(x− xm1)2 ∂

2f

∂x2 (xm1, xm2)dxdy = h4

24
∂2f

∂x2 (m1h,m2h) (6.173)

and ∫
Pm1,m2

1
2(y − xm2)2 ∂

2f

∂y2 (xm1, xm2)dxdy = h4

24
∂2f

∂y2 (m1h,m2h). (6.174)

We then have :∑
(m1,m2)

∫
Pm1,m2

f(x)dx =
∑

(m1,m2)

(
f(xm1, xm2)h2 + h4

24
∂2f

∂x2 (m1h,m2h) + h4

24
∂2f

∂y2 (m1h,m2h)
)
.

(6.175)

For the last two terms, we have :

∑
(m1,m2)

h4

24
∂2f

∂x2 (m1h,m2h) = h2

24
∑

(m1,m2)

∂2f

∂x2 (m1h,m2h)h2 (6.176)

∑
(m1,m2)

h4

24
∂2f

∂y2 (m1h,m2h) = h2

24
∑

(m1,m2)

∂2f

∂y2 (m1h,m2h)h2 (6.177)

where, for h→ 0, we have, as Riemann’s series :

∑
(m1,m2)

∂2f

∂x2 (m1h,m2h)h2 →
∫
R2

∂2f

∂x2 (x, y)dxdy (6.178)

∑
(m1,m2)

∂2f

∂y2 (m1h,m2h)h2 →
∫
R2

∂2f

∂y2 (x, y)dxdy. (6.179)

We recall that h = πH
L so that h2 = π2 (H

L

)2
.

If we take a Taylor expansion of highter order for f on each Pm1,m2 , they should be on o
((

H
L

)2)
.

At the end, we can rewrite Dper as :

Dper = D0 −
3kBT

16πHη

(
1− 8

9C2
H

L
+ o

((
H

L

)))
(6.180)

with :

C2 = 1
π
C1 +

∑
(m1,m2)6=(0,0)

1
‖(m1,m2)‖e

−π2‖(m1,m2)‖2 − π1/2 (6.181)

where we recall that C1 is defined in (6.130).
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We numerically have

C1 ' −6.2387 and
∑

(m1,m2) 6=(0,0)

1
‖(m1,m2)‖e

−π2‖(m1,m2)‖2 ' 2.069 10−4 (6.182)

so that

C2 ' −3.7579. (6.183)

Finally, we get :

Dper ' D0 −
3kBT

16πHη

(
1 + 3.3403H

L
+ o

((
H

L

)))
. (6.184)

With that expansion, we can easily see that when H → ∞ and H/L → 0 we have Dper → D0,
i.e. it corresponds to the non-periodic and non-confined case. Moreover, here we can see that the
correction due to the ratio between the two walls H and the period L is not negligible, so that
this is important to take into accompt that correction in order to find the diffusion coefficient in
the non-periodic and non-confined case.

Figure 33 – Curve representing the ratio

(
D0− 3kT

16πηH

(
1+3.3403HL

))
D0

as a function of the ratio
of the distance between the two walls H and the size of the particle a and for different ratio of

H and the period L. These curves are compared to the ratio
(D0− 3kT

16πηH )
D0

found in the previous
section in the non-periodic case

On the graph (figure 33), we can observe the behavior of

(
D0− 3kT

16πηH

(
1+3.3403HL

))
D0

, i.e. the
diffusion constant D that we have developed in (6.184), with respect to D0, according to the
H/a ratio, i.e. the distance between the two walls and the radius of the sphere that represents
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the particle, and for different H/L ratios. These behaviors are compared to that of
(D0− 3kT

16πηH )
D0

found in the previous section in the non-periodic case. We can see that the curves in the periodic
case are below those in the non-periodic case, i.e. the diffusion is less in that case. That fact
can be compared to that of (6.10) which similarly shows that the diffusion in unconfined and
periodic case is less than those in non-periodic case.

6.5 Conclusion

In this chapter, we first determined the velocity of a particle evolving in a fluid confined bet-
ween two parallel walls, this particle being placed at equal distance from these two walls. We
have considered an Oseen-type approximation, where the fluid is subjected to a point of force F.
Our calculations then led us to express the velocity as a tensor T multiplied by the force F. A
Kirkwood-Riseman type approach then allowed us to establish the diffusion constant according to
the considered boundary conditions. We then calculated an expansion of the constant obtained
when the walls are quite far from each other. We first performed this method when conside-
ring non-periodic boundary conditions, and thus obtained an expansion in agreement with an
expansion of the constant obtained by Saugey and al. We then adapted our calculations when
considering periodic boundary conditions and obtained an expansion of the diffusion constant
under these conditions, an expansion which is a function of the distance between the two walls
and the periodicity of the problem, and which is also a function of the diffusion constant for a
particle evolving in an unconfined fluid and with non-periodic conditions. The expansion that
we got has a simple expression which allows to see that for H → ∞ and H/L → 0 we have
Dper → D0, i.e. we approximate the non-periodic and non-confined case.

Several perspectives could extend this work. First of all, it would be interesting to numerically
calculate the ratio for different values of H/L in order to determine the role of boundary condi-
tions for all values of this geometric coefficient, and not only for those corresponding to large
boxes compared to the lateral dimension. Thanks to the obtained expansion and to the limiting
values, it should be possible to obtain by fitting a practical expression valid for any geometry. A
second obvious generalisation would be to look at the case where the particle moves perpendicu-
larly to the planes. The role of the hydrodynamic boundary conditions should also be analysed.
We have considered a non-slip surface with sticky boundary conditions at the walls. However, in
some porous media the fluid can slide on the surface and the boundary condition depends on a
new parameter, the slip length. Diffusion should also be studied as a function of this parameter.



Chapitre 7

Conclusion and perspectives

Conclusion :

In this thesis, we were particularly interested in the study of the influence of periodic edge
conditions often introduced during molecular simulations, and thus to make corrections for the
calculation of the quantity of interest by numerical experiments, corrections taking into account
the periodicity.

On the one hand, we wanted to study the McMillan and Mayer potential of a system formed
by two ions surrounded by N water molecules for which we consider, as reaction coordinate, the
distance between the two ions. From a theoretical point of view, we determined an expansion of
the potential of a system made up of two ions rather distant from each other and surrounded
by a solvent of dielectric constant εr, expansion which is a function of the considered period L
and which approaches a Coulombic potential all the more as L is large. From a numerical point
of view, we have considered three cubic simulation boxes with respective sides 24,662 A, 36,342
A and 53,000 A, and containing a Na+, an ion Cl− and Ni water molecules (i = 1, 2, 3 referring
to the ith box). We used the Tinker-hp software to perform simulations of molecular dynamics.
We wanted to use the Umbrella Sampling method, so for the chosen reaction coordinate (the
distance between the two ions) we added a spring force to keep the two ions at a certain dis-
tance. We then obtained the Mean Force Potential from the WHAM method, and then calculated
the McMillan and Mayer potential. Since one of the challenges was to fix the constant defining
the McMillan and Mayer potential, our goal was to use our expansion to fit the potential curve
with the McMillan and Mayer potential at a large distance. We also calculated the resulting
association constants, corrected with our expansion or not, and thus were able to observe an
effect due to our correction, the smaller the size of the box is, and also a result not depending
on L when we previously corrected the potential. We also studied the potential of McMillan
and Mayer, obtained for lanthanide salts, using or not using the correction made by our expan-
sion, in order to calculate again the association constant. With our tests, we have seen that the
correction with the period that we have obtained here has in fact low influence in the calculations.

On the other hand, we sought to obtain an expansion of the diffusion constant for a particle
moving in a fluid confined between two walls. To do so, we considered an Oseen-type approxima-
tion, i.e. we modelled the system by a fluid moving between two walls and subjected to a point
of force F. We have established an expansion according to the distance between the two walls
when we consider the point of force at the same distance from the two walls. First of all, we
placed ourselves in the case of non-periodic conditions and obtained an expansion in agreement
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with the constant obtained by Saugey and al. This expansion is close to the diffusion constant
in the case of a particle in an unconfined fluid with non-periodic conditions especially as the
two walls are far from each other. In addition, we considered periodic boundary conditions and
adapted our calculations, which allowed us to come to an expansion of the diffusion constant
under these conditions, based on a mathematical hypothesis. This is a correction of the diffusion
constant in the case of an unconfined particle with non-periodic conditions. This correction is a
function of the distance between the two walls and the period of the problem. Here the correction
that we obtained is not negligible in order to get the diffusion coefficient in the non-periodic case.

Perspectives :

First of all, concerning the behavior of the Potential of Mean Force, it would be a question of
deepening the study of cases of real interest, such as Lanthanids in the aqueous phase, since
these components intervene in the processes of treatment of radioactive waste, and potentials
have been specifically developed.
The study should also be continued in the case of more complex systems, and extended with a
more detailed description of such systems using the QM/MM method which, it should be recal-
led, describes the system at the quantum level where the chemical reaction takes place, and the
other part at the molecular level.

Concerning the study of the diffusion coefficient, this one having been limited in the case of a
particle placed at equal distance from each wall, it would be judicious to analyze the more general
case where the particle always moves parallel to the two walls but placed at a distance z from
the bottom wall. In addition, we carried out our study with non-slip conditions (stick) on the
edges of the walls ; it would be necessary to observe the case of slip conditions, or partial slip.
One idea would be to try to perform the ”exact” calculations, i.e. to consider a Stokes equation
with conditions at the edges of the sphere that describes the particle, and not using an Oseen
equation. One idea, to do this, would be to use the method of reflections, considering on the
one hand the case of a Stokes equation for a particle moving in a straight line in an unconfined
fluid with periodic conditions (perhaps it would be necessary to adapt the calculations made by
Stokes), and on the other hand the case of a fluid confined between two walls (see the calculations
made by Saugey and al.).
From a numerical point of view, it would be interesting to carry out molecular dynamics simu-
lations in order to observe the diffusion coefficient under our conditions and its evolution as a
function of the size of the simulation boxes, and to compare it with the one we have obtained
from our calculations.
It would also be interesting to make a comparison between the analytical results and those
obtained with a fluid dynamics software, in order to interpret a possible discrepancy between
molecular dynamics and the analytical calculations as being either hypotheses (fluid dynamics /
molecular dynamics difference) or approximations for the analytical calculation (difference bet-
ween the calculation we made and the fluid dynamics).

Finally, in order to improve the duration of simulations, it would be interesting to study the
introduction of H-matrices [79] in molecular dynamics calculation algorithms. The H-matrices
(H for Hierarchical), developed around 2000, are used to solve problems of the type Ax = b and
have a complexity in O(n logα2 (n)) (n being the number of unknowns).
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[1] 26è CGPM, Versailles, 13-16 novembre 2018
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mises à des fluides enrichis en CO2 : impact des discontinuités naturelles et artificielles, thèse
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[109] Loi du 28 juin 2006 de programme relative à la gestion durable des matières et déchets
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[150] B.Rotenberg, Modélisation multi-échelles du comportement de l’eau et des ions dans les
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Uranium(VI) Fluoride and Hydroxide Complexes Studied by EXAFS and Quantum Chemis-
try, Inorg. Chem. 40, 14, 3516–3525, 2001

[176] C.Vanroyen, Interactions hydrodynamiques entre sphères dures en régime faiblement iner-
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