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Résumé

Dans cette thèse, on compare l’homologie « classique » d’une ω-catégorie (définie comme l’ho-
mologie de son nerf de Street) avec son homologie polygraphique. Plus précisément, on prouve
que les deux homologies ne coïncident pas en général et qualifions d’homologiquement cohé-
rentes les ω-catégories particulières pour lesquelles l’homologie polygraphique coïncide ef-
fectivement avec l’homologie du nerf. Le but poursuivi est de trouver des critères abstraits et
concrets permettant de détecter les ω-catégories homologiquement cohérentes. Par exemple,
on démontre que toutes les (petites) catégories, que l’on considère comme des ω-catégories
strictes dont toutes les cellules au-delà de la dimension 1 sont des unités, sont homologique-
ment cohérentes. On introduit également la notion de 2-catégorie sans bulles et on conjecture
qu’une 2-catégorie cofibrante est homologiquement cohérente si et seulement si elle est sans
bulles. On démontre également des résultats importants concernant les ω-catégories strictes qui
sont libres sur un polygraphe, comme le fait que si F : C → D est un ω-foncteur de Conduché
discret et si D est libre sur un polygraphe alors C l’est aussi. Dans son ensemble, cette thèse
établit un cadre général dans lequel étudier l’homologie des ω-catégories en faisant appel à des
outils d’algèbre homotopique abstraite, tels que la théorie des catégories de modèles de Quillen
ou la théorie des dérivateurs de Grothendieck.

Mots-clés : Catégories supérieures, ω-catégories, homologie, théorie de l’homotopie, poly-
graphes.



Abstract

In this dissertation, we compare the “classical” homology of an ω-category (defined as the
homology of its Street nerve) with its polygraphic homology. More precisely, we prove that
both homologies generally do not coincide and call homologically coherent the particular strict
ω-categories for which polygraphic homology and homology of the nerve do coincide. The goal
pursued is to find abstract and concrete criteria to detect homologically coherent ω-categories.
For example, we prove that all (small) categories, considered as strict ω-categories with unit
cells above dimension 1, are homologically coherent. We also introduce the notion of bubble-
free 2-category and conjecture that a cofibrant 2-category is homologically coherent if and
only if it is bubble-free. We also prove important results concerning free strict ω-categories
on polygraphs (also known as computads), such as the fact that if F : C → D is a discrete
Conduché ω-functor and D is a free strict ω-category on a polygraph, then so is C. Overall,
this thesis achieves to build a general framework in which to study the homology of strict
ω-categories using tools of abstract homotopical algebra such as Quillen’s theory of model
categories or Grothendieck’s theory of derivators.

Keywords : Higher categories, ω-categories, homology, homotopy theory, polygraphs.
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INTRODUCTION

The general framework in which this dissertation takes place is the homotopy theory of
strict ω-categories, and, as the title suggests, its focus is on homological aspects of this
theory. The goal is to study and compare two different homological invariants for strict
ω-categories; that is to say, two different functors

StrωCat→ ho(Ch≥0)

from the category of strict ω-categories to the homotopy category of non-negatively
graded chain complexes (i.e. the localization of the category of non-negatively graded
chain complexes with respect to the quasi-isomorphisms).

Before we enter into the heart of the subject, let us emphasize that, with the sole
exception of the end of this introduction, all the ω-categories that we consider are strict
ω-categories. Hence, we drop the adjective “strict” and simply say ω-category instead
of strict ω-category and we write ωCat instead of StrωCat for the category of (strict)
ω-categories.

Background: ω-categories as spaces. The homotopy theory of ω-categories begins
with the nerve functor introduced by Street in [Str87]

Nω : ωCat→ ∆̂

that associates to every ω-category C a simplicial set Nω(C) called the nerve of C,
generalizing the usual nerve of (small) categories. Using this functor, we can transfer
the homotopy theory of simplicial sets to ω-categories, as it is done for example in the
articles [AM14, AM18, Gag18, Ara19, AM20c, AM20a]. Following the terminology of
these articles, a morphism f : C → D of ωCat is a Thomason equivalence if Nω(f)
is a Kan–Quillen weak equivalence of simplicial sets. By definition, the nerve functor
induces a functor at the level of homotopy categories

Nω : ho(ωCatTh)→ ho(∆̂),

where ho(ωCatTh) is the localization of ωCat with respect to the Thomason equiva-
lences and ho(∆̂) is the localization of ∆̂ with respect to the Kan–Quillen weak equiv-
alences of simplicial sets. As it so happens, the functor Nω is an equivalence of cate-
gories, as proved by Gagna in [Gag18]. In other words, the homotopy theory of ω-cate-
gories induced by Thomason equivalences is the same as the homotopy theory of spaces.
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INTRODUCTION

Gagna’s result is in fact a generalization of the analogous result for the usual nerve of
small categories, which is attributed to Quillen in [Ill72]. In the case of small categories,
Thomason even showed the existence of a model structure whose weak equivalences are
the ones induced by the nerve functor [Tho80]. The analogous result for ωCat is con-
jectured but not yet established [AM14].

Two homologies for ω-categories. Keeping in mind the nerve functor of Street, a nat-
ural thing to do is to define the k-th homology group of an ω-category C as the k-th
homology group of the nerve of C. In light of Gagna’s result, these homology groups
are just another way of looking at the homology groups of spaces. In order to explicitly
avoid future confusion, we shall now use the name singular homology groups of C for
these homology groups and the notation HSing

k (C).
On the other hand, Métayer gives a definition in [Mét03] of other homology groups

for ω-categories. This definition is based on the notion of ω-categories free on a poly-
graph (also known as ω-categories free on a computad), which are ω-categories that are
obtained from the empty category by recursively freely adjoining cells. From now on,
we simply say free ω-category. Métayer observed that every ω-category C admits what
we call a polygraphic resolution, which means that there exists a free ω-category P and
a morphism of ωCat

f : P → C

that satisfies properties formally resembling those of trivial fibrations of topological
spaces (or of simplicial sets). Furthermore, every free ω-category P can be “abelian-
ized” to a chain complex λ(P ) and Métayer proved that for two different polygraphic
resolutions P → C and P ′ → C of the same ω-category C, the chain complexes λ(P )
and λ(P ′) are quasi-isomorphic. Hence, we can define the k-th polygraphic homology
group of C, denoted by Hpol

k (C), as the k-th homology group of λ(P ) for any poly-
graphic resolution P → C.

One is then led to the following question:

Do we have Hpol
• (C) ' HSing

• (C) for every ω-category C?

A first partial answer to this question is given by Lafont and Métayer in [LM09]: for
a monoid M (seen as category with one object and hence as an ω-category), we have
Hpol
• (M) ' HSing

• (M). In fact, the original motivation for polygraphic homology was
the homology of monoids and is part of a program that generalizes to higher dimension
the results of Squier on the rewriting theory of monoids [Gui06, Laf07, GM09, GM18].
However, interestingly enough, the general answer to the above question is no. A coun-
terexample was found by Maltsiniotis and Ara. Let B be the commutative monoid
(N,+), seen as a 2-category with only one 0-cell and no non-trivial 1-cells. This 2-cat-
egory is free (as an ω-category) and a quick computation shows that:

Hpol
k (B) =

{
Z if k = 0, 2

0 otherwise.
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On the other hand, it is shown in [Ara19, Theorem 4.9 and Example 4.10] that the nerve
of B is a K(Z, 2); hence, it has non-trivial homology groups in all even dimension.

A question that still remains is:

(Q) Which are the ω-categories C such that Hpol
• (C) ' HSing

• (C) ?

This is precisely the question around which this dissertation revolves. Nevertheless, the
reader will also find several new notions and results within this document that, although
primarily motivated by the above question, are of interest in the theory of ω-categories
and whose raisons d’être go beyond the above considerations.

Another formulation of the problem. One of the achievements of the present work is
a more abstract reformulation of the question of comparison of singular and polygraphic
homology of ω-categories.

In order to do so, recall first that by a variation of the Dold–Kan equivalence (see
for example [Bou90]), the category of abelian group objects in ωCat is equivalent to
the category of non-negatively graded chain complexes

Ab(ωCat) ' Ch≥0.

Hence, we have a forgetful functor Ch≥0 ' Ab(ωCat) → ωCat, which has a left
adjoint

λ : ωCat→ Ch≥0.

Moreover, for a free ω-category C, the chain complex λ(C) is exactly the one obtained
by the “abelianization” process considered in Métayer’s definition of polygraphic ho-
mology.

Now, the category ωCat admits a model structure, known as the folk model structure
[LMW10], whose weak equivalences are the equivalences of ω-categories (a general-
ization of the usual notion of equivalence of categories) and whose cofibrant objects
are exactly the free ω-categories [Mét08]. Polygraphic resolutions are then nothing but
cofibrant replacements in this model category. As the definition of polygraphic homol-
ogy groups strongly suggests, the functor λ is left Quillen with respect to this model
structure. In particular, it admits a left derived functor

Lλfolk : ho(ωCatfolk)→ ho(Ch≥0)

and we tautologically have that Hpol
k (C) = Hk(Lλfolk(C)) for every ω-category C and

every k ≥ 0. From now on, we set

Hpol(C) := Lλfolk(C).

This way of understanding polygraphic homology as a left derived functor has been
around in the folklore for some time and I claim absolutely no originality for it.
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On the other hand, λ is also left derivable when ωCat is equipped with Thomason
equivalences, yielding a left derived functor

LλTh : ho(ωCatTh)→ ho(Ch≥0).

This left derived functor being such that HSing
k (C) = Hk(LλTh(C)) for every ω-cate-

gory C and every k ≥ 0. Contrary to the “folk” case, this result is new and first appears
within this document (at least to my knowledge). Note that since, as mentioned earlier,
the existence of a Thomason-like model structure on ωCat is still conjectural, usual
tools from Quillen’s theory of model categories were unavailable to prove the left deriv-
ability of λ and the difficulty was to find a workaround solution.

From now on, we set
HSing(C) := LλTh(C).

Finally, it can be shown that every equivalence of ω-categories is a Thomason equiv-
alence. Hence, the identity functor of ωCat induces a functor J at the level of homo-
topy categories

J : ho(ωCatfolk)→ ho(ωCatTh),

and altogether we have a triangle

ho(ωCatfolk) ho(ωCatTh)

ho(Ch≥0).
Lλfolk

J

LλTh

This triangle is not commutative (even up to isomorphism), since this would imply that
the singular and polygraphic homology groups coincide for every ω-category. However,
since both functors Lλfolk and LλTh are left derived functors of the same functor λ,
the existence of a natural transformation π : LλTh ◦ J ⇒ Lλfolk follows by univer-
sal property. Since J is the identity on objects, for every ω-category C, this natural
transformation yields a map

πC : HSing(C)→ Hpol(C),

which we refer to as the canonical comparison map. Let us say that C is homologically
coherent if πC is an isomorphism (which means exactly that for every k ≥ 0, the induced
map HSing

k (C)→ Hpol
k (C) is an isomorphism). The question of study then becomes:

(Q’) Which ω-categories are homologically coherent ?

Note that, in theory, question (Q’) is more precise than question (Q) since we impose
which morphism has to be an isomorphism in the comparison of homology groups.
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However, for all the concrete examples that we shall meet in practice, it is always ques-
tion (Q’) that will be answered.

As will be explained in this thesis, a formal consequence of the above is that poly-
graphic homology is not invariant under Thomason equivalence. This means that there
exists at least one Thomason equivalence f : C → D such that the induced map

Hpol(C)→ Hpol(D)

is not an isomorphism. In other words, if we think of ωCat as a model of homotopy
types (via the localization by the Thomason equivalences), then the polygraphic homol-
ogy is not a well-defined invariant. Another point of view would be to consider that the
polygraphic homology is an intrinsic invariant of ω-categories (and not up to Thomason
equivalence) and in that way is finer than singular homology. This is not the point of
view adopted here, and the reason will be motivated at the end of this introduction. The
slogan to retain is:

Polygraphic homology is a way of computing singular homology groups of a
homologically coherent ω-category.

The point is that given a free ω-category P (which is thus its own polygraphic resolu-
tion), the chain complex λ(P ) is much “smaller” than the chain complex associated to
the nerve of P and hence the polygraphic homology groups of P are much easier to
compute than its singular homology groups. The situation is comparable to using cel-
lular homology for computing singular homology of a CW-complex. The difference is
that in this last case, such a thing is always possible while in the case of ω-categories,
one must ensure that the (free) ω-category is homologically coherent.

Finding homologically coherent ω-categories. One of the main results presented in
this dissertation is:

Every (small) category C is homologically coherent.

In order for this result to make sense, one has to consider categories as ω-categories
with only unit cells above dimension 1. Beware that this does not make the result trivial
because given a polygraphic resolution P → C of a small category C, the ω-category
P need not have only unit cells above dimension 1.

As such, this result is only a small generalization of Lafont and Métayer’s result
concerning monoids (although this new result, even restricted to monoids, is more pre-
cise because it means that the canonical comparison map is an isomorphism). But the
true novelty lies in the proof which is more conceptual that the one of Lafont and Mé-
tayer. It requires the development of several new concepts and results which in the end
combine together smoothly to yield the desired result. This dissertation has been written
so that all the elements needed to prove this result are spread over several chapters; a
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more condensed version of it is the object of the article [Gue21]. Among the new no-
tions developed along the way, that of discrete Conduché ω-functor is probably the most
significant. An ω-functor f : C → D is a discrete Conduché ω-functor when for every
cell x of C, if f(x) can be written as

f(x) = y′ ∗
k
y′′,

then there exists a unique pair (x′, x′′) of cells of C that are k-composable and such that

f(x′) = y′, f(x′′) = y′′ and x = x′ ∗
k
x′′.

The main result that we prove concerning discrete Conduché ω-functors is that for a
discrete Conduché ω-functor f : C → D, if the ω-category D is free, then C is also
free. The proof of this result is long and tedious, though conceptually not extremely
hard, and first appears in the paper [Gue20], which is dedicated to it.

After having settled the case of (1-)categories, it is natural to move on to 2-cate-
gories. Contrary to the case of (1-)categories, not all 2-categories are homologically
coherent and the situation seems to be much harder to understand. As a simplification,
one can focus on 2-categories which are free (as ω-categories). This is what is done in
this dissertation. With this extra hypothesis, the problem of characterization of homo-
logically coherent free 2-categories may be reduced to the following question: given a
cocartesian square of the form

S1 P

D2 P ′,
p

where P is a free 2-category, when is it homotopy cocartesian with respect to the
Thomason equivalences? As a consequence, a substantial part of the work presented
here consists in developing tools to detect homotopy cocartesian squares of 2-categories
with respect to the Thomason equivalences. While it appears that these tools do not
allow to completely answer the above question, they still make it possible to detect
such homotopy cocartesian squares in many concrete situations. In fact, a whole section
of the thesis is dedicated to giving examples of (free) 2-categories and computing the
homotopy type of their nerve using these tools. Among all these examples, a particu-
lar class of well-behaved 2-categories, which I have coined “bubble-free 2-categories”,
seems to stand out. This class is easily characterized as follows. Given a 2-category, let
us call bubble a non-trivial 2-cell whose source and target are units on a 0-cell (neces-
sarily the same). A bubble-free 2-category is then nothing but a 2-category that has no
bubbles. The archetypal example of a 2-category that is not bubble-free is the 2-category
B introduced earlier (which is the commutative monoid (N,+) seen as a 2-category).
As already said, this 2-category is not homologically coherent and this does not seem to
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be a coincidence. It is indeed remarkable that of all the many examples of 2-categories
studied in this work, the only ones that are not homologically coherent are exactly the
ones that are not bubble-free. This leads to the conjecture below, which stands as a
conclusion of the thesis.

(Conjecture) A free 2-category is homologically coherent if and only if it is
bubble-free.

The big picture. Let us end this introduction with another point of view on the compar-
ison of singular and polygraphic homologies. This point of view is highly conjectural
and is not addressed at all in the rest of the dissertation. It should be thought of as a
guideline for future work.

In the same way that (strict) 2-categories are particular cases of bicategories, strict
ω-categories are in fact particular cases of what are usually called weak ω-categories.
Such mathematical objects have been defined, for example, by Batanin using globular
operads [Bat98] or by Maltsiniotis following ideas of Grothendieck [Mal10]. Similarly
to the fact that the theory of quasi-categories (which is a homotopical model for the
theory of weak ω-categories whose cells are invertible above dimension 1) may be ex-
pressed using the same language as the theory of usual categories, it is generally be-
lieved that all “intrinsic” notions (in a precise sense to be defined) of the theory of strict
ω-categories have weak counterparts. For example, it is believed that there should be a
folk model structure on the category of weak ω-categories and that there should be a
good notion of free weak ω-category. In fact, this last notion should be defined as weak
ω-categories that are recursively obtained from the empty ω-category by freely adjoin-
ing cells, which is the formal analogue of the strict version but in the weak context. The
important point here is that a free strict ω-category is never free as a weak ω-category
(except for the empty ω-category). Moreover, there are good candidates for the poly-
graphic homology of weak ω-categories obtained by mimicking the definition in the
strict case. But in general the polygraphic homology of a strict ω-category need not be
the same as its “weak polygraphic homology”. Indeed, since free strict ω-categories are
not free as weak ω-categories, taking a “weak polygraphic resolution” of a strict ω-cate-
gory is not the same as taking a polygraphic resolution. In fact, when trying to compute
the weak polygraphic homology of B, it would seem that it gives the homology groups
of a K(Z, 2), which is what we would have expected of its polygraphic homology in the
first place. From this observation, it is tempting to make the following conjecture:

The weak polygraphic homology of a strict ω-category coincides with its singular
homology.

In other words, we conjecture that the fact that polygraphic and singular homologies of
strict ω-categories do not coincide is a defect due to working in too narrow a setting.
The “good” definition of polygraphic homology ought to be the weak one.
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We can go even further and conjecture the same thing for weak ω-categories. In or-
der to do so, we need a definition of singular homology for weak ω-categories. This
is conjecturally done as follows. To every weak ω-category C, one can associate a
weak ω-groupoid L(C) by formally inverting all the cells of C. Then, if we believe in
Grothendieck’s conjecture (see [Gro83] and [Mal10, Section 2]), the category of weak
ω-groupoids equipped with the weak equivalences of weak ω-groupoids (see [Mal10,
Paragraph 2.2]) is a model for the homotopy theory of spaces. In particular, every weak
ω-groupoid has homology groups and we can define the singular homology groups of a
weak ω-category C as the homology groups of L(C).

Organization of the thesis. In the first chapter, we review some aspects of the theory
of ω-categories. In particular, we study with great care free ω-categories, which are at
the heart of the present work. It is the only chapter of the thesis that does not contain any
reference to homotopy theory whatsoever. It is also there that we introduce the notion
of discrete Conduché ω-functor and study their relation with free ω-categories. The
culminating point of the chapter is Theorem 1.6.18, which states that given a discrete
Conduché ω-functor F : C → D, if D is free, then so is C. The proof of this theorem
is long and technical and is broke down into several distinct parts.

The second chapter is devoted to recalling some tools of homotopical algebra. More
precisely, basic aspects of the theory of homotopy colimits using the formalism of
Grothendieck’s derivators are quickly presented. Note that this chapter does not con-
tain any original result and can be skipped at first reading. It is only intended to give the
reader a summary of useful results on homotopy colimits that are used in the rest of the
dissertation.

In the third chapter, we delve into the homotopy theory of ω-categories. It is there
that we define the different notions of weak equivalences for ω-categories and compare
them. The two most significant new results to be found in this chapter are probably
Proposition 3.6.2, which states that every equivalence of ω-categories is a Thomason
equivalence, and Theorem 3.7.4, which states that equivalences of ω-categories satisfy a
property reminiscent of Quillen’s Theorem A [Qui73, Theorem A] and its ω-categorical
generalization by Ara and Maltsiniotis [AM18, AM20c].

In the fourth chapter, we define the polygraphic and singular homologies of ω-cat-
egories and properly formulate the problem of their comparison. Up to Section 4.3 in-
cluded, all the results were known prior to this thesis (at least in the folklore), but starting
from Section 4.4 all the results are original. Three fundamental results of this chapter
are: Theorem 4.4.5, which states that singular homology is obtained as a derived func-
tor of an abelianization function, Proposition 4.5.10, which gives an abstract criterion
to detect homologically coherent ω-categories, and Proposition 4.6.23, which states that
low-dimensional singular and polygraphic homology groups always coincide.

The fifth chapter is mainly geared towards the fundamental Theorem 5.3.14, which
states that every category is homologically coherent. To prove this theorem, we first

8



INTRODUCTION

focus on a particular class of ω-categories, which we call contractible ω-categories, and
show that every contractible ω-category is homologically coherent (Proposition 5.1.2).

Finally, the sixth and last chapter of the thesis revolves around the homology of
free 2-categories. The goal pursued is to try to understand which free 2-categories are
homologically coherent. In order to do so, we give a criterion to detect homotopy co-
cartesian square with respect to Thomason equivalences (Proposition 6.3.14) based on
the homotopy theory of bisimplicial sets. Then, we apply this criterion and some other
ad hoc techniques to compute many examples of homotopy type of free 2-categories.
The conclusion of the chapter is Conjecture 6.6.5, which states that a free 2-category is
homologically coherent if and only if it is bubble-free.
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Cette thèse a pour cadre général la théorie de l’homotopie des ω-catégories strictes,
et, comme son titre le suggère, ce sont les aspects homologiques de cette théorie qui
sont traîtés. Le but est d’étudier et de comparer deux invariants homologiques différents
associés aux ω-catégories strictes ; c’est-à-dire, deux foncteurs différents

StrωCat→ ho(Ch≥0)

de la catégorie des ω-catégories strictes vers la catégorie homotopique des complexes
de chaînes en degré positif (i.e. la localisation de la catégorie des complexes de chaînes
en degré positif relativement aux quasi-isomorphismes).

Avant d’entrer dans le vif du sujet, précisons sans plus tarder qu’à l’unique exception
de la toute fin de cette introduction, toutes les ω-catégories que nous considérerons sont
des ω-catégories strictes. C’est pourquoi nous omettrons l’adjectif « strict » et parlerons
simplement de ω-catégorie plutôt que de ω-catégorie stricte. De même, nous noterons
ωCat plutôt que StrωCat la catégorie des ω-catégories (strictes).

Le contexte : les ω-categories en tant qu’espaces. L’étude de la théorie de l’homoto-
pie des ω-catégories commence avec le foncteur nerf introduit par Street [Str87]

Nω : ωCat→ ∆̂

qui associe à toute ω-catégorie C un ensemble simplicial Nω(C), appelé le nerf de C,
généralisant le nerf usuel des (petites) catégories. En utilisant ce foncteur, il est pos-
sible de transférer la théorie de l’homotopie des ensembles simpliciaux aux ω-catégo-
ries, comme cela est fait par exemple dans les articles [AM14, AM18, Gag18, Ara19,
AM20c, AM20a]. Suivant la terminologie de ces derniers, un morphisme f : C → D
de la catégorie ωCat est une équivalence de Thomason si Nω(f) est une équivalence
faible de Kan–Quillen d’ensembles simpliciaux. Par définition, le foncteur nerf induit
un foncteur au niveau des catégories homotopiques

Nω : ho(ωCatTh)→ ho(∆̂),

où ho(ωCatTh) est la localisation de ωCat relativement aux équivalences de Thomason
et ho(∆̂) est la localisation de ∆̂ relativement aux équivalences faibles de Kan–Quillen
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d’ensembles simpliciaux. Comme l’a démontré Gagna [Gag18], ce dernier foncteur est
en fait une équivalence de catégories. Autrement dit, la théorie de l’homotopie des ω-ca-
tégories induite par les équivalences de Thomason est la même que la théorie de l’ho-
motopie des espaces. Le résultat de Gagna est une généralisation du résultat analogue
pour le nerf usuel des petites catégories, attribué à Quillen dans [Ill72]. Dans le cas des
petites catégories, Thomason a même démontré l’existence d’une structure de catégorie
de modèles dont les équivalences faibles sont celles induites par le nerf [Tho80]. Le
résultat analogue pour ωCat est toujours une conjecture [AM14].

Deux homologies pour les ω-catégories. Armé du foncteur nerf de Street, il est natu-
rel de définir le k-ème groupe d’homologie d’une ω-catégorie C comme étant le k-ème
groupe d’homologie du nerf de C. À la lumière du résultat de Gagna, ces groupes d’ho-
mologies sont simplement les groupes d’homologie des espaces vus sous un autre angle.
Afin d’éviter de potentielles confusions à venir, nous appellerons désormais ces groupes
d’homologie les groupes d’homologie singulière de C et nous utiliserons la notation
HSing
k (C).

D’autres groupes d’homologie pour les ω-catégories ont aussi été définis par Mé-
tayer dans [Mét03]. La définition de ceux-ci repose sur la notion de ω-catégorie libre
sur un polygraphe (aussi connue sous le nom de computade), c’est-à-dire de ω-caté-
gorie obtenue de manière récursive à partir de la catégorie vide en attachant librement
des cellules. Désormais, nous dirons simplement ω-catégorie libre. Il a été observé par
Métayer que toute ω-catégorie C admet une résolution polygraphique, c’est-à-dire qu’il
existe une ω-catégorie libre P et un morphisme de ωCat

f : P → C,

satisfaisant des propriétés analogues à celles des fibrations triviales d’espaces topolo-
giques (ou d’ensemples simpliciaux). De plus, toute ω-catégorie libre P peut être « abé-
lianisée » en un complexe de chaînes λ(P ) et il a été démontré par Métayer que pour
deux résolutions polygraphiques P → C et P ′ → C d’une même ω-catégorie, les com-
plexes de chaînes λ(P ) et λ(P ′) sont quasi-isomorphes. Ainsi, on peut définir le k-ème
groupe d’homologie polygraphique de C, noté Hpol

k (C), comme étant le k-ème groupe
d’homologie de λ(P ) pour n’importe quelle résolution polygraphique P → C.

Ces considérations invitent à se poser la question suivante :

A-t-on Hpol
• (C) ' HSing

• (C) pour toute ω-catégorie C ?

Une première réponse partielle a été donnée par Lafont et Métayer [LM09] : pour tout
monoïde M (vu comme une ω-catégorie à un seul objet et dont toutes les cellules de
dimension supérieure à 1 sont des unités), on a Hpol

• (M) ' HSing
• (M). Mentionnons

au passage que l’homologie polygraphique a été conçue originellement pour étudier
l’homologie des monoïdes et fait partie d’un programme dont le but est de générali-
ser en dimension supérieure les travaux de Squier sur la théorie de la réécriture des
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monoïdes [Gui06, Laf07, GM09, GM18]. Malgré le résultat de Lafont et Métayer, la ré-
ponse générale à la question précédente est non. Un contre-exemple a été découvert par
Maltsiniotis et Ara. Soit B le monoïde commutatif (N,+), vu comme une 2-catégorie
avec une seule 0-cellule et pas de 1-cellule non-triviale. Cette 2-catégorie est libre (en
tant que ω-catégorie) et un calcul rapide montre que :

Hpol
k (B) =

{
Z pour k = 0, 2

0 sinon.

D’autre part, Ara a démontré [Ara19, Theorem 4.9 et Example 4.10] que le nerf de B
est un K(Z, 2), qui a donc des groupes d’homologie non triviaux en toute dimension
paire.

La question devient ainsi :

(Q) Quelles sont les ω-catégories C pour lesquelles Hpol
• (C) ' HSing

• (C)?

C’est précisément à cette question que tente de répondre cette thèse. Néanmoins, le lec-
teur trouvera dans ce document plusieurs notions nouvelles et résultats qui, bien qu’ori-
ginellement motivés par la question ci-dessus, sont intrinsèquement intéressants pour
la théorie des ω-catégories et dont la portée dépasse les considérations homologiques
précédentes.

Une autre formulation du problème. Un des accomplissements du travail présenté ici
est l’établissement d’un cadre conceptuel qui permet une reformulation plus abstraite
et plus satisfaisante de la question de comparaison de l’homologie polygraphique et de
l’homologie singulière des ω-catégories.

Pour cela, rappelons tout d’abord qu’une variation de l’équivalence de Dold–Kan
(voir par exemple [Bou90]) permet d’affirmer que la catégorie des objets en groupes
abéliens dans la catégorie ωCat est équivalente à la catégorie des complexes de chaînes
en degré positif

Ab(ωCat) ' Ch≥0.

Ainsi, on a un foncteur d’oubli Ch≥0 ' Ab(ωCat) → ωCat, qui admet un adjoint à
gauche

λ : ωCat→ Ch≥0.

En outre, pour une ω-catégorie libre C, le complexe de chaînes λ(C) est exactement
celui obtenu par le processus d’« abélianisation » que Métayer utilise dans sa définition
d’homologie polygraphique.

Par ailleurs, la catégorie ωCat peut être munie d’une structure de catégorie de mo-
dèles, communément appelée la structure de catégorie de modèles folk [LMW10], dont
les équivalences faibles sont les équivalences de ω-catégories (notion généralisant celle
d’équivalence de catégories) et dont les objets cofibrants sont les ω-catégories libres

13



INTRODUCTION (FRANÇAIS)

[Mét08]. Les résolutions polygraphiques ne sont alors rien d’autre que des remplace-
ments cofibrants pour cette structure de catégorie de modèles. Comme la définition
des groupes d’homologie polygraphique le laissait deviner, le foncteur λ est Quillen
à gauche relativement à cette structure de catégorie de modèles. En particulier, ce fonc-
teur admet un foncteur dérivé à gauche

Lλfolk : ho(ωCatfolk)→ ho(Ch≥0)

et on a tautologiquement Hpol
k (C) = Hk(Lλfolk(C)) pour toute ω-catégorie C et pour

tout k ≥ 0. Désormais, on posera même

Hpol(C) := Lλfolk(C).

Je précise que cette façon de comprendre l’homologie polygraphique comme foncteur
dérivé à gauche fait partie du folklore depuis un certain temps et je ne prétends à aucune
originalité concernant ce point précis.

D’autre part, le foncteur λ est aussi dérivable à gauche quand ωCat est munie des
équivalences de Thomason, ce qui permet d’obtenir un foncteur dérivé à gauche

LλTh : ho(ωCatTh)→ ho(Ch≥0).

En outre, ce foncteur est tel que HSing
k (C) = Hk(LλTh(C)) pour toute ω-catégorie C

et pour tout k ≥ 0. Contrairement au cas « folk », ce résultat est complètement nouveau
et apparaît pour la première fois dans ce manuscrit (à ma connaissance, du moins).
Notons également que, puisque l’existence d’une structure de catégorie de modèles « à
la Thomason » sur ωCat est toujours conjecturale, les outils habituels de la théorie de
Quillen des catégories de modèles sont inutilisables pour démontrer que λ est dérivable
à gauche. La difficulté fut de trouver un moyen de contourner ce problème.

Désormais, on posera
HSing(C) := LλTh(C).

Finalement, on peut montrer que toute équivalence de ω-catégories est une équiva-
lence de Thomason. Ainsi, le foncteur identité de ωCat induit formellement un foncteur
J au niveau des catégories homotopiques

J : ho(ωCatfolk)→ ho(ωCatTh),

et on obtient donc un triangle

ho(ωCatfolk) ho(ωCatTh)

ho(Ch≥0).
Lλfolk

J

LλTh
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Ce triangle n’est pas commutatif (même à un isomorphisme près), car cela implique-
rait que les groupes d’homologie singulière et les groupes d’homologie polygraphique
coïncident pour toute ω-catégorie. Néanmoins, puisque les foncteurs Lλfolk et LλTh

sont tous les deux des foncteurs dérivés à gauche du même foncteur, l’existence d’une
transformation naturelle π : LλTh◦J ⇒ Lλfolk découle formellement par propriété uni-
verselle. De plus, J étant l’identité sur les objets, cette transformation naturelle fournit
pour toute ω-catégorie C un morphisme

πC : HSing(C)→ Hpol(C),

que nous appellerons le morphisme de comparaison canonique. Une ω-catégorie C est
qualifiée d’homologiquement cohérente si πC est un isomorphisme (ce qui signifie exac-
tement que le morphisme induit HSing

k (C) → Hpol
k (C) est un isomorphisme pour tout

k ≥ 0). La question devient alors :

(Q’) Quelles ω-catégories sont homologiquement cohérentes?

Notons au passage que la question (Q’) est théoriquement plus précise que la question
(Q). Cependant, dans tous les exemples concrets que nous rencontrerons, c’est toujours
à la question (Q’) que nous répondrons.

Comme il sera expliqué dans la thèse, de cette reformulation en terme de foncteurs
dérivés, il est également possible de déduire formellement que l’homologie polygra-
phique n’est pas invariante relativement aux équivalences de Thomason. Cela signifie
qu’il existe au moins une équivalence de Thomason f : C → D telle que le morphisme
induit en homologie polygraphique

Hpol(C)→ Hpol(D)

n’est pas un isomorphisme. En d’autres termes, si nous voyons les ω-catégories comme
modèles des types d’homotopie (via la localisation de ωCat relativement aux équiva-
lences de Thomason), alors l’homologie polygraphique n’est pas un invariant bien dé-
fini. Un autre point de vue possible serait de considérer que l’homologie polygraphique
est un invariant intrinsèque des ω-catégories (et non pas à équivalence de Thomason
près) et, de cette façon, est un invariant plus fin que l’homologie singulière. Ce n’est
pas le point de vue adopté dans cette thèse et ce choix sera motivé à la fin de cette
introduction. Le slogan à retenir est :

L’homologie polygraphique est un moyen de calculer les groupes d’homologie
singulière des ω-catégories homologiquement cohérentes.

L’idée étant que pour une ω-catégorie libre P (qui est donc sa propre résolution poly-
graphique), le complexe de chaînes λ(P ) est beaucoup moins « gros » que le complexe
de chaînes associé au nerf de P , et ainsi les groupes d’homologie polygraphique de P
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sont beaucoup plus faciles à calculer que les groupes d’homologie singulière. La situa-
tion est comparable à l’utilisation de l’homologie cellulaire afin de calculer les groupes
d’homologie singulière d’un CW-complexe. La différence étant que dans ce dernier cas
il est toujours possible de procéder ainsi, alors que dans le cas des ω-catégories, on
doit d’abord s’assurer que la ω-catégorie (libre) en question est bien homologiquement
cohérente.

Détecter les ω-catégories qui sont homologiquement cohérentes. Un des principaux
résultats de cette thèse est le suivant :

Toute (petite) catégorie est homologiquement cohérente.

Afin de donner du sens à cette assertion, il faut considérer les catégories comme des
ω-catégories dont les cellules au delà de la dimension 1 sont des unités. Le résultat ci-
dessus n’est pas pour autant trivial car pour une résolution polygraphique P → C d’une
petite catégorie C, la ω-catégorie P , elle, n’a pas forcément que des cellules unités au
delà de la dimension 1.

En tant que tel, ce résultat est seulement une petite généralisation du résultat de
Lafont et Métayer sur les monoïdes (bien qu’il soit plus précis, même restreint aux
monoïdes, car il dit que c’est le morphisme de comparaison canonique qui est un iso-
morphisme). Mais la véritable nouveauté du résultat en est sa démonstration qui est
plus conceptuelle que celle de Lafont et Métayer. Elle repose sur l’introduction de nou-
velles notions et le développement de nouveaux résultats ; le tout s’assemblant élégam-
ment pour finalement produire le résultat voulu. Cette thèse a été écrite de telle façon
que tous les élements nécessaires à la démonstration du résultat précédent sont répartis
sur plusieurs chapitres ; une version plus condensée de celle-ci se trouve dans l’article
[Gue21]. Parmi les nouvelles notions développées, la plus significative est probablement
celle de ω-foncteur de Conduché discret. Un ω-foncteur f : C → D est un ω-foncteur
de Conduché discret quand pour toute cellule x de C, si f(x) peut être décomposé en

f(x) = y′ ∗
k
y′′,

alors il existe une unique paire (x′, x′′) de cellules de C qui sont k-composables et telles
que

f(x′) = y′, f(x′′) = y′′ and x = x′ ∗
k
x′′.

Le résultat principal démontré concernant cette notion est que pour tout ω-foncteur de
Conduché discret f : C → D, si D est libre alors C est aussi libre. La démonstration
est longue et fastidieuse, bien que relativement facile d’un point de vue conceptuel, et
apparaît pour la première fois dans le papier [Gue20], qui lui est dédié.

Une fois le cas de l’homologie des (1-)catégories complètement résolu, il est naturel
de s’intéresser aux 2-catégories. Contrairement au cas des (1-)catégories, les 2-catégo-
ries ne sont pas toutes homologiquement cohérentes et la situation est beaucoup plus
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compliquée. En premier lieu, on peut se restreindre aux 2-catégories qui sont libres (en
tant que ω-catégories) et c’est ce qui est fait dans cette thèse. Avec cette hypothèse
simplificatrice, le problème de caractérisation des 2-catégories libres homologiquement
cohérentes peut être réduit à la question suivante : soit un carré cocartésien de la forme

S1 P

D2 P ′,
p

où P est une 2-catégorie libre, quand est-il homotopiquement cocartésien relativement
aux équivalences de Thomason? En conséquence, une partie substantielle du travail
présenté ici consiste à développer des outils permettant de reconnaître les carrés homo-
topiquement cocartésiens de 2-catégories relativement aux équivalences de Thomason.
Bien que les outils qui seront présentés ne permettent pas de répondre entièrement à la
question ci-dessus, ils permettent tout de même de détecter de tels carrés cocartésiens
dans beaucoup de situations concrètes. Il y a même une section entière de la thèse qui
consiste uniquement en une liste d’exemples détaillés de calculs du type d’homotopie
de 2-catégories libres en utilisant ces outils. De ces exemples se dégage très claire-
ment une classe particulière de 2-catégories, que j’ai nommées les « 2-catégories sans
bulles » et qui sont caractérisées comme suit. Pour une 2-catégorie, appelons bulle une
2-cellule non-triviale dont la source et le but sont des unités sur une 0-cellule (néces-
sairement la même). Une 2-catégorie sans bulles est simplement une 2-catégorie qui
n’a aucune bulle. L’archétype de la 2-catégorie qui n’est pas sans bulles est la 2-caté-
gorie B que nous avons déjà rencontrée plus haut (c’est-à-dire le monoïde commutatif
(N,+) vu comme une 2-catégorie). Comme dit précédemment, cette 2-catégorie n’est
pas homologiquement cohérente et cela ne semble pas être une coïncidence. Il est tout à
fait remarquable que de toutes les 2-catégories étudiées dans cette thèse, les seules qui
ne sont pas homologiquement cohérentes sont exactement celles qui ne sont pas sans
bulles. Cela conduit à la conjecture ci-dessous, qui est le point d’orgue de la thèse.

(Conjecture) Une 2-catégorie libre est homologie cohérente si et seulement si elle est
sans bulles.

Une vue d’ensemble. Terminons cette introduction par un autre point de vue sur la
comparaison des homologies polygraphique et singulière. Précisons immédiatement que
ce point de vue est hautement conjectural et n’est pas du tout abordé dans le reste de la
thèse. Il s’agit plus d’un guide pour des travaux futurs qu’autre chose.

De la même façon que les 2-catégories (strictes) sont des cas particuliers de bica-
tégories, les ω-catégories strictes sont en réalité des cas particuliers de ce qui est com-
munément appelé des ω-catégories faibles. Ces objets mathématiques ont été définis,
par exemple, par Batanin en utilisant le formalisme des opérades globulaires [Bat98] ou
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par Maltsiniotis en suivant des idées de Grothendieck [Mal10]. Tout comme la théorie
des quasi-catégories (qui est un modèle homotopique pour la théorie des ω-catégories
faibles dont les cellules sont toutes inversibles au delà de la dimension 1) s’exprime
avec le même langage que la théorie des catégories usuelle, il est attendu que toutes les
notions « intrinsèques » (dans un sens précis à définir) de la théorie des ω-catégories
strictes ont des analogues faibles. Par exemple, il est attendu qu’il y ait une structure
de catégorie de modèles folk sur la catégorie des ω-catégories faibles et qu’il y ait une
bonne notion de ω-catégorie faible libre. En fait, ces dernières seraient certainement
définies comme les ω-catégories faibles qui sont récursivement obtenues à partir de
la ω-catégorie vide en attachant librement des cellules, ce qui est l’analogue formelle
du cas strict. Le point clé ici est qu’une ω-catégorie stricte libre n’est jamais libre en
tant que ω-catégorie faible (excepté la ω-catégorie vide). Par ailleurs, il existe de bons
candidats pour l’homologie polygraphique des ω-catégories faibles qui sont obtenus
par mimétisme de la définition du cas strict. Mais il n’y aucune raison en général que
l’homologie polygraphique d’une ω-catégorie stricte soit la même que son « homolo-
gie polygraphique faible ». En effet, puisque les ω-catégories strictes libres ne sont pas
libres en tant que ω-catégories faibles, prendre une « résolution polygraphique faible »
d’une ω-catégorie libre ne revient pas à prendre une résolution polygraphique. De fait,
lorsqu’on essaye de calculer l’homologie polygraphique faible de B, il semblerait que
cela donne les groupes d’homologie d’un K(Z, 2), ce qui aurait été attendu de l’homo-
logie polygraphique au départ. De cette observation, il est tentant de faire la conjecture
suivante :

L’homologie polygraphique faible d’une ω-categorie stricte coïncide avec son
homologie singulière.

En d’autres termes, nous conjecturons que le fait que l’homologie polygraphique et
l’homologie singulière d’une ω-catégorie stricte ne coïncident pas est un défaut dû à
un cadre de travail trop étroit. La « bonne » définition de l’homologie polygraphique
devrait être la faible.

Nous pourrions même aller plus loin et conjecturer la même chose pour les ω-ca-
tégories faibles. Pour cela, il est nécessaire de disposer d’une définition de l’homolo-
gie singulière des ω-catégories faibles. Conjecturellement, on procède de la manière
suivante. À toute ω-catégorie faible C, on peut associer un ω-groupoïde faible L(C)
en inversant formellement toutes les cellules de C. Puis, si on en croit la conjecture
de Grothendieck (voir [Gro83] et [Mal10, Section 2]), la catégorie des ω-groupoïdes
faibles munie des équivalences de ω-groupoïdes faibles (voir [Mal10, Paragraph 2.2])
est un modèle de la théorie homotopique des espaces. En particulier, chaque ω-grou-
poïde a des groupes d’homologie et on peut définir les groupes d’homologie singulière
d’une ω-catégorie faible C comme les groupes d’homologie de L(C).
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Organisation de la thèse. Dans le premier chapitre, nous passerons en revue quelques
aspects de la théorie des ω-catégories. En particulier, nous étudierons avec grand soin
les ω-catégories libres, qui sont au cœur de cette thèse. C’est le seul chapitre de la thèse
qui ne contient aucune référence à la théorie de l’homotopie. C’est également dans ce
chapitre que nous introduirons la notion de ω-foncteur de Conduché discret et que nous
étudierons leur relation avec les ω-catégories libres. Le point culminant du chapitre étant
le théorème 1.6.18, qui dit que pour un ω-foncteur de Conduché discret F : C → D, si
D est libre, alors C l’est aussi. La démonstration de ce théorème est longue et technique
et est décomposée en plusieurs parties distinctes.

Le second chapitre a pour but de rappeler quelques outils d’algèbre homotopique.
En particulier, les aspects élémentaires de la théorie des colimites homotopiques en
utilisant le formalisme de Grothendieck des dérivateurs y sont rapidement présentés.
Notons au passage que ce chapitre ne contient aucun résultat original et peut être omis
en première lecture. Son unique raison d’être est de donner au lecteur un catalogue de
résultats concernant les colimites homotopiques qui seront utilisés par la suite.

Dans le troisième chapitre, nous aborderons enfin la théorie de l’homotopie des
ω-catégories. C’est là que seront définies et comparées entre elles les différentes no-
tions d’équivalences faibles pour les ω-catégories. Les deux résultats les plus significa-
tifs de ce chapitre sont probablement la proposition 3.6.2, qui dit que toute équivalence
de ω-catégorie est une équivalence de Thomason, et le théorème 3.7.4, qui dit que les
équivalences de ω-catégories satisfont une propriété réminiscente du théorème A de
Quillen [Qui73, Theorem A] et sa généralisation ω-catégorique par Ara et Maltsiniotis
[AM18, AM20c].

Dans le quatrième chapitre, nous définirons les homologies polygraphique et sin-
gulière des ω-catégories et fomulerons précisément le problème de leur comparaison.
Jusqu’à la section 4.3 incluse, tous les résultats étaient connus avant cette thèse (au
moins dans le folklore), mais à partir de la section 4.4 tous les résultats sont orignaux.
Trois résultats fondamentaux de ce chapitre sont les suivants : le théorème 4.4.5, qui dit
que l’homologie singulière s’obtient comme le foncteur dérivé d’un foncteur d’abéliani-
sation, la proposition 4.5.10, qui donne un critère abstrait pour détecter les ω-catégories
homologiquement cohérentes, et la proposition 4.6.23, qui dit que les groupes d’homo-
logies polygraphique et singulière coïncident toujours en basse dimension.

Le cinquième chapitre a pour but de démontrer le théorème fondamental 5.3.14,
qui dit que toute catégorie est homologiquement cohérente. Pour cela, nous nous inté-
resserons en premier lieu à une classe particulière de ω-catégories, dites contractiles,
et nous montrerons que toute ω-catégorie contractile est homologiquement cohérente
(Proposition 5.1.2).

Enfin, le sixième et dernier chapitre de la thèse s’intéresse à l’homologie des 2-ca-
tégories libres. Le but est d’essayer de comprendre quelles sont les 2-catégories libres
qui sont homologiquement cohérentes. Pour cela, un critère pour détecter les carrés ho-
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motopiquement cocartésiens relativement aux équivalences de Thomason y est donné
(Proposition 6.3.14). Ce critère est fondé sur la théorie de l’homotopie des ensembles
bisimpliciaux. Ensuite, nous appliquerons ce critère ainsi que d’autres techniques ad hoc
au calcul du type d’homotopie d’un grand nombre de 2-catégories libres. La conclusion
du chapitre est la conjecture 6.6.5, qui énonce qu’une 2-catégorie libre est homologi-
quement cohérente si et seulement si elle est sans bulles.
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CHAPTER 1

YOGA OF ω-CATEGORIES

1.1 ω-GRAPHS, ω-MAGMAS AND ω-CATEGORIES

1.1.1. An ω-graph X consists of an infinite sequence of sets (Xn)n∈N together with
maps

Xn Xn+1
s

t

for every n ∈ N, subject to the globular identities:{
s ◦ s = s ◦ t,

t ◦ t = t ◦ s.

Elements of Xn are called n-cells or n-arrows or cells of dimension n. For n = 0,
elements of X0 are also called objects. For x an n-cell with n > 0, s(x) is the source of
x and t(x) is the target of x. We use the notation

x : a→ b

to say that a is the source of x and b is the target of x.
More generally, for 0 ≤ k < n, we define maps sk : Xn → Xk and tk : Xn → Xk

as
sk = s ◦ · · · ◦ s︸ ︷︷ ︸

n−k times

and
tk = t ◦ · · · ◦ t︸ ︷︷ ︸

n−k times

.

For an n-cell x, the k-cells sk(x) and tk(x) are respectively the k-source and the k-target
of x.
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Two n-cells x and y are parallel if

n = 0

or
n > 0 and s(x) = s(y) and t(x) = t(y).

Let 0 ≤ k < n. Two n-cells x and y are k-composable if

sk(x) = tk(y).

Note that the expression “x and y are k-composable” is not symmetric in x and y and
we should rather speak of a “k-composable pair (x, y)”, although we won’t always do
it. The set of pairs of k-composable n-cells is denoted byXn ×

Xk
Xn, and is characterized

as the following fibred product

Xn ×
Xk
Xn Xn

Xn Xk.

y tk

sk

A morphism of ω-graphs f : X → Y is a sequence (fn : Xn → Yn)n∈N of maps that is
compatible with source and target, i.e. for every n-cell x of X with n > 0, we have

fn−1(s(x)) = s(fn(x)) and fn−1(t(x)) = t(fn(x)).

For an n-cell x of X , we often write f(x) instead of fn(x).
The category of ω-graphs and morphisms of ω-graphs is denoted by ωGrph.

1.1.2. An ω-magma consists of an ω-graph X together with maps

1(9) : Xn → Xn+1

x 7→ 1x

for every n ≥ 0, and maps

(9) ∗
k

(9) : Xn ×
Xk
Xn → Xn

(x, y) 7→ x ∗
k
y

for all 0 ≤ k < n, subject to the following axioms:

(a) For every n ≥ 0 and every n-cell x,

s(1x) = s(1x) = x.
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(b) For all 0 ≤ k < n and all k-composable n-cells x and y,

s(x ∗
k
y) =

{
s(y) when k = n− 1,

s(x) ∗
k

s(y) otherwise,

and

t(x ∗
k
y) =

{
t(x) when k = n− 1,

t(x) ∗
k

t(y) otherwise.

We will use the same letter to denote an ω-magma and its underlying ω-graph.
For an n-cell x, the (n + 1)-cell 1x is referred to as the unit on x. More generally,

for all 0 ≤ k < n, we define maps 1
(n)
(9) : Ck → Cn as

1
(n)
(9) := 1(9) ◦ · · · ◦ 1(9)︸ ︷︷ ︸

n−k times

: Ck → Cn.

For a k-cell x and n > k, the n-cell 1
(n)
x is referred to as the n-dimensional unit on x.

For consistency, we also set
1(k)
x := x

for every k-cell x. An n-cell that is a unit on a strictly lower dimensional cell is some-
times referred to as a trivial n-cell.

For two k-composable n-cells x and y, the n-cell x ∗
k
y is referred to as the k-com-

position of x and y.
More generally, we extend the notion of k-composition for cells of different di-

mension in the following way. Let x be an n-cell, y be an m-cell with m 6= n and
k < min{m,n}. The cells x and y are k-composable if sk(x) = tk(y), in which case
we define the cell x ∗

k
y of dimension max{m,n} as

x ∗
k
y :=

1nx ∗
k
y if m < n

x ∗
k

1my if m > n

We also follow the convention that if n < m, then ∗
n

has priority over ∗
m

. This means that

x ∗
n
y ∗
m
z = (x ∗

n
y) ∗

m
z and x ∗

m
y ∗
n
z = x ∗

m
(y ∗

n
z)

whenever these equations make sense.
A morphism of ω-magmas f : X → Y is a morphism of underlying ω-graphs that is

compatible with units and compositions, i.e. for every n-cell x, we have

f(1x) = 1f(x),
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and for every k-composable n-cells x and y, we have

f(x ∗
k
y) = f(x) ∗

k
f(y).

We write ωMag for the category of ω-magmas and morphisms of ω-magmas.

1.1.3. An ω-category is an ω-magma X that satisfies the following axioms:

Units: for all k < n, for every n-cell x, we have

1
(n)
tk(x) ∗k x = x = x ∗

k
1

(n)
sk(x),

Functoriality of units: for all k < n and for all k-composable n-cells x and y, we have

1x∗
k
y = 1x ∗

k
1y,

Associativity: for all k < n, for all n-cells x, y and z such that x and y are k-compos-
able, and y and z are k-composable, we have

(x ∗
k
y) ∗

k
z = x ∗

k
(y ∗

k
z),

Exchange rule: for all k, l, n ∈ N with k < l < n, for all n-cells x, x′, y and y′ such
that

- x and y are l-composable, x′ and y′ are l-composable,

- x and x′ are k-composable, y and y′ are k-composable,

we have
(x ∗

k
x′) ∗

l
(y ∗

k
y′) = (x ∗

l
y) ∗

k
(x′ ∗

l
y′).

We will use the same letter to denote an ω-category and its underlying ω-magma. A
morphism of ω-categories (or ω-functor) f : X → Y is simply a morphism of the
underlying ω-magmas. We denote by ωCat the category of ω-categories and morphisms
of ω-categories. This category is locally presentable.

1.1.4. For n ∈ N, the notions of n-graph, n-magma and n-category are defined as
truncated version of ω-graph, ω-magma and ω-category in an obvious way. For exam-
ple, a 0-category is a set and a 1-category is nothing but a usual (small) category. The
category of n-categories and morphisms of n-categories (or n-functors) is denoted by
nCat. When n = 0 and n = 1, we almost always use the notation Set and Cat instead
of 0Cat and 1Cat.
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For every n ≥ 0, there is a canonical functor

τ s≤n : ωCat→ nCat

that simply discards all the cells of dimension strictly higher than n. This functor has a
left adjoint

ιn : nCat→ ωCat,

where for an n-category C, the ω-category ιn(C) has the same k-cells as C for k ≤ n
and only unit cells in dimension strictly higher than n. This functor itself has a left
adjoint

τ i≤n : ωCat→ nCat,

where for an ω-category C, the n-category τ i≤n(C) has the same k-cells as C for k < n
and whose set of n-cells is the quotient ofCn under the equivalence relation∼ generated
by

x ∼ y if there exists z ∈ Cn+1 of the form z : x→ y.

The functor τ s≤n also have a right adjoint

κn : nCat→ ωCat,

where for an n-category C, the ω-category κn(C) has the same k-cells as C for k ≤ n
and has exactly one k-cell x→ y for every pair of parallel (k−1)-cells (x, y) for k > n.

The sequence of adjunctions

τ i≤n a ιn a τ s≤n a κn

is maximal in that κn doesn’t have a right adjoint and τ i≤n doesn’t have a left adjoint.
The functors τ s≤n and τ i≤n are respectively referred to as the stupid truncation functor

and the intelligent truncation functor.
The functor ιn is fully faithful and preserves both limits and colimits; in regards to

these properties, we often identify nCat with the essential image of ιn, which is the full
subcategory of ωCat spanned by the ω-categories whose k-cells for k > n are all units.

1.1.5. For n ≥ 0, we define the n-skeleton functor skn : ωCat→ ωCat as

skn := ιn ◦ τ s≤n.

This functor preserves both limits and colimits. For an ω-category C, skn(C) is the sub-
ω-category of C generated by the k-cells of C with k ≤ n in an obvious sense. It is also
convenient to define sk−1(C) to be the empty ω-category

sk−1(C) = ∅
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for every ω-category C. Note that the functor sk−1 : ωCat→ ωCat preserves colimits
but does not preserve limits. The inclusion induces a canonical filtration

∅ = sk−1(C) ↪→ sk0(C) ↪→ sk1(C) ↪→ · · · ↪→ skn(C) ↪→ · · · ,

and we leave the proof of the following lemma as an easy exercise for the reader.

Lemma 1.1.6. Let C be an ω-category. The colimit of the canonical filtration

sk−1(C) ↪→ sk0(C) ↪→ sk1(C) ↪→ · · · ↪→ skn(C) ↪→ · · ·

is C and for n ≥ 0 the universal arrow skn(C) → C is given by the co-unit of the
adjunction τ s≤n a ιn.

1.1.7. For n ∈ N, the n-globe Dn is the n-category that has:

- exactly one non-trivial n-cell, which we refer to as the principal n-cell of Dn, and
which we denote by en,

- exactly two non-trivial k-cells for every k < n; these k-cells being parallel and
given by the k-source and the k-target of en.

This completely describes the n-category Dn as no non-trivial composition can occur.
Here are pictures in low dimension:

D0 = •,

D1 = • •,

D2 = • •,

D3 = • •.V

For every ω-category C, the map

HomωCat(Dn, C)→ Cn

F 7→ F (en)

is a bijection natural in C. In other words, the n-globe represents the functor

ωCat→ Set

C 7→ Cn.

For an n-cell x of C, we denote by

〈x〉 : Dn → C

the canonically associated ω-functor.
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1.1.8. For n ∈ N, the n-sphere Sn is the n-category that has exactly two parallel non-
trivial k-cells for every k ≤ n. In other words, we have

Sn = skn(Dn+1),

and in particular, we have a canonical inclusion functor

in+1 : Sn → Dn+1.

It is also customary to define S−1 to be the empty ω-category and i−1 to be the unique
ω-functor

∅ → D0.

Notice that for every n ≥ 0, the following commutative square

Sn−1 Dn

Dn Sn,

in

in j+n

j−n

where we wrote j+
n (resp. j−n ) for the morphism 〈t(en+1)〉 : Dn → Sn (resp. 〈s(en+1)〉 :

Dn → Sn), is cocartesian.
Here are some pictures of the n-spheres in low dimension:

S0 = • •,

S1 = • •,

S2 = • •.

For an ω-category C and n ≥ 0, an ω-functor

Sn → C

amounts to the data of two parallel n-cells ofC. In other words, Sn represents the functor
ωCat→ Set that sends an ω-category to the set of its parallel n-cells. For (x, y) a pair
of parallel n-cells of C, we denote by

〈x, y〉 : Sn → C

the canonically associated ω-functor. For example, the ω-functor in is nothing but

〈s(en+1), t(en+1)〉 : Sn → Dn+1.
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1.2 FREE ω-CATEGORIES

Definition 1.2.1. Let C be an ω-category and n ≥ 0. A subset E ⊆ Cn of the n-cells of
C is an n-basis of C if the commutative square∐

x∈E

Sn−1 skn−1(C)

∐
x∈E

Dn skn(C)

∐
x∈E

in

〈s(x),t(x)〉x∈E

〈x〉x∈E

is cocartesian.

Remark 1.2.2. Note that since for all n < m, we have skn ◦ skm = skn, an ω-category
C has an n-basis if and only if skn(C) has an n-basis.

1.2.3. Let us unfold Definition 1.2.1. For n = 0, E is an 0-basis of C if E = C0. For
n > 0, E is n-basis of C if for every n-category D, for every (n− 1)-functor

F : τ s≤n−1(C)→ τ s≤n−1(D),

and for every map
f : E → Dn

such that for every x ∈ E,

s(f(x)) = F (s(x)) and t(f(x)) = F (t(x)),

there exists a unique n-functor

F̃ : τ s≤n(C)→ D

such that F̃k = Fk for every k < n and F̃n(x) = f(x) for every x ∈ E.
Intuitively speaking, this means that skn(C) has been obtained from skn−1(C) by

freely adjoining the cells in E.

Example 1.2.4. An n-category (seen as an ω-category) always has a k-basis for every
k > n, namely the empty set.

Less trivial examples will come along soon.
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Definition 1.2.5. An ω-category is free1 if it has n-basis for every n ≥ 0.

1.2.6. By considering nCat as a subcategory of ωCat, the previous definition also
works for n-categories. It follows from Example 1.2.4 that an n-category is free if and
only if it has a k-basis for every 0 ≤ k ≤ n.

We now wish to recall an important result due to Makkai concerning the uniqueness
of the n-basis for a free ω-category. First we need the following definition.

Definition 1.2.7. LetC be an ω-category. For n > 0, an n-cell x ofC is indecomposable
if both following conditions are satisfied:

(a) x is not a unit on a lower dimensional cell,

(b) if x is of the form
x = a ∗

k
b

with k < n, then either
a = 1

(n)
tk(x),

or
b = 1

(n)
sk(x).

For n = 0, all 0-cells are, by convention, indecomposable.

We can now state the promised result, whose proof can be found in [Mak05, Section
4, Proposition 8.3].

Proposition 1.2.8 (Makkai). Let C be a free ω-category. For every n ∈ N, C has a
unique n-basis. The cells of this n-basis are exactly the indecomposable n-cells of C.

Remark 1.2.9. Note that there is a subtlety in the previous proposition. It is not true in
general that if an ω-categoryC has an n-basis then it is unique. The point is that we need
the existence of the k-bases for k < n in order to prove the uniqueness of the n-basis.
(See the paper of Makkai cited previously for details.)

1.2.10. Proposition 1.2.8 allows us to speak of the k-basis of a free ω-category C and
more generally of the basis of C for the sequence

(Σk)k∈N

where each Σk is the k-basis of C. In the case that C is a free n-category with n finite
and in light of Example 1.2.4, we will also speak of the basis of C as the finite sequence

(Σk)0≤k≤n.

1Other common terminology for “free ω-category” is “ω-category free on a polygraph” [Bur93] or
“ω-category free on a computad” [Str76, Mak05].
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We often refer to the elements of the n-basis of a free ω-category as the generating
n-cells. This sometimes leads to use the alternative terminology set of generating n-cells
instead of n-basis.

Definition 1.2.11. Let C and D be two free ω-categories. An ω-functor f : C → D is
rigid if for every n ≥ 0 and every generating n-cell x of C, f(x) is a generating n-cell
of D.

So far, we have not yet seen examples of free ω-categories. In order to do so, we will
explain in a further section a recursive way of constructing free ω-categories; but let us
first take a little detour.

1.3 SUSPENSION OF MONOIDS AND COUNTING GEN-
ERATORS

1.3.1. Let M be a monoid. For every n > 0, let BnM be the n-magma such that:

- it has only one object ?,

- it has only one k-cell for 0 < k < n, which is 1
(k)
? ,

- the set of n-cells is (the underlying set of) M ,

- for every k < n, the k-composition of n-cells is given by the composition law of
the monoid (which makes sense since all n-cells are k-composable) and the only
unital n-cell is given by the neutral element of the monoid.

It is sometimes useful to extend the above construction to the case n = 0 by saying that
B0M is the underlying set of the monoid M .

For n = 1, B1M is nothing but the monoid M seen as a 1-category with one object.
For n > 1, while it is clear that all first three axioms for n-categories (units, func-

toriality of units and associativity) hold, it is not always true that the exchange rule is
satisfied. If ∗ denotes the composition law of the monoid, this axiom states that for all
a, b, c, d ∈M , we must have

(a ∗ b) ∗ (c ∗ d) = (a ∗ c) ∗ (b ∗ d).

It is straightforward to see that this equation holds if and only if M is commutative.
Hence, we have proved the following lemma.

Lemma 1.3.2. Let M be a monoid and n ∈ N. Then:

- if n = 1, B1M is a 1-category,
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- if n > 1, the n-magma BnM is an n-category if and only if M is commutative.

This construction will turn out to be of great use many times in this dissertation and
we now explore a few of its properties.

Lemma 1.3.3. Let C be an n-category with n ≥ 1 and let M = (M, ∗, 1) be a monoid
(commutative if n > 1). The map

HomnCat(C,B
nM)→ HomSet(Cn,M)

F 7→ Fn

is injective and its image consists exactly of those functions f : Cn →M such that:

- for every 0 ≤ k < n and every pair (x, y) of k-composable n-cells of C, we have

f(x ∗
k
y) = f(x) ∗ f(y),

- for every x ∈ Cn−1, we have
f(1x) = 1.

Proof. The injectivity part follows from the fact that (BnM)k is a singleton set for every
k < n and hence, an n-functor F : C → BnM is entirely determined by its restriction
to the n-cells Fn : Cn →M .

The characterization of the image is immediate once noted that the requirements are
only the reformulation of the axioms of n-functors in this particular case.

Lemma 1.3.4. Let C be an n-category with n ≥ 1 and M a monoid (commutative if
n > 1). If C has an n-basis E, then the map

HomnCat(C,B
nM)→ HomSet(E,M)

F 7→ Fn|E

is bijective.

Proof. This is an immediate consequence of the universal property of n-bases (as ex-
plained in Paragraph 1.2.3)

We can now prove the important proposition below.

Proposition 1.3.5. Let C be an ω-category and suppose that C has an n-basis E with
n ≥ 0. For every α ∈ E, there exists a unique function

wα : Cn → N

such that:
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(a) wα(α) = 1,

(b) wα(β) = 0 for every β ∈ E such that β 6= α,

(c) for every 0 ≤ k < n and every pair (x, y) of k-composable n-cells of C, we have

wα(x ∗
k
y) = wα(x) + wα(y).

Proof. Notice first that C has an n-basis if and only if skn(C) has an n-basis (Remark
1.2.2). Hence we can suppose that C is an n-category.

For n = 0, conditions (c) is vacuous and the assertion is trivial.
Now let n > 0 and consider the monoid N = (N,+, 0). The existence of a function

Cn → N satisfying conditions (a) and (b) follows from Lemma 1.3.4 and the fact that it
satisfies (c) follows Lemma 1.3.3.

For the uniqueness, notice that for every x ∈ Cn−1 we have 1x = 1x ∗
n−1

1x and thus

condition (c) implies that
wα(1x) = 0.

Hence, we can apply Lemma 1.3.3 which shows that wα necessarily comes from an
n-functor C → BnN. Then, the uniqueness follows from conditions (a) and (b) and
Lemma 1.3.4.

1.3.6. Let C be an n-category with an n-basis E. For an n-cell x of C, we refer to the
integer wα(x) as the weight of α in x. The reason for such a name will become clearer
after Remark 1.8.13 where we give an explicit construction of wα as a function that
“counts the number of occurrences of α in an n-cell”.

For later reference, let us also highlight the fact that in the proof of the previous
proposition, we have shown the important property that if n > 0, then for y ∈ Cn−1, we
have

wα(1y) = 0.

This implies that for n > 1, there might be n-cells x such that

x 6= α and wα(x) = 1.

Indeed, suppose that there exists a k-cell z with 0 < k < n− 1 which is not a unit on a
lower dimensional cell and such that tk−1(z) = sk−1(α), then we have

wα(α ∗
k−1

1(n)
z ) = wα(α) + wα(1(n)

z ) = 1.
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1.4 RECURSIVE CONSTRUCTION OF FREE ω-CATEGORIES

Definition 1.4.1. Let n ∈ N. An n-cellular extension is a quadruplet E = (C,Σ, σ, τ)
where:

- C is an n-category,

- Σ is a set, whose elements are referred to as the indeterminates of E ,

- σ and τ are maps Σ → Cn such that for every element x ∈ Σ, the n-cells σ(x)
and τ(x) are parallel.

1.4.2. If we are given an n-category C, then we also say that an n-cellular extension E
is a cellular extension of C if it is of the form E = (C,Σ, σ, τ).

Intuitively speaking, the indeterminates are formal extra (n+ 1)-cells attached to C
via σ and τ . For every x ∈ Σ, the n-cells σ(x) and τ(x) are understood respectively
the source and target of x (which makes sense since these two n-cells are parallel).
Consequently, we often adopt the notation

x : a→ b

for an indeterminate such that σ(x) = a and τ(x) = b.

Definition 1.4.3. Let E = (C,Σ, σ, τ) and E ′ = (C ′,Σ′, σ′, τ ′) be two n-cellular exten-
sions. A morphism of n-cellular extensions E → E ′ consists of a pair (F, ϕ) where:

- F is an n-functor C → C ′,

- ϕ is a map Σ→ Σ′,

such that for every x ∈ Σ, we have

σ′(ϕ(x)) = F (σ(x)) and τ ′(ϕ(x)) = F (τ(x)).

1.4.4. For n ≥ 0, we denote by nCat+ the category of n-cellular extensions and mor-
phisms of n-cellular extensions. Every (n+1)-category C canonically defines an n-cel-
lular extension (τ s≤n(C), Cn+1, s, t) where s, t : Cn+1 → Cn are the source and target
maps of C. This defines a functor

Un : (n+ 1)Cat→ nCat+

C 7→ (τ s≤n(C), Cn+1, s, t).
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On the other hand, every n-cellular extension E = (D,Σ, σ, τ) yields an (n+1)-category
E∗ defined as the following amalgamated sum:∐

x∈Σ

Sn D

∐
x∈Σ

Dn+1 E∗.

∐
x∈Σ

in+1

〈σ(x),τ(x)〉x∈Σ

p

(1.1)

This defines a functor

nCat+ → (n+ 1)Cat

E 7→ E∗,

which is easily checked to be left adjoint to Un.
Now let φ :

∐
x∈Σ Dn → E∗ be the bottom map of square (1.1). It induces a canonical

map

j : Σ→ (E∗)n+1

x 7→ φx(en+1),

where en+1 is the principal (n + 1)-cell of Dn+1 (1.1.7). Notice that this map is natural
in that, for every morphism of n-cellular extensions

G = (F, ϕ) : E → E ′,

the square
Σ Σ′

(E∗)n+1 (E ′∗)n+1

j

ϕ

j′

(G∗)n+1

is commutative. Notice also that j is compatible with source and target in the sense that
for every x ∈ Σ, we have

s(j(x)) = σ(x) and t(j(x)) = τ(x).

Lemma 1.4.5. Let E = (C,Σ, σ, τ) be an n-cellular extension. The canonical map

j : Σ→ (E∗)n+1

is injective.
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Proof. A thorough reading of the techniques used in the proofs of Lemma 1.3.3, Lemma
1.3.4 and Proposition 1.3.5 shows that the universal property defining E∗ as the amal-
gamated sum (1.1) is sufficient enough to prove the existence, for each x ∈ Σ, of a
function

wx : (E∗)n+1 → N
such that wx(j(x)) = 1 and wx(j(y)) = 0 for every y ∈ Σ with y 6= x. In particular,
this implies that j is injective.

1.4.6. In consequence of the previous lemma, we will often identify Σ with a subset of
(E∗)n+1. When we do so, it will always be via the map j. This identification is compati-
ble with source and target in the sense that the source (resp. target) of x ∈ Σ, seen as an
(n+ 1)-cell of E∗, is exactly σ(x) (resp. τ(x)).

We can now prove the following proposition, which is the key result of this section.
It is slightly less trivial than it appears.

Proposition 1.4.7. For every n-cellular extension E = (C,Σ, σ, τ), the subset Σ ⊆
(E∗)n+1 is an (n+ 1)-basis of E∗.

Proof. Notice first that since the map in+1 : Sn → Dn+1 is nothing but the canonical
inclusion skn(Dn+1) → skn+1(Dn+1) = Dn+1, it follows easily from square (1.1) and
the fact that the skeleton functors preserve colimits, that C is canonically isomorphic
to skn(E∗) and that the map C → E∗ can be identified with the canonical inclusion
skn(E∗)→ skn+1(E∗) = E∗. Hence, cocartesian square (1.1) can be identified with∐

x∈Σ

Sn skn(E∗)

∐
x∈Σ

Dn+1 skn+1(E∗).

∐
x∈Σ

in+1

〈s(x),t(x)〉x∈Σ

p

Since we have identified Σ to a subset of the n-cells of E∗ via j, the above cocartesian
square means exactly that Σ is an (n+ 1)-basis of E∗.

1.4.8. Let C be an (n + 1)-category and E be a subset E ⊆ Cn+1. This defines an
n-cellular extension

EE = (τ s≤n(C), E, s, t),

where s and t are simply the restriction to E of the source and target maps Cn+1 → Cn.
The canonical inclusion E ↪→ Cn+1 induces a morphism of n-cellular extensions

EE → Un(C),
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and then, by adjunction, an (n+ 1)-functor

E∗E → C.

Proposition 1.4.9. LetC be an (n+1)-category. A subsetE ⊆ Cn+1 is an (n+ 1)-basis
of C if and only if the canonical (n+ 1)-functor

E∗E → C

is an isomorphism.

Proof. It is clear that the canonical (n + 1)-functor E∗E → C sends E, seen as a subset
of (E∗E)n+1, to E, seen as a subset of Cn+1. Hence, it follows from Proposition 1.4.7 that
if this (n+ 1)-functor is an isomorphism, then E is an (n+ 1)-base of C.

Conversely, if E is an (n + 1)-base of C, then we can define an (n + 1)-functor
C → E∗E that sends E, seen as a subset of Cn+1, to E, seen as a subset of (E∗E)n+1 (and
which is obviously the identity on cells of dimension strictly lower than n+ 1). The fact
that C and E∗ have E as an (n + 1)-base implies that this (n + 1)-functor C → E∗ is
the inverse of the canonical one E∗ → C.

1.4.10. We extend the definitions and the results from 1.4.1 to 1.4.9 to the case n = −1
by saying that a (−1)-cellular extension is simply a set Σ (which is the set of indetermi-
nates) and (−1)Cat+ is the category of sets. Since a 0Cat is also the category of sets,
it makes sense to define the functors

U−1 : 0Cat→ (−1)Cat+

and
(−)∗ : (−1)Cat+ → 0Cat

to be both the identity functor on Set.

Proposition 1.4.11. Let (E (n))n≥−1 be a sequence where:

- E (−1) is a (−1)-cellular extension,

- for every n ≥ 0, E (n) is a cellular extension of the n-category (E (n−1))∗.

Then, the ω-category defined as the colimit of the canonical diagram

(E (−1))∗ → (E (0))∗ → · · · → (E (n))∗ → · · ·

is free and for every n ∈ N, its n-basis is (canonically isomorphic to) the set of indeter-
minates of E (n+1).
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Moreover, suppose we are given another sequence (E ′(n))n≥−1 as above and a se-
quence

(G(n) = (F (n), ϕ(n)) : E (n) → E ′(n))n≥−1

where each G(n) is a morphism of n-cellular extensions such that for every n ≥ 0

F (n) = (G(n−1))∗.

Then, the ω-functor
colim
n≥−1

(E (n))∗ → colim
n≥−1

(E ′(n))∗

induced by colimit is rigid.
Conversely, every free ω-category and every rigid ω-functor arise this way.

Proof. From Proposition 1.4.7, we know that each (E (n))∗ has an (n + 1)-basis, which
is canonically isomorphic to the set of indeterminates of E (n). Besides, since for every
n ≥ 0, E (n) is a cellular extension of (E (n−1))∗, we have

skn−1((E (n))∗) = (E (n−1))∗

by definition. Hence, by a straightforward induction, each E (n) is a free (n+1)-category
and its k-basis for 0 ≤ k ≤ n+1 is (canonically isomorphic to) the set of indeterminates
of E (k−1). Now letC := colimn≥−1(E (n))∗. Since for every k ≥ 0, skk preserves colimits
and since skk((E (n))∗) = (E (k−1))∗ for all 0 ≤ k < n, we have that

skk(C) = (E (k−1))∗

for every k ≥ 0. Altogether, this proves that C is free and its k-basis is the set of
indeterminates of E (k−1) for every k ≥ 0.

The fact that a sequence of morphisms of cellular extensions that satisfy the hypoth-
esis given in the statement of the proposition induces a rigid ω-functor is proven in a
similar fashion.

For the converse part, notice that a free ω-category C, whose basis is denoted by
(Σk)k∈N, induces a sequence of cellular extensions:

E (−1)
C := Σ0

and
E (n)
C := (skn(C),Σn+1, s, t) for n ≥ 0.

It follows from Proposition 1.4.9 that skn(C) ' (E (n−1)
C )∗ and, then, from Lemma 1.1.6

that C ' colimn≥−1 E (n)
C .

Finally, notice that the construction C 7→ (E (n)
C )n≥−1 described above is obviously

functorial with respect to rigid ω-functors and the isomorphism skn(C) ' (E (n)
C )∗ is nat-

ural with respect to rigid ω-functors. Since the statement of Lemma 1.1.6 is also natural
in C, this easily implies that every rigid ω-functor arises as the colimit of sequence of
morphisms of cellular extensions as described in the statement of the proposition.

37



CHAPTER 1. YOGA OF ω-CATEGORIES

Remark 1.4.12. The previous proposition admits an obvious truncated version for free
n-categories with n finite. In that case, we only need a finite sequence (E (k)))−1≤k≤n−1

of cellular extensions.

Remark 1.4.13. The data of a sequence (E (n))n≥−1 as in Proposition 1.4.11 is com-
monly referred to in the literature of the field as a computad [Str76] or polygraph
[Bur93]; consequently a ω-category which is free in the sense of definition 1.2.5 is
sometimes referred to as free on a computad-or-polygraph. Note that the underlying
polygraph of a free ω-category is uniquely determined by the free ω-category itself (a
straightforward consequence of Proposition 1.2.8), and this is why we chose the shorter
terminology free ω-category.

1.4.14. Concretely, Proposition 1.4.11 gives us a recipe to construct free ω-categories.
It suffices to give a formal list of generating cells of the form:

- generating 0-cells : x0, y0, . . .

- generating 1-cells : x1 : σ(x1)→ τ(x1), y1 : σ(y1)→ τ(y1), . . .

- generating 2-cells : x2 : σ(x2)→ τ(x2), y2 : σ(y2)→ τ(y2), . . .

- . . . ,

where for a generating k-cell x with k > 0, σ(x) and τ(x) are parallel (k − 1)-cells
of the free (k − 1)-category recursively generated by the generating cells of dimension
strictly lower than k.

Example 1.4.15. The data of a 1-cellular extension E is nothing but the data of a graph
G (or 1-graph in the terminology of 1.1.4), and in that case it is not hard to see that E∗ is
nothing but the free category on G. That is to say, the category whose objects are those
of G and whose arrows are strings of composable arrows of G; the composition being
given by concatenation of strings. Hence, from Proposition 1.4.11, a (1-)category is free
in the sense of Definition 1.2.5 if and only if it is (isomorphic to) a free category on a
graph.

Example 1.4.16. The notion of free category on a graph is easily generalized to the
notion of free n-category on an n-graph (with n ∈ N ∪ {∞}). As in the previous
example, every free n-category on an n-graph is free in the sense of Definition 1.2.5.
However, the converse is not true for n > 1. The point is that in a free n-category on an
n-graph, the source and target of a k-generating cell must be (k − 1)-generating cells;
whereas for a free n-category, they can be any (k−1)-cells (not necessarily generating).
For example, the free 2-category described as

- generating 0-cells : A,B,C,D
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- generating 1-cells : f : A→ B, g : B → C, h : A→ D, i : D → C

- generating 2-cells : α : i ∗
0
h⇒ g ∗

0
f ,

which can be pictured as
B

A C

D

gf

h i

α

is not free on a 2-graph. The reason is that the source (resp. the target) of α is g∗
0
f (resp.

i ∗
0
h) which are not generating 1-cells.

Example 1.4.17. Let n ≥ 1 andM be a monoid (commutative if n > 1). The n-category
BnM is free if and only if M is a free monoid (free commutative monoid if n > 1). If
so, it has exactly one generating cell of dimension 0, no generating cells of dimension
0 < k < n, and the set of generators of the monoid (which is unique) as generating
n-cells.

1.5 CELLS OF FREE ω-CATEGORIES AS WORDS

In this section, we undertake to give a more explicit construction of the (n + 1)-cate-
gory E∗ generated by an n-cellular extension E = (C,Σ, σ, τ). By definition of E∗, this
amounts to give an explicit description of a particular type of colimit in ωCat. Note
also that since τ≤n(E∗) = C, all we need to do is to describe the (n + 1)-cells of E∗.
This will take place in two steps: first we construct what ought to be called the free
(n+ 1)-magma generated by E , for which the (n+ 1)-cells are really easy to describe,
and then we quotient these cells as to obtain an (n+ 1)-category, which will be E∗.

Recall that an n-category is a particular case of n-magma.

1.5.1. Let E = (C,Σ, σ, τ) be an n-cellular extension. We denote by W [E ] the set of
finite words on the alphabet that has:

- a symbol cα for each α ∈ Σ,

- a symbol ix for each x ∈ Cn,

- a symbol ∗̂
k

for each 0 ≤ k ≤ n,

- a symbol of opening parenthesis (,
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- a symbol of closing parenthesis ).

If w and w′ are two elements ofW [E ], we write ww′ for their concatenation. We define
the subset T [E ] ⊆ W [E ] of well formed words (or terms) on the previous alphabet
together with two maps s, t : T [E ]→ Cn in the following recursive way:

- for every α ∈ Σ, the word (cα) is well formed and we have

s((cα)) = σ(α) and t((cα)) = τ(α),

- for every x ∈ Cn, the word (ix) is well formed and we have

s((ix)) = t((ix)) = x,

- if w and w′ are well formed words such that s(w) = t(w′), then the word (w ∗̂
n
w′)

is well formed and we have

s((w ∗̂
n
w′)) = s(w′) and t((w ∗̂

n
w′)) = t(w),

- if w and w′ are well formed words such that sk(s(w)) = tk(t(w)) with 0 ≤ k < n,
then the word (w ∗̂

k
w′) is well formed and we have

s((w ∗̂
k
w′)) = s(w) ∗

k
s(w′) and t((w ∗̂

k
w′)) = t(w) ∗

k
t(w′).

As usual, for 0 ≤ k < n, we define sk, tk : T [E ] → Ck to be respectively the iterated
source and target (and we set sn = s and tn = t for consistency).

Definition 1.5.2. The size of a well-formed word w, denoted by |w|, is the number of
symbols ∗̂

k
for any 0 ≤ k ≤ n that appear in w.

1.5.3. Let E be an n-cellular extension and let us write E+ for the (n+1)-magma defined
in the following fashion:

- for every 0 ≤ k ≤ n, we have (E+)k := Ck; the source, target, compositions of
k-cells for 0 < k ≤ n and units on k-cells for 0 ≤ k < n are those of C,

- (E+)n+1 = T [E ],

- the source and target maps s, t : (E+)n+1 → (E+)n are the ones defined in 1.5.1,

- for every n-cell x, the unit on x is given by the word

(ix),
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- for 0 ≤ k ≤ n, the k-composition of two (n + 1)-cells w and w′ such that
sk(w) = tk(w

′) is given by the word

(w ∗̂
k
w′).

By definition, E+ satisfy all the axioms for ω-categories up to dimension n. But on the
other hand, the (n+ 1)-cells of E+ make it as far as possible from being an (n+ 1)-cat-
egory as none of the axioms of ω-categories are satisfied for cells of dimension n+ 1.

Remark 1.5.4. Notice that, by definition, we have

w ∗
k
w′ := (w ∗̂

k
w′)

for every pair (w,w′) of k-composable (n+1)-cells of E+, and we ought to be careful not
to confuse the “real” composition symbol “ ∗

k
” with the “formal” composition symbol

“ ∗̂
k

”. As a rule of thumb, it is better not to use both symbols in the same expression.
Note also that, since we use the usual symbols “(“ and “)” as formal symbols of opening
and closing parenthesis, things can get really messy if we don’t apply the previous rule
because it would be hard to distinguish a formal parenthesis from an “non-formal” one.

In the following definition, we consider that a binary relationR on a setE is nothing
but a subset of E × E, and we write x R x′ to say (x, x′) ∈ R.

Definition 1.5.5. Let n ≥ 1. A congruence on an n-magma X is a binary relationR on
the set of n-cells Xn such that:

(a) R is an equivalence relation,

(b) if x R x′ then x and x′ are parallel,

(c) if x R y and x′ R y′, and if x and x′ are k-composable for some 0 ≤ k < n then

x ∗
k
x′ R y ∗

k
y′

(which makes sense since y and y′ are k-composable by the previous axiom).

Remark 1.5.6. Beware that in the previous definition, the relation R is only on the set
of cells of dimension n.

Example 1.5.7. Let F : X → Y be a morphism of n-magmas with n > 1. The binary
relationR on Xn defined as

x R y if F (x) = F (y)

is a congruence.
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1.5.8. Let X be an n-magma with n ≥ 1 and R a congruence on X . By the first axiom
of Definition 1.5.5, R is an equivalence relation and we can consider the quotient set
Xn/R. We write [x] for the equivalence class of an n-cell x of X . From the second
axiom of Definition 1.5.5, we can define unambiguously

s([x]) := s(x) and t([x]) := t(x),

for x ∈ Xn and from the third axiom, we can define unambiguously

[x] ∗
k

[y] := [x ∗
k
y]

for every pair (x, y) of k-composable n-cells ofX . Altogether, this defines an n-magma,
which we denote byX/R, whose set k-cells isXk for 0 ≤ k < n, andXn/R for k = n.
The composition, source, target and units of cells of dimension strictly lower than n
being those of X and the composition, source and target of n-cells being given by the
above formulas.

Definition 1.5.9. LetR be a congruence on an n-magma X with n ≥ 1. We say thatR
is categorical if it satisfies all four following axioms:

1. for every k < n and every n-cell x of X , we have

1
(n)
tk(x) ∗k x R x and xR x ∗

k
1

(n)
sk(x),

2. for every k < n and for all k-composable n-cells x and y of X , we have

1x∗
k
y R 1x ∗

k
1y,

3. for every k < n, for all n-cells x, y and z ofX such that x and y are k-composable,
and y and z are k-composable, we have

(x ∗
k
y) ∗

k
z R x ∗

k
(y ∗

k
z),

4. for all k, l ∈ N with k < l < n, for all n-cells x, x′, y and y′ of X such that

- x and y are l-composable, x′ and y′ are l-composable,

- x and x′ are k-composable, y and y′ are k-composable,

we have
(x ∗

k
x′) ∗

l
(y ∗

k
y′) R (x ∗

l
y) ∗

k
(x′ ∗

l
y′).

Example 1.5.10. LetC be an n-category with n > 1, which we consider as an n-magma.
The equality on the set of n-cells of C is, by definition, categorical.
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Example 1.5.11. Let F : X → Y be a morphism of n-magmas with n > 1 and suppose
that Y is an n-category. Then the binary relationR on Xn defined as

x R y if F (x) = F (y)

is obviously a categorical congruence.

Similarly to the “stupid” truncation of ω-categories (1.1.4), given an (n+1)-magma
X , we write τ s≤n(X) for the n-magma obtained by simply forgetting the cells of dimen-
sion (n+ 1).

The following lemma is trivial but nonetheless important. Its immediate proof is
omitted.

Lemma 1.5.12. LetX be an n-magma with n > 1 andR a congruence onX . If τ s≤n(X)
is an (n− 1)-category andR is categorical, then X/R is an n-category.

We now wish to see how to prove the existence of a congruence defined with a
condition such as “the smallest congruence that contains a given binary relation on the
(n+ 1)-cells”.

Lemma 1.5.13. Let X be an n-magma with n ≥ 1 and (Ri)i∈I a non-empty family of
congruences on X (i.e. I is not empty). Then, the binary relation

R :=
⋂
i∈I

Ri

is a congruence.

Proof. The fact thatR satisfies that first and third axiom of Definition 1.5.5 is immedi-
ate and do not even require that I be non empty. The only left thing to prove is that if
x R x′, then x and x′ are parallel. To see that, notice that since I is not empty, we can
choose i ∈ I . Then, by definition, we have x Ri x

′ and thus, x and x′ are parallel.

Remark 1.5.14. The hypothesis that I be non empty in the previous lemma cannot be
omitted because, in this case, we would have

R =
⋂
∅

Ri = Xn ×Xn,

which means that all n-cells would be equivalent underR. This certainly does not guar-
antee that the second axiom of Definition 1.5.5, i.e. that equivalent cells are parallel, is
satisfied.

Lemma 1.5.15. Let X be an n-magma with n ≥ 1 and E a set of pairs of parallel
n-cells ofX . There exists a smallest congruenceR onX such that for every (x, y) ∈ E,
we have x R y.
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Proof. Let I be the set of congruences S on X such that for every (x, y) ∈ E, we have
x S y. All we have to prove is that I is not empty, since in that case, we can apply
Lemma 1.5.13 to the binary relation

R :=
⋂
S∈I

S,

which will obviously be the smallest congruence satisfying the desired condition. To see
that I is not empty, it suffices to notice that the binary relation “being parallel n-cells”
is a congruence, which obviously is in I .

Proposition 1.5.16. Let X be an n-magma with n ≥ 1. There exists a smallest categor-
ical congruence on X .

Proof. Each of the four axioms of Definition 1.5.9 says that some pairs of parallel
n-cells must be equivalent under a congruence R for it to be categorical. The result
follows then from Lemma 1.5.15.

1.5.17. In particular, for every n-cellular extension E there exists a smallest categorical
congruence on E+, which we denote here by ≡. Applying Lemma 1.5.12 gives us that
E+/≡ is an (n+ 1)-category. The construction

E 7→ E+/≡

clearly defines a functor Cat+
n → (n+ 1)Cat.

We can now prove the expected result.

Proposition 1.5.18. Let E be an n-cellular extension and let ≡ be the smallest categor-
ical congruence on E+. The (n+ 1)-category E+/≡ is naturally isomorphic to E∗.

Proof. The strategy of the proof is to show that the functor E 7→ E+/≡ is left adjoint
to Un : (n + 1)Cat → Cat+

n . The result will follow then from the uniqueness (up to a
natural isomorphism) of left adjoints.

Let E = (C,Σ, σ, τ) be an n-cellular extension, let D be an (n+ 1)-category and let

G = (F, ϕ) : E → Un(D)

be a morphism of n-cellular extensions. We recursively define a map

ϕ : T [E ]→ Dn+1

as:

- ϕ((cα)) = ϕ(α) for α ∈ Σ,
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- ϕ((ix)) = 1F (x) for x ∈ Cn,

- ϕ((w ∗̂
k
w′)) = ϕ(w) ∗

k
ϕ(w′).

A straightforward induction shows that ϕ is compatible with source, target and units.
Hence, we can define a morphism of (n+ 1)-magmas

G : E+ → D

as
Gn+1 = ϕ

and
Gk = Fk for 0 ≤ k ≤ n.

Since D is an (n+ 1)-category, the binary relationR on T [E ] defined as

x R y if ϕ(x) = ϕ(y)

is a categorical congruence on E+ (see Example 1.5.11). Since ≡ is by definition the
smallest categorical congruence on E+, ≡ is included in R. In particular, the map ϕ
induces a map

ϕ̂ : T [E ]/≡ → Dn+1.

Since≡ is a congruence, this map is compatible with source and target, and it is straight-
forward to check that it is also compatible with units. Hence, we have an (n+1)-functor

Ĝ : E+/≡ → D

defined as
Ĝn+1 = ϕ̂

and
τ s≤n(Ĝ) = F.

Altogether, we have constructed a map

HomCat+
n

(E , Un(D))→ Hom(n+1)Cat(E+/≡, D)

G 7→ Ĝ

which is clearly natural in E andD. What we want to prove is that this map is a bijection.
Let us start with the surjectivity. LetH : E+/≡ → D be a (n+1)-functor. We define

a map ϕ : Σ→ Dn+1 as

ϕ : Σ→ Dn+1

α 7→ Hn+1([(cα)]),
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where [w] is the equivalence class under ≡ of an element w ∈ T [E ]. All we need to
show is that

ϕ̂ = Hn+1.

Let z be an element of T [E ]/≡ and let us choose w ∈ T [E ] such that z = [w]. We
proceed to show that ϕ̂(z) = Hn+1(z) by induction on the size of w (Definition 1.5.2).
If |w| = 0, then either w = (cα) for some α ∈ Σ or w = (ix) for some x ∈ Cn. In the
first case, we have

ϕ̂([(cα)]) = ϕ((cα)) = ϕ(α) = Hn+1([(cα)]),

and in the second case we have,

ϕ̂([(ix)]) = ϕ((ix)) = 1Hn(x) = Hn+1([(ix)])

where for the last equality, we used the fact that [ix] is the unit on x in E+/≡.
Now if |w| = n + 1 with n ≥ 0, then w = (w′ ∗̂

k
w′′) for some w′, w′′ ∈ T [E ] that

are k-composable with k ≤ n. Hence, using the induction hypothesis, we have

ϕ̂([w]) = ϕ̂([(w′ ∗̂
k
w′′)]) = ϕ̂([w′] ∗

k
[w′′]) = ϕ̂([w′]) ∗

k
ϕ̂([w′′])

= Hn+1([w′]) ∗
k
Hn+1([w′′])

= Hn+1([w′] ∗
k

[w′′])

= Hn+1([(w′ ∗̂
k
w′′)])

= Hn+1([w]).

We now turn to the injectivity. Let G = (F, ϕ) and G′ = (F ′, ϕ′) be two morphisms of
n-cellular extensions E → Un(D) such that Ĝ = Ĝ′. Since we have

F = τ s≤n(Ĝ) = τ s≤n(Ĝ′) = F ′,

all we have to show is that
ϕ = ϕ′.

But, by definition, for every α ∈ Σ we have

ϕ(α) = ϕ̂([(cα)]) = ϕ̂′([(cα)]) = ϕ′(α).

1.5.19. In other words, the previous proposition tells us that for an n-cellular extension
E , the (n + 1)-cells of E∗ can be represented as equivalence classes of (well formed)
words made up of the indeterminates of E and units on n-cells. Note, however, that
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the equivalences classes are enormous. For example, for an indeterminate α, all three
following words are in the equivalence class of (cα):

((cα) ∗̂
n

(iσ(α))) (((cα) ∗̂
n

(iσ(α))) ∗̂
n

(iσ(α))) ((cα) ∗̂
n

((iσ(α)) ∗̂
n

(iσ(α)))).

Note also that when n = 0, we have already said that a 0-cellular extension E is nothing
but a graph and that E∗ is the free category on the graph. In particular, the 1-cells of
E∗ can simply be encoded as strings of composable arrows of the graph, which is a
much simpler description that the one obtained from the previous proposition since
no equivalence relation is involved. A natural question to ask is whether it would be
possible to obtain a similar simple description for n > 0. While it is certainly possible
to have a simpler description of the (n + 1)-cells of E∗ than the one obtained in the
present section (for example by getting rid of some “pathological” well formed words
and reducing the size of the equivalence classes), it seems not possible to completely
avoid the use of an equivalence relation, at least not in a canonical way. Indeed, we have
already seen in Example 1.4.17 that a free commutative monoid M gives rise to a free
n-category BnM whose generating n-cells are in bijection with the generators of the
monoid. And, as soon as there are at least two generators of the monoid, say a and b,
there is no canonical way of representing elements of the monoid by a unique word on
the generators, for we have

ab = ba.

1.6 DISCRETE CONDUCHÉ ω-FUNCTORS

1.6.1. Recall that given a category C and a class M of arrows of C, we say that an arrow
f : X → Y of C is left orthogonal to M if for every m : A → B in M and every solid
arrow square

X A

Y B,

f mu

there exists a unique arrow u : Y → A making the whole diagram commute.

In the two following paragraphs, we freely use the notations from 1.1.7 and advise
the reader to refer to it if needed.

1.6.2. For all 0 ≤ k < n, we denote by Dn

∐
Dk Dn the n-category defined as the
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following amalgamated sum:

Dk Dn

Dn Dn

∐
Dk

Dn.

〈sk(en)〉

〈tk(en)〉
p

For an ω-category C, an arrow Dn

∐
Dk Dn → C amounts to the same data as a pair of

k-composable n-cells of C. Hence, Dn

∐
Dk Dn represents the functor

ωCat→ Set

C 7→ Cn ×Ck Cn.

Given a pair of k-composable n-cells (x, y) of an ω-category C, we write

〈x, y〉 : Dn

∐
Dk

Dn → C

for the associated ω-functor.
By the Yoneda Lemma, the k-composition operation

(9) ∗
k

(9) : Cn ×Ck Cn → Cn,

which is obviously natural in C, yields an n-functor

∇n
k : Dn → Dn

∐
Dk

Dn.

The n-cell∇n
k is nothing but the k-composition of the two generating n-cells of Dn

∐
Dk Dn.

In more practical terms, a commutative triangle

Dn C

Dn

∐
Dk Dn

〈x〉

∇nk 〈x′,x′′〉

means exactly that x = x′ ∗
k
x′′.

1.6.3. For all 0 ≤ k < n, we denote by κnk : Dn → Dk, the ω-functor

κnk := 〈1(n)
ek
〉 : Dn → Dk.
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More conceptually, for every ω-category C the unit map

1
(n)
(9) : Ck → Cn,

is obviously natural in C and the map κnk is the one induced by the Yoneda Lemma. In
practical terms, a commutative triangle

Dn C

Dk

〈x〉

κnk 〈y〉

means exactly that x = 1ny .

Definition 1.6.4. An ω-functor F : C → D is discrete Conduché if it is right orthogonal
to the ω-functors

κnk : Dn → Dk

and
∇n
k : Dn → Dn

∐
Dk

Dn

for all k, n ∈ N such that 0 ≤ k < n.

Before unfolding the previous definition, let us put here for later reference the im-
mediate following lemma.

Lemma 1.6.5. The class of discrete Conduché ω-functors is stable by pullback. This
means that for every cartesian square in ωCat

C ′ C

D′ D,

F ′ F
y

if F is a discrete Conduché ω-functor, then so is F ′.

Proof. This is a standard fact about right orthogonal classes in a category that admits
pullbacks. See for example the dual of [FK72, Proposition 2.1.1(e)].

1.6.6. Let us now give a practical version of Definition 1.6.4. The right orthogonality to
κnk means that for every n-cell x of C and every k-cell y of D such that

F (x) = 1(n)
y ,
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there exists a unique2 k-cell z of C such that

x = 1(n)
z and F (z) = y.

Similarly, the right orthogonality to∇n
k means that for every k-cell x of C, if

f(x) = y′ ∗
k
y′′

with (y′, y′′) a pair of k-composable n-cells of D, then there exists a unique pair (x′, x′′)
of k-composable n-cells of C such that

1. x = x′ ∗
k
x′′,

2. F (x′) = y′ and F (x′′) = y′′.

As it turns out, the definition we gave of discrete Conduché ω-functor is highly
redundant.

Lemma 1.6.7. Let F : C → D be an ω-functor and let k < n ∈ N. If F is right
orthogonal to∇n

k then it is right orthogonal to κnk .

Proof. Let x be an n-cell of C and suppose that F (x) = 1
(n)
y with y a k-cell of D.

Notice that
F (x) = 1(n)

y ∗
k

1(n)
y

and
x = x ∗

k
1

(n)
sk(x) = 1

(n)
tk(x) ∗k x

and
F (1

(n)
sk(x)) = 1

(n)
sk(F (x)) = 1(n)

y = 1
(n)
tk(F (x)) = F (1

(n)
tk(x)).

Using the uniqueness part of the right orthogonality to∇n
k , we deduce that x = 1

(n)
sk(x) =

1
(n)
tk(x). Thus, if we set z = sk(x) = tk(x), we have x = 1

(n)
z and F (z) = y, which is

what we needed to prove.

Remark 1.6.8. In light of the previous lemma, the reader might wonder why the right
orthogonality to κnk was included in Definition 1.6.4. The motivation for such a choice is
that it should be possible to apply this definition mutatis mutandis to weak ω-categories
where Lemma 1.6.7 might not hold anymore.

Somewhat related to Lemma 1.6.7 is the following lemma.

2The map z 7→ 1nk (z) being injective, the uniqueness actually comes for free.
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Lemma 1.6.9. Let F : C → D be an ω-functor and k < m < n ∈ N. If F is right
orthogonal to∇n

k and κnm, then it is right orthogonal to∇m
k .

Proof. Let x be an m-cell of C and suppose that

F (x) = y′ ∗
k
y′′

with (y′, y′′) a pair of k-composable m-cells of D. Then, we have

F (1(n)
x ) = 1

(n)
y′ ∗

k
1

(n)
y′′ .

From the right orthogonality to ∇n
k , we know that there exist z and z′′ k-composable

n-cells of C such that F (z′) = 1
(n)
y′ , F (z′′) = 1

(n)
y′′ and

1(n)
x = z′ ∗

k
z′′.

From the right orthogonality to κnm, we know that there exist x′ and x′′m-cells ofC such
that z′ = 1

(n)
x′ , z′′ = 1

(n)
x′′ , F (x′) = y′ and F (x′′) = y′′. It follows that sk(x

′) = sk(x
′′)

and
1(n)
x = 1

(n)
x′ ∗

k
1

(n)
x′′ = 1

(n)
x′∗
k
x′′ ,

hence x = x′ ∗
k
x′′. This proves the existence part of the right orthogonality to∇m

k .

Now suppose that there are two pairs (x′1, x
′′
1) and (x′2, x

′′
2) that lift the pair (y′, y′′)

in the required way. It follows that the pairs (1
(n)

x′1
, 1

(n)

x′′1
) and (1

(n)

x′2
, 1

(n)

x′′2
) lift the pair

(1
(n)
y′ , 1

(n)
y′′ ) in the required way.

From the uniqueness part of the right orthogonality to∇n
k , we deduce that 1

(n)

x′1
= 1

(n)

x′2

and 1
(n)

x′′1
= 1

(n)

x′′2
, hence x′1 = x′2 and x′′1 = x′′2.

Definition 1.6.4 admits an obvious truncated version as follows.

Definition 1.6.10. Let m ∈ N. An m-functor F : C → D is a discrete Conduché if it is
right orthogonal to κnk and ∇n

k for all k, n ∈ N such that 0 ≤ k < n ≤ m.

1.6.11. Let us dwell on a subtlety here. Since we have considered nCat as a full sub-
category of ωCat for every n ∈ N (see 1.1.4), an n-functor is a particular case of
ω-functor. Hence, it also makes sense to call an n-functor discrete Conduché when,
seen as an ω-functor, it is discrete Conduché in the sense of Definition 1.6.4. This might
have been conflicting with Definition 1.6.10 but the following lemma tells us that, in
fact, the two notions are equivalent. Consequently, there is no distinction to make.

Lemma 1.6.12. Let n ∈ N. An n-functor F : C → D is discrete Conduché in the sense
of Definition 1.6.10 if and only if, seen as an ω-functor, it is discrete Conduché in the
sense of Definition 1.6.4.
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Proof. We only have to prove that if F is an discrete Conduché n-functor then, when
seen as an ω-functor, it is a discrete Conduché ω-functor; the other implication being
trivial. From Lemma 1.6.7, this amounts to showing that if F is right orthogonal to∇m

k

for all k,m ∈ N such that 0 ≤ k < m ≤ n, then it is also right orthogonal to ∇m
k for

all k,m ∈ N such that 0 ≤ k < m and m > n. This follows easily from the fact that
for every m-cell x in an n-category (seen as an ω-category) with m > n, there exists a
unique n-cell x′ such that x = 1

(m)
x′ . Details are left to the reader.

In practice, we will use the following criterion to detect discrete Conduché n-func-
tors.

Proposition 1.6.13. Let n ∈ N. An n-functor F : C → D is a discrete Conduché
n-functor if and only if it is right orthogonal to∇n

k for every k ∈ N such that k < n.

Proof. Immediate consequence of Lemmas 1.6.7 and 1.6.9.

Remark 1.6.14. In the case n = 1, we recover the usual definition of what’s commonly
referred to as discrete Conduché fibration (see for example [Joh99]).

As we shall now see, discrete Conduché ω-functors have a deep connection with
free ω-categories. We begin with an easy property.

Lemma 1.6.15. Let F : C → D be a discrete Conduché ω-functor and n ∈ N. An n-cell
x of C is indecomposable (Definition 1.2.7) if and only if F (x) is indecomposable.

Proof. When n = 0, there is nothing to prove since every 0-cell is indecomposable. We
assume now that n > 0.

Suppose that x is indecomposable. Since x is not a unit on a lower dimensional cell,
the right orthogonality to κnk for every 0 ≤ k < n implies that F (x) is also not a unit on
a lower dimensional cell. Now, if we have

F (x) = y′ ∗
k
y′′,

with (y′, y′′) a pair of k-composable n-cells of D, then the right orthogonality to ∇n
k

implies that
x = x′ ∗

k
x′′

with F (x′) = y′ and F (x′′) = y′′. Since x is indecomposable, x′ or x′′ has to be of the
form 1

(n)
z with z and k-cell of C, and thus y′ or y′′ is of the form 1

(n)
F (z). This proves that

F (x) is indecomposable.
Conversely, suppose that F (x) is indecomposable. The n-cell x cannot be a unit

on a lower dimensional cell as if it were, then F (x) would also be a unit on a lower
dimensional cell, which is impossible since it is indecomposable. Now, if

x = x′ ∗
k
x′′
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with (x′, x′′) a pair of k-composable n-cells, then

F (x) = F (x′) ∗
k
F (x′′).

Hence, either F (x′) or F (x′′) is a unit on a lower dimensional cell and from the right
orthogonality to κnk we deduce that either x′ or x′′ is a unit on a lower dimensional cell.
This proves that x is indecomposable.

From the previous lemma and Proposition 1.2.8, we deduce the following proposi-
tion.

Proposition 1.6.16. Let F : C → D be an ω-functor with C and D free ω-categories.
If F is a discrete Conduché ω-functor then it is rigid.

Remark 1.6.17. The converse of the above proposition does not hold. For details, see
[Gue20, Appendix A].

We now turn to the main result concerning the relation between discrete Conduché
ω-functors and free ω-categories. As a matter of fact, a significant amount of results and
definitions that we have seen so far were geared towards the statement and proof of the
following theorem.

Theorem 1.6.18. Let F : C → D be a discrete Conduché ω-functor.

1. If D is free then so is C.

2. If C is free and if Fn : Cn → Dn is surjective for every n ∈ N, then D is also
free.

The proof of the previous theorem is long and technical and the next three sections
are devoted to it. Before that, let us make Theorem 1.6.18 a little more precise.

1.6.19. Let F : C → D be a discrete Conduché ω-functor.

1. If D is free, we know from the previous theorem that C is also free. Now, if we
write ΣD

n for the n-basis of D, then it follows from Proposition 1.2.8 and Lemma
1.6.15 that the n-basis of C is given by

ΣC
n :=

{
x ∈ Cn|F (x) ∈ ΣD

n

}
.

2. Similarly, if C is free and if Fk : Ck → Dk is surjective for every k ∈ N, we know
that D is also free. If we write ΣC

n for the n-basis of C, then it follows once again
from Proposition 1.2.8 and Lemma 1.6.15 that the n-basis of D is given by

ΣD
n :=

{
F (x) ∈ Dn|x ∈ ΣC

n

}
.
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1.7 PROOF OF THEOREM 1.6.18: PART I
This first part of the proof of Theorem 1.6.18 consists of several technical results on
words. They lay a preliminary foundation on which the key arguments of the proof will
later rely.

For the whole section, we fix a cellular n-extension E = (C,Σ, σ, τ). A “word”
always means an element ofW [E ] and a “well formed word” always means an element
of T [E ].

1.7.1. For a word w, the number of symbols that appear in w is referred to as the length
ofw and denoted byL(w). Recall also from Definition 1.5.2 that whenw is well formed,
the number of occurrences of symbols ∗̂

k
for any 0 ≤ k ≤ n that appear in w is referred

to as the size of w and denoted by |w|.

Definition 1.7.2. A word v is a subword of a word w if there exist words a and b such
that w can be written as

w = avb.

Remark 1.7.3. Beware that in the previous definition, none of the words were supposed
to be well formed. In particular, a subword of a well formed word is not necessarily well
formed.

1.7.4. Since a word w is a finite sequence of symbols, it makes sense to write w(i) for
the symbol at position i of w, with 0 ≤ i ≤ L(w)− 1.

For every 0 ≤ i ≤ L(w)− 1, define Pw(i) to be the number of opening parentheses
in w with position ≤ i minus the number of closing parentheses in w with position ≤ i.
This defines a function

Pw : {0, . . . ,L(w)− 1} → Z.

Remark 1.7.5. Such a counting function is standard in the literature about formal lan-
guages. For example see [HU79, chapter 1, exercice 1.4].

Definition 1.7.6. A word w is well parenthesized if:

1. it is not empty,

2. Pw(i) ≥ 0 for every 0 ≤ i ≤ L(w)− 1,

3. Pw(i) = 0 if and only if i = L(w)− 1.

1.7.7. It follows from the previous definition that the first letter of a well parenthesized
word is necessarily an opening parenthesis and that the last letter is necessarily a closing
parenthesis. Thus, the length of a well parenthesized word is not less than 2.
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Moreover, it is immediate that if w1 and w2 are well parenthesized words, then for
every 0 ≤ k ≤ n, the word

(w1 ∗̂
k
w2)

is well parenthesized.

Lemma 1.7.8. A well formed word is well parenthesized.

Proof. Let w be a well formed word. We proceed by induction on |w|. If |w| = 0, then
w is either of the form

(cα)

or of the form
(ix).

In either case, the assertion is trivial. Now suppose that |w| > 0, we know by definition
that

w = (w1 ∗̂
k
w2)

with w1, w2 well formed words such that |w1|, |w2| < |w|. The desired properties follow
easily from the induction hypothesis. Details are left to the reader.

The converse of the previous lemma is obviously not true. However, Lemma 1.7.10
below is a partial converse.

Lemma 1.7.9. Let w be a well parenthesized word of the form

w = (w1 ∗̂
k
w2)

with w1 and w2 well parenthesized words and 0 ≤ k ≤ n, and let v be a subword of w.
If v is well parenthesized then one the following holds:

1. v = w,

2. v is a subword of w1,

3. v is a subword of w2.

Proof. Let a and b be words such that

avb = w = (w1 ∗̂
k
w2).

Let l1, l2, l, la, lb, lv respectively be the lengths of w1, w2, w, a, b, v. Notice that

la + lv + lb = l = l1 + l2 + 3.

Notice also that since v is well parenthesized, the following cases are forbidden:
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1. l1 ≤ la ≤ l1 + 1,

2. l2 ≤ lb ≤ l2 + 1,

3. la ≥ l − 1,

4. lb ≥ l − 1.

Indeed, the first case would imply that the first letter of v is a closing parenthesis or the
symbol ∗̂

k
. Similarly, the second case would imply that the last letter of v is an opening

parenthesis or the symbol ∗̂
k
. The third and fourth cases would imply that lv < 2 which

is also impossible.
This leaves us with the following cases:

1. la = 0,

2. lb = 0,

3. 0 < la < l1 and 0 < lb < l2,

4. 0 < la < l1 and lb > l2 + 1,

5. l1 + 1 < la and 0 < lb < l2.

If we are in the first case, then
Pw(j) = Pv(j)

for 0 ≤ j ≤ lv − 1. This implies that Pw(lv − 1) = 0 which means that l = lv, hence
w = v.

By a similar argument left to the reader, we can show that the second case implies
that w = v.

If we are in the fourth (resp. fifth) case, then it is clear that v is a subword of w1

(resp. w2).
Suppose now that we are in the third case. Intuitively, it means that the first letter of

v is inside w1 and the last letter of v is inside w2. Notice first that

la < l1 < la + lv − 3, (?)

where the inequality on the right comes from the fact that lv ≥ 2 (because v is well
formed).

Besides, by definition of Pw,

Pw(j) = Pv(j − la) + Pw(la)
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for la ≤ j < lv + la. In particular, we have

1 = Pw1(l1 − 1) + 1 = Pw(l1 − 1) = Pv(l1 − 1) + Pw(la).

From (?) and since v is well parenthesized, we deduce that

Pv(l1 − 1) > 0.

Hence Pw(la) ≤ 0, which is impossible sincew is well formed and since la < l − 1.

Lemma 1.7.10. Let w be a well formed word. Any well parenthesized subword of w is
also well formed.

Proof. We proceed by induction on |w|. If |w| = 0, then w is either of the form

(cα)

or of the form
(ix).

In both cases, the only well parenthesized subword ofw isw itself, which is well formed
by hypothesis.

Suppose now that |w| > 0 and let u be a well parenthesized subword of w. By
definition,

w = (w1 ∗̂
k
w2)

with |w1|, |w2| < |w|. By Lemmas 1.7.8 and 1.7.9, we have that either:

- u = w in which case u is well formed by hypothesis,

- u is a subword of w1 and from the induction hypothesis we deduce that u is well
formed,

- u is a subword of w2 which is similar to the previous case.

Proposition 1.7.11. Let w be a well formed word of the form

w = (w1 ∗̂
k
w2)

with w1 and w2 well formed words and 0 ≤ k ≤ n, and let v be a subword of w. If v is
well formed, then we are in one of the following cases:

1. v = w,

2. v is a subword of w1,

57



CHAPTER 1. YOGA OF ω-CATEGORIES

3. v is a subword of w2.

Proof. This follows immediately from Lemma 1.7.8 and Lemma 1.7.9.

Proposition 1.7.12. Let u be a well formed word of the form

vew

with v, w and e words and such that e is well formed. If e′ is a well formed word that is
parallel to e, then the word

ve′w

is also well formed.

Proof. We proceed by induction on |u|.

Base case If |u| = 0, then necessarily v andw are both the empty word and the assertion
is trivial.

Inductive step If |u| ≥ 1, then
u = (u1 ∗̂

k
u2)

with u1 and u2 well formed words such that |u1|, |u2| < |u|. By hypothesis, e is a
subword of u and from Proposition 1.7.11, we are in one of the following cases:

- u = e in which case the assertion is trivial.

- e is a subword of u1, which means that there exist words ṽ, w̃ such that

u1 = ṽew̃.

Moreover, we have
v = (ṽ

and
w = w̃ ∗̂

k
u2).

By induction hypothesis, the word

ṽe′w̃

is well formed and thus

(ṽe′w̃ ∗̂
k
u2) = vew

is well formed.

- e is a subword of u2, which is symmetric to the previous case.
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Lemma 1.7.13. Let w1, w2, w
′
1, w

′
2 be well parenthesized words, and let 0 ≤ k ≤ n and

0 ≤ k′ ≤ n be such that
(w1 ∗̂

k
w2) = (w′1 ∗̂

k′
w′2).

Then, w1 = w′1, w2 = w′2 and k = k′.

Proof. Let us define l := min(L(w1),L(w′1)). Notice that

Pw(j) = Pw1(j − 1) + 1 = Pw′1(j − 1) + 1

for 0 < j ≤ l, hence
Pw1(l − 1) = Pw′1(l − 1).

Since w1 and w′1 are well parenthesized, one of the members of the last equality (and
thus both) is equal to 0. This implies that L(w1) = L(w′1) and the desired properties
follow immediately from that.

Proposition 1.7.14. Let w1, w
′
1, w2, w

′
2 be well formed words, and let 0 ≤ k ≤ n and

0 ≤ k′ ≤ n be such that (w1 ∗̂
k
w2) and (w′1 ∗̂

k′
w′2) are well formed. If

(w1 ∗̂
k
w2) = (w′1 ∗̂

k′
w′2),

then
w1 = w′1, w2 = w′2 and k = k′.

Proof. This follows from Lemma 1.7.8 and Lemma 1.7.13.

Corollary 1.7.15. Let w be a well formed word and suppose that it can be written as

w = (w1 ∗̂
k
w2)

with w1 and w2 well formed words and 0 ≤ k ≤ n. Then sk(w1) = tk(w2).

Proof. By hypothesis, |w| ≥ 1. From the definition of well formed words, we know that
w is of the form

(w′1 ∗̂
k′
w′2)

with w′1 and w′2 well formed words and 0 ≤ k′ ≤ n such that

sk′(w
′
1) = tk′(w

′
2).

From Proposition 1.7.14, we have that w′1 = w1, w′2 = w2 and k = k′.
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1.8 PROOF OF THEOREM 1.6.18: PART II
Recall that we have seen in Proposition 1.5.16 that there exists a smallest categorical
congruence on every n-magma X with n ≥ 1. However, the description of this congru-
ence that we used when proving its existence was rather abstract. The main goal of this
section is to give a more concrete description of the smallest categorical congruence in
the case that X = E+ for an n-cellular extension E . This description will turn out to be
crucial for the last part of the proof of Theorem 1.6.18.

Definition 1.8.1. Let n ≥ 0, E be an n-cellular extension and u, u′ ∈ T [E ]. An el-
ementary move from u to u′ is a quadruple µ = (v, w, e, e′) with v, w ∈ W [E ] and
e, e′ ∈ T [E ] such that

u = vew,

u′ = ve′w,

and such that one of the following holds:

(1) e is of the form
((x ∗̂

k
y) ∗̂

k
z)

and e′ is of the form
(x ∗̂

k
(y ∗̂

k
z))

with x, y, z ∈ T [E ] and 0 ≤ k ≤ n,

(2) e is of the form
((ic) ∗̂

k
x)

and e′ is of the form
x

with x ∈ T [E ], 0 ≤ k ≤ n and c = 1
(n)
tk(x),

(3) e is of the form
(x ∗̂

k
(ic))

and e′ is of the form
x

with x ∈ T [E ], 0 ≤ k ≤ n and c = 1
(n)
sk(x),

(4) e is of the form
((ic) ∗̂

k
(id))

and e′ is of the form
(ic∗

k
d)

with (c, d) a pair of k-composable n-cells of C with 0 ≤ k < n,
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(5) e is of the form
((x ∗̂

k
y) ∗̂

l
(z ∗̂

k
t))

and e′ is of the form
((x ∗̂

l
z) ∗̂

k
(y ∗̂

l
t))

with x, y, z, t ∈ T [E ] and 0 ≤ l < k ≤ n.

1.8.2. We will use the notation
µ : u→ u′

to say that µ is an elementary move from u to u′.
We write G[E ] for the graph (or 1-graph in the terminology of 1.1.4) defined as:

- the set of objects of G[E ] is T [E ],

- for all u, u′ in T [E ], an arrow of G[E ] from u to u′ is an elementary move from u
to u′.

We will use the categorical notation

G[E ](u, u′)

for the set of arrows from u to u′.
Finally, we will also sometimes write

u↔ u′

to say that there exists an elementary move from u to u′ or from u′ to u.

Definition 1.8.3. Let E be an n-cellular extension and u, u′ ∈ T [E ]. We say that the
well formed words u and u′ are equivalent and write

u ∼ u′

if they are in the same connected component of G[E ]. More precisely, this means that
there exists a finite sequence (uj)0≤j≤N of well formed words with u0 = u, uN = u′

and uj ↔ uj+1 for 0 ≤ j < N . The equivalence class of a well formed word u will be
denoted by [u].

Lemma 1.8.4. Let u, u′ ∈ T [E ]. If u ∼ u′, then u and u′ are parallel.

Proof. Let
µ = (v, w, e, e′) : u→ u′

be an elementary move from u to u′. Let us show that s(u) = s(u′) and t(u) = t(u′)
with an induction on L(v) +L(w). Notice first that, by definition of elementary moves,
|u| ≥ 1 and thus

u = (u1 ∗̂
k
u2)

with u1, u2 ∈ T [E ].
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Base case If L(v) + L(w) = 0, it means that v and w are both the empty word. It is
then straightforward to check the desired property using Definition 1.8.1.

Inductive step Suppose now that L(v) + L(w) ≥ 0. Since e is a subword of u and is
well formed, we know from Proposition 1.7.11 that we are in one of the following
cases:

- e = u, which is exactly the base case.

- e is a subword of u1, which means that there exist ṽ, w̃ ∈ T [E ] such that

u1 = ṽew̃.

Moreover, we have
v = (ṽ

and
w = w̃ ∗̂

k
u2).

From Proposition 1.7.12, the word

u′1 := ṽe′w̃

is well formed. Since L(ṽ)+L(w̃) < L(v)+L(w), we can use the induction
hypothesis on

µ̃ := (ṽ, w̃, e, e′) : u1 → u′1.

This shows that s(u1) = s(u′1) and t(u1) = t(u′1) and since

u = (u1 ∗̂
k
u2) and u′ = (u′1 ∗̂

k
u2)

it follows easily that s(u) = s(u′) and t(u) = t(u′).

- e is a subword of u2, which is symmetric to the previous case.

By definition of ∼, this suffices to show the desired property.

Lemma 1.8.5. Let v1, v2, v
′
1, v
′
2 ∈ T [E ] and 0 ≤ k ≤ n such that v1 and v2 are k-com-

posable, and v′1 and v′2 are k-composable. If v1 ∼ v2 and v′1 ∼ v′2, then

(v1 ∗̂
k
v2) ∼ (v′1 ∗̂

k
v′2).

Proof. Let
µ = (v, w, e, e′) : v1 → v′1

be an elementary move. Set
ṽ := (v
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and
w̃ := w ∗̂

k
v2).

Hence, (ṽ, w̃, e, e′) is an elementary move from (v1 ∗̂
k
v2) to (v′1 ∗̂

k
v2). Similarly, if we

have an elementary move from v2 to v′2, we obtain an elementary move from (v1 ∗̂
k
v2)

to (v1 ∗̂
k
v′2). By definition of ∼, this suffices to show the desired property.

Lemma 1.8.6. Let R be a categorical congruence on E+ and u, u′ ∈ T [E ]. If u ∼ u′,
then u R u′.

Proof. The proof is very similar to the proof of Lemma 1.8.4. Let

µ = (v, w, e, e′) : u→ u′

be an elementary move from u to u′. Let us prove that u R u′ with an induction on
L(v) +L(w). Once again, by definition of elementary moves, we have |u| ≥ 1 and thus

u = (u1 ∗̂
k
u2)

with u1, u2 ∈ T [E ].

Base case If L(v) + L(w) = 0, then we have u = e and u′ = e′. In this case, all
the different cases of elementary moves from Definition 1.8.1 correspond to the
different axioms of categorical congruences (Definition 1.5.9). Hence, we have
u Ru′.

Inductive step Suppose now that L(v) + L(w) ≥ 0. Since e is a subword of u, we
know from Proposition 1.7.11 that we are in one of the following cases:

- e = u, which is exactly the base case.

- e is a subword of u1, which means that there exist ṽ, w̃ ∈ T [E ] such that

u1 = ṽew̃.

Moreover, we have
v = (ṽ

and
w = w̃ ∗̂

k
u2).

From Proposition 1.7.12, the word

u′1 := ṽe′w̃
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is well formed and since L(ṽ) + L(w̃) < L(v) + L(w), we can apply the
induction hypothesis on

µ̃ := (ṽ, w̃, e, e′) : u1 → u′1.

This proves that u1 R u′1. Now, since we have

u = (u1 ∗̂
k
u2) = u1 ∗

k
u2

and
u′ = (u′1 ∗̂

k
u2) = u′1 ∗

k
u2

(see Remark 1.5.4 for the distinction between the symbol “∗̂
k
” and the symbol

“∗
k
”) and sinceR is a congruence, we have

u R u′.

- e is a subword of u2, which is symmetric to the previous case.

Altogether, Lemmas 1.8.4, 1.8.5 and 1.8.6 prove the following proposition, which is
what we were aiming for.

Proposition 1.8.7. Let E be an n-cellular extension. The equivalence relation ∼ on
T [E ] is the smallest categorical congruence on E+.

We end this section with yet another characterisation of n-bases of ω-categories.

1.8.8. LetC be an ω-category, n ≥ 0 and Σ a subset ofCn+1, and consider the n-cellular
extension

EΣ = (τ s≤n(C),Σ, s, t)

(see Paragraph 1.4.8). When there is no ambiguity on the rest of the data, we allow
ourselves to writeW [Σ], T [Σ] and G[Σ] instead ofW [EΣ], T [EΣ] and G[EΣ].

We recursively define a map ρΣ : T [Σ]→ Cn+1 as

- ρΣ((cα)) = α for every α ∈ Σ,

- ρΣ((ix)) = 1x for every x ∈ Cn,

- ρΣ((w ∗̂
k
w′)) = ρ(w) ∗

k
ρ(w′) for every 0 ≤ k ≤ n and every pair (w,w′) of

k-composable elements of T [Σ].

Intuitively speaking, ρΣ is to be understood as an “evaluation map”: given w a well
formed expression on units and formal cells of Σ, ρΣ(w) is the evaluation of w as an
(n+ 1)-cell of C.
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Lemma 1.8.9. The map ρΣ is compatible with source and target, i.e. for w ∈ T [Σ], we
have

s(ρΣ(w)) = s(w) and t(ρΣ(w)) = t(w).

Proof. This is proved by an immediate induction left to the reader.

Lemma 1.8.10. Let w and w′ be elements of T [Σ]. If w ∼ w′, then

ρΣ(w) = ρΣ(w′).

Proof. From Lemma 1.8.9 we know that ρΣ is compatible with source and target and,
by definition, ρΣ is compatible with composition and units in an obvious sense. Hence,
we have a morphism of (n+ 1)-magmas

F : E+
Σ → τ s≤n+1(C)

defined as:

- Fn+1 = ρΣ,

- Fk is the identity on Ck for every 0 ≤ k ≤ n.

Since τ s≤n+1(C) is an (n+1)-category, the binary relationR on T [Σ] defined as w R w′

if ρΣ(w) = ρΣ(w′) is a categorical congruence on EΣ (see Example 1.5.11). The result
follows then from 1.8.7

1.8.11. Let C be an ω-category, Σ ⊆ Cn+1 and let a be an (n+ 1)-cell of C. We define
T [Σ]a to be the set

T [Σ]a := {w ∈ T [Σ] | ρΣ(w) = a}.

Lemma 1.8.10 implies that if v ∈ T [Σ]a and v ∼ w then w ∈ T [Σ]a.
We define G[Σ]a to be the full subgraph of G[Σ] whose set of objects is T [Σ]a.

Proposition 1.8.12. Let C be an ω-category, n ≥ 0 and Σ ⊆ Cn+1. The set Σ is an
(n + 1)-basis of C is and only if for every a ∈ Cn+1, the graph G[Σ]a is 0-connected
(i.e. non-empty and connected).

More precisely, this means that for every a ∈ Cn+1:

- there exists w ∈ T [Σ] such that ρΣ(w) = a,

- for all v, w ∈ T [Σ], if ρΣ(v) = a = ρΣ(w), then v ∼ w.

Proof. From Lemma 1.8.10, the map ρΣ induces a map

ρΣ : T [Σ]/∼ → Cn+1.
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In fact, since ∼ is a categorical congruence, this map is the (n+ 1)-dimensional part of
the (n+ 1)-functor

F : E+
Σ /∼ → τ s≤n+1(C),

where F is the morphism of (n + 1)-magmas from the proof of Lemma 1.8.10. Since
∼ is the smallest categorical congruence on E+

Σ , it follows from Proposition 1.5.18 that
E+

Σ /∼ is (canonically isomorphic to) E∗Σ and it is easily seen that the functor F is nothing
but the (n + 1)-functor E∗Σ → τ s≤n+1(C) as obtained in 1.4.8. Hence, from Proposition
1.4.9, and the fact that F is the identity on cells of dimension not greater than n, we
deduce that Σ is an (n + 1)-basis of C if and only if ρΣ is an isomorphism. The result
follows immediately from the fact that equivalence classes of ∼ are in bijection with
maximal connected components of G[Σ].

Remark 1.8.13. Let n > 0, C be an n-category with an n-basis Σ and α ∈ Σ. It is
immediate to check from the definition of elementary moves that for two equivalent
well formed words u ∼ u′ of T [Σ], the number of occurrences of cα in u and u′ are the
same. In particular, for every a ∈ Cn we can define the integer wα(a) to be the number
of occurrences of cα in any well formed word u such that ρσ(u) = a. An immediate
induction using the properties of ρΣ shows that this function wα : Cn → N is the same
as the one whose existence was established in Proposition 1.3.5.

1.9 PROOF OF THEOREM 1.6.18: PART III
In this section, we finally go back to Conduché ω-functors. The first two parts might be
considered as preliminaries and the key points of the proof of Theorem 1.6.18 lie within
this third and last part.

1.9.1. Let F : C → D be an ω-functor, n > 0, ΣC ⊆ Cn and ΣD ⊆ Dn such that
Fn(ΣC) ⊆ ΣD. We recursively define a map

F̃ :W [ΣC ]→W [ΣD]

with

- F̃ (cα) = cF (α) for α ∈ ΣC ,

- F̃ (ix) = iF (x) for x ∈ Cn,

- F̃ (∗̂
k
) = ∗̂

k
for 0 ≤ k < n,

- F̃ ( ( ) = (,

- F̃ ( ) ) =).
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Notice that for every word w ∈ W [ΣC ], we have

|F̃ (w)| = |w| and L(F̃ (w)) = L(w).

Lemma 1.9.2. Let F : C → D be an ω-functor and let ΣC ⊆ Cn and ΣD ⊆ Dn be
such that Fn(ΣC) ⊆ ΣD. For every u ∈ W [ΣC ]:

1. if u is well formed then F̃ (u) is well formed,

2. if F̃ (u) is well formed and if u is a subword (1.7.2) of a well formed word then it
is also well formed.

Proof. The first part is proved with a short induction left to the reader. For the second
part, first notice that the map

F̃ :W [ΣC ]→W [ΣD]

satisfies the following property:

For every w ∈ W [ΣC ], w is well parenthesized if and only if F̃ (w) is well
parenthesized.

It suffices then to apply Lemma 1.7.8 and then Lemma 1.7.10.

1.9.3. The first part of Lemma 1.9.2 shows that F̃ induces a map

F̃ : T [ΣC ]→ T [ΣD].

Moreover, we have a commutative square

T [ΣC ] Cn

T [ΣD] Dn

ρC

F̃ Fn

ρD

where ρC and ρD respectively stand for ρΣC and ρΣD .
Thus, for every a ∈ Cn we can define a map:

F̃a : T [ΣC ]a → T [ΣD]F (a)

w 7→ F̃ (w).

Recall from Proposition 1.6.13 that for an ω-functor F : C → D and n ≥ 0, τ s≤n(F )
is a discrete Conduché n-functor if and only if F is right orthogonal to ∇n

k for every
k ∈ N such that k < n.
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Proposition 1.9.4. Let F : C → D be an ω-functor and n > 0. The following conditions
are equivalent:

1. τ s≤n(F ) : τ s≤n(C)→ τ s≤n(D) is a discrete Conduché n-functor,

2. for every ΣD ⊆ Dn and ΣC := F−1(ΣD) and for every a ∈ Cn the map

F̃a : T [ΣC ]a → T [ΣD]F (a)

defined above is bijective.

Proof. We begin with 1⇒ 2.

Surjectivity Let us prove the following assertion:

∀l ∈ N,∀a ∈ Cn,∀w ∈ T [ΣD]F (a) such that |w| ≤ l

∃v ∈ T [ΣC ]a such that F̃a(v) = w.

We proceed by induction on l.

Suppose first that l = 0. We are necessarily in one of two cases:

1. w = (cβ) with β ∈ ΣD. By hypothesis, ρD(w) = F (a) and by definition of
ρD, ρD(w) = β thus F (a) = β. By definition of ΣC , a ∈ ΣC and we can
choose v = (ca).

2. w = (iy) with y ∈ Dn−1. By hypothesis, ρD(w) = F (a) and by definition
of ρD, ρD(w) = 1y thus F (a) = 1y. Since τ s≤n(F ) is a discrete Conduché
n-functor, F is right orthogonal to κnn−1. Hence, there exists x ∈ Cn−1 such
that a = 1x and F (x) = y. We can then choose v = (ix) ∈ T [ΣC ]a.

Now suppose that the assertion is true for a fixed l ∈ N and let w ∈ T [ΣD]F (a) be
such that |w| = l + 1.

By definition of well formed words, we have

w = (w1 ∗̂
k
w2)

with 0 ≤ k < n and w1, w2 ∈ T [ΣD] such that |w1| ≤ l and |w2| ≤ l.

By hypothesis, ρD(w) = F (a) and by definition of ρD,

ρD(w) = ρD(w1) ∗
k
ρD(w2)

and thus,
ρD(w1) ∗

k
ρD(w2) = F (a).
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Since by hypothesis F is right orthogonal to∇n
k , we know that there exist a1 ∈ Cn

and a2 ∈ Cn that are k-composable and such that

a = a1 ∗
k
a2, F (a1) = ρD(w1) and F (a2) = ρD(w2).

Since |w1| ≤ l and |w2| ≤ l, we can apply the induction hypothesis. Hence, there
exist v1 ∈ T [ΣC ]a1 and v2 ∈ T [ΣC ]a2 such that

F̃a1(v1) = F̃ (v1) = w1 and F̃a2(v2) = F̃ (v2) = w2.

Since ρC commutes with source and target by Lemma 1.8.9, v1 and v2 are k-com-
posable and the word (v1 ∗̂

k
v2) is well formed. By definition of ρC , we have

ρC((v1 ∗̂
k
v2)) = ρC(v1) ∗

k
ρC(v2) = a1 ∗

k
a2 = a.

Thus, (v1 ∗̂
k
v2) ∈ T [ΣC ]a and

F̃a((v1 ∗̂
k
v2) = F̃ ((v1 ∗̂

k
v2)) = (F̃ (v1) ∗̂

k
F̃ (v2)) = (w1 ∗̂

k
w2) = w.

Injectivity Let us prove the following assertion:

∀l ∈ N,∀v ∈ T [ΣC ]a,∀w ∈ T [ΣC ]a such that |v| = |w| ≤ l

F̃a(v) = F̃a(w)⇒ v = w

We proceed by induction on l.

Suppose first that l = 0. We are necessarily in one of four cases:

1. v = (cα) and w = (cβ) with α and β in ΣC . By definition of ρC , we have
α = ρC(v) = a = ρC(w) = β. Hence, v = w.

2. v = (ix) and w = (iy) with x and y in Cn−1. By hypothesis, we have
ρC(v) = a = ρC(w) and by definition of ρC , 1x = ρC(v) = a = ρC(w) =
1y, thus x = y and v = w.

3. v = (cα) and w = (ix) with α ∈ ΣC and x ∈ Cn−1. By hypothesis,
(cF (α)) = F̃ (v) = F̃ (w) = (iF (x)) which is impossible.

4. v = (ix) and w = (cα) with α ∈ ΣC and x ∈ Cn−1, which is symmetric to
the previous case.
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Now suppose that the assertion is true for a fixed l ∈ N and let v, w ∈ T [ΣC ] such
that |v| = |w| = l+ 1 and F̃ (v) = F̃ (w). By definition of well formed words, we
have

v = (v1 ∗̂
k
v2)

and
w = (w1 ∗̂

k′
w2)

with |v1|, |v2|, |w1|, |w2| ≤ l.

By hypothesis, we have

(F̃ (v1) ∗̂
k
F̃ (v2)) = F̃ (v) = F̃ (w) = (F̃ (w1) ∗̂

k′
F̃ (w2)).

From Proposition 1.7.14, we deduce that ∗̂
k

= ∗̂
k′

and

F̃ (vj) = F̃ (wj)

for j ∈ {1, 2}.
In order to apply the induction hypothesis, we need to show that ρC(vj) = ρC(wj)
for j ∈ {1, 2}.
By hypothesis,

ρC(v1) ∗
k
ρC(v2) = ρC(v) = a = ρC(w) = ρC(w1) ∗

k
ρC(w2).

Hence,

F (ρC(v1)) ∗
k
F (ρC(v2)) = F (a) = F (ρC(w1)) ∗

k
F (ρC(w2)).

Besides, F (ρC(vj)) = ρD(F̃ (vj)) = ρD(F̃ (wj)) = F (ρC(wj)). We deduce from
the fact that F is right orthogonal to∇n

k that

ρC(vj) = ρC(wj)

for j ∈ {1, 2}.
From the induction hypothesis we have vj = wj for j ∈ {1, 2}, hence v = w.

Now let us prove 2⇒ 1.
Let a ∈ Cn and suppose that F (a) = b1 ∗

k
b2. We set ΣD = {b1, b2}. By definition,

((cb1) ∗̂
k

(cb2)) ∈ T [ΣD]F (a) and by hypothesis there exists a unique v ∈ T [ΣC ]a such

that F̃a(v) = ((cb1) ∗̂
k

(cb2)). Since |F̃a(v)| = |v| = 1, we have

v = (v1 ∗̂
k′
v2)
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with |v1| = |v2| = 0, sk′(v1) = tk′(v2) and 0 ≤ k′ < n. Thus,

(F̃ (v1) ∗̂
k′
F̃ (v2)) = F̃ (v) = ((cb1) ∗̂

k
(cb2)).

Using Proposition 1.7.14, we deduce that k = k′ and F̃ (vj) = (cbj) for j ∈ {1, 2}.
We set a1 = ρC(v1), a2 = ρC(v2) and we have sk(a1) = tk(a2),

a = ρC(v) = ρC(v1) ∗
k
ρC(v2) = a1 ∗

k
a2

and
F (aj) = F (ρC(vj)) = ρD(F̃ (vj)) = ρD(cbj) = bj

for j ∈ {1, 2}, which proves the existence part of the right orthogonality to∇n
k .

Now suppose that we have a1, a
′
1, a2, a

′
2 ∈ Cn with

sk(a1) = tk(a2) and sk(a
′
1) = tk(a

′
2),

a1 ∗
k
a2 = a′1 ∗

k
a′2 = a,

F (a1) = F (a′1) = b1 and F (a2) = F (a′2) = b2.

By definition of ΣC = F−1(ΣD), we have a1, a
′
1, a2, a

′
2 ∈ ΣC . Let us define w and

w′ as
w = ((ca1) ∗̂

k
(ca2)) and w′ = ((ca′1) ∗̂

k
(ca′2)).

We have ρC(w) = ρC(w′) = a and F̃ (w) = ((cb1) ∗̂
k

(cb2)) = F̃ (w′). The injectivity of

F̃a implies that w = w′, hence a1 = a′1 and a2 = a′2, which proves the uniqueness part
of the right orthogonality to∇n

k .

1.9.5. Let F : C → D be an ω-functor, n > 0, ΣC ⊆ Cn and ΣD ⊆ Dn such that
F (ΣC) ⊆ ΣD. It follows from the definition of F̃ : T [ΣC ]→ T [ΣD] and the definition
of elementary move (1.8.1) that for an elementary move

µ = (v, w, e, e′) : u→ u′

with u, u′ ∈ T [ΣC ], the quadruple

(F̃ (v), F̃ (w), F̃ (e), F̃ (e′))

is an elementary move from F̃ (u) to F̃ (u′). Thus, we have defined a map

G[ΣC ](u, u′)→ G[ΣD](F̃ (u), F̃ (u′)).
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Together with the map F̃ : T [ΣC ]→ T [ΣD], this defines a morphism of graphs

F̃ : G[ΣC ]→ G[ΣD]

and, by restriction, a morphism of graphs

F̃a : G[ΣC ]a → G[ΣD]F (a)

for every a ∈ Cn.

Lemma 1.9.6. With the notations of the above paragraph, the map

G[ΣC ](u, u′)→ G[ΣD](F̃ (u), F̃ (u′))

is injective.

Proof. Let (v1, w1, e1, e
′
1) and (v2, w2, e2, e

′
2) be two elementary moves from u to u′

such that

(F̃ (v1), F̃ (w1), F̃ (e1), F̃ (e′1)) = (F̃ (v2), F̃ (w2), F̃ (e2), F̃ (e′2)).

In particular, we have

L(v1) = L(v2) , L(w1) = L(w2) , L(e1) = L(e2) , L(e′1) = L(e′2).

Since
v1e1w1 = u = v2e2w2 and v1e

′
1w1 = u′ = v2e

′
2w2,

we have
v1 = v2 , w1 = w2 , e1 = e2 , e′1 = e′2.

Lemma 1.9.7. With the notations of paragraph 1.9.5, suppose that τ s≤n−1(F ) is a dis-
crete Conduché (n− 1)-functor. Let

µ : v → v′

be an elementary move in T [ΣD]. If there exists u ∈ T [ΣC ] such that

F̃ (u) = v,

then there exists u′ ∈ T [ΣC ] and an elementary move

λ : u→ u′

such that
F̃ (u′) = v′ and F̃ (λ) = µ.
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Proof. The proof is long and tedious as we have to check all the different cases of
elementary moves. For the sake of clarity, we first outline a sketch of the proof that is
common to all the cases of elementary moves and then we proceed to fill in the blanks
successively for each case.

Let
µ = (v1, v2, e, e

′) : v → v′

be an elementary move. Since, by definition,

F̃ (u) = v = v1ev2,

u is necessarily of the form
u = u1eu2

with e, u1, u2 ∈ W [ΣC ] such that
F̃ (e) = e

and
F̃ (uj) = vj

for j ∈ {1, 2}. From the second part of Lemma 1.9.2, we deduce that e is well formed.
In each different case, we will prove the existence of a well formed word e′ parallel to e
such that

F̃ (e′) = e′.

From Proposition 1.7.12, we deduce that the word

u′ := u1e′u2

is well formed. By definition, we have

F̃ (u′) = v′.

Moreover, in each case, it will be immediate that the pair (e, e′) is such that the quadru-
ple

λ := (u1, u2, e, e′)

is an elementary move and that
F̃ (λ) = µ.

All that is left to prove now is the existence of e′ with the desired properties.

First case: The word e is of the form

((x ∗̂
k
y) ∗̂

k
z)
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and the word e′ is of the form

(x ∗̂
k

(y ∗̂
k
z))

with x, y, z ∈ T [ΣD]. The word e is then necessarily of the form

((x ∗̂
k
y) ∗̂

k
z).

Since F̃ (e) = e, we deduce from Lemma 1.9.2 that x, y, z and (x ∗̂
k
y) are well

formed. From Corollary 1.7.15, we deduce that

sk(x) = tk(y)

and
sk(y) = tk(z).

Thus, the word
e′ := (x ∗̂

k
(y ∗̂

k
z))

is well formed and it satisfies the desired properties.

Second case: The word e is of the form

(x ∗̂
k

(i
1

(n−1)
z

))

and the word e′ is of the form
x

with x ∈ T [ΣD], 0 ≤ k < n and z = sk(x).

Necessarily e is of the form
(x ∗̂

k
(iy))

with x ∈ T [ΣC ] (from Lemma 1.9.2 again) and y ∈ Cn−1 such that

F̃ (x) = x

and
F̃ (y) = 1(n−1)

z .

Then, we set
e′ := x.

The only thing left to show is that

y = 1
(n−1)
sk(x) .
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If k = n−1, this follows from Corollary 1.7.15 and the fact that e is well formed.
If k < n − 1, we need first to use the fact that f is right orthogonal to κn−1

k to
deduce that

y = 1
(n−1)
z

for some z ∈ Ck such that F (z) = z and then use Corollary 1.7.15 and the fact
that e is well formed.

Third case: Similar to the second one with the unit on the left.

Fourth case: The word e is of the form

((ix) ∗̂
k

(iy))

and the word e′ is of the form
(ix∗

k
y)

with x, y ∈ Dn−1 such that sk(x) = tk(y). Necessarily, e is of the form

((ix) ∗̂
k

(iy))

with x, y ∈ Cn−1 such that

F (x) = x and F (y) = y.

Using Corollary 1.7.15 and the fact that e is well formed, we deduce that sk(x) =
tk(y). Thus, the word

e′ := (ix∗
k
y)

is well formed. It satisfies all the desired properties.

Fifth case: The word e is of the form

((x ∗̂
k
y) ∗̂

l
(z ∗̂

k
t))

and the word e′ is of the form

((x ∗̂
l
z) ∗̂

k
(y ∗̂

l
t))

with x, y, z, t ∈ T [ΣD] and 0 ≤ l < k < n such that all the compatibilities of
sources and targets needed are satisfied.

Necessarily, e is of the form

((x ∗̂
k
y) ∗̂

l
(z ∗̂

k
t))
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with x, y, z, t ∈ W [ΣC ] such that

F̃ (x) = x,

F̃ (y) = y,

F̃ (z) = z,

F̃ (t) = t.

From Lemma 1.9.2 and the fact that e is well formed, we deduce that the words
x, y, z, t,(x ∗̂

k
y) and (z ∗̂

k
t) are well formed and from Corollary 1.7.15, we deduce

that
sk(x) = tk(y),

sk(z) = tk(t)

and
sl((x ∗̂

k
y)) = tl((z ∗̂

k
t)).

Since l < k, we deduce from this last equality that

sl(x) = sl(y) = tl(z) = tl(t).

Thus, the word
e′ := ((x ∗̂

l
z) ∗̂

k
(y ∗̂

l
t))

is well formed. It satisfies all the desired properties.

Remark 1.9.8. In the proof of the previous theorem, we have only used the hypothesis
that F is right orthogonal to κnk for every k such that 0 ≤ k < n− 1.

Lemma 1.9.9. Let F : C → D be an ω-functor, n > 0, ΣD ⊆ Dn and ΣC := F−1(ΣD).
If τ s≤n(F ) is a discrete Conduché n-functor, then for every a ∈ Cn

F̃a : G[ΣC ]a → G[ΣD]F (a)

is an isomorphism of graphs.

Proof. Proposition 1.9.4 exactly says that the map

F̃a : G[ΣC ]a → G[ΣD]F (a)

is an isomorphism on objects and we know from Lemma 1.9.6 that it is a faithful mor-
phism of graphs (same definition as for functors). All that is left to show is that it is also
full.
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In other words, we have to show that for all u, u′ ∈ T [ΣC ]a the map

G[ΣC ](u, u′)→ G[ΣD](F̃ (u), F̃ (u′))

is surjective.
Let µ : F̃ (u)→ F̃ (u′) be an element of the codomain. From Lemma 1.9.7 we know

that there exists
λ : u→ v

in G[ΣC ] such that
F̃ (λ) = µ.

In particular, we have
F̃ (v) = F̃ (u′).

Since we have an elementary move from u to v and by hypothesis u ∈ T [ΣC ]a, we also
have v ∈ T [ΣC ]a (see 1.8.11). Using the injectivity of the map

F̃a : T [ΣC ]a → T [ΣD]F (a)

we conclude that v = u′.

Proposition 1.9.10. Let F : C → D be an ω-functor, n ∈ N, ΣD ⊆ Dn and define
ΣC := F−1(ΣD). If τ s≤n(F ) is a discrete Conduché n-functor, then:

1. if ΣD is an n-basis then so is ΣC ,

2. if Fn : Cn → Dn is surjective and ΣC is an n-basis then so is ΣD.

Proof. The case n = 0 is trivial. We now suppose that n > 0. From Lemma 1.9.9 we
have that for every a ∈ Cn, the map

F̃a : G[ΣC ]a → G[ΣD]F (a)

is an isomorphism of graphs. In particular, G[ΣC ]a is 0-connected if and only if G[ΣD]F (a)

is 0-connected. We conclude with Proposition 1.8.12.

Putting all the pieces together, we finally have the awaited proof.

1.9.11 (Proof of Theorem 1.6.18). Let F : C → D be a discrete Conduché ω-functor.

1. In the case that D is free, it follows immediately from the first part of the Propo-
sition 1.9.10 that C is free.

2. In the case that C is free and Fn : Cn → Dn is surjective for every n ∈ N, let
us write ΣC

n for the n-basis of C. It follows from Proposition 1.2.8 and Lemma
1.6.15 that

F−1(F (ΣC
n )) = ΣC

n .

Hence, we can apply the second part of Proposition 1.9.10 and C is free.
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CHAPTER 2

HOMOTOPICAL ALGEBRA

The present chapter stands out from the others as it contains no original results. Its
goal is simply to introduce the language and tools of homotopical algebra that we shall
need in the rest of the dissertation. Consequently, most of the results are simply asserted
and the reader will find references to the literature for the proofs. The main notion of
homotopical algebra we aim for is the one of homotopy colimits and our language of
choice is that of Grothendieck’s theory of derivators [Gro90]. We do not assume that
the reader is familiar with this theory and will quickly recall the basics. If needed, gentle
introductions can be found in [Mal01] and in a letter from Grothendieck to Thomason
[Gro91]; more detailed introductions can be found in [Gro13] and in the first section
of [Cis03]; finally, a rather complete (yet unfinished and unpublished) textbook on the
subject is [Gro16].

2.1 LOCALIZATION, DERIVATION

2.1.1. A localizer is a pair (C,W) where C is a category andW is a class of arrows of
C, which we usually refer to as the weak equivalences. We denote by hoW(C), or simply
ho(C) when there is no ambiguity, the localization of C with respect toW and by

γ : C → ho(C)

the localization functor [GZ67, 1.1]. Recall the universal property of the localization:
for every category D, the functor induced by pre-composition

γ∗ : Hom(ho(C),D)→ Hom(C,D)

is fully faithful and its essential image consists of those functors F : C → D that send
the morphisms ofW to isomorphisms of D.
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We shall always consider that C and ho(C) have the same class of objects and im-
plicitly use the equality

γ(X) = X

for every object X of C.
The class of arrowsW is said to be saturated when we have the property:

f ∈ W if and only if γ(f) is an isomorphism.

For later reference, we put here the following definition.

Definition 2.1.2. Let (C,W) be a localizer such that C has amalgamated sums. A mor-
phism f : X → Y in W is a co-universal weak equivalence if for every cocartesian
square of the form

X X ′

Y Y ′,

f f ′

p

the morphism f ′ is also a weak equivalence.

2.1.3. A morphism of localizers F : (C,W) → (C ′,W ′) is a functor F : C → C ′ that
preserves weak equivalences, i.e. such that F (W) ⊆ W ′. The universal property of the
localization implies that F induces a canonical functor

F : ho(C)→ ho(C ′)

such that the square

C C ′

ho(C) ho(C ′).

F

γ γ′

F

is commutative. Let G : (C,W) → (C ′,W ′) be another morphism of localizers. A
2-morphism of localizers from F to G is simply a natural transformation α : F ⇒ G.
The universal property of the localization implies that there exists a unique natural trans-
formation

ho(C) ho(C ′)

F

G

α
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such that the 2-diagram

C C ′

ho(C) ho(C ′)

γ

F

G

γ′

α

F

G

α

is commutative in an obvious sense.

Remark 2.1.4. Since we always consider that for every localizer (C,W) the categories
C and ho(C) have the same class of objects and the localization functor is the identity
on objects, it follows that for a morphism of localizers F : (C,W) → (C ′,W ′), we
tautologically have

F (X) = F (X)

for every object X of C.

2.1.5. Let (C,W) and (C ′,W ′) be two localizers. A functor F : C → C ′ is totally left
derivable when there exists a functor

LF : ho(C)→ ho(C ′)

and a natural transformation

α : LF ◦ γ ⇒ γ′ ◦ F

that makes LF the right Kan extension of γ′ ◦ F along γ:

C C ′

ho(C) ho(C ′).

F

γ γ′

LF

α

When this right Kan extension is absolute, we say that F is absolutely totally left deriv-
able. When a functor F is totally left derivable, the pair (LF, α) is unique up to a unique
natural isomorphism and is referred to as the total left derived functor of F . Often we
will abusively discard α and simply refer to LF as the total left derived functor of F .

The notion of total right derivable functor is defined dually and denoted by RF
when it exists.

Example 2.1.6. Let F : (C,W) → (C ′,W ′) a morphism of localizers. The universal
property of the localization implies that F is absolutely totally left and right derivable
and LF ' RF ' F .
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To end this section, we recall a derivability criterion due to Gonzalez, which we shall
use in the sequel.

2.1.7. Let (C,W) and (C ′,W ′) be two localizers and let F : C C ′ : G be an
adjunction whose unit is denoted by η. Suppose that the functor G is totally right deriv-
able with (RG, β) its total right derived functor and suppose that RG has a left adjoint
F ′ : ho(C) → ho(C ′); the co-unit of this last adjunction being denoted by ε′. All this
data induces a natural transformation α : F ′ ◦ γ ⇒ γ′ ◦ F defined as the following
composition

C ′ ho(C ′) ho(C ′)

C C ho(C) .

γ′

G

id

RG
F

id γ

F ′
η

β ε′

Proposition 2.1.8 ([Gon12, Theorem 3.1]). Let (C,W) and (C ′,W ′) be two localizers
and

F : C C ′ : G

be an adjunction. If G is absolutely totally right derivable with (RG, β) its left derived
functor and if RG has a left adjoint F ′

F ′ : ho(C) ho(C ′) : RG,

then F is absolutely totally left derivable and the pair (F ′, α), with α defined as in the
previous paragraph, is its left derived functor.

2.2 (OP-)DERIVATORS AND HOMOTOPY COLIMITS

Notation 2.2.1. We denote by Cat the 2-category of small categories and CAT the
2-category of big categories. For a 2-category A, the 2-category obtained from A by
switching the source and targets of 1-cells is denoted by Aop.

The terminal category, i.e. the category with only one object and no non-trivial ar-
rows, is canonically denoted by e. For a (small) category A, the unique functor from A
to e is denoted by

pA : A→ e.

Definition 2.2.2. An op-prederivator is a (strict) 2-functor

D : Catop → CAT.

More explicitly, an op-prederivator consists of the data of:
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- a big category D(A) for every small category A,

- a functor u∗ : D(B) → D(A) for every functor u : A → B between small
categories,

- a natural transformation

D(B) D(A)

u∗

v∗

α∗

for every natural transformation

A B

u

v

α

with A and B small categories,

compatible with compositions and units (in a strict sense).

Remark 2.2.3. Note that some authors call prederivator what we have called op-pred-
erivator. The terminology we chose in the above definition is compatible with the orig-
inal one of Grothendieck, who called prederivator a 2-functor from Cat to CAT that
is contravariant at the level of 1-cells and at the level of 2-cells.

Example 2.2.4. Let C be a category. For a small category A, we use the notation C(A)
for the category Hom(A, C) of functors A → C and natural transformations between
them. The correspondence A 7→ C(A) is 2-functorial in an obvious sense and thus
defines an op-prederivator

C : Catop → CAT

A 7→ C(A)

which we call the op-prederivator represented by C. For u : A→ B in Cat,

u∗ : C(B)→ C(A)

is simply the functor induced from u by pre-composition.

We now turn to the most important way of obtaining op-prederivators.

2.2.5. Let (C,W) be a localizer. For every small category A, we writeWA the class of
pointwise weak equivalences of the category C(A), i.e. the class of arrows α : d → d′

of C(A) such that αa : d(a) → d′(a) belongs toW for every a ∈ Ob(A). This defines
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a localizer (C(A),WA). The correspondence A 7→ (C(A),WA) is 2-functorial in that
every u : A→ B induces by pre-composition a morphism of localizers

u∗ : (C(B),WB)→ (C(A),WA)

and every A B

u

v

α induces by pre-composition a 2-morphism of localizers

(C(B),WB) (C(A),WA).

u∗

v∗

α∗

(This last property is trivial since a 2-morphism of localizers is simply a natural trans-
formation between the underlying functors.) Then, by the universal property of the lo-
calization, every morphism u : A → B of Cat induces a functor, again denoted by
u∗,

u∗ : ho(C(B))→ ho(C(A))

and every natural transformation A B

u

v

α induces a natural transformation, again

denoted by α∗,

ho(C(B)) ho(C(A)).

u∗

v∗

α∗

Altogether, this defines an op-prederivator

HoW(C) : Catop → CAT

A 7→ ho(C(A)),

which we call the homotopy op-prederivator of (C,W). When there is no risk of confu-
sion we will simply write Ho(C) instead of HoW(C). All the op-prederivators we shall
work with arise this way. Notice that for the terminal category e, we have a canonical
isomorphism

Ho(C)(e) ' ho(C),
which we shall use without further reference.

Definition 2.2.6. An op-prederivator D has left Kan extensions if for every u : A → B
in Cat, the functor u∗ : D(B)→ D(A) has a left adjoint

u! : D(A)→ D(B).
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Example 2.2.7. Let C be a category. The op-prederivator represented by C has left Kan
extensions if and only if the category C has left Kan extensions along every morphism
u : A → B of Cat in the usual sense. By a standard categorical argument, this means
that the op-prederivator represented by C has left Kan extensions if and only if C is
cocomplete. Note that for every small category A, the functor

p∗A : C ' C(e)→ C(A)

is nothing but the diagonal functor that sends an object X of C to the constant diagram
with valueX . Hence, the functor pA! is nothing but the usual colimit functor ofA-shaped
diagrams

pA! = colim
A

: C(A)→ C(e) ' C.

2.2.8. We say that a localizer (C,W) has homotopy left Kan extensions when the ho-
motopy op-prederivator of (C,W) has left Kan extensions. In this case, for every small
category A, the homotopy colimit functor of A-shaped diagrams is defined as

hocolim
A

:= pA! : ho(C(A))→ ho(C).

For an object X of ho(C(A)) (which is nothing but a diagram X : A → C seen “up to
weak equivalence”), the object of ho(C)

hocolim
A

(X)

is the homotopy colimit of X . For consistency, we also use the notation

hocolim
a∈A

X(a).

When C is also cocomplete (which will always be the case in practice), it follows from
Remark 2.1.6 and Proposition 2.1.8 that the functor

colim
A

: C(A)→ C

is left derivable and hocolimA is the left derived functor of colimA:

L colim
A
' hocolim

A
.

In particular, for every A-shaped diagram X : A→ C, there is a canonical morphism of
ho(C)

hocolim
A

(X)→ colim
A

(X).

This canonical morphism will be of great importance in the sequel.
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2.2.9. Let
A B

C D

f

u v

g

α

be a 2-square in Cat. Every op-prederivator D induces a 2-square:

D(A) D(B)

D(C) D(D).

f∗

u∗ v∗

g∗

α∗

If D has left Kan extensions, we obtain a canonical natural transformation

u!f
∗ ⇒ g∗v!

referred to as the homological base change morphism induced by α and defined as the
following composition:

D(C) D(A) D(B)

D(C) D(D) D(B).

u! f∗

id
u∗ v∗

g∗ v!

id

α∗

ε

η

In particular, let u : A → B be a morphism of Cat and b an object of B seen as a
morphism b : e→ B. We have a square

A/b A

e B

k

p u

b

φ

where :

- A/b is the category whose objects are pairs (a, f : u(a)→ b) with a an object of
A and f an arrow of B, and morphisms (a, f)→ (a′, f ′) are arrows g : a→ a′ of
A such that f ′ ◦ u(g) = f ,

- k : A/b→ A is the functor (a, p) 7→ a,

- φ is the natural transformation defined by φ(a,f) := f : u(a)→ b.
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Hence, we have a homological base change morphism:

p! k
∗ ⇒ b∗u!.

In the case that D is the homotopy op-prederivator of a localizer (C,W), for every object
X of D(A) the above morphism reads

hocolim
A/b

(X|A/b)→ u!(X)b

where we use the notation X|A/b for k∗(X) and u!(F )b for b∗(u!(X)). Note that this
morphism is reminiscent of the formula that computes pointwise left Kan extensions in
the “classical” sense (see for example [ML, chapter X, section 3]).

Definition 2.2.10 (Grothendieck). A right op-derivator is an op-prederivator D such
that the following axioms are satisfied:

Der 1) For every finite family (Ai)i∈I of small categories, the canonical functor

D(qi∈IAi)→
∏
i∈I

D(Ai)

is an equivalence of categories. In particular, D(∅) is equivalent to the terminal
category.

Der 2) For every small category A, the functor

D(A)→
∏

a∈Ob(A)

D(e)

induced by the functors a∗ : D(A)→ D(e) for all a ∈ Ob(A) (seen as morphisms
a : e→ A), is conservative.

Der 3d) D admits left Kan extensions.

Der 4d) For every u : A → B in Cat and b object of B, the homological base change
morphism

p! k
∗ ⇒ b∗u!

induced by the square
A/b A

e B

k

p u

b

φ

is an isomorphism.
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2.2.11. Let us comment each of the axioms of the previous definition. Axiom Der 1
ensures that D(A) “looks like” a category of A-shaped diagrams. Axiom Der 2 says
that isomorphisms in D(A) can be tested “pointwise”. We have already seen that axiom
Der 3d ensures the existence of left Kan extensions. Finally, axiom Der 4d intuitively
says that “Kan extensions are computed pointwise”.

Example 2.2.12. Let C be a category. The op-prederivator represented by C always
satisfy axioms Der 1 and Der 2. We have already seen that axioms Der 3d means
exactly that C admits left Kan extensions in the classical sense, in which case axiom
Der 4d is automatically satisfied. Hence, the op-prederivator represented by C is a right
op-prederivator if and only if C is cocomplete.

Remark 2.2.13. Beware not to generalize the previous example too hastily. It is not true
in general that axiom Der 3d implies axiom Der 4d; even in the case of the homotopy
op-prederivator of a localizer.

This motivates the following definition.

Definition 2.2.14. A localizer (C,W) is homotopy cocomplete if the op-prederivator
Ho(C) is a right op-derivator.

2.2.15. Axioms Der 3d and Der 4d can be dualized to obtain axioms Der 3g and Der
4g, which informally say that the op-prederivator has right Kan extensions and that they
are computed pointwise. An op-prederivator satisfying axioms Der 1, Der 2, Der 3g
and Der 4g is a left op-derivator. In fact, an op-prederivator D is a left op-derivator if
and only if the op-prederivator

Cat→ CAT

A 7→ (D(Aop))op

is a right op-prederivator. An op-prederivator which is both a left and right op-derivator
is an op-derivator. For details, the reader can refer to any of the references on derivators
previously cited.

2.3 MORPHISMS OF OP-DERIVATORS, PRESERVATION
OF HOMOTOPY COLIMITS

We refer to [Lei98] for the precise definitions of pseudo-natural transformation (called
strong transformation there) and modification.

2.3.1. Let D and D′ be two op-prederivators. A morphism of op-prederivators F : D→
D′ is a pseudo-natural transformation from D to D′. This means that F consists of:
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- a functor FA : D(A)→ D′(A) for every small category A,

- an isomorphism of functors Fu : FAu
∗ ∼⇒ u∗FB,

D(B) D′(B)

D(A) D′(A),

u∗

FB

u∗

FA

Fu
∼

for every u : A→ B in Cat.

These data being compatible with compositions and units. The morphism is strict when
Fu is an identity for every u : A→ B.

Let F : D→ D′ and G : D→ D′ be morphisms of op-prederivators. A 2-morphism
φ : F ⇒ G is a modification from F to G. This means that F consists of a natural
transformation φA : FA ⇒ GA for every small category A, and is subject to a coherence
axiom similar to the one for natural transformations.

We denote by Pder the 2-category of op-prederivators, morphisms of op-prederiva-
tors and 2-morphisms of op-prederivators.

Example 2.3.2. Let F : C → C ′ be a functor. It induces a strict morphism at the
level of op-prederivators, again denoted by F , where for every small category A, the
functor FA : C(A) → C ′(A) is induced by post-composition. Similarly, every natural
transformation induces a 2-morphism at the level of represented op-prederivators.

Example 2.3.3. Let F : (C,W) → (C ′,W ′) be a morphism of localizers. For every
small category A, the functor FA : C(A)→ C ′(A) preserves weak equivalences and the
universal property of the localization yields a functor

FA : ho(C(A))→ ho(C ′(A)).

This defines a strict morphism of op-prederivators:

F : Ho(C)→ Ho(C ′).

Similarly, every 2-morphism of localizers

(C,W) (C ′,W ′)

F

G

α

induces a 2-morphism α : F ⇒ G. Altogether, we have defined a 2-functor

Loc→ Pder

(C,W) 7→ Ho(C),

where Loc is the 2-category of localizers.
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2.3.4. Let D and D′ be op-prederivators that admit left Kan extensions and let F : D→
D′ be a morphism of op-prederivators. For every u : A→ B, there is a canonical natural
transformation

u! FA ⇒ FB u!

defined as
D(A) D(B) D′(B)

D(A) D′(A) D′(B).

id

u!

u∗

FB

u∗
id

FA u!

Fu

∼
η

ε

For example, when D is the homotopy op-prederivator of a localizer and B is the termi-
nal category e, for every X object of D(A) the previous canonical morphism reads

hocolim
A

(FA(X))→ Fe(hocolim
A

(X)).

Definition 2.3.5. Let F : D → D′ be a morphism of op-prederivators and suppose that
D and D′ both admit left Kan extensions. We say that F is cocontinuous1 if for every
u : A→ B, the canonical morphism

u! FA ⇒ FB u!

is an isomorphism.

Remark 2.3.6. When D and D′ are homotopy op-prederivators we will often say that a
morphism F : D→ D′ is homotopy cocontinuous instead of cocontinuous to emphasize
the fact that it preserves homotopy Kan extensions.

Example 2.3.7. Let F : C → C ′ be a functor and suppose that C and C ′ are cocomplete.
The morphism induced by F at the level of represented op-prederivators is cocontinuous
if and only if F is cocontinuous in the usual sense.

2.3.8. As in any 2-category, the notions of equivalence and adjunction make sense in
Pder. Precisely, we have that:

- A morphism of op-prederivators F : D→ D′ is an equivalence when there exists a
morphism G : D′ → D such that FG is isomorphic to idD′ and GF is isomorphic
to idD; the morphism G is a quasi-inverse of F .

- A morphism of op-prederivators F : D→ D′ is left adjoint to G : D′ → D (and G
is right adjoint to F ) if there exist 2-morphisms η : idD′ ⇒ GF and ε : FG⇒ idD
that satisfy the usual triangle identities.

1Some authors also say left exact.
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The following three lemmas are easy 2-categorical routine and are left to the reader.

Lemma 2.3.9. Let F : D → D′ be a morphism of op-prederivators. If F is an equiv-
alence then D is a right op-derivator (resp. left op-derivator, resp. op-derivator) if and
only if D′ is one.

Lemma 2.3.10. Let F : D→ D′ be an equivalence and G : D′ → D be a quasi-inverse
of G. Then, F is left adjoint to G.

Lemma 2.3.11. Let D and D′ be op-prederivators that admit left Kan extensions and
let F : D → D′ be a morphism of op-prederivators. If F is a left adjoint, then it is
cocontinuous.

We end this section with a generalization of the notion of localization in the context
of op-prederivators.

2.3.12. Let (C,W) be a localizer. For every small category A, let

γA : C(A)→ ho(C(A))

be the localization functor. The correspondence A 7→ γA is natural in A and defines a
strict morphism of op-prederivators

γ : C → Ho(C).

Definition 2.3.13. Let (C,W) and (C ′,W ′) be two localizers and F : C → C ′ a functor.
We say that F is strongly left derivable if there exists a morphism of op-prederivators

LF : Ho(C)→ Ho(C ′)

and a 2-morphism of op-prederivators

C C ′

Ho(C) Ho(C ′).

F

γ γ′

LF

α

such that for every small category A, ((LF )A, αA) is the absolute total left derived
functor of FA : C(A)→ C ′(A). The pair (LF, α) is unique up to a unique isomorphism
and is referred to as the left derived morphism of op-prederivators of F . Often, we will
discard α and simply refer to LF as the left derived morphism of F . The notion of
strongly right derivable functor is defined dually and the notation RF is used.
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Example 2.3.14. Let (C,W) and (C,W ′) be localizers and F : C → C ′ a functor. If F
preserves weak equivalences (i.e. it is a morphism of localizers), then it is strongly left
and right derivable and

F ' LF ' RG.

Gonzalez’ criterion (Proposition 2.1.8) admits the following generalization.

Proposition 2.3.15. Let (C,W) and (C ′,W ′) be two localizers and

F : C C ′ : G

be an adjunction. If G is strongly right derivable and if RG has a left adjoint F ′

F ′ : Ho(C) Ho(C ′) : RG,

then F is strongly left derivable and

LF ' F ′.

Proof. Let α : F ′ ◦ γ ⇒ F ◦ γ be the 2-morphism of op-prederivators defined mu-
tatis mutandis as in 2.1.7 but at the level of op-prederivators. Proposition 2.1.8 gives
us that for every small category A, the functor FA is absolutely totally left derivable
with (F ′A, αA) its total left derived functor. This means exactly that F ′ is strongly left
derivable and (F ′, α) is the left derived morphism of op-prederivators of F .

2.4 HOMOTOPY COCARTESIAN SQUARES

2.4.1. Let ∆1 be the ordered set {0 < 1} seen as category. We use the notation � for
the category ∆1 ×∆1, which can be pictured as the commutative square

(0, 0) (0, 1)

(1, 0) (1, 1)

and we use the notation p for the full subcategory of � spanned by (0, 0), (0, 1) and
(1, 0), which can be pictured as

(0, 0) (0, 1)

(1, 0) .

Finally, we write ip : p→ � for the canonical inclusion functor.
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Definition 2.4.2. Let D be an op-prederivator. An object X of D(�) is cocartesian if
for every object Y of D(�), the canonical map

HomD(�)(X, Y )→ HomD(p)(i
∗
p(X), i∗p(Y ))

induced by the functor i∗p : D(�)→ D(p), is a bijection.

Example 2.4.3. Let C be a category. An object of C(�) is nothing but a commutative
square in C and it is cocartesian in the sense of the previous definition if and only if it is
cocartesian in the usual sense.

For the following definition to make sense, recall that for a localizer (C,W) and a
small categoryA, the objects ofHo(C)(A) = ho(C(A)) are identified with the objects of
C(A) via the localization functor. In particular, an object ofHo(C)(�) is a commutative
square of C (up to weak equivalence).

Definition 2.4.4. Let (C,W) be a localizer. A commutative square of C is said to be
homotopy cocartesian if it is cocartesian inHo(C) in the sense of Definition 2.4.2.

2.4.5. Let D be an op-prederivator. The object (1, 1) of � can be considered as a mor-
phism of Cat

(1, 1) : e→ �
and thus induces a functor (1, 1)∗ : D(�)→ D(e). For an object X of D(�), we use the
notation

X(1,1) := (1, 1)∗(X).

Now, since (1, 1) is the terminal object of �, we have a canonical 2-triangle

p �

e ,

ip

p (1,1)
α

where we wrote p instead of pp for short and where α is the unique such natural trans-
formation. Hence, we have a 2-triangle

D(p) D(�)

D(e) .

i∗p

(1,1)∗p∗
α∗

Suppose now that D has left Kan extensions. For X an object of D(�), we have a
canonical morphism p!(i

∗
p(X))→ X(1,1) defined as the composition

p!(i
∗
p(X))→ p!p

∗(X(1,1))→ X(1,1),
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where the arrow on the left is induced by α∗ and the arrow on the right is induced by the
co-unit of the adjunction p! a p∗.

When D is the homotopy op-prederivator of a localizer, and X is a commutative
square of C

X =

A B

C D,

u

f g

v

this previous morphism reads

hocolim

 A B

C
f

u

→ D.

Proposition 2.4.6. Let D be a right op-prederivator. An objectX of D(�) is cocartesian
if and only if the canonical map p!(i

∗
p(X))→ X(1,1) is an isomorphism.

Proof. Let Y be another object of D(�). Using the adjunction ip! a i∗p, the canonical
map HomD(�)(X, Y )→ HomD(p)(i

∗
p(X), i∗p(Y )) can be identified with

HomD(�)(X, Y )→ HomD(p)(ip!(i
∗
p(X)), Y ).

Hence, X is cocartesian if and only if the co-unit map X → ip!(i
∗
p(X)) is an isomor-

phism. The rest follows then from [Gro16, Lemma 9.2.2(i)].

Hence, for a homotopy cocomplete localizer (C,W), a commutative square of C is
homotopy cocartesian if and only if the bottom right apex of the square is the homotopy
colimit of the upper left corner of the square. This hopefully justifies the terminology of
“cocartesian square”.

The previous proposition admits the following immediate corollary.

Corollary 2.4.7. Let D and D′ be right op-derivators and F : D → D′ a morphism
of op-prederivators. If F is cocontinuous, then it preserves cocartesian squares. This
means that if an object X of D(�) is cocartesian, then F�(X) is a cocartesian square
of D′.

We end this section with two useful lemmas which show that homotopy cocartesian
squares behave much like “classical” cocartesian squares.

Lemma 2.4.8. Let (C,W) be a homotopy cocomplete localizer and let

A B

C D

u

f g

v
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be a commutative square in C. If f and g are weak equivalences then the previous square
is homotopy cocartesian.

Proof. Using Der 2, one can show that the previous square is isomorphic inHo(C)(�)
to the square

A B

A B.

u

1A 1B

u

The result follows then from [Gro13, Proposition 3.12(2)].

Lemma 2.4.9 (Pasting lemma). Let (C,W) be a homotopy cocomplete localizer and let

A B C

D E F

u

f g

v

h

w x

be a commutative diagram in C. If the square on the left is cocartesian, then the outer
square is cocartesian if and only if the right square is cocartesian.

Proof. This is a particular case of [Gro13, Proposition 3.13(1)].

2.5 MODEL CATEGORIES

In this section, we quickly review some aspects of the relation between Quillen’s theory
of model categories and Grothendieck’s theory of derivators. We suppose that the reader
is familiar with the former one and refer to the standard textbooks on the subject (such
as [Hov07, Hir09, DS95]) for basic definitions and results.

For a model category M = (M,W ,Cof,Fib), the homotopy op-prederivator of
M, denoted byHo(M), is the homotopy op-prederivator of the localizer (M,W).

The following theorems are due to Cisinski [Cis03] and can be summed up by the
slogan:

Model categories are homotopy cocomplete and left Quillen functors are homotopy
cocontinuous.

Theorem 2.5.1 (Cisinski). Let (M,W ,Cof,Fib) be a model category. The localizer
(M,W) is homotopy cocomplete.

Theorem 2.5.2 (Cisinski). LetM andM′ be model categories. Let F : M →M′ be
a left Quillen functor (i.e. the left adjoint in a Quillen adjunction). The functor F is
strongly left derivable and the morphism of op-prederivators

LF : Ho(M)→ Ho(M′)
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is homotopy cocontinuous.

Remark 2.5.3. The obvious duals of the two above theorems are also true. The reason
we put emphasis on cocompleteness rather that completeness is because we will make
no use whatsoever of homotopy limits in this dissertation.

Remark 2.5.4. Note that for a model category (M,W ,Cof,Fib), its homotopy op-pred-
erivator only depends on its underlying localizer. Hence, the existence of the classes Cof
and Fib with the usual properties defining a model structure ought to be thought of as a
property of the localizer (M,W), which is sufficient to define a “homotopy theory”. For
example, Theorem 2.5.1 should have been stated by saying that if a localizer (M,W)
can be extended to a model category (M,W ,Cof,Fib), then it is homotopy cocom-
plete.

Even if Theorem 2.5.1 tells us that (the homotopy op-prederivator of) a model cat-
egory (M,W ,Cof,Fib) has homotopy left Kan extensions, it is not generally true that
for a small category A the category of diagramsM(A) admits a model structure with
the pointwise weak equivalences as its weak equivalences. Hence, in general we cannot
use the theory of Quillen functors to compute homotopy left Kan extensions (and in par-
ticular homotopy colimits). However, in practice all the model categories that we shall
encounter are cofibrantly generated, in which case the theory is much simpler because
M(A) does admit a model structure with the pointwise weak equivalences as its weak
equivalences.

2.5.5. Let C be a category with coproducts and A a small category. For every object X
of C and every object a of A, we define X ⊗ a as the functor

X ⊗ a : A→ C

b 7→
∐

HomA(a,b)

X.

For every object a of A, this gives rise to a functor

9⊗ a : C → C(A)

X 7→ X ⊗ a.

Proposition 2.5.6. Let (M,W ,Cof,Fib) be a cofibrantly generated model category
with I (resp. J) as a set of generating cofibrations (resp. trivial cofibrations). For every
small category A, there exists a model structure onM(A) such that:

- the weak equivalences are the pointwise weak equivalences,

- the fibrations are the pointwise fibrations,
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- the cofibrations are those morphisms which have the left lifting property to trivial
fibrations.

Moreover, this model structure is cofibrantly generated and a set of generating cofibra-
tions (resp. trivial cofibrations) is given by

{f ⊗ a : X ⊗ a→ Y ⊗ a | a ∈ Ob(A), f ∈ I}

(resp.
{f ⊗ a : X ⊗ a→ Y ⊗ a | a ∈ Ob(A), f ∈ J}).

Proof. See for example [Cis03, Proposition 3.4].

2.5.7. The model structure of the previous proposition is referred to as the projective
model structure onM(A).

Proposition 2.5.8. Let (M,W ,Cof,Fib) be a cofibrantly generated model category.
For every u : A→ B, the adjunction

u! :M(A) M(B) : u∗

is a Quillen adjunction with respect to the projective model structures onM(A) and on
M(B).

Proof. By definition of the projective model structure, u∗ preserve weak equivalences
and fibrations.

2.5.9. In particular, in the case that B is the terminal category e, we have that

colimA :M(A) M(e) 'M : p∗A

is a Quillen adjunction. Since hocolimA is the left derived functor of colimA, we obtain
the following immediate corollary of the previous proposition.

Corollary 2.5.10. Let (M,W ,Cof,Fib) be a cofibrantly generated model category, A
a small category and X : A→M a diagram. If X is cofibrant for the projective model
structure on C(A), then the canonical morphism of ho(C)

hocolim
A

(X)→ colim
A

(X)

is an isomorphism.

Proof. This is simply a particular case of the general fact that for a left Quillen functor
F :M→M′ and a cofibrant object X ofM, the canonical map of ho(M′)

LF (X)→ F (X)

is an isomorphism.
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Below is a particular case for which the previous corollary applies.

Proposition 2.5.11. Let (M,W ,Cof,Fib) be a cofibrantly generated model category
and let X be a sequential diagram inM

X0 → X1 → X2 → · · ·

(i.e. a diagram X : (N,≤) → M). If X0 is cofibrant and each Xi → Xi+1 is a
cofibration, then X is cofibrant for the projective model structure onM((N,≤)).

Proof. It is an easy exercise that uses only the fact that cofibrations of the projective
model structure are, by definition, the morphisms with left lifting property to pointwise
fibrations. For details see [Sch13, Example 2.3.16].

Another setting for which a category of diagrams M(A) can be equipped with a
model structure whose weak equivalences are the pointwise equivalences and for which
the A-colimit functor is left Quillen is when the category A is a Reedy category. Rather
that recalling this theory, we simply put here the only practical result that we shall need
in the sequel.

Lemma 2.5.12. Let (M,W ,Cof,Fib) be a model category and let

A B

C D

u

f g

v
p

be a cocartesian square inM. If either u or f is a cofibration and if A, B and C are
cofibrant objects, then this square is homotopy cocartesian.

Proof. See for example [Lur09, Proposition A.2.4.4(i)].
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CHAPTER 3

HOMOTOPY THEORY OF
ω-CATEGORIES

3.1 NERVE

3.1.1. We denote by ∆ the category whose objects are the finite non-empty totally or-
dered sets [n] = {0 < · · · < n} and whose morphisms are the non-decreasing maps.
For n > 0 and 0 ≤ i ≤ n, we denote by

δi : [n− 1]→ [n]

the only injective increasing map whose image does not contain i, and for n ≥ 0 and
0 ≤ i ≤ n, we denote by

σi : [n+ 1]→ [n]

the only surjective non-decreasing map such that the pre-image of i ∈ [n] contains
exactly two elements. The category ∆̂ of simplicial sets is the category of presheaves
on ∆. For a simplicial set X , we use the notations

Xn := X([n])

∂i := X(δi) : Xn → Xn91

si := X(σi) : Xn → Xn+1.

Elements of Xn are referred to as n-simplices of X , the maps ∂i are the face maps and
the maps si are the degeneracy maps.

3.1.2. We denote by O : ∆ → ωCat the cosimplicial object introduced by Street in
[Str87]. The ω-category On is called the n-oriental. There are various ways to give a
precise definition of the orientals, but each of them requires some machinery that we
don’t want to introduce here. Instead, we only recall some important facts on orientals
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that we shall need in the sequel and refer to the literature on the subject (such as [Str87,
Str91, Str94, Ste04, BG16] or [AM20b, chapitre 7]) for details.

The two main points to retain are:

(OR1) Each On is a free ω-category whose set of generating k-cells is canonically
isomorphic to the sets of increasing sequences

0 ≤ i1 < i2 < · · · < ik ≤ n,

or, which is equivalent, to injective increasing maps [k]→ [n].

We use the notation 〈i1 i2 · · · ik〉 for such a cell. In particular, we have that:

- There are no generating k-cells for k > n. Hence, On is an n-category.

- There is exactly one generating n-cell of On, which is 〈0 1 · · ·n〉. We refer to this
cell as the principal cell of On.

- There are exactly n + 1 generating (n − 1)-cells of On. They correspond to the
maps

δi : [n− 1]→ [n]

for i ∈ {0, · · · , n}.

(OR2) For n > 0, the source (resp. target) of the principal cell of On can be expressed
as a composition of all the generating (n−1)-cells corresponding to δi with i odd
(resp. even); each of these generating (n− 1)-cells appearing exactly once in the
composite.

Another way of formulating (OR2) is: for n > 0 the weight (1.3.6) of the (n − 1)-cell
corresponding to δi in the source of the principal cell of On is 1 if i is odd and 0 if i is
even and the other way around for the target of the principal cell of On. Here are some
pictures in low dimension:

O0 = 〈0〉,

O1 = 〈0〉 〈1〉,〈01〉

O2 =

〈1〉

〈0〉 〈2〉,

〈12〉〈01〉

〈02〉

〈012〉
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O3 =

〈1〉

〈0〉 〈2〉

〈3〉

〈12〉〈01〉

〈03〉

〈02〉

〈23〉

〈012〉

〈023〉

〈0123〉
V

〈1〉

〈0〉 〈2〉.

〈3〉

〈12〉

〈13〉

〈01〉

〈03〉 〈23〉

〈013〉 〈123〉

3.1.3. For every ω-category C, the nerve of C is the simplicial set Nω(C) defined as

Nω(C) : ∆op → Set

[n] 7→ HomωCat(On, C).

By post-composition, this yields a functor

Nω : ωCat→ ∆̂

C 7→ Nω(C),

which we refer to as the nerve functor for ω-categories. Furthermore, for every n ∈ N,
we also define a nerve functor for n-categories as the restriction of Nω to nCat (seen
as a full subcategory of ωCat)

Nn := Nω

∣∣
nCat

: nCat→ ∆̂.

By the usual Kan extension technique, we obtain for every n ∈ N ∪ {ω} a functor

cn : ∆̂→ nCat,

left adjoint to Nn.

3.1.4. For n = 1, the functorN1 is the usual nerve of categories. Recall that for a (small)
category C, an m-simplex X of N1(C) is a sequence of composable arrows of C

X0
X0,1−→ X1

X1,2−→ · · · −→ Xm−1
Xm−1,m−→ Xm.

For m > 0 and 0 ≤ i ≤ m, the (m − 1)-simplex ∂i(X) is obtained by composing
arrows at Xi (or simply deleting it for i = 0 or m). For m ≥ 0 and 0 ≤ i ≤ m, the
(m+ 1)-simplex si(X) is obtained by inserting a unit map at Xi.

For n = 2, the functor N2 is what is sometimes known as the Duskin nerve [Dus02]
(restricted from bicategories to 2-categories). For a 2-category C, an m-simplex X of
N2(C) consists of:

- for every 0 ≤ i ≤ m, an object Xi of C,
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- for all 0 ≤ i ≤ j ≤ m, an arrow Xi,j : Xi → Xj of C,

- for all 0 ≤ i ≤ j ≤ k ≤ m, a 2-triangle

Xj

Xi Xk,

Xj,kXi,j

Xi,k

Xi,j,k

subject to the following axioms:

- for all 0 ≤ i ≤ m, we have
Xi,i = 1Xi ,

- for all 0 ≤ i ≤ j ≤ m, we have

Xi,i,j = Xi,j,j = 1Xi,j ,

- for all 0 ≤ i < j < k < l ≤ m, we have the equality (known as the cocycle
condition)

(Xk,l ∗
0
Xi,j,k) ∗

1
Xi,k,l = (Xj,k,l ∗

0
Xi,j) ∗

1
Xi,j,l.

For m > 0 and 0 ≤ l ≤ m, the (m− 1)-simplex ∂l(X) is defined as

∂l(X)i = Xδl(j), ∂l(X)i,j = Xδl(i),δl(j) and ∂l(X)i,j,k = Xδl(i),δl(j),δl(k).

And similarly, for m ≥ 0 and 0 ≤ l ≤ m, the (m+ 1)-simplex sl(X) is defined as

sl(X)i = Xσl(j), sl(X)i,j = Xσl(i),σl(j) and sl(X)i,j,k = Xσl(i),σl(j),σl(k).

3.2 THOMASON EQUIVALENCES

3.2.1. From now on, we will consider that the category ∆̂ is equipped with the model
structure defined by Quillen in [Qui67]. A weak equivalence of simplicial sets is a weak
equivalence for this model structure. The cofibrations for this model structure are the
monomorphisms.

Definition 3.2.2. Let n ∈ N ∪ {ω}. A morphism f : X → Y of nCat is a Thomason
equivalence when Nn(f) : Nn(X)→ Nn(Y ) is a weak equivalence of simplicial sets.
We denote byWTh

n the class of Thomason equivalences.
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3.2.3. We usually make reference to the name “Thomason” in the notations of homo-
topic constructions induced by Thomason equivalences. For example, we writeHo(nCatTh)
for the homotopy op-prederivator of (nCat,WTh

n ) and

γTh : nCat→ Ho(nCatTh)

for the localization morphism. The reason is to avoid confusion with other weak equiv-
alences on nCat that we will introduce later.

3.2.4. By definition, the nerve functor induces a morphism of localizers

Nn : (nCat,WTh
n )→ (∆̂,W∆)

and hence a morphism of op-prederivators

Nn : Ho(nCatTh)→ Ho(∆̂).

Theorem 3.2.5 (Gagna). For every 1 ≤ n ≤ ω, the morphism

Nn : Ho(nCatTh)→ Ho(∆̂)

is an equivalence of op-prederivators.

Proof. Recall from 3.1.3 that cn : ∆̂ → nCat denotes the left adjoint of the nerve
functor Nn. In [Gag18], Gagna proves that there exists a functor Q : ∆̂→ ∆̂, as well as
a zigzag of morphisms of functors

NncnQ
α←− Q

γ−→ id∆̂

and a morphism of functors
cnQNn

β−→ id∆̂,

such that cnQ preserves weak equivalences and α, β and γ are weak equivalences argu-
ment by argument. This easily implies that

cnQ : Ho(∆̂)→ Ho(nCatTh)

is a quasi-inverse (2.3.8) of

Nn : Ho(nCatTh)→ Ho(∆̂).

From Lemma 2.3.9, we obtain the following corollary.

Corollary 3.2.6. For every 1 ≤ n ≤ ω, the localizer (nCatTh,WTh
n ) is homotopy

cocomplete (Definition 2.2.14).

103



CHAPTER 3. HOMOTOPY THEORY OF ω-CATEGORIES

We will speak of “Thomason homotopy colimits” and “Thomason homotopy co-
cartesian squares” for homotopy colimits and homotopy cocartesian squares in the lo-
calizer (nCatTh,WTh

n ). (See also 3.2.10 below.)
Another consequence of Gagna’s theorem is the following corollary.

Corollary 3.2.7. For every 1 ≤ n ≤ ω, the classWTh
n is saturated (2.1.1).

Proof. This follows immediately from the fact that Nn : ho(nCatTh) → ho(∆̂) is
an equivalence of categories and the fact that weak equivalences of simplicial sets are
saturated (because they are the weak equivalences of a model structure).

Remark 3.2.8. Corollaries 3.2.6 and 3.2.7 would also follow from the existence of a
model structure on nCat with WTh

n as the weak equivalences. For n = 1, this was
established by Thomason [Tho80], and for n = 2, by Ara and Maltsiniotis [AM14]. For
n > 3, the existence of such a model structure is conjectured but not yet established.

By definition, for all 1 ≤ n ≤ m ≤ ω, the canonical inclusion

nCat ↪→ mCat

sends the Thomason equivalences of nCat to Thomason equivalences ofmCat. Hence,
it induces a morphism of localizers and then a morphism of op-prederivators

Ho(nCatTh)→ Ho(mCatTh).

Proposition 3.2.9. For all 1 ≤ n ≤ m ≤ ω, the canonical morphism

Ho(nCatTh)→ Ho(mCatTh)

is an equivalence of op-prederivators.

Proof. This follows from Theorem 3.2.5 and the commutativity of the triangle

Ho(nCatTh) Ho(mCatTh)

Ho(∆̂) .

Nn Nm
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3.2.10. It follows from the previous proposition that for all 1 ≤ n ≤ m ≤ ω, the
morphism Ho(nCatTh) → Ho(mCatTh) of op-prederivators is homotopy cocontin-
uous and reflects homotopy colimits (in an obvious sense). Hence, given a diagram
d : I → nCat with n > 0, we can harmlessly use the notation

Th

hocolim
i∈I

(d)

for both the Thomason homotopy colimits in nCat and in ωCat (or any mCat with
n ≤ m). Similarly, a commutative square of nCat is Thomason homotopy cocartesian
in nCat if and only if it is so in ωCat. Hence, there is really no ambiguity when simply
calling such a square Thomason homotopy cocartesian.

3.3 TENSOR PRODUCT AND OPLAX TRANSFORMATIONS

Recall that ωCat can be equipped with a monoidal product ⊗, introduced by Al-Agl
and Steiner in [AAS93] and by Crans in [Cra95], commonly referred to as the Gray
tensor product. The implicit reference for this section is [AM20b, Appendices A and
B].

3.3.1. The Gray tensor product makes ωCat into a monoidal category for which the
unit is the ω-category D0 (which is the terminal ω-category). This monoidal category is
not symmetric but it is biclosed [AM20b, Theorem A.15], meaning that there exist two
functors

homoplax(−,−), homlax(−,−) : ωCatop × ωCat→ ωCat

such that for all ω-categories X, Y and Z, we have isomorphisms

HomωCat(X ⊗ Y, Z) ' HomωCat(X, homoplax(Y, Z))

' HomωCat(Y, homlax(X,Z))

natural in X, Y and Z. When X = D0, we have D0 ⊗ Y ' Y , and thus

HomωCat(Y, Z) ' HomωCat(D0, homoplax(Y, Z)).

Hence, the 0-cells of the ω-category homoplax(Y, Z) are the ω-functors Y → Z.

3.3.2. Let u, v : X → Y be two ω-functors. An oplax transformation from u to v is a
1-cell α of homoplax(X, Y ) with source u and target v. We usually use the double arrow
notation

α : u⇒ v
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for oplax transformations. By adjunction, we have

HomωCat(D1, homoplax(X, Y )) ' HomωCat(D1 ⊗X, Y )

' HomωCat(X, homlax(D1, Y )).

Hence, α : u⇒ v can be encoded in the following two ways:

- As an ω-functor α : D1 ⊗X → Y such that the following diagram

X

D1 ⊗X Y,

X

u
iX0

α

v
iX1

where iX0 and iX1 are induced by the two ω-functors D0 → D1 and where we
implicitly used the isomorphism D0 ⊗X ' X , is commutative.

- As an ω-functor α : X → homlax(D1, Y ) such that the following diagram

Y

X homlax(D1, Y )

Y,

u

α

v

πY0

πY1

where πY0 and πY1 are induced by the two ω-functors D0 → D1 and where we
implicitly used the isomorphism homlax(D0, Y ) ' Y , is commutative.

The ω-category homlax(D1, Y ) is sometimes referred to as the ω-category of cylinders
in Y . An explicit description of this ω-category can be found, for example, in [Mét03,
Appendix A], [LM09, Section 4] or [AM20b, Appendice B.1].

3.3.3. [Formulas for oplax transformations] We now give a third way of describing oplax
transformations based on explicit formulas. The proof that this description is equivalent
to those given in the previous paragraph can be found in [AM20b, Appendice B.2].

Let u, v : X → Y two ω-functors. An oplax transformation α : u ⇒ v is given by
the data of:

- for every 0-cell x of X , a 1-cell of Y

αx : u(x)→ v(x),
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- for every n-cell of x of X with n > 0, an (n+ 1)-cell of Y

αx : αtn−1(x) ∗
n−1
· · · ∗

1
αt0(x) ∗

0
u(x)→ v(x) ∗

0
αs0(x) ∗

1
· · · ∗

n−1
αsn−1(x)

subject to the following axioms:

1. for every n-cell x of X ,
α1x = 1αx ,

2. for all 0 ≤ k < n, for all n-cells x and y of X that are k-composable,

αx∗
k
y =

(
v(tk+1(x)) ∗

0
αs0(y) ∗

1
· · · ∗

k−1
αsk−1(y) ∗

k
αy

)
∗
k+1

(
αx ∗

k
αtk−1(x) ∗

k−1
· · · ∗

1
αt0(x) ∗

0
u(sk+1(y))

)
.

Note that to read the formulas correctly, one has to remember the convention that for
k < n, the composition ∗

k
has priority over ∗

n
(see 1.1.2).

Example 3.3.4. When C and D are n-categories with n finite and u, v : C → D are
two n-functors, an oplax transformation α : u⇒ v amounts to the data of a (k+ 1)-cell
αx ofD for each k-cell x of C with 0 ≤ k ≤ n, with source and target as in the previous
paragraph. These data being subject to the axioms of the previous paragraph. Note that
when x is an n-cell of C, αx is necessarily a unit, which can be expressed as the equality

αtn−1(x) ∗
n−1
· · · ∗

1
αt0(x) ∗

0
u(x) = v(x) ∗

0
αs0(x) ∗

1
· · · ∗

n−1
αsn−1(x)

In particular, when n = 1 and C and D are thus (small) categories, an oplax transfor-
mation u⇒ v is nothing but a natural transformation from u to v.

3.3.5. Let u : C → D be an ω-functor. There is an oplax transformation from u to u,
denoted by 1u, which is defined as

(1u)x := 1u(x)

for every cell x of C. More abstractly, this oplax transformation corresponds to the
ω-functor

D1 ⊗ C
p⊗u−→ D0 ⊗D ' D,

where p is the only ω-functor D1 → D0.

3.3.6. Let
B C D E

f u

v

g
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be a diagram in ωCat and α : u⇒ v an oplax transformation. The data of

(g ? α)x := g(αx)

for each cell x of C (resp.
(α ? f)x := αf(x)

for each cell x of B) defines an oplax transformation from g ◦ u to g ◦ v (resp. u ◦ f to
v ◦ f ) which we denote by g ? α (resp. α ? f ).

More abstractly, if α is seen as an ω-functor D1 ⊗ C → D, then g ? α (resp. α ? f)
corresponds to the ω-functor obtained as the following composition

D1 ⊗ C
α−→ D

f−→ E

(resp.

D1 ⊗B
D1⊗f−→ D1 ⊗ C

α−→ D).

Remark 3.3.7. All the above descriptions of oplax transformations can be easily dual-
ized for lax transformations (i.e. the 1-cells of the ω-category homlax(X, Y ) for some
ω-categories X and Y ). Habit is the only reason why we put emphasis on oplax trans-
formations rather than lax transformations.

3.4 HOMOTOPY EQUIVALENCES AND DEFORMATION
RETRACTS

3.4.1. Let C and D be two ω-categories and consider the smallest equivalence relation
on the set HomωCat(C,D) such that two ω-functors from C to D are equivalent if there
is an oplax direction between them (in any direction). Let us say that two ω-functors
u, v : C → D are oplax homotopic if they are equivalent for this equivalence relation.

Definition 3.4.2. An ω-functor u : C → D is an oplax homotopy equivalence if there
exists an ω-functor v : D → C such that u ◦ v is oplax homotopic to idD and v ◦ u is
oplax homotopic to idC .

Recall that we write γTh : ωCat → ho(ωCatTh) for the localization functor with
respect to the Thomason equivalences.

Lemma 3.4.3. Let u, v : C → D be two ω-functors. If there exists an oplax transfor-
mation α : u⇒ v, then γTh(u) = γTh(v).

Proof. This follows immediately from [AM20c, Théorème B.11].
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From this lemma and the fact that the Thomason equivalences are saturated (Corol-
lary 3.2.7), we deduce the following proposition.

Proposition 3.4.4. Every oplax homotopy equivalence is a Thomason equivalence.

3.4.5. An ω-functor i : C → D is an oplax deformation retract if there exists an
ω-functor r : D → C such that:

(a) r ◦ i = idC ,

(b) there exists an oplax transformation α : idD ⇒ i ◦ r.

Furthermore, i is a strong oplax deformation retract if α can be chosen such that:

(c) α ? i = 1i.

An oplax deformation retract is a particular case of homotopy equivalence and thus of
Thomason equivalence.

Lemma 3.4.6. The pushout of a strong oplax deformation retract is a strong oplax
deformation retract.

Proof. Let i : A→ B be a strong oplax deformation retract and

A A′

B B′

i

u

i′

v
p

(i)

be a cocartesian square. We have to show that i′ is also a strong oplax deformation
retract. By hypothesis there exist r : B → A such that r ◦ i = idA and α : D1⊗B → B
such that the diagrams

B

D1 ⊗B B,

B

idB
iB0

α

i◦r
iB1

(ii)

and
D1 ⊗ A D1 ⊗B B,

p⊗i

D1⊗i α (iii)

where p is the unique morphism D1 → D0, are commutative.
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From the commutativity of the following solid arrow diagram

A A′

B B′

A A′,

u

i i′

idA′

r

v

r′

u

p

we deduce the existence of r′ : B′ → A′ that makes the whole diagram commute. In
particular, we have r′ ◦ i′ = idA′ .

From the commutativity of (iii), we easily deduce the commutativity of the following
solid arrow diagram

D1 ⊗ A D1 ⊗ A′

D1 ⊗B D1 ⊗B′

B B′.

D1⊗u

D1⊗i D1⊗i′

p⊗i′
α

D1⊗v

α′

v

The existence of α′ : D1 ⊗ B′ → B′ that makes the whole diagram commutes follows
from the fact that the functor D1 ⊗ 9 preserves colimits. In particular, we have

α′ ◦ (D1 ⊗ i′) = p⊗ i′.

Now, notice that for every ω-category C, the maps

iC0 : C → D1 ⊗ C and iC1 : C → D1 ⊗ C

are natural in C. Using this naturality and simple diagram chasing (left to the reader),
we obtain the equalities

α′ ◦ iB′0 ◦ v = v,

α′ ◦ iB′0 ◦ i′ = i′,

and the equalities
α′ ◦ iB′1 ◦ v = i′ ◦ r′ ◦ v

α′ ◦ iB′1 ◦ i′ = i′ ◦ r′ ◦ i′.

Using the fact that square (i) is cocartesian, we deduce that α′◦ iB′0 = idB′ and α′◦ iB′1 =
i′ ◦ r′. This proves that i′ is an oplax deformation retract, which is furthermore strong
because of the equality α′ ◦ (D1 ⊗ i′) = p⊗ i′.
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In the following proposition, a co-universal Thomason equivalence means a co-
universal weak equivalence for the localizer (ωCat,WTh

ω ) (Definition 2.1.2).

Proposition 3.4.7. Every strong oplax deformation retract is a co-universal Thomason
equivalence.

Proof. Immediate consequence of Lemma 3.4.6 and the fact that oplax transformation
retracts are Thomason equivalences.

Remark 3.4.8. All the results we have seen in this section are still true if we replace
“oplax” by “lax” everywhere.

3.5 EQUIVALENCES OF ω-CATEGORIES AND THE FOLK
MODEL STRUCTURE

3.5.1. Let C be an ω-category. We define the equivalence relation ∼ω on the set Cn by
co-induction on n ∈ N. For x, y ∈ Cn, we have x ∼ω y when:

- x and y are parallel,

- there exist r, s ∈ Cn+1 such that r : x→ y, s : y → x,

r ∗n s ∼ω 1y

and
s ∗n r ∼ω 1x.

For details on this definition and the proof that it is an equivalence relation, see [LMW10,
section 4.2].

Example 3.5.2. Let x and y be two 0-cells of an n-category C.

- When n = 1, x ∼ω y means that x and y are isomorphic.

- When n = 2, x ∼ω y means that x and y are equivalent, i.e. there exist f : x→ y
and g : y → x such that fg is isomorphic to 1y and gf is isomorphic to 1x.

For later reference, we put here the following trivial but important lemma, whose
proof is omitted.

Lemma 3.5.3. Let F : C → D be an ω-functor, n ≥ 0 and x, y be n-cells of C. If
x ∼ω y, then F (x) ∼ω F (y).

Definition 3.5.4. An ω-functor F : C → D is an equivalence of ω-categories when:
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- for every y ∈ D0, there exists x ∈ C0 such that

F (x) ∼ω y,

- for every n ≥ 0, for all x, y ∈ Cn that are parallel and for every β ∈ Dn+1 such
that

β : F (x)→ F (y),

there exists α ∈ Cn+1 such that

α : x→ y

and
F (α) ∼ω β.

Example 3.5.5. If C and D are (small) categories seen as ω-categories, then a functor
F : C → D is an equivalence of ω-categories if and only if it is fully faithful and
essentially surjective, i.e. an equivalence of categories.

Theorem 3.5.6. There exists a cofibrantly generated model structure on ωCat whose
weak equivalences are the equivalences of ω-categories, and whose cofibrations are
generated by the set {in : Sn−1 → Dn|n ∈ N} (see 1.1.7).

Proof. This is the main result of [LMW10].

3.5.7. The model structure of the previous theorem is commonly referred to as folk
model structure on ωCat. Data of this model structure will often be referred to by
using the adjective folk, e.g. folk cofibration. Consequently folk weak equivalence and
equivalence of ω-categories mean the same thing.

Furthermore, as in the Thomason case (see 3.2.3), we usually make reference to
the word “folk” in the notations of homotopic constructions induced by the folk weak
equivalences. For example, we write W folk for the class of folk weak equivalences,
Ho(ωCatfolk) for the homotopy op-prederivator of (ωCat,W folk

ω ) and

γfolk : ωCat→ Ho(ωCatfolk)

for the localization morphism. It follows from the previous theorem and Theorem 2.5.1
that the localizer (ωCat,W folk

ω ) is homotopy cocomplete. We will speak of “folk ho-
motopy colimits” and “folk homotopy cocartesian squares” for homotopy colimits and
homotopy cocartesian squares in this localizer.

3.5.8. Using the set {in : Sn−1 → Dn|n ∈ N} of generating folk cofibrations, we obtain
that an ω-functor F : C → D is a folk trivial fibration when:
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- for every y ∈ D0, there exists x ∈ C0 such that

F (x) = y

- for every n ≥ 0, for all x, y ∈ Cn that are parallel and for every β ∈ Dn+1 such
that

β : F (x)→ F (y)

there exists α ∈ Cn+1 such that

α : x→ y

and
F (α) = β.

This characterization of folk trivial fibrations is to be compared with Definition
3.5.4 of equivalences of ω-categories.

Proposition 3.5.9. An ω-category is cofibrant for the folk model structure if and only if
it is free.

Proof. The fact that every free ω-category is cofibrant follows immediately from the
fact that the in : Sn−1 → Dn are cofibrations and that every ω-category C is the colimit
of the canonical diagram (Lemma 1.1.6)

sk0(C)→ sk1(C)→ · · · → skn(C)→ skn+1(C)→ · · ·

For the converse, see [Mét08].

3.6 EQUIVALENCES OF ω-CATEGORIES VS THOMASON
EQUIVALENCES

Lemma 3.6.1. The nerve functor Nω : ωCat → ∆̂ sends the equivalences of ω-cate-
gories to weak equivalences of simplicial sets.

Proof. Since every ω-category is fibrant for the folk model structure [LMW10, Propo-
sition 9], it follows from Ken Brown’s Lemma [Hov07, Lemma 1.1.12] that it suffices
to show that the nerve sends the folk trivial fibrations to weak equivalences of simplicial
sets. In particular, it suffices to show the stronger condition that the nerve sends the folk
trivial fibrations to trivial fibrations of simplicial sets.

By adjunction, this is equivalent to showing that the functor cω : ∆̂ → ωCat sends
the cofibrations of simplicial sets to folk cofibrations. Since cω is cocontinuous and the
cofibrations of simplicial sets are generated by the inclusions

∂∆n → ∆n
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for n ∈ N, it suffices to show that cω sends these inclusions to folk cofibrations.
Now, it follows from [Str87, Lemma 5.1] that the image of the inclusion ∂∆n → ∆n

by cω can be identified with the canonical inclusion

skn−1(On)→ On.

Since On is free, this last morphism is by definition a push-out of a coproduct of folk
cofibrations (see Definition 1.2.1), hence a folk cofibration.

As an immediate consequence of the previous lemma, we have the following propo-
sition.

Proposition 3.6.2. Every equivalence of ω-categories is a Thomason equivalence.

Remark 3.6.3. The converse of the above proposition is false. For example, the unique
ω-functor

D1 → D0

is a Thomason equivalence because its image by the nerve is the unique morphism of
simplicial sets ∆1 → ∆0 (which obviously is a weak equivalence), but it is not an
equivalence of ω-categories because D1 and D0 are not equivalent as categories (see
Example 3.5.5).

3.6.4. Proposition 3.6.2 implies that the identity functor on ωCat induces a morphism
of localizers (ωCat,W folk)→ (ωCat,WTh), which in turn induces a functor between
localized categories

J : ho(ωCatfolk)→ ho(ωCatTh).

This functor cannot be an equivalence since this would imply that every Thomason
equivalence is an equivalence of ω-categories.

3.7 SLICE ω-CATEGORIES AND FOLK THEOREM A
3.7.1. Let A be an ω-category and a0 an object of A. We define the slice ω-category
A/a0 as the following fibred product:

A/a0 homlax(D1, A)

D0 A.

πA1

〈a0〉

y

We also define an ω-functor π : A/a0 → A as the following composition

π : A/a0 → homlax(D1, A)
πA0−→ A.
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Let us now give an alternative definition of the ω-category A/a0 using explicit formu-
las. The equivalence with the previous definition follows from the dual of [AM20b,
Proposition B.5.2]

- An n-cell of A/a0 is a table

(x, a) =

(
(x0, a1) (x1, a2) · · · (xn−1, an)

(x′0, a
′
1) (x′1, a

′
2) · · · (x′n−1, a

′
n)

(xn, an+1)

)

where x0 and x′0 are 0-cells of A, and:

xi : xi−1 −→ x′i−1, for every 1 ≤ i ≤ n,

x′i : xi−1 −→ x′i−1, for every 1 ≤ i ≤ n− 1,

ai : a′i−1 ∗
i−2

a′i−2 ∗
i−3
· · · ∗

1
a′1 ∗

0
xi−1 −→ ai−1, for every 1 ≤ i ≤ n+ 1,

a′i : a′i−1 ∗
i−2

a′i−2 ∗
i−3
· · · ∗

1
a′1 ∗

0
x′i−1 −→ ai−1, for every 1 ≤ i ≤ n

are i-cells of A. In low dimension, this gives:

(x0, a1) :
x0

a0

a1

(
(x0, a1)

(x′0, a
′
1)

(x1, a2)

)
:

x0 x′0

a0

x1

a1 a′1

a2

(
(x0, a1) (x1, a2)

(x′0, a
′
1) (x′1, a

′
2)

(x2, a3)

)
:

x0 x′0

a0

x1

a1 a′1

a2

a3

W
x0 x′0

a0 .

x1

x′1

a1 a′1

a′2

x2

- The source and target of the n-cell (a, x) are given by the matrices:

s(x, a) =

(
(x0, a1) (x1, a2) · · · (xn−2, an−1)

(x′0, a
′
1) (x′1, a

′
2) · · · (x′n−2, a

′
n−1)

(xn−1, an)

)

t(x, a) =

(
(x0, a1) (x1, a2) · · · (xn−2, an−1)

(x′0, a
′
1) (x′1, a

′
2) · · · (x′n−2, a

′
n−1)

(x′n−1, a
′
n)

)
.
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- The unit of the n-cell (a, x) is given by the table:

1(x,a) =

(
(x0, a1) (x1, a2) · · · (xn−1, an) (xn, an+1)

(x′0, a
′
1) (x′1, a

′
2) · · · (x′n−1, a

′
n) (xn, an+1)

(1xn , 1an+1)

)
.

- The composition of n-cells (x, a) and (y, b) such that sk(y, b) = tk(a, x), is given
by the table:

(y, b)∗
k
(x, a) =

(
(x0, a1) · · · (xk, ak) (zk+1, ck+2) · · · (zn−1, cn)

(y′0, b
′
1) · · · (y′k, b

′
k) (z′k+1, c

′
k+2) · · · (z′n−1, c

′
n)

(zn, cn+1)

)
,

where:
zi = yi ∗

k
xi, for every k + 1 ≤ i ≤ n,

z′i = y′i ∗
k
x′i, for every k + 1 ≤ i ≤ n− 1,

ci = ai ∗
k+1

bi ∗
k
a′k ∗

k−1
a′k−1 ∗

k−2
· · · ∗

1
a′1 ∗

0
xk+1, for every k + 2 ≤ i ≤ n+ 1,

c′i = a′i ∗
k+1

b′i ∗
k
a′k ∗

k−1
a′k−1 ∗

k−2
· · · ∗

1
a′1 ∗

0
x′k+1, for every k + 2 ≤ i ≤ n.

We leave it to the reader to check that the formulas are well defined and that the axioms
for ω-categories are satisfied. The canonical forgetful ω-functor π : A/a0 → A is simply
expressed as:

A/a0 → A

(x, a) 7→ xn.

Notice that if A is an n-category, then so is A/a0. In this case, for an n-cell (x, a), an+1

is a unit, hence
a′n ∗

n−1
a′n−1 ∗

n−2
· · · ∗

1
a′1 ∗

0
xn = an.

Example 3.7.2. For a small category A (considered as an ω-category) and an object a0

of A, the category A/a0 in the sense of the previous paragraph is nothing but the usual
slice category of A over a0.

3.7.3. Let u : A → B be a morphism of ωCat and b0 an object of B. We define the
ω-category A/b0 (also denoted by u ↓ b0) as the following fibred product:

A/b0 A

B/b0 B.

u/b0 u

π

y
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More explicitly, an n-cell (x, b) of A/b0 is a table

(x, b) =

(
(x0, b1) (x1, b2) · · · (xn−1, bn)

(x′0, b
′
1) (x′1, b

′
2) · · · (x′n−1, b

′
n)

(xn, bn+1)

)

where the xi and x′i are i-cells of A such that
xi : xi−1 −→ x′i−1, for every 1 ≤ i ≤ n,

x′i : xi−1 −→ x′i−1, for every 1 ≤ i ≤ n− 1,

and the bi and b′i are i-cells of B such that(
(u(x0), b1) (u(x1), b2) · · · (u(xn−1), bn)

(u(x′0), b′1) (u(x′1), b′2) · · · (u(x′n−1), b′n)
(u(xn), bn+1)

)

is an n-cell of B/b0.
The canonical ω-functor A/b0 → A is simply expressed as

A/b0 → A

(x, b) 7→ xn,

and the ω-functor u/b0 as

u/b0 : A/b0 → B/b0

(x, b) 7→ (u(x), b).

More generally, if we have a commutative triangle in ωCat

A B

C ,

u

v w

then for every object c0 of C, we have a functor u/c0 : A/c0 → B/c0 defined as

u/c0 : A/c0 → B/c0

(x, c) 7→ (u(x), c).

Theorem 3.7.4. (Folk Theorem A) Let

A B

C

u

v w
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be a commutative triangle in ωCat. If for every object c0 of C the induced morphism

u/c0 : A/c0 → B/c0

is an equivalence of ω-categories, then so is u.

Proof. Before anything else, recall from Lemma 3.5.3 that given an ω-functor F : X →
Y and n-cells x and y of X , if x ∼ω y, then F (x) ∼ω F (y).

(i) Let b0 be a 0-cell of B and set c0 := w(b0). By definition, the pair (b0, 1c0) is
a 0-cell of B/c0. By hypothesis, we know that there exists a 0-cell (a0, c1) of
A/c0 such that (u(a0), c1) ∼ω (b0, 1c0). Hence, by applying the canonical functor
B/c0 → B, we obtain that u(a0) ∼ω b0.

(ii) Let f and f ′ be parallel n-cells of A and β : u(f) → u(f ′) an (n + 1)-cell of
B. We need to show that there exists an (n + 1)-cell α : f → f ′ of A such that
u(α) ∼ω β.

Let us use the notations:

- ai := si(f) = si(f
′) for 0 ≤ i < n,

- a′i := ti(f) = ti(f
′) for 0 ≤ i < n,

- an := f and a′n = f ′.

It is straightforward to check that(
(a0, v(a′1)) (a1, v(a′2)) · · · (an−1, v(a′n))

(a′0, 1v(a′0)) (a′1, 1v(a′1)) · · · (a′n−1, 1(v(a′n−1)))
(an, w(β))

)
and (

(a0, v(a′1)) (a1, v(a′2)) · · · (an−1, v(a′n))

(a′0, 1v(a′0)) (a′1, 1v(a′1)) · · · (a′n−1, 1(v(a′
(n−1)

)))
(a′n, 1v(a′n))

)
are parallel n-cells of A/c0 where we set c0 := v(a′0). Similarly, we have an
(n+ 1)-cell of B/c0(

(u(a0), v(a′1)) · · · (u(an−1), v(a′n)) (u(an), w(β))

(u(a′0), 1v(a′0)) · · · (u(a′n−1), 1(v(a′n−1))) (u(a′n), 1v(a′n))
(β, 1w(β))

)
whose source and target respectively are the image by u/c0 of the above two cells
of A/c0. By hypothesis, there exists an (n+ 1)-cell of A/c0 of the form(

(a0, v(a′1)) · · · (an−1, v(a′n)) (an, w(β))

(a′0, 1v(a′0)) · · · (a′n−1, 1(v(a′n−1))) (a′n, 1v(a′n))
(α,Λ)

)
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whose image by u/c0 is equivalent for the relation∼ω to the above (n+ 1)-cell of
B/c0. In particular, the source and target of α are respectively f and f ′. Finally,
we obtain that u(α) ∼ω β by applying the canonical ω-functor B/c0 → B.

3.7.5. The name “folk Theorem A” is an explicit reference to Quillen’s Theorem A
[Qui73, Theorem A] and its ω-categorical generalization by Ara and Maltsiniotis [AM18,
AM20c]. For the sake of comparison we recall below the latter one.

Theorem 3.7.6 (Ara and Maltsiniotis’ Theorem A). Let

A B

C

u

v w

be a commutative triangle in ωCat. If for every object c0 of C the induced morphism

u/c0 : A/c0 → B/c0

is a Thomason equivalence, then so is u.
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CHAPTER 4

HOMOLOGY AND ABELIANIZATION
OF ω-CATEGORIES

4.1 HOMOLOGY VIA THE NERVE

4.1.1. We denote by Ch≥0 the category of non-negatively graded chain complexes of
abelian groups. Recall that Ch≥0 can be equipped with a cofibrantly generated model
structure, known as the projective model structure on Ch≥0, where:

- the weak equivalences are the quasi-isomorphisms, i.e. morphisms of chain com-
plexes that induce an isomorphism on homology groups,

- the cofibrations are the morphisms of chain complexes f : X → Y such that for
every n ≥ 0, fn : Xn → Yn is a monomorphism with projective cokernel,

- the fibrations are the morphisms of chain complexes f : X → Y such that for
every n > 0, fn : Xn → Yn is an epimorphism.

(See for example [DS95, Section 7].) From now on, we will implicitly consider that the
category Ch≥0 is equipped with this model structure.

4.1.2. Let X be a simplicial set. We denote by Kn(X) the abelian group of n-chains of
X , i.e. the free abelian group on the set Xn. For n > 0, let ∂ : Kn(X) → Kn−1(X) be
the linear map defined for x ∈ Xn by

∂(x) :=
n∑
i=0

(−1)i∂i(x).

It follows from the simplicial identities (see [GZ67, section 2.1]) that ∂ ◦ ∂ = 0. Hence,
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the previous data defines a chain complex K(X) and this defines a functor

K : ∆̂→ Ch≥0

X 7→ K(X)

in the expected way.

4.1.3. Recall that an n-simplex x of a simplicial set X is degenerate if there exists an
epimorphism ϕ : [n] → [m] with m < n and an m-simplex y such that X(ϕ)(y) = x.
We denote by Dn(X) the subgroup of Kn(X) generated by the degenerate n-simplices
and by κn(X) the abelian group of normalized n-chains:

κn(X) = Kn(X)/Dn(X).

Using the simplicial identities, it can be shown that ∂(Dn(X)) ⊆ Dn−1(X) for every
n > 0. Hence, there is an induced differential which we still denote by ∂:

∂ : κn(X)→ κn−1(X).

This defines a chain complex κ(X), which we call the normalized chain complex of X .
This yields a functor

κ : ∆̂→ Ch≥0

X 7→ κ(X).

Lemma 4.1.4. The functor κ : ∆̂ → Ch≥0 is left Quillen and sends the weak equiva-
lences of simplicial sets to quasi-isomorphisms.

Proof. Recall that the Quillen model structure on simplicial sets admits the set of inclu-
sions

{∂∆n ↪→ ∆n|n ∈ N}

as generating cofibrations and the set of inclusions

{Λi
n ↪→ ∆n|n ∈ N, 0 ≤ i ≤ n}

as generating trivial cofibrations (see for example [GJ09, Section I.1] for the nota-
tions). A quick computation, which we leave to the reader, shows that the image by
κ of ∂∆n ↪→ ∆n is a monomorphism with projective cokernel and the image by κ of
Λi
n ↪→ ∆n is a quasi-isomorphism. This proves that κ is left Quillen. Since all simplicial

sets are cofibrant, it follows from Ken Brown’s Lemma [Hov07, Lemma 1.1.12] that κ
also preserves weak equivalences.
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Remark 4.1.5. The previous lemma admits also a more conceptual proof as follows.
From the Dold–Kan equivalence, we know that Ch≥0 is equivalent to the category
Ab(∆) of simplicial abelian groups and with this identification the functor κ : ∆̂ →
Ch≥0 is left adjoint of the canonical forgetful functor

U : Ch≥0 ' Ab(∆)→ ∆̂

induced by the forgetful functor from abelian groups to sets. The fact that U is right
Quillen follows then from [GJ09, Lemma 2.9 and Corollary 2.10].

4.1.6. In particular, κ induces a morphism of localizers

κ : (∆̂,W∆)→ (Ch≥0,WCh≥0
),

where we wroteWCh≥0
for the class of quasi-isomorphisms.

Definition 4.1.7. The singular homology functor for ω-categories HSing is defined as
the following composition

HSing : ho(ωCatTh)
Nω−→ ho(∆̂)

κ−→ ho(Ch≥0).

For an ω-category C, HSing(C) is the singular homology of C.

4.1.8. In other words, the singular homology of C is the chain complex κ(Nω(C)) seen
as an object of ho(Ch≥0) (see Remark 2.1.4). For k ≥ 0, the k-th singular homology
group of an ω-category C is defined as

HSing
k (C) := Hk(HSing(C)) = Hk(κ(Nω(C))),

where Hk : ho(Ch≥0) → Ab is the usual functor that associates to an object of
ho(Ch≥0) its k-th homology group.

Remark 4.1.9. The adjective “singular” is there to avoid future confusion with another
homological invariant for ω-categories that will be introduced later. As a matter of fact,
the underlying point of view adopted in this thesis is that singular homology of ω-cat-
egories ought to be simply called homology of ω-categories as it is the only “correct”
definition of homology. This assertion will be justified in Remark 4.5.4.

Remark 4.1.10. We could also have defined the singular homology of ω-categories
using K : ∆̂ → Ch≥0 instead of κ : ∆̂ → Ch≥0 since these two functors are quasi-
isomorphic (see [GJ09, Theorem 2.4] for example). An advantage of the latter one is
that it is left Quillen.
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4.1.11. We will also denote by HSing the morphism of op-prederivators defined as the
following composition

HSing : Ho(ωCatTh)
Nω−→ Ho(∆̂)

κ−→ Ho(Ch≥0).

Proposition 4.1.12. The singular homology

HSing : Ho(ωCatTh)→ Ho(Ch≥0)

is homotopy cocontinuous.

Proof. This follows from the fact that Nω and κ are both homotopy cocontinuous.
For Nω, this is because it is an equivalence of op-prederivators and thus we can ap-
ply Lemma 2.3.10 and Lemma 2.3.11. For κ, this is because κ is left Quillen and thus
we can apply Theorem 2.5.2.

4.2 ABELIANIZATION

We write Ab for the category of abelian groups and for an abelian group G, we write
|G| for the underlying set of G.

4.2.1. Let C be an ω-category. For every n ≥ 0, we define λn(C) as the abelian group
obtained by quotienting ZCn (the free abelian group on Cn) by the congruence gener-
ated by the relations

x ∗
k
y ∼ x+ y

for all x, y ∈ Cn that are k-composable for some k < n. For n = 0, this means that
λ0(C) = ZC0. Now let f : C → D be an ω-functor. For every n ≥ 0, the definition of
ω-functor implies that the linear map

ZCn → ZDn

x ∈ Cn 7→ f(x)

induces a linear map
λn(f) : λn(C)→ λn(D).

This defines a functor λn : ωCat→ Ab.
For n > 0, consider the linear map

ZCn → ZCn−1

x ∈ Cn 7→ t(x)− s(x).
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The axioms of ω-categories imply that it induces a map

∂ : λn(C)→ λn−1(C)

which is natural in C. Furthermore, it satisfies the equation ∂ ◦ ∂ = 0. Thus, for every
ω-category C, we have defined a chain complex λ(C):

λ0(C)
∂←− λ1(C)

∂←− λ2(C)
∂←− · · ·

and for every f : C → D a morphism of chain complexes

λ(f) : λ(C)→ λ(D).

Altogether, this defines a functor

λ : ωCat→ Ch≥0,

which we call the abelianization functor.

Lemma 4.2.2. The functor λ is a left adjoint.

Proof. The category Ch≥0 is equivalent to the category ωCat(Ab) of ω-categories
internal to abelian groups (see [Bou90, Theorem 3.3]) and with this identification, the
functor λ : ωCat→ ωCat(Ab) is nothing but the left adjoint of the canonical forgetful
functor ωCat(Ab)→ ωCat.

As we shall now see, when the ω-category C is free the chain complex λ(C) admits
a nice expression.

4.2.3. Let n ≥ 0. Recall that for every monoid M (supposed commutative if n ≥ 1)
we have defined in Section 1.3 an n-category BnM whose set of n-cells is isomorphic
to the underlying set of M . And the correspondence M 7→ BnM defines a functor in
the expected way. By considering abelian groups as particular cases of (commutative)
monoids, we obtain a functor for each n ≥ 0

Bn : Ab→ nCat

G 7→ BnG,

where Ab is the category of abelian groups.
Besides, let us write λn again for the functor

λn : nCat→ Ab

C 7→ λn(C).

(That is the restriction of λn : ωCat→ Ab to nCat.)
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Lemma 4.2.4. Let n ≥ 0. The functor λn : nCat → Ab is left adjoint to the functor
Bn : Ab→ nCat.

Proof. The case n = 0 is immediate since the functor λ0 : 0Cat = Set → Ab
is the “free abelian group” functor and the functor B0 : Ab → 0Cat = Set is the
“underlying set” functor.

Suppose now that n > 0. From Lemma 1.3.3 we know that for every abelian group
G and every n-category C, the map

HomnCat(C,B
nG)→ HomSet(Cn, |G|)
F 7→ Fn,

is injective and its image consists of those functions f : Cn → |G| such that:

(i) for every 0 ≤ k < n and every pair (x, y) of k-composable n-cells of C, we have

f(x ∗
k
y) = f(x) + f(y),

(ii) for every x ∈ Cn−1, we have
f(1x) = 0.

Let us see that becauseG is an abelian group (recall that Lemma 1.3.3 was stated for the
general case of commutative monoids), condition (i) imply condition (ii). Let f : Cn →
|G| be a function that satisfies condition (i) and let x ∈ Cn−1. We have 1x ∗

n−1
1x = 1x,

hence
f(1x) = f(1x ∗

n−1
1x) = f(1x) + f(1x),

and then
f(1x) = 0

because every element of an (abelian) group has an inverse. Now, because of the ad-
junction morphism

HomSet(Cn, |G|) ' HomAb(ZCn, G),

we have that HomnCat(C,B
nG) is naturally isomorphic to the set of morphisms of

abelian groups g : ZCn → G such that for every pair (x, y) of k-composable elements
of Cn for some k < n, we have

g(x ∗
k
y) = g(x) + g(y).

By definition, this set is naturally isomorphic to the set of morphisms of abelian groups
from λn(C) to G. In other words, we have

HomnCat(C,B
nG) ' HomAb(λn(C), G).
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4.2.5. Let C be an ω-category, n ∈ N and E ⊆ Cn a subset of the n-cells. We obtain a
map ZE → λn(C) defined as the composition

ZE → ZCn → λn(C),

where the map on the left is induced by the canonical inclusion of E in Cn and the map
on the right is the quotient map from the definition of λn(C).

Lemma 4.2.6. Let C be a free ω-category and let Σ = (Σn)n∈N be its basis. For every
n ∈ N, the map

ZΣn → λn(C)

from the previous paragraph, is an isomorphism.

Proof. Notice first that for every ω-categoryC, we have λn(τ s≤n(C)) = λn(C). Suppose
now that C is free with basis Σ = (Σn)n∈N. Using Lemma 4.2.4 and Lemma 1.3.4, we
obtain that for every abelian group G, we have

HomAb(λn(C), G) ' HomAb(λn(τ s≤n(C)), G)

' HomnCat(τ
s
≤n(C), BnG)

' HomSet(Σn, |G|)
' HomAb(ZΣn, G),

and it is easily checked that this isomorphism is induced by precomposition with the
map ZΣn → λn(C) from the previous paragraph. The result follows then from the
Yoneda Lemma.

4.2.7. Let C be a free ω-category and write Σ = (Σn)n∈N for its basis. For every n ≥ 0
and every α ∈ Σn, recall that we have proved in Proposition 1.3.5 the existence of a
unique function wα : Cn → N such that:

(a) wα(α) = 1,

(b) wα(β) = 0 for every β ∈ Σn such that β 6= α,

(c) for every pair of k-composable n-cells of C for some k < n, we have

wα(x ∗
k
y) = wα(x) + wα(y).

We can then define for each n ≥ 0, a map wn : Cn → ZΣn with the formula

wn(x) =
∑
α∈Σn

wα(x) · α
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for every x ∈ Cn.
Condition (c) implies that

wn(x ∗
k
y) = wn(x) + wn(y)

for every pair (x, y) of k-composable n-cells of C, and conditions (a) and (b) imply that

wn(α) = α

for every α ∈ Σn.

Proposition 4.2.8. Let C be a free ω-category and let (Σn)n∈N be its basis. The chain
complex λ(C) is canonically isomorphic to the chain complex

ZΣ0
∂←− ZΣ1

∂←− ZΣ2
∂←− · · ·

where ∂ : ZΣn → ZΣn−1 is the linear map defined by the formula

∂(x) = wn−1(t(x))− wn−1(s(x))

for every x ∈ Σn.
With this identification, if C ′ is another free ω-category and if F : C → C ′ is an

ω-functor (not necessarily rigid), then the map λn(F ) : λn(C)→ λn(C ′) reads

λn(F )(x) = w′n(F (x))

for every x ∈ Σn.

Proof. For n ≥ 0, write φn : ZΣn → λn(C) for the map defined in 4.2.5 (which we
know is an isomorphism from Lemma 4.2.6).

The map wn : Cn → ZΣn induces a map ZCn → ZΣn by linearity, which in turn
induces a map λn(C)→ ZΣn (because wn(x∗

k
y) = wn(x)+wn(y) for every pair (x, y)

of k-composable n-cells). Write ψn for this last map. It is immediate to check that the
composition

ZΣn
φn−→ λn(C)

ψn−→ ZΣn

gives the identity on ZΣn. Hence, ψn is the inverse of φn.
Now, for n > 0, notice that the map ∂ : ZΣn → ZΣn−1 given in the statement of

the proposition is nothing but the composition

ZΣn
φn−→ λn(C)

∂−→ λn−1(C)
ψn−1−→ ZΣn−1.

The first part of the proposition follows then from Lemma 4.2.6.
As for the second part, it suffices to notice that if we identify λn(C) with ZΣn via

φn for every free ω-category C, then map ZΣn → ZΣ′n (where Σ′n is the n-basis of C ′)
induced by F is given by the composition

ZΣn
φn−→ λn(C)

λn(F )−→ λn(C ′)
ψn−→ ZΣ′n.
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4.3 POLYGRAPHIC HOMOLOGY

4.3.1. Let f, g : K → K ′ be two morphisms of non-negatively graded chain com-
plexes. Recall that a chain homotopy from f to g consists of a sequence of linear maps
(hn : Kn → K ′n+1)n∈N such that

∂ ◦ h0 = g0 − f0

and such that for every n > 0, we have

∂ ◦ hn + hn−1 ◦ ∂ = gn − fn.

Recall also that if there is a chain homotopy from f to g, then the localization functor
γCh≥0 : Ch≥0 → ho(Ch≥0) identifies f and g, which means that

γCh≥0(f) = γCh≥0(g).

Lemma 4.3.2. Let u, v : C → D be two ω-functors. If there is an oplax transformation
α : u⇒ v, then there is a chain homotopy from λ(u) to λ(v).

Proof. For an n-cell x of C (resp. D), let us use the notation [x] for the image of x in
λn(C) (resp. λn(D)).

Let hn be the map
hn : λn(C)→ λn+1(D)

[x] 7→ [αx].

The formulas for oplax transformations from Paragraph 3.3.3 imply that hn is linear and
that for every n-cell x of C, if n = 0, we have

∂(h0(x)) = [v(x)]− [u(x)],

and if n > 0, we have

∂(hn(x)) + hn−1(∂(x)) = [v(x)]− [u(x)].

Details are left to the reader.

Proposition 4.3.3. The abelianization functor λ : ωCat → Ch≥0 is left Quillen with
respect to the folk model structure on ωCat.

Proof. The fact that λ is a left adjoint is Lemma 4.2.2.
A simple computation using Lemma 4.2.8 shows that for every n ∈ N,

λ(in) : λ(Sn−1)→ λ(Dn)
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is a monomorphism with projective cokernel. Hence λ sends folk cofibrations to cofi-
brations of chain complexes.

Then, we know from [LMW10, Sections 4.6 and 4.7] and [AM20b, Remarque
B.1.16] (see also [AL20, Paragraph 3.11]) that there exists a set of generating trivial
cofibrations J of the folk model structure on ωCat such that every j : X → Y in J
is a deformation retract (see Paragraph 3.4.5). From Lemma 4.3.2, we conclude that λ
sends folk trivial cofibrations to trivial cofibrations of chain complexes.

In particular, λ is totally left derivable (when ωCat is equipped with folk weak
equivalences). This motivates the following definition.

Definition 4.3.4. The polygraphic homology functor

Hpol : ho(ωCatfolk)→ ho(Ch≥0)

is the total left derived functor of λ : ωCat → Ch≥0 (where ωCat is equipped with
folk weak equivalences). For an ω-category C, Hpol(C) is the polygraphic homology of
C.

4.3.5. Similarly to singular homology groups, for k ≥ 0 the k-th polygraphic homology
group of an ω-category C is defined as

Hpol
k (C) := Hk(Hpol(C))

where Hk : ho(Ch≥0) → Ab is the usual functor that associate to an object of
ho(Ch≥0) its k-th homology group. In practice, this means that one has to find a cofi-
brant replacement of C, that is to say a free ω-category P and a folk trivial fibration

P → C,

and then the polygraphic homology groups of C are those of λ(P ) which are computed
using Proposition 4.2.8.

4.3.6. For later reference, let us recall here that since Hpol is the left derived functor of
λ, it comes equipped with a universal natural transformation (see 2.1.5)

ωCat Ch≥0

ho(ωCatTh) ho(Ch≥0).

γfolk

λ

γ
Ch≥0

Hpol

αpol

Moreover, the functor λ being left Quillen, it is strongly derivable (Definition 2.3.13)
and hence induces a morphism of op-prederivators, which we again denote by Hpol:

Hpol : Ho(ωCatfolk)→ Ho(Ch≥0).
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The following proposition is an immediate consequence of Theorem 2.5.2.

Proposition 4.3.7. The polygraphic homology

Hpol : Ho(ωCatfolk)→ Ho(Ch≥0)

is homotopy cocontinuous.

As we shall now see, oplax homotopy equivalences (Definition 3.4.2) induce iso-
morphisms in polygraphic homology. In order to prove that, we first need a couple of
technical lemmas.

Lemma 4.3.8. Let
C ′ D′

C D

f ′ε

u v

fε

be commutative squares in ωCat for ε ∈ {0, 1}.
If C ′ is a free ω-category and v a folk trivial fibration, then for every oplax transfor-

mation
α : f0 ⇒ f1,

there exists an oplax transformation

α′ : f ′0 ⇒ f ′1

such that
v ? α′ = α ? u.

Proof. Notice first that because of the natural isomorphism

(D0 q D0)⊗ C ' C q C,

we have that α : f0 ⇒ f1 can be encoded in a functor α : D1 ⊗ C → D such that the
diagram

(D0 q D0)⊗ C ' C q C

D1 ⊗ C D

i1⊗C 〈u,v〉

α

(where i1 : D0 q D0 ' S0 → D1 is the morphism introduced in 1.1.8) is commutative.
Now, the hypotheses of the lemma yield the following commutative square

(D0 q D0)⊗ C ′ D′

D1 ⊗ C ′ D1 ⊗ C D

i1⊗C′

〈f ′0,f ′1〉

v

D1⊗u
α
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and since i1 is a folk cofibration and C ′ is cofibrant, it follows that the left vertical
morphism of the previous square is a folk cofibration (see [Luc17, Proposition 5.1.2.7]
or [AL20]). By hypothesis, v is a folk trivial fibration, and so the above square admits a
lift

α′ : D1 ⊗ C ′ → D′.

The commutativity of the two induced triangles shows what we needed to prove.

From now on, for an ω-functor u, we write Hpol(u) instead of Hpol(γfolk(u)) (where
γfolk is the localization functor ωCat→ ho(ωCatfolk)) for the morphism induced by u
at the level of polygraphic homology.

Lemma 4.3.9. Let u, v : C → D be two ω-functors. If there exists an oplax transfor-
mation u⇒ v, then

Hpol(u) = Hpol(v).

Proof. In the case that C and D are both folk cofibrant, this follows immediately from
Lemma 4.3.2 and the fact that the localization functor Ch≥0 → ho(Ch≥0) identifies
chain homotopic maps (4.3.1).

In the general case, let
p : C ′ → C

and
q : D′ → D

be folk trivial fibrations with C ′ and D′ cofibrant. Using that q is a trivial fibration and
C ′ is cofibrant, we know that there exist u′ : C ′ → D′ and v′ : C ′ → D′ such that the
squares

C ′ D′

C D

p

u′

q

u

and
C ′ D′

C D

p

v′

q

v

are commutative. From Lemma 4.3.8, we deduce the existence of an oplax transforma-
tion u′ ⇒ v′. Since C ′ and D′ are cofibrant, we have already proved that

Hpol(u′) = Hpol(v′).

The commutativity of the two previous squares and the fact that p and q are folk weak
equivalences imply the desired result.

The following proposition is an immediate consequence of the previous lemma.
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Proposition 4.3.10. Let u : C → D be an ω-functor. If u is an oplax homotopy equiva-
lence, then the induced morphism

Hpol(u) : Hpol(C)→ Hpol(D)

is an isomorphism.

4.3.11. Oplax homotopy equivalences being particular cases of Thomason equivalences,
one may wonder whether it is true that every Thomason equivalence induce an isomor-
phism in polygraphic homology. As we shall see later (Proposition 4.5.3), it is not the
case.

Remark 4.3.12. Lemma 4.3.8, Lemma 4.3.9 and Proposition 4.3.10 are also true if we
replace “oplax” by “lax” everywhere.

4.4 SINGULAR HOMOLOGY AS DERIVED ABELIANIZA-
TION

We have seen in the previous section that the polygraphic homology functor is the total
left derived functor of λ : ωCat → Ch≥0 when ωCat is equipped with the folk weak
equivalences. As it turns out, the abelianization functor is also totally left derivable when
ωCat is equipped with the Thomason equivalences and the total left derived functor is
the singular homology functor. In order to prove this result, we first need a few technical
lemmas.

Lemma 4.4.1. Let ν : Ch≥0 → ωCat be the right adjoint of the abelianization functor
(see Lemma 4.2.2). This functor sends the quasi-isomorphisms to Thomason equiva-
lences.

Proof. We have already seen that λ : ωCat → Ch≥0 is left Quillen with respect to
the folk model structure on ωCat. By adjunction, this means that ν is right Quillen
for this model structure. In particular, it sends trivial fibrations of chain complexes to
folk trivial fibrations. From Ken Brown’s Lemma [Hov07, Lemma 1.1.12] and the fact
that all chain complexes are fibrant, it follows that ν sends weak equivalences of chain
complexes to weak equivalences of the folk model structure, which are in particular
Thomason equivalences (Lemma 3.6.1).

Remark 4.4.2. The proof of the previous lemma shows the stronger result that ν sends
the quasi-ismorphisms to folk weak equivalences. This will be of no use in the sequel.

Recall that we write cω : ∆̂ → ωCat for the left adjoint of the nerve functor
Nω : ωCat→ ∆̂ (see Paragraph 3.1.3).
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Lemma 4.4.3. The triangle of functors

∆̂ ωCat

Ch≥0

cω

κ λ

is commutative (up to a canonical isomorphism).

Proof. All the functors involved are cocontinuous, hence it suffices to prove that the
triangle is commutative when pre-composed by the Yoneda embedding ∆ → ∆̂. This
follows immediately from the description of the orientals in [Ste04].

Recall now that the notions of adjunction and equivalence are valid in every 2-cate-
gory and in particular in the 2-category of pre-derivators (see 2.3.8). We omit the proof
of the following lemma, which is the same as when the ambient 2-category is the 2-cat-
egory of categories.

Lemma 4.4.4. Let f : y z : g be an adjunction and h : x→ y an equivalence
with quasi-inverse k : y → x. Then fh is left adjoint to kg.

We can now state and prove the promised result.

Theorem 4.4.5. Consider that ωCat is equipped with the Thomason equivalences. The
abelianization functor λ : ωCat→ Ch≥0 is strongly left derivable and the left derived
morphism of op-prederivators

LλTh : Ho(ωCatTh)→ Ho(Ch≥0)

is isomorphic to the singular homology

HSing : Ho(ωCatTh)→ Ho(Ch≥0).

Proof. Let ν be the right adjoint of the abelianization functor (see Lemma 4.2.2) and
consider the following adjunctions

∆̂ ωCat Ch≥0

cω

Nω

λ

ν

where the functors from left to right are the left adjoints. We know that:

- The functor ν induces a morphism of localizers

ν : (Ch≥0,WCh≥0
)→ (ωCat,WTh),

thanks to Lemma 4.4.1.
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- The functor Nω induces a morphism of localizers

Nω : (ωCat,WTh)→ (∆̂,W∆),

by definition of Thomason equivalences.

- There is an isomorphism of functors λcω ' κ (Lemma 4.4.3), hence an induced
morphism of localizers

(λcω) ' κ : (∆̂,W∆)→ (Ch≥0,WCh≥0
),

thanks to Lemma 4.1.4.

It follows that there is an induced adjunction at the level of op-prederivators:

κ ' λcω : Ho(∆̂) Ho(Ch≥0) : Nων.

Now, we know from Theorem 3.2.5 that Nω is an equivalence of op-prederivators, and
thus admits a quasi-inverse. Let M : Ho(∆̂) → Ho(ωCat) be such a quasi-inverse.
From Lemma 4.4.4, we deduce that we have an adjunction:

κNω : Ho(ωCatTh) Ho(Ch≥0) : MNων ' ν.

From Proposition 2.3.15, we conclude that λ : ωCat→ Ch≥0 is strongly left derivable
and that LλTh ' κNω, which is, by definition, the singular homology.

Remark 4.4.6. Beware that neither cω : ∆̂ → ωCat sends all weak equivalences of
simplicial sets to Thomason equivalences nor λ : ωCat → Ch≥0 sends all Thoma-
son equivalences to quasi-isomorphisms. However, this does not contradict the fact
that λcω : ∆̂ → Ch≥0 does send all weak equivalences of simplicial sets to quasi-
isomorphisms.

4.4.7. Since HSing : ho(ωCatTh)→ ho(Ch≥0) is the left derived functor of the abelian-
ization functor, it comes with a universal natural transformation

ωCat Ch≥0

ho(ωCatTh) ho(Ch≥0).

γTh

λ

γ
Ch≥0

HSing

αSing

A thorough reading of the proofs of Proposition 2.3.15 and Theorem 4.4.5 enables us to
give the following description of αSing. By post-composing the co-unit of the adjunction
cω a Nω with the abelianization functor, we obtain a natural transformation

λcωNω ⇒ λ.
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Then αSing is nothing but the following composition of natural transformations

ωCat Ch≥0

ho(ωCatTh) ho(Ch≥0),

γTh

λ

λcωNω

γ
Ch≥0

HSing

'

where the square is commutative (up to an isomorphism) because HSing ' λcωNω.

4.5 COMPARING HOMOLOGIES

4.5.1. Recall from Proposition 3.6.2 that the identity functor on ωCat induces a mor-
phism of localizers

(ωCat,W folk)→ (ωCat,WTh),

which in turn induces a functor

J : ho(ωCatfolk)→ ho(ωCatTh),

such that
γTh = J ◦ γfolk.

Now, consider the following triangle

ho(ωCatfolk) ho(ωCatTh)

ho(Ch≥0).

J

Hpol
HSing (4.1)

A natural question to ask is whether this triangle is commutative (up to an isomorphism).
Since J is the identity on objects, this amounts to ask whether for every ω-category C
we have an isomorphism (natural in C)

Hpol(C) ' HSing(C).

As it happens, this is not possible as the following counter-example, due to Ara and
Maltsiniotis, shows.

4.5.2 (Ara and Maltsiniotis’ counter-example). Write N = (N,+, 0) for the commuta-
tive monoid of non-negative integers and let C be the 2-category defined as

C := B2N
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(see 1.3.1). As usual, we consider C as an ω-category with only unit cells strictly above
dimension 2. This ω-category is free; namely its k-basis is a singleton for k = 0 and
k = 2, and the empty set otherwise. In particular C is cofibrant for the folk model
structure (Proposition 3.5.9) and it follows from Proposition 4.2.8 that Hpol(C) is given
by the chain complex (seen as an object of ho(Ch≥0))

Z 0 Z 0 0 · · ·

Hence, the polygraphic homology groups of B are given by

Hpol
k (C) =

{
Z if k = 0, 2

0 in other cases.

On the other hand, it is proven in [Ara19, Theorem 4.9 and Example 4.10] that (the
nerve of) C is a K(Z, 2). In particular, it has non-trivial singular homology groups in
every even dimension. This proves that Hpol(C) is not isomorphic to HSing(C); which
means that triangle (4.1) cannot be commutative (up to an isomorphism).

Another consequence of the above counter-example is the following result, which
we claimed in 4.3.11. Recall that given a morphism u : C → D of ωCat, we write
Hpol(u) instead of Hpol(γfolk(u)).

Proposition 4.5.3. There exists at least one Thomason equivalence

u : C → D

such that the induced morphism

Hpol(u) : Hpol(C)→ Hpol(D)

is not an isomorphism of ho(Ch≥0).

Proof. Suppose the converse, which is that the functor

Hpol ◦ γfolk : ωCat→ ho(Ch≥0)

sends the Thomason equivalences to isomorphisms of ho(Ch≥0). Because of the inclu-
sion W folk ⊆ WTh

ω , the category ho(ωCatTh) may be identified with the localization
of ho(ωCatfolk) with respect to γfolk(WTh

ω ) and then the localization functor is nothing
but

J : ho(ωCatfolk)→ ho(ωCatTh).

From this observation and because of the hypothesis we made on Thomason equiva-
lences inducing isomorphisms in polygraphic homology, we deduce the existence of a
functor

Hpol : ho(ωCatTh)→ ho(Ch≥0)
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such that we have

Hpol ◦ J = Hpol,

and because of the equality γTh = J ◦ γfolk, the universal natural transformation αpol

now reads

ωCat Ch≥0

ho(ωCatTh) ho(Ch≥0).

λ

γTh
γ
Ch≥0

Hpol

αpol

Let us show that (Hpol, αpol) is the left derived functor of λ when ωCat is equipped
with the Thomason equivalences. Let G and β be as in the following 2-diagram

ωCat Ch≥0

ho(ωCatTh) ho(Ch≥0).

λ

γTh=J◦γfolk
γ
Ch≥0

G

β

Since Hpol is the left derived functor of λ when ωCat is equipped with the folk weak
equivalences, there exists a unique δ : G ◦ J ⇒ Hpol that factorizes β as

ωCat Ch≥0

ho(ωCatfolk) ho(Ch≥0)

ho(ωCatTh) .

λ

γfolk
γ
Ch≥0

J

Hpol

G

αpol

δ

But since J acts as a localization functor, δ also factorizes uniquely as

ho(ωCatfolk) ho(ωCatTh) ho(Ch≥0).
J

Hpol

G

δ′
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Altogether we have that β factorizes as

ωCat Ch≥0

ho(ωCatTh) ho(Ch≥0).

λ

γTh
γ
Ch≥0

Hpol

αpol

G

δ′

The uniqueness of such a factorization follows from a similar argument which is left to
the reader. This proves that Hpol is the left derived functor of λ when ωCat is equipped
with the Thomason equivalences and in particular we have

HSing ' Hpol.

But since J is the identity on objects, this implies that for every ω-category C we have

HSing(C) ' Hpol(C) = Hpol(C),

which we know is impossible.

Remark 4.5.4. It follows from the previous result that if we think of ω-categories as a
model for homotopy types (see Theorem 3.2.5), then the polygraphic homology of an
ω-category is not a well defined invariant. This justifies what we said in remark 4.1.9,
which is that singular homology is the only “correct” homology of ω-categories.

4.5.5. Even though triangle (4.1) is not commutative (even up to an isomorphism), it
can be filled up with a 2-morphism. Indeed, consider the following 2-square

ωCat Ch≥0

ho(ωCatTh) ho(Ch≥0),

γTh

λ

γ
Ch≥0

HSing

αSing

Since γTh = J ◦ γfolk and the polygraphic homology is the total left derived functor of
the abelianization functor when ωCat is equipped with the folk weak equivalences, we
obtain by universal property (see 2.1.5) a unique natural transformation

ho(ωCatfolk)

ho(ωCatTh) ho(Ch≥0)

J Hpol

HSing

π
(4.2)
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such that αSing factorizes as

ωCat Ch≥0

ho(ωCatfolk) ho(Ch≥0)

ho(ωCatTh)

γfolk

λ

γ
Ch≥0

J

Hpol

HSing

αpol

π

Since J is nothing but the identity on objects, for every ω-category C, the natural
transformation π yields a map

πC : HSing(C)→ Hpol(C),

which we shall refer to as the canonical comparison map.

Remark 4.5.6. When C is free, it follows from the considerations in 4.4.7 that the
canonical comparison map πC can be identified with the image by γCh≥0 of the mor-
phism of Ch≥0

λcωNω(C)→ λ(C)

induced by the co-unit of cω a Nω.

Definition 4.5.7. An ω-categoryC is said to be homologically coherent when the canon-
ical comparison map

πC : HSing(C)→ Hpol(C)

is an isomorphism of ho(Ch≥0).

4.5.8. The rest of this dissertation is devoted to the study of homologically coherent
ω-categories. Examples of such ω-categories will be presented later. Following the per-
spective of Remark 4.5.4, polygraphic homology can be thought of as a way to compute
singular homology of homologically coherent ω-categories.

4.5.9. Similarly to 4.5.1, the morphism of localizers

(ωCat,W folk)→ (ωCat,WTh)

induces a morphism of op-prederivators

J : Ho(ωCatfolk)→ Ho(ωCatTh)
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such that the triangle in the category of op-prederivators

ωCat

Ho(ωCatfolk) Ho(ωCatTh)

γfolk
γTh

J

is commutative. It follows from what we said in 3.6.4 that the morphism J cannot be an
equivalence of op-prederivators. As we shall see later, J is not even homotopy cocon-
tinuous. In particular, this implies that given a diagram d : I → ωCat, the canonical
arrow of ho(ωCatTh)

Th

hocolim
I

(JI(d))→ Je(
folk

hocolim
I

(d)) (4.3)

induced by J (see 2.3.4) is generally not an isomorphism. Note that since

JI : Ho(ωCatfolk)(I)→ Ho(ωCatTh)(I)

is the identity on objects for every small category I , morphism (4.3) simply reads

Th

hocolim
I

(d)→
folk

hocolim
I

(d).

Even if this is not always true, there are some particular diagrams d for which the
above morphism is indeed an isomorphism. The criterion to find homologically coherent
ω-categories given in the proposition below is based on this observation.

Proposition 4.5.10. Let C be an ω-category. Suppose that there exists a diagram

d : I → ωCat

and a co-cone
(ϕi : d(i)→ C)i∈Ob(I)

such that:

(i) For every i ∈ Ob(I), the ω-category d(i) is homologically coherent.

(ii) The canonical morphism
folk

hocolim d→ C

is an isomorphism of ho(ωCatfolk).
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(iii) The canonical morphism
Th

hocolim d→ C

is an isomorphism of ho(ωCatTh).

Then the ω-category C is homologically coherent.

Proof. Notice first that all the constructions from 4.5.5 may be reproduced mutatis mu-
tandis at the level of op-prederivators. In particular, we obtain a 2-morphism of op-
prederivators

Ho(ωCatfolk)

Ho(ωCatTh) Ho(Ch≥0).

J Hpol

HSing

π

Then, by naturality, we have a commutative diagram in ho(Ch≥0):

hocolim
i∈I

HSing(di) hocolim
i∈I

Hpol(di)

HSing(
Th

hocolim
i∈I

(di)) Hpol(
folk

hocolim
i∈I

(di))

HSing(C) Hpol(C),

where:

- the top and bottom horizontal arrows are induced by π,

- the middle horizontal arrow is induced by π and the canonical morphism

Th

hocolim
i∈I

(di)→
folk

hocolim
i∈I

(di)

from 4.5.9,

- the top vertical arrows are the canonical morphisms induced by every morphism
of op-prederivators (see 2.3.4),

- the bottom vertical arrows are induced by the co-cone

(ϕi : d(i)→ C)i∈Ob(I).
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Since Hpol and HSing are both homotopy cocontinuous (Proposition 4.1.12 and Proposi-
tion 4.3.7 respectively), both top vertical arrows are isomorphisms. Hypotheses (ii) and
(iii) imply that the bottom vertical arrows are isomorphisms and hypothesis (i) imply
that the top horizontal arrow is an isomorphism. By a 2-out-of-3 property, the bottom
horizontal arrow is an isomorphism, which means exactly that C is homologically co-
herent.

The previous proposition admits the following corollary, which will be of great use
in later chapters.

Corollary 4.5.11. Let
A B

C D

u

f g

v
p

be a cocartesian square of ωCat such that:

(a) the ω-categories A,B and C are free and homologically coherent,

(b) at least one of the morphisms u : A→ B or f : A→ C is a folk cofibration,

(c) the square is Thomason homotopy cocartesian.

Then, the ω-category D is homologically coherent.

Proof. The fact that A,B and C are free and one of the morphism u or f is a folk
cofibration ensure that the square is folk homotopy cocartesian (Lemma 2.5.12). The
conclusion follows then from Proposition 4.5.10.

4.6 EQUIVALENCE OF HOMOLOGIES IN LOW DIMEN-
SION

4.6.1. Recall that for every n ≥ 0 we have taken the habit of identifying nCat as a
full subcategory of ωCat via the canonical fully faithful functor ιn : nCat → ωCat
(defined in 1.1.4) that sends an n-category C to the ω-category with the same k-cells as
C for k ≤ n and only unit cells for k > n. In particular, we abusively wrote

C = ιn(C).

Within this section, and only within this section, we try not to make this abuse of nota-
tion and explicitly write ιn whenever we should.
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We have already seen that ιn has a left adjoint τ i≤n : ωCat → nCat, where for an
ω-category C, τ i≤n(C) is the n-category whose set of k-cells is Ck for k < n and whose
set of n-cells is the quotient of Cn by the equivalence relation ∼ generated by

x ∼ y when there exists z : x→ y in Cn+1.

As it happens, we can use the adjunction τ i≤n a ιn to transport the folk model structure
from ωCat to nCat.

Proposition 4.6.2. There exists a model structure on nCat such that:

- the weak equivalences are exactly those morphisms f : C → D such that ιn(f) is
a weak equivalence for the folk model structure on ωCat,

- the fibrations are exactly those morphisms f : C → D such that ιn(f) is a
fibrations for the folk model structure on ωCat.

Moreover, there exists a set I of generating cofibrations (resp. a set J of generating
trivial cofibrations) for the folk model structure on ωCat such that the image by τ i≤n of
I (resp. J) is a set of generating cofibrations (resp. generating trivial cofibrations) of
the above model structure on nCat.

Proof. This is [LMW10, Theorem 5]. (Although the part concerning generating cofibra-
tions is not made explicit in the statement of the theorem, it is contained in proof.)

4.6.3. We refer to the model structure of the above proposition as the folk model struc-
ture on nCat. By definition, the functor ιn : nCat → ωCat preserves weak equiva-
lences and fibrations when ωCat and nCat are equipped with the folk model structure.
In particular, the adjunction τ i≤n a ιn is a Quillen adjunction. As it happens, the functor
τ i≤n also preserves weak equivalences.

Proposition 4.6.4. The functor τ i≤n : ωCat → nCat sends the weak equivalences of
the folk model structure on ωCat to weak equivalences of the folk model structure on
nCat.

Proof. Since every ω-category is fibrant for the folk model structure on ωCat [LMW10,
Proposition 9], it suffices to show that τ i≤n sends the folk trivial fibrations of ωCat to
weak equivalences of nCat (in virtue of Ken Brown’s Lemma [Hov07, Lemma 1.1.12]).

For convenience, let us write T for the functor ιnτ i≤n : ωCat→ ωCat. By definition
of folk weak equivalences on nCat, we have to show that for every folk trivial fibration
f : C → D of ωCat, the ω-functor

T (f) : T (C)→ T (D)
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is a folk weak equivalence on ωCat. Consider the following commutative square

C D

T (C) T (D),

ηC

f

ηD

T (f)

where η is the unit of the adjunction τ i≤n a ιn.
Let us first treat the case of 0-cells. Let y be a 0-cell of T (D). The map ηD being

surjective on 0-cells (even if n = 0), there exists y′ such that ηD(y′) = y. Since f is a
folk trivial fibration, there exists a 0-cell x′ of C such that f(x′) = y′ and then if we set
x := ηC(x′), we have T (f)(x) = y.

Now let x, y be parallel k-cells of T (C) and let β : f(x) → f(y) be a (k + 1)-cell
of T (D). We have to distinguish several cases.

Case k < n− 1: Since ηC and ηD are identities on k-cells for every 0 ≤ k < n and
since f is a folk trivial fibration, there exists a (k + 1)-cell α : x → y of T (C)
such that

T (f)(α) = β.

Case k = n− 1: By definition of T (D), there exists an n-cell β′ : f(x) → f(y) of D
such that ηD(β′) = β. Since f is a folk trivial fibration, there exists an n-cell α′ :
x→ y of C such that f(α′) = β′. If we set α := ηC(α′), we have T (f)(α) = β.

Case k = n: Since all l-cells of T (C) and T (D) with l > n are units, we trivially have
that f(x) = f(y) and β is the unit on f(x). Now let x′ and y′ be parallel n-cells
of C such that ηC(x′) = x and ηC(y′) = y (this is always possible by definition
of T (C)). We have ηD(f(x′)) = f(x) = f(y) = ηD(f(y′)). By definition of the
functor τ i≤n, this means that there exists a zigzag of (n+ 1)-cells of D from f(x′)
to f(y′). More precisely, this means that there exists a sequence

(z0, β1, z1, · · · , zp−1, βp, zp)

where the zi are all parallel n-cells ofD with z0 = f(x′) and zp = f(y′), and each
βi is (n+ 1)-cell of D either from zi−1 to zi or from zi to zi−1. Using the fact that
f is a folk trivial fibration, it is easy to prove the existence of a zigzag from x′to
y′, which implies in particular that x = ηC(x′) = ηC(y′) = y.

Case k > n: Since all k-cells of T (C) and T (D) with k > n are units, we trivially
have f(x) = f(y) (and β is the unit on f(x)) and x = y.

Altogether, this proves that T (f) is a folk trivial fibration, hence a folk weak equiva-
lence.
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For later reference, we put here the following lemma.

Lemma 4.6.5. If an n-category C has a k-basis for every 0 ≤ k ≤ n − 1, then it is
cofibrant for the folk model structure on nCat.

Proof. Since τ i≤n is a left Quillen functor, it suffices in virtue of Proposition 3.5.9 to
show that there exists a free ω-category C ′ such that τ i≤n(C ′) = C. First, consider the
n-category (Un−1(C))∗ (for the notations, see 1.4.4 and 1.4.10). This n-category has the
same k-cells as C for k < n and has exactly one generating n-cell for each n-cell of C.
It is obviously free and we have a canonical n-functor

εC : (Un−1(C))∗ → C,

given by the co-unit of the adjunction (−)∗ a Un−1(−). Now, let C ′ be the (n+ 1)-cat-
egory (considered as an ω-category) that has the same k-cells as (Un−1(C))∗ for k ≤ n
and whose set of (n+ 1)-cells is freely generated be the set

{(x, y) |x and y are parallel n-cells of (Un−1(C))∗ such that εC(x) = εC(y)}.

The (n + 1)-category C ′ is obviously free and it is a harmless verification, which we
leave to reader, to check that τ i≤n(C ′) = C.

Example 4.6.6. Every (small) category is cofibrant for the folk model structure on Cat.

We now turn to truncations of chain complexes.

4.6.7. Let Ch≤n≥0 be the category of chain complexes concentrated in degrees between 0

and n. This means that an object K of Ch≤n≥0 is a diagram of abelian groups of the form

K0
∂←− K1

∂←− K2
∂←− · · · ∂←− Kn,

where ∂ ◦ ∂ = 0, and morphisms of Ch≤n≥0 are defined the expected way. We write
ιn : Ch≤n≥0 → Ch≥0 for the canonical functor that sends an object K of Ch≤n≥0 to the
chain complex

K0
∂←− K1

∂←− K2
∂←− · · · ∂←− Kn ←− 0←− 0←− · · · .

This functor is fully faithful and Ch≤n≥0 may be identified with the full subcategory of
Ch≥0 spanned by chain complexes K such that Kk = 0 for every k > n.

Similarly to the case of n-categories, the functor ιn : Ch≤n≥0 → Ch≥0 has a left
adjoint τ i≤n : Ch≥0 → Ch≤≥0, where for a chain complex K, τ i≤n(K) is the object of
Ch≤n≥0 defined as

K0
∂←− K1

∂←− · · · ∂←− Kn−1
∂←− Kn/∂(Kn+1).
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Again, as with n-categories, we can use the adjunction

τ i≤n : Ch≥0 Ch≤n≥0 : ιn

to create a model structure on Ch≤n≥0 .

Proposition 4.6.8. There exists a model structure on Ch≤n≥0 such that:

- the weak equivalences are exactly those morphisms f : K → K ′ such that ιn(f)
is a weak equivalence for the projective model structure on Ch≥0,

- the fibrations are exactly those morphisms f : K → K ′ such that ιn(f) is a
fibration for the projective model structure on Ch≥0.

Proof. This is a typical example of a transfer of a cofibrantly generated model structure
along a right adjoint as in [Bek01, Proposition 2.3]. Since the weak equivalences of the
projective model structure on Ch≥0 are closed under filtered colimits [Wei95, Theorem
2.6.15], the only a priori non-trivial hypothesis to check is that there exists a set J of
generating trivial cofibrations of the projective model structure on Ch≥0 such that for
every j : A→ B in J and every cocartesian square

τ i≤n(A) X

τ i≤n(B) Y,

τ i≤n(j) g

p

the morphism ιn(g) is a weak equivalence of Ch≥0. As explained in [DS95, Proposition
7.19], there exists a set of generating trivial cofibrations of the projective model structure
on Ch≥0 consisting of the maps

0→ Dk

for each k > 0, where Dk is the following chain complex concentrated in degree k and
k − 1

0← · · · ← 0← Z id← Z← 0← · · ·

What is left to show then is that for every k > 0 and every object X of Ch≤n≥0 , the
canonical inclusion map

X → X ⊕ τ i≤n(Dk)

is sent by ιn to a weak equivalence of Ch≥0. This follows immediately from the fact
that homology groups commute with direct sums.

4.6.9. We refer to the model structure of the previous proposition as the projective model
structure on Ch≤n≥0 .
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Lemma 4.6.10. For every chain complex K, the unit map

K → ιnτ
i
≤n(K)

induces isomorphisms
Hk(K) ' Hk(ιnτ

i
≤n(K))

for every 0 ≤ k ≤ n.

Proof. For 0 ≤ k < n−1, this is trivial. For k = n−1, this follows easily from the fact
that the image of ∂ : Kk/∂(Kk+1) → Kk−1 is equal to the image of ∂ : Kk → Kk−1.
Finally for k = n, it is straightforward to check that

Hn(K) =
Ker(∂ : Kn → Kn−1)

Im(∂ : Kn+1 → Kn)

is isomorphic to

Hn(ιnτ
i
≤n(K)) = Ker(∂ : Kn/∂(Kn+1)→ Kn−1).

The isomorphism being obviously induced by the unit map K → ιnτ
i
≤n(K).

As a consequence of this lemma, we have the analogous of Proposition 4.6.4.

Proposition 4.6.11. The functor τ i≤n : Ch≥0 → Ch≤n≥0 sends the weak equivalences of
the projective model structure on Ch≥0 to weak equivalences of the projective model
structure on Ch≤n≥0 .

Proof. Let f : K → K ′ be a weak equivalence for the projective model structure on
Ch≥0 and consider the naturality square

K K ′

ιnτ
i
≤n(K) ιnτ

i
≤n(K ′),

ηK

f

η′K

ιnτ i≤n(f)

where η is the unit map of the adjunction τ i≤n a ιn. It follows from Lemma 4.6.10 that

Hk(ιnτ
i
≤n(f)) : Hk(ιnτ

i
≤n(K))→ Hk(ιnτ

i
≤n(K ′))

is an isomorphism for every k ≤ n. Since obviously Hk(ιnτ
i
≤n(f)) is also an isomor-

phism for k > n, this proves the result.

We now investigate the relation between truncation and abelianization.
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4.6.12. Let C be n-category. A straightforward computation shows that the chain com-
plex λ(ιn(C)) is such that

λk(ιn(C)) = 0

for every k > n and thus λ(ιn(C)) can be seen as an object of Ch≤n≥0 . Hence, we can
define a functor λ≤n : nCat→ Ch≤n≥0 as

λ≤n : nCat→ Ch≤n≥0

C 7→ λ(ιn(C)),

and we tautologically have that the square

nCat Ch≤n≥0

ωCat Ch≥0

ιn

λ≤n

ιn

λ

is commutative.

Lemma 4.6.13. The square

ωCat Ch≥0

nCat Ch≤n≥0

τ i≤n

λ

τ i≤n

λ≤n

is commutative (up to a canonical isomorphism).

Proof. Notice first that we have a natural transformation

β : τ i≤n ◦ λ⇒ λ≤n ◦ τ i≤n

defined as

ωCat nCat Ch≤n≥0

ωCat Ch≥0 Ch≤n≥0 .

τ i≤n

id
ιn

λ≤n

ιn
id

λ

τ i≤n

η

ε

Since for every ω-category C and every k < n, we have

Ck = ιn(τ i≤n(C))k
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and for every chain complex K and every k < n, we have

ιn(τ i≤n(K))k = Kk,

it follows that for every ω-category C and every k < n, the morphism βk is nothing but
the equality

τ i≤n(λ(C))k = λ≤n(τ i≤n(C))k.

Hence, all we have to prove is that

βn : τ i≤n(λ(C))n → λ≤n(τ i≤n(C))n

is an isomorphism for every ω-category C.
Recall from Lemma 4.2.4 that λn ◦ ιn : nCat→ Ab (which we abusively wrote as

λn) is left adjoint to the functor Bn : Ab → nCat. In particular, for every ω-category
C and every abelian group G, we have

HomAb(λnιnτ
i
≤n(C), G) ' HomnCat(τ

i
≤n(C), BnG) ' HomωCat(C, ιn(BnG)).

Then, it follows from an argument similar to the proof of Lemma 1.3.3 (see also the
proof of Lemma 4.2.4) that this last set is naturally isomorphic to the set of functions
fn : Cn → G such that:

- for every 0 ≤ k < n and every pair (x, y) of k-composable n-cells of C, we have

f(x ∗
k
y) = f(x) + f(y),

- for every (n+ 1)-cell α : x→ y of C, we have

f(x) = f(y).

By definition of λn(C) and of ∂ : λn+1(C)→ λn(C), we thus have

HomAb(λnιnτ
i
≤n(C), G) ' HomAb(λn(C)/∂(λn+1(C)), G).

Hence, we have λ≤n(τ i≤n(C))n ' τ i≤n(λ(C))n and a thorough analysis of naturality
shows that this isomorphism is nothing but βn.

In the following lemma, nCat is equipped with the folk model structure and Ch≥n≥0

with the projective model structure.

Lemma 4.6.14. The functor λ≤n : nCat→ Ch≤n≥0 is left Quillen.
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Proof. Let I and J respectively be sets of generating cofibrations and generating triv-
ial cofibrations of the folk model structure on ωCat such that τ i≤n(I) and τ i≤n(J) re-
spectively are sets of generating cofibrations and generating trivial cofibrations of the
projective model structure on nCat (which we know exist by the second part of Propo-
sition 4.6.2). What we have to show is that for every f in I (resp. J), λ≤n(τ i≤n(f)) is
a cofibration (resp. generating cofibration) for the folk model structure on Ch≤n≥0 . From
Lemma 4.6.13, we have

λ≤n(τ i≤n(f)) ' τ i≤n(λ(f)).

Since λ and τ i≤n are both left Quillen functors, this proves the result.

As an immediate consequence of the previous lemma, the functor λ≤n is left deriv-
able and we have the following key result.

Proposition 4.6.15. The square

ho(ωCatfolk) ho(Ch≥0)

ho(nCatfolk) ho(Ch≤n≥0 )

τ i≤n

Lλ

τ i≤n

Lλ≤n

is commutative (up to a canonical isomorphism).

Proof. Straightforward consequence of Lemma 4.6.13 and the fact that the left derived
functor of a composition of left Quillen functors is the composition of the left derived
functors (see for example [Hov07, Theorem 1.3.7]).

Remark 4.6.16. Beware that the square

ho(nCatfolk) ho(Ch≤n≥0 )

ho(ωCatfolk) ho(Ch≥0)

ιn

Lλ≤n

ιn

Lλ

is not commutative. If it were, then for every n-category C and every k > n, we would
have Hpol

k (ιn(C)) = 0 for every k > n, which is not even true for the case n = 1 as we
shall see in the following chapter.

A useful consequence of Proposition 4.6.15 is the following corollary.

Corollary 4.6.17. Let n ≥ 0 and C be an ω-category. If C has a k-basis for every
0 ≤ k ≤ n− 1, then the canonical map of ho(Ch≥0)

αpol
C : Hpol(C)→ λ(C)
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induces isomorphisms
Hpol
k (C) ' Hk(λ(C))

for every 0 ≤ k ≤ n.

Proof. From Lemma 4.6.13 and Proposition 4.6.15, we deduce that the morphism τ i≤n(αpol
C )

of ho(Ch≤n≥0 ) can be identified with the canonical morphism

Lλ≤n(τ i≤n(C))→ λ≤n(τ i≤n(C)).

From Lemma 4.6.5, we have that τ i≤n(C) is cofibrant for the folk model structure on
nCat, and the result follows immediately from the fact that λ≤n is left Quillen.

4.6.18. Since every ω-category trivially admits its set of 0-cells as a 0-base, it follows
from the previous proposition that for every ω-category C we have

Hpol
0 (C) ' H0(λ(C))

and
Hpol

1 (C) ' H1(λ(C)).

Intuitively speaking, this means that no cofibrant resolution of C is needed to compute
its first two polygraphic homology groups.

We now turn to the relation between truncation and singular homology of ω-cate-
gories. Recall that for every n ≥ 0, the nerve functor Nn : nCat→ ∆̂ is defined as the
following composition

Nn : nCat
ιn−→ ωCat

Nω−→ ∆̂,

and for n ∈ N ∪ {ω} we write cn : ∆̂→ nCat for the left adjoint of Nn.

Lemma 4.6.19. For every n ∈ N, the following triangle of functors

∆̂ ωCat

nCat

cω

cn
τ i≤n

is commutative (up to an isomorphism).

Proof. Straightforward consequence of the fact that Nn = Nω ◦ ιn and the fact that the
composition of left adjoints is the left adjoint of the composition.

4.6.20. In particular, it follows from the previous lemma that the co-unit of the adjunc-
tion cω a Nω induces for every ω-category C and every n ≥ 0, a canonical morphism
of nCat

cnNω(C) ' τ i≤ncωNω(C)→ τ i≤n(C),

which is natural in C.
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Lemma 4.6.21. For every ω-category C, the canonical morphism of Cat

c1Nω(C)→ τ i≤1(C)

is an isomorphism.

Proof. Let C be an ω-category and D be a (small) category. By adjunction, we have

HomCat(c1Nω(C), D) ' Hom∆̂(Nω(C), N1(D)). (4.4)

Now let ∆≤2 be the full subcategory of ∆ spanned by [0], [1] and [2] and let i : ∆≤2 → ∆
be the canonical inclusion. This inclusion induces by pre-composition a functor i∗ :

∆̂ → ∆̂≤2 which has a right-adjoint i∗ : ∆̂≤2 → ∆̂. Recall that the nerve of a (small)
category is 2-coskeletal (see for example [Str87, Theorem 5.2]), which means that for
every category D, the unit morphism N1(D) → i∗i

∗(N1(D)) is an isomorphism of
simplicial sets. In particular, we have

Hom∆̂(Nω(C), N1(D)) ' Hom∆̂(Nω(C), i∗i
∗(N1(D)))

' Hom∆̂≤2
(i∗(Nω(C)), i∗(N1(D))).

Using the description of O0, O1 and O2 from 3.1.2, we deduce that a morphism F :

i∗(Nω(C)) → i∗(N1(D)) of ∆̂≤2 consists of a function F0 : C0 → D0 and a function
F1 : C1 → D1 such that

(a) for every x ∈ C0, we have F1(1x) = 1F0(x),

(b) for every x ∈ C1, we have

s(F1(x)) = F0(s(x))) and t(F1(x)) = F0(t(x))),

(c) for every 2-triangle
Y

X Z

gf

h

α

in C, we have F1(g) ∗
0
F1(f) = F1(h).

In particular, it follows that F1 is compatible with composition of 1-cells in an obvious
sense and that for every 2-cell α : f ⇒ g ofC, we have F1(f) = F1(g). And conversely,
this last condition implies condition (c) above. This means exactly that we have a natural
isomorphism

Hom∆̂≤2
(i∗(Nω(C)), i∗(N1(D))) ' HomCat(τ

i
≤1(C), D).
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Altogether, we have

HomCat(c1Nω(C), D) ' HomCat(τ
i
≤1(C), D),

which proves that
c1Nω(C) ' τ i≤1(C)

and a thorough analysis of naturality shows that this isomorphism is nothing but the
canonical morphism c1Nω(C)→ τ i≤1(C).

We can now prove the important following proposition.

Proposition 4.6.22. For every ω-category C, the canonical map of ho(Ch≥0)

αSing
C : HSing(C)→ λ(C)

induces isomorphisms
HSing
k (C) ' Hk(λ(C))

for k ∈ {0, 1}.

Proof. Let C be an ω-category. Recall from 4.4.7 that the canonical morphism αSing
C :

HSing(C) → λ(C) is nothing but the image by the localization functor Ch≥0 →
ho(Ch≥0) of the morphism

λcωNω(C)→ λ(C)

induced by the co-unit of the adjunction cω a Nω. From 4.6.15 we have that

τ i≤1λcωNω(C) ' λ≤1τ
i
≤1cωNω(C) = λ≤1c1Nω(C),

and from Lemma 4.6.21 we obtain

τ i≤1λcωNω(C) ' λ≤1τ
i
≤1(C) ' τ i≤1λ(C).

This means exactly that the image by τ i≤1 of αSing
C is an isomorphism, which is what we

wanted to prove.

Finally, we obtain the result we were aiming for.

Proposition 4.6.23. For every ω-category C, the canonical comparison map

πC : HSing(C)→ Hpol(C)

induces isomorphisms
HSing
k (C) ' Hpol

k (C)

for k ∈ {0, 1}.
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Proof. Let C be an ω-category and consider the following commutative triangle of
ho(Ch≥0)

HSing(C) Hpol(C)

λ(C) .
αSing
C

πC

αpol
C

From Proposition 4.6.22, we know that αSing
C induces isomorphisms

HSing
k (C) ' Hk(λ(C))

for k ∈ {0, 1} and from Corollary 4.6.17 and Paragraph 4.6.18 we know that αpol
C

induces isomorphisms Hpol
k (C) ' Hk(λ(C)) for k ∈ {0, 1}. The result follows then

from an immediate 2-out-of-3 property.

4.6.24. A natural question following the above proposition is:

For which k ≥ 0 do we have HSing
k (C) ' Hpol

k (C) for every ω-category C ?

We have already seen in 4.5.2 that when C = B2N we have

HSing
2p (B2N) 6' Hpol

2p (B2N)

for every p ≥ 2. Furthermore, with a similar argument to the one given in 4.5.2, we have
that for every k ≥ 3, the (nerve of the) ω-category BkN is a K(Z, k). In particular, we
have

HSing
2p+3(B2p+1N) ' Z/2Z

for every p ≥ 1 (see [EML54, Theorem 23.1]). On the other hand, since BkN is a free
k-category, we have Hpol

n (BkN) = 0 for all n ≥ k. All in all, we have proved that for
every k ≥ 4, there exists at least one ω-category C such that

HSing
k (C) 6' Hpol

k (C).

However, it is still an open question to know whether for k ∈ {2, 3} we have

HSing
k (C) ' Hpol

k (C)

for every ω-category C. The only missing part to adapt the proof of Proposition 4.6.23
for these values of k is the analogue of Lemma 4.6.21. But contrary to the case k = 1,
it is not generally true that the canonical morphism ckNω(C) → τ i≤k(C) is an iso-
morphism when k ≥ 2. However, what we really need is that the image by λ of this
morphism be a quasi-isomorphism. In the case k = 2, it seems that this canonical mor-
phism admits an oplax 2-functor as an inverse up to oplax transformation which could
be an hint towards the conjecture that HSing

2 (C) ' Hpol
2 (C) for every ω-category C.
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CHAPTER 5

HOMOLOGY OF CONTRACTIBLE
ω-CATEGORIES AND ITS
CONSEQUENCES

5.1 CONTRACTIBLE ω-CATEGORIES

Recall that for every ω-category C, we write pC : C → D0 for the canonical morphism
to the terminal object D0 of ωCat.

Definition 5.1.1. An ω-category C is oplax contractible when the canonical morphism
pC : C → D0 is an oplax homotopy equivalence (Definition 3.4.2).

Proposition 5.1.2. Every oplax contractible ω-category C is homologically coherent
and we have

Hpol(C) ' HSing(C) ' Z
where Z is seen as an object of ho(Ch≥0) concentrated in degree 0.

Proof. Consider the commutative square

Hpol(C) HSing(C)

Hpol(D0) HSing(D0).

Hpol(pC)

πC

HSing(pC)

πD0

It follows respectively from Proposition 3.4.4 and Proposition 4.3.10 that the right and
left vertical morphisms of the above square are isomorphisms. Then, an immediate com-
putation left to the reader shows that D0 is homologically coherent and that Hpol(D0) '
HSing(D0) ' Z. By a 2-out-of-3 property, we deduce that πC : HSing(C) → Hpol(C) is
an isomorphism and Hpol(C) ' HSing(C) ' Z.
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Remark 5.1.3. Definition 5.1.1 admits an obvious “lax” variation and Proposition 5.1.2
is also true for lax contractible ω-categories.

We end this section with an important result on slice ω-categories (Paragraph 3.7.1).

Proposition 5.1.4. Let A be an ω-category and a0 an object of A. The ω-category A/a0

is oplax contractible.

Proof. This follows from the dual of [AM20c, Proposition 5.22].

5.2 HOMOLOGY OF GLOBES AND SPHERES

Lemma 5.2.1. For every n ∈ N, the ω-category Dn is oplax contractible.

Proof. Recall that we write en for the unique non-trivial n-cell of Dn and that by defini-
tion Dn has exactly two non-trivial k-cells for every k such that 0 ≤ k < n. These two
k-cells are parallel and are given by sk(en) and tk(en).

Let r : D0 → Dn be the ω-functor that points to t0(en) (which means that r =
〈t0(en)〉 with the notations of 1.1.7). For every k-cell x of Dn, we have

r(p(x)) = 1
(k)
t0(en),

where we write p for the unique ω-functor Dn → D0.
Now for 0 ≤ k < n, we define αsk(en) and αtk(en) as

αsk(en) =

{
tk+1(en), if k < n− 1

en, if k = n− 1
and αtk(en) =

{
1tk(en), if k < n− 1

en, if k = n− 1.

It is straightforward to check that this data defines an oplax transformation

α : idDn ⇒ r ◦ p

(see 3.3.3 and Example 3.3.4), which proves the result.

In particular, for every n ∈ N, Dn is homologically coherent. Recall from 1.1.8 that
for every n ≥ 0, we have a cocartesian square

Sn−1 Dn

Dn Sn.

in

in j+n

j−n

p
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Lemma 5.2.2. For every n ≥ 0, the commutative square of simplicial sets

Nω(Sn−1) Nω(Dn)

Nω(Dn) Nω(Sn)

Nω(in)

Nω(in) Nω(j+n )

Nω(j−n )

is cocartesian.

Proof. Since colimits in presheaf categories are computed pointwise, what we need to
show is that for every k ≥ 0, the following commutative square is cocartesian

HomωCat(Ok,Sn−1) HomωCat(Ok,Dn)

HomωCat(Ok,Dn) HomωCat(Ok,Sn).

HomωCat(Ok,in)

HomωCat(Ok,in) HomωCat(Ok,j+n )

HomωCat(Ok,j−n )

(5.1)

Notice first that the square

Sn−1 Dn

Dn Sn.

in

in j+n

j−n

is cartesian and all four morphisms are monomorphisms. Since the functor

HomωCat(Ok,−) : ωCat→ Set

preserves limits, the square (5.1) is a cartesian square of Set all of whose four mor-
phisms are monomorphisms. Hence, in order to prove that square (5.1) is cocartesian,
we only need to show that for every k ≥ 0 and every ω-functor ϕ : Ok → Sn, there
exists an ω-functor ϕ′ : Ok → Dn such that either j+

n ◦ ϕ′ = ϕ or j−n ◦ ϕ′ = ϕ.
For convenience, let us write h+

n (resp. h−n ) for the only generating n-cell of Sn
contained in the image of j+

n (resp. j−n ). The cells h+
n and h−n are the only non-trivial

n-cells of Sn. We also write αk for the principal cell of Ok (see 3.1.2). This is the only
non-trivial k-cell of Ok.

Now, let ϕ : Ok → Sn be an ω-functor. There are several cases to distinguish.

Case k < n: Since every generating cell of γ of Ok is of dimension not greater than
k, the cell ϕ(γ) is of dimension strictly lower than n. Since all cells of dimen-
sion strictly lower than n are both in the image of j+

n and in the image of j−n , ϕ
obviously factors through j+

n (and j−n ).
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Case k = n: The image of αn is either a non-trivial n-cell of Sn or a unit on a strictly
lower dimensional cell. In the second situation, everything works like the case
k < n. Now suppose for example that ϕ(αn) is h+

n , which is in the image of j+
n .

Since all of the other generating cells of On are of dimension strictly lower than
n, their images by ϕ are also of dimension strictly lower than n and hence, are
all contained in the image of j+

n . Altogether this proves that ϕ factors through j+
n .

The case where ϕ(αn) = h−n is symmetric.

Case k > n: Since Sn is an n-category, the image of αk is necessarily of the form
ϕ(αk) = 1

(k)
x with x a cell of Sn of dimension non-greater than n. If x is a unit

on a cell whose dimension is strictly lower than n, then everything works like in
the case k < n. If not, this means that x is a non-trivial n-cell of Sn. Suppose for
example that x = h+

n . Now let γ be a generator ofOk of dimension k−1. We have
ϕ(γ) = 1

(k−1)
y with y which is either a unit on a cell of dimension strictly lower

than n, or a non-degenerate n-cell of Sn (if k− 1 = n, we use the convention that
1

(k−1)
y = y). In the first situation, y is in the image of j+

n as in the case k < n, and
thus, so is 1

(k−1)
y . In the second situation, this means a priori that either y = h+

n

or y = h−n . But we know that γ is part of a composition that is equal to either the
source or the target of αk (see 3.1.2) and thus, y is part of a composition that is
equal to either the source or the target of x = h+

n . Since no composition involv-
ing h−n can be equal to h+

n (one could invoke the function introduced in 1.3.5),
this implies that y = h+

n and hence, f(γ) is in the image of j+
n . This goes for

all generating cells of dimension k − 1 of Ok and we can recursively apply the
same reasoning for generating cells of dimension k − 2, then k − 3 and so forth.
Altogether, this proves that ϕ factorizes through j+

n . The case where x = h−n and
ϕ factorizes through j−n is symmetric.

From these two lemmas, follows the important proposition below.

Proposition 5.2.3. For every n ≥ −1, the ω-category Sn is homologically coherent.

Proof. Recall that the cofibrations of simplicial sets are exactly the monomorphisms,
and in particular all simplicial sets are cofibrant. Since in : Sn−1 → Dn is a monomor-
phism for every n ≥ 0 and since Nω preserves monomorphisms (as a right adjoint), it
follows from Lemma 5.2.2 and Lemma 2.5.12 that the square

Nω(Sn−1) Nω(Dn)

Nω(Dn) Nω(Sn)

Nω(in)

Nω(in) Nω(j+n )

Nω(j−n )
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is a homotopy cocartesian square of simplicial sets. Since Nω induces an equivalence of
op-prederivatorsHo(ωCatTh)→ Ho(∆̂) (Theorem 3.2.5), it follows that the square of
ωCat

Sn−1 Dn

Dn Sn

in

in j+n

j−n p

is Thomason homotopy cocartesian for every n ≥ 0. Finally, since in : Sn−1 → Dn is
a folk cofibration and Sn−1 and Dn are folk cofibrant for every n ≥ 0, we deduce the
desired result from Corollary 4.5.11 and an immediate induction. The base case being
simply that S−1 = ∅ is obviously homologically coherent.

5.2.4. The previous proposition implies what we claimed in Paragraph 4.5.9, which is
that the morphism of op-prederivators

J : Ho(ωCatfolk)→ Ho(ωCatTh)

induced by the identity functor of ωCat is not homotopy cocontinuous. Indeed, recall
from Paragraph 4.5.2 that the category B2N is not homologically coherent; but on the
other hand we have a cocartesian square

S1 D0

D2 B2N,

i2
p

where the map D2 → B2N points the unique generating 2-cell of B2N and D0 → B2N
points to the only object ofB2N. Since S1, D0 and D2 are free and i2 is a folk cofibration,
the square is also folk homotopy cocartesian. If J was homotopy cocontinuous, then
this square would also be Thomason homotopy cocartesian. Since we know that S1,
D0 and D2 are homologically coherent, this would imply that B2N is homologically
coherent.

From Proposition 5.2.3, we also deduce the proposition below which gives a crite-
rion to detect homologically coherent ω-categories when we already know that they are
free.

Proposition 5.2.5. Let C be a free ω-category and for every k ∈ N let Σk be its k-basis.
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If for every k ∈ N, the following cocartesian square (see 1.2.1)

∐
x∈Σk

Sk−1 skk−1(C)

∐
x∈Σk

Dk skk(C)

∐
ik

〈s(x),t(x)〉

〈x〉
p

is Thomason homotopy cocartesian, then C is homologically coherent.

Proof. Since the morphisms ik are folk cofibrations and the ω-categories Sk−1 and Dk

are folk cofibrant and homologically coherent, it follows from Corollary 4.5.11 and an
immediate induction that all skk(C) are homologically coherent. The result follows then
from Lemma 1.1.6, Corollary 2.5.10 and Proposition 2.5.11.

5.3 THE MIRACULOUS CASE OF 1-CATEGORIES

Recall that the terms 1-category and (small) category are synonymous. While we have
used the latter one more often so far, in this section we will mostly use the former one.
As usual, the canonical functor ι1 : Cat→ ωCat is treated as an inclusion functor and
hence we always consider 1-categories as particular cases of ω-categories.

The goal of what follows is to show that every 1-category is homologically coher-
ent. In order to do that, we will prove that every 1-category is a canonical colimit of
contractible 1-categories and that this colimit is homotopic both with respect to the folk
weak equivalences and with respect to the Thomason equivalences. We call the reader’s
attention to an important subtlety here: even though the desired result only refers to
1-categories, we have to work in the setting of ω-categories. This can be explained from
the fact that if we take a cofibrant resolution of a 1-category C in the folk model struc-
ture on ωCat

P → C,

then P is not necessarily a 1-category. In particular, polygraphic homology groups of a
1-category need not be trivial in dimension higher than 1.

5.3.1. Let A be a 1-category and a an object of A. Recall that we write A/a for the slice
1-category of A over a, that is the 1-category whose description is as follows:

- an object of A/a is a pair (a′, p : a′ → a) where a′ is an object of A and p is an
arrow of A,
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- an arrow of A/a is a pair (q, p : a′ → a) where p is an arrow of A and q is an
arrow of A of the form q : a′′ → a′. The target of (q, p) is given by (a′, p) and the
source by (a′′, p ◦ q).

We write πa for the canonical forgetful functor

πa : A/a→ A

(a′, p) 7→ a′.

This is a special case of the more general notion of slice ω-category introduced in 3.7.1.
In particular, given an ω-category X and an ω-functor f : X → A, we have defined the
ω-category X/a and the ω-functor

f/a : X/a→ A/a

as the following pullback

X/a X

A/a A.

y
f/a f

πa

More explicitly, the n-cells of X/a can be described as pairs (x, p) where x is an n-cell
of X and p is an arrow of A of the form

p : f(x)→ a if n = 0

and
p : f(t0(x))→ a if n > 0.

From now on, let us use the convention that t0(x) = x when x is a 0-cell of X .
When n > 0, the source and target of an n-cell (x, p) of X/a are given by

s((x, p)) = (s(x), p) and t((x, p)) = (t(x), p).

Moreover, the ω-functor f/a is described as

(x, p) 7→ (f(x), p),

and the canonical ω-functor X/a→ X as

(x, p) 7→ x.
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5.3.2. Let f : X → A be an ω-functor with A a 1-category. Every arrow β : a → a′ of
A induces an ω-functor

X/β : X/a→ X/a′

(x, p) 7→ (x, β ◦ p),

which takes part in a commutative triangle

X/a X/a′

X .

X/β

This defines a functor

X/− : A→ ωCat

a 7→ X/a

and a canonical ω-functor
colim
a∈A

(X/a)→ X.

Let f ′ : X ′ → A be another ω-functor and let

X X ′

A

g

f f ′

be a commutative triangle in ωCat. Recall from 3.7.1 that for every object a of A, there
is an ω-functor g/a defined as

g/a : X/a→ X ′/a

(x, p) 7→ (g(x), p).

This defines a natural transformation

g/− : X/− ⇒ X ′/−,

and thus induces an ω-functor

colim
a∈A

(X/a)→ colim
a∈A

(X ′/a).
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Furthermore, it is immediate to check that the square

colim
a∈A

(X/a) X

colim
a∈A

(X ′/a) X ′,

g

is commutative.

Lemma 5.3.3. Let f : X → A be an ω-functor such that A is a 1-category. The
canonical ω-functor

colim
a∈A

(X/a)→ X

is an isomorphism.

Proof. We have to show that the cocone

(X/a→ X)a∈Ob(A)

is colimiting. Let
(φa : X/a→ C)a∈Ob(A)

be another cocone and let x be a n-arrow of X . Notice that the pair

(x, 1f(t0(x)))

is a n-arrow of X/f(t0(x)). We leave it to the reader to check that the formula

φ : X → C

x 7→ φf(t0(x))(x, 1f(t0(x))).

defines an ω-functor and it is straightforward to check that for every object a of A the
triangle

X/a X

C
φa

φ

is commutative. This proves the existence part of the universal property.
Now let φ′ : X → C be another ω-functor that makes the previous triangle commute

for every object a of A and let x be an n-cell of X . Since the triangle

X/f(t0(x)) X

C
φf(t0(x))

φ′
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is commutative, we necessarily have

φ′(x) = φf(t0(x))(x, 1f(t0(x)))

which proves that φ′ = φ.

5.3.4. In particular, when we apply the previous lemma to idA : A→ A, we obtain that
every 1-category A is (canonically isomorphic to) the colimit

colim
a∈A

(A/a).

We now proceed to prove that this colimit is homotopic with respect to the folk weak
equivalences.

Up to Lemma 5.3.7, we fix once and for all an ω-functor f : X → A with A a
1-category.

Lemma 5.3.5. If X is free, then for every object a of A, the ω-category X/a is free.
More precisely, if ΣX

n is the n-basis of X , then the n-basis of X/a is the set

ΣX/a
n := {(x, p) ∈ (X/a)n|x ∈ ΣX

n }.

Proof. It is immediate to check that for every object a of A, the canonical forgetful
functor πa : A/a → A is a discrete Conduché functor (see Section 1.6). Hence, from
Lemma 1.6.5 we know that X/a → X is a discrete Conduché ω-functor. The result
follows then from Theorem 1.6.18.

5.3.6. When X is free, every arrow β : a→ a′ of A induces a map

ΣX/a
n → ΣX/a′

n

(x, p) 7→ (x, β ◦ p).

This defines a functor

ΣX/9
n : A→ Set

a 7→ ΣX/a
n .

Lemma 5.3.7. If X is free, then there is an isomorphism of functors

ΣX/9
n '

∐
x∈ΣXn

HomA (f(t0(x)), 9) .
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Proof. For every object a of A and every x ∈ ΣX
n , we have a canonical map

HomA (f(t0(x)), a)→ ΣX/a
n

p 7→ (x, p).

By universal property, this induces a map∐
x∈ΣXn

HomA (f(t0(x)), a)→ ΣX/a
n ,

which is natural in a. A simple verification shows that it is a bijection.

Proposition 5.3.8. Let A be a 1-category, X be a free ω-category and f : X → A be
an ω-functor. The functor

A→ ωCat

a 7→ X/a

is a cofibrant object for the projective model structure on ωCat(A) induced by the folk
model structure on ωCat (2.5.7).

Proof. Recall that the set
{in : Sn−1 → Dn|n ∈ N}

is a set of generating folk cofibrations. From Lemmas 5.3.5 and 5.3.7 we deduce that
for every object a of A and every n ∈ N, the canonical square∐

x∈ΣXn

∐
HomA(f(t0(x)),a)

Sn−1 skn−1(X/a)

∐
x∈ΣXn

∐
HomA(f(t0(x)),a)

Dn skn(X/a)

is cocartesian. It is straightforward to check that this square is natural in a in an obvious
sense, which means that we have a cocartesian square in ωCat(A):∐

x∈ΣXn

Sn−1 ⊗ f(t0(x)) skn−1(X/−)

∐
x∈ΣXn

Dn ⊗ f(t0(x)) skn(X/−)
p
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(see 2.5.5 for notations). From the second part of Proposition 2.5.6, we deduce that for
every n ≥ 0,

skn−1(X/−)→ skn(X/−)

is a cofibration for the projective model structure on ωCat(A). Thus, the transfinite
composition

∅ → sk0(X/−)→ sk1(X/)→ · · · → skn(X/−)→ · · · ,

which is canonically isomorphic to ∅ → X/− (see Lemma 1.1.6), is also a cofibration
for the projective model structure.

Corollary 5.3.9. Let A be a 1-category and f : X → A be an ω-functor. The canonical
arrow of ho(ωCatfolk)

folk

hocolim
a∈A

(X/a)→ X,

induced by the co-cone (X/a→ X)a∈Ob(A), is an isomorphism.

Beware that in the previous corollary, we did not suppose that X was free.

Proof. Let P be a free ω-category and g : P → X a folk trivial fibration and consider
the following commutative diagram of ho(ωCatfolk)

folk

hocolim
a∈A

(P/a) colim
a∈A

(P/a) P

folk

hocolim
a∈A

(X/a) colim
a∈A

(X/a) X

(5.2)

where the middle and most left vertical arrows are induced by the arrows

g/a : P/a→ X/a,

and the most right vertical arrow is induced by g. Since trivial fibrations are stable
by pullback, g/a is a trivial fibration. This proves that the most left vertical arrow of
diagram (5.2) is an isomorphism.

Now, from Proposition 5.3.8 and Corollary 2.5.10, we deduce that the arrow

folk

hocolim
a∈A

(P/a)→ colim
a∈A

(P/a)

is an isomorphism. Moreover, from Lemma 5.3.3, we know that the arrows

colim
a∈A

(P/a)→ P
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and
colim
a∈A

(X/a)→ X

are isomorphisms.
Finally, since g is a folk weak equivalence, the most right vertical arrow of diagram

(5.2) is an isomorphism and by an immediate 2-out-of-3 property this proves that all
arrows of (5.2) are isomorphisms. In particular, so is the composition of the two bottom
horizontal arrows, which is what we desired to show.

We now move on to the next step needed to prove that every 1-category is homolog-
ically coherent. For that purpose, let us recall a construction commonly referred to as
the “Grothendieck construction”.

5.3.10. Let A be a 1-category and F : A → Cat a functor. We denote by
∫
F or∫

a∈A F (a) the category such that:

- An object of
∫
F is a pair (a, x) where a is an object of A and x is an object of

F (a).

- An arrow (a, x)→ (a′, x′) of
∫
F is a pair (f, k) where

f : a→ a′

is an arrow of A, and
k : F (f)(x)→ x′.

The unit on (a, x) is the pair (1a, 1x) and the composition of (f, k) : (a, x) → (a′, x′)
and (f ′, k′) : (a′, x′)→ (a′′, x′′) is given by:

(f ′, k′) ◦ (f, k) = (f ′ ◦ f, k′ ◦ F (f ′)(k)).

Every natural transformation

A Cat

F

G

α

induces a functor ∫
α :

∫
F →

∫
G

(a, x) 7→ (a, αa(x)).

Altogether, this defines a functor∫
: Cat(A)→ Cat

F 7→
∫
F,

where Cat(A) is the category of functors from A to Cat.
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We now recall an important theorem due to Thomason.

Theorem 5.3.11 (Thomason). The functor
∫

: Cat(A) → Cat sends the pointwise
Thomason equivalences (2.2.5) to Thomason equivalences and the induced functor∫

: ho(CatTh(A))→ ho(CatTh)

is canonically isomorphic to the homotopy colimit functor

Th

hocolim
A

: ho(CatTh(A))→ ho(CatTh).

Proof. The original source for this Theorem is [Tho79]. However, the definition of ho-
motopy colimit used by Thomason, albeit equivalent, is not the same as the one we used
in this dissertation and is slightly outdated. A more modern proof of the theorem can be
found in [Mal05, Proposition 2.3.1 and Théorème 1.3.7].

Corollary 5.3.12. Let A be a 1-category. The canonical map

Th

hocolim
a∈A

(A/a)→ A

induced by the co-cone (A/a→ A)a∈Ob(A), is an isomorphism of ho(CatTh).

Proof. For every object a of A, the canonical map to the terminal category

A/a→ D0

is a Thomason equivalence. This comes from the fact that A/a is oplax contractible
(Proposition 5.1.4), or from [Qui73, Section 1, Corollary 2] and the fact that A/a has a
terminal object.

In particular, the morphism of functors

A/(−)⇒ kD0 ,

where kD0 is the constant functor A → Cat with value the terminal category D0, is a
pointwise Thomason equivalence. It follows from the first part of Theorem 5.3.11 that∫

a∈A
A/a→

∫
a∈A

kD0

is a Thomason equivalence and an immediate computation shows that∫
a∈A

kD0 ' A.
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From the second part of Theorem 5.3.11, we have that
Th

hocolim
a∈A

(A/a) ' A.

A thorough analysis of all the isomorphisms involved shows that this last isomorphism
is indeed induced by the co-cone (A/a→ A)a∈Ob(A).

Remark 5.3.13. It is possible to extend the previous corollary to prove that for every
functor f : X → A (X and A being 1-categories), we have

Th

hocolim
a∈A

(X/a) ' X.

However, to prove that it is also the case whenX is an ω-category and f an ω-functor, as
in Corollary 5.3.9, one would need to extend the Grothendieck construction to functors
with value in ωCat and to prove an ω-categorical analogue of Theorem 5.3.11. Such
results, while being highly plausible, go beyond the scope of this dissertation.

Putting all the pieces together, we are now able to prove the awaited theorem.

Theorem 5.3.14. Every 1-category is homologically coherent.

Proof. All the arguments of the proof have already been given and we sum them up
here essentially for the sake of clarity. Let A be a 1-category. Consider the diagram

A→ ωCat

a 7→ A/a

and the co-cone
(A/a→ A)a∈Ob(A).

- The canonical map of ho(ωCatfolk)

folk

hocolim
a∈A

(A/a)→ A

is an isomorphism thanks to Corollary 5.3.9 applied to idA : A→ A.

- The canonical map of ho(ωCatTh)

Th

hocolim
a∈A

(A/a)→ A

is an isomorphism thanks to Corollary 5.3.12 and the fact that the canonical mor-
phisms of op-prederivators Ho(CatTh) → Ho(ωCatTh) is homotopy cocontin-
uous (see 3.2.10).

- Every A/a is homologically coherent thanks to Proposition 5.1.2 and Proposition
5.1.4.

Thus, Proposition 4.5.10 applies and this proves that A is homologically coherent.
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CHAPTER 6

HOMOTOPY AND HOMOLOGY TYPE
OF FREE 2-CATEGORIES

6.1 PRELIMINARIES: THE CASE OF FREE 1-CATEGORIES

In this section, we review some homotopical results on free (1-)categories that will be
of great help in the sequel.

6.1.1. A reflexive graph G consists of the data of two sets G0 and G1 together with

- a “source” map s : G1 → G0,

- a “target” map t : G1 → G0,

- a “unit” map 1(−) : G0 → G1,

such that for every x ∈ G0,
s(1x) = t(1x) = x.

The vocabulary of categories is used: elements of G0 are objects or 0-cells, elements
of G1 are arrows or 1-cells, arrows of the form 1x with x an object are units, etc. A
morphism of reflexive graphs f : G → G′ consists of maps f0 : G0 → G′0 and f1 :
G1 → G′1 that commute with sources, targets and units in an obvious sense. This defines
the category Rgrph of reflexive graphs. Later we will make use of monomorphisms in
the category Rgrph; they are the morphisms f : G → G′ that are injective on objects
and on arrows, i.e. such that f0 : G0 → G′0 and f1 : G1 → G′1 are injective.

There is an “underlying reflexive graph” functor

U : Cat→ Rgrph,

which has a left adjoint
L : Rgrph→ Cat.
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For a reflexive graph G, the objects of L(G) are exactly the objects of G and an arrow
f of L(G) is a chain

X0 X1 X2 · · · Xn−1 Xn
f1 f2 fn

of arrows of G, such that none of the fk are units. The integer n is referred to as the
length of f and is denoted by `(f). Composition is given by concatenation of chains.

Lemma 6.1.2. A category C is free in the sense of 1.2.5 if and only if there exists a
reflexive graph G such that

C ' L(G).

Proof. If C is free, consider the reflexive graph G such that G0 = C0 and G1 is the sub-
set of C1 whose elements are either generating 1-cells of C or units. It is straightforward
to check that C ' L(G).

Conversely, if C ' L(G) for some reflexive graph G, then the description of the
arrows of L(G) given in the previous paragraph shows that C is free and that its set of
generating 1-cells is (isomorphic to) the set of non unital 1-cells of G.

Remark 6.1.3. In other words, a category is free on a graph if and only if it is free on a
reflexive graph. The difference between these two notions is at the level of morphisms:
there are more morphisms of reflexive graphs because (generating) 1-cells may be sent
to units. Hence, for a morphism of reflexive graphs f : G → G′, the induced functor
L(f) is not necessarily rigid in the sense of Definition 1.2.11.

6.1.4. There is another important description of the category Rgrph. Write ∆≤1 for the
full subcategory of ∆ spanned by [0] and [1]. The category Rgrph is nothing but ∆̂≤1,
the category of pre-sheaves on ∆≤1. In particular, the canonical inclusion i : ∆≤1 → ∆
induces by pre-composition a functor

i∗ : ∆̂→ Rgrph,

which, by the usual technique of Kan extensions, has a left adjoint

i! : Rgrph→ ∆̂.

For a graph G, the simplicial set i!(G) has G0 as its set of 0-simplices, G1 as its set of
1-simplices and all k-simplices are degenerate for k > 1. For future reference, we put
here the following lemma.

Lemma 6.1.5. The functor i! : Rgrph→ ∆̂ preserves monomorphisms.
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Proof. What we need to show is that, given a morphism of simplicial sets

f : X → Y,

if f0 : X0 → Y0 and f1 : X1 → Y1 are monomorphisms and if all n-simplices of
X are degenerate for n ≥ 2, then f is a monomorphism. A proof of this assertion is
contained in [GZ67, Paragraph 3.4]. The key argument is the Eilenberg–Zilber Lemma
(Proposition 3.1 of op. cit.).

6.1.6. Let us denote by N : ∆̂ → Cat (instead of N1 as in Paragraph 3.1.3) the usual
nerve of categories and by c : Cat → ∆̂ its left adjoint. Recall that for a (small)
category C, an n-simplex of N(C) is a chain

X0 X1 X2 · · · Xn−1 Xn
f1 f2 fn

of arrows of C. Such an n-simplex is degenerate if and only if at least one of the fk is a
unit. It is straightforward to check that the composite of

Cat
N→ ∆̂

i∗→ Rgrph

is nothing but the forgetful functorU : Cat→ Rgrph. Thus, the functorL : Rgrph→
Cat is (isomorphic to) the composite of

Rgrph
i!→ ∆̂

c→ Cat.

We now review a construction due to Dwyer and Kan ([DK80]). LetG be a reflexive
graph. For every k ≥ 1, we define the simplicial set Nk(G) as the sub-simplicial set of
N(L(G)) whose n-simplices are chains

X0 X1 X2 · · · Xn−1 Xn
f1 f2 fn

of arrows of L(G) such that ∑
1≤i≤n

`(fi) ≤ k.

In particular, we have
N1(G) = i!(G)

and the transfinite composition of

i!(G) = N1(G) ↪→ N2(G) ↪→ · · · ↪→ Nk(G) ↪→ Nk+1(G) ↪→ · · ·

is easily seen to be the map

ηi!(G) : i!(G)→ Nci!(G),

where η is the unit of the adjunction c a N .
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Lemma 6.1.7 (Dwyer–Kan). For every k ≥ 1, the canonical inclusion map

Nk(G)→ Nk+1(G)

is a trivial cofibration of simplicial sets.

Proof. Let Ak+1 = Im(∂0) ∪ Im(∂k+1) be the union of the first and last face of the
standard (k + 1)-simplex ∆k+1. Notice that the canonical inclusion

Ak+1 ↪→ ∆k+1

is a trivial cofibration. Let Ik+1 be the set of chains

f = X0 X1 X2 · · · Xk−1 Xk Xk+1
f1 f2 fk fk+1

of arrows of L(G) such that for every 1 ≤ i ≤ k + 1

`(fi) = 1,

i.e. each fi is a non-unit arrow of G. For every f ∈ Ik+1, we define a morphism ϕf :
Ak+1 → Nk(G) in the following fashion:

- ϕf |Im(∂0) is the k-simplex of Nk(G)

X1 X2 · · · Xk Xk+1,
f2 fk+1

- ϕf |Im(∂k+1) is the k-simplex of Nk(G)

X0 X1 X2 · · · Xk−1 Xk.
f1 f2 fk

All in all, we have a cocartesian square∐
f∈Ik+1

Ak+1 Nk(G)

∐
f∈Ik+1

∆k+1 Nk+1(G),

(ϕf )f

p

which proves that the right vertical arrow is a trivial cofibration.

From this lemma, we deduce the following proposition.
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Proposition 6.1.8. Let G be a reflexive graph. The map

ηi!(G) : i!(G)→ Nci!(G),

where η is the unit of the adjunction c a N , is a trivial cofibration of simplicial sets.

Proof. This follows from the fact that trivial cofibrations are stable by transfinite com-
position.

From the previous proposition, we deduce the following very useful corollary.

Corollary 6.1.9. Let

A B

C D

α

β

δ

γ

be a cocartesian square in Rgrph. If either α or β is a monomorphism, then the induced
square of Cat

L(A) L(B)

L(C) L(D)

L(α)

L(β)

L(δ)

L(γ)

is Thomason homotopy cocartesian.

Proof. Since the nerve N induces an equivalence of op-prederivators

Ho(CatTh)→ Ho(∆̂),

it suffices to prove that the induced square of simplicial sets

NL(A) NL(B)

NL(C) NL(D)

NL(α)

NL(β)

NL(δ)

NL(γ)

is homotopy cocartesian. But, since L ' c ◦ i!, it follows from Lemma 6.1.9 that this
last square is weakly equivalent to the square of simplicial sets

i!(A) i!(B)

i!(C) i!(D).

i!(α)

i!(β)

i!(δ)

i!(γ)
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This square is cocartesian because i! is a left adjoint. Since i! preserves monomor-
phisms (Lemma 6.1.5), the result follows from Lemma 2.5.12 and the fact that the
monomorphisms are the cofibrations of the standard Quillen model structure on sim-
plicial sets.

6.1.10. By working a little more, we obtain the more general result stated in the proposi-
tion below. Let us say that a morphism of reflexive graphs α : A→ B is quasi-injective
on arrows when for all arrows f and g of A, if

α(f) = α(g),

then either f = g, or f and g are both units. In other words, α never sends a non-unit
arrow to a unit arrow and α never identifies two non-unit arrows. It follows that if α is
quasi-injective on arrows and injective on objects, then it is also injective on arrows and
hence, a monomorphism of Rgrph.

Proposition 6.1.11. Let

A B

C D

α

β

δ

γ p

be a cocartesian square in Rgrph. Suppose that the following two conditions are sat-
isfied

a) Either α or β is injective on objects.

b) Either α or β is quasi-injective on arrows.

Then, the induced square of Cat

L(A) L(B)

L(C) L(D)

L(α)

L(β)

L(δ)

L(γ)

is Thomason homotopy cocartesian.

Proof. The case where α or β is both injective on objects and quasi-injective on arrows
is Corollary 6.1.9. Hence, we only have to treat the case when α is injective on objects
and β is quasi-injective on arrows; the remaining case being symmetric.

Let use denote by E the set of objects of B that are in the image of β. We consider
this set as well as the set A0 of objects of A as discrete reflexive graphs, i.e. reflex-
ive graphs with no non-unit arrows. Now, let G be the reflexive graph defined by the
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following cocartesian square
A0 E

A G,
p

where the morphism
A0 → A

is the canonical inclusion, and the morphism

A0 → E

is induced by the restriction of β on objects. In other words, G is obtained from A
by collapsing the objects that are identified through β. It admits the following explicit
description: G0 is (isomorphic to) E and the set of non-unit arrows of G is (isomorphic
to) the set of non-unit arrows of A; the source (resp. target) of a non-unit arrow f of G
is the source (resp. target) of β(f). This completely describes G.

Now, we have the following solid arrow commutative diagram

A0 E

A G

B,β

p

where the arrow E → B is the canonical inclusion. Hence, by universal property, the
dotted arrow exists and makes the whole diagram commute. A thorough verification
easily shows that, because β is quasi-injective on arrows, the morphism G → B is a
monomorphism of Rgrph.

By forming successive cocartesian squares and combining with the square obtained
earlier, we obtain a diagram of three cocartesian squares:

A0 E

A G B

C H D.

α δ

p

1©

p
2©

p
3©

179



CHAPTER 6. HOMOLOGY OF FREE 2-CATEGORIES

What we want to prove is that the image by the functor L of the pasting of squares 2©
and 3© is homotopy cocartesian. Since the morphism G → B is a monomorphism, we
deduce from Corollary 6.1.9 that the image by the functor L of square 3© is homotopy
cocartesian. Hence, in virtue of Lemma 2.4.9, all we have to show is that the image by
L of square 2© is homotopy cocartesian. On the other hand, the morphisms

A0 → A

and
A0 → C

are monomorphisms and thus, using Corollary 6.1.9, we deduce that the image by L of
square 1© and of the pasting of squares 1© and 2© are homotopy cocartesian. By Lemma
2.4.9 again, this proves that the image by L of square 2© is homotopy cocartesian.

We now apply Corollary 6.1.9 and Proposition 6.1.11 to a few examples.

Example 6.1.12 (Identifying two objects). Let C be a free category, A and B be two
objects of C with A 6= B and let C ′ be the category obtained from C by identifying A
and B, i.e. defined by the following cocartesian square

S0 C

D0 C ′.

〈A,B〉

p

Then, this square is Thomason homotopy cocartesian. Indeed, it is obviously the image
by the functor L of a cocartesian square of Rgrph and the top morphism is a monomor-
phism. Hence, we can apply Corollary 6.1.9.

Example 6.1.13 (Adding a generator). Let C be a free category, A and B two objects
of C (possibly equal) and let C ′ be the category obtained from C by adding a generator
A→ B, i.e. defined by the following cocartesian square:

S0 C

D1 C ′.

i1

〈A,B〉

p

Then, this square is Thomason homotopy cocartesian. Indeed, it obviously is the image
of a square of Rgrph by the functor L and the morphism i1 : S0 → D1 comes from a
monomorphism of Rgrph. Hence, we can apply Corollary 6.1.9.
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Remark 6.1.14. Since i1 : S0 → D1 is a folk cofibration and since every free category
is obtained by recursively adding generators starting from a set of objects (seen as a
0-category), the previous example yields another proof that free (1-)categories are ho-
mologically coherent (which we already knew since we have seen that all (1-)categories
are homologically coherent).

Example 6.1.15 (Identifying two generators). Let C be a free category and let f, g :
A→ B be parallel generating arrows of C such that f 6= g. Now consider the category
C ′ obtained from C by “identifying” f and g, i.e. defined by the following cocartesian
square

S1 C

D1 C ′,

〈f,g〉

p

where the morphism S1 → D1 is the one that sends the two generating arrows of S1 to
the unique generating arrow of D1. Then this square is Thomason homotopy cocartesian.
Indeed, it is the image by the functor L of a cocartesian square in Rgrph, the morphism
S1 → D1 is injective on objects and the morphism S1 → C is quasi-injective on arrows.
Hence, we can apply Proposition 6.1.11. Note that since we did not suppose thatA 6= B,
the top morphism of the previous square is not necessarily a monomorphism and we
cannot always apply Corollary 6.1.9.

Example 6.1.16 (Killing a generator). Let C be a free category and let f : A → B be
one of its generating arrows such that A 6= B. Now consider the category C ′ obtained
from C by “killing” f , i.e. defined by the following cocartesian square:

D1 C

D0 C ′.

〈f〉

p

Then, this square is Thomason homotopy cocartesian. Indeed, it obviously is the image
of a cocartesian square in Rgrph by the functor L and since the source and target of
f are different, the top map comes from a monomorphism of Rgrph. Hence, we can
apply Corollary 6.1.9.

Remark 6.1.17. Note that in the previous example, we see that it was useful to consider
the category of reflexive graphs and not only the category of graphs because the map
D1 → D0 does not come from a morphism in the category of graphs.

Note also that the hypothesis that A 6= B was fundamental in the previous example
as for A = B the square is not Thomason homotopy cocartesian.
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6.2 PRELIMINARIES: BISIMPLICIAL SETS

6.2.1. A bisimplicial set is a presheaf over the category ∆×∆,

X : ∆op ×∆op → Set.

In a similar fashion as for simplicial sets (3.1.1), for n,m ≥ 0, we use the notations

Xn,m := X([n], [m])

∂vi := X(δi, id) : Xn+1,m → Xn,m

∂hj := X(id, δj) : Xn,m+1 → Xn,m

svi := X(σi, id) : Xn,m → Xn+1,m

shj := X(id, σj) : Xn,m → Xn,m+1.

The maps ∂hi and shi will be referred to as the horizontal face and degeneracy operators;
and ∂vi and svi as the vertical face and degeneracy operators.

Note that for every n ≥ 0, we have simplicial sets

X•,n : ∆op → Set

[k] 7→ Xk,n

and

Xn,• : ∆op → Set

[k] 7→ Xn,k.

The category of bisimplicial sets is denoted by ∆̂×∆.

6.2.2. The functor

δ : ∆→ ∆×∆

[n] 7→ ([n], [n])

induces by pre-composition a functor

δ∗ : ∆̂×∆→ ∆̂.

By the usual calculus of Kan extensions, δ∗ admits a left adjoint δ! and a right adjoint δ∗

δ! a δ∗ a δ∗.
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We say that a morphism f : X → Y of bisimplicial sets is a diagonal weak equiva-
lence (resp. diagonal fibration) when δ∗(f) is a weak equivalence (resp. fibration) of
simplicial sets. By definition, δ∗ induces a morphism of op-prederivators

δ∗ : Ho(∆̂×∆
diag

)→ Ho(∆̂),

where Ho(∆̂×∆
diag

) is the homotopy op-prederivator of ∆̂×∆ equipped with di-
agonal weak equivalences. Recall from [Moe89, Proposition 1.2] that the category of
bisimplicial sets can be equipped with a model structure whose weak equivalences are
the diagonal weak equivalences and whose fibrations are the diagonal fibrations. We
shall refer to this model structure as the diagonal model structure.

Proposition 6.2.3. Consider that ∆̂×∆ is equipped with the diagonal model structure.
Then, the adjunction

δ! : ∆̂ ∆̂×∆ : δ∗,

is a Quillen equivalence.

Proof. By definition δ∗ preserves weak equivalences and fibrations and thus, the ad-
junction is a Quillen adjunction. The fact that δ∗ induces an equivalence at the level of
homotopy categories is [Moe89, Proposition 1.2].

6.2.4. In particular, the morphism of op-prederivators

δ∗ : Ho(∆̂×∆
diag

)→ Ho(∆̂)

is actually an equivalence of op-prederivators.

Diagonal weak equivalences are not the only interesting weak equivalences for
bisimplicial sets.

6.2.5. A morphism f : X → Y of bisimplicial sets is a vertical (resp. horizontal) weak
equivalence when for every n ≥ 0, the induced morphism of simplicial sets

f•,n : X•,n → Y•,n

(resp.
fn,• : Xn,• → Yn,•)

is a weak equivalence of simplicial sets. Recall now a very useful lemma.

Lemma 6.2.6. Let f : X → Y be a morphism of bisimplicial sets. If f is a vertical or
horizontal weak equivalence then it is a diagonal weak equivalence.
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Proof. See for example [BK72, Chapter XII,4.3] or [Cis04, Proposition 2.1.7].

6.2.7. In particular, the identity functor of the category of bisimplicial sets induces the
morphisms of op-prederivators:

Ho(∆̂×∆
vert

)→ Ho(∆̂×∆
diag

)

and
Ho(∆̂×∆

hor
)→ Ho(∆̂×∆

diag
).

Proposition 6.2.8. The morphisms of op-prederivators

Ho(∆̂×∆
vert

)→ Ho(∆̂×∆
diag

)

and
Ho(∆̂×∆

hor
)→ Ho(∆̂×∆

diag
)

are homotopy cocontinuous.

Proof. Recall that the category of bisimplicial sets can be equipped with a model struc-
ture where the weak equivalences are the vertical (resp. horizontal) weak equivalences
and the cofibrations are the monomorphisms (see for example [GJ09, Chapter IV] or
[Cis04]). We respectively refer to these model structures as the vertical model struc-
ture and horizontal model structure. Since the functor δ∗ : ∆̂×∆ → ∆̂ preserves
monomorphisms, it follows from Lemma 6.2.6 that the adjunction

δ∗ : ∆̂×∆ ∆̂ : δ∗

is a Quillen adjunction when ∆̂×∆ is equipped with either the vertical model struc-
ture or the horizontal model structure. In particular, the induced morphisms of op-
prederivators

δ∗ : Ho(∆̂×∆
vert

)→ Ho(∆̂)

and
δ∗ : Ho(∆̂×∆

hor
)→ Ho(∆̂)

are homotopy cocontinuous. Now, the obvious identity δ∗ = δ∗ ◦ id
∆̂×∆

implies that we
have commutative triangles

Ho(∆̂×∆
vert

) Ho(∆̂×∆
diag

)

Ho(∆̂)
δ∗

δ∗
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and

Ho(∆̂×∆
hor

) Ho(∆̂×∆
diag

)

Ho(∆̂).
δ∗

δ∗

The result follows then from the fact that δ∗ : Ho(∆̂×∆
diag

) → Ho(∆̂) is an equiva-
lence of op-prederivators.

In practice, we will use the following corollary.

Corollary 6.2.9. Let
A B

C D

u

f g

v

be a commutative square in the category of bisimplicial sets satisfying at least one of
the two following conditions:

(a) For every n ≥ 0, the square of simplicial sets

A•,n B•,n

C•,n D•,n

u•,n

f•,n g•,n

v•,n

is homotopy cocartesian.

(b) For every n ≥ 0, the square of simplicial sets

An,• Bn,•

Cn,• Dn,•

un,•

fn,• gn,•

vn,•

is homotopy cocartesian.

Then, the square

δ∗(A) δ∗(B)

δ∗(C) δ∗(D)

δ∗(u)

δ∗(f) δ∗(g)

δ∗(v)

is a homotopy cocartesian square of simplicial sets.
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Proof. From [Gro16, Corollary 10.3.10(i)] we know that the square of bisimplicial sets

A B

C D

u

f g

v

is homotopy cocartesian with respect to the vertical weak equivalences if and only if for
every n ≥ 0, the square

A•,n B•,n

C•,n D•,n

u•,n

f•,n g•,n

v•,n

is a homotopy cocartesian square of simplicial sets and similarly for horizontal weak
equivalences. The result follows then from Proposition 6.2.8.

6.3 BISIMPLICIAL NERVE FOR 2-CATEGORIES

We shall now describe a “nerve” for 2-categories with values in bisimplicial sets and
recall a few results that shows that this nerve is, in some sense, equivalent to the nerve
defined in 3.1.3.

Notation 6.3.1. - Once again, we write N : Cat → ∆̂ instead of N1 for the usual
nerve of categories. Moreover, using the usual notation for the set of k-simplices
of a simplicial set, if C is a (small) category, then

N(C)k

is the set of k-simplices of the nerve of C.

- Similarly, we write N : 2Cat → ∆̂ instead of N2 for the nerve of 2-categories.
This makes sense since the nerve for categories is the restriction of the nerve for
2-categories.

- For 2-categories, we refer to the ∗
0
-composition of 2-cells as the horizontal com-

position and the ∗
1
-composition of 2-cells as the vertical composition.

- For a 2-category C and x and y objects of C, we denote by

C(x, y)

the category whose objects are the 1-cells of C with x as source and y as tar-
get, and whose arrows are the 2-cells of C with x as 0-source and y as 0-target.
Composition is induced by vertical composition in C.
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6.3.2. Every 2-category C defines a simplicial object in Cat,

S(C) : ∆op → Cat,

where, for each n ≥ 0,

Sn(C) :=
∐

(x0,··· ,xn)∈Ob(C)×(n+1)

C(x0, x1)× · · · × C(xn−1, xn).

Note that for n = 0, the above formula reads S0(C) = C0. For n > 0, the face operators
∂i : Sn(C) → Sn−1(C) are induced by horizontal composition for 0 < i < n and by
projection for i = 0 or n. The degeneracy operators si : Sn(C)→ Sn+1(C) are induced
by the units for the horizontal composition.

Post-composing S(C) with the nerve functor N : Cat→ ∆̂, we obtain a functor

NS(C) : ∆op → ∆̂.

Remark 6.3.3. When C is a 1-category, the simplicial object S(C) is nothing but the
usual nerve of C where, for each n ≥ 0, Sn(C) is seen as a discrete category.

Definition 6.3.4. The bisimplicial nerve of a 2-categoryC is the bisimplicial setN∆×∆(C)
defined as

N∆×∆(C)n,m := N(Sn(C))m,

for all n,m ≥ 0.

6.3.5. In other words, the bisimplicial nerve of C is obtained by “un-currying” the func-
tor NS(C) : ∆op → ∆̂.

Since the nerve N commutes with products and sums, we obtain the formula

N∆×∆(C)n,m =
∐

(x0,··· ,xn)∈Ob(C)×(n+1)

N(C(x0, x1))m× · · · ×N(C(xn−1, xn))m. (6.1)

More intuitively, an element of N∆×∆(C)n,m consists of a “pasting scheme” in C that
looks like

m


• • • • •

...

...

...

...
· · ·

...

...

︸ ︷︷ ︸
n

.

187



CHAPTER 6. HOMOLOGY OF FREE 2-CATEGORIES

In the definition of the bisimplicial nerve of a 2-category we gave, one direction of
the bisimplicial set is privileged over the other. We now give an equivalent definition of
the bisimplicial nerve which uses the other direction.

6.3.6. Let C be a 2-category. For every k ≥ 1, we define a 1-category Vk(C) in the
following fashion:

- The objects of Vk(C) are the objects of C.

- A morphism α is a sequence

α = (α1, α2, · · · , αk)

of vertically composable 2-cells of C, i.e. such that for every 1 ≤ i ≤ k − 1, we
have

s(αi) = t(αi+1).

The source and target of α are given by

s(α) := s0(α1) and t(α) := t0(α1).

(Note that we could have used any of the αi instead of α1 since they all have the
same 0-source and 0-target.)

- Composition is given by

(α1, α2, · · · , αk) ◦ (β1, β2, · · · , βk) := (α1 ∗
0
β1, α2 ∗

0
β2, · · · , αk ∗

0
βk)

and the unit on an object x is the sequence

(12
x, · · · , 12

x).

For k = 0, we define V0(C) to be the category obtained from C by simply forgetting the
2-cells (which is nothing but τ s≤1(C) with the notations of 1.1.4). The correspondence
n 7→ Vn(C) defines a simplicial object in Cat

V (C) : ∆op → Cat,

where the face operators are induced by the vertical composition and the degeneracy
operators are induced by the units for the vertical composition.

Lemma 6.3.7. Let C be a 2-category. For every n ≥ 0, we have

N(Vm(C))n = (N∆×∆(C))n,m.
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Proof. This is simply a reformulation of the formula given in Paragraph 6.3.5.

6.3.8. The bisimplicial nerve canonically defines a functor

N∆×∆ : 2Cat→ ∆̂×∆

which enables us to compare the homotopy theory of 2Cat with the homotopy theory
of bisimplicial sets.

Lemma 6.3.9. A 2-functor F : C → D is a Thomason equivalence if and only if
N∆×∆(F ) is a diagonal weak equivalence of bisimplicial sets.

Proof. It follows from what is shown in [BC03, Section 2] that there is a zigzag of weak
equivalence of simplicial sets

δ∗(N∆×∆(C))← · · · → N(C)

which is natural inC. This implies what we wanted to show. See also [AM20a, Théorème
3.13].

From this lemma, we deduce two useful criteria to detect Thomason equivalences of
2-categories.

Corollary 6.3.10. Let F : C → D be a 2-functor. If

a) F0 : C0 → D0 is a bijection,

and

b) for all objects x, y of C, the functor

C(x, y)→ D(F (x), F (y))

induced by F is a Thomason equivalence of 1-categories,

then F is a Thomason equivalence of 2-categories.

Proof. By definition, for every 2-category C and every m ≥ 0, we have

(N∆×∆(C))•,m = NS(C).

The result then follows from Lemma 6.2.6 and the fact that the weak equivalences of
simplicial sets are stable by coproducts and finite products.

Corollary 6.3.11. Let F : C → D be a 2-functor. If for every k ≥ 0,

Vk(F ) : Vk(C)→ Vk(D)

is a Thomason equivalence of 1-categories, then F is a Thomason equivalence of 2-cat-
egories.
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Proof. From Lemma 6.3.7, we now that for every m ≥ 0,

N∆×∆(C)•,m = N(Vm(C)).

The result then follows from Lemma 6.2.6.

6.3.12. It also follows from Lemma 6.3.9 that the bisimplicial nerve induces a morphism
of op-prederivators

N∆×∆ : Ho(2CatTh)→ Ho(∆̂×∆
diag

).

Proposition 6.3.13. The morphism of op-prederivators

N∆×∆ : Ho(2CatTh)→ Ho(∆̂×∆
diag

)

is an equivalence of op-prederivators.

Proof. Consider the following triangle of functors

2Cat ∆̂×∆

∆̂.

N∆×∆

N δ∗

Even though it is not commutative (even up to an isomorphism), it follows from the
results contained in [BC03, Section2] that the induced triangle

Ho(2CatTh) Ho(∆̂×∆
diag

)

Ho(∆̂)

N∆×∆

N δ∗

is commutative up to a canonical isomorphism. The result follows then from the fact
that δ∗ andN are equivalences of op-prederivators (Proposition 6.2.3 and Theorem 3.2.5
respectively).

From Proposition 6.3.13, we deduce the proposition below which contains two use-
ful criteria to detect when a commutative square of 2Cat is Thomason homotopy co-
cartesian.

Proposition 6.3.14. Let
A B

C D

u

f g

v

(∗)

be a commutative square in 2Cat satisfying at least one of the two following conditions:
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(a) For every n ≥ 0, the commutative square of Cat

Vn(A) Vn(B)

Vn(C) Vn(D)

Vn(u)

Vn(f) Vn(g)

Vn(v)

is Thomason homotopy cocartesian,

(b) For every n ≥ 0, the commutative square of Cat

Sn(A) Sn(B)

Sn(C) Sn(D)

Sn(u)

Sn(f) Sn(g)

Sn(v)

is Thomason homotopy cocartesian.

Then, square (∗) is Thomason homotopy cocartesian.

Proof. This is an immediate consequence of Proposition 6.3.13 and Corollary 6.2.9.

6.4 ZOOLOGY OF 2-CATEGORIES: BASIC EXAMPLES

6.4.1. Before embarking on computations of homology and homotopy types of 2-cate-
gories, let us recall the following particular case of Corollary 4.5.11. Suppose given a
cocartesian square

A B

C D

u

f g

v
p

of 2-categories. If A, B and C are free and homologically coherent, if at least one of u
or f is a folk cofibration and if the square is Thomason homotopy cocartesian, then D
is homologically coherent.

6.4.2. Let n,m ≥ 0. We denote by A(m,n) the free 2-category with only one generating
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2-cell whose source is a chain of length m and whose target is a chain of length n:

m︷ ︸︸ ︷
• •

• •

• •.

· · ·

· · ·︸ ︷︷ ︸
n

More formally, A(m,n) is described in the following way:

- generating 0-cells: A0, · · · , Am, B1, · · · , Bn−1

(and for convenience, we also set B0 := A0 and Bn := Am)

- generating 1-cells:

{
fi+1 : Ai → Ai+1 for 0 ≤ i ≤ m− 1

gj+1 : Bj → Bj+1 for 0 ≤ j ≤ n− 1

- generating 2-cell: α : fm ◦ · · · ◦ f1 ⇒ gn ◦ · · · ◦ g1.

Notice that A(1,1) is nothing but D2. We are going to prove that if n 6= 0 or m 6= 0, then
A(m,n) is homologically coherent and has the homotopy type of a point. When m 6= 0
and n 6= 0, this result is not surprising, but when n = 0 or m = 0 (but not both), it is
a priori less clear what the homotopy type of A(m,n) is and whether it is homologically
coherent or not. For example, A(1,0) can be pictured as

A

f

α

and has many non trivial 2-cells, such as f ∗
0
α ∗

0
f .

Note that when m = 0 and n = 0, then the 2-category A(0,0) is nothing but the
2-category B2N and we have already seen that it is not homologically coherent (see
4.5.2).

6.4.3. For n ≥ 0, we write ∆n for the linear order {0 ≤ · · · ≤ n} seen as a small
category. Let i : ∆1 → ∆n be the unique functor such that

i(0) = 0 and i(1) = n.

Lemma 6.4.4. For n 6= 0, the functor i : ∆1 → ∆n is a strong oplax deformation
retract (3.4.5).
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Proof. Let r : ∆n → ∆1 the unique functor such that

r(0) = 0 and r(k) = 1 for k > 0.

By definition we have r ◦ i = 1∆1 . Now, the natural order on ∆n induces a natural
transformation

α : id∆n ⇒ i ◦ r,

and it is straightforward to check that α ∗ i = idi.

6.4.5. For every n ≥ 0, consider the following cocartesian square

∆1 ∆n

A(1,1) A(1,n),

i

τ

p

where τ : ∆1 → A(1,1) is the 2-functor that sends the unique non-trivial 1-cell of ∆1 to
the target of the generating 2-cell of A(1,1). It is not hard to check that τ is strong oplax
deformation retract and thus, a co-universal Thomason equivalence (Lemma 3.4.6).
Hence, the morphism ∆n → A(1,n) is also a (co-universal) Thomason equivalence
and the square is Thomason homotopy cocartesian (Lemma 2.4.8). Now, the morphism
τ : ∆1 → A(1,1) is also a folk cofibration and since ∆1, ∆n and A(1,1) are homologically
coherent, it follows from what we said in 6.4.1 that A(1,n) is homologically coherent.
Finally, since ∆1, ∆n and A(1,1) have the homotopy type of a point, the fact that the pre-
vious square is Thomason homotopy cocartesian implies that A(1,n) has the homotopy
type of a point.

Similarly, for every m ≥ 0, by considering the cocartesian square

∆1 ∆m

A(1,1) A(m,1),

i

σ

p

where σ : ∆1 → A(1,1) is the 2-functor that sends the unique non trivial 1-cell of ∆1 to
the source of the generating 2-cell of A(1,1), we can prove that A(m,1) is homologically
coherent and has the homotopy type of a point.

Now, let m ≥ 0 and n > 0 and consider the cocartesian square

∆1 ∆n

A(m,1) A(m,n),

i

τ

p
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where τ is the 2-functor that sends the unique non-trivial 1-cell of ∆1 to the target of
the generating 2-cell of A(m,1). This 2-functor is once again a folk cofibration, but it is
not in general a co-universal Thomason equivalence (it would be if we had made the
hypothesis that m 6= 0, but we did not). However, since we made the hypothesis that
n 6= 0, it follows from Lemma 6.4.4 that i : ∆1 → ∆n is a co-universal Thomason
equivalence. Hence, the previous square is Thomason homotopy cocartesian and A(m,n)

has the homotopy type of a point. Since A(m,1), ∆1 and ∆n are homologically coherent,
this shows that for m ≥ 0 and n > 0, A(m,n) is homologically coherent.

Similarly, if m > 0 and n ≥ 0, then A(m,n) has the homotopy type of a point and is
homologically coherent.

Combined with the result of Paragraph 4.5.2, we have proved the following propo-
sition.

Proposition 6.4.6. Let m,n ≥ 0 and consider the 2-category A(m,n). If m 6= 0 or
n 6= 0, then A(m,n) is homologically coherent and has the homotopy type of a point. If
n = m = 0, then A(0,0) is not homologically coherent and has the homotopy type of a
K(Z, 2).

6.5 ZOOLOGY OF 2-CATEGORIES: MORE EXAMPLES

As a warm-up, let us begin with an example which is a direct consequence of the results
at the end of the previous section.

6.5.1. Let P the free 2-category defined as follows:

- generating 0-cell: A,

- generating 1-cells: f, g : A→ A,

- generating 2-cells: α : f ⇒ 1A, β : g ⇒ 1A.

In pictures, this gives

A A

f

g

1A

α

β

or A.

f

g

α

β
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Notice that this category has many non-trivial 2-cells and it is not a priori clear what
its homotopy type is and whether or not it is homologically coherent. Observe that P is
obtained as the following amalgamated sum

D0 A(1,0)

A(1,0) P.
p

(6.2)

Since D0, A(1,0) are free and homologically coherent and since D0 → A(1,0) is a folk
cofibration, all we have to show to prove that P is homologically coherent is that the
above square is Thomason homotopy cocartesian. Notice that the 2-category A(1,0) is
obtained as the following amalgamated sum

∆1 A(1,1)

∆0 A(1,0),

τ

p

where τ : ∆1 → A(1,1) has already been defined in 6.4.5. We have seen that τ is a
co-universal Thomason equivalence and thus, so is D0 → A(0,1) (as D0 and ∆0 are two
different names for the same category). Hence, square (6.2) is Thomason homotopy
cocartesian and this proves that P is homologically coherent and has the homotopy type
of a point.

All the variations by reversing the direction of α or β work exactly the same way.

Let us now get into more sophisticated examples.

6.5.2 (Variations of spheres). Let P the free 2-category defined as follows:

- generating 0-cells: A,B,

- generating 1-cells: f, g : A→ B,

- generating 2-cells: α : f ⇒ g, β : g ⇒ f .

In pictures, this gives

A B.

f

g

α β

Let P ′ be the free 2-category defined as follows:
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- generating 0-cells: A′, B′,

- generating 1-cell: h : A′ → B′,

- generating 2-cell: γ : h⇒ h,

which can be pictured as

A′ B′

h

h

γ or A′ B′
h

γ

and let F : P → P ′ be the unique 2-functor such that

- F (A) = A′ and F (B) = B′,

- F (f) = F (g) = h,

- F (α) = γ and F (β) = 1h.

We wish to prove that this 2-functor is a Thomason equivalence. Since it is an isomor-
phism on objects, it suffices to prove that the functors induced by F

FA,A : P (A,A)→ P ′(F (A), F (A)),

FB,B : P (B,B)→ P ′(F (B), F (B)),

FB,A : P (B,A)→ P ′(F (B), F (A))

and
FA,B : P (A,B)→ P ′(F (A), F (B))

are Thomason equivalences of categories (Corollary 6.3.10). For the first two ones, this
follows trivially from the fact that the categories P (A,A), P ′(A′, A′), P (B,B) and
P ′(B′, B′) are all isomorphic to D0. For the third one, this follows trivially from the fact
that the categories P (B,A) and P ′(B′, A′) are the empty category. For the fourth one,
this can be seen as follows. The category P (A,B) is the free category on the graph

f g
α

β

(2-cells of P become 1-cells of P (A,B) and 1-cells of P become 0-cells of P (A,B))
and the category P ′(F (A), F (B)) = P ′(A′, B′) is the free category on the graph

h.

γ
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The functor FA,B comes from a morphism of reflexive graphs and is obtained by “killing
the generator β” (see Example 6.1.16). In particular, the square

D1 P (A,B)

D0 P ′(A′, B′)

〈β〉

FA,B

〈h〉

is Thomason homotopy cocartesian and thus, F(A,B) is a Thomason equivalence.
Now consider (a copy of) S2 labelled as follows:

A B

i

j

δ ε

and let G : S2 → P ′ be the unique 2-functor such that

- G(A) = A′ and G(B) = B′,

- G(i) = G(j) = h,

- G(δ) = γ and G(ε) = 1h.

For similar reasons as for F , the 2-functor G is a Thomason equivalence. This proves
that both P ′ and P have the homotopy type of S2.

Now, let P ′′ be the free 2-category defined as follows:

- generating 0-cell: A′′,

- generating 1-cell: l : A′′ → A′′,

- generating 2-cells: λ : l⇒ 1A′′ and µ : l⇒ 1A′′ .

In pictures, this gives

A′′ A′′

l

l

1A′′
λ

µ

or A′′.

l

λ µ

Let H : S2 → P ′′ be the unique 2-functor such that:
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- H(A) = H(B) = A′′,

- H(i) = l and H(j) = 1A′′ ,

- H(δ) = λ and H(ε) = µ.

Let us prove that H is a Thomason equivalence using Corollary 6.3.11. In order to do
so, we have to compute Vk(H) : Vk(S2) → Vk(P

′′) for every k ≥ 0. For k = 0, the
category V0(S2) is the free category on the graph

A B,
i

j

the category V0(P ′′) is the free category on the graph

A

l

and V0(H) comes from a morphism of reflexive graphs obtained by “killing the gen-
erator j”. Hence, it is a Thomason equivalence of categories. For k > 0, the category
Vk(S2) has two objectsA andB and an arrowA→ B is a k-tuple of one of the following
forms:

- (1i, · · · , 1i, δ, 1j, · · · , 1j),

- (1i, · · · , 1i, ε, 1j, · · · , 1j),

- (1i, · · · , 1i),

- (1j, · · · , 1j),

and these are the only non-trivial arrows. In other words, Vk(S2) is the free category
on the graph with two objects and 2k + 2 parallel arrows between these two objects.
In order to compute Vk(P ′′), let us first notice that every 2-cell of P ′′ (except for 1

(2)
A′′)

is uniquely encoded as a finite word on the alphabet that has three symbols : 1l, λ and
µ. Concatenation corresponding to the 0-composition of these cells. This means exactly
that V1(P ′′) is free on the graph that has one object and three arrows. More generally, it
is a tedious but harmless exercise to prove that for every k > 0, the category Vk(P ′′) is
the free category on the graph that has one object A′′ and 2k + 1 arrows which are of
one of the following forms:

- (1l, · · · , 1l, λ, 12
A′′ , · · · , 12

A′′),

- (1l, · · · , 1l, µ, 12
A′′ , · · · , 12

A′′),
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- (1l, · · · , 1l).

Once again, the functor Vk(H) comes from a morphism of reflexive graphs and is ob-
tained by “killing the generator (1j, · · · , 1j)”. Hence, it is a Thomason equivalence and
thus, so is H . This proves that P ′′ has the homotopy type of S2.

Finally, consider the commutative diagram of ho(Ch≥0)

HSing(P ) HSing(P ′) HSing(S2) HSing(P ′′)

Hpol(P ) Hpol(P ′) Hpol(S2) Hpol(P ′′).

HSing(F )

πP πP ′

HSing(G)

πS2

HSing(H)

πP ′′

Hpol(F ) Hpol(G) Hpol(H)

Since F , G and H are Thomason equivalences, the three top horizontal morphisms are
isomorphisms. Besides, a simple computation using Proposition 4.2.8, which we leave
to the reader, shows that the three bottom horizontal morphisms are also isomorphisms.
Since S2 is homologically coherent (Proposition 5.2.3), the morphism πS2 is an isomor-
phism. This implies that πP ′ , πP ′ and πP ′′ are isomorphisms, which means by definition
that P , P ′ and P ′′ are homologically coherent.

6.5.3. Let P be the free 2-category defined as follows:

- generating 0-cell: A,

- generating 1-cell: f : A→ A,

- generating 2-cells: α : f ⇒ 1A and β : 1A ⇒ f .

In pictures, this gives

A A

f

f

1A

α

β

or A.

f

α β

Now, let P ′ be a copy of B2N labelled as follows

A′ A′,

1A′

1A′

γ
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which can be also pictured as

A′.

γ

Let F : P → P ′ be the unique 2-functor such that:

- F (A) = A′,

- F (f) = 1A′

- F (α) = 1
(2)
A′ and F (β) = γ,

and G : P ′ → P be the unique 2-functor such that:

- G(A′) = A,

- G(γ) = α ∗
1
β.

Notice that we have F ◦G = idP ′ and that we have an oplax transformation

h : idP ⇒ G ◦ F

defined as

- hA := 1A,

- hf := α.

Hence, F is a Thomason equivalence (Proposition 3.4.4) and P has the homotopy type
of a K(Z, 2) (see 4.5.2). In particular, it has non-trivial singular homology groups in all
even dimension; but since it is a free 2-category, all its polygraphic homology groups are
trivial strictly above dimension 2, which means that P is not homologically coherent.

6.5.4. All the results from 6.5.2 and 6.5.3 are summed up by the following table.
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2-category homologically coherent? homotopy type

• • yes S2

• • yes S2

• • yes S2

• yes S2

• no K(Z, 2)

• no K(Z, 2)

Notice that the fourth and fifth entries of this table only differ by the direction of a
generating 2-cell but the homotopy types are not the same.

Let us now move on to bouquets of spheres.

6.5.5. Let P be the free 2-category defined as follows:

- generating 0-cell: A,

- generating 1-cells: f, g : A→ A,

- generating 2-cells: α, β : f ⇒ g.

In pictures, this gives:

A A.

f

g

αβ
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Now let S2 be labelled as follows:

C D.

h

i

γδ

Notice that P is obtained as the following amalgamated sum:

S0 S2

D0 P.

p

〈C,D〉

p
(6.3)

Let us prove that this square is Thomason homotopy cocartesian using the first part
of Proposition 6.3.14. This means that we have to show that the induced square of Cat

Vk(S0) Vk(S2)

Vk(D0) Vk(P )

Vk(〈C,D〉)

Vk(p) (6.4)

is Thomason homotopy cocartesian for every k ≥ 0. Notice first that we trivially have
Vk(S0) ' S0 and Vk(D0) ' D0 for every k ≥ 0 and that V0(S2) is the free category on
the graph

C D.
f

g

Besides, V0(P ) is the free category on the graph

A.

f

g

In particular, square (6.4) is cocartesian for k = 0 and we are in the situation of iden-
tification of two objects of a free category (see Example 6.1.12). Hence, square (6.4) is
Thomason cocartesian for k = 0. Similarly, for k > 0, we have already seen that Vk(S2)
is the free category on the graph that has 2 objects and 2k + 2 parallel arrows between
these two objects and we leave as an easy exercise to the reader to check that the cat-
egory Vk(P ) is the free category on the graph that has one object and 2k + 2 arrows,
which are the k-tuples of one of the following forms:
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- (1f , · · · , α, · · · , 1g),

- (1f , · · · , β, · · · , 1g),

- (1f , · · · , 1f ),

- (1g, · · · , 1g).

In particular, square (6.4) is again a cocartesian square of identification of two objects of
a free category, and thus, it is Thomason homotopy cocartesian. This implies that square
(6.3) is Thomason homotopy cocartesian. Since S0, D0 and S2 are homologically coher-
ent and since 〈C,D〉 : S0 → S2 is a folk cofibration, this proves that P is homologically
coherent and has the homotopy type of the bouquet of a 1-sphere with a 2-sphere.

6.5.6. Let P be the free 2-category defined as follows:

- generating 0-cells: A and B,

- generating 1-cells: f, g : A→ B,

- generating 2-cells: α, β, γ : f ⇒ g.

In pictures, this gives

A B.

f

g

α β γ

Now let P ′ be the sub-2-category of P spanned by A, B, f , g, α and β, and let P ′′ be
the sub-2-category of P spanned by A, B, f , g, β and γ. These 2-categories are simply
copies of S2. Notice that we have a cocartesian square

D2 P ′

P ′′ P,

〈β〉

〈β〉
p

(6.5)

and by reasoning as in the proof of Lemma 5.2.2, one can show that the square induced
by the nerve

Nω(D2) Nω(P ′)

Nω(P ′′) Nω(P )

〈β〉

〈β〉
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is also cocartesian. Since 〈β〉 : D2 → P ′ and 〈β〉 : D2 → P ′′ are monomorphisms
and Nω preserves monomorphisms, it follows from Lemma 2.5.12 that square (6.5) is
Thomason homotopy cocartesian and in particular that P has the homotopy type of a
bouquet of two 2-spheres. Since D2, P ′ and P ′′ are free and homologically coherent and
since 〈β〉 : D2 → P ′ and 〈β〉 : D2 → P ′′ are folk cofibrations, this also proves that P is
homologically coherent (see 6.4.1).

6.5.7. Let P be the free 2-category defined as follows:

- generating 0-cells: A and B,

- generating 1-cells: f, g, h : A→ B,

- generating 2-cells: α, β : f ⇒ g and δ, γ : g ⇒ h.

In pictures, this gives:

A B.

f

g

h

α

γ

β

δ

Let us prove that this 2-category is homologically coherent. Let P0 be the sub-1-category
of P spanned by A, B and g, let P1 be the sub-2-category of P spanned by A, B, g,
h, γ and δ and let P2 be the sub-2-category of P spanned by A, B, f , g, α and β. The
2-categories P1 and P2 are copies of S2, and P0 is a copy of D1. Moreover, we have a
cocartesian square of inclusions

P0 P2

P1 P.

(6.6)

Let us prove that this square is Thomason homotopy cocartesian using the second part
of Corollary 6.3.14. This means that we have to show that for every k ≥ 0, the induced
square of Cat

Sk(P0) Sk(P2)

Sk(P1) Sk(P )

(6.7)

is Thomason homotopy cocartesian. For k = 0, this is obvious since all of the mor-
phisms of square (6.6) are isomorphisms at the level of objects and the functor S0 is the
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functor that sends a 2-category to its set of objects (seen as a discrete category). Now,
notice that the categories Pi(A,A) and Pi(B,B) for 0 ≤ i ≤ 2 are all isomorphic to
the terminal category D0 and the categories Pi(B,A) for 0 ≤ i ≤ 2 are all the empty
category. It follows that for k > 0, we have

Sk(Pi) ' D0 q

(∐
Ek

Pi(A,B)

)
q D0

where Ek is the set of all k-tuples of the form

(A, · · · , A,B, · · · , B).

The set E1 is empty and thus all of the morphisms of square (6.7) for the value k = 1
are isomorphisms. This makes square (6.7) Thomason homotopy cocartesian for k = 1.
For k > 1, notice that the categories P (A,B), P2(A,B) and P1(A,B) are respectively
free on the graphs

f g h,
α

β

γ

δ

f g,
α

β

and
g h.

γ

δ

It is then straightforward to check that we are in a situation where Corollary 6.1.9 ap-
plies and thus square (6.7) is Thomason homotopy cocartesian for k ≥ 1. Altogether,
this proves that square (6.6) is Thomason homotopy cocartesian. Since the inclusions
P0 ↪→ P1 and P0 ↪→ P2 are folk cofibrations and since P0, P1 and P2 are homologically
coherent, this proves that P is homologically coherent and has the homotopy type of a
bouquet of two 2-spheres.

6.5.8. Let P be the free 2-category defined as follows:

- generating 0-cells: A, B and C,

- generating 1-cells: f, g : A→ B and h, i : B → C,

- generating 2-cells: α, β : f ⇒ g and γ, δ : h⇒ i.

In pictures, this gives:

A B C.

f

g

h

i

α β γ δ
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Let us prove that P is homologically coherent. Let P ′ be the sub-2-category of P
spanned by A, B, f , g, α and β and let P ′′ be the sub-2-category of P spanned by
B, C, h, i, γ and δ. These two 2-categories are copies of S2 and we have a cocartesian
square

D0 P ′

P ′′ P,

〈B〉

〈B〉 (6.8)

where the anonymous arrows are the canonical inclusions. Let us prove that this co-
cartesian square is Thomason homotopy cocartesian using the first part of Proposition
6.3.14. This means that we need to prove that for every k ≥ 0, the induced square of
Cat

Vk(D0) Vk(P
′)

Vk(P
′′) Vk(P )

(6.9)

is Thomason homotopy cocartesian. For every k ≥ 0, we have Vk(D0) ' D0 and for
k = 0 the categories V0(P ′), V0(P ′′) and V0(P ) are respectively free on the graphs

A B,
f

g

B C,
h

i

and

A B C.
f

g

h

i

This implies that square (6.9) is cocartesian for k = 0 and in virtue of Corollary 6.1.9
it is also Thomason homotopy cocartesian for this value of k. For k > 0, since P ′ and
P ′′ are both isomorphic to S2, we have already seen in 6.5.2 that Vk(P ′) and Vk(P ′′) are
(isomorphic) to the free category on the graph that has two objects and 2k + 2 parallel
arrows between these two objects. Similarly, the category Vk(P ) is free on the graph
that has three objects A, B, C, whose arrows from A to B are k-tuples of one of the
following form

- (1f , · · · , 1f , α, 1g, · · · , 1g),

- (1f , · · · , 1f , β, 1g, · · · , 1g),

- (1f , · · · , 1f ),
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- (1g, · · · , 1g),

whose arrows from B to C are k-tuple of one of the following form

- (1h, · · · , 1h, γ, 1i, · · · , 1i),

- (1h, · · · , 1h, δ, 1i, · · · , 1i),

- (1h, · · · , 1h),

- (1i, · · · , 1i),

and with no other arrows. This implies that square (6.9) is cocartesian for every k > 0
and in virtue of Corollary 6.1.9 it is also Thomason homotopy cocartesian for these
values of k. Altogether, this proves that square (6.8) is Thomason homotopy cocartesian.
Hence, P is homologically coherent and has the homotopy type of a bouquet of two
2-spheres.

Let us end this section with an example of a 2-category that has the homotopy type
of the torus.

6.5.9. Let P be the free 2-category defined as follows:

- generating 0-cell: A,

- generating 1-cells: f, g : A→ A,

- generating 2-cell: α : g ∗
0
f ⇒ f ∗

0
g.

In pictures, this gives:

A A

A A.

f

g g

f

α

From now on, we will use concatenation instead of the symbol ∗
0

for the 0-composition.
For example, fg will stand for f∗

0
g. With this notation, the set 1-cells of P is canonically

isomorphic to the set of finite words in the alphabet {f, g} and the set of 2-cells of P is
canonically isomorphic to the set of finite words in the alphabet {f, g, α}. For a 1-cell
w such that f appears n times in w and g appears m times in w, it is a simple exercise
left to the reader to show that there exists a unique 2-cell of P from w to the word

f · · · fg · · · g
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where f is repeated n times and g is repeated m times. Recall that we write B1(N×N)
for the monoid N× N considered as a category with only one object, and let

F : P → B1(N× N)

be the unique 2-functor such that:

- F (f) = (1, 0) and F (g) = (0, 1),

- F (α) = 1(1,1).

This last equation makes sense since (1, 1) = (0, 1) + (1, 0) = (1, 0) + (0, 1). For every
1-cell w of P (encoded as a finite words in the alphabet {f, g}) such that f appears
n times and g appears m times, we have F (w) = (n,m). Let us prove that F is a
Thomason equivalence using a dual of [AM20c, Corollaire 5.26] (see Remark 5.20 of
op. cit.). If we write ? for the only object of B1(N × N), what we need to show is that
the canonical 2-functor from P/? (see 3.7.3) to the terminal 2-category

P/?→ D0

is a Thomason equivalence. The 2-category P/? is described as follows:

- A 0-cell is a 1-cell of B1(N× N).

- For (n,m) and (n′,m′) two 0-cells of P/?, a 1-cell from (n,m) to (n′,m′) is a
1-cell w of P such that the triangle

? ?

?

F (w)

(n,m) (n′,m′)

is commutative. More explicitly, if F (w) = (n′′,m′′), the commutativity of the
previous triangle means

n′ + n′′ = n and m′ +m′′ = m.

- Given two parallel 1-cells w and w′ of P/?, a 2-cell of P/? from w to w′ is simply
a 2-cell of P from w to w′ seen as 1-cells of P .

From what we said earlier on the 1-cells and 2-cells of P , it follows easily that for every
0-cell (n,m) of P/?, the category

P/?((m,n), (0, 0))
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has a terminal object, which is given by

f · · · fg · · · g

where f is repeated n times and g is repeated m times. Then, it follows from [AM20c,
Théorème 5.27 and Remarque 5.28] that P/? → D0 is a Thomason equivalence of
2-categories and this proves that F is a Thomason equivalence. Since B1(N × N) '
B1(N) × B1(N) and B1(N) has the homotopy type of S1, we conclude that P has the
homotopy type of S1 × S1, i.e. the homotopy type of the torus.

Consider now the commutative square

HSing(P ) HSing(B1(N× N))

Hpol(P ) Hpol(B1(N× N))

HSing(F )

πP πB1(N×N)

Hpol(F )

Since F is a Thomason equivalence, the top horizontal arrow is an isomorphism and
since B1(N×N) is a 1-category, it is homologically coherent (Theorem 5.3.14), which
means that the right vertical arrow is an isomorphism. The 1-category B1(N×N) is not
free but since it has the homotopy type of the torus, we have

HSing
k (B1(N× N)) = 0 = Hpol

k (B1(N× N))

for k ≥ 2 and it follows then from Corollary 4.6.17 and Paragraph 4.6.18 that the map
canonical map

αpol
B1(N×N) : Hpol(B1(N× N))→ λ(B1(N× N))

is a quasi-isomorphism. Since P is free, it follows that the map Hpol(F ) can be identified
with the image in ho(Ch≥0) of the map

λ(F ) : λ(P )→ λ(B1(N× N)),

which is easily checked to be a quasi-isomorphism. By a 2-out-of-3 property, we deduce
that πP : Hpol(P )→ HSing(P ) is an isomorphism, which means by definition that P is
homologically coherent.

6.6 THE “BUBBLE-FREE” CONJECTURE

Definition 6.6.1. Let C be a 2-category. A bubble (in C) is a 2-cell x of C such that:

- x is not a unit,

- s0(x) = t0(x),
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- t1(x) = s1(x) = 1s0(x).

6.6.2. In pictures, a bubble x is represented as

A A,

1A

1A

x or A

x

where A = s0(x) = t0(x).

Definition 6.6.3. A 2-category is said to be bubble-free if it has no bubbles.

6.6.4. The archetypal example of a 2-category that is not bubble-free is B2N. Another
non-bubble 2-category is the one from Paragraph 6.5.3. It is remarkable that of all
the free 2-categories we have seen so far, these are the only examples that are non-
homologically coherent. This motivates the following conjecture.

Conjecture 6.6.5. A free 2-category is homologically coherent if and only if it is bubble-
free.

6.6.6. At the time of writing, I do not have a real hint towards a proof of the above
conjecture. Yet, in light of all the examples seen in the previous section, it seems very
likely to be true. Note that we have also conjectured in Paragraph 4.6.24 that for every
ω-category C, we have

Hpol
2 (C) ' HSing

2 (C).

If this conjecture on the second homology group is true, then conjecture 6.6.5 may be
reformulated as: A free 2-category P has trivial singular homology groups strictly above
dimension 2 if and only if it is bubble-free.
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