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Finally, I dedicate this work to the memory of those we lost during the pandemic and in the recent years. Particularly: My grandparents, my uncle Hamid, and my teacher/friend/mentor Pr. Abdelkrim Bouchouata. v Abstract Escherichia coli is a widespread cellular host for the industrial production of protein-based biopharmaceutical products considering its physiological and biological features. This production is mostly operated in fed-batch mode due to the scalable process, the low operational costs, and the relatively simple media conditions. One key challenge to maximize the bioprocess productivity is related to the production of acetate, a metabolic byproduct inhibiting the cell respiratory capacity and affecting the cells metabolic performance. This production must be maintained as low as possible.

In this thesis, model-based control strategies are considered to avoid acetate accumulation, thus maximizing biomass productivity, and to drive the culture near the optimal metabolic operating conditions. In addition, software sensors are developed to estimate the evolution of the non-measured key variables required to implement the control strategies.

To this end, three control strategies are proposed. First, the generic model control method is investigated within an adaptive framework in order to regulate the biomass growth rate to a desired reference. Secondly, a robust version of the generic model control strategy is developed to regulate the acetate concentration to a low value. Finally, the last part of the thesis focuses on the implementation of a nonlinear model predictive controller to limit acetate accumulation and compare the performance with the previously described control methods. Furthermore, an Unscented Kalman filter estimating the glucose and acetate concentrations based on the biomass measurements is implemented and coupled to the previously mentioned control schemes.

The bioprocess is a complex, nonlinear, uncertain, and time-varying system. Thereby, the developments in this study are focused on the robustness of the implemented methods towards model uncertainties and unpredicted dynamics.

The performance and robustness of the control and estimation strategies are tested and tuned by means of different scenarios of simulation runs. Fed-batch cultures of E. coli BL21(DE3) strain are successfully carried on a lab-scale bioreactor, highlighting the potential of the proposed strategies in real-time conditions. Theoretical developments and experimental results allow to assess the advantages of the different proposed approaches and show their tractability for further applications in an industrial framework.

The proposed control strategies presented in this thesis lead to an average gain of up to 20% in biomass productivity compared to the conventional operating mode.

Résumé

Escherichia coli est un h ôte cellulaire très répandu pour la production industrielle de produits biopharmaceutiques à base de protéines, compte tenu de ses caractéristiques physiologiques et biologiques. Cette production est généralement réalisée en mode fed-batch en raison de l'évolutivité du procédé, des faibles co ûts opérationnels et des conditions de milieu de culture relativement simples à mettre en oeuvre. Un défi majeur pour maximiser la productivité du bioprocédé est lié à la production d'acétate, un produit métabolique inhibant la capacité respiratoire des cellules et affectant leur performance métabolique. Dès lors, il s'agit de limiter au maximum sa production par les microorganismes.

Dans cette thèse, des stratégies de commande à base de modèles sont envisagées pour éviter l'accumulation d'acétate, maximisant ainsi la productivité de la biomasse. Ces stratégies ont pour objectif d'opérer la culture en restant le plus proche possible des conditions opératoires optimales. En outre, des capteurs logiciels sont développés pour estimer l'évolution des variables clés non mesurées nécessaires à la mise en oeuvre des lois de commande.

À cette fin, trois stratégies de commande sont développées. La méthode de commande par modèle générique est tout d'abord mise en oeuvre dans un cadre adaptatif afin de réguler le taux de croissance de la biomasse à une référence désirée. Ensuite, une version robuste de la stratégie de commande par modèle générique est développée afin de réguler la concentration d'acétate à une valeur restant faible. Enfin, la dernière partie de la thèse s'intéresse à la mise en oeuvre d'une structure de commande prédictive non linéaire pour limiter l'accumulation d'acétate et comparer les performances avec les méthodes de commande décrites précédemment. De plus, un filtre de Kalman sans parfum (Unscented Kalman Filter) estimant les concentrations de glucose et d'acétate à partir des mesures de biomasse est implémenté et couplé aux schémas de commande mentionnés précédemment. Enfin, la dernière partie de la thèse se concentre sur l'implémentation d'un contr ôleur prédictif basé sur un modèle non-linéaire pour limiter l'accumulation d'acétate et comparer les performances avec les méthodes de contr ôle décrites précédemment.

Le bioprocédé est un système complexe, non linéaire, incertain, variant dans le temps. Aussi, les développements présentés dans cette thèse se focalisent sur la robustesse des méthodes mises en oeuvre vis-à-vis des incertitudes de modèle et des dynamiques non modélisées. La performance et la robustesse des schémas de commande et d'estimation sont testées et ajustées au travers de différents scénarios de simulation. Des cultures en mode Fed-batch de la souche E. coli BL21(DE3) sont réalisées avec succès sur un bioréacteur de laboratoire, mettant en évidence le potentiel des stratégies proposées dans un contexte de conditions opératoires en temps réel. Les développements théoriques et résultats expérimentaux permettent en outre de mettre en évidence les avantages des différentes approches proposées, et illustrent également la généralisation envisageable à des procédés industriels de plus grande échelle. Les stratégies de commande proposées dans cette thèse permettent un gain moyen jusqu'à 20% de la productivité de la biomasse par rapport au mode de fonctionnement conventionnel. [START_REF] Moulton | Fed-Batch Fermentation: A Practical Guide to Scalable Recombinant Protein Production in Escherichia Coli[END_REF] . . . . . . . . . . . . . . . . 7 1.4 Representation of the bottleneck principle [START_REF] Crabtree | Observations on the carbohydrate metabolism of tumours[END_REF] from [START_REF] Retamal | Parameter estimation of a dynamic model of Escherichia coli fed-batch cultures[END_REF]. Plot of the state variables (ξ = [X S A]) and the feed-rate (F in ) . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.8 Experiment 1: Simulation of E. coli model with experimental data from [START_REF] Retamal | Parameter estimation of a dynamic model of Escherichia coli fed-batch cultures[END_REF]. Plot of the specific growth rates ([µ 1 µ 2 µ 3 ]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.9 Experiment 2: Simulation of E. coli model with experimental data from [START_REF] Retamal | Parameter estimation of a dynamic model of Escherichia coli fed-batch cultures[END_REF]. Plot of the state variables (ξ = [X S A]) and the feed-rate (F in ) . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.10 Experiment 2: Simulation of E. coli model with experimental data from [START_REF] Retamal | Parameter estimation of a dynamic model of Escherichia coli fed-batch cultures[END_REF]. Plot of the specific growth rates ([µ 1 µ 2 µ 3 ]). 6.11 Closed loop response to a disturbance on the biomass signal at t = 5 h103 6.12 Closed-loop response to a set-point change µ set = 0.18 h -1 and µ set = 0.22 h S(ρ, r, Θ) . . . . . . . . . . . . . . . . . 7.4 Plot of the pole location (blue) and the imposed region S (red) . . . 7.5 Biomass and substrate concentrations in 50 runs with kinetic parameter deviations (up to 15%) and a measurement noise standard deviation of 0.1 g/L using the robust GMC control strategy. . . . . 7.6 Acetate concentration and feed flow-rate in 50 runs with kinetic parameter deviations (up to 15%) and a measurement noise standard deviation of 0.1 g/L using the robust GMC control strategy. . . . . 7.7 kinetic parameter θ evolution with random parameter variations and measurement noise (std = 0.1 g/L) . . . . . . . . . . . . . . . . . 7.8 Productivity levels of the 50 runs with random parameter variations using the robust GMC strategy . . . . . . . . . . . . . . . . . . . . . 7.9 Coupled UKF-GMC with random parameter values (±15% variation) and a white measurement noise (std =0.1 g/L)). . . . . . . . . 7.10 Comparison between the classical and robust tuning of the GMC strategy, with increasing levels of parameter variation. . . . . . . . Escherichia coli is one of the most popular cellular hosts for the industrial production of protein-based drugs via non-microbial systems. Indeed, a vast array of biopharmaceutical products have been produced through E. coli fermentation, such as insulin, somatotropin, human parathyroid hormone, and others [START_REF] Ferrer-Miralles | Microbial factories for recombinant pharmaceuticals[END_REF]. Escherichia coli is preferred for its physiological and biological features, such as flexible culture conditions, fast growth, and high production yields [START_REF] Lee | High cell-density culture of Escherichia coli[END_REF][START_REF] Pontrelli | Escherichia coli as a host for metabolic engineering[END_REF]. Fed-batch cultivation of genetically modified strains of E. coli is the most common method that rapidly and efficiently produces high-quality proteins while maintaining industrial processes economic viability [START_REF] Lee | High cell-density culture of Escherichia coli[END_REF][START_REF] Pontrelli | Escherichia coli as a host for metabolic engineering[END_REF]. The advantage is the scalable process, the low operational costs, and the relatively simple media conditions.

However, some obstacles are still being faced to reach high cell densities in these bioprocesses, particularly stemming from host cells metabolic performance [START_REF] Chou | Engineering cell physiology to enhance recombinant protein production in Escherichia coli[END_REF]. The main challenge to ensure the process efficiency and productivity is the accumulation of acetate, a metabolic by-product inhibiting cell growth [START_REF] Luli | Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations[END_REF]. Acetate formation occurs when the capacity for energy generation within the cell is exceeded due to high flux into the main metabolic pathways caused by an excess in the carbon source [START_REF] Han | Acetic acid formation in escherichia coli fermentation[END_REF][START_REF] Van De Walle | Proposed mechanism of acetate accumulation in two recombinant Escherichia coli strains during high density fermentation[END_REF]. This mechanism is referred to as "overflow metabolism" or "Crabtree effect" [START_REF] Crabtree | Observations on the carbohydrate metabolism of tumours[END_REF].

Acetate presence in high concentration causes the inhibition of the cell respiratory capacity, leading to the decrease of biomass production yield and consequently the decrease of the recombinant protein production [START_REF] Riesenberg | High cell density cultivation of Escherichia coli at controlled specific growth rate[END_REF][START_REF] Rothen | Growth characteristics of Escherichia coli HB101[pGEc47] on defined medium[END_REF].

The goal of the work presented in this thesis is to propose and develop practical solutions to avoid overflow metabolism and maximize the biomass productivity in fed-batch E. coli cultures. This objective is achieved by closed-loop control and estimation strategies that drive the culture near the optimal metabolic operating conditions. In this manuscript, we attempt to answer the following questions:

• Is there a mathematical representation of the fed-batch E. coli process that accurately describes overflow metabolism and acetate production? Is there enough data to properly utilize this model to develop and test the control strategies?

• Which key components are available for on-line measurement? And is it possible to estimate the non-measured variables and parameters, based on these measurements? xxiv

• What are the available materials and hardware for this study? Is the reactor equipped for closed-loop operation? What software solutions are required to implement our control strategies?

• How can we translate the biological objectives into a defined control objective? What are the control variables? And which control method should be used depending on the available materials and measurements?

• What is the difference between the control methods in terms of metabolic performance? Difficulty of implementation? Control performance?

Outline:

This thesis is organized as follows:

An introduction to Escherichia coli, the bacterial system studied in this thesis, is given in chapter 1 . The physiological and metabolic aspects of the microorganism are presented and discussed. The chapter also discusses the overflow metabolism phenomenon and acetate excretion via the fermentation pathways. The chapter includes a general presentation of a bioprocess and its main components, along with the different operating modes used for cell cultivation.

In chapter 2, a macroscopic representation of the dynamics and the kinetics of bioprocesses is presented. These dynamic models use reaction schemes and mass balance principles to derive a state-space representation of the biological system. Additionally, kinetic models used to describe the different reaction rates are presented in this chapter. Lastly, the state-space model for fed-batch E. coli cultures is obtained using the general modeling approach. The model dynamics are illustrated in simulation runs showcasing the different metabolic regimes of the bioprocess.

Chapter 3 is dedicated to state estimation. The different software sensor configurations found in the literature are introduced. Then the estimation of the state variables and kinetic parameters in the studied bioprocess is discussed. For this task, the Kalman filtering methods are presented and then implemented to estimate the acetate and glucose concentrations based on the biomass concentration. The efficiency of these algorithms is illustrated in simulation runs.

Chapter 4 includes a presentation of the developed closed-loop system for the lab-scale bioreactor. This system comprises a real-time monitoring software solution, control and estimation blocks, and a peristaltic pump control interface. This program allows the testing and validation of the algorithms presented in this thesis. The chapter also includes a description of the bioprocess hardware, materials, methods, and protocols used during the experiments.

The different control strategies found in the literature for fed-batch bioprocesses are presented in chapter 5. This presentation highlights the difference between the control methods depending on the requirements, complexity, and control objectives in order to provide a guide for choosing the appropriate method for the studied bioprocess. The chapter then discusses the control objectives of the xxv current study on fed-batch E. coli cultures. The available hardware setup and the availability of a reliable process model guided the control strategies presented in the following chapters.

Chapter 6 introduces an adaptive biomass regulation strategy based on the Generic Model Control method (GMC). The GMC algorithm is presented and then applied to the E. coli model to track a predefined biomass concentration trajectory corresponding to a specific growth rate chosen to satisfy the control objectives and avoid acetate accumulation. A model order reduction is applied to avoid using the kinetic terms and ensure low feeding rates. Parameter adaptation is performed using the linear Kalman filter to estimate the unmeasured kinetic terms and adapt for unpredictable dynamics. The strategy is validated through simulation runs and experiments using the BL21(DE3) E. coli strain.

Chapter 7, a robust variation of the Generic Model Control strategy is presented and applied to regulate the acetate concentration at a defined low level. A robust design procedure using the LMI formalism is presented to account for model mismatch while ensuring the desired closed-loop transient response. The robust GMC controller is combined with the state estimation by the UKF, and the strategy is validated both in simulation runs and through Fed-batch experiments.

Chapter 8 discusses implementing the nonlinear model predictive control (NMPC) strategy to regulate the acetate concentration to a low level. A control vector parametrization (CVP) approach is used to reduce the complexity of the optimization problem and improve the calculation efficiency. The NMPC strategy is coupled to the UKF estimator and validated through simulations and fed-batch experiments on the lab-scale reactor. A comparison with the robust GMC structure is given in this chapter.

Finally, Chapter 9 draws the main conclusions and perspectives of this work.

Contributions:

The main contributions of this work are:

• The development of three control strategies for fed-batch E. coli cultures with the objective of avoiding acetate accumulation and driving the culture near the optimal operating conditions. The strategies varied from linearizing control to nonlinear predictive control.

• The transformation of the lab-scale bioreactor from an open-loop process to a reliable closed-loop system with flexible monitoring tools allowing the acquisition of several measurements from different manufacturers. The same interface includes tools that facilitate the integration of advanced control and estimation algorithms, and feeding flow rate manipulation.

• The experimental validation of the proposed regulation strategies on labscale fed-batch BL21(DE3) E. coli cultures. Providing a proof of concept for future implementations on higher scale reactors.
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Résumé en français

Contexte et motivations

Escherichia coli est la cellule h ôte la plus utilisée dans la production biopharmaceutique industrielle. Jusqu'à un tiers des protéines thérapeutiques approuvées sont produites par la fermentation fed-batch à haute densité cellulaire de souches génétiquement modifiées de E. coli [START_REF] Baeshen | Production of biopharmaceuticals in E. Coli: Current scenario and future perspectives[END_REF]. Cela découle des différentes propriétés biologiques de ce micro-organisme. La souplesse des conditions de culture, la rapidité de la croissance, le rendement élevé et la facilité de mise à l'échelle du procédé ont fait de E. coli l'h ôte principal dans l'industrie biotechnologique [START_REF] Lee | High cell-density culture of Escherichia coli[END_REF][START_REF] Pontrelli | Escherichia coli as a host for metabolic engineering[END_REF].

Escherichia coli est une bactérie hétérotrophe de la famille des entérobactéries. Elle peut effectuer des métabolismes complexes et survivre dans des conditions de stress et de culture difficiles. Elle peut se développer à différentes conditions de température de pH et se multiplier en utilisant diverses sources de carbone en présence d'une quantité élevée ou limitée d'oxygène. Le glucose est considéré comme la principale source de carbone dans le métabolisme de l'E. coli.

En cas de croissance aérobique sur le glucose, les cellules d'E. coli peuvent produire de l'acétate par la voie fermentative. Cependant, des complications peuvent survenir pendant la phase de croissance exponentielle. La sécrétion d'acétate dans le milieu de culture peut inhiber la croissance cellulaire à des concentrations élevées [START_REF] Eiteman | Acetate exposure determines the diauxic behavior of Escherichia coli during the glucose-acetate transition[END_REF]. L'inhibition provient de la diminution de l'efficacité respiratoire en cas d'excès de glucose. Ce phénomène est connu sous le nom de métabolisme de débordement ou effet Crabtree bactérien [START_REF] Crabtree | Observations on the carbohydrate metabolism of tumours[END_REF][START_REF] De Deken | The Crabtree effect: a regulatory system in yeast[END_REF][START_REF] Doelle | Regulation of glucose metabolism in bacterial systems[END_REF]. Par conséquent, il est indispensable de déterminer une stratégie d'alimentation qui favorise la croissance des cellules et évite l'accumulation de l'acétate dans le milieu de culture.

Le but du travail présenté dans cette thèse est de proposer et de développer des solutions pratiques pour éviter le métabolisme de débordement et maximiser la productivité de la biomasse dans les cultures fed-batch de E. coli. Cet objectif est atteint à travers des stratégies de commande et d'estimation en boucle fermée en déterminant le taux d'alimentation approprié qui conduit la culture près des conditions métaboliques optimales.

Modèle dynamique des cultures fed-batch de E. coli

Le modèle macroscopique de la croissance de Escherichia coli est présenté ci-après. Le schéma réactionnel qui décrit la croissance cellulaire de E. coli sur le glucose xxviii en conditions aérobiques est composé de trois voies cataboliques [START_REF] Retamal | Parameter estimation of a dynamic model of Escherichia coli fed-batch cultures[END_REF][START_REF] Rocha | Model-based Adaptive Control Of Acetate Concentration During The Production Of Recombinant Proteins With E. Coli[END_REF] :

S + k O1 O µ 1 X --→ k X1 X + k C1 C (1a) S + k O2 O µ 2 X --→ k X2 X + k A2 A + k C2 C (1b) A + k O3 O µ 3 X --→ k X3 X + k C3 C (1c) o ù
• S, O, X, C, et A représentent respectivement les concentrations de glucose (substrat), d'oxygène, de biomasse, de dioxyde de carbone et d'acétate.

•

k ξi (ξ = [X S A O C] ; i = 1, 2, 3
) sont les coefficients pseudostoechiométriques.

• µ j (j = 1, 2, 3) sont les taux de croissance spécifiques.

La croissance des cellules E. coli est modélisée suivant la théorie du goulot d'étranglement de Sonnleitner et Käppeli (Sonnleitner and Käppeli, 1986). La théorie du goulot d'étranglement suppose que les cellules sont susceptibles de changer leur métabolisme en raison de leur capacité respiratoire limitée, ce qui entraîne un métabolisme de débordement contr ôlé par le niveau de substrat.

Si la concentration en substrat est supérieure au seuil critique correspondant à la capacité oxydative disponible (S > S crit ), l'acétate est produit par les cellules par la voie métabolique fermentaire. La culture est dite en régime oxydo-fermentaire (réactions (1a) et (1b)).

D'autre part, l'acétate (s'il est présent dans le milieu de culture) est consommé lorsque la concentration en substrat est inférieure au niveau critique (S < S crit ), et la culture est dite en régime oxydatif (réactions (1a) et (1c)).

Lorsque la concentration en substrat est au niveau critique et remplit exactement la capacité respiratoire, la culture est optimale, correspondant à la limite entre les deux régimes de fonctionnement, et l'acétate n'est ni produit ni consommé. Le modèle cinétique pour les taux spécifiques est basé sur ces régimes de fonctionnement :

µ 1 = min(q s , q s crit ) (2a) µ 2 = max(0, q s -q s crit ) (2b) µ 3 = max(0, q AC ) (2c) 
o ù µ 1 , µ 2 , et µ 3 sont les taux spécifiques liés aux réactions cataboliques décrivant l'oxydation du substrat (1a), la production d'acétate (fermentation) (1b), et l'oxydation de l'acétate (1c) [START_REF] Bastin | On-line estimation and adaptive control of bioreactors[END_REF].

xxix Les termes cinétiques liés aux taux de consommation q j sont définis par :

q s (S) = q s max S K s + S (3a) q s crit (A) = q O max K iA K iA + A (3b) q AC (S, A) = (q s crit -q s ) A K A + A (3c)
o ù • q s et q AC représentent respectivement les taux de consommation du substrat et de l'acétate.

• q s crit représente le taux de consommation critique du substrat.

• q S max représente le taux de consommation maximal de glucose.

• q Omax représente la valeur maximale de la capacité respiratoire.

En analysant le bilan massique du schéma réactionnel (1), on obtient les équations différentielles suivantes [START_REF] Retamal | Parameter estimation of a dynamic model of Escherichia coli fed-batch cultures[END_REF] :

Ẋ = (k X1 µ 1 + k X2 µ 2 + k X3 µ 3 )X -D X (4a) Ṡ = -(µ 1 + µ 2 )X -D (S -S in ) (4b) Ȧ = (k A2 µ 2 -µ 3 )X -D A (4c) Ȯ = -(k O1 µ 1 + k O2 µ 2 + k O3 µ 3 )X -D O + OTR (4d) Ċ = (k C1 µ 1 + k C2 µ 2 + k C3 µ 3 )X -D C -CTR (4e) V = F in (4f) o ù• V est le volume du milieu de culture.
• F in est le débit d'alimentation d'entrée.

• D est le taux de dilution (D = F in V ).

• S in est la concentration en glucose dans le milieu d'alimentation.

• µ {1,2,3} sont les taux spécifiques donnés par equations ( 2) and (3c),.

Les taux de transfert de gaz OTR et CTR peuvent être modélisés par les équations suivantes : 

OTR = k L a O (O sat -O) (5) CTR = k L a C (C -C sat ) (6) o ù xxx • k L a O et k L a C sont

Commande adaptative par modèle générique (GMC) de la concentration en biomasse

Le métabolisme de débordement et l'accumulation d'acétate conduisent à la diminution du rendement de la production de biomasse et par conséquent à la diminution de la production de protéines recombinantes [START_REF] Riesenberg | High cell density cultivation of Escherichia coli at controlled specific growth rate[END_REF][START_REF] Rothen | Growth characteristics of Escherichia coli HB101[pGEc47] on defined medium[END_REF].

Selon la théorie du goulot d'étranglement, afin de maximiser la productivité de la biomasse et d'éviter un métabolisme de débordement, la concentration en substrat doit être maintenue à un certain seuil critique correspondant à la capacité critique d'oxydation des cellules [START_REF] Deb ; Jenzsch | Open-loop control of the biomass concentration within the growth phase of recombinant protein production processes[END_REF]. Pour atteindre cet objectif, une stratégie d'alimentation en boucle fermée est nécessaire pour maintenir le bioprocédé près des conditions de fonctionnement optimales.

Une formulation simple du problème de commande consiste à réguler les concentrations de substrat ou d'acétate à de faibles valeurs. Cependant, le manque d'outils fiables de mesure en ligne des concentrations d'acétate et de glucose constitue un obstacle majeur à l'application de ces stratégies, puisque le niveau critique de la concentration de glucose dans les cultures d'E. coli est très faible par rapport à la sensibilité des sondes disponibles sur le marché.

Nous proposons une stratégie de commande adaptative basée sur la linéarisation des équations du modèle non linéaire, appelée Commande par Modèle Générique (GMC) [START_REF] Lee | Generic model control (GMC)[END_REF]. L'objectif est de bénéficier de la mesure en ligne de la concentration de la biomasse afin de développer et d'implémenter un algorithme GMC pour contr ôler la productivité de la biomasse dans une fermentation fed-batch de E. coli.

Dans cette stratégie de commande que nous proposons, une trajectoire prédéfinie de biomasse correspondant à une production limitée d'acétate est imposée par le régulateur. Les avantages de cette approche sont l'inclusion du modèle non linéaire du bioprocédé dans la conception de loi de commande et la compensation des incertitudes du modèle par une adaptation en ligne utilisant un estimateur de paramètres.

Une mise en oeuvre expérimentale de la stratégie de commande est effectuée sur un bioréacteur de laboratoire afin de tester ses performances et sa robustesse dans des conditions réelles d'exploitation.

xxxi

Commande par modèle générique (GMC)

La commande par modèle générique est basée sur la linéarisation par retour de sortie, incluant les non-linéarités du système dans la conception de la loi de commande. L'objectif principal du schéma de commande est de suivre une trajectoire nominale de sortie désirée [START_REF] Peter | Nonlinear Process Control: Applications of Generic Model Control[END_REF]. Considérons le système non linéaire suivant :

ẋ = f (x) + g(x)u (7) ẏ = h(x) (8) o ù • x ∈ R n est le vecteur d'état • u ∈ R est l'entrée de commande
• y ∈ R est la sortie du système.

• f : R n → R n , g : R n → R n sont des fonctions non linéaires des états x,

• h : R n → R est la fonction de sortie. D'après Equation ( 8), la dynamique de la sortie est donnée par [START_REF] Isidori | Nonlinear Control Systems. 3rd[END_REF] :

ẏ = ∂h ∂x [ f (x) + g(x)u] = L f h(x) + L g h(x)u (9) o ù • L f h(x) = ∂h ∂x f (x)
est la dérivée de Lie de h le long de f . • L g h(x) = ∂h ∂x g(x) est la dérivée de Lie de h le long de g. Dans la procédure de conception de la GMC, la sortie y est comparée à une trajectoire de référence prédéterminée y re f . L'équation de sortie peut alors être définie à l'aide d'un régulateur proportionnel-intégral sous la forme :

ẏ = û = G 1 (y re f -y) + G 2 t 0 (y re f -y)∂τ (10) 
o ù G 1 et G 2 sont des gains de commande (constants par rapport au temps).

Leur réglage est effectué en fonction du comportement dynamique souhaité. Si L g h(x) = 0 (c'est-à-dire que le système est de degré relatif 1), la commande satisfaisant equations ( 9) and (10) est dérivée de l'équation suivante :

u = 1 L g h -L f h + û (11)
La réponse désirée de la boucle fermée est définie en fixant le coefficient d'amortissement ξ et la pulsation propre ω 0 . G 1 et G 2 sont réglés de manière à conférer les ξ et ω 0 désirés.

xxxii Application de la stratégie GMC aux cultures de E. coli L'objectif de la commande de la culture fed-batch de E. coli est de favoriser la production de biomasse, d'atteindre des densités cellulaires élevées et de maximiser la productivité de la biomasse.

Nous proposons de réguler le taux de croissance de la biomasse en suivant une trajectoire sous-optimale prédéterminée satisfaisant les objectifs de commande et maintenant la culture proche des conditions optimales. L'avantage de cette approche est son faible co ût d'exploitation et sa praticité, puisqu'elle repose uniquement sur la mesure en ligne de la biomasse qui est fournie par la sonde turbidimétrique avec un faible bruit de mesure.

Le taux de croissance ciblé µ set correspond à une concentration de substrat inférieure à la valeur critique (S set < S crit ), et à une concentration initiale en acétate égale à zéro. Cette trajectoire de fonctionnement permet au procédé d'évoluer près de la limite entre les modes oxydatif et oxydo-fermentatif, avec une marge de sécurité pour éviter les commutations métaboliques et favoriser la croissance cellulaire.

L'application directe de la GMC au modèle macroscopique soulève quelques problèmes. La détermination précise des taux de croissance spécifiques est difficile, car la cinétique est basée sur le principe du métabolisme de débordement représenté par des commutations métaboliques entre les deux régimes. De plus, une trajectoire imposée de biomasse pourrait éventuellement conduire à des valeurs élevées du débit d'alimentation.

Conception de la commande GMC à l'aide d'un modèle réduit

Une commande basée sur un modèle réduit est développée en appliquant la technique de perturbation singulière : la dynamique du substrat, de l'oxygène et du dioxyde de carbone est considérée plus rapide que celle de la biomasse et de l'acétate. Ainsi, les variables rapides sont considérées comme étant en quasi-état d'équilibre et leur dynamique est mise à zéro. Sous ces hypothèses, l'équation suivante est obtenue pour la concentration de la biomasse :

Ẋ = -k 11 F in V S in -k 12 OTR + k 13 CTR - F in V X (12) 
o ù les paramètres k 11 , k 12 , et k 13 sont des fonctions des paramètres du modèle. En appliquant le schéma de la GMC, on obtient la loi de commande suivante :

F in = -k 12 OTR + k 13 CTR - F X + k 11 S in V (13) F = G 1 (X re f -X) + G 2 t 0 (X re f -X)∂τ (14) 
En supposant que X + k 11 S in = 0, ce qui est satisfait en général.

xxxiii L'avantage de la réduction du modèle est que la condition de fonctionnement désirée (faible concentration de substrat) est directement intégrée dans l'algorithme de commande.

Étant donné que OTR et CTR ne sont pas disponibles pour une mesure en ligne dans notre montage expérimental et que la biomasse X est la seule variable mesurée, une stratégie adaptative de la GMC est développée. Les signaux non disponibles sont reconstruits à base de mesures, en adaptant également la loi de commande soumise à l'incertitude des paramètres.

GMC adaptative

La loi de commande de ( 14) comporte la variable non mesurable et incertaine suivante : -k 12 OTR + k 13 CTR. Le dispositif expérimental n'étant pas équipé d'analyseurs de gaz, un algorithme d'estimation des paramètres cinétiques est développé. L'équation de la dynamique de la biomasse (12) peut être réécrite comme suit : 

Ẋ = γ -D (X + k 11 S in ) (15) o ù D = F in V ,
= -k 12 OTR + k 13 CTR (16) 
À condition que X * = X + k 11 S in soit disponible pour une mesure en ligne, γ peut être estimé à l'aide d'un filtre de Kalman linéaire de la même manière que celle présentée dans [START_REF] Gonzalez | Regulation of lactic acid concentration in its bioproduction from wheat flour[END_REF]. Un filtre de Kalman discret [START_REF] Welch | An Introduction to the Kalman Filter[END_REF] peut être appliqué pour estimer l'évolution de X * et de γ . La structure de commande mise à jour est décrite dans la Figure 1.

X re f Correcteur PI Commande linéarisante û = F u = F in X Filtre de Kalman γ , X - FIGURE 1: Commande GMC couplée au filtre de Kalman
La loi de commande, après inclusion du paramètre estimé γ devient :

F in = γ - F X + k 11 S in V (17) 
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Résultats expérimentaux

Des expériences fed-batch sont réalisées pour tester la stratégie de commande dans des conditions expérimentales réelles. Les paramètres de commande G 1 et G 2 ont été réglés en simulation, le temps de réponse choisi t r est égal à 1 h (ω 0 = 3rad/h), et le rapport d'amortissement est fixé à ξ = 1. Les concentrations en biomasse, glucose, acétate, ainsi que le débit d'alimentation sont représentés dans la Figure 2. La concentration de biomasse commence à partir de 0.3 g/L et atteint 1.5-1.7 g/L à la fin de la phase batch, caractérisée par un épuisement du glucose. La phase de fed-batch commence à 6 h, et l'algorithme de commande est lancé. La taux de croissance de référence imposé est µ set = 0, 18 h -1 . Dans la Figure 2, la biomasse maintient une croissance exponentielle proche de la trajectoire de référence montrant que la régulation est efficace. La concentration en glucose reste proche de zéro et presque constante pendant la phase d'alimentation des deux expériences, confirmant l'hypothèse de dynamique rapide présentée dans la section de réduction du modèle ( Ṡ = 0).

La concentration d'acétate reste inférieure à 2 g/L pendant l'expérience. L'évolution indique un basculement métabolique entre les modes oxydatif et oxydo-fermentatif, et lorsque le glucose est presque épuisé à t = 5h, la concentration d'acétate commence à diminuer, c'est-à-dire que la culture est en régime oxydatif.

Les performances du régulateur à modèle générique, en termes de robustesse, sont satisfaisantes. Le contr ôleur est capable de maintenir l'erreur de poursuite de la biomasse proche de zéro dans les deux expériences malgré l'inadéquation xxxv du modèle résultant des incertitudes de modélisation. Le régulateur parvient à s'adapter aux variations du signal de la biomasse en agissant sur le débit d'alimentation.

Discussion

Les expériences ont montré que la combinaison de la commande par modèle générique et de l'adaptation des paramètres permet d'atteindre les objectifs de commande en temps réel. Le suivi de la trajectoire de la biomasse est effectué de manière adéquate malgré la présence de perturbations et d'incertitudes sur les paramètres du modèle.

La stratégie combinée GMC-Kalman présente plusieurs caractéristiques intéressantes. Tout d'abord, les co ûts de développement et de conception sont assez minimes. Un autre avantage est le fait que la loi de commande est calculée à l'aide d'équations algébriques simples, et ne nécessite pas la résolution en temps réel d'équations différentielles non linéaires complexes. Cette caractéristique réduit la complexité de calcul du schéma de commande et le rend facilement intégrable dans la plupart des bioréacteurs.

La disponibilité des mesures de la biomasse rend le schéma de commande très pratique. L'estimation des variables d'état n'est pas nécessaire puisque la variable mesurée est la variable commandée, et l'estimation des paramètres est effectuée à l'aide d'un filtre de Kalman linéaire. L'adaptation en ligne des paramètres cinétiques renforce la robustesse du système en boucle fermée face aux dynamiques imprévisibles.

Cependant, malgré ses caractéristiques intéressantes, la stratégie de commande présente certaines limites concernant les performances métaboliques. La commande vise à réguler la concentration de biomasse avec un taux de croissance défini inférieur au taux critique pour éviter le métabolisme de débordement. Selon la théorie du goulot d'étranglement, ce taux de croissance sous-optimal peut correspondre aux régimes oxydatif ou oxydo-fermentatif. Cependant, le comportement observé est que les cellules fonctionnent principalement en régime oxydatif.

Bien que l'accumulation d'acétate soit évitée en fonctionnant dans ce mode, les écarts par rapport au taux de croissance de référence (dus à une forte inadéquation du modèle, à une variation des paramètres due aux conditions d'oxygénation ou à de fortes perturbations des mesures de la biomasse) peuvent entraîner une baisse du rendement de production de la biomasse et de la productivité de la biomasse par rapport aux valeurs théoriques attendues. De plus, cette déviation peut également provoquer une accumulation d'acétate si la culture passe en mode oxydo-fermentatif sans aucune indication en ligne pour l'utilisateur sur le signal de la biomasse.

Une solution pratique à ce problème est de réguler la concentration d'acétate à une faible valeur, car elle est directement liée au taux de croissance optimal. Cette approche nécessite une estimation robuste des variables d'état, ce qui augmente la complexité de la stratégie de commande, mais améliore en revanche la productivité du procédé.
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Commande robuste par modèle générique (GMC) de la concentration d'acétate

Cibler un faible taux de croissance de biomasse offre une solution pour éviter l'accumulation d'acétate. Cependant, cela ne permet pas d'atteindre le potentiel du bioprocédé car ce choix entraîne une faible productivité et un temps de culture élevé [START_REF] Srinivasan | Terminal-cost optimization of a class of hybrid systems[END_REF]. Une alternative consiste à réguler la concentration de glucose ou d'acétate à des niveaux spécifiques (Dewasme et al., 2011a,b;Santos et al., 2012a). Le principal défi dans les cultures fed-batch de E. coli est la difficulté de mise en oeuvre en raison de l'exigence de mesures précises à faibles concentrations d'acétate et/ou de glucose.

Commande GMC de la concentration d'acétate

Nous proposons une autre solution pour éviter le métabolisme de débordement en régulant la concentration d'acétate autour d'une valeur basse A re f . Cette valeur doit être choisie aussi proche de zéro que possible afin de maintenir le bioprocédé près de la limite métabolique optimale. D'autre part, une marge de sécurité doit être prise pour éviter les commutations métaboliques entre les régimes opératoire (Dewasme et al., 2011a).

Comme la variable commandée (acétate) n'est pas disponible pour la mesure en ligne, un algorithme d'estimation d'état est nécessaire. Un filtre de Kalman non parfumé (UKF) est mis en oeuvre pour estimer les concentrations d'acétate et de glucose à base du modèle du procédé et des mesures de biomasse.

Le schéma de la GMC présenté précédemment est appliqué pour réguler la concentration d'acétate dans des cultures fed-batch de E. coli. En considérant la concentration d' acétate comme la sortie contr ôlée, et en supposant sa disponibilité pour la mesure (y = A), la loi de commande suivante est obtenue :

F in = V û + (k A2 µ 1 + µ 3 ) X k A2 S in -A (18) û = G 1 (A re f -A) + G 2 t 0 (A re f -A)∂τ (19) o ù θ = (k A2 µ 1 + µ 3 ) est un terme cinétique supposé incertain.

Conception d'une commande robuste

Les incertitudes structurelles et paramétriques ainsi que les erreurs d'estimation peuvent être regroupées dans une erreur paramétrique globale :

δ = θ -θ (20)
o ù δ est une fonction non linéaire de (S, A, O) représentant les éventuelles déviations des termes non linéaires dues aux incertitudes du modèle, et θ xxxvii représente la valeur nominale exacte (inconnue). Suivant une approche similaire à celle développée dans (Dewasme et al., 2011a), le paramètre incertain δ est supposé borné et appartenant à l'ensemble ∆ défini par :

∆ := {δ : δ ≤ δ ≤ δ} (21)
avec δ et δ représentant respectivement les valeurs minimale et maximale de l'ensemble polytopique borné ∆.

Les paramètres de commande G 1 et G 2 sont conc ¸us pour assurer certaines caractéristiques de robustesse et performance du système global en boucle fermée.

Contraintes de robustesse

Le problème de conception de la commande robuste consiste à déterminer les paramètres du correcteur G 1 et G 2 de manière à minimiser la norme infinie de la fonction de transfert en boucle fermée [START_REF] Chilali | H ∞ design with pole placement constraints: An LMI approach[END_REF].

Le lemme borné réel [START_REF] Chilali | H ∞ design with pole placement constraints: An LMI approach[END_REF] pour les systèmes continus donne une formulation équivalente en LMI (inégalité matricielle linéaire) du problème de commande. La résolution de cette LMI permet de reconstruire le vecteur de retour d'état K qui stabilise le système en boucle fermée et compense la perturbation bornée δ.

Contraintes de performance

En plus d'assurer la robustesse de la boucle fermée, il est désiré d'obtenir certaines performances en termes de réponse transitoire (par exemple, amortissement, temps de réponse, etc.). En d'autres termes, des contraintes sont ajoutées sur l'emplacement des p ôles de la boucle fermée.

Les contraintes de placement des p ôles peuvent être exprimées à l'aide de régions LMI, qui sont connues pour avoir des propriétés géométriques intéressantes (convexité, symétrie, ...) [START_REF] Chilali | H ∞ design with pole placement constraints: An LMI approach[END_REF]. Une région appropriée satisfaisant ce critère est l'intersection du demi-plan s < -ρ < 0, du disque de rayon r et du secteur conique défini par un angle Θ. La région correspondante S(ρ, r, Θ) est définie comme suit :

S(ρ, r, Θ) = {a < -ρ < 0, |s = a + jb| < r, a tan(Θ) < -|b|} (22) 
De cette fac ¸on, il est possible de fixer un taux de convergence minimal ρ, un rapport d'amortissement minimal ζ = cos(Θ), et une pulsation propre amortie maximale ω d = rsin(Θ) [START_REF] Wood | Automatic control systems[END_REF]. Notre problème de conception de la commande consiste alors à trouver un gain de retour d'état K qui :

• garantit la performance H ∞ .

• place les p ôles en boucle fermée dans la région LMI S(ρ, r, Θ) définie par (22).
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Résultats expérimentaux

Des expériences de commande ont été réalisées pour tester les performances et la robustesse de la stratégie GMC robuste développée dans un environnement en temps réel. Chaque expérience comprenait une phase batch suivie d'une phase fed-batch (phase de commande). Les résultats d'une expérience sont présentés dans la Figure 3, qui illustre l'évolution de la biomasse mesurée (en ligne & hors ligne), des concentrations de glucose et d'acétate (hors ligne), et leurs estimations, ainsi que le débit d'alimentation (sortie du régulateur). Après avoir atteint les conditions opératoires désirées, le réacteur est inoculé avec la préculture, et la phase batch commence. Comme le montre Figure 3, la biomasse suit une croissance exponentielle et atteint jusqu'à 2 g/L. Comme la consommation de glucose entraîne la production d'acétate, la culture est en mode respiro-fermentaire.

La phase batch a duré 4 heures après la consommation de la majorité du glucose dans le milieu. La phase de fed-batch a commencé juste après la mesure d'une faible concentration de glucose. Le contr ôleur GMC est lancé après la mise en place de la référence acétate et des paramètres de commande. La solution d'alimentation est injectée par le contr ôleur et les cellules reprennent leur croissance. La phase de fed-batch se poursuit jusqu'à atteindre la limite de saturation de la sonde turbidimétrique (autour d'une concentration de biomasse de 8 g/L).

La mesure en ligne de la concentration de la biomasse fournie par la sonde turbidimétrique, et le modèle cinétique avec les valeurs des paramètres identifiés du [START_REF] Retamal | Parameter estimation of a dynamic model of Escherichia coli fed-batch cultures[END_REF] sont utilisés pour estimer les concentrations d'acétate et xxxix de glucose en utilisant l'UKF. L'estimation est lancée pendant la phase batch après avoir atteint une concentration de biomasse mesurée supérieure à 0,2 g/L pour garantir une bonne précision d'estimation.

Les performances de l'UKF dans la phase fed-batch sont satisfaisantes, malgré les erreurs d'initialisation et les incertitudes du modèle. Les estimations du glucose et de l'acétate correspondent très bien aux mesures hors ligne pendant la période de commande, et la convergence est atteinte en moins d'une heure. Les valeurs de l'erreur quadratique moyenne de l'estimation pour chaque état estimé (le substrat et l'acétate) sont du même niveau de la sensibilité de la mesure (0,1 g/L).

Comme on peut le voir dans Figure 3, l'accumulation d'acétate est évitée, et la concentration est limitée à moins de (1 g/L) pendant la phase fed-batch. La concentration estimée en acétate converge vers la référence désirée, en respectant le temps de stabilisation choisi.

Discussion

La stratégie de commande présentée constitue une approche pratique pour éviter le métabolisme de débordement dans les cultures fed-batch de E. coli. Cependant, elle offre une solution sous-optimale, car la régulation de la concentration de substrat au niveau critique n'est pas pratique en raison du manque de mesures précises en ligne.

Afin d'évaluer l'efficacité de l'approche proposée, une comparaison est effectuée en simulation avec la stratégie de régulation du taux de croissance présentée dans la section précédente. À cette fin, nous avons réglé la régulation de la biomasse pour suivre un taux de croissance défini µ set choisi à 90% de la valeur maximale théorique (µ max = 0,26 L/h), correspondant à la concentration critique de substrat et à la capacité oxydative maximale. D'autre part, nous fixons la régulation de l'acétate pour suivre une référence de 0,5 g/L. Nous supposons que la concentration d'acétate est mesurée avec un bruit blanc additif d'une déviation standard de 0,05 g/L.

Tout d'abord, nous supposons que les paramètres du modèle et le taux de croissance maximal µ max sont parfaitement connus. Ensuite, nous introduisons une variation fixe de la capacité oxydative maximale q Omax qui est directement liée à la valeur du taux de croissance maximal. Dans le cas du modèle idéal (aucune variation paramétrique), la régulation de la croissance de la biomasse (GMC-X) présente une performance globale légèrement supérieure. En revanche, la régulation de la concentration en acétate (GMC-A) à 0.5 L/h conduit à un taux de croissance de la biomasse de 0,21 h -1 correspondant à 81% de la valeur maximale comme on peut le voir dans Table 1. Ce résultat montre que la présence d'acétate dans le milieu réduit le taux de croissance de la biomasse, en raison d'un taux de consommation de substrat plus faible causé par l'activation des voies de consommation de l'acétate selon la théorie du goulot d'étranglement. Cependant, le maintien de l'acétate à une faible concentration réduit son effet inhibiteur, et maintient la culture proche des conditions optimales. L'introduction d'une variation de 20 % de q Omax entraîne une augmentation de la concentration critique de substrat S crit et par conséquent du taux de croissance maximal µ max .

Malgré l'inadéquation du modèle, la régulation du taux de croissance de la biomasse présente une bonne performance dans le suivi du taux de référence. Cependant, elle ne correspond qu'à 75% de la nouvelle valeur maximale, et la productivité de la biomasse est donc également inférieure à sa valeur optimale par rapport au cas nominal. Ceci est d û à l'augmentation de l'écart entre le taux de référence µ set et le nouveau taux de croissance maximal µ max .

La régulation de l'acétate, en revanche, offre une performance plus cohérente, et donne un meilleur rapport de taux de croissance (89%). De plus, le rapport de taux de croissance est plus élevé avec une variation croissante de la capacité oxydative maximale, comme on peut le voir dans Table 1.

Ce résultat met en évidence un problème lié au choix d'un taux de croissance spécifique comme objectif de commande, car il nécessite une détermination précise de la valeur maximale, puis de cibler un taux de croissance plus faible pour éviter l'accumulation d'acétate. C'est une tâche difficile en raison de la nature incertaine des bioprocédés, car la variation des paramètres dépend de plusieurs facteurs tels que la variation des conditions opératoires entre les cultures. Si le taux de croissance maximal est sous-estimé, la productivité sous-optimale de la biomasse qui en résulte est inférieure à celle désirée. Si le taux de croissance maximal est surestimé, une régulation à 90% de cette valeur pourrait conduire à une accumulation d'acétate et à des commutations métaboliques, et donc à une inhibition de la croissance.

D'autre part, la régulation de la concentration d'acétate et son maintien à une faible valeur offrent un meilleur compromis pratique, puisque l'accumulation est évitée, et le taux de croissance obtenu est cohérent dans le cas d'une inadéquation du modèle. Il s'agit d'un résultat intéressant car l'approche de régulation de l'acétate est robuste face aux changements des conditions d'exploitation et n'est pas spécifique à la souche bactérienne. La stratégie pourrait être appliquée à une souche différente tout en assurant le même niveau de performance sans avoir besoin d'estimer µ max avec précision.
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Commande prédictive non linéaire de la concentration d'acétate

La commande prédictive non linéaire (NMPC) est souvent envisagée pour les problèmes de régulation de procédés suite à ses nombreux avantages et à sa large utilisation dans les applications industrielles [START_REF] Forbes | Model predictive controlin industry: Challenges and opportunities[END_REF][START_REF] Qin | An Overview of Nonlinear Model Predictive Control Applications[END_REF]. La NMPC est une stratégie de commande à base de modèle développée pour les procédés non linéaires. Elle consiste à résoudre un problème d'optimisation en ligne sous un ensemble de contraintes. La NMPC peut prédire, en utilisant un modèle dynamique non linéaire du procédé, l'effet des valeurs de commande sur les variables commandées sur un horizon fini. Une formulation générale du problème NMPC consiste à minimiser une fonction quadratique (fonction co ût) sur un horizon fini.

Dans cette section, la NMPC est appliquée pour maximiser la productivité de la biomasse dans des cultures fed-batch de E. coli, en régulant la concentration d'acétate à une faible valeur. L'algorithme NMPC est implémenté dans un environnement en temps réel, et l'effort de calcul est réduit grâce à la technique de paramétrisation du vecteur de commande (CVP) [START_REF] Banga | Dynamic optimization of bioprocesses: efficient and robust numerical strategies[END_REF].

Le filtre de Kalman non parfumé (UKF) est utilisé pour fournir des estimations des concentrations d'acétate et de glucose sur la base de la mesure de la biomasse.

Commande prédictive non linéaire appliquée aux cultures de E. coli

De la même manière que pour la stratégie de commande précédente, nous désirons maintenir la concentration d'acétate à une valeur de consigne faible A re f pour éviter son accumulation durant la culture. Cette régulation est obtenue en agissant sur le débit d'alimentation F in , également contraint de suivre une trajectoire de référence pré-calculée F re f afin de lisser le comportement de la commande.

Conception de la commande

Dans ce qui suit, une expression équivalente en temps discret du modèle continu de E. coli est utilisée pour mettre en oeuvre la stratégie de commande prédictive. En considérant un temps d'échantillonnage constant T s , le modèle discret est défini par :

ξ k+1 = F ξ k , F in k z k = Hξ k (23) o ù • ξ k = [X k S k A k V k ] T et z k = A k sont respectivement l'état discret la sortie
échantillonnés au temps kT s .

• F est la fonction de transition non linéaire xlii • H = 0 0 1 0 est la matrice de mesure.

• F in est l'entrée de commande, paramétrée à l'aide d'une approximation constante par morceaux.

Le suivi de trajectoire est réalisé à l'aide de la stratégie de commande prédictive non linéaire (NMPC). En se basant sur le modèle (23) et des objectifs de commande définis précédemment, la fonction co ût de la NMPC peut être défini comme suit :

Φ ξ , F in • = N p ∑ i=1 Ǎk+i -A re f k+i 2 + λ N c ∑ i=1 F in k+i -F re f k+i-1 2 (24)
o ù Ǎ est la concentration d'acétate prédite, et F re f est le profil d'alimentation de référence pré-calculé. N p et N c sont respectivement les horizons de prédiction et de commande, et λ > 0 est le gain de pénalité de commande.

La formulation du problème NMPC consiste à minimiser la fonction co ût

Φ ξ , F in • à l'instant k comme suit : min Ǎk ... Ǎk+N p -1 ,F in k ...F in k+N c -1 Φ ξ , F in • (25) 
sous des contraintes liées à la dynamique prédite du système :

s.t. ξk+i+1 = F ξk+i , F in k+i , i = 0, N p -1 (26a) Ǎk+i+1 = HF ξk+i , F in k+i , i = 0, N p -1 (26b) 0 F in k+i F max , i = 0, N c -1 (26c) 0 ξk+i ξmax , i = 0, N p -1 (26d)
Afin d'éviter de résoudre le problème d'optimisation sous contraintes, ce dernier est transformé en un problème de programmation non linéaire (NLP) à l'aide de la technique de paramétrisation des vecteurs de commande (CVP) présentée dans [START_REF] Banga | Dynamic optimization of bioprocesses: efficient and robust numerical strategies[END_REF]. De plus, un changement de variable F in = e v vise à éliminer les contraintes de positivité sur F in et améliore le conditionnement du problème d'optimisation. La fonction de co ût correspondante s'écrit : 

Φ ξ , v • = N p ∑ i=1 Ǎk+i -A re f k+i 2 + λ N p ∑ i=1 e v re f k+i-1 -e v k+i

Résultats expérimentaux

Pour valider la stratégie de commande combinée du NMPC et l'estimation des concentrations d'acétate et de glucose par l'UKF, des expériences en fed-batch sont réalisées en utilisant la souche E. coli. BL21(DE3). L'horizon de prédiction N p et le paramètre de pénalité λ ont été réglés en simulation par essais et erreurs afin d'atteindre les objectifs de la commande tout en empêchant une déviation excessive de F in par rapport au profil d'alimentation de référence F re f . L'évolution de la biomasse, du glucose, des concentrations d'acétate et du débit d'alimentation dans l'une des expériences est illustrée dans la Figure 4.

La première expérience est réalisée en deux phases, un batch suivi d'un fedbatch. La phase batch est réalisée pour atteindre une concentration minimale de biomasse de 1 g/L et s'assurer que les cellules sont en phase exponentielle au moment de lancement de la régulation et d'injection du milieu d'alimentation. L'estimation par l'UKF est lancée pendant cette phase après l'initialisation du vecteur d'état.

La phase fed-batch commence après la consommation totale du glucose. Le régulateur NMPC est lancé après la configuration de la référence d'acétate et des paramètres de commande. Le régulateur génère un profil d'alimentation exponentiel, et la concentration d'acétate estimée converge vers la référence désirée en moins de 30 min et reste dans l'intervalle 0,33-0,5 L/h jusqu'à la fin de la culture. En même temps, la concentration de substrat reste dans un état quasi-stationnaire.

Après la fin de la première expérience, un rafraîchissement de la culture est effectué. Un volume de la culture est extrait à l'aide d'une pompe péristaltique, laissant 500 mL de culture de volume. Ensuite, 3L d'un milieu stérilisé en autoclave sont injectés par une pompe péristaltique, et la phase batch de la seconde expérience commence.

La deuxième expérience suit le même protocole que la première, la phase batch dure 2 h, et le glucose est rapidement consommé par les cellules. La consigne de concentration en acétate est fixée à 1,5 g/L, l'alimentation suit une courbe exponentielle, et la concentration en acétate converge vers la référence imposée. À t=12 h, un changement de point de consigne est introduit et A re f est fixé à 0, 7 g/L. La commande NMPC adapte le débit d'alimentation en fonction de la nouvelle référence, et la concentration d'acétate estimée suit la nouvelle référence en 20 minutes.

Les performances de la stratégie NMPC-UKF sont très satisfaisantes. L'UKF estime avec précision les concentrations d'acétate et de glucose en présence de bruit de mesure sur la concentration de la biomasse. Les erreurs quadratiques moyennes des concentrations en substrat et en acétate sont respectivement de 0,089 g/L et 0,068 g/L, ce qui est cohérent avec la sensibilité des mesures et les niveaux de bruit (0,1 g/L).

La commande NMPC régule la concentration d'acétate estimée à la consigne fixée, et la convergence est atteinte en 20 minutes. La concentration d'acétate reste dans une plage acceptable pendant la durée de la fermentation, et les conditions de culture sont bien adaptées à la croissance de la biomasse. 

Étude comparative

Afin d'évaluer les performances des stratégies de commande présentées dans cette thèse, une étude en simulation est effectuée et présentée dans cette section. Les trois méthodes de commande sont comparées dans les mêmes conditions de fonctionnement et avec un réglage de commande similaire.

Les commandes NMPC et GMC robuste (GMC-A) sont paramétrées pour suivre une référence d'acétate de A re f = 0, 7 g/L. D'autre part, la régulation du taux de croissance de la biomasse à l'aide de la stratégie GMC (GMC-X) est réglée pour suivre un profil de référence correspondant à cette valeur de concentration en acétate.

La simulation est réalisée sur 10 h en supposant que le vecteur d'état est disponible pour la mesure, avec un bruit de mesure ajouté de 0,05 g/L et 0,02 g/L sur les concentrations de biomasse et d'acétate.

Tout d'abord, les stratégies de commande sont comparées dans le cas du modèle idéal, o ù tous les paramètres du modèle sont supposés être parfaitement connus. Ensuite, 500 simulations de Monte Carlo (MC) sont effectuées en tenant compte des incertitudes du modèle. Les paramètres du modèle sont choisis aléatoirement avec une variation maximale de 30 % autour de leur valeur nominale suivant une distribution normale. xlv Les résultats des simulations de Monte Carlo donnent un aperc ¸u des performances des méthodes de commande. La productivité de la biomasse sur 10 h pendant les 500 simulations est résumée dans le tableau 2.

On peut voir que le NMPC surpasse les commandes GMC en moyenne et donne une meilleure productivité. On peut également observer que la régulation d'acétate a une valeur moyenne et maximale plus élevée. Le régulateur de biomasse vise un taux de croissance spécifique, et ainsi, lorsque le procédé est capable d'atteindre des taux de croissance plus élevés, la régulation de la biomasse maintient le taux de croissance plus proche de la référence spécifiée, ce qui conduit à une productivité de biomasse plus faible. Comme prévu, toutes les commandes développées donnent de meilleurs résultats que la boucle ouverte, avec une amélioration moyenne de 20 % de la productivité de biomasse. 

Introduction

Escherichia coli has become one of the best characterized cellular organisms on earth, and the predominant organism in research and production laboratories. E. coli rise to fame in metabolic engineering and synthetic biology stems from its numerous traits. The simple culture conditions, the rapid growth, and the metabolic flexibility have made E. coli one of the most studied host organisms, leading to a significant biochemical and physiological knowledge of the cellular system and a broad set of developed genetic and genomic engineering tools. Hence, the different non-pathogenic strains of E. coli can be found in the productions of pharmaceuticals, food, chemicals, and fuels.

The rapid progress in metabolic engineering and synthetic biology allowed overcoming many limitations of the bacterial system. New engineered phenotypes in E. coli have proven to surpass traditional native producers. A demonstration of this can be found in [START_REF] Gusyatiner | Method for producing an L-amino acid using a bacterium of the family Enterobacteriaceae having a disrupted putrescine degradation pathway[END_REF], where a bio-engineered strain of E. coli has been utilized for the industrial production of amino acids, traditionally achieved using the Corynebacterium glutamicum. Another example is the production of n-butanol, where E. coli demonstrated a similar efficiency to that achieved with the natural producer Clostridia [START_REF] Ohtake | Metabolomics-driven approach to solving a CoA imbalance for improved 1-butanol production in Escherichia coli[END_REF][START_REF] Seborg | 1-Butanol Synthesis in ¡span class="named-content genus-species" id="namedcontent-1"¿Escherichia coli¡/span¿[END_REF]. E. coli is also the preferred proof-of-concept model organism and among the top choices as a host when no natural producer exists. Successful examples of industrial production of lysine, 1,3-propanediol (PDO), and 1,4 butanediol using E. coli can be found in [START_REF] Burgard | Development of a commercial scale process for production of 1,4butanediol from sugar[END_REF][START_REF] Kojima | Application of model-predictive control based on artificial neural networks to optimize the fed-batch process for riboflavin production[END_REF][START_REF] Sabra | Microbial Cell Factories for Diol Production[END_REF][START_REF] Sanford | Scaling up of renewable chemicals[END_REF].

As such, E. coli is the most preferred micro-organism for research purposes and a key player in developing modern biological engineering and industrial microbiology.

This chapter introduces E. coli, the bacterial system chosen for this study, and we present the general aspects of bioprocesses. It is thereby divided into two main sections. We first start by describing the E. coli cell, its physiology, and the main strains used in laboratory applications. Additionally, we examine the aerobic and anaerobic metabolism of E. coli, with a focus on acetate production and overflow metabolism.

Finally, we present and discuss the general definition of a bioprocess, its main components and the different kinds of cultures used for cell cultivation.

E. coli as a host cell

The choice of E. coli for this study is motivated by its interesting traits as a host cell. E. coli strains can be easily cultured under a variety of growth conditions. In addition, E. coli can be easily enhanced genetically, allowing the extensive physiological analysis and the engineering of new phenotypes, thus significantly reducing industrial development costs [START_REF] Meyer | Microbial Expression Systems and Manufacturing from a Market and Economic Perspective[END_REF].

Various chemicals such as tryptophan, phenylalanine, threonine, lysine, and others have been produced on the industrial scale using E. coli strains. As for biopharmaceutical applications, recombinant proteins are the main product of E. coli fermentations. It was reported that 34% of recombinant proteins in US and European markets are expressed in E. coli [START_REF] Meyer | Microbial Expression Systems and Manufacturing from a Market and Economic Perspective[END_REF].

Nevertheless, using E. coli as a host has some limitations. E. coli is incapable of producing proteins that require complex assembly or proteins with high numbers of disulfide bonds [START_REF] Meyer | Microbial Expression Systems and Manufacturing from a Market and Economic Perspective[END_REF].

Furthermore, culture conditions that favor contamination resistance (high and low pH, high temperatures) are not suitable for E. coli growth [START_REF] Bhalla | Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes[END_REF][START_REF] Hasunuma | Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains[END_REF][START_REF] Tao | Ethanol fermentation by an acid-tolerant Zymomonas mobilis under non-sterilized condition[END_REF][START_REF] Wernick | Sustainable biorefining in wastewater by engineered extreme alkaliphile Bacillus marmarensis[END_REF]. Phage attack is also a significant concern to industrial production using bacterial strains in nonsterile conditions [START_REF] Melo | Phages as friends and enemies in food processing[END_REF][START_REF] Samson | Bacteriophages in food fermentations: New frontiers in a continuous arms race[END_REF].

Despite these drawbacks, E. coli maintains it's position as one the most versatile organisms used on the industrial scale. The large knowledge of its physiology, genetics and metabolism has enabled a big progress in metabolic engineering and synthetic biology using E. coli. This progress lead to overcoming many limitation and to the development of new phenotypes engineered in E. coli [START_REF] Pontrelli | Escherichia coli as a host for metabolic engineering[END_REF].
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E. Coli strains

To date, more than 700 serotypes of E. coli have been identified [START_REF] Liu | Escherichia coli[END_REF]. Current biotechnology research is focused on the strains E. coli B (BL21) and E. coli K (MG109), and E. coli W (ATCC 9637).

The K strains (K-12) are used in recombinant protein production, in laboratory and industrial scale. K-12 strains are characterized by lower reducing power in the cytoplasm to form disulfide bonds better. They are frequently chosen as a host for plasmid DNA production [START_REF] Phue | Modified Escherichia coli B (BL21), a superior producer of plasmid DNA compared with Escherichia coli K (DH5α)[END_REF].

Most common applications using E. coli are carried using K-12 strains. However, BL21 and its derivatives quickly became preferable for biopharmaceutical productions [START_REF] Pontrelli | Escherichia coli as a host for metabolic engineering[END_REF]. The strains B and K and their derivatives have been extensively studied. Their response under high glucose concentrations in their growth media is significantly different [START_REF] Lee | High cell-density culture of Escherichia coli[END_REF].

The difference in the metabolism resides within the glycolytic pathway and the tricarboxylic acid cycle (TCA) cycle. The B and K strains process glucose and pyruvate at different rates and thus generate more or less acetate production and consumption. The acetate production and consumption rates are crucial to the growth and recombinant protein production efficiency using E. coli [START_REF] Shiloach | Glucose and Acetate Metabolism in E. coli -System Level Analysis and Biotechnological Applications in Protein Production Processes[END_REF].

Hence, applications that require high protein expression are mostly achieved using BL21 as a host because of the lower sensitivity to high glucose concentrations [START_REF] Meyer | Microbial Expression Systems and Manufacturing from a Market and Economic Perspective[END_REF]. The reduced sensitivity leads to reduced acetate production and high growth rates, and efficient glucose consumption [START_REF] Phue | Modified Escherichia coli B (BL21), a superior producer of plasmid DNA compared with Escherichia coli K (DH5α)[END_REF].

W strains are known for the extensive substrate range, less acetate production, and higher product tolerance [START_REF] Prieto | Molecular characterization of the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli W: Engineering a mobile aromatic degradative cluster[END_REF]. The W strain (ATCC 9637) is best known for ethanol production [START_REF] Park | Escherichia coli W as a new platform strain for the enhanced production of L-Valine by systems metabolic engineering[END_REF] .

E. coli physiology

Escherichia coli is named after the German bacteriologist Theodor Escherich who isolated the type species in the human colon in 1885 [START_REF] Feng | Bacteriological Analytical Manual : Enumeration of Escherichia coli and the Coliform Bacteria[END_REF]. It is a nonspore-forming, Gram-negative heterotrophic bacterium from the Enterobacteria family.

The E. coli forms a rod-shaped cell composed of a fimbria and a cell wall. It includes a protective outer membrane, a periplasmic space with a peptidoglycan layer, and an inner cytoplasmatic cell membrane. The cell is about 2.0-6.0 µm in length and 0.25-1.0 µm in diameter, with a cell volume of 0.7 µm 3 [START_REF] Nelson | Lehninger Principles of Biochemistry 7th[END_REF].

The cytoplasmatic membrane and the layers outside it constitute the cell envelope (Figure 1.1). The plasma membrane consists of a thin bilayer of lipid molecules and proteins. The cytoplasm contains about 15,000 ribosomes, thousands of different enzymes, numerous metabolites and cofactors, and various inorganic ions. The nucleoid contains a single, circular molecule of DNA, and the cytoplasm contains one or smaller plasmids. The outer membrane provides a barrier to toxins and certain antibiotics (e.g., penicillin) [START_REF] Nelson | Lehninger Principles of Biochemistry 7th[END_REF].

E. coli has an extremely simple cell structure, with only one chromosomal DNA and a plasmid. However, it can perform complicated metabolisms and survive under stress and difficult culture conditions. It can grow at temperatures from 8-48 • C and pH values ranging from 4.4 to 10. It is a facultative anaerobic bacterium since it can grow with various carbon sources in the presence or absence of oxygen. 

E. coli metabolism

The cell activities are performed through a set of biochemical reactions taking place inside the cell itself. The sum of these chemical transformations is called metabolism. These reactions are catalyzed by enzymes and organized in metabolic pathways and are regulated according to the cell's need and function. Metabolism provides energy for vital processes and the synthesis of organic material. The principal metabolism components are the carbon source, the metabolic products, the biomass constituents, the intercellular metabolites, and the enzymes.

This section presents a brief description of the most important metabolic pathways of E. coli, under aerobic and anaerobic conditions. Figures 1.2 and 1.3 represent the central metabolic pathways under aerobic and anaerobic conditions, respectively, considering only the carbon fluxes. The aerobic metabolic growth 1.5. E. coli metabolism 5 is composed of two main pathways: glycolysis and the tricarboxylic acid cycle (TCA). During these transformations, part of the energy released is converted to the cofactors ATP and NADH [START_REF] Nelson | Lehninger Principles of Biochemistry 7th[END_REF].

Glucose is considered as the primary carbon source in E. coli metabolism. Under aerobic conditions, glucose is catabolized through glycolysis. Glycolysis is the metabolic route where glucose is converted to phosphoenolpyruvate (PEP) and pyruvate through a series of enzymatic reactions, releasing some energy in the form of ATP and NADH.

Then, pyruvate is oxidized to acetyl-CoA and CO 2 by the pyruvate dehydrogenase (PDH) enzyme. This pathway involves five coenzymes and three enzymes and links the glycolysis to the TCA cycle. The TCA cycle (also known as the Krebs cycle) is a catabolic phase of aerobic respiration, where oxygen is used as the final electron acceptor to generate ATP and cofactors. The TCA cycle pathway has the role of energy production and conservation. Acetyl-CoA is metabolized in the TCA cycle, and a variety of biosynthesis products are generated [START_REF] Nelson | Lehninger Principles of Biochemistry 7th[END_REF].

In aerobic growth, acetate is produced through two main pathways. The first pathway is the breakdown of acetyl-CoA by phosphotransacetylase (PTA) and acetate kinase (ACKA). This pathway is called the overflow pathway since it rapidly converts acetyl-CoA to acetate via acetyl phosphate. The overflow pathway is reversible, where the acetate can be converted back to acetyl-CoA via the acetyl-CoA synthetase (ACS) enzyme [START_REF] Phue | Modified Escherichia coli B (BL21), a superior producer of plasmid DNA compared with Escherichia coli K (DH5α)[END_REF].

The second pathway for acetate production is the pyruvate oxidation by the enzyme pyruvate dehydrogenase (PoxB), generating acetate and CO 2 . This pathway has lower energy conservation compared to the overflow pathway [START_REF] Kirkpatrick | Acetate and formate stress: Opposite responses in the proteome of Escherichia coli[END_REF] The cells growth occurs also under limited oxygen and active respiratory pathways. Under these conditions, the growth is characterized by limited ATP production, leading to the downregulation of the TCA cycle and incomplete glucose oxidation [START_REF] Koebmann | The glycolytic flux in Escherichia coli is controlled by the demand for ATP[END_REF].

Fermentation by-products are excreted during anaerobic growth. The list includes succinate, formate, acetate, lactate, and ethanol. These by-products are produced with ratios that allow the cell to regulate redox balance and ATP formation [START_REF] Xu | Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol[END_REF].

1.5. E. coli metabolism 7 Acetate is produced from acetyl-COA, and the reaction generates one ATP. However, different enzymes are involved compared to aerobic growth. The pyruvate formate lyase (PFL) intervenes in the generation of acetyl-COA and formate from pyruvate [START_REF] Xu | Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol[END_REF] [START_REF] Moulton | Fed-Batch Fermentation: A Practical Guide to Scalable Recombinant Protein Production in Escherichia Coli[END_REF] Chapter 1. General aspects of Escherichia coli as a host cell

Overflow metabolism

Under aerobic growth on glucose, acetate is excreted by E. coli cells through the fermentative pathway. However, complications can arise during the exponential growth phase. The secretion of acetate into the surrounding media can inhibit cell growth at higher concentrations [START_REF] Eiteman | Acetate exposure determines the diauxic behavior of Escherichia coli during the glucose-acetate transition[END_REF]. The respiration efficiency in the case of excess glucose can decrease due to the production of acetate. This phenomenon is known as overflow metabolism or bacterial Crabtree effect. It was reported that up to 15% of glucose is converted to acetate under these conditions. [START_REF] Crabtree | Observations on the carbohydrate metabolism of tumours[END_REF][START_REF] De Deken | The Crabtree effect: a regulatory system in yeast[END_REF][START_REF] Doelle | Regulation of glucose metabolism in bacterial systems[END_REF][START_REF] Wolfe | The Acetate Switch[END_REF].

Overflow metabolism can also cause the decoupling of transmembrane pH gradients, thus affecting osmotic pressure, intracellular pH, and amino acid synthesis. Adding to that, the excretion of acetate causes the acetogenesis of the E. coli cell.

Overflow metabolism is likely caused by an imbalance between fast glucose metabolism and the TCA cycle's limited capacity or respiration [START_REF] Holms | The Central Metabolic Pathways of Escherichia coli: Relationship between Flux and Control at a Branch Point, Efficiency of Conversion to Biomass, and Excretion of Acetate[END_REF][START_REF] Kadir | Modeling and simulation of the main metabolism in Escherichia coli and its several single-gene knockout mutants with experimental verification[END_REF][START_REF] Shin | Acetate consumption activity directly determines the level of acetate accumulation during Escherichia coli W3110 growth[END_REF]. The repression of many TCA promoters and genes that encode enzymes leads to enzymatic limitations, and the lack of regulation in the maximum glucose uptake rate velocity [START_REF] Luli | Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations[END_REF][START_REF] Phue | Modified Escherichia coli B (BL21), a superior producer of plasmid DNA compared with Escherichia coli K (DH5α)[END_REF][START_REF] Vemuri | Overflow metabolism in Escherichia coli during steady-state growth: Transcriptional regulation and effect of the redox ratio[END_REF].

In the case of the aerobic excretion of acetate, the cell metabolism depends on the limited oxidative capacity (represented by a bottleneck) and the available glucose in the medium. Six possible scenarios presented in [START_REF] Luli | Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations[END_REF][START_REF] Xu | Systematic metabolic engineering of Escherichia coli for high-yield production of fuel bio-chemical 2,3-butanediol[END_REF] [START_REF] Crabtree | Observations on the carbohydrate metabolism of tumours[END_REF] in the case of E. coli cultures

• Case A: the oxidative capacity is completely filled by the glucose available in the culture medium.

• Case B: the available quantity of glucose is lower than the oxidative capacity.

• Case C: the available quantity of glucose is higher than the oxidative capacity. A portion of the glucose corresponding to the oxidative capacity is destined for cell growth, and the remaining amount is transformed into acetate through the fermentation metabolic pathway.

• Case D: the glucose completely fills the oxidative capacity despite the presence of acetate in the culture medium.

• Case E: the sum of the glucose and acetate quantities is lower than the oxidative capacity.

• Case F: the glucose is not present in the culture medium, so the acetate uses all the oxidative capacity.

Despite the presence of oxygen, the cells have a limited respiration capacity. The high glucose concentration causes an inhibition of the oxidative metabolic pathway. When the oxidative capacity is saturated, the cell can no longer oxidize the glucose, and the excess is directed to the fermentative catabolic pathway. Otherwise, two operating regimes that describe overflow metabolism can be distinguished:

• The oxidative regime: where the substrate concentration is lower than a critical threshold, corresponding to the maximal oxidative capacity of the cell. Acetate (if present in the medium) is also oxidized. (Cases B, E, and F).

• The oxido-fermentative regime where the substrate (glucose) concentration is higher than the critical threshold. The glucose excess is converted to acetate through the fermentative pathway. (Case C).

These two operating regimes are detailed in the chapter 2. They are the basis of the dynamic model of the fed-batch E. coli cultures considered in this work.

Bioprocess cultivation and operating modes

A bioprocess is defined as the structure developed to cultivate living microorganisms (bacteria, yeast, fungi, etc.) or enzymes using a medium containing certain nutrients (carbon source, vitamins, minerals, etc.) under specific operating conditions (temperature, pH, oxygenation, etc.). The cultivation goal is to transform the substrates into desired products yielding from the cell's metabolism. Bioprocesses can be found in various applications, such as food processing, biomedical, pollution control, and energy production [START_REF] Doran | Bioprocess development: an interdisciplinary challenge[END_REF].

Cultivating micro-organisms in bioreactors depends on several factors: The product of interest, the micro-organism strain, the culture medium, and the available material means. Thereby, bioprocess design is a crucial step in the cultivation of micro-organisms. The design consists of choosing the suitable strain for the application, the bioreactor size and shape, the culture and the feeding medium compositions, and the appropriate operating conditions (temperature, pH, airflow, etc.). The cultivation mode is also an essential part of the design, as it depends mainly on the application objectives.

In this study, the continuously stirred tank reactor (CSTR) is considered. The CSTR is a tank reactor equipped with a mixing device to provide efficient agitation. This class of reactors is composed of several components (illustrated in Figure 1.5):

• A thermal water jacket composed of inner and outer walls, allowing temperature regulation at a constant value through hot/cold water circulation.
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• An agitator that ensures the homogeneity of the cells and an adequate transport of nutrients and gases.

• A sparger used in aerobic cultivations to continuously supply the oxygen to the growing cells.

• Probes connections for on-line measurements of main variables (pH, temperature, dissolved gases, etc.), and the concentrations of vital components (e.g., biomass).

Motor Probes Feed Withdrawal

Water jacket

Medium

Agitator Sparger FIGURE 1.5: General scheme of a continuous stirred-tank bioreactor Four main operating modes are distinguished in continuously stirred tank reactor (CSTR) cultures [START_REF] Dochain | Bioprocess Control[END_REF], depending on the inlet (F in ) and outlet (F out ) feed-rate configuration, Figure 1.6 shows a diagram of these operating modes:

• Batch mode: In batch mode, all the nutrients and media are added at the beginning of the culture. The cells are inoculated, and the culture is operated without any addition or withdrawal of the culture medium. The batch process is a closed system, where the biomass and products are recovered at the end of the culture.
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The inlet feed-rate and outlet feed rate in batch mode are equal to zero (F in = F out = 0). Therefore the culture volume is approximately constant.

Note that there is a slight variation of the volume throughout the cultivation due to base and acid (pH regulation), antifoam additions, . Sample withdrawal also slightly alters the culture volume. However, these variations are considered negligible compared to the total culture volume.

This batch mode is appropriate for fast experimentations such as strain characterization or optimization of culture medium. The advantages of cultures operated in batch mode are the short culture time, the low chance of contamination, and the ease of operation and management. This mode's disadvantages include the limited biomass and product yields, the short exponential growth periods, and the necessity of additional treatment to retrieve the products.

• Fed-batch mode: In fed-batch mode, the nutrients are supplied continuously during the cultivation to avoid the carbon source or other nutrients limitation. In this mode, a feed containing are injected until the end of the culture, with no medium withdrawal (F in > 0, F out = 0). Hence, the medium volume increases all along with the cell's growth.

The culture ends when the objectives are met (quantity of biomass, quantity of products, culture time, etc.) or when the maximum volume is reached.

As in batch mode, the biomass and products are harvested at the end of the culture.

The advantage of the fed-batch mode is the higher obtainable productivity by reaching higher biomass and product yields. The cells are continuously doubling, and the exponential growth phase is extended. Other advantages are the possibility to change the substrate mid-culture and the variety of applications using different feeding strategies. The disadvantages of the fedbatch process include the build-up of inhibitory products and the higher risk of contamination.

Fed-batch processes are widely used in biotechnological applications, particularly for the production of recombinant proteins and antibiotics.

• Continuous mode: The continuous mode describes the cultures operated with continuous addition and withdrawal of the culture medium. In this mode, the volume is kept constant by maintaining equal inlet and outlet rates (F in = F out = 0).

Continuous processes reduce product inhibition and improve the space-time yield, leading to longer cultivations than the fed-batch mode. However, the contamination risk and long-term changes in the cultures are significantly higher.

1.7. Bioprocess cultivation and operating modes 13 Continuous cultivation is an ideal tool for a better understanding of the studied process since it is operated around a fixed operating point (called steadystate). The plant parameters remain constant for a considerable period of time in continuous mode.

The challenge of continuous reactors is the determination of optimal operating conditions (Optimal operating points), that maximize culture efficiency and productivity.

• Perfusion mode: The perfusion mode is a particular variation of continuous mode, where the feed and substraction rates are non-zero. The main difference is that the outflow stream is filtered and the biomass is kept inside the reactor. Thereby, only the culture medium is renewed. This operating mode is used for animal cell cultures.

The addition of the fresh nutrients and the withdrawal of the toxic and inhibiting products in perfusion mode provide a suitable environment for cell growth. As such, this mode leads to higher productivity and higher biomass and product yields.

However, despite the advantages of the perfusion mode, it shares the same drawbacks of the continuous process. Fed-batch remains the most widely used mode for biotechnological production, mainly for the excellent characterization of the process due to the accumulated expertise within the industry. The experiments carried out in this work will consider the fed-batch mode for E. coli cultivation. The aim is to maximize the biomass productivity and cell growth since pharmaceutical and vaccine manufacturing requires maximal cell and protein production.

A detailed description of the fed-batch bioreactor and the different materials and methods used in this work is given in chapter 4. 

Batch mode

(F in = F out = 0) Fed-batch mode (F in = F > 0; F out = 0) Continuous mode (F in = F out = F > 0) Perfusion mode (F in = F out = F > 0) F in F in F out F in F out

Conclusion

In this chapter, Escherichia coli is presented as a versatile micro-organism and a widely studied bacterial system in biotechnological applications. First, the various physiological features of E. coli are described and discussed. Then, the cell catabolism in aerobic and anaerobic conditions is summarized, considering the central metabolic pathways. The focus is on the overflow metabolism and the production of acetate due to the byproduct's inhibitory effect, which will be of interest in the next chapters of this work.

The second part of this chapter discussed the biochemical processes and their basic composition and components. The different operating modes used in the cultivation of micro-organisms are presented, highlighting the fed-batch cultivation used in this study's experiments.

The following chapters will discuss the control and estimation of the E. coli fed-batch process, with the general objective of biomass productivity maximization. The closed-loop methods used throughout the work require a mathematical description of the system. Thereby, a macroscopic mathematical model for the E. coli fed-batch process is needed.

In the next chapter, a macroscopic dynamic model describing E. coli growth on glucose is presented. The model is based on overflow metabolism and the bottleneck assumption to describe the acetate dynamics during the fermentation. 

Introduction

Designing the bioprocess and choosing the appropriate cultivation mode is an essential step in culture optimization. The next challenge is to develop efficient online monitoring tools for the process.

For that purpose, the mathematical modeling of bioprocesses is a powerful tool that provides a comprehensive understanding of the evolution of living cells. Thereby, it can offer a good prediction of the process dynamics. The model is also the basis for adequate optimization and control applications.

The dynamic model's role is to describe the transfer phenomena of the main components, the metabolic reaction rates, and their stoichiometry based on the bioprocess operating mode and conditions.

Several steps are required to establish a dynamic model. First, a general reaction scheme describing the evolution of the main components is defined. The next Chapter 2. Dynamic modeling of E. coli fed-batch cultures step is to select the appropriate kinetic model structure for the bioprocess. Finally, mass balance principles are applied to derive the differential equations. The resulting model quality depends on the available experimental data at hand for the parametric identification procedure.

Edwards and Wilke defined some essential properties that biological models must have [START_REF] Schugerl | Bioreaction Engineering: Modeling and Control[END_REF]): (a) represent all the culture phases, (b) be flexible enough to use different data types (c) be easy to operate once the parameters are identified (d) have parameters with a physical significance.

Biosystems usually have complex attributes. Therefore the model must provide a compromise between a faithful and detailed representation of the process and a simple structure with the use of few parameters to simplify the identification procedure. In this chapter, we introduce a general structure of mathematical models of bioprocesses. This model is the backbone of the estimation and control strategies presented in the subsequent chapters.

The dynamic model structure is then utilized to derive the state space representation of the E. coli fed-batch culture.

General aspects of bioprocess modeling

Mathematical models can offer viable information about the dynamics of vital components of the culture and provide insight into the process evolution in various conditions.

These models are used to have a better understanding of the process and its optimal operating conditions. They can be used to implement monitoring tools and software sensors to predict non-measurable variables. Models are also essential to develop control strategies to reach the optimal conditions and design software sensors capable of estimating unmeasurable variables.

Modeling a process should balance a faithful representation of its dynamics and a structural simplicity to simplify the parameter identification procedure, control and estimation design phases, and provide a reasonable computational effort.

In this section, we introduce the dynamical models of cultivation in CSTR bioreactors. Thereby, the culture medium and components are supposed to be homogeneous.

Reaction schemes

The mechanistic model approach is based on macroscopic reactions, where only the significant reactants, catalysts, and products are considered. The reaction scheme is analogous to chemical reactions but not equivalent, as it is a qualitative representation of the macroscopic reactions.

Considering a bioprocess with a set of n ϕ reactions involving R r reactants and P r products. The corresponding reaction scheme is described as follows [START_REF] Bastin | On-line estimation and adaptive control of bioreactors[END_REF]):

∑ i∈R r k i,r ξ i ϕ r → ∑ j∈P r k j,r ξ j r ∈ 1, . . . , n ϕ (2.1)
where

• k i,r and k j,r are the pseudo-stoichiometric coefficients or yield coefficients.

• ϕ r is the reaction rate of reaction r.

• ξ i is the i th macroscopic component (reactant or product).

• R r (P r ) is the set of reactants (products) in reaction r.

• n ϕ is the number of reactions.

The reaction scheme is a qualitative representation of the relationship of the main components, and does not represent the chemical stoichiometry. The reactions do not necessarily satisfy elementary mass balances, thus the coefficient k i,r and k j,r are called the pseudo-stoichiometric coefficients. These coefficients (also called yield coefficients)

The components ξ i are generally the population of micro-organisms or biomass (X), internal and external substrates (S), products (P), and enzymes. Other useful chemical components can be integrated into the reaction scheme.

The reaction scheme is not a detailed description of the process, and mass conservation is not always respected. However, it allows the combination of chemical and biochemical representations in one scheme and offers a valuable tool for deriving the process dynamical model.

General dynamic model

In this section, a general class of state-space models is presented. This model is derived from the reaction scheme and can describe a broad class of bioprocesses in a CSTR [START_REF] Bastin | On-line estimation and adaptive control of bioreactors[END_REF].

Applying mass balances to the reaction scheme yields the following set of nonlinear differential equations, written in a matrix form:

dξ dt = Kϕ -Dξ + F + Q (2.2)
where where ξ k ∈ R n ξ and z k ∈ R n z are the system state and output vectors at the time step k, respectively. F in k ∈ R n F the input. F is the nonlinear transition function, and H is the measurement matrix. 

Kinetic models

The reaction rate vector ϕ describes the kinetics of biological reactions. In the case of microbial growth, the reaction rate vector is related to the biomass, and the specific rate of the reaction µ:

ϕ = µX (2.3)
The kinetic laws are used to model these specific rates (µ). They describe in particular the phenomena of activation, limitation, and inhibition. These specific rate models are usually a function of main component concentrations ξ i , and a set of kinetic parameters.

The models describe the activation or the inhibition by a substrate (S), the activation by the biomass (X) or the inhibition by a metabolic product (P). The most common kinetic models for the specific rates are presented below.

The Monod model

The Monod model is mostly used for growth rate modeling. This model describes the growth rate as a function of the substrate concentration:

µ(S) = µ max S K S + S (2.4)
where

• K S is the half saturation constant.

• µ max is the maximal specific growth rate.

The Monod law is an extension of the Michaelis-Menten model that describes the growth rate of a single substrate enzyme-catalyzed reaction [START_REF] Michaelis | Die kinetik der invertinwirkung[END_REF]. It reflects the phenomenon of growth limitation due to lack of substrate S without considering its inhibitory effect. An illustration of the Monod law is given in 

µ max = 0.4, K s = 0.015 Substrate S (g/L) Growth rate µ (1/h) Monod model FIGURE 2.1: Evolution of the Monod model µ(S)
The Haldane model [START_REF] Haldane | Union of enzymes with substrate[END_REF] The Haldane model is used to describe the substrate inhibition on microbial growth:

µ(S) = µ max S S + K S + S 2 /K I (2.5)
where

• K S is the half saturation constant.

• µ max is the maximal specific growth rate.

• K I is the substate inhibition constant. 

µ max = 0.4, K s = 0.002, K I = 0.35 Substrate S (g/L) Growth rate µ (1/h) Haldane model FIGURE 2.2: Evolution of the Haldane model µ(S)

Contois model (Contois, 1959)

The Contois model describes the growth slowdown under high biomass X concentrations:

µ(X, S) = µ max S k c X + S (2.6)
where

• µ max is the maximal specific growth rate.

• k c is the biomass inhibition constant.

This law is similar to the Monod model, with a consideration of the possible inhibitory effect of X. 

µ max = 0.4, K c = 1, S = 1 Biomass X (g/L) Growth rate µ (1/h) Contois model FIGURE 2.3: Evolution of the Contois model µ(X)
Herbert model [START_REF] Herbert | Some principles of continuous culture[END_REF] 

µ(S) = µ max S K S + S -m (2.7)
where

• K S is the half saturation constant.

• µ max is the maximal specific growth rate.

• m is a maintenance/mortality coefficient.

An illustration of the Herbert law is given in 

Product inhibition model

The growth inhibition by a by-product is a common phenomenon in alcoholic fermentations. To describe product inhibition, the following factor is added to the growth rate:

µ(S, P) = µ max S K S + S K P K P + P (2.8)
where

• K S is the half saturation constant.

• µ max is the maximal specific growth rate.

• P is the product concentration.

• K P is the product inhibition constant.

A plot illustrating the product inhibition is shown in Figure 2.5. 
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µ max = 0.4, K s = 0.25 K P = 2, S = 0.4 g/L Product P (g/L) Growth rate µ (1/h) Product inhibition model FIGURE 2.5:
In the case of fed-batch cultures of E. coli, the kinetics are described by Monod dynamics and product inhibition models.

Gas transfer models

The gas transfers in bioprocesses mainly concern oxygen, carbon dioxide, and nitrogen. In the case of aerobic cultures, such as bacteria and yeast, oxygen is a required substrate for cell growth. The accumulation of oxygen in a culture can be represented as follows:

dO dt = OTR -OUR -D O (2.9)
where

• OTR is the oxygen transfer rate from the gas phase to the liquid phase

• OUR is the oxygen uptake rate

• D is the dilution rate

The OTR classical model is based on Henry's law:

OTR = k L a O (O sat -O) (2.10)
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• k L a O is the volumetric oxygen transfer coefficient of the liquid phase

• O sat is the oxygen saturation constant in the culture medium.

OUR depends on the growth of the micro-organism. It can be modeled as:

OUR = k O µX (2.11)
where

• k O is the yield coefficient associated with the consumption of oxygen per biomass produced.

The carbon dioxide mass balance follows a similar approach. The transfer rate of carbon dioxide from the liquid to the gaseous phase is noted CTR and is modeled by:

CTR = k L a C (C -C sat )
(2.12) where

• k L a C is the volumetric carbon dioxide transfer coefficient of the liquid phase.

• C sat is the saturation constant of carbon dioxide in the medium of culture.

Macroscopic model of fed-batch E. coli cultures

The dynamic modeling concepts presented in the previous section will now be applied to a process of Escherichia coli fed-batch cultures. The first step is to define the specific reaction scheme related to this micro-organism. This reaction scheme will be used to establish the mechanistic model describing E. coli growth on glucose under aerobic conditions. Finally, the kinetic model based on the bottleneck theory is presented.

E. coli mechanistic models

Various mechanistic models in literature were used to describe overflow metabolism and acetate dynamics in fed-batch E. coli cultures. Substrate consumption is the most described fermentation phenomenon in E. coli metabolism. The Monod model is the simplest representation of the substrate consumption rate. Despite being an empirical model, the Monod expression can adequately describe the substrate consumption dynamics. To model the inhibition by substrate or products, an inhibition term is often added to the Monod model [START_REF] Cockshott | Modelling the effects of glucose feeding on a recombinant E. coli fermentation[END_REF]. The internal usage and partitioning of glucose as a substrate in E. coli cultures are studied in [START_REF] Insel | Respirometric evaluation and modeling of glucose utilization by Escherichia coli under aerobic and mesophilic cultivation conditions[END_REF], an extensive mechanistic model describing E. coli metabolism is presented.

In fed-batch fermentation, the oxygenation conditions are mostly favorable for growth, and thereby the cells are assumed to be in exponential phase with a low death rate. The death rate factor is considered negligible in most mechanistic models [START_REF] Horowitz | Probabilistic model of microbial cell growth, division, and mortality[END_REF].

Models describing acetate production and overflow metabolism can take various forms [START_REF] Ko | A metabolic model of cellular energetics and carbon flux during aerobic Escherichia coli fermentation[END_REF][START_REF] Lin | Determination of the maximum specific uptake capacities for glucose and oxygen in glucose-limited fed-batch cultivations of Escherichia coli[END_REF][START_REF] Neubauer | Metabolic load of recombinant protein production: Inhibition of cellular capacities for glucose uptake and respiration after induction of a heterologous gene in Escherichia coli[END_REF][START_REF] Peebo | Proteome reallocation in Escherichia coli with increasing specific growth rate[END_REF][START_REF] Rocha | Model-based Adaptive Control Of Acetate Concentration During The Production Of Recombinant Proteins With E. Coli[END_REF][START_REF] Xu | Modeling of overflow metabolism in batch and fed-batch cultures of Escherichia coli[END_REF]. In most approaches, overflow metabolism is divided into two distinct phases: The overflow phase, where acetate is produced, followed by the substrate limitation phase, where the acetate is consumed. [START_REF] Xu | Modeling of overflow metabolism in batch and fed-batch cultures of Escherichia coli[END_REF] modeled acetate production and consumption using the bottleneck assumption. The culture switches between the two processes and the cells consume the accumulated acetate after substrate depletion. In [START_REF] Insel | Respirometric evaluation and modeling of glucose utilization by Escherichia coli under aerobic and mesophilic cultivation conditions[END_REF], the acetate is also consumed after the substrate depletion, and the acetate production rate is modeled by a constant fraction of the substrate conversion efficiency. [START_REF] Cockshott | Modelling the effects of glucose feeding on a recombinant E. coli fermentation[END_REF] considered a constant parameter to model the specific acetate production rate. This parameter is estimated from experimental data. In [START_REF] Ko | A metabolic model of cellular energetics and carbon flux during aerobic Escherichia coli fermentation[END_REF], the acetate production rate is represented by an algebraic equation function of the specific growth rate, the biomass concentration, and the fraction of carbon flux to the Embden-Meyerhof-Parnas (EMP) pathway. The models based on the bottleneck theory are able to describe acetate evolution in E. coli fermentations adequately. However, the expressions used to model these dynamics are discrete conditional statements and discontinuous functions, presenting a hurdle for implementing advanced control laws and optimization algorithms.

Advanced proteomic analysis and system biology approaches were performed in [START_REF] Peebo | Proteome reallocation in Escherichia coli with increasing specific growth rate[END_REF][START_REF] Valgepea | Systems biology approach reveals that overflow metabolism of acetate in Escherichia coli is triggered by carbon catabolite repression of acetyl-CoA synthetase[END_REF] to show that the intracellular production and consumption of acetate in E. coli metabolism is a continuous and simultaneous process called acetate cycling. As a result, the extracellular acetate excretion yields from an offset of the intracellular production and consumption equilibrium.

The transition from glucose to acetate consumption in E. coli batch cultures is instantaneous, suggesting that the acetate is already consumed in the background along with the glucose, and the acetate consumption pathways are already activated [START_REF] Bernal | Acetate metabolism regulation in Escherichia coli: carbon overflow, pathogenicity, and beyond[END_REF][START_REF] Eiteman | Acetate exposure determines the diauxic behavior of Escherichia coli during the glucose-acetate transition[END_REF]. [START_REF] Anane | Modelling overflow metabolism in Escherichia coli by acetate cycling[END_REF] presented a promising modeling approach of the E. coli fed-batch process based on the acetate cycling principle. The presented model is composed of continuous functions for the acetate and glucose kinetics. This development opens doors for the implementation of complex optimization and control algorithms in E. coli processes.

Reaction scheme

The reaction scheme that describes E. coli cell growth is based on the cellular metabolism presented in chapter 1. The scheme is composed of three catabolic Chapter 2. Dynamic modeling of E. coli fed-batch cultures pathways detailed below [START_REF] Retamal | Parameter estimation of a dynamic model of Escherichia coli fed-batch cultures[END_REF][START_REF] Rocha | Model-based Adaptive Control Of Acetate Concentration During The Production Of Recombinant Proteins With E. Coli[END_REF]:

S + k O1 O µ 1 X --→ k X1 X + k C1 C (2.13a) S + k O2 O µ 2 X --→ k X2 X + k A2 A + k C2 C (2.13b) A + k O3 O µ 3 X --→ k X3 X + k C3 C (2.13c)
where

• S, O, X, C, and A represent the glucose (substrate), oxygen, biomass, carbon dioxide, and acetate concentrations, respectively.

• the parameters

k ξi (ξ = [X S A O C] ; i = 1, 2, 3
) are the pseudostoichiometric coefficients.

• µ j (j = 1, 2, 3) are the specific growth rates.

Each reaction describes a specific catabolic pathway. Reaction (2.13a) corresponds to the oxidation of glucose under aerobic conditions. This reaction is exergonic: it releases a form of energy that allows the cellular components biosynthesis.

Reaction (2.13b) describes the fermentation of glucose. It takes place either in anaerobic conditions, in the presence of excess glucose.

Reaction (2.13c) corresponds to acetate's oxidation, which is degraded to acetyl-CoA, and the latter allows the activation of the TCA cycle.

It is important to note that in reactions (2.13a and 2.13b), the yield coefficients are normalized with respect to substrate concentration, and in reaction (2.13c) with respect to the acetate concentration.

Kinetic model

As presented in chapter 1, the growth of E. Coli cells is modeled following the bottleneck assumption by Sonnleitner and Käppeli [START_REF] Sonnleitner | Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: Formulation and verification of a hypothesis[END_REF], applied to Saccharomyces cerevisiae.

The bottleneck theory assumes that the cells are likely to change their metabolism due to their limited oxidative capacity, leading to overflow metabolism controlled by the substrate level. Figure 2.6 illustrates the operating regimes depending on the substrate concentration.

If the substrate concentration is higher than the critical threshold corresponding to the available oxidative capacity (S > S crit ), acetate is produced by the cells through the fermentative metabolic pathway. The culture is said in the oxidofermentative regime (reactions (2.13a) and (2.13b)).

On the other hand, acetate (if present in the culture medium) is consumed when the substrate concentration is lower than the critical level (S < S crit ), and the culture is said in the oxidative regime (reactions (2.13a) and (2.13c)).

When the substrate concentration is at the critical level and fills exactly the respirative capacity, the culture is optimal, corresponding to the edge between the two operating regimes, and acetate is neither produced nor consumed.

S < S crit

Oxidative regime

S = S crit

Optimal operating conditions

S > S crit

Oxydo-fermentative regime

Oxydative capacity acetate glucose acetate The kinetic model for the specific rates is based on these operating regimes:

µ 1 = min(q s , q s crit ) (2.14a) µ 2 = max(0, q s -q s crit ) (2.14b) µ 3 = (0, q AC ) (2.14c)
where µ 1 , µ 2 , and µ 3 are the specific rates related to the catabolic reactions describing substrate oxidation (2.13a), acetate production (fermentation) (2.13b), and acetate oxidation (2.13c) [START_REF] Bastin | On-line estimation and adaptive control of bioreactors[END_REF]. Their proposed kinetic structures read [START_REF] Retamal | Parameter estimation of a dynamic model of Escherichia coli fed-batch cultures[END_REF]:
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The kinetic terms related to consumption rates q j are defined by: q s (S) = q s max S K s + S (2.15a)

q s crit (A) = q O max K iA K iA + A (2.15b) q AC (S, A) = (q s crit -q s ) A K A + A (2.15c)
where

• q s and q AC represent the substrate and acetate consumption rates respectively.

• q s crit represents the substrate critical consumption rate.

• q S max represents the maximal glucose consumption rate.

• q Omax represents the maximal value of the respiratory capacity.

µ 1 = q s = q s crit (2.16
)

µ 2 = 0 (2.17) µ 3 = 0 (2.18)
Equation (2.18) leads to:

q O max k OS = q s = q s max S K s + S (2.19) S crit = K S q O max k OS q s max -q O max
(2.20)

Macroscopic model

Applying component-wise mass balances to the reaction scheme (2.13), the following differential equations are derived [START_REF] Retamal | Parameter estimation of a dynamic model of Escherichia coli fed-batch cultures[END_REF]:

Ẋ = (k X1 µ 1 + k X2 µ 2 + k X3 µ 3 )X -D X (2.21a) Ṡ = -(µ 1 + µ 2 )X -D (S -S in ) (2.21b) Ȧ = (k A2 µ 2 -µ 3 )X -D A (2.21c) Ȯ = -(k O1 µ 1 + k O2 µ 2 + k O3 µ 3 )X -D O + OTR (2.21d) Ċ = (k C1 µ 1 + k C2 µ 2 + k C3 µ 3 )X -D C -CTR (2.21e) V = F in (2.21f) 2.3. Macroscopic model of fed-batch E. coli cultures 31 where • V is the culture medium volume.
• F in is the inlet feed rate.

• D is the dilution rate (D = F in V ).

• S in is the glucose concentration in the feed medium.

• µ {1,2,3} are the specific rates given by equations (2.14) and (2.15c),.

The state space model (2.21) can be written in the matrix form, following the structure of the general dynamic model (2.2):

dξ dt = Kϕ -Dξ + F + Q (2.22) dV dt = DV = F in (2.23)
where:

ξ = [X, S, A, O, C] (2.24) ϕ = [ϕ 1 ϕ 2 ϕ 3 ] = [µ 1 X µ 2 X µ 3 X]
(2.25)

F = 0 DS in 0 0 0 (2.26) Q = 0 0 0 OTR -CTR (2.27) K =       k X1 k X2 k X3 -1 -1 0 0 k A2 -1 -k O1 -k O2 -k O3 k C1 k C2 k C3      
(2.28)

The gas transfer rates OTR and CTR can be modeled with the classical equations:

OTR = k L a O (O sat -O) (2.29) CTR = k L a C (C -C sat ) (2.30)
where

• k L a O and k L a C are respectively the volumetric transfer coefficients of the dissolved oxygen and the carbon dioxide concentrations.

• O sat and C sat are respectively the dissolved oxygen and carbon dioxide concentrations at saturation.

Model Simulation

Two numerical simulations of the E. coli mechanistic model are presented hereafter. The model parameters used in these simulations and the rest of the work were estimated in a previous study [START_REF] Retamal | Parameter estimation of a dynamic model of Escherichia coli fed-batch cultures[END_REF], performed on fed-batch cultures of E. coli BL21(DE3) strain. Tables 2.1 and 2.2 list the values of the kinetic and stoichiometric parameters. The goal behind these simulations is to show the model ability to translate the different dynamics of the bioprocess and the cells behaviour under different substrate conditions. Furthermore, the simulation are designed to illustrate the metabolic switch between the operating regimes illustrated in Figure 2.6. 

Yield coefficients Values Units

k X1 0.184 g of X/g of S k X2 0.289 g of X/g of S k X3 0.041 g of X/g of A k A2 0.432 g of A/g of S k O1 0.737 g of O 2 /g of S k O2 0.319 g of O 2 /g of S k O3 1.341 g of O 2 /g of A k C1 0.760 g of CO 2 /g of S k C2 0.105 g of CO 2 /g of S k C3 0.846 g of CO 2 /g of A TABLE 2.2: Kinetic coefficients values of E.coli model (Retamal et al., 2018) Kinetic coefficients Values Units q Omax 1.403 h -1 q Smax 3.281 h -1 K S 0.050 g of S/L K A 0.392 g of A/L K iA 2.041 g of A/L
The profiles of the measured state variables and feed rate (X, S, A, F in ) with the corresponding model predictions are plotted in Figures 2.7 and 2.9. The specific growth rates are shown in Figures 2.8 and 2.10. The experiments were designed to trigger metabolic switches and observe the cells reaction to different operating conditions from substrate excess to starvation.

The first experiment is composed of a batch phase followed by a fed-batch one with exponential and constant feeding (Figure 2.7).

In the first part of the batch phase (A), we observe an exponential growth of the cells and the consumption of the main substrate (glucose). Acetate is produced during this phase, indicating that the cells are in oxido-fermentative regime (RF). This can be seen in the specific growth rates evolution (Figure 2.8). The specific rate µ 3 associated with acetate consumption is kept at zero, unlike its counterparts µ 1 and µ 2 , indicating that only the first two reactions are active (equations (2.13a) and (2.13b)).

The second half of the batch phase (B) illustrates the cell's behavior in the case of lack of glucose. , and the acetate becomes the new substrate. The culture is now in the oxidative regime. The specific growth rates confirm this metabolic switch, as shown in Figure 2.8. µ 2 is kept at zero while µ 3 and µ 1 are active (equations (2.13a) and (2.13c)).

The fed-batch phase starts with an exponential feeding (C) with µ set = 0.18 h -1 , followed by a break of 1h (D). The feeding is performed in (E) with the same µ set .

During (C), the cells reprise their growth, and the biomass increases exponentially. The glucose concentration remains constant and close to zero. Acetate is not produced during this phase, indicating that the culture is operating in the oxidative regime. This can be confirmed by the fact that the glucose concentration is lower than the critical threshold (S crit ) and the specific growth rate µ 2 is equal to zero. µ 3 is also equal to zero because the acetate is not available in the medium to be consumed by the cells. This shows that the growth rate reference µ set is lower than the optimal growth rate.

The biomass concentration remains constant when the feeding is stopped (D). The cells start growing again after the feeding is reprised with the same set value (E). The culture operates in the same regime (oxidative), and the substrate concentration is lower than S crit . A constant feeding is applied in (F). The cells continue growing with a lower growth rate. The specific growth rate µ 1 decreases to a lower value when the glucose supply falls to a value below 0.02 L/h. This indicates that the culture is still in suboptimal conditions in the oxidative regime.

Chapter 2. Dynamic modeling of E. coli fed-batch cultures [START_REF] Retamal | Parameter estimation of a dynamic model of Escherichia coli fed-batch cultures[END_REF]. Plot of the state variables (ξ = [X S A]) and the feed-rate (F in )

A B C D E F time (h) F in (L/h) FIGURE 2.7: Experiment 1: Simulation of E. coli model with exper- imental data from
0 5 10 15 20 0 1 2 3 4 A B C D E F time (h) µ 1 (h -1 ) Model Measurements 0 5 10 15 20 0 2 4 A B C D E F time (h) µ 2 (h -1 ) Model Measurements 0 5 10 15 20 0 0.2 0.4 0.6 A B C D E F time (h) µ 3 (h -1
) Model Measurements FIGURE 2.8: Experiment 1: Simulation of E. coli model with experimental data from [START_REF] Retamal | Parameter estimation of a dynamic model of Escherichia coli fed-batch cultures[END_REF]. Plot of the specific growth rates ([µ 1 µ 2 µ 3 ]).

The second experiment follows a similar path to the first one. A batch phase followed by exponential feeding with different µ set values and constant feeding.

During the batch phase, the cells consume the available substrate to multiply, producing acetate in the process due to the excess of glucose (A). The culture is in oxido-fermentative regime as can be seen in Figure 2.10 (µ 1 , µ 2 = 0 µ 3 = 0). In the second half (B), biomass stabilization is observed due to the absence of glucose, and acetate is consumed. The culture switches to the oxidative regime (µ 1 , µ 3 = 0 µ 2 = 0).

The fed-batch phase starts with exponential feeding with a higher µ set = 0.22 h -1 . The cells reprise their growth, and biomass concentration increases exponentially. The glucose concentration remains constant but higher than the critical value S crit causing acetate accumulation. This triggers a metabolic switch to the oxido-fermentative regime (µ 1 , µ 2 = 0 µ 3 = 0).

The feeding stops for 30 min (D), causing the drop of the growth rate, the glucose depletion, and consequently the switch to the oxidative regime. Reprising the feeding (E) with µset = 0.18 h -1 causes the cells to reprise their metabolism, but the low feeding rate puts the culture in oxidative mode (µ 1 = 0 µ 2 , µ 3 = 0) and leads to the consumption of the acetate. The constant feeding (F) causes a drop in the growth rate, but it does not change the culture operating mode. 

A B C D E F time (h) F in (L/h) FIGURE 2
.9: Experiment 2: Simulation of E. coli model with experimental data from [START_REF] Retamal | Parameter estimation of a dynamic model of Escherichia coli fed-batch cultures[END_REF]. Plot of the state variables (ξ = [X S A]) and the feed-rate (F in )

0 5 10 15 20 0 2 4 A B C D E F time (h) µ 1 (h -1 ) Model Measurements 0 5 10 15 20 0 2 4 A B (C) (D) E F time (h) µ 2 (h -1 ) Model Measurements 0 5 10 15 20 0 0.5 1 1.5 A B (C) (D) E F time (h) µ 3 (h -1 ) Model Measurements FIGURE 2
.10: Experiment 2: Simulation of E. coli model with experimental data from [START_REF] Retamal | Parameter estimation of a dynamic model of Escherichia coli fed-batch cultures[END_REF]. Plot of the specific growth rates ([µ 1 µ 2 µ 3 ]).

The simulations show an overall good fit between the model prediction and the experimental data. The model adequately describes the metabolic behaviour of the cells under various feeding conditions.

Nevertheless, the identified model presents some parametric uncertainty shown in Figure 2.8 indicating a possible mismatch in the parameters which is very common in bioprocess models. Therefore, the developed control and estimation strategies must consider the model mismatch in the design procedure.

Conclusion

In this chapter, we present a general representation of mathematical models used to describe the dynamics and the kinetics of bioprocesses. A dynamic model is a macroscopic approach based on chemical and biological reactions that illustrate the major components interactions.

Mass balance principles are then applied to the reaction scheme to obtain the state-space model. The model also includes a kinetic representation of the reaction rates depending on the empirical relations between the process components. A presentation of the main kinetic models used in bioprocesses models is given.

Lastly, the general dynamic model is applied to the case of fed-batch E. coli cultures, and a state space representation of the studied bioprocess is given. This model is then illustrated with a series of numerical simulations to highlight the different operating mode in E. coli metabolism.

The mechanistic model presented in this chapter is used to implement software sensors in order to estimate the non-measured variables. The next chapter will present the estimation scheme developed to predict the acetate concentration in fed-bacth E. coli cultures. 

Introduction

The main advances in biotechnological processes mainly include , bioprocess optimization, control, fault detection, and diagnosis. An essential common requirement in all these engineering tools is the necessity of reliable real-time information of viable process variables. Thereby, efficient bioprocess monitoring is an essential component for successful bioprocess operation. Despite the recent advances in optical, ion-selective, and enzymatic sensors, reliable on-line measurement of many essential variables in bioprocesses is not possible. The available on-line measurement tools are either expensive or mainly concern pH, temperature, and dissolved gases. Nevertheless, many informative variables such as the metabolic products and intracellular metabolite concentrations are not easily measured on-line. The absence of on-line measurements of the internal process variables represents a limitation for the effective operation of bioprocesses.

This information could provide a more comprehensive description of the process and improve the cultivation. Furthermore, incorporating this estimated information to develop novel control strategies can improve the process performance and productivity [START_REF] Bastin | On-line estimation and adaptive control of bioreactors[END_REF]. In addition to control applications, variable and parameter estimation can be integrated into other engineering applications such as optimization, fault detection, and diagnosis.

In this chapter, a brief presentation of the estimation methods developed for bioprocess monitoring is described, focusing on the Kalman filtering algorithm since it is the estimation technique used in the various applications presented throughout the thesis.

Later in this chapter, the problem of acetate and glucose estimation in fed-batch E. coli cultures is discussed. The Kalman filter algorithm is applied to the mechanistic model presented in the previous chapter. A series of numerical simulations are performed to illustrate the developed estimation schemes.

State estimation methods used for bioprocess monitoring

On-line estimation of non-measured process variables and parameters provides a tool for better monitoring of bioreactors. The estimation methods are used to deliver a reliable real-time estimation of the internal process variables (called state variables) or parameters based on the knowledge of the process and the available measurements.

The incorporation of estimated signals of unknown process variables in the control strategies has significant advantages as it complements conventional sensor data and delivers new feedback signals for control and regulation purposes. The estimation can also provide viable information to compensate model mismatch and parametric uncertainties, thus improving the control performance and the process productivity [START_REF] Bastin | On-line estimation and adaptive control of bioreactors[END_REF].

In this section, the main state and parameter estimation methods used in bioprocess monitoring are presented and classified into different categories, including methods based on balance equations, observers, neural networks, and fuzzy logicbased estimation. The list of methods is not exhaustive but it is a presentation of the main estimation methods encountered in bioprocess monitoring

Balance Equation Based Methods

The balance equation methods are based on the theoretical and empirical relationships between the measurable and unmeasurable variables. This empirical approach neglects the measurement noise and model uncertainties and only relies on the mathematical relationship between variables. Therefore, the estimation is performed through simple calculations, and the required computational cost is low.

Several bioprocess applications considered balance equation-based estimation. In [START_REF] Zabriskie | Real-time estimation of aerobic batch fermentation biomass concentration by component balancing[END_REF], the estimation of the biomass concentration and the biomass growth rate in aerobic batch fermentation processes were performed based on the dissolved oxygen measurements and mass balance equations. The method is validated on a bakers yeast culture. [START_REF] Grosz | Studies on on-line bioreactor identification. III. Sensitivity problems with respiratory and heat evolution measurements[END_REF] introduced the relationship between the respiratory quotient and the product yield in fermentation processes. The respiratory quotient and the heat evolutions measurements are used to reconstruct the product yield for on-line identification and control purposes. The theoretical results are validated through simulations and experimental data of yeast and E. coli fermentations.

Another on-line estimation of Streptomyces avermitilis fermentation based on the oxygen measurements and mass balances is presented by [START_REF] Gbewonyo | On-line analysis of avermectin fermentation cell growth kinetics in an industrial pilot plant[END_REF]. The biomass estimation is also investigated by [START_REF] Beluhan | Biomass estimation and optimal control of the baker's yeast fermentation process[END_REF] where maintenance equations are used to estimate the biomass concentration in baker's yeast fermentation. The on-line estimation is used in a feedback control scheme.

Mass balance estimation methods are based on input-output relations between the process state variables and parameters. They involve simple calculations and can provide important insight into the evolution of key variables.

However, the disadvantage of these techniques is that they do not consider system uncertainties or measurement noises, leading to significant estimation errors.

Observer-based Methods

State observers are model-based estimation schemes used to predict the evolution of the process parameters and variables. The mathematical model of the bioprocess and the available on-line measurements are used to reconstruct the nonmeasurable signals. The observer is provided with the system input u and output y to estimate the real process vector ξ and calculate the estimated state vector ξ (as presented in Figure 3.1).

The state observers are based on a mathematical model to provide the state and parameter estimation, and they can effectively deal with deterministic and stochastic, linear, and non-linear processes. Observers can also incorporate disturbances and uncertainties, making them a powerful tool for bioprocess monitoring. However, developing an accurate process model is a major task, and the quality of the estimation is linked to model structure and the identified parameters. Several types of observers have been developed and implemented for biotechnological applications; a detailed description of observers designed for bioprocesses can be found in [START_REF] Bogaerts | Software sensors for bioprocesses[END_REF]. The observer type and design depend on the model structure (linear/nonlinear), the model uncertainty, the measurement nature (discrete/continuous), the sensor noise, and the estimation objectives.

Sensors

Various observer-based estimation methods have been bioprocess monitoring. Each method has some advantages and drawbacks depending on the application. The main differences are:

• The ability to consider measurement noise and errors.

• The ability to consider model uncertainties.

• The aptitude to handle nonlinear dynamics or the need for local linearization.

• The convergence rate of the observer • The observer convergence depending on the culture conditions (e.g. metabolic switches).

A brief description of the main observer types is given hereafter:

Exponential Observers

Exponential observers reconstruct the state vector based on a process model and on-line sensor measurements. In linear systems, the system observability condition must be guaranteed to design an exponential observer. As for nonlinear models, the local observability condition is the minimal requirement to implement this type of observers [START_REF] Kwakernaak | Linear Optimal Control Systems[END_REF]. The exponential observer uses the measurements in a closed-loop feedback structure. The estimation error is driven to zero, and the estimated state converges exponentially to the real process state. The observer parameters are tuned to adjust the convergence rate and improve the estimation quality. Examples of exponential observers are the Luenberger observer, the Kalman filter, the moving horizon observer, and the high-gain observer [START_REF] Bogaerts | Software sensors for bioprocesses[END_REF].

The specific case of Kalman filtering is detailed in section 3.3 since this filter is an essential part of the control strategies presented in this thesis.

Asymptotic Observers

Asymptotic observers have an open-loop structure, where only a part of the process model is used, and the missing part is compensated by the continuous and noise-free measurements. Unlike the exponential observer, the asymptotic observer does not include a correction term between the estimated state and the measurement. The advantage of the asymptotic observers is the possibility to estimate the state vector without the need to model the reaction kinetics. However, the estimation error convergence rate depends heavily on the operating conditions [START_REF] Bastin | On-line estimation and adaptive control of bioreactors[END_REF].

A recent example of asymptotic observers developed for bioprocesses can be found in [START_REF] Dochain | An asymptotic observer for batch processes with single biogas measurement[END_REF]. The asymptotic observer is designed for systems that are unobservable on a subset domain boundary. The observer is applied to a batch microbial fermentation system with a single biogas measurement to estimate the biomass concentration. The results showed a guaranteed convergence and better overall performance compared to the Luenberger observer.

Hybrid observers

Hybrid observers provide a combination of the previous method features: the adjustable conversion rate of the exponential observers and the robustness towards the reaction kinetics of the asymptotic observers.

This technique consists in defining a confidence level in the mathematical model, and the observers switch between two extreme cases depending on this confidence level. When the model is assumed to be perfectly known, the exponential structure is used. Conversely, when the uncertainty level is high, the asymptotic structure is considered [START_REF] Bogaerts | A hybrid asymptotic-Kalman observer for bioprocesses[END_REF].

Examples of hybrid observers applied to bioprocesses can be found in [START_REF] Bogaerts | Robust nonlinear state estimation of bioreactors based on H ∞ hybrid observers[END_REF]Hulhoven et al., 2006a). A hybridization parameter that reflects the kinetic model confidence is generally considered.

Neural Network Based Methods

Artificial neural networks (ANN) are computing systems composed of several layers of highly interconnected nodes. The network maps a set of input patterns to corresponding output patterns by learning from a series of a defined set of inputoutput examples from past data. Then, the neural network applies this learned information to new inputs to generate an appropriate predicted output.

In the case of state and parameter estimation, the inputs to the network estimator consist of the measured process variables and the process inputs. The process outputs act as a teacher signal that trains the neural network. The difference between the predicted output by the network and the process states is called the prediction error. The trained neural network performs iterations to minimize the prediction error so that the predicted states converges to the real process ones.

Chapter 3. State estimation and culture monitoring Artificial neural networks provide the possibility to estimate states and parameters of nonlinear processes and do not require developing and validating rigorous process models (black box models). The application of neural networks for state estimation and parameter identification for bioprocesses increased in recent years. A neural network-based estimation and prediction of bioprocess variables presented in [START_REF] Karim | Artificial neural networks in bioprocess state estimation[END_REF]. The network was trained on available environmental and physiological data sets using the conjugate gradient method with unconstrained optimization.

In [START_REF] Murugan | Estimation of fungal biomass using multiphase artificial neural network based dynamic soft sensor[END_REF], a Multiphase Artificial Neural Network (MANN) based estimator was developed to predict the biomass concentration in fed-batch Trichoderma cultures in the presence of insoluble substrates. The estimator comprises three nonlinear Auto Regressive with eXogenous input (NARX) models to capture the three phases of the microorganism. The proposed MANNbased estimator demonstrated good performance with acceptable deviation.

A three-layer feed-forward back propagation ANN was employed to estimate the biomass concentration in a microalgae cultivation with various nutrient sources [START_REF] Ansari | Artificial neural network and techno-economic estimation with algae-based tertiary wastewater treatment[END_REF]. The proposed ANN structure achieved high predictive performance for the waste-water treatment process.

In [START_REF] Ahmad | Estimation of biosurfactant yield produced by Klebseilla sp. FKOD36 bacteria using artificial neural network approach[END_REF], an ANN model was proposed to estimate the biosurfactants yield, the surface tension reduction, and the emulsification index in Klebsiella sp. FKOD36 cultures. The ANN model used temperature, pH, incubation period, and gas measurements as inputs. The estimation scheme showed an efficient prediction of the variables compared to experimental data.

Neural networks are very adaptive and can provide efficient results in the presence of measurement noise and incomplete data. However, the training range restricts the generalization to different operating conditions, and new training data is usually required.

Fuzzy logic Based Methods

Fuzzy logic is a mathematical approach to handle uncertain, semi-qualitative, and linguistic information. The fuzzy set theory describes and manipulates imprecise and vague physical phenomena through a set of graded membership functions. A set of fuzzy if-then rules and an inference mechanism are used to determine the input-output mapping of the system [START_REF] Zadeh | Soft Computing and Fuzzy Logic[END_REF].

The advantage of the fuzzy logic approach is the greater flexibility to capture incomplete and imperfect aspects of the process. Several bioprocess parameters and state estimation algorithms based on fuzzy logic were developed. In [START_REF] Dohnal | Fuzzy bioengineering models[END_REF], a fuzzy-logic-based model was used to estimate the specific yield in a fermentation process, based on the dilution rate and the growth rate signals. A review of fuzzy logic systems application for estimation and control purposes in biological applications can be found in [START_REF] Bhalla | Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes[END_REF].

A stable linear matrix inequality-based fuzzy observer for fermentation processes is proposed in [START_REF] Márquez-Vera | Stable fuzzy control and observer via LMIs in a fermentation process[END_REF]. The fuzzy rules used are the linear, mechanistic submodels. The observer is set to estimate the biomass concentration and is integrated into a state-feedback regulation of the product concentration. In [START_REF] Boiocchi | Aeration control by monitoring the microbiological activity using fuzzy logic diagnosis and control. Application to a complete autotrophic nitrogen removal reactor[END_REF], a fuzzy logic-based estimation scheme has been implemented for the diagnosis and control of a Complete Autotrophic Nitrogen Removal (CANR) process. The estimation is based on the nitrogen concentration in the influent and in the effluent measurements.

The fuzzy logic-based estimation is a practical alternative for complex processes, where the development of an accurate model is not straightforward. However, they require a good understanding of the bioprocess to establish a comprehensive rule base.

Kalman Filtering

The classical Kalman filter has been used in various applications for more than 50 years due to its low computational requirement and status as the best estimator for linear systems with Gaussian error statistics [START_REF] Anderson | Optimal Filtering[END_REF].

The Kalman filter provides optimal estimates of the state variables for linear systems, based on the noisy measurement and a mathematical model of the process. The estimate provided by the Kalman filter is the maximum likelihood estimate conditioned on all observations up to that instant of time.

There are different variations of the Kalman filter, depending on the nature of system dynamics (continuous or discrete, linear or not) and measurements (discrete or continuous) assuming gaussian distribution of the process and measurement noises. In the case of biochemical systems, the measurements are usually available at large sampling periods, leading to the consideration of discrete measurements. However, most bioprocess models are continuous, so considering Kalman filter for continuous dynamics is generally preferred. Nevertheless, in this work, since the system dynamics are slow compared to the sensor's characteristic times, it will be discretized, leading to an estimation problem for a discrete-time system with discrete-time measurements.

Furthermore, most bioprocesses are inherently nonlinear, therefore modeling their dynamics with a nonlinear mapping that reflects the essential structure of the process is more beneficial. Consequently, the estimation algorithms developed for bioprocesses should be based upon the nonlinear model structure or approximate the dynamics using a linearization of the model with some adaptation.

The Kalman filter algorithm has been appended for nonlinear systems in various forms. The Extended Kalman filter (EKF) is an estimation technique based on the linear Kalman filter equations used for the estimation of states and parameters in nonlinear processes. The EKF algorithm is based on linearizing the nonlinear equations around the current estimate and . This approximation may introduce estimation errors, especially in the case of strong nonlinearities.

An alternative to the EKF is the Unscented Kalman Filter (UKF) [START_REF] Julier | New extension of the Kalman filter to nonlinear systems[END_REF]. The UKF is a derivative-free estimation method based on a deterministic sampling approach called the Unscented transformation. This technique allows for better estimation in inherently nonlinear systems. This section aims to present the Kalman filter equations for linear and nonlinear systems. The algorithms presented in the following are used throughout the thesis in both simulations and experiments for state and parameter estimation purposes.

In the case of nonlinear systems, the Extended Kalman filter (EKF) and the Unscented Kalman Filter (UKF) are tested and compared in simulation using the fed-batch E. coli process model presented in the previous chapter.

Linear Kalman filter (KF)

The Kalman filtering approach consists of minimizing the estimation error variance using an algorithm with two recursive steps. First, the process model is used to propagate the initial state estimates until a new measurement is available (prediction step). In the second step, the propagated model estimates are combined with the measurements to update or correct the estimates [START_REF] Lewis | Optimal and Robust Estimation: With an Introduction to Stochastic Control Theory[END_REF].

Several studies considered the Kalman filter for bioprocess monitoring purposes. [START_REF] Cha | Ultrasonic Measurements and its Evaluation for the Monitoring of Saccharomyces cerevisiae Cultivation[END_REF]) have employed the Kalman filter for noise filtering and prediction of the biomass, glucose, and ethanol concentrations in S. cerevisiae batch cultivation. In [START_REF] Holmberg | Simultaneous On-Line Estimation of Oxygen Transfer Rate and Respiration Rate[END_REF], the Kalman filter was employed in an open aerator system for the on-line estimation of the oxygen transfer rate and the respiration rate, using air flow rate and dissolved oxygen measurements. Similarly, [START_REF] Howell | On-line Respirometry and Estimation of Aeration Efficiencies in an Activated Sludge Aeration Basin from Dissolved Oxygen Measurements[END_REF] presented a Kalman filter-based algorithm to estimate respiration and aeration rates in a sludge aeration basin using the measurement of dissolved oxygen concentration only. Other examples of state estimation in bacterial and microbial cell cultures using the Kalman filter can be found in [START_REF] Chattaway | Adaptive estimation of bioreactors: monitoring plasmid instability[END_REF].

The classical Kalman filter addresses the general problem of state estimation in linear stochastic processes with Gaussian error statistics. The algorithm describing the prediction and update steps of the Kalman filter is presented in appendix A.

Extended Kalman Filter (EKF)

The classical Kalman filtering is applied to a variety of systems described by linear stochastic equations. However, most practical applications and processes (including bioprocesses) are described by nonlinear models.

The Extended Kalman filter (EKF) is the standard method for most nonlinear state and parameter estimation problems. In the EKF scheme, the nonlinear model equations are linearized around the current estimate, and the classical Kalman filter scheme is applied to the linearized model.

Various applications of the EKF have been derived for state and parameter estimation for biotechnological processes. [START_REF] Lee | Adaptive control of dissolved oxygen concentration in a bioreactor[END_REF] applied the EKF to a batch culture of E. coli to filter the noise on the dissolved oxygen measurements and improve the DO control strategy. [START_REF] Cha | Ultrasonic Measurements and its Evaluation for the Monitoring of Saccharomyces cerevisiae Cultivation[END_REF] presented an experimental study where the EKF was implemented to a fed-batch culture of S. cerevisiae to filter the glucose measurements and estimate the biomass and glucose concentrations as well as a kinetic parameter (µ max ). The glucose measurements were provided by a special flow injection analysis (FIA) system, and the estimated variables were used in a feedback glucose control scheme. In another study, the EKF was implemented to filter the dilution rate and dissolved oxygen measurements in fed-batch cultivation of S. cerevisiae [START_REF] Patnaik | The extended Kalman filter as a noise modulator for continuous yeast cultures under monotonic, oscillating and chaotic conditions[END_REF]. [START_REF] Dewasme | Experimental validation of an Extended Kalman Filter estimating acetate concentration in E. coli cultures[END_REF] have studied the glucose and acetate concentrations estimation in fed-batch E. coli cultures using the EKF with various measurement configurations. The observability analysis on a mechanistic model and experimental data showed that the biomass measurement is sufficient for the states and growth rate estimations. [START_REF] Rocha | Design of estimators for specific growth rate control in a fed-batch E. coli fermentation[END_REF] have studied the parameter, and state estimation by the EKF on the same process using dissolved and exhaust oxygen and carbon dioxide measurements. [START_REF] Soons | Biomass growth and kLa estimation using online and offline measurements[END_REF] have applied the EKF to a fed-batch cultivation of Bordetella pertussis to estimate the specific growth rate, biomass concentration, and oxygen mass transfer coefficient based on dissolved oxygen measurements. [START_REF] Krämer | On-line monitoring of substrates and biomass using near-infrared spectroscopy and model-based state estimation for enzyme production by S. cerevisiae[END_REF] employed the EKF to a fed-batch culture of S. cerevisiae to predict the substrate and biomass concentrations using a mass balance model with Monod kinetics and the biomass measurements with NIR spectrometer. Another study on the same bioprocess considered the EKF to estimate the ethanol concentration based on temperature and dissolved oxygen measurements [START_REF] Lisci | A geometric observer-assisted approach to tailor state estimation in a bioreactor for ethanol production[END_REF].

An on-line estimation of the biomass, xylose, and ethanol concentrations in fed-batch E. coli cultures using the EKF is presented in [START_REF] Hilaly | Real time application of extended Kalman filtering in estimation and optimization of a recombinant Escherichia coli fermentation[END_REF]. The estimation is based on the CO 2 evolution and alkali addition rate. The state estimation is combined with an optimization control scheme to maximize ethanol productivity.

In [START_REF] Markana | Multicriterion control of a bioprocess in fed-batch reactor using EKF based economic model predictive control[END_REF], the EKF was combined to an economic model predictive control strategy with multiple objectives (substrates and productivity) in a fed-batch bioreactor. The estimation of the state variables is based on the nutrient and foreign protein concentration measurements. The EKF was integrated in the shrinking horizon MPC algorithm, and results showed improved efficiency of the control scheme.

The EKF is one of the most used algorithm for state estimation problems in nonlinear stochastic and uncertain systems. The simplicity and the reasonable performance made the EKF a standard in several fields. A presentation of the EKF algorithm is given in appendix A.

Nevertheless, the EKF strategy have some drawbacks and limitations. The EKF in general is not an optimal estimator like the linear Kalman filter, because only the mean is propagated through the nonlinear model [START_REF] Julier | New extension of the Kalman filter to nonlinear systems[END_REF]. Furthermore, the linearization procedure in the EKF algorithm may introduce some estimation errors and can lead to the divergence of the algorithm. Especially in the case of bad initial estimate of the state, and incorrect process model.

An alternative to some of these drawbacks is the Unscented Kalman filter (UKF) [START_REF] Julier | New extension of the Kalman filter to nonlinear systems[END_REF], presented in the next section.

Unscented Kalman Filter (UKF)

The Unscented Kalman filter (UKF) is introduced as an EKF alternative. It is a derivative free nonlinear variation of the Kalman filter that utilizes the unscented transformation to approximate the statistics of stochastic variables with Gaussian distribution [START_REF] Julier | Unscented filtering and nonlinear estimation[END_REF]. [START_REF] Tebbani | Estimation of chlamydomonas reinhardtii growth in a torus photobioreactor[END_REF] employed the UKF in a Chlamydomonas reinhardtii microalgae culture to estimate the biomass, carbon dioxide, and oxygen concentrations based on a molar fraction in the output gas measurements. The estimation is validated through simulations and experiments on a lab-scale photobioreactor. [START_REF] Simutis | Hybrid approach to state estimation for bioprocess control[END_REF] presented a hybrid version of the UKF applied to a recombinant therapeutic protein production process using E. coli. The UKF was employed to estimate the biomass growth rate and the state variables. [START_REF] Marafioti | Unscented Kalman filter state and parameter estimation in a photobioreactor for microalgae production[END_REF] applied the UKF for state and parameter estimation of a Porphyridium purpureum microalgae culture. The biomass concentration is reconstructed based on the total inorganic carbon measurement. The UKF produced better performance in comparison to the EKF when applied to the experimental data. [START_REF] Fernandes | Extended and Unscented Kalman Filter design for hybridoma cell fed-batch and continuous cultures[END_REF] presented an EKF and a UKF algorithm applied to a hybridoma cell culture to estimate the glutamine and glucose concentrations from the biomass, lactate, and ammonia measurements in fed-batch and continuous cultures. The UKF outperformed the EKF in terms of estimation accuracy. [START_REF] Dewasme | State estimation and predictive control of fed-batch cultures of hybridoma cells[END_REF] has applied the UKF as a part of a nonlinear model predictive control (NMPC) scheme in fed-batch cultures of hybridoma cells to produce monoclonal antibodies (MAb). The combined closed-loop scheme showed a satisfactory robust response. (Wang et al., 2010a) have presented a robust version of the UKF, applied for estimating the biomass and substrate concentrations in fed-batch cultures of S. cerevisiae using the measurements of dissolved oxygen and carbon dioxide. The results show that the proposed approach presents better accuracy and stability on the state estimation than the strong tracking filter and classical UKF algorithm.

Contrarily to the EKF, the UKF algorithm (presented in appendix A) does not include any linearization procedure and the Jacobian matrices are not required. Thereby, the implementation of the UKF is more flexible, since the nonlinear map can be changed without altering the algorithm structure. The EKF and UKF performance is compared in the simulation in the following sections.

On-line estimation of the acetate and glucose concentrations in E. coli fed-batch cultures

In order to develop the control strategies presented in this thesis, it is necessary to determine the acetate concentration on-line. Since the available sensors in the market are either expensive or not precise in the working concentration range, the acetate concentration is estimated on-line from the biomass measurements.
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Observability analysis

Before proceeding to the acetate and glucose concentrations estimation, the E. coli dynamic model observability has to be verified for the available measurements.

Observability is a structural system property that depends on the input signal in nonlinear systems, it relates to the possibility of estimating the state variables on the basis of the available measurement information.

The observability analysis of the E. coli model structure is detailed in [START_REF] Dewasme | Experimental validation of an Extended Kalman Filter estimating acetate concentration in E. coli cultures[END_REF]. The analysis is performed on the substrate and acetate concentrations, considering various measurement setups. The acetate observability analysis is summuarized in this section. First, the model is put in the following canonical form introduced in [START_REF] Gauthier | Observability and observers for nonlinear systems[END_REF][START_REF] Zeitz | Observability canonical (phase-variable) form for non-linear time-variable systems[END_REF]:

∀i ∈ {1, . . . , q}, ξ i ∈ R n i , n 1 n 2 . . . n q , ∑ 1 i q n i = N = dim ξ, ξ =        ξ1 ξ2 . . . ξq-1 ξq        =       f 1 (ξ 1 , ξ 2 ) f 2 (ξ 1 , ξ 2 , ξ 3 ) f q-1 ξ 1 , . . . , ξ q-1 , ξ q f q ξ 1 , . . . , ξ q-1 , ξ q       y = ξ 1 (3.1)
where

• ξ is the state vector.

• y the vector of measurements.

• f i is a partition of the nonlinear state equations

• q the number of partitions.

The system (3.1) (also called a Lower Hessenberg System) is said globally observable if the following condition is satisfied:

rank ∂ f i ∂ξ i+1 = n i+1 ∀i ∈ {1, . . . , q -1} (3.2)
To assess if the E. coli process is observable, the dynamic model must be put in the canonical form of (3.1).

Under controlled operating conditions, several simplifications of the model are possible. The substrate concentration could be kept close to zero under controlled conditions (S ≈ 0, Ṡ ≈ 0). In addition, ample oxygenation is provided ( Ȯ = 0) [START_REF] Dewasme | Experimental validation of an Extended Kalman Filter estimating acetate concentration in E. coli cultures[END_REF]. Under these assumptions, the system (2.21) can be written in the canonical form (3.1) using the following partition: Chapter 3. State estimation and culture monitoring

ξ = ξ1 ξ2 = Ẋ Ȧ = f 1 (X, A) f 2 (X, A) y = X (3.3)
Assuming that the biomass concentration is measured, the condition (3.2) reduces to:

rank ∂ f 1 ∂ξ 2 = 0 (3.4)
which is verified if the biomass concentration do not vanish (X = 0). Similarly, assuming that the acetate concentration is regulated ( Ȧ = 0 and K i A >> A) and ample oxygenation is provided ( Ȯ = 0) the system (2.21) can be written in the following form:

ξ = ξ1 ξ2 = Ẋ Ṡ = f 1 (X, S) f 2 (X, S) y = X (3.5)
The condition (3.2) becomes:

rank ∂ f 1 ∂ξ 2 = 0 (3.6)
This condition is also verified if the biomass concentration do not vanish (X = 0).

Remark.

The observability analysis presented in the chapter considers the operating conditions of the fed-batch phase of the studied bioprocess (substrate in quasi-steady-state). More rigorous analysis should be performed under a higher substrate and acetate range.

From equations (3.3) and (3.5), the bioprocess model is observable, and well adapted for the estimation of acetate and glucose concentrations based on the biomass measurement. The EKF and UKF strategies can then be applied to the system, following the structure illustrated in Figure 3.2.

Numerical simulations

In this section, several numerical simulations are achieved to test and compare the estimation of the acetate and glucose concentrations using the EKF and the UKF.

The process and measurement noise covariance matrices Q and R are chosen empirically by trial and error to ensure a good compromise between the filter stability, convergence rate, and estimation accuracy. In the following, they are denoted as follows:

Q = diag(σ 2 X , σ 2 S , σ 2 A , σ 2 V ) R = r 2 X 3.5. Numerical simulations 51 E. coli process ξ = (X, S, A, V) X EKF or UKF ( Ŝ, Â) F in FIGURE 3.2: State estimation in E. coli process
where σ and r X are respectively the state and measurement standard deviations. The initial state covariance matrix P 0 is chosen according to the deviation in the process initial conditions. Table 3.1 summarizes the filters parameters and matrices. The UKF specific tuning parameters (α,β, and κ) were determined from the literature [START_REF] Fernandes | Extended and Unscented Kalman Filter design for hybridoma cell fed-batch and continuous cultures[END_REF][START_REF] Julier | Unscented filtering and nonlinear estimation[END_REF]). 

Initial conditions

X 0 0.1 g/L S 0 5 g/L A 0 0.1 g/L V 0 3.15 L µ set 0.25 h -1 S in 500 g/L Sampling time T s 3 mn UKF parameters σ X 0.01 g/L σ S 0.1 g/L σ A 0.1 g/L σ V 0.001 L r X 0.1 g/L P 0 10 -4 × I 4 g/L α 1 - β 2 - κ 0 - EKF parameters σ X 0.05 g/L σ S 0.005 g/L σ A 0.02 g/L σ V 0.001 L r X 0.1 g/L P 0 10 -4 × I 4 g/L
The EKF and UKF are first compared in the ideal model case, where no model uncertainties or mismatch are considered. A robustness study of the filters performance is carried out, considering uncertainties on the simulated process model parameters.

The convergence of the Kalman filters is first tested with erroneous initial conditions. Figure 3.3 shows the performance of the EKF and the UKF in estimating glucose and acetate concentrations based on the biomass concentration measurement affected by additive white noise with zero mean and a standard deviation of 0.1 g/L.

A predefined feeding profile is applied to the system, consisting of a batch phase of 6h followed by a fed-batch phase of 9h with an exponential feeding profile.
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After a transient phase of 3 h, both states are well estimated, and the convergence is achieved. Both filters manage to estimate the glucose and acetate concentrations accurately based on the on-line biomass concentration measurement. Moreover, the filters are not affected by the change in the feeding-rate at 12 h, and the estimated glucose and acetate concentrations converge to the real values.

The EKF and UKF performances are similar in the nominal case. They both manage to reconstruct the acetate and glucose concentration signals adequately. Nevertheless, the UKF performance in terms of convergence rate and accuracy is slightly better, as shown in Table 3.2. The root mean square errors of the substrate (e S ) and acetate (e A ) estimates during this test include the initial transient phase and are coherent with the measurements' sensitivity and the noise levels (0.1 g/L). EKF UKF e S (g/L) 0.203 0.196 e A (g/L) 0.153 0.107

The Kalman filters robustness with respect to model uncertainties is analyzed hereafter. The initial deviations, covariance matrices, and filter parameters are the same as those considered in the ideal model case.
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We consider deviations of up to 15% around the nominal value in the plant kinetic and stoichiometric parameters (these deviations are randomly generated according to a Gaussian distribution). Figure 3.4 shows the evolution of the estimated and real process state variables during this test.

Both filters managed to predict the non-measured glucose and acetate concentrations. However, estimation errors are significantly higher than the perfect model case, especially at the end of the culture. This is an expected result with exponential observers, as they highly depend on the model quality. A practical solution is to increase the value of Q and lower the confidence in the model. However, it is not easy to guarantee the filter stability with high values of Q.

It can be noticed that the UKF provides a closer estimated value to the process values compared to the EKF. This stems from the strong non-linearity in the process kinetic model and the linear approximation of the EKF algorithm. Leading to higher estimation errors, as shown in Table 3.3 when using the latter filter.

The UKF performance is better than the EKF in the model mismatch case. However, both approaches are highly dependent on the model quality. Therefore, any implementation of these estimation strategies must consider model mismatch in the design procedure and the parameters choice. Comparison with experimental data from [START_REF] Retamal | Parameter estimation of a dynamic model of Escherichia coli fed-batch cultures[END_REF] Figure 3.5 illustrates the filters performance under real operating conditions, compared to experimental data from [START_REF] Retamal | Parameter estimation of a dynamic model of Escherichia coli fed-batch cultures[END_REF]. The model and the filters are initialized with the off-line measurements and the experimental feedrate is applied as the model and estimators input. The Kalman filters showed a good performance in estimating the glucose and acetate concentrations, especially in the latter case where the model prediction is far from the measurements at 8h and 9h.

In the following chapters, the UKF is preferred for state estimation problems since it provides better performance than the EKF. An experimental validation of the UKF is performed using new data. Nevertheless, it still depends on the model accuracy, which should be addressed in control design using bioprocess models.
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Chapter 3. State estimation and culture monitoring

Conclusion

In this chapter, a brief overview of the estimation methods used for bioprocess monitoring is presented. The estimation method choice depends on several factors: The application in question, the required prediction accuracy, the convergence rate, the computational cost, the availability of previous data, and the availability of a detailed process model.

A focus is then placed on the Kalman filter due to its practicality and wide use for state and parameter estimation problems in biotechnological applications.

Due to the inherent nonlinear nature of bioprocesses, a nonlinear variation of the Kalman filter is considered for state estimation. The Extended and Unscented Kalman filters are applied to the E. coli fed-batch process to estimate the glucose and acetate concentrations based on the biomass measurements and the mechanistic model.

The filters performance is put to the test through numerical simulations. Both filters accurately predicted the glucose and acetate concentrations, with a slightly better performance of the UKF, especially when considering modelling errors and uncertainties. However, they both rely on the quality of the process model.

In the following chapters, the UKF is implemented on-lined and combined with the developed control strategies. 

Introduction

Experimental validation of the developed control and estimation strategies requires efficient monitoring and utilizing the available hardware and software. One of the main obstacles to implement advanced optimization and control algorithms in bioprocesses is interacting efficiently with the hardware. The diversity of the sensor configurations and the closed environment of commercial monitoring software are significant problems.

A first step in the experimental validation of the algorithms presented in this work is implementing a closed-loop structure in one main program since the bioreactor is conceived to operate in open-loop mode. The developed program should contain all the available measurements from the reactor's control unit and additional measurements in one interface. This information should be available in real-time and can be manipulated by the control and estimation algorithms. The developed program should also be able to actuate the system input represented by the pump's feed-rate.

The monitoring and control of the bioreactor main variables during the fedbatch cultures is described in this chapter. The reactor setup and main components are presented, as well as the digital control unit and on-line sensors. Finally, the off-line measurements and analysis performed during the experiments are described.

Bioprocess monitoring software

The efficient operation of bioprocesses requires the availability of on-line measurements for the operator. This information should be easily manipulated, visualized, and recorded in real-time.

In addition to the lack of reliable sensors for several essential components, it is often challenging to incorporate the available measurements in on-line control and estimation schemes due to the diversity of sensor configurations and connectivity. Main variables like pH, temperature, dissolved oxygen, airflow, and agitation speed are measured and controlled by the bioreactor integrated units. These components are often specific to the manufacturer. Their communication protocols are not universal and require dedicated commercial software. Some examples of commercial software for bioprocess monitoring are: UBI-CON (Universal Bioprocess Control System) by Software Electronic Systems Design, (Germany); AFS (Advanced Fermentation Software), by New Brunswick Scientific Inc. (USA); BioCommand FermExpert software by BioExpert Ltd. (Estonia).

Most programs allow data-acquisition and control for the main variables, data recording, visualization, and open-loop control of the feeding rate. However, several works reported the limited applications of these programs: [START_REF] Shin | Acetate consumption activity directly determines the level of acetate accumulation during Escherichia coli W3110 growth[END_REF][START_REF] Soccol | Data acquisition systems in bioprocesses[END_REF].

The commercial software's main disadvantage is the specificity to the manufacturer's hardware and the difficulty of manipulating the measurements outside the software defined environement.

A solution to these setbacks is developing dedicated software in a programing language (C++, C#, Python . . . ). This approach advantage is integrating advanced control and estimation algorithms, manipulating measured variables, and flexibility in terms of data manipulation. However, this approach is time-consuming and requires knowledge of different communication protocols. Examples of dedicated programs developed for data acquisition and control can be found in [START_REF] Jaén | Heterogeneous oxygen availability affects the titer and topology but not the fidelity of plasmid DNA produced by Escherichia coli[END_REF][START_REF] Pablos | Aerobic expression of Vitreoscilla hemoglobin efficiently reduces overflow metabolism in Escherichia coli[END_REF].
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The MFCS program from B.Braun Biotech International (Germany) is an exclusive software for Biostat bioreactors. The MFCS has several features allowing data acquisition and control of the digital control unit of the bioreactor. However, it does not allow the implementation of user control algorithms and integration of external measurement devices. Examples of applying the MFCS for monitoring and control of E. coli fermentation can be found in [START_REF] Huang | Characterization and application of an on-line flow injection analysis/wall-jet electrode system for glucose monitoring during fermentation[END_REF][START_REF] Tomson | Automatic laboratoryscale fed-batch procedure for production of recombinant proteins using inducible expression systems of Escherichia coli[END_REF].

In most cases, the MFCS is used for data acquisition and saving, and additional measurements are implemented and visualized in a separate program. If the bioreactor control unit is not equipped with a specific measurement input (e.g. light intensity measurements), the operator is obliged to use separate software to visualize and record the new measurements. This increases the difficulty of implementing control and estimation schemes based on these measurements, especially when using multiple sensors from different manufacturers. [START_REF] Rocha | Model-based strategies for computer-aided operation of recombinant E. coli fermentation[END_REF] found the MFCS program inadequate for acetate regulation in fed-batch E. coli cultures due to the difficulty to integrate the additional measurements from a Flow Injection Analysis (FIA) system, and to implement adaptive control algorithms. A LabView program was developped to acquire on-line measurements of the acetate concentration from the FIA measurement system as well as the main reactor measurements. This information is then integrated into a closed-loop adaptive control scheme. The approach used to develop this program required setting up the communication protocols with the reactor measurements for every variable.

In this chapter, we present a data acquisition and control solution developed in the framework of this thesis in the LabView programming environment. In this program, communication is established directly between the MFCS software and the LabView program, allowing to port the measurements to the program in realtime using shared library nodes.

Labview is a visual object-oriented programing language dedicated to data acquisition and monitoring systems. It allows the development of virtual instruments and communication with several types of hardware with various communication protocols.

A LabView virtual instrument (VI) comprises three main parts: The front panel, the block diagram, and the connector. The front panel represents the user interface. It contains the main controls in the form of buttons, knobs, and sliders. It can display the data in the form of numerical indicators, graphs, charts, and other forms. The block diagram is the main code of the VI. It contains a vast library of dedicated blocks for various applications (Signal analysis, communication, mathematical expressions . . . ) connected by virtual wire. The connector is responsible for data flow between subroutines. Every VI can be integrated as a subVI in another VI by specifying the Input-Output map, making the applications modular and the workflow easy.

LabView has a dedicated serial communication library called VISA (Virtual Instrument Software Architecture) that offers a programming interface for serial port communication with most instruments' interfaces (RS232/485, Ethernet, USB).

LabView has been widely used for bioprocess data acquisition purposes. Examples of LabView applications for fermentation supervision can be found in [START_REF] Johnsson | Feed rate control in fed-batch fermentations based on frequency content analysis[END_REF][START_REF] Stratz | A Microfluidic Device for Immunoassay-Based Protein Analysis of Single E. coli Bacteria[END_REF].

In the following sections, the data-acquisition solution implemented in Lab-View environment is described. The goal is to integrate the different on-line measurements from the bioreactor Digital Control Unit (DCU) and the biomass probe in one main interface.

Bioreactor monitoring and control

Bioreactor setup

The cultivations were performed in a Bioreactor consisting of a 5L jacketed glass vessel and a digital control unit or (DCU) (BIOSTAT B plus, Sartorius Stedim Biotech, Germany). The reactor is equipped with a water jacket and an agitation motor.

The monitoring of the cultures is possible thanks to a potentiometric pH sensor (Hamilton, Switzerland), dissolved oxygen (DO) probe (Hamilton, Switzerland), and a temperature sensor (Sartorius, Germany). These probes are directly connected to the DCU which allows the control and regulation of the main variables.

Also, biomass concentration is available on-line via an absorption-based photometric turbidity probe (Fundalux II, Sartorius, Germany). However, this probe cannot be connected to the DCU due to the lack of a suitable connection in the DCU configuration.

Monitoring interface

All the programs presented in this chapter were conducted in NI LabView 2016 environment. The computer used for the experiments has an Intel I3 3.2 Ghz processor with 8Gb of ram running on Windows 10.

As stated before, the main process variables (pH, temperature, pO2, . . . ) are controlled by the DCU and monitored on-line via the MFCS software. This realtime information can be ported to LabView using the shared-library nodes. These nodes allow to execute functions in dynamic library files (DLL), provided the function definition and configuration. Luckily, this information is provided by the MFCS, and the functions used to retrieve the values of the variables are well defined. Hence, all variables contained in the MFCS can be displayed, manipulated, and saved in LabView. An immediate advantage of this method is the flexibility of the sampling and recording rate since the MFCS rate is locked at 5 mn. The front panel representing the user interface of the LabView program is shown in Figure 4.1. All the individual measurements are integrated into one program that displays the variable values, plots chosen variables, and saves them in a spreadsheet with a specified recording time. Additionally, the program controls external peristaltic pumps and manipulates the feed-rate in real-time via the VISA module, thus creating a closed-loop structure. Furthermore, thanks to the network shared variables feature of LabView, these measurements are shared via the network and can be accessed in real-time by authorized computers or servers on the same network. This feature allows the remote supervision and control of the reactor and the implementation of complex algorithms on a separate powerful computer.

The control and simulation algorithms were coded in Matlab for simulations and implemented on-line in LabView using shared-library and MathScript nodes.

A diagram of the experimental setup showing all the devices described in this chapter is shown 

Off-line measurements

In order to validate the on-line measurements of the biomass concentration, and the estimation quality of the glucose and acetate concentrations, several off-line analyses were performed on the samples. In the following sections, a brief description of the off-line analysis methods used during the cultures is provided.

Biomass measurements

Off-line biomass measurements were determined by measuring the optical density (OD) at 600 nm in a UV spectrophotometer (Shimadzu, Pharmacia Biotech, USA). Samples were diluted with deionized water to obtain OD in the linear range (0-0.3 absorbance units), and then correlated with dry cell weight (DCW) using a calibration curve. The calibration method and curve can be found in appendix B.

Glucose Measurements

Glucose concentration was determined using the di-nitrosalicylic acid (DNS) method. A reagent is prepared according to the procedure described in [START_REF] Retamal | Parameter estimation of a dynamic model of Escherichia coli fed-batch cultures[END_REF][START_REF] Rocha | Model-based strategies for computer-aided operation of recombinant E. coli fermentation[END_REF].

The glucose concentration is correlated using a calibration curve performed within the range 0.1-2 g/L. The measurement and calibration procedure are presented in appendix B. The sensitivity level of the measurements is considered around 0.1 gL -1 .

Acetate measurements

Acetate concentration measurements were performed with an enzymatic kit (Megazyme, Ireland) according to the manufacturer's instructions. The absorbance measurements were carried out in a Sunrise moduler absorbance microplate reader (Tecan, Austria). The calibration curve for acetate measurements is presented in appendix B. The sensitivity level of the measurements is considered around 0.1 gL -1 .

Cultures and experiments

The fermentations performed throughout this work were operated in batch and fed-batch modes. Initial batch cultures of V = 3.5L were pre-equilibrated to the appropriate operating conditions (pH, temperature, DO) before inoculation with 5% v/v seed culture, where the initial OD 600 in the fermenter reaches 0.3-0.6. Sterile filtered anti-foam was added via a peristaltic pump when necessary throughout the cultivations. The batch-phase is monitored during the day. The flag for the beginning of the feeding was the increase of the dissolved oxygen resulting from the exhaust of the glucose and acetate in the medium. Once the glucose is nearly depleted, the fed-batch phase starts, and the feeding solution is added with a rate determined by the controller, and applied by a Reglo-digital peristaltic pump (Ismatec, Germany).

Microbial strain

The E. coli BL21 (DE3) strain was used for all fermentations. This strain is more suitable for high cell density cultivation due to low acetate production and lower sensitivity to varying growth conditions compared to other strains (M üller et al., 2018).

Operating conditions

The batch and fed-batch fermentations were conducted under controlled conditions summarized in Table 4.1. These set-points were determined according to literature [START_REF] Retamal | Parameter estimation of a dynamic model of Escherichia coli fed-batch cultures[END_REF][START_REF] Rocha | Model-based strategies for computer-aided operation of recombinant E. coli fermentation[END_REF]. The pH is regulated by titration of 12.5% ammonium hydroxide (base) and phosphoric acid 0.5 M (acid). Dissolved oxygen was maintained above 30% air saturation by a two-level controller, increasing the agitation rate when the oxygen demand of the cells increases. When the maximal agitation rate is reached, the manipulated variable shifts to the airflow. Minimum values for airflow and agitation were imposed (1 L-min -1 and 200 rpm, respectively).

The temperature is controlled by the DCU at 37 • C using a heating water jacket. 

Medium composition

The composition of the pre-cultures, batch, and feed medium is given in Tables 4.2 and 4.4. The mediums were prepared according to the protocol cited in [START_REF] Delisa | Generic model control of induced protein expression in high cell density cultivation of Escherichia coli using on-line GFP-fusion monitoring[END_REF][START_REF] Rocha | Model-based strategies for computer-aided operation of recombinant E. coli fermentation[END_REF]. During the preparation, solutions were filtered and sterilized in the autoclave to avoid contamination.

A minimal M9 medium with addition of trace metals and vitamins was used for the biomass regulation experiments. The M9 medium was applied to fed-batch control experiments of E. coli cultures by [START_REF] Rocha | Model-based strategies for computer-aided operation of recombinant E. coli fermentation[END_REF]. It has the advantage of being cheap and has a very low autofluorescence. During the acetate regulation experiments, a defined high-density fermentation medium (HDF) [START_REF] Delisa | Generic model control of induced protein expression in high cell density cultivation of Escherichia coli using on-line GFP-fusion monitoring[END_REF] was used. This medium allows high density and growth rates.

In all experiments, the salts and glucose solution of the batch medium was sterilized in the autoclave for 120 mn at 120-200 • C with a total volume of 2.9 L.

Cultures and experiments
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A 100 mL of the trace mineral solution was filter sterilized using acrodisc syringe filters (from Pall Corp., USA) and injected in the bioreactor using peristaltic pump prior to the batch phase.

Pre-cultures

Bacteria from frozen cryotubes were transferred into a petri dishes containing (per liter) 25 g of LB medium (Table 4.2) and 15 g of Agar, the dishes are incubated at 37 • C for 24h. A single colony is transfered to 250 mL shaker flask containing 50 mL of LB medium, incubated at 37 • C for 8h.

A volume of 10 mL of this culture was then inoculated into two 500 mL shake flasks containing 250mL of the application medium (Tables 4.3 and 4.4) , and incubated over night (14 -16h) at 37 • C (DeLisa et al., 2001). This culture (500 mL) was used to innoculate the bioreactor to a final volume of 3.5 L, the minimal volume to ensure the complete immersion of the biomass probe. 

Experimental steps

In order to ensure reproducibility of the experiments, the following sequence of operating steps was performed during all the cultures:

Bioreactor preparation for autoclave 1. Prepare 2.9L of the salt media (M9 or HDF) and add it to the reactor vessel.

2. Turn on the stirrer and set it to 150 rpm to ensure the medium homogeneity.

3. Calibrate the dissolved oxygen probe 0 % with using a 2.0 M sodium sulfite (Na 2 SO 3 ) solution.

4. Calibrate the dissolved oxygen probe 100 % by sparging the bioreactor with a maximal airflow (10 L-min -1 ) and a maximal stirring (800 rpm).

5. Calibrate the pH probe with pH 4 and 7 standards and insert it into the bioreactor.

6. Prepare the tubing for the airflow, acid-base, feeding, and anti-foam.

7. Autoclave the bioreactor overnight. Launching the culture 1. After sterilization, connect the different tubing and probes, and prepare the feeding system (vessel, pump).

2. Sterile addition of 100 mL trace and vitamin solution.

3. Initialize temperature control and wait for stable readings.

4. Initialize pH control.

5. Initialize the cascade control of dissolved oxygen.

6. Launch MFCS and the LabView data acquisition and application (Control, Estimation) interfaces.

7. Inoculate for beginning the batch phase.

8. When the on-line flags for glucose depletion appear (sudden increase of pO2, pH increase), begin the fed-batch phase.
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Conclusion

In order to efficiently operate the bioreactor, and implement the control and estimation methods presented throughout the thesis, a data-acquisition program is developed in the LabView environment.

This program provides the communication with the MFCS software, allowing real-time measurements in the LabView environment with more flexibility (sample rate, recording, exporting, real-time plotting of data . . . ).

The program also allows integrating several measurements in one environment and is flexible for a hardware upgrade. Network-shared variables feature in Lab-View offers the possibility of sharing the same information between computers on the same network. Meaning that the closed-loop system does not require a powerful computer to operate. The data acquisition interface can share the variables in real-time, and the complex calculation can be performed in another powerful computing machine or a server in another room.

Another advantage is the possibility to integrate modular control and estimation algorithms. The modular structure of the program allows modifying these algorithms quickly. The user can swap a component with another without the need to build a new program. The user-friendly interface facilitates the operation of the program.

The different materials and methods used in this work are presented in this chapter, including the bioreactor structure and hardware, the bacterial strain, the mediums, and the culture operation steps. 

Introduction

Fed-batch fermentation is the most common cultivation mode in industrial processes [START_REF] Birol | A modular simulation package for fedbatch fermentation: Penicillin production[END_REF][START_REF] Bodizs | Oxygen control for an industrial pilot-scale fed-batch filamentous fungal fermentation[END_REF]. This mode is preferred for large-scale production of several products such as chemicals, enzymes, pharmaceuticals and food products [START_REF] Doran | Bioprocess development: an interdisciplinary challenge[END_REF].

The progress in engineering tools developed for biotechnological applications focused on improving the productivity of the processes, improving the production yields, and reaching optimal operating conditions. These objectives can be Chapter 5. Overview of control strategies for fed-batch cultures achieved by multiple approaches like genetic and genomic engineering of host strains, or by designing efficient control and optimization strategies [START_REF] Pontrelli | Escherichia coli as a host for metabolic engineering[END_REF].

Several control strategies were developed throughout the years for bioprocesses. These types of systems have indeed specific features such as the strong non-linearities, the parametric uncertainties, and the multiple metabolic operating modes.

In this chapter, the main strategies based on feed rate manipulation in fed-batch cultures are presented and discussed. In all strategies, the goal is to determine and maintain an optimal feeding profile corresponding to the desired objectives behind the fermentation. The main difficulty is to define this optimal feed-rate, since it depends on several variables of the bioprocess, as well as the operating conditions.

Manipulating the feed-rate has a direct impact on the metabolism of the microorganisms, since the variation in the substrate concentration affects the growth rate, the products formation rate, the oxygen uptake rate, and other kinetic variables. Furthermore, a variation of the feed-rate directly changes the mass and volume dynamics, thereby affecting the bioprocess variables, and especially the oxygen dynamics due to the change in viscosity.

Closed-loop control schemes can maintain the optimal feed-rate corresponding to the desired objectives, and in most cases adapts to disturbances affecting the metabolism of the cells and measurement noise.

The list of the control strategies presented in this chapter is not exhaustive, but it may provide a guide to choose the appropriate control method to develop and implement, based on the available materials, process knowledge, or the amount of available data. The list considers the most widely used control strategies currently implemented either through industrial applications or lab-scale experiments.

General aspects of the control problem

Control objectives

The objective behind implementing a control scheme usually depends on economic drivers of the bioprocess. For example, the production of recombinant proteins and pharmaceutical products requires the maximization of the biomass concentration and the biomass production yield. Other objectives include: Maximizing/minimizing the product concentration, maximizing the process yield, maximizing the productivity, and maintaining an oxygen uptake rate profile.

Due to the exponential growth rates, metabolic shifts, varying volume dynamics, nonlinear kinetics, and feed disturbances, fed-batch processes dynamics are inherently nonlinear. Therefore, a major challenge to reach the defined control objective is the constantly changing nature of the optimal operating points in nonlinear dynamics.
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Measured variables

A major obstacle for efficient and advanced control of fed-batch cultures is the limited number of on-line measurement devices. The standard measurements found in fed-batch cultivations include temperature, pH, dissolved oxygen, and carbon dioxide. Adding to these list, we find the on-line measurements of the agitation speed, and inlet gas rates [START_REF] Alford | Bioprocess control: Advances and challenges[END_REF][START_REF] Sonnleitner | Automated measurement and monitoring of bioprocesses: Key elements of the M3C strategy[END_REF].

Other advanced probes like spectroscopic sensors can be found on the market [START_REF] Cervera | Application of near-infrared spectroscopy for monitoring and control of cell culture and fermentation[END_REF], however they are not widely used on the industrial scale due to the lack of robust measurements at low concentrations of key variables, such as substrate or by-products concentrations.

Estimated variables

The lack of efficient sensors for key variables is a major challenge in industrial fermentations [START_REF] Luttmann | Soft sensors in bioprocessing: A status report and recommendations[END_REF][START_REF] Montague | Fermentation monitoring and control: A perspective[END_REF], since the process optimization and control requires robust on-line data. Thereby, software sensors can provide an alternative tool to include additional variables in the developed strategies based on the available measurements.

As described in chapter 3, software sensors use the available on-line data from the physical sensors and the process knowledge (in the form of dynamic models or historical data sets) to efficiently reconstruct and estimate the non-measured variables [START_REF] Bogaerts | Software sensors for bioprocesses[END_REF][START_REF] Montague | Fermentation monitoring and control: A perspective[END_REF]. Hence, estimation strategies are not only a powerful tool for on-line process monitoring, but also provide additional data to implement advanced control and optimization strategies [START_REF] Luttmann | Soft sensors in bioprocessing: A status report and recommendations[END_REF][START_REF] Sagmeister | Soft sensor assisted dynamic bioprocess control: Efficient tools for bioprocess development[END_REF].

Control inputs and variables

In the case of control strategies designed for fed-batch cultures presented in this chapter, the control input is the inlet feeding flow rate. The controlled variable can be a measured variable (pH, oxygen, biomass . . . ), an estimated variable (byproduct, substrate, . . . ), or a calculated term from the measured and estimated variables (growth rate, uptake rate, . . . ). The control strategy can also include multiple controlled variables, and multiple inputs. A general scheme of the main components of a control strategy is shown in Figure 5.1.

The control design procedure must take into consideration the parametric uncertainties and disturbances. Furthermore, the robustness of the developed strategies towards batch-to-batch variations, initial conditions errors, and measurement noise must be evaluated. 

Overview of control strategies for fed-batch cultivation

This section describes the most used control strategies developed for fed-batch processes. This presentation is not exhaustive but is intended to provide guidance.

Predetermined feeding control

Predetermined feeding control (also called open-loop control or non-feedback control) is the most used operating strategy in the fermentation industry [START_REF] Oliveira | Design of a stable adaptive controller for driving aerobic fermentation processes near maximum oxygen transfer capacity[END_REF]. In this method, the control actions are independent from the process outputs and the manipulated variables. Thus, a feedback is not required to determine the controller actions. Non-feedback control is employed to apply a pre-calculated feeding profile to the process, based on the initial states and the operating conditions of the culture.

In fed-batch cultures, a pre-calculated exponential feed-rate profile is usually considered to achieve reproducibility of batches at the end of the exponential growth phase. Exponential feeding allows the cells to grow at a constant specific growth rate [START_REF] Lee | Control of fed-batch fermentations[END_REF]. This feeding method is usually applied to cells that exhibit overflow metabolism. In order to avoid cell growth inhibition and product formation, the growth rate is usually regulated below the maximal value.

The feeding profile is generated based on the initial conditions, and specific parameters such as the maximum specific growth rate (µ max ). An example of the 5.3. Overview of control strategies for fed-batch cultivation 73 feeding profile is given by Equation (5.1) [START_REF] Dochain | Bioprocess Control[END_REF][START_REF] Lee | Control of fed-batch fermentations[END_REF], derived from mass balances with the assumption of a constant cell yield and constant growth rate.

F(t) = µ set • X 0 V 0 Y XS • S in e µ set t (5.1)
where µ set < µ max is the set-point growth rate. Y XS the yield of biomass on substrate, X 0 and V 0 are respectively the initial biomass concentration and culture volume.

The non-feedback control is used to reduce the variability between batches caused mainly by variations in initial biomass concentration (Jenzsch et al., 2006a). Examples of open-loop applications to fed-batch processes can be found in [START_REF] Henes | Controlled fed-batch by tracking the maximal culture capacity[END_REF]Jenzsch et al., 2006a;[START_REF] Wechselberger | Efficient feeding profile optimization for recombinant protein production using physiological information[END_REF].

The main advantage of this method is that it doesn't require any on-line measurements of the key variables and its implementation is fairly easy. However, as a direct consequence, it does not allow to regulate process variables, or reach most of the control objectives. Furthermore, process disturbances and system nonlinearity are major issues, especially when cell growth does not match the predetermined profile due to overfeeding or under feeding. Exponential growth of the cells leads to significant deviations in biomass profile from its reference [START_REF] Lee | Control of fed-batch fermentations[END_REF].

Adaptive control

Adaptive control is a nonlinear control strategy, where the model parameters are estimated and adapted in real-time. Adaptive control covers a wide range of methods, but they all rely on changing a defined set of parameters in the control law in order to achieve a better response in presence of disturbances or uncertainties in the process. The adaptive controller types vary depending on the parameter adaptation method.

A simple scheme of adaptive control is the gain scheduling method. Gain scheduling techniques are also called "open-loop" adaptive strategies since the controller gain is adapted based on prior knowledge of the system to account for varying dynamics. A preprogrammed tuning is calculated and applied based on data from previous cultures. An example of the application of the gain scheduling method to fed-batch cultures can be found in [START_REF] Hisbullah | Comparative evaluation of various control schemes for fed-batch fermentation[END_REF][START_REF] Yuan | On-line application oriented optimal scheduling for penicillin fed-batch fermentation[END_REF]. Gain scheduling strategies gained interest due to their simplicity to implement on specific manufacturers hardware. However, they lack robustness towards model uncertainties and disturbances.

Closed-loop adaptive control strategies can be divided into two main categories: direct or indirect, depending on the parameter tuning method. In direct adaptive control, the controller variables are adapted directly based on system measurements. In other words, the tracking error between the process and a reference model is used to directly modify a parameter in the control law.

In a variant of direct adaptive control, the optimal control action is designed to minimize the error between an ideal model and the process outputs. This method refers to model reference adaptive control (MRAC), and has been applied in several fed-batch control applications by feed-rate manipulation [START_REF] Oliveira | Adaptive dissolved oxygen control through the glycerol feeding in a recombinant Pichia pastoris cultivation in conditions of oxygen transfer limitation[END_REF][START_REF] Oliveira | Design of a stable adaptive controller for driving aerobic fermentation processes near maximum oxygen transfer capacity[END_REF]Soons et al., 2006a). The desired response of the system is defined by a model, that has optimal response to input disturbances. The minimization of the error between the actual response and the desired one is used to tune the controller parameters [START_REF] Landau | Adaptive regulation-Rejection of unknown disturbances[END_REF].

In indirect adaptive methods, the measurements are used to update the model parameters to reduce the error between the system response and the desired one. Then the controller parameter values are calculated based on the updated model parameters.

Nonlinear control methods such as feedback linearization and backstepping control are usually employed to bioprocesses with the addition of an adaptation of a set of parameters in the control scheme. These parameters are estimated online based on the measurements and the process model. The controller is then able to adapt to unpredictable system dynamics. The measurements are processed to predict and update a state variable or a system parameter, before their use in the adaptation algorithm. There is a big interest for adaptive control schemes based on traditional nonlinear controllers in fermentation applications due to the nonlinear and uncertain nature of bioprocesses [START_REF] Bastin | On-line estimation and adaptive control of bioreactors[END_REF][START_REF] Gonzalez | Adaptive Control of Lactic Acid Production Process from Wheat Flour[END_REF][START_REF] Rocha | Model-based Adaptive Control Of Acetate Concentration During The Production Of Recombinant Proteins With E. Coli[END_REF][START_REF] Smets | Optimal adaptive control of (bio)chemical reactors: Past, present and future[END_REF].

In (Dewasme et al., 2011a), adaptive control is applied to control the by-product concentration P to a low predefined setpoint in fed-batch E.coli and S. cerevisiae cultures. A robust linearizing adaptive control law is implemented to estimate and adapt a kinetic parameter θ. The robustness of the closed-loop is ensured using the LMI formulation. The control scheme is compared to classic adaptive strategy developed in [START_REF] Rocha | Model-based strategies for computer-aided operation of recombinant E. coli fermentation[END_REF], and the results showed a better performance in the presence of modeling errors and disturbances.

In [START_REF] Oliveira | Design of a stable adaptive controller for driving aerobic fermentation processes near maximum oxygen transfer capacity[END_REF], an indirect MRAC algorithm was applied to regulate the dissolved oxygen concentration and maximize the Oxygen transfer rate (OTR) in penicillin-G fermentation. First, a model identification is carried out from measured variables, then, the error from the reference model output is used to update the control parameters.

With the same control objective, the MRAC was used on an industrial 50L fedbatch fermentation of P. pastoris in [START_REF] Oliveira | Adaptive dissolved oxygen control through the glycerol feeding in a recombinant Pichia pastoris cultivation in conditions of oxygen transfer limitation[END_REF]. The OTR signal was estimated from the available state variable signals to reduce the measurement delays. The strategy allowed reaching a high cell density, with a biomass up to 670 g of wet weight/L. (Soons et al., 2006b) applied a direct MRAC to regulate the growth rate µ to a defined set-point in a 5L B. pertussis fed-batch cultures. The method is based on a mechanistic model with two substrates compared to a reference model. The controller gains are calculated based on the updated state variables (µ, X and V).

Adaptive control is suitable to fermentation systems with high disturbance levels and unpredictable system dynamics [START_REF] Landau | Adaptive regulation-Rejection of unknown disturbances[END_REF]. A general challenge for adaptive control is the determination of the Parameter Adaptation Algorithm (PAA) used to adapt the control parameters to reach optimal operating points and 5.3. Overview of control strategies for fed-batch cultivation 75 ensure a stable system response. Another challenge is the need of sufficiently rich signals for the parameter and state estimation.

Model predictive control

Model predictive control (MPC) is an advanced control strategy used for a variety of control problems [START_REF] Forbes | Model predictive controlin industry: Challenges and opportunities[END_REF], since it is based on on-line optimization and is known for handling complex multivariate dynamics and system constraints. These features allow the MPC strategies to be applied in a wide range of industrial fields [START_REF] Qin | A survey of industrial model predictive control technology[END_REF].

The basic principle behind the MPC is to simulate the model up to a defined time in the future (called prediction horizon) in order to predict the current output and the future evolution of the system. The prediction is evaluated to define the action required at the current time, based on optimization of a cost function and a given defined prediction window [START_REF] Stanke | Automatic control of bioprocesses[END_REF].

The MPC scheme has been extended to nonlinear systems (NMPC), and used for a variety of control objectives. A cost function can be defined to maximize the production, minimize the costs, or to follow a trajectory for a certain variable [START_REF] Seborg | 1-Butanol Synthesis in ¡span class="named-content genus-species" id="namedcontent-1"¿Escherichia coli¡/span¿[END_REF]. The optimization is carried out up to a predetermined point in the future, and the algorithm is then repeated at the next time interval. The optimization of the cost function can also be subject to a set of operational constraints [START_REF] Seborg | 1-Butanol Synthesis in ¡span class="named-content genus-species" id="namedcontent-1"¿Escherichia coli¡/span¿[END_REF].

The main difference between the different MPC implementations in fermentation applications is the choice of the cost function. Some applications aim to follow a defined trajectory for a specific variable, such as biomass concentration, X (Kuprijanov et al., 2013a;[START_REF] Zhang | Integrated condition monitoring and control of fed-batch fermentation processes[END_REF] or substrate concentration S [START_REF] Craven | Glucose concentration control of a fed-batch mammalian cell bioprocess using a nonlinear model predictive controller[END_REF]. In other examples, the objective is to maximize a certain process variable [START_REF] Chang | Nonlinear model predictive control of fed-batch fermentations using dynamic flux balance models[END_REF]Kovárová-Kovar et al., 2000a;[START_REF] Santos | Nonlinear model predictive control of fed-batch cultures of E. coli: performance and robustness analysis[END_REF], rather than follow a determined trajectory.

The MPC is based on a mechanistic or data driven model of the system, therefore the efficiency of this control strategy depends heavily on the quality and accuracy of the model. Furthermore, the method is considered to have an expensive computational cost, especially when handling uncertain steep nonlinear dynamics [START_REF] Laurí | Model predictive control for batch processes: Ensuring validity of predictions[END_REF].

The MPC strategy is considered as a standard method in several industrial fields, however its application in industrial bioprocesses is not as wide, due to the lack of robust process models and the heavy computational cost.

In [START_REF] Zhang | Integrated condition monitoring and control of fed-batch fermentation processes[END_REF], the MPC strategy was employed to regulate the biomass trajectory in a penicillin fed-batch process. The biomass concentration was estimated using a Multivariate Partial Least Squares method based on 20 previous batches. (Kuprijanov et al., 2013b) applied an adaptive MPC scheme to reproduce an optimal biomass profile obtained from a golden batch. The method relied on off-line measurements of the biomass and substrate concentrations inputs. An application Chapter 5. Overview of control strategies for fed-batch cultures to an industrial 10 L culture of E. coli allowed reaching a high cell density and a final biomass concentration over 55 g/kg.

A nonlinear MPC (NMPC) strategy was applied to a mammalian fed batch culture in [START_REF] Craven | Glucose concentration control of a fed-batch mammalian cell bioprocess using a nonlinear model predictive controller[END_REF]. The control objective is to maintain the substrate concentration (glucose) at a defined setpoint. The controller was tuned in simulation and then implemented on a 15L bioreactor. The glucose concentration was successfully regulated at 11 mM with a setpoint change to 15 mM after 100 h.

In (Santos et al., 2012b) an NMPC strategy was presented to control fed-batch E. coli cultures. The cost function is defined to maximize glucose oxidation rate and minimize the glucose fermentation rate, in order to avoid growth inhibition due to overflow metabolism. The advantage of this approach is the ability to track an unknown optimal operating point corresponding to the critical substrate concentration.

(Kovárová-Kovar et al., 2000b) presented a combination of the MPC with an artificial neural network (ANN) applied to B. subtilis fed-batch fermentation. The ANN is applied to predict the product formation, due to the lack of a reliable mechanistic model. The cost function aimed at maximizing the total product quantity and the product yield. The results showed a 10% increase of the product yield compared to previous batches.

( [START_REF] Chang | Nonlinear model predictive control of fed-batch fermentations using dynamic flux balance models[END_REF] applied the MPC strategy to S. cerevisiae cultures, with a goal of regulating the dissolved oxygen to a defined set-point using a dynamic flux balance model.

The advantages of the MPC schemes are the full exploitation of the process dynamics, the simple control policy for complex systems, the consideration of operational constraints, and the on-line optimization procedure. On the other hand they require rigorous model identification, and come with a high computation load.

Fuzzy control

Fuzzy control is a method based on fuzzy logic theory [START_REF] Zadeh | Soft Computing and Fuzzy Logic[END_REF], designed to bypass the use of complex models and to deal with the uncertainty aspect of processes. This property made fuzzy control suitable for fermentation processes known for their non-linear dynamics [START_REF] Lee | Control of fed-batch fermentations[END_REF]. Unlike model-based methods, fuzzy logic controllers do not rely on the initial knowledge of the system dynamics, since the control parameters are calculated relying on the user experience to evaluate the current state of the process. Fuzzy control is based on converting the quantitative data into qualitative parameters. The method relies on the following definitions:

• Fuzzy set: A linguistic term defining the properties of a variable.

• Membership function: A value between 0 and 1 translating the degree to which a variable belongs to the fuzzy set.

In fuzzy control, numerical data are converted based on their degree of fitting in a fuzzy set using the membership function. This operation is called fuzzification. The ensemble of the fuzzy sets is then used to determine the current state of the process, which allows the definition of a control action. A set of conditional rules (If/else/then) is defined based on the a-priori knowledge of the system. These rules are applied to the interpreted condition or state of the process, and used to calculate a numerical output that represents the controller output. This step is called the defuzzification [START_REF] Seborg | 1-Butanol Synthesis in ¡span class="named-content genus-species" id="namedcontent-1"¿Escherichia coli¡/span¿[END_REF].

Fuzzy control methods can provide some insight into complex nonlinear system dynamics without the need for model identification [START_REF] Babuška | An overview of fuzzy modeling for control[END_REF]. However, despite its benefits, there are some limitations to fuzzy control applications as it depends entirely on the user knowledge and expertise. The fuzzy sets are often defined on a set of operating conditions, and the controller performance is affected outside these conditions.

Several works considered the fuzzy logic for control problems in fed-batch cultures. In [START_REF] Zhang | Functional state modeling and fuzzy control of fed-batch aerobic baker's yeast process[END_REF] two fuzzy sets were used in a baker's yeast fermentation for different phases of the culture. In the first phase (alcohol production phase), a set of rules was used to regulate the tracking errors. In the second phase, the growth rate µ X became the new regulated variable and was controlled to reach the optimal growth rate µ max . [START_REF] Horiuchi | Industrial application of fuzzy control to large-scale recombinant vitamin B2 production[END_REF] applied the fuzzy control to a large-scale recombinant protein production process. The controller was employed to identify the current process phase in a four operating phases process. A trapezoid membership function was assigned to each state variable, and the manipulated variables were the pH and the feed-rate. The total product increased up to 16% after the implementation of the fuzzy controller compared to a manual control method.

In [START_REF] Hisbullah | Design of a fuzzy logic controller for regulating substrate feed to fed-batch fermentation[END_REF], a hybrid fuzzy and PI control strategy with scheduled gain was implemented in a baker's yeast cultures. The objective is to regulate the oxygen and carbon dioxide evolution rates to predefined set-points based on biomass measurements. The controller managed to reduce the oscillations and the set point tracking offset compared to conventional controllers.

Fuzzy logic-based controllers combine the user knowledge of the process and historical data in a relatively simple structure. Adaptation for different processes and scales is also a big advantage since the method relies on linguistic rules rather than mathematical representation. On the other hand, the definition of the rules is not straightforward and requires a deep knowledge of the process.

Artificial neural networks

Artificial Neural Network (ANN) is a data driven control method that can describe a complex non-linear system without the need for explicit equations. ANN relies on past process data to predict the outcomes of the process inputs. Consequently, ANN can be found in various industrial applications [START_REF] Glassey | Enhanced supervision of recombinant E. coli fermentation via artificial neural networks[END_REF][START_REF] Simutis | Using measurement data in bioprocess modelling and control[END_REF].

In ANNs, the input data are processed by weighted functions to predict the outputs. These outputs are defined by basic functions that may be sigmoidal or step functions [START_REF] Lee | Control of fed-batch fermentations[END_REF][START_REF] Stanke | Automatic control of bioprocesses[END_REF]. ANN training is commonly done using the back propagation algorithm [START_REF] Rumelhart | Learning representations by back-propagating errors[END_REF], as shown by [START_REF] Bošković | Comparison of linear, nonlinear and neural-network-based adaptive controllers for a class of fed-batch fermentation processes[END_REF][START_REF] Peng | Time-dependent fermentation control strategies for enhancing synthesis of marine bacteriocin 1701 using artificial neural network and genetic algorithm[END_REF].

To utilize ANN in a control strategy, an optimal value of a chosen process variable must be set, and then an optimization algorithm (such as the genetic algorithm [START_REF] Holland | Genetic algorithms and adaptation[END_REF]) is used to optimize ANN outputs for the given data set and solve the optimization problem.

Controllers based on ANNs have been applied successfully to fed-batch fermentation applications. In some set point tracking applications, ANN is used to predict a variable of interest, and then feed it to a closed loop control algorithm [START_REF] Ferreira | Development of an alcohol fermentation control system based on biosensor measurements interpreted by neural networks[END_REF]. Alternatively, ANN can be used directly in solving optimization problems, and determine an optimal solution [START_REF] Chen | Modelling and optimization of fed-batch fermentation processes using dynamic neural networks and genetic algorithms[END_REF][START_REF] Peng | Time-dependent fermentation control strategies for enhancing synthesis of marine bacteriocin 1701 using artificial neural network and genetic algorithm[END_REF].

The main drawback of ANN controllers is that the network cannot be used to get some understanding of the process or the relationship between variables. Furthermore, the performance depends heavily on the operating conditions of the training data [START_REF] Babuška | An overview of fuzzy modeling for control[END_REF].

Few examples of ANN control of industrial fed-batch processes exist. [START_REF] Chen | Modelling and optimization of fed-batch fermentation processes using dynamic neural networks and genetic algorithms[END_REF]) employed a cascade recurrent neural network for fed batch S. cerevisiae process to maximize the biomass concentration. The controller is composed of two network blocks where the feed-rate and the volume were used to estimate the dissolved oxygen in the first block. The second block uses the DO as an input to predict the biomass concentration. A genetic algorithm is used to optimize a smooth feed profile.

Another ANN implementation can be found in [START_REF] Peng | Time-dependent fermentation control strategies for enhancing synthesis of marine bacteriocin 1701 using artificial neural network and genetic algorithm[END_REF] based on data from 6 batches of B. casei fed-batch cultures. An optimal trajectory was created using a genetic algorithm. The strategy showed an improvement in the product synthesis over 25 batches. [START_REF] Ferreira | Development of an alcohol fermentation control system based on biosensor measurements interpreted by neural networks[END_REF] presented a multilayer ANN used to control the substrate concentration in fed-batch fermentation. The network was used to interpret the glucose and sucrose measurements. The ANN was coupled to a PI controller to regulate the substrate concentration to a predefined set-point of 10 g/L.

Probing control

Probing control is a control method where perturbations are applied to the process inputs, in order to get a response in the controlled variable and base the control decisions on this response. Probing control is employed when the regulation setpoints and the reference trajectories are unknown.

In fed-batch fermentation, a perturbation is applied to the feed-rate and the response of a kinetic variable signal is analyzed to calculate the feed rate for the next sampling time. Examples of applications of probing control in fed-batch fermentation are given in [START_REF] Henes | Controlled fed-batch by tracking the maximal culture capacity[END_REF][START_REF] Johnsson | Feed rate control in fed-batch fermentations based on frequency content analysis[END_REF][START_REF] Velut | Bioreactor control using a probing feeding strategy and mid-ranging control[END_REF].

Self-optimizing control and extremum seeking control are the main forms of probing control used in bioprocesses [START_REF] Dochain | Extremum seeking control and its application to process and reaction systems: A survey[END_REF]. They are used to solve optimization problems. Self-optimizing control is based on maintaining control parameters at a constant value in order to reach near-optimal operating conditions with acceptable loss. Extremum seeking control is employed to find an unknown optimal operating point that maximizes or minimizes a cost function. This strategy is appropriate to situations where the optimum is unknown, but the optimal condition is known.

In most applications, the determination of the optimal feed rate is difficult, therefore probing control is an interesting alternative since it does not refer to setpoint knowledge, but it finds the optimal point and adapts to its changes. This advantage makes probing control suitable for fed-batch fermentations, where the objective is to maximize a certain variable, while avoiding feeding excess (Dewasme et al., 2011b;[START_REF] Henes | Controlled fed-batch by tracking the maximal culture capacity[END_REF][START_REF] Johnsson | Feed rate control in fed-batch fermentations based on frequency content analysis[END_REF]. Another advantage is the adaptation to disturbance rejection and different initial conditions.

In [START_REF] Johnsson | Feed rate control in fed-batch fermentations based on frequency content analysis[END_REF], probing control was applied to fed-batch B. licheniform cultures. The goal was to maximize the oxidative metabolism, whilst avoiding overflow metabolism. The frequency response of the DO signal was analyzed to interpret the system state. The biomass concentration at 10 h was 24% greater than the reference batch. [START_REF] Henes | Controlled fed-batch by tracking the maximal culture capacity[END_REF] employed the probing control strategy to E. coli, S. cerevisiae, and P. pastoris fed-batch cultures. The relative change in DO was used to determine the controller actions. An exponential feeding profile was used as a reference, and an adaptive strategy was used to reach the optimal feeding profile by manipulating the specific growth rate µ in the used model.

In [START_REF] Velut | Bioreactor control using a probing feeding strategy and mid-ranging control[END_REF], probing control was applied to E. coli cultures to regulate and limit the Oxygen Uptake Rate (OUR). The probing controller was combined to a temperature control loop in cascade, and the feed-rate is adapted in proportion to the response, and the temperature is varied to maintain the oxygen concentration to the defined set-point.

The main advantage of probing control is the tracking of unknown and varying optimal conditions. This requires a knowledge of the optimum nature and on-line access to signals affecting it. These signals are not always available, which limits the control objectives handled by probing control.

Statistical control

Statistical control approaches are based on evaluating the current process state compared to past performances using statistical multivariate methods. Hence, past cultures data is used to form an empirical model [START_REF] Nomikos | Monitoring batch processes using multiway principal component analysis[END_REF], rather than relying on process knowledge. It is applied to monitor the process and identify the deviation from a given optimal state.

Correlation between variables can be identified by multivariate analysis [START_REF] Olkin | Multivariate analysis: overview[END_REF], two main methods are used: principle component analysis (PCA) [START_REF] Nomikos | Monitoring batch processes using multiway principal component analysis[END_REF] and partial least squares (PLS) [START_REF] Nomikos | Multi-way partial least squares in monitoring batch processes[END_REF].

Chapter 5. Overview of control strategies for fed-batch cultures Despite the challenge of the development of a separate model for each process and scale, statistical process control is applied to a variety of fed-batch control problems. Examples of multivariate analysis methods application for process modeling and monitoring, and control can be found in [START_REF] Albert | Multivariate statistical monitoring of batch processes: An industrial case study of fermentation supervision[END_REF][START_REF] Doan | Online monitoring of multi-phase batch processes using phase-based multivariate statistical process control[END_REF]Duran-Villalobos et al., 2016a;[START_REF] Ferreira | Study of the application of multiway multivariate techniques to model data from an industrial fermentation process[END_REF][START_REF] Glassey | Multivariate data analysis for advancing the interpretation of bioprocess measurement and monitoring data[END_REF][START_REF] Mears | Functional unfold principal component regression methodology for analysis of industrial batch process data[END_REF].

In [START_REF] Albert | Multivariate statistical monitoring of batch processes: An industrial case study of fermentation supervision[END_REF], an industrial application of multivariate analysis to provide on-line process control of fed-batch tysoline cultures. The PCA is applied to 144 batches, and 65 high yield batches are found desirable.

In (Duran-Villalobos et al., 2016b), a PLS model was developed and applied to maximize the biomass formation in fed-batch cultures. The PLS was combined with an optimization algorithm to determine the optimal manipulated variables for future batches based on their initial conditions.

Discussion

In the previous sections, various control schemes implemented on fed-batch processes are presented. Each method has some advantages and drawbacks depending on several factors. A classification of these factors may provide an insight into choosing the appropriate method for the desired application.

The presented strategies can be classified into three main categories: modelbased, historical data based, or user experience-based. Table 5.1 shows a summary of the different aspects of each control method.

Before choosing a control strategy for the fed-batch culture, the user must consider several aspects related to the studied bioprocess. The number of available measurements is a first deciding factor. These measurements should be accurate, reliable, with minimal noise in order to be applicable in a control or estimation loop.

The available data prior to the application of any control method is another deciding factor. If a reliable process model is available, it should describe accurately the studied process in order to provide a basis for eventual model-based control scheme. In the case of the lack of a model and the difficulty to identify a new set of model parameters, the user may refer to historical data from previous fermentations, and choose a control method that doesn't rely on the explicit description of the system.

Another aspect to analyze is the complexity of the control method. Ideally the control strategy should be as simple as possible, in terms of parameter tuning, software requirements, and hardware implementation. Development and running costs should also be evaluated before choosing a control strategy.

Methods such as fuzzy control and probing control provide some interesting advantages, as they do not require a process model, and a big amount of data from previous cultivations. They also handle unpredictable dynamics and process disturbances. However, they rely heavily on the process knowledge and the choice of control objectives is constrained to this aspect. In the case where a process model is available, it is valuable to opt for a modelbased control strategy due to flexibility, versatility, and the relatively low development time. Model-based methods (especially the MPC) can be applied for a wide range of control objectives. Predictive control covers most of the advantages of other methods, and the flexibility to define objective functions and the possibility to include operational constraints. However, the implementation difficulty and the computational cost are higher than other methods.

If a reliable process model exists, model-based approaches provide a vast number of possibilities, . However, their main drawback is the quality of the model in terms of uncertainty and sensitivity. Therefore, the model development time, the uncertainty analysis, and the robust design of the control strategy must be considered.

Another aspect of the control strategies is the gained insight of the process, since it's very valuable from an industrial point of view. Model-based methods, fuzzy control, and probing control provide information for the user about the process state and behavior under different conditions.

The development and implementation costs of the control strategies are one of the deciding factors of the industrial application of the control strategies. The cost/benefit ratio is a standard quantifier of the bioprocess performance. The costs include the model development, the industrial software licenses, and the specific program development [START_REF] Jorgensen | Bioreactor performance: A more scientific approach for practice[END_REF]. In terms of benefits of considering a control approach, the increase of the product yield or the productivity is usually the main focus area. Other benefits are the reduced variance in the variables and the reduced variability between batches, in order to stay as close as possible to the optimal operating conditions [START_REF] Moulton | Fed-Batch Fermentation: A Practical Guide to Scalable Recombinant Protein Production in Escherichia Coli[END_REF].

Furthermore, the implementation costs should be minimized, meaning that the chosen method complexity should be as low as possible. Methods that require extensive user training and operation and constant operator presence lead to additional working hours and thereby increasing running costs.

Control of fed-batch E. coli cultures

In the context of this thesis, we consider the control of fed-batch E. coli cultures. The main goal behind the control strategies is to favor the biomass production, reach high cell densities, and maximize the biomass productivity, while avoiding acetate accumulation.

As mentioned in the previous chapters, in order to maintain the process in the optimal conditions, the culture must be driven to the boundary between the respiro-fermentative and the respirative modes, where the substrate concentration is neither limiting nor in excess (S = S crit and q s = q scrit ).

A straightforward approach to reach this optimal condition is to control the substrate concentration accurately at the critical level corresponding to the critical oxidative capacity of the cells. Another suboptimal approach is to regulate the byproduct (acetate) concentration at a low value to stay close to the metabolic edge and avoid the growth inhibition due to byproduct accumulation.

The main obstacles facing these approaches are the metabolic switch between the operating modes in the neighborhood of the critical substrate concentration, which may disturb the cells growth and cause uncontrolled fluctuations and latencies. Another major obstacle is the resolution and sensitivity of the available acetate and substrate measurement devices at low levels.

Indeed, the glucose critical level is very low (O (10 -2 ) gL -1 ) and a small measurement error of this vital variable can increase the metabolic switches or cause the accumulation of acetate throughout the culture. On the other hand, the acetate concentration at the optimum is equal to zero, and regulating it at this level is impractical since the culture can operate in respirative mode at this concentration causing a drop in the biomass production yield. Thereby, robust soft sensors with high estimation accuracy are required to implement these approaches.

A reliable process model was developed in a previous study [START_REF] Retamal | Parameter estimation of a dynamic model of Escherichia coli fed-batch cultures[END_REF] on the same process. The model parameters were identified based on a set of fed-batch experiments designed to trigger metabolic switches between the operating modes.

Model-based methods are therefore considered since they provide flexibility in defining control objectives. The chosen control method should achieve the desired objectives while remaining simple to develop and easy to implement on a lab-scale reactor setup. The method should also take into consideration modeling errors and uncertainties.

The measurement setup of the studied process includes traditional probes (pH, pO 2 , temperature . . . ) in addition to the agitation and airflow measurements. The biomass concentration can be measured on-line using the turbidimetric probe. This measurement is reliable and therefore can be used in an output-feedback control scheme.

Taking into account all the previous points, a biomass regulation strategy based on the direct measurements of the biomass concentration is presented in the following chapter. The controller is based on feedback linearization with the addition of parameter adaptation. The control objective is to track a predefined biomass trajectory corresponding to a defined growth rate chosen lower than the maximal one in order to avoid acetate accumulation.

The biomass concentration measurement can also be used to implement a state estimation strategy, provided the availability of sufficient data for parameter tuning. The state estimation allows the implementation of state-feedback control strategies which increases the number of possible control objectives.

Conclusion

The main differences between the control methods are the requirements, complexity, process operation, and the control objectives. The goal of this presentation is to provide a basis and a guide to formulate the control problems depending on the available materials, methods, and objectives.

In the context of this thesis, we consider the control of fed-batch E. coli cultures. The control objective is to maximize biomass concentration and biomass productivity while avoiding acetate accumulation.

Several control strategies were developed for this bioprocess. However, most of the research studies are performed in simulation. The control strategies presented in the following chapters are tested and validated in simulations and on the lab-scale bioreactor.

The availability of a reliable process model and on-line biomass measurements allows for the consideration of an adaptive model-based biomass growth rate control strategy. The advantage being the easiness of implementation on the lab-scale reactor.

The next chapter discusses implementing an adaptive generic model control (GMC) strategy to regulate the biomass concentration tracking the desired biomass trajectory. 

Introduction

As presented in chapter 1, a major challenge in reaching high cell densities in fedbatch E. coli fermentation is the overflow metabolism and the accumulation of acetate during the culture [START_REF] Han | Acetic acid formation in escherichia coli fermentation[END_REF][START_REF] Van De Walle | Proposed mechanism of acetate accumulation in two recombinant Escherichia coli strains during high density fermentation[END_REF]. This metabolic phenomenon leads to the decrease of the biomass production yield and consequently the decrease of the recombinant protein production [START_REF] Riesenberg | High cell density cultivation of Escherichia coli at controlled specific growth rate[END_REF][START_REF] Rothen | Growth characteristics of Escherichia coli HB101[pGEc47] on defined medium[END_REF].

According to the bottleneck theory, in order to maximize the biomass productivity and avoid overflow metabolism, the substrate concentration must be maintained at a certain critical threshold corresponding to the critical cell oxidation capacity [START_REF] Deb ; Jenzsch | Open-loop control of the biomass concentration within the growth phase of recombinant protein production processes[END_REF]. To achieve this objective, a closed-loop feeding strategy is required to maintain the process near optimal operating conditions. Several possible formulations of the control objective and strategy have been developed throughout the years, examples of control schemes developed for similar fed-batch processes presenting overflow metabolism can be found in [START_REF] Benattia | Hierarchical Control Strategy based on Robust MPC and Integral Sliding mode -Application to a Continuous Photobioreactor[END_REF]Dewasme et al., 2011a,b;[START_REF] Gonzalez | Regulation of lactic acid concentration in its bioproduction from wheat flour[END_REF]Santos et al., 2012a).

A straightforward formulation of the control problem is to regulate the substrate or acetate concentrations at low values. Achieving this control objectives puts the process closer to the metabolic edge between the respirative and the respiro-fermentative modes, and allocates the majority of the available substrate to biomass production. Some application of this control approach can be found in [START_REF] Dewasme | Linear robust control of S. cerevisiae fed-batch cultures at different scales[END_REF]Hafidi et al., 2008;[START_REF] Renard | A practical robust control scheme for yeast fed-batch cultures -An experimental validation[END_REF][START_REF] Rocha | Model-based Adaptive Control Of Acetate Concentration During The Production Of Recombinant Proteins With E. Coli[END_REF].

A major practical hurdle facing the experimental application of these methods is the lack of reliable on-line monitoring tools of acetate and glucose concentrations. The critical level of the glucose concentration in E. coli cultures is very low compared to the sensitivity of the available probes on the market. Furthermore, the strong nonlinearities exhibited by the process and the need for an accurate determination of the stoichiometry and the kinetics present additional obstacles in the implementation of these control strategies. Therefore, developing an adaptive control scheme with minimum reliance on stoichiometry can be an attractive alternative, especially if it does not require on-line measurements of substrate and acetate concentrations.

In this chapter, we propose an adaptive control strategy based on feedback linearization of the nonlinear model equations called Generic Model Control (GMC) [START_REF] Lee | Generic model control (GMC)[END_REF]. The objective is to take advantage of the on-line measurement of the biomass concentration to develop and implement a GMC algorithm to control biomass productivity during the fed-batch fermentation of recombinant E. coli. In this control strategy, a pre-defined biomass trajectory corresponding to a limited acetate production is imposed by the controller. The advantages of this approach are the inclusion of the process nonlinear model in the control design and the compensation of the model inaccuracies by online adaptation using a parameter estimator. In addition, the on-line integration of the process model (i.e. the numerical solution of the mass balance ODEs) is not required, which leads to an easy experimental implementation. An experimental implementation of the control strategy is carried on a lab-scale bioreactor in order to test its performance and robustness under real operating conditions.

Generic Model Control

Generic Model Control (GMC) was developed by [START_REF] Lee | Generic model control (GMC)[END_REF] and is a control strategy based on feedback linearization, embedding the process nonlinearities in the design of the control law.

Generic Model Control
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GMC was used in various process control applications, among which we can cite for instance [START_REF] Delisa | Generic model control of induced protein expression in high cell density cultivation of Escherichia coli using on-line GFP-fusion monitoring[END_REF], where GMC ensured the tracking of the foreign protein level reference trajectory in E. coli fermentations, [START_REF] Costello | Control of anaerobic digesters using Generic Model Control[END_REF] where it was applied to anaerobic digestion, and [START_REF] Douglas | Model based control of a high purity distillation column[END_REF] where GMC was used to control dual product composition in an industrial high purity distillation column. More specifically, in relation with the present study, the GMC strategy was applied in (Jenzsch et al., 2006b) to control the specific biomass growth rate in recombinant E. coli fed-batch cultures to an experimentally defined specific growth rate reference µ re f (t). A model simplification was carried out during the control design and a state estimation using the Extended Kalman Filter was carried out. In the same spirit, a control strategy was developed in [START_REF] Bastin | On-line estimation and adaptive control of bioreactors[END_REF] and applied in [START_REF] Rocha | Model-based strategies for computer-aided operation of recombinant E. coli fermentation[END_REF], based on an adaptive linearizing control law, regulating the acetate concentration with the dilution rate as manipulated variable.

Hereafter, the GMC is applied to regulate the biomass concentration in fedbatch E. coli cultures, and track a predefined biomass trajectory corresponding to the desired metabolic performance.

GMC principle

Generic Model Control (GMC) is based on the feedback linearization of the nonlinear dynamics of the system. The main objective of the control scheme is to track a desired output nominal trajectory [START_REF] Lee | Generic model control (GMC)[END_REF][START_REF] Peter | Nonlinear Process Control: Applications of Generic Model Control[END_REF]. Consider the following nonlinear process:

ẋ = f (x) + g(x)u (6.1) y = h(x) (6.2) where • x ∈ R n is the state vector • u ∈ R is the manipulated input • y ∈ R is the system output.
• f : R n → R n g : R n → R n are nonlinear functions of the states x,

• h : R n → R is the output map.

From Equation (6.2), the output dynamics is given by [START_REF] Isidori | Nonlinear Control Systems. 3rd[END_REF]:

ẏ = ∂h ∂x [ f (x) + g(x)u] = L f h(x) + L g h(x)u (6.3) where • L f h(x) = ∂h ∂x f (x)
is the Lie derivative of h along f . • Chapter 6. Generic Model Control of the biomass concentration In the GMC strategy, the performance of the system is measured using the time derivative of the output ẏ and an arbitrary specification function [START_REF] Lee | Generic model control (GMC)[END_REF]:

ẏ = û (6.4)
where û is an arbitrary function used to specify the desired closed-loop performance.

In the GMC design procedure, the output y is compared against a prescribed reference trajectory y re f . When the process output is away from its desired reference y re f , we would like the process to return towards steady-state with a defined convergence rate. In addition, we would like to have zero offset. Hence, the specification signal û can then be defined using a proportional-integral controller in the form:

ẏ = û = G 1 (y re f -y) + G 2 t 0 (y re f -y)∂τ (6.5)
where G 1 and G 2 are tuning gains (constant with respect to time), whose values can be chosen to achieve a variety of responses. Their tuning is performed according to the desired dynamic behavior as detailed later. If L g h(x) = 0 (i.e., the system is of relative degree 1), the control input satisfying equations ( 6.3) and (6.5) is derived from the following equation:

u = 1 L g h -L f h + û (6.6)
The resulting closed-loop transfer function (Figure 6.1) is given by:

Y(s) Y re f (s) = (6.7)
where • Y(s) and Y re f (s) are respectively the Laplace transforms of y and y re f .

• s is the Laplace variable. The desired closed-loop response is defined by setting the damping ratio ξ and the natural frequency ω 0 , G 1 and G 2 are then chosen as follows:

G 1 = 2ξω 0 G 2 = ω 2 0 (6.8)
Although the controlled system response is different from the classic second-order system due to uncertainties strong nonlinearities, similar plots of the closed-loop response for different values of ξ and ω 0 can be achieved. An example is given in Figures C.1 and C.2 in appendix C with multiple responses for the studied process. G 1 and G 2 can be tuned so as to confer the desired damping ratio ξ and a natural frequency ω 0 in the following steps:

• Choose ξ according to the desired response shape.

• Choose an appropriate rise time t r and the corresponding ω 0 = 3 t r .

• Calculate G 1 and G 2 using Equation (6.8).

The nonlinear closed-loop stability and the performance analysis of the GMC are detailed in [START_REF] Zhou | Robust stability analysis of Generic Model Control[END_REF]. Nominal stability is ensured for any positive values of G 1 and G 2 . The proof is based on finding a strict Lyapunov function for the nominal process and applying a perturbation theorem. Another stability proof for a similar control structure with kinetic parameter estimation is given in [START_REF] Gonzalez | Regulation of lactic acid concentration in its bioproduction from wheat flour[END_REF].

An anti-windup mechanism is also added to the integral term of û to avoid integration accumulation under input saturation:

û = G 1 (X re f -X) + G 2 t 0 [(X re f -X) + u ω ]dτ u ω = K ω (u sat -u) (6.9)
where K ω is the anti-windup gain, . In the following, K ω is determined by trial and error.

Application of the GMC scheme to E. coli Cultures

As presented in the previous chapters, our goal behind controlling fed-batch fermentation of E. coli is to favor the biomass production, reach high cell densities, and maximize the biomass productivity. Acetate accumulation and its growth inhibiting effect must be taken into consideration during the control design.

In this chapter, we propose regulating the biomass growth rate by tracking a predetermined suboptimal biomass trajectory. The idea is to reproduce a theoretical biomass profile reference satisfying the control objectives and maintaining the culture as close as possible to the optimal conditions. The advantage of this approach is the low operating cost and practicality, since it relies only on the online biomass measurement which is provided by the turbidimetric probe with low measurement noise.

The reference biomass profile must satisfy the previously described control objectives. First, an exponential feeding reference F in re f profile given in [START_REF] Retamal | Parameter estimation of a dynamic model of Escherichia coli fed-batch cultures[END_REF] is applied to the system:

F in re f = µ set k XS X 0 V 0 e µ set t S in (6.10)
where µ set is the setpoint specific growth rate, and k XS is the yield coefficient defined as grams of produced biomass per grams of consumed substrate. An important step of the control design is to choose the reference growth rate µ set . We seek to track an exponential biomass reference trajectory corresponding to a constant growth rate, an initial substrate concentration lower than the critical value (S * < S crit ), and an initial acetate concentration equal to zero. This operating trajectory allows the process to evolve close to the edge between the respirative and respiro-fermentative modes, with a safety net that avoids the metabolic switches and favor cell growth.

The reference growth rate µ set should be carefully selected below the critical value µ set ≤ µ X , where µ X is the optimal growth rate. Figure 6.2 shows a simulation of the biomass productivity and acetate production for different values of µ set . The biomass productivity is defined by the following equation:

P X = 1 t f V t f X t f -V 0 X 0 S in V t f -V 0 (6.11)
Biomass productivity increases for increasing µ set values until µ set = 0.24 h -1 . For the sake of security with respect to possible model uncertainties offsetting µ X , µ set will be selected in the range [0.18, 0.22] in order to avoid acetate accumulation. 

GMC Design Using the Full-Order Model

The GMC scheme presented in the previous section is applied to the mechanistic model of the E. coli culture considering the biomass as the sole online measurement (y = X). Applying Equation (6.6), we obtain the following control law:

F in = V X (k X1 µ 1 + k X2 µ 2 + k X3 µ 3 )X -F (6.12)
provided that X = 0. In this expression, F is given by the following:

F = G 1 (X re f -X) + G 2 t 0 (X re f -X + F ω )dτ F ω = K ω (F sat -F in ) (6.13)
where K ω is the anti-windup gain, and F sat is the value of the saturation on the feed-rate F in . Unfortunately, the straightforward application of the GMC to the mechanistic model raises some problems. Accurate determination of the specific growth rates is difficult, since the kinetics are based on the overflow metabolism paradigm and are represented by metabolic switches. Moreover, an imposed biomass trajectory could possibly lead to high values of the flow-rate.

The biomass differential equation in respiro-fermentative mode is given by the following:

Ẋ = µ X X - F in V X (6.14)
where µ X = (k X1k X2 )q s crit + k X2 q s (6.15)

If the imposed biomass trajectory is exponential with a constant growth rate µ set , the correspondent feeding profile is given by:

F in = (µ X -µ set )V| X=X set (6.16)
The substrate dynamics is assumed to be fast and, therefore, in quasy-steady state (S = S set , Ṡ = 0) during the control period, implying the following:

Ṡ = µ S X - F in V (S -S in ) = 0 (6.17)
where

µ S = q s max S K s + S S=S set (6.18)
which leads to the following feed-rate profile:

F in = µ S (S in -S) XV S=S set (6.19)
Assuming a low production of acetate, equations (6.16) and ( 6.19) show that the reference feeding trajectory depends on the pair (X set ,S set ):

µ S (S in -S) X set ,S set = ( µ X -µ set X )
S set ,X set (6.20)

For each value of X set , two possible solutions for S set are obtained:

S set = (α 1 + α 2 X set ± α 3 + α 4 X set + α 5 X 2 set )/α 6 (6.21)
The expressions of the α j coefficients are given in appendix C. A numerical example with µ set =0.18 h -1 and X set =10 gL -1 is presented in Table 6.1. The first solution S set 1 is a low value of S, while the second solution S set 2 is rejected because it corresponds to a high value and physically non-achievable operating condition. The GMC controller based on the mechanistic model can reproduce the correct 6.3. Application of the GMC scheme to E. coli Cultures 93 biomass profile corresponding to the reference growth rate µ set . However, the system can converge to the undesired and unrealistic operating point corresponding to the high feed-rate. To avoid this behavior, a reduced model taking into account the low substrate concentration (during the control period) is presented hereafter.

GMC Design Using a Reduced Model

A control design based on a reduced model is developed by applying the singular perturbation technique [START_REF] Rocha | Model-based Adaptive Control Of Acetate Concentration During The Production Of Recombinant Proteins With E. Coli[END_REF]: the dynamics of substrate, oxygen, and carbon dioxide are considered much faster than the dynamics of biomass and acetate. Thus, the fast variables are considered to be in quasi steady-state and their dynamics are set to zero.

A fast-slow state partition is therefore proposed as follows:

ξ f =   S O C   ξ s = X A (6.22)
with indices f and s being respectively related to fast and slow dynamics. The dynamic system for the fast variables can be written from the system model:

  Ṡ Ȯ Ċ  ξ f =   -1 -1 0 -k O1 -k O2 -k O3 k C1 k C2 k C3   K f   ϕ 1 ϕ 2 ϕ 3   ϕ -D   S O C   ξ f +   DS in OTR -CTR   F f +Q f (6.23) where • D is the dilution factor (D = F in V ).
• K f is the stoichiometric matrix.

• ϕ is the reaction rate vector defined as ϕ = µ 1 X µ 2 X µ 3 X T Since the dynamics of these variables ( ξ f = 0) as well as the dilution effects (Dξ f = 0) are neglected, which are often several orders of magnitude smaller than the reaction terms, the following equation holds approximately:

K f ϕ + F f + Q f = 0 (6.24)
If K f is full rank, Equation (6.24) can be rewritten as follows:

ϕ = K -1 f (-Q f -F f ) (6.25)
The state space dynamics of the reduced model considering only slow variables is given by the following:

Ẋ Ȧ ξs = k X1 k X2 k X3 0 k A1 -1 K s   ϕ 1 ϕ 2 ϕ 3   ϕ - F in V X A ξ s (6.26)
Replacing the expression of ϕ from (6.25) in (6.26) yields the following:

ξs = K(-Q f -F f ) - F in V ξ s (6.27) where K = K s K -1 f = k 11 k 12 k 13 k 21 k 22 k 23 (6.28)
The following equation is for the biomass:

Ẋ = -k 11 F in V S in -k 12 OTR + k 13 CTR - F in V X (6.29)
where the parameters k 11 , k 12 , and k 13 are functions of the yield coefficients shown in Table 6.2. 

Parameter Expression

k 11 1 δ (k X3 (k C1 k O2 ) -k C2 k O1 -k X2 (k C1 k O3 -k C3 k O1 ) + k C3 k O2 ) + k X1 (k C2 k O3 -k c3 k O2 ) k 12 1 δ (k C3 k X1 ) -(k C3 k X2 ) -(k X3 (k C1 -k C2 )) k 13 1 δ (k O3 k X1 ) -(k O3 k X2 ) -k X3 (k O1 k O2 )) δ (k C1 k O3 -k C3 k O1 -k C2 k O3 + k C3 k O2 )
OTR and CTR can be calculated using the on-line measurements of the oxygen and carbon dioxide concentration using gas analyzers. The expressions of OTR and CTR under controlled conditions are given by [START_REF] Retamal | Parameter estimation of a dynamic model of Escherichia coli fed-batch cultures[END_REF]:

OTR = (k O1 µ 1 + k O2 µ 2 + k O3 µ 3 )X (6.30) CTR = (k C1 µ 1 + k C2 µ 2 + k C3 µ 3 )X (6.31)
From equations (6.3), (6.13) and (6.29), the following control law is obtained:

F in = -k 12 OTR + k 13 CTR - F X + k 11 S in V (6.32)
where F is still given by Equation (6.13) and assuming that X + k 11 S in = 0, which is satisfied in general.
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The advantage of the model reduction is that the desired operating condition (low substrate concentration) is directly embedded in the control algorithm.

Since OTR and CTR are not available for on-line measurement in our experimental setup and the biomass X is the sole measured variable, an adaptive GMC strategy is developed in the next section to reconstruct the unavailable signals, also adapting the control law subject to parameter uncertainty.

Adaptive GMC

The control law from Equation (6.32) contains the following unmeasurable and uncertain quantity: -k 12 OTR + k 13 CTR. Since the experimental setup is not equipped with gas analyzers, a kinetic parameter estimation scheme is developed and presented in this section. The biomass dynamics equation (6.29) can be rewritten as:

Ẋ = γ -D (X + k 11 S in ) (6.33)
where D = F in V , and γ is the uncertain and unmeasurable time-varying parameter given by: γ = -k 12 OTR + k 13 CTR (6.34)

We desire to model the dynamics of γ in order to apply a parameter estimation scheme. Let:

X * = X + k 11 S in (6.35)
Hence, Equation (6.33) can be written in a compact form, assuming that S in is constant: Ẋ * = γ -D X * (6.36)

Provided X * = X + k 11 S in is available for on-line measurement, γ can be estimated using a linear Kalman filter in the same way as presented in [START_REF] Gonzalez | Regulation of lactic acid concentration in its bioproduction from wheat flour[END_REF], where the production rate of lactic acid is estimated in continuous mode. Two estimation approaches are presented in the following, based on the classical discrete Kalman filter which offers simplicity and easy implementation.

Constant evolution of γ

First, γ is assumed to be constant, which is described by an exogeneous system:

Ẋ * = γ -DX * γ = 0 (6.37)
As biomass measurements are collected at discrete time (sampling time T s ), it can be convenient to discretize Equation (6.37) using, for instance, the Euler scheme Chapter 6. Generic Model Control of the biomass concentration (assuming a sufficiently small value of T s ):

X * k+1 γ k+1 = -D k T s + 1 T s 0 1 X * k γ k + v 1,k v 2,k (6.38) X * k = 1 0 X * k γ k + w k (6.39)
where D k is the dilution rate at the time instant

t k (D k = F in k V k
), assumed to be piecewise constant. v k and w k are respectively the process and measurement noises, assumed to be centered Gaussian white noises with covariance matrices Q const and R const , respectively. The covariance matrix of the estimation error on the state vector [X k γ k ] T is denoted P const .

Ramp evolution of γ

Considering a ramp evolution of γ, Equation (6.37) becomes:

Ẋ * = γ -DX * Γ = γ = 0 (6.40)
As in the previous case, the model is discretized using Euler scheme and additive noises are considered:

  X * k+1 γ k+1 Γ k+1   =   -D k T s + 1 T s 0 0 1 T s 0 0 1     X * k γ k Γ k   +   v 1,k v 2,k v 3,k   (6.41) X * k = 1 0 0   X * k γ k Γ k   + w k (6.42)
The covariance matrices of v k and w k , as well as the error on the state vector [X k γ k Γ k ] T are denoted Q Lin , R Lin , and P Lin respectively.

Kalman filtering

After modeling the dynamics of γ, a discrete Kalman filter [START_REF] Welch | An Introduction to the Kalman Filter[END_REF] can be applied to estimate the evolution of X * and γ . The updated control structure is summarized in Figure 6.3.

X re f PI Controller Linearizing law û = F u = F in X Kalman Filter γ , X - FIGURE 6.3: GMC combined with the Kalman filter
The updated control law, after including the estimated parameter γ becomes:

F in = γ - F X + k 11 S in V (6.43)
The performances of both exogenous models will be compared in the next section.

Numerical simulations

This section highlights the control scheme performance using numerical simulations, based on the mechanistic model presented in chapter 2. The initial conditions and the different control and estimation parameters are given in Table 6.3. 

Initial conditions     X 0 S 0 A 0 V 0     =     1.42 gL -1 0.5 gL -1 0.5 gL -1 3.15 L     T s = 0.05 h Control parameters G 1 = 6, G 2 = 9, k ω = 0.2 ξ = 1, t r = 1 h ω 0 = 3 t r = 3 rad/h Reference characteristics F in re f = µ set k XS V 0 X 0 e µ set t S in µ set = 0.18 h -1 , k XS = 0.2 Estimator parameters P Lin = diag([0.1 1 1]) Q Lin = diag([0.01 0.1 0.1]) P Const = diag([0.1 1]) Q Const = diag([0.01 0.1]) R Const = R Lin = 0.1

Parameter estimation

First, the Kalman filter is tested with both the constant and ramp exogenous models for γ. Figure 6.4 shows the evolution of the variable γ constructed with the computation of OTR and CTR, and its estimate using both the constant and ramp exogenous models. The estimator convergence is achieved in 20 mn after a transient phase. Both exogenous models yield good performance of the Kalman filter.

However, the ramp model presents a better performance regarding the initialization error as shown in Table 6.4. In the following (and in the experiments), the ramp model is applied to estimate the kinetic parameter γ. 

Model

Constant Ramp RMSE (gL -1 h -1 ) 0.0139 0.0030

GMC performance

Next, the control strategy is tested assuming that the variables are directly measurable (no parameter adaptation). Figures 6.5 to 6.7 show the simulation results of the GMC strategy based on the nominal and reduced models. The initial conditions and control parameters are the same in both scenarios, and all the state variables are assumed to be measurable. In both cases, the biomass is regulated and the exponential reference trajectory is tracked after 0.8 h, the convergence time is identical for the two models as can be seen in Figure 6.6. The offset due to initialization and model mismatch is forced to zero by the integral term in the GMC control formulation. However, in the case of the controller based on the full-order model, simulation shows that the feed-rate reaches unrealistic high values, as well as the substrate concentration which gets close to S in . Indeed, as established in the previous sections, for every set biomass value X set , two possible substrate concentrations can be obtained from the model, and only one corresponds to realistic growth conditions.

Conversely, in the case of the control law derived from the reduced model formulation, the system converges to the desired trajectory corresponding to low substrate concentration. The substrate and the acetate concentrations are in the expected practical range, and the calculated flow rate is more realistic.

While the full-order system may indeed converge to both substrate solutions, the reduced model, established under the assumption of low dilution rates, i.e. Dξ f = 0 and therefore F in will always converge to the expected realistic trajectory. 

Robustness of the control scheme

The GMC controller and the Kalman filter are now combined. To test further the robustness of the proposed controller, a sequence of Monte Carlo simulations is achieved, with 15% relative uncertainty on the plant parameters following a normal distribution, with the same control setting as the previous simulations. 500 Monte Carlo (MC) simulations were performed, and the histogram of the parameter k11 during the MC runs is shown in Figure 6.8. The biomass, substrate, acetate, and flow rate time evolutions are presented in Figure 6.9. In all the runs, the corresponding reference substrate concentration S set is reached, and the acetate concentration is equal to zero at the end of the culture, ending in respiratory mode. However, parameter variations imply a distribution of the final biomass concentration. Nevertheless, the goal of reaching high biomass concentrations while keeping the culture in good operating conditions is achieved in all experiments. Comparably to the set-point change illustrated in Figure 6.12, the same simulation is achieved with a trajectory change from µ set = 0.18 h -1 to µ set = 0.22 h -1 at t= 3 h, before returning to µ set = 0.18 h -1 at t= 6 h. Obviously, the controller is able to handle all of these types of disturbances, providing a fast and robust behavior. 

Comparison with classical control strategies

In order to compare the performance of the proposed GMC strategy with other regular control schemes, a simulation is performed with a GMC controller, a first order linearizing controller (FOC) [START_REF] Bastin | On-line estimation and adaptive control of bioreactors[END_REF][START_REF] Rocha | Model-based strategies for computer-aided operation of recombinant E. coli fermentation[END_REF] and a PID controller. A reference profile is imposed with µ set = 0.18 h -1 , and the process parameter are considerer to have a 15 % variation around their nominal values.

The first order linearizing controller has the same structure as the GMC but without the integral term as in:

F = G 1 X re f -X (6.44)
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The PID controller has the following transfer function:

C(s) = K p + K i 1 s + K d s 1 + T f s (6.45)
The PID parameters are chosen to have an overall dynamic behaviour close to the one obtained by the GMC, the parameters values are:

K p = 0.07 L 2 g -1 h -1 , K i = 0.01 L 2 g -1 h -2 , K d = 0.01 L 2 g -1 , T f = 0.5 h.
The first order controller gain G 1 is chosen equal to the GMC proportional gain.

It is noteworthy to point out that in the case of the PID controller, a metabolic switch from the respirative to the respiro-fermentative mode occurred at t=13 h, leading to acetate formation due to substrate excess (S > S crit ), and thus the control output (feed-rate) strayed from its initial exponential curve. 

Experimental results

Two fed-batch experiments were performed to challenge the controller under real experimental conditions. The control and estimation parameters are given in Table 7.4. The control parameters G 1 and G 2 were tuned in simulation, the chosen 6.6. Experimental results 107 response time t r is equal to 1 h (ω 0 = 3rad/h), and the damping ratio is fixed at ξ = 1. As far as the parameter γ estimation, the ramp model was used during the experiments. Biomass, glucose, acetate concentrations, as well as the feed flow rate are shown in Figures 6.14 and 6.16. Operating conditions are also shown in Figures 6.15 and 6.17. TABLE 6.6: Control and estimation parameters used in the experiments

Sampling time T s = 0.05 h GMC parameters G 1 = 6, G 2 = 9 ξ = 1, t r = 1 h, ω 0 = 3 rad/h Reference F in re f = µ set k XS V 0 X 0 e µ set t S in µ set = 0.18 h -1 , k XS = 0.22 Estimator covariance matrices P Lin = diag([0.1 1 1]) Q Lin = diag([0.01 0.1 0.1]) R Lin = 0.1
During the fermentations, the initial biomass concentration ranged from 0.1-0.3 gL -1 and reached 1.5-1.7 gL -1 by the end of the batch phase, characterized by glucose depletion. The on-line flag for the end of the batch phase is the sudden increase of the pH, and consequently the decrease of base addition, as can be seen in Figures 6.15 and 6.17. The fed-batch phase starts around 6-8 h of culture time, and the control algorithm is launched. During this period, the RPM increases due to the important glucose oxidation inducing an increasing cell demand for oxygen. Base is added to compensate the pH decrease. The imposed reference trajectory is µ set = 0.18 h -1 and the algorithm is launched with an initial biomass concentration lower than the measured one to avoid excessive feeding at the start of the fed-batch. In Figures 6.14 and 6.16, the biomass maintains an exponential growth close to the reference trajectory showing that the regulation is efficient. The glucose concentration remains close to zero and almost constant during the fed-batch phase of both experiments, confirming the fast dynamics assumption presented in the model reduction section ( Ṡ = 0).

The acetate concentration remains under 2 gL -1 during both experiments. The evolution indicates a metabolic switch between respirative and respirofermentative modes, as can be seen in Figure 6.14 where the acetate concentration increases from 0.5 to 1.7 gL -1 due to overflow, and when the glucose is nearly depleted at t=4h, the acetate concentration starts to decrease, i.e the culture is in respirative mode. This behavior is reproduced during experiment 2 (Figure 6.16).

The Generic Model Controller performance, in terms of robustness, is quite satisfactory. The controller is able to maintain the biomass tracking error close to zero in both experiments despite the model mismatch resulting from modeling uncertainties and the use of basic minimal growth media (M9). The controller manages to adapt to the variations in the biomass signal by acting on the feed flow rate. We can see in experiment 1 (Figure 6.14) that the flow rate follows an exponential rate but is, however heavily distorted, due to the noisy biomass measurements. We can see in Figure 6.18 that measurement noise indeed affects γ estimation and, in turn, the calculated controller input. In the following experiments, a low pass filter is applied to the turbidimetric probe to reduce the measurement noise caused by airflow injection, leading to smoother profiles.

Conclusion

In this chapter, we presented a control strategy to regulate the biomass concentration in fed-batch E. coli BL21 (DE3) cultures. The considered control strategy is the Generic Model Control, based on input-output linearization of the nonlinear output equation and a proportional-integral control law.

Model reduction is applied to the mechanistic model presented in chapter 2, in order to obtain a control law which is independent of the kinetic terms (specific growth rates), and to avoid high feeding rates. A parameter estimation is coupled with the controller to predict the unmeasured kinetic terms in the control law, and adapt to model uncertainties and unpredicted dynamics.

Numerical simulations are carried out to test and tune the control and estimation algorithms. Results show that the accuracy and robustness of the proposed control strategy are quite satisfactory. The adaptation law was able to reconstruct the unmeasured dynamics, however, the closed-loop system is vulnerable to model mismatch and strong disturbances. A robust control design is required to take into account the effect of parametric uncertainties.

Fed-batch experiments of a BL21(DE3) E. coli strain are achieved with a labscale bioreactor and results show that the biomass concentration profile correctly tracks the given reference, and the controller manages to keep the culture in suitable growth conditions.

The experiments on the real lab-scale process showed that the combination of the Generic Model Control and the parameter adaptation is able to achieve the control objectives under real-time conditions. The biomass trajectory tracking is performed adequately despite the presence of disturbances and model mismatch.

The combined GMC-Kalman strategy has several interesting features. First, the development and design cost are fairly minimal, making its implementation on complex or old experimental setups simple and effective. The integration of the control scheme on an existing process does not require heavy modifications of the hardware and software configurations. In the present setup, only on-line biomass measurements are used, but the availability of a gas analyzer could provide missing information on OTR and CTR leading to a simplification of the control law. The proposed strategy can also be used to reproduce "golden batches" while adapting to disturbances due to the change in culture conditions.

Another advantage is the fact that the control law is calculated through simple algebraic equations, and doesn't require real-time solving of complex nonlinear differential equations. This feature lowers the computation complexity of the control scheme, and makes it easily integrable in most monitoring hardware.

The availability of the biomass measurements makes the control scheme very practical. The estimation of the state variables is not required since the measured variable is the controlled variable, and the parameter estimation is performed using a linear Kalman filter.

Finally, the addition of on-line kinetic parameter adaptation strengthens the robustness of the closed-loop system towards unpredictable dynamics.

However, despite its interesting features, the control strategy has some limitations concerning the metabolic performance. The controller aims at regulating the biomass concentration with a defined growth rate lower than the critical one to avoid overflow metabolism. According to the bottleneck theory, this suboptimal targeted growth rate can correspond to either the respirative or respirofermentative regimes. However, the observed behavior is that the cells operate mainly in respirative regime.

While the acetate accumulation is avoided by operating in this mode, deviations from the reference growth rate (due to strong model mismatch, parameter variation due to oxygenation conditions, or strong disturbances on the biomass measurements) can lead to a drop in the biomass production yield and biomass productivity compared to the expected theoretical values. Furthermore, this deviation can also cause an accumulation of the acetate if the culture switches to the respiro-fermentative mode without any informative on-line indication for the user on the biomass signal.

A practical solution to this problem is to regulate the acetate concentration at a low value, as it is directly linked to the growth rate. This approach requires robust state estimation, raising the complexity of the control strategy, but on the other hand improving the process productivity. The next chapter presents a robust GMC control strategy to regulate the acetate concentration at a defined low value. 

Introduction

Acetate accumulation in fed-batch Escherichia coli cultivations affects the bioprocess efficiency and the biomass productivity [START_REF] Han | Acetic acid formation in escherichia coli fermentation[END_REF][START_REF] Luli | Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations[END_REF][START_REF] Van De Walle | Proposed mechanism of acetate accumulation in two recombinant Escherichia coli strains during high density fermentation[END_REF]. Acetate presence in high concentrations causes the inhibition of the cell respiratory capacity, leading to the decrease of biomass production yield and consequently the decrease of the recombinant protein production [START_REF] Riesenberg | High cell density cultivation of Escherichia coli at controlled specific growth rate[END_REF][START_REF] Rothen | Growth characteristics of Escherichia coli HB101[pGEc47] on defined medium[END_REF].

Operating the process with a sufficiently low feed rate is a straightforward solution to avoid acetate accumulation. However, it does not allow reaching the full potential of the bioprocess since it leads to low productivity and high cultivation time. It is therefore required to determine a closed-loop feeding strategy that maximizes biomass productivity while avoiding overflow metabolism [START_REF] Srinivasan | Terminal-cost optimization of a class of hybrid systems[END_REF].

Several optimization schemes and process control architectures have been developed to reduce or avoid overflow metabolism (Dewasme et al., 2011a,b;[START_REF] Gonzalez | Regulation of lactic acid concentration in its bioproduction from wheat flour[END_REF]Hulhoven et al., 2006b;[START_REF] Deb ; Jenzsch | Open-loop control of the biomass concentration within the growth phase of recombinant protein production processes[END_REF][START_REF] Rocha | Model-based strategies for computer-aided operation of recombinant E. coli fermentation[END_REF]Santos et al., 2012a;[START_REF] Valentinotti | Optimal operation of fed-batch fermentations via adaptive control of overflow metabolite[END_REF].

Two main control approaches can be categorized. The first approach, presented in the previous chapter, consists of regulating the specific biomass growth rate [START_REF] Abadli | Generic model control applied to E. coli BL21(DE3) Fed-batch cultures[END_REF]Jenzsch et al., 2006b) and imposing a reference biomass evolution profile. This type of control is made possible by the availability of reliable on-line biomass probes which allows convenient real-time implementation. However, the definition of a biomass reference profile is not straightforward as it relies on prior process knowledge (i.e., a growth model based on past experimental observations), and in practice, a suboptimal solution is often selected by targeting a reference slightly lower than the maximal growth rate, in order to ensure sufficient margin of security.

As seen in the previous chapter, limiting the specific growth rate presents some practical and metabolic limitations since its maximal level depends on the cells' oxidative capacity, which is by essence, uncertain. Therefore, targeting a growth rate close to its maximal value could lead to several uncontrolled metabolic switches provoking latencies. An example can be found in [START_REF] Kleman | Acetate metabolism by Escherichia coli in high-cell-density fermentation[END_REF] where the glucose and oxygen consumption rates and CO 2 evolution rate suddenly and reproducibly decreased, causing a break of the metabolism for a period of 40 min and a drop in the biomass productivity.

The second approach consists of regulating either the substrate or the byproduct concentration at specific levels (Dewasme et al., 2011a,b;Santos et al., 2012a). The substrate concentration should be close to a threshold corresponding to the critical oxidative capacity, while the by-production concentration should be close to zero. This approach was considered for several biological processes characterized with overflow metabolism such as Saccharomyces cerevisiae [START_REF] Pic Ó | Geometric invariance and reference conditioning ideas for control of overflow metabolism[END_REF]. The main challenge in E. coli fed-batch cultures is the difficulty of on-line implementation due to the requirement of accurate measurements of low-level concentrations of acetate and/or glucose.

This chapter proposes a control strategy combining the Generic Model Control with a software sensor to monitor and regulate the acetate concentration on-line. The approach is tested and validated through experimental runs on a lab-scale bioreactor.

An experimental implementation of linearizing control to fed-batch cultures of Escherichia coli cultures is published in [START_REF] Rocha | Model-based strategies for computer-aided operation of recombinant E. coli fermentation[END_REF], where the acetate concentration is regulated to a pre-defined set-point. However, the control strategy relies on accurate knowledge of the model parameters, which is a significant drawback since a bioprocess model is always uncertain. Parameter adaptation strategies are usually applied to compensate the uncertainty in the kinetic terms of the process 7.2. GMC control of the acetate concentration 115 model. However, stability is not guaranteed in the presence of unmodeled dynamics and high noise levels, this is why we propose a robust control design procedure, which will alleviate this difficulty.

Moreover, the control loop developed in [START_REF] Rocha | Model-based strategies for computer-aided operation of recombinant E. coli fermentation[END_REF] is based on a flow injection analysis (FIA) device, whose market distribution has been disrupted, and no other similar device has been (re)developed in the meantime. The use of state estimation, or software sensors, seems therefore the most appropriate solution to avoid the burden of complex, unreliable sensing techniques. The results reported in [START_REF] Rocha | Model-based strategies for computer-aided operation of recombinant E. coli fermentation[END_REF] show that exponential growth could not be sustained in the experimental studies, which might be an indication of the lack of accuracy of the FIA device. In this study, we propose an Unscented Kalman Filter (UKF) for the on-line reconstruction of the acetate concentration.

In this chapter, a robust version of the Generic Model Control (GMC) strategy is developed to control the acetate concentration to a low pre-defined value. LMIs are considered in the control synthesis to derive the GMC control gains. The control design includes performance requirements using the regional pole placement technique. The approach ensures both the robust stability of the process in the presence of model uncertainties and process and measurement noise, and the desired transient performance of the closed-loop system.

Experimental implementation of the proposed strategy on a lab-scale reactor is performed to validate the control and estimation performance. Finally, a comparative discussion with the growth regulation strategy developed in chapter 6 is presented at the end of this chapter.

GMC control of the acetate concentration

Control objective

As described in previous chapters, the goal behind the control strategies is to drive the culture near the optimal operating conditions to maximize the biomass productivity. These conditions lie at the boundary of the respiro-fermentative and respirative modes (Dewasme et al., 2011a;[START_REF] Rocha | Model-based strategies for computer-aided operation of recombinant E. coli fermentation[END_REF], where all the available substrate is assumed to be allocated for biomass production, and the acetate is neither produced nor consumed.

Maintaining the culture at the edge between the respirative and respirofermentative modes requires controlling the substrate concentration to the critical value S crit . An efficient on-line substrate measurement around this value is required, but the concentration level is below the resolution of currently available glucose probes (Dewasme et al., 2011a).

In the previous chapter, we proposed a solution to avoid acetate accumulation by regulating the biomass growth rate at a defined value, chosen slightly lower than the maximal growth rate. This choice was motivated by the availability of reliable biomass measurements, and the lack of on-line substrate and acetate measurements at low levels.

In this chapter, we propose another solution to avoid overflow metabolism by regulating the acetate concentration around a low value A re f . This value should be chosen as close to zero as possible in order to maintain the process near the optimal metabolic edge. On the other hand, a safety margin should be taken to avoid metabolic switches between the operating regime and the accuracy of the estimation procedure (around 0.1 g/L) (Dewasme et al., 2011a).

It is reported in [START_REF] Pinhal | Acetate metabolism and the inhibition of bacterial growth by acetate[END_REF] that industrially relevant inhibitory levels of acetate concentration are on the order of 100 mM (6 g/L). The authors studied the effect of acetate presence in the culture medium on E. coli metabolism and showed that a concentration of 16.67 mM (1 g/L) corresponds to less than 20% drop in the growth rate compared to its maximal value.

Based on these elements, the control objective will be the tracking of a defined low acetate concentration reference A re f chosen between 0.3-2 g/L.

Control design

The GMC paradigm presented in the previous chapter is applied to regulate the acetate concentration in fed-batch E. coli cultures. The control structure is illustrated in Figure 7.1. Considering acetate concentration as the controlled output, and assuming its availability for measurement (y = A).

A re f GMC e F in A [X, S, A, V] - FIGURE 7
.1: Generic model control applied to fed-batch E. coli cultures to regulate the acetate concentration

We recall the E. coli model equations presented in chapter 2:

Ẋ = (k X1 µ 1 + k X2 µ 2 + k X3 µ 3 )X -D X (7.1a) Ṡ = -(µ 1 + µ 2 )X -D (S -S in ) (7.1b) Ȧ = (k A2 µ 2 -µ 3 )X -D A (7.1c) V = F in (7.1d)
As the theoretical value of S crit is very small (below 0.1 g/L) and assuming a quasi-steady state of S (i.e. no accumulation of glucose in the neighborhood of 7.3. Robust control design 117 the optimal operating conditions), the small quantity of substrate VS is almost instantaneously consumed by the cells ( d(VS) dt ≈ 0 and S ≈ 0), and Equation (7.1b) yields:

µ 2 X = -µ 1 X + DS in (7.2)
where µ 1 and µ 2 are nonlinear functions of S, A and O. Replacing µ 2 X by Equation (7.2), the mass balance equation of A (Equation (7.1c)) can be expressed as:

Ȧ = -k A2 µ 1 X -µ 3 X -u (A -k A2 S in ) (7.3)
where u = D = F in V is the control input. Applying the GMC scheme introduced in chapter 6 yields:

Ȧ = û = G 1 (A re f -A) + G 2 t 0 (A re f -A)∂τ (7.4)
Equating ( 7.3) and (7.4), the following control law is obtained:

F in = V û + (k A2 µ 1 + µ 3 ) X k A2 S in -A (7.5) û = G 1 (A re f -A) + G 2 t 0 (A re f -A)∂τ (7.6)
where (k A2 µ 1 + µ 3 ) is an assumed uncertain kinetic term. The next section there- fore explores a robust control design in order to compensate this uncertainty.

Robust control design

The linearizing control law obtained in the previous section can be written in the following form:

F in = V û + θX k A2 S in -A û = G 1 (A re f -A) + G 2 t 0 (A re f -A)∂τ (7.7)
where θ is the kinetic term given by:

θ = k A2 µ 1 + µ 3 (7.8) M w û e x K FIGURE 7.2: Robust control scheme
The state-space matrices are given by:

A M = 0 0 1 0 B w = δ 0 0 0 B u = -1 0 C e = [1 0] D ew = [0 0] D eu = 0 (7.15)
and the representation of the closed-loop system is therefore given by:

ẋ e = A f B f C f D f x w = A M + B u K B w C e + D eu K D ew
x w (7.16)

Robustness constraints

The control design problem consists in determining the controller parameters G 1 and G 2 so as to limit the infinity norm of the closed-loop transfer function within a predefined performance index [START_REF] Chilali | H ∞ design with pole placement constraints: An LMI approach[END_REF],

( T(s) = D f + C f sI n -A f -1 B f ∞ < γ ∞ )
, where s is the Laplace variable. First, the following assumptions on the plant parameters are considered: Assumption 1. The pair (A M , B u ) and (A M , C e ) are respectively stabilizable and detectable

Assumption 2. D eu = O n e ,n u
Under the previous assumptions, the Bounded Real Lemma [START_REF] Chilali | H ∞ design with pole placement constraints: An LMI approach[END_REF] for continuous-time systems gives an equivalent LMI formulation of the control problem: Lemma 1. The H ∞ norm of the continuous-time transfer function T(s) associated to the closed-loop system (7.16) is strictly smaller than γ ∞ if and only if there exists a symmetric positive definite matrix Q ∞ verifying:

Q ∞ > 0    A f Q ∞ + Q ∞ A T f B f Q ∞ C T f B T f -γ ∞ I n w D T f C f Q ∞ D f -γ ∞ I n e    < 0 (7.17)
According to the bounded real lemma, the closed-loop system (7.16) is stable if and only if there exists:

Q ∞ = Q T ∞ > 0 verifying:   AQ ∞ + B u KQ ∞ + Q ∞ A T + Q ∞ K T B T u B w Q ∞ C T e + Q ∞ K T D T eu B T w -γ ∞ I n w D T ew C e Q ∞ + D eu KQ ∞ D ew -γ ∞ I n e   < 0 (7.18)
Considering L = KQ ∞ , the following LMI is obtained:

  AQ ∞ + B u L + Q ∞ A T + L T B T u B w Q ∞ C T e + L T D T eu B T w -γ ∞ I n w D T ew C e Q ∞ + D eu L D ew -γ ∞ I n e   < 0 (7.19)
and the controller given by K = LQ -1 ∞ ensures a level of robustness w.r.t the bounded uncertainty δ. Next, the desired performance constraints are defined and added to the robustness condition (7.19).

Performance constraints

Besides ensuring the robustness of the closed-loop, it is desirable to achieve some performance in terms of the transient response (e.g. damping, response time, etc.). In other words, constraints are added to the location of closed-loop poles of system (7.16).

For a second-order system with poles λ = -ζω n ± jω d , the step response is characterized by the undamped natural frequency ω n = |λ|, the damping ratio ζ, and the damped natural frequency ω d . To ensure a desired transient response, specific bounds are imposed on these quantities, thus constraining the closed-loop poles λ in a prescribed region of the complex plane. Pole placement constraints can be expressed using LMI regions, which are known to have interesting geometric properties for control purposes (convexity, symmetry, ...) [START_REF] Chilali | H ∞ design with pole placement constraints: An LMI approach[END_REF]. A suitable region satisfying this criterion is the intersection of the half-plane s < -ρ < 0, the disk of radius r and the conic sector defined by an angle Θ. The corresponding region S(ρ, r, Θ) (Figure 7.3) is defined as follows:

S(ρ, r, Θ) = {a < -ρ < 0, |s = a + jb| < r, a tan(Θ) < -|b|} (7.20)
In this way, it is possible to set a minimum decay rate ρ, a minimum damping ratio ζ = cos(Θ), and a maximum damped natural frequency ω d = rsin(Θ) [START_REF] Wood | Automatic control systems[END_REF].

The poles of the closed-loop system (7.16) are contained in the region S(ρ, r, Θ), if there exists a symmetric positive definite matrix Q = Q T verifying [START_REF] Chilali | H ∞ design with pole placement constraints: An LMI approach[END_REF]: 

A f Q + QA T f + 2ρQ < 0 -rQ A f Q QA T f -rQ < 0   sin Θ A f Q + QA T f cos Θ A f Q -QA T f cos Θ QA T f -A f Q sin Θ A f Q + QA T f   < 0 (7.21)
Our control design problem consists then in finding a state-feedback gain K that:

• guarantees the H ∞ performance T(s) ∞ < γ ∞ .

• places the closed-loop poles in the LMI region S(ρ, r, Θ) defined by Equation (7.20).

The first criterion (robustness) is ensured by solving Equation (7.19), and computing the matrix Q ∞ . On the other hand, a sufficient condition to ensure the performance constraints given by Equation (7.21) is to take Q = Q ∞ [START_REF] Chilali | H ∞ design with pole placement constraints: An LMI approach[END_REF], yielding:

A f Q ∞ + Q ∞ A T f + 2ρQ ∞ < 0 -rQ ∞ A f Q ∞ Q ∞ A T f -rQ ∞ < 0   sin Θ A f Q ∞ + Q ∞ A T f cos Θ A f Q ∞ -Q ∞ A T f cos Θ Q ∞ A T f -A f Q ∞ sin Θ A f Q ∞ + Q ∞ A T f   < 0 (7.22) Parameter Value Unit σ X 0.01 g/L σ S 0.1 g/L σ A 0.1 g/L σ V 0.001 g/L r X 0.01 g/L P 0 10 -4 × I 4 g/L [α, β, κ] [1, 2, 0] - X 0 0.1 g/L S 0 5 g/L A 0 0.1 g/L V 0 3.5 L S in 500 g/L
First, the performance of the robust GMC design based on the LMI approach with the regional pole assignment is tested. The control objective is to regulate the acetate set-point A re f , chosen sufficiently low to approach the neighborhood of the optimal trajectory but also sufficiently high to stay within the limit of the 7.4. Numerical simulations 123 observation sensitivity (0.1 g/L) and maintain the culture in respiro-fermentative mode. The acetate concentration is assumed available on-line for feedback, with the consideration of measurement noise.

The first step in our design approach is to define upper and lower bounds for the parametric uncertainty δ. The expression of the kinetic parameter θ is given by:

θ = k A2 µ 1 + µ 3 (7.23)
The expression of the uncertain term θ, and the kinetic terms µ 1 and µ 3 contain the parameters k A2 , K s , K iA , k OS , K A . Additionally the GMC control law contains the parameter k A2 . These parameters can deviate from their nominal values, thereby deviations of maximum 15% are considered. In addition, the parametric sensitivity study presented in appendix D shows that the parameters q S max , q O max , k X2 , have an influence on the acetate concentration. Consequently, the range ∆ can be defined by δ = 0 and δ = 0.1.

Regarding the performance constraints, we desire to enforce a maximal settling time T s = 4 ζω n = 4 ρ equal to 2 h, and to prevent fast controller dynamics. To this end, we characterize the section S(ρ, r, θ) as the intersection of the halfplane x < -ρ = -4 T s with the disk of radius r = 4 centered at the origin, and the conic section defined by Θ = π 2 rad. In light of these constraints, the LMIs (Equations (7.19) and (7.22)) are solved numerically using the solver SeDuMi [START_REF] Sturm | Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones[END_REF] and the following results are obtained:

Q ∞ = 0.143 -0.034 -0.034 0.015 K T = G 1 = 5.61 G 2 = 9.55 (7.24)
corresponding to the following damping ratio and natural frequency:

ζ = 0.91 ω n = 3.09 rad/h (7.25)
satisfying the performance constraints regarding the settling time T s = 4 ζω n = 1.43 h. It can be seen in Figure 7.4 that the obtained poles are located in the chosen region of the complex plane. A re f = 0.5 g/L and kinetic parameter deviations. A white noise is added to the acetate concentration measurement with zero mean and a standard deviation of 0.1 g/L. In all the runs, biomass follows a similar exponential growth in the first hours, while the model errors show their effect in the final hours. Nevertheless, the model uncertainties have a minor influence on the controller performance as can be observed in the acetate evolution, where the set-point is regulated and robust convergence is achieved by the controller. The noisy acetate signal has a mean value of 0.49 g/L and the tracking error (A re f -A) has a RMSE of 0.0314 g/L which is lower than the measurement noise amplitude (0.1 g/L). Note that the maximal 2 h settling time condition is also satisfied. The different biomass productivity levels in all runs are shown in Figure 7.8, where the productivity remains higher than 90 % of the nominal value in 90% of the runs, which is satisfactory from an operational point of view. •10 -2 time (h)

F in (L/h) FIGURE 7
.9: Coupled UKF-GMC with random parameter values (±15% variation) and a white measurement noise (std =0.1 g/L)).

Finally, the UKF and robust GMC are coupled, and their overall performance 7.4. Numerical simulations 127 assessed in a new set of numerical simulations. The UKF initial conditions are selected randomly with a maximum deviation of 20% from the real values. Kinetic parameter variations of ±15% of the nominal values and a white measurement noise with a standard deviation of 0.1 g/L are considered. As shown in Figure 7.9, the UKF behaves very well and converges in the first hours to the real state trajectories. We can observe small estimation errors with peaks and troughs around the real substrate value when the substrate (glucose) concentration reaches a critical level of S crit . Fortunately, this is not too detrimental for the controller which is still able to track the acetate concentration reference set-point.

Comparison with the classical GMC

In order to test further the performance and robustness of the control approach, a comparison is achieved with the classical GMC algorithm presented in [START_REF] Lee | Generic model control (GMC)[END_REF]. The parameter tuning is performed by selecting a desired rise time t r . In the presented simulations, the following parametrization for the classical approach is chosen:

ξ = 1, t r = 2 h, G 1 = 3, G 2 = 2.25
The classical and the robust controllers are tested in the ideal model case (no parameter variation), and in the case of a random variation in all model parameters up to ±30% of their nominal value. We assume that the acetate concentration is available for measurements, with additive centered white noise with a standard deviation of 0.05 g/L. A series of 100 Monte Carlo (MC) simulations is performed and the results are summarized in Table 7.2.

The results of one simulation are shown in Figure 7.10, where both approaches perform similarly in the ideal model case. However, we can see that with increasing levels of parameter variation, the robust GMC performs better in terms of reference tracking. The mean square errors (e A ) and the mean acetate concentration (A) summarized in Table 7.2 show that the robust tuning of the parameters allows the controller to achieve the control objective accurately. We can also observe that a ±30% variation is the breakpoint of both methods, with a slight advantage to the robust GMC design. Note that the robust GMC design was performed assuming a maximum of 15% variation of the plant parameters. 

Experimental results and discussion

Two control experiments were performed to test the tracking performance and robustness of the developed UKF-GMC strategy in a real-time environment. Each experiment consisted of a batch phase followed by a fed-batch phase (control 

Culture evolution

The control parameters and acetate references for each experiment, as well as the values for the measurement and process noise covariance matrices are given in Table 7.4. After reaching the desired operating conditions, the reactor is inoculated with the seed culture, and the batch phase begins. As shown in Figures 7.11 and 7.13, the initial biomass concentration in the reactor ranges from 0.1-0.2 g/L. During this phase, the biomass follows an exponential growth and reaches up to 2 g/L. Since glucose consumption leads to acetate production, the culture is in respirofermentative mode. Note that the estimation algorithm is launched during the batch phase.

The batch phase lasts for 4-5 h, and ends after the consumption of the glucose in the medium. On-line indicators of the glucose depletion are the sudden decrease of the stirring speed due to the decrease of cell demand for oxygen, the sudden increase of the pH combined with the stagnation of injected base volume. . Practically, the feeding (control) should be launched slightly before the complete depletion of glucose, to prevent the interruption of cell growth, and avoid a possible metabolic switch (acetate consumption) as small delays in reprising the growth have been observed in previous experiments. These delays can affect the control performance at the beginning of the fed-batch phase, leading to undesired transitory behaviors. To this end, off-line glucose measurements are performed at every sampling point (1 h), and the control algorithm is launched when the glucose level is below 0.5 g/L.

In experiment 1 (Figure 7.12), the batch phase lasted for 4 h after the almost complete consumption of the glucose in the medium. The fed-batch phase started right after measurement of a low glucose concentration. The first on-line appeared around 5 h, as the pH increase, stirring speed decrease, and base stagnation indicate the consumption of acetate and the drop of the glucose concentration below the critical level. This occurrence of the metabolic switch during the control phase gives the controller the ability to adjust the feeding depending on the culture conditions.

Similarly in experiment 2 (Figure 7.14), the batch phase lasted 5h due to the lower initial biomass concentration, and higher initial acetate concentration. The feeding started while the glucose was not completely consumed and the acetate concentration was higher than the setpoint. A peak can be observed at 5 h indicating an adaptation of the feed by the controller to reduce the acetate and glucose concentrations. The online flags of glucose depletion and metabolic switch can be observed right after the start of the fed-batch phase.

The GMC controller is launched after setting up the acetate reference and the control parameters. The feed solution is injected by the controller and the cells resume their growth, resulting in an increase of the stirring speed due to the glucose oxidation, and the decrease of pH due to CO 2 emission which requires base addition to maintain the pH around its set-point.

The fed-batch phase continues until reaching the saturation limit of the turbidimetric probe (around a biomass concentration of 8 g/L). The maximum attainable cell density depends on the oxygenation limitation related to the bioreactor scale as can be observed in several studies [START_REF] Dewasme | Linear robust control of S. cerevisiae fed-batch cultures at different scales[END_REF][START_REF] Retamal | Parameter estimation of a dynamic model of Escherichia coli fed-batch cultures[END_REF][START_REF] Rocha | Model-based strategies for computer-aided operation of recombinant E. coli fermentation[END_REF]. Therefore, the end of the fed-batch phase is forced by either an exhausted feed medium, or the limiting oxygenation conditions.

Acetate and glucose estimation

As presented in the simulation section, the on-line biomass concentration measurement provided by the turbidimetric probe, and the kinetic model with identified parameter values from [START_REF] Retamal | Parameter estimation of a dynamic model of Escherichia coli fed-batch cultures[END_REF] are used to estimate the acetate and glucose concentrations using the UKF. The estimation is launched during the batch phase after reaching a measured biomass concentration higher than 0.2 g/L to ensure a good estimation accuracy.

The measurement noise affecting the biomass concentration signal is considered as a centered white noise with a standard deviation of 0.1 g/L. On the other hand, the degree of confidence in the model regarding the substrate and acetate concentration signals is lower compared to the biomass concentration.

The initialization of the estimated state vector remains a challenge. The biomass and glucose concentrations can be measured every hour, and therefore accurate initial conditions for these variables is possible. The acetate concentration on the other hand is measured after the end of the culture and therefore initialization errors are significantly higher for this variable. Nevertheless, the UKF manages to correctly estimate the acetate concentration.

In both experiments, the UKF performance in the fed-batch phase is satisfactory, despite the initialization errors and the model uncertainties. The glucose and acetate estimations fit very well with the off-line measurements during the control period, and the convergence is achieved in less than 1 h. Table 7.5 shows the estimation mean square error values for each estimated state (i.e., substrate and acetate ) during the fed-batch phase of both experiments, which are on par with than the measurement sensitivity (0.1 g/L). 

GMC control performance

The control objective, as explained in previous sections, is to regulate the acetate concentration to a predefined set-point, and maintain the culture in the respirofermentative mode close to the optimal limit. As can be seen in Figures 7.11 and 7.13, acetate accumulation is avoided in both cultures, and the concentration is limited to less than (1 g/L) during the fed-batch phase.

In the first experiment (Figure 7.11), the estimated acetate concentration is regulated and converges to the desired reference, respecting the chosen settling time. The second experiment (Figure 7.13) presents the same performance regarding the GMC algorithm convergence, with a different set-point and a longer control time.

Discussion

The presented control method provides a practical approach to avoid overflow metabolism in E. coli fed-batch cultures. However, it offers a suboptimal solution, since regulating the substrate concentration at the critical level is impractical due to the lack of accurate on-line measurements.

In order to evaluate the efficiency of the proposed approach, a comparison is performed in simulation with the growth rate regulation strategy presented in the previous chapter. The growth rate is regulated to a set reference value µ set , usually chosen slightly below the maximal growth rate in order to avoid acetate accumulation while maximizing the biomass productivity. This control objective is achieved by tracking a predefined biomass trajectory corresponding to the chosen reference growth rate [START_REF] Battista | Nonlinear PI control of fed-batch processes for growth rate regulation[END_REF][START_REF] Rocha | Model-based strategies for computer-aided operation of recombinant E. coli fermentation[END_REF].

For this purpose, we set the biomass regulation to track a defined growth rate µ set chosen at 90% of the theoretical maximal value (µ max = 0.26 L/h), corresponding to the critical substrate concentration and the maximal oxidative capacity. On the other hand, we set the acetate regulation to track a reference of 0.5 g/L. The acetate concentration is assumed to be measured with additive white noise of a 0.05 g/L standard deviation. The comparison is achieved with the initial conditions and control parameters presented in Table 7.6. 

Initial conditions X 0 1 g/L S 0 0 g/L A 0 0.2 g/L V 0 3.5 L GMC-X parameters G 1 6 - G 2 9 - GMC-A parameters G 1 5.61 - G 2 9.55 -
First, we assume that the model parameters and maximal growth rate µ max are perfectly known. Then, we introduce a fixed variation in the maximal oxidative capacity q Omax which is directly linked to the maximal growth rate value. In the ideal model case (no parameter variation), the biomass growth regulation (GMC-X) has a slightly better overall performance. The reference growth rate is tracked accurately at 0.23 h -1 corresponding to 89% of its maximal value. On the other hand, regulating the acetate concentration (GMC-A) at 0.5 L/h leads to a biomass growth rate of 0.21 h -1 corresponding to 81% of the maximal value as can be seen in Table 7.7. This result shows that the presence of acetate in the medium reduces the biomass growth rate, due to lower substrate consumption rate caused by the activation of the acetate consumption pathways according to the bottleneck theory. However, keeping the acetate at a low concentration reduces its inhibitory effect, and keeps the culture close to the optimal conditions.

The introduction of 20% variation in q Omax leads to an increase of the critical substrate concentration S crit and consequently the maximal growth rate µ max . Despite the model mismatch, the biomass growth rate regulation presents a good performance in tracking the reference rate. However, it corresponds to only 75% of the new maximal value, and therefore the biomass productivity is also lower than its optimal value compared to the nominal case. This is due to the increase in the gap between the reference µ set and new maximal growth rate µ max .

The acetate regulation on the other hand offers a more consistent performance, and gives a better growth rate ratio (89%). Furthermore, the growth rate ratio is higher with increasing variation in the maximal oxidative capacity as can be seen in Table 7.7.

This result highlights a problem with targeting a specific growth rate as a control objective, as it requires accurate determination of the maximal value, and then target a lower growth rate to avoid acetate accumulation. This is a difficult task due to the uncertain nature of bioprocesses, as parameter variation depends on several factors such as the variation in operating conditions between batches. If the maximal growth rate is underestimated, the resulting suboptimal biomass productivity is lower than the desired one. If the maximal growth rate is overestimated, a regulation at 90% of this value could lead to acetate accumulation and metabolic switches, and thereby a growth inhibition.

On the other hand, regulating the acetate concentration and maintaining it at a low value offers a better practical trade-off, since the accumulation is avoided, and the obtained growth rate is consistent in the case of model mismatch. This is an interesting result since the acetate regulation approach is robust towards the change in operating conditions, and is not specific to the bacterial strain. The strategy could be applied to a different strain while ensuring the same level of performance without the need to estimate µ max accurately.

Conclusion

In this chapter, a robust Generic Model Control strategy is presented and applied to drive fed-batch cultures of E. coli BL21 (DE3) near the optimal operating conditions.
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The control objective of this proposed strategy is to regulate the acetate concentration at a defined low level. This approach has several advantages compared to the growth rate regulation presented in the previous chapter.

Although it provides a suboptimal solution, maintaining the acetate concentration is a practical alternative to avoid overflow metabolism. The regulation of the substrate at the critical level is impractical since accurate measurements at a low level are not possible via the available sensors on the market.

Furthermore, targeting the optimal operating conditions and the critical substrate concentration causes fluctuations and metabolic switches between the oxidative and oxido-fermentative regimes. Thereby, maintaining the acetate concentration at a low level provides a safety margin and a practical solution to avoid cell stress caused by the repetitive switches.

Due to the uncertain nature of the bioprocess model, a robust design procedure using the LMI formalism is carried out, to compensate the model mismatch, disturbances, and measurement noise. Performance constraints are also formulated with LMIs to ensure desired properties of the closed-loop transient response.

Since the controlled variable (acetate) is not available for on-line measurement, a state estimation algorithm is required and an Unscented Kalman Filter (UKF) is implemented. The robust GMC controller and the state estimation by the UKF were validated both through simulation runs and in real-time experimental conditions.

Finally, fed-batch experiments with a lab-scale reactor were performed in order to validate the efficiency of the coupled GMC-UKF strategy in driving the cultures near the optimal operating conditions.

The results showed that the proposed control strategy is not restricted to the studied strain since accurate determination of the maximal growth rate is not required. It is also adaptable to different control objectives such as substrate regulation at high concentrations in order to promote the product formation.

An improvement of the proposed control scheme is tracking a successively decreasing set-point calculated by numerical on-line optimization based on the estimation of the maximal growth rate. An experimental validation of this approach in future works could improve the process productivity since it provides a good trade-off between practicality and best achievable sub-optimality.

A performance comparison of the robust GMC with advanced control strategies developed for the same objective would give an insight about the practical efficiency of the proposed solution. To this end, a nonlinear model predictive controller (NMPC) is presented and implemented to the studied process in the next chapter. The NMPC has several interesting features like the explicit use of the nonlinear model and the on-line optimization procedure. problem consists in minimizing the quadratic objective function over a finite moving horizon.

Various structures of the NMPC strategy have been developed throughout the years for numerous control purposes [START_REF] Findeisen | Assessment and future directions of nonlinear model predictive control[END_REF]. The difference between the NMPC schemes lies in the definition of the cost function and the constraints. An overview of the nonlinear model predictive methods can be found in [START_REF] Öwer | Nonlinear model predictive control[END_REF]. Hereafter, the main NMPC approaches are briefly presented.

Explicit NMPC (E-NMPC) is an offline NMPC variation based on the parametric programming technique, where the control law is pre-calculated offline [START_REF] Bemporad | The explicit linear quadratic regulator for constrained systems[END_REF]. The E-NMPC does not require significant computational resources and is suited for control problems for systems with fast dynamics. Other structures focus on the stability of the closed-loop by approximating an infinitehorizon optimization problem. The list includes Finite-horizon NMPC with terminal equality constraint [START_REF] Keerthi | Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: Stability and movinghorizon approximations[END_REF], Finite-horizon NMPC with terminal inequality constraint [START_REF] Morari | Model predictive control: past, present and future[END_REF][START_REF] Scokaert | Suboptimal model predictive control (feasibility implies stability)[END_REF], Finitehorizon NMPC with terminal cost [START_REF] Bitmead | Adaptive optimal control the thinking man's GPC[END_REF], and the Quasi-infinite horizon NMPC [START_REF] Chen | A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability[END_REF]. Another variation is the Economic NMPC (E-NMPC), where the objective function is an economically-oriented cost function of the state variables and the control inputs [START_REF] Diehl | A Lyapunov function for economic optimizing model predictive control[END_REF].

Robust MPC schemes are designed to account for a set of bounded uncertainties and disturbances in the process model while satisfying the control objectives. There are several approaches to robust NMPC: In Min-max MPC, the optimization is performed with respect to all possible evolutions of the bounded model uncertainty [START_REF] Scokaert | Min-max feedback model predictive control for constrained linear systems[END_REF]. The variations of the uncertainty related to the process model parameters is included in the cost function to be optimized.

Another robust NMPC approach is the Linear parameter varying NMPC (LVP), which is based on the reformulation of the process nonlinear model with a linear parameter-varying model (LPV), mostly using linear and bilinear matrix inequalities (LMI/BMI) in the control. H ∞ -NMPC approaches consider the implementation of the H ∞ problem in a receding horizon framework, by considering a particular choice of the objective function [START_REF] Gautam | Robust H ∞ receding horizon control for a class of coordinated control problems involving dynamically decoupled subsystems[END_REF][START_REF] Wang | H ∞ Control for Networked Predictive Control Systems Based on the Switched Lyapunov Function Method[END_REF][START_REF] Wang | H ∞ Controller Design for Networked Predictive Control Systems Based on the Average Dwell-Time Approach[END_REF].

Robust NMPC approaches are designed to handle model mismatch and parametric uncertainties, which make them appropriate for bioprocess models. However, they are known to carry a high computational burden as the size of the optimization problem increases with the number of uncertainties and the prediction horizon. This may explain the fewer experimental implementations of the MPC strategies for fed-batch bioprocesses.

The NMPC scheme can be found in various industrial fields such as chemical plants, oil refineries, power electronics, automotive industry, biochemistry, and many others [START_REF] Qin | A survey of industrial model predictive control technology[END_REF]. However, only a few industrial applications of NMPC exist in biotechnology [START_REF] Stanke | Automatic control of bioprocesses[END_REF]. The reasons stem from the difficulties of developing reliable dynamic models of bioprocesses, the high computational costs, and the absence of efficient real-time monitoring solutions.

8.2. Principles of Nonlinear Model Predictive Control 141 Among the experimental studies on lab-scale bioprocesses, the NMPC strategy have been applied to a variety of micro-organism cultures such as mammalian cell cultures [START_REF] Aehle | Increasing batchto-batch reproducibility of CHO-cell cultures using a model predictive control approach[END_REF]Craven et al., 2014), yeast cultures (Cochrane and[START_REF] Chou | Engineering cell physiology to enhance recombinant protein production in Escherichia coli[END_REF][START_REF] Preuß | Modelling and predictive control of fed-batch yeast growth on industrial pilot plant scale[END_REF], hybridoma cell cultures (Dewasme et al., 2013a[START_REF] Dewasme | State estimation and predictive control of fed-batch cultures of hybridoma cells[END_REF], fungi [START_REF] Ashoori | Optimal control of a nonlinear fed-batch fermentation process using model predictive approach[END_REF]), microalgae (Del Rio-Chanona et al., 2015;[START_REF] Gorrini | Experimental Study of Substrate Limitation and Light Acclimation in Cultures of the Microalgae Scenedesmus obliquus-Parameter Identification and Model Predictive Control[END_REF] and bacterial cultures [START_REF] Rio-Chanona | Model-based real-time optimisation of a fed-batch cyanobacterial hydrogen production process using economic model predictive control strategy[END_REF]Santos et al., 2012b;[START_REF] Tebbani | Nonlinear Predictive Control of Fed-Batch Cultures of Escherichia coli[END_REF][START_REF] Ulonska | Model predictive control in comparison to elemental balance control in an E. coli fed-batch[END_REF].

These studies are usually conducted in fed-batch mode, where an inlet feedrate is the sole manipulated input used to regulate variables such as substrates or specific rates to defined set-points [START_REF] Aehle | Increasing batchto-batch reproducibility of CHO-cell cultures using a model predictive control approach[END_REF][START_REF] Craven | Glucose concentration control of a fed-batch mammalian cell bioprocess using a nonlinear model predictive controller[END_REF][START_REF] Dewasme | State estimation and predictive control of fed-batch cultures of hybridoma cells[END_REF]. Other control objectives may also aim at maximizing substrate oxidation rates while minimizing product fermentation rates (Santos et al., 2012a), or regulating/limiting byproduct formation [START_REF] Dewasme | Linear robust control of S. cerevisiae fed-batch cultures at different scales[END_REF][START_REF] Logist | Robust multi-objective optimal control of uncertain (bio)chemical processes[END_REF][START_REF] Tebbani | Nonlinear Predictive Control of Fed-Batch Cultures of Escherichia coli[END_REF][START_REF] Valentinotti | An Optimal Operating Strategy for Fed-Batch Fermentations by Feeding the Overflow Metabolite[END_REF]. Multiple input (feed rates) MPC policies are also examined in [START_REF] Amribt | Optimization and robustness analysis of hybridoma cell fedbatch cultures using the overflow metabolism model[END_REF][START_REF] Ashoori | Optimal control of a nonlinear fed-batch fermentation process using model predictive approach[END_REF][START_REF] Rio-Chanona | Model-based real-time optimisation of a fed-batch cyanobacterial hydrogen production process using economic model predictive control strategy[END_REF].

This chapter focuses on the experimental implementation and validation of the NMPC to maximize the biomass productivity in fed-batch E. coli BL21(DE3) cultures, by regulating the acetate concentration at a low value and limiting the overflow metabolism effect. The NMPC algorithm is implemented in a real-time environment, and the computing effort is reduced through the control vector parametrization (CVP) technique [START_REF] Banga | Dynamic optimization of bioprocesses: efficient and robust numerical strategies[END_REF].

As discussed in the previous chapter, the unscented Kalman filter (UKF) is used to provide estimates of the acetate and glucose concentrations based on the biomass measurement. This choice is motivated by the good results obtained in the previous experiments.

The chapter is organized as follows. A general description of the NMPC basic principles is presented. These principles are then applied to the specific case of acetate concentration regulation in fed-batch E. coli cultures. A set of numerical simulations is presented to showcase the performance of the proposed NMPC strategy in the nominal case (no model mismatch), and in presence of parametric uncertainty in the process model. Finally, the NMPC and UKF algorithms are implemented in real-time to a lab-scale bioreactor for experimental validations. The chapter ends with final remarks and future work directions.

Principles of Nonlinear Model Predictive Control

Nonlinear model predictive control (NMPC) is an optimization-based feedback control strategy applied for nonlinear systems. It is applied for a variety of control objectives including stabilization, trajectory tracking, optimum seeking, and many other control problems.

The NMPC strategy is based on the receding horizon principle, where the optimal control problem is solved over a finite horizon at each sampling point. The optimized control input is applied to the process, and the optimization problem is solved again at the next sampling point.

The NMPC shares the same basic philosophy as the linear MPC. However, it has some major differences such as the explicit use of nonlinear models for the prediction and the inclusion of state and input constraints. Furthermore, the NMPC allows the online minimization of the cost function, and requires the availability of the state variables for the prediction either through measurements or estimation.

The basic principles of the NMPC problem are described hereafter (Allg öwer and Zheng, 2012). We consider the following discrete-time state-space nonlinear system:

ξ k+1 = F ξ k , F in k z k = Hξ k (8.1)
where ξ k ∈ R n ξ and z k ∈ R n z are the system state and output vectors at the time step k, respectively. F in k ∈ R n F the input. F is the nonlinear transition function, and H is the measurement matrix.

A general formulation of the NMPC problem consists in minimizing the quadratic cost function Φ at the instant k over a finite moving horizon:

min ξ k ...ξ k+N p -1 ,F in k ...F in k+N c -1 Φ ξ , F in • (8.2) s.t ξk+i+1 = F ξk+i , F in k+i , for i = 0, N p -1 ξk = ξ k (8.3)
where

• Φ is the cost function evaluated at instant k.

• N p and N c represent the prediction horizon and the control horizon respectively. They are not necessarily equal ( i.e. N p ≥ N c ≥ 1 in order to reduce the computational load.

• ξk+i is the predicted state vector at time instant k + i, i = 0, N p -1.

• ξ k is the initial condition which is the plant state at time instant k.

The classical NMPC strategy is implemented in a moving horizon framework. At current time step k, the optimization problem (equations (8.2) and (8.3)) is initialized by the current state vector ξ k and solved over the prediction horizon N p . The first element of the resulting input vector F in k is applied to the system (8.1). At the next sampling time k + 1, the optimization problem is solved again with the updated state vector ξ k+1 as the initial condition.

The NMPC is a model-based control strategy. A mathematical representation of the system is required to predict the evolution of each state variable. Therefore, the efficiency of the control scheme is directly linked to the model used for the predictions. The choice of the model structure and the parameter identification procedure have a decisive role in the controller performance.

In the case of trajectory and set-point tracking problems, the cost function Φ to be optimized is a quadratic nonnegative function measuring the distance between the predicted model state ξ and a determined known reference sequence ξ re f over the horizon window. Another quadratic function weighting the control effort is added to achieve the control objective. The general expression for the cost function in this case is given by the following:

Φ ξ , F in • = N p ∑ i=1 ξk+i -ξ re f k+i 2 α i + N c ∑ i=1 F in k+i-1 -F re f k+i-1 2 β i (8.4)
where • ξ re f represents the reference trajectory or setpoint chosen to specify a desired closed-loop behavior.

• F re f represents the reference feeding trajectory corresponding to ξ re f .

• α i ≥ 0 ∈ R n ξ ×n ξ and β i ≥ 0 ∈ R n F ×n F are the weighting matrices for the state tracking error and the control inputs, respectively.

The tuning parameters are implemented to penalize the deviations of the predicted controlled state vector ξ from the reference ξ re f , as well as the control input deviations at every sampling point in the prediction horizon. These parameters are tuned to avoid instability and to reach the desired transient performance of the closed-loop.

In addition to the cost function, constraints on the states and inputs can be defined:

ξ min ≤ ξ k+i ≤ ξ max , i = 0, N p -1.
(8.5)

F min ≤ F in k+j ≤ F max , j = 0, N c -1 (8.6) (8.7)
However, this addition increases the complexity of the optimization problem, and the solution cannot be obtained explicitly as in the unconstrained case. An illustration of the receding horizon principle in the SISO case is shown in Figure 8.1.

Nonlinear Model predictive control applied to E. coli cultures

Reminding the objective behind the control strategy, that is to drive the process closer to the boundary of the respiro-fermentative and respirative regimes. Similarly, to the previous chapter, we desire to maintain the acetate concentration at a predefined low set-point to avoid its accumulation during the culture. To maintain the acetate concentration at a constant value, the bioprocess operates in the respiro-fermentative regime to compensate the dilution effect which tends to decrease the acetate concentration with time. Nevertheless, a low acetate concentration keeps the process close to the optimal metabolic edge [START_REF] Dewasme | Linear robust control of S. cerevisiae fed-batch cultures at different scales[END_REF][START_REF] Rocha | Model-based strategies for computer-aided operation of recombinant E. coli fermentation[END_REF]. In the proposed control strategy, the acetate concentration is regulated to the pre-defined set-point A re f . This regulation is achieved by acting on the feed rate F in , also constrained to track a pre-calculated reference trajectory F re f in order to smooth the control behavior.

Determination of the reference feed-rate profile

In order to implement the NMPC strategy on the E. coli process, a reference feeding trajectory F re f corresponding to the acetate reference must be pre-calculated based on the model equations defined by:

Ẋ = (k X1 µ 1 + k X2 µ 2 + k X3 µ 3 )X - F in V X (8.8a) Ṡ = -(µ 1 + µ 2 )X - F in V (S -S in ) (8.8b) Ȧ = (k A2 µ 2 -µ 3 )X - F in V A (8.8c) V = F in (8.8d)
Considering a constant acetate concentration (A = A re f = 0, Ȧ = 0), the differential equation (8.8c) leads to the following feed-rate:

F in = µ A A XV A=A re f (8.9)
where µ A = (k A2 µ 2µ 3 ) = k A2 (q s -q scrit ) in respiro-fermentative mode.

Generating the feeding profile using Equation (8.10) requires the availability of the substrate concentration. Assuming that there is no accumulation of the substrate concentration in the neighborhood of the optimal conditions, so that it is instantaneously consumed by the cells. The substrate is considered to be in quasisteady state near the critical value (S = S set , Ṡ = 0).

From Equation (8.8b) we obtain the following equation:

F in = µ S (S in -S) XV S=S set (8.10)
where µ S = -(µ 1 + µ2) = q S in respiro-fermentative mode. The substrate concentration S set corresponding to the reference acetate concentration A re f can then be calculated from the following equation:

q S (S in -S) S=S set = µ A A A=A re f (8.11)
From equations (8.8a) and (8.8d) the following differential equation is obtained: (8.12) hence:

d(XV) dt = µ X XV
XV = X 0 V 0 e µ X t (8.13)
where X 0 and V 0 are the initial conditions for the biomass concentration and the culture volume respectively, and

µ X = k X1 µ 1 + k X2 µ 2 + k X3 µ 3 .
Finally, the expression of the reference trajectory F re f for the pair A re f , S set can be generated by the following equation: 

F re f = µ A A X 0 V 0 e µ X t A=A re f ,S=S set = q S (S in -S) X 0 V 0 e µ X t
ξ k+1 = F ξ k , F in k z k = Hξ k (8.15) where • ξ k = [X k S k A k V k ]
T and z k = A k are the discrete state and sampled output vectors at time kT s , respectively.

• F is the nonlinear transition function

• H = 0 0 1 0 is the measurement matrix.

• F in is the control input, parametrized using a piecewise constant approximation.

The trajectory tracking is achieved using the nonlinear model predictive control (NMPC) strategy. Based on the model (8.15) and the control objectives defined earlier, the NMPC objective cost can be defined as follows:

Φ ξ , F in • = N p ∑ i=1 Ǎk+i -A re f k+i 2 + λ N c ∑ i=1 F in k+i -F re f k+i-1 2 (8.16)
where Ǎ is the predicted acetate concentration, and F re f is the pre-calculated reference feeding profile. N p and N c are the prediction and control horizons respectively, and λ > 0 is the control penalty gain.

The NMPC problem formulation minimizes the quadratic cost function Φ ξ , F in • at the instant k and reads: min

Ǎk ... Ǎk+N p -1 ,F in k ...F in k+N c -1 Φ ξ , F in • (8.17)
under constraints related to the predicted dynamics of the system:

s.t. ξk+i+1 = F ξk+i , F in k+i , i = 0, N p -1 (8.18a) Ǎk+i+1 = HF ξk+i , F in k+i , i = 0, N p -1 (8.18b) 0 F in k+i F max , i = 0, N c -1 (8.18c) 0 ξk+i , i = 0, N p -1 (8.18d)
A classical NMPC strategy follows the receding horizon principle, where the optimization problem (8.17 and 8.18) is solved online at instant k. The first element of the input vector is then applied to the system, and the optimization problem is solved again with the updated initial state and input vectors at the next sampling point.

However, solving the constrained nonlinear optimization problem (8.17 and 8.18) raises two major difficulties. The first difficulty lies in the discretization of the continuous nonlinear system (8.8). The sampling period needs to be sufficiently small compared to the system's time constants such as the discrete model remains relevant compared to its the continuous counterpart. An appropriate choice of the sampling time in this case is in the order of 0.5-1 min, since the doubling time of E. coli is around 20 minutes and the response time is in the order of several tens of minutes. This leads to very long prediction horizons and an increase in the number of the decision variables of the optimization problem. Furthermore, it poses a practical problem for the on-line implementation of the control strategy due to the different operations executed between two sampling points (measurement, estimation, calculation of the control law).

The second difficulty is the nonlinear constraints (8.18), which increases the on-line computation time of the optimization procedure involved in the NMPC strategy.

In order to avoid to solve the constrained optimization problem, the optimization problem is transformed into a nonlinear programing problem (NLP) using the Control Vector Parametrization (CVP) technique presented in [START_REF] Banga | Dynamic optimization of bioprocesses: efficient and robust numerical strategies[END_REF].

The CVP method is based on the discretization of the control variables only, and the control sequence is approximated by a piecewise constant function between two sampling instants. The advantage of this transformation is that it is no longer necessary to discretize the continuous model, and the predicted states are obtained by the integration of the continuous differential system (8.8).

Consequently, the sampling period required for the prediction can be much larger, and the constraints related to the state variables are removed from the optimization problem, since they are taken into account in an implicit way during the prediction of the states via the CVP method. Furthermore, the control horizon N c can be chosen equal to the prediction horizon N p , since the control vector is the only decision variable for the optimization problem. The CVP principle is illustrated in Figure 8.2.

The new formulation of the optimization problem is therefore given by: min

v k ...v k+N p -1 Φ ξ , F in • (8.19)
Under the constraints:

0 F in k F max , k = 1, N p (8.20a)
In addition, a change of variable F in = e v aims at removing the positivity constraints on F in and improves the conditioning of the optimization problem. 

Φ ξ , v • = N p ∑ i=1 Ǎk+i -A re f k+i 2 + λ N p ∑ i=1 e v re f k+i-1 -e v k+i-1 2 (8.21)
and the formulation of the NMPC problem is reduced to solving at each time kT e : min e v k ...e

v k+N p -1 Φ ξ , v • (8.22)
The constraint on the upper bound of the control input is removed from the optimization problem. The optimal input solution of the problem (8.18) is then limited to its upper bound before its application to the process.

This transformation of the initial optimization problem (8.17) to an unconstrained optimization problem is very beneficial for the implementation of the control strategy on the real process. A comparison between the classical and unconstrained NMPC formulations is presented in the simulations section.

In the following, the UKF estimated state ξk is used in the NMPC scheme.

Numerical simulations

The combined UKF-NMPC strategy is first assessed through numerical simulations, considering the fed-batch E. coli model presented in chapter 2. The initial plant conditions as well as UKF and controller parameters are given in Table 8.1.

Estimates initial conditions are randomly chosen using a normal distribution centred at the nominal state values with a standard deviation of 15%. The covariance matrix of measurement noise R depends on the quality of the turbidimetric probe signal. On the other hand, the covariance matrix of the model noise Q represents the confidence level in the model. 

Initial conditions X 0 1.0 g/L S 0 0.1 g/L A 0 1 g/L V 0 3.5 L S in 500 g/L UKF parameters σ X 0.01 g/L σ S 0.1 g/L σ A 0.1 g/L σ V 0.001 g/L r X 0.01 g/L P 0 10 -4 × I 4 g/L α 1 - β 2 - κ 0 - Control parameters N p 10 - λ 0.05 - Sampling time T s 3 min -
The acetate concentration regulation achieved by the NMPC is assessed, first considering a perfectly known model (no parametric uncertainty), and then a more realistic case with plant-model parameter mismatch. In both cases, the acetate concentration is supposed to be measured with a measurement noise level of 0.02g/L.

The optimization is performed by the LSQNONLIN optimizer under MATLAB R2018b environment on a 3.2 Ghz PC with 8Gb of ram. The optimization problem is solved using the 'trust-region-reflective' algorithm .

Figure 8.3 shows the closed-loop profiles of the state and control variables for the ideal model case (no modeling errors or parameter uncertainties), with prediction horizon N p = 10 and penalty parameter equal to λ = 0.05. λ was tuned by trial and error to prevent excessive deviation of F in from the reference feeding profile F re f . 150 Chapter 8. Nonlinear model predictive control of the acetate concentration It may be observed in Figure 8.3 that the regulation of the acetate concentration is achieved successfully. The biomass growth follows a typical exponential trajectory, and the substrate quickly reaches an a priori unknown and constant steady-state, assumed to be greater than the critical level since, to keep the acetate concentration constant, the cells must evolve in respiro-fermentative regime, compensating the dilution effects from the feed rate by a small acetate production.

The convergence to the steady-state is achieved in 25 minutes and the biomass at t = 10 h is 32.5 g.

In view of analyzing the NMPC robustness to plant-model mismatch, a simulation is performed by varying the most influential parameters on the acetate concentration. The parametric sensitivity study presented in appendix D shows that the most influential parameters on the acetate concentration A are q S max , q O max , k X2 , and k A2 .

During the simulation, the values of these parameters are randomly chosen following a normal distribution centred at their nominal values with a standard deviation of 15%. A set of 100 Monte Carlo (MC) simulations is performed using the same control settings as previously for the ideal model (Table 8.1).

Figure 8.5 shows the histograms of the runs as functions of the randomly chosen values. The corresponding closed-loop profiles are represented in Figure 8.4. The acetate concentration is maintained at the reference in all runs, with a mean value of 0.7 g/L. The tracking error (A re f -A) has a RMSE of 0.0314 g/L, which is still satisfactory. The convergence to the desired steady-state is still 25 minutes in average. Histograms of the final biomass productions and productivities are also shown in Figure 8.5. Biomass production is, in average, slightly lower than in the ideal case (31.2g), nevertheless it stays above 30g in 96% of the MC experiments (Figure 8.5). In most of the cases, biomass productivity is higher than 90% of the maximal attained level.

To illustrate the advantages of the CVP method, a series of simulations is performed comparing the computation time required to solve the optimization problems before and after using the CVP technique.

The simulation consists in regulating the acetate concentration to the defined setpoint of A re f = 0.7 g/L, with the same initial values for the state variables and control parameters described in The results show that the introduction of the CVP method offers a significant gain in the computation time, while achieving the same control problem objectives. Even though the variable change (VC) gives a close performance, it improves the conditioning of the optimization problem. This shows the advantage of the proposed method for the on-line implementation of the NMPC on bioprocesses. The low computation time offers the opportunity to consider lower sampling periods, and to couple the NMPC with other components in a more advanced control structure. The NMPC is now coupled to the UKF estimator, considering the estimated acetate concentration as the regulated variable. The same parameter uncertainty as well as biomass measurement noise level are considered. As shown in Figure 8.6, the UKF is able to correctly estimate the acetate concentration in the presence of model and measurement noise, and the acetate regulation is performed accurately as both the estimated and actual states converge to the desired acetate value. In order to compare the performance of the NMPC and the GMC strategies, simulations are performed testing their performance in regulating the acetate concentration at A re f = 0.7 g/L. The initial conditions for the simulation are the same of the previous simulations given in Table 8.1. The GMC parameters are the same used in the previous chapter (G 1 = 5.61, G 2 = 9.55) (Equation (7.24)). These parameters were determined using the robust design method, for a maximal parameter variation of 15%. Figure 8.7 shows the evolution of the state variables and the feed-rate using the two control strategies: NMPC and GMC, and Figure 8.8 shows a zoom over the first two hours.

The simulation shows that both control strategies achieved good regulation of the acetate concentration at the reference value A re f = 0.7 g/L. As seen in the previous chapter, the GMC strategy is able to achieve the control objective. However, it induces a longer transient phase, a higher overshoot, and a longer convergence time compared to the NMPC. Furthermore, the biomass quantity obtained with the NMPC strategy is marginally higher than that obtained using the GMC.

In conclusion, both the NMPC and the GMC strategies achieve the control objectives adequately, however the NMPC is better than the GMC regarding the transient performance, and this has a direct effect on the final biomass quantity. 

Experiment results and discussion

To validate the combined NMPC control strategy and the estimation of the acetate and glucose concentrations by the UKF, two fed-batch experiments are carried out using the strain E. coli BL21(DE3) according to the protocol described in chapter 4. The UKF parameters during the experiments are given in Table 8.3, and the UKF algorithm is presented in appendix A.

The NMPC parameters used in both experiments are given in Table 8.4. The prediction horizon and penalty parameter λ were tuned in simulation by trial and error in order to achieve the control objectives while preventing excessive deviation of F in from the reference feeding profile F re f .

The evolution of the biomass, glucose, acetate concentrations, and the feed flow rate in both experiments are illustrated in Figure 8.9, and the operating conditions are shown in Figure 8.10. 

UKF parameters

σ X 0.01 g/L σ S 0.1 g/L σ A 0.1 g/L σ V 0.001 g/L r X 0.01 g/L P 0 10 -4 × I 4 g/L α 1 - β 2 - κ 0 -
The first experiment is carried in two phases, a batch followed by a fed-batch. The batch phase is performed to reach a minimal biomass concentration of 1 g/L and ensure that the cells are in the exponential phase when initiating the regulation and injecting the feed media. The UKF estimation is launched during this phase after initializing the state vector.

The fed-batch phase starts after the near depletion of glucose. Even though the glucose concentration measurement is not available, on-line flags of the glucose depletion can be detected, consisting of a sudden drop in the stirring speed due to 156 Chapter 8. Nonlinear model predictive control of the acetate concentration 

NMPC parameters

Sampling time

T s = 3 min Acetate reference A re f = 0.5 -1.5 g/L NMPC parameters N p = 10, λ= 0.05 the low cell demand for oxygen (Figure 8.10), coupled with an increase in the pH value due to the decrease of CO 2 released by the cells. The NMPC controller is launched after setting up the acetate reference and the control parameters. The controller outputs an exponential feeding profile, and the estimated acetate concentration converges to the desired reference in less than 30 min and remains in the range 0.33-0.5 L/h until the end of the culture. At the same time, the substrate concentration remains in a quasi-steady state.

After the end of the first experiment, a culture refresh is performed. A volume of the culture is extracted using a peristaltic pump, leaving 500 mL of the culture of volume. Then, 3L of an autoclave sterilized HDF medium is injected by a peristaltic pump, and the batch phase of the second experiment starts.

The second experiment follows the same protocol as the first one, the batch phase lasts for 2 h, and the glucose is quickly consumed by the cells. The controller is launched as soon as the stirring drops significantly, indicating a drop in glucose oxidation. The acetate concentration set-point is fixed at 1.5 g/L, the feeding follows an exponential curve, and the acetate concentration converges to the imposed reference. At t=12 h, a set-point change is introduced and A re f is set equal to 0.7 g/L.The NMPC controller adapts the feed-rate according to the new reference, and the estimated acetate concentration tracks the new reference in 20 min.

The NMPC-UKF strategy performance is highly satisfying. The UKF accurately estimates the acetate and glucose concentrations in the presence of measurement noise on the biomass concentration. The mean square errors of the substrate and acetate concentrations are e S = 0.089 g/L and e A = 0.068 g/L respectively, which is consistent regarding the sensitivity of the measurements and the noise levels (0.1 g/L). The NMPC controller regulates the estimated acetate concentration to the fixed set-point, and the convergence is achieved in 20 min. The acetate concentration remains at an acceptable range during the fermentation time, and the culture conditions are well suited for biomass growth. In order to compare the deviation of real process response from the model predictions, a simulation is performed using the experimental data and the process model used in the control and estimation algorithms.

The model is simulated in open-loop with the same operating conditions and the initial values for the state variables from the experiments. The obtained experimental feed-rate is applied to the model input.

The results presented in Figure 8.11 show a deviation between the model predictions and the measured and estimated state variables. The experimental feedrate deviates from the reference trajectory, indicating the presence of a model mismatch. On the other hand, the acetate concentration is accumulated in the model simulation due the high glucose concentration resulting from the high feed-rate levels.

Consequently, the acetate presence leads to a lower growth rate than in the experiments and a low biomass concentration. The experimental and simulation results show the efficiency of the proposed predictive strategy to achieve the control objectives despite the model mismatch.

Comparative study

In order to evaluate the performance of the control strategies presented in this thesis, a simulation study is performed and presented in this section. The three control methods are compared under the same initial operating conditions and a similar control setting.

The NMPC and robust GMC (GMC-A) controllers are set to track an acetate reference of A re f = 0.7 g/L. On the other hand, the biomass growth rate regulation using the GMC strategy (GMC-X) is set to track a reference profile corresponding to this acetate concentration value. To this end, the glucose concentration S set corresponding to A re f is calculated using Equation (8.11). Then, using the pair (S set , A re f ), the reference biomass growth rate µ set is calculated from kinetic model equations.

The simulation is performed over 10 h assuming that the state vector is available for measurement, with an added measurement noise of 0.05 g/L and 0.02 g/L on the biomass and acetate concentrations. The initial conditions, reference variables, and control parameters values are summarized in table Table 8.5. 

Initial conditions

X 0 1.0 g/L S 0 0.1 g/L A 0 1 g/L V 0 3.5 L S in 500 g/L Reference variables A re f 0.01 g/L S set 0.0234 g/L µ set 0.1925 h -1 F max 0.2 L/h NMPC parameters N p 10 - λ 0.05 - GMC-X parameters G 1 = 2.25 - G 2 = 9 - GMC-A parameters G 1 = 5.61 - G 2 = 9.55 - Sampling time T e 3 min
First, the control strategies are compared in the ideal model case, where all the model parameters are assumed to be perfectly known. Then, 500 Monte Carlo simulations are performed considering model uncertainties. The model parameters are randomly chosen with a maximal variation of ±30% around their nominal value following a normal distribution.

In the ideal model case (Figure 8.12), the biomass trajectories are almost identical for the three methods. This behavior is expected since the simulation is designed to have the same setting for the three methods.

The acetate and glucose concentrations, on the other hand, have different dynamics. The NMPC and the GMC-A strategies regulate the acetate concentration at the reference A re f . On the other hand, the biomass regulation (GMC-X) leads to a decrease in the acetate concentration to reach a zero value after 7.5 hours.

The feed rates have similar behavior, where the main difference between the controllers is the delays due to the transitory phase. The acetate dynamics affect the metabolic operating mode and the biomass evolution and, consequently, the required feed rate to reach the desired growth rate.

In the model mismatch case, the parameter variation leads to different responses of the controllers. An example of a mismatch simulation is shown in Figure 8.13. The biomass profiles in this case are different for each control strategy. The GMC-A and NMPC have higher final biomass concentration compared to the GMC-X with an advantage for the NMPC. This is due to the difference in the control objective definition.

The biomass regulation targets a specific growth rate and manages to reproduce the biomass profile in the case of model mismatch, leading to similar performance compared to the nominal case. However, since the optimal metabolic operating point is linked to the critical substrate concentration and the critical oxidative capacity, which is by nature uncertain.

The targeted growth rate is usually defined by setting it 5-10% lower than the maximal growth rate to avoid acetate accumulation. In the case where the maximal value changes due to the model mismatch, targeting µ set leads to a lower metabolic performance due to underfeeding.

This strategy is useful for reproducing experiments and results with high yields and final product quality ("golden batches"), thanks to its consistent results. Furthermore, the operational advantage of the method is the availability of reliable biomass probes making its implementation fairly easy. However, this requires a knowledge of the bioprocess and a sufficient amount of historical data. The biomass growth regulation strategy is not the best fit for productivity maximization, especially in the case of uncertain optimal conditions or unreliable models.

On the other hand, acetate regulation offers a solution to this problem. Targeting an acetate concentration close to zero maintains the culture closer to the optimum with consistent metabolic performance. In the case where the optimum is unknown and uncertain, acetate fermentation is directly linked to the oxidative capacity, and therefore the metabolic performance is better thanks to the adaptation to the new maximal growth rate value. The NMPC strategy leads to higher biomass quantity compared to the GMC-A. This is mainly due to the longer transitory phase in the GMC case and the more frequent fluctuations around the regulated acetate concentration value. This result can be explained by the fact that the NMPC uses the nonlinear model implicitly in the prediction phase, while the GMC algorithm includes linearization of the nonlinear dynamics leading to tracking errors and unpredicted dynamics.

The results of the Monte Carlo simulations give a performance overview of the control methods. The biomass productivity and productions over 10 h during the 500 runs are summarized in tables 8.6 and 8.7.

It can be seen that the NMPC outperforms the GMC controllers on average and gives higher productivity and biomass quantities. It can also be seen that acetate regulation has a higher average and maximal value. The biomass regulator targets a specific growth rate by design, and thereby, when the process is able to reach higher growth rates, the biomass regulation maintains the growth rate closer to the specified reference, leading to a lower biomass productivity. As expected, all the developed controllers lead to better results than the open-loop trajectory with an average improvement of 20% in the biomass productivity.

162 Chapter 8. Nonlinear model predictive control of the acetate concentration Concerning the tracking performance, the root-mean-square errors of the controlled variable (y-y re f ) are given in Table 8.8. It can be seen that the NMPC has the lowest tracking error compared to the GMC-A regulation. The acetate control strategies provide better tracking performance than biomass regulation due to the exponential evolution of the biomass concentration.

As for the computation load (Table 8.9), The GMC methods have the lowest time required to calculate the control law. This result is expected since the GMC law is computed by a simple algebraic equation and does not require the integration of a nonlinear differential equation.

As for the NMPC, the computation time can sum up to 0.8 seconds between 8.7. Conclusions 163 sampling points, which is a good result compared to the sampling period (T s = 3 min). However, this result is obtained by implementing a CVP method to simplify the optimization problem making it better conditioned. Considering constraints, a complex cost function or a robust variation of the NMPC (min-max NMPC, for example) can significantly raise the computation load. A computation time of the order of several seconds combined with the different delays in the LabView environment can sum up to several minutes. This may be a challenge, especially if a lower sampling time is required for the NMPC prediction to be accurate. Implementing time-saving strategies in the NMPC schemes is a necessary step before investigating advanced predictive variations.

Conclusions

In this chapter, an implementation of the nonlinear model predictive control strategy on the fed-batch E. coli process is presented. This strategy is experimentally implemented and validated on lab-scale fed-batch E. coli BL21(DE3) cultures. The goal behind the control scheme is to maximize the biomass production and favorize cell growth, by avoiding overflow metabolism and the accumulation of the acetate during the culture. The control objective is to regulate the acetate concentration to a low value. This reference needs to be as close to zero as possible in order to maintain the process closer to the metabolic edge between the operating regimes. On the other hand, the reference value should be high enough to account for the measurement and estimation sensitivities, and to avoid cell stress caused by metabolic switches in the neighborhood of optimal operating conditions. Furthermore, the feed-rate is also set to track a specified feeding trajectory, precalculated offline depending on the couple (A re f , S set ) in order to prevent excessive deviations from the optimal trajectory.

The NMPC strategy has several advantages, like the implicit use of the nonlinear model equations for the prediction, and the inclusion of state and control constraints. However, this comes with an additional computational cost, which is a major hurdle for experimental implementation of the NMPC.

To this end, the optimization problem was transformed into a nonlinear programming problem using the control vector parametrization (CVP) approach, and a variable change. This transformation allowed a significant reduction in the complexity of the optimization problem, and the obtention of an unconstrained nonlinear problem.

Simulations were achieved testing the proposed NMPC strategy to achieve the control objectives assuming an ideal model with no parameter uncertainty. The results showed a good performance to track the desired acetate concentration with relatively short transients. The feed-rate also follows the pre-calculated trajectory very well. The robustness of the strategy was tested using a set of Monte Carlo simulations, assuming a random variation of the model parameters around their nominal values. The results showed that the NMPC is able to achieve the control 164 Chapter 8. Nonlinear model predictive control of the acetate concentration objectives and regulate the acetate concentration to the low reference value, with a small deviation from the reference feeding trajectory.

Finally, the NMPC strategy was coupled to the UKF estimator. The acetate concentration is estimated by the pre-tuned UKF based on the biomass signal. The NMPC is then set to regulate the estimated acetate concentration. Results showed that the same level of performance is obtained by the combined control and estimation algorithms.

The performance of the NMPC was compared to that obtained with robust generic model control (GMC). The comparison was performed for identical scenarios, under nominal model assumption. The NMPC outperformed the GMC in achieving the control objectives of trajectory tracking. The NMPC strategy provide better transient response, and a higher biomass quantity. Furthermore, the NMPC design includes the explicit use of the nonlinear model for the prediction, while the GMC strategy requires a model reduction to avoid using the kinetic structure, and to prevent deviations of the feed-rates leading to excessive and high values.

The main contribution of this chapter is the experimental implementation of the proposed NMPC strategy. The NMPC algorithm was deployed on the control structure presented in the previous chapters, to regulate the estimated acetate concentration in a lab-scale fed-batch culture of E. coli BL21(DE3). The experiments were conducted according to the protocol presented in chapter 3. The results validated the combined NMPC-UKF strategy in regulating the acetate concentration despite the model mismatch. Furthermore, the experiments validated that regulating the acetate concentration to a low level leads to higher biomass concentrations and lower cultivation time, and consequently higher biomass productivity.

A possible improvement of the proposed NMPC strategy is to consider a cost function that includes a term accounting for bounded parameter uncertainty. This transformation may improve the NMPC robustness with respect to model mismatch especially when implemented on other strains with higher level of uncertainty. This may lead to an increase in the computational burden, but the proposed transformation using the CVP method provides a significantly low computation time compared to the sampling time, allowing a margin to include more objectives.

Chapter 9

General conclusions and perspectives

Conclusions

The work presented in this thesis aims at developing and implementing a practical solution to overflow metabolism in fed-batch Escherichia coli cultures through closed-loop control and estimation strategies. The objective behind the regulation of the bioprocess is to maximize bacterial growth and drive the culture near the optimal operating conditions. Another objective is to evaluate and test control and estimation algorithms developed for the bioprocess under realistic conditions in the lab-scale bioreactor.

Along with the developed strategies, the experimental setup is transformed into a reliable closed-loop system with a flexible monitoring and control software solution. This transformation allows to successfully implementing and validating the proposed control strategies on the real bioprocess, providing a framework for more validations of future works considering different control objectives and strategies. This thesis covered several steps to achieve these objectives:

-A presentation of the bacterial system used in this thesis: Escherichia coli, with a description of its physiological and metabolic features under aerobic and anaerobic conditions. The focus is then put on acetate production through the overflow metabolism mechanism, considering its inhibitory effect on bacterial growth. The different cultivation modes of bioprocesses are also presented, with a highlight on the fed-batch mode used in the framework of this thesis.

-A presentation of the macroscopic mathematical model of the fed-batch E. coli bioprocess. The model is based on the reaction scheme describing the metabolism of E. coli. The kinetic model is determined according to the bottleneck theory describing the overflow metabolism mechanism in the form of two metabolic regimes. The presented model is the basis of the estimation and control schemes implemented in this thesis.

-In order to implement the control and estimation strategies presented in this thesis, a closed-loop interactive system is developed for a lab-scale bioreactor. This system is composed of a data-acquisition LabView program gathering the real-time measurements from the various sensors with different acquisition software. Furthermore, the program has a modular structure for deploying the estimation and control algorithms, making it flexible for software and hardware upgrade and changing the control structure and objectives. Finally, the control of the feed rate is made possible using peristaltic pumps, turning the bioreactor from an open-loop to a reliable closed-loop system.

-The developed control strategies require the on-line availability of the main state variables concentrations (Biomass, Glucose, Acetate). However, the biomass concentration is the only variable available for on-line measurement.

To overcome this practical hurdle, software sensors are considered for state and kinetic parameter estimations. In the case of our process, the linear Kalman filter and the Unscented Kalman filter are implemented to estimate the glucose and acetate concentrations and other kinetic parameters based on the measured biomass concentration. These algorithms are tested and tuned in simulation, based on previous data from the bioprocess, and validated in the control experiments.

-The different control strategies developed and implemented in fed-batch fermentation by feed-rate manipulation are presented. The main differences between the control methods are the requirements, complexity, process operation, and control objectives. This presentation provides a basis and a guide to formulate the control problems depending on the available materials, methods, and objectives.

This thesis focused on maximizing the biomass productivity and avoid acetate accumulation in fed-batch E. coli cultures. The availability of a reliable process model and on-line biomass measurements lead to the consideration of modelbased methods to regulate the biomass growth rate and develop state estimators based on biomass measurement. Three strategies control are developed:

-First, an adaptive biomass regulation strategy is developed based on the Generic Model Control algorithm. A model order reduction is applied to obtain a control law independent from kinetic terms and avoid high flow rates.

Parameter adaptation based on the linear Kalman filter is coupled to the controller to estimate the unmeasured terms of the control law and adapt to model mismatch.

The controller is set to track a defined growth rate reference chosen slightly lower than the maximal growth rate to avoid acetate accumulation while maximizing biomass productivity. The performance of the proposed strategy is tested in simulation, and validated through fed-batch experiments of a BL21(DE3) E. coli strain were achieved on a lab-scale bioreactor.

-Secondly, a robust variation of the Generic Model Control strategy is developed and applied to regulate the acetate concentration at a defined low level in fedbatch cultures of E. coli BL21 (DE3). A robust design procedure using the LMI formalism is carried out to account for model mismatch, disturbances, and measurement noise. Performance constraints are also formulated with LMIs to ensure desired properties of the closed-loop transient response.

The robust GMC controller combined with the state estimation by the UKF is validated both in simulation runs and in real-time experimental conditions.

-Finally, an implementation of the nonlinear model predictive control strategy on the fed-batch E. coli is considered to regulate the acetate concentration to a low value. The NMPC strategy is chosen for its several advantages, like the implicit use of the nonlinear model equations for the prediction and state and control constraints.

To improve the computation performance and reduce the complexity of the optimization problem, the latter is transformed into a nonlinear programming problem using the control vector parametrization (CVP) approach.

The NMPC strategy coupled to the UKF estimator is validated through simulations and experiments on the lab-scale reactor. The experiments also validated that regulating the acetate concentration to a low level leads to higher biomass concentrations, lower cultivation time, and higher biomass productivity.

This thesis presented practical control solutions to growth inhibition by acetate accumulation in fed-batch E. coli cultures. These control methods, along with monitoring and estimation solutions, were tested on real-time conditions in a lab-scale bioreactor. The obtained results highligthed the efficiency of the proposed strategies, and their benefits in comparison to open-loop strategy (increase of biomass productivity of about 20% over 10 h).

The difference between the proposed control strategies can be summarized in two main categories: Control objective and the method type and complexity.

Regarding the control objectives, two main approaches were investigated. Regulating the biomass concentration at a targeted reference growth rate and regulating the acetate concentration at a low level.

The biomass regulation is performed by tracking a generated biomass profile corresponding to a specified growth rate. The operational advantage of this approach is that it does not require state estimation, thanks to reliable biomass measurements. Another advantage is the reproducibility of results, even under model mismatch (assuming that the control method is robust).

The main issue lies in the definition of the control problem. The method relies on defining a distance from the maximal growth rate, which is an uncertain variable linked to the cells critical capacity. Underestimating the maximal value can lead to uncontrolled overflow and acetate accumulation due to overfeeding. This could be a problem at high cell densities where a slight increase in the substrate concentration can provoke acetate fermentation. Overestimating the maximal value, on the other hand, leads to underfeeding and long cultivation time. The resulting biomass yield is even lower than its maximal value.

The acetate concentration, on the other hand, is directly linked to the metabolic optimum. Acetate is produced when the cell's oxidative capacity is exceeded. Ideally, acetate should be equal to zero, but practically this can lead to uncontrolled metabolic switches causing cell stress and slowing their metabolism. Furthermore, an acetate concentration equal to zero can also be achieved by underfeeding, which is not ideal for a biomass yield maximization objective.

One could target the critical substrate concentration, but this value is very low (0.0375 g/L), and any small fluctuations around this value can cause a switch between respirative and respiro-fermentative regimes. In addition, no reliable measurement or estimation solutions exist for this concentration range.

Therefore, regulating the acetate concentration to a low value close to zero is more practical. This value is linked to the maximal oxidative capacity, and if the latter is uncertain, the metabolic performance is preserved. Another advantage is that acetate provides an on-line indicator of the culture metabolic state.

The challenge raised by this approach is the necessity of accurate acetate estimation, which requires a reliable process model, and experimental data. Regarding the control methods, this thesis investigated feed-back linearization and predictive methods.

The GMC offers a straightforward solution to the control problem with minimal computation burden. This feature makes the GMC a good candidate for realtime implementations of set-point and trajectory tracking problems. However, this comes with the cost of long transient phases and tracking errors caused by model uncertainties.

Considering a robust design and adaptive schemes can improve the control performance with uncertain models and unpredicted dynamics. The NMPC controller allows the inclusion of state and input constraints, flexibility in the definition of the control law, and implicit use of the nonlinear model. These features lead to better tracking performance and lower transient phases. Consequently, the biomass productivity and metabolic performance of the cells is higher when using the NMPC compared to the GMC.

However, the implementation of the NMPC comes with a high computational burden due to the strong nonlinearities in bioprocess models, especially when several operational constraints are considered. Furthermore, the robust design of the NMPC is not as straightforward as the GMC and raises the calculation complexity. Time-saving strategies can reduce the computation load while maintaining the benefits of the predictive strategies.

Finally, model-based strategies offer the opportunity to investigate several developed solutions from control theory. However, the performance is directly linked to the process model parameters. The uncertain nature of bioprocess and the complexity of the biological dynamics requires rigorous parameter estimation schemes.

Recommendations for future research

The work that has been undertaken during this thesis has underlined several areas for further research. These include further investigation and improvement in experiments, modeling, estimation, and control.

Experimental implementation

Hardware & software

Regarding implementing the closed-loop system, several improvements can be made regarding the hardware setup and the computation efficiency. Developing a dedicated bioprocess control library in LabView would be extremely useful to improve the efficiency of the current solution and easily implement other control structures and algorithms. Furthermore, it will provide a useful platform for experiments on different bioprocesses such as Microalgae and Hybridoma cells.

On this topic, using the shared libraries function in LabView allows the integration of Dynamic Link Libraries (DLL). This provides a significant gain in computation time since dynamic libraries contain compiled dynamic functions mainly developed in C or C++. Several efficient and open-source libraries dedicated to nonlinear integration and optimization can be found for these languages, such as libIntegrate, OptimLib, ACADO, and many others. Thereby, creating a dedicated bioprocess modeling, control, and estimation library based on shared libraries function can open doors for testing several algorithms.

Biological aspects

An area of improvement on the biological aspects of the experiments would be testing the same control algorithm on different strains of E. coli, and comparing the results to showcase the robustness towards the model kinetic and yield parameters.

Another perspective is testing and validating the strategies on higher bioreactor scales since the lab-scale reactor presented a limitation for testing the performance under higher cell densities.

The application of the developed algorithms and monitoring tools on other microorganisms exhibiting overflow metabolism would be an interesting area to explore. An example is the regulation of ethanol concentration in Saccharomyces cerevisiae cultures.

Model and Estimation

Regarding the process model, considering the differentiable E. coli model presented in [START_REF] Anane | Modelling overflow metabolism in Escherichia coli by acetate cycling[END_REF] can lead to several improvements, especially regarding the state estimation. This model is based on the acetate cycling principle and contains continuous functions for the glucose and acetate kinetics. The consideration of this model requires carrying a new set of cultures using gas analyzers.

These experiments dedicated to model identification would be beneficial for developing new model-based strategies.

The soft sensors area can be improved by developing a joint parameter-state estimation strategy. For example, the on-line estimation of the maximal growth rate can improve the state estimation accuracy and the control efficiency. . On the other hand, it would be interesting to develop and implement a moving horizon estimator (MHE) [START_REF] Allg Öwer | Nonlinear predictive control and moving horizon estimation-an introductory overview[END_REF] coupled with the NMPC controller. The MHE is an optimization-based state-estimation method that shares the same algorithmic structure as the MPC. Thereby, it allows the explicit use of nonlinear models leading to higher estimation quality than Kalman filtering methods. Another advantage of the MHE is the possibility to incorporate constraints on the estimated variables and the flexibility in the definition of the cost function. Furthermore, several robust variations of the MHE have been developed for uncertain systems, making it an appropriate choice for bioprocesses. The main challenge facing this implementation would be reducing the calculation complexity for reliable real-time results.

Control Control objectives

Regarding the biological aspects of the control schemes, it would be interesting to consider the maximization of the glucose oxidation while minimizing the acetate formation. This concept is presented in a simulation study (Santos et al., 2012b), and achieved by optimizing a cost function in an NMPC framework. A recommendation for the real-time implementation is to add a safety margin from the optimum (metabolic edge) in order to avoid repetitive switches. A combination with the Receding Horizon Estimator with parameter and state estimation would be ideal for this type of control.

Control methods

The control schemes presented in this thesis managed to achieve the control objectives, but improvements on the strategies could be made. Implementing a robust predictive scheme using a min-max NMPC [START_REF] Scokaert | Min-max feedback model predictive control for constrained linear systems[END_REF] or a Tube NMPC [START_REF] Langson | Robust model predictive control using tubes[END_REF] would improve the robustness, especially on higher cell densities. However, these strategies must be followed with computation timesaving methods (sensitivity analysis, efficient optimization algorithms, ...).

Another area is to consider probing methods such as Extremum seeking (ES) [START_REF] Ariyur | Real time optimization by extremum seeking control[END_REF], where a cost function is minimized, and the unknown optimum is tracked on-line without the need for a process model. A problem facing this implementation is the necessity of substrate measurements at low levels. This problem can be solved by robust substrate estimation or by combining the Extremum seeking algorithm with the probing control structure presented in [START_REF] Kesson | Avoiding acetate accumulation in Escherichia coli cultures using feedback control of glucose feeding[END_REF], where the dissolved oxygen measurements were used to detect and avoid overflow metabolism. A robust formulation of the ES algorithm would also be beneficial for higher performance. The prediction and update steps are repeated for the next measurement at instant k + 1.

A.3 The Unscented Kalman filter

The UKF algorithm is composed of three main steps. First, a set of deterministically chosen points (called sigma-points) around the current state estimate is generated via the unscented transform. Next, the classical prediction (between instants k -1 and k) and the update (at instant k) phases of the Kalman filter are performed. The estimated state and covariance matrix are initialized by Equation (A.6).

First, a discrete-time prediction model is obtained by the integration of the continuous time state-space model (A.11) using a Runge-Kutta method. Thus, the prediction step is performed using the following equations, considering a constant sampling time T e :

ξ k = Ψ ξ k-1 , F in k y k = Hξ k (A.19)
where the index k is the discrete time, ξ k and y k are the discrete state vector and the sampled measurement at time kT e , respectively. Ψ is the evolution function, and H is the measurement matrix. The control input F in k is parametrized using a piecewise constant approximation.

The unscented transform (UT):

The unscented transform (UT) is the first step in the UKF algorithm [START_REF] Julier | Unscented filtering and nonlinear estimation[END_REF], it is a mathematical transformation used to approximate the gaussian distribution of random variables.

The UT consists in generating a set of deterministically chosen sigma-points χ around the current state estimate. The UT role is to capture the mean of the stochastic variable ξand covariance of the estimation error P. The generated sigma-points are then propagated through the nonlinear function Ψ[.] to estimate the mean and covariance of ξ.

First, a set of 2n + 1 sigma points is generated as follows: 

     χ 0 k-1 = ξ- k-1 , i = 0 χ i k-1 = ξ- k-

B.2 Glucose concentration measurements

The glucose measurements were performed using the dinitrosalysilic acid (DNS) method, described hereafter:

DNS reagent preparation

• Dissolve 1.00 g of DNS in 20 mL of NaOH 2 M

• Dissolve 30 g of Potassium sodium tartrate tetrahydrate (Rochelle salt) in 50mL of distilled water. 

B.3 Acetate concentration measurements

Acetate concentration measurements were performed with an enzymatic kit (Megazyme, Ireland) according to the manufacturer's instructions. The calibration of the measurements was performed using the standard solution provided with the measurement kit. The concentrations are obtained by measuring the optical density (OD) of the samples and a calibration curve. The acetate calibration is carried out by triplicate. 

C.2 Expressions of the α j coefficients

Theoretical expression of the α j coefficients presented in chapter 5, calculated using Matlab Symbolic Toolbox:
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Appendix D

Sensitivity analysis

In view of analyzing the robustness of the control strategies to plant-model mismatch, the most influencing parameters are determined by a parametric sensitivity study. The influence of a parameter θ j on the model output x i can be quantified by:

d dt ∂x i ∂θ j = ∂ ∂θ j dx i dt (D.1)
The expressions of the parametric sensitivities for the E. coli model are therefore given by: where F i represents the n differential equations of the state variables x i , and θ j represents the parameters (j = 1, 9) from the following vector:

d
θ = [k X1 k X2 k X3 k A2 q Smax q Omax K s K iA K a ] (D.3) Figure D
.1 shows a simulation of model in open-loop over 2 h, with initial conditions : [X 0 S 0 A 0 V 0 ] T = [0.1 g/L 0 g/L 0 g/L 3.5 L] T and F in = 0.02 L/h. The growth rate µ 3 = 0 confirms that the culture is maintained in oxydo-fermentative mode.

Figures D.2 to D.4 shows the normalized parameter sensitivity functions for the biomass, substrate, and acetate concentrations. Table D.1 summuarizes the degree of influence of the model parameters on each variable. 
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  respectivement les coefficients de transfert volumétrique des concentrations d'oxygène et de dioxyde de carbone dissous.• O sat et C sat sont respectivement les concentrations d'oxygène et de dioxyde de carbone dissous à saturation.

TABLE 1 :

 1 L'effet de la variation des paramètres sur la performance de la commande

	Variation de q Omax	µ X µ max	% (GMC-X)	µ X µ max	% (GMC-A) S crit (g/L)
	0%		89%		81%	0.0375
	10%		81%		85%	0.046
	20%		75%		89%	0.0529
	30%		70%		93%	0.0628

TABLE 2 :

 2 Productivité de biomasse des méthodes de commande durant 500 simulations MC

	Méthode	Moyenne Min	Max	Unitée
	Boucle ouverte	0,0161	0,0079 0,0183 g/(h • g de substrat)
	GMC-X	0,0187	0,0176 0,0208 g/(h • g de substrat)
	GMC-A	0,0190	0,0184 0,0206 g/(h • g de substrat)
	NMPC	0,0192	0,0185 0,0206 g/(h • g de substrat)
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  • feed, acid/base, and antifoam. V is the medium volume.

• •

TABLE 2 .

 2 

1: Yield coefficients values of E.coli model

[START_REF] Retamal | Parameter estimation of a dynamic model of Escherichia coli fed-batch cultures[END_REF] 

TABLE 3 .

 3 1: EKF and UKF covariance matrices, tuning parameters, and initial conditions

TABLE 4

 4 

	.1: Set-points of the operating conditions
	Variable	Setpoint Controller
	Temperature	37 • C	PID
	pH	7	PID
	Dissolved Oxygen	30%	Two-level

TABLE 4 .

 4 2: Composition of the LB media used during preparations

	Component Concentration
		(g/L)
	Peptone	10
	Yeast extract	5
	NaCl	6

TABLE 4 .

 4 3: Composition of the M9 medium[START_REF] Rocha | Model-based strategies for computer-aided operation of recombinant E. coli fermentation[END_REF] 

	Components Batch medium Feeding solution
		(./L)	(./L)
	Glucose	5-10 g	500 g
		Salts solution	
	Na 2 HPO 4	6 g	-
	KH 2 PO 4	3 g	-
	NH 4 Cl	1 g	10g
	NaCl	0.5 g	-
	MgSO 4 • 7H 2 O	0.12 g	4g
	Trace metals and vitamin solution
	FeCl 3	27 mg	-
	ZnCl 2	2.0 mg	-
	CoCl 2	2.0 mg	-
	NaMoO 4	2.0 mg	-
	CaCl 2	1.0 mg	-
	CuCl 2	1.0 mg	-
	H 3 BO 3	0.50 mg	-
	HCl	100 mg	-
	Kanamicin	5 mg	-
	Tiamine	3.4 mg	-

TABLE 4 .

 4 4: Composition of the HDF media[START_REF] Delisa | Generic model control of induced protein expression in high cell density cultivation of Escherichia coli using on-line GFP-fusion monitoring[END_REF] 

	Components	Batch medium Feeding solution
		(./L)	(./L)
	Glucose	5 g	500. 0g
	Salts solution	
	KH 2 PO 4	13.3 g	-
	(NH 4 ) 2 HPO 4	4.0 g	-
	MgSO 4 • 7 H 2 O Citric acid	1.2g 1.7 g	20.0g -
	Trace metals and vitamin solution
	EDTA	8.4 mg	13.0 mg
	CoCl 2 • 6H 2 O	2.5 mg	4.0 mg
	MnCl 2 • 4H 2 O	15.0 mg	23.5 mg
	CuCl 2 • 4H 2 O	1.5 mg	2.5 mg
	H 3 BO 3	3.0 mg	5.0 mg
	Na 2 MoO 4 • 2H 2 O	2.5 mg	4.0 mg
	Zn (CH 3 COO) 2 • 2H 2 O Fe III Citrate	13.0 mg 100.0 mg	16.0 mg 40.0 mg
	Thiamine •HCl	4.5 mg	-

TABLE 5 .

 5 1: Summary of the requirements and benefits of the presented control strategies[START_REF] Mears | A review of control strategies for manipulating the feed rate in fed-batch fermentation processes[END_REF].

		PF Adaptive MPC ANN Fuzzy Probing SPC
		Historical
	Requirements	data sets Process Model User
		experience
		Handles
		nonlinear
	Advantages	dynamics Adaptation to unpredictible dynamics
		Provides
		process insight
		Flexible
		objective
		definition
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	Biomass productivity (gh -1 )/(g of substrate)	3 3.5 4 4.5 5 5.5	0.15 •10 -3 0.15 Productivity 0.2 0.2 µ set (h -1 ) 0.25 0.25	0.3 0.3	0 5 10 15	acetate concentration (gL -1

) Acetate FIGURE 6.2: Biomass productivity (blue) and acetate production (magenta) for different µ set values

TABLE 6 .

 6 1: α j values and S set solutions for µ set = 0.18 h -1 and X set = 10 gL -1 .

	α 1 = -1.5602 × 10 4 α 2 = 164.0900 α 3 = 2.4338 × 10 8 α 4 = -5.1201 × 10 6 α 5 = 2.6926 × 10 4 α 6 = -62.4058 S set 1 = 0.0294 gL -1 S set 2 = 447.4088 gL -1

TABLE 6

 6 

.2: Theoritical dependency of kij parameters.

TABLE 6 .

 6 

3: Control and estimation parameters

TABLE 6

 6 

	.5: Root mean square tracking errors for different values of
			k11		
	Deviation Value min(e X ) mean(e X ) max(e X )
	-30%	-0.1759 0.1444	0.0994	0.1591
	-20%	-0.201	0.1456	0.1148	0.1661
	-10%	-0.2261 0.1463	0.1337	0.1569
	nominal -0.2512 0.1481	0.1365	0.1636
	+10%	-0.2764 0.1515	0.1381	0.1658
	+20%	-0.3015 0.1533	0.139	0.1804
	+30%	-0.3266 0.1575	0.144	0.2179

TABLE 7

 7 

		.2: Results of 100 Monte Carlo simulations comparing the
		classical and robust GMC strategies	
		A (Classic) A (Robust) e A (Classic) e A (Robust)
	0%	0.4996	0.4996	0.0226	0.0192
	10%	0.4968	0.4989	0.0293	0.0200
	15%	0.5009	0.5001	0.0343	0.0207
	20%	0.4992	0.4998	0.0456	0.0224
	25%	0.4885	0.4974	0.0643	0.0261
	30%	0.4744	0.4944	0.0843	0.0294
	35%	0.4741	0.4913	0.0889	0.0418

  The evolution of the measured biomass (on-line & off-line), glucose, acetate concentrations (off-line), and their estimates, as well as the feed flow-rate (controller output), are shown inFigures 7.11 and 7.13. The operating conditions are also illustrated in Figures 7.12 and 7.14.
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	phase).	

TABLE 7

 7 

	.3: Control & estimation parameters and initial conditions
		used in the experiments	
		Experiment 1	Experiment 2
	Sampling time	T s = 3 min	T s = 3 min
	Acetate reference	A re f = 0.5 g/L	A re f = 0.7 g/L
	Q	diag[10 -4 , 10 -2 , 10 -2 , 10 -8 ] g/L diag[10 -4 , 10 -2 , 10 -2 , 10 -8 ] g/L
	R	10 -4 g/L	10 -4 g/L
	P 0	10 -4 × I 4 g/L	10 -4 × I 4 g/L
	[α, β, κ]	[1, 2, 0]	[1, 2, 0]

TABLE 7

 7 

	.4: Control & estimation parameters and initial conditions
		used in the experiments
		Experiment 1 Experiment 2
	T s	3 min	3 min
	A re f	0.5 g/L	0.7 g/L
	σ X	0.01 g/L	//
	σ S	0.1 g/L	//
	σ A	0.1 g/L	//
	σ V	0.001 g/L	//
	r X	0.01 g/L	//
	P 0 10 -4 × I 4 g/L	//

TABLE 7

 7 

	.5: Experimental study -UKF estimation mean square errors
	(in g/L)	
	e S (g/L) e A (g/L)
	Experiment 1 0.0885	0.0679
	Experiment 2 0.0381	0.1132

TABLE 7 .

 7 6: Initial conditions and control parameters for the comparison simulations

TABLE 7

 7 

	.7: The effect of parameter variation on the control perfor-
			mance			
	Variation in q Omax	µ X µ max	% (GMC-X)	µ X µ max	% (GMC-A)	S crit
	0%		89%		81%	0.0375
	10%		81%		85%	0.046
	20%		75%		89%	0.0529
	30%		70%		93%	0.0628

  In the following, a discrete-time equivalent expression of the continuous E. coli model (8.8) is used to implement the predictive control strategy. Considering a 146 Chapter 8. Nonlinear model predictive control of the acetate concentration constant sampling time T s , the discrete model is defined as follows:

	(8.14)
	A=A re f ,S=S set
	8.3.2 Control design
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	u k	Discretized control sequence
			t k
		T e 2T e	N p T e
	ξk	
			predicted states
			t k
		T e 2T e	N p T e
	FIGURE 8.2: Principle of the CVP approach
	corresponding cost function reads:

TABLE 8

 8 

	.1: UKF covariance matrices, sigma points tuning parame-
	ters, and initial conditions

  Table 8.1. Three methods were compared: The initial constrained NMPC problem (8.17), the NMPC problem with the CVP method (8.19), and the unconstrained NMPC 152 Chapter 8. Nonlinear model predictive control of the acetate concentration Histograms of the plant parameters q S max , q O max , k X2 , and k A2 , the biomass production and productivity during the MC simulations. problem (8.22) with the variable change (VC) F in = e v . A total of 10 simulations is performed for each method, and the computation time δt required for solving the optimization problem for one time step (kT e ) is shown in Table 8.2.

		20									15
						10				
	Number of runs	5 10 15			Number of runs	5				Number of runs	5 10
		0	3.2	3.3 q smax	3.4	1.34 1.36 1.38 1.4 1.42 1.44 0 q Omax	0	29 30 31 32 33 Biomass production (g)
		20								
						10					10
	Number of runs	5 10 15			Number of runs	5				Number of runs	5
		0	0.28	0.29 K X2	0.3	0	0.42	0.43 K A2	0.44	0.45	85 Productivity/Produtivity-max [%] 90 95 0 100
			FIGURE 8.5:						

TABLE 8

 8 

	.2: Comparison between the computation time required for
	solving the different NMPC problems	
		min(δt) (s) max(δt) (s) mean(δt) (s)
	Constrained NMPC	2.423	11.779	5.863
	NMPC + CVP + VC	0.018	0.733	0.037
	NMPC + CVP	0.019	0.793	0.038

  Comparison of the NMPC and GMC strategies. Plot of the state variables and the control inputs. Zoom over 2h.
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	biomass (g/L)	1.6 1.8 2		NMPC GMC							
		1.4										
			0	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2
								time (h)				
				•10 -2								
	glucose (g/L)	5 10										NMPC GMC
		0	0	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2
								time (h)				
	acetate (g/L)	0.8 1										NMPC GMC Aref
		0.6										
			0	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2
								time (h)				
		1.5		•10 -2								
				NMPC							
	(L/h)	1		GMC								
	Fin	0.5										
		0	0	0.2	0.4	0.6	0.8	1	1.2	1.4	1.6	1.8	2
								time (h)				
	FIGURE 8.8: TABLE 8.3: UKF parameters used in the experiments

TABLE 8 .

 8 4: NMPC control parameters used in the experiments

TABLE 8 .

 8 5: Initial conditions and control parameters

TABLE 8

 8 

	.6: Biomass productivity of the control methods during 500
			MC simulations	
	Method	Mean	Min	Max	Unit
	Open-loop 0.0161 0.0079 0.0183 g/(h • g of substrate)
	GMC-X	0.0187 0.0176 0.0208 g/(h • g of substrate)
	GMC-A	0.0190 0.0184 0.0206 g/(h • g of substrate)
	NMPC	0.0192 0.0185 0.0206 g/(h • g of substrate)

TABLE 8

 8 

	.7: Biomass production of the control methods during 500
		MC simulations		
	Method	Mean	Min	Max	Unit
	Open-loop 22.864 22.0472 26.776	g
	GMC-X	25.3944 18.4881 39.0349	g
	GMC-A	25.7305 20.7225 56.4224	g
	NMPC	26.6117 19.4120 57.1957	g
	TABLE 8.8: Root mean square errors of the control methods during
		500 MC simulations	
	Method	Mean	Min	Max Unit
	Open-loop 0.941	0.139 1.3821 g/L
	GMC-X	0.1400 0.0744 0.8976 g/L
	GMC-A	0.0623 0.0503 0.1531 g/L
	NMPC	0.0560 0.0466 0.0888 g/L
	TABLE 8.9: Computation time (between 2 sampling steps) of the con-
	trol methods during 500 MC simulations
	Method	Mean	Min	Max	Unit
	Open-loop 0.0165 0.01413 0.0401 (×10 -3 ) s
	GMC-X	0.0265 0.1413 0.0401 (×10 -3 ) s
	GMC-A	0.0274 0.2854 0.0535 (×10 -3 ) s
	NMPC	0.0210 0.8095 0.0968	s

TABLE B .

 B 1: Calibration of the biomass concentration from the optical density measurements

	Filter		Weight (g)		Optical Density X sample
	Sample Filter Filter + Biomass Biomass	(abs)	(g/L)
	0	0.301	0.301	0	0.098	0
	1	0.280	0.300	0.0198	5.420	1.980
	2	0.349	0.361	0.0170	3.097	1.170
	2	0.302	0.311	0.008	2.587	0.800
	4	0.301	0.306	0.005	1.805	0.540
	5	0.366	0.369	0.003	1.234	0.370

TABLE B .

 B Table B.3 and Figure B.4 show one of the calibration curves performed during the study. The method demonstrated linearity in a range of 0 to 0.25 g/L with a correlation coefficient of 0.98. 3: Calibration of the acetate measurements using the enzymatic kit

	B.3. Acetate concentration measurements			185
	Calibration						
		Sample OD C(nM/µL)		C(g/L)
		0	0.257 0.012714777 0.015016151
		2	0.322 0.035051546 0.041395876
		4	0.421 0.069072165 0.081574227
		6	0.542 0.110652921		0.1306811
		8	0.708 0.167697595 0.198050859
		10	0.816 0.204810997 0.241881787
		0.22					
		y = 0.3379x -0.0727			
		0.2					
		R 2 = 0.9833				
		0.18					
		0.16					
		0.14					
	OD (abs)	0.1 0.12					
		8 • 10 -2					
		6 • 10 -2					
		4 • 10 -2					
		2 • 10 -2					
		0.2 0	0.3	0.4	0.5	0.6	0.7	0.8
					Acetate (g/L)	
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Chapter 4. Bioreactor harware and software setup

The following chapters describe the control and estimation strategies to maximize biomass production yield and promote cell growth in fed-batch E. coli cultures.

Chapter 7. Robust Generic Model Control of the acetate concentration Structural and parametric uncertainties as well as estimation errors can be lumped into a global parametric error:

where δ is a nonlinear function of (S, A, O) representing possible inexact cancellations of nonlinear terms due to model uncertainties, and θ represents the hypothetical exact (unknown) value. Rewriting the control law in Equation (7.7) using the new expression of the kinetic term from Equation (7.9), we obtain:

which corresponds to the perturbed reference system:

Following a similar approach to the one developed in (Dewasme et al., 2011a), the time-varying parameter δ is assumed bounded and belonging to the set ∆ defined by: ∆ := {δ : δ ≤ δ ≤ δ} (7.12)

with δ and δ respectively representing the minimal and maximal values of the assumed bounded polytopic set.

The control parameters G 1 and G 2 are designed to ensure some robustness and tracking performance to the overall closed-loop system. To this end, the acetate tracking error ( Ã1 = A re f -A) dynamics can be modeled by the following augmented system, illustrated in Figure 7.2:

Considering the state vector x = Ã = Ã1 Ã2 T , the performance output e = Ã1 = (A re f -A) and the disturbance w = [X A re f ] T , the control problem can be formulated as a state feedback controller ( û = Kx,K = [G 1 G 2 ]) applied to the augmented system M:

Chapter 7. Robust Generic Model Control of the acetate concentration

The robust GMC control design procedure based on LMIs is summarized in the following steps:

• Step1: Select a suitable range for the uncertain variable δ.

• Step2: Determine the values of ρ, r, Θ in order to meet a suitable transient performance.

• Step3: Solve (off-line) the bounded real lemma (Equation (7.19)) and the performance LMI (Equation (7.22)) simultaneously, to compute the gain

, and obtain the robust GMC controller parameters G 1 and G 2 .

Numerical simulations

In this section, a set of numerical simulations is achieved to validate the performance and robustness of the GMC scheme before the experimental validation.

The cultures are achieved in a 5-L bioreactor and the kinetic and stoichiometric parameters are those estimated in a previous work [START_REF] Retamal | Parameter estimation of a dynamic model of Escherichia coli fed-batch cultures[END_REF]. The GMC regulation is first tested assuming the acetate concentration is available for measurement, and then coupled to the UKF estimator presented in chapter 3.

The UKF tuning parameters (α, β, κ), the process and measurement noise covariance matrices Q and R, and the initial state covariance matrix P 0 are given in Table 7.1. 

Introduction

As mentioned in previous chapters, several solutions to avoid growth inhibition caused by overflow metabolism have been developed, ranging from genetic modifications of the strains to closed-loop control and optimization of the bioprocess. The common objective behind the control strategies is to maintain the substrate concentration at a critical threshold, corresponding to the maximal oxidation capacity (Jana and [START_REF] Deb ; Jenzsch | Open-loop control of the biomass concentration within the growth phase of recombinant protein production processes[END_REF]. Various nonlinear control methods of processes exhibiting overflow metabolism have been proposed in the literature [START_REF] Abadli | Generic model control applied to E. coli BL21(DE3) Fed-batch cultures[END_REF][START_REF] Benattia | Hierarchical Control Strategy based on Robust MPC and Integral Sliding mode -Application to a Continuous Photobioreactor[END_REF]Dewasme et al., 2011a,b;[START_REF] Gonzalez | Regulation of lactic acid concentration in its bioproduction from wheat flour[END_REF]Santos et al., 2012a). Among these studies, Nonlinear Model Predictive Control (NMPC) is often considered following its several advantages and wide use in industrial applications [START_REF] Forbes | Model predictive controlin industry: Challenges and opportunities[END_REF][START_REF] Qin | An Overview of Nonlinear Model Predictive Control Applications[END_REF]. NMPC is an advanced modelbased control strategy developed for nonlinear processes. It consists in solving an optimization problem on-line under a set of defined constraints. NMPC can predict, using a nonlinear dynamic model of the process, the effect of control steps on controlled variables over a finite horizon. A general formulation of the NMPC

Appendix A Kalman Filter algorithms

A.1 Linear Kalman Filter

The classical Kalman filter addresses the general problem of state estimation in linear stochastic processes. We consider the following discrete-time recursive stochastic system:

where ξ ∈ R n is the state vector, u ∈ R m is the system input, y ∈ R p is the measurement vector.

The matrix A k ∈ R n×n in Equation (A.1a) relates the state ξ at instant k, and the matrix B k ∈ R n×m relates the control input u to the state ξ. The matrix C k ∈ R p×n in Equation (A.1b) relates the state ξ to the measurement y k .

v k and w k represent the process and measurement noise, respectively. They are assumed to be non-correlated, have a zero mean and normal probability distributions:

• R is covariance matrix of measurement noise w k .

The process noise v k is used to model the confidence in the system model, while the measurement noise w k is used to model the measurement quality.

Given the knowledge of the process evolution prior to the instant k, we define the a priori state estimate at step k as ξk ∈ R n . Similarly, given the measurement y k at instant k, the a posteriori state estimate is refered to as ξk ∈ R n .

Definition:

The a priori and a posteriori estimation errors are defined as follows [START_REF] Welch | An Introduction to the Kalman Filter[END_REF]:

The a priori and a posteriori covariance matrices of the estimation errors are defined as:

where E is the mathematical expectation.

A.2 Kalman filter algorithm

The Kalman filter algorithm consist in two major phases: a prediction phase between instants k -1 and k, and an update phase at instant k.

First, the initial estimated state vector and covariance matrix are initialized:

where P 0 represents the initial covariance matrix of the estimation error, and ξ 0 and ξ0 represent the initial state and the initial state estimate, respectively.

Prediction:

In this step, the model and the covariance P - k-1 are used to calculate the estimated a priori state ξk .

ξ-

Update:

At instant k, the available measurement y k is used to update the a posteriori estimated state ξk and the covariance matrix P k .

A.2. Kalman filter algorithm
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(A.8)

where Ω is called the Kalman gain, it minimizes the trace of the covariance matrix of the a posteriori estimation error presented in equation Equation (A.9). The term y k -C k ξk is called the residual or the measurement innovation term. The prediction and update steps are repeated at the next sampling point. The algorithm is initialized with the previous a posteriori estimates and covariance matrix. These are then used as initial variables in a new prediction step to calculate the new a priori estimates.

Tuning the Kalman filter

The tuning of the filter parameters is performed prior to the initialization of the filter using the process noise Q and the measurement noise R covariance matrices.

The measurement noise covariance R is chosen depending on the measurement quality and the sensor characteristics. The process covariance matrix Q is usually tuned to model the uncertainty of the process model on each state variable. Adding sufficient uncertainty to the matrix Q improves the filter estimation quality in the case of uncertain systems.

Extended Kalman filter

The EKF is applied to systems represented by nonlinear differential equations, where a linearization is performed around the current state using the partial derivatives of the process and measurement functions to compute estimates. Let us consider the following stochastic continuous nonlinear system:

where ξ ∈ R n is the state vector, u ∈ R p is the input vector, y ∈ R m is the measurement vector, f (•) and h(•) are nonlinear functions. v ∼ N (0, Q) is the process noise vector, w ∼ N (0, R) is the measurement noise vector. They are assumed to be non-correlated.

The extended Kalman filter applied to the system (A.11) is an extension of the classical Kalman filter in the linear case. It requires to linearize the nonlinear state and measurement equations around the estimated trajectories.

In the context of bioprocess monitoring, the concentration measurements are obtained at discrete times due to sampling or processing delays in the sensors. On the other hand, as presented in chapter 2, the dynamic models of bioprocesses are continuous. Thus, a continuous-discrete of formulation of the Extended Kalman Filter is considered [START_REF] Särkkä | On unscented Kalman filtering for state estimation of continuous-time nonlinear systems[END_REF], where the state dynamics are modeled as continuous time process, and the measurements are obtained at discrete times.

The EKF algorithm follows the same steps as the linear Kalman filter: the prediction phase between instants k -1 and k, and the update phase at instant k. The initialization step also remains the same (Equation (A.6)).

The prediction phase uses the continuous model to obtain the a priori estimated state and covariance matrix, and the update phase uses the classical discrete Kalman filter equations.

Prediction:

The a priori prediction of the state, ξk , and the a priori covariance matrix P - k are obtained by solving:

The matrix A is obtained by linearizing the dynamics around the current state estimate ξk-1

Update:

The measurement y k is used to update the prediction and calculate the a posteriori estimate ξk :

where the matrix C is obtained by linearizing the measurement function around the current state estimate: where • ξk-1 R n the a priori estimated state at instant k -1.

• χ i k-1 is the i th generated sigma point at instant k -1. • P is the covariance of the estimation error.

• Λ is a scaling parameter defined as Λ = α 2 (n + κ)n.

The corresponding weights of the sigma points are computed as follows:

where

• ω i m and ω i c represent respectively the weights of the mean and the covariance.

• α, κ, and β are positive constants tuned to set the appropriate spread of the sigma points.

Prediction

The prediction phase (between k and k + 1) consists in computing the a priori predicted state ξk and the predicted a priori covariance matrix P - k . The sigma vectors are propagated through the nonlinear function Ψ, and the predicted value and covariance of the prediction error are computed using the weights ω i .

where

• χ i- k the a priori generated sigma point at instant k.

Update

The update step (at k + 1) consists in using the measurements at time k to correct the estimated state ξk and covariance of the estimation error P - k obtained in the previous step.

The predicted measurement ŷk is calculated by propagating the predicted sigma points through the measurement function H[.]:

The measurement covariance matrix P ỹk ỹk and the cross covariance matrix P x y y k are then computed:

Finally, the measurement update is performed using the Kalman filter equations:

where Ω k is the Kalman gain, and P k is the a posteriori estimated state and covariance of the estimation error.

Appendix B

Culture monitoring B.1 Biomass concentration measurements

The biomass concentration was obtained by determining the cell dry weight of a selected set of samples at different concentrations, then correlated with the optical density (OD) measurements. The procedure is summarized in the following steps:

• Place the filters (45 µm) at 105 • C overnight.

• Weight the filters using an analytical balance.

• Prepare standard solutions at different dilutions from a sample.

• Measure the OD of the prepared samples.

• Filter 10 mL of the samples and store them overnight at 105 • C.

• Weight the filtered samples using an analytical balance.

• Calculate the biomass concentration X sample using: 

B.1.1 Biomass probe calibration

The calibration is carried out using the off-line biomass measurements and the optical density obtained from the Turibidimetric probe (Fandalux, Germany) (Figure B.2). Several calibration methods were tested (linear, exponential) and the polynomial curve presented the best trade off between data fit in high densities, and stability under airflow disturbances. • Stir until complete dissolution then mix the prepared solutions.

• Heat and mix to homogenize.

• Fill with distilled water for a final volume of 100 mL.

• Store in amber bottle at 4 • C.

Sample preparation and measurement procedure

• Add 1mL of culture supernatant and 1mL of DNS reagent.

• Boil the mix in a 100 • C water bath for 5 min.

• Add 8 mL of distilled water after cooling to room temperature.

• Homogenize and read the absorbance at 540nm in the spectrophotometer.

The blank solution follows the same procedure as the samples, but the culture supernatant is replaced with distilled water. Influence on X Influence on S Influence on A k X2 q s max q s max q s max k

Calibration

An example of glucose calibration results is given in