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Jesus PICO Reviewer & Examiner
Professeur, Universitat Politècnica de València
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Abstract
Escherichia coli is a widespread cellular host for the industrial production of

protein-based biopharmaceutical products considering its physiological and bio-
logical features. This production is mostly operated in fed-batch mode due to the
scalable process, the low operational costs, and the relatively simple media con-
ditions. One key challenge to maximize the bioprocess productivity is related to
the production of acetate, a metabolic byproduct inhibiting the cell respiratory ca-
pacity and affecting the cells metabolic performance. This production must be
maintained as low as possible.

In this thesis, model-based control strategies are considered to avoid acetate ac-
cumulation, thus maximizing biomass productivity, and to drive the culture near
the optimal metabolic operating conditions. In addition, software sensors are de-
veloped to estimate the evolution of the non-measured key variables required to
implement the control strategies.

To this end, three control strategies are proposed. First, the generic model con-
trol method is investigated within an adaptive framework in order to regulate
the biomass growth rate to a desired reference. Secondly, a robust version of the
generic model control strategy is developed to regulate the acetate concentration
to a low value. Finally, the last part of the thesis focuses on the implementation of
a nonlinear model predictive controller to limit acetate accumulation and compare
the performance with the previously described control methods. Furthermore, an
Unscented Kalman filter estimating the glucose and acetate concentrations based
on the biomass measurements is implemented and coupled to the previously men-
tioned control schemes.

The bioprocess is a complex, nonlinear, uncertain, and time-varying system.
Thereby, the developments in this study are focused on the robustness of the im-
plemented methods towards model uncertainties and unpredicted dynamics.

The performance and robustness of the control and estimation strategies are
tested and tuned by means of different scenarios of simulation runs. Fed-batch
cultures of E. coli BL21(DE3) strain are successfully carried on a lab-scale biore-
actor, highlighting the potential of the proposed strategies in real-time conditions.
Theoretical developments and experimental results allow to assess the advantages
of the different proposed approaches and show their tractability for further appli-
cations in an industrial framework.

The proposed control strategies presented in this thesis lead to an average gain
of up to 20% in biomass productivity compared to the conventional operating
mode.





Résumé
Escherichia coli est un hôte cellulaire très répandu pour la production indus-

trielle de produits biopharmaceutiques à base de protéines, compte tenu de ses
caractéristiques physiologiques et biologiques. Cette production est généralement
réalisée en mode fed-batch en raison de l’évolutivité du procédé, des faibles coûts
opérationnels et des conditions de milieu de culture relativement simples à mettre
en œuvre. Un défi majeur pour maximiser la productivité du bioprocédé est lié à
la production d’acétate, un produit métabolique inhibant la capacité respiratoire
des cellules et affectant leur performance métabolique. Dès lors, il s’agit de limiter
au maximum sa production par les microorganismes.

Dans cette thèse, des stratégies de commande à base de modèles sont en-
visagées pour éviter l’accumulation d’acétate, maximisant ainsi la productivité
de la biomasse. Ces stratégies ont pour objectif d’opérer la culture en restant le
plus proche possible des conditions opératoires optimales. En outre, des capteurs
logiciels sont développés pour estimer l’évolution des variables clés non mesurées
nécessaires à la mise en œuvre des lois de commande.

À cette fin, trois stratégies de commande sont développées. La méthode de
commande par modèle générique est tout d’abord mise en œuvre dans un cadre
adaptatif afin de réguler le taux de croissance de la biomasse à une référence
désirée. Ensuite, une version robuste de la stratégie de commande par modèle
générique est développée afin de réguler la concentration d’acétate à une valeur
restant faible. Enfin, la dernière partie de la thèse s’intéresse à la mise en œuvre
d’une structure de commande prédictive non linéaire pour limiter l’accumula-
tion d’acétate et comparer les performances avec les méthodes de commande
décrites précédemment. De plus, un filtre de Kalman � sans parfum � (Un-
scented Kalman Filter) estimant les concentrations de glucose et d’acétate à partir
des mesures de biomasse est implémenté et couplé aux schémas de commande
mentionnés précédemment. Enfin, la dernière partie de la thèse se concentre sur
l’implémentation d’un contrôleur prédictif basé sur un modèle non-linéaire pour
limiter l’accumulation d’acétate et comparer les performances avec les méthodes
de contrôle décrites précédemment.

Le bioprocédé est un système complexe, non linéaire, incertain, variant dans le
temps. Aussi, les développements présentés dans cette thèse se focalisent sur la
robustesse des méthodes mises en œuvre vis-à-vis des incertitudes de modèle et
des dynamiques non modélisées. La performance et la robustesse des schémas de
commande et d’estimation sont testées et ajustées au travers de différents scénarios
de simulation. Des cultures en mode Fed-batch de la souche E. coli BL21(DE3)
sont réalisées avec succès sur un bioréacteur de laboratoire, mettant en évidence le
potentiel des stratégies proposées dans un contexte de conditions opératoires en
temps réel. Les développements théoriques et résultats expérimentaux permettent
en outre de mettre en évidence les avantages des différentes approches proposées,
et illustrent également la généralisation envisageable à des procédés industriels de
plus grande échelle. Les stratégies de commande proposées dans cette thèse per-
mettent un gain moyen jusqu’à 20% de la productivité de la biomasse par rapport
au mode de fonctionnement conventionnel.
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Preface

Context and motivation:

Escherichia coli is one of the most popular cellular hosts for the industrial produc-
tion of protein-based drugs via non-microbial systems. Indeed, a vast array of bio-
pharmaceutical products have been produced through E. coli fermentation, such as
insulin, somatotropin, human parathyroid hormone, and others (Ferrer-Miralles et
al., 2009). Escherichia coli is preferred for its physiological and biological features,
such as flexible culture conditions, fast growth, and high production yields (Lee,
1996; Pontrelli et al., 2018).

Fed-batch cultivation of genetically modified strains of E. coli is the most com-
mon method that rapidly and efficiently produces high-quality proteins while
maintaining industrial processes economic viability (Lee, 1996; Pontrelli et al.,
2018). The advantage is the scalable process, the low operational costs, and the
relatively simple media conditions.

However, some obstacles are still being faced to reach high cell densities in
these bioprocesses, particularly stemming from host cells metabolic performance
(Chou, 2007). The main challenge to ensure the process efficiency and productiv-
ity is the accumulation of acetate, a metabolic by-product inhibiting cell growth
(Luli and Strohl, 1990). Acetate formation occurs when the capacity for energy
generation within the cell is exceeded due to high flux into the main metabolic
pathways caused by an excess in the carbon source (Han et al., 1992; Van De Walle
and Shiloach, 1998). This mechanism is referred to as ”overflow metabolism” or
”Crabtree effect” (Crabtree, 1929).

Acetate presence in high concentration causes the inhibition of the cell res-
piratory capacity, leading to the decrease of biomass production yield and con-
sequently the decrease of the recombinant protein production (Riesenberg et al.,
1991; Rothen et al., 1998).

The goal of the work presented in this thesis is to propose and develop practical
solutions to avoid overflow metabolism and maximize the biomass productivity
in fed-batch E. coli cultures. This objective is achieved by closed-loop control and
estimation strategies that drive the culture near the optimal metabolic operating
conditions. In this manuscript, we attempt to answer the following questions:

• Is there a mathematical representation of the fed-batch E. coli process that
accurately describes overflow metabolism and acetate production? Is there
enough data to properly utilize this model to develop and test the control
strategies?

• Which key components are available for on-line measurement? And is it
possible to estimate the non-measured variables and parameters, based on
these measurements?
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• What are the available materials and hardware for this study? Is the reactor
equipped for closed-loop operation? What software solutions are required
to implement our control strategies?

• How can we translate the biological objectives into a defined control objec-
tive? What are the control variables? And which control method should be
used depending on the available materials and measurements?

• What is the difference between the control methods in terms of metabolic
performance? Difficulty of implementation? Control performance?

Outline:

This thesis is organized as follows:
An introduction to Escherichia coli, the bacterial system studied in this thesis, is

given in chapter 1 . The physiological and metabolic aspects of the microorganism
are presented and discussed. The chapter also discusses the overflow metabolism
phenomenon and acetate excretion via the fermentation pathways. The chapter
includes a general presentation of a bioprocess and its main components, along
with the different operating modes used for cell cultivation.

In chapter 2, a macroscopic representation of the dynamics and the kinetics of
bioprocesses is presented. These dynamic models use reaction schemes and mass
balance principles to derive a state-space representation of the biological system.
Additionally, kinetic models used to describe the different reaction rates are pre-
sented in this chapter. Lastly, the state-space model for fed-batch E. coli cultures
is obtained using the general modeling approach. The model dynamics are illus-
trated in simulation runs showcasing the different metabolic regimes of the bio-
process.

Chapter 3 is dedicated to state estimation. The different software sensor con-
figurations found in the literature are introduced. Then the estimation of the state
variables and kinetic parameters in the studied bioprocess is discussed. For this
task, the Kalman filtering methods are presented and then implemented to esti-
mate the acetate and glucose concentrations based on the biomass concentration.
The efficiency of these algorithms is illustrated in simulation runs.

Chapter 4 includes a presentation of the developed closed-loop system for the
lab-scale bioreactor. This system comprises a real-time monitoring software solu-
tion, control and estimation blocks, and a peristaltic pump control interface. This
program allows the testing and validation of the algorithms presented in this the-
sis. The chapter also includes a description of the bioprocess hardware, materials,
methods, and protocols used during the experiments.

The different control strategies found in the literature for fed-batch biopro-
cesses are presented in chapter 5. This presentation highlights the difference be-
tween the control methods depending on the requirements, complexity, and con-
trol objectives in order to provide a guide for choosing the appropriate method
for the studied bioprocess. The chapter then discusses the control objectives of the
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current study on fed-batch E. coli cultures. The available hardware setup and the
availability of a reliable process model guided the control strategies presented in
the following chapters.

Chapter 6 introduces an adaptive biomass regulation strategy based on the
Generic Model Control method (GMC). The GMC algorithm is presented and then
applied to the E. coli model to track a predefined biomass concentration trajectory
corresponding to a specific growth rate chosen to satisfy the control objectives and
avoid acetate accumulation. A model order reduction is applied to avoid using the
kinetic terms and ensure low feeding rates. Parameter adaptation is performed
using the linear Kalman filter to estimate the unmeasured kinetic terms and adapt
for unpredictable dynamics. The strategy is validated through simulation runs
and experiments using the BL21(DE3) E. coli strain.

Chapter 7, a robust variation of the Generic Model Control strategy is pre-
sented and applied to regulate the acetate concentration at a defined low level.
A robust design procedure using the LMI formalism is presented to account for
model mismatch while ensuring the desired closed-loop transient response. The
robust GMC controller is combined with the state estimation by the UKF, and the
strategy is validated both in simulation runs and through Fed-batch experiments.

Chapter 8 discusses implementing the nonlinear model predictive control
(NMPC) strategy to regulate the acetate concentration to a low level. A control
vector parametrization (CVP) approach is used to reduce the complexity of the
optimization problem and improve the calculation efficiency. The NMPC strategy
is coupled to the UKF estimator and validated through simulations and fed-batch
experiments on the lab-scale reactor. A comparison with the robust GMC structure
is given in this chapter.

Finally, Chapter 9 draws the main conclusions and perspectives of this work.

Contributions:

The main contributions of this work are:

• The development of three control strategies for fed-batch E. coli cultures with
the objective of avoiding acetate accumulation and driving the culture near
the optimal operating conditions. The strategies varied from linearizing con-
trol to nonlinear predictive control.

• The transformation of the lab-scale bioreactor from an open-loop process to
a reliable closed-loop system with flexible monitoring tools allowing the ac-
quisition of several measurements from different manufacturers. The same
interface includes tools that facilitate the integration of advanced control and
estimation algorithms, and feeding flow rate manipulation.

• The experimental validation of the proposed regulation strategies on lab-
scale fed-batch BL21(DE3) E. coli cultures. Providing a proof of concept for
future implementations on higher scale reactors.
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Résumé en français

Contexte et motivations

Escherichia coli est la cellule hôte la plus utilisée dans la production biopharma-
ceutique industrielle. Jusqu’à un tiers des protéines thérapeutiques approuvées
sont produites par la fermentation fed-batch à haute densité cellulaire de souches
génétiquement modifiées de E. coli (Baeshen et al., 2015). Cela découle des
différentes propriétés biologiques de ce micro-organisme. La souplesse des con-
ditions de culture, la rapidité de la croissance, le rendement élevé et la facilité
de mise à l’échelle du procédé ont fait de E. coli l’hôte principal dans l’industrie
biotechnologique (Lee, 1996; Pontrelli et al., 2018).

Escherichia coli est une bactérie hétérotrophe de la famille des entérobactéries.
Elle peut effectuer des métabolismes complexes et survivre dans des conditions
de stress et de culture difficiles. Elle peut se développer à différentes conditions
de température de pH et se multiplier en utilisant diverses sources de carbone
en présence d’une quantité élevée ou limitée d’oxygène. Le glucose est considéré
comme la principale source de carbone dans le métabolisme de l’E. coli.

En cas de croissance aérobique sur le glucose, les cellules d’E. coli peuvent pro-
duire de l’acétate par la voie fermentative. Cependant, des complications peu-
vent survenir pendant la phase de croissance exponentielle. La sécrétion d’acétate
dans le milieu de culture peut inhiber la croissance cellulaire à des concentrations
élevées (Eiteman and Altman, 2006). L’inhibition provient de la diminution de
l’efficacité respiratoire en cas d’excès de glucose. Ce phénomène est connu sous
le nom de métabolisme de débordement ou effet Crabtree bactérien (Crabtree,
1929; De Deken, 1966; Doelle et al., 1982). Par conséquent, il est indispensable
de déterminer une stratégie d’alimentation qui favorise la croissance des cellules
et évite l’accumulation de l’acétate dans le milieu de culture.

Le but du travail présenté dans cette thèse est de proposer et de développer
des solutions pratiques pour éviter le métabolisme de débordement et maximiser
la productivité de la biomasse dans les cultures fed-batch de E. coli. Cet objectif
est atteint à travers des stratégies de commande et d’estimation en boucle fermée
en déterminant le taux d’alimentation approprié qui conduit la culture près des
conditions métaboliques optimales.

Modèle dynamique des cultures fed-batch de E. coli

Le modèle macroscopique de la croissance de Escherichia coli est présenté ci-après.
Le schéma réactionnel qui décrit la croissance cellulaire de E. coli sur le glucose
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en conditions aérobiques est composé de trois voies cataboliques (Retamal et al.,
2018; Rocha and Ferreira, 2002) :

S + kO1O
µ1 X−−→ kX1X + kC1C (1a)

S + kO2O
µ2 X−−→ kX2X + kA2A + kC2C (1b)

A + kO3O
µ3 X−−→ kX3X + kC3C (1c)

où

• S, O, X, C, et A représentent respectivement les concentrations de glucose
(substrat), d’oxygène, de biomasse, de dioxyde de carbone et d’acétate.

• kξi (ξ = [X S A O C]>; i = 1, 2, 3) sont les coefficients pseudo-
stoechiométriques.

• µj (j = 1, 2, 3) sont les taux de croissance spécifiques.

La croissance des cellules E. coli est modélisée suivant la théorie du goulot
d’étranglement de Sonnleitner et Käppeli (Sonnleitner and Käppeli, 1986). La
théorie du goulot d’étranglement suppose que les cellules sont susceptibles de
changer leur métabolisme en raison de leur capacité respiratoire limitée, ce qui
entraı̂ne un métabolisme de débordement contrôlé par le niveau de substrat.

Si la concentration en substrat est supérieure au seuil critique correspondant à
la capacité oxydative disponible (S > Scrit), l’acétate est produit par les cellules par
la voie métabolique fermentaire. La culture est dite en régime oxydo-fermentaire
(réactions (1a) et (1b)).

D’autre part, l’acétate (s’il est présent dans le milieu de culture) est consommé
lorsque la concentration en substrat est inférieure au niveau critique (S < Scrit), et
la culture est dite en régime oxydatif (réactions (1a) et (1c)).

Lorsque la concentration en substrat est au niveau critique et remplit exacte-
ment la capacité respiratoire, la culture est optimale, correspondant à la limite en-
tre les deux régimes de fonctionnement, et l’acétate n’est ni produit ni consommé.
Le modèle cinétique pour les taux spécifiques est basé sur ces régimes de fonction-
nement :

µ1 = min(qs, qscrit) (2a)
µ2 = max(0, qs − qscrit) (2b)
µ3 = max(0, qAC) (2c)

où µ1, µ2, et µ3 sont les taux spécifiques liés aux réactions cataboliques décrivant
l’oxydation du substrat (1a), la production d’acétate (fermentation) (1b), et l’oxy-
dation de l’acétate (1c) (Bastin and Dochain, 1990).
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Les termes cinétiques liés aux taux de consommation qj sont définis par :

qs(S) = qsmax

S
Ks + S

(3a)

qscrit(A) = qOmax

KiA

KiA + A
(3b)

qAC(S, A) = (qscrit − qs)
A

KA + A
(3c)

où

• qs et qAC représentent respectivement les taux de consommation du substrat
et de l’acétate.

• qscrit représente le taux de consommation critique du substrat.

• qS max représente le taux de consommation maximal de glucose.

• qOmax représente la valeur maximale de la capacité respiratoire.

En analysant le bilan massique du schéma réactionnel (1), on obtient les équations
différentielles suivantes (Retamal et al., 2018) :

Ẋ = (kX1µ1 + kX2µ2 + kX3µ3)X − D X (4a)

Ṡ = −(µ1 + µ2)X − D (S − Sin) (4b)

Ȧ = (kA2µ2 − µ3)X − D A (4c)

Ȯ = −(kO1µ1 + kO2µ2 + kO3µ3)X − D O + OTR (4d)

Ċ = (kC1µ1 + kC2µ2 + kC3µ3)X − D C − CTR (4e)

V̇ = Fin (4f)

où

• V est le volume du milieu de culture.

• Fin est le débit d’alimentation d’entrée.

• D est le taux de dilution (D =
Fin

V
).

• Sin est la concentration en glucose dans le milieu d’alimentation.

• µ{1,2,3} sont les taux spécifiques donnés par equations (2) and (3c),.

Les taux de transfert de gaz OTR et CTR peuvent être modélisés par les
équations suivantes :

OTR = kLaO (Osat − O) (5)
CTR = kLaC (C − Csat) (6)

où
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• kLaO et kLaC sont respectivement les coefficients de transfert volumétrique
des concentrations d’oxygène et de dioxyde de carbone dissous.

• Osat et Csat sont respectivement les concentrations d’oxygène et de dioxyde
de carbone dissous à saturation.

Commande adaptative par modèle générique (GMC) de
la concentration en biomasse

Le métabolisme de débordement et l’accumulation d’acétate conduisent à la
diminution du rendement de la production de biomasse et par conséquent à la
diminution de la production de protéines recombinantes (Riesenberg et al., 1991;
Rothen et al., 1998).

Selon la théorie du goulot d’étranglement, afin de maximiser la productivité
de la biomasse et d’éviter un métabolisme de débordement, la concentration en
substrat doit être maintenue à un certain seuil critique correspondant à la capacité
critique d’oxydation des cellules (Jana and Deb, 2005). Pour atteindre cet objec-
tif, une stratégie d’alimentation en boucle fermée est nécessaire pour maintenir le
bioprocédé près des conditions de fonctionnement optimales.

Une formulation simple du problème de commande consiste à réguler les con-
centrations de substrat ou d’acétate à de faibles valeurs. Cependant, le manque
d’outils fiables de mesure en ligne des concentrations d’acétate et de glucose con-
stitue un obstacle majeur à l’application de ces stratégies, puisque le niveau cri-
tique de la concentration de glucose dans les cultures d’E. coli est très faible par
rapport à la sensibilité des sondes disponibles sur le marché.

Nous proposons une stratégie de commande adaptative basée sur la
linéarisation des équations du modèle non linéaire, appelée Commande par
Modèle Générique (GMC) (Lee and Sullivan, 1988). L’objectif est de bénéficier
de la mesure en ligne de la concentration de la biomasse afin de développer et
d’implémenter un algorithme GMC pour contrôler la productivité de la biomasse
dans une fermentation fed-batch de E. coli.

Dans cette stratégie de commande que nous proposons, une trajectoire
prédéfinie de biomasse correspondant à une production limitée d’acétate est im-
posée par le régulateur. Les avantages de cette approche sont l’inclusion du
modèle non linéaire du bioprocédé dans la conception de loi de commande et la
compensation des incertitudes du modèle par une adaptation en ligne utilisant un
estimateur de paramètres.

Une mise en œuvre expérimentale de la stratégie de commande est effectuée
sur un bioréacteur de laboratoire afin de tester ses performances et sa robustesse
dans des conditions réelles d’exploitation.
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Commande par modèle générique (GMC)

La commande par modèle générique est basée sur la linéarisation par retour de
sortie, incluant les non-linéarités du système dans la conception de la loi de com-
mande. L’objectif principal du schéma de commande est de suivre une trajec-
toire nominale de sortie désirée (Peter and Lee, 1993). Considérons le système non
linéaire suivant :

ẋ = f (x) + g(x)u (7)
ẏ = h(x) (8)

où

• x ∈ Rn est le vecteur d’état

• u ∈ R est l’entrée de commande

• y ∈ R est la sortie du système.

• f : Rn → Rn, g : Rn → Rn sont des fonctions non linéaires des états x,

• h : Rn → R est la fonction de sortie.

D’après Equation (8), la dynamique de la sortie est donnée par (Isidori et al., 1995)
:

ẏ =
∂h
∂x

[ f (x) + g(x)u] = L f h(x) + Lgh(x)u (9)

où

• L f h(x) = ∂h
∂x f (x) est la dérivée de Lie de h le long de f .

• Lgh(x) = ∂h
∂x g(x) est la dérivée de Lie de h le long de g.

Dans la procédure de conception de la GMC, la sortie y est comparée à une trajec-
toire de référence prédéterminée yre f . L’équation de sortie peut alors être définie à
l’aide d’un régulateur proportionnel-intégral sous la forme :

ẏ = û = G1(yre f − y) + G2

∫ t

0
(yre f − y)∂τ (10)

où G1 et G2 sont des gains de commande (constants par rapport au temps).
Leur réglage est effectué en fonction du comportement dynamique souhaité. Si
Lgh(x) 6= 0 (c’est-à-dire que le système est de degré relatif 1), la commande satis-
faisant equations (9) and (10) est dérivée de l’équation suivante :

u =
1

Lgh
(
−L f h + û

)
(11)

La réponse désirée de la boucle fermée est définie en fixant le coefficient d’amor-
tissement ξ et la pulsation propre ω0. G1 et G2 sont réglés de manière à conférer
les ξ et ω0 désirés.
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Application de la stratégie GMC aux cultures de E. coli

L’objectif de la commande de la culture fed-batch de E. coli est de favoriser la pro-
duction de biomasse, d’atteindre des densités cellulaires élevées et de maximiser
la productivité de la biomasse.

Nous proposons de réguler le taux de croissance de la biomasse en suivant une
trajectoire sous-optimale prédéterminée satisfaisant les objectifs de commande et
maintenant la culture proche des conditions optimales. L’avantage de cette ap-
proche est son faible coût d’exploitation et sa praticité, puisqu’elle repose unique-
ment sur la mesure en ligne de la biomasse qui est fournie par la sonde tur-
bidimétrique avec un faible bruit de mesure.

Le taux de croissance ciblé µset correspond à une concentration de substrat
inférieure à la valeur critique (Sset < Scrit), et à une concentration initiale en acétate
égale à zéro. Cette trajectoire de fonctionnement permet au procédé d’évoluer
près de la limite entre les modes oxydatif et oxydo-fermentatif, avec une marge
de sécurité pour éviter les commutations métaboliques et favoriser la croissance
cellulaire.

L’application directe de la GMC au modèle macroscopique soulève quelques
problèmes. La détermination précise des taux de croissance spécifiques est dif-
ficile, car la cinétique est basée sur le principe du métabolisme de débordement
représenté par des commutations métaboliques entre les deux régimes. De plus,
une trajectoire imposée de biomasse pourrait éventuellement conduire à des
valeurs élevées du débit d’alimentation.

Conception de la commande GMC à l’aide d’un modèle réduit

Une commande basée sur un modèle réduit est développée en appliquant la tech-
nique de perturbation singulière : la dynamique du substrat, de l’oxygène et du
dioxyde de carbone est considérée plus rapide que celle de la biomasse et de
l’acétate. Ainsi, les variables rapides sont considérées comme étant en quasi-état
d’équilibre et leur dynamique est mise à zéro.
Sous ces hypothèses, l’équation suivante est obtenue pour la concentration de la
biomasse :

Ẋ = − ¯k11
Fin

V
Sin − ¯k12 OTR + ¯k13 CTR − Fin

V
X (12)

où les paramètres ¯k11, ¯k12, et ¯k13 sont des fonctions des paramètres du modèle. En
appliquant le schéma de la GMC, on obtient la loi de commande suivante :

Fin =
− ¯k12 OTR + ¯k13CTR − F̂

X + ¯k11 Sin
V (13)

F̂ = G1(Xre f − X) + G2

∫ t

0
(Xre f − X)∂τ (14)

En supposant que X + ¯k11 Sin 6= 0, ce qui est satisfait en général.
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L’avantage de la réduction du modèle est que la condition de fonctionnement
désirée (faible concentration de substrat) est directement intégrée dans l’algo-
rithme de commande.

Étant donné que OTR et CTR ne sont pas disponibles pour une mesure en
ligne dans notre montage expérimental et que la biomasse X est la seule variable
mesurée, une stratégie adaptative de la GMC est développée. Les signaux non
disponibles sont reconstruits à base de mesures, en adaptant également la loi de
commande soumise à l’incertitude des paramètres.

GMC adaptative

La loi de commande de (14) comporte la variable non mesurable et incertaine suiv-
ante : − ¯k12 OTR + ¯k13CTR. Le dispositif expérimental n’étant pas équipé d’analy-
seurs de gaz, un algorithme d’estimation des paramètres cinétiques est développé.
L’équation de la dynamique de la biomasse (12) peut être réécrite comme suit :

Ẋ = γ − D (X + ¯k11Sin) (15)

où D = Fin
V , et γ est le paramètre incertain et non mesurable variant dans le temps

donné par :
γ = − ¯k12 OTR + ¯k13CTR (16)

À condition que X∗ = X + ¯k11Sin soit disponible pour une mesure en ligne, γ peut
être estimé à l’aide d’un filtre de Kalman linéaire de la même manière que celle
présentée dans (Gonzalez et al., 2016).

Un filtre de Kalman discret (Welch and Bishop, 1995) peut être appliqué pour
estimer l’évolution de X∗ et de γ . La structure de commande mise à jour est
décrite dans la Figure 1.

Xre f
Correcteur PI

ε Commande
linéarisante

û = F̂ u = Fin X

Filtre de Kalman

γ̂ , X̂

−

FIGURE 1: Commande GMC couplée au filtre de Kalman

La loi de commande, après inclusion du paramètre estimé γ̂ devient :

Fin =
γ̂ − F̂

X + ¯k11 Sin
V (17)
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Résultats expérimentaux

Des expériences fed-batch sont réalisées pour tester la stratégie de commande dans
des conditions expérimentales réelles. Les paramètres de commande G1 et G2 ont
été réglés en simulation, le temps de réponse choisi tr est égal à 1 h (ω0 = 3rad/h),
et le rapport d’amortissement est fixé à ξ = 1.

Les concentrations en biomasse, glucose, acétate, ainsi que le débit d’alimenta-
tion sont représentés dans la Figure 2. La concentration de biomasse commence à
partir de 0.3 g/L et atteint 1.5-1.7 g/L à la fin de la phase batch, caractérisée par
un épuisement du glucose. La phase de fed-batch commence à 6 h, et l’algorithme
de commande est lancé.
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FIGURE 2: Evolution de la biomasse mesurée, du profil de référence,
des concentrations de glucose et d’acétate, et du débit d’alimentation

La taux de croissance de référence imposé est µset = 0, 18 h −1. Dans la Fig-
ure 2, la biomasse maintient une croissance exponentielle proche de la trajectoire
de référence montrant que la régulation est efficace. La concentration en glucose
reste proche de zéro et presque constante pendant la phase d’alimentation des
deux expériences, confirmant l’hypothèse de dynamique rapide présentée dans la
section de réduction du modèle (Ṡ = 0).

La concentration d’acétate reste inférieure à 2 g/L pendant l’expérience.
L’évolution indique un basculement métabolique entre les modes oxydatif et
oxydo-fermentatif, et lorsque le glucose est presque épuisé à t = 5h, la concen-
tration d’acétate commence à diminuer, c’est-à-dire que la culture est en régime
oxydatif.

Les performances du régulateur à modèle générique, en termes de robustesse,
sont satisfaisantes. Le contrôleur est capable de maintenir l’erreur de poursuite
de la biomasse proche de zéro dans les deux expériences malgré l’inadéquation
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du modèle résultant des incertitudes de modélisation. Le régulateur parvient à
s’adapter aux variations du signal de la biomasse en agissant sur le débit d’ali-
mentation.

Discussion

Les expériences ont montré que la combinaison de la commande par modèle
générique et de l’adaptation des paramètres permet d’atteindre les objectifs de
commande en temps réel. Le suivi de la trajectoire de la biomasse est effectué
de manière adéquate malgré la présence de perturbations et d’incertitudes sur les
paramètres du modèle.

La stratégie combinée GMC-Kalman présente plusieurs caractéristiques
intéressantes. Tout d’abord, les coûts de développement et de conception sont
assez minimes. Un autre avantage est le fait que la loi de commande est cal-
culée à l’aide d’équations algébriques simples, et ne nécessite pas la résolution
en temps réel d’équations différentielles non linéaires complexes. Cette car-
actéristique réduit la complexité de calcul du schéma de commande et le rend
facilement intégrable dans la plupart des bioréacteurs.

La disponibilité des mesures de la biomasse rend le schéma de commande
très pratique. L’estimation des variables d’état n’est pas nécessaire puisque
la variable mesurée est la variable commandée, et l’estimation des paramètres
est effectuée à l’aide d’un filtre de Kalman linéaire. L’adaptation en ligne des
paramètres cinétiques renforce la robustesse du système en boucle fermée face aux
dynamiques imprévisibles.

Cependant, malgré ses caractéristiques intéressantes, la stratégie de commande
présente certaines limites concernant les performances métaboliques. La com-
mande vise à réguler la concentration de biomasse avec un taux de croissance
défini inférieur au taux critique pour éviter le métabolisme de débordement. Selon
la théorie du goulot d’étranglement, ce taux de croissance sous-optimal peut corre-
spondre aux régimes oxydatif ou oxydo-fermentatif. Cependant, le comportement
observé est que les cellules fonctionnent principalement en régime oxydatif.

Bien que l’accumulation d’acétate soit évitée en fonctionnant dans ce mode, les
écarts par rapport au taux de croissance de référence (dus à une forte inadéquation
du modèle, à une variation des paramètres due aux conditions d’oxygénation
ou à de fortes perturbations des mesures de la biomasse) peuvent entraı̂ner une
baisse du rendement de production de la biomasse et de la productivité de la
biomasse par rapport aux valeurs théoriques attendues. De plus, cette déviation
peut également provoquer une accumulation d’acétate si la culture passe en mode
oxydo-fermentatif sans aucune indication en ligne pour l’utilisateur sur le signal
de la biomasse.

Une solution pratique à ce problème est de réguler la concentration d’acétate à
une faible valeur, car elle est directement liée au taux de croissance optimal. Cette
approche nécessite une estimation robuste des variables d’état, ce qui augmente
la complexité de la stratégie de commande, mais améliore en revanche la produc-
tivité du procédé.
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Commande robuste par modèle générique (GMC) de la
concentration d’acétate

Cibler un faible taux de croissance de biomasse offre une solution pour éviter l’ac-
cumulation d’acétate. Cependant, cela ne permet pas d’atteindre le potentiel du
bioprocédé car ce choix entraı̂ne une faible productivité et un temps de culture
élevé (Srinivasan et al., 2001). Une alternative consiste à réguler la concentration
de glucose ou d’acétate à des niveaux spécifiques (Dewasme et al., 2011a,b; Santos
et al., 2012a). Le principal défi dans les cultures fed-batch de E. coli est la difficulté
de mise en œuvre en raison de l’exigence de mesures précises à faibles concentra-
tions d’acétate et/ou de glucose.

Commande GMC de la concentration d’acétate

Nous proposons une autre solution pour éviter le métabolisme de débordement
en régulant la concentration d’acétate autour d’une valeur basse Are f . Cette valeur
doit être choisie aussi proche de zéro que possible afin de maintenir le bioprocédé
près de la limite métabolique optimale. D’autre part, une marge de sécurité doit
être prise pour éviter les commutations métaboliques entre les régimes opératoire
(Dewasme et al., 2011a).

Comme la variable commandée (acétate) n’est pas disponible pour la mesure
en ligne, un algorithme d’estimation d’état est nécessaire. Un filtre de Kalman non
parfumé (UKF) est mis en œuvre pour estimer les concentrations d’acétate et de
glucose à base du modèle du procédé et des mesures de biomasse.

Le schéma de la GMC présenté précédemment est appliqué pour réguler la
concentration d’acétate dans des cultures fed-batch de E. coli. En considérant la
concentration d’ acétate comme la sortie contrôlée, et en supposant sa disponibilité
pour la mesure (y = A), la loi de commande suivante est obtenue :

Fin = V
û + (kA2µ1 + µ3) X

kA2Sin − A
(18)

û = G1(Are f − A) + G2

∫ t

0
(Are f − A)∂τ (19)

où θ = (kA2µ1 + µ3) est un terme cinétique supposé incertain.

Conception d’une commande robuste

Les incertitudes structurelles et paramétriques ainsi que les erreurs d’estimation
peuvent être regroupées dans une erreur paramétrique globale :

δ = θ̄ − θ (20)

où δ est une fonction non linéaire de (S, A, O) représentant les éventuelles
déviations des termes non linéaires dues aux incertitudes du modèle, et θ̄
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représente la valeur nominale exacte (inconnue). Suivant une approche similaire
à celle développée dans (Dewasme et al., 2011a), le paramètre incertain δ est sup-
posé borné et appartenant à l’ensemble ∆ défini par :

∆ := {δ : δ ≤ δ ≤ δ̄} (21)

avec δ et δ̄ représentant respectivement les valeurs minimale et maximale de l’en-
semble polytopique borné ∆.

Les paramètres de commande G1 et G2 sont conçus pour assurer certaines car-
actéristiques de robustesse et performance du système global en boucle fermée.

Contraintes de robustesse

Le problème de conception de la commande robuste consiste à déterminer les
paramètres du correcteur G1 et G2 de manière à minimiser la norme infinie de
la fonction de transfert en boucle fermée (Chilali and Gahinet, 1996).

Le lemme borné réel (Chilali and Gahinet, 1996) pour les systèmes conti-
nus donne une formulation équivalente en LMI (inégalité matricielle linéaire) du
problème de commande. La résolution de cette LMI permet de reconstruire le
vecteur de retour d’état K qui stabilise le système en boucle fermée et compense la
perturbation bornée δ.

Contraintes de performance

En plus d’assurer la robustesse de la boucle fermée, il est désiré d’obtenir cer-
taines performances en termes de réponse transitoire (par exemple, amortisse-
ment, temps de réponse, etc.). En d’autres termes, des contraintes sont ajoutées
sur l’emplacement des pôles de la boucle fermée.

Les contraintes de placement des pôles peuvent être exprimées à l’aide
de régions LMI, qui sont connues pour avoir des propriétés géométriques
intéressantes (convexité, symétrie, ...) (Chilali and Gahinet, 1996). Une région
appropriée satisfaisant ce critère est l’intersection du demi-plan s < −ρ < 0, du
disque de rayon r et du secteur conique défini par un angle Θ. La région corre-
spondante S(ρ, r, Θ) est définie comme suit :

S(ρ, r, Θ) = {a < −ρ < 0, |s = a + jb| < r, a tan(Θ) < −|b|} (22)

De cette façon, il est possible de fixer un taux de convergence minimal ρ, un
rapport d’amortissement minimal ζ = cos(Θ), et une pulsation propre amortie
maximale ωd = rsin(Θ) (Wood, 1972). Notre problème de conception de la com-
mande consiste alors à trouver un gain de retour d’état K qui :

• garantit la performance H∞.

• place les pôles en boucle fermée dans la région LMI S(ρ, r, Θ) définie par
(22).
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Résultats expérimentaux

Des expériences de commande ont été réalisées pour tester les performances et
la robustesse de la stratégie GMC robuste développée dans un environnement en
temps réel. Chaque expérience comprenait une phase batch suivie d’une phase
fed-batch (phase de commande). Les résultats d’une expérience sont présentés
dans la Figure 3, qui illustre l’évolution de la biomasse mesurée (en ligne & hors
ligne), des concentrations de glucose et d’acétate (hors ligne), et leurs estimations,
ainsi que le débit d’alimentation (sortie du régulateur).
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FIGURE 3: Evolution de la biomasse mesurée, des concentrations es-
timées et mesurées de glucose et d’acétate, et du débit d’alimentation

.

Après avoir atteint les conditions opératoires désirées, le réacteur est inoculé
avec la préculture, et la phase batch commence. Comme le montre Figure 3, la
biomasse suit une croissance exponentielle et atteint jusqu’à 2 g/L. Comme la
consommation de glucose entraı̂ne la production d’acétate, la culture est en mode
respiro-fermentaire.

La phase batch a duré 4 heures après la consommation de la majorité du glu-
cose dans le milieu. La phase de fed-batch a commencé juste après la mesure
d’une faible concentration de glucose. Le contrôleur GMC est lancé après la mise
en place de la référence acétate et des paramètres de commande. La solution d’al-
imentation est injectée par le contrôleur et les cellules reprennent leur croissance.
La phase de fed-batch se poursuit jusqu’à atteindre la limite de saturation de la
sonde turbidimétrique (autour d’une concentration de biomasse de 8 g/L).

La mesure en ligne de la concentration de la biomasse fournie par la sonde
turbidimétrique, et le modèle cinétique avec les valeurs des paramètres identifiés
du (Retamal et al., 2018) sont utilisés pour estimer les concentrations d’acétate et
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de glucose en utilisant l’UKF. L’estimation est lancée pendant la phase batch après
avoir atteint une concentration de biomasse mesurée supérieure à 0,2 g/L pour
garantir une bonne précision d’estimation.

Les performances de l’UKF dans la phase fed-batch sont satisfaisantes, malgré
les erreurs d’initialisation et les incertitudes du modèle. Les estimations du glu-
cose et de l’acétate correspondent très bien aux mesures hors ligne pendant la
période de commande, et la convergence est atteinte en moins d’une heure. Les
valeurs de l’erreur quadratique moyenne de l’estimation pour chaque état estimé
(le substrat et l’acétate) sont du même niveau de la sensibilité de la mesure (0,1
g/L).

Comme on peut le voir dans Figure 3, l’accumulation d’acétate est évitée, et
la concentration est limitée à moins de (1 g/L) pendant la phase fed-batch. La
concentration estimée en acétate converge vers la référence désirée, en respectant
le temps de stabilisation choisi.

Discussion

La stratégie de commande présentée constitue une approche pratique pour éviter
le métabolisme de débordement dans les cultures fed-batch de E. coli. Cepen-
dant, elle offre une solution sous-optimale, car la régulation de la concentration
de substrat au niveau critique n’est pas pratique en raison du manque de mesures
précises en ligne.

Afin d’évaluer l’efficacité de l’approche proposée, une comparaison est ef-
fectuée en simulation avec la stratégie de régulation du taux de croissance
présentée dans la section précédente. À cette fin, nous avons réglé la régulation
de la biomasse pour suivre un taux de croissance défini µset choisi à 90% de la
valeur maximale théorique (µmax = 0,26 L/h), correspondant à la concentration cri-
tique de substrat et à la capacité oxydative maximale. D’autre part, nous fixons la
régulation de l’acétate pour suivre une référence de 0,5 g/L. Nous supposons que
la concentration d’acétate est mesurée avec un bruit blanc additif d’une déviation
standard de 0,05 g/L.

Tout d’abord, nous supposons que les paramètres du modèle et le taux de crois-
sance maximal µmax sont parfaitement connus. Ensuite, nous introduisons une
variation fixe de la capacité oxydative maximale qOmax qui est directement liée à la
valeur du taux de croissance maximal.

TABLE 1: L’effet de la variation des paramètres sur la performance de
la commande

Variation de qOmax
µX

µmax
% (GMC-X)

µX

µmax
% (GMC-A) Scrit (g/L)

0% 89% 81% 0.0375
10% 81% 85% 0.046
20% 75% 89% 0.0529
30% 70% 93% 0.0628



xl

Dans le cas du modèle idéal (aucune variation paramétrique), la régulation
de la croissance de la biomasse (GMC-X) présente une performance globale
légèrement supérieure. En revanche, la régulation de la concentration en acétate
(GMC-A) à 0.5 L/h conduit à un taux de croissance de la biomasse de 0,21 h−1

correspondant à 81% de la valeur maximale comme on peut le voir dans Table 1.
Ce résultat montre que la présence d’acétate dans le milieu réduit le taux de crois-
sance de la biomasse, en raison d’un taux de consommation de substrat plus faible
causé par l’activation des voies de consommation de l’acétate selon la théorie du
goulot d’étranglement. Cependant, le maintien de l’acétate à une faible concen-
tration réduit son effet inhibiteur, et maintient la culture proche des conditions
optimales. L’introduction d’une variation de 20 % de qOmax entraı̂ne une augmen-
tation de la concentration critique de substrat Scrit et par conséquent du taux de
croissance maximal µmax.

Malgré l’inadéquation du modèle, la régulation du taux de croissance de la
biomasse présente une bonne performance dans le suivi du taux de référence.
Cependant, elle ne correspond qu’à 75% de la nouvelle valeur maximale, et la
productivité de la biomasse est donc également inférieure à sa valeur optimale
par rapport au cas nominal. Ceci est dû à l’augmentation de l’écart entre le taux
de référence µset et le nouveau taux de croissance maximal µmax.

La régulation de l’acétate, en revanche, offre une performance plus cohérente,
et donne un meilleur rapport de taux de croissance (89%). De plus, le rapport
de taux de croissance est plus élevé avec une variation croissante de la capacité
oxydative maximale, comme on peut le voir dans Table 1.

Ce résultat met en évidence un problème lié au choix d’un taux de croissance
spécifique comme objectif de commande, car il nécessite une détermination précise
de la valeur maximale, puis de cibler un taux de croissance plus faible pour éviter
l’accumulation d’acétate. C’est une tâche difficile en raison de la nature incertaine
des bioprocédés, car la variation des paramètres dépend de plusieurs facteurs tels
que la variation des conditions opératoires entre les cultures. Si le taux de crois-
sance maximal est sous-estimé, la productivité sous-optimale de la biomasse qui
en résulte est inférieure à celle désirée. Si le taux de croissance maximal est sures-
timé, une régulation à 90% de cette valeur pourrait conduire à une accumulation
d’acétate et à des commutations métaboliques, et donc à une inhibition de la crois-
sance.

D’autre part, la régulation de la concentration d’acétate et son maintien à une
faible valeur offrent un meilleur compromis pratique, puisque l’accumulation est
évitée, et le taux de croissance obtenu est cohérent dans le cas d’une inadéquation
du modèle. Il s’agit d’un résultat intéressant car l’approche de régulation de
l’acétate est robuste face aux changements des conditions d’exploitation et n’est
pas spécifique à la souche bactérienne. La stratégie pourrait être appliquée à une
souche différente tout en assurant le même niveau de performance sans avoir be-
soin d’estimer µmax avec précision.
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Commande prédictive non linéaire de la concentration
d’acétate

La commande prédictive non linéaire (NMPC) est souvent envisagée pour les
problèmes de régulation de procédés suite à ses nombreux avantages et à sa
large utilisation dans les applications industrielles (Forbes et al., 2015; Qin and
Badgwell, 2000). La NMPC est une stratégie de commande à base de modèle
développée pour les procédés non linéaires. Elle consiste à résoudre un problème
d’optimisation en ligne sous un ensemble de contraintes. La NMPC peut prédire,
en utilisant un modèle dynamique non linéaire du procédé, l’effet des valeurs de
commande sur les variables commandées sur un horizon fini. Une formulation
générale du problème NMPC consiste à minimiser une fonction quadratique (fonc-
tion coût) sur un horizon fini.

Dans cette section, la NMPC est appliquée pour maximiser la productivité de
la biomasse dans des cultures fed-batch de E. coli, en régulant la concentration
d’acétate à une faible valeur. L’algorithme NMPC est implémenté dans un envi-
ronnement en temps réel, et l’effort de calcul est réduit grâce à la technique de
paramétrisation du vecteur de commande (CVP) (Banga et al., 2005).

Le filtre de Kalman non parfumé (UKF) est utilisé pour fournir des estimations
des concentrations d’acétate et de glucose sur la base de la mesure de la biomasse.

Commande prédictive non linéaire appliquée aux cultures de E.
coli

De la même manière que pour la stratégie de commande précédente, nous désirons
maintenir la concentration d’acétate à une valeur de consigne faible Are f pour
éviter son accumulation durant la culture. Cette régulation est obtenue en agis-
sant sur le débit d’alimentation Fin, également contraint de suivre une trajectoire
de référence pré-calculée Fre f afin de lisser le comportement de la commande.

Conception de la commande

Dans ce qui suit, une expression équivalente en temps discret du modèle continu
de E. coli est utilisée pour mettre en œuvre la stratégie de commande prédictive.
En considérant un temps d’échantillonnage constant Ts, le modèle discret est défini
par :

ξk+1 = F
(
ξk, Fink

)
zk = Hξk

(23)

où

• ξk = [Xk Sk Ak Vk]
T et zk = Ak sont respectivement l’état discret la sortie

échantillonnés au temps kTs.

• F est la fonction de transition non linéaire
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• H =
[

0 0 1 0
]

est la matrice de mesure.

• Fin est l’entrée de commande, paramétrée à l’aide d’une approximation con-
stante par morceaux.

Le suivi de trajectoire est réalisé à l’aide de la stratégie de commande prédictive
non linéaire (NMPC). En se basant sur le modèle (23) et des objectifs de commande
définis précédemment, la fonction coût de la NMPC peut être défini comme suit :

Φ
(
ξ̌?, Fin•

)
=

Np

∑
i=1

(
Ǎk+i − Are f k+i

)2
+ λ

Nc

∑
i=1

(
Fink+i − Fre fk+i−1

)2
(24)

où Ǎ est la concentration d’acétate prédite, et Fre f est le profil d’alimentation
de référence pré-calculé. Np et Nc sont respectivement les horizons de prédiction
et de commande, et λ > 0 est le gain de pénalité de commande.

La formulation du problème NMPC consiste à minimiser la fonction coût
Φ
(
ξ̌?, Fin•

)
à l’instant k comme suit :

min
Ǎk ...Ǎk+Np−1,Fink

...Fink+Nc−1

Φ
(
ξ̌?, Fin•

)
(25)

sous des contraintes liées à la dynamique prédite du système :

s.t. ξ̌k+i+1 = F
(
ξ̌k+i, Fink+i

)
, i = 0, Np − 1 (26a)

Ǎk+i+1 = HF
(
ξ̌k+i, Fink+i

)
, i = 0, Np − 1 (26b)

0 6 Fink+i 6 Fmax, i = 0, Nc − 1 (26c)

0 6 ξ̌k+i 6 ξ̌max, i = 0, Np − 1 (26d)

Afin d’éviter de résoudre le problème d’optimisation sous contraintes, ce
dernier est transformé en un problème de programmation non linéaire (NLP)
à l’aide de la technique de paramétrisation des vecteurs de commande (CVP)
présentée dans (Banga et al., 2005). De plus, un changement de variable Fin = ev

vise à éliminer les contraintes de positivité sur Fin et améliore le conditionnement
du problème d’optimisation. La fonction de coût correspondante s’écrit :

Φ
(
ξ̌?, v•

)
=

Np

∑
i=1

(
Ǎk+i − Are f k+i

)2
+ λ

Np

∑
i=1

(
evre f

k+i−1 − evk+i−1

)2
(27)

et la formulation du problème NMPC se réduit à résoudre à chaque instant kTe
:

min
evk ...e

vk+Np−1
Φ
(
ξ̌?, v•

)
(28)
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Résultats expérimentaux

Pour valider la stratégie de commande combinée du NMPC et l’estimation des
concentrations d’acétate et de glucose par l’UKF, des expériences en fed-batch sont
réalisées en utilisant la souche E. coli. BL21(DE3).

L’horizon de prédiction Np et le paramètre de pénalité λ ont été réglés en sim-
ulation par essais et erreurs afin d’atteindre les objectifs de la commande tout en
empêchant une déviation excessive de Fin par rapport au profil d’alimentation de
référence Fre f . L’évolution de la biomasse, du glucose, des concentrations d’acétate
et du débit d’alimentation dans l’une des expériences est illustrée dans la Figure 4.

La première expérience est réalisée en deux phases, un batch suivi d’un fed-
batch. La phase batch est réalisée pour atteindre une concentration minimale de
biomasse de 1 g/L et s’assurer que les cellules sont en phase exponentielle au mo-
ment de lancement de la régulation et d’injection du milieu d’alimentation. L’es-
timation par l’UKF est lancée pendant cette phase après l’initialisation du vecteur
d’état.

La phase fed-batch commence après la consommation totale du glucose. Le
régulateur NMPC est lancé après la configuration de la référence d’acétate et des
paramètres de commande. Le régulateur génère un profil d’alimentation expo-
nentiel, et la concentration d’acétate estimée converge vers la référence désirée en
moins de 30 min et reste dans l’intervalle 0,33-0,5 L/h jusqu’à la fin de la culture.
En même temps, la concentration de substrat reste dans un état quasi-stationnaire.

Après la fin de la première expérience, un rafraı̂chissement de la culture est
effectué. Un volume de la culture est extrait à l’aide d’une pompe péristaltique,
laissant 500 mL de culture de volume. Ensuite, 3L d’un milieu stérilisé en auto-
clave sont injectés par une pompe péristaltique, et la phase batch de la seconde
expérience commence.

La deuxième expérience suit le même protocole que la première, la phase batch
dure 2 h, et le glucose est rapidement consommé par les cellules. La consigne de
concentration en acétate est fixée à 1,5 g/L, l’alimentation suit une courbe expo-
nentielle, et la concentration en acétate converge vers la référence imposée. À t=12
h, un changement de point de consigne est introduit et Are f est fixé à 0, 7 g/L.
La commande NMPC adapte le débit d’alimentation en fonction de la nouvelle
référence, et la concentration d’acétate estimée suit la nouvelle référence en 20
minutes.

Les performances de la stratégie NMPC-UKF sont très satisfaisantes. L’UKF
estime avec précision les concentrations d’acétate et de glucose en présence de
bruit de mesure sur la concentration de la biomasse. Les erreurs quadratiques
moyennes des concentrations en substrat et en acétate sont respectivement de
0,089 g/L et 0,068 g/L, ce qui est cohérent avec la sensibilité des mesures et les
niveaux de bruit (0,1 g/L).

La commande NMPC régule la concentration d’acétate estimée à la consigne
fixée, et la convergence est atteinte en 20 minutes. La concentration d’acétate reste
dans une plage acceptable pendant la durée de la fermentation, et les conditions
de culture sont bien adaptées à la croissance de la biomasse.
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S

0 5 10 15
0

1

2

temps (h)

A
ce

ta
te

(g
/L

)

Â
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FIGURE 4: Évolution de la biomasse mesurée, des concentrations du
glucose et d’acétate (mesurées hors ligne et estimées en ligne) et du

débit d’alimentation.

Étude comparative

Afin d’évaluer les performances des stratégies de commande présentées dans cette
thèse, une étude en simulation est effectuée et présentée dans cette section. Les
trois méthodes de commande sont comparées dans les mêmes conditions de fonc-
tionnement et avec un réglage de commande similaire.

Les commandes NMPC et GMC robuste (GMC-A) sont paramétrées pour
suivre une référence d’acétate de Are f = 0, 7 g/L. D’autre part, la régulation du
taux de croissance de la biomasse à l’aide de la stratégie GMC (GMC-X) est réglée
pour suivre un profil de référence correspondant à cette valeur de concentration
en acétate.

La simulation est réalisée sur 10 h en supposant que le vecteur d’état est
disponible pour la mesure, avec un bruit de mesure ajouté de 0,05 g/L et 0,02
g/L sur les concentrations de biomasse et d’acétate.

Tout d’abord, les stratégies de commande sont comparées dans le cas du
modèle idéal, où tous les paramètres du modèle sont supposés être parfaitement
connus. Ensuite, 500 simulations de Monte Carlo (MC) sont effectuées en ten-
ant compte des incertitudes du modèle. Les paramètres du modèle sont choisis
aléatoirement avec une variation maximale de 30 % autour de leur valeur nomi-
nale suivant une distribution normale.
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Les résultats des simulations de Monte Carlo donnent un aperçu des perfor-
mances des méthodes de commande. La productivité de la biomasse sur 10 h
pendant les 500 simulations est résumée dans le tableau 2.

On peut voir que le NMPC surpasse les commandes GMC en moyenne et
donne une meilleure productivité. On peut également observer que la régulation
d’acétate a une valeur moyenne et maximale plus élevée. Le régulateur de
biomasse vise un taux de croissance spécifique, et ainsi, lorsque le procédé est ca-
pable d’atteindre des taux de croissance plus élevés, la régulation de la biomasse
maintient le taux de croissance plus proche de la référence spécifiée, ce qui conduit
à une productivité de biomasse plus faible. Comme prévu, toutes les comman-
des développées donnent de meilleurs résultats que la boucle ouverte, avec une
amélioration moyenne de 20 % de la productivité de biomasse.

TABLE 2: Productivité de biomasse des méthodes de commande du-
rant 500 simulations MC

Méthode Moyenne Min Max Unitée
Boucle ouverte 0,0161 0,0079 0,0183 g/(h · g de substrat)

GMC-X 0,0187 0,0176 0,0208 g/(h · g de substrat)
GMC-A 0,0190 0,0184 0,0206 g/(h · g de substrat)
NMPC 0,0192 0,0185 0,0206 g/(h · g de substrat)
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1.1 Introduction

Escherichia coli has become one of the best characterized cellular organisms on
earth, and the predominant organism in research and production laboratories.

E. coli rise to fame in metabolic engineering and synthetic biology stems from
its numerous traits. The simple culture conditions, the rapid growth, and the
metabolic flexibility have made E. coli one of the most studied host organisms,
leading to a significant biochemical and physiological knowledge of the cellu-
lar system and a broad set of developed genetic and genomic engineering tools.
Hence, the different non-pathogenic strains of E. coli can be found in the produc-
tions of pharmaceuticals, food, chemicals, and fuels.

The rapid progress in metabolic engineering and synthetic biology allowed
overcoming many limitations of the bacterial system. New engineered phenotypes
in E. coli have proven to surpass traditional native producers. A demonstration of
this can be found in (Gusyatiner et al., 2017), where a bio-engineered strain of E.
coli has been utilized for the industrial production of amino acids, traditionally
achieved using the Corynebacterium glutamicum. Another example is the produc-
tion of n-butanol, where E. coli demonstrated a similar efficiency to that achieved
with the natural producer Clostridia (Ohtake et al., 2017; Shen et al., 2011).
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E. coli is also the preferred proof-of-concept model organism and among the
top choices as a host when no natural producer exists. Successful examples of
industrial production of lysine, 1,3-propanediol (PDO), and 1,4 butanediol using
E. coli can be found in (Burgard et al., 2016; Kojima et al., 2000; Sabra et al., 2016;
Sanford et al., 2016).

As such, E. coli is the most preferred micro-organism for research purposes and
a key player in developing modern biological engineering and industrial microbi-
ology.

This chapter introduces E. coli, the bacterial system chosen for this study, and
we present the general aspects of bioprocesses. It is thereby divided into two main
sections. We first start by describing the E. coli cell, its physiology, and the main
strains used in laboratory applications. Additionally, we examine the aerobic and
anaerobic metabolism of E. coli, with a focus on acetate production and overflow
metabolism.

Finally, we present and discuss the general definition of a bioprocess, its main
components and the different kinds of cultures used for cell cultivation.

1.2 E. coli as a host cell

The choice of E. coli for this study is motivated by its interesting traits as a host cell.
E. coli strains can be easily cultured under a variety of growth conditions. In addi-
tion, E. coli can be easily enhanced genetically, allowing the extensive physiolog-
ical analysis and the engineering of new phenotypes, thus significantly reducing
industrial development costs (Meyer and Schmidhalter, 2012).

Various chemicals such as tryptophan, phenylalanine, threonine, lysine, and
others have been produced on the industrial scale using E. coli strains. As for
biopharmaceutical applications, recombinant proteins are the main product of E.
coli fermentations. It was reported that 34% of recombinant proteins in US and
European markets are expressed in E. coli (Meyer and Schmidhalter, 2012).

Nevertheless, using E. coli as a host has some limitations. E. coli is incapable of
producing proteins that require complex assembly or proteins with high numbers
of disulfide bonds (Meyer and Schmidhalter, 2012).

Furthermore, culture conditions that favor contamination resistance (high and
low pH, high temperatures) are not suitable for E. coli growth (Bhalla et al., 2013;
Hasunuma and Kondo, 2012; Tao et al., 2005; Wernick et al., 2016). Phage attack
is also a significant concern to industrial production using bacterial strains in non-
sterile conditions (Melo et al., 2018; Samson and Moineau, 2013).

Despite these drawbacks, E. coli maintains it’s position as one the most versatile
organisms used on the industrial scale. The large knowledge of its physiology,
genetics and metabolism has enabled a big progress in metabolic engineering and
synthetic biology using E. coli. This progress lead to overcoming many limitation
and to the development of new phenotypes engineered in E. coli (Pontrelli et al.,
2018).
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1.3 E. Coli strains

To date, more than 700 serotypes of E. coli have been identified (Liu, 2019). Cur-
rent biotechnology research is focused on the strains E. coli B (BL21) and E. coli K
(MG109), and E. coli W (ATCC 9637).

The K strains (K-12) are used in recombinant protein production, in laboratory
and industrial scale. K-12 strains are characterized by lower reducing power in
the cytoplasm to form disulfide bonds better. They are frequently chosen as a host
for plasmid DNA production (Phue et al., 2008).

Most common applications using E. coli are carried using K-12 strains. How-
ever, BL21 and its derivatives quickly became preferable for biopharmaceutical
productions (Pontrelli et al., 2018). The strains B and K and their derivatives have
been extensively studied. Their response under high glucose concentrations in
their growth media is significantly different (Lee, 1996).

The difference in the metabolism resides within the glycolytic pathway and
the tricarboxylic acid cycle (TCA) cycle. The B and K strains process glucose and
pyruvate at different rates and thus generate more or less acetate production and
consumption. The acetate production and consumption rates are crucial to the
growth and recombinant protein production efficiency using E. coli (Shiloach and
Rinas, 2009).

Hence, applications that require high protein expression are mostly achieved
using BL21 as a host because of the lower sensitivity to high glucose concentrations
(Meyer and Schmidhalter, 2012). The reduced sensitivity leads to reduced acetate
production and high growth rates, and efficient glucose consumption (Phue et al.,
2008).

W strains are known for the extensive substrate range, less acetate production,
and higher product tolerance (Prieto et al., 1996). The W strain (ATCC 9637) is best
known for ethanol production (Park et al., 2011) .

1.4 E. coli physiology

Escherichia coli is named after the German bacteriologist Theodor Escherich who
isolated the type species in the human colon in 1885 (Feng et al., 2002). It is a non-
spore-forming, Gram-negative heterotrophic bacterium from the Enterobacteria
family.

The E. coli forms a rod-shaped cell composed of a fimbria and a cell wall. It
includes a protective outer membrane, a periplasmic space with a peptidoglycan
layer, and an inner cytoplasmatic cell membrane. The cell is about 2.0-6.0 µm in
length and 0.25–1.0 µm in diameter, with a cell volume of 0.7 µm3 (Nelson and
Cox, 2017).

The cytoplasmatic membrane and the layers outside it constitute the cell en-
velope (Figure 1.1). The plasma membrane consists of a thin bilayer of lipid
molecules and proteins. The cytoplasm contains about 15,000 ribosomes, thou-
sands of different enzymes, numerous metabolites and cofactors, and various in-
organic ions. The nucleoid contains a single, circular molecule of DNA, and the
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cytoplasm contains one or smaller plasmids. The outer membrane provides a bar-
rier to toxins and certain antibiotics (e.g., penicillin) (Nelson and Cox, 2017).

E. coli has an extremely simple cell structure, with only one chromosomal DNA
and a plasmid. However, it can perform complicated metabolisms and survive
under stress and difficult culture conditions. It can grow at temperatures from 8-
48 ◦C and pH values ranging from 4.4 to 10. It is a facultative anaerobic bacterium
since it can grow with various carbon sources in the presence or absence of oxygen.

FIGURE 1.1: The E. coli cell structure (Moulton, 2014)

1.5 E. coli metabolism

The cell activities are performed through a set of biochemical reactions taking
place inside the cell itself. The sum of these chemical transformations is called
metabolism. These reactions are catalyzed by enzymes and organized in metabolic
pathways and are regulated according to the cell’s need and function. Metabolism
provides energy for vital processes and the synthesis of organic material. The prin-
cipal metabolism components are the carbon source, the metabolic products, the
biomass constituents, the intercellular metabolites, and the enzymes.

This section presents a brief description of the most important metabolic path-
ways of E. coli, under aerobic and anaerobic conditions. Figures 1.2 and 1.3 rep-
resent the central metabolic pathways under aerobic and anaerobic conditions,
respectively, considering only the carbon fluxes. The aerobic metabolic growth
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is composed of two main pathways: glycolysis and the tricarboxylic acid cycle
(TCA). During these transformations, part of the energy released is converted to
the cofactors ATP and NADH (Nelson and Cox, 2017).

Glucose is considered as the primary carbon source in E. coli metabolism. Un-
der aerobic conditions, glucose is catabolized through glycolysis. Glycolysis is the
metabolic route where glucose is converted to phosphoenolpyruvate (PEP) and
pyruvate through a series of enzymatic reactions, releasing some energy in the
form of ATP and NADH.

Then, pyruvate is oxidized to acetyl-CoA and CO2 by the pyruvate dehydro-
genase (PDH) enzyme. This pathway involves five coenzymes and three enzymes
and links the glycolysis to the TCA cycle. The TCA cycle (also known as the Krebs
cycle) is a catabolic phase of aerobic respiration, where oxygen is used as the fi-
nal electron acceptor to generate ATP and cofactors. The TCA cycle pathway has
the role of energy production and conservation. Acetyl-CoA is metabolized in the
TCA cycle, and a variety of biosynthesis products are generated (Nelson and Cox,
2017).

In aerobic growth, acetate is produced through two main pathways. The first
pathway is the breakdown of acetyl-CoA by phosphotransacetylase (PTA) and ac-
etate kinase (ACKA). This pathway is called the overflow pathway since it rapidly
converts acetyl-CoA to acetate via acetyl phosphate. The overflow pathway is re-
versible, where the acetate can be converted back to acetyl-CoA via the acetyl-CoA
synthetase (ACS) enzyme (Phue et al., 2008).

The second pathway for acetate production is the pyruvate oxidation by the en-
zyme pyruvate dehydrogenase (PoxB), generating acetate and CO2. This pathway
has lower energy conservation compared to the overflow pathway (Kirkpatrick et
al., 2001).
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FIGURE 1.2: A simplified central aerobic pathway of Escherichia coli
(Moulton, 2014)

The cells growth occurs also under limited oxygen and active respiratory path-
ways. Under these conditions, the growth is characterized by limited ATP pro-
duction, leading to the downregulation of the TCA cycle and incomplete glucose
oxidation (Koebmann et al., 2002).

Fermentation by-products are excreted during anaerobic growth. The list in-
cludes succinate, formate, acetate, lactate, and ethanol. These by-products are
produced with ratios that allow the cell to regulate redox balance and ATP for-
mation (Xu et al., 2014).
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Acetate is produced from acetyl-COA, and the reaction generates one ATP.
However, different enzymes are involved compared to aerobic growth. The pyru-
vate formate lyase (PFL) intervenes in the generation of acetyl-COA and formate
from pyruvate (Xu et al., 2014).
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FIGURE 1.3: A simplified central pathway of Escherichia coli growth
under limited oxygen conditions (Moulton, 2014)
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1.6 Overflow metabolism

Under aerobic growth on glucose, acetate is excreted by E. coli cells through the
fermentative pathway. However, complications can arise during the exponential
growth phase. The secretion of acetate into the surrounding media can inhibit cell
growth at higher concentrations (Eiteman and Altman, 2006).

The respiration efficiency in the case of excess glucose can decrease due to the
production of acetate. This phenomenon is known as overflow metabolism or
bacterial Crabtree effect. It was reported that up to 15% of glucose is converted
to acetate under these conditions. (Crabtree, 1929; De Deken, 1966; Doelle et al.,
1982; Wolfe, 2005).

Overflow metabolism can also cause the decoupling of transmembrane pH gra-
dients, thus affecting osmotic pressure, intracellular pH, and amino acid synthesis.
Adding to that, the excretion of acetate causes the acetogenesis of the E. coli cell.

Overflow metabolism is likely caused by an imbalance between fast glucose
metabolism and the TCA cycle’s limited capacity or respiration (Holms, 1986;
Kadir et al., 2010; Shin et al., 2009). The repression of many TCA promoters and
genes that encode enzymes leads to enzymatic limitations, and the lack of regu-
lation in the maximum glucose uptake rate velocity (Luli and Strohl, 1990; Phue
et al., 2008; Vemuri et al., 2006).

In the case of the aerobic excretion of acetate, the cell metabolism depends on
the limited oxidative capacity (represented by a bottleneck) and the available glu-
cose in the medium. Six possible scenarios presented in (Luli and Strohl, 1990; Xu
et al., 2014) are summarized in Figure 1.4:
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Case A Case B Case C

Case D Case E Case F

Oxydative capacity acetate glucose

acetate

FIGURE 1.4: Representation of the bottleneck principle (Crabtree,
1929) in the case of E. coli cultures

• Case A: the oxidative capacity is completely filled by the glucose available
in the culture medium.

• Case B: the available quantity of glucose is lower than the oxidative capacity.

• Case C: the available quantity of glucose is higher than the oxidative capac-
ity. A portion of the glucose corresponding to the oxidative capacity is des-
tined for cell growth, and the remaining amount is transformed into acetate
through the fermentation metabolic pathway.

• Case D: the glucose completely fills the oxidative capacity despite the pres-
ence of acetate in the culture medium.
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• Case E: the sum of the glucose and acetate quantities is lower than the ox-
idative capacity.

• Case F: the glucose is not present in the culture medium, so the acetate uses
all the oxidative capacity.

Despite the presence of oxygen, the cells have a limited respiration capacity.
The high glucose concentration causes an inhibition of the oxidative metabolic
pathway. When the oxidative capacity is saturated, the cell can no longer oxi-
dize the glucose, and the excess is directed to the fermentative catabolic pathway.
Otherwise, two operating regimes that describe overflow metabolism can be dis-
tinguished:

• The oxidative regime: where the substrate concentration is lower than a
critical threshold, corresponding to the maximal oxidative capacity of the
cell. Acetate (if present in the medium) is also oxidized. (Cases B, E, and F).

• The oxido-fermentative regime where the substrate (glucose) concentration
is higher than the critical threshold. The glucose excess is converted to ac-
etate through the fermentative pathway. (Case C).

These two operating regimes are detailed in the chapter 2. They are the basis
of the dynamic model of the fed-batch E. coli cultures considered in this work.

1.7 Bioprocess cultivation and operating modes

A bioprocess is defined as the structure developed to cultivate living micro-
organisms (bacteria, yeast, fungi, etc.) or enzymes using a medium containing
certain nutrients (carbon source, vitamins, minerals, etc.) under specific operating
conditions (temperature, pH, oxygenation, etc.). The cultivation goal is to trans-
form the substrates into desired products yielding from the cell’s metabolism. Bio-
processes can be found in various applications, such as food processing, biomedi-
cal, pollution control, and energy production (Doran, 2013).

Cultivating micro-organisms in bioreactors depends on several factors: The
product of interest, the micro-organism strain, the culture medium, and the avail-
able material means. Thereby, bioprocess design is a crucial step in the cultiva-
tion of micro-organisms. The design consists of choosing the suitable strain for
the application, the bioreactor size and shape, the culture and the feeding medium
compositions, and the appropriate operating conditions (temperature, pH, airflow,
etc.). The cultivation mode is also an essential part of the design, as it depends
mainly on the application objectives.

In this study, the continuously stirred tank reactor (CSTR) is considered. The
CSTR is a tank reactor equipped with a mixing device to provide efficient agitation.
This class of reactors is composed of several components (illustrated in Figure 1.5):

• A thermal water jacket composed of inner and outer walls, allowing tem-
perature regulation at a constant value through hot/cold water circulation.



1.7. Bioprocess cultivation and operating modes 11

• An agitator that ensures the homogeneity of the cells and an adequate trans-
port of nutrients and gases.

• A sparger used in aerobic cultivations to continuously supply the oxygen to
the growing cells.

• Probes connections for on-line measurements of main variables (pH, tem-
perature, dissolved gases, etc.), and the concentrations of vital components
(e.g., biomass).

Motor

Probes

Feed
Withdrawal

Water jacket

Medium

Agitator
Sparger

FIGURE 1.5: General scheme of a continuous stirred-tank bioreactor

Four main operating modes are distinguished in continuously stirred tank re-
actor (CSTR) cultures (Dochain, 2010), depending on the inlet (Fin) and outlet (Fout)
feed-rate configuration, Figure 1.6 shows a diagram of these operating modes:

• Batch mode: In batch mode, all the nutrients and media are added at the
beginning of the culture. The cells are inoculated, and the culture is oper-
ated without any addition or withdrawal of the culture medium. The batch
process is a closed system, where the biomass and products are recovered at
the end of the culture.
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The inlet feed-rate and outlet feed rate in batch mode are equal to zero (Fin =
Fout = 0). Therefore the culture volume is approximately constant.

Note that there is a slight variation of the volume throughout the cultivation
due to base and acid (pH regulation), antifoam additions, . Sample with-
drawal also slightly alters the culture volume. However, these variations are
considered negligible compared to the total culture volume.

This batch mode is appropriate for fast experimentations such as strain char-
acterization or optimization of culture medium. The advantages of cultures
operated in batch mode are the short culture time, the low chance of con-
tamination, and the ease of operation and management. This mode’s disad-
vantages include the limited biomass and product yields, the short exponen-
tial growth periods, and the necessity of additional treatment to retrieve the
products.

• Fed-batch mode: In fed-batch mode, the nutrients are supplied continu-
ously during the cultivation to avoid the carbon source or other nutrients
limitation. In this mode, a feed containing are injected until the end of the
culture, with no medium withdrawal (Fin > 0, Fout = 0). Hence, the medium
volume increases all along with the cell’s growth.

The culture ends when the objectives are met (quantity of biomass, quantity
of products, culture time, etc.) or when the maximum volume is reached.
As in batch mode, the biomass and products are harvested at the end of the
culture.

The advantage of the fed-batch mode is the higher obtainable productivity
by reaching higher biomass and product yields. The cells are continuously
doubling, and the exponential growth phase is extended. Other advantages
are the possibility to change the substrate mid-culture and the variety of ap-
plications using different feeding strategies. The disadvantages of the fed-
batch process include the build-up of inhibitory products and the higher risk
of contamination.

Fed-batch processes are widely used in biotechnological applications, partic-
ularly for the production of recombinant proteins and antibiotics.

• Continuous mode: The continuous mode describes the cultures operated
with continuous addition and withdrawal of the culture medium. In this
mode, the volume is kept constant by maintaining equal inlet and outlet rates
(Fin = Fout 6= 0).

Continuous processes reduce product inhibition and improve the space-time
yield, leading to longer cultivations than the fed-batch mode. However, the
contamination risk and long-term changes in the cultures are significantly
higher.
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Continuous cultivation is an ideal tool for a better understanding of the stud-
ied process since it is operated around a fixed operating point (called steady-
state). The plant parameters remain constant for a considerable period of
time in continuous mode.

The challenge of continuous reactors is the determination of optimal operat-
ing conditions (Optimal operating points), that maximize culture efficiency
and productivity.

• Perfusion mode: The perfusion mode is a particular variation of continuous
mode, where the feed and substraction rates are non-zero. The main differ-
ence is that the outflow stream is filtered and the biomass is kept inside the
reactor. Thereby, only the culture medium is renewed. This operating mode
is used for animal cell cultures.

The addition of the fresh nutrients and the withdrawal of the toxic and in-
hibiting products in perfusion mode provide a suitable environment for cell
growth. As such, this mode leads to higher productivity and higher biomass
and product yields.

However, despite the advantages of the perfusion mode, it shares the same
drawbacks of the continuous process. Fed-batch remains the most widely
used mode for biotechnological production, mainly for the excellent char-
acterization of the process due to the accumulated expertise within the in-
dustry. The experiments carried out in this work will consider the fed-batch
mode for E. coli cultivation. The aim is to maximize the biomass productivity
and cell growth since pharmaceutical and vaccine manufacturing requires
maximal cell and protein production.

A detailed description of the fed-batch bioreactor and the different materials
and methods used in this work is given in chapter 4.
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Batch mode
(Fin = Fout = 0)

Fed-batch mode
(Fin = F > 0; Fout = 0)

Continuous mode
(Fin = Fout = F > 0)

Perfusion mode
(Fin = Fout = F > 0)

Fin

Fin

Fout

Fin

Fout

Filter

FIGURE 1.6: The different operating modes of a continuous stirred-
tank bioreactor

1.8 Conclusion

In this chapter, Escherichia coli is presented as a versatile micro-organism and a
widely studied bacterial system in biotechnological applications. First, the vari-
ous physiological features of E. coli are described and discussed. Then, the cell
catabolism in aerobic and anaerobic conditions is summarized, considering the
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central metabolic pathways. The focus is on the overflow metabolism and the pro-
duction of acetate due to the byproduct’s inhibitory effect, which will be of interest
in the next chapters of this work.

The second part of this chapter discussed the biochemical processes and their
basic composition and components. The different operating modes used in the cul-
tivation of micro-organisms are presented, highlighting the fed-batch cultivation
used in this study’s experiments.

The following chapters will discuss the control and estimation of the E. coli
fed-batch process, with the general objective of biomass productivity maximiza-
tion. The closed-loop methods used throughout the work require a mathematical
description of the system. Thereby, a macroscopic mathematical model for the E.
coli fed-batch process is needed.

In the next chapter, a macroscopic dynamic model describing E. coli growth
on glucose is presented. The model is based on overflow metabolism and the
bottleneck assumption to describe the acetate dynamics during the fermentation.
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2.1 Introduction

Designing the bioprocess and choosing the appropriate cultivation mode is an es-
sential step in culture optimization. The next challenge is to develop efficient on-
line monitoring tools for the process.

For that purpose, the mathematical modeling of bioprocesses is a powerful
tool that provides a comprehensive understanding of the evolution of living cells.
Thereby, it can offer a good prediction of the process dynamics. The model is also
the basis for adequate optimization and control applications.

The dynamic model’s role is to describe the transfer phenomena of the main
components, the metabolic reaction rates, and their stoichiometry based on the
bioprocess operating mode and conditions.

Several steps are required to establish a dynamic model. First, a general reac-
tion scheme describing the evolution of the main components is defined. The next



18 Chapter 2. Dynamic modeling of E. coli fed-batch cultures

step is to select the appropriate kinetic model structure for the bioprocess. Finally,
mass balance principles are applied to derive the differential equations. The re-
sulting model quality depends on the available experimental data at hand for the
parametric identification procedure.

Edwards and Wilke defined some essential properties that biological models
must have (Schugerl and Bellgardt, 2014): (a) represent all the culture phases, (b)
be flexible enough to use different data types (c) be easy to operate once the pa-
rameters are identified (d) have parameters with a physical significance.

Biosystems usually have complex attributes. Therefore the model must pro-
vide a compromise between a faithful and detailed representation of the process
and a simple structure with the use of few parameters to simplify the identifica-
tion procedure. In this chapter, we introduce a general structure of mathematical
models of bioprocesses. This model is the backbone of the estimation and control
strategies presented in the subsequent chapters.

The dynamic model structure is then utilized to derive the state space repre-
sentation of the E. coli fed-batch culture.

2.2 General aspects of bioprocess modeling

Mathematical models can offer viable information about the dynamics of vital
components of the culture and provide insight into the process evolution in vari-
ous conditions.

These models are used to have a better understanding of the process and its op-
timal operating conditions. They can be used to implement monitoring tools and
software sensors to predict non-measurable variables. Models are also essential
to develop control strategies to reach the optimal conditions and design software
sensors capable of estimating unmeasurable variables.

Modeling a process should balance a faithful representation of its dynamics
and a structural simplicity to simplify the parameter identification procedure, con-
trol and estimation design phases, and provide a reasonable computational effort.

In this section, we introduce the dynamical models of cultivation in CSTR
bioreactors. Thereby, the culture medium and components are supposed to be
homogeneous.

2.2.1 Reaction schemes

The mechanistic model approach is based on macroscopic reactions, where only
the significant reactants, catalysts, and products are considered. The reaction
scheme is analogous to chemical reactions but not equivalent, as it is a qualitative
representation of the macroscopic reactions.

Considering a bioprocess with a set of nϕ reactions involving Rr reactants and
Pr products. The corresponding reaction scheme is described as follows (Bastin
and Dochain, 1990):
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∑
i∈Rr

ki,rξi
ϕr→ ∑

j∈Pr

k j,rξ j r ∈
[
1, . . . , nϕ

]
(2.1)

where

• ki,r and k j,r are the pseudo-stoichiometric coefficients or yield coefficients.

• ϕr is the reaction rate of reaction r.

• ξi is the ith macroscopic component (reactant or product).

• Rr (Pr) is the set of reactants (products) in reaction r.

• nϕ is the number of reactions.

The reaction scheme is a qualitative representation of the relationship of the
main components, and does not represent the chemical stoichiometry. The reac-
tions do not necessarily satisfy elementary mass balances, thus the coefficient ki,r
and k j,r are called the pseudo-stoichiometric coefficients. These coefficients (also
called yield coefficients)

The components ξi are generally the population of micro-organisms or biomass
(X), internal and external substrates (S), products (P), and enzymes. Other useful
chemical components can be integrated into the reaction scheme.

The reaction scheme is not a detailed description of the process, and mass con-
servation is not always respected. However, it allows the combination of chemical
and biochemical representations in one scheme and offers a valuable tool for de-
riving the process dynamical model.

2.2.2 General dynamic model

In this section, a general class of state-space models is presented. This model is
derived from the reaction scheme and can describe a broad class of bioprocesses
in a CSTR (Bastin and Dochain, 1990).

Applying mass balances to the reaction scheme yields the following set of non-
linear differential equations, written in a matrix form:

dξ

dt
= Kϕ − Dξ + F + Q (2.2)

where
where ξk ∈ Rnξ and zk ∈ Rnz are the system state and output vectors at the time

step k, respectively. Fink ∈ RnF the input. F is the nonlinear transition function,
and H is the measurement matrix.

•

•
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•

• feed, acid/base, and antifoam. V is the medium volume.

•

•

2.2.3 Kinetic models

The reaction rate vector ϕ describes the kinetics of biological reactions. In the case
of microbial growth, the reaction rate vector is related to the biomass, and the
specific rate of the reaction µ:

ϕ = µX (2.3)

The kinetic laws are used to model these specific rates (µ). They describe in
particular the phenomena of activation, limitation, and inhibition. These specific
rate models are usually a function of main component concentrations ξi, and a set
of kinetic parameters.

The models describe the activation or the inhibition by a substrate (S), the acti-
vation by the biomass (X) or the inhibition by a metabolic product (P). The most
common kinetic models for the specific rates are presented below.

The Monod model

The Monod model is mostly used for growth rate modeling. This model describes
the growth rate as a function of the substrate concentration:

µ(S) = µmax
S

KS + S
(2.4)

where

• KS is the half saturation constant.

• µmax is the maximal specific growth rate.

The Monod law is an extension of the Michaelis-Menten model that de-
scribes the growth rate of a single substrate enzyme-catalyzed reaction (Michaelis,
Menten, et al., 1913). It reflects the phenomenon of growth limitation due to lack of
substrate S without considering its inhibitory effect. An illustration of the Monod
law is given in Figure 2.1.
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FIGURE 2.1: Evolution of the Monod model µ(S)

The Haldane model (Haldane, 1930)

The Haldane model is used to describe the substrate inhibition on microbial
growth:

µ(S) = µmax
S

S + KS + S2/KI
(2.5)

where

• KS is the half saturation constant.

• µmax is the maximal specific growth rate.

• KI is the substate inhibition constant.

The Haldane model is an empirical model first introduced for enzymatic reactions.
It was extended by Andrews to model the growth of living organisms. An example
of the Haldane law is illustrated in Figure 2.2.
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FIGURE 2.2: Evolution of the Haldane model µ(S)

Contois model (Contois, 1959)

The Contois model describes the growth slowdown under high biomass X con-
centrations:

µ(X, S) = µmax
S

kcX + S
(2.6)

where

• µmax is the maximal specific growth rate.

• kc is the biomass inhibition constant.

This law is similar to the Monod model, with a consideration of the possible in-
hibitory effect of X. Figure 2.3 shows a plot of the Contois model.
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Herbert model (Herbert, 1958)

µ(S) = µmax
S

KS + S
− m (2.7)

where

• KS is the half saturation constant.

• µmax is the maximal specific growth rate.

• m is a maintenance/mortality coefficient.

An illustration of the Herbert law is given in Figure 2.4.
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Product inhibition model

The growth inhibition by a by-product is a common phenomenon in alcoholic fer-
mentations. To describe product inhibition, the following factor is added to the
growth rate:

µ(S, P) = µmax
S

KS + S
KP

KP + P
(2.8)

where

• KS is the half saturation constant.

• µmax is the maximal specific growth rate.

• P is the product concentration.

• KP is the product inhibition constant.

A plot illustrating the product inhibition is shown in Figure 2.5.
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FIGURE 2.5:

In the case of fed-batch cultures of E. coli, the kinetics are described by Monod
dynamics and product inhibition models.

2.2.4 Gas transfer models

The gas transfers in bioprocesses mainly concern oxygen, carbon dioxide, and ni-
trogen. In the case of aerobic cultures, such as bacteria and yeast, oxygen is a
required substrate for cell growth. The accumulation of oxygen in a culture can be
represented as follows:

dO
dt

= OTR − OUR − D O (2.9)

where

• OTR is the oxygen transfer rate from the gas phase to the liquid phase

• OUR is the oxygen uptake rate

• D is the dilution rate

The OTR classical model is based on Henry’s law:

OTR = kLaO (Osat − O) (2.10)

where
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• kLaO is the volumetric oxygen transfer coefficient of the liquid phase

• Osat is the oxygen saturation constant in the culture medium.

OUR depends on the growth of the micro-organism. It can be modeled as:

OUR = kOµX (2.11)

where

• kO is the yield coefficient associated with the consumption of oxygen per
biomass produced.

The carbon dioxide mass balance follows a similar approach. The transfer rate
of carbon dioxide from the liquid to the gaseous phase is noted CTR and is mod-
eled by:

CTR = kLaC (C − Csat) (2.12)

where

• kLaC is the volumetric carbon dioxide transfer coefficient of the liquid phase.

• Csat is the saturation constant of carbon dioxide in the medium of culture.

2.3 Macroscopic model of fed-batch E. coli cultures

The dynamic modeling concepts presented in the previous section will now be ap-
plied to a process of Escherichia coli fed-batch cultures. The first step is to define
the specific reaction scheme related to this micro-organism. This reaction scheme
will be used to establish the mechanistic model describing E. coli growth on glu-
cose under aerobic conditions. Finally, the kinetic model based on the bottleneck
theory is presented.

2.3.1 E. coli mechanistic models

Various mechanistic models in literature were used to describe overflow
metabolism and acetate dynamics in fed-batch E. coli cultures.

Substrate consumption is the most described fermentation phenomenon in E.
coli metabolism. The Monod model is the simplest representation of the substrate
consumption rate. Despite being an empirical model, the Monod expression can
adequately describe the substrate consumption dynamics. To model the inhibition
by substrate or products, an inhibition term is often added to the Monod model
(Cockshott and Bogle, 1999). The internal usage and partitioning of glucose as a
substrate in E. coli cultures are studied in (Insel et al., 2007), an extensive mecha-
nistic model describing E. coli metabolism is presented.
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In fed-batch fermentation, the oxygenation conditions are mostly favorable for
growth, and thereby the cells are assumed to be in exponential phase with a low
death rate. The death rate factor is considered negligible in most mechanistic mod-
els (Horowitz et al., 2010).

Models describing acetate production and overflow metabolism can take var-
ious forms (Ko et al., 1994; Lin et al., 2001; Neubauer et al., 2003; Peebo et al.,
2015; Rocha and Ferreira, 2002; Xu et al., 1999). In most approaches, overflow
metabolism is divided into two distinct phases: The overflow phase, where ac-
etate is produced, followed by the substrate limitation phase, where the acetate is
consumed. (Xu et al., 1999) modeled acetate production and consumption using
the bottleneck assumption. The culture switches between the two processes and
the cells consume the accumulated acetate after substrate depletion. In (Insel et al.,
2007), the acetate is also consumed after the substrate depletion, and the acetate
production rate is modeled by a constant fraction of the substrate conversion effi-
ciency. (Cockshott and Bogle, 1999) considered a constant parameter to model the
specific acetate production rate. This parameter is estimated from experimental
data. In (Ko et al., 1994), the acetate production rate is represented by an algebraic
equation function of the specific growth rate, the biomass concentration, and the
fraction of carbon flux to the Embden-Meyerhof-Parnas (EMP) pathway. The mod-
els based on the bottleneck theory are able to describe acetate evolution in E. coli
fermentations adequately. However, the expressions used to model these dynam-
ics are discrete conditional statements and discontinuous functions, presenting a
hurdle for implementing advanced control laws and optimization algorithms.

Advanced proteomic analysis and system biology approaches were performed
in (Peebo et al., 2015; Valgepea et al., 2010) to show that the intracellular produc-
tion and consumption of acetate in E. coli metabolism is a continuous and simulta-
neous process called acetate cycling. As a result, the extracellular acetate excretion
yields from an offset of the intracellular production and consumption equilibrium.

The transition from glucose to acetate consumption in E. coli batch cultures is
instantaneous, suggesting that the acetate is already consumed in the background
along with the glucose, and the acetate consumption pathways are already acti-
vated (Bernal et al., 2016; Enjalbert et al., 2015).

(Anane et al., 2017) presented a promising modeling approach of the E. coli
fed-batch process based on the acetate cycling principle. The presented model
is composed of continuous functions for the acetate and glucose kinetics. This
development opens doors for the implementation of complex optimization and
control algorithms in E. coli processes.

2.3.2 Reaction scheme

The reaction scheme that describes E. coli cell growth is based on the cellular
metabolism presented in chapter 1. The scheme is composed of three catabolic
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pathways detailed below (Retamal et al., 2018; Rocha and Ferreira, 2002):

S + kO1O
µ1 X−−→ kX1X + kC1C (2.13a)

S + kO2O
µ2 X−−→ kX2X + kA2A + kC2C (2.13b)

A + kO3O
µ3 X−−→ kX3X + kC3C (2.13c)

where

• S, O, X, C, and A represent the glucose (substrate), oxygen, biomass, carbon
dioxide, and acetate concentrations, respectively.

• the parameters kξi (ξ = [X S A O C]>; i = 1, 2, 3) are the pseudo-
stoichiometric coefficients.

• µj (j = 1, 2, 3) are the specific growth rates.

Each reaction describes a specific catabolic pathway. Reaction (2.13a) corre-
sponds to the oxidation of glucose under aerobic conditions. This reaction is exer-
gonic: it releases a form of energy that allows the cellular components biosynthe-
sis.

Reaction (2.13b) describes the fermentation of glucose. It takes place either in
anaerobic conditions, in the presence of excess glucose.

Reaction (2.13c) corresponds to acetate’s oxidation, which is degraded to
acetyl-CoA, and the latter allows the activation of the TCA cycle.

It is important to note that in reactions (2.13a and 2.13b), the yield coefficients
are normalized with respect to substrate concentration, and in reaction (2.13c) with
respect to the acetate concentration.

2.3.3 Kinetic model

As presented in chapter 1, the growth of E. Coli cells is modeled following the bot-
tleneck assumption by Sonnleitner and Käppeli (Sonnleitner and Käppeli, 1986),
applied to Saccharomyces cerevisiae.

The bottleneck theory assumes that the cells are likely to change their
metabolism due to their limited oxidative capacity, leading to overflow
metabolism controlled by the substrate level. Figure 2.6 illustrates the operating
regimes depending on the substrate concentration.

If the substrate concentration is higher than the critical threshold correspond-
ing to the available oxidative capacity (S > Scrit), acetate is produced by the cells
through the fermentative metabolic pathway. The culture is said in the oxido-
fermentative regime (reactions (2.13a) and (2.13b)).

On the other hand, acetate (if present in the culture medium) is consumed
when the substrate concentration is lower than the critical level (S < Scrit), and
the culture is said in the oxidative regime (reactions (2.13a) and (2.13c)).
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When the substrate concentration is at the critical level and fills exactly the
respirative capacity, the culture is optimal, corresponding to the edge between the
two operating regimes, and acetate is neither produced nor consumed.

S < Scrit

Oxidative
regime

S = Scrit

Optimal operating
conditions

S > Scrit

Oxydo-fermentative
regime

Oxydative capacity acetate glucose

acetate

FIGURE 2.6: Operating regimes of the E. coli cell according to the Bot-
tleneck assumption

The kinetic model for the specific rates is based on these operating regimes:

µ1 = min(qs, qscrit) (2.14a)
µ2 = max(0, qs − qscrit) (2.14b)
µ3 = (0, qAC) (2.14c)

where µ1, µ2, and µ3 are the specific rates related to the catabolic reactions de-
scribing substrate oxidation (2.13a), acetate production (fermentation) (2.13b), and
acetate oxidation (2.13c) Bastin and Dochain, 1990. Their proposed kinetic struc-
tures read (Retamal et al., 2018):
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The kinetic terms related to consumption rates qj are defined by:

qs(S) = qsmax

S
Ks + S

(2.15a)

qscrit(A) = qOmax

KiA

KiA + A
(2.15b)

qAC(S, A) = (qscrit − qs)
A

KA + A
(2.15c)

where

• qs and qAC represent the substrate and acetate consumption rates respec-
tively.

• qscrit represents the substrate critical consumption rate.

• qS max represents the maximal glucose consumption rate.

• qOmax represents the maximal value of the respiratory capacity.

µ1 = qs = qscrit (2.16)
µ2 = 0 (2.17)
µ3 = 0 (2.18)

Equation (2.18) leads to:

qOmax

kOS
= qs = qsmax

S
Ks + S

(2.19)

Scrit =
KSqOmax

kOSqsmax − qOmax

(2.20)

2.3.4 Macroscopic model

Applying component-wise mass balances to the reaction scheme (2.13), the follow-
ing differential equations are derived (Retamal et al., 2018):

Ẋ = (kX1µ1 + kX2µ2 + kX3µ3)X − D X (2.21a)

Ṡ = −(µ1 + µ2)X − D (S − Sin) (2.21b)

Ȧ = (kA2µ2 − µ3)X − D A (2.21c)

Ȯ = −(kO1µ1 + kO2µ2 + kO3µ3)X − D O + OTR (2.21d)

Ċ = (kC1µ1 + kC2µ2 + kC3µ3)X − D C − CTR (2.21e)

V̇ = Fin (2.21f)
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where

• V is the culture medium volume.

• Fin is the inlet feed rate.

• D is the dilution rate (D =
Fin

V
).

• Sin is the glucose concentration in the feed medium.

• µ{1,2,3} are the specific rates given by equations (2.14) and (2.15c),.

The state space model (2.21) can be written in the matrix form, following the
structure of the general dynamic model (2.2):

dξ

dt
= Kϕ − Dξ + F + Q (2.22)

dV
dt

= DV = Fin (2.23)

where:

ξ> = [X, S, A, O, C] (2.24)

ϕ> = [ϕ1 ϕ2 ϕ3] = [µ1 X µ2 X µ3 X] (2.25)

F> =
[

0 DSin 0 0 0
]

(2.26)

Q> =
[

0 0 0 OTR −CTR
]

(2.27)

K =


kX1 kX2 kX3
−1 −1 0
0 kA2 −1

−kO1 −kO2 −kO3
kC1 kC2 kC3

 (2.28)

The gas transfer rates OTR and CTR can be modeled with the classical equa-
tions:

OTR = kLaO (Osat − O) (2.29)
CTR = kLaC (C − Csat) (2.30)
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where

• kLaO and kLaC are respectively the volumetric transfer coefficients of the dis-
solved oxygen and the carbon dioxide concentrations.

• Osat and Csat are respectively the dissolved oxygen and carbon dioxide con-
centrations at saturation.

2.4 Model Simulation

Two numerical simulations of the E. coli mechanistic model are presented here-
after. The model parameters used in these simulations and the rest of the work
were estimated in a previous study (Retamal et al., 2018), performed on fed-batch
cultures of E. coli BL21(DE3) strain. Tables 2.1 and 2.2 list the values of the kinetic
and stoichiometric parameters.

The goal behind these simulations is to show the model ability to translate
the different dynamics of the bioprocess and the cells behaviour under different
substrate conditions. Furthermore, the simulation are designed to illustrate the
metabolic switch between the operating regimes illustrated in Figure 2.6.

TABLE 2.1: Yield coefficients values of E.coli model
(Retamal et al., 2018)

Yield coefficients Values Units
kX1 0.184 g of X/g of S
kX2 0.289 g of X/g of S
kX3 0.041 g of X/g of A
kA2 0.432 g of A/g of S
kO1 0.737 g of O2/g of S
kO2 0.319 g of O2/g of S
kO3 1.341 g of O2/g of A
kC1 0.760 g of CO2/g of S
kC2 0.105 g of CO2/g of S
kC3 0.846 g of CO2/g of A

TABLE 2.2: Kinetic coefficients values of E.coli model
(Retamal et al., 2018)

Kinetic coefficients Values Units
qOmax 1.403 h−1

qSmax 3.281 h−1

KS 0.050 g of S/L
KA 0.392 g of A/L
KiA 2.041 g of A/L
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The profiles of the measured state variables and feed rate (X, S, A, Fin) with the
corresponding model predictions are plotted in Figures 2.7 and 2.9. The specific
growth rates are shown in Figures 2.8 and 2.10. The experiments were designed
to trigger metabolic switches and observe the cells reaction to different operating
conditions from substrate excess to starvation.

The first experiment is composed of a batch phase followed by a fed-batch one
with exponential and constant feeding (Figure 2.7).

In the first part of the batch phase (A), we observe an exponential growth of
the cells and the consumption of the main substrate (glucose). Acetate is produced
during this phase, indicating that the cells are in oxido-fermentative regime (RF).
This can be seen in the specific growth rates evolution (Figure 2.8). The specific
rate µ3 associated with acetate consumption is kept at zero, unlike its counterparts
µ1 and µ2, indicating that only the first two reactions are active (equations (2.13a)
and (2.13b)).

The second half of the batch phase (B) illustrates the cell’s behavior in the case
of lack of glucose. , and the acetate becomes the new substrate. The culture is now
in the oxidative regime. The specific growth rates confirm this metabolic switch, as
shown in Figure 2.8. µ2 is kept at zero while µ3 and µ1 are active (equations (2.13a)
and (2.13c)).

The fed-batch phase starts with an exponential feeding (C) with µset = 0.18
h−1, followed by a break of 1h (D). The feeding is performed in (E) with the same
µset.

During (C), the cells reprise their growth, and the biomass increases exponen-
tially. The glucose concentration remains constant and close to zero. Acetate is not
produced during this phase, indicating that the culture is operating in the oxida-
tive regime. This can be confirmed by the fact that the glucose concentration is
lower than the critical threshold (Scrit) and the specific growth rate µ2 is equal to
zero. µ3 is also equal to zero because the acetate is not available in the medium to
be consumed by the cells. This shows that the growth rate reference µset is lower
than the optimal growth rate.

The biomass concentration remains constant when the feeding is stopped (D).
The cells start growing again after the feeding is reprised with the same set value
(E). The culture operates in the same regime (oxidative), and the substrate concen-
tration is lower than Scrit. A constant feeding is applied in (F). The cells continue
growing with a lower growth rate. The specific growth rate µ1 decreases to a lower
value when the glucose supply falls to a value below 0.02 L/h. This indicates that
the culture is still in suboptimal conditions in the oxidative regime.
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FIGURE 2.7: Experiment 1: Simulation of E. coli model with exper-
imental data from (Retamal et al., 2018). Plot of the state variables

(ξ = [X S A]) and the feed-rate (Fin)
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FIGURE 2.8: Experiment 1: Simulation of E. coli model with experi-
mental data from (Retamal et al., 2018). Plot of the specific growth

rates ([µ1 µ2 µ3]).
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The second experiment follows a similar path to the first one. A batch phase
followed by exponential feeding with different µset values and constant feeding.

During the batch phase, the cells consume the available substrate to multiply,
producing acetate in the process due to the excess of glucose (A). The culture is in
oxido-fermentative regime as can be seen in Figure 2.10 (µ1, µ2 6= 0 µ3 = 0). In
the second half (B), biomass stabilization is observed due to the absence of glucose,
and acetate is consumed. The culture switches to the oxidative regime (µ1, µ3 6=
0 µ2 = 0).

The fed-batch phase starts with exponential feeding with a higher µset = 0.22
h−1. The cells reprise their growth, and biomass concentration increases expo-
nentially. The glucose concentration remains constant but higher than the critical
value Scrit causing acetate accumulation. This triggers a metabolic switch to the
oxido-fermentative regime (µ1, µ2 6= 0 µ3 = 0).

The feeding stops for 30 min (D), causing the drop of the growth rate, the glu-
cose depletion, and consequently the switch to the oxidative regime. Reprising the
feeding (E) with µset = 0.18 h−1 causes the cells to reprise their metabolism, but
the low feeding rate puts the culture in oxidative mode (µ1 6= 0 µ2, µ3 = 0) and
leads to the consumption of the acetate. The constant feeding (F) causes a drop in
the growth rate, but it does not change the culture operating mode.
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FIGURE 2.9: Experiment 2: Simulation of E. coli model with exper-
imental data from (Retamal et al., 2018). Plot of the state variables

(ξ = [X S A]) and the feed-rate (Fin)
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FIGURE 2.10: Experiment 2: Simulation of E. coli model with exper-
imental data from (Retamal et al., 2018). Plot of the specific growth

rates ([µ1 µ2 µ3]).

The simulations show an overall good fit between the model prediction and
the experimental data. The model adequately describes the metabolic behaviour
of the cells under various feeding conditions.

Nevertheless, the identified model presents some parametric uncertainty
shown in Figure 2.8 indicating a possible mismatch in the parameters which is
very common in bioprocess models. Therefore, the developed control and estima-
tion strategies must consider the model mismatch in the design procedure.

2.5 Conclusion

In this chapter, we present a general representation of mathematical models used
to describe the dynamics and the kinetics of bioprocesses. A dynamic model is
a macroscopic approach based on chemical and biological reactions that illustrate
the major components interactions.

Mass balance principles are then applied to the reaction scheme to obtain the
state-space model. The model also includes a kinetic representation of the reaction
rates depending on the empirical relations between the process components. A
presentation of the main kinetic models used in bioprocesses models is given.

Lastly, the general dynamic model is applied to the case of fed-batch E. coli
cultures, and a state space representation of the studied bioprocess is given. This
model is then illustrated with a series of numerical simulations to highlight the
different operating mode in E. coli metabolism.
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The mechanistic model presented in this chapter is used to implement software
sensors in order to estimate the non-measured variables. The next chapter will
present the estimation scheme developed to predict the acetate concentration in
fed-bacth E. coli cultures.
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3.1 Introduction

The main advances in biotechnological processes mainly include , bioprocess op-
timization, control, fault detection, and diagnosis. An essential common require-
ment in all these engineering tools is the necessity of reliable real-time information
of viable process variables. Thereby, efficient bioprocess monitoring is an essential
component for successful bioprocess operation.

Despite the recent advances in optical, ion-selective, and enzymatic sensors,
reliable on-line measurement of many essential variables in bioprocesses is not
possible. The available on-line measurement tools are either expensive or mainly
concern pH, temperature, and dissolved gases. Nevertheless, many informative
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variables such as the metabolic products and intracellular metabolite concentra-
tions are not easily measured on-line. The absence of on-line measurements of
the internal process variables represents a limitation for the effective operation of
bioprocesses.

This information could provide a more comprehensive description of the pro-
cess and improve the cultivation. Furthermore, incorporating this estimated infor-
mation to develop novel control strategies can improve the process performance
and productivity (Bastin and Dochain, 1990). In addition to control applications,
variable and parameter estimation can be integrated into other engineering appli-
cations such as optimization, fault detection, and diagnosis.

In this chapter, a brief presentation of the estimation methods developed for
bioprocess monitoring is described, focusing on the Kalman filtering algorithm
since it is the estimation technique used in the various applications presented
throughout the thesis.

Later in this chapter, the problem of acetate and glucose estimation in fed-batch
E. coli cultures is discussed. The Kalman filter algorithm is applied to the mecha-
nistic model presented in the previous chapter. A series of numerical simulations
are performed to illustrate the developed estimation schemes.

3.2 State estimation methods used for bioprocess
monitoring

On-line estimation of non-measured process variables and parameters provides
a tool for better monitoring of bioreactors. The estimation methods are used to
deliver a reliable real-time estimation of the internal process variables (called state
variables) or parameters based on the knowledge of the process and the available
measurements.

The incorporation of estimated signals of unknown process variables in the
control strategies has significant advantages as it complements conventional sen-
sor data and delivers new feedback signals for control and regulation purposes.
The estimation can also provide viable information to compensate model mis-
match and parametric uncertainties, thus improving the control performance and
the process productivity (Bastin and Dochain, 1990).

In this section, the main state and parameter estimation methods used in bio-
process monitoring are presented and classified into different categories, including
methods based on balance equations, observers, neural networks, and fuzzy logic-
based estimation. The list of methods is not exhaustive but it is a presentation of
the main estimation methods encountered in bioprocess monitoring

3.2.1 Balance Equation Based Methods

The balance equation methods are based on the theoretical and empirical relation-
ships between the measurable and unmeasurable variables.
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This empirical approach neglects the measurement noise and model uncertain-
ties and only relies on the mathematical relationship between variables. Therefore,
the estimation is performed through simple calculations, and the required compu-
tational cost is low.

Several bioprocess applications considered balance equation-based estimation.
In (Zabriskie and Humphrey, 1978), the estimation of the biomass concentration
and the biomass growth rate in aerobic batch fermentation processes were per-
formed based on the dissolved oxygen measurements and mass balance equations.
The method is validated on a bakers yeast culture.

(Grosz et al., 1984) introduced the relationship between the respiratory quo-
tient and the product yield in fermentation processes. The respiratory quotient
and the heat evolutions measurements are used to reconstruct the product yield
for on-line identification and control purposes. The theoretical results are vali-
dated through simulations and experimental data of yeast and E. coli fermenta-
tions.

Another on-line estimation of Streptomyces avermitilis fermentation based on
the oxygen measurements and mass balances is presented by (Gbewonyo et al.,
1989). The biomass estimation is also investigated by (Beluhan et al., 1995) where
maintenance equations are used to estimate the biomass concentration in baker’s
yeast fermentation. The on-line estimation is used in a feedback control scheme.

Mass balance estimation methods are based on input-output relations between
the process state variables and parameters. They involve simple calculations and
can provide important insight into the evolution of key variables.

However, the disadvantage of these techniques is that they do not consider sys-
tem uncertainties or measurement noises, leading to significant estimation errors.

3.2.2 Observer-based Methods

State observers are model-based estimation schemes used to predict the evolu-
tion of the process parameters and variables. The mathematical model of the bio-
process and the available on-line measurements are used to reconstruct the non-
measurable signals. The observer is provided with the system input u and output
y to estimate the real process vector ξ and calculate the estimated state vector ξ̂ (as
presented in Figure 3.1).

The state observers are based on a mathematical model to provide the state
and parameter estimation, and they can effectively deal with deterministic and
stochastic, linear, and non-linear processes. Observers can also incorporate distur-
bances and uncertainties, making them a powerful tool for bioprocess monitoring.
However, developing an accurate process model is a major task, and the quality of
the estimation is linked to model structure and the identified parameters. Several
types of observers have been developed and implemented for biotechnological
applications; a detailed description of observers designed for bioprocesses can be
found in (Bogaerts and Vande Wouwer, 2003).
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SensorsProcess
u ξ y

Measurement noise

ξ̂
Observer

FIGURE 3.1: Observer block diagram

The observer type and design depend on the model structure (linear/non-
linear), the model uncertainty, the measurement nature (discrete/continuous), the
sensor noise, and the estimation objectives.

Various observer-based estimation methods have been bioprocess monitoring.
Each method has some advantages and drawbacks depending on the application.
The main differences are:

• The ability to consider measurement noise and errors.

• The ability to consider model uncertainties.

• The aptitude to handle nonlinear dynamics or the need for local lineariza-
tion.

• The convergence rate of the observer

• The observer convergence depending on the culture conditions (e.g.
metabolic switches).

A brief description of the main observer types is given hereafter:

Exponential Observers

Exponential observers reconstruct the state vector based on a process model and
on-line sensor measurements. In linear systems, the system observability condi-
tion must be guaranteed to design an exponential observer. As for nonlinear mod-
els, the local observability condition is the minimal requirement to implement this
type of observers (Kwakernaak and Sivan, 1974).

The exponential observer uses the measurements in a closed-loop feedback
structure. The estimation error is driven to zero, and the estimated state converges
exponentially to the real process state. The observer parameters are tuned to adjust
the convergence rate and improve the estimation quality. Examples of exponen-
tial observers are the Luenberger observer, the Kalman filter, the moving horizon
observer, and the high-gain observer (Bogaerts and Vande Wouwer, 2003).

The specific case of Kalman filtering is detailed in section 3.3 since this filter is
an essential part of the control strategies presented in this thesis.
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Asymptotic Observers

Asymptotic observers have an open-loop structure, where only a part of the pro-
cess model is used, and the missing part is compensated by the continuous and
noise-free measurements. Unlike the exponential observer, the asymptotic ob-
server does not include a correction term between the estimated state and the
measurement. The advantage of the asymptotic observers is the possibility to es-
timate the state vector without the need to model the reaction kinetics. However,
the estimation error convergence rate depends heavily on the operating conditions
(Bastin and Dochain, 1990).

A recent example of asymptotic observers developed for bioprocesses can be
found in (Dochain and Rapaport, 2018). The asymptotic observer is designed for
systems that are unobservable on a subset domain boundary. The observer is ap-
plied to a batch microbial fermentation system with a single biogas measurement
to estimate the biomass concentration. The results showed a guaranteed conver-
gence and better overall performance compared to the Luenberger observer.

Hybrid observers

Hybrid observers provide a combination of the previous method features: the ad-
justable conversion rate of the exponential observers and the robustness towards
the reaction kinetics of the asymptotic observers.

This technique consists in defining a confidence level in the mathematical
model, and the observers switch between two extreme cases depending on this
confidence level. When the model is assumed to be perfectly known, the exponen-
tial structure is used. Conversely, when the uncertainty level is high, the asymp-
totic structure is considered (Bogaerts, 1999).

Examples of hybrid observers applied to bioprocesses can be found in (Bo-
gaerts and Coutinho, 2014; Hulhoven et al., 2006a). A hybridization parameter
that reflects the kinetic model confidence is generally considered.

3.2.3 Neural Network Based Methods

Artificial neural networks (ANN) are computing systems composed of several lay-
ers of highly interconnected nodes. The network maps a set of input patterns to
corresponding output patterns by learning from a series of a defined set of input-
output examples from past data. Then, the neural network applies this learned
information to new inputs to generate an appropriate predicted output.

In the case of state and parameter estimation, the inputs to the network estima-
tor consist of the measured process variables and the process inputs. The process
outputs act as a teacher signal that trains the neural network. The difference be-
tween the predicted output by the network and the process states is called the
prediction error. The trained neural network performs iterations to minimize the
prediction error so that the predicted states converges to the real process ones.
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Artificial neural networks provide the possibility to estimate states and param-
eters of nonlinear processes and do not require developing and validating rigor-
ous process models (black box models). The application of neural networks for
state estimation and parameter identification for bioprocesses increased in recent
years. A neural network-based estimation and prediction of bioprocess variables
presented in (Karim and Rivera, 1992). The network was trained on available en-
vironmental and physiological data sets using the conjugate gradient method with
unconstrained optimization.

In (Murugan and Natarajan, 2019), a Multiphase Artificial Neural Network
(MANN) based estimator was developed to predict the biomass concentration in
fed-batch Trichoderma cultures in the presence of insoluble substrates. The esti-
mator comprises three nonlinear Auto Regressive with eXogenous input (NARX)
models to capture the three phases of the microorganism. The proposed MANN-
based estimator demonstrated good performance with acceptable deviation.

A three-layer feed-forward back propagation ANN was employed to esti-
mate the biomass concentration in a microalgae cultivation with various nutrient
sources (Ansari et al., 2020). The proposed ANN structure achieved high predic-
tive performance for the waste-water treatment process.

In (Ahmad et al., 2016), an ANN model was proposed to estimate the biosurfac-
tants yield, the surface tension reduction, and the emulsification index in Klebsiella
sp. FKOD36 cultures. The ANN model used temperature, pH, incubation period,
and gas measurements as inputs. The estimation scheme showed an efficient pre-
diction of the variables compared to experimental data.

Neural networks are very adaptive and can provide efficient results in the pres-
ence of measurement noise and incomplete data. However, the training range re-
stricts the generalization to different operating conditions, and new training data
is usually required.

3.2.4 Fuzzy logic Based Methods

Fuzzy logic is a mathematical approach to handle uncertain, semi-qualitative, and
linguistic information. The fuzzy set theory describes and manipulates imprecise
and vague physical phenomena through a set of graded membership functions. A
set of fuzzy if-then rules and an inference mechanism are used to determine the
input-output mapping of the system (Zadeh, 1994).

The advantage of the fuzzy logic approach is the greater flexibility to capture
incomplete and imperfect aspects of the process. Several bioprocess parameters
and state estimation algorithms based on fuzzy logic were developed. In (Dohnal,
1985), a fuzzy-logic-based model was used to estimate the specific yield in a fer-
mentation process, based on the dilution rate and the growth rate signals. A re-
view of fuzzy logic systems application for estimation and control purposes in
biological applications can be found in (Birle et al., 2013).

A stable linear matrix inequality-based fuzzy observer for fermentation pro-
cesses is proposed in (Márquez-Vera et al., 2018). The fuzzy rules used are the
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linear, mechanistic submodels. The observer is set to estimate the biomass concen-
tration and is integrated into a state-feedback regulation of the product concen-
tration. In (Boiocchi et al., 2015), a fuzzy logic-based estimation scheme has been
implemented for the diagnosis and control of a Complete Autotrophic Nitrogen
Removal (CANR) process. The estimation is based on the nitrogen concentration
in the influent and in the effluent measurements.

The fuzzy logic-based estimation is a practical alternative for complex pro-
cesses, where the development of an accurate model is not straightforward. How-
ever, they require a good understanding of the bioprocess to establish a compre-
hensive rule base.

3.3 Kalman Filtering

The classical Kalman filter has been used in various applications for more than 50
years due to its low computational requirement and status as the best estimator
for linear systems with Gaussian error statistics (Anderson et al., 2008).

The Kalman filter provides optimal estimates of the state variables for linear
systems, based on the noisy measurement and a mathematical model of the pro-
cess. The estimate provided by the Kalman filter is the maximum likelihood esti-
mate conditioned on all observations up to that instant of time.

There are different variations of the Kalman filter, depending on the nature
of system dynamics (continuous or discrete, linear or not) and measurements
(discrete or continuous) assuming gaussian distribution of the process and mea-
surement noises. In the case of biochemical systems, the measurements are usu-
ally available at large sampling periods, leading to the consideration of discrete
measurements. However, most bioprocess models are continuous, so considering
Kalman filter for continuous dynamics is generally preferred. Nevertheless, in this
work, since the system dynamics are slow compared to the sensor’s characteristic
times, it will be discretized, leading to an estimation problem for a discrete-time
system with discrete-time measurements.

Furthermore, most bioprocesses are inherently nonlinear, therefore modeling
their dynamics with a nonlinear mapping that reflects the essential structure of the
process is more beneficial. Consequently, the estimation algorithms developed for
bioprocesses should be based upon the nonlinear model structure or approximate
the dynamics using a linearization of the model with some adaptation.

The Kalman filter algorithm has been appended for nonlinear systems in vari-
ous forms. The Extended Kalman filter (EKF) is an estimation technique based on
the linear Kalman filter equations used for the estimation of states and parameters
in nonlinear processes. The EKF algorithm is based on linearizing the nonlinear
equations around the current estimate and . This approximation may introduce
estimation errors, especially in the case of strong nonlinearities.

An alternative to the EKF is the Unscented Kalman Filter (UKF) (Julier and
Uhlmann, 1997). The UKF is a derivative-free estimation method based on a deter-
ministic sampling approach called the Unscented transformation. This technique
allows for better estimation in inherently nonlinear systems.
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This section aims to present the Kalman filter equations for linear and non-
linear systems. The algorithms presented in the following are used throughout
the thesis in both simulations and experiments for state and parameter estimation
purposes.

In the case of nonlinear systems, the Extended Kalman filter (EKF) and the
Unscented Kalman Filter (UKF) are tested and compared in simulation using the
fed-batch E. coli process model presented in the previous chapter.

3.3.1 Linear Kalman filter (KF)

The Kalman filtering approach consists of minimizing the estimation error vari-
ance using an algorithm with two recursive steps. First, the process model is used
to propagate the initial state estimates until a new measurement is available (pre-
diction step). In the second step, the propagated model estimates are combined
with the measurements to update or correct the estimates (Lewis et al., 2007).

Several studies considered the Kalman filter for bioprocess monitoring pur-
poses. (Cha and Hitzmann, 2004) have employed the Kalman filter for noise fil-
tering and prediction of the biomass, glucose, and ethanol concentrations in S.
cerevisiae batch cultivation. In (Holmberg and Olsson, 1985), the Kalman filter was
employed in an open aerator system for the on-line estimation of the oxygen trans-
fer rate and the respiration rate, using air flow rate and dissolved oxygen mea-
surements. Similarly, (Howell and Sodipo, 1985) presented a Kalman filter-based
algorithm to estimate respiration and aeration rates in a sludge aeration basin us-
ing the measurement of dissolved oxygen concentration only. Other examples of
state estimation in bacterial and microbial cell cultures using the Kalman filter can
be found in (Chattaway and Stephanopoulos, 1989).

The classical Kalman filter addresses the general problem of state estimation in
linear stochastic processes with Gaussian error statistics. The algorithm describing
the prediction and update steps of the Kalman filter is presented in appendix A.

3.3.2 Extended Kalman Filter (EKF)

The classical Kalman filtering is applied to a variety of systems described by linear
stochastic equations. However, most practical applications and processes (includ-
ing bioprocesses) are described by nonlinear models.

The Extended Kalman filter (EKF) is the standard method for most nonlinear
state and parameter estimation problems. In the EKF scheme, the nonlinear model
equations are linearized around the current estimate, and the classical Kalman
filter scheme is applied to the linearized model.

Various applications of the EKF have been derived for state and parameter esti-
mation for biotechnological processes. (Lee et al., 1991) applied the EKF to a batch
culture of E. coli to filter the noise on the dissolved oxygen measurements and im-
prove the DO control strategy. (Cha and Hitzmann, 2004) presented an experimen-
tal study where the EKF was implemented to a fed-batch culture of S. cerevisiae
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to filter the glucose measurements and estimate the biomass and glucose concen-
trations as well as a kinetic parameter (µmax). The glucose measurements were
provided by a special flow injection analysis (FIA) system, and the estimated vari-
ables were used in a feedback glucose control scheme. In another study, the EKF
was implemented to filter the dilution rate and dissolved oxygen measurements
in fed-batch cultivation of S. cerevisiae (Patnaik, 2005).

(Dewasme et al., 2013b) have studied the glucose and acetate concentrations
estimation in fed-batch E. coli cultures using the EKF with various measurement
configurations. The observability analysis on a mechanistic model and experi-
mental data showed that the biomass measurement is sufficient for the states and
growth rate estimations. (Rocha et al., 2006) have studied the parameter, and state
estimation by the EKF on the same process using dissolved and exhaust oxygen
and carbon dioxide measurements.

(Soons et al., 2007) have applied the EKF to a fed-batch cultivation of Bordetella
pertussis to estimate the specific growth rate, biomass concentration, and oxygen
mass transfer coefficient based on dissolved oxygen measurements. (Krämer and
King, 2016) employed the EKF to a fed-batch culture of S. cerevisiae to predict the
substrate and biomass concentrations using a mass balance model with Monod
kinetics and the biomass measurements with NIR spectrometer. Another study
on the same bioprocess considered the EKF to estimate the ethanol concentration
based on temperature and dissolved oxygen measurements (Lisci et al., 2020).

An on-line estimation of the biomass, xylose, and ethanol concentrations in
fed-batch E. coli cultures using the EKF is presented in (Hilaly et al., 1992). The
estimation is based on the CO2 evolution and alkali addition rate. The state es-
timation is combined with an optimization control scheme to maximize ethanol
productivity.

In (Markana et al., 2018), the EKF was combined to an economic model pre-
dictive control strategy with multiple objectives (substrates and productivity) in a
fed-batch bioreactor. The estimation of the state variables is based on the nutrient
and foreign protein concentration measurements. The EKF was integrated in the
shrinking horizon MPC algorithm, and results showed improved efficiency of the
control scheme.

The EKF is one of the most used algorithm for state estimation problems in
nonlinear stochastic and uncertain systems. The simplicity and the reasonable
performance made the EKF a standard in several fields. A presentation of the EKF
algorithm is given in appendix A.

Nevertheless, the EKF strategy have some drawbacks and limitations. The EKF
in general is not an optimal estimator like the linear Kalman filter, because only the
mean is propagated through the nonlinear model (Julier and Uhlmann, 1997). Fur-
thermore, the linearization procedure in the EKF algorithm may introduce some
estimation errors and can lead to the divergence of the algorithm. Especially in the
case of bad initial estimate of the state, and incorrect process model.

An alternative to some of these drawbacks is the Unscented Kalman filter
(UKF) (Julier and Uhlmann, 1997), presented in the next section.
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3.3.3 Unscented Kalman Filter (UKF)

The Unscented Kalman filter (UKF) is introduced as an EKF alternative. It is a
derivative free nonlinear variation of the Kalman filter that utilizes the unscented
transformation to approximate the statistics of stochastic variables with Gaussian
distribution (Julier and Uhlmann, 2004).

(Tebbani et al., 2013) employed the UKF in a Chlamydomonas reinhardtii microal-
gae culture to estimate the biomass, carbon dioxide, and oxygen concentrations
based on a molar fraction in the output gas measurements. The estimation is vali-
dated through simulations and experiments on a lab-scale photobioreactor.

(Simutis and Lübbert, 2017) presented a hybrid version of the UKF applied to
a recombinant therapeutic protein production process using E. coli. The UKF was
employed to estimate the biomass growth rate and the state variables.

(Marafioti et al., 2009) applied the UKF for state and parameter estimation of a
Porphyridium purpureum microalgae culture. The biomass concentration is recon-
structed based on the total inorganic carbon measurement. The UKF produced
better performance in comparison to the EKF when applied to the experimental
data.

(Fernandes et al., 2015) presented an EKF and a UKF algorithm applied to a
hybridoma cell culture to estimate the glutamine and glucose concentrations from
the biomass, lactate, and ammonia measurements in fed-batch and continuous
cultures. The UKF outperformed the EKF in terms of estimation accuracy.

(Dewasme et al., 2015) has applied the UKF as a part of a nonlinear model pre-
dictive control (NMPC) scheme in fed-batch cultures of hybridoma cells to pro-
duce monoclonal antibodies (MAb). The combined closed-loop scheme showed a
satisfactory robust response.

(Wang et al., 2010a) have presented a robust version of the UKF, applied for
estimating the biomass and substrate concentrations in fed-batch cultures of S.
cerevisiae using the measurements of dissolved oxygen and carbon dioxide. The
results show that the proposed approach presents better accuracy and stability on
the state estimation than the strong tracking filter and classical UKF algorithm.

Contrarily to the EKF, the UKF algorithm (presented in appendix A) does not
include any linearization procedure and the Jacobian matrices are not required.
Thereby, the implementation of the UKF is more flexible, since the nonlinear map
can be changed without altering the algorithm structure. The EKF and UKF per-
formance is compared in the simulation in the following sections.

3.4 On-line estimation of the acetate and glucose con-
centrations in E. coli fed-batch cultures

In order to develop the control strategies presented in this thesis, it is necessary
to determine the acetate concentration on-line. Since the available sensors in the
market are either expensive or not precise in the working concentration range, the
acetate concentration is estimated on-line from the biomass measurements.
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3.4.1 Observability analysis

Before proceeding to the acetate and glucose concentrations estimation, the E. coli
dynamic model observability has to be verified for the available measurements.

Observability is a structural system property that depends on the input signal
in nonlinear systems, it relates to the possibility of estimating the state variables
on the basis of the available measurement information.

The observability analysis of the E. coli model structure is detailed in (Dewasme
et al., 2013b). The analysis is performed on the substrate and acetate concentra-
tions, considering various measurement setups. The acetate observability analysis
is summuarized in this section. First, the model is put in the following canonical
form introduced in (Gauthier and Kupka, 1994; Zeitz, 1984):

∀i ∈ {1, . . . , q}, ξi ∈ Rni , n1 > n2 > . . . > nq, ∑
16i6q

ni = N = dim ξ,

ξ̇ =


ξ̇1
ξ̇2
...

ξ̇q−1
ξ̇q

 =


f1 (ξ1, ξ2)
f2 (ξ1, ξ2, ξ3)

fq−1
(
ξ1, . . . , ξq−1, ξq

)
fq
(
ξ1, . . . , ξq−1, ξq

)


y = ξ1

(3.1)

where

• ξ is the state vector.

• y the vector of measurements.

• fi is a partition of the nonlinear state equations

• q the number of partitions.

The system (3.1) (also called a Lower Hessenberg System) is said globally observ-
able if the following condition is satisfied:

rank
∂ fi

∂ξi+1
= ni+1 ∀i ∈ {1, . . . , q − 1} (3.2)

To assess if the E. coli process is observable, the dynamic model must be put in
the canonical form of (3.1).

Under controlled operating conditions, several simplifications of the model are
possible. The substrate concentration could be kept close to zero under controlled
conditions (S ≈ 0, Ṡ ≈ 0). In addition, ample oxygenation is provided (Ȯ = 0)
(Dewasme et al., 2013b). Under these assumptions, the system (2.21) can be written
in the canonical form (3.1) using the following partition:
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ξ̇ =

[
ξ̇1
ξ̇2

]
=

[
Ẋ
Ȧ

]
=

[
f1 (X, A)
f2 (X, A)

]
y = X

(3.3)

Assuming that the biomass concentration is measured, the condition (3.2) reduces
to:

rank
∂ f1

∂ξ2
6= 0 (3.4)

which is verified if the biomass concentration do not vanish (X 6= 0).
Similarly, assuming that the acetate concentration is regulated (Ȧ = 0 and

KiA >> A) and ample oxygenation is provided (Ȯ = 0) the system (2.21) can
be written in the following form:

ξ̇ =

[
ξ̇1
ξ̇2

]
=

[
Ẋ
Ṡ

]
=

[
f1 (X, S)
f2 (X, S)

]
y = X

(3.5)

The condition (3.2) becomes:

rank
∂ f1

∂ξ2
6= 0 (3.6)

This condition is also verified if the biomass concentration do not vanish (X 6= 0).

Remark. The observability analysis presented in the chapter considers the operating con-
ditions of the fed-batch phase of the studied bioprocess (substrate in quasi-steady-state).
More rigorous analysis should be performed under a higher substrate and acetate range.

From equations (3.3) and (3.5), the bioprocess model is observable, and well
adapted for the estimation of acetate and glucose concentrations based on the
biomass measurement. The EKF and UKF strategies can then be applied to the
system, following the structure illustrated in Figure 3.2.

3.5 Numerical simulations

In this section, several numerical simulations are achieved to test and compare the
estimation of the acetate and glucose concentrations using the EKF and the UKF.

The process and measurement noise covariance matrices Q and R are chosen
empirically by trial and error to ensure a good compromise between the filter sta-
bility, convergence rate, and estimation accuracy. In the following, they are de-
noted as follows:

Q = diag(σ2
X, σ2

S, σ2
A, σ2

V) R = r2
X
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E. coli process
ξ = (X, S, A, V)

X

EKF or
UKF

(Ŝ, Â)

Fin

FIGURE 3.2: State estimation in E. coli process

where σ? and rX are respectively the state and measurement standard deviations.
The initial state covariance matrix P0 is chosen according to the deviation in

the process initial conditions. Table 3.1 summarizes the filters parameters and
matrices. The UKF specific tuning parameters (α,β, and κ) were determined from
the literature (Fernandes et al., 2015; Julier and Uhlmann, 2004).
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TABLE 3.1: EKF and UKF covariance matrices, tuning parameters,
and initial conditions

Initial conditions
X0 0.1 g/L
S0 5 g/L
A0 0.1 g/L
V0 3.15 L
µset 0.25 h−1

Sin 500 g/L
Sampling time

Ts 3 mn
UKF parameters

σX 0.01 g/L
σS 0.1 g/L
σA 0.1 g/L
σV 0.001 L
rX 0.1 g/L
P0 10−4 × I4 g/L
α 1 -
β 2 -
κ 0 -

EKF parameters
σX 0.05 g/L
σS 0.005 g/L
σA 0.02 g/L
σV 0.001 L
rX 0.1 g/L
P0 10−4 × I4 g/L

The EKF and UKF are first compared in the ideal model case, where no model
uncertainties or mismatch are considered. A robustness study of the filters per-
formance is carried out, considering uncertainties on the simulated process model
parameters.

The convergence of the Kalman filters is first tested with erroneous initial con-
ditions. Figure 3.3 shows the performance of the EKF and the UKF in estimating
glucose and acetate concentrations based on the biomass concentration measure-
ment affected by additive white noise with zero mean and a standard deviation of
0.1 g/L.

A predefined feeding profile is applied to the system, consisting of a batch
phase of 6h followed by a fed-batch phase of 9h with an exponential feeding pro-
file.
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After a transient phase of 3 h, both states are well estimated, and the conver-
gence is achieved. Both filters manage to estimate the glucose and acetate con-
centrations accurately based on the on-line biomass concentration measurement.
Moreover, the filters are not affected by the change in the feeding-rate at 12 h, and
the estimated glucose and acetate concentrations converge to the real values.

The EKF and UKF performances are similar in the nominal case. They both
manage to reconstruct the acetate and glucose concentration signals adequately.
Nevertheless, the UKF performance in terms of convergence rate and accuracy is
slightly better, as shown in Table 3.2. The root mean square errors of the substrate
(eS) and acetate (eA) estimates during this test include the initial transient phase
and are coherent with the measurements’ sensitivity and the noise levels (0.1 g/L).
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FIGURE 3.3: EKF and UKF applied to the E. coli fed-batch process. Es-
timation of the glucose and acetate concentrations in the ideal model

case

TABLE 3.2: error of EKF and UKF in the ideal model case.

EKF UKF
eS (g/L) 0.203 0.196
eA (g/L) 0.153 0.107

The Kalman filters robustness with respect to model uncertainties is analyzed
hereafter. The initial deviations, covariance matrices, and filter parameters are the
same as those considered in the ideal model case.
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We consider deviations of up to 15% around the nominal value in the plant
kinetic and stoichiometric parameters (these deviations are randomly generated
according to a Gaussian distribution). Figure 3.4 shows the evolution of the esti-
mated and real process state variables during this test.

Both filters managed to predict the non-measured glucose and acetate con-
centrations. However, estimation errors are significantly higher than the perfect
model case, especially at the end of the culture. This is an expected result with
exponential observers, as they highly depend on the model quality. A practical
solution is to increase the value of Q and lower the confidence in the model. How-
ever, it is not easy to guarantee the filter stability with high values of Q.

It can be noticed that the UKF provides a closer estimated value to the process
values compared to the EKF. This stems from the strong non-linearity in the pro-
cess kinetic model and the linear approximation of the EKF algorithm. Leading to
higher estimation errors, as shown in Table 3.3 when using the latter filter.

The UKF performance is better than the EKF in the model mismatch case. How-
ever, both approaches are highly dependent on the model quality. Therefore, any
implementation of these estimation strategies must consider model mismatch in
the design procedure and the parameters choice.
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TABLE 3.3: error of EKF and UKF in the model mismatch case.

EKF UKF
eS (g/L) 0.227 0.225
eA (g/L) 0.183 0.157
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FIGURE 3.5: EKF and UKF applied to the E. coli fed-batch process.
Comparison with experimental data from (Retamal et al., 2018)

Figure 3.5 illustrates the filters performance under real operating conditions,
compared to experimental data from (Retamal et al., 2018). The model and the
filters are initialized with the off-line measurements and the experimental feed-
rate is applied as the model and estimators input. The Kalman filters showed a
good performance in estimating the glucose and acetate concentrations, especially
in the latter case where the model prediction is far from the measurements at 8h
and 9h.

In the following chapters, the UKF is preferred for state estimation problems
since it provides better performance than the EKF. An experimental validation of
the UKF is performed using new data. Nevertheless, it still depends on the model
accuracy, which should be addressed in control design using bioprocess models.
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3.6 Conclusion

In this chapter, a brief overview of the estimation methods used for bioprocess
monitoring is presented. The estimation method choice depends on several fac-
tors: The application in question, the required prediction accuracy, the conver-
gence rate, the computational cost, the availability of previous data, and the avail-
ability of a detailed process model.

A focus is then placed on the Kalman filter due to its practicality and wide use
for state and parameter estimation problems in biotechnological applications.

Due to the inherent nonlinear nature of bioprocesses, a nonlinear variation of
the Kalman filter is considered for state estimation. The Extended and Unscented
Kalman filters are applied to the E. coli fed-batch process to estimate the glucose
and acetate concentrations based on the biomass measurements and the mecha-
nistic model.

The filters performance is put to the test through numerical simulations. Both
filters accurately predicted the glucose and acetate concentrations, with a slightly
better performance of the UKF, especially when considering modelling errors and
uncertainties. However, they both rely on the quality of the process model.

In the following chapters, the UKF is implemented on-lined and combined
with the developed control strategies.
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4.1 Introduction

Experimental validation of the developed control and estimation strategies re-
quires efficient monitoring and utilizing the available hardware and software. One
of the main obstacles to implement advanced optimization and control algorithms
in bioprocesses is interacting efficiently with the hardware. The diversity of the
sensor configurations and the closed environment of commercial monitoring soft-
ware are significant problems.
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A first step in the experimental validation of the algorithms presented in this
work is implementing a closed-loop structure in one main program since the biore-
actor is conceived to operate in open-loop mode. The developed program should
contain all the available measurements from the reactor’s control unit and ad-
ditional measurements in one interface. This information should be available in
real-time and can be manipulated by the control and estimation algorithms. The
developed program should also be able to actuate the system input represented by
the pump’s feed-rate.

The monitoring and control of the bioreactor main variables during the fed-
batch cultures is described in this chapter. The reactor setup and main compo-
nents are presented, as well as the digital control unit and on-line sensors. Finally,
the off-line measurements and analysis performed during the experiments are de-
scribed.

4.2 Bioprocess monitoring software

The efficient operation of bioprocesses requires the availability of on-line measure-
ments for the operator. This information should be easily manipulated, visualized,
and recorded in real-time.

In addition to the lack of reliable sensors for several essential components, it is
often challenging to incorporate the available measurements in on-line control and
estimation schemes due to the diversity of sensor configurations and connectiv-
ity. Main variables like pH, temperature, dissolved oxygen, airflow, and agitation
speed are measured and controlled by the bioreactor integrated units. These com-
ponents are often specific to the manufacturer. Their communication protocols are
not universal and require dedicated commercial software.

Some examples of commercial software for bioprocess monitoring are: UBI-
CON (Universal Bioprocess Control System) by Software Electronic Systems De-
sign, (Germany); AFS (Advanced Fermentation Software), by New Brunswick Sci-
entific Inc. (USA); BioCommand FermExpert software by BioExpert Ltd. (Estonia).

Most programs allow data-acquisition and control for the main variables, data
recording, visualization, and open-loop control of the feeding rate. However, sev-
eral works reported the limited applications of these programs: (Shin et al., 2009;
Soccol et al., 2012).

The commercial software’s main disadvantage is the specificity to the manu-
facturer’s hardware and the difficulty of manipulating the measurements outside
the software defined environement.

A solution to these setbacks is developing dedicated software in a programing
language (C++, C#, Python . . . ). This approach advantage is integrating advanced
control and estimation algorithms, manipulating measured variables, and flexibil-
ity in terms of data manipulation. However, this approach is time-consuming and
requires knowledge of different communication protocols. Examples of dedicated
programs developed for data acquisition and control can be found in (Jaén et al.,
2017; Pablos et al., 2014).
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The MFCS program from B.Braun Biotech International (Germany) is an exclu-
sive software for Biostat bioreactors. The MFCS has several features allowing data
acquisition and control of the digital control unit of the bioreactor. However, it
does not allow the implementation of user control algorithms and integration of
external measurement devices. Examples of applying the MFCS for monitoring
and control of E. coli fermentation can be found in (Huang et al., 1995; Tomson
et al., 1995).

In most cases, the MFCS is used for data acquisition and saving, and addi-
tional measurements are implemented and visualized in a separate program. If
the bioreactor control unit is not equipped with a specific measurement input (e.g.
light intensity measurements), the operator is obliged to use separate software to
visualize and record the new measurements. This increases the difficulty of imple-
menting control and estimation schemes based on these measurements, especially
when using multiple sensors from different manufacturers.

(Rocha, 2003) found the MFCS program inadequate for acetate regulation in
fed-batch E. coli cultures due to the difficulty to integrate the additional measure-
ments from a Flow Injection Analysis (FIA) system, and to implement adaptive
control algorithms. A LabView program was developped to acquire on-line mea-
surements of the acetate concentration from the FIA measurement system as well
as the main reactor measurements. This information is then integrated into a
closed-loop adaptive control scheme. The approach used to develop this program
required setting up the communication protocols with the reactor measurements
for every variable.

In this chapter, we present a data acquisition and control solution developed
in the framework of this thesis in the LabView programming environment. In this
program, communication is established directly between the MFCS software and
the LabView program, allowing to port the measurements to the program in real-
time using shared library nodes.

Labview is a visual object-oriented programing language dedicated to data ac-
quisition and monitoring systems. It allows the development of virtual instru-
ments and communication with several types of hardware with various commu-
nication protocols.

A LabView virtual instrument (VI) comprises three main parts: The front panel,
the block diagram, and the connector. The front panel represents the user interface.
It contains the main controls in the form of buttons, knobs, and sliders. It can dis-
play the data in the form of numerical indicators, graphs, charts, and other forms.
The block diagram is the main code of the VI. It contains a vast library of dedicated
blocks for various applications (Signal analysis, communication, mathematical ex-
pressions . . . ) connected by virtual wire. The connector is responsible for data
flow between subroutines. Every VI can be integrated as a subVI in another VI
by specifying the Input-Output map, making the applications modular and the
workflow easy.

LabView has a dedicated serial communication library called VISA (Virtual In-
strument Software Architecture) that offers a programming interface for serial port
communication with most instruments’ interfaces (RS232/485, Ethernet, USB).
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LabView has been widely used for bioprocess data acquisition purposes. Exam-
ples of LabView applications for fermentation supervision can be found in (Johns-
son et al., 2013; Stratz and Dittrich, 2015).

In the following sections, the data-acquisition solution implemented in Lab-
View environment is described. The goal is to integrate the different on-line mea-
surements from the bioreactor Digital Control Unit (DCU) and the biomass probe
in one main interface.

4.3 Bioreactor monitoring and control

4.3.1 Bioreactor setup

The cultivations were performed in a Bioreactor consisting of a 5L jacketed glass
vessel and a digital control unit or (DCU) (BIOSTAT B plus, Sartorius Stedim
Biotech, Germany). The reactor is equipped with a water jacket and an agitation
motor.

The monitoring of the cultures is possible thanks to a potentiometric pH sensor
(Hamilton, Switzerland), dissolved oxygen (DO) probe (Hamilton, Switzerland),
and a temperature sensor (Sartorius, Germany). These probes are directly con-
nected to the DCU which allows the control and regulation of the main variables.

Also, biomass concentration is available on-line via an absorption-based pho-
tometric turbidity probe (Fundalux II, Sartorius, Germany). However, this probe
cannot be connected to the DCU due to the lack of a suitable connection in the
DCU configuration.

4.3.2 Monitoring interface

All the programs presented in this chapter were conducted in NI LabView 2016
environment. The computer used for the experiments has an Intel I3 3.2 Ghz pro-
cessor with 8Gb of ram running on Windows 10.

As stated before, the main process variables (pH, temperature, pO2, . . . ) are
controlled by the DCU and monitored on-line via the MFCS software. This real-
time information can be ported to LabView using the shared-library nodes. These
nodes allow to execute functions in dynamic library files (DLL), provided the func-
tion definition and configuration. Luckily, this information is provided by the
MFCS, and the functions used to retrieve the values of the variables are well de-
fined. Hence, all variables contained in the MFCS can be displayed, manipulated,
and saved in LabView. An immediate advantage of this method is the flexibility
of the sampling and recording rate since the MFCS rate is locked at 5 mn. The
front panel representing the user interface of the LabView program is shown in
Figure 4.1.
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FIGURE 4.1: Front panel of the data aquisition interface

The biomass signal is measured separately by a data acquisition device from
national instruments (NI USB-6000USB Multifunction DAQ Device, National In-
struments, USA) and squired in the same LabView program using DAQMax li-
brary. The advantage of the programing in Labview is the combination of various
measurements from different sources in the same environment and the ability to
fix an appropriate sampling rate for these measurements and apply signal analysis
tools (Filtering, FFT . . . ).

All the individual measurements are integrated into one program that displays
the variable values, plots chosen variables, and saves them in a spreadsheet with
a specified recording time. Additionally, the program controls external peristaltic
pumps and manipulates the feed-rate in real-time via the VISA module, thus creat-
ing a closed-loop structure. Furthermore, thanks to the network shared variables
feature of LabView, these measurements are shared via the network and can be
accessed in real-time by authorized computers or servers on the same network.
This feature allows the remote supervision and control of the reactor and the im-
plementation of complex algorithms on a separate powerful computer.

The control and simulation algorithms were coded in Matlab for simulations
and implemented on-line in LabView using shared-library and MathScript nodes.

A diagram of the experimental setup showing all the devices described in this
chapter is shown Figure 4.2, and a picture of the experimental setup is shown in
Figure 4.3.
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FIGURE 4.2: Real-time implementation diagram

FIGURE 4.3: Picture of the bioreactor and the feeding system
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4.4 Off-line measurements

In order to validate the on-line measurements of the biomass concentration, and
the estimation quality of the glucose and acetate concentrations, several off-line
analyses were performed on the samples. In the following sections, a brief de-
scription of the off-line analysis methods used during the cultures is provided.

4.4.1 Biomass measurements

Off-line biomass measurements were determined by measuring the optical density
(OD) at 600 nm in a UV spectrophotometer (Shimadzu, Pharmacia Biotech, USA).
Samples were diluted with deionized water to obtain OD in the linear range (0-
0.3 absorbance units), and then correlated with dry cell weight (DCW) using a
calibration curve. The calibration method and curve can be found in appendix B.

4.4.2 Glucose Measurements

Glucose concentration was determined using the di-nitrosalicylic acid (DNS)
method. A reagent is prepared according to the procedure described in (Retamal
et al., 2018; Rocha, 2003).

The glucose concentration is correlated using a calibration curve performed
within the range 0.1-2 g/L. The measurement and calibration procedure are pre-
sented in appendix B. The sensitivity level of the measurements is considered
around 0.1 gL−1.

4.4.3 Acetate measurements

Acetate concentration measurements were performed with an enzymatic kit
(Megazyme, Ireland) according to the manufacturer’s instructions. The ab-
sorbance measurements were carried out in a Sunrise moduler absorbance mi-
croplate reader (Tecan, Austria). The calibration curve for acetate measurements
is presented in appendix B. The sensitivity level of the measurements is considered
around 0.1 gL−1.

4.5 Cultures and experiments

The fermentations performed throughout this work were operated in batch and
fed-batch modes. Initial batch cultures of V = 3.5L were pre-equilibrated to the
appropriate operating conditions (pH, temperature, DO) before inoculation with
5% v/v seed culture, where the initial OD600 in the fermenter reaches 0.3-0.6. Ster-
ile filtered anti-foam was added via a peristaltic pump when necessary throughout
the cultivations. The batch-phase is monitored during the day. The flag for the be-
ginning of the feeding was the increase of the dissolved oxygen resulting from the
exhaust of the glucose and acetate in the medium. Once the glucose is nearly de-
pleted, the fed-batch phase starts, and the feeding solution is added with a rate
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determined by the controller, and applied by a Reglo-digital peristaltic pump (Is-
matec, Germany).

4.5.1 Microbial strain

The E. coli BL21 (DE3) strain was used for all fermentations. This strain is more
suitable for high cell density cultivation due to low acetate production and lower
sensitivity to varying growth conditions compared to other strains (Müller et al.,
2018).

4.5.2 Operating conditions

The batch and fed-batch fermentations were conducted under controlled condi-
tions summarized in Table 4.1. These set-points were determined according to
literature (Retamal et al., 2018; Rocha, 2003). The pH is regulated by titration of
12.5% ammonium hydroxide (base) and phosphoric acid 0.5 M (acid). Dissolved
oxygen was maintained above 30% air saturation by a two-level controller, increas-
ing the agitation rate when the oxygen demand of the cells increases. When the
maximal agitation rate is reached, the manipulated variable shifts to the airflow.
Minimum values for airflow and agitation were imposed (1 L-min−1 and 200 rpm,
respectively).

The temperature is controlled by the DCU at 37 ◦C using a heating water jacket.

TABLE 4.1: Set-points of the operating conditions

Variable Setpoint Controller

Temperature 37◦C PID
pH 7 PID

Dissolved Oxygen 30% Two-level

4.5.3 Medium composition

The composition of the pre-cultures, batch, and feed medium is given in Tables 4.2
and 4.4. The mediums were prepared according to the protocol cited in (DeLisa
et al., 2001; Rocha, 2003). During the preparation, solutions were filtered and ster-
ilized in the autoclave to avoid contamination.

A minimal M9 medium with addition of trace metals and vitamins was used
for the biomass regulation experiments. The M9 medium was applied to fed-batch
control experiments of E. coli cultures by (Rocha, 2003). It has the advantage of
being cheap and has a very low autofluorescence. During the acetate regulation
experiments, a defined high-density fermentation medium (HDF) (DeLisa et al.,
2001) was used. This medium allows high density and growth rates.

In all experiments, the salts and glucose solution of the batch medium was
sterilized in the autoclave for 120 mn at 120-200 ◦C with a total volume of 2.9 L.
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A 100 mL of the trace mineral solution was filter sterilized using acrodisc syringe
filters (from Pall Corp., USA) and injected in the bioreactor using peristaltic pump
prior to the batch phase.

4.5.4 Pre-cultures

Bacteria from frozen cryotubes were transferred into a petri dishes containing (per
liter) 25 g of LB medium (Table 4.2) and 15 g of Agar, the dishes are incubated at
37◦C for 24h. A single colony is transfered to 250 mL shaker flask containing 50
mL of LB medium, incubated at 37◦C for 8h.

A volume of 10 mL of this culture was then inoculated into two 500 mL shake
flasks containing 250mL of the application medium (Tables 4.3 and 4.4) , and incu-
bated over night (14− 16h) at 37◦C (DeLisa et al., 2001). This culture (500 mL) was
used to innoculate the bioreactor to a final volume of 3.5 L, the minimal volume to
ensure the complete immersion of the biomass probe.

TABLE 4.2: Composition of the LB media used during preparations

Component Concentration
(g/L)

Peptone 10
Yeast extract 5

NaCl 6

4.5.5 Experimental steps

In order to ensure reproducibility of the experiments, the following sequence of
operating steps was performed during all the cultures:

Bioreactor preparation for autoclave

1. Prepare 2.9L of the salt media (M9 or HDF) and add it to the reactor vessel.

2. Turn on the stirrer and set it to 150 rpm to ensure the medium homogeneity.

3. Calibrate the dissolved oxygen probe 0 % with using a 2.0 M sodium sulfite
(Na2SO3) solution.

4. Calibrate the dissolved oxygen probe 100 % by sparging the bioreactor with
a maximal airflow (10 L-min−1) and a maximal stirring (800 rpm).

5. Calibrate the pH probe with pH 4 and 7 standards and insert it into the biore-
actor.

6. Prepare the tubing for the airflow, acid-base, feeding, and anti-foam.

7. Autoclave the bioreactor overnight.
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TABLE 4.3: Composition of the M9 medium (Rocha, 2003)

Components Batch medium Feeding solution
(./L) (./L)

Glucose 5–10 g 500 g
Salts solution

Na2HPO4 6 g -
KH2PO4 3 g -
NH4Cl 1 g 10g
NaCl 0.5 g -

MgSO4 · 7H2O 0.12 g 4g
Trace metals and vitamin solution

FeCl3 27 mg -
ZnCl2 2.0 mg -
CoCl2 2.0 mg -

NaMoO4 2.0 mg -
CaCl2 1.0 mg -
CuCl2 1.0 mg -
H3BO3 0.50 mg -

HCl 100 mg -
Kanamicin 5 mg -

Tiamine 3.4 mg -

Launching the culture

1. After sterilization, connect the different tubing and probes, and prepare the
feeding system (vessel, pump).

2. Sterile addition of 100 mL trace and vitamin solution.

3. Initialize temperature control and wait for stable readings.

4. Initialize pH control.

5. Initialize the cascade control of dissolved oxygen.

6. Launch MFCS and the LabView data acquisition and application (Control,
Estimation) interfaces.

7. Inoculate for beginning the batch phase.

8. When the on-line flags for glucose depletion appear (sudden increase of pO2,
pH increase), begin the fed-batch phase.
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TABLE 4.4: Composition of the HDF media (DeLisa et al., 2001)

Components Batch medium Feeding solution
(./L) (./L)

Glucose 5 g 500. 0g
Salts solution

KH2PO4 13.3 g −
(NH4)2 HPO4 4.0 g −

MgSO4 · 7 H2O 1.2g 20.0g
Citric acid 1.7 g −

Trace metals and vitamin solution
EDTA 8.4 mg 13.0 mg

CoCl2 · 6H2O 2.5 mg 4.0 mg
MnCl2 · 4H2O 15.0 mg 23.5 mg
CuCl2 · 4H2O 1.5 mg 2.5 mg

H3BO3 3.0 mg 5.0 mg
Na2MoO4 · 2H2O 2.5 mg 4.0 mg

Zn (CH3COO)2 · 2H2O 13.0 mg 16.0 mg
FeIIICitrate 100.0 mg 40.0 mg

Thiamine ·HCl 4.5 mg −

4.6 Conclusion

In order to efficiently operate the bioreactor, and implement the control and es-
timation methods presented throughout the thesis, a data-acquisition program is
developed in the LabView environment.

This program provides the communication with the MFCS software, allowing
real-time measurements in the LabView environment with more flexibility (sample
rate, recording, exporting, real-time plotting of data . . . ).

The program also allows integrating several measurements in one environment
and is flexible for a hardware upgrade. Network-shared variables feature in Lab-
View offers the possibility of sharing the same information between computers on
the same network. Meaning that the closed-loop system does not require a pow-
erful computer to operate. The data acquisition interface can share the variables
in real-time, and the complex calculation can be performed in another powerful
computing machine or a server in another room.

Another advantage is the possibility to integrate modular control and estima-
tion algorithms. The modular structure of the program allows modifying these
algorithms quickly. The user can swap a component with another without the
need to build a new program. The user-friendly interface facilitates the operation
of the program.

The different materials and methods used in this work are presented in this
chapter, including the bioreactor structure and hardware, the bacterial strain, the
mediums, and the culture operation steps.
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The following chapters describe the control and estimation strategies to max-
imize biomass production yield and promote cell growth in fed-batch E. coli cul-
tures.
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5.1 Introduction

Fed-batch fermentation is the most common cultivation mode in industrial pro-
cesses (Birol et al., 2002; Bodizs et al., 2007). This mode is preferred for large-scale
production of several products such as chemicals, enzymes, pharmaceuticals and
food products (Doran, 2013).

The progress in engineering tools developed for biotechnological applications
focused on improving the productivity of the processes, improving the produc-
tion yields, and reaching optimal operating conditions. These objectives can be
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achieved by multiple approaches like genetic and genomic engineering of host
strains, or by designing efficient control and optimization strategies (Pontrelli et
al., 2018).

Several control strategies were developed throughout the years for biopro-
cesses. These types of systems have indeed specific features such as the strong
non-linearities, the parametric uncertainties, and the multiple metabolic operating
modes.

In this chapter, the main strategies based on feed rate manipulation in fed-batch
cultures are presented and discussed. In all strategies, the goal is to determine
and maintain an optimal feeding profile corresponding to the desired objectives
behind the fermentation. The main difficulty is to define this optimal feed-rate,
since it depends on several variables of the bioprocess, as well as the operating
conditions.

Manipulating the feed-rate has a direct impact on the metabolism of the micro-
organisms, since the variation in the substrate concentration affects the growth
rate, the products formation rate, the oxygen uptake rate, and other kinetic vari-
ables. Furthermore, a variation of the feed-rate directly changes the mass and
volume dynamics, thereby affecting the bioprocess variables, and especially the
oxygen dynamics due to the change in viscosity.

Closed-loop control schemes can maintain the optimal feed-rate corresponding
to the desired objectives, and in most cases adapts to disturbances affecting the
metabolism of the cells and measurement noise.

The list of the control strategies presented in this chapter is not exhaustive, but
it may provide a guide to choose the appropriate control method to develop and
implement, based on the available materials, process knowledge, or the amount of
available data. The list considers the most widely used control strategies currently
implemented either through industrial applications or lab-scale experiments.

5.2 General aspects of the control problem

5.2.1 Control objectives

The objective behind implementing a control scheme usually depends on eco-
nomic drivers of the bioprocess. For example, the production of recombinant pro-
teins and pharmaceutical products requires the maximization of the biomass con-
centration and the biomass production yield. Other objectives include: Maximiz-
ing/minimizing the product concentration, maximizing the process yield, maxi-
mizing the productivity, and maintaining an oxygen uptake rate profile.

Due to the exponential growth rates, metabolic shifts, varying volume dynam-
ics, nonlinear kinetics, and feed disturbances, fed-batch processes dynamics are
inherently nonlinear. Therefore, a major challenge to reach the defined control
objective is the constantly changing nature of the optimal operating points in non-
linear dynamics.
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5.2.2 Measured variables

A major obstacle for efficient and advanced control of fed-batch cultures is the lim-
ited number of on-line measurement devices. The standard measurements found
in fed-batch cultivations include temperature, pH, dissolved oxygen, and carbon
dioxide. Adding to these list, we find the on-line measurements of the agitation
speed, and inlet gas rates (Alford, 2006; Sonnleitner, 2013).

Other advanced probes like spectroscopic sensors can be found on the market
(Cervera et al., 2009), however they are not widely used on the industrial scale due
to the lack of robust measurements at low concentrations of key variables, such as
substrate or by-products concentrations.

5.2.3 Estimated variables

The lack of efficient sensors for key variables is a major challenge in industrial
fermentations (Luttmann et al., 2012; Montague et al., 1989), since the process op-
timization and control requires robust on-line data. Thereby, software sensors can
provide an alternative tool to include additional variables in the developed strate-
gies based on the available measurements.

As described in chapter 3, software sensors use the available on-line data from
the physical sensors and the process knowledge (in the form of dynamic models
or historical data sets) to efficiently reconstruct and estimate the non-measured
variables (Bogaerts and Vande Wouwer, 2003; Montague et al., 1989). Hence, es-
timation strategies are not only a powerful tool for on-line process monitoring,
but also provide additional data to implement advanced control and optimization
strategies (Luttmann et al., 2012; Sagmeister et al., 2013).

5.2.4 Control inputs and variables

In the case of control strategies designed for fed-batch cultures presented in this
chapter, the control input is the inlet feeding flow rate. The controlled variable
can be a measured variable (pH, oxygen, biomass . . . ), an estimated variable (by-
product, substrate, . . . ), or a calculated term from the measured and estimated
variables (growth rate, uptake rate, . . . ). The control strategy can also include
multiple controlled variables, and multiple inputs. A general scheme of the main
components of a control strategy is shown in Figure 5.1.

The control design procedure must take into consideration the parametric un-
certainties and disturbances. Furthermore, the robustness of the developed strate-
gies towards batch-to-batch variations, initial conditions errors, and measurement
noise must be evaluated.
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FIGURE 5.1: General scheme of the control strategy of a fed-batch
process

5.3 Overview of control strategies for fed-batch culti-
vation

This section describes the most used control strategies developed for fed-batch
processes. This presentation is not exhaustive but is intended to provide guidance.

5.3.1 Predetermined feeding control

Predetermined feeding control (also called open-loop control or non-feedback con-
trol) is the most used operating strategy in the fermentation industry (Oliveira et
al., 2004). In this method, the control actions are independent from the process out-
puts and the manipulated variables. Thus, a feedback is not required to determine
the controller actions. Non-feedback control is employed to apply a pre-calculated
feeding profile to the process, based on the initial states and the operating condi-
tions of the culture.

In fed-batch cultures, a pre-calculated exponential feed-rate profile is usually
considered to achieve reproducibility of batches at the end of the exponential
growth phase. Exponential feeding allows the cells to grow at a constant specific
growth rate (Lee et al., 1999). This feeding method is usually applied to cells that
exhibit overflow metabolism. In order to avoid cell growth inhibition and product
formation, the growth rate is usually regulated below the maximal value.

The feeding profile is generated based on the initial conditions, and specific
parameters such as the maximum specific growth rate (µmax). An example of the
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feeding profile is given by Equation (5.1) (Dochain, 2010; Lee et al., 1999), de-
rived from mass balances with the assumption of a constant cell yield and constant
growth rate.

F(t) =
µset · X0V0

YXS · Sin
eµsett (5.1)

where µset < µmax is the set-point growth rate. YXS the yield of biomass on sub-
strate, X0 and V0 are respectively the initial biomass concentration and culture
volume.

The non-feedback control is used to reduce the variability between batches
caused mainly by variations in initial biomass concentration (Jenzsch et al., 2006a).
Examples of open-loop applications to fed-batch processes can be found in (Henes
and Sonnleitner, 2007; Jenzsch et al., 2006a; Wechselberger et al., 2012).

The main advantage of this method is that it doesn’t require any on-line mea-
surements of the key variables and its implementation is fairly easy. However, as a
direct consequence, it does not allow to regulate process variables, or reach most of
the control objectives. Furthermore, process disturbances and system nonlinearity
are major issues, especially when cell growth does not match the predetermined
profile due to overfeeding or under feeding. Exponential growth of the cells leads
to significant deviations in biomass profile from its reference (Lee et al., 1999).

5.3.2 Adaptive control

Adaptive control is a nonlinear control strategy, where the model parameters are
estimated and adapted in real-time. Adaptive control covers a wide range of meth-
ods, but they all rely on changing a defined set of parameters in the control law
in order to achieve a better response in presence of disturbances or uncertainties
in the process. The adaptive controller types vary depending on the parameter
adaptation method.

A simple scheme of adaptive control is the gain scheduling method. Gain
scheduling techniques are also called ”open-loop” adaptive strategies since the
controller gain is adapted based on prior knowledge of the system to account for
varying dynamics. A preprogrammed tuning is calculated and applied based on
data from previous cultures. An example of the application of the gain scheduling
method to fed-batch cultures can be found in (Hisbullah et al., 2001; Yuan et al.,
2009). Gain scheduling strategies gained interest due to their simplicity to imple-
ment on specific manufacturers hardware. However, they lack robustness towards
model uncertainties and disturbances.

Closed-loop adaptive control strategies can be divided into two main cate-
gories: direct or indirect, depending on the parameter tuning method. In direct
adaptive control, the controller variables are adapted directly based on system
measurements. In other words, the tracking error between the process and a ref-
erence model is used to directly modify a parameter in the control law.

In a variant of direct adaptive control, the optimal control action is designed to
minimize the error between an ideal model and the process outputs. This method
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refers to model reference adaptive control (MRAC), and has been applied in sev-
eral fed-batch control applications by feed-rate manipulation (Oliveira et al., 2005,
2004; Soons et al., 2006a). The desired response of the system is defined by a model,
that has optimal response to input disturbances. The minimization of the error
between the actual response and the desired one is used to tune the controller
parameters (Landau et al., 2011).

In indirect adaptive methods, the measurements are used to update the model
parameters to reduce the error between the system response and the desired one.
Then the controller parameter values are calculated based on the updated model
parameters.

Nonlinear control methods such as feedback linearization and backstepping
control are usually employed to bioprocesses with the addition of an adaptation
of a set of parameters in the control scheme. These parameters are estimated on-
line based on the measurements and the process model. The controller is then able
to adapt to unpredictable system dynamics. The measurements are processed to
predict and update a state variable or a system parameter, before their use in the
adaptation algorithm. There is a big interest for adaptive control schemes based on
traditional nonlinear controllers in fermentation applications due to the nonlinear
and uncertain nature of bioprocesses (Bastin and Dochain, 1990; Gonzalez et al.,
2015; Rocha and Ferreira, 2002; Smets et al., 2004).

In (Dewasme et al., 2011a), adaptive control is applied to control the by-product
concentration P to a low predefined setpoint in fed-batch E.coli and S. cerevisiae
cultures. A robust linearizing adaptive control law is implemented to estimate
and adapt a kinetic parameter θ. The robustness of the closed-loop is ensured
using the LMI formulation. The control scheme is compared to classic adaptive
strategy developed in (Rocha, 2003), and the results showed a better performance
in the presence of modeling errors and disturbances.

In (Oliveira et al., 2004), an indirect MRAC algorithm was applied to regulate
the dissolved oxygen concentration and maximize the Oxygen transfer rate (OTR)
in penicillin-G fermentation. First, a model identification is carried out from mea-
sured variables, then, the error from the reference model output is used to update
the control parameters.

With the same control objective, the MRAC was used on an industrial 50L fed-
batch fermentation of P. pastoris in (Oliveira et al., 2005). The OTR signal was
estimated from the available state variable signals to reduce the measurement de-
lays. The strategy allowed reaching a high cell density, with a biomass up to 670 g
of wet weight/L.

(Soons et al., 2006b) applied a direct MRAC to regulate the growth rate µ to
a defined set-point in a 5L B. pertussis fed-batch cultures. The method is based
on a mechanistic model with two substrates compared to a reference model. The
controller gains are calculated based on the updated state variables (µ, X and V).

Adaptive control is suitable to fermentation systems with high disturbance lev-
els and unpredictable system dynamics (Landau et al., 2011). A general challenge
for adaptive control is the determination of the Parameter Adaptation Algorithm
(PAA) used to adapt the control parameters to reach optimal operating points and
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ensure a stable system response. Another challenge is the need of sufficiently rich
signals for the parameter and state estimation.

5.3.3 Model predictive control

Model predictive control (MPC) is an advanced control strategy used for a va-
riety of control problems (Forbes et al., 2015), since it is based on on-line opti-
mization and is known for handling complex multivariate dynamics and system
constraints. These features allow the MPC strategies to be applied in a wide range
of industrial fields (Qin and Badgwell, 2003).

The basic principle behind the MPC is to simulate the model up to a defined
time in the future (called prediction horizon) in order to predict the current output
and the future evolution of the system. The prediction is evaluated to define the
action required at the current time, based on optimization of a cost function and a
given defined prediction window (Stanke and Hitzmann, 2013).

The MPC scheme has been extended to nonlinear systems (NMPC), and used
for a variety of control objectives. A cost function can be defined to maximize the
production, minimize the costs, or to follow a trajectory for a certain variable (Se-
borg et al., 1989). The optimization is carried out up to a predetermined point in
the future, and the algorithm is then repeated at the next time interval. The opti-
mization of the cost function can also be subject to a set of operational constraints
(Seborg et al., 1989).

The main difference between the different MPC implementations in fermen-
tation applications is the choice of the cost function. Some applications aim to
follow a defined trajectory for a specific variable, such as biomass concentration,
X (Kuprijanov et al., 2013a; Zhang and Lennox, 2004) or substrate concentration
S (Craven et al., 2014). In other examples, the objective is to maximize a certain
process variable (Chang et al., 2016; Kovárová-Kovar et al., 2000a; Santos et al.,
2010), rather than follow a determined trajectory.

The MPC is based on a mechanistic or data driven model of the system, there-
fore the efficiency of this control strategy depends heavily on the quality and ac-
curacy of the model. Furthermore, the method is considered to have an expensive
computational cost, especially when handling uncertain steep nonlinear dynamics
(Laurı́ et al., 2014).

The MPC strategy is considered as a standard method in several industrial
fields, however its application in industrial bioprocesses is not as wide, due to the
lack of robust process models and the heavy computational cost.

In (Zhang and Lennox, 2004), the MPC strategy was employed to regulate the
biomass trajectory in a penicillin fed-batch process. The biomass concentration
was estimated using a Multivariate Partial Least Squares method based on 20 pre-
vious batches.

(Kuprijanov et al., 2013b) applied an adaptive MPC scheme to reproduce an op-
timal biomass profile obtained from a golden batch. The method relied on off-line
measurements of the biomass and substrate concentrations inputs. An application
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to an industrial 10 L culture of E. coli allowed reaching a high cell density and a
final biomass concentration over 55 g/kg.

A nonlinear MPC (NMPC) strategy was applied to a mammalian fed batch
culture in (Craven et al., 2014). The control objective is to maintain the substrate
concentration (glucose) at a defined setpoint. The controller was tuned in simu-
lation and then implemented on a 15L bioreactor. The glucose concentration was
successfully regulated at 11 mM with a setpoint change to 15 mM after 100 h.

In (Santos et al., 2012b) an NMPC strategy was presented to control fed-batch
E. coli cultures. The cost function is defined to maximize glucose oxidation rate
and minimize the glucose fermentation rate, in order to avoid growth inhibition
due to overflow metabolism. The advantage of this approach is the ability to track
an unknown optimal operating point corresponding to the critical substrate con-
centration.

(Kovárová-Kovar et al., 2000b) presented a combination of the MPC with an
artificial neural network (ANN) applied to B. subtilis fed-batch fermentation. The
ANN is applied to predict the product formation, due to the lack of a reliable
mechanistic model. The cost function aimed at maximizing the total product quan-
tity and the product yield. The results showed a 10% increase of the product yield
compared to previous batches.

(Chang et al., 2016) applied the MPC strategy to S. cerevisiae cultures, with a
goal of regulating the dissolved oxygen to a defined set-point using a dynamic
flux balance model.

The advantages of the MPC schemes are the full exploitation of the process dy-
namics, the simple control policy for complex systems, the consideration of opera-
tional constraints, and the on-line optimization procedure. On the other hand they
require rigorous model identification, and come with a high computation load.

5.3.4 Fuzzy control

Fuzzy control is a method based on fuzzy logic theory (Zadeh, 1994), designed
to bypass the use of complex models and to deal with the uncertainty aspect of
processes. This property made fuzzy control suitable for fermentation processes
known for their non-linear dynamics (Lee et al., 1999). Unlike model-based meth-
ods, fuzzy logic controllers do not rely on the initial knowledge of the system dy-
namics, since the control parameters are calculated relying on the user experience
to evaluate the current state of the process. Fuzzy control is based on converting
the quantitative data into qualitative parameters. The method relies on the follow-
ing definitions:

• Fuzzy set: A linguistic term defining the properties of a variable.

• Membership function: A value between 0 and 1 translating the degree to
which a variable belongs to the fuzzy set.

In fuzzy control, numerical data are converted based on their degree of fitting
in a fuzzy set using the membership function. This operation is called fuzzifica-
tion. The ensemble of the fuzzy sets is then used to determine the current state of
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the process, which allows the definition of a control action. A set of conditional
rules (If/else/then) is defined based on the a-priori knowledge of the system.
These rules are applied to the interpreted condition or state of the process, and
used to calculate a numerical output that represents the controller output. This
step is called the defuzzification (Seborg et al., 1989).

Fuzzy control methods can provide some insight into complex nonlinear
system dynamics without the need for model identification (Babuška and Ver-
bruggen, 1996). However, despite its benefits, there are some limitations to fuzzy
control applications as it depends entirely on the user knowledge and expertise.
The fuzzy sets are often defined on a set of operating conditions, and the controller
performance is affected outside these conditions.

Several works considered the fuzzy logic for control problems in fed-batch cul-
tures. In (Zhang et al., 1994) two fuzzy sets were used in a baker’s yeast fermen-
tation for different phases of the culture. In the first phase (alcohol production
phase), a set of rules was used to regulate the tracking errors. In the second phase,
the growth rate µX became the new regulated variable and was controlled to reach
the optimal growth rate µmax.

(Horiuchi and Hiraga, 1999) applied the fuzzy control to a large-scale recom-
binant protein production process. The controller was employed to identify the
current process phase in a four operating phases process. A trapezoid member-
ship function was assigned to each state variable, and the manipulated variables
were the pH and the feed-rate. The total product increased up to 16% after the
implementation of the fuzzy controller compared to a manual control method.

In (Hisbullah et al., 2003), a hybrid fuzzy and PI control strategy with sched-
uled gain was implemented in a baker’s yeast cultures. The objective is to regulate
the oxygen and carbon dioxide evolution rates to predefined set-points based on
biomass measurements. The controller managed to reduce the oscillations and the
set point tracking offset compared to conventional controllers.

Fuzzy logic-based controllers combine the user knowledge of the process and
historical data in a relatively simple structure. Adaptation for different processes
and scales is also a big advantage since the method relies on linguistic rules rather
than mathematical representation. On the other hand, the definition of the rules is
not straightforward and requires a deep knowledge of the process.

5.3.5 Artificial neural networks

Artificial Neural Network (ANN) is a data driven control method that can describe
a complex non-linear system without the need for explicit equations. ANN relies
on past process data to predict the outcomes of the process inputs. Consequently,
ANN can be found in various industrial applications (Glassey et al., 1994; Lübbert
and Simutis, 1994).

In ANNs, the input data are processed by weighted functions to predict the
outputs. These outputs are defined by basic functions that may be sigmoidal or
step functions (Lee et al., 1999; Stanke and Hitzmann, 2013). ANN training is
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commonly done using the back propagation algorithm (Rumelhart et al., 1986), as
shown by (Bošković and Narendra, 1995; Peng et al., 2013).

To utilize ANN in a control strategy, an optimal value of a chosen process vari-
able must be set, and then an optimization algorithm (such as the genetic algo-
rithm (Holland, 1984)) is used to optimize ANN outputs for the given data set and
solve the optimization problem.

Controllers based on ANNs have been applied successfully to fed-batch fer-
mentation applications. In some set point tracking applications, ANN is used to
predict a variable of interest, and then feed it to a closed loop control algorithm
(Ferreira et al., 2001). Alternatively, ANN can be used directly in solving opti-
mization problems, and determine an optimal solution (Chen et al., 2004; Peng et
al., 2013).

The main drawback of ANN controllers is that the network cannot be used
to get some understanding of the process or the relationship between variables.
Furthermore, the performance depends heavily on the operating conditions of the
training data (Babuška and Verbruggen, 1996).

Few examples of ANN control of industrial fed-batch processes exist. (Chen
et al., 2004) employed a cascade recurrent neural network for fed batch S. cerevisiae
process to maximize the biomass concentration. The controller is composed of
two network blocks where the feed-rate and the volume were used to estimate
the dissolved oxygen in the first block. The second block uses the DO as an input
to predict the biomass concentration. A genetic algorithm is used to optimize a
smooth feed profile.

Another ANN implementation can be found in (Peng et al., 2013) based on data
from 6 batches of B. casei fed-batch cultures. An optimal trajectory was created
using a genetic algorithm. The strategy showed an improvement in the product
synthesis over 25 batches.

(Ferreira et al., 2001) presented a multilayer ANN used to control the substrate
concentration in fed-batch fermentation. The network was used to interpret the
glucose and sucrose measurements. The ANN was coupled to a PI controller to
regulate the substrate concentration to a predefined set-point of 10 g/L.

5.3.6 Probing control

Probing control is a control method where perturbations are applied to the process
inputs, in order to get a response in the controlled variable and base the control
decisions on this response. Probing control is employed when the regulation set-
points and the reference trajectories are unknown.

In fed-batch fermentation, a perturbation is applied to the feed-rate and the re-
sponse of a kinetic variable signal is analyzed to calculate the feed rate for the next
sampling time. Examples of applications of probing control in fed-batch fermen-
tation are given in (Henes and Sonnleitner, 2007; Johnsson et al., 2013; Velut et al.,
2007).

Self-optimizing control and extremum seeking control are the main forms of
probing control used in bioprocesses (Dochain et al., 2011). They are used to solve
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optimization problems. Self-optimizing control is based on maintaining control
parameters at a constant value in order to reach near-optimal operating conditions
with acceptable loss. Extremum seeking control is employed to find an unknown
optimal operating point that maximizes or minimizes a cost function. This strat-
egy is appropriate to situations where the optimum is unknown, but the optimal
condition is known.

In most applications, the determination of the optimal feed rate is difficult,
therefore probing control is an interesting alternative since it does not refer to set-
point knowledge, but it finds the optimal point and adapts to its changes. This
advantage makes probing control suitable for fed-batch fermentations, where the
objective is to maximize a certain variable, while avoiding feeding excess (De-
wasme et al., 2011b; Henes and Sonnleitner, 2007; Johnsson et al., 2013). Another
advantage is the adaptation to disturbance rejection and different initial condi-
tions.

In (Johnsson et al., 2013), probing control was applied to fed-batch B. licheni-
form cultures. The goal was to maximize the oxidative metabolism, whilst avoid-
ing overflow metabolism. The frequency response of the DO signal was analyzed
to interpret the system state. The biomass concentration at 10 h was 24% greater
than the reference batch.

(Henes and Sonnleitner, 2007) employed the probing control strategy to E. coli,
S. cerevisiae, and P. pastoris fed-batch cultures. The relative change in DO was used
to determine the controller actions. An exponential feeding profile was used as a
reference, and an adaptive strategy was used to reach the optimal feeding profile
by manipulating the specific growth rate µ in the used model.

In (Velut et al., 2007), probing control was applied to E. coli cultures to regulate
and limit the Oxygen Uptake Rate (OUR). The probing controller was combined to
a temperature control loop in cascade, and the feed-rate is adapted in proportion to
the response, and the temperature is varied to maintain the oxygen concentration
to the defined set-point.

The main advantage of probing control is the tracking of unknown and varying
optimal conditions. This requires a knowledge of the optimum nature and on-line
access to signals affecting it. These signals are not always available, which limits
the control objectives handled by probing control.

5.3.7 Statistical control

Statistical control approaches are based on evaluating the current process state
compared to past performances using statistical multivariate methods. Hence,
past cultures data is used to form an empirical model (Nomikos and MacGregor,
1994), rather than relying on process knowledge. It is applied to monitor the pro-
cess and identify the deviation from a given optimal state.

Correlation between variables can be identified by multivariate analysis (Olkin
and Sampson, 2001), two main methods are used: principle component analysis
(PCA) (Nomikos and MacGregor, 1994) and partial least squares (PLS) (Nomikos
and MacGregor, 1995).
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Despite the challenge of the development of a separate model for each pro-
cess and scale, statistical process control is applied to a variety of fed-batch con-
trol problems. Examples of multivariate analysis methods application for process
modeling and monitoring, and control can be found in (Albert and Kinley, 2001;
Doan and Srinivasan, 2008; Duran-Villalobos et al., 2016a; Ferreira et al., 2007;
Glassey, 2013; Mears et al., 2016).

In (Albert and Kinley, 2001), an industrial application of multivariate analy-
sis to provide on-line process control of fed-batch tysoline cultures. The PCA is
applied to 144 batches, and 65 high yield batches are found desirable.

In (Duran-Villalobos et al., 2016b), a PLS model was developed and applied
to maximize the biomass formation in fed-batch cultures. The PLS was combined
with an optimization algorithm to determine the optimal manipulated variables
for future batches based on their initial conditions.

5.3.8 Discussion

In the previous sections, various control schemes implemented on fed-batch pro-
cesses are presented. Each method has some advantages and drawbacks depend-
ing on several factors. A classification of these factors may provide an insight into
choosing the appropriate method for the desired application.

The presented strategies can be classified into three main categories: model-
based, historical data based, or user experience-based. Table 5.1 shows a summary
of the different aspects of each control method.

Before choosing a control strategy for the fed-batch culture, the user must con-
sider several aspects related to the studied bioprocess. The number of available
measurements is a first deciding factor. These measurements should be accurate,
reliable, with minimal noise in order to be applicable in a control or estimation
loop.

The available data prior to the application of any control method is another de-
ciding factor. If a reliable process model is available, it should describe accurately
the studied process in order to provide a basis for eventual model-based control
scheme. In the case of the lack of a model and the difficulty to identify a new set
of model parameters, the user may refer to historical data from previous fermen-
tations, and choose a control method that doesn’t rely on the explicit description
of the system.

Another aspect to analyze is the complexity of the control method. Ideally
the control strategy should be as simple as possible, in terms of parameter tuning,
software requirements, and hardware implementation. Development and running
costs should also be evaluated before choosing a control strategy.

Methods such as fuzzy control and probing control provide some interesting
advantages, as they do not require a process model, and a big amount of data
from previous cultivations. They also handle unpredictable dynamics and process
disturbances. However, they rely heavily on the process knowledge and the choice
of control objectives is constrained to this aspect.
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TABLE 5.1: Summary of the requirements and benefits of the pre-
sented control strategies (Mears et al., 2017).
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In the case where a process model is available, it is valuable to opt for a model-
based control strategy due to flexibility, versatility, and the relatively low develop-
ment time. Model-based methods (especially the MPC) can be applied for a wide
range of control objectives. Predictive control covers most of the advantages of
other methods, and the flexibility to define objective functions and the possibility
to include operational constraints. However, the implementation difficulty and
the computational cost are higher than other methods.

If a reliable process model exists, model-based approaches provide a vast num-
ber of possibilities, . However, their main drawback is the quality of the model in
terms of uncertainty and sensitivity. Therefore, the model development time, the
uncertainty analysis, and the robust design of the control strategy must be consid-
ered.

Another aspect of the control strategies is the gained insight of the process,
since it’s very valuable from an industrial point of view. Model-based methods,
fuzzy control, and probing control provide information for the user about the pro-
cess state and behavior under different conditions.

The development and implementation costs of the control strategies are one
of the deciding factors of the industrial application of the control strategies. The
cost/benefit ratio is a standard quantifier of the bioprocess performance. The costs
include the model development, the industrial software licenses, and the specific
program development (Lübbert and Bay Jorgensen, 2001). In terms of benefits of
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considering a control approach, the increase of the product yield or the productiv-
ity is usually the main focus area. Other benefits are the reduced variance in the
variables and the reduced variability between batches, in order to stay as close as
possible to the optimal operating conditions (Moulton, 2014).

Furthermore, the implementation costs should be minimized, meaning that the
chosen method complexity should be as low as possible. Methods that require ex-
tensive user training and operation and constant operator presence lead to addi-
tional working hours and thereby increasing running costs.

5.4 Control of fed-batch E. coli cultures

In the context of this thesis, we consider the control of fed-batch E. coli cultures.
The main goal behind the control strategies is to favor the biomass production,
reach high cell densities, and maximize the biomass productivity, while avoiding
acetate accumulation.

As mentioned in the previous chapters, in order to maintain the process in
the optimal conditions, the culture must be driven to the boundary between the
respiro-fermentative and the respirative modes, where the substrate concentration
is neither limiting nor in excess (S = Scrit and qs = qscrit).

A straightforward approach to reach this optimal condition is to control the
substrate concentration accurately at the critical level corresponding to the critical
oxidative capacity of the cells. Another suboptimal approach is to regulate the
byproduct (acetate) concentration at a low value to stay close to the metabolic
edge and avoid the growth inhibition due to byproduct accumulation.

The main obstacles facing these approaches are the metabolic switch between
the operating modes in the neighborhood of the critical substrate concentration,
which may disturb the cells growth and cause uncontrolled fluctuations and la-
tencies. Another major obstacle is the resolution and sensitivity of the available
acetate and substrate measurement devices at low levels.

Indeed, the glucose critical level is very low (O (10−2) gL−1) and a small mea-
surement error of this vital variable can increase the metabolic switches or cause
the accumulation of acetate throughout the culture. On the other hand, the acetate
concentration at the optimum is equal to zero, and regulating it at this level is
impractical since the culture can operate in respirative mode at this concentration
causing a drop in the biomass production yield. Thereby, robust soft sensors with
high estimation accuracy are required to implement these approaches.

A reliable process model was developed in a previous study (Retamal et al.,
2018) on the same process. The model parameters were identified based on a set
of fed-batch experiments designed to trigger metabolic switches between the op-
erating modes.

Model-based methods are therefore considered since they provide flexibility in
defining control objectives. The chosen control method should achieve the desired
objectives while remaining simple to develop and easy to implement on a lab-scale
reactor setup. The method should also take into consideration modeling errors and
uncertainties.
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The measurement setup of the studied process includes traditional probes (pH,
pO2, temperature . . . ) in addition to the agitation and airflow measurements.
The biomass concentration can be measured on-line using the turbidimetric probe.
This measurement is reliable and therefore can be used in an output-feedback con-
trol scheme.

Taking into account all the previous points, a biomass regulation strategy based
on the direct measurements of the biomass concentration is presented in the fol-
lowing chapter. The controller is based on feedback linearization with the addition
of parameter adaptation. The control objective is to track a predefined biomass tra-
jectory corresponding to a defined growth rate chosen lower than the maximal one
in order to avoid acetate accumulation.

The biomass concentration measurement can also be used to implement a state
estimation strategy, provided the availability of sufficient data for parameter tun-
ing. The state estimation allows the implementation of state-feedback control
strategies which increases the number of possible control objectives.

5.5 Conclusion

The main differences between the control methods are the requirements, complex-
ity, process operation, and the control objectives. The goal of this presentation is to
provide a basis and a guide to formulate the control problems depending on the
available materials, methods, and objectives.

In the context of this thesis, we consider the control of fed-batch E. coli cultures.
The control objective is to maximize biomass concentration and biomass produc-
tivity while avoiding acetate accumulation.

Several control strategies were developed for this bioprocess. However, most
of the research studies are performed in simulation. The control strategies pre-
sented in the following chapters are tested and validated in simulations and on
the lab-scale bioreactor.

The availability of a reliable process model and on-line biomass measurements
allows for the consideration of an adaptive model-based biomass growth rate con-
trol strategy. The advantage being the easiness of implementation on the lab-scale
reactor.

The next chapter discusses implementing an adaptive generic model control
(GMC) strategy to regulate the biomass concentration tracking the desired biomass
trajectory.
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6.1 Introduction

As presented in chapter 1, a major challenge in reaching high cell densities in fed-
batch E. coli fermentation is the overflow metabolism and the accumulation of ac-
etate during the culture (Han et al., 1992; Van De Walle and Shiloach, 1998). This
metabolic phenomenon leads to the decrease of the biomass production yield and
consequently the decrease of the recombinant protein production (Riesenberg et
al., 1991; Rothen et al., 1998).

According to the bottleneck theory, in order to maximize the biomass produc-
tivity and avoid overflow metabolism, the substrate concentration must be main-
tained at a certain critical threshold corresponding to the critical cell oxidation
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capacity (Jana and Deb, 2005). To achieve this objective, a closed-loop feeding
strategy is required to maintain the process near optimal operating conditions.
Several possible formulations of the control objective and strategy have been de-
veloped throughout the years, examples of control schemes developed for similar
fed-batch processes presenting overflow metabolism can be found in (Benattia et
al., 2015; Dewasme et al., 2011a,b; Gonzalez et al., 2016; Santos et al., 2012a).

A straightforward formulation of the control problem is to regulate the sub-
strate or acetate concentrations at low values. Achieving this control objectives
puts the process closer to the metabolic edge between the respirative and the
respiro-fermentative modes, and allocates the majority of the available substrate
to biomass production. Some application of this control approach can be found in
(Dewasme et al., 2010; Hafidi et al., 2008; Renard et al., 2006; Rocha and Ferreira,
2002).

A major practical hurdle facing the experimental application of these methods
is the lack of reliable on-line monitoring tools of acetate and glucose concentra-
tions. The critical level of the glucose concentration in E. coli cultures is very low
compared to the sensitivity of the available probes on the market. Furthermore,
the strong nonlinearities exhibited by the process and the need for an accurate de-
termination of the stoichiometry and the kinetics present additional obstacles in
the implementation of these control strategies. Therefore, developing an adaptive
control scheme with minimum reliance on stoichiometry can be an attractive al-
ternative, especially if it does not require on-line measurements of substrate and
acetate concentrations.

In this chapter, we propose an adaptive control strategy based on feedback lin-
earization of the nonlinear model equations called Generic Model Control (GMC)
(Lee and Sullivan, 1988). The objective is to take advantage of the on-line measure-
ment of the biomass concentration to develop and implement a GMC algorithm to
control biomass productivity during the fed-batch fermentation of recombinant E.
coli. In this control strategy, a pre-defined biomass trajectory corresponding to a
limited acetate production is imposed by the controller. The advantages of this ap-
proach are the inclusion of the process nonlinear model in the control design and
the compensation of the model inaccuracies by online adaptation using a param-
eter estimator. In addition, the on-line integration of the process model (i.e. the
numerical solution of the mass balance ODEs) is not required, which leads to an
easy experimental implementation. An experimental implementation of the con-
trol strategy is carried on a lab-scale bioreactor in order to test its performance and
robustness under real operating conditions.

6.2 Generic Model Control

Generic Model Control (GMC) was developed by Lee and Sullivan (Lee and Sul-
livan, 1988) and is a control strategy based on feedback linearization, embedding
the process nonlinearities in the design of the control law.
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GMC was used in various process control applications, among which we can
cite for instance (DeLisa et al., 2001), where GMC ensured the tracking of the for-
eign protein level reference trajectory in E. coli fermentations, (Costello et al., 1989)
where it was applied to anaerobic digestion, and (Douglas et al., 1994) where GMC
was used to control dual product composition in an industrial high purity distilla-
tion column. More specifically, in relation with the present study, the GMC strat-
egy was applied in (Jenzsch et al., 2006b) to control the specific biomass growth
rate in recombinant E. coli fed-batch cultures to an experimentally defined specific
growth rate reference µre f (t). A model simplification was carried out during the
control design and a state estimation using the Extended Kalman Filter was carried
out. In the same spirit, a control strategy was developed in (Bastin and Dochain,
1990) and applied in (Rocha, 2003), based on an adaptive linearizing control law,
regulating the acetate concentration with the dilution rate as manipulated variable.

Hereafter, the GMC is applied to regulate the biomass concentration in fed-
batch E. coli cultures, and track a predefined biomass trajectory corresponding to
the desired metabolic performance.

6.2.1 GMC principle

Generic Model Control (GMC) is based on the feedback linearization of the non-
linear dynamics of the system. The main objective of the control scheme is to track
a desired output nominal trajectory (Lee and Sullivan, 1988; Peter and Lee, 1993).
Consider the following nonlinear process:

ẋ = f (x) + g(x)u (6.1)
y = h(x) (6.2)

where

• x ∈ Rn is the state vector

• u ∈ R is the manipulated input

• y ∈ R is the system output.

• f : Rn → Rn g : Rn → Rn are nonlinear functions of the states x,

• h : Rn → R is the output map.

From Equation (6.2), the output dynamics is given by (Isidori et al., 1995):

ẏ =
∂h
∂x

[ f (x) + g(x)u] = L f h(x) + Lgh(x)u (6.3)

where

• L f h(x) = ∂h
∂x f (x) is the Lie derivative of h along f .

•
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In the GMC strategy, the performance of the system is measured using the time
derivative of the output ẏ and an arbitrary specification function (Lee and Sullivan,
1988):

ẏ = û (6.4)

where û is an arbitrary function used to specify the desired closed-loop perfor-
mance.

In the GMC design procedure, the output y is compared against a prescribed
reference trajectory yre f . When the process output is away from its desired refer-
ence yre f , we would like the process to return towards steady-state with a defined
convergence rate. In addition, we would like to have zero offset. Hence, the speci-
fication signal û can then be defined using a proportional-integral controller in the
form:

ẏ = û = G1(yre f − y) + G2

∫ t

0
(yre f − y)∂τ (6.5)

where G1 and G2 are tuning gains (constant with respect to time), whose values can
be chosen to achieve a variety of responses. Their tuning is performed according
to the desired dynamic behavior as detailed later. If Lgh(x) 6= 0 (i.e., the system is
of relative degree 1), the control input satisfying equations (6.3) and (6.5) is derived
from the following equation:

u =
1

Lgh
(
−L f h + û

)
(6.6)

The resulting closed-loop transfer function (Figure 6.1) is given by:

Y(s)
Yre f (s)

= (6.7)

where

• Y(s) and Yre f (s) are respectively the Laplace transforms of y and yre f .

• s is the Laplace variable.

yre f
PI Controller

ε Linearizing lawû
Process

Fin y
−

FIGURE 6.1: GMC structure
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The desired closed-loop response is defined by setting the damping ratio ξ and
the natural frequency ω0, G1 and G2 are then chosen as follows:{

G1 = 2ξω0
G2 = ω2

0
(6.8)

Although the controlled system response is different from the classic second-order
system due to uncertainties strong nonlinearities, similar plots of the closed-loop
response for different values of ξ and ω0 can be achieved. An example is given in
Figures C.1 and C.2 in appendix C with multiple responses for the studied process.
G1 and G2 can be tuned so as to confer the desired damping ratio ξ and a natural
frequency ω0 in the following steps:

• Choose ξ according to the desired response shape.

• Choose an appropriate rise time tr and the corresponding ω0 = 3
tr

.

• Calculate G1 and G2 using Equation (6.8).

The nonlinear closed-loop stability and the performance analysis of the GMC
are detailed in (Zhou et al., 1992). Nominal stability is ensured for any positive
values of G1 and G2. The proof is based on finding a strict Lyapunov function
for the nominal process and applying a perturbation theorem. Another stability
proof for a similar control structure with kinetic parameter estimation is given in
(Gonzalez et al., 2016).

An anti-windup mechanism is also added to the integral term of û to avoid
integration accumulation under input saturation:

û = G1(Xre f − X) + G2

∫ t

0
[(Xre f − X) + uω]dτ

uω = Kω(usat − u)
(6.9)

where Kω is the anti-windup gain, . In the following, Kω is determined by trial
and error.

6.3 Application of the GMC scheme to E. coli Cultures

As presented in the previous chapters, our goal behind controlling fed-batch fer-
mentation of E. coli is to favor the biomass production, reach high cell densities,
and maximize the biomass productivity. Acetate accumulation and its growth in-
hibiting effect must be taken into consideration during the control design.

In this chapter, we propose regulating the biomass growth rate by tracking a
predetermined suboptimal biomass trajectory. The idea is to reproduce a theo-
retical biomass profile reference satisfying the control objectives and maintaining
the culture as close as possible to the optimal conditions. The advantage of this
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approach is the low operating cost and practicality, since it relies only on the on-
line biomass measurement which is provided by the turbidimetric probe with low
measurement noise.

The reference biomass profile must satisfy the previously described control ob-
jectives. First, an exponential feeding reference Finre f profile given in (Retamal et
al., 2018) is applied to the system:

Finre f =
µset

kXS

X0V0eµset t

Sin
(6.10)

where µset is the setpoint specific growth rate, and kXS is the yield coefficient de-
fined as grams of produced biomass per grams of consumed substrate.

An important step of the control design is to choose the reference growth rate
µset. We seek to track an exponential biomass reference trajectory corresponding
to a constant growth rate, an initial substrate concentration lower than the critical
value (S∗ < Scrit), and an initial acetate concentration equal to zero. This operat-
ing trajectory allows the process to evolve close to the edge between the respira-
tive and respiro-fermentative modes, with a safety net that avoids the metabolic
switches and favor cell growth.

The reference growth rate µset should be carefully selected below the critical
value µset ≤ µ?

X, where µ?
X is the optimal growth rate. Figure 6.2 shows a simula-

tion of the biomass productivity and acetate production for different values of µset.
The biomass productivity is defined by the following equation:

PX =
1
t f

V
(
t f
)

X
(
t f
)
− V0X0

Sin
(
V
(
t f
)
− V0

) (6.11)

Biomass productivity increases for increasing µset values until µset = 0.24 h−1.
For the sake of security with respect to possible model uncertainties offsetting µX,
µset will be selected in the range [0.18, 0.22] in order to avoid acetate accumulation.
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FIGURE 6.2: Biomass productivity (blue) and acetate production (ma-
genta) for different µset values

GMC Design Using the Full-Order Model

The GMC scheme presented in the previous section is applied to the mechanistic
model of the E. coli culture considering the biomass as the sole online measurement
(y = X). Applying Equation (6.6), we obtain the following control law:

Fin =
V
X
(
(kX1µ1 + kX2µ2 + kX3µ3)X − F̂

)
(6.12)

provided that X 6= 0. In this expression, F̂ is given by the following:

F̂ = G1(Xre f − X) + G2

∫ t

0
(Xre f − X + Fω)dτ

Fω = Kω(Fsat − Fin)
(6.13)

where Kω is the anti-windup gain, and Fsat is the value of the saturation on the
feed-rate Fin.

Unfortunately, the straightforward application of the GMC to the mechanistic
model raises some problems. Accurate determination of the specific growth rates
is difficult, since the kinetics are based on the overflow metabolism paradigm and
are represented by metabolic switches. Moreover, an imposed biomass trajectory
could possibly lead to high values of the flow-rate.

The biomass differential equation in respiro-fermentative mode is given by the
following:

Ẋ = µXX − Fin

V
X (6.14)
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where
µX = (kX1 − kX2)qscrit + kX2qs (6.15)

If the imposed biomass trajectory is exponential with a constant growth rate µset,
the correspondent feeding profile is given by:

Fin = (µX − µset)V|X=Xset
(6.16)

The substrate dynamics is assumed to be fast and, therefore, in quasy-steady state
(S = Sset, Ṡ = 0) during the control period, implying the following:

Ṡ = µSX − Fin

V
(S − Sin) = 0 (6.17)

where

µS = qsmax

S
Ks + S

∣∣∣∣
S=Sset

(6.18)

which leads to the following feed-rate profile:

Fin =
µS

(Sin − S)
XV
∣∣∣∣
S=Sset

(6.19)

Assuming a low production of acetate, equations (6.16) and (6.19) show that the
reference feeding trajectory depends on the pair (Xset,Sset):

µS

(Sin − S)

∣∣∣∣
Xset,Sset

= (
µX − µset

X
)

∣∣∣∣
Sset,Xset

(6.20)

For each value of Xset, two possible solutions for Sset are obtained:

Sset = (α1 + α2Xset ±
√

α3 + α4Xset + α5X2
set)/α6 (6.21)

The expressions of the αj coefficients are given in appendix C. A numerical exam-
ple with µset=0.18 h−1 and Xset=10 gL−1 is presented in Table 6.1. The first solution
Sset1 is a low value of S, while the second solution Sset2 is rejected because it corre-
sponds to a high value and physically non-achievable operating condition.

TABLE 6.1: αj values and Sset solutions for µset = 0.18 h−1 and Xset =
10 gL−1.

α1 = −1.5602 × 104 α2 = 164.0900
α3 = 2.4338 × 108 α4 = −5.1201 × 106

α5 = 2.6926 × 104 α6 = −62.4058
Sset1 = 0.0294 gL−1 Sset2 = 447.4088 gL−1

The GMC controller based on the mechanistic model can reproduce the correct
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biomass profile corresponding to the reference growth rate µset. However, the sys-
tem can converge to the undesired and unrealistic operating point corresponding
to the high feed-rate. To avoid this behavior, a reduced model taking into account
the low substrate concentration (during the control period) is presented hereafter.

GMC Design Using a Reduced Model

A control design based on a reduced model is developed by applying the singular
perturbation technique (Rocha and Ferreira, 2002): the dynamics of substrate, oxy-
gen, and carbon dioxide are considered much faster than the dynamics of biomass
and acetate. Thus, the fast variables are considered to be in quasi steady-state and
their dynamics are set to zero.
A fast-slow state partition is therefore proposed as follows:

ξ f =

S
O
C

 ξs =

(
X
A

)
(6.22)

with indices f and s being respectively related to fast and slow dynamics. The
dynamic system for the fast variables can be written from the system model:

 Ṡ
Ȯ
Ċ


︸ ︷︷ ︸

ξ̇ f

=

 −1 −1 0
−kO1 −kO2 −kO3
kC1 kC2 kC3


︸ ︷︷ ︸

K f

ϕ1
ϕ2
ϕ3


︸ ︷︷ ︸

ϕ

−D

S
O
C


︸ ︷︷ ︸

ξ f

+

 DSin
OTR
−CTR


︸ ︷︷ ︸

Ff +Q f

(6.23)

where

• D is the dilution factor (D =
Fin

V
).

• K f is the stoichiometric matrix.

• ϕ is the reaction rate vector defined as ϕ =
(
µ1X µ2X µ3X

)T

Since the dynamics of these variables (ξ̇ f = 0) as well as the dilution effects (Dξ f =
0) are neglected, which are often several orders of magnitude smaller than the
reaction terms, the following equation holds approximately:

K f ϕ + Ff + Q f = 0 (6.24)

If K f is full rank, Equation (6.24) can be rewritten as follows:

ϕ = K−1
f (−Q f − Ff ) (6.25)
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The state space dynamics of the reduced model considering only slow variables
is given by the following:

(
Ẋ
Ȧ

)
︸ ︷︷ ︸

ξ̇s

=

(
kX1 kX2 kX3
0 kA1 −1

)
︸ ︷︷ ︸

Ks

ϕ1
ϕ2
ϕ3


︸ ︷︷ ︸

ϕ

−Fin

V

(
X
A

)
︸ ︷︷ ︸

ξs

(6.26)

Replacing the expression of ϕ from (6.25) in (6.26) yields the following:

ξ̇s = K̄(−Q f − Ff )−
Fin

V
ξs (6.27)

where

K̄ = KsK−1
f =

( ¯k11 ¯k12 ¯k13
¯k21 ¯k22 ¯k23

)
(6.28)

The following equation is for the biomass:

Ẋ = − ¯k11
Fin

V
Sin − ¯k12 OTR + ¯k13 CTR − Fin

V
X (6.29)

where the parameters ¯k11, ¯k12, and ¯k13 are functions of the yield coefficients shown
in Table 6.2.

TABLE 6.2: Theoritical dependency of k̄ij parameters.

Parameter Expression

¯k11
1
δ̄
(kX3(kC1kO2)− kC2kO1 − kX2(kC1kO3 − kC3kO1) + kC3kO2) + kX1(kC2kO3 − kc3kO2)

¯k12
1
δ̄
(kC3kX1)− (kC3kX2)− (kX3(kC1 − kC2))

¯k13
1
δ̄
(kO3kX1)− (kO3kX2)− kX3(kO1kO2))

δ̄ (kC1kO3 − kC3kO1 − kC2kO3 + kC3kO2)

OTR and CTR can be calculated using the on-line measurements of the oxygen
and carbon dioxide concentration using gas analyzers. The expressions of OTR
and CTR under controlled conditions are given by (Retamal et al., 2018):

OTR = (kO1µ1 + kO2µ2 + kO3µ3)X (6.30)
CTR = (kC1µ1 + kC2µ2 + kC3µ3)X (6.31)

From equations (6.3), (6.13) and (6.29), the following control law is obtained:

Fin =
− ¯k12 OTR + ¯k13CTR − F̂

X + ¯k11 Sin
V (6.32)

where F̂ is still given by Equation (6.13) and assuming that X + ¯k11 Sin 6= 0, which
is satisfied in general.
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The advantage of the model reduction is that the desired operating condition
(low substrate concentration) is directly embedded in the control algorithm.

Since OTR and CTR are not available for on-line measurement in our experi-
mental setup and the biomass X is the sole measured variable, an adaptive GMC
strategy is developed in the next section to reconstruct the unavailable signals, also
adapting the control law subject to parameter uncertainty.

6.4 Adaptive GMC

The control law from Equation (6.32) contains the following unmeasurable and
uncertain quantity: − ¯k12 OTR + ¯k13CTR. Since the experimental setup is not
equipped with gas analyzers, a kinetic parameter estimation scheme is developed
and presented in this section. The biomass dynamics equation (6.29) can be rewrit-
ten as:

Ẋ = γ − D (X + ¯k11Sin) (6.33)

where D = Fin
V , and γ is the uncertain and unmeasurable time-varying parameter

given by:
γ = − ¯k12 OTR + ¯k13CTR (6.34)

We desire to model the dynamics of γ in order to apply a parameter estimation
scheme. Let:

X∗ = X + ¯k11Sin (6.35)

Hence, Equation (6.33) can be written in a compact form, assuming that Sin is
constant:

Ẋ∗ = γ − D X∗ (6.36)

Provided X∗ = X + ¯k11Sin is available for on-line measurement, γ can be estimated
using a linear Kalman filter in the same way as presented in (Gonzalez et al., 2016),
where the production rate of lactic acid is estimated in continuous mode.

Two estimation approaches are presented in the following, based on the classi-
cal discrete Kalman filter which offers simplicity and easy implementation.

6.4.1 Constant evolution of γ

First, γ is assumed to be constant, which is described by an exogeneous system:{
Ẋ∗ = γ − DX∗

γ̇ = 0 (6.37)

As biomass measurements are collected at discrete time (sampling time Ts), it can
be convenient to discretize Equation (6.37) using, for instance, the Euler scheme
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(assuming a sufficiently small value of Ts):[
X∗

k+1
γk+1

]
=

[
−DkTs + 1 Ts

0 1

] [
X∗

k
γk

]
+

[
v1,k
v2,k

]
(6.38)

X∗
k =

[
1 0

] [X∗
k

γk

]
+ wk (6.39)

where Dk is the dilution rate at the time instant tk (Dk =
Fink

Vk
), assumed to be piece-

wise constant. vk and wk are respectively the process and measurement noises, as-
sumed to be centered Gaussian white noises with covariance matrices Qconst and
Rconst, respectively. The covariance matrix of the estimation error on the state vec-
tor [Xk γk]

T is denoted Pconst.

6.4.2 Ramp evolution of γ

Considering a ramp evolution of γ, Equation (6.37) becomes:{
Ẋ∗ = γ − DX∗

Γ = γ̈ = 0 (6.40)

As in the previous case, the model is discretized using Euler scheme and additive
noises are considered:X∗

k+1
γk+1
Γk+1

 =

−DkTs + 1 Ts 0
0 1 Ts
0 0 1

X∗
k

γk
Γk

+

v1,k
v2,k
v3,k

 (6.41)

X∗
k =

[
1 0 0

] X∗
k

γk
Γk

+ wk (6.42)

The covariance matrices of vk and wk, as well as the error on the state vector
[Xk γk Γk]

T are denoted QLin, RLin, and PLin respectively.

6.4.3 Kalman filtering

After modeling the dynamics of γ, a discrete Kalman filter (Welch and Bishop,
1995) can be applied to estimate the evolution of X∗ and γ . The updated control
structure is summarized in Figure 6.3.
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Xre f
PI Controller

ε Linearizing lawû = F̂ u = Fin X

Kalman Filter

γ̂ , X̂

−

FIGURE 6.3: GMC combined with the Kalman filter

The updated control law, after including the estimated parameter γ̂ becomes:

Fin =
γ̂ − F̂

X + ¯k11 Sin
V (6.43)

The performances of both exogenous models will be compared in the next sec-
tion.

6.5 Numerical simulations

This section highlights the control scheme performance using numerical simula-
tions, based on the mechanistic model presented in chapter 2. The initial condi-
tions and the different control and estimation parameters are given in Table 6.3.

TABLE 6.3: Control and estimation parameters

Initial conditions


X0
S0
A0
V0

 =


1.42 gL−1

0.5 gL−1

0.5 gL−1

3.15 L



Ts = 0.05 h

Control parameters G1= 6, G2= 9, kω = 0.2
ξ = 1, tr = 1 h

ω0 = 3
tr
= 3 rad/h

Reference characteristics Finre f =
µset

kXS

V0X0eµsett

Sin
µset = 0.18 h−1, kXS = 0.2

Estimator parameters PLin = diag([0.1 1 1])
QLin = diag([0.01 0.1 0.1])

PConst = diag([0.1 1])
QConst = diag([0.01 0.1])

RConst = RLin = 0.1
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6.5.1 Parameter estimation

First, the Kalman filter is tested with both the constant and ramp exogenous mod-
els for γ. Figure 6.4 shows the evolution of the variable γ constructed with the
computation of OTR and CTR, and its estimate using both the constant and ramp
exogenous models. The estimator convergence is achieved in 20 mn after a tran-
sient phase. Both exogenous models yield good performance of the Kalman filter.
However, the ramp model presents a better performance regarding the initializa-
tion error as shown in Table 6.4. In the following (and in the experiments), the
ramp model is applied to estimate the kinetic parameter γ.
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FIGURE 6.4: γ̂ estimation based on biomass measurement using both
constant and ramp exogenous models

TABLE 6.4: Root Mean Square error (RMSE) comparison between the
constant and ramp exogenous models

Model Constant Ramp
RMSE (gL−1h−1) 0.0139 0.0030

6.5.2 GMC performance

Next, the control strategy is tested assuming that the variables are directly mea-
surable (no parameter adaptation). Figures 6.5 to 6.7 show the simulation results
of the GMC strategy based on the nominal and reduced models. The initial con-
ditions and control parameters are the same in both scenarios, and all the state
variables are assumed to be measurable. In both cases, the biomass is regulated
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and the exponential reference trajectory is tracked after 0.8 h, the convergence time
is identical for the two models as can be seen in Figure 6.6. The offset due to ini-
tialization and model mismatch is forced to zero by the integral term in the GMC
control formulation.

However, in the case of the controller based on the full-order model, simulation
shows that the feed-rate reaches unrealistic high values, as well as the substrate
concentration which gets close to Sin. Indeed, as established in the previous sec-
tions, for every set biomass value Xset, two possible substrate concentrations can
be obtained from the model, and only one corresponds to realistic growth condi-
tions.

Conversely, in the case of the control law derived from the reduced model for-
mulation, the system converges to the desired trajectory corresponding to low
substrate concentration. The substrate and the acetate concentrations are in the
expected practical range, and the calculated flow rate is more realistic.

While the full-order system may indeed converge to both substrate solutions,
the reduced model, established under the assumption of low dilution rates, i.e.
Dξ f = 0 and therefore Fin will always converge to the expected realistic trajectory.
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FIGURE 6.5: State variable evolutions with the full-order model
(Right) and the reduced model (Left)
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6.5.3 Robustness of the control scheme

The GMC controller and the Kalman filter are now combined. To test further the
robustness of the proposed controller, a sequence of Monte Carlo simulations is
achieved, with 15% relative uncertainty on the plant parameters following a nor-
mal distribution, with the same control setting as the previous simulations. 500
Monte Carlo (MC) simulations were performed, and the histogram of the parame-
ter k̄11 during the MC runs is shown in Figure 6.8. The biomass, substrate, acetate,
and flow rate time evolutions are presented in Figure 6.9.

In all the runs, the corresponding reference substrate concentration Sset is
reached, and the acetate concentration is equal to zero at the end of the culture,
ending in respiratory mode. However, parameter variations imply a distribution
of the final biomass concentration. Nevertheless, the goal of reaching high biomass
concentrations while keeping the culture in good operating conditions is achieved
in all experiments.
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FIGURE 6.9: State variables and feed-rate evolution during 500 Monte
Carlo runs
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TABLE 6.5: Root mean square tracking errors for different values of
k̄11

Deviation Value min(eX) mean(eX) max(eX)
-30% -0.1759 0.1444 0.0994 0.1591
-20% -0.201 0.1456 0.1148 0.1661
-10% -0.2261 0.1463 0.1337 0.1569

nominal -0.2512 0.1481 0.1365 0.1636
+10% -0.2764 0.1515 0.1381 0.1658
+20% -0.3015 0.1533 0.139 0.1804
+30% -0.3266 0.1575 0.144 0.2179
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FIGURE 6.10: mean root mean square tracking errors for different
values of k̄11

Comparably to the set-point change illustrated in Figure 6.12, the same simula-
tion is achieved with a trajectory change from µset= 0.18 h−1 to µset= 0.22 h−1 at t=
3 h, before returning to µset = 0.18 h−1 at t= 6 h. Obviously, the controller is able
to handle all of these types of disturbances, providing a fast and robust behavior.
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FIGURE 6.11: Closed loop response to a disturbance on the biomass
signal at t = 5 h
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FIGURE 6.12: Closed-loop response to a set-point change µset= 0.18
h−1 and µset= 0.22 h−1

6.5.4 Comparison with classical control strategies

In order to compare the performance of the proposed GMC strategy with other
regular control schemes, a simulation is performed with a GMC controller, a first
order linearizing controller (FOC) (Bastin and Dochain, 1990; Rocha, 2003) and a
PID controller. A reference profile is imposed with µset = 0.18 h−1, and the process
parameter are considerer to have a 15 % variation around their nominal values.
The first order linearizing controller has the same structure as the GMC but with-
out the integral term as in:

F̂ = G1
(
Xre f − X

)
(6.44)
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The PID controller has the following transfer function:

C(s) = Kp + Ki
1
s
+ Kd

s
1 + Tf s

(6.45)

The PID parameters are chosen to have an overall dynamic behaviour close to
the one obtained by the GMC, the parameters values are: Kp = 0.07 L2g−1h−1,
Ki = 0.01 L2g−1h−2, Kd = 0.01 L2g−1, Tf = 0.5 h. The first order controller gain G1
is chosen equal to the GMC proportional gain.

It is noteworthy to point out that in the case of the PID controller, a metabolic
switch from the respirative to the respiro-fermentative mode occurred at t=13 h,
leading to acetate formation due to substrate excess (S > Scrit), and thus the con-
trol output (feed-rate) strayed from its initial exponential curve.
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controller (FOC) and a PID controller

6.6 Experimental results

Two fed-batch experiments were performed to challenge the controller under real
experimental conditions. The control and estimation parameters are given in Ta-
ble 7.4. The control parameters G1 and G2 were tuned in simulation, the chosen
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response time tr is equal to 1 h (ω0 = 3rad/h), and the damping ratio is fixed at
ξ = 1. As far as the parameter γ estimation, the ramp model was used during the
experiments.

Biomass, glucose, acetate concentrations, as well as the feed flow rate are
shown in Figures 6.14 and 6.16. Operating conditions are also shown in Fig-
ures 6.15 and 6.17.

TABLE 6.6: Control and estimation parameters used in the experi-
ments

Sampling time Ts = 0.05 h

GMC parameters G1= 6, G2= 9
ξ = 1, tr = 1 h, ω0 = 3 rad/h

Reference Finre f =
µset

kXS

V0X0eµsett

Sin
µset = 0.18 h −1, kXS = 0.22

Estimator covariance matrices PLin = diag([0.1 1 1])
QLin = diag([0.01 0.1 0.1])

RLin = 0.1

During the fermentations, the initial biomass concentration ranged from 0.1-
0.3 gL−1 and reached 1.5-1.7 gL−1 by the end of the batch phase, characterized by
glucose depletion. The on-line flag for the end of the batch phase is the sudden
increase of the pH, and consequently the decrease of base addition, as can be seen
in Figures 6.15 and 6.17. The fed-batch phase starts around 6-8 h of culture time,
and the control algorithm is launched. During this period, the RPM increases due
to the important glucose oxidation inducing an increasing cell demand for oxygen.
Base is added to compensate the pH decrease.
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The imposed reference trajectory is µset = 0.18 h −1 and the algorithm is
launched with an initial biomass concentration lower than the measured one to
avoid excessive feeding at the start of the fed-batch. In Figures 6.14 and 6.16, the
biomass maintains an exponential growth close to the reference trajectory show-
ing that the regulation is efficient. The glucose concentration remains close to zero
and almost constant during the fed-batch phase of both experiments, confirming
the fast dynamics assumption presented in the model reduction section (Ṡ = 0).

The acetate concentration remains under 2 gL−1 during both experiments.
The evolution indicates a metabolic switch between respirative and respiro-
fermentative modes, as can be seen in Figure 6.14 where the acetate concentration
increases from 0.5 to 1.7 gL−1 due to overflow, and when the glucose is nearly
depleted at t=4h, the acetate concentration starts to decrease, i.e the culture is in
respirative mode. This behavior is reproduced during experiment 2 (Figure 6.16).

The Generic Model Controller performance, in terms of robustness, is quite sat-
isfactory. The controller is able to maintain the biomass tracking error close to zero
in both experiments despite the model mismatch resulting from modeling uncer-
tainties and the use of basic minimal growth media (M9). The controller manages
to adapt to the variations in the biomass signal by acting on the feed flow rate. We
can see in experiment 1 (Figure 6.14) that the flow rate follows an exponential rate
but is, however heavily distorted, due to the noisy biomass measurements. We
can see in Figure 6.18 that measurement noise indeed affects γ estimation and, in
turn, the calculated controller input. In the following experiments, a low pass filter
is applied to the turbidimetric probe to reduce the measurement noise caused by
airflow injection, leading to smoother profiles.

6.7 Conclusion

In this chapter, we presented a control strategy to regulate the biomass concen-
tration in fed-batch E. coli BL21 (DE3) cultures. The considered control strategy is
the Generic Model Control, based on input-output linearization of the nonlinear
output equation and a proportional-integral control law.



6.7. Conclusion 111

Model reduction is applied to the mechanistic model presented in chapter 2, in
order to obtain a control law which is independent of the kinetic terms (specific
growth rates), and to avoid high feeding rates. A parameter estimation is coupled
with the controller to predict the unmeasured kinetic terms in the control law, and
adapt to model uncertainties and unpredicted dynamics.

Numerical simulations are carried out to test and tune the control and esti-
mation algorithms. Results show that the accuracy and robustness of the pro-
posed control strategy are quite satisfactory. The adaptation law was able to recon-
struct the unmeasured dynamics, however, the closed-loop system is vulnerable
to model mismatch and strong disturbances. A robust control design is required
to take into account the effect of parametric uncertainties.

Fed-batch experiments of a BL21(DE3) E. coli strain are achieved with a lab-
scale bioreactor and results show that the biomass concentration profile correctly
tracks the given reference, and the controller manages to keep the culture in suit-
able growth conditions.

The experiments on the real lab-scale process showed that the combination of
the Generic Model Control and the parameter adaptation is able to achieve the
control objectives under real-time conditions. The biomass trajectory tracking is
performed adequately despite the presence of disturbances and model mismatch.

The combined GMC-Kalman strategy has several interesting features. First,
the development and design cost are fairly minimal, making its implementation
on complex or old experimental setups simple and effective. The integration of
the control scheme on an existing process does not require heavy modifications
of the hardware and software configurations. In the present setup, only on-line
biomass measurements are used, but the availability of a gas analyzer could pro-
vide missing information on OTR and CTR leading to a simplification of the con-
trol law. The proposed strategy can also be used to reproduce “golden batches”
while adapting to disturbances due to the change in culture conditions.

Another advantage is the fact that the control law is calculated through simple
algebraic equations, and doesn’t require real-time solving of complex nonlinear
differential equations. This feature lowers the computation complexity of the con-
trol scheme, and makes it easily integrable in most monitoring hardware.

The availability of the biomass measurements makes the control scheme very
practical. The estimation of the state variables is not required since the measured
variable is the controlled variable, and the parameter estimation is performed us-
ing a linear Kalman filter.

Finally, the addition of on-line kinetic parameter adaptation strengthens the
robustness of the closed-loop system towards unpredictable dynamics.

However, despite its interesting features, the control strategy has some lim-
itations concerning the metabolic performance. The controller aims at regulat-
ing the biomass concentration with a defined growth rate lower than the critical
one to avoid overflow metabolism. According to the bottleneck theory, this sub-
optimal targeted growth rate can correspond to either the respirative or respiro-
fermentative regimes. However, the observed behavior is that the cells operate
mainly in respirative regime.
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While the acetate accumulation is avoided by operating in this mode, devia-
tions from the reference growth rate (due to strong model mismatch, parameter
variation due to oxygenation conditions, or strong disturbances on the biomass
measurements) can lead to a drop in the biomass production yield and biomass
productivity compared to the expected theoretical values. Furthermore, this devi-
ation can also cause an accumulation of the acetate if the culture switches to the
respiro-fermentative mode without any informative on-line indication for the user
on the biomass signal.

A practical solution to this problem is to regulate the acetate concentration at
a low value, as it is directly linked to the growth rate. This approach requires
robust state estimation, raising the complexity of the control strategy, but on the
other hand improving the process productivity. The next chapter presents a robust
GMC control strategy to regulate the acetate concentration at a defined low value.
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7.1 Introduction

Acetate accumulation in fed-batch Escherichia coli cultivations affects the biopro-
cess efficiency and the biomass productivity (Han et al., 1992; Luli and Strohl, 1990;
Van De Walle and Shiloach, 1998). Acetate presence in high concentrations causes
the inhibition of the cell respiratory capacity, leading to the decrease of biomass
production yield and consequently the decrease of the recombinant protein pro-
duction (Riesenberg et al., 1991; Rothen et al., 1998).

Operating the process with a sufficiently low feed rate is a straightforward so-
lution to avoid acetate accumulation. However, it does not allow reaching the full
potential of the bioprocess since it leads to low productivity and high cultivation
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time. It is therefore required to determine a closed-loop feeding strategy that max-
imizes biomass productivity while avoiding overflow metabolism (Srinivasan et
al., 2001).

Several optimization schemes and process control architectures have been de-
veloped to reduce or avoid overflow metabolism (Dewasme et al., 2011a,b; Gon-
zalez et al., 2016; Hulhoven et al., 2006b; Jana and Deb, 2005; Rocha, 2003; Santos
et al., 2012a; Valentinotti et al., 2003).

Two main control approaches can be categorized. The first approach, presented
in the previous chapter, consists of regulating the specific biomass growth rate
(Abadli et al., 2020; Jenzsch et al., 2006b) and imposing a reference biomass evo-
lution profile. This type of control is made possible by the availability of reliable
on-line biomass probes which allows convenient real-time implementation. How-
ever, the definition of a biomass reference profile is not straightforward as it relies
on prior process knowledge (i.e., a growth model based on past experimental ob-
servations), and in practice, a suboptimal solution is often selected by targeting a
reference slightly lower than the maximal growth rate, in order to ensure sufficient
margin of security.

As seen in the previous chapter, limiting the specific growth rate presents some
practical and metabolic limitations since its maximal level depends on the cells’ ox-
idative capacity, which is by essence, uncertain. Therefore, targeting a growth rate
close to its maximal value could lead to several uncontrolled metabolic switches
provoking latencies. An example can be found in (Kleman and Strohl, 1994) where
the glucose and oxygen consumption rates and CO2 evolution rate suddenly and
reproducibly decreased, causing a break of the metabolism for a period of 40 min
and a drop in the biomass productivity.

The second approach consists of regulating either the substrate or the by-
product concentration at specific levels (Dewasme et al., 2011a,b; Santos et al.,
2012a). The substrate concentration should be close to a threshold corresponding
to the critical oxidative capacity, while the by-production concentration should be
close to zero. This approach was considered for several biological processes char-
acterized with overflow metabolism such as Saccharomyces cerevisiae (Picó et al.,
2009). The main challenge in E. coli fed-batch cultures is the difficulty of on-line
implementation due to the requirement of accurate measurements of low-level
concentrations of acetate and/or glucose.

This chapter proposes a control strategy combining the Generic Model Control
with a software sensor to monitor and regulate the acetate concentration on-line.
The approach is tested and validated through experimental runs on a lab-scale
bioreactor.

An experimental implementation of linearizing control to fed-batch cultures of
Escherichia coli cultures is published in (Rocha, 2003), where the acetate concentra-
tion is regulated to a pre-defined set-point. However, the control strategy relies
on accurate knowledge of the model parameters, which is a significant drawback
since a bioprocess model is always uncertain. Parameter adaptation strategies are
usually applied to compensate the uncertainty in the kinetic terms of the process
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model. However, stability is not guaranteed in the presence of unmodeled dynam-
ics and high noise levels, this is why we propose a robust control design procedure,
which will alleviate this difficulty.

Moreover, the control loop developed in (Rocha, 2003) is based on a flow in-
jection analysis (FIA) device, whose market distribution has been disrupted, and
no other similar device has been (re)developed in the meantime. The use of state
estimation, or software sensors, seems therefore the most appropriate solution to
avoid the burden of complex, unreliable sensing techniques. The results reported
in (Rocha, 2003) show that exponential growth could not be sustained in the ex-
perimental studies, which might be an indication of the lack of accuracy of the
FIA device. In this study, we propose an Unscented Kalman Filter (UKF) for the
on-line reconstruction of the acetate concentration.

In this chapter, a robust version of the Generic Model Control (GMC) strategy is
developed to control the acetate concentration to a low pre-defined value. LMIs
are considered in the control synthesis to derive the GMC control gains. The con-
trol design includes performance requirements using the regional pole placement
technique. The approach ensures both the robust stability of the process in the
presence of model uncertainties and process and measurement noise, and the de-
sired transient performance of the closed-loop system.

Experimental implementation of the proposed strategy on a lab-scale reactor
is performed to validate the control and estimation performance. Finally, a com-
parative discussion with the growth regulation strategy developed in chapter 6 is
presented at the end of this chapter.

7.2 GMC control of the acetate concentration

7.2.1 Control objective

As described in previous chapters, the goal behind the control strategies is to drive
the culture near the optimal operating conditions to maximize the biomass pro-
ductivity. These conditions lie at the boundary of the respiro-fermentative and
respirative modes (Dewasme et al., 2011a; Rocha, 2003), where all the available
substrate is assumed to be allocated for biomass production, and the acetate is
neither produced nor consumed.

Maintaining the culture at the edge between the respirative and respiro-
fermentative modes requires controlling the substrate concentration to the critical
value Scrit. An efficient on-line substrate measurement around this value is re-
quired, but the concentration level is below the resolution of currently available
glucose probes (Dewasme et al., 2011a).

In the previous chapter, we proposed a solution to avoid acetate accumulation
by regulating the biomass growth rate at a defined value, chosen slightly lower
than the maximal growth rate. This choice was motivated by the availability of
reliable biomass measurements, and the lack of on-line substrate and acetate mea-
surements at low levels.
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In this chapter, we propose another solution to avoid overflow metabolism by
regulating the acetate concentration around a low value Are f . This value should
be chosen as close to zero as possible in order to maintain the process near the
optimal metabolic edge. On the other hand, a safety margin should be taken to
avoid metabolic switches between the operating regime and the accuracy of the
estimation procedure (around 0.1 g/L) (Dewasme et al., 2011a).

It is reported in (Pinhal et al., 2019) that industrially relevant inhibitory levels of
acetate concentration are on the order of 100 mM (6 g/L). The authors studied the
effect of acetate presence in the culture medium on E. coli metabolism and showed
that a concentration of 16.67 mM (1 g/L) corresponds to less than 20% drop in the
growth rate compared to its maximal value.

Based on these elements, the control objective will be the tracking of a defined
low acetate concentration reference Are f chosen between 0.3-2 g/L.

7.2.2 Control design

The GMC paradigm presented in the previous chapter is applied to regulate the
acetate concentration in fed-batch E. coli cultures. The control structure is illus-
trated in Figure 7.1. Considering acetate concentration as the controlled output,
and assuming its availability for measurement (y = A).

Are f
GMC

e Fin A

[X, S, A, V]

−

FIGURE 7.1: Generic model control applied to fed-batch E. coli cul-
tures to regulate the acetate concentration

We recall the E. coli model equations presented in chapter 2:

Ẋ = (kX1µ1 + kX2µ2 + kX3µ3)X − D X (7.1a)

Ṡ = −(µ1 + µ2)X − D (S − Sin) (7.1b)

Ȧ = (kA2µ2 − µ3)X − D A (7.1c)

V̇ = Fin (7.1d)

As the theoretical value of Scrit is very small (below 0.1 g/L) and assuming a
quasi-steady state of S (i.e. no accumulation of glucose in the neighborhood of
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the optimal operating conditions), the small quantity of substrate VS is almost
instantaneously consumed by the cells ( d(VS)

dt ≈ 0 and S ≈ 0), and Equation (7.1b)
yields:

µ2X = −µ1X + DSin (7.2)

where µ1 and µ2 are nonlinear functions of S, A and O. Replacing µ2X by Equa-
tion (7.2), the mass balance equation of A (Equation (7.1c)) can be expressed as:

Ȧ = −kA2µ1X − µ3X − u (A − kA2Sin) (7.3)

where u = D = Fin
V is the control input. Applying the GMC scheme introduced in

chapter 6 yields:

Ȧ = û = G1(Are f − A) + G2

∫ t

0
(Are f − A)∂τ (7.4)

Equating (7.3) and (7.4), the following control law is obtained:

Fin = V
û + (kA2µ1 + µ3) X

kA2Sin − A
(7.5)

û = G1(Are f − A) + G2

∫ t

0
(Are f − A)∂τ (7.6)

where (kA2µ1 + µ3) is an assumed uncertain kinetic term. The next section there-
fore explores a robust control design in order to compensate this uncertainty.

7.3 Robust control design

The linearizing control law obtained in the previous section can be written in the
following form:

Fin = V
û + θX

kA2Sin − A

û = G1(Are f − A) + G2

∫ t

0
(Are f − A)∂τ

(7.7)

where θ is the kinetic term given by:

θ = kA2µ1 + µ3 (7.8)
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Structural and parametric uncertainties as well as estimation errors can be lumped
into a global parametric error:

δ = θ̄ − θ (7.9)

where δ is a nonlinear function of (S, A, O) representing possible inexact cancel-
lations of nonlinear terms due to model uncertainties, and θ̄ represents the hypo-
thetical exact (unknown) value. Rewriting the control law in Equation (7.7) using
the new expression of the kinetic term from Equation (7.9), we obtain:

Fin = V
û + θ̄X − δX
kA2Sin − A

(7.10)

which corresponds to the perturbed reference system:

Ȧ = û − δX (7.11)

Following a similar approach to the one developed in (Dewasme et al., 2011a), the
time-varying parameter δ is assumed bounded and belonging to the set ∆ defined
by:

∆ := {δ : δ ≤ δ ≤ δ̄} (7.12)

with δ and δ̄ respectively representing the minimal and maximal values of the
assumed bounded polytopic set.

The control parameters G1 and G2 are designed to ensure some robustness and
tracking performance to the overall closed-loop system. To this end, the acetate
tracking error (Ã1 = Are f − A) dynamics can be modeled by the following aug-
mented system, illustrated in Figure 7.2:

˙̃A1 =
d
dt
(Are f − A) = −û + δX

˙̃A2 = Are f − A = Ã1

(7.13)

Considering the state vector x = Ã =
[
Ã1 Ã2

]T, the performance output e =

Ã1 = (Are f − A) and the disturbance w = [X Are f ]
T, the control problem can be

formulated as a state feedback controller (û = Kx,K = [G1 G2]) applied to the
augmented system M:

M :

{
ẋ = AMx + Bww + Buû
e = Cex + Deww + Deuû

(7.14)
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M
w

û

e

x

K

FIGURE 7.2: Robust control scheme

The state-space matrices are given by:

AM =

[
0 0
1 0

]
Bw =

[
δ 0
0 0

]
Bu =

[
−1
0

]
Ce = [1 0] Dew = [0 0] Deu = 0

(7.15)

and the representation of the closed-loop system is therefore given by:[
ẋ
e

]
=

[
A f B f
C f D f

] [
x
w

]
=

[
AM + BuK Bw
Ce + DeuK Dew

] [
x
w

]
(7.16)

7.3.1 Robustness constraints

The control design problem consists in determining the controller parame-
ters G1 and G2 so as to limit the infinity norm of the closed-loop transfer
function within a predefined performance index (Chilali and Gahinet, 1996),
(
∥∥∥T(s) = D f + C f

(
sIn − A f

)−1 B f

∥∥∥
∞
< γ∞), where s is the Laplace variable. First,

the following assumptions on the plant parameters are considered:

Assumption 1. The pair (AM, Bu) and (AM, Ce) are respectively stabilizable and de-
tectable

Assumption 2. Deu = One,nu

Under the previous assumptions, the Bounded Real Lemma (Chilali and
Gahinet, 1996) for continuous-time systems gives an equivalent LMI formula-
tion of the control problem:

Lemma 1. The H∞ norm of the continuous-time transfer function T(s) associated to the
closed-loop system (7.16) is strictly smaller than γ∞ if and only if there exists a symmetric
positive definite matrix Q∞ verifying:

Q∞ > 0 A f Q∞ + Q∞ AT
f B f Q∞CT

f
BT

f −γ∞Inw DT
f

C f Q∞ D f −γ∞Ine

 < 0
(7.17)
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According to the bounded real lemma, the closed-loop system (7.16) is stable if
and only if there exists: Q∞ = QT

∞ > 0 verifying: AQ∞ + BuKQ∞ + Q∞ AT + Q∞KTBT
u Bw Q∞CT

e + Q∞KTDT
eu

BT
w −γ∞Inw DT

ew
CeQ∞ + DeuKQ∞ Dew −γ∞Ine

 < 0

(7.18)

Considering L = KQ∞, the following LMI is obtained: AQ∞ + BuL + Q∞ AT + LTBT
u Bw Q∞CT

e + LTDT
eu

BT
w −γ∞Inw DT

ew
CeQ∞ + DeuL Dew −γ∞Ine

 < 0 (7.19)

and the controller given by K = LQ−1
∞ ensures a level of robustness w.r.t the

bounded uncertainty δ. Next, the desired performance constraints are defined and
added to the robustness condition (7.19).

7.3.2 Performance constraints

Besides ensuring the robustness of the closed-loop, it is desirable to achieve some
performance in terms of the transient response (e.g. damping, response time, etc.).
In other words, constraints are added to the location of closed-loop poles of system
(7.16).

For a second-order system with poles λ = −ζωn ± jωd, the step response is
characterized by the undamped natural frequency ωn = |λ|, the damping ratio
ζ, and the damped natural frequency ωd. To ensure a desired transient response,
specific bounds are imposed on these quantities, thus constraining the closed-loop
poles λ in a prescribed region of the complex plane. Pole placement constraints can
be expressed using LMI regions, which are known to have interesting geometric
properties for control purposes (convexity, symmetry, ...) (Chilali and Gahinet,
1996). A suitable region satisfying this criterion is the intersection of the half-plane
s < −ρ < 0, the disk of radius r and the conic sector defined by an angle Θ. The
corresponding region S(ρ, r, Θ) (Figure 7.3) is defined as follows:

S(ρ, r, Θ) = {a < −ρ < 0, |s = a + jb| < r, a tan(Θ) < −|b|} (7.20)

In this way, it is possible to set a minimum decay rate ρ, a minimum damp-
ing ratio ζ = cos(Θ), and a maximum damped natural frequency ωd = rsin(Θ)
(Wood, 1972).

The poles of the closed-loop system (7.16) are contained in the region S(ρ, r, Θ),
if there exists a symmetric positive definite matrix Q = QT verifying (Chilali and
Gahinet, 1996):
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r

Θ

ρ

S

FIGURE 7.3: Representation of the region S(ρ, r, Θ)

A f Q + QAT
f + 2ρQ < 0[

−rQ A f Q
QAT

f −rQ

]
< 0 sin Θ

(
A f Q + QAT

f

)
cos Θ

(
A f Q − QAT

f

)
cos Θ

(
QAT

f − A f Q
)

sin Θ
(

A f Q + QAT
f

)  < 0

(7.21)

Our control design problem consists then in finding a state-feedback gain K
that:

• guarantees the H∞ performance ‖T(s)‖∞ < γ∞.

• places the closed-loop poles in the LMI region S(ρ, r, Θ) defined by Equa-
tion (7.20).

The first criterion (robustness) is ensured by solving Equation (7.19), and com-
puting the matrix Q∞. On the other hand, a sufficient condition to ensure the
performance constraints given by Equation (7.21) is to take Q = Q∞ (Chilali and
Gahinet, 1996), yielding:

A f Q∞ + Q∞ AT
f + 2ρQ∞ < 0[

−rQ∞ A f Q∞
Q∞ AT

f −rQ∞

]
< 0 sin Θ

(
A f Q∞ + Q∞ AT

f

)
cos Θ

(
A f Q∞ − Q∞ AT

f

)
cos Θ

(
Q∞ AT

f − A f Q∞

)
sin Θ

(
A f Q∞ + Q∞ AT

f

)  < 0

(7.22)



122 Chapter 7. Robust Generic Model Control of the acetate concentration

The robust GMC control design procedure based on LMIs is summarized in
the following steps:

• Step1: Select a suitable range for the uncertain variable δ.

• Step2: Determine the values of ρ, r, Θ in order to meet a suitable transient
performance.

• Step3: Solve (off-line) the bounded real lemma (Equation (7.19)) and the
performance LMI (Equation (7.22)) simultaneously, to compute the gain
K = [G1 G2], and obtain the robust GMC controller parameters G1 and G2.

7.4 Numerical simulations

In this section, a set of numerical simulations is achieved to validate the perfor-
mance and robustness of the GMC scheme before the experimental validation.
The cultures are achieved in a 5-L bioreactor and the kinetic and stoichiometric
parameters are those estimated in a previous work (Retamal et al., 2018). The
GMC regulation is first tested assuming the acetate concentration is available for
measurement, and then coupled to the UKF estimator presented in chapter 3.

The UKF tuning parameters (α, β, κ), the process and measurement noise co-
variance matrices Q and R, and the initial state covariance matrix P0 are given in
Table 7.1.

TABLE 7.1: UKF covariance matrices, sigma point tuning parameters,
and initial conditions

Parameter Value Unit

σX 0.01 g/L
σS 0.1 g/L
σA 0.1 g/L
σV 0.001 g/L
rX 0.01 g/L
P0 10−4 × I4 g/L

[α, β, κ] [1, 2, 0] -
X0 0.1 g/L
S0 5 g/L
A0 0.1 g/L
V0 3.5 L
Sin 500 g/L

First, the performance of the robust GMC design based on the LMI approach
with the regional pole assignment is tested. The control objective is to regulate
the acetate set-point Are f , chosen sufficiently low to approach the neighborhood
of the optimal trajectory but also sufficiently high to stay within the limit of the
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observation sensitivity (0.1 g/L) and maintain the culture in respiro-fermentative
mode. The acetate concentration is assumed available on-line for feedback, with
the consideration of measurement noise.

The first step in our design approach is to define upper and lower bounds for
the parametric uncertainty δ. The expression of the kinetic parameter θ is given
by:

θ = kA2µ1 + µ3 (7.23)

The expression of the uncertain term θ, and the kinetic terms µ1 and µ3 contain the
parameters kA2, Ks, KiA, kOS, KA. Additionally the GMC control law contains the
parameter kA2. These parameters can deviate from their nominal values, thereby
deviations of maximum 15% are considered. In addition, the parametric sensitiv-
ity study presented in appendix D shows that the parameters qS max, qO max, kX2,
have an influence on the acetate concentration. Consequently, the range ∆ can be
defined by δ = 0 and δ̄ = 0.1.

Regarding the performance constraints, we desire to enforce a maximal settling
time Ts =

4
ζωn

= 4
ρ equal to 2 h, and to prevent fast controller dynamics.

To this end, we characterize the section S(ρ, r, θ) as the intersection of the half-
plane x < −ρ = − 4

Ts
with the disk of radius r = 4 centered at the origin, and the

conic section defined by Θ = π
2 rad.

In light of these constraints, the LMIs (Equations (7.19) and (7.22)) are solved
numerically using the solver SeDuMi (Sturm, 1999) and the following results are
obtained:

Q∞ =

[
0.143 −0.034
−0.034 0.015

]
KT =

[
G1 = 5.61
G2 = 9.55

]
(7.24)

corresponding to the following damping ratio and natural frequency:

ζ = 0.91 ωn = 3.09 rad/h (7.25)

satisfying the performance constraints regarding the settling time Ts = 4
ζωn

=

1.43 h. It can be seen in Figure 7.4 that the obtained poles are located in the chosen
region of the complex plane.
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FIGURE 7.4: Plot of the pole location (blue) and the imposed region
S (red)

Figures 7.5 and 7.6 show the closed-loop response of biomass, substrate, acetate
concentrations, and the corresponding feed flow-rate in 50 different runs, with
Are f = 0.5 g/L and kinetic parameter deviations. A white noise is added to the
acetate concentration measurement with zero mean and a standard deviation of
0.1 g/L. In all the runs, biomass follows a similar exponential growth in the first
hours, while the model errors show their effect in the final hours. Nevertheless, the
model uncertainties have a minor influence on the controller performance as can
be observed in the acetate evolution, where the set-point is regulated and robust
convergence is achieved by the controller. The noisy acetate signal has a mean
value of 0.49 g/L and the tracking error (Are f − A) has a RMSE of 0.0314 g/L
which is lower than the measurement noise amplitude (0.1 g/L). Note that the
maximal 2 h settling time condition is also satisfied.

FIGURE 7.5: Biomass and substrate concentrations in 50 runs with
kinetic parameter deviations (up to 15%) and a measurement noise
standard deviation of 0.1 g/L using the robust GMC control strategy.
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FIGURE 7.6: Acetate concentration and feed flow-rate in 50 runs with
kinetic parameter deviations (up to 15%) and a measurement noise
standard deviation of 0.1 g/L using the robust GMC control strategy.

Figure 7.7 illustrates an example of the kinetic parameter θ variation in the
first run, compared to the theoretical real value θ̄ in the presence of measurement
noise. The parametric uncertainties create a bias (δ) to the θ value. Nevertheless,
the robust design of the controller allows to compensate for this error.
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FIGURE 7.7: kinetic parameter θ evolution with random parameter
variations and measurement noise (std = 0.1 g/L)

The different biomass productivity levels in all runs are shown in Figure 7.8,
where the productivity remains higher than 90 % of the nominal value in 90% of
the runs, which is satisfactory from an operational point of view.
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FIGURE 7.8: Productivity levels of the 50 runs with random parame-
ter variations using the robust GMC strategy
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Ŝ

0 2 4 6 8 10
0

0.5

1

time (h)

ac
et

at
e

(g
/L

)

A
Â
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FIGURE 7.9: Coupled UKF-GMC with random parameter values
(±15% variation) and a white measurement noise (std =0.1 g/L)).

Finally, the UKF and robust GMC are coupled, and their overall performance
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assessed in a new set of numerical simulations. The UKF initial conditions are se-
lected randomly with a maximum deviation of 20% from the real values. Kinetic
parameter variations of ±15% of the nominal values and a white measurement
noise with a standard deviation of 0.1 g/L are considered. As shown in Figure 7.9,
the UKF behaves very well and converges in the first hours to the real state trajec-
tories. We can observe small estimation errors with peaks and troughs around the
real substrate value when the substrate (glucose) concentration reaches a critical
level of Scrit. Fortunately, this is not too detrimental for the controller which is still
able to track the acetate concentration reference set-point.

7.4.1 Comparison with the classical GMC

In order to test further the performance and robustness of the control approach, a
comparison is achieved with the classical GMC algorithm presented in (Lee and
Sullivan, 1988). The parameter tuning is performed by selecting a desired rise time
tr. In the presented simulations, the following parametrization for the classical
approach is chosen:

ξ = 1, tr = 2 h, G1 = 3, G2 = 2.25

The classical and the robust controllers are tested in the ideal model case (no
parameter variation), and in the case of a random variation in all model parame-
ters up to ±30% of their nominal value. We assume that the acetate concentration
is available for measurements, with additive centered white noise with a standard
deviation of 0.05 g/L. A series of 100 Monte Carlo (MC) simulations is performed
and the results are summarized in Table 7.2.

The results of one simulation are shown in Figure 7.10, where both approaches
perform similarly in the ideal model case. However, we can see that with increas-
ing levels of parameter variation, the robust GMC performs better in terms of ref-
erence tracking. The mean square errors (eA) and the mean acetate concentration
(A) summarized in Table 7.2 show that the robust tuning of the parameters allows
the controller to achieve the control objective accurately. We can also observe that
a ±30% variation is the breakpoint of both methods, with a slight advantage to the
robust GMC design. Note that the robust GMC design was performed assuming a
maximum of 15% variation of the plant parameters.



128 Chapter 7. Robust Generic Model Control of the acetate concentration

0 5 10 15
0.4

0.5

0.6

0.7

time (h)

a
ce
ta
te

(g
/
L
)

0% variation (ideal model)

Robust GMC
Classic GMC

0 5 10 15
0.4

0.5

0.6

0.7

time (h)

a
ce
ta
te

(g
/
L
)

10% variation

Robust GMC
Classic GMC

0 5 10 15
0.4

0.5

0.6

0.7

time (h)

a
ce
ta
te

(g
/
L
)

20% variation

Robust GMC
Classic

0 5 10 15
0

0.2

0.4

0.6

time (h)

a
ce
ta
te

(g
/
L
)

30% variation

Robust GMC
Classic GMC

FIGURE 7.10: Comparison between the classical and robust tuning of
the GMC strategy, with increasing levels of parameter variation.

TABLE 7.2: Results of 100 Monte Carlo simulations comparing the
classical and robust GMC strategies

A (Classic) A (Robust) eA (Classic) eA (Robust)
0% 0.4996 0.4996 0.0226 0.0192

10% 0.4968 0.4989 0.0293 0.0200
15% 0.5009 0.5001 0.0343 0.0207
20% 0.4992 0.4998 0.0456 0.0224
25% 0.4885 0.4974 0.0643 0.0261
30% 0.4744 0.4944 0.0843 0.0294
35% 0.4741 0.4913 0.0889 0.0418

7.5 Experimental results and discussion

Two control experiments were performed to test the tracking performance and ro-
bustness of the developed UKF-GMC strategy in a real-time environment. Each
experiment consisted of a batch phase followed by a fed-batch phase (control
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phase). The evolution of the measured biomass (on-line & off-line), glucose, ac-
etate concentrations (off-line), and their estimates, as well as the feed flow-rate
(controller output), are shown in Figures 7.11 and 7.13. The operating conditions
are also illustrated in Figures 7.12 and 7.14.

TABLE 7.3: Control & estimation parameters and initial conditions
used in the experiments

Experiment 1 Experiment 2
Sampling time Ts = 3 min Ts = 3 min

Acetate reference Are f = 0.5 g/L Are f = 0.7 g/L
Q diag[10−4, 10−2, 10−2, 10−8] g/L diag[10−4, 10−2, 10−2, 10−8] g/L
R 10−4 g/L 10−4 g/L
P0 10−4 × I4 g/L 10−4 × I4 g/L

[α, β, κ] [1, 2, 0] [1, 2, 0]
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tions, and the feed-rate
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FIGURE 7.12: Experiment 1: Time evolution of the pO2, acid and base
concentrations, pH and stirring
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FIGURE 7.14: Experiment 2: Time evolution of the pO2, acid and base
concentrations, pH and stirring

7.5.1 Culture evolution

The control parameters and acetate references for each experiment, as well as the
values for the measurement and process noise covariance matrices are given in
Table 7.4.

TABLE 7.4: Control & estimation parameters and initial conditions
used in the experiments

Experiment 1 Experiment 2
Ts 3 min 3 min

Are f 0.5 g/L 0.7 g/L
σX 0.01 g/L //
σS 0.1 g/L //
σA 0.1 g/L //
σV 0.001 g/L //
rX 0.01 g/L //
P0 10−4 × I4 g/L //

After reaching the desired operating conditions, the reactor is inoculated with
the seed culture, and the batch phase begins. As shown in Figures 7.11 and 7.13,
the initial biomass concentration in the reactor ranges from 0.1-0.2 g/L. During
this phase, the biomass follows an exponential growth and reaches up to 2 g/L.
Since glucose consumption leads to acetate production, the culture is in respiro-
fermentative mode. Note that the estimation algorithm is launched during the
batch phase.



132 Chapter 7. Robust Generic Model Control of the acetate concentration

The batch phase lasts for 4-5 h, and ends after the consumption of the glucose in
the medium. On-line indicators of the glucose depletion are the sudden decrease
of the stirring speed due to the decrease of cell demand for oxygen, the sudden
increase of the pH combined with the stagnation of injected base volume. .

Practically, the feeding (control) should be launched slightly before the com-
plete depletion of glucose, to prevent the interruption of cell growth, and avoid a
possible metabolic switch (acetate consumption) as small delays in reprising the
growth have been observed in previous experiments. These delays can affect the
control performance at the beginning of the fed-batch phase, leading to undesired
transitory behaviors. To this end, off-line glucose measurements are performed at
every sampling point (1 h), and the control algorithm is launched when the glu-
cose level is below 0.5 g/L.

In experiment 1 (Figure 7.12), the batch phase lasted for 4 h after the almost
complete consumption of the glucose in the medium. The fed-batch phase started
right after measurement of a low glucose concentration. The first on-line appeared
around 5 h, as the pH increase, stirring speed decrease, and base stagnation indi-
cate the consumption of acetate and the drop of the glucose concentration below
the critical level. This occurrence of the metabolic switch during the control phase
gives the controller the ability to adjust the feeding depending on the culture con-
ditions.

Similarly in experiment 2 (Figure 7.14), the batch phase lasted 5h due to the
lower initial biomass concentration, and higher initial acetate concentration. The
feeding started while the glucose was not completely consumed and the acetate
concentration was higher than the setpoint. A peak can be observed at 5 h indicat-
ing an adaptation of the feed by the controller to reduce the acetate and glucose
concentrations. The online flags of glucose depletion and metabolic switch can be
observed right after the start of the fed-batch phase.

The GMC controller is launched after setting up the acetate reference and the
control parameters. The feed solution is injected by the controller and the cells
resume their growth, resulting in an increase of the stirring speed due to the glu-
cose oxidation, and the decrease of pH due to CO2 emission which requires base
addition to maintain the pH around its set-point.

The fed-batch phase continues until reaching the saturation limit of the turbidi-
metric probe (around a biomass concentration of 8 g/L). The maximum attainable
cell density depends on the oxygenation limitation related to the bioreactor scale
as can be observed in several studies (Dewasme et al., 2010; Retamal et al., 2018;
Rocha, 2003). Therefore, the end of the fed-batch phase is forced by either an ex-
hausted feed medium, or the limiting oxygenation conditions.

7.5.2 Acetate and glucose estimation

As presented in the simulation section, the on-line biomass concentration mea-
surement provided by the turbidimetric probe, and the kinetic model with identi-
fied parameter values from (Retamal et al., 2018) are used to estimate the acetate
and glucose concentrations using the UKF. The estimation is launched during the
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batch phase after reaching a measured biomass concentration higher than 0.2 g/L
to ensure a good estimation accuracy.

The measurement noise affecting the biomass concentration signal is consid-
ered as a centered white noise with a standard deviation of 0.1 g/L. On the other
hand, the degree of confidence in the model regarding the substrate and acetate
concentration signals is lower compared to the biomass concentration.

The initialization of the estimated state vector remains a challenge. The
biomass and glucose concentrations can be measured every hour, and therefore
accurate initial conditions for these variables is possible. The acetate concentra-
tion on the other hand is measured after the end of the culture and therefore ini-
tialization errors are significantly higher for this variable. Nevertheless, the UKF
manages to correctly estimate the acetate concentration.

In both experiments, the UKF performance in the fed-batch phase is satisfac-
tory, despite the initialization errors and the model uncertainties. The glucose and
acetate estimations fit very well with the off-line measurements during the con-
trol period, and the convergence is achieved in less than 1 h. Table 7.5 shows the
estimation mean square error values for each estimated state (i.e., substrate and
acetate ) during the fed-batch phase of both experiments, which are on par with
than the measurement sensitivity (0.1 g/L).

TABLE 7.5: Experimental study - UKF estimation mean square errors
(in g/L)

eS(g/L) eA(g/L)
Experiment 1 0.0885 0.0679
Experiment 2 0.0381 0.1132

7.5.3 GMC control performance

The control objective, as explained in previous sections, is to regulate the acetate
concentration to a predefined set-point, and maintain the culture in the respiro-
fermentative mode close to the optimal limit. As can be seen in Figures 7.11
and 7.13, acetate accumulation is avoided in both cultures, and the concentration
is limited to less than (1 g/L) during the fed-batch phase.

In the first experiment (Figure 7.11), the estimated acetate concentration is reg-
ulated and converges to the desired reference, respecting the chosen settling time.
The second experiment (Figure 7.13) presents the same performance regarding the
GMC algorithm convergence, with a different set-point and a longer control time.

7.5.4 Discussion

The presented control method provides a practical approach to avoid overflow
metabolism in E. coli fed-batch cultures. However, it offers a suboptimal solution,
since regulating the substrate concentration at the critical level is impractical due
to the lack of accurate on-line measurements.
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In order to evaluate the efficiency of the proposed approach, a comparison is
performed in simulation with the growth rate regulation strategy presented in the
previous chapter. The growth rate is regulated to a set reference value µset, usually
chosen slightly below the maximal growth rate in order to avoid acetate accumula-
tion while maximizing the biomass productivity. This control objective is achieved
by tracking a predefined biomass trajectory corresponding to the chosen reference
growth rate (De Battista et al., 2012; Rocha et al., 2008).

For this purpose, we set the biomass regulation to track a defined growth rate
µset chosen at 90% of the theoretical maximal value (µmax = 0.26 L/h), correspond-
ing to the critical substrate concentration and the maximal oxidative capacity. On
the other hand, we set the acetate regulation to track a reference of 0.5 g/L. The ac-
etate concentration is assumed to be measured with additive white noise of a 0.05
g/L standard deviation. The comparison is achieved with the initial conditions
and control parameters presented in Table 7.6.

TABLE 7.6: Initial conditions and control parameters for the compar-
ison simulations

Initial conditions
X0 1 g/L
S0 0 g/L
A0 0.2 g/L
V0 3.5 L
GMC-X parameters
G1 6 -
G2 9 -
GMC-A parameters
G1 5.61 -
G2 9.55 -

First, we assume that the model parameters and maximal growth rate µmax are
perfectly known. Then, we introduce a fixed variation in the maximal oxidative
capacity qOmax which is directly linked to the maximal growth rate value.
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Ideal model case

0 5 10 15
0

10

20

time (h)

b
io
m
a
ss

(g
/
L
)

GMC-A
GMC-X

0 5 10 15
0

0.2

0.4

0.6

time (h)

g
lu
co
se

(g
/
L
)

GMC-A
GMC-X

0 5 10 15
0

0.2

0.4

0.6

0.8

1

time (h)

a
ce
ta
te

(g
/
L
)

GMC-A
GMC-X

0 5 10 15
0

5

10

15

20

·10−2

time (h)

F
in

(L
/
h
)

GMC-A
GMC-X

30% variation in qOmax

0 5 10 15
0

10

20

30

40

time (h)

b
io
m
a
ss

(g
/
L
)

GMC-A
GMC-X

0 5 10 15
0

0.5

1

time (h)

g
lu
co
se

(g
/
L
)

GMC-A
GMC-X

0 5 10 15
0

0.2

0.4

0.6

0.8

1

time (h)

a
ce
ta
te

(g
/
L
)

GMC-A
GMC-X

0 5 10 15
0

0.2

0.4

0.6

time (h)

F
in
(L
/
h
)

GMC-A
GMC-X

FIGURE 7.15: Comparison between the control approaches in the
ideal model case, and in the presence of parametric variation. Plot

of the state variables and the feed-rate.
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ideal model case, and in the presence of parametric variation. Plot

of the specific biomass growth rates.

TABLE 7.7: The effect of parameter variation on the control perfor-
mance

Variation in qOmax
µX

µmax
% (GMC-X)

µX

µmax
% (GMC-A) Scrit

0% 89% 81% 0.0375
10% 81% 85% 0.046
20% 75% 89% 0.0529
30% 70% 93% 0.0628
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Simulation results are shown in Figures 7.15 and 7.16. In the ideal model case
(no parameter variation), the biomass growth regulation (GMC-X) has a slightly
better overall performance. The reference growth rate is tracked accurately at 0.23
h−1 corresponding to 89% of its maximal value. On the other hand, regulating
the acetate concentration (GMC-A) at 0.5 L/h leads to a biomass growth rate of
0.21 h−1 corresponding to 81% of the maximal value as can be seen in Table 7.7.
This result shows that the presence of acetate in the medium reduces the biomass
growth rate, due to lower substrate consumption rate caused by the activation of
the acetate consumption pathways according to the bottleneck theory. However,
keeping the acetate at a low concentration reduces its inhibitory effect, and keeps
the culture close to the optimal conditions.

The introduction of 20% variation in qOmax leads to an increase of the critical
substrate concentration Scrit and consequently the maximal growth rate µmax. De-
spite the model mismatch, the biomass growth rate regulation presents a good
performance in tracking the reference rate. However, it corresponds to only 75%
of the new maximal value, and therefore the biomass productivity is also lower
than its optimal value compared to the nominal case. This is due to the increase in
the gap between the reference µset and new maximal growth rate µmax.

The acetate regulation on the other hand offers a more consistent performance,
and gives a better growth rate ratio (89%). Furthermore, the growth rate ratio is
higher with increasing variation in the maximal oxidative capacity as can be seen
in Table 7.7.

This result highlights a problem with targeting a specific growth rate as a con-
trol objective, as it requires accurate determination of the maximal value, and then
target a lower growth rate to avoid acetate accumulation. This is a difficult task
due to the uncertain nature of bioprocesses, as parameter variation depends on
several factors such as the variation in operating conditions between batches. If the
maximal growth rate is underestimated, the resulting suboptimal biomass produc-
tivity is lower than the desired one. If the maximal growth rate is overestimated,
a regulation at 90% of this value could lead to acetate accumulation and metabolic
switches, and thereby a growth inhibition.

On the other hand, regulating the acetate concentration and maintaining it at a
low value offers a better practical trade-off, since the accumulation is avoided, and
the obtained growth rate is consistent in the case of model mismatch. This is an in-
teresting result since the acetate regulation approach is robust towards the change
in operating conditions, and is not specific to the bacterial strain. The strategy
could be applied to a different strain while ensuring the same level of performance
without the need to estimate µmax accurately.

7.6 Conclusion

In this chapter, a robust Generic Model Control strategy is presented and applied
to drive fed-batch cultures of E. coli BL21 (DE3) near the optimal operating condi-
tions.
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The control objective of this proposed strategy is to regulate the acetate con-
centration at a defined low level. This approach has several advantages compared
to the growth rate regulation presented in the previous chapter.

Although it provides a suboptimal solution, maintaining the acetate concentra-
tion is a practical alternative to avoid overflow metabolism. The regulation of the
substrate at the critical level is impractical since accurate measurements at a low
level are not possible via the available sensors on the market.

Furthermore, targeting the optimal operating conditions and the critical sub-
strate concentration causes fluctuations and metabolic switches between the ox-
idative and oxido-fermentative regimes. Thereby, maintaining the acetate concen-
tration at a low level provides a safety margin and a practical solution to avoid cell
stress caused by the repetitive switches.

Due to the uncertain nature of the bioprocess model, a robust design procedure
using the LMI formalism is carried out, to compensate the model mismatch, dis-
turbances, and measurement noise. Performance constraints are also formulated
with LMIs to ensure desired properties of the closed-loop transient response.

Since the controlled variable (acetate) is not available for on-line measurement,
a state estimation algorithm is required and an Unscented Kalman Filter (UKF)
is implemented. The robust GMC controller and the state estimation by the UKF
were validated both through simulation runs and in real-time experimental con-
ditions.

Finally, fed-batch experiments with a lab-scale reactor were performed in order
to validate the efficiency of the coupled GMC-UKF strategy in driving the cultures
near the optimal operating conditions.

The results showed that the proposed control strategy is not restricted to the
studied strain since accurate determination of the maximal growth rate is not re-
quired. It is also adaptable to different control objectives such as substrate regula-
tion at high concentrations in order to promote the product formation.

An improvement of the proposed control scheme is tracking a successively de-
creasing set-point calculated by numerical on-line optimization based on the esti-
mation of the maximal growth rate. An experimental validation of this approach
in future works could improve the process productivity since it provides a good
trade-off between practicality and best achievable sub-optimality.

A performance comparison of the robust GMC with advanced control strate-
gies developed for the same objective would give an insight about the practical
efficiency of the proposed solution. To this end, a nonlinear model predictive con-
troller (NMPC) is presented and implemented to the studied process in the next
chapter. The NMPC has several interesting features like the explicit use of the
nonlinear model and the on-line optimization procedure.





139

Chapter 8

Nonlinear model predictive control of
the acetate concentration

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.2 Principles of Nonlinear Model Predictive Control . . . . . . . . 141

8.3 Nonlinear Model predictive control applied to E. coli cultures . 143

8.3.1 Determination of the reference feed-rate profile . . . . . . 144

8.3.2 Control design . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.4 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . 149

8.5 Experiment results and discussion . . . . . . . . . . . . . . . . . . 154

8.6 Comparative study . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.1 Introduction

As mentioned in previous chapters, several solutions to avoid growth inhibition
caused by overflow metabolism have been developed, ranging from genetic mod-
ifications of the strains to closed-loop control and optimization of the bioprocess.
The common objective behind the control strategies is to maintain the substrate
concentration at a critical threshold, corresponding to the maximal oxidation ca-
pacity (Jana and Deb, 2005). Various nonlinear control methods of processes ex-
hibiting overflow metabolism have been proposed in the literature (Abadli et al.,
2020; Benattia et al., 2015; Dewasme et al., 2011a,b; Gonzalez et al., 2016; Santos
et al., 2012a).

Among these studies, Nonlinear Model Predictive Control (NMPC) is often
considered following its several advantages and wide use in industrial applica-
tions (Forbes et al., 2015; Qin and Badgwell, 2000). NMPC is an advanced model-
based control strategy developed for nonlinear processes. It consists in solving an
optimization problem on-line under a set of defined constraints. NMPC can pre-
dict, using a nonlinear dynamic model of the process, the effect of control steps
on controlled variables over a finite horizon. A general formulation of the NMPC
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problem consists in minimizing the quadratic objective function over a finite mov-
ing horizon.

Various structures of the NMPC strategy have been developed throughout the
years for numerous control purposes (Findeisen et al., 2007). The difference be-
tween the NMPC schemes lies in the definition of the cost function and the con-
straints. An overview of the nonlinear model predictive methods can be found in
(Allgöwer and Zheng, 2012). Hereafter, the main NMPC approaches are briefly
presented.

Explicit NMPC (E-NMPC) is an offline NMPC variation based on the paramet-
ric programming technique, where the control law is pre-calculated offline (Bem-
porad et al., 2002). The E-NMPC does not require significant computational re-
sources and is suited for control problems for systems with fast dynamics. Other
structures focus on the stability of the closed-loop by approximating an infinite-
horizon optimization problem. The list includes Finite-horizon NMPC with ter-
minal equality constraint (Keerthi and Gilbert, 1988), Finite-horizon NMPC with
terminal inequality constraint (Morari and Lee, 1999; Scokaert et al., 1999), Finite-
horizon NMPC with terminal cost (Bitmead et al., 1990), and the Quasi-infinite
horizon NMPC (Chen and Allgöwer, 1998). Another variation is the Economic
NMPC (E-NMPC), where the objective function is an economically-oriented cost
function of the state variables and the control inputs (Diehl et al., 2010).

Robust MPC schemes are designed to account for a set of bounded uncertain-
ties and disturbances in the process model while satisfying the control objectives.
There are several approaches to robust NMPC: In Min-max MPC, the optimization
is performed with respect to all possible evolutions of the bounded model uncer-
tainty (Scokaert and Mayne, 1998). The variations of the uncertainty related to the
process model parameters is included in the cost function to be optimized.

Another robust NMPC approach is the Linear parameter varying NMPC (LVP),
which is based on the reformulation of the process nonlinear model with a linear
parameter-varying model (LPV), mostly using linear and bilinear matrix inequal-
ities (LMI/BMI) in the control. H∞-NMPC approaches consider the implementa-
tion of the H∞ problem in a receding horizon framework, by considering a partic-
ular choice of the objective function (Gautam et al., 2013; Wang et al., 2009, 2010b).

Robust NMPC approaches are designed to handle model mismatch and para-
metric uncertainties, which make them appropriate for bioprocess models. How-
ever, they are known to carry a high computational burden as the size of the op-
timization problem increases with the number of uncertainties and the prediction
horizon. This may explain the fewer experimental implementations of the MPC
strategies for fed-batch bioprocesses.

The NMPC scheme can be found in various industrial fields such as chemical
plants, oil refineries, power electronics, automotive industry, biochemistry, and
many others (Qin and Badgwell, 2003). However, only a few industrial applica-
tions of NMPC exist in biotechnology (Stanke and Hitzmann, 2013). The reasons
stem from the difficulties of developing reliable dynamic models of bioprocesses,
the high computational costs, and the absence of efficient real-time monitoring
solutions.
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Among the experimental studies on lab-scale bioprocesses, the NMPC strategy
have been applied to a variety of micro-organism cultures such as mammalian
cell cultures (Aehle et al., 2012; Craven et al., 2014), yeast cultures (Cochrane
and Alamir, 2018; Preuß et al., 2000), hybridoma cell cultures (Dewasme et al.,
2013a, 2015), fungi (Ashoori et al., 2009), microalgae (Del Rio-Chanona et al., 2015;
Gorrini et al., 2020) and bacterial cultures (Rio-Chanona et al., 2016; Santos et al.,
2012b; Tebbani et al., 2010; Ulonska et al., 2018).

These studies are usually conducted in fed-batch mode, where an inlet feed-
rate is the sole manipulated input used to regulate variables such as substrates or
specific rates to defined set-points (Aehle et al., 2012; Craven et al., 2014; Dewasme
et al., 2015). Other control objectives may also aim at maximizing substrate oxi-
dation rates while minimizing product fermentation rates (Santos et al., 2012a), or
regulating/limiting byproduct formation (Dewasme et al., 2010; Logist et al., 2011;
Tebbani et al., 2010; Valentinotti et al., 2004). Multiple input (feed rates) MPC poli-
cies are also examined in (Amribt et al., 2014; Ashoori et al., 2009; Rio-Chanona
et al., 2016).

This chapter focuses on the experimental implementation and validation of
the NMPC to maximize the biomass productivity in fed-batch E. coli BL21(DE3)
cultures, by regulating the acetate concentration at a low value and limiting the
overflow metabolism effect. The NMPC algorithm is implemented in a real-time
environment, and the computing effort is reduced through the control vector
parametrization (CVP) technique (Banga et al., 2005).

As discussed in the previous chapter, the unscented Kalman filter (UKF) is
used to provide estimates of the acetate and glucose concentrations based on the
biomass measurement. This choice is motivated by the good results obtained in
the previous experiments.

The chapter is organized as follows. A general description of the NMPC ba-
sic principles is presented. These principles are then applied to the specific case
of acetate concentration regulation in fed-batch E. coli cultures. A set of numeri-
cal simulations is presented to showcase the performance of the proposed NMPC
strategy in the nominal case (no model mismatch), and in presence of parametric
uncertainty in the process model. Finally, the NMPC and UKF algorithms are im-
plemented in real-time to a lab-scale bioreactor for experimental validations. The
chapter ends with final remarks and future work directions.

8.2 Principles of Nonlinear Model Predictive Control

Nonlinear model predictive control (NMPC) is an optimization-based feedback
control strategy applied for nonlinear systems. It is applied for a variety of control
objectives including stabilization, trajectory tracking, optimum seeking, and many
other control problems.

The NMPC strategy is based on the receding horizon principle, where the op-
timal control problem is solved over a finite horizon at each sampling point. The
optimized control input is applied to the process, and the optimization problem is
solved again at the next sampling point.
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The NMPC shares the same basic philosophy as the linear MPC. However, it
has some major differences such as the explicit use of nonlinear models for the pre-
diction and the inclusion of state and input constraints. Furthermore, the NMPC
allows the online minimization of the cost function, and requires the availability of
the state variables for the prediction either through measurements or estimation.

The basic principles of the NMPC problem are described hereafter (Allgöwer
and Zheng, 2012). We consider the following discrete-time state-space nonlinear
system:

ξk+1 = F
(
ξk, Fink

)
zk = Hξk

(8.1)

where ξk ∈ Rnξ and zk ∈ Rnz are the system state and output vectors at the time
step k, respectively. Fink ∈ RnF the input. F is the nonlinear transition function,
and H is the measurement matrix.

A general formulation of the NMPC problem consists in minimizing the
quadratic cost function Φ at the instant k over a finite moving horizon:

min
ξk ...ξk+Np−1,Fink

...Fink+Nc−1

Φ
(
ξ̌?, Fin•

)
(8.2)

s.t
{

ξ̌k+i+1 = F
(
ξ̌k+i, Fink+i

)
, for i = 0, Np − 1

ξ̌k = ξk
(8.3)

where

• Φ is the cost function evaluated at instant k.

• Np and Nc represent the prediction horizon and the control horizon respec-
tively. They are not necessarily equal ( i.e. Np ≥ Nc ≥ 1

)
in order to reduce

the computational load.

• ξ̌k+i is the predicted state vector at time instant k + i, i = 0, Np − 1.

• ξk is the initial condition which is the plant state at time instant k.

The classical NMPC strategy is implemented in a moving horizon framework.
At current time step k, the optimization problem (equations (8.2) and (8.3)) is ini-
tialized by the current state vector ξk and solved over the prediction horizon Np.
The first element of the resulting input vector Fink is applied to the system (8.1). At
the next sampling time k + 1, the optimization problem is solved again with the
updated state vector ξk+1 as the initial condition.

The NMPC is a model-based control strategy. A mathematical representation
of the system is required to predict the evolution of each state variable. Therefore,
the efficiency of the control scheme is directly linked to the model used for the
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predictions. The choice of the model structure and the parameter identification
procedure have a decisive role in the controller performance.

In the case of trajectory and set-point tracking problems, the cost function Φ to
be optimized is a quadratic nonnegative function measuring the distance between
the predicted model state ξ̌ and a determined known reference sequence ξre f over
the horizon window. Another quadratic function weighting the control effort is
added to achieve the control objective. The general expression for the cost function
in this case is given by the following:

Φ
(
ξ̌?, Fin•

)
=

Np

∑
i=1

∥∥∥ξ̌k+i − ξ
re f
k+i

∥∥∥2

αi
+

Nc

∑
i=1

∥∥∥Fink+i−1 − Fre fk+i−1

∥∥∥2

βi
(8.4)

where

• ξre f represents the reference trajectory or setpoint chosen to specify a desired
closed-loop behavior.

• Fre f represents the reference feeding trajectory corresponding to ξre f .

• αi ≥ 0 ∈ Rnξ×nξ and βi ≥ 0 ∈ RnF×nF are the weighting matrices for the
state tracking error and the control inputs, respectively.

The tuning parameters are implemented to penalize the deviations of the pre-
dicted controlled state vector ξ̌ from the reference ξre f , as well as the control input
deviations at every sampling point in the prediction horizon. These parameters
are tuned to avoid instability and to reach the desired transient performance of
the closed-loop.

In addition to the cost function, constraints on the states and inputs can be
defined:

ξmin ≤ ξk+i ≤ ξmax, i = 0, Np − 1. (8.5)

Fmin ≤ Fink+j ≤ Fmax, j = 0, Nc − 1 (8.6)

(8.7)

However, this addition increases the complexity of the optimization problem,
and the solution cannot be obtained explicitly as in the unconstrained case. An il-
lustration of the receding horizon principle in the SISO case is shown in Figure 8.1.

8.3 Nonlinear Model predictive control applied to E.
coli cultures

Reminding the objective behind the control strategy, that is to drive the process
closer to the boundary of the respiro-fermentative and respirative regimes. Simi-
larly, to the previous chapter, we desire to maintain the acetate concentration at a
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Control horizon Nc

Prediction horizon Np

FIGURE 8.1: Illustration of the receding horizon principle

predefined low set-point to avoid its accumulation during the culture. To main-
tain the acetate concentration at a constant value, the bioprocess operates in the
respiro-fermentative regime to compensate the dilution effect which tends to de-
crease the acetate concentration with time. Nevertheless, a low acetate concentra-
tion keeps the process close to the optimal metabolic edge (Dewasme et al., 2010;
Rocha, 2003). In the proposed control strategy, the acetate concentration is regu-
lated to the pre-defined set-point Are f . This regulation is achieved by acting on the
feed rate Fin, also constrained to track a pre-calculated reference trajectory Fre f in
order to smooth the control behavior.

8.3.1 Determination of the reference feed-rate profile

In order to implement the NMPC strategy on the E. coli process, a reference feeding
trajectory Fre f corresponding to the acetate reference must be pre-calculated based
on the model equations defined by:

Ẋ = (kX1µ1 + kX2µ2 + kX3µ3)X − Fin

V
X (8.8a)

Ṡ = −(µ1 + µ2)X − Fin

V
(S − Sin) (8.8b)

Ȧ = (kA2µ2 − µ3)X − Fin

V
A (8.8c)

V̇ = Fin (8.8d)
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Considering a constant acetate concentration (A = Are f 6= 0, Ȧ = 0), the differ-
ential equation (8.8c) leads to the following feed-rate:

Fin =
µA

A
XV
∣∣∣

A=Are f
(8.9)

where µA = (kA2µ2 − µ3) = kA2(qs–qscrit) in respiro-fermentative mode.
Generating the feeding profile using Equation (8.10) requires the availability of

the substrate concentration. Assuming that there is no accumulation of the sub-
strate concentration in the neighborhood of the optimal conditions, so that it is
instantaneously consumed by the cells. The substrate is considered to be in quasi-
steady state near the critical value (S = Sset, Ṡ = 0).

From Equation (8.8b) we obtain the following equation:

Fin =
µS

(Sin − S)
XV
∣∣∣∣
S=Sset

(8.10)

where µS = −(µ1 + µ2) = qS in respiro-fermentative mode. The substrate concen-
tration Sset corresponding to the reference acetate concentration Are f can then be
calculated from the following equation:

qS

(Sin − S)

∣∣∣∣
S=Sset

=
µA

A

∣∣∣
A=Are f

(8.11)

From equations (8.8a) and (8.8d) the following differential equation is obtained:

d(XV)

dt
= µXXV (8.12)

hence:

XV = X0V0eµXt (8.13)

where X0 and V0 are the initial conditions for the biomass concentration and the
culture volume respectively, and µX = kX1µ1 + kX2µ2 + kX3µ3.

Finally, the expression of the reference trajectory Fre f for the pair
(

Are f , Sset
)

can be generated by the following equation:

Fre f =
µA

A
X0V0eµXt

∣∣∣
A=Are f ,S=Sset

=
qS

(Sin − S)
X0V0eµXt

∣∣∣∣
A=Are f ,S=Sset

(8.14)

8.3.2 Control design

In the following, a discrete-time equivalent expression of the continuous E. coli
model (8.8) is used to implement the predictive control strategy. Considering a
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constant sampling time Ts, the discrete model is defined as follows:

ξk+1 = F
(
ξk, Fink

)
zk = Hξk

(8.15)

where

• ξk = [Xk Sk Ak Vk]
T and zk = Ak are the discrete state and sampled output

vectors at time kTs, respectively.

• F is the nonlinear transition function

• H =
[

0 0 1 0
]

is the measurement matrix.

• Fin is the control input, parametrized using a piecewise constant approxima-
tion.

The trajectory tracking is achieved using the nonlinear model predictive con-
trol (NMPC) strategy. Based on the model (8.15) and the control objectives defined
earlier, the NMPC objective cost can be defined as follows:

Φ
(
ξ̌?, Fin•

)
=

Np

∑
i=1

(
Ǎk+i − Are f k+i

)2
+ λ

Nc

∑
i=1

(
Fink+i − Fre fk+i−1

)2
(8.16)

where Ǎ is the predicted acetate concentration, and Fre f is the pre-calculated
reference feeding profile. Np and Nc are the prediction and control horizons re-
spectively, and λ > 0 is the control penalty gain.

The NMPC problem formulation minimizes the quadratic cost function
Φ
(
ξ̌?, Fin•

)
at the instant k and reads:

min
Ǎk ...Ǎk+Np−1,Fink

...Fink+Nc−1

Φ
(
ξ̌?, Fin•

)
(8.17)

under constraints related to the predicted dynamics of the system:

s.t. ξ̌k+i+1 = F
(
ξ̌k+i, Fink+i

)
, i = 0, Np − 1 (8.18a)

Ǎk+i+1 = HF
(
ξ̌k+i, Fink+i

)
, i = 0, Np − 1 (8.18b)

0 6 Fink+i 6 Fmax, i = 0, Nc − 1 (8.18c)

0 6 ξ̌k+i 6, i = 0, Np − 1 (8.18d)

A classical NMPC strategy follows the receding horizon principle, where the
optimization problem (8.17 and 8.18) is solved online at instant k. The first element
of the input vector is then applied to the system, and the optimization problem is
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solved again with the updated initial state and input vectors at the next sampling
point.

However, solving the constrained nonlinear optimization problem (8.17 and
8.18) raises two major difficulties. The first difficulty lies in the discretization of the
continuous nonlinear system (8.8). The sampling period needs to be sufficiently
small compared to the system’s time constants such as the discrete model remains
relevant compared to its the continuous counterpart. An appropriate choice of the
sampling time in this case is in the order of 0.5-1 min, since the doubling time of
E. coli is around 20 minutes and the response time is in the order of several tens of
minutes. This leads to very long prediction horizons and an increase in the num-
ber of the decision variables of the optimization problem. Furthermore, it poses
a practical problem for the on-line implementation of the control strategy due to
the different operations executed between two sampling points (measurement, es-
timation, calculation of the control law).

The second difficulty is the nonlinear constraints (8.18), which increases the
on-line computation time of the optimization procedure involved in the NMPC
strategy.

In order to avoid to solve the constrained optimization problem, the optimiza-
tion problem is transformed into a nonlinear programing problem (NLP) using the
Control Vector Parametrization (CVP) technique presented in (Banga et al., 2005).

The CVP method is based on the discretization of the control variables only,
and the control sequence is approximated by a piecewise constant function be-
tween two sampling instants. The advantage of this transformation is that it is no
longer necessary to discretize the continuous model, and the predicted states are
obtained by the integration of the continuous differential system (8.8).

Consequently, the sampling period required for the prediction can be much
larger, and the constraints related to the state variables are removed from the op-
timization problem, since they are taken into account in an implicit way during
the prediction of the states via the CVP method. Furthermore, the control hori-
zon Nc can be chosen equal to the prediction horizon Np, since the control vector
is the only decision variable for the optimization problem. The CVP principle is
illustrated in Figure 8.2.

The new formulation of the optimization problem is therefore given by:

min
vk ...vk+Np−1

Φ
(
ξ̌?, Fin•

)
(8.19)

Under the constraints:

0 6 Fink 6 Fmax, k = 1, Np (8.20a)

In addition, a change of variable Fin = ev aims at removing the positivity con-
straints on Fin and improves the conditioning of the optimization problem. The
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Discretized control sequence

predicted states

uk

tk

ξ̌k

tk

Te 2Te Np Te

Te 2Te Np Te

FIGURE 8.2: Principle of the CVP approach

corresponding cost function reads:

Φ
(
ξ̌?, v•

)
=

Np

∑
i=1

(
Ǎk+i − Are f k+i

)2
+ λ

Np

∑
i=1

(
evre f

k+i−1 − evk+i−1

)2
(8.21)

and the formulation of the NMPC problem is reduced to solving at each time kTe:

min
evk ...e

vk+Np−1
Φ
(
ξ̌?, v•

)
(8.22)

The constraint on the upper bound of the control input is removed from the
optimization problem. The optimal input solution of the problem (8.18) is then
limited to its upper bound before its application to the process.

This transformation of the initial optimization problem (8.17) to an uncon-
strained optimization problem is very beneficial for the implementation of the
control strategy on the real process. A comparison between the classical and un-
constrained NMPC formulations is presented in the simulations section.

In the following, the UKF estimated state ξ̂k is used in the NMPC scheme.
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8.4 Numerical simulations

The combined UKF-NMPC strategy is first assessed through numerical simula-
tions, considering the fed-batch E. coli model presented in chapter 2. The initial
plant conditions as well as UKF and controller parameters are given in Table 8.1.

Estimates initial conditions are randomly chosen using a normal distribution
centred at the nominal state values with a standard deviation of 15%. The covari-
ance matrix of measurement noise R depends on the quality of the turbidimetric
probe signal. On the other hand, the covariance matrix of the model noise Q rep-
resents the confidence level in the model.

TABLE 8.1: UKF covariance matrices, sigma points tuning parame-
ters, and initial conditions

Initial conditions
X0 1.0 g/L
S0 0.1 g/L
A0 1 g/L
V0 3.5 L
Sin 500 g/L

UKF parameters
σX 0.01 g/L
σS 0.1 g/L
σA 0.1 g/L
σV 0.001 g/L
rX 0.01 g/L
P0 10−4 × I4 g/L
α 1 -
β 2 -
κ 0 -
Control parameters
Np 10 -
λ 0.05 -

Sampling time
Ts 3 min -

The acetate concentration regulation achieved by the NMPC is assessed, first
considering a perfectly known model (no parametric uncertainty), and then a more
realistic case with plant-model parameter mismatch. In both cases, the acetate con-
centration is supposed to be measured with a measurement noise level of 0.02g/L.

The optimization is performed by the LSQNONLIN optimizer under MATLAB
R2018b environment on a 3.2 Ghz PC with 8Gb of ram. The optimization problem
is solved using the ’trust-region-reflective’ algorithm .

Figure 8.3 shows the closed-loop profiles of the state and control variables for
the ideal model case (no modeling errors or parameter uncertainties), with pre-
diction horizon Np = 10 and penalty parameter equal to λ = 0.05. λ was tuned
by trial and error to prevent excessive deviation of Fin from the reference feeding
profile Fre f .
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FIGURE 8.3: Ideal model case. Left: Closed loop evolution of the
state variables, X, S, A, and feed flow rates Fin and Fref with prediction
horizon Np = 10, λ = 0.05 and a noise standard deviation of 0.02

[g/L]. Right: Zoom over 2h.

It may be observed in Figure 8.3 that the regulation of the acetate concentra-
tion is achieved successfully. The biomass growth follows a typical exponential
trajectory, and the substrate quickly reaches an a priori unknown and constant
steady-state, assumed to be greater than the critical level since, to keep the acetate
concentration constant, the cells must evolve in respiro-fermentative regime, com-
pensating the dilution effects from the feed rate by a small acetate production.

The convergence to the steady-state is achieved in 25 minutes and the biomass
at t = 10 h is 32.5 g.

In view of analyzing the NMPC robustness to plant-model mismatch, a simu-
lation is performed by varying the most influential parameters on the acetate con-
centration. The parametric sensitivity study presented in appendix D shows that
the most influential parameters on the acetate concentration A are qS max, qO max,
kX2, and kA2.

During the simulation, the values of these parameters are randomly chosen
following a normal distribution centred at their nominal values with a standard
deviation of 15%. A set of 100 Monte Carlo (MC) simulations is performed using
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the same control settings as previously for the ideal model (Table 8.1).
Figure 8.5 shows the histograms of the runs as functions of the randomly cho-

sen values. The corresponding closed-loop profiles are represented in Figure 8.4.
The acetate concentration is maintained at the reference in all runs, with a mean
value of 0.7 g/L. The tracking error (Are f − A) has a RMSE of 0.0314 g/L, which is
still satisfactory. The convergence to the desired steady-state is still 25 minutes in
average.
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FIGURE 8.4: Plant/model mismatch case. Closed-loop evolution of
the state variables X, S, and A with noise standard deviation of 0.02

g/L. Profiles of the 100 Monte Carlo experiments.

Histograms of the final biomass productions and productivities are also shown
in Figure 8.5. Biomass production is, in average, slightly lower than in the ideal
case (31.2g), nevertheless it stays above 30g in 96% of the MC experiments (Fig-
ure 8.5). In most of the cases, biomass productivity is higher than 90% of the max-
imal attained level.

To illustrate the advantages of the CVP method, a series of simulations is per-
formed comparing the computation time required to solve the optimization prob-
lems before and after using the CVP technique.

The simulation consists in regulating the acetate concentration to the defined
setpoint of Are f = 0.7 g/L, with the same initial values for the state variables and
control parameters described in Table 8.1.

Three methods were compared: The initial constrained NMPC problem (8.17),
the NMPC problem with the CVP method (8.19), and the unconstrained NMPC
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FIGURE 8.5: Histograms of the plant parameters qS max, qO max, kX2,
and kA2, the biomass production and productivity during the MC

simulations.

problem (8.22) with the variable change (VC) Fin = ev. A total of 10 simulations is
performed for each method, and the computation time δt required for solving the
optimization problem for one time step (kTe) is shown in Table 8.2.

The results show that the introduction of the CVP method offers a significant
gain in the computation time, while achieving the same control problem objec-
tives. Even though the variable change (VC) gives a close performance, it improves
the conditioning of the optimization problem. This shows the advantage of the
proposed method for the on-line implementation of the NMPC on bioprocesses.
The low computation time offers the opportunity to consider lower sampling pe-
riods, and to couple the NMPC with other components in a more advanced control
structure.

TABLE 8.2: Comparison between the computation time required for
solving the different NMPC problems

min(δt) (s) max(δt) (s) mean(δt) (s)
Constrained NMPC 2.423 11.779 5.863
NMPC + CVP + VC 0.018 0.733 0.037

NMPC + CVP 0.019 0.793 0.038

The NMPC is now coupled to the UKF estimator, considering the estimated
acetate concentration as the regulated variable. The same parameter uncertainty as
well as biomass measurement noise level are considered. As shown in Figure 8.6,
the UKF is able to correctly estimate the acetate concentration in the presence of
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model and measurement noise, and the acetate regulation is performed accurately
as both the estimated and actual states converge to the desired acetate value.
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FIGURE 8.6: Coupled UKF-NMPC numerical simulations with mea-
surement noise and parametric uncertainties.

In order to compare the performance of the NMPC and the GMC strategies,
simulations are performed testing their performance in regulating the acetate con-
centration at Are f = 0.7 g/L. The initial conditions for the simulation are the same
of the previous simulations given in Table 8.1. The GMC parameters are the same
used in the previous chapter (G1 = 5.61, G2 = 9.55) (Equation (7.24)). These
parameters were determined using the robust design method, for a maximal pa-
rameter variation of 15%. Figure 8.7 shows the evolution of the state variables and
the feed-rate using the two control strategies: NMPC and GMC, and Figure 8.8
shows a zoom over the first two hours.

The simulation shows that both control strategies achieved good regulation of
the acetate concentration at the reference value Are f = 0.7 g/L. As seen in the pre-
vious chapter, the GMC strategy is able to achieve the control objective. However,
it induces a longer transient phase, a higher overshoot, and a longer convergence
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time compared to the NMPC. Furthermore, the biomass quantity obtained with
the NMPC strategy is marginally higher than that obtained using the GMC.

In conclusion, both the NMPC and the GMC strategies achieve the control ob-
jectives adequately, however the NMPC is better than the GMC regarding the tran-
sient performance, and this has a direct effect on the final biomass quantity.
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FIGURE 8.7: Comparison of the NMPC and GMC strategies. Plot of
the state variables and the control inputs.

8.5 Experiment results and discussion

To validate the combined NMPC control strategy and the estimation of the acetate
and glucose concentrations by the UKF, two fed-batch experiments are carried out
using the strain E. coli BL21(DE3) according to the protocol described in chapter 4.
The UKF parameters during the experiments are given in Table 8.3, and the UKF
algorithm is presented in appendix A.

The NMPC parameters used in both experiments are given in Table 8.4. The
prediction horizon and penalty parameter λ were tuned in simulation by trial and
error in order to achieve the control objectives while preventing excessive devia-
tion of Fin from the reference feeding profile Fre f .

The evolution of the biomass, glucose, acetate concentrations, and the feed flow
rate in both experiments are illustrated in Figure 8.9, and the operating conditions
are shown in Figure 8.10.



8.5. Experiment results and discussion 155

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1.4

1.6

1.8

2

time (h)

b
io
m
a
ss

(g
/
L
) NMPC

GMC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

·10−2

time (h)

g
lu
co
se

(g
/
L
) NMPC

GMC

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.6

0.8

1

time (h)

a
ce
ta
te

(g
/
L
) NMPC

GMC
Aref

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5
·10−2

time (h)

F
in

(L
/
h
)

NMPC
GMC

FIGURE 8.8: Comparison of the NMPC and GMC strategies. Plot of
the state variables and the control inputs. Zoom over 2h.

TABLE 8.3: UKF parameters used in the experiments

UKF parameters
σX 0.01 g/L
σS 0.1 g/L
σA 0.1 g/L
σV 0.001 g/L
rX 0.01 g/L
P0 10−4 × I4 g/L
α 1 -
β 2 -
κ 0 -

The first experiment is carried in two phases, a batch followed by a fed-batch.
The batch phase is performed to reach a minimal biomass concentration of 1 g/L
and ensure that the cells are in the exponential phase when initiating the regulation
and injecting the feed media. The UKF estimation is launched during this phase
after initializing the state vector.

The fed-batch phase starts after the near depletion of glucose. Even though the
glucose concentration measurement is not available, on-line flags of the glucose
depletion can be detected, consisting of a sudden drop in the stirring speed due to
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TABLE 8.4: NMPC control parameters used in the experiments

NMPC parameters
Sampling time Ts = 3 min

Acetate reference Are f = 0.5 − 1.5 g/L
NMPC parameters Np= 10, λ= 0.05

the low cell demand for oxygen (Figure 8.10), coupled with an increase in the pH
value due to the decrease of CO2 released by the cells.

The NMPC controller is launched after setting up the acetate reference and the
control parameters. The controller outputs an exponential feeding profile, and the
estimated acetate concentration converges to the desired reference in less than 30
min and remains in the range 0.33-0.5 L/h until the end of the culture. At the same
time, the substrate concentration remains in a quasi-steady state.

After the end of the first experiment, a culture refresh is performed. A vol-
ume of the culture is extracted using a peristaltic pump, leaving 500 mL of the
culture of volume. Then, 3L of an autoclave sterilized HDF medium is injected by
a peristaltic pump, and the batch phase of the second experiment starts.

The second experiment follows the same protocol as the first one, the batch
phase lasts for 2 h, and the glucose is quickly consumed by the cells. The con-
troller is launched as soon as the stirring drops significantly, indicating a drop
in glucose oxidation. The acetate concentration set-point is fixed at 1.5 g/L, the
feeding follows an exponential curve, and the acetate concentration converges to
the imposed reference. At t=12 h, a set-point change is introduced and Are f is set
equal to 0.7 g/L.The NMPC controller adapts the feed-rate according to the new
reference, and the estimated acetate concentration tracks the new reference in 20
min.

The NMPC-UKF strategy performance is highly satisfying. The UKF accu-
rately estimates the acetate and glucose concentrations in the presence of measure-
ment noise on the biomass concentration. The mean square errors of the substrate
and acetate concentrations are eS = 0.089 g/L and eA = 0.068 g/L respectively,
which is consistent regarding the sensitivity of the measurements and the noise
levels (0.1 g/L). The NMPC controller regulates the estimated acetate concentra-
tion to the fixed set-point, and the convergence is achieved in 20 min. The acetate
concentration remains at an acceptable range during the fermentation time, and
the culture conditions are well suited for biomass growth.
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FIGURE 8.9: Experimental results: Time evolution of the measured
biomass, glucose, acetate concentrations (offline and online estima-

tion), and feed-rate
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FIGURE 8.11: Comparison between the experimental results and the
process model predictions

In order to compare the deviation of real process response from the model pre-
dictions, a simulation is performed using the experimental data and the process
model used in the control and estimation algorithms.

The model is simulated in open-loop with the same operating conditions and
the initial values for the state variables from the experiments. The obtained exper-
imental feed-rate is applied to the model input.

The results presented in Figure 8.11 show a deviation between the model pre-
dictions and the measured and estimated state variables. The experimental feed-
rate deviates from the reference trajectory, indicating the presence of a model mis-
match. On the other hand, the acetate concentration is accumulated in the model
simulation due the high glucose concentration resulting from the high feed-rate
levels.

Consequently, the acetate presence leads to a lower growth rate than in the
experiments and a low biomass concentration. The experimental and simulation
results show the efficiency of the proposed predictive strategy to achieve the con-
trol objectives despite the model mismatch.

8.6 Comparative study

In order to evaluate the performance of the control strategies presented in this
thesis, a simulation study is performed and presented in this section. The three
control methods are compared under the same initial operating conditions and a
similar control setting.
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The NMPC and robust GMC (GMC-A) controllers are set to track an acetate ref-
erence of Are f = 0.7 g/L. On the other hand, the biomass growth rate regulation
using the GMC strategy (GMC-X) is set to track a reference profile correspond-
ing to this acetate concentration value. To this end, the glucose concentration Sset
corresponding to Are f is calculated using Equation (8.11). Then, using the pair
(Sset, Are f ), the reference biomass growth rate µset is calculated from kinetic model
equations.

The simulation is performed over 10 h assuming that the state vector is avail-
able for measurement, with an added measurement noise of 0.05 g/L and 0.02
g/L on the biomass and acetate concentrations. The initial conditions, reference
variables, and control parameters values are summarized in table Table 8.5.

TABLE 8.5: Initial conditions and control parameters

Initial conditions
X0 1.0 g/L
S0 0.1 g/L
A0 1 g/L
V0 3.5 L
Sin 500 g/L

Reference variables
Are f 0.01 g/L
Sset 0.0234 g/L
µset 0.1925 h−1

Fmax 0.2 L/h

NMPC parameters
Np 10 -
λ 0.05 -

GMC-X parameters
G1 = 2.25 -
G2 = 9 -
GMC-A parameters
G1 = 5.61 -
G2 = 9.55 -

Sampling time
Te 3 min

First, the control strategies are compared in the ideal model case, where all the
model parameters are assumed to be perfectly known. Then, 500 Monte Carlo
simulations are performed considering model uncertainties. The model parame-
ters are randomly chosen with a maximal variation of ±30% around their nominal
value following a normal distribution.

In the ideal model case (Figure 8.12), the biomass trajectories are almost iden-
tical for the three methods. This behavior is expected since the simulation is de-
signed to have the same setting for the three methods.

The acetate and glucose concentrations, on the other hand, have different dy-
namics. The NMPC and the GMC-A strategies regulate the acetate concentration
at the reference Are f . On the other hand, the biomass regulation (GMC-X) leads to
a decrease in the acetate concentration to reach a zero value after 7.5 hours.

The feed rates have similar behavior, where the main difference between the
controllers is the delays due to the transitory phase. The acetate dynamics affect
the metabolic operating mode and the biomass evolution and, consequently, the
required feed rate to reach the desired growth rate.

In the model mismatch case, the parameter variation leads to different re-
sponses of the controllers. An example of a mismatch simulation is shown in
Figure 8.13. The biomass profiles in this case are different for each control strategy.
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FIGURE 8.12: Evolution of the state variables in the ideal model case
for the three control methods

The GMC-A and NMPC have higher final biomass concentration compared to
the GMC-X with an advantage for the NMPC. This is due to the difference in the
control objective definition.

The biomass regulation targets a specific growth rate and manages to repro-
duce the biomass profile in the case of model mismatch, leading to similar per-
formance compared to the nominal case. However, since the optimal metabolic
operating point is linked to the critical substrate concentration and the critical ox-
idative capacity, which is by nature uncertain.

The targeted growth rate is usually defined by setting it 5-10% lower than the
maximal growth rate to avoid acetate accumulation. In the case where the maximal
value changes due to the model mismatch, targeting µset leads to a lower metabolic
performance due to underfeeding.

This strategy is useful for reproducing experiments and results with high yields
and final product quality (“golden batches”), thanks to its consistent results. Fur-
thermore, the operational advantage of the method is the availability of reliable
biomass probes making its implementation fairly easy. However, this requires
a knowledge of the bioprocess and a sufficient amount of historical data. The
biomass growth regulation strategy is not the best fit for productivity maximiza-
tion, especially in the case of uncertain optimal conditions or unreliable models.

On the other hand, acetate regulation offers a solution to this problem. Tar-
geting an acetate concentration close to zero maintains the culture closer to the
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FIGURE 8.13: Evolution of the state variables in the model mismatch
case for the three control methods

optimum with consistent metabolic performance. In the case where the optimum
is unknown and uncertain, acetate fermentation is directly linked to the oxidative
capacity, and therefore the metabolic performance is better thanks to the adapta-
tion to the new maximal growth rate value.

The NMPC strategy leads to higher biomass quantity compared to the GMC-A.
This is mainly due to the longer transitory phase in the GMC case and the more
frequent fluctuations around the regulated acetate concentration value. This result
can be explained by the fact that the NMPC uses the nonlinear model implicitly
in the prediction phase, while the GMC algorithm includes linearization of the
nonlinear dynamics leading to tracking errors and unpredicted dynamics.

The results of the Monte Carlo simulations give a performance overview of the
control methods. The biomass productivity and productions over 10 h during the
500 runs are summarized in tables 8.6 and 8.7.

It can be seen that the NMPC outperforms the GMC controllers on average and
gives higher productivity and biomass quantities. It can also be seen that acetate
regulation has a higher average and maximal value. The biomass regulator targets
a specific growth rate by design, and thereby, when the process is able to reach
higher growth rates, the biomass regulation maintains the growth rate closer to
the specified reference, leading to a lower biomass productivity. As expected, all
the developed controllers lead to better results than the open-loop trajectory with
an average improvement of 20% in the biomass productivity.
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TABLE 8.6: Biomass productivity of the control methods during 500
MC simulations

Method Mean Min Max Unit
Open-loop 0.0161 0.0079 0.0183 g/(h · g of substrate)

GMC-X 0.0187 0.0176 0.0208 g/(h · g of substrate)
GMC-A 0.0190 0.0184 0.0206 g/(h · g of substrate)
NMPC 0.0192 0.0185 0.0206 g/(h · g of substrate)

TABLE 8.7: Biomass production of the control methods during 500
MC simulations

Method Mean Min Max Unit
Open-loop 22.864 22.0472 26.776 g

GMC-X 25.3944 18.4881 39.0349 g
GMC-A 25.7305 20.7225 56.4224 g
NMPC 26.6117 19.4120 57.1957 g

TABLE 8.8: Root mean square errors of the control methods during
500 MC simulations

Method Mean Min Max Unit
Open-loop 0.941 0.139 1.3821 g/L

GMC-X 0.1400 0.0744 0.8976 g/L
GMC-A 0.0623 0.0503 0.1531 g/L
NMPC 0.0560 0.0466 0.0888 g/L

TABLE 8.9: Computation time (between 2 sampling steps) of the con-
trol methods during 500 MC simulations

Method Mean Min Max Unit
Open-loop 0.0165 0.01413 0.0401 (×10−3) s

GMC-X 0.0265 0.1413 0.0401 (×10−3) s
GMC-A 0.0274 0.2854 0.0535 (×10−3) s
NMPC 0.0210 0.8095 0.0968 s

Concerning the tracking performance, the root-mean-square errors of the con-
trolled variable (y–yre f ) are given in Table 8.8. It can be seen that the NMPC has
the lowest tracking error compared to the GMC-A regulation. The acetate control
strategies provide better tracking performance than biomass regulation due to the
exponential evolution of the biomass concentration.

As for the computation load (Table 8.9), The GMC methods have the lowest
time required to calculate the control law. This result is expected since the GMC
law is computed by a simple algebraic equation and does not require the integra-
tion of a nonlinear differential equation.

As for the NMPC, the computation time can sum up to 0.8 seconds between
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sampling points, which is a good result compared to the sampling period (Ts = 3
min). However, this result is obtained by implementing a CVP method to simplify
the optimization problem making it better conditioned. Considering constraints,
a complex cost function or a robust variation of the NMPC (min-max NMPC, for
example) can significantly raise the computation load. A computation time of the
order of several seconds combined with the different delays in the LabView envi-
ronment can sum up to several minutes. This may be a challenge, especially if a
lower sampling time is required for the NMPC prediction to be accurate. Imple-
menting time-saving strategies in the NMPC schemes is a necessary step before
investigating advanced predictive variations.

8.7 Conclusions

In this chapter, an implementation of the nonlinear model predictive control strat-
egy on the fed-batch E. coli process is presented. This strategy is experimentally
implemented and validated on lab-scale fed-batch E. coli BL21(DE3) cultures. The
goal behind the control scheme is to maximize the biomass production and fa-
vorize cell growth, by avoiding overflow metabolism and the accumulation of the
acetate during the culture.

The control objective is to regulate the acetate concentration to a low value.
This reference needs to be as close to zero as possible in order to maintain the
process closer to the metabolic edge between the operating regimes. On the other
hand, the reference value should be high enough to account for the measurement
and estimation sensitivities, and to avoid cell stress caused by metabolic switches
in the neighborhood of optimal operating conditions. Furthermore, the feed-rate
is also set to track a specified feeding trajectory, precalculated offline depending
on the couple (Are f , Sset) in order to prevent excessive deviations from the optimal
trajectory.

The NMPC strategy has several advantages, like the implicit use of the non-
linear model equations for the prediction, and the inclusion of state and control
constraints. However, this comes with an additional computational cost, which is
a major hurdle for experimental implementation of the NMPC.

To this end, the optimization problem was transformed into a nonlinear pro-
gramming problem using the control vector parametrization (CVP) approach, and
a variable change. This transformation allowed a significant reduction in the com-
plexity of the optimization problem, and the obtention of an unconstrained non-
linear problem.

Simulations were achieved testing the proposed NMPC strategy to achieve the
control objectives assuming an ideal model with no parameter uncertainty. The
results showed a good performance to track the desired acetate concentration with
relatively short transients. The feed-rate also follows the pre-calculated trajectory
very well. The robustness of the strategy was tested using a set of Monte Carlo
simulations, assuming a random variation of the model parameters around their
nominal values. The results showed that the NMPC is able to achieve the control
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objectives and regulate the acetate concentration to the low reference value, with
a small deviation from the reference feeding trajectory.

Finally, the NMPC strategy was coupled to the UKF estimator. The acetate
concentration is estimated by the pre-tuned UKF based on the biomass signal. The
NMPC is then set to regulate the estimated acetate concentration. Results showed
that the same level of performance is obtained by the combined control and esti-
mation algorithms.

The performance of the NMPC was compared to that obtained with robust
generic model control (GMC). The comparison was performed for identical sce-
narios, under nominal model assumption. The NMPC outperformed the GMC in
achieving the control objectives of trajectory tracking. The NMPC strategy provide
better transient response, and a higher biomass quantity. Furthermore, the NMPC
design includes the explicit use of the nonlinear model for the prediction, while
the GMC strategy requires a model reduction to avoid using the kinetic structure,
and to prevent deviations of the feed-rates leading to excessive and high values.

The main contribution of this chapter is the experimental implementation of
the proposed NMPC strategy. The NMPC algorithm was deployed on the con-
trol structure presented in the previous chapters, to regulate the estimated acetate
concentration in a lab-scale fed-batch culture of E. coli BL21(DE3). The experiments
were conducted according to the protocol presented in chapter 3. The results val-
idated the combined NMPC-UKF strategy in regulating the acetate concentration
despite the model mismatch. Furthermore, the experiments validated that regulat-
ing the acetate concentration to a low level leads to higher biomass concentrations
and lower cultivation time, and consequently higher biomass productivity.

A possible improvement of the proposed NMPC strategy is to consider a cost
function that includes a term accounting for bounded parameter uncertainty. This
transformation may improve the NMPC robustness with respect to model mis-
match especially when implemented on other strains with higher level of uncer-
tainty. This may lead to an increase in the computational burden, but the proposed
transformation using the CVP method provides a significantly low computation
time compared to the sampling time, allowing a margin to include more objec-
tives.
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Chapter 9

General conclusions and perspectives

9.1 Conclusions

The work presented in this thesis aims at developing and implementing a practi-
cal solution to overflow metabolism in fed-batch Escherichia coli cultures through
closed-loop control and estimation strategies. The objective behind the regulation
of the bioprocess is to maximize bacterial growth and drive the culture near the
optimal operating conditions. Another objective is to evaluate and test control
and estimation algorithms developed for the bioprocess under realistic conditions
in the lab-scale bioreactor.

Along with the developed strategies, the experimental setup is transformed
into a reliable closed-loop system with a flexible monitoring and control software
solution. This transformation allows to successfully implementing and validat-
ing the proposed control strategies on the real bioprocess, providing a framework
for more validations of future works considering different control objectives and
strategies. This thesis covered several steps to achieve these objectives:

– A presentation of the bacterial system used in this thesis: Escherichia coli, with
a description of its physiological and metabolic features under aerobic and
anaerobic conditions. The focus is then put on acetate production through the
overflow metabolism mechanism, considering its inhibitory effect on bacterial
growth. The different cultivation modes of bioprocesses are also presented,
with a highlight on the fed-batch mode used in the framework of this thesis.

– A presentation of the macroscopic mathematical model of the fed-batch E.
coli bioprocess. The model is based on the reaction scheme describing the
metabolism of E. coli. The kinetic model is determined according to the bot-
tleneck theory describing the overflow metabolism mechanism in the form of
two metabolic regimes. The presented model is the basis of the estimation and
control schemes implemented in this thesis.

– In order to implement the control and estimation strategies presented in this
thesis, a closed-loop interactive system is developed for a lab-scale bioreac-
tor. This system is composed of a data-acquisition LabView program gathering
the real-time measurements from the various sensors with different acquisition
software. Furthermore, the program has a modular structure for deploying the
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estimation and control algorithms, making it flexible for software and hardware
upgrade and changing the control structure and objectives. Finally, the control
of the feed rate is made possible using peristaltic pumps, turning the bioreactor
from an open-loop to a reliable closed-loop system.

– The developed control strategies require the on-line availability of the main
state variables concentrations (Biomass, Glucose, Acetate). However, the
biomass concentration is the only variable available for on-line measurement.
To overcome this practical hurdle, software sensors are considered for state and
kinetic parameter estimations. In the case of our process, the linear Kalman fil-
ter and the Unscented Kalman filter are implemented to estimate the glucose
and acetate concentrations and other kinetic parameters based on the measured
biomass concentration. These algorithms are tested and tuned in simulation,
based on previous data from the bioprocess, and validated in the control exper-
iments.

– The different control strategies developed and implemented in fed-batch fer-
mentation by feed-rate manipulation are presented. The main differences be-
tween the control methods are the requirements, complexity, process operation,
and control objectives. This presentation provides a basis and a guide to formu-
late the control problems depending on the available materials, methods, and
objectives.

This thesis focused on maximizing the biomass productivity and avoid acetate
accumulation in fed-batch E. coli cultures. The availability of a reliable process
model and on-line biomass measurements lead to the consideration of model-
based methods to regulate the biomass growth rate and develop state estimators
based on biomass measurement. Three strategies control are developed:

– First, an adaptive biomass regulation strategy is developed based on the
Generic Model Control algorithm. A model order reduction is applied to ob-
tain a control law independent from kinetic terms and avoid high flow rates.
Parameter adaptation based on the linear Kalman filter is coupled to the con-
troller to estimate the unmeasured terms of the control law and adapt to model
mismatch.

The controller is set to track a defined growth rate reference chosen slightly
lower than the maximal growth rate to avoid acetate accumulation while
maximizing biomass productivity. The performance of the proposed strat-
egy is tested in simulation, and validated through fed-batch experiments of a
BL21(DE3) E. coli strain were achieved on a lab-scale bioreactor.

– Secondly, a robust variation of the Generic Model Control strategy is developed
and applied to regulate the acetate concentration at a defined low level in fed-
batch cultures of E. coli BL21 (DE3). A robust design procedure using the LMI
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formalism is carried out to account for model mismatch, disturbances, and mea-
surement noise. Performance constraints are also formulated with LMIs to
ensure desired properties of the closed-loop transient response.

The robust GMC controller combined with the state estimation by the UKF is
validated both in simulation runs and in real-time experimental conditions.

– Finally, an implementation of the nonlinear model predictive control strategy
on the fed-batch E. coli is considered to regulate the acetate concentration to a
low value. The NMPC strategy is chosen for its several advantages, like the
implicit use of the nonlinear model equations for the prediction and state and
control constraints.

To improve the computation performance and reduce the complexity of the
optimization problem, the latter is transformed into a nonlinear programming
problem using the control vector parametrization (CVP) approach.

The NMPC strategy coupled to the UKF estimator is validated through simula-
tions and experiments on the lab-scale reactor. The experiments also validated
that regulating the acetate concentration to a low level leads to higher biomass
concentrations, lower cultivation time, and higher biomass productivity.

This thesis presented practical control solutions to growth inhibition by acetate
accumulation in fed-batch E. coli cultures. These control methods, along with mon-
itoring and estimation solutions, were tested on real-time conditions in a lab-scale
bioreactor. The obtained results highligthed the efficiency of the proposed strate-
gies, and their benefits in comparison to open-loop strategy (increase of biomass
productivity of about 20% over 10 h).

The difference between the proposed control strategies can be summarized in
two main categories: Control objective and the method type and complexity.

Regarding the control objectives, two main approaches were investigated. Reg-
ulating the biomass concentration at a targeted reference growth rate and regulat-
ing the acetate concentration at a low level.

The biomass regulation is performed by tracking a generated biomass profile
corresponding to a specified growth rate. The operational advantage of this ap-
proach is that it does not require state estimation, thanks to reliable biomass mea-
surements. Another advantage is the reproducibility of results, even under model
mismatch (assuming that the control method is robust).

The main issue lies in the definition of the control problem. The method re-
lies on defining a distance from the maximal growth rate, which is an uncertain
variable linked to the cells critical capacity. Underestimating the maximal value
can lead to uncontrolled overflow and acetate accumulation due to overfeeding.
This could be a problem at high cell densities where a slight increase in the sub-
strate concentration can provoke acetate fermentation. Overestimating the max-
imal value, on the other hand, leads to underfeeding and long cultivation time.
The resulting biomass yield is even lower than its maximal value.
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The acetate concentration, on the other hand, is directly linked to the metabolic
optimum. Acetate is produced when the cell’s oxidative capacity is exceeded. Ide-
ally, acetate should be equal to zero, but practically this can lead to uncontrolled
metabolic switches causing cell stress and slowing their metabolism. Further-
more, an acetate concentration equal to zero can also be achieved by underfeeding,
which is not ideal for a biomass yield maximization objective.

One could target the critical substrate concentration, but this value is very low
(0.0375 g/L), and any small fluctuations around this value can cause a switch be-
tween respirative and respiro-fermentative regimes. In addition, no reliable mea-
surement or estimation solutions exist for this concentration range.

Therefore, regulating the acetate concentration to a low value close to zero is
more practical. This value is linked to the maximal oxidative capacity, and if the
latter is uncertain, the metabolic performance is preserved. Another advantage is
that acetate provides an on-line indicator of the culture metabolic state.

The challenge raised by this approach is the necessity of accurate acetate es-
timation, which requires a reliable process model, and experimental data. Re-
garding the control methods, this thesis investigated feed-back linearization and
predictive methods.

The GMC offers a straightforward solution to the control problem with mini-
mal computation burden. This feature makes the GMC a good candidate for real-
time implementations of set-point and trajectory tracking problems. However, this
comes with the cost of long transient phases and tracking errors caused by model
uncertainties.

Considering a robust design and adaptive schemes can improve the control
performance with uncertain models and unpredicted dynamics. The NMPC con-
troller allows the inclusion of state and input constraints, flexibility in the defini-
tion of the control law, and implicit use of the nonlinear model. These features
lead to better tracking performance and lower transient phases. Consequently, the
biomass productivity and metabolic performance of the cells is higher when using
the NMPC compared to the GMC.

However, the implementation of the NMPC comes with a high computational
burden due to the strong nonlinearities in bioprocess models, especially when sev-
eral operational constraints are considered. Furthermore, the robust design of the
NMPC is not as straightforward as the GMC and raises the calculation complex-
ity. Time-saving strategies can reduce the computation load while maintaining the
benefits of the predictive strategies.

Finally, model-based strategies offer the opportunity to investigate several
developed solutions from control theory. However, the performance is directly
linked to the process model parameters. The uncertain nature of bioprocess and
the complexity of the biological dynamics requires rigorous parameter estimation
schemes.
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9.2 Recommendations for future research

The work that has been undertaken during this thesis has underlined several ar-
eas for further research. These include further investigation and improvement in
experiments, modeling, estimation, and control.

9.2.1 Experimental implementation

Hardware & software

Regarding implementing the closed-loop system, several improvements can be
made regarding the hardware setup and the computation efficiency. Developing
a dedicated bioprocess control library in LabView would be extremely useful to
improve the efficiency of the current solution and easily implement other control
structures and algorithms. Furthermore, it will provide a useful platform for ex-
periments on different bioprocesses such as Microalgae and Hybridoma cells.

On this topic, using the shared libraries function in LabView allows the in-
tegration of Dynamic Link Libraries (DLL). This provides a significant gain in
computation time since dynamic libraries contain compiled dynamic functions
mainly developed in C or C++. Several efficient and open-source libraries ded-
icated to nonlinear integration and optimization can be found for these languages,
such as libIntegrate, OptimLib, ACADO, and many others. Thereby, creating a
dedicated bioprocess modeling, control, and estimation library based on shared
libraries function can open doors for testing several algorithms.

Biological aspects

An area of improvement on the biological aspects of the experiments would be
testing the same control algorithm on different strains of E. coli, and comparing
the results to showcase the robustness towards the model kinetic and yield pa-
rameters.

Another perspective is testing and validating the strategies on higher bioreac-
tor scales since the lab-scale reactor presented a limitation for testing the perfor-
mance under higher cell densities.

The application of the developed algorithms and monitoring tools on other
microorganisms exhibiting overflow metabolism would be an interesting area to
explore. An example is the regulation of ethanol concentration in Saccharomyces
cerevisiae cultures.

9.2.2 Model and Estimation

Regarding the process model, considering the differentiable E. coli model pre-
sented in (Anane et al., 2017) can lead to several improvements, especially regard-
ing the state estimation. This model is based on the acetate cycling principle and
contains continuous functions for the glucose and acetate kinetics. The consider-
ation of this model requires carrying a new set of cultures using gas analyzers.
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These experiments dedicated to model identification would be beneficial for de-
veloping new model-based strategies.

The soft sensors area can be improved by developing a joint parameter-state
estimation strategy. For example, the on-line estimation of the maximal growth
rate can improve the state estimation accuracy and the control efficiency. .

On the other hand, it would be interesting to develop and implement a mov-
ing horizon estimator (MHE) (Allgöwer et al., 1999) coupled with the NMPC con-
troller. The MHE is an optimization-based state-estimation method that shares the
same algorithmic structure as the MPC. Thereby, it allows the explicit use of non-
linear models leading to higher estimation quality than Kalman filtering methods.
Another advantage of the MHE is the possibility to incorporate constraints on the
estimated variables and the flexibility in the definition of the cost function. Fur-
thermore, several robust variations of the MHE have been developed for uncertain
systems, making it an appropriate choice for bioprocesses. The main challenge fac-
ing this implementation would be reducing the calculation complexity for reliable
real-time results.

9.2.3 Control

Control objectives

Regarding the biological aspects of the control schemes, it would be interesting to
consider the maximization of the glucose oxidation while minimizing the acetate
formation. This concept is presented in a simulation study (Santos et al., 2012b),
and achieved by optimizing a cost function in an NMPC framework. A recom-
mendation for the real-time implementation is to add a safety margin from the
optimum (metabolic edge) in order to avoid repetitive switches. A combination
with the Receding Horizon Estimator with parameter and state estimation would
be ideal for this type of control.

Control methods

The control schemes presented in this thesis managed to achieve the control objec-
tives, but improvements on the strategies could be made. Implementing a robust
predictive scheme using a min-max NMPC (Scokaert and Mayne, 1998) or a Tube
NMPC (Langson et al., 2004) would improve the robustness, especially on higher
cell densities. However, these strategies must be followed with computation time-
saving methods (sensitivity analysis, efficient optimization algorithms, ...).

Another area is to consider probing methods such as Extremum seeking (ES)
(Ariyur and Krstić, 2003), where a cost function is minimized, and the unknown
optimum is tracked on-line without the need for a process model. A problem fac-
ing this implementation is the necessity of substrate measurements at low levels.
This problem can be solved by robust substrate estimation or by combining the Ex-
tremum seeking algorithm with the probing control structure presented in (Kesson
et al., 2001), where the dissolved oxygen measurements were used to detect and
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avoid overflow metabolism. A robust formulation of the ES algorithm would also
be beneficial for higher performance.
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Appendix A

Kalman Filter algorithms

A.1 Linear Kalman Filter

The classical Kalman filter addresses the general problem of state estimation in
linear stochastic processes. We consider the following discrete-time recursive
stochastic system:

ξk = Ak−1ξk−1 + Bk−1uk−1 + vk−1 (A.1a)
yk = Ckξk + wk (A.1b)

where ξ ∈ Rn is the state vector, u ∈ Rm is the system input, y ∈ Rp is the
measurement vector.

The matrix Ak ∈ Rn×n in Equation (A.1a) relates the state ξ at instant k, and the
matrix Bk ∈ Rn×m relates the control input u to the state ξ. The matrix Ck ∈ Rp×n

in Equation (A.1b) relates the state ξ to the measurement yk.
vk and wk represent the process and measurement noise, respectively. They are

assumed to be non-correlated, have a zero mean and normal probability distribu-
tions:

v ∼ N (0, Q)
w ∼ N (0, R)

(A.2)

where

• Q is covariance matrix of process noise vk.

• R is covariance matrix of measurement noise wk.

The process noise vk is used to model the confidence in the system model, while
the measurement noise wk is used to model the measurement quality.

Given the knowledge of the process evolution prior to the instant k, we define
the a priori state estimate at step k as ξ̂−k ∈ Rn. Similarly, given the measurement
yk at instant k, the a posteriori state estimate is refered to as ξ̂k ∈ Rn.
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Definition: The a priori and a posteriori estimation errors are defined as follows
(Welch and Bishop, 1995):

e−k , ξk − ξ̂−k
ek , ξk − ξ̂k

(A.3)

The a priori and a posteriori covariance matrices of the estimation errors are
defined as:

P−
k = E

[
e−k e−T

k

]
(A.4)

Pk = E
⌊

ekeT
k

⌋
(A.5)

where E is the mathematical expectation.

A.2 Kalman filter algorithm

The Kalman filter algorithm consist in two major phases: a prediction phase be-
tween instants k − 1 and k, and an update phase at instant k.

First, the initial estimated state vector and covariance matrix are initialized:

ξ̂0 = E [ξ0]

P0 = E
[
e0 eT

0

] (A.6)

where P0 represents the initial covariance matrix of the estimation error, and ξ0
and ξ̂0 represent the initial state and the initial state estimate, respectively.

Prediction:

In this step, the model and the covariance P−
k−1 are used to calculate the estimated

a priori state ξ̂−k .

ξ̂−k = Ak−1ξ̂k−1 + Bk−1uk−1

P−
k = Ak−1Pk−1AT

k−1 + Q
(A.7)

Update:

At instant k, the available measurement yk is used to update the a posteriori esti-
mated state ξ̂k and the covariance matrix Pk.
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Ωk = P−
k CT

k

(
CkP−

k CT
k + R

)−1
(A.8)

Pk = (I − ΩkCk) P−
k (A.9)

ξ̂k = ξ̂−k + Ωk
(
yk − Ck ξ̂−k

)
(A.10)

where Ω is called the Kalman gain, it minimizes the trace of the covariance
matrix of the a posteriori estimation error presented in equation Equation (A.9). The
term

(
yk − Ck ξ̂−k

)
is called the residual or the measurement innovation term.

The prediction and update steps are repeated at the next sampling point. The
algorithm is initialized with the previous a posteriori estimates and covariance ma-
trix. These are then used as initial variables in a new prediction step to calculate
the new a priori estimates.

Tuning the Kalman filter

The tuning of the filter parameters is performed prior to the initialization of the
filter using the process noise Q and the measurement noise R covariance matrices.

The measurement noise covariance R is chosen depending on the measure-
ment quality and the sensor characteristics. The process covariance matrix Q is
usually tuned to model the uncertainty of the process model on each state vari-
able. Adding sufficient uncertainty to the matrix Q improves the filter estimation
quality in the case of uncertain systems.

Extended Kalman filter

The EKF is applied to systems represented by nonlinear differential equations,
where a linearization is performed around the current state using the partial
derivatives of the process and measurement functions to compute estimates. Let
us consider the following stochastic continuous nonlinear system:

ξ̇(t) = f (ξ(t), u(t)) + v(t)
y(t) = h(ξ(t)) + w(t)

(A.11)

where ξ ∈ Rn is the state vector, u ∈ Rp is the input vector, y ∈ Rm is the
measurement vector, f (·) and h(·) are nonlinear functions. v ∼ N (0, Q) is the
process noise vector, w ∼ N (0, R) is the measurement noise vector. They are
assumed to be non-correlated.

The extended Kalman filter applied to the system (A.11) is an extension of the
classical Kalman filter in the linear case. It requires to linearize the nonlinear state
and measurement equations around the estimated trajectories.

In the context of bioprocess monitoring, the concentration measurements are
obtained at discrete times due to sampling or processing delays in the sensors. On
the other hand, as presented in chapter 2, the dynamic models of bioprocesses are



176 Appendix A. Kalman Filter algorithms

continuous. Thus, a continuous-discrete of formulation of the Extended Kalman
Filter is considered (Särkkä, 2007), where the state dynamics are modeled as con-
tinuous time process, and the measurements are obtained at discrete times.

The EKF algorithm follows the same steps as the linear Kalman filter: the pre-
diction phase between instants k − 1 and k, and the update phase at instant k. The
initialization step also remains the same (Equation (A.6)).

The prediction phase uses the continuous model to obtain the a priori esti-
mated state and covariance matrix, and the update phase uses the classical discrete
Kalman filter equations.

Prediction:

The a priori prediction of the state, ξ̂−k , and the a priori covariance matrix P−
k are

obtained by solving:

˙̂ξ(t) = f (ξ̂(t), u(t))
Ṗ(t) = AP(t) + P(t)A> + Q(t)

(A.12)

with

ξ̂−k = ξ (tk)

P−
k = P (tk)

(A.13)

The matrix A is obtained by linearizing the dynamics around the current state
estimate ξ̂k−1

A =
∂ f (ξ, u)

∂ξ

∣∣∣∣
ξ=ξ̂k−1

(A.14)

Update:

The measurement yk is used to update the prediction and calculate the a posteriori
estimate ξ̂k:

Ωk = P−
k CT

k

(
CP−

k CT + Rk

)−1
(A.15)

Pk = (I − ΩkC) P−
k (A.16)

ξ̂k = ξ̂−k + Ωk
(
yk − h

(
ξ̂−k
))

(A.17)

where the matrix C is obtained by linearizing the measurement function around
the current state estimate:
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C =
∂h(ξ, u)

∂ξ

∣∣∣∣
ξ=ξ̂−k

(A.18)

The prediction and update steps are repeated for the next measurement at in-
stant k + 1.

A.3 The Unscented Kalman filter

The UKF algorithm is composed of three main steps. First, a set of determin-
istically chosen points (called sigma-points) around the current state estimate is
generated via the unscented transform. Next, the classical prediction (between in-
stants k − 1 and k) and the update (at instant k) phases of the Kalman filter are
performed. The estimated state and covariance matrix are initialized by Equa-
tion (A.6).

First, a discrete-time prediction model is obtained by the integration of the con-
tinuous time state-space model (A.11) using a Runge-Kutta method. Thus, the pre-
diction step is performed using the following equations, considering a constant
sampling time Te :

ξk = Ψ
(
ξk−1, Fink

)
yk = Hξk

(A.19)

where the index k is the discrete time, ξk and yk are the discrete state vector and
the sampled measurement at time kTe, respectively. Ψ is the evolution function,
and H is the measurement matrix. The control input Fink is parametrized using a
piecewise constant approximation.

The unscented transform (UT):

The unscented transform (UT) is the first step in the UKF algorithm (Julier and
Uhlmann, 2004), it is a mathematical transformation used to approximate the gaus-
sian distribution of random variables.

The UT consists in generating a set of deterministically chosen sigma-points
χ around the current state estimate. The UT role is to capture the mean of the
stochastic variable ξ̂− and covariance of the estimation error P. The generated
sigma-points are then propagated through the nonlinear function Ψ[.] to estimate
the mean and covariance of ξ.

First, a set of 2n + 1 sigma points is generated as follows:
χ0

k−1 = ξ̂−k−1, i = 0
χi

k−1 = ξ̂−k−1 + (
√
(n + Λ)P)i, i = 1, . . . , 2n

χi
k−1 = ξ̂−k−1 − (

√
(n + Λ)P)i, i = n + 1, . . . , 2n

(A.20)
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where

• ξ̂−k−1Rn the a priori estimated state at instant k − 1.

• χi
k−1 is the ith generated sigma point at instant k − 1.

• P is the covariance of the estimation error.

• Λ is a scaling parameter defined as Λ = α2(n + κ)− n.

The corresponding weights of the sigma points are computed as follows:
ω0

m = Λ
n+Λ

ω0
c = Λ

n+Λ +
(
1 − α2 + β

)
ωi

m = ωi
c =

1
2(n+Λ)

, i = 1, . . . , 2n
(A.21)

where

• ωi
m and ωi

c represent respectively the weights of the mean and the covari-
ance.

• α, κ, and β are positive constants tuned to set the appropriate spread of the
sigma points.

Prediction

The prediction phase (between k and k + 1) consists in computing the a priori pre-
dicted state ξ̂−k and the predicted a priori covariance matrix P−

k .
The sigma vectors are propagated through the nonlinear function Ψ, and the

predicted value and covariance of the prediction error are computed using the
weights ωi.

χi−
k = Ψ

(
χi

k−1

)
(A.22)

ξ̂−k =
2n

∑
i=0

ωi
mχi−

k (A.23)

P−
k =

2n

∑
i=0

ωi
c

[
χi−

k − ξ̂−k

] [
χi−

k − ξ̂−k

]T
+ Q (A.24)

where

• χi−
k the a priori generated sigma point at instant k.

Update

The update step (at k + 1) consists in using the measurements at time k to correct
the estimated state ξ̂−k and covariance of the estimation error P−

k obtained in the
previous step.
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The predicted measurement ŷk is calculated by propagating the predicted
sigma points through the measurement function H[.]:

Ŷi
k = H

(
χi−

k−1

)
(A.25)

ŷk =
2n

∑
i=0

ωi
mŶi

k (A.26)

The measurement covariance matrix Pỹk ỹk and the cross covariance matrix Pxyyk
are then computed:

Pỹk ỹk =
2n

∑
i=0

ωi
c

[
Ŷi

k − ŷk

] [
Ŷi

k − ŷk

]T
+ R (A.27)

Pxkyk =
2n

∑
i=0

ωi
c

[
χi−

k − ξ̂−k

] [
Ŷi(k) − ŷk

]T
(A.28)

(A.29)

Finally, the measurement update is performed using the Kalman filter equations:

Ωk = Pxkyk P−1
ỹk ỹk

(A.30)

ξ̂k = ξ̂−k + Ωk (yk − ŷk) (A.31)

Pk = P−
k − ΩkPỹk ỹk ΩT

k (A.32)

where Ωk is the Kalman gain, and Pk is the a posteriori estimated state and
covariance of the estimation error.
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Appendix B

Culture monitoring

B.1 Biomass concentration measurements

The biomass concentration was obtained by determining the cell dry weight of a
selected set of samples at different concentrations, then correlated with the optical
density (OD) measurements. The procedure is summarized in the following steps:

• Place the filters (45 µm) at 105◦C overnight.

• Weight the filters using an analytical balance.

• Prepare standard solutions at different dilutions from a sample.

• Measure the OD of the prepared samples.

• Filter 10 mL of the samples and store them overnight at 105◦C.

• Weight the filtered samples using an analytical balance.

• Calculate the biomass concentration Xsample using:

Xsample =
Average Cell Dry Weight

Filtered Volume

• Build a chart of the biomass concentration Xsample versus the optical density
(OD) in the linear range

The results of one of the dry weight and calibration experiments are given in
Table B.1 and illustrated in Figure B.1.

B.1.1 Biomass probe calibration

The calibration is carried out using the off-line biomass measurements and the
optical density obtained from the Turibidimetric probe (Fandalux, Germany) (Fig-
ure B.2). Several calibration methods were tested (linear, exponential) and the
polynomial curve presented the best trade off between data fit in high densities,
and stability under airflow disturbances.
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TABLE B.1: Calibration of the biomass concentration from the optical
density measurements

Filter Weight (g) Optical Density Xsample

Sample Filter Filter + Biomass Biomass (abs) (g/L)
0 0.301 0.301 0 0.098 0
1 0.280 0.300 0.0198 5.420 1.980
2 0.349 0.361 0.0170 3.097 1.170
2 0.302 0.311 0.008 2.587 0.800
4 0.301 0.306 0.005 1.805 0.540
5 0.366 0.369 0.003 1.234 0.370
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FIGURE B.1: Biomass concentration calibration curve from the optical
density measurements

B.2 Glucose concentration measurements

The glucose measurements were performed using the dinitrosalysilic acid (DNS)
method, described hereafter:

DNS reagent preparation

• Dissolve 1.00 g of DNS in 20 mL of NaOH 2 M

• Dissolve 30 g of Potassium sodium tartrate tetrahydrate (Rochelle salt) in
50mL of distilled water.
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FIGURE B.2: Biomass concentration calibration curve from the optical
density measurements

• Stir until complete dissolution then mix the prepared solutions.

• Heat and mix to homogenize.

• Fill with distilled water for a final volume of 100 mL.

• Store in amber bottle at 4◦C.

Sample preparation and measurement procedure

• Add 1mL of culture supernatant and 1mL of DNS reagent.

• Boil the mix in a 100◦C water bath for 5 min.

• Add 8 mL of distilled water after cooling to room temperature.

• Homogenize and read the absorbance at 540nm in the spectrophotometer.

The blank solution follows the same procedure as the samples, but the culture
supernatant is replaced with distilled water.

Calibration

An example of glucose calibration results is given in Table B.2. Figure B.3 shows
a calibration curve obtained during this experiment. The data fit is linear in the
range of 0 to 1 g/L with a correlation coefficient of 0.996.
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TABLE B.2: Calibration of the glucose measurements using the DNS
procedure

Sample Concentration OD 1 OD 2 OD 3
g/L abs abs abs

1 0 0.044 0.046 0.042
2 0.2 0.165 0.168 0.166
3 0.4 0.260 0.276 0.266
4 0.5 0.341 0.341 0.356
5 0.8 0.487 0.491 0.480
6 1 0.637 0.629 0.635
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FIGURE B.3: Glucose concentration calibration curve from the optical
density measurements

B.3 Acetate concentration measurements

Acetate concentration measurements were performed with an enzymatic kit
(Megazyme, Ireland) according to the manufacturer’s instructions. The calibra-
tion of the measurements was performed using the standard solution provided
with the measurement kit. The concentrations are obtained by measuring the op-
tical density (OD) of the samples and a calibration curve.

The acetate calibration is carried out by triplicate. Table B.3 and Figure B.4
show one of the calibration curves performed during the study. The method
demonstrated linearity in a range of 0 to 0.25 g/L with a correlation coefficient
of 0.98.
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Calibration

TABLE B.3: Calibration of the acetate measurements using the enzy-
matic kit

Sample OD C(nM/µL) C(g/L)
0 0.257 0.012714777 0.015016151
2 0.322 0.035051546 0.041395876
4 0.421 0.069072165 0.081574227
6 0.542 0.110652921 0.1306811
8 0.708 0.167697595 0.198050859

10 0.816 0.204810997 0.241881787
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FIGURE B.4: Acetate concentration calibration curve from the Optical
density measurements
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Appendix C

GMC biomass regulation parameters

C.1 Closed-loop response and parameter tuning

A closed loop response showcasing the closed-loop behavior for different tuning
values of the damping ratio ξ and the response time tr are shown in Figures C.1
and C.2. These variables are used to set the GMC control parameters for the
biomass regulation presented in chapter 6.
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FIGURE C.1: GMC biomass tracking response specification with pa-
rameters for for different values of ξ for the E. coli BL21 model.
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FIGURE C.2: GMC biomass tracking response specification for for
different values of tr for the E. coli BL21 model.

C.2 Expressions of the αj coefficients

Theoretical expression of the αj coefficients presented in chapter 5, calculated us-
ing Matlab Symbolic Toolbox:

α1 = 9SinKOS − 9KSKOS + 50KSkX1qOmax − 50KSkX2qOmax − 50SinkX1qOmax

+ 50SinkX2qOmax − 50SinKOSkX2qSmax

α2 = +50KOSqSmax

α3 = 81K2
SK2

OS − 900K2
SKOSkX1qOmax + 900K2

SKOSkX2qOmax + 2500K2
Sk2

X1q2
Omax

− 5000K2
SkX1kX2q2

Omax
+ 2500K2

Sk2
X2q2

Omax
− 900KSSinK2

OSkX2qSmax

+ 162KSSinK2
OS + 5000KSSinKOSkX1kX2qOmax qSmax − 1800KSSinKOSkX1qOmax

− 5000KSSinKOSk2
X2qOmax qSmax + 1800KSSinKOSkX2qOmax + 5000KSSink2

X1q2
Omax

− 10000KSSinkX1kX2q2
Omax

+ 5000KSSink2
X2q2

Omax
− 900KSXsetK2

OSqSmax

+ 5000KSXsetKOSkX1qOmax qSmax − 5000KSXsetKOSkX2qOmax qSmax + 2500S2
inK2

OSk2
X2q2

Smax

− 900S2
inK2

OSkX2qSmax + 81S2
inK2

OS + 5000S2
inKOSkX1kX2qOmax qSmax − 900S2

inKOSkX1qOmax

− 5000S2
inKOSk2

X2qOmax qSmax + 900S2
inKOSkX2qOmax + 2500S2

ink2
X1q2

Omax

− 5000S2
inkX1kX2q2

Omax
+ 2500S2

ink2
X2q2

Omax

α4 = 5000SinK2
OSkX2q2

Smax
+ 900SinK2

OSqSmax − 5000SinKOSkX1qOmax qSmax

+ 5000SinKOSkX2qOmax qSmax

α5 = 2500K2
OSq2

Smax

α6 = 2(9KOS − 50kX1qOmax + 50kX2qOmax − 50KOSkX2qSmax)
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Appendix D

Sensitivity analysis

In view of analyzing the robustness of the control strategies to plant-model mis-
match, the most influencing parameters are determined by a parametric sensitivity
study. The influence of a parameter θj on the model output xi can be quantified
by:

d
dt

(
∂xi

∂θj

)
=

∂

∂θj

(
dxi

dt

)
(D.1)

The expressions of the parametric sensitivities for the E. coli model are therefore
given by:

d
dt

(
∂xi

∂θj

)
=

∂F i

∂θj
+

∂F i

∂X
∂X
∂θj

+
∂F i

∂S
∂S
∂θj

+
∂F i

∂A
∂A
∂θj

+
∂F i

∂V
∂V
∂θj

(D.2)

where F i represents the n differential equations of the state variables xi, and θj

represents the parameters (j = 1, 9) from the following vector:

θ = [kX1 kX2 kX3 kA2 qSmax qOmax Ks KiA Ka] (D.3)

Figure D.1 shows a simulation of model in open-loop over 2 h, with initial
conditions : [X0 S0 A0 V0]

T = [0.1 g/L 0 g/L 0 g/L 3.5 L]T and Fin = 0.02 L/h. The
growth rate µ3 = 0 confirms that the culture is maintained in oxydo-fermentative
mode.

Figures D.2 to D.4 shows the normalized parameter sensitivity functions for the
biomass, substrate, and acetate concentrations. Table D.1 summuarizes the degree
of influence of the model parameters on each variable.
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FIGURE D.1: Evolution of the state variables X, S, A, and V, and the
growth rates µ1, µ2, and µ3, in oxydo-fermentative mode.
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TABLE D.1: Ranking of the model parameters according to their re-
spective influence on the state variables (From most to least influent)

Influence on X Influence on S Influence on A
kX2 qs max qs max

qs max kX2 kX2
kX1 kX1 kA2
KS qO max qO max
KiA Ks kX1
kA2 kA2 KiA

qO max KiA KS
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Pareau, Aurore Thorigné, and Sébastien Givry (2015). “Adaptive Control of
Lactic Acid Production Process from Wheat Flour”. In: IFAC-PapersOnLine 48.8,
pp. 1087–1092.

Gorrini, Federico Alberto, Jesús Miguel Zamudio Lara, Silvina Inés Biagiola, José
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Résumé: Escherichia coli est un hôte cellu-

laire très répandu pour la production indus-

trielle de produits bio-pharmaceutiques à base

de protéines. Cette production, principale-

ment opérée en mode fed-batch, vise à max-

imiser la productivité de la biomasse. Cepen-

dant, l'accumulation d'acétate durant la cul-

ture inhibe la capacité respiratoire des cel-

lules et diminue leur performance métabolique.

Dans cette thèse, des stratégies de commande

de l'alimentation sont envisagées pour éviter

l'accumulation d'acétate et maximiser la pro-

ductivité de la biomasse. A cette �n, des sché-

mas de commande et d'estimation à base de

modèle sont développés pour réguler le taux de

croissance de la biomasse et la concentration en

acétate. Les méthodes de commande vont du

contrôle par modèle générique au contrôle pré-

dictif par modèle non linéaire, et les variables

non mesurées sont estimées à l'aide du �ltre

de Kalman � sans parfum �. Les développe-

ments ont porté sur la robustesse des méthodes

proposées en raison de la nature incertaine du

bioprocédé. La performance et la robustesse

des schémas de commande et d'estimation sont

testées et ajustées au travers de di�érents scé-

narios de simulation. Des cultures en mode

Fed-batch de la souche E. coli BL21(DE3) sont

réalisées avec succès sur un bioréacteur de lab-

oratoire, mettant en évidence le potentiel des

stratégies proposées dans un contexte de condi-

tions opératoires en temps réel. Les stratégies

de commande proposées dans cette thèse per-

mettent un gain moyen jusqu'à 20% de la pro-

ductivité de la biomasse par rapport au mode

de fonctionnement conventionnel.
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Abstract: Escherichia coli is a widespread

cellular host for the industrial production of

protein-based biopharmaceuticals. This produc-

tion, mainly operated in fed-batch mode, aims

to maximize biomass productivity. However,

the accumulation of acetate during the culture

inhibits the cells respiratory capacity and low-

ers their metabolic performance. In this thesis,

closed-loop feeding control strategies are consid-

ered to avoid acetate accumulation and maxi-

mize biomass productivity. To this end, model-

based control and estimation schemes are devel-

oped to regulate the biomass growth rate and

the acetate concentration. The control meth-

ods ranged from the Generic Model Control

and Nonlinear Model Predictive Control, and

the non-measured variables are estimated us-

ing the Unscented Kalman Filter. The devel-

opments focused on the robustness of the pro-

posed methods due to the uncertain nature of

the bioprocess. The performance and robust-

ness of the control and estimation strategies are

tested and tuned by means of di�erent scenar-

ios of simulation runs. Fed-batch cultures of

E. coli BL21(DE3) strain are successfully car-

ried on a lab-scale bioreactor, highlighting the

potential of the proposed strategies in real-time

conditions. The proposed control strategies pre-

sented in this thesis lead to an average gain of

up to 20% in biomass productivity compared to

the conventional operating mode.
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