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Introduction

Modern physics is a young science, but it may be interesting to look at its short
history. At the end of the XIXth century, most if not all physicists believed that the
entire physical phenomena were understood and the physical experiments that, at this
stage, were not well understood will be soon explained using the same formalism.
The future has of course proved them wrong, and the experimental data which, at that
time, were still waiting for an explanation have opened the way to all the physics of the
XXth century, namely the General Relativity on one side and the Quantum Mechanics,
followed by the Quantum Field Theory on the other side.

During the XXth century, improvements of our knowledge of Quantum Field The-
ories and their phenomenological implications, linked to huge progress in the exper-
iment side, lead to the edification of a very impressive phenomenological model, the
Standard Model. This model explains with a tremendous accuracy a lot of experi-
mental results obtained during the last decades. In 2012, the announcement of the
discovery of the Higgs boson, then a missing piece of the SM, can be seen as a major
achievement of theoretical and experimental physics of the last half-century. But in the
same time, there are some phenomena for which physics explanations have not been
found yet. For some astronomical observation an unknown Dark Matter has been in-
voked. Also, for example, the nature of masses of the neutrinos, and the protection of
the Higgs boson mass under the quantum corrections remain open issues.

However, if in a first approach one can establish a parallel between today and where
the physicist were one century ago, the situation is, when looking at the details, very
different. First, we believe that the Standard Model (SM) is an Effective Field Theory,
and so it is understood that this theory is not valid at all energy scale, but has a max-
imal energy scale, its cut-off, beyond which the model has to be modified. Besides, if
the SM gives a very good understanding of the three fundamental interactions between
particles, it doesn’t take into account a quantum description of gravity. The construc-
tion of a complete quantum gravity theory has not yet been achieved. Proposals for
high energy extensions of the SM can be divided more or less in two categories. On
one side, there are models adding one or several fields to the standard model ones, but
always in the framework of an EFT. The cut-off is pushed to higher energies. These
models aim to explain some experimental observations that the SM doesn’t take into
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INTRODUCTION

account. On the other side, there are a few proposals of UV-completion, complete the-
oretical frames valid for all energy, and in particular including a theoretical description
of quantum gravity. This is the case of the String Theory. Since they are defined at all
energies, they could a priori make predictions for the EFT at experimentally accessible
energies.

Here, we will discuss some present approaches to discriminate Effective Field The-
ories, using the terminology introduced a few years ago. The EFT consistent with a
UV completion form the Landscape, and those that cannot arise from a quantum grav-
ity theory lie in the Swampland. We are interested in the goal and different results of
conjectures that have been put forward within this line of thoughts. We will focus on
a particular conjecture, namely the Weak Gravity Conjecture (WGC). This states that
gravity is weaker than gauge forces. We will see how it is possible to implement it, in
a quite formal and proper way for a single abelian gauge field. This simple case, has
not found an important phenomenological impact. However, several authors have ex-
tended this conjecture, and we will present some of possible ways here. These include
for example to the case of multiples abelian gauge fields, or the presence of a mass-
less scalar field. Though they don’t change the spirit of the conjecture, the required
modifications are important.

The WGC has not found many phenomenological applications, with the exception
of [46]. This will be presented in chapter 2. It concerns the case of U(1) mixing. Indeed,
in the case of tiny mixing, the WGC gives an upper bound on the scale of new physics.
We will also see that a tiny mixing can be obtained in a low string scale framework,
advocating for the use of the WGC in this model.

The following chapters focus on the exploration of another form of the WGC, one
comparing scalar interactions to gravitational ones ([45]). In particular, dealing with
scalar self-interactions turns not to be a so simple extension of the WGC presented in
the first chapter. We will present a formulation based on the computation of forces
in the non-relativistic limit. We will investigate different scalar potentials, having in
mind, in particular, cosmological applications. We will also study the implication of
the derived constraints for the case of several scalars, or moduli. We will look at how
these constraints evolve under the dimensional reduction, and the effect of a potential
that stabilizes the scalar fields. For the case where the scalar is a dilaton, adding a
potential can lead allow non-asymptotically flat black hole solution for the Einstein-
Maxwell-dilaton equation of motion. This leads us therefore to study the behaviour of
the the WGC for non asymptotically flat space ([44]).

The second, independent part of the thesis, concerns different subjects.
The chapter 6 is dedicated to the study of a new possibility of signal for indirect

detection of spin-3/2 particles [47]. Assumed to couple only through a gravitational
portal, these are difficult to detect. But 2016 has inaugurated a new way to probe
gravitational interactions, namely through detection of gravitational waves. We have
looked for physical processes where the presence of spin-3/2 leaves an imprint in the
production of such signals. This happens for instance during preheating, at the end of
the inflation, where stochastic gravitational waves can be copiously produced. We will
present the computation of the spectrum of gravitational waves produced by a gas of
spin-3/2 particle.

The last chapter 7 is devoted to the study of a peculiar model of Higgs alignment

viii



([49]). In model with more than one Higgs doublet, the Higgs boson observed at the
LHC is one eigenstate of the mass matrix. But the experimental constraints require
that this scalar is also to a very good approximation in the direction of the doublet
acquiring a vacuum expectation value. This feature is denoted "alignment". We will
look at a particular model where a peculiar SU(2) symmetry predicts the alignment at
tree level. Even broken, this symmetry allows to keep small the misalignment induced
by loop corrections.
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CHAPTER 1

An introduction to the Swampland and the Weak Gravity
Conjecture

1.1 The Weak Gravity Conjecture

The Weak Gravity Conjecture is a relation between the gravity and the other forces
at the level of the Effective Field Theory (EFT). Before presenting the Weak Gravity
Conjecture (WGC), we will give a short presentation of the frame in which this conjec-
ture has been elaborated, which is called the Swampland.

1.1.1 The Swampland

It is important for physicists to test their theories. Sometimes, experimental data are
available, and can be confronted with theory. Then, one either modifies the theory or
rejects it if it doesn’t agree with the data. Other times one makes new predictions and
some new experiment needs to be build to probe a new range of energy, or precision
for example, in which the theory predicts some specific features. Often the result of the
experiment can be quite long to come. Meanwhile, it is important to understand how
data that can be explained in different ways, could allow to reject or accept, with some
limitations, the theory.

Today, no clear experimental results can be used to infirm or confirm, with a suffi-
cient acceptability, all the different models or theories put forward. There are different
situations to manage. Some promising experimental results may not reach the targeted
precision required to be confirmed as a true deviation. Signals at the LHC, for exam-
ple, that look promising for a while might turn to be only statistical fluctuations. Even
if we consider that some experimental data are close to the target precision and might
turn to be a sign of new physics, they might be explained by many different models, so
seem to be today the B anomalies. In another case, we have a lot of hints for the need of
a new theory to explain the experimental results, but the data are not sufficiently clear
to give an accurate direction for how to build a theory. This is the case of Dark Matter

1



CHAPTER 1. AN INTRODUCTION TO THE SWAMPLAND AND THE WEAK
GRAVITY CONJECTURE

and inflation. We seem to have today a situation with some observations that need
to be explained, and many theories to "falsify", but not yet enough experimental data
to help in getting satisfactory answers. One important feature of our proposed theo-
retical models is that there are EFTs: they are defined only for a specific range of energy.

We can adopt the following point of view. We expect that an EFT that describes
some experiments has a good UV completion. That is to say there is a theory valid at
arbitrarily high energies, and the EFT is its limit at low energies, lower than a given
cut-off energy scale. We have so a new questions to address. Instead of focusing solely
at experimental signatures of our models, we can also look at the existence or not of an
UV complete extension. This is an old question but that seems to have new develop-
ments in recent years. Considering all known UV-complete models, one looks for the
common characteristics present at their low energy limits. If they seem quite general,
they can be conjectured as conditions to be respected by any EFT. One can so reject
some EFT not from their experimental signatures, but by the fact that they are not well
UV-completed. Of course, it is of the most important to prove under which condition
the conjectures are valid.

We have so defined the Swampland, presented in [216]. Let’s call the ensemble of
all possible EFT the landscape. Giving some specific theories UV-complete, one can
look at the limit of low energy of these theories in order to find some shared features
between these models. It is possible to consider that these characteristics are some
conjectures. If an EFT doesn’t respect these conjectures, it is considered it belongs to
the Swampland. When we have defined the Swampland, there is a lot of questions
arising, and which are under investigation, for example did we see all the admitted
EFT when we look at the low-energy-limit of the UV-complete theories, which is a
problem known under the name of lamppost. One general question is which kind of
UV-complete theories we want to take? Generally, it’s the different models of String
Theory which are used, but one can generalize this principle using some physical fea-
tures which are independent of the specific content of the theory, as unitarity of the
S-matrix for example, which is a physical criteria independent of a specific theory.

Since its elaboration in 2005, a lot of different Swampland conjectures have been
obtained, looking at different quantities. A way through the different conjectures is
given in [190, 62]. We will present some of the most important ones in the following.

We can begin with the absence of (continuous and exact) global symmetries. This
conjecture was elaborated first because in a string theory perturbations frame, all the
global symmetries are gauged or broken. So this is an illustration of the principle of the
Swampland. Since in our UV theory, it seems that all the global symmetries are gauged
or broken, this will also be the case in the low energy limit of these theories, and so we
demand that all the exact global symmetries are gauged or broken in the EFT. But it is
interesting to see this argument from another point of view, looking at black holes. We
know that if there are no gauged symmetries, the Schwarzchild black hole is the unique
solution of the Einstein equations. But if we have a global symmetry, we can have a
particle charged under this symmetry, and this particle can fall in the black hole. When
the black hole will evaporate, since we cannot see from the outside if it is charged or
not, the Hawking radiation will be neutral, and so at the end we have what is called a

2



1.1. THE WEAK GRAVITY CONJECTURE

black hole remnant. Since we can add in the black hole as many particles as we want,
we obtain at the end all the remnants possible, so an infinity of different states with a
possibly small mass, which is a sign that the theory is not valid. This argument works
only for continuous symmetry, and requires also that the symmetry is exact. The main
interest of this explanation is the link that it creates between black holes physics and
the Swampland. As any theory of quantum gravity should manage the existence of
black holes, black holes physics can be used to infer some conjecture about the EFT
deriving from quantum gravity without any assumption on the underlying theory we
look at. We will use the black holes physics in the following.

If we turn now to gauged symmetries, the first thing we can infer is on the presence
of charged states in the theory. If we look at the string theory spectrum under the
compactification, we see that all charges of the gauge fields are present in the theory.
This can be promoted to a conjecture, called the completeness conjecture. In [33], it
was shown that there is a link between the completeness conjecture and the global
symmetry one, in the sense that in a few models, all the charges of the spectrum are
required to completely break a global symmetry. This conjecture is not the only one
we can do in this set-up, but we will come back after on the conjectures about gauge
theory and quantum gravity.

We will now take a look at some conjectures on the fields themselves. One conjec-
ture is that the fields of the theory cannot take any transplanckian value. This is not
actually a conjecture, it is more a requisite of the EFT. Since we know that at such a
scale (or before at the string scale) the EFT falls down and we have to take into ac-
count the all UV theory, it is normal to require that in the domain of the EFT, the field
cannot have excursion outside the domain of validity. But we can try to refine such a
demand, in a more instructive way. One way to see that our theory loses its sensitivity
is the apparition of a infinite tower of massless states in the spectrum. So one way
to reformulate the conjecture would be to postulate that when some fields approach
transplanckian value, we can see, in the theory, an infinite tower of massless states
coming up, signifying the breakdown of the theory. When we look at supersymme-
try or string theory, the moduli can play the role of such fields. Indeed, in a simple
model of compactification where there is a dilaton (or radion, see appendix A) φ, the
Kaluza-Klein states masses are under the form m ∼ m0e

−αφ, where α is a constant of
order one, α ∼ O(1) in Planck units. The moduli has the behaviour we are looking for.
Generally there is not only one moduli, but a lot of moduli and all these moduli form a
manifold. On this manifold we can define a distance d(Φ1,Φ2) between two points, and
so the Swampland Distance Conjecture will postulate that when this distance becomes
infinite (or of the order of the Planck scale when we put the right normalization), there
is the apparition of a tower of massless states with a mass scaling as m0e

−αd(Φ1,Φ2). This
conjecture is quite complex and depend on the properties of the scalar manifold and
its metric, and has been extensively studied (see [188, 166, 35, 135, 149, 173, 60]) and
generalized especially in a supersymmetric set-up where there is more information on
the behaviour of the moduli manifold.

Until now these Swampland conjectures are not very constraining on the phenomeno-
logical point of view, at least in an immediate way. But there exist some conjectures
much more constraining. One of these examples is the de Sitter (dS) swampland con-
jecture studied in [185, 122, 99, 15, 182, 187, 100, 64, 202, 81]. It is based on the fact

3
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that by now, it is quite difficult to build up dS vacua in string theory, and the possibil-
ities found are under discussion, in particular due to instabilities that can appear, and
their behaviour under corrections. Based on some hints from the string theory, some
authors have postulated that it is not possible to form such vacua in string theory, and
translated it in conditions under the scalar potential V , which are

|~∇V | ≥ cV

MPl

(1.1.1)

min(∇i∇jV ) ≤ − c
′V

M2
Pl

Such formulae have profound implications in phenomenology, as they are very con-
straining for the inflation, forbidding a large domain of different models.

The de Sitter Swampland conjecture is looking at some cosmological models. An-
other conjecture looking at cosmological considerations is the Transplanckian Censor-
ship Conjecture (TCC) . The problem this conjecture is dealing with is the fact that
during the inflation, some sub-planckian modes, i.e. modes under the Planck Scale
can, during the inflation period, be larger than the Hubble radius and so become clas-
sical and freeze. This means that quantum features of the theory are accessible at the
classical level. In order to avoid this problem, it was postulated in [35] that such a situ-
ation cannot arrive in a coherent description of quantum gravity. This is the TCC, and
can be used to constrain models of inflation in the early Universe or today.

There are a lot of others conjectures, for example cobordism conjecture, or Non-
SUSY AdS vacua conjecture, or some conjectures on the fermions part of the spectrum.
Our purpose in this short presentation is not to be exhaustive, but just to give a first
taste of the goal and some aspects of the Swampland program. Conjectures that we
have presented here will be present, or at least mentioned in the following parts of this
thesis. But among all these conjectures, there is one that we haven’t presented yet, and
we will now turn to it. This conjecture is the Weak Gravity Conjecture (WGC).

1.1.2 The Weak Gravity Conjecture : definition

As indicated by its name, the WGC postulates that the gravity is the weakest of the
force. However, to just postulate this is not very instructive, and we have to put it in a
more formal way. The first proposal of this conjecture and its formalization was done
in [29], and the arguments that we will present for the definition and derivation of the
WGC are presented in this paper. Let’s suppose that there is a gauged U(1) symmetry,
with a gauge coupling g. The WGC indicates that there must exist a particle with mass
m and charge q verifying √

2gq ≥ m

MPl

(1.1.2)

where MPl is the reduced Planck mass defined by MPl = 1√
8πGN

, GN being the Newton
constant in four dimensions.

For a first check, we can look at the SM to see if there is a particle verifying this
constraint. Taking the electron, we have |gq| ' 0.3, and me = 511 keV. We will use
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also MPl ' 2.1018 GeV. With these values the bound (1.1.2) gives us 0.42 > 2.5 10−19.
The electron is so a particle that verifies largely the WGC bound. Actually, all the fun-
damental particles of the SM verify this conjecture. The question is now, how can we
derive this conjecture from a Swampland point of view?

One way to derive it is to use black holes physics arguments. Since we are look-
ing for charged objects, we will use the Reissner-Nordström metric, which have the
following form

ds2 =

(
1− 2M

r
+
Q2

r2

)
dt2 +

dr2

1− 2M
r

+ Q2

r2

+ r2dΩ2
2. (1.1.3)

When M > Q, this solution has two horizons, and describe a black hole. When M =
Q, the two horizons are combined, and we have what we call an extremal black hole
with only one horizon. With M < Q, there is no horizon, the solution is a naked
singularity and is considered as a non-physical solution. So let’s take an extremal black
hole, with M = Q. Normally, due to Hawking evaporation, all the black holes should
disappear after what could be a long time. But since this black hole is charged, it has to
emit charged radiation (in other words charged particles) in order to conserve the total
charge of the system. Hence the black hole will emit a particle with charge q and mass
m, and the final black hole state will have a mass M ′ ≤M−m and a charge Q′ = Q−q,
as the particle emitted momentum takes a part of the energy of the black hole. Since
we want the final black hole to be a physical state, we have to impose M ′ ≥ Q′. We
obtain M −m ≥ Q− q and as the initial black hole was extremal, we derive m ≤ q. But
the parameters M and Q defined in (1.1.3) are not well normalized. We call it in the
following mass and charge in geometrical unit. The physical mass and charge of the
black hole are given by

M =
M̃

8πM2
Pl

and Q2 =
g2Q̃2

32π2M2
Pl

. (1.1.4)

Using these relations, we obtain for the extremality condition M = Q the physical
condition M̃ =

√
2(gQ̃)MPl. This is converted for the particle state as m

MPl
≤
√

2gq,
which is the equation (1.1.2).

A first comment can be given at this stage, on the features of the state respecting
the equation (1.1.2). In the derivation with this black hole argument, we justify why
such a state with a charge to mass ratio greater than one should exist, but there is no
constraint on which state on the spectrum it has to be. A question that one can ask is
if this state is the state of the theory spectrum with minimal charge, the state which
has the minimal mass over all the charged states, or the state with the biggest charge
of mass ratio. The first proposition is excluded because spectra of some string theories
don’t respect it. The second condition implies the third, and in [29], it was argued that
it is the third proposed state that has to enter in the conjecture. It means that we require
the biggest charge to mass ratio in the theory spectrum to be bigger than one.

We can note also that this result was obtained with the dimension four operators,
without taking into account any corrections from the higher-dimensional operators. If
we want the extreme case, which corresponds in this set-up to M = Q, to be always
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the same, we need that the corrections decrease the ratio M
Q

below one for the extremal
black hole. In the case where the corrections increase the ratio M

Q
, the bound we ob-

tained for the ratio of the WGC state will be modified and lowered. Instead, when the
ratio decreased, this means that the extremal black holes become unstable, and decay
in smaller black holes. There is no need to modifiy the WGC bound. These ques-
tions of higher-order corrections are extensively studied (see for example [37]), and it
seems that using some positivity bounds on scattering amplitudes from this higher-
order terms, one can constrain them to be such that the ratio is always decreasing. So
the WGC seems robust to the higher-order corrections.

In the Swampland program, when we have a conjecture, we have to see if it possible
to derive it from a UV-theory, and generally in the string theory frame. It seems that
the WGC is obeyed in such theories, but there is a complication with respect to this
simple case. First there is in general not a simple U(1), but a product of different U(1)
in the theory. There is also the presence of moduli, which can play a role and require a
modification of the WGC. But before looking at the modifications induced by adding
these fields, let’s see the WGC from another point of view, which is called the magnetic
Weak Gravity Conjecture (mWGC), presented in [29].

To derive the mWGC, we use the duality between magnetic and electric coupling.
We have gmag = 1

gelec
. Using the WGC, we can constrain the mass of a magnetic

monopole to be less than this coupling, as the WGC

mmag ≤ gmagqMPl =
1

gelec
qMPl (1.1.5)

What is interesting with the magnetic monopole, is the fact that its mass is not a free
parameter of the model. Actually, the mass is proportional to the energy stored in the
magnetic field, and this is lineary divergent. Since we have a cut-off in our EFT, we can
say that mmag ∼ g2

magΛ, for example the formula for the monopole mass in the SM is
given at leading order by MW

αem
. Replacing it in (1.1.5), using a unit charged state (q = 1),

we obtain a bound on the cut-off of the theory

Λ . gelecMPl (1.1.6)

This is interesting, because a priori there is no bound on the cut-off scale. Knowing the
UV-theory, we can give a value at which the EFT construction will break down, but
knowing only the parameter of the low energy limit, it is no possible to build up the
value of the energy-scale. Here, one obtains an upper-limit on the cut-off knowing only
the parameter of the EFT. But the interest of this bound has to be moderated by two
remarks. First, this is only an upper-limit. The cut-off of the theory could be at lower
scale. If we take U(1)em of the SM, we have g ∼ 1

10
, and so the upper limit is close to

1017 GeV, which is larger than the electroweak symmetry breaking scale. As we can
see from the SM example, in the case where the coupling is not very small, the scale
at which the coupling will appear is quite large, as we will see in the following. This
bound is so not very constraining. Besides, even if for "natural" values of the coupling
this cut-off is large, it is not a sign of the apparition of the UV-theory. Indeed, we can
see from its construction that this cut-off is not linked to the UV-theory, as the string
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scale for example. It just a sign of new physics, but the new physics is not determined.
It can be that the U(1) we are looking for is embedded in a SU(2) group for example,
or a larger symmetry group. But it doesn’t mean that this scale is obviously the string
scale. It can be, but it’s not an obligation.

This scale gives us also a new argument against the existence of global symmetry.
Indeed, as presented in [141, 33, 192], since the value of the gauge coupling is linked
to the apparition of new physics, we cannot take the gauge coupling to 0. This argu-
ment prevents to go continuously from a gauged group to a global one. This shows
another link between two different conjectures of the Swampland, as the link between
completeness conjecture and absence of global symmetries.

1.2 Developments of the Weak Gravity Conjecture

Now that we have given a first definition of the WGC, we can look at some refine-
ments that we can introduce in this set-up. Generally, in phenomenological model, we
will not have a single U(1). We can so begin with the extension of the WGC for the case
of multiple U(1)s.

1.2.1 Case of multiple U(1)s

In order to take into account multiple U(1)s, we have to look at the black hole so-
lutions in this scheme. In order to do this, we will follow the discussion of [76]. The
first thing to say is that we consider N gauged unbroken U(1)s. The gauge bosons are
massless, and so if there is a gauge kinetic mixing, we can perform a SO(N) rotation
of the gauge fields such that this kinetic mixing disappears. We will so considerate in
the discussion that the U(1)s are independent. The first generalisation one can think
of is the fact that it exists a particle with mass m and charge qi such that, if we think at
the ratio of charge over the mass as a vector, we have to consider that the norm of this
vector is greater than one. So we can think at this formula as

∑
i

(giqi)
2

m2
> 1, (1.2.1)

in Planck units. When we reduce this formula to one gauge field, we recover the pre-
vious formula (1.1.2), so this can be a good generalisation. However, in the previous
section, the WGC was derived by imposing the possibility to all black holes to decay.
Let’s assume that a particle with massm and charge qi verifying (1.2.1) is present in the
spectrum of the theory, and take a black hole with charge Qi and mass M , extremal. In
this case, the extremality of the black hole means that

∑
iQ

2
i = M2. We will also ask

that the charges Qi of the black hole verify
∑

i qiQi = 0, where qi are the charges of the
particle we define just above. Because of this property, the black hole cannot emit the
particle that we have defined, and so this black hole, which is extremal, is stable, which
is the problem we want to avoid. We have so to search for another form of the WGC.
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Figure 1.1 – Representation of (one part of) the convex Hull and the black hole mass to
charge ratio in the case of 2 U(1)s

Let’s take a black hole with charges Qi and mass M , extremal. We want that this
black hole can emit a particle and that the final black hole state is extremal or subex-
tremal. But if we look at only one particle, we have seen that the WGC we can infer
from this state doesn’t prevent the stability of some others extremal black holes. We
will take so as many independent particles as there are U(1)s (taking into account that
we have to add the anti-particles). Independent means that their charges qai and qbi
for a particle a and b verify the relations

∑
i q
a
i q
b
i = 0. We can imagine for simplicity

that each state is only charged under one gauge field, but this is not necessary. We
will also consider that the black hole decays completely in the different particles, and
we call na the number of particles a, and ma their masses. The conservation of charge
and energy gives us relations between the masses and the charges, M >

∑
a n

ama and
Qi =

∑
a n

aqai . We can rewrite these two equations as,

Qi

M
=
∑
a

nama

M

qai
ma

with
∑
a

nama

M
< 1

So if we look at the space of the gauge charges, there is a simple geometrical interpre-
tation of the relation we derive. Let’s call ~R = 1

M
(Qi), ~ra = 1

ma
(qai ) and ca = nama

M
. We

have so
~R =

∑
a

ca ~ra with
∑
a

ca < 1 (1.2.2)

This means that the charge to mass ratio of the black hole belongs to the convex hull
defined by the charge of mass ratios of the different particle species. The biggest charge
to mass ratio for a black hole is obtained for the extremal case, for which we have∑

iQ
2
i = M2, which is the definition of the unit sphere. Hence we can formulate the

WGC in this way. If the theory contains N gauged unbroken U(1)s, there must exist at
least N different particles, independently charged such that the convex hull defined by
their charge to mass ratio includes the unit sphere. We see that thanks to the presence
of the anti-particles, we can cover the entire unit sphere.

We present one part of the convex hull for the case of two U(1)s in Figure 1.1. As
explained a few lines above, the other part of the convex hull is obtained by the fact
that anti-particles with −r1/2 are also present in the spectrum. If we have just required
that the two particles have a charge to mass ratio equals to 1, as with only one gauge
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1.2. DEVELOPMENTS OF THE WEAK GRAVITY CONJECTURE

field, we would obtain the red curves, and so some black hole states, above the red
line, would be stable. Requiring that the unit sphere belongs to the convex hull of the
WGC state raises to a stronger constraint since the states have a charge to mass ratio
corresponding to the extremities of the blue curve.

We see that adding at least one abelian gauge group in the theory complicates a
little bit the conjecture, in two ways. The number of states required by the conjecture
is bigger, and the constraint of the charge to mass ratio is also increased.

1.2.2 A dilatonic WGC

Another case we want to explore is the case of massless scalars. Indeed, in string
theory, the spectrum includes some (and possibly a huge number of) massless scalars,
without potential, called moduli. The goal of the Swampland conjecture is to see what
are the EFT compatible with a string theory in the UV, so one needs to include such
scalars in the conjecture. In order to do that, we will look at the simplest model con-
taining such particle, which is the following Lagrangian

L =
√
−g
(
−R + 2∂µφ∂

µφ+ e−2αφF 2
)

(1.2.3)

The coefficient α depends on the particle we look for. In the case of the string theory,
this particle is called dilaton, and α = 1. A similar Lagrangian can be obtained from
the dimensional reduction as presented in appendix A. In this case, the coefficient α
takes the value α =

√
3.

If we want to obtain a WGC applied at this particular case, the more natural way
is to search the existence of black holes with such a Lagrangian. Such a black hole
solution was found in [125, 121], and has the following form

ds2 = −
(
1− r+

r

) (
1− r−

r

) 1−α2

1+α2 dt2 + 1

(1− r+
r )(1− r−

r )
1−α2

1+α2

dr2 + r2
(
1− r−

r

) 2α2

1+α2 dΩ2
2,

e2αφ = e2αφ0
(
1− r−

r

) 2α2

1+α2 ,

F = Qe2αφ0

r
dt ∧ dr,

(1.2.4)
where r+ and r− are two integration constants, and φ0 is the value of the dilaton field at
the infinity. We can also define a scalar chargeD for the black hole, computed as the in-
tegral over a two sphere at infinityD = 1

4π
lim
r→∞

∫
d2Σµ∇µφ, or, equivalently, through the

expansion φ = φ0 − D
r

+O
(

1
r2

)
at large r. The relation between the physical quantities

and the integration constants can be easily computed and gives
2M = r+ + 1−α2

1+α2 r−,

Q2e2αφ0 = r+r−
1+α2 ,

D = α
1+α2 r−.

(1.2.5)

It is interesting to make a comment now on the integration constants r+ and r−.
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Inverting the relation defined above givesr+ = M ±
√
M2 − (1− α2)Q2e2αφ0

r− = (1+α2)Q2e2αφ0

M±
√
M2−(1−α2)Q2e2αφ0

.
(1.2.6)

Taking Q = 0, in order the metric (1.2.4) to recover the Schwarzschild metric we have
to take r− = 0 and not r+ = 0, and we will consider in the following only the + sign
for the definition of r+ and r−.

D can now be expressed in functions of M and Q as

D = α
Q2e2αφ0

M +
√
M2 − (1− α2)Q2e2αφ0

. (1.2.7)

The physical mass is not modified, and is given by (1.1.4). However, the gauge
coupling constant is given in (1.2.3) by the coupling term between Fµν and the dilaton
φ. We will so define the physical charge as

Q2 =
Q̃2

32π2M2
Pl

. (1.2.8)

From (1.2.4), we see immediately that there is only one horizon, contrary to the
Reissner-Nordström solution. Indeed, if r+ is a horizon, r− is no longer one, but a
singularity as soon as α 6= 0. This can be seen from the coefficient in front of the dΩ2

2

in the metric. This coefficient cancels for r = r−, which means that at this point the
volume of the the slice is 0, which is a sign of a singularity. This can be seen also from
the Ricci scalar, which is divergent at r = r−.

Since we have only one horizon, it is not obvious that there will be an extremal
solution as in the Reissner-Nordström case. We could think that we are more in the sit-
uation of a Schwarschild solution. However, looking at the metric (1.2.4), it is possible
to see that, when r− > r+, there is no longer a horizon, and there is a naked singular-
ity. Besides, it was shown (see [191]) that the inner horizon of the Reissner-Nordström
black hole is unstable and becomes a singularity when adding perturbations. It seems
so that we can think at the limit r− = r+ as an extremal limit. In function of the physical
parameters M and Q, this limit can be rewritten using (1.2.5) in

Q2e2αφ0 = (1 + α2)M2. (1.2.9)

We can see directly from the Lagrangian (1.2.3) that the e2αφ0 corresponds to the cou-
pling constant square, with Aµ rescaled by a factor 2. Using the proper normalization
forM andQ, we can write the dilatonic WGC as the presence in the spectrum of a state
satisfying the relation

(gq)2 =
(1 + α2)

2

m2

M2
Pl

. (1.2.10)

So the WGC that we can write in the presence of a dilaton field is quite the same as the
WGC written only in presence of a gauge field, but there is a new term, proportional
to α2. It is the contribution of the dilaton field. This conjecture was first presented in
[147], with p-Branes, but the solutions for a p-Brane can be derived from the one of a
black hole, so we prefer present the conjecture in this way.
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1.2.3 Different Lattice and Tower Weak Gravity Conjectures

We have now to recall the goal of the Swampland. The idea is to look at which
Effective Field Theories can be derived at the low energy limit of a UV theory, namely
a string theory. One important point for string theory models is the fact that some
dimensions of the theory are compactified. Since we want the WGC to be a property
coming from the UV theory, and since the UV theory is defined with more dimensions
than our world at low energy, it could be interesting to look at the behaviour of the
WGC under the compactification of one or several dimensions.

This was for example done in [147] and leads to interesting results. When we com-
pactify a dimension around a circle, we can observe the apparition of new fields, and in
particular we obtain a new gauge field, with a newU(1) symmetry which is a gravipho-
ton, and a massless scalar that we will call dilaton in the following even if the proper
term is more radion. This is presented in details in the appendix A for the compact-
ification of a scalar, and will be useful in the following discussion. So if we have in
dimension D + 1 a theory with one gauge boson, we are let in dimension D with two
gauge fields.

However, as we have seen before, the WGC with several gauge fields is quite differ-
ent from the one with a single U(1). The question is, imposing the WGC as presented
in the first part of this chapter in dimensionD+1 is sufficient or not to obtain the WGC
in dimension D after compactification?

The case we are looking at corresponds to two U(1)s, one present in dimension
D + 1, and the other one coming from the compactification. In the section 1.2.2, we
have seen that the dilaton coupling to a gauge field modifies the form of the WGC. In
the case of interest, the dilaton coming from the dimensional reduction couples only to
one gauge field. So, instead of having, as in 1.2.1, the extremality region to be the unit
sphere, the extremality region of the black holes is an ellipsoid, since the WGC condi-
tion that one demands for each separate U(1) is different. But it is possible to redefine
the charge under the U(1) coupling to the dilaton such that the ellipsoid corresponds
to the unit sphere, so we can keep the unit sphere in order to look at the behaviour of
the WGC under dimensional reduction.

In dimension D+1, we take one state with mass m and charge q, which satisfies the
WGC, i.e. (1.1.2) . After dimensional reduction, there is a tower of Kaluza-Klein (KK)
states, where the charge under the U(1) coming from the D + 1 theory is always the
same, but with a term added in the mass, and a charge under the graviphoton, terms
given in (A.2.13). We will have so for the state Kn

m2
n = m2 + C1

(n
L

)2

q0
n = q, q1

n = C2
n

L
(1.2.11)

where n is an integer, L the compactification radius, 0 represents the gauge field com-
ing from the D + 1 theory and 1 represents the graviphoton. C1 and C2 are constants
useless for our present discussion. These states will all lie outside the unit disk. But
as we have seen in Figure 1.1, even if the states verify the WGC, the convex hull they
form will not verify the multiple U(1)s conjecture.
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Figure 1.2 – The representations of the charge of mass ratios of the KK state for a
given radius compactification, and the situation when we increase the radius
compactification (centre). The situation when we impose the Lattice WGC is

presented in the right figure

This is what happens in the case of the KK states. When we decrease the com-
pactification radius L, the charge under U(1)1 and the mass of all states Kn except K0

increase, but q0 is always the same, so the charge to mass ratio r1 is quite the same, but
the charge to mass ratio r0 decreases, except for the K0 states which will be at the same
place on the r0 axis. There is a value of the compactification radius such that the first
state K1 will be to close from the r1 axis and the line between K0 and K1 will cross the
extremality region of the black hole. This means that the convex hull of the states of
the theory will not contain the black hole region. This is shown in the Figure 1.2.

So the WGC seems to be unstable under the dimensional reduction, since the states
that we obtain from the compactification are not sufficient to ensure the multiple U(1)s
conjecture, which is the form of the WGC for several gauge fields.

In order to solve this problem, it was proposed in [147] to enforce the WGC by ask-
ing that, in each point of the charge lattice there is a massive state such that its charge
to mass ratio is at least equal to the value of the charge of mass ratio for an extremal
solution with the same charge. So we are let with an infinity of states, and in particular
with states with very large charge and mass. If we look at the result of this conjecture
in the example we took, this means that we have in dimensionD+1 an infinite number
of state with large charge and mass, and when we will compactify, the Kaluza-Klein
states corresponding to these states will be closer from the state K0. These states are
the blue ones in the right picture of 1.2. They will be between what we called before
K0 and K1, and so even when we will decrease the compactification radius, as there is
an infinity of them, the convex hull formed by all these states will always contains the
extremality region, and the WGC will be stable by dimensional reduction.

Actually, this conjecture is very strong, since it requires a state with a charge to mass
ratio greater than one for each point of the charge lattice. This conjecture is so strong
that it is not verified in some cases of compactification. It was so relaxed in [148], in
what is called a sublattice WGC. Instead of asking a superextremal state at each point
of the charge lattice, they asked that the superextremal states are present only in a sub-
lattice. The fact that this sublattice is infinite preserves the property of stability under
the dimensional reduction, and the relaxation of the conjecture is enough to pass all
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the compactification schemes which violate the Lattice WGC.

A last possibility offered by the dimensional reduction is to look at the scattering
amplitudes obtained by integrating out the massive KK-fields coming from the com-
pactification, and to use unitarity and positivity constraints on the amplitudes to infer
some information about the charge of mass ratio and the WGC. This was done in [14],
and they showed the need of an infinite tower of states satisfying the WGC in D+1 di-
mensions in order to conserve the WGC under dimensional reduction. But an infinite
tower and a sublattice of the charge lattice are not the same thing. An infinite tower
is a weaker restriction. However, since the two conditions are obtained from two dif-
ferent aspects, one from the point of view of the charge to mass ratio constraints, the
other from the properties of the scattering amplitudes, it seems difficult to discriminate
them. In the spirit of the Swampland program, the way to obtain this discrimination is
to find a string theory model in which exists an infinite tower of states, which not form
a sub lattice. It is not clear if such a model exists or not today.

When we studied the conjecture in a fixed dimension frame, the number of states
required by the WGC is finite (1, or more, if we work with multiple U(1)s). The most
important fact about the dimensional reduction is the requirement that we need an
infinite number of states to satisfy the WGC.

1.2.4 Repulsive Force Conjecture

In the previous subsection, we have introduced the KK states. We will now use
these states in another way. The first thing we can note is that these states saturate the
bound in (1.2.9). So we know states that saturate the dilatonic WGC. But if we compute
the different forces between two copies of the same KK-states, which are in this simple
example three: the dilatonic, the gravitational and the "electromagnetic", as presented
in chapter 4, we see that the sum of the forces is null.

This was already noticed in [29], for one singe gauge field. The WGC equation
(1.1.2) can be seen as the existence of a particle such that the repulsive gauge force
between two copies of this particle is greater than the gravitational attractive forces.
This conjecture was extended in [189] in the case of massless scalars, and extensively
studied and formally put as a Swampland conjecture in [151].

This is called now the Repulsive Force Conjecture (RFC). The first constraint is to
look only at the long-range forces of the theory. The long range forces are due to three
different types of particles: the "photons", the graviton and massless scalars. We can so
write the sum of the forces for two particles 1 and 2 in d dimensions as

F =
gabq1aq2b

rd−2
− GNm1m2

rd−2
− kijµ1iµ2j

rd−2
. (1.2.12)

In this formula, gab represents the coupling of the different gauge fields, and kij is
the metric that stands for the interactions between the massless scalar fields. Now
that we have fixed the forces we are looking at, the conjecture states that there must
exist at least one particle such that the sum of the repulsive forces is greater than the
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attractive one. We see that for two copies of the same particles, the attractive forces are
those mediated by the massless scalars and the gravity, and the repulsive ones are the
gauge forces. This particle is called self-repulsive. Actually, looking at stability of the
conjecture under dimensional reduction, the conjecture will be modified as the WGC,
and the RFC states that there exist a sublattice of the charge lattice such that in each
point of this sublattice a self-repulsive particle is present.

When studying different models of compactification of string theories, the authors
of [151] show that even if the sublattice WGC and sublattice RFC are always respected
in these different frames, there are some cases where the saturation of the two conjec-
tures are not fulfilled by the same states. It seems that, contrary to the case of the pres-
ence only of the gravity and the "electromagnetic" forces, where the two conjectures
are the same, when adding massless scalars, the two conjectures have not a common
behaviour.

In this chapter, we have briefly presented the Swampland program and its goal.
We focused on a specific conjecture called the Weak Gravity Conjecture. In the simple
case of a single gauge field, the WGC can be found through different points of views.
For example from the side of the black holes physics, looking for the decay of extremal
black holes, or from the point of view of Field Theory, looking at the preeminence
of the repulsive forces over the attractive ones. However, to conserve the spirit of
the Swampland, it can be interesting to look at changes in such a conjecture induced
by adding some ingredients in the theory (more gauge fields, massless scalars, ...).
The different schemes used to derive the WGC lead to the proposal of several "WGC
inspired" constraints. These different points of views are also interesting for who want
to look at their implications for phenomenology and stability or existence in UV-theory
frame.
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CHAPTER 2

WGC and U(1) mixing

As we have seen in the previous chapter, the Weak Gravity Conjecture seems not
very useful for phenomenology with the Standard Model (SM) spectrum. However,
there are some special cases where this conjecture can be applied and leads to interest-
ing results. In this short chapter, we will present one of these cases, which corresponds
to a model where there is a mixing between different U(1) gauge group. In particular,
the case of tiny mixing has witnessed a recent surge of interest, following the results
announced by XENON1T [27]. The collaboration has reported an excess between 1
and 7 keV, close to the lower threshold of the experiment, with a peak around 2 − 3
keV. However, we have to be careful, because the significance of this excess could melt
with a re-analysis of the signal. This could either follow from an accumulation of more
data or from more thorough searches for evidences of contamination of the apparatus
by some impurities as for the tritium hypothesis suggested by the collaboration in [27].
In the meantime, the possibility that it could be a signal of new physics does not seem
excluded, and so we will examine in the following what the WGC can say of such a
tiny mixing.

Looking at the XENON1T data, a possible fit in terms of dark photons coupled to
the SM through a kinetic mixing portal [153, 186, 90, 94] was analysed in [12, 7, 78].
While solar emitted dark photons are not favoured, a scenario where light dark pho-
tons with masses of 2− 4 keV are absorbed by the xenon seems to correctly reproduce
the excess, though with a reduced significance due to a look elsewhere effect. This can
be achieved for a tiny visible-dark photon kinetic mixing parameter in the range

ε ' O(10−16 − 10−15) (2.0.1)

which is in agreement with the upper bound limit given by XENON1T on ε, that also
claims a 3σ significance for a 2.3 keV dark photon over the background. This was
argued in [183] to lead to the correct result for the dark photon relic density. The
dark photon in XENON1T can also appear as a vector portal for fermionic or bosonic
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dark matter, where, depending on the model, the mixing can take different values. In
[32, 167, 222], mixing parameters of order ε ' O(10−4),O(10−7) or O(10−10), with, re-
spectively, an order O(GeV) massive dark photon in the first two cases and a massless
one in the last one have been advocated. We discuss below a possible origin of such
mixing parameter, especially for challenging tiny values, where we find that the WGC
allows to hope for an accompanying signal at collider experiments.

We focus on the sector of the low energy Effective Field Theory describing the U(1)
gauge groups representations and interactions. One of the two, U(1)v, is called visible
as we have in mind hypercharge or electromagnetism. Another, U(1)d, corresponds
to an extra factor we call "dark" U(1), having in mind an hidden sector. It is straight-
forward to generalize to cases with more abelian gauge groups. The associated gauge
fields and gauge fields strengths are denoted as Aµ(v), F

µν
(v) and Aµ(d), F

µν
(d) , respectively.

The corresponding two-derivative Lagrangian reads:

L ⊃ −1

4
F µν

(v)F(v)µν −
1

4
F µν

(d)F(d)µν −
εvd
2
F µν

(v)F(d)µν + gvJ
µ
(v)A(v)µ + gdJ

µ
(d)A(d)µ . (2.0.2)

For massless visible and dark photons, this mixing in the two-derivative Lagrangian
can be eliminated by performing the appropriate rotation. When the U(1)d gauge bo-
son acquires a mass, through a Stueckelberg or Higgs mechanisms, the mixing has
physical implications. The visible and dark photons couple in the new basis to the
currents Jµv and Jµd through:

L ⊃

[
gd√

1− ε2vd
Jµ(d) −

εvdgv√
1− ε2vd

Jµ(v)

]
A(d)µ + gvJ

µ
(v)A(v)µ , (2.0.3)

thus implying that the visible matter is charged under the dark gauge symmetry with
charge ∼ εvdgv.

It is most natural to assume that the darkU(1) mass and mixing vanish in the funda-
mental theory at the ultra-violet (UV) cut-off and are generated at lower energies. The
mixing can be generated at one loop by states with masses mi and charges (q

(i)
v , q

(i)
d )

under (U(1)v, U(1)d). It is then given by:

εvd =
gvgd
16π2

∑
i

q(i)
v q

(i)
d ln

m2
i

µ2
, (2.0.4)

where µ2 is the renormalization scale. In the case of the hyper-charge U(1)v ≡ U(1)Y
we have gv = g′ and q

(i)
v = Y (i), while gv = g′ cos θw and q

(i)
v = q

(i)
em the electrical charge

for U(1)v ≡ U(1)em.
In order to generate such a small mixing as the one required by XENON1T results,

we either require the dark photon coupling to be appropriately small, a cancellation
in the one-loop logarithms, or appeal to higher order non-renormalizable operators.
The cancellation can be partial, for instance between particles with (order one) charges
(q

(i)
v , q

(i)
d ) and (q

(j)
v , q

(j)
d = −q(i)

d ) and masses mi and mj with mj = mi + ∆mij . For
∆mij � mi, we have an approximation:

εvd ∼
gvgd
16π2

∆mij

mi

. (2.0.5)
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For complete cancellation, this one loop contribution is replaced by higher loop ones.
However, gravitational loops are expected to show up at some order and lead to a
lower bound. It was shown in [124] that this is expected at six loop order giving rise to
an εvd & O(10−13) for a bona fide four dimensional theory. We shall discuss below the
first alternative of a tiny dark sector coupling.

To look at such a value, the quantity we have to compute is the mixing given by
(2.0.4). In order to do so, we need an explicit model with a knowledge of all the spec-
trum. But even if we have not such a model, we can give a first taste of the value of
this mixing by looking at which states can contribute to the sum. Following the Com-
pleteness Conjecture presented in chapter 1, all the sets of U(1) charges are present in
the theory without stating anything about their masses. But we have seen in the same
chapter that there are some proposals following the WGC that state that an infinity of
states in the charge lattice, forming a sub-lattice or not are present in the theory. These
states will contribute to generating a mixing between the U(1)s. For two U(1)s, the
masses of the charged particles can be expressed as m = c

√
(gvqv)2 + (gdqd)2, where

c < 1 is a state-dependent constant. For the following discussion, we use two inte-
gers i and j for the visible and dark charge of the particle respectively, as would be for
quantized charges forming a lattice in charge space. The equation (2.0.4) then becomes
in this scheme

εvd =
gvgd
16π2

∑
i,j

qiqj ln

(
c(i,j) [(gvqi)

2 + (gdqj)
2]

µ2

)
(2.0.6)

Though the number of states is infinite, we include in the loop only states below the
cut-off. If a particle with charge (qi, qj) is in the spectrum, there are also particles with
charge (qi,−qj), (−qi, qj) and (−qi,−qj) giving

εvd '
gvgd
16π2

∑
i,j

qiqj ln

(
c(i,j)c(−i,−j)

c(−i,j)c(i,−j)

)
(2.0.7)

which as a result of the diverse cancellation between different contributions, could re-
main small (for typical sizes, see for example discussion in [94]).

The most relevant facet of the WGC for this work is the magnetic WGC presented in
the previous chapter. The statement is that it exists a cut-off scale ΛUV such that ΛUV .
gMPl. We have seen that this argument is linked with the absence of global symmetry,
which was presented as another Swampland conjecture. We can use this to generalize,
as done by [150], the magnetic WGC to the case with multiple U(1) gauge groups. We
require that none of the gauge symmetry factors should turn into a continuous global
symmetry by taking the corresponding coupling to vanish. This implies that a tiny
value of the dark photon gauge coupling, introduced to make the mixing tiny, requires
a UV cut-off at most of order ΛUV . gdMPl. This is sensibly lower than MPl and could
have important consequences in phenomenology and cosmology.

Starting from (2.0.4), we identify the visible photon with the SM photon, i.e. gv =
e ∼ 0.3, and the logarithm to be O(1− 10), then

εvd ∼
gvgd
16π2

∼ O(10−3 − 10−2)gd ⇒ gd ∼ O(102 − 103)εvd (2.0.8)
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CHAPTER 2. WGC AND U(1) MIXING

As explained before, the WGC does not provide information on the new physics re-
quired at ΛUV . gdMPl. A simple possibility is that the U(1)d becomes part of some
non-abelian gauge group SU(2)D with field strength F µν

(D) broken by a vacuum expec-
tation value (vev) of 〈Σ〉 = v ' ΛUV /gd of a field in the adjoint representation. One
could then induce a contribution εNRvd to the kinetic mixing through the effective non-
renormalizable operator (see e.g. [106]):

cNR

MPl

Tr
[
ΣF µν

(D)

]
F(v)µν ⇒ εNRvd '

cNR v

MPl

(2.0.9)

where cNR is a constant. For this contribution to remain sub-leading, we require:

cNR v . εvdMPl ⇒ cNR v . 10−3 gd MPl, (2.0.10)

which for εvd ∼ 10−15 gives cNR v . TeV.
Kinetic mixing might also arise from D-terms in supersymmetric theories through

effective operators [40, 130]:
D2

Λ4
D

F µν
(d)F(v)µν (2.0.11)

that are expected to be very small. For example, they can be suppressed by the value of
the ratio SM Higgs vev over the scale ΛD for hypercharge D-term or through powers
of the dark sector coupling for the dark U(1) D-term.

In the following we will use (2.0.8) to compute gd from ε. A value of εvd ∼ 10−15 as
in (2.0.1) would require gd ∼ O(10−13 − 10−12). The WGC implies then that the theory
has a UV cut-off:

ΛUV . gdMPl ∼ O(102 − 103)TeV. (2.0.12)

Therefore, new physics must appear below energies of orderO(100) TeV. Such physics
could be accessible at future experiments at collider, such as the 100 TeV Future Circu-
lar Collider (FCC).

We have obtained a scale for the apparition of a new physics. However, this bound
is obtained from the WGC, which is a conjecture from the Swampland. Following the
Swampland program, such a scenario is consistent with quantum gravity only if it
could arise from a string theory model. We will discuss now one possible venue for
realizing this UV completion in a string theory. We do not attempt an explicit string
model building which is beyond the scope of this work. We contemplate the possibility
that a hierarchy gd � gv is obtained through the suppression of gd by the volume of the
internal compactified space.

More precisely, we consider a scenario where we start from ten-dimensional type
IIB string theory compactified on a six-dimensional space of volume V6 ≡ (2πR)6. The
four-dimensional reduced Planck mass MPl is related to the string scale mass Ms and
string coupling gs through (multiplied by 2 for type I strings):

M2
Pl =

R6M6
s

2πg2
s

M2
s (2.0.13)
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The visible U(1)v is taken to live on a D5-brane wrapping a small two-dimensional
cycle of approximate string size of volume (2πr)2 & 4π2M−2

s . Then, the visible coupling
reads:

g2
v =

2πgs
r2M2

s

' 2πgs (2.0.14)

The darkU(1)d is instead chosen to live on a D9-brane wrapping the whole six-dimensional
compact space and its gauge coupling is given by:

g2
d =

2πgs
R6M6

s

(2.0.15)

Then, we get:

εvd ∼
gvgd
16π2

∼ gs
8πR3M3

s

⇒ εvd ∼
1√

128π3

Ms

MPl

∼ 10−2 Ms

MPl

(2.0.16)

thus
εvd ∼ 10−15 ⇒ Ms ∼ O(100)TeV (2.0.17)

This is merely two orders of magnitude above the proposals of TeV strings for solv-
ing the hierarchy problem [18, 20, 22, 28, 19, 175, 92, 93, 42, 197]. Note that our analysis
is similar to the analysis performed in [130]. However there is a notable difference in
that we impose that the U(1)d dark propagates in the whole large dimensions, thus six
in this example, therefore we have considered D5-D9 branes instead of D3-D7 , lead-
ing to different results, and in particular allowing smaller values of the mixing. The
Dp-D(p-4) set-up is enforced by supersymmetry, but, in the case of low string scale, we
could have taken instead, without change in our results, a non-supersymmetric config-
uration of D3-D9 branes, our world being non-supersymmetric at least up to TeV en-
ergy scales. However, one should keep in mind that some of the non-supersymmetric
configurations tend to fall in the Swampland [188].

The above scenario implies the appearance of large extra-dimensions at a scale of
order:

1

R
=

(
Ms√

8πMPl

1

αYM

)1/3

Ms (2.0.18)

where we have identified the tree-value of the SM gauge couplings as αYM = gs/2.
Taking an approximate value for αYM ∼ 1/25, we get

1

R
∼ O(10) GeV (2.0.19)

Though these values of the compactification energy scale might seem low, they are
not experimentally excluded. Gauge bosons propagate in these extra dimensions, in
addition to the gravitons. However, in contrast to the case in [18, 20, 22, 21, 3, 23], these
are Kaluza-Klein excitations of the dark U(1) with tiny couplings. It is the production
of a huge number of them that will compensate the coupling strong suppression. They
can be observed as missing energy at collider experiments in particular at a 100 TeV
collider.
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We can express the string mass scale and the compactification radius as a fonction
of gd and MPl :

Ms ∼
√
gsgdMPl and

1

R
∼ g

4
3
d

(8π)
1
6

MPl . gdMPl (2.0.20)

The most stringent bound on ε today is ε ∼ O(10−16) (see e.g. [107]), with a mass
for the dark photon around the keV. For this case, one obtains for the string mass scale
Ms ∼ 104 GeV, and 1

R
∼ 0.1−1 GeV. Smaller values of ε cannot be obtained through our

simple large extra-dimension setup as they will conflict with the current experimental
limit on the string scale. For different values of the dark photon mass, the constraints
on ε are weaker, and consequently the extra-dimension and string mass scales are set
at higher energies. Taking the three values mentioned above we can have for ε ∼ 10−10,
ε ∼ 10−7 and ε ∼ 10−4, respectively, a string mass scale and an inverse compactification
radius of order Ms ∼ 1010 GeV and 1

R
∼ 107 GeV, Ms ∼ 1013 GeV and 1

R
∼ 1011 GeV,

and finally Ms ∼ 1016 GeV and 1
R
∼ 1015 GeV.

The intermediate scale ∼ 1011 GeV has diverse motivations [65, 42]. It also corre-
sponds to the energy where the SM quartic Higgs coupling vanish, thus a scale where
new degrees of freedom might be expected. Though we cannot proceed to the same
string embedding as we have done above, for kinetic mixing as small as ε ∼ 10−23 the
WGC requires new physics around the scale Λ ∼ 1 − 10 MeV, that could then in turn
be constrained by the Big Bang Nucleosynthesis.

There are some comments to do about the application of the WGC that we have
presented in this chapter.

In our way to generate the large hierarchy between the two couplings gv and gd,
we have assumed the existence of small cycle with a size of order of the string scale
inside six large compact dimensions. This is not the case in the simplest toroidal com-
pactifications and requires some warping. Thus, the KK excitations of the dark photon
are not expected in general to exhibit the same spectrum as in the simplest case. How-
ever, assuming that the rough behaviour of the density of states goes with the energy
as E6/M6

s , a sizable value of the effective coupling between SM states and the dark
photons is reached only at energies of the order of Ms.

In most phenomenological applications, the dark U(1) is massive. The WGC that
we have presented in chapter 1 concerns massless U(1) gauge bosons. For instance,
in the case of a massive U(1), the charge is not conserved and there is no problem of
remnants as charged black holes decay. However, one may argue that if the weak grav-
ity states masses mWGC are much bigger than the dark photon mass mγd , the massive
case is a (Higgs) phase of the same theory and remains in the landscape. Moreover,
the comparison of gravity and gauge forces should be done at energies of order mWGC

and makes sense in the region mγd � mWGC . Finally, we have explicitly illustrated the
WGC prediction for the UV cut-off of the theory by a type IIB string scenario that we
do not expect to break down because of an infrared Higgsing of the U(1). In fact, [150]
have argued, through the explicit investigations of the properties of the WGC charge
lattice, that the bounds used here on the mass, combination of charges ratios and ultra-
violet cut-off of the theory remain true. A detailed discussion of the expected masses
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for the dark photon in different string settings is provided elsewhere [13].

To conclude, we will recapitulate the work done in this chapter. Even if in general
the WGC does not seem useful for phenomenology, we found that there is some place
in the space of physics models where the WGC can have a utility, in particular when
we are looking at some models of dark matter. Looking at models with a dark photon,
we have pointed out the amusing coincidence that the observation of kinetic mixing
between this dark photon and the ordinary one would suggest new physics at scales
that should be probed by a future collider.
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CHAPTER 3

Revisiting the Scalar Weak Gravity Conjecture

In the chapter 1, we have presented a lot of different aspects of the Weak Gravity
Conjecture, as the magnetic WGC, or the modification one should do when adding
several gauge fields or massless scalars for example. But in all these different set-ups,
there is no adding of a potential for the scalars. In this chapter, we will propose an
extension of the WGC to the case of scalars with potential, and see what are the conse-
quences of such a conjecture.

The rest of the chapter is organized as follows. In the first section we will present
some attempts to obtain a Scalar WGC. In Section 2, we formulate the constraint of
dominance of scalar interactions with respect to the gravitational ones for the case of a
single massive scalar field self-interacting. We illustrate the constraint by the simplest
example of a single real field with a cubic and quartic potential. A few other examples
are studied in section 3. Those include the quartic complex potential, the axion, the
exponential and the Starobinsky potential. In the section 4, we discuss an extension to
moduli and massless scalars. Section 5 presents our conclusions.

3.1 Towards a Scalar Weak Gravity Conjecture

We begin by note that going beyond gauge fields and writing a conjecture similar
to the WGC one for scalar fields, possibly complementary to Swampland conjectures,
is not straightforward. First, there is no such obvious arguments on decay of black
holes that can be used to induce the form of the conjecture. Second, to test in all gen-
erality different scalar conjectures in a quantum gravity theory is not easy. The scalar
sector of the theory is very sensitive to the supersymmetry breaking. Implementing
supersymmetry breaking in a string theory and extracting the full corrections to the
scalar potential of a single real field in flat space-time is a non trivial problem. More-
over, supersymmetric models involve complex scalars, and it is not evident how to
disentangle all the facets of constraints applying on one real scalar. With the lack of
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CHAPTER 3. REVISITING THE SCALAR WEAK GRAVITY CONJECTURE

non-supersymmetric string theory examples, one is lead to postulate some form of the
scalar conjecture and evaluate it by investigating the consequences. The hope is that
even this modest trial and error method will turn out to be useful and will allow us
to shed some light on the landscape of the Effective Field Theories coupled to gravity.
This way of proceeding applies to the conjectures discussed below.

A Scalar Weak Gravity Conjecture (SWGC) was investigated in [189] and can be
seen as a special case of the RFC. In the context of the RFC, the scalar field is massless
and one is interested in the long range interactions it mediates. In an attempt to retrieve
the Swampland Distance Conjecture mass formulae, it was proposed that:

gij∂im∂jm ≥ m2 (3.1.1)

where ∂im ≡ ∂m/∂φi is the derivative of the mass term m with respect to the scalar
field φi and gij is the appropriate metric on the manifold of fields. In a footnote of [189],
it was also mentioned that, looking at different forms of the equalities satisfied by the
central charge in N = 2, another possible form of the conjecture could have been:

gij∂i∂jm
2 ≥ gij∂im∂jm+m2. (3.1.2)

But we face immediately to a puzzle. The constraint (3.1.1) does not involve repulsive
interactions and as such cannot be considered as a realization of the RFC, since the RFC
states that the repulsive forces are greater than the attractive ones. It seemed strange
in the RFC set-up discussed in [189], as scalar mediated forces are attractive, and the
possibility (3.1.2) was not pursued any further, with the exception of a few comments
in [85]. It was somehow dismissed due to the lack of simple physical interpretation.

All these considerations led to the proposal of another form of the conjecture for
scalar fields in [128]: the mass m of an interacting scalar field satisfies the bound [172]:

m2 ∂
2

∂φ2

(
1

m2

)
≥ 1

MPl
2 (3.1.3)

This was obtained by modifying by a factor 2 and an additional four-point contact
interaction the inequality (3.1.1) expressed as derivatives of the scalar potential. This
form of the conjecture was motivated by a set of implications [128, 172, 170, 208, 16],
some of which might be of phenomenological importance. However, it raises some
questions about its origin and the meaning of the corresponding inequality. As a con-
sequence of the (3.1.3), for states with a mass depending on the scalar φ, the equality
in (3.1.3) is reached for

m2(φ) =
m2

0

Ae−φ +Beφ
(3.1.4)

where A and B are integration constants. Through the identification e−φ = R2, the
result of (3.1.4) has been interpreted in [128] as an indication of the extended nature of
the fundamental states.

Taken as such, the above proposals were dismissed in [118], because of inconsistent
implications for simple scalar potentials, and it was instead suggested that scalar par-
ticles should be subject to constraints in such a way that they would not form bound
states with size smaller than their Compton wavelength. No generic alternative for-
mulation for these constraints on the scalar potential was proposed.
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In this work, we will postulate that in the appropriate low energy limit, for the
leading interaction, the gravitational contribution must be sub-leading. For particular
scalar fields, we will propose an explicit set-up, based on the computation of four-
point functions, for comparing the different interactions. The resulting inequalities
will reproduce different forms of the Swampland conjectures, and, in a particular case,
the inequality will be saturated for masses of the form (3.4.11):

m2
X(φ) = m2

−e
−2φ +m2

+e
2φ . (3.1.5)

instead of (3.1.4).

Now that we have presented different proposals for a Scalar Weak Gravity Conjec-
ture, let’s develop more what we want to study.

3.2 Scalar vs Gravity in the non-relativistic regime

One interesting feature of the WGC is that it can be, at least in the flat space, ex-
pressed in different terms. In chapter 1, we have presented refinements of the WGC,
obtained using the decay or the extremality of black holes, but one can also see the
WGC as a statement that for any abelian gauge symmetry U(1) there is at least one
state with gauge self-interaction stronger than the gravitational one. It is this point of
view which is emphasized by the RFC conjecture, as presented above. The goal of this
chapter here is to give a possibility of the extension of this conjecture to the case of
scalars fields.

To begin with, we will start with the case of a single self-interacting massive scalar
field. There is no clear statement that we can obtain for black holes physics, or RFC.
We will so just postulate that for this scalar field the self-interaction is stronger than
the gravitational one.

This assertion calls for a few immediate remarks. First, instead of the case of the
RFC where all the forces are long-range, here we will have forces mediated by massive
particles, and we need to specify at which scale the different interactions are computed
and compared. We will take the scale to be of order of the mass of the self-interacting
particle. This is consistent with the fact that the WGC makes statements about proper-
ties of EFT. When we look at these energy scales, we can take as a good approximation
the non-relativistic theory. This means, for example, that in scattering processes the
particle number is conserved. We shall therefore investigate the strength of the inter-
actions by computing the simplest scattering processes. Precisely, we will compare the
four-point amplitude contribution of the scalar self-interaction versus the gravitational
one.

Since we work in the non-relativistic limit, we will keep only the leading order in
1/c2. The gravitational forces are then expected to be well described by the Newtonian
potential. Higher order corrections, as those given by the Einstein–Infeld–Hoffman
Lagrangian, will be neglected. In practice, instead of dealing with the potential in
coordinates space, we will work in the Fourier-transform space by computing the scat-
tering amplitudes. The dominance of scalar self-interaction means in particular that all
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the higher dimensional non-renormalizable interactions suppressed by higher powers
of the Planck mass should be subdominant and may be neglected. We will see below
that this preeminence can happen to be violated in isolated regions of size ∆φ2

m2 ∼ m2

M̃2
Pl

where the interactions can switch nature between attractive and repulsive.
We first investigate the simplest case of cubic and quartic potential, in order to see

if there is a proper form that we can obtain from such a basic potential. We will discuss
other forms of scalar potentials, with a phenomenological interest in the next section.

Let’s consider a real scalar φ with the potential:

V (φ) =
1

2
m2

0φ
2 +

µ

3!
φ3 +

λ

4!
φ4. (3.2.1)

In string theory, our fiducial quantum gravity theory, all the low energy parameters
are field dependent. For simplicity we will consider here that the other scalar fields
are fixed to their vacuum value and decouple from the dynamics of the low energy
effective action under scrutiny. At energy scales E ∼ m0, as we have said the theory is
non-relativistic and can be described by the corresponding limit. We study fluctuations
around φ = 0 and make the field redefinition:

φ(x) =
1√
2m0

(
ψ(x, t)e−im0t + ψ∗(x, t)eim0t

)
(3.2.2)

where the phase e−im0t is introduced to take into account the leading m0 term in the
non-relativistic limit expansion E ' m0 + p2/2m0 where p is the particle three dimen-
sional momentum. The denominator

√
2m0 comes from the different normalization in

relativistic and non-relativistic quantum mechanics.
The potential for the non-relativistic field ψ should be of the form

Veff (ψψ∗) = m0ψψ
∗ +

λ̃

16m2
0

(ψψ∗)2 . (3.2.3)

We now want to relate the single non-relativistic coupling λ̃ with the coefficients of the
relativistic potential. We identify the low energy limit of the 2 → 2 scattering in the
φ description with the corresponding scattering of four ψ states. This leads trivially
to λ = λ̃ when µ = 0 in (3.2.1). In the case where µ 6= 0, we will have to take into
account the contributions to the 2 → 2 scattering from the exchange of a virtual φ. We
have in this case three diagrams, one for each channel, as shown in Figure 3.1. We
can compute the non-relativistic limit of each one of them. This is obtained requiring
s − 4m2

0 � m2
0, where s = (p1 + p2)2 is the usual Mandelstam variable and p1, p2

the four-momenta of the initial states. We also have t = −1
2
(s − 4m2

0)(1 − cos(θ)) and
u = −1

2
(s − 4m2

0)(1 + cos(θ)), θ being the angle between the in-going and out-going
particles momenta in the centre of mass frame. This basic computation yields the s-
channel contribution as:

(−iµ)2 i

s−m2
0

=
−iµ2

3m2
0

+O
(
s− 4m2

0

m2
0

)
, (3.2.4)

and the t-channel as:

(−iµ)2 i

t−m2
0

=
iµ2

m2
0

+O
(
s− 4m2

0

m2
0

)
. (3.2.5)
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Finally, the u-channel contribution is the same as the t-channel one. Summing up the
three contributions we obtain i5

3
µ2

m2
0
, so that the effective four-point self-interaction cou-

pling in the non-relativistic limit is:

λ̃ = λ− 5

3

µ2

m2
0

. (3.2.6)

In computing the gravitational interaction, we have assumed m2
0 > 0. Both attrac-

tive and repulsive forces can be obtained from the quartic self-interaction, through the
choice of λ < 0 and λ > 0 respectively. On the other hand, the trilinear term always
leads to an attractive force in a 2 → 2 states scattering. However, when λ < 0 the sta-
bility of the potential means that additional non-renormalizable terms are important
and should be taken into account. In the case of λ > 0, eq (3.2.6) shows the competi-
tion between the attractive and repulsive interactions in the non-relativistic limit. The
resulting sign of λ̃ tells us about the attractive or repulsive nature of the effective in-
teraction and, in the case where they are in competition, which one of the two terms
dominate at energies E ∼ m0.

As said previously, in the WGC, the gauge and gravity scalar forces have similar
dependence in the distance between the scattering particles at leading order. In this
case, there are two type of corrections. The one from the evolution of gauge coupling
with energy and the other from post-Newtonian effects. But for the scalar interac-
tions the situation is not the same, in particular because the range of the forces will
depend on the mass of the mediators. In the non-relativistic limit, the scalar poten-
tial is approximated by a delta distribution in space while the gravitational potential
is Newtonian. A point-like interaction arises from integrating out massive mediators.
In the infrared, at energies below the mass scale, the gravitational scattering exhibits a
divergence coming from the t and u channels. This divergence is the one which came
from the long-range character of the gravitational force. Obviously, to compare a New-
tonian potential at long distance with the strength of the scalar localised interaction
is not very instructive. It is essential in the comparison to fix the energy scale, and
naturally it is given by the mass of the scalar particle, and consider the gravitational
scattering in the s-channel at s ∼ 4m2

0.
Requiring that gravity is the weakest force at low energy amounts then to impose:

∣∣∣λ̃∣∣∣ =

∣∣∣∣λ− 5

3

µ2

m2
0

∣∣∣∣ ≥ m2
0

M2
Pl

. (3.2.7)

We have put an absolute value on the left hand side so that it holds independently of
the sign of the self-interaction. Note also that, in the spirit of [29, 174, 83], the quan-

tity
√
|λ̃|MPl, could be interpreted as an ultra-violet cut-off scale dictated by quantum

gravity. In particular, this means that both the limits λ → 0 and µ → 0 cannot be
taken simultaneously. Cancellation of the two terms in λ̃, as we said, might encode the
change of nature of the scalar interactions on a region of the phase space that need to
be studied case by case.

Below, we will work in more generic field background values and potentials, there-
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Figure 3.1 – The identification of the 2→ 2 scattering in the non-relativistic theory
coming from the corresponding scattering in the relativistic case.

fore we will impose a stronger condition

4m2
0

∣∣∣∣ ∂4Veff
∂2ψ∂2ψ∗

∣∣∣∣
ψ=0

≥ c̃

M2
Pl

∣∣∣∣ ∂2Veff
∂ψ∂ψ∗

∣∣∣∣2
ψ=0

(3.2.8)

and take the order one constant c̃ to be c̃ = 1, which amounts to redefine the Planck
mass to M̃Pl. The r.h.s. of (3.2.8) represents the gravitational attractive interaction
between the two particles only when we work at the minimum of the potential and the
squared mass is positive defined.

We focus now on the simplest case µ = 0 and investigate the relative strengths of
self-interaction and gravitational one when φ sweeps the range of possible values. For
this purpose we consider small perturbations δφ, corresponding to the above ψ, around
background values φ. We expand

V (φ+δφ) =
1

2
m2

0φ
2+

1

4!
λφ4+m2

0φδφ+
λ

3!
φ3δφ+

1

2

(
m2

0 +
λ

2
φ2

)
(δφ)2+

λ

3!
φ(δφ)3+

λ

4!
(δφ)4.

(3.2.9)
From (3.2.9), we can immediately read the mass term, the cubic and the quartic

couplings for δφ and the effective quartic coupling in the non-relativistic limit. Those
are given by:

m2
δφ(φ) = m2

0 +
λ

2
φ2, µδφ = λφ, λδφ = λ λ̃ = λ− 5

3

λ2φ2

m2
0 + λ/2φ2

. (3.2.10)

We restrict to the case with m2
0, λ > 0 to explicitly exhibit the competition between

the attractive and repulsive terms. Requiring gravity to be the weakest force leads to∣∣∣∣∣λ− 5

3

λ2φ2

m2
0 + λ

2
φ2

∣∣∣∣∣ ≥ 1

M̃2
Pl

(
m2

0 +
λ

2
φ2

)
. (3.2.11)

The term inside the absolute value of (3.2.11) vanishes for φ2 = 6
7

m2
0

λ
. The cubic term

dominates above this turning point, a region where the interaction is attractive. The
quartic one dominates instead below the turning point, making the scalar interaction
repulsive.

We first investigate the φ2 ≤ 6
7

m2
0

λ
region where (3.2.11) reads

φ4 +

(
4
m2

0

λ
+

14

3
M̃2

Pl

)
φ2 + 4

m4
0

λ2
− 4M̃2

Pl

m2
0

λ
≤ 0. (3.2.12)
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Assuming λ ≥ m2
0

M̃2
Pl

and discarding the solutions with φ2 < 0, this is verified inside the
region

0 ≤ φ2 ≤ −2
m2

0

λ
− 7

3
M̃2

Pl +
7

3
M̃2

Pl

√
1 +

120

49

m2
0

λM̃2
Pl

. (3.2.13)

At the first order in 1
M̃2
Pl

, this is obtained:

φ2 .
6

7

m2
0

λ
− 600

343

m4
0

λ2

1

M̃2
Pl

(3.2.14)

which exhibits a small region of order M̃−2
Pl below the critical value where gravity is

stronger than quartic scalar self-interaction.
For λ ≤ m2

0

M̃2
Pl

, the turning point happens at a scale φ2 ∼ m2
0

λ
≥ M̃2

Pl and, as the

inequality would not be solved for φ2 ≤ 6
7

m2
0

λ
, this would translate in gravity being

stronger than scalar interactions all the way up to the Planck scale.
Let’s now turn to the case φ2 ≥ 6

7

m2
0

λ
. There, the inequality translates into

φ4 +

(
4
m2

0

λ
− 14

3
M̃2

Pl

)
φ2 + 4

m4
0

λ2
+ 4M̃2

Pl

m2
0

λ
≤ 0. (3.2.15)

At leading order in m2
0

M̃2
Pl

, the region where the inequality is verified is given by

6

7

m2
0

λ
+

600

343

m2
0

λ2

m2
0

M̃2
Pl

. φ2 .
14

3
M̃2

Pl −
6

7

m2
0

λ
+O(M̃−2

Pl ) (3.2.16)

In conclusion, up to the Planck scale, the gravity seems to dominate only around the
special value φ2 = 6

7

m2
0

λ
in a symmetric interval of radius ∆φ2 ∼ m4

0

M̃2
Pl

. It would be
interesting to investigate, for explicit examples of quantum gravity, if the theory can
be insensitive to such small field excursion regions, but this goes beyond the scope of
this work.

3.3 Single Scalar Field Potentials

In this section, we would like to investigate what the implications of requiring grav-
ity to be weaker than the scalar field self-interactions in the non-relativistic limit are on
different potentials of phenomenological interest. More precisely, we will consider very
slowly rolling fields, having in mind possible cosmological applications. The idea is to
impose the condition (3.2.8) and extract its implications for the involved scales and
couplings.

3.3.1 The Mexican Hat or Higgs-like Quartic Potential

We will begin the discussion with the quartic scalar potential

V (φ, φ̄) = −m2φ̄φ+ λ(φ̄φ)2. (3.3.1)
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with λ > 0, insuring stability, and m2 > 0.
For our calculation it is convenient to use the parametrization φ(x) = 1√

2
ρ(x)eiπ(x).

This potential develops a minimum at ρ2 = m2

λ
. We note that this theory has a global

U(1) symmetry. We have already explained that quantum gravity requires that either
the symmetry is gauged or broken, since there is no possibility of global symmetry.
However, the term which breaks explicitly the symmetry might be sub-leading to the
quartic self-interaction considered here. We will consider that the gauge group is spon-
taneously broken at the minimum, and we call π(x) the associated Goldstone boson.
The final mass of π(x) depends on details of the complete theory. It might be generated
by the higher order terms breaking the global symmetry, terms that we have neglected.
If we consider the other possibility offered by the Swampland, it could also be that the
U(1) symmetry is gauged. In this case, π(x) gives rise to the longitudinal mode of the
massive gauge boson. We will focus here only on the field ρ(x) which plays in the latter
case the role of the Higgs field.

We consider a small perturbation δρ(x) around a background value ρ(x). The ex-
pansion of the potential, up to O(δρ4), reads:

V (ρ+ δρ) ' −1

2
m2ρ2 +

λ

4
ρ4 + (λρ3−m2ρ)δρ+

1

2
(3λρ2−m2)δρ2 +λρδρ3 +

λ

4
δρ4. (3.3.2)

The expansion gives us the effective mass term, trilinear and quartic couplings of δρ(x).
There arem2

δρ = 3λρ2−m2, µδρ = 6λρ, λδρ = 6λ, respectively. The δρ(x) resulting quartic
self-interaction λ̃ at low energies can now be computed to be

λ̃ = 6λ− 60λ2ρ2

3λρ2 −m2
= −6λ

(m2 + 7λρ2)

3λρ2 −m2
. (3.3.3)

Vanishing self-interaction, i.e. a null value for λ̃, corresponds to m2λ+ 7λ2ρ2 = 0. This
is obviously never satisfied here.

We discard the region ρ2 < m2

3λ
where the effective mass of δρ(x) is either tachyonic

or vanishing, though we have checked that the inequality (3.2.8) is satisfied in this case.
We will investigate the region m2

δρ > 0, i.e. ρ2 > m2

3λ
. We have:

9
λ2

M̃2
Pl

ρ4 −

(
6λ

m2

M̃2
Pl

+ 42λ2

)
ρ2 +

m4

M̃2
Pl

− 6m2λ ≤ 0. (3.3.4)

Discarding the region ρ2 ∈
[
0, m

2

3λ

]
as discussed above, the inequality is satisfied for:

m2

3λ
< ρ2 6

14

3
M̃2

Pl +
17

21

m2

λ
+O(M̃−2

Pl ) (3.3.5)

It is worth mentioning that at the minimum, where ρ2 = m2

λ
≡ v, we get λ̃ = −24λ, and

the conjecture is then verified in the case:

λ ≥ 1

12

m2

M̃2
Pl

∼ 10−17 ⇔ v2 ≤ 12M̃2
Pl ∼ 1037GeV 2, (3.3.6)

where we have taken m to be the electroweak scale. A condition for the respect of the
conjecture is that the vev of the scalar fields doesn’t take transplanckian values.
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3.3.2 Axion-like Potential

We will now consider the case of the axion potential:

V (φ) = µ4

(
1− cos

(
φ

fa

))
. (3.3.7)

Once again, expanding this potential around a fixed value φ0 and excluding points
where cos

(
φ0

fa

)
= 0 , in which the state becomes massless and our non-relativistic limit

no more applies, we obtain up to fourth order in δφ:

V (φ) ' µ4
[
1− cos

(
φ0

fa

)
+ sin

(
φ0

fa

)
δφ
fa

+ 1
2

cos
(
φ0

fa

)
(δφ)2

f2
a

− 1
3!

sin
(
φ0

fa

)
(δφ)3

f3
a
− 1

4!
cos
(
φ0

fa

)
(δφ)4

f4
a

]
, (3.3.8)

We can extract the different couplings needed: λ̃ = − 1
f4
a

(
cos
(
φ0

fa

)
+ 5

3
sin2(φ0/fa)
cos(φ0/fa)

)
. Re-

quiring gravity to be the weakest force leads to

1

f 2
a

∣∣∣∣∣∣cos

(
φ0

fa

)
+

5

3

sin2
(
φ0

fa

)
cos
(
φ0

fa

)
∣∣∣∣∣∣ ≥ 1

M̃2
Pl

∣∣∣∣cos

(
φ0

fa

)∣∣∣∣, (3.3.9)

which yields
1

f 2
a

∣∣∣∣1 +
5

3
tan2

(
φ0

fa

)∣∣∣∣ ≥ 1

M̃2
Pl

. (3.3.10)

We have expanded around a generic background value φ0 thus this inequality leads to:

f 2
a ≤ M̃2

Pl (3.3.11)

We therefore retrieve the Axion Weak Gravity Conjecture, which requires an axion
decay constant lower the Planck scale [29, 203, 179, 63, 146, 88, 144, 31, 204, 161, 169,
156, 145, 143, 86]. Note that, in the r.h.s. of (3.3.9), we have taken the absolute value
of the squared mass term. Here we see the inequality as taken on derivatives of the
potential since the squared mass can be negative.

3.3.3 Inverse power-law effective scalar potential

Another scalar potential is the inverse power-law one, frequently used in cosmo-
logical applications. It reads

V (φ) = M4+pφ−p, (3.3.12)

where p > 0 is a constant and M sets the energy scale. In the general case, we expand
the potential as a Taylor series

1

M4+p
V (φ0 + δφ) = φ−p0 − pφ

−p−1
0 δφ+

p(p+ 1)

2
φ−p−2

0 (δφ)2 − p(p+ 1)(p+ 2)

3!
φ−p−3

0 (δφ)3

+
p(p+ 1)(p+ 2)(p+ 3)

4!
φ−p−4

0 (δφ)4. (3.3.13)
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The effective quartic interaction in the non-relativistic limit is given by

λ̃ = −p(p+ 1)(p+ 2)

3
(2p+ 1)φ−p−4

0 . (3.3.14)

The gravitational interaction will thus be weaker than the scalar self-interaction in the
non-relativistic limit if

p(p+ 1)(p+ 2)

3
(2p+ 1)

∣∣φ−p−4
0

∣∣ ≥ p(p+ 1)

M̃2
Pl

∣∣φ−p−2
0

∣∣ . (3.3.15)

which is satisfied for
φ2

0 ≤
(p+ 2)(2p+ 1)

3
M̃2

Pl, (3.3.16)

therefore forbidding large transplanckian excursions.

3.3.4 Exponential Scalar Potential

Another popular class of scalar potentials is represented by sums of exponential
functions. We focus here on the simplest case

V (φ) = Λ0e
−λφ/f . (3.3.17)

The expansion around a background value φ0 reads

V (φ0 + δφ) = Λ0e
−λφ0/f

[
1− λδφ

f
+

1

2
λ2

(
δφ

f

)2

− 1

3!
λ3

(
δφ

f

)3

+
1

4!
λ4

(
δφ

f

)4
]
,(3.3.18)

and the self-interaction of the scalar field in the non-relativistic limit is encoded in the
λ̃ quartic coupling

λ̃ = Λ0e
−λφ0/f

(
λ4

f 4
− 5

3

λ4

f 4

)
= −2

3

λ4

f 4
Λ0e

−λφ0/f . (3.3.19)

Application of our bound is straightforward and yields the following inequality

2

3

λ2

f 2
≥ 1

M̃2
Pl

, (3.3.20)

The weak gravity regime under scrutiny is realized for scalars with an exponential
potential as long as their scale does not exceed the Planck one, with

f 2 ≤ 2

3
λ2M̃2

Pl. (3.3.21)

This bound still allows for a cosmological expansion (see e.g. [214]), but is in conflict
with the requirement obtained in [4], as we will discuss below.

Let’s consider the case of a double exponential potential

V (φ) = Λ1e
−λ1φ/f + Λ2e

−λ2φ/f , (3.3.22)
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with the assumption λ1 ∼ λ2. We develop each exponential as in (3.3.18) to get

λ̃ = Λ1
λ4

1

f 4
e−λ1φ0/f + Λ2

λ4
2

f 4
e−λ2φ0/f − 5

3

1

f 4

(
Λ1λ

3
1e
−λ1φ0/f + Λ2λ

3
2e
−λ2φ0/f

)2

Λ1λ2
1e
−λ1φ0/f + Λ2λ2

2e
−λ2φ0/f

, (3.3.23)

which can be rewritten as

λ̃ = − 1

f 4

2
3
Λ2

1λ
6
1e
−2λ1φ0/f + 2

3
Λ2

2λ
6
2e
−2λ2φ0/f + Λ1Λ2λ

2
1λ

2
2

(
10
3
λ1λ2 − λ2

1 − λ2
2

)
e−(λ1+λ2)φ0/f

Λ1λ2
1e
−λ1φ0/f + Λ2λ2

2e
−λ2φ0/f

.

(3.3.24)
The analysis of this constraint on a double exponential is somehow quite involved,
and not useful here to discuss in full generality. In the case where λ2

1 + λ2
2 ≤ 10

3
λ1λ2,

all three terms in the numerator have the same sign. For Λ1,2 > 0 (Λ1,2 < 0) the scalar
self-interaction is attractive (repulsive). The condition for gravity to be the weakest
force reads

I(Λ1,Λ2, λ1, λ2, f) = λ4
1Λ2

1

(
2

3

λ2
1

f 2
− 1

M̃2
Pl

)
e−2λ1φ0/f + λ4

2Λ2
2

(
2

3

λ2
2

f 2
− 1

M̃2
Pl

)
e−2λ2φ0/f

+Λ1Λ2λ
2
1λ

2
2

(
10/3λ1λ2 − λ2

1 − λ2
2

f 2
− 2

M̃2
Pl

)
e−(λ1+λ2)φ0/f

≥ 0 (3.3.25)

It is verified for mass scales not exceeding the value f 2 ∼ 2
3
λ2

1,2M̃
2
Pl.

3.3.5 Starobinsky Potential

The power-law and the exponential potentials are frequently used in early Uni-
verse cosmology. We investigate here the implications of (3.2.8) for the Starobinsky’s
potential [211].

We consider the potential:

V (φ) = Λ4
(

1− e−
√

2/3φ/M̃Pl

)2

(3.3.26)

and expand it around a background field value φ0, and study the leading order con-
tribution to the quartic self-interaction perturbation δφ = φ − φ0. The non-relativistic
regime quartic coupling λ̃ is given by:

M̃4
Pl

Λ4
λ̃ =

−256
27
e−4
√

2/3φ0/M̃Pl + 80
27
e−3
√

2/3φ0/M̃Pl − 16
27
e−2
√

2/3φ0/M̃Pl

2e−2
√

2/3φ0/M̃Pl − e−
√

2/3φ0/M̃Pl

. (3.3.27)

The weakness of the gravitational interaction reads now∣∣∣∣−16

9
e−2
√

2/3φ0/M̃Pl +
5

9
e−
√

2/3φ0/M̃Pl − 1

9

∣∣∣∣ ≥ ∣∣∣∣e−2
√

2/3φ0/M̃Pl − e−
√

2/3φ0/M̃Pl +
1

4

∣∣∣∣ ,
(3.3.28)
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where we have put the absolute value on the r.h.s. to stress its positivity even if it is
useless, being the square of a real quantity. Nevertheless, we still should study the
sign and the strength of the l.h.s. of (3.3.28). The term inside the absolute value is
always negative, meaning the scalar interaction is always attractive. So we can just
drop the absolute values in (3.3.28). Simple algebra finally leads us to the conclusion
that gravity is weaker than the scalar self-interaction if

φ0 ≤
√

3

2
ln

(
14√

51− 4

)
M̃Pl ∼ 2M̃Pl. (3.3.29)

The coefficient in front of M̃Pl in the above equation is of order 1. Slightly before

reaching this scale, we would encounter tachyonic modes for φ ∼
√

3
2

ln (2)M̃Pl. In this
Starobinsky’s model, self-interactions are strong enough to keep gravity the weakest
force all the way up to the Planck scale.

3.3.6 Weak Gravity and Quintessence

The last scalar potentials that we have presented are used in theoretical models for
inducing cosmic acceleration. In this case, the fields φ is called the quintessence field.
We discuss in the following some direct implications of our constraints, and their rela-
tions to the others constraints on the model parameters derived from the experimental
data, or others Swampland conjectures.

We will begin with a simple presentation of the quintessence. The late time cosmic
acceleration that we can observe today may be understood in terms of a cosmological
constant, in the context of the ΛCDM. It is also possible to describe this expansion using
a dynamical scalar field, slowly rolling towards the minimum of its potential [198, 220].
This scalar field is called the quintessence field. One parameter driving the expansion
is the equation of state, and more precisely the ratio pressure/energy density w. In
the ΛCDM case, this quantity is fixed to the value w = −1. On the contrary, in the
quintessence models, it is promoted to a dynamical variable [67]. The Swampland
criteria seems to be in favor of the latter scenario, that, with parameters tightened by
the current observations, may fit into the program (see [4]). In this context, for the
dark energy to take over the control of the expansion of the Universe at late times, the
quintessence field needs to be very light, with mass of order the Hubble parameter
as measured today m . H0 ∼ 10−33eV . The corresponding potential is unknown.
That’s why forms similar to those studied above have been considered. A review of
the different potentials can be found in [214]. Requirements for the evolution equations
of a scalar field φ to have a fixed point realizing the desired equation of state can be
expressed as {

weff ≡ ρφ+ρm
Pφ+Pm

= wφ > −1
3
;

Ωφ ≡ ρφ
3M2

PlH
2 = 1,

(3.3.30)

where we denote with the subscriptm the matter contribution, and φ for the quintessence
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one, and [82]: (
MPl

V ′(φ)

V (φ)

)2

≡ λ∗2 < 2. (3.3.31)

Obviously, wφ ≡ Pφ
ρφ

= φ̇/2−V (φ)

φ̇/2+V (φ)
, leads to different dynamics for the different potentials.

We can first examine the axion potential. It gives what is called the thawing solu-
tion. The field and its corresponding equation of state are almost constant in the early
cosmological era, with wφ = −1, and then starts to evolve after the mass drops below
the Hubble parameter, leading to wφ ≥ −1 [119, 68]. The axion shift symmetry might
allow to tame loop corrections. The condition (3.3.31) reads then

sin2

(
φ

fa

)
< 2

f 2
a

M2
Pl

(
1 + cos

(
φ

fa

))2

. (3.3.32)

The first thing we can note is that for this cosmological application, we have taken, as
in [119], the potential to be V (φ) = µ4

(
1 + cos

(
φ
fa

))
. This corresponds to a shift of the

minimum in (3.3.7), and so as no consequences for the analysis performed in section
3.3.2. We can use this result in the case we look at here.

As it is easy to see, the requirements (3.3.32) and (3.3.11) will not give the same
bound. In particular, one can have an axion as a quintessence field without requiring
that the gravity is the weakest force. However, it is important to note that requiring
(3.3.11) will not prevent the possibility to this axionic field to be the quintessence field,
as long as the variation of the field are small compare to the decay constant. Observa-
tional constraints allow this model to be used for quintessence with w0 ∈ ]−1,−0.7[,
w0 being today’s value.

The use of a power law potential for the quintessence field gives rise to the track-
ing solution [221, 212]. This allows for a cosmic evolution from the so-called scaling

fixed point (x, y) =

(√
3
2

1+wm

λ
,
√

3
2

1−wm
2

λ2

)
, with x = φ̇√

6MPlH
and y =

√
V (φ)

√
3MPlH

, where

matter dominates, to the fixed point (x, y) = (λ∗/
√

6,
√

1− λ∗2/6), where the cosmic
acceleration can be realized [82]. The behaviour of the equation of state is opposite to
the previous case, as w slowly decreases with the evolution. Equation (3.3.31) gives

φ2 >
1

2
p2M2

Pl, (3.3.33)

Unless the p parameter is tuned to be very small, this calls for transplanckian values
of the field, as we should have expected since the potential is monotonically decreasing
to reach its asymptotic value V = 0 at infinity. Together with our constraint of weak
gravity φ2 ≤ (p+2)(2p+1)

3
M2

Pl, this leads to:

(p+ 2)(2p+ 1)

3
>
p2

2
, (3.3.34)

which is valid for all positive powers. It seems so at a first level that the constraints
we obtained from requiring the gravity to be the weakest force are compatible with the
constraints obtained from the expansion of the Universe. However, the applicability of
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the effective field theory treatment at transplanckian scales is for the least questionable.
Besides, observations have led to constrain the tracker equation of state so tightly that
the current accepted range of value for the exponent p is very restricted. Indeed, the
upper bound on p was argued to be p < 0.107 in [77], or p < 0.17 in [163], so that
positive integers should be excluded, making it difficult to realize power law potentials
within the observational bounds in particle physics models.

We will now take a look at the single exponential potential. It is a popular model
as the cosmological evolution is there described by a closed system of equation [82,
114]. However, the fact that λ∗ is constant in this case leads to strongly constrain this
potential. It is realized again in the fixed point mentioned above but to be reached from
the trivial fixed point (x, y) = (0, 0) [214]. In particular, the transition from the more

interesting scaling fixed point (x, y) =

(√
3
2

1+wm

λ
,
√

3
2

1−wm
2

λ2

)
is forbidden. This can be

circumvented by taking the case of a double exponential potential, as in (3.3.22). The
solution which is realized in this case is a tracking one with constant Ωφ[34].

We recall that the constraints we obtained requiring that the gravity is weaker that
the scalar interactions can be written for such a potential under the form (3.3.20) :

λ2M
2
Pl

f 2
>

3

2
. (3.3.35)

But in order to use this potential for a quintessence field, in particular for the epoch of
cosmic acceleration to be realized we require instead

λ2M
2
Pl

f 2
< 2. (3.3.36)

As we see, this seems to leave a short window for both the weakness of gravity and the
period of cosmic accelerated expansion to be realized through an exponential potential.

An instructive point of these type of potentials is that they have also been con-
strained with current observations in the interest of other Swampland conjectures,
namely the de Sitter and the TCC conjectures [4, 35]. It was argued in [4] that we should
have for an exponential potential λ∗ = λMPl

fa
≤ 0.6. This was devised to be in agree-

ment with the de Sitter conjecture with the constant c appearing in (1.1.1) bounded to
be c ≤ 0.6. This bound is sensitive to uncertainties in the data as was investigated
in e.g. [152, 5]. This seems to leave as the only viable conclusion that an exponential
quintessence model can only lead to fifth force interactions weaker than gravity. We
can add another exponential term in order to obtain a double exponential potential.
such a potential is usually devised to respect both constraints coming from big-bang
nucleosynthesis and cosmic acceleration. As such, one exponent, λ1, is taken to give
λ1

MPl

f
∼ 1− 10, while the second is expected to take over at late times and respects the

same bounds as those for the single exponent [4, 77, 34]. In this case, the weak gravity
may be realized in the early Universe as long as the double exponential is concerned,
but at late time, one faces the same strong constraints as discussed above.

However, [217] has hinted to the possibility that dark matter-dark energy coupling
may relax constraints on λ. Hence the difficulty to have a clear and complete answer
on the respect or not of our requirement by the quintessence models.
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3.4 Multiple Scalar and Moduli Fields

In the previous section, we considered one scalar field, with different potential used
for phenomenological applications, and we looked for the consequences or the impli-
cations of requiring that the gravitational forces are sub-dominant over the scalar ones.
But in most of theoretical models, there is more than one scalar field. We will now turn
to more complex situations, taking into account multiple scalar fields. When we have
several scalar fields, the preeminence of the scalar interaction over the gravitational
one has to be formulated in more general terms to account for these cases. In partic-
ular, we need to specify what are the processes we should consider to compare scalar
and gravitational interactions.

In the case of multiple scalars, we will assume that in the appropriate low energy limit,
for the leading interaction, the gravitational contribution must be sub-leading. The focus on
the leading scalar interaction can be seen as parallel to constraining the biggest ratio
q/m in the WGC, as was postulated in the first definition of the WGC.

To illustrate the meaning of this statement, we will first consider the case of a mas-
sive scalar X , taken to be complex for simplicity. The leading interaction is given by
the Yukawa coupling to another real scalar field φ and is described by:

Lint = µφ|X|2 + · · · (3.4.1)

where the dots stand for sub-leading higher order terms. We can write the potential
as:

V (X,φ) = m2
X(φ) |X|2, µ = ∂φm

2
X (3.4.2)

The preeminence of scalar interactions must be taken at the mass scale ∼ 2mX and
reads then:

|∂φmX | ≥
mX

M̃Pl

(3.4.3)

We can square the above three-point amplitudes on each side, 2X → φ on the left and
2X → G, on the right side, where G is the graviton. The comparison concerns then
two XX∗ → XX∗ processes, at the energy scale mX , one through scalar and the other
through graviton exchange. This leads to the following potentials for X :

Vscalar(r) = − µ2

4m2
Xr
, Vgrav(r) = − m2

X

M̃2
Plr

(3.4.4)

Now, both scalar and gravitational interactions have similar dependence in the inter-
particles distance and the comparison is straightforward:

µ2

4m2
X

≥ m2
X

M̃2
Pl

(3.4.5)

which can be written:

∂φmX∂φmX ≥
m2
X

M̃2
Pl

(3.4.6)

In the extremal case saturating the above inequality, the solution is given by:

m2
X(φ) = m2

0 e
±2φ/M̃Pl . (3.4.7)
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It is interesting to note that the spectrum of the states that saturates the inequality
(3.4.6) respect what we called before in the chapter 1 the Swampland Distance Con-
jecture (SDC), since the states becomes light when the field φ approaches the Planck
mass. A second observation that we can make is that the inequality (3.4.6) has been
proposed by [189] in order to retrieve (3.4.7). This inequality was also discussed by
[189, 208, 123] with different motivations.

Let’s now move forward and consider another case: a massless complex modulus
field Φ, therefore with vanishing potential. We assume again that the theory contains at
least one complex scalar field X such that the mass of X and its different couplings are
functions of φ. For simplicity, we also assume that X has no tadpole and its vacuum
expectation value vanishes, 〈X〉 = 0. Under these assumptions, the scalar potential
then takes the form:

V (X,Φ) = m2
X(Φ)|X|2 + · · · m2

X = m2
X0 + λΦ|Φ|2 + · · · (3.4.8)

where
λΦ = ∂Φ∂Φ̄m

2
X(Φ, Φ̄) (3.4.9)

represents now the leading non-gravitational interaction of Φ. Here, m2
X0 is a contri-

bution to the squared mass independent of Φ, but depending on other fields while λΦ

gives a scalar four-point interaction term of Φ and X obtained by expanding (3.4.8) in
powers of Φ and Φ̄. The weakness of gravitational interaction becomes a statement
comparing on one side the annihilation of two X states into two Φ state (and vice-
versa) and on the other side the same channel through graviton exchange, both taken
at the threshold energy scale ∼ 2mX .

As the modulus is massless, the gravitational interaction gets an enhancing factor
of 2 compared to the massive case, analogous to the case of the gravitational deflection
of light. In this case, the statement that the gravitational interaction is weaker reads:

∂Φ∂Φ̄m
2
X ≥ 2

m2
X

M̃2
Pl

(3.4.10)

We can make a comment here on the case of real fields. If the fields are real, the in-
equality reads gij∂i∂jm2

X ≥ 2nm2
X/M̃

2
Pl where gij and n are the metric in the manifold

and the number of moduli fields. The dots in (3.4.8) include Φ2 and Φ̄2 as required to
recover the case of real fields scattering and account for an extra factor of 2.

If the state X has a self-quartic interaction, then we will also have to check a similar
constraint on the self coupling |λ̃4|M̃2

Pl ≥ m2
X .

The extremal case corresponds to the case of equality in (3.4.10). It is solved for:

m2
X(Φ, Φ̄) = m2

−e
−
√

2 Φ+Φ̄
M̃Pl +m2

+e
√

2 Φ+Φ̄
M̃Pl (3.4.11)

This is not the most general solution. We can add some terms functions of |Φ| and also
the same terms present in (3.4.11) but function of i(Φ− Φ̄), corresponding to the imag-
inary part. We will not consider the term proportional to the modulus of |Φ| to focus
on reproducing the toroidal compactification scheme. Besides, as the potential (3.4.8)
and the equation (3.4.10) are symmetric under the exchange of the real and imaginary
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part, The fact to focus on the real part of the field only, i.e. KK and winding excitation
corresponds to choose only one of the torus dimensions.

We can use the following parametrization:

Φ =
1√
2

(φ+ iχ), e
√

2 Φ+Φ̄
M̃Pl = e

2 φ

M̃Pl , and e
φ

M̃Pl = R (3.4.12)

then:

m2
X(R) =

m2
−

R2
+m2

+R
2 (3.4.13)

which is the well known formula for string states squared masses with the m2
−

R2 as the
low energy Kaluza-Klein states that we have presented in the chapter 1. But there is
also another part in the formula, namely the term in m2

+R
2. This term corresponds

to winding modes, and such modes are typical to extended objects, strings, winding
around a compactified dimension. The (3.4.11) differs sensibly from (3.1.3) as it ex-
tremizes a different inequality.

Note that in the statement about the preeminence of the scalar interaction, the two
fields Φ and X play a symmetric role.

Now, consider the case where the field φ is a modulus appearing only as a parame-
ter in the couplings of the massive scalar X (〈X〉 = 0), through

V (X,φ) = m2
X(φ)X2 +

∑
n≥4

λn(φ)Xn (3.4.14)

Then, the condition (3.4.3) can be written as:

|∂φV (X,φ)|
V

∣∣∣∣
X=0

≥
√
c̃

MPl

(3.4.15)

while the condition (3.4.10) reads now:

|∂φ∂φ̄V (X,φ)|
V

∣∣∣∣
X=0

≥ 2c̃

M2
Pl

(3.4.16)

where we note the similarity with the Refined de Sitter Conjectures presented in chap-
ter 1, with the subtlety that in (3.4.16) the second derivative has to be negative for
recovering exactly the de Sitter conjecture. The same treatment can be applied at the
case of several moduli, and we will recover also the general formula (1.1.1).

We have presented in chapter 1 different point of view to approach the WGC. A
popular way to look at the Weak Gravity Conjecture rests on the fact that the equality
in (1.1.2) relates to the BPS states relation. In [189], it was suggested to use the identity
satisfied by the central charge in N = 2 supersymmetry [111]

gij̄DiD̄j̄|Z|2 = gij̄DiZD̄j̄Z̄ + n|Z|2. (3.4.17)

This formula is a geometric expression, not dependent of the value of the central
charge, but just on the fact that it is holomorphic. It can be used to extract a bound
on the mass m thanks to the fact that in the BPS case |Z| = m. We have:

gij∂i∂jm
2 ≥ gij∂im∂jm+ nm2 (3.4.18)

39



CHAPTER 3. REVISITING THE SCALAR WEAK GRAVITY CONJECTURE

with derivatives are with respect to scalar fields, and gij is the corresponding metric
of the scalars manifold. Here, we would like to contemplate a different possibility.
Following [111], the right hand side of (3.4.17) is identified with the scalar potential of
the black hole solution, and it was shown that it implies that at the critical point the
potential satisfies (in reduced Planck mass units):

∂i∂j̄V

∣∣∣∣
critical

= 2Gij̄Vcritical (3.4.19)

We would like to contemplate here the possibility to extend this relation, beyond its
derivation in the N = 2 world, to

|∂i∂j̄V | ≥ cV (3.4.20)

as given by (3.4.16). Along this line of thought, we note the similarity of (3.4.10), up to
a factor 2 due to the masslessness of our field Φ, and the equation [111]:

∂i∂j̄m(Φ, Φ̄, p, q)

∣∣∣∣
critical

=
1

2
Gij̄(Φ, Φ̄) m(Φ, Φ̄, p, q)critical (3.4.21)

where Φ, Φ̄ are moduli fields, p, q electrical and magnetic charges, m is the black hole
mass and Gij̄ is the scalar metric on the moduli space.

Finally, let’s comment that while supersymmetry was not explicitly invoked here, it
might be required to insure the stability of some flat directions, therefore moduli fields,
when radiative corrections are taken into account.

3.5 Conclusions

In contrast with the WGC, there is no obvious, no totally convincing road towards
uncovering a law governing the scalar potential in quantum gravity. The main ideas
have been reviewed in the first section. Their variety can be considered as an evidence
both for the difficulty and risks in writing such constraints and for the interest in in-
vestigating their implications.

We postulate that in the appropriate low energy limit, for the leading interaction,
the gravitational contribution must be sub-leading. Such a statement is hollow if one
does not specify which process is concerned and the energy scale at which the interac-
tion strengths are compared. We provided answers for these questions for some cases
and found that we retrieve some forms of the Swampland conjectures.

The constraint (3.2.8) differs from previous proposed inequalities. Indeed, The RFC
conjecture that we have presented before focused on massless scalars and postulate
that the repulsive interactions are stronger than gravitational one. But in our case
the scalar mediated interaction is attractive. Strictly speaking, the logic behind their
inequalities would lead to (3.4.6) but with an opposite sign for the r.h.s. part. While the
logic in this work differs, in the massless case (3.4.5) agrees with one of the proposals
of [189], that was also discussed further in [128, 208, 123]. This is all but surprising
as the different arguments were put such as one recovers the SDC, which corresponds
to the ubiquitous Kaluza-Klein states present in String theory compactifications. Our
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analysis differs also in the fact that we have also considered self-interacting scalars but
only focused on the case of neutral states.

The conjecture presented in [128] leads to an inequality that would constrain in
qualitatively similar manner attractive self-interactions for a massive particle (non-
tachyonic), but we were not able to recover their coefficients for the different contri-
butions. Moreover, the field dependence of the extremal states squared mass (3.1.4)
differs sensibly from our result (3.4.11).

The main playground for testing different conjectures about quantum gravity is
string compactifications and their effective supergravity theories. While they represent
an opportunity to put the conjecture on firm grounds (see [73] for a recent proposal),
one should be able to disentangle what is due to generic quantum gravity from what
is due to supersymmetry, other symmetries or just consistency of the precise string
theory compactification. Here, we have kept the analysis on a very basic level which
we believe is sufficient to stress the main points.

We end by mentioning two immediate remarks. For the Standard Model Higgs
scalar, as mentioned in the previous chapter, the running quartic coupling vanishes
at energies of order 1011 GeV [89]. We should therefore contemplate this intermediate
energy scale as an ultra-violet cut-off. Scalar interactions determine the behaviour of
spherically symmetric cosmological clumps. The size and dynamics of these objects is
different depending on the quartic self-interaction coupling λ. For the case of repulsive
complex scalars, massive boson stars, with masses comparable to the fermionic ones,
are allowed only when the relevant relativistic parameter λM2

Pl/m
2 is big [80]. This is a

prediction of the WGC discussed here.
Going through the implications of our weak gravity requirement we recovered, in

the corresponding cases and forms, some of the Swampland program expectations:
the Axion Weak Gravity Conjecture, the Swampland Distance Conjecture, the string
Kaluza-Klein and winding modes mass formula and the Swampland de Sitter Con-
jecture. This is perhaps a hint of the existence of a more general formula that can
encompass all the Swampland conjectures.
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CHAPTER 4

Scalar Weak Gravity Conjecture and dimensional reduction

In the previous chapter, we have presented a new way to formulate the Scalar Weak
Gravity Conjecture. But as we have seen in chapter 1, it can be interesting to look at the
behaviour of such conjecture under dimensional reduction, even if there is no reference
to a specific string theory frame. Indeed, since the Swampland program is based on
an UV theory with compactified dimensions, it seems quite natural that a Swampland
conjecture should be preserved in a way during such a process. This is the spirit of the
Lattice WGC and its derivatives that we have presented in chapter 1. One interest of
such a computation is also the appearance of a dilaton field, and since our computation
is at short distances, we will look at the changes induced if this field acquires a mass.

In a first section, we will look at the dimensional reduction of a free scalar, looking
at the forces, and at a WGC inspired conjecture with the corresponding KK state. In
a second section, we will add scalar interactions, and see how the SWGC evolves in
the resulting compactified theory. In a third section, a mass for the dilaton is added, to
observe the changes in the SWGC. We will conclude in a fourth section.

4.1 Lower dimensional EFT and scattering amplitudes

The compactification process for a theory with a scalar is presented in appendix
A. As we will be mainly interested in this chapter at the computation of vertices and
amplitudes in a field theory setting, we will express our results in the (+,−, ...,−)
signature, so that it will be immediate to use the standard tools and recognize known
results. Writing the dilaton around a generic background value as φ0 +φ we will study
the field theory defined by the action (A.2.9):

Sf =

∫
dDx

√
(−)D−1g

{
R

2κ2
+

1

2
(∂φ)2 − 1

4
e
−2
√
D−1
D−2

φ0

M
(D−2)/2
Pl

∞∑
m=0

(
−2

√
D − 1

D − 2

1

M
(D−2)/2
Pl

)m
φm

m!
F 2
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+
1

2
∂µϕ0∂

µϕ0 +
∞∑
n=1

(
∂µϕn∂

µϕ∗n −
n2

L2
e

2
√
D−1
D−2

φ0

M
(D−2)/2
Pl

∞∑
m=0

(
2

√
D − 1

D − 2

1

M
(D−2)/2
Pl

)m
φm

m!
ϕnϕ

∗
n

)

+
∞∑
n=1

(
i

√
2

M
D−2

2
Pl

n

L
Aµ (∂µϕnϕ

∗
n − ϕn∂µϕ∗n) +

2

MD−2
Pl

n2

L2
AµA

µϕnϕ
∗
n

)}
. (4.1.1)

4.1.1 Vertices

From the above action, we can immediately derive Feynman rules needed to study
the perturbative regime of the theory.

Starting from the bottom, we see in the last line the usual structure for the 3 and 4-
point vertices minimally coupling a complex scalar field with a U(1) gauge field. The
charge appearing in the well known expression of such vertices will be

gqn =

√
2

M
(D−2)/2
Pl

n

L
e

√
D−1
D−2

φ0

M
(D−2)/2
Pl .

For m 6= 0, the last term of the second line leads us to an interaction between the K.K.
modes and the dilaton. More specifically, the m-th term in the sum defines a (2 + m)-
point function with m dilatons whose vertex is readily seen to be given by

U(ϕn, ϕ
∗
n, φ

m) = −i

(
2

√
D − 1

D − 2

1

M
(D−2)/2
Pl

)m

e
2
√
D−1
D−2

φ0

M
(D−2)/2
Pl

n2

L2
.

Finally, the m-th term in the sum in front of the F 2 one in the first line gives us a vertex
with m dilaton and two gauge fields expressed by

U (Aµ(p1), Aν(p2), φm) = −i

(
−2

√
D − 1

D − 2

1

M
(D−2)/2
Pl

)m

e
−2
√
D−1
D−2

φ0

M
(D−2)/2
Pl (p1 · p2gµν − p1 νp2µ) .

The apparent inversion of the momenta’s indices (Aµ(p1), Aν(p2) give p1 νp2µ) comes
from the structure of Fµν = ∂µAν − ∂νAµ.

We have to add at these vertices discussed here the D-dimensional gravitational
ones. As presented in appendix A, all the interacting terms in this set-up where there
is no scalar interactions are of gravitational origin. We will keep this expression to
those arising from perturbation of the D-dimensional metric. The explicit form of such
terms has been derived in appendix A up to second order in 1/M

(D−2)/2
Pl and gives

rise to the usual Feynman rules for real and complex, charged scalar fields in a weak
gravity regime.

4.1.2 Force between K.K. states

As a first check of the theory defined by (4.1.1), we can compute the force between
two copies of the same K.K. state. We have said in chapter 1 that the forces should
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cancel. We will see that it is effectively the case.

So, let us consider the tree-level 2→ 2 scattering defined by

〈ϕn(p3)ϕn(p4)|ϕn(p1)ϕn(p4)〉 =

ig2q2
n

(
p1 · (p2 + p4) + p3 · (p2 + p4)

t
+
p1 · (p2 + p3) + p4 · (p2 + p3)

u

)
− 4i

D − 1

D − 2
e

4
√
D−1
D−2

φ0

M
(D−2)/2
Pl

n4/L4

MD−2
Pl

(
1

t
+

1

u

)
− 4i

D − 3

D − 2

m4
n

MD−2
Pl

(
1

t
+

1

u

)
, (4.1.2)

where we find in the first line the contribution from the gauge mediated amplitude,
and in second line the two contributions coming from the dilaton and the graviton me-
diated ones, respectively. The D-dependent factor in front of the gravitational term is
explicitly derived in the Appendix B.

Taking now the non-relativistic limit (NR) as defined by s−4m2

m2 � 1, t+m2

m2 � 1 and
u+m2

m2 � 1, and plugging in the expressions for the charge and the mass (A.2.13) we
obtain

〈ϕn(p3)ϕn(p4)|ϕn(p1)ϕn(p4)〉NR =

i

(
8
m4
n

MD−2
Pl

− 4
D − 1

D − 2

m4
n

MD−2
Pl

− 4
D − 3

D − 2

m4
n

MD−2
Pl

)(
1

t
+

1

u

)
= 0, (4.1.3)

where the subscriptNRmeans that the above mentioned non-relativistic limit has been
taken. The position space potential between two particles is solely determined by the
Fourier transform of the t-channel amplitude, through a matching with the Born ap-
proximation for scattering amplitudes in non-relativistic quantum mechanics, but we
have displayed here both the t and u-channels for completeness, as they share the same
expression.

What we see here is that it is the relation between the charge and the mass (A.2.14)
that ensures the precise cancellation between the three forces. Indeed the value g2q2

n =

2 m2
n

MD−2
Pl

is a threshold for the mass above which the attraction dominates over the repul-
sion. This is exactly the statement used in chapter 1 to introduce the Repulsive Force
Conjecture. If we compare this result to the situation where the dilaton field is not
present, which is just the generalization of (1.1.2) at D dimensions g2q2

n = D−3
D−2

m2
n

MD−2
Pl

,
we have added a term which can be considered as "the scalar charge" of the field. This
scalar charge is defined by the coupling of the KK-states with the dilaton through the
mass-dependence under this field. If we have considered a different system with a
different coupling between our external states and the dilaton, the no force condition
would not take the same form. So it seems that the relation of the forces cancellation is
related to the structure one obtains under the S1 compactification.

On the other hand, the first threshold bound discussed, g2q2 = 2 m2

MD−2
Pl

is the ex-

tremality case of the formula (1.2.10) with the peculiar value α2 = 3. We have seen
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that this constraint was obtained in the context of Reissner-Nordström black hole in
the presence of a dilatonic coupling for the U(1) gauge field on the form e2γφF 2. The
reason why this single condition gives both the black hole evaporation and the attrac-
tive overall behaviour is readily found looking at the action (4.1.1): the factor in front
of the F 2, the γ entering in the inequality, is the same as the one determining the cou-
pling of the K.K. states to the dilaton (with a − sign in the right place as we identify
the gauge coupling g2 with the inverse of this factor). If one chose a different coupling
between the dilaton and the states of the theory, while keeping the same coupling be-
tween the gauge field and the dilaton, the condition of null forces would be different,
and will not coincide with the extremality bound that will be unchanged. This is a
illustration of the fact, expressed in [151] and presented in the chapter 1, that the RFC
and the WGC considered as the limit of extremality for black holes are not equivalent
in generic model.

Now that we have seen how the forces cancel in the case of the KK-states arising
from the compactification of a massless scalar field, we will see how this is modified
when adding some scalar interactions. But before studying this, we will make use of
this minimal theory here to investigate the proposal recently put forward in [129].

4.1.3 Pair Production and the Weak Gravity

In this reference, it was observed a connection between the different forms of the
WGC and the pair production of the WGC states from the massless force carriers of the
theory under consideration. More specifically, it was observed that, in a U(1) gauge
theory, requiring that the square of the amplitude for the pair production of massive
states (scalars or fermions) from a pair of photons is greater than the production of the
same massive states from a pair of graviton corresponds to impose the WGC bound in
the threshold limit. This is due to the fact that both the amplitudes roughly reduce to
the square of the couplings with the good numerical factors. The same idea, applied
to a theory with one massive field and n scalar massless force carriers (e.g. n moduli),
was shown to correctly reproduce the relevant form of the Scalar WGC that we have
showed in the previous chapter. In order to see whether this approach can give suc-
cessful insights into some developments of the WGC, in particular the dilatonic WGC,
we will look at its behaviour when we mix scalars and gauge massless bosons. The KK
states can be useful in this set-up.

According to (4.1.1), the non-gravitational production of a pair |ϕnϕ∗n〉 can come
from different channels: a pair of photons 〈γ, γ|, a pair of dilatons 〈φ, φ|, and a mixed
state of a dilaton and a photon 〈φ, γ|. Turning on gravity side, there is also a pair
production from mixed states, as 〈g, γ| or 〈g, φ|. We can even consider the insertion
of a graviton mediator in the 〈γ, γ| and 〈φ, φ|. However, in the formulation of [129],
one should consider only the production from a pair of gravitons 〈g, g|, and the mixed
cases are not considered. We will follow this prescription and compare pure gravita-
tional versus pure non gravitational processes.

Let us consider then the scattering 〈massless,massless|ϕnϕ∗n〉. If we treat the asymp-
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totic states as classical, we should perform the sum of the diagrams involving different
initial states as a sum of probabilities, as one does, for example, when performing the
sum over internal degrees of freedom. The Pair Production Weak Gravity requirement
in this scheme would take the form

∣∣∣ 〈Aµ(p1), Aν(p2)|ϕnϕ∗n〉
∣∣∣2 +

∣∣∣ 〈φ(p1), φ(p2)|ϕnϕ∗n〉
∣∣∣2 +

∣∣∣ 〈Aµ(p1), φ(p2)|ϕnϕ∗n〉
∣∣∣2

≥ 3
∣∣∣ 〈gµν(p1), gρσ(p2)|ϕnϕ∗n〉

∣∣∣2, (4.1.4)

where these amplitudes are taken at the threshold limit defined by s−4m2

m2 � 1,
t+m2

m2 � 1 and u+m2

m2 � 1.

The contributions to the photon production are the usual ones coming from the
minimal coupling to the U(1) gauge field plus an s-channel term mediated by the dila-
ton, so that

〈Aµ(p1), Aν(p2)|ϕnϕ∗n〉 =4ig2q2
nεµ(p1)εν(p2)

(
pµ3p

ν
4

t−m2
n

+
pµ4p

ν
3

u−m2
n

+
1

2
gµν
)

(4.1.5)

− 4i

MD−2
Pl

D − 1

D − 2

n2

L2
εµ(p1)εν(p2)

p1 · p2g
µν − pν1p

µ
2

s
.

Using n
L

= mne
−
√
D−1
D−2

φ0

M
(D−2)/2
Pl one then gets, in the above mentioned threshold limit,

∣∣∣ 〈Aµ(p1), Aν(p2)|ϕnϕ∗n〉
∣∣∣2 =

Dg4q4
n +

(D − 1)2

D − 2

m4
n

M
2(D−2)
Pl

e
−4
√
D−1
D−2

φ0

M
(D−2)/2
Pl − 4(D − 1)

m4
n

M
2(D−2)
Pl

e
−2
√
D−1
D−2

φ0

M
(D−2)/2
Pl . (4.1.6)

The dilaton production is given by the same diagrams considered in [129] and gives
a null result in the threshold limit:

〈φ(p1), φ(p2)|ϕnϕ∗n〉 = −4i
D − 1

D − 2
e

4
√
D−1
D−2

φ0

M
(D−2)/2
Pl

n4

L4

(
1

t−m2
n

+
1

u−m2
n

)
− 4i

D − 1

D − 2
e

2
√
D−1
D−2

φ0

M
(D−2)/2
Pl

n2

L2

lim
Threshold

−→ 0. (4.1.7)

Finally, the mixed photon-dilaton production receives contribution from the three s,t
and u-channels, reading

〈Aµ(p1), φ(p2)|ϕnϕ∗n〉 =
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εµ(p1)

{
− 2

√
D − 1

D − 2

gqn

M
(D−2)/2
Pl

e
−2
√
D−1
D−2

φ0

M
(D−2)/2
Pl (p1 · (p1 + p2)gµρ − pρ1p

µ
2) (p3ρ − p4µ)

i

s

+ 4i

√
D − 1
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gqn

M
(D−2)/2
Pl

n2
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2
√
D−1
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φ0

M
(D−2)/2
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(
pµ3

t−m2
n

− pµ4
u−m2

n

)}
. (4.1.8)

We then obtain for
∣∣∣ 〈Aµ(p1), φ(p2)|ϕnϕ∗n〉

∣∣∣2:

4
D − 1

D − 2

g2q2
n

M
(D−2)/2
Pl

{
e
−4
√
D−1
D−2

φ0

M
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µρ − pρ1p
µ
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σ
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(p3 ρ − p4 ρ)(p3σ − p4σ)
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+ 4m4
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pµ3
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)(
p3µ
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− p4µ
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ne
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− p4µ
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)}
.

(4.1.9)

In the threshold limit, this gives also a null contribution. As such, we will be left
in (4.1.4) with only the term coming from the photon production. We see then that
the saturation one would expect to be verified by KK states cannot be realized in the
proposed setup. In other words, the KK states are not extremal for the Pair Production
conjecture. It seems that this conjecture has a different behaviour that the WGC or the
RFC when we mix scalar force and gauge force carriers.

4.2 Compactification of scalar interactions

We have investigated, in the previous sections, properties of a higher dimensional
free scalar under the S1 compactification. We will now make a step forward and con-
sider a (D + 1)-dimensional self-interacting scalar field, building thus a setup where,
ultimately, we wish to study the evolution of the Scalar WGC proposed in the previous
chapter.

4.2.1 Φ2, Φ3 and Φ4 operators

Before computing the different contributions, the first thing to do is to derive the
behaviour of scalar interactive terms under the dimensional reduction process. Ac-
cordingly, let us consider now quadratic, cubic and quartic operators for our higher
dimensional theory. These terms are the one we consider in the first presentation of
the conjecture. Adding the interacting terms in (A.2.1) we write

Sint =

∫
dD+1x

√
(−1)Dĝ − 1

2
m̂2Φ̂2 +

µ̂

3!
Φ̂3 − λ̂

4!
Φ̂4. (4.2.1)

In D + 1 dimensions, the m̂ operator has mass dimension 1, as in any dimension, the
µ̂ one has dimensions 3 − D+1

2
and finally λ has dimension 4 − (D + 1). Using the
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decomposition (A.2.4), we obtain that the mass term compactifies as

∫
dD+1x

√
(−1)Dĝ

1

2
m̂2Φ̂2 ⇒

∫
dDx

√
(−1)D−1ĝ

1

2
m̂2

(
ϕ2

0 + 2
∞∑
n=1

ϕnϕ
∗
n

)
. (4.2.2)

The (D+1)-dimensional mass manifests itself unchanged as a D-dimensional mass for
all the Fourier modes. Applying the same decomposition (A.2.4) to the Φ̂3 term we get
after compactification

∫
dD+1x

√
(−1)Dĝ

µ̂

3!
Φ̂3 ⇒

∫
dDx

√
(−1)D−1ĝ

µ̂

3!
√

2πL

+∞∑
n,m=−∞

ϕnϕmϕ
∗
n+m. (4.2.3)

Although the sum over the n and m indices seems to leave us with some complicate
interactions between the different KK states, the expression can actually be simplified.
Rearranging the different terms we can in a first time isolate all the contributions with
a ϕ0

+∞∑
n,m=−∞

ϕnϕmϕ
∗
n+m = ϕ3

0 + 6ϕ0

∞∑
n=1

ϕnϕ
∗
n +

∞∑
n,m=−∞

n 6=0,m 6=0,n+m 6=0

ϕnϕmϕ
∗
n+m (4.2.4)

The last term contains yet possible complicate contributions, and we will now simplify
it. Let’s define

S =
∞∑

n,m=−∞
n 6=0,m 6=0,n+m 6=0

ϕnϕmϕ
∗
n+m

We can divide S into its different contributions, looking at different sets of m and n.

S =
∞∑
n>0

ϕnϕnϕ
∗
2n +

∑
m>n>0

ϕnϕmϕ
∗
n+m +

∑
n>m>0

ϕnϕmϕ
∗
n+m +

∑
n>m>0

ϕnϕ−mϕ
∗
n−m

+
∑

m>n>0

ϕnϕ−mϕ
∗
n−m +

∑
m>n>0

ϕ−nϕ−mϕ
∗
−n−m +

∑
n>0

ϕ−nϕ−nϕ
∗
−2n +

∑
n>m>0

ϕ−nϕ−mϕ
∗
−n−m

+
∑
n>m

ϕ−nϕmϕ
∗
m−n +

∑
m>n>0

ϕ−nϕmϕ
∗
m−n

Relabelling m↔ n and using ϕ−n = ϕ∗n we obtain

S =
∞∑
n>0

(ϕnϕnϕ
∗
2n + ϕ−nϕ−nϕ

∗
−2n) + 2

∑
m>n>0

(
ϕnϕmϕ

∗
m+n + ϕnϕ

∗
mϕ
∗
n−m + ϕ∗nϕmϕ

∗
m−n + ϕ∗nϕ

∗
mϕm+n

)
Looking at one term of the sum, we can rewrite∑

m>n>0

ϕnϕ
∗
mϕ
∗
n−m =

∑
n>0

∑
m=u+n

ϕnϕ
∗
u+nϕ

∗
−u =

∑
u,n>0

ϕnϕuϕ
∗
n+u

=
∑
u>n>0

ϕnϕuϕ
∗
u+n +

∑
n>0

ϕnϕnϕ
∗
2n +

∑
n>u>0

ϕnϕuϕ
∗
u+n
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We can inject this decomposition in the definition of S and we get

S =4
∑

m>n>0

ϕnϕmϕ
∗
m+n + 4

∑
m>n>0

ϕ∗nϕ
∗
mϕn+m + 2

∑
n>0

ϕnϕnϕ
∗
2n + 2

∑
n>0

ϕ∗nϕ
∗
n

+ 2
∑
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ϕnϕmϕm+n + 2
∑

n>m>0

ϕ∗nϕ
∗
mϕn+m +

∑
n>0

ϕnϕnϕ
∗
2n +

∑
n>0

ϕ∗nϕ
∗
nϕ2n

Relabelling once again m↔ n, this becomes

S = 3
∑
n>0

(ϕnϕnϕ
∗
2n + ϕ∗nϕ

∗
nϕ2n) + 6

∑
m>n>0

(ϕnϕmϕm+n + ϕ∗nϕ
∗
mϕn+m)

Using this result, the cubic interactions are given by

+∞∑
n,m=−∞

ϕnϕmϕ
∗
n+m = ϕ3

0 + 6ϕ0

∞∑
n=1

ϕnϕ
∗
n + 3

∞∑
m,n>0

(
ϕnϕmϕ

∗
n+m + ϕ∗nϕm ∗ ϕn+m

)
(4.2.5)

The first thing we can note is the coupling constant governing the strenght of the three
point interactions between the K.K. states is µ ≡ µ̂√

2πL
, matching the expectation one

could have from naive dimensional analysis. From a low-energy observer point of
view, we can say that the S1 compactification process augments the mass dimension of
three point couplings by a factor 1/2 .

Turning now to the Φ̂4 term , it gives after dimensional reduction :

∫
dD+1x

√
(−1)Dĝ

λ̂

4!
Φ̂4 ⇒

∫
dDx

√
(−1)D−1ĝ

1

4!

λ̂

2πL

+∞∑
m,n,p=−∞

ϕmϕnϕpϕ
∗
m+n+p. (4.2.6)

We can make analogous manipulation to the sum and finally obtain

+∞∑
m,n,p=−∞

ϕmϕnϕpϕ
∗
m+n+p = ϕ4

0 + 12ϕ2
0

∞∑
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ϕnϕ
∗
n + 12ϕ0

∞∑
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ϕmϕmϕ
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+ 12

∞∑
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ϕnϕ
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n
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ϕmϕ
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∞∑
m,n,p=1

(
ϕmϕnϕpϕ
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+ 6

∞∑
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m 6=p,n6=p;m+n>p

ϕmϕnϕ
∗
pϕ
∗
n+m−p. (4.2.7)

As for the Φ̂3 term, we see that all the different four-point interactions between K.K.
states are governed by the coupling λ ≡ λ̂

2πL
. This is also the result we expect from

naive dimensional analysis observing that the mass dimension of the operator is aug-
mented by a factor 1.

At this point, the only thing from (4.2.1) that we still need to develop in terms of
D-dimensional quantities is the determinant of the metric, so that all these interactive
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terms discussed here will be accompanied with an exponential coupling to the dilaton.
Putting all the ingredients we have developed so far together, we can thus write the
complete action as

S = Sf + Sint
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∫
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, (4.2.8)

where we have to keep in mind that the dilaton should again be developed around
a vacuum value φ0 as previously done. As we see, the above action gives rise to quite
a large number of couplings. We can see that the mass term for the KK states is shifted
compared to the previous case, since the tree-level mass term of the ϕ0 field is m2

0 ≡

e
2√

(D−1)(D−2)

φ0

M
(D−2)/2
Pl m̂2 and that of the nth K.K. state is

m2
n ≡

n2

L2
e

2
√
D−1
D−2

φ0

M
(D−2)/2
Pl + e

2√
(D−1)(D−2)

φ0

M
(D−2)/2
Pl m̂2.

4.2.2 Scattering Amplitudes, SWGC and RFC

With the action written in terms of D-dimensional quantities, we can now proceed
towards our goal, and as in the previous chapter, compare the different forces.

We will begin by computing the ϕ0ϕ0 → ϕ0ϕ0 scattering, and look at the different
contributions for the forces.

In the previous section, when the KK states were coming from a massless scalar
field, the field ϕ0 was a massless neutral scalar field, with no interactions with the dila-
ton. The addition of Sint in the action changes the situation, because ϕ0 field couples to
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Figure 4.1 – All the channels present in the ϕ0ϕ0 scattering

the dilaton. Besides, it is again uncharged under the U(1) of the theory. It seems so that
this state is a good playground to test the SWGC proposed in the previous chapter.

The diagrams intervening in the scattering are the usual s,t and u channels coming
from the ϕ3

0, the first order development of the exponential coupling to the mass term
and gravity, and the contact one due to the ϕ4

0. They are presented in the Figure 4.1,
where the +u-channels stands for the u channels that we did not explicitly write as
they can be inferred from the t-channel ones.

We will look at the non-relativistic limit of the tree-level amplitude, which takes the
form

〈ϕ0ϕ0|ϕ0ϕ0〉 = ie
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)
. (4.2.9)

We recognize, in each line, respectively, the different contributions from the self inter-
action, the dilaton and gravity. As we have presented in the previous chapter, in our
set-up, we decided to separate the comparison between the long-range and the short
range forces. The long ranges forces correspond to the t and u poles in (4.2.9). In the
case we look at, as in the case of the previous chapter the overall long range force will
of course be attractive, as since the charge of ϕ0 is null in our model, and the dilatonic
forces is attractive. Following again the previous chapter, we will only keep the short
range interaction term in the non-relativistic limit. These terms give

〈ϕ0ϕ0|ϕ0ϕ0〉CT = ie
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. (4.2.10)
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Figure 4.2 – Diagrams present in the ϕnϕn scattering.

Using (A.1.25) we can identify MD−2
Pl

2πL
as the D + 1-dimensional Planck mass M̂D−1

Pl .
Moreover, the last term can be rewritten as (D+1)−1

(D+1)−2

m̂2
0

M̂D−1
Pl

. This is exactly what one

would obtain computing the gravitational s-channel contribution to the Φ̂Φ̂ → Φ̂Φ̂
scattering in D+ 1 dimensions. We can thus conclude that, if one asks, in D+ 1 dimen-
sions, that the scalar interactions of the field Φ̂ are dominant with respect to gravity, the
scalar interactions of its zero mode KK state ϕ0 will then automatically be dominant
with respect to both the gravitational and dilatonic contributions in D dimensions.

But ϕ0 is not the only state present in the theory, and as we did in the section 4.1.2,
we can turn to the computation of ϕnϕn → ϕnϕn. In this case where we have added
interacting terms, the scattering receives contribution from the t and u-channels of
gauge boson, dilaton, graviton and ϕ0 exchange, from the s-channel exchange of a ϕ2n

particle and from a 4-point contact term. These diagrams are presented in Figure 4.2 .
We again directly show the form of the amplitude in the non-relativistic limit:
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with
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(4.2.12)
In this case, there is no gauge, gravitational or dilatonic term that collapse into a short
range one. As such, there is no information about the relative strengths of the inter-
actions that we can deduce looking at the terms effectively appearing as contact ones.
The relation between mn and m2n gives 4m2

n − m2
2n = 3m2

0. Thus, the scalar contact
terms for the ϕnϕn → ϕnϕn scattering are just the same as those we have seen in the
ϕ0ϕ0 → ϕ0ϕ0 one. One could say that they trivially dominate.
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Figure 4.3 – Diagrams from the ϕϕ∗

scattering

This scattering presents also long range interactions, which explicitly shows the
conflict between attractive and repulsive terms, since theϕn is charged under the gauge
group of the theory. We can so apply the formula of the RFC presented in the chap-
ter 1, with the specific form of the scalar coupling here which is proportional to the
derivative of the mass. This gives

g2q2 ≥ D − 3

D − 2

m2

MD−2
Pl

+
(∂φm

2)2

4m2
, (4.2.13)

The only difference with the result presented in section 4.1.2 comes from the ad-
ditional mass term, that in turn generates a new three point coupling to the dilaton.
Developing (4.2.11) one can see that the force is always an attractive one. The mass
term added in the D + 1 dimension theory spoils the no-force property verified in the
case m̂ = 0 studied in section 4.1.2. This is expected, since in D + 1 dimension there is
just the gravity as long range force, which is an attractive one.

We will see what happens for the ϕnϕ∗n → ϕnϕ
∗
n scattering. It receives contribu-

tions from the s and t-channels of gauge, dilaton, gravitational and ϕ0 self mediated
diagrams, from the ϕ2n self mediated u-channel and from a contact four point term, as
presented in Figure 4.3.

The structure of the amplitude in the non-relativistic limit is then

〈ϕnϕ∗n|ϕnϕ∗n〉 = iµ2e
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− i(∂φm
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2

4m2
n

+ i
D − 1
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m2
n

M
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Pl

− 4ig2q2
n

m2
n

t
− i(∂φm

2
n)2

t
− 4i

D − 3

D − 2

m4
n

M
(D−2)/2
Pl

1

t
.

(4.2.14)

The long range 1/t force is, of course, attractive, but this scattering is not constrained
by the the RFC. Looking at the short range interaction, there are many contributions.
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To compare the different contributions to the short range interactions, we begin by
rewriting

1

m2
0

+
1

m2
2n

− 1

4m2
n −m2
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)
 .

(4.2.15)

We see that, when n = 0, this correctly reproduces the effective result obtained for the
ϕ0 self interaction with the factor 5

3
. We can also develop m2

n to obtain
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m2
n

MD−2
Pl

− (∂φm
2
n)2

4m2
n

= (4.2.16)
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Combining these results, the comparison of the forces in the way of the previous
sections gives, for the ϕnϕ∗n → ϕnϕ

∗
n scattering
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with n=0 we find again (4.2.10). But as soon as we look at heavier KK states, the
r.h.s increases (for D ≥ 4), and so there is a value of n for which this formula is not
verified anymore, at fixed compactification radius. This comes just from the fact that
the scalar interaction terms, in contrast to the mass of the KK states, don’t have a con-
tribution proportional to n2. In the previous chapter, we looked at the scattering of
ϕnϕ

∗
n → ϕnϕ

∗
n but comparing the forces mediated by the moduli and the gravitational

forces. Here, we see that comparing the scalar forces to the dilatonic and gravitational
ones doesn’t lead to instructive results.
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To conclude, it seems that if one imposes that the scalar self-interactions are domi-
nant compared to gravity in D+ 1 dimensions, this property is also true for the lowest
scalar field of the KK spectrum. For the others KK states, the fact that they are charged
under the graviphoton leads to non-instructive results in the case of two same-particles
scattering. It seems that the hierarchy between the strength of the short ranges forces
of a neutral scalar is not modified by a dimensional reduction.

4.3 Massive dilaton

In a phenomenological theory, the dilaton has to be stabilized, i.e. to acquire a po-
tential. We don’t look at a specific model of stabilization, we just consider that the
dilaton φ has a mass mφ and a vev φ0. When the dilaton acquires a mass, it cannot be
a part of the RFC defined in the chapter 1. However, it can modify or give new con-
tributions to short range forces that we analyzed in the previous section. We want to
look at these modifications of the long and short range forces, in order to see how the
behaviour of the conjectures under the dimensional reduction is changed. The scatter-
ing amplitudes of interest in this case are the ϕ0ϕ0 → ϕ0ϕ0 and the ϕnϕn → ϕnϕn ones,
when the non-relativistic limit has been taken.

The ϕ0ϕ0 → ϕ0ϕ0 scattering amplitude (4.2.9) with a massive dilaton becomes, in
the non-relativistic limit s− 4m2

0 � m2
0, t� m2

0 and u� m2
0 :
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Since the mass of the dilaton is not fixed by any model here, it is possible to scan all
the range of mass, and to compare it to the other mass scale m0 present in the theory.

• When mφ � m0, dilatonic interactions effectively seem infinite range ones com-
pared to ϕ0 self interactions. Accordingly, the physical picture does not change
much from the mφ = 0 one.

• Formφ . m0,m2
φ dominates with respect to t and u and the dilatonic terms appear

point-like. A rough approximation to the dilatonic + gravitational contributions
to such contact terms, when mφ ' m0, is

20
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. (4.3.2)
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It is immediate to verify that, for D ≥ 4,
∣∣ D
D−1

∣∣ < ∣∣∣ D2−2D+ 11
3

(D−1)(D−2)

∣∣∣, where D
D−1

was
previously found to be the strength of the two combined interactions in the mφ =
0 case. Requiring the dominance of the short range scalar forces in dimension
D + 1 doesn’t lead necessarily to the same result for D dimensional theory.

• As mφ increases, dilatonic t and u-channels are more and more suppressed. The
s-channel, instead, grows until it meets the resonance, and then decreases again.
In this range of mass, the gravitational contribution dominates and once again, it
is not possible to ensure the domination of the short range scalar forces compared
to the gravitational ones.

• Increasing further the mass of the dilaton, the dilatonic forces are more and more
suppressed, leaving only the gravitational contribution. However, the coefficient
in front of the gravitational forces is D−1

D−2
. In D + 1 dimension, this coefficient is

D
D−1

, which is smaller than D−1
D−2

. Similarly to the previous cases, the requirement
of scalar forces dominance in D + 1 dimensions cannot ensure the same happens
in D dimensions.

This shows that, when the mass of the dilaton is smaller than the mass of the light-
est KK states, the request that scalar self interactions dominate in D + 1 dimensions is
sufficient to ensure the same property is verified by its 0th KK mode in D dimensions.
But as soon as the mass of the dilaton is close to the value of the mass of this state, just
requiring the dominance of short scalar forces is not sufficient anymore, and a more
careful treatment is required in order to obtain an more accurate result.

The ϕnϕn → ϕnϕn scattering amplitude with the massive dilaton reads
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For later convenience, we define here m̄2
n ≡ e

2
√
D−1
D−2
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M
(D−2)/2
Pl

n2

L2 , so thatm2
n = m2

0+m̄2
n.

The difference from the previous case comes from the presence of two scales m0

and mn instead of one. It requires to distinguish the case of a large hierarchy m2
0 � m2

n

from that of a small one, m2
0 . m2

n (m2
0 ≥ m̄2

n). Besides, since the external states are now
ϕn, the non-relativistic limit corresponds to s− 4m2

n � m2
n, t� m2

n and u� m2
n.

Starting with m2
0 � m2

n there are different regimes to look at.

• For m2
φ . m2

0 � m2
n, dilatonic interactions, as well as t, u-channels self-ones, look

long range. As for mφ = 0, the long range interactions do not satisfy the RFC.

Contact terms arise only from the mediated s-channel and the 4-point self-interactions
and may show the above mentioned s-channel enhancement.
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• In the intermediate region m2
0 � m2

φ . m2
n, the long range contribution to the

amplitude can be rewritten as
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Application of the RFC to this amplitude amounts to require, at leading order in
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Turning now to the contact terms, from (4.3.3) we have
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At leading order in t,u
m2
φ

, short range subdominance of gravity can be obtained if
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Assuming the short range gravitational subdominance to be satisfied in D + 1
dimensions, it would be tempting to conclude that the above relation is verified.

• For a dilaton mass verifying m2
0 � m2

n � m2
φ, the expansion of the amplitudes is

the same as in the last point. The r.h.s. of (4.3.7) is more and more suppressed,
making it even more likely for the short-range subdominance to be verified.

The analysis has to be repeated for m2
0 . m2

n.

• When m2
φ � m2

0 . m2
n, the situation is similar to that of a massless dilaton delin-

eated in section 4.2.2.

• In the regime m2
φ . m2

0 . m2
n, all terms in (4.3.3) can be treated as contact ones,

except for the graviton and gauge mediated diagrams.

Starting with the long range interactions, the RFC would mandate the inequality
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which finally gives, for the nth K.K. mode to feel an overall repulsive long range
force
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The RFC can be accommodated in the parametric region defined by the equa-
tion above. However, m2

0 should not be too small, otherwise we fall back to the
previous case, where other attractive forces come into play.

The contact terms are given by
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The usual condition for the short range subdominance is now fulfilled when
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Taking m2
φ ' m2

0, it reduces to
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(4.3.12)
Assuming
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is not sufficient to ensure validity of (4.3.12).

Indeed, to be verified up to a certain n, this bound requires to start at least with
m̂ > 1

L
. In any case, there will always be an n∗ such that ∀n ≥ n∗ the inequality is

not valid. Considering a lighter dilaton, m2
φ ≤ m2

0, the r.h.s. of (4.3.11) increases,
making it more complicated to realize the inequality.
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• When m2
φ > m2

0, the results are those presented just above. In (4.3.11), the dila-
tonic interactions get more and more suppressed, until a region of parameters is
reached where the self interaction dominance is restored.

Contrary to the ϕ0 scattering, for the n 6= 0 KK states the situation is more intri-
cated. Requiring short range subdominance in D+1 dimensions is not sufficient in the
whole parametric space to ensure the same is valid in D dimensions. It seems rather
interesting that the conditions for such short range subdominance are deluded in the
same parametric region where the long range force can be made repulsive.

4.4 Conclusion

The dimensional reduction gives a good playground to discuss conjectures inspired
by the Swampland program. In this chapter we have looked at the dimensional reduc-
tion of a scalar, with or without self-interactions. We see that, in this case, the Pair
Production conjecture is satisfied by the KK states, but not saturated. It seems so that
this conjecture is not exactly the same as the RFC or the WGC.

In the case of the compactification of a scalar with self-interactions, we see that
the lightest state of the KK spectrum has an interesting feature. Requiring that the
short range self-interactions of the scalar are dominant compared to the gravity, the
KK lightest state verify the same property, adding the dilaton interaction to the gravi-
tational one. This property is also verified if the dilaton is stabilized by a potential, as
long as the mass of the dilaton is smaller than the one of the scalar. For larger mass,
one has to look more carefully at the details of the model.

Looking at the other states of the KK spectrum, the conclusions are less clear. Re-
quiring the SWGC to be verified at D + 1 dimensions is not sufficient to conclude at
the dominance of the scalar forces over the gravitational ones in D dimensions, even
when the dilaton is stabilized.

As said in the previous chapter, there is not a straightforward way to obtain a re-
lation between scalar forces and gravity, and all the possibilities are not equivalent.
For a neutral scalar, comparing the short range scalar forces with gravity can lead to
interesting results, and is well-behaved under dimensional reduction in the sense we
describe above. For charged scalars, the situation is more complex. The simplest way
to confirm these results is to look at specific models of scalar potential in a String The-
ory frame, but one has to be careful, and correctly separates the model specificities
from the quantum gravity features.
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CHAPTER 5

Dilatonic WGC in (Anti-)de Sitter space

In the two previous chapters, we have devoted our attention to a comparison of
the forces for a self-interacting scalar, leading to what we call a Scalar WGC. But as
we have seen in chapter 1, it can be interesting to use black holes physics to obtain
conjectures like WGC ones. A peculiar case we look at in the previous chapter is when
the dilaton is stabilized. It can be interesting to look at such a case under the view of
black hole physics, because it corresponds to a generalisation of the dilatonic WGC that
we have presented in the chapter 1. However, when we add a potential to the dilaton,
we have to be careful, because such a potential will modify the equation of motions,
and in particular can modify the asymptotic behaviour of the metric.

In general we are interested in metrics with peculiar behaviours at the infinity,
which are (Anti-)de-Sitter ((A)dS) or flat ones. The fact that the solution with a spec-
ified potential has an asymptotic limit corresponding to one of the three cases men-
tioned above is not trivial. In particular, it was shown in [194], in the case of a simple
Liouville potential for the dilaton, of the form Λeαφ, that there is no possibility to obtain
black holes asymptotically (A)dS.

However, the case dS is interesting, since it represents the current evolution of our
Universe. Even if we have seen that there are some conjectures about the exclusion of
dS vacua in the Swampland program, these ones are always under investigation. Con-
serving the spirit of the Swampland program, we can consider that our Universe is
described by an "approximate" background of string theory. We can so, in this scheme,
try to obtain a conjecture for a dS background. An attempt of this was done in [24],
without a dilaton. They used the Reissner-Nordström-de Sitter solution, and the be-
haviour of its horizons when changingM andQ. The case AdS presents also an interest
for string theory and AdS/CFT correspondence, and it is extensively studied. Some as-
pects of the asymptotically Anti-de Sitter metric were discussed for the case of AdS5

in [103] and for AdS4 in some limits by [132]. A conjecture for dilatonic black holes
asymptotically AdS was presented in [155].
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In a first section, we will review quickly the work done in [24], and look at pos-
sible solutions of dilatonic black holes with a potential, requiring the solution to be
asymptotically dS. The horizons of charged dilatonic de Sitter black hole are described
in Section 2. The same thing is done for asymptotically AdS solution in a third section.
The issue of attractive and repulsive forces, in the case of asymptotically flat space-
time, are analyzed in Section 4. We present our conclusion in section 5.

5.1 dS-WGC conjecture and dS dilatonic black hole solu-
tions

We begin with a review of the previous work on a dS-WGC, and on the solutions
for a dilatonic dS black hole. In all this chapter, we will use the signature (-,+,+,+).

5.1.1 A dS-WGC conjecture

We will follow in this subsection the work of [24]. If we look at the metric of
Reissner-Nordström-de Sitter solution, it has the form

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

2 (5.1.1)

with

f(r) = 1− 2M

r
+
Q2

r2
− Λ

3
r2. (5.1.2)

The horizons radius corresponds to solutions of the equation f(r) = 0. Multiplying
by r2, this is a quartic polynomial, but one solution is always negative. Thus, there
are at most three horizons. Requiring a de-Sitter asymptotic behaviour instead of a flat
one gives one more horizon. This can be seen already in the case of a Scwarzschild-de
Sitter solution. There are in this case two horizons, called the event horizon and the
cosmological one. The singularity is protected by an event horizon only if M2 ≤ 1

27H2 ,
where H is the Hubble parameter. However, when this condition is saturated, the two
horizons are degenerate; increasing again M , they become complex. We have to keep
in mind that in asymptotically dS space-times, we should expect to find upper bounds
on the black hole size, translating the fact that, to have a healthy solution, the event
horizon should not exceed the cosmological radius. Otherwise, we say that the de Sit-
ter space-time has been "completely eaten up" by the black hole.

Coming back to the charged case, there are three horizons: an inner Cauchy hori-
zon, an event horizon, and a cosmological one. But in the (Q,M) plane, this solution
with three horizons is not always possible. There are roughly two ways to get out of
that region: either by increasing the mass at fixed charge, or by increasing the charge
at fixed mass. In the first case, when we increase the mass, the event and cosmological
horizon gets closer and closer, until they merge. Above this extremal value, g00 still
have one root, corresponding to the inner horizon. However, the crossing of the event
and cosmological horizon should be interpreted as the black hole eating the whole dS
space. If we look at the other case, increasing the charge at fixed mass, we observe that

62



5.1. DS-WGC CONJECTURE AND DS DILATONIC BLACK HOLE SOLUTIONS

it is the Cauchy and the BH horizons that tend to merge. After we reach the merging
point, we are in a condition where the electromagnetic energy density is too strong
and prevent the formation of an event horizon. However, a cosmological horizon is
still present. Again, in this region g00 = 0 presents only one solution, but it is different
from the previous one we encountered. Although several regions where roots of g00

become complex can be present, they are not of the same nature and one should be
careful in giving a physical interpretation to each of them.

These two conditions are given by two equations in the Q,M plane at fixed l =
√

3
Λ

:

M2
± =

1

54l

[
l(l2 + 36Q2)± (l2 − 12Q2)

3
2

]
(5.1.3)

This formula is not valid for large charge, but it exists a continuation of the solution
for larger Q. The dS WGC that one can make in the case where this formula is defined
corresponds to require M < M−. It is the region where Q is large enough to forbid the
existence of an event horizon.

5.1.2 A dilatonic (A-)dS black-hole solution

We will now add a dilaton, and a potential in order to obtain an asymptotically dS
solution. The action becomes

S =

∫
d4x
√
−g 1

2κ2

(
R− 2 (∂φ)2 − V (φ)− e−2αφF 2

)
. (5.1.4)

In the following, we will use a static, spherically symmetric solution to the related
Einstein’s equations, which was found in [120], reading

ds2 =−

[(
1− r+

r

)(
1− r−

r

) 1−α2

1+α2

∓H2r2
(

1− r−
r

) 2α2

1+α2

]
dt2 (5.1.5)

+

[(
1− r+

r

)(
1− r−

r

) 1−α2

1+α2

∓H2r2
(

1− r−
r

) 2α2

1+α2

]−1

dr2 (5.1.6)

+ r2
(

1− r−
r

) 2α2

1+α2

dΩ2
2, (5.1.7)

(5.1.8)

where H2 is the Hubble parameter. As we have said, the potential is dictated by the
equation of motions, and for this solution it has the form

V (φ) =
2

3

Λ

1 + α2

(
α2(3α2 − 1)e−2

φ−φ0
α + (3− α2)e2α(φ−φ0) + 8α2eα(φ−φ0)−φ−φ0

α

)
(5.1.9)

where Λ is the cosmological constant defined by H2 = |Λ|
3

. The solution for φ(r) and
F (r), given in (1.2.4), and the relation between the constants r−, r+ and the physical
parameters M,Q, (1.2.5) are unchanged. Depending on the sign of Λ we have either an
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asymptotically dS (upper sign in (5.1.5)) or AdS (lower sign) space-time. This solution
has also been obtained in [103] for the AdS case, and for both asymptotic behaviours in
[178]. Comparing to the dilatonic case with an asymptotic flat space presented in the
chapter 1, we can notice that r+ is no longer a horizon, instead r− is still a singularity.

5.2 Study of the horizons of dilatonic dS black holes

Now we have all the elements to study the solutions of black holes, looking at the
number of horizons in function of M and Q. We will separate the case in function of
the value of α, since the behaviour of the solutions will also depend on this parameter.

5.2.1 α = 1

The α = 1 case allows for explicit expressions of the black hole horizons. The metric
can be written as

ds2 = −
(

1− 2M

r
− r(r − 2D)H2

)
dt2+

(
1− 2M

r
− r(r − 2D)H2

)−1

dr2+r(r−2D)dΩ2
2.

(5.2.1)
D is related to M and Q through

D =
Q2e2φ0

2M
(5.2.2)

and r = r− = 2D is a singular surface. The horizons correspond to the loci of the roots
of the polynomial of degree 3 in r:

P (r) = H2r3 − 2DH2r2 − r + 2M (5.2.3)

Their explicit expressions are not very illuminating. We find more instructive, in par-
ticular for discussing below α 6= 1, to provide a description of the behaviour of the
roots as functions of M and D.

First, note that P (r) →
r→+∞

+∞, and can have two extrema R− < R+ given by

the roots of P ′(r) = 3H2r2 − 4DH2r − 1. As R−R+ = −1, R− < 0 while R+ =
2
3
D + 1

6

√
16D2 + 12

H2 > 0. We are interested only in solutions of P (r) = 0 in the re-
gion r > 2D outside the singularity. Therefore, we will discuss the signs of P (2D) and,
when R+ > 2D, P (R+).

The case ofR+ < 2D, i.e. D2H2 > 1
4
, corresponds to r2

−H
2 > 1, which means that the

radius of the singular surface is greater than the Hubble one. We discard this situation
as unphysical. In any case, no black hole solutions can arise there: when P (2D) < 0
one root is present, otherwise the polynomial is always positive ∀r > 2D. We restrict
in the following to R+ > 2D.
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Next, note that when P (2D) = 2(M − D) ≤ 0, P only has one root. If P (2D) > 0,
there can be 0,1 or 2 roots, depending on the sign of P at the minimum R+. Studying
this case, i.e. M ≥ D, we have

P (R+) = −16

27
D3H2 − 2

3
D + 2M −

√
4D2 +

3

H2

(
8

27
D2H2 +

2

9

)
. (5.2.4)

If −16
27
D3H2− 2

3
D+ 2M is negative, the sign of P (R+) is fixed to be negative, and there

are two zeros for P . In order to further investigate the sign of P (R+), it is helpful to
consider the function 

U(D) ≡ −16
27
D3H2 − 2

3
D + 2M

D < D1 → U(D) > 0

D = D1 → U(D) = 0

D > D1 → U(D) < 0

(5.2.5)

We have U(0) = 2M > 0 and U is decreasing with D. There is so one solution D1 such
that U(D1) = 0. For D > D1, U is negative and P has two zeros. The region D < D1,
where U(D) is positive, needs further investigation.

It is easier for the rest of the computation, with D < D1, to reformulate the zeros of
P (R+) as the zeros of a simpler function:

P (R+) = 0⇔
(
−16

27
D3H2 − 2

3
D + 2M

)2

=

(
4D2 +

3

H2

)(
8

27
D2H2 +

2

9

)2

⇔ −
(

4

3

)3

H2MQ(D) = 0,

where Q is a function of D defined as

Q(D) = D3 +
1

16H2M
D2 +

9

8H2
D − 27M

16H2
+

1

16H4M
, (5.2.6)

so that P (R+) < 0 when Q(D) > 0. Q is an increasing function for positive D. The
sign of Q(0) = − 27M

16H2 + 1
16H4M

discriminates between two cases. If Q(0) > 0, Q(D) is
positive for all positive D. If Q(0) < 0, there is one D0 such that Q(D0) = 0:

D < D0 → Q(D) < 0⇒ P (R+) > 0⇒ P (r) 6= 0, ∀r ∈ R+

D = D0 → Q(D) = 0

D > D0 → Q(D) > 0⇒ P (R+) < 0.

Imposing the necessary condition D2H2 < 1
4
, we shall now group all cases. There are

three possibilities corresponding to 0, 1 or 2 roots.

• For P to have 2 roots, the first condition to be satisfied is P (2D) ≥ 0, i.e. D ≤ M .
IfD > D1, P has two roots without the need for further investigations. IfD < D1,
P has also two roots whenM2H2 < 1

27
. Finally, whenM2H2 > 1

27
, P has two roots

if the additional condition Q(D) > 0⇔ D > D0 is verified.
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• There are two scenarios where P has one root. The first corresponds to P (2D) <
0, ie D ≥ M . The second possibility is P (2D) ≥ 0 and P (R+) = 0, which can be
expressed as M ≥ D and D = D0 with D < D1. This case is the limit where the
two horizons defined just above coincide.

• Finally, P does not have roots corresponds when D < M , D < D1, D < D0 and
M2H2 > 1

27
.

All the cases listed above depend on the values of D0 and D1. Those are given in terms
of M as roots of the polynomials Q and U . More compact expressions, can be given
using the variables Y = DH and X = MH :

Y0 =− 1

48X
+

1

48

(
− 1

X3
− 24.33.5

X
+ 27.36X +

48
√

3

X2

√
1 + 22.34X2 + 24.37X4 + 26.39X6

) 1
3

− 16

3

(
27

8
− 1

256X2

)(
− 1

X3
− 24.33.5

X
+ 27.36X +

48
√

3

X2

√
1 + 22.34X2 + 24.37X4 + 26.39X6

)− 1
3

Y1 =
3

2
√

6

(
−3
√

6X +
√

1 + 54X2
)− 1

3 − 3

2
√

6

(
−3
√

6X +
√

1 + 54X2
) 1

3

Actually, the value of Y0 presented just above is complex forX < 1
12
√

6
. In that range

of parameters, of the three roots of Q(D), it is another one which is real, corresponding
to Y0 with an absolute value taken on the factors elevated to the ±1

3
power and on the

factor 27
8
− 1

256X2 . However, as we are only interested in D > 0 and D0 which is positive
for X > 1√

27
, the expression for Y0 is real in the whole range of interest for D and the

absolute values are of no use.

The different cases for the black hole horizons are represented graphically in Figure
5.1. Instead of D, we used the electric charge Q (actually, Q really is Qeφ0). The green
curve representsD = D0, while the yellow one isM = D. The functionD1, represented
by the dashed blue curve, is below M = D for D2H2 < 1

4
so that, according to our pre-

vious findings, it plays no role in the separation of the different regimes. In the region
between the green and the yellow curves, black hole solutions with two horizons are
found. For Q = 0, the discriminant between solutions with two and zero horizons is
M = 1√

27H
, as it should. Solutions describing a singularity with a cosmological horizon

are found below the yellow curve. Finally, the red curve is defined by 2DH = 1. On its
right, the radius of the singularity is greater than the Hubble one.

To illustrate the solution, we now follow two straight horizontal lines, like the green
and yellow dashed ones, in Figure 5.1, with MH < 1√

27
in one case and 1√

27
< MH ≤ 1

2

in the other.

• MH < 1√
27

. At Q = 0 there are two horizons: the event and the cosmolog-
ical horizon. Increasing Q, the radius of the cosmological horizon and of the

66



5.2. STUDY OF THE HORIZONS OF DILATONIC DS BLACK HOLES

Figure 5.1 – Number of horizons of the α = 1 de Sitter black hole as a function of MH
and QH . The green curve represents HD0, the yellow one the limit

√
2MH = Qeαφ0H ,

and the red one D2H2 = 1
4
. Dotted lines are for intermediate steps and discussions in

the text.

singularity increase while that of the event horizon decreases until the value
Qeφ0 =

√
2M is reached. Here, the event horizon coincides with the singular-

ity. For Qeφ0 >
√

2M , only the cosmological horizon surrounds rs = Q2e2αφ0

M
.

The radius of the singular surface increases with Q until it coincides the Hubble
radius when Q2e2αφ0 = M

H
.

• 1√
27
< MH < 1

2
. With MH < 1

2
, at Q = 0 no horizons are present. Increas-

ing Q the situation doesn’t change until Q such that Q2e2αφ0

2M
= D0 is reached: at

this point, one horizon appears. Here, two roots of g00 coincide, meaning that
the event and cosmological horizons have the same size. As Q further grows the
two horizons disentangle, the radius of the event horizon shrinks, while that of
the cosmological horizon increases. Continuing to increase Q, the analysis is the
same as in the previous point: when the condition Qeαφ0 =

√
2M is reached, the

singularity coincide with the event horizon, and for greater charges the solutions
only show a cosmological horizon.

When MH = 1
2
, the region with two horizons disappears. At the point (QH,MH)

defined by MH = 1
2

and Qeαφ0H =
√

2MH = 1√
2
, the green, yellow and red curves

meet. It means that the two roots of g00, the singularity and the Hubble horizon coin-
cide, corresponding to the case where P (2D) = P (R+) = 0 with R+ = 2D. This point
defines the maximal mass and charge for which a black hole solution exists. Keep-
ing M fixed, larger charges allow for the presence of a cosmological horizon, with the
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singularity bigger than the Hubble surface.
For MH > 1

2
, no black hole solution is possible: the singularity is either com-

pletely naked, when Qeαφ0 <
√

2M , or shielded by a cosmological horizon when
Qeαφ0 ≥

√
2M , with the latter coinciding with the singularity when the inequality

is saturated. The condition for the singularity to be bigger than the Hubble horizon is
now met before this last one.

Following the arguments of [24] to infer the WGC condition from the absence of
event horizons shielding the singularity, the WGC would require the existence of a
state with mass m and charge q, in geometrized units, satisfying qeφ0 >

√
2m. This cor-

responds to the dilatonic WGC bound in asymptotically flat space-time, as discussed
above. Thus, for α = 1, the dilatonic WGC seems to be insensitive to the presence of a
cosmological constant.

5.2.2 α > 1

We first study the α → ∞ limit, where one should recover the Schwarzschild-de
Sitter solution, and then look at the generic α > 1 case.

In the α→∞ limit the metric reads

ds2 = −
[

1− r+
r

1− r−
r

−H2r2
(

1− r−
r

)2
]

dt2+

[
1− r+

r

1− r−
r

−H2r2
(

1− r−
r

)2
]−1

dr2+r2
(

1− r−
r

)2

dΩ2
2.

(5.2.7)
To study the horizons of the above metric, we need to find the roots of the polynomial

G(r) ≡ H2(r − r−)3 − (r − r+) = 0. (5.2.8)

G has two extrema: a minimum at r = r− + 1√
3H

and a maximum at r = r− − 1√
3H

.
The latter is inside the singular surface. The knowledge of the values on the singular
surface, G(r−), and at its minimum, G(r−+ 1√

3H
), allows to find the number of roots of

G. We have {
G(r−) = r+ − r−
G(r− + 1√

3H
) = r+ − r− − 2√

27H
.

(5.2.9)

For 0 < r+− r− < 2√
27H

, the singularity is protected by two horizons: the event and the
cosmological horizons. When r+− r− = 2√

27H
, the two horizons merge. Above, neither

the event nor the cosmological horizon are present. At r+ = r−, the event horizon co-
incides with the singularity. Using (1.2.5) one obtains, for α→∞, r+− r− = 2M . Thus,
we discard the r+ < r− region as corresponding to negative masses. In the α→∞ limit
of (5.1.5) the Schwarzschild-de Sitter solution is recovered: the discriminant between a
naked and a shielded singularity is the sign of M − 1√

27H
.
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Now, we consider the general metric (5.1.5) and define a new function F that van-
ishes for the same values of r than g00:

F (r) ≡ r − r+ −H2r3
(

1− r−
r

) 3α2−1

α2+1
. (5.2.10)

To investigate the solutions of F (r) = 0, we divide F into the sum of two contribu-

tions: A(r) ≡ r − r+, and B(r) ≡ H2r3
(
1− r−

r

) 3α2−1

α2+1 .
The intersection points of the two curves defined by A and B give the zeros of F .

We carry the analysis in two regions of the parameter space:

• For r+ < r−,A(r−) > 0 and the two curves always cross in one point. Accordingly
there is, in this case, only one zero, corresponding to the cosmological horizon.

• For r+ > r−, A(r−) < 0 and there are either two, one or zero solutions depending
on the location of the point r0 where B′(r0) = 1. B(r0) ≤ A(r0) corresponds to
the case where the function has two zeros, coalescing into one when the equality
is satisfied. B(r0) > A(r0) will determine the horizon-less regime where the dS
space has been "completely eaten up" by the black hole.

We consider, from now on, r+ ≥ r−. To discriminate between the different regimes we
just described, we proceed in the following way.

First, we observe that the limit for the two zeros to collapse into one is obtained
where A(r) and B(r) are tangent, thus F (r0) = 0 and F ′(r0) = 0 (B′(r0) = 1). The solu-
tions of this system are always two as the equation F (r0) = 0, with the prior F ′(r0) = 0,
reduces to a quadratic equation for r0.

Consider r0± two functions of r± given by:

r0± =
(3− α2)r− + 3(1 + α2)r+

4(1 + α2)
±

√(
(3− α2)r− + 3(1 + α2)r+

4(1 + α2)

)2

− 2
r+r−
α2 + 1

(5.2.11)

When {
F (r0±) = 0

F ′(r0±) = 0
(5.2.12)

the event and cosmological horizons coincide.
As F (r)→ −∞ for r →∞, starting with F (r−) < 0, if F (r) takes a positive value at

some coordinate value this ensures that it crosses twice the abscissa axis thus allowing
the existence of two horizons. Therefore, when r0± are both greater than r−, r+ ≥ r−,
the black hole solution exists in the parameter region of (r+, r−) where F (r0+) > 0 and
F (r0−) < 0.

Next, note that for α > 1, r0− < r− does not intervene. Using F (r−) < 0, the region
where two horizons are present is defined by F (r0+) > 0. the lower boundary of the
region for the existence of a black hole solution is thus given by F (r0+) = 0. In terms
of M and Q, F (r0+) < 0 translates to(

(1− 2α2)M + (α2 − 2)
√
M2 − (1− α2)Q2e2αφ0 +

√
P (M,Q, α, φ0)

)
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Figure 5.2 – Number of horizons of the α > 1 de Sitter black hole as a function of MH
and QH . The green curve represents F (r0+) = 0, the yellow one the limit

Q2 = (1 + α2)M2, and the red one r−H = 1. We chose for the illustration α = 2 and
φ0 = 0.

−H2
(

(10 + 9α2)M − (4 + 3α2)
√
M2 − (1− α2)Q2e2αφ0 +

√
P (M,Q, α, φ0)

) 3α2−1

1+α2

×(
(4 + 3α2)M −

√
M2 − (1− α2)Q2e2αφ0 +

√
P (M,Q, α, φ0)

) 4
1+α2

> 0, (5.2.13)

where P (M,Q, α, φ0) is defined by

P (M,Q, α, φ0) =(17 + 24α2 + 9α4)M2 − (9 + 15α2 + 8α4)Q2e2αφ0

− (8 + 6α2)M
√
M2 − (1− α2)Q2e2αφ0 . (5.2.14)

Figure 5.2 presents the results of the discussion above. In analogy to the case α = 1,
we have added a further constraint for the singularity to be inside the Hubble horizon,
r− <

1
H

.
When the black hole charge vanishes, the equation F (r0+) = 0 reduces toM = 1√

27H
.

Consider in this figure a point in the region corresponding to a black hole with two
horizons and vary the charge or the mass:

• Increasing the mass, the event horizon reaches the cosmological one for the black
hole mass M such that F (r0+) = 0. Beyond this value, the singularity is naked.

• Increasing the charge instead we encounter, at some point, the line Q2e2αφ0 =
(1+α2)M2, where the event horizon and the singular surface r− coalesce. Contin-
uing to increase the charge, the electromagnetic energy density becomes strong
enough to prevent the formation of an event horizon. The WGC states are ex-
pected to have mass and charge in this region of parameters.
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The WGC would then require the existence of a state with q2e2αφ0 > (1 + α2)m2, as
in the case α = 1. Although the presence of a cosmological constant changes the form
of g00(r), in the α > 1 case the weak gravity bound would take the same form as in
asymptotically flat space-time.

5.2.3 Some comments on the α < 1 case

For α < 1, both the terms in g00 given by:

g00(r) =
(

1− r+

r

)(
1− r−

r

) 1−α2

1+α2

−H2r2
(

1− r−
r

) 2α2

1+α2

go to zero when r → r−. For α2 = 1
3
, the r− dependence factorizes and g00 can be

written as

g00(r) = −
(

1− r−
r

) 1
2
(

1− r+

r
−H2r2

)
, (5.2.15)

where the second factor takes the form of the g00 of a Schwarzschild-de Sitter met-
ric with mass M∗ ≡ r+

2
. The relative importance of the two terms in g00 depends on

whether α2 < 1
3

or α2 > 1
3
. A priori, we may expect a dilatonic-like black hole be-

haviour for 1√
3
< α < 1, similar to the α > 1, while a different, de Sitter-like black hole,

behaviour for α < 1√
3
. We thus split the α < 1 analysis in three parts: 1√

3
< α < 1,

α = 1√
3

and α < 1√
3
.

There is another comment to add. For 0 < α < 1, looking at (1.2.6), one can see
that there is a region of parameters Q and M such that r+, r− and the metric becomes
complex. It happens for Q2 < (1 − α2)M2. We will have to discuss this region in the
following.

5.2.4 1√
3
< α < 1

Factorizing the
(
1− r−

r

)
factor, we study the zeros of F defined in (5.2.10), with

3α2−1 > 0. The only difference with the α > 1 case comes from the convergence of the
first term in g00 when r → r−. The convergence is to 0+ when r+ > r− and to 0− when
r+ < r−. Concretely, this does not affect the zeros of F , and thus the results obtained in
the case α ≥ 1. In the (Q,M) plane, the boundaries of the region allowing black holes
is still given by Q2e2αφ0 = (1+α2)M2 and F (r0+) = 0. Note that the most involved part
of the analysis in the case α > 1 was for the situation r+ > r− and used r0− < r−. While
in the region 1√

3
< α < 1, r0− can become greater than r−, this only happens when

r+ < r− and therefore does not modify that analysis. Black hole arguments would
again indicate for the WGC the existence of a particle satisfying q2e2αφ0 > (1 + α2)m2.
As long as the second term in g00 (de Sitter-like) is sub-dominant, the transition between
black holes and singularities (with a cosmological horizon) seems to happen in the
same parametric region as in asymptotically flat space-time.

71



CHAPTER 5. DILATONIC WGC IN (ANTI-)DE SITTER SPACE

Figure 5.3 – α2 = 1
3

case. Blue dotted curves correspond to Q2 = 4
3
M2 and Q2 = 3

2
M2.

Green curve represents (5.2.18) and yellow one corresponds to (5.2.19).The yellow
dotted line represents the maximal black hole mass: Mmax = 7

12
√

3H

5.2.5 α = 1√
3

The α = 1√
3

case allows for explicit expressions of the horizons and can be studied
in full details. The second factor in (5.2.15) can be seen as the time component of a
Schwarzschild-de Sitter metric with an effective mass M∗ ≡ r+/2. This factor has two
zeros for r+ < 2√

27H
and none for r+ > 2√

27H
. The roots of the polynomial P (r) ≡

r − r+ −H2r3 are:


rc = 1

H

(
( 2

3)
1/3

(−9r+H+
√

3
√
−4+27r2

+H
2)

1/3 +
(−9r+H+

√
3
√
−4+27r2

+H
2)

1/3

21/332/3

)
rh = − 1

H

(
( 2

3)
1/3

e−iπ/3

(−9r+H+
√

3
√
−4+27r2

+H
2)

1/3 +
(−9r+H+

√
3
√
−4+27r2

+H
2)

1/3
eiπ/3

21/332/3

) (5.2.16)

with rc, rh the cosmological and the event horizons respectively. The third root of P
is negative thus of no physical interest. In fact, one can see from the coefficients of
P that the product of the roots is − r+

H2 < 0 and their sum is null. So, there are either
two real positive roots and a negative one (corresponding to the case where we have
two horizons) or two complex conjugate and a negative root (corresponding to the case
where no horizon is present). The transition between these two regimes happens when
the horizons coincide, rc = rh, i.e. for r+ = 2√

27H
. We also require that these roots are

located outside the singular surface located at r−. In order to study the behaviour of
the roots of g00, we consider the equations:
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rc − r− = 0

rh − r− = 0

r+ = 2√
27H

.

(5.2.17)

There is an equivalence between the condition rc ≥ r−, r+ < 2√
27H

and F (r0+) ≥ 0, and
between rh ≥ r−, r+ = 2√

27H
and F (r0−) ≤ 0.

To express these conditions in terms of the physical variables (Q,M) we use the

relations r+ = M+
√
M2 − 2

3
Q2e2αφ0 and r− = 4

3
Q2

M+
√
M2− 2

3
Q2e2αφ0

. Redefining M̂ ≡MH

and Q̂ ≡ eαφ0QH , the conditions then take the following form

rc − r− = 0⇔
(

2
3

)1/3(
−9

(
M̂ +

√
M̂2 − 2

3
Q̂2

)
+
√

3

√
−4 + 27

(
M̂ +

√
M̂2 − 2

3
Q̂2

))1/3

+

(
−9

(
M̂ +

√
M̂2 − 2

3
Q̂2

)
+
√

3

√
−4 + 27

(
M̂ +

√
M̂2 − 2

3
Q̂2

))1/3

21/3 32/3

=
4Q̂2

3

(
M̂ +

√
M̂2 − 2

3
Q̂2

) , (5.2.18)

rh − r− = 0⇔
(

2
3

)1/3
eiπ/3(

−9

(
M̂ +

√
M̂2 − 2

3
Q̂2

)
+
√

3

√
−4 + 27

(
M̂ +

√
M̂2 − 2

3
Q̂2

))1/3

+

e−iπ/3

(
−9

(
M̂ +

√
M̂2 − 2

3
Q̂2

)
+
√

3

√
−4 + 27

(
M̂ +

√
M̂2 − 2

3
Q̂2

))1/3

21/3 32/3

=
4Q̂2

3

(
M̂ +

√
M̂2 − 2

3
Q̂2

) . (5.2.19)

and

r+ =
2√

27H
⇔ M̂ =

1√
27

+

√
3Q̂2

2
. (5.2.20)

It is possible to identify a triple point (Q̂, M̂) =
(

1√
6
, 7

12
√

3

)
where the regions with two,

one and zero solutions meet. We now have all the elements to show the different region
of solutions, as displayed in the Figure 5.3.

73



CHAPTER 5. DILATONIC WGC IN (ANTI-)DE SITTER SPACE

• Restricting to masses below the triple point bound, thus M̂ < 7
12
√

3
, the upper

bound on the mass allowing the two-horizons solution is given by r+ = 2√
27H

. It

is represented by the green curve, M̂ = 1√
27

+
√

3Q̂2

2
, from

(
0, 1√

27

)
up to the triple

point.

• The lower bound on this black hole region is given by (5.2.19) and it is repre-
sented in yellow in Figure 5.3. It corresponds to the limit where the event horizon
coincides with the singularity. Note that the lower bound yellow curve starts at
(0, 0) and crosses the upper bound green curve at the triple point. After that, the
yellow curve runs above the green one and does not bound any physical region.

The graphical representation of the two bounds reveals that for masses M > 7
12
√

3H
the

event horizon cannot form: this is the maximal mass above which asymptotically de
Sitter black hole solutions are no more possible (yellow dashed line). Accordingly, this
point corresponds to a maximal charge Qmax = 1√

6H
.

• Singularities with only a cosmological horizon are found in the domain given by
the union of: (1) the region between the yellow and the lower dashed blue curve
from the origin up to the triple point, (2) the region between the green and the
same dashed blue curve, now above it. On this dashed curve Q2e2αφ0 = 3

2
M2

marks the limit of definition of the metric.

The green curve (defined by rc = r−) crosses the blue one, corresponding toQ2e2αφ0 =
3
2
M2 in the point

(
Qeαφ0 ,M

)
=
(√

3
4H
, 1

2
√

2H

)
. This is a point of maximal charge and mass.

Above it, the green curve delimiting singularities with and without cosmological hori-
zon cannot be drawn: either it is not defined, or it lies inside the inaccessible region
(complex metric).

To confirm that (5.2.19) can be seen as a WGC bound, one can look at its behaviour
when H → 0. To look at this limit, let us rewrite rh, in the region where it is real, as

rh =
2√
3H

sin

(
θ

3

)
, (5.2.21)

where the angle θ is defined by sin(θ) = 3
√

3
2
r+H and cos(θ) =

√
1− 27

4
r2

+H
2. In the

limit H � 1
r+

, one obtains

rh = r+ +H2r3
+ +O(r3

+H
4). (5.2.22)

Looking at rh − r− = 0, replacing r+ and r− by their definition in function of M and
Q given by (1.2.6), and looking at the expansion of Q in powers of H one obtains the
equation

Q2e(2/
√

3)φ0 =
4

3
M2 +

43

34
M4H2 +O(M6H4). (5.2.23)

In the limit H → 0, the bound given by (5.2.19) reduces to (1.2.9).

In conclusion, for α = 1√
3
, the study of horizons of the dilatonic de Sitter black hole

would rather suggest (5.2.19) as a WGC bound than (1.2.9).
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5.2.6 α < 1√
3

As shown above, when α = 1√
3
, r+ = r− is no longer the black hole extremality

condition, as it was for all cases with α > 1√
3
. In the following, we will see that this

remains true for α < 1√
3
.

The first difference one can observe with respect to previous cases is the change in
the behaviour of the derivative of g00 in a neighbourhood of the singularity r−. Leading
terms are given by

∂r(g00) ∼
r→r−

−1−α2

1+α2
r−
r2

(
1− r+

r

) (
1− r−

r

)−2 α2

1+α2 for α > 1√
3

∂r(g00) ∼
r→r−

2 α2

1+α2H
2r−

(
1− r−

r

)− 1−α2

1+α2 for α < 1√
3
.

(5.2.24)

When α < 1√
3
, close to the singularity the sign of the derivative is independent of

r+ and is always positive, with g00(r) →
r→r−

0+. This combined with the asymptotic

value g00 → +∞ when r → ∞, implies that the metric exhibits a horizon only if the
parameters in g00(r) are such that the function is decreasing in an interval to reach
a negative minimum. In this situation, there are two horizons, coincident when the
minimum of g00 is 0. This leads to a first conclusion:

• In the parametric (QH,MH) space, a singularity surrounded only by a cosmo-
logical horizon can only appear on a curve, rather than in a portion of the plane
as happened for all cases with α ≥ 1√

3
.

Remember that, in contrast with the asymptotically flat case, here both r+ > r− and
r+ ≤ r− are now allowed. The method used above to investigate the limits between
regions with different behaviours of the horizons was valid only for r+ > r− but can
now be extended to all the situations. We proceed thus by using the function F defined
in (5.2.10), and its decomposition into A and B. For α2 < 1

3
, B → +∞ when r → r−. In

a neighbourhood of r− we always have B(r) > A(r).
We notice that the condition F (r0−) < 0 is not very illuminating in this case of

α2 < 1/3. Indeed, for r+ > r−, F (r0−) is always negative while for r+ ≤ r−, expanding
(5.2.11), we have r0− ≤ r−, i.e. r0− lies inside the singular surface and F (r0−) < 0
should not be considered.

Therefore:

• The condition for the existence of black hole solutions is given by F (r0+) > 0.
When F (r0+) = 0, the event and cosmological horizons coincide. F (r0+) < 0
defines naked singularities with no cosmological horizon.

As in the case α = 1√
3
, there is a maximal mass, above which there is no black hole

solution. This mass corresponds to the point where the curve defined by F (r0+) = 0
cross the line defined by Q2e2αφ0(1− α2) = M2. It is given by

Mmax =
1

2
√

2H

(
1− 3α2

2(1− α2)

) 1−3α2

2(1+α2)

(5.2.25)
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Figure 5.4 – Number of horizons for α < 1√
3
, here illustrated by the value α = 1

2
. The

green curve represents F (r0+) = 0 and gives an upper bound on the mass. The yellow
line represents Q2 = (1 + α2)M2, that does not play anymore the same role for α < 1√

3
.

The blue one is Q2 = M2

1−α2 . In the region between the green and the blue curves,
cosmological and event horizons are present. Below the blue one, r+, r− and the

metrics become complex valued.

The behaviour of the horizons for the asymptotically de Sitter metric for α < 1/
√

3
is described in figure 5.4 where we have taken, for an explicit illustrative example,
α = 1/2.

In figure 5.4, the region of the (QH,MH) plane with two horizons shows an upper
bound represented by the green curve, F (r0+) = 0. On the green curve, the event and
cosmological horizons coincide. The lower bound is given by the blue curve, where
Q2e2αφ0(1 − α2) = M2 and the metric is on the verge of becoming complex. Plots of
g00 reveal that, on this line, the event horizon and the singularity are still far apart.
Approaching this line from above (the black hole solution region), we see that the
event horizon and the singularity get closer but never touch. Expected solutions with
only the cosmological horizon seem to be hidden inside the inaccessible region. The
maximal mass for the black hole, corresponding to the crossing point of the green and
blue curves are given by MmaxH = 2

−8
5 3

−1
10 ' 0.3.

We can compare with the RN-dS black hole solution studied in [201, 24], corre-
sponding here to α = 0. In that case the (QH,MH) plane shows a central region with
three horizons surrounded by two regions with one horizon. One of them is attained,
in parametric space, after the event horizon has reached the cosmological one, and
is interpreted as a dS space "eaten" by the black hole. The other, related in [24] to dS-
WGC states, is beyond the locus of the coincidence of the inner and event horizons. For
0 < α < 1/

√
3, there are two horizons in a central region and zero horizons outside.
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Strictly speaking, r = r− is a zero of g00 for all α 6= 0 but the inner horizon is traded
for a singularity. The instability of Cauchy horizons (that we mentioned in chapter 1
for Reissner-Nordström black hole, but which is also present for Reissner-Nordström
de Sitter black hole, see [154]), may provide an additional motivation towards their
identification. However, we have observed that for α → 0, while the two cosmologi-
cal and event horizons tend to their corresponding surfaces in RN-dS, the singularity
r− seems not numerically to coincide exactly with the inner horizon but lies slightly
above: it is no more a singularity neither a horizon. In fact, in this limit, the expres-
sion of r− = r−(Q,M), given in (1.2.6), takes the same form as the RN black hole inner
horizon and becomes trivially this surface when H → 0.

Finally, note that for α = 0 the parametric equations F (r0±) = 0 reproduce the
relations separating the regions with different horizons in [24]F (r0−) = 0 ⇔

α=0
M2
− = 1

54l
[l(l2 + 36Q2)− (l2 − 12Q2)

3
2 ]

F (r0+) = 0 ⇔
α=0

M2
+ = 1

54l
[l(l2 + 36Q2) + (l2 − 12Q2)

3
2 ]

(5.2.26)

with l = 1
H

. It isM2
−, and thus F (r0−), that marks the transition between black holes and

naked singularities with cosmological horizon. However, the solution of F (r0−) = 0
cannot be used for 0 < α < 1/

√
3, as the metric is complex in that region. Note that

in all previous literature, because the asymptotically flat metric always shows a naked
singularity before turning complex, this region was simply ignored.

5.3 AdS case

Changing the sign of the H2 terms in the metric (5.1.5) allows to obtain a particular
class of dilatonic asymptotically AdS black hole solutions. For completeness, we will
investigate the phase space exhibiting the behaviour of the horizons as one varies α,
M and Q using the same method as for the de Sitter case.

We start by briefly recalling the Reissner-Nordström AdS case as it will correspond
to the α→ 0 limit. The time component of the metric is g00(r) = −

(
1− 2M

r
+ Q2

r2 +H2r2
)

.
Its roots are given by those of the polynomial G(r) ≡ H2r4 + r2 − 2Mr + Q2. They are
two (degenerate in the extremal case) real positive roots as long as

M2 ≤ 1

54

(
36Q2 − 1

H2
+

(1 + 12H2Q2)
3
2

H2

)
. (5.3.1)

Returning to the case α 6= 0, the presence of horizons can be inspected through the
study of the zeros of the function:

FAdS(r) ≡ r − r+ +H2r3
(

1− r−
r

) 3α2−1

1+α2

= −r
(

1− r−
r

) 1−α2

1+α2

g00(r). (5.3.2)

This turns out to be much simpler to study than the corresponding dS function F .
It is indeed straightforward to see that whenever r+ < r−, FAdS(r) > 0 for all r ∈
[r−,∞[ and so the function cannot have zeros. It will prove useful to split FAdS into
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the sum of the two contributions AAdS(r) ≡ r − r+, a straight line, and BAdS(r) ≡

−H2r3
(
1− r−

r

) 3α2−1

1+α2 which is always negative. In this way, the problem is again recast
in terms of the intersection points of AAdS and BAdS . We split the discussion into three
parts depending on the value of α.

α2 > 1
3

When approaching the singularity, BAdS goes to 0−. As a consequence,
the curves defined by AAdS and BAdS have either one intersection point when r+ >
r− (AAdS(r−) < 0), or no intersections at all when r+ < r− (AAdS(r−) > 0). We con-
clude that the discriminant between the black hole regime and the naked singularity is
given by r+ = r− i.e. Q2e2αφ0 = (1 + α2)M2.

α2 = 1
3

BAdS does not depend on r−: this is again related to a factorization in the met-
ric as we have seen in the dS case. As such, FAdS now corresponds to the Schwarzschild-
AdS polynomial FAdS(r) = r − r+ +H2r3, whose real root is given by

rh =
1

H

− (
2
3

)1/3(
9r+H +

√
3
√

4 + 27r2
+H

2
)1/3

+

(
9r+H +

√
3
√

4 + 27r2
+H

2
)1/3

21/332/3

 .

(5.3.3)
There is also two complex conjugate non-physical roots. rh is real and positive for any
value r+ ∈ R+. Accordingly, the condition for the singularity to be shielded by the
horizon is just rh ≥ r−, which reads

(
9

(
M̂ +

√
M̂2 − 2

3
Q̂2

)
+
√

3

√
4 + 27

(
M̂ +

√
M̂2 − 2

3
Q̂2

))1/3

21/3 32/3

−
(

2
3

)1/3(
9

(
M̂ +

√
M̂2 − 2

3
Q̂2

)
+
√

3

√
4 + 27

(
M̂ +

√
M̂2 − 2

3
Q̂2

))1/3
≥ 4Q̂2

3

(
M +

√
M2 − 2

3
Q̂2

) .
(5.3.4)

In the (Q̂, M̂) space this gives a lower bound on the mass which is a little higher than
the asymptotically flat case: Q̂2 > 4

3
M̂2, as shown in Figure 5.5 (left panel). The H → 0

limit of (5.3.4) is again given by (5.2.23) with the change of sign in front of the H2 term.

α2 < 1
3

This is again the most intricate parametric region. Here, BAdS diverges to
−∞ when r → r−. For r+ < r−, since AAdS is positive for all r ≥ r−, and so is the
difference AAdS −BAdS , no horizon can ever be present.
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Figure 5.5 – The dilatonic AdS black hole case. The left panel describes the phase
diagram for the α2 = 1

3
, the right panel shows the explicit example of α2 = 1

4
to

illustrate the situation for α2 < 1
3
. In both cases, the blue region corresponds to black

hole solutions, the yellow line is the flat-space discriminant between shielded and
naked singularities (playing no role here but shown for comparison) and the red

region is the inaccessible region where the metric becomes complex.

On the other hand, when r+ > r− we have AAdS(r) < 0 for all r ∈ [r−, r+[, so
the combination AAdS − BAdS could result to be negative there. As BAdS is a concave
function of r, two roots will be present when AAdS and BAdS intersect, collapsing to
one when they are tangent, and zero otherwise. The region of parameters allowing
the presence of a horizon, black hole solution region, is obtained as in the dS case by
solving the combined equations FAdS(r) = 0 and F ′AdS(r) = 0. The solutions to this
system are the same r0± found in (5.2.11). In the (r+H, r−H) plane, FAdS(r0+) is always
null or positive, leading to no constraint in practice. As a consequence:

• The condition for the singularity to be shielded can be expressed as FAdS(r0−) ≤ 0,
with the equality being satisfied by extremal black holes with coincident hori-
zons.

This leads to a lower bound on the mass, that lies above the flat-space one (Q2e2αφ0 =
(1 + α2)M2), as illustrated in the example of figure 5.5 (right panel).

For α2 = 1
3
, the lower bound on the mass coincides with the one obtained above

by simply requiring rh − r− ≥ 0, the set of curves are continuously connected. The
presence of black holes with two horizons is a new characteristic that was not present
for α > 1√

3
.

As in the dS case, we verify again the equivalence between the limit lim
α→0

FAdS(r0−) ≤
0 and (5.3.1).

Note that the singularity at r = r− changes its nature: from a space-like one, as it
happens when it is behind the single α2 > 1

3
horizon, to a time-like one. This is dic-

tated by the derivative of g00(r) that diverges now to −∞ for r → r+
−. The α2 < 1

3
AdS

black holes are the only ones where the singularity can be avoided: r = r− is not in the
future light-cone of all the observers that crosses the horizons, g00 becomes time-like
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again before reaching it, as already observed by [132]. Of all the setups we studied,
this is the only case where lim

r→r+
−

g00 < 0 in a black hole parametric region.

This is similar to what happens in the Reissner Nordstrom AdS metric for the r = 0
singularity. Varying α, starting with α2 > 1

3
, we encounter at α2 = 1

3
a transition from

Schwarzschild-AdS like black holes, with only one horizon and a space-like singularity,
to Reissner-Nordstrom AdS like ones, with two horizons and a time-like singularity.
For all α 6= 0, the singularity at r = r− resembles here the singularity at r = 0 of α = 0.
Note that we do not encounter the issue of a complex metric, in contrast with the dS
case, as the naked singularity bound is reached for values M2 > (1− α2)Q2.

It can be interesting to look at the first correction to the flat space-time condition
r− = r+ for small H . For H = 0, F (r0−) = 0 reduces to r0− = r+ which is equivalent to
r− = r+.

In order to find the first term in the expansion in H , we set

r− = r+ + crγ+1
+ Hγ + o(Hγ), (5.3.5)

where the constants c and γ have to be fixed.
From (5.3.5), it is possible to express r0− as r0− = r+ + (1+α2)

2(1−α2)
crγ+1

+ Hγ + o(Hγ).
Requiring F (r0−) = 0 at first order gives:

γ =
1 + α2

1− α2
and

1 + α2

2(1− α2)
c+

[
3α2 − 1

2(1− α2)
c

] 3α2−1

1+α2

= 0. (5.3.6)

For α < 1√
3
, c is single valued, negative, with the limit c → −2 when α → 0 and

c→ −1 for α→ 1√
3
.

Plugging the relation between (r−, r+) and (Q,M) given by (1.2.6) in (5.3.5), we can
look for the corresponding relation Q2e2αφ0 = (1 + α2)M2 + bM2+δHδ, that defines the
boundary of the black hole region. It is possible to determine the constants δ and b:
δ = γ and b = α2(1 + α2)

2
1−α2 c. Thus, the constraint F (r0−) = 0 can be expanded for

H → 0 as

Q2e2αφ0 = (1 + α2)M2 + α2(1 + α2)
2

1−α2 cM
3−α2

1−α2H
1+α2

1−α2 + o(H
1+α2

1−α2 ). (5.3.7)

We see that for α = 1√
3
, it reduces to

Q2e2αφ0 =
4

3
M2 − 43

34
M4H2 + o(H2). (5.3.8)

It is the same equation as for the dS case, with a difference of sign. for α → 0, the
power of H tends to 1, but the coefficient in front gives 0. This is coherent with [201],
since there is no term in the development in H .

5.4 Test particles in charged dilatonic black hole metric

As we have seen in the previous chapters, it is possible to formulate the WGC, for
abelian gauge fields as a condition on long range interaction between charged states.
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When adding scalar interactions, it leads to the RFC. The states under consideration
can be elementary in the theory, but also solitonic as D-branes. We therefore wish
to study the non-relativistic, large distance, leading interactions between the charged
black holes. The latter, seen at very large distances and interacting through gravitons,
gauge bosons and scalar fields with large wavelengths compared to their typical size,
i.e. their horizon radius, look like point particles. The challenge here is to identify the
expression of the scalar charge and the associated coupling for these states.

It appears instructive to first consider the simpler case of a test particle submitted to
the forces generated by a black hole. Also, taking in our computations the limit H = 0,
allows to compare with the available results of explicit amplitudes computation.

5.4.1 Large distance action of the dilatonic black holes on a test par-
ticle

In our effective theory description, the scalar charge of the point-like particle with
respect to a field φ appears encoded in the field-dependent mass m(φ). This in turn
will be translated into three-point couplings in field theory context, as we shall discuss
later. The action is given by

Sm =

∫
dτ
(
−m(φ)

√
−gµν ẋµẋν + eαφ0qAµẋ

µ
)
, (5.4.1)

where xµ represent the particle’s coordinates and the dot indicates a derivative with
respect to the proper time τ . The last term is the coupling to the abelian gauge field.
To be consistent with the previous part of this work, we use for the charge and mass of
the particle the geometrized ones, obtained from the physical mass and charge through
(1.1.4) and (1.2.8). The equation of motions yield the geodesic equation

−m(φ)
(
ẍµ + Γµνρẋ

ν ẋρ
)

+ eαφ0qF µ
ρẋ

ρ − dm(φ)

dφ
(ẋµẋρ∂ρφ− ẋρẋρ∂µφ) = 0, (5.4.2)

where the Γs denote the Christoffel symbols and Fµν is the abelian field strength. The
last term comes from the φ-dependence of the mass and provides an additional con-
tribution to the geodesics equation that can be interpreted in terms of a scalar force.
Here, we are mainly interested by the last term, interpreted in terms of a scalar force.

To study the motion of a test particle in the space-time defined by the metric (5.1.5),
we first rewrite the Lagrangian as

L = −m(φ)

√
f(r)ṫ2 − ṙ2

f(r)
− r2g(r)θ̇2 − r2g(r) sin2 θ ϕ̇2 − e2αφ0qQ

r
ṫ, (5.4.3)

where the gauge field was chosen as A =
(
−Q

r
, 0, 0, 0

)
, Q̃ being the charge of the black

hole defined in (1.1.4). In (5.4.3), we have introduced two functions f and g:f(r) ≡
(
1− r+

r

) (
1− r−

r

) 1−α2

1+α2

g(r) ≡
(
1− r−

r

) 2α2

1+α2 ,
(5.4.4)
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It corresponds to the solution presented in chapter 1 in order to define the dilatonic
WGC.

The spherical symmetry allows us to restrict the analysis to the equatorial plane
θ = π

2
. The two Killing vectors ∂t and ∂ϕ, correspond the two conserved quantities E

and L, constants proportional to the energy and angular momentum as measured at
infinity, respectively. They are given by:{

E = −∂L
∂ṫ

= m(φ)f(r)ṫ+ e2αφ0qQ
r

L = ∂L
∂ϕ̇

= m(φ)r2g(r)ϕ̇,
(5.4.5)

In (5.4.5) we have used the normalization gµν ẋµẋν = −1 whose explicit form reads

−f(r)ṫ2 +
ṙ2

f(r)
+ r2g(r)ϕ̇2 = −1, (5.4.6)

or, using (5.4.5),

− 1

m2(φ)f(r)

(
E − e2αφ0qQ

r

)2

+
ṙ2

f(r)
+

L2

m2(φ)r2g(r)
= −1. (5.4.7)

Restricting to radial paths and null angular momentum L, this gives(
dr

dτ

)2

= −f(r) +
1

m2(φ)

(
E − e2αφ0qQ

r

)2

. (5.4.8)

After putting the equation in the form 1
2

(
dr
dτ

)2
+ Veff(r) = 0, one can read the forces

from the 1
r

coefficient in Veff(r), the Newtonian approximation being recovered for large
distance (r � r−). In this limit, using (5.1.5), the leading order of f and m are

f(r) = 1− 1

r

(
r+ +

1− α2

1 + α2
r−

)
+O

(
1

r2

)
(5.4.9)

m2(φ) = m2

(
φ0 −

α

1 + α2

r−
r

+O
(

1

r2

))
= m2(φ0)− dm2

dφ

∣∣∣∣∣
φ0

α

1 + α2

r−
r

+O
(

1

r2

)
.

(5.4.10)

Together with the identification in (1.2.5), this gives

1

2

(
dr

dτ

)2

=

E2

m2
0
− 1

2
+
M

r
+
E2

m2
0

m′0
m0
D

r
− E

m0

eαφ0q
m0

eαφ0Q

r
+O

(
1

r2

)
(5.4.11)

where the ′ stands for the derivative with respects to φ and the subscripts 0 denote
quantities evaluated at φ = φ0.n (5.4.11), M , Q and D are the mass, the charge and
scalar charge of the black holes expressed in geometrical units related as in (1.2.7). The
E/m0 factors should be seen as relativistic corrections, intrinsically present in the GR
framework, and kicking in for v/c ∼ 1. In the classical limit, the potential Vpp felt by a
point-particle takes the form

Vpp = m0Veff(r) = −m0M +m′0D − e2αφ0qQ

r
+O

(
1

r2

)
. (5.4.12)
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We have therefore shown that the forces felt by a test particle match the result for the
non-relativistic limit of the 2→ 2 scattering amplitude between this test particle and a
state with the gauge charge, scalar charge and mass of the black hole.

Before turning to the question of how to extend this picture to the black hole itself,
we give here the final expression for the second order term in the expansion of Veff(r)

V
(2)

eff (r) = − 1

2r2

[
e2αφ0q2

m2
0

e2αφ0Q2 − (1− α2)
(
e2αφ0Q2 −D2

)
− 1

2

E2

m2
0

D2m
′′

0
2

m2
0

+
E2

m2
0

1 + α2

α
D2m

′
0

m
− 4

E

m0

e2αφ0q

m0

QD
m′0
m0

+ 4
E2

m2
0

D2

(
m′0
m0

)2
]
,

(5.4.13)

This generalizes the 1/r2 term one finds in the Reissner-Nordström case:

V
(2)

eff (r) = − 1

2r2

(
e2αφ0q2

m2
e2αφ0Q2 − e2αφ0Q2

)
(5.4.14)

that is recovered in the limit α→ 0 (thus D → 0), giving a non vanishing contribu-
tion even for purely radial motion.

The difference for the dilatonic black hole compared to the Reissner-Nordström so-
lution, for the overall potential Veff is that the sub leading contributions defined above
are parts of a formally infinite expansion in powers of r−

r
, with r− the singularity. As

we approach it, higher orders will grow and the whole expansion needs to be taken
into account. Contrary to Schwarzschild or Reissner-Nordström solutions, there is no
fixed-order dominating term whose sign determines whether the overall effective po-
tential is attractive or repulsive around the singularity.

5.4.2 Forces between two point-like states with black holes charges

We will investigate now the interaction between two point-like states both describ-
ing the black hole type solutions. These states will be characterized by their mass,
their charge and their coupling to the dilaton φ. We will pursue this description in re-
gion of parameters of the solution even beyond the extremal black hole limit, therefore
point-like states not corresponding to black holes anymore, in an attempt to get some
indication of what happens where the metric becomes complex.

The question of how to associate the parameters of a dilatonic black hole to a par-
ticle state was addressed in [160, 164] for the case of an asymptotically flat space-time
solution.

The black hole parameters (say its ADM mass, gauge charge and scalar charge) are
defined at infinity. As such, for a point particle to effectively describe this black hole,
its charge q, mass m(φ) and first derivative m′(φ) observed at infinity must satisfy the
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conditions 
m(φ0) = M = 1

2

(
r+ + 1−α2

1+α2 r−

)
q = Q =

√
r+r−
1+α2 e

−αφ0

m′(φ)
∣∣
φ0

= D = α
1+α2 r−,

(5.4.15)

where φ0 is the asymptotic value of φ at infinity.
In order to obtain an explicit expression for the scalar charge/scalar coupling of the

point-like black hole approximation, we consider the relation (1.2.7) and express it as:

D =
α

1− α2

(
M −

√
M2 − (1− α2)Q2e2αφ0

)
. (5.4.16)

We consider that the point-like state lives in a region where φ0 ' φ, generated by
the other (distant) black hole, and therefore has a coupling to the dilaton given by:

dm

dφ
=

α

1− α2

(
m(φ)−

√
m2(φ)− (1− α2)q2e2αφ

)
. (5.4.17)

As was shown in [160, 164], the useful parameters to describe the scalar interactions
are

γ(φ) ≡ d

dφ
lnm(φ) and β(φ) ≡ dγ(φ)

dφ
. (5.4.18)

and the mass m(φ) can be expanded around a background value φ̄ as

m(φ) = m(φ̄)

(
1 + γ(φ̄)(φ− φ̄) +

1

2

(
γ2(φ̄) + β(φ̄)

)
(φ− φ̄)2 +O

(
(φ− φ̄)3

))
. (5.4.19)

Using (5.4.17) one obtains
γ(φ) = α

1−α2

(
1−

√
1− (1− α2) q2

m2(φ)
e2αφ

)
β(φ) = α2

1−α2
q2e2αφ

m2(φ)

1− α2√
1−(1−α2) q2

m2(φ)
e2αφ

 .
(5.4.20)

With these formulae at hand, we can now extend the analysis of one black hole and a
test particle case to the present case with two black holes.

For α = 1, it is easy to see that an explicit solution is m(φ) =
√
µ2 + q2e2φ

2
, where µ is

an integration constant. It is useful for the discussion below to recall that geometrized
units have been used so far and that the φ field here is dimensionless (see (A.1.26)). In
terms of physical quantities, this translates into

m(φ) =

√
µ2 +M2

P q
2e
√

2 φ
MP , (5.4.21)

where, although we have used the same notation for simplicity, the quantities should
now be understood to be the physical ones.
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The tree-level t-channel contribution to the 2 → 2 scattering amplitude of 2 such
states with same charge q and mass m(φ) reads:

A =
4m2

t

(
q2e
√

2 φ
MPl − (∂φm)2 − 1

2

m2

M2
Pl

) ∣∣∣∣∣
φ̄

=
4m2

t

(
q2e
√

2 φ
MPl − 1

2

M2
Pl

m2
q4e

2
√

2 φ
MPl − 1

2

m2

M2
Pl

) ∣∣∣∣∣
φ̄

,

(5.4.22)
where the bar from now on indicates quantities evaluated at the background value φ̄.
The two states being the same, they have the same asymptotic value of φ thus φ̄ = φ0.
We however keep the bar notation here.

The amplitude can then be put in the simple form

A = −2
M2

P

t

(
m̄2

M2
P

− q2e
√

2 φ̄
MP

)2

= − 2µ4

M2
P t

(5.4.23)

from which it is straightforward to observe that it vanishes for q2e
√

2 φ̄
MP = m̄2

M2
P

(µ = 0)

and is always negative otherwise. The no-force condition is readily seen to correspond,
once we revert again to geometrized units, to the black hole extremality

q2e2φ̄ = 2m̄2. (5.4.24)

As such, for α = 1, the leading classical force between two particles with charge q and
mass (5.4.21) giving an effective description of a pair of the same black hole is always
attractive and vanishes only for extremal states.

Turning now to generic values of α, γ(φ) can be rewritten in terms of physical quan-
tities as

γ(φ) =
α

1− α2

(
1−

√
1− 2M2

P (1− α2)
q2

m2(φ)
e
√

2α φ
MP

)
. (5.4.25)

The tree-level contribution to the force between two states given by the coefficient of
the t-channel pole

At−pole = 4e
√

2α φ̄
MP q2m̄2 − 2

m̄4

M2
P

− 2
α2

(1− α2)2

m̄4

M2
P

(
1−

√
1− 2M2

P (1− α2)
q2

m̄2
e
√

2α φ
MP

)2

(5.4.26)
The resulting behaviour of A is represented by the blue curve in figure 5.6. We ob-

serve again that the overall force between two particles is always attractive, even be-

yond the point q2e
√

2α φ̄
MP = 1+α2

2
m̄2

M2
P

corresponding to extremality, which is again found
to be the only point where the force vanishes. Contrary to the Reissner-Nordstrom
case, the dilatonic coupling does not allow repulsive forces beyond extremality: in-
creasing q at fixed m, the scalar force grows at least as strong as the gauge one. As
observed in [160] and later shown in [75], in the asymptotic φ → ∞ limit, the solution

to (5.4.17) takes the form
√

1+α2

2
m(φ)
MP

= qe
α√
2

φ
MP . We note here that it coincides with the
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Figure 5.6 – Comparison of the leading overall forces for the scattering of two
point-like states approximating far-away black holes in blue, and one

Kaluza-Klein-like state and one similar to the black hole in yellow. Here, α = 0.7, and
m = 0.3 in Planck units.

extremal relation.

We now discuss the force felt by a particle of charge q and mass m(φ) = mAe
αφ

(in geometrized units). Our result for the effective potential for the motion of such
a particle in the asymptotically flat background metric, when applied for this case,
agrees with [209]. We will address here the attractive or repulsive nature of the leading
interaction, the 1/r contribution, for the case of our point-like states.

The effective potential takes the form (5.4.12), with m′ = αm. If we choose the two,
particle and black hole, states such that they share the same mass (m(φ̄) = M ) and
charge (q = Q), we find that the overall force, proportional to M2 + αMD − e2αφ̄Q2, as
shown by the yellow curve in figure 5.6, vanishes at two points:

• the point defining the extremality condition

M2 =
e2αφ̄Q2

1 + α2
(5.4.27)

• and the point
M2 = (1− α2)e2αφ̄Q2 (5.4.28)

where the metric is on the verge of becoming complex.

This remains valid as long as m
q

= M
Q

.

Denoting the point-like state approximating a black hole as S, we now turn to the
computation of the amplitude S → Sφφ for the emission of a pair of dilatons due to
the couplings in (5.4.19). It takes the form

A(S → Sφφ) = −2i
m̄4

M2
P

γ̄2

(
1

t− m̄2
+

1

u− m̄2

)
− i m̄

2

M2
P

(
2γ̄2 + β̄

)
, (5.4.29)
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where β̄ is now written in physical units as the other quantities. At threshold, t, u =
−m̄2, and this simplifies to

A(S → Sφφ) = −i m̄
2

M2
P

β̄ = −2i
α2

1− α2
q2e
√

2α φ̄
MP

1− α2√
1− (1− α2)2M2

P
q2

m̄2 e
√

2α φ̄
MP

 .

(5.4.30)

For any finite value α ≥ 1, the amplitude is finite as well and reduces toA = −2iq2e
√

2α φ̄
MP

for α = 1. However, for α < 1 the amplitude diverges at

q2e
√

2α φ
MP =

1

2(1− α2)

m̄2

M2
P

, (5.4.31)

corresponding to the largest charge before the metric becomes complex. It is also easily
verified that the amplitude (5.4.30) vanishes when the no force (extremality) condition
(5.4.27) is met.

5.5 Conclusion

We give here an overview of the results obtained above for the existence of horizons
in the black hole solution (5.1.5). We also attempt to infer from them new bounds for
the dilatonic Weak Gravity Conjecture (dWGC). We will keep separate the discussions
about asymptotically flat, AdS and dS space-time. For AdS, this extends previous anal-
ysis of the dilatonic black hole solution performed in [103, 132] (and of course for α = 0
in [201]). The authors of [132] focused on the region r+ � r−. Our analysis of the dS
solution is to our knowledge new. For the WGC in this case we follow [24], where the
dS-WGC bound was conjectured to be set by the boundary, in the (QH,MH) plane,
between the black hole solution region exhibiting both an event and a cosmological
horizon and the naked singularity region with only a cosmological horizon.

The asymptotically AdS BH and AdS-dWGC:

• For α > 1√
3
:

The black hole solutions exhibit only one (event) horizon. It is located outside the
singular surface as long as

Q2e2αφ0 < (1 + α2)M2 (5.5.1)

and the two surfaces coincide when the inequality turns to equality. The dWGC
condition is the same as in the asymptotically flat-space one.

• When α = 1√
3
:
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The black hole solutions still possess only one horizon. The coincidence of that
horizon with the singularity is no more obtained for Q2e2αφ0 = (1+α2)M2 but for
a smaller charge now, saturating the inequality(

9

(
M̂ +

√
M̂2 − 2

3
Q̂2

)
+
√

3

√
4 + 27

(
M̂ +

√
M̂2 − 2

3
Q̂2

))1/3

21/3 32/3

−
(

2
3

)1/3(
9

(
M̂ +

√
M̂2 − 2

3
Q̂2

)
+
√

3

√
4 + 27

(
M̂ +

√
M̂2 − 2

3
Q̂2

))1/3
≥

4Q̂2

3

(
M +

√
M2 − 2

3
Q̂2

) . (5.5.2)

The expansion for small H (large L = 1
H

, with L the AdS length scale) gives

Q2e(2/
√

3)φ0 ≤ 4

3
M2 − 43

34
M4H2 + o(H2). (5.5.3)

which reproduces the flat space-time case for H → 0.

• For 0 < α < 1√
3
:

The black holes have both an inner and an outer horizon. The extremality condi-
tion is now obtained when the two horizons coincide and is expressed as

FAdS(r0−) = 0 (5.5.4)

where FAdS is defined by (5.3.2) and (5.2.11). Here the two coincident horizons
are located outside the singularity. The expansion for small H gives

Q2e2αφ0 = (1 + α2)M2 + α2(1 + α2)
2

1−α2 cM
3−α2

1−α2H
1+α2

1−α2 + o(H
1+α2

1−α2 ), (5.5.5)

where c is defined in (5.3.6). From this expansion one can see that the condi-
tion tends to the flat space one in the limit H → 0. Black hole states solve
FAdS(r0−) < 0.

• For α = 0:

This is the well studied case of charged AdS without dilaton.

A WGC bound can be identified as the requirement of the presence of a state with a
chargeQ and a massM that verifies an inequality opposite to the ones above respected
by black holes with a horizon.
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In [155], the classical decay of (near)-extremal solutions through the charged super-
radiance mechanism was used to obtain a WGC bound in asymptotically AdS space-
time with a dilaton. The conjecture requires the existence of a state with mass m and
charge q solving

q ≥ ∆

µ
, with ∆ =

3H

2
+

√
9H2

4
+m2, µ =

Q

r+

. (5.5.6)

where ∆ is the minimum frequency of a scalar perturbation in AdS and µ the difference
between the componentAt of the gauge field at infinity and on the horizon for extremal
solutions. The condition for the onset of superradiance was obtained considering the
leading order in the horizon radius for small black hole and the equation Q2e2αφ0 =
(1 + α2)M2 to define extremal states. With these assumptions, eq. (5.5.6) reads

q ≥ ∆
√

1 + α2. (5.5.7)

Here, for α ≤ 1/
√

3, we found that the extremality condition receives corrections. Ac-
cordingly, the bound from (5.5.6) becomes

q ≥ r0−√
r+r−

∆
√

1 + α2, (5.5.8)

where r+ and r− are related by the condition FAdS(r0−) = 0, r0− = r0−(r+, r−). Again,
FAdS is defined by (5.3.2) and r0− in (5.2.11). For r+ ≥ r−, and thus for extremal so-
lutions, r0− <

√
r+r−, so that the bound (5.5.8) is weaker than (5.5.7). Using (5.2.11)

and the expansion of the extremality condition for small H (5.3.5), this gives at leading
order:

q ≥ ∆
√

1 + α2

(
1 +

α2c

1− α2
rγ+H

γ + o(rγ+H
γ)

)
. (5.5.9)

where γ = (1 + α2)/(1− α2) and c is a constant solution of the equation given in
(5.3.6). Note that the expression of the minimum frequency in AdS might also receive
which we expect to be sub-leading (for RN-AdS, we have ω = H∆ + o(rhH

2)).

The asymptotically dS-BH and dS-dWGC

• For α > 1√
3
, the condition for the event horizon to coincide with the singularity is

given by Q2e2αφ0 = (1 + α2)M2. It is again the same as in both asymptotically flat
and AdS space.

• When α = 1√
3
, the extremal solution solutions solve

(
2
3

)1/3
e−iπ/3(

−9

(
M̂ +

√
M̂2 − 2

3
Q̂2

)
+
√

3

√
−4 + 27

(
M̂ +

√
M̂2 − 2

3
Q̂2

))1/3
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+

eiπ/3

(
−9

(
M̂ +

√
M̂2 − 2

3
Q̂2

)
+
√

3

√
−4 + 27

(
M̂ +

√
M̂2 − 2

3
Q̂2

))1/3

21/3 32/3

= − 4Q̂2

3

(
M̂ +

√
M̂2 − 2

3
Q̂2

) . (5.5.10)

This condition can be expanded for small H as

Q2e(2/
√

3)φ0 =
4

3
M2 +

43

34
M4H2 +O(M6H4), (5.5.11)

showing that it allows for slightly greater charges than the corresponding flat
space limit. It goes to the flat space-time condition for H → 0.

• For 0 < α < 1√
3

:

For a real valued metric, one has always either two horizons or, trivially for huge
masses, a naked singularity. We have found no region of parameters with a (real)
metric exhibiting only a naked singularity with a cosmological horizon.

Note that in both the α → 0 and α → 1√
3

limits, we retrieve the α = 0 and α =
1√
3

transition from the black hole to a naked singularity with the cosmological
horizon happening for F (r0−) = 0 defined by (5.2.10) and (5.2.11). We discuss
further this case below.

• For α = 0

The phases of the dS-RN black hole metric are described in details in [201, 24].
The condition for the existence of the black hole is

Q2 ≤M2 +M4H2 +O(M6H4) (5.5.12)

with M2H2 ≤ 2

27
.

The appearance of a complex valued metric leaves the lower bound on the black
holes’ masses for the 0 < α < 1√

3
asymptotically dS solutions undefined. Because pre-

vious literature focused on the asymptotically flat metric, and this one always shows
a naked singularity before reaching the complex valued metric region, this was not
investigated. Here, however, the condition for metric becoming complex,

Q2e2αφ0 ≥ M2

1− α2
(5.5.13)

can be reached within the domain of the black hole solution region and represents a
new bound. We might consider that (5.5.13) represents a new WGC bound for this do-
main of dilaton couplings but further investigation is needed to confirm this.
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CHAPTER 6

Spin 3/2 and gravitational waves

6.1 Introduction

The existence of gravitational waves was postulated a short time after the first arti-
cle on General Relativity, but it took quite a century to discover it experimentally [1, 2].
The main reason explaining the long time between the theoretical prediction and its
experimental confirmation is the weakness of the gravitational waves signal. This fea-
ture, and so the need to a very precise and complex experiment which can detect a tiny
signal, explains also that we can detect, today, only astrophysical signals. These astro-
physical signals are the merge of two heavy objects, as black holes, or neutron stars.
The detection of this signal with such sources are also a successful test of General Rel-
ativity [66, 219], since the shape and the frequency of the signal corresponded with a
great precision to what was expected by the General Relativity computation. When
the two objects are too close, the action of the gravity is too strong and one need some
numerical computation. The simulations are sufficiently precise to give quite a good
approximation of the parameters of the black holes or the neutron stars (masses, spins
before and after the merge). The fact that we can derive physical parameters from the
observation of this gravitational waves is an incentive to go beyond these astrophysi-
cal signals, and try to observe cosmological signals from source of the early Universe,
for example [210]. The problem is the same as for the astrophysical sources, that is
to say the strength of the signal; but some questions are specific to this signal, as the
frequency. The LIGO/VIRGO collaboration was designed to have the best precision
at the frequency of black holes merges. This kind of experiment has not the sufficient
precision to detect signals with an average frequency away of the range of astrophys-
ical sources (close to 100 Hz). The question is to build some experiment with such
a precision. There are today some proposals of apparatus like [10], which can detect
corresponding gravitational waves from cosmological sources at low frequency; but it
exists cosmological sources that lead to signals at higher frequencies. Example of such
gravitational waves are the ones produced during the preheating era [168, 213]. Since
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the current experiments cannot reach a sufficient sensibility in the range considered,
new experiments need to be designed to detect them (e.g. [206, 131, 142, 207, 199, 157]).

One of the interests of the gravitational waves is their sensitivity to process we
can’t look at with current signals and experiments. In order to illustrate this, we will
focus on a specific type of particle. For many years, and until quite recently, we have
discovered particles with spin 0, 1/2, 1 and 2. But we haven’t seen yet fundamental
spin-3/2 particles, and the question is can we detect if such particles exist or not? We
know that composite states are produced as hadrons, with a total spin of 3/2. A simple
question to begin with is so is there any possibility to construct a simple theory of spin-
3/2 interacting with known particles, in order to be detected easily? One can try, for
example, to couple this particle to an electromagnetic field. Doing this, a difficulty will
appear, known as Velo-Zwanziger problem [218], which corresponds to the fact that
the theory loses causality because the equations of motion have solutions which are
supraluminal. The Lagrangian leading to equation of motion is not physical, and it is
not a good description for this particle. This problem is quite general when looking at
spin 3/2, and is difficult to settle.

In order to solve this problem, a solution could be to look at non-minimal cou-
plings, and try to couple to others forces. One is then led to either consider nonminimal
couplings of spin-3/2 states with gravitational interactions, and with no electromag-
netic interactions. In a supersymmetric theory, it is well known that the longitudinal
modes can be understood as due to a super-Higgs mechanism. If one looks at a nonuni-
tary gauge and in the supersymmetric phase, the longitudinal mode is a well-behaved
fermion that has a causal behaviour. So it seems thanks to the coupling between the
spin-3/2 and the gravity one can escape the Velo-Zwanziger problem. Since the super-
symmetry is used in order to eliminate the causality violation, supergravity and string
theory are safe of this problem, see for example [195, 196]. In such theories, the spin-
3/2 is called the gravitino, and it’s this particle we will look at in this work, with the
Rarita-Schwinger Lagrangian to describe it.

But one problem with the gravitino is that such a particle has only gravitational
interactions. Since there is no interaction with others particles of the Standard Model,
it is difficult if not impossible to produce it in collider experiments ; besides, its mass
can be quite large (if one considers the case where the longitudinal modes are coming
from a super-Higgs mechanism, the mass of the gravitinos is linked to the scale of the
supersymmetry breaking, which can be quite large). So even if it can be produced, we
are not sure to find it in the current or next colliders. On the other way, we know that
it is quite difficult to discriminate a particle with only gravitational interactions with
only astrophysical observations. The quest of the dark matter illustrates this point per-
fectly. So we have to search for experiments and observations that are sensitive to such
gravitational interactions, and in which the spin have a detectable impact. Since the
gravitational waves are a door to new signals and processes, we can try to see if there
is a production process of gravitational waves with some features specific to the spin
of the particles involved.

As we have said, there are many ways of producing gravitational waves, and one
can find production processes on all the spectrum, with different shape and strength.
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In this work, we try to find an observation where the spin of the particles plays an
important role, so we will focus in one way of producing gravitational waves from
systems of quantum gases with large anisotropic stress tensor. These quantum gases
produce stochastic gravitational waves [116, 69]. One question to ask is when and
where such gases with a peculiar stress tensor can be present in the history of the Uni-
verse. One possibility is the preheating. During this phase of the Universe, particles
are violently produced far from thermal equilibrium [165], and this leads to huge non
diagonal term in the stress tensor, and so to the production of gravitational waves.
What kind of particles are produced during this phase? There is no natural restriction
which can occur, and so we can infer that all types of elementary particles are created.
Previous studies have focused on bosonic sources including both scalars and gauge
bosons [101, 97, 98] as well as Dirac spin-1/2 fermions [105, 115]. In this work, we are
interested to see if such signal is possible with spin-3/2 particles, and so we will study
the gravitational wave signals coming from non-adiabatic spin-3/2 gases.

When we study this gravitational waves production from decay of particle during
preheating, we can investigate the following features: shape, amplitude, and peak fre-
quency. The question is always: can these quantities be sensitive to the spin of the
particles produced? We have so to answer to two questions: Does the signal coming
from spin-3/2 production is different from what we obtain with others spins, and is
these signal characteristics are detectable for future experiments ? The interest of this
work is double. As we have already said, we haven’t detected signal of supersymme-
try in colliders yet. Since the energy in the early Universe is much larger than the one
we can achieve in current colliders, looking for signatures of spin-3/2 fundamental
particles in the early Universe could answer at the existence or not of the supersym-
metry. But the study of gravitational waves from spin-3/2 particles can also give us
clues in the quest of the role of supersymmetry in the early Universe cosmology.

This chapter will be organized as follows. Section 2 reviews the basics facts about
Rarita-Schwinger description of spin-3/2 fields, in order to be able to compute the
stress energy tensor. Section 3 presents the computation of the spectrum of energy
density of gravitational waves per frequency interval. It contains the main results of
this work: the master formula for the estimate of produced gravitational waves from
both the transverse and longitudinal modes. We show an enhancement of the latter
compared to expected signal from spin-1/2 fermions. A quantitative evaluation re-
quires explicit models where wave functions of the produced spin-3/2 states can be
computed. We illustrate our results in a simple model in section 4. Our results are
briefly summarized in the conclusion.

6.2 The Rarita-Schwinger fields

Before studying the production of the gravitational waves, we need to specify our
description of the spin-3/2, and to derive some quantities useful for the rest of the
computation. In order to describe a spin-3/2 field, one starts with a field ψµ in the
spinor-vector representation of the Lorentz group that obeys a Dirac equation. Using
representations of SU(2)L × SU(2)R for Weyl spinors, this is obtained from the tensor
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product of spin representations as

(
1

2
,
1

2
)⊗ (

1

2
, 0) =

1

2
⊕ (1⊗ 1

2
) =

1

2
⊕ 1

2
⊕ 3

2
, (6.2.1)

We have so in this description one spin-3/2, but also two spin 1/2. To get rid of these
degrees of freedom, two constraints have to be imposed. These constraints project out
the two additional spin-1/2 representations. In flat space time, the spin-3/2 field ψµ
obeys then the equations

(i∂/−m3/2)ψµ = 0, (6.2.2)
γµψµ = 0, (6.2.3)
∂µψµ = 0. (6.2.4)

We have so an equation of motion and two projective equations. These three equations
can be obtained from the Rarita-Schwinger Lagrangian

L = −1

2
εµνρσψ̄µγ5γν∂ρψσ −

1

4
m3/2ψ̄µ[γµ, γν ]ψν . (6.2.5)

As usual, we will define the corresponding field in the momentum space. The solution
ψ̃µ to the above equations of motion reads:

ψ̃µ~p,λ =
∑

s=±1,l=±1,0

〈1, 1

2
, l,

s

2
|3
2
, λ〉u~p, s

2
εµ~p,l, (6.2.6)

where 〈1, 1
2
, l, s

2
|3
2
, λ〉 are the Clebsch-Gordan coefficients in the decomposition (6.2.1)

in the standard notation. The εµ~p,l and u~p, s
2

are normalized solutions of massive spin-1
and spin-1/2 fields equations. Explicit expressions of the decomposition can be found
in [30, 181, 51]. In the rest of the computation, we will need the stress energy tensor of
the spin-3/2 field. In order to obtain an easier formula, we will use the identity

εµνρσγ5γσ = −iγ[µνρ]. (6.2.7)

The Lagrangian (6.2.5) can be so rewritten as

L =
1

2
ψ̄µ(i∂/−m3/2)ψµ − i

2
ψ̄µ(γµ∂ν + γν∂µ)ψν

+
i

2
ψ̄µγ

µ∂/γνψν +
1

2
m3/2ψ̄µγ

µγνψν . (6.2.8)

We can now apply the formula to compute the stress tensor, which gives us

Tαβ =
ecα
2e

δ(eL)

δeβc
+ (α↔ β)

=
i

4
ψ̄µγ(α∂β)ψ

µ − i

4
ψ̄µγ(α∂

µψβ) + h.c.. (6.2.9)

In the last step we have used the equations of motion and constraints (6.2.2) - (6.2.4) to
eliminate irrelevant terms, and simplify again the form of this stress tensor. Finally, we
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will have to use the quantization of the spin-3/2. The gravitino is a Majorana fermion,
and so we can quantize it as

ψµ(~x, t) =
∑

λ=± 3
2
,± 1

2

∫
d~p

(2π)3
e−i~p·~x{â~p,λψ̃µ~p,λ(t) + â†−~p,λψ̃

µC
~p,λ(t)}, (6.2.10)

where the annihilation and creation operators are time independent and satisfy

{â~p,λ, â†~p′,λ′} = (2π)3δλ,λ′δ
(3)(~p− ~p′). (6.2.11)

Now that we have defined all the quantities we need, we can focus on the gravita-
tional waves production.

6.3 Gravitational wave production

Our goal here is to compute the spectrum of energy density of gravitational waves
produced by a gas of spin-3/2 states. In the rest of this work we will consider wave-
lengths in the subhorizon limit, and so we will neglect the effects of curvature and
torsion, which is normally different from 0 in the presence of fermions.

6.3.1 General results

We will begin by the description of the gravitational waves. Since the gravitational
waves we look for are produced during the preheating, for the propagation of this
waves we need to take into account the expansion of the Universe. We will describe
the gravitational waves as linear tensor perturbations, here in the transverse-traceless
(TT) gauge, of the Friedman-Robertson-Walker (FRW) metric,

ds2 = a2(τ)[−dτ 2 + (δij + hij)dx
idxj], (6.3.1)

where τ is the conformal time. Since we look for linear perturbations, in order to
obtain the gravitational wave equation of motion, we just need to look at the linear
perturbation part of Einstein equations

ḧij + 2Hḣij −∇hij = 16πGΠTT
ij , (6.3.2)

where the dot (.) stands for the derivative with respect to the conformal time τ ,H = ȧ
a

is
then the comoving Hubble rate, and ΠTT

ij is the TT part of the anisotropic stress tensor,
since we work in this special gauge. This projector can be quite difficult to apply since
it is non local. To avoid this complex manipulation, we perform a Fourier transform of
the stress tensor Tµν in terms of comoving wave number ~k. Then −∇ gives k2 = |~k|2
and we can write

ΠTT
ij (~k, t) = Λij,lm(~̂k)(T lm(~k, t)− Pglm), (6.3.3)

where P is the background pressure and Λij,lm is the TT projection tensor which is a
function of the comoving wave number ~k :

Λij,lm(~̂k) ≡ Pil(~̂k)Pjm(~̂k)− 1

2
Pij(~̂k)Plm(~̂k), Pij(~̂k) = δij − ~̂ki~̂kj. (6.3.4)
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We assume the stochastic gravitational background to be isotropic, stationary, and
Gaussian, therefore completely specified by its power spectrum. For the subhorizon
modes k � H, the spectrum of energy density per logarithmic frequency interval can
be written as [97]

dρGW
dlogk

(k, t) =
2Gk3

πa4(t)

∫ t

tI

dt′
∫ t

tI

dt′′a(t′)a(t′′)cos[k(t′ − t′′)]Π2(k, t′, t′′), (6.3.5)

where Π2(k, t′, t′′) is the unequal-time correlator of ΠTT
ij defined as

〈ΠTT
ij (~k, t)ΠTTij(~k′, t′)〉 ≡ (2π)3Π2(k, t, t′)δ(3)(~k − ~k′), (6.3.6)

and 〈...〉 denotes ensemble average. It is this object that we will characterized in the
following.

The equation (6.3.5) is an integral over time. To make it non-zero with massive
particles, we expect the time dependence of the wave function to vary nonadiabatically
with frequencies which we discuss in the next section. In order to neglect the curvature,
we will restrict ourselves to a situation where m3/2 � H. This hypothesis is useful, as
we can use the flat limit quantization of the spin 3/2 (6.2.10) that we wrote in the
previous section. Always in order to simplify the computation, we will put the time
dependence only in the spinor part, writing the spinor wave functions as functions of
time. We will keep the vector polarisations εµ~p,l constant. We can write the coefficients
in front of the annihilation and creation operators appearing in (6.2.10) under the form

ψ̃µ~p,λ(t) =
∑

s=±1,l=±1,0

〈1, 1

2
, l,

s

2
|3
2
, λ〉εµ~p,lu

(|λ|)
~p, s

2
(t), (6.3.7)

where we defined

u
(|λ|)T
~p, s

2
(t) =

(
u

(|λ|)
~p,+ (t)χTs (~p)

s u
(|λ|)
~p,− (t)χTs (~p)

)
, (6.3.8)

expressed in terms of the (scalar) wave function u
(|λ|)
~p,± (t) and the two-component nor-

malized eigenvectors χs(~p) of the helicity operator. Now that we have defined this
wave function, we can try to see if this is well defined and leads to correct value for the
occupation number for example.

In order to do this, we first consider the Hamiltonian of the fields, which is the
space integral of the T 00 component of the stress tensor (6.2.9),

H(t) =

∫
d~x T 00(~x, t)

=

∫
d~x

i

4
ψ̄µ(~x, t)γ0∂tψ

µ(~x, t) + h.c.

=

∫
d~x

i

4
ψ̄( 1

2
)(~x, t)γ0∂tψ

( 1
2

)(~x, t) +
i

4
ψ̄( 3

2
)(~x, t)γ0∂tψ

( 3
2

)(~x, t) + h.c.,

(6.3.9)

where in the second line the second term of (6.2.9) vanishes since we can do the integral
by part, leading to the constraint (6.2.4). In the last line, we used the property εµ~p,lε

∗
µ~p,l′ =
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δl,l′ and χ†s(~p)χs′(~p) = δs,s′ . The two spinors are defined as

ψ(|λ|)(~x, t) =
∑
s=±1

∫
d~p

(2π)3
e−i~p·~x{â~p,λu(|λ|)

~p, s
2

(t) + â†−~p,λv
(|λ|)
~p, s

2
(t)}. (6.3.10)

Substituting (6.3.10) into (6.3.9) does not give a diagonal form in terms of annihilation
and creation operators. Thus the quantity from this operators are not well defined. To
settle this problem we need to perform the Bogoliubov transformation

ˆ̃a~p,λ(t) = α
(|λ|)
~p (t) â~p,λ + β

(|λ|)
~p (t) â†−~p,λ,

in order to make the Hamiltonian (6.3.9) diagonal,

H(t) =

∫
d~p

(2π)3

√
m2

3/2 + p2
∑

λ=± 1
2
,± 3

2

ˆ̃a†~p,λ(t)
ˆ̃a~p,λ(t), (6.3.11)

where p = |~p| and α(|λ|)
~p (t), β(|λ|)

~p (t) are complex numbers satisfying |α(|λ|)
~p (t)|2+|β(|λ|)

~p (t)|2 =
1. In the Heisenberg picture, the expectation value is defined by projecting the time-
dependent operator on the initial vacuum |0〉 that corresponds to vanishing number
density. Using n(λ)

~p (t) = ˆ̃a†~p,λ(t)
ˆ̃a~p,λ(t) leads to the occupation number

〈0|n(λ)
~p (t)|0〉 = |β(|λ|)

~p (t)|2

=

√
m2

3/2 + p2 − pRe(u
(|λ|)∗
~p,+ (t)u

(|λ|)
~p,− (t))−m3/2 (1− |u(|λ|)

~p,+ (t)|2)

2
√
m2

3/2 + p2
.

(6.3.12)

We also get a time-dependent physical vacuum satisfying

ˆ̃a~p,λ(t)|0t〉 = 0. (6.3.13)

Now that we defined proper creation and annihilation operator, we can come back
to our problem and consider the sources of the gravitational waves. Plugging the mode
decomposition (6.2.10) into (6.3.3) leads to

ΠTT
ij (~k, t) =

1

4
Λij,lm

∫
d~p

(2π)3
{Π̂lm(~p, t) + h.c.}, (6.3.14)

where ~k is the momentum mode of the gravitational wave and

Π̂lm(~p, t) =
[
â−~p,λ

¯̃ψµC~p,λ + â†~p,λ
¯̃ψµ~p,λ

]
γ(l∂m)

[
â~p+~k,λ′ψ̃µ~p+~k,λ′ + â†

−~p−~k,λ′
ψ̃C
µ~p+~k,λ′

]
−
[
â−~p,λ

¯̃ψµC~p,λ + â†~p,λ
¯̃ψµ~p,λ

]
γ((l∂µ

[
â~p+~k,λ′ψ̃

m)

~p+~k,λ′
+ â†

−~p−~k,λ′
ψ̃
m)C

~p+~k,λ′

]
.

(6.3.15)

Notice that (6.3.4) implies that Λij,lmkl = Λij,lmkm = 0, which removes the linear k
dependence from ∂m in the first line of (6.3.15), similar to the case of scalars or spin-
1/2 fermions [105]. However, in the second line of (6.3.15), ∂µ leads to nonvanishing
kµ contracting with εµ~p,m, which is an important property of spin-3/2 gases.
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The annihilation and creation operators lead to 24 = 16 combinations among which
only one contributes to nontrivial results:

〈0|â−~p,λâ~k+~p,κâ
†
~q,λ′ â

†
~k′−~q,κ′

|0〉 =

(2π)6δ(3)(~k − ~k′){δ(3)(~k + ~p− ~q)δλ,κ′δκ,λ′ − δ(3)(~p+ ~q)δλ,λ′δκ,κ′}. (6.3.16)

The two terms inside the brackets in (6.3.16) come from the Majorana nature, assumed
for the spin-3/2 fields, and lead to the same results.

It is convenient to define
~p′ = ~p+ ~k. (6.3.17)

We now turn to the unequal-time correlator and write it in terms of 4-spinors,

Π2(k, t, t′) = 2

∫
d~p

(2π)3

[
v̄(|λ|)
~p, s

2
(t)∆λs,λ′s′

ij (t)u(|λ′|)
~p′, s
′

2

(t)

] [
ū(|λ′|)
~p′, r
′

2

(t′)∆λr,λ′r′

ij (t′)∗v(|λ|)
~p, r

2
(t′)

]
,

(6.3.18)
where v(|λ|)

~p, r
2

= iγ0γ2ū|λ|T~p, r
2

and

∆λs,λ′s′

ij (t) =
1

4
Λij,lm〈1,

1

2
, r,

s

2
|3
2
, λ〉〈1, 1

2
, r′,

s′

2
|3
2
, λ′〉 ×

{2εµp,rε
µ
p′,r′ p

(lγm) − εµp,rp
′µε

(l
p′,r′γ

m) − εµp′,r′p
µε(lp,rγ

m)}.
(6.3.19)

Normally, the helicity λ, λ′ can take the values ±1
2

and ±3
2

indifferently. For the
following discussion we define, omitting the different indices for simplicity.

∆1 =
1

2
Λij,lm〈1,

1

2
, r,

s

2
|3
2
, λ〉〈1, 1

2
, r′,

s′

2
|3
2
, λ′〉εµp,rε

µ
p′,r′ p

(lγm)

∆2 = −1

4
Λij,lm〈1,

1

2
, r,

s

2
|3
2
, λ〉〈1, 1

2
, r′,

s′

2
|3
2
, λ′〉(εµp,rp

′µε
(l
p′,r′γ

m) + εµp′,r′p
µε(lp,rγ

m))

We have so
∆λs,λ′s′

ij = ∆1
λs,λ′s′

ij + ∆2
λs,λ′s′

ij (6.3.20)

In our case, the gravitational waves are produced mainly by relativistic states, and
in this limit the different helicity states are not produced with the same mechanism
(see e.g., for gravitinos [162, 127, 126]). Hence we will not consider in the rest of the
computation crossing helicity terms, and we separate the calculation into two parts,
λ, λ′ = ±3

2
and λ, λ′ = ±1

2
.

Before entering in the details of the computation, let’s put some conventions for our
different vectors and spinors. The comoving wave number ~k is taken in the z direction.
from this we can define the vector ~p (and the four-vector p) by

pµ =


E

|~p| sin θ cosφ
|~p| sin θ sinφ
|~p| cos θ

 (6.3.21)
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Since we have ~p′ = ~p+~k, we can define also ~p′ but there are in the same plane, so φ = φ′.
We will use the following basis for the polarisations

εµk(p) =


0

−k cos θ cosφ+ i sinφ
−k cos θ sinφ− i cosφ

k sin θ

 , εµ0(p) =


|~p|

E sin θ cosφ
E sin θ sinφ
E cos θ

 (6.3.22)

with k = ±1.
The last quantity we have to define is the basis for the helicity spinors used in (6.3.8).
We will take

χ+ =

(
e−iφ/2 cos θ/2
eiφ/2 sin θ/2

)
and χ− =

(
−e−iφ/2 sin θ/2
eiφ/2 cos θ/2

)
(6.3.23)

Now that we have defined all the quantities needed for the rest of this work, we
can come back to the computation of the unequal time correlator.

6.3.2 Helicity ±3
2

We first consider the case of λ, λ′ = ±3
2
. Such a restriction can be thought as working

in the massless limit for the spin-3/2 state. For a gravitino, this is the high energy limit
before the spontaneous breaking of supersymmetry. The mode decomposition (6.3.7)
reads

ψ̃µ
~p,± 3

2

(t) = εµ~p,±1 u
(3/2)

~p,± 1
2

(t). (6.3.24)

We will forget the
(

3
2

)
exponent in the rest of this part. We will recover it at the end,

when presenting the result. Our goal is to calculate the corresponding unequal-time
correlator (6.3.18). Since we have a product of two ∆, using (6.3.20) we can have 4
different contributions coming from the product of ∆1 and ∆2 . The crossing term are
the same, and so we are let with three parts to compute.

• We begin with the product ∆1∆1.

The product of the polarisation can be computed independently from the product of
the spinor part. We obtain using the definition above

ε~p rµ ε
µ ~p′ s =

1

2
(sr cos (θ − θ′)− 1) (6.3.25)

Using (6.3.25) we can simplify the unequal time correlator to obtain

Π2
1 =

1

2

∫
d3~p

(2π)3
Λijabv̄~prγ(ipj)u

~p′
s ū~p′

s γ(apb)v~pr
1

4
(sr cos (θ − θ′)− 1)2 (6.3.26)

W can now focus on the second part of the computation, involving the spin 1/2 part of
our decomposition of the spin 3/2. The quantity we are interested in is the trace

T = Tr(v~prv̄
~p
rγ(ipj)u

~p′
s ū~p′

s γ(apb)) (6.3.27)
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To compute this trace we need to express the spinors v and u. We can rewrite them
under the form

u~ks = u~k,aχ
s ⊗ P a v~ks = au∗~k,aχ̃

s ⊗ P a (6.3.28)

Where P± is just a projector on respectively the first and the second coordinate, and
χ̃ is just defined by χ̃ = −iσ2χ. Using these definitions, we can now return to the
computation of the trace,

T = Tr
(
adu∗~p,−aχ̃

r ⊗ P au~p,−dχ̃
r† ⊗ P dT γ0γ(ipj)u~p′,bχ

′s ⊗ P bu∗~p′,cχ
′s† ⊗ P cT γ0γ(αpβ)

)
= adu∗~p,−au~p,−du~p′,bu

∗
~p′,c

Tr
(

(χ̃r ⊗ P a)(χ̃r
† ⊗ P dT )(1⊗ σ3)(p(jσi) ⊗−iσ2)

(χ′s ⊗ P b)(χ′s
† ⊗ P cT )(1⊗ σ3)(p(βσα) ⊗−iσ2)

)
= adu∗~p,−au~p,−du~p′,bu

∗
~p′,c

Tr
(

(χ̃r
† ⊗ P dTσ3)(p(jσi)χ

′s ⊗−iσ2P
b)(χ′s

† ⊗ P cTσ3)(p(βσα)χ̃
r ⊗−iσ2P

a)
)

= adu∗~p,−au~p,−du~p′,bu
∗
~p′,c

Tr
(
χ̃r
†
p(jσi)χ

′sχ′s
†
p(βσα)χ̃

r ⊗ P dTσ3(−iσ2)P bP cTσ3(−iσ2)P a
)

= adu∗~p,−au~p,−du~p′,bu
∗
~p′,c

Tr(χ̃r
†
p(jσi)χ

′sχ′s
†
p(βσα)χ̃

r)δd,−bδc,−a

= adu∗~p,−au~p,−du~p′,−du
∗
~p′,−aTr(χ̃rχ̃r

†
p(jσi)χ

′sχ′s
†
p(βσα))

We will find again this trace in the rest of the computation. In order to perform the
calculation of the trace, we will define the matrix

Miα = Tr(χ̃rχ̃r
†
σiχ

′sχ′s
†
σα) (6.3.29)

To simplify this matrix, we need the following relations on the spinors,

χsχs
†

=
1

2
(1 + sn.σ) χ̃rχ̃r

†
=

1

2
(1− rn.σ) (6.3.30)

Where we have defined n as the unit vector in the ~p direction, and σ are the Pauli
matrices. We can now simplify Miα

Miα =
1

4
Tr((1− rn.σ)σi(1 + sn′.σ)σα)

=
1

4
(σiσα − rn.σσiσα + sσin

′.σσα − srn.σσin′.σσα)

=
1

4
(2δiα − 2rnkiεkiα + 2sn′kiεikα − 2srnkn

′
l(δkiδlα − δklδiα + δkαδli))

=
1

2
(δiα − iεkiα(nkr + sn′k)− sr(nin′α − δiαn.n′ + nαn

′
i))

We have to remember that there is a projector in the unequal-time operator, so we will
compute in all generality the term ΛijαβX(jMi)(αYβ), whereX and Y are general vectors.
we recall the definition of Λ,

Λijαβ = PiαPjβ − PijPαβ with Pij = δij − k̂ik̂j (6.3.31)

k̂ is the unit vector pointing in the direction of the vector k. We have so

ΛijαβX(jMi)(αYβ) =
1

4
(PiαPjβ −

1

2
PijPαβ)(XjMiαYβ +XjMiβYα +XiMjαYβ +XiMjβYα)
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=
1

4
(PiαPjβXjYβMiα + PiαPjβXjYαMiβ + PiαPjβXiYβMjα + PiαPjβXiYαMjβ

− 1

2
(PijPαβXjYβMiα + PijPαβXjYαMiβ + PijPαβXiYβMjα + PijPαβXiYαMjβ))

=
1

2
(PiαPjβXjYβMiα + PiαPjβXjYαMiβ − PijPαβXjYβMiα)

=
1

2
(PiαPjβXjYβMiα + PiαPjβXjYαMiβ − PiαPjβXαYβMij)

=
1

2
PiαPjβXjYβMiα

Where we have used the fact that P and M are symmetric matrices in the three last
equations. We have parametrized ~k following the z direction, so P has the simple form

P =

1 0 0
0 1 0
0 0 0

 (6.3.32)

and we can rewrite the equation,

ΛijαβX(jMi)(αYβ) =
1

2
(X1Y1 +X2Y2)(M11 +M22) (6.3.33)

In the case we look at, we have seen that the spin 1 part contains no term proportional
to one or other helicity s or r. Since we sum over these parameters to compute the un-
equal time operator, we can limit ourselves at the part of the M matrices proportional
to the product sr. We can also restrict the result (6.3.33) to the case X = Y = p and so
we obtain

ΛijαβX(jMi)(αYβ) =
1

2
(p2

1 + p2
2)(1 + sr cos θ cos θ′) (6.3.34)

Using the definition of p we have

p2
1 + p2

2 = p2 − p2
3 = p2(1− cos(θ)2) = p2 sin(θ)2

To sum up,

T = adu∗~p,−au~p,−du~p′,−du
∗
~p′,−a

1

2
p2 sin2 θ(1 + sr cos θ cos θ′)

= W~k,~pW
∗
~k,~p

1

2
p2 sin2 θ(1 + sr cos θ cos θ′) (6.3.35)

where we have defined

W
(|λ|)
~k,~p

(t) = u
(|λ|)
~p,+ (t)u

(|λ|)
~p′,+(t)− u(|λ|)

~p,− (t)u
(|λ|)
~p′,−(t) (6.3.36)

in order to isolate kinematic factors from parts containing the wave functions. The
partial unequal time correlator becomes

Π2
1 =

1

2

∫
d3~p

(2π)3

1

2
W~k,~pW

∗
~k,~p
p2 sin2 θ(1 + sr cos θ cos θ′)

1

4
(sr cos (θ − θ′)− 1)2

=
1

2

∫
d3~p

(2π)3

1

2
W~k,~pW

∗
~k,~p
p2 sin2 θ(1 + cos(θ − θ′)2 − 2 cos(θ) cos(θ′) cos(θ − θ′))
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=
1

4

∫
d3~p

(2π)3
W~k,~pW

∗
~k,~p
p2 sin2 θ(1− cos(θ − θ′) cos(θ + θ′))

We have conserved only the even power of sr, because the odd powers are cancelled
when we perform the sum over s and r. We recall also that there is no final dependence
on p′ and θ′ as these are expressed before integration as functions of p, k, and θ,

p′ =
√
p2 + k2 + 2kp cosθ, θ′ = arccos(

p cosθ + k√
p2 + k2 + 2kp cosθ

). (6.3.37)

This computation is just one part of the unequal time correlator.

• We will compute now the second part of this quantity, ∆2∆2.

This term is namely

1

8

∫
d3~p

(2π)3
Λijab

(
v̄~pl (ε

~p l
µ p
′µγ(iε

~p′ r
j) + ε~p l(i γj)p

µε
~p′ r
µ )u~p′

r ū~p′
r (ε∗

~p′ r

(a γb)p
′νε∗

~p l

ν + pνε∗
~p′ r

ν γ(aε
∗~p l
b) )v~pl

)
(6.3.38)

Using the fact that ~k is along the z axis, and ε~p lµ p
µ = 0, we can compute

ε~p lµ p
′µ = ε~p lµ k

µ =
1√
2
lk sin(θ)

ε
~p′ r
µ pµ = −ε~p′ rµ kµ = − 1√

2
rk sin(θ′)

Using these relations we simplify the unequal time correlator,

Π2
2 =

1

8

∫
d3~p

(2π)3
Λijab

[
v̄~pl√

2
(lk sin θγ(iε

~p′ r
j) − rk sin θ′ε~p l(i γj))u~p′

r ū~p′
r (lk sin θε∗

~p′ r

(a γb) − rk sin θ′γ(aε
∗~p l
b) )

v~pl√
2

]

We can use results derived in the ∆1∆1 computation also in this second part. Indeed,
Π2

2 can be rewritten as

Π2
2 =

1

8

∫
d3~p

(2π)3

Λijab

2
W~k,~pW

∗
~k,~p

(
lk sin θε

~p′ r
(i − rk sin θ′ε~p l(i

)
Mj)(a

(
lk sin θε∗

~p′ r

b) − rk sin θ′ε∗
~p l

b)

)
(6.3.39)

Using now the equation (6.3.33), one obtains

Π2
2 =

1

8

∫
d3~p

(2π)3

1

4
W~k,~pW

∗
~k,~p

[
l2k2 sin2 θ(ε

~p′,r
1 ε∗

~p′,r

1 + ε
~p′,r
2 ε∗

~p′,r

2 )

−rlk2 sin θ sin θ′(ε
~p′,r
1 ε∗

~p,l

1 + ε
~p′,r
2 ε∗

~p,l

2 + ε~p,l1 ε
∗~p′,r
1 + ε~p,l2 ε

∗~p′,r
2 )

+r2k2 sin2 θ′(ε~p,l1 ε
∗~p,l
1 + ε~p,l2 ε

∗~p,l
2 )
]

(1 + rl cos θ cos θ′).

The sum over the polarisations appearing here is given by

ε
~p′,r
1 ε∗

~p′,r

1 + ε
~p′,r
2 ε∗

~p′,r

2 =
1

2
(1 + r2 cos2 θ′) , ε~p,l1 ε

∗~p,l
1 + ε~p,l2 ε

∗~p,l
2 =

1

2
(1 + l2 cos2 θ) , (6.3.40)
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ε~p,l1 ε
∗~p′,r
1 + ε~p,l2 ε

∗~p′,r
2 =

1

2
(1 + rl cos θ cos θ′) .

Summing over the spin indices yields

Π2
2 =

1

8

∫
d3~p

(2π)3

1

2
W~k,~pW

∗
~k,~p

[
k2 sin2 θ(1 + cos2 θ′) + k2 sin2 θ′(1 + cos2 θ)− 4k2 sin θ sin θ′ cos θ cos θ′

]
.

(6.3.41)
Eventually, we simplify this expression by using some relations between the vectors

k2 sin2 θ = p′2 sin2 (θ − θ′) , k2 sin2 θ′ = p2 sin2 (θ′ − θ) , p′ sin θ′ = p sin θ (6.3.42)

and we obtain

Π2
2 =

1

8

∫
d3~p

(2π)3
W~k,~pW

∗
~k,~p

sin2 (θ − θ′)(k2 + p2 sin2 θ). (6.3.43)

• The last contribution to add is the crossing term ∆1∆2.

This contribution is written as

Π2
3 = −1

4

∫
d3~p

(2π)3
Λijab

[
v̄~pl (ε

~p,l
µ ε

µ ~p′,sγ(ipj)u
~p′
r ū

~p′
r (ε∗

~p′ s

(a γb)p
′νε∗

~p,l

ν + ε∗
~p′,s
ν pνγ(aε

∗~p l
b) )v~pl

+v̄~pl (ε
~p,l
µ γ(ip

′µε
~p′,s
j) + ε~p,l(i p

µγj)ε
~p′,s
µ )u

~p′
r ū

~p′
r (ε∗

~p′ s

ν ε∗
ν ~p,l

γ(apb))v
~p
l

]
.

(6.3.44)

This time we can use

ε~p,lµ ε
µ ~p′r =

1

2
(rl cos (θ − θ′)− 1) = ε∗

~p′l

ν ε∗
ν ~p,r

(6.3.45)

and write Π2
3 = −1

4

∫
d3~p

(2π)3W~k,~pW
∗
~k,~p

ΛijabSijab

Sijab = − 1

2
√

2

(
(sl cos (θ − θ′)− 1)p(iMj)(a(ε

∗~p′ s
b) lp′ sin (θ′ − θ) + ε∗

~p l

b) (sp sin (θ′ − θ)

+(lp′ sin (θ′ − θ)ε~p′s(i + sp sin (θ − θ′)ε~pl(i)Mj)(apb)(sl cos (θ′ − θ)− 1)
)

(6.3.46)

Using the same formula as in the two previous cases, one gets

ΛijabSijab =

1

2
√

2

(
(sl cos (θ − θ′)− 1)(lp′ sin (θ′ − θ)(p1ε

∗~p′s
1 + p2ε

∗~p′s
2 ) + sp sin (θ − θ′)(p1ε

∗~pl
1 + p2ε

∗~pl
2 )

+(sl cos (θ′ − θ)− 1)(lp′ sin (θ′ − θ)(p1ε
~p′s
1 + p2ε

~p′s
2 ) + sp sin (θ − θ′)(p1ε

~pl
1 + p2ε

~pl
2 )
)

× 1

2
(1 + sl cos θ cos θ′)

Summing over s and l, ΛijabSijab reduces to

ΛijabSijab =
(
cos (θ′ − θ)(pp′ sin (θ′ − θ) cos θ′ sin θ + p2 sin (θ − θ′) sin θ cos θ)
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− cos θ cos θ′(pp′ sin (θ′ − θ) cos θ′ sin θ + p2 sin (θ − θ′)sinθ cos θ
)

=− kp sin (θ + θ′) sin θ′ sin2 θ.

We have so

Π2
3 =

1

4

∫
d3~p

(2π)3
W~k,~pW

∗
~k,~p
kp sin (θ + θ′) sin θ′ sin2 θ. (6.3.47)

Now that we have compute the three contribution to the unequal time correlator, we
can add them and get the total unequal time correlator for the helicity ±3

2

Π2
3
2
(k, t, t′) = Π2

1 + Π2
2 + Π2

3

=

∫
d3~p

(2π)3
W

( 3
2

)

~k,~p
(t)W

( 3
2

)∗
~k,~p

(t′)

[
1

4
p2 sin2 θ(1− cos(θ − θ′) cos(θ + θ′))

+
1

8
sin2 (θ − θ′)(k2 + p2 sin2 θ) +

1

4
kp sin (θ + θ′) sin θ′ sin2 θ

]
Using pk sin (θ − θ′) sin2 θ sin θ′ = k2 sin2 θ sin2 θ′ leads us to the final result

Π2
3
2
(k, t, t′) =

1

32π2

∫
dp dθ K( 3

2
)(p, k, θ,m3/2) W

( 3
2

)

~k,~p
(t)W

( 3
2

)∗
~k,~p

(t′), (6.3.48)

with

K( 3
2

)(p, k, θ,m3/2) = p2k2{5 sin3 θ sin2 θ′ + sin2(θ − θ′) sin θ}+ 4p4 sin4 θ sin θ′.

(6.3.49)

6.3.3 Helicity ±1
2

We will now turn to λ = ±1
2
. The computation is the same in spirit, but the mode

decomposition (6.3.7) is more involved,

ψ̃µ
~p,± 1

2

(t) =

√
2

3
εµ 0 ~p u

( 1
2

)

~p,± 1
2

(t) +

√
1

3
εµ ±1 ~p u

( 1
2

)

~p,∓ 1
2

(t). (6.3.50)

Since both εµ~p,0 and εµ~p,±1 appear, we have 24 = 16 helicity combinations in the four-point
correlation functions. But since we look at the relativistic limit, we can simplify a little
bit the computation. In the relativistic limit p� m3/2, one could expand εµ~p,0,

εµ~p,0 =
1

m3/2

(p,
√
p2 +m2

3/2~̂p) =
pµ

m3/2

+
m3/2

2p
(−1, ~̂p) +O(

m2
3/2

p2
). (6.3.51)

Thus, in the relativistic regime, we expect the leading order result to be obtained by
replacing εµ~p,0 →

pµ

m3/2
. However, correlators with the four εµ~p,0 inside (6.3.18) replaced

by pµ

m3/2
vanish. The dominant contribution comes then from terms in in (6.3.18) where

two of the four εµ~p,r are εµ~p,0. Notice that the two εµ~p,0 can’t be inside the same Π̂lm(~p, t)
since the leading order of the stress tensor in (6.3.15) would vanish. Thus there are
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(
4
2

)
− 2 = 4 such polarisation combinations in all. These polarisation combinations

are

ε r ~pε0
~p′ε∗

0 ~p′
ε∗

r ~p

, ε 0 ~pεs
~p′ε∗

s ~p′
ε∗

0 ~p

and ε 0 ~pεs
~p′ε∗

0 ~p′
ε∗
r ~p

, ε r ~pε0
~p′ε∗

s ~p′
ε∗

0 ~p

. (6.3.52)

We have combined the helicity combination by two because the results are quite similar
for each pair considered. As for the helicity 3/2 part, we can separate the three different
contributions coming from the definition of ∆λs,λ′s′

ij in (6.3.19).

• We will follow the same path as before, and begin with the ∆1∆1 contribution.

The difference comes from the different polarisation combinations.
The first polarisation gives

2

9
εµ r ~pε0

~p′
µ ε∗

0 ~p′

ν ε∗
ν r ~p

v̄~p−rγ(ipj)u~p
′

s ū~p
′

s γ(apb)v
~p
−r (6.3.53)

We have already computed the spinor part (using a symmetry r ↔ −r) which is given
in (6.3.35) (with different wave factors), so the only thing to compute here is the helicity
part which is given by

εµ r ~pε0
~p′

µ ε∗
0 ~p′

ν ε∗
ν r ~p

= |εr ~pµ εµ 0 ~p′ |2 =
E ′2

2m2
3/2

sin2 (θ − θ′) (6.3.54)

whereE ′ is the energy of the gravitino with momemtum ~p′. Gathering the contribution
we obtain for the first polarisation combination

2

9

E ′2

2m2
3/2

sin2 (θ − θ′)1

2
(1 + sr cos θ cos θ′)p2 sin2 θ

=
2E ′2

9m2
3/2

p2 sin2 (θ − θ′) sin2 θ

' 2p′2

9m2
3/2

p2 sin2 (θ − θ′) sin2 θ (6.3.55)

where we summed over the helicity s, r. In the last equations we have omitted the
wave factor W ( 1

2
) but the product of the two wave factors is present as the integral

over ~p.
For the second combination of the first pair, we have

2

9
εµ r ~pε0

~p′
µ ε∗

0 ~p′

ν ε∗
ν r ~p

v̄~prγ(ipj)u
~p′

−sū
~p′

−sγ(apb)v~pr (6.3.56)

The spinor part is always the same and the polarisation part gives

εµ 0 ~pεs
~p′

µ ε∗
ν s ~p′

ε∗
0 ~p

ν = |ε0 ~pµ εµ s
~p′ |2 =

E2

2m2
3/2

sin2 (θ − θ′)

and so the final result is, always omitting the integral and the wave factor product

2

9m2
3/2

p4 sin2 (θ − θ′) sin2 (θ) (6.3.57)
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which is quite similar to the first contribution, except that ~p is exchanged with ~p′, re-
membering that p sin θ = p′ sin θ′.
Looking now at the second pair of helicity, the first contribution gives

2

9
εµ 0 ~pεs

~p′
µ ε∗

ν 0 ~p′
ε∗
r ~p

ν v̄~prγ(ipj)u
~p′

−sū
~p′
s γ(apb)v

~p
−r (6.3.58)

We have for the helicity product

εµ 0 ~pεs
~p′

µ =
E√

2m3/2

s sin (θ − θ′) , ε∗ν 0 ~p′
ε∗
r ~p

ν =
E ′√

2m3/2

r sin (θ − θ′) ,

This time the spinor part is different from the one of the helicity 3/2, but we can com-
pute it following the same path we follow for the helicity 3/2 case. Using (6.3.28) we
simplify the trace

Tr(v̄~prγ(ipj)u
~p′

−sū
~p′
s γ(apb)v

~p
−r) = W~k,~pW

∗
~k,~p

Tr(χ̃−rχ̃r
†
p(jσi)χ

−sχs
†
p(aσb)). (6.3.59)

We define so a new matrix

Nib = Tr(χ̃−rχ̃r
†
σiχ

−sχs
†
σb) (6.3.60)

Using (6.3.23) we have

χ±χ∓
†

=

(
− cos θ

2
sin θ

2
±eiΦ cos2 θ

2

∓eiΦ sin2 θ
2

cos θ
2

sin θ
2

)
(6.3.61)

We can express directly the formula for χ̃ : χ̃±χ̃∓† = −χ∓χ±† , and write (6.3.61) as
χ±χ∓

†
= b±.σ (where σ are always Pauli matrices), one obtains

Nib = −Tr(br.σσib
′s.σσb) = −2(bri b

′s
b − br.b′sδib + brbb

′s
i ). (6.3.62)

We recall that in the formula (6.3.19), we have to apply a projector Λijab, and follow-
ing the computation in the helicity 3/2 part which are valid in this case since N is
symmetric,

S = ΛijabX(aNb)(iYj)

=
1

2
(X1Y1 +X2Y2)(N11 +N22) = −2(X1Y1 +X2Y2)(br1b

′s
1 − br.b′s + br2b

′s
2 )

= 2(X1Y1 +X2Y2)br3b
′s
3 . (6.3.63)

From (6.3.61), we have b±3 = 1
2

sin θ, thus

S =
1

2
(X1Y1 +X2Y2) sin θ sin θ′. (6.3.64)

In the part of the computation we are looking at now, X = Y = p and so the spinor
part is proportional to

(p2
1 + p2

2) sin θ sin θ′ = p2 sin3 θ sin θ′.
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The product of the polarisations in (6.3.58) is proportional to rs and the spinor part
is independent of the helicities, so when we perform the sum over r, s, the result is 0.

For the last polarisation combination we obtain

2

9
εµ r ~pε0

~p′
µ ε∗

ν s ~p′
ε∗

0 ~p

ν v̄~prγ(ipj)u
~p′
s ū

~p′

−sγ(apb)v
~p
−r (6.3.65)

The product of the polarisations is also proportional to rs, and the spinor part is the
same as the previous case, so the contribution in this case is also 0.

• The second term is the ∆2∆2 contribution.

For the first polarisation case given in (6.3.52), this contribution is proportional to

2

9
v̄~p−l
(
εl ~pµ p

′µγ(iε
0 ~p′

j) + εl ~p(i γj)p
µε0

~p′
µ

)
u~p′
s ū~p′

s

(
ε∗

0 ~p′

(a γb)p
′νε∗

l ~p

ν + ε∗
0 ~p′

ν pνγ(aε
∗l ~p
b)

)
v~p−l. (6.3.66)

Using εl ~pµ p′µ = − 1√
2
lp′ sin (θ′ − θ) and ε0 ~p′µ pµ = pp′

m3/2
(cos (θ′ − θ)−1), and multiplying

by Λijab we get, omitting the wave-factors

2

9

(
− 1√

2
p′l sin (θ′ − θ)ε0 ~p′(i +

pp′

m3/2

(cos (θ′ − θ)− 1)εl ~p(i

)
Mj)(a× (6.3.67)(

− 1√
2
p′l sin (θ′ − θ)ε∗0

~p′

b) +
pp′

m3/2

(cos (θ′ − θ)− 1)εl ~pb)

)
Using equation (6.3.34), and the following relations on the polarisations: ε0

~p′

1 ε∗
0 ~p′

1 +

ε0
~p′

2 ε∗
0 ~p′

2 = E′2

m2
3/2

sin2 θ, εl ~p1 ε
∗l ~p
1 +εl ~p2 ε

∗l ~p
2 = 1

2
(1+cos2 θ), and ε0

~p′

1 ε∗
l ~p

1 +ε0
~p′

2 ε∗
l ~p

2 = − E′l√
2m3/2

cos θ sin θ′

it reduces to

1

9
(1 + rl cos θ cos θ′)

[
E ′2p′2

2m2
3/2

sin2 θ′ sin2 (θ′ − θ) +
pp′2E ′

m2
3/2

sin (θ′ − θ)(cos (θ′ − θ)− 1) cos θ sin θ′

+
(pp′)2

2m2
3/2

(cos (θ′ − θ)− 1)2(1 + cos2 θ)

]
. (6.3.68)

Summing over l and s we obtain eventually this polarisation contribution to be

2

9m2
3/2

(
p′2(p′ sin θ′ sin (θ′ − θ) + p cos θ(cos θ′ − θ)− 1))2 + p2p′2(cos θ′ − θ)− 1)2

)
.

(6.3.69)
The second polarisation contribution is given by

2

9
v̄~pl
(
ε0 ~pµ p′µγ(iε

s ~p′

j) + ε0 ~p(i γj)p
µεs

~p′
µ

)
u~p′
s ū~p′

s

(
ε∗
r ~p′

(a γb)p
′νε∗

0 ~p

ν + ε∗
r ~p′

ν pνγ(aε
∗0 ~p
b)

)
v~p−l. (6.3.70)

We can see directly from this expression that, as in the ∆1∆1 part, the result will be the
same as for the previous polarisation contribution, exchanging ~p and ~p′.
We can pass to the third polarisation contribution which is written

2

9
v̄~pl
(
ε0 ~pµ p′µγ(iε

r ~p′

j) + ε0 ~p(i γj)ε
r ~p′
µ pµ

)
u
~p′

−rū
~p′

−r

(
ε∗

0 ~p′

(a γb)p
′νε∗

l~p

ν + ε∗
0 ~p′

ν pνγ(aε
∗l ~p′
b)

)
v~p−l. (6.3.71)
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We compute the contraction between the polarisations and the momentum ε0 ~pµ p′µ =

ε0
~p′

µ pµ = pp′

m3/2
(cos (θ′ − θ)−1), εr ~p′µ pµ = − 1√

2
rpsin(θ − θ′) and ε∗l~pν p′ν = − 1√

2
lp′ sin (θ′ − θ)

and we get, always omitting the wave factors

2

9
(
pp′

m3/2

(cos(θ′ − θ)εr ~p′(i −
1√
2
rp sin(θ − θ′)ε0 ~p(i )Nj)(a×

(− 1√
2
lp′ sin (θ′ − θ)ε∗0

~p′

b) +
pp′

m3/2

(cos(θ′ − θ)− 1)ε∗
l ~p

b) ) (6.3.72)

When we apply the projector we use the formula (6.3.64), and we need some relations
of polarisations contractions :

εr
~p′

1 ε∗
l ~p

1 + εr
~p′

2 ε∗
l ~p

2 =
1

2
(1 + lr cos θ cos θ′) , εr

~p′

1 ε∗
0 ~p′

1 + εr
~p′

2 ε∗
0 ~p′

2 =
−r√
2m3/2

E ′ sin θ′ cos θ′

ε0 ~p1 ε∗
l ~p

1 + ε0 ~p2 ε∗
l ~p

2 =
−l√
2m3/2

E sin θ cos θ , ε0 ~p1 ε∗
0 ~p′

1 + ε0 ~p2 ε∗
0 ~p′

2 =
EE ′

2m2
3/2

sin θ sin θ′.

The polarisations contribution becomes

1

9
sin θ sin θ′

[(
pp′

m3/2

)2

(cos(θ′ − θ)− 1)2 1

2
(1 + rl cos θ cos θ′)

+
rl

2m2
3/2

pp′2E ′ sin θ′ cos θ′ sin(θ′ − θ)(cos(θ′ − θ)− 1)

+
rl

2m2
3/2

p2Ep′ sin θ cos θ sin(θ − θ′)(cos(θ′ − θ)− 1)

− rl

2m2
3/2

pEp′E ′ sin(θ − θ′)2 sin θ sin θ′

]
summing over l, r ends to

2

9

(
pp′

M

)2

sin θ sin θ′(cos(θ′ − θ)− 1)2. (6.3.73)

The fourth polarisation will give the same result, as there is an exchange over ~p ↔ ~p′

and the result above is invariant under this transformation.

• We are let with the crossing term ∆1∆2.

The expression to compute with the first polarisation combination of (6.3.52) is now

2

9
v̄~p−l
[
εl ~pµ γ(ipj)ε

µ 0 ~p′u~p′
r ū~p′

r (ε∗
0 ~p′

(a γbp
′νε∗

l ~p

ν + ε∗
0 ~p′

ν pνγ(aε
∗l ~p
b) ) (6.3.74)

+(εl ~pµ p
′µγ(iε

0 ~p′

j) + εl ~p(i γj)p
µε0

~p′
µ )u~p′

r ū~p′
r ε
∗0 ~p′

ν γ(apb)ε
∗ν l ~p

]
v~p−l. (6.3.75)

This time, the polarisations contractions give

εl ~pµ ε
µ 0 ~p′ =

lE ′

2m3/2

sin(θ−θ′) , ε∗l ~pν p′ν = − lp
′
√

2
sin(θ′−θ) and ε∗

0 ~p′

ν pν =
pp′

m3/2

(cos(θ′−θ)−1)
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and we obtain

2

9

[
lE ′

2m3/2

sin(θ − θ′)p(iMj)(a

(
− lp

′
√

2
sin(θ′ − θ)ε∗0

~p′

b) +
pp′

m3/2

(cos(θ′ − θ)− 1)ε∗
l ~p

b)

)
+

(
− lp

′
√

2
sin(θ′ − θ)ε0 ~p′(i +

pp′

m3/2

(cos(θ′ − θ)− 1)εl ~p(i

)
Mj)(a

lE ′

2m3/2

sin(θ − θ′)pb)
]
.

In this case, to apply (6.3.34) we will use the polarisations contractions p1ε
∗0 ~p′

1 +p2ε
∗0 ~p′

2 =

p1ε
0 ~p′

1 +p2ε
0 ~p′

2 = pE′

m3/2
sin θ sin θ′ and p1ε

∗l ~p
1 +p2ε

∗l ~p
2 = p1ε

l ~p
1 +p2ε

l ~p
2 = − lp√

2
sin θ cos θ, giving

2

9

[
E ′2pp′

2m2
3/2

sin(θ′ − θ)2 sin θ sin θ′ − p2E ′p′

2m2
3/2

sin(θ − θ′) sin θ cos θ(cos(θ′ − θ)− 1)

]
(1 + rl cos θ cos θ′)

=
4

9m2
3/2

[
p′3p sin2(θ − θ′) sin θ sin θ′ − p2p′2 sin(θ − θ′)(cos(θ′ − θ)− 1) sin θ cos θ

]
(6.3.76)

after we performed the sum over rl.
The second polarisations contribution will give the same result exchanging once again
~p↔ ~p′, and so we can go to the third contribution which is given by

2

9

[
ε0 ~pµ εµ r

~p′ε∗
0 ~p′

(a ε∗
l ~p

ν v̄~pl γ(ipj)u
~p′

−rū
~p′
r γb)p

′νv~p−l + ε0 ~pµ εµ r
~p′ε∗

0 ~p′

ν ε∗
l ~p

(a v̄~pl γ(ipj)u
~p′

−rū
~p′
r γb)p

νv~p−l

+ ε0 ~pµ ε r
~p′

(i ε∗
0 ~p′

ν ε∗
ν l ~p

v̄~pl p
′µγj)u

~p′

−rū
~p′
r γ(apb)v

~p
−l + ε0 ~p(i ε

r ~p′
µ ε∗

0 ~p′

ν ε∗
l ~p

(a v̄~pl γj)p
µu

~p′

−rū
~p′
r γb)p

νv~p−l
]

=
2

9

[
− rlEp

′

2m3/2

sin2(θ − θ′)p(iNj)(aε
∗0 ~p′
b) +

rpEp′√
2m2

3/2

sin(θ − θ′)(cos(θ − θ′)− 1)p(iNj)(aε
∗l ~p
b)

+ sin(θ − θ′)(cos(θ − θ′)− 1)

(
lE ′pp′√
2m2

3/2

εr
~p′

(i Nj)(apb) −
rp2p′√
2m3/2

ε0 ~p(i Nj)(aε
∗l ~p
b)

)]
.

We can see from this formula that all the four different terms are proportional to the
product lr and so, when summing, will give a 0 contribution; the same is true for the
fourth polarisation. Eventually, this concludes the computation.

We have now to gather all the results, taking into account the wave factors, integrals
and numerical factors that we have omitted. The part coming from the third and fourth
polarisation contributions in (6.3.52) is quite simple, because only the ∆2∆2 term is
non-zero in this case and it gives

Π2
1 =

∫
d3~p

(2π)3
W

( 1
2

)

~k,~p
W ∗(

1
2 )

~k,~p

1

18

p2p′2

m2
3/2

(cos(θ − θ′)− 1)2 sin θ sin θ′. (6.3.77)

For the first and second polarisation, since the result are equivalent, we will just look
at the first contribution. There are three term to sum up which gives

Π2
2 =

∫
d3~p

(2π)3
W

( 1
2

)

~k,~p
W ∗(

1
2 )

~k,~p

1

9m2
3/2

[
p′4 sin2 θ sin2(θ′ − θ)+ (6.3.78)
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+
1

4

(
p′2(p′ sin θ′ sin (θ′ − θ) + p cos θ(cos θ′ − θ)− 1))2 + p2p′2(cos θ′ − θ)− 1)2

)
−
(
p′3p sin2(θ − θ′) sin θ sin θ′ − p2p′2 sin(θ − θ′)(cos(θ′ − θ)− 1) sin θ cos θ

)]
=

∫
d3~p

(2π)3
W

( 1
2

)

~k,~p
W ∗(

1
2 )

~k,~p

1

36m2
3/2

(
(cos θ − cos θ′)2 + (cos(θ′ − θ)2 − 1)2

)
(6.3.79)

Since this result is symmetric under the exchange ~p ↔ ~p′, we can use the same for the
second polarisation contribution and we get

Π2
1
2
(k, t, t′) ' 1

2π2

∫
p,p′�m3/2

dp dθ K( 1
2

)(p, k, θ,m3/2) W
( 1

2
)

~k,~p
(t)W

( 1
2

)∗
~k,~p

(t′) . (6.3.80)

with

K( 1
2

)(p, k, θ,m3/2) =
1

36m2
3/2

p4p′2 sin θ{(cosθ − cosθ′)2 + 4 sin4(
θ − θ′

2
)(1 + sin θ sin θ′)}

+ · · · , (6.3.81)

The dots are here to recall that we omit in all the computation the terms subleading
and proportional to m3/2 in · · · .

6.3.4 Summary and interpretation

We have computed the unequal time correlator in the previous section, and there
is just a few steps before we obtain the spectrum of energy density of the gravitational
wave production. But before gathering the result and write it in a practical way, there
are some remarks we can do.
First, we can see that the two formulas we wrote, (6.3.48) and (6.3.80) present a UV
divergence. An important step before extracting a quantitative result is to remove
these divergences in the momentum integral. The regularized operator is built from
the non-regularized one by subtracting the zero point fluctuations. Since at each time
t the physical vacuum is different, we should use the time-dependent vacuum defined
in (6.3.13),

〈O(t)〉reg ≡ 〈0|O(t)|0〉 − 〈0t|O(t)|0t〉
= 〈0|O(t)− Õ(t)|0〉. (6.3.82)

In the second line, we introduced an operator Õ(t) in which all the fields are defined
after Bogoliubov transformations. We follow [105] where it was proposed, for an oper-
ator formed by products of several bilinear spinor fields, that the regularized operator
can be written by simply dressing the wave functions by the occupation number,

ũ
(|λ|)
~p,± =

√
2|β(|λ|)

~p |u(|λ|)
~p,± . (6.3.83)

Through the use of the regularized wave functions,

W̃
(|λ|)
~k,~p

(t) = 2|β(|λ|)
~p (t)||β(|λ|)

~p′ (t)| {u(|λ|)
~p,+ (t)u

(|λ|)
~p′,+

(t)− u(|λ|)
~p,− (t)u

(|λ|)
~p′,−

(t)}, (6.3.84)
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we get an effective ultraviolet cutoff as particles are not excited when occupation num-
bers vanish.
Now that we have correctly define our wave-function in order to have proper result,
we can take a look at the factors p2/m2

3/2 in the spin-1/2 helicity. These factors are
those expected for longitudinal modes following the equivalence theorem. The in-
tegral in (6.3.80) has only contributions from the relativistic regime where the equiva-
lence theorem for spin-3/2 massive states shows that the couplings of their helicity-1/2
components are enhanced with respect to the helicity-3/2 ones [109, 72, 176] by factors
of p/m3/2. Knowing that, we expect the helicity-1/2 components to produce stronger
gravitational wave signals. One can compare K( 1

2
) (6.3.81) to K( 3

2
) (6.3.49) and the de-

pendence for spin-1/2 fermions. The latter was found in [105] to scale like p4 sin3 θ.
It may be easier to understand the equivalence theorem when the spin-3/2, here

the gravitino, acquires a mass through a super-Higgs mechanism. Imposing cancella-
tion of the vacuum energy allows one to identify the scale of supersymmetry breaking

as
√
F =

√√
3m3/2MPl. The power law behaviour is then valid for momenta in the

range m3/2 � p �
√√

3m3/2MPl. Discussion of the necessity of this UV cutoff us-
ing a bottom-up approach for massive Rarita-Schwinger fields minimally coupled to
gravity can also be found for example in [196]. Therefore, in our computation the maxi-
mum energy scale for p and p′, which corresponds to the vanishing occupation number
through the regularization process (6.3.84), is required to be below this cutoff. Indeed,
in the example of the next section, we would see that the nonadiabatic production of
fermions forms a Fermi sphere whose radius kF is related to the mass of the scalar field
source, and thus to the symmetry breaking scale.

Finally, we can obtain the density energy spectrum by plugging (6.3.80) into the
subhorizon spectrum (6.3.5). Taking into account the background evolution, we get

dρGW
dlogk

(k, t) ' Gk3

π3a4(t)

∫
dp dθK( 1

2
)(p, k, θ,m3/2) {|Ic(k, p, θ, t)|2 + |Is(k, p, θ, t)|2},

(6.3.85)
where

Ic(k, p, θ, t) =

∫ t

ti

dt′

a(t′)
cos(kt′) W̃

( 1
2

)

~k,~p
(t′), Is(k, p, θ, t) =

∫ t

ti

dt′

a(t′)
sin(kt′) W̃

( 1
2

)

~k,~p
(t′)

(6.3.86)
parametrize the spectrum of helicity-1/2 component. Then, (6.3.85) is the master equa-
tion for gravitational waves produced from nonadiabatic spin-3/2 gases.

6.4 Spin-3/2 state produced during preheating and gravi-
tational wave spectrum

In the previous section, we have obtained the dependence of the spectrum in the
kinematic variable, but there is always a time-dependence to compute, which depends
on the mode of production of our particles. This is encoded in the wave functions
u

(|λ|)
~p,± . We need a model for this quantity in order to extract quantitative results for the

expected gravitational waves spectrum. We have so to fix a model for the production
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of gravitinos during preheating since it is our case of interest. We will choose a toy
model, which has the advantage to give explicit results.

Processes that produce gravitinos in the early Universe can be separated in two
classes: thermal and nonthermal. Unless they are more massive than the reheating
temperature, gravitinos can always be thermally produced in scattering of the particles
in the thermal bath [180, 58, 205, 48, 96]. But this process is adiabatic. A nonthermal
case is provided for example when gravitinos are produced during preheating by the
conversion of the energy stored in the coherently oscillating scalar field. As this pro-
cess is nonadiabatic, it provides a possible framework for production of gravitational
waves, and so for our computation. For our purpose, we consider the case where
supersymmetry breaking by the F terms always dominates the one from the inflaton
(i.e., the curvature). This ensures thatH � m3/2, which allows one to neglect curvature
when discussing the production of gravitational waves as we have assumed to derive
the power spectrum.

As we have seen in the results of the previous section, the signal of the gravitational
waves is stronger for the helicity±1/2 of the gravitinos. Thus, we will consider the case
of generation of gravitational waves by longitudinal modes. In a FRW background, the
corresponding equations of motion can be written in the form [162, 127]

[iγ0∂0 − am3/2 + (A+ iBγ0)~p · γ]

(
u+

u−

)
= 0, (6.4.1)

where we have omitted the label 1
2

and a is the conformal factor in (6.3.1). The functions
A and B satisfy A2 +B2 = 1.

As the initial condition, u(|λ|)
~p,± satisfies the vanishing occupation number condition

in (6.3.12). Since the wave function is isotropic, without losing generality, we take the
momentum ~p to lie along the z direction. Following [127], we define

A+ iB = exp(2i

∫
θ(t)dt), and f(t)± = exp(∓i

∫
θ(t)dt)u± , (6.4.2)

and the equation of motion (6.4.1) becomes

f̈± + [p2 + (θ +m3/2a)2 ± i(θ̇ + ˙m3/2a)]f± = 0. (6.4.3)

In this equation, we can see that θ plays the role of a source for our wave-functions.
We will give a simple example when this θ is non-zero, and coming from the oscillation
of a scalar field. This model is the Polonyi model studied in [104]. This model is super-
symmetric, and the corresponding Kähler potential and superpotential were chosen to
be

K = |z|2 − |z|
4

Λ2
, (6.4.4)

W = µ2z +W0, (6.4.5)

where z is the Polonyi field. An estimate of the mass order near the minimum is

m3/2 '
µ2

√
3M2

Pl

' W0

M2
Pl

, mz ' 2
√

3
m3/2MPl

Λ
. (6.4.6)
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Here ' means, in particular, that we neglect the higher order terms suppressed by
MPl and tune the cosmological constant to almost 0. Requiring Λ � MPl leads to
mz � m3/2. It is also assumed that the F term of z does not contribute to the Hubble
expansion but is large enough to lead to a gravitino mass that satisfies

H � m3/2 � mz, (6.4.7)

in agreement with previous section assumptions; in particular, the background curva-
ture can be neglected and we can use the flat space quantization. What is interesting
with this simple model is that even with this assumption on the range of mass of the
particles and the curvature, it was shown in [104] that the Polonyi model contains a
nontrivial source term θ(t) in (6.4.3) to produce helicity-1/2 gravitino,

θ(t) = − am2
zδz

2
√

3m3/2MPl

= −am
2
zδz

2F
, (6.4.8)

where δz = z − z0 is the displacement of z from its value z0 at the minimum of the the
scalar potential and F =

√
3m3/2MPl is the supersymmetry breaking scale.

Now that we have the source term, we can use it in the equations of motion (6.4.3) in
order to estimate the production of longitudinal modes of the gravitinos. This modes
couple to δz through the θ term. The equation of motion becomes

f̈± + [k2 + (am3/2 −
am2

zδz

2F
)2 ∓ iam

2
z δ̇z

2F
]f± = 0. (6.4.9)

When we look at (6.4.9) for helicity-1/2 gravitinos, we see that this form is quite the
same as the one of spin-1/2 fermions produced nonadiabatically from Yukawa cou-
pling with a coherently oscillating scalar, with a quadratic potential for this scalar.
Thus one expects the spectrum of helicity-1/2 gravitino and (6.3.86) in this model to
be similar to the spin-1/2 fermion cases considered in [105]. The effective Yukawa
coupling ỹ, required to be smaller than 1 by unitarity, reads

ỹ =
m2
z

2F
. (6.4.10)

According to [133, 134], the fermion production in this case is expected to fill up a
Fermi sphere with comoving radius,

kF ∼ (a/aI)
1/4q1/4mz, q ≡ ỹ2z2

I

m2
z

, (6.4.11)

where q is the resonance parameter and zI is the initial vacuum expectation value (i.e.,
where inflation ends) of the Polonyi field. Outside the Fermi sphere, the occupation
number decreases exponentially. Thus one can expect that the peak of the gravitational
wave spectrum corresponds to the radius of Fermi-sphere kp ∼ kF , which in the present
case leads to the characteristic frequency,

fp ' 6 · 1010ỹ
1
2 Hz. (6.4.12)
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One can see from above and (6.4.10) that the validity of the Effective Field Theory
requires the peak frequency to be below 1010 Hz. The amplitude at the peak of the
gravitational wave spectrum can also be estimated by taking the result of a spin 1/2
field and multiplying it by the enhancement factor ( kF

m3/2
)2,

h2ΩGW (fp) ' 2.5 · 10−12(
m2
z

zIMPl

)2(
a∗
aI

)
1
2 q

3
2 (

kF
m3/2

)2

= 3 · 10−11ỹ6(
zI
mz

)2(
a∗
aI

)

' 3 · 10−10(
fp

6 · 1010Hz
)12(

zI
mz

)2, (6.4.13)

where aI and a∗ are the scale factor at initial time and the end of gravitational wave
production respectively. We assumed an order 10 increase for scale factor in the last
line. The relation between the amplitude and the peak frequency is shown in Figure
(6.2). If we take zI = 10−3MPl,mz = 1010 GeV, the amplitude at peak frequency 3 · 109

Hz is 7.3 · 10−16. For a peak appearing at lower frequency, the amplitude is too small
to be observed due to the power 12 in (6.4.13). For very large value of zI

mz
, one can

consider that the low frequency tail gets enhanced enough to become observable at
lower frequency detector.

1×108 5×108 1×109 5×109 1×1010
fp (Hz)

10-29

10-24

10-19

10-14

10-9

h2ΩGW

zI

mz

1014

1011

108

105

102

Figure 6.1 – The peak amplitude of gravitational wave according to (6.4.13).

We said that the equation of motion for the wave function was close to the one of a
spin 1/2. But we want to see if there is a difference between the power spectrum of a
gravitino and the one of a spin 1/2. Near the peak, the dominant part of K( 1

2
) (6.3.81)

scales as p4 k2

m2
3/2

, which makes the spectrum (6.3.85) go as k5, as can be seen on Figure

[].
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Figure 6.2 – schematic illustration of the normalized power spectrum in function of k.
The small k behavior proportional to k3 is in blue, the behavior close to the peak in k5

is in yellow, and the exponential decreasing behavior in green.

This behaviour is different from the one of a spin 1/2. However, when we look at
lower frequency, the spectrum becomes k3, thus scaling again like the spin 1/2. These
two different scaling behaviours are a feature of gravitational wave spectrum produced
from spin-3/2 particles. Interestingly, the difference of scaling between the spin 1/2
and the gravitino is close to the peak, where it is easier to detect these gravitational
waves, facilitating the discrimination between the different spins. Our calculations are
made in a simple model, but since the peak was due to the presence of a filled-up
Fermi-sphere, the result can be thought as quite model independent.

6.5 Conclusion

The gravitational wave signals from spin-3/2 fermions are especially interesting
since the latter are the only missing piece in the nature with spin between 0 and 2.
Moreover, their presence can be a smoking gun for the existence of supersymmetry
and a clue for its role in the early Universe. The nonadiabatic production of helicity-
1/2 gravitino in a simple model takes the similar form as spin-1/2 fermions nonadia-
batically produced from coherently oscillating scalars with quadratic potential. Thus it
fills up a Fermi sphere in the occupation number. The corresponding comoving radius
governs the position of the peak frequency of the gravitational waves. Their spectrum
has two main differences compared to the one from spin-1/2 fermions. The first one
is the order of the amplitude, which gets enhanced by a factor of k2

F

m2
3/2

. The second

is given by the stress tensor of spin-3/2 state, which contains a term proportional to
the gravitational wave mode ~k, while for scalars and spin-1/2 fermions, the ~k depen-
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dence is projected out by the projector Λij,lm(~k) on traceless-transverse modes. Thus
one could expect a k5 dependence for the gravitational wave spectrum near the peak.
The observed window for the gravitational waves, like most preheating scenarios, lies
at very high frequency, around 109 Hz in our simple example, which calls for the de-
sign of new experiments like [206]. The value of the frequency of the peak is dependent
of the inflation model, so it is possible that some more accurate models can manage a
smaller value of the frequency of the peak, keeping the strength at the same level, and
so facilitating the detection of such gravitational waves.
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CHAPTER 7

Higgs alignment in 2HDM

7.1 Introduction

The previous chapter was dedicated to a possibility to detect an elementary parti-
cle of spin 3/2, which has not been observed yet. But if we look at the known particle
spectrum in the Standard Model (SM), there is one thing we can notice. In contrast
to fermions and vectors, there is only one known fundamental spin zero particle in
Nature: the SM Higgs boson. However, a lot of theoretical models require additional
fundamental scalars, as in Early Universe cosmological and supersymmetric models.
If we focus on the latter, we will have two new types of scalars: those which are the
supersymmetric partner of the SM fermions, and some additional Higgs scalars ap-
pearing in their electroweak symmetry breaking sectors. The first thing we can do
with these new scalars is to search the constraints on the mixings of these particles
with the observable Higgs. By now the LHC experiments data are putting very strong
constraints on these mixings. In order to manage the new scalars with these obser-
vations, we have to set that the observed Higgs, which is an eigenstate of the scalars
mass matrix, is aligned with the direction acquiring a non-zero vev. One simple way to
achieve this is to make all the additional scalars heavy enough, and thus decoupling
them from the theory at low energy. But a more interesting option is that alignment
emerges as a consequence of specific patterns of the model. The benefits are that less
constraints on masses allow to keep new scalars within the reach of future searches at
the LHC, but we have to found a specific model in which this phenomenon emerges.
This is possible, and was obtained in [17] and further discussed in [102, 54].

The effective low energy scalar potential of [17], studied in details in [36], corre-
sponds to a peculiar case of a Two Higgs Doublet Model (2HDM). There is a large
broad of 2HDM (see for example [137, 61, 95]). In these types of models, symmetries
play a great role (e.g. [87, 159, 112]), and in particular for some peculiar cases they
imply alignment without decoupling [136, 57, 171]. Unfortunately, these symmetries
have been quoted to lead to problematic phenomenological consequences, as massless
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quarks [113]. But even if these symmetries are broken or not present in the model,
alignment without decoupling remains viable. This situation was discussed for ex-
ample in [55, 56, 71, 70, 138] for the MSSM and NMSSM. But in order to obtain this
alignment, we need an ad-hoc specific choice of the model parameters, and this is not
totally satisfactory. However, it exists some models where the alignment is present
without symmetry and without any "tuning" of parameters, as in the work already
mentioned [17]. In this model, the alignment at tree-level is a prediction, and survive
with a impressive precision when radiative corrections, up to two-loop, are taken into
account [54]. The question is so when does this alignment come from? This chapter is
dedicated to the question of uncovering the symmetry at the origin of this automatic
Higgs alignment.

The crucial ingredient in [17] is the presence of N = 2 extended supersymmetry.
This N = 2 supersymmetry enables us to have the Higgs alignment. However, it
is difficult to build up a model with only N = 2 supersymmetry, that is to say the
case where this symmetry is present on the entire spectrum. Models where N = 2
supersymmetry acts on the whole SM states suffer from the non-chiral nature of quarks
and leptons [108, 91], and so are not relevant for phenomenology. To overcome this
issue, that is to say allowing both N = 2 supersymmetry and chirality, we can add
some ingredients in the model, inspired by superstring theory. In this set-up, orbifold
fixed points and brane localizations enable to construct models where different parts
preserve different amounts of supersymmetries. It is such a construction which is used
in [17] : the (non-chiral) gauge and Higgs states appear in a N = 2 supersymmetry
sector while the matter states, quarks and leptons, appear in an N = 1 sector and so
are chiral. An important feature of such constructions considered here [26, 25, 17, 6, 36]
is that gauginos have Dirac masses instead of Majorana ones [110, 193, 140, 117, 39].
Besides, these N = 2 extended models have implication for Higgs boson physics as
discussed in [36, 40, 11, 41, 79, 43, 52, 158, 53, 38, 177, 59, 215, 74, 84].

If we can exhibit in such a model an alignment, it is not totally satisfactory to ex-
plain it only by the presence ofN = 2 extended supersymmetry because this is realized
only at a very high energy, the fundamental scale of the theory. However, the align-
ment is present even at low energy, where the supersymmetry is no longer present. In
order to explain the origin of such an alignment, we have to look at some symmetry
manifest in the scalar potential of 2HDM. In this chapter, we will exhibit the relevant
symmetry.

This chapter is organized as follows. In Section 2, the main ingredients of the model
are presented succinctly. This allows to define the notation used through this work.
In section 3, we show that the potential can be written as a sum of two SU(2)R R-
symmetry singlet representations. We also show how this implies alignment. In section
4, we review how higher order corrections induce a small misalignment. Section 5
presents our conclusions.
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7.2 Short presentation of the model

As was said in the introduction, the model presents a N = 2 part including the
gauge fields and the Higgs. This structure of the gauge sector implies the presence of
chiral superfields in the adjoint representations of SM gauge group, representing the
superpartners of the SM fields. These are a singlet S and an SU(2) triplet T. We note
that in the model studied in [54], there is also an octet O. This field will introduce new
soft breaking terms, and bring contributions to loop computations. In the following,
we will focus only on the electroweak sector, and so forget the presence of this octet.

We define

S =
SR + iSI√

2
(7.2.1)

T =
1

2

(
T0

√
2T+√

2T− −T0

)
, Ti =

1√
2

(TiR + iTiI) with i = 0,+,− (7.2.2)

In this work we will use two specificities present in this model. As we have said in
the introduction, the adjoint field will promote the gauginos from Majorana to Dirac
fermions, but they will also generate new Higgs interactions. These two contributions
will be visible when we write the superpotential of this model:

W =
√

2 mα
1DW1αS + 2

√
2 mα

2Dtr (W2αT) +
M2

S

2
S2 +

κ

3
S3 +MT tr(TT)

+µHu ·Hd + λSSHu ·Hd + 2λT Hd ·THu , (7.2.3)

where the Dirac masses can be read by taking mαiD := θαmiD where θα are the Grass-
manian superspace coordinates. We want also to break supersymmetry at low energy,
and in order to implement this condition in the model, we will define the soft terms
appearing in the Higgs and adjoint scalar sectors. For simplicity we chose them to be
real, and we get

Lsoft =m2
Hu|Hu|2 +m2

Hd
|Hd|2 +Bµ(Hu ·Hd + h.c)

+m2
S|S|2 + 2m2

T tr(T †T ) +
1

2
BS

(
S2 + h.c

)
+BT (tr(TT ) + h.c.) (7.2.4)

+ AS (SHu ·Hd + h.c) + 2AT (Hd · THu + h.c) +
Aκ
3

(
S3 + h.c.

)
+ AST (Str(TT ) + h.c) .

Considering specific scenarios for generation of the above soft-terms lead us to
make some assumption about their relative sizes. In the case of gauge mediation, one
is first tempted to consider secluded supersymmetry breaking and the mediators sec-
tors to have an N = 2 structure [108]. This would allow to preserve the underlying
R-symmetry. Unfortunately, it leads to tachyonic directions for the adjoint scalars. To
overcome this, we must restrict to particular N = 1 breaking and mediating sectors
[39, 50, 84] (see also [11, 184, 8, 9]). As a consequence, the SU(2)R structure is not pre-
served by the quadratic part of the scalar potential given by the soft breaking terms.
Furthermore, we will consider that the remaining U(1)R symmetry is broken by the
presence of a non-vanishing Bµ term (keeping zero the coefficients of supersymmetric
terms as MS or MT ). We also take κ = 0 for simplicity. This avoids then the intro-
duction of extra-doublets as in the MRSSM [11] and allows us to consider an effective
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2HDM. Note also that the trilinear terms in the last line of (7.2.4) will be neglected here,
as they were shown to be generically small [39, 50].

Now that we have discussed the size of the soft term in the potential, we can
minimize it. This minimization was discussed in [36]. An effective 2HDM is ob-
tained by taking the limit m2

S,m
2
T � m2

Z and keeping the Dirac masses miD as well as
m2
Hu
,m2

Hd
, Bµ and µ small. Note that Bµ measures the size of N = 1 U(1)R symmetry

breaking. The effective theory just above the electroweak scale is a 2HDM with a set
of light charginos and neutralinos. The minimization of the corresponding potential
was discussed in [36]. We restrict to the case of CP neutral vacuum, i.e. H0

dI = H0
uI = 0

which implies also SI = TI = 0. Dropping the obvious 0 indices for neutral compo-
nents, we define:

M2
Z =

g2
Y + g2

2

4
v2 , v ' 246GeV (7.2.5)

< HuR > = vsβ, < HdR >= vcβ, (7.2.6)
< SR > = vs , < TR >= vt (7.2.7)

where:

cβ ≡ cos β, sβ ≡ sin β, tβ ≡ tan β , 0 6 β 6
π

2
c2β ≡ cos 2β, s2β ≡ sin 2β (7.2.8)

Also, the leading-order squared-masses for the real part of the adjoint fields are
given by [52]:

m2
SR =m2

S + 4m2
DY +BS, m2

TR = m2
T + 4m2

D2 +BT . (7.2.9)

Note that as we have

vs '
v2

2m2
SR

[
gYm1Dc2β +

√
2µλS

]
vt '

v2

2m2
TR

[
−g2m2Dc2β −

√
2µλT

]
, (7.2.10)

the bounds on the expectation value of the Dirac Gauginos-triplet come from the elec-
troweak precision data, i.e. the contribution to the ρ parameter, remains acceptable
in our scenario as we keep miD and µ an order of magnitude smaller than mSR and
mTR: the light charginos and neutralinos are in the sub-TeV energy region accessible
to future searches.

7.3 R-symmetric Higgs alignment

Now that we have presented succinctly the model, we will reformulate the quan-
tities defined in the previous section in order to highlight the symmetry. Indeed, this
model has a U(1)R×SU(2)R global R-symmetry. The U(1)R is the R-symmetry present
at the level of N = 1 and plays no role in what follows. Using

Φ2 = Hu, Φi
1 = −εij(Hj

d)
∗ ⇔

(
H0
d

H−d

)
=

(
Φ0

1

−(Φ+
1 )∗

)
(7.3.1)
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the two Higgs doublets can be assembled into one hypermultiplet (Φ1,Φ2)T in the fun-
damental representation of the SU(2)R R-symmetry. The coupling of vector multiplet
fields to hypermultiplet leads then to the presence of additional terms in the superpo-
tential,

WHiggs ⊃ λSS Φ2
† ·Φ1 + 2λT Φ1

† ·TΦ2 (7.3.2)

and N = 2 supersymmetry requires

λS =
1√
2
gY , λT =

1√
2
g2 (7.3.3)

where gY and g2 stand for the hypercharge and SU(2) gauge couplings, respectively.
The integration out of adjoint scalars leads to a potential for the Higgs fields that

corresponds to a peculiar 2HDM. We can parametrize a generic 2HDM under the form:

VEW = V2Φ + V4Φ (7.3.4)

where

V2Φ = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 − [m2
12Φ†1Φ2 + h.c]

V4Φ =
1

2
λ1(Φ†1Φ1)2 +

1

2
λ2(Φ†2Φ2)2

+λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1)

+

[
1

2
λ5(Φ†1Φ2)2 + [λ6(Φ†1Φ1) + λ7(Φ†2Φ2)]Φ†1Φ2 + h.c

]
, (7.3.5)

from which we can write down

m2
11 = m2

Hd
+ µ2, m2

22 = m2
Hu + µ2, m2

12 = Bµ. (7.3.6)

The parameters λi can be decomposed as their leading order tree-level values and
corrections due to loops δλ(rad)

i , but we will have to add a threshold contribution com-
ing from the integrating out of heavy states δλ(tree)

i ,

λi =λ
(0)
i + δλ

(tree)
i + δλ

(rad)
i (7.3.7)

whose values were computed in [36, 53].
In our minimal model:

λ5 =λ6 = λ7 = 0. (7.3.8)

while

λ
(0)
1 = λ

(0)
2 =

1

4
(g2

2 + g2
Y )

λ
(0)
3 =

1

4
(g2

2 − g2
Y ) + 2λ2

T
N=2−−−→ 1

4
(5g2

2 − g2
Y )
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λ
(0)
4 =− 1

2
g2

2 + λ2
S − λ2

T
N=2−−−→ −g2

2 +
1

2
g2
Y (7.3.9)

At this leading order, the quartic part of the potential can then be put in the form:

V4Φ =
3g2

2

8

[
(Φ†1Φ1) + (Φ†2Φ2)

]2

+
(−2g2

2 + g2
Y )

8

[(
(Φ†1Φ1)− (Φ†2Φ2)

)2

+ 4(Φ†1Φ2)(Φ†2Φ1)

]
= λ|01,0>|01, 0〉 + λ|02,0>|02, 0〉 (7.3.10)

where we recognize between brackets the two invariant combinations under SU(2)R.
These quartic terms, thus product of four fields, are the combination of the two SU(2)R
doublets giving singlet irreducible representations. In the last equality, they are written
in the standard spin representation notation |l,m > with l the spin and m its projec-
tion along the z axis. They were classified in [159]. However, we found a minus sign
for the |02, 0〉, compensated by a minus sign in λ|02,0> compared to the previous cited
classification. We can write:

|01, 0〉 = 1
2

[
(Φ†1Φ1) + (Φ†2Φ2)

]2

, (7.3.11)

|02, 0〉 = − 1√
12

[(
(Φ†1Φ1)− (Φ†2Φ2)

)2

+ 4(Φ†2Φ1)(Φ†1Φ2)

]
(7.3.12)

while

λ|01,0> =
λ1 + λ2 + 2λ3

4
=

3g2
2

4
(7.3.13)

and

λ|02,0> = −λ1 + λ2 − 2λ3 + 4λ4

4
√

3
= −
√

3(−2g2
2 + g2

Y )

4
. (7.3.14)

Therefore, the SU(2)R R-symmetry acts here as an SU(2) Higgs family symmetry [87,
159]. The potential contains only terms that are invariant (singlet) under SU(2)R.

For the case of CP conserving Lagrangian under consideration, there are two CP
even scalars with squared-mass matrix

M2
h =

(
Z1v

2 Z6v
2

Z6v
2 m2

A + Z5v
2

)
. (7.3.15)

The coefficient Z6, present in the off-diagonal terms of the mass-matrix is a measure
of the displacement from the alignment, and so we will try to give a value at this
coefficient in our model.

Using the notation λ345 ≡ λ3 + λ4 + λ5, we have

Z1 =λ1c
4
β + λ2s

4
β +

1

2
λ345s

2
2β,

N=2−−−→ 1

4
(g2

2 + g2
Y )

Z5 =
1

4
s2

2β [λ1 + λ2 − 2λ345] + λ5
N=2−−−→ 0
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Z6 =− 1

2
s2β

[
λ1c

2
β − λ2s

2
β − λ345c2β

] N=2−−−→ 0. (7.3.16)

while the pseudoscalar mass mA is given by

m2
A =− m2

12

sβcβ
− λ5v

2 N=2−−−→ −m
2
12

sβcβ
(7.3.17)

Denoting by MZ and MW the Z and W boson masses respectively, we find that the
SU(2)R symmetric potential leads to a diagonal squared-mass matrix with eigenvalues:

m2
h =

1

4
(g2

2 + g2
Y )v2 = M2

Z

m2
H = m2

A (7.3.18)

and a charged Higgs of mass

m2
H+ =

1

2
(λ5 − λ4)v2 +m2

A
N=2−−−→ 1

2
(g2

2 −
1

2
g2
Y )v2 +m2

A = 3M2
W −M2

Z +m2
A.

(7.3.19)

As expected, we find that Z6 = 0, i.e. there is an Higgs alignment in this model. It
is a well known fact (e.g. [136]) that Z6 can be expressed, as we have written above as
functions of only the quartic potential parameters, or as function of mass parameters.
The different expressions are related by minimization conditions. We would like now
to explain what this implies in our specific model for the mass parameters, and can
explain the cancellation of Z6.

Let’s turn now to the quadratic part of the potential. It can be written as:

V2Φ =
m2

11 +m2
22√

2
× 1√

2

[
(Φ†1Φ1) + (Φ†2Φ2)

]
+
m2

11 −m2
22√

2
× 1√

2

[
(Φ†1Φ1)− (Φ†2Φ2)

]
−[m2

12Φ†1Φ2 + h.c] (7.3.20)

Only the first line corresponds to the SU(2)R invariant term. One can be tempted
so to impose a complete symmetry of the potential. Imposing a Higgs family symme-
try would have required that both coefficients of the two non-invariant operators to
vanish, therefore m2

11 = m2
22 and m12 = 0. This is problematic in our model. First, it

implies m2
A = 0. But there is also another reason why we do not want to impose in-

variance of the quadratic potential under SU(2)R: the mass terms in the potential are
controlled by supersymmetry breaking effects. We can take a look at one possible sce-
nario of supersymmetry breaking as the gauge mediation one. In this case, An N = 2
supersymmetry breaking and messengers sectors has been shown to lead to tachyonic
masses for the adjoint scalars S and T [39]. Avoiding this instability requires peculiar
structure of these sectors that is not compatible with the R-symmetry. So the presence
of the non-invariant SU(2)R is required for the self-consistency of our model.
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However, it is always possible to obtain some conditions on the coefficients of the
quadratic terms from the minimization of the potential. The corresponding equations
take the form (e.g. [139]):

0 = m2
11 − tβm2

12 +
1

2
v2c2

β(λ1 + 3λ6tβ + λ345t
2
β + λ7t

3
β)

0 = m2
22 −

1

tβ
m2

12 +
1

2
v2s2

β(λ2 + 3λ7
1

tβ
+ λ345

1

t2β
+ λ6

1

t3β
) (7.3.21)

Plugging the values of λ(0)
i in (7.3.21) leads to the equations:

0 = m2
11 − tβm2

12 +
1

8
(g2

2 + g2
Y )v2 (7.3.22)

0 = m2
22 −

1

tβ
m2

12 +
1

8
(g2

2 + g2
Y )v2 (7.3.23)

Subtraction of one of the equations from the other one leads (for s2β 6= 0) to

0 =
1

2
(m2

11 −m2
22)s2β +m2

12c2β ≡ Z6v
2 (7.3.24)

So, even if the quadratic term are not invariant under SU(2)R, we see that values of
the quartic couplings imply that the SU(2)R violating terms are such that their com-
bination contributing to Z6 vanishes. Therefore, we have shown that the constraint
of SU(2)R invariance of the quartic part of the potential is sufficient to insure an au-
tomatic alignment without decoupling. On the other hand, we also found that given
m2

11, m2
22 and m2

12 the potential minimization equation fixes β such that an alignment is
obtained. This is different from the [136, 57] where β remains arbitrary.

These results also allow us to understand why the simple identification of couplings
in the Higgs couplings with their N = 2 expected values, as it was attempted for the
MRSSM in [54], fails to achieve alignment. There, the integration out of the additional
doublets breaks the SU(2)R R-symmetry explicitly at tree level, and the SU(2)R sym-
metry of the quartic terms in the potential is required to obtain the alignment.

7.4 R-symmetry breaking and misalignment

We have shown how the alignment is enforced by the SU(2)R symmetry of the
quartic potential. However, it is clear that the leading order values λ(0)

i received correc-
tions from many sources that do not respect the SU(2)R symmetry. It was numerically
checked, computing two-loop quantum corrections, that the alignment remains amaz-
ingly true to a very high precision when taking into account the full corrections [54].
We would like to investigate how these sub-leading terms affect not only the numerical
value but the SU(2)R group theory structure of the scalar potential. The quartic scalar
potential can then be written as:

V4Φ =
∑
i,j

λ|i,j> × |i, j〉 (7.4.1)
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where |i, j〉 are irreducible representations of SU(2)R.
The alignment is measured by computing the off-diagonal squared-mass matrix

element

Z6 = −1

2
s2β

[
λ1c

2
β − λ2s

2
β − λ345c2β

]
(7.4.2)

Interestingly, this can be recasted as

Z6 =
1

2
s2β

[√
2λ|1,0> −

√
6λ|2,0>c2β + (λ|2,−2> + λ|2,+2>)c2β.

]
(7.4.3)

with, using the notation of [159]:

|1, 0〉 = 1√
2

[
(Φ†2Φ2)− (Φ†1Φ1)

] [
(Φ†1Φ1) + (Φ†2Φ2)

]
|2, 0〉 = 1√

6

[
(Φ†1Φ1)2 + (Φ†2Φ2)2 − 2(Φ†1Φ1)(Φ†2Φ2)− 2(Φ†1Φ2)(Φ†2Φ1)

]
|2,+2〉 = (Φ†2Φ1)(Φ†2Φ1)

|2,−2〉 = (Φ†1Φ2)(Φ†1Φ2)

(7.4.4)

The coefficients that play a role in the misalignment (7.4.3) are given as function of λi
by:

λ|1,0> =
λ2 − λ1

2
√

2

leading order−−−−−−−→ 0

λ|2,0> =
λ1 + λ2 − 2λ3 − 2λ4√

24

leading order−−−−−−−→ − 1√
24

[
(2λ2

S − g2
Y ) + (2λ2

T − g2
2)
]

λ|2,+2> =
λ∗5
2

leading order−−−−−−−→ 0, λ|2,−2> =
λ5

2

leading order−−−−−−−→ 0. (7.4.5)

In the previous section, we have found that breaking of the SU(2)R invariance in the
quartic term of the scalar potential is necessary in order to have misalignment. We can
see directly here that the conservation of the U(1) subgroup of SU(2)R is not sufficient
for alignment as we have contribution from |i, 0〉 combinations. Here, we have λ5 = 0
thus there is no contribution from |2,±2 >. The breaking of SU(2)R symmetry leads
then to a contribution to the Z6 parameter of order:

δZ
(tree)
6 =

1

2
s2β

[√
2δλ|1,0> −

√
6δλ|2,0>c2β

]
(7.4.6)

where δλ|i,0> are contributions generated by higher order corrections to the tree-level
λ

(0)
|i,0>. As presented in (7.3.7), there are two types of contributions, one from the inte-

gration out of heavy particles, and one from the loops. We will examine both in the
following.

First, the parameters λi receive tree-level correction from the threshold when the ad-
joint scalars are integrated out while the Higgs µ-term and the Dirac masses m1D,m2D

for the hypercharge U(1) and weak interaction SU(2) are small but not zero:

δλ
(tree)
1 '−

(
gYm1D −

√
2λSµ

)2

m2
SR

−
(
g2m2D +

√
2λTµ

)2

m2
TR
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δλ
(tree)
2 '−

(
gYm1D +

√
2λSµ

)2

m2
SR

−
(
g2m2D −

√
2λTµ

)2

m2
TR

δλ
(tree)
3 ' g2

Ym
2
1D − 2λ2

Sµ
2

m2
SR

− g2
2m

2
2D − 2λ2

Tµ
2

m2
TR

δλ
(tree)
4 ' 2g2

2m
2
2D − 4λ2

Tµ
2

m2
TR

,

(7.4.7)

The effect on the quartic scalar potential can be written:

δV
(tree)

4Φ = δλ
(tree)
|01,0>

|01, 0〉+ δλ
(tree)
|02,0>

|02, 0〉+ δλ
(tree)
|1,0> |1, 0〉+ δλ

(tree)
|2,0> |2, 0〉 . (7.4.8)

The two singlet coefficients get corrections

δλ
(tree)
|01,0>

'− 2λ2
S

µ2

m2
SR

− g2
2

m2
2D

m2
TR

(7.4.9)

δλ
(tree)
|02,0>

' 1√
3

[
g2
Y

m2
1D

m2
SR

− 2g2
2

m2
2D

m2
TR

+ 6λ2
T

µ2

m2
TR

]
(7.4.10)

and, by themselves do not contribute to misalignment. The breaking of the SU(2)R
symmetry shows up through the appearance of new terms in the scalar potential:

δλ
(tree)
|1,0> '2g2λT

m2Dµ

m2
TR

− 2gY λS
m1Dµ

m2
SR

'
√

2g2
2

m2Dµ

m2
TR

−
√

2g2
Y

m1Dµ

m2
SR

δλ
(tree)
|2,0> '

√
2

3

[
g2
Y

m2
1D

m2
SR

+ g2
2

m2
2D

m2
TR

]
(7.4.11)

that preserve the subgroup U(1)′R, as expected since the scalar potential results from
integrating out the adjoints which have zero U(1)′R charge. For a numerical estimate,
we take the example of values used in [54] with mSR ' mTR ' 5 TeV, m1D ' m1D '
µ ' 500 GeV, gY ' 0.37 and g2 ' 0.64. This gives

δλ
(tree)
|1,0> '4× 10−3, δλ

(tree)
|2,0> ' 4.5× 10−3 (7.4.12)

which show that the contribution to Z6 is very small and they will not be discussed
further below.

The second source of misalignment that we will consider is the contributions from
quantum corrections. Radiative corrections to different couplings are generated when
supersymmetry is broken, inducing mass splitting between scalars and fermionic part-
ners. This happens for instance through loops of the adjoint scalar fields S and T a.
However, these scalars are singlets under the SU(2)R symmetry and at leading order,
when their couplings λS and λT are given by theirN = 2 values, their interactions with
the two Higgs doublets preserve SU(2)R. Therefore we do not expect them to lead to
any contribution to Z6. In fact, explicit calculations of these loop diagrams were per-
formed in (3.5) of [54] and it was found that when summed up their contribution to Z6
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cancels out. This unexpected result is now easily understood as the consequence of the
SU(2)R symmetry.

Let’s denote the auxiliary fields Da for the gauge fields Aa and F a
Σ for the corre-

sponding adjoint scalars Σa ∈ {S, T a} of U(1)Y and SU(2). Then the set:

(F a
Σ , D

a , F a
Σ
∗) (7.4.13)

forms a triplet of SU(2)R. This enforces the equalities λS = gY /
√

2 and λT = g2/
√

2
in (7.3.3) whose violation by quantum effects translates into breaking of SU(2)R. First,
consider the correction due to running of the above couplings. This accounts for the
violation of N = 2 induced relations (7.3.3) due to radiative corrections from N = 1

chiral matter. As λ1 and λ2 are affected in the same way, we have δλ(2→1)
|01,0>

= 0, and
using (7.4.5), we get:

δZ
(2→1)
6 = −

√
6

2
s2β c2β δλ

(2→1)
|2,0>

= −1

2

tβ(t2β − 1)

(t2β + 1)2

[
(2λ2

S − g2
Y ) + (2λ2

T − g2
2)
]

(7.4.14)

Another source of misalignment comes from the N = 1→ N = 0 mass splitting in
chiral superfields. The SU(2)R symmetry is broken by the different Yukawa couplings
to the two Higgs doublets, which for tβ ∼ O(1) will be dominated by the top Yukawa.
The stops contributes mainly by correcting λ2.

δλ2 ∼
3y4

t

8π2
log

m2
t̃

Q2
(7.4.15)

where yt, mt̃ are the top Yukawa and stop masses, respectively, while Q is the renor-
malization scale. This leads to a δZ(1→0)

6 induced by δλ
(stops)
|1,0> ∼

√
3δλ

(stops)
|2,0> in (7.4.6).

Thus, chiral matter through their Yukawa couplings contribute to Z6 with both of |1, 0〉
and |2, 0〉 combinations of doublets. The contributions δZ(1→0)

6 and δZ
(2→1)
6 have sim-

ilar strength but opposite sign so that they lead to a small misalignment compatible
with LHC bounds as was shown in [54] by explicit computation.

What is interesting to note is that the origin of misalignment is not the quadratic
terms breaking SU(2)R. In section 3, we explained how this breaking of SU(2)R does
not imply loss of alignment but fixes tan β. The misalignment comes from the presence
of chiral matter and the most important single contribution arises from a large top
Yukawa coupling, which modifies the quartic terms in the potential.

7.5 Conclusions

When we look at 2HDM, the nature of the fields is largely constraint by the ex-
periments. Indeed, the LHC experiments data require one of the Higgs squared-mass
matrix eigenstates to be aligned with the SM-like direction. One has to explain the
origin of this peculiar alignment. A case of interest is when this alignment comes
without decoupling. The additional scalars in the electroweak sector are then sub-
ject to milder constraints, and they might have masses in an energy range that can
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be reached in future LHC searches, leaving open the possibility of new discovery of
fundamental scalars. Such an alignment was not only achieved but also predicted at
tree-level in [17]. This success calls for understanding the main mechanism behind it.
We have shown in this chapter that this mechanism is an SU(2)R R-symmetry that acts
as a Higgs family symmetry in the quartic scalar potential and enforces an automatic
alignment. Another new result of this work is that we have written the CP-even Higgs
squared-mass matrix off-diagonal element as a linear combination of the coefficients
of non-singlet of SU(2)R representations. These are generated in the quartic potential
by tree level threshold and loop corrections. Their numerical values have been com-
puted in [54] where it was proven that the alignment is preserved to an unexpected
precision level. A new way of expressing the observables is presented here. We have
found that using SU(2)R symmetry allows to shed light on some of the existing results.
For instance, we understand the origin of the cancellation between loop contributions
of the adjoint scalars. When interested by alignment, only some contributions need
to be evaluated or computed explicitly in the future: those contributing to coefficients
of particular combinations of terms in the potential that break the SU(2)R symmetry.
This sheds light not only on how the alignment is realized here, but also on whyN = 2
realizations of other models as the MRSSM attempted in [54] have not been successful.
The extension of the quartic potential to an N = 2 sector with a particular attention
to preserving the SU(2)R symmetry at tree-level can be a way to pursue in order to
implement alignment in extended Higgs sector models.
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APPENDIX A

Dimensional Reduction of massless scalar field on a circle

In this appendix, we will present the dimensional reduction on a circle from a di-
mension D + 1 to a dimension D. This is important for the analysis of the Scalar Weak
Gravity Conjecture that we did in the chapter 4.

Notation

We will work inD+1 dimensions, with the signature (−,+, ...,+). All the quantities
defined in D + 1 dimensions will be denoted with a hat, for example R̂ the D + 1-
dimensional Ricci scalar. We use latin letters for the D + 1 dimensional indices, as
M,N , greek ones µ, ν for uncompactified dimensions and z for the compactified one.
In the same spirit, A,B will be used to define the local frame in D + 1 dimensions,
a, b for the uncompactified ones and z̃ for the compactified one. We use, in general
dimension d, κ2

d = 8πGd = 1

Md−2
P,d

, where Gd is the d-dimensional Newton constant and

MP,d the d-dimensional reduced Planck mass.

A.1 Gravitational action

We will discuss in this first section the compactification of pure (D+1)-dimensional
gravity to D dimensions on a circle. We will present two closely related methods to
perform the computations.

Direct computation in the Einstein frame

We start with the gravitational action in D + 1 dimension,

S =
1

2κ̂2

∫
dD+1x

√
−ĝR̂, (A.1.1)
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APPENDIX A. DIMENSIONAL REDUCTION OF MASSLESS SCALAR FIELD ON A
CIRCLE

where the constant κ̂ is understood to be the D + 1-dimensional one. We assume here
and for the following the so called cylinder condition

∂zĝ = 0. (A.1.2)

One could consider non-vanishing dependence under the additional dimension, but
we will focus on the simplest possibility, and use (A.1.2). We write the metric in the
form

ĝMN =

(
e2αφgµν + e2βφAµAν e2βφAµ

e2βφAν e2βφ

)
(A.1.3)

with φ, Aµ and gµν D-dimensional fields independent of the z coordinate, as dictated
by (A.1.2). The inverse metric is then

ĝMN =

(
e−2αφgµν −e−2αφAµ
−e−2αφAν e−2βφ + e−2αφAρA

ρ

)
. (A.1.4)

To describe the physics observed by a D-dimensional observer, we should express the
action completely in terms of the D-dimensional fields. We will use the Cartan for-
malism to perform the dimensional reduction, and so we define the vielbeins êAM with
coordinates

êaµ = eαφeaµ , ê
a
z = 0 , êz̃µ = eβφAµ and êz̃z = eβφ, (A.1.5)

leading to the forms
êa = eαφea and êz̃ = eβφ(Aµdxµ + dz).

To find the spin connection, we use the first Cartan structure equation

dêA + ω̂AB ∧ êB = 0. (A.1.6)

Plugging (A.1.5) in it and using the antisymmetry of the spin connection we find

ω̂ab = ωab + αe−αφ(∂bφêa − ∂aφêb) +
1

2
e(β−2α)φF baêz̃ (A.1.7)

ω̂az̃ =
1

2
e(β−2α)φF a

b ê
b − βe−αφ∂aφêz̃, (A.1.8)

where the two-form F as usual is F = dA. The second Cartan equation gives us the
Ricci form in terms of the spin connection as

R̂M
N = dω̂MN + ω̂MK ∧ ω̂KN (A.1.9)

The two form components expressed in the usual frame are the Riemann tensor com-
ponents, so that one can deduce the Ricci scalar from them. We have for the M = a,
N = z component

R̂a
z̃ = dω̂az̃ + ω̂ad ∧ ω̂dz̃. (A.1.10)

Finally we obtain

R̂a
z̃ =e−2αφ

[
(αβ − β2)∂cφ∂

aφ− β∂c∂aφ
]
êc ∧ êz̃ − 1

4
e2(β−2α)φFd

aFb
dêb ∧ êz̃ − βe−αφ∂dφωad ∧ êz̃

(A.1.11)
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− αβe−2αφ(∂bφ∂
bφêa ∧ êz̃ − ∂aφ∂dφêd ∧ êz̃)

+
1

2
e(β−3α)φ [(β − 2α)∂cφFb

a + ∂cFb
a] êc ∧ êb − 1

2
e(β−2α)φFb

aωbd ∧ êd

− 1

2
e(β−3α)φ (αFb

a∂dφ+ β∂aφFbd) ê
b ∧ êd

+
1

2
e(β−2α)φFb

dωad ∧ êb +
α

2
e(β−3α)φ

(
∂dφFb

dêa ∧ êb − ∂aφFbdêd ∧ êb
)
.

From this, one can then extract the R̂a
z̃cz̃ and R̂a

z̃bc components of the Riemann tensor:

R̂a
z̃cz̃ = e−2αφ

[
(2αβ − β2)∂cφ∂

aφ− β∂c∂aφ− αβ∂dφ∂dφδac
]
−1

4
e2(β−2α)φFd

aFc
d−βe−2αφ∂dφωadc

(A.1.12)

R̂a
z̃bc =

1

2
e(β−3α)φ

[
(β − α)∂cφF

a
b + ∂cF

a
b − β∂aφFbc + α∂dφFc

dδab − α∂aφFcb − Fkaωkcb + Fc
dωadb

−{b↔ c}] (A.1.13)

We thus obtain two of the components of the Ricci tensor in the local frame, given as

R̂z̃z̃ = R̂a
z̃az̃ = βe−2αφ

{
[(2−D)α− β](∂φ)2 −�φ

}
+

1

4
e2(β−2α)φFadF

ad (A.1.14)

and
R̂z̃c = R̂a

z̃ac = −1

2
e(β−3α)φ {∇aF

a
c + [3β − (4−D)α]∂aφF

a
c} (A.1.15)

with (∂φ)2 = ∂dφ∂
dφ, �φ = ∇d∇dφ = ∇d(∂

dφ) = ∂d∂
dφ + ωdad∂

aφ and ∇aF
a
c = ∂aF

a
c −

ωadaFc
d + ωkcaFk

a.
To find the missing components of the Ricci tensor we again apply the Cartan’s second
equation to

R̂a
b = dω̂ab + ω̂ad ∧ ω̂db + ω̂az̃ ∧ ω̂z̃b, (A.1.16)

giving

R̂a
b =

1

2

{
− ∂c

[
e(β−2α)φF a

b

]
e−αφêc ∧ êz̃ − βe(β−3α)φF a

b ∂dφ ê
d ∧ êz̃ − e(β−2α)φF d

b ω
a
d ∧ êz̃

− αe(β−3α)φF d
b ∂dφ ê

a ∧ êz̃ + αe(β−3α)φF d
b ∂

aφ êd ∧ êz̃ + e(β−2α)φF a
d ω

d
b ∧ êz̃

+ αe(β−3α)φF a
d ∂bφ ê

d ∧ êz̃ − αe(β−3α)φF a
d ∂

dφ êb ∧ êz̃ − βe(β−3α)φF a
l ∂bφ ê

l ∧ êz̃

+ βe(β−3α)φ)∂aφFbk ê
k ∧ êz̃

}
+ dωab + αe−αφ∂c(e

−αφ∂bφ) êc ∧ êa − α2e−2αφ∂bφ ∂dφ ê
a ∧ êd − αe−αφ∂c(e−αφ∂aφ) êc ∧ êb

+ αe−αφ∂aφωbd ∧ êd + α2e−2αφ∂aφ ∂dφ êb ∧ êd −
1

4
e2(β−2α)φF a

b Fkl ê
k ∧ êl + ωad ∧ ωdb

− αe−αφ∂dφωad ∧ êb − αe−αφ∂dφωdb ∧ êa + αe−αφ∂aφωdb ∧ êd + α2e−2αφ∂dφ ∂bφ ê
a ∧ êd

− α2e−2αφ(∂φ)2 êa ∧ êb + α2e−2αφ∂aφ∂dφêd ∧ êb −
1

4
e2(β−2α)φF a

lFbkê
l ∧ êk,

(A.1.17)
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where the basis elements with a lower index are used as a shortcut for the contraction
with local Minkowski metric, as in êb = ηbcê

c. With the same reasoning as before one
can extract now the R̂a

bcz̃ and R̂a
bcd components of the form and use that to compute the

R̂bd component of the Ricci tensor as

R̂bd = R̂z̃
bz̃d + R̂a

bad

= e−2αφ
{
Rbd +∇d(∂bφ) [(2−D)α− β]− α�φ ηbd + ∂dφ ∂bφ

[
α2(D − 2) + 2αβ − β2

]
+(∂φ)2ηbd

[
(2−D)α2 − αβ

]}
− 1

2
e2(β−2α)φF a

bFad , (A.1.18)

where Rbd is the D-dimensional Ricci tensor. We eventually get R̂ :

R̂ = ηbdR̂bd + R̂z̃z̃

= e−2αφ
{
R + [2(1−D)α− 2β]�φ+

[
(D − 2)(1−D)α2 + 2β(2−D)α− 2β2

]
(∂φ)2

}
− 1

4
e2(β−2α)φFabF

ab. (A.1.19)

Finally, the determinant of the metric ĝ in D + 1 dimensions is given by

ĝ = e(2Dα−2β)φg, (A.1.20)

where g is the determinant of the D-dimensional metric, and thus plugging (A.1.20)
and (A.1.19) in (A.1.1) we obtain

S =
1

2κ̂2

∫
dD+1x e(Dα+β)φ

√
−g
{
e−2αφ

[
R +

[
2(1−D)α− 2β

]
�φ

+
[

(D−2)(1−D)α2+2β
(

(2−D)α−β
)]

(∂φ)2
]
− 1

4
e2(β−2α)φF 2

}
.

(A.1.21)

We can now proceed to fix the constants. In order to get rid of the exponential in
front of the D-dimensional Ricci scalar, that will allow us to get a canonical term for
D-dimensional gravity, we require

(D − 2)α + β = 0. (A.1.22)

Accordingly, the scalar kinetic term reads (D− 2)(1−D)α2(∂φ)2. For it to be canonical
we thus fix the constant α to the value

α2 =
1

2(D − 1)(D − 2)
. (A.1.23)

Since all fields are independent of z, we can perform the integration over this dimen-
sion, that we take as compact in the shape of a circle of radius L. Of course, if the
additional dimension needs to be hidden for low energy-observers, it should be de-
fined on distances that could only be resolved with higher energies. In that case, we
should thus expect the radius L to be small. We can then rewrite the action

S =
2πL

2κ̂2

∫
dDx
√
−g
(
R− 2α�φ− 1

2
(∂φ)2 − 1

4
e2(1−D)αφF 2

)
. (A.1.24)
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The negative sign in front of the kinetic term for the scalar field is the correct one as
we are working with the (−,+, ...,+) signature. The coefficient in front of R now reads
2πL
2κ̂2 . We thus define the D-dimensional constant κ in terms of the (D + 1)-dimensional
κ̂ as

1

κ2
=

2πL

κ̂2
=⇒MD−2

Pl = 2πL M̂D−1
Pl (A.1.25)

Besides, from (A.1.3) we see that the φ and Aµ fields that we have used so far are
dimensionless. The physical dimension-full fields, that we call φ̃ and Ãµ, are obtained
once we reabsorb the 1/2κ2 pre-factor in front of their kinetic terms as

φ̃ =
φ√
2κ

=
M

D−2
2

Pl√
2
φ ; Ãµ =

Aµ√
2κ

=
M

D−2
2

Pl√
2
Aµ. (A.1.26)

In terms of D-dimensional quantities, the action of (D + 1)-dimensional pure gravity
with one compact dimension in the shape of a circle reads:

S =

∫
dDx
√
−g
(
R

2κ2
− 2α�φ̃− 1

2
(∂φ̃)2 − 1

4
e2
√

2(1−D)ακφ̃F̃ 2

)
. (A.1.27)

The second term is a total derivative and, as such, we will not display it in the follow-
ing. If the gauge field that we obtain under compactification is usually called gravipho-
ton, and the name of the scalar is radion. This name is due to the fact that the scalar
field vev is fixing the length of the compactified dimension. However, a scalar with
the same coupling but with a different value of α can appear in different theory, with
a different name. We will choose this more generic name and call this scalar a dilaton.
In the rest of the work, we will remove the tilde and denote physical fields without it.
In the remainder of this section we will instead discuss the second method advocated
at the beginning of it.

Computation via Weyl rescaling

In the computation described above, we used a particular form of the metric that
brought us all the way down to the action in (A.1.27), that defines an Einstein-Maxwell-
scalar theory in the Einstein frame. Of course, one could ask whether this ad-hoc form
of the metric could have been guessed from first principles and what happens if one
uses a different metric. Here we try to fill this gap by showing how the same compu-
tation can be done using the Weyl transformations relating different, physically equiv-
alent, frames.
As a starter, we should compute the variation of the Ricci tensor under a Weyl rescal-
ing of the metric g → ḡe−2ω(x) in d generic dimensions.
The vielbeins transforms accordingly as ea = e−ω(x)ēa. Using the above mentioned
Cartan’s equations we can derive the following transformation rules for the spin con-
nection and the Ricci form{

ωab = ω̄ab − ∂bω ēa + ∂aω ēb

Ra
b = 1

2
R̄a

b + ∂c∂
aω ēc ∧ ēb + ∂dω ω̄ad ∧ ēb + ∂aω∂dω ēd ∧ ēb − 1

2
∂dω∂

dω ēa ∧ ēb − {a ↔ b}.
(A.1.28)
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In the same spirit as before, we can now extract from the components of the form the
Ricci tensor

Rbd = Ra
bad = e2ω

{
R̄bd + (d− 2)∇b∇dω +∇a∇aω ηbd + (d− 2)∂bω∂dω − (d− 2)∂aω∂

aω ηbd
}

(A.1.29)
and the Ricci scalar

R = e2ω
(
R̄ + 2(d− 1)�ω + (d− 2)(1− d)(∂ω)2

)
. (A.1.30)

With this result in mind, we can now take theD+1-dimensional metric of generic form
as

ĝMN =

(
g̃µν + AµAν Aµ

Aν 1

)
. (A.1.31)

The corresponding vielbeins read

êa = ẽa and êz̃ = A+ dz, with A = Aµdxµ. (A.1.32)

The spin connection and the Ricci form associated are

ω̂z̃a =
1

2
Fabẽ

b and ω̂ab = ω̃ab +
1

2
Fb

aêz̃ (A.1.33)

R̂a
z̃ =

1

2

(
∂cFb

aẽc ∧ ẽb − Fbaω̃bd ∧ ẽd + Fl
cω̃ac ∧ ẽl +

1

2
Fc

aFl
cẽz̃ ∧ ẽl

)
(A.1.34)

R̂a
b = R̃a

b +
1

2
∂cFb

aẽc ∧ êz̃ +
1

2
Fd

aêz̃ ∧ ω̃db +
1

2
Fb

dω̃ad ∧ êz̃ +
1

4
Fb

aFcdẽ
c ∧ ẽd − 1

4
Fl
aFdbẽ

l ∧ ẽd

(A.1.35)

The Ricci scalar is then
R̂ = R̃− 1

4
F 2. (A.1.36)

With the metric in (A.1.31) the determinant ĝ is ĝ = g̃.
We now perform a first Weyl rescaling of the D + 1-dimensional metric from ĝ to
ĝ′ = e2ω(x)ĝ, where we take the function ω(x) to depend only on the non compact
coordinates to preserve the cylinder condition (A.1.2). Using the relation

√
−ĝ =

e−(D+1)ω(x)
√
−ĝ′ and (A.1.30) for d = D + 1 we obtain√

−ĝR̂ = e(1−D)ω
√

(−1)Dĝ′
(
R̃− 1

4
F̃ 2 + 2D�̃ω −D(D − 1)(∂̃ω)2

)
, (A.1.37)

where D-dimensional quantities have been explicitly displayed with the symbol on
top. As we see, the D-dimensional gravitational term is not in the Einstein frame. We
thus perform another Weyl rescaling to get rid of the exponential, this time on the
lower dimensional metric. Writing the transformation as g̃ → e−2ω′(x)g we get

√
−ĝR̂ = e(1−D)ω+(2−D)ω′√−g

(
R + 2(D − 1)�ω′ + (1−D)(D − 2)(∂ω′)2

)
+ e(1−D)ω−Dω′√−g

(
−1

4
F 2 + 2D�̃ω −D(D − 1)(∂̃ω)2

)
(A.1.38)
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=
√
−g
{
e(1−D)ω+(2−D)ω′

(
R + 2(D − 1)�ω′ + (1−D)(D − 2)(∂ω′)2

+2D�ω −D(D − 1)(∂ω)2 − 1

4
e−2ω′F 2

)}
,

where in the last line we have written all the operators with respect to the new metric
g (or vielbein basis). Asking for the exponential in front of the Ricci scalar to vanish
means that

(1−D)ω(x) + (2−D)ω′(x) = 0 −→ ω(x) = −2−D
1−D

ω′(x). (A.1.39)

We see that if our transformations should bring us to the Einstein frame, the functions
defining the two rescalings performed need to be proportional to one another. If, ac-
cordingly, we now define ω(x) ≡ βφ(x) and ω′(x) = (α− β)φ(x), we see that the action
defined by (A.1.38) takes the form (A.1.21), thus justifying a posteriori the computation
with the metric (A.1.3).

A.2 Free higher dimensional scalar field

We now move forward and start adding some particle content in ourD+1-dimensional
theory in the form of a free real massless scalar field, so that the action looks

S = SEH + SΦ, (A.2.1)

where SEH is defined in (A.1.1) and

SΦ = −
∫

dD+1x
√
−ĝ 1

2
ĝMN∂M Φ̂∂N Φ̂ (A.2.2)

Here we take the real scalar field Φ to be single valued at any point in space-time. Call-
ing x the D non compact coordinates and z the compact one, this physical requirement
fixes the periodicity along the compactified dimension:

Φ̂(x, z + 2πL) = Φ̂(x, z). (A.2.3)

This in turn allows us to write the field Φ in the Fourier basis as

Φ̂(x, z) =
1√
2πL

+∞∑
n=−∞

ϕn(x)e
inz
L , (A.2.4)

where the Fourier components only depends on the x-coordinate, thus realizing the
periodic z-dependence through the basis elements.
Plugging the explicit form of the metric given in (A.1.4) together with this decomposi-
tion in the action (A.2.2) we find

SΦ = −1

2

∫
dD+1x

√
−g

+∞∑
n,m=−∞

ei
(n+m)z

L

2πL

(
gµν∂µϕn∂νϕm − 2i

√
2m

LM
D−2

2
Pl

Aµ∂µϕnϕm
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− 2

MD−2
Pl

nm

L2
AµA

µϕnϕm −
nm

L2
e
−2
√

2(β−α) φ

M
(D−2)/2
Pl ϕnϕm

)
(A.2.5)

The integration over the compactified dimension will give a term in 2πL δn,−m that we
can then use to perform the sum over one of the two variables, say m, and the action is
thus written

SΦ = −1

2

∫
dDx
√
−g

+∞∑
n=−∞

(
gµν∂µϕn∂νϕ−n + 2i

√
2n

LM
D−2

2
Pl

Aµ∂µϕnϕ−n +
2

MD−2
Pl

n2

L2
AµA

µϕnϕ−n

+
n2

L2
e
−2
√

2(β−α) φ

M
(D−2)/2
Pl ϕnϕ−n

)
. (A.2.6)

The reality condition Φ(x, z) = Φ∗(x, z) straightforwardly implies ϕ−n = ϕ∗n. For the
0-mode ϕ0 this in turn implies that such mode is real.
To rewrite the action (A.2.6) in a more canonical and elegant way we should first ob-
serve that all the bilinears ϕnϕ−n = ϕnϕ

∗
n are symmetric under the transformation

n→ −n. This straightforwardly applies to all but one term, giving

+∞∑
n=−∞

1

2

(
gµν∂µϕn∂νϕ−n +

2

MD−2
Pl

n2

L2
AµA

µϕnϕ−n +
n2

L2
e
−2
√

2(β−α) φ

M
(D−2)/2
Pl ϕnϕ−n

)
=

=
1

2
gµν∂µϕ0∂νϕ0 +

∞∑
n=1

(
gµν∂µϕn∂νϕ

∗
n +

2

MD−2
Pl

n2

L2
AµA

µϕnϕ
∗
n +

n2

L2
e
−2
√

2(β−α) φ

M
(D−2)/2
Pl ϕnϕ

∗
n

)
.

(A.2.7)

For the remaining term, we see that under n → −n it transforms as nAµ∂µϕnϕ∗n →
−nAµ∂µϕ∗nϕn. Grouping the (n,−n) terms two by two we thus get

+∞∑
n=−∞

i

√
2n

LM
D−2

2
Pl

Aµ∂µϕnϕ−n =
∞∑
n=1

i

√
2n

LM
D−2

2
Pl

Aµ (∂µϕnϕ
∗
n − ϕn∂µϕ∗n) , (A.2.8)

which together with the AµAµ term previously shown forms the well-known minimal
coupling dictated by the gauge principle for a complex scalar field. The action (A.2.1)
finally reads

S =

∫
dDx
√
−g

{
R

2κ2
− 1

2
(∂φ)2 − 1

4
e
−2
√
D−1
D−2

φ

M
(D−2)/2
Pl F 2 − 1

2
∂µϕ0∂

µϕ0 (A.2.9)

−
∞∑
n=1

(
∂µϕn∂

µϕ∗n +
n2

L2
e

2
√
D−1
D−2

φ

M
(D−2)/2
Pl ϕnϕ

∗
n

)

−
∞∑
n=1

(
i

√
2n

LM
D−2

2
Pl

Aµ (∂µϕnϕ
∗
n − ϕn∂µϕ∗n) +

2

MD−2
Pl

n2

L2
AµA

µϕnϕ
∗
n

)}
,

(A.2.10)
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where we have chosen the positive root for α (A.1.23).
We will now make some comments about this formula. The first thing we can note
is that a D + 1-dimensional system with gravity and a real massless scalar field is de-
scribed, in terms of D-dimensional quantities accessible to a low energy observer, as a
rather involved system. There is the presence of the graviphoton and the dilaton, while
the higher dimensional real massless scalar compactifies down to a lower dimensional
real massless scalar and an infinite tower of massive complex scalars which are the
Kaluza-Klein states (KK-states) minimally coupled to the D-dimensional gauge field.
The φ-dependent mass of such fields in turn determines a coupling with the dilaton.

Besides, ϕ0 represents a mode with no momentum along the compact dimension. It
does not feel the presence of the additional dimension as given by the components ĝµz
and ĝzz, that we have written in terms ofAµ and φ. Theϕn’s, on the other hand, describe
modes with non vanishing momentum along the compact dimension, and thus couple
to Aµ and φ. The periodicity condition required in (A.2.3) implies the quantization of
such momentum pz ∼ n

L
, n ∈ N, that will then appear as a mass in lower dimensions,

which can be seen writing propagator with P = (p, pz) as

i

P 2
=

i

p2 + p2
z

(A.2.11)

Coming back to (A.1.27), we see that the gauge coupling g is

g2 = e
2
√
D−1
D−2

φ

M
(D−2)/2
Pl . (A.2.12)

For each KK mode, we can now express both the mass and the charge and get

gqn =

√
2n

LM
(D−2)/2
Pl

e

√
D−1
D−2

φ

M
(D−2)/2
Pl and mn =

n

L
e

√
D−1
D−2

φ

M
(D−2)/2
Pl . (A.2.13)

This shows that, in any space-time dimension D, the mass and the charge of the KK
modes are related to each other as

(gqn)2 = 2
m2
n

MD−2
Pl

. (A.2.14)

The charge to mass ratio of the KK-states is so equal to the bound (1.2.9) with α =
√

3
in 4-dimensions.

A.3 Compactification via the higher dimensional gravi-
tational vertices

In the previous subsections we have been able to derive the effective description
of a D + 1-dimensional theory of gravity and a massless scalar from the perspective
of a D-dimensional observer. In particular, we have obtained the lower dimensional
theory expressing the whole action in terms of fields defined in D dimensions. All the
interactive terms for the KK modes of the scalar field displayed in (A.2.9) should be
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of gravitational origin and as such should come from the gravitational vertices of the
higher dimensional scalar. We should thus in principle be able to derive all the lower
dimensional vertices involving scalars from the corresponding (D + 1)-dimensional
gravitational ones. We can immediately see from (A.2.9) that, in the process, we will
need to go up to second order in 1

M
(D−1)/2
Pl

. To do so, we will first verify the perturbativ-

ity of the metric (A.1.3).
So let’s start again with the metric (A.1.3), that we rewrite here for the sake of clarity:

ĝMN =

(
e2αφgµν + e2βφAµAν e2βφAµ

e2βφAν e2βφ

)
.

What we need to do now is to develop this metric around a background, and then,
using the conventions in (A.1.1), verify whether it is possible or not to write this metric
as a formal development ĝMN = ζ̂MN + 2κ̂ĥMN + 4κ̂2f̂MN + o(κ̂3) = ζ̂MN + 2 ĥMN

M̂
(D−1)/2
Pl

+

4 f̂MN

MD−1
Pl

+ O
(

1

M̂
3(D−1)/2
Pl

)
, with κ̂2f̂MN � κ̂ĥMN � 1 ∀M,N . Usually the perturbative

expansion for gravity is set up around a Minkowski background. This need not be true
in all cases as the dilaton φ may take a vev., and β 6= α, so that in principle ζ̂ is not even
proportional to η̂. The lower dimensional metric is undetermined, and as such we can
arbitrarily set up its perturbative expansion to be around the Minkowski background

as gµν = ηµν + 2 hµν

M
(D−2)/2
Pl

+ 4 fµν

MD−2
Pl

+O
(

1

M
3(D−/2
Pl

)
, where here η is the Minkowski metric,

as usual. Using now (A.1.25) and inserting the physical fields (A.1.26) we can write:

ĝMN =

e

2
√

2α
φ

M
(D−2)/2
Pl

(
ηµν+2

hµν

M
(D−2)/2
Pl

+4
fµν

MD−2
Pl

+...

)
+ 2

MD−2
Pl

e

2
√

2β
φ

M
(D−2)/2
Pl AµAν

√
2

M
(D−2)/2
Pl

e

2
√

2β
φ

M
(D−2)/2
Pl Aµ

√
2

M
(D−2)/2
Pl

e

2
√

2β
φ

M
(D−2)/2
Pl Aν e

2
√

2β
φ

M
(D−2)/2
Pl


=

e

2
√

2α
φ0

M
(D−2)/2
Pl ηµν 0

0 e

2
√

2β
φ0

M
(D−2)/2
Pl

+ 2
√

2πLM̂
(D−1)/2
Pl

e
2
√

2α
φ0

M
(D−2)/2
Pl (

√
2αφηµν+hµν) e

2
√

2β
φ0

M
(D−2)/2
Pl

Aµ√
2

e

2
√

2β
φ0

M
(D−2)/2
Pl Aν√

2
e

2
√

2β
φ0

M
(D−2)/2
Pl

√
2βφ



+ 4

2πL M̂D−1
Pl


e

2
√

2α
φ0

M
(D−2)/2
Pl

(
α2φ2ηµν+

√
2αφhµν+fµν

)
+e

2
√

2β
φ0

M
(D−2)/2
Pl AµAν

2
e

2
√

2β
φ0

M
(D−2)/2
Pl βφAµ

e

2
√

2β
φ0

M
(D−2)/2
Pl βφAν e

2
√

2β
φ0

M
(D−2)/2
Pl β2φ2


+O

(
1

(2πL)3/2M̂
3(D−1)/2
Pl

)
, (A.3.1)

where we have developed the dilaton around a generic background value as φ0 + φ.
We immediately see that the background is different from Minkowski except for the
case φ0 = 0 since we have

ζ̂MN =

e2
√

2α
φ0

M
(D−2)/2
Pl ηµν 0

0 e
2
√

2β
φ0

M
(D−2)/2
Pl

 . (A.3.2)
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Nevertheless, we can say that, as long as the fields do not develop trans-Planckian
values, our metric is perturbative in the sense of a Planck suppressed series around a
background, even if the background is not flat.
We are now allowed to proceed in our declared goal of computing the lower dimen-
sional vertices from the higher dimensional ones. In order to do so, we should first fix
the form of the terms in the perturbative series up to the second order. Let’s write, in
generic dimension d, the perturbation{

gµν = ζµν + 2κhµν + 4κ2fµν +O(κ3)

gµν = ζµν + 2κtµν + 4κ2lµν +O(κ3).
(A.3.3)

The relation gµρgρν ≡ δνµ reads(
ζµρ + 2κhµρ + 4κ2fµρ

) (
ζρν + 2κtρν + 4κ2lρν

)
=

δνµ + 2κ (ζρνhµρ + ζµρt
ρν) + 4κ2 (ζρνfµρ + ζµρl

ρν + hµρt
ρν) +O

(
κ3
)
≡ δνµ, (A.3.4)

and thus {
tµν = −hµν

lµν + fµν = hµρh
ρν ,

(A.3.5)

where it is understood that the indices are raised and lowered with the background
metric ζ . We find here the first and second order equations relating the perturbation of
the metric and its inverse. It is common to find, in the literature, the particular choice
fµν = 0, lµν = hµρh

ρν (with a minkowskian background). This is perfectly fine when one
works with generic, non specified perturbations. In our case, however, as we already
have imposed the specific form of the metric, we cannot use such convention but need
to develop the gravitational formalism with the specific h, t, f, l dictated by our metric.
To go further, we now need to express the determinant of the metric. Defining κ′ ≡ 2κ

and using g as the matrix representation of the metric
√
−det(g) = exp

(
1
2
tr log(g)

)
=

exp

{
1
2
tr

[
ζ + κ′ζ−1h+ κ′2ζ−1f − (ζ−1κ′h+κ′2ζ−1f)

2

2

]
+O(κ′3)

}
we have

√
−det(g) =√
−det(ζ)

(
1 +

κ′

2
tr(ζ−1h) +

κ′2

2
tr(ζ−1f)− κ′2

4
tr((ζ−1h)2) +

κ′2

8
(tr(ζ−1h))2 +O(κ′3)

)
.

(A.3.6)

Let’s now apply all of this to the (D + 1)-dimensional action SΦ (A.2.2), recovering the
usual notation g for the determinant. We obtain√
−ĝLΦ = −

√
−ĝ1

2
ĝMN∂M Φ̂∂N Φ̂ =⇒

−
√
−ζ̂
(

1 +
κ̂′

2
ĥMM +

κ̂′2

2
f̂MM −

κ̂′2

4
ĥMN ĥMN +

κ̂′2

8
(ĥMM)2

)(
ζ̂MN − κ̂′ĥMN + κ̂′2l̂MN

) 1

2
∂M Φ̂∂N Φ̂

= −
√
−ζ̂
[

1

2
∂M Φ̂∂M Φ̂ +

κ̂′

2
ĥMN

(
∂M Φ̂∂N Φ̂− 1

2
η̂MN∂P Φ̂∂P Φ̂

)
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− κ̂
′2

2

(
l̂MN − 1

2
ĥMN ĥPP

)
∂M Φ̂∂N Φ̂− κ̂′2

4

(
f̂PP −

1

2
ĥMP ĥ

PM +
1

4
(ĥPP )2

)
∂M Φ̂∂M Φ̂

]
.

(A.3.7)

As we can see, at first order we recover the formula

−
√
−ζ̂ κ̂

′

2
ĥMNT Φ̂

MN = −
√
−ζ̂ ĥMN

M̂
(D−1)/2
Pl

T Φ̂
MN

(the different sign in the definition of the stress-energy tensor with respect to the one
usually displayed coming from the signature), while at second order we now have
the generic structure of the interaction. Of course, the above development is rather
independent of the particular system we are studying or the dimension.
As we can see from (A.3.1), raising the indices with ζ to stay at lowest order we have
in our case

ĥMN =
1√
2πL

e−2
√
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M
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(√
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2βφ

 , (A.3.8)

and we can thus write, using
√
−ζ̂ = e

√
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M
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Pl ,
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. (A.3.9)

Inserting now the Fourier decomposition (A.2.4) and performing the integration over
the z variable we get, for the D-dimensional action,

e
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)
(A.3.10)

The second term in the first line is (−) the stress-energy tensor for ϕ0 and ϕn. We have
thus the D-dimensional gravitational interaction plus a bunch of other interactions.
More specifically, this simplifies to
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where we have used β = −(D − 2)α and α = 1√
2(D−1)(D−2)

. Finally, if one wants to

write it properly, using again (A.1.25) we can conclude

− ĥMN

M̂
(D−1)/2
Pl

T̂ Φ̂
MN =− hµν

M
(D−2)/2
Pl

T (ϕ0,ϕn)
µν − i

√
2

Aµ

M
(D−2)/2
Pl

∞∑
n=1

n

L
(∂µϕn ϕ

∗
n − ϕn ∂µϕ∗n)

− 2

√
D − 1

D − 2

e
2
√
D−1
D−2

φ0

M
(D−2)/2
Pl φ

M
(D−2)/2
Pl

∞∑
n=1

n2

L2
ϕnϕ

∗
n. (A.3.12)

The above result exactly matches what one obtains at orderO
(
M

(2−D)/2
Pl

)
from (A.2.9).

As we see, if one were to stop at first order, he would miss the gauge invariance of the
theory with respect to the lower dimensional gauge field. Put in different words, the
gauge invariance of theD-dimensional theory being a realization of the general coordi-
nate invariance of the D+ 1-dimensional one along the compact direction, consistency
of the theory forces us to go to second order.
To do so, let’s first identify f̂MN from (A.3.1):
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 .

(A.3.13)
With this result, l̂MN will be given by

l̂MN = ĥMP ĥNP − f̂MN (A.3.14)

Using (A.3.13) and (A.3.8) one obtains
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(A.3.15)
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As suggested by (A.3.7), we need to construct, with these ingredients, the following
quantities:

l̂MN − 1

2
ĥPP ĥ

MN = 1
2π L
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√
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getting

e

−2
√

2α
φ0

M
(D−2)/2
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2π L

−α
2φ2ηµν− α√

2
φhρρη
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2
1√
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2
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(h νρ Aρ− 1
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M
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.
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For the second term of the second order expression of (A.3.7), we have

f̂PP −
1

2
ĥMP ĥ
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1

4
(ĥPP )2 =Dα2φ2 +

√
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1

2
e

2
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− 1
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2
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4
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1√
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summing up the two contributions of the second order with the Φ derivative in
(A.3.7), one obtains
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+
√

2e
−2
√

2α
φ0

M
(D−2)/2
Pl

(
hµρAρ −

1

2
hρρA

µ

)
1

2
∂µΦ∂zΦ

+

(
e
−2
√

2β
φ0

M
(D−2)/2
Pl (D(D − 2)α2φ2 +

√
2αhρρφ) +

1

2
e
−2
√

2α
φ0

M
(D−2)/2
Pl AρA

ρ

)
1

2
(∂zΦ)2

}

+
1

2

(
fµµ −

1

2
hµνhµν +

1

4
(hµµ)2 +

1

2
(Dα + β)2φ2 +

1√
2

(Dα + β)φhµµ

)
×(

e
−2
√

2α
φ0

M
(D−2)/2
Pl

1

2
∂µΦ∂µΦ + e

−2
√

2β
φ0

M
(D−2)/2
Pl

1

2
(∂zΦ)2

)

142



A.3. COMPACTIFICATION VIA THE HIGHER DIMENSIONAL GRAVITATIONAL
VERTICES

Adding the contribution from the determinant, and as for the first order, using
(A.2.4) and integrating over the z dimension, one obtains for the second order interac-
tion, defining Jµ,n = (ϕn∂µϕ

∗
n − ϕ∗n∂µϕn),

1

2
∂µϕ0∂νϕ0

[(
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8
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)
We can simplify the expression with the relation between β and α that we have

already used to eliminate the exponential factor in front of the interaction term. In
particular, the term in φ2 or φhρρ will disappear, and one obtains
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L
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This formula calls for some remarks. The term which multiplies the 1
2
∂µϕ0∂νϕ0 is ex-

actly the term obtained from the perturbation of the metric at second order. It corre-
sponds then to the interaction term between two gravitons and two massless scalars.
The same term is present for the ϕn field with an additional contribution from the
mass term. We also see several terms of interaction between the Aµ fields, the graviton
and the ϕn. There is no interaction between the gauge field and the ϕ0 since the latter
is not charged under the gauge symmetry. The interaction term between two gauge
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fields and two scalars fields was, at first order, the term missing in order to achieve the
gauge invariance of the interaction. We could expect an exponential factor to multiply
it, but we should recall that in our theory this exponential term is present in front of
the kinetic term of the Aµ, and this is why it is not present here when we only look
at the interaction. However, the expected exponential term is present in front of the
interaction term between two dilatons φ and the mass term of ϕn. This computation
of the interaction in the compactified theory gives the same result as the one we did
in the section A.1. So we can interpret our interaction with the scalar φ and the gauge
field Aµ as a facet of gravitational interaction.
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Gravitational D-dependent vertex

In chapter 4, we exhibit a factor D−3
D−2

in the gravitational force. This factor can be
explained from the gravitational propagator, which takes in D dimensions the form

Pαβγδ =
−i
p2

[
1

2
(ηαγηβδ + ηαδηβγ)− 1

D − 2
ηαβηγδ

]
. (B.0.1)

However, we will try to explain it from a different point of view, following [200]. It
explains why, in the context of the Newtonian limit of GR in D spacetime dimensions,
the D−3

D−2
factor comes about in the gravitational force with the usual normalization con-

ventions for the Planck scale S =
∫
dDx
√
−g R

2κ2 and κ2 = M2−D
Pl .

Let’s start with the action for a real scalar field

S =

∫
dDx

√
(−)D−1g

(
R

2κ2
+

1

2
∂µφ∂

µφ− 1

2
m2φ2

)
. (B.0.2)

Variation of the action with respect to the metric gives us the Einstein’s equations

Rµν −
1

2
Rgµν = κ2Tµν =⇒ Rµν = κ2

(
Tµν −

1

D − 2
gµνT

ρ
ρ

)
. (B.0.3)

If we now develop the metric around a Minkowski background as gµν = ηµν + 2κhµν +
O(κ2) and make the usual definition h̄µν ≡ hµν − 1

2
ηµνh

ρ
ρ we obtain, in the de Donder

gauge ∂µhµν − 1
2
∂νh

µ
µ = 0,

∂2hµν = −1

2

(
Tµν −

1

D − 2
ηµνT

ρ
ρ

)
⇐⇒ ∂2h̄µν = −1

2
Tµν . (B.0.4)

This equation tells us that the field respecting the wave equation with Tµν as a source
term is rather h̄µν than hµν . With these results at hand, the quantization procedure is
more naturally applied to the h̄ field, that will thus represent the gravitational degrees
of freedom of our quantum theory.
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In terms of the development of the metric we just displayed, we have seen that the first
order interaction is given by√

(−)D−1gLint = −κhµν
[
∂µφ∂νφ−

ηµν
2

(
∂ρφ∂

ρφ−m2φ2
)]
. (B.0.5)

Inverting the relation h̄µν ≡ hµν − 1
2
ηµνh

ρ
ρ we can obtain h in terms of h̄ as hµν = h̄µν −

1
D−2

ηµν h̄
ρ
ρ and then√
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(
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D − 2

m2φ2

)
. (B.0.6)

To derive the propagator for this field h̄µν requires to take the Lagrangian of the
perturbation hµν , with the gauge fixing term corresponding to the de Donder gauge. It
reads (forgetting the κ coefficient in front)

L =
1

2
hµν�h

µν +
1

4
hρρ�h

ρ
ρ. (B.0.7)

With the relation defined above hµν = h̄µν − 1
D−2

ηµν h̄
ρ
ρ, one can express the Lagrangian

for h̄
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where the operator O is defined by

Oµναβ = �

(
1

2
(ηµαηνβ + ηµβηνα)− 1

D − 2
ηµνηαβ

)
. (B.0.9)

The propagator of h̄ is defined by taking inverse of the Fourier transform operator
of O, which gives

Pµναβ =
−i
2p2

(
ηµαηνβ + ηµβηνα − ηµνηαβ

)
. (B.0.10)

With these interactive term and propagator, looking at the t-channel to avoid lengthy
expressions, the tree-level 2→ 2 scattering then reads

〈φ(p3)φ(p4)|φ(p1)φ(p2)〉 =

− κ2

(
p1µp3ν + p1νp3µ − 2ηµν

m2
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]
. (B.0.11)

In the non-relativistic limit we finally obtain

〈φ(p3)φ(p4)|φ(p1)φ(p2)〉NR = −iκ
2

t
2m4

(
4− 1− D

D − 2

)
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= −4κ2m
4

t

D − 3

D − 2
. (B.0.12)

In terms of the Planck mass, the non-relativistic limit of the 2→ 2 scattering mediated
by gravitons, when one adds s and u-channels, takes the form

〈φ(p3)φ(p4)|φ(p1)φ(p2)〉NR = −4i
D − 3

D − 2

m4

MD−2
Pl

(
1

s
+

1

t
+

1

u

)
, (B.0.13)

and, factorizing the 4m2 expressing the usual QFT normalization over the non-relativistic
one, the position space potential between two identical particles of mass m reads ac-
cordingly V (r) = −D−3

D−2
m2

MD−2
Pl

1
r
.

147



BIBLIOGRAPHY

148



Bibliography

[1] B. P. Abbott et al. GW151226: Observation of Gravitational Waves from a 22-
Solar-Mass Binary Black Hole Coalescence. Phys. Rev. Lett., 116(24):241103, 2016.
arXiv:1606.04855, doi:10.1103/PhysRevLett.116.241103. (cited
p. 91)

[2] B. P. Abbott et al. Observation of Gravitational Waves from a Binary Black Hole
Merger. Phys. Rev. Lett., 116(6):061102, 2016. arXiv:1602.03837, doi:10.
1103/PhysRevLett.116.061102. (cited p. 91)

[3] E. Accomando, Ignatios Antoniadis, and K. Benakli. Looking for TeV scale
strings and extra dimensions. Nucl. Phys. B, 579:3–16, 2000. arXiv:hep-ph/
9912287, doi:10.1016/S0550-3213(00)00123-1. (cited p. 19)

[4] Prateek Agrawal, Georges Obied, Paul J. Steinhardt, and Cumrun Vafa. On
the Cosmological Implications of the String Swampland. Phys. Lett. B, 784:271–
276, 2018. arXiv:1806.09718, doi:10.1016/j.physletb.2018.07.040.
(cited pp. 32, 34, and 36)

[5] Yashar Akrami, Renata Kallosh, Andrei Linde, and Valeri Vardanyan. The Land-
scape, the Swampland and the Era of Precision Cosmology. Fortsch. Phys., 67(1-
2):1800075, 2019. arXiv:1808.09440, doi:10.1002/prop.201800075.
(cited p. 36)

[6] Benjamin C. Allanach et al. Les Houches physics at TeV colliders 2005 beyond the
standard model working group: Summary report. In 4th Les Houches Workshop
on Physics at TeV Colliders, 2 2006. arXiv:hep-ph/0602198. (cited p. 118)

[7] Gonzalo Alonso-Álvarez, Fatih Ertas, Joerg Jaeckel, Felix Kahlhoefer, and
Lennert J. Thormaehlen. Hidden Photon Dark Matter in the Light of XENON1T
and Stellar Cooling. JCAP, 11:029, 2020. arXiv:2006.11243, doi:10.1088/
1475-7516/2020/11/029. (cited p. 15)

149

http://arxiv.org/abs/1606.04855
https://doi.org/10.1103/PhysRevLett.116.241103
http://arxiv.org/abs/1602.03837
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
http://arxiv.org/abs/hep-ph/9912287
http://arxiv.org/abs/hep-ph/9912287
https://doi.org/10.1016/S0550-3213(00)00123-1
http://arxiv.org/abs/1806.09718
https://doi.org/10.1016/j.physletb.2018.07.040
http://arxiv.org/abs/1808.09440
https://doi.org/10.1002/prop.201800075
http://arxiv.org/abs/hep-ph/0602198
http://arxiv.org/abs/2006.11243
https://doi.org/10.1088/1475-7516/2020/11/029
https://doi.org/10.1088/1475-7516/2020/11/029


BIBLIOGRAPHY

[8] Daniele S. M. Alves, Jamison Galloway, Matthew McCullough, and Neal Weiner.
Goldstone Gauginos. Phys. Rev. Lett., 115(16):161801, 2015. arXiv:1502.
03819, doi:10.1103/PhysRevLett.115.161801. (cited p. 119)

[9] Daniele S. M. Alves, Jamison Galloway, Matthew McCullough, and Neal Weiner.
Models of Goldstone Gauginos. Phys. Rev. D, 93(7):075021, 2016. arXiv:1502.
05055, doi:10.1103/PhysRevD.93.075021. (cited p. 119)

[10] Pau Amaro-Seoane et al. Laser Interferometer Space Antenna. 2 2017. arXiv:
1702.00786. (cited p. 91)

[11] Santiago De Lope Amigo, Andrew E. Blechman, Patrick J. Fox, and Erich Pop-
pitz. R-symmetric gauge mediation. JHEP, 01:018, 2009. arXiv:0809.1112,
doi:10.1088/1126-6708/2009/01/018. (cited pp. 118 and 119)

[12] Haipeng An, Maxim Pospelov, Josef Pradler, and Adam Ritz. New limits on dark
photons from solar emission and keV scale dark matter. Phys. Rev. D, 102:115022,
2020. arXiv:2006.13929, doi:10.1103/PhysRevD.102.115022. (cited
p. 15)

[13] Luis A. Anchordoqui, Ignatios Antoniadis, Karim Benakli, and Dieter Lust.
Anomalous U(1) gauge bosons as light dark matter in string theory. Phys. Lett. B,
810:135838, 2020. arXiv:2007.11697, doi:10.1016/j.physletb.2020.
135838. (cited p. 21)

[14] Stefano Andriolo, Daniel Junghans, Toshifumi Noumi, and Gary Shiu. A
Tower Weak Gravity Conjecture from Infrared Consistency. Fortsch. Phys.,
66(5):1800020, 2018. arXiv:1802.04287, doi:10.1002/prop.201800020.
(cited p. 13)

[15] David Andriot. On the de Sitter swampland criterion. Phys. Lett. B, 785:570–
573, 2018. arXiv:1806.10999, doi:10.1016/j.physletb.2018.09.022.
(cited p. 3)

[16] David Andriot, Niccolò Cribiori, and David Erkinger. The web of swampland
conjectures and the TCC bound. JHEP, 07:162, 2020. arXiv:2004.00030, doi:
10.1007/JHEP07(2020)162. (cited p. 24)

[17] I. Antoniadis, K. Benakli, A. Delgado, and M. Quiros. A New gauge media-
tion theory. Adv. Stud. Theor. Phys., 2:645–672, 2008. arXiv:hep-ph/0610265.
(cited pp. 117, 118, and 128)

[18] Ignatios Antoniadis. A Possible new dimension at a few TeV. Phys. Lett. B,
246:377–384, 1990. doi:10.1016/0370-2693(90)90617-F. (cited p. 19)

[19] Ignatios Antoniadis, Nima Arkani-Hamed, Savas Dimopoulos, and G. R.
Dvali. New dimensions at a millimeter to a Fermi and superstrings at a TeV.
Phys. Lett. B, 436:257–263, 1998. arXiv:hep-ph/9804398, doi:10.1016/
S0370-2693(98)00860-0. (cited p. 19)

150

http://arxiv.org/abs/1502.03819
http://arxiv.org/abs/1502.03819
https://doi.org/10.1103/PhysRevLett.115.161801
http://arxiv.org/abs/1502.05055
http://arxiv.org/abs/1502.05055
https://doi.org/10.1103/PhysRevD.93.075021
http://arxiv.org/abs/1702.00786
http://arxiv.org/abs/1702.00786
http://arxiv.org/abs/0809.1112
https://doi.org/10.1088/1126-6708/2009/01/018
http://arxiv.org/abs/2006.13929
https://doi.org/10.1103/PhysRevD.102.115022
http://arxiv.org/abs/2007.11697
https://doi.org/10.1016/j.physletb.2020.135838
https://doi.org/10.1016/j.physletb.2020.135838
http://arxiv.org/abs/1802.04287
https://doi.org/10.1002/prop.201800020
http://arxiv.org/abs/1806.10999
https://doi.org/10.1016/j.physletb.2018.09.022
http://arxiv.org/abs/2004.00030
https://doi.org/10.1007/JHEP07(2020)162
https://doi.org/10.1007/JHEP07(2020)162
http://arxiv.org/abs/hep-ph/0610265
https://doi.org/10.1016/0370-2693(90)90617-F
http://arxiv.org/abs/hep-ph/9804398
https://doi.org/10.1016/S0370-2693(98)00860-0
https://doi.org/10.1016/S0370-2693(98)00860-0


BIBLIOGRAPHY

[20] Ignatios Antoniadis and K. Benakli. Limits on extra dimensions in orbifold com-
pactifications of superstrings. Phys. Lett. B, 326:69–78, 1994. arXiv:hep-th/
9310151, doi:10.1016/0370-2693(94)91194-0. (cited p. 19)

[21] Ignatios Antoniadis and K. Benakli. Large dimensions and string physics in
future colliders. Int. J. Mod. Phys. A, 15:4237–4286, 2000. arXiv:hep-ph/
0007226, doi:10.1016/S0217-751X(00)00217-0. (cited p. 19)

[22] Ignatios Antoniadis, K. Benakli, and M. Quiros. Production of Kaluza-Klein
states at future colliders. Phys. Lett. B, 331:313–320, 1994. arXiv:hep-ph/
9403290, doi:10.1016/0370-2693(94)91058-8. (cited p. 19)

[23] Ignatios Antoniadis, K. Benakli, and M. Quiros. Direct collider signatures of
large extra dimensions. Phys. Lett. B, 460:176–183, 1999. arXiv:hep-ph/
9905311, doi:10.1016/S0370-2693(99)00764-9. (cited p. 19)

[24] Ignatios Antoniadis and Karim Benakli. Weak Gravity Conjecture in de Sitter
Space-Time. Fortsch. Phys., 68(9):2000054, 2020. arXiv:2006.12512, doi:10.
1002/prop.202000054. (cited pp. 61, 62, 68, 76, 77, 87, and 90)

[25] Ignatios Antoniadis, Karim Benakli, Antonio Delgado, Mariano Quiros, and
Marc Tuckmantel. Split extended supersymmetry from intersecting branes.
Nucl. Phys. B, 744:156–179, 2006. arXiv:hep-th/0601003, doi:10.1016/
j.nuclphysb.2006.03.012. (cited p. 118)

[26] Ignatios Antoniadis, Antonio Delgado, Karim Benakli, Mariano Quiros, and
Marc Tuckmantel. Splitting extended supersymmetry. Phys. Lett. B, 634:302–
306, 2006. arXiv:hep-ph/0507192, doi:10.1016/j.physletb.2006.
01.010. (cited p. 118)

[27] E. Aprile et al. Excess electronic recoil events in XENON1T. Phys. Rev. D,
102(7):072004, 2020. arXiv:2006.09721, doi:10.1103/PhysRevD.102.
072004. (cited p. 15)

[28] Nima Arkani-Hamed, Savas Dimopoulos, and G. R. Dvali. The Hierarchy prob-
lem and new dimensions at a millimeter. Phys. Lett. B, 429:263–272, 1998. arXiv:
hep-ph/9803315, doi:10.1016/S0370-2693(98)00466-3. (cited p. 19)

[29] Nima Arkani-Hamed, Lubos Motl, Alberto Nicolis, and Cumrun Vafa. The
String landscape, black holes and gravity as the weakest force. JHEP, 06:060,
2007. arXiv:hep-th/0601001, doi:10.1088/1126-6708/2007/06/060.
(cited pp. 4, 5, 6, 13, 27, and 31)

[30] P. R. Auvil and J. J. Brehm. Wave Functions for Particles of Higher Spin. Phys.
Rev., 145(4):1152, 1966. doi:10.1103/PhysRev.145.1152. (cited p. 94)

[31] Thomas C. Bachlechner, Cody Long, and Liam McAllister. Planckian Axions
and the Weak Gravity Conjecture. JHEP, 01:091, 2016. arXiv:1503.07853,
doi:10.1007/JHEP01(2016)091. (cited p. 31)

151

http://arxiv.org/abs/hep-th/9310151
http://arxiv.org/abs/hep-th/9310151
https://doi.org/10.1016/0370-2693(94)91194-0
http://arxiv.org/abs/hep-ph/0007226
http://arxiv.org/abs/hep-ph/0007226
https://doi.org/10.1016/S0217-751X(00)00217-0
http://arxiv.org/abs/hep-ph/9403290
http://arxiv.org/abs/hep-ph/9403290
https://doi.org/10.1016/0370-2693(94)91058-8
http://arxiv.org/abs/hep-ph/9905311
http://arxiv.org/abs/hep-ph/9905311
https://doi.org/10.1016/S0370-2693(99)00764-9
http://arxiv.org/abs/2006.12512
https://doi.org/10.1002/prop.202000054
https://doi.org/10.1002/prop.202000054
http://arxiv.org/abs/hep-th/0601003
https://doi.org/10.1016/j.nuclphysb.2006.03.012
https://doi.org/10.1016/j.nuclphysb.2006.03.012
http://arxiv.org/abs/hep-ph/0507192
https://doi.org/10.1016/j.physletb.2006.01.010
https://doi.org/10.1016/j.physletb.2006.01.010
http://arxiv.org/abs/2006.09721
https://doi.org/10.1103/PhysRevD.102.072004
https://doi.org/10.1103/PhysRevD.102.072004
http://arxiv.org/abs/hep-ph/9803315
http://arxiv.org/abs/hep-ph/9803315
https://doi.org/10.1016/S0370-2693(98)00466-3
http://arxiv.org/abs/hep-th/0601001
https://doi.org/10.1088/1126-6708/2007/06/060
https://doi.org/10.1103/PhysRev.145.1152
http://arxiv.org/abs/1503.07853
https://doi.org/10.1007/JHEP01(2016)091


BIBLIOGRAPHY

[32] Seungwon Baek, Jongkuk Kim, and P. Ko. XENON1T excess in local Z2 DM
models with light dark sector. Phys. Lett. B, 810:135848, 2020. arXiv:2006.
16876, doi:10.1016/j.physletb.2020.135848. (cited p. 16)

[33] Tom Banks and Nathan Seiberg. Symmetries and Strings in Field Theory and
Gravity. Phys. Rev. D, 83:084019, 2011. arXiv:1011.5120, doi:10.1103/
PhysRevD.83.084019. (cited pp. 3 and 7)

[34] T. Barreiro, Edmund J. Copeland, and N. J. Nunes. Quintessence arising from
exponential potentials. Phys. Rev. D, 61:127301, 2000. arXiv:astro-ph/
9910214, doi:10.1103/PhysRevD.61.127301. (cited p. 36)

[35] Alek Bedroya and Cumrun Vafa. Trans-Planckian Censorship and the
Swampland. JHEP, 09:123, 2020. arXiv:1909.11063, doi:10.1007/
JHEP09(2020)123. (cited pp. 3, 4, and 36)

[36] G. Belanger, K. Benakli, M. Goodsell, C. Moura, and A. Pukhov. Dark Matter
with Dirac and Majorana Gaugino Masses. JCAP, 08:027, 2009. arXiv:0905.
1043, doi:10.1088/1475-7516/2009/08/027. (cited pp. 117, 118, 120,
and 121)

[37] Brando Bellazzini, Matthew Lewandowski, and Javi Serra. Positivity of Am-
plitudes, Weak Gravity Conjecture, and Modified Gravity. Phys. Rev. Lett.,
123(25):251103, 2019. arXiv:1902.03250, doi:10.1103/PhysRevLett.
123.251103. (cited p. 6)

[38] K. Benakli, M. Goodsell, F. Staub, and W. Porod. Constrained minimal Dirac
gaugino supersymmetric standard model. Phys. Rev. D, 90(4):045017, 2014.
arXiv:1403.5122, doi:10.1103/PhysRevD.90.045017. (cited p. 118)

[39] K. Benakli and M. D. Goodsell. Dirac Gauginos in General Gauge Media-
tion. Nucl. Phys. B, 816:185–203, 2009. arXiv:0811.4409, doi:10.1016/j.
nuclphysb.2009.03.002. (cited pp. 118, 119, 120, and 123)

[40] K. Benakli and M. D. Goodsell. Dirac Gauginos and Kinetic Mixing. Nucl. Phys. B,
830:315–329, 2010. arXiv:0909.0017, doi:10.1016/j.nuclphysb.2010.
01.003. (cited pp. 18 and 118)

[41] K. Benakli and M. D. Goodsell. Dirac Gauginos, Gauge Mediation and Unifi-
cation. Nucl. Phys. B, 840:1–28, 2010. arXiv:1003.4957, doi:10.1016/j.
nuclphysb.2010.06.018. (cited p. 118)

[42] Karim Benakli. Phenomenology of low quantum gravity scale models. Phys. Rev.
D, 60:104002, 1999. arXiv:hep-ph/9809582, doi:10.1103/PhysRevD.
60.104002. (cited pp. 19 and 20)

[43] Karim Benakli. Dirac Gauginos: A User Manual. Fortsch. Phys., 59:1079–1082,
2011. arXiv:1106.1649, doi:10.1002/prop.201100071. (cited p. 118)

[44] Karim Benakli, Carlo Branchina, and Gaëtan Lafforgue-Marmet. To appear.
(cited p. viii)

152

http://arxiv.org/abs/2006.16876
http://arxiv.org/abs/2006.16876
https://doi.org/10.1016/j.physletb.2020.135848
http://arxiv.org/abs/1011.5120
https://doi.org/10.1103/PhysRevD.83.084019
https://doi.org/10.1103/PhysRevD.83.084019
http://arxiv.org/abs/astro-ph/9910214
http://arxiv.org/abs/astro-ph/9910214
https://doi.org/10.1103/PhysRevD.61.127301
http://arxiv.org/abs/1909.11063
https://doi.org/10.1007/JHEP09(2020)123
https://doi.org/10.1007/JHEP09(2020)123
http://arxiv.org/abs/0905.1043
http://arxiv.org/abs/0905.1043
https://doi.org/10.1088/1475-7516/2009/08/027
http://arxiv.org/abs/1902.03250
https://doi.org/10.1103/PhysRevLett.123.251103
https://doi.org/10.1103/PhysRevLett.123.251103
http://arxiv.org/abs/1403.5122
https://doi.org/10.1103/PhysRevD.90.045017
http://arxiv.org/abs/0811.4409
https://doi.org/10.1016/j.nuclphysb.2009.03.002
https://doi.org/10.1016/j.nuclphysb.2009.03.002
http://arxiv.org/abs/0909.0017
https://doi.org/10.1016/j.nuclphysb.2010.01.003
https://doi.org/10.1016/j.nuclphysb.2010.01.003
http://arxiv.org/abs/1003.4957
https://doi.org/10.1016/j.nuclphysb.2010.06.018
https://doi.org/10.1016/j.nuclphysb.2010.06.018
http://arxiv.org/abs/hep-ph/9809582
https://doi.org/10.1103/PhysRevD.60.104002
https://doi.org/10.1103/PhysRevD.60.104002
http://arxiv.org/abs/1106.1649
https://doi.org/10.1002/prop.201100071


BIBLIOGRAPHY

[45] Karim Benakli, Carlo Branchina, and Gaëtan Lafforgue-Marmet. Revisiting the
scalar weak gravity conjecture. Eur. Phys. J. C, 80(8):742, 2020. arXiv:2004.
12476, doi:10.1140/epjc/s10052-020-8268-0. (cited p. viii)

[46] Karim Benakli, Carlo Branchina, and Gaëtan Lafforgue-Marmet. U(1) mixing
and the Weak Gravity Conjecture. Eur. Phys. J. C, 80(12):1118, 2020. arXiv:
2007.02655, doi:10.1140/epjc/s10052-020-08691-4. (cited p. viii)

[47] Karim Benakli, Yifan Chen, Peng Cheng, and Gaëtan Lafforgue-Marmet.
Stochastic gravitational waves from spin- 3/2 fields. Phys. Rev. D, 99(9):095032,
2019. arXiv:1811.11774, doi:10.1103/PhysRevD.99.095032. (cited
p. viii)

[48] Karim Benakli, Yifan Chen, Emilian Dudas, and Yann Mambrini. Minimal model
of gravitino dark matter. Phys. Rev. D, 95(9):095002, 2017. arXiv:1701.06574,
doi:10.1103/PhysRevD.95.095002. (cited p. 112)

[49] Karim Benakli, Yifan Chen, and Gaëtan Lafforgue-Marmet. R-symmetry for
Higgs alignment without decoupling. Eur. Phys. J. C, 79(2):172, 2019. arXiv:
1811.08435, doi:10.1140/epjc/s10052-019-6676-9. (cited p. ix)

[50] Karim Benakli, Luc Darmé, Mark D. Goodsell, and Julia Harz. The Di-Photon
Excess in a Perturbative SUSY Model. Nucl. Phys. B, 911:127–162, 2016. arXiv:
1605.05313, doi:10.1016/j.nuclphysb.2016.07.027. (cited pp. 119
and 120)

[51] Karim Benakli, Luc Darmé, and Yaron Oz. The Slow Gravitino. JHEP, 10:121,
2014. arXiv:1407.8321, doi:10.1007/JHEP10(2014)121. (cited p. 94)

[52] Karim Benakli, Mark D. Goodsell, and Ann-Kathrin Maier. Generating mu and
Bmu in models with Dirac Gauginos. Nucl. Phys. B, 851:445–461, 2011. arXiv:
1104.2695, doi:10.1016/j.nuclphysb.2011.06.001. (cited pp. 118
and 120)

[53] Karim Benakli, Mark D. Goodsell, and Florian Staub. Dirac Gauginos and
the 125 GeV Higgs. JHEP, 06:073, 2013. arXiv:1211.0552, doi:10.1007/
JHEP06(2013)073. (cited pp. 118 and 121)

[54] Karim Benakli, Mark D. Goodsell, and Sophie L. Williamson. Higgs alignment
from extended supersymmetry. Eur. Phys. J. C, 78(8):658, 2018. arXiv:1801.
08849, doi:10.1140/epjc/s10052-018-6125-1. (cited pp. 117, 118, 119,
124, 126, 127, and 128)

[55] Jérémy Bernon, John F. Gunion, Howard E. Haber, Yun Jiang, and Sabine
Kraml. Scrutinizing the alignment limit in two-Higgs-doublet models: mh=125
GeV. Phys. Rev. D, 92(7):075004, 2015. arXiv:1507.00933, doi:10.1103/
PhysRevD.92.075004. (cited p. 118)

[56] Jérémy Bernon, John F. Gunion, Howard E. Haber, Yun Jiang, and Sabine
Kraml. Scrutinizing the alignment limit in two-Higgs-doublet models. II.

153

http://arxiv.org/abs/2004.12476
http://arxiv.org/abs/2004.12476
https://doi.org/10.1140/epjc/s10052-020-8268-0
http://arxiv.org/abs/2007.02655
http://arxiv.org/abs/2007.02655
https://doi.org/10.1140/epjc/s10052-020-08691-4
http://arxiv.org/abs/1811.11774
https://doi.org/10.1103/PhysRevD.99.095032
http://arxiv.org/abs/1701.06574
https://doi.org/10.1103/PhysRevD.95.095002
http://arxiv.org/abs/1811.08435
http://arxiv.org/abs/1811.08435
https://doi.org/10.1140/epjc/s10052-019-6676-9
http://arxiv.org/abs/1605.05313
http://arxiv.org/abs/1605.05313
https://doi.org/10.1016/j.nuclphysb.2016.07.027
http://arxiv.org/abs/1407.8321
https://doi.org/10.1007/JHEP10(2014)121
http://arxiv.org/abs/1104.2695
http://arxiv.org/abs/1104.2695
https://doi.org/10.1016/j.nuclphysb.2011.06.001
http://arxiv.org/abs/1211.0552
https://doi.org/10.1007/JHEP06(2013)073
https://doi.org/10.1007/JHEP06(2013)073
http://arxiv.org/abs/1801.08849
http://arxiv.org/abs/1801.08849
https://doi.org/10.1140/epjc/s10052-018-6125-1
http://arxiv.org/abs/1507.00933
https://doi.org/10.1103/PhysRevD.92.075004
https://doi.org/10.1103/PhysRevD.92.075004


BIBLIOGRAPHY

mH=125 GeV. Phys. Rev. D, 93(3):035027, 2016. arXiv:1511.03682, doi:
10.1103/PhysRevD.93.035027. (cited p. 118)

[57] P. S. Bhupal Dev and Apostolos Pilaftsis. Maximally Symmetric Two Higgs
Doublet Model with Natural Standard Model Alignment. JHEP, 12:024,
2014. [Erratum: JHEP 11, 147 (2015)]. arXiv:1408.3405, doi:10.1007/
JHEP12(2014)024. (cited pp. 117 and 124)

[58] M. Bolz, A. Brandenburg, and W. Buchmuller. Thermal production of grav-
itinos. Nucl. Phys. B, 606:518–544, 2001. [Erratum: Nucl.Phys.B 790, 336–
337 (2008)]. arXiv:hep-ph/0012052, doi:10.1016/S0550-3213(01)
00132-8. (cited p. 112)

[59] Johannes Braathen, Mark D. Goodsell, and Pietro Slavich. Leading two-loop
corrections to the Higgs boson masses in SUSY models with Dirac gauginos.
JHEP, 09:045, 2016. arXiv:1606.09213, doi:10.1007/JHEP09(2016)045.
(cited p. 118)

[60] Suddhasattwa Brahma and Md. Wali Hossain. Relating the scalar weak grav-
ity conjecture and the swampland distance conjecture for an accelerating uni-
verse. Phys. Rev. D, 100(8):086017, 2019. arXiv:1904.05810, doi:10.1103/
PhysRevD.100.086017. (cited p. 3)

[61] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, Marc Sher, and Joao P.
Silva. Theory and phenomenology of two-Higgs-doublet models. Phys. Rept.,
516:1–102, 2012. arXiv:1106.0034, doi:10.1016/j.physrep.2012.02.
002. (cited p. 117)

[62] T. Daniel Brennan, Federico Carta, and Cumrun Vafa. The String Landscape,
the Swampland, and the Missing Corner. PoS, TASI2017:015, 2017. arXiv:
1711.00864, doi:10.22323/1.305.0015. (cited p. 2)

[63] Jon Brown, William Cottrell, Gary Shiu, and Pablo Soler. Fencing in the Swamp-
land: Quantum Gravity Constraints on Large Field Inflation. JHEP, 10:023, 2015.
arXiv:1503.04783, doi:10.1007/JHEP10(2015)023. (cited p. 31)

[64] Ginevra Buratti, Eduardo García-Valdecasas, and Angel M. Uranga. Supersym-
metry Breaking Warped Throats and the Weak Gravity Conjecture. JHEP, 04:111,
2019. arXiv:1810.07673, doi:10.1007/JHEP04(2019)111. (cited p. 3)

[65] C. P. Burgess, Luis E. Ibanez, and F. Quevedo. Strings at the intermediate
scale, or is the Fermi scale dual to the Planck scale? Phys. Lett. B, 447:257–265,
1999. arXiv:hep-ph/9810535, doi:10.1016/S0370-2693(99)00006-4.
(cited p. 20)

[66] K. S. Thorne C. W. Misner and J. A. Wheeler. Gravitation. (cited p. 91)

[67] R. R. Caldwell, Rahul Dave, and Paul J. Steinhardt. Cosmological imprint of an
energy component with general equation of state. Phys. Rev. Lett., 80:1582–1585,
1998. arXiv:astro-ph/9708069, doi:10.1103/PhysRevLett.80.1582.
(cited p. 34)

154

http://arxiv.org/abs/1511.03682
https://doi.org/10.1103/PhysRevD.93.035027
https://doi.org/10.1103/PhysRevD.93.035027
http://arxiv.org/abs/1408.3405
https://doi.org/10.1007/JHEP12(2014)024
https://doi.org/10.1007/JHEP12(2014)024
http://arxiv.org/abs/hep-ph/0012052
https://doi.org/10.1016/S0550-3213(01)00132-8
https://doi.org/10.1016/S0550-3213(01)00132-8
http://arxiv.org/abs/1606.09213
https://doi.org/10.1007/JHEP09(2016)045
http://arxiv.org/abs/1904.05810
https://doi.org/10.1103/PhysRevD.100.086017
https://doi.org/10.1103/PhysRevD.100.086017
http://arxiv.org/abs/1106.0034
https://doi.org/10.1016/j.physrep.2012.02.002
https://doi.org/10.1016/j.physrep.2012.02.002
http://arxiv.org/abs/1711.00864
http://arxiv.org/abs/1711.00864
https://doi.org/10.22323/1.305.0015
http://arxiv.org/abs/1503.04783
https://doi.org/10.1007/JHEP10(2015)023
http://arxiv.org/abs/1810.07673
https://doi.org/10.1007/JHEP04(2019)111
http://arxiv.org/abs/hep-ph/9810535
https://doi.org/10.1016/S0370-2693(99)00006-4
http://arxiv.org/abs/astro-ph/9708069
https://doi.org/10.1103/PhysRevLett.80.1582


BIBLIOGRAPHY

[68] R. R. Caldwell and Eric V. Linder. The Limits of quintessence. Phys. Rev. Lett.,
95:141301, 2005. arXiv:astro-ph/0505494, doi:10.1103/PhysRevLett.
95.141301. (cited p. 35)

[69] Chiara Caprini and Daniel G. Figueroa. Cosmological Backgrounds of Gravi-
tational Waves. Class. Quant. Grav., 35(16):163001, 2018. arXiv:1801.04268,
doi:10.1088/1361-6382/aac608. (cited p. 93)

[70] Marcela Carena, Howard E. Haber, Ian Low, Nausheen R. Shah, and Carlos E. M.
Wagner. Alignment limit of the NMSSM Higgs sector. Phys. Rev. D, 93(3):035013,
2016. arXiv:1510.09137, doi:10.1103/PhysRevD.93.035013. (cited
p. 118)

[71] Marcela Carena, Ian Low, Nausheen R. Shah, and Carlos E. M. Wagner. Im-
personating the Standard Model Higgs Boson: Alignment without Decoupling.
JHEP, 04:015, 2014. arXiv:1310.2248, doi:10.1007/JHEP04(2014)015.
(cited p. 118)

[72] R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio, and Raoul Gatto. High-
Energy Equivalence Theorem in Spontaneously Broken Supergravity. Phys. Rev.
D, 39:2281, 1989. doi:10.1103/PhysRevD.39.2281. (cited p. 111)

[73] Sergio Cecotti. Special Geometry and the Swampland. JHEP, 09:147, 2020.
arXiv:2004.06929, doi:10.1007/JHEP09(2020)147. (cited p. 41)

[74] Sabyasachi Chakraborty, Adam Martin, and Tuhin S. Roy. Charting generalized
supersoft supersymmetry. JHEP, 05:176, 2018. arXiv:1802.03411, doi:10.
1007/JHEP05(2018)176. (cited p. 118)

[75] Shouxin Chen and Yisong Yang. Dilaton mass formulas in a hairy bi-
nary black hole model. Modern Physics Letters A, 35(33):2050277, Sep
2020. URL: http://dx.doi.org/10.1142/S0217732320502776, doi:
10.1142/s0217732320502776. (cited p. 85)

[76] Clifford Cheung and Grant N. Remmen. Naturalness and the Weak Grav-
ity Conjecture. Phys. Rev. Lett., 113:051601, 2014. arXiv:1402.2287, doi:
10.1103/PhysRevLett.113.051601. (cited p. 7)

[77] Takeshi Chiba, Antonio De Felice, and Shinji Tsujikawa. Observational con-
straints on quintessence: thawing, tracker, and scaling models. Phys. Rev.
D, 87(8):083505, 2013. arXiv:1210.3859, doi:10.1103/PhysRevD.87.
083505. (cited p. 36)

[78] Gongjun Choi, Motoo Suzuki, and Tsutomu T. Yanagida. XENON1T Anomaly
and its Implication for Decaying Warm Dark Matter. Phys. Lett. B, 811:135976,
2020. arXiv:2006.12348, doi:10.1016/j.physletb.2020.135976.
(cited p. 15)

[79] S. Y. Choi, D. Choudhury, A. Freitas, J. Kalinowski, J. M. Kim, and P. M. Zer-
was. Dirac Neutralinos and Electroweak Scalar Bosons of N=1/N=2 Hybrid

155

http://arxiv.org/abs/astro-ph/0505494
https://doi.org/10.1103/PhysRevLett.95.141301
https://doi.org/10.1103/PhysRevLett.95.141301
http://arxiv.org/abs/1801.04268
https://doi.org/10.1088/1361-6382/aac608
http://arxiv.org/abs/1510.09137
https://doi.org/10.1103/PhysRevD.93.035013
http://arxiv.org/abs/1310.2248
https://doi.org/10.1007/JHEP04(2014)015
https://doi.org/10.1103/PhysRevD.39.2281
http://arxiv.org/abs/2004.06929
https://doi.org/10.1007/JHEP09(2020)147
http://arxiv.org/abs/1802.03411
https://doi.org/10.1007/JHEP05(2018)176
https://doi.org/10.1007/JHEP05(2018)176
http://dx.doi.org/10.1142/S0217732320502776
https://doi.org/10.1142/s0217732320502776
https://doi.org/10.1142/s0217732320502776
http://arxiv.org/abs/1402.2287
https://doi.org/10.1103/PhysRevLett.113.051601
https://doi.org/10.1103/PhysRevLett.113.051601
http://arxiv.org/abs/1210.3859
https://doi.org/10.1103/PhysRevD.87.083505
https://doi.org/10.1103/PhysRevD.87.083505
http://arxiv.org/abs/2006.12348
https://doi.org/10.1016/j.physletb.2020.135976


BIBLIOGRAPHY

Supersymmetry at Colliders. JHEP, 08:025, 2010. arXiv:1005.0818, doi:
10.1007/JHEP08(2010)025. (cited p. 118)

[80] M. Colpi, S. L. Shapiro, and I. Wasserman. Boson Stars: Gravitational Equilibria
of Selfinteracting Scalar Fields. Phys. Rev. Lett., 57:2485–2488, 1986. doi:10.
1103/PhysRevLett.57.2485. (cited p. 41)

[81] Joseph P. Conlon. The de Sitter swampland conjecture and supersymmetric AdS
vacua. Int. J. Mod. Phys. A, 33(29):1850178, 2018. arXiv:1808.05040, doi:
10.1142/S0217751X18501786. (cited p. 3)

[82] Edmund J. Copeland, Andrew R Liddle, and David Wands. Exponential po-
tentials and cosmological scaling solutions. Phys. Rev. D, 57:4686–4690, 1998.
arXiv:gr-qc/9711068, doi:10.1103/PhysRevD.57.4686. (cited pp. 35
and 36)

[83] Nathaniel Craig, Isabel Garcia Garcia, and Seth Koren. The Weak Scale from
Weak Gravity. JHEP, 09:081, 2019. arXiv:1904.08426, doi:10.1007/
JHEP09(2019)081. (cited p. 27)

[84] Csaba Csaki, Jessica Goodman, Riccardo Pavesi, and Yuri Shirman. The mD−bM
problem of Dirac gauginos and its solutions. Phys. Rev. D, 89(5):055005, 2014.
arXiv:1310.4504, doi:10.1103/PhysRevD.89.055005. (cited pp. 118
and 119)

[85] Gianguido Dall’Agata and Matteo Morittu. Covariant formulation of BPS black
holes and the scalar weak gravity conjecture. JHEP, 03:192, 2020. arXiv:2001.
10542, doi:10.1007/JHEP03(2020)192. (cited p. 24)

[86] Tristan Daus, Arthur Hebecker, Sascha Leonhardt, and John March-Russell.
Towards a Swampland Global Symmetry Conjecture using weak gravity.
Nucl. Phys. B, 960:115167, 2020. arXiv:2002.02456, doi:10.1016/j.
nuclphysb.2020.115167. (cited p. 31)

[87] Sacha Davidson and Howard E. Haber. Basis-independent methods for the two-
Higgs-doublet model. Phys. Rev. D, 72:035004, 2005. [Erratum: Phys.Rev.D
72, 099902 (2005)]. arXiv:hep-ph/0504050, doi:10.1103/PhysRevD.72.
099902. (cited pp. 117 and 122)

[88] Anton de la Fuente, Prashant Saraswat, and Raman Sundrum. Natural Inflation
and Quantum Gravity. Phys. Rev. Lett., 114(15):151303, 2015. arXiv:1412.
3457, doi:10.1103/PhysRevLett.114.151303. (cited p. 31)

[89] Giuseppe Degrassi, Stefano Di Vita, Joan Elias-Miro, Jose R. Espinosa, Gian F.
Giudice, Gino Isidori, and Alessandro Strumia. Higgs mass and vacuum stability
in the Standard Model at NNLO. JHEP, 08:098, 2012. arXiv:1205.6497, doi:
10.1007/JHEP08(2012)098. (cited p. 41)

[90] F. del Aguila, G. D. Coughlan, and M. Quiros. Gauge Coupling Renormalization
With Several U(1) Factors. Nucl. Phys. B, 307:633, 1988. [Erratum: Nucl.Phys.B
312, 751 (1989)]. doi:10.1016/0550-3213(88)90266-0. (cited p. 15)

156

http://arxiv.org/abs/1005.0818
https://doi.org/10.1007/JHEP08(2010)025
https://doi.org/10.1007/JHEP08(2010)025
https://doi.org/10.1103/PhysRevLett.57.2485
https://doi.org/10.1103/PhysRevLett.57.2485
http://arxiv.org/abs/1808.05040
https://doi.org/10.1142/S0217751X18501786
https://doi.org/10.1142/S0217751X18501786
http://arxiv.org/abs/gr-qc/9711068
https://doi.org/10.1103/PhysRevD.57.4686
http://arxiv.org/abs/1904.08426
https://doi.org/10.1007/JHEP09(2019)081
https://doi.org/10.1007/JHEP09(2019)081
http://arxiv.org/abs/1310.4504
https://doi.org/10.1103/PhysRevD.89.055005
http://arxiv.org/abs/2001.10542
http://arxiv.org/abs/2001.10542
https://doi.org/10.1007/JHEP03(2020)192
http://arxiv.org/abs/2002.02456
https://doi.org/10.1016/j.nuclphysb.2020.115167
https://doi.org/10.1016/j.nuclphysb.2020.115167
http://arxiv.org/abs/hep-ph/0504050
https://doi.org/10.1103/PhysRevD.72.099902
https://doi.org/10.1103/PhysRevD.72.099902
http://arxiv.org/abs/1412.3457
http://arxiv.org/abs/1412.3457
https://doi.org/10.1103/PhysRevLett.114.151303
http://arxiv.org/abs/1205.6497
https://doi.org/10.1007/JHEP08(2012)098
https://doi.org/10.1007/JHEP08(2012)098
https://doi.org/10.1016/0550-3213(88)90266-0


BIBLIOGRAPHY

[91] F. del Aguila, M. Dugan, Benjamin Grinstein, Lawrence J. Hall, Graham G. Ross,
and Peter C. West. Low-energy Models With Two Supersymmetries. Nucl. Phys.
B, 250:225–251, 1985. doi:10.1016/0550-3213(85)90480-8. (cited p. 118)

[92] Keith R. Dienes, Emilian Dudas, and Tony Gherghetta. Extra space-time dimen-
sions and unification. Phys. Lett. B, 436:55–65, 1998. arXiv:hep-ph/9803466,
doi:10.1016/S0370-2693(98)00977-0. (cited p. 19)

[93] Keith R. Dienes, Emilian Dudas, and Tony Gherghetta. Grand unification at
intermediate mass scales through extra dimensions. Nucl. Phys. B, 537:47–108,
1999. arXiv:hep-ph/9806292, doi:10.1016/S0550-3213(98)00669-5.
(cited p. 19)

[94] Keith R. Dienes, Christopher F. Kolda, and John March-Russell. Kinetic mix-
ing and the supersymmetric gauge hierarchy. Nucl. Phys. B, 492:104–118,
1997. arXiv:hep-ph/9610479, doi:10.1016/S0550-3213(97)00173-9.
(cited pp. 15 and 17)

[95] Abdelhak Djouadi. The Anatomy of electro-weak symmetry breaking. II. The
Higgs bosons in the minimal supersymmetric model. Phys. Rept., 459:1–241,
2008. arXiv:hep-ph/0503173, doi:10.1016/j.physrep.2007.10.005.
(cited p. 117)

[96] Emilian Dudas, Yann Mambrini, and Keith Olive. Case for an EeV Gravitino.
Phys. Rev. Lett., 119(5):051801, 2017. arXiv:1704.03008, doi:10.1103/
PhysRevLett.119.051801. (cited p. 112)

[97] Jean Francois Dufaux, Amanda Bergman, Gary N. Felder, Lev Kofman, and Jean-
Philippe Uzan. Theory and Numerics of Gravitational Waves from Preheating
after Inflation. Phys. Rev. D, 76:123517, 2007. arXiv:0707.0875, doi:10.
1103/PhysRevD.76.123517. (cited pp. 93 and 96)

[98] Jean-Francois Dufaux, Daniel G. Figueroa, and Juan Garcia-Bellido. Gravita-
tional Waves from Abelian Gauge Fields and Cosmic Strings at Preheating. Phys.
Rev. D, 82:083518, 2010. arXiv:1006.0217, doi:10.1103/PhysRevD.82.
083518. (cited p. 93)

[99] Gia Dvali and Cesar Gomez. On Exclusion of Positive Cosmological Constant.
Fortsch. Phys., 67(1-2):1800092, 2019. arXiv:1806.10877, doi:10.1002/
prop.201800092. (cited p. 3)

[100] Gia Dvali, Cesar Gomez, and Sebastian Zell. Quantum Breaking Bound on de Sit-
ter and Swampland. Fortsch. Phys., 67(1-2):1800094, 2019. arXiv:1810.11002,
doi:10.1002/prop.201800094. (cited p. 3)

[101] Richard Easther and Eugene A. Lim. Stochastic gravitational wave produc-
tion after inflation. JCAP, 04:010, 2006. arXiv:astro-ph/0601617, doi:
10.1088/1475-7516/2006/04/010. (cited p. 93)

157

https://doi.org/10.1016/0550-3213(85)90480-8
http://arxiv.org/abs/hep-ph/9803466
https://doi.org/10.1016/S0370-2693(98)00977-0
http://arxiv.org/abs/hep-ph/9806292
https://doi.org/10.1016/S0550-3213(98)00669-5
http://arxiv.org/abs/hep-ph/9610479
https://doi.org/10.1016/S0550-3213(97)00173-9
http://arxiv.org/abs/hep-ph/0503173
https://doi.org/10.1016/j.physrep.2007.10.005
http://arxiv.org/abs/1704.03008
https://doi.org/10.1103/PhysRevLett.119.051801
https://doi.org/10.1103/PhysRevLett.119.051801
http://arxiv.org/abs/0707.0875
https://doi.org/10.1103/PhysRevD.76.123517
https://doi.org/10.1103/PhysRevD.76.123517
http://arxiv.org/abs/1006.0217
https://doi.org/10.1103/PhysRevD.82.083518
https://doi.org/10.1103/PhysRevD.82.083518
http://arxiv.org/abs/1806.10877
https://doi.org/10.1002/prop.201800092
https://doi.org/10.1002/prop.201800092
http://arxiv.org/abs/1810.11002
https://doi.org/10.1002/prop.201800094
http://arxiv.org/abs/astro-ph/0601617
https://doi.org/10.1088/1475-7516/2006/04/010
https://doi.org/10.1088/1475-7516/2006/04/010


BIBLIOGRAPHY

[102] John Ellis, Jérémie Quevillon, and Verónica Sanz. Doubling Up on Supersym-
metry in the Higgs Sector. JHEP, 10:086, 2016. arXiv:1607.05541, doi:
10.1007/JHEP10(2016)086. (cited p. 117)

[103] Henriette Elvang, Daniel Z. Freedman, and Hong Liu. From fake supergravity
to superstars. JHEP, 12:023, 2007. arXiv:hep-th/0703201, doi:10.1088/
1126-6708/2007/12/023. (cited pp. 61, 64, and 87)

[104] Yohei Ema, Kyohei Mukaida, Kazunori Nakayama, and Takahiro Terada. Non-
thermal Gravitino Production after Large Field Inflation. JHEP, 11:184, 2016.
arXiv:1609.04716, doi:10.1007/JHEP11(2016)184. (cited pp. 112
and 113)

[105] Kari Enqvist, Daniel G. Figueroa, and Tuukka Meriniemi. Stochastic Background
of Gravitational Waves from Fermions. Phys. Rev. D, 86:061301, 2012. arXiv:
1203.4943, doi:10.1103/PhysRevD.86.061301. (cited pp. 93, 97, 110,
111, and 113)

[106] Rouven Essig, Philip Schuster, and Natalia Toro. Probing Dark Forces and Light
Hidden Sectors at Low-Energy e+e- Colliders. Phys. Rev. D, 80:015003, 2009.
arXiv:0903.3941, doi:10.1103/PhysRevD.80.015003. (cited p. 18)

[107] Marco Fabbrichesi, Emidio Gabrielli, and Gaia Lanfranchi. The Dark Photon.
5 2020. arXiv:2005.01515, doi:10.1007/978-3-030-62519-1. (cited
p. 20)

[108] Pierre Fayet. Fermi-Bose Hypersymmetry. Nucl. Phys. B, 113:135, 1976. doi:
10.1016/0550-3213(76)90458-2. (cited pp. 118 and 119)

[109] Pierre Fayet. Mixing Between Gravitational and Weak Interactions Through the
Massive Gravitino. Phys. Lett. B, 70:461, 1977. doi:10.1016/0370-2693(77)
90414-2. (cited p. 111)

[110] Pierre Fayet. MASSIVE GLUINOS. Phys. Lett. B, 78:417–420, 1978. doi:10.
1016/0370-2693(78)90474-4. (cited p. 118)

[111] Sergio Ferrara, Gary W. Gibbons, and Renata Kallosh. Black holes and criti-
cal points in moduli space. Nucl. Phys. B, 500:75–93, 1997. arXiv:hep-th/
9702103, doi:10.1016/S0550-3213(97)00324-6. (cited pp. 39 and 40)

[112] P. M. Ferreira, Howard E. Haber, and Joao P. Silva. Generalized CP symmetries
and special regions of parameter space in the two-Higgs-doublet model. Phys.
Rev. D, 79:116004, 2009. arXiv:0902.1537, doi:10.1103/PhysRevD.79.
116004. (cited p. 117)

[113] P. M. Ferreira and Joao P. Silva. A Two-Higgs Doublet Model With Remarkable
CP Properties. Eur. Phys. J. C, 69:45–52, 2010. arXiv:1001.0574, doi:10.
1140/epjc/s10052-010-1384-5. (cited p. 118)

158

http://arxiv.org/abs/1607.05541
https://doi.org/10.1007/JHEP10(2016)086
https://doi.org/10.1007/JHEP10(2016)086
http://arxiv.org/abs/hep-th/0703201
https://doi.org/10.1088/1126-6708/2007/12/023
https://doi.org/10.1088/1126-6708/2007/12/023
http://arxiv.org/abs/1609.04716
https://doi.org/10.1007/JHEP11(2016)184
http://arxiv.org/abs/1203.4943
http://arxiv.org/abs/1203.4943
https://doi.org/10.1103/PhysRevD.86.061301
http://arxiv.org/abs/0903.3941
https://doi.org/10.1103/PhysRevD.80.015003
http://arxiv.org/abs/2005.01515
https://doi.org/10.1007/978-3-030-62519-1
https://doi.org/10.1016/0550-3213(76)90458-2
https://doi.org/10.1016/0550-3213(76)90458-2
https://doi.org/10.1016/0370-2693(77)90414-2
https://doi.org/10.1016/0370-2693(77)90414-2
https://doi.org/10.1016/0370-2693(78)90474-4
https://doi.org/10.1016/0370-2693(78)90474-4
http://arxiv.org/abs/hep-th/9702103
http://arxiv.org/abs/hep-th/9702103
https://doi.org/10.1016/S0550-3213(97)00324-6
http://arxiv.org/abs/0902.1537
https://doi.org/10.1103/PhysRevD.79.116004
https://doi.org/10.1103/PhysRevD.79.116004
http://arxiv.org/abs/1001.0574
https://doi.org/10.1140/epjc/s10052-010-1384-5
https://doi.org/10.1140/epjc/s10052-010-1384-5


BIBLIOGRAPHY

[114] Pedro G. Ferreira and Michael Joyce. Cosmology with a primordial scaling field.
Phys. Rev. D, 58:023503, 1998. arXiv:astro-ph/9711102, doi:10.1103/
PhysRevD.58.023503. (cited p. 36)

[115] Daniel G. Figueroa and Tuukka Meriniemi. Stochastic Background of Gravi-
tational Waves from Fermions – Theory and Applications. JHEP, 10:101, 2013.
arXiv:1306.6911, doi:10.1007/JHEP10(2013)101. (cited p. 93)

[116] L. H. Ford. GRAVITATIONAL RADIATION BY QUANTUM SYSTEMS. Annals
Phys., 144:238, 1982. doi:10.1016/0003-4916(82)90115-4. (cited p. 93)

[117] Patrick J. Fox, Ann E. Nelson, and Neal Weiner. Dirac gaugino masses and super-
soft supersymmetry breaking. JHEP, 08:035, 2002. arXiv:hep-ph/0206096,
doi:10.1088/1126-6708/2002/08/035. (cited p. 118)

[118] Ben Freivogel, Thomas Gasenzer, Arthur Hebecker, and Sascha Leonhardt. A
Conjecture on the Minimal Size of Bound States. SciPost Phys., 8(4):058, 2020.
arXiv:1912.09485, doi:10.21468/SciPostPhys.8.4.058. (cited p. 24)

[119] Joshua A. Frieman, Christopher T. Hill, Albert Stebbins, and Ioav Waga. Cosmol-
ogy with ultralight pseudo Nambu-Goldstone bosons. Phys. Rev. Lett., 75:2077–
2080, 1995. arXiv:astro-ph/9505060, doi:10.1103/PhysRevLett.75.
2077. (cited p. 35)

[120] Chang Jun Gao and Shuang Nan Zhang. Dilaton black holes in de Sitter or Anti-
de Sitter universe. Phys. Rev. D, 70:124019, 2004. arXiv:hep-th/0411104,
doi:10.1103/PhysRevD.70.124019. (cited p. 63)

[121] David Garfinkle, Gary T. Horowitz, and Andrew Strominger. Charged black
holes in string theory. Phys. Rev. D, 43:3140, 1991. [Erratum: Phys.Rev.D 45, 3888
(1992)]. doi:10.1103/PhysRevD.43.3140. (cited p. 9)

[122] Sumit K. Garg and Chethan Krishnan. Bounds on Slow Roll and the de Sit-
ter Swampland. JHEP, 11:075, 2019. arXiv:1807.05193, doi:10.1007/
JHEP11(2019)075. (cited p. 3)

[123] Naomi Gendler and Irene Valenzuela. Merging the weak gravity and distance
conjectures using BPS extremal black holes. JHEP, 01:176, 2021. arXiv:2004.
10768, doi:10.1007/JHEP01(2021)176. (cited pp. 38 and 40)

[124] Tony Gherghetta, Jörn Kersten, Keith Olive, and Maxim Pospelov. Evaluating
the price of tiny kinetic mixing. Phys. Rev. D, 100(9):095001, 2019. arXiv:1909.
00696, doi:10.1103/PhysRevD.100.095001. (cited p. 17)

[125] G. W. Gibbons and Kei-ichi Maeda. Black Holes and Membranes in Higher
Dimensional Theories with Dilaton Fields. Nucl. Phys. B, 298:741–775, 1988.
doi:10.1016/0550-3213(88)90006-5. (cited p. 9)

[126] G. F. Giudice, A. Riotto, and I. Tkachev. Thermal and nonthermal production of
gravitinos in the early universe. JHEP, 11:036, 1999. arXiv:hep-ph/9911302,
doi:10.1088/1126-6708/1999/11/036. (cited p. 98)

159

http://arxiv.org/abs/astro-ph/9711102
https://doi.org/10.1103/PhysRevD.58.023503
https://doi.org/10.1103/PhysRevD.58.023503
http://arxiv.org/abs/1306.6911
https://doi.org/10.1007/JHEP10(2013)101
https://doi.org/10.1016/0003-4916(82)90115-4
http://arxiv.org/abs/hep-ph/0206096
https://doi.org/10.1088/1126-6708/2002/08/035
http://arxiv.org/abs/1912.09485
https://doi.org/10.21468/SciPostPhys.8.4.058
http://arxiv.org/abs/astro-ph/9505060
https://doi.org/10.1103/PhysRevLett.75.2077
https://doi.org/10.1103/PhysRevLett.75.2077
http://arxiv.org/abs/hep-th/0411104
https://doi.org/10.1103/PhysRevD.70.124019
https://doi.org/10.1103/PhysRevD.43.3140
http://arxiv.org/abs/1807.05193
https://doi.org/10.1007/JHEP11(2019)075
https://doi.org/10.1007/JHEP11(2019)075
http://arxiv.org/abs/2004.10768
http://arxiv.org/abs/2004.10768
https://doi.org/10.1007/JHEP01(2021)176
http://arxiv.org/abs/1909.00696
http://arxiv.org/abs/1909.00696
https://doi.org/10.1103/PhysRevD.100.095001
https://doi.org/10.1016/0550-3213(88)90006-5
http://arxiv.org/abs/hep-ph/9911302
https://doi.org/10.1088/1126-6708/1999/11/036


BIBLIOGRAPHY

[127] G. F. Giudice, I. Tkachev, and A. Riotto. Nonthermal production of dangerous
relics in the early universe. JHEP, 08:009, 1999. arXiv:hep-ph/9907510, doi:
10.1088/1126-6708/1999/08/009. (cited pp. 98 and 112)

[128] Eduardo Gonzalo and Luis E. Ibáñez. A Strong Scalar Weak Gravity Conjecture
and Some Implications. JHEP, 08:118, 2019. arXiv:1903.08878, doi:10.
1007/JHEP08(2019)118. (cited pp. 24, 40, and 41)

[129] Eduardo Gonzalo and Luis E. Ibáñez. Pair Production and Gravity as the
Weakest Force. JHEP, 12:039, 2020. arXiv:2005.07720, doi:10.1007/
JHEP12(2020)039. (cited pp. 46 and 47)

[130] Mark Goodsell, Joerg Jaeckel, Javier Redondo, and Andreas Ringwald. Natu-
rally Light Hidden Photons in LARGE Volume String Compactifications. JHEP,
11:027, 2009. arXiv:0909.0515, doi:10.1088/1126-6708/2009/11/027.
(cited pp. 18 and 19)

[131] Maxim Goryachev and Michael E. Tobar. Gravitational Wave Detection with
High Frequency Phonon Trapping Acoustic Cavities. Phys. Rev. D, 90(10):102005,
2014. arXiv:1410.2334, doi:10.1103/PhysRevD.90.102005. (cited
p. 92)

[132] Kanato Goto, Hugo Marrochio, Robert C. Myers, Leonel Queimada, and Beni
Yoshida. Holographic Complexity Equals Which Action? JHEP, 02:160, 2019.
arXiv:1901.00014, doi:10.1007/JHEP02(2019)160. (cited pp. 61, 80,
and 87)

[133] Patrick B. Greene and Lev Kofman. Preheating of fermions. Phys. Lett. B,
448:6–12, 1999. arXiv:hep-ph/9807339, doi:10.1016/S0370-2693(99)
00020-9. (cited p. 113)

[134] Patrick B. Greene and Lev Kofman. On the theory of fermionic preheat-
ing. Phys. Rev. D, 62:123516, 2000. arXiv:hep-ph/0003018, doi:10.1103/
PhysRevD.62.123516. (cited p. 113)

[135] Thomas W. Grimm, Eran Palti, and Irene Valenzuela. Infinite Distances in Field
Space and Massless Towers of States. JHEP, 08:143, 2018. arXiv:1802.08264,
doi:10.1007/JHEP08(2018)143. (cited p. 3)

[136] John F. Gunion and Howard E. Haber. The CP conserving two Higgs doublet
model: The Approach to the decoupling limit. Phys. Rev. D, 67:075019, 2003.
arXiv:hep-ph/0207010, doi:10.1103/PhysRevD.67.075019. (cited
pp. 117, 123, and 124)

[137] John F. Gunion, Howard E. Haber, Gordon L. Kane, and Sally Dawson. The Higgs
Hunter’s Guide, volume 80. 2000. (cited p. 117)

[138] Howard E. Haber, Sven Heinemeyer, and Tim Stefaniak. The Impact of Two-
Loop Effects on the Scenario of MSSM Higgs Alignment without Decoupling.
Eur. Phys. J. C, 77(11):742, 2017. arXiv:1708.04416, doi:10.1140/epjc/
s10052-017-5243-5. (cited p. 118)

160

http://arxiv.org/abs/hep-ph/9907510
https://doi.org/10.1088/1126-6708/1999/08/009
https://doi.org/10.1088/1126-6708/1999/08/009
http://arxiv.org/abs/1903.08878
https://doi.org/10.1007/JHEP08(2019)118
https://doi.org/10.1007/JHEP08(2019)118
http://arxiv.org/abs/2005.07720
https://doi.org/10.1007/JHEP12(2020)039
https://doi.org/10.1007/JHEP12(2020)039
http://arxiv.org/abs/0909.0515
https://doi.org/10.1088/1126-6708/2009/11/027
http://arxiv.org/abs/1410.2334
https://doi.org/10.1103/PhysRevD.90.102005
http://arxiv.org/abs/1901.00014
https://doi.org/10.1007/JHEP02(2019)160
http://arxiv.org/abs/hep-ph/9807339
https://doi.org/10.1016/S0370-2693(99)00020-9
https://doi.org/10.1016/S0370-2693(99)00020-9
http://arxiv.org/abs/hep-ph/0003018
https://doi.org/10.1103/PhysRevD.62.123516
https://doi.org/10.1103/PhysRevD.62.123516
http://arxiv.org/abs/1802.08264
https://doi.org/10.1007/JHEP08(2018)143
http://arxiv.org/abs/hep-ph/0207010
https://doi.org/10.1103/PhysRevD.67.075019
http://arxiv.org/abs/1708.04416
https://doi.org/10.1140/epjc/s10052-017-5243-5
https://doi.org/10.1140/epjc/s10052-017-5243-5


BIBLIOGRAPHY

[139] Howard E. Haber and Ralf Hempfling. The Renormalization group improved
Higgs sector of the minimal supersymmetric model. Phys. Rev. D, 48:4280–4309,
1993. arXiv:hep-ph/9307201, doi:10.1103/PhysRevD.48.4280. (cited
p. 124)

[140] L. J. Hall and Lisa Randall. U(1)-R symmetric supersymmetry. Nucl. Phys. B,
352:289–308, 1991. doi:10.1016/0550-3213(91)90444-3. (cited p. 118)

[141] Daniel Harlow and Hirosi Ooguri. Symmetries in quantum field theory and
quantum gravity. 10 2018. arXiv:1810.05338. (cited p. 7)

[142] Daniel Hartley, Tupac Bravo, Dennis Rätzel, Richard Howl, and Ivette Fuentes.
Analogue simulation of gravitational waves in a 3+1 dimensional Bose-Einstein
condensate. Phys. Rev. D, 98(2):025011, 2018. arXiv:1712.01140, doi:10.
1103/PhysRevD.98.025011. (cited p. 92)

[143] Arthur Hebecker and Philipp Henkenjohann. Gauge and gravitational instan-
tons: From 3-forms and fermions to Weak Gravity and flat axion potentials.
JHEP, 09:038, 2019. arXiv:1906.07728, doi:10.1007/JHEP09(2019)038.
(cited p. 31)

[144] Arthur Hebecker, Patrick Mangat, Fabrizio Rompineve, and Lukas T. Witkowski.
Winding out of the Swamp: Evading the Weak Gravity Conjecture with F-term
Winding Inflation? Phys. Lett. B, 748:455–462, 2015. arXiv:1503.07912, doi:
10.1016/j.physletb.2015.07.026. (cited p. 31)

[145] Arthur Hebecker, Fabrizio Rompineve, and Alexander Westphal. Axion Mon-
odromy and the Weak Gravity Conjecture. JHEP, 04:157, 2016. arXiv:1512.
03768, doi:10.1007/JHEP04(2016)157. (cited p. 31)

[146] Ben Heidenreich, Matthew Reece, and Tom Rudelius. Weak Gravity Strongly
Constrains Large-Field Axion Inflation. JHEP, 12:108, 2015. arXiv:1506.
03447, doi:10.1007/JHEP12(2015)108. (cited p. 31)

[147] Ben Heidenreich, Matthew Reece, and Tom Rudelius. Sharpening the Weak
Gravity Conjecture with Dimensional Reduction. JHEP, 02:140, 2016. arXiv:
1509.06374, doi:10.1007/JHEP02(2016)140. (cited pp. 10, 11, and 12)

[148] Ben Heidenreich, Matthew Reece, and Tom Rudelius. Evidence for a sublattice
weak gravity conjecture. JHEP, 08:025, 2017. arXiv:1606.08437, doi:10.
1007/JHEP08(2017)025. (cited p. 12)

[149] Ben Heidenreich, Matthew Reece, and Tom Rudelius. Emergence of Weak Cou-
pling at Large Distance in Quantum Gravity. Phys. Rev. Lett., 121(5):051601, 2018.
arXiv:1802.08698, doi:10.1103/PhysRevLett.121.051601. (cited
p. 3)

[150] Ben Heidenreich, Matthew Reece, and Tom Rudelius. The Weak Gravity Conjec-
ture and Emergence from an Ultraviolet Cutoff. Eur. Phys. J. C, 78(4):337, 2018.
arXiv:1712.01868, doi:10.1140/epjc/s10052-018-5811-3. (cited
pp. 17 and 20)

161

http://arxiv.org/abs/hep-ph/9307201
https://doi.org/10.1103/PhysRevD.48.4280
https://doi.org/10.1016/0550-3213(91)90444-3
http://arxiv.org/abs/1810.05338
http://arxiv.org/abs/1712.01140
https://doi.org/10.1103/PhysRevD.98.025011
https://doi.org/10.1103/PhysRevD.98.025011
http://arxiv.org/abs/1906.07728
https://doi.org/10.1007/JHEP09(2019)038
http://arxiv.org/abs/1503.07912
https://doi.org/10.1016/j.physletb.2015.07.026
https://doi.org/10.1016/j.physletb.2015.07.026
http://arxiv.org/abs/1512.03768
http://arxiv.org/abs/1512.03768
https://doi.org/10.1007/JHEP04(2016)157
http://arxiv.org/abs/1506.03447
http://arxiv.org/abs/1506.03447
https://doi.org/10.1007/JHEP12(2015)108
http://arxiv.org/abs/1509.06374
http://arxiv.org/abs/1509.06374
https://doi.org/10.1007/JHEP02(2016)140
http://arxiv.org/abs/1606.08437
https://doi.org/10.1007/JHEP08(2017)025
https://doi.org/10.1007/JHEP08(2017)025
http://arxiv.org/abs/1802.08698
https://doi.org/10.1103/PhysRevLett.121.051601
http://arxiv.org/abs/1712.01868
https://doi.org/10.1140/epjc/s10052-018-5811-3


BIBLIOGRAPHY

[151] Ben Heidenreich, Matthew Reece, and Tom Rudelius. Repulsive Forces and the
Weak Gravity Conjecture. JHEP, 10:055, 2019. arXiv:1906.02206, doi:10.
1007/JHEP10(2019)055. (cited pp. 13, 14, and 46)

[152] Lavinia Heisenberg, Matthias Bartelmann, Robert Brandenberger, and Alexan-
dre Refregier. Dark Energy in the Swampland. Phys. Rev. D, 98(12):123502, 2018.
arXiv:1808.02877, doi:10.1103/PhysRevD.98.123502. (cited p. 36)

[153] Bob Holdom. Two U(1)’s and Epsilon Charge Shifts. Phys. Lett. B, 166:196–198,
1986. doi:10.1016/0370-2693(86)91377-8. (cited p. 15)

[154] Stefan Hollands, Robert M. Wald, and Jochen Zahn. Quantum instability of
the Cauchy horizon in Reissner–Nordström–deSitter spacetime. Class. Quant.
Grav., 37(11):115009, 2020. arXiv:1912.06047, doi:10.1088/1361-6382/
ab8052. (cited p. 77)

[155] Gary T. Horowitz and Jorge E. Santos. Further evidence for the weak gravity —
cosmic censorship connection. JHEP, 06:122, 2019. arXiv:1901.11096, doi:
10.1007/JHEP06(2019)122. (cited pp. 61 and 89)

[156] Luis E. Ibanez, Miguel Montero, Angel Uranga, and Irene Valenzuela. Relaxion
Monodromy and the Weak Gravity Conjecture. JHEP, 04:020, 2016. arXiv:
1512.00025, doi:10.1007/JHEP04(2016)020. (cited p. 31)

[157] Asuka Ito, Tomonori Ikeda, Kentaro Miuchi, and Jiro Soda. Probing GHz gravi-
tational waves with graviton–magnon resonance. Eur. Phys. J. C, 80(3):179, 2020.
arXiv:1903.04843, doi:10.1140/epjc/s10052-020-7735-y. (cited
p. 92)

[158] H. Itoyama and Nobuhito Maru. D-term Dynamical Supersymmetry Break-
ing Generating Split N=2 Gaugino Masses of Mixed Majorana-Dirac Type.
Int. J. Mod. Phys. A, 27:1250159, 2012. arXiv:1109.2276, doi:10.1142/
S0217751X1250159X. (cited p. 118)

[159] I. P. Ivanov. Two-Higgs-doublet model from the group-theoretic perspective.
Phys. Lett. B, 632:360–365, 2006. arXiv:hep-ph/0507132, doi:10.1016/j.
physletb.2005.10.015. (cited pp. 117, 122, and 125)

[160] Félix-Louis Julié. Gravitational radiation from compact binary systems in
Einstein-Maxwell-dilaton theories. JCAP, 10:033, 2018. arXiv:1809.05041,
doi:10.1088/1475-7516/2018/10/033. (cited pp. 83, 84, and 85)

[161] Daniel Junghans. Large-Field Inflation with Multiple Axions and the Weak
Gravity Conjecture. JHEP, 02:128, 2016. arXiv:1504.03566, doi:10.1007/
JHEP02(2016)128. (cited p. 31)

[162] Renata Kallosh, Lev Kofman, Andrei D. Linde, and Antoine Van Proeyen. Grav-
itino production after inflation. Phys. Rev. D, 61:103503, 2000. arXiv:hep-th/
9907124, doi:10.1103/PhysRevD.61.103503. (cited pp. 98 and 112)

162

http://arxiv.org/abs/1906.02206
https://doi.org/10.1007/JHEP10(2019)055
https://doi.org/10.1007/JHEP10(2019)055
http://arxiv.org/abs/1808.02877
https://doi.org/10.1103/PhysRevD.98.123502
https://doi.org/10.1016/0370-2693(86)91377-8
http://arxiv.org/abs/1912.06047
https://doi.org/10.1088/1361-6382/ab8052
https://doi.org/10.1088/1361-6382/ab8052
http://arxiv.org/abs/1901.11096
https://doi.org/10.1007/JHEP06(2019)122
https://doi.org/10.1007/JHEP06(2019)122
http://arxiv.org/abs/1512.00025
http://arxiv.org/abs/1512.00025
https://doi.org/10.1007/JHEP04(2016)020
http://arxiv.org/abs/1903.04843
https://doi.org/10.1140/epjc/s10052-020-7735-y
http://arxiv.org/abs/1109.2276
https://doi.org/10.1142/S0217751X1250159X
https://doi.org/10.1142/S0217751X1250159X
http://arxiv.org/abs/hep-ph/0507132
https://doi.org/10.1016/j.physletb.2005.10.015
https://doi.org/10.1016/j.physletb.2005.10.015
http://arxiv.org/abs/1809.05041
https://doi.org/10.1088/1475-7516/2018/10/033
http://arxiv.org/abs/1504.03566
https://doi.org/10.1007/JHEP02(2016)128
https://doi.org/10.1007/JHEP02(2016)128
http://arxiv.org/abs/hep-th/9907124
http://arxiv.org/abs/hep-th/9907124
https://doi.org/10.1103/PhysRevD.61.103503


BIBLIOGRAPHY

[163] Ryotaro Kase and Shinji Tsujikawa. Dark energy in Horndeski theories after
GW170817: A review. Int. J. Mod. Phys. D, 28(05):1942005, 2019. arXiv:1809.
08735, doi:10.1142/S0218271819420057. (cited p. 36)

[164] Mohammed Khalil, Noah Sennett, Jan Steinhoff, Justin Vines, and Alessandra
Buonanno. Hairy binary black holes in Einstein-Maxwell-dilaton theory and
their effective-one-body description. Phys. Rev. D, 98(10):104010, 2018. arXiv:
1809.03109, doi:10.1103/PhysRevD.98.104010. (cited pp. 83 and 84)

[165] S. Y. Khlebnikov and I. I. Tkachev. Relic gravitational waves produced after
preheating. Phys. Rev. D, 56:653–660, 1997. arXiv:hep-ph/9701423, doi:
10.1103/PhysRevD.56.653. (cited p. 93)

[166] Daniel Klaewer and Eran Palti. Super-Planckian Spatial Field Variations and
Quantum Gravity. JHEP, 01:088, 2017. arXiv:1610.00010, doi:10.1007/
JHEP01(2017)088. (cited p. 3)

[167] P. Ko and Yong Tang. Semi-annihilating Z3 dark matter for XENON1T ex-
cess. Phys. Lett. B, 815:136181, 2021. arXiv:2006.15822, doi:10.1016/j.
physletb.2021.136181. (cited p. 16)

[168] Lev Kofman, Andrei D. Linde, and Alexei A. Starobinsky. Towards the theory
of reheating after inflation. Phys. Rev. D, 56:3258–3295, 1997. arXiv:hep-ph/
9704452, doi:10.1103/PhysRevD.56.3258. (cited p. 91)

[169] Karta Kooner, Susha Parameswaran, and Ivonne Zavala. Warping the Weak
Gravity Conjecture. Phys. Lett. B, 759:402–409, 2016. arXiv:1509.07049,
doi:10.1016/j.physletb.2016.05.082. (cited p. 31)

[170] Alexander Kusenko, Volodymyr Takhistov, Masaki Yamada, and Masahito Ya-
mazaki. Fundamental Forces and Scalar Field Dynamics in the Early Uni-
verse. Phys. Lett. B, 804:135369, 2020. arXiv:1908.10930, doi:10.1016/
j.physletb.2020.135369. (cited p. 24)

[171] Kenneth Lane and William Shepherd. Natural stabilization of the Higgs boson’s
mass and alignment. Phys. Rev. D, 99(5):055015, 2019. arXiv:1808.07927,
doi:10.1103/PhysRevD.99.055015. (cited p. 117)

[172] Ibanez L.E. On towers and scalars. In String Phenomenology 2019. CERN, 2019.
(cited p. 24)

[173] Seung-Joo Lee, Wolfgang Lerche, and Timo Weigand. Modular Fluxes, Elliptic
Genera, and Weak Gravity Conjectures in Four Dimensions. JHEP, 08:104, 2019.
arXiv:1901.08065, doi:10.1007/JHEP08(2019)104. (cited p. 3)

[174] Dieter Lust and Eran Palti. Scalar Fields, Hierarchical UV/IR Mixing and The
Weak Gravity Conjecture. JHEP, 02:040, 2018. arXiv:1709.01790, doi:10.
1007/JHEP02(2018)040. (cited p. 27)

163

http://arxiv.org/abs/1809.08735
http://arxiv.org/abs/1809.08735
https://doi.org/10.1142/S0218271819420057
http://arxiv.org/abs/1809.03109
http://arxiv.org/abs/1809.03109
https://doi.org/10.1103/PhysRevD.98.104010
http://arxiv.org/abs/hep-ph/9701423
https://doi.org/10.1103/PhysRevD.56.653
https://doi.org/10.1103/PhysRevD.56.653
http://arxiv.org/abs/1610.00010
https://doi.org/10.1007/JHEP01(2017)088
https://doi.org/10.1007/JHEP01(2017)088
http://arxiv.org/abs/2006.15822
https://doi.org/10.1016/j.physletb.2021.136181
https://doi.org/10.1016/j.physletb.2021.136181
http://arxiv.org/abs/hep-ph/9704452
http://arxiv.org/abs/hep-ph/9704452
https://doi.org/10.1103/PhysRevD.56.3258
http://arxiv.org/abs/1509.07049
https://doi.org/10.1016/j.physletb.2016.05.082
http://arxiv.org/abs/1908.10930
https://doi.org/10.1016/j.physletb.2020.135369
https://doi.org/10.1016/j.physletb.2020.135369
http://arxiv.org/abs/1808.07927
https://doi.org/10.1103/PhysRevD.99.055015
http://arxiv.org/abs/1901.08065
https://doi.org/10.1007/JHEP08(2019)104
http://arxiv.org/abs/1709.01790
https://doi.org/10.1007/JHEP02(2018)040
https://doi.org/10.1007/JHEP02(2018)040


BIBLIOGRAPHY

[175] Joseph D. Lykken. Weak scale superstrings. Phys. Rev. D, 54:R3693–R3697, 1996.
arXiv:hep-th/9603133, doi:10.1103/PhysRevD.54.R3693. (cited
p. 19)

[176] Antonio Lopez Maroto and Jose R. Pelaez. The Equivalence theorem and the
production of gravitinos after inflation. Phys. Rev. D, 62:023518, 2000. arXiv:
hep-ph/9912212, doi:10.1103/PhysRevD.62.023518. (cited p. 111)

[177] Stephen P. Martin. Nonstandard Supersymmetry Breaking and Dirac Gaugino
Masses without Supersoftness. Phys. Rev. D, 92(3):035004, 2015. arXiv:1506.
02105, doi:10.1103/PhysRevD.92.035004. (cited p. 118)

[178] S. Mignemi. Exact solutions of dilaton gravity with (anti)-de Sitter asymp-
totics. Mod. Phys. Lett. A, 29:1450010, 2014. arXiv:0907.0422, doi:10.1142/
S0217732314500102. (cited p. 64)

[179] Miguel Montero, Angel M. Uranga, and Irene Valenzuela. Transplanck-
ian axions!? JHEP, 08:032, 2015. arXiv:1503.03886, doi:10.1007/
JHEP08(2015)032. (cited p. 31)

[180] T. Moroi, H. Murayama, and Masahiro Yamaguchi. Cosmological constraints
on the light stable gravitino. Phys. Lett. B, 303:289–294, 1993. doi:10.1016/
0370-2693(93)91434-O. (cited p. 112)

[181] Takeo Moroi. Effects of the gravitino on the inflationary universe. Other thesis,
3 1995. arXiv:hep-ph/9503210. (cited p. 94)

[182] Hitoshi Murayama, Masahito Yamazaki, and Tsutomu T. Yanagida. Do We Live
in the Swampland? JHEP, 12:032, 2018. arXiv:1809.00478, doi:10.1007/
JHEP12(2018)032. (cited p. 3)

[183] Kazunori Nakayama and Yong Tang. Gravitational Production of Hidden Pho-
ton Dark Matter in Light of the XENON1T Excess. Phys. Lett. B, 811:135977, 2020.
arXiv:2006.13159, doi:10.1016/j.physletb.2020.135977. (cited
p. 15)

[184] Ann E. Nelson and Tuhin S. Roy. New Supersoft Supersymmetry Breaking Oper-
ators and a Solution to the µ Problem. Phys. Rev. Lett., 114:201802, 2015. arXiv:
1501.03251, doi:10.1103/PhysRevLett.114.201802. (cited p. 119)

[185] Georges Obied, Hirosi Ooguri, Lev Spodyneiko, and Cumrun Vafa. De Sitter
Space and the Swampland. 6 2018. arXiv:1806.08362. (cited p. 3)

[186] L. B. Okun. LIMITS OF ELECTRODYNAMICS: PARAPHOTONS? Sov. Phys.
JETP, 56:502, 1982. (cited p. 15)

[187] Hirosi Ooguri, Eran Palti, Gary Shiu, and Cumrun Vafa. Distance and de Sitter
Conjectures on the Swampland. Phys. Lett. B, 788:180–184, 2019. arXiv:1810.
05506, doi:10.1016/j.physletb.2018.11.018. (cited p. 3)

164

http://arxiv.org/abs/hep-th/9603133
https://doi.org/10.1103/PhysRevD.54.R3693
http://arxiv.org/abs/hep-ph/9912212
http://arxiv.org/abs/hep-ph/9912212
https://doi.org/10.1103/PhysRevD.62.023518
http://arxiv.org/abs/1506.02105
http://arxiv.org/abs/1506.02105
https://doi.org/10.1103/PhysRevD.92.035004
http://arxiv.org/abs/0907.0422
https://doi.org/10.1142/S0217732314500102
https://doi.org/10.1142/S0217732314500102
http://arxiv.org/abs/1503.03886
https://doi.org/10.1007/JHEP08(2015)032
https://doi.org/10.1007/JHEP08(2015)032
https://doi.org/10.1016/0370-2693(93)91434-O
https://doi.org/10.1016/0370-2693(93)91434-O
http://arxiv.org/abs/hep-ph/9503210
http://arxiv.org/abs/1809.00478
https://doi.org/10.1007/JHEP12(2018)032
https://doi.org/10.1007/JHEP12(2018)032
http://arxiv.org/abs/2006.13159
https://doi.org/10.1016/j.physletb.2020.135977
http://arxiv.org/abs/1501.03251
http://arxiv.org/abs/1501.03251
https://doi.org/10.1103/PhysRevLett.114.201802
http://arxiv.org/abs/1806.08362
http://arxiv.org/abs/1810.05506
http://arxiv.org/abs/1810.05506
https://doi.org/10.1016/j.physletb.2018.11.018


BIBLIOGRAPHY

[188] Hirosi Ooguri and Cumrun Vafa. On the Geometry of the String Landscape
and the Swampland. Nucl. Phys. B, 766:21–33, 2007. arXiv:hep-th/0605264,
doi:10.1016/j.nuclphysb.2006.10.033. (cited pp. 3 and 19)

[189] Eran Palti. The Weak Gravity Conjecture and Scalar Fields. JHEP, 08:034, 2017.
arXiv:1705.04328, doi:10.1007/JHEP08(2017)034. (cited pp. 13, 24,
38, 39, and 40)

[190] Eran Palti. The Swampland: Introduction and Review. Fortsch. Phys.,
67(6):1900037, 2019. arXiv:1903.06239, doi:10.1002/prop.201900037.
(cited p. 2)

[191] Roger Penrose. Gravitational collapse and space-time singularities. Phys. Rev.
Lett., 14:57–59, Jan 1965. URL: https://link.aps.org/doi/10.1103/
PhysRevLett.14.57, doi:10.1103/PhysRevLett.14.57. (cited p. 10)

[192] Joseph Polchinski. Monopoles, duality, and string theory. Int. J. Mod.
Phys. A, 19S1:145–156, 2004. arXiv:hep-th/0304042, doi:10.1142/
S0217751X0401866X. (cited p. 7)

[193] Joseph Polchinski and Leonard Susskind. Breaking of Supersymmetry at
Intermediate-Energy. Phys. Rev. D, 26:3661, 1982. doi:10.1103/PhysRevD.
26.3661. (cited p. 118)

[194] S. J. Poletti, J. Twamley, and D. L. Wiltshire. Charged dilaton black holes with
a cosmological constant. Phys. Rev. D, 51:5720–5724, 1995. arXiv:hep-th/
9412076, doi:10.1103/PhysRevD.51.5720. (cited p. 61)

[195] Massimo Porrati, Rakibur Rahman, and Augusto Sagnotti. String Theory and
The Velo-Zwanziger Problem. Nucl. Phys. B, 846:250–282, 2011. arXiv:1011.
6411, doi:10.1016/j.nuclphysb.2011.01.007. (cited p. 92)

[196] Rakibur Rahman. Helicity-1/2 mode as a probe of interactions of a massive
Rarita-Schwinger field. Phys. Rev. D, 87(6):065030, 2013. arXiv:1111.3366,
doi:10.1103/PhysRevD.87.065030. (cited pp. 92 and 111)

[197] Lisa Randall and Raman Sundrum. A Large mass hierarchy from a small ex-
tra dimension. Phys. Rev. Lett., 83:3370–3373, 1999. arXiv:hep-ph/9905221,
doi:10.1103/PhysRevLett.83.3370. (cited p. 19)

[198] Bharat Ratra and P. J. E. Peebles. Cosmological Consequences of a Rolling Homo-
geneous Scalar Field. Phys. Rev. D, 37:3406, 1988. doi:10.1103/PhysRevD.
37.3406. (cited p. 34)

[199] Matthew P. G. Robbins, Niayesh Afshordi, and Robert B. Mann. Bose-Einstein
Condensates as Gravitational Wave Detectors. JCAP, 07:032, 2019. arXiv:
1811.04468, doi:10.1088/1475-7516/2019/07/032. (cited p. 92)

[200] Sean P. Robinson. Normalization conventions for Newton’s constant and
the Planck scale in arbitrary spacetime dimension. 9 2006. arXiv:gr-qc/
0609060. (cited p. 145)

165

http://arxiv.org/abs/hep-th/0605264
https://doi.org/10.1016/j.nuclphysb.2006.10.033
http://arxiv.org/abs/1705.04328
https://doi.org/10.1007/JHEP08(2017)034
http://arxiv.org/abs/1903.06239
https://doi.org/10.1002/prop.201900037
https://link.aps.org/doi/10.1103/PhysRevLett.14.57
https://link.aps.org/doi/10.1103/PhysRevLett.14.57
https://doi.org/10.1103/PhysRevLett.14.57
http://arxiv.org/abs/hep-th/0304042
https://doi.org/10.1142/S0217751X0401866X
https://doi.org/10.1142/S0217751X0401866X
https://doi.org/10.1103/PhysRevD.26.3661
https://doi.org/10.1103/PhysRevD.26.3661
http://arxiv.org/abs/hep-th/9412076
http://arxiv.org/abs/hep-th/9412076
https://doi.org/10.1103/PhysRevD.51.5720
http://arxiv.org/abs/1011.6411
http://arxiv.org/abs/1011.6411
https://doi.org/10.1016/j.nuclphysb.2011.01.007
http://arxiv.org/abs/1111.3366
https://doi.org/10.1103/PhysRevD.87.065030
http://arxiv.org/abs/hep-ph/9905221
https://doi.org/10.1103/PhysRevLett.83.3370
https://doi.org/10.1103/PhysRevD.37.3406
https://doi.org/10.1103/PhysRevD.37.3406
http://arxiv.org/abs/1811.04468
http://arxiv.org/abs/1811.04468
https://doi.org/10.1088/1475-7516/2019/07/032
http://arxiv.org/abs/gr-qc/0609060
http://arxiv.org/abs/gr-qc/0609060


BIBLIOGRAPHY

[201] L.J. Romans. Supersymmetric, cold and lukewarm black holes in cosmolog-
ical einstein-maxwell theory. Nuclear Physics B, 383(1-2):395–415, Sep 1992.
URL: http://dx.doi.org/10.1016/0550-3213(92)90684-4, doi:10.
1016/0550-3213(92)90684-4. (cited pp. 76, 80, 87, and 90)

[202] Christoph Roupec and Timm Wrase. de Sitter Extrema and the Swampland.
Fortsch. Phys., 67(1-2):1800082, 2019. arXiv:1807.09538, doi:10.1002/
prop.201800082. (cited p. 3)

[203] Tom Rudelius. Constraints on Axion Inflation from the Weak Gravity Conjecture.
JCAP, 09:020, 2015. arXiv:1503.00795, doi:10.1088/1475-7516/2015/
9/020. (cited p. 31)

[204] Tom Rudelius. On the Possibility of Large Axion Moduli Spaces. JCAP, 04:049,
2015. arXiv:1409.5793, doi:10.1088/1475-7516/2015/04/049. (cited
p. 31)

[205] Vyacheslav S. Rychkov and Alessandro Strumia. Thermal production of graviti-
nos. Phys. Rev. D, 75:075011, 2007. arXiv:hep-ph/0701104, doi:10.1103/
PhysRevD.75.075011. (cited p. 112)

[206] Carlos Sabin, David Edward Bruschi, Mehdi Ahmadi, and Ivette Fuentes.
Phonon creation by gravitational waves. New J. Phys., 16:085003, 2014.
arXiv:1402.7009, doi:10.1088/1367-2630/16/8/085003. (cited pp. 92
and 116)

[207] Ralf Schützhold. Interaction of a Bose-Einstein condensate with a gravitational
wave. Phys. Rev. D, 98(10):105019, 2018. arXiv:1807.07046, doi:10.1103/
PhysRevD.98.105019. (cited p. 92)

[208] Satoshi Shirai and Masahito Yamazaki. Is Gravity the Weakest Force?
Class. Quant. Grav., 38(3):035006, 2021. arXiv:1904.10577, doi:10.1088/
1361-6382/abc524. (cited pp. 24, 38, and 40)

[209] Tetsuya Shiromizu. Dilatonic probe, force balance and gyromagnetic ratio.
Phys. Lett. B, 460:141–147, 1999. arXiv:hep-th/9906177, doi:10.1016/
S0370-2693(99)00758-3. (cited p. 86)

[210] Alexei A. Starobinsky. Spectrum of relict gravitational radiation and the early
state of the universe. JETP Lett., 30:682–685, 1979. (cited p. 91)

[211] Alexei A. Starobinsky. A New Type of Isotropic Cosmological Models With-
out Singularity. Phys. Lett. B, 91:99–102, 1980. doi:10.1016/0370-2693(80)
90670-X. (cited p. 33)

[212] Paul J. Steinhardt, Li-Min Wang, and Ivaylo Zlatev. Cosmological tracking so-
lutions. Phys. Rev. D, 59:123504, 1999. arXiv:astro-ph/9812313, doi:
10.1103/PhysRevD.59.123504. (cited p. 35)

166

http://dx.doi.org/10.1016/0550-3213(92)90684-4
https://doi.org/10.1016/0550-3213(92)90684-4
https://doi.org/10.1016/0550-3213(92)90684-4
http://arxiv.org/abs/1807.09538
https://doi.org/10.1002/prop.201800082
https://doi.org/10.1002/prop.201800082
http://arxiv.org/abs/1503.00795
https://doi.org/10.1088/1475-7516/2015/9/020
https://doi.org/10.1088/1475-7516/2015/9/020
http://arxiv.org/abs/1409.5793
https://doi.org/10.1088/1475-7516/2015/04/049
http://arxiv.org/abs/hep-ph/0701104
https://doi.org/10.1103/PhysRevD.75.075011
https://doi.org/10.1103/PhysRevD.75.075011
http://arxiv.org/abs/1402.7009
https://doi.org/10.1088/1367-2630/16/8/085003
http://arxiv.org/abs/1807.07046
https://doi.org/10.1103/PhysRevD.98.105019
https://doi.org/10.1103/PhysRevD.98.105019
http://arxiv.org/abs/1904.10577
https://doi.org/10.1088/1361-6382/abc524
https://doi.org/10.1088/1361-6382/abc524
http://arxiv.org/abs/hep-th/9906177
https://doi.org/10.1016/S0370-2693(99)00758-3
https://doi.org/10.1016/S0370-2693(99)00758-3
https://doi.org/10.1016/0370-2693(80)90670-X
https://doi.org/10.1016/0370-2693(80)90670-X
http://arxiv.org/abs/astro-ph/9812313
https://doi.org/10.1103/PhysRevD.59.123504
https://doi.org/10.1103/PhysRevD.59.123504


BIBLIOGRAPHY

[213] Jennie H. Traschen and Robert H. Brandenberger. Particle Production During
Out-of-equilibrium Phase Transitions. Phys. Rev. D, 42:2491–2504, 1990. doi:
10.1103/PhysRevD.42.2491. (cited p. 91)

[214] Shinji Tsujikawa. Quintessence: A Review. Class. Quant. Grav., 30:214003, 2013.
arXiv:1304.1961, doi:10.1088/0264-9381/30/21/214003. (cited
pp. 32, 34, and 36)

[215] James Unwin. R-symmetric High Scale Supersymmetry. Phys. Rev. D, 86:095002,
2012. arXiv:1210.4936, doi:10.1103/PhysRevD.86.095002. (cited
p. 118)

[216] Cumrun Vafa. The String landscape and the swampland. 9 2005. arXiv:
hep-th/0509212. (cited p. 2)

[217] Carsten van de Bruck and Cameron C. Thomas. Dark Energy, the Swampland
and the Equivalence Principle. Phys. Rev. D, 100(2):023515, 2019. arXiv:1904.
07082, doi:10.1103/PhysRevD.100.023515. (cited p. 36)

[218] Giorgio Velo and Daniel Zwanziger. Propagation and quantization of Rarita-
Schwinger waves in an external electromagnetic potential. Phys. Rev., 186:1337–
1341, 1969. doi:10.1103/PhysRev.186.1337. (cited p. 92)

[219] S. Weinberg. Gravitation and Cosmology : Principles and Applications of the General
Theory of Relativity. 1972. (cited p. 91)

[220] C. Wetterich. Cosmology and the Fate of Dilatation Symmetry. Nucl. Phys.
B, 302:668–696, 1988. arXiv:1711.03844, doi:10.1016/0550-3213(88)
90193-9. (cited p. 34)

[221] Ivaylo Zlatev, Li-Min Wang, and Paul J. Steinhardt. Quintessence, cosmic co-
incidence, and the cosmological constant. Phys. Rev. Lett., 82:896–899, 1999.
arXiv:astro-ph/9807002, doi:10.1103/PhysRevLett.82.896. (cited
p. 35)

[222] Lei Zu, Guan-Wen Yuan, Lei Feng, and Yi-Zhong Fan. Mirror Dark Matter and
Electronic Recoil Events in XENON1T. Nucl. Phys. B, 965:115369, 2021. arXiv:
2006.14577, doi:10.1016/j.nuclphysb.2021.115369. (cited p. 16)

167

https://doi.org/10.1103/PhysRevD.42.2491
https://doi.org/10.1103/PhysRevD.42.2491
http://arxiv.org/abs/1304.1961
https://doi.org/10.1088/0264-9381/30/21/214003
http://arxiv.org/abs/1210.4936
https://doi.org/10.1103/PhysRevD.86.095002
http://arxiv.org/abs/hep-th/0509212
http://arxiv.org/abs/hep-th/0509212
http://arxiv.org/abs/1904.07082
http://arxiv.org/abs/1904.07082
https://doi.org/10.1103/PhysRevD.100.023515
https://doi.org/10.1103/PhysRev.186.1337
http://arxiv.org/abs/1711.03844
https://doi.org/10.1016/0550-3213(88)90193-9
https://doi.org/10.1016/0550-3213(88)90193-9
http://arxiv.org/abs/astro-ph/9807002
https://doi.org/10.1103/PhysRevLett.82.896
http://arxiv.org/abs/2006.14577
http://arxiv.org/abs/2006.14577
https://doi.org/10.1016/j.nuclphysb.2021.115369

	An introduction to the Swampland and the Weak Gravity Conjecture
	The Weak Gravity Conjecture
	The Swampland
	The Weak Gravity Conjecture : definition

	Developments of the Weak Gravity Conjecture
	Case of multiple U(1)s 
	A dilatonic WGC
	Different Lattice and Tower Weak Gravity Conjectures
	Repulsive Force Conjecture


	WGC and U(1) mixing
	Revisiting the Scalar Weak Gravity Conjecture
	Towards a Scalar Weak Gravity Conjecture
	Scalar vs Gravity in the non-relativistic regime
	Single Scalar Field Potentials
	The Mexican Hat or Higgs-like Quartic Potential
	Axion-like Potential
	Inverse power-law effective scalar potential
	Exponential Scalar Potential
	Starobinsky Potential
	Weak Gravity and Quintessence

	Multiple Scalar and Moduli Fields
	Conclusions

	Scalar Weak Gravity Conjecture and dimensional reduction
	Lower dimensional EFT and scattering amplitudes
	Vertices
	Force between K.K. states
	Pair Production and the Weak Gravity

	Compactification of scalar interactions
	2, 3 and 4 operators
	Scattering Amplitudes, SWGC and RFC

	Massive dilaton
	Conclusion

	Dilatonic WGC in (Anti-)de Sitter space
	dS-WGC conjecture and dS dilatonic black hole solutions
	A dS-WGC conjecture
	A dilatonic (A-)dS black-hole solution

	Study of the horizons of dilatonic dS black holes
	=1
	>1
	Some comments on the <1 case
	13<<1
	=13
	<13

	AdS case
	Test particles in charged dilatonic black hole metric
	Large distance action of the dilatonic black holes on a test particle
	Forces between two point-like states with black holes charges 

	Conclusion

	Spin 3/2 and gravitational waves
	Introduction
	The Rarita-Schwinger fields
	Gravitational wave production
	General results
	Helicity 32
	Helicity 12
	Summary and interpretation

	Spin-3/2 state produced during preheating and gravitational wave spectrum
	Conclusion

	Higgs alignment in 2HDM
	Introduction
	Short presentation of the model 
	R-symmetric Higgs alignment
	R-symmetry breaking and misalignment
	Conclusions

	Dimensional Reduction of massless scalar field on a circle
	Gravitational action
	Free higher dimensional scalar field
	Compactification via the higher dimensional gravitational vertices

	Gravitational D-dependent vertex
	Bibliography

