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However, other ones claim that it is active as it allows to transform the signal power to a load. Our will is not to go into this debate, which is not of these thesis objectives, and we will only sort diodes in active class, because 2 diodes can give a transistor, which is clearly an active element.

One key component so far is the transistor owing to its reliable capabilities in switching, amplification and micro-scaleability. The performances of an electronic device are improved by incorporating smaller and faster circuit components. This approach serves many purposes, for example: reliability because fewer components are involved. However, transistor scaling is under challenging as it is presently few nano-meters in size, hence the need for an alternative to transistor for future electronic systems design. Scalability of electronic components becomes an important factor in order to meet the increasing demand of reliable digital electronic systems.

Nowadays, nano-scaleability is one of the main challenges in the electronics industries [1], especially due to the high demand of faster and more reliable systems (small, medium and large scales). For seven decades, transistor is the leading component contributing to the exponential advancement in electronic systems and designs [2]. However, modern transistor suffers nano-scaleability owing to its infinitesimal dimension [3]. The performance of devices and systems improves with the reduction in the size of their constitutive circuitries [4] and often brings about the advantages such as reliability, lower power consumption, speed, cheapness, efficient handling etc, thanks to memristor nanoscaleability.

Memristor is a two-terminals nonlinear dynamic electronic device and is typically a passive nano-device whose conductivity is controlled by the time-integral of the applied voltage (also known as flux) across it or the time-integral of the current (also known as charge) flowing through it. This new component is proclaimed to be the fourth basic passive circuit element (along side resistor, capacitor and inductor) having interesting features that make it to be a proper replacement of transistor in various applications. For example: high density memory applications, bio-electronics or bio-inspired applications, storage and processing of big data, and image recognition and processing. It is impossible to completely discard transistor due to the emergence of memristor because it is an active device while memristor is a passive one. However, using both of them in a circuit will tremendously improve its performances, because one memristor can replace multiple transistors.

Memristive behaviour has been observed experimentally for two centuries but remained unidentified because no one had ever thought on the contingency of the fourth basic circuit element in electronics. The first man-made memristor dated in 1801 by English chemist Humphry Davy [5], in which the fingerprint of a memristor manifested experimentally with carbon arc discharge lamp (incandescent light) and was considered as the first artificial electric light source. Some devices and systems were shown to possess the now well known signature of a memristive device (pinched hysteresis loop) owing to their inholding inertia [6] which occurs from the movement of mobile ions or oxygen vacancies, the formation and splitting of conductive filaments and phase change transition of some materials for data storage, e.g sputtered Ge 2 Sb 2 Te 5 films [START_REF] Wuttig | Phase-change materials for rewriteable data storage[END_REF][START_REF] Kato | Electronic properties of amorphous and crystalline ge2sb2te5 films[END_REF]. This inertia causes latency in the system mechanism, thereby making it to exhibit memory effect. Contemporarily, memory effect is also seen in nano devices [START_REF] Yuriy | Memory effects in complex materials and nanoscale systems[END_REF] in which the dynamics of electrons and ions depends on the previous history of the device.

In 1971, a circuit theorist in person of Professor Leon Chua [10] observed from symmetrical argument of the circuit elements (shown in Fig. 2.2) that for the sake of completeness there should be a fourth passive circuit element in addition to the conventional resistor, capacitor and inductor. He theorized the existence of the memristor and its electromagnetic interpretation. However, memristor differs from the 3 other passive circuit elements in the sense that it is a nonlinear element and capable of storing information. As clearly presented in [START_REF] Chua | Memristor-the missing circuit element[END_REF], some theories were established supporting the existence of the fourth basic circuit element, its electromagnetic interpretation and some promising applications.

Few years later, Chua and Kang [START_REF] Leon | Memristive devices and systems[END_REF] elaborated a broader class of nonlinear systems called the memristive systems, as discussed in section 2.4.1.

Although the principle theories of memristor exist [START_REF] Chua | Memristor-the missing circuit element[END_REF], its realization remained a mystery for nearly four decades. Then in 2008 [START_REF] Strukov | The missing memristor found[END_REF], a team of researchers from Hewlett Packard (HP) laboratory led by Stanley Williams published a paper in Nature Journal announcing their successful realization of a two-terminals solid state device bearing the characteristics of the memristor described by L. Chua in 1971 [START_REF] Chua | Memristor-the missing circuit element[END_REF]. This discovery, that is described as accidental while working on nano crossbar grid [3], paved way for more awareness that kept attracting attention of many researchers, engineers and scientists in the world, therefore exploring more possible features of memristor in terms of applications and technologies. Some of the memristor technologies are Redox reaction, Ferro-electricity, Organic etc ..., and will be discussed in chapter 3.

The conventional resistance to the flow of charges through a conducting material or wire is often described analogously like flowing water through a pipe of uniform cross sectional area. The analogy of memristance with respect to the flowing charge is seen in a flowing water through a pipe having a variable diameter [START_REF] Nugent | Knowm memristor introduction[END_REF][START_REF] Krogh | An introduction to the memristor-a valuable circuit element in bioelectricity and bioimpedance[END_REF]. The volume of water flowing through the pipe increases with increasing of the pipe's diameter, hence the water encounters a lower resistance path, while it decreases with decreasing of the pipe's diameter, hence encounters a higher resistance path. Considering a tap in between will enable water flowing in either direction, and allows to control the water flow. This analogy is demonstrated in Fig. 1.1. The tap is acting as the state variable of the system, thus maintaining the switching dynamics from high memristance state to the low memristance state and vice-versa. Notice that the most important aspect is the switching transition where the memristance is described relatively by the effect of R on and R o f f . Memristor is seen as the most promising element, not only capable to replace transistor for some applications, but also to revolutionize electronic industries virtually in every facets of electronic systems, design and applications [3]. Hence, memristor becomes a suitable component for nanotechnology. The most common properties that make memristor a good candidate for feature technologies are: Nano-scalability, Memory capabilities, Conductance modulation and Nonlinearities whose contemporary demand is at peak. For example, transistors suffer nano-scalability limitations due to their finite dimensions while it would be required that they can be of infinitesimal dimensions. Therefore they cannot effectively undergo any further reduction in size as it is presently a few nano-meter [START_REF] Irving | Smallest 3d transistors ever made measure a minuscule 2.5 nanometers[END_REF].

As it was stated by Gordon Moore, who is a co-founder of Intel cooperation, "The number of transistors incorporated in a chip should approximately double every 18 months" and hence is called Moore's Law. This law holds only if the sizes of chip's associated circuitries keep reducing, otherwise the law will cease to be true. Transistors are tiny electrical switches, forming the fundamental unit that drives all the electronic gadgets. As the transistors get smaller, they also get faster and consume less electricity to operate.

Obviously, there will be a limit when transistors can not undergo any further reduction in size, which seems to be different with memristor nano-scaleability.

However, the memristor discovery in [START_REF] Strukov | The missing memristor found[END_REF] is still under criticism as some researchers do not believe in the found memristor [START_REF] Mouttet | Memresistors and non-memristive zero-crossing hysteresis curves[END_REF][START_REF] Mouttet | The memristor and the scientific method[END_REF]. In [START_REF] Vongehr | The missing memristor has not been found[END_REF], they showed that the real memristor stated in [START_REF] Chua | Memristor-the missing circuit element[END_REF] is not found and even impossible. Intuitively, the three known passive circuit elements (R, L and C) are unquestionably independent of one another and they are in existence naturally, hence also refered to as the fundamental circuit elements. However, on the other hand, the claim for memristor as the fourth fundamental circuit element is challenging owing to its one-to-one resistor dependencies [START_REF] Abraham | The case for rejecting the memristor as a fundamental circuit element[END_REF]. Namely, having exact same unit of measurement as ohm Ω and a deductive-like expression, as:

M = v i = dφ dt dq dt = dφ dq = M(q) , (1.1) 
it resembles very much to resistor. Here M(q) is the memristance and it is expressed in ohms like resistor. Notwithstanding, the fact that memristor cannot be realized by any simple combination of the three basic circuit elements (R, L and C) proves that memristor is actually a fundamental circuit element [3]. Although its position as the fourth passive circuit element is challenging [START_REF] Vongehr | The missing memristor has not been found[END_REF][START_REF] Abraham | The case for rejecting the memristor as a fundamental circuit element[END_REF], memristor has massive technological impact and it appears to be a good candidate for numerous designs and applications. Moreover, since its inception in 2008, thousands of publications were published on memristor technologies and applications (too many to be all cited) and in doing so they affirmed memristor as the fourth basic circuit element. The number of memristor publications grows exponentially, hence outweighed the few criticisms.

1.2/ AIMS AND OBJECTIVES OF THE THESIS

The aim of this thesis is to develop a multipurpose Memristor based two-dimensional (2D)

Cellular Nonlinear/Neural Networks (CNNs) for information processing. The process entails using memristor as synaptic link between neurons in electronic models, as for example in hybrid technologies with neuronal electronic prosthesis between real neurons. The network is initially composed of a linear capacitor and a nonlinear resistance in parallel for each cell and a linear resistor in series, see Fig. 

1.3/ ORGANIZATION

This document is organized in three parts. The first part includes the first three chapters, containing the general introduction and the memristor insights. The second part contains the fourth and fifth chapters, presenting the contribution of this thesis on the memristor and its model. The third part includes the remaining chapters, presenting the applications of memristor in 2D CNN, 1D diffusive network and the general conclusion.

The followings are the mentions of the chapters.

Chapter 1: Introduction: This chapter presents the general introduction and foresight for the need of memristor in nano-technology, motivation, the aims and objectives of this thesis.

Chapter 2: Review on the basic circuit elements and memristor interpretation: This chapter presents the general review on the four basic passive circuit elements, then a thorough interpretation of the memristor and some of its potential applications. The motivation is to explore more features of the memristor which could eventually guide researchers working in the field, from basic modeling up to practical implementation.

Chapter 3: Memristor technologies and models: This chapter presents the memristor technologies and insights into the HP TiO 2 memristor. It further explores some subtleties of the memristor.

Chapter 4: φ-q curve description of HP TiO 2 memristor and the new model: This chapter presents the graphical description of the φ-q curve, explaining the response of a memristor from its constitutive relationship. A new model is presented and it is used in the subsequent chapters to study the interaction of memristor within the cells. duces the application of a memristor in cellular nonlinear network, then presents extensively, the dynamics of a charge-controlled memristor between two RC cells, the behavior of memristor in CNN neighborhood connections, memristor asymmetry and its effect in linking two RC cells bidirectionally. Furthermore, memristor fuse manifests symmetry features, hence it becomes part of the discussion.

Chapter 6: Memristor coupled 2 cells with cubic resistance: This chapter presents the interaction of memristor between two pixel cells, with the cells comparable to Fitzhugh-Nagumo cells. Then, the generalized memristor based 2D network is presented. The chapter is concluded by an introduction of one-dimensional (1D) diffusive network using memristive coupling.

Chapter 7: The general Conclusion and perspectives: Finally, the general conclusion and perspectives are presented, including the published contributions.

REVIEW ON CIRCUIT ELEMENTS AND MEMRISTOR INTERPRETATION

This chapter gives the review on the four basic passive circuit elements. Firstly, the three familiar passive circuit elements (R, L and C) are introduced briefly, focusing specifically on their geometrical features, while memristor is treated comprehensively. Electronic network comprises of causes and effects. The causes here refer to any various voltage or current sources and the effects are part of the network using or sinking the energy given by the sources. Active elements and passive elements are commonly used in place of causes and effects respectively. In general, active circuit elements are capable to generate electric power while passive circuit elements can only store, use or deny the generated power for example resistor, capacitor. Additionally, transistor is an active device owing to its ability to generate power gain. These circuit elements altogether form electronic devices (see Fig. 2.1) that have been one of the major bedrock for human civilization owing to their tremendous contribution in the advancement of electronic industries. 10CHAPTER

REVIEW ON CIRCUIT ELEMENTS AND MEMRISTOR INTERPRETATION

The basic active circuit elements are voltage and current sources in the form of dependent or independent sources. In addition, there are four fundamental circuit variables: electric current i, electric voltage v, electric charge q, and magnetic flux φ, where q and φ are defined as the time integrals of i and v respectively. These circuit variables are inter-related or linked accordingly to the basic passive circuit elements which include the three known conventional two-terminals basic passive circuit elements, namely: resistor R, capacitor C, and inductor L. These passive circuit elements are defined in terms of the constitutive relationships: f (n, m) = 0 between any pair of the four aforementioned circuit variables,

where n and m could be any of i, v, q or φ variables. The three fundamental known passive circuit elements (R, L and C) in conjunction with the definitions of charge(q) and flux(φ) lead to five known possible relationships as shown in Fig. 2.2, and thus, in connection to other circuit elements have been the remarkable circuit components in the history of electronic system design.

In 1971, Leon Chua posited the missing basic circuit element [START_REF] Chua | Memristor-the missing circuit element[END_REF] from symmetry argument, studying Fig. 2.2. He proposed that, for the sake of completeness, there should be a fourth fundamental passive circuit element defined by the mathematical relationship between electric charge q and magnetic flux φ, thus having a constitutive relation:

f (φ, q) = 0, see the red segment of Fig. 2.

Leon Chua named the circuit element as

Memristor M, a portmanteau of 'memory' and 'resistor'. The name (memory resistor) portrays that memristor is nothing else than a resistor with memory. This fact arises due to the peculiar nature of memristor to remember the history (memory effect) of its previous state (resistance), even after the power is disconnected and restarted from this previous state if the power is reconnected, irrespective of the duration upon which the power is ON or OFF (i.e it could be a day, a month or years) [3]. This special property suggests memristor to be a promising element in memory applications. These four circuit variables in conjunction with the four passive circuit elements produced a set of six possible equations, one equation more than the previous five already known equations, due to the presence of memristor. Hence, these relationships are summarized in Table 2.1. We first recognize the relationship between electric voltage v and magnetic flux φ, as typically known from Faraday's law, as:

v(t) = dφ(t) dt or equivalently : φ(t) = t -∞ v(τ)d(τ) , (2.1) 
that is,

φ(t) = t 0 v(τ)d(τ) + φ 0 ,
where φ 0 = 0 -∞ v(τ)dτ, is the initial flux at time t = 0 and may be zero or nonzero.

Similarly, the relationship between electric current i and electric charge q is conventionally known as; i(t) = dq(t) dt or equivalently :

q(t) = t -∞ i(τ)d(τ) (2.2) ⇒ q(t) = t 0 i(τ)d(τ) + q 0 ,
where q 0 = 0 -∞ i(τ)dτ is the initial charge at time t = 0 and may be zero or nonzero. 

2.1/ RESISTOR

Resistor is a passive two-terminals basic electronic component discovered by Georg Simon Ohm in 1827, in which, at a constant temperature, the current flowing through these terminals is directly proportional to the voltage drop across it.

Resistance is an inherent property of a material that resists to the flow of electric charge (or electric current) through it, dissipating power in the process as heat. Letter R is usually used to denote resistance and it has measurement unit as Ohm named after the inventor, The resistance of a material is expressed by the constitutive relationship between voltage v and current i such that f (v, i) = 0, or:

dv = R di. (2.3) 
For nonlinear function, equation (2.3) can be expressed as v = f R (i). Hence, resistors are characterized by: the resistance, the tolerance, the maximum working voltage, the power rating, the temperature coefficient, the noise, and even an inductance effect [START_REF] Kanpur Kothi Mandhana | A seminar report on memristor[END_REF].

We are not going into details by analyzing the effect of these factors on the resistance of a material. However, we highlight three important aspects as enumerated underneath.

This is also applicable to capacitor and inductor. The expressions of resistance could be derived in the following point of view:

(i) Circuit viewpoint: A resistor of resistance R being connected across a voltage source V, then a current I will flow through the resistor according to:

V = IR , (2.4) 
this relationship is called Ohm's law and is considered as the circuit view point of a resistor.

(ii) Energy viewpoint: The energy in a resistor E R is the heat dissipated as a result of the current flowing through it. This energy is also known as the Joule effect, it is caused by the inelastic collisions between electrons as they drift from one atom to another, this phenomenon is given in eq. (2.10). Conventionally, the power in a circuit is given by: P = V.I, using (2.4), thus the power becomes:

P = I 2 R. (2.5) 
Recall that power P is given by:

P = dE R dt ,
where E R is the energy (heat dissipated) in a resistor and t is the time during which the current I flowed. It implies that:

E R = t 0 I 2 R dt ⇒ E R = I 2 R t.
(2.6)

(iii) Geometry viewpoint: This refers to the physical resistor device given in Fig. 2.4.

There are basically four factors affecting the resistance of a resistor and these factors are briefly discussed in the following. • Cross-sectional area of the conductor, A : We know that by definition, resistance is the opposition to the flow of electrons through a conductive material (Fig. 2.4) under the influence of potential difference. Obviously, for the same conductive material under the same applied voltage, a larger cross-sectional area A will allow the moving electrons to experience lower opposition or resistance and a lower area will make the moving electrons experience a higher opposition or resistance. We can easily observe this scenario in a non-uniform conductive wire whose resistance changes along its axial length due to the variation in width. It shows that: R ∝ 1 A .

• Length of the conductor, L : As the conductive wire becomes longer, electrons have to cover longer distance and would experience more collisions in the process which in essence will contribute to a higher opposition or resistance than usual. It follows that: R ∝ L.

• Nature of the conducting material, Resistivity ρ : The nature of the material determines its opposition to the flow of electric current through it. It could be from the number of atoms, its organization and the number of free electrons.

These are all put together and termed as Resistivity ρ (Ωm). The higher the resistivity of the material, the higher the opposition or resistance to the electrons flow and, the lower the resistivity, the lower resistance to the electrons flow.

Note that the inverse of resistivity is called the conductivity σ. For example, silver metal has lower resistivity than copper metal: as a result, silver metal offers lower resistance to the current flow. Thus: R ∝ ρ.

• Temperature, T : Change in temperature causes a change in the resistance of the material. As the temperature of the material increases, the kinetic energy of the electrons increases which will consequently increase the rate of collisions between atoms and electrons, hence an increasing resistance. Conversely, lower temperature signifies lower resistance.

Equation (2.4) can be rewritten as:

J = σE = 1 ρ E, (2.7) 
where:

J is current density (in Ampere per meter-square) expressed as: J = I A u, I is current (in Ampere), u is a unit vector of same direction than the current I and A is the enclosed area, E is electric field (in V/m) expressed as: E = -∇ l V, i.e the gradient of V with respect to partial variable x, parallel to the length L, L is the length of the conductive wire (in meter),

V is the potential difference, while σ and ρ are conductivity and resistivity respectively.

For uniform conductive wire (Fig. 2.4), the modulus of vectors J and E (or J and E)

can respectively be written as follows:

J = 1 ρ E and E = dV dL = V L .
Using the relation between J and E in (2.7), we get:

I A = 1 ρ V L ⇒ V = ρL A I. (2.8) 
Finally, comparing (2.4) and (2.8), we get the resistance expression as: R = ρL A (2.9)

If the resistivity ρ of the material is known, then A and l are measured and its resistance R can be calculated using (2.9).

The resistivity ρ or conductivity σ can be obtained from the microscopic interpretation of Ohm's law, by simple derivation if the constituents of the material are known.

We know that the electric conduction in a material is due to the electronic drifting from one side to another one under the influence of potential difference. If n is the density of charges contained in a given volume of material (e.g Fig. 2.4), -e is the charge of the electrons and v is the drift velocity, while positive ions can be considered as static, then current density J can be written as follows:

J = -nev.
If m is the electron's mass, excited by a force F such that F = -eE and braked by a force proportional to its velocity, its acceleration a is given by: ma = -eEkv,

where k in N.s.m -1 is a fixed parameter for braking. A maximum velocity v max of the electron is attained as a limit according to this acceleration effect and the braking effect due to collisions with another electrons or fixed ions -before the electron collides with another electron or atom. If the average time to attain this maximum speed is t , then; v max becomes:

v max = - eE k = - eE m t .
Moreover, the drift speed v is generally considered to be the average speed given by v max 2 , such that:

v = - eE 2m t .
The link between the velocity of the charges and the electric field being v = µ E, we get the mobility |µ| = e 2m t . Substituting v into J's expression, we also get: 

J = ne 2 E 2m t ⇒ ρ = 2m ne 2 t . ( 2 

2.2/ CAPACITOR

Capacitor is the first passive two-terminals basic electronic component invented by Ewald Georg von Kleist in 1745 [START_REF] Isah | Le memristor, qu'est ce que c'est? 5-13[END_REF]. It comprises of two conductive materials separated by a dielectric. The dielectric could be air or any appropriate insulation material. Condenser is almost synonymous to capacitor, condenser being for the circuit element, capacitance for the electric characteristic, then these terminologies are often used interchangeably. Capacitance characterizes the amount of charge stored in the condensator between two parallel conducting materials subjected to potential difference. It is described by the constitutive relationship f (v, q) = 0, such that:

dq = C dv. (2.11)
Therefore, q = f C (v). The function f C may be nonlinear as for example in varicap diodes.

Capacitance is measured in Farad F, often used with sub-multiple prefix such as micro (µ), nano (n), pico (p) etc, because Farad unit is very large. The size of 1 Farad capacitor will be extremely large and not met in real systems. Like resistor, there are many different types of capacitors used for different applications. For example: Ceramic capacitor, electrolytic, film, Tantalum, Silva Mica, variable, SMD capacitors etc. Some images of these capacitors are shown in Fig. 2.5.

Similarly, one can see the description of a capacitance in three different points of view as follows:

i) Circuit viewpoint: The current-voltage relationship in a capacitor is given by:

                     i(t) = C dv(t) dt
, for a fixed capacitance.

i(t) = C dv(t) dt + v(t) dC dt
, for time-varying capacitances or nonlinear ones.

(2.12)

Considering the first case of eq. (2.12), from eq. (2.11) giving also i = C dv dt , the stored charge q is given by:

q = t -∞ i dτ, = C v(t) v 0 dv = C(v -v 0 ), if for t → -∞, v = v 0 = Cv, if the initial condition v 0 = 0. (2.13)
Equation (2.13) shows that the charge q accumulated in a capacitor is directly proportional to the applied voltage v across its terminals.

ii) Energy viewpoint: Capacitor stores energy in the form of electric field situated in between the plates due to the application of external electric potential difference v across its terminals. This energy is given by the electric potential energy U E , such that (for the case where v 0 = 0):

U E = q 0 vdq, = 1 C q 0 qdq, = q 2 2C .
Therefore:

U E = E c = 1 2 Cv 2 , (2.14) 
where E c is the stored energy in a capacitor measured in Joule (J). Alternatively, one can derive equation (2.14) from the power expression:

dE c = Pdt = v.C dv dt .dt = C vdv ⇒ E c = U E = C v 0 vdv = 1 2 Cv 2 .
iii) Geometry viewpoint: However, the presence of dielectric material will prevent the charges from crossing, rather they pile up on the respective plate, and hence an electric field is created.

The formed electric field has an energy expressed in (2. • Surface area of the plates, A: By connecting the capacitor (shown in Fig. 2.6) to external voltage source, an electric field is generated and charges are accumulated on the respective plates. It implies that, the larger the plate's size, more charges can be stored and hence, the higher the capacitance, while a smaller plate's size yields lower capacitance. It shows that:

C ∝ A.
• Distance between the plates, d: If V is the electric potential connected across the capacitor, then the electric field E is known to be:

E = V d .
Obviously, the shorter the distance between the plates, the higher electric field is generated and hence the higher capacitance. Conversely, the wider the distance between the plate, the lower electric field is generated, and hence the capacitance is lower. It follows that:

C ∝ 1 l .
• Dielectric or insulation: In addition to the distance between the plates, the capacitance is affected by the nature or permittivity (ε) of the dielectric material (the section in magenta colour of Fig. 2.6) placed in between the plates. Recall that the field polarization P governs the electric dipole moment, given the dielectric material medium. The permittivity of the dielectric material determines the opposition to the electric charges: the higher the permittivity, the lower the opposition, and hence the higher the capacitance. Conversely, the smaller the permittivity, the higher the opposition, and hence the lower capacitance. For example: the permittivities of Air and Mica are approximately 1 and 8 respectively. Using Air in the medium as dielectric will give lower capacitance than with Mica having higher permittivity. Notice that ε is the absolute permittivity of the medium. The permittivity of vacuum is ε o = 8.85 × 10 -12 Farads/meter. The permittivity of vacuum is always considered as the reference, hence it becomes interesting to express the permittivity of any medium with respect to that of vacuum and that gives birth to what is called relative permittivity ε r .

Thus:

ε = ε r .ε o .
To derive the capacitance's expression of Fig. 2.6, we consider the surface area of the plates to be a Gaussian surface, such that from Gauss's law, we can write the following:

E. dA = q ε ,
that is in calculating the flux of E on the whole surface area surrounding the plates. Here:

E is the electric field vector (in volts per meter, V/m),

A is the normal surface area vector to the plates (in meter-square, m 2 ), q is the total charge accumulated within the capacitor's plates (in Coulomb, C) and ε is the permittivity of the dielectric material (in Farad per meter, F/m).

For a uniform electric field ⇒ .15) The relationship between electric field E and electric potential v is known to be:

E dA = q ε , ⇒ EA = q ε ⇒ E = q εA . ( 2 
E = - dv dr ⇒ v = -E.dr ⇒ v = Ed. (2.16) 
Substituting (2.15) into (2.16), we get:

v = q εA d (2.17)
Comparing equations (2.13) and (2.17), we get the capacitance expression as follows:

C = ε A d = ε r ε o A d . (2.18)
Therefore, the capacitance is directly proportional to the area of the plates and inversely proportional to the distance d separating the plates. For a fixed distance between the plates d, fixed plates area A and dielectric material, the capacitance C is constant.

On the other hand, the second case of eq. (2.12) is important in the case of varicap capacitors, useful to produce solitonic effects, but it will not be considered here.
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Capacitors have being used extensively in areas such as: power conditioning, signal processing, energy storage, coupling, filters, tuning radios and resonant, sensors, to regularize the output of power supply, ...

2.3/ INDUCTOR

Inductor is a passive two-terminals basic electronic component discovered by Michael Faraday in 1831. It is basically capable of storing energy in the form of magnetic field due to the passage of an electric current through it. Any current carrying conductor is associated with a magnetic field circulating around the conductor. The strength of the field or magnetic flux is directly proportional to the magnitude of the electric current flowing through it. A straight coil wire has one turn and as such it has less inductance.

Moreover, the generated magnetic field becomes more significant if the wire is coiled to a certain number of turns, it could be air core or iron core format. However, the field is more concentrated if the coil is wound on a ferromagnetic material (or iron core format)

and then has a higher inductance, see Fig. Inductance is the property of a material to oppose to any change in the current flowing through it. Therefore, the ability of an inductor to oppose itself to any change in current flowing through it by generating self-induced voltage is called self-inductance or simply inductance, measured in Henry, H. The higher the opposition, the lower the change in the current will result. In other words, inductance is the property of a material associating its magnetic field and the rate of change of electric current flowing through it. It follows that:

v L (t) = -L di(t) dt ,
where L is the inductance and v L (t) is the self-induced voltage. The negative sign signifies that the induced voltage tends to oppose to any change in current flowing through the inductor at any given time, and can be dropped when considering the passive arrows rule.

Nowadays, there are various types of inductors (just like resistor and capacitor) made of different sizes and shapes. Types of inductors are sorted by the kind of applications and the type of winding and core materials. Power inductors are more huge than general purpose inductors.

The constitutive relationship of an inductor is given by: f (φ, i) = 0, such that:

dφ = L di . (2.19) 
Thus, for a nonlinear inductance, we have φ = f L (i) with f L a nonlinear inductance function. The expressions of the inductance can be seen in the following perspectives:

1. Circuit viewpoint: Consider an inductor of n-turns connected in a circuit. The magnetic field created by the current in each turn is proportional to the current, φ as for the magnetic flux in the area of the turn. In addition, the total flux Φ generated around the inductor, due to the current i flowing through it, is nφ. We can then deduce that this total flux is directly proportional to the current flowing and the inductance L in henrys:

L ∝ n 2
increases with the number square of turns. Therefore, equation (2.20) describes the circuit view point of an inductor and the inductance can be calculated for any known φ and i.

Φ = Li.
(2.20)

2.

Energy viewpoint: Inductor stores energy in the form of magnetic field. The power developed in the inductor due to the current flowing is:

P L = v L .i = L di dt i.
If the rate of change of current di dt flowing through the inductor is positive, it implies that the power is positive and energy is being stored in the inductor. Conversely, if the rate of change of current is decreasing, then the power is negative and it implies that energy is giving out by the inductor.

The energy stored in an inductor E L is thus obtained from: • Area of the coil, A : This refers to the area formed by the coil wound around the soft iron core. The higher the area of the coil, the lower rate of change of the current flowing through the inductor and vice-versa. It implies that the greater the coil area, the greater the inductance and conversely. Hence: L ∝ A.

E L = P L .dt ⇒ E L = i 0 L idi, = 1 2 Li 2 . ( 2 
• Number of turns, n : This refers to the number of windings formed by the coil around the soft iron core. As seen above, the more the number of turns in the coil, the more the inductance and vice-versa, according to L ∝ n 2 .

• Length of the coil, l : This refers to the elongated length of the coil on the soft iron core. The longer the length of the coil, the less the inductance and the shorter the length of the coil, the greater the inductance. ⇒ L ∝ 1 l .

• Nature of the core material: Permeability µ : Using a core material with higher magnetic permeability yields a stronger magnetic field. Hence, the more magnetic permeability of the core, the more the inductance and the less magnetic permeability of the core, the less the inductance. Soft iron core has a permeability 600 times more than air. It implies that using soft iron core will produce more inductance than with air core. Note that the permeability of free space or vacuum is designated as µ o and it has a typical value of 4π × 10 -7 H/m.

It is more convenient to express the permeability of a material µ with respect to that of free space µ o ; and hence we have what is called relative permeability µ r . It implies that:

µ = µ r µ o .
We know that the magnetic induction field B is defined as the flux per unit area:

B = φ A ⇒ φ = BA,
and the magnetic field H is expressed from Maxwell-Ampere's law, as:

H = n.i l ,
meanwhile the relationship between flux density B and magnetic field H is:

B = µH = µ n.i l .
Therefore, the flux φ becomes for each turn:

φ = BA = µ n.i.A l ,
while the total flux is Φ = nφ, thus 

L = Φ i , = µ n 2 A l , = µ r µ o n 2 A l . ( 2 

2.4/ MEMRISTOR

Memristor, the fourth basic circuit element [START_REF] Chua | Memristor-the missing circuit element[END_REF] (alongside resistor, capacitor and inductor), is a nonlinear passive two-terminals electronic component defined by the relationship between the magnetic flux linkage φ and the electric charge q. The name memristor is the contraction of memory resistor owing to its peculiar nature to resist the flow of electric current (as done by a resistor) and at the same time to remember the last amount of charge passed through it at the time when the power has been disconnected, hence to give the memory of the previous device resistance. Memristor keeps track of its dynamic resistance with respect to the current or electric charge flowing through it.

Memristor symbol

The unmarked side (the plus sign terminal) and the marked side (the minus sign terminal) indicate, respectively, the higher and lower potential terminal [START_REF] Massimiliano | Putting memory into circuit elements: memristors, memcapacitors, and meminductors [point of view[END_REF]. This is an important point which will be considered later: is the memristor a symmetrical or non symmetrical

2-ports element?

The definition of a memristor is given by its pioneer [START_REF] Chua Leon | Everything you wish to know about memristors but are afraid to ask[END_REF] Recall that the magnetic flux φ represents the time-integral of voltage v(t) and the electric charge q is the time-integral of electric current i(t), hence these quantities are to be determined between two reference points. The fact that memristor is always defined by the integral of its input and output quantities (v(t) and or i(t)), explains in essence why memristor remembers its previous resistance or has a memory effect. The constitutive relationship of a Memristor is given by f (φ, q) = 0, such that:

dφ = M dq, (2.23) 
where: M is the memristance that is a short form for memory resistance. Memristance is the property of a memristor to remember its previous resistance state and it is defined by the functional relationship between magnetic flux φ and electric charge q. The instantaneous memristance can be deduced from the dynamic slope of the φ-q locus given in the φ-q plane as shown in Fig. 2.11. Memristance is measured in Ohms (Ω), the same measurement unit as resistance. The relationship between the magnetic flux φ and the electric charge q could be:

φ = f M (q),
for a charge-controlled memristor (i.e memristor device excited by a current source) or

q = f G (φ),
for a flux-controlled memristor (i.e memristor device excited by a voltage source), where f M and f G are nonlinear functions denoting memristance and memductance respectively.

+ + + +

Figure 2.11:

Memristance expression from a φ-q curve. Remark that, due to integration constants, this curve can be shifted horizontally and/or vertically.

In the introduction, we gave a memristor analogy to water flowing through a pipe whose diameter is changing with respect to water flowing characteristics, Fig. 1.1. The resistance of the memristor (or memristance) changes dynamically with the amount and direction of current flowing through it. People often confuse memristance with resistance. However, memristor differs from resistor in the sense that:

• It has entirely different constitutive relationship in comparison to resistor.

• Its resistance changes according to the quantity of charges having passed through it previously.

• Its resistance changes according to the direction of electric current flowing through it because it is not a bilateral device. Therefore, its connection mode matters.

• It preserves the previous history of electricity, according to the charge passed through it before, at any given time. In other words, it has memory of the previous electricity passed through it (memory effect).

• It is nonlinear in nature.

• It has pinched hysteresis loop in the voltage-current response in a circuit, depending 26CHAPTER 2. REVIEW ON CIRCUIT ELEMENTS AND MEMRISTOR INTERPRETATION on its initial condition. Moreover, memristor has different circuit response according to its initial condition.

• It cannot be realized by any combination of the three known circuit elements (capacitor, resistor and inductor) and hence it can be considered as "fundamental".

• It has a uniqueness nature for the relationship between magnetic flux and electric charge (which is not directly available by measures).

• It behaves differently in DC and AC conditions.

Nevertheless, memristor and resistor have some similarities, for example:

• Both offer resistance to the flow of electric current.

• Their quantities (i.e memristance and resistance) have the same unit of measurement, i.e. Ohms, symbol: Ω.

• No phase shift in their voltage and current wave-forms, because v(t) = M(q)i(t) ⇒ i(t) = 0 if v(t) = 0 and vice-versa.

• They both dissipate energy as heat (Joule effect). They are not loss-less devices i.e. without preservation of energy. They are always associated to power (P) intake, i.e. P ≥ 0.

2.4.1/ MEMRISTIVE DEVICE AND SYSTEM

A broader class of nonlinear systems is reported [START_REF] Leon | Memristive devices and systems[END_REF], called memristive systems in which some nonlinear dynamic systems were found to exhibit memristive behaviour. Additionally, systems whose resistance depends on its internal state (e.g temperature) are believed to be memristive. Examples of these systems are: Thermistor, Discharge tube, Hodgkin-Huxley (or Ionic) System and Tungsten filament lamps. The memristive systems are generally described by one-port and state equations:

             y = f (x, u, t)u, dx dt = g(x, u, t), (2.24) 
where u is the input to the system, y is the output of the system, x is a vector denoting the set of internal state variables of the system, f is a nonlinear vector function and g is a nonlinear scalar function. Equation (2.24) affirms that memristive systems are nonlinear systems because the function f depends nonlinearly on the dynamic state variable x and both functions ( f ,g) depend on the input u to the system. Notice that (2.24) describes a time-variant system, so all the variables are functions of time as well. For time-invariant memristive systems, eq. (2.24) is rewritten as follows:

             y = f (x, u)u, dx dt = g(x, u).
(2.25)

Moreover, an ideal memristor is considered as a special case of memristive system which can be expressed as:

             y = f (x)u, dx dt = g(u), (2.26) 
where the state variable x depends solely on the time-integral of the voltage applied across the device or the time-integral of the current flowing through it, for a flux-controlled and charge-controlled memristor respectively.

2.4.2/ VERIFYING A MEMRISTOR DEVICE

In Fig. 2.12, a two-terminals device under test (D.U.T ) is subjected to a periodic input source s(t): s(t) could be voltage or current source as highlighted in the aforementioned definition of memristor. If the current-voltage response of Fig. 2.12 on the left corresponds to that of Fig. 2.12 on the right, for any s(t) source respecting the definition in [START_REF] Chua Leon | Everything you wish to know about memristors but are afraid to ask[END_REF], then the black box is called a memristor. More details to check if a candidate system is indeed a memristive system is given in section 2.4.3. 

2.4.3/ FINGERPRINTS OF A MEMRISTOR

Circuit elements such as resistor, capacitor, inductor etc..., are often characterized by their voltage-current response (V-I characteristics) in any given circuit. Memristor is not an exception, it has a peculiar voltage-current response which is a unique identifier that 28CHAPTER 2. REVIEW ON CIRCUIT ELEMENTS AND MEMRISTOR INTERPRETATION distinguishes it from any other known circuit element. Hence, it is called fingerprint of a memristor and it is used to characterize a memristive system.

The most three known memristor fingerprints are enumerated in [START_REF] Prasad Adhikari | Three fingerprints of memristor[END_REF][START_REF] Biolek | Some fingerprints of ideal memristors[END_REF][START_REF] Chua | If it's pinched it'sa memristor[END_REF], as:

1. The V-I response of a memristor (with positive memristance) is always a pinched hysteresis loop (Lissajous figure) when subjected to a bipolar periodic input signal without offset.

2.

The hysteresis lobe area decreases monotonically when the excitation frequency increases.

3.

For a fixed input amplitude, the pinched hysteresis loop shrinks to a single-valued function as the frequency of the input supply tends to infinity.

More fingerprints of an ideal memristor are given in [START_REF] Biolek | Some fingerprints of ideal memristors[END_REF], including constitutive relationship (CR) between flux and charge and parameter versus state map (PSM) [START_REF] Chua | Resistance switching memories are memristors[END_REF]. In fact, nine fingerprints of memristor are given in [START_REF] Biolek | Some fingerprints of ideal memristors[END_REF] including the three above mentioned and they

give birth also to a valid test to assess a memristor device. However, we give here only the description of the three aforementioned signatures of a memristor.

2.4.3.1/ FIRST FINGERPRINT

The voltage-current response of a memristor in a circuit is always a pinched hysteresis loop [START_REF] Chua | If it's pinched it'sa memristor[END_REF][START_REF] Kim | Pinched hysteresis loops is the fingerprint of memristive devices[END_REF]. As seen in Fig. 2.13a, the maxima and minima of the current i(t) and voltage v(t), through and across the memristor respectively, are not reached simultaneously and this is the cause of the formation of the hysteresis lobe area. The term "pinched hysteresis loop (or PHL)" [START_REF] Chua | Resistance switching memories are memristors[END_REF] refers to a double-valued Lissajous figure in the V-I plane that is always pinched at the origin for any given time, for any input amplitude (voltage or current), for any initial condition and for any input frequency.

The term pinched also signifies that v(t) = 0 whenever i(t) = 0 and vice-versa. In other words, for any given value of current i(t), there will be two corresponding values of voltage v(t) except at i(t) = 0. The converse is also true, for any given value of voltage v(t), there will be two corresponding values of current i(t) except at v(t) = 0. This can be observed from Fig. 2.13a: it shows that current (i(t) in gold) is zero whenever the voltage (v(t) in black) is zero and as a result the hysteresis loop always passes through the origin, see Fig. 2.13b.

It turned out that memristive systems exhibit two different kinds of PHL [START_REF] Prasad Adhikari | Three fingerprints of memristor[END_REF][START_REF] Biolek | Some fingerprints of ideal memristors[END_REF] depending upon the system's constituents (i.e f and g as defined in eq. (2.24) ) and the type of excitation (odd-type or even-type) [START_REF] Biolek | Some fingerprints of ideal memristors[END_REF]. The two types of PHL are: Self-crossing PHL (also known as Transversal or crossing PHL) and Tangential PHL (also known as nontranversal or non-crossing PHL).

i. Self-crossing or transversal pinched hysteresis loop (SPHL):

In this type of PHL, the locus cuts across at the origin (or pinched point). Additionally, one can see that the slope of the locus moving toward the origin is different from that of the locus leaving the origin. Figure 2.14a shows a typical transversal PHL.

An example of memristive system with transversal pinched hysteresis loop is the mathematical model of HP memristor (presented in section 3.1):

                       v(t) = M(x) i(t), M(x) = R o f f (1 -x) + R on x , dx dt = k i(t) .
(2.27)

ii. Tangential or non-transversal pinched hysteresis loop (TPHL): As the name implies, the locus doesn't cut across, rather it passes tangentially as confirmed by the arrow directions, see Fig. 2.14b. Notice that it is still pinched at the origin i.e v(t) = 0 whenever i(t) = 0 and vice versa, however, there is always a fixed slope (for both the two slopes, i.e R o f f and R on ) when the locus moves toward the origin and immediately after leaving the origin. This observation is obvious because the separate line slopes coincide together before reaching the origin and remain together even after leaving the origin until a certain amount of voltage or current is reached, then the loci separate and hence the hysteresis lobe area becomes visible, see Fig. 2.14b.

There are many memristive systems whose current-voltage response is a tangential PHL, some of these systems being mentioned in [START_REF] Leon | Memristive devices and systems[END_REF][START_REF] Prasad Adhikari | Three fingerprints of memristor[END_REF][START_REF] Da Clauss | Hysteresis in a light bulb: connecting electricity and thermodynamics with simple experiments and simulations[END_REF] and we highlight some 30CHAPTER 2. REVIEW ON CIRCUIT ELEMENTS AND MEMRISTOR INTERPRETATION of them briefly in the following. Moreover, tangential PHL is met in the memristive behaviour of plants (Aloe vera and Mimosa pudica) [START_REF] Vladislav S Markin | An analytical model of memristors in plants[END_REF].

(a) Thermistor: The current-voltage response of a voltage-controlled thermistor, whose mathematical model is given in (2.28), is also an example of a memristor with a tangential pinched hysteresis loop.

                         i = G(T )v, G(T ) = R 0 e β 1 T -1 T 0 -1 , dT dt = δ C (T 0 -T ) + G 0 C v 2 , (2.28) 
where i is the output current, v is the input voltage, G is the memductance, T is the absolute temperature, β is the material specific constant, C is the heat capacity, δ is the dissipation constant, R 0 is the base resistance of thermistor and T 0 is its base temperature.

(b) Tungsten filament lamp: It was shown experimentally [START_REF] Da Clauss | Hysteresis in a light bulb: connecting electricity and thermodynamics with simple experiments and simulations[END_REF] that the currentvoltage response of a tungsten filament lamp exhibits a tangential pinched hysteresis loop. Its mathematical model is given in (2.29).

                           i(t) = G(T ) v(t), G(T ) = A ρ(T )L , dT dt = 1 c(T )L 2         v 2 (t) ρ(T ) -eσ 4π R 0 ρ 0 1 2 L 3 2 T 4         , (2.29) 
where i(t) is the output current, v(t) is the input voltage, G is the memductance, T is the absolute temperature, A is the cross-sectional area of the filament, ρ(T ) is the resistivity of tungsten, L is the length of the filament, c(T ) is the volumetric specific heat capacity, e is emissivity and σ is Boltzmann constant, while R 0 and ρ 0 are the values of the resistance and the resistivity at room temperature T 0 .

(c) Discharge tube: A charge-controlled discharge tube is an example of memristor with a tangential or non-crossing pinched hysteresis loop. It is described by the mathematical model, as:

                       v = M(x)i, M(x) = F x , dx dt = -βx + αMi 2 , (2.30) 
where M is the memristance, x refers to the internal state vector, i is the harmonic input current, v is the harmonic output current while α, β and F are constants fixed by the size of the tube and its inner gas.

(d) Compact fluorescent lamp:

                       v = M(T )i, M(T ) = a 5 T -3 4 e ea 6 
2kT ,

dT dt = a 1 M(T )i 2 -a 4 (T -T 0 ) -a 2 e -ea 3 kT , (2.31) 
where e is the magnitude of the electron charge, k is the Boltzmann's constant, T is the temperature, a 1 -a 6 are the lamp dependent coefficients. However, it is reported that the pinched hysteresis loop of ideal memristors, memcapacitors and meminductors is always self-crossing PHL [START_REF] Biolek | Pinched hysteretic loops of ideal memristors, memcapacitors and meminductors must be 'self-crossing[END_REF]. It is even emphasized that self-crossing PHL is another signature or fingerprint of an ideal memristor. Moreover, TiO 2 memristor (from HP lab [START_REF] Strukov | The missing memristor found[END_REF]) and SDC memristor (from KNOWM [START_REF] Campbell | Self-directed channel memristor for high temperature operation[END_REF]) are examples memristors with self-crossing PHL. We can then focuse from now on specifically on this type of hysteresis loop. Note that memcapacitor and meminductor will be briefly discussed in section 2.4.8.

2.4.3.2/ SECOND FINGERPRINT

The hysteresis lobe area decreases when the input frequency increases. Recall that the memristor is a nano device, therefore small input signal is enough to generate a big electric field to trigger the device according to:

E = - dV dx ,
when x, the internal state corresponds to the displacement of charge carriers. Therefore, any small increment in the potential difference V will lead to a large magnitude of electric field E to be generated. However, the resistance of the memristor depends on its internal state, hence any change in the input signal results in a behavioural change of its internal state as well. Therefore, for example considering an input current i(t) such that:

i(t) = I 0 sin(ωt), (2.32) 
the flowing charge will be:

q(t) = t -∞ I 0 sin(ωτ)dτ, = Q [1 -cos(ωt)] + q 0 , (2.33) 
where q 0 = 0 -∞ I 0 sin(ωτ)dτ is the initial charge just before the current starts to flow and Q = I 0 ω is the charge delivered by the current source during the first quarter of the period T = 2π ω . Let us use a shifted charge q = qq 0 , then:

q = Q [1 -cos(ωt)] . (2.34)
Therefore, the magnitude peak to peak of the flowed charge is given by:

2I 0 ω = 2Q. (2.35) 
For ideal charged-controlled memristor, its state variable is rather the charge flowing through the device. It is obvious from (2.35) that increasing the frequency ω for a fixed amplitude I 0 , leads q(t) peak to peak amplitude to decrease significantly and hence causes the shrinkage of the pinched hysteresis loop towards a linear graph.

Figure 2.15a shows the effect of increasing input frequency on the PHL lobe area of the memristor. The input frequency ω is considered in three steps ω 1 , ω 2 and ω 3 with the corresponding lobe areas A 1 , A 2 and A 3 respectively, such that:

ω 1 < ω 2 < ω 3
and

A 1 (ω 1 ) > A 2 (ω 2 ) > A 3 (ω 3 )
It follows that: as ω → ∞, A → 0, this behaviour is shown in Fig. 2.15b. CALCULATING THE LOBE AREA OF A PHL:

Let us consider a memristor excited by a current source given by (2.32) with ω = 2π T , T being the period. By considering a half cycle (i.e T 2 ) of the input i(t), we get the hysteresis loop given in Fig. 2.16, having enclosed area A and surface boundary S , altogether enclosed in a triangle OCD [START_REF] Zden Ěk Biolek | Computation of the area of memristor pinched hysteresis loop[END_REF][START_REF] Zden Ěk Biolek | Analytical computation of the area of pinched hysteresis loops of ideal mem-elements[END_REF][START_REF] Biolek | Interpreting area of pinched memristor hysteresis loop[END_REF]. The area A is obtained from the surface integral of the voltage with respect to the current, as:

A = S v di.
(2.36)

Figure 2.17 shows the operating point of a memristor in the plane (q,φ) starting with an initial charge q 0 , corresponding to an initial flux φ 0 , with the so-called shifted flux φ = φ-φ 0 .

From (2.34) and (2.35), the operating point is within the interval [q 0 , q 0 +2Q], hence the normalized form of the constitutive relationship becomes:

f (φ , q ) = 0. (2.37) 34CHAPTER 2.
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The corresponding normalized expression of the memristance-versus-state map, becomes:

M (q ) = M(q + q 0 ) = dφ (q ) dq . From equations (2.32)-(2.33), we get an algebraic relation between the charge q and the current source i(t):

+ + + +
i 2 = ω 2 (2Q -q )q .
(2.38)

From (2.36), with v(t) = M (q (t))i(t), the area during the first half cycle can be expressed as:

A = 1 2 T 2 0 M (q (t)) d(i 2 ) dt dt.
The integration by parts gives:

A = 1 2 M (q (t))i 2 (t) T 2 0 - 1 2 T 2 0 Ṁ (q (t))i 2 (t) dt, (2.39) 
where the dot in M represents the derivative with respect to time. In [START_REF] Zden Ěk Biolek | Computation of the area of memristor pinched hysteresis loop[END_REF], the authors consider that the memristance function M (q ) can exhibit step discontinuity points q j in the charge interval [0, 2Q], with j = 1, 2, ..., n, hence, they considered some step changes of the memristance at point q j . However, we will exclude in the following the case of any discontinuities for M (q ). In this simplified case, the first term of equation ( 

A = - 1 2           T 2 0 dM dq q q j i 3 dt           . (2.40)
For example, the pinched hysteresis lobe area of the memristance expression given by (2.27) is described in the following. The given memristance function is rewritten as:

M (q ) = R i -δR q q d , (2.41) 
where

δR = R o f f -R on , R i = R o f f -δR q 0 q d
is the initial memristance at time t = 0 and q d is the charge necessary for the modification of the memristance by the value δR [START_REF] Zden Ěk Biolek | Computation of the area of memristor pinched hysteresis loop[END_REF]. Since

R i is constant, then dM dq = - δR q d
. Using the current source (2.32), we get:

A = 1 2 δR q d I 3 0 T 2 0 sin 3 (ωt)dt.
Using the identity:

sin 3 (α) = 3 4 sin(α) - 1 4 sin(3α), then T 2 0 sin 3 (ωt)dt = 4 3ω
and the area is finally expressed as:

A = 2 3
δR ω

I 3 o q d . (2.42)
The area is independent of the initial memristance, however, it is directly proportional to the cubic power of the exciting current and inversely proportional to the input frequency.

Note that eq. (2.42) is determined according to the mathematical model of HP memristor, thus q d is the charge required to move the tunneling dopant barrier between doped and undoped region from x → 0 toward x → 1 (see section 3.1 for more details).

Moreover, a generalized formulation for computating the hysteresis lobe area of memelements is reported in [START_REF] Zden Ěk Biolek | Analytical computation of the area of pinched hysteresis loops of ideal mem-elements[END_REF], taking into account whether the input is a voltage or current.

Thus, for a mem-element having input u(t), output y(t), state variable x(t) and a differentiable function h(x), this mem-element can be characterized by:

             y(t) = h(x)u(t), dx(t) dt = u(t), (2.43) 
where:

u(t) = U max sin(ωt).
Thus, the loop area during the first half cycle is given by: 

A = - 1 2 T 2 0 dh(x) dx u 3 dt. ( 2 

2.4.4/ NOT EVERY NONLINEAR DYNAMICAL SYSTEM IS AN IDEAL MEMRISTOR

Memristive systems are a class of nonlinear dynamical systems whose current voltage response resembles the fingerprint of an ideal memristor. However, it is known that not every nonlinear dynamical system is ideally a memristor, even though it exhibits a pinched hysteresis loop in its current-voltage characteristic. Hence, the above outlined criteria of memristor identification are not enough to distinguish a memristor device from some nonlinear dynamical systems which are not memristors. As we have shown earlier, the pinched hysteresis loop is the major criterion used to authenticate a given system as memristor or not [START_REF] Prasad Adhikari | Three fingerprints of memristor[END_REF]. In fact, it states that some memory elements may not exhibit pinched hysterisis loop, and an example of memcapacitor is even given [START_REF] Yuriy | Comment on 'if it's pinched it's a memristor[END_REF]. There are concerns in the scientific community of what a memristor is and what is not [16-19, 28, 37-41].

Leon Chua generalized the concept of memristor to include all resistance switching memories [START_REF] Chua | Resistance switching memories are memristors[END_REF], however it is shown experimentally that resistance switching memories are not memristors [START_REF] Kim | An experimental proof that resistance-switching memories are not memristors[END_REF]. Blaise Mouttet reported that L. Chua contradicted himself in [START_REF] Chua | Resistance switching memories are memristors[END_REF], against his axiomatic definition of a memristor in 1971 [START_REF] Chua | Memristor-the missing circuit element[END_REF]. He further concluded that the HP's memristor lacks a scientific merit [START_REF] Mouttet | The memristor and the scientific method[END_REF].

It is further clarified that the pinched hysteresis loop as the fingerprint of a memristor, or a memristive device, must hold for all amplitudes, for all frequencies, and for all initial conditions, of any periodic testing waveform, such as sinusoidal or triangular signals, which assumes both positive and negative values over each period of the waveform [START_REF] Kim | Pinched hysteresis loops is the fingerprint of memristive devices[END_REF].

However, still some dynamical systems fulfilling these conditions are yet not memristor [START_REF] Mouttet | Pinched hysteresis loops are a fingerprint of square law capacitors[END_REF][START_REF] Mouttet | Response to 'pinched hysteresis loops is the fingerprint of memristive devices[END_REF]. Notwithstanding, a simple testing technique to identify an ideal memristor is reported in [START_REF] Yuriy | A simple test for ideal memristors[END_REF], which could, together with the concept of pinched hysteresis loop, help to identify a memristor from a non-memristor. However, there is no memristor reported in the literature, adhering to the axiomatic definition that relates charge and flux. Therefore we may conclude that all the reported memristors are resistive switching devices and they are special class of memristive systems, hence not an ideal memristor. The fact that an ideal memristor is not yet found and or simply does not exist, does not discredit the hitherto findings about memristors, as they are still valuable in ReRAM and many other applications, and justify all efforts to better understand this new element.

An ideal memristor is described axiomatically by the constitutive relationship between the charge and the flux, but there is not a memristor discovery based on this principle.

Contemporarily, all the memristor technologies are based on bipolar resistance switching mechanisms. This is the main reason used by some scientists to critic memristor discovery. In fact, whenever someone thinks about the existence of an ideal memristor, the possible conclusion is that such a device is likely to be impossible [START_REF] Kim | An experimental proof that resistance-switching memory cells are not memristors[END_REF]. Optimistically, we do think that one-day such a device will be found. But for the moment, all the memristors are resistance switching devices with potential applications. And because they possess signatures of an ideal memristor, they can be categorised as a special class of memristor.

2.4.5/ MEMRISTOR BY MODE OF EXCITATION

Depending on the type of excitation, memristor can be characterized as charge-controlled memristor (CCM) or flux-controlled memristor (FCM), see Fig. 2.19.

2.4.5.1/ CHARGE-CONTROLLED MEMRISTOR (CCM)

For charge-controlled memristor, the input applied to the memristor is a current source.

The set-up is given in Fig. 2.19a, whereby a current source i(t) is connected to a memristor M. Thus, the current flowing through the memristor will cause a voltage drop v m (t) across it. From (2.24), the three variables u, x and y become i, q and v respectively, represent the flux (φ) dependence on the charge (q), as:

q
φ = φ(q). (2.45)
Substituting the variables i, q and v into eq. (2.26), we get:

             v = M(q)i, dq dt = i. (2.46) 
N.B: The notation φ in eq. (2.45) stands for a function definition: it could be any letter, for example f , such that: φ = f (q), so the ( -) will often be removed in the following.

Also notice that equations (2.45) and (2.46) are identical, with M(q) a charge-controlled memristance whose expression can be obtained by differentiating both sides of equation (2.45) with respect to t. Thus:

dφ dt = d dt φ(q) .
As the right hand side is a composite function, then by applying chain rule, we get:

dφ dt = dφ(q) dq × dq dt ⇒ dφ dt = M(q) dq dt = M(q)i. (2.47)
Therefore, M(q) = dφ(q) dq = dφ dq . This equation can be rewritten conveniently as: 

dφ = M(q) dq. ( 2 
dφ dt = M(q) dq dt , such that: v m (t) = M(q) i(t), (2.49) 
Example 1: Suppose a charge-controlled memristor characterized by the cubic function as follows:

φ(t) = βq(t) + α 3 q(t) 3 (2.50)
where α and β are in Wb.C -3 and Wb.C -1 respectively, (Wb and C mean Weber and Coulomb respectively). Equation (2.50) is a modified version of the one used by Chua [START_REF] Chua | Resistance switching memories are memristors[END_REF], by adding parametric coefficients α and β in order for the equation to be homogeneous. It implies that:

M(q) = dφ dq = β + α q(t) 2 (2.51)
Let the input current i(t) be:

i(t) = I o sin(ωt),
then the charge is computed as follows:

q(t) = t -∞ i(τ)dτ = q 0 + t 0 i(τ)dτ = q 0 + I o ω (1 -cos(ωt)) .
(2.52)

Knowing q 0 and q(t), then M(q) and v m (t) can be calculated from equations (2.51) and

(2.49) respectively. Hence, q 0 is the memristor initial charge that determines its previous state. 

I o = 1A, f = 4Hz, α = 1Wb.C -3 , β = 1mWb.C -1 , (a)q 0 = 0C and (b) q 0 = 0.05C.
It is expected that taking different values for q 0 , the operating point in Fig. 2.20a1 will be changed, so will be the hysteresis curve of Fig. Hence the output of a flux-controlled memristor is current and its constitutive relationship represents the charge dependence on flux. The constitutive relationship of the memristor of this type is given in (2.53).

The state variable is controlled by the flux as the result of time-domain integral of the applied input voltage.

q = q(φ). (2.53) 
Similarly, substituting the variables v, φ and i into (2.24), we get:

             i = Y(φ) v, dφ dt = v, (2.54) 
where Y(φ) is the flux-controlled memductance, measured in Siemens S, the same S.I unit as conductance. Note that Y(φ) is the inverse of M(q). Thus, φ is the time domain integral of v:

φ = t -∞ v(τ) dτ, = φ 0 + t 0 v(τ) dτ.
Similarly Suppose a flux-controlled memristor described by:

q = ψ 1 3 φ 3 + ψ 2 φ, (2.58) 
ψ 1 and ψ 2 are appropriate constants in C.Wb -3 and C.Wb -1 respectively. Given a source voltage:

v(t) = V 0 sin(ωt),
the equivalent expression of the flux is obtained to be:

φ = V 0 ω (1 -cos(ωt)) + φ 0 .
Using (2.56), then:

Y(φ) = ψ 1 φ 2 + ψ 2 . (2.59)
Hence, knowing Y(φ), then i(t) is calculated and some examples are given in Fig. 2.21a and b respectively for φ 0 = 0Wb and φ 0 = 0.08Wb. Similar to Fig. 2.20, here also the initial conditions affect the φ-q operating point and hence the I-V curve. France, organized by ImViA laboratory, someone asked me a question "why is the need for the memristor?" He seemed comfortable about electronics, but not knowing about memristor. As shown earlier, memristor is the fourth fundamental passive circuit element having interesting features in electrical and electronics systems design. The following are some features associated to a memristor:

• It stores information, hence reliable for memory applications.

• It undergoes nano-scalability, hence suitable for the modern-day nano-technology.

• Conductance modulation resembling chemical synapse.

• It has connection flexibility, that is, series-parallel connections, and it can form stack of memory cells for high density storage applications.

• It is a nonlinear circuit element, by its nature.

• It has low power consumption. As nano device, it requires little power to operate.

• One memristor can replace multiple transistors in a circuit, thus it will ensure better performances and most reliable systems.

• These features, among many others, suggest memristor to be the promising element for designing very effective neuromorphic systems and memory applications [START_REF] Adam | 3-d memristor crossbars for analog and neuromorphic computing applications[END_REF][START_REF] Wang | Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing[END_REF][START_REF] Kim | A functional hybrid memristor crossbar-array/cmos system for data storage and neuromorphic applications[END_REF][START_REF] Gaba | Stochastic memristive devices for computing and neuromorphic applications[END_REF][START_REF] Chen | Polymer memristor for information storage and neuromorphic applications[END_REF].

2.4.7/ SOME POTENTIAL APPLICATIONS OF MEMRISTOR

The aforementioned features suggest memristor to be a proper candidate in the modernday electronics industries. Since the discovery of HP memristor, the number of published memristive based applications increase exponentially. Hence, utilizing memristive device in existing applications gives numerous advantages, for example: non-volatility, scalability, no leakage current, compatibility with CMOS technology in terms of both electrical connections and manufacturing processes.

Many memristor based applications are reported [START_REF] Prodromakis | A review on memristive devices and applications[END_REF][START_REF] Mazumder | Memristors: devices, models, and applications[END_REF][START_REF] Marani | A review on memristor applications[END_REF], including implementation of chaotic circuits and field programmable gate array [START_REF] Muthuswamy | Implementing memristor based chaotic circuits[END_REF][START_REF] Xu | A memristor-based chaotic system and its field programmable gate array implementation[END_REF], high density memory applications [START_REF] Hu | Review of nanostructured resistive switching memristor and its applications[END_REF] such as non-volatile random access memory (NVRAM) due to its long retention and fast switching times [START_REF] Eshraghian | Memristor mos content addressable memory (mcam): Hybrid architecture for future high performance search engines[END_REF], storage and processing of big data, image recognition and processing [START_REF] Prodromakis | A review on memristive devices and applications[END_REF][START_REF] Hamdioui | Memristor based computation-in-memory architecture for data-intensive applications[END_REF][START_REF] Shukai Duan | Memristor-based rram with applications[END_REF], cellular nonlinear or neural networks CNNs [START_REF] Shukai Duan | Memristorbased cellular nonlinear/neural network: design, analysis, and applications[END_REF][START_REF] Thomas | Memristor-based neural networks[END_REF][START_REF] Prasad Adhikari | Memristor bridge synapse-based neural network and its learning[END_REF], neuromorphic system and bio-electronics (or bio-inspired systems) due to its dynamics conductance resembling the chemical synapse [START_REF] Hyun | Nanoscale memristor device as synapse in neuromorphic systems[END_REF][START_REF] Bernab É Linares-Barranco | Memristance can explain spike-time-dependent-plasticity in neural synapses[END_REF][START_REF] Snider | Spike-timing-dependent learning in memristive nanodevices[END_REF][START_REF] Chu | Neuromorphic hardware system for visual pattern recognition with memristor array and cmos neuron[END_REF][START_REF] Yakopcic | Flexible memristor based neuromorphic system for implementing multi-layer neural network algorithms[END_REF], programmable analogue logic circuits [START_REF] Yuriy | Practical approach to programmable analog circuits with memristors[END_REF][START_REF] Borghetti | memristive'switches enable 'stateful'logic operations via material implication[END_REF][START_REF] Shin | Memristor applications for programmable analog ics[END_REF],

edge detection [START_REF] Hutchinson | Computing motion using analog and binary resistive networks[END_REF] and amplitude and frequency modulation [START_REF] Cem | New memristor applications: Am, ask, fsk, and bpsk modulators[END_REF].

Memristor is reported to be a promising element as synapse owing to its flexibility in conductance modulation and very effective high density connectivity [START_REF] Prasad Adhikari | Memristor bridge synapse-based neural network and its learning[END_REF][START_REF] Hyun | Nanoscale memristor device as synapse in neuromorphic systems[END_REF][START_REF] Kim | Memristor bridge synapses[END_REF]. There are many implemented electronic memristor-based synapses for various neuromorphic computing architectures [START_REF] Saïghi | Plasticity in memristive devices for spiking neural networks[END_REF][START_REF] Lecerf | Silicon neuron dedicated to memristive spiking neural networks[END_REF][START_REF] S Ören Boyn | Learning through ferroelectric domain dynamics in solid-state synapses[END_REF][START_REF] Prezioso | Selfadaptive spike-time-dependent plasticity of metal-oxide memristors[END_REF][START_REF] Wang | Investigation and manipulation of different analog behaviors of memristor as electronic synapse for neuromorphic applications[END_REF][START_REF] Td Dongale | An electronic synapse device based on tio2 thin film memristor[END_REF][START_REF] Li | Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems[END_REF]. In fact, there is a great progress in the phase of using memristor in neural network and artificial intelligence [START_REF] Luis A Camu Ñas-Mesa | Neuromorphic spiking neural networks and their memristor-cmos hardware implementations[END_REF][START_REF] Valerio Milo | Memristive and cmos devices for neuromorphic computing[END_REF][START_REF] Wang | Bipolar analog memristors as artificial synapses for neuromorphic computing[END_REF][START_REF] Ániel Hajt Ó, Ád Ám R Ák | Robust memristor networks for neuromorphic computation applications[END_REF][START_REF] Pedr Ó | Self-organizing neural networks based on oxram devices under a fully unsupervised training scheme[END_REF][START_REF] Sun | Three-dimensional (3d) vertical resistive random-access memory (vrram) synapses for neural network systems[END_REF][START_REF] Cisternas Ferri | On the application of a diffusive memristor compact model to neuromorphic circuits[END_REF][START_REF] Liu | Multichannel parallel processing of neural signals in memristor arrays[END_REF][START_REF] Yao | Fully hardware-implemented memristor convolutional neural network[END_REF][START_REF] Lu | An electronic silicon-based memristor with a high switching uniformity[END_REF].

A new function of a memristor as transducer -called the memosducer -is demonstrated experimentally, and it is particularly interesting in the optimization of ultrasonic excitation for Time Reversal -Nonlinear Elastic Wave Spectroscopy (TR-NEWS) dedicated to nonlinear acoustic imaging [START_REF] Santos | Self-calibration of multiscale hysteresis with memristors in nonlinear time reversal based processes[END_REF][START_REF] Dos | A memristor based ultrasonic transducer: The memosducer[END_REF]. It was shown that the features of memristor such as hysteretic properties, nonlinearity and memory effect etc... are promising in TR-NEWS based ultrasonic imaging.

The main application of this work is to use memristor as synaptic link between neurons in electronic models, as for example in hybrid technologies with neuronal electronic prosthesis between real neurons. Using memristor for image processing technique was also reported by [START_REF] Prodromakis | A review on memristive devices and applications[END_REF], where a memristive grid is employed to performed edge detection. 

2.4.8/ MEMORY ELEMENTS (MEM-ELEMENTS)

The emergence of memristor led to the discovery of two other memory elements, namely:

Memcapacitor and Meminductor [START_REF] Yuriy | Memory effects in complex materials and nanoscale systems[END_REF][START_REF] Massimiliano | Circuit elements with memory: memristors, memcapacitors, and meminductors[END_REF][START_REF] Yin | What are memristor, memcapacitor, and meminductor?[END_REF][START_REF] Chua | Memristor and memristive systems symposium[END_REF]. The Memristor M R is not a loss-less device while memcapacitor M C and meminductor M L are loss-less devices. Their names are derived accordingly from the conventional three circuit elements (resistor, capacitor and 44CHAPTER 2. REVIEW ON CIRCUIT ELEMENTS AND MEMRISTOR INTERPRETATION inductor respectively) due to some common features, for example, each having the same unit of measurement as Ohm, Farad and Henry respectively.

Then is posed a question of whether memristor is indeed the fourth circuit element due to its resistance dependency and appearance of memcapacitor and meminductor. Instead of four circuit elements, why not six altogether? However, memristor, memcapacitor and meminductor are classified as memory circuit elements or simply mem-elements owing to the ability to remember their previous history, which is a manifestation of their memory effects [START_REF] Yuriy | Memory effects in complex materials and nanoscale systems[END_REF][START_REF] Massimiliano | Circuit elements with memory: memristors, memcapacitors, and meminductors[END_REF][START_REF] Guy Z Cohen | Lagrange formalism of memory circuit elements: Classical and quantum formulations[END_REF][START_REF] Massimiliano | Memory materials: a unifying description[END_REF][START_REF] Yu V Pershin | Memory circuit elements: from systems to applications[END_REF][START_REF] Yuriy | Neuromorphic, digital, and quantum computation with memory circuit elements[END_REF][START_REF] Massimiliano | Biologically-inspired electronics with memory circuit elements[END_REF].

We also think that due to relation i = C dv dt for capacitor and v = L di dt for inductance, the memory for these elements is already present by the occurrence of the time derivative (of voltage v for capacitor and of current i for inductance). This is not the case for v = Ri through a resistance, and this is the heart of all interests for the new element: the memristor.

Notwithstanding, circuit elements can be classified into linear and nonlinear elements.

Hence, resistor R, capacitor C and inductor L are rather linear elements, whereas memristor M R , memcapacitor M C and meminductor M L are nonlinear elements. Note that M, R M and M R are the notations used for the memristance in this text. 

MEMRISTOR TECHNOLOGIES AND

MODELS

All memristor technologies follow similar principle of operationcalled bipolar resistance switching, which means resistance switching between two limits, namely: R on and R o f f accomplished by the evolution of the applied signal. R on is the lower resistance limit (higher conducting state) while R o f f is the higher resistance limit (lower conducting state).

Although the principle of operation is the same, each technology differs from one another in terms of resistance switching mechanism (see Fig. 3.1).

The HP memristor is based on the principle of MIM (Metal-Insulator-Metal) device, where a titanium oxide TiO 2 bilayer is placed between two metal electrodes (specifically platinum), see Fig. 3.2b. One of the layer is doped with oxygen vacancies allowing for conduction while the other layer is a pure TiO 2 , thus, the setup exhibits two resistance states due to the expansion and the contraction of the doped layer. Since the discovery in [START_REF] Strukov | The missing memristor found[END_REF], many other memristor technologies are reported, such as self-directed channel devices using electropositive metal (Silver, Ag) for conduction and resistance changing due to the formation and dissolution of a conducting channel filament [START_REF] Nugent | Knowm memristor introduction[END_REF][START_REF] Campbell | Self-directed channel memristor for high temperature operation[END_REF]. Other memristor technologies are ferroelectric memristor [START_REF] Kim | Ferroelectric tunnel memristor[END_REF][START_REF] Hu | Ferroelectric memristor based on pt/bifeo3/nb-doped srtio3 heterostructure[END_REF], polymeric (or organic) [START_REF] Victor Erokhin | Hybrid electronic device based on polyaniline-polyethyleneoxide junction[END_REF], spintronic memristor [START_REF] Wang | Spintronic memristor through spin-torque-induced magnetization motion[END_REF][START_REF] Yu V Pershin | Spin memristive systems: Spin memory effects in semiconductor spintronics[END_REF], amorphous silicon memristor technology [START_REF] Hyun | Nanoscale memristor device as synapse in neuromorphic systems[END_REF] and amorphous oxide semiconductor zinc-tin-oxide (ZTO) memristor [START_REF] Murali | Resistive switching in zinc-tin-oxide[END_REF].

Memristor technologies are based on ionic or magnetic effect. The texonomy of memristor technologies is presented in Fig. 3.1.

3.1/ HP (TIO 2 ) MEMRISTOR: ANALYSIS AND INTERPRETATION

The TiO 2 memristor is the first real two-terminals solid state memristor device announced by Hewlett Packard (HP) lab in 2008 [START_REF] Strukov | The missing memristor found[END_REF], while working on nanoscale crossbar arrays of wires in which each junction formed a memristor [3,[START_REF] Williams | Finding the missing memristor[END_REF]. In this configuration, 

dx dt = f (x, s),
where s could be a current i or a voltage v for a charge-controlled memristor and a fluxcontrolled memristor respectively. However, if s is a voltage source, then the port equation is rather rewritten as: i = G(x)v, where G is the memductance.

3.1.1/ MODEL DESCRIPTION

The structural view of HP memristor is given in Fig. 3.2b. The device is made up of a thin film bilayer of Titanium-Oxide TiO 2 of thickness D sandwiched between two platinum (Pt) contacts which serve as electrodes. One portion of TiO 2 is initially doped with oxy-gen vacancies, hence becomes TiO 2-e and the other portion remains pure TiO 2 . These oxygen vacancies let the layer become N-type semiconductor with electrons as charge carriers and thus adopt conductivity, the other undoped side has resistive property, such that the entire arrangement behaves as a semiconductor material. Notice that in reality the dopants are scattered along the device width, however, its concentration in one edge is negligible compared to that of the other edge, creating two different resistive regions.

The structural arrangement constitutes two resistances R on and R o f f connected in series. Conversely, if the boundary moves rightward, w increases while (D-w) decreases, leading hence to lower resistance (becoming more conductive). This further confirms bipolar resistance switching characteristic. HP memristor [START_REF] Strukov | The missing memristor found[END_REF] is based on this principle and the modeling equations are direct replicate of (3.1a) and (3.1b). The boundary stops instantly (motionless) if the current stops to flow and continues from this position once the current flows again, irrespective of the duration, i.e even months or years [3]. Therefore, w acts as the state variable of the device characterizing the instantaneous memristance.

The mathematical description of the titanium-oxide memristor when a positive voltage V(t) is applied to the 2-ports device is shown in Fig. 3.3, corresponding to a current i(t) flowing into the memristor, while the voltage is shared in 2 parts: a voltage

V 1 = V(t) R on w R on w + R o f f (D -w)
across the doped region (the left part of Fig. 3.3a), and the com- 

plementary part V 2 = V(t) R o f f (D -w) R on w + R o f f (D -w) present
R on = R on w(t) D , R o f f = R o f f 1 - w(t) D , V 1 = R on i(t) and V 2 = R o f f i(t).
carriers (electrons with mass m e and charge q = -e) are accelerated by the electric field

E = V(t) R on R on w + R o f f (D -w)
and braked as they collide together. Their velocity is then limited by the speed u l = q.E m e t , where t is the mean time between two consecutive collisions, leading to their averaged velocity < u > = µ v E, where µ v is the mobility of the charge carriers. Note that the electric field in the conductive region can be expressed

as E = V 1 w = R on D i(t).
The charge carriers expand then the doped region towards the right (w ↑), whose boundary increases with a positive current i(t) such that: Finally, with the normalized form x(t) = w(t) D , the behaviour of the memristor is given by:

dw dt = µ v E = µ v R on D i(t), (3.2a) 
V(t) = M(w) i(t), (3.2b) 
M(w) = R on w(t) D + R o f f 1 - w(t) D . (3.2c) Note that u = µ v E ⇒ u µ v = 1 µ v dw dt
dx dt = µ v R on D 2 i(t), (3.3a) 
V(t) = M(x) i(t), (3.3b) 
M(x) = R o f f -δR x, (3.3c) 
where: V(t) is the voltage across the 2 ports-device, i(t) is the current flowing through it,

M(x) is the memristance and δR = R o f f -R on . M(x) = R o f f if x(t) = 0 and R on if x(t) = 1.
Equation (3.3c) shows that HP memristor remembers the coordinate of the state variable

x, not the charge. However, the coordinate of x is related to the amount of charge having flowed through the device and they are each of them directly proportional to one another.

When a signal is applied to the device, the boundary between the doped and undoped regions moves, the direction of this movement depending on the polarity of the applied signal. It is always expected that:

0 ≤ w(t) D ≤ 1 ⇒ x ∈ [0, 1] or 0 ≤ x ≤ 1.
When integrating (3.3a) for x from 0 to 1:

1 0 dx = 1 = µ v R on D 2 w=D w=0 i(t)dt, = µ v R on D 2 q d , (3.4) 
where

q d = w=D w=0 i(t)dt = D 2 µ v R on
is the charge required to move completely the doped/undoped boundary from w = 0 to w = D. Then (3.3a) can be rewritten as:

dx dt = 1 q d i(t).
(3.5)

3.1.2/ WINDOW FUNCTION g(x)

A window function g(x) is often introduced as a factor in the right hand side of (3.5) for nonlinear dopant drift modeling, i.e. to avoid x from taking values outside of the interval

[0, 1] [107], to give dx dt = 1 q d g(x)i(t). (3.6)
The model of TiO 2 memristor is usually characterized by two models, namely: linear and nonlinear drift models, with the state equation given by (3.5) and (3.6), respectively.

WHY IS THE NEED OF A WINDOW FUNCTION IN MEMRISTOR MODELING?

There exist enriched intrinsic nonlinearity within the memristor device which also manifests in its hysteretic behaviour [START_REF] Strukov | The missing memristor found[END_REF], however, when the dopants move toward either of the boundaries, that is, w = 0 (or x = 0) or w = D (or x = 1), their speed decreases to zero which significantly affects the device dynamics and hence the performance. Due to the nano-nature of memristor device, small voltage can result in huge electric field to be developed across the device, which in turn yields significant nonlinearities in the ionic transport [START_REF] Strukov | The missing memristor found[END_REF]. These nonlinearities become more apparent in the boundaries where the drift speed of the dopant obviously reduces to zero. Hence, this phenomenon is called nonlinear dopant drift. However, the nonlinearity can be more pronounced at the boundary by inclusion of the window function g(w) or g(x) in the case of normalised quantities.

Since the state variable w is bounded between 0 and D, for an applied voltage bias, w is proportional to the quantity of charge q already passed through the device, until it approaches 0 or D, where it requires higher voltage to switch from OFF resistance state to ON resistance state under positive bias and from ON resistance state to OFF resistance state under negative bias. Hence, the switching transition at these extreme Due to the direct dependency of x on q, eq. (3.6) suggests that higher quantity of charge is needed for w to be closer to 0 or D [START_REF] Strukov | The missing memristor found[END_REF].

Five sufficient and necessary conditions for any efficient window function are outlined by Prodromakis et al. [START_REF] Prodromakis | A versatile memristor model with nonlinear dopant kinetics[END_REF]. Quoting them, g(x) must:

(1) take into account the boundary conditions at the left and right electrodes of the device;

(2) be capable of imposing nonlinear drift over the entire active core of the device;

(3) provide linkage between the linear and nonlinear dopant drift models;

(4) be scalable, meaning a range of g max (x) can be obtained such that 0 ≤ g max (x) ≤ 1;

(5) utilize a built-in control parameter for adjusting the model.

The proper choice of the window function is of significant importance for predictive modeling of memristors because the system may respond differently with respect to the window function used [START_REF] Valeriy | Importance of the window function choice for the predictive modelling of memristors[END_REF]. There are many suggested window functions essentially to resolve the boundary issues and to impose nonlinearities [START_REF] Strukov | The missing memristor found[END_REF][START_REF] Yogesh | The elusive memristor: properties of basic electrical circuits[END_REF][START_REF] Prodromakis | A versatile memristor model with nonlinear dopant kinetics[END_REF][START_REF] Benderli | On spice macromodelling of tio 2 memristors[END_REF][START_REF] Zden Ěk Biolek | Spice model of memristor with nonlinear dopant drift[END_REF][START_REF] Kvatinsky | Team: Threshold adaptive memristor model[END_REF][START_REF] Ta Anusudha | A versatile window function for linear ion drift memristor model-a new approach[END_REF][START_REF] Kvatinsky | Models of memristors for spice simulations[END_REF][START_REF] Yu | A memristor model with piecewise window function[END_REF][START_REF] Takahashi | Spice model of memristive device using tukey window function[END_REF][START_REF] Farouk | Memristor model based on fuzzy window function[END_REF][START_REF] Zha | A novel window function for memristor model with application in programming analog circuits[END_REF][START_REF] Singh | An accurate and generic window function for nonlinear memristor models[END_REF][START_REF] Panayiotis | Window functions and sigmoidal behaviour of memristive systems[END_REF]. However, each of them has their own advantages as well as own disadvantages. Some of the commonly used window functions are described briefly in the following.

• Strukov et al. [START_REF] Strukov | The missing memristor found[END_REF][START_REF] Benderli | On spice macromodelling of tio 2 memristors[END_REF] proposed a window function, given by:

g(w) = w(D -w) D 2 ,
and is normalized as:

g(x) = x(1 -x). (3.7) 
In the boundary limits, x will remain at 0 or 1 until the device has changed its resistance state.

• Joglekar et al. [START_REF] Yogesh | The elusive memristor: properties of basic electrical circuits[END_REF] proposed g(x) to be:

g(x) = 1 -(2x -1) 2p , (3.8) 
where p ∈ Z + is a positive integer serving as a control parameter. For large p, this window function gives a better nonlinear ionic drift than Strukov et al. However, the model reduces to linear dopant drift if p → ∞. Notice that for p = 1, g(x) in eq. (3.8) becomes: g(x) = 4x(1x), that is, 4 times Strukov's function. Hence, the control parameter p gives Joglekar's function more flexibility than Strukov's function.

• Prodromakis et al. [START_REF] Prodromakis | A versatile memristor model with nonlinear dopant kinetics[END_REF] proposed g(x) to be:

g(x) = 1 -[(x -0.5) 2 + 0.75] p , (3.9) 
where p ∈ R + is a positive real number. This function has hence more versatility than Joglekar's function, where p takes only positive integer values. Moreover, here p allows upward scaling of g(x) such that its maximum value, i.e g max , remains in the interval: 0 ≤ g max ≤ 1. One can also see that for p = 1, g(x) in eq. (3.9) becomes:

g(x) = x (1 -x),
the same as Strukov's function. Similarly, for p → ∞, the model resembles linear drift model. Moreover, Prodromakis et al. take into account the unusual situation whereby the dopant's drift is such that g max 1, by introducing a new scalar j serving as a second control parameter in expression (3.9), thus becoming:

g(x) = j 1 -[(x -0.5) 2 + 0.75] p . (3.10)
For a fixed value of parameter p with j varying suitably, g(x) can be scaled up and down in conformity with:

g max 1.
• Biolek et al. [START_REF] Zden Ěk Biolek | Spice model of memristor with nonlinear dopant drift[END_REF] proposed g(x) to be:

g(x) = 1 -(x -stp(-i)) 2p , (3.11) 
where p ∈ Z + and i is the current flowing through the memristor, such that:

stp(i) =              1 f or i ≥ 0, 0 f or i < 0.
(3.12)

The flowing current i is considered as positive when the device is in the saturation mode, i.e x → 1 corresponding to the expansion of the doped layer, and negative if the device is in depletion mode, i.e x → 0 which corresponds to the contraction of the doped layer. Notice that there is a discontinuity in the boundaries due to the step function definition of the current i. We will return in chapter 5 to the fact that there is no symmetry in memristor behaviour when i > 0 or i < 0.

• Proposed window function:

In accordance with the role of window function, we can also ourselves propose g(x)

as derived from Hann window apodisation function as follows:

g(x) = 1 2 [1 + cos 2π(α(x))] .
It is well known that:

f or α(x) = 0 or 1 : 1 + cos 2π(α(x)) = 2, f or α(x) = ±0.5 : 1 + cos 2π(α(x)) = 0.
Therefore, to fulfill the continuity constraints for x = 0 and x = 1, a sufficient condition stands:

α(0) = -1 2 , α(±0.5) = 0, α(1) = 1 2 .
Thus, α(x) becomes:

α(x) = x - 1 2 ,
that is:

g(x) = 1 2 [1 + cos π(2x -1)] . (3.13)
Following the idea of [START_REF] Prodromakis | A versatile memristor model with nonlinear dopant kinetics[END_REF], we can introduce a scalar control parameter j for up and down scaling of g max (x). Thus: 

g(x) = j 2 [1 + cos π(2x -1)] . ( 3 

3.2/ LINEAR DOPANT DRIFT MODEL: ANALYSIS

This is the simplest model in which the dopant tunneling barrier width drifts at a speed u = dw dt under uniform electric field E = R on i D corresponding to the time-dependence description of the state variable given by equation (3.5). Notice that this is based on the assumption that the device can reach saturation (i.e virtually doped w → D).

Why Linear model? This term describes the displacement nature of the tunneling barrier width w with respect to the applied input signal, hence not the memristor itself. Equation (3.5) implies a linear relationship between the normalized tunneling barrier width x(t) and the charge q(t), i.e x(t) ∝ q(t). Hence, it is called linear dopant drift model. Moreover, it does not take into account the consequence when x reached 0 or 1.

Recall that the memristance notation is R or M, therefore, R(x) = M(x) and R(q) = M(q).

These terms are used interchangeably throughout the text. The state equation (3.5) is considered solely, and the state variable x is calculated from this equation to be used in the memristance equation, and subsequently to determine the voltage drop across the memristor and the current flowing through it. Firstly, the case of a current excitation (charge controlled memristor: CCM) is considered and then followed by the case of a voltage excitation (flux controlled memristor: FCM). The analytical expressions are derived for each case and the results are given accordingly.

3.2.1/ CCM WITH LINEAR DOPANT DRIFT MODEL

In this case, the memristance is driven by a current source. Therefore, for a memristor with memristance M(q) subjected to a time-varying current source i(t), the voltage drop across the memristor will be:

v(t) = M(q) i(t).
The state variable x(t) can be expressed from equation(3.5) by integration:

x(t) x 0 dx = 1 q d t 0 i(t ) dt , where t 0 i(t ) d(t ) = q(t) -q 0 , then: x(t) -x 0 = 1 q d q(t) -q 0 , (3.15) 
where x 0 = w(0) D is the state variable at t = 0, giving the previous history of the device with a charge q 0 having already flowed through the memristor. Actually, for a formed (used) memristor device, x 0 is likely to be non-zero because the dopants are dis-localized, hence the device has some previous information preserved.

It is easy to predict x 0 if the initial memristance of M(x) (i.e M 0 ) is known. From eq. (3.3c),

we get:

M 0 = R o f f -δR x 0 , (3.16) 
and

x 0 = R o f f -M 0 δR .
Note that: the subscript ' 0 ' in x 0 does not necessarily imply x(t) = 0, but rather the value of x(t)| t=0 and it could be any value in the interval [0, 1]. x 0 is simply a notation to represent the previous state of the device.

Therefore, having q(t) known and x(t) expressed in terms of q(t), from (3.3c) and (3.15), M(x) becomes M(q), thus:

M(q) = R o f f -δR x 0 + 1 q d (q(t) -q 0 ) , = R o f f -δR x 0 -δR 1 q d (q(t) -q 0 ). Substituting for M 0 from (3.16) [i.e M 0 = R o f f -δR x 0 ] ⇒ M(q) = M 0 -δR 1 q d (q(t) -q 0 ), = R o f f -δR q(t) q d . (3.17) 
Note that when q(t) ≥ q d , the expression of M(q) must be replaced by: M(q) = R on as

x → 1, while: M(q) = R o f f as x → 0 and the boundary cannot move any further. As suggested in [START_REF] Strukov | The missing memristor found[END_REF],

R o f f R on = 10 2 ∼ 10 3 , this implies R o f f R on so that: δR R o f f . In addition,
we assume that x 0 1; so that, M 0 R o f f . Then, we get the approximate memristance expression as:

M(q) = R o f f 1 - q(t) q d (3.18)
Hence, the charge having flowed is simply:

q(t) -q 0 = x(t) x 0 q d dx. (3.19)
Now that from the expression of M(q), V(t) is known for any i(t) and the result is given by Fig. 3.5. The memristance M(q) in (3.18) depicts an ideal charge-controlled memristance having charge q(t) as the only state variable. 

3.2.2/ FCM WITH LINEAR DOPANT DRIFT MODEL

Here, the memristor is driven by a voltage source v(t) connected across its two terminals, and the current flowing through the memristor i(t) is given by:

i(t) = Y(φ) v(t),
where Y(φ) is the memductance. From the definition of memristor:

M(q) = dφ(q) dq , or dφ = M(q) dq.
Let us substitute an expression of M(q) from (3.17) in order to obtain the relationship between charge q(t) and the flux φ(t), thus:

dφ = R o f f -δR q(t) q d dq.
Integrating both sides gives:

φ(t) φ 0 dφ * = q(t) q 0 R o f f - δR q d q * dq * , thus: φ(t) -φ 0 = R o f f (q(t) -q 0 ) - δR 2q d (q(t) 2 -q 2 0 ). (3.20) 
Equation (3.20) is a quadratic equation in q(t) and consequently will generate two possible solutions of q(t). For simplicity let us take φ and q in place of φ(t) and q(t) respectively.

Considering q = qq 0 , such that q 2q 2 0 = q 2 + 2q 0 q , then equation (3.20) becomes:

q = R o f f δR q d -q 0 ± R o f f δR q d -q 0 2 - 2q d (φ -φ 0 ) δR ⇒ q = R o f f δR q d ± R o f f δR q d -q 0 2 - 2q d (φ -φ 0 ) δR . (3.21) 
To vividly visualize (3.21), we have to apply the normal approximation: similar to what we did in obtaining equation (3.18). Thus, equation (3.21) becomes:

q = q d ± (q d -q 0 ) 2 - 2q d (φ -φ 0 ) R o f f .
Physically, the feasible value of q(t) compatible with the boundary condition is given with only the minus sign of the quadratic equation solution. This ensures that the state variable is within the recommended range. Therefore, the charge q(t) as a function of flux φ(t) is given by:

q = q d -(q d -q 0 ) 2 - 2q d (φ -φ 0 ) R o f f ⇒ q = q d          1 - 1 - q 0 q d 2 - 2(φ -φ 0 ) q d R o f f          . (3.22) 
From (3.15), the expression of x(t) is updated by substituting (3.22) into (3.15):

x(t) = x 0 + 1 - 1 - q 0 q d 2 - 2(φ -φ 0 ) q d R o f f - q 0 q d . (3.23) 
Suppose x 0 = 0, q 0 = 0 and φ 0 = 0, then substituting (3.23) into (3.17), we have:

M(φ) = R o f f -δR         1 -1 - 2φ(t) q d R o f f        
, and after the simplification:

M(φ) = R o f f 1 - 2φ(t) q d R o f f . (3.24)
M(φ) is the flux-controlled memristance and the memductance Y(φ) is expressed as:

Y(φ) = 1 M(φ)
.

For any input voltage V(t) connected across the memristor, the current i(t) is given by: All other important parameters could be visualized in the same way. 

i(t) = Y(φ) v(t).

3.3/ NONLINEAR DOPANT DRIFT MODEL: ANALYSIS

The drawbacks of linear model can be overcome by adding an appropriate window function to the existing linear model which imposes nonlinear drift in the entire width of the device, see eq. (3.6). Moreover, the nonlinearity of the device improves and becomes even more significant at the boundaries under certain voltage threshold [START_REF] Strukov | The missing memristor found[END_REF], hence it is called the nonlinear dopant drift model. In addition to enhancing nonlinearity, the window function is important in maintaining safe dynamic operating range of the memristor device model by disallowing w to take values outside of interval [0, D], which would consequently cause memristance to take values outside its limits or even negative if δR x > R o f f . Thus, g(x) resolves the boundary issues by ensuring zero drift at the boundaries, i.e x = 0 and x = 1, such that:

g(0) = g(1) = 0.
Let us consider g(x) by Joglekar and Wolf [START_REF] Yogesh | The elusive memristor: properties of basic electrical circuits[END_REF], for p = 1: g(x) = 4x (1x) corresponding to the g(x) in [START_REF] Strukov | The missing memristor found[END_REF] multiplied by 4. The voltage across and current through the memristor can be calculated. That corresponds then rather to Strukov's window function that we will consider now, as:

g(x) = x(1 -x).

3.3.1/ CCM WITH NONLINEAR DOPANT DRIFT MODEL

Equation (3.6) is rewritten as follows:

dx dt = 1 q d x (1 -x) i(t).
Let us consider an input current: i(t) = I 0 sin(ωt). Then, at t = 0, i(t) = 0, q(t = 0) = q 0 and x(t = 0) = x 0 . Therefore, integration by variable separable method gives:

x x 0 dx * x * (1 -x * ) = 1 q d t 0 i(t * ) dt * = q -q 0 q d . ∴ ln x x x 0 -ln(1 -x) x x 0 = q -q 0 q d , ln x x 0 -ln 1 -x 1 -x 0 = q -q 0 q d , x -x x 0 x 0 -x x 0 = e q-q 0 q d ⇒ x(t) = x 0 e q-q 0 q d 1 -x 0 + x 0 e q-q 0 q d . (3.25) 
Therefore, the charge-controlled memristance M(q) becomes:

M(q) = R o f f -δR x 0 e q-q 0 q d 1 -x 0 + x 0 e q-q 0 q d . (3.26) 
At t = 0, x 0 is confirmed, while x(t) always lies between 0 and 1, hence x(t) → 1 when t → ∞. From (3.26) we get the voltage drop across the memristor:

V(t) = M(q) i(t),
while the results are shown in Fig. 3.7.

3.3.2/ FCM WITH NONLINEAR DOPANT DRIFT MODEL

Recall that for any input voltage v(t) = V 0 sin(ωt) applied to the memristor:

φ(t) = t 0 V(τ) dτ + φ 0 ⇒ φ(t) = V 0 ω 1 -cos(ωt) + φ 0
and the dynamic state of the memristor x(t) is driven by flux φ(t). Therefore, once again by definition: From (3.26), it follows that:

V(t) = M(q) dq(t) dt .
V(t) =          R o f f -δR x 0 e q-q 0 q d 1 -x 0 + x 0 e q-q 0 q d          dq(t) dt , t 0 V(t * ) dt * = q(t) q 0           R o f f -δR x 0 e q * -q 0 q d 1 -x 0 + x 0 e q * -q 0 q d           dq * ⇒ φ(t) -φ 0 = R o f f (q(t) -q 0 ) -δR q(t) q 0
x 0 e q * -q 0 q d

1x 0 + x 0 e q * -q 0 q d dq * .

Let y = 1x 0 + x 0 e q * -q 0 q d , then dy dq * = x 0 q d e q * -q 0 q d ⇒ q d dy

x 0 e q * -q 0 q d = dq * . Moreover, at t = 0, q * = q 0 ⇒ y(0) = 1 while at time t, q * = q(t), y = 1x 0 + x 0 e q-q 0 q d . Substituting these generated variables, the equation becomes:

φ(t) -φ 0 = R o f f (q(t) -q 0 ) -δR y(t) y(0)
x 0 e q * -q 0 q d y .q d dy

x 0 e q * -q 0 q d , φ(t) -φ 0 = R o f f (q(t) -q 0 ) -q d δR ln y(t) y(0) ⇒ φ(t) = φ 0 + R o f f (q(t) -q 0 ) -q d δR ln 1 -x 0 + x 0 e q(t)-q 0 q d . (3.27)
From equation (3.27), q(t) can be expressed in terms of φ(t) as follows:

ln 1 -x 0 + x 0 e q(t)-q 0 q d - R o f f q d δR (q(t) -q 0 ) = - 1 q d δR (φ(t) -φ 0 ),
Taking exponential of both sides and then simplifying:

1 -x 0 + x 0 e q(t)-q 0 q d × e - R o f f δR q(t)-q 0 q d = e -1
q d δR (φ(t)-φ 0 ) . Using δR ≈ R o f f , then:

(1 -x 0 ) e - q(t)-q 0 q d = e -1 q d δR (φ(t)-φ 0 ) -x 0 ⇒ q(t) = q 0 -q d ln          e - V 0 [1-cos(ωt)] q d δR ω -x 0 1 -x 0          . (3.28)
Similarly, x(t) is obtained by substituting (3.28) into (3.25) and then M(φ) from (3.17).

Thus: 

G(φ) = 1 M(φ) , i(t) = G(φ) V(t)
v(t) = V 0 sin(ωt), V 0 = 2V, x 0 = 0.1, q d = 100µC, R o f f = 16KΩ,

3.3.3/ EFFECT OF WINDOW FUNCTION IN MEMRISTOR MODELING: CIRCUIT

POINT OF VIEW Figure 3.9 shows the comparison of linear and nonlinear models on the memristance transition with respect to the flowing charge. For the linear dopant drift model, the memristance transits linearly from one state to the other, whereas in the nonlinear drift model, it transits nonlinearly and in a cubic fashion. For unity control parameter, that is p = 1, the nonlinearity is more pronounced, however, with the increase in p, the nonlinear model approaches the linear model [START_REF] Kim | Memristor bridge synapses[END_REF][START_REF] Yogesh | The elusive memristor: properties of basic electrical circuits[END_REF], see Fig. 3.9.

For the same initial conditions, Fig. 3.10 shows the nonlinear models comparison of the memristance transition from its highest resistance state (R o f f = 16KΩ) to the lowest state (R on = 100Ω) and vice-versa. It shows that the amount of charge q R required for each q(t); 7C µv = ĥ(µ v ) . Therefore, for a fixed device dimension (i.e D) and doping, only µ v is affected by the window function, hence q d . This is due to the fact that window function ensures zero drift of the mobile carrier at the boundaries, thus significantly reduces their mobility and increases q d . 

Figure 3.10: Nonlinear models comparison of the full memristance transition between R o f f = 16KΩ and R on = 100Ω with respect to the quantity of charge q(t). The results are obtained under the same initial conditions. This is to show the amount of charge q R needed for each model to fully transit until R o f f and then R on . Note that p = 1 and p = 20 for Joglekar and Prodromakis respectively, and g max (x) = 1 for both models allowing for accurate comparison. (a) M(q) versus q(t) for Strukov (Stru.), Joglekar (Jogl.) and Prodromakis (Prod.). (b) M(q) and q(t) transients.

model to fully transit from R o f f to R on and vice versa, differs from one model to another.

Hence, this is very important in deciding which model to use for any application. q R = 0.365mC. For Prodromakis function, q R = 0.145mC, but here p = 20 so that g max (x)

can scale up to 1 in order to accurately compare the result with the one obtained using Joglekar (i.e g max (x) can scale up to 1 for both models). For Strukov function, q R = 1.350mC

and the detailed comparison of these models is illustrated in Table 3.1. It is to be noted that the amount of charge q R required to fully drive memristor from R o f f to R on and viceversa, depends strongly on the initial memristance and the value of p (i.e the p in the case of Joglekar and Prodromakis).

M(q)

M(q) M(q) Prodr.

Jogl.

Struk. It is observed that for a small input voltage, for example 0.7V given by Fig. 3.12a1-a3, the behaviours of the linear and nonlinear models are virtually the same, as can be seen from the corresponding I-V characteristics (Fig. 3.12a2). This is due to the fact that the boundary between doped and undoped regions operates not close to the layer limit 0 or D, which means that a small voltage causes a small displacement of the state variable x and hence a small transition of the memristance. Both models respond in the same way when the input voltage is small. and nonlinear (i nl ) models when the voltage is high and it becomes apparent in the corresponding Fig. 3.12c2. Figure 3.12c3 shows that the displacement of the state variable and the memristance transition (x l and M nl resp.) in the case of the linear model are higher than the ones for nonlinear model (x nl and M nl resp.) when the input voltage is high.

q(t),C q(t),C q(t)
Furthermore, it can be seen in Fig. Both curves of linear and nonlinear models coincide when the voltage is small. Therefore, the difference between linear and nonlinear dopant drift models is only noticeable when the input voltage is substantially high, and that is the point where x → 0 or x → 1.

Furthermore, the proposed window function is compared from the circuit point of view, Physically, the presence of the window function seems to be artificial and without any physical argument. We will then present in chapter 4, precisely, another point of view to take into account the fact that x must remain in [0, 1] while q can vary in a greater interval. Comparison of the linear and nonlinear dopant drift models showing for each case, the nature of the flowing currents, the I-V characteristics, the memristance and the corresponding state variable transition respectively, for (a1-a3) 0.7V, (b1-b3) 1V and (c1-c3) 1.2V. Where: l and nl are linear and nonlinear models abbreviations, V(t) is the input voltage, i l and i nl are the flowing currents for linear and nonlinear drift model respectively, similarly, x l , M l , x nl and M nl are the state variables and memristances for the linear and nonlinear models. description.

V(t) [V] -0.2 -0.1 0 0.1 0.2 i(t) [mA] c1 -0.7 -0.35 0 0.35 0.7 V(t) [V] -0.08 0 0.08 i(t) [mA] a2 -1 -0.5 0 0.5 1 V(t) [V] -0.14 -0.07 0 0.07 0.14 i(t) [mA] b2 -1.2 -0.6 0 0.6 1.2 V(t) [V] -0.2 -0.1 0 0.1 0.2 i(t) [mA] c2 0.5 1 1.5 t [s]
One key important aspect is the SPICE and Analog model of a memristor for designing and testing memristor-based applications. Before the realization of physical memristor device by HP lab in 2008, with the exception of L. Chua proposal [START_REF] Chua | Memristor-the missing circuit element[END_REF], there was no available memristor model. However, with the discovery of TiO 2 memristor, researchers started to develop different methods mimicking its behaviour.

3.4.1/ SPICE MODELS OF MEMRISTOR

The mathematical description of a given phenomenon can be modeled in SPICE with the aid of its built-in control sources (for example, voltage control voltage source, voltage control current source, behavioral sources, etc) and other components such as resistors, capacitors, OpAmps ... The mathematical description of HP TiO 2 memristor is used to emulate memristor characteristics, as such many models are reported and some are based on particular applications [107, 110-112, 114, 116, 121-126]. The most commonly used SPICE model is the one developed by Biolek et al. [START_REF] Zden Ěk Biolek | Spice model of memristor with nonlinear dopant drift[END_REF], whose setup is shown in Fig. 3.14. Figure 3.14a shows the block diagram representation of the port and state equations of the memristor: ing through and across the memristor can be modelled using the E-type voltage source, hence allowing to visualize the monotonically increasing function of q versus φ in the φ-q plane.

V(t) = R o f f -δRx I(t) and
The initial state of the memristor is given by the initial voltage V(x 0 ) across the capacitor.

The initial memristance R i is determined as: R i = R o f f -δRx 0 . Figure 3.15 shows the results of the memristor netlist file in Table A.1 (Appendix A). The result is obtained using a sine voltage source connected across the port terminals pl and mn of the memristor. 

.1. V = V 0 sin(ωt), V 0 = 1V, f = 1Hz, R on = 100Ω, R o f f = 16KΩ, µ v =

3.4.2/ ANALOGUE MODELS OF MEMRISTOR

Analogue memristor models are developed using analog and active components such as operational amplifiers, hence modeling the behaviour of memristor for simulation [START_REF] Muthuswamy | Implementing memristor based chaotic circuits[END_REF][START_REF] Valsa | An analogue model of the memristor[END_REF][START_REF] Carlos S Ánchez-L Ópez | A floating analog memristor emulator circuit[END_REF][START_REF] Xiao-Yuan | Implementation of an analogue model of a memristor based on a light-dependent resistor[END_REF][START_REF] Dalibor Biolek | Passive fully floating emulator of memristive device for laboratory experiments[END_REF][START_REF] Kim | Memristor emulator for memristor circuit applications[END_REF]. Analog models can be easily implemented in the laboratory for practical and research purposes. For example, Fig. 3.16 shows an analog model of a flux-controlled memristor [START_REF] Valsa | An analogue model of the memristor[END_REF]. The model is analysed by considering different input signals, for example sinusoidal, triangular input voltage sources etc..., and it shows a pinched hysteresis loop which is the primary signature of a memristor. 

V φ (t) = 1 τ V(t)dt, (3.30) 
where τ = RC is a time constant. The memductance G M (t) depends linearly on V φ (t), with:

G M (t) = G 0 + K G V φ (t), (3.31) 
where G 0 and K G are constants. Finally, the current i(t) is given by: sine, triangular and square wave, respectively.

i(t) = G M (t).V(t). ( 3 

3.4.2.1/ SINE INPUT

Let consider the applied input signal to be a sine voltage V(t) as:

V(t) = V 0 sin(ωt), (3.33) 
whose flux φ(t) is represented by the voltage V φ (t) obtained by integrating (3.33):

V φ (t) = 1 τ t 0 V 0 sin(ωt )dt + φ 0 , V φ (t) = V 0 τω (1 -cos(ωt)) + φ 0 τ , (3.34) 
where φ 0 is the initial flux. Knowing the flux V φ (t), the memductance G m (t) and the current i(t) are to be calculated using equations (3.31) and (3.32) respectively. Figure 3.17 shows the results of sinusoidal input voltage, observed for different frequencies and Fig. 3.17

shows the results obtained for sine input voltage with values parameters: R = 1KΩ,

C = 1µF, G 0 = 0.5S and K G = 10S V -1 .
The results are significantly modified with the changes of G 0 , K G and frequency. Nevertheless, the model is working at low frequencies. 

3.4.2.2/ TRIANGULAR INPUT

Here, the periodic input voltage is a triangular one as shown in Fig. 3.18. The same approach is used as in the case of sine input but with new input voltage expression. The triangular waveform of Fig. 3.18 is symmetrical, hence:

t 2 = 2t 1 , t 3 = 3t 1 and t 4 = 4t 1 with t 1 = T 4 ,
where T is the period in seconds. The voltage expressions of the various slopes are obtained to be: First rising slope for the time interval 0 to t 1 (i.e, 0 to point a):

V t 1 = V p t 1 t.
Falling slope for the time interval t 1 to t 3 (i.e point a to b):

V t 3 = - V p t 1 (t -2t 1 ).
Second rising slope for the time interval t 3 to t 4 :

V t 4 = - V p t 1 (4t 1 -t).
Where V t 1 , V t 3 and V t 4 are the instantaneous voltages of V(t) within the time t 1 , t 3 and t 4 respectively. V p is the peak value of V(t). It implies that:

                         V(t) = V p t 1 t, if t ∈ [0, t 1 ], (3.35) 
V(t) = - V p t 1 (t -2t 1 ), if t ∈ [t 1 , t 3 ], (3.36) 
V(t) = - V p t 1 (4t 1 -t), if t ∈ [t 3 , t 4 ], (3.37) 
The corresponding flux expression (V φ (t)) is obtained by integrating (3.35), (3.36) and

(3.37) accordingly, with a special care to ensure the voltage continuity:

                             V φ (t) = 1 τ t 1 0 V t 1 dt, if t ∈ [0, t 1 ], (3.38) 
V φ (t) = 1 τ t t 1 V t 3 dt + k 1 , if t ∈ [t 1 , t 3 ], (3.39) 
V φ (t) = 1 τ t t 3 V t 4 dt + k 2 , if t ∈ [t 3 , t 4 ], (3.40) 
V φ (t) is proportional to the instantaneous flux of V(t). k 1 and k 2 are constants to be calculated in order to eliminate the jump discontinuities. V φ (t) must be continuous at t = t 1 and t = t 3 , otherwise there will be discontinuities at points a and b (Fig. 

1 τ t 1 0 V t 1 dt = 1 τ t 1 t 1 V t 3 dt + k 1 . ∴ 1 τ V p t 1 t dt = 1 τ - V p t 1 (t -2t 1 ) dt + k 1 t=t 1 ⇒ k 1 = - V p t 1 τ = - V p T 4τ . (3.41) 
Similarly at point 'b', i.e from equations (3.39) and (3.40): 

1 τ V t 3 dt + k 1 = 1 τ V t 4 dt + k 2 . ∴ 1 τ - V p t 1 (t -2t 1 ) dt + k 1 = 1 τ - V p t 1 (4t 1 -t) dt + k 2 t=t 3 ⇒ k 2 = 8V p t 1 τ = 4V p T τ . ( 3 

3.4.2.3/ RECTANGULAR OR SQUARE WAVE INPUT

The periodic input applied to the memristor is a square wave input voltage with amplitude ±V. This type of input can be expressed as:

V(t) =                                  V + , if 0 ≤ t < t 1 V -, if t 1 ≤ t < t 2 V + , if t 2 ≤ t < t 3 V -, if t 3 ≤ t < t 4 . . . , . . . (3.43)
and the corresponding flux is obtained by integrating (3.43) as follows:

V φ (t) =                                  V + t, if 0 ≤ t < t 1 V -t + Vi 1 , if t 1 ≤ t < t 2 V + t + Vi 2 , if t 2 ≤ t < t 3 V -t + Vi 3 , if t 3 ≤ t < t 4 . . . , . . . (3.44) 
where Vi 1 , Vi 2 and Vi 3 are constants for the continuity at time t 1 , t 2 and t 3 respectively.

Let consider the time interval as 0.25s, then t 1 = 0.25, t 2 = 0.5, t 3 = 0.75 and t 4 = 1.

The constants are obtained to be: Vi 1 = 0.25V + -0.25V -, Vi 2 = -0.25V + + 0.25V -and Vi 3 = 0.5V + -0.5V -. Similarly, the memductance G m (t) and the current i(t) are calculated using equations (3.31) and (3.32) respectively. Figure 3.20 shows the result of the square

wave input voltage for V = ±1V, R = 1KΩ, C = 1µF, G 0 = 1S and KG = 5S V -1 .

3.4.3/ PASSIVE MODELS OF THE MEMRISTOR EMULATOR

Figure 3.21 shows the schematic of a passive memristor emulator [START_REF] Dalibor Biolek | Passive fully floating emulator of memristive device for laboratory experiments[END_REF]. The model is similar to the one in Fig. 3.16 with the exception that junction field effect (JFET) transistor is used instead of the operational amplifier, but without any need of internal power to operate. The voltage across the gate (G) terminal with respect to the source (S ) terminal corresponds to the voltage V C across the capacitor C provided that the gate resistance (R G ) is infinite, that is no current flows through R G . The role of the gate resistance R G is to avoid leakage current through the gate, therefore, it separates the gate from the output of the RC cell which acts as a passive lossy integrator having the cutoff frequency ( f c ), as:

f c = 1 2πRC
. R D is a small resistance (optional) connected to the drain terminal in order to measure the current flowing through drain and then the source terminal. Since no current goes into the gate terminal of the JFET, the current through the resistor R is the same than the one through the capacitor, that is: 

I R = I C . Therefore, V C = V GS ,
C dV C dt + V C -V R = 0 ⇒ dV C dt = 1 RC (V -V C ). (3.45)
The transconductance of the device is controlled by the voltage V C across the capacitor and hence it is equivalent to the state variable x of the system: V C = x. Furthermore, the state variable V C (or x) corresponds to the integral of the port voltage V and V DS = V because R D is negligible. Therefore, the characteristics of JFET transistor as given in [START_REF] Valsa | An analogue model of the memristor[END_REF], is:

I D = ĝ(V GS , V DS )V DS = ĝ(x, V)V. (3.46)
From equations (3.45) and (3.46) we obtained the following state dependent Ohm's law relationship:

dx dt = 1 RC (V -x), (3.47) 
I = ĝ(x, V)V. (3.48)
Recall that flux-controlled memristor and an ideal flux-controlled memristor are expressed respectively, by:

I = ĝ(x, V)V, dx dt = f (x, V) and I = ĝ(x)V, dx dt = f (V)
, where ĝ (a memductance) and f are nonlinear functions of the state variable and the voltage.

For appropriate choice of parameters and under specific conditions, equations (3.47) and

(3.48) show that Fig. 3.21 models a flux-controlled memristive system. Furthermore, it could even model an ideal flux-controlled memristor provided that it meets two conditions as outlined in [START_REF] Dalibor Biolek | Passive fully floating emulator of memristive device for laboratory experiments[END_REF], thus: (1) The memductance is independent of the voltage V (thus a small voltage swing) and (2) The state variable must be negligible compared to the voltage V (this will be fulfilled for relatively high signal frequencies when the passive integrating RC cell will show adequate attenuation). 

3.4.4/ PROPOSITION OF MODIFICATION

The analogue model in Fig. 3.21 can be modified in certain ways to observe the pinched hysteresis curve. We propose that the condition I R I D and the condition f ≥ f c can be avoided by using:

• Current Transformer.

• Current mirror.

• Hall effect sensor (H.E.S). For a MOSFET transistor with width W and length L, the current flowing through the device is described as:

I D = µ n C ox 2 W L (V GS -V T H ) 2 (1 + λV DS ), (3.49) 
where I D is the drain current, V DS is the drain-source voltage, V GS is the gate-source voltage, V T H is the threshold voltage, L is the length of the transistor, W is the width of the transistor, C ox is the specific capacitance of the gate in F/m 2 and µ n is the mobility. By ignoring the channel length modulation effect (1 + λV DS ), the relationship reduces to:

I D = µ n C ox 2 W L (V GS -V T H ) 2 . (3.50)
The input and output currents of the current mirror are expressed respectively as:

I D in = µ n C ox 2 W L in (V GS -V T H ) 2 , I D out = µ n C ox 2 W L out (V GS -V T H ) 2 .
By taking the ratio of output to input currents we have:

I D out =          W L out W L in          I D in (3.51)
If the two transistors have the same technological parameters and identical dimensions, then:

I D out = I D in
Choosing appropriate width sizes, desired output current can be obtained without affect-ing the input current. 

3.5/ CONCLUSION

Memristor technologies are introduced, then followed by the details modeling analysis of TiO 2 memristor. According to the mode of excitation, the analytical solutions and results of linear and nonlinear dopant drift models are obtained. The difference between linear and nonlinear models is highly observable as the state variable of the system approaches 0 or 1. It shows that for a small input voltage applied to the memristor, the linear and nonlinear models respond fairly the same because the state variable operates within the bulk of the device, not toward the edge. The effect of increasing input frequency is shown for each model and the shrinkage of the pinched hysteresis loop is due to the inverse relationship between the flowing charge q(t) and the input frequency ω [i.e q(t) = In this chapter, we give a detailed φ-q curve description of the TiO 2 memristor. Firstly, giving the role of the parameter q 0 for characterizing the memory effect of the device, then following the thorough description of the φ-q curve which also forms the foundation of our new memristor model. Then, the circuit response of the new model is obtained by SPICE simulation.

I o ω (1 -cos(ωt)].

4.2/ MEMORY EFFECT

Memristor being a memory resistor, the memory effect of this device becomes a point of interest, especially in the context of applications. Having in mind that M = dφ dq with

φ = t -∞ V(τ)dτ and q = t -∞
i(τ)dτ, the fact that the memristance is expressed between two reference pointsthe previous and the present statemakes the memristor to exhibit memory effect, manifested in its hysteretic behaviour. The initial memristance is given by the relation f (φ 0 , q 0 ) defined by the initial conditions of the memristor at time

t = 0.
The memristor is initially at M 0 from the last moment it was used. When the memristor is subjected to power supply once again and depending on the polarity of the voltage or current source, the memristance, expressed in ohms, transits towards R on or R o f f emanating from M 0 along the transition curve, see Fig. 4.1.

The forth or back movement of the boundary between doped and undoped regions is proportional to the quantity of charge flowing through the memristor. We have shown in 

q d = D 2 µ v R on
is the amount of charge required to move the boundary between doped and undoped TiO 2 from w → 0 to w → D, or equivalently from x → 0 to x → 1. Moreover, the charge q d can be viewed as the threshold charge serving as a charge scaling factor whose value is determined by the technology parameters. Typically [START_REF] Strukov | The missing memristor found[END_REF], for R o f f = 16KΩ, R on = 100Ω, D = 10 -8 m and µ v = 10 -14 m 2 /V.s, then: q d = 100µC.

From equation (3.3), the equivalent memristance expression, in simplest case of linear dopant drift model, writes:

M(x) = R o f f -δR x, dx dt = i(t) q d . (4.1)
To vividly explore the memory effect of the memristor device, here it is rather considered at time t = 0, q(t) = 0 -∞ i(τ)dτ = q 0 representing the previous amount of charge passed through the device, while x(t) = x 0 is the initial position of the boundary between the doped and the undoped regions, characterizing the initial memristance of the memristor.

Then, at time t ∈ [0 • • • + ∞[ and due to the flowing current i(t), it becomes q(t) = q 0 + q (t)

with q (t) = t 0 i(τ)dτ. From equation set (4.1), x(t) is processed with respect to the initial charge q 0 and the charge scaling factor q d as:

x(t) = q(t) q d , = 1 q d q 0 + q (t) , (4.2) 
and the equivalent memristance becomes: The voltage and current waveforms in a memristor are always in phase. However, one can see that the current is not maximum even so the causative voltage is maximum (point 2), emphasizing the nonlinear nature of the device. Points 1, 3 and 5 are the evidence of pinched hysteresis loop at (0,0) i.e I(t) = 0 whenever V(t) = 0 and vice versa. (b) Effect of initial charge q 0 on the memristor I-V characteristic, thus reflecting the memory effect of the device.

M(q) = R o f f -δR (q + q 0 ) q d = R i -δR q q d , (4.3) 
R o f f = 16KΩ, R on = 100Ω, I 0 = 0.15mA, f = 1Hz, µ v = 10 f m 2 /V.s, D = 10nm
, then q d = 100µC and q 0 = 0.1q d , 0.3q d and 0.4q d .

where

R i = R o f f -δR q 0 q d
is the initial memristance defining the memory effect of the memristor. Then, the Ohm's law V(t) = M(q)I(t) depends not only on the current I(t) = dq dt , but also on the initial charge q 0 having already flowed through the memristor before the initial conditions. Therefore, q 0 defines the initial memristance M(q 0 ) of the device.

Figure 4.2b shows that for fixed input amplitude and frequency, the value of initial charge affects the I-V characteristic of the device. The result is obtained for three different initial conditions, as: q 0 = 0.1q d , q 0 = 0.3q d and q 0 = 0.4q d respectively.

4.3/ φ-q CURVE

The pinched hysteresis loop is one of the known fingerprints of memristor [START_REF] Chua | If it's pinched it'sa memristor[END_REF] that basically characterize memristive systems by observing the device's voltage and current responses in the current versus voltage plane (i.e the I-V curve), but it can not define memristor model in any way [START_REF] Chua | Resistance switching memories are memristors[END_REF], as it depends on initial condition, for example q(t = 0) = q 0 .

Therefore, to effectively model memristor behaviour, the flux-charge relationship also called the φ-q curve is to be studied. Considering an ideal charge-controlled memristor [START_REF] Chua Leon | Everything you wish to know about memristors but are afraid to ask[END_REF][START_REF] Biolek | Some fingerprints of ideal memristors[END_REF][START_REF] Chua | Resistance switching memories are memristors[END_REF][START_REF] Yuriy | A simple test for ideal memristors[END_REF] given by: φ = φ(q) and defining more generally the state variable x(t)

as the instantaneous charge q(t) flowing through the device with respect to q d , the memristance M(x) becomes M(q) whose dynamics depends solely on the charge q(t), such that:

V(t) = M(q) i(t), dq dt = i(t), (4.4) 
representing the port and state equations of the device, respectively. Here M(q) = dφ dq is the charge-controlled memristance defined by the slope at the operating point q(t), φ(t)

on the φ-q curve at any given time. In Fig. 4.3, the memristance M(q) undergoes transition between two resistance states: R on and R o f f . As the charge having crossed through the memristor can be less than 0 or greater than q d , we can use as state variable x(t) = q(t) q d given by eq. (4.2), but it is emphasized that this variable is not limited in [0, 1] as should be x(t) defined previously. Let us recall that: M(q) = R o f f for x ≤ 0 and M(q) = R on for x ≥ 1. Depending upon memristor technology, the limiting values R on and R o f f are set by means of two possibilities: (i) by the manufacturer according to the technology parameters during the fabrication process (e.g Metal-Insulator-Metal such as HP technology) or (ii) by the user and depending upon the application (e.g Self Directed Channel (SDC) devices such as KNOWM memristor) [START_REF] Campbell | Self-directed channel memristor for high temperature operation[END_REF]132]. The equations linking the voltage V(t) across the memristor and the current i(t) flowing through it, are rewritten as:

V(t) = R o f f -δR x i(t), dx dt = i(t) q d . (4.5) 
Equation (4.5) characterizes a charge-controlled memristor whose dynamics is determined by the charge flowing through the device. However, a more realistic description of the memristance M(q) with respect to q d must avoid M(q) to be out of

[R on , R o f f ], if q is outside [0, q d ]. Using equation (4.
2), we have then to modify (4.5) in:

M(q) =                    R o f f , if q(t) ≤ 0 R o f f -δR q(t) q d , if 0 ≤ q(t) ≤ q d R on , if q(t) ≥ q d (4.6)
Recall that the constitution relation of the memristor is given by dφ = M(q)dq, then from equation (4.6) we obtained a quadratic expression of the φ-q loci by considering q(t) in [0, q d ]:

φ(q) = R o f f q - δR 2 q d q 2 . (4.7)
In this q interval, as the flux φ(t) changes with respect to q(t), one can see in Fig 4.11). The flux φ is a continuous function of charge q and varies according to the operating point along the φ-q curve. Points b, c and d define some instances of memristance given by the lines T 1 , T 2 and T 3 respectively. Point b is when q(t) < 0 and the memristance is R o f f given by the slope of line T 1 . However, points c and d describe the memristance transition as q(t) increases until q(t) = q d where the φ-q loci leaves the parabolic path and becomes a straight line T 3 whose slope is R on . For q(t) > q d , the φ-q loci is no longer parabolic. Note that q f is not far from q d , see eq. (4.12). This curve is for φ 0 = 0 and q 0 = 0. φ(t) increases toward the summit of the imaginary dotted parabola (labeled as 'p') where the slope of the tangent is horizontal. Additionally, the area covered by the parabolic curve in eq. (4.7) depends upon the limiting values of R on and R o f f . The description of this model must be completed with a continuous variation of φ versus q. Furthermore, the complete mathematical description of the φ-q curve in Fig. 4.3, is as follows:

If q ≤ 0:

V(t) = i(t) R o f f ⇒ φ(q) = R o f f q. (4.8) If 0 ≤ q ≤ q d : V(t) = R o f f -δR q q d i(t) ⇒ φ(q) = R o f f q -δR q 2 2 q d + φ 1 . (4.9) 
If q ≥ q d :

V(t) = i(t) R on ⇒ φ(q) = R on q + φ 2 . (4.10)
φ 1 and φ 2 are constants describing the continuity of the φ-q curve at q = 0 and q = q d respectively. Thus, equations (4.8)-(4.10) give:

at q = 0: R o f f q = R o f f q -δR q 2 2 q d + φ 1 ⇒ φ 1 = 0, at q = q d : R o f f q -δR q 2 2 q d = R on q + φ 2 ⇒ φ 2 = δR q d 2 .
The complete description of this model and its corresponding circuit response are given in equation ( 4 If the charge already flowed through the device is negative, the slope of the φ-q curve is R o f f . On the other hand, if the total charge crossed through the memristor reaches q(t) = q d , the slope becomes R on . In Fig. 4.3, when the charge flowing through the device increases, the conductivity increases simultaneously and the memristance moves toward R on via the parabolic path describing the flux versus the charge by the black dotted curve.

                                                                 φ(t) = R o f f q(t) V(t) = R o f f i(t)          if q(t) ≤ 0 φ(t) = R o f f q(t) -δR q(t) 2 2q d V(t) = R o f f -δR q(t) q d i(t)                if 0 ≤ q(t) ≤ q d φ(t) = R on q(t) + δR q d 2 V(t) = R on i(t)          if q(t) ≥ q d
If q(t) > q d , the φ-q loci is no longer on the dotted parabolic path, instead traverses a path whose slope is R on .

Notice that the instantaneous memristance at some chosen points is represented by the slope of the lines, for example T 1 , T 2 and T 3 (in blue dotted lines) to the φ-q curve at points b, c and d respectively. Following Fig. 4.3, these points are treated one after the other in the following.

Point b: as the initial charge q 0 is negative, the boundary between doped and undoped regions lets M(q) be R o f f . Then the memristor is not activated, however its effect is preserved and manifests itself in φ(t) resulting in straight line segment having exact slope R o f f as the tangent T 1 at point b. Hence, as q(t) increases, the locus follows along the parabolic path according to equation (4.7). Line T 1 is an example of line whose slope at point b is equal to R o f f and this is met if q(t) ≤ 0:

dφ dq q≤0 = R o f f .
Point c: for any q c , such that 0 < q c < q d , the point q(t), φ(t) belongs to the pink parabolic curve, with a tangent T 2 of slope:

dφ dq q=q c = M(q c ) = R o f f -δR q c q d , with R on < M(q c ) < R o f f .
Point d: as q(t) increases, φ(t) increases correspondingly toward the summit of the dotted parabolic path (point p). However, the φ-q loci reaches the point d (when q(t) = q d ) before reaching the summit p, beyond which dφ dq = R on . Note that the line T 4 sprouted from the origin through point d, corresponds to the static slope of the φ-q loci at q(t) = q d , that is

φ d q d = R o f f + R on 2 ,
while the dynamic slope of the φ-q loci at point d, whose tangent is the straight T 3 is obtained by differentiating (4.7) and substituting q(t) by q d , that is:

dφ dq q=q d = R o f f -δR q d q d = R on .
Thus, line T 3 is tangent to the parabolic path at point d whose dynamic slope is exactly R on .

Point f : obviously, one can see that point d is the point whereby the φ-q loci is just about to leave the parabolic path and to join a linear path. Moreover, this linear path depicts the R on slope. Thus, q(t) increasing and going beyond q d , the φ-q loci is no longer on the dotted parabolic path, instead becomes a straight with R on slope, see point f in Fig. 4.3.

Note that at the summit of the parabola,

q f = R o f f δR q d ⇒ q f > q d , (4.12) 
the dynamic slope would be 0, which is not realistic. Additionally, Fig. 4.3 shows the φ-q curve for zero initial conditions, that is, φ 0 = 0 and q 0 = 0, hence it goes through the origin

(φ(t = 0) = 0 if q(t = 0) = 0).
Depending on the values of φ 0 and q 0 , the curve can be shifted horizontally or vertically without changing the dynamical slopes.

4.4/ THE NEW MEMRISTOR MODEL

The memristance function M(q) of a charge-controlled memristor is studied with respect to the flowing charge through it. Fig. 4.5a shows the response of M(q) versus the charge flowing through the memristor. In black trace is the result of equation (4.11) in which the memristance does not change at q < 0 and q > q d and for a real memristor device this phenomenon is modeled using window function by imposing zero drift at the two extreme boundaries (i.e q = 0 and q = q d ). In addition, it further affirms the passivity nature of memristance whereby:

P M ≥ 0 ⇒ M > 0,
where P M is the power dumped in the memristor whose memristance is M. However, the model of HP TiO 2 memristor (shown in Fig. 4.5a) has not a continuous derivative at q = 0 and q = q d , which causes angulation at these q values.

Furthermore, the study of memristance dynamics in the CNN neighborhood connection between pixels (as will be seen in section 5.6) requires dM(q) dq to be continuous at q = 0 or q d in order to solve the system analytically. Hence, the main idea of this section is to modify the conventional TiO 2 memristor model given in eq. (4.11). The memristance function in red curve, shows a rather better result because it solves the problem of derivative discontinuity at q(t) = 0 or q d . The new model of M(q) is developed in the following, as derived from a cubic polynomial function which is determined to be continuous and with a continuous first derivative with respect to q, at these extreme points. To begin with, consider the memristance represented by a third order polynomial with constants coefficients a, b, c and d, as:

M(q) = a + b q + c q 2 + d q 3 f or q ∈ [0, q d ]. (4.13) 
The derivative of M(q) with respect to q is: f or q < 0 :

dM(q) dq = b + 2c q + 3d q 2 . ( 4 
M(q) = a = R o f f , f or q = 0 : dM(q) dq q=0 = 0 ⇒ b = 0, f or q = q d : dM(q)
dq q=q d = 0 and M(q)

q=q d = R on ⇒ b + 2c q d + 3d q 2 d = 0, q d (2c + 3d q d ) = 0 ⇒ q d 0 ⇒ 2c + 3d q d = 0. ∴ c = - 3 2 d q d . (4.15) 
Moreover, M(q)

q=q d = R on = R o f f + c q 2 d + d q 3 d ⇒ c q 2 d + d q 3 d = -δR, (4.16) 
where δR = R o f f -R on . Substituting c from (4.15) into (4.16), thus:

- 3 2 q 3 d + d q 3 d = -δR ⇒ d = 2 δR q 3 d , (4.17) 
and equation (4.15) becomes:

c = - 3 δR q 2 d . (4.18)
Substituting the expressions of the constants a, b, c, and d into (4.13), yields:

M(q) = R o f f -3 δR q q d 2 + 2 δR q q d 3 , (4.19) 
which implies that:

M(q) =                      R o f f , if q(t) ≤ 0 R o f f - 3 δR q 2 d q 2 + 2 δR q 3 d q 3 , if 0 ≤ q(t) ≤ q d R on , if q(t) ≥ q d (4.20)
with its charge derivative given by:

dM(q) dq =              - 6 δR q 2 d q + 6 δR q 3 d q 2 , if 0 ≤ q(t) ≤ q d 0, if q ≤ 0 or q ≥ q d (4.21)
Furthermore, with dφ = M(q) dq, the corresponding flux expression of (4.20) is given by:

φ =                        R o f f q, if q(t) ≤ 0 R o f f q - δR q 2 d q 3 + δR 2q 3 d q 4 , if 0 ≤ q(t) ≤ q d R on q + δR 2 q d , if q(t) ≥ q d . (4.22) 
Note that here again, φ = φ(q) can be shifted vertically or horizontally, according to the choice of initial conditions. The new model is shown by the red curve in Fig. 4.5a as comparison to the expression of M(q) in (4.6). Additionally, the φ-q curves for both models are given in Fig. 4.5b. The response of the new model is shown in Fig. 4.6.

POINT OF INFLEXION:

To determine the point of inflexion, the first and second derivatives of M(q) with respect to q are obtained from (4.20), leading to:

dM(q) dq = 6 δR q d        q 2 q 2 d - q q d        , (4.23) 
Differentiating (4.23) once again, gives:

d 2 M(q) dq 2 = 6 δR q d        2q q 2 d - 1 q d        . (4.24)
Therefore,

d 2 M(q) dq 2 = 0 i f 2q = q 2 d q d = q d ⇒ q = q d 2
. Substituting q = q d 2 into (4.23), gives:

dM(q) dq = 6 δR q d 1 4 - 1 2 , = - 3 2 δR q d .
The memristance M(q) at q = q d 2 is obtained by substituting the value of q into (4.20): 4.20) respectively. The charge q(t) is taken in a larger interval, for example q(t) = [-0.2, 1.2] × 10 -4 C. Using the parameters value in [START_REF] Strukov | The missing memristor found[END_REF]:

M(q) q= q d 2 = R o f f -3 δR 1 4 + 2 δR 1 8 ⇒ M(q) q= q d 2 = 1 2 R o f f + R on . ( 4 
µ v = 10 -14 m 2 /V.s, D = 10nm, R o f f = 16KΩ, R on = 100Ω
, gives q d = 100µC. Thus, dM(q) dq in eq. (4.6) has discontinuity at q(t) = 0 and q(t) = q d while dM(q) dq in eq. (4.20) is continuous at these q values. ) for V amp = 0.75V: φ-q curve, I-V graph, Memristance and state variable transition, respectively. (b1-b3) for V amp = 1.0V: φ-q curve, I-V graph, Memristance and state variable transition, respectively. (c1-c3) for V amp = 1.2V: φ-q curve, I-V graph, Memristance and state variable transition, respectively.

4.5/ CONCLUSION

The work is based on the model of a charge-controlled memristor, hence it started with the description of its φ-q curve which showed the flux dependency on the charge. In addition, memristor is normally modeled from its constitutive relationship between flux and charge because pinched hysteresis loop only describes its circuit response. New model of memristor is presented and due to its desirable continuity for all charge q(t) flowing through the memristor, it is essentially vital in the study of memristor dynamics involved in cells communication for a nonlinear network (to be presented in the subsequent chapters). Furthermore, the new model is tested in SPICE circuit simulator and it possesses the well-known signatures of a memristor.

CNN -MEMRISTOR DYNAMICS IN NONLINEAR NETWORK

This chapter presents thorough analysis on the dynamics of charge-controlled memristor between pixel cells, as a foundation enabling to study and anticipate the behaviour of the memristor used as neighbourhood connection in a cellular nonlinear or neural network.

5.1/ INTRODUCTION

Since its inception [START_REF] Leon | Cellular neural networks: Theory[END_REF][START_REF] Leon | Cellular neural networks: Applications[END_REF], cellular nonlinear networks (CNNs) have given birth to widely accepted techniques in image and signal processing owing to their parallel computation capability and real-time processing. CNN is basically an array of similar elemental units called cells with each cell connected to its adjacent neighbouring cells. As can be seen in Fig. 5.1, the general formation of a two-dimensional CNN is applicable to image processing with the cells interacting to one another either directly due to adjacency (for adjacent cells) or indirectly (for nonadjacent cells) due to the 'propagation effects of the continuous-time dynamics of the network [START_REF] Leon | Cellular neural networks: Applications[END_REF]'.

The neighbourhood connections, as shown by the cross-line segments, enhance the mutual interaction among the cells such that each cell address can be written as C(i, j),

where: i = 1, 2, , 3 ..., x and j = 1, 2, , 3 ..., y with each cell having a neighbourhood of (2r + 1) 2 , where r = 1, 2, , 3 ..., N is the neighbourhood radius and N is a natural number. Note that CNN communicates locally, in other words, communication between cells is only possible between close cells, this fact lets it differ from a biological CNN.

Each cell of the CNN in Fig. 5.1 represents an image pixel such that the input image is mapped into a similar output image and the network converges to a steady state after having passed through the transient state excited by the input image. In [START_REF] Leon | Cellular neural networks: Theory[END_REF], the cell constituents are proposed to be one linear capacitor, two linear resistors, one independent voltage source, one independent current source and at-most 2n linear voltage con- trolled current sources, where n is the number of neighbour cells. However, the equivalent circuit is also proposed such that each cell constitutes one linear capacitor in parallel with one voltage controlled resistor R v [START_REF] Leon | Cellular neural networks: Theory[END_REF]. Thus, the formation resembles biological neuron with the exception that CNN allows only close neighbourhood communications.

The dynamics and the equilibrium states are determined by the voltage controlled resistor R v . Commonly, R v has three equilibrium states, out of which two are stable states while the other is unstable. Moreover, depending on the cell input, the system can have less than three equilibrium states. Depending upon the system initial condition and after the transient, the system tends to one of the stable equilibrium state. The setup is also realized with the cell composition reported using a nonlinear resistance such as Fitzhug-Nagumo in parallel with a linear capacitor [START_REF] Comte | Noise removal using a nonlinear two-dimensional diffusion network[END_REF][START_REF] Marqui | Diffusion effects in a nonlinear electrical lattice[END_REF][START_REF] Comte | Contour detection based on nonlinear discrete diffusion in a cellular nonlinear network[END_REF][START_REF] St Éphane Binczak | Pattern dynamics in a nonlinear electrical lattice[END_REF][START_REF] St Éphane | Experimental propagation failure in a nonlinear electrical lattice[END_REF]. Memristor-based CNNs have been reported [START_REF] Shukai Duan | Memristorbased cellular nonlinear/neural network: design, analysis, and applications[END_REF][START_REF] Di | Complete stability of feedback cnns with dynamic memristors and second-order cells[END_REF] in which a flux-controlled memristor is used in the cell's constituent and using memristor bridge as a synapse [START_REF] Prasad Adhikari | Memristor bridge synapse-based neural network and its learning[END_REF][START_REF] Kim | Memristor bridge synapses[END_REF]. Using memristor for CNN neighbourhood connection is also reported in [START_REF] Prodromakis | A review on memristive devices and applications[END_REF][START_REF] Lehtonen | Cnn using memristors for neighborhood connections[END_REF], applicable to image processing such as edge detection. The interesting features of memristors, such as connection flexibility, nano-scaleability, memory capability, conductance modulation etc, are essential properties affirming the reliability of memristor in neuromorphic networks, especially as synaptic function. In the following, we present the application of memristor in a 2D cellular nonlinear network with the cells comparable to pixels in an image processing purpose. Conventionally, the network is made of discrete cells, each containing one linear capacitor C and one nonlinear resistor R NL , while they are coupled together by linear resistors R to form 2D electrical lattice [START_REF] Comte | Contour detection based on nonlinear discrete diffusion in a cellular nonlinear network[END_REF], see Fig. 5.2. The linear resistor in the coupling mode is to be replaced by memristor. The approach is accom-

POSSIBILITIES OF THE MEMRISTOR-BASED 2D CNN

101 panied by the study of memristor behaviour on the overall system response, such as the effect of initial charge q 0 (corresponding to the memory effect of the memristor) on the system dynamics. Here are some of the advantages of the proposed memristor-based network:

• Reduction in size of the complete built-up due to the nano-nature of the memristor.

• Higher pixel density for the same image size.

• Hence, improving of sharpness.

• Lower power consumption.

• Fault tolerance.

• Connection flexibility.

• Exploring a new technique for information processing and analysis. This work focuses specifically on Fig. 5.3a where the memristor M is used to replace the coupling linear resistor R. The idea is to observe the phase portraits, the evolution of the voltages V m (t) and V s (t), the flowing current i(t) and the charge q(t). Switches S 1 and S 2 are closed simultaneously and current i(t) flows from master cell to slave cell, as shown by the arrow direction. By the application of Kirchhoff's laws, we get the following set of equations: The voltages V m (t) and V s (t) refer to the instantaneous values invoked by closing the switches S 1 and S 2 simultaneously. Initially, some information is stored in the master cell as V m 0 and for the slave cell as V s 0 . To visualize the evolution of V m (t), V s (t) and i(t), three approaches are considered, namely: Analytical solution, SPICE simulation using PSPICE and Numerical solution using MatLab built-in function (e.g ODE23t). The idea is to compare the analytical solution with the ones obtained from SPICE and MatLab simulations.

5.2/ POSSIBILITIES OF THE MEMRISTOR-BASED 2D CNN

5.3/ RC CELLULAR NONLINEAR NETWORK

i(t) = -C m dV m dt - V m R m , (5.1) 
i(t) = C s dV s dt + V s R s , (5.2) 
i(t) = V m -V s R . ( 5 
To begin, Fig. 5.4 is simulated in SPICE and the results are given in Figs. 5.5 and 5.6.

Additionally, the second approach is also done by simulating equations (5.1), (5.2) and

(5.3) in Matlab using ode23t and the results (also are given in Figs. 5.5 and 5.6) are in agreement with the ones obtained from SPICE. The analytical result is obtained as follows.

Substituting (5.2) into (5.1), we get:

C m dV m (t) dt + C s dV s (t) dt + V m R m + V s R s = 0, ⇒ d dt (C m V m + C s V s ) + C m V m R m C m + C s V s R s C s = 0.

Suppose the cells have identical time constant

τ 1 = R m C m = R s C s , thus: d dt (C m V m + C s V s ) + C m V m + C s V s τ 1 = 0, ⇒ C m V m + C s V s = (C m V m + C s V s ) 0 e -t τ 1 = λ 1 e -t τ 1 ,
where: 

λ 1 = (C m V m + C s V s ) 0 = C m V m 0 + C s V s 0 is
C m V m + C s V s = λ 1 e -t τ 1 . (5.4) 
From eq. (5.4):

V s = λ 1 C s e -t τ 1 - C m C s V m .
(5.5) Equation (5.5) gives V s (t) for any given V m (t). Substituting (5.5) into (5.3), we get:

i(t) = C s V m -λ 1 e -t τ 1 + C m V m R C s ⇒ i(t) = (C m + C s ) V m -λ 1 e -t τ 1 R C s . (5.6) At time t = 0, i(0) 0, V m (t = 0) = V m 0 , V s (t = 0) = V s 0 .
Using the expression of λ 1 in (5.6)

we get:

i(t) = C m V m -C m V m 0 e -t τ 1 + C s V m -C s V s 0 e -t τ 1 R C s ⇒ i(0) = C m V m 0 -C m V m 0 + C s V m 0 -C s V s 0 R C s , = V m 0 -V s 0 R
as expected, (see eq.( 5.3)).

Let C o = C m + C s , substituting (5.6) into (5.1), we get:

C o R C s V m - λ 1 e -t τ 1 R C s + V m R m + C m dV m dt = 0 ⇒ dV m dt + V m C m C o R C s + 1 R m = λ 1 R C s C m e -t τ 1 . Let R o = R m + R s and τ 2 = C m C o R C s + 1 R m = R R o + R τ 1 ⇒ dV m dt + V m τ 2 = λ 1 R C s C m e -t τ 1 . (5.7) 
∴ The solution of (5.7) becomes:

V m = ξ(t) e -t τ 2 , (5.8) 
where ξ(t) is a function to be determined. Using (5.8) in (5.7), we get:

dV m dt = d dt ξ(t) e -t τ 2 = e -t τ 2 dξ(t) dt + ξ(t) - 1 τ 2 e -t τ 2 ,
and equation (5.7) becomes:

e -t τ 2 dξ(t) dt + ξ(t) - 1 τ 2 e -t τ 2 + ξ(t) e -t τ 2 τ 2 = λ 1 R C s C m e -t τ 1 , dξ(t) dt = λ 1 R C s C m e t τ 2 -t τ 1 ⇒ ξ(t) = λ 1 R C s C m 1 τ 2 -1 τ 1 e t τ 2 -t τ 1 + λ 2 ,
where λ 2 is a constant to be determined from V m 0 and V s 0 . Substituting ξ(t) into (5.8), thus:

V m = λ 1 R C s C m 1 τ 2 -1 τ 1 e -t τ 1 + λ 2 e -t τ 2 . Let 1 τ 3 = 1 τ 2 -1 τ 1 = R o +R R τ 1 -1 τ 1 ⇒ τ 3 = R R o τ 1 . Therefore: V m = τ 3 λ 1 R C s C m e -t τ 1 + λ 2 e -t τ 2 .
Also by using the simple expressions of τ 3 and λ 1 , the expression of V m can be rewritten as follows:

V m = R τ 1 R o (C m V m 0 + C s V s 0 ) R C s C m e -t τ 1 + λ 2 e -t τ 2 , with τ 1 = C s R s ⇒ V m = R s R o (C m V m 0 + C s V s 0 ) C m e -t τ 1 + λ 2 e -t τ 2 .
The initial conditions are considered to determine the constant λ 2 . Hence, at t = 0,

V m = V m 0 and V s = V s 0 ⇒ λ 2 = V m 0 - R s R o . (C m V m 0 + C s V s 0 ) C m
, after simplification we get:

λ 2 = R m R o V m 0 -V s 0 .
Thus, the expression of V m (t) becomes:

V m = R s R o . (C m V m 0 + C s V s 0 ) C m e -t τ 1 + R m R o V m 0 -V s 0 e -t τ 2 ⇒ V m (t) = R s R o V m 0 + R m R o V s0 e -t τ 1 + R m R o (V m 0 -V s 0 ) e -t τ 2 .
(5.9) Equation (5.5) can be rewritten as:

V s = R s R m V m 0 + V s 0 e -t τ 1 - R s R m
V m , using V m from (5.9), we get:

V s (t) = R s V m 0 R o e -t τ 1 -e -t τ 2 + V s 0 R o R m e -t τ 1 + R s e -t τ 2
(5.10)

Therefore, i(t) is obtained from (5.3): i(t) = V m (t) -V s (t) R ⇒ i(t) = V m 0 -V s 0 R e -t τ 2 .
(5.11)

5.3.2/ CHARGE q(t) EVOLUTION

The charge flowing from the master cell to slave cell starting at t = 0 increases until it reaches saturation, meaning that both cells attain same potential level. Note that calling q(t) this flowed charge imposes q(0) = 0. To observe the curve q(t) versus t, the following derivations are made. From (5.1) and (5.2):

dV m dt = - V m τ 1 - q C m and dV s dt = - V s τ 1 + q C s
, subtracting the second equation from the first, we get:

dV m dt - dV s dt = - 1 τ 1 (V m -V s ) - 1 C m + 1 C s q .
Also from (5.3):

V m (t) -V s (t) = R q ⇒ dV m dt - dV s dt = - R τ 1 q - 1 C m + 1 C s q , dV m dt - dV s dt = - R τ 1 + 1 C m + 1 C s dq dt .
(5.12)

Assuming at t = 0, q(t = 0) = q 0 , V m (t = 0) = V m 0 and V s (t = 0) = V s 0 , then equation (5.12) becomes:

V m (t) V m 0 dV m - V s (t) V s 0 dV s = - R τ 1 + 1 C m + 1 C s q(t) q 0 dq ⇒ V m -V s = V m 0 -V s 0 - R τ 1 + R m τ 1 + R s τ 1 (q -q 0 ).
Using eq. ( 5.3) again, we get:

R q = V m 0 -V s 0 - R + R o τ 1 (q -q 0 ) ⇒ dq dt + q τ 2 = 1 R (V m 0 -V s 0 ) + q 0 τ 2 .
(5.13)

The solution of (5.13) is:

q(t) = θ(t) e -t τ 2 + q 0 , (5.14) 
where θ(t) is a function to be determined. Substituting (5.14) into (5.13), we get:

- θ(t) τ 2 e -t τ 2 + e -t τ 2 dθ(t) dt + θ(t) τ 2 e -t τ 2 + q 0 τ 2 = 1 R (V m 0 -V s 0 ) + q 0 τ 2 ⇒ dθ(t) dt = 1 R (V m 0 -V s 0 ) e t τ 2 , from which, θ(t) = τ 2 R (V m 0 -V s 0 ) e t τ 2 + λ 3
, where λ 3 is a constant. Then, using θ(t) in (5.14) gives:

q(t) = τ 2 R (V m 0 -V s 0 ) + λ 3 e -t τ 2 + q 0 . At a time t = 0, q(t) = q 0 ⇒ λ 3 = - τ 2 R (V m 0 -V s 0 )
. Then, q(t) is finally obtained to be:

q(t) = τ 2 R (V m 0 -V s 0 ) 1 -e -t τ 2 + q 0 , (5.15) 
which can directly confirms that i(t) is given by equation (5.11).

5.3.3/ PHASE PORTRAITS: RC NETWORK

We rewrite equation (5.12) as:

d dt (V m -V s ) = - R τ 1 + R m τ 1 + R s τ 1 dq dt .
Using equation (5.3), then:

d dt R dq dt = - R + R o τ 1 dq dt ⇒ d 2 q dt 2 + 1 τ 2 dq dt = 0. (5.16) Setting X = q, Y = Ẋ = dq dt and Ẏ = dY dt = d 2 X dt 2 :              dX dt = Y , dY dt = - 1 τ 2 Y .
(5.17)

From the equation set (5.17):

dY dX = - 1 τ 2 ⇒ dY = - 1 τ 2 dX , Y = - 1 τ 2 X + H , (5.18) 
where H is a conservative quantity giving by the initial conditions X 0 and Y 0 . X 0 is known to be q 0 , while the initial condition of Y 0 is obtained from equation (5.3) as:

Y 0 = V m 0 -V s 0 R
. Therefore, H is given by:

H = V m 0 -V s 0 R + q 0 τ 2 .
With Y = dX dt , then equation (5.18) becomes:

dX X -τ 2 H = - dt τ 2 ⇒ ln (X -τ 2 H ) = - t τ 2 + ln D,
where D is a constant of integration. At time t = 0, X = X 0 = q 0 and the constant of integration is obtained to be:

D = X 0 -τ 2 H .
The simplification gives:

X -τ 2 H q 0 -τ 2 H = e -t τ 2 ⇒ X = (q 0 -τ 2 H )e -t τ 2 + τ 2 H . (5.19)
It is interesting that equation (5. [START_REF] Abraham | The case for rejecting the memristor as a fundamental circuit element[END_REF]) is exactly the same as equation (5.15).

5.3.4/ REMARKS ON THE RC NETWORK

The time evolution of the charge q(t) is shown in Fig. 5.5. The charge q(t) increases from

q(0) = q 0 until V m (t) = V s (t), meanwhile the current i(t) decreases until V m (t) = V s (t) at about t = 20ms
where it is zero at this time because V m (t) -V s (t) = 0V. The time evolutions of V m (t) and V s (t), respectively, are obtained using equations (5.9) and (5. The current i(t) flowing through the coupling resistor R, that is from master to slave.

V m 0 = 1V, V s 0 = 0V, q 0 = 0, R m = R s = 100KΩ, C m = C s = 1µF and R = 10KΩ. The current i(t) is zero when V m (t) = V s (t)
and the difference V m (t) -V s (t) becomes zero eventually. 

5.4/ MEMRISTOR IN THE COUPLING MODE

The first possible scenario is to consider using memristors in the coupling mode as shown in Fig. 5.3a. It is however interesting to understand the memristor behaviour and its contribution in the system. Memristor is studied in the coupling mode between two neuron cells where the synchronization phenomena is investigated numerically and theoretically [START_REF] Ascoli | Synchronization conditions in simple memristor neural networks[END_REF][START_REF] Xu | Synchronous dynamics in neural system coupled with memristive synapse[END_REF][START_REF] Zhang | Synchronization and chaos in coupled memristor-based fitzhugh-nagumo circuits with memristor synapse[END_REF][START_REF] Bao | Initialinduced coexisting and synchronous firing activities in memristor synapse-coupled morrislecar bi-neuron network[END_REF]. Unidirectional coupling and bidirectional or mutual coupling are the commonly used coupling modes for nonlinear chaotic systems [START_REF] Ch K Volos | Memristor: A new concept in synchronization of coupled neuromorphic circuits[END_REF]. The synchronization and chaos between two neuron cells are also investigated by using unidirectional and bidirectional coupling [START_REF] Zhang | Synchronization and chaos in coupled memristor-based fitzhugh-nagumo circuits with memristor synapse[END_REF].

In a first step to implement a 2D memristor based cellular nonlinear network for signal and image processing purposes or for modeling a neural network with memristors as synapses, we rather focus here on the interaction of memristor between pixel cells by considering a system of two-cells in order to assess the behavior of the memristor quantitatively and qualitatively. The idea is to transfer information from one cell to another via a memristor in order to observe its reaction to the proposition. The cells are interconnected bidirectionally, such that they can serve as source or recipient of information from one another. We derive analytically a second order nonlinear differential equation characterizing the interaction of memristor between the two cells bidirectionally. The system is studied in the phase plane allowing to visualize the system dynamics.

Memristive devices are asymmetrical components [START_REF] Massimiliano | Putting memory into circuit elements: memristors, memcapacitors, and meminductors [point of view[END_REF], meaning that they respond differently to the direction of electric current flowing through it, by offering different resistance levels. The variation of memristance (in other words, memristor asymmetry) with respect to the direction of the flowing current affects its reliability in some potential applications where sensitivity in direction is taken into consideration, for example, the memristive grid for neuromorphic application and image processing, because it affects the propagation effects within the cell. This aspect is taken into account by considering the possibility of using a memristor fuse. In Fig. 5.8, we show two cells representation having some localized information. By invoking the circuit, some information may diffuse from one cell to another according to the established potential difference across each cell. One cell is considered as the master that sends information to the receiver cell called the slave through memristor in the direction of red arrow.

Master cell Slave cell

.8: Two cells symbolic representation coupled together by a memristor. Although the system communicates bidirectionally, however the small red arrow shows transmission preference from master to slave in order to facilitate the description of the study.

The implementation of memristors in the coupling mode is considered in two perspec-tives:

1. Linear resistor R in the cell unit (before considering R NL ): This approach mainly focuses on the study of memristor behaviour in the coupling mode that could eventually help to anticipate its contribution in the target design. N.B: Two cells are considered during the analysis of each case. Secondly, the terms master and slave should not be confused, these are not definite terms, it is simply adopted to conveniently describe the study beforehand.

5.5/ LINEAR RESISTORS R IN THE CELL UNIT

This is the simplest case of the first scenario by using nominal resistors R in cell units in place of nonlinear resistors R NL . This will give a better insight in understanding the effect of the memristor in the network before using R NL . The task composes of four methods:

(1). Analytical solution The system becomes saturated when V m (t) = V s (t) and at that time i(t) = 0 because the cells are at the same potential. Eventually, the time evolution of the cells given by V m (t) and V s (t) decays to zero due to the resistive nature of the cells.

The outlined methodologies i.e theory, simulation by SPICE and numerical solution, are to be followed. Consequently, the time evolutions of V m (t), V s (t) and q(t) are to be observed.

From Fig. 5.9b, application of Kirchhoff's laws gives the following system of equations:

i(t) = -C m dV m (t) dt - V m (t) R m , (5.20) 
i(t) = C s dV s (t) dt + V s (t) R s , (5.21) 
V m (t) -V s (t) = M(q) q(t) ,

i(t) = q(t), (5.22) 
where M(q) is the memristance defined, respectively, in the first and second models, as:

M(q) =                    R o f f , if q(t) ≤ 0 R o f f - δR q d q, if 0 ≤ q(t) ≤ q d R on , if q(t) ≥ q d (5.24)
and

M(q) =                      R o f f , if q(t) ≤ 0 R o f f - 3 δR q 2 d q 2 + 2 δR q 3 d q 3 , if 0 ≤ q(t) ≤ q d R on . if q(t) ≥ q d (5.25)
Notice that equations (5.20) and (5.21) in section 5.3 are similar to equations (5.1) and

(5.2) because the cells elements are similar, i.e a linear resistor and a capacitor.

5.5.2/ EXPRESSIONS FOR THE EVOLUTION OF V m (t) AND V s (t)

From equations (5.20) and (5.21), one can see that:

d dt (C m V m + C s V s ) + C m V m R m C m + C s V s R s C s = 0. (5.26)
The aim is to focus on the memristor behaviour. So, even if it would be possible to consider different parameter values for R m , R s , C m and C s in the further calculations, we simplify for the sake of clarity our study by taking the cells to be identical such that the time constant τ c = R m C m = R s C s is the same for both cells. Then (5.26) simplifies to:

C m V m + C s V s = λ e -t τc , (5.27) 
and V s is expressed to be:

V s = λ C s e -t τc - C m C s V m . (5.28) 
Where λ = C m V m 0 + C s V s 0 is a constant fixed by the initial conditions. Once again, equations (5.20) and (5.21) respectively could be rewritten as:

R m i(t) = -R m C m dV m dt -V m , (5.29) 
R s i(t) = R s C s dV s dt + V s .
(5.30)

With i(t) = dq dt = q(t), by adding (5.29) and (5.30), it becomes:

-τ c dV m dt + τ c dV s dt -V m + V s = R m + R s q, dV m dt - dV s dt = - R 0 τ c q - 1 τ c (V m -V s ),
where R 0 = R m + R s . Using V m -V s = M(q) q given in (5.22), then:

dV m dt - dV s dt = - R 0 τ c dq dt - 1 τ c M(q) dq dt .
(5.31) Equation (5.31) can be solved in 2 ways. Firstly, the equation can be integrated directly and then solved simultaneously with (5.27) in order to find explicit expressions of V m (t) and V s (t) as functions of the charge q(t) flowing through the memristor. Secondly, the equation is solved using (5.22) for the study of system dynamics presented in section 5.6.

Going by the first approach, taking into account the initial conditions V m 0 , V s 0 and q 0 , and integrating (5.31) as:

V m V m 0 dV m - V s V s 0 dV s = - R 0 τ c q q 0 dq - 1 τ c q q 0 M(q ) dq ⇒ V m -V s = (V m 0 -V s 0 ) - R 0 τ c (q -q 0 ) - ð τ c , (5.32) 
where:

ð = q q 0
M(q ) dq .

(5.33)

Multiplying (5.32) by C s , thus:

C s V m -C s V s = C s V m 0 -V s 0 - C s R 0 τ c (q -q 0 ) - C s τ c ð, (5.34) 
By adding (5.27) and (5.34), it becomes:

C 0 V m = λ e -t τc + C s V m 0 -V s 0 - C s R 0 τ c (q -q 0 ) - C s τ c ð ⇒ V m = λ C 0 e -t τc + C s C 0 V m 0 -V s 0 - C s R 0 τ c C 0 (q -q 0 ) - C s τ c C 0 ð. (5.35) 
Where C 0 = C m + C s . Substituting (5.35) in (5.28), we obtain the expression of V s (t) as:

V s = λ C s e -t τc - C m C s λ C 0 e -t τc + C s C 0 V m 0 -V s 0 - C s R 0 τ c C 0 (q -q 0 ) - C s τ c C 0 ð , V s = 1 - C m C 0 λ C s e -t τc - C m C 0 V m 0 -V s 0 + C m R 0 τ c C 0 (q -q 0 ) + C m τ c C 0 ð ⇒ V s = λ C 0 e -t τc - C m C 0 V m 0 -V s 0 + C m R 0 τ c C 0 (q -q 0 ) + C m τ c C 0 ð. (5.36) 
The initial state of the memristor with memristance M(q) whose expression is given in (5.24) or (5.25), is given by the parameter q 0 , for which according to q 0 , there are 12 possible cases to consider. These cases are enumerated in section 5.6. However, here we introduced the first five cases describing the forward propagation (i.e from master to slave) of charge through the memristor. This will allow to observe the system evolution using the memristance function given by (5.24). Additionally, ð (given by eq. (5.33))

changes according to boundary conditions that model the effect of a window function.

Hence, the cases highlight some instances of ð depending on q 0 . 1. Case 1: i f q 0 ≤ q(t) ≤ 0:

ð = q q 0 R o f f dq = R o f f (q -q 0 ) . (5.37) 2. Case 2: i f q 0 < 0 < q(t) < q d : ð = 0 q 0 R o f f dq + q 0 R o f f -δR q q d dq = R o f f (q -q 0 ) -δR q 2 2q d .
(5.38)

3.

Case 3: i f q 0 < 0 < q d < q(t):

ð = 0 q 0 R o f f dq + q d 0 R o f f -δR q q d dq + q q d R on dq = -R o f f q 0 + R o f f q d - δR 2q d q 2 d + R on (q -q d ), = 1 2 δR q d -R o f f q 0 + R on q.
(5.39)

4. Case 4: i f 0 < q 0 < q(t) < q d : ð = q q 0 R o f f -δR q q d dq = R o f f (q -q 0 ) - δR 2q d (q 2 -q 2 0 ) .
(5.40)

5.

Case 5: i f q d < q 0 < q(t):

ð = q q 0
R on dq = R on (qq 0 ) .

(5.41)

The fact that the bilayer of TiO 2 material we consider for HP memristor, is used in normal conditions 0 < x < 1 with x = w D leads that the memristor is more described by cases 2, 3 and 4, whereas cases 1 and 5 are undesirable conditions related to the current rating of the device. Therefore, for the study purpose, cases 1 and 5 are avoided by modeling the effect of window function. By so doing, it will ensure that q(t) ∈ [0, q d ].

Once the dynamics of the charge flowing into the memristor M(q) is known, equations (5.35) and (5.36) allow to completely determine V m (t) and V s (t). Let us know look for the dynamics of q(t).

5.5.3/ CHARGE q(t) EVOLUTION FOR MEMRISTOR COUPLING MODE: USING THE

M(q) model (5.24)

This section presents the time evolution of the charge q(t) flowing from one cell to another, focusing specifically on the model of memristor given by equation (5.24). Here, the second method for solving equation (5.31) is considered.

Given the eq. (5.31), as:

dV m dt - dV s dt = - R 0 τ c dq dt - 1 τ c M(q) dq dt ,
which can be rewritten as:

d dt V m -V s = - R o τ c dq dt - 1 τ c M(q) dq dt .
Substituting V m (t) -V s (t) = M(q) q(t) from eq. ( 5.22) and rearranging, we get:

R 0 dq dt + M(q) dq dt + τ c d dt M(q) dq dt = 0 ⇒ R 0 + M(q) dq dt + τ c d dt M(q) dq dt = 0. (5.42)
The time derivative of the product term in (5.42) gives the following equation:

R 0 + M(q) dq dt + τ c d dt M(q) dq dt + τ c M(q) d 2 q dt 2 = 0.
Using the identity: dM(q) dt = dM(q) dq × dq dt , then: R 0 + M(q) dq dt + τ c dM(q) dq dq dt 2 + τ c M(q) d 2 q dt 2 = 0.

(5.43) Equation (5.43) requires a continuous first derivative of M(q) with respect to charge q.

Using the first model of M(q) given by eq. ( 5.24), we see that: dM(q) dq = -δR q d in [0, q d ], but 0 for q ≤ 0 and q ≥ q d . However, the model of M(q) given by eq. ( 5.25) has a continuous first derivative of M(q) with respect to q, hence it is suitable to use for the solution of equation (5.43). Therefore equation (5.43) is treated extensively in section 5.6 using the model (5.25).

To use the model (5.24), we rather consider equation (5.32) given by:

V m -V s = (V m 0 -V s 0 ) - R 0 τ c (q -q 0 ) - ð τ c .
As V m -V s = M(q) q given by eq. (5.22), and substituting for M(q) q with R o f f -δR q q d q, then:

R o f f -δR q q d dq dt = V m 0 -V s 0 - R 0 τ c (q -q 0 ) - ð τ c . (5.44) 
Hence, (5.44) can be solved according to ð. To further solve (5.44) analytically, the defi-nition of ð in case 4 [eq. (5.40)] is considered, such that both q 0 and q(t) are in 0, q d .

R o f f -δR q q d dq dt = V m 0 -V s 0 - R 0 τ c (q -q 0 ) - 1 τ c R o f f (q -q 0 ) - δR 2 q d (q 2 -q 2 0 ) ⇒ R o f f -δR q q d dq dt = V m 0 -V s 0 - R t τ c (q -q 0 ) + δR 2τ c q d (q 2 -q 2 0 ), 2τ c q d δR R o f f -δR q q d dq dt = (q 2 -q 2 0 ) - 2q d R t δR (q -q 0 ) + 2τ c q d δR V m 0 -V s 0 .
Let q = qq 0 , then dq = dq and q 2 = (q + q 0 ) 2 ⇒ q 2q 2 0 = q 2 + 2q 0 q .

Using the the new variable q , then

2τ c q d δR R o f f -δR q + q 0 q d dq dt = q 2 + 2q 0 q - 2q d R t δR q + 2τ c q d δR V m 0 -V s 0 ⇒ 2τ c q d δR M(q 0 ) - δR q d q dq dt = q 2 -2 q d R t δR -q 0 q + 2τ c q d δR V m 0 -V s 0 , = (q -α)(q -β), = P(q ), (5.45) 
where M(q 0 ) = R o f f -δR q 0 q d , P(q ) is a second degree polynomial, α and β are the roots of P(q ) given by the characteristic equation:

q 2 -2 q d R t δR -q 0 q + 2τ c q d δR V m 0 -V s 0 = 0, such that: 0 < β < α if initially (V m 0 -V s 0 ) > 0. Therefore, (5.45) becomes M(q 0 ) - δR q d q dq P(q ) = δR 2τ c q d dt, (5.46) 
OR κ 1 q -α + κ 2 q -β dq = δR 2τ c q d dt.
(5.47) κ 1 and κ 2 are constants determined by coefficient comparison method. Therefore, equations (5.46) and (5.47) give the expressions

κ 1 (q -β) + κ 2 (q -α) ≡ M(q 0 ) - δR q d q ⇒ κ 1 + κ 2 = - δR q d (5.48a) -κ 1 β -κ 2 α = M(q 0 ) (5.48b)
from eq. (5.48a) :

κ 2 = -κ 1 - δR q d (5.48c)
Putting (5.48c) into (5.48b), then:

-κ 1 β -α -κ 1 - δR q d = M(q 0 ) ⇒ κ 1 = 1 (α -β) M(q 0 ) - δR q d α .
Substituting κ 1 into (5.48c), gives:

κ 2 = - 1 (α -β) M(q 0 ) - δR q d α - δR q d ⇒ κ 2 = - 1 α -β M(q 0 ) - δR q d β .
By integrating (5.47):

q q 0 κ 1 q -q 0 -α dq + q q 0 κ 2 q -q 0 -β dq = δR 2τ c q d t 0 dt , κ 1 ln q -q 0 -α -α + κ 2 ln q -q 0 -β -β = δR t 2τ c q d ⇒ κ 1 ln α + q 0 -q α + κ 2 ln β + q 0 -q β = δR t 2τ c q d , (5.49) 
or equivalently expressed as:

α + q 0 -q α κ 1 . β + q 0 -q β κ 2 = e δR t 2τcq d .
(5.50)

When the time t increases from t = 0, q also increases from q 0 , so dq at the left of eq.

(5.47) is positive, which implies P(q ) > 0. Consequently, q(t) will not be able to pass greater than q 0 + β, and we have to stop the integration at q 0 + β at the maximum. Then qq 0 -α and qq 0 -β are both always negative.

Therefore, (5.50) links the time t and the charge through until the time t when q(t) reaches q 0 + β. Then, the right hand side member of (5.45) is zero, and V m (t) = V s (t), whereas their sum will still be decreasing according to eq. (5.27). In fact, this time is infinite. V m (t) and V s (t) will wait an infinite time to be exactly the same, that is V m (+∞) = V s (+∞) = 0. At this time, the current i.e dq dt is zero too.

Note that the effect of q 0 in β is too trivial. So β is independent of q 0 , and hence P(q ) as well. The roots of P(q ), i.e α and β, are unstable under certain condition, for example initial condition of V m (t) and V s (t). Therefore, it is interesting to compare the initial potential barrier (V m 0 -V s 0 ) between the cells with respect to the ratio q 0 q 0 + β . The idea is to observe whether the amplitude of variations between q 0 and q 0 + β will grow and become more interesting. Then with q 0 = 30µC, this comparison is given in table 5.1 and the corresponding curve is given in Fig. 5.10.

(V m 0 -V s 0 ) in Volts q 0 q 0 + β 0 1 1 Choosing V m 0 -V s 0 = 20V, we get q 0 + β = 39.50µC. Then when t varies from 0 to infinity (∞), q(t) will vary from q 0 to q 0 + β. Note that it is impossible for q(t) to be greater than q 0 + β according to equation (5.50). It means that the first root of P(q) is met, that is q 0 + β, as a stable equilibrium point. One can realize that at q 0 , P(q 0 ) is positive and P(q) will stay positive until q 0 + β, then the right hand side member of (5.46) is positive, so dq dt is positive as R o f f -δR q(t) q d is positive. When q(t) reaches q 0 + β, dq dt becomes zero and stops to increase. Even if accidentally q(t) exceeds q 0 + β, then P(q) becomes negative, and then dq dt becomes also negative and deceases to q 0 + β. So, this equilibrium state is stable: everything forces q(t) to tend definitively towards q 0 + β.

Then, consider equation (5.50), let us begin with q(t) = q 0 and of course at this stage

t = 0 ⇒ α α κ 1 . β β κ 2 = e δR t 2τcq d = 1 : Satisfied.
Let increment q slightly with δq so that: q = q 0 + n δq, where n = 0, 1, 2, ... + N where N is a nonzero positive integer. Note that for n = 0 corresponds to q = q 0 and t = 0. It implies that:

α + q 0 -0.δq α κ 1 β + q 0 -0.δq β κ 2 = e δR t 0 2τcq d α + q 0 -1.δq α κ 1 β + q 0 -1.δq β κ 2 = e δR t 1 2τcq d α + q 0 -2.δq α κ 1 β + q 0 -2.δq β κ 2 = e δR t 2 2τcq d (5.51) . . . . . . • • • . . . α + q 0 -N.δq α κ 1 β + q 0 -N.δq β κ 2 = e δR t N 2τcq d
To go closer to q 0 + β as possible, we choose the increment: δq = β N , such that n will now become more specific. Hence, it follows that:

q(t) = q 0 + n N β.
(5.52)

The time evolution of q(t) is given in Fig. 5.11a. Having known q(t) from (5.52), then ð is calculated from (5.40) and the voltage V m (t) and V s (t) are calculated using the derived expressions given by (5.35) and (5.36) respectively, and the system evolution is given in q(t)

[7C] showing the evolution of V m (t), V s (t) and q(t) for Memristor coupling mode according to the analytical description (5.50) of the circuit schematic in Fig. 5.9.

R m = R s = 100KΩ, C m = C s = 1µF, V(C m ) = V m 0 = 1V and V(C s ) = V s 0 = 0V.
Memristor parameters: R o f f = 16KΩ, R on = 100Ω, D = 10 -8 m, µ v = 10 -14 m 2 /V.s and q 0 = 0.3 q d . (a) q(t) evolution, (b) V m (t) and V s (t) evolution.

SPICE CIRCUIT SIMULATION AND NUMERICAL SOLUTION BY MATLAB

The SPICE netlist file of memristor given in Table A.1 is used for the SPICE circuit simulation. Furthermore, in either case, the values of the parameters given by HP lab are used in order to suitably compare the results:

R o f f = 16KΩ, R on = 100Ω, µ v = 10 f m 2 /V.s.
and D = 10nm, which gives q d = 100µC. The SPICE simulation data are imported and the results are compared with ones from analytical and numerical solutions, see Fig. 5.12. 

= R s = 100KΩ, C m = C s = 1µF, V(C m ) = V m 0 = 1V and V(C s ) = V s 0 = 0V. Memristor parameters: R o f f = 16KΩ, R on = 100Ω, D = 10 -8 m, µ v = 10 -14 m 2 /V.s, R init = 11KΩ and q 0 = 0.3 q d .
Equations (5.20)- (5.22) are solved numerically by MatLab using its built-in function -ODE function. The initial state of a memristor is a direct consequence of its ability to remember the history of electricity passed through it. With the memristance

M(x) = R o f f -δRx,
we suppose that the initial state of the memristor is x 0 and the corresponding memristance is M 0 = 11KΩ, then:

x 0 = R o f f -M 0 δR ≈ 0.31.
For a charge-controlled memristor,

x 0 corresponds to the initial charge q 0 i.e x o = q 0 q d ≈ 30µC. Recall that q 0 is a parameter representing the memory effect of a charge-controlled memristor. It is obvious that q 0 is not fixed at all time and it does depend on the quantity of electricity passed previously through the device. For unformed memristor device, q 0 is practically zero. However, for a formed memristor device, q 0 is nonzero due to the memory effect of the memristive device. This makes it possible to play with q 0 in the vicinity of q d . Notice that with q(t) = q 0 + β and β is independent of q 0 , it implies that for a fixed β: q(t) is affected by q 0 . Hence, the higher the q 0 , the higher the q(t) and vice-versa. Moreover, this analogy will consequently reflect in the current flowing through the device because

i(t) = q.
Although memristor preserves its previous history, it is very difficult to know the exact initial charge q 0 having flowed through it before the beginning of the charge transfer at t = 0 [START_REF] Chua Leon | Everything you wish to know about memristors but are afraid to ask[END_REF]. Knowing its initial value is however important in analysis because the device will start from that state whenever it becomes active again. Therefore, q 0 is a parameter depending on the previous history of the memristor and the initial memristance of ideal charge-controlled memristor is a function of it [START_REF] Yuriy | A simple test for ideal memristors[END_REF]. There are many possible cases of q 0 to consider, including q 0 < 0 or q 0 > q d . However, this section considers only the case where q 0 is always between 0 and q d such that: 0 < q 0 < q d , corresponding to M(q) given by:

M(q) = R o f f -δR q q d . (5.53)
For a physical memristor device, the necessary and sufficient condition for M(q) ≥ 0, is given by: 0 ≤ q(t) ≤ q d . Choosing arbitrary values of q 0 between 0 and q d is enough to study the memory effect of the memristor on the evolution of V m (t) and V s (t) towards the saturation of the system. Considering three possible instances of q 0 i.e q 0 = 0.1q d , q 0 = 0.3q d and q 0 = 0.9q d , then V m (t) and V s (t) are obtained from (5.35) and (5.36) respectively, and the results are given in Fig. 5.13. The continuous and dotted blue traces refer to V m (t) and V s (t) for q 0 = 0.9q d respectively. Similarly, the traces in red and black are for q 0 = 0.3q d and q 0 = 0.1q d respectively.

The time constant of the system is affected by the initial memristance: the higher is q 0 , the lower is the initial memristance, hence the lower is the time constant and vice versa. This conclusion is drawn by looking at the respective responses of the cells under different initial conditions as depicted by Fig. 5.13. Therefore, the effect of initial memristance on showing the effect of initial memristance given by different q 0 instantiations i.e q 0 = 0.1q d , q 0 = 0.3q d and q 0 = 0.9q d resectively.

At t = 0, V m (t = 0) = V m 0 = 1V, V s (t = 0) = V s 0 = 0V, meanwhile R m = R s = 100KΩ, C m = C s = 1µF, R o f f = 16KΩ, R on = 100Ω
and memristor technology parameters as suggested in [START_REF] Strukov | The missing memristor found[END_REF]. 

.14: Time evolution of V m (t) and V s (t) and the corresponding charge q(t) for q 0 = [0.1q d , 0.5q d , 0.9q d ].

5.5.3.2/ VARIATION OF

(V m 0 -V s 0 ) OR SPECIFICALLY V m 0 So far V m 0 = 1V and V s 0 = 0V are considered, so that the difference V m 0 -V s 0 = 1V.
However, it is interesting to observe the effect of different potentials for a fixed q 0 , say 30µC for example. The idea is to observe the memristance transition effects from such initial state when the device is subjected to different input potentials. Therefore, we considered Variation of V m 0 -V s 0 for a fixed (q 0 ). Expectantly, q(t) slightly increases with increases in (V m 0 -V s 0 ). The simulation time is determined by q(t) and V m 0 -V s 0 . Similarly, V m (t) and V s (t) fit the output data as shown in the plot window of each case.

V m 0 -V s 0 = 5V,

5.6/ MEMRISTOR DYNAMICS INVOLVED IN CELLS COMMUNICATION

This section focuses on the diffusive effect phenomenon involved in the cells communication via a memristor. Since information is launched from one cell to another through a memristor, hence it is important to study the dynamics at which these cells are communicating. Notice that the dynamic mechanism in this context, is the charge flowing through the memristor until the cells are saturated (i.e V m (t) = V s (t) in the case of two cells system). We used the second way of solving equation (5.31) to get equation (5.43) which can be used to study the dynamics of the system.

Given the equation (5.43) as:

R 0 + M(q) dq dt + τ c dM(q) dq dq dt 2 + τ c M(q) d 2 q dt 2 = 0.
(5.54) Equation ( 5.54) is a second order nonlinear differential equation, where M(q) is the charge-controlled memristance defined by equations (5.24) and (5.25). However, equation (5.54) requires a continuous first derivative of M(q) with respect to q. The expression of M(q) given in (5.24), is not differentiable at q(t) = 0 or q d , as shown in Fig. 4.5a. Therefore, equation (5.24) does not allow to determine the solution of (5.54) for all possible values of q(t) due to discontinuities at q(t) = 0 and q(t) = q d , thus, it is not a good candidate to apply for eq. (5.54). On the other hand, the new model of M(q) given by eq.

(5.25) is determined to be continuous and with a continuous first derivative with respect to q (see Fig. 4.5a), thus, becomes suitable to be used in equation (5.54). Notwithstanding, the function M(q) by (5.24) can only be used in (5.54) provided the condition 0 < q(t) < q d is met, for all time. But it is emphasized that q(t) can extend outside this limit, which is exactly why we propose to rather use the new model.

5.6.1/ EVOLUTION OF q(t) IN PHASE PORTRAITS:-SYSTEM SOLUTION USING

THE NEW MODEL Equation (5.54) is to be studied in the phase plane allowing to observe the time evolution of the charge q(t). The system is normalised by considering X = q q d . Moreover, X 0 corresponds to the normalised form of q 0 , initial charge having already flowed into the memristor before t = 0, namely, X 0 = q 0 q d . Thus

M(X) =                  R o f f , i f X ≤ 0 R o f f -3 δR X 2 + 2 δR X 3 , i f 0 ≤ X ≤ 1 R on , i f X ≥ 1 (5.55)
Therefore, with τ = t τ c normalized time, equation (5.54) is rewritten as:

R 0 + M(X) q d τ c dX dτ + τ c q d dM(X) dX q d τ c dX dτ 2 + τ c M(X) q d τ 2 c d 2 X dτ 2 = 0 ⇒ [R 0 + M(X)] dX dτ + dM(X) dX dX dτ 2 + M(X) d 2 X dτ 2 = 0. (5.56) Setting Y = dX dτ = Ẋ and Ẏ = d 2 X dτ 2 = Ẍ
, where X and Y are normalized quantities of charge and current respectively. Thus (5.56) can be expressed as:

[R 0 + M(X)] Y + dM(X) dX Y 2 + M(X) Ẏ = 0.
(5.57) Furthermore, the system can be more normalized by writing (5.55) in normalised form as M(X) = δRM (X), with the normalised memristance M (X) given by:

M (X) =                        R o f f δR , i f X ≤ 0 R o f f δR -3 X 2 + 2 X 3 , i f 0 ≤ X ≤ 1 R on δR , i f X ≥ 1 (5.58)
which gives the complete normalized form of (5.57), as:

R 0 δR + M Y + dM dX Y 2 + M Ẏ = 0.
(5.59) Equation (5.59) is better studied in the plane (X, Y). The dot notation in X and Y means the derivative with respect to τ.

From (5.58) and (5.59), the system is simplified to:

i f X ≤ 0, M (X) = R o f f δR , then (5.59) becomes R 0 δR + R o f f δR Y + R o f f δR Ẏ = 0, R t Y + R o f f Ẏ = 0 ⇒ Ẏ = - R t R o f f Y, where R t = R 0 + R o f f . Setting γ 1 = R t 2δR and γ 2 = R o f f 2δR , then R t R o f f = γ 1 γ 2 . ∴                Ẏ = - γ 1 γ 2 Y, Ẋ = Y.
(5.60)

From (5.60), thus:

dY dX = - γ 1 γ 2
, with the first integration to give:

Y = - γ 1 γ 2 X + constant, (5.61)
or in a more descriptive way as:

H(X, Y) = Y + γ 1 γ 2 X + C 1 = H L (X, Y). (5.62)
Where C 1 is a term for continuity at X(τ) = 0 as the system continues with the second definition of M and H L (X, Y) is a constant determined by initial conditions: X 0 , V m 0 , V s 0 and Y 0 , with:

Y 0 = τ c V m 0 -V s 0 q d .δR.M (X 0 ) ,
obtained from (5.22) given that i(t) = dq dt = q d τ c Y. By extension, H(X, Y) corresponds to a conservative quantity similar to the Hamiltonian in mechanics. Therefore, for any initial conditions X 0 and Y 0 , H(X, Y) = h can be deduced. H L (X, Y) gives the h value to the left of the system i.e X ≤ 0.

i f 0 ≤ X ≤ 1, M (X) = R o f f δR -3X 2 + 2X 3 , then (5.59) becomes: R t δR -3 X 2 + 2 X 3 Y + 6(X 2 -X) Y 2 + R o f f δR -3 X 2 + 2 X 3 Ẏ = 0. Note that R t δR = 2γ 1 and R o f f δR = 2γ 2 , then X 3 - 3 2 X 2 + γ 1 Y + 3(X 2 -X) Y 2 + X 3 - 3 2 X 2 + γ 2 Ẏ = 0 ⇒                  Ẏ = - X 3 -3 2 X 2 + γ 1 Y + 3(X 2 -X)Y 2 X 3 -3 2 X 2 + γ 2 Ẋ = Y (5.63)
Notice that both X and Y are normalised, hence have no unit. Equation (5.63) gives the following Hamiltonian system:

dY dX = - (X 3 -3 2 X 2 + γ 1 ) + 3(X 2 -X)Y X 3 -3 2 X 2 + γ 2 , X 3 - 3 2 X 2 + γ 2 dY dX + 3(X 2 -X) Y = -X 3 - 3 2 X 2 + γ 1 ⇒ d dX X 3 - 3 2 X 2 + γ 2 Y = -X 3 - 3 2 X 2 + γ 1
, and integrating gives:

d (X 3 - 3 2 X 2 + γ 2 )Y = - X 3 - 3 2 X 2 + γ 1 dX , (X 3 - 3 2 X 2 + γ 2 )Y = - 1 4 X 4 - 1 2 X 3 + γ 1 X + constant ⇒ H(X, Y) = X 3 - 3 2 X 2 + γ 2 Y + 1 4 X 4 - 1 2 X 3 + γ 1 X = h. (5.64) i f X ≥ 1, M (X) = R on δR
, then (5.59) becomes:

R 0 + R on Y + R on Ẏ = 0, R u Y + R on Ẏ = 0 ⇒ Ẏ = - R u R on Y,
where R u = R 0 + R on . Similarly, by setting:

R u R on = R t -δR R o f f -δR = R t δR -1 R o f f δR -1 = 2γ 1 -1 2γ 2 -1 ⇒                Ẏ = - 2γ 1 -1 2γ 2 -1 Y Ẋ = Y (5.65)
From ( 5.65), one can see that:

dY dX = - 2γ 1 -1 2γ 2 -1
, which by integrating gives:

Y = - γ 1 -1 2 γ 2 -1 2 X + constant ⇒, γ 2 - 1 2 Y + γ 1 - 1 2 X = constant,
Considering the continuity at X = 1 and the fact that h is invariant quantity, the equation is given in a more descriptive form as:

H(X, Y) = γ 2 - 1 2 Y + γ 1 - 1 2 X + C 2 = H R (X, Y).
(5.66)

Similarly, H R (X, Y) is the h value at the right of the system, i.e X ≥ 1 and C 2 is the continuity term at X(τ) = 1. To finalize the expressions for (5.62) and (5.66), the following conditions are required:

Continuity of H(X, Y) at X(τ) = 0 : H L (X = 0, Y) = H(X = 0, Y) = h (5.67a) Continuity of H(X, Y) at X(τ) = 1 : H(X = 1, Y) = H R (X = 1, Y) = h (5.67b)
Applying the condition (5.67a) to (5.62) and (5.64), and substituting X = 0, then:

Y + C 1 = γ 2 Y ⇒ C 1 = γ 2 -1 Y.
Hence, from (5.64)

X=0 : Y = h γ 2 . Thus: C 1 = 1 - 1 γ 2 h. With H L (X, Y) = h and C 1 ,
equation (5.62) becomes:

h = Y + γ 1 γ 2 X + 1 - 1 γ 2
h, which admits the conservative quantity:

H L (X, Y) = γ 2 Y + γ 1 X = h. (5.68)
Applying the condition (5.67b) to (5.64) and (5.66), and substituting X = 1, then:

γ 2 - 1 2 Y + γ 1 - 1 4 = γ 2 - 1 2 Y + γ 1 - 1 2 + C 2 ⇒ C 2 = 1 4 .
Using the expression of C 2 , (5.66) becomes:

H R (X, Y) = γ 2 - 1 2 Y + γ 1 - 1 2 X + 1 4 = h.
(5.69)

SOLVING FOR X(τ)

To get the phase plane (X, Y), the expression of X(τ) is to be obtained from (5.68), (5.64) and (5.69) for X ≤ 0, 0 ≤ X ≤ 1 and X ≥ 1 respectively, by substituting Y = dX dτ , along with the given initial states X 0 1 , X 0 2 and X 0 3 . Why X 0 1 , X 0 2 and X 0 3 ? These are terms describing all the possible instances of X 0 . It is important to note that the state X 0 is not fixed (in other word, it's unknown) and it strongly depends on the history of the device, which could be either in one of the 3 regions. Similar scenario for q 0 was briefly explored in section 5.5.3.1, however using the expression of M(q) given by eq. ( 5.24) which is only valid for X ∈ [0, 1]. Now in this context and with the help of the modified M(X) model, X 0 is deeply taken into account.

X(τ) ∈ [-∞, 0]:

Equation (5.68) is solved to give:

dX dτ = - γ 1 γ 2 X - h γ 1 , dX X -h γ 1 = - γ 1 γ 2 dτ, ln X - h γ 1 = - γ 1 γ 2 τ + ln K 1 ⇒ X - h γ 1 = K 1 e - γ 1 γ 2 τ .
At τ = 0, X(τ = 0) = X 0 1 which is the initial state when the system is described by (5.68),

then

K 1 = X 0 1 - h γ 1 ⇒ X(τ) = X 0 1 - h γ 1 e - γ 1 γ 2 τ + h γ 1 .
(5.70)

N.B: X 0 1 ≤ X(τ) ≤ 0. The normalised time for this case can be expressed from (5.70), as:

ln         X(τ) -h γ 1 X 0 1 -h γ 1         = - γ 1 γ 2 τ ⇒ τ = - γ 2 γ 1 ln         X(τ) -h γ 1 X 0 1 -h γ 1         , τ ∈ -∞, τ 1 . (5.71)
Where τ 1 is the time when X(τ) = 0, and is given by:

τ 1 = - γ 2 γ 1 ln - h γ 1 X 0 1 -h ⇒ τ 1 = - γ 2 γ 1 ln h h -γ 1 X 0 1 . (5.72)
Furthermore, at τ = τ 1 , X(τ) continued with the second description of the system given by equation (5.64).

X(τ) ∈ [0, 1]:

The solution is derived from (5.64), as:

Y = dX dτ = h -1 4 X 4 -1 2 X 3 + γ 1 X X 3 -3 2 X 2 + γ 2 ⇒ X 3 -3 2 X 2 + γ 2 X 4 -2X 3 + 4γ 1 X -4h dX = - dτ 4 , (5.73) 
where:

τ = τ 1 -4 X X 0 2 P 3 (X ) P 4 (X ) dX , τ ∈ [τ 1 , τ 2 ]
(5.74)

In addition,

P 3 (X) = X 3 - 3 2 X 2 + γ 2 , P 4 (X) = X 4 -2X 3 + 4γ 1 X -4h, τ 2 
is the time when X(τ) = 1 and X 0 2 is the initial state if the system is described by (5.64). Note that 0 ≤ X 0 2 ≤ X(τ). However due to continuity at X(τ 1 ) = 0, we could have X(τ 1 ) ≤ X 0 2 . In addition to the study of phase portraits for equation (5.74), it is important to look for the existence of real roots of P 4 (X) and singularity points of the system.

The equilibrium points of the system are met when dY dτ = 0 and

dX dτ = Y = 0, in other words V m (t) = V s (t).
The equilibrium points of the system (5.63), and focus on equation (5.74), we see directly that Y = 0 is enough to have dX dτ = 0 and dY dτ = 0. Then every point (X, Y = 0) is possibly an equilibrium point. Notice that dP 4 (X) dX = P 4 (X) is proportional to:

X 3 - 3 2 X 2 + γ 1 = 0, (5.75) 
having atleast one real root X e corresponding to the value of X(τ) at the equilibrium point Y = 0. Then if we have 3 real roots for X 3 -3 2 X 2 + γ 1 = 0, the curve P 4 (X) will have 3 maxima or minima and it will help to factor P 4 (X) for all its possible roots. Figure 5.16

shows some graphical representation of P 4 (X) according to the value of h. It will be interesting to have the general solution of equation (5.75) in terms of γ 1 . Therefore, the equation is solved along with a brief review on the formation of cubic formula for solving cubic equation which would enable to factor P 3 (X) and P 4 (X) for any given γ 1 , γ 2 and h values. Equation (5.75) resembles the general monic cubic equation given by:

X 3 + aX 2 + bX + c = 0, a, b, c ∈ C.
The equation is reduced to a perfect cubic by posing a new variable χ = X + a 3 and the second degree term is eliminated. Thus leaving behind a depressed form of the equation, as:

χ3 + P χ + Q = 0, P, Q ∈ C, (5.76) 
where:

X = χ - a 3 , P = b - a 2 3 and Q = c + 2a 3 27 - ba 3 .
Equation (5.76) is an associated form of the previous one having the same solution.

Therefore, with χ = ũṽ, equation (5.76) is equivalent to the algebra identity:

(ũṽ) 3 + 3ũṽ(ũṽ) -(ũ 3 -ṽ3 ) = 0, ũ, ṽ ∈ C

with:

ũṽ = P 3 ũ3 -ṽ3 = -Q
These equations are solved simultaneously, for example with ũ = P 3ṽ , then the second equation becomes P 3ṽ

3

-ṽ3 = -Q ⇒ (ṽ 3 ) 2 -Q(ṽ 3 ) - P 3 27 = 0.
This is a quadratic equation in ṽ3 and it gives 2 possible solutions of ṽ3 . Thus by quadratic formula, it becomes:

ṽ = 3 Q 2 + √ ∆ or ṽ = 3 Q 2 - √ ∆,
where ∆ is the discriminant and is given by:

∆ = Q 2 4 + P 3 27 .
Therefore, knowing ṽ: ũ = P 3ṽ .

So far we have only got the particular solution. Therefore, to generalize the formulation, Euler's identity e jθ is considered for which the complex solution is taken into consideration.

Recall that e jnπ = 1 for any even number n. Then for n = 2, let us define a cube root of unity as ω, so that ω 3 = e j2π = 1, then:

ω = e j 2π 3 = - 1 2 + √ 3 2 j.
It follows that ω 2 3 = 1, implying that 1, ω and ω 2 are all cube roots of unity. In general,

given one of the roots ṽ as a particular solution, then the other two roots are ṽω and ṽω 2 .

Hence, picking a particular solution ṽ, then ũ = P 3ṽ and the three possible solutions of the depressed cubic equation are:

χ1 = ũ -ṽ, χ2 = ũω 2 -ṽω and χ3 = ũω -ṽω 2 .
The complete solution of a monic cubic equation is obtained from:

X = χ - a 3 ⇒, X 1 = ũ -ṽ - a 3 , X 2 = ũω 2 -ṽω - a 3 and X 3 = ũω -ṽω 2 - a 3 . (5.77) 
N.B: For ∆ < 0, one has to find the cube root of complex number, for example 3 c + j d ... using De Moivre's theorem, which stated that (c + j d) n = r n (cos nθ + j sin nθ)

where r and θ are modulus and argument. However our system requires to solve for 3 √ j due to the fact that the coefficient of the first degree term is zero, i.e b = 0 (see eq.

(5.75)). Therefore, posing j = 0 + j = r(cosθ + jsinθ) ⇒ modulus r = 1 and argument θ = π 2 . Moreover, it is known that j n = cos nπ 2 + j sin nπ 2 . Since 2π describes a complete clock circle, thus choosing 2πn, with n representing three consecutive integers (say for e.g -1, 0 and 1) to give the cube roots. Then with cube root of j as j 1 3 and using De Moivre's theorem, the cube roots are obtained as:

j 1 3 = cos π 2 + 2πn 3 + jsin π 2 + 2πn 3 , n ∈ [-1, 0, 1]
Upon simplification:

j 1 3 =                        -j, i f n = -1 √ 3 2 + j 1 2 , i f n = 0 - √ 3 2 + j 1 2 , i f n = 1
Although these give all the cube roots and satisfy 3 √ j, it is however simpler to see that:

j = cos π 2 + jsin π 2 ⇒ j 1 3 = cos π 6 + jsin π 6 = √ 3 2 + j 1 2
. This corresponds to the above case with n = 0. Moreover, it ensures proper permutation of the general solution as outlined.

Given equation (5.75) and by comparison, the coefficients are:

a = - 3 2 , b = 0 and c = γ 1 ,
which gives:

X e = χ + 1 2 , P e = - 3 4 
and

Q e = γ 1 - 1 4 .
Note that the subscript e in X e , P e and Q e refers to the case "study of equilibrium point"

given by (5.75). Substituting for P e and Q e , thus:

∆ e = Q 2 e 4 + P 3 e 27 = 2γ 2 1 -γ 1 8 and ṽe = 3 Q e 2 + ∆ e = 3 4γ 1 -1 + 16γ 2 1 -8γ 1 2
.

Let us assign

A := 4γ 1 -1, then A 2 -1 = 16γ 2 1 -8γ 1 ⇒ ṽe = 3 A + √ A 2 -1 2 .
Meanwhile:

ũe = P e 3ṽ e = - 1 
2 3 A + √ A 2 -1 .
The complete solution of the original equation (5.75) is given by:

X e 1 = ũe -ṽe + 1 2 , X e 2 = ũe ω 2 -ṽe ω + 1 2
and X e 3 = ũe ωṽe ω 2 + 1 2 .

(5.78)

The values of parameters in Fig. 5.9 are considered as:

R o f f = 16KΩ, R on = 100Ω, δR = R o f f -R on = 15.9KΩ, R m = R s = 100KΩ and C m = C s = 1µF. Therefore, R 0 = R m + R s = 200KΩ and R t = R 0 + R o f f = 216KΩ. Then: γ 1 = R t 2δR = 6.792, γ 2 = R o f f 2δR = 0.503, P e = - 3 4 
, Q e = 6.542, ∆ e = 10.6853, A = 26.168, ṽe = 1.8701 and ũe = -0.1337.

∴ X e 1 = ũe -ṽe + 1 2 = -1.
5037

X e 2 = ũe ω 2 -ṽe ω + 1 2 = 1.5019 -j1.5037 X e 3 = ũe ω -ṽe ω 2 + 1 2 = 1.5019 + j1.5037
Having known X e , the value of h at this condition is h e and is to be obtained from (5.64).

Thus:

h e = H(X = X e , Y = 0) = H(X e , 0) ⇒ h e = 1 4 X 4 e - 1 2 X 3 e + γ 1 X e .
(5.79)

Hence giving X e = -1.5037, then h e = -7.2349.

The singularity points of the system are where the derivative dY dτ does not exist, i.e

dY dτ = ∞ ⇒ X 3 - 3 2 X 2 + γ 2 = 0, (5.80) 
having atleast one real root X s corresponding to the singular line, for any given γ 2 . Following similar approach, we obtain the general solution of (5.80) as:

X s 1 = ũs -ṽs + 1 2 , X s 2 = ũs ω 2 -ṽs ω + 1 2 and X s 3 = ũs ω -ṽs ω 2 + 1 2 .
Here the coefficients are: a = -3 2 , b = 0 and c = γ 2 , which gives

P s = b - a 2 3 = - 3 4 , Q s = c + 2a 3 27 - ba 3 = γ 2 - 1 4 , With ∆ s = Q 2 s 4 + P 3 s 27 = 2γ 2 2 -γ 2 8 , ṽs = 3 Q s 2 + ∆ s = 3 B + √ B 2 -1 2 
, and

ũs = P s 3ṽ s = - 1 2 3 B + √ B 2 -1 Where B = 4γ 2 -1.
Using the values of the circuit parameters, then γ 2 = 0.503 and the other variables are:

Q s = 0.253, ∆ s = 3.772 × 10 -4
, ṽs = 0.5264 and ũs = -0.4748 ⇒

X s 1 = ũs -ṽs + 1 2 = -0.5012 X s 2 = ũs ω 2 -ṽs ω + 1 2 = 1.0006 -j0.0446 X s 3 = ũs ω -ṽs ω 2 + 1 2 = 1.0006 + j0.0446
Similarly, the h value at the singular line is h s and is given by:

CHAPTER 5. CNN -MEMRISTOR DYNAMICS IN NONLINEAR NETWORK h s = H(X = X s , Y = Y s ) = H(X s , Y s ) ⇒ h s = X 3 s - 3 2 X 2 s + γ 2 Y s + 1 4 X 4 s - 1 2 X 3 s + γ 1 X s . (5.81)
With X s = -0.5012, then Y s = 0 and h s = 1.7848. Therefore X e < X s and h e < h s .

AN EXAMPLE FOR CALCULATING THE ROOTS OF P 4 (X):

The general solution of the quartic polynomial P 4 (X), can be obtained by reducing the function to its associated cubic function, which could consequently be solve using Cardano's method described above. Therefore, given the equation

X 4 -2X 3 + 4γ 1 X -4h = 0, (5.82) 
then posing from the first two terms x = X -1 2 in order to eliminate the third degree term, thus

x4 - 3 2 x2 + 4γ 1 -1 x + 2γ 1 -4h - 3 16 = 0.
Hence corresponding to the depressed quartic equation for which the third degree term is out, that is:

x4 + p x2 + q x + r = 0, p, q, r ∈ C, (5.83) 
where:

p = - 3 2 , q = 4γ 1 -1 and r = 2γ 1 -4h - 3 16 .
Henceforth the depressed quartic equation is solved in terms of p, q and r, and thereafter substituted to find the solution of the given original equation, by using

X = x + 1 2 . Let us introduce a new variable k so that ( x2 + k) 2 -2 k x2 -k2 = x4 , k ∈ C
Then (5.83) becomes:

( x2 + k) 2 = (2 k -p) x2 -q x + ( k2 -r) (5.84a) = ( α x + β) 2 (5.84b) = α2 x + 2 α β x + β2
Note that k is chosen so that the right hand side of equation (5.84a) is a perfect square, and hence become (5.84b). α, β and k are obtained by coefficient comparison method:

α = 2 k -p, β = - q 2 α = - q 2 2 k - p and β2 = k2 - r
Moreover, the sufficient condition needed to solve for k is obtained from the two expressions of β and it becomes:

k2 -r =             - q 2 2 k - p             2 ,
and is simplified to give

k3 - p 2 k2 -r k + pr 2 - q2 8 = 0.
(5.85) Equation ( 5.85) is a cubic function in k to be solved using the previous derived Cardano's method. Thus:

ỹ3 + Pỹ + Q = 0,
where:

ỹ = k - p 6 , P = -r - p2 12 
, and

Q = pr 3 - q2 8 - p3 108 .
Hence the remaining parameters are obtained as:

∆ 1 = Q 2 4 + P 3 27 , Ṽ = 3 Q 2 + ∆ 1 and Ũ = P 3 Ṽ . With k = ỹ + p 6
, and ω = -1 2 + √ 3 2 j, the three possible solutions of (5.85) are:

k1 = Ũ -Ṽ + p 6 k2 = Ũω 2 -Ṽω + p 6 k3 = Ũω -Ṽω 2 + p 6
Any of the 3 solutions of k (i.e k1 -k3 ) will satisfy equation (5.84b), as such one solution is enough to find the solution of (5.82). Therefore, from (5.84b) we get 2 quadratic equations in x, as:

x2 + k = ±( α x + β) ⇒ x2 -α x + k -β = 0 (5.86a) x2 + α x + k + β = 0 (5.86b)
Equation (5.86) is solved to give the 4 possible solutions of the depressed quartic equation (5.83). From equation (5.86a) and (5.86b) respectively, we get:

x1 = α + √ ∆ 2 2 , x2 = α - √ ∆ 2 2
, where:

∆ 2 = α2 -4( k -β) and x3 = -α + √ ∆ 3 2 , x4 = -α - √ ∆ 3 2
, where:

∆ 3 = α2 -4( k + β).
Finally, the solution of the original equation (5.82) is obtained from X = x + 1 2 . With γ 1 = 6.792, h = 6.682 and k = k1 then p = -1.500, q = 26.168, r = -13.331 and k = 3.041.

Similarly, all the subsequent variables are calculated and the solutions are:

X 1 = x1 + 1 2 = 1.8768 + j2.4284 X 2 = x2 + 1 2 = 1.8768 -j2.4284 X 3 = x3 + 1 2 = 1.0222 X 4 = x4 + 1 2 = -2.7758                                 
example of case to determine the roots of P 4 (X) = 0

The equivalent simplified expressions for the two real roots of (5.82) are:

X r 1 = 1 2         1 + 3 -U r + 2 (4γ 1 -1) √ U r -U r         , X r 2 = 1 2         1 -3 -U r + 2 (4γ 1 -1) √ U r -U r         , (5.87) 
where:

U r = 1 + 2 3 ∆ r -Q r -2 3 ∆ r + Q r ; ∆ r = Q 2 r + 8 27 P 3 r , P r = 2h -γ 1 and Q r = h -γ 2 1 .
Equation (5.74) is to be solved analytically depending on the given values for γ 1 , γ 2 and h. Therefore, for h ∈ [-∞, +∞], four possible analytical solutions of (5.74) appear, as outlined in the following.

1). f or h ∈ [-∞

, h e ] : P 4 (X) has no real root. The solution of (5.74) becomes:

dτ = (-4) X 3 -3 2 X 2 + γ 2 X 2 + β 1 X + β 2 X 2 + β 3 X + β 4 dX,
where:

β 1 = 1 - √ 1 + 2σ; β 3 = 1 + √ 1 + 2σ, β 2 = σ - 2γ 1 + σ √ 1 + 2σ ; β 4 = σ + 2γ 1 + σ √ 1 + 2σ
.

With:

-σ 3 + (2γ 1 -4h)σ + 2(γ 2 1 -h) = 0, τ = τ 1 -4 X X 0 2 b 0 + b 1 X X 2 + β 1 X + β 2 + b 2 + b 3 X X 2 + β 3 X + β 4 dX, where b 0 = 5 2 β 2 + γ 2 β 4 -β 2 ; b 2 = γ 2 + 5 2 β 4 β 2 -β 4 , b 1 = β 2 (β 2 -β 4 ) + 5 2 (β 1 β 4 -β 2 β 3 ) + γ 2 (β 1 -β 3 ) (β 4 -β 2 ) 2 , b 3 = β 4 (β 4 -β 2 ) + 5 2 (β 2 β 3 -β 1 β 4 ) + γ 2 (β 2 -β 1 ) (β 4 -β 2 ) 2 ,
and then:

τ = τ 1 -4 ln (X 2 + β 1 X + β 2 ) b 1 2 (X 2 + β 3 X + β 4 ) b 3 2 + 2b 0 + b 1 β 1 4β 2 -β 2 1 arctan 2 4β 2 -β 2 1 X + β 1 2 + 2b 2 + b 3 β 3 4β 4 -β 2 3 arctan 2 4β 4 -β 2 3 X + β 3 2 .
(5.88)

2). f or h = h e : P 4 (X) has a double real root called X e and equation (5.74) is solved as follows:

dτ = (-4) e 0 X -X e + e 1 (X -X e ) 2 + e 3 X + e 4 X 2 + ã1 X + ã2 dX
where:

e 1 = X 3 e -3 2 X 2 e + γ 2 X 2 e + ã1 X e + ã2
,

e 3 = ã1 + 2X e γ 2 + ã2 3 2 + ã1 -ã2 -ã1 3 2 + ã1 (X 2 e -ã2 ) ã1 + 2X e 2ã 2 X e + ã1 ã2 + X 2 e -ã2 2X e ã1 -ã2 + ã2 1 + X 2 e , e 4 = 2X e ã1 -ã2 + ã2 1 + X 2 e γ 2 + ã2 3 2 + ã1 -2ã 2 X e + ã1 ã2 ã1 3 2 + ã1 -ã2 ã1 + 2X e 2ã 2 X e + ã1 ã2 + X 2 e -ã2 2X e ã1 -ã2 + ã2 1 + X 2 e
, and e 0 = α 3e 3 , ã1 = -4h X 2 e and ã2 = 2X e -2.

∴ τ = τ 1 -4             e 0 ln X -X e - e 1 X -X e + 2e 4 -ã1 e 3 4ã 2 -ã2 1 arctan             2 4ã 2 -ã2 1 X + ã1 2                         . (5.89) 
3). f or h = h s : P 3 (X) and P 4 (X) have a same real root. Equation (5.74) becomes:

- dτ 4 = P 2S (X) P 3S (X) dX,
and P 3S (X) has another real root called X s a . We get:

dτ = (-4) e 9 X -X s a + e 10 X + e 11 X 2 + λ 2 X + λ 8 dX,
where:

X s a < X e < X s < 0 ; H(X s a , Y s a ) = h s ⇒ τ = τ 1 -4             e 9 ln X -X s a + 2e 11 -λ 2 e 10 4λ 8 -λ 2 2 arctan             2 4λ 8 -λ 2 2 X + λ 2 2                         . (5.90) 4 
). f or h ∈]h e , h s [∪]h s , +∞[: P 4 (X) has 2 distinct real roots X a 1 and X a 2 , meanwhile the 2 others are complex ones. Then equation (5.74) becomes: ADOPTED SOLUTION:

dτ = (-4) e 18 X -X a 1 + e 19 X -X a 2 + e 20 + e 21 X X 2 + λ 1 X + λ 2 dX. With X a 1 < X e < X a 2 , e 18 = X 3 a 1 -3 2 X 2 a 1 + γ 2 X a 1 -X a 2 X 2 a 1 + λ 1 X a 1 + λ 2 ; e 19 = X 3 a 2 -3 2 X 2 a 2 + γ 2 X a 2 -X a 1 X 2 a 2 + λ 1 X a 2 + λ 2 , e 20 = e 11 X a 1 + X a 2 - 3 2 -e 19 λ 1 -X a 1 -e 18 λ 1 -X a 2 ∴ τ = τ 1 -4 ln X -X a 1 e 18 X -X a 2 e 19 X 2 + λ 1 X + λ 2 e 11 2 + (-4) 2e 20 -λ 1 e 21 4λ 2 -λ 2 1 arctan             2 4λ 2 -λ 2 1 X + λ 1 2             . (5.91) 𝑋𝑋 𝑃𝑃 4 (𝑋𝑋) 𝑋𝑋 𝑃𝑃 4 (𝑋𝑋) 𝑋𝑋 𝑃𝑃 4 (𝑋𝑋) 𝑃𝑃 4 (𝑋𝑋) 𝑋𝑋 (a) (b) (c) (d) 
Although it is mathematically consistent to consider all the aforementioned h possibilities regarding the solutions of (5.74), however we focus in the following to the fourth possibility because it involves all physically possible h values. The solution of equation (5.74) is now written in a new way:

τ τ 1 dτ = (-4) X X 0 2 α1 X -X 1 + α2 X -X 2 + α3 + α4 X X 2 + β1 X + β2 dX ⇒ τ = τ 1 -4 ln X -X 1 α1 X -X 2 α2 + ln X 2 + β1 X + β2 α4 2 + 2 α3 -α4 β1 4 β2 -β2 1 arctan 2 4 β2 -β2 1 X + β1 2 X X 0 2 ∴ τ = τ 1 -4 ln       X -X 1 X 0 2 -X 1 α1 X -X 2 X 0 2 -X 2 α2       + ln        X 2 + β1 X + β2 X 2 0 2 + β1 X 0 2 + β2        α4 2 + 2 α3 -α4 β1 4 β2 -β2 1             arctan 2 X + β1 2 4 β2 -β2 1 -arctan 2 X 0 2 + β1 2 4 β2 -β2 1                         , τ ∈ [τ 1 , τ 2 ] (5.92)
where:

β1 = X 1 + X 2 -2, β2 = -4h X 1 X 2 , α1 = X 3 1 -3 2 X 2 1 + γ 2 (X 1 -X 2 )(X 2 1 + β1 X 1 + β2 ) , α2 = X 3 2 -3 2 X 2 2 + γ 2 (X 2 -X 1 )(X 2 2 + β1 X 2 + β2 ) , α3 = γ 2 + α1 β2 X 2 + α2 β2 X 1 X 1 X 2 ,
and

α4 = 1 -α1 -α2 .
X 1 and X 2 are the two real roots of P 4 (X) given by (5.87), while the other two roots are complex conjugate numbers. Recall that τ 1 is eventually the time where X(τ) = 0, therefore at X(τ) = 1, τ = τ 2 and is obtained from (5.92), as:

τ 2 = τ 1 -4 ln       1 -X 1 X 0 2 -X 1 α1 1 -X 2 X 0 2 -X 2 α2       + ln        1 + β1 + β2 X 2 0 2 + β1 X 0 2 + β2        α4 2 + 2 α3 -α4 β1 4 β2 -β2 1             arctan 2 + β1 4 β2 -β2 1 -arctan 2 X 0 2 + β1 2 4 β2 -β2 1                         , (5.93) 
Finally, when the initial condition X(τ = 0) = X 0 is already greater than 1, we consider the following.

X(τ) ∈ [1, +∞]:

From (5.69):

γ 2 - 1 2 dX dτ = h -γ 1 - 1 2 X - 1 4 , X X 0 3 dX X - h-1 4 γ 1 -1 2 = - 2γ 1 -1 2γ 2 -1 τ τ 2 dτ ⇒ X(τ) = h -1 4 γ 1 -1 2 +        X 0 3 - h -1 4 γ 1 -1 2        e - 2γ 1 -1 2γ 2 -1 (τ-τ 2 ) , (5.94) 
where X 0 3 is the initial state when the system is described by (5.69). The expression of the normalized time τ for this region is obtained from (5.94), as:

τ = τ 2 - 2γ 2 -1 2γ 1 -1 ln         X -4h-1 4γ 1 -2 X 0 3 -4h-1 4γ 1 -2         , τ ∈ [τ 2 , +∞] (5.95) 
Note that 1 ≤ X 0 3 ≤ X(τ) and owing to continuity at X(τ) = 1, it is possible to have X(τ 2 ) ≤ X 0 3 . So h being a constant depending on initial conditions, it is kept even across the boundaries X = 0 and X = 1. For each special initial conditions, the system (5.60),

(5.63) and (5.65) involves in keeping constant the quantity H(X, Y) with the specific h value depending on these initial conditions. The initial state of the memristor with memristance M(q) is given by the parameters q 0 , V m 0 and V s 0 which determines X 0 and Y 0 . The phase portraits of the system dynamics are described by equations (5.60), (5.63) and (5.65), and can be studied in two separate cases, according to the sign of the initial normalised current Y 0 .

It is important to note that X 0 1 , X 0 2 and X 0 3 are encapsulated in X 0 as it was manifested throughout the cases A1-B6 as outlined underneath. Furthermore, for X 0 1 < 0, X 0 2 = 0 and X 0 3 = 1, the system is analogously described by case A3. Thus by so doing, the system takes into account the unknown boundary position corresponding to X 0 which reflects the memory effect of the device from its previous usage.

With the memristance M (X) given by (5.58) and recall that ð is defined in equation (5.33), the equivalent normalised expression of ð is as follows:

ξ = X X 0 M (X ) dX , (5.96) 
where ξ is the normalised form of ð given by ξ = ð δR q d , thus ð is known provided X is known.

(A).:

If Y 0 > 0, the time evolution of the normalized charge X(τ) will be directed toward the right, and corresponds to six possible behaviours (some of them are shown in Fig. 5.17).

A1. X 0 ≤ X < 0, (black line for example).

ξ = X X 0 R o f f δR dX , = R o f f δR X -X 0 .
A2. X 0 < 0 and X(t → ∞) < 1, (orange and green curves for example).

ξ = 0 X 0 R o f f δR dX + X 0 R o f f δR -3X 2 + 2X 3 dX , = R o f f δR X -X 0 -X 3 + 1 2 X 4 .
A3. X 0 < 0 and X(t → ∞) > 1, (the magenta line and the blue one for example).

ξ = 0 X 0 R o f f δR dX + 1 0 R o f f δR -3X 2 + 2X 3 dX + X 1 R on δR dX , = R on δR X - R o f f δR X 0 + 1 2 .
(5.97) A4. 0 < X 0 ≤ X < 1, this case being included in case A2, only the starting state is changed.

ξ = + X X 0 R o f f δR -3X 2 + 2X 3 dX , = R o f f δR X -X 0 -X 3 -X 3 0 + 1 2 X 4 -X 4 0 . A5. 0 < X 0 and X(t → ∞) > 1. ξ = 1 X 0 R o f f δR -3X 2 + 2X 3 dX + X 1 R on δR dX , = R on δR X - R o f f δR X 0 + X 3 0 - 1 2 X 4 0 + 1 2 . A6. 1 < X 0 ≤ X. ξ = X X 0 R on δR dX , = R on δR X -X 0 .
Note that cases A5 and A6 are included in case A3, with only a change of the initial conditions, that is, the starting point.

The first case corresponds simply to time evolution of the charge given by (5.70). It is described by the black line, where h=1.528. For case A2, as depicted for example by the green curve in Fig. 5.17, with h = 6.122, X(τ) evolves first according to (5.70) from initial state X 0 = -0.5, Y 0 = 18.922 , reaches X(τ) = 0 in τ 1 = 32.68ms given after (5.92), then is described by (5.92) until it reaches X 1 = 0.943, Y = 0 when t → +∞. For the third case, as depicted in Fig. 5.17 by the blue line for example, with h = 6.682 with initial conditions X 0 = -0.5, Y 0 = 20.036 , X(τ) is described by Notice that each trajectory describes how the system evolves to reach the equilibrium point Y = 0 for any given initial condition. As expected, the slopes for X ≤ 0 and X ≥ 1, corresponding to the high and low resistance state of the memristor device respectively, are the same for any given initial condition. Thus, the curves in the regions X ≤ 0 and X ≥ 1 evolve in parallel with respect to one another. .17: Phase portraits for Y 0 > 0, describing the system dynamics from left to right, toward the equilibrium points with Y = 0. Each trajectory corresponds to a specific initial condition of the system. The trajectory in black is for (X 0 ≤ X < 0), the ones in orange, green and pink are for X 0 < 0 and X(t → ∞) < 1 and the one in blue is for X 0 < 0 and X(t → ∞) > 1 .

(B)

.: For Y 0 < 0, the phase portraits are given in Fig. 5.18, which is rather a different evolution pattern due to memristor asymmetry, with a time evolution of X(τ) toward the left. Similarly, six possible behaviours can be observed, depending on the starting point, see Fig. 5.18, where some examples of trajectories are given.

B1. 1 < X ≤ X 0 (blue and pink lines).

ξ = - X X 0 R on δR dX , = R on δR X -X 0 . B2. X 0 > 1 and 0 < X(t → ∞) < 1 (green line). ξ = 1 X 0 R on δR dX + X 1 R o f f δR -3X 2 + 2X 3 dX , = R o f f δR X -X 3 + 1 2 X 4 - R on δR X 0 - 1 2 . B3. X 0 > 1 and X(t → ∞) < 0 (not represented). ξ = 1 X 0 R on δR dX + 0 1 R o f f δR -3X 2 + 2X 3 dX + X 0 R o f f δR dX , = R o f f δR X - R on δR X 0 - 1 2 . B4. 0 < X ≤ X 0 < 1 (orange line). ξ = - X X 0 R o f f δR -3X 2 + 2X 3 dX = R o f f δR X 0 -X -X 3 0 -X 3 + 1 2 X 4 0 -X 4 .
B5. X 0 < 1 and X(t → ∞) < 0 (black line). Phase portraits for Y 0 < 0 describing the system dynamics from right to left, toward equilibrium states with Y = 0. The trajectories in blue and pink are for (1 < X ≤ X 0 ), the one in green is for X 0 > 1 and 0 < X(t → ∞) < 1 , in orange is for (0 < X ≤ X 0 < 1) and in black is for X 0 < 1 and X(t → ∞) < 0 .

ξ = 0 X 0 R o f f δR -3X 2 + 2X 3 dX + X 0 R o f f δR dX , = R o f f δR X -X 0 + X 3 0 - 1 2 X 4 0 . B6. X ≤ X 0 < 0 (included in black line). ξ = - X X 0 R o f f δR dX , = R o f f δR X 0 -X .
Note that for any case, that is from A1 to B6, to observe the time evolution of V m (t) and V s (t), the expression of ð must be obtained according to (5.33). The expression of M(q)

according to (5.55) is valid for all the aforementioned cases owing to its continuity at q(t) = 0 and q(t) = q d .

5.6.2/ CASE A3 RESULTS COMPARISON: ANALYTICAL, SPICE AND NUMERICAL

To compare the results according to the three methods, case A3 is considered because it involves all the possibilities of X(τ). All the results are obtained using the values of parameters: ionic mobility µ v = 10 -14 m 2 /V.s, device width D = 10nm, q d = 100µC, q 0 = 30µC, lower conductive region R o f f = 16KΩ and higher conductive region R on = 100Ω.

The cell elements are: R m = R s = 100KΩ, C m = C s = 1µF, thus giving γ 1 = 6.792 and γ 2 = 0.503. For any given h, the parameters of the system (5.60)-(5.94) are calculated accordingly and the phase portraits are given in Figs. 5.17 and 5.18. The result takes into account the forth or back flow toward the equilibrium point Y = 0. Typical memristor device is known to be asymmetric [START_REF] Massimiliano | Putting memory into circuit elements: memristors, memcapacitors, and meminductors [point of view[END_REF], thus as depicted by the lack of symmetry portrayed in Figures 5.17 Furthermore, the voltage evolution of the cells according to the analytical method is given in Fig. 5.19a, compared with the ones obtained from SPICE and numerical solution given by Matlab. The initial conditions of the cells are V m 0 = 17V, V s 0 = -15V and q 0 = -50µC. The analytical expressions for the evolution of V m (t) and V s (t) are given by (5.35) and (5.36) respectively, with ð calculated from (5.97). In this example, we have h = 6.682,

X 1 = 1.022, X 2 = -2.
776 and the other two roots of P 4 (X) are complex conjugate pairs.

Based on the analytical description of the system, X 1 is sufficient to study the system dynamics.

When X reaches X 1 , the right hand side member of (5.44) is zero, which implies V m (t) =

V s (t), whereas their sum will still decrease according to (5.27) emphasizing that the first root of P 4 (X) is met and corresponds to a stable equilibrium point.

The setup is simulated in SPICE using the netlist file in Table 5.2, which is the modified form of the one given in Table A.1, so it becomes suitable for case A3. The SPICE simulation results are given in Fig. 5.19b. Moreover, the result according to the numerical method is obtained by direct solution of equations (5.20)-(5.22) through Matlab numerically, using its built-in ODE function. The memristance function in (5.58) is used in (5.22) after denormalization and the system evolution is given in Fig. 5.19c.

According to these methods, namely: analytical solution, SPICE simulation and numerical solution, the results are visualized separately and thereafter compared, which shows strong agreement with one another, see Fig. 5.19. Here V m 0 = 17V, V s 0 = -15V, q 0 = -50µC, which corresponds to case A3 (blue line in Fig. 5.17) and h = 6.682.

5.6.3/ SYSTEM SOLUTION WITH HP MODEL

The expression of M(q) defined in (5.24) is considered, however only valid for 0 < q < q d . With

M(q) = R o f f - δR q d q = R o f f -δR X and with M = δRM , then: M (X) = R o f f δR -X and dM dX = -1.
Thus, equation (5.59) becomes successively:

R 0 δR + R o f f δR -X Y -Y 2 + R o f f δR -X Ẏ = 0, R t δR -X Y -Y 2 + R o f f δR -X Ẏ = 0. 2γ 1 -X Y -Y 2 + 2γ 2 -X Ẏ = 0 ⇒                Ẏ = Y 2 -2γ 1 -X Y 2γ 2 -X , Ẋ = Y. (5.98) 
Where

γ 1 = R t 2 δR and γ 2 = R o f f 2 δR
as defined previously. From (5.98):

2γ 2 -X dY dX -Y = -2γ 1 -X , d dX 2γ 2 -X Y = -2γ 1 -X ⇒ 2γ 2 -X Y + 2γ 1 X - 1 2 X 2 = H n . (5.99) 
H n is the Hamiltonian constant. With Y = dX dτ , (5.99) can be rewritten as:

2γ 2 -X dX dτ + 2γ 1 X - 1 2 X 2 = H n , -X -2γ 2 dX dτ = 1 2 X 2 -4γ 1 X + 2H n ⇒ X -2γ 2 X 2 -4γ 1 X + 2H n dX = - 1 2 dτ. (5.100) 
The solution of eq. (5.100) is derived to be:

X X 0 ι 1 X -ν 1 + ι 2 X -ν 2 dX = - 1 2 τ 0 dτ ⇒ τ = -2 ι 1 ln X -ν 1 X 0 -ν 1 + ι 2 ln X -ν 2 X 0 -ν 2 , (5.101) 
where X 0 is the initial state corresponding X 0 2 in equation (5.92), meanwhile ν 1 and ν 2 are the roots of the quadratic denominator:

X 2 -4γ 1 X + 2H n = 0,
and where ι 1 and ι 2 are constants determined as follows:

ι 1 X -ν 2 + ι 2 X -ν 1 = X -2γ 2 ,
from which, by comparing coefficients, we get the equations set:

ι 1 + ι 2 = 1 (5.102a) ι 1 ν 2 + ι 2 ν 1 = 2γ 2 (5.102b) 
Solving equation (5.102) simultaneously, gives:

ι 1 = ν 1 -2γ 2 ν 1 -ν 2 and ι 2 = 2γ 2 -ν 2 ν 1 -ν 2 .

5.7/ MEMRISTOR ASYMMETRY

The model of TiO 2 memristor is given by:

dx dt = i(t) q d , (5.103a) 
V(t) = M(x) i(t), (5.103b) 
M(x) = R o f f -δR x. (5.103c) Equation (5.103) 
characterizes a bipolar memristor where the resistance switching depends on the voltage polarity [START_REF] Paul Strachan | The switching location of a bipolar memristor: chemical, thermal and structural mapping[END_REF][START_REF] Krzysteczko | Memristive switching of mgo based magnetic tunnel junctions[END_REF][START_REF] Jm Teixeira | Electroforming, magnetic and resistive switching in mgo-based tunnel junctions[END_REF]. However there are other reported memristors exhibiting symmetry in polarity, such as unipolar, nonpolar and complementary resistive switching memristors [START_REF] Wang | Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing[END_REF][START_REF] Yoshida | Unipolar resistive switching in co fe b/ mg o/ co fe b magnetic tunnel junction[END_REF][START_REF] Huang | Nonpolar resistive switching in the pt/mgo/pt nonvolatile memory device[END_REF][START_REF] Linn | Complementary resistive switches for passive nanocrossbar memories[END_REF]. Here, the resistance switching between R o f f and R on (and vice-versa) can be completed in the same voltage polarity. As such, uni-polar memristors are important elements in memory arrays and logic circuit implementation [START_REF] Yin | Two-dimensional unipolar memristors with logic and memory functions[END_REF].

Memory circuit element being intrinsically asymmetric [START_REF] Massimiliano | Putting memory into circuit elements: memristors, memcapacitors, and meminductors [point of view[END_REF], TiO 2 memristor cross-bar is used to visualize the nature of current flowing through the device with respect to the polarities of the applied voltage. 

V(t) = I 1 (t)M 1 = I 2 (t)M 2 .
Although the memristors are identical, Fig. 5.20e shows that |I 1 | |I 2 |, hence the conductivity differs if the polarity is reversed, even though with same initial condition and voltage excitation. Thus, it is showed that the device offers low resistance path with the orientation of M 1 and high resistance path for that of M 2 .

The schematic is shown in Fig. 5.20a, where initially the width of TiO 2 altogether is D, the width of the doped (TiO 2-e ) region is w and the undoped one is (D-w). Figure 5.20c shows that the positive charges in the doped region are repelled by the positive terminal of the power supply, thereby making the width of the doped region to expand, such that: w → D, as illustrated by the width trending w p . If the terminals of the applied voltage are reversed (Fig. 5.20d), the negative terminal from the power supply attracts the positive charges in the doped region, thereby causing the contraction of the doped region, such that: w → 0 with the width trending illustrated as w n . It follows that the conductivity of a memristor can be compared to diode in terms of terminal polarity. However, unlike diode, memristor conducts electricity in both directions but the conductivity increases if its higher polarity terminal is connected to the positive terminal of the applied voltage source and decreases if its lower polarity terminal is connected to the positive terminal of the applied input voltage source.

In a nano scale device, even small voltages can generate large electric field required to cause current to flow through the device. The smaller the device, the higher the electric field is developed and hence more current flows through the device [START_REF] Strukov | The missing memristor found[END_REF]. Electroforming process forms the oxygen vacancies which cause a high conducting channel (TiO 2-e ) shunting the bulk of the insulation film TiO 2 [START_REF] Matthew D Pickett | Switching dynamics in titanium dioxide memristive devices[END_REF][START_REF] Yang | Memristive switching mechanism for metal/oxide/metal nanodevices[END_REF]. Depending on the nature of the bipolar input source, the conducting channel is affected by the variation of the tunneling barrier width (D-w). Therefore, the device conductivity can be described by Simmons tunneling barrier model [START_REF] John | Electric tunnel effect between dissimilar electrodes separated by a thin insulating film[END_REF][START_REF] John | Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film[END_REF][START_REF] Simmons | Conduction in thin dielectric films[END_REF], devoted to the conduction of a material in a given medium. Depending on the magnitude of the input source, the boundary moves back and forth proportionally to the concentration of the dopant, thus, setting the resistance of the memristor. Note that in Fig. 5.20a, in reality the boundary can never be outside of the interval [0, D], because there is always doped and undoped material present, in other word, the doped region can only expand or contract but never ceases to exist.

5.8/ MEMRISTOR ASYMMETRY FROM CIRCUIT POINT OF VIEW

To vividly visualize the effect of memristor asymmetry, we consider two identical RC cells shown in Fig. 5.21. The cells are labeled as cell-1 and cell-2 having potentials V 1 and V 2 respectively, coupled together by a memristor M with its orientation as shown. Two tests are carried out, namely:

a. Cond-1: V 1 > V 2 , b. Cond-2: V 1 < V 2 ,
which allows to observe the interaction of the memristor bidirectionally. In the former, the direction of i(t) is as shown in Fig. 5.21a, meanwhile in the latter the direction is reversed, see Fig. 5.21b.

We will take into account the history of the memristor, that is,

q(t) = t -∞ i(τ)dτ = q 0 + t 0 i(τ)dτ, with
q 0 as the amount of charge already flowed through device from its last usage, thus it becomes the initial charge at time t = 0. Considering the same memristor M with the same previous history, characterized by the initial charge q 0 , in Cond-1, placed in one way as shown in Fig. 5.21, and in Cond-2, on the opposite way. The circuit is invoked at time t = 0 by switchs S 1 and S 2 . The cells are at different potentials so that the current i(t) will flow through the memristor. The test is done for

V 1 > V 2 and then V 1 < V 2 . For example V 1 = 1V, V 2 = 0V and then V 1 = 0V, V 2 = 1V. The voltage across the memristor is V m (t). (a) Cond-1 and V m (t) = V 1 (t) -V 2 (t). (b) Cond-2 and V m (t) = V 2 (t) -V 1 (t).
Figure 5.21 is simulated in SPICE using the memristor model by ( [START_REF] Zden Ěk Biolek | Spice model of memristor with nonlinear dopant drift[END_REF]), which can easily be implemented experimentally. The setup is activated by closing the switches S 1 and S 2 simultaneously. For each Cond-1 and Cond-2, we considered the initial charge q 0 = 38µC, meanwhile the low and high resistance limits of the memristor are 100Ω and 16KΩ respectively, ( [START_REF] Strukov | The missing memristor found[END_REF]). Given the initial conditions of the cells, that is for Cond-1:

V 1 0 = 1V, V 2 0 = 0V while for Cond-2: V 1 0 = 0V,
V 2 0 = 1V, the result is shown in Fig. 5.22. It is however important to note that the initial voltages can have any numerical values. Figure 5.22a shows the memristance transition for Cond-1 and Cond-2, illustrated respectively, by the solid and dash curves. Figure 5.22b shows the corresponding time evolution of V 1 (t) and V 2 (t). The results show that Cond-1 and Cond-2 lead to quite different scenarios.

M(q) q(t) M(q) q,(C) 

V 1 0 = 2V, V 2 0 = 0V, R = 100KΩ, C = 1µC, R o f f = 16KΩ, R on = 100Ω and q d = 100µC.
take into account the case where X 0 = 0 or 1 and beyond. The lack of symmetry is highly observable as the curves evolve from left to right for Y > 0 and then from right to left for Y < 0 for Cond-1 and Cond-2 respectively. to left for Y 0 < 0 under different initial conditions. For X ≤ 0 and X ≥ 1 the memristance is constant, hence the curves happen to be parallel emphasizing a constant slope at the regions. The lack of symmetry is noticeable within the bulk of the device.

5.8.1/ MEMRISTOR FUSE

To achieve memristive effect with symmetry, a memristor fuse is proposed. The lack of bilaterality manifested in a memristor device is challenging in terms of its usage for certain applications, such as communication link in bidirectional applications [START_REF] Comte | Contour detection based on nonlinear discrete diffusion in a cellular nonlinear network[END_REF]. As observed in Fig. 5.22, using memristor to link two possible sources of information com-municating together bidirectionally is not advisable owing to its resistance dependency on the amount and direction of the flowing current. To convert it, memristor fuse is proposed and then demonstrated in [START_REF] Jiang | The memristive grid outperforms the resistive grid for edge preserving smoothing[END_REF][START_REF] Serb | Practical demonstration of a memristive fuse[END_REF][START_REF] Gelencser | A biomimetic model of the outer plexiform layer by incorporating memristive devices[END_REF]. It is basically formed by connecting two memristors anti-serially in order to avoid the lack of bilaterality [START_REF] Yildirim | Memristive retinomorphic grid architecture removing noise and preserving edge[END_REF]. Memristor fuse is reported to be useful in memristive grid network for CNN neighborhood connection and image processing [START_REF] Gelencser | A biomimetic model of the outer plexiform layer by incorporating memristive devices[END_REF][START_REF] Yildirim | Memristive retinomorphic grid architecture removing noise and preserving edge[END_REF][START_REF] Yang | Linearized programming of memristors for artificial neuro-sensor signal processing[END_REF][START_REF] Kai | Computing image and motion with 3-d memristive grids[END_REF][START_REF] Sarmiento | Maze-solving with a memristive grid of charge-controlled memristors[END_REF][START_REF] Yuriy | Solving mazes with memristors: A massively parallel approach[END_REF]. In general [START_REF] Fouda | Generalized analysis of symmetric and asymmetric memristive two-gate relaxation oscillators[END_REF], there are four possible ways to form series connections of two memristors with respect to their polarities, see Fig. 5.28a.

As shown in Fig. 5.28a, cases 1 and 2 refer to a serial connection of two memristors and the memristive effect is retained for these branches. Meanwhile, cases 3 and 4 are identical in structure and refer to anti-serial connection of two memristors, thus form a memristor fuse. The memristive effect for branches in cases 3 and 4 could be suppressed [START_REF] Yogesh | The elusive memristor: properties of basic electrical circuits[END_REF], see Fig. 5.28b. However, case 3 of Fig. 5.28a is the commonly adopted formation of a memristor fuse [START_REF] Gelencser | A biomimetic model of the outer plexiform layer by incorporating memristive devices[END_REF]. Note that cases 1 and 2 resembles Figs. 5.20a and 5.20b respectively, with the exception that two memristors are involved.

Figure 5.28: Four possible series connections of two memristors with respect to the input source. Memristive effect is retained for cases 1 and 2 whereas it is balanced for cases 3 and 4 [START_REF] Yogesh | The elusive memristor: properties of basic electrical circuits[END_REF]. Although cases 3 and 4 both formed a memristor fuse, case 3 is commonly considered as memristor fuse formation [START_REF] Gelencser | A biomimetic model of the outer plexiform layer by incorporating memristive devices[END_REF].

It is important to note that the resistance of the memristor fuse is the sum of the resistance of each of the individual memristor, because the equivalent memristance is additive in a serially connected memristor. In addition, this could be a disadvantage to the desired amount of current and it also affects the dynamic features of memristor to the extent that the current-voltage graph is merely linear, hence the formation resembles normal resistor. Therefore, the resistance limits of the memristor fuse must be the same as for one memristor if acting alone.

Pinched hysteresis loop is one of the most distinguished fingerprints of a memristor [START_REF] Prasad Adhikari | Three fingerprints of memristor[END_REF][START_REF] Chua | If it's pinched it'sa memristor[END_REF] and is a reflection of its memory effect. As pointed out in [START_REF] Chua | Memristor-the missing circuit element[END_REF][START_REF] Chua Leon | Everything you wish to know about memristors but are afraid to ask[END_REF], without the memory, memristor is nothing different from a resistor. Verification test is performed to compare memristor fuse with a standalone memristor as demonstrated in Fig. 5.29a. M p and M n are set with their polarity reversed in parallel with a memristor fuse M f , all connected across the same voltage source V(t). Therefore, for the same resistance limits, the memristance of a memristor fuse is higher than the memristance of a standalone memristor, as can be observed from the respective slopes of Fig. 5.29b.
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2.

3.

4. Let us first consider a single memristor with linear model:

dx dt = i(t) q d and M(x) = R o f f -δRx, then i(t) = V(t) M(x)
, where V(t) is the input voltage applied to the memristor. Therefore, using a constant input voltage V, then the relationship can be expressed as

x x o (R o f f -δRx )dx = 1 q d t 0 Vdt ⇒ R o f f (x -x o ) - δR 2 (x 2 -x 2 o ) = V q d t.
(5.109)

Note that at time t = 0, x = x o and when x = 1, t = t F . Thus t F is obtained from eq. (5.109) as:

t F = q d V R o f f - δR 2 -R o f f x o + δR 2 x 2 o .
(5.110)

Setting x = x -x o ⇒ x 2 -x 2 o = x2 + 2x o x.
Therefore, equation (5.109) becomes:

δR 2 x2 -(R o f f -δRx o ) x + V q d t = 0, (5.111) 
having determinant ∆ = (R o f f -δRx o ) 2 -2δR.V q d t > 0 for t ∈ [0, t F ] because it is smallest at time t F , when it is calculated to be:

∆ = (R o f f -δRx o ) 2 - 2δR.V q d q d V R o f f - δR 2 -R o f f x o + δR 2 x 2 o = R 2 on .
Solving equation (5.111) gives 

x = (R o f f -δRx o ) ± (R o f f -δRx o ) 2 -2δR.V q d t δR . ( 5 
M = (R o f f -δRx o ) 2 - 2δR.V q d t, for t ∈ [0, t F ] and M = R on for t ≥ t F . (5.113)
Using a square wave input voltage V = ±2V, q d = 100µC, the time t F = 0.4025s. The period T of the square wave input voltage is chosen such that t F > T/2, allowing to use the total field of memristor variations. If q d 1 = q d 2 , = 1, then from equation (5.108),

M f (t) = δM 0 = M 1 0 + M 2 0
, that is a constant. However, M f (t) is time-varying function, hence it is necessary to have q d 1 q d 2 in order to exploit the real behaviour of M f (t). 

dx dt = 1 q d x(1 -x) and M(x) = R o f f -δRx.
Similarly, with input voltage V, then i

(t) = V M(x)
, which implies that

x x o R o f f -δRx * x * (1 -x * ) dx * = 1 q d t 0 Vdt * .
Similarly, V is a constant input voltage, thus the solution is:

R o f f ln x x o -R on ln 1 -x 1 -x o = 1 q d V.t (5.114) 
Equation (5.114) shows that if we use the window function, first we cannot even determine the behaviour of the memristor when the voltage across it is a constant.

USING THE CUBIC MODEL OF THE MEMRISTOR

Here, the relationship is expressed for a single memristor:

dx dt = 1 q d i(t) and M(x) = R o f f -3δRx 2 + 2δRx 3 . (5.115) With i(t) = V M(x)
and for V as a constant input voltage, then

x x o (R o f f -3δRx 2 + 2δRx 3 )dx = 1 q d t 0 Vdt ⇒ δR 2 x 4 -δRx 3 + R o f f x + d o - 1 q d V.t = 0, (5.116) 
where

d o = -δR 2 x 4 o + δRx 3 o -R o f f x o and d o = 0 if x o = 0.
Here, the parameter t 1 for the cubic model is called t 1 n and is obtained from equation (5.116) when x = 1, thus:

t 1 n = q d V R o f f - δR 2 + d o . (5.117) 
Using the general formulation for solving the quartic polynomial, equation (5.116) can be solved to find the real solution which can be used to determine M(x). Therefore equation (5.116) is rewritten as:

x 4 -2x 3 + 2R o f f δR x + B = 0, (5.118) 
where B = 2d o δR -2 q d δR V.t. Setting from the first two terms that X = x -1 2 allowing to eliminate the third degree term, hence

X 4 + pX 2 + qX + r = 0, (5.119) 
where

p = -3 2 , q = R o f f +R on δR and r = -3 16 + R o f f δR + B.
Using a new variable k and the identity: 4 , then equation (5.119) becomes:

(X 2 + k) 2 -2kX 2 -k 2 = X
(X 2 + k) 2 = (2k -p)X 2 -qX + (k 2 -r) = (aX + b) 2 = a 2 X 2 + 2abX + b 2
(5.120)

By coefficient comparison: a = 2k -p, b = -q 2a = -q 2 √ 2k-p
and b 2 = k 2r, from which:

k 3 - p 2 k 2 -rk + pr 2 - q 2 8 = 0 ⇒ y 3 + Py + Q = 0,
where y = k -p 6 , P = -r -p 2 12 and Q = pr 2 -q 2 8 -p 3 108 .

Therefore,

∆ 1 = Q 2 4 + P 3 27 , v = 3 Q 2 +
√ ∆ 1 and u = P 3v . With k = y + p 6 and ω = -1 2 + √ 3 2 j, then the solutions of k are:

k 1 = u -v + p 6 , k 2 = uω 2 -vω + p 6 , k 3 = uω -vω 2 + p 6 .
Hence, from equation (5.120): X 2 + k = ±(aX + b) which gives the four possible solutions as:

X 1 = a + √ ∆ 2 2 , X 2 = a - √ ∆ 2 2 with ∆ 2 = a 2 -4(k -b)
and

X 3 = -a + √ ∆ 3 2 , X 4 = -a - √ ∆ 3 2 with ∆ 3 = a 2 -4(k + b).
Finally, the solution is x = X + 1 2 accordingly for x 1 , x 2 , x 3 and x 4 .

For example, Figure 5.32 shows the results using = 2,

q d 1 = 100µC, q d 2 = 200µC, R o f f = 16KΩ, R on = 100Ω, M 1 0 = M 2 0 = R o f f , x o = 0.1 and M(x) = R o f f -3δRx 2 + 2δRx 3 with x ∈ [x o , x r ]
, where x r means the root corresponding to the real solution of equation (5.116), then the memristance of the memristor fuse is: We consider this memristor fuse, consisting in M 1 and M 2 in series, and substituted to a fixed voltage V, such as From Kirchhoff's laws, we get:

M f (t) = -1 R o f f -3δRx 2 r + 2δRx 3 r + δM 0 . ( 5 
V = V 1 + V 2 , with V
V = V 1 + V 2 = [M 1 (t) + M 2 (t)].i(t) = M f (t).i(t),
whose derivative versus time is:

M f (t) di(t) dt + dM f (t) dt i(t) = 0.
Using equation (5.108) and (5.105), we get:

V i(t) . di(t) dt + δR.i(t) 2 1 q d 2 - 1 q d 1 = 0, that is: - 1 i(t) 3 di(t) dt = δR V 1 q d 2 - 1 q d 1 .
This equation is to be integrated from t = 0, when i(t = 0

) = i 0 = V M 1 0 +M 2 0
to give:

1 i(t) 2 - 1 i 2 0 = δR.t V 1 q d 2 - 1 q d 1 or: i(t) = V (M 1 0 + M 2 0 ) 2 + V.δR.t 1 q d 2 -1 q d 1 .
If q d 2 > q d 1 , i(t) is increasing with time and if q d 2 < q d 1 , i(t) is decreasing. Note however that this expression is correct as long as either M 1 (t) or M 2 (t) stays inside the interval

[R on , R o f f ], that is for x 1 = w 1 D 1 ∈ [0, 1] and x 2 = w 2 D 2 ∈ [0, 1].
Considering for example q d 2 > q d 1 , leading to the stronger condition: t ≤ t lim such that:

δR.V q d 1 t lim 0 dt * (M 1 0 + M 2 0 ) 2 -V.δR.t * 1 q d 1 -1 q d 2 ≤ M 1 0 -R on .
It is required that the expression in the root stays positive strictly, so:

t < (M 1 0 + M 2 0 ) 2 V.δR 1 q d 1 -1 q d 2
, and also t < t lim . By calculations we know that:

-2 √ b -ax = a √ b -ax if x < b a .
Then:

t lim 0 dt * (M 1 0 + M 2 0 ) 2 -V.δR.t * 1 q d 1 -1 q d 2 = -2 VδR 1 q d 1 -1 q d 2          (M 1 0 + M 2 0 ) 2 -V.δR.t 1 q d 1 - 1 q d 2          t lim 0 ⇒ -2 VδR 1 q d 1 -1 q d 2          (M 1 0 + M 2 0 ) 2 -V.δR.t lim 1 q d 1 - 1 q d 2 -(M 1 0 + M 2 0 )          ≤ M 1 0 -R on δRV q d 1 , 2 1 q d 1 -1 q d 2          (M 1 0 + M 2 0 ) -(M 1 0 + M 2 0 ) 2 -V.δR.t lim 1 q d 1 - 1 q d 2          ≤ M 1 0 -R on q d 1 , 2(M 1 0 + M 2 0 ) q d 2 q d 1 q d 2 -q d 1         1 -1 - V.δR.t lim (q d 2 -q d 1 ) q d 1 q d 2 M 1 0 + M 2 0 2         ≤ M 1 0 -R on q d 1 , 1 -1 - V.δR.t lim (q d 2 -q d 1 ) q d 1 q d 2 M 1 0 + M 2 0 2 ≤ M 1 0 -R on q d 2 -q d 1 2(M 1 0 + M 2 0 ).q d 2 , 1 - M 1 0 -R on q d 2 -q d 1 2(M 1 0 + M 2 0 ).q d 2 ≤ 1 - V.δR.t lim (q d 2 -q d 1 ) q d 1 q d 2 M 1 0 + M 2 0 2 , 1 - M 1 0 -R on q d 2 -q d 1 2(M 1 0 + M 2 0 ).q d 2 2 ≤ 1 - V.δR.t lim (q d 2 -q d 1 ) q d 1 q d 2 M 1 0 + M 2 0 2 ,
V.δR.t lim (q d 2q d 1 )

q d 1 q d 2 M 1 0 + M 2 0 2 ≤ - M 1 0 -R on 2 q d 2 -q d 1 2 4 M 1 0 + M 2 0 2 .q 2 d 2 + M 1 0 -R on q d 2 -q d 1 M 1 0 + M 2 0 .q d 2 , V.δR.t lim q d 1 M 1 0 + M 2 0 ≤ (M 1 0 -R on ) - M 1 0 -R on 2 q d 2 -q d 1 4 M 1 0 + M 2 0 .q d 2 , t lim ≤ (M 1 0 -R on )(M 1 0 + M 2 0 )q d 1 VδR - M 1 0 -R on 2 q d 2 -q d 1 VδR q d 1 q d 2 ⇒ t ≤ t lim = q d 1 VδR M 1 0 -R on M 2 0 + R on + q 2 d 1 q d 2 M 1 0 -R on 2 VδR . (5.122) 
As shown in Fig. 5.33, the current i(t) = dq dt = q flowing through M 1 and M 2 is the same, and the schematic forms memristor fuse with V = M f (q).i = M f (q). q. We would like to express here M f (q)

with respect to the charge q flowing through M 1 and M 2 by means of current i = q. As presented in this chapter, the memristor M 1 can be studied with the cubic model (for

0 ≤ q ≤ q d ) M 1 (q) = R o f f -3δR q 2 q 2 d 1 + 2δR q 3 q 3 d 1 ,
when the current is represented toward right, that is, from unmarked side to marked side (see section 2.4). However, for memrisor M 2 , the current is rather directed from marked side to unmarked side, that is M(q) is to be replaced by another M 2 (q) expression, that is, intuitively (Figure 5. Following the method of section 4.4 to find the new model, it is straightforward to write:

M 2 (q) =                R on , f or q ≤ 0 R on + bq + cq 2 + dq 3 , f or 0 ≤ q ≤ q d 2 R o f f . f or q ≥ q d 2 (5.123)
Requesting the continuity for the first derivative dM 2 (q) dq , we find:

b = 0, c = 3δR q 2 d 2 , d = -2δR q 3 d 2
, leading to:

M 2 (q) =                      R on , i f q ≤ 0 R on + 3δR q 2 q 2 d 2 -2δR q 3 q 3 d 2 , i f 0 ≤ q ≤ q d 2 R o f f . i f q ≥ q d 2 (5.124)
Coming back to memristor fuse memristance, it follows if we assume that both M 1 and M 2 start with the same initial charge q 0 and for example q d 2 > q d 1 ,

• if q ≤ 0:

M f (q) = R o f f + R on , • if 0 ≤ q ≤ q d 1 < q d 2 : M f (q) = R o f f + R on + 3δRq 2        1 q 2 d 2 - 1 q 2 d 1        -2δRq 3        1 q 3 d 2 - 1 q 3 d 1        , • if q d 1 ≤ q ≤ q d 2 : M f (q) = 2R on + 3δR q 2 q 2 d 2 -2δR q 3 q 3 d 2 ,
• if q ≥ q d 2 :

M f (q) = R o f f + R on .
Of course, the memristor effect disappears if the memristors are the same (i.e q d 1 = q d 2 ), which we will exclude in the following.

Submitted to a fixed voltage V, the dynamics of M f (q) is such that:

V = M f (q) i(t) = M f (q) q,
whose derivative versus time gives:

0 = dM f (q) dq . q2 + M f (q) q.
Staying in [0, q d 1 ] for the sake of simplicity, this equation writes:

       6δR q        1 q 2 d 2 - 1 q 2 d 1        -6δR q 2        1 q 3 d 2 - 1 q 3 d 1               q2 = -        R o f f + R on + 3δRq 2        1 q 2 d 2 - 1 q 2 d 1        -2δRq 3        1 q 3 d 2 - 1 q 3 d 1               q, = - V q . q,
where V q = M f (q). With the mismatch factor = q d 2 q d 1 , the equation becomes:

d 2 q dt 2 = 6δR q d 1 V        1 3 -1 q 2 q 2 d 1 - 1 2 -1 q q d 1        dq dt 3 .
(5.125) Equation (5.125) can be expressed in normalized form by considering X = q q d 1 and τ = t τ x , that is:

d 2 X dτ 2 = 6 δR q d 1 τ x 1 3 -1 X 2 - 1 2 -1 X dX dτ 3 .
Finally, calling Y = dX dτ , this equation become:

dY dτ = 6 δR q d 1 τ x 1 3 -1 X 2 - 1 2 -1 X Y 3 ⇒                dX dτ = Y, dY dτ = 6 δR q d 1 τ x 1 3 -1 X 2 - 1 2 -1 X Y 3 .
(5.126) Equation (5.126) is simplified to give:

dY dX = 6 δR q d 1 τ x 1 3 -1 X 2 - 1 2 -1 X Y 2 ⇒ Y = - 1 6 δR q d 1 τ x 1 3 -1 X 3 3 -1 2 -1 X 2 2 + K ,
where K is a constant of integration. Substituting Y = dX dτ , we get:

6 δR q d 1 τ x 1 3 -1 X 3 3 - 1 2 -1 X 2 2 + K dX = -dτ ⇒ 6 δR q d 1 τ x 1 3 -1 X 4 12 - 1 2 -1 X 3 6 + KX -B = τ 0 -τ, (5.127) 
where τ 0 is the initial normalized time and B represents the expression: (a) 

B = 6 δR q d 1 τ x       1 3 -1 X 4 0 12 - 1 2 -1 X 3 0 6       + KX 0 .

5.9/ MEMRISTOR FUSE IN THE COUPLING MODE

1 2 (b) 1 2 (a) 1 2 (b) 
(for V 1 > V 2 ) and (b) Cond-2 (for V 1 < V 2 ).
Figure 5.36 shows the comparison of the circuit response for memristor and memristor fuse using the setup of Fig. 5.21. Recall that for Cond-1, V 1 0 > V 2 0 and for Cond-2, V 2 0 > V 1 0 . Then for Cond-1: V 1 0 = 1V and V 2 0 = 0V while for Cond-2: V 1 0 = 0V and V 2 0 = 1V with q 0 = 45.58µC, C = 1µF and R = 100KΩ in each case. Furthermore, M c1 and M c2 represent memristor according to Cond-1 and Cond-2 respectively. Similarly, M f1 and M f2 represent memristor fuse according to equations:

i(t) = -C dV 1 dt - V 1 R , (5.128) 
i(t) = C dV 2 dt + V 2 R , (5.129) 
i(t) = dq dt , (5.130) 
and

V 1 -V 2 = M f dq dt , (5.131) 
where M f is the memristor fuse given by equation (5.108). Equations (5.128)-(5.131) are similar to (5.20)- (5.23). Therefore, we can rewrite equation (5.54) as:

2R + M f (q) dq dt + τ c dM f (q) dq dq dt 2 + τ c M f (q) d 2 q dt 2 = 0.
(5.132)

Similarly, using τ = t τ c as the normalized time, then equation (5.132) becomes:

2R + M f (q) dq dτ + dM f (q) dq dq dτ 2 + M f (q) d 2 q dτ 2 = 0. (5.133) 
Equation ( 5.133) requires a continuous first derivative of M f (q) with respect to the flowing charge through the memristor fuse, hence we consider the new memristance function in (5.133) because it has a continuous first derivative of M f (q) with respect to q. Therefore,

M 1 (q) = R o f f -3δR 2 1 q 2 q 2 d + 2δR 3 1 q 3 q 3 d recalling that q d 1 = q d 1 and q d 2 = q d 2
, and M f (q) expressed from equation (5.108) as:

M f (q) = -1       R o f f -3δR 2 1 q 2 q 2 d + 2δR 3 1 q 3 q 3 d       + δM 0 , (5.134) 
and

dM f (q) dq = -1       -6δR 2 1 q q 2 d + 6δR 3 1 q 2 q 3 d       . (5.135) 
Equations (5.134) and (5.135) can be expressed in normalized form by considering X = q q d as the normalized charge and M f (X) = M f (X) δR as the normalized memristance of the memristor fuse.

Therefore, equations (5.134) and (5.135) respectively, become:

M f (X) = -1 R o f f δR -3 2 1 X 2 + 2 3 1 X 3 + δM 0 δR , (5.136) 
and

dM f (X) dX = -1 -6 2 1 X + 6 3 1 X 2 .
(5.137)

Similarly, the equivalent normalized form of equation (5.133) becomes:

2R δR + M f (X) dX dτ + dM f (X) dX dX dτ 2 + M f (X) d 2 X dτ 2 = 0. (5.138) 
Setting Y = dX dτ , equation (5.138) is to be studied in the phase plane (X,Y). Therefore, equation (5.138) becomes:

2R δR + M f (X) Y + dM f (X) dX Y 2 + M f (X) dY dτ = 0.
(5.139)

Substituting equations (5.136) and (5.137) into equation (5.139), we get:

2R δR + -1 2 3 1 X 3 -3 2 1 X 2 + R o f f δR + δM 0 δR Y + -1 6 3 1 X 2 -6 2 1 X Y 2 + -1 2 3 1 X 3 -3 2 1 X 2 + R o f f δR + δM 0 δR dY dτ = 0 ⇒                    dX dτ = Y, dY dτ = --1 2 3 1 X 3 -3 2 1 X 2 + R o f f δR + 2R δR + δM 0 δR Y --1 6 3 1 X 2 -6 2 1 X Y 2 -1 2 3 1 X 3 -3 2 1 X 2 + R o f f δR + δM 0 δR .
(5.140)

From equation (5.140), we get:

-1 2 3 1 X 3 -3 2 1 X 2 + R o f f δR + δM 0 δR dY dX + -1 6 3 1 X 2 -6 2 1 X Y = - -1 2 3 1 X 3 -3 2 1 X 2 + R o f f δR + 2R δR + δM 0 δR .
(5.141) Equation (5.141) can be rewritten as:

d dX -1 2 3 1 X 3 -3 2 1 X 2 + R o f f δR + δM 0 δR Y = - -1 2 3 1 X 3 -3 2 1 X 2 + R o f f δR + 2R δR + δM 0 δR ,
and its integration gives the following:

d -1 2 3 1 X 3 -3 2 1 X 2 + R o f f δR + δM 0 δR Y = - -1 2 3 1 X 3 -3 2 1 X 2 + R o f f δR + 2R δR + δM 0 δR dX ⇒ H(X, Y) = -1 2 3 1 X 3 -3 2 1 X 2 + R o f f δR + δM 0 δR Y + -1       3 1 2 X 4 -2 1 X 3 + R o f f δR X       + 2R δR + δM 0 δR X, (5.142) 
where H(X, Y) is a conservative expression depending on the initial conditions of the system.

Using Y = dX dτ , then equation (5.142) becomes:

dX dτ = H --1 3 1 2 X 4 -2 1 X 3 + R o f f δR X -2R δR + δM 0 δR X -1 2 3 1 X 3 -3 2 1 X 2 + R o f f δR + δM 0 δR , (5.143) 
which can be solved to obtain an analytical solution of X.

Using the parameters values:

R o f f = 16KΩ, R on = 100Ω, δR = R o f f -R on = 15900Ω, R = 100KΩ, C = 1µF, τ c = RC = 0.1s, q d 1 = 120µC, q d 2 = 180µC, q d = 200µC, which gives 1 = q d q d 1 = 1.67, 2 = q d q d 2 = 1.11 and = 1 2 = 1.50. Recall that M 1 (q) = R o f f -3δR 2 1 q 2 q 2 d + 2δR 3 1 q 3 q 3 d
, with q 0 = 60µC, we get M 1 0 = 8000Ω, M 2 0 = 12000Ω and δM 0 = M 1 0 + M 2 0 = 26000Ω. The initial voltage are:

V 1 0 = 2V and V 2 0 = 0V.
For any value of X 0 , the initial memristance of the memristor fuse M f (X 0 ) is obtained directly from equation (5.136) and the initial condition Y 0 is obtained from equation (5.131) as: 

Y 0 = τ c q d (V 1 0 -V 2 0 ) δRM f (X 0 ) .

5.10/ CONCLUSION

A brief background of CNN is introduced and we outlined the three possible formations of the memristor based 2D cellular nonlinear or neural networks. The conductivity of a memristor device resembles that of a chemical synapse, hence we consider the first scenario where memristor is used in the cells neighborhood connections due to its connection flexibility and resemblance in using memristors as synaptic links between real neurons.

Here we considered the part of the network consisting of two cells coupled together by a memristor, thus allowing to study, qualitatively and quantitatively, the interaction of the memristor within the network. The behaviour of the memristor is investigated bidirectionally by allowing one cell to act as the master while the other one acts as slave and then conversely. It is shown analytically and from the circuit point of view that the conductivity of a memristor device depends on the polarity of the applied input signal, thus affecting the mobility of its charge carrier and is due to the intrinsic nature of the device. It is inevitable nature of a memristor device irrespective of its device technology. Hence, memristive effect changes according to the connection mode and the amount of current flowing through it, showing that memristor is not bilateral circuit element as verified by our circuits.

Memrisor fuse is promising as memristive grid network in CNN neighborhood connection. We introduced the concept of memristor fuse in the coupling mode along with a theoretical foundation useful for its analytical study. This particular study is ongoing and it will soon be submitted to a journal for publication.

MEMRISTOR COUPLED 2 CELLS WITH CUBIC RESISTANCE

Memristor based 2D CNN is introduced whereby each elemental cell corresponds to Fitzhugh Nagumo cell applicable to signal processing. Similarly, the analysis starts with the system of two cells and then the generalized 2D network reliable to process any number of cells. (m, n) for example), the voltage is given by V m,n and the nonlinear current function I NL is given by:

I NL (m,n) = f (V m,n ) = V m,n R o (V m,n -V a )(V m,n -V b ) V a V b , (6.1) 
whereas the nonlinear resistance at node (m, n) is R NL (Vm,n ) and is given by:

R NL (Vm,n ) = V m,n I NL (m,n) = R o V a V b (V m,n -V a )(V m,n -V b ) , (6.2) 
and the corresponding potential energy W(V m,n ) is given by:

W(V m,n ) = 1 4 V 4 m,n - V a + V b 3 V 3 m,n + V a V b 2 V 2 m,n + A , (6.3) 
where A is a constant of integration. Meanwhile, the parameters the solution is to be found according to three approaches, namely: Analytical solution, Numerical solution and SPICE simulation. The idea is to observe the significance of the memristor in the design and to find out whether all the three methods would agree with one another perfectly.

6.2/ ANALYTICAL STUDY

By closing the switch s w , then the time evolutions of the master and slave cells are V m (t) and V s (t)

respectively, and the current I(t) = dq dt flows through the memristor until V m (t) = V s (t) = constant.

Then, the application of Kirchhoff's law gives the following system description:

dq dt = -C m dV m (t) dt -I NL m (t) , (6.4 
)

dq dt = C s dV s (t) dt + I NL s (t) , (6.5 
)

dq dt = V m (t) -V s (t) M(q) , (6.6) 
ter/slave) pair, such that V m = x + y and V s = yx. The initial set of equations (6.14a)-(6.14c) becomes:

dq dt = 2x M(q) , dx dt + dy dt = - 2x C.M(q) -f (x + y), dy dt - dx dt = 2x C.M(q) -f (y -x),
with the cubic function

f (θ) = θ(θ -a)(θ -b) R o C
, where a = V a and b = V b . It implies that:

dx dt = - 2x CM(q) - f (x + y) -f (y -x) 2 , (6.15a 
)

dy dt = - f (x + y) + f (y -x) 2 , (6.15b 
)

dq dt = 2x M(q) . (6.15c)
We find that: Note that f (yx) could rather be got from f (x + y) in replacing x by (-x). Furthermore,

f (x + y) = (x + y)(x + y -a)(x + y -b) R o C = x 3 + y 3 + 3x 2 y + 3xy 2 -(a + b)x 2 -(a + b)
f (x + y) + f (y -x) 2 = 1 R o C y 3 + 3x 2 y -(a + b)y 2 -(a + b)
x 2 + aby (only even powers of x),

and f (x + y) -f (y -x) 2 = 1 R o C x 3 + 3xy 2 -2(a + b)xy + abx (only odd powers of x).
Then we get the following set of differential coupled equations:

dq dt = 2x M(q) , (6.16a 
)

dx dt = - 2x CM(q) - 1 R o C x 3 + 3xy 2 -2(a + b)xy + abx , (6.16b 
) in the right hand-side of the equation. It is quite normal that only the differential mode takes into account the memristor, as the voltage across it depends on V m -V s , that is the differential mode.

dy dt = - 1 R o C y 3 + 3x 2 y -(a + b)y 2 -(a + b)x 2 + aby . ( 6 
Focusing first on (6.16c), we remark that the right hand-side corresponds to:

(y 3 -(a + b)y 2 + aby) + x 2 (3y -(a + b)) R o C , that is: f (y) + x 2 R o C (3y -(a + b)).
x, differential mode, will tend to zero, starting from

V m 0 -V s 0 2
, less than 1 in main conditions. y will too decay to zero, starting from

V m 0 +V s 0 2 which is not very different from V a +V b 3 3V a 3 in main conditions with V a ∼ V b 2 . So, in a first approximation, x = αe -t T 0 with α = V m 0
2 , one can approximate the right hand-side of (6.16c) to keep only:

dy dt = - 1 R o C y 3 -(a + b)y 2 + 3α 2 e -2t T 0 + ab y -(a + b)α 2 e -2t
T 0 . (6.17) Figure 6.4 shows the comparison result of equations (6.16c) and (6.17 Then, we can study the remaining set of 2 equations, focusing on the memristor role:

dq dt = 2x M(q) , dx dt = - 2x CM(q) - 1 R o C x 3 + 3xy 2 -2(a + b)xy + abx ,
Let us remark that:

x 3 + 3xy 2 -2(a + b)xy + abx R o C = x 3 -(a + b)x 2 + abx R o C + (a + b)x 2 -2(a + b)xy + 3xy 2 R o C , = f (x) + x R o C (a + b)x -2(a + b)y + 3y 2 .
With still the rough assumption 3y a + b, the last term is x R o C (a + b)(xy), which is proportional to V s and then neglectible for the first part of the system dynamic. We get then the 2 equations set:

               dq dt = 2x M(q) , dx dt = -2x CM(q) -f (x) = -2x CM(q) - x(x -V a )(x -V b ) R o V a V b , (6.18) 
showing the competition between the role of Fitzhugh cubic resistance and the one of the memristor in the differential mode dynamics.

Figure 6.5 show the time evolution of the system V m (t), V s (t), the differential mode (x) and the common mode (y). The results are obtained using

R o = 10KΩ, C = 1µF, V m 0 = 1.5V, V s 0 = 0V, V b = 1.
2V and V a = 0.12V. The system always stabilizes at 0 or V b , that is, at the time when

V m (t) = V s (t)
and the differential mode is always 0. The common mode always stabilizes at the system steady state 0 or V b which is determined by V a . Figure 6.6 shows the variation of V a and its effect on the system steady state. The role of V a is analyzed extensively in the following section 6.3. 

V a . R o = 10KΩ, C = 1µF, V m 0 = 1.5V, V s 0 = 0V, V b = 1.2V, (a) V a = 0.2V, (b) V a = 0.4V, (c) V a = 0.
6V and (d) V a = 0.8V.

6.3/ NUMERICAL SOLUTION -WITH MATLAB

Here, equations (6.11)-(6.13) are directly simulated in Matlab using its built-in function (ODE solver), such as ODE45. The result is obtained for different values of V a and V b with respect to different initial conditions of V m and V s , known as V m 0 and V s 0 respectively, as given in Fig. 6.7

and the subsequent figures.

6.3.1/ CORRELATING

V m , V s , V a AND V b
Recall that the master cell (cell m) is at higher potential than the slave one (cell s), therefore, the dynamics and saturation of the system are preferentially towards cell s. With V a being unstable potential whose value is decided by the consequence effect of V m or V s , so that the system potential field can be chosen such as:

0 ≤ V s < V a < V b ≤ V m , (6.19) 
with the assumption V s → 0 while 0 and V b are the only two stable states. However, equation (6.19) is not absolutely compulsory because V m and V s can be both > V a or < V a . Additionally, it is possible to have V m ≤ V b but this will not have significant effect on the stability of the system due to the fact that even if V m is higher or lower than V b , the system will eventually stabilize at 0 or V b depending upon the value of V a . Thus, solving the model equations (6.11)-(6.13) numerically, it shows only two stable states 0 or

V b , even if V a < V m < V b (or > V b ).
Considering V a to take fractional value of V b , for example V a = ΥV b such that: 0 < Υ < 1 and setting V s 0 = 0, then three possible values of V m 0 are considered, viz:

• V m 0 = V b , given by the first column of Fig. 6.7 i.e a1-a7.

• V m 0 < V b , given by the second column of Fig. 6.7 i.e b1-b7.

• V m 0 > V b , given by the third column of Fig. 6.7 i.e c1-c7. 

Υ = 0.5 i.e V a = V b 2 .
Recall that if V b -2V a > 0 (or V b -2V a < 0) the system stabilizes at V b (or 0) respectively. However, Υ = 0.5 implies that V b -2V a = 0. In this case, the system stability state depends on the values of parameters, for example, the memristance value R on ∼ R o f f , V m , V s , q 0 and R 0 . Therefore, the stability is indefinite and could be at 0 or V b as summarized below:

i. Value of R 0 : The results in Fig. 6.7 were obtained for R 0 = 10KΩ and the results take into account the values of V a around V b 2 , i.e Υ = 0.49, 0.5 and 0.51 for Figs. 6.7a3-c3, a4-c4 and a5-c5 respectively, in order to observe what will likely be the response if the value of V a is about to give V b -2V a = 0 (i.e half the value of V b ). However, using R 0 = 2883Ω, the evolution and stability of Figs. 6.7b2 and a4 at V a = V b 2 become different, see also Figs. 6.8b2 and a4. Notice that only R 0 is changed. Hence, the only difference between Fig. 6.7 and 6.8 is the value of R 0 . Table 6.1 shows the difference V b -2V a when V a varies in [0, V b ], allowing for easy study of Fig. 6 ii. Value of V m 0 and V s 0 : Changing the values of the cells initial conditions (i.e V m 0 and V s 0 ) can cause the cells to change their stable states especially when V a is around V b 2 . Compare Figs. 6.7a1-a7 and 6.7c1-c7 where only V m 0 is changed, i.e V m 0 = 1V and V m 0 = 1.3V respectively. It is further observed that the trend of the system stability is the similar even if both the initial conditions of V m 0 and V s 0 are non zero.

.7. N°/Line. Υ (a1-a7) (b1-b7) c1-c7 V b -2V a (V) V b -2V a (V) V b -2V a (V
iii. Figure 6.9 shows the effect of changing initial condition of the memristor on the system evolution and stability. It also takes into account the variations of R 0 . The initial memristance of the memristor is given by the initial charge q 0 . Four different initial charges are considered as: q 0 1 = 20µC, q 0 2 = 40µC, q 0 3 = 60µC and q 0 4 = 80µC, as indicated respectively, by the subscripts numbers 1-4 in Fig. 6.9A, B and C. Notice that only one parameter is varied at a time. Figure 6.9A: R 0 = 1023Ω while q 0 varied, Fig. 6.9B: R 0 = 2833Ω while q 0 varies and Fig. 6.9C: R 0 = 10KΩ while q 0 varies. In each case, V a = 0.7V, V b = 1.3V, V m 0 = 1.5V and V s 0 = 0V. Even though V a plays significant role on the system steady state, the results show that other parameters (e.g R o and q 0 ) affect the dynamics and steady state of the system.

iv. The results of Fig. 6.10 are for values of V m and V b compatible to SPICE results, thus it allows for easy comparison of the three methods. The result is obtained for

R 0 = 2833Ω, V b = 1.
5V and V m 0 = 2V. Similarly, V a varies according to Υ = [0.25, 0.45, 0.49, 0.5, 0.51, 0.55, 0.75, 0.9] with the corresponding results given by Figs. 6.10a, b, c, d, e, f, g and h, respectively. Furthermore, the difference V b -2V a is calculated and tabulated in Table 6.2. 

= 0V, V a = ΥV b , V b = 1.5V and V m 0 = 2V.
v. The results of Figs. 6.7-6.10 show that the parameters V a , R 0 and q 0 have significant effect on the system evolution and the steady state. The inflexion nature of the curves is the manifestation of the nonlinear resistance and it is due to the fact that substantial amount of voltage is required to activate all of its three branches. seen on all these cases, showing that the dynamics of these 2 modes can be effectively studied separately as done in section 6.2. As illustrated in Fig. 6.7, initially V m (t) and V s (t) evolve in differential mode (DM) and then the combined evolution in common mode (CM). We observed similar evolution of V m (t) and V s (t) in Figs. 6.8-6.10. 

= 100Ω, R o f f = 16KΩ and C m = C s = 1µF. (a1-a7) < First column > is for V m = V b = 1V and V a varies down across the column. (b1-b7) < Second column > is for V m < V b , here V m = 1V, V b = 1.3V. (c1-c7) < Third column > is for V m > V b i.e V m = 1.
3V and V b = 1V. Down across the raw of each column, is the variation of V a with respect to V b according to Υ. With the exception of the fourth row (a4-c4) where V a = V b 2 and its vicinity, the results show that for V a < V b 2 the system stabilizes at V b and for V a > V b

2 the system stabilizes at zero 0. However, for V a = V b 2 the values of parameters i.e V m , V s , R 0 , q 0 , V a , V b and the memristive effect (R o f f and R on ) decides the stability state and it is always 0 or V b . The effect of changing parameters values on the system stability state can be clearly seen across the columns (a4-c4) where V a = .9: Effect of initial memristance given by the initial charge q 0 on the system evolution and the steady state. Four different initial charges are considered as: q 0 1 = 20µC, q 0 2 = 40µC, q 0 3 = 60µC and q 0 4 = 80µC, as indicated respectively by the subscripts numbers 1-4 in figures a, b and c. In each case,

= 0V. (a1-a7) V m 0 = V b = 1V. (b1-b7) V m 0 < V b i.e V m 0 = 1V and V b = 1.3V. (c1-c7) V m 0 > V b i.e V m 0 = 1.
V a = 0.7V, V b = 1.3V, V m 0 = 1.5V and V s 0 = 0V. (A) R 0 = 1023Ω, (B) R 0 = 2833Ω and (C) R 0 = 10KΩ.
It shows that values of q 0 and R 0 have an effect on the evolution and steady state of the system.

6.4/ SPICE SIMULATION

The SPICE component of R NL is needed in order to simulate the circuit of Fig. 6.3 in a SPICE circuit simulator (for example PSPICE, LTSPICE etc). The schematic representation of R NL is given in Fig. 6.11, having its current-voltage relationship resembling the analytical cubic function f (V n ). Thus, the I NL n -V n plane have three distinct slopes each defined by the inverse of its branch resistance. The activation of the respective branches is achieved by the diodes D 1 , D 2 and D 3 , however monitored by the values of the resistances R 1 -R 5 in conjunction with V n . b, c, d, e, f, g andh. These results are based on reasonable values of parameters that can easily be compared with the one in SPICE simulations. For example, V b = 1.5 is chosen to take into account threshold value of the diodes D 2 and D 3 (see Fig. 6.11), meanwhile V m = 2V is to ensure enough bias of the equivalent R NL .

The idea is to create the equivalent two terminal R NL component in SPICE as shown in Fig. 6.11 (right), representing the exact circuit functionality as Fig. 6.11 (left). To do this, the nodes are labeled accordingly as shown in Fig. 6.11. The model of THAT4301 operational amplifier is used in the OpAmp block. Default model of silicon diode is used for D 1 , D 2 and D 3 . However, other models of diode can be used as well, an example of such models is given in the commented lines of Table B.1 (Appendix B).

Following the SPICE directives, the complete netlist file required for creating the R NL component is given in Table B.1 (Appendix B). The THAT4301 SUBCIRCUIT block is called into the main R NL SUBCIRCUIT and the symbolic two-terminals representation of the generated R NL SPICE component is shown in Fig. 6.11 (right). ∴ V 116 = V n , with I -= I + = 0 implies that R 3 and R 4 are serially connected. The current through R 4 is:

I R 4 = V 116 R 4 = V n R 4 = I R 3 .
The voltage drops across R 3 is:

R 3 × V n R 4 ,
thereby making the potential at node out (i.e V out in Fig. 6.11a) to be:

V out = R 3 V n R 4 + V n = 1 + R 3 R 4 V n . (6.20) 
For whatever values of R 3 and R 4 , it always gives:

1 + R 3 R 4 > 1.
⇒ V out > V n , see Fig. 6.12b.

The resistances R 2 , R 3 and R 4 are chosen so that:

R 3 > R 4 > R 2 .
As V n increases and reaches the threshold voltage of the diode D 1 , then D 1 becomes active, hence the second branch begins to be conductive and the current flowing through R 2 becomes more significant than the one flowing though R 3 and R 4 due to the current tendency to flow from higher to a lower potential level, hence, it flows reversibly. This shows that the second branch implies a negative resistor which gives rise to the negative slope in the I NL n -V n plane.

The condition for this happening can be seen from the relationship between V out and V n in eq. (6.20) , thus:

V out -V n > V th D 1 ⇒ V n > R 4 R 3 V th D 1 . (6.21) 
Equation (6.21) gives the necessary condition required for the activation of the second branch.

Therefore, the voltage drops across R 2 is:

V R 2 = V n -V out = - R 3 R 4 V n ,
and the current flowing through R 2 is:

I R 2 = V R 2 R 2 = - R 3 R 4 R 2 V n .
Hence, the second branch forms a dipole that imposes a negative slope in the I NL n versus V n plane with a magnitude: -

R 4 R 2 R 3 .
As V n increases and becomes higher than the combined threshold voltage of the diodes D 2 and D 3 , then the third branch is activated and almost whole of I NL n flows through R 5 owing to its lowest resistance path. This gives rise to the positive slope in the I NL n -V n plane with a value of 1 R 5 .

For example, the schematic is reproduced in Fig. 6.12a with the resistance values defined as:

R 1 = 6.8KΩ, R 2 = 2KΩ, R 3 = 7.2KΩ, R 4 = 6.8KΩ and R 5 = 1KΩ.
Meanwhile the complete SPICE circuit analysis is given by Figs. 6.12b, c and d, with results conformed to the outlined description. According to equation (6.20) and for any applied voltage

V n to R NL n , the magnitude of V out (Fig. 6.12) is determined by the factor (1 + r 34 ), where r 34 = R 3 R 4 is the resistance ratio. Note that V out is the voltage at the output node of the operational amplifier.

Knowing that r 34 0, then V out is regulated by the value of r 34 . Using the above listed values of R 3 and R 4 , then r 34 = 1.0588 to four decimals places. For an input voltage V in = 2V, it is calculated to give:

V out = (1 + r 34 )V in = 4.1176 V.
This result is the same as the SPICE simulation result shown in Fig. 6.12b i.e V out = 4.14V.

Furthermore, the current flowing through each branch can be visualized separately. Figure 6.12c shows the branch currents of the R NL and the corresponding DC sweep of the applied input voltage V in in Fig. 6.12d, presenting the flowing current in each branch (and I NL as a whole) with respect to the applied input voltage V in . The currents through the first, second and third branches are I x , I y and I z respectively, thus:

I NL = I x + I y + I z .
The magnitude of the current flowing in each branch with respect to time is shown in Fig. 6.12c where the current in the first branch (I x ≈ 298µA) is small and positive, in the second branch the current (I y ≈ -730µA) is negative and in the third branch the current (I z ≈ 710µA) is positive and high, while I nl ≈ 270µA. Moreover, these currents can be obtained by handy calculations as follows:

I x = V in R 1 = 2 6.8 × 10 -3 = 294µA, I y = V in + V th D 1 -V out R 2 = 2 + 0.7 -4.1176 2 × 10 -3 = -708µA, I z = V in -V th D 2 -V th D 3 R 5 = 2 -0.6 -0.6 1 × 10 -3 = 800µA.
These calculated values are the same with the ones in Fig. 6.12 obtained by SPICE simulation.

However, the slight difference is due to the threshold value V th of diode which has typical value in the range [0.6 ∼ 0.7V] for silicon material. The magnitude of I NL flowing is obtained to be: However, to understand Fig. 6.12d vividly, it is reproduced in Fig. 6.13 using the SPICE data, hence the results become more descriptive. These values of V a and V b match perfectly with the ones obtained in Fig. 6.12d from its circuit schematic. to the voltage increase or decrease for a fixed equivalent resistance value. It is observed with Fig. 6.14b that if V in is high enough, the third branch becomes highly conductive but the values of V a and V b remain exactly at 0.79V and 1.49V respectively, even so V in has changed. This shows that for fixed chosen resistors values, the input voltage does not affect the position of the characteristic roots of the cubic function and this is in compliance with conditions in equations (6.20) and (6.21).

I NL = 1 R 1 + 1 R 5 - R 3 R 2 R 4 V n + 1 R 2 - 2 R 5 V th D . ( 6 

Test 5:

Variable resistances can be used for the resistors R 1 -R 5 [START_REF] St Éphane | Experimental propagation failure in a nonlinear electrical lattice[END_REF]. It has been shown

in tests 1-4 that using fixed resistance values the circuit behaves decisively, as such the characteristic roots V a and V b remain virtually fixed. However, this might be a disadvantage in the case of a dynamical system in which V a and V b are subject to changes. For instance, in binarization where the stimuli are weighted and then decide the stability state. The initial conditions of the cells are: V m 0 = 2V and V s 0 = 0V. The evolution of V m (t) towards V b is faster than the one of V s (t) because its value is closer to V b . It is also observed that the activity in R NL m takes place in the vicinity of its third branch, however all the three branches in R NL s are activated because cell-s is initially at zero potential. This observation is confirmed by the nature of the flowing currents I(R NL m ) and I(R NL s ) through the cell-m and cell-s respectively. The current through the memristor I(Mem) shows the effect of changing memristance. At about 20ms, V m (t) = V s (t) = constant and then settled at V b shortly (about 25ms). At this point the current in each branch is zero, thus the network is completely stabilized. The inflexion effect in V s (t) curve manifests the nature of the cubic resistance response, because this can only be seen when the entire branches of the R NL are activated. Hence compare with evolution curve of V m (t). However, the role of V a and V b can be achieved by choosing desirable values of R NL resistances steady state), then variations of R 2 can change the steady state of the system from V b to 0 or 0 to V b , but not very small variations as in the case where R 3 ≈ R 4 .

R 1 = [0, 10kΩ] (±5%), R 2 = [1.8kΩ, 2.3kΩ] (±5%), R 3 = [6.8kΩ, 11.8kΩ] (±5%), R 4 = [0, 10kΩ] (±5%), R 5 = [0, 1.5kΩ] (±5%), 6 
• The steady state of the system is determined by the values of R 2 , R 3 and R 4 . Effect of initial memristance on the evolution of V m (t) and V s (t). q 0 1 = 25µC, q 0 2 = 50µC, q 0

3 = 75µC, R on = 100Ω, R o f f = 16KΩ, C = 1µF, R 0 = 10KΩ, V m 0 = 1.5V and V s 0 = 0V.
In each case the initial memristance M(q 0 ) affects the system evolution toward the equilibrium state V b and 0 respectively. Effect of initial memristance on the evolution of V m (t) and V s (t). q 0 1 = 25µC, q 0 2 = 50µC, q 0 3 = 75µC, R on = 100Ω, R o f f = 16KΩ, C = 1µF, R 0 = 10KΩ, V m 0 = 1.5V and V s 0 = 0.5V. Using the same values of parameters except that V s 0 is nonzero. Similalrly, the effect of M(q 0 ) is highly observable.

Furthermore, equation (6.23) contains a second order finite difference scheme of the form:

U i-1 -2U i + U i+1 h 2 = ĝ(x i ), i = 1, 2, ..., N -1 (6.26)

At the boundary dV dt = 0, no current leaves the network, that is we can apply Neumann boundary condition, such that: V 1 = V 0 and V N+1 = V N-1 , and hence we obtained respectively, the finite difference scheme as:

dV 1 dt = 1 CM(q) (V 2 -V 1 ) - V 1 (V a -V 1 )(V b -V 1 )
τ c V a V b (6.27a)

dV N dt = 1 CM(q) (V N-1 -V N ) - V N (V a -V N )(V b -V N ) τ c V a V b (6.27b)
where τ c = R 0 C.

When the voltages are distributed so that the spatial extent is sufficiently large with respect to the pitch of the electrical network (that is to say, V n varies slightly from one cell to another), one can do the approximation of continuous media:

V n±1 = V ± ∂V ∂n + 1 2 ∂ 2 V ∂ 2 n ± 1 3! ∂ 3 V ∂ 3 n + ... (6.28) 
Relating x and n by x = δn, with δ allowing to return to the true dimensions. In that case:

V n+1 -2V n + V n-1 δ 2 ∂ 2 V δx 2 (6.29) 
The term δ having no physical meaning in electronics, we can pose that δ = 1. From equations (6.23) and (6.29), we get:

∂V ∂t = 1 CM(q) ∂ 2 V ∂x 2 - V(V a -V)(V b -V)
τ c V a V b (6.30) Equation (6.30) correspond to the continuous Fitzhugh-Nagumo equation without the recovery term. We can rewrite (6.30) as:

∂V ∂t = 1 CM(q) ∂ 2 V ∂x 2 -F(V), (6.31) 
where:

F(V) = V(V a -V)(V b -V) τ c V a V b . (6.32) 
If we remove the coupling term in (6.30), we get:

∂V ∂t = - V(V a -V)(V b -V) τ c V a V b . (6.33) 
∂V ∂t = 0 corresponds to equilibrium states implying that V = 0, V = V a and V = V b . Let V * , be the value of equilibrium on which the we add a small perturbation ε, so that:

ε(t) = V -V * 1.
Equation (6.33) can be expressed as: ∂V ∂t = -F(V), so that:

∂ ∂t (ε + V * ) = -F(V * + ε), ∂ ∂t (ε) + ∂ ∂t (V * ) ∼ -F(V * ) -ε dF(V * ) dV ,
and using the fact that ∂ ∂t (V * ) = 0 and F(V * ) = 0 at equilibrium, we get at first order ε:

∂ε ∂t = -ε dF(V * ) dV ⇒ ε = ε 0 e -dF(V * ) dV t . (6.34) 
From (6.32), the derivative of F(V) gives:

dF(V) dV = - 1 τ c V a V b 3V 2 -2(V a + V b )V + V a V b .
As V a is always less than V b , we get:

* if V = 0: dF(V) dV 0 = 1 τ c > 0. * if V = V a : dF(V) dV V a = V a -V b τ c V b < 0. * if V = V b : dF(V) dV V b = V b -V a τ c V a > 0.
Hence, 0 and V b are the two stable equilibrium states, while V a is the unstable equilibrium state.

Furthermore, as the equation (6.33) yields:

∂V ∂t = - 1 τ c V 1 - V V a 1 - V V b = -F(V), (6.35) 
and considering the nonlinear function -F(V) as a force which is the derivated from a potential energy (W(V)), we can write:

- 1 τ c V 1 - V V a 1 - V V b = - dW(V) dV ⇒ W(V) = 1 τ c V a V b V 4 4 -(V a + V b ) V 3 3 + V a V b V 2 2 + C te , (6.36) 
where C te is a constant of the integration. The minima of W(V) function are 0 and V b , indeed values of stable equilibrium positions. The values of these minima weigh the attraction of each of the stable state, thus Fitzhugh-Nagumo is a bistable equation.

Coming back to equations system sets (6.23), (6.24) and (6.27), we can take advantage of the main result of Chapter 6, devoted to the case of 2 (R NL , C) cells coupled by a memristor M(q), such as: The memristor is a new circuit element with ongoing philosophical criticism for being called the fourth basic passive circuit element alongside resistor, capacitor, and inductor. First, we presented the review on the four basic passive circuit elements and then followed by in-depth analysis of memristor including its modeling, philosophical argument, device technologies and applications.

We explored some subtleties related to intrinsic asymmetry of a memristor worthy to be considered especially in using memristor as a memristive grid network for CNN neighborhood connection. We presented the detailed φ-q description and derived a new model of memristor which is particularly interesting because of two main reasons: 1) it does not require a window function whose physical meaning is not intuitive and 2) it has a continuous first derivative with respect to charge, thus allowing us to solve a specific system analytically for all flowing charges through the memristor.

We presented a memristor based 2D nonlinear network essentially for information (signal and image) processing. As the first step before studying such a memristor based network, we considered the system of only two cells, namely master and slave coupled together by a memristor, which allows us to observe the interactional behaviour and contribution of the memristor within the network, both qualitatively and quantitatively. The response of the system was analyzed by following three methodologies: analytical, numerical, and analog simulations. The results according to these methods were obtained for the same memristor parameters values. It was worthwhile to observe that these methods agreed with one another perfectly. The network being a bidirectional coupled system, the terms master and slave are only a convenient way to specify which of the two cells is more active in deciding the direction of the flowing charge through the memristor. They are not master and slave in the sense of unidirectional coupled systems. In this context, we considered first 2 RC cells and then secondly, 2 Fitzhugh-Nagumo cells, but always with a memristor as a coupling component.

Using two initially charged RC cells coupled together by a linear resistor and allowing information to flow from one cell to the other one and vice-versa, we observed of course a perfect symmetry in the response of the network with respect to the dynamics of the flowing charge through the coupling linear resistance. However, replacing the coupling linear resistance by a memristor, we observed a different scenario due to intrinsic asymmetry of a memristor which is caused by the resistance switching transition between its two limiting values. A charge-controlled memristor model is used, in which we considered the initial charge q 0 having flowed through the memristor in its previous history as a parameter defining the initial memristance. We highlighted the fundamental role of the memristor history, in showing that if all parameters are changed except q 0 , the system behavior is however quite different according to q 0 . As expected intuitively, the initial charge acts strongly on the dynamics of charge transfer from master to slave cells. We have studied the effect of initial charge q 0 on the system dynamics leading us to get a second order nonlinear differential equation characterizing the flow of charge from one cell to the other. The dynamics of memristor for pixel-to-pixel communication was described with the aid of phase plane analysis in which the memristor asymmetry becomes more apparent.

The behavior of memristor with respect to the polarity reversal effect of the input signal was investigated. We have shown from the circuit point of view and the analytical solution that the conductivity of the memristor depends on the polarity of the applied input signal, thus affecting the mobility of its charge carriers, this property being due to the intrinsic nature of the device. It is an inevitable nature of a bipolar memristor, irrespective of its device technology. Hence, memristive effect changes according to the connection mode and the amount of current flowing through it,

showing that the memristor is not a bilateral circuit element like a resistor as verified by our study.

To achieve memristive effect with symmetry, a memristor fuse is rather proposed. We have therefore presented the detailed analytical interpretation of the memristor fuse. We also authenticated the memristor fuse prior to applying it in a circuit and the results showed that the memristor fuse behaves like a standalone memristor under high input frequency. Although connecting two memristors anti-serially to form a memristor fuse lets the dynamics of the two state variables system become more intricate, as well as the dynamics of the resistance switching, terminal asymmetry is resolved as confirmed by our results. The symmetry displayed by the memristor-fuse suggests it to be a promising element useful as memristive grid in neighborhood connections and it could become an important concept for the ongoing study of our memristor-based network. We presented the detailed analytical interpretation of memristor fuse between the 2 RC cells and the symmetry is observed in the phase portraits analysis.

The last phase of the work entailed using Fitzhugh-Nagumo cells which is far more intricate than the RC cells where the only stable state is always zero due to the resistive nature of the cells. With Fitzhugh-Nagumo cells we have two stable states. Similarly, we studied the network of 2 Fitzhugh-Nagumo cells coupled together by a memristor analytically, numerically and by SPICE simulation, both methods confirming the two possible stable states. The analytical study was explored to include both common mode and differential mode, the latter reflecting in essence the effect of the voltage across the memristor. The steady state is determined with respect to the unstable state, suggesting that the network can also be used in a binarization scheme, for example to process different gray levels. Furthermore, we extended the concept to include one-dimensional cellular nonlinear electrical lattice using memristive coupling and so show how the network could be used to study the diffusion effect between neuron cells and also to be used to perform signal filtering.

7.2/ FUTURE PERSPECTIVES

Due to increasing demand of small and very fast reliable systems nowadays, nano-scalability is one of the challenges facing nano-electronic industries. Memristor has interesting features such as nano-scalability, memory capability, conductance modulation etc., which spark interest globally. Furthermore, these features among many others, suggest memristor to stand a chance in playing a crucial role for generating a new paradigm of signal and image processing and beyond.

We outlined 3 potential methods to include memristor in the conventional 2D cellular nonlinear network. In this work, we focused on the first method where memristors are used to replace the series coupling resistance, analogous to the technique of using memristors as synaptic links between electronic neurons. Hence in addition to signal processing, the network can also be used for electronic prosthesis in bio-medical applications. However, the other two methods would be considered in the future because we do think that they are also valid options to include memristor in the network, especially due to the nonlinear nature of the memristor.

Initially, the work targeted four approaches namely: Analytical solution, Numerical solution, Circuit simulation in SPICE and Experiments. The first three approaches were accomplished. However, the restriction rules caused by the coronavirus pandemic necessitate the work to be carried-out remotely, hence no experiment was performed except some pioneer tests. The results obtained by SPICE are promising and could be easily implemented experimentally. We showed detailed analysis of only 2 cells in which the coupling network can be extended to any number of cells under consideration. The experimental aspect of the memristor based 2D nonlinear network will be performed later. In the future, we will implement the network to perform real-time image processing experimentally. Furthermore, we begin to consider signal filtering using the outlined memristor based 1D network, for example for noise removal. This is part of the ongoing studies.

Finally, we are deeply convinced of the huge potential of memristor as a coupling element in neural networks, acting as an electronic synapse. We think that introducing our new model M(q)

to describe the instantaneous memristance as a cubic function of the total charge having flowed through the memristor is the good way to analyze in detail the behavior of this passive fourth component in its total environment. It could give the key to understand how it can process the right information transmission in the neural scheme with respect to the voltage applied across it and the current flowing through it. Window function gives nonlinear model. Window function, in addition to nonlinearity, also increases the dynamics of the charge or mobile carrier thereby affected by the value of q d , because q d ∝ 1 µ v = ĥ(µ v ) . Therefore, for a fixed device dimension (i.e D) and doping, only µ v is affected by the window function, hence q d . This is due to the fact that window function ensures zero drift of the mobile carrier at the boundaries, thus significantly reduces their mobility and increases q d . . . . . . . .

Nonlinear models comparison of the full memristance transition between R o f f =

16KΩ and R on = 100Ω with respect to the quantity of charge q(t). The results are obtained under the same initial conditions. This is to show the amount of charge q R needed for each model to fully transit until R o f f and then R on . Note that p = 1 and p = 20 for Joglekar and Prodromakis respectively, and g max (x) = 1 for both models allowing for accurate comparison. (a) M(q) versus q(t) for Strukov (Stru.), Joglekar (Jogl.) and Prodromakis (Prod.). (b) M(q) and q(t) transients. . . . . . . . . . . . .

Nonlinear models comparison of the full memristance transition between R o f f =

16KΩ and R on = 100Ω with respect to the quantity of the flowing charge q(t). It shows the amount of charge q R needed for each model to fully transit from R o f f to R on . Note that p = 1 and p = 20 for Joglekar and Prodromakis respectively, allowing to have g max (x) = 1 for both models. (a) Prodromakis (Prodr.) q R = 0.145mC with p = 20, (b) Joglekar (Jogl.) q R = 0.365mC with p = 1 and (c) Strukov (Struk.) The cells are at different potentials so that the current i(t) will flow through the memristor. The test is done for

V 1 > V 2 and then V 1 < V 2 . For example V 1 =
1V, V 2 = 0V and then V 1 = 0V, V 2 = 1V. The voltage across the memristor is V m (t).

(a) Cond-1 and V m (t) = V 1 (t) -V 2 (t). (b) Cond-2 and V m (t) = V 2 (t) -V 1 (t). . . . . . .

5.22

The interaction of the cells according to Cond-1 (solid curves) and Cond-2 (dash curves) for 

q 0 = 38µC, R on = 100Ω, R o f f = 16KΩ with V 1 0 = 1V, V 2 0 = 0V for Cond-1 and V 1 0 = 0V, V 2 

5.24

The effect of changing the initial voltage. V 0 a = 1V and V 0 b = 1.5V are the initial conditions of the cells and the initial charge q 0 = 33.8µC. For the black curve, V 1 0 = V 0 a and V 2 0 = 0V (solid) (and then V 1 0 = 0V and V 2 o = V 0 a (dash)), meanwhile for the magenta one, V 1 0 = V 0 b and V 2 0 = 0V (solid) (and then V 1 0 = 0V and V 2 0 = V 0 b Memristor is a two-terminal nonlinear dynamic electronic device. Typically, it is a passive nano-device whose conductivity is controlled by the flux, time-integral of the voltage across its terminals, or by the charge, time-integral of the current flowing through it, and it presents interesting features for versatile applications. This thesis considers memristor use as a neighborhood connection for 2D cellular nonlinear or neural network (CNN), essentially for information (image and signal) processing and electronic prosthesis. We develop a model of the memristor based 2D cellular nonlinear networks CNNs compatible to image applications by incorporating memristor in the adjacent neighborhood connection. This approach will offer many advantages with respect to previous known designs. Some of these advantages are higher pixel density due to the nano-nature of the memristor, lower power consumption, high-density connection flexibility and compatibility to CMOS technology, etc. Firstly, we present the State of the Art, that is, what is known about this new passive component -the memristor, along with an analog model of memristor for practical and demonstration purposes. Then, we present the quantitative and qualitative behaviour of a chargecontrolled memristor by considering RC networks with memristor in the coupling mode, focusing specifically on the system of two initially charged RC cells. We extensively study the interaction of two Fitzhugh-Nagumo cells via a memristor by observing the transient and the steady state response of each cell, allowing us to have a good foresight of the memristor functionality in the memristor based 2D CNNs and the diffusion effect in a 1D cellular nonlinear electrical lattice. Furthermore, we present the generalized model of the memristor based 2D CNNs reliable for processing any number of cells. Le memristor est un dip ôle électronique dynamique non lin éaire. Typiquement, il s'agit d'un dispositif de nanotechnologie passif dont la conductivit é est contr ôl ée par le flux, l'int égrale de la tension à ses bornes, ou par la charge, l'int égrale du courant qui le traverse, pr ésentant des caract éristiques int éressantes pour des applications polyvalentes. Cette th èse est consacr ée à l'utilisation de memristor comme él ément de couplage d'un r éseau cellulaire non lin éaire, en vue du traitement de l'information (image et signal) ou comme proth èse électronique d'un syst ème neuronal.

Nous d éveloppons un mod èle de r éseaux cellulaires non lin éaires 2D bas és sur le memristor, en incorporant le memristor dans le couplage de cellules voisines.

Cette approche offre de nombreux avantages par rapport à ce qui est utilis é actuellement. Parmi ces avantages, on peut citer une densit é de pixels plus élev ée en raison de la nano-nature du memristor, une consommation d' énergie plus faible, une flexibilit é de connexion à haute densit é, la compatibilit é avec la technologie CMOS, etc. . . Tout d'abord, nous pr ésentons l' état de l'art sur le memristor, ainsi qu'un mod èle analogique de memristor à des fins pratiques et de d émonstration. Ensuite, nous pr ésentons le comportement quantitatif et qualitatif d'un memristor contr ôl é par la charge en consid érant les r éseaux RC avec le memristor en mode couplage, en se concentrant sp écifiquement sur le syst ème de deux cellules RC initialement charg ées. Nous étudions en d étail l'interaction de deux cellules Fitzhugh-Nagumo via un memristor en observant la r éponse transitoire de chaque cellule, ce qui nous permet d'avoir une bonne compr éhension de la fonctionnalit é memristor et de l'effet de diffusion dans un treillis électrique cellulaire non lin éaire 1D. En outre, nous pr ésentons le mod èle g én éralis é des CNNs 2D bas és sur le memristor pour le traitement de n'importe quel nombre de cellules.

Finally

  , I would like to thank the community of Universit é de Bourgogne (UB), Ècole Sup érieure d'ing énieurs Num érique Et Mat ériaux (ESIREM), the doctoral school (Sciences Physiques pour L'Ing énieur et Microtechniques -SPIM) and the laboratory Imagerie Vision Artificielle (ImViA) for giving me the environment and equipment to carry out my research. I am very grateful to all the staff and my doctoral colleagues. It has been a very nice experience to meet you. Thank you all. iii CONTENTS INTRODUCTION 1.1/ CONTEXT Electronics engineering plays a crucial role in human civilization in both analogue and digital domains. This was made possible by the contribution of the circuit elements, generally called electronic components that are basically classified into two classes: (1.) Passive circuit elements: e.g resistor, capacitor, inductor, thermistor, transformer, light dependent resistor (LDR) etc. (2.) Active circuit elements: e.g transistor, diode, operational amplifiers, LED, integrated circuit, photodiode, voltage and current sources, etc,... The application of diode to either the passive or the active elements are not yet well defined.
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 11 Figure 1.1: Memristance analogy to water flow through a pipe of varying diameter: where d is a diameter such that: d 1 d 2 .

Figure 1 . 2 :

 12 Figure 1.2: 2D cellular nonlinear networks (CNN). C is a linear capacitor and R NL is a nonlinear resistance. (a) Coupling using linear resistance R and (b) coupling using memristor M.
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 5 CNN -Memristor dynamics in Nonlinear Networks: This chapter intro-CHAPTER 1. INTRODUCTION
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 21 Figure 2.1: Display of some basic electronic components.

Figure 2 . 2 :

 22 Figure 2.2: Symmetrical view of the four basic circuit elements and their correlations with the four circuit variables.
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12CHAPTER 2 .Figure 2 . 3 :

 223 Figure 2.3: Different configurations of resistors. (a) Electronic symbol of resistor, surface mount resistor (or chip resistor) and other configurations depending upon applications. (b) Some examples of variable resistors. (c) Nonlinear resistors.

Figure 2 . 4 :

 24 Figure 2.4: Geometry viewpoint of a resistor made up of uniformly conductive wire: A and L are the cross-sectional area and the length of the material respectively.

Figure 2 . 5 :

 25 Figure 2.5: Different configurations of capacitors. (a) Electronic symbol of capacitor, surface mount capacitor (or chip capacitor) and other configurations. (b) Different types of capacitors.

Figure 2 .

 2 6 shows the physical description of a basic capacitor: two parallel conductive plates placed apart by a distance d with a dielectric material sandwiched in between them. The two plates are identical, each having a cross-sectional area A. It follows that if a potential difference v is placed across the two external connection terminals, clouds of charges are established at both sides.

Figure 2 . 6 :

 26 Figure 2.6: Geometrical viewpoint of a capacitor.

2 . 7 .

 27 Additionally, due to the variation of the formed magnetic flux, a voltage (self-induced voltage source according to Faraday's law) is induced in the coil and it acts in such a way to oppose itself to any change in the current that causes it (according to Lenz's law).
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 2728 Figure 2.7: Air core inductor (left) has less inductance and iron core inductor (right) has more inductance

.21) 3 .Figure 2 . 9 :

 329 Figure 2.9: Geometry viewpoint of an inductor.

  , as: "any 2-terminals device, exhibiting a pinched hysteresis loop which always passes through the origin in the voltage-current plane when driven by any periodic input current source, or voltage source, with zero DC component. If the input is a current source, it is called a current-controlled memristor. If it is a voltage source, it is called a voltage-controlled memristor."
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 212 Figure 2.12: Testing memristor device as a black box (left) and current-voltage response of the black box (right).

2 ( b )Figure 2 . 13 :

 2b213 Figure 2.13: Demonstration of a memristor fingerprint for R on = 100Ω, R o f f = 16KΩ, f o = 1Hz, ω o = 2π f o and v(t) = 1.2sin(ωt): ω = ω o , ω = 2ω o and ω = 10ω o .
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 214 Figure 2.14: (a) Self-crossing or transversal pinched hysteresis loop (PHL) and (b) Tangential or non-transversal pinched hysteresis loop (PHL).

Figure 2 . 15 :

 215 Figure 2.15: Effect of increasing frequency on the PHL lobe area. (a) Hysteresis lobe area shrinkage due to the increase in the input frequency and (b) PHL lobe area versus frequency.
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 216 Figure 2.16: Calculating the area of PHL.

Figure 2 . 17 :

 217 Figure 2.17: Memristor operating point from the constitutive relationship.
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 218 Figure 2.18: Third fingerprint illustration for tenfold increase in frequency: ω = 10ω o , θ 2 ≈ 0.

Figure 2 . 19 :

 219 Figure 2.19: Memristor subjected to current and voltage excitation respectively

Figure 2 .Figure 2 . 20 :

 2220 Figs. 2.20a and b.

Figure 2 . 21 :

 221 Figure 2.21: Result obtained for example 2: V 0 = 1V, f = 4Hz, ψ 1 = 1 C.Wb -3 , ψ 2 = 1m C.Wb -1 , (a) φ 0 = 0Wb and (b) φ 0 = 0.08Wb.
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 46 Why memristor ? During my presentation in the event Doctoral day 2019 on March 2019 at Le Creusot,
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 222 Figure 2.22: Some memristor applications in analog and digital circuit [49].
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 49223 Figure 2.23: Simulation results comparison for the four basic passive circuit elements when v(t) = V 0 sin(ωt). r is a small resistor (say 100Ω) to allow easy measurements of the currents I R , I C , I L and I M . (a1-a3) Resistor R = 920Ω: there is no phase difference in the V(t) and I R waveform and the I-V characteristic is a linear graph. (b1-b3) Capacitor C = 12µF: there is phase difference of π 2 in the V and I C waveform, i.e I C is leading the V by π 2 and the I-V characteristics is a clockwise circle. (c1-c3) Inductor L = 10mH: there is phase difference of π 2 in the I L and V waveform, i.e V is leading I L by π 2 and the I-V characteristic is a counter clockwise circle. (d1-d3) Memristor M: R on = 100Ω, R o f f = 16KΩ, there is no phase difference in the I m and V waveform and the I-V characteristic is a pinched hysteresis loop.

Figure 2 . 24 :

 224 Figure 2.24: Experimental results of the four fundamental passive circuit elements. (a1-a3) R = 1KΩ, (b1-b3) C = 10nF, (c1-c3) L = 10mH and (d1-d3) KNOWM memristor chip. The current through each component is measured and the corresponding I-V characteristics are given. There is no phase difference in V(t) and I(t) waveforms for R and M, while there is a phase difference of π 2 for C and L. In the capacitor C, I(t) is leading the V(t) by π 2 and in an inductor L, V(t) is leading I(t) by π 2 . The I-V characteristic of R is a linear graph, for C and L it is a circle (respectively with clockwise and anticlockwise) and for M it is a pinched hysteresis loop. Scales: R: time t [0.50ms/div], current I [0.31mA/div] and voltage V [0.50V/div], C: time t [0.50ms/div], current I [0.28mA/div] and voltage V [0.50V/div], L: time t [20µs/div], current I [0.31mA/div] and voltage V [0.50V/div] and M: time t [0.50ms/div], current I [4.45µA/div] and voltage V [1.0V/div].

RFigure 3 . 2 :

 32 Figure 3.2: Geometry of HP (TiO 2 ) memristor. (a) Crossbar arrays of wires with memristor in each junction [3, 105]. (b) Structural view of the TiO 2 memristor, i.e enlargement of the memristor in the junction.

Figure 3 . 3 :

 33 Figure 3.3: Memristor internal behavioural response.R on = R on w(t) D , R o f f = R o f f 1 -w(t) D , V 1 = R on i(t) and V 2 = R o f f i(t).

  and u = dw dt is the drift speed of the boundary. The dopant mobility (µ v ) determines how quickly the boundary between doped and undoped regions (or the dopants) can move back and forth across the device for any applied signal. The tunneling of the barrier width w is determined by the magnitude and polarity of the applied voltage or current. It can be seen from equation (3.2a) that at any given time t, the width w(t) of the doped region depends on the quantity of electric charge having passed through the device. Hence the conductivity of TiO 2 memristor and its switching dynamics between R on (ON state) and R o f f (OFF state) are determined by w [106].

  boundaries is described as Hard Switching because the transition, from OFF state to ON state and vice-versa, delays until certain amount of voltage threshold is reached. Thus, hard switching can be specified by considering different boundary conditions, hence the need of a window function. The window function g(x) is basically a dimensionless function multiplied to the right hand side of eq. (3.5) for modeling the nonlinear dopant drift whenx approaches 0 or 1 and for avoiding x from taking values outside of the limits [0, 1]. For example, the SPICE circuit simulation of the linear model often reports computation errors attributed to the values of x. On the other hand, there is no such error even for a hard switching case if a window function (i.e. nonlinear model) is used. Some authors have tried to define the function g(x) with a more physical description of the device, in modeling the non-linearity of the charge carriers along the device geometry.
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 14334 Figure 3.4a shows the comparison of the aforementioned functions. The window functions by Strukov's team and Biolek's team lacking flexibility, a comparison is drawn between the models by Joglekar et al. on one hand, and Prodromakis et al. on the other one, that is, equations (3.8) and (3.9) respectively. The control parameter p is arbitrarily chosen in ascending order in order to observe the corresponding responses of g(x): p = 1, 2, 10, and 20, and the results are given in Fig.3.4b. One can see that for all p, Joglekar model has g(0.5) = 1, unlike Prodromakis model where g(0.5) is scaleable from 0 to 1 with increase in p, with g(0.5) ≡ g max (x). In addition, for p → ∞, both models resembles linear drift model. Finally, another known window function is the ThrEshold Adaptive Memristor (TEAM) model[START_REF] Kvatinsky | Team: Threshold adaptive memristor model[END_REF].
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 35 Figure 3.5: Analytical results of CCM with Linear model, R on = 100Ω, R o f f = 16KΩ, q d = 100µC and three different input frequencies. (a) I-V characteristics, (b) state variable, (c) state variable and memristance for f = 1Hz, (d) memristance.

Figure 3 .

 3 Figure 3.6 shows the current-voltage response and the corresponding state variables.

Figure 3 . 6 :

 36 Figure 3.6: Analytical results of FCM with linear dopant drift model: R on = 100Ω, R o f f = 16KΩ, q d = 100µC and different input frequencies. (a) I-V characteristics, (b) state variable, (c) state variable and memristance for f = 1Hz, (d) memristance.
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 37 Figure 3.7: Analytical results of the CCM with nonlinear dopant drift model at different input frequencies. I 0 = 2mA, x 0 = 0.05, q d = 100µC, R o f f = 16KΩ, R on = 100Ω and δR = 15.9KΩ. (a) I-V characteristics, (b) state variable and memristance for f = 1Hz, (c) state variable, (d) memristance.

  and the results are shown in Fig. 3.8.

Figure 3 . 8 :

 38 Figure 3.8: Analytical results of FCM with nonlinear dopant drift modal at different input frequencies. v(t) = V 0 sin(ωt), V 0 = 2V, x 0 = 0.1, q d = 100µC, R o f f = 16KΩ, R on = 100Ω and δR = 15.9KΩ. (a) I-V characteristics, (b) state variable and memristance for f = 2Hz, (c) state variable (d) memristance.

  Figure 3.8: Analytical results of FCM with nonlinear dopant drift modal at different input frequencies. v(t) = V 0 sin(ωt), V 0 = 2V, x 0 = 0.1, q d = 100µC, R o f f = 16KΩ, R on = 100Ω and δR = 15.9KΩ. (a) I-V characteristics, (b) state variable and memristance for f = 2Hz, (c) state variable (d) memristance.
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 39 Figure3.9: Memristance versus charge for linear and nonlinear drift models (Joglekar). It shows that as p increases, the nonlinear drift model tends to the linear model. Window function gives nonlinear model. Window function, in addition to nonlinearity, also increases the dynamics of the charge or mobile carrier thereby affected by the value of q d , because q d ∝ 1 µv = ĥ(µ v ) . Therefore, for a fixed device dimension (i.e D) and doping, only µ v is affected by the window function, hence q d . This is due to the fact that window function ensures zero drift of the mobile carrier at the boundaries, thus significantly reduces their mobility and increases q d .

Fig- ure 3 .

 3 [START_REF] Leon | Memristive devices and systems[END_REF] shows the expanded form of Fig.3.10. For Joglekar function and for p = 1,

Figure 3 . 11 :

 311 Figure 3.11: Nonlinear models comparison of the full memristance transition between R o f f = 16KΩ and R on = 100Ωwith respect to the quantity of the flowing charge q(t). It shows the amount of charge q R needed for each model to fully transit from R o f f to R on . Note that p = 1 and p = 20 for Joglekar and Prodromakis respectively, allowing to have g max (x) = 1 for both models. (a) Prodromakis (Prodr.) q R = 0.145mC with p = 20, (b) Joglekar (Jogl.) q R = 0.365mC with p = 1 and (c) Strukov (Struk.) q R = 1.350mC.

Figures 3 .

 3  show the case where the input voltage is increased to 1V, hence the state variable displaces farther and the difference between linear and nonlinear models begins to be noticeable. Figures 3.12c1-c3 show the case when the input voltage is increased to 1.2V, in fact, the difference between the linear and nonlinear models becomes apparent. Figure3.12c1 shows a shift difference in the current transients for linear (i l )

  Figs. 3.13a1-a4, b1-b4 and c1-c4 for 1V, 1.2V and 1.5V respectively. The dynamics of the memristance and the state variable increase with the voltage amplitude. Figures 3.13c1-c4 show the hard switching case, that is, when the memristor is subjected to a substantial amount of input voltage. It is clear that the choice of a window function for a memristor modeling is very important because each function responds with different dynamics.

Figure 3 .

 3 Figure3.12: Comparison of the linear and nonlinear dopant drift models showing for each case, the nature of the flowing currents, the I-V characteristics, the memristance and the corresponding state variable transition respectively, for (a1-a3) 0.7V, (b1-b3) 1V and (c1-c3) 1.2V. Where: l and nl are linear and nonlinear models abbreviations, V(t) is the input voltage, i l and i nl are the flowing currents for linear and nonlinear drift model respectively, similarly, x l , M l , x nl and M nl are the state variables and memristances for the linear and nonlinear models.

Figure 3 . 13 :

 313 Figure 3.13: Comparing the effect of a window function from the circuit point of view. Our proposed new(N) function is compared with the ones by Strukov(S), Jolekar(J) and Prodromakis(P), for (a1-a4) 1V, (b1-b4) 1.2V and (c1-c4) 1.5V. V(t) is the input voltage, i(t) is the current, x and M(x) are state variable and memristance. See the ordinate and abscissa of each figure.

Figure 3 . 14 :

 314 Figure 3.14: SPICE implementation of TiO 2 memristor model for simulation purpose. (a) Block diagram representation of the memristance function: V = R(x)i and dx dt = k f (x)i, (b) Equivalent SPICE model: E is an E-type voltage source (i.e voltage controlled voltage source), G is a G-type current source (voltage dependent current source) and R sh is the shunt resistance of the integrator.

Figure 3 .

 3 Figure 3.14b shows the equivalent SPICE schematic of equation(3.29). The capacitor C x whose initial voltage models the initial state of the normalized width x 0 , is used as the integrator of the differential state equation. The port equation is modelled with the aid of E-type voltage source (voltage dependent voltage source) whose source is the voltage of capacitor and then multiplied by the gain -δR, and it is connected in series with a resistor R o f f . V(x) is the voltage of the capacitor C x and it models the normalized width x of the memristor, while R sh is the shunt resistor grounding the integrator unit. The integrand, that is, the quantity on the right hand side of the state equation is modeled with the aid of a G-type current source (voltage dependent current source) that multiplies the memristor current I by the gain k f (V(x)). The SPICE netlist file of Fig.3.14b is given in Table A.1 (Appendix A), and it is used to create memristor SPICE component for simulation purpose. The integral of the current (or charge) and voltage (or flux) respectively, flow-

Figure 3 .Figure 3 . 15 :

 3315 Figure 3.15a shows the transient results of voltage and current for an input voltage amplitude of 1.2V and the corresponding I-V characteristic is given in Fig. 3.15b. Furthermore, Fig. 3.15c shows the corresponding monotonically increasing φ-q function, thus matching the characteristics of the memristor from its constitutive relationship. Meanwhile, Fig. 3.15d shows the memristance with respect to the transition of the device state variable.

  Figure 3.15: Simulation results of the memristor netlist file given in TableA.1. V = V 0 sin(ωt), V 0 = 1V, f = 1Hz, R on = 100Ω, R o f f = 16KΩ, µ v =10 f m 2 /(V.s) and D = 10nm, which gives q d = 100µC. (a) V and i transients, (b) I-V characteristic, (c) φ-q curve and (d) memristance and state variable transitions.

Figure 3 .Figure 3 . 16 :

 3316 Figure 3.14b is similar to Fig.3.16 with difference in the integration unit, that is RC and operational amplifier respectively. Comparing the two figures, one can see that R sh = R

. 32 )

 32 Equations (3.30)-(3.32) are analyzed using three different types of input voltage, namely:

Figure 3 . 17 :

 317 Figure 3.17: Results of the sinusoidal input voltage. Parameters set: R = 1kΩ, C = 1µF, G 0 = 0.5S and K G = 10S V -1 (a) V o = 0.6V and variation of input frequency, ω o = 2π f o with f o = 1Hz. (b) memductance for ω o and V o = 0.6V, (c) at ω o frequency and variation of voltage amplitude V o , (d) the flux φ(t) for ω o and V o = 0.6V.

Figure 3 . 18 :

 318 Figure 3.18: Triangular input voltage.

. 42 )Figure 3 . 19 :

 42319 Figure 3.19: Results of triangular input voltage. V p = 0.4V, f = 1Hz, R = 1KΩ, C = 1µF, G 0 = 10S and KG = 0.2S V -1 .

Figure 3 . 20 :Figure 3 . 21 :

 320321 Figure 3.20: Results of square wave input voltage.V = ±1V, f = 2Hz, R = 1KΩ, C = 1µF, G 0 = 1S and KG = 5S V -1 .

  Fig. 3.21 can be expressed from Kirchhoff's laws:

Figure 3 .

 3 Figure 3.22 shows that the pinched hysteresis loop can be observed by plotting I D versus V (or V DS ) for different values of the input frequency, R and C.

Figure 3 . 22 :

 322 Figure 3.22: Response of the emulator in Fig. 3.21 (a) R = 1.5MΩ, R G = 100MΩ, C = 100pF, R D = 1, V = 3V at 1KHz. (b) R = 1MΩ, R G = 100MΩ, C = 100pF, R D = 1, V = 3V at 1592KHz (i.e cutoff frequency). The response is affected by the value of of the input frequency, and the values of R and C which make the integrator causing different phase shifts.

Figure 3 . 23 :

 323 Figure 3.23 shows the schematic model using current transformer (CT) in which the flowing current I R through the RC branch is determined by the influence of the CT. The input current I is the same as the flowing current through the drain-source path of the JFET.

Figure 3 .

 3 Figure 3.24 shows three different formations of current mirror using MOSFET transistors.The current mirror will copy the current I D to the RC branch, hence the condition I R I D can be avoided.

Figure 3 . 24 :

 324 Figure 3.24: Some examples of current mirror formations. (a) N-type MOSFET, (b) P-type MOSFET and (c) Cascode current mirror [Perfect current mirror (V DS M1 = V DS M2 )].

3. 4 . 4 . 3 /Figure 3 . 25 :

 443325 Figure 3.25 shows the model schematic using hall effect sensor (H.E.S). The H.E.S senses the current I D and its output having to be passed through the digital to analog converter DAC, hence generating the current I C from the effect of I D . Therefore, V C controls V GS and hence the conductance of the memristor. Arduino board can be used for programming the sensor as well as its source, i.e 5V. H.E.S has 3 pins: input, ground and output. The output pin is connected to the common node of the capacitor and gate of the JFET. The variation of the sensor ouput will be proportional to the voltage V C across the capacitor C, which in turn is proportional to the system state x which determines the conductance of the memristor.
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 4 -q CURVE DESCRIPTION AND THE NEW MODEL 4.1/ INTRODUCTION

Figure 4 . 1 :

 41 Figure 4.1: Memristance transition with respect to the flowing charges.

Figure 4 . 2 :

 42 Figure 4.2: (a)The voltage and current waveforms in a memristor are always in phase. However, one can see that the current is not maximum even so the causative voltage is maximum (point 2), emphasizing the nonlinear nature of the device. Points 1, 3 and 5 are the evidence of pinched hysteresis loop at (0,0) i.e I(t) = 0 whenever V(t) = 0 and vice versa. (b) Effect of initial charge q 0 on the memristor I-V characteristic, thus reflecting the memory effect of the device. R o f f = 16KΩ, R on = 100Ω, I 0 = 0.15mA, f = 1Hz, µ v = 10 f m 2 /V.s, D = 10nm, then q d = 100µC and q 0 = 0.1q d , 0.3q d and 0.4q d .

Figure 4 . 3 :

 43 Figure 4.3: Memristance φ-q curve description of eq.(4.11). The flux φ is a continuous function of charge q and varies according to the operating point along the φ-q curve. Points b, c and d define some instances of memristance given by the lines T 1 , T 2 and T 3 respectively. Point b is when q(t) < 0 and the memristance is R o f f given by the slope of line T 1 . However, points c and d describe the memristance transition as q(t) increases until q(t) = q d where the φ-q loci leaves the parabolic path and becomes a straight line T 3 whose slope is R on . For q(t) > q d , the φ-q loci is no longer parabolic. Note that q f is not far from q d , see eq. (4.12). This curve is for φ 0 = 0 and q 0 = 0.

  .11), Fig. 4.3 and Fig. 4.4 respectively, and it adheres to the signatures of a charge-controlled memristor.

Figure 4 . 4 :

 44 Figure 4.4: Characteristics of the memristor model given in eq. (4.11) by using a sine current input i(t) = I 0 sin(ωt). The result is obtained for R o f f = 16KΩ, R on = 100Ω, I 0 = 1.4mA, µ v = 10 -14 m 2 /V.s, D = 10 -8 m which gives q d = 100µC. (a) φ-q curve, (b) current and voltage transients and (c) I-V characteristics.

. 14 )

 14 Following equation (4.13) and (4.14), the constants a, b, c, and d are determined as follows:

  φ-q curves comparison.

Figure 4 . 5 :

 45 Figure 4.5: Results comparison of memristance as a function of charge for the HP model and our developed cubic model. Models 1 and 2 refer to the memristance expressions in (4.6) and (4.20) respectively. The charge q(t) is taken in a larger interval, for example q(t) = [-0.2, 1.2] × 10 -4 C. Using the parameters value in[START_REF] Strukov | The missing memristor found[END_REF]:µ v = 10 -14 m 2 /V.s, D = 10nm, R o f f = 16KΩ, R on = 100Ω, gives q d = 100µC. Thus, dM(q)dq in eq. (4.6) has discontinuity at q(t) = 0 and q(t) = q d while dM(q)

Figure 4 .

 4 Figure 4.7 shows the circuit response of the new model. The SPICE netlist file of the new model is given in TableA.2 (Appendix A). Using the sine input voltage source and varying the voltage amplitude in three steps, the results show the φ-q curve, the I-V characteristics, the memristance and the state variable transients. We consider the input voltage as 0.75V, 1V and 1.2V, shown respectively, by Figures 4.7a1-a3, b1-b2 and c1-c3.

Figure 4 .

 4 Figure 4.7c2 shows the hard switching case, i.e the scenario occuring when a substantial amount of input voltage is applied to the memristor[START_REF] Strukov | The missing memristor found[END_REF].

Figure 4 . 6 :Figure 4 . 7 :

 4647 Figure 4.6: Characteristics of the memristor model given in eq. (4.20) by using a sine current input i(t) = I 0 sin(ωt). The result is obtained for R o f f = 16KΩ, R on = 100Ω, I 0 = 1mA, f = 4Hz and q d = 100µC. (a) φ-q curve, (b) current and voltage transients and (c) I-V characteristics.

Figure 5 . 1 :

 51 Figure 5.1: CNNgeneral formation.

Figure 5 . 2 :

 52 Figure 5.2: 2D CNNs prior to the inclusion of memristor [137].

Fig. 5 .

 5 Fig. 5.3a.

Figure 5 . 3 :

 53 Figure 5.3: Three possibilities of memristor based 2D CNN. (a) Using memristor for coupling, thus replacing the linear resistor, (b) Using memristor in the cell unit by replacing the nonlinear resistor and (c) Using memristor in place of both R and R NL in the system.

Figure 5 .

 5 Figure 5.4 shows the RC network, whereby all the elements of the network are nominal resistors and capacitors. Figure5.4a shows the implementation of a 2D RC cellular nonlinear network. It is a system that entails bidirectional communication between any two adjacent cells coupled together by linear resistors R. To quantitatively understand the behaviour of the system, we consider two cells: Cell-1 and Cell-2, each of them constituted of one linear resistor R m and R s respectively, and one capacitor C m and C s respectively, coupled by linear resistor R. The interaction between the two cells can be visualized by allowing one cell to serve as a source (or master) and the other one as a recipient (or slave), with their constituent elements distinguished by the subscript letters m and s, respectively.

Figure 5 . 4 :

 54 Figure 5.4: RC network. (a) 2D RC CNN (b) Case study: system of two cells.

Figure 5 .

 5 Figure 5.4b is a bidirectional communication between Cell-1 and Cell-2 via a linear resistor R. It is however important to note that the terms master (m) and slave (s) here specify which of the two cells is more active that decides the direction of the flowing current i(t) through the coupling resistor R. Hence, either of the cells can serve as a master or a slave depending on which among them is acting as the source of information. It is not master and slave in the sense of unidirectional coupled system. In fact if Cell-2 becomes the master, then the voltage across the coupling resistor R becomes [V s (t) -V m (t)] and the current i(t) flows toward Cell-1. The aim is to observe the interaction of Cell-1 and Cell-2 via the coupling resistor R, which in comparison, could help to a better understanding of the memristor behaviour in the coupling mode.

  a constant determined by the initial values at time t = 0, thus:

  10) and they are shown in Fig. 5.6 with the analytical heading. Furthermore, the results of SPICE and MatLab simulations are obtained, also shown in Fig. 5.6. The three results are compared and show perfect agreement with one another. The values of parameters are R = 10KΩ, R m = R s = 100KΩ, C m = C s = 1µF, V m 0 = 1V and V s 0 = 0V. The voltage evolution decays to zero due to the resistive nature of the cells.

Figure 5 .Figure 5 . 5 :

 555 Figure 5.7 shows the phase portraits result forR = 10KΩ, R m = R s = 100KΩ, C m = C s = 1µF, q 0 = 0, τ 1 = 0.1[sec.], R o = 200KΩ, C o = 2µF, R = 10KΩ, λ 1 = 1µC,that is, the same values of parameters used in Figs. 5.5 and 5.6. The initial voltage V m 0 is varied in ten steps between 0V and 1V, meanwhile V s 0 is fixed at 0V, hence we showed ten

Figure 5 . 6 :Figure 5 . 7 :

 5657 Figure 5.6: Response of the RC network. The time evolution of V m (t) and V s (t) according to the three approaches: (a) Analytical solution (b) Numerical solution (c) SPICE simulation (d) Comparison of the three methods showing a strong agreement. V m 0 = 1V, V s 0 = 0V, R m = R s = 100kΩ, C m = C s = 1µF and R = 10kΩ.

2 .

 2 Nonlinear resistor R NL (e.g. Fitzhugh-Nagumo) in the cell unit: The aim is to implement a memristor based 2D CNN with each cell consisting of two elements, linear capacitor and nonlinear resistor, and the cells are connected via a memristor to form 2D arrays of nonlinear electrical lattice reliable for image processing purpose. This aspect is presented in chapter 6.

( 2 )

 2 . Numerical solution (3). Circuit simulation in SPICE (4). Experiment (pending ...)

Figure 5 . 9 :

 59 Figure 5.9: 2D cellular nonlinear network. (a) Target implementation of the memristor based 2D-CNN using memristors in the coupling mode. (b) Circuit schematic of two cells: master (m) and slave (s) cells. Each of them comprises one capacitor and one resistor coupled by a memristor M.

5. 5 . 1 /Figure 5 . 1 and S 2 ,

 51512 Figure 5.9a shows the target implementation of the memristor-based 2D CNN by using memristors in the coupling mode. For a quantitative study of the system response, a subset of the system (shown in Fig. 5.9b) is considered. It is made up of two unit cells each comprising one linear capacitor and one linear resistor. At time t = 0, switches S 1 and S 2 , initially open, are closed, then information diffuses from one cell to the other, say from the master one to the slave one, via a memristor as shown by the direction of flowing current. Therefore, the memristor serves as the communication link between the cells.

Table 5 . 1 :

 51 Variation of the initial voltage difference and the corresponding charge ratio. These measurements are taken with:q 0 = 30µC, R o f f = 16kΩ, R on = 100Ω, C m = C s = 1µF and R m = R s = 100kΩ.

Figure 5 . 10 :

 510 Figure 5.10: Plot of data from table 5.1.

Fig. 5

 5 Fig. 5.11b.

Figure 5 . 11 :

 511 Figure 5.11: Analytical resultsshowing the evolution of V m (t), V s (t) and q(t) for Memristor coupling mode according to the analytical description (5.50) of the circuit schematic in Fig.5.9.R m = R s = 100KΩ, C m = C s = 1µF, V(C m ) = V m 0 = 1V and V(C s ) = V s 0 = 0V. Memristor parameters: R o f f = 16KΩ, R on = 100Ω, D = 10 -8 m, µ v =10 -14 m 2 /V.s and q 0 = 0.3 q d . (a) q(t) evolution, (b) V m (t) and V s (t) evolution.

Figure 5 . 12 :

 512 Figure 5.12: Comparison -Memristor coupling mode with linear resistors in the cell unit: V m (t) and V s (t) versus time for the three approaches. R m= R s = 100KΩ, C m = C s = 1µF, V(C m ) = V m 0 = 1V and V(C s ) = V s 0 = 0V. Memristor parameters: R o f f = 16KΩ, R on = 100Ω, D = 10 -8 m, µ v = 10 -14 m 2 /V.s, R init = 11KΩ and q 0 = 0.3 q d .

Figure 5 .

 5 12 shows the result comparison, showing strong agreement in all the obtained results. 5.5.3.1/ EFFECT OF INITIAL CHARGE q 0 ON SYSTEM DYNAMICS

5. 5 .Figure 5 . 13 :

 5513 Figure5.13: Evolution of V m (t) and V s (t) showing the effect of initial memristance given by different q 0 instantiations i.e q 0 = 0.1q d , q 0 = 0.3q d and q 0 = 0.9q d resectively.At t = 0, V m (t = 0) = V m 0 = 1V, V s (t = 0) = V s 0 = 0V, meanwhile R m = R s = 100KΩ, C m = C s = 1µF, R o f f = 16KΩ, R on = 100Ωand memristor technology parameters as suggested in[START_REF] Strukov | The missing memristor found[END_REF].

Figure 5 .

 5 Figure5.15: Variation of V m 0 -V s 0 for a fixed (q 0 ). Expectantly, q(t) slightly increases with increases in (V m 0 -V s 0 ). The simulation time is determined by q(t) and V m 0 -V s 0 . Similarly, V m (t) and V s (t) fit the output data as shown in the plot window of each case.

Figure 5 . 16 :

 516 Figure 5.16: Illustration of some roots for P 4 (X) according to a value of h. (a) No real root, (b) double real root, the cubic functions are respectively for X 3 -3 2 X + γ 1 and X 3 -3 2 X + γ 2 , (c) 2 distinct real roots and (d) 4 real roots.

( 5 .

 5 [START_REF] Kim | Memristor bridge synapses[END_REF] until τ 1 = 30.43ms, then by (5.92) until τ 2 = 94.30ms corresponding to X(τ) = 1 in (5.92), then by (5.94) until the equilibrium state X(τ) = 1.022, Y = 0 .

Figure 5

 5 Figure5.17: Phase portraits for Y 0 > 0, describing the system dynamics from left to right, toward the equilibrium points with Y = 0. Each trajectory corresponds to a specific initial condition of the system. The trajectory in black is for (X 0 ≤ X < 0), the ones in orange, green and pink are for X 0 < 0 and X(t → ∞) < 1 and the one in blue is for X 0 < 0 and X(t → ∞) > 1 .

Figure 5 .

 5 Figure 5.18:Phase portraits for Y 0 < 0 describing the system dynamics from right to left, toward equilibrium states with Y = 0. The trajectories in blue and pink are for (1 < X ≤ X 0 ), the one in green is for X 0 > 1 and 0 < X(t → ∞) < 1 , in orange is for (0 < X ≤ X 0 < 1) and in black is for X 0 < 1 and X(t → ∞) < 0 .

  Figures 5.17and 5.18.

.Figure 5 . 19 :

 519 Figure 5.19: Time evolution of V m (t) and V s (t) according to: (a) Analytical description, (b) SPICE circuit simulation, (c) Numerical solution with MatLab and (d) Comparison of the three methods.Here V m 0 = 17V, V s 0 = -15V, q 0 = -50µC, which corresponds to case A3 (blue line in Fig.5.17) and h = 6.682.

Figure 5 .

 5 20a and 5.20b show a virgin memristor and the equivalent symbol respectively. Figures 5.20c and 5.20d show two identical memristors M 1 and M 2 connected in parallel across a voltage source V with terminals for a direct polarization for M 1 but reversed in the case of M 2 , both memristors having the same initial condition. The schematic is shown in a way to illustrate the trending of the mobile charge carriers under the influence of external bias. The currents through M 1 and M 2 are measured as I 1 and I 2 respectively, and

M1Figure 5 . 20 :

 520 Figure 5.20: Concentration of the dopants in relation to charge carrier mobility with respect to the polarity of input signal. (a) Virgin memristor, (b) symbolic representation, (c) application of positive bias causes the expansion of the doped region through the bulk of the device, (d) application of negative bias causes the contraction of the doped region [107]. Respectively, the overall process affects the device conducting channel widths w p and w n , and it gives the trend on how w approaches 0 or D, (e) the currents I 1 and I 2 through M 1 and M 2 respectively, and the corresponding I-V curves for V(t) = V o sin(ωt), V o = 1V, R o f f = 16KΩ and R on = 100Ω. Reversing the polarity of the memristor also affects the absolute value of the following current. The I-V curve of the current I 2 (t) falls in the second and fourth quadrants due to the reversed polarity of the input voltage V(t).

Figure 5 .

 5 Figure 5.20e shows the comparison of the current flowing through M 1 and M 2 with respect to the applied voltage source. The result is obtained using a sine input voltage source and a window function by( [107]). The current I 1 (t) and I 2 (t) have different absolute values. The current-voltage graph of I 2 (t) falls in the second and fourth quadrants due to the reversed terminals of V(t).

Figure 5 . 21 :

 521 Figure 5.21: Memristor asymmetry from circuit point of view: two charged RC cells coupled together by a memristor.The circuit is invoked at time t = 0 by switchs S 1 and S 2 . The cells are at different potentials so that the current i(t) will flow through the memristor. The test is done forV 1 > V 2 and then V 1 < V 2 . For example V 1 = 1V, V 2 = 0V and then V 1 = 0V, V 2 = 1V. The voltage across the memristor is V m (t). (a) Cond-1 and V m (t) = V 1 (t) -V 2 (t). (b) Cond-2 and V m (t) = V 2 (t) -V 1 (t).

Figure 5 . 26 :

 526 Figure 5.26: Cond-1: the flowing charge and the corresponding memristance evolution.V 1 0 = 2V, V 2 0 = 0V, R = 100KΩ, C = 1µC, R o f f = 16KΩ, R on = 100Ω and q d = 100µC.

Figure 5 . 27 :

 527 Figure 5.27: Phase portraits for cases A1 to B6, showing the charge evolution from left to right for Y 0 > 0 and from rightto left for Y 0 < 0 under different initial conditions. For X ≤ 0 and X ≥ 1 the memristance is constant, hence the curves happen to be parallel emphasizing a constant slope at the regions. The lack of symmetry is noticeable within the bulk of the device.

Figure 5 . 29 :Figure 5 . 30 :

 529530 Figure 5.29: Circuit response comparison of a memristor fuse with standalone memristors. (a) Circuit schematic with a sine input voltage source. M p is the memristor with positive polarity preference, M n with negative polarity preference and M f is the memristor fuse, (b) current-voltage characteristics for M p (red), M n (orange) and M f (black).

Figure 5 . 1 and x 2 .

 512 Figure 5.30 shows the schematic of a memristor fuse formed by anti-series connection of two memristors M 1 and M 2 with the instantaneous dopant width denoted by w 1 and w 2 respectively. During positive bias, w 1 expands meanwhile w 2 contracts and during negative bias, w 1 contracts while w 2 expands. As w 1 tends to D, w 2 tends to 0 and the converse gives the other way round. Moreover, w 1 and w 2 could be represented in normalized forms as x 1 and x 2 , where x 1 = w 1 D and x 2 = w 2 D . Then the drift speeds of the respective

. 112 )

 112 With x = x + x o and M = (R o f f -δR.x), then the only feasible solution of M 1 (t) is:

Figure 5 .Figure 5 . 31 :

 5531 Figure 5.31 shows the memristance transition of the memristors M 1 (t), M 2 (t) and the memristor-fuse M f (t) using the mismatch factor = 2 (i.e q d 2 = 2q d 1 ). The results show that the increase in one memristor corresponds to the decrease of the other one and vice versa, meanwhile the memristance of the memristor fuse transits uniformly.

Figure 5 . 32 :

 532 Figure 5.32: Analytical result of the memristor fuse using the new model. = 2, q d 1 = 100µC, q d 2 = 200µC, R o f f = 16KΩ and R on = 100Ω. (a) memristance of M 1 and M 2 , (b) memristance of the memristor fuse M f .

1

 1 the voltage across M 1 and V 2 across M 2 , the same current i(t) flowing through M 1 and M 2 , as shown in Fig.5.33.

Figure 5 . 33 :

 533 Figure 5.33: Exploring the responses of the two memristors in the memristor fuse.

Figure 5 . 34 :

 534 Figure 5.34: Memristance of M 1 and M 2 with respect to the flowing charge. It is clear that the increase in memristance of M 1 correspond to decrease in the one for M 2 and vice-versa.

Figure 5 .

 5 Figure 5.[START_REF] Biolek | Interpreting area of pinched memristor hysteresis loop[END_REF] shows the 2 RC cells network using memristor fuse in the coupling mode. In the following, we compare the responses of the memristor according to the circuit in Fig.5.21 and the ones for memristor fuse given by Fig.5.[START_REF] Biolek | Interpreting area of pinched memristor hysteresis loop[END_REF]. Then, we present the analytical solution of the network using memristor fuse.

Figure 5 . 35 :

 535 Figure 5.35: Memristor fuse in the coupling mode. (a) Cond-1(for V 1 > V 2 ) and (b) Cond-2 (for V 1 < V 2 ).

Figure 5 .

 5 Figure5.37 shows the phase portraits result of the analytical solution with memristor fuse in the coupling mode. In comparison to Fig.5.27, the result in Fig.5.37 showed a desirable symmetry which is very promising in our application owing to its bidirectional nature.

Figure 5 . 37 :

 537 Figure 5.37: Phase portraits of the analytical solution with memristor fuse in the coupling mode. The results showed a rather better symmetry than a standalone memristor.

6. 1 /Figure 6 . 1

 161 Figure 6.1 shows the two-dimensional cellular nonlinear network using memristor in the neighborhood connections. Each of the cell unit consists of one linear capacitor C and one nonlinear resistor R NL , with an adjacent coupling made of memristor M. Hence, it form M × N arrays of cells and the potential at each junction at row (m) and column (n) is respectively denoted by V m,n . Nonlinear resistance, such as Fitzhugh-Nagumo is used in modeling the R NL . For any junction (say

Figure 6 . 2 :

 62 Fig.6.2b) and these are the two possible equilibrium states. Therefore: 0, V a and V b are constant voltages corresponding to the characteristic roots of the cubic function f (V n ) at any nodal potential

Figure 6 . 3 :

 63 Figure 6.3: Two cells coupled by a memristor. The interaction of the cells via memristor is studied by launching information from one cell (known as the master) to other (known as the slave), whose elements are labeled with subscript letters m and s respectively.

y 2 -

 2 2(a + b)xy + abx + aby R o C , and f (yx) = (yx)(yxa)(yxb) R o C = -x 3 + y 3 + 3x 2 y -3xy 2 -(a + b)y 2 -(a + b)x 2 + 2(a + b)xy + abyabx R o C .

  .16c) Equation(6.16c) shows that the dynamics of the common mode is completely managed by the cubic nonlinear resistance, with parameter R o C, while the memristor only behaves by means of x 2

Figure 6 . 4 :

 64 Figure 6.4 shows the comparison result of equations (6.16c) and (6.17) for both the two possible stability states. The result is obtained forC = 1µF, R o = 10KΩ, T 0 = 5ms, V m 0 = 1.5V, V s 0 = 0V and V b = 1.2V. Meanwhile V a = 0.12V and 0.9V for Figures 6.4a and b respectively.

Figure 6 . 5 :dFigure 6 . 6 :

 6566 Figure 6.5:System evolution V m (t), V s (t), x and y. R o = 10KΩ, C = 1µF, V m 0 = 1.5V, V s 0 = 0V, V b = 1.2V and V a = 0.12V.

Figure 6 .

 6 Figure 6.7 shows the results for Υ = 0.25, 0.45, 0.49, 0.5, 0.51, 0.55 and 0.75 and it shows consistency except in the vicinity where:

Fig. 6 .

 6 [START_REF] Wuttig | Phase-change materials for rewriteable data storage[END_REF] for the difference V b -2V a as a deterministic factor of system stability. V s 0 = 0V and V a = ΥV b . (a1-a7) V b = 1V and V m 0 = 1V, (b1-b7) V b = 1.3V and V m 0 = 1V and (c1-c7) V b = 1V and V m 0 = 1.3V.
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Figures 6 . 7 - 6 .

 676 Figures 6.7-6.10 show that the differential mode (DM) and the common mode (CM) are clearly

Figure 6 . 7 :

 67 Figure 6.7: Results for R 0 = 10KΩ, q 0 = 0.3q d , V s = 0V and Υ = [0.25, 0.45, 0.49, 0.5, 0.51, 0.55 and 0.75] respectively indicated by the subscripts (1-7) down across the rows, showing the variations of V a for three different values of V m and V b . The values of the other parameters areR on = 100Ω, R o f f = 16KΩ and C m = C s = 1µF. (a1-a7) < First column > is for V m = V b = 1V and V a varies down across the column. (b1-b7) < Second column > is for V m < V b , here V m = 1V, V b = 1.3V. (c1-c7) < Third column > is for V m > V b i.e V m = 1.3V and V b = 1V. Down across the raw of each column, is the variation of V a with respect to V b according to Υ. With the exception of the fourth row (a4-c4) where V a =

V b 2 .Figure 6 . 8 :

 268 Figure 6.8: Results for R 0 = 2833Ω, Υ = [0.25, 0.45, 0.49, 0.5, 0.51, 0.55, 0.75] and V s= 0V. (a1-a7) V m 0 = V b = 1V. (b1-b7) V m 0 < V b i.e V m 0 = 1V and V b = 1.3V. (c1-c7) V m 0 > V b i.e V m 0 = 1.3V and V b = 1V. Down across the rows is the variation of V a within [0, V b ].Here, the values of parameters are similar to the ones in Fig.6.7 with only the change in the value of R 0 . It shows different evolution and stability for Figs.b2 and a4.

Figure 6

 6 Figure 6.8: Results for R 0 = 2833Ω, Υ = [0.25, 0.45, 0.49, 0.5, 0.51, 0.55, 0.75] and V s= 0V. (a1-a7) V m 0 = V b = 1V. (b1-b7) V m 0 < V b i.e V m 0 = 1V and V b = 1.3V. (c1-c7) V m 0 > V b i.e V m 0 = 1.3V and V b = 1V. Down across the rows is the variation of V a within [0, V b ].Here, the values of parameters are similar to the ones in Fig.6.7 with only the change in the value of R 0 . It shows different evolution and stability for Figs.b2 and a4.

Figure 6 . 10 :

 610 Figure 6.10: Results obtained for parameters values comparable to SPICE showing the variations of V a ∈ [0, V b ]. R 0 = 2833Ω, V s = 0V and Υ = [0.25, 0.45, 0.49, 0.5, 0.51, 0.55, 0.75, 0.9] shown respectively by figures a,b, c, d, e, f, g and h. These results are based on reasonable values of parameters that can easily be compared with the one in SPICE simulations. For example, V b = 1.5 is chosen to take into account threshold value of the diodes D 2 and D 3 (see Fig.6.11), meanwhile V m = 2V is to ensure enough bias of the equivalent R NL .
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 41611 Figure 6.11: Nonlinear resistance circuit and its equivalent SPICE component. Nonlinear resistance circuit schematic representation (left) and the created two-terminals SPICE component of the onlinear resistance (right).

Figure 6 . 12 :

 612 Figure 6.12: Complete circuit analysis of the SPICE R NL component. (a) Circuit schematic: V in = 2V, R 1 = 6.8KΩ, R 2 = 2KΩ, R 3 = 7.2KΩ, R 4 = 6.8KΩ, R 5 = 1KΩ and model of THAT4301 OpAmp. (b)Voltage V in and V out transient and it shows that V out > V in confirming equation (6.20). This difference in potential forces the current flowing through R 2 to flow negatively. (c) Current flowing through the R NL . First branch: I x is small and positive. Second branch: I y is negative. Third branch: I z is high and positive. (d) DC sweep of V in for Fig. c. See also Fig. 6.13.

Figure 6 .

 6 13a, b, c and d respectively, show the currents I x , I y , I z and I NL (sum of I x , I y and I z ).The three vertical dotted lines mark the activation trends of the three branches, respectively, initiated at a potential labeled as A, B and C. The potentials at these points refer to the threshold values required for the activation of the R NL branches. It shows that, while V in is small, current I x flows through the resistor R 1 in the first branch, but I y and I z are zero until a certain voltage has reached a necessary value required to activate the diode D 1 in the second branch and the diodes D 2 and D 3 in the third branch. Hence, the second and third branches are not active initially for a small voltage. The current in the second branch I y is completely negative. It departs from zero level at a voltage of about 0.6V corresponding to the threshold value of diode D 1 . Then, I y versus V in falls with a fairly constant negative slope until the combined threshold voltage of D 2 and D 3 is reached at point C of about 1.2V. Then, the third branch becomes activated, and more current I z flows because the voltage is high and R 5 is the least resistance. The corresponding nonlinear cubic function (Fig.6.13d) gives the combined response of the three branches as demarcated by three vertical dotted lines.

Figure 6 . 13 : 1 . 1 :

 61311 Figure 6.13: Branch currents responses visualization of the R NL circuit schematic. At point A, V A is the potential when the first branch becomes active. Then, V in increases and reaches the threshold value of diode D 1 at point B (i.e V B = 0.6V), thus activates the second branch. When V in becomes high enough, the combined threshold of diodes D 2 and D 3 is reached at point C (i.e V C = 1.2V) and the third branch is activated. These systematic approaches always manifest itself in the nonlinear resistance response.

2. Test 2 :

 2 This test considers medium values of the resistors R 1 -R 5 , similar to the ones used in the analysis of the circuit schematic in Fig.6.12a i.e [R 1 = 6.8KΩ, R 2 = 2KΩ, R 3 = 7.2KΩ, R 4 = 6.8KΩ and R 5 = 1KΩ]. Hence, with these values, Fig.6.14b shows the response of the R NL component and the roots are 0, V a = 0.79V and V b = 1.49V, as shown accordingly.

3. Test 3 :

 3 This test considers substantial values of the resistors R 1 -R 5 as: R 1 = 10KΩ, R 2 = 2.3KΩ, R 3 = 11.8KΩ, R 4 = 10KΩ and R 5 = 1KΩ. Figure 6.14c shows the response of R NL with V a = 0.62V and V b = 1.68V.

Figure 6 .

 6 Figs. 6.14a, b and c. Note that all the results are obtained for the same input and other parameters except for the resistors R 1 -R 5 .

Figure 6 . 14 :

 614 Figure 6.14: Verification of the created R NL SPICE component based on the values of the resistors R 1 -R 5 . V in = 1.8V. (a) Test-1: low resistances values, V a = 0.64V and V b = 1.28V (b) Test-2: medium resistances values, V a = 0.79V and V b = 1.49V. (c) Test-3: high resistances values, V a = 0.62V and V b = 1.68V. (d) Comparing figures a, b and c together.

4. Test 4 :

 4 This is to observe the effect of the applied voltage change on the characteristics roots V a and V b . For fixed values of the resistors R 1 -R 5 , the input voltage does not affect the value of V a and V b . However, it does affect the quantity of I NL flowing through R NL due

R 4 =

 4 .4.3/ SPICE SIMULATION OF THE 2-CELLS SYSTEM -WITH MEMRISTOR AND R NL Now that once the SPICE R NL component is at disposal, next is to perform the circuit simulation of Fig. 6.3. Similarly, the memristor SPICE component is created using the values of parameters as: R on = 100Ω, R o f f = 16KΩ, q 0 = 30µC, µ v = 10 -14 m 2 /V.s and D = 10nm. Figure 6.15 shows the complete circuit analysis of the two-cells system. V m and V s are the voltage across the master and slave cells respectively, defined by the initial condition of capacitors C m and C s , hence, the voltage across R NL m and R NL s respectively. The result is obtained for: R 1 = 10KΩ, R 2 = 2.3KΩ, R 3 = 11KΩ, 10KΩ, R 5 = 1.3KΩ, thus V a = 0.68V and V b = 1.77V. Hence the stability at V b is expected because V b -2V a > 0.
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 431 SPICE -CORRELATING V m , V s , V a AND V b It was shown earlier that the values of the resistances R 1 -R 5 play crucial role in the response of the cubic resistance. Therefore it is important to play around with the values of R 1 to R 5 for the purpose of obtaining different values of V a and V b and to observe in each case, the corresponding time evolution of the cells. Note that V a and V b are not directly implemented in the SPICE R NL component (see Appendix B.1).

(

  a) R NL comparison for SPICE and Numerical. (b) Vm(t) and Vs(t) evolution comparison for SPICE and Numerical.

Figure 6 . 18 : 5 ( b )

 6185b Figure 6.18: Result comparison for SPICE simulation and numerical solution. Similar behaviour is observed.

Figure 6 .

 6 Figure 6.19:Effect of initial memristance on the evolution of V m (t) and V s (t). q 0 1 = 25µC, q 0 2 = 50µC, q 0 3 = 75µC, R on = 100Ω, R o f f = 16KΩ, C = 1µF, R 0 = 10KΩ, V m 0 = 1.5V and V s 0 = 0V. In each case the initial memristance M(q 0 ) affects the system evolution toward the equilibrium state V b and 0 respectively.

5 ( b )

 5b Effect of q 0 in the case V b -2Va > 0. Va = 0.75V and V b = 1.8V. The system stabilizes at V b . Effect of q 0 in the case V b -2Va < 0, Va = 1V, V b = 1.8V. The system stabilizes at 0.

Figure 6 .

 6 Figure 6.20: Effect of initial memristance on the evolution ofV m (t) and V s (t). q 0 1 = 25µC, q 0 2 = 50µC, q 0 3 = 75µC, R on = 100Ω, R o f f = 16KΩ, C = 1µF, R 0 = 10KΩ, V m 0 = 1.5V and V s 0 = 0.5V.Using the same values of parameters except that V s 0 is nonzero. Similalrly, the effect of M(q 0 ) is highly observable.
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Table 2 .

 2 

	..	i(t)	V(t)	q(t)	φ(t)
	i(t)	...	dV(t) = Rdi(t) Resistor	i(t) = current & charge dq(t) dt	dφ(t) = Ldi(t) Inductor
	V(t)	dV(t) = Rdi(t) Resistor	...	dq(t) = CdV(t) Capacitor	dφ(t) dt voltage & flux V(t) =
	q(t)	i(t) = current & charge dq(t) dt	dq(t) = CdV(t) Capacitor	...	dφ(t) = Mdq(t) Memristor
	φ(t)	dφ(t) = Ldi(t) Inductor	V(t) = voltage & flux dφ(t) dt	dφ(t) = Mdq(t) Memristor	...

1: Summary: Circuit elements visualization in tabular form.

i(t) M v m (t) i(t) (a) Charge-controlled memristor v(t) M v(t) i m (t) (b) Flux-controlled memristor

  being the time domain integral of the input current i and v the output voltage of the 38CHAPTER 2. REVIEW ON CIRCUIT ELEMENTS AND MEMRISTOR INTERPRETATION

  2.20a3, compare Figs. 2.20a and b. One can see that the triad variables u, x and y in (2.26) become v, φ and i respectively.

	2.4.5.2/ FLUX-CONTROLLED MEMRISTOR (FCM)
	Memristor is flux-controlled if the input applied to the memristor is a voltage source (see
	Fig. (2.19b). The applied voltage v(t) causes current i m (t) to flow through the memristor
	M.

Table 3 . 1 :

 31 Comparison of the three nonlinear dopant drift models

	Window function g(x)	Proposed Strukov Joglekar Prodromakis
	Resolve boundary issues				
	Impose nonlinear drift				
	Linkage with linear drift				
	Control parameter				
	g max scalability				
	q R value	20mC	1.3mC	350µC	150µC
	3.4/ SPICE AND ANALOGUE MODELS OF MEMRISTOR
	The SPICE (Simulation Program with Integrated Circuit Emphasis) software is an elec-
	tronic circuit simulator allowing to realize the circuit functionality before its fabrication.
	It is basically a software used for simulating and testing design. Nowadays, there are
	many developed SPICE softwares, for example PSPICE, LTSPICE, HSPICE, NGSPICE,

MULTISIM, TINA and so on. SPICE allows to perform numerous circuit analysis such as transient, AC and DC analysis, parameter sweep, distortion analysis, temperature, noise etc,... under different scalings such as logarithmic, linear, octave etc. Furthermore, SPICE allows to create a schematic component from its equivalent analog circuit

  3.18). The constants k 1 and k 2 are obtained respectively, by equating equations (3.38) and (3.39) for t = t 1 , and then (3.39) and (3.40) for t = t 3 .

	From equations (3.38) and (3.39):

  Its response is compared with the ones obtained from the three other functions by Strukov, Joglekar and Prodromakis. From the circuit point of view, it was shown that the choice of window function is very important for memristor modeling, because each model responds differently due to different level of imposed nonlinearities.The model of TiO 2 memristor is used to create memristor component in SPICE for circuit simulation purposes. This approach is extended whereby analog components, such as operational amplifier, are used to mimic the behaviour of memristor in SPICE for simulation of memristor based applications. The passive model of the memristor is working under some restricted values of parameters. We proposed that these drawbacks can be avoided by using some devices, including current transformer, current mirror or Hall effect sensor. However, this part of the thesis is not yet achieved.

Furthermore, a new window function is presented, which is derived from the Hann window function.

  .3) 5.3.1/ VOLTAGE AND CURRENT EVOLUTION: V m (t), V s (t) AND i(t)

Table 5 . 2 :

 52 Modified memristor SPICE netlist file

Table 6 .1: Table of values of

 6 

Table 6 . 2 :
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Table 6 . 3 :

 63 Table of values for tests 1-3.

Cond-1 and Cond-2 respectively. The system evolves and eventually stabilizes when V 1 (t) = V 2 (t),

Scientific reports, 6:22970, 2016.

In Cond-1, the memristance decreases corresponding to the expansion of the doped region, meanwhile, for Cond-2, the memristance increases corresponding to the contraction of the doped region. In both Cond-1 and Cond-2, the memristance transition eventually flattens as the cells stabilize, i.e at a time when V 1 (t) = V 2 (t). The memristance transition depends on the initial conditions of the cells. For example, Fig. 5. [START_REF] Chua Leon | Everything you wish to know about memristors but are afraid to ask[END_REF] shows the case where the initial conditions of the cells are changed with two different initial charges as q 0 1 = 46µC and q 0 2 = 31µC. Secondly, Fig. 5. [START_REF] Prasad Adhikari | Three fingerprints of memristor[END_REF] shows the effect of changing the initial voltage. The initial charge is maintained at q 0 = 33.8µC while the initial voltage is varied in two steps: V 0 a = 1V and then V 0 b = 1.5V. Hence, given that V 0 b > V 0 a , the memristance transits faster especially for Cond-1.

q02 of M3 is altered slightly for better view M:q0 1 c1 M:q0 1 c2 M:q0 2 c1 M:q0 2 c2

M(Ω)

Cond-1=solid & Cond-2=dash 

.23: System evolution using two different initial charges q 0 1 = 46µC and q 0 2 = 31µC with V 1 0 = 1V, V 2 0 = 0V for Cond-1 (solid curves) and V 1 0 = 0V, V 2 0 = 1V for Cond-2 (dash curves). (a) Memristance transition showing the variation effect of the initial charge, (b) the corresponding evolution of V 1 (t) and V 2 (t).

Furthermore, Figs. 5.22b and 5.24b show that the orientation of the memristor according to Cond-1 or Cond-2 affects the time taken for the system to stabilize. Let V m (t) represents the voltage across memristor, hence V m (t) = V 1 (t) -V 2 (t) for Cond-1 and V m (t) = V 2 (t) -V 1 (t) for Cond-2 as shown in Fig. 5.21a and 5.21b respectively. No current flows through the memristor when

V 1 (t) = V 2 (t) because the voltage across the memrisor is also zero even though V 1 (t) = V 2 (t) 0, see Fig. 5. [START_REF] Biolek | Some fingerprints of ideal memristors[END_REF]. The combined evolution of V 1 (t) and V 2 (t) eventually stabilizes to zero due to the resistive nature of the cells. Figure 5.26 compares the flowing charge through the memristor and the corresponding memristance evolution.

(a) (b) 5V are the initial conditions of the cells and the initial charge q 0 = 33.8µC. For the black curve, V 1 0 = V 0a and V 2 0 = 0V (solid) (and then V 1 0 = 0V and V 2o = V 0a (dash)), meanwhile for the magenta one, The current flowing through the memristor, evolution of V 1 (t) and V 2 (t) for cells 1 and 2 respectively, and the voltage across the memristor V m (t). No current flows through the memristor when V 1 (t) = V 2 (t) and the voltage across the memristor is also zero. V 1 (t) and V 2 (t) eventually decay to zero due to the resistive nature of the cells.

Furthermore, the asymmetry effect can be observed using the analytical solution given by section 5.6, and is shown in Fig. 5.27. Note that the difference

if the system is described by Cond-2. Therefore, depending on X 0 , Y evolves positively according to Cond-1 and negatively according to Cond-2. Recall that the value of X 0 is not known, however its possible occurrence is taken into consideration by Fig. 5.27.

Each trajectory begins with the corresponding value of Y 0 . Therefore, depending on X 0 , different evolution patterns are observed in the phase portraits. The phase portraits show the families of curves for different initial conditions. The results are obtained for R on = 100Ω and R o f f = 16KΩ. Note that the memristance is unchanged for X ≤ 0 and X ≥ 1 and is respectively given by R o f f and R on as depicted by the parallel evolution of the curves outside the interval [0, 1]. Therefore, different possibilities are considered, that dopant are expressed as:

)

where q d 1 and q d 2 are the values of q d for the memristors M 1 and M 2 respectively. The same current flows through a series connection of two memristors, hence i(t) is the same for both M 1 and M 2 . From equation (5.104) and considering the expression of the memristance given by eq. ( 5.24) rather than the one given in eq. ( 5.25) because it is simpler and already investigated in [START_REF] Fouda | Generalized analysis of symmetric and asymmetric memristive two-gate relaxation oscillators[END_REF], the rates of change of the instantaneous memristance of M 1 and M 2 are, respectively, obtained to be:

Although the current i(t) flowing through them is the same, however the rate of change of memristance for one differs from the other. Therefore, from (5.105a) and (5.105b), the rate of change of M 1 with respect to that of M 2 is given by:

where = q d 2 q d 1 = 1 2 is called the mismatch factor [START_REF] Fouda | Generalized analysis of symmetric and asymmetric memristive two-gate relaxation oscillators[END_REF] describing the increase of M 1 with respect to the decrease of M 2 and vice versa. Meanwhile 1 = q d q d 1 and 2 = q d q d 2 , are parameters characterizing the mismatch factor with respect to the universal value of q d . Note that q d 1 q d 2 , each possibly able to depend on the dimension (D), the mobility of charge carriers and the value of the lowest resistance (R on ) for M 1 and M 2 respectively.

Thus the mismatch factor is determined by the mobilities and velocities of charge carriers in both memristors. Given the initial memristance of M 1 and M 2 as M 1 0 and M 2 0 respectively, then integrating (5.106) gives:

where δM 0 = M 1 0 + M 2 0 . As the net memristance is additive in a series connection of memristors, the instantaneous memristance of the memristor fuse M f (t) is given by: Figure 5.36a shows the evolution of V 1 (t) and V 2 (t) for M c1 , M c2 , M f1 and M f2 . The results of M c1 and M c2 show a shift difference during the transient state while there is no such shift between the curves of M f1 and M f2 , showing that memristor fuse behaves equally in both Cond-1 and Cond-2. Figure 5.36b shows the currents through the memristor as i c1 and i c2 according to Cond-1 and Cond-2 respectively, and then through memristor fuse as i f1 and i f2 according to Cond-1 and Cond-2 respectively. Furthermore, the results show that no current is flowing through the memristor V m,n under consideration, such that:

Hence, with V a being unstable potential state, it implies 0 and V b are the only two stable potential energy states. It can be seen from Fig. 6.2b, for:

Depending on the threshold value of the source signal, each cell stabilizes to one of the two stable roots (i.e 0 or V b ) of its R NL and the stability is determined by the unstable root V a . Hence, to explore this phenomenon qualitatively and to observe the interaction of memristor in the system, we consider the subset of the network made up of two cells coupled by a memristor (specifically a charge-controlled memristor). An information is launched from one cell (known as the master)

to the other cell (known as the slave) via a memristor as demonstrated in Fig. 6.3.

The cells are identical such that C = C m = C s as expected in a 2D-network of pixel cells, hence the system evolution is determined by their respective node voltages. The underlined task involves to determine:

i. the voltage (V m (t) and V s (t)) evolution,

ii. the charge (q(t)) evolutionmemristor coupling mode by our analytical cubic model M(q), with respect to the eight system's control parameters:

and M(q) is in first step given by:

and in a second step, it is given by:

Where:

, parameter of the memristor, giving its resistance when the undoped region occupies all its width w,

, where R on corresponds to the memristor resistance when the doped region occupies all the width D, and q d is the charge parameter linked to the vacancy mobility in the memristor,

. Note that in both equations (6.9) and (6.10):

for the sake of calculations simplicity, then equations (6.4)- (6.6) are, respectively, rewritten as follows:

)

)

This system of 3 equations is rather to be expressed:

)

)

The system (q, V m , V s ) in equations (6.14a)-(6.14c) deserves to be studied in a 6D-phase portrait Poincar é analysis. However, we would like to get, rather and mainly, the behaviour of q(t) versus time t. In fact, it is to show that the initial value q 0 is a fundamental parameter able to dramatically change the time evolution of the system (q, V m , V s ).

Let us define:

, respectively differential and common modes of (mas- 

The initial conditions of the cells are: V m 0 = 2V and V s 0 = 0V. At about 20ms, V m (t) = V s (t) = constant and then settled at V b shortly (about 25ms). At this point the current in each branch is zero, thus the network is completely stabilized.

(i.e R 1 -R 5 ). Firstly, verification test is performed to check whether the SPICE simulation results would be in agreement with the previous defined convention, which says: for V b -2V a > 0, the system stabilizes at V b , while for V b -2V a < 0, the system stabilizes at 0. The test is carried out by considering some sets of values for R 1 -R 5 , and in each case the values of V a and V b are noted.

To study the system behaviour, we consider four different sets of principles which yield four different values of V a and V b . These principles are: low resistances values of R 1 -R 5 , medium resistances values of R 1 -R 5 , high resistances values of R 1 -R 5 and arbitrary choice of R 1 -R 5 . In each case, the result is compared with the ones obtained by numerical simulation of equations (6.11)-(6.13).

i).

Low resistances values of R 1 -R 5 : Small resistance values are used for each of the five resistors. For example:

Similarly, the initial conditions of the master and slave cells are V m 0 = 2V and V s 0 = 0V respectively, and Fig. 6.16a shows the result, ii). Medium resistance values of R 1 -R 5 : The considered values of the resistors are: R 1 = 6.8KΩ, iii). High resistance values of R 1 -R 5 : Substantial values of resistance are used, for example:

5KΩ, and it gives V a = 0.691V and V b = 1.779V. Thus V b -2V a > 0. Figure 6.16c shows the result with the system stabilized at Vb, expectedly. iv). Arbitrary resistance values of R 1 -R 5 : The values of the resistors are chosen randomly, just as it will behave in the case of variable resistors.

The system stabilizes at 0 as shown in Fig. 6.16d. Notice here that R 4 > R 3 , hence the need for R 4 and R 3 to be variable so that the steady state is determined by the external stimulus. For R 4 and R 3 being variable, the system stabilizes at V b for R 4 < R 3 and at 0 for R 4 > R 3 respectively. is determined by the potential V out at the output of the OpAmp terminal:

Thus, for R 3 > R 4 , the negative current is high and embeds V a far away from V b . On the contrary, for R 3 < R 4 , the negative current is low and V a becomes closer to V b . Figure 6.17 Thus, for a fixed value of R 2 , the results show that:

• for R 3 > R 4 , the system stabilizes at V b .

• for R 3 < R 4 , the system stabilizes at 0.

• for R 3 = R 4 the system steady state is determined by R 2 value. Figure 6.17c is for

10KΩ with R 2 = 2KΩ. Then, increasing the value of R 2 (e.g 3KΩ), the system steady state becomes 0, but decreasing the value of R 2 (e.g 1.5KΩ), the system steady state remains at V b . Similar response is observed in Fig. 6.17d (i.e R 3 = 9KΩ). In fact, when the value of R 3 is closed to R 4 's one (i.e R 3 ≈ R 4 ), the steady state of the system depends strongly on R 2 value, because the steady state can change for any small change in the value of R 2 .

Furthermore, even if R 3 R 4 (i.e V b as the likely steady state) or R 3 R 4 (i.e 0 as the likely

6.5/ DIFFUSION EFFECTS IN A NONLINEAR ELECTRICAL LATTICE USING MEMRISTIVE COUPLING

This section presents a one dimensional nonlinear diffusive electrical lattice consisting of N identical cells, each made of one linear capacitor C in parallel with a nonlinear resistance R NL and a series memristive coupling as shown in Fig. 6.21. 

6.6/ DESCRIPTION

From Fig. 6.21, the application of Kirchhoff laws gives the nonlinear discrete equation:

where n is the index signifying a particular cell under consideration, hence equation (6.23) is valid for 2 ≤ n ≤ N -1 with N the total number of cells, because for n = 1 and n = N, the grid points corresponding to V 0 and V N+1 are outside of the system domain. Furthermore, V n-1 , V n and V n+1

are respectively the voltage at cell n-1, n and n+1, meanwhile f (V n ) = I NL n is the nonlinear current function through the R NL of cell n, thus given by:

Here R 0 is the linear approximation of R NL , V a and V b being the constant voltages defining the characteristic roots of the cubic function f (V n ), and we choose now the conditions 2V a ≤ V b .

Hence, (6.23) gives the second order finite difference of a diffusion equation introduced by Nagumo et al. [START_REF] Nagumo | An active pulse transmission line simulating nerve axon[END_REF], introduced for simulating the transmission of information in nerve axon, given by:

where g(V) is a cubic function analogous to f (V n ) in equation (6.23).

• The common mode (CM) between the voltage V n and its neighbouring cells V n-1 and V n+1 is almost exclusively led by the dynamics of nonlinear cell (R NL , C):

that is:

RoC . (6.37) This result shows that, according to the initial value of V n,CM (0) with respect to V a and V b , the time evolution of the common mode of the voltages in the vicinity of cell n will evolve

• The differential mode (DM) between the voltage V n-1 (or V n+1 ) and V n will be in fact led by a competition between:

1) the influence of (R NL , C) cell, acting as a binarization process toward 0 or V b , according respectively to the case V n,DM (0

2) the influence of the memristor with its history, coupling the neighbouring sites.

In image processing applications, this network is specially interesting. By weighing the role of both processes, we can give the priority to a process of pure binarization on one hand, if the memristor has large impedance with respect to R o , or to a process of edge detection, if the memristor has small impedance with respect to R o . In addition, its history will play a stabilizing role in preventing any singularity in image succession.

6.7/ CONCLUSION

The schematic of the memristor based 2D cellular nonlinear network is presented, with the cells constituting cubic resistance such as Fitzhugh-Nagumo. Using the system of two cells coupled by a memristor, the response of the network is analyzed according to analytical solution, numerical solution and SPICE simulation with the aid of the created SPICE R NL component. The analytical solution is not finished yet, however the system evolution agrees with ones obtained by numerical solution and SPICE simulation. We observed the dynamic and the steady state response of the cells along with the roles of memristor and the cubic resistance.

Unlike the RC cells where the voltage evolution of the cells always tends to 0, here the cells always stabilize at one of the two stable states, namely, 0 and V b . The effect of parameter variation (specifically V a and q 0 ) on the dynamic and steady state response of the system, shows that the network can implement image processing techniques such as mathematical morphology (dilation and erosion) for signal filtering and edge detection. Furthermore, the introduced 1D diffusive network is promising for binarization circuit and noise removal.

IV GENERAL CONCLUSION

LIST OF FIGURES V a = V b 2 and its vicinity, the results show that for V a < V b 2 the system stabilizes at V b and for V a > V b

2 the system stabilizes at zero 0. However, for V a = V b 2 the values of parameters i.e V m , V s , R 0 , q 0 , V a , V b and the memristive effect (R o f f and R on ) decides the stability state and it is always 0 or V b . The effect of changing parameters values on the system stability state can be clearly seen across the columns (a4-c4) where V a = V b 2 . Note that figure (a4) can stabilize at 0 or V b simply by changing the values of q 0 , V m or R 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 6.9 Effect of initial memristance given by the initial charge q 0 on the system evolution and the steady state. Four different initial charges are considered as: q 0 1 = 20µC, q 0 2 = 40µC, q 0 3 = 60µC and q 0 4 = 80µC, as indicated respectively by the subscripts numbers 1-4 in figures a, b and c. In each case, V a = 0.7V, V b = 1.3V, V m 0 = 1.5V and V s 0 = 0V. (A) R 0 = 1023Ω, (B) R 0 = 2833Ω and (C) R 0 = 10KΩ. It shows that values of q 0 and R 0 have an effect on the evolution and steady state of the system.