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General introduction

The thesis is performed in cooperation with STMicroelectronics Crolles, France
through CIFRE cooperation programs and deals with industrial qualification man-
agement problems, which are related to process flexibility problems, in the semicon-
ductor manufacturing industry. This thesis follows two previous thesis (Johnzén,
2009; Rowshannahad, 2015).

For semiconductor manufacturing, a qualification is an eligibility or certification
for a machine to process one operation of a specific product. A machine cannot pro-
cess a product without the associated qualification. Qualifications are mandatory to
ensure high yield of production lines and products of quality. Qualifications are used
to improve the flexibility (ability to respond effectively to changing circumstances)
and to configure production capacities of work centers in semiconductor factories
as they allow the production volume associated to operations to be processed on
different machines. Qualifications are dynamic, i.e. time-varying, and new qualifi-
cations are frequently planned and developed because of demand changes on the
semiconductor market. The larger the number of qualifications in a factory, the bet-
ter the manufacturing performances, e.g. in terms of workload balance, throughput,
fabrication time and demand satisfaction. However, developing new qualifications
takes times, up to several months, and can be expensive. New qualifications must
be anticipated. In addition, qualifications can be lost over time (disqualifications)
because of fabrication process problems, then, a machine can lose its qualification
for a product part. Then, re-qualifications must be performed to change fabrication
process parameters in order to ensure that the machine is again able to process the
product part while meeting yield and quality requirements. Re-qualifications can
also be expensive.

Because qualifications and re-qualifications are expensive, relevant qualification
and re-qualification decisions must be made to optimize the workload balance,
throughput, fabrication time and demand satisfaction at the lowest cost. More
precisely, we answer the following questions: Given a horizon, a demand fore-
cast by product part, process times, qualification delays and costs and production
capacities of machines, how to determine most relevant new qualifications? From
disqualifications, how to determine most relevant re-qualifications to improve op-
erational efficiency? Or equivalently, what are the most relevant qualifications and
re-qualifications?

Answering these questions is complex. This is because evaluating the quality of
qualifications and re-qualifications is complex as machines can share common qual-
ifications and have finite production capacities. Typically, it is difficult to evaluate
the utilization rate of a machine after multiple qualification decisions as the work-
load of a machine can be shared with similarly qualified machines. Evaluating the
utilization rates of machines is primordial as they are intrinsically to throughput,
fabrication times and demand satisfaction.

Because qualification management is complex, we answer these questions from
two standpoints by proposing relevant new optimization models and solution ap-
proaches. The first standpoint is an operational standpoint and seeks to answer
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the question for re-qualifications. The second standpoint is a tactical standpoint
and seeks to answer the question for qualifications. Although both standpoints are
closely related, the question is not exactly answered the same way because of the
nature of possible qualifications given a horizon.

First, in Chapter 1, an overview of the industrial and scientific context is pro-
vided. Following the description of the semiconductor industry and the semicon-
ductor manufacturing process, qualification management, its criticality for manu-
facturing performances and complexity are detailed. A literature review of process
flexibility and qualification management is then provided. Finally, contributions on
operational and tactical qualification management are highlighted.

Our contributions on operational qualification management can be found in
Chapters 2, 3, 4, 5, and 7. The question ”How to determine the most relevant re-
qualifications to improve operational efficiency?” is answered from different stand-
points. In Chapter 2, re-qualifications are determined to maximize the utilization
balance and minimize the total utilization rate of the machines. The problem is
equivalent to maximize flexibility measures proposed in the literature. Six solution
approaches are compared on industrial data from STMicroelectronics. Solution ap-
proaches guided by the dual variables of qualification constraints are shown to out-
perform other solution approaches when a small computational budget (a few min-
utes) is given. In Chapter 3, re-qualifications are determined in terms of throughput.
Due to some characteristics of work centers in semiconductor production facilities,
such as production variability (no constant pattern over time of product quantities
and production capacities) and highly automated dispatching decisions at the shop
floor, maximizing the utilization balance of the machines might not be always equiv-
alent to maximizing the throughput, in particular for short term horizons (e.g. a few
hours). To better capture these characteristics, bilevel optimization models are pro-
posed. Bilevel optimization models are shown to be better suited to maximize the
throughput on short term horizons. To further better capture production variabil-
ity, dynamic bilevel optimization models are motivated and proposed in Chapter
4. They are compared to static bilevel optimization models and shown to better
capture dynamic product quantities and production capacities on some industrial
instances. In Chapter 5, the impact of re-qualifications on cycle times is evaluated.
Simple closed-form solutions are shown to exist to describe the mean cycle times for
short term horizons. Closed-form solutions are validated by using industrial histori-
cal data. Then, we show on industrial data that re-qualifications that maximize the
throughput are not necessarily the same that minimize the mean cycle time, mostly
due to production variability. Pratical uses of optimization models are discussed at
the end of each chapter. Finally, in Chapter 7, we show how optimization mod-
els and solution approaches were embedded in a fully functional decision support
system used at STMicroelectronics at Crolles, France.

Our contributions on tactical qualification management can be found in Chapter
6. In Chapter 6, the question “How to determine the most relevant new qualifi-
cations to satisfy the demand and cover the demand uncertainty while minimizing
qualification costs?” is answered with new optimization models. First, a determin-
istic modeling is proposed to satisfy the nominal demand. Then, because products
are most often not equivalent in terms of workload for work centers due to different
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processing times and operations, a modeling of the demand, based on robust op-
timization and product cannibalization, and an optimization model are proposed.
Finally, a binary search is proposed to characterize the robustness of a work center
against demand uncertainty. We show that (1) A limited number of well-chosen
qualifications are required to achieve the same robustness than the one obtained by
performing all qualifications, and (2) Implementing the qualifications determined
by only considering the nominal demand can lead to capacity constraint violations.
We also discuss practical uses of proposed optimization models.
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Chapter 1

Industrial and scientific contexts

This chapter provides an overview of the industrial and scientific contexts re-
lated to semiconductor manufacturing and qualification management. In particular,
the semiconductor manufacturing context is presented, and why qualification man-
agement is a critical component of manufacturing operations in the semiconductor
industry is discussed. In Section 1.1, the semiconductor manufacturing industry
is described from a general standpoint, followed in Section 1.2, by the manufac-
turing process of products in front end factories. In Section 1.3, challenges and
problems related to qualification management are presented. In Section 1.4, an
up-to-date literature review on qualification management in the semiconductor in-
dustry is proposed. Finally, in Section 1.5, our industrial and scientific contributions
are outlined.

1.1 Semiconductor industry . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Front end fabrication process . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Qualification management in manufacturing operations of wafer fabs 15
1.4 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5 Industrial and scientific contributions . . . . . . . . . . . . . . . . . . 25



CHAPTER 1. INDUSTRIAL AND SCIENTIFIC CONTEXTS

1.1 Semiconductor industry

The semiconductor industry deals with the design and fabrication of Integrated
Circuits (ICs). The Moore’s “law” initially drove the semiconductor industry. Gordon
Moore stated in 1965 that the transistor count in an IC would double every 2 years
due to shrinking transistor dimensions and other improvements. Moore’s law was
then a goal for the semiconductor industry. Today, the semiconductor industry is
diversified as shrinking transistor dimensions is expensive and is not sustainable
for most semiconductor companies (McKinsey & Company, 2011), in particular for
medium sized to small sized semiconductor companies. Consequently, for a large
number of semiconductor companies, competition is no longer necessarily about
minimizing transistor dimensions. Competition is about production costs, selling
prices, energy efficiency, customized products and most of all differentiation. The
semiconductor industry market represented in 2016 a market of more than $368
billion, and more than $489 billion in 2018 (Deloitte, 2019). The semiconductor
market is also characterized by a cyclical market, i.e. the market size decreases for
a few years before growing up again (McKinsey & Company, 2011).

The semiconductor industry is composed of three different types of companies
or business model: IC manufacturer, fabless companies and pure play foundry com-
panies. Fabless companies design and sell their ICs but outsource their production
to pure play foundries. IC manufacturers both produce and design their ICs, and
can further be distinguished into two groups: Low Mix (LM) and High Mix (HM)
manufacturers. LM manufacturers propose a restricted set of products (different
types of ICs) to potential clients. They are able to produce each product in large
quantities. HM manufacturers propose a large set of products but each product is
made in smaller quantities compared to their LM counterparts because more prod-
ucts share the same production capacity. STMicroelectronics is a HM manufacturer,
where each factory can produce a portfolio of more than several thousand differ-
ent products. About several hundred products are being made at any time in each
factory. HM manufacturers are characterized by time-varying demand of products,
short life times of products, a wide range of products with customization. Figure 1.1
illustrates the historical demand for a given product at STMicroelectronics. The de-
mand was highly variable because a large ramp-up for the product was expected
only within a few months. The product was only made for a few months, and then
the demand disappeared.
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Figure 1.1: An illustration of the time-varying demand for a product.

The manufacturing process of ICs is performed from raw silicon wafers (see Fig-
ure 1.2) and is divided into two main fabrication steps: Front end fabrication and
back end fabrication. Front end fabrication is associated to wafer fabrication, i.e.
the fabrication of ICs on wafers, and wafer probing, i.e. electrical and functional
testing of fabricated ICs to identify potential undetected defective ICs. Back end
fabrication is associated to assembly, packaging and final testing of ICs before send-
ing them to final customers. In the remainder of this section, we focus on front end
fabrication as the thesis was performed in a front end wafer fab. Wafer fabs are
often distinguished by the wafer size that they can produce. In general, wafer sizes
used in the semiconductor industry varies between 100 mm and 300 mm. A wafer
contains hundreds to thousands of ICs depending on their respective size.

Figure 1.2: Manufacturing process of ICs (Schömig and Fowler, 2000).

Common applications for ICs are: Telecommunications, Internet Of Things
(IOT), robotics, home automation, wireless payment, radio frequency identifica-
tion, smart phones, computers, automotive industry, spatial industry, digital image
processing, digital voice recorder, etc. ICs can even be found in shoes and clothing.
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ICs are very often made of millions (billions for the largest ICs) of transistors and
other electric components such as diodes, capacitors.

Manufacturing ICs is actually expensive. A wafer fab typically costs several bil-
lion dollars. More than 80% of the total cost corresponds to machine purchasing
cost (Quirk and Serda, 2001; Delp et al., 2006; Mönch et al., 2012; McKinsey &
Company, 2011). A single machine usually costs more than a few millions dollars,
and wafer fabs typically consist of several hundreds of machines. For instance, most
recent lithography machines (see Figure 1.3) can cost up to $100 million. Devel-
oping new technologies is also extremely expensive. McKinsey & Company (2011)
reports that developing a 45 nm logic process technology costs $600 million. Op-
erating costs are also expensive, notably because (i) machine parts are frequently
changed during maintenance operations, (ii) machines can be energy intensive and
(iii) because operating a wafer fab implies controlling the air quality, reducing pres-
sure with respect to outside pressure, controlling hydrometry, controlling temper-
ature to avoid introducing, generating or keeping particles, which may ultimately
lead to contamination and thus create defective ICs. Reducing production costs is
therefore particularly critical due to high capital cost of wafer fabs, and can be done
in three main ways (Hahn, 2001):

1. Improving the yield, i.e. the ratio between the number of working ICs at the
end of the manufacturing process and the total number of ICs produced,

2. Improving the machine utilization,

3. Increasing the wafer size.

Among these three options, improving the yield is not expected to provide major
cost reductions as the yield is already large, above 90 to 95% for all mature prod-
ucts. Using a wafer size of 450mm is prohibitive as machines for 450mm wafers
are not existing today. The development of 450mm technologies has been aban-
doned due to their prohibitive costs. Improving machine utilization is therefore the
major source for reducing production costs in existing wafer fabs with fixed wafer
sizes. For a given product flow in a wafer fab, improving machine utilization should
be understood as reducing idle times of machines, and therefore as increasing the
throughput and reducing the fabrication time of ICs. Improving machine utilization
without improving the overall throughput or reducing the fabrication time does not
reduce production costs (Atherton and Atherton, 1995). Increasing the throughput
leads to more sales, thus larger revenues. Reducing fabrication times is associated
to shorter development cycle, smaller inventory holding costs and greater market
responsiveness (Atherton and Atherton, 1995). Reducing fabrication times is also
linked to yield reduction. Reducing fabrication times reduces the number of out of
specification wafers as wafer probing is performed sooner and reduces the deposit
of undesired particles on wafers (Atherton and Atherton, 1995; Leachman and Ding,
2010). Operational efficiency is expected to be a major source of production cost
reduction. It is important to mention that the throughput and the cycle time are two
intrinsically related metrics. For a given installed capacity in a factory, increasing

Page 8 EMSE-CMP Antoine Perraudat



1.2. FRONT END FABRICATION PROCESS

the throughput, or similarly the number of started products, also increases fabrica-
tion times, which should be minimized in an ideal situation (Hopp and Spearman,
2011).

The work of this thesis is closely related to improving the utilization of machines
with relevant qualifications. A qualification is an eligibility or certification for a
machine to process one operation of a specific product. A machine cannot pro-
cess a product without the associated qualification. Qualifications are performed to
ensure high yield and products of quality. Qualifications are used to improve the
flexibility (ability to respond effectively to changing circumstances) and to config-
ure production capacities of work centers in semiconductor factories. Therefore,
they are critical parameters that can be used to better use available machine capac-
ities, reduce idle times of machines, thus reducing fabrication times, improving the
throughput and better satisfying the customer demands.

Figure 1.3: An illustration of a lithography machine (ASML, 2011).

1.2 Front end fabrication process

1.2.1 Description of front end fabrication

Front end fabrication arguably includes the most complex processes in semicon-
ductor manufacturing (Mason et al., 2002; Ovacik and Uzsoy, 2012; Mönch et al.,
2012). An entity is described as complex if it consists of many different and con-
nected parts.

In front end wafer fabs, wafers are grouped in lots which are handled in a pod,
and more precisely with a Front Opening Unified Pod (FOUP) in 300 mm wafer
fabs. FOUPs are designed to safely transport lots, from one machine to another,
from one machine to a storage location, from a storage location to another storage
location, or from a storage location to a machine. An illustration of a FOUP is given
in Figure 1.4. In general, 25 wafers constitutes a lot in 300 mm wafer fabs, and
each lot corresponds to a specific product.
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Figure 1.4: Illustration of a Front Opening Unified Pod (FOUP) (Silicon Connection,
2020).

The fabrication of a wafer is associated to a product fabrication route, which
describes the sequence in which operations, i.e. elementary fabrication steps, must
be performed to fully fabricate ICs associated to the product. Fabrication routes are
different from one product to another. The fabrication of a lot includes more than
500 operations, and products can share common operations. Wafers are fabricated
layer by layer and contain hundreds to thousands of ICs, depending on the size of
the product and the wafer size. The mean fabrication time (cycle time) of a lot in
a wafer fab is typically of two to three months. More than 80% of the cycle time
of a lot is made of non added value activities, e.g. inspection, transportation, and
waiting times. This is mostly due to the fact that the utilization of machines in wafer
fabs is maximized to reduce production costs, therefore there are a large number of
wafers in a wafer fab, thus leading to congestion problems and waiting times.

Each operation on the fabrication route is performed by a machine in a work
center. More precisely, at each operation, the machine applies a recipe that cor-
responds to the desired fabrication process. The recipe is a program that defines
actions that must be performed by the machine for the fabrication process at the
operation. For instance, the recipe defines the pressure, the temperature conditions
and the chemicals that must be used. For ion implantation, a recipe determines the
dopant (the ion type that will be implanted in the wafer), the energy at which the
machine must operate, and the dose. Recipes can be very different from one prod-
uct to another, leading to different (fabrication) process times. Several main work
centers (or operation types) can be distinguished (Atherton and Atherton, 1995;
Hutcheson, 2000; Mönch et al., 2012):
Diffusion, oxidation and layer/film deposition. Oxide layer are grown from sil-
icon with oxygen. This operation is used to grow oxide layer of transistor gates.
It is done at a very high temperature, > 1000◦C. During metallization operations,
conductive layers are grown on the surface of the wafer. Conductive layers are used
to access components, connect transistors and are used as an interface between
packaging and the IC. Layers of electrical insulators are also grown on the surface
to create capacitors in memory ICs, separate conductive layers, isolate transistors,
and protect ICs from external contamination. These operations are often performed
with chemical vapor deposition processes.
Photolithography. A photolithography operation delimits where dry etch and ion
implantation operations should be performed. Regions are delimited by using a ret-
icle (or mask) and a photosensitive resin (or photoresist) that transfers a pattern
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onto the wafer. A photolithography operation takes place in three stages: (1) The
photosensitive resin is first spread on the wafer, (2) It is then exposed to ultravi-
olet light where it is not protected by the reticle, and (3) Exposed regions of the
photosensitive resin are removed from the surface of the wafer. The next opera-
tions take place in exposed regions. Photolithography machines are expensive and
photolithography work centers often constitutes a bottleneck/critical (limiting the
overall manufacturing performances) work center for wafer fabs.
Etch. A dry etch operation takes place after a photolithography operation. It is used
to remove matter from the wafer in exposed photosensitive resin regions. For in-
stance, it removes some regions of previously grown layers. Dry etch operations can
also use polymers to better respect delimited regions by the exposed photosensitive
resin. Polymers are then removed during cleaning operations. Etch operations are
described as dry when a plasma is used instead of chemical solutions, etch opera-
tions are then described as wet. Wet etch operations are uniform on the surface of
the wafer, and are used to remove complete layers, e.g. for rework purposes, and
recycle test wafers.
Ion implantation. Ion implantation operations consists in doping the wafer with
ions (e.g. phosphorus, boron, arsenic and indium) where dry etch operations have
been performed. Ion implantation gives the ability for a transistor to conduct elec-
tric current when a voltage is applied on its gate. Ion implantation can only be
performed in exposed regions of the photosensitive resins. Annealing can be used
after an ion implantation operation to correct defects from ion implantation and
activate dopants. Annealing is performed at a very high temperature (> 1000◦C) to
avoid diffusing dopants in the silicon.
Planarization. Planarization (or chemical mechanical planarization) is used to have
a planar layer. Ultimately, a planarization operation reduces the size of layer de-
posit. Planarization reduces lens focusing problems in photolithography.
Cleaning. Cleaning operations are also frequent to remove contaminants. Cleaning
operations are often performed after photolithography, dry etching, ion implan-
tation operations for particle, metallic or organic decontamination. For instance,
polymers introduced by dry etching are removed with cleaning.
Inspection. Lots are frequently inspected to control the quality of the wafers, maxi-
mize the yield and therefore avoid any defect to reach the final client. Inspected lots
are sampled, i.e. all lots are not inspected, because inspection capacity is limited as
inspection machines are also expensive. In addition, in general, all wafers of a lot
are not inspected. Inspection operations are performed in metrology work centers,
which control physical parameters on wafers, e.g. transistor gate sizes, thickness
of films, or defectivity work centers, which control contamination, scratches, defect
patterns.

Wafers are fabricated layer by layer. Because machines are expensive, the num-
ber of operations to perform to fabricate a wafer is much greater than the number
of work centers in wafer fabs. Wafer fabs are therefore characterized by re-entrant
product flows in work centers. More precisely, a wafer visits multiple times the same
work center for different operations on its fabrication route. For instance, for some
products, the lithography work center can process the same lot up to 80 times. Work
centers are therefore typically organized in a job-shop manner.
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Re-entrant product flows make every local decision at a work center, e.g. dis-
patching, maintenance operations and qualification decisions, connected to all other
work centers. For instance, if a machine of a critical work center fails, then other
work centers can starve as lots are blocked at the critical work center. Re-entrant
product flows are arguably one the major factors that makes front end fabrication
complex (Mason et al., 2002; Ovacik and Uzsoy, 2012; Mönch et al., 2012). Not
only interconnected work centers make front end fabrication complex to manage,
but they also create a high production variability, i.e. a lack of constant pattern in
the demand and in production capacities, which contributes to the increase of the
mean cycle time (Hopp and Spearman, 2011) and therefore inventory costs.

Figure 1.5: An illustration of the wafer fabrication process (Mönch et al., 2011) in
a wafer fab.

1.2.2 Qualifications

Equipment qualifications. Once the machine is purchased and being installed in
the wafer fab, the machine must undergo a first qualification procedure, which
qualifies the production environment around and in the machine. More precisely,
wafer fabrication is performed in a clean room, which is controlled in terms of
particle, air flow and pressure to minimize the number of particles that can enter
in contact with wafers, and therefore potentially lead to the fabrication of defective
ICs. More precisely, norm ISO 14644-1 must be respected. Similarly, particle
emission from the machine to the factory is measured. If particle emissions are
too large, particle emission sources are investigated. For instance, friction sources
are investigated. If necessary, some elements in the machine must be moved or
changed. The qualification procedure also ensures that alarms work properly.
Different physical parameters can also be measured. For instance, electrostatic
fields nearby wafers, glasses, load ports are also measured near ion implantation
machines. A qualification procedure requires rigor as every measurement must
be properly described and traceable. Each qualification procedure is machine
dependent because machines can come from different suppliers and be of different
generations.

Recipe-to-machine qualifications. Once their production environment is qualified,
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machines must also be qualified for recipes that they will run. These qualifications
are recipe-to-machine qualifications. Qualifying machines for recipes certifies that
machines are able to meet quality and yield requirements when recipes are run.
A qualification therefore concerns a couple (recipe, machine). The ultimate goal
of qualification procedures is to reach zero defects, avoid infant mortality of wafers
and eliminate out of specification products. There exist different qualification levels,
which can be distinguished by their delay and their cost.

For new machines, recipes, or products, the qualification level is arguably the
most “difficult” one. The qualification procedure for new machines, recipes or prod-
ucts is expensive, energy-consuming, consumes production capacity and takes about
two to three months as test lots must complete their production. As previously
mentioned in Section 1.1, developing new technologies is also extremely expen-
sive. McKinsey & Company (2011) reports that developing a 45nm logic process
technology costs $600 million. These costs are partly due to qualification proce-
dures. During the qualification procedure for a new machine, test runs of recipes
are conducted and the machine has an “engineering” status that prevents it from
processing standard production lots. For machines that are already installed in the
wafer fab, new qualification procedures typically involve the development of new
recipes for new products or new technologies. First, the recipe is qualified from a
defectivity standpoint. It is verified that there is no undesired deposition of particles,
corrosion, holes and scratches, which can lead to short-circuits. It is also verified
that there are no patterns in defects, i.e defects must be uniform on the wafer and
not in a single specific region of the wafer. It is also verified that the recipe is in line
with specifications, e.g. in terms of implanted dose or layer thickness, by inspecting
the wafer and measuring physical parameters. If problems are detected, then pa-
rameters of the recipes are changed. For instance, different chemicals can be tried,
spin speeds of robots can be changed, a larger temperature can be tried, different
temperature ramp up and ramp down profiles can be tried, voltage can be changed.
Small changes in the parameters of the recipe can increase the yield by 2 to 3%.

Once the qualification procedure is over and fruitful (note that the qualification
procedure may never be fruitful), it is certified that the machine respects yield and
quality requirements and can apply the recipe on wafers. It is then said that the
machine is qualified for the recipe. Due to technological restrictions on machines,
machines are only qualifiable for a subset of recipes. Initial technological restrictions
for existing machines can be waived with retrofitting, but it induces an additional
cost. In addition, due to strong process constraints, several families of recipes may
be incompatible and therefore are never qualified at the same time on a given ma-
chine. Therefore, some machines can be dedicated to very specific recipes whereas
other machines will be qualified for a wide range of recipes. In practice, although
a machine could be qualified for all recipes, the number of qualifications of a ma-
chine is often limited because qualification costs can be expensive. Maintaining
many qualifications on a machine is difficult because of limited human and inspec-
tion resources, and because all possible qualifications are probably not necessary to
optimize operational efficiency or ensure the satisfaction of the demand. There is
a trade-off between the number of qualifications to perform, which must be min-
imized because qualifications can be expensive, and manufacturing performances,
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which must be maximized. Note that, as products can share common operations,
then they can also share common recipes. Therefore, once a recipe is qualified on a
machine, then the machine can run all the products that require the recipe.

Other qualification levels correspond to re-qualification procedures, which are
often less ‘difficult” than for qualifications of new recipes, machines or products.
A machine that is qualified for a recipe does not remain qualified throughout its
operation in the wafer fab. Qualifications are time-varying. A machine no longer
qualified for a recipe is said to be disqualified for the recipe. Depending on the dis-
qualification reason, re-qualification procedures can be immediately done by com-
puter orders, maintenance operations, recipe parameter adjustments or may require
the completion of test lots if a detailed analysis of wafers is required. Disqualifica-
tion reasons condition re-qualification delays and costs, and therefore condition
the horizon size on which re-qualification decisions can be considered. In a work
center, disqualifications can be frequent and have serious consequences on wafer
fab performances, if they are not managed properly or anticipated. To maximize
manufacturing performances, in particular in terms of throughput and cycle time,
an efficient and effective design and follow-up of the qualification configuration of
each work center is required (see e.g., Johnzén et al. 2007, 2011; Kabak et al. 2013;
Rowshannahad et al. 2015; Kopp et al. 2018). Re-qualifications are therefore also
critical.

A disqualification can occur for different reasons. A first reason lies in Work-In-
Process (WIP) management policies. As two recipes on the same machine can be
incompatible, the machine is alternately disqualified for a recipe and qualified for
another. Recipes can also be disqualified to orient the WIP on certain machines,
which are known to be much faster or give slightly better results in terms of yield.
Some recipes are disqualified because they quickly degrade machines, which lead to
more maintenance operations. Therefore, in general at any time, only one machine
is kept qualified to deal with such cases. Other machines will be re-qualified if
initial machines are down, disqualified or the gain on the throughput or cycle time
is interesting. These machines are often used in a “back-up” mode. Observe that
WIP management policies may vary over time. Recipes can also be disqualified
on machines because they have not been run for a long time (qualification time
window, Obeid et al. 2014; Kopp et al. 2016). This time window varies from one
work center to another. Time windows are practically defined because the quality
and yield of a recipe are time-varying and depend on other recipes. Therefore, if a
recipe has not been applied for a long time, it is considered as outdated. If the recipe
has not been run for more than 6 months, a complete qualification procedure must
once again be performed. Recipes can also be disqualified on machines because
of unexpected events. For instance, a recipe can be disqualified because of yield,
parametric issues or because a consumable (e.g., a bottle of gas) is empty.

Disqualification rates are highly variable from one work center to another. For
50% of the total number of machines in the production facility, disqualifications
represent less than 10% of initial qualifications. For 75% of machines, disqualifi-
cations represent less than 20% of initial qualifications. Note that it is not unusual
to observe that disqualifications on machines in some work centers can represent
up to 50% of initial qualifications, which can be due to WIP management policies
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and the fact that machines have few qualified operations. Disqualifications can then
represent hundreds of operations over all the machines.

Note that qualification procedures are not limited to the semiconductor indus-
try. They may simply not be described with the same term. For instance, being
a nurse or a surgeon requires a medical degree, which is a certification ensuring
that medical operations will be correctly performed. Air plane pilots must be certi-
fied to fly new aircraft. This certifies that the pilot is able to operate the aircraft and
know emergency procedures. Spare part suppliers must algo undergo a certification
procedure. However, qualifications are very rarely as dynamic as in semiconductor
manufacturing, in particular in high-mix wafer fabs. This is because qualifications
can be frequently lost or because new qualifications are frequently developed as
new products and new machines are frequently introduced in wafer fabs. In ad-
dition, qualifications are frequently updated due to the time-varying demand. The
demand for some products decreases whereas the demand for other products in-
creases. Therefore, if the demand for a product decreases over time, it is possible
and even desired to perform new qualifications for other products to keep the re-
quired production capacity and satisfy the demand.

In this thesis, we are not interested in optimizing qualification procedures, for
instance in terms of costs. We tackle recipe-to-machine qualification management
from a capacity planning standpoint and a flexibility standpoint. In other words, we
consider features associated to recipe-to-machine qualification procedures such as
delays and costs but qualifications are optimized in terms of production capacity to
satisfy the demands of products and improve machine utilization.

1.3 Qualification management in manufacturing op-
erations of wafer fabs

The primary goal of a wafer fab is to fabricate wafers and deliver functional ICs
to customers. Manufacturing operations correspond to the management, planning
and control of production activities ensuring that each client receives its lots on
time. Manufacturing operations, which constitute a part of operations management,
are generally divided into three decision levels, a strategic decision level, a tactical
decision level and an operational decision level. We refer the reader to Stadtler and
Kilger (2002); Hopp and Spearman (2011); Mönch et al. (2018) for a description
of the different decision levels.

Delivering functional ICs to all customers, i.e. satisfying the demand for all
products and maximizing on-time deliveries is actually complex in HM wafer fabs.

There are several reasons explaining this complexity. Several hundred products
compete for the same production machines in HM wafer fabs, which themselves
operate with finite production capacities. In addition, the demand by product is
time-varying and can be highly uncertain. Products have short lifetimes. There are
also manufacturing risks (e.g. machine breakdowns, yield losses) that can prevent
wafer fabs from satisfying the demand. In addition, wafer fabs are often made
of complex information and manufacturing flows, in particular due to re-entrant
product flows. When such conditions are met, the need for flexibility (the ability to
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respond effectively to changing circumstances, see Sethi and Sethi 1990) is imper-
ative (De Toni and Tonchia, 1998). Qualifications are therefore critical catalysts for
demand satisfaction and on-time deliveries in wafer fabs because:

− Qualification management is closely related to the the notion of production
flexibility, which is defined as all products a factory is able to produce with-
out requiring additional major capital investment. Production flexibility is the
result, among others, of process flexibility, which is defined as the ability of
processing different products at the same time (Sethi and Sethi, 1990; Jain
et al., 2013). Adding new qualifications improves the level of process flexibil-
ity of work centers and therefore improves the management of manufacturing
risks such as machine downtime.

− Qualifications allow a machine to run recipes, qualifications are therefore used
to configure the production capacity of a work center as the production vol-
ume associated to operations can be processed to be processed on different
machines. The larger the number of qualified machines for an operation, the
larger the production capacity for the operation. However, the production ca-
pacity is finite. Therefore, qualifications are critical parameters that enable
wafer fabs to satisfy the demand. Planning and adding the right new qualifi-
cations are critical to anticipate ramp-up product demands.

− New qualifications are determined at a tactical decision level, they have a large
influence on the overall performances of wafer fabs as they notably affect pro-
duction planning and scheduling. If the right qualifications are not carefully
determined to satisfy the demand and improve operational efficiency, wafer
fabs cannot have high service levels and reduce production costs.

Qualification management is a discipline of manufacturing operations. It refers
to the planning and control activities of qualifications. Qualification management
can be found at the operational and tactical decision levels of manufacturing oper-
ations:

− Tactical decision level. There are existing machines in a work center. New
machines are being installed. Similarly, new products are being introduced in
the factory and the demand for existing products can increase. New qualifica-
tions are then necessary to increase the production capacity of new products
and increase the production capacity of products already made in the factory
with a ramp-up demand. More precisely, given demand forecasts for each
product, the fabrication route for each product, an estimate of the available
production time by machine, qualification delays, new qualifications must be
planned to satisfy the demand by product, respect capacity constraints and
minimize qualification costs as new qualifications are expensive to develop.
Qualification decisions at the tactical decision level are typically made over a
horizon varying between 6 and 12 months. Recall that as qualifications are
determined at a tactical decision level, they have a large influence on the over-
all performances of wafer fabs as they notably affect production planning and
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scheduling. Therefore, the right qualifications must be carefully determined
to anticipate the demand for new products and the increasing demand for
currently made products. Very often, only a small number of new qualifica-
tions is required among all possible new qualifications, even to cover demand
uncertainty. Chapter 6 is dedicated to tactical qualification management.

− Operational decision level. At the operational level (production control
level), initial qualifications are already determined. New qualifications are
not performed. This is because qualification delays are much larger than the
decision horizon, which is of a few hours to one to two weeks. Instead, a
follow-up of qualifications is performed and re-qualifications, from disquali-
fications of initial qualifications, are optimized. Re-qualifications are deter-
mined to ensure that disqualifications do not prevent wafer fabs from sat-
isfying the demand and do not prevent started lots from being shipped on
time. As the decision horizon is typically smaller than the fabrication time of
a wafer, re-qualifications are optimized in terms of utilization balance of the
machines, throughput or cycle time to improve operational efficiency, which
can also be seen as alternative operational means to ensure that lots move for-
ward in wafer fabs, and as a result that the demand by product is satisfied on
time. Typically, given WIP projections, current disqualifications and estimates
of available production times by machine, re-qualifications are determined to
maximize the utilization balance and minimize the total utilization rate of the
machines, which in turn help to maximize the throughput and minimize the
cycle time. Very often, only a small number of re-qualifications is necessary to
significantly improve manufacturing performances. Chapters 2, 3, 4 and 5 are
dedicated to operational qualification management.

Note that qualification management can also be found at a strategic decision
level (Liao et al., 2017), but at a supply chain level and not at a work center level,
when it comes to deciding the set of wafer fabs that should be able to produce
a specific product or technology node. Qualification management problems at a
strategic decision level are not directly addressed in this thesis. Nevertheless, the
approaches proposed in Chapter 6 for a work center can be extended to be used at
a supply chain decision level (see Section 1.5.3).

An effective tactical qualification management is essential. In addition, through
multiple applications Johnzén et al. (2007), Johnzén et al. (2011), Kabak et al.
(2013), Rowshannahad et al. (2015) and Kopp et al. (2018) show that to maxi-
mize manufacturing performances, in particular in terms of throughput and cycle
time, an effective follow-up of the qualification configuration of each work cen-
ter is required. If a follow-up of qualifications is not performed, i.e. when no
re-qualifications are performed, then disqualifications that progressively occur will
make operational efficiency plummet because the utilization rates of machines will
be poorly balanced and there may be some operations without any qualified ma-
chine thus making impossible to satisfy the demand for associated products.

Evaluating the quality of qualification decisions is complex as machines can
share common qualifications and have finite production capacities. Typically, it is
difficult to evaluate the workload or the utilization rate of a machine due to highly
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automated dispatching decisions of jobs and because the workload of a machine
can be shared with similarly qualified machines. Evaluating the workload and the
utilization rates of machines is primordial as they are intrinsically related to the
throughput (see Chapters 3 and 4), the cycle time (see Chapter 5) and demand
satisfaction (see Chapter 6). Moreover, process times (or equivalently through-
put rates) of recipes on machines can be different from one recipe to another, and
from one machine to another. Qualifications are also subject to qualification delays,
which can make determining relevant qualifications even more difficult. In addition,
determining new qualifications and re-qualifications can be even more complex if
some parameters, such as the demand by product, are subject to uncertainty and
vary over time (see Chapter 6). Qualification management tends to be increasingly
complex as the number of products, recipes and machine increases over time as the
portfolio of products grows.

As a result, this raises complex capacity planning and flexibility optimization
problems as the right amount capacity must be allocated to each product to satisfy
the demand and improve operational efficiency. Therefore, advanced methods, e.g.
operations research, simulation, statistics, that can identify critical qualifications at
the tactical decision level and that can identify critical re-qualifications at the oper-
ational decision level are required. Existing methods are reviewed in Section 1.4.
Our industrial and scientific contributions are presented in Section 1.5.

1.4 Literature review

1.4.1 Process flexibility

Qualification management is closely related to the the notion of process flexibil-
ity. The scientific literature on process flexibility is mostly interested in measuring
the performances of process flexibility designs (which could be called qualification
configurations or designs in the context of the thesis) in terms of expected service
levels using notably linear programming and max-flow models. The term “link” is
preferred to the term qualification. In general, the literature on process flexibil-
ity deals with strategic problems at the supply chain level. Links are determined
between products and factories. The quality of links (the quality of the process
flexibility design) between products and factories is evaluated. Link costs are con-
strained to a given budget. For instance, if n is the number of factories and products,
then 2-chain designs considers at most 2n links.

Under balanced (same number of factories and products) and symmetrical as-
sumptions (each unit of product leads to the same amount of workload at any
plant), given a set of demand scenarios (demand is assumed to be independent
and identically distributed), the seminal work of Jordan and Graves (1995) shows
that effective sparse flexibility designs with at most 2n links can almost achieve the
same benefits as full flexibility designs. In particular, they show that 2-chain designs
(also referred as long chain designs in the literature) where each product is exactly
linked to two factories (see Figure 1.6a) and where the design forms undirected cy-
cle containing all machines and products, is almost as effective as the full flexibility
designs (see Figure 1.6b). with much fewer links. They also show that there can
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exist multiple process flexibility designs with similar performances. Chain designs
perform better than other sparse designs as they pool more products and factories,
thus allowing to better face demand uncertainty. Based on this work, Graves and
Tomlin (2003), Chou et al. (2010), Simchi-Levi and Wei (2012), Wang and Zhang
(2015), Désir et al. (2016) and Bidkhori et al. (2016) further study, validate and
complement the benefits of sparse and chain flexibility designs.

(a) 2-chain design. (b) Full flexibility design.

Figure 1.6: Visual comparison of different flexibility designs.

Nevertheless, the main limits of applying chain flexibility designs to qualification
management in semiconductor factories are:

− Most often, only balanced systems (same number of factories and products)
are studied, which is unrealistic in semiconductor factories.

− Any plant can be linked to any product. This is impossible in qualification
management in semiconductor factories due to continuous investment. Ma-
chines belong to different generations, have different software and hardware
restrictions and can be of different types. They cannot be qualified for the
same fabrication operations. Consequently, chain designs are unlikely.

− Most often, only symmetrical systems (each unit of product leads to the same
amount of workload at any plant) are studied. This is not true in semiconduc-
tor factories as two products can require different operations with different
processing times.

− Link delays are not considered. In semiconductor manufacturing, the qualifi-
cation process may take several weeks to several months.

− Single period models are considered. However, demands of products are
highly dynamic (see e.g. Figure 1.1), which cannot be easily captured with
single period models.

− Demand is assumed to be independent and identically distributed. In high-mix
factories, demands are not independent and identically distributed. Typically,
a few products are associated to most of the demand.
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Some authors contribute to the process flexibility literature by waiving some
of these assumptions. Mak and Shen (2009) propose a two-stage stochastic pro-
gramming approach to determine process flexibility designs. The studied setting
is a balanced system. Process flexibility costs are distinguished by factory. Fac-
tories have different production capacities and two products can lead to different
workloads. They show that, when the demand by product is heterogeneous, the
flexibility design determined with the stochastic programming approach generates
a better profit than chain designs. For an unbalanced and unsymmetrical system,
Chou et al. (2010) identify underlying conditions such that sparse (not necessarily
chained) flexibility designs achieve most of the benefits of the full flexibility design.
They also show that adding a restricted number of links is often sufficient to signif-
icantly improve the ability of a production system to meet the demand. Deng and
Shen (2013) formulate recommendations for process flexibility designs for unbal-
anced but symmetrical systems. Bidkhori et al. (2016) derive a lower bound for
chain designs when systems are unbalanced and factories have different production
capacities. Chen et al. (2019) further study unbalanced and unsymmetrical systems
by proposing a simple scheme to satisfy the expected demand with high probability
in a single-period setting. Shi et al. (2019) study flexibility designs in a multi-period
setting. Fiorotto et al. (2018) present a deterministic lot-sizing problem motivated
by the semiconductor industry. Authors propose two different lot-sizing optimiza-
tion models to build the best long chain configuration or to find the best links (the
total number of links is limited to a given number) while trying to minimize setup,
inventory holding and backlogging costs. They analyze different flexibility designs
and compare them to different long chain designs (Jordan and Graves, 1995). They
show that, when the capacity is tight or when inventory and backlogging costs are
very different from one product to another, scenarios that are actually frequently
encountered in HM factories, even the best long chain design is not satisfactory.
Flexibility links can be misplaced because backlogging costs and setup times are
not considered in the long chain principle. The authors show that the optimiza-
tion obtains better cost effective designs with half the links used by the long chain
design.

To improve realism and for a relevant usability in semiconductor manufacturing,
most of the assumptions above should be waived, in particular assumptions on the
symmetry and balance of production systems. As it is unlikely to determine ana-
lytic formulas under such conditions to help determine relevant process flexibility
designs, and therefore relevant qualification configurations, solving complex com-
binatorial optimization problems is required as shown in Mak and Shen (2009) and
Fiorotto et al. (2018).

1.4.2 Qualification management in semiconductor manufactur-
ing

Papers that deal with qualification management in semiconductor manufacturing
are reviewed, but not papers where qualifications are parameters or constraints
of the problem. In total, we found 31 papers that deal with qualification manage-
ment to improve the manufacturing performances of work centers in semiconductor
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manufacturing. The papers were mostly identified by reading two thesis on qualifi-
cation management (Johnzén, 2009; Rowshannahad, 2015) and reading references
therein. Figure 1.7, with the number of cumulative publications by year, shows that
the literature is rare and relatively recent. This can be explained by the fact that the
semiconductor industry is a complex process industry and, because qualifications
are long and expensive, changing qualifications or adding costly qualifications may
have not been of great importance in the past. However, with the normalization
and development of custom products, products with short life cycles, and because
of fierce competition, semiconductor manufacturers are more prone to change or
add new qualifications on machines to keep or increase their competitive advantage
(Johnzén et al., 2007, 2008). The expertise of semiconductor manufacturers and
machine suppliers on machines improved over time, thus allowing more recipes to
be qualified at the same time on a given machine without yield losses. In addition,
the literature worked first on scheduling problems, which are complex problems, in
particular in the semiconductor industry (Tamssaouet, 2019).

Figure 1.7: Cumulative number of publications on qualification management by
year.

Note that the literature is not directly presented in terms of operational and
tactical qualification management. This is because most papers do not separate or
mention that there exist two separate decision levels for qualification management.
A classification of papers is made in the literature review. In addition, note that the
literature is presented in a general way. Differences between our contributions and
the literature is recalled in each chapter.

1.4.2.1 Extended production planning problems and capacity allocation

Extended production planning problems. Some papers in the literature consider
extended production planning problems where qualifications are modeled as addi-
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tional “setup” constraints. The setup cost associated to a qualification has to be paid
once. Machines can process recipes as long as the qualification constraint is active.
The setup cost must be paid once again when the qualification is lost. Extended pro-
duction planning problems are operational decision problems. Note that authors do
not present their work as extended production planning problems although holding
inventory and backlogging costs are minimized alongside qualification costs.

Fu et al. (2010) present an extended production planning problem where the
objective is to minimize the total production costs, i.e., production, inventory, back-
logging and qualification costs. Kopp et al. (2016) consider a qualification man-
agement problem for a photolithography work center. The problem is solved by
using a Mixed-Integer Linear Programming (MILP) approach. To our knowledge,
Kopp et al. (2016) are the first authors to introduce qualification time windows
in a qualification management optimization problem. A discrete-event simulation
model is used to compare the trade-off between backlogging and qualification costs
given different costs and bottleneck utilization scenarios. Kopp et al. (2018) and
Kopp et al. (2019) propose a MILP and a simulation model to evaluate different re-
qualification strategies for a photolithography work center. Disqualifications occur
when qualification time windows expire, with unexpected events on recipes or with
machine failures. Re-qualification strategies are assessed in terms of mean cycle
time, throughput and tardiness with simulation. Re-qualifications are performed
in a rolling horizon to better face uncertainty on the demand and the machine
unavailability. Re-qualifications are modeled with a 75-minute delay in the simula-
tion model. In addition, Kopp et al. (2019) propose dispatching strategies to avoid
reaching the end of qualification time windows and maintain qualifications deter-
mined by the MILP. Kopp and Mönch (2019) propose and compare several heuristics
and matheuristics to solve the MILP introduced by Kopp et al. (2016). Finally, in
(Fu et al., 2015) consider that the demand in a back end facility is stochastic and
described with a probability distribution. The authors use a L-shaped method and
develop “qualification cuts” to solve the optimization problem.
Capacity allocation. Ignizio (2009) and Ignizio (2010) deal with qualification
management at a tactical decision level. Ignizio (2009) proposes a MILP model
to determine the qualification configuration of a work center. The objective con-
sists in maximizing the workload balance and minimizing the number of different
photoresists used by machines. A simulation model is used to assess the impact
of the qualification configuration on the mean cycle time of the manufacturing fa-
cility. Specific constraints of the photolithography work center are also included,
e.g., reticle management. Different methods for generating qualification configura-
tions are compared. The mathematical programming approach is shown to give a
lower mean cycle time than greedy heuristics or rule-based approaches. Similarly,
Ignizio (2010) studies the capacity of different qualification configurations to han-
dle uncertainty in a wafer fab. Ignizio (2010) shows that genetic algorithms are
more prone to determine qualification configurations that cope with uncertainty.
Liao et al. (2017) propose a two-stage stochastic programming optimization ap-
proach to maximize the total profit of a semiconductor company. The first stage
problem consists in minimizing qualification costs (production facilities are quali-
fied for products or technology nodes) while the second stage problem consists in
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allocating product quantities to production sites to maximize revenue. In the second
stage problem, the demand for all products is satisfied and the capacity constraints
are respected. Chang and Dong (2017) consider a two-stage capacity allocation
stochastic programming problem. The demand is stochastic, and processing times
are stochastic. Stochastic capacity losses are also associated to qualification deci-
sions. They propose a Lagrangian relaxation to solve the stochastic programming
problem. Uncertainty is described with probabilities.

1.4.2.2 Hierarchical approaches

Klemmt et al. (2010) present a four-stage mathematical programming approach
to optimize the performances of a photolithography work center. The authors are
motivated by the fact that even best scheduling decisions cannot significantly im-
prove manufacturing performances if qualifications are not correctly prepared with
respect to different demand scenarios. A hierarchical approach is then necessary
to ensure that all decisions are consistent with each other. The first two stages are
strategic stages. They are used to define machine qualifications and photoresist al-
locations given load balancing and throughput objectives. The two last stages are
operational stages. Given qualifications and resist allocations, reticle and lot assign-
ments are optimized. The lower the decision level, the more detailed the process
constraints. As qualifications are made in the two first stages, Klemmt et al. (2010)
consider the tactical decision level.

Similarly, Kopp and Mönch (2018) introduce a three-level hierarchical approach
to better manage machine qualifications in a lithography work center. The top level
determines target production quantities. Based on the target production quantities,
a MILP problem is solved to recommend re-qualifications. Finally, the base level
uses the recommended re-qualifications and simulates the shop-floor dispatching
system.

In both papers, information from lower levels is sent back to upper levels and
qualification decisions are updated over a rolling horizon to better face uncertainty.

1.4.2.3 Qualification management and production scheduling

Papers in this section mostly deal with qualification management at a tactical de-
cision level. More precisely, papers use simulation to assess different qualification
configurations and scheduling policies in terms of mean cycle time.

Fowler et al. (1997) compare different scheduling policies with different quali-
fication configurations. They show that decreasing machine dedication can lead to
substantial improvements on the mean cycle time of lots in a work center. Akcalt
et al. (2001) use simulation models to assess process control policies and machine
dedication policies on the mean cycle time in a lithography work center. Similarly,
Kabak et al. (2013) use discrete-event simulation to assess the impact of recipe re-
strictions and disqualifications on the mean cycle time spent in a lithography work
center. Similarly to Fowler et al. (1997), these studies show that adding new qualifi-
cations to photolithography machines can lead to substantial reductions in the mean
cycle time of lots. However, the cycle time reduction gets smaller as the production
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volume increases. Johnzén et al. (2008) study the impact of additional qualifica-
tions (or the impact of re-qualifications) on scheduling decisions using simulation
models. However, contrary to Fowler et al. (1997), Akcalt et al. (2001), and Kabak
et al. (2013), they show that, although additional qualifications increase flexibil-
ity, they do not necessarily lead to a decreased cycle time. These different results
may be caused by different initial qualification rates and by data sets that are either
generated in different manners or coming from different types of factories.

Finally, Aubry et al. (2008) introduce a MILP model to solve a production
scheduling problem. The problem consists in finding the minimum number of
qualifications so that the production plan is feasible (each recipe is assigned to
at least one machine), and machines have the same workload. Preemption is
allowed. Furthermore, Rossi (2010) and Aubry et al. (2012) assume that satisfying
the demand by product is a key issue to characterize the robustness of a set
of qualifications. Rossi (2010) seeks to characterize the robustness of a set of
qualifications by determining the largest perturbation from the nominal demand
while ensuring that the deadline is respected. Preemption is also allowed. Similarly,
Aubry et al. (2012) seek to characterize the robustness of a set of qualifications
by determining the largest perturbation from the nominal demand while ensuring
that all machines have the same workload and that the qualification cost does
not exceed a predefined value. Preemption is also allowed. Dedicated solution
approaches are proposed to characterize the robustness of a set of qualifications.
In particular, solution approaches are proposed to determine the largest stability
radius around the nominal demand.

1.4.2.4 Assessing the qualification setting of a work center

The literature has also studied the definition of Key Performance Indicators (KPIs) to
measure the quality of the qualification configuration of a work center and to guide
qualification decisions. Most KPIs in the literature relate to flexibility measures, and
mathematical models are also introduced to optimize the KPIs. Papers can be both
used at operational and tactical decision levels. Flexibility measures can be seen as
flexibility guidelines for semiconductor manufacturing similarly to 2-chain designs.

Johnzén et al. (2009) and Johnzén et al. (2011) propose flexibility measures to
maximize the workload balance and minimize the total workload. “WIP”, “time”
and “toolset” flexibility measures are proposed. The “WIP” (“WIP” stands for Work-
In-Process) seeks to evaluate how balanced are recipe quantities, not in terms of
workload but in terms of recipe units, between machines of the work center. Simi-
larly, the “time” flexibility measure seeks to evaluate the workload balance between
machines of the work center. The “toolset” flexibility measure seeks to evaluate
the risk of having too many recipes with a small number of qualified machines. A
system flexibility measure is also introduced, which is a weighted sum of the three
previous flexibility measures. Flexibility measures are used to identify bottlenecks,
the lack of flexibility and to assess the impact of a qualification or disqualification
on the performance of a work center. Johnzén (2009) and Johnzén et al. (2011)
propose a nonlinear qualification management optimization model to determine a
single optimal qualification in terms of workload balance. Johnzén (2009) propose

Page 24 EMSE-CMP Antoine Perraudat



1.5. INDUSTRIAL AND SCIENTIFIC CONTRIBUTIONS

simple greedy heuristics and local search approaches to solve the multiple qualifi-
cation version of the optimization model. This work is extended in (Rowshannahad
et al., 2015) by considering the finite production capacity, and thus the utilization
rate, of each machine, to optimize the utilization balance and total utilization rate
of the machines. No solution approach is proposed to solve the multi-qualification
version of the problem in (Rowshannahad et al., 2015).

Rowshannahad and Dauzère-Pérès (2013) illustrate how the capacitated “time”
flexibility measure can be used to better use the production capacity of machines.
Rowshannahad and Dauzère-Pérès (2013) extend the “time” flexibility measure by
considering batch size constraint. Rowshannahad et al. (2014) propose another
measure to assess the workload variability between machines in a work center.
Numerical experiments show that reducing workload variability between machines
with additional qualifications significantly improves the workload balance. Finally,
Pianne et al. (2016) introduce ideal and potential flexibility measures, and also
consider the work center robustness, that is if a machine is sufficiently qualified to
mitigate the down times of other machines.

1.4.2.5 Decision support systems

Interestingly, although the literature is rare on qualification management, there ex-
ist cooperation projects on qualification management between academics and semi-
conductor manufacturers (Leachman et al., 2002; Johnzén et al., 2009; Rowshan-
nahad, 2015; Liao et al., 2017). Leachman et al. (2002) present a project and a
decision support system (DSS) that enabled a wafer fab to significantly reduce its
mean cycle time and make substantial savings. A key element for this success was
the preparation of the right qualifications with respect to the production plan. Row-
shannahad (2015) and Johnzén et al. (2009) describe qualification management
software solutions that implement the “WIP”, “time”, “toolset” and system flexibil-
ity measures to recommend a single qualification decision to production personnel.
Finally, Liao et al. (2017) also describe a DSS.

1.5 Industrial and scientific contributions

In this section, the industrial and scientific contributions are presented. The thesis
pursues the work of two previous thesis on qualification management (Johnzén,
2009; Rowshannahad, 2015). The purpose of the thesis is to provide effective and
efficient methods for qualification management at both the operational and tactical
decision levels for high-mix wafer fabs. In particular, the purpose of the thesis is to
answer the following questions:

− Operational decision level. How to determine the most relevant re-
qualifications to improve operational efficiency? In other words, how to
determine the most relevant re-qualifications to maximize the utilization
balance and minimize the total utilization rate of the machines in order to
maximize the throughput and minimize the cycle time?
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− Tactical decision level. How to determine the most relevant new qualifica-
tions to satisfy the demand and cover the demand uncertainty, while respect-
ing production capacities of machines and minimizing qualification costs?

These questions are answered in the industrial context of front-end manufactur-
ing in a 300 mm wafer fab of STMicroelectronics in Crolles, France. The wafer fab
is characterized by the following features:

− Several hundred products compete for the same production machines.

− Frequent product changes and demand uncertainty.

− Production variability (time-varying demand, WIP, production capacities,
qualifications).

− High automation level in terms of dispatching and transportation decisions.

− Work centers are “unbalanced”. The number of products and recipes is (much)
larger than the number of machines.

− Work centers are “unsymmetrical”. The wafer of a given product does not lead
to the same workload as the wafer of another product, as both products may
not have the same fabrication routes and re-entrant factor flows and may not
require the same operations and recipes.

These features have a significant influence on the modeling choices in the thesis.
Note that although the questions are answered in the context of 300 mm front-

end manufacturing facility, the same qualification management problems can be
found in other front-end wafer fabs and also in back end factories. Consequently,
the methods proposed in the thesis are not limited to 300 mm wafer fabs and can be
applied to other semiconductor factories, and other industries with similar flexibility
problems.

New optimization models, i.e. operations research techniques, and solution ap-
proaches are proposed in the thesis to answer the questions at the operational and
tactical decision levels. The optimization models and solution approaches are in-
cluded in decision support systems. For each proposed optimization model, a com-
putational study is performed. Not only is the computational study used to validate
the fact that the optimization model is relevant, but also used to show the limits
of the optimization model. In addition, managerial recommendations are drawn in
each chapter, which are not necessarily restricted to qualification management. The
remainder of the thesis manuscript is organized as described in Sections 1.5.1 and
1.5.2.

1.5.1 Operational qualification management

In the context of operational qualification management, the question ”How to
determine the most relevant re-qualifications to improve operational efficiency?” is
answered from different standpoints.
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In terms of utilization balance and total utilization rate. In Chapter 2, we pursue
the work of Johnzén et al. (2011) and Rowshannahad et al. (2015) on qualification
management for non-identical parallel machines. In other words, we seek to answer
the question: How to determine the most relevant re-qualifications to minimize the
total utilization rate and maximize the utilization balance of the machines?

To answer this question, Johnzén et al. (2011) propose a nonlinear qualification
management optimization model to determine a single optimal qualification
in terms of workload balance and total workload. This work is extended in
(Rowshannahad et al., 2015) by considering the finite production capacity of each
machine. New qualifications are therefore evaluated in terms of utilization balance
and total utilization rate of the machines. To the best of our knowledge, the
qualification management optimization problem with multiple qualifications and
finite production capacity has never been considered. We propose and evaluate
new efficient optimization approaches to answer the question. Optimization
approaches determine in almost real time, i.e. in a small computational time, the
best re-qualifications of operations in a work center with non-identical parallel
machines. More precisely, the number of re-qualifications and the quantities
by operation to process are given, and the objective consists in maximizing the
utilization balance and minimizing the total utilization rate of the machines.
Six new solution approaches, notably inspired by heuristics for discrete location
problems and based on the analysis of dual variables, are proposed and compared
on industrial data from a 300 mm wafer fab. The use of dual variables leads to
heuristics that are effective both in terms of solution quality and computational
time. The most relevant approach is now implemented in the decision support
system presented in Chapter 7.

In terms of throughput. In Chapter 3, we seek to answer the question: “How
to determine the most relevant re-qualifications to maximize the throughput?” The
nonlinear optimization model proposed in Chapter 2 is extended to bilevel optimiza-
tion approaches to answer the question in terms of throughput. In other words, in
Chapter 3, we seek to determine the best re-qualifications to maximize the through-
put. First, we argue why a bilevel optimization approach is a suitable approach to
maximize the throughput at an operational decision level, and why the approach
presented in Chapter 2 can be limited in some cases. Furthermore, to the best of
our knowledge, there is no contribution in the literature that proposes to model
disqualification decisions whereas can be important for operational qualification
management. Therefore, a bilevel optimization model is proposed to cover the case
where disqualification decisions must be made. A bilevel optimization approach
is also proposed to combine qualification and disqualification decisions. Finally, a
computational study on industrial data from a 300 mm wafer fab is performed to
validate the proposed bilevel optimization models.

The bilevel optimization approach presented in Chapter 3 is extended to a
dynamic (multi-period) bilevel optimization approach in Chapter 4. More precisely,
the demand and production capacities vary over time due to production and
demand variability. We show, on industrial data from a 300 mm wafer fab, that the
dynamic approach can be more appropriate than the (static) bilevel optimization
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approach presented in Chapter 2 to propose relevant qualifications when they are
subject to lead times or induce maintenance operations.

In terms of mean cycle time. In Chapter 5, we seek to answer the question: “How
to determine the most relevant re-qualifications to minimize the mean cycle time?”
More precisely, Chapter 5 is dedicated to the study of the effect of re-qualifications
on the mean cycle time. This is motivated by the fact that minimizing the cycle
time reduces production costs. It is first argued that simple closed-form solutions
describing the mean cycle time are available at an operational level for work
centers. Second, the relevance and the limits of closed-form solutions are shown
for different work centers on industrial data from a 300 mm wafer fab. The effect
of re-qualifications on short-term cycle time is then illustrated. In particular, we
show that there can exist two re-qualifications that lead to the same gain on the
throughput but different gains on the mean cycle time. In addition, it is shown
that most re-qualifications are irrelevant to minimize the cycle time but relevant
re-qualifications can significantly minimize the mean cycle time.

Decision support system. A fully functional decision support system used at
STMicroelectronics by production personnel is presented in Chapter 7, in particular,
the purpose, the functioning, and the content of the decision support system. The
decision support system embeds all theoretical developments of Chapters 2, 3, 4
and 5. The decision support system is now included in the decision process of some
work centers.

1.5.2 Tactical qualification management

In the context of operational qualification management, the question ”How to de-
termine the most relevant new qualifications to satisfy the demand and cover the
demand uncertainty, while respecting production capacities of machines and mini-
mizing qualification costs?” is answered.

Chapter 6 is dedicated to tactical qualification management. Optimization ap-
proaches are proposed to answer the question. A new mixed integer linear pro-
gramming mathematical model is proposed for the considered tactical qualifica-
tion management problem when the demand is deterministic and qualification lead
times are considered. Qualification costs must be minimized while the demand by
product and production capacities of machines must be satisfied.

As the demand by product is subject to uncertainty, the choice of robust op-
timization is motivated. An uncertainty set based on the budget of uncertainty
(Bertsimas and Sim, 2004) is proposed to cover the uncertainty on the demand
by product. A new robust optimization model is introduced. In addition, a new
decision-dependent uncertainty mathematical program is proposed to characterize
the robustness of a set of qualifications, therefore the robustness of a work center,
against demand uncertainty. A binary search is proposed to characterize the robust-
ness of a set of qualifications because the decision-dependent uncertainty program
is NP-Complete. In a computational study on industrial data from a 300 mm wafer
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fab, we show that: (1) The price of uncertainty is acceptable, often less than a few
additional qualifications by machine, (2) It is possible to achieve the same level
of robustness as the case where all new qualifications are performed with only a
restricted number of relevant qualifications, (3) Depending on the forecast uncer-
tainty and the work center, the robust optimization problem can be difficult to solve,
and (4) Using the nominal set of qualifications can lead to significant capacity con-
straint violations although it can be used for some work centers when the forecast
uncertainty is small. Finally, practical applications and implications of the proposed
models are discussed.

1.5.3 Remarks

Chapters 2, 3, 4, 5 and 7 present scientific and industrial contributions for oper-
ational qualification management (qualification management performed at an op-
erational decision level), while Chapter 6 relates to contributions for tactical qual-
ification management (qualification management performed at a tactical decision
level). Finally, conclusions and perspectives are outlined in Chapter 8.

It is worth mentioning that, although some chapters are more dedicated to op-
erational qualification management or tactical qualification management, the pro-
posed mathematical models can be used for qualification management at other deci-
sion levels. For instance, the optimization model for determining qualification plans
in Chapter 2 can be used to further distinguish performances of qualification con-
figurations that would have the same cost in Chapter 6 (see Appendix F). Similarly,
optimization models proposed in Chapter 6 can be adapted for qualification man-
agement at a supply chain level. It is sufficient to replace input parameters by, for
instance, replacing machines by wafer fabs, and production capacities of machines
by production capacities of wafer fabs.
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Chapter 2

Managing re-qualifications to opti-

mize utilization balance and total

utilization rate of machines

In this chapter, the question “How to determine the most relevant re-
qualifications to improve operational efficiency?” is answered from a utilization
balancing standpoint. More precisely, we put ourselves in the shoes of a work center
manager who must decide on the short term the best re-qualifications to maximize
the utilization balance and minimize the total utilization rate of the machines. We
show on industrial data that it is possible to efficiently and effectively maximize the
utilization balance and minimize the total utilization rate of the machines by using
the dual variables of qualification constraints to guide solution approaches*.

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2 Problem definition and analysis . . . . . . . . . . . . . . . . . . . . . 32
2.3 Solution approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4 Computational study . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.5 Recommendations from the computational study . . . . . . . . . . . 57
2.6 Conclusions and perspectives . . . . . . . . . . . . . . . . . . . . . . 59

*Most of this chapter has been submitted to an international journal. Solution approaches were
also presented at the ROADEF 2020 conference, and the author was finalist for the best student
paper.



CHAPTER 2. MANAGING RE-QUALIFICATIONS TO OPTIMIZE UTILIZATION
BALANCE AND TOTAL UTILIZATION RATE OF MACHINES

2.1 Introduction

We pursue the work of Johnzén et al. (2011) and Rowshannahad et al. (2015) on
qualification management on non-identical parallel machines. Johnzén et al. (2011)
propose a nonlinear qualification management optimization model to determine a
single optimal qualification in terms of workload balance and total workload. This
work is extended in (Rowshannahad et al., 2015) by considering the finite pro-
duction capacity, and thus the utilization rate, of each machine, to optimize the
utilization balance and total utilization rate of the machines. To the best of our
knowledge, the qualification management optimization problem with multiple qual-
ifications and finite production capacity has never been considered. Therefore, we
propose and evaluate new effective and efficient optimization approaches that de-
termine in real time, i.e. in a small computational time, the best re-qualifications of
operations in a work center with non-identical parallel machines. The most relevant
approach is now implemented in a decision support system presented in Chapter 7.
The remainder of the chapter is organized as follows. The problem is formalized
as a Mixed Integer NonLinear Program (MINLP) in Section 2.2, and solution ap-
proaches are proposed in Section 2.3. In Section 2.4, computational experiments
on industrial data are presented and discussed, followed by recommendations based
on the numerical results in Section 2.4. Finally, we conclude and give perspectives
in Section 2.6.

2.2 Problem definition and analysis

Let us consider a work center of M non-identical parallel machines which must
process R different operations with a strictly positive demand. Machines are non-
identical, both in terms of qualifications and throughput rates. More precisely, ma-
chines are unrelated, i.e. there is no machine that is systematically faster than an-
other machine for all operations. Machines performing the same type of operations
were most often not acquired together, and thus belong to different generations. In
addition, machines do not have the same core competencies, i.e. all machines do
not process the same types of operations. A machine can only process qualified op-
erations, and a qualifiable operation can be processed on a machine if it is already
qualified. The qualification matrix between operations and machines is known, and
each operation has a throughput rate on the machines on which it is qualifiable.
Each machine has a finite capacity, which can be different from other machines.
Among the qualifiable pairs (operation, machine) not already qualified, the objec-
tive is to determine a re-qualification plan consisting of k re-qualifications in order
to maximize the utilization balance and minimize the total utilization rate of the
machines.

2.2.1 Problem modeling

The notations used in the chapter are listed below.

Parameters:
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qr,m ∈ {0,1,2}: Is equal to 1 if machine m is currently qualified for operation, r, is
equal to 2 if machine m is qualifiable for operation r, and is equal to 0 if machine m
cannot be operation for product r,
k: Number of re-qualifications,
tpr,m: Throughput rate (in number of wafers per second) of operation r on machine
m,
cm: Production availability (in seconds) of machine m,
dr: Quantity of operation r to produce,
γ: Utilization balancing parameter, which is strictly greater than 1.

Variables:
OQr,m ∈ {0,1}: Is equal to 1 if operation r should be qualified on machine m, and is
equal to 0 otherwise,
Um: Utilization rate of machine m,
WIPr,m: Quantity of operation r assigned to machine m.

The problem is formalized below as a Mixed Integer NonLinear Program
(MINLP):

f1 =min
∑
m

U
γ
m (2.1)

s. t.
∑
r,m

OQr,m ≤ k (2.2)

Um =
∑
r

WIPr,m
tpr,mcm

∀m (2.3)∑
m

WIPr,m = dr ∀r (2.4)

WIPr,m ≤ dr ∀r,∀m | qr,m = 1 (2.5)
WIPr,m ≤ drOQr,m ∀r,∀m | qr,m = 2 (2.6)
WIPr,m ≤ 0 ∀r,∀m | qr,m = 0 (2.7)
WIPr,m ≥ 0 ∀r,∀m (2.8)
OQr,m ∈ {0,1} ∀r,∀m (2.9)

The objective function (2.1) aims at finding a compromise between the utiliza-
tion balance of the machines and their total utilization rate. The larger γ, the higher
the priority on the utilization balance (see Section 2.2.3). Constraint (2.2) limits
the number of re-qualifications, i.e. the size of the optimized qualification plan, to at
most k. Constraints (2.3) compute the utilization rate for each machine in the work
center. The machine utilization rate should be understood as the “implied” machine
utilization rate by the operation quantities assigned to the the machine. A machine
utilization rate is not necessarily lower than or equal to 1 if the machine cannot pro-
cess all its assigned operation quantities on the horizon. Constraints (2.4) ensure
that the demand of each operation is fully assigned to the machines. Constraints
(2.5)-(2.7) ensure that machinem can only process operation r if r is currently qual-
ified on m (qr,m = 1) or is both qualifiable and proposed to be qualified (qr,m = 2 and
OQr,m = 1). Note that the dual prices of Constraints (2.5)-(2.7) indicate the poten-
tial gain in terms of utilization balance (Bazaraa et al., 2013), and will be used in
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some of the heuristics proposed in Section 2.3. Finally, Constraints (2.8) are the
non-negativity constraints, and Constraints (2.9) are the binary constraints.

Let us discuss below some important characteristics of our problem:

− This problem is equivalent to maximizing the capacitated time flexibility mea-
sure proposed by Rowshannahad et al. (2015), which evaluates the quality of
the balance of the qualification configuration of a work center in terms of uti-
lization rates of machines. Solving this optimization model enables decision
makers to compare re-qualifications in terms of utilization balance of the ma-
chines, and therefore select the best re-qualifications to reduce productivity
losses.

− All re-qualifications require the same cost and time. This assumption
comes from production personnel that can hardly differentiate between
re-qualifications at the operational level. On a longer horizon of several
weeks or months, where new qualifications need to be planned (tactical quali-
fication management), considering different costs and times for qualifications
is relevant, although the information might not be easy to obtain. This is
studied in Chapter 6, which is dedicated to tactical qualification management.

− We also assume that re-qualifications can be performed very quickly. Even
tough it is not always the case depending on disqualification reasons, assum-
ing that re-qualifications can be almost done instantly provides insights on
critical qualifications which should have been active to maximize the work-
load balance and minimize the total workload. This assumption is relaxed in
Chapter 4.

− Demands and production capacities varying over time and disqualifications
are not considered. This is because the problem is solved regularly, e.g. once
every shift of 8 hours for the next 24 hours, and the qualifications are fre-
quently updated given the current disqualifications and a new estimate of the
quantities to process. Including disqualifications and time varying demands
and production capacities in the problem on a longer planning horizon is stud-
ied in Chapters 3 and 4.

2.2.2 Illustrative example

Consider a work center with four machines and seven operations with the following
parameters:

q =



1 0 0 0
0 1 1 0
0 1 1 0
1 0 0 0
0 0 1 0
1 0 0 0
0 2 0 0


, tp =



1 0 0 0
0 0.8 0.2 0
0 0.2 0.8 0
1 0 0 0
0 0 0.2 0
1 0 0 0
0 0.2 0 1


d =

(
100 200 200 100 100 100 300

)
, c =

(
300 200 200 300

)
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Machines are initially poorly balanced (see Figure 2.1a and Table 2.1). This
can be due to the fact that a critical machine is currently down, or because of
the demand mix. Re-qualifications must be performed to maximize the utilization
balance and minimize the total utilization rate of the machines.

(a) Initial machine utilization
rates. (b) New machine utilization rates.

Figure 2.1: Comparison of the initial machine utilization rates (a) and the new
machine utilization rates after one qualification (b) with γ = 4.

In Figure 2.1a, the utilization rates of machines 1 and 4 are equal to 1.0. Both
machines are then critical, and an option to reduce their utilization rates is to re-
assign part of their workload to machines 2 or 3, which are less loaded. This is
possible by performing a re-qualification (or new qualification).

If operation 7 is qualified on machine 2, a large part of the workload of machine
4 is reassigned to machine 2. The utilization rate of machine 4 is strongly reduced,
from 1.0 to 0.28, and the utilization rate of machine 2 is increased, from 0.2 to
0.42 (see Figure 2.1b). Machines 2, 3 and 4 are now better balanced, and the
manufacturing performance of the work center is expected to improve. Concretely,
maximizing the utilization balance and minimizing the total utilization rate of the
machines improve productivity as more wafers should be produced in less time.
A better utilization balance of the machines means a better throughput and less
backlog. In addition, machines can better undergo the failure of a critical machine
when the utilization rates of the machine are better balanced. The objective function
is reduced by 48% (Table 2.1), and a single qualification significantly improves the
utilization balance of the machines. Chapter 3 details why the throughput cannot
be directly maximized (mostly due to highly automated dispatching decisions). The
quality of utilization balance in terms of throughput is further studied in Chapter
3 and in Chapter 4, and the quality of utilization balance in terms of cycle time is
studied in Chapter 5.
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Utilization rate by machine

Configuration 1 2 3 4
∑
mU

γ
m

Before 1.00 0.20 0.30 1.00 2.01

After 1.00 0.42 0.30 0.28 1.04

Table 2.1: Comparison of the initial objective function (Figure 2.1a) and after a
re-qualification (Figure 2.1b), γ = 4.

2.2.3 Justification of the nonlinear objective function

The objective of this chapter consists in determining re-qualifications that both min-
imize the total utilization rate and maximize the utilization balance of the machines.
The objective of this chapter is not to solve a biobjective optimization problem be-
cause, in the industrial context, only one solution is expected by the decision mak-
ers. The main advantage of the nonlinear objective function is to provide flexibility
in the trade-off between the total utilization rate and the utilization balance, while
avoiding a biobjective problem without explicitly formalizing the utilization bal-
ance. Formalizing a criterion that models the utilization balance of the machines
is actually complex, and classical indicators fail to do so because qualifications and
throughput rates vary from one machine to another (see Section 2.2.3.2). By se-
lecting an appropriate value of γ (see Section 2.2.3.1 and Rowshannahad et al.
2015), the total utilization rate or the utilization balance is more emphasized. How-
ever, considering a nonlinear objective function increases the computational burden,
which motivates the development of efficient and effective solution approaches, in
particular because the solution approaches must be embedded in an operational
decision support system.

First, the influence of γ on the total utilization rate of the machines is illustrated
in Section 2.2.3.1 with illustrative examples. Then, in Section 2.2.3.2, the nonlin-
ear objective function is compared to two classical machine utilization balancing
approaches. Finally, in Section 2.2.3.3, interpretations of the nonlinear objective
function are proposed.

2.2.3.1 Influence of γ

γ is used to model a compromise between the total machine utilization rate and the
machine utilization balance. With γ = 1, only the total machine utilization rate is
minimized, and the larger γ, the more important the maximization of the machine
utilization balance compared to the minimization of the total machine utilization
rate (see also Rowshannahad et al. 2015). γ is therefore a choice. For instance,
when γ = 4, a solution where two machines have utilization rates of 0.95 and 0.2
(f1 = 0.82) is preferred to solution where both machines have a utilization rate of
0.9 (f1 = 1.31). However, if maximizing the utilization balance of the machines
is highly prioritized then, by using γ = 20 in the nonlinear objective function, the
second solution where both machines have a utilization rate of 0.9 (f1 = 0.24) is
preferred to the first solution (f1 = 0.36).
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In particular for operational decision levels, Rowshannahad et al. (2015) recom-
mend adjusting γ according to the real workload distribution on the shop floor, for
instance by using historical data. Due to production variability and the short-sighted
aspect of dispatching rules (see Chapters 3 and 4), for short-term horizons, small
values of γ are more appropriate because the utilization balance of the machines
is not perfect. For larger horizons such as one month, larger γ are appropriate be-
cause production variability is absorbed over time, and machines tend to be more
naturally balanced. In the considered manufacturing system, for an horizon of 24
hours, γ = 4 and γ = 6 are considered appropriate values. For an horizon of one
month, larger values of γ, such as 20, are acceptable.

Note that too small values of γ can lead to unrealistic solutions. Let us illustrate
the practical use of the nonlinear objective function in the decision support system.
Using γ = 1, where only the total machine utilization rate is minimized, would
indicate that a machine is critical, i.e. overloaded with respect to other machines in
the work center. Consider the illustrative example on industrial data in Figure 2.2.
For γ = 1, the utilization rate of machine 19 is inflated, and some machines are
not even used such as machines 2 and 12, contrary to the utilization rates obtained
by solving the optimization model for γ = 4. From practical experience, this is
often unrealistic. This would suggest to production personnel that the machine is
critical, thus that qualification decisions (even postponing maintenance operations)
are required to reduce its utilization rate. However, in practice, the critical machine
is not necessarily as critical as initially thought. By increasing γ, the utilization rate
of the critical machine can be greatly reduced by balancing it with other machines.
Therefore, using γ = 1 would lead to poor decision making in practice.

(a) Utilization balance of machines
for γ = 1.

(b) Utilization balance of machines
for γ = 4.

Figure 2.2: Comparison of utilization balances of machines for (a) γ = 1 and (b)
γ = 4.

2.2.3.2 Comparison to other balancing approaches

The utilization balance of the machines can be optimized with other objective func-
tions than the nonlinear objective function min

∑
mU

γ
m, namely a min-max objec-
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tive function, minmaxmUm, and an objective function that measures the total de-
viation from the mean utilization rate of the machines, min

∑
m |Um − Ū | where

Ū = 1
M

∑
mUm. However, the utilization rate of some machines can be left unop-

timized or inflated.

Deviation from mean utilization rate. An objective function that optimizes the to-
tal deviation from the mean utilization rate of the machines (hereafter called mean
deviation approach) can suffer from the same problem than the nonlinear function
objective if it was used with a very large value of γ. Machines can artificially have a
large utilization rate, and thus possibly both a large total utilization rate and a large
maximum utilization rate, to optimize the total deviation from the mean utiliza-
tion rate. This is actually mostly due to the fact that machines have non-identical
throughput rates.

From a practical standpoint, showing the utilization balance of the machines ob-
tained from the mean deviation approach to production personnel will lead them:
(1) To incorrectly believe that some machines are extremely loaded or that ma-
chines are unbalanced, thus leading to poor decision making, or (2) To discard the
proposed solution because it is unrealistic. First, let us consider the illustrative ex-
ample in Section 2.2.2. Figure 2.3 compares the machine utilization rates when the
deviation from the mean utilization rate of the machines is minimized and when the
nonlinear function is minimized. The machine utilization rates obtained by mini-
mizing the deviation from the mean utilization rate of the machines are much larger,
and actually inflated to minimize the objective function, than the utilization rates
of the machines obtained by minimizing the nonlinear function. Similarly, consider
the example in Figure 2.4 with industrial data. It does not make sense that machine
9 has such a large utilization rate, whereas it can be balanced with machines 4, 5,
6, 7 and 8. Similarly, it can be observed that the utilization rates of machines 10,
11, 12, 13, 14, 15 and 16 are artificially increased to minimize the total deviation
from the mean utilization rate, although the utilization rates of these machines are
smaller with the nonlinear objective function.

Min-max approach (makespan minimization). When machines are non-identical
in terms of qualifications, i.e. they cannot be qualified for the same operations, then
min-max approaches may not be suitable to maximize the utilization balance or
minimize the total utilization rate of the machines. This is because a min-max ap-
proach only considers the maximum machine utilization rate. Consider Figure 2.4,
where both solutions are optimal for the min-max approach due to the fact that
machines 1 and 4 cannot be balanced with other machines. Similarly, consider
Figure 2.1, where both solutions are also optimal, even after one qualification, be-
cause machine 1 cannot be balanced with other machines. If the maximum machine
utilization rate could not be minimized, then it would be possible to conclude that
there is no qualification that can lead to a better utilization balance of the machines.
Nevertheless, for a work center with a large number of machines, there may exist
machines with utilization rates that are not equal to the maximum utilization rate
and that can still be better balanced with qualifications.
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(a) Mean deviation approach. (b) Nonlinear approach, γ = 4.

Figure 2.3: Comparison of the machine utilization rates obtained with the mean
deviation approach and with the nonlinear objective function for the initial qualifi-
cation configuration for the illustrative example.

(a) Mean deviation approach. (b) Nonlinear approach, γ = 4.

Figure 2.4: Comparison of the machine utilization rates obtained with the mean
deviation approach and with the nonlinear objective function for the initial qualifi-
cation configuration of a real work center.
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2.2.3.3 Interpretation of the objective function

The nonlinear objective function cannot be directly interpreted as it does not rep-
resent something physical, such as the total machine utilization rate, the maximum
machine utilization rate, the standard deviation of the machine utilization rates or
the mean deviation from the mean utilization rate of the machines. This is why in
practice, the nonlinear objective function is never presented or interpreted as is. In
fact, the literature actually proposes two alternatives:

− It is possible to interpret the objective function by using other indicators than
the objective function. For instance, the nonlinear optimization problem is
solved, then the mean machine utilization rate, the maximum machine utiliza-
tion rate, and the mean deviation from the mean utilization of the machines
rate are presented along with the utilization balance. Presenting the solution,
rather than indicators, i.e. the utilization balance of the machines, allows the
objective function to be understood.

− As minimizing the objective function is equivalent to maximizing the capaci-
tated time flexibility measure proposed by Rowshannahad et al. (2015), the
objective function can be interpreted in terms of flexibility, which evaluates
the quality of the utilization balance for a given qualification configuration.

− Another alternative consists in interpreting the objective function in terms
of throughput or cycle time. This is particularly interesting at operational
levels as production personnel is challenged to maximize the throughput and
minimize cycle times. This option is investigated in Chapters 3, 4 and 5.

2.2.4 Computational complexity

Determining a single relevant re-qualification on the illustrative example presented
in Figure 2.1 is straightforward, because the example is simple and the number
of machines is limited. In practice, the throughput rates significantly vary from
one operation to another and from one machine to another, and the numbers of
operations and machines are large. Moreover, the effect of multiple additional re-
qualifications on the utilization balance of the machines is difficult to capture as an
initially overloaded machine can become less loaded than an initially underloaded
machine after several re-qualifications.

Johnzén (2009) shows that optimizing the “WIP” flexibility measure is a strongly
NP-Hard problem by reduction from the 3-partition problem (Garey and Johnson,
1979). The proof is based on the proof given in (Aubry et al., 2008) for the Mini-
mum Cost Load Balanced Configuration Problem (MCLBCP). Optimizing the “WIP”
flexibility measure is a special case of our problem, even when tpr,m = tp ∀r, ∀m,
and cm = 1 ∀m. The proof in (Johnzén, 2009) is recalled in Appendix A, Section A.1
for the sake of completeness.

The studied optimization is NP-Hard. In addition, we want to tackle large scale
industrial instances (see Section 2.4.1). Efficient solution approaches must thus be
designed to propose effective re-qualification plans that can be used by production
personnel in factories.
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2.2.5 Outer linearization algorithm for solving the nonlinear
program

Solving the continuous relaxation (or when k = 0) of the MINLP (2.1)-(2.9) is per-
formed by using an outer linearization algorithm. The outer linearization algorithm
is motivated by the fact that the nonlinearity only comes from the objective func-
tion. Hence, the objective function is separable on the decision variables Um, and it
is possible to give realistic bounds to Um.

Consider Figure 2.5 for a given machine m, which illustrates how f (Um) =
U
γ
m can be linearized using outer linearization. Outer linearization constraints of

f (Um) = U
γ
m are given for Um = 0.5 and Um = 1.0. At u0, the outer lineariza-

tion equation is equal to uγo + γuγ−1o (Um − uo). By adding a sufficient number of
outer linearization constraints, the continuous relaxation (or when k = 0) of the
MINLP (2.1)-(2.9) can be solved. Nevertheless, adding all possible outer lineariza-
tion constraints is unpractical, as it will lead to adding an infinite number of con-
straints. Adding the most relevant outer linearization constraints is therefore critical
to quickly solve the MINLP.

Figure 2.5: Outer linearization example for f (Um) =U
γ
m for machine m.

The outer linearization is performed for all machines separately. Consider that
Om =maxo∈Om(u

γ
o +γu

γ−1
o (Um−uo)), where Om is the set of outer linearization points

for machine m. Intuitively, Om represents the value of Uγ
m when it is linearized by

outer linearization. The objective function (2.1) then becomes min
∑
mOm, where

Om ≥ u
γ
o + γuγ−1o (Um − uo) ∀m, ∀o ∈ Om. The Linear Program (2.10)-(2.12) below

provides a lower bound on the objective function:

min
∑
m

Om (2.10)

s. t. Om ≥ u
γ
o +γuγ−1o (Um −uo) ∀m,∀o ∈ Om (2.11)

(2.2)− (2.9) (2.12)
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Equation (2.10) is the objective function. Constraints (2.11) are the outer lin-
earization constraints. Constraints (2.12) are the qualification constraints, the uti-
lization rate computation constraints, and the constraints ensuring that the total
demand of operations must be assigned to qualified machines.

First, each set Om is initialized with 0 ≤ u ≤ 8. This is because, in industrial data
and by experience, it is very unlikely for Um to be larger than 8, even in a factory
subject to high production variability. Once the linear program (2.10)-(2.12) is
solved, U can be extracted from the incumbent solution to compute an upper bound
on the objective function

∑
mU

γ
m. Then, additional outer linearization constraints

are added to the sets Om ∀m until the stopping condition, i.e. a small relative gap ε
between the lower and upper bounds, is met. The outer linearization is detailed in
Algorithm 1.

Algorithm 1 Outer linearization algorithm

1: procedure OUTER LINEARIZATION ALGORITHM

2: umin ← 0
3: umax ← 8
4: ustep ← 0.1
5: for m = 1 to M do
6: uo ← umin
7: while uo ≤ umax do
8: Om←Om ∪uo
9: uo ← uo +ustep

10: end while
11: end for
12: gap←∞
13: while gap > ε do
14: Solve Linear Program (2.10)-(2.12) and compute LB←

∑
mOm

15: SU ← U = (U1, ...,UM)
16: UB←

∑
mSU

γ
m

17: gap← UB−LB
LB

18: for m = 1 to M do
19: Om←Om ∪ SUm
20: end for
21: end while
22: end procedure

For γ = 4, a gap of 0.0001 and the values of umin, umax and ustep in Algorithm 1,
empirical observations on the industrial instances of Section 2.4 show that the algo-
rithm converges in less than ten iterations. Comparing solution approaches to solve
nonlinear programs could be valuable, but is beyond the scope of this study and is
left for future research.
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2.3 Solution approaches

In this section, new solution approaches are proposed to solve the optimization
problem with multiple qualifications formalized in Section 2.2.

2.3.1 Constructive greedy heuristic

The first proposed algorithm is a greedy heuristic, which is inspired by the “ADD”
heuristics for discrete location problems (Daskin (2011)). The greedy heuristic is a
constructive heuristic that, at each iteration, selects the single best re-qualification
that optimizes the nonlinear objective function and updates the qualification ma-
trix. The procedure is repeated until a re-qualification plan of k re-qualifications is
determined. The pseudo code of the algorithm can be found in Algorithm 2.

Algorithm 2 Greedy heuristic
Input data: q

1: procedure GREEDY HEURISTIC

2: Best Plan← Ø
3: f *←∞
4: for i = 1 to k do
5: (r∗,m∗)← Ø
6: for r = 1 to R do
7: for m = 1 to M do
8: if (r,m) < Best Plan then
9: qtemp← q

10: q
temp
r,m ← 1

11: f temp← f1(argmin(2.1)− (2.9) with qtemp, k = 0)
12: if f temp < f ∗ then
13: (r∗, m∗)← (r, m)
14: f ∗ ← f temp

15: end if
16: end if
17: end for
18: end for
19: Update qualification matrix, qr∗,m∗← 1
20: Best Plan← Best Plan ∪ (r∗,m∗)
21: end for
22: return Best Plan
23: end procedure

2.3.2 Local search

The local search is a best improvement local search approach and is inspired by the
“ADD-REMOVE” heuristics for discrete location problems (Daskin (2011)). The first
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step consists in determining a feasible re-qualification plan with the greedy heuris-
tic. Once a feasible re-qualification plan is determined, the local search removes one
re-qualification at a time and tries to determine a better re-qualification. The local
search terminates when it is no longer possible to determine a better re-qualification
in the best re-qualification plan. The pseudo code of the local search can be found
in Algorithm 3.

Algorithm 3 Local search
Input data: q

1: procedure LOCAL SEARCH

2: Best Plan← Call Greedy Heuristic, Algorithm 2 (initialization step)
3: j ← 0
4: i ← 0
5: while j , k − 1 do
6: Current Plan← Best Plan
7: Current Plan← Remove the re-qualification at the i-th index
8: i ← i +1
9: f *←∞

10: (r∗, m∗)← Ø
11: for r = 1 to R do
12: for m = 1 to M do
13: if (r,m) < Current Plan then
14: qtemp← q∪ Current Plan
15: q

temp
r,m ← 1

16: f temp← f1(argmin(2.1)− (2.9) with qtemp, k = 0)
17: if f temp < f ∗ then
18: (r∗, m∗)← (r, m)
19: f ∗ ← f temp

20: end if
21: end if
22: end for
23: end for
24: Current Plan← Current Plan ∪ (r∗,m∗)
25: if f1(Best Plan) < f1(Current Plan) then
26: Best Plan← Current Plan
27: j ← 0
28: else
29: j ← j +1
30: end if
31: if i = k then
32: i ← 0
33: end if
34: end while
35: return Best Plan
36: end procedure
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2.3.3 Dual prices

Although heuristics presented in Sections 2.3.1 and 2.3.2 are starting points to de-
termine good re-qualification plans, the number of re-qualifications to evaluate from
one iteration to another can be substantial when the number of operations and ma-
chines are large. On industrial instances, a few thousand re-qualifications have to
be evaluated, which is not acceptable when short computational times are required.
Given the problem structure and the nature of the data, we know from practical
(industrial) experience that only a restricted set of qualifiable pairs (operation, ma-
chine) can lead to valuable re-qualification plans in terms of utilization balance and
total utilization rate of the machines.

For instance, let us consider the illustrative example in Section 2.2.2. The initial
utilization balance is presented in Figure 2.1. Machines 1 and 4 are critical (i.e.
U1 = 1.0 and U4 = 1.0) while machines 2 and 3 are underloaded (i.e. U2 < 1.0 and
U3 < 1.0). Adding re-qualifications to machines 1 and 4 is irrelevant in terms of
utilization balance because the machines would be even more loaded. Therefore, in
this example, the search of the optimal re-qualifications can potentially be restricted
to machines 2 and 3. All possiblere- qualifications could be tested for the example
presented in Figure 2.1 as the number of operations and the number of machines
are small. However, because many operations could be qualified on many machines
in industrial data, evaluating all the possible re-qualifications is most often too time-
consuming when short computational times are required.

To identify the most promising operations and machines, and therefore to reduce
the number of re-qualifications from one iteration to another, the dual prices of the
relevant constraints of the following reformulation (when k = 0) of the optimization
model (2.1)-(2.9) can be used:

f1 =min
∑
m

U
γ
m (2.13)

s. t. Um =
∑
r

WIPr,mdr
tpr,mcm

∀m (2.14)∑
m

WIPr,m = 1 ∀r (2.15)

WIPr,m ≤ 1 ∀r,∀m | qr,m = 1 (2.16)
WIPr,m ≤ 0 ∀r,∀m | qr,m , 1 (2.17)
WIPr,m ≥ 0 ∀r,∀m (2.18)

The objective function (2.13) aims at finding a compromise between the uti-
lization balance and the total utilization rate of the machines. Constraints (2.14)
compute the utilization rate of each machine in the work center. Constraints (2.15)
ensure that the demand of each operation is fully assigned to the machines. Con-
straints (2.16) and (2.17) ensure that machine m can only process operation r if it
is qualified on m. Finally, Constraints (2.8) are the non-negativity constraints for
variables WIPr,m.

The optimization model is close to the initial model (2.1)-(2.9), but has some
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significant differences. First, WIPr,m is redefined as the ratio of the quantity of op-
eration r which is assigned to machine m. Second, the constraints imposing that
the current qualifications are satisfied are differentiated. With these modifications,
before any re-qualification decision, this optimization model can be solved and the
dual variable of each Constraint (2.17) can be analyzed. The dual variable can then
be interpreted as an approximation of the gain on the nonlinear objective function
f1 if operation r is qualified on machine m, as dual variables can be interpreted as
“the marginal rate of change in the objective function with respect to perturbations
in the right-hand side of a constraint” (Bazaraa et al., 2013). f1 would become∑
mU

γ
m+λr,m, where λr,m is the dual variable for the pair (r,m) of Constraint (2.17).

Analyzing the value of λr,m for each pair (r,m), when qr,m = 2, allows the most
promising re-qualification decisions to be ranked. Note that the dual variables as-
sociated to Constraint (2.17) cannot be strictly positive because re-qualifications
cannot decrease f1.

By embedding the use of the dual variables in the greedy heuristic, instead of
testing every possible re-qualification at each iteration, the search space can be
greatly reduced to the Ndual most promising re-qualifications. For instance, at
each iteration of the greedy heuristic, instead of testing 800 re-qualifications, only
Ndual = 10 are tested. If the re-qualifications are tested in parallel, Ndual can be
limited to the number of cores of the CPU. If, at a given iteration of the greedy
heuristic, more than Ndual dual variables have the same value, the first ones in the
list are arbitrarily selected. The pseudo code of the greedy heuristic with dual vari-
ables is provided in Algorithm 4. The same principle can be applied to the local
search.

Another “Instantaneous” Greedy Heuristic (IGH) can be designed by using dual
variables in a more straightforward way. IGH builds a feasible re-qualification plan
with the k re-qualifications associated to the k smallest dual variables. Contrary to
the greedy heuristic in Algorithm 4, IGH is not an iterative procedure since the k
re-qualifications are taken just after the dual variables are computed. The pseudo
code of the instantaneous greedy heuristic can be found in Algorithm 5.

2.3.4 Branch and bound

Similarly to the motivations that led to the use of dual variables, the design of the
branch and bound (B&B) approach is motivated by the practical experience:

− Since there are only a limited number of preexisting qualifications, the quali-
fication matrix is sparse and the overall number of possible re-qualifications is
small.

− Industrial instances are considered, hence non-randomly generated, and only
a restricted set of re-qualifications can lead to valuable re-qualification plans
in terms of machine utilization balance.

− We are only interested in taking a limited number of re-qualification decisions.

− The continuous relaxation of optimization problem (2.1)-(2.9) is then “strong”
in the sense that only a few re-qualification decision variables are not binary.

Page 46 EMSE-CMP Antoine Perraudat



2.3. SOLUTION APPROACHES

Algorithm 4 Greedy heuristic with dual prices
Input data: q

1: procedure GREEDY HEURISTIC WITH DUAL PRICES

2: Best Plan← Ø
3: f *←∞
4: for i = 1 to k do
5: Solve optimization model (2.13)-(2.18) with Algorithm 1
6: L← Dual variables of Constraints (2.17)
7: L’← Qualifications corresponding to the Ndual smallest dual variables in

L
8: for each (r, m) ∈ L’ do
9: qtemp← q

10: q
temp
r,m ← 1

11: f temp← f1(argmin(2.13)− (2.18) with qtemp, k = 0)
12: if f temp < f ∗ then
13: (r∗, m∗)← (r, m)
14: f ∗ ← f temp

15: end if
16: end for
17: Update qualification matrix, qr∗,m∗← 1
18: Best Plan← Best Plan ∪ (r∗,m∗)
19: end for
20: return Best Plan
21: end procedure

Algorithm 5 Instantaneous Greedy Heuristic (IGH)

1: procedure GREEDY HEURISTIC WITH DUAL PRICES

2: Best Plan← Ø
3: Solve optimization problem (2.13)-(2.18) with Algorithm 1
4: L← Dual variables of Constraints (2.17)
5: L’← Qualifications corresponding to the Ndual smallest dual variables in L
6: for each (r, m) ∈ L’ do
7: Best Plan← Best Plan ∪ (r, m)
8: end for
9: return Best Plan

10: end procedure
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− An initial feasible solution can be quickly determined by using IGH that is
presented in Section 2.3.3 and Algorithm 5.

Based on these observations, a branch and bound approach can potentially be
an efficient solution approach. If the continuous relaxation is strong, the num-
ber of re-qualifications is small and the initial solution is good, then we can prune
nodes and find an optimal solution very quickly, even if the optimization problem
is nonlinear. In the branch and bound solution approach, a best first approach is
explored. Branching is performed on the re-qualification decision variable OQr,m
that is the closest to one. Bounding is performed by solving the continuous relax-
ation of the optimization model (2.1)-(2.9). A priority queue on the smallest lower
bound is implemented to explore the tree. Finally, as explained in the hypothesis,
a feasible solution can be quickly generated by using the dual variables. The opti-
mization model (2.13)-(2.18) is solved and the k smallest dual variables are used
to identify the most promising re-qualification decisions, leading to an initial fea-
sible re-qualification plan. The pseudo code of the branch and bound algorithm is
provided in Algorithm 6.

2.4 Computational study

In this section, the solution approaches presented in Section 2.3 are compared on
industrial instances. The objective is to determine the most suited solution ap-
proaches by work center given the required small computational time (a few min-
utes at most).

2.4.1 Instance characterization

The computational study is performed by using historical data extracted from a
manufacturing facility with a large variety of operations and which is located in
Crolles, France. The factory is characterized by shifting bottleneck work centers,
frequent product mix changes, high production variability, frequent disqualifications
and large machine utilization rates.

In Tables 2.2, 2.3, and 2.4, the industrial instances used for the computational
study are described. To preserve confidentiality, industrial instances are not given as
is because they may contain critical information of the factory. Instead, coefficients
of variability are used to present the industrial data. However, authors interested in
the data can contact one of the authors to obtain more information.

Table 2.2 shows the number of operations R and machines M for the two work
centers used in the computational study. The Coefficient of Variability (CV), defined
as the standard deviation over the mean of a data set of the throughput rate can
be found in Table 2.2. The “Operation TH coefficient of variability” corresponds to
the coefficient of variability of the throughput rate for a given operation over all
initially qualified and qualifiable machines. The machine “TH coefficient of vari-
ability” corresponds to the variability of the throughput rate for a given machine
over all initially qualified and qualifiable operations. The minimum coefficient of
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Algorithm 6 Branch and bound algorithm

1: procedure BRANCH AND BOUND ALGORITHM

2: Best Plan← Call IGH, Algorithm 5 (initialization step)
3: UB← f1(Best Plan)
4: Q←Ø
5: OQ← argmin (2.1)-(2.9) when relaxing binary constraints
6: LB← f1(OQ)
7: Q←Q∪ (OQ,LB)
8: while Q ,Ø or UB−LB

LB > ε do
9: Take a node N (OQ∗, f ∗) off Q

10: if OQ∗ binary and f ∗ ≤UB then
11: Best Plan← Re-qualifications from OQ∗
12: UB← f ∗
13: end if
14: if OQ∗ non binary then
15: Let (r∗, m∗) be the largest non binary variable in OQ∗
16: OQ0 ← argmin(2.1) − (2.9) when relaxing binary constraints and

OQr∗,m∗ = 0
17: OQ1 ← argmin(2.1) − (2.9) when relaxing binary constraints and

OQr∗,m∗ = 1
18: if f1(OQ0) ≥UB then
19: Prune node
20: else
21: Q←Q∪ (OQ0, f1(OQ0))
22: end if
23: if f1(OQ1) ≥UB then
24: Prune node
25: else
26: Q←Q∪ (OQ1, f1(OQ1))
27: end if
28: end if
29: end while
30: return Best Plan
31: end procedure
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variability is not presented because it is always equal to zero because there is always
an operation that is qualified on only one specific machine.

Table 2.3 presents the data on the matrix density. The qualifiable density is
presented, it is the number of entries that are equal to two in the qualification
matrix over R×M. Similarly, the qualified density is also presented, it is the number
of entries that are equal to 1 in the qualification matrix over R ×M. The overall
density is the sum of the qualifiable and qualified densities. Finally, “Operation
CV density” and “Machine CV density” are described. The Operation CV density is
the coefficient of variability of the number of qualified and qualifiable machines by
operation. Similarly, the Machine CV density is the coefficient of variability of the
number of qualified and qualifiable operations by machine.

In total, 24 instances are used by work center to compare solution approaches,
and the production quantities for one day in each work center are used. Both work
centers are characterized by a very large number of operations. Work center A has
a limited number of machines, and work center B has a large number of machines.
However, the number of operations that can be run by a machine in work center
A is significantly larger than a machine in work center B. For each work center,
the qualification matrix is sparse, in particular very sparse for work center B. For
work center A, the qualifiable density in work center A varies between 1.8% and
3.6%, and the qualified density varies between 18.6% and 21.6%. The operation CV
density is approximately equal to 0.45 and the machine CV density is approximately
equal to 0.6. For work center B, the qualifiable density in work center B varies
between 0.720% and 0.825%, and the qualified density varies between 2.3% and
2.5%. The operation CV density is approximately equal to 0.63 and the machine CV
density is approximately equal to 3. This shows a large variability in the number
of qualified and qualifiable machines by operation, and a large variability in the
number of qualified and qualifiable operations by machine for both work centers.

Note that, although the qualifiable density in work center B is smaller than the
qualifiable density in work center A, the number of qualifiable operations can be
larger because the numbers of operations and machines are larger. Finally, in both
work centers, machines are unrelated. The operation TH mean coefficient of vari-
ability is twice larger than the operation TH mean coefficient of variability in work
center B. However, note that, the operation TH maximum coefficient of variabil-
ity in work center B can be larger than the operation TH maximum coefficient of
variability in work center A. The machine TH mean coefficient of variablity is ap-
proximately 33% larger in work center A than in work center B. In work center A,
the mean machine TH coefficient of variability is approximately equal to 0.5. In
work center B, it is approximately equal to 0.3. This shows that the throughput
rates, given a machine and from one operation to another, or given a operation and
from one machine to another, are very variable.

Finally, the coefficient of variability of the demand by operation is relatively
constant from one instance to another for each work center. The coefficient of
variability of the demand is approximately equal to 1.2 for work center A and equal
to 1.4 for work center B.

Table 2.4 shows the coefficient of variability of the production capacity and
the maximum production capacity divided by the minimum production capacity
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by work center. The coefficient of variability of the production capacity is equal to
0.05 for work center A and to 0.12 for work center B. The fraction between the
maximum production capacity and the minimum production capacity is equal to
1.40 for work center A and to 1.39 for work center B. Machines have different pro-
duction capacities because they do not necessarily process the same operations. In
addition, machines are of different ages since they were acquired at different times
in the life of the factory.

The values of R, M, coefficients of variability and densities, and in particular the
difference between the values from one instance to another, highlight the character-
istics of the manufacturing facility: Frequent product mix changes, high production
variability, frequent disqualifications.

Table 2.2: Description of industrial instances (1/3).

Work center A Work center B

Operation TH Operation TH Machine TH Machine TH Operation TH Operation TH Machine TH Machine TH
Instance R M Mean CV Max CV Mean CV Max CV R M Mean CV Max CV Mean CV Max CV

1 668 18 0.11 0.86 0.46 0.69 807 191 0.06 0.99 0.28 0.65
2 658 18 0.11 0.78 0.46 0.70 781 191 0.06 0.99 0.29 0.65
3 674 18 0.11 0.86 0.45 0.57 830 191 0.06 3.00 0.31 3.25
4 647 18 0.10 0.64 0.46 0.65 812 191 0.06 1.59 0.30 3.09
5 550 18 0.10 1.19 0.46 0.93 795 193 0.05 1.97 0.35 3.87
6 539 18 0.10 1.37 0.48 1.09 794 193 0.07 1.97 0.35 3.85
7 533 18 0.10 1.16 0.45 0.90 807 192 0.07 1.97 0.34 3.78
8 543 18 0.10 0.64 0.43 0.54 837 191 0.04 1.33 0.33 3.85
9 570 18 0.10 0.64 0.43 0.57 854 191 0.05 1.33 0.34 3.95

10 566 18 0.10 0.64 0.46 1.03 844 191 0.04 1.33 0.34 3.78
11 565 18 0.11 0.64 0.43 0.57 809 192 0.05 1.33 0.33 3.57
12 586 18 0.11 0.64 0.44 0.60 822 192 0.06 1.33 0.34 3.58
13 579 18 0.10 0.72 0.43 0.52 830 192 0.05 0.99 0.29 0.67
14 604 18 0.11 0.64 0.43 0.54 813 192 0.05 0.99 0.39 5.24
15 592 18 0.10 0.64 0.44 0.55 825 193 0.05 0.99 0.29 0.66
16 586 18 0.11 1.08 0.48 0.95 816 193 0.06 0.99 0.28 0.66
17 636 18 0.11 1.08 0.47 0.90 822 193 0.05 0.99 0.28 0.65
18 633 18 0.11 1.08 0.47 0.89 822 193 0.06 0.99 0.28 0.66
19 606 18 0.10 0.64 0.46 0.65 818 193 0.06 0.99 0.28 0.61
20 583 18 0.10 0.66 0.46 0.67 794 191 0.06 0.99 0.28 0.66
21 561 18 0.10 0.64 0.46 0.63 776 193 0.05 0.99 0.29 0.63
22 567 18 0.10 0.64 0.45 0.59 773 193 0.06 1.97 0.31 3.75
23 589 18 0.11 0.64 0.45 0.63 793 193 0.06 0.99 0.28 0.61
24 602 18 0.10 0.66 0.44 0.57 780 193 0.06 0.99 0.29 0.60

Table 2.3: Description of industrial instances (2/3).

Work center A Work center B

Qualifiable Qualified Overall Operation CV Machine CV Qualifiable Qualified Overall Operation CV Machine CV
Instance density density density density density density density density density density

1 2.54 18.73 21.27 0.43 0.70 0.72 2.53 3.25 0.63 1.26
2 2.52 18.64 21.16 0.43 0.70 0.73 2.54 3.26 0.64 1.23
3 1.79 19.35 21.14 0.43 0.63 0.76 2.56 3.32 0.65 1.26
4 1.57 19.24 20.81 0.43 0.66 0.75 2.54 3.29 0.64 1.28
5 3.38 20.06 23.44 0.47 0.56 0.77 2.39 3.15 0.65 1.18
6 3.33 20.23 23.56 0.46 0.55 0.75 2.42 3.16 0.65 1.19
7 3.24 20.34 23.58 0.44 0.56 0.78 2.40 3.19 0.64 1.17
8 2.40 21.56 23.96 0.46 0.55 0.81 2.38 3.19 0.66 1.19
9 3.26 19.69 22.94 0.46 0.56 0.79 2.40 3.18 0.65 1.20

10 3.04 20.48 23.53 0.44 0.58 0.87 2.31 3.17 0.65 1.19
11 3.09 20.54 23.63 0.46 0.57 0.82 2.40 3.22 0.62 1.16
12 3.16 20.39 23.55 0.46 0.55 0.82 2.37 3.20 0.63 1.16
13 2.50 21.07 23.58 0.46 0.53 0.88 2.29 3.17 0.65 1.22
14 2.01 21.47 23.48 0.46 0.58 0.82 2.35 3.17 0.65 1.27
15 2.06 21.10 23.16 0.46 0.58 0.80 2.35 3.15 0.65 1.21
16 2.28 20.76 23.04 0.45 0.60 0.78 2.38 3.17 0.65 1.22
17 2.38 20.78 23.17 0.47 0.58 0.79 2.37 3.17 0.64 1.23
18 2.55 20.95 23.50 0.47 0.57 0.81 2.33 3.15 0.65 1.22
19 3.11 20.32 23.42 0.47 0.55 0.80 2.33 3.12 0.64 1.27
20 3.15 19.90 23.05 0.48 0.56 0.80 2.39 3.19 0.64 1.29
21 3.45 20.12 23.57 0.47 0.54 0.83 2.39 3.22 0.62 1.18
22 3.47 20.07 23.54 0.47 0.55 0.82 2.40 3.22 0.61 1.25
23 3.04 19.85 22.88 0.48 0.56 0.86 2.39 3.25 0.64 1.16
24 2.83 19.98 22.81 0.48 0.58 0.81 2.37 3.18 0.62 1.23
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Table 2.4: Description of industrial instances (3/3).

Work center CV Max / min

A 0.05 1.40
B 0.12 1.39

2.4.2 Design of experiments

In the computational study, the horizon is 24 hours. Solution approaches are com-
pared for a number of re-qualifications k ∈ {1,2,3,4,5,6,7,8,40,100}. We study
all values between 1 and 8 because, in most cases, it is unnecessary to make a
larger number of re-qualifications to significantly improve the utilization balance
of the machines. In other words, the three best re-qualifications lead to better
increase on the utilization balance of the machines than the following three best
re-qualifications, even if the utilization balance of the machines still improves. In
addition, in practice, only a limited number of re-qualifications is usually allowed
on 24 hours. Larger values of k, i.e. 40 and 100, are studied to evaluate the perfor-
mances of solution approaches in a limited computational time.

Solution approaches for the two different work centers presented in Tables 2.2 and
2.3. Two maximum computational times are considered: 30 seconds and 180 sec-
onds (3 minutes). In addition, two initial qualification configurations are studied:

First qualification configuration. It consists in taking the industrial quali-
fication matrix as is to test our approaches for real-life qualification con-
figurations.

Second qualification configuration. We are also interested in testing our
approaches for more extreme cases. This configuration consists in mak-
ing qualifiable the qualifications that are not initially qualifiable (i.e.
when Qr,m = 0). For each machine, the associated throughput for these
cases is set to the mean throughput over other initially qualified and
qualifiable machines. The density of the qualification matrix is then close
to 100%. This case can be useful to identify whether or not qualifying
an operation that has never been qualified is actually beneficial for the
utilization balance of the machines in the work center. In addition, this
case can also be used to identify the limit of each algorithm.

The tested solution approaches are presented in Table 2.5. They are summa-
rized by their name and whether dual prices are used. In total, six different solution
approaches are compared to generate a re-qualification plan for short-term qual-
ification management. For the sake of presentation, short names are given to the
solution approaches (see Table 2.5) to present the numerical results in Section 2.4.3.

2.4.3 Numerical results

Two metrics are presented by instance to compare solution approaches: The rela-
tive gain (%) on the utilization balance of the machines with respect to the initial
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Table 2.5: Solution approaches tested in the computational study.

Algorithm Dual prices Short name Reference section

Greedy heuristic Off GH 2.3.1
Local search Off LS 2.3.2
Greedy heuristic On GHDP 2.3.3
Local search On LSDP 2.3.3
Instantaneous Greedy heuristic (branch and bound) On IGH 2.3.3
Branch and bound - B&B 2.3.4

qualification configuration and the computational time (in seconds). Numerical re-
sults are not detailed instance by instance to limit the length of the chapter. More

precisely, the relative gain (%) is equal to f 1bef ore−f 1af ter
f 1bef ore

∗ 100.

In the numerical experiments, γ is set to four. The outer linearization algo-
rithm is stopped when a relative gap lower than 0.0001 is reached. Ndual is set to
8 for all algorithms. Each iteration of the outer linearization algorithm is solved
by CLP, which is an open source solver (Lougee-Heimer, 2003; Löhndorf, 2016).
Dual variables are then computed with CLP when the outer linearization algorithm
is stopped. All solution approaches are implemented in Java 8 on a computer with
an Intel(R) Xeon(R) CPU E3-1240 v5 @3.50GHz with 4 cores and 32 Go of RAM.
Note that all solution approaches are parallelized, including the branch and bound
algorithm. The maximum number of re-qualification plans that are simultaneously
evaluated is equal to the number of logical threads, e.g. 8 logical threads on the
used computer. For instance, 8 re-qualification plans are tested in parallel in the
greedy heuristic of Section 2.3.1. When a solution approach is running, the current
computational time is compared to the maximum computational time every sec-
ond. If a solution approach is running when the maximum computational time is
reached, running and waiting threads are terminated and the solution approach is
stopped. Only finished threads that are not interrupted are considered to improve
the objective function. Finally, in B&B, we set an optimality gap, i.e. UB−LB

LB , of
0.0001. If B&B is runnning but the gap is lower than 0.0001, then B&B is stopped
and the best solution found so far is considered as numerically optimal.

2.4.3.1 Work center A

Numerical results for work center A are details in Appendix A.2, Section A for space
limitations. Results are summarized here.

2.4.3.1.1 First qualification configuration

Numerical results show that B&B outperforms all other solution approaches both in
terms of solution quality and computational time, and should be run for this work
center and the first qualification configuration. This also shows that using empirical
observations and dual variables, which are part of the B&B solution approach, is
relevant for this work center. Numerical results show that including dual variables
to guide solution approaches is relevant, otherwise the search space at each iteration
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of GH and LS is too large for short computational time limits. Finally, we can observe
that GHDP is often close to the optimal solution and can challenge B&B when the
computational time limit is 180 seconds.

2.4.3.1.2 Second qualification configuration

Numerical results show that LSDP is the best option for work center A because it
outperforms all other heuristics, even GHDP. Another interesting conclusion that
can be drawn from these numerical experiments is that the gain between the first
and second qualification configurations are very different. Consider k = 1 where
the optimal solution is found for all instances by B&B. For the first qualification
configuration, the mean gain is equal to 2.7% whereas it is equal to 15.4% for the
second qualification configuration. The difference is significant. This shows that
machines that cannot be qualified for some operations, i.e. such that qr,m = 0 in
the first configuration, could potentially lead to substantial improvements for the
work center in terms of utilization balance of the machines. This may be worth to
investigate, and to check if these forbidden qualifications could actually be made,
i.e. whether the associated qr,m = 0 in the first configuration could be changed to
qr,m = 2.

2.4.3.2 Work center B

The numerical results for work center B can be found in Tables 2.6 through 2.11.
A first general observation is that the numerical results for the first qualification
configuration for work center B behave similarly than the numerical results for the
second qualification configuration for work center A.

2.4.3.2.1 First qualification configuration

Only GHDP and LSDP determine satisfactory re-qualification plans that scale with
the number of re-qualifications. For k = 1, the mean gain with GHDP is equal to
15.8% and increases to 27.7% for k = 8. For larger values of k and a computational
time limit of 30 seconds, GHDP does not determine better re-qualification plans
because it reaches the computational time limit. Similarly to work center A for
the first qualification configuration, LSDP leads to a modest improvement of the
utilization balance of the machines. For instance, for k = 3 and 4, LSDP improves
the utilization balance of the machines by 0.1% compared to GHDP although the
computational time is twice as large.

For k = 1, the mean gain with IGH is equal to 15.1%, which is close to the mean
gain with GHDP of 15.8%. However, as k increases, the difference between the
mean gains of both solution approaches increases. Similarly to work center A, the
difference can be explained by the fact that the dual prices only indicate a potential
decrease of the utilization balance of the machines. Note that the optimization
model (2.13)-(2.18) is also more computationally expensive to solve than for work
center A. The mean computational time of the model is approximately 2.3 seconds,
more than ten times longer than for work center A. This is mainly due to the fact
that work center B has approximately ten times more machines than work center A.
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Table 2.6: Mean gain (%) and CPU (s) over all instances for work center B for the
first qualification configuration and a run time of 30 seconds by solution approach.

GH GHDP LS LSDP IGH B&B

k Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s)

1 15.4 33.5 15.8 2.6 15.4 33.3 15.8 5.0 15.1 2.3 15.9 7.6
2 15.4 33.1 20.8 5.0 15.4 33.1 20.8 10.0 17.6 2.3 20.9 19.2
3 15.4 33.5 23.0 7.3 15.4 33.5 23.1 15.8 18.9 2.3 23.2 26.7
4 15.4 33.2 24.6 9.7 15.4 33.5 24.7 21.2 19.9 2.4 24.3 30.3
5 15.4 33.2 25.6 12.2 15.4 33.3 25.8 26.8 20.4 2.3 24.1 30.8
6 15.4 33.2 26.5 14.6 15.4 33.4 26.7 30.1 20.9 2.5 21.9 30.8
7 15.4 33.3 27.2 17.4 15.4 33.3 27.3 31.2 21.6 2.3 21.6 30.8
8 15.4 33.3 27.7 19.6 15.4 33.1 27.7 31.4 21.9 2.4 21.9 30.8
40 15.4 33.1 28.7 31.3 15.4 33.4 28.7 31.3 25.9 2.5 25.9 30.8

100 15.4 33.2 28.7 31.4 15.4 33.7 28.7 31.3 28.3 2.6 28.3 30.8

Table 2.7: Mean gain (%) and CPU (s) over all instances for work center B for the
first qualification configuration and a run time of 180 seconds by solution approach.

GH GHDP LS LSDP IGH B&B

k Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s)

1 15.9 182.0 15.8 2.7 15.9 187.3 15.8 4.9 15.1 2.3 15.9 7.5
2 16.5 186.7 20.8 5.0 16.5 189.7 20.8 10.1 17.6 2.3 20.9 35.5
3 16.5 186.4 23.0 7.5 16.6 188.3 23.1 15.5 18.9 2.4 23.2 81.1
4 16.5 185.9 24.6 9.8 16.6 188.4 24.7 20.9 19.9 2.3 24.8 128.8
5 16.6 185.8 25.6 12.1 16.6 188.5 25.8 27.2 20.4 2.3 25.6 164.7
6 16.6 187.3 26.5 14.5 16.6 186.5 26.7 32.5 20.9 2.4 25.4 170.0
7 16.6 187.4 27.2 17.3 16.6 186.9 27.3 39.8 21.6 2.3 26.0 179.3
8 16.6 185.8 27.7 19.6 16.6 188.9 27.8 47.6 21.9 2.5 25.8 180.9
40 16.6 188.9 29.5 97.8 16.6 188.0 29.5 181.2 25.9 2.5 25.9 180.8

100 16.6 187.0 29.6 181.4 16.6 186.2 29.6 181.3 28.3 2.7 28.3 180.8

In contrast with work center A for the first qualification configuration, GH and
LS perform poorly. When the computational time limit is 30 seconds, GH cannot
complete its first iteration before reaching 30 seconds. When the computational
time limit is 180 seconds, GH can complete its first iteration for some instances but
never completes its second iteration. LS slightly improves the utilization balance of
the machines for some instances, at most by 0.1% on average. Similarly to work
center A for the second qualification configuration, for k = 1, GH is able to determine
qualification plans that are close in terms of quality to the re-qualification plans
determined by GHDP. However, it is mostly by “chance” because good solutions are
among the first ones tested.

Finally, similarly to work center A for the second qualification configuration, on
average, B&B determines poor re-qualification plans. For k = 1, B&B is efficient and
determines optimal solutions for all instances (see Table 2.8). Note that the con-
tinuous relaxation for work center B is weaker than for work center A. An optimal
solution has been found for all instances whereas the mean final gap is of 4.86%.
This means that the optimal solution has been found by pruning nodes with bounds.
These numerical results suggest that work center B is less suitable for the branch
and bound approach. Finally, note that, when the computational time limit is 30
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Table 2.8: Details of the branch and bound solution approach for work center B and
the first qualification configuration.

30 seconds 180 seconds

Number Number Number Number
Initial Final Explored optimal Initial Final Explored optimal

k Gap Gap Nodes instances Gap Gap Nodes instances

1 5.75% 4.86% 3.7 24 5.75% 4.86% 3.4 24
2 8.89% 3.43% 20.8 15 8.89% 3.43% 43.8 22
3 10.33% 3.44% 35.6 9 10.33% 3.40% 116.0 18
4 11.30% 3.63% 49.2 1 11.30% 3.06% 214.4 12
5 12.01% 4.90% 55.8 0 12.01% 3.07% 316.7 5
6 12.16% 10.17% 61.1 0 12.16% 3.88% 369.9 3
7 11.75% 11.75% 61.8 0 11.75% 3.80% 409.4 1
8 11.85% 11.85% 61.4 0 11.85% 4.31% 421.5 0

40 7.05% 7.05% 60.4 0 7.05% 7.05% 459.8 0
100 2.59% 2.59% 61.5 0 2.59% 2.59% 454.5 0

seconds, B&B does not find optimal solutions from k = 5, and the mean final gap is
large, above 3%. When the computational time limit is 180 seconds, B&B does not
find optimal solutions from k = 8.

Generally, the numerical results show that B&B is not suitable for work center
B, in particular because of the very large number of machines. As for work center
A, GHDP determines satisfactory re-qualification plans and is the most appropriate
approach for work center B and the first qualification configuration. LSDP is at least
as good as GHDP, but does not significantly improve the utilization balance of the
machines and requires larger computational times.

2.4.3.2.2 Second qualification configuration

For k = 1 and contrary to the first qualification configuration, GH often deter-
mines unsatisfactory re-qualification plans for the second qualification configura-
tion, whether the computational time limit is 30 or 180 seconds. The mean gain
is equal to 0.8% for a computational time limit of 30 seconds, and only increases
to 2.8% for a computational time limit of 180 seconds. The mean gain with GHDP
is equal to 35.4% with a computational time of approximately 6 seconds. Such a
difference is due to the significant combinatorial explosion associated to work cen-
ter B. For instance, consider instance 1 of work center B. There are 807 operations
and 191 machines (see Table 2.2). The initial qualifiable density is approximately
equal to 2.53% (see Table 2.3). For the second qualification configuration, this
means that the total number of qualifiable pairs (operation, machine) is equal to
100−2.53

100 × (807× 191) = 150,238.
As mentioned for work center A, GHDP and LSDP are “immunized” against

the combinatorial explosion because the number of re-qualifications that are tested
from one iteration to another is constant and equal to Ndual . Moreover, these re-
qualifications are relevant to improve the utilization balance of the machines.

Similarly to GH, B&B performs poorly. When the computational time limit is 30
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seconds, the mean number of explored nodes is approximately equal to 1. More-
over, only one optimal solution is determined for k = 1. In contrast with the first
qualification configuration, the number of explored nodes is very small but only one
optimal solution is determined. Several reasons explain this. First, the continuous
relaxation of the optimization model (2.1)-(2.9) is actually more computationally
difficult to solve than the optimization model (2.13)-(2.18) that is used to evaluate
a qualification plan, for instance in GH. In the continuous relaxation of the opti-
mization model (2.1)-(2.9), there are twice as many decision variables as in the
optimization model (2.13)-(2.18). There are also 2×R×M more constraints (due to
the bound constraints on OQr,m). Similar observations can be made for work center
A, but the practical impact of the resolution of the relaxed programs is lesser.

Contrary to the first qualification configuration, LSDP is able to improve the
initial re-qualification plan determined by GHDP. For instance, when k = 3, the mean
gain with GHDP is equal to 50.8%, whereas the mean gain with LSDP is equal to
51.8%. When k = 4, the mean gain with GHDP is equal to 55.7%, whereas the mean
gain with LSDP is equal to 56.5%. However, the increase of the utilization balance of
the machines impacts the computational times, as the mean computational time of
LSDP is approximately equal to three times the mean computational time of GHDP.

As for the second qualification configuration for work center A and the first
qualification configuration for work center B, GHDP, and possibly LSDP, seems to
be most relevant approach to tackle the studied optimization problem on very large
scale industrial instances, even for a small computational budget.

Table 2.9: Mean gain (%) and CPU (s) over all instances for work center B for
the second qualification configuration and a run time of 30 seconds by solution
approach.

GH GHDP LSDP IGH B&B

k Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s)

1 0.8 33.2 35.3 3.3 35.3 6.2 32.3 2.7 35.7 32.7
2 - - 44.5 6.1 44.8 12.7 34.6 2.7 38.3 34.6
3 - - 50.8 9.2 51.8 20.5 35.2 2.7 35.2 34.4
4 - - 55.7 12.2 56.5 27.1 35.3 2.7 35.3 33.6
5 - - 59.5 15.1 61.2 31.3 35.3 2.7 35.3 33.3
6 - - 63.4 18.3 64.3 31.5 35.3 2.7 35.3 32.8
7 - - 65.8 21.1 66.7 31.5 35.3 2.7 35.3 33.2
8 - - 68.3 24.1 69.0 31.7 35.3 2.7 35.3 33.5

40 - - 73.0 31.7 73.3 31.8 35.9 2.7 35.9 35.3
100 - - 73.5 31.9 73.5 31.5 37.1 2.9 37.1 35.1

2.5 Recommendations from the computational study

Numerical results in Sections 2.4.3.1 and 2.4.3.2 show that all algorithms do not
perform equally. Generally, GH and LS are irrelevant because GHDP and LSDP
determine re-qualification plans of similar quality in smaller computational times.
However, depending on the work center, the qualification configuration and the
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Table 2.10: Mean gain (%) and CPU (s) over all instances for work center B for
the second qualification configuration and a run time of 180 seconds by solution
approach.

GH GHDP LSDP IGH B&B

k Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s)

1 2.8 189.8 35.3 3.4 35.3 6.1 32.3 2.7 36.0 69.2
2 - - 44.5 6.5 44.8 12.4 34.6 2.7 46.5 188.2
3 - - 50.8 9.5 51.8 20.4 35.2 2.7 53.4 190.4
4 - - 55.7 12.0 56.5 28.0 35.3 2.7 56.3 192.6
5 - - 59.5 15.3 61.5 39.3 35.3 2.7 35.3 191.1
6 - - 63.4 18.1 64.5 47.3 35.3 2.7 35.3 193.4
7 - - 65.8 20.9 67.0 61.5 35.3 2.7 35.3 196.9
8 - - 68.3 23.9 69.3 64.4 35.3 2.7 35.3 198.6
40 - - 88.1 120.9 88.7 182.0 35.9 2.7 35.9 208.2

100 - - 90.2 181.2 90.2 181.6 37.1 2.9 37.1 198.1

Table 2.11: Details of the branch and bound solution approach for work center B
and the second qualification configuration.

30 seconds 180 seconds

Number Number Number Number
Initial Final Explored optimal Initial Final Explored optimal

k Gap Gap Nodes instances Gap Gap Nodes instances

1 10.95% 3.91% 1.8 1 10.95% 3.44% 4.8 24
2 30.71% 21.73% 1.9 0 30.71% 5.37% 24.1 0
3 51.04% 51.04% 1.6 0 51.04% 6.21% 22.0 0
4 71.36% 71.36% 1.4 0 71.36% 11.53% 20.6 0
5 91.01% 91.01% 1.2 0 91.01% 91.01% 18.2 0
6 111.19% 111.19% 1.0 0 111.19% 111.19% 17.0 0
7 131.72% 131.72% 1.0 0 131.72% 131.72% 16.3 0
8 152.43% 152.43% 1.0 0 152.43% 152.43% 15.5 0

40 696.11% 696.11% 1.0 0 696.11% 696.11% 13.0 0
100 890.51% 890.51% 1.5 0 890.51% 890.51% 17.1 0

computational budget, the other solution approaches are valuable to a certain ex-
tent.

For a very small computational budget, instantaneous or of a few seconds, al-
lowed in the Decision Support System, IGH is the most suitable approach, in par-
ticular for k > 1, because the computational time is independent of k, no matter
the work center and the qualification configuration. However, a re-qualification
plan determined by IGH may be of poor quality compared to GHDP, because one
machine could inappropriately be overqualified at the expense of other machines.
Therefore, a re-qualification plan may need manual rework by production personnel
in the Decision Support System.

For work center A, and more generally, for work centers with a small number of
machines, e.g. M = 20, and for the first qualification configuration, B&B is a good
approach. However, although B&B performs slightly better than GHDP on average
on our test instances, it is possible that B&B fails on other instances in terms of
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worst-case performances (e.g., see Table A.6) and determines poor re-qualification
plans.

Generally, as GHDP determines satisfactory re-qualification plans that are very
close to the optimal solutions for the first qualification configuration and very good
qualification plans for the second qualification configuration, using GHDP is the
best policy for the optimization model for any work center. GHDP surpasses IGH in
terms of solution quality because it iteratively reconsiders better re-qualifications.
LDSP can be selected if production personnel accepts a larger computational time,
which can be conceivable for large work centers as work center B, or for the second
qualification configuration where the difference in terms of relative gain with GHDP
can be appreciable.

Note that if many dual variables have the same value, or are very close, as
in the second qualification configuration, the solution approaches that are based
on dual variables lose quality if a restricted number of qualifications is tested at
each iteration. However, numerical results on industrial data show that this loss
is not substantial and does not seem to depend on the number of operations R
and machines M. If the loss was significant, the number of re-qualifications tested
at each iteration in GHDP and LSDP could be increased to overcome the loss of
quality.

Finally, this study shows that, although an optimization problem can be NP-Hard,
studying the nature of the data is primordial to design efficient solution approaches.
For manufacturing facilities with a large operation variety, using dual variables to
guide the solution approach is shown to be effective and efficient for two different
types of work centers and qualification configurations.

2.6 Conclusions and perspectives

In this chapter, we propose new solution approaches to determine optimized re-
qualification plans in work centers with non-identical parallel machines to maximize
the utilization balance and minimize the total utilization rate of the machines. In
particular, dual prices are used to derive heuristics that are quickly guided towards
good solutions. The proposed approaches are compared on industrial data on two
different work centers and two different qualification configurations. Recommenda-
tions are finally provided. The approaches are now embedded in a decision support
system that determines and proposes effective re-qualification plans to production
personnel twenty minutes before every shift (every 8 hours). The decision sup-
port is used to enhance their decision process and better manage work centers (see
Chapter 7 for more details).

An extension of the utilization balancing optimization approach proposed in Sec-
tion 2.2.1 is proposed in Chapter 3 to maximize the throughput. We also study the
effect of re-qualifications and disqualifications on the throughput. In addition, in
Chapter 4, we further study how re-qualification delays and time varying demands
and production capacities affect the throughput.

We believe the following perspectives are worth investigating in the future (out
of the scope of the thesis):
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1. Some parameters might be subject to uncertainty, such as the operation quan-
tities and the machines capacities, and designing robust qualification plans is
an interesting research avenue. In Chapter 6, a robust optimization approach
is proposed for tactical qualification management, which could be extended
for operational qualification management.

2. Workload variables are continuous but, in practice, some machines run oper-
ation quantities by batches. Hence, the consideration of batching constraints
could be explored as in (Rowshannahad and Dauzère-Pérès, 2013).

3. An outer linearization algorithm is used to solve nonlinear programs. Other
algorithms, such as active-set methods or sequential quadratic methods (Row-
shannahad et al., 2015), could be compared to the outer linearization algo-
rithm to further reduce computational times.

4. Solution approaches could be compared on data from other factories to further
validate the relevance of dual variable solution approaches.

5. It would be relevant to study the robustness of solution approaches, e.g. under
which conditions using dual prices do not provide good solutions.

6. Additional branching and exploring strategies could be explored for the B&B
solution approach.

7. It would be interesting to better understand the impact of different γ settings
on solution quality and computing time.
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Chapter 3

A single period bilevel optimization

approach for throughput maximiza-

tion

In Chapter 2, the question “How to determine the most relevant re-qualifications
to improve operational efficiency?” is answered from a utilization balancing stand-
point. Nevertheless, a utilization balancing approach may actually be limited to
maximize the throughput on short term horizons for factories subject to high pro-
duction variability. In this case, modeling approaches that are more suitable may
be required. In addition, disqualifications are not considered in Chapter 2, whereas
disqualifications can be a critical component in operational qualification manage-
ment*.
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CHAPTER 3. A SINGLE PERIOD BILEVEL OPTIMIZATION APPROACH FOR
THROUGHPUT MAXIMIZATION

3.1 Introduction

In general, when a lot arrives in a work center, if a machine is both idle and quali-
fied for the operation required by the lot, the lot might be assigned to this machine
even if it is very slow to process the operation compared to other qualified ma-
chines. This might be the right decision to temporarily and locally maximize the
throughput with local perception. However, this assignment can be a poor decision
for the overall throughput over a day when a wave (peak) of lots with a faster op-
eration is expected, because the production capacity of each machine is finite. Such
assignments are frequently observed in manufacturing systems with many opera-
tions because dispatching engines work only with the current lots in a work center,
or with a limited vision of the lots arriving in the work center. Dispatching deci-
sions are short-sighted and can be a source of capacity loss. This means that two
re-qualifications that better balance the utilization rates of the machines may not
lead to the same gain on the throughput.

Assume that a small quantity of a very slow operation is expected to consume
the production capacity of a machine that also should process a large quantity of
a much faster different operation. The slow operation is thus disqualified on the
machine, so that only the faster operation is processed and the slow operation is
assigned to other machines. Disqualifications are also made when the throughput
rate of an operation depends on the machine health (i.e., the process quality of a
machine). This is the case for ion implantation machines because the throughput
rate of an operation depends on the wear of the ion source. The more significant the
wear, the lower the throughput rate. If there exist other qualified machines for the
operation, it can be preferable to disqualify the operation on a machine to process
it on other qualified machines. Nevertheless, it is difficult to evaluate the timing
of such decisions without models. More generally, disqualifications are frequently
made when the throughput rates between two machines are very different for a
given operation. In addition, disqualifications are used by production personnel
to disqualify operation on machines that do not have an optimal yield. Therefore,
disqualifications are used to better manage the production capacity of each machine
and maximize the throughput.

Nevertheless, too many disqualifications can lead to poorly balanced machines
in terms of utilization rates. This can also be a source of throughput loss even
though initially disqualified machines are much slower than other initially qualified
machines. In this case, production personnel must determine re-qualifications to re-
balance the utilization rates of the machines in the work center. Re-qualifications are
then also used to maximize throughput, anticipate future bottleneck (overloaded)
machines and better use the production capacity of each machine. Production per-
sonnel must therefore find a balance between re-qualification and disqualification
decisions to maximize the manufacturing performances of their work center, and in
particular to maximize the throughput.

Determining relevant re-qualifications and disqualifications is crucial to maxi-
mize the throughput. However, this is complex because the effect of qualifications
and disqualifications on the throughput depends, among other reasons, on the num-
ber of operations that must be processed, the quantity for each operation, the initial
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set of qualifications and disqualifications, the machine states and dispatching deci-
sions (Johnzén et al., 2008; Gurumurthi and Benjaafar, 2004; Kopp et al., 2019).

The remainder of Chapter 3 is organized as follows. A bilevel optimization ap-
proach for operational management of re-qualifications and disqualifications is mo-
tivated in Section 3.2. In particular, it is motivated with respect to the existing
literature and to the utilization balancing approach presented in Chapter 2. Bilevel
optimization models are proposed in Section 3.3. In Section 3.4, we show the
benefit of using a bilevel optimization approach to optimize the throughput with
re-qualifications and disqualifications. The bilevel optimization approach is notably
compared to the utilization balancing optimization approach studied in Chapter 2.
In Section 3.5, we formulate recommendations for production personnel. Finally, in
Section 3.6, we conclude and give perspectives.

3.2 Motivation

3.2.1 Optimizing the throughput with a utilization balancing ap-
proach

The utilization balancing approach presented in Chapter 2 can be seen a surrogate
mean to improve the throughput. For instance, the utilization balancing optimiza-
tion model can be used to identify short-term bottleneck (overloaded) machines
and therefore recommend qualifications to improve the utilization balance between
the machines. If machine utilization rates are better balanced, then it is reasonable
to assume that the throughput will improve, in particular if we are able to reassign
some of the workload of a bottleneck machine to a under loaded machine.

However, the utilization balancing approach does not necessarily ensure that
the throughput is optimized over a finite planning horizon, a major performance
indicator on which production personnel are challenged and that is ultimately used
to complete orders on time. Consider the illustrative example in Tables 3.1 and
3.2 of a work center of four machines. The utilization balancing approach is used
to determine the utilization rate of each machine when no new re-qualification
decision is performed. Machine 1 has a utilization rate of 3.0, machine 2 of 1.2,
machine 3 of 1.2 and machine 4 of 0.8. When the utilization rate of a machine is
larger than 1, then there is a backlog at the end of the horizon and the machine is
bottleneck (critical).

First, assume that it is possible to make a re-qualification decision to optimize the
utilization balancing objective function

∑
mU

γ
m of Chapter 2 by moving some work-

load of machine 1 to machine 2 (see Table 3.1), γ > 1. After one re-qualification
decision, the utilization balancing objective function decreases from 83.1 to 38.9,
which is significant. Nevertheless, because the total utilization rate remains un-
changed, it is unclear to see why the throughput should increase, in particular
because both machines have a utilization rate larger than 1 before and after the
re-qualification.

Then, assume that it is possible to make a re-qualification decision to optimize
the utilization balancing objective function

∑
mU

γ
m by transferring some workload
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of machine 3 to machine 4 (see Table 3.2). After one re-qualification, the utilization
balancing objective function decreases from 2.5 to 2, which is a significantly smaller
reduction with respect to the re-qualification that balances the utilization rates of
machines 1 and 2.

Therefore, if we had to choose the best re-qualification in terms of utilization
balance and total utilization rate, the first re-qualification, i.e. the re-qualification
that balances the utilization rates of machines 1 and 2, would be chosen. Neverthe-
less, this is probably not the relevant re-qualification in terms of throughput. This
is because the second re-qualification, i.e. the re-qualification that balances the uti-
lization rates of machines 3 and 4, allows all backlog quantities by machine 3 to be
processed by machine 4 before the end of the horizon even tough the total utiliza-
tion rate remains unchanged. This is because the initial utilization rate of machine
4 is equal to 0.8. As a result, the throughput is expected to increase. In other words,
the best re-qualification in terms of utilization balance is not necessarily the best re-
qualification in terms of throughput. For a given horizon, balancing the utilization
rate of two overloaded machines may not lead to a throughput gain, in particular if
the total utilization rate of both machines is not reduced.

Note that, if the throughput cannot be improved by optimizing the utilization
balancing objective function, then it is possible to focus on some re-qualification
decisions to still keep optimizing the utilization balance while ensuring that the
throughput is improved. For instance, re-qualification decisions could be restricted
underloaded machines, i.e. the machines that have still some production capac-
ity left by the end of the horizon, or to overloaded machines that are faster for
some operations than currently qualified overloaded machines to minimize the to-
tal utilization rate. However, this is no longer a mathematical model but a solution
approach. The underlying objective that consists in optimizing the throughput is
not modeled. A more relevant mathematical model can help put the problem faced
by production personnel into perspective to better support decision making in terms
of throughput.

Table 3.1: An illustrative example why optimizing the utilization balance may not
be equivalent to throughput maximization (γ = 4) (1/2).

Current Utilization rate after
utilization rate one re-qualification

Machine 1 3 2.1
Machine 2 1.2 2.1

Total utilization rate
∑
mUm 4.2 4.2∑

mU
γ
m 83.1 38.9

In addition, a utilization balancing approach does not consider dispatching rules
whereas they strongly affect the relevance of re-qualification decisions (see Sec-
tion 3.2.2 and Johnzén et al. 2008; Gurumurthi and Benjaafar 2004; Kopp et al.
2019).
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Table 3.2: An illustrative example why optimizing the utilization balance may not
be to throughput maximization (γ = 4) (2/2).

Current Utilization rate after
utilization rate one re-qualification

Machine 3 1.2 1
Machine 4 0.8 1

Total utilization rate
∑
mUm 2 2∑

mU
γ
m 2.5 2

3.2.2 Short-sighted aspect of dispatching engines

To maximize the throughput with qualification management, a simple optimization
model could be used and would consist in directly maximizing the number of wafers
processed by the end of the planning horizon. This model is similar to the model
proposed by Chang and Dong (2017):

max
∑
r,m

WIPr,m (3.1)

s. t.
∑
r

WIPr,m
tpr,m

≤ cm ∀m (3.2)∑
m

WIPr,m ≤ dr ∀r (3.3)∑
r,m

OQr,m ≤ k (3.4)

WIPr,m ≤ drOQr,m ∀r,∀m | qr,m = 2 (3.5)
WIPr,m ≤ dr ∀r,∀m | qr,m = 1 (3.6)
WIPr,m ≤ 0 ∀r,∀m | qr,m = 0 (3.7)
WIPr,m ≥ 0 (3.8)
OQr,m ∈ {0,1} ∀r,∀m (3.9)

The objective function (3.1) that consists in maximizing the number of wafers
processed by the end of the planning horizon. Constraint (3.2) ensures that the
production capacity of each machine in the work center is respected. Constraint
(3.4) limits the size of the re-qualification plans to k re-qualifications. Constraint
(3.3) ensures that the number of wafers processed by operation cannot exceed the
total quantity. Constraint (3.5)-(3.7) ensures that wafers of operation r can only
be assigned to machine m if the machine m is qualified for operation r. Finally,
Constraint (3.8) is the non-negativity constraint and Constraint (3.9) is the binary
constraint.

The optimization model (3.1)-(3.9) is very optimistic and always assigns wafers
to the fastest qualified machine while satisfying capacity constraints to maximize the
throughput. Presenting capacity allocation deduced from the optimization model to
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production personnel may be unrealistic, because very often the same operations
will be backlogged. This is similar to the justification for the use of a nonlinear
function for utilization balancing. The objective function seems appropriate but
solutions may not be acceptable in practice. From practical experience, given a ma-
chine, although an operation is much slower than the fastest operation, the slow
operation will likely be run before faster operations, and this is even desirable be-
cause the slow operation may be linked to operations with strong due date commit-
ments. Similarly, given an operation, the workload is not necessarily associated to
the fastest machine. This is due to the short-sighted aspect of dispatching engines.
The way operations compete at the expense of each other for machines with finite
production capacity is not captured. High priority operations are likely to be run
before low priority operations. Considering operation queues is probably necessary
to make better re-qualification decisions. Johnzén et al. (2008) and Gurumurthi
and Benjaafar (2004) actually show that re-qualifications do not necessarily im-
prove the throughput because of the short-sighted aspect of dispatching engines.
Similarly, Kopp et al. (2019) show that dispatching decisions strongly influence the
relevance of additional qualifications.

A way to overcome the problem using optimization models such as (3.1)-(3.9)
is to add weights to decision variables in the objective function. However, rele-
vant weights, which could be seen as inventory backlog or holding costs, to make
capacity allocation more realistic are complex to define, in particular on short hori-
zons (a few hours to a few days), for several reasons. First, the fabrication process
takes several months, therefore defining inventory holding costs on short horizons
is less relevant. Inventory holding and backlog costs are often optimized at tactical
or strategic decision levels (master planning) when product quantities to release in
the factory are decided. In addition, the decision level for re-qualifications is actu-
ally close to the scheduling level, where the concepts of inventory and backlog do
not really exist and are implicitly coded using priorities of lots.

3.2.3 Evaluating disqualification decisions

To the best of our knowledge, although disqualification management is a critical
component of short-term decision making for production personnel, there is no
contribution that deals with the use or modeling of disqualification decisions in
semiconductor manufacturing. However, some approaches can be adapted to sup-
port disqualification decisions.

First, the linear optimization model proposed by Chang and Dong (2017), or
similarly the linear optimization model proposed by Rowshannahad et al. (2015),
cannot be be used to recommend disqualifications that improve the throughput. If
there is at least one disqualification (the number of “1” in the qualification matrix
decreases), the new value of the objective function cannot be larger than the value
of the objective function with the initial set of qualifications. This is because, if the
number of qualifications (number of entries that are equal to “1”) is reduced with
respect to the initial set of qualifications, then the solution set of the optimization
models with the new set of qualifications is included in the solution set of the initial
set of qualifications. Therefore, after performing disqualifications, the objective
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function cannot strictly increase.
From a more general standpoint, it seems difficult or even impossible to define a

single-level optimization approach to optimize the throughput with disqualifications,
because disqualifications can only decrease the throughput. However, this is not
what can be observed in practice by production personnel. This means, that in
order to simultaneously consider the impact of qualifications and disqualifications,
whether it is with a user-defined scenario in a DSS or in an optimization algorithm,
qualification decisions and dispatching decisions must be separated, as in practice,
in particular if we want to thoroughly model the impact of disqualification on the
throughput. Note that separating qualification and dispatching decisions is relevant
both for disqualification and qualification decisions.

A first option consists in using simulation approaches, which can determine dis-
qualifications that improve the throughput. For instance, a discrete-event simulation
can be used to simulate dispatching decisions where qualifications are input param-
eters, which can be defined by an optimization model. Simulation models are used
by Fowler et al. (1997); Akcalt et al. (2001); Kabak et al. (2013); Ignizio (2009,
2010); Kopp et al. (2016, 2018, 2019). Simulation models are used to evaluate the
effect of re-qualifications on indicators such as in terms of mean cycle time, through-
put, mean tardiness and the number of performed re-qualification activities. Note
that the short-sighted aspect of dispatching decisions is still present in simulation
models because dispatching decisions do not consider upcoming peaks of the wafer
quantities.

These contributions could be adapted to embed disqualification decisions, for in-
stance by designing an iterative optimization-simulation approach. Such approach
is popular for instance for production planning in semiconductor manufacturing
(e.g. see Hung and Leachman 1996). Discrete-event simulation models are partic-
ularly interesting if we want to include special features of a work center, such as
the management of masks in a lithography work center. However, if short computa-
tional times are required, running a discrete-event simulation can be undesirable for
purposes other than defining strategies. It is particularly undesirable if a discrete-
event simulation must be run for each scenario defined by production personnel in
a DSS. Moreover, developing and maintaining an up-to-date discrete-event simula-
tion model is time-consuming (Shanthikumar et al., 2007), in particular if we want
to apply the approach to any work center and not just to a particular work center,
as the lithography work center.

Another option consists in using a bilevel optimization approach. It is a suitable
approach for production personnel because there is no need to run discrete-event
simulations, and bilevel optimization models can be used to model a hierarchical
decision making, and therefore separate the re-qualification and dispatching deci-
sions (see e.g. Stackelberg 1952; Bracken and McGill 1973; Sinha et al. 2017). Note
that bilevel optimization problems are more challenging to solve than “classical” op-
timization problems (Fischetti et al., 2017).
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3.2.4 Concluding remarks and contributions

For short-term optimization, the utilization balancing problem without making any
qualification decision presented in Chapter 2 can actually be seen as a schedul-
ing problem on parallel machines with preemption and no release dates where the
objective consists in maximizing the utilization balance and minimizing the total
utilization rates of the machine. Although the utilization balancing problem can
take into account the fact that a machine is idle or that an operation is assigned to a
machine, it cannot fully simulate dispatching rules and the way operations compete
for machines.

A bilevel optimization approach is able to consider the short-sighted aspect of
dispatching engines. Based on a utilization balancing problem, a bilevel optimiza-
tion approach is suitable to simulate dispatching rules and their impact on the
throughput. A bilevel optimization approach can also be seen as a method to eval-
uate the quality of the utilization rates of the machines in terms of throughput.
Finally, a bilevel optimization approach covers a broader set of decisions than the
utilization balancing approaching to improve the throughput (see Figure 3.1) and
the same set of decisions that are available to production personnel. Note that,
the optimistic optimization model (3.10)-(3.20) cannot be used as the lower-level
optimization problem in the bilevel optimization approach. This is because the opti-
mistic optimization model already computes the throughput, and as the upper-level
computes the throughput, both decision levels would cooperate and be unable to
determine disqualifications that improve the throughput.

Figure 3.1: Set of decisions covered by the different optimization approaches.

Our contributions are summarized below:

− A bilevel optimization model is proposed to maximize the throughput with
re-qualification decisions.

− A bilevel optimization model is proposed to cover the case where disqualifica-
tion decisions must be made.

− A bilevel optimization model is proposed to combine re-qualification and dis-
qualification decisions.

− A computational study is performed on industrial data from a 300 mm wafer
fab located in France to validate bilevel optimization models.
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3.3 Bilevel optimization models

To support short-term re-qualification and disqualification decisions that maximize
the throughput, a bilevel optimization approach is proposed because it is suitable to
model hierarchical decision making (Stackelberg 1952; Bracken and McGill 1973;
Sinha et al. 2017). A bilevel optimization problem is a classical optimization prob-
lem, but in which at least one constraint is another optimization problem. The
nested optimization problem is referred as the lower-level optimization problem.
The outer optimization problem is referred as the upper optimization problem. The
lower-level (also known as follower) optimization problem has its own objective
function and constraints, that depend on decision variables of the upper-level (also
known as leader) optimization problem (Sinha et al., 2017).

In this chapter, the bilevel optimization approach follows the separation of the
production control and dispatching decision levels. The upper-level optimization
problem is used to model the production control level. Re-qualification and dis-
qualification decisions are therefore made in the upper-level optimization prob-
lem, where the objective criterion is the throughput, and used as arguments in the
lower-level optimization problem. The lower-level optimization problem is mod-
eled as a utilization balancing optimization problem as in Chapter 2, subject to re-
qualification and disqualification decisions of the upper-level optimization problem,
to build realistic queues of operations in front of machines by using empirical obser-
vations of dispatching engines. Such an approach is motivated by the fact that, from
a general perspective, dispatching engines maximize the utilization of machines in
order to maximize the throughput. Once queues of operations are defined by the
lower-level optimization problem, the throughput is computed by the upper-level
optimization problem.

In bilevel optimization, there exist two types of positions for the lower-level op-
timization problem: An optimistic position and a pessimistic position (Sinha et al.,
2017). If multiple optimal solutions are available for the lower-level optimization
problem, an optimistic solution is a solution that maximizes the upper-level objec-
tive function. A pessimistic position is a solution that minimizes the upper-level
objective function. Our bilevel optimization formulation is neither pessimistic nor
optimistic. In practice, dispatching or scheduling engines, even they are a source of
production capacity loss, try to maximize the throughput by balancing the utiliza-
tion rates of the machines. Extending the current formulation to optimistic (or even
pessimistic) formulations is worth investigating but left for future research. It is also
worth mentioning that there may exist multiple optimal solutions associated to the
lower-level optimization problem. Some solutions may lead to a better throughput
than others. Studying this is left for future research, e.g. by giving bounds on the
throughput to production personnel.

A bilevel optimization problem where both the upper and lower optimization
problems are linear is NP-Hard (see e.g., Ben-Ayed and Blair 1990; Bard 1991).
Bilevel optimization problems presented in Sections 3.3.3, 3.3.4 and 3.3.5 are there-
fore NP-Hard.
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3.3.1 Problem statement

Consider a work center consisting of M non-identical, both in terms of throughput
rates and re-qualifications, parallel machines. On a given time horizon, R different
operations, each with a strictly positive quantity, must be processed by the machines.
The throughput rate of each operation on each machine is known. However, each
machine has a finite production capacity and can only process qualified operations.
Similarly, an operation can only be processed by qualified machines. The qualifica-
tion matrix, i.e. the operations that are initially qualified and that can be qualified
for each machine, is known. We assume that, when a re-qualification decision is
made, then the re-qualification is immediately active at the beginning of the hori-
zon. We also assume that, when a disqualification decision is made, then it it made
at the beginning of the horizon.

The objective is to determine k qualifiable pairs (operation r, machine m) to
maximize the throughput.

3.3.2 Notations

In this section, the notations used in the models are presented.
Indices and sets:
m: Index for machines, ∈ {1, ..,M},
r: Index for operations, ∈ {1, ..,R}.
Parameters:
k: Number of re-qualification (or disqualification) decisions to be made at the be-
ginning of the planning horizon,
qr,m ∈ {0,1,2}: Is equal to 1 if machine m is qualified for operation r, is equal to 2 if
machine m is qualifiable for operation r, and is equal to 0 if machine m cannot be
qualified for operation r,
tpr,m: Throughput rate (in number of wafers by second) of operation r on machine
m,
cm: Initial availability time (in seconds) of machine m over the planning horizon,
dr: Quantity of operation r to process,
γ: Utilization balancing parameter, strictly greater than 1.
Decision variables:
OQr,m ∈ {0,1}: Is equal to 1 if a re-qualification procedure is proposed for operation
r on machine m at the beginning of the planning horizon, and 0 otherwise,
Um: Utilization rate of machine m,
WIPr,m: Quantity of operation r processed by machine m,
Rq(q,OQ) = {r |

∑M
m=1(1(qr,m) +OQr,m) > 0}: Set of operations with at least one

qualified machine with some capacity on the planning horizon, where 1(qr,m) = 1 if
qr,m = 1, and 0 otherwise.

3.3.3 Bilevel optimization model for re-qualifications

Upper-level optimization model:

max TH = f (U,WIP) (3.10)
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s. t.
∑
r,m

OQr,m ≤ k (3.11)

U,WIP ∈ argminLBP (OQ) (3.12)
OQr,m ∈ {0,1} ∀r,∀m (3.13)

Lower-level optimization model:

LBP (OQ) = min
∑
m

U
γ
m (3.14)

s. t.
∑
m

WIPr,m = dr ∀r ∈ Rq(q,OQ) (3.15)

Um =
∑
r

WIPr,m
tpr,mcm

∀m (3.16)

WIPr,m ≤ dr ∀r,∀m | qr,m = 1 (3.17)
WIPr,m ≤ drOQr,m ∀r,∀m | qr,m = 2 (3.18)
WIPr,m ≤ 0 ∀r,∀m | qr,m = 0 (3.19)
WIPr,m ≥ 0 ∀r,∀m (3.20)

Upper-level optimization model. The objective function (3.10) aims at maximiz-
ing the throughput that is computed from the utilization rates of the machines in the
work center. Constraints (3.11) set to k the maximum number of re-qualifications to
be performed at the beginning of the planning horizon. Constraints (3.12) link the
upper-level and lower-level problems. Constraints (3.13) are the binary constraints
for the re-qualification decisions.

Lower-level optimization model. The lower-level optimization model corresponds
to a utilization balancing optimization problem. Equation (3.14) is the objective
function that consists in maximizing the utilization balance and minimizing the to-
tal utilization rates of the machine. Constraints (3.15) define the flow conservation
on the planning horizon. Constraints (3.16) compute the utilization rate of each
machine in the work center. Constraints (3.17)-(3.18) ensure that wafers of opera-
tion r can only be assigned to machine m if r is qualified on machine m. Constraints
(3.19) ensure that, if operation r is not qualified and cannot be qualified on ma-
chine m, then operation quantities of operation r is never assigned to machine m.
Constraints (3.20) are the non-negativity constraints for WIPr,m.

As previously mentioned, there may exist multiple solutions to the lower-level
optimization problem. In the thesis, we consider only the initial solution obtained
when solving the lower-level optimization problem.

3.3.4 Bilevel optimization model for disqualifications

The proposed optimization model to make disqualification decisions differs from the
optimization model to make re-qualification decisions presented in Section 3.3.3. A
new binary decision variable, DOQr,m, is introduced, is equal to 1 if a disqualifi-
cation procedure is proposed for operation r on machine m, and 0 otherwise. In
addition, a new set Rd describes the set of operation that still have at least one
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qualified machine with some capacity over the planning horizon after a disqualifi-
cation. Rd is defined as follows: Rd(q,DOQ) = {r |

∑M
m=1(1(qr,m) −DOQr,m) > 0}.

The bilevel optimization model is formalized below:
Upper-level optimization model:

max TH = f (U,WIP) (3.21)

s. t.
∑
r,m

DOQr,m ≤ k′ (3.22)

U,WIP ∈ argminLBP (DOQ) (3.23)
DOQr,m ∈ {0,1} ∀r,∀m (3.24)

Lower-level optimization model:

LBP (DOQ) = min
∑
m

U
γ
m (3.25)

s. t.
∑
m

WIPr,m = dr ∀r ∈ Rd(q,DOQ) (3.26)

Um =
∑
r

WIPr,m
tpr,mcm

∀m (3.27)

WIPr,m ≤ dr − drDOQr,m ∀r,∀m | qr,m = 1 (3.28)
WIPr,m ≤ 0 ∀r,∀m | qr,m = 2 (3.29)
WIPr,m ≤ 0 ∀r,∀m | qr,m = 0 (3.30)
WIPr,m ≥ 0 ∀r,∀m (3.31)

Upper-level optimization model. The upper-level optimization model is similar to
the one presented in Section 3.3.3. Only Constraint (3.22) that limits the number
of disqualifications to k′ changes.

Lower-level optimization model. Similarly, the lower-level optimization model is
close to the one presented in Section 3.3.3. Only constraint (3.28) changes. It
ensures that operation quantities of operation r cannot be assigned to machine m if
m is disqualified at the beginning of the planning horizon. All other constraints are
identical.

By setting k = 0 and by modifying the initial qualification matrix qr,m following
a custom scenario defined by production personnel, it is possible to quickly simu-
late the impact of multiple disqualification decisions on the throughput, and thus
improve manufacturing performances.

If the throughput rate tpr,m is identical for all operations and machines, then
disqualifying operations cannot lead to gain on the throughput. This is because
fast operations cannot be processed first because all operations are processed at
the same rate. Similarly, to a certain extent, if tpr,m is not varying much from one
machine to another and from one operation to another, then the gain on throughput
with disqualifications may be limited.

Finally, when making one disqualification decision, it is meaningless to disqualify
a pair (r,m) for which WIPr,m is initially equal to 0, i.e. when the bilevel optimiza-
tion problem is solved for k′ = 0. This is because the qualification pair (r,m) is not
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used by the lower-level optimization problem and therefore has no effect on the
utilization balance.

3.3.5 Combining re-qualifications and disqualifications

The bilevel optimization models for re-qualification and disqualification manage-
ment can be combined to determine both re-qualifications and disqualifications.
The resulting model is detailed in Appendix B, Section B.0.1.

3.3.6 Computation of the throughput

Although all wafers are assigned to machines in the work center with Equations
(3.15), (3.26) and (B.8), this does not mean that the throughput is equal to the de-
mand. This is because each machine has a finite production capacity that is shared
between wafers. For machines that have a utilization rate lower than 1, i.e. for ma-
chines such that Um < 1, all wafers assigned are processed by the end of the horizon.
However, when machines have a utilization rate larger than 1, some wafers will not
be processed by the end of the horizon and will be backlogged. Therefore, a choice
must be made to differentiate processed wafers from backlogged wafers. In the
thesis, processed wafers are distinguished from backlogged wafers by simulating
dispatching rules. Let us consider the illustrative example in Table 3.3. Consider
a work center with two machines. A total demand of 110 wafers is expected on
the horizon, e.g. on the next 8 hours. Consider two configuration of qualifications.
With the first configuration, the solution of the lower-level optimization model is a
solution where machine 1 has a utilization rate of 1.2 and machine 2 has a utiliza-
tion rate of 0.9. 60 wafers are allocated to machine 1 and 50 wafers are allocated to
machine 2. Because machine 2 has a utilization rate lower than 1, it can process all
allocated wafers by the end of the horizon. However, because machine 1 has a uti-
lization rate greater than 1, it cannot process all allocated wafers. A cross-product
can give an estimation of the throughput: 1

1.2 ×60+50 = 100. With the second con-
figuration, the solution of the lower-level optimization model is a solution where
both machines have a utilization rate of 0.95. Therefore, both machines can pro-
cess all allocated wafers by the end of the horizon. In this case, the throughput is
equal to the demand and is therefore equal to 110.

Table 3.3: Illustrative example on the computation of the throughput in bilevel
optimization models.

First configuration Second configuration

Machine 1 Machine 2 Machine 1 Machine 2

Utilization rate, Um 1.2 0.9 0.95 0.95
Allocated wafers,

∑
rWIPr,m 60 50 55 55

The computation of the throughput can be more complex because operations
often have priorities. Two modes for computing the throughput TH = f (U,WIP)
are used to simulate First-In First-Out (FIFO) and priority-based dispatching rules:
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1. The first mode simulates a FIFO dispatching rule and is defined as “an aver-
age product mix”: f (U,WIP) =

∑
m

1
max{1,Um}

∑
rWIPr,m. From an aggregate

point of view, as each operation allocated to a machine is equally processed in
proportion, it can be seen as reproducing a FIFO dispatching rule.

2. The second mode simulates a priority-based dispatching rule, where priority
operations are processed first on machines. If two operations have the same
priority, the one with the largest WIPr,m is processed first to avoid setups.
Finally, if WIPr,m =WIPr ′ ,m for two operations r and r ′, then the fastest oper-
ation is processed first.

3.3.7 Single-level reductions

It is actually possible to perform a single-level reduction of the bilevel optimization
models. Lower-level optimization models (3.14)-(3.20), (3.25)-(3.31) and (B.7)-
(B.13) are convex optimization models with affine contraints, and thus can be re-
placed by their Karush–Kuhn–Tucker (KKT) conditions, which are necessary and
sufficient (Boyd and Vandenberghe, 2004). The single-level reduction of a bilevel
optimization problem is complex to solve, even in the convex case, because using
KKT conditions conditions implies using constraints with bilinear terms. The single-
level reduction is therefore relevant to define a single-level optimization model for
disqualifications, which, however, is less intuitive.

3.4 Computational study

The objective of the computational study is to evaluate if the bilevel optimization
models lead to a better decision-making in terms of throughput. If this is the case,
then solution approaches may be worth investigating. Consequently, in this compu-
tational study, we compare the relevance of extending the utilization balancing ap-
proach in Chapter 2 to a bilevel optimization approach that maximizes the through-
put. We also show that disqualification decisions can improve the throughput.

3.4.1 Design of experiments

Numerical experiments are carried out on industrial data from a manufacturing fa-
cility located in France, which is characterized by frequent product mix changes,
shifting bottleneck work centers and high production variability. Two work centers,
called work center A and work center B, are used for the computational study. For
each work center, 19 industrial instances are considered. Both work centers have
completely different machines and operations. In the computational study, opti-
mization approaches are compared for a number of re-qualifications k = 1. This
allows us to compare the optimal solution of optimization approaches in terms of
throughput. We compare the optimization approaches on two different simulated
dispatching rules: a FIFO dispatching rule, and a priority-based dispatching rule.
Two different horizons are considered: 8 hours and 24 hours.
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The industrial data of the computational study in Chapter 2 are again used.
Note that the considered work centers are not necessarily identical to those studied
in Chapter 2. Industrial data are summarized in Appendix B, Section B.0.2.

3.4.2 Numerical results

We cannot directly compare the value of the objective function of both the utilization
balancing optimization approach and the bilevel optimization approach as they do
not have the same objective function. This is because the utilization balancing opti-
mization approach presented in Chapter 2 is not a direct measure of the throughput.
In addition, both optimization approaches are compared in terms of gains on the
throughput rather than in terms of decisions. For instance, a re-qualification pro-
posed by the utilization balancing optimization approach could be different from the
re-qualification proposed by the bilevel optimization approach, although both could
lead to the same throughput as there may exist multiple optimal re-qualifications.

To make the comparison as fair as possible, once the utilization balancing opti-
mization problem is solved, the optimal re-qualification is identified and evaluated
with the bilevel optimization problem. When the bilevel optimization approach is
used, the throughput can directly be computed with the objective function. Af-
ter this transformation, both optimization approaches can be compared in terms of
throughput.

It is worth mentioning that there is no bias toward or against the bilevel opti-
mization model. Consider any re-qualification plan. Both the utilization balancing
and the bilevel optimization models have the same solution in terms of utilization
rate of the machines and capacity allocation, and therefore the same throughput.
The only difference between the optimization models is that the final selection of the
best re-qualification plan is either based on the utilization balancing or the through-
put.

For each instance, we compare the throughput in terms of relative gain(%) with
respect to the initial throughput when no re-qualification (or disqualification) is
made. The initial throughput is computed with the optimization model (3.10)-
(3.20) when k = 0. If the relative gains of optimization approaches are close on
large number of instances and for each work center, then the bilevel optimization
approach may not be as relevant as motivated in Section 3.2. If relative gains are
very different, in particular on some instances, then the bilevel optimization ap-
proach brings information that is not captured by the utilization balancing optimiza-
tion approach. Note that we do not report computational times as the purpose of the
computational study is to evaluate the difference between optimization approaches
on the throughput. Nevertheless, the bilevel optimization approach is expected to
be more difficult to solve than the utilization balancing approach, especially since
the utilization balancing can be solved efficiently (see Chapter 2).

In the numerical experiments, γ = 4 and k = 1. To solve the bilevel optimization
models, we evaluate every possible re-qualification decision (or disqualification de-
cision), we solve the lower-level optimization problem, then compute the through-
put. The best qualification decision is kept. This procedure corresponds to the
constructive greedy heuristic presented in Chapter 2. The lower-level optimization
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problem is a nonlinear optimization problem. To solve it, we linearize the objective
function and use a cutting-plane algorithm (see also Chapter 2). The cutting-plane
algorithm is stopped when a relative gap lower than 0.0001 is reached. Each it-
eration of the cutting-plane algorithm is solved by CLP, which is an open source
solver (Lougee-Heimer, 2003; Löhndorf, 2016). The cutting-plane algorithm is im-
plemented in Java 8 on a computer with an Intel(R) Core(TM) i5-6200U CPU @
2.30GHz with 4 cores and 8 GB of RAM on Windows 10.

Note that, when performing disqualifications, we limited ourselves to disqual-
ifications that respect some industrial constraints, more precisely, disqualification
decisions are restricted to low priority operations. Disqualification decisions are
also restricted to operations that are not subject to “time constraints”. A time (soft)
constraint is a practical maximum cycle time defined between two operations to en-
sure the yield and quality of products (e.g., see Lima et al. 2019, 2020). In addition,
disqualification decisions may be forbidden if they create line stops or there is a
single qualified machine for a operation.

3.4.2.1 Numerical results with one qualification

Table 3.4, respectively Table 3.5, compares the gain on the throughput of the uti-
lization balancing approach and bilevel optimization approaches for work center A,
respectively work center B. Numerical results for the bilevel optimization model are
obtained by solving the bilevel optimization model presented in Section 3.3.3.

From a general standpoint, contrary to the bilevel optimization model, the uti-
lization balancing approach may “fail” to determine one re-qualification that im-
proves the throughput. However, this strongly depends on the simulated dispatch-
ing rules, the duration of the horizon, the instance and the work center.

For work center A, the number of instances where the relative gain determined
by the utilization balancing is negative, is equal to 19 for a horizon of 8 hours, and
5 for a horizon of 24 hours (see Table 3.4). In general, there are two times more
instances where the relative gain is negative when operations are processed with
respect to their priority. Similarly, for work center B, the number of instances where
the relative gain determined by the utilization balancing is negative, is equal to 17
for a horizon of 8 hours, and 6 for a horizon of 24 hours (see Table 3.5).

This is mainly because of production variability, the lack of constant pattern in
the demand. As motivated in Section 3.2.1, optimizing the throughput is not strictly
equivalent to optimizing the utilization balance. In practice if two machines are
overloaded, then adding a re-qualification means trying to load the machines even
more, which can be irrelevant if the throughput must be optimized. The bilevel
optimization approach is able to detect the best re-qualification among two pos-
sible re-qualifications that would lead to similar utilization balances but to differ-
ent throughputs. The bilevel optimization approach can thus better determine re-
qualification plans that optimize the throughput.

We observe that the difference between the relative gains between both opti-
mization approaches is largest when operation priorities are considered. For in-
stance, for instance 14 and work center A, the relative gain is equal to -2.66% when
the utilization balancing optimization approach is used whereas the relative gain is
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equal to 1.17% when the bilevel optimization approach is used. The difference is
much smaller when the simulated dispatching rule is FIFO. Therefore, the choice of
the operation, and not only the quantity to re-balance, with respect to its priority,
seems also crucial to optimize throughput. As a matter of fact, qualifying operations
with low priority may be inefficient to optimize the throughput. This is because they
can still be backlogged as they are processed last although the initially disqualified
machine is faster and underloaded. Qualifying operations with low priority is effi-
cient if a large workload can be transferred from one machine to another.

Note that there also some instances where the relative gains of both optimization
approaches are almost identical. Consider work center A, when operations priorities
are considered, the relative gains are very close for instances 11, 19 and a horizon
of 8 hours. For a horizon of 24 hours, instances 7, 8, 9 and 10 are very close. The
difference between relative gains is at most 0.2%. When a FIFO rule is simulated,
the relative gains are very close for instances 7, 8, 18 and 19. Similar results can be
observed for work center B. For instance, when operations priorities are considered,
the relative gains are very close for instances 13, 14 for a horizon of 8 hours. For
a horizon of 24 hours, the relative gains are very close for instances 1, 9, 10, 11,
12, 17 and 19. Although the utilization balancing optimization approach ”fails” to
determine one satisfactory re-qualification that improves the throughput, on a large
number of instances, the utilization balancing optimization approach leads to very
similar gains. This happens when the throughput can be optimized, no matter the
operation queues. It would be interesting to automatically analyze instances when
this happens to solve the utilization balancing optimization problem first, as the
bilevel optimization approach is expected to be more computationally expensive.

Interestingly, we can also observe that the difference between the quality of re-
qualifications determined by optimization approaches is large when the horizon is 8
hours, but the difference is much smaller when the horizon is 24 hours. The differ-
ence is smaller both in terms of relative gain and the number of instances with a neg-
ative relative gain. This is counter-intuitive but the difference can also be explained
by the production variability. On short horizons, re-qualifications are made to tackle
demand peaks, therefore the variability of the demand profile. Operation queues
will have a more critical role in the determination of satisfactory re-qualifications
than on larger horizons, even of only 24 hours. Considering the way operations
compete, i.e. operation queues, for the same production resources is relevant and
can lead to better re-qualification plans to optimize the throughput. This confirms
existing results in the literature that shows that dispatching decisions strongly in-
fluence the relevance of additional qualifications (Johnzén et al., 2008; Gurumurthi
and Benjaafar, 2004; Kopp et al., 2019). For short horizons, production variability
has a significant impact of the quality of the proposed re-qualifications. To a certain
extend, this also means that defining re-qualification strategies for factories with
high production variability may be inefficient to optimize the throughput.

Furthermore, we observe in the numerical results that there are frequently only
a limited number of re-qualifications that lead to an interesting increase of the
throughput. Most re-qualifications do not improve the throughput.

Finally, we also observe that the mean relative gain determined by the bilevel
optimization approach is larger for a horizon of 8 hours than for a horizon of 24
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hours. Consider the case when operation priorities are considered. For work center
A, the mean relative gain is equal to 1.27% for a horizon of 8 hours whereas the
mean relative gain is equal to 0.84% for a horizon of 24 hours. For work center
B, the mean relative gain is equal to 1.40% for a horizon of 8 hours whereas the
mean relative gain is equal to 0.89% for a horizon of 24 hours. This may suggest
that it is more relevant to frequently make re-qualification decisions, for instance
one re-qualification decision every 8 hours, than one re-qualification every 24 hours
because the real gain on the throughput may be larger.

Table 3.4: Comparison of the relative gain (%) on the throughput between the uti-
lization balancing optimization approach and the bilevel optimization approaches
for work center A (Bold values are negative gains).

8 hours 24 hours

Utilization Balancing Bilevel Approach Utilization Balancing Bilevel Approach

Instance FIFO Priority FIFO Priority FIFO Priority FIFO Priority

1 -0.02 -0.18 1.13 1.03 0.08 0.26 0.32 0.52
2 0.11 1.03 1.10 1.80 0.26 0.03 0.43 0.63
3 0.12 0.64 0.19 1.89 0.11 0.44 1.13 0.96
4 0.12 -0.04 0.12 0.20 0.10 -0.13 0.10 0.19
5 0.00 -1.46 0.54 0.54 0.03 -0.14 0.04 0.30
6 -0.38 -0.79 0.04 0.15 0.04 0.24 0.04 0.70
7 -1.31 -0.89 1.01 1.02 0.60 1.50 0.60 1.61
8 -1.43 -2.37 1.40 1.47 0.51 1.28 0.51 1.28
9 0.01 -0.33 1.37 1.40 0.01 -0.38 0.78 0.77

10 0.03 0.23 0.03 1.01 0.02 -0.50 0.02 0.19
11 0.00 -0.19 0.22 1.41 0.05 0.95 0.24 0.95
12 0.17 1.87 1.17 1.87 0.13 1.10 0.48 1.10
13 -0.68 -0.82 0.73 0.72 0.09 0.47 0.68 0.94
14 -0.57 -2.66 0.49 1.17 0.01 0.19 1.02 0.98
15 0.03 -0.45 2.28 2.32 0.09 0.12 1.10 1.09
16 0.02 -0.01 1.50 2.10 0.03 0.25 0.03 0.82
17 0.03 -1.19 0.25 1.45 0.04 -0.19 0.17 1.19
18 0.06 0.26 0.14 1.34 0.10 0.23 0.15 0.90
19 0.04 1.01 0.23 1.29 0.15 0.07 0.15 0.29

Mean -0.20 -0.41 0.76 1.27 0.13 0.32 0.44 0.84

Number of Instances
With Negative Gains 6 13 0 0 0 5 0 0
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Table 3.5: Comparison of the relative gain (%) on the throughput between the
utilization balancing and the bilevel optimization approaches for work center B
(Bold values are negative gains).

8 hours 24 hours

Utilization Balancing Bilevel Approach Utilization Balancing Bilevel Approach

Instance FIFO Priority FIFO Priority FIFO Priority FIFO Priority

1 -0.30 -0.47 1.32 1.29 2.10 2.25 2.10 2.25
2 0.15 0.20 1.30 1.74 0.48 0.49 1.07 1.16
3 0.15 0.00 1.21 1.67 0.24 0.00 1.14 1.22
4 -1.84 -2.69 0.51 0.51 0.32 0.25 0.55 0.46
5 -1.02 -1.14 0.59 0.55 -0.65 -0.85 0.58 0.51
6 -0.59 -0.88 1.44 1.44 0.30 0.24 0.86 0.88
7 0.23 0.09 1.65 1.64 0.19 0.01 0.74 0.68
8 0.23 0.00 0.41 0.38 0.19 0.00 0.88 0.88
9 -0.01 0.00 0.46 0.62 0.56 0.57 0.56 0.57
10 0.48 0.00 0.48 0.54 0.41 -0.03 0.52 0.52
11 0.04 0.03 1.19 1.03 0.74 0.75 0.74 0.75
12 0.15 0.55 1.61 1.46 0.73 0.76 0.73 0.76
13 2.79 2.77 2.79 2.77 0.00 0.00 0.61 0.60
14 3.29 3.25 3.29 3.25 0.00 0.00 0.81 0.82
15 -0.09 0.01 0.56 0.58 0.06 -0.02 0.35 0.32
16 -0.03 -0.08 2.67 2.63 0.41 0.41 0.84 0.89
17 -0.30 -1.18 1.00 1.05 1.38 1.47 1.38 1.47
18 -1.23 -0.72 1.39 1.15 1.03 0.93 1.48 1.29
19 0.49 0.41 2.29 2.32 0.98 0.87 0.98 0.87

Mean 0.14 0.01 1.38 1.40 0.50 0.43 0.89 0.89

Number of Instances 0
With Negative Gains 9 8 0 0 1 5 0 0

3.4.2.2 Numerical results with one disqualification

This section shows on industrial data that is possible to find disqualifications that
improve the throughput. Table 3.6 illustrates the relative gain on the throughput
by instance, by work center and by simulated dispatching rule for one disqualifi-
cation decision. Numerical results are obtained by solving the bilevel optimization
model presented in Section 3.3.4. Note that, for experiments on disqualification
decisions, additional industrial constraints were added to the disqualification opti-
mization approach. Disqualifications are not evaluated (1) for operations that are
run for priority lots, (2) if they create an operation without any qualified machine,
and (3) for operations that must be run for lots in time constraints.

Similarly to one re-qualification decision, one disqualification decision can im-
prove the throughput. However, the relative gain strongly depends on the instance,
the work center, the simulated dispatching rule, and the horizon. Furthermore,
there are only a limited number of disqualifications that lead to a significant in-
crease of the throughput. Most disqualifications do not improve the throughput.

Similarly to observations made in Section 3.4.2.1, the relative gain strongly de-
pends on the simulated dispatching rules. For a horizon of 8 hours and a FIFO sim-
ulated dispatching rule, the mean relative gain is equal to 0.29% for work center
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A whereas the mean relative gain is equal to 0.23% for work center B. When op-
eration priorities are considered, the mean relative gain for work center A is equal
to 1.56% whereas the mean relative gain is equal to 0.24%. Therefore, consider-
ing the way dispatching decisions are designed in a work center can lead to better
disqualification decisions in terms of throughput.

Table 3.6 shows that some work centers can be relatively insensible to one dis-
qualification decision. For instance, for a horizon of 8 hours, the mean relative gain
is approximately equal to 0.23% for work center B. However, the relative gain also
depends on the instance. On instances 12, 13 and 14, the relative gain is larger than
0.43% when a FIFO dispatching rule is simulated. However, dispatching decisions
are particularly relevant for work center A. Consider a horizon of 8 hours and the
priority based simulated dispatching rules, for which the mean relative gain is equal
to 1.56%. The relative gain strongly varies from one instance to another. However,
the minimum relative gain is equal to 0.47%. This shows a significant difference
between the impact of disqualification decisions between two work centers. There-
fore, generalizing disqualification decisions to all work centers may be irrelevant.
To a certain extent, we may find work centers for which disqualification decisions
are always irrelevant.

Table 3.6: Comparison of the relative gain (%) on the throughput for one disquali-
fication decision by instance, by work center and by simulated dispatching rule.

Work center A Work center B

8 hours 24 hours 8 hours 24 hours

Instance FIFO Priority FIFO Priority FIFO Priority FIFO Priority

1 0.18 1.51 0.05 0.39 0.10 0.17 0.00 0.01
2 0.45 1.99 0.11 0.87 0.02 0.04 0.00 0.02
3 0.02 2.05 0.05 0.78 0.05 0.10 0.00 0.02
4 0.24 1.23 0.02 0.38 0.13 0.53 0.09 0.09
5 1.09 0.59 0.01 0.66 0.06 0.15 0.07 0.10
6 0.34 0.74 0.08 0.56 0.01 0.06 0.04 0.04
7 0.28 2.97 0.03 1.83 0.27 0.29 0.14 0.02
8 0.55 1.21 0.01 0.87 0.17 0.17 0.15 0.06
9 0.38 3.12 0.01 0.37 0.12 0.15 0.00 0.02

10 0.07 2.36 0.00 0.32 0.12 0.42 0.23 0.24
11 0.04 1.09 0.00 0.11 0.16 0.03 0.10 0.01
12 0.25 2.72 0.07 0.78 0.43 0.22 0.06 0.09
13 0.19 0.91 0.04 0.51 0.86 0.11 0.14 0.35
14 0.13 0.47 0.13 0.62 0.76 0.38 0.13 0.31
15 0.33 0.71 0.23 0.57 0.12 0.25 0.09 0.10
16 0.25 1.73 0.01 0.50 0.13 0.36 0.16 0.19
17 0.42 1.60 0.01 1.34 0.14 0.13 0.13 0.25
18 0.14 1.48 0.00 0.65 0.10 0.24 0.01 0.00
19 0.08 1.15 0.00 0.78 0.63 0.66 0.00 0.00

Mean 0.29 1.56 0.05 0.68 0.23 0.24 0.08 0.10

3.4.2.3 Numerical results with one re-qualification and one disqualification

Finally, in the computational study, we are interested in illustrating the potential
of combining one re-qualification decision (OQ) and one disqualification decision
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(DOQ) to improve the throughput with the bilevel optimization model introduced
in Section 3.3.5. This numerical study is relevant to validate the bilevel optimiza-
tion model. As a matter of fact, we could intuitively conclude that disqualifications
and re-qualifications are incompatible. This is because disqualification decisions use
the differences of throughput rates between machines and therefore lead to a de-
crease in the utilization balance whereas re-qualification decisions use the fact that
machines are poorly balanced to improve the throughput. Note that, contrary to
the numerical experiments when only one re-qualification decision or one disquali-
fication decision is made, optimal solutions are not presented. To solve the bilevel
optimization model presented in Section 3.3.5, a greedy heuristic was used. It is
similar to the constructive greedy heuristic presented in Chapter 2. An action plan
is iterately built. First, every possible disqualification decision is evaluated. The
disqualification that best optimizes the throughput is kept in the action plan. Then,
every possible re-qualification decision is evaluated. The re-qualification that opti-
mizes the throughput is kept in the action plan. Another greedy heuristic consists
in selecting first the best re-qualification decision instead of the best disqualification
decision. Both greedy heuristics provide similar numerical results. The difference
on the relative gain by instance is different by at most 0.2%. Therefore, we only
show the numerical results for the greedy heuristic when the disqualification deci-
sion is made first. Moreover, the horizon here is 8 hours. Table 3.7 presents the
numerical results by instance, by work center and by simulated dispatching rule.

The numerical results show that, if the re-qualification and disqualification deci-
sions are carefully determined, it is possible to combine these decisions to improve
the throughput (see Table 3.7). In general, the mean relative gain obtained after
one re-qualification and one disqualification decision is slightly less than the sum of
the mean relative gains obtained after one re-qualification and one disqualification
decision.

Consider work center A, when operation priorities are considered, the mean
relative gain after combining one re-qualification decision and one disqualification
decision is equal to 2.45%. The mean relative gain after one qualification decision
is only 1.56%. When a FIFO dispatching rule is simulated, the mean relative gain is
equal to 1.00%, and the mean relative gain after one qualification decision is equal
to 1.00%. As in Sections 3.4.2.1 and 3.4.2.2, the mean gain is strongly dependent
on the instance.

For work center B, as partly mentioned in Section 3.4.2.2, the mean relative
gain after combining one re-qualification decision and one disqualification decision
is almost equal to the mean relative gain after making only one re-qualification
decision.

Therefore, it is possible to combine disqualification and qualification decisions.
As in general, the mean relative gain obtained after one re-qualification and one
disqualification decision is slightly less than the sum of the mean relative gains
obtained after one re-qualification and one disqualification decision, we expect that
only a limited number of disqualification and re-qualification decisions in the same
action plan can actually reach the best possible improvement on the throughput.
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Table 3.7: Comparison of the relative gain (%) on the throughput after making one
disqualification decision (DOQ) and one qualification decision (OQ) by instance,
by work center and by simulated dispatching rules.

FIFO Priority

DOQ DOQ
then then

Work center Instance DOQ OQ OQ DOQ OQ OQ

A

1 0.18 1.13 1.29 1.51 1.03 2.27
2 0.45 1.10 1.54 1.99 1.80 3.09
3 0.02 0.19 0.18 2.05 1.89 3.66
4 0.24 0.12 0.34 1.23 0.20 1.38
6 1.09 0.54 1.41 0.59 0.54 1.13
7 0.34 0.04 0.38 0.74 0.15 1.02
8 0.28 1.01 1.34 2.97 1.02 3.97
9 0.55 1.40 1.95 1.21 1.47 2.14
10 0.38 1.37 1.75 3.12 1.40 4.47
11 0.07 0.03 0.08 2.36 1.01 2.59
12 0.04 0.22 0.26 1.09 1.41 1.95
13 0.25 1.17 1.42 2.72 1.87 3.89
14 0.19 0.73 0.92 0.91 0.72 1.48
15 0.13 0.49 0.62 0.47 1.17 0.97
16 0.33 2.28 2.61 0.71 2.32 2.68
17 0.25 1.50 1.75 1.73 2.10 3.65
18 0.42 0.25 0.68 1.60 1.45 2.81
19 0.14 0.14 0.28 1.48 1.34 1.98
20 0.00 0.23 0.22 1.15 1.29 1.33

Mean 0.28 0.73 1.00 1.56 1.27 2.45

B

1 0.10 1.32 1.41 0.17 1.29 1.46
2 0.00 1.30 1.30 0.02 1.74 1.76
3 0.00 1.21 1.22 0.04 1.67 1.71
4 0.01 0.51 0.52 0.01 0.51 0.53
6 0.06 0.59 0.59 0.12 0.55 0.66
7 0.00 1.44 1.45 0.06 1.44 1.51
8 0.18 1.65 1.83 0.07 1.64 1.72
9 0.16 0.41 0.56 0.09 0.38 0.47
10 0.06 0.46 0.52 0.14 0.62 0.77
11 0.03 0.48 0.51 0.10 0.54 0.64
12 0.16 1.19 1.19 0.03 1.03 1.06
13 0.43 1.61 2.13 0.22 1.46 1.61
14 0.80 2.79 3.58 0.08 2.77 2.87
15 0.73 3.29 4.02 0.24 3.25 3.50
16 0.12 0.56 0.68 0.25 0.58 0.83
17 0.07 2.67 2.74 0.08 2.63 2.72
18 0.05 1.00 1.04 0.01 1.05 1.05
19 0.01 1.39 1.40 0.04 1.15 1.19
20 0.01 2.29 2.30 0.03 2.32 2.35

Mean 0.16 1.38 1.53 0.09 1.40 1.49

Page 82 EMSE-CMP Antoine Perraudat



3.5. RECOMMENDATIONS

3.5 Recommendations

Production personnel should pay attention to dispatching decisions when making
qualification and disqualification decisions. Dispatching decisions strongly affect
the quality of decisions. Our computational study on industrial instances shows
that using the bilevel optimization models is more appropriate than using a utiliza-
tion balancing optimization approach to determine qualification and disqualifica-
tion decisions that optimize the throughput. When small computational times are
required, such as in a Decision Support System (DSS), we recommend to use bilevel
optimization models because they are able to capture the effect of dispatching deci-
sions. However, when small computational times are not required, for instance for
factories with low production variability where qualification strategies are accept-
able instead of tailored decisions for each instance, then an optimization-simulation
approach can be suitable.

Nevertheless, numerical results show that as the length of the horizon increases,
the best re-qualifications determined between the utilization balancing and the
bilevel optimization approaches are the same or, in other words, lead to the same
gain on the throughput. This is because, as the length of the horizon increases, de-
mand peaks of (priority) operations are averaged over the planning horizon, there-
fore the utilization rates of the machines tend to be naturally more balanced. There-
fore, for large horizons, longer than a few days, the utilization balancing approach
to determine re-qualifications is relevant, and appealing as it can solved efficiently
(see Chapter 2). Nevertheless, the bilevel optimization approach is still relevant
to consider the throughput instead of utilization balance, which cannot be directly
performed with the utilization balancing approach. Finally, note that, because oper-
ation priorities are frequently updated at the production control level, it is probably
irrelevant to use the priority based computation mode for the throughput for hori-
zons ranging from a few hours to a few days depending on the work center and the
update frequency. In other words, on the long term, no operation is prioritized and,
therefore, the computation mode “average product mix” may be better suited for
large horizons.

In some cases, disqualification decisions are particularly relevant to optimize
manufacturing performances. For instance, when a qualified machine for a op-
eration is known to have a significant lower yield than other qualified machines,
production personnel disqualifies the machine if the impact on the throughput is
limited. Disqualifications decisions also make sense if the throughput rate of the
operation of the machine has significantly decreased due to its wear. In this case, it
is preferable for the operation to be processed by other qualified machines.

However, managing the production capacity of a work center for throughput op-
timization purposes with disqualification decisions may not be a satisfactory indus-
trial practice. For instance, disqualifying operations on machines that do not have
yield issues can be dangerous, for instance, in terms of interruption of the produc-
tion flow, increase of production variability and unexpected future quality problems
on operations that could have been measured or managed if the operations were
qualified. Disqualifications can also be forgotten. This is why it is preferable to
temporarily disqualify operations, notably to avoid reaching the end of qualification
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time windows (Obeid et al., 2014; Nattaf et al., 2019; Kopp et al., 2019) and fre-
quently reevaluating the disqualification decisions as production personnel tends to
do nowadays. In some work centers, disqualifications can be relevant. Sometimes,
some operations are known to wear machines more than other operations. For
these operations, at most one machine is kept qualified and others are disqualified.
In this case, bilevel optimization models can help deciding the machine that should
be kept qualified in terms of throughput. In addition, if process times depend on
machine wear, bilevel optimization models can help deciding if it is worth in terms
of throughput to keep the qualification given the current machine wear.

Moreover, although managing the production capacity of machines with disqual-
ifications without yield problems can unsuitable to a certain extent, it is “difficult”
for production personnel not use disqualification decisions given they are chal-
lenged to optimize manufacturing performance as dispatching engines are short-
sighted and a source of capacity loss, and that this way of working did not lead to
major production problems.

We argue that disqualification decisions could be avoided if dispatching engines
had a better vision of upcoming demand peak from upstream work centers. For
instance, this could be translated by giving penalties to operation quantities allo-
cated to a machine beyond a given threshold that can be determined after solv-
ing the bilevel optimization problem for k = 0 (or equivalently the utilization opti-
mization problem). In other words, the utilization rates of the machines computed
with the utilization balancing approach could be given to dispatching decisions as
guidelines. However, including these penalties and guidelines in a dispatching en-
gine may be complex. Using optimization solutions such as solving multi-objective
parallel-machine or complex job-shop scheduling problems may be valuable (Knopp
et al., 2017). Solving scheduling problems is also computationally complex and very
challenging. In the near future, disqualification decisions will probably remain rele-
vant to better manage the production capacity of a work center.

3.6 Conclusions and perspectives

In this chapter, we propose bilevel optimization models for short-term qualification
and disqualification management in semiconductor manufacturing. To the best of
our knowledge, there is no paper that copes with disqualification management in
semiconductor manufacturing. Then, we validate the proposed bilevel optimization
models on industrial data. Contrary to utilization balancing optimization approach
on some instances, the bilevel optimization approach considers dispatching deci-
sions, which is in some cases critical to determine relevant re-qualifications in terms
of throughput. On horizons larger than 24 hours, the bilevel optimization approach
and the utilization balancing optimization approach propose re-qualifications that
have similar gains. If only re-qualifications are desired, the utilization balancing
optimization approach is preferable for long horizons as it can be solved efficiently
and effectively (see Chapter 2). The numerical results show that the bilevel opti-
mization approach can also be used to determine relevant disqualifications in terms
of throughput. We argue that disqualifications may not always be a satisfactory
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industrial practice even though they can be used to improve the throughput.
In Chapter 4, we extend the single-period bilevel optimization model to a multi-

period bilevel optimization model. We show that the multi-period bilevel optimiza-
tion model is particularly relevant when re-qualifications are subject to delays or
induce capacity losses. In Chapter 5, we also show that for cycle time forecasts, the
multi-period bilevel optimization model is more appropriate than the single-period
bilevel optimization model.

We believe the following perspectives are worth investigating in the future (out
of the scope of the thesis):

1. Some parameters used in the bilevel optimization models might be subject
to uncertainty, e.g. the demand by operation and the production capacity by
machine. From the production personnel’s point of view, dispatching decisions
can also be subject to uncertainty. Determining robust re-qualification and
disqualification plans can be profitable.

2. In the computational study, we limited ourselves to the case where k = 1.
However, designing efficient and effective solution approaches, that quickly
determine re-qualification and disqualification plans for k > 1, is a relevant
research avenue. Note that, although no thorough computational study was
performed to evaluate efficient and effective solution approaches, in the de-
cision support system presented in Chapter 7, constructive greedy heuristics
are used to solve the bilevel optimization models presented in this chapter.
More precisely, to avoid evaluating every re-qualification and disqualification
at each iteration of the greedy heuristic, pre-processing rules are used. For
instance, pre-processing rules are based on the values of the dual variables
of qualification constraints for re-qualification. Pre-processing rules are also
based on the fact that potential effective re-qualifications to perform (at least
for some work centers) are the re-qualifications that consider re-qualifying
operations for underloaded machines, i.e. for machines such that Um < 1,
or re-qualifying operations that can be processed much faster on disqualified
machines than on currently qualified machines.

3. Similarly to Chapter 2, it would be interesting to better understand the impact
of different γ settings on re-qualification decisions and computing time.

4. Considering multiple objectives in short-term qualification and disqualification
management is a relevant research avenue.

5. In some work centers where wafers are processed by batch (Rowshannahad
and Dauzère-Pérès, 2013), it is desirable to consider batch size constraints in
the bilevel optimization models.

6. As already discussed, there may be multiple solutions to the lower-level opti-
mization problem, and some solutions may lead to a better throughput than
others, because the proposed bilevel formulations are neither optimistic or
pessimistic. Studying this is left for future research, e.g. by giving bounds on
the throughput to production personnel. For instance Fischetti et al. (2018)
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propose a refinement procedure that can be used to obtain an optimistic solu-
tion from the lower-level.
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A multi-period bilevel optimization

approach for throughput maximiza-

tion

In this chapter, the bilevel optimization model presented in Chapter 3 is ex-
tended to better consider re-qualification delays and maintenance operations po-
tentially required for re-qualification activities. We show that if re-qualifications are
subject to lead times or induce maintenance operations, then considering a multi-
period (dynamic) approach can lead to making re-qualifications that will have a
better result on the throughput than re-qualifications made with a single-period
(static) approach*.
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4.1 Introduction

To the best of our knowledge, the fact that re-qualifications can be subject to delays
or can require maintenance operations is rarely considered in the literature. Chang
and Dong (2017) consider a single-period stochastic optimization approach where
the number of processed wafers must be maximized. The demand is considered
as uncertain and qualifications induce stochastic capacity losses, for instance due to
maintenance operations. Kopp et al. (2018) and Kopp et al. (2019) propose a mixed
integer linear program and the effect re-qualifications of performances are assessed
with a simulation model. Re-qualification lead times are not included in the mixed
integer linear program but are included in the simulation model, which are modeled
as a 75-minute delay to consider measurement activities. Re-qualification delays
and maintenance operations can strongly influence the relevance of re-qualification
decisions.

Figure 4.1 illustrates three common different demand profiles that can be ob-
served for operations in wafer fabs due to production variability. Operation A is
expected to have a constant profile with about 500 wafers arriving in the work cen-
ter at every period, e.g every hour, every shift (8 hours) or every day. A large peak
of demand (Work-in-Process bubble) is expected for operation B. Finally, there is
no demand for operation C in the first four periods but a large number of wafers is
expected afterwards.

Figure 4.1: Illustrative example of the dynamic profile of the demand for three
operations (recipes).

Suppose that only one re-qualification is allowed, and that the single-period
bilevel optimization approach proposes to re-qualify operation B on a disqualified
machine. However, a re-qualification lead time or a maintenance operation of 4
periods is expected. Then, re-qualifying operation B on a disqualified machine is
actually irrelevant. This is because short-sighted dispatching decisions do not wait
for the end of the re-qualification procedure. A large number of wafers requir-
ing operation B and arriving in the work center in the first periods has already
been processed by other qualified machines than the re-qualified machine. In other
words, the single-period bilevel optimization approach proposes a re-qualification,
which could be optimal in terms of throughput, that has a impact in practice on
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the throughput because of re-qualification lead times. The effect on the throughput
might even be null if operation B is highly prioritized. The real demand profile for
operations seen by the single-period bilevel optimization approach is illustrated in
Figure 4.2.

Figure 4.2: Operation (recipe) demand profiles seen by the single-period bilevel
optimization approach.

If we had known that the re-qualification was ineffective to improve the through-
put, we would have chosen to re-qualify a machine for operation A, with a constant
demand profile, or even for operation C with a expected demand peak later in the
horizon even if the re-qualifications initially looked sub-optimal.

Because the single-period optimization approach is unable to differentiate re-
qualifications for operations that have different demand profiles, a multi-period
optimization approach seems necessary. This is the case for work centers which
frequently undergo large fluctuations in operation demand profiles, mostly due to
production variability and the short-sighted aspect of dispatching rules.

This effect is not limited to delays or maintenance operations induced by re-
qualifications. It can also be observed if a work center manager wants to simulate
a maintenance operation, even a short maintenance operation, on a machine in a
decision support system and to determine a set of re-qualifications. It can also be
observed if a machine is currently down. For instance, the single-period optimiza-
tion approach can recommend re-qualifying a operation on the affected machine by
the maintenance operation because the machine has still some capacity left at the
end of the horizon. However, most wafers of the corresponding operation will be
processed by other qualified machines due to the short-sighted aspect of dispatching
rules.

The bilevel optimization model presented in Chapter 3 is extended in two ways:
(1) An extended single-period bilevel optimization model is proposed to better con-
sider re-qualifications that lead to maintenance operations, and (2) A multi-period
bilevel optimization model is proposed to better consider both re-qualification de-
lays and re-qualifications that lead to maintenance operations. In addition, the
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effect of the multi-period bilevel optimization approach on the throughput is com-
pared to the effect of the single-period bilevel optimization approach. In particular,
we show that, if re-qualifications are subject to delays or induce maintenance opera-
tions, then considering a multi-period (dynamic) approach can lead to proposing re-
qualifications that will have a better result on the throughput than re-qualifications
proposed with a single-period (static) approach. In this chapter, a dynamic ap-
proach should be understood as a multi-period approach. A static approach should
be understood as a single-period approach.

This remainder of this chapter is organized as follows†. In Section 4.1, the dy-
namic approach is motivated with a practical illustrative example. In Section 4.2,
the extended single-period and the multi-period bilevel optimization approaches are
presented. In Section 4.3, the extended single-period and the multi-period bilevel
optimization approaches are compared on industrial data. Practical insights are also
proposed. Finally, in Section 4.5, conclusions and perspectives are outlined.

4.2 Problem statement

Consider a work center consisting of M non-identical parallel machines. On a given
time horizon consisting of T periods, R different operations, each with a strictly
positive quantity, must be processed by the machines. The throughput rate of each
operation on each machine is known. However, each machine has a finite pro-
duction capacity by period and can only process qualified operation. Similarly, a
operation can only be processed by qualified machines. The qualification matrix,
i.e. the operation that are initially qualified and that can be qualified, is known. We
assume that, when a re-qualification decision of operation r is made on machine
m, either a re-qualification lead time lr,m, or a maintenance operation of duration
closs. Re-qualification decisions are assumed to be made at t = 0. The objective is to
determine k qualifiable pairs (operation r, machinem) to maximize the throughput.

4.2.1 Notations

Indices and sets:
m: Index for machines, ∈ {1, ..,M},
r: Index for operations, ∈ {1, ..,R},
t: Index for periods, ∈ {1, ..,T }.
Parameters:
k: Number of re-qualification decisions to be made at the beginning of the planning
horizon,
qr,m: Is equal to 1 if machine m is initially qualified for operation r, is equal to 2 if
machine m is initially qualifiable for operation r, is equal to 0 if machine m cannot
be qualified for operation r,
tpr,m: Throughput rate (in number of wafers by seconds) of operation r on machine
m,

†Parts of this Chapter have been presented at the EURO 2019 conference and Winter Simulation
Conference 2019 (see Perraudat et al. 2019).
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ct,m: Initial availability time (in seconds) of machine m over the planning horizon,
closst,r,m: Capacity loss generated (in seconds) by re-qualifying operation r on machine
m at period t,
lr,m: Re-qualification lead time required for re-qualifying operation r on machine
m,
dt,r: New arriving wafers in the work center requiring operation r at period t,
I0,r: Initial operation quantity in number of wafers r at t = 0 in the work center,
γ: Utilization balancing parameter strictly greater than one.

Decision variables:
OQr,m ∈ {0,1}: Is equal to 1 if a re-qualification procedure is proposed for operation
r on machine m at the beginning of the planning horizon, and 0 otherwise,
Ut,m: Utilization rate of machine m,

C
ef f
t,m : Effective availability time (in seconds) of machine m at period t,
It,r : Number of wafers of operation r in the work center at the end of period t,
WIPt,r,m: Quantity of operation r allocated to machine m at period t, THt,r:
Number of wafers of operation r processed at period t,
Dt,r: Total demand in number of wafers for operation r processed at period t,
Qt,r,m: New state of the qualification at period t for operation r, machine m
processed at period t,
C
neg
t,m : Indicator variable that is strictly negative if there is still capacity loss to

impute at t +1 on machine m,
Rqt (Q,Ceff) = {r |

∑M

m=1|Cef ft,m >0
1(Qt,r,m) > 0}: Set of operations with at least one

qualified machine with some capacity at period t, where 1(x) = 1 if x = 1, and 0
otherwise.

4.2.2 Extended single-period bilevel optimization model

In this section, the period index t is omitted as only one period is considered. The
extended single-period bilevel optimization model can be found below.

Upper-level optimization problem:

max TH = f (U,WIP) (4.1)

s. t.
∑
r,m

OQr,m = k (4.2)

Qr,m =OQr,m ∀r,∀m | qr,m = 2 (4.3)
Qr,m = qr,m ∀r,∀m | qr,m , 2 (4.4)

C
ef f
m =max(cm −

∑
r

clossr,mOQr,m,0) ∀m (4.5)

Um,W IPr,m ∈ argminLBP (Q,Ceff) (4.6)
OQr,m ∈ {0,1} ∀r,∀m (4.7)
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Lower-level optimization problem:

LBP (Q,Ceff) = min
∑
m

U
γ
m (4.8)

s. t.
∑
m

WIPr,m = dr + I0,r ∀r ∈ Rq(Q,Ceff) (4.9)

Um =
∑
r

WIPr,m

tpr,mC
ef f
m

∀m | Cef fm > 0 (4.10)

Um = 0 ∀m | Cef fm = 0 (4.11)
WIPr,m ≤ dr + I0,r ∀r,∀m | qr,m = 1 (4.12)
WIPr,m ≤ (dr + I0,r)OQr,m ∀r,∀m | qr,m = 2 (4.13)
WIPr,m ≤ 0 ∀r,∀m | qr,m = 0 (4.14)
WIPr,m ≥ 0 ∀r,∀m (4.15)

Upper-level optimization problem. The objective function (4.1) maximizes the
throughput. Constraint (4.2) sets to k the number of re-qualifications that must
be performed at the beginning of the horizon. Constraints (4.3)-(4.4) determine
the new state of each qualification after re-qualification decisions. Constraints (4.5)
define the effective availability time of machine m if there are capacity losses due to
re-qualification procedures, e.g. due to maintenance operations. Constraints (4.6)
link the upper-level and lower-level optimization problems. Constraints (4.7) are
the binary constraints for the re-qualification decisions.

Lower-level optimization problem. The objective function (4.8) of the lower-level
optimization problem consists in maximizing the utilization balance and minimizing
the total utilization rate of the machines. Constraints (4.9) ensure that all quantities
must be assigned to qualified and available machines. Operations with a production
capacity interruption, i.e. such that all qualified machines are down or if there is no
qualified machine, are not assigned to machines. Constraints (4.10) and (4.11)
defines the utilization rate of each machine in the work center. Constraints (4.12)
and (4.13) ensure that the workload can only be assigned to machinem if operation
r is qualified on machine m. Constraints (4.14) ensure that if operation r is not
qualified and cannot be qualified on machine m, then the workload for operation r
will never be assigned to machine m.

Note that Ceff and OQ are not decision variables of the lower-level optimization
problem (4.8)-(4.15). Ceff and OQ are parameters of the lower-level optimization
problem as they are decided in the upper-level optimization problem.

4.2.3 Multi-period bilevel optimization model

The multi-period bilevel optimization model is proposed below.
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Upper-level optimization problem:

max
∑
r,t

THt,r (4.16)

s. t.
∑
r,m

OQr,m = k (4.17)

It,r = It−1,r + dt,r − THt,r ∀t > 1,∀r (4.18)
I1,r = I0,r + d1,r − THt,1 ∀r (4.19)
Dt,r = It−1,r + dt,r ∀t > 1,∀r (4.20)
D1,r = I0,r + dt,r ∀r (4.21)
THt,r = f (U,WIP) ∀t,∀r (4.22)
Q1,r,m =OQr,m ∀r,∀m | lr,m = 0,qr,m = 2 (4.23)
Q1,r,m = 0 ∀r,∀m | lr,m > 0,qr,m = 2 (4.24)
Qt,r,m =Qt−1,r,m +OQr,m ∀t > 1,∀r,∀m | 1+ lr,m = t,qr,m = 2

(4.25)

Qt,r,m =Qt−1,r,m ∀t > 1,∀r,∀m | 1+ lr,m , t,qr,m = 2
(4.26)

Qt,r,m = qr,m ∀t,∀r,∀m | qr,m , 2 (4.27)

C
ef f
1,m =max(c1,m −

∑
r

clossr,mOQr,m,0) ∀r,∀m (4.28)

C
neg
1,m =min(c1,m −

∑
r

clossr,mOQr,m,0) ∀r,∀m (4.29)

C
ef f
t,m =max(c1,m +Cnegt−1,m,0) ∀t > 1,∀r,∀m (4.30)

C
neg
t,m =min(c2,m +Cnegt−1,m,0) ∀t > 1,∀r,∀m (4.31)

Ut,m,W IPt,r,m ∈ argminLBPt(Dt,Qt,C
eff) ∀t (4.32)

OQr,m ∈ {0,1} ∀r,∀m (4.33)

Lower-level optimization problem:

LBPt(Dt,Qt,C
eff) = min

∑
m

U
γ
t,m (4.34)

s. t.
∑
m

WIPt,r,m =Dr,t ∀r ∈ Rqt (Q,Ceff) (4.35)

Ut,m =
∑
r

WIPt,r,m

tpr,mC
ef f
t,m

∀m | Cef ft,m > 0 (4.36)

Ut,m = 0 ∀m | Cef ft,m = 0 (4.37)
WIPt,r,m ≤Dr ∀r,∀m |Qt,r,m = 1 (4.38)
WIPt,r,m ≤ 0 ∀r,∀m |Qr,m , 1 (4.39)
WIPt,r,m ≥ 0 ∀r,∀m (4.40)

Upper-level optimization problem. The objective function (4.16) consists in max-
imizing the throughput over the horizon. The throughput is computed from the uti-
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lization rates of machines determined by the lower-level optimization problem (see
Chapters 2 and 3). Constraint (4.17) sets to k the number of qualifications that must
be performed at the beginning of the horizon. Constraints (4.18)-(4.19) are flow
conservation constraints. Constraints (4.20)-(4.21) compute the demand for all op-
erations and all periods from the current number of products in the work center and
new arriving products. Constraints (4.22) compute the throughput from the utiliza-
tion rates of the machines determined by the lower-level optimization problem (see
Chapter 2). Constraints (4.23)-(4.27) determine the new state of each qualification
at each period for all operations and machines from re-qualification decisions made
at t = 0 and re-qualification delays. Constraints (4.23)-(4.26) concern the qualifi-
able pairs (operation r, machine m), i.e. such that qr,m = 2, while Constraints (4.27)
guarantee that the qualification status of the other pairs (operation r, machine m),
i.e. such that qr,m = 0 or qr,m = 1, remains the same throughout the planning hori-
zon. Constraints (4.23) and (4.25) ensure that machine m becomes qualified for
operation r as soon as the re-qualification lead time lr,m is reached. Constraints
(4.24) and (4.26) ensure both that (1) machine m is not qualified for operation r
before its lead time and that (2) machine m remains qualified for operation r in the
planning horizon once it has been qualified. Constraints (4.28)-(4.31) ensure the
effective capacity of machine m at period t if a re-qualification requires a mainte-
nance operation. Constraints (4.32) link the upper-level and lower-level problems.
Finally, Constraints (4.33) are the binary constraints for the qualification decisions.

Lower-level optimization problem: The objective function (4.34) of the lower-
level optimization problem consists in maximizing the utilization balance and min-
imizing the total utilization rate of the machines. Constraints (4.35) ensure that all
quantities must be assigned to qualified and available machines. Line stop opera-
tions are not assigned to machines. Operations with no available machines are not
assigned. For these operations, THt,r is equal to zero, and It,r necessarily increases.
Constraints (4.36) and (4.37) compute the utilization rate of each machine. Finally,
Constraints (4.40) are the non-negativity constraints.

Note that Ceff, Q, OQ, and D are not decision variables of the lower-level opti-
mization problem (4.34)-(4.40). Ceff, Q, OQ, and D are parameters of the lower-
level optimization problem as they are decided in the upper-level optimization prob-
lem.

In the multi-period optimization approach, if the entire capacity loss due to the
qualification cannot only be attributed to the first period, then the remaining ca-
pacity loss is attributed to the next period, until there is no capacity loss left. For
instance, this can happen if the maintenance operations lasts 12 hours whereas a
period lasts 8 hours. For delays, we proceed in a similar way. As re-qualifications
are performed at the beginning of the planning horizon, i.e at t = 0, the qualifica-
tion matrix is updated at period t if 1 + L = t. From period t and for the rest of
the planning horizon, the machine is re-qualified for the operation. Finally, for the
multi-period optimization model, the lower-level optimization problem is solved for
each period of the planning horizon. All wafers that cannot be processed at period
t are backlogged at period t +1.

Furthermore, the difference between the single-period and multi-period ap-
proaches is that, in the multi-period approach, each operation queue in front of
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machines is re-evaluated in each period to better consider operation priorities and
backlogging. In addition, the single-period bilevel optimization model assumes that
all wafers are ready to be processed at the beginning of the period, which can be
unrealistic. The multi-period bilevel optimization model alleviates this assumption
to a certain extent.

For the sake of brevity, only the multi-period bilevel optimization approach with
re-qualification decisions is presented in this section. Nevertheless, for the sake of
completeness, the multi-period bilevel optimization approach with re-qualification
and disqualification decisions is presented in Appendix C, Section C.1.

4.3 Computational study

The computational study is performed to study if considering dynamic WIP quanti-
ties, i.e. a demand that varies with time, and production capacities affect the choice
of re-qualifications. And if it does, to what extent. In Section 4.3.1, we briefly de-
scribe the industrial instances used to perform the computational study. For more
details on industrial instances, we refer the reader to Chapter 2. In Section 4.3.2,
the design of experiments of the computational study is described. Finally, in Sec-
tion 4.3.3, numerical results associated to the computational study are presented.

4.3.1 Instance generation

The single-period and multi-period optimization models are compared on indus-
trial data extracted from a 300 mm High Mix (HMLV) wafer fab located in Crolles,
France. The wafer fab is characterized by shifting bottleneck work centers, short
product life cycles, frequent product mix changes, a high production variability
with frequent disqualifications, very high utilization rates of machines and strong
machine dedication constraints.

Data were extracted on 15 different weeks in 2018 and 2019. 60 industrial
instances are used to compare both optimization models on four different work
centers.

Work center A is characterized by a large number of different operations. An
operation in work center A can have very different throughput rates from one ma-
chine to another. Machines in work centers A and B are cluster machines. In work
center C, some machines process batches of lots, while the other machines process
lots wafer by wafer. In work center D, machines process lots wafer by wafer. In
general, most machines allow several lots to be processed at the same time.

4.3.2 Design of experiments

Table 4.1 presents the design of experiments. We did not run experiments where
qualification procedures simultaneously require maintenance operations and are
subject to delays. This is left for future research. We limit ourselves to k = 1 so
that we can study and compare the optimal solution of both optimization models.
Both optimization models are studied on a 24-hour planning horizon. To solve the
lower-level utilization balancing problem, a cutting plane algorithm (see Chapter
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2) is used. γ is set to 6. The algorithm stops when a relative gap of 0.00001 is
reached. All experiments are run using Java 8 and CLP Java (Lougee-Heimer, 2003)
and Löhndorf (2016) as the linear solver for solving the cutting plane algorithm.

To search for the best re-qualification, all re-qualifications are tested separately.
More precisely, for each possible re-qualification, the input qualification matrix qr,m
is first modified. Then for each period, the actual demand for each operation is
computed, then the lower-level utilization balancing problem is solved, and then
the upper-level problem is solved to compute the throughput.

Table 4.1: Design of experiments.

Parameters Values

Lead time (in 8-hour shifts) 0, 1, 2
Capacity loss cr,mloss (in hours) 0, 4, 8, 12
T (in 8-hour shifts) 3
Number of qualifications k 1
Simulated dispatching FIFO, Priority
Work center A, B, C, D
Optimization model Single-period, Multi-period

4.3.3 Numerical results

As the single-period model does not model delays and as the objective function of
the single-period and multi-period optimization models is not computed the same
way, to have a fair comparison between both optimization models, when the single-
period model is solved, the best re-qualification is retrieved and is used to compute
the qualification matrix of the multi-period optimization model, which is used to
compute the throughput. Both approaches can then be compared in a fair way.
In the rest of this section, the single-period optimization approach is denoted SP,
and the multi-period optimization approach is denoted MP. In addition, “base case”
refers to the case where a re-qualification does not require maintenance operation
or is not subject to a lead time.

4.3.3.1 Capturing dynamic WIP quantities and production capacities

Table 4.2 compares the mean gap(%) = 100 × MP−SP
MP , in terms of throughput be-

tween the single-period (SP) and multi-period (MP) approaches. Table 4.2 enables
us to assess if the single-period optimization approach is able to capture the dynamic
WIP and capacity. Numerical results show that the single-period optimization model
can lead to less relevant re-qualification decisions. The largest mean and maximum
gaps are observed for the work center A when operation priorities are considered.
Even without any lead time or capacity loss, the mean gap is of 1.50%. For the work
center A, this indicates that the single-period optimization model does not always
capture dynamic WIP quantities. It proposes to qualify a operation with higher de-
mand on average whereas higher gains can be achieved by focusing on operations
with high peaks of demand on certain shifts. For the work center D, the mean gap
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is of 0.42%. For other work centers, mean gaps are closer. Nevertheless, maximum
gaps are always greater than 0.6%.

When there are capacity losses and operation priorities are considered, mean
and maximum gaps are significant. The highest mean gap, 2.36%, is observed for
the work center A. The highest maximum gap, 5.02%, is also observed for the work
center A. The maximum gap for the work center B is about 4.36% when an 8-hour
maintenance operation is required. The maximum gap for the work center D is
equal to 1.62%. The maximum gap for the work center C is equal to 1.39%. Overall,
mean gaps are always greater than 0.46%. Mean and maximum gaps are smaller
when re-qualifications are subject to lead time than when they require maintenance
operations. This can be surprising because the single-period optimization model
does not consider delays. However, this can be explained by the fact that delays do
not interrupt production contrary to maintenance operations.

Table 4.2: Mean and maximum gaps (%) = 100 × MP−SP
MP , in terms of throughput

between the single-period (SP) and the multi-period (MP) optimization models.

Lead time (in shifts) Capacity loss (in hours)

Base case 1 2 4 8 12

Throughput Work center Mean Max Mean Max Mean Max Mean Max Mean Max Mean Max

A 1.50 4.65 0.77 1.97 0.79 2.38 2.32 4.96 2.29 5.58 2.36 5.02
Priority B 0.16 0.60 0.24 2.32 0.31 1.70 0.46 2.15 0.72 4.36 0.51 4.30

C 0.23 0.68 0.08 0.41 0.11 0.27 0.53 1.67 0.46 1.35 0.48 1.39
D 0.42 1.58 0.23 0.76 0.16 0.67 0.66 1.95 0.82 1.78 0.63 1.62

A 0.05 0.65 0.15 1.22 0.20 1.43 0.10 0.82 0.10 0.29 0.05 0.42
FIFO B 0.01 0.15 0.01 0.15 0.06 0.56 0.00 0.00 0.00 0.00 0.01 0.08

C 0.00 0.04 0.02 0.22 0.01 0.10 0.00 0.04 0.00 0.18 0.00 0.06
D 0.00 0.01 0.05 0.37 0.09 0.40 0.01 0.09 0.01 0.19 0.01 0.15

In addition, we can observe that gaps are also smaller when a FIFO queue is
considered. This can be due to the fact that the backlogged quantities are less vari-
able contrary to when operation priorities are considered. Table 4.3 reinforces this
idea. When considering a FIFO, both optimization models propose much more fre-
quently the same re-qualification than when operation priorities are considered. For
instance, for an 8-hour capacity loss, both optimization models propose eight times
the same re-qualification plan when a FIFO queue is considered, and only twice
when operation priorities are considered. Operation priorities are then a source of
production variability for qualification management but must be considered.

Table 4.2 also shows that mean gaps are often far from maximum gaps. For
example, for the work center B, when there is a 4-hour capacity loss, the mean gap
is equal to 0.46% whereas the mean gap is equal to 2.15%. This is something that
we can observe for all work centers, in particular when maintenance operations are
required. Moreover, as on a non-negligible amount of instances, both optimization
models propose the same re-qualification (see Table 4.3), this indicates that there
exists, even among the same work center, a large disparity between instances. There
are instances where the gap between both optimization models is equal to zero or
very small whereas other instances where the gap is very large.

Finally, Table 4.4 shows the mean gain (%) on the throughput after performing a
re-qualification. As mean gaps between both optimization models can be large (Ta-
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Table 4.3: Number of identical re-qualification plans (out of 15) recommended by
both optimization models.

Lead time Capacity loss
(in shifts) (in hours)

Throughput Work center Base case 1 2 4 8 12

A 4 3 1 1 2 0
Priority B 5 11 7 7 10 12

C 8 8 3 5 2 1
D 7 4 2 3 2 0

A 12 10 8 11 8 8
FIFO B 14 13 9 11 11 11

C 11 10 8 11 8 9
D 10 8 6 10 7 8

ble 4.2), in general, the multi-period optimization model more frequently proposes
re-qualifications that capture dynamic WIP quantities. When operation priorities
are considered, the mean gain can be quite different between both optimization
models. For instance, in the work center A, when there is a 4-hour capacity loss,
the single-period optimization model proposes a re-qualification plan that leads to
a diminution of the throughput by -1.60%. Instead, the multi-period optimization
model proposes a re-qualification that leads to an increase of the throughput by
0.74%! This situation is observed for most work centers when there is capacity loss.
There is only in the work center C where the single-period optimization model with
a 12-hour maintenance operation does not induce a negative mean gain. However,
the mean gain is equal to 0.07%, which is very small, compared to the mean gain
of the multi period optimization model that is equal to 0.56%. We also observe that
for a 12-hour maintenance operation, the mean gain of the multi-period optimiza-
tion model is negative for the work center A. However, the mean gain in almost
ten times worse with the single-period optimization model (-0.29% versus -2.65%).
Overall, the multi-period optimization model proposes re-qualification plans that
achieve better mean gain than the single-period optimization model. This means
that the single-period optimization model can propose wrong re-qualification de-
cisions. When re-qualifications are only subject to delays, mean gains are closer.
However, they remain significant for the work center A with a difference greater
than 0.7%. When a FIFO queue is considered, mean gains are very close. In other
words, if a FIFO queue is the method used to simulate dispatching decisions and if
re-qualification decisions are assumed to have no lead time and induce no capacity
loss, then a multi-period bilevel optimization model is not relevant in most cases.

4.3.3.2 Influence of/on dispatching rules

Table 4.2 shows that although the capacity loss/lead time increases, the mean gap
does not necessarily increases. Table 4.5 shows that for some instances, performing
a re-qualification with a lead time greater than zero better maximizes the through-
put than performing a re-qualification with no lead time. These results seems
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Table 4.4: Comparison of the mean gain(%) on the throughput after performing a
re-qualification between the single-period (SP) and multi-period (MP) optimization
models. Bold values are negative mean gain.

Lead time (in shifts) Capacity loss (in hours)

Base case 1 2 4 8 12

Throughput Work center MP SP MP SP MP SP MP SP MP SP MP SP

A 2.04 0.51 1.30 0.52 1.14 0.33 0.74 -1.60 0.21 -2.09 -0.29 -2.65
Priority B 0.88 0.72 1.02 0.78 0.89 0.57 0.55 0.09 0.50 -0.22 0.42 -0.09

C 0.79 0.56 0.46 0.38 0.31 0.21 0.68 0.15 0.66 0.20 0.56 0.07
D 1.53 1.11 0.78 0.54 0.45 0.29 1.08 0.42 0.49 -0.34 0.39 -0.24

A 1.57 1.52 1.38 1.23 1.01 0.81 1.32 1.22 0.94 0.91 0.55 0.50
FIFO B 0.63 0.62 0.63 0.62 0.52 0.46 0.61 0.61 0.53 0.53 0.47 0.47

C 0.58 0.58 0.55 0.54 0.37 0.36 0.52 0.51 0.42 0.39 0.31 0.31
D 1.16 1.16 0.93 0.88 0.61 0.52 0.97 0.96 0.76 0.74 0.52 0.50

counter-intuitive. Actually, this effect is due to the way the throughput is computed,
and more generally, how the production system works with dispatching rules. When
lots arrive in an work center, a dispatching engine assigns lots on machines. The
dispatching engine is shortsighted. It does not consider lots that arrive one or two
shifts later. In addition, it does not necessarily challenge previous dispatching de-
cisions made when a new lot arrives. This means that, if an operation is qualified
on a machine, the dispatching engine will take advantage of the re-qualification
and assign lots to the machine. Thus, if this re-qualification decision is taken right
now for an operation with longer process times than those already qualified on
the same machine, the throughput per shift slightly decreases due to the fact the
average throughput rate on that machine decreases. The magnitude of this effect
varies with WIP variability over time and if priorities are considered. This effect
is also observed in (Gurumurthi and Benjaafar, 2004; Johnzén et al., 2008) where
numerical experiments are run to assess the effect of a re-qualification on the mean
cycle time. After qualifying machines, the mean cycle time did not necessarily de-
crease. A similar explanation is also detailed in (Johnzén et al., 2008). Therefore,
re-qualifications influence dispatching rules decisions, and dispatching rules also
influence re-qualification decisions.

4.4 Practical insights

Numerical results highlight the fact that proposing the best re-qualifications is a
complex procedure, and that performing the re-qualifications at the right time is
critical to improve the throughput. Re-qualification decisions are influenced by
WIP and capacity variability over time but also by decision maker preferences or
dispatching rules and priorities. In addition, numerical experiments show that per-
forming a re-qualification may lead to uncompensated capacity losses, e.g. due
to required maintenance operations. Thus, after performing a re-qualification, the
throughput can be lower than in the case where no re-qualification is performed.
Instead of only considering the throughput, other indicators might be interesting to
assess the quality of a re-qualification by for example prioritizing lots with large pri-

December 2020 EMSE-CMP Page 99



CHAPTER 4. A MULTI-PERIOD BILEVEL OPTIMIZATION APPROACH FOR
THROUGHPUT MAXIMIZATION

Table 4.5: Number of instances by work center where performing a re-qualification
with lead time gives a larger throughput than performing qualification with no lead
time.

Lead time (in shifts)

1 2

Throughput Work center MP SP MP SP

A 5 7 5 6
Priority B 5 6 5 4

C 0 4 0 3
D 2 6 1 6

A 0 1 1 2
Average B 1 1 0 0
product mix C 5 4 1 2

D 4 2 3 3

orities. For instance, although the overall throughput decreases, if the mean cycle
time of priority lots also decreases, then a re-qualification can be acceptable. Since
maximizing the throughput is not always the best option, qualification management
could also therefore be modeled and solved as a multi-objective problem.

Numerical results highlight the fact that the single-period and multi-period opti-
mization models can propose different re-qualifications respect to the demand pro-
file of the operations. Depending on the demand profiles, a model is more appro-
priate than the other. In general, in work centers where lots come by wave, the
multi-period optimization model should be more suited because it better captures
demand peaks. This model is then useful to identify and fix short-term bottlenecks
with cross qualifications. It is also more robust again highly variable demand and
capacity profiles.

Another significant of the multi-period optimization model is that, it considers
several periods over the horizon, it also leads to better estimate of the mean cy-
cle time spent by lots in the work center (see Chapter 5). This means that, even
if a FIFO queue is the method used to simulate dispatching decisions and if re-
qualification decisions are assumed to have no lead time and induce no capacity
loss, then a multi-period bilevel optimization model may still in fact be relevant
because it better estimates the mean cycle time spent by lots in the work center
although there is no large difference with the single period optimization model to
estimate the throughput

Numerical results also show that dispatching rules significantly affect the quality
of a re-qualification plan (Gurumurthi and Benjaafar, 2004; Johnzén et al., 2008;
Kopp et al., 2019). Therefore, how the lots are scheduled should be considered in
qualification management, in particular in operational qualification management.

As we study a high mix production facility subject to high production variabil-
ity, the demand and capacity can be uncertain. Therefore, it can be preferable to
perform a re-qualification that requires no lead time or maintenance operation and
looks sub-optimal, rather than perform an “optimal” re-qualification with a larger
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lead time or longer maintenance operation. If all re-qualification decisions are sub-
ject to delays or maintenance operations, shortest ones should be preferred. In
addition, uncertainty can be managed by using a rolling horizon approach (Clark
and Clark, 2000; Curcio et al., 2018). A re-qualification plan is determined at the
beginning of the first shift of the planning horizon. At the beginning of the next
shift, new information is revealed, the optimization model is solved and a new re-
qualification plan is determined.

4.5 Conclusions and perspectives

In this chapter, a single-period optimization model and a multi-period optimization
model are compared to maximize the throughput with re-qualification plans. Dis-
patching rules are included and simulated in optimization models. The dynamic
qualification optimization model is used to better consider qualification delays and
maintenance operations. Numerical experiments on industrial data show the rele-
vance of the multi-period qualification optimization model. In particular, numerical
experiments show that the choice of the model can have a significant effect on the
re-qualification plan, and therefore on the mean gain in terms of throughput. The
mean gain is particularly affected when operation priorities are considered and a
maintenance operation is required to re-qualify operations on machines. However,
the single-period optimization model remains relevant for some instances. In addi-
tion, in Chapter 5, we further demonstrate that a multi-period optimization model
is better suited to propose more relevant re-qualifications in terms of mean cycle
time.

We believe the following perspectives are worth investigating in the future (out
of the scope of the study):

1. We limit ourselves to k = 1. Efficient and effective solution approaches can
be designed to propose re-qualification plans for large values of k for both
optimization models. The solution approaches presented in Chapter 2 could
be extended to solve the single-period and multi-period bilevel optimization
problems. For instance, preliminary results showed that combining the use
of dual variables and other preprocessing rules (only re-qualifications on ma-
chines with utilization rates lower than 1 or only re-qualifications of opera-
tions that are faster on currently disqualified machines than currently quali-
fied machines) allows computational times to be significantly reduced while
only slightly impacting the quality of the re-qualification plan, in particular
when FIFO queues are simulated.

2. Similarly to Chapters 2 and 3, it would be interesting to better understand
the impact of different γ settings on re-qualification decisions and computing
time.

3. New methods to simulate the throughput or dispatching and scheduling de-
cisions could be proposed to be closer to the real behavior of the dispatching
and scheduling engines, e.g. by including batching constraints when relevant
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(Rowshannahad and Dauzère-Pérès, 2013) or using machine learning tech-
niques.

4. Our numerical experiments show that the single-period optimization model
often proposes the same re-qualifications as the multi-period optimization
model on industrial data. It would be interesting to automatically identify
when the single-period optimization model is likely to suggest the same re-
qualifications. Doing this would save a lot of time when searching for re-
qualifications.
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Chapter 5

Evaluating the impact of re-qualifications

on cycle times

In Chapters 2, 3 and 4, the question “How to determine the most relevant re-
qualifications to improve operational efficiency?” is answered from a utilization bal-
ancing standpoint or from a throughput standpoint. In this chapter, we are inter-
ested in evaluating the effect of re-qualification decisions in terms of cycle time
in a work center. In particular, we show that it is possible to have closed-formed
solutions for cycle time forecasts based on simple assumptions. In addition, we
show that re-qualifications that maximize the throughput are not necessarily the
re-qualifications that minimize the mean cycle time due to production variability.
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CHAPTER 5. EVALUATING THE IMPACT OF RE-QUALIFICATIONS ON CYCLE
TIMES

5.1 Introduction

In this chapter, we evaluate the effect of a re-qualification on the mean cycle time of
lots in a work center. First, we show that it is possible to have closed-formed solu-
tions for cycle time forecasts based on simple assumptions, in particular on the fact
that work centers are unlikely to be empty, i.e. without any lot to process, and on
deterministic laws for lot arrivals and departures from a work center. Depending on
the work center and the length of the horizon, we show that cycle time forecast er-
rors can be smaller than 5%. Second, by using the closed-formed solutions, we show
that, due to production variability, re-qualifications that maximize the throughput
are not necessarily the re-qualifications that minimize the mean cycle time.

The remainder of this chapter is organized as follows. In Section 5.1.1, we re-
view related work on qualification management in semiconductor manufacturing
to control or minimize the mean cycle time. After reviewing the literature, our
contributions are explained. In Section 5.2, we argue that closed-form solutions
are available at a production control level, i.e. at an operational decision level, for
a work center manager. This is because closed-form solutions can be derived by
assuming deterministic arrivals and departures and are realistic. Two closed-form
solutions are then derived. One closed-form solution is close the one proposed by
Leachman (2015). In Section 5.3, we show the limits and the relevance of closed-
form solutions for short-term cycle time forecasts for different work centers on in-
dustrial data. In Section 5.4, we show the effect of re-qualification decisions on the
short-term mean cycle time with derived closed-forms on industrial data. Note that
the effect of disqualification decisions could also be illustrated but is not performed
in this chapter for space constraints. In Section 5.5, we provide recommendations
for production personnel for the management of re-qualifications with respect to
the mean cycle time. We also argue that closed-form solutions can be used for
different goals than qualification management. Examples are provided. Finally, in
Section 5.6, we conclude and give perspectives.

5.1.1 Related work

Most papers that deal with qualification management and cycle time use optimiza-
tion models to, first, determine qualifications in terms of production costs, through-
put or workload balancing, and then, use simulation models to evaluate the mean
cycle time (Akcalt et al., 2001; Ignizio, 2009, 2010; Kabak et al., 2013; Kopp et al.,
2018, 2019). In other words, qualifications are often not directly optimized in
terms of mean cycle time. Another computationally cheap alternative consists in
using queuing theory (Shanthikumar et al., 2007) to evaluate the mean cycle time.

An alternative to simulation to evaluate the mean cycle time is to use queuing
theory, which has the benefit of being computationally inexpensive compared to
simulation models. Nevertheless, queuing theory has given unsatisfactory results
(Shanthikumar et al., 2007), in particular in a predictive use. In addition, queuing
theory can be intractable if embedded in optimization models as it involves highly
non linear equations. However, using queuing theory to control, reduce or estimate
decisions on the mean cycle time is a well developed practice in the semiconductor
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industry. Aurand and Miller (1997) and Brown et al. (2010) show how queuing
theory is used at IBM to manage the mean cycle time. Similarly, Kalir and Bouh-
nik (2006) and Li et al. (2007) show practices at Intel Corporation to manage the
mean cycle time with queuing theory. Sattler (1996), Potti and Whitaker (2003)
and Schelasin (2011) show practices related to queuing theory at Texas Instrument.
Although queuing theory has given unsatisfactory results in terms of predicting the
mean cycle time, applying queuing theory principles, i.e. improving workload bal-
ancing, reducing production variability, and increasing the number of qualifications,
have shown to decrease the mean cycle time. In addition, recent works (see e.g.
Delp et al. 2006; Morrison and Martin 2006, 2007) have shown on industrial data
that if queuing theory had given unsatisfactory results in a predictive use, this may
be because many factors contributing to increasing the mean cycle time of lots in
semiconductor manufacturing have been not considered in classical G/G/m queues.
In particular, Morrison and Martin (2006) and Morrison and Martin (2007) show
that including the mean cycle time offsets, e.g. transportation times, hold times,
idle with WIP, defections of lots from a failed machine, and a better modeling of
parallel processing offered by some machines can lead to an accurate estimation of
the mean cycle time in a work center.

From a qualification management standpoint, queuing theory is particularly con-
venient because it provides a closed-form solution between the utilization rates of
machines, the number of machines in the work center, and the mean cycle time of
lots in a work center. Therefore, the mean cycle time of lots can be decreased simply
by assessing decisions using spreadsheets. Fowler et al. (1997) show that adding
new qualifications to machines can lead to substantial reduction of the mean cy-
cle time from queuing theory. Fowler et al. (1997) compare different dispatching
policies with different qualification rates. They validate with simulation that adding
new qualifications strongly reduce the mean cycle time. Similarly, Leachman (2012)
illustrate how the mean cycle time can be reduced when new qualifications are
added by using queuing theory.

Although G/G/m queues have been applied with success on some work centers
(Morrison and Martin, 2006, 2007), they may not be applied with success for all
work centers. This is because a fundamental assumption of G/G/m is that there are
m identical machines in parallel able to process a lot, which is not always the case.
Machines can be of different generations, thus not identical in terms of throughput
rates and qualifications. G/G/m queues also imply that machines must be qualified
for all operations. However, the variability on the number of qualified machines
can actually be large from one operation to another in a work center. This is be-
cause old machines do not necessarily process the same layers or the same products
as newly purchased and installed machines (Miltenburg et al., 2002). In addition,
qualifications can be lost due to maintenance operations, recipe validation prob-
lems, yield losses, parametric issues (see e.g. Kopp et al. 2018) or WIP management
policies. Similarly to the variability in arrival rates and process times, the variability
in machine qualifications could negatively affect the mean cycle time (Sattler, 1996;
Hopp and Spearman, 2011). The variability in the number of qualified machines
by operation could be one major reason why Shanthikumar et al. (2007) state that
queuing theory has unsatisfactory results in a predictive use.
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Work centers are actually flexible queuing systems where lot types, e.g. opera-
tions or recipes, do not queue the same machines (see Figure 5.1). To better con-
sider flexible queuing systems, a possibility is to artificially decompose a large work
center into smaller work centers that do not share qualifications with other work
centers so that G/G/m holds for smaller work centers. However, this is not always
possible, in particular for high mix low volume factories. Instead, Sattler (1996)
and Juang and Huang (2000) propose to redefine the number of machines m as an
effective number of machines m∗. Veeger et al. (2010) generate queuing models
with simulation based on the notion of effective process times. In their model, the
number of machines m is a parameter that can be fitted to better approximate the
mean cycle time.

Figure 5.1: Flexible queuing system.

5.1.2 Contributions

In this chapter, we are interested in evaluating the effect of re-qualifications on
the mean cycle time in a work center. Simulation models are prohibitive because
they require expensive computational times. To the best of our knowledge, the
assessment of re-qualification decisions on short term cycle times does not exist
in the literature. In addition, evaluating the effect of re-qualification decisions on
the mean cycle time, a relevant cycle time measurement, must be derived at an
operational level for a work center in order to determine relevant re-qualifications.
Therefore, our contributions are three-fold:

− Although there are papers on short-term cycle time forecasts using machine
learning techniques (see e.g. Can and Heavey 2016; Wang et al. 2017), we
show that for short-term horizons, relevant simple closed-form solutions are
available to model the mean cycle time.

− The proposed closed-form solutions are studied in a computational study on
industrial data. In particular, the limits of the closed-formed solutions are
shown.

− We show the closed-form solutions can be used by production personnel to
assess the relevance of short-term re-qualification decisions in terms of mean
cycle time.
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5.2 Closed-form solutions for cycle time modeling

In this section, relevant simple closed-form solution are derived to model short-
term cycle times. In particular, closed-form solutions are derived by assuming de-
terministic laws for the arrivals and departures of products in work centers, which
is motivated by practical experience.

5.2.1 Motivations

Assume that the mean cycle time of lots in front a machine or a work center for a
finite time horizon, e.g. a week, must be studied. The system (the machine or the
work center) is empty at t = 0. The system is assumed to be immediately in steady
state. Lot and wafer arrivals follow a deterministic law. The arrival rate is equal
to 1

λ . The process time 1
µ follows en exponential distribution and is equal to 300

seconds. Assume that the number of lots and wafers that will arrive over the finite
time horizon is known exactly. Then, the utilization rate of the system u is know
because u = λ

µ = d
T µ . As the queuing system is described by a D/M/1 queue and in

steady state, the mean queuing time (QT) is given by the following equation:

QT =
1
2µ

u
1−u

(5.1)

Table 5.1 gives mean queuing times for utilization rates close to one. For u =
0.9999, the mean cycle time is equal to 1,499,999,851 seconds, more than the time
horizon of a week!

Table 5.1: QT (M/D/1) for utilization rates close to one

Utilization rate (u) QT(M/D/1) (s)
0.99 14,850

0.999 149,850
0.999 1,499,850
0.9999 1,499,999,851

Such values for the mean queuing time is impossible in practice. As the system is
assumed to be empty at the beginning of the time horizon, the number of customers
and the process time are known, and the utilization rate is less than one, the mean
queuing time cannot exceed T seconds, where T is the length of the time horizon.

This example may be twisted but illustrates what production personnel daily
faces at the operational decision level. For a given work center, the demand for the
next shift or 24 hours is known and finite, and very often, the utilization rate of
several machines is very close to one, frequently exceeding one because of machine
down times and production variability. As the utilization rate is greater than one,
a part of upcoming wafers accumulate, the mean queuing time increases (and it
is always defined because finite), but never skyrockets as it is the case in D/M/1
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queues. This leads to a time-dependent queuing system that is not modeled in
classical queuing models.

The problem consists in applying queuing theory, e.g. D/M/1 or G/G/m queues,
to a (short-term) finite horizon. Consider a work center with M parallel machines.
G/G/m queues make four fundamental assumptions: The work center is in a steady
state, the utilization of each machine is less than 1, the population of lots is infinite
and there is flow conservation, i.e. the arrival rate is equal to the departure rate. At
an operation level, these four assumptions do not hold because of production vari-
ability and finite time horizons. In G/G/m queues, the notion of time horizon does
not exist and, at an operational level the population of lots is always finite because
the time horizon is finite. For instance, machines are frequently, but temporarily,
overloaded, therefore their utilization rate can exceed 1. This does not mean that
the classical queuing theory is wrong or cannot be useful to derive relevant deci-
sions to improve the cycle time (see Section 5.1.1). It means that it cannot be used
to propose accurate values of the cycle time on the short term, and thus to offer the
best ranking of potentially relevant re-qualification decisions.

5.2.2 Deterministic arrivals and departures

Consider a lithography work center. As lithography machines are expensive, up
to $100M dollars by unit for the most recent machines, lithography work centers
are often bottleneck work centers and it is extremely unlikely that all machines are
simultaneously idle because the capacity utilization rates of machines are critical
indicators for semiconductor factories. In other words, assuming that there are
always wafers in lithography work centers is realistic.

As all machines in the semiconductor industry tend to be expensive, it can be
reasonable to assume that there is always some WIP (Work-In-Process) in any work
center in a semiconductor factory. In other words, work centers are never totally
empty. Nevertheless, this is not always the same machines that have qualified WIP
in front of them, otherwise, the long-term mean cycle time would significantly in-
crease. By assuming that both arrivals and departures follow a deterministic law, it
is possible to compute and determine a closed-from solution for the mean WIP in a
work center over a finite time horizon by using the integral version of Little’s law
(Little and Graves, 2008; Little, 2011).

We assume that deterministic assumptions for arrivals and departures are rea-
sonable for small horizons, i.e. horizons of a few fours to at most 24 hours. This is
because the state of each work center can be assumed to be relatively stable over
small horizons. For instance, on small horizons, the number of processed products,
the number of down machines, the congestion in the transportation system, the
qualifications can be assumed to be relatively stable.

5.2.3 First approach

Assume that the mean WIP must be computed on the horizon [0,T ], with N (t) the
cumulative number of arrivals at time t, D(t) the cumulative number of departures
at time t. N (0) is the WIP already in the system at t = 0 and N (T ) is the total
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number of arrivals at the end of the horizon. D(T ) is the total number of departures
(throughput) by the end of the horizon. These notations will be used throughout
the chapter. The mean WIP, WIP , over [0,T ] in each work center can be computed
as follows if the work center is never empty:

WIP =
1
T

∫ T

0
(N (t)−D(t))dt (5.2)

Note that N (t) > D(t) ,∀t as work centers are never empty. As N (t) and D(t) fol-
low a deterministic law, computing

∫ T
0
(N (t)−D(t))dt can be done as shown below:∫ T

0
(N (t)−D(t))dt =

∫ T

0
(N (0) +N ′(t)−D(t))dt (5.3)

where N (0) is the number of wafers in the work center at t = 0, and N ′(t) the
new arrivals by time t. Finally, if λin is the deterministic (independent of t) arrival
rate and λout is the deterministic departure rate, Equation (5.3) can be rewritten:∫ T

0
(N (0) +N ′(t)−D(t))dt =

∫ T

0
(N (0) +λint −λoutt)dt∫ T

0
(N (0) +λint −λoutt)dt =N (0) +

λin

2
T 2 − λ

out

2
T 2

WIP =
N (0)T + λin

2 T
2 − λout2 T 2

T

WIP =N (0) +
λin

2
T − λ

out

2
T

WIP =N (0) +
N ′(T )

2
− D(T )

2
(5.4)

Equation (5.4) shows that, under a deterministic assumption for arrivals and
departures, WIP is actually the arithmetic mean between WIP at t = 0 and t = T .
From WIP , it is possible to compute the mean cycle time (CT) experienced by lots
in the work center with Little’s law (Little and Graves, 2008; Little, 2011):

CT add =
WIP
N (T )
T

(5.5)

Note that as N (0) > 0, CT add is not strictly equal to the mean cycle time ex-
perienced by lots in the work center. It is actually equal to the additional mean
cycle time experienced by lots in the work center (Little and Graves, 2008; Little,
2011). Note that as CT add is the additional mean cycle time, CT add ≤ T . In addi-
tion, as there exist re-entrant product flows in semiconductor manufacturing, N (T )
corresponds to the total number of couples (operation, lot) that will arrive in the
work center by the end of the horizon. In other words, Equation (5.5) evaluates the
additional mean cycle by lot and by operation.
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As there are lots in the system at t = 0, lots have been waiting and the associated
waiting times contribute to the overall mean cycle time:

CT overall =
1

N (T )

N (T )∑
k=1

(CT initk +CT addk )

CT overall =
1

N (T )

N (0)∑
k=1

(CT initk ) +
1

N (T )

N (T )∑
k=1

(CT addk )

CT overall =
CT init

N (T )
+
N (T )CT add

N (T )

CT overall =
CT init

N (T )
+CT add (5.6)

where CT initk is the initial cycle time already spent by lot k in the work center
at t = 0, CT addk is the additional cycle time of lot k in the work center, CT init =∑N (0)
k=1 CT

init
k , and CT add = 1

N (T )
∑N (T )
k=1 CT addk .

Equation (5.4) corresponds to the mean WIP for a work center over all its op-
erations with WIP on the horizon [0,T ]. Equation (5.4) can be used at different
aggregation levels. For instance, it can be used to compute the mean WIP for a
work center over all its operations with a WIP that belongs to a specific fabrication
layer. The additional mean cycle time by fabrication layer on the horizon [0,T ] can
then be estimated with Equation (5.6). Other aggregation levels are possible, for
instance, by product or product family.

Equation (5.6) naturally considers the effect of re-qualifications because
the throughput, i.e. the number of departures D(T ), can be improved with
re-qualification decisions (see Chapters 3 and 4). Note that minimizing (5.5) or
(5.6) is equivalent because both equations differ by a constant term.

Leachman (2015) proposes in his lecture (page 7) a similar formula, CT = WIP
D(T )
T

,

to estimate the mean cycle time, named “throughput time”, for a single operation.
This is only valid when there is flow conservation, i.e. when λin = λout, which may
hold for large or infinite horizons but is not acceptable for finite short-term horizons
due to production variability, e.g. machine breakdowns. Moreover, in the context
of high mix manufacturing, we show that estimating the cycle time by operation is
largely inaccurate and statistically irrelevant. This is mainly because the assumption
on the non-emptiness of the system, which consists of a set of operations for a given
work center, is often violated when only a small number of operations is considered.
Numerical results show that estimating the mean cycle time is only possible over a
large set of operations at a given work center. It is worth mentioning that Equation
(5.4) is used in production planning optimization problems to define clearing func-
tions (see e.g. Kacar et al. 2011). Clearing functions are used to model production
capacities of work centers. They define a relationship between the number of de-
partures (throughput) from a work center and a workload estimation of the work
center, e.g. based an evaluation of the mean WIP. Clearing functions are typically
fitted from simulation data where the horizon is typically of one week.
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We could not find in the literature contributions that show the limits of Equation
(5.4) to estimate the mean WIP on industrial data. In particular, we numerically
show that Equation (5.4) is not representative of the mean WIP in a work center
when the horizon exceeds one day. Equation (5.4) cannot be applied for large
planning horizons but can be refined for large horizons by dividing them in smaller
time periods (see Section 5.2.4).

5.2.4 Second approach

For “large” horizons, the deterministic assumption may no longer be realistic due
to production variability. This is because machines fail, which leads to time-varying
arrivals and departures. Moreover, new products are introduced, new machines
are installed, and qualifications are updated over time, which also have the effect
of creating time-varying arrivals, processing times and departures. Nevertheless, it
is possible to relax the deterministic assumption by assuming that large horizons
can be divided into smaller periods of time where the deterministic assumption still
holds in each period. In other words, each period has its own deterministic arrival
and departure rates that can be different from other periods. For instance, consider
the illustrative example in Figure 5.2. A horizon of one day can be divided into
three periods of eight hours each. The second approach therefore is used to better
capture the dynamic of work centers in terms of mean cycle times, which can result
in better decision making.

Figure 5.2: Dividing the horizon.

By dividing the horizon into smaller periods, it is still possible to use equation
(5.4) to compute the mean WIP by period and finally compute the overall mean
WIP, WIP , over the horizon. First, for sake of simplicity, consider that the horizon,
as in Figure 5.2, is divided into three periods. Let us define t1 as the end date of the
first time period and the start date of the second time period, t2 as the end date of
the second time period and the start date of the third time period. The mean WIP
of each period can be computed as follows:

WIP1 =
1

(t1− 0)

∫ t1

0
(N (t)−D(t))dt

WIP2 =
1

(t2− t1)

∫ t2

t1
(N (t)−D(t))dt

WIP3 =
1

(T − t2)

∫ T

t2
(N (t)−D(t))dt
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(5.7)

By additivity of integrals, WIP can be computed as follows:

WIP =
1
T

∫ T

0
(N (t)−D(t))dt

WIP =
1
T
[
∫ t1

0
(N (t)−D(t))dt +

∫ t2

t1
(N (t)−D(t))dt

WIP +
∫ T

t2
(N (t)−D(t))dt]

WIP =
1
T
[(t1− 0)WIP1 + (t2− t1)WIP2 + (T − t2)WIP3] (5.8)

WIP1, WIP2 and WIP3 can each be computed with Equation (5.4). Note that, if
the horizon is divided into periods of equal duration, the overall mean WIP is simply
equal to the sum of the mean WIP over all periods divided by the number of periods.
Equation (5.8) is expected to better capture dynamic WIP quantities and production
capacities than Equation (5.4) as the horizon is divided in smaller periods of time.

5.2.5 Illustrative example

Consider the illustrative example shown in Tables 5.2 and 5.3. The horizon is made
of twelve periods of equal duration. The initial WIP in the work center is equal to
5,000 wafers. The production capacity of the work center is constant and is equal
to 2,000 wafers per period. The total number of arrivals, including the initial WIP,
is equal to 24,000 wafers. The total number of departures is also equal to 24,000
wafers. In the illustrative example, two different cases are compared in terms of
arrival profile (see Table 5.2). In case 1, the arrival profile is constant over time, i.e.
at each period 2,000 wafers arrive. In case 2, the arrival profile strongly varies over
time, a large peak of arrivals is expected between periods 3 and 5. For each period,
we compute the mean WIP, WIP , the WIP at Beginning of Period (WIP BOP) and
the WIP at End of Period (WIP EOP).

In Table 5.3, we compute the mean WIP and additional CT using the first ap-
proach, i.e. with Equation (5.4), and the second approach, i.e. with Equation (5.8).
Using the first approach, we show that both arrival profiles have strictly the same
effect on the additional mean CT. However, when using the second approach, the
additional mean CT is actually larger by 49% than in case 1. A larger cycle time
should be expected in case of large variability in arrivals (Shanthikumar et al., 2007;
Hopp and Spearman, 2011).

Table 5.3: Mean WIP and additional mean CT (ACT) in seconds.

First approach (Equation (5.4)) Second approach (Equation (5.8))

Case 1 Case 2 Case 1 Case 2

WIP 5,000 5,000 5,000 7,450
ACT 14,897 14,897 14,897 22,196
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Table 5.2: Illustrative example on the importance of the demand profile. Production
capacity = 2,000 wafers per period.

First approach (Equation (5.4)) Second approach (Equation (5.8))

Period WIP BOP WIP EOP N WIP WIP BOP WIP EOP N WIP

1 5,000 5,000 2,000 5,000 5,000 5,000 2,000 5,000
2 5,000 5,000 2,000 5,000 5,000 5,300 2,300 5,150
3 5,000 5,000 2,000 5,000 5,300 6,600 3,300 5,950
4 5,000 5,000 2,000 5,000 6,600 8,700 4,100 7,650
5 5,000 5,000 2,000 5,000 8,700 10,000 3,300 9,350
6 5,000 5,000 2,000 5,000 10,000 9,900 1,900 9,950
7 5,000 5,000 2,000 5,000 9,900 9,400 1,500 9,650
8 5,000 5,000 2,000 5,000 9,400 8,600 1,200 9,000
9 5,000 5,000 2,000 5,000 8,600 7,800 1,200 8,200
10 5,000 5,000 2,000 5,000 7,800 7,000 1,200 7,400
11 5,000 5,000 2,000 5,000 7,000 6,100 1,100 6,550
12 5,000 5,000 2,000 5,000 6,100 5,000 900 5,550

Tables 5.2 and 5.3 show that neglecting production variability leads to inaccu-
rate estimates of the mean cycle time, which can result in poor decision making in
terms of re-qualifications. Therefore, considering a dynamic approach, i.e. where
arrivals and production capacities are time-varying, is critical. Re-qualifications by
using Equation (5.8) are therefore expected to be relevant for the mean cycle time
in practice for real manufacturing systems than re-qualifications relying on Equa-
tion (5.4). This example also shows that optimizing the throughput is not strictly
equivalent to optimizing the mean cycle time contrary to what Equation (5.4) sug-
gests, although increasing the throughput decreases the mean cycle time. Again,
this is due to production variability.

From a long term perspective, effective re-qualifications can help to minimize
the mean cycle time (see Figure 5.3), which helps reduce inventory costs. Note that
minimizing the cycle time with the help of re-qualifications and Equation (5.4) or
Equation (5.8) reduces the effect of the variability component on the cycle time as
the (long term) utilization rate of machines has already been decided by tactical
and strategic decision levels. In addition, for instance, production plans in semicon-
ductor manufacturing can be determined from historical mean cycle times (see e.g.
Christ 2020). Minimizing the cycle time with re-qualifications is a catalyst to im-
prove responsiveness because of shorter cycle times and to reduce backlog penalties
if the same cycle times are proposed to clients.
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Figure 5.3: Illustration of the reduction of the mean cycle with re-qualifications at
a work center.

5.3 Computational experiments

Numerical experiments are used to validate Equations (5.4) and (5.8) with indus-
trial data from a 300mm manufacturing facility located in Crolles, France. In other
words, numerical experiments are used to verify if deterministic assumptions for ar-
rivals at and departures from a work center hold, and, if they hold, to what extent.

5.3.1 Design of experiments

Effect size. The effect size (value) of each coefficient before N (0), N ′(T ) and
D(T ) is evaluated with an ordinary least square linear regression. The effect
size is compared to what is derived in Equation (5.4). The ordinary least square
regression is performed by using the statmodels library in Python. Both the fitted
value and the 95-% confidence interval around the fitted value are reported.

Statistical test. Two-tailed t-tests are used to evaluate if the coefficients before
N (0), N ′(T ) and D(T ) are statistically different from zero. t-test results are also
provided by the statmodels library in Python. Recall that, in linear regressions, the
null hypothesis states that the coefficient before a predictor is equal to zero. To
each predictor, including the intercept, a p-value is associated. A p-value less than
a given threshold, usually 0.05, indicates that the null hypothesis can be rejected
because, on the long run and in less than 5% of time, a mistake will be made on the
relevance of the predictor. A p-value is a relevant information only if the statistical
test has enough statistical power.

Sample size. To perform the numerical experiments, industrial data are used from
a 300mm manufacturing facility located in France. However, it is impossible to
extract all possible data. The appropriate sample size is computed to achieve a
desirable statistical power, which corresponds in this study, to the probability of
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a observing a coefficient before N (0), N ′(T ) and D(T ) different from zero if it is
actually different from zero in practice. To compute the appropriate sample size,
the open source statistical software G-Power is used (Faul et al., 2007). For a strong
effect size of f 2 = R2

1−R2 = 0.35 (Cohen, 2013), an α level of 0.05, a statistical power
of 0.95 and three predictors (N (0), N ′(T ) and D(T )), 40 samples are required
(two-tailed t-tests, “Linear Multiple Regression: Fixed Model, single regression
coefficient” in G-Power). Note that R2 scores are partial R2 scores in the sample
size computation.

Predictability of future WIP. To evaluate the predictability of future WIP, the Mean
Absolute Percentage Error (MAPE) and the Out of Sample (OOS) R2 scores are
reported. The OSS R2 score is computed with the theoretical equation and not the
equation fitted by the linear regression. The OSS R2 score then mainly measures
the correlation between the outputs of Equation (5.4) and historical data. These
two indicators are then computed for the entire data set. It is important to report
both R2 scores and MAPE because although R2 scores can be large, MAPE can be
also large (for instance see Table 5.5). All historical data are used to compute
MAPE and OOS R2 scores as there is no training step: The theoretical equation is
compared to the real situation.

Data collection. All lot transactions, i.e. all lots that arrived and exited, are
retrieved for 11 months between 2018 and 2019. This is more than sufficient to
meet the sample size requirements. For each lot and operation, the arrival time and
departure time are known and reliable. Note that a lot appears multiple times in
the data due to re-entrant product flows. However, only the couple (lot, operation)
is unique in the data. No outliers were removed. As data are not formatted in a
simple way to compute the historical mean WIP on a given horizon, we first divide
the 11 months of data in custom horizons to evaluate Equations (5.8) and (5.4).
We study six different horizons: One half-shift (4 hours), one shift (8 hours), one
half-day (12 hours), one day (24 hours), one week (7 days or 168 hours), one
month (35 days or 840 hours). Note that a month is equal to 35 days so that one
month is an integral multiple of one week. Note that a horizon of one month will
not be used for statistical tests as there are not enough months in the data to meet
the sample size requirement. However, it can still be used to compare Equations
(5.8) and (5.4) in terms of predictability (see Section 5.3.2.3).

Studied work centers. Five different work centers are studied. Work centers com-
pletely perform different operations. Machines in work centers are non-identical.
Numerical experiments are conducted for a large variety of work centers in terms
of machine types (see Table 5.4). This allows us to evaluate the limit of Equations
(5.8) and (5.4), in particular for complex machines such as lithography machines
or machines with long process times such as diffusion machines. The studied work
centers are subject to medium to high variability based on the Coefficient of Variabil-
ity (CV) of arrivals and the CV of process times according to Hopp and Spearman
(2011).
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Table 5.4: Different studied work centers.

Work centers Machine type

Dielectric Parallel and serial process chambers
Diffusion Single wafer and batching machines

Etch Parallel and serial process chambers
Implantation Single wafer machines
Lithography Job cascading machines

5.3.2 Numerical results

In Sections 5.3.2.1 and 5.3.2.2, the relevance of Equation (5.4) to statistically de-
scribe the mean WIP is studied. t-tests are performed to identify whether N (0),
N ′(T ) and D(T ) are statistically significant. The predictability of the mean WIP is
shown. The limits of Equation (5.4) on large horizons and product families are also
shown. Then, it is shown in Section 5.3.2.3 that Equation (5.8) can better predict
the future mean WIP than Equation (5.4), even for large horizons.

5.3.2.1 Numerical results using first approach by work center

The numerical results in Table 5.5 show that Equation (5.4) is relevant and can ac-
curately predict the mean WIP over a horizon, even when assuming deterministic
laws for arrivals and departures. For a horizon of 4 hours, MAPE is below 2.4%.
However, the larger the horizon, the larger MAPE. MAPE is multiplied by two be-
tween a horizon of 4 hours and a horizon of 12 hours. MAPE is still below 5.1%
for all work centers. These results can be surprising because a much larger MAPE
is expected for the work center with batching machines because many lots often
leave at the same time the work center at the end of batches, which could make
the deterministic assumption on departures unrealistic. For horizons larger than 12
hours, MAPE increases significantly. For a horizon of 24 hours, MAPE is between
5% and 8%. For horizons of 168 hours, Equation (5.4) is inaccurate because MAPE
exceeds 15%.

For a horizon of 168 hours, N ′(T ), N (0), and D(T ) are very often statistically
significant but can be quite far from the expected values using Equation (5.4). For
instance, for the etch work center, the coefficient before N (0) is 0.743 whereas the
theoretical one is equal to 1.0. Note that, for the diffusion work center, only N (0) is
a statistically significant predictor. However, its coefficient is equal to 0.59, which
is far from the expected coefficient, i.e. 1.0, computed from Equation (5.4). More-
over, MAPE varies between 12.0% and 16.2%. Therefore, although N ′(T ), N (0),
and D(T ) are statistically significant and R2 scores (for most work center greater
than 0.7) indicate that there is a strong correlation between historical data and
Equation (5.4), Equation (5.4) should not be used to estimate the mean WIP be-
cause MAPE is too large. For horizons smaller or equal to 24 hours, the coefficients
determined by the linear regression are close to the coefficients derived by assuming
deterministic laws. Predictors, N ′(T ), N (0), and D(T ), are all significant, even for
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the diffusion work center with process time of several hours. However, it is interest-
ing to note that confidence intervals almost never contain derived values of N ′(T ),
N (0), and D(T ). This probably means that the true coefficients before N ′(T ), N (0),
and D(T ) are not exactly those derived by assuming deterministic laws for arrivals
and departures. However, from a practical standpoint, Equation (5.4) is appropriate
because MAPE is reasonable and gets smaller as the horizon gets smaller. Similarly,
R2 scores (greater than 0.9) indicate a good predictability. Using Equation (5.4) is
thus acceptable and relevant for horizons smaller than or equal to 24 hours. It is
also interesting to observe that, in many cases although the null hypothesis is re-
jected for the intercept, the associated t-test lacks of statistical power (real partial
R2 scores associated do not lead to a statistical power of 0.95). In general, the in-
tercept accounts for bias that is not captured by other terms in the linear regression.
Nevertheless, it is difficult to interpret what the intercept accounts for in practice
in a work center, and if it is actually accounts for something given its low statistical
power.

Table 5.5: Statistical results for Equation (5.4). The expected coefficients before
N (0) is equal to 1, before N ′(T ) to 0.5, and before D(T ) to -0.5. Bold values indicate
p-values strictly larger than α. Italic values indicate a low achieved statistical power
(< 0.95).

Coefficient before

Horizon (h) N (0) N ′(T ) D(T ) Intercept MAPE R2 OOS R2

Diel

4 1, [1, 1] 0.52, [0.51, 0.53] -0.51, [-0.52, -0.5] -34.88, [-60.04, -9.73] 2.03 0.997 0.997
8 0.99, [0.98, 0.99] 0.51, [0.5, 0.52] -0.51, [-0.52, -0.49] 17.56, [-41.01, 76.13] 2.98 0.992 0.992
12 0.97, [0.96, 0.98] 0.52, [0.5, 0.53] -0.51, [-0.53, -0.5] 92.61, [-9.37, 194.6] 3.91 0.985 0.984
24 0.9, [0.88, 0.92] 0.46, [0.44, 0.48] -0.45, [-0.48, -0.43] 453.79, [183.54, 724.03] 7.07 0.951 0.951
168 0.73, [0.59, 0.86] 0.47, [0.36, 0.59] -0.47, [-0.58, -0.35] -232.17, [-1938.28, 1473.94] 15.76 0.752 0.715

Diffusion

4 1, [0.99, 1] 0.52, [0.51, 0.53] -0.51, [-0.52, -0.5] -6.71, [-52.52, 39.1] 1.72 0.995 0.995
8 0.97, [0.97, 0.98] 0.52, [0.51, 0.53] -0.51, [-0.52, -0.49] 183.48, [86.12, 280.84] 2.35 0.989 0.989
12 0.95, [0.94, 0.96] 0.5, [0.49, 0.51] -0.5, [-0.51, -0.48] 546.47, [393.04, 699.9] 2.90 0.983 0.983
24 0.82, [0.8, 0.84] 0.44, [0.42, 0.46] -0.43, [-0.45, -0.41] 1555.6, [1167.44, 1943.77] 5.65 0.948 0.946
168 0.59, [0.33, 0.84] 0.21, [-0.01, 0.43] -0.19, [-0.41, 0.04] -507.32, [-4674.78, 3660.14] 11.99 0.369 0.290

Etch

4 1, [0.99, 1] 0.53, [0.52, 0.54] -0.51, [-0.52, -0.5] -52.45, [-102.09, -2.81] 1.57 0.997 0.997
8 0.98, [0.98, 0.99] 0.52, [0.51, 0.53] -0.51, [-0.52, -0.5] 113.34, [2.11, 224.57] 2.21 0.994 0.994
12 0.97, [0.96, 0.98] 0.51, [0.5, 0.52] -0.5, [-0.51, -0.49] 258.44, [74.7, 442.19] 2.77 0.989 0.989
24 0.88, [0.86, 0.9] 0.46, [0.45, 0.48] -0.45, [-0.47, -0.43] 928.49, [446.54, 1410.43] 5.42 0.966 0.965
168 0.73, [0.52, 0.95] 0.34, [0.17, 0.51] -0.31, [-0.48, -0.14] -4480.33, [-9214.87, 254.2] 14.36 0.569 0.478

Implantation

4 1, [1, 1] 0.52, [0.51, 0.53] -0.52, [-0.53, -0.51] -29.88, [-67.86, 8.1] 2.21 0.998 0.998
8 1, [0.99, 1] 0.53, [0.51, 0.54] -0.53, [-0.54, -0.52] 103.35, [9.83, 196.88] 3.28 0.994 0.993
12 0.98, [0.98, 0.99] 0.52, [0.5, 0.54] -0.52, [-0.54, -0.51] 245.32, [76.47, 414.18] 4.39 0.987 0.987
24 0.95, [0.93, 0.97] 0.49, [0.47, 0.51] -0.49, [-0.52, -0.46] 685.74, [237.88, 1133.6] 7.62 0.963 0.963
168 0.84, [0.73, 0.95] 0.52, [0.42, 0.63] -0.51, [-0.61, -0.4] -3079.74, [-6137.04, -22.44] 12.34 0.880 0.861

Lithography

4 1, [1, 1] 0.54, [0.53, 0.55] -0.53, [-0.54, -0.52] -50.37, [-101.01, 0.27] 2.48 0.997 0.997
8 0.99, [0.98, 0.99] 0.51, [0.5, 0.52] -0.52, [-0.53, -0.5] 169.76, [43.79, 295.73] 3.83 0.992 0.992
12 0.99, [0.98, 1] 0.51, [0.5, 0.53] -0.52, [-0.54, -0.5] 315.93, [87.59, 544.26] 5.21 0.984 0.984
24 0.95, [0.93, 0.97] 0.48, [0.45, 0.51] -0.49, [-0.52, -0.46] 886.9, [262.33, 1511.48] 9.14 0.947 0.947
168 0.76, [0.66, 0.86] 0.47, [0.36, 0.58] -0.46, [-0.57, -0.35] 371.6, [-3142.97, 3886.17] 16.21 0.829 0.817

Finally, a visual comparison between the predicted mean WIP and the historical
mean WIP cound be found in Figures5.4 and 5.5. Figure 5.4 presents the pre-
dicted mean WIP against the historical mean WIP for the lithography work center.
Figure 5.5 presents the predicted mean WIP and the historical mean WIP for the
lithography work center over time. Note that only the results for the lithography
work center is presented because other work centers have similar results. Note that
scales are hidden for confidentiality purposes.
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Consider a horizon of one day. Figures 5.4 and 5.5 show that, although the out
of sample R2 is greater than 0.9, Equation (5.4) can be slightly biased, in particular
when the WIP is low. The predicted mean WIP is always smaller than the real mean
WIP when the real mean WIP is low, which indicates that there is still room for im-
provements. This is where Equation (5.8) is relevant. Note also that Figure 5.5 also
highlights the fact that the work center is subject to a great production variability
since the historical mean WIP strongly varies over time.

(a) Horizon of one day. (b) Horizon of one shift day.

Figure 5.4: Predicted mean WIP against historical mean WIP for lithography work
center. Scales are hidden for confidentiality purposes.
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(a) Horizon of one day.

(b) Horizon of one shift.

Figure 5.5: Visual comparison between predicted mean WIP and historical mean
WIP over time for lithography work center over time. Scales are hidden for confi-
dentiality purposes.

5.3.2.2 Numerical results using first approach by product family by work cen-
ter

Table 5.6, respectively Table 5.7, presents the numerical results as in Table 5.5
but for one low volume product family, respectively for one large volume product
family. In particular, Tables 5.6 and 5.7 show that it is still possible to use Equation
(5.4) to predict the mean WIP for aggregation levels of operations, such as product
families, with large WIP, but its use becomes questionable for aggregation levels of
operations with low WIP.
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Consider the low volume product family. Table 5.6 shows that, even for a horizon
of 4 hours, Equation (5.4) is unable to provide accurate forecasts of the historical
mean WIP. For instance, MAPE is equal to 38.7% for the dielectric work center
although N (0), N ′(T ), and D(T ) are statistically significant. MAPE is always greater
than 15% although all predictors are significant except for the intercept. Similar
results were observed for most low volume product families.

Table 5.6: Small volume product family. Statistical results for Equation (5.4). The
expected coefficients before N (0) is equal to 1, before N ′(T ) to 0.5, and before D(T )
to -0.5. Bold values indicate p-values strictly larger than α. Italic values indicate a
low achieved statistical power (< 0.95).

Coefficient before

Horizon (h) N (0) N ′(T ) D(T ) Intercept MAPE R2 OOS R2

Diel

4 0.94, [0.93, 0.95] 0.51, [0.5, 0.53] -0.44, [-0.45, -0.42] -0.35, [-1.27, 0.57] 38.67 0.941 0.937
8 0.87, [0.85, 0.9] 0.46, [0.44, 0.48] -0.39, [-0.41, -0.37] -0.46, [-2.21, 1.28] 50.38 0.891 0.881
12 0.77, [0.74, 0.8] 0.43, [0.4, 0.45] -0.33, [-0.36, -0.3] -0.62, [-3.16, 1.92] 40.71 0.845 0.813
24 0.62, [0.57, 0.67] 0.37, [0.33, 0.4] -0.29, [-0.33, -0.25] 0.61, [-3.75, 4.97] 49.10 0.771 0.698
168 0.22, [0.13, 0.31] 0.12, [0.06, 0.18] -0.1, [-0.16, -0.04] 3.24, [-7.3, 13.77] 48.49 0.742 0.386

Diffusion

4 0.96, [0.96, 0.97] 0.52, [0.51, 0.54] -0.45, [-0.46, -0.43] -0.78, [-1.98, 0.43] 16.18 0.962 0.960
8 0.92, [0.9, 0.93] 0.49, [0.47, 0.51] -0.41, [-0.43, -0.39] -0.77, [-3.01, 1.48] 21.50 0.938 0.933
12 0.93, [0.9, 0.95] 0.49, [0.47, 0.51] -0.44, [-0.47, -0.41] -2.43, [-5.89, 1.02] 22.01 0.909 0.906
24 0.83, [0.79, 0.88] 0.44, [0.4, 0.48] -0.39, [-0.43, -0.35] 3.25, [-3.5, 10.01] 25.87 0.840 0.832
168 0.5, [0.35, 0.65] 0.33, [0.22, 0.45] -0.32, [-0.43, -0.2] 4.45, [-20.53, 29.44] 33.24 0.696 0.625

Etch

4 0.96, [0.95, 0.97] 0.53, [0.52, 0.55] -0.44, [-0.45, -0.42] -2.56, [-4.37, -0.74] 15.75 0.958 0.956
8 0.92, [0.9, 0.94] 0.49, [0.47, 0.51] -0.41, [-0.44, -0.39] -1.46, [-5.09, 2.17] 17.44 0.927 0.922
12 0.91, [0.88, 0.93] 0.5, [0.47, 0.52] -0.42, [-0.45, -0.39] -5.31, [-10.49, -0.13] 19.51 0.907 0.899
24 0.86, [0.81, 0.9] 0.45, [0.41, 0.49] -0.41, [-0.45, -0.36] -2.48, [-12.18, 7.22] 22.61 0.852 0.841
168 0.48, [0.35, 0.62] 0.22, [0.12, 0.33] -0.21, [-0.32, -0.09] -2.86, [-33.89, 28.16] 29.50 0.805 0.753

Implantation

4 0.98, [0.98, 0.99] 0.51, [0.5, 0.52] -0.47, [-0.48, -0.45] -1.1, [-2.38, 0.18] 42.52 0.964 0.963
8 0.95, [0.93, 0.96] 0.49, [0.46, 0.51] -0.43, [-0.45, -0.41] -0.26, [-3, 2.48] 25.29 0.919 0.914
12 0.9, [0.87, 0.92] 0.5, [0.47, 0.53] -0.46, [-0.49, -0.43] 5.53, [1.65, 9.42] 27.25 0.889 0.883
24 0.79, [0.75, 0.83] 0.44, [0.4, 0.47] -0.4, [-0.44, -0.36] 11.37, [4.96, 17.77] 25.54 0.843 0.828
168 0.56, [0.41, 0.71] 0.27, [0.15, 0.39] -0.26, [-0.38, -0.14] 11.45, [-13.12, 36.03] 33.12 0.690 0.634

Lithography

4 0.94, [0.93, 0.95] 0.52, [0.51, 0.54] -0.42, [-0.44, -0.4] -0.85, [-2.66, 0.95] 23.43 0.924 0.919
8 0.88, [0.86, 0.9] 0.49, [0.47, 0.52] -0.4, [-0.43, -0.37] 0.38, [-3.29, 4.05] 26.15 0.859 0.848
12 0.86, [0.83, 0.89] 0.43, [0.4, 0.46] -0.39, [-0.42, -0.36] 7.94, [2.52, 13.36] 27.66 0.801 0.796
24 0.83, [0.78, 0.88] 0.4, [0.36, 0.45] -0.38, [-0.42, -0.33] 10.78, [1.81, 19.76] 28.85 0.742 0.732
168 0.56, [0.35, 0.78] 0.23, [0.08, 0.38] -0.22, [-0.37, -0.07] 16.86, [-17.55, 51.28] 34.92 0.431 0.350

Now consider the large volume product family. Contrary to Table 5.6, Table 5.7
shows similar results than Table 5.5. However, MAPE is larger. MAPE is less than
10% for horizons smaller than 24 hours. MAPE is approximately equal to 5% for a
horizon of 4 hours.
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Table 5.7: Large volume product family. Statistical results for Equation (5.4). The
expected coefficients before N (0) is equal to 1, before N ′(T ) to 0.5, and before D(T )
to -0.5. Bold values indicate p-values > α. Italic values indicate a low achieved
statistical power (< 0.95).

Coefficient before

Horizon (h) N (0) N ′(T ) D(T ) Intercept MAPE R2 OOS R2

Diel

4 1, [0.99, 1] 0.51, [0.49, 0.52] -0.48, [-0.49, -0.47] -8.63, [-13.03, -4.23] 5.01 0.993 0.993
8 0.99, [0.98, 1] 0.51, [0.49, 0.52] -0.48, [-0.5, -0.47] -13.21, [-23.16, -3.26] 6.90 0.985 0.985
12 0.98, [0.97, 0.99] 0.52, [0.5, 0.54] -0.49, [-0.51, -0.47] -19.62, [-35.47, -3.76] 8.46 0.976 0.976
24 0.93, [0.9, 0.95] 0.48, [0.45, 0.51] -0.45, [-0.48, -0.42] -20.45, [-58.62, 17.71] 13.17 0.940 0.938
168 0.63, [0.51, 0.76] 0.39, [0.29, 0.48] -0.37, [-0.47, -0.27] -35.61, [-234.37, 163.15] 24.33 0.777 0.742

Diffusion

4 0.99, [0.98, 0.99] 0.51, [0.5, 0.53] -0.49, [-0.5, -0.47] -4.54, [-18.22, 9.14] 3.66 0.981 0.981
8 0.95, [0.94, 0.96] 0.5, [0.48, 0.51] -0.46, [-0.48, -0.45] 23.14, [-3.4, 49.67] 4.73 0.966 0.965
12 0.92, [0.9, 0.93] 0.49, [0.47, 0.51] -0.45, [-0.47, -0.42] 38.81, [-4.31, 81.92] 6.03 0.942 0.939
24 0.74, [0.71, 0.78] 0.4, [0.38, 0.43] -0.35, [-0.39, -0.32] 212.11, [123.82, 300.41] 9.47 0.871 0.856
168 0.49, [0.28, 0.7] 0.33, [0.19, 0.48] -0.31, [-0.46, -0.16] -78.6, [-486.45, 329.25] 13.83 0.694 0.504

Etch

4 0.99, [0.98, 0.99] 0.51, [0.5, 0.52] -0.48, [-0.5, -0.47] -12.65, [-25.33, 0.04] 3.07 0.991 0.991
8 0.97, [0.96, 0.98] 0.51, [0.5, 0.52] -0.49, [-0.51, -0.47] 15.82, [-10.87, 42.5] 4.19 0.982 0.982
12 0.95, [0.93, 0.96] 0.5, [0.48, 0.52] -0.47, [-0.49, -0.45] 23.02, [-17.47, 63.51] 5.13 0.973 0.972
24 0.86, [0.83, 0.88] 0.45, [0.42, 0.47] -0.42, [-0.44, -0.39] 128.88, [39.03, 218.72] 8.25 0.934 0.930
168 0.59, [0.39, 0.79] 0.34, [0.21, 0.47] -0.32, [-0.46, -0.18] -147, [-593.85, 299.86] 16.74 0.726 0.654

Implantation

4 1, [1, 1] 0.53, [0.52, 0.54] -0.5, [-0.52, -0.49] -23.04, [-32.32, -13.76] 4.38 0.993 0.993
8 1, [0.99, 1] 0.54, [0.52, 0.55] -0.52, [-0.54, -0.5] -22.43, [-43.56, -1.29] 6.04 0.983 0.983
12 0.97, [0.96, 0.98] 0.51, [0.49, 0.53] -0.49, [-0.52, -0.47] 8.37, [-26.58, 43.32] 7.39 0.971 0.971
24 0.93, [0.91, 0.96] 0.49, [0.47, 0.52] -0.47, [-0.5, -0.44] 13.28, [-59.87, 86.44] 10.55 0.942 0.940
168 0.74, [0.63, 0.86] 0.46, [0.37, 0.55] -0.45, [-0.54, -0.35] -222.21, [-567.43, 123.01] 18.61 0.833 0.779

Lithography

4 0.99, [0.99, 0.99] 0.52, [0.51, 0.54] -0.48, [-0.5, -0.47] -36.33, [-49.87, -22.79] 6.47 0.989 0.988
8 0.98, [0.97, 0.99] 0.51, [0.49, 0.53] -0.49, [-0.51, -0.47] -28.28, [-56.17, -0.38] 8.43 0.979 0.979
12 0.98, [0.97, 0.99] 0.51, [0.49, 0.53] -0.51, [-0.53, -0.49] 35.08, [-7.6, 77.76] 9.71 0.969 0.969
24 0.95, [0.92, 0.97] 0.49, [0.46, 0.52] -0.5, [-0.53, -0.46] 138.35, [42.06, 234.65] 14.25 0.929 0.929
168 0.69, [0.6, 0.78] 0.41, [0.32, 0.5] -0.41, [-0.5, -0.31] 98.26, [-280.03, 476.55] 22.98 0.825 0.812

A potential explanation is that such differences between low volume and big vol-
ume product families is that the variability of the arrival rate of low volume product
families is much greater than the variability of big volume product families. This
is because there is no continuous flow of products arriving in the work center for
small volume product families. Equation (5.4) does not capture well discontinuous
product flows.

Although there are many more low volume product families than large volume
product families, low volume products do not prevent Equation (5.4) from accu-
rately estimating the overall mean WIP in the work center. This is because their
total volume is much more smaller than the total volume of big volume products for
which Equation (5.4) is relevant. In addition, to a certain extent, it is also possible
that the error on the estimated mean WIP for low volumes products compensate,
thus increasing the overall accuracy of Equation (5.4).

However, a problem with Equation (5.4), in particular for “large” horizons, is
that it can underestimate the mean WIP when the real mean WIP is low, which can
lead to conclude that re-qualifications are unnecessary. Decreasing the horizon or
dividing the horizon in multiple periods decrease this problem (see Section 5.3.2.3).
However, in practice, this is not necessarily a problem. This is because, if the real
mean WIP at the work center is low, the mean cycle time at the work center is also
low. Therefore, re-qualifications are not mandatory.
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5.3.2.3 Numerical results using second approach by work center

Using MAPE, Table 5.8 compares MAPE the first approach using Equation (5.4) and
the second approach using Equation (5.8) to estimate the historical mean WIP. Note
that only MAPE is reported in this section because Equation (5.4) has been validated
in Section 5.3.2.1, in particular for horizons smaller than or equal to 24 hours.

Table 5.8 shows that using Equation (5.8) is particularly relevant to better es-
timate the historical mean WIP because MAPE is strongly reduced. For instance,
consider the case where the horizon of one day (24 hours) is divided into six half
shifts of four hours. MAPE is four times smaller than when only one period of 24
hours is considered. Similar observations can be made when the overall horizon is
of one week or one month. Dividing the week into days makes MAPE two to four
times smaller than considering a single period. Dividing any horizon into periods
of a few hours enables to make great estimates of the historical mean WIP be-
cause MAPE is lower than 3% in most cases and often very close to 1%. Therefore,
Equation (5.8) is more relevant than using Equation (5.4) to estimate the historical
mean WIP. The relevance of Equation (5.8) over Equation (5.4) is emphasized in
Figure 5.6. Note that similar improvements were observed when the aggregation
level is by product family. Consequently, this also emphasizes that the multi-period
bilevel optimization approach presented in Chapter 4, Section 4.2.3, should be used
to better estimate the mean cycle time.

Table 5.8: Comparison on MAPE between using Equations (5.4) and (5.8) to esti-
mate historical mean WIP.

First approach Second approach with Equation (5.8)

Horizon Work center with Equation (5.4) Half Shift Shift Half Day Day Week

Day

Dielectric 7.1 1.6 2.0 2.9 - -
Diffusion 5.6 1.0 1.5 2.1 - -
Etch 5.4 1.5 1.8 2.4 - -
Implant 7.6 1.4 2.1 3.3 - -
Lithography 9.1 3.9 4.5 5.4 - -

Week

Dielectric 15.8 1.5 1.4 1.3 3.0 -
Diffusion 12.0 0.7 0.6 0.6 2.7 -
Etch 14.4 1.3 1.4 1.7 3.5 -
Implant 12.3 1.3 1.7 2.2 4.6 -
Lithography 16.2 4.1 4.4 5.0 7.2 -

Month

Dielectric 22.0 1.3 1.2 1.0 1.4 12.2
Diffusion 12.1 0.4 0.3 0.3 2.0 6.6
Etch 15.4 1.1 1.2 1.5 3.1 8.3
Implant 15.5 1.2 1.6 2.0 4.0 7.1
Lithography 13.4 4.0 4.2 4.9 6.9 8.2

5.4 The effect of one re-qualification on mean cycle
times

In this section, the effect of one re-qualification on the additional mean cycle time
spent by lots in a work center is illustrated. In particular, it is shown that re-
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(a) Historical Mean WIP vs Predicted Mean WIP using Equation (5.4).

(b) Historical Mean WIP vs Predicted Mean WIP using Equation (5.8).

Figure 5.6: Visual comparison of Equations (5.8) and (5.4) for the lithography work
center. Scales are hidden for confidentiality purposes.
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qualifications that maximize the throughput are not necessarily the ones that mini-
mize the mean cycle time. The mean WIP is computed by using Equation (5.8), and
the mean additional cycle time is then computed by using Equation (5.5). Note that
minimizing (5.5) or (5.6) is equivalent because both equations differ by a constant
term.

5.4.1 Industrial data

To estimate the mean WIP with Equation (5.8), the number of departures from
the work center, i.e. the throughput at each time period, must be computed. It
is computed by using the multi-period bilevel optimization proposed presented in
Chapter 4, Section 4.2.3. We are interested in the case where one re-qualification is
made at a time.

The computational study is performed by using industrial data from a 300mm
wafer fab located in Crolles, France. Two different work centers are studied, work
center A and work center B. Both work centers have different types of machines,
and run different types of operations. Work center B is subject to strong dedication
constraints, i.e. a large number of operations are qualified on a single machine,
while work center A is subject to mild dedication constraints. The horizon is of 12
hours, and it is divided into three periods of 4 hours. For each work center, 19
different instances are considered. Instances are extracted from different weeks in
the year 2019. For both work centers, the number of operations R vary between
400 and 500. The number of machines M is approximately equal to 20. Table 5.9
details the characteristics of the instances. Parameters of the multi-period bilevel
optimization approach are similar to those presented in Chapter 2.
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Table 5.9: Characteristics of industrial instances.

Work center A Work center B

Instance R M R M

1 496 18 433 22
2 480 18 456 21
3 464 18 462 21
4 431 18 456 22
5 442 18 487 22
6 436 18 473 22
7 423 18 468 22
8 438 18 465 22
9 431 18 493 22

10 420 18 486 22
11 429 18 481 22
12 419 18 483 22
13 453 18 477 22
14 454 18 466 22
15 441 18 465 22
16 436 18 474 22
17 402 18 455 24
18 420 18 454 23
19 455 18 463 24

5.4.2 Numerical results

It is possible to solve to optimality the multi-period bilevel optimization problem
presented in Chapter 4, because we are interested in the case where a single re-
qualification is selected at a time.

For each instance and each work center, the relative mean cycle time gain, a
negative value indicating a reduction of the mean cycle time, associated to the re-
qualification that minimizes the mean cycle time is reported. Similarly, the relative
throughput gain, a positive value indicating an increase of the throughput, associ-
ated to the re-qualification that maximizes the throughput is reported. In addition,
we report if the re-qualification that maximizes the overall throughput is also the
one that minimizes the mean additional cycle time. Similarly, we report if the re-
qualification that best minimizes the mean additional cycle time is also the one
that maximizes the overall throughput. The initial situation is computed when no
re-qualification decision is made. Table 5.10 presents numerical results for the con-
sidered work centers and instances. Table 5.11 presents the mean relative gaps to
the smallest mean cycle time for re-qualifications that maximize the throughput but
do not minimize the mean cycle time. Conversely, Table 5.11 presents the mean
relative gaps to the largest throughput for re-qualifications that minimize the mean
cycle time but do not maximize the throughput.

Numerical results show that relevant re-qualification decisions can significantly
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improve manufacturing performances of a work center, both in terms of mean cycle
time and throughput. Nevertheless, in most instances, the re-qualification that mini-
mizes the mean cycle time is not necessarily the one that maximizes the throughput.
Conversely, the re-qualification that maximizes the throughput is not necessarily the
one that minimizes the mean cycle time. This can be explained by production vari-
ability, in particular the variability in arrivals. If the cycle time must be minimized,
then it is likely that it is better to consider Equation (5.8) than Equation (5.4) as
the dynamic behavior of a work center, both in terms of arrivals and throughput,
is better captured. In addition, numerical results show that there are often only
a few re-qualifications that lead to significant gains. Most re-qualifications do not
improve the mean cycle time or throughput at all, in particular because they are
unable to better balance the utilization rates of the machines. Finally, numerical
results show that qualifying an operation on a machine may have a limited effect
on the throughput but a large effect on the mean cycle time if the operation was
subject to a production capacity interruption. Correctly managing and anticipat-
ing operations subject to production capacity interruptions, e.g. by qualifying least
loaded machines, is critical to improve the mean cycle time.

Consider work center A. The relative gains strongly vary from one instance to
another (Table 5.10). For instance, the mean cycle time can be decreased by -2.23%
in instance 8, by -3.32% in instance 5 and by -0.40% in instance 13. In only four out
of 19 instances, the re-qualification that minimizes the mean cycle time is the same
as the re-qualification that maximizes the throughput. Moreover, Table 5.11 show
that, when the re-qualification that minimizes the mean cycle time is not the one
that maximizes the throughput, the gap can be significant. For instance, consider
instance 11, where the gap of the re-qualification that maximizes the throughput to
the smallest mean cycle time is equal to 1.62%. The best re-qualification in terms
of throughput is therefore quite far from the best re-qualification in terms of mean
cycle time. For other instances, the difference may be smaller. The gap is equal to
0.11% for instance 6 and equal to 0.05% for instance 12.

Consider work center B. The relative gains also strongly vary from one instance
to another (Table 5.10). Relative gains in terms of mean cycle times are greater than
for work center A. Work center B is subject to strong dedication constraints, i.e. two
machines have few qualifiable operations in common. Machines in work center B
are also used in a “back-up” mode, some machines are qualified if the main machine
is down. This means that as soon as the main machine is down, wafer quantities
cannot move and are blocked at the work center. This is a production capacity
interruption, or simpler line stop. Equation (5.8) helps us to understand that even
limited wafer quantities subject to line stops can contribute to significantly increase
the mean cycle time, in particular if most wafer quantities subject to line stops are
already at the work center. For instance, consider instance 10 in Table 5.11. The
re-qualification that minimizes the mean cycle time is about 2.21% away from the
re-qualification that maximizes the throughput. Therefore, for work center B, it is
often preferable to minimize the mean cycle time by qualifying back-up machines
even for a relatively small amount of wafer quantities subject to line stops. More
precisely, it can be preferable, in terms of mean cycle time, to qualify an operation
on a machine to avoid having 400 wafers subject to line stops for twelve hours (and
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possibly accumulating more line stop quantities later), than to qualify an operation
on a machine to improve the throughput by 500 wafers (because the 500 wafers
will arrive latter in the work center). Note that qualifying additional machines for
wafer quantities that are in the work center at t = 0 but are never processed, has
the same effect on the mean cycle time as fixing line stop operations.

For some instances, the numerical experiments show that two re-qualifications
can be equivalent in terms of throughput but not necessarily equivalent in terms of
mean cycle time. This can be observed for instance 10 and work center B. There is
one re-qualification that simultaneously maximizes the throughput and minimizes
the mean cycle time (see Table 5.10) but there are also other re-qualifications that
maximize the throughput but fails to minimize the mean cycle time (see Table 5.11).

Table 5.10: Relative gain (%) on the mean Additional Cycle Time (ACT) and the
throughput (TH) by work center and by instance. Bold values indicate when at
least one re-qualification simultaneously minimizes the cycle time and maximizes
the throughput.

Work center A Work center B

Instance Gain ACT (%) Gain TH (%) Gain ACT (%) Gain TH (%)

1 -1.13 1.54 -1.36 1.28
2 -1.75 1.35 -0.77 0.46
3 -0.83 0.20 -0.66 0.46
4 -1.55 0.60 -1.25 0.94
5 -3.32 1.58 -1.91 0.95
6 -1.24 1.10 -5.42 2.81
7 -1.36 1.57 -6.18 3.14
8 -2.23 1.36 -0.87 1.38
9 -1.21 0.58 -3.12 2.63

10 -0.61 1.03 -0.88 1.75
11 -1.51 0.78 -1.18 1.04
12 -1.99 1.07 -2.33 1.19
13 -0.40 0.52 -1.89 0.40
14 -0.57 0.78 -2.35 1.14
15 -0.80 0.55 -1.06 1.08
16 -2.43 1.20 -0.63 0.54
17 -0.56 0.59 -1.75 1.00
18 -2.00 1.01 -3.05 1.12
19 -3.32 1.57 -0.68 0.57

Mean -1.52 1.00 -1.96 1.26
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Table 5.11: Gap (%) to the smallest mean Additional Cycle Time (ACT) for the
re-qualifications that maximize the throughput. Gap (%) to the largest throughput
(TH) for the re-qualifications that minimize the cycle time.

Work center A Work center B

Gap to Gap to Gap to Gap to
Instance smallest ACT(%) largest TH(%) smallest ACT(%) largest TH(%)

1 0.52 0.50 0.13 0.95
2 - - 0.05 0.09
3 0.31 0.72 - -
4 0.16 0.75 0.24 0.80
5 - - - -
6 0.11 0.89 - -
7 - - - -
8 0.82 0.62 0.99 0.59
9 0.49 1.31 - -
10 0.14 0.81 1.34 2.12
11 1.62 0.82 0.28 0.26
12 0.05 1.64 - -
13 0.20 0.24 0.34 1.73
14 0.39 0.27 - -
15 0.56 0.52 0.85 0.16
16 - - 0.19 0.01
17 0.30 1.10 - -
18 0.56 0.16 - 1.34
19 0.89 0.74 0.21 0.82

It is worth mentioning that the overall mean cycle time may decrease at the ex-
pense of some operations or products. In other words, the overall mean cycle time
decreases but the mean cycle time of specific operations may slightly increase. This
is because qualification decisions strongly affect dispatching decisions (Gurumurthi
and Benjaafar, 2004; Johnzén et al., 2008; Kopp et al., 2019), and because products
compete for the same production resources that operate at finite production capac-
ity. A multi-objective approach may be appropriate to propose re-qualifications that
balance the mean cycle time between, for instance, operation types or products.

5.5 Practical use and recommendations

At the operational level, excellent predictions on the short term of cycle time are
not necessarily mandatory. Work center managers are more interested in evaluating
and comparing the impact of different decisions on cycle times to help them choose
the most appropriate decisions without resorting to detailed simulations models
which are known to be expensive to maintain and run (Shanthikumar et al., 2007).
Equations (5.4) and (5.8) give this support to production personnel while being
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relatively accurate. There is no need to run expensive simulation models to evaluate
the effect of re-qualifications on the cycle time.

From a qualification management standpoint, Equation (5.8) can be used to de-
termine the best re-qualifications to minimize the cycle time. Beyond its purely
predictive use, Equations (5.4) and (5.8) are particularly interesting to compare re-
qualification plans in terms of cycle time. For instance, Equations (5.4) and (5.8)
can be used to identify two re-qualification plans that would have the same effect
on the number of departures, i.e. the throughput, by the end of the horizon but that
would have different effects on the cycle time. Finally, a better management and
follow-up of qualifications will have a beneficial effect on cycle times. For instance,
two re-qualifications can be compared in terms of potential gains for the cycle time
of critical fabrication layers (recall that wafers are fabricated layer by layer, and a
layer is thus a set of operations) or products in the factory. Equations (5.4) and
(5.8) can therefore be used to follow qualifications that are critical to optimize cy-
cle times. The numerical results in Section 5.4 show that an efficient and proactive
management of operations subject to line stops is also imperative to minimize and
control cycle time, in particular for work centers subject to strong dedication con-
straints. This also calls for a better planning of maintenance operations.

From a practical standpoint, Equation (5.8) is not limited to re-qualification de-
cisions. Any decision that improves the number of departures, e.g. minimizing idle
times or minimizing the total utilization rate, in a work center will have a beneficial
effect on the cycle time in the work center. However, this not necessarily means that
all decisions are equivalent for the overall cycle time over all work centers because
decisions at an up-stream work center can create variability at a downstream work
center. Similarly, any decision that reduces variability in arrivals and departures will
have a beneficial effect on the cycle time at the work center. For instance, Meidan
et al. (2011), Wribhu (2018) and Wang et al. (2018) provide a list of factors that
strongly affect the cycle time. Relevant decisions can be proposed from these fac-
tors. For instance, Equation (5.8) can be used to better plan maintenance operations
by considering upstream and downstream work centers.

The application of Equation (5.8) is not limited to short-term horizons. Equation
(5.8) can also be used to estimate the cycle time, e.g. the cycle time by layer,
after determining a production plan along with a product start plan (see e.g. Hung
and Leachman 1996) without resorting to discrete-event simulation approaches.
Equations (5.4) and (5.8) can be used on any horizon, even of several months, as
long as the horizon is divided into small periods, e.g. in periods of 24 hours, and
as long as it is possible to compute, or at least estimate, the number of arrivals and
departures for all periods within the considered horizon. Moreover, as Equation
(5.8) is linear in terms of arrivals and departures, Equation (5.8) could be used as
the objective function in linear programs that define production plans and product
start plans without increasing the computational burden. Nevertheless, it is possible
that using Equation (5.8) for more than a few days can lead to poor estimates of
cycle times. This is because, contrary to historical data, departures and arrivals in
a work center are estimates, and thus subject to uncertainty. The uncertainty is
also probably larger for late periods than early periods in the horizon. In addition,
the process times of some machines can be large, e.g. of a few hours for diffusion
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machines, which can lead to difficulties in estimating future number of departures.
Finally, we recommend using Equations (5.4) and (5.8) only for high levels of

aggregation of operations. Typically, the aggregation must be done over all opera-
tions or over a large set of operations, e.g. by layer, by product family or operation
family, so that there is always enough WIP for the considered aggregation level at
the work center. Thus, the deterministic assumption on arrivals and departures
holds, and it is relevant to use Equations (5.4) and (5.8). If the aggregation level
does not have enough WIP, then Equations (5.4) and (5.8) may no longer be rele-
vant. Therefore, for smaller aggregation levels, e.g. for a specific operation, unless
the operation is common to many products and that there is always WIP at this
operation, a discrete-event simulation is required.

5.6 Conclusions and perspectives

In this chapter, first, we motivated the use of closed-form solutions for the mean
cycle time in a work center at the operational level. Two closed-form solutions were
derived by assuming deterministic arrivals and departures in a work center. One
closed-form solution is similar to the one proposed by Leachman (2015). Classi-
cal G/G/m queues cannot be used at an operational level because they require the
work center to be in a steady state with utilization rates lower than one for all ma-
chines, which cannot be ensured because of production variability. Then, the closed-
form solutions were validated on industrial data by comparing the historical mean
WIP and the predicted mean WIP. The limits of the closed-form solutions were also
shown, as they could be inaccurate and irrelevant for decision making when there
is not enough WIP in the system. Finally, a computational study was performed
to show how closed-form solutions could be used to propose re-qualifications that
minimize the mean cycle time in a work center.

We believe the following perspectives are worth investigating in the future (out
of the scope of the study):

1. It would be extremely relevant to study the effect of machine qualifications,
e.g. the effect of variability of machine qualifications, in G/G/m queues. For
instance, this could lead to better decisions at a tactical level when new qual-
ifications are determined. Nevertheless, considering machine qualifications in
queuing theory is complex. This is because not only the number of qualifica-
tions matters but also the qualifications themselves are critical. Two sets of
qualifications with the same number of qualified operations by machine and
the same number of qualified machines by operation will often lead to differ-
ent cycle times as shown in the numerical results. Instead of trying to directly
determine the cycle time with qualifications, a solution could consist in de-
termining and exploiting upper bounds on the cycle time. For instance, it is
known that the mean cycle time of G/G/m queues is bounded by the mean cy-
cle time of m G/G/1 queues working in parallel. Exploiting this bound could
provide valuable insights to capacity planners to decide the qualifications that
should be added to a machine to reduce the mean cycle time. Knowing the
exact value of the mean cycle time is not mandatory to make relevant deci-
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sions (see Section 5.1.1). Other bounds may be available. Recently, bounds
on the mean cycle time were proposed based on robust optimization (Bandi
et al., 2015; Bertsimas et al., 2018; Whitt and You, 2019). New bounds could
also be derived using machine learning techniques and historical data.

2. Multi-objective considerations should also be studied. A re-qualification may
decrease the mean cycle time of a particular layer at the work center. Nev-
ertheless, the same re-qualification may also increase the mean cycle time of
another layer.

3. Consistent qualification decisions between work centers should also be stud-
ied. A local decision at a work center may not be ultimately relevant if all
work centers were simultaneously considered.
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Robust tactical qualification man-

agement to cover demand uncer-

tainty

This chapter deals with tactical qualification management*. More precisely, we
want to answer the question “How to determine the most relevant new qualifi-
cations to satisfy the demand and cover the demand uncertainty while minimiz-
ing qualification costs?” We show on industrial data that: (1) A limited number of
well-chosen qualifications are required to achieve the same robustness than the one
obtained by performing all qualifications, and (2) Implementing the qualifications
determined by only considering the nominal demand can lead to capacity constraint
violations.
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CHAPTER 6. ROBUST TACTICAL QUALIFICATION MANAGEMENT TO COVER
DEMAND UNCERTAINTY

6.1 Introduction

Satisfying the demand associated to each product is difficult in semiconductor man-
ufacturing. Several hundred products compete for the same production machines
in high mix manufacturing facilities. In addition, the demand by product is time-
varying, often significantly from one month to another, and can be highly uncertain.
There are also manufacturing risks (e.g. machine breakdowns, yield losses) that can
prevent manufacturing facilities from satisfying the demand. When such conditions
are met, the need for flexibility (the ability to respond effectively to changing cir-
cumstances, see Sethi and Sethi 1990) is imperative (De Toni and Tonchia, 1998).
Qualification management is closely related to the the notion of production flexi-
bility, which is defined as all products a factory is able to produce without requir-
ing additional major capital investment. Production flexibility is the result, among
others, of process flexibility, which is defined as the ability of processing different
products at the same time (Sethi and Sethi, 1990; Jain et al., 2013). Adding new
qualifications improves the level of process flexibility of work centers and therefore
improves the capacity of a factory to satisfy the demand.

In this chapter, we are interested in the qualification optimization problem that
typically arises at a tactical decision level where the planning horizon is between
six and twelve months. The considered qualification optimization problem is a tac-
tical capacity planning problem: The production capacity of a work center must be
configured to satisfy the demand. There are existing machines in the work center,
and new machines might be installed. Similarly, new products are being introduced
in the factory, and new qualifications are necessary to increase the production ca-
pacity of new products and increase the production capacity of already existing
products already made by factory with a ramp-up demand. This is because new
qualifications enable operations associated to the product to be processed on more
machines. More precisely, a set of new qualifications, i.e. new couples (operation,
machine) to qualify, must be determined so that the demand for all products is
satisfied while respecting production capacity constraints. The couple (operation,
machine) must be either determined as to be qualified or not to be qualified.

Because new qualifications can be expensive and time-consuming, between one
week and several months mainly in the form of delay as test lots must complete
their production to validate the operation on the machine, the number of new qual-
ifications to perform must be minimized and anticipated. Moreover, the demand
by product, which is an external parameter to the company, is affected by uncer-
tainty. In factories with a high product mix, i.e. many products, the uncertainty on
the demand by product is particularly strong, as factories face frequent product mix
changes with products that have short lifetimes. In other words, the set of qualifi-
cations determined to satisfy a nominal demand by product may be inappropriate
if the realized demand by product is too different from the nominal demand by
product. A significant change in the demand can significantly decrease the man-
ufacturing performances. This is because the wafer of a product does not lead to
the same workload of a wafer of another product due to different re-entrant flow
factors and throughput rates (Kotcher and Chance, 1999). Determining a “robust”
set of new qualifications, which covers the uncertainty on the demand, is therefore
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also critical.
Let us recall that the literature related to tactical qualification management on

process flexibility cannot most often be directly applied to semiconductor manufac-
turing (see the literature review, in Chapter 1, Section 1.4.1).

In addition, the literature is scarce on the design of qualification configura-
tions in semiconductor manufacturing, in particular when the demand is uncertain.
Stochastic programming has been a method of choice so far to deal with the uncer-
tainty on the demand. Klemmt et al. (2010) propose to design qualification config-
urations for a specific work center by covering a few scenarios on the demand by
product, which is a common practice in the semiconductor industry. Nevertheless,
the approach is not entirely detailed. Chang and Dong (2017) propose a stochastic
programming optimization approach to maximize the weighted expected number of
processed product quantities. The demand and the production capacities are subject
to uncertainty. In addition, they consider that new qualifications lead to a stochas-
tic capacity loss that can be described with a distribution probability. However, the
approach proposed by Chang and Dong (2017) cannot be used at a tactical level.
This is because their stochastic model does not ensure that the demand by opera-
tion has to be satisfied. Then, only a fraction of the operations corresponding to a
product could be qualified, and the product could potentially never be delivered. Fu
et al. (2015) also consider that the demand is uncertain in a qualification manage-
ment optimization problem. Nevertheless, the problem is treated from an extended
production planning standpoint and not from a capacity planning standpoint. Con-
sequently, similarly to Chang and Dong (2017), the work of Fu et al. (2015) cannot
be used at a tactical level. Liao et al. (2017) propose a two-stage stochastic pro-
gramming optimization approach to maximize the total profit of a semiconductor
company. The first stage problem consists in minimizing qualification costs while
second stage problem consists in allocating product quantities to production sites to
maximize revenue.

However, stochastic programming implies characterizing demand scenarios and
associated probabilities. This is difficult as products tend to have dependent de-
mands due to product cannibalization, which is not mentioned in the literature.
Product cannibalization is particularly critical for manufacturers with a high prod-
uct mix. Determining nominal demands and plausibility limits is a promising alter-
native: It is as natural as defining demand scenarios without requiring probabilities
and can consider product cannibalization.

Our contributions to the qualification management and robust optimization lit-
erature are as follows:

− We propose a new mixed integer linear programming mathematical model for
the tactical qualification management problem when the demand is determin-
istic and the qualification lead times are considered.

− As the demand by product can be subject to uncertainty, we motivate the
choice of robust optimization for the considered problem.

− We propose an uncertainty set based on the budget of uncertainty (Bertsimas
and Sim 2004), to cover the demand uncertainty and product cannibalization.
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− We propose a new robust reformulation of the deterministic model when the
demand is considered as uncertain but can be described by Dt.

− We propose a new decision-dependent uncertainty linear program to charac-
terize the robustness of a set of qualifications. As the problem is NP-complete,
a binary search solution approach is proposed when the uncertainty on the
demand is symmetrical.

− In the computational study, we show on industrial data that the price of uncer-
tainty is small, often less than a few qualifications, whereas the qualifications
determined for the nominal demand often lead to capacity constraint viola-
tions.

The remainder of this chapter is organized as follows. In Section 6.2, we describe
and motivate the type of demand uncertainty faced in semiconductor manufactur-
ing. We motive the use of robust optimization to cover demand uncertainty. In
Section 6.3, the deterministic mathematical model is presented. Then, a mathe-
matical robust optimization approach is proposed to cover demand uncertainty. In
Section 6.4, we propose a mathematical model and discuss several approaches to
determine the robustness of a given set of qualifications (e.g. the set of initial qual-
ifications). In Section 6.5, a computational study on industrial data is conducted to
evaluate the price of uncertainty (Gorissen et al., 2015), the practical tractability of
the proposed optimization models, and possible the capacity constraint violations
and consequences if the set of qualifications obtained by solving the deterministic
optimization problem is used. In Section 6.6, we discuss how the proposed opti-
mization models can be used for a practical use by capacity planners in a decision
support system. Finally, in Section 6.7, we conclude and give some perspectives.

6.2 Uncertainty on the demand

6.2.1 Demand uncertainty and product cannibalization

Processing times, production capacities, qualification lead times and the demand by
product can be subject to uncertainty. In this chapter, only the demand uncertainty
is considered, which is critical to a manufacturing company. The uncertainty on the
demand is an external uncertainty, which is difficult, if not impossible, to control
with discount prices and incentives even if the product is innovative. Considering
the uncertainty on other parameters is left for future research.

Note that the uncertainty on the demand by operation is a consequence of the
uncertainty on the demand by product. In the semiconductor industry, operations
need to be run to process a product. However, all products do not share the same
operations. Moreover, although two products share common operations, operations
will not have the same processing times. This is due to differences in the re-entrant
product flows. We are therefore interested in characterizing and modeling the de-
mand uncertainty and linking it to the uncertainty on the demand by operation.

Although it is possible to accurately predict the total quantity of products that a
manufacturing facility must complete in the future, it is often impossible to exactly
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know the quantity of each product. One important reason why is that high-tech
companies such as semiconductor manufacturers with a large portfolio of prod-
ucts often face product cannibalization (Moorthy and Png 1992; Kim and Chhajed
2000). Product cannibalization occurs when a company manufactures different
products that compete with each other on the same market. Consider the following
example. A client that seeks to design an electronic system has the choice between
several micro-controller among those that the company sells. A micro-controller
is integrated circuit with essentially the same features as modern computers, i.e.
computing unit, memory, input and output interfaces, but are dedicated to specific
applications and require little energy. Several micro-controllers are suitable for a
given application, and the final choice will be made based on cost, energy consump-
tion and memory among other characteristics. The client will probably never buy
all suitable micro-controllers. Therefore, selling one unit of a product may mean
selling fewer units of other products. Nevertheless, a product cannot be replaced by
any other product because all products are not used for the same application. Some
products will be used in the automotive industry, whereas others will be used for
industrial applications in factories, or telecommunication applications. Products are
distinguished by their family. A product family is then a set of products that have
similar characteristics, can be used for similar applications, and therefore compete
on the same market segment.

6.2.2 Managing the demand uncertainty

To cover the demand uncertainty, two main methods exist: Stochastic optimization
and robust optimization. Stochastic optimization assumes that the probability dis-
tribution of the demand uncertainty is known. Then, in general, the expected value
of the objective function is optimized. In this chapter, the objective would con-
sist in minimizing the expected number of qualifications after generating, possible
many, scenarios from the estimated probability distribution (Birge and Louveaux,
2011). Robust optimization is different because the probability distribution of the
uncertainty is not required. In robust optimization, the objective function must be
minimized while ensuring that the constraints are never violated (Ben-Tal and Ne-
mirovski, 2002; Ben-Tal et al., 2009; Bertsimas et al., 2011; Gorissen et al., 2015).

Robust optimization is more relevant when determining a set of qualifications
at the tactical decision level. First, estimating the probability distribution of the
demand of a product when it is correlated to the demands of other products is
difficult. Furthermore, estimating the probability distribution of the demand for
new products is difficult. This is because semiconductor manufacturers may not
have enough data on the demands to derive relevant distribution probabilities as
they experience frequent product mix changes (Bertsimas and Thiele, 2006a), i.e.
the demand for a product strongly varies from one month to another. Figure 6.1
provides an illustrative example using historical industrial data on the changes of
the demand for 5 different products over 12 months. Note that the charts have
different Y-scales. For confidentially purposes, product names are not mentioned. In
addition, the monthly demand is divided by the mean demand over the 12 months.
For all products, the mean demand is of several hundreds. The demand for Product
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A (see Figure 6.1a) is very different from one month to another. The demand for the
first month is about 2.2 while the demand for the seventh month is equal to 0. The
demand for the eighth month is about 1.7. The demand for Product B also changes
a lot from one month to another. A large demand peak is observed for the sixth
and seventh months. Then, the demand is decreasing. The demand for product C
is particularly interesting. There is a large, quick and intense ramp-up demand for
product C. Nevertheless, the demand for Product C quickly fades away. Product D is
a more stable product with a larger demand even though it also suffers from large
fluctuations, in particular between the ninth and tenth months when the demand
increases by about 2.3. Finally, product E also suffers from large fluctuations. The
demand is multiplied by two between the first and the seventh months, then it
divided by two between the seventh and the twelve months, with a demand almost
equal to zero in the ninth month. These demand fluctuations are critical, especially
since their intensities are extremely difficult to predict in advance. This is when a
robust optimization based approach is relevant to cover the demand uncertainty.

Second, it is critical to anticipate relevant qualifications to cover the demand
uncertainty. This is because, in general, it is important to perform the right qualifi-
cations and not all qualifications to respect capacity constraints and satisfy the de-
mand (Jordan and Graves, 1995; Benjaafar et al., 1995; Graves and Tomlin, 2003;
Chou et al., 2010; Johnzén et al., 2011; Fiorotto et al., 2018; Chen et al., 2019).

Furthermore, as qualification decisions are made at a tactical decision level, they
have a major impact of all production planning and control management issues
(Hopp and Spearman, 2011). For instance, if new qualifications are not properly
determined, then effective robust production plans may not be found to satisfy the
demand. Determining the right set of new qualifications is thus critical for manu-
facturing and financial performances.

Third, in practice, a way to deal with uncertainty is to frequently adjust the
current set of qualifications by performing new qualifications when the nominal
demand is updated. However, this is not always possible because the qualification
process may sometimes take several weeks or months to validate the quality and the
yield of the operation. Therefore, if the demand is updated late, it may be impos-
sible to perform additional qualifications to satisfy the demand. Then, anticipating
the right qualifications to cover the demand uncertainty is critical. Also, determin-
ing a set of robust qualifications could save critical time for capacity planners. This
is because the set of qualifications would be determined in a less reactive manner
but in a more proactive manner against demand changes. Capacity planners could
therefore be assigned to other tasks. Note that the set of qualifications would still
need to be adjusted when completely new products are introduced or old products
are reintroduced because of unnoticed disqualifications.

6.3 Problem modeling

6.3.1 Problem description

Let us consider a work center of M unrelated parallel machines, both in terms of
qualifications and throughput rates, which must process R different operations. Ma-
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(a) Product A. (b) Product B.

(c) Product C. (d) Product D.

(e) Product E.

Figure 6.1: Illustrative example of demand (in number of wafers) fluctuation over
time.
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chines are unrelated because they are of different generations. A demand is associ-
ated to each operation on the considered horizon. The horizon consists of T periods.
The work center is asymmetrical and unbalanced, i.e. the demand varies from one
operation to another and the number of operations is much greater than the num-
ber of machines. A machine can only process qualified operations, and a qualifiable
operation can only be processed on a machine if it is qualified. Qualifying an op-
eration on a machine induces a qualification cost and is subject to a qualification
lead time. The qualification matrix defines the initial set of active qualifications. A
qualification is therefore a pair (operation, machine). The initial set of active quali-
fications is known and deterministic. Each machine has a finite production capacity
that must be respected at each period on the considered horizon.

The objective is to minimize the cost of performed qualifications to perform,
among the qualifiable pairs (operation, machine) not already qualified, while satis-
fying the demand and respecting capacity constraints.

This problem will be referred as the Minimum Cost Qualification Configuration
Problem (MCQCP) in the remainder of the chapter.

6.3.2 Deterministic modeling

Parameters:
M: Number of machines,
R: Number of operations,
P : Number of products,
T : Number of periods,
qr,m: Is equal to 1 if machine m is initially qualified for operation r, to 2 if machine
m is qualifiable for operation r, to 0 if machine m cannot be qualified for operation
r,
tpr,m: Throughput rate (per hour) of operation r on machine m,
ct,m: Production availability (in hours) of machine m at period t,
umaxt,m : Maximum utilization rate allowed for machine m at period t,
rfp,r: How many times (re-entrant flow factor) operation r needs to be run to
produce one unit of product p,
dt,p: Demand for product p at period t,
lr,m: Lead time (in number of periods) for qualifying operation r on machine m,
δt: Discount factor at period t,
cqr,m: Cost of qualifying operation r on machine m.
Decision variables:
OQt,r,m ∈ {0,1}: Is equal to 1 if there is qualification procedure to start for operation
r at period t on machine m, and 0 otherwise,
WIPt,r,m ∈ [0,1]: Ratio of the demand for operation r processed by machine m at
period t.

min
∑
t,r,m

δtcqr,mOQt,r,m (6.1)
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s. t.
∑
r

(
∑
p rfp,rdt,p)WIPt,r,m

tpr,m
≤ ct,mumaxt,m ∀t,∀m (6.2)∑

m

WIPt,r,m = 1 ∀t,∀r |
∑
p

rfp,rdt,p > 0 (6.3)

WIPt,r,m ≤ qr,m ∀t,∀r,∀m | qr,m , 2 (6.4)

WIPt,r,m ≤
t∑

t′=1|t−t′≥lr,m

OQt′ ,r,m ∀t,∀r,∀m | qr,m = 2 (6.5)

WIPt,r,m ≥ 0 ∀t,∀r,∀m (6.6)
OQt,r,m ∈ {0,1} ∀t,∀r,∀m (6.7)

The objective function (6.1) minimizes the cost of performing qualifications on
the planning horizon. The discount factor is used to decide if qualifications must
be made as soon as possible or as late as possible. For instance, qualification
procedures must be started as late as possible. This is possible by ensuring that
δt ≥ δt+1 ∀t ∈ {1, ...,T − 1}. Constraints (6.2) ensure that the capacity constraint for
each machinem and each period t are respected. Constraints (6.2) also limit the uti-
lization rate of machinem at period t to a maximum of umaxt,m . This controls the mean
cycle time (fabrication time) in the work center as the mean cycle time increases
exponentially with the utilization rate, and improves the responsiveness of the work
center (Hopp and Spearman, 2011). Constraint (6.3) are the flow constraints. They
ensure that the demand by operation must be satisfied. Constraints (6.3) are ac-
tive only if there is demand for operation r at period t, ∀t,∀r |

∑
p rfp,rdt,p > 0.

This avoids qualifying operations on machines in the early periods if the demand is
only expected in the late periods. Constraints (6.4)-(6.5) are the qualification con-
straints. They ensure that machine m is qualified for operation r at period t, if it has
been newly qualified or was initially qualified while considering qualification lead
times. Finally, Constraints (6.6) are the non-negativity constraints and Constraints
(6.7) are the binary constraints.

Let us discuss below some important characteristics of our problem:

− The deterministic optimization model is relevant, although it does not con-
sider demand uncertainty, because it considers essential features of qualifica-
tions which are qualification costs and delays, and models unbalanced and
unsymmetrical systems. In the computational study on industrial data, we
found that the deterministic model is easy to solve (see Section 6.5) for the
considered work centers.

− MCQCP can also be solved factory-wide, i.e. by considering all work centers
simultaneously. However, as two different work centers do not share opera-
tions, optimality is preserved when breaking down the problem by work center
to reduce the size of the problem in terms of machines and operations.

− It is important to mention that MCQCP can be infeasible if the production
capacities of machines are too small and if too few qualifiable pairs (operation,
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machine) exist to better balance the workload between the machines. Note
that in the numerical experiments performed in Section 6.5, MCQCP is always
feasible contrary to its robust counterpart.

− The deterministic model can still be used to determine a set of qualifications
even if lead times are not modeled, i.e. if lr,m = 0 ∀r,∀m. In this case, decision
variables OQt,r,m should be interpreted as the period at which operation r
must be qualified on machine m if OQt,r,m = 1.

− In order to correctly consider new machines, it is sufficient to set ct,m to ap-
propriate values until machine m is actually started-up in the factory. Start-up
periods are notably used for qualification purposes. For instance, if the hori-
zon is of 3 months with 3 periods of one month and the start-up period lasts
one month, then ct,m must be equal to zero for the first two months.

− New qualifications can lead to capacity losses in the considered work center as
it is required to run quality tasks on machines by using test products. Chang
and Dong (2017) model this aspect by using a probability distribution. As
it is complex to define relevant probability distributions, capacity losses due
to new qualifications are modeled with available historical data as exogenous
factors in the production capacity of each machine. Note that quality tasks are
also frequently run even for existing qualifications, which is also considered
in the production capacity of each machine.

− Contrary to operational qualification management, the problem is not mod-
eled as a bilevel optimization model. This is because the goal is to satisfy all
demands, and thus fast operations are processed as often as slow operations.

6.3.3 Robust modeling

6.3.3.1 Polyhedral uncertainty with budget of uncertainty

To consider demand uncertainty and product cannibalization, a polyhedral uncer-
tainty set, based on budget uncertainty proposed by Bertsimas and Sim (2004), is
used. Let us introduce the new notations below:

New parameters:
F : Number of product families,
dt,p: Nominal demand for product p at period t,
d̂t,p ≤ dt,p: Maximum deviation from nominal demand for product p at period t,
αp,f : Is equal to 1 if product p belongs to product family f , and 0 otherwise,
Γt,f : Budget of uncertainty for product family f at period t.

The demand dt,p is assumed to be a random variable that takes values as follows:
dt,p ∈ [dt,p − d̂t,p,dt,p + d̂t,p] ∀t,∀p. dt,p − d̂t,p and dt,p + d̂t,p are the plausibility limits
for product p at period t. The uncertainty set Dt that models the effect of product
cannibalization by product family at period t is described below:
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Dt = {dt,p | dt,p ≥ dt,p − d̂t,p ∀p,dt,p ≤ dt,p + d̂t,p ∀p,∑
p|αp,f =1

dt,p ≤ Γt,f ∀f } (6.8)

InDt, the total demand by product family f at period t is limited to the budget of
uncertainty Γt,f , which is the maximum demand to cover for product family f at pe-
riod t. Therefore, if the demand for a product in the product family increases above
its nominal value, then the increase is made at the expense of another product in
the product family, whose demand must decrease. In addition, if Γt,f =

∑
p|αp,f =1dt,p,

then, for each product family f , the maximum overall quantity to produce is equal
to the overall quantity in the nominal case, but the distribution of the demand be-
tween the products in the product family is unknown. Setting Γt,f =

∑
p|αp,f =1dt,p is

a practical assumption. This ensures that qualifications are not determined to cover
extreme cases where the quantity by product family would actually be much larger
than the nominal quantity by product family, which is often unrealistic. Instead,
qualifications are optimized to cover any demand realization given an overall quan-
tity by product family. Note that, although the uncertainty set Dt ensures that the
total demand of all products in a family is not large, the total demand over all oper-
ations arriving in work centers can significantly increase as re-entrant flow factors
significantly vary from one product to another.

Parameters dt,p and d̂t,p do not necessarily reflect the real uncertainty on the
demand of product p at period t. They can be defined in a such way that they cor-
respond to the uncertainty capacity planners want to manage if the real uncertainty
is too expensive to cover (Bertsimas and Sim, 2004).

6.3.3.2 Static reformulation

We investigate a static reformulation of the deterministic optimization problem. We
follow Ben-Tal and Nemirovski (2002), Gorissen et al. (2015) and Yanıkoğlu et al.
(2019) to write the robust formulation of MCQCP. First, constraints with uncertain
parameters, the demand, need to be identified, then the robust counterpart can be
derived.

There are two constraints with uncertain parameters: The flow constraints (6.3),
and the capacity constraints (6.2).
Flow constraints (6.3). The demand is used to control when the flow constraint
must be active. To make sure the flow constraints hold for any demand realization
within Dt, it is sufficient to replace the condition∑

m

WIPt,r,m = 1 ∀t,∀r |
∑
p

rfp,rdt,p > 0 by

∑
m

WIPt,r,m = 1 ∀t,∀r |
∑
p

rfp,r(dt,p + d̂t,p) > 0.

Capacity constraints (6.2). If the demand uncertainty is row-wise and the un-
certainty is compact, then an optimal solution for the static reformulation problem
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is also an optimal solution for the adjustable robust reformulation problem (Ben-
Tal et al., 2004; Yanıkoğlu et al., 2019). In this chapter, the uncertainty set Dt is
compact: The uncertainty set Dt is bounded, because 0 ≤ dt,p ≤ dt,p + d̂t,p ∀t,∀p,
and is closed because Dt consists of a set of closed half spaces described by linear
inequalities. However, the uncertainty is not row-wise because the uncertain pa-
rameter for period t, i.e. dt,p, is found in the capacity constraint of each machine.
The uncertainty would be row-wise if the demand for a product also depended on
the machine, which is impossible.

Note that the problem also has two stages by nature: (i) Here-and-now: we
decide about new qualifications before the realization of the demand, (ii) Wait-
and-See: we decide about dispatching, modeled by variables WIPt,r,m, after the
observation of the demand. Investigating adjustable robust reformulations could
therefore be relevant but is left for future research.

By considering the uncertainty set Dt to model the demand uncertainty, capacity
constraints become in a static reformulation:∑

r

(
∑
p rfp,rdt,p)WIPt,r,m

tpr,m
≤ ct,mumaxt,m ∀t,∀m,∀d ∈ Dt

Robust counterpart: The next step consists in determining the robust counterpart
of the capacity constraints. The robust counterpart is independently determined
from one capacity constraint to another. Consider one capacity constraint for a
given machine m at period t:

Step 1 (worst-case reformulation):

max
d∈Dt

∑
r

(
∑
p rfp,rdt,p)WIPt,r,m

tpr,m
≤ ct,mumaxt,m

max
d∈Dt

∑
p

dt,p(
∑
r

rfp,rWIPt,r,m
tpr,m

) ≤ ct,mumaxt,m

Intuitively, covering the worst-case realization in the uncertainty set Dt will con-
duct to add qualifications to machines for operations common to many products,
or for operations associated to products with large re-entrant flow factors, as they
are the operations that will impact the most the utilization rate of machines. In
particular, operations with large demands and currently a single qualified machine
are particularly constraining for a work center.

Step 2 (duality):
The next step consists in taking the dual of the inner maximization problem. The

inner maximization problem and its dual, which is a minimization problem, have
the same objective value because the inner maximization problem is linear. For a
given period t, the following optimization problem must be solved:

max
∑
p

dt,p(
∑
r

rfp,rWIPt,r,m
tpr,m

)

s. t. dt,p ≥ dt,p − d̂t,p ∀p (6.9)
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dt,p ≤ dt,p + d̂t,p ∀p (6.10)∑
p|αp,f =1

dt,p ≤ Γt,f ∀f (6.11)

The dual variables associated to Constraints (6.9)-(6.11) are listed in Table 6.1.

Table 6.1: Dual variables associated to constraints in the uncertainty set Dt for a
capacity constraint (6.2).

Constraints Dual variables

(6.9) yminp

(6.10) ymaxp

(6.11) y
gamma
f

The dual of the inner maximization problem is a minimization problem. The
minimization problem for a given capacity constraint for machine m at period t is
modeled below:

min
∑
p

(−(dt,p − d̂t,p)yminp ) +
∑
f

(Γt,f y
gamma
f )

+
∑
p

((dt,p + d̂t,p)y
max
p )

s. t. − yminp + ymaxp +
∑

f |αp,f =1
y
gamma
f ≥

∑
r

rfp,rWIPt,r,m
tpr,m

∀p

yminp , ymaxp ≥ 0 ∀p
y
gamma
f ≥ 0 ∀f

Step 3 (Robust Counterpart): The final step consists in omitting the minimization
term to obtain the robust counterpart. Therefore, the robust counterpart of the
capacity constraint for a given machine m and a given period t can be found below:∑

p

(−(dt,p − d̂t,p)yminp ) +
∑
f

(Γf y
gamma
f )

+
∑
p

((dt,p + d̂t,p)y
max
p ) ≤ ct,mumaxt,m

− yminp + ymaxp +
∑

f |αp,f =1
y
gamma
f ≥

∑
r

rfp,rWIPt,r,m
tpr,m

∀p

yminp , ymaxp ≥ 0 ∀p
y
gamma
f ≥ 0 ∀f
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6.3.3.3 Robust Optimization Model

By deriving the robust counterpart for each capacity constraint and each time pe-
riod and indexing the dual variables by period t and machine m, the overall robust
optimization problem is:

min
∑
t,r,m

δtcqr,mOQt,r,m (6.12)

s. t. (6.4)− (6.7)∑
p

(−(dt,p − d̂t,p)ymint,m,p) +
∑
f

(Γt,f y
gamma
t,m,f )

+
∑
p

((dt,p + d̂t,p)y
max
t,m,p) ≤ ct,mumaxt,m ∀t,∀m (6.13)

− ymint,m,p + y
max
t,m,p

+
∑

f |αp,f =1
y
gamma
t,m,f ≥

∑
r

rfp,rWIPt,r,m
tpr,m

∀t,∀m,∀p (6.14)

∑
m

WIPt,r,m = 1 ∀t,∀r |
∑
p

rfp,r(dt,p + d̂t,p) > 0

(6.15)

ymint,m,p, y
max
t,m,p ≥ 0 ∀t,∀m,∀p (6.16)

y
gamma
t,m,f ≥ 0 ∀t,∀m,∀f (6.17)

The objective function (6.12) minimizes the cost of performing qualifications,
while Constraints (6.13)-(6.14) are the “robustification” constraints. Constraints
(6.15) ensure that the demand by operation must be satisfied if there is demand.
Note that Constraints (6.15) are slightly different from Constraint (6.3) as it
must be active when

∑
p rfp,r(dt,p + d̂t,p) > 0 for operation r at period t instead

of
∑
p rfp,r(dt,p) > 0. Constraints (6.16)-(6.17) correspond to the non-negativity

constraints introduced by the “robustification” procedure.
Note that the robust optimization model (6.12)-(6.15) can still be used when

a product belongs to several product families. Only input parameters must be
changed.

The robust optimization problem will referred as the Minimum Cost Robust
Qualification Configuration Problem (MCRQCP) in the remainder of the chapter.

Similarly to MCQCP, it is important to mention that MCRQCP can be infeasible
if the production capacities of machines are too small and if too few qualifiable
pairs (operation, machine) exist to better balance the workload between the ma-
chines. Note that in the numerical experiments performed in Section 6.5, MCRQCP
is infeasible for some values of dt,p and d̂t,p.

6.3.4 Illustrative example on tractability

MCQCP and MCRQCP can be both modeled with mixed integer linear programs,
and thus can be solved by standard solvers. Although no new binary variables are
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required in the robust reformulation of MCQCP, reformulating capacity constraints
can modify the problem structure and introduce many more variables and con-
straints. The reformulation can also worsen the quality of linear relaxations, thus
increasing the computational time required to reach an optimal solution in a branch
and cut algorithm. It is then expected that MCRQCP requires more computational
time to be solved than MCQCP. MCQCP has T ×M + T × R + 4 × T × R ×M con-
straints, T ×R ×M continuous variables and T ×R ×M binary variables. MCRQCP
has 2×T ×M×P +T ×M×F more continuous variables and 3×T ×M×P +T ×M×F
more constraints than MCQCP.

Table 6.2 illustrates the additional computational effort required to solve
MCRQCP by reformulating capacity constraints with respect to MCQCP in terms
of number of decision variables and constraints. The number of decision variables
and constraints of MCQCP and MCRQCP are given for P = 238, R = 1208, F = 3,
M = 20, T = 7. These values come from one work center (work center A) in
the computational study. Assuming that the demand and worst-case demand are
greater than 0 for all products and all periods, the increase of the number of con-
tinuous variables is equal to 16.6% and the increase of the number of constraints is
equal to 12.8%. This makes the robust optimization problem more difficult to solve
than the deterministic optimization problem as the robust optimization problem
also tighten the capacity constraints. In practice, the robust optimization problem is
much more difficult to solve than the deterministic optimization problem although
most optimal solutions can be found in one hour (see Section 6.5.3.2).

Table 6.2: Comparison of the number of variables and constraints between MCQCP
and MCRQCP. P = 238, R = 1208, F = 3, M = 20, T = 7.

Optimization problem

Number of MCQCP MCRQCP Increase(%)

Continuous variables 169,120 202,860 16.6
Binary variables 169,120 169,120 0.0
Constraints 685,076 785,456 12.8

6.4 Characterizing the robustness of a set of qualifi-
cations

6.4.1 Motivation

Determining intuitively relevant values for d̂t,p can be difficult. The first option
consists in using values estimated by decision-makers in charge of defining and
predicting future demands. However, determining relevant values can be difficult
for some products, in particular for new products because data can be insufficient.

If it is too difficult to provide relevant d̂t,p for each product, another option is
to propose initial values for d̂t,p. d̂t,p can first roughly initialized, e.g. initialized to
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dt,p, and then refined by characterizing the robustness of a set of qualifications (typ-
ically the set of initial qualifications) with respect to the demand uncertainty. More
precisely, characterizing the robustness of a set of qualifications means determining
to what extent a work center is able to correctly absorb the demand uncertainty.
Characterizing a set of qualifications is similar to determining the largest d̂t,p for
each product p at period t. Therefore, determining the robustness of a set of qual-
ifications provides capacity planners with the tolerated changes on the demand by
a work center. Then, if possible, demand changes should be made in the bounds
defined by dt,p and d̂t,p to limit additional costs with outsourcing or new machines.

In the context of qualification management, Rossi (2010) and Aubry et al.
(2012) assume that satisfying the demand by product is a key issue to characterize
the robustness of a set of qualifications. Rossi (2010) seeks to characterize the
robustness of a set of qualifications by determining the minimum additional
quantity of products from the nominal demand that can be absorbed without the
makespan exceeding a specified value. Robustness is defined as a distance in (Rossi,
2010). Similarly, Aubry et al. (2012) seeks to characterize the robustness of a set
of qualifications by determining the largest perturbation from the nominal demand
while ensuring that all machines have the same workload and that qualification
costs do not exceed a predefined value. The L-1 norm is used. Similarly to Rossi
(2010) and Aubry et al. (2012), we assume that satisfying the demand by product
is a key issue when characterizing the robustness of a set of qualifications. The
major differences with Rossi (2010) and Aubry et al. (2012) are that: (1) We
do not assume that machines are uniform or related; (2) We consider large scale
production systems with hundreds of products and thousands of operations; (3)
Product cannibalization and correlated demands are considered. To characterize
the robustness of a set of qualifications, we resort to robust optimization and the
uncertainty set Dt. More precisely, we seek to determine to what extent a set of
qualifications is able to absorb the demand uncertainty when it is described by the
uncertainty set Dt. Assessing the robustness of a set of qualifications depends on
the utility function used to evaluate it. First, we propose a generic mathematical
model to model the robustness of a set of qualifications with respect to the demand
uncertainty. Second, we propose a solution approach, based on a binary search
approach, to determine the robustness of a set of qualifications.

6.4.2 Problem statement

The problem is mostly identical to the problem introduced in Section 6.3.1. The
only difference is that the objective is to characterize the robustness of a set of
qualifications. This problem will be referred as the Maximum Robustness Budgeted
Qualification Problem (MRBQP) in the remainder of the chapter.

6.4.2.1 Problem modeling

Let us introduce a new decision variable θt,p ≥ 0 ∀t,∀p that is used to evaluate the
robustness of a set of qualifications. Let us assume that dt,p is a random variable that
depends on θt,p: dt,p ∈ [dt,p−d̂t,pθt,p,dt,p+d̂t,pθt,p] ∀t,∀p. Formally, the problem can
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be modeled as follows:

max f (θ) (6.18)

s. t.
∑
r

(
∑
p rfp,rdt,p)WIPt,r,m

tpr,m
≤ ct,mumaxt,m ∀t,∀m,∀d ∈ Dt(θ) (6.19)

(6.3)− (6.6)

θt,p ≤
dt,p

d̂t,p
∀t,∀p (6.20)

θt,p ≥ 0 ∀t,∀p (6.21)

The objective function (6.18) maximizes a utility function of θ. The capacity
constraints (6.19) depend on θ, which are used to control the demand uncertainty.
Constraints (6.20) ensure that the demand by product cannot be negative. Finally,
Constraints (6.21) are the non-negativity constraints.

Solving MRBQP is equivalent to determining the robustness of the initial set of
qualifications, or any set of qualifications as input parameter.

6.4.2.2 Robust counterpart of capacity constraints

MRBQP is an optimization problem under decision-dependent uncertainty because
the capacity constraints depend on the matrix θ used to control the demand uncer-
tainty to cover. Optimization problems under decision-dependent uncertainty are
known to be difficult to solve. When the uncertainty set is polyhedral, the objec-
tive function is linear and the constraints are linear, the optimization problem is
NP-Complete (Nohadani and Sharma, 2018; Lappas and Gounaris, 2018).

Nevertheless, as in the classical robust optimization paradigm, it is possible to re-
formulate decision-dependent uncertainty constraints with duality. This is because
θ is not a decision variable of the inner robust maximization problem. Let us con-
sider the same uncertainty set in Equation (6.8). The only difference stems from
the fact that the plausibility limits of dt,p are now dependent on θt,p. Similarly to
Section 6.3.3.2, it is possible to “robustify” the capacity constraints (6.19).

Consider the capacity constraints of a given machine m at period t. We follow
the same procedure as the one in Section 6.3.3.2, and the same notations for dual
variables are used. Steps 1 and 2 are similar to Section 6.3.3.2. The robust coun-
terpart of the capacity constraint for machine m at period t is written below:∑

p

(−(dt,p − d̂t,pθt,p)yminp ) +
∑
f

(Γt,f y
gamma
f )

+
∑
p

((dt,p + d̂t,pθt,p)y
max
p ) ≤ ct,mumaxt,m (6.22)

− yminp + ymaxp +
∑

f |αp,f =1
y
gamma
f ≥

∑
r

rfp,rWIPt,r,m
tpr,m

∀p (6.23)

yminp , ymaxp ≥ 0 ∀p (6.24)
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y
gamma
f ≥ 0 ∀f (6.25)

6.4.2.3 Robust reformulation

By deriving the robust counterpart for each capacity constraint, it is possible to write
the robust reformulation of MRBQP below:

max f (θ) (6.26)
s. t. (6.4)− (6.7)∑

p

(−(dt,p − d̂t,pθt,p)ymint,m,p)

+
∑
f

(Γt,f y
gamma
t,m,f )

+
∑
p

((dt,p + d̂t,pθt,p)y
max
t,m,p) ≤ ct,mumaxt,m ∀t,∀m (6.27)∑

m

WIPt,r,m = 1 ∀t,∀r |
∑
p

rfp,r(dt,p + d̂t,p) > 0 (6.28)

− ymint,m,p + y
max
t,m,p

+
∑

f |αp,f =1
y
gamma
t,m,f ≥

∑
r

rfp,rWIPt,r,m
tpr,m

∀t,∀m,∀p (6.29)

ymint,m,p, y
max
t,m,p ≥ 0 ∀t,∀m,∀p (6.30)

y
gamma
t,m,f ≥ 0 ∀t,∀m,∀f (6.31)

θt,p ≤
dt,p

d̂t,p
∀t,∀p (6.32)

θt,p ≥ 0 ∀t,∀p (6.33)

The objective function (6.26) maximizes the robustness of a set of qualifications.
Constraints (6.27)-(6.31) correspond to the “robustification” constraints. They en-
sure that the capacity constraints must be respected for any realization in the un-
certainty set Dt. Constraints (6.32) are the constraints for the upper bound θmint,p .
Finally, Constraints (6.33) are the non-negativity constraints.

Solving MRBQP leads to determining the largest θt,p for product p at period
t, and consequently to characterize the robustness of a set of qualifications. The
main drawback of MRBQP is that it is computationally challenging to solve. This is
because MRBQP contains products of variables, θt,p and ymaxt,m,p, and θt,p and ymint,m,p,
which are introduced by the “robustification” procedure for capacity constraints. Ex-
isting MILP reformulations are possible when one the variables is a binary variable
(Nohadani and Sharma 2018; Lappas and Gounaris 2018). To determine an esti-
mate of the robustness of a set of qualifications, a binary search solution approach
is presented in Section 6.4.3.
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6.4.3 Binary search approach

To characterize the robustness of a set of qualifications, it is possible, for each pe-
riod, to maximize θt,p assuming that θt,p = θt ∀p. For this objective, Algorithm 7,
which a binary search like algorithm, can be used. The initial value for d̂t,p is d̂0t,p.

Algorithm 7 Binary search

Input data: d̂0

1: procedure BINARY SEARCH

2: d̂t,p← d̂0t,p ∀t,∀p

3: θmaxt ←minp
dt,p

d̂t,p
∀t

4: θmint ← 0 ∀t
5: θt← 0 ∀t
6: for i = 1 to T do
7: θi ←

θmaxi +θini
2

8: while θmaxi > ε and θmaxi −θmini
θmaxi

> ε do
9: Verify that MRBQP is feasible for θ at period t (no capacity constraint

violation at period t)
10: if feasible then
11: θmin← θ
12: else
13: θmax← θ
14: end if
15: θi ←

θmaxi +θini
2

16: end while
17: end for
18: return θmin

19: end procedure

The computational difficulty in Algorithm 7 comes from solving multiple large-
scale linear programs. The computational burden can be lowered by warm-starts
as only the coefficients ymint,m,p, y

max
t,p,m, and y

gamma
t,m,f variables in the “robustification”

constraints must be changed.
Note that if θ is assumed to be identical for all periods and products, Algorithm 7

returns the smallest θmin over all periods. From a practical standpoint, some prod-
ucts can be filtered out of Algorithm 7 if there is no uncertainty on the product, or
if the uncertainty on the product does not need to be covered.

If Algorithm 7 is run when all new qualifications are started at t = 0, then an
ideal value of θ is computed. This is the largest value of θ for which the demand
uncertainty can be covered in the work center. Reporting this value is interesting
for capacity planners to assess the robustness of the work center against an ideal
situation.
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6.5 Computational study

The computational study is performed to answer the following questions: What is
the price of uncertainty? Is it risky to use the set of qualifications determined by
considering only the nominal demand? Is the robust optimization problem difficult
to solve?

In Section 6.5.1, the instances used for the computational study and generated
from industrial data are described. For confidentially purposes, raw values by prod-
uct, by operation, by product family and by machine of parameters are not provided.
Instead, means, minimums, maximums and standard deviations are presented. In
Section 6.5.2, the design of experiments is presented, and the numerical results in
Section 6.5.3. We show that the price of uncertainty, defined by comparing the
number of qualifications determined for the robust optimization problem and for
the deterministic optimization problem, when the demand is fully known (perfect
handsight), is actually very small. Moreover, in a large number of experiments, the
robustness of the set of qualifications determined by solving the deterministic opti-
mization problem with the nominal demand is far from the robustness of the set of
qualifications determined by solving the robust optimization problem whereas both
qualification matrices have about the same number of qualifications. In addition,
we show that only considering the nominal demand can lead to a large number of
capacity constraint violations. The computational study highlights that selecting the
right qualifications is more important for robustness than the number of qualifica-
tions.

6.5.1 Instance generation

Work center: The computational study is performed by using industrial data from
a semiconductor factory located at Crolles, France. Two critical work centers, work
center A and work center B, of the factory are considered. Work center A has
M = 20 machines. Work center B has M = 30 machines.
Demand: A horizon of 7 periods, i.e. T = 7, is considered. Each period corresponds
to one month. The nominal demand by product is given by internal forecasts for
each period of the horizon. Exact demand values are not provided for confiden-
tiality reasons. Instead, Table 6.3 illustrates the number of products with a strictly
positive demand by period and the Coefficient of Variability (CV) of the demand
by period. On the horizon, there are in total 238 products, i.e. P = 238. For work
center A, these 238 products lead to 1,208 operations, i.e. R = 1,208. For work
center B, these 238 products lead to 401 operations. There is no uncertainty on the
demand for the first month.
Production capacities: For work center A, umaxt,m = 0.95 ∀t,∀m in the industrial
data. Consider a given period t. For work center B, the mean of umaxt,m is equal to
0.80, the minimum of umaxt,m to 0.63, the maximum of umaxt,m to 0.87, and the standard
deviation of umaxt,m to 0.079. Both work centers do not have the same values for
umaxt,m because machine types are completely different. Note that umaxt,m is constant
from one period to another. Similarly, the production capacity by machine ct,m is
constant from one period to another, but is different from one machine to another.
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This is mainly because machines are non-identical and are of different ages and
generations. Values for ct,m are given based on the length of period t. For work
center A, the mean of ct,m is equal to 59% of the length of the period, the minimum
of ct,m to 44%, the maximum to 66%, and the standard deviation to 6%. For work
center B, the mean of ct,m is set to 75%, the minimum to 36%, the maximum to
85%, and the standard deviation to 9%. ct,m is not equal to 100% because machines
have capacity losses, e.g. due to maintenance operations, engineering operations,
setup times.
Re-entrant flow factors: For work center A, the re-entrant flow factors vary
between 14 and 72, with a mean of 41.2 and a standard deviation of 11.0. For
work center B, the re-entrant flow factors vary between 1 and 28, with a mean of
16.0 and a standard deviation of 4.3.
Product families: There are three product families, i.e. F = 3. Each product
belongs to exactly one product family. The first product family contains 120
products. The second product family contains 64 products. The third product
family contains 54 products.
Qualification matrix: The initial set of qualifications is partially initialized, in
particular because some machines are already qualified for existing operations.
Consider work center A. The mean number of qualified machines by operation
is equal to 4.2, and the standard deviation to 2.0. The minimum, respectively
maximum, number of qualified machines for an operation is equal to 1, respectively
13. The mean number of qualified operations by machine is equal to 251.3, and
the standard deviation to 188.0. The minimum, respectively maximum, number of
qualified operations for a machine is equal to 25, respectively 645. Note that some
operations cannot be qualified on some machines due to technological restrictions.
In total, 2,843 new qualifications are possible in work center A. Consider work
center B. The mean number of qualified machines by operation is equal to 3.5, and
the standard deviation to 1.6. The minimum, respectively maximum, number of
qualified machines for an operation is equal to 1, respectively 6. The mean number
of qualified operations by machine is equal to 48.0, and the standard deviation
to 43.8. The minimum, respectively maximum, number of qualified operations
for a machine is equal to 0, respectively 130. Note that some operations cannot
be qualified on some machines due to technological restrictions. In total, 1,266
new qualifications are possible in work center B. Some machines have no qualified
operations because they are being started up.
Qualification costs: We could not access to the qualification costs. Therefore, we
assume that all qualification costs are identical and equal to one. This is a common
assumption made by capacity planners in practice. Hence, in the computational
study, the number of qualifications to perform must be minimized.
Qualification lead times: Qualification lead times are rough estimates of the
lead times to perform the qualification procedures. Qualification lead times vary
between several days and two months. For qualification lead times that are smaller
than 2 weeks, lr,m is set to 0 because the considered period in the computational
study is one month. Consider work center A. The minimum lead time for all
operations and machines is equal to 0 period, the mean to 1.6, the standard
deviation to 0.8, and the maximum to 2. Consider work center B. The minimum
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lead time for all operations and machines is equal to 0 period, the mean to 1.1, the
standard deviation to 0.4, and the maximum to 2.
Throughput rates: Throughput rates strongly vary from one machine to another
and from one operation to another. Consider work center A. The minimum
throughput rate for all operations and machines is equal to 11.4 wafers per hour,
the mean to 221.6, the standard deviation to 126.7, and the maximum to 527.8.
Consider work center B. The minimum throughput rate for all operations and
machines is equal to 6.8 wafers per hour, the mean to 48.0, the standard deviation
to 13.9, and the maximum to 83.3.

Table 6.3: Nominal demand by month.

Month

1 2 3 4 5 6 7

CV 2.78 1.97 2.88 2.29 2.06 3.58 3.09

6.5.2 Design of experiments

We consider that d̂t,p = θdt,p ∀t,∀p, i.e. θ is assumed to be identical for all periods
and products. Different values of θ are studied: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7. Val-
ues of 0.2 and 0.3 for θ is not unusual even for early periods of the horizon for high
mix factories. Larger values of θ are not considered because the robust optimization
problem becomes infeasible from θ = 0.770 for work center A (see Section 6.5.3).
In addition, the robust optimization problem becomes infeasible from θ = 0.294 for
work center B. The budget of uncertainty Γt,f is set to

∑
p|αp,f =1dt,p, ∀t,∀f . The dis-

count factor δt is set to 1 ∀t in numerical experiments. This means that there are
no incentives on performing qualifications as soon as possible or as late as possible.
In Algorithm 7, d̂0t,p = dt,p, ∀t,∀p.

In the experiments, MCQCP is solved once. The robustness of the optimized set
of qualifications is evaluated with Algorithm 7. Then, for each possible value of
θ, MCRQCP is solved. For each value of θ, 3,600 demand scenarios are generated
to evaluate the capacity constraint violations if the nominal set of qualifications
was considered, and the price of uncertainty. Because the true distribution of the
demand is unknown and the demand between products is correlated, scenarios are
randomly generated by using a linear program. The linear program, described in
Appendix D.1, . The linear program generates for a given θ a scenario on the
demand by product and by period for a given demand level ηt,f by product family
and by period. In the experiments, it is assumed that ηt,f is equal to the nominal
demand by product family.

For the sake of presentation, in the remainder of the computational study, the set
of qualifications determined by solving MCQCP for the nominal demand are called
nominal qualifications, the set of qualifications determined by solving MCQCP for
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the perfect handsight demand scenario, perfect handsight qualifications, and the set
of qualifications determined by solving MCRQCP, robust qualifications.

Note that the robust and nominal qualifications are not compared in a rolling
horizon in the computational study, i.e. where qualifications could be updated at
each period after demand realizations for the following reasons: (1) It is difficult
to known the final practical decision when capacity constraint violations occur; (2)
Qualification decisions must be anticipated due to long qualification processes; (3)
Comparing the robust and nominal set of qualifications is possible and fair because
both are computed from “static” optimization models.

6.5.3 Numerical results

Mathematical models and Algorithm 7 are implemented in Java 8 on a computer
with an Intel Xeon CPU W3530 running at 2.80GHz with 8 threads and 12GB of
RAM. Mathematical models are solved by using the solver IBM ILOG CPLEX 12.9
with default parameters. A computational time limit of one hour is given to the
solver, ε is set to 0.0001 in Algorithm 7.

Section 6.5.3.1 answers the question “What is the price of uncertainty?”, Sec-
tion 6.5.3.2 the question “It the robust optimization problem difficult to solve?”,
and Section 6.5.3.3, the question “Is it risky to use the set of qualifications deter-
mined by considering only the nominal demand?”

6.5.3.1 What is the price of uncertainty?

The Price of Uncertainty (PoU) is computed by comparing the number of robust
qualifications and the number of perfect handsight qualifications. Gorissen et al.
(2015) argue that a low mean PoU and standard deviation indicate a good robust
solution. Table 6.4 shows the mean PoU, its standard deviation (std.) and its max-
imum afor each value of θ. Note that as for θ > 0.294, MCRQCP is infeasible for
work center B, PoU is not presented.

Consider work center A. The mean PoU varies between 1.08 qualifications on
average for θ = 0.1, with a standard deviation of 0.30, and 31.99 qualifications on
average for θ = 0.7 with a standard deviation of 2.03. Note that the increase of
PoU when θ increases is mainly due to the fact that the number of robust quali-
fications increases (see Figure 6.2). The standard deviation of PoU is small with
respect to the mean PoU. To better put into perspective, the meaning of about 30
qualifications, consider θ = 0.7. In the worst case, PoU is equal to 35. Recall that
the number of machines in work center A is equal to 20. In other words, to cover
the demand uncertainty, it is required to add 35

20 = 1.75 qualifications on average to
each machine, each having a few hundred qualifications on average, which seems
acceptable in practice. Therefore, robust qualifications for work center A appear to
be good solutions. In addition, a small number of additional qualifications, in the
worst case 35, is required to cover the demand uncertainty. This is small compared
to the 2,843 possible new qualifications. This suggests that it is possible to be ro-
bust by performing the right qualifications. Robust qualifications are also relevant
because they can avoid capacity constraint violations contrary to nominal qualifica-
tions (see Section 6.5.3.3).
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Similar observations can be observed for work center B (see Table 6.4 and Fig-
ure 6.3). The maximum PoU varies between 5 and 19 qualifications. Similarly to
work center A, to better put into perspective the meaning of a PoU of 19 qualifi-
cations, recall that the number of machines in work center B is equal to 30. With
respect to the perfect handsight qualifications, to cover the demand uncertainty, it
is required to add 19

30 = 0.63 qualifications on average to each machine, each having
a few tens of qualifications on average. This is also small compared to the 1,266
possible new qualifications. This again suggests that it is possible to be robust by
performing the right qualifications.

Implementing perfect handsight qualifications is impossible because it is impos-
sible to know in advance the demand realizations. A more practical price of un-
certainty can be computed by comparing the number of robust qualifications and
nominal qualifications. We found that the actual price of uncertainty is close to the
PoU presented in Table 6.4. This is because, for both work centers, the number
of nominal qualifications is equal to 4 and the mean number of perfect handsight
scenarios is also close to 4 (see Figures 6.2 and 6.3).

Now consider the case where θ=θmax, where θmax is the largest possible value pf
θ for the considered work center. It can be computed by running Algorithm 7 when
all new qualifications are started at t = 0. For work center A, this gives θmax = 0.77.
When MCRQCP is solved for θ = θmax, 96 new qualifications are required (the set
of new qualifications is optimal). 96

2,843 × 100 = 3.37% of all new possible qualifica-
tions are required to reach the same robustness than the one when all qualifications
are performed. For work center B, θmax = 0.294. When MCRQCP is solved for
θ = θmax, 135 new qualifications are required (optimality gap of 25.0% after 3,600
seconds). 135

1,266×100 = 10.6% of all new possible qualifications are required to reach
the same robustness than the one when all qualifications are performed. In the best
case, d135 − 0.25 × 135e = 102 new qualifications are required, which corresponds
to 8.05% of all possible new qualifications. This further suggests that it is possible
to be robust by performing a limited number of qualifications. In other words, it
can be ineffective to add many qualifications, if they are irrelevant. Similar obser-
vations can be found in other contributions on flexibility, e.g. on the long-chain and
closed-chain principles (Jordan and Graves, 1995; Chou et al., 2010). Thus, rele-
vant qualifications must be carefully optimized and planned to immunize a work
center against demand uncertainty.

One of the reasons why PoU is small is that qualification costs are assumed iden-
tical in the computational study, which is in fact a common assumption in practice.
PoU could potentially be larger if qualification cost profiles are different from one
machine to another and from one operation to another. Nevertheless, PoU is not
necessarily expected to be significantly larger since new qualifications must be paid
in the nominal, perfect handsight and robust cases for the following reasons: (1)
Qualifications are made for new operations or new machines, or existing operations
that have never been qualified on existing machines and (2) A ramp-up demand
for a product, even uncertain, implies adding new qualifications to machines to in-
crease product capacity and balance the workload between the machines. If new
qualifications are not performed, then it is impossible to satisfy the demand, and
both MCRQCP and MCQCP are infeasible. If qualification cost profiles are very dif-
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Table 6.4: Price of Uncertainty (PoU).

Work center A Work center B

θ Mean Std. Max. Mean Std. Max.

0.1 1.08 0.30 2 2.88 0.41 5
0.2 3.10 0.63 4 16.66 0.94 19
0.3 5.05 0.85 7 - - -
0.4 7.96 1.11 10 - - -
0.5 12.70 1.41 15 - - -
0.6 18.44 1.68 21 - - -
0.7 31.99 2.03 35 - - -

(a) Number of robust qualifications
by θ.

(b) Mean number of qualifications
by θ (PH).

Figure 6.2: Work center A. Number of qualifications by θ.

(a) Number of robust qualifications
by θ.

(b) Mean number of qualifications
by θ (PH).

Figure 6.3: Work center B. Number of qualifications by θ.
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ferent, it may be possible to keep a small PoU by performing a lot of inexpensive
qualifications and avoid performing expensive qualifications whenever possible. Fi-
nally, PoU is also small because of product cannibalization that limits the overall
demand of products.

Now assume that the manufacturer faces an extreme case where too many qual-
ifications must be performed to cover the demand uncertainty with respect to the
number of nominal qualifications. This information is still valuable for capacity
planners because they will have to refine plausibility limits to limit additional out-
sourcing and machine purchasing costs. In this situation, MRBQP is relevant to help
refining plausibility limits.

Finally, from a practical standpoint, as both work centers are located in the same
factory, covering the demand uncertainty for θ larger than 0.3 in work center A is
probably unnecessary as θmax is equal to 0.294 for work center B.

6.5.3.2 Is the robust optimization problem difficult to solve?

Consider work center A. For all values of θ, a set of optimal robust qualifications
is determined. However, determining optimal robust qualifications is much more
time consuming than determining optimal nominal qualifications (about 3 seconds).
Similarly, determining optimal perfect handsight qualifications requires between 2
and 6 seconds. Determining optimal robust qualifications requires between 46 sec-
onds for θ = 0.1 and 1,551 seconds for θ = 0.7 (see Figure 6.4). For θmax, the
optimal set of robust qualifications is determined in 656 seconds. It is also worth
mentioning that all optimal nominal qualifications are determined at the root node
by IBM ILOG CPLEX. Except for θ = 0.4,0.5,0.7 and θ = θmax, all robust quali-
fications are also determined at the root node by IBM ILOG CPLEX. This can be
explained by the fact that modern solvers such as IBM ILOG CPLEX embed ad-
vanced preprocessing, probing, heuristic and cutting plane routines that are used to
strengthen the linear relaxation of mixed integer linear problems (see e.g. Savels-
bergh, 1994; Atamtürk et al., 2000) and quickly to determine good solutions. It can
also be observed that it is faster to get the optimal robust qualifications for θ = 0.6
than for θ = 0.5.

For work center B, determining nominal qualifications takes about 1 second,
while, similarly to work center A, determining optimal robust qualifications is more
difficult. For θ = 0.1, optimal robust qualifications are determined in 85 seconds
(see Figure 6.4), and in 3,472 seconds for θ = 0.2. Branching in IBM ILOG CPLEX
is required for both θ = 0.1 and θ = 0.2.
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(a) Work center A. (b) Work center B.

Figure 6.4: Computational time (in seconds) required to determine the set of robust
qualifications by θ.

6.5.3.3 Is it risky to use the set of qualifications determined by only consid-
ering the nominal demand?

The numerical experiments show that it can be risky to implement nominal quali-
fications because it can lead to capacity constraint violations, which are computed
with the following procedure:

1. A demand scenario is generated with the linear program in Appendix D.1.

2. Then, for the set of nominal qualifications and the generated demand, the
Total Overtime (OT) is minimized with the linear program (D.5)-(D.10) in
Appendix D.2.

3. If OT > 0, then there is at least one capacity constraint violation for the con-
sidered scenario. In this case, to put into perspective what a positive overtime
means, in particular in terms of machine utilization rates, we solve the non-
linear utilization balancing optimization problem of Chapter 2. This avoids
the problem where the total overtime for a period is set to a specific machine
whereas, in practice, it would be balanced with similarly qualified machines.
The utilization balancing exponent γ is set to 20 in this chapter.

For scenario i, the procedure enables us to determine what would be the utiliza-
tion rate U i

t,m of machine m at period t for a given demand by product and a given
set of qualifications (here the nominal qualifications) if there is a capacity constraint
violation. If U i

t,m > u
max
t,m , then there is a capacity constraint violation for scenario i.

Repeating this procedure for the 3,600 scenarios enables us to estimate the capacity
constraint violations if only nominal qualifications were implemented.

Table 6.5 shows capacity constraint violations. Column “A” corresponds to the
percentage of scenarios where there is at least one capacity constraint violation,
Column “B” to the number of capacity constraint violations. Mathematically,
the mean number of capacity constraint violations is computed as follows:

1
3,600×T×M×I

∑3,600
i=1 1(U i

t,m − umaxt,m ), where 1(x) = 1 if x > 0, and 0 otherwise and
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I = 3,600. The maximum (max.) number of capacity constraint violations is
computed as follows: maxi(

∑
t,m1(U

i
t,m − umaxt,m )). Column “C” quantifies capacity

constraint violations when there is at least one capacity constraint violation.
Mathematically, the mean capacity constraint violation is computed as follows:

1
3,600×T×M×I

∑3,600
i=1 (

∑
t,mmax(0,U i

t,m − umaxt,m )), and the maximum capacity constraint
violation is computed as follows maxi,t,mmax(0,U i

t,m − umaxt,m ). Columns “B” and “C”
are computed only if there is at least one capacity constraint violation.

Table 6.5: Capacity constraint violations.

Work center A Work center B

A B C A B C

θ Mean Max. Mean Max. Mean Max. Mean Max.

0.1 0.72% 0.058 8 0.004 0.010 15.56% 7.096 11 0.010 0.029
0.2 15.64% 1.241 8 0.010 0.029 44.28% 8.947 22 0.014 0.048
0.3 26.19% 2.080 12 0.015 0.046 - - - - -
0.4 30.78% 2.670 13 0.020 0.066 - - - - -
0.5 38.39% 3.693 24 0.024 0.086 - - - - -
0.6 45.31% 5.058 36 0.027 0.106 - - - - -
0.7 57.83% 7.704 51 0.030 0.126 - - - - -

Consider work center A, θ = 0.1, 0.72% of the scenarios have a capacity con-
straint violation (see Table 6.5), i.e. a relatively small number of scenarios. In ad-
dition, the number of capacity constraint violations is relatively small. In the worst
case, 8 out of 140 (T = 7 and M = 20) capacity constraints are violated, capacity
constraint violations are not very large, on average 0.004 and at most 0.010. This
means that if the maximum utilization rate of a machine was set to 0.95, then on
average, its real utilization rate would be equal to 0.9504, at most 0.96. Therefore,
for θ = 0.1, using the nominal qualifications is probably acceptable. For θ = 0.2,
15.64% of the scenarios have a capacity constraint violation, which is significantly
larger than for θ = 0.1. On average, the capacity constraint violation is equal to
0.010, and in the worst case to 0.029, which starts to be appreciable. For larger val-
ues of θ, using nominal qualifications is more risky. For instance, consider θ = 0.4
where 30.78% of the scenarios have at least one capacity constraint violation (see
Table 6.5). In the worst case, 13 out of 140 capacity constraints are violated. In ad-
dition, the largest capacity constraint violation is equal to 0.066. This means, that if
the maximum utilization rate of a machine was set to 0.95, then its real utilization
rate would be equal to 1.003. The same observations can be made for larger values
of θ. Utilization rates near 1.0 are not sustainable in terms of service levels. This is
due to the fact that the cycle time increases almost exponentially with the utiliza-
tion rate (queuing theory) and due to production variability (Hopp and Spearman,
2011). In other words, even small capacity constraint violations should be avoided.

Capacity constraint violations are more critical for work center B than for work
center A. For θ = 0.1, 15.56% of the scenarios lead to at least one capacity constraint
violation, and for θ = 0.2, 44.28% of the scenarios. In the worst case, there are 11
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capacity constraint violations for θ = 0.1 and 22 capacity constraint violations for
θ = 0.2. For θ = 0.1, the mean capacity constraint violation is equal to 0.010. umaxt,m
is set to low values (compared to work center A) because it is known that, in the
industrial context, small increases of utilization rates can lead to much larger cycle
times due to production variability.

Using nominal qualifications can lead to capacity constraint violations because
nominal qualifications are not robust against demand uncertainty, and are in fact
much less robust than robust qualifications. For work center A, Algorithm 7 for
the nominal qualifications gives θ = 0.043, and θ = 0.024 for work center B. With
a limited number of additional qualifications, robust qualifications lead to a much
better robustness (see Section 6.5.3.1). Consider work center A and θ = 0.2, 7 ro-
bust qualifications are required instead of 4 nominal qualifications to avoid capacity
constraint violations in 15.64% of the scenarios. For θ = 0.3, 9 robust qualifications
are sufficient to avoid capacity constraint violations in 26.19% of the scenarios.
Similar observations can be made for work center B. For instance, for θ = 0.1, 7
robust qualifications are required instead 4 of nominal qualifications to avoid ca-
pacity constraint violations in 15.56% of the scenarios. It is worth mentioning that
robust qualifications are more robust against demand uncertainty because more
qualifications are performed. Nevertheless, even by adding a large number of qual-
ifications, the nominal qualifications are still outperformed by the robust qualifi-
cations in terms of demand uncertainty coverage. Let us consider the case where
α-flexibility designs are enforced when nominal qualifications are determined by
the optimization model (6.1)-(6.7). An α-flexibility design enforces that at least α
machines must be qualified by operation. For operations where it is not possible
to have α qualified machines, the number of largest number of qualified machines
is enforced. An α-flexibility design is enforced by adding the two following con-
straints: (1’)

∑t
t′=1|t′+lr,m≤tOQt′ ,r,m ≤ 1 ∀t,∀r,∀m, (2’)

∑
m
∑t
t′=1|t′+lr,m≤tOQt′ ,r,m ≥

min(α,α′) − α′′ ∀t,∀r. α′ is the the number of qualifiable and qualified couples
(operation, machine) for a given period, and α′′ is the number of qualified couples
(operation, machine) for a given period. Constraints (1’) are required, otherwise
Constraints (2’) could be satisfied by performing the new qualification at different
periods. Table 6.6 shows that enforcing α-flexibility designs for the nominal qualifi-
cations does not lead to a better robustness against demand uncertainty than the ro-
bust qualifications even though many qualifications are performed. This is because
there are many different ways to enforce an α-flexibility design. This reinforces the
idea that if qualifications are not optimized, then even many qualifications may not
be effective to tackle demand uncertainty.

Practical consequences of capacity constraint violations are lower service levels,
larger cycle time and larger inventory holding costs. Due to to capacity constraint
violations, the number of products in the factory would have to be decreased so that
the real utilization rates of machines violating their capacity constraint in the factory
is at least lower than 1.0, and ideally lower than umax to control the cycle times.
This can severely affect deliveries and the production objectives of the factory.

Products can then be backlogged, which can be expensive. Outsourcing is an
alternative to ensure on-time deliveries but can also be expensive or impossible.
Nevertheless, it is difficult to predict what would the final decision, as it depends
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Table 6.6: Number of qualifications (NQ) and robustness (θ) of nominal qualifica-
tions when an α-flexibility design is enforced.

Work center A Work center B

α NQ θ NQ θ

1 4 0.043 4 0.024
2 84 0.043 14 0.021
3 251 0.0606 77 0.012
4 611 0.071 224 0.087
5 1119 0.152 394 0.140

on the context in which optimization problems are solved and the utility function
to describe backlogs, which is not as simple as minimizing the total backlog cost or
maximizing the total number of product units made. Ultimately, the choice of using
nominal qualifications instead of robust qualifications should be left to capacity
planners based on estimated trade-offs between capacity constraint violations and
the number of robust qualifications. It is likely that, for non critical work centers
with low production variability and short qualification lead times, implementing
nominal qualifications can be acceptable because capacity constraint violations may
have little impact in practice. Nevertheless, for critical work centers, anticipating
critical qualifications and implementing robust qualifications is primordial to ensure
a high service level. Nevertheless and generally speaking, implementing robust
qualifications is interesting as it avoids capacity violation constraints for a small
number of additional qualifications.

In practice, a method to deal with uncertainty is to continuously updating nom-
inal qualifications each time the demand is updated. This should be avoided. This
is because, as mentioned in Section 6.2.1, this does not guarantee to find feasible
nominal qualifications because the qualification process may sometimes take several
weeks or months to validate the quality and the yield of the operation. As the de-
mand by product for the early months on the horizon is also subject to uncertainty,
determining and planning robust qualifications is preferable for the whole horizon.

It is worth observing that, if θ is not adequately selected, there may also ex-
ist multiple sets of robust qualifications with the same number of qualifications.
However, some sets of robust qualifications may actually be better to cover a larger
demand uncertainty than other sets of robust qualifications, which is not captured
by the robust optimization model because it only seeks to immunize the work cen-
ter against the specified uncertainty. This is why Algorithm 7 is relevant to identify
the most robust set of qualifications among all robust sets of qualifications. These
observations are consistent with other observations in the literature: There may
exist multiple robust solutions to an optimization problem. Although these robust
solutions have the same worst-case objective value, they can have different perfor-
mances for the nominal scenario (Iancu and Trichakis, 2014; Gorissen et al., 2015;
de Ruiter et al., 2016, 2017; Yanıkoğlu et al., 2019).
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6.6 Practical use of optimization models

6.6.1 Determining qualification decisions

A straightforward use of the robust optimization model (6.12)-(6.14) is to deter-
mine new qualifications to perform to satisfy the demand while respecting capacity
constraints and covering the demand uncertainty.

6.6.2 Further improving manufacturing performances

As illustrated on the industrial data in Section 6.5, a small number of qualifications
among several hundreds of new qualifications is sufficient to cover the demand un-
certainty. Consequently, it is likely that there are two different sets of robust quali-
fications that cover the demand uncertainty but lead to different performances, for
instance in terms of utilization balance of the machines or production variability.
It is necessary to distinguish them to further improve manufacturing performances.
Differentiating identical sets of robust qualifications in terms of number of qualifi-
cations can be done by populating the solution pool after determining the minimum
number of qualifications to perform. Modern solvers such as IBM ILOG CPLEX pro-
vide this functionality:

1. Two sets of robust qualifications may not be identical in terms of robustness.
Algorithm 7 can be used to identify the most robust set of qualifications.

2. Two sets of robust qualifications may also be different in terms of real utiliza-
tion rates although they all satisfy capacity constraints. Johnzén et al. (2011)
and Rowshannahad et al. (2015) propose a “time flexibility measure” to eval-
uate sets of new qualifications in terms of total utilization rate and utilization
balance of the machines. This flexibility measure is interesting as maximizing
the utilization balance contributes to further control and reduce cycle times.
However, Johnzén et al. (2011) and Rowshannahad et al. (2015) do not con-
sider that demand uncertainty. Their model need to be robustifieds.

3. Robust qualifications can be differentiated in terms of production variability as
a large production variability contributes to significantly increase cycle times
(Hopp and Spearman, 2011). In semiconductor factories, partly due to re-
entrant flow, it is unlikely that products arrive continuously in work centers.
Work centers are often subject to large Work-In-Process (WIP) peaks leading to
congestion. To better capture this phenomenon, Johnzén et al. (2011) propose
“a toolset” flexibility measure that captures the fact that operations with large
demands must be more qualified than operations with low demands. Pianne
et al. (2016) argue that qualified process times should be balanced between
machines in the work center. A machine should not be overqualified at the
expense of other machines. This is because machines with few qualifications
must process almost all their qualified products every qualified to meet the
optimized utilization balance, which is difficult due to production variability.
Associated flexibility measures are proposed in (Pianne et al., 2016). They
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can be seen as ways to measure the quality of the balancing of the qualified
process times, and not the quality of the utilization balance of the machines.

4. The principle of large closed chains or long chains can also be used to differ-
entiate sets of qualifications. If one set of qualifications creates more closed
chains or larger closed chains between machines and operations than other
sets of qualifications, it is very likely that the former will deal better with WIP
peaks than the latter (Jordan and Graves, 1995; Graves and Tomlin, 2003).

5. Another straightforward way of differentiating sets of qualifications consists
in enforcing α-flexibility designs. However, note that enforcing α-flexibility
designs without optimizing a criterion that helps to tackle WIP peaks, such
as flexibility measures, may not necessarily lead to better performances (see
Section 6.5.3.3).

6.6.3 Exploiting dual variables of robust reformulation

Bertsimas and Thiele (2006b) report that dual variables correspond to the sensitivity
of the objective function to changes in parameters of the budget uncertainty set
for an inventory management problem. Similarly to Bertsimas and Thiele (2006b)
and what was done in Chapter 2, dual variables of the robust optimization model,
namely ymint,m,p, y

max
t,m,p, y

gamma
t,m,f , can also be exploited:

− ymint,m,p is the sensitivity of the number of qualifications to perform to changes in

the parameter dt,p − d̂t,p. In other words, if dt,p − d̂t,p increases, ymint,m,p indicates
the potential reduction of the number of qualifications.

− ymaxt,m,p is the sensitivity of the number of qualifications to perform to changes in

the parameter dt,p+ d̂t,p. In other words, if dt,p+ d̂t,p decreases, ymaxt,m,p indicates
the potential reduction of the number of qualifications.

− ygammat,m,f is the sensitivity of the number of qualifications to perform to changes

in the parameter Γt,f . In other words, if ygammat,m,f decreases, Γt,f indicates the
potential reduction of the number of qualifications.

Exploiting the values of dual variables is particularly relevant from an industrial
standpoint to identify if the demand uncertainty on some products or product fam-
ilies is very expensive in terms of number of qualifications. Reporting the values of
dual variables can be used by capacity planners to refine the uncertainty set, i.e. by
defining a smaller uncertainty set, and initiate a discussion with the departments in
charge of defining future demands in the case where the number of qualifications
to perform is overwhelming. Capacity planners can also initiate a discussion with
the departments in charge of defining future demands that the demand uncertainty
on some products or product families is not constraining for the production system.
The departments can therefore consider new future potential product mixes, i.e. by
defining a larger uncertainty set, that would have never been initially considered.
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6.6.4 On infeasibilities

The optimization problems can be infeasible (see Section 6.5.3). For instance, this
can be caused by large qualification lead times and too small production capaci-
ties to cover the demand uncertainty. Determining that optimization problems are
infeasible is also valuable in practice.

If the nominal optimization problem is infeasible, it indicates capacity planners
that the demand must be changed. It is difficult to anticipate how would be the new
demand as it depends on different stakeholders (e.g. capacity planning, demand
planning) within a company. For instance, if the nominal optimization problem is
infeasible, the demand for products that generate a large workload at the work cen-
ter can be decreased while the demand for products that generate a lesser workload
can be increased. In this case, the total number of product units made may not
decrease, backlogging costs may be acceptable, but lost sales may be incurred on
critical products.

If both MCQCPLT or MCRQCPLT cannot be solved because capacity constraints
cannot be respected, it is also possible to solve a utilization balancing problem
where the demand is described by the uncertainty Dt to highlight critical machines,
i.e. machines for which Ut,m > umaxt,m . For instance, the utilization balancing ap-
proach in Chapter 2 can be robustified (see Appendix F). In a decision support
system, systematically solving a robust utilization balancing problem is relevant to
either identify infeasibilities or most loaded and critical machines.

6.7 Conclusions and perspectives

In this chapter, we first proposed a new mixed-integer linear programming mathe-
matical model for a tactical qualification management problem when the demand
is deterministic. Second, we motivated the choice of robust optimization when the
demand is uncertain, in particular for high mix factories. We proposed an uncer-
tainty set based on the budget of uncertainty to describe product cannibalization
and cover the demand uncertainty. Third, we proposed a new robust reformula-
tion of the deterministic model when the demand is described by product canni-
balization. Four, we proposed a linear program and a binary search approach to
characterize the robustness of a set of qualifications when the demand is uncertain.
Fifth, we performed a computational study by using industrial data from a high
mix semiconductor manufacturer. In particular, we showed that, (1) The price of
uncertainty is acceptable, often less than a few additional qualifications for each
machine, (2) It is possible to achieve the same level of robustness as the case where
all new qualifications are performed by only performing a restricted number of rele-
vant qualifications, (3) Depending on the forecast uncertainty and the work center,
the robust optimization problem can be difficult to solve, and (4) Using the nominal
set of qualifications can lead to significant capacity constraint violations, although
it can be used for some work centers when the forecast uncertainty is small. Finally,
practical applications and implications of the developed models are discussed.

We believe the following perspectives are worth investigating in the future:
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1. Other parameters can also be subject to uncertainty, e.g. production capacities,
throughput rates of operations on machines, qualification costs and lead times.
Studying the relevance and effect of the uncertainty of these parameters can
be valuable.

2. Considering qualification available times due to disqualifications could be in-
teresting to further distinguish best new qualifications.

3. A large number of qualifications can be difficult to maintain at an operational
level. Including disqualification decisions, e.g. constraining the number of
qualifications by machines, or constraining the total number of qualifications
in each period, could be relevant.

4. Extending the static robust reformulation to adjustable robust reformulations
may be valuable to further reduce qualification costs.

5. For work centers where the numbers of operations and machines are large,
more efficient solution approaches might be necessary. An option consists in
using a cutting-plane solution approach with lazy constraints as proposed by
Bertsimas et al. (2016). This might be a viable approach as the computational
time required to solve MCQCP is small.

6. As there may exist several sets of robust qualifications in terms of number
of qualifications given an immunization level, it would be interesting to use
additional objective functions, and thus multi-objective optimization, to select
the best set of robust qualifications.

7. Other solution approaches for MRBQP can be considered. Iterated max-min
approaches are probably relevant not to restrict to the same value of θ for all
products and periods.

8. Studying the effect of different qualification cost profiles by machine or by ma-
chine and time dependent qualification decisions on the price of uncertainty
can be interesting.

9. As the ability of qualifications to cover the uncertainty on the demand strongly
depends on the machines in the work center (Hopp and Spearman, 2011),
considering the investment decisions in terms of machines could also be in-
vestigated to cover the uncertainty on the demand.

10. Capacity allocation is optimistic. For a given operation r, the workload is
allocated to the fastest machines in priority to satisfy capacity constraints.
Nevertheless, because dispatching and scheduling decisions are highly au-
tomated and due to production variability in semiconductor factories, it is
unlikely that operational decisions will exactly match capacity allocation deci-
sions. Machines can ultimately have larger workload and utilization rates than
expected, because all operation quantities will not necessarily be allocated to
fastest machines. This difference should be considered as it may lead capacity
constraint violations (see Appendix G for more details).
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Chapter 7

Industrial applications and decision

support system

A fully functional decision support system, called “FlexQual”, for operational
qualification management used at STMicroelectronics by production personnel is
presented in this chapter. In particular, the purpose, the functioning, the content
of FlexQual are presented. FlexQual embeds all theoretical developments made
in Chapters 2, 3, 4 and 5. FlexQual is now included in the decision process of
production personnel.
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7.1 Introduction

Theoretical developments in Chapter 2, 3, 4 and 5 are included in FlexQual, a fully
functional decision support system, that is currently used at STMicroelectronics for
operational qualification management.

In the given industrial context, re-qualification decisions are not automated, i.e.
re-qualifications are not automatically updated in the Manufacturing Execution Sys-
tem (MES) after running the solution approaches. All mathematical models and
solution approaches developed for the operational decision level presented in the
thesis are included in the decision support system called FlexQual. A decision sup-
port system (DSS) is a system that aims at supporting decision-making by presenting
relevant information and recommendations on decisions that should be made. Mak-
ing a decision support system is relatively easy, cheap, and still effective to improve
manufacturing performances although decision support systems can at first slow
down production personnel in their decision process (Sharda et al., 1988). More-
over, production personnel can evaluate scenarios (what-if analysis), which would
be impossible if re-qualification decisions were automated. In addition, it is actually
difficult to automate a decision process in a complex and already automated man-
ufacturing system. Plus even the best automated system cannot take into account
the whole context motivating a decision. The availability of technicians, their skills
hence the knowledge of coming maintenance operations or recent history of the
equipment may not be known to the system.

The remainder of the chapter is organized as follows. In Section 7.2, we present
questions that are answered by production personnel at a production control level
to manage their work center and ensure best possible manufacturing performances.
In Sections 7.4 and 7.3, we present the fully functional decision support system
called FlexQual used at STMicroelectronics to support production personnel in their
decision process, notably by ensuring that questions presented in Section 7.2 can be
answered. More precisely, Section 7.3 presents the content of FlexQual. Section 7.4
presents how FlexQual works. Section 7.5 presents some use cases and feedback
of production personnel on FlexQual. Finally, in Section 7.6, we conclude and give
some perspectives.

7.2 Decision-making by production personnel

At an operational decision level, production personnel usually want to answer the
following questions:

− Are there line stop operations, i.e. operations for which there is currently no
machine validated or qualified?

− Are there priority lots subject to line stops?

− Are machines unbalanced?

− What are the critical re-qualifications that should be made or should have been
active to improve manufacturing performances?
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− Will the work center be able to meet daily production objectives?

− Should a maintenance operation be postponed or scheduled sooner?

− Is there budget, i.e. capacity margins, for maintenance or engineering opera-
tions on a particular machine or machine set?

These questions are all linked together. For instance, if the work center is able to
meet its daily production objectives, then there is probably budget for maintenance
operations. In addition, identifying if a maintenance operation can be postponed
or scheduled sooner can be done by identifying if machines have production ca-
pacity margins to satisfy daily production objectives. FlexQual aims at effectively
answering these questions. Therefore, FlexQual must present information so that
answering the questions is eased. Three major axes are considered for FlexQual:

− Present relevant performances indicators, e.g. in terms of utilization rates of
the machines, cycle time, throughput, and line stop operations.

− Proposing re-qualification decisions to improve performance indicators and
thus meet production objectives.

− Standardize decision making across team shifts of a work center, and across
all work centers.

7.3 Content of FlexQual

FlexQual is made of two parts:

1. An e-mail body summarizing critical information for quick and relevant
decision-making.

2. An ExcelTM file containing additional information on the utilization rate by
machine, the mean utilization rate by machine set, on OEE(%) by machine,
on OEE(%) by machine set, on the throughput by product family, on disquali-
fications, on priority WIP, on line stop operations.

In this section, the content of FlexQual will be presented. Note that chart legends
and column headers are in French because FlexQual is currently used at a factory
located in France. In addition, note that most of the data is blurred for confiden-
tiality purposes. Similarly, X and Y scales of charts are omitted for confidentiality
purposes.

7.3.1 E-mail content

The e-mail contains a body summarizing critical information for quick and rele-
vant decision-making, i.e. line stop operations, priority WIP (Work-In-Process) with
no more than one qualified machine, and a re-qualification plan to improve the
throughput (see Figure 7.1). All indicators are computed by using the multi-period
bilevel optimization approach proposed in Chapter 4, and the considered horizon is
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of 24 hours (divided into three periods of 8 hours). As priorities of operations are
continuously modified by the manufacturing system, the “FIFO” computation mode
for the throughput is considered. As team shifts work for 8 hours (in general), the
e-mail body only contains line stop operations for the next 8 hours. Similarly, the
e-mail body only shows the priority WIP with no more than one qualified machine
for the next 8 hours based on forecasted lot arrivals. Oppositely, the proposed re-
qualification plan is determined for a horizon of 24 hours. Consequently, the e-mail
body can answer the questions “Are there line stop operations?”, “Is there priority
WIP subject to line stops?”, and “What are the critical re-qualifications that should
be made or should have been active to improve manufacturing performances?”.

Figure 7.1: E-mail content.

The e-mail body also contains three charts:

1. The throughput, i.e. the number of wafers produced, by machine set for which
production objectives are defined. This answers the question “Will the work
center be able to meet daily production objectives?”.

2. The utilization rate of machines for machine sets that do no meet their pro-
duction objectives. This partially answers the questions “Are machines unbal-
anced?” because only the utilization rate of machines for machine sets that do
not meet their production objectives is presented in the e-mail body. This is
done to present only concise information. Note that if all machine sets meet
their production objectives, the utilization rate of all machines is presented.

3. The qualification rates of machines for machines sets that do no meet their
production objectives. Including qualification rates enables production per-
sonnel to better estimate when a maintenance operation for a machine is
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mandatory. For instance, in the ion implantation work center, operations are
disqualified if processing conditions for the considered operation become too
unstable due to ion source wear. Qualification rates are practical estimates
to perform ion source changes. Similarly, to the utilization rates of machines,
if all machine sets meet their production objective, the utilization rates of all
machines is presented.

These three charts give production personnel visibility on significant metrics for
the next 24 hours. At a glance, production personnel can thus identify and an-
ticipate potential problems and fix them with appropriate decisions, e.g. by re-
qualifying some machines for some operations or by postponing non-critical main-
tenance operations.

7.3.2 ExcelTM file

Although most questions can be answered with the e-mail body, additional informa-
tion is provided with an ExcelTM File. The ExcelTM file contains the same informa-
tion as the e-mail body, as the e-mail body is built upon information contained in the
ExcelTM file. Nevertheless, the ExcelTM file contains additional information to sup-
port decision-making and answer some questions that could not be answered in the
e-mail body, or were only partially answered in the e-mail body, and the possibility
to evaluate what-if scenarios. More precisely, the ExcelTM file has seven tabs:

1. “Board” evaluates and presents the manufacturing performance of the work
center for the next 24 hours. This tab then gives visibility on the utilization
rates of machines, on OEE(%), on the throughput by machine set, on the
throughput by product family, on qualification rates, and therefore on the
capacity of the work center to meet daily production objectives.

2. “Projections” presents WIP quantities by operation that should arrive in the
work center by the next 24 hours. In the tab, each entry is associated to an
operation. For each operation, the mean throughput rate and the standard de-
viation of throughput rates is presented. In addition, qualified and qualifiable
machines are presented. If there is only one qualified machine, then the oper-
ation is highlighted in orange. If their is no qualified machine, the operation
is in bold and also highlighted in orange.

3. “WIPHighPrio” presents priority WIP that should arrive in the work center by
the next 24 hours. In the tab, only highly priority lots are presented. They
have a priority greater than a specified threshold. For each priority lot, the
associated operation and qualified machines are presented. If there is no more
than one qualified machine, the entry is also highlighted in orange.

4. “LineStops” presents operation quantities that are subject to production capac-
ity interruptions, which is either due to the fact that operations have currently
no qualified machines or that all qualified machines are down. “Line Stops”
must be anticipated and managed because: (1) they can severely increase
the mean cycle time if unnoticed; (2) at the work center level, production is
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usually managed with aggregated indicators (unless for highly priority WIP),
e.g. in terms of throughput by machine set or operation family. If a line stop
operation is not fixed, it may be still possible to attain a large throughput.
Nevertheless, some lots could be backlogged or behind schedule because they
are stopped at an operation as there is no associated production capacity.

5. “Devalidations” presents all disqualifications in the work center. More pre-
cisely, for each disqualified pair (operation, machine), the tab presents dis-
qualification reason codes, disqualification costs (categorical costs, e.g. small,
medium, large), the latest qualification date. Disqualification reason codes are
critical as they describe if a disqualification can be easily performed. They are
used by the solution approaches to discard qualifications that cannot be done
in 24 hours. Similarly, the latest qualification date is reported because it is
critical to respect internal quality standards due to process obsolescence.

6. “Scenarios” enables production personnel to evaluate a scenario (what-if anal-
ysis), which can be composed of maintenance operations, disqualifications and
re-qualifications.

7. “Actions” proposes a re-qualification plan to improve the manufacturing per-
formances. The objective function used in the optimization process is ei-
ther the utilization balance and the total utilization rate of the machines and
throughput depending on the horizon. The mean cycle time is reported as
an additional indicator to better support decision-making but is not currently
optimized.

For space limitations, more details on the content and the use of the ExcelTM file
are provided in Appendix E Section E.1.

7.4 How does FlexQual work?

Early versions of FlexQual were running on the computer of production personnel.
This caused problems as personal computers have a limited amount of RAM and
can be slow to solve optimization problems. Latest versions run on a dedicated
virtual machine hereafter called server. The server has scheduled runs that consists
in sending e-mails containing FlexQual to production personnel.

When production personnel wants to evaluate a scenario, the servers receives a
request, interprets it, and then sends a new e-mail containing an updated e-mail
body and ExcelTM file with respect to the evaluated scenario. The use of e-mails,
even to receive the results of a scenario, is interesting for production personnel
because only the server runs the optimization engine, which can be a computa-
tionally expensive task, in particular on computers used by production personnel
that are not necessarily properly suited. E-mail bodies contain only the most
relevant information for decision-making and is easily accessible, even remotely
from smart-phones by production personnel. Nevertheless, the use of e-mails can
lead to an excessive amount of e-mails. In addition, production personnel share the
server. This means that if a scenario or a scheduled run takes too long to complete,
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production personnel will wait a great amount of time before receiving the results
of their scenario. Note that this has not caused any problem so far. An alternative
to the use of e-mails would consists in developing a dedicated web application, or
something similar.

Figure 7.2: How does FlexQual work?

More details are provided in Appendix E Section E.2.
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7.5 Use cases and experience feedback

7.5.1 Short-term use cases

Main use case. The server has scheduled runs consisting in sending to production
personnel FlexQual and results associated to the optimization engine 20 minutes
before shift changes (see Figure 7.2), approximately every eight hours. In this case,
the length of the horizon is equal to 24 hours.

Ideal re-qualifications. Another potential use case is not to show only possible
re-qualifications that can be done given the considered horizon and re-qualification
lead times and costs, but to show re-qualifications with respect to an ideal situation.
If this qualification was active, what would the throughput and cycle time? By
evaluating every re-qualification separately, no matter its cost or lead time, it is
possible to evaluate the potential impact of the qualification on the throughput and
cycle time. By frequently repeating this operation, it is possible to create a database
that highlights the most critical re-qualifications to perform, and consequently,
highlight the most critical re-qualifications that should not be lost. This infor-
mation is still relevant for production personnel but differs from a classical use case.

Short-term bottlenecks. Even without determining re-qualifications, the utiliza-
tion balancing approach developed in Chapter 2 can be used to detect future
short-term bottlenecks machines or machine groups if their utilization rate is
expected to exceed 100% for instance on a 24-hour horizon.

Prioritizing maintenance operations. The bilevel optimization model is also
used to identify machines that are down but critical to maximize the throughput.
To identify the machines, we use what-if scenarios and compute with the bilevel
optimization model what would be the throughput if the machine that is currently
down is assumed to be up. This computation is ideal as maintenance operations
cannot be done instantaneously. Nevertheless, after finishing all what-if scenarios,
it is possible to rank machines by their gain on the throughput and prioritize some
maintenance operations over others.

Better dispatching decisions. The utilization balancing approach developed in
Chapter 2 can be used to provide guidelines, for instance the maximum number of
wafers for a operation quantity to assign to a machine, to dispatching engines as it
also optimizes the total utilization rate of the machines.

Further benchmarking work centers. All indicators are also computed for two
ideal cases. The first ideal case is when it is assumed that there is no disqualifica-
tion. The second ideal case is when it is assumed that there is no disqualification
and there is no machine down time. Both ideal cases allow work center mangers
to further benchmark work centers and evaluate if there is a large gap between
between current performances and ideal performances. If yes, then some critical
decisions should be made in terms of qualifications or maintenance operations.
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Experience feedback. Developed mathematical models and solution approaches
can be applied for all work centers in the factory. Although FlexQual can be used
for any work center, standardizing its use across different work centers is a difficult
task. This is because the use of FlexQual is different from a work center to another
because work centers are different and thus may have different needs.

In work centers where there are many possible re-qualifications, e.g. where there
are many machines (process chambers) such as in Dry etch, developed models and
solution approaches are particularly relevant to identify critical qualifications that
should be performed to optimize performances. This is because the number of op-
erations and machines can be overwhelming. In addition, in work centers where
disqualification decisions are frequent, e.g. in Ion implantation for WIP manage-
ment policies, proposing re-qualifications plans is particularly relevant to evaluate
if machines are too unbalanced, which may affect the throughput and the cycle
time. This is because Ion Implantation tools may have very different throughputs
depending on the operation processed, on the wear of their ion source and usually
process hundreds of different operations each. In addition, Ion implantation is a
work center with a high degree of re-entrancy, making it a critical work center for
the whole production facility.

In work centers where the overall number of qualifications, the degree of re-
entrancy or the number of machines is relatively small, production personnel al-
ready know most critical qualifications that should not be lost. Therefore, optimizing
re-qualification plans might be less relevant. The decision support is still relevant to
better follow-up qualifications, i.e. anticipate disqualifications faster and more of-
ten, as production personnel are interested in identifying unnoticed disqualifications
and in controlling qualification rates. Developed models and solution approaches
remain relevant, for instance, to identify the bottleneck machines and therefore an-
ticipate WIP bubbles or line stop operations. For these work centers, in most cases,
this is sufficient to ensure a good throughput. If it is insufficient, production person-
nel can still use the re-qualification plan that is automatically proposed by FlexQual,
as it will probably show to production personnel critical points to address for the
next 24 hours. Furthermore, for work centers where qualification delays can be
long, in particular in Diffusion where re-qualifications may require the use of test
wafers and last a few hours, considering a horizon of a few hours to 24 hours can
be limited because potential gains may never be significant.

Developed approaches are particularly interesting for bottleneck or near-
bottleneck work centers. Determining if there exist critical qualifications to improve
the throughput or the cycle time, is particularly interesting as bottleneck work
centers constrain the whole production facility. For non-bottleneck work centers,
identifying and anticipating line stop operations or operations with only one
qualified machine or priority WIP, and identifying recent disqualifications is often
good enough to maintain a good throughput and a low cycle time. Nevertheless,
an unnoticed disqualification can still occur and strongly affects the throughput
or the cycle time of non-bottleneck work centers. Improving the throughput of
non-bottleneck work centers can also be useful to avoid starving bottleneck work
centers, reducing production variability and thus minimizing the total cycle time,
which can be performed with developed approaches.
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Future steps. Next steps consists in computing more frequently than every 8
hours information proposed in FlexQual to better follow operational conditions
(e.g. machine downtime, WIP peaks, disqualifications), and therefore to work in a
rolling-horizon manner. Information is computed every 3 hours for an horizon of
24 hours. Each re-qualification plan contains a single re-qualification. Instead of
sending an e-mail, information is printed with the help of a business intelligence
software (TIBCO Spotfire) on a single page that is directly visible in the clean room
by shift teams. The ExcelTM file is kept if what-if scenarios are required.

7.5.2 Medium-term use cases

Main use case. Developed mathematical models and solution approaches are also
used for medium-term decision support. Similarly, the server has also scheduled
runs where it computes optimized re-qualification plans for a horizon of one to
two weeks. The server automatically sends an e-mail each week before the review
and update of the production plan. In this case, the considered horizon is of one
week. Production personnel receive the same information as they would receive
if the considered horizon were of 24 hours. A one-week report gives production
personnel visibility on machines that may be overloaded, and therefore that are
critical. They can also use this report to exchange with production planners on the
feasibility on the new production plan and critical operations.

Next steps. Similarly to short-term use cases, next steps also consists in computing
more frequently information proposed in FlexQual for a horizon between one and
two weeks.

7.5.3 Feedback and decision process

FlexQual received positive feedbacks from Diffusion and Ion implantation produc-
tion personnel. At the time where the development of FlexQual started with Diffu-
sion and Ion implantation because they were bottleneck. Production personnel of
other work centers also received automatic e-mails. Nevertheless, production per-
sonnel of other work centers were less involved in the development, refinement and
adjustment of FlexQual for operational needs.

Beyond qualification management, FlexQual changes the management philoso-
phy: More anticipation and preparation. Production personnel no longer work with
an instantaneous vision of the WIP. They work on previsions, i.e. WIP projection,
for the next eight to twenty-four hours, even if the projection may not be extremely
accurate. This is not necessarily a problem as work centers tend to work with a
rolling horizon approach where decisions, including re-qualification decisions, are
frequently reassessed. This gives them visibility, time to plan decisions, simulate
maintenance operations, qualification and disqualification decisions to manage the
work centers. Shift teams are also more autonomous in their decision-making with
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respect to priority WIP and line stop operations. All necessary information for
decision-making is contained in a single file, which is a considerable time saver.
In addition, FlexQual is now fully integrated in their decision process between shift
changes and in the daily activity reviews. At 5 AM, a first analysis is made by pro-
duction personnel to identify critical machines, line stop operations and potential
levers by shift teams. At 9 AM, production personnel make a second analysis. An
estimate of the number of wafers processed by product families with respect to daily
production objectives is communicated to other work centers (see Figure 7.3).

Figure 7.3: Daily decision process.

A mistake, when designing and developing decision support systems, is to
present an overwhelming number of indicators. First, users probably do not need
all of them. Indicators for aggregated entity levels, e.g. the cycle time by product
family or operation family, is probably enough. Indicators for smaller aggregated
levels is probably irrelevant due to production variability. It is enough to have a
proactive behavior and proposing a few indicators even if some must be removed or
others added in later development stages. In addition, optimization only represents
a fraction of a decision support system.

7.6 Conclusions and perspectives

In this chapter, we presented questions that answered by production personnel sev-
eral times a day to ensure manufacturing performances, in particular to ensure a
high throughput, low cycle time and to meet production objectives. We presented
a fully functional decision support system that is used by production personnel at
STMicroelectronics. Driving work centers are Diffusion and Ion implantation. The
decision support system, FlexQual, is now included in their daily decision process
and at production shift start. Early involvement of work centers for the development
of FlexQual was crucial. In the context of this thesis, early involvement of differ-
ent work centers (Diffusion and Ion implantation) enabled us to develop FlexQual
by following guidelines provided by production personnel. The first meeting con-
sisted in us presenting and proposing an initial and simple version of FlexQual.
Then, regular meetings were scheduled with production personnel. Production per-
sonnel frequently requested to add new information or remove information, which
were no longer judged relevant for decision-making. Similarly, we frequently pro-
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posed modifications and new features for decision-making. FlexQual was kept as
simple as possible and included in ExcelTM. ExcelTM was naturally selected as the
graphical user interface as most employees in the company frequently use it. Note
that FlexQual was developed for operational qualification management. Improving
FlexQual with the work presented in Chapter 6 on tactical qualification manage-
ment is in progress.

FlexQual can be improved:

1. With small changes, it could be used by other wafer fabs.

2. FlexQual could also benefit from new developments by modeling specific fea-
tures for work centers.

3. Other reporting could be imagined. Reporting critical qualifications could be
relevant. Critical qualifications could correspond to the qualifications that
lead to a large decrease of the utilization balance if they are lost. Critical
qualifications could correspond to the smallest set of qualifications that needs
to be maintained to keep the same utilization balance and total utilization
rate of the machines as the utilization balance and total utilization rates of
the machine with the initial set of qualifications. This could encourage work
centers to quickly re-qualify critical qualifications if they are lost.

4. Further studying the effect of currently down machines on manufacturing per-
formances could be extremely relevant for production personnel to better de-
termine priority maintenance operations.

5. Another significant aspect would be to be able consider all work centers at
the same time in the solution approaches. This is because although local
qualification decisions are relevant to optimize some local aspects of manu-
facturing performances, in particular the throughput or cycle time of the work
center, local qualification decisions may not consider other crucial aspects.
Considering all work centers at the same time could be done by considering a
multiple objective optimization approach. For instance, the objective function
would consist in maximizing the satisfaction of production objectives, which
can be defined in terms of machine set, of layer, of product family, etc. As all
work centers have the same production objectives as they are defined from a
production plan optimized for a horizon of one week (see Mhiri 2016; Christ
2020), considering a multiple objective optimization approach would be a first
step to considering all work centers at the same time. Production objectives
could also be weighted to better consider the capacity of downstream work
centers. Finally, note that a simple multiple objective optimization approach
is implemented in FlexQual based on the work of Tamssaouet (2019) who
define in his thesis an objective function called Target Satisfaction Indicator
(TSI), based on the concept of generalized mean, to maximize the satisfac-
tion of production objectives. More precisely, given appropriate weights, we
are able to determine a re-qualification (and disqualification) plan to optimize
TSI with the constructive greedy heuristic and the bi-level optimization ap-
proach. Nevertheless, a complete study on the most suitable way to consider
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different objective functions, e.g. with a priori approach or a posteriori ap-
proach, and on the trade-off between the satisfaction of different production
objectives after qualification and disqualification decisions would be valuable.
Another option could consists in using production objectives as the demand.
In this case, re-qualification decisions optimized in terms of utilization bal-
ance and total utilization rate simultaneously maximize the throughput and
optimize the satisfaction of production objectives. This is simpler than solv-
ing multiobjective optimization problems but this does not consider the “real”
WIP in work centers, which could be a problem for short horizons. The cycle
time computed by using Chapter 5 may also no longer be representative of
the real cycle time. In the current version of FlexQual, considering production
objectives as the demand is possible through the configuration file.

6. Another interesting study would be to integrate a notion of feasibility of the
qualification with respect to equipment performance. In Ion Implantation for
example, throughput and stability of the process decrease with time and op-
erations may get disqualified because too unstable. Re-qualifying these oper-
ations is not a good option.
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Chapter 8

Conclusions and perspectives

This thesis dealt with qualification management in manufacturing operations,
both at tactical and operational decision levels and in particular for HMLV wafer
fabs, and followed two previous theses on qualification management (Johnzén,
2009; Rowshannahad, 2015). The thesis aimed at providing new optimization
models and efficient and effective solution approaches to answer the following two
questions: (1) “How to determine the most relevant re-qualifications to improve
operational efficiency?” and (2) “How to determine the most relevant new qualifi-
cations to satisfy the demand and cover the demand uncertainty while minimizing
qualification costs?”. Our contributions and main findings are highlighted in Sec-
tion 8.1, and relevant perspectives on our work are outlined in Section 8.2.

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
8.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
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8.1 Conclusions

8.1.1 How to determine the most relevant re-qualifications to
improve operational efficiency?

In Chapters 2, 3, 4, and 5, we answered the question: “How to determine the most
relevant re-qualifications to improve operational efficiency?”

In terms of utilization balance and total utilization of the machines. In Chapter
2, most relevant re-qualifications are determined to maximize the utilization
balance and minimize the total utilization rate of the machines. New effective and
efficient solution approaches were proposed. In particular, dual prices are used to
derive heuristics that are quickly guided towards good solutions, i.e an effective
set of re-qualifications. Numerical results on industrial data of two different work
centers and two different qualification configurations from a 300 mm wafer fab
showed that using dual prices is particularly relevant. From a general standpoint,
we recommend studying the nature of the data, as it is primordial to design
efficient and effective solution approaches. Solution approaches are embedded in
the fully functional decision support system presented in Chapter 7. Most relevant
re-qualifications are proposed to work center managers twenty minutes before shift
changes.

In terms of throughput. In Chapter 3, the utilization balancing approach of Chap-
ter 2 is extended to a bilevel optimization approach to better consider dispatching
rules, which have a significant effect on the relevance of re-qualifications, to better
model disqualification decisions, and to better consider the throughput as optimiza-
tion criterion. To the best of our knowledge, there is no contribution in the literature
that proposes to model disqualification decisions, whereas it is a fundamental as-
pect of operational qualification management. Numerical results showed that the
bilevel optimization approach can be used to determine relevant disqualification de-
cisions in terms of throughput. On short horizons, the bilevel optimization approach
leads to better solutions in terms of throughput than the utilization balancing ap-
proach. On larger horizons of several days to a few weeks, the utilization balancing
approach and the bilevel optimization approach lead to similar re-qualification deci-
sions. Bilevel optimization approaches are embedded in the fully functional decision
support system presented in Chapter 7.

In Chapter 4, the bilevel optimization approach is extended to a dynamic bilevel
optimization approach, where dynamic means that demand and production capac-
ities vary over time due to production variability. Numerical results on industrial
data from a 300 mm wafer fab showed that, when qualification decisions are
subject to lead times or induce maintenance operations, the dynamic approach is
more relevant than the (static) bilevel optimization approach presented in Chapter
3 to determine relevant qualification decisions. In other words, re-qualification
decisions determined with a dynamic bilevel optimization approach is likely to lead
to a larger throughput in practice than re-qualification decisions determined with a
static bilevel optimization approach. The dynamic bilevel optimization approach is
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embedded in the fully functional decision support system presented in Chapter 7.

In terms of mean cycle time. In Chapters 2, 3, and 4, the optimization criterion
is either the utilization balance and the total utilization rate or the throughput. In
Chapter 5, the effect of re-qualification decisions on the mean cycle time on the
short term is studied. It is first argued that closed-form solutions describing the
mean cycle time are available at an operational level for work centers. Second,
the relevance and the limits of closed-form solutions are shown for different
work centers on industrial data from a 300 mm wafer fab. Then, the impact of
re-qualification decisions on short-term cycle times is highlighted. In particular, we
show that it is possible for two qualification decisions to lead to the same gain on
the throughput but different gains on the mean cycle time. In addition, it is shown
that most qualification decisions are irrelevant to minimize the cycle time, but that
relevant qualification decisions can significantly minimize the mean cycle time.
Closed-form solutions for the short-term mean cycle time are embedded in the fully
functional decision support system presented in Chapter 7.

Decision support system. Chapter 7 presented a fully functional decision support
system developed for operational qualification management in a 300 mm wafer
fab of STMicroelectronics. The decision support system embeds all theoretical
development performed throughout the thesis. A configuration file manages the use
of the most relevant mathematical models and solution approaches depending on
the horizon and the considered work center. The decision support system usually
proposes re-qualification plans optimized in terms of utilization balance and total
utilization rate of the machines or throughput by using the solution approaches
developed in Chapter 2. Although re-qualification plans are determined for a
specific criterion, the decision support system reports many relevant indicators to
work center managers.

Take away message. In Chapters 2, 3, 4 and 5, the computational study highlights
that there are frequently only a handful of re-qualifications and disqualifications
that can significantly improve a given criterion. Because semiconductor production
facilities are complex, unbalanced, unsymmetrical and time-varying systems,
advanced methods are required to identify those relevant re-qualifications and dis-
qualifications. This is what optimization models and solution approaches proposed
and validated in Chapters 2, 3, 4 and 5 can be used for and are currently being
used at STMicroelectronics in the decision support system presented in Chapter 7.

8.1.2 How to determine the most relevant new qualifications
to satisfy the demand and cover the demand uncertainty
while minimizing qualification costs?

In Chapter 6, we answered the question: “How to determine the most relevant
new qualifications to satisfy the demand and cover the demand uncertainty while
minimizing qualification costs?”
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Optimizing the set of new qualifications to perform is critical because the
qualification configuration of a work center is the underlying structure enabling a
work center to have a great operational efficiency in terms of utilization balance,
throughput and cycle time. To determine a cost effective set of qualifications that
satisfy the demand and respect production capacities of machines, a new mixed
integer linear programming mathematical model is proposed when the demand
is deterministic and the qualification delays are considered. As the demand by
product is subject to uncertainty, a robust reformulation is proposed to cover the
uncertainty based on the concept of budget of uncertainty. In addition, a new
decision-dependent uncertainty model is proposed to characterize the robustness
of a set of qualifications, therefore the robustness of a work center, against demand
uncertainty. A binary search is proposed to compute the robustness of a set of
qualifications because the decision-dependent uncertainty program is NP-Complete.
In a computational study on industrial data from a 300 mm wafer fab, the price
of uncertainty is shown to be small. The set of qualifications determined by only
considering the nominal demand is shown to lead to capacity constraint violations.
Covering the uncertainty on the demand uncertainty is critical as being robust is
actually affordable.

Take away message: To satisfy the demand by product and cover its uncertainty,
there is no need to conduct many qualifications. Similarly to re-qualifications, only
relevant new qualifications are mandatory. As the qualification process may take
several weeks or months, it is also critical to anticipate the right new qualifica-
tions. As it is complex to identify because semiconductor production facilities are
complex, unbalanced, unsymmetrical and time-varying systems, the optimization
models proposed and validated in Chapter 6 can be used.

8.2 Perspectives

Section 8.2.1, resp. Section 8.2.2, outlines relevant perspectives to further improve
operational qualification management, resp. tactical qualification management. Fi-
nally in Section 8.2.3, perspectives on the decision support system are outlined.

8.2.1 Further improving operational qualification management

8.2.1.1 Improving the utilization balancing approach

A utilization balancing approach is proposed to determine re-qualifications in Chap-
ter 2. However, the utilization balancing approach can be extended, and several
research avenues are proposed below:

1. Some parameters might be subject to uncertainty, such as operation quantities
and machines capacities, and designing robust qualification plans should be
interesting. A first idea to investigate is how the robust optimization approach
proposed in Chapter 6 for tactical qualification management can be extended
for operational qualification management.
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2. Workload variables are continuous but, in practice, some machines run oper-
ation quantities by batches. Hence, the consideration of batching constraints
could be explored as in Rowshannahad and Dauzère-Pérès (2013).

3. An outer linearization algorithm is used to solve nonlinear programs. Other
algorithms, such as active-set methods or sequential quadratic methods (Row-
shannahad et al., 2015) could be compared to the outer linearization algo-
rithm to further reduce computational times.

4. Solution approaches could be compared on data from other factories to further
validate the relevance of the dual variable solution approaches.

5. It would be relevant to study the robustness of the solution approaches, e.g.
under which conditions using dual prices does not provide good solutions.

6. Additional branching and exploring strategies could be explored for the
Branch-and-Bound solution approach.

7. It would be interesting to better understand the impact of different γ settings
on solution quality and computing time.

8.2.1.2 Improving the bilevel optimization approaches

Several research avenues to extend the bilevel optimization approaches are dis-
cussed below:

1. Some parameters used in the bilevel optimization models might be subject
to uncertainty, e.g. the demand by operation and the production capacity by
machine. From the work center managers’ point of view, dispatching decisions
can also be subject to uncertainty. Determining robust re-qualification and
disqualification plans can be relevant.

2. In the computational studies, we limited ourselves to the case where k = 1.
Hence, it seems relevant to design efficient and effective solution approaches
that quickly determine re-qualification and disqualification plans for k > 1.
Note that, in the decision support system presented in Chapter 7 and although
no thorough computational study was performed to evaluate their efficiency,
constructive greedy heuristics are used to solve the bilevel optimization mod-
els. More precisely, to avoid evaluating every re-qualification and disqualifica-
tion at each iteration of the greedy heuristic, pre-processing rules are used. For
instance, pre-processing rules are based on the values of the dual variables of
the qualification constraints for re-qualification. Pre-processing rules are also
based on the fact that potential effective re-qualifications to perform (at least
for some work centers) are the re-qualifications that consider re-qualifying
operations for underloaded machines, i.e. for machines such that Um < 1,
or re-qualifying operations that can be processed much faster on disqualified
machines than on currently qualified machines.

3. It would be also interesting to better understand the impact of different γ
settings on re-qualification decisions and computing time.
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4. Studying the multi-objective aspect of short-term qualification and disqualifi-
cation management would be interesting to explore.

5. It is relevant to consider batch size constraints in the bilevel optimization mod-
els when wafers are processed by batch (Rowshannahad and Dauzère-Pérès,
2013).

6. As already discussed, there may be multiple solutions to the lower-level opti-
mization problem, and some solutions may lead to a better throughput than
others, because the proposed bilevel formulations are neither optimistic or
pessimistic. Studying this is left for future research, e.g. by giving bounds on
the throughput to production personnel. For instance Fischetti et al. (2018)
propose a refinement procedure that can be used to obtain an optimistic solu-
tion from the lower-level.

7. New methods to simulate the throughput or dispatching decisions could be
proposed to be closer to the behavior of the actual dispatching decisions,
e.g. by including batching constraints when relevant (Rowshannahad and
Dauzère-Pérès, 2013) or machine learning techniques.

8. Numerical results showed that the single-period optimization model often pro-
poses the same re-qualifications as the multi-period optimization model on
industrial data. It would be interesting to automatically identify when this
is the case, to save significant computational times when searching for re-
qualifications.

8.2.1.3 Improving cycle time management

At the operational decision level for a work center, cycle time management is pos-
sible because we showed in Chapter 5 that it is possible to evaluate re-qualification
decisions with a simple and relevant formula for the mean WIP.

It would be relevant to study the effect of machine qualifications, e.g. the effect
of variability of machine qualifications, in G/G/m queues. This would, for instance,
help to support better decisions at tactical decision levels when new qualifications
are determined. Nevertheless, considering machine qualifications in queuing theory
is complex. This is because not only the number of qualifications matters but the
qualifications themselves are also critical. Two qualification matrices could have the
same number of qualifications by machines and the same number of qualifications
by operation, but they would probably lead to different cycle times as illustrated in
the numerical results. Instead of trying to directly estimate the new cycle time with
qualifications, a solution could consists in determining and exploiting upper bounds
on the cycle time. For instance, it is known that the mean cycle time of G/G/m
queues is bounded by the mean cycle time of m-G/G/1 queues working in parallel.
Exploiting this bound could provide valuable insights to capacity planners to de-
cide the qualifications that should be added to a machine to reduce the mean cycle
time. Knowing the exact value of the mean cycle time is not mandatory to make
relevant decisions (see Section 5.1.1). Other bounds may be available. Recently,
bounds on the mean cycle time were proposed based on robust optimization (Bandi
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et al., 2015; Bertsimas et al., 2018; Whitt and You, 2019). New bounds could also
be derived using machine learning techniques and historical data. Consistent qual-
ification decisions between work centers should also be studied. A local decision
at a work center may not be ultimately relevant if all work centers were simulta-
neously considered. For instance, if a re-qualification decision is made to optimize
the throughput at an upstream work center such that a downstream work center
is unable to absorb the additional workload. In this case, another re-qualification
decision, which may improve less the throughput, would be more relevant. Mul-
tiple objectives could also be considered. A re-qualification decision may decrease
the mean cycle time of a particular layer at the work center. Nevertheless, the same
re-qualification decision may also increase the mean cycle time of another layer.

8.2.1.4 Considering all work centers simultaneously

Another interesting perspective would be to simultaneously consider all work cen-
ters in the solution approaches. Although local qualification decisions are rele-
vant to optimize some local aspects of manufacturing performances, in particular
the throughput or cycle time of the work center, local qualification decisions may
not consider other crucial aspects. For instance, improving the throughput of non-
bottleneck work centers can be useful to better feed bottlenecks work centers but,
from a flow management perspective, one re-qualification might be better than an-
other. For instance, machines that mainly process a specific layer might be over-
loaded, whereas machines that mainly process another layer might be underloaded.
Therefore, a re-qualification decision that improves the throughput of the under-
loaded machines is probably better.

8.2.1.5 Short-sighted aspect of dispatching decisions

In this thesis, we considered one of the short-sighted aspects of dispatching deci-
sions. Namely, we were interested in the way operations compete for the capacity
of a given machine. This was modeled as bilevel optimization models. Nevertheless,
capacity allocation might be optimistic for the bilevel optimization models and opti-
mization models presented in Chapter 6. Capacity might be allocated to the fastest
machine in priority. In other words, the utilization rates of the machines might be
underestimated. This other short-sighted aspect of dispatching decisions could be
also be considered. Proposals are provided in Appendix G.

8.2.1.6 Endogenous demand

In the thesis, the demand by operation is assumed to be exogenous in the chap-
ters dedicated to operational qualification management. In practice, due to the
re-entrant product flows, the demand by operation is endogenous. In other words,
qualification and disqualification decisions have a effect on the demand by opera-
tion. Modeling the fact that the demand by operation is endogenous could lead to
more effective qualification decisions on manufacturing performances. Two options
could be considered. A first option consists in an iterative solution procedure be-
tween projections and qualification decisions. More precisely, a projection of the
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demand by operation is first determined, then qualification decisions are optimized.
Then, a new projection of the demand by operation is determined given the new
qualification decisions, and so on. A second option to model an endogenous de-
mand would be to assume that the demand by operation is uncertain.

8.2.2 Further improving tactical qualification management

In Section 8.2.2.1, perspectives related to the tactical decision level are discussed.
In particular, we believe it would be relevant to better model production variabil-
ity, which may induce an (too) optimistic satisfaction of production capacities. In
Section 8.2.2.2, it is argued that investigating qualification management problems
at the strategic level, at the supply chain level, by following the work of Liao et al.
(2017) is a prominent research avenue.

8.2.2.1 Improving tactical qualification management

We believe the following perspectives are worth investigating in the future for tac-
tical qualification management:

1. Other parameters than demand can also be subject to uncertainty, e.g. pro-
duction capacities, throughput rates of operations on machines, qualification
costs and lead times. Studying the relevance and effect of uncertainty on these
parameters can be valuable.

2. Considering qualification available times due to disqualifications could be in-
teresting to further distinguish best new qualifications.

3. A large number of qualifications can be difficult to maintain at an operational
level. Including disqualification decisions, e.g. constraining the number of
qualifications by machines or constraining the total number of qualifications
in each period, could be relevant.

4. Extending the static robust reformulation to adjustable robust reformulations
may be valuable to further reduce qualification costs.

5. For work centers with a large number of operations and machines, efficient
solution approaches can be valuable. An option consists in using a cutting-
plane solution approach with lazy constraints as proposed by Bertsimas et al.
(2016). This might be a viable approach as the computational time required
to solve MCQCP is small.

6. As there may exist several sets of robust qualifications in terms of number
of qualifications given an immunization level, it would be interesting to use
additional objective functions to select the most robust set of qualifications.
This would lead to considering a multi-objective optimization approach.

7. Other solution approaches for MRBQP can be considered. Iterated max-min
approaches are probably relevant not to restrict to the same value of θ for all
products and periods.
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8. Studying the effect of different qualification cost profiles by machine or of time
dependent qualification decisions on the price of uncertainty can be interest-
ing.

9. As the ability of qualifications to cover demand uncertainty strongly depends
on the machines in the work center (Hopp and Spearman, 2011), considering
the investment decisions in terms of machines could also be investigated.

10. Capacity allocation tends to be optimistic. For a given operation, the workload
is allocated to the fastest machines in priority to satisfy capacity constraints.
Nevertheless, because dispatching decisions are highly automated and due
to production variability in semiconductor factories, it is unlikely that opera-
tional decisions will exactly match capacity allocation decisions. Machines can
ultimately have larger workload and utilization rates than expected, because
all operation quantities will not necessarily be allocated to fastest machines.
This difference should be considered as it may lead to capacity constraint vio-
lations (see Appendix G for more details).

8.2.2.2 From tactical to strategic qualification management

Strategic qualification management is also a prominent research avenue to reduce
production costs. Strategic qualification management seeks to determine the most
relevant set of wafer fabs to qualify for each product or technology. The number
of wafer fabs to qualify should be minimized, in particular for new products, as
developing qualifications is expensive. To the best of our knowledge, Liao et al.
(2017) are the only authors who deal with strategic qualification management in
semiconductor manufacturing. We believe that our work on tactical qualification
management in Chapter 6 can be extended for strategic qualification management.
For instance, machines can be replaced by wafer fabs, and production capacities of
machines by production capacities of wafer fabs. Therefore, the deterministic and
robust optimization models proposed in Chapter 6 should still be valid for strategic
qualification management. The optimization model characterizing the robustness of
a qualification configuration should also be valid, and could be used to characterize
the robustness of the company to cover demand uncertainty. Nevertheless, to better
suit strategic decisions, our work on tactical qualification management probably
requires to be extended by including additional features such as outsourcing costs,
production costs, profits and yields.

This work is not limited to the semiconductor industry, and can be extended to
any industry that has to deal with similar process flexibility issues.

8.2.3 Industrial perspectives

The decision support system can be improved. With small changes, it could be used
by other wafer fabs. The decision support system could also benefit from new de-
velopments by modeling specific features of specific work centers. Other relevant
reports could be imagined, such as the reporting of critical qualifications. Critical
qualifications could correspond to the qualifications that lead to a large decrease
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of the utilization balance if they are lost. Critical qualifications could also be the
smallest set of qualifications that need to be maintained to keep the same utiliza-
tion balance and total utilization rate of the machines than with the initial set of
qualifications. This could encourage work centers to quickly re-qualify critical qual-
ifications if they are lost. Further studying the effect of currently down machines on
manufacturing performances could be extremely relevant for work center managers
to better prioritize and plan maintenance operations.
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Appendix A

Appendix of Chapter 2

A.1 NP-Hardness of the multi-qualification problem

Johnzén (2009) shows that optimizing the “WIP” flexibility measure is a strongly
NP-Hard problem by reduction from the 3-partition problem (Garey and Johnson,
1979). The proof is based on the proof in Aubry et al. (2008) for the Minimum Cost
Load Balanced Configuration Problem (MCLBCP). Optimizing the “WIP” flexibility
measure is a special case of the problem considered in this paper, even when tpr,m =
tp ∀r, ∀m, and cm = 1 ∀m. Let us recall the proof in Johnzén (2009) for the sake of
completeness.

The “WIP” flexibility measure optimization problem, referred as the flexibility
problem hereafter, is shown to have the same complexity as the 3-partition prob-
lem, which is NP-complete in the strong sense (Garey and Johnson, 1979). The
3-partition problem can be stated as follows: Consider a set S of 3M integers
s1, s2, ..., s3M larger than or equal to one, and a positive integer B such that B4 < sr <

B
2

∀r ∈ [1,3M]. The question is “Is it possible to partition S into M disjoints sets
SS1,SS2, ...,SSM such that

∑
s|sr∈SSm sr = B ∀m ∈ [1,M]?

The 3-partition problem can be transformed into a special case of the flexibility
problem where tpr,m = tp ∀r, ∀m, and cm = 1 ∀m. The 3M elements sr are defined
as 3M products where the demand dr of operation r is equal to sr , ∀r ∈ [1,3M]. The
M disjoint sets corresponds to the M different machines. As the M sets are disjoint,
the M different machines are disjoint, i.e. demand dr of operation r can also be
assigned to only one machine. With M machines and 3M operations, the number
of necessary re-qualifications k is equal to 3M. The “WIP” flexibility measure, FWIP ,
is equal to one if the machines process the same quantities (see Johnzén 2009).
The question for the flexibility problem can be stated as follows: “It is possible to
determine a qualification matrix with 3M re-qualifications such that machines have
the same workload B, i.e. such that FWIP = 1?”

Identification of the flexibility problem with the 3-partition problem.
The qualification matrix is built from the 3-partition problem as follows: qr,m = 1

if sr ∈ SSm ∀(r,m) ∈ [1,3M]× [1,M]. Because B
4 < sr <

B
2 ∀r ∈ [1,3M], there are three

elements in a disjoint set. Each machine m ∈ [1,M] then processes the following
products quantities:

Um =
3M∑
r=1

drqr,m =
∑

r |sr∈SSm

dr =
∑

r |sr∈SSm

sr = B

Therefore, if the 3-partition problem has an affirmative answer, then the flexibil-
ity problem has an affirmative answer.
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Identification of the 3-partition problem with the flexibility problem.
It is assumed that the qualification matrix has 3M qualifications. Furthermore,

exactly one machine is qualified for each operation. This ensures that the demand
for an operation is entirely allocated to a single machine. It is also assumed that the
quantities by operation can be perfectly balanced on the machines, then we have
Um = B ∀m ∈ [1,M].

The disjoint sets SSm ∀m ∈ [1,M] contain the elements sr such that qr,m = 1.
Each set has three elements. For each disjoint set SSm, it follows that:

∑
r |sr∈SSm

sr =
∑

r |sr∈SSm

dr =
3M∑
r=1

drqr,m =Um = B (A.1)

To conclude, if it is possible to balance the quantities by operation on M ma-
chines such that FWIP = 1, then it is possible to partition the set S into M disjoint
sets such that

∑
r |sr∈Sm dr = B.

A.2 Work center A

Table A.1, resp. A.4, shows the numerical results for work center A and the first,
resp. second, qualification configuration for a run time of 30 seconds, while Ta-
bles A.2 and A.5 show the numerical results for a run time of 180 seconds. Table
A.3, resp. A.6, provides details on the Branch and Bound algorithm for the first,
resp. second, qualification configuration, such as the initial relaxation gap at the
root node, the final relaxation gap when the algorithm stops, the total number of
explored nodes and the number of instances where the optimal solution is found.

A.2.1 First qualification configuration

First, note that all solution approaches determine satisfactory re-qualification plans.
However, some solution approaches are more efficient than others. B&B is very
efficient at determining excellent re-qualification plans. In less than 30 seconds,
B&B determines an optimal solution for 87.5% of the instances. In less than 180
seconds, B&B determines an optimal solution for 93.75% of the instances (see Table
A.3). For a computational time limit of 30 seconds, it outperforms all other solution
approaches. Even for k = 40 or k = 100, B&B does not reach the computational time
limit on average. The dominance of B&B is confirmed for a computational time limit
of 180 seconds. For k = 40, the mean gain of 10.6% for a computational time limit
of 30 seconds only increases to 10.7% for a computational time limit of 180 seconds.
Similarly, for k = 100, the mean gain is not significantly improved but B&B is able to
prove that the best solution found is numerically optimal by reducing the mean final
relaxation gap and by pruning more nodes (see Table A.3). On average, a limited
number of nodes is explored before finding an optimal solution. For k = 1, the mean
number of explored nodes is equal to 0.3 for both computational time limits. For
k = 2, the mean number of explored nodes is equal to 0.6. In other words, branching
is not required for some studied instances because the continuous relaxation at
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the root node determines binary values for the re-qualification variables OQr,m, or
because IGH provides an optimal solution. For k = 100, fewer nodes are explored by
B&B than when k = 40, which can be counter intuitive because more combinations
should be tested. However, as the number of re-qualifications increases, almost all
relevant re-qualification decisions are already binary in the continuous relaxation at
the root node (due to the nature of data), and thus considered in the initial feasible
re-qualification plan determined by IGH. Hence, the required branching effort is
reduced because the resulting number of “choices” is smaller. Similarly, almost
all relevant re-qualifications are determined by using the k largest dual variables.
Therefore, on industrial data, as soon as k exceeds a few re-qualifications, even if
the optimization problem is NP-Hard, the theoretical combinatorial aspect of the
problem fades.

GH GHDP LS LSDP IGH B&B

k Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s)

1 2.7 4.2 2.7 1.7 2.7 7.9 2.7 3.0 2.1 0.2 2.7 0.5
2 4.1 8.1 4.1 3.0 4.1 18.5 4.1 5.6 3.4 0.2 4.1 1.0
3 5.1 12.5 5.1 4.3 5.1 25.5 5.1 8.4 4.5 0.2 5.1 1.9
4 5.9 17.9 5.9 5.7 5.9 29.5 5.9 11.5 5.1 0.3 5.9 2.2
5 6.5 21.4 6.5 7.0 6.5 31.5 6.6 15.0 5.7 0.2 6.6 3.8
6 6.9 25.4 7.0 8.7 6.9 31.9 7.1 18.5 6.0 0.2 7.1 4.1
7 7.1 27.9 7.4 9.9 7.2 31.6 7.5 20.9 6.3 0.2 7.5 5.7
8 7.3 30.0 7.8 11.2 7.4 31.6 7.8 24.6 6.7 0.2 7.8 5.6
40 7.5 31.7 9.7 30.4 7.6 31.7 9.7 30.3 9.6 0.2 9.9 24.3

100 7.6 31.8 9.7 30.4 7.7 31.9 9.7 30.3 10.6 0.2 10.6 17.5

Table A.1: Mean gain (%) and CPU (s) over all instances for work center A for the
first qualification configuration and a run time of 30 seconds by solution approach.

GH GHDP LS LSDP IGH B&B

k Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s)

1 2.7 4.1 2.7 1.7 2.7 7.9 2.7 3.1 2.1 0.2 2.7 0.5
2 4.1 7.9 4.1 2.8 4.1 17.7 4.1 5.6 3.4 0.2 4.1 1.0
3 5.1 12.2 5.1 4.2 5.1 30.0 5.1 8.4 4.5 0.2 5.1 1.8
4 5.9 19.0 5.9 5.6 5.9 45.1 5.9 11.5 5.1 0.2 5.9 2.2
5 6.5 22.8 6.5 7.0 6.6 62.2 6.6 14.9 5.7 0.2 6.6 3.8
6 7.1 29.6 7.0 8.5 7.1 76.9 7.1 18.5 6.0 0.3 7.1 4.2
7 7.5 35.6 7.4 9.9 7.5 92.7 7.5 21.0 6.3 0.3 7.5 5.6
8 7.8 43.8 7.8 11.2 7.8 105.8 7.8 25.0 6.7 0.2 7.8 7.5
40 9.8 173.6 10.4 55.1 10.0 181.7 10.4 145.3 9.6 0.2 10.0 107.0

100 10.0 181.7 10.8 126.8 10.1 181.7 10.8 168.8 10.6 0.2 10.7 56.4

Table A.2: Mean gain (%) and CPU (s) over all instances for work center A for the
first qualification configuration and a run time of 180 seconds by solution approach.

IGH determines satisfactory re-qualification plans for a nearly instantaneous re-
sult. The mean computational time of IGH does not exceed 0.3 seconds. However, it
should be noted that IGH does not necessarily determine the optimal re-qualification
plan, in particular for k = 1. This may be due to the fact that dual variables are only
indicative. They do not necessarily guarantee that the marginal rate can be fully
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30 seconds 180 seconds

Number Number Number Number
Initial Final Explored optimal Initial Final Explored optimal

k Gap Gap Nodes instances Gap Gap Nodes instances

1 0.60% 0.02% 0.3 24 0.60% 0.02% 0.3 24
2 0.89% 0.06% 0.9 24 0.89% 0.06% 0.9 24
3 0.76% 0.05% 2.7 24 0.76% 0.05% 2.7 24
4 0.92% 0.04% 3.2 24 0.92% 0.04% 3.2 24
5 0.99% 0.04% 5.8 24 0.99% 0.04% 5.8 24
6 1.22% 0.02% 6.6 24 1.22% 0.02% 6.6 24
7 1.30% 0.01% 10.7 24 1.30% 0.01% 10.7 24
8 1.26% 0.03% 12.3 23 1.26% 0.01% 13.5 24
40 0.96% 0.64% 78.7 7 0.96% 0.48% 349.7 13

100 0.20% 0.15% 56.6 12 0.20% 0.10% 184.2 20

Table A.3: Details of the Branch and Bound solution approach for work center A
and the first qualification configuration.

reached. In this problem, it is also possible that several dual variables have the
same value but, in practice, does not lead to the same gain on the utilization bal-
ance of the machines.

GHDP and GH also determine satisfactory re-qualification plans. For a compu-
tational time limit of 30 seconds, the mean GHDP performs better on average than
GH from k = 6. The mean gain with GH is equal to 6.9% whereas the mean gain
with GHDP is equal to 7.0%. The larger k, the larger the difference between GHDP
and GH. This is due to the fact that, although the mean run time of GH is equal to
26.3 seconds, on several instances GH cannot find a complete re-qualification plan
because it reaches the computational time limit. This is confirmed by experiments
for k = 7 and k = 8. This shows that, for a small computational time limit, using dual
variables is valuable. For a computational time limit of 180 seconds, GH actually
performs slightly better on average than GHDP for k = 6 and k = 7. For instance, for
k = 7, the mean gain of the re-qualification plan determined b GH is 7.5% whereas
the gain of the re-qualification plan determined by GHDP is 7.4%. This is because
the dual variables are only indicative of the marginal increase in the objective func-
tion. However, when k = 40 or k = 100, GHDP determines better re-qualification
plans than GH because GH reaches the computational time limit.

When the computational time limit is 180 seconds, GHDP determines re-
qualification plans that are at least as good as B&B (see Table A.2). For k = 40 and
k = 100, GHDP performs better than B&B because B&B only finds optimal solutions
for a few instances. For k = 40, the mean gain with GHDP is equal to 10.4%,
whereas the mean gain with B&B is equal to 10.0%. When the computational time
limit is 30 seconds, for k = 40 and k = 100, GHDP performs poorly compared to
B&B because the computational time limit of 30 seconds is reached for all instances
and the algorithm does not have enough time to find a complete re-qualification
plan. For instance, when k = 40 or k = 100, the mean gain with GHDP is equal to
9.7% whereas the mean gain with B&B is equal to 9.9%. The benefit of the local
search is very limited for a substantial increase in the computational time. On
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average, LSDP only slightly improves (at most by 0.1%) the mean gain determined
by GHDP.

Numerical results show that B&B outperforms all other solution approaches both
in terms of solution quality and computational time, and should be run for this work
center and the first qualification configuration. This also shows that using empirical
observations and dual variables, which are part of the B&B solution approach, is
relevant for this work center. Numerical results show that including dual variables
to guide solution approaches is relevant, otherwise the search space at each iteration
of GH and LS is too large for short computational time limits. Finally, we can observe
that GHDP is often close to the optimal solution and can challenge B&B when the
computational time limit is 180 seconds.

A.2.1.0.1 Second qualification configuration

From a general perspective, only GHDP and LSDP determine satisfactory re-
qualification plans. The use of dual variables is relevant. Contrary to all other
solution approaches (except IGH), restricting the search space to the Ndual best
dual variables at each iteration of GHDP and LSDP “immunizes” both solution
approaches against the increase in the number of qualifiable operations on each
machine. GH and LS are very inefficient and never complete the first iteration of
GH, because there are thousands of re-qualifications to evaluate. Therefore, the
search of re-qualification plans for the second qualification configuration shows
that the use of dual variables is particularly relevant to determine re-qualification
plans. Contrary to the first qualification configuration, LSDP is relevant here and
leads to an interesting increase in the utilization balance of the machines. For
instance, for k = 2, LSDP increases the utilization balance of the machines by 1.2%
with respect to GHDP. For k = 3, the increase is 1%.

GH GHDP LSDP IGH B&B

k Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s)

1 12.0 32.3 15.4 1.7 15.4 3.2 13.7 0.2 15.4 1.8
2 - - 23.5 2.9 24.7 6.1 15.3 0.3 25.1 6.8
3 - - 30.7 4.3 31.7 9.4 16.1 0.2 31.3 17.1
4 - - 35.3 5.8 36.3 14.4 16.4 0.2 29.1 26.9
5 - - 38.9 7.2 40.2 17.7 17.4 0.3 17.4 30.4
6 - - 42.2 8.8 43.2 21.4 18.8 0.3 21.6 28.3
7 - - 44.5 10.0 46.1 24.8 19.9 0.2 19.9 30.4
8 - - 46.7 11.4 48.6 27.8 20.2 0.2 20.2 30.4

40 - - 57.7 30.6 57.7 30.7 43.1 0.3 43.1 30.4
100 - - 57.7 30.6 57.7 30.7 53.0 0.4 53.0 30.4

Table A.4: Mean gain (%) and CPU (s) over all instances for work center A for
the second qualification configuration and a run time of 30 seconds by solution
approach.

When k = 1, GH determines a re-qualification plan that is close in terms of qual-
ity to the qualification plan determined by GHDP. However, such a quality in the
qualification plans is almost by “chance” because the computational time limit of
30 or 180 seconds is always reached (see Tables A.4 and A.5) and good solution
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GH GHDP LSDP IGH B&B

k Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s) Gain (%) CPU (s)

1 15.0 182.7 15.4 1.7 15.4 3.0 13.7 0.2 15.4 1.8
2 - - 23.5 2.9 24.7 6.1 15.3 0.3 25.1 6.9
3 - - 30.7 4.4 31.7 9.4 16.1 0.2 32.1 19.8
4 - - 35.3 5.9 36.3 14.1 16.4 0.2 35.2 67.9
5 - - 38.9 7.1 40.2 17.6 17.4 0.2 31.7 154.8
6 - - 42.2 8.5 43.2 21.4 18.8 0.3 24.7 158.9
7 - - 44.5 10.0 46.1 25.3 19.9 0.2 20.9 174.6
8 - - 46.7 11.4 48.6 30.8 20.2 0.3 20.2 180.5

40 - - 60.4 55.8 61.0 178.8 43.1 0.3 43.1 180.4
100 - - 62.4 138.5 62.4 180.8 53.0 0.3 53.3 176.2

Table A.5: Mean gain (%) and CPU (s) over all instances for work center A for
the second qualification configuration and a run time of 180 seconds by solution
approach.

30 seconds 180 seconds

Number Number Number Number
Initial Final Explored optimal Initial Final Explored optimal

k Gap Gap Nodes instances Gap Gap Nodes instances

1 2.04% 0.19% 1.8 24 2.04% 0.19% 1.8 24
2 13.78% 0.20% 10.0 24 13.78% 0.20% 10.0 24
3 25.15% 1.63% 32.1 20 25.15% 0.22% 32.5 24
4 35.62% 14.76% 72.5 6 35.62% 4.20% 153.3 21
5 44.27% 44.27% 98.7 0 44.27% 17.62% 422.8 7
6 51.13% 46.28% 91.7 3 51.13% 38.51% 517.3 4
7 57.49% 57.49% 98.6 0 57.49% 55.79% 577.6 1
8 64.39% 64.39% 98.9 0 64.39% 64.39% 597.0 0

40 60.79% 60.79% 98.6 0 60.79% 60.79% 596.8 0
100 32.32% 32.32% 98.7 0 32.32% 31.77% 582.2 1

Table A.6: Details of the branch and bound solution approach for work center A and
the second qualification configuration.

are among the first ones tested. Note that the computational time limit is always
reached as soon as k = 1, only numerical results for k = 1 and GH is presented
because numerical results would be identical for larger values of k and LS.

Contrary to the first qualification configuration, B&B does not outperform all
other solution approaches and perform poorly on a large number of experiments.
For a computational time limit of 30 seconds, B&B is only relevant when k ≤ 2 and
quickly determines optimal solutions for all instances (see Table A.6). For a compu-
tational time limit of 180 seconds, B&B provides optimal solutions for all instances
when k ≤ 3 (see Table A.6). However, as the number of re-qualifications to make
increases, B&B quickly becomes irrelevant. For instance, when the computational
time limit is 30 seconds, B&B cannot determine any optimal solution for k = 7,
k = 8, k = 40 and k = 100. Similar observations can be made when the computa-
tional time limit is 180 seconds. Moreover, re-qualification plans determined by the
Branch and Bound approach are not close to sub-optimal solutions, e.g. when the
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final relaxation gap would be lower than 0.5%. When the computational time limit
is 30 seconds, from k = 4, the mean final gap is larger than 14.76% and reaches
64.36% for k = 8. By increasing the computational time limit to 180 seconds, the
mean final gap slightly decreases (e.g. for k = 4, 5, 6 or 7) or does not decrease at all
(e.g. for k = 8) although the number of explored nodes greatly increases compared
to the first qualification configuration. For k > 7, the number of explored nodes is
approximately equal to 100 when the computational time limit is equal to 30 sec-
onds, and is approximately equal to 600 when the computational time limit is equal
to 180 seconds.

Contrary to the first qualification configuration, the poor performance of
B&B can be explained by the fact that empirical observations that motivate B&B
do not longer hold and cause a combinatorial explosion. For instance, many
re-qualification decisions are relevant and the continuous relaxation may no longer
be strong. Many re-qualifications can be relevant to improve the utilization balance
of the machines and the qualification matrix is now dense.

Finally, although the mean run time is still very small (< 0.5 seconds), IGH is
less relevant to determine re-qualification plans in the second qualification config-
uration than in the first qualification configuration. For instance, for k = 2, GHDP
determines a re-qualification plan that improves the objective function by 23.5%,
whereas IGH improves the objective function by 15.3% on average (see Tables A.4
and A.5). For k = 3, GHDP determines a re-qualification plan that improves the ob-
jective function by 30.7%, whereas IGH improves the objective function by 16.4%
(see Tables A.4 and A.5). IGH is far from the best solution found by other solu-
tion approaches because many dual variables that rank among the best ones when
assessing the initial situation often correspond to the same operation, or the same
machine. In practice, qualifying the same operation, or the same machine, many
times is irrelevant to efficiently improve the utilization balance of the machines.

From a general perspective, the numerical results show that LSDP is the best op-
tion for work center A because it outperforms all other heuristics, even GHDP. An-
other interesting conclusion that can be drawn from these numerical experiments is
that the gain between the first and second qualification configurations are very dif-
ferent. Consider k = 1 where the optimal solution is found for all instances by B&B.
For the first qualification configuration, the mean gain is equal to 2.7% whereas it
is equal to 15.4% for the second qualification configuration. The difference is sig-
nificant. This shows that machines that cannot be qualified for some operations, i.e.
such that qr,m = 0 in the first configuration, could potentially lead to substantial im-
provements for the work center in terms of utilization balance of the machines. This
may be worth to investigate, and to check if these forbidden qualifications could ac-
tually be made, i.e. whether the associated qr,m = 0 in the first configuration could
be changed to qr,m = 2.
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B.0.1 Combining re-qualifications and disqualifications

Let us introduce another set Rov(OQ,DOQ) =Rq(q,OQ)∩Rd(q,DOQ). The com-
bined optimization can be defined as follows:

Upper-level optimization model:

max TH = f (U,WIP) (B.1)

s. t.
∑
r,m

DOQr,m ≤ k′ (B.2)∑
r,m

OQr,m ≤ k (B.3)

U,WIP ∈ argminLBP (OQ,DOQ) (B.4)
DOQr,m ∈ {0,1} ∀r,∀m (B.5)
OQr,m ∈ {0,1} ∀r,∀m (B.6)

Lower-level optimization model:

LBP (OQ,DOQ) = min
∑
m

U
γ
m (B.7)

s. t.
∑
m

WIPr,m = dr ∀r ∈ Rov(OQ,DOQ) (B.8)

Um =
∑
r

WIPr,m
tpr,mcm

∀m (B.9)

WIPr,m ≤ dr − drDOQr,m ∀r,∀m | qr,m = 1 (B.10)
WIPr,m ≤ drOQr,m ∀r,∀m | qr,m = 2 (B.11)
WIPr,m ≤ 0 ∀r,∀m | qr,m = 0 (B.12)
WIPr,m ≥ 0 ∀r,∀m (B.13)

Upper-level optimization model: The upper-level optimization model is similar
to the one presented in Sections 3.3.3 and 3.3.4. Equation (B.1) is the objective
function. Constraints (B.2) and (B.3) ensure that at most k re-qualifications and
k′ disqualifications. An identical number of re-qualifications and disqualifications,
i.e. k = k′ enables the work center managers to limit the loss of flexibility. An-
other option consists in replacing constraints (B.2) and (B.3) by a constraint en-
suring that the overall number of qualifications does not change with respect to
the initial number of qualifications. The surrogate constraint would be defined as∑
r,mDOQr,m =

∑
r,mOQr,m. Constraint (B.4) links the upper and lower decision

levels. Constraints (B.5) and (B.6) are binary constraints for disqualification and
re-qualification decisions.
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Lower-level optimization model: Similarly, the lower-level optimization model is
close to the one presented in Sections 3.3.3 and 3.3.4. Equation (B.7) is the objec-
tive function. Constraints (B.8) define the flow conservation for all operations that
have at least one qualified machine with some capacity over the planning horizon.
Constraints (B.9) compute the capacity utilization rate for each machine in the work
center. Finally, constraints (B.10)-(B.13) ensure that wafer quantities of operation
r to process can only be assigned to machine m if machine m is qualified.

B.0.2 Design of experiments

Tables B.1 and B.2 describe the industrial data. Table B.1 shows the number of
operations R and machines M by instance, and the Coefficient of Variability (CV)
for the throughput rates. The CV is defined as the standard deviation over the mean
of a data set. The CV is used to represent the industrial data for confidentiality
reasons. For a given operation r∗, the “Operation TH CV” is the CV of the throughput
rate tpr∗,m over all initially qualified and qualifiable machines. For a given machine
m∗, the “Machine TH CV” is the throughput rate tpr,m∗ over all initially qualified
and qualifiable operations. We report the mean and maximum of “Machine TH
CV” over all operations and the mean and maximum of “Operation TH CV” over all
machines for each instance. The minimum coefficient of variability is not presented
because it is always equal to zero. This is because there is always an operation
that has only one qualified machine. Table B.2 shows the industrial data on the
qualification matrix by instance and by work center. Table B.2 first presents the
qualifiable density, i.e. the total number of “2” in the qualification matrix over R×M,
and the qualified density, i.e. the total number of “1” in the qualification matrix over
R ×M. Table B.2 also presents the “Operation density CV”, i.e. the mean over all
operations of the CV representing the number of initially qualified and qualifiable
machines, and the “Machine density CV”, i.e. the mean over all operations of the
CV representing the number of initially qualified and qualifiable operations. Again,
the CV is used to represent the industrial data for confidentiality reasons.

The number of operations R varies between 500 and 700, and the number of ma-
chines M is approximately equal to 20 in both work centers. In each work center,
machines are in practice unrelated. The mean of “Operation TH CV” is approxi-
mately equal to 0.10 for both work centers. For some operations, the “Operation
TH CV” can be much larger. The maximum of “Operation TH CV” varies between
0.64 and 0.91 for work center A and varies between 0.51 and 1.32 for work center
B. In terms of qualifications, work center A and work center B are very different.
Machines in work center A are in general qualified for a large number of operations
whereas machines in work center B are more dedicated to specific operations. The
number of qualifications is therefore much smaller in work center B than in work
center A. Moreover, the qualification matrix of work center B is more complex than
the qualification matrix of work center A because the “Operation density CV” den-
sity and the “Machine density CV” are larger than for work center A. Finally, the
coefficient of variability of the demand by operation is high but relatively constant
from one instance to another. It is approximately equal to 1.2 for work center A and
1.4 for work center B.
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Tables B.1 and B.2 show real industrial data and highlight variability that can
be found in complex manufacturing systems. There is not a constant pattern in
throughput rates and qualification matrices are complex.

Table B.1: Description of industrial instances (1/2).

Work center A Work center B

Operation TH CV Machine TH CV Operation TH CV Machine TH CV

Instance R M Mean Max Mean Max R M Mean Max Mean Max

1 658 18 0.11 0.91 0.59 1.03 549 22 0.11 0.51 0.33 2.24
2 656 18 0.11 0.91 0.59 1.09 562 21 0.11 0.94 1.82 3.33
3 645 18 0.11 0.91 0.59 1.09 561 21 0.12 0.94 1.81 3.31
4 575 18 0.10 0.64 0.44 0.60 554 22 0.11 1.32 0.43 2.72
5 604 18 0.10 0.64 1.45 2.94 591 22 0.10 0.61 1.74 3.31
6 607 18 0.10 0.64 0.47 1.06 570 22 0.11 0.51 1.01 2.48
7 623 18 0.11 0.64 0.44 0.60 571 22 0.12 0.94 1.58 3.30
8 616 18 0.11 0.64 0.44 0.61 575 22 0.12 0.67 0.58 2.83
9 628 18 0.11 0.64 0.44 0.54 583 22 0.11 0.51 0.43 2.82

10 619 18 0.11 0.64 0.44 0.55 575 22 0.11 0.98 0.41 2.92
11 603 18 0.10 0.64 0.45 0.59 577 22 0.11 0.97 0.30 2.56
12 615 18 0.10 0.64 0.45 0.76 576 22 0.11 0.97 0.29 2.45
13 630 18 0.11 0.64 0.45 0.57 586 22 0.11 0.97 0.30 2.54
14 630 18 0.11 0.64 0.45 0.57 575 22 0.11 0.97 0.30 2.54
15 618 18 0.10 0.64 0.46 0.66 581 22 0.12 0.97 0.30 2.45
16 608 18 0.10 0.66 0.45 0.64 585 22 0.12 0.97 2.00 3.00
17 568 18 0.10 0.64 0.46 0.61 558 24 0.12 0.99 0.47 3.02
18 581 18 0.10 0.64 0.44 0.58 563 23 0.12 0.99 0.52 3.03
19 601 18 0.11 0.66 0.46 0.64 583 24 0.15 1.31 1.44 3.24

Table B.2: Description of industrial instances (2/2).

Work center A Work center B

Qualifiable Qualified Operation CV Machine CV Qualifiable Qualified Operation CV Machine CV
Instance density density density density density density density density

1 2.52 18.66 0.43 0.70 5.09 12.40 0.53 0.89
2 1.74 19.44 0.44 0.65 5.46 12.98 0.54 0.86
3 1.59 19.57 0.44 0.65 5.49 13.08 0.54 0.86
4 3.61 20.23 0.47 0.55 5.17 12.32 0.51 0.90
5 2.45 21.32 0.46 0.56 5.92 11.85 0.52 0.90
6 3.08 20.21 0.45 0.57 5.34 12.40 0.53 0.90
7 3.26 20.11 0.46 0.56 5.25 11.75 0.49 0.89
8 3.31 19.88 0.47 0.56 5.10 11.87 0.50 0.89
9 2.60 20.92 0.47 0.55 4.81 12.86 0.52 0.91

10 2.06 21.15 0.46 0.58 4.81 12.96 0.54 0.92
11 2.27 21.06 0.46 0.58 4.63 13.01 0.50 0.92
12 2.44 20.31 0.44 0.60 4.50 12.80 0.50 0.92
13 2.54 20.62 0.45 0.57 4.45 12.91 0.51 0.91
14 2.54 20.76 0.45 0.57 4.44 12.87 0.52 0.91
15 3.09 20.18 0.47 0.55 4.63 11.90 0.49 0.88
16 3.10 19.65 0.48 0.55 4.56 11.99 0.50 0.88
17 3.45 19.93 0.47 0.55 4.05 11.03 0.54 0.95
18 3.37 20.04 0.47 0.55 4.52 11.45 0.54 0.94
19 3.36 19.44 0.49 0.55 4.65 10.49 0.53 0.98

December 2020 EMSE-CMP Page 215





Appendix C

Appendix of Chapter 4

C.1 Multi-period bi-level optimization approach with
re-qualifications and disqualifications

Let us introduce a new binary decision variable, DOQr,m that is equal to one if there
is disqualification decisions for operation r on machinem at t = 0. In addition, let us
introduce koq as the number of re-qualifications to perform and kdoq the number of
disqualifications to perform. Recall that Rqt (Q,Ceff) = {r |

∑M

m=1|Cef ft,m >0
1(Qt,r,m) > 0}

is the set of operations with at least one qualified machine with some capacity at
period t, where 1(x) = 1 if x = 1, and 0 otherwise (see Section 4.2). Considering
disqualification decisions, the multi-period bi-level optimization approach with re-
qualifications presented in Section 4.2.3 becomes:

Upper-level optimization problem:

max
∑
r,t

THt,r (C.1)

s. t.
∑
r,m

OQr,m = koq (C.2)∑
r,m

DOQr,m = kdoq (C.3)

It,r = It−1,r + dt,r − THt,r ∀t > 1,∀r (C.4)
I1,r = I0,r + d1,r − THt,1 ∀r (C.5)
Dt,r = It−1,r + dt,r ∀t > 1,∀r (C.6)
D1,r = I0,r + dt,r ∀r (C.7)
THt,r = f (U,WIP) ∀t,∀r (C.8)
Q1,r,m =OQr,m ∀r,∀m | lr,m = 0,qr,m = 2 (C.9)
Q1,r,m = 0 ∀r,∀m | lr,m > 0,qr,m = 2 (C.10)
Qt,r,m =Qt−1,r,m +OQr,m ∀t > 1,∀r,∀m | 1+ lr,m = t,qr,m = 2

(C.11)

Qt,r,m =Qt−1,r,m ∀t > 1,∀r,∀m | 1+ lr,m , t,qr,m = 2
(C.12)

Qt,r,m = qr,m −DOQr,m ∀t,∀r,∀m | qr,m , 2 (C.13)

C
ef f
1,m =max(c1,m −

∑
r

clossr,mOQr,m,0) ∀r,∀m (C.14)

C
neg
1,m =min(c1,m −

∑
r

clossr,mOQr,m,0) ∀r,∀m (C.15)
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C
ef f
t,m =max(c1,m +Cnegt−1,m,0) ∀t > 1,∀r,∀m (C.16)

C
neg
t,m =min(c2,m +Cnegt−1,m,0) ∀t > 1,∀r,∀m (C.17)

Ut,m,W IPt,r,m ∈ argminLBPt(Dt,Qt,C
eff) ∀t (C.18)

OQr,m ∈ {0,1} ∀r,∀m (C.19)
DOQr,m ∈ {0,1} ∀r,∀m (C.20)

Lower-level optimization problem:

LBPt(Dt,Qt,C
eff) = min

∑
m

U
γ
t,m (C.21)

s. t.
∑
m

WIPt,r,m =Dr,t ∀r ∈ Rqt (Q,Ceff) (C.22)

Ut,m =
∑
r

WIPt,r,m

tpr,mC
ef f
t,m

∀m | Cef ft,m > 0 (C.23)

Ut,m = 0 ∀m | Cef ft,m = 0 (C.24)
WIPr,m ≤Dr ∀r,∀m |Qt,r,m = 1 (C.25)
WIPr,m ≤DrQt,r,m ∀r,∀m |Qt,r,m = 2 (C.26)
WIPr,m ≤ 0 ∀r,∀m |Qr,m = 0 (C.27)
WIPr,m ≥ 0 ∀r,∀m (C.28)
WIPt,r,m ≥ 0 ∀r,∀m (C.29)

Upper-level optimization problem. Equation (C.1) is the objective function that
consist in maximizing the throughput over the horizon. The throughput is computed
from the workload balancing determined by the lower-level optimization problem
(see Chapter 2). Constraint (C.2) sets to koq the number of qualifications that must
be performed at the beginning of the horizon. Constraint (C.3) sets to kdoq the
number of disqualifications that must be performed at the beginning of the horizon.
Constraints (C.4)-(C.5) are flow conservation constraints. Constraints (C.6)-(C.7)
compute the demand for all operations and all periods from the current number of
wafers in the work center and new arriving wafers. Constraints (C.8) compute the
throughput from the utilization balance determined by the lower-level optimization
problem (see Chapters 2 and 3). Constraints (C.9)-(C.12) determine the new state
of each qualification from re-qualification decisions made at t = 0, re-qualification
lead times and disqualification decisions. Constraints (C.9)-(C.12) concern the qual-
ifiable pairs (operation r, machine m), i.e. such that qr,m = 2, while Constraints
(4.27) guarantee that the qualification status of the other pairs (operation r, ma-
chine m), i.e. such that qr,m = 0 or qr,m = 1, remains the same throughout the
planning horizon. Constraints (4.23) and (4.25) ensure that machine m becomes
qualified for operation r as soon as the re-qualification lead time lr,m is reached.
Constraints (4.24) and (4.26) ensure both that (1) machine m is not qualified for
operation r before its lead time and that (2) machine m remains qualified for opera-
tion r in the planning horizon once it has been qualified. Constraints (C.13) ensure
that machine m is disqualified for operation r throughout the horizon if a disquali-
fication is made for machine m and operation r. Constraints (C.14)-(C.17) ensure
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that the effective capacity of machine m at period t if a re-qualification requires
a maintenance operation. Constraints (C.18) link the upper-level and lower-level
problems. Finally, constraints (C.19) and (C.20) are the binary constraints for the
re-qualification and disqualification decisions.

Lower-level optimization problem. Equation (C.21) defines the objective of the
lower-level problem, i.e. that consists in maximizing the utilization balance and
minimizing the total utilization rate of the machines. Constraints (C.22) ensure
that all operation quantities must be assigned to qualified and available machines.
Operations that have no qualified and available machines are not assigned to ma-
chines. For these operations, THt,r is equal to zero, and It,r necessarily increases.
Constraints (C.23) and (C.24) compute the utilization rate of each machine. Finally,
Constraints (C.29) are the non-negativity constraints.
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D.1 Linear programming for scenario generation

The linear program (D.1)-(D.4) consists in simulating a (perfect handsight) scenario
on the demand from a nominal demand and the uncertainty parameters defined in
the uncertainty set Dt. The w parameters are weights and can be randomly drawn
to generate a scenario on the demand. Note that dt,p is a decision variable in the
linear program (D.1)-(D.4) as a scenario on the demand must be generated.

min
∑
t,r

wt,r
∑
p

rfp,rdt,p (D.1)

s. t. dt,p ≥ dt,p − d̂t,p ∀t,∀p (D.2)

dt,p ≤ dt,p + d̂t,p ∀t,∀p (D.3)∑
p|αp,f =1

dt,p = ηt,f ∀t,∀f (D.4)

Equation (D.1) is the objective function that is used to simulate a scenario on
the demand from the nominal demand. If weights w are randomly generated, e.g.
between -1 and 1, the objective function can be used to generate random scenarios.
Constraints (D.2)-(D.4) are the constraints that correspond to the uncertainty set
Dt.

D.2 Total overtime minimization for evaluating ca-
pacity constraint violations

Let us introduce the new decision variable Ot,m for machine m at period t. Ot,m is
greater than 0 if there is an overtime on machine m at period t. The linear program
(D.5)-(D.10) minimizes the total overtime over the planning horizon:

min
∑
t,m

Ot,m (D.5)

s. t.
∑
r

(
∑
p rfp,rdt,p)WIPt,r,m

tpr,m
≤ ct,mumaxt,m +Ot,m ∀t,∀m (D.6)∑

m

WIPt,r,m = 1 ∀t,∀r |
∑
p

rfp,rdt,p > 0 (D.7)

WIPt,r,m ≤ qr,m ∀t,∀r,∀m | qr,m , 2 (D.8)
WIPt,r,m ≤ 0 ∀t,∀r,∀m | qr,m = 2 (D.9)
WIPt,r,m ≥ 0 ∀t,∀r,∀m (D.10)
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Here, q is the initial set of qualifications with new (nominal) qualifications.
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E.1 ExcelTM file

Are machine unbalanced? In the e-mail body, production personnel have a par-
tial vision of the utilization rates because only the utilization rates of machines
that belong to machine sets that do not meet their production objectives is pre-
sented. In the ExcelTM file, all machines are presented. Figure E.1 provides an
example of the chart in FlexQual. Blue bars correspond to the utilization rates.
Hatched orange bars correspond to WIP quantities by operation that can only be
assigned to the current machine (named station in Figure E.1) because other qual-
ified machines are either down or disqualified. Hatched green bars correspond to
the single machine workload that can be assigned to multiple machine sets thanks
to cross-qualifications. Hatched green bars indicate to which machines these work-
load should in fact be allocated in priority to maximize the utilization balance and
to maximize the throughput of the work center. Note that hatched bars are also
expressed in terms of utilization rate and represent a subtotal of the utilization rate
of each machine.

This charts enables production personnel to identify critical machines, i.e.
machines that are more loaded than the rest of the work center and machines
with a large portion of operation quantities that can only be assigned to only one
machine (single machine workload). For instance, if a machine has a large portion
of single machine workload, work centers may want to postpone maintenance
operations or qualify another machines for corresponding operations. Note that
solution approaches, in particular solution approaches that seek to maximize
the utilization balance and minimize the total utilization rate of the machines,
will automatically propose re-qualification decisions, if they exist, to reduce the
utilization rates of critical machines.
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Figure E.1: The utilization rate by machine.

What are the critical re-qualifications that should be made or critical qualifica-
tions that should have been active to improve manufacturing performances?
Figure E.2 illustrates the presentation of the re-qualification plan in FlexQual.
For each re-qualification plan, a collection of re-qualification decisions (operation,
station) is proposed. Some indicators associated to the re-qualification plan are
presented. For instance, the throughput after and before the re-qualification is
presented. In addition, the minimum and maximum satisfaction of production
objectives after and before the re-qualification are presented. Note that in general,
only one re-qualification plan is proposed in FlexQual. This is not restrictive as
production personnel can define their own re-qualification plan and use FlexQual
to evaluate it. For instance, production personnel can select a few re-qualifications
among those proposed by double clicking on the qualifications, which will auto-
matically include them in the scenario. Work center managers can also add a few
qualifications, for instance, by adding re-qualifications associated to either line stop
operations or single machine workload and evaluate the scenario with FlexQual to
ensure that, for instance, the throughput is not (or only slightly) decreased.

Figure E.2: Proposed re-qualification plan.

Should a maintenance operation be postponed or scheduled sooner? Is there
budget, i.e. capacity margins, for maintenance or engineering operations on
a particular machine or machine set? These are two questions that production
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personnel frequently ask themselves. On the one hand, some parts of machines must
be replaced, e.g. consumables that are empty, but this often requires a maintenance
operation. On the other hand, the throughput must be maximized, the cycle time
must be minimized and the production objectives must be satisfied. These are two
conflicting decisions as machine downtime is one major source of capacity loss,
which therefore affects manufacturing performances. To support decision-making,
production personnel can use the chart summarizing the satisfaction of production
objectives by machine set (see Figure E.3), which gives information on capacity
margins with respect to the production objective.

Consider Figure E.3. The production objective (in number of wafers over the
considered period) of the machine set is in green. The estimated wafer quantity
produced by the machine set corresponds to the blue bar. The estimated wafer
quantity that cannot be produced by the machine set, and therefore should
remain in the work center by the end of the horizon, corresponds to hatched red
bars. Consider the second machine set, starting from right side. The machine
set largely satisfies its production objective. Therefore, there is capacity margin
for maintenance operations. Work center can therefore schedule maintenance
operations that were postponed, or in a more proactive manner, schedule sooner
future maintenance operations. Note that production personnel will schedule
maintenance operations if machines in the considered machine set do not have a
large single machine workload.

Figure E.3: Throughput by machine group.

Will the work center be able to meet daily production objectives? The chart
presented in Figure E.3 is actually primarily used to evaluate if daily production
objectives can be met. It provides information on machine sets that largely satisfy
their production objective, e.g. the second machine set starting from the right side,
or on machine set that may not satisfy their production objective, . It also can be
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analyzed to have an idea of the problem causing the machine set not to satisfy its
production objective. Consider the first machine set starting from the right side.
The machine set may be unable to satisfy its production objective because the total
number of wafers arriving to the work center is barely greater than the production
objective. Such information can lead to better WIP management decisions, e.g.
by prioritizing the processing of wafers that must be run by the machine set on
upstream work centers. Note that production personnel in a given work center
are not responsible for making WIP management decisions across all work centers.
However, they can communicate this information to other work centers managers,
Production Control and WIP management teams.

Scenario management in FlexQual Another critical feature of FlexQual is its
capacity to evaluate custom scenarios (what-if analysis) made by production
personnel. The scenario interface in FlexQual is kept as simple as possible. It is
illustrated in Figure E.4. The scenario interface has the machine list of the work
center. For each machine, there are five possibilities. The “Maintenance/Eng” col-
umn is used to simulated maintenance or engineering operations on the associated
machine. Work center managers can either indicate a number, e.g. 24, correspond
to the duration of maintenance operations in hours or two dates determining the
start and end of maintenance operations. The four other possibilities are associated
to qualification and disqualification decisions. In addition, production personnel
has the option to include the proposed re-qualification plan by clicking the “Im-
porter plan actions” button, which includes the initially proposed re-qualification
decisions into the scenario. In addition, in the “Projection” tab, when double
clicking on an entry, a pop menu appears and proposes either to qualify one
qualifiable machine or to disqualify one qualified machine. The re-qualification
is then automatically included in the “Scenario” tab. After defining a scenario,
production personnel has two options: He/she can either ask the server to compute
indicators associated to this scenario by clicking the “Jouer scenario rapide” button
or by he/she can ask the server the compute indicators to this scenario and propose
a new re-qualification plan by assuming that modifications defined in the scenario
will be implemented. The scenario management feature is particularly critical for
maintenance operations. This is because maintenance operations are currently
poorly anticipated and often postponed.
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Figure E.4: Scenario tab in FlexQual.

E.2 How does FlexQual work?

WIP projections. In general, the demand by operation is estimated by performing
a projection of lots with the help of historical data on the planned cycle time by
operation. In other words, each lot is moved forward from the current operation
to the next after waiting the planned historical cycle time at the current operation.
This procedure is repeated until the sum of cycle times over operations exceeds
the duration of the horizon. The throughput rate by operation and by machine is
estimated by using statistical models developed and maintained by the Industrial
engineering service. The production capacity by machine is also estimated by statis-
tical models developed and maintained by the Industrial engineering service. The
production capacity by machine can be refined when production personnel enters
scenarios on maintenance operations or with scheduled maintenance operations.
It is also possible to define the demand by operation by considering only the WIP
which is currently in the considered work center.

The demand by operation could be estimated in a different way. For instance,
the demand by operation could be equal to the production objective of the
operation (in number of wafers) over the considered horizon. This avoids that
the demand is subject to projection uncertainty because production objectives by
operation are totally deterministic. Nevertheless, this does not consider the real
state of the WIP, e.g. WIP peaks (WIP bubbles) at certain operations, which can
be critical to improve manufacturing performances. In other words, we could
determine optimal re-qualifications no matter the objective function when the
demand by operation is equal to the production objective of the operation that
has no real effect on manufacturing performances. Therefore, the second option is
activated only on large horizons, in general of at least one week.

Machine status. Depending on the horizon, machine status (machine availability
on the horizon) is estimated in four different ways: (1) The instantaneous status of
the machine is assumed to remain the same over the entire horizon, (2) machines
are assumed to be fully available and production personnel uses what-if scenarios
to refine machine availability based on the duration of current scheduled and
unscheduled down times, (3) scheduled maintenance operations are used to
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estimate machine availability, (4) an internal static model is used to estimate, on
average, what is the machine availability. (1) or (2) are used for horizons smaller
than 24 hours. (2) is used for horizons larger than or equal to 24 hours. (4) is used
for larger horizons than a few days. (3) is less frequently used as maintenance
operations are frequently postponed due to operational conditions.

Disqualifications. The instantaneous status of a qualification is assumed to remain
the same over the entire horizon, unless it is proposed in a re-qualification plan. In
this case, it is assumed that no lead time is required and there is no capacity loss
due to the re-qualification (no industrial data is available).

Type of qualifications assessed. Depending on the disqualification reasons, given
a horizon, some re-qualifications can or cannot be done. Typically, for horizons
smaller than a hours days, only disqualifications made for WIP management
policies, e.g. disqualifying a slow operation on a machine to favour its dispatching
on faster machines, can be re-qualified. As the horizon gets larger, the number of
possible re-qualifications increases. For horizons larger than a few days/one week,
disqualifications for yield losses can be re-qualified.

Mathematical models used. FlexQual includes all mathematical models and so-
lution approaches presented in the thesis. A configuration file manages the use
of most relevant mathematical models and solution approaches depending on the
horizon and the considered work center.

FlexQual usually propose re-qualification plans optimized by solving the multi-
period bilevel optimization problem presented in Chapter 5. Re-qualification plans
are then optimized in terms of throughput. To solve the multiperiod bilevel op-
timization problem, we combine the use of dual variables and other preprocess-
ing rules (only re-qualifications on machines with utilization rates lower than 1
or only re-qualifications of operations that are faster on currently disqualified ma-
chines than currently qualified machines). Nevertheless, the FlexQual is also able to
propose to production personnel re-qualification plans that are constructed to opti-
mize the throughput or the mean cycle time. Computational time given to solution
approaches are relatively small, e.g. a few minutes. This has two main benefits.
First, FlexQual is responsive, which is what should be expected for decision-making
at a production control level where scenarios are expected to be evaluated. Second,
small computation times can generate creativity and the development of innovative
solution approaches. Computational times can be larger when decision makers do
not need to assess scenarios.

Although re-qualification plans can be determined by only maximizing the
utilization balance and minimizing the total utilization rate of the machines, results
are always shown by using the bilevel optimization model. Not only does the
bilevel optimization models provide insights on the overall throughput or cycle
time by work center but it also provides information on the utilization rate of each
machine in the work center. This information can then be used and aggregated
to standardized levels, e.g. by operation family, by product family, by layers, by
machine set, in the factory to better support decision making.

Page 228 EMSE-CMP Antoine Perraudat



E.2. HOW DOES FLEXQUAL WORK?

Technology used for FlexQual. On the server, linear optimization problems are
solved by busing an open source solver (Lougee-Heimer, 2003; Löhndorf, 2016)
with Java 8. Python code is used for the server side to detect scenario requests
and detect when new automatic e-mail must be sent to production personnel. The
ExcelTM file also includes Visual Basic Application (VBA) macros to better navigate
between different charts in the “Board” tab. It also includes VBA macros to ease the
design of a scenario with custom made pop menus.
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Appendix F

Robust utilization balancing opti-

mization model

Let Ut,m be the utilization rate of machine m at period t, k the given budget for
performing qualifications and γ > 1. The same notations as in Section 6.3.3.2 are
used for the model. The workload balancing problem presented in Chapter 2 when
the demand is uncertain can be formulated with Equations (F.1)-(F.11):

min
∑
t,m

U
γ
t,m (F.1)

s. t.
∑
p

(−(dt,p − d̂t,p)ymint,m,p) +
∑
f

(Γt,f y
gamma
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+
∑
p
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∑
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WIPt,r,m = 1 ∀t,∀r |
∑
p

rfp,r(dt,p + d̂t,p) > 0

(F.4)

WIPt,r,m ≤ qr,m ∀t,∀r,∀m | qr,m , 2 (F.5)

WIPt,r,m ≤
t∑

t′=1|t−t′≥lr,m

OQt′ ,r,m ∀t,∀r,∀m | qr,m = 2 (F.6)

∑
t,r,m

cqr,mOQt,r,m ≤ k (F.7)

ymint,m,p, y
max
t,m,p ≥ 0 ∀t,∀m,∀p (F.8)

y
gamma
t,m,f ≥ 0 ∀t,∀m,∀f (F.9)

WIPt,r,m ≥ 0 ∀t,∀r,∀m (F.10)
OQt,r,m ∈ {0,1} ∀t,∀r,∀m (F.11)

The objective function (F.1) maximizing the utilization balance and minimizing
the total utilization rate of the machine. Constraints (F.2) and (F.3) are the “robus-
tification” constraints. Constraints (F.2) computes the worst-case utilization rate of
machines. Constraints (F.3) are the new constraints introduced by the “robustifica-
tion” procedure. Constraints (F.4) ensure that the demand is satisfied. Constraints
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(F.5)-(F.6) are the qualification constraints. Constraint (F.7) corresponds to the
qualification budget. Constraints (F.8)-(F.10) are the non-negativity constraints.
Constraints (F.11) are the binary constraints on qualification decisions.

If qualification costs are assumed to be identical for all operations and machines,
then algorithms presented in Chapter 2 can be naturally used to solve this problem.
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Short-sighted dispatching rules and

utilization rate estimation

Capacity allocation in optimization models, including utilization balancing and
bilevel optimization models, might be optimistic. Capacity might be allocated to
the fastest machine in priority to satisfy capacity constraint. In practice, this is
unlikely that the real capacity allocation can be this way. This is because the real
capacity allocation is affected by short-sighted dispatching rules and production
variability, in particular, time-varying arrival rates, down time, disqualifications. In
other words, once a machine is qualified for an operation r, it is likely that the
machine runs operation r even though it is not the fastest machine for operation
r (see also Chapters 3 and 4). Consequently, if this short-sighted aspect is not
considered in the computation of utilization rates of machines, the utilization rates
of machines may be underestimated. This is true for both operational and tactical
qualification management.

To address this issue, short-sighted dispatching rules should be also be modeled
when utilization rates are computed, both at the operational and tactical decision
levels. It can be reasonable to assume that capacity allocation variables are subject
to some limits that depend on qualifications. Mathematically, this can be modeled
with the following constraints:

max
m
WIPt,r,m −min

m
WIPt,r,m ≤ θ

disp
r ∀t,∀r (G.1)

where θdispr ∈ [0,1] represents the effect of variability and short-sighted aspect
of dispatching rules on capacity allocation. If θdispr = 0, then each qualified machine
runs the same quantity of operation r. If θdispr = 1, then dispatching rule constraints
are not considered since WIPt,r,m ≤ 1 ∀t,∀r,∀m. Constraint (G.1) can be linearized
with Constraints (G.2)-(G.3):

WIPt,r,m′ −WIPt,r,m ≤ θ
disp
r + (2−Yt,r,m −Yt,r,m′ ) ∀t,∀r,∀m,∀m′ |m ,m′ | qr,m > 0

(G.2)

WIPt,r,m′ −WIPt,r,m ≥ −θ
disp
r − (2−Yt,r,m −Yt,r,m′ ) ∀t,∀r,∀m,∀m′ |m ,m′ | qr,m > 0

(G.3)

where Yt,r,m is a state variable indicating if operation r is qualified on machine m
at period t. Recall that qr,m > 0 when operation r is or can be qualified on machine

m. The advantage of this method is that θdispr can be computed (extracted) from
historical data. However, dispatching rule constraints (G.2)-(G.3) lead to numerous
additional constraints and worsen the linear relaxation. Consequently, if dispatch-
ing rule constraints are included in optimization models presented throughout the
manuscript, they should be computationally more difficult to solve.
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Another approach could consist in changing the balancing parameter γ to better
represent the short-sighted aspect of dispatching engines as suggested by Rowshan-
nahad et al. (2015).

For tactical qualification management, an approach could consist in reducing the
production capacity ct,m for a machine m at period t to model short-sighted aspect
of dispatching rules. The main advantage of this approach is that the structures
of the optimization problems remain unchanged and no additional constraints are
introduced contrary to Constraints (G.2)-(G.3). However, it may be more difficult
to define a practical value for ct,m.

Combinations of these approaches could be also adopted.
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Abstract:

For semiconductor manufacturing, a qualification is a certification for a machine to
process one operation of a specific product. A machine cannot process a product
without the associated qualification. Qualifications are mandatory to ensure high
yield of production lines and products of quality. Qualifications are used to improve
the flexibility (ability to respond effectively to changing circumstances) and to con-
figure production capacities of work centers in semiconductor factories. Because
qualifications take time, up to several months, and can be expensive, only relevant
qualifications must be planned and determined to optimize the utilization balance
of the machines, throughput, fabrication time and demand satisfaction at the lowest
cost. More precisely, the following question is answered: Given a horizon, a demand
forecast by product and operation, processing times, qualification delays and costs
and production capacities of machines, what are the most relevant qualifications?

Answering these questions is actually complex because it is difficult to evaluate
the utilization rate of a machine after multiple qualification decisions. Evaluating
the utilization rates of the machines is yet primordial as the utilization rates of the
machines is related to the throughput, the fabrication time and the demand satis-
faction. Because qualification management is complex, we answer these questions
from two standpoints by proposing relevant new optimization models and solution
approaches. The first standpoint is an operational standpoint where most the fol-
low up of qualifications is optimized. The second standpoint is a tactical standpoint
where new qualifications must be planned and anticipated to satisfy the demand.
We show throughout the thesis that a small number of relevant qualifications is
often sufficient to optimize a given criterion.
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tion non linéaire, Dualité, Optimisation biniveau, Optimisation robuste

Résumé :

Pour la fabrication de composants semiconducteurs, une qualification est une
certification pour une machine permettant de traiter une opération d’un produit
spécifique. Une machine ne peut pas traiter un produit sans la qualification
associée. Les qualifications sont impératives pour garantir un rendement élevé des
lignes de production et des produits de qualité. Les qualifications sont utilisées
pour améliorer la flexibilité (capacité à répondre efficacement à des circonstances
changeantes) et servent à configurer la capacité de production des ateliers de
fabrication dans les usines de semiconducteurs. Comme les qualifications peuvent
prendre du temps et sont coûteuses, seules les décisions pertinentes de qualifica-
tions et de requalifications doivent être déterminées et planifiées pour optimiser
l’équilibre de la charge de travail des machines, la capacité de production, le temps
de fabrication et la satisfaction de la demande. Plus précisément, nous voulons
répondre à la question suivante : Compte tenu d’un horizon, d’une prévision de
la demande par produit et par opération, du temps opératoire par opération, des
délais et des coûts de qualification et des capacités de production des machines,
quelles les qualifications les plus pertinentes ?

Répondre à cette question est en fait complexe parce qu’il est en général
d’évaluer les taux d’utilisation des machines, qui sont liés à la capacité de pro-
duction, le temps de fabrication et la satisfaction de la demande, après plusieurs
décisions de qualifications. Parce que la gestion des qualifications est complexe,
nous répondons à cette question sous deux angles en proposant des nouveaux
modèles d’optimisation et des nouvelles approches de résolutions pertinentes. Le
premier angle est un angle opérationnel où le suivi des qualifications est optimisé,
le second angle est un angle tactique où les nouvelles qualifications doivent être
planifiées et anticipées pour répondre à la demande. Nous montrons tout au long
de la thèse qu’en général, un petit nombre de qualifications, du moment qu’elles
sont pertinentes, est souvent suffisant pour optimiser un critère donné.
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