Dr Julien Lepagnot

Dr Mathieu

Tayeb, Amir, Hafnaoui Mohamed Yacine

Chapter 1 Introduction

Engineers and decision makers are daily confronted with problems that can be involved in several technical fields such as image processing, chemistry, biology and mechanics. Often, these problems can be modeled as optimization problems: an objective function is defined to be maximized or minimized with the respect of a set of decision variables. According to [START_REF] Boussaïd | A survey on optimization metaheuristics[END_REF], optimization problems can be classified as: combinatorial, continuous, mono-objective, multi-objective, static, dynamic, with or without constraints. Indeed, several algorithms have been proposed to solve optimization problems in the last decades such as exact optimization methods [START_REF] Woeginger | Exact algorithms for np-hard problems: A survey[END_REF], where optimal solutions are guaranteed to be found. Several exact methods have been proposed as the dynamic programming, branch and bound algorithm and constraint programming. Unfortunately, due to the high computational time, these methods are only effective when small instances of optimization problems are handled [START_REF] Woeginger | Exact algorithms for np-hard problems: A survey[END_REF]. For 1 this reason, metaheuristics have been introduced to provide near optimal solutions within a reasonable time. Indeed, they can be defined as approximated solution methods which insure interaction between local and global procedure improvement to escape local optima. Thanks to their simple implementation, metaheuristics can be easily adopted to a wide range of optimization problems. They can be classified into two categories.

• Population-based metaheuristics, that start the search with an initial set of solutions. Then, the set is evolved using an ensemble of search operators. As examples of population-based metaheuristics, we can cite Genetic algorithms (GA) [START_REF] Goldberg | Genetic algorithms in search. Optimization[END_REF], particle swarm optimization (PSO) [START_REF] Kennedy | Particle swarm optimization (pso)[END_REF], differential evolution (DE) [START_REF] Storn | Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[END_REF].

• Single-solution-based metaheuristics which start with only one solution. Then, the solution is evolved by introducing the concept of neighborhood, that is the algorithm chooses one of the actual solution neighbors based on a predefined selection criterion. Numerous proposals have been introduced within this category such as tabu search (TS) [START_REF] Glover | Tabu search methods in artificial intelligence and operations research[END_REF] and simulated annealing (SA) [START_REF] Kirkpatrick | Optimization by simulated annealing[END_REF].

According to the no free lunch theorem, no metaheuristic is able to solve all the existent problems to the optimality. However, researchers are paying their attention to propose new optimization architectures in order to provide relatively resilient algorithms. Following the current state-of-the-art metaheuristics, it can be seen that designing new metaheuristics relies on three axes:

1-Hybridization of two or more metaheuristics: hybridization can be an effective choice, because it allows to benefit from the advantages of sevral algorithms [START_REF] Blum | Hybrid metaheuristics in combinatorial optimization: A survey[END_REF]. Generally speaking, hybridization combines the algorithmic components of two or more metaheuristics in order to balance exploration and exploitation capabilities of the combined metaheuristics. Several hybridization models have been proposed as:

• Collaborative hybrids, where two or more metaheuristics are performed in multi-stage, sequentially or in parallel. These algorithmic scenarios usually starts with a metaheuristic favoring exploration. Then, the solutions are provided to an exploitative metaheuristic to improve them using local search procedures.

Figure 1.1: Collaborative framework of hybrid algorithm, depicting multi-stage, sequential, and parallel structures [START_REF] To Ting | Hybrid metaheuristic algorithms: past, present, and future[END_REF] • Integrative hybridization, where a search operator is integrated in a metaheuristic to enhance its capability.

2-Adaptation/tuning of metaheuristic parameters: the parameter values of a given algorithm can have a great influence on the final results [START_REF] Brest | Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems[END_REF]. Sometimes, fixed values tend to be ineffective due to the complex landscapes of optimization Figure 1.2: Integrative structure of a hybrid algorithm [START_REF] To Ting | Hybrid metaheuristic algorithms: past, present, and future[END_REF] problems. Several proposals have been introduced to tune optimization algorithms such as iRace software [START_REF] Birattari | F-race and iterated f-race: An overview[END_REF], or to auto-adapt them for each iteration based on their successful history [START_REF] Brest | Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems[END_REF]. We are interested in new self-adaptation strategies where a given algorithm try to find by itself parameter values that are as much as possible appropriate to the considered problem.

3-The integration of learning approaches: the integration of machine learning techniques into existing algorithms has become a very important area of research.

Indeed, several algorithms have exploited these techniques on different contexts, such as improving the initial solutions quality, incorporating historical search experience, classifying the current solutions and the intelligent choice between the search operators [START_REF] Zhang | Evolutionary computation meets machine learning: A survey[END_REF]. In addition, many problems are very expensive to solve (in terms of computational time) because of the complexity of the objective function.

However, it is possible to reduce the computational time by using surrogate models instead of systematically using the objective function.

Following these considerations may increase the computational time. More-over, the complexity and the high dimensionality of optimization problems can be a serious burden when evaluating solutions. In the attempt to remediate these issues, new hardware/software technologies have been proposed to reduce the computational time:

• Distributed algorithms, where independent tasks are synchronously/asynchronously performed within different machines or different interconnected processors (cluster). Indeed, distributed algorithms can be implemented using different technologies. For instance, Message passing interface (MPI), which is an interface that insures communication between nodes (machines or processors) and manages the computation specified for each node.

• Massively parallel algorithms, where the algorithms are fully/partially implemented using graphics processing units (GPU). The tasks of parallel algorithms can be executed within kernels, which represent parallel computation routines. Afterwards, the kernels are launched in order by CPU. Thanks to the cheap cost and the simple interfaces of GPUs, it has become relatively straight-forward to implement parallel metaheuristics. GPUs frameworks are single instruction/multiple data architectures, which is appropriate in the context of metaheuristics. They can leverage efficiently large instances of optimization problems (parallel evaluation of solutions). Besides, search operators of algorithms can be easily handled in parallel thanks to their general independent nature. This thesis mainly focuses on proposing new algorithms that rely on the three axes mentioned above. Besides, a parallel counterpart is provided when a serious computational time is noticed. Our proposals are applied on a proposed engineering problem. In order to validate the results of the proposed algorithms, different real-world applications from the literature are optimized Chapter 2 is devoted to survey several state-of-the-art of optimization algorithms in the context of continuous optimization. First, well-known metaheuristics are covered, such as cuckoo search and differential evolution. Secondly, different hybridization and parallelization models are presented. Finally, a set of self-adaptive differential evolution proposals are discussed to show the advantage of parameter adaptation strategies.

Chapter 3 defines the test suites and the engineering problem used in the experimentation. Moreover, a technical definition of the engineering problem is given to show its advantage as a real-world application.

Chapter 4 represents the contribution of this thesis by by proposing five algorithms. Each algorithm is explained in detail revealing its performance compared to recent state-of-the-art algorithms, where statistical tests are performed to show the significance superiority of our proposals compared to several powerful optimization algorithms, which are surveyed in chapter 3. Finally, a comparison of some proposals is conducted.

Chapter 5 concludes the thesis showing how the proposals are relevant to its main axes. Besides, an ensemble of potential perspectives are given to show the possible extensions of this thesis.

Chapter 2 Related Work

Metaheuristics are solution methods that ensure an interaction between local improvement procedure (local search) and high level strategies (global search). This interact on allows to escape from the local optima and achieves a certain balance between exploration and exploitation. These approaches transit from one solution/one population to another by applying a set of search operators and a predefined selection criterion.

State-of-the-art of metaheuristics

Generally speaking, metaheuristics are not able to guarantee the optimality of the final solutions compared to the exact methods. However, an appropriate adjustment of their algorithmic components can achieve satisfying results for a wide range of problems.

In the following subsections, several metaheuristics are explained.

Differential evolution

Differential evolution (DE) is a population-based metaheuristic which starts the search process with random initial solutions (population). Then, solutions are evolved using three search operators: mutation, crossover, selection. These search operators are applied until a termination criterion is met. DE phases can be organized as follows:

1. Initialization: mutation parameter F , crossover parameter CR, the population size P S, the problem dimension D, and the number of generations G max are initialized. The initial individuals are randomly initialized.

2. Mutation: for each solution x G i in the parent population, a mutant vector

v G+1
i is computed as follows:

v G+1 i = x G r1 + F.(x G r2 -x G r3) (2.1)
where r1, r2 and r3 are distinct randomly generated integers within the range [1, P S] and different from the index i.

3. Binomial crossover: for each individual x G i , a trial vector u G+1 i is generated as follows:

u G+1 i =      v G+1 i,j if j = σ j or R j < CR x G i,j otherwise (2.2)
where σ j is a random integer generated within the range [1,D], and R j is randomly generated number within the range [0,1].

4. Evaluation: The trial vector is evaluated and replaces the parent individual if it has a lower fitness (minimization).

5. G is incremented and phases 2 to 5 are repeated while G is less than G max .

It should be stated that different mutation and crossover strategies have been proposed to improve DE performance.

1-Mutation: several mutation strategies have been proposed for DE, and the most popular among them are listed below: DE/rand/2 [START_REF] Kai Qin | Differential evolution algorithm with strategy adaptation for global numerical optimization[END_REF]:

v G+1 i = x G r1 + F .(x G r2 -x G r3) + F .(x G r4 -x G r5)
DE/best/2 [START_REF] Storn | On the usage of differential evolution for function optimization[END_REF]:

v G+1 i = x G best + F .(x G r1 -x G r2)+ F .(x G r3 -x G r4)
DE/current-to-best/1 [START_REF] Storn | On the usage of differential evolution for function optimization[END_REF]:

v G+1 i = x G i + F .(x G best -x G i)+ F .(x G r1 -x G r2)
DE/current-to-best/2 [START_REF] Kai Qin | Differential evolution algorithm with strategy adaptation for global numerical optimization[END_REF]:

v G+1 i = x G best + F .(x G best -x G i) + F .(x G r1 -x G r2 +x G r3 -x G r4)
where x G best is the best individual in the population at generation G and r 1 ,r 2 ,r 3 and r 4 are randomly generated numbers within the discrete range [1,P S] 2-Besides to the binomial crossover, several crossover operators have been proposed such as:

• Exponential crossover [START_REF] Shi-Zheng | Self-adaptive differential evolution with multi-trajectory search for largescale optimization[END_REF]: First, a randomly generated integer n is generated among [1, D]. n represents the starting point where the crossover or exchange of components with the donor vector starts. Another randomly integer L from the numbers in [1, D] is also generated. L represents the number of components the donor vector contributes to the target vector.

The exponential crossover is depicted as follows:

u G+1 i =      v G+1 i,j if j = n, j = n + 1, j = n + 2, ..., j = n + L -1 x G i,j otherwise (2.3)
• The arithmetic recombination [START_REF] Price | Differential evolution: a practical approach to global optimization[END_REF]: the trial vector can be produced as a combination of the target vector and a donor vector as follows:

u G+1 i = x G i + k i,j (v G i -x G i) (2.4)
where k i,j is a scalar combination coefficient generated between [0,1].

The algorithmic structure of DE is depicted in Algorithm 1

Cuckoo search

Cuckoo Search (CS) is a population based metaheuristic designed to solve continuous optimization problems. CS is inspired by the brood parasitism behaviour of cuckoo birds [START_REF] Yang | Cuckoo search via lévy flights[END_REF], where the three following rules are used:

• Each cuckoo lays one egg at a time, and leaves its egg in randomly chosen nest.

Algorithm 1 Pseudo-code of DE.

1: Generate initial population pop of P S individuals 2: while stopping criterion is not met do 3:

popold ← pop 4:

for Each individual i in the population do 5:

Generate a mutated vector V i /*mutation step*/ 6:

Generate a trial vector U i using V i and popold i /*crossover step*/ 7:

if f(popold i) > f(U i) then 8:

pop i ← U i 9:
end if 10:

end for 11: end while

• The best nests with high quality of eggs will be kept to the next generations.

• The number of available host nests is fixed, and the egg laid by a cuckoo is discovered by the host bird with a probability p ∈ [0, 1]. If the host bird discovers the strange egg, it throws the egg away or it abandons the nest and builds completely new one.

Based on these three rules, the basic steps of CS are summarized in Algorithm 2.

In CS, a balanced combination of local random walk and a global random walk is obtained through a switching parameter P a. The local random walk is written as: Get a cuckoo randomly by Lévy flights

x t+1 i = x t i + s ⊕ H * (P a -) ⊕ (x t j -x t k) (2.

4:

Evaluate its fitness F i

5:

Choose a nest among n (say,j) randomly

6: if F i > F j then 7:
Replace j by the new solution 8:

end if

9:
A fraction P a of worse nests are abandoned and new ones are built 10:

Keep the best solutions 11:

Rank the solutions and find the current best solution 12: end while walk is handled using Levy flights as follows:

x t+1 i = x t i + α ⊕ levy(λ) (2.6)
where

α = α 0 ⊕ (x t j -x t i) (2.7) levy(λ) = u |v| 1 α (2.8)
α 0 is a step size scaling factor and α is levy Flight exponent. Finally, u and v are two predefined numbers with zero means and associated variance.

CS has shown to be competitive ahead well-known metaheuristics such GA and PSO [START_REF] Yang | Cuckoo search via lévy flights[END_REF]. Besides, CS has been exploited to optimize several combinatorial problems such as in [START_REF] Layeb | A novel quantum inspired cuckoo search for knapsack problems[END_REF][START_REF] Mk Marichelvam | Improved cuckoo search algorithm for hybrid flow shop scheduling problems to minimize makespan[END_REF][START_REF] Ouyang | A novel discrete cuckoo search algorithm for spherical traveling salesman problem[END_REF]

CMA-ES

The Covariance Matrix Adaptation Evolution Strategy (CMAES) is a an evolutionary algorithm where a new population is produced by sampling from a probability distribution constructed during the search process [START_REF] Hansen | Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (cma-es)[END_REF]. CMAES is explained in Algorithm 3. In CMAES, solutions are generated using a multivariate normal Algorithm 3 Pseudocode of CMAES. for i=1 to λ do 6:

x t+1 i ← sample i th solution according to (2.9)

7:

f i ← evaluate i th solution 8:
end for

9:

Sort the new solutions and find the first µ solutions σ t+1 ← update the step size using isotropic path length according to (2.15) 15: end while distribution N with mean m and a covariance C. A new solution x t+1 is generated as follows:

x t+1 = m t + σ t N (0, C t)
(2.9)

m t = µ i=1 w i x t i:λ
(2.10)

w i = log(µ + 1/2) -log(i), µ i=1 w i = 1 (2.11)
where m t is the weighted mean of the µ best solutions, x t i:λ is the t th ranked individual, λ is the number of samples, σ t is the step size parameter. Besides, a covariance matrix C t is adapted using an evolution path p t+1 c . It is generated with the following equation:

p c t + 1 = (1 -c c)p t c + c c (2 -c c) √ µ σt (m t+1 -m t) (2.
12)

C t+1 = (1 -c cov)C t + c cov p t+1 c (p t+1 c) T (2.13)
where c c and c cov ∈ [0, 1] are learning rates for p t+1 c and C t+1 respectively. The step size parameter is updated using the evolution path p t+1 σ as follows:

p t+1 σ = (1 -c σ)p t σ + c σ (2 -c σ) √ µB t m t+1 (2.14)
where c σ is a learning rate controller, and B t is the normalized eigenvectors of C t .

Then, σ t+1 is updated as follows:

σ t+1 = σ t exp(||p t+1 σ || -T n d σ T n) (2.15) T n = √ n(1 - 1 4n + 1 21n 2) (2.16)
where n represents the problem dimension and d σ > 1 is a damping parameter.

Hybrid metaheuristics for continuous optimization

Hybrid metaheuristics are considered as one of the major contributions in the field of optimization. According to [START_REF] Blum | Hybrid metaheuristics in combinatorial optimization: A survey[END_REF], the main objective of hybridization is to exploit the complementary aspect of metaheuristics. However, choosing the best synergy is the key to attain the best results, which is not a straight-forward task. Indeed, finding the best combination of algorithmic components requires optimization expertises. Moreover, since the hybridization itself is an optimization algorithm, it can not be guaranteed to solve all the optimization problems. In other words, one hybridization design can be successful for one problem and can work poorly for another. Even though, several hybridization models have shown to be effective in tackling a wide range of applications. It should be stated that there are hundreds of similar hybridizations proposed in the literature. However, in this subsection, we only cover some works in the hope to give the reader a general idea about the designs proposed so far. Another hybridization of CMAES and CS called S-CSCMAES has been introduced in [START_REF] Saeed | Self-adaptive single objective hybrid algorithm for unconstrained and constrained test functions: An application of optimization algorithm[END_REF]. The hybridization relies on integrating the recombination operator of CMAES into CS procedure. By using the recombinationo of CMAES (m s), the weighted means are computed. In order to produce the new solutions, the best solutions gained from CS algorithm and m s are combined to produce the new solutions X s with as follows:

X s = X s CS + m s (2.17)
In order to prove the efficiency of S-CSCMAES, a set of constrained and Unconstrained test functions are optimized revealing an encouraging performance compared to CS, CMAES, PSO, firefly algorithm.

Other hybridizations models have been introduced using other promising algorithms. For instance, in 2013, a hybridization between PSO and artificial bee colony (ABC) has been introduced in [START_REF] Servet | A recombination-based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems[END_REF]. This hybridization is based on a recombination procedure, where the global best solutions of PSO and ABC are recombined. Then, the new solution is used to evolve solutions of both algorithms. The proposal has been compared using CEC 2005 test suite and an energy demand estimation problem revealing better performance compared to ABC and PSO.

A different hybridization has been proposed in [START_REF] Molina | Iterative hybridization of de with local search for the cec'2015 special session on large scale global optimization[END_REF], where the algorithmic combination consists in incorporating SaDE [START_REF] Qin | Self-adaptive differential evolution algorithm for numerical optimization[END_REF], which is a modified version of DE and a local search procedure (LS). During the search process, SaDE and the local search procedure are iteratively performed. Besides, the current best solution improved by LS is integrated into SaDE to guide its search. LS phase contains several local search methods, where each method is performed based on a probability computed as follows:

P LS M = I LS M m∈LS I LSm (2.18)
where I LS M represents the number of improvement obtained by LS M . This hybridization has been tested on the CEC 2015 test suite of large scale global optimization showing a competetive performance compared to DE-CC-CG [START_REF] Yang | Large scale evolutionary optimization using cooperative coevolution[END_REF], SACC [START_REF] Wei | Smoothing and auxiliary functions based cooperative coevolution for global optimization[END_REF].

In [START_REF] Behnam Farnad | A new hybrid algorithm for continuous optimization problem[END_REF], GA, PSO and symbiotic organisms search (SOS) [START_REF] Cheng | Symbiotic organisms search: a new metaheuristic optimization algorithm[END_REF] have been incorporated. In the main loop of this hybridization, one iteration of GA (selection, mutation and crossover) is firstly performed. The output population is given in order to perform one iteration of PSO. However, PSO only updates the best experience of each solution (best local solution). In the last phase, one iteration of SOS (mutualism, commonsalism, parastism) is applied using the best experience updated by PSO. The hybrid algorithm has been tested on several unimodal and multimodal benchmark functions. Furtheromore, it has been tested on clustering problems, where it was confirmed that the proposed algorithm shows a better accuracy and error rate.

Another hybridization of GA and cross entropy method (CE) [START_REF] Rubinstein | The cross-entropy method for combinatorial and continuous optimization[END_REF] has been proposed in [START_REF] Lopez-Garcia | Gace: A meta-heuristic based in the hybridization of genetic algorithms and cross entropy methods for continuous optimization[END_REF]. The novel algorithm divides the population into two sub-populations.

Then, one iteration of each algorithm is performed on its associated population.

Finally, an elitism phase takes place. In this phase, the best solution found so far is checked whether it is present in the current population or not. If not, it will be inserted replacing the worst solution. The proposed method is tested on 24 continuous benchmark functions, with four different dimension configurations, where GACE revealed better results compared to several modified versions of GA.

In the attempt to overcome the premature convergence of harmony search algorithm [START_REF] Woo Geem | A new heuristic optimization algorithm: harmony search[END_REF] (HS), SA has been proposed to complement the search procedure of HS [START_REF] Assad | A hybrid harmony search and simulated annealing algorithm for continuous optimization[END_REF]. Inspired by SA, the proposal HS-SA accepts worse solutions (harmonies in HS) considering a probability parameter called temperature. temperature value is linearly decreased to shift the set of solutions from exploration to exploitation.

HS-SA has been tested on the CEC 2014 test suite and a real-world problem from computer vision field called camera calibration problem. The numerical results demonstrate the advantage of HS-SA over SA and HS.

Bat algorithm (BA) [START_REF] Yang | A new metaheuristic bat-inspired algorithm[END_REF] is a population-based metaheuristic inspired by the echolocation process of bats to sense distance. BA may suffer sometimes from premature convergence problem because of its poor local search capability. In the attempt to improve BA performance, some modifications have been introduced in [START_REF] Liu | A novel hybrid bat algorithm for solving continuous optimization problems[END_REF]. First, a chaotic initialization is performed to ensure well diversified initial population. Secondly, the time factor parameter used in BA search operators is decreased to gradually shorten the step size of bats (solutions). Finally, the modified BA is hybridized with a local search method called external optimization (EO) [START_REF] Boettcher | Extremal optimization: an evolutionary local-search algorithm[END_REF]. The statistical test results reveal that the hybridization is significantly better than GA, PSO, DE, CMAES and a modified version of DE called L-SHADE [START_REF] Tanabe | Improving the search performance of shade using linear population size reduction[END_REF].

Another hybrid BA has been developed for economic dispatch problem [START_REF] Liang | A hybrid bat algorithm for economic dispatch with random wind power[END_REF],

where the objective function is to minimize the operating costs for all committed generators while meeting the supply-demand balance and a set of constraints de-fined in [START_REF] Li | A line flow granular computing approach for economic dispatch with line constraints[END_REF]. In this proposal, a chaotic map procedure to adjust BA parameters is incorporated to prevent premature convergence. Moreover, a random black hole model [START_REF] Zhang | Random black hole particle swarm optimization and its application[END_REF] is introduced in order to accelerate the convergence rate. A comparison with BA, ABC and PSO was conducted, where the proposal has shown a competitive performance. In Table 2.1, The covered hybrid algorithms are summarized. for CEC 2013 competition, where it was ranked the first among DE variants. In 2014, the population size parameter in SHADE has been studied by [START_REF] Tanabe | Improving the search performance of shade using linear population size reduction[END_REF]. A linear reduction of the population size is proposed to accelerate the convergence rate.

The algorithm showed interesting results. It ranked the first in IEEE CEC 2014 competition. This proposal has been again improved in [START_REF] Guo | A self-optimization approach for l-shade incorporated with eigenvectorbased crossover and successful-parent-selecting framework on cec 2015 benchmark set[END_REF], where an eigenvectorbased crossover is introduced. The new search operator tends to be effective when highly correlated variables are present.

Meanwhile, ensemble of parameters and mutation strategies (EPSDE) has been proposed in 2011 by [START_REF] Mallipeddi | Differential evolution algorithm with ensemble of parameters and mutation strategies[END_REF]. EPSDE provides a pool of discrete values for F and CR, which serves in keeping the successful pair (F /CR) to the next generation. EPSDE has been investigated using IEEE CEC 2005 revealing resilient performance for the whole benchmark. Nevertheless, the proposal has been reconsidered in [START_REF] Mallipeddi | Harmony search based parameter ensemble adaptation for differential evolution[END_REF]. The new extension finds the best parameters by modeling the issue as an optimization problem. Then, it is solved using harmony search algorithm [START_REF] Woo Geem | A new heuristic optimization algorithm: harmony search[END_REF].

Finally, adopting a hybridization model and/or a parameter adaptation strategy may involve a high computational time due to the extra computation. In the attempt to overcome this issue, parallel computing may be an interesting alternative to reduce the high computational time. In the following section, several GPU-based parallel metaheuristics are surveyed in order to illustrate the advantage of the parallel computing in reducing the computational time of optimization algorithms.

Self-adaptive CS

Similarly, CS is strognly dependent to its parameters. P a parameter is investigated in [START_REF] Li | Modified cuckoo search algorithm with self adaptive parameter method[END_REF], where it has been stated that P a controls the diversity of the population.

This parameter has been adapted using two new parameters setting, which can be described as follows: The algorithm selects one of these equations based on their successful performance in the previous iteration. The proposal has been tested on 16 benchmark functions chosen from literature revealing superior performance compared to the original CS and several variants of DE.

P a = 0.
Another adaptive CS has been introduced, where α step size parameter is modified in each iteration. According to [START_REF] Zhang | Modified adaptive cuckoo search (macs) algorithm and formal description for global optimisation[END_REF], the search step size has to be gradually modified during the search process. In the first iterations, the broadest possible access to information is required. Therfore, a larger step size is needed.

In the last iterations, in order to improve CS exploitation, the search should be conducted in a small neighbourhood of individuals and then a small step size is needed. α is gradually decreased as follows:

α = α min + F E max -F E F E max m * (α max -α min) (2.21)
where F E max , F E are the maximum number and the current number of evaluations respectively, α min , α max , α are the max, the current and the min value of step size respectively. The proposal has been tested on several benchmark functions from CEC 2005 test suite revealing competetive performance compared to CS.

In order to improve the exploitation capability of CS, the latter has been combined with a simulated annealing-based strategy to update the detection probability and step size. The new algorithm has been tested on a bus scheduling problem, where it shown optimal scheduling models compared to the original CS.

Despite these interesting strategies, it could be noticed that the parameter adaptation in the context of CS and CMAES are not deeply studied. For instance, the experimental studies of adaptive CS works were conducted only in particular real-world problems. Their performance remains not known when compared to recent state-of-the-art powerful algorithms.

State-of-the-art of parallel metaheuristics

Unfortunately, most of metaheuristics performance decreases in both terms of time complexity and effectiveness when facing high dimensional problems. In the attempt to overcome this drawback, parallel metaheuristics have been proposed as an alternative. Nowdays, parallel metaheuristics are attracting a growing interest from researchers in order to reduce the execution time and to improve the quality of the solutions found. According to [START_REF] Talbi | Metaheuristics: from design to implementation[END_REF], the parallel design of metaheuristics is classified into three classes:

1. Algorithmic level: this level allows launching many algorithms in parallel.

The algorithms can run independently with different initial solutions and/or different parameters and choose the best results of the run. In this level, algorithms can be cooperative and exchange solutions in order to improve the results.

2. Iteration level: this level allows a parallelization in each iteration. It concerns the evaluation of solutions and/or the generation of the neighborhood.

3. Solution level: this level allows a deep parallelization of a single solution. For instance, the objective function or constraints for a generated solution can be implemented in parallel. The objective of achieving this level is mainly the speed up of the search.

Thanks to graphics processing units (GPU), solving high dimensional continuous problems has become straightforward. By exploiting GPU, the three levels mentioned above can be efficiently achieved. In this section, we outline a set of papers addressed to solve continuous optimization problems. We conclude it with Table 2.2 that presents the characteristics of the implementations.

A CUDA implementation of CS has been implemented in [START_REF] Jovanovic | Parallelization of the cuckoo search using cuda architecture[END_REF]. In the parallel CS, separate threads are dedicated to individual nests. Besides, the algorithmic structure of CS requires sorting solutions to abondon the worst ones. To sort solutions, a partial parallel reduction sorting is performed. The proposal has been tested on a set of numerical functions, where a significant decrease of 25 times has been exhibited compared to the sequential version.

In 2016, a parallel implementation of PSO using GPU has been presented in [START_REF] Maruf Hussain | A CUDA implementation of the standard particle swarm optimization[END_REF]. The implementation has been tested on a set of continuous functions. In 2015, a parallel PSO has been designed in [START_REF] Li | Parallel particle swarm optimization algorithm based on CUDA in the AWS cloud[END_REF] using CUDA. This design is implemented in a collection of remote computing services, called Amazon Web Services Cloud (AWS). According to the authors, the PSO computation is proportional to the size of the particle. It means that the larger the particle is, the greater the pressure is. The following phases are parallelized:

• Calculation of the fitness values of particles: one particle represents one block and each thread computes one of its dimensions (solution level/iteration level). Then, partial results are reduced to thread 0 writing the final fitness value in the global memory.

• Update best local position and best global position: since updating positions needs to update each dimension of each particle, each particle is represented by one block, and each thread updates each dimension of the particle. Finally, the last kernel updates position and velocity of each particle. According to [START_REF] Ugolotti | Particle swarm optimization and differential evolution for model-based object detection[END_REF], detecting objects in images is a well-known problem in computer vision and pattern recognition. This problem can be modeled as a continuous optimization problem, as it is proposed in [START_REF] Ugolotti | Particle swarm optimization and differential evolution for model-based object detection[END_REF]. A parallel PSO and DE have been proposed to tackle two problems in this field: hippocampus localization in histological images and human body pose estimation in video sequences. The objective of human body pose estimation in video sequences is to estimate accurately the posture of human body in a video stream. In this problem, the input is N views of the body from several angles. Afterwards, the silhouette of the body within each image is extracted. The silhouette is a binary image where all pixels belonging to the body are set to 1. To solve the problem, three steps are followed. First, a pose estimation is generated by the search algorithm using an appropriate parametric model. Then, a 3D rendering of the body is applied for the pose. Finally, a set of N images, corresponding to the projections of the rendered body (silhouettes) on the image planes of the input is computed. For further details about the parametric model used, we refer the reader to [START_REF] Ugolotti | Particle swarm optimization and differential evolution for model-based object detection[END_REF].

In CUDA-based implementations of PSO and DE, three kernels are implemented.

For PSO, the first kernel initializes and updates the velocity and position of all particles. The second kernel evaluates the fitness. Finally, the third kernel updates the best positions. In DE, the first kernel generates the offspring solutions.

The second kernel evaluates the fitness of all produced solutions. Then, the third kernel performs the selection of the new population. PSO and DE have the same structure, each thread block is responsible of one particle (iteration level), where each thread updates one dimension of the problem (solution level). The experi-mentation shows that PSO gives more accurate results than DE when dealing with human body pose estimation. However, DE gives slightly better results in case of hippocampus localization in histological images without mentioning any details about the speedup gained by GPU implementation over CPU.

A new memetic algorithm, called MA-SW-Chains is presented in [START_REF] Lastra | A high performance memetic algorithm for extremely high-dimensional problems[END_REF] for GPU architecture. Its main idea is to combine a steady-state genetic algorithm (SSGA) [START_REF] Whitley | The genitor algorithm and selection pressure: Why rankbased allocation of reproductive trials is best[END_REF] with a local search procedure, called Solis Wets search method [START_REF] Solis | Minimization by random search techniques[END_REF]. The steps that have been parallelized in the algorithm are: evaluation of the fitness function, adaptation of the crossover operator to the GPU, optimization of the local search, random number generation process, and population sorting. 4. The generation of random numbers and population sorting.

A parallel GA has been proposed in [START_REF] Rashmi | Speedup genetic algorithm using C-CUDA[END_REF] to solve continuous functions. In their proposition, the selection procedure is implemented using Roulette wheel selection function with a separate kernel, and it is performed by generating random numbers between 0 and the sum of the fitness values of the population. If the fitness of the corresponding individual is greater than the random number, then it becomes a parent chromosome. Afterwards, another kernel performs a uniform distribution crossover with a fixed ratio. Unlike single and double point crossover,

where mixing is performed at segment level, uniform distribution crossover creates child chromosome at gene level (solution level). It was stated that it is more suitable for the large populations. Finally, mutation is implemented in a single kernel, where each individual is mutated by a thread (iteration level). The parallel GA has been tested on seven test functions and it shows to be faster with 4.15x than the sequential version.

A parallel bee algorithm (CUBA) has been proposed in [START_REF] Luo | A parallel bees algorithm implementation on GPU[END_REF]. CUBA is a multicolony bee algorithm that obtains a good efficiency and a high speedup. The algorithm initializes the population and evaluates the fitness of individuals through parallel threads (iteration level/solution level). To find the best sites, the population is sorted using OddEven Sorting algorithm. In this proposal, bees are grouped into colonies. Each thread is assigned to its colony according to the thread ID. In the standard bee algorithm, more bees are recruited for the best sites. However, in this proposition, the authors aims to balance the loading among the threads. They have proposed to assign nep bees to recruit m sites. The algorithm overcomes the overhead due to the communication between the colonies by using shared memory and adapting 2 phase communication strategy. CUBA has been applied on 9 minimization functions, and has achieved a speedup of 13x times compared to the standard sequential bee algorithm.

Discussion and conclusion

In this chapter, state-of-the-art of hybrid and parallel metaheuristics were defined.

Besides, a brief review of adaptive DE proposals was considered to show the importance of the parameters on the overall performance of DE.

It should be stated that there are hundreds of algorithms proposed in the literature thanks to the variety and explosion of real-world problems. However, we only covered some works to demonstrate the prominent designs of hybrid and parallel metaheuristics. It has been noticed that most of the proposed algorithms are population-based hybridization, where an exploratory metaheuristic is applied to explore the search space. Afterwards, a local search procedure is performed in order to improve the quality of the found solutions. Furthermore, leveraging large instances of optimization problems and accelerating search operators have become relatively easier thanks to the graphics processing units (GPU). Indeed, different designs of parallel metaheuristics have been proposed, which reflects the growing interest of researchers towards this category of algorithms. Following this context, our main focus is to develop efficient optimization algorithms, which are able to produce competitive results compared to the recent state-of-the-art algorithms.

Chapter 3

Applications

In this section, we present a set of problems, which will be solved by our proposals.

This set is a well-known test suite designed for testing algorithms performance.

Moreover, the real-world problem at hand is defined.

Test suite for numerical optimization

CEC 2011 [START_REF] Das | Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems[END_REF] test suite is a well-known benchmark of real-world problems, which have been used to test several optimization algorithms. In the following subsections, the test suite is presented.

CEC 2011 test suite

The CEC 2011 test suite represents a set of difficult real-world applications. The benchmark contains 22 functions to be minimized with a limited budget of 150000 evaluations [START_REF] Das | Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems[END_REF]. Table 3.1 shows details about each problem. It is important to point out that this set is chosen because it represents the most known test suite for real-world applications.

Electric motor design

Our optimization algorithms are employed in order to optimize the design of an electrical machine used as main propulsion unit for an electric vehicle (EV). By investigating the mechanical characteristics of the electrical motorization of todays cars it is obvious that the trend is to have higher operating speeds on the electric motor [START_REF] Daniel Fodorean | Hybrid differential evolution algorithm employed for the optimum design of a High-Speed PMSM used for EV Propulsion[END_REF] . The clear advantage of having higher speed is with respect to the power density of the electric motor, meaning to maximize the ratio between the output power and weight of the machine (and consequently of its volume). This will involve also the decrease of iron losses in the machine, and finally the efficiency of the propulsion motor is improved.

The technical definition of the problem

The most common solution in terms of electric propulsion for the current manufactured light electric cars is the use of a permanent magnet synchronous motor (PMSM) [START_REF] Giurgea | Multimodel optimization based on the response surface of the reduced FEM simulation model with application to a pmsm[END_REF], with top speeds beyond 10 000 r/min (like in the case of the Hybrid Toyota Prius, Nissan Leaf, BMW-i3 etc.). Of course, a special care should be paid to the mechanical constraints involved at such high speeds. Instead, with the improvement on the iron material in terms of mechanical stability, and since the higher operating speed permits to reduce the outer rotor diameter, the use of a high speed PMSM becomes an advantage. By increasing the power density of the electric propulsion unit, and consequently by reducing its weight, a more reduced volume will be obtained, which will be a benefit from the cars autonomy point of view. Moreover, a decreased weight will engage a reduced investment on the electric propulsion, which is critical in the automotive industry [START_REF] Daniel Fodorean | Hybrid differential evolution algorithm employed for the optimum design of a High-Speed PMSM used for EV Propulsion[END_REF][START_REF] Giurgea | Multimodel optimization based on the response surface of the reduced FEM simulation model with application to a pmsm[END_REF]. That is why, we have considered for our application to evaluate an electric motorization running at high speeds. The main data of the propulsion electric motor are: 20 kW for the output power, 22 000 r/min for the rated speed. The machine will be supplied from a battery of 380 Vdc, via an inverter. Perhaps the best candidate for such operating conditions is a PMSM with inset magnets, see Fig 3 .1, where one can see the main components of the machine, as well as the magnetization of the two magnetic poles (a parallel magnetization was considered in order to increase the chances of obtaining a smoother output torque). Before passing to the optimization of the high speed PMSM, the machine was designed and the analytical approach has been validated numerically by using the finite element analysis, via Flux2D software. From this analysis we will be verifying if the desired perfor-

Electric motor design as an optimization problem

The main objective is to improve EVs autonomy through reducing HS-PMSM weight. The problem at hand can be modeled as a multi-objective problem, where the objective functions are represented as follows:

• The first objective function concerns the mass of the electric motor m atot :

m atot = m cooper + m stat + m rot + m pm (3.1)
where m cooper is the cooper mass, m stat is the stator iron mass, m rot is the rotor iron mass, and m pm is the magnets mass.

• The second objective function is to maximize the output power density which is defined as follows:

P out = P in + losses (3.2)
where P out is the output power density, P in is the input density, and the sum of losses mainly contains the mechanical, iron and copper loss component.

The two objective functions are aggregated to obtain the following new objective function which will be optimized using the proposed algorithm:

minJ(x) = -P out /m atot + penality (3.3)
where penality = 10 The first contribution of this thesis is the proposition of a hybrid optimization algorithm, that was mainly designed to address the optimization of the electric motor topology.

The algorithm can be seen as a combination of several algorithms: CS, CMAES, an adaptive version of DE called LSHADE [START_REF] Tanabe | Improving the search performance of shade using linear population size reduction[END_REF] and K-means [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF]. Besides, a radial basis function (RBF) surrogate model [START_REF] Han | Surrogate-based optimization[END_REF] is incorporated to provide an intelligent choice between search operators.

The proposal starts with a CMAES-enhanced CS initialization technique to produce N P well-distributed points over the search space. The objective is to exploit the capability of CS in exploring the search space as well as ensuring a high quality solutions with a small number of evaluations, which is potentially ensured by CMAES. First, CMAES algorithm is run for a small number α of evaluations.

Then, the produced solution is provided along with a randomly generated population to CS procedure, which will be performed for a small number λ of evaluations.

The solution produced by CMAES can be seen as a guiding information to speed up the convergence rate of CS. Afterwards, the population pop produced by CS is used to train the RBF model. Then, it will be provided to the main loop of our proposal.

The main loop of the algorithm consists in two major procedures: global search and local search procedure. Each procedure is performed based on a simple yet efficient switching technique. In fact, it is decided with a probability P LV whether the algorithm performs the global search procedure, or the local search procedure is performed. After applying one of the procedures, P LV parameter is linearly decreased using the following equation:

P LV = max(0, P LV - CurrentF es M axF es) (4.1)
Indeed, decreasing P LV parameter will gradually force the algorithm to perform the local search procedure in the last iteration.

The global search procedure

The global search procedure consists of a clustering algorithm and a Lévy Flight perturbation. The clustering is used thanks to its high capability of avoiding redundant search points [START_REF] Pence | A new unconstrained global optimization method based on clustering and parabolic approximation[END_REF], which enhances the exploration of undiscovered regions [START_REF] Gao | A cluster-based differential evolution with self-adaptive strategy for multimodal optimization[END_REF][START_REF] Halder | A cluster-based differential evolution algorithm with external archive for optimization in dynamic environments[END_REF]. The clustering is considered as a multi-parent crossover that exploits the information of the whole population in order to produce a predefined number of centers (new individuals). As a clustering algorithm, one step of K-means algorithm is chosen because it has experimentally shown a superior performance than other algorithms which will be noticed in the results. K-means is exploited in order to generate K central individuals of the current population. Then, the central individuals are shifted to potentially more promising areas using lévy flight perturbation. The lévy flight movement is inspired by the global search of CS [START_REF] Yang | Cuckoo search via Lévy flights[END_REF] and it is performed according to:

StepSize i = 0.001 * step i * (z i -best)i = 1, 2, ..k (4.2)
where step i is generated according to 2.8, best is the best solution so far and z is the set of the central individuals. Then, the new trial solutions are produced as follows:

z i = z i + StepSize i (4.3)
Afterwards, the best N P individuals of pop z are selected for the next iteration.

It is important to point out that the global search procedure is repeated for T iterations.

The local search procedure

The proposed local search procedure consists of a modified version of SHADE [START_REF] Tanabe | Improving the search performance of shade using linear population size reduction[END_REF] which is an adaptive version of DE that exploites success-history-based parameter adaptation. The performance of SHADE could be enhanced by using the mutation strategy current to-pBest/1/bin [START_REF] Zhang | Jade: adaptive differential evolution with optional external archive[END_REF] to produce mutant vectors, where p represents the fraction of the best solutions in the current population. It has been stated that this mutation strategy is efficient for the generation of promising individuals [START_REF] Zhang | Jade: adaptive differential evolution with optional external archive[END_REF].

Current to-pBest/1/bin is expressed as follows:

v i,g = x i,g + F (x best,g -x i,g) + F (x r1,g -x r2,g) (4.4)
where x best,g is a randomly selected parent from the best individuals of the current population. Furthermore, an archive A of size A init is proposed in order to maintain the diversity of the population. It should be stated that x r2,g is taken from pop ∪ A. The parent solutions that are not selected are inserted into this archive.

Besides, success-history-based parameter adaptation is a strategy employed to store successful CR, F values that were successful in the past generations. After the generation of a new trial vector u i , it is compared with its parent. If u i is better, then the CR and F parameters are stored in the sets S CR , S F respectively.

Finally, the memories M CR and M F are updated using these successful parameters according to the following equations:

M CR =      meanwA(S CR) if S CR = ∅ M CR otherwise (4.5) M F =      meanwL(S F) if S F = ∅ M F otherwise (4.6)
where meanwA is the weighted mean and meanwL is the Lehmar mean. SHADE uses two different mean equations because they have experimentally shown better results than using one equation to generate M CR and M F .

In our local search procedure, a surrogate model-based SHADE (S-SHADE) algorithm is proposed, which is summarized in Algorithm 4. In S-SHADE, we insert an additional mutation equation that ultimately favors exploitation and a surrogate based-switching technique to choose the best mutation operator for the next generation. The additional mutation equation can be also seen as a linear recombination that forces the current solution to move towards the best solution [START_REF] Das | Differential evolution: A survey of the state-of-the-art[END_REF]. The mutation equation is is represented as follows:

v i,g = x i,g + (x i,best -x i,g) * F (4.7)
and x i,best is the i th best solution in the population. To save the budget of evaluations, the RBF surrogate model is used for an approximated evaluation. After applying the two search operators, RBF is used to approximate the fitness of the two mutant populations. The mutant population that contains the best approximated solution is then used in crossover.

The algorithmic combination

First, the proposed initialization strategy takes place in order to provide welldistributed solutions. Afterwards, the global search and the local search procedures are performed based on a complex criterion. If less than a parameter max f es , and if P LV parameter is greater than a value randomly generated in [0,1], then, the global search procedure is performed. Otherwise, one generation of S-SHADE is applied as a local search procedure. Besides, in order to gradually shift the algorithm into exploitation, P LV parameter is linearly decreased after each iteration.

Finally, linear reduction of the population takes place to remove a fraction of the worst individuals at each iteration. It has to be mentioned that the RBF model is updated using the current population after each quarter of the available budget.

The pseudo-code of the full proposal is depicted in Algorithm 5.

Algorithm 4 One generation of our S-SHADE algorithm Use binomial crossover to generate the trial vector u i using pop best and P opOld

15:

Evaluate u i using the real objective function.

16: if f (u i) < f (pop i) then 17: pop i ← u i 18: A ← x i , S CR ← CR i , S F ← F i 19:
end if 20: end for Algorithm 5 Pseudocode of the proposed approach

1: Archive A ← ∅ 2: S CR ← ∅, S F ← ∅ 3:
Set all values in M CR , and M F to 0.5 4: Generate a solution using CMA-ES for a number of evaluation α 5: Perform CS to generate a population pop of N P individuals for a number of evaluation λ 6: Train the RBF surrogate model using each individual in pop and its fitness 7: while current f es < Budget do 8:

if current f es < max f es and rand < P LV then Apply a linear reduction of the population

21:

Update the RBF model using the current population after each quarter of the budget 22: end while

Experimental results

Our proposal has been tested on the CEC 2011 test suite as well as the optimization problem at hand with its two versions. It has been compared with powerful stateof-the-art algorithms as JADE [START_REF] Zhang | JADE: adaptive differential evolution with optional external archive[END_REF], SADE [START_REF] Brest | Self-adaptive differential evolution algorithm in constrained real-parameter optimization[END_REF], EPSDE [START_REF] Wang | Differential evolution with composite trial vector generation strategies and control parameters[END_REF] and SHADE [START_REF] Tanabe | Improving the search performance of shade using linear population size reduction[END_REF].

First, the parameter setting of our algorithm is shown as well as the parameters of the compared algorithms, which are presented in Table 4.1

Comparison on CEC 2011

To study the importance of each component, an experimentation has been conducted to compare the proposed algorithm with other versions of the proposal. In the first version, the initialization method is disabled (variant-1). In the second version, the global search procedure is removed. The algorithm becomes a hybridization between the proposed initialization method and S-SHADE (variant-2).

Moreover, to show the clustering influence, K-means algorithm has been replaced by the FCM clustering algorithm (variant-3). Each column from Moreover, the comparison with the three variants of our proposal reveals that our proposition achieved better performance as well. It could outperform variant-1 and variant-2 in 6 functions, which shows the importance of the proposed initialization method and the global search. Variant-3 shows better performance when compared to variant-1 and variant-2. Even-though, the proposition can outperform it in 2 functions. It is observed that both clustering methods can significantly improve the performance of the proposed algorithm.

Comparison on the optimization problem at hand

The proposed algorithm has been run 30 times. The best, the mean, the median, the worst, and the standard deviation of each algorithm are collected. It is stated from Table 4.4 that the proposal achieves the best solution compared to the other algorithms. Besides, a stable performance is obtained, since the proposal could achieve the best solution in each run. 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Finally, as it has been mentioned above, the proposal has shown a competitive performance on the problems at hand. However, it can be noticed that the proposal combines several complicated algorithms. Despite the low computational time of the proposal, it is not straight-forward to be re-implemented due to the several parameters that have to be tuned before the optimization process. In the next sub-section, a novel hybrid DE algorithm is presented, where the new proposal is ultimately easy to understand and re-implement.

F5 Best -3.66E+01 -3.32E+01 -3.64E+01 -3.60E+01 -3.62E+01 -3.54E+01 -3.66E+01 -3.69E+01 Mean -3.60E+01 -3.22E+01 -3.56E+01 -3.22E+01 -3.47E+01 -3.45E+01 -

A hybrid differential evolution algorithm for real world problems (HDE)

It has been mentioned that several mutation strategies have been proposed to improve DE performance. Unfortunately, none of these strategies can be successful for all the optimization problems. In this proposition, we propose to exploit two mutation strategies of DE in one framework: one for exploration and one for exploitation. The novelty of this algorithm can be summarized as follows:

• A multi-criteria-based selection operator to obtain balance between exploration and exploitation.

• A new self-adaptive strategy based on a pheromone matrix to adapt the DE parameters.

• A restart strategy when early convergence is detected.

Mutation strategies

Indeed, multiple mutation strategies could achieve a resilient performance [START_REF] Cotta | Adaptive and multilevel metaheuristics[END_REF], [START_REF] Črepinšek | Exploration and exploitation in evolutionary algorithms: A survey[END_REF]. In the context of our hybridization, DE/current-to-best/1 and DE/rand/2 are used in order to enhance the exploitation and exploration capabilities of DE:

DE/current-to-best/1 is a powerful strategy that relies on the best current individual to evolve the population which accelerate the convergence rate. This strategy has shown promising performance in several works [START_REF] Das | Recent advances in differential evolution-an updated survey[END_REF], [START_REF] Das | Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems[END_REF]. In the context of enhancing exploration, DE/rand/2 evolves the current individual using five random parents from the population. DE/rand/2 behavior would potentially shift the population towards undiscovered search regions [START_REF] Blum | Hybrid metaheuristics: an emerging approach to optimization[END_REF], [START_REF] Das | Differential evolution: A survey of the state-of-the-art[END_REF].

M (i, j) = 0.5 * M (i, j) + 0.5 * (f (i) -f * (i)) (4.8)
Otherwise, it will be penalized as follows:

M (i, j) = 0.5 * M (i, j) -0.5 * (f (i) -f * (i)) (4.9)
where M is the pheromone matrix, i is the index of F parameter, j is the index of CR parameter, f (i) is the fitness of the parent individual and f * (i) is the fitness of the new generated offspring. Choose the best combination of F and CR from M 5:

Apply the mutation strategy

6:

Apply binomial crossover 7:

if the offspring is better than the parent then 8:

Replace the parent in pop with the offspring 9:

Reward the corresponding entry according to (4.8) Penalize the corresponding entry according to (4.9)

12:

end if 13: end for

Multi-criteria selection

The balance between exploration and exploitation is essential for successful algorithms [START_REF] Črepinšek | Exploration and exploitation in evolutionary algorithms: A survey[END_REF]. A very elitist based-selection strategy highly favors exploitation and may loss the diversity during the search process. In the contrast, adopting diversified selection strategy would consume a large number of iterations to reach a local optimum. In the attempt to overcome this situation, a multi-criteria selection strategy is proposed, which considers two criteria; the fitness value as an exploitation criterion and the distance to the centroid individual of the current population as a exploration criterion. The selection procedure is applied by performing a non-dominated sorting [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: Nsga-ii[END_REF] on a given population using these two conflicting criteria. Non-dominated sorting allows sorting individuals based on several criteria. Accordingly, the less dominated individuals are selected. In other words, the selection procedure takes only in account the best and the furthest individuals from the centroid point of the population. The proposed multi-criteria selection is depicted in Algorithm 7. [START_REF] Das | Differential evolution: A survey of the state-of-the-art[END_REF] and several works have been introduced to tackle this issue [START_REF] Tanabe | Success-history based parameter adaptation for differential evolution[END_REF], [START_REF] Mallipeddi | Differential evolution algorithm with ensemble of parameters and mutation strategies[END_REF]. The early convergence causes two issues:

• A stagnation issue due to a number of non-improving generations.

• A close distance between individuals which makes the algorithm more exploitative.

A simple technique is used to detect these two situations. The stagnation issue can be discovered by counting the non-successful generations at improving the best solution. While the close distance between individuals is detected by computing the standard deviation of each dimension. A small standard deviation value means that the whole population is stuck in one region, which potentially means early convergence. Our proposition stores at each generation an archive A of individuals that represents the previous state of the population before the early convergence.

When early convergence is detected, the archive A is used to visit new points in the search space as follows:

u i = x i + 0.5 * (A i -x i) (4.10)
where x i is the current individual, A i is the previous state of x i before early convergence. Here, u i is used in a binomial crossover with x i to generate a new point as:

x j i =      u j i if j = σ j or R j < 0.5 x G i,j otherwise (4.11)
where R j is a randomly generated number within the range [0,1], i is the current individual index, j is the current dimension and σ j is a randomly generated integer within the range [1,D]. The proposed restart strategy is performed on the p worst individuals of the population. The main aim here is to shift a fraction of the population towards new search areas. The restart strategy is depicted in Algorithm 8.

Combination of the algorithmic components

Each phase in the proposed approach is explained in this sub-section. First, a population pop of N P individuals is randomly generated, the archive A is initialized with pop and the pheromone matrix is filled with real values randomly Compute u i according to (4.10)

6:

Perform a binomial crossover according to (4.11)

7:

Update the current individual and compute its fitness 8: end for generated within the range [0, 1]. Afterwards, Algorithm 6 is performed on pop twice by using the two search operators DE/current-to-best/2 and DE/rand/2 to produce a new population pop * of 2*(N P) individuals. Then, the multi-criteria selection strategy is applied selecting the N P best individuals to be evolved in the next generations. In the case of a non-successful generation, a stagnation counter ST G counter is increased by one. In each generation, the average standard deviation of the population, denoted by mean std is computed as follows:

mean std = mean(std(i)) (4.12)
where std(i) is standard deviation value of the population in the dimension i. Apply Algorithm 6 on pop using DE/current-to-best/1 to generate pop1

If

5:

Apply Algorithm 6 on pop using DE/rand/2 to generate pop2 6:

pop * ← pop1 U pop2 7:
Apply Algorithm 7 on pop * and update pop 8:

Compute the average of standard deviation mean std as in (4.12)

9:
if the best individual is not improved or mean std < then ST G counter ← ST G counter -1

13:

A ← pop if ST G counter >= σ then 16:

Apply Algorithm 8 on pop using the archive A 17:

ST G counter ← 0 18:

end if 19: end while

Experimental results

This proposal has been tested on the CEC 2011 test suite and the first version

of the problem at hand. Indeed, our proposal has a small number of parameters which is illustrated in Table 4.8. Our hybrid algorithm has been compared with powerful state-of-the-art DE variants as well as CS [START_REF] Yang | Cuckoo search via Lévy flights[END_REF] and ABC [START_REF] Karaboga | A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm[END_REF] which have been proved to be efficient when solving engineering problems [START_REF] Quan-Ke Pan | An effective artificial bee colony algorithm for a real-world hybrid flowshop problem in steelmaking process[END_REF][START_REF] Tuba | Modified cuckoo search algorithm for unconstrained optimization problems[END_REF]. Furthermore, the algorithmic components of HDE are investigated by conducting another experimentation with three variants. The variants are expressed as follows:

• HDE1: HDE without the parameter adaptation strategy. F =0.5 and CR=0.9

• HDE2: HDE without the multi-criteria strategy. Instead, the selection procedure of DE is set.

• HDE3: HDE without the restart strategy. This sub-section represents of our algorithm performance on the problem at hand.

The results can be seen in Table 4.13 and 4.14, where unfortunately our hybrid proposal have shown relatively worse results on the problem at hand in terms of mean compared to HOA. However, compared to the state-of-the-art DE algorithms, it could achieve promising results. Moreover, it can obtain the best solution known so far, which has been obtained by the previous algorithm.

Finally, as mentioned above, the contribution of this hybrid DE algorithm consists in combining two mutation strategies, and a multi-criteria selection strategy to potentially achieve balance between exploration and exploitation. Moreover, our proposal includes also a self-adaptive strategy to control F and CR. This strategy has shown promising success in improving the final results. This point

Self-adaptive algorithms

Due to the rapid developement of optimization problems in terms of complex landscapes and high dimensionality, DE may not always achieve acceptable solutions in a reasonable time [START_REF] Dawoud Al-Dabbagh | Algorithmic design issues in adaptive differential evolution schemes: review and taxonomy[END_REF]. Indeed, it has been shown by several studies that DE denoted as S F at each generation as follows:

mean L (S F) = F ∈S F F 2 F ∈S F F (4.13)
Then, a location parameter µ F is computed as follows:

µ F = (1 -c).µ F + c.mean L (4.14)
where c is is a positive constant between 0 and 1 and µ F is initialized by 0.5.

Afterwards, F value parameter for each individual is generated using Cauchy distribution as follows:

F i = randc(µ F , 0.1); (4.15)
It has been stated that this procedure forces the algorithm to produce permanently large values for F which ultimately decrease the exploitation capability [START_REF] Zhang | JADE: adaptive differential evolution with optional external archive[END_REF]. In order to achieve balance between exploration and exploitation, a switching mechanism randomly chooses between this technique and a simple procedure [START_REF] Brest | Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems[END_REF] to produce smaller F values as follows: if S F is not empty then 5:

F = 0.
Compute the Lehmer mean of S F using (4.13)

6:

Compute the location parameter µ F using (4.14)

7:

Generate a different value F for each individual using Cauchy distribution with µ F 8:

else 9:
Generate a different value F for each individual using Cauchy distribution with µ F = 0.5 Generate a different value F for each individual using (4.16) 13: end if

A reinforcement learning technique to adapt CR parameter

A novel yet simple reinforcement learning technique is proposed to efficiently control CR parameter for each dimension. After applying the crossover between the offspring population and the parents, a data structure called M atrixCR is exploited to record whether a given dimension is taken from the parent or from the offspring. Then, the evaluation phase takes place. If an individual i is improved, a fitness reward reward(i) is computed as follows:

reward(i) = 0.5 * reward(i) + 0.5 * (f (i) -f * (i)) (4.17)
Otherwise, it will be penalized as follows:

reward(i) = 0.5 * reward(i) -0.5 * (f (i) -f * (i)) (4.18)
where f (i) and f * (i) are the fitness of the parent and the new individual respectively. Then, it will be normalized as follows:

N ormReward(i) = reward(i) -min(reward) max(reward) -min(reward) (4.19)
Afterwards, a parent and offspring scores are computed for each dimension using This proposition is considered as a dimension-based parameter adaptation strategy. To the best of our knowledge, it is the first work that adapts CR parameter for each dimension instead of each individual. Indeed, having a unified CR value for all the dimensions might not be always successful due to the potential weak correlation between dimensions. Moreover, although parameter adaptation strategies does not involve a serious computational burden [START_REF] Kai Qin | Differential evolution algorithm with strategy adaptation for global numerical optimization[END_REF][START_REF] Brest | Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems[END_REF], other strategies in the litterature may need serious computational time [START_REF] Das | Recent advances in differential evolution-an updated survey[END_REF] as noticed in Algorithm 11 Crossover parameter adaptation strategy if M atrixCR(j, i) = 0 then end if 20: end while [START_REF] Mallipeddi | Harmony search based parameter ensemble adaptation for differential evolution[END_REF] where DE parameters are adapted using the optimization process of Harmony Search (HS). Therefore, adapting the parameters for each dimension can considerably reduce the computational time involved in the learning process of the algorithm.

Combination of the algorithmic components

Initially, our algorithm randomly generates F values (for each individual) and CR values (for each dimension) to be applied. Afterwards, a simple DE algorithm is applied involving DE/current-to-pbest/1 [START_REF] Zhang | JADE: adaptive differential evolution with optional external archive[END_REF] which is expressed as follows:

v G+1 i = x G best + F .(x G pbest -x G i) + F .(x G r1 -x G r2)
where x G pbest is one of the best (100p) percent of the solutions in the current population, x G r1 and x G r2 are randomly chosen individuals from the current population.

It is important to point out that p represent the fraction of the best individuals to be used in the mutation. This mutation strategy has been succesfully applied within several DE variants [START_REF] Tanabe | Success-history based parameter adaptation for differential evolution[END_REF][START_REF] Tanabe | Improving the search performance of shade using linear population size reduction[END_REF][START_REF] Zhang | JADE: adaptive differential evolution with optional external archive[END_REF] thanks to its balance capability between exploration and exploitation. However, our proposition picks individuals randomly only from the current population (no archive), which simplifies the algorithm and reduces its memory complexity. Furthermore, the success of any proposed parameter adaptation strategy depends on a mutation strategy that slightly favors exploitation [START_REF] Segura | On the adaptation of the mutation scale factor in differential evolution[END_REF]. Following the same context, we have set p=0.02

(p ∈ [0.05,0.2]
in other proposals [START_REF] Tanabe | Improving the search performance of shade using linear population size reduction[END_REF][START_REF] Zhang | JADE: adaptive differential evolution with optional external archive[END_REF]). Then, a binomial crossover is performed to generate vectors. During this phase, M atrixCR is used to record whether a given dimension in the trial to be generated is taken from the parent or the offspring. This procedure is applied as an initial step to adapt CR parameter for the next generation. After performing one generation of DE, the proposed parameter adaptaion strategy takes place to generate F and CR for the next generation. Finally, a linear reduction of the population size is performed. It eliminates a fraction of the worst individuals to accelerate the convergence rate during the search process [START_REF] Tanabe | Improving the search performance of shade using linear population size reduction[END_REF].

The new population size is computed as follows:

N P G+1 = round(N P min -N P init M axIT .IT + N P init) (4.20)
where N P min is the smallest possible population size, N P init is the starting population size, M axIT is the maximum number of iterations and IT is the current iteration. The proposition is depicted in Algorithm 12.

Experimental results

An evaluation of our proposal is presented on the first version of the problem at hand. Similarly, our algorithm is evaluated as well on the CEC 2011 test suite. The algorithm is compared with several state-of-the-art DE variants. The parameter setting of the compared algorithms are given in Table 4.15. Apply Algorithm 1 to generate F value for each individual

6:
Apply Algorithm 2 to generate CR value for each dimension

7:
for each individuals i in popold do 8:

Apply the mutation strategy to generate mutant i j 9:

while j < dim do 10:

if rand < CR(j) then 11:

u G+1 j ← popold i j 12:
M atrixCR(i, j) ←

← mutant i j //crossover procedure 15:

M atrixCR(i, j) ← 0 if u G+1 j is better than popold i j then 20:

pop i j ← u G+1 j 21:
Update the corresponding entry in reward according to (2.

Penalize the corresponding entry in reward according to (2.15)

24:

end if

25:

Normalize reward according to (2.16)

26:

Apply linear reduction of the population size to eliminate a fraction of the worst individuals using (3.1)

27:

end for 28: end while

Comparison on CEC 2011 benchmark

The results of our proposal as well as the other algorithms are depicted in Table 4. [START_REF] Črepinšek | Exploration and exploitation in evolutionary algorithms: A survey[END_REF]. This table shows the best and mean values of 25 runs of each algorithm for each problem (CEC 2011 experimentation protocol). The best fitness found for each function is in bold. Mean results that are significantly better than the ones of the other algorithms, according to the Kruskal-Wallis statistical test at 95% confidence level followed by a Tukey-Kramer post hoc test, are also in bold.

The results presented in Table 4.17 show that our proposal outperforms the other DE variants. It can significantly outperform SHADE in 8 functions, SADE in 10 functions, JADE in 6 functions and EPSDE in 13 functions.

Comparison with variants of the proposition

In order to discuss the influence of each algorithmic component on the performance of our proposition, a comparative study has been conducted. The first variant is without linear size reduction is named DADE1, and the second is the proposal without the proposed control parameter strategy named DADE2. To conduct the comparison, the convergence rate of the aforementioned variants is presented, where an ensemble of functions has been picked to show the convergence rate of each variant. The results reveal that DADE1 can obtain similar performance compared to our 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 algorithm, which can be concluded from Figure 4.5, 4.6, 4.7, 4.8, 4.9 and 4.10.

F5 Best -3.66E+01 -3.32E+01 -3.64E+01 -3.60E+01 -3.70E+01 Mean -3.60E+01 -3.22E+01 -3.56E+01 -3.22E+01 -3.36E+01 F6 Best -2.91E+01 -2.63E+01 -2.92E+01 -2.88E+01 -2.91E+01 Mean -2.90E+01 -2.41E+01 -2.90E+01 -2.01E+01 -2.76E+01 F7 Best 9.06E-01 1.24E+00 9.10E-01 1.12E+00 6.30E-01 Mean 1.12E+00 1.37E+00 1.17E+00 1.30E+00 1.04E-01 F8 Best 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02 Mean 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02 F9 Best 1.14E+03 7.69E+02 1.13E+03 3.98E+04 2.82E+04 Mean 2.22E+03 1.73E+03 2.40E+03 9.28E+04 8.22E+04 F10 Best -2.18E+01 -2.18E+01 -2.18E+01 -2.02E+01 -2.18E+01 Mean -2.16E+01 -2.16E+01 -2.14E+01 -1.74E+01 -2.16E+01 F11 Best 5.15E+04 5.12E+04 5.15E+04 5.21E+04 5.17E+04 Mean 5.32E+04 5.21E+04 5.24E+04 5.86E+04 5.25E+04 F12 Best 1.07E+06 1.07E+06 1.07E+06 1.07E+06 1.08E+06 Mean 1.10E+06 1.09E+06 1.07E+06 1.09E+06 1.22E+06 F13 Best 1.55E+04 1.54E+04 1.54E+04 1.54E+04 1.54E+04 Mean 1.55E+04 1.54E+04 1.54E+04 1.54E+04 1.54E+04 F14 Best 1.80E+04 1.81E+04 1.80E+04 1.83E+04 1.80E+04 Mean 1.81E+04 1.81E+04 1.83E+04 1.86E+04 1.81E+04 F15 Best 3.27E+04 3.28E+04 3.27E+04 3.29E+04 3.27E+04 Mean 3.27E+04 3.28E+04 3.29E+04 3.30E+04 3.27E+04 F16 Best 1.26E+05 1.26E+05 1.26E+05 1.31E+05 1.25E+05 Mean 1.29E+05 1.28E+05 1.33E+05 1.42E+05 1.26E+05 F17 Best 1.88E+08 1.87E+06 1.87E+06 1.93E+06 1.87E+06 Mean 1.91E+06 1.90E+06 1.91E+06 2.06E+06 1
Moreover, Figure 4.3 shows that DADE2 outperforms DADE for the function 9. It can be noticed as well that DADE1 has a slower convergence rate when compared with the other variants. Indeed, these results show that our proposed control parameter strategy has a great impact on the proposition performance.

0 50 100 150 -9 -8 -7 -6 -5 -4 -3 -2 -1 DADE

An eigenvector-enhanced parallel adaptive differential evolution for electric motor design (PEADE)

This sub-section is devoted to explain our proposal entitled Parallel eigenvectorenhanced adaptive DE (PEADE). The main contribution of PEADE can be seen as:

• The proposition of a new adaptive differential evolution algorithm.

• The parallelization of the approach using GPU platforms.

• The topology optimization of a recent electric motor.

Modified Pheromone matrix-based adaptation strategy

The first component of PEADE is a modified version of PMS, which was proposed in HDE (see Section 1). Our modified strategy relies on a matrix called Pheromone After the learning phase, the next phase called "deduction phase" takes place. A new combination for the population is computed using the weighted Lehmer mean.

The weighted Lehmer mean is applied using the best 10 combinations. Indeed, using the weighted Lehmer mean allows generating new combination closed to the combinations that has highest weight (highest score), which can not achieved applying the arithmetic mean. The new combination is generated as follows: where i and j are the k th best indices of P M respectively.

F = n k=1 P M k (i, j).(i/10) 2 n k=1 P M k (i, j).(i/10) (4.

The proposed mutation framework

A simple mutation framework is introduced in order to gradually enhance the exploitation of the algorithm. The algorithm starts with DE/current-to-pbest/1 which is presented as follows:

v G+1 i = x G i + F.(x G pbest -x G i) + F.(x G r1 -x G r2) (4.24)
where x G pbest is one of the p% best individuals in the current population. DE/currentto-pbest/1 has been introduced in [START_REF] Zhang | Jade: adaptive differential evolution with optional external archive[END_REF], where a balance between exploration and exploitation has been achieved. However, it has been stated that while linear reduction of the population is applied, this strategy performance can be limited when very small population size is present. Accordingly, a high possibility that the difference between x G pbest and x G i is zero may occur. In other words, the parent vector can be one of the x pbest individuals. As a consequence, the mutation would perturb the parent vector using two random individuals from the population. To potentially overcome this scenario, a modified mutation equation called DE/current-to-centroid/1 is introduced. DE/current-to-centroid/1 computes the centroid individual of the p% best individuals using arithmetic mean. Afterwards, the centroid will be involved in equation (4.24) instead of x G pbest . This scenario would allow all the individuals to evolve in the same manner, where they would move toward a promising region that shares the information of all x pbest . Besides, a switching technique to choose between the two strategies is proposed.

SwitchingP robability parameter is introduced to select DE/current-to-pbest/1 during the first iterations. Then, gradually, SwitchingP robability is decreased to favor DE/current-to-centroid/1 in the last phases of the search process in order to enhance the exploitation capability of the approach. The general framework is summarized in Algorithm 13.

Algorithm 13

The proposed mutation framework Apply DE/current-to-pbest/1 5: else

6:

Apply DE/current-to-centroid/1 7: end if

The proposed crossover framework

A recent crossover search operator called eigenvector-based crossover is introduced. Indeed, eigenvector-based crossover can be appropriate when tackling landscapes of highly correlated individuals. According to [START_REF] Das | Differential evolution: a survey of the state-of-the-art[END_REF], exploiting information such as mean value, variance and covariance matrix during the crossover phase may have an impact on the final results. It has been shown that the normal binomial crossover does not take such information in consideration [START_REF] Wang | Differential evolution based on covariance matrix learning and bimodal distribution parameter setting[END_REF]. In order to relax DE dependence on the original coordinate system, a covariance matrix is computed to provide an eigen coordinate system [START_REF] Guo | A self-optimization approach for l-shade incorporated with eigenvectorbased crossover and successful-parent-selecting framework on cec 2015 benchmark set[END_REF][START_REF] Wang | Differential evolution based on covariance matrix learning and bimodal distribution parameter setting[END_REF]. The new system is then used to apply the crossover. The eigenvector-based crossover can be explained in the following steps:

Step 1: Calculate the covariance matrix C of the current population.

Step 2: Perform eigen decomposition as follows:

C = BD 2 B T (4.25)
where B and B T are orthogonal matrices and D is a diagonal matrix composed of Eigen values.

Step 3: Move the parent and the mutant vectors to the new cordinate system as follows:

x i,G = B T .x i,G (4.26)
v i,G = B T .v i,G (4.27)
Step 4: Perform the binomial crossover on x i,G and v i,G :

u i,j,G+1 =      v i,j,G if j = σ j or R j < CR x i,j,G otherwise (4.28)
Step 5: Transfer u i,j,G+1 to the original coordinate system as follows:

u i,j,G+1 = B.u i,j,G+1 (4.29)
The contribution of the eigenvector-based crossover on DE performance has been deeply investigated in several studies, such as [START_REF] Guo | A self-optimization approach for l-shade incorporated with eigenvectorbased crossover and successful-parent-selecting framework on cec 2015 benchmark set[END_REF][START_REF] Guo | Enhancing differential evolution utilizing eigenvector-based crossover operator[END_REF]. However, we have noticed that applying this crossover ignoring its powerful exploitation capability can make the algorithm stuck in a local optimum. In our study, the normal binomial crossover can be seen as an exploration phase of PEADE. We propose to hybridize the two search operators in a single framework, where the exploitation is gradually enhanced by decreasing SwitchingP robability parameter that favors the eigenvector-based crossover as time goes by. Our proposed crossover framework can be summarized in Algorithm 14.

Algorithm 14

The proposed crossover framework Apply binomial crossover 5: else

6:

Apply eigenvector-based crossover 7: end if

Combination of the algorithmic components

This subsection is devoted to present how the explained algorithmic components are combined for our proposal.

First, a population of N P individuals is generated and SwitchingP robability is initialized with 0.9. Afterwards, the proposed parameter adaptation strategy is performed. In the learning phase, a randomly generated pair (F /CR) is applied on the population. The objective of this step is to update P M in order to exploit its results afterwards. Using a chosen combination, the mutation framework is applied, where DE/current-to-pbest/1 is favored to be applied since SwitchingP robability value is large during the first iterations. Then, the crossover framework phase takes place favoring the binomial crossover to be performed at the beginning. The eigenvector-based crossover is favored in the last iterations since it enhances DE exploitation capability on landscapes of highly correlated variables. It should be mentioned that SwitchingP robability is linearly decreased using the following equation:

SwitchingP robability = max 0, 0.9 - CurrentIteration Budget (4.30)
At the end of each iteration of PEADE, a linear reduction of the population size is applied, where a fraction of the worst individuals are removed. This procedure tends to be useful in several proposals such as [4,[START_REF] Guo | A self-optimization approach for l-shade incorporated with eigenvectorbased crossover and successful-parent-selecting framework on cec 2015 benchmark set[END_REF][START_REF] Tanabe | Improving the search performance of shade using linear population size reduction[END_REF], where it could accelerate the convergence rate. The new population size is computed as follows:

N P G+1 = round(N P min -N P init Budget .CurrentIteration + N P init) (4.31)
where N P min is the smallest population size, N P init is the initial population size, Budget is the maximum number of iterations and CurrentIteration is the current iteration. The whole approach can be depicted in Algorithm 15.

formance is investigated by conducting a comparison with recent state-of-the-art adaptive DE such as JADE [START_REF] Zhang | Jade: adaptive differential evolution with optional external archive[END_REF], SHADE [START_REF] Tanabe | Success-history based parameter adaptation for differential evolution[END_REF], L-SHADE [START_REF] Tanabe | Improving the search performance of shade using linear population size reduction[END_REF], SPS-EIG-LSHADE [START_REF] Guo | A self-optimization approach for l-shade incorporated with eigenvectorbased crossover and successful-parent-selecting framework on cec 2015 benchmark set[END_REF] and our hybrid DE previously proposed since it also includes a parameter adaptation strategy and we call it (HDE). Besides, another comparison is performed with several variants of PEADE to show how the algorithmic components influence PEADE performance. PEADE variants are set as follows:

• PEADE 1: the proposal without eigenvectors-based crossover.

• PEADE 2: the proposal with only DE/current-to-pbest/1.

• PEADE 3: the proposal without the proposed parameter adaptation strategy.

Finally, a comparison in terms of acceleration time is conducted with the parallel version. The main reason behind proposing a parallel implementation is the high computational time of some components of PEADE. We have noticed that computing covariance matrix, the eigenvectors and the evaluation of individuals with some problems from CEC 2011 test suite are time-consuming. The algorithmic structure of PEADE has not been changed while implementing the parallel version.

Comparison on CEC 2011

All the components have been parallelized using separate GPU kernels while CPU launches them in the correct order. On the one hand, seven kernels have been introduced for the parallel version. Six kernels of N P blocks and dim threads have been implemented for the initialization, the mutations, the crossover and the evaluation, whereas one kernel of N P threads has been implemented for the parameter adaptation strategy. On the other hand, three procedures has been implemented using different CUDA libraries. The procedures are depicted as follows:

• Covariance matrix procedure: it is implemented to compute covariance matrix, where CUDA libraries such as CUBLAS and THRUST are involved.

• Eigenvectors procedure: it is implemented to compute the eigenvectors of the computed covariance matrix, where cuSolver CUDA library has been exploited.

• Linear reduction procedure: It has been stated that erasing the worst individuals from the population can be computationally expensive since it involves an intensive memory access. This procedure has been proposed to compute the new reduced population size. Then, the population is sorted based on the fitness of each individual using thrust CUDA library. Finally, the worst individuals will be placed at the end and they will be just ignored. Besides, this procedure linearly reduce SwitchingP robability value.

Comparison with the parallel implementation

The results of parallel version of PEADE are presented in this sub-section. It has been noticed that some problems of the CEC 2011 test suite are appropriate to be parallelized such as functions 12, 17 and 18. It can be stated from Table 4.25 that the sequential PEADE can slightly achieve the same effeciency compared to the parallel version in case NP=400. Neverthless, the computational time decreases when we increase the population size achieving a speed up of 2.75x when N P = 1000. The acceleration achieved in function 18 is investigated. It can be observed that the computational time decreases each time we increase the population size, which is justified thanks to the high occupation of GPU device. The parallel implementation could achieve an approximated speedup from 3x up to 6.17x. Similarly, Table 4.25 shows the acceleration achieved for function 12, where D = 240. It has been noticed that the computational time decreases clearly, which is ensured by increasing the population size and the high dimensionality of the given problem (high occupation of GPU device). The parallel implementation could obtain an approximated speedup from 7x up to 24.24x.

Hybrid parameter adaptation strategy for differential evolution to solve real-world problems (HADE)

This sub-section is devoted to investigate the influence of a novel hybrid strategy for controling DE parameters. Besides, a modified mutation strategy and a novel population reduction strategy are introduced.

The proposed mutation strategy

Several proposals have been introduced to achieve a satisfying balance between exploration and exploitation. For instance, sub-population-based mutation strategies, where the solutions involved in the mutation can only be from their associated sub-population [START_REF] Liao | Improving differential evolution with ring topology-based mutation operators[END_REF][START_REF] Mallipeddi | Differential evolution algorithm with ensemble of parameters and mutation strategies[END_REF]. A different concept is to use one of the p best solutions in the population, in order to decrease the mutation greediness [START_REF] Tanabe | Improving the search performance of shade using linear population size reduction[END_REF][START_REF] Tanabe | Success-history based parameter adaptation for differential evolution[END_REF][START_REF] Zhang | JADE: adaptive differential evolution with optional external archive[END_REF]. In the same context, the mutation strategy introduced in this algorithm attempts to achieve this balance. However, according to [START_REF] Segura | On the adaptation of the mutation scale factor in differential evolution[END_REF], parameter adaptation strategies should be often associated with a mutation strategy that slightly favors exploitation. Based on this recommendation, the proposed mutation equation can be described as follows:

v G+1 i = x G i + F.(x G pbest -x G i) + F.(x G RandBetter -x G RandW orse) (4.32)
where x G pbest is randomly chosen among a fraction p of the best solutions in the current population. x G RandBetter and x G RandW orse are randomly chosen in the current population such that RandBetter = RandW orse = i and the fitness of x G RandBetter ered in S F and S CR respectively, and a weighted Lehmer mean is computed for F and CR as follows:

W eighted Lehmar (S F) = |S F | i=1 (W i * F i) 2 |S F | i=1 (W i * F i) (4.33) W eighted Lehmar (S CR) = |S F | i=1 (W i * CR i) 2 |S F | i=1 (W i * CR i) (4.34)
where S F and S CR represent the sets of successful F and CR respectively and

W i = ∆f i |S F | l=1 ∆f l (4.35)
where ∆f i is the fitness difference between the offspring v i and the parent • Step 5: generate new F k and CR k using cauchy distribution as follows:

F k = Cauchy(M F r , 0 .

The parabolic reduction scheme

It has been proven in [START_REF] Meng | Pade: An enhanced differential evolution algorithm with novel control parameter adaptation schemes for numerical optimization[END_REF] that the linear reduction of the population size [START_REF] Tanabe | Improving the search performance of shade using linear population size reduction[END_REF] implies a quick reduction of the population size at the beginning of the search process. As a result, a bad exposition of the landscape problem may occur. The parabolic reduction scheme has been proposed in [START_REF] Meng | Pade: An enhanced differential evolution algorithm with novel control parameter adaptation schemes for numerical optimization[END_REF] as an attempt to overcome this issue. The scheme can be described as follows: where P S G+1 is the new population size, P S min is the minimum population size, P S max is the maximum population size, nf e is the number of function evaluations already used, nf e max is the total budget.

The algorithmic combination

This sub-section describes the whole proposal. Firstly, the parameter adaptation strategy is performed at the beginning of each iteration in the main loop of DE.

For the first 10% of the budget, step 1 is applied here as an exploration phase, as well. There are nine parameters in our proposal, which are the maximum pop-

Overall Comparison of the algorithms

In this section, the proposed algorithmic components are shown in Table 4.32 to summarize the metaheuristics and the contribution of each proposal.

An overall comparison of the introduced proposals is presented. Since the context of this thesis is to optimize real-world applications, it is better to present a comprehensive comparison using the CEC 2011 test suite. All the proposed algorithms are concerned in the comparison, where finally, a statistical test is performed in order to prove their advantage. As it was used in the experimentation phase of each proposal, the comparative table 4.33 is introduced to present the results of each algorithm on each problem. The mean results of each algorithm are in bold when it can significantly outperform the other algorithms.

Finally, a Friedman test is performed, where the result of each proposal is computed. Table 4

Conclusion

In this chapter, several hybrid and self-adpative algorithms have been introduced.

It can be stated that our proposals mainly rely on DE algorithm, which is shown to be successful when an appropriate adjustment is applied on its canonical structure.

Furthermore, several strategies have been considered in order to balance between exploration and exploitation phases. These strategies can be represented as:

• Integrating intelligent choice techniques between search operators, as it can be stated in HOA and HDE.

Chapter 5

Conclusion and perspectives

Nowadays, numerous real-world problems are considered as optimization problems due to the existence of one or many objective functions to be optimized. These problems represent an actual challenge to propose new efficient algorithms providing high quality solutions. In this context, metaheuristics have become well-known optimization algorithms thanks to their relatively simple structure and their low computational time. Indeed, they have shown to be a promising alternative to common mathematical methods.

Furthermore, metaheuristics have been recently improved by integrating several considerations, such as the combination of algorithms, parameter tuning/adaptation, proposing new search operators etc. This thesis is mainly focused on proposing new optimization algorithms by considering the aforementioned issues. Besides, it can be sometimes noticed that a given proposal is computationally time-consuming.

In order to overcome this issue, a parallel version of the concerned algorithm is implemented when a serious computational burden is stated.

The first part of this thesis has covered on the one hand several classic algo- The third part represents the major chapter of this thesis. Following the considerations mentioned above, we have proposed five optimization algorithms. The contribution of these algorithms can be stated as follows:

• Efficient hybridization designs between metaheuristics and/or search operators.

• The adoption of recent search operators within proposed frameworks in order to provide better results.

• The proposition of novel parameter adaptation strategies.

• The optimization of a recent engineering problem.

Our proposals have been described in details, and a comprehensive comparison has been conducted with recent state-of-the-art optimization algorithms. Our proposals are mainly designed to optimize real-world applications, where the problem at hand is optimized as well as the well-known CEC 2011 test suite. Finally, an overall comparison between the proposals has been performed.

This thesis has covered several improved optimization algorithms to solve a diverse set of real-world optimization problems. However, several research directions can be considered in the near future. Our perspectives can be organized as follows:

• Automatic generation of optimization algorithms: it can be noticed that metaheuristics rely on a static structure. Indeed, predefined search operators are set and then applied for a given problem. Our aim is to exploit sev- • Solving other real-world problems: real-world applications have emerged in numerous fields, such as mechanical engineering, transportation, chemistry, biology, security etc. Our aim is to test our proposals in order to investigate their scalability and resilience when different problems are handled.

Moreover, parallel versions of the proposals could be proposed using graphics processing units (GPU) where a serious computational time is noticed.

[6]

 6 Generally speaking, population-based hybridization models are frequently used. Population-based hybridization methods apply an explorative population based on a global search procedure to identify the promising regions of the search space. Then, a local search procedure is performed to quickly obtain better solutions. However, there are other prominent examples which will be illustrated in this sub-section. A real-world application called digital filter design problem has been optimized by a hybrid algorithm based on DE and CMA-ES [89]. On the one hand, DE performs the global exploration and optimizes the parameters of exponential functions that define the bounded search space. On the other hand, CMA-ES is used as a local search engine. Its initial search point and boundary constraint estimates are provided by DE. Additionally, periodic feedback from CMA-ES is provided to the DE. The goal of the algorithm is to optimize the finite impulse response (FIR) filter coefficients which minimizes the error between the actual and the ideal filter frequency response. In the same context, a different hybridization has been introduced between an adaptive version of DE and CMAES [63]. The hybridization called LSHADE-SPACMA, where a modified version of CMAES undergoes the crossover operation to improve the exploration capability of DE. The performance of LSHADE-SPACMA has been investigated on CEC 2017 test suite comparing the hybridization to CMAES and LSHADE. A hybrid CMAES/CS algorithm has been proposed in [103]. It has been stated that the self adaptive mutation distribution and the cumulative path of CMAES can ultimately speed up the convergence rate of CS. Comparative experiments using the CEC 2008 test suite and one engineering problem of CEC 2011 has been performed. The results reveal the advantage of the hybridization compared to CS and CMAES.

 The experimentation has been performed by comparing CPU implementation with GPU local implementation, and GPU AWS implementation. Their results show that the GPU AWS based PSO runs 80 times faster than the sequential algorithm, and 64 times faster compared to GPU local implementation.A parallel DE algorithm has been proposed in[START_REF] Zhou | Elite opposition-based differential evolution for solving large-scale optimization problems and its implementation on GPU[END_REF], which was combined with an elite opposition-based learning strategy (EOBL). The proposed parallel EOBDE includes two parts which are DE and EOBL strategy[START_REF] Hamid R Tizhoosh | Opposition-based learning: A new scheme for machine intelligence[END_REF]. First, a population is randomly initialized (iteration level). Then, EOBL is applied. The strategy chooses the best 20% individuals as a set of elite individuals. Then, opposite solutions are generated according to a model mentioned in[START_REF] Zhou | Elite opposition-based differential evolution for solving large-scale optimization problems and its implementation on GPU[END_REF]. Finally, the best individuals are inserted in the population. The algorithm handles these operations by implementing three kernels: the first kernel finds maximum and minimum values of each dimension. The second kernel generates opposite solutions of the elite individuals. The last one selects the best individuals to insert them into the next population. To perform this task in parallel, 2 x NP individuals are assigned to each thread block (iteration level). Each individual is compared with other 2 x NP -1 individuals to calculate its rank value in order to find the members of the new population. Afterwards, DE is applied. To perform DE operators, individuals are represented by threads within a separate kernel. This Algorithm has been tested on 10 functions with dimensions 500 and 1000. Besides, it has been compared with four algorithms. The results show that EOBDE achieves the best results compared to the other algorithms. Besides, EOBDE shows an average speedup of 4.475x compared to the sequential implementation.A hybridization between DE and Backtracking Search Optimization Algorithm (BSA) and Simulated Annealing (SA) has been proposed in[START_REF] Brévilliers | Fast hybrid BSA-DE-SA algorithm on GPU[END_REF]. The algorithm consists mainly in two stages. The first stage consists in five phases. The first, called Selection-I is a backtracking strategy to store the old population of the previous generation (history). This populations is replaced by the current population with a probability of 0.5. Afterwards, the mutation phase takes place, where a hybrid equation is proposed by combining mutation equations of both BSA and DE/target-to-best/1 in which a SA schedule is proposed to decrease the scaling factor. Next, two crossover strategies are randomly used (with probability 0.5) to generate a new trial population T from the current and the mutant population.The first strategy depends on a parameter that controls how many dimensions of the mutant will be incorporated in the trial individual. The second strategy ensures that only one dimension from the mutant individual will be concerned in the new trial individual. Finally, in Selection-II phase, T i replaces an individual P i if it is better. The second stage performs a DE/target-to-best/1 iteration on the worst individual. In their GPU based implementation, for the most of the phases (for example, mutation, evaluation) the algorithm assigns to each individual a block (iteration level), and to each dimension a thread (solution level) to compute it (kernel of N blocks of D threads). However, sometimes another data decomposition is needed: for example, a thread is assigned to each individual in order to update the global best solution.

1 . 3 .

 13 Fitness function evaluation: each thread block processes a set of dimensions of each individual (iteration level). Within each block, each thread processes several variables (bucket). Each processed bucket is composed of interleaved elements to make thread warps access consecutive elements (coalesced memory). Afterwards, a reduction operation is performed to compute the partial result for each thread. The final fitness function of an individual is then computed by another reduction operation. 2. Crossover: each thread processes a bucket of pairs of dimensions (solution level). Then, it writes the result in the memory. In fact, the crossover operation is designed such that each thread crosses BucketSize elements of the two parent individuals. It means that each block generates T hreadsP erBlock * BucketSize elements for the new individual. In the proposed design, n crossing operations are performed in parallel to increase the thread parallelism where n is the number of individuals. Another operation has been parallelized which is the Euclidean distance to select the parents to be crossed. Local search: the operations that have been parallelized are: individual change operations, bias values increment and decrement operations, individual substitution in the population, and fitness evaluation.

Figure 3 . 1 :

 31 Figure 3.1: Cross-section view of the considered high-speed PMSM.

Figure 3 . 2 :

 32 Figure 3.2: Field lines and flux density distribution on the high speed PMSM.

10 : 11 : 12 : 13 : 18 :

 1011121318 Generate K central individuals of pop using Kmeans Generate a step size for each center using Lévy flights Generate new individuals according to 4.3 Evaluate individuals and select the N P best individuals of the population 14: current f es ← current f es + K Perform S-SHADE (pop, S CR , S F)

4. 1 . 2 . 2

 122 Pheromone matrix based self-adaptive strategy Recent studies have shown the importance of controlling DE parameters on the final results. To this issue, we propose pheromone matrix based self-adaptive (PMS) strategy to enhance the performance of DE. PMS provides a set of discrete values of F and CR. Each individual selects the best F and CR. After, it updates the pheromone matrix entry that corresponds to the chosen combination based on its performance. Updating the pheromone matrix makes the algorithm more cooperative by sharing the information with the other individuals. If the chosen combination could improve the current individual, it will be rewarded by adding a pheromone quantity to the corresponding matrix entry. This operation is applied as follows:

Algorithm 7 3 : 4 :

 734 Multi-criteria selection strategy 1: Input: population pop of N P individuals, fitness 2: Output: pop * of N P individuals Compute the centroid point of pop Compute the distance of each individual to the centroid point 5: Apply a non-dominated sorting on pop 6: Choose the N best ranked individuals 4.1.2.4 The proposed restart strategy DE algorithm can suffer from an early convergence rate

Algorithm 8 restart strategy 1 : 2 :: pop 3 :

 8123 The Input: population pop of N P individuals OutputChoose p worst individuals from pop 4: for each individual among the N P/4 worst individuals do 5:

10 :

 10 ST G counter ← ST G counter + 1

N

 ormReward(i), which stores the reward of all individuals. The objective is to estimate the contribution of the parents and offspring in improving the fitness. If the parent weight is larger than the offspring one, then the CR value for the given dimension is decreased. This scenario would force sharing the value of the parent for this dimension during the crossover procedure. Otherwise, the CR value is increased. Computing the weights and updating CR parameters are depicted inAlgorithm 11.

6 : 8 :

 68 parent weight (i) + = N ormReward(j) of f spring weight (i) + = N ormReward(j) if parent weight (i) = of f spring weight (i) then if parent weight (i) < of f spring weight (i) then 15:CR(i) = 0.6 + rand *(0.3)

Table 4 . 15 :Algorithm 12 1 :

 415121 Parameter setting of the compared algorithms Algorithm Parameters Our proposition P opSize = dim*7, λ = 0.5, p = 0.02, c = 0Dimension-based adaptive differential evolution (DADE) Input: population pop of P opSize individuals, dim, M atrixCR, reward 2: Output: pop 3: while Budget is not consumed do

Figure 4 .

 4 1, 4.2 and 4.4 represents the convergance rate of DADE and its variants, where the horizontal axe represents the fitness value and the vertical one represents the number of iterations. DADE exhibits a quicker convergence rate towards the best solutions in functions 2, 5 and 10 compared to its variants.

 DADE1 DADE2

Figure 4 . 1 :

 41 Figure 4.1: Convergence rate of DADE variants in function 2

 DADE1 DADE2

Figure 4 . 2 :Figure 4 . 3 :

 4243 Figure 4.2: Convergence rate of DADE variants in function 5

Figure 4 . 4 :Figure 4 . 5 :

 4445 Figure 4.4: Convergence rate of DADE variants in function 10

Figure 4 . 6 :Figure 4 . 7 :

 4647 Figure 4.6: Convergence rate of DADE variants in function 14

Figure 4 . 8 :Figure 4 . 9 :Figure 4 . 10 : 22 4. 2 . 1 . 7

 484941022217 Figure 4.8: Convergence rate of DADE variants in function 20

 Figure 4.12: The pheromone matrix

 k (i, j).(j/10) 2 n k=1 P M k (i, j).(j/10) (4.[START_REF] Essaid | A hybrid differential evolution algorithm for real world problems[END_REF]

Figure 4 . 13 :

 413 Figure 4.13: The average convergence rate of PEADE variants on functions 17, 18 after 25 runs. 100

100

 100 Figure 4.13: The average convergence rate of PEADE variants on functions 17, 18 after 25 runs. 100

Figure 4 . 14 :

 414 Figure 4.14: The average convergence rate of PEADE variants on functions 19, 20 after 25 runs. 101

•

 Step 3: the computed Lehmer means are inserted in M F and M CR , which are archives for lehmar mean values from the search process history. Their size is fixed to D (problem dimension) values and their D values are first initialized with 0.5. Each new lehmar mean value replaces the oldest value in M F and M CR . • Step 4: for each individual k, random values M F r and M CRr from M F and M CR are selected.

 rithms and hybridization designs between metaheuristics. Besides, several selfadaptive DE and CS proposals have been addressed to investigate the influence of the parameters on their results. On the other hand, several GPU-based parallel algorithms have been covered to show the advantage of parallelization on reducing the computational time of optimization algorithms.The effort is continued in the second part, where recent topologies of an electric motor have been addressed. In this chapter, the problem at hand has been modeled as an optimization problem and a corresponding objective function has been defined. It should be stated that the two topologies are distinguished by different constraints. Moreover, the CEC 2011 test suite has been used to validate the results of our algorithms.

•

 eral techniques, such as machine learning and genetic programming methods to provide dynamic algorithms. In fact, dynamic optimization algorithms would provide flexible search operators thanks to their potential capability to exploit useful information from the problem at hand. This information would help afterwards in generating appropriate search operators for the problem at hand. Machine learning-based parameter adaptation strategies: in fact, we have focused on proposing several adaptation strategies for DE parameters. It can be noticed that the proposed strategies exploit several simple machine learning techniques, which could improve to the final results. This issue has motivated us to boost our effort towards this direction, where pure machine 123 learning-based techniques can be proposed. Besides, our aim is to investigate these strategies on other metaheuristics such as PSO and CS, where few studies have proven the critical influence of their parameters on the final performance.

 Pseudocode of the Cuckoo Search (CS).

	Algorithm 2
	5)
	where x t j , x t k are solutions randomly selected and H is heaviside function. and s
	are random numbers generated from a uniform distribution. The global random

1: Generate initial population of n host nests x i (i=1,2, ..., n) 2: while (t < M axGeneration) or (stopping criterion is not met) do 3:

Table 2 .

 2

		1: Different examples of hybrid algorithms
	Ref	The algorithmic components	Benchmark
	[89]	CMAES + DE	digital filter design problem
	[63]	CMAES + DE	CEC 2017 test suite
	[103]	CMAES + CS	CEC 2008 + one problem of CEC 2011
	[73]	CMAES + CS	Welded beam design, Tension compression string design.
	[44]	PSO + ABC	CEC 2005 test suite
	[64]	SaDE + local search strategy	CEC 2015
	[25]	GA + PSO + SOS	Clustering problems
	[55]	GA + CE	24 benchmark functions from BBOB 2009
	[2]	HS + SA	CEC 2014 + camera calibration problem
	[54]	BA + EO	CEC 2014
	[54] BA + random black hole model	Economic dispatch problem
	2.1.5 Self-adaptive DE	
	parameters have been considered by proposing offline/online control parameters
	strategies. These strategies tend to tune the parameters based on trial-and-error
	procedures (offline), or adaptively modifying them, where a feedback from the
	search history is considered [1, 15].

In the last years, It has been noticed that DE performance is sensitive to its parameters. Therefore, researchers turned their attention to propose different strategies in order to find the most suitable parameters for a given problem. DE

Table 2 .

 2

	Ref	Algorithm	Parallelism	Acceleration	Benchmark	Quality improvement
			level			
	[41] CS	Iteration	20x		Functions from CEC 2005	No improvement
			level			
	[106] DE	Iteration	4.475x		Functions from CEC 2008 [84], and [38]	Results improved compared to CHC, DE,
			level				SOUPDE and GODE
	[12] DE-BSA-SA	Iteration	40x		Functions taken from [14]	No improvement
			level + Solu-			
			tion level			
	[88] DE+PSO	Iteration	Not	men-	4 test sequences made by the CVSSP, Uni-	PSO performs better in human body pose
			level + Solu-	tioned		versity of Surrey for Human body pose esti-	estimation in video sequences but DE is
			tion level			mation + 15 images of hippocampi by man-	better in hippocampus localization in his-
						ually segmenting the anatomical structures	tological images
						for Hippocampus localization in histological
						images
	[46] MA-SW	Iteration	82.17x		CEC 2010 [83] + a benchmark setup men-	No improvement
		chains	level + Solu-			tioned in [46]
			tion level			
	[39] PSO	Iteration	46x		Sphere, Rosenbrock, Rastrigin, Griewank,	Quality improved in Sphere and Griewank
			level + Solu-			Ackley, De Jong, Easom	function compared to the CPU sequential
			tion level				implementation
	[75] GA	Iteration	1.18	to	Function taken from [40]	No improvement
			level	4.15x		
	[27] PSO	Algorithmic	17x		CEC 2010 [83]	Quality improved compared to Static
			level+Iteration				MPSO+GA and CPU sequential imple-
			level + Solu-				mentation but it doesn't achieve the best
			tion level				results of MPSO-MCS
	[56] CUBA	Iteration	13x		Functions from [68]	No improvement
			level + Solu-			
			tion level			
	[48] PSO	Iteration	80x		Sphere, Rastrigin, Griewank, Rosenbrock	No improvement
			level + Solu-			
			tion level			

2: Characteristics of GPU-accelerated metaheuristics on continuous problems

Table 3 .

 3

		1: Problems description	
	Problem No.	Description	D
	F1	Parameter Estimation of FM Sound Waves	6
	F2	Lennard-Jones Potential	30
	F3	Bi-functional Catalyst Blend Optimal Control	1
	F4	Optimal Control of a Non-Linear Stirred Tank Reactor 1
	F5	Tersoff Potential Function Min. ProblemSi(B)	30
	F6	Tersoff Potential Function Min. ProblemSi(C)	30
	F7	Spread Spectrum Radar Polly phase Code Design	20
	F8	Transmission Network Expansion Planning	7
	F9	Large Scale Transmission Pricing	
	F10	Circular Antenna Array Design	12
	F11	Dynamic Economic Dispatch -Instance 1	
	F12	Dynamic Economic Dispatch -Instance 2	
	F13	Static Economic Load Dispatch Instance 1	6
	F14	Static Economic Load Dispatch Instance 2	13
	F15	Static Economic Load Dispatch Instance 3	15
	F16	Static Economic Load Dispatch Instance 4	40
	F17	Static Economic Load Dispatch Instance 5	
	F18	Hydrothermal Scheduling -Instance 1	96
	F19	Hydrothermal Scheduling -Instance 2	96
	F20	Hydrothermal Scheduling -Instance 3	96
	F21	Messenger: Spacecraft Trajectory Optimization	26
	F22	Cassini 2: Spacecraft Trajectory Optimization	22

Table 3 .

 3

	7		
	4	C i	(3.4)
	i=1		

i =0 if the constraint i is satisfied, 1 otherwise. The set of constraints are presented in Table

3

.2.

It has to be stated that we have two versions of the problem, where the set of constraints and variation limits are different. Table

3

.2 presents the set of constraints of version 1 of the problem at hand. The parameters of the problem

Table 3 .

 3 3: The geometrical parameters for the weight optimization

	Symbol	Description	Variation limits of version 1 Variation limits of version 2
	Dis	Inner stator diameter	[50; 80] mm	[99; 150] mm
	hjr	Rotor yoke height	[7; 15] mm	[10.5; 20] mm
	histm	Tooth isthmus	[0.5; 2] mm	[0.5; 2] mm
	hjs	Stator yoke height	[8; 15] mm	[8; 13] mm
	wt	Tooth width	[3.5; 8] mm	[5.5; 10] mm
	gap0	Air-gap length	[0.5; 1.5] mm	[0.5; 1.5] mm
	hmp	PM height	[4; 8] mm	[4; 8] mm
	Lm	Machines length	[100; 160] mm	[100; 160.1] mm

This chapter represents the major contributions of this thesis. Three directions of research are followed for proposing new powerful algorithms (hybridization, adaptation of methauristics parmaters, integrating learning techniques). Indeed, this chapter covers several proposals that have been introduced during this thesis. The proposals are classified into two categories: hybrid algorithms and self-adaptive algorithms, which will be explained in the following sub-sections. The proposals are tested using The CEC 2011 test suite along with the optimization of the electric motor 4.1 Hybrid algorithms

1 :

 1 Given a population pop of N P individuals 2: P opOld ← pop 3: Given S CR , S F 4: Compute M CR , and M F according to 4.5 and 4.6 5: Generate a mutant population pop a according to 4.4 6: Generate a mutant population pop b according to 4.7 7: Evaluate approximately pop a and pop b using RBF surrogate model 8: if pop a contains the best approximated solution then pop best ← pop b 12: end if 13: for Each x i in pop best do

	9:	pop best ← pop a
	10: else
	11:	
	14:	

Table 4 .

 4 1: Parameter setting of the compared algorithms

	Algorithm	Parameters	Electric motor design problem	CEC 2011
		α	D*1000	D*1000
		λ	D*1000	D*1000
		N P	200	200
	Our proposition	k	N P / 4	N P / 4
		P LV	0.8	0.8
		Budget	10 6	D*10000
		max f es		

Table 4

 4 .2 shows best and mean of each algorithm for each function. The best fitness found for each function is in bold. Mean results that are significantly better than the ones of the other algorithms, according to the Kruskal-Wallis statistical test at 95% confidence level followed by a Tukey-Kramer post hoc test are also in bold.The results presented in Table4.3 reveal a superior performance of our proposition compared to the other algorithms. It can significantly outperform SHADE in 8 functions, SADE in 9 functions, JADE in 7 functions and EPSDE in 12.

Table 4 .

 4 2: Comparison of HOA with state-of-the-art algorithms on the CEC 2011 test suite

		SHADE	SADE	JADE	EPSDE	Variant-1	Variant-2	Variant-3	HOA
	F1 Best	2.73E-02	6.31E-01	2.57E-10	5.45E+00	0.00E+00 0.00E+00 0.00E+00 0.00E+00
	Mean 1.85E+01	7.59E-01	2.26E+00	9.10E+00	1.95E+00	1.87E+00	2.08E+00	1.62E+00
	F2 Best	-2.44E+01	-1.95E+01	-2.45E+01	-2.19E+01	-2.31E+01	-2.47E+01 -2.69E+01 -2.69E+01
	Mean -2.30E+01	-1.70E+01 -2.34E+01 -2.02E+01	-2.15E+01 -2.34E+01 -2.35E+01 -2.39E+01
	F3 Best	1.15E-05	1.15E-05	1.15E-05	1.15E-05	1.15E-05	1.15E-05	1.15E-05	1.15E-05
	Mean 1.15E-05	1.15E-05	1.15E-05	1.15E-05	1.15E-05	1.15E-05	1.15E-05	1.15E-05
	F4 Best								

Table 4 .

 4

	3: Comparison of HOA using Kruskal-Wallis test on CEC 2011 test suite
	vs	Our proposition D=30
		+(better)	2
	SHADE	-(worse)	8
		=(no sig)	12
		+(better)	5
	SADE	-(worse)	9
		=(no sig)	8
		+(better)	2
	JADE	-(worse)	7
		=(no sig)	13
		+(better)	0
	EPSDE	-(worse)	12
		=(no sig)	10
		+(better)	0
	Variant-1	-(worse)	6
		=(no sig)	16
		+(better)	0
	Variant-2	-(worse)	6
		=(no sig)	16
		+(better)	0
	Variant-3	-(worse)	2
		=(no sig)	20

Table 4 .

 4 4: Comparison of HOA with state-of-the-art algorithms on the first version of the problem at handThe gain and the power density obtained after optimizing the topology of the second version can be expressed in Table4.7. It can be seen that the optimized weight m atot = 9.27 Kg.

		Best	Mean	Worst	Std
	SADE	-3.271E+03	-2.920E+03	-2.780E+03	81.49
	JADE	-3.194E+03	-2.840E+03	-2.420E+03	96.23
	EPSDE	-3.200E+03	-2.850E+03	-2.430E+03	102.65
	SHADE	-3.097E+03	-2.944E+03	-2.697E+03	44.28
	Variant-1 -3.397e+03	-3.114e+03	-2.935e+03	112.10
	Variant-2 -3.318e+03	-3.202e+03	-3.130e+03	49.03
	Variant-3 -3.380e+03	-3.188e+03	-3.085e+03	58.36
	HOA	-3.397E+03 -3.397E+03 -3.397E+03 0

Further details about the best solution found by our proposal are shown in Table

4

.5. The proposed algorithm could obtain an important gain of 28% in the mass. Moreover, it could achieve a gain of 17% and 29% decreasing the mechanical loss and the iron loss stator respectively. Similarly, HOA has been applied on the second version of the problem, where it revealed a stable performance compared to the other algorithms. Besides, it has been noticed that variant-3 (HOA with FCM) has shown the same performance. The results are depicted in Table

4

.6.

Table 4 .

 4 5: The best geometrical parameters with the optimized factors

	Symbol	Original motor Optimized motor Gain %
	m atot	8.2513 kg	5.8885 kg	+ 28.63
	P out	20000 W	20005 W	+ 0.25e-3
	P out / m tot	2.42 kW/kg	3.39 kW/kg	+ 28.653
	Iron loss stator 225.73 W	158.9 W	+ 29.60
	Mechanical loss 352.69 W	292.15 W	+ 17.16
	Efficiency	0.9596	0.9607	+ 1.01
	Power factor	0.8187	0.8100	-1.06
	Dis	63 mm	66.7 mm	
	hjr	10.5 mm	9.3 mm	
	histm	1.5 mm	1 mm	
	hjs	11.8 mm	9.8 mm	
	wt	5 mm	4 mm	
	gap	1 mm	0.9 mm	
	hmp	6 mm	4 mm	
	Lm	135 mm	100 mm	

Table 4 .

 4 6: Comparison of HOA with state-of-the-art algorithms on the second version of the problem at hand

		Best	Mean	Worst	std
	SADE	-4.3065E+02 -4.2523E+02	-4.1173E+02	3.5328E+00
	JADE	-4.3065E+02 -4.2356E+02	-4.0376E+02	5.1813E+00
	EPSDE	-4.2842E+02	-4.1968E+02	-4.0693E+02	5.1628E+00
	SHADE	-4.3065E+02 -4.2370E+02	-4.0569E+02	6.9628E+00
	Variant-1 -4.3065E+02 -4.2467E+02	-4.2256E+02	4.2569E+00
	Variant-2 -4.3065E+02 -4.2823E+02	-4.2701E+02	2.1257E+00
	Variant-3 -4.3065E+02 -4.3065E+02 -4.3065E+02 0
	HOA	-4.3065E+02 -4.3065E+02 -4.3065E+02 0

 One generation of DE algorithm using PMS 1: Input: population pop of N P individuals and pheromone matrix M , popold ← pop 2: Output: pop 3: for each individuals in popold do

	4:

The entry update is based on how much the fitness is improved/degraded which offers a kind of heuristic information to the other individuals. It is important to point out that a different pheromone matrix is updated for each mutation strategy, i.e. one for DE/current-to-best/1 and another one for DE/rand/2. Algorithm 6 shows the pseudo-code of DE using PMS.

Algorithm 6

 mean std is less than a parameter , then the population is in exploitative state and ST G counter is increased by one. When ST G counter reaches a threshold σ, the restart strategy is performed on the p worst individuals of the population. The archive A is updated only if mean std is greater or equal to or the current best

	9.
	Algorithm 9 The proposed approach
	1: Generate randomly a population pop of size N P
	2: A ← pop
	3: while the stopping criterion is not satisfied do
	4:
	solution could be improved. All the mentioned steps are presented in Algorithm
	63

Table 4 .

 4

	8: Parameter setting of the compared algorithms
	Algorithm	Parameters
	Our proposition NP=200, = 5, σ=10, p= NP/4
	SHADE	Parameters taken from [42]
	SADE	Parameters taken from [11]
	JADE	Parameters taken from [100]
	EPSDE	Parameters taken from [90]
	4.1.2.7 Comparison on CEC 2011

The comparison has been conducted using the CEC 2011 test suite. The obtained results of all the algorithms can be seen in Table

4

.9. In this table, the rows show best and mean values of 30 runs of each algorithm for each function. The best fitness found for each function is in bold. Besides, Kruskal-Wallis statistical test at 95% confidence level followed by a Tukey-Kramer post hoc test is performed, where mean results that are significantly better than the ones of the other algorithms are illustrated in bold. The results shown in

Table 4

 4

	.10 reveal a the advantage of

Table 4 .

 4 10: Comparison of HDE with state-of-the-art algorithms using the statis-

	tical test		
	VS	Our proposition 22 functions of CEC 2011 test suite
		+(better)	0
	SHADE	-(worse)	8
		=(no sign)	14
		+(better)	1
	SADE	-(worse)	8
		=(no sign)	13
		+(better)	1
	JADE	-(worse)	5
		=(no sign)	16
		+(better)	0
	EPSDE	-(worse)	18
		=(no sign)	4
	Another experimentation of HDE is conducted with its variants. Table 4.11
	demonstrates the results obtained in CEC 2011 test suite, where a statistical test is
	applied. Similarly, the best means are in bold. After applying the statistical test,
	it has been found that HDE ultimately outperform HDE1 in 18 functions, which
	reveals the importance of the adopted parameter adaptation strategy. In the same
	context, HDE could outperform HDE2 in 11 functions, where the proposed multi-
	criteria selection strategy has shown to be efficient in F1, F2, F5, F7, F9, F15,
	F16, F17, F18, F19 and F21. It was also stated that HDE outperforms HDE3
	in 13 functions, where it is demonstrated that the global search procedure (the
	restart strategy) is necessary for an efficient optimization. Table 4.12 summarizes

Table 4 .

 4 13: Comparison of HDE with state-of-the-art algorithms on the first version of the problem at hand

		Best	Mean	Worst	Std
	SHADE	-3.097E+03 -2.944E+03 -2.697E+03 4.42E+01
	SADE	-3.27E+03	-2.92E+03	-2.78E+03 3.97E+01
	JADE	-3.19E+03	-2.84E+03	-2.42E+03 4.03E+01
	EPSDE	-3.20E+03	-2.85E+03	-2.43E+03 4.12E+01
	Our proposition -3.39E+03 -3.14E+03 -2.79E+03 5.17E+01

Table 4 .

 4 14: Comparison of HDE with state-of-the-art algorithms on the second version of the problem at hand

		Best	Mean	Worst	Std
	SHADE -4.3065E+02 -4.2370E+02	-4.0569E+02 6.9628E+00
	JADE -4.3065E+02 -4.2356E+02	-4.0376E+02 5.1813E+00
	EPSDE -4.2842E+02	-4.1968E+02	-4.0693E+02 5.1628E+00
	SADE -4.3065E+02 -4.2523E+02	-4.1173E+02 3.5328E+00
	HDE	-4.3065E+02 -4.2754E+02 -4.2597E+02 2.3471E+00

has motivated us to turn our attention to propose novel self-adaptive strategies for DE, which will be discussed in detail in the next section.

Table 4 .

 4 16: Comparison of DADE with state-of-the-art algorithms on the CEC 2011 test suite

	SHADE	SADE	JADE	EPSDE	DADE
	F1 Best 2.73E-02	6.31E-01	2.57E-10	5.45E+00	0.00E+00
	Mean 1.85E+01	7.59E-01	2.26E-01	9.10E+00	0.00E+00
	F2 Best -2.44E+01	-1.95E+01	-2.45E+01	-2.19E+01	-2.78E+01
	Mean -2.30E+01	-1.70E+01	-2.34E+01 -2.02E+01	-2.31E+01
	F3 Best 1.15E-05	1.15E-05	1.15E-05	1.15E-05	1.15E-05
	Mean 1.15E-05	1.15E-05	1.15E-05	1.15E-05	1.15E-05
	F4 Best				

Table 4 .

 4 17: Comparison of DADE with state-of-the-art algorithms using the sta-

	tistical test		
	VS	DADE	22 functions of CEC 2011 test suite
		+(better) 0
	EPSDE -(worse)	13
		=(no sign) 9
		+(better) 3
	SADE	-(worse)	10
		=(no sign) 9
		+(better) 2
	JADE	-(worse)	6
		=(no sign) 14
		+(better) 1
	SHADE -(worse)	8
		=(no sign) 13

Table 4 .

 4 18: Comparison of DADE with state-of-the-art algorithms on the first version of the problem at hand

		Best	Mean	Worst	Std
	SADE	-3.271E+03	-2.920E+03	-2.780E+03	81.49
	JADE	-3.194E+03	-2.840E+03	-2.420E+03	96.23
	EPSDE -3.200E+03	-2.850E+03	-2.430E+03	102.65
	SHADE -3.097E+03	-2.944E+03	-2.697E+03	44.28
	DADE	-3.397E+03 -3.275E+03 -3.163E+03 29.49

Moreover, Figure

4

.11 shows the advantage of our proposition in terms of convergence rate compared to DADE1 and DADE2. It is noticed that removing the control parameter strategy ultimately decreases the convergence rate, which confirms the results found for CEC 2011 test suite.

Table 4 .

 4 19: Comparison of DADE with state-of-the-art algorithms on the second version of the problem at hand

		Best	Mean	Worst	Std
	SADE	-4.3065E+02 -4.2523E+02	-4.1173E+02	3.5328E+00
	JADE	-4.3065E+02 -4.2356E+02	-4.0376E+02	5.1813E+00
	EPSDE -4.2842E+02	-4.1968E+02	-4.0693E+02	5.1628E+00
	SHADE -4.3065E+02 -4.2370E+02	-4.0569E+02	6.9628E+00
	DADE	-4.3065E+02 -4.2654E+02 -4.2397E+02 2.0171E+00
	Similarly, the proposed algorithm could obtain the best solution known so far

for the second version of the problem at hand. The results are depicted in 4.19. Besides, DADE could outperform the other variants in terms of mean and worst solutions. As it can be noticed, DADE relies on a simple reinforcement learning technique to control CR parameter, which has shown to be competitive compared to several state-of-the-art self-adaptive DE algorithms. Indeed, this technique has motivated us to propose other machine learning-based parameter adaptation strategies. Following this context, novel parameter adaptation strategies are proposed in the following sub-sections.

1 :

 1 Input: The population, SwitchingP robability 2: Output: The mutant population 3: if rand < SwitchingP robability then

	4:

Table 4 .

 4 21 summarizes the obtained results in terms of mean and best values for each application of CEC 2011 test suite. It is noticed that PEADE outperforms the other algorithms. To validate the results, a Kruskal-Wallis statistical test is performed, where the best means of each function are set in bold as it can be seen in Table 4.21, the rows show best and mean values of 25 runs of each algorithm for each function. Table 4.21 shows the advantage of PEADE over the other adaptive DE approaches. It can significantly outperform SPS-EIG-LSHADE in 9 functions,

Table 4 .

 4 21: Comparison of PEADE with state-of-the-art algorithms on the CEC 2011 test suite SHADE in 10 functions, SHADE and JADE and SADE in 12 functions. Finally, it can outperform EPSDE in 13 functions as it can be seen in Table 4.22.

		EPSDE	SADE	JADE	SHADE	L-SHADE SPS-EIG-LSHADE	PEADE
	F1 Best	5.45E+00	2.57E-10	2.57E-10	2.73E-02	0.00E+00	0.00E+00	0.00E+00
	Mean 9.10E+00	2.26E-01	2.26E-01	1.85E+01	1.62E-04	2.35E-07	2.87E-18
	F2 Best	-2.19E+01	-2.45E+01	-2.45E+01	-2.44E+01	-2.82E+01	-2.84+01	-2.73+01
	Mean -2.02E+01	-2.34E+01	-2.34E+01	-2.30E+01 -2.62E+01	-2.61E+01	-2.29+01
	F3 Best	1.15E-05	1.15E-05	1.15E-05	1.15E-05	1.15E-05	1.15E-05	1.15E-05
	Mean 1.15E-05	1.15E-05	1.15E-05	1.15E-05	1.15E-05	1.15E-05	1.15E-05
	F4 Best	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
	Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	0.00E+00	0.00E+00
	F5 Best	-3.60E+01	-3.64E+01	-3.64E+01	-3.66E+01	-3.68E+01	-3.68E+01	-3.68E+01
	Mean -3.22E+01 -3.56E+01 -3.56E+01 -3.60E+01 -3.63E+01	-3.62E+01	-3.19E+01
	F6 Best	-2.88E+01	-2.92E+01	-2.92E+01	-2.91E+01	-2.91E+01	-2.91E+01	-2.74E+01
	Mean -2.01E+01 -2.90E+01 -2.90E+01 -2.90E+01 -2.90E+01	-2.92E+01	-2.24E+01
	F7 Best	1.12E+00	9.10E-01	9.10E-01	9.06E-01	9.63E-01	7.11E-01	7.29E-01
	Mean 1.30E+00	1.17E+00	1.17E+00	1.12E+00	1.22E+00	1.12E+00	9.91E-1
	F8 Best 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02	2.20E+02	2.20E+02
	Mean 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02	2.20E+02	2.20E+02
	F9 Best	3.98E+04	1.13E+03	1.13E+03	1.14E+03	1.12E+03	1.72E+03	1.04E+03
	Mean 9.28E+04	2.40E+03	2.40E+03	2.22E+03	8.17E+03	2.77E+03	1.78E+03
	F10 Best	-2.02E+01	-2.18E+01	-2.18E+01	-2.18E+01	-2.16E+01	-2.18E+01	-2.18E+01
	Mean -1.74E+01 -2.14E+01 -2.14E+01 -2.16E+01 -2.15E+01	-2.16E+01	-2.16E+01
	F11 Best	5.21E+04	5.15E+04	5.15E+04	5.15E+04	5.11E+04	5.10E+04	4.99E+04
	Mean 5.24E+04	5.24E+04	5.24E+04	5.22E+04	5.20E+04	5.19E+04	5.08E+04
	F12 Best 1.07E+06 1.07E+06	1.07E+06	1.07E+06	1.07E+06	1.07E+06	1.07E+06
	Mean 1.09E+06	1.07E+06 1.07E+06	1.10E+06	1.07E+06	1.07E+06	1.07E+06
	F13 Best	1.54E+04	1.54E+04	1.54E+04	1.55E+04	1.54E+04	1.54E+04	1.54E+04
	Mean 1.54E+04 1.54E+04 1.54E+04 1.54E+04 1.54E+04	1.54E+04	1.54E+04
	F14 Best	1.83E+04	1.80E+04	1.80E+04	1.80E+04	1.80E+04	1.80E+04	1.81E+04
	Mean 1.83E+04	1.83E+04	1.83E+04	1.81E+04 1.81E+04	1.81E+04	1.81E+04
	F15 Best	3.29E+04	3.27E+04	3.27E+04	3.27E+04	3.27E+04	3.27E+04	3.27E+04
	Mean 3.30E+04	3.29E+04	3.29E+04	3.27E+04 3.27E+04	3.27E+04	3.27E+04
	F16 Best	1.31E+05	1.26E+05	1.26E+05	1.22E+05 1.22E+05	1.23E+05	1.23E+05
	Mean 1.42E+05	1.33E+05	1.33E+05	1.29E+05	1.26E+05	1.24E+05	1.23E+05
	F17 Best	1.93E+06	1.87E+06	1.87E+06	1.88E+08	1.83E+06	1.87E+06	1.81E+06
	Mean 2.06E+06	1.91E+06	1.91E+06	1.91E+06	1.86E+06	1.85E+06	1.82E+06
	F18 Best	3.24E+06	9.35E+05	9.35E+05	9.37E+05	9.29E+05	9.33E+05	9.29E+05
	Mean 6.06E+06	9.39E+05	9.39E+05	9.40E+05	9.33E+05	9.33E+05	9.31E+05
	F19 Best	4.47E+06	9.39E+05	9.39E+05	9.39E+05	9.38E+05	9.42E+05	9.37+05
	Mean 7.16E+06	9.92E+05	9.92E+05	9.52E+05	9.40E+05	9.40E+05	9.39E+05
	F20 Best	4.16E+06	9.36E+05	9.36E+05	9.34E+05	9.30E+05	9.29E+05	9.28E+05
	Mean 6.21E+06	9.40E+05	9.40E+05	9.40E+05	9.32E+05	9.32E+05	9.31E+05
	F21 Best	1.66E+01	1.31E+01	1.31E+01	1.41E+01	1.44E+01	1.07E+01	9.45E+00
	Mean 1.97E+01	1.72E+01	1.72E+01	1.75E+01	1.61E+01	1.38E+01	1.49E+01
	F22 Best	1.19E+01	1.68E+01	1.19E+01	1.31E+01	8.60E+00	8.61E+00	1.64E+01
	Mean 2.18E+01	1.66E+01	1.66E+01	1.99E+01	1.42E+01	1.24E+01	1.83E+01
				98				

Table 4 .

 4 4.2.2.7 Comparison on the problem at hand PEADE has been tested on both versions of the problem at hand. PEADE has been run 30 times, where the best, mean and worst of each algorithm are collected. It is observed from Table 4.23 and Table 4.24 that PEADE can achieve the best performance compared to the other algorithms in terms of mean and best. Moreover, it is noticed that PEADE has a stable performance (standard deviation = 23: Comparison of PEADE with state-of-the-art algorithms on the first version of the problem at hand

	0).				
		Best	Mean	Worst	Std
	SADE	-3.271E+03	-2.920E+03	-2.780E+03	81.49
	JADE	-3.194E+03	-2.840E+03	-2.420E+03	96.23
	EPSDE	-3.200E+03	-2.850E+03	-2.430E+03	102.65
	SHADE	-3.097E+03	-2.944E+03	-2.697E+03	44.28
	L-SHADE	-3.197e+03	-3.044e+03	-2.797e+03	107
	SPS-eig-LSHADE -3.214e+03	-3.107e+03	-2.897e+03	98.42
	PEADE	-3.397E+03 -3.397E+03 -3.397E+03 0

Table 4 .

 4 24: Comparison of PEADE with state-of-the-art algorithms on the second version of the problem at hand

		Best	Mean	Worst	Std
	SADE	-4.3065E+02 -4.2523E+02	-4.1173E+02	3.5328E+00
	JADE	-4.3065E+02 -4.2356E+02	-4.0376E+02	5.1813E+00
	EPSDE	-4.2842E+02	-4.1968E+02	-4.0693E+02	5.1628E+00
	SHADE	-4.3065E+02 -4.2370E+02	-4.0569E+02	6.9628E+00
	L-SHADE	-4.3065E+02 -4.3043E+02	-4.301E+02	2.7463E-01
	SPS-eig-LSHADE -4.3065E+02 -4.3050E+02	-4.3010E+02	2.4922E-01
	PEADE	-4.3065E+02 -4.3065E+02 -4.3065E+02 0
	4.2.2.8 The parallel implementation		

Table 4 .

 4 25: Comparison in terms of computational time on functions 12, 17 and 18 between the sequential and the parallel implementation of PEADE

		NP=400 NP=600 NP=800 NP=1000
	F17 Sequential	35.23s	40.52s	55.57s	59.61s
	Parallel	34.68s	27.67s	24.07s	21.66s
	F18 Sequential	55.58s	62.02s	73.54s	75.24s
	Parallel	18.24s	14.39s	14.28s	12.18s
	F12 Sequential 184.46s	249.69s	316.80s	386.46s
	Parallel	25.91s	20.87s	17.86s	15.94s

 It should be stated that F k and CR k are updated to 0.1 if negative values occur or to 1 if values more than 1 occur.• Step 6: the new F k and CR k are classified using KN N classifier with k=50.

	CR k = Cauchy(M CRr , 0.1)	(4.37)
	If they are not promising, return to Step 4.	
	1)	(4.36)

Table 4 .

 4 ulation size, the minimum population size, the archive size of M CR and M F , the initial value of M CR and M F , standard deviation of the used cauchy distribution, number of evaluation for the training phase, the number of nearest neighbors of KN N algorithm, the size of training set and the fraction of the best solutions to be used in the mutation equation. Further details about the proposal parameters can be found in Table4.26. The parameters of the other proposals have been keptThe obtained results by all the proposals are given in Table4.28. The rows show the mean value, the best value and standard deviation of 25 runs for each problem.

	26: HADE parameters	
	Parameter	Parameter value
	Maximum population size P S max	D*10
	Minimum population size P S min	10
	Archive size of M CR and M F	D
	The initial value of M CR and M F	0.5
	Standard deviation of the cauchy distribution	0.1
	Number of evaluation for the training phase 10% of the budget
	The parameter k of KN N	50
	Size of training set	D*10
	p	0.1
	during the configuration as it can be seen in Table 4.27.	
	4.2.3.6 CEC 2011 test suite	
	These results have been validated by a Kruskal-Wallis statistical test at 95% confi-
	dence level followed by a Tukey-Kramer post hoc test. According to the statistical

Table 4 .

 4 27: The parameters of the DE variants

	Algorithm	Parameters
	EPSDE	Parameters taken from [90]
	SADE	Parameters taken from [11]
	JADE	Parameters taken from [100]
	SHADE	Parameters taken from [80]
	L-SHADE	Parameters taken from [82]
	L-ConvSHADE Parameters taken from [3]
	tests, for each function, the mean values of the best algorithms are in bold font in

Table 4 .

 4 28.The results in Table4.[START_REF] Woo Geem | A new heuristic optimization algorithm: harmony search[END_REF] show that our proposal shows a better performance compared to the other adaptive DE variants. It can significantly outperform EPSDE in 8 functions, L-ConvSHADE in 9 functions, L-SHADE in 10 functions, SADE in 13 functions, JADE in 11 functions and SHADE in 12 functions.4.2.3.7 Comparison on the problem at handOur proposal and the other algorithms have been performed 30 times. The best, mean, worst and the standard deviation of each algorithm are collected. It can be stated from Table4.30 and Table4.31 that the proposed algorithm achieves the best solution known so far compared to the other algorithms. Besides, we can notice the stable performance (std very small), which reveals the resilience of our proposal.

Table 4 .

 4 28: Comparison of HADE with state-of-the-art algorithms on the CEC 2011 test suite

		EPSDE	SADE	JADE	SHADE	L-SHADE L-ConvSHADE The proposal
	F1 Mean 9.10E+00	2.49E+00	2.26E-01	2.73E-02	3.24E-08	1.06E-06	0.00E+00
	Best	5.45E+00	6.31E-01	2.57E-10	1.85E+00	0.00E+00	0.00E+00	0.00E+00
	F2 Mean -2.02E+01	-1.70E+01	-2.34E+01	-2.30E+01 -2.61E+01	-2.61E+01	-2.58E+01
	Best	-2.19E+01	-1.95E+01	-2.45E+01	-2.44E+01	-2.82E+01	-2.68E+01	-2.69E+01
	F3 Mean 1.15E-05	1.15E-05	1.15E-05	1.15E-05	1.15E-05	1.15E-05	1.15E-05
	Best	1.15E-05	1.15E-05	1.15E-05	1.15E-05	1.15E-05	1.15E-05	1.15E-05
	F4 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	0.00E+00	0.00E+00
	Best	0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	0.00E+00	0.00E+00
	F5 Mean -3.22E+01	-3.22E+01	-3.56E+01 -3.63E+01 -3.63E+01	-3.61E+01	-3.64E+01
	Best	-3.60E+01	-3.32E+01	-3.64E+01	-3.66E+01 -3.68E+01	-3.68E+01	-3.68E+01
	F6 Mean -2.01E+01	-2.41E+01 -2.90E+01 -2.90E+01 -2.91+01	-2.91+01	-2.86E+01
	Best	-2.88E+01	-2.63E+01 -2.92E+01 -2.91E+01	-2.91E+01	-2.91E+01	-2.91E+01
	F7 Mean 1.30E+00	1.37E+00	1.17E+00	1.12E+00	1.21E+00	1.12E+00	8.05E-01
	Best	1.12E+00	1.24E+00	9.10E-01	9.06E-01	9.63E-01	1.01E+00	7.2E-01
	F8 Mean 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02	2.20E+02	2.20E+02
	Best 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02	2.20E+02	2.20E+02
	F9 Mean 9.28E+04	1.73E+03 2.40E+03	2.22E+03 8.16E+03	2.76E+04	5.87E+03
	Best	3.98E+04	7.69E+02	1.13E+03	1.14E+03	1.12E+03	3.76E+03	1.82E+03
	F10 Mean -1.74E+01 -2.16E+01 -2.14E+01 -2.16E+01 -2.15E+01	-2.15E+01	-2.15E+01
	Best	-2.02E+01 -2.18E+01 -2.18E+01 -2.18E+01 -2.16E+01	-2.18E+01	-2.18E+01
	F11 Mean 5.86E+04	5.21E+04	5.24E+04	5.22E+04	5.20E+04	5.18E+04	5.18E+04
	Best	5.21E+04	5.12E+04	5.15E+04	5.15E+04	5.11E+04	5.08E+04	5.10E+04
	F12 Mean 1.09E+06	1.09E+06	1.07E+06	1.10E+06	1.07E+06	1.07E+06	1.07E+06
	Best	1.07E+06	1.07E+06	1.07E+06	1.07E+06	1.07E+06	1.06E+06	1.07E+06
	F13 Mean 1.54E+04	1.54E+04 1.54E+04 1.54E+04 1.54E+04	1.54E+04	1.54E+04
	Best	1.54E+04	1.54E+04 1.54E+04 1.54E+04 1.54E+04	1.54E+04	1.54E+04
	F14 Mean 1.83E+04 1.81E+04 1.83E+04 1.81E+04 1.80E+04	1.80E+04	1.81E+04
	Best	1.83E+04	1.81E+04	1.80E+04 1.80E+04 1.80E+04	1.80E+04	1.80E+04
	F15 Mean 3.30E+04	3.28E+04	3.29E+04	3.27E+04	3.27E+04	3.27E+04	3.26E+04
	Best	3.29E+04	3.28E+04	3.27E+04	3.27E+04	3.27E+04	3.27E+04	3.26E+04
	F16 Mean 1.42E+05	1.28E+05	1.33E+05	1.29E+05	1.23E+05	1.23E+05	1.23E+05
	Best	1.31E+05	1.26E+05	1.26E+05	1.22E+05 1.22E+05	1.23E+05	1.23E+05
	F17 Mean 2.06E+06	1.90E+06	1.91E+06	1.91E+06	1.85E+06	1.84E+06	1.83E+06
	Best	1.93E+06	1.87E+06	1.87E+06	1.88E+08	1.83E+06	1.82E+06	1.80E+06
	F18 Mean 6.06E+06	9.38E+05	9.39E+05	9.40E+05	9.33E+05	9.33E+05	9.32E+05
	Best	3.24E+06	9.33E+05	9.35E+05	9.37E+05	9.29E+05	9.31E+05	9.30E+05
	F19 Mean 7.16E+06	9.46E+05	9.92E+05	9.52E+05	9.40E+05	9.39E+05	9.39E+05
	Best	4.47E+06	9.41E+05	9.39E+05	9.39E+05	9.38E+05	9.37E+05	9.38E+05
	F20 Mean 6.21E+06	9.37E+05	9.40E+05	9.40E+05	9.32E+05	9.31E+05	9.30E+05
	Best	4.16E+06	9.35E+05	9.36E+05	9.34E+05	9.30E+05	9.29E+05	9.29E+05
	F21 Mean 1.97E+01	1.97E+01	1.72E+01	1.75E+01	1.54E+01	1.52E+01	1.60E+01
	Best	1.66E+01	1.66E+01	1.31E+01	1.41E+01	1.44E+01	1.17E+01	1.30E+01
	F22 Mean 2.18E+01	2.18E+01	1.66E+01	1.99E+01	1.12E+01	1.13E+01	1.44E+01
	Best	1.68E+01	1.68E+01	1.19E+01	1.31E+01	8.60E+00	8.60E+00	1.05E+01

Table 4 .

 4 29: The aggregate results of HADE using the statistical test

	VS	Our proposition 22 functions of CEC 2011 test suite
		+(better)	0
	EPSDE	-(worse)	8
		=(no sign)	14
		+(better)	1
	SADE	-(worse)	13
		=(no sign)	8
		+(better)	1
	JADE	-(worse)	11
		=(no sign)	10
		+(better)	1
	SHADE	-(worse)	12
		=(no sign)	9
		+(better)	1
	L-SHADE	-(worse)	10
		=(no sign)	11
		+(better)	1
	L-ConvSHADE	-(worse)	9
		=(no sign)	12

Table 4 .

 4 30: Comparison of HADE with state-of-the-art algorithms on the first version of the problem at hand

		Best	Mean	Worst	Std
	SADE	-3.271E+03	-2.920E+03	-2.780E+03	81.49
	JADE	-3.194E+03	-2.840E+03	-2.420E+03	96.23
	EPSDE	-3.200E+03	-2.850E+03	-2.430E+03	102.65
	SHADE	-3.097E+03	-2.944E+03	-2.697E+03	44.28
	L-SHADE	-3.197e+03	-3.044e+03	-2.797e+03	107
	L-ConvSHADE -3.347e+03	-3.216e+03	-3.158e+03	74.13
	HADE	-3.397E+03 -3.397E+03 -3.397E+03 0

Table 4 .

 4 31: Comparison of HADE with state-of-the-art algorithms on the second version of the problem at hand

		Best	Mean	Worst	Std
	EPSDE	-4.2842E+02	-4.1968E+02	-4.0693E+02	5.1628E+00
	SADE	-4.3065E+02 -4.2270E+02	-4.0869E+02	4.7628E+00
	JADE	-4.3065E+02 -4.2527E+02	-4.1701E+02	1.2785E+00
	SHADE	-4.3065E+02 -4.2370E+02	-4.0569E+02	6.9628E+00
	L-SHADE	-4.3065E+02 -4.3043E+02	-4.301E+02	2.7463E-01
	L-ConvSHADE -4.3065E+02 -4.2970E+02	-4.270E+02	1.2745E+00
	Our proposition -4.3065E+02 -4.3065E+02 -4.3065E+02 1.0387E-05

Table 4 .

 4 .34 summarizes the score of each algorithm proposed in this 32: Metaheuristics and the contribution of each algorithm

		HOA		HDE	DADE	PEADE		HADE
	Metaheuristics	DE,	CMEAS	DE	DE	DE		DE
		and CS				
	Mutations	-		-	-	DE/current-to-	-
						centroid/1	
	Crossover	-		-	-	A framework to	-
						switch between
						normal binomial
						crossover	and
						eigevector-based
						crossover	
	Selection	-		Multi-criteria se-	-	-		-
				lection			
	Other search op-	a global search	-	-	-		-
	erators	procedure based				
		on	clustering				
		and lévy flight				
	Parameter adap-	-		Pheromone	Hybrid strategy	Modified		Hybrid strategy
	tation strategies			matrix-based	for F and a rein-	pheromone		between	the
				strategy	forcement learn-	matrix-based	technique	of
					ing strategy for	strategy		LSHADE and
					CR			KNN

Table 4 .

 4 33: Comparison of our proposals on the CEC 2011 test suite After performing the Friedman test, a critical value CV =16.35 is obtained. According to Table 4.34, it can be noticed that HOA is significantly outperformed

		HOA	PEADE	HDE	DADE	HADE
	F1 Mean	1.62E+00	2.87E-18	2.72E-23	0.00E+00 0.00E+00
	Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
	F2 Mean -2.39E+01	-2.29+01	-2.69E+01 -2.31E+01	-2.58E+01
	Best	-2.69E+01	-2.73E+01 -2.84E+01 -2.78E+01	-2.69E+01
	F3 Mean 1.15E-05	1.15E-05	1.15E-05	1.15E-05	1.15E-05
	Best	1.15E-05	1.15E-05	1.15E-05	1.15E-05	1.15E-05
	F4 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
	Best	0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
	F5 Mean -3.49E+01	-3.19E+01	-3.53E+01	-3.36E+01 -3.64E+01
	Best	-3.68E+01	-3.68E+01	-3.69E+01 -3.70E+01 -3.68E+01
	F6 Mean -2.66E+01	-2.24E+01	-2.76E+01	-2.76E+01 -2.86E+01
	Best	-2.91E+01	-2.74E+01 -2.92E+01 -2.91E+01	-2.91E+01
	F7 Mean 8.80E-01S	9.91E-1	7.76E-01	1.04E-01	8.05E-01
	Best	5.00E-01	7.29E-01	5.51E-01	6.30E-01	7.2E-01
	F8 Mean 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02
	Best 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02
	F9 Mean	3.37E+03	1.78E+03	2.32E+03	8.22E+04	5.87E+03
	Best	2.15E+03	1.04E+03	1.15E+03	2.82E+04	1.82E+03
	F10 Mean -1.69E+01 -2.15E+01 -2.13E+01 -2.16E+01 -2.15E+01
	Best	-2.14E+01 -2.18E+01 -2.18E+01 -2.18E+01 -2.18E+01
	F11 Mean	5.32E+04	5.08E+04	5.22E+04	5.25E+04	5.18E+04
	Best	5.16E+04	4.99E+04	5.12E+04	5.17E+04	5.10E+04
	F12 Mean 1.07E+06 1.07E+06 1.07E+06	1.22E+06	1.07E+06
	Best 1.07E+06 1.07E+06 1.07E+06	1.08E+06	1.07E+06
	F13 Mean 1.54E+04 1.54E+04 1.54E+04 1.54E+04 1.54E+04
	Best 11.54E+04 1.54E+04 1.54E+04 1.54E+04 1.54E+04
	F14 Mean	1.83E+04	1.81E+04 1.81E+04 1.81E+04 1.81E+04
	Best 1.80E+04	1.81E+04	1.80E+04 1.80E+04 1.80E+04
	F15 Mean	3.27E+04	3.27E+04	3.28E+04	3.27E+04	3.26E+04
	Best	3.26E+04	3.27E+04	3.27E+04	3.27E+04	3.26E+04
	F16 Mean	1.26E+05	1.23E+05	1.28E+05	1.25E+05	1.23E+05
	Best	1.24E+05	1.23E+05	1.26E+05	1.26E+05 1.23E+05
	F17 Mean	1.93E+06	1.89E+06	1.91E+06	1.89E+06	1.83E+06
	Best	1.91E+06	1.87E+06	1.82E+06	1.87E+06	1.80E+06
	F18 Mean	9.38E+05	9.37+05	9.42E+05	9.41E+05	9.32E+05
	Best	9.34E+05	9.29E+05	9.36E+05	9.38E+05	9.30E+05
	F19 Mean	9.42E+05	9.39E+05	1.03E+06	9.45+05	9.39E+05
	Best	9.39E+05	9.31E+05	9.43E+05	9.38+05	9.38E+05
	F20 Mean	9.37E+05	9.31E+05	9.42E+05	9.40E+05	9.30E+05
	Best	9.33E+05	9.28E+05	9.37E+05	9.37E+05	9.29E+05
	F21 Mean	1.35E+01	9.45E+00	1.14E+01	1.38E+01	1.60E+01
	Best	1.15E+01	1.49E+01	9.53E+00	8.66E+00	1.30E+01
	F22 Mean	1.36E+01	1.83E+01	1.04E+01	1.88E+01	1.44E+01
	Best	9.26E+00	1.64E+01	8.74E+00	1.50E+01	1.05E+01

Table 4 .

 4 . PEADE and HDE are outperformed by DADE and HADE respectively. Finally, HADE outperforms DADE, which is the last algorithm proposed in this thesis. These results reveal that HADE has not been outperformed by the other algorithms, which can reveal the advantage of this algorithm.

		34: Pairwise score of our proposals
	VS	PEADE HDE DADE HADE
	HOA	13.50	9.00	3.00	25.50
	PEADE	-	4.50	16.50	12.00
	HDE	-	-	12.00	16.50
	DADE	-	-	-	28.50
	by only HADE				

Acknowledgments

I would like to express my gratitude to my supervisors Prof. Lhassane Idoumghar,

may get trapped in local optima and involves a slow convergence rate [START_REF] Tanabe | Success-history based parameter adaptation for differential evolution[END_REF][START_REF] Zhang | Jade: adaptive differential evolution with optional external archive[END_REF][START_REF] Qin | Self-adaptive differential evolution algorithm for numerical optimization[END_REF].

The aformentioned drawbacks can be potentially overcame by proposing flexible search operators and/or introducing novel self-adaptive strategies for DE parameters. These strategies tend to tune the parameters based on trial-and-error procedures (offline), or adaptively modifying them, where a feedback from the search history is considered [START_REF] Dawoud Al-Dabbagh | Algorithmic design issues in adaptive differential evolution schemes: review and taxonomy[END_REF][START_REF] Cotta | Adaptive and multilevel metaheuristics[END_REF]. Following this context, we are focusing to propose new online self-adaptive strategies. These strategies are integrated in different proposed DE variants, which will be explained in the next sub-sections.

A dimension-based adaptive differential evolution for optimization problems (DADE)

Following the same context, another adaptive differential evolution algorithm is proposed. The proposed parameter adaptation strategy relies on a hybrid selfadaptive technique to adapt F parameter. Furthermore, a novel dimension-based adaptation strategy is proposed to control CR parameter for each dimension. To the best of our knowledge, it is the first technique attempting to control CR parameter for each dimension instead of each individual. In the following subsections, the proposed strategies and the algorithmic combination are explained in detail.

A hybrid approach to adapt F parameter

Our hybrid strategy for F parameter is slightly similar to the proposition used in JADE [START_REF] Zhang | JADE: adaptive differential evolution with optional external archive[END_REF] which computes the Lehmer mean of the successful set of F parameters Apply pheromone matrix-based adaptation strategy

5:

Apply the proposed mutation framework using Algorithm 13

6:

Apply the proposed crossover framework using Algorithm 14

7:

Apply the selection procedure of DE

8:

Apply linear reduction of SwitchingP robability using equation 4. Apply linear reduction of the population using equation 4.31 10: end while

Empirical study

The obtained results of PEADE for the application at hand as well as a set of 22 real world problems of the CEC 2011 test suite are presented. It can be noticed that PEADE does not contain a big number of parameters compared to recent self-adaptive DE variants. Indeed, there are just four parameters, which are the maximum population size, the minimum population size, the initial value of SwitchingP robability and the fraction of the best solutions in the current population p. PEADE parameters can be summarized in Table 4

Experimental results

This section demonstrates the results of our proposition on second version of the problem at hand. The algorithm is compared with several recent self-adaptive DE variants such as EPSDE [START_REF] Wang | Differential evolution with composite trial vector generation strategies and control parameters[END_REF], JADE [START_REF] Zhang | JADE: adaptive differential evolution with optional external archive[END_REF], SADE [START_REF] Brest | Self-adaptive differential evolution algorithm in constrained real-parameter optimization[END_REF], L-SHADE [START_REF] Tanabe | Improving the search performance of shade using linear population size reduction[END_REF], Differential Crossover Strategy based on covariance matrix learning with euclidean neighborhood for solving real-world problems (L-ConvSHADE) [START_REF] Awad | A novel differential crossover strategy based on covariance matrix learning with euclidean neighborhood for solving real-world problems[END_REF] and our hybrid differential evolution algorithm for real-world problems (HDE). In order to validate the results, 22 real-world problems of the CEC 2011 test suite have been optimized

Algorithm [START_REF] Črepinšek | Exploration and exploitation in evolutionary algorithms: A survey[END_REF] The proposed algorithm Apply the proposed parameter adaptation 5:

for Each individual k in popold do 6:

Apply the mutation strategy according to (4.32)

7:

Apply binomial crossover 8:

if The offspring is better than the parent then 9:

Replace the parent in pop with the offspring for Each individual k in pop do 13:

if the combination F k /CR k was successf ul then 14:

Label F k /CR k combination as promising Apply the parabolic reduction using (4.38) Our effort has focused on optimizing real-world problems, where recent topologies of a given electric motor have been optimized. Furthermore, our proposals performance have been validated on the CEC 2011 test suite, which represents the most recent benchmark that contains real-world applications. It can be noticed from the experimental results that the introduced algorithms have been compared with several recent state-of-the-art algorithms revealing satisfying results.