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Abstract

Uplift modeling is a machine learning-based technique for treatment e↵ect prediction

at the individual level, which has become one of the main trends in application areas

where personalization is key, such as personalized medicine, performance marketing,

social sciences, etc.

This thesis is intended to expand the scope of uplift modeling for experimental

data by developing new theory and solutions for several open challenges in the field,

inspired by the online advertising applications perspective.

Firstly we release a publicly available collection of 13.9 million samples collected

from several randomized control trials, scaling up available datasets by a 210x fac-

tor. We formalize how uplift modeling can be performed with this data, along with

relevant evaluation metrics. Then, we propose synthetic response surfaces and treat-

ment assignment providing a general set-up for Conditional Average Treatment E↵ect

(CATE) prediction and report experiments to validate key traits of the dataset.

Secondly, we assume imbalanced treatment conditions and propose two new data

representation-based methods inspired by cascade and multi-task learning paradigms.

We provide then series of experimental results over several large-scale real-world col-

lections to check the benefits of the proposed approaches.

We then cover the problem of direct optimization of the Area Under the Uplift

Curve (AUUC), a popular metric in the field. Using the relations between uplift

modeling and bipartite ranking we provide a generalization bound for the AUUC and

derive an algorithm optimizing this bound, usable with linear and deep models. We

empirically study the tightness of the proposed bound, its e�cacy for hyperparame-

ters tuning, and investigate the performance of the method compared to a range of

baselines on two real-world uplift modeling benchmarks.

Finally, we consider the problem of learning uplift models from aggregated data.

We propose a principled way to learn group-based uplift models from data aggregated

according to a given set of groups that define a partition of the user space, using

di↵erent unsupervised aggregation techniques, such as feature binning by value or by
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quantile. We proceed by introducing a bias-variance decomposition of the Precision

when Estimating Heterogeneous E↵ect (PEHE) metric for models learned on a given

grouping and show how this decomposition enables us to derive a theoretical optimal

number of groups as a function of data size. Experimental results highlight the bias-

variance trade-o↵ and confirm theoretical insights concerning the optimal number of

groups. In addition, we show that group-based uplift models can have comparable

performance to baselines with full access to the data.

Keywords: uplift modeling, large-scale benchmark, multi-task learning, bipartite

ranking, generalization bounds, learning from aggregated data, di↵erential privacy,

privacy-utility trade-o↵.
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Résumé

La modélisation d’uplift est une technique basée sur l’apprentissage automatique pour

la prédiction de l’e↵et d’un traitement au niveau individuel, qui est devenue l’une des

principales tendances dans les domaines d’application où la personnalisation est es-

sentielle, comme la médecine personnalisée, le marketing de performance, les sciences

sociales, etc.

Cette thèse a pour but d’étendre la portée de la modélisation d’uplift pour les

données expérimentales en développant une nouvelle théorie et des solutions pour

plusieurs défis ouverts dans le domaine, inspirés par la perspective des applications

de la publicité en ligne.

Tout d’abord, nous mettons à la disposition du public une collection de 13,9

millions d’échantillons collectés à partir de plusieurs essais de contrôle aléatoires,

ce qui multiplie par 210 les ensembles de données disponibles. Nous formalisons la

façon dont la modélisation d’uplift peut être e↵ectuée avec ces données, ainsi que les

mesures d’évaluation pertinentes. Ensuite, nous proposons des surfaces de réponse

synthétiques et une a↵ectation de traitement fournissant une configuration générale

pour la prédiction de l’e↵et de traitement moyen conditionnel (CATE) et nous rap-

portons des expériences pour valider les caractéristiques clés de l’ensemble de données.

Ensuite, nous supposons des conditions de traitement déséquilibrées et proposons

deux nouvelles méthodes basées sur la représentation des données, inspirées des

paradigmes d’apprentissage en cascade et multi-tâches. Nous fournissons ensuite

une série de résultats expérimentaux sur plusieurs collections à grande échelle pour

vérifier les avantages des approches proposées.

Nous abordons ensuite le problème de l’optimisation directe de l’Area Under the

Uplift Curve (AUUC), une métrique populaire dans le domaine. En utilisant les

relations entre la modélisation d’uplift et le classement bipartite, nous fournissons une

limite de généralisation pour l’AUUC et dérivons l’algorithme d’optimisation de cette

limite, utilisable avec des modèles linéaires et profonds. Nous étudions empiriquement

l’étanchéité de la limite proposée, son e�cacité pour le réglage des hyperparamètres
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et nous examinons les performances de la méthode par rapport à une série de lignes

de base sur deux repères de modélisation d’uplift du monde réel.

Enfin, nous considérons le problème de l’apprentissage de modèles d’uplift à par-

tir de données agrégées. Nous proposons une méthode pour apprendre des modèles

d’uplift basés sur des groupes à partir de données agrégées selon un ensemble donné

de groupes qui définissent une partition de l’espace utilisateur, en utilisant di↵érentes

techniques d’agrégation non supervisées, telles que le regroupement de caractéristiques

par valeur ou par quantile. Nous introduisons une décomposition biais-variance de la

métrique Precision when Estimating Heterogeneous E↵ect (PEHE) pour les modèles

appris sur un groupe donné et montrons comment cette décomposition nous permet de

dériver un nombre optimal théorique de groupes en fonction de la taille des données.

Les résultats expérimentaux mettent en évidence le compromis biais-variance et con-

firment les idées théoriques concernant le nombre optimal de groupes. En outre, nous

montrons que les modèles d’uplift basés sur les groupes peuvent avoir une performance

comparable à celle des modèles de base avec un accès complet aux données.
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Chapter 1

Introduction

1.1 Context

1.1.1 Motivation

Selecting subjects that should be exposed to a given treatment is a problem of grow-

ing interest in a variety of application domains related to personalization – such as

medicine, social sciences, credit scoring, insurance, performance marketing, or online

advertising.

Response modeling has long been considered as a standard machine learning-

based solution for this task. In response modeling, the model is trained to predict the

outcome after the treatment – or response – and then a treatment assignment rule

is derived based on model predictions. Despite its popularity in the industry, this

method has a significant disadvantage of not taking into account potential outcomes

obtained in the absence of treatment. Consider for instance the situation where

an experimenter needs to identify which of the customers to send a promotional

newsletter to maximize the amount of sales. The four following scenarios are possible

(the true scenario is unknown for an experimenter):

1. Client buys a product after receiving a newsletter and does not buy otherwise

� treatment is e↵ective.

2. Client buys a product regardless of receiving a newsletter � treatment is point-

less.

3. Client does not buy a product regardless of receiving a newsletter � treatment

is pointless.

4. Client does not buy a product after receiving a newsletter and buy otherwise

� treatment is harmful.
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Originating mainly in the online marketing domain, uplift modeling takes a step

forward by estimating the causal impact of treatment at the individual level, i.e. the

di↵erence in the outcome of the subject when she is being treated or not. For achieving

this goal, the whole population is divided randomly into two groups: treatment is

assigned to units from the treatment group while control group units do not receive

treatment. Then, uplift models are learned based on individual features, treatment

flag and final outcome (see Section 2.2).

Illustrative example. Figure 1.1 illustrates a typical uplift modeling pipeline,

where data are available from prior, randomized experiments. It could be a pilot

study using a randomized control trial (RCT) with a placebo for medicine or an A/B

test for marketing (step 1). Then, di↵erent models predicting the individual uplift

can be learned and evaluated (step 2). A popular metric to value the quality of a

model is the Area Under the Uplift Curve (AUUC) [90]. This metric measures the

cumulative uplift along individuals sorted by model predictions. A good model (with

a high AUUC) scores higher those individuals for which the prediction is high (bene-

ficial) compared to ones for which the prediction is low (neutral or even detrimental).

Finally, practitioners use predictions to rank future instances and assign treatment

to individuals with the highest scores (step 3) [37, 43].

When a new cohort of individuals is available, the predictions of the model will be

used to target treatment: highest scored individuals would be treated (green individ-

uals in Figure 1.1) whilst lowest scored ones would be excluded from treatment (blue

individuals). This strategy is useful as soon as the treatment e↵ect is heterogeneous

(i.e. depending on observable covariates). Note that the prediction value itself is not

as interesting here as the ranking induced by the predictions.

Figure 1.1: Typical uplift modeling pipeline schematized in three steps. Step 1 starts
with a randomized control trial using an A/B test. Then Step 2 consists of learning
and evaluating several uplift models and selecting the best performing one by Area
Under the Uplift Curve (or another metric) on data gathered at Step 1. Finally,
at Step 3, the best uplift model is used to target treatment on the next cohort of
individuals.
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It is worth mentioning here that the problem of uplift modeling is not alone in

its role – thus, the task of Conditional Average Treatment E↵ect prediction is closely

related to uplift modeling and developed in parallel by researchers from spheres of

medicine, econometrics, and social sciences (see Section 1.2 for details).

1.1.2 Challenges in online advertising

Notably for Criteo as an online advertising company, uplift modeling plays an im-

portant role in several applied tasks such as incrementality measurement and opti-

mization. Specifically, uplift models can be incorporated as a building block in the

real-time bidding process.

Meanwhile, it is worth noting a few peculiarities that arise during the application

of uplift models in online advertising and in Criteo in particular:

• Large-scale data: unlike most existing fields that exploit uplift modeling and

CATE prediction, online advertising companies often deal with large amounts of

data – as a consequence, desirable uplift model should satisfy several conditions:

it needs to be lightweight enough to be used on servers and scalable enough

to be e↵ectively parallelized. Finally, potential models should be tested on big

datasets – as some uplift models performing well on datasets of small size might

not have the same e�ciency on large-scale data.

• Imbalanced treatment assignment: depending on the notion of treatment

in the task, situations arise when treated or untreated individuals may cost very

di↵erently. As a result, an obtained dataset might be made up of treatment and

control groups of di↵erent sizes, so some models may lose quality for this reason.

• Generalization guarantees: in online advertising, prediction models are au-

tomatically retrained on the new portions of data every fixed period – that is

why it is so important to maintain their generalizability.

• Privacy guarantees: privacy-preserving algorithms play a key role in main-

taining trustworthy AI. Recently, series of changes to data access were proposed

by Google Chrome [1] to guarantee web users privacy through data aggregation

and di↵erential privacy. For instance, instead of having access to single records

describing a user, marketers could only be able to get aggregated data queried

through an aggregate reporting API [61, 1]. More concretely, the marketers

would be able to upload to the browser a prediction model from the user data,

but the data would stay on the browser and the marketer would only access it
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through aggregated projections. Additive noise could simultaneously be added

to guarantee di↵erential privacy [42] of the process.

The focus of this thesis is to develop theory and methods of uplift modeling that

can help to address mentioned challenges.

1.2 Problem formulation

In this section, we define necessary notations and formulate the two related problems

of individual treatment e↵ect prediction and uplift modeling, explaining the di↵erence

between them and providing assumptions under which both have a common objective.

1.2.1 Notations

Let X 2 Rd be a random variable of features and x 2 X be its realization, denoting

feature vector that characterised an individual, and Y 2 R be the outcome variable

(in this thesis, both continuous and binary outcomes were used, however, determining

the outcome as continuous is su�cient to define CATE and uplift). Additionally, let

the treatment variable T 2 {0, 1} denote whether an individual receives treatment

(t = 1) or not (t = 0), so we assume the dataset (xi, yi, ti)
iid⇠ PX,Y,T . We define

then St = {xi, yi, t}i=1...nt as the particular subset of the training set S of size N , i.e.

S = S1 t S0 and N = n1 + n0.

Following the potential outcomes framework [89], each individual i has two po-

tential outcomes: yi(1) if i receives the treatment and yi(0) if i does not receive the

treatment, we denote Y (0) and Y (1) the underlying random variables.

1.2.2 Conditional Average Treatment E↵ect Prediction

The individual treatment e↵ect (ITE) of the individual i is given by the di↵erence

of its potential outcomes:

⌧i = yi(1)� yi(0), (1.1)

Note, that among the two potential outcomes, only yi = yi(ti) � the factual

outcome� is observed in practice, and never both. The unobserved potential outcome

yi(1 � ti) is often called counterfactual of the observed outcome. In the community,

this issue is referred to as the Fundamental Problem of Causal Inference (FPCI).

Thus, FPCI prevents the access to the true value of the ITE.
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Since individuals are described by vectors of features x it is rather possible to

estimate the conditional average treatment e↵ect (CATE) defined for any x 2
X as:

⌧(x) = E[Y (1)� Y (0) | X = x]. (1.2)

The best CATE estimator is at the same time the best estimator for ITE in terms

of the mean squared error, as shown in [63].

1.2.3 Uplift Modeling

A practical-oriented branch of the work with CATE prediction, is uplift modeling.

Uplift is a term in the marketing application which refers to incremental impact of

the treatment (promotion, online banner, etc.).

Formally, for the individual x, the causal uplift U(x) is defined as the di↵erence

in outcome should the individual be selected to take the treatment or not:

U(x) = E[Y | X = x, do(T = 1)]� E[Y | X = x, do(T = 0)] (1.3)

where do(·) is an intervention operator defined in Pearl’s causal inference framework

[79].

In turn, the conditional uplift u(x) is the expected di↵erence in outcome when

the individual has taken the treatment or not, that is when we observe it after the

fact:

u(x) = E[Y | X = x, T = 1]� E[Y | X = x, T = 0] (1.4)

Causal and conditional uplifts are equivalent if treatment is administered to indi-

viduals at random:

X |= T ) U(x) = u(x).

In other words, the data should be obtained from a randomized control trial

(RCT), or online controlled experiment (also called A/B test), where individuals

are randomly split in two populations: the treatment population which receives the

treatment and the control population which does not.

1.2.4 Tasks comparison

Generally, both CATE prediction and uplift modeling have the common goal of de-

termining how changing treatment a↵ects changing outcome. However, a subtle dif-

ference between the two can be traced in the data generating process, as can be seen
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(a) Causal graph for observational
data. Treatment assignment that de-
pends on the covariates leads to se-
lection bias problem.

(b) Causal graph for experimen-
tal data. Intervention on treat-
ment could be performed by assign-
ing treatment randomly.

Figure 1.2: Causal graphs for observational and experimental data.

in Figure 1.2: methods developed in CATE prediction community are usually devel-

oped for observational data (Fig. 1.2a) � therefore these methods are often aimed at

solving an additional problem of selection bias between treatment and control pop-

ulations. In uplift modeling, on the other hand, experimental data (Fig. 1.2b) from

RCT is assumed, in order to preserve the equivalence between causal and conditional

uplift.

As described in [110], there is a set of assumptions, under which objectives of two

tasks are equivalent (note that even in this case two tasks are di↵erent, as CATE

prediction still contains selection bias problem):

• Overlap: Any subject has a non-zero probability of receiving or not to receiving

the treatment:

0 < P(T = 1 | X = x) < 1 (1.5)

• Stable unit treatment value (SUTV): treatment applied to one subject

does not a↵ect the outcome of other subjects.

• Unconfoundedness:

(Y (0), Y (1)) |= T | X = x (1.6)

We believe that the tasks of CATE prediction and uplift modeling are unreason-

ably segregated from each other and that they should interact more closely. Notably,
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series of model evaluation approaches from uplift modeling can be used in CATE

prediction and vice-versa (see Section 2.1) while some of the metrics are related being

motivated by di↵erent goals (see Section 2.1.3). Besides, particular CATE and uplift

models are “universal” in a sense they might be e�ciently integrated in both problems

(see Section 2.2). However, it is hard to merge the tasks completely as considered

conditions of both may still have minor but su�cient di↵erences.

Detailed surveys of the CATE prediction and uplift modeling are provided in

[50, 37, 110].

Remark The problem of uplift modeling is the main focus of this thesis � hence

throughout the work more attention is given to uplift models with corresponding

performance metrics and more contributions are performed to this very problem.

In the meantime, several contributions in the thesis address the problem of CATE

prediction along with uplift modeling (under the aforementioned assumptions), since

the two problems are ultimately closely related.

1.3 Thesis structure

The rest of the thesis consists of five chapters:

• Chapter 2 represents the background of uplift modeling and CATE predic-

tion, including description of existing models, comparison of di↵erent model

evaluation approaches and overview of the datasets.

• In Chapter 3, a new large-scale benchmark is presented, notably, we provide

details on the data collection, sanity checks that validate the use of this data

and formalize how uplift modeling and CATE prediction can be performed with

this data, along with the relevant evaluation metrics.

• Chapter 4 contains the data representation-based uplift models for the cases

when treatment is imbalanced throughout the data, along with the evaluation

of proposed models.

• In Chapter 5, the problem of direct optimization of popular uplift modeling

metric, namely Area Under the Uplift Curve (AUUC) is considered. In par-

ticular, data-dependent generalization error bound for AUUC is derived, using

the relation with bipartite ranking, then the corresponding learning objective

is presented that optimizes this bound.
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• Chapter 6 describes the problem of learning uplift and CATE prediction mod-

els in scenarios when access to both labels and features is available only through

aggregated queries upon groups, motivated by a recent increase of privacy con-

straints in di↵erent domains. For this, a principled way to learn group-based

uplift models from aggregated data is proposed. Besides, the bias-variance de-

composition for the method is identified, highlighting the role of the underlying

partition size in the privacy-utility trade-o↵.

• Finally, in Chapter 7, conclusions and future perspectives are provided.

1.4 Corresponding articles

Conferences

• “Uplift Prediction with Dependent Feature Representation in Imbalanced Treat-

ment and Control Conditions” [17] – Artem Betlei, Eustache Diemert, Massih-

Reza Amini, published at ICONIP 2018.

• “Uplift Modeling with Generalization Guarantees” [18] – Artem Betlei, Eu-

stache Diemert, Massih-Reza Amini, published at KDD 2021.

Workshops

• “Dependent and Shared Data Representations improve Uplift Prediction in Im-

balanced Treatment Conditions” - Artem Betlei, Eustache Diemert, Massih-

Reza Amini, presented at Machine Learning for Causal Inference, Counterfac-

tual Prediction, and Autonomous Action (CausalML), ICML 2018 workshop.

• “A large scale benchmark for uplift modeling” [39] - Eustache Diemert, Artem Betlei,

Christophe Renaudin, Massih-Reza Amini, presented at AdKDD, KDD 2018

workshop.

• “Optimization of treatment assignment with generalization guarantees” - Artem Betlei,

Eustache Diemert, Massih-Reza Amini, presented at Causal Learning for Deci-

sion Making (CLDM), virtual ICLR 2020 workshop.

• “Di↵erentially Private Individual Treatment E↵ect Estimation from Aggregated

Data” [19] – Artem Betlei, Théophane Gregoir, Thibaud Rahier, Alöıs Bissuel,

Eustache Diemert, Massih-Reza Amini, presented at Privacy Preserving Ma-

chine Learning, virtual ACM CCS 2021 workshop.
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Submitted works

• “A Large Scale Benchmark for Individual Treatment E↵ect Prediction and Up-

lift Modeling” [40] – Eustache Diemert, Artem Betlei, Christophe Renaudin,

Massih-Reza Amini, Theophane Gregoir, Thibaud Rahier, submitted to NeurIPS

2021 Conference, Datasets and Benchmarks Track.
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Chapter 2

Background

In this chapter, we introduce detailed background in uplift modeling and CATE

prediction. In particular, we provide the survey of model selection and evaluation

techniques for the real-life cases, when there is no access to the true CATE or uplift,

highlighting the links between some of them. Along with this, we describe the state-

of-the-art uplift models and CATE estimators. Finally, we present existing available

datasets in both fields.

2.1 Model evaluation techniques

One of the determinant problems in both CATE prediction and uplift modeling is the

inability to observe a given individual in treated and untreated conditions simultane-

ously due to Fundamental Problem of Causal Inference (see Section 1.2.2). Evalua-

tion metrics computing a di↵erence to the true CATE can only work in a simulation

setting, where both factual and counterfactual outcomes are available. A popular ex-

ample of such a metric, used in variety of CATE prediction works [71, 94, 106, 107, 5],

is the Precision in Estimation of Heterogeneous E↵ects (PEHE) [52]:

✏PEHE(⌧̂) = E
⇣

⌧(X)� ⌧̂(X)
⌘2
�

(2.1)

However, in real-life scenarios (which have the highest priority in this thesis) only

factual outcome is observed, so the true uplift is inaccessible and one cannot utilize

PEHE. Applying traditional performance metrics for the classifier or regressor under-

ling CATE predictor or uplift model (e.g. accuracy/MSE of the prediction model)

does not guarantee the accuracy of predicting uplift. In addition, since applications

of ML models vary greatly from one CATE predictor to another, comparing di↵erent

predictors in this way is not meaningful.
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As a consequence, the process of selecting the right model in this situation also

becomes complicated, as reliable model selection requires a model validation proce-

dure.

For both tasks, precision of e↵ect estimation might not be the final metric of

interest. Depending on the ultimate goal, practitioners may be also keen to find a good

treatment prescription rule or measure treatment prescription quality [112, 94, 12].

Accordingly, finding appropriate ways to evaluate CATE prediction and uplift

models without having access to the true CATE or uplift is non-trivial, while being

one of the most important problems in both fields.

2.1.1 CATE prediction

A comprehensive overview of model selection approaches for CATE prediction was

proposed by [93]. To perform the selection, authors estimate the expected prediction

risk for each of the given models and find the model that minimizes this risk. In

particular, they include methods either explicitly designed for model selection or

adapted from model learning procedures proposed for CATE prediction or policy

learning.

Authors then divide approaches into three groups:

• First group of methods that minimize risk of potential outcomes include the

predictive risk estimation (e.g. by MSE) separately for models µ̂0, µ̂1 and its

weighted extension, in which MSE for individual i is divided by propensity

score e(xi) – for the cases when treatment assignment is conditional on observed

covariates.

• In second group, di↵erent ways of maximizing value of treatment policy are

presented, consisting of inverse propensity weighted (see Section 2.1.2.2) and

doubly robust value estimators.

• Last, third group represents the approaches of CATE risk minimization. Here,

three techniques are provided based on matched treated and control individuals,

inverse propensity weighting, and Robinson decomposition (see Section 2.2.1)

respectively.

Performing series of simulations on both randomized and observational data, authors

claim that Robinson decomposition-based CATE risk minimizer, when optimized,

most consistently leads to the selection of a high-performing model.
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There are several alternative validation methods described in CATE prediction

literature.

Influence Functions-based method [5] aims to validate CATE predictors by

“predicting” the PEHE using Influence Functions – functional derivatives of a loss

function with respect to the data distribution. By analogy to the regular derivatives,

if we know PEHE of the model under some known distribution that is close enough

to the true distribution, then we can estimate the true PEHE via influence functions

using Taylor-like expansion as follows:

PEHE(✓) ⇡ PEHE(✓̃)| {z }
plug-in estimate

+ ˙PEHE(✓̃) d(✓ � ✓̃)| {z }
plug-in bias

(2.2)

where ✓ denotes a collection of nuisance parameters – conditional potential out-

comes µ0, µ1 and propensity score e – of the true distribution, ✓̃ is plug-in model

and ˙PEHE(✓̃) is influence function of the functional PEHE(✓̃).

We can briefly describe the procedure in two main steps:

1. Plug-in estimation: Fit the plug-in model ✓̃ = {µ̃0, µ̃1, ẽ}, then compute the

plug-in estimate PEHE(✓̃).

2. Unplugged validation: Use the influence functions of PEHE(✓̃) to predict

PEHE(✓).

For plug-in estimate, authors use Two-Models method (see Section 2.2.1) with

gradient boosting algorithm XGBoost [29] in the role of base regressor for both groups

and XGBoost classifier for the propensity score.

At the same time, for unplugged validation, authors provide closed-form expres-

sion of the first-order influence function [5, Theorem 2] and report that higher-order

influence functions of PEHE are intractable.

Counterfactual Cross-Validation [92] is an alternative model selection tech-

nique. Proposed idea is that knowing the rank order of the performance of candidate

predictors is enough to be able to select the predictor:

Rtrue(⌧̂)  Rtrue(⌧̂
0)| {z }

true performance ranking

=) R̂(⌧̂)  R̂(⌧̂ 0)| {z }
ranking by evaluation metric

(2.3)

where Rtrue(⌧̂) is true PEHE of the model ⌧̂ and R̂(⌧̂) is the potential evaluation

metric of ⌧̂ .
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Similar to PEHE metric, they provide the following class of evaluation metrics:

R̂(⌧̂) :=
1

N

NX

i=1

(⌧̃(Xi)� ⌧̂(Xi))
2 (2.4)

where ⌧̃ denotes plug-in estimator, that should satisfy two conditions:

1. ⌧̃ should be the unbiased estimator of true CATE

2. ⌧̃ should have small expectation of conditional variance

For plug-in estimator authors combine Doubly Robust estimator (see Section

2.2.1) that meets Condition 1, with Counterfactual Regression (see Section 2.2.4),

that minimizes expected conditional variance, satisfying Condition 2.

Policy Risk [94] is one more noteworthy metric which measures the risk to target

treatment based on the policy implied by model ⌧̂ . For this we can assume some

threshold ↵ and assign treatment for x if ⌧̂(x) > ↵. For the threshold ↵, policy risk

Rpol(⌧̂ ,↵) takes the following form:

Rpol(⌧̂ ,↵) = 1�
⇣
E[Y | ⌧̂(x) > ↵, T = 1]P(⌧̂(x) > ↵)

+ E[Y | ⌧̂(x)  ↵, T = 0]P(⌧̂(x)  ↵)
⌘ (2.5)

2.1.2 Uplift modeling

In this subsection, we present an overview of the evaluation metrics provided in uplift

modeling literature, which is applicable when the true uplift is unknown.

2.1.2.1 Metrics based on the group uplift

The main concept of this family of metrics is the ability to estimate group-level uplift

instead of infeasible, individual-level one. Intuitively, with a good model, individuals

with high true uplift should yield a high prediction. This leads to the natural idea

to rank the whole population by their uplift score by descending order and compute

group-level uplift for a certain proportion of individuals:

û(Xg) = E[Y | Xg, T = 1]� E[Y | Xg, T = 0] (2.6)

where Xg denotes individuals of particular group g.
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Several approaches are proposed in the literature on how to divide the population

into parts, based on which group-level uplift will be computed. For instance, dividing

individuals into 10 bins and computing uplift per decile is popular in the marketing

community [69, 51, 65]. Having such a division, practitioners may focus more on the

behavior of the first k deciles in order to find a good prescription rule, or on the

patterns of how the decile uplifts change – naturally, the good uplift model implies a

monotonically decreased pattern. Kendall’s Uplift Rank Correlation (KURC)

[15] is one of the metrics trying to catch such a pattern by measuring the correlation

between the predicted uplift and the observed one. KURC is defining as follows:

⇢ =
2

K(K � 1)

X

i<j

sign
�
¯̂ui � ¯̂uj

�
sign (ūi � ūj) , (2.7)

where K is number of bins, ¯̂uk is the average predicted uplift in the bin k, k 2
{1, ..., K} and ūk is the true uplift in the bin k.

While comparison of uplift above a fixed cuto↵ is a simple and convenient metric,

it is not satisfactory enough when the goal is to measure the uplift prediction itself.

As a step forward, the paradigms of Qini [82] and Uplift [90] curves were proposed

later with the ideas to extend the “uplift per decile” approaches by adding the ability

to compute uplift for any ratio of users. Two curves are quite similar to each other,

however, we will describe both of them for completeness.

Let û be the uplift model. û(S1, k) and û(S0, k) denote individuals in S1 and S0

respectively among the top 100 ·k percent of whole population, ordered by prediction

of û with

R
k
1 =

X

i2û(S1,k)

yi and R
k
0 =

X

i2û(S0,k)

yi

Then, the value related to the cumulative group uplift is expressed as:

Vq(û, k) = R
k
1 �

n
k
1

n
k
0

R
k
0 . (2.8)

Note that the resulting value serves as a quality metric of treatment prescription

rule (as k corresponds to particular threshold for treatment prescription), being sim-

ilar by intuition to a group of methods which maximize the value of treatment policy

from [93] (see Section 2.1.1).

The Qini curve is drawn by varying k from 0 to 1. Once it is built, one can

compute the area under the curve (AUC) as a way to summarize model performance.

There are several building blocks remain to introduce, in order to present the

final metric. Let urandom be the model, assigning treatment to the users randomly �
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(a) Q (b) AUUC

Figure 2.1: Illustrative example of Qini & Uplift curve-based metrics. Q is the ratio
of the areas A

B (left), while AUUC is the area C.

this model will act as a baseline. Besides, let u⇤ be the model that induces optimal

ranking of users, namely:

u
⇤(S+

1 ) >
�
u
⇤(S�

1 ) [ u
⇤(S�

0 )
�
> u

⇤(S+
0 ), (2.9)

where S
+ and S

� indicate subsets of positives and negatives respectively. Note that

u
⇤ should be considered as an “oracle” model, which might be infeasible to find even

theoretically (assume for instance the case when data contains two identical feature

vectors with di↵erent treatments - no model can separate them).

Qini coe�cient Q [82] is proposed as the following ratio:

Q(û) =
AUC(û)� AUC(urandom)

AUC(u⇤)� AUC(urandom)
=

R 1

0 Vq(û, x)dx�
R 1

0 Vq(urandom
, x)dx

R 1

0 Vq(u⇤, x)dx�
R 1

0 Vq(urandom, x)dx
(2.10)

In other words, Q quantifies how much better the model is, comparing to the random

treatment targeting and at the same time how close the resulting ranking is to the

optimal one.

The Uplift curve focus on the direct group uplift (avoiding the weighted term from

Equation (2.8)), so the point of the curve represents the following:

Vupl(û, k) = R
k
1 �R

k
0 (2.11)

Similarly to the previous case, one can compute the Area Under the Uplift

Curve (AUUC) [90]:

AUUC(û) =

Z 1

0

Vupl(û, x)dx (2.12)

Besides the described metrics, uplift modeling literature yields multiple modi-

fications of Qini and Uplift curves, with di↵erences residing mainly in i) the way
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treatment imbalance is accounted for; and ii) whether treated and control groups are

ranked separately or jointly. Readers can refer to [38, Table 2] for a comprehensive

picture of available alternatives.

2.1.2.2 Inverse Propensity Weighting-based metrics

Metrics of this family are designed mainly for measuring treatment prescription qual-

ity. Expected Response is introduced in [112] for experimental data cases as an

expectation of the outcome of individuals, for which original and prescribed treatment

are the same. Formally, random variable Z is as follows:

Z =
KX

t=0

1

et
Y · 1[h(X) = t] · 1[T = t] (2.13)

where et is probability of assigning treatment t and h(X) is treatment prescription

policy using uplift model (e.g. h(X) = 1[û(X) > 0]). Note that K may be greater

then 2, allowing to apply metric for multi-treatment problems.

Along with Z, its sample average z̄ is unbiased estimator of expected outcome

under policy h(X):

E[z̄] = E[Y | T = h(X)] (2.14)

Based on z̄, authors also proposed the modification of the Uplift curve: subjects

are ranked by uplift scores from highest to lowest and z̄ is computed cumulatively for

di↵erent top ratios of the population.

2.1.3 Connections between evaluation techniques of two tasks

As CATE prediction and uplift modeling share the objectives, many of described

evaluation approaches are interchangeable between the tasks – thus, some uplift model

evaluation methods are reported in CATE model selection surveys [93].

Moreover, we derive the connection between CATE prediction metric Policy Risk

and Uplift curve:

Proposition 1 (On the similarity between Rpol and Vupl). Assume an equivalence

between threshold ↵ and top ratio k. The Rpol can be expressed similarly to Vupl as a

weighted di↵erence between R
↵
1 and R

↵
0 as follows:

Rpol(û,↵) = 1�
⇣
P↵

n
↵
1

R
↵
1 � 1� P↵

n0 � n
↵
0

R
↵
0 +

n
+
0 (1� P↵)

n0 � n
↵
0| {z }

const(↵)

⌘
, (2.15)

where P↵ = P(û(x) > ↵), n↵
1 =

P
i:û(x)>↵ yi1[ti = 1] and n

1�↵
0 =

P
j:û(x)↵ yj1[tj = 0].
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Proof.

E[Y | û(x) > ↵, T = 1] =

P
i:û(x)>↵ yi1[ti = 1]

P
i:û(x)>↵ 1[ti = 1]

=
R

↵
1

n
↵
1

,

E[Y | û(x)  ↵, T = 0] =

P
j:û(x)↵ yj1[tj = 0]

P
j:û(x)↵ 1[tj = 0]

=
R

1�↵
0

n
1�↵
0

Having R
1�↵
0 = n

+
0 �R

↵
0 and n

1�↵
0 = n0 � n

↵
0 we get

Rpol(û,↵) = 1� R
↵
1

n
↵
1

P↵ +
n
+
0 �R

↵
0

n0 � n
↵
0

(1� P↵)

= 1�
⇣
P↵

n
↵
1

R
↵
1 � 1� P↵

n0 � n
↵
0

R
↵
0 +

n
+
0 (1� P↵)

n0 � n
↵
0

⌘
.

Based on Proposition 1, we can conclude that, following di↵erent intuition and

types of usage, in the end, two metrics are estimating similar values, which is a clear

indication of the possible use of Uplift curve in CATE prediction and Policy Risk in

uplift modeling. Visual comparison between two metrics is provided in Figure 2.2.

Figure 2.2: Example of curve based on Rpol (blue) by varying ↵ and Uplift curve,
based on Vupl (orange): for policy risk curve, we keep only the part subtracted from
1 of Equation 2.15. Also we calibrate two values to begin from the same point. Both
metrics were computed for predictions of the fixed uplift model.
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2.2 Existing CATE prediction and uplift models

We provide here the description of the most well-known methods in uplift modeling

and CATE prediction, considering their strengths and drawbacks.

We remark that uplift models are often overlapping with CATE prediction tech-

niques or reinvented independently, as the former is a subproblem of the latter (see

Section 1.2.4). Besides, a majority of methods are interchangeable between the two

tasks.

2.2.1 Model-agnostic methods

Model-agnostic methods (or meta-learners) is a family of methods for which any ML

model can be applied as a base learner, there are di↵erent ways to compute the uplift

though.

Two-Models approach [51] or T-Learner [63] is the most straightforward

method to predict CATE (uplift). It uses two separate probabilistic models to predict

outcome in treated or untreated conditions:

û
TM(x) = µ̂1(x)� µ̂0(x) (2.16)

where µ̂1(x) = E[Y | X = x, T = 1] and µ̂0(x) = E[Y | X = x, T = 0].

Any prediction model can be used for the estimation of posteriors and if both

models perform well, the uplift model will also perform highly.

At the same time, the main goal of the models is to predict outcomes separately

but not exactly the uplift. In cases where the average response is low and/or noisy,

there is the risk for the di↵erence of predictions to be very noisy too (see [83] for a

detailed critic).

S-Learner [63] is a similar method to TM, estimating the outcome using the treat-

ment indicator as an additional feature. Uplift then could be inferred as:

û
S�L(x) = µ̂(x, 1)� µ̂(x, 0) (2.17)

where µ̂(x, t) = E[Y | X = x, T = t].

The method is quite simple to use, however, model µ̂ learns only a simple re-

calibration of the prediction for treated/control, which is usually not enough to find

complex interaction between the features and treatment to explain the response.

Besides, the importance of the treatment feature may be underestimated by the

prediction model.
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X-Learner [63] is a method that extends the Two-Models approach especially for

scenarios where treatment is imbalanced, i.e. sizes of treatment and control groups

significantly di↵er – in this case, a predictor trained on the smaller group may not be

modeled accurately.

The idea of the method is first to predict the counterfactual outcomes for treat-

ment individuals using the model, trained on a control population, and counterfactual

outcomes for control individuals using the model, trained on a treatment population.

This way, we can get so-called “imputed treatment e↵ects” for each individual:

D̂
0
i = µ̂1(xi)� Yi (i belongs to treatment group) (2.18)

D̂
1
j = Yj � µ̂0(xj) (j belongs to control group) (2.19)

When imputed e↵ects are computed, the next step is to estimate uplift in two

ways by learning two separate regression models based on D̂
0 and D̂

1:

û0 = E[D̂0 | X, T = 0] (2.20)

û1 = E[D̂1 | X, T = 1] (2.21)

Finally, the uplift is estimated as the weighted average of û0 and û1:

û
X�L(x) = e(x)û0(x) + (1� e(x))û1(x) (2.22)

where e(x) = P(T = 1 | X = x) denotes probability of assigning treatment to an

individual called propensity score [88]. e(x) is constant for randomized control trials.

As the approach is tailored particularly for cases when the number of individuals

in one group is much larger than in the other, several works [63, 110] confirm the

e↵ectiveness in these scenarios.

However, the need to train four prediction models (in observational data cases

when one need to estimate propensity score ê(x), amount of models increases to

five) is a disadvantage of the method, as this entails a time-consuming process of

hyperparameter tuning and the higher risk of overfitting.

Transformed Outcome methods use di↵erent modifications of the original out-

come combined with treatment, to obtain a proxy of the true uplift and learn a single

model. One frequently used transformation called in this work is the Modified Out-

come Method (MOM) [11] that is relevant for any range of outcomes, based on

the idea of Inverse Propensity Weighting (IPW) [54, 88]:

Y
MOM
i = Yi ·

Ti � e(Xi)

e(Xi) · (1� e(Xi))
(2.23)

20



A very important property of this transformation is that Y
MOM is an unbiased

estimator of the true uplift:

E[Y MOM | X = x] = u(x) (2.24)

and any regression model can be used to estimate uplift by learning Y
MOM as a label.

One disadvantage of the method is the ability to discard information by using

values of the pairs (Xi, Y
MOM
i ) instead of the triples (Xi, Yi, Ti) – in particular cases

one may estimate uplift more precisely by exploiting the information in the form of

triplets (see Section 3.3 of [11]). Along with this, new outcome Y
MOM is su↵ering

from large variance in cases where the variance of propensity score e(x) is small.

Two similar approaches, which are the particular cases of MOM were proposed

for binary outcomes, respectively Four Quadrant method [65] and Class Vari-

able Transformation (CVT) [57]. Following di↵erent reasoning, at the end both

methods proposed the same transformation:

Y
CV T
i =

8
><

>:

1 if Yi = 1 ^ Ti = 1

1 if Yi = 0 ^ Ti = 0

0 otherwise

(2.25)

and uplift can be inferred as:

û
CV T (x) = 2 · P(Y CV T = 1 | X = x)� 1 (2.26)

As the methods are proposed originally for the uplift modeling problem, the need

for experimental data is assumed. For the imbalanced treatment cases, the sample

weighting was suggested for CVT to learn the model [57].

R-Learner [75] where R for “residualized” and as an homage to Peter M. Robinson,

applies orthogonalization to eliminate selection bias from observational data in two

steps.

Firstly, so called nuisance components are estimated, as conditional mean outcome

µ̂(x) = E[Y | X = x] and propensity score ê(x). Then the uplift is obtained directly

by minimizing the objective which is based on the Robinson decomposition [87]:

û
R�L(·) = argmin

u

n
L̂n (u(·)) + ⇤n (u(·))

o
, (2.27)

L̂n (u(·)) =
1

n

NX

i=1

⇣�
Y � µ̂

(�i)(Xi)
�
�
�
Ti � ê

(�i)(Xi)
�
u(Xi)

⌘2

(2.28)
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where ⇤n (u(·)) is interpreted as a regularizer on the complexity of u(·) function and

superscript (�i) denotes predictions made without using the i-th training example.

Any loss-minimization method, e.g., penalized regression, deep neural networks,

or boosting can be used for each of the steps of R-Learner. Also, authors claim that

R-Learner based on penalized kernel regression achieves the same regret bounds as

an oracle with a priori knowledge of nuisance components.

At the same time, a drawback of the method is the need of using separate folds

of the data for two stages, either by splitting the data or by using cross-fitting [31]

to preserve theoretical guarantees. This usually degrades the performance, especially

in the small data size cases.

Given nuisance components, R-Learner may also be considered as transformed

outcome method with the new outcome of the following form:

Y
R�L
i =

Yi � µ̂(Xi)

Ti � ê(Xi)
(2.29)

with the sample weights (Ti � e(Xi))2 for the learning. Note that Y R�L is unbiased

estimator of the true uplift:

E[Y R�L | X = x] = u(x). (2.30)

DR-Learner [59] where DR for “doubly robust”, can be considered as an exten-

sion of the Two-Models approach, adding inverse probability weighting term on the

residuals of both prediction models.

At the beginning, data is divided into three parts of equal size. On the first stage,

conditional mean outcomes µ̂0(x) = E[Y | X = x, T = 0], µ̂1(x) = E[Y | X =

x, T = 1] and propensity score ê(x) are learned based on first and second part of data

respectively. Then, the outcome is transformed in the following way:

Y
DR�L
i =

Ti � ê(Xi)

ê(Xi)(1� ê(Xi))
(Yi � µ̂Ti(Xi)) + µ̂1(Xi)� µ̂0(Xi) (2.31)

and is regressed based on third part of data. New outcome appears to be unbiased

estimator of the true uplift:

E[Y DR�L | X = x] = u(x). (2.32)

Authors also recommend applying cross-fitting by performing both stages three times

varying data parts, so that the final estimator is an average of three regressors.

An estimator is consistent if either the propensity score or conditional mean out-

come model is correctly determined. The need of using separate splits of the data for

two stages seems to be a disadvantage of the method, as it is for R-Learner.
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2.2.2 Tree-based methods

The tree-based methods for CATE prediction and uplift modeling are quite similar to

the traditional ML models that are based on decision trees. The principal di↵erence

lies in applying the di↵erent splitting criteria. The comparison of splitting criteria of

di↵erent approaches is provided in Table 2.1.

The advantages of tree-based methods are twofold:

• Methods provide direct and “transparent” uplift estimation, that is why they

are interpretable

• Is it possible to control the granularity level (maximum number of data points

in the leaf) to find the homogeneous subgroups

The key flaw of the methods lies in their instability due to the hierarchical nature

of the process of splitting, moreover, instability is compounded by the fact that uplift

modeling is a second-order problem [49].

Ensemble-based methods naturally extend tree-based ones by combining several

trees into a single model. Following the idea of the regular ensembling technique, the

model reduces variance by smoothing out individual tree errors, thereby increasing

the stability.

Possible ways to apply bagging for the Two-Models with decision trees as the

base learners for uplift decision trees [90] was proposed in [83, 96]. Several adapted

versions of random forest for uplift modeling were also introduced: thus, a regular

random forest algorithm based on uplift decision trees called Uplift Random Forest

was explained in [49], besides [96] present Double Uplift Random Forest using bagged

ensemble of the Two-Models with randomized trees as the base learners. In Causal

Conditional Inference Forest [48], enhances Uplift Random Forest solving both over-

fitting and biased variable selection problems – the idea is to separate the variable

selection and the splitting procedures along with using of statistically motivated and

computationally e�cient stopping criterion. Finally, Causal Forest was implemented

in [103] based on causal trees [10]. The significant property of estimations of Causal

Forest is that they are asymptotically Gaussian and unbiased for the true uplift.

Main drawbacks of ensemble-based methods are that they do not have the inter-

pretability by design and tend to perform best with a large number of trees, which

usually hurts the inference latency – in the case of small datasets this is not an impor-

tant point, but it is not convenient for some applications, such as online advertising,

that is the main domain of interest of this thesis.
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û
R
)2

S
S
E
·✓

1

n
T L
+

1

n
C L
+

1

n
T R
+

1

n
C R

◆

S
S
E
�

w
ei
gh

te
d
su
m

of
th
e
p
op

u
la
ti
on

va
ri
an

ce
s,

D
es
ig
n
ed

fo
r
b
in
ar
y
ou

tc
om

es
,

id
ea

is
to

ap
p
ly

li
n
ea
r
m
od

el
to

ea
ch

ca
n
d
id
at
e
va
ri
ab

le
an

d
co
m
p
u
te

si
gn

ifi
ca
n
ce

of
th
e
in
te
ra
ct
io
n
b
et
w
ee
n
tr
ea
tm

en
t

an
d
p
ot
en
ti
al

sp
li
tt
in
g
va
ri
ab

le
as

m
ea
su
re

of
sp
li
t
qu

al
it
y.

C
au

sa
l
T
re
e
[1
0]

� n
L n
û
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2.2.3 Support Vector Machines-based methods

There are several modifications of Support Vector Machines (SVM) method [33] tai-

lored specifically for uplift modeling task, we provide the descriptions of two of them.

Uplift SVM [108] proposes SVM optimization task that has been reformulated to

explicitly model the di↵erence in class behavior between the treatment and control

populations.

Method uses two parallel hyperplanes:

H1 : hw,xi � b1 = 0, H2 : hw,xi � b2 = 0, (2.33)

where b1, b2 2 R are the intercepts and w is the weight vector.

So the model predictions are specified by the following equation:

û(x) =

8
><

>:

+1 if hw,xi > b1 and hw,xi > b2,

0 if hw,xi  b1 and hw,xi > b2,

�1 if hw,xi  b1 and hw,xi  b2,

(2.34)

where function û(x) : Rm ! {�1, 0, 1} is an uplift model that predicts for each

individual one of the values +1, 0 and �1, corresponding to positive, neutral and

negative impact of the action respectively.

The intuition of the main objective is that the points in the neutral area are

penalized for crossing one hyperplane, which prevents all points from being classified

as neutral. Points that are misclassified are penalized for crossing two hyperplanes,

and such points should be avoided.

Disadvantages of the approach include training complexity which is at least quadratic

with respect to the standard SVM due to the additional hyperplane and corresponding

slack variables.

SVM for di↵erential prediction (SVM-DP) [64] is another variant of SVM,

relevant for binary outcomes only, that aims to directly maximize frequently used

metric in the field, namely Area Under the Uplift Curve (AUUC) (see Section 2.1.2.1).

In the work, “absolute, separate” version of uplift curve [38] was used.

Authors propose to express AUUC as a di↵erence between two Areas Under the

Lift curve (AUL) of treatment and control populations (AULT and AULC respec-

tively) [100]:

AUUC = AULT � AULC , (2.35)
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Applying the relations between AUL and Area Under the ROC Curve (AUC), we

get the following form of AUUC maximization problem:

max (AUUC) ⌘ max
�
AUCT � �AUCC

�
(2.36)

where � = nT ·
PN

i=1 Yi(1�Ti)·
PN

i=1(1�Yi)(1�Ti)

nC ·
PN

i=1 YiTi·
PN

i=1(1�Yi)Ti
.

One can obtain the sum instead of di↵erence by reverting labels of control group:

max (AUUC) ⌘ max
�
AUCT + �AUC

�
C

�
(2.37)

where AUC
�
C denotes AUC of control group with reverted labels.

Finally, optimization problem (2.37) is solved by utilizing the SVMperf algorithm

[58], which is designed to directly optimize AUC.

Drawbacks of the method are the time-consuming learning process and the lack

of probabilities of belonging to the class.

2.2.4 Deep learning-based methods

Deep learning-based methods have proven to be e�cient in finding non-linear interac-

tions between covariates and outcomes, that is why nowadays they have become very

popular in a variety of applied domains. CATE estimators based on deep learning

are relatively new but have already established themselves in the field.

Counterfactual Regression (CFR) [94] is a deep learning-based method that

extends the Two-Models approach. In the beginning, whole training data is propagat-

ing through shared layers, resulting in representations �. Representations are divided

then into two groups, depending on the treatment flag and thus forming two separate

heads that are used to estimate outcomes under treatment and control. Importantly,

to adjust for the bias induced by treatment group imbalance, representations � are

balanced by minimizing the distance between treatment and control populations dis-

tributions respectively. Such a distance is also known as Integral Probability Metric

(IPM). Authors utilize two IPMs: the Maximum Mean Discrepancy and the Wasser-

stein distance. Resulting architecture is called Counterfactual Regression Network

(CFRNet) and is illustrated in Figure 2.3.

For the data from randomized control trials two populations are already balanced,

so IPM becomes 0 and the task reduces to the problem of learning two functions of
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potential outcomes. The corresponding, simplified version of the architecture is called

Treatment-Agnostic Network (TARNet).

Figure 2.3: Architecture of CFRNet (figure is taken from [94].)

Generative Adversarial Network for inference of Individualized Treatment

E↵ects (GANITE) [107] consists of two GAN blocks each of which consists of a

generator and discriminator. In the first, counterfactual block, the generator produces

counterfactual outcome Y
cf from input triplet (x, Y, T ), at the same time the task

of discriminator here is, giving the triplet (x, Y, Y cf ) to recognize which outcome is

factual. After the training of the counterfactual block, output in form of (x, Y, Y cf
, T )

is propagating to the second, ITE block. There, the generator outputs both potential

outcomes from input x, discriminator then tries to identify if generated outcomes are

the outputs from the counterfactual block. All the blocks are operating during the

training stage, while only the ITE block generator is used to predict CATE for unseen

data. Model architecture is shown in Figure 2.4.

Other deep learning-based algorithms include:

• DragonNet [95] – network with three separate groups of layers dedicated to the

prediction of both potential outcomes and propensity score e(x).

• Causal E↵ect Variational Autoencoder (CEVAE) [71], which uses a variational

auto-encoder to learn a latent confounding set from the observed covariates,

and then uses this set to estimate the CATE.

• Similarity preserved Individual Treatment E↵ect (SITE) [106] – estimation

method based on the idea of CFR, that improves the learning of representa-

tions � by using a position-dependent deep metric and middle-point distance

minimization constraints.
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Figure 2.4: Architecture of GANITE (figure is taken from [107].)

2.2.5 Other methods

Other CATE and uplift models include family of bayesian methods [52, 6, 7], ap-

proaches applying interactions between treatment and covariates [69, 46], listwise

ranking techniques [38], reinforcement learning approaches [68]. In addition, series of

works are focused on the methods for multitreatment case [91, 112, 113, 76].

2.3 Overview of datasets

In this section, an overview of public CATE prediction and uplift modeling datasets

is provided.

2.3.1 CATE prediction

Infant Health and Development Program (IHDP) [52] is semi-synthetic

dataset adapted for CATE prediction. Covariates are obtained from a randomized

experiment studying the e↵ects of specialist home visits on future cognitive test re-

sults. The treatment group has been made imbalanced artificially, by removing a

biased subset of the treatment group. The dataset comprises 747 units (139 treated,

608 control) and 25 covariates estimating the aspects of children along with their

mothers.

Jobs dataset [94] is classification dataset, which is made as a combination of

Lalonde randomized controlled trial (297 treated records and 425 control records)
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and Panel Study of Income Dynamics (2490 control records). Each unit includes 8

covariates, such as age, education, ethnicity, previous earnings, etc. The outcome is

the employment status with or without job training (acting as a treatment).

Twins dataset [8] is mined from all births in the USA between 1989 and 1991

years. Practitioners usually focus on the same gender twin pairs which weights less

than 2000g. There are 461 covariates in the dataset, related to the information about

the parents, the pregnancy, and the birth. Treatment T = 1 denotes the heavier

one in the twins, and T = 0 – the lighter one. The outcome is determined as the

one-year mortality. Note, that for this dataset, the true CATE is known as twins are

characterized by the same feature vectors.

2.3.2 Uplift modeling

Hillstrom e-mail marketing dataset [53] comprises results of an e-mail cam-

paign for an Internet-based retailer. The dataset contains information about 64,000

customers who last purchased within at most twelve months. The customers were

involved in an e-mail test and were randomly assigned to receive an e-mail campaign

featuring men’s merchandise, women’s merchandise, or not receive an e-mail.

X5 RetailHero dataset [47] contains raw retail customer purchases, raw infor-

mation about products and general info about customers. The dataset was provided

by X5 Retail Group at the RetailHero 2019 hackaton.

1We provide here data characteristics based on the work [71], meanwhile several works [107, 106]
perform pre-processing of the dataset di↵erently resulting in characteristics that di↵er from described
version
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Chapter 3

A Large-Scale Benchmark for
Uplift Modeling and CATE
Prediction

This chapter is based on submitted paper [40]: “A Large Scale Benchmark for

Individual Treatment E↵ect Prediction and Uplift Modeling” – Eustache Diemert,

Artem Betlei, Christophe Renaudin, Massih-Reza Amini, Theophane Gregoir, Thibaud

Rahier, submitted to NeurIPS 2021 Conference, Datasets and Benchmarks Track.

3.1 Motivation

Generally speaking the benefit of having more datasets at hand is that it enables to

draw more robust conclusions when experimenting new methods as algorithms are

run in a variety of settings with di↵erent characteristics. In particular when very few

benchmarks are available in a very active field such as causal inference there is always

a risk of “conceptual overfitting” as the research community tries to beat the state

of the art on few datasets representing only a very narrow range of real applications.

Moreover, the lack of public, realistic datasets prompts sometimes researchers to

publish results on private data, thus making unreproducible claims. Having large

scale datasets is also a blessing for researchers in that they can run experiments on

new methods with a greater chance to capture significant performance di↵erences as

the variance of metrics dwindles with size.

Our dataset brings a size increase for CATE prediction of 4 orders of magnitude

and 2 orders for uplift modeling compared to established benchmarks. In terms of

covariate dimensionality it brings a much harder setting with some features having

thousands of possible values, which is more representative of modern problems in Web
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applications. In the same line, the dataset is proposing challenges in both target and

treatment imbalance with only a small portion of the users assigned to the control

population and an overall low positive outcome rate. The anonymization strategy

employed on this dataset with features represented as hashed tokens is perhaps also a

characteristic of future applications where privacy enhancing technologies are perva-

sive. Finally, the dataset and its documentation are being maintained and improved

over time as for instance a new version has been released one year after the initial

one to correct a problem potentially impairing fair evaluation of models (see section

3.3 for details).

For CATE prediction prediction specifically, the common usage is to design semi-

synthetic experiments using real features and simulated outcomes defined by simple

response surfaces (constant or exponential) [52]; we additionally propose here realistic

surfaces enriching the diversity of existing propositions.

3.2 Contributions

1. We present publicly available large-scale dataset, CRITEO-UPLIFTv2. In the

spirit of [45] we detail the key elements from the datasheet of the dataset.

2. We introduce new synthetic response surfaces inspired by real observations that

permit to use our large scale dataset for CATE prediction.

3. We report experiments to validate key characteristics of the dataset.

3.3 CRITEO-UPLIFTv2 dataset

Dataset is publicly available on the Criteo website.

Motivation and supporting organization Criteo is a private company which

has been committed to the advancement of reproducible Advertising Science for a

long time with a track record of releasing 7 large scale datasets in the last 7 years,

some of which became industry and academic standards. In general these datasets1

are interesting in that they showcase problems at the frontier of current ML the-

ory and practice, for instance high-dimensional, tera-scale prediction problems [34],

counterfactual learning [67] and credit assignment learning [41]. In order to provide a

realistic benchmark for uplift modeling, the Criteo AI Lab built a dataset through a

1see https://ailab.criteo.com/ressources/ for the complete list of published datasets
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collection of online controlled experiments (A/B tests) on the Web in order to better

study the individual e↵ect of advertising on ad clicks and sales. More precisely, the

dataset is constructed by assembling data resulting from several incrementality tests,

a particular Randomized Control Trial procedure where a part of an online popula-

tion is prevented from being targeted by advertising whilst the other part is subject

to it.

System description The system can be formally described by introducing the fol-

lowing variables: for a given user, X contains their features, T is the binary treatment

variable, such that T = 1 for users in the treatment population and T = 0 for user in

the control population, and E, V and C are binary variables respectively indicating

if the user has had at least one exposition to advertisement, visit on the website or

conversion during the A/B testing period (see Figure 3.1b for example timelines of

such users). In Figure 3.1a, we present the underlying causal graph [78] associated

to this system. It contains both conditional independence and causal relations for

example, we see from the causal graph that the treatment (T ) is independent on

the user features (X), guaranteeing rightful causal e↵ect identification. Additionally,

the variables respect the following constraints � purely due to their definition in the

online advertising context:

T = 0 ) E = 0 no exposition to ads in the control population

V = 0 ) C = 0 no conversion can happen without a visit

The online advertising context suggests some additional assumptions that enable

more e�cient CATE prediction � for example that the e↵ect of T on C or V is only

impacted by E [84] � which we will not detail further in this work.

Data collection As illustrated by Figure 3.1b, users � as identified by a browser

cookie� leave online traces through advertiser events such as website visits or product

views [62]. For a given advertiser, at a pre-defined point in time a random draw

assigns each user either to the treated or control population. The period before this

assignment is used to capture user features (mostly related to prior user activity). The

set of features was chosen so that it is predictive of subsequent user events and we can

easily verify from a technical standpoint that they were all captured in the legit period.

Once treatment is assigned users are then either subject to personalized advertising

(if treated) or not (if in control) until the end of the data collection period. During

the first 2 weeks after treatment assignment ad visits and online conversions on the
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advertiser website are logged. Then, features observed at treatment assignment times

are joined with treatment prescription status, e↵ective ad exposure and observed visits

and conversion labels. Finally, the data for several such advertiser tests is merged to

obtain the raw dataset.

Modern web platforms typically run numerous randomized experiments concur-

rently, yet users using these services are usually not fully aware of it. In our case we

respected the Criteo Privacy Policy allowing users to opt out of the experiment at

any point. The only drawback we can think of for users involved in the experiment

was to avoid seeing ads, which is probably benign for most of us.

(a) Causal graph of the online adver-
tising system

(b) Data collection process illustration

Figure 3.1: Data collection process and associated causal graph

Anonymization To protect Criteo industrial assets and user privacy neither test

advertiser provenance nor features names and meaning are disclosed. Moreover, fea-

ture values were hashed to a random vector space to make them practically impossible

to recover while keeping their predictive power. Non-uniform negative sampling on

labels has been performed so that the original incrementality level cannot be deduced

while preserving a realistic, challenging benchmark.

Considerations to avoid temporal confounding A particular characteristic of

the current advertising systems is that they target users dynamically based on ob-

served interactions over time [16]. This means that even in a randomized control

trial (A/B test) interactions with the system influence subsequent ad exposure via

adjustments of the bids based on user reactions. Notably, interactions after the first

one are influenced both by the treatment and by previous interactions. This calls for
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either considering only the first interaction of a user during an A/B test or to log the

user variables at the start of the test and observe the reward during the test. We have

chosen the latter solution as it enforces logging of features at the same time for all

users, minimizing chances to observe temporal shifts in their distribution for reasons

like sales periods or production platform evolution.

Considerations to concatenate data from di↵erent tests The incrementality

tests of di↵erent advertisers had di↵erent treatment ratios, meaning that the features

as well as the uplift were correlated with the fact of being part of a given test. In

other words the (unreleased) test id was a hidden confounder of the (features, labels)

x treatment distribution. To allow for proper use for uplift and CATE prediction we

needed that all instances in the final dataset were drawn i.i.d. from the same PX,Y,T

distribution. If not, a prediction model could have had a good score by learning

to predict which test an instance was coming from and utilizing the fact that some

tests were heavily imbalanced in terms of treatment to guess if a treated or untreated

positive was more likely. That would have defeated the purpose of the dataset to serve

as a realistic benchmark for uplift or CATE modeling. To remedy that situation we

sub-sampled all incrementality tests at the same, global treatment ratio. That way

the dataset scale is preserved and the task is kept close to reality. This rebalancing is

the key di↵erence between the previous version (v1) and v2 of the dataset2 [39] and

has been validated (see Section 3.5).

Dataset description and analysis The final dataset (v2), henceforth referred to

as CRITEO-UPLIFTv2, consists of 14M rows, each one representing a user with 12

features, a treatment indicator, an e↵ective ad exposure indicator and 2 binary labels

(visits and conversions). The global treatment ratio is 85%, meaning only a small

portion of users where observed in the control population for which no advertising is

performed by Criteo. It is typical that advertisers keep only a small control population

as it costs them in potential revenue. Positive labels mean the user visited/bought

on the advertiser website during the test period (2 weeks). Positive ad exposure

means the user e↵ectively saw an ad for the advertiser during the label collection

period. Among the 12 variables, 4 are continuous and 8 are categorical with a large

number of modalities. In order to evaluate the impact of each feature on the visit

outcome V , a random forest model (formed by 100 estimators) is trained on each of

the treatment and control population to predict V . Then, for each feature, Mean

2v1 has been decommissioned and early users warned of that flaw
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Decrease in Impurity (MDI) [23] is computed for both models and the corresponding

average MDI is reported in Table 3.1. According to this experiment, f0, f2, f8, f9

appear to drive V significantly, while f1, f5, f11 have less influence.

f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11

Number of modalities cont. 60 cont. 552 260 132 1,645 cont. 3,743 1,594 cont. 136

Feature Importance (MDI) 0.110 0.003 0.297 0.036 0.020 0.007 0.064 0.018 0.218 0.170 0.046 0.010

Table 3.1: Summary of CRITEO-UPLIFTv2 feature characteristics. Feature impor-
tance is evaluated thanks to MDI which was computed using an average over two
Random Forest models (formed by 100 estimators) respectively trained on treatment
and control population.

3.4 Generation of synthetic surfaces for CATE pre-
diction

In the spirit of [52], we propose a class of synthetic response surfaces as well as method

to design confounded treatment assignment, providing a semi-synthetic version of our

dataset, named CRITEO-ITE, that can be used as a benchmark for CATE models

evaluation.

3.4.1 Response surfaces

We add two classes of synthetic response surfaces for the CRITEO-ITE.

First, we reproduce the popular semi-synthetic setups from [52]. In the Case

‘A’, constant treatment e↵ect is generated by two linear response surfaces, namely

µ0(x) = x� and µ1(x) = x� +4, where � is a coe�cient vector with each component

sampled from the same multinomial distribution. Case ‘B’ uses an exponential control

response surface µ0(x) = exp((x + W )�) and a linear treatment response surface

µ1(x) = x� � !, W here is a fixed o↵set matrix and ! is a real number, adjusted so

that the average treatment e↵ect on the treated (ATT) is consistent with real-world

measures.

Second, we propose a novel multi-peaked (non monotonous) class of response sur-

faces in the spirit of radial basis function interpolation � inspired from observations

made on projections of the real uplift surface (see Figure 3.2) � which define both a

novel and challenging CATE modeling problem.
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Formally, we suppose that X is equipped with a norm ||.|| and define, for t 2 {0, 1}
and x 2 X:

µt(x) =
X

c2C

wt,c exp

✓
� ||x� c||2

2�2
c

◆
, (3.1)

where C is a set of anchor points, {w0,c, w1,c}c2C are the weights and {�c}c2C correspond
to the width of influence associated to each of those points.

For any x 2 X, the associated CATE is therefore given by

⌧(x) =
X

c2C

exp

✓
� ||x� c||2

2�2
c

◆
(w1,c � w0,c) .

If the distance between the di↵erent anchor points are large compared to the values

of the �cs, the CATE of each c 2 C is ⌧(c) ⇡ w1,c � w0,c and for any x 2 X, ⌧(x)

is a weighted sum of the ⌧(c)’s with weights exponentially decreasing with the ratios
||x�c||

�c
.

Figure 3.2: On the right, average uplift is reported as a function of the first compo-
nent of Principal Component Analisys (PCA) computed on continuous features from
CRITEO-UPLIFTv2 thanks to regular binning. On the left, average visit proportion
is shown, computed with the same binning for control and treatment populations.
Note the common multi-peak structure of both outcomes and uplift.

3.4.2 Treatment assignment mechanism

To simulate an observational setting, we design an heterogeneous treatment assign-

ment function p : x 7! P(T = 1 | X = x) so that T is confounded with the outcome

Y (note that the case where p is constant corresponds to the RCT setting).

We propose a simple way to introduce treatment assignment bias by making p

depend on the component of x which has the most predictive power with the outcome
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Y . Specifically, for a given small � > 0 we define

p(x) = (1� 2�) · sigmoid(↵Tx) + �, (3.2)

where ↵ = (0, . . . , 0, 1, 0, . . . , 0) is a sparse d�dimensional vector for which the only

nonzero component is the one which corresponds to the highest importance compo-

nent of x 2 X for the prediction of E[Y | X = x].

This choice of treatment assignment mechanism guarantees that the strong ig-

norability assumption [88] is met since p(x) 2 [�, 1 � �] for all x 2 X, and that all

confounders between T and Y are contained in X, ensuring that

(Y (1), Y (0)) |= T | X.

3.5 Experiments

In this part, we will be presenting experiments conducted on CRITEO-UPLIFTv2

and CRITEO-ITE datasets. First, sanity checks are performed in order to validate a

correct collection and creation of CRITEO-UPLIFTv2. Then, we provide experiments

on CRITEO-UPLIFTv2 highlighting the impact of dataset size on separability for

uplift modeling task. Finally, we provide a benchmark of CATE prediction methods

on classical response surfaces and ours.

3.5.1 Dataset Validation

We perform several sanity checks to verify properties of our dataset. First check is

that the treatment is indeed independent of the features: T |= X. A convenient way

to verify this assumption is to perform a Classifier Two-Sample Test (C2ST) [70]: a

classifier trained to predict treatment should not do better than chance level. The

distribution of H0 in this case is obtained by computing the test loss of classifiers (we

use log loss) trained to predict random splits in the data. Table 3.2 gives the result

of the test. The empirical loss of the learned treatment classifier is very close to the

dummy one from H0, which is reflected by a high p-value for the one-sided test.

Second check is to make sure that logged features are informative and relevant

for predicting outcomes (visit and conversion). This is not necessarily trivial as we

sampled features that were technically easy to log and anonymized them. Table

3.3 presents the performance (as measured by log loss) of classifiers learned on the

outcomes for treatment, control and the whole dataset. The non-trivial improvement

over a dummy baseline indicates that features are indeed informative for the task.
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Median Random Loss Treatment Loss p-value

0.42269 0.42307 0.13667

Table 3.2: Result of C2ST on treatment predictability with 300 resamples using log
loss. The p-value does not allow to reject H0 and confirms that T |= X.

visit, % 34.74

conversion, % 32.22

Table 3.3: Improvement over the log loss of a dummy classifier for di↵erent labels.
Baseline is a classifier predicting the average label, and improvement is relative to
baseline.

3.5.2 Uplift Modeling

Features. In order to reach a reasonable running time while conserving the great

feature complexity of CRITEO-UPLIFTv2, the features used here are formed by the

4 initial continuous features and 100 projections on random vectors of the categorical

features which are then one-hot encoded.

Target. To train uplift models, both visits and conversions are available as the

labels. However, as presented here, we suggest practitioners to model uplift primarily

on visits in so far as conversion uplift signal appears to be too weak due to the high

imbalance in the label.

Metric. We pick as a performance measure the “separate, relative” AUUC –

evaluations of [38] concluded robustness of this version to treatment imbalance and

its ability to capture the intended usage of uplift models to target future treatments.

Confidence intervals are computed using AUUC test set bound [18].

Protocol. The focus of this experiment is not on providing the best possible

baseline but rather to highlight the fact that CRITEO-UPLIFTv2 is a meaningful

alternative to existing uplift modeling datasets, scaling up in challenge while permit-

ting to obtain statistical significance in the results. For this reason, we use 80%/20%

train/test splits and AUUC performances were compared on test subsamples of pro-

portional sizes to existing datasets, namely 1000 (IHDP), 5000 (Jobs), 50000 (Hill-
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strom), 1M and whole test data. Besides, the training set is used to tune the baseline

models via grid search combined with stratified 5-fold cross-validation (to save both

treatment and outcome imbalance).

Models. Four uplift models were used as a baselines: Two-Models (TM) [51],

Class Variable Transformation (CVT) [57], Modified Outcome Method (MOM) [11]

and Shared Data Representation (SDR) [17]. Particular prediction models (from

scikit-learn [80]) and hyperparameter grids are the following:

• TM, CVT – Logistic Regression, l2 regularization term C : [1e0, 1e2, 1e4, 1e6, 1e8]

• MOM – Ridge, l2 regularization term ↵: [1e�8
, 1e�6

, 1e�4
, 1e�2

, 1e0]

• SDR – Logistic Regression, l2 regularization term C : [1, 10, 100, 1000], feature

importance term �: [0.1, 1]

Results. Figure 3.3 represents results of the experiment. For the test sizes up to

1M, all presented methods are indistinguishable by their AUUC score as their con-

fidence intervals overlap almost entirely. However, starting from 1M points onwards

one can separate approaches and perform model selection. Hence it justifies the need

for a large dataset for such a challenging task.

Figure 3.3: Models separability on CRITEO-UPLIFTv2.

3.5.3 CATE prediction

Features. Features used for response surface generation and prediction are the 4

initial continuous and 5 random projections which are then one-hot encoded leading

to a total dimensionality of 32.

Target. In order to test CRITEO-ITE, we performed a benchmark of CATE

prediction baselines evaluated on 3 generation protocols presented in Section 3.4:
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• cases A and B from [52],

• our multi-peaked with 5 randomly selected anchor points, �c = 1 for all c 2 C
and {w0,c, w1,c}c2C drawn from U(0, 1) then fitted to ensure ATE ⇡ 4 as for the

other surfaces.

For the 3 types of surfaces, we defined the same treatment bias consisting in a sigmoid

on the highest importance feature with � = 0.01 (see Section 3.4.2).

Metric. For each baseline, mean
p
✏PEHE is reported with its standard deviation

over 10 experiments.

Protocol. Following the concept of [94], for each of the 3 generation protocols,

10 di↵erent realizations are generated. Then, for each realization, using a subsample

of 100,000 points, baseline models are tuned thanks to a 5-fold cross-validation and

then tested (with 50/50 train/test split).

Models. For this experiment, the baseline models include deep models (TARNet,

CFRNet [94]) and meta-learners (T-Learner, X-Learner, R-Learner, DR-Learner)

with Random Forest [24] as prediction model 3. TARNet and CFRNet were im-

plemented in TensorFlow [2]. They were trained for 20 epochs during cross validation

and finally for 100 epochs on the entire training set. Batch size was set to 128. For this

two deep models, the following hyper parameters were tuned thanks to a randomized

search :

• number of layers : [2, 3]

• number of units per layer : [32, 64]

• regularization term : [1e�4
, 1e�6]

• IPM regularization term (CFRNet only) : [1e�2
, 1e�4]

Concerning meta-learners, models were partially implemented in CausalML li-

brary [28] (released with Apache License, Version 2.0). Meta-learners are using Ran-

dom Forest Regressors from scikit-learn [80] which were tuned thanks to a randomized

search with the following hyper parameters :

• number of estimators : [10, 20]

• maximum depth in range : [1, 2, 4, 8]

Results. As illustrated by Table 3.4, performances di↵er from one type of surface

to the other underlining the importance of developing a variety of responses in which

our multi-peaked version can anchor. For example, although X-Learner outperforms

R-Learner on surfaces from [52], our multi-peaked generation highlights the contrary.

3Code for this benchmark experiment is available on the project repository.
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Case A [52] Case B [52] Multi-peaked (ours)

T-Learner 0.317± 0.001 1.890± 0.001 0.333± 0.056

X-Learner 0.117± 0.001 1.883± 0.002 0.413± 0.137

R-Learner 0.272± 0.034 11.668± 2.897 0.356± 0.045

DR-Learner 0.047 ± 0.005 2.510± 0.342 0.379± 0.080

TARNet 0.104± 0.001 0.682± 0.067 0.195± 0.044

CFRNet (MMD) 0.057± 0.001 0.239 ± 0.029 0.152 ± 0.032

Table 3.4: CATE prediction experiments on CRITEO-ITE. Mean
p
✏PEHE perfor-

mances are reported alongside their standard deviation. Best performance is in bold.

3.6 Summary

We have highlighted the need for large scale benchmarks for causal inference tasks

and released an open dataset, several orders of magnitude larger and more challenging

than previously available. We have discussed the collection and sanity checks for its

use in uplift modeling and CATE prediction. In particular we have shown that it

enables research in uplift prediction with imbalanced treatment and response levels

(e.g. visits) providing model separability due to its large size. We have also proposed

semi-synthetic version of our dataset that can be used as a benchmark for CATE

models evaluation.
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Chapter 4

Data Representation Methods for
Imbalanced Treatment Conditions

This chapter is based on published paper [17]: “Uplift Prediction with Dependent Fea-

ture Representation in Imbalanced Treatment and Control Conditions” – Artem Betlei,

Eustache Diemert, Massih-Reza Amini, published at ICONIP 2018.

4.1 Motivation

Imbalanced classification is popular machine learning problem [22] that can be solved

by using variety of di↵erent techniques such as over- or under-sampling, sample or

class weighting, etc.

However, in uplift modeling or CATE prediction, except the outcome, treatment

variable might be imbalanced as well. This situation often arises with the growth of

administrative and online data sources due to the privacy concerns [63], or in fields of

medicine or online advertising as a result of di↵erent cost of treating and non-treating

an individual. Consequently, some models may lose quality for this reason.

4.2 Contributions

Our main contributions are twofold:

1. We introduce two novel model-agnostic approaches that tackle the case of im-

balanced treatment and control datasets and discuss their merits.

2. We evaluate the proposed approaches on a real-life collection and produce pal-

pable evidence of their practical usefulness.
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4.3 Dependent Data Representation

Dependent Data Representation (DDR) approach is an extension of Two-

Models approach. DDR is based on a Classifier Chains method [86] originally devel-

oped for multi-label classification problems. The idea is that if there are L di↵erent

labels, one can build L di↵erent classifiers, each of which solves the problem of binary

classification and at the training process each next classifier uses predictions of the

previous ones as extra features (diagram is provided in Figure 4.1).

Figure 4.1: Diagram of classifier chains for L = 3.

We use the same idea for our problem in two steps. Let X0 and X1 be covariates of

control and treated individuals respectively. At the beginning we train a first model

µ0 on control data:

µ0 = E [Y = 1 | X0] (4.1)

then we use predictions µ̂0(X1) as an extra feature for the model µ1 learning on the

treatment data, e↵ectively injecting a dependency between the two datasets:

µ1 = E [Y = 1 | X1, µ̂0(X1)] (4.2)

The diagram of the learning process of DDR is introduced in Figure 4.2.

In order to obtain uplift for each individual we compute the di↵erence:

û
DDR(x) = µ̂1(x, µ̂0(x))� µ̂0(x) (4.3)

Intuitively, the second model is learning the di↵erence between the expected out-

come in treatment and control, that is the uplift itself. Examination of the weights
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Figure 4.2: Diagram of the learning phase of Dependent Data Representation.

of this uplift model could also lead to interesting information on the role of di↵erent

features in explaining the treatment outcome.

4.4 Shared Data Representation

Shared Data Representation (SDR) approach for uplift modeling is based on a

popular implementation of the multi-task framework [26] and is model-agnostic. A

predictor is learned on a modified features representation that allows to learn related

tasks jointly and with a single loss. We specialize this approach considering predicting

outcomes in control and treatment groups as the related tasks. [46] produced the

method of similar design.

The general form of the model is given by

E [Y | X = x, T = t] = f(hwcommon,xi+ 1[t=1]hw1,xi+ 1[t=0]hw0,xi) (4.4)

with f an arbitrary link function. Practically speaking we augment the dataset

by stacking the original features with a conjunction of the treatment group indicator

and the same features. Letting X1 and X0 be the matrices of covariates X1 and

X0 respectively such that X1 [ X0 = X, we obtain the following shared learning

representation:

XSDR
train =

2

64
X1 X1 0

X0 0 X0

3

75

and train classifier µ on resulting matrix.

So a single vector of weights w is learned jointly as

w = [wcommon w1 w0]
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where wcommon is a vector of weights that relate to the original features and w1 and

w0 are corresponding to treatment/control conjunction features. Illustration of the

learning phase of SDR is in Figure 4.3.

Figure 4.3: Diagram of the learning phase of Shared Data Representation.

At inference time we compute the di↵erence between predicted probabilities using

two representations of the individual features, corresponding to the counterfactual

outcomes – as if new individual was treated or not:

û
SDR(x) = µ(


x x 0

�
)� µ(


x 0 x

�
)

= E

Y = 1 |


x x 0

��
� E


Y = 1 |


x 0 x

�� (4.5)

An advantage of this method is the possibility to assign di↵erent regularization

penalties for wcommon and w1 / w0. We define such penalties as �common and �task

respectively. In this way it is possible to control the strength of the connection

between the tasks. As reported in [26], it is equivalent to rescaling the conjunction

features by
q

�common
�task

.

Intuitively this model allows to learn a common set of weights for predicting

the global average outcome whilst keeping enough capacity to express the peculiar

influence of features in the treatment or control conditions.

4.5 Experiments

For the experiments, we have selected two real-world datasets. The first dataset is

Hillstrom (see Section 2.3.2). We use the no-email vs women e-mail split with “visit”

as outcome as in [83].

Our second dataset is CRITEO-UPLIFT11 which is constructed by assembling

1dataset is released at http://research.criteo.com/outreach. This version of dataset is used
in due to the fact that this work preceded the work in Section 3, where the new version of dataset
is presented.
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data resulting from incrementality tests, a particular randomized trial procedure

where a random part of the population is prevented from being targeted by ad-

vertising. It consists of 25M rows, each one representing a user with 12 features, a

treatment indicator and 2 labels (visits and conversions).

For the experiments we firstly preprocess datasets, specifically we binarize cat-

egorical variables and normalize the features, for the classification we use Logistic

Regression model from Scikit-Learn [80] Python library as it has fast learning and

inference processes. Then we do each experiment in the following way: we do 50

stratified random train/test splits both for treatment and control groups with a ratio

70/30, during learning process we tune parameters of each model on a grid search.

For DDR and SDR we use the regularization trick that we explained earlier, we tune

additional regularization terms on a grid search as well.

As a performance measure we utilize Qini coe�cient Q based on “joint, absolute”

Qini curve [38] as metric corrects uplifts of selected individuals with respect to the

number of individuals in treatment/control groups thanks to weighted term (see Sec-

tion 2.1.2.1). To check statistical significance we use two-sample paired t-test at 5%

confidence level (marked in bold in the tables when positive).

4.5.1 Choice of base classifier

Most uplift approaches use a base classifier. As one can see on Table 4.1, there are

huge gaps in learning and inference time between di↵erent base classifier used in the

same approach. So we can conclude that it make sense to use Generalized Linear

Model (e.g. Logistic Regression) in the large-scale case.

Learning time Inference time

Logistic Regression 1x ± 0.06 1x ± 0.03

Random Forest (10 trees) 7.8x ± 0.27 35.7x ± 1.33

MultiLayer Perceptron (100 neurons) 319x ± 57.1 24.3x ± 0.72

SVM (Dual, RBF kernel) 2801x ± 101 4053x ± 141

Table 4.1: Relative learning and inference times of di↵erent base classifiers for Two-
Models approach on Hillstrom dataset (single machine, 100 repetitions provide vari-
ance estimates).

47



4.5.2 Performance of Dependent Data Representation

We compare DDR with a Two-Models as first is an extention of the second, results

are shown on Table 4.2. We use Hillstrom dataset with a “visit” outcome and cover

three cases: firstly we compare approaches on a full dataset, then reduce control group

randomly choosing 50% of it and for the last experiment we randomly choose 10% of

control group to check how methods will perform with imbalanced data case. Indeed

it is usually the case that the control group is kept to a minimum share so as not to

hurt global treatment e�ciency (e.g. ad revenue). As we can see, DDR significantly

outperform Two-Models on imbalanced cases.

balanced T/C imbalanced T/C highly imbalanced T/C

(50% of C group) (10% of C group)

Two-Models 0.06856 0.06292 0.03979

DDR 0.06866 0.06444 0.04557

Table 4.2: Performances of Two-Models and DDR approaches measured as mean Qini
coe�cient Q.

Di↵erent directions of DDR As DDR approach is based on a consecutive learn-

ing of two classifiers, there are two ways of learning � to fit first model on treatment

group and then use output as a feature for the second one and fit it on a control part

(we denote it as T ! C), or vice versa (C ! T ).

Table 4.3 indicates that both approaches are comparable in the balanced case but

C ! T direction is preferable in other cases (at least with this dataset). Since the test

set has more treated examples it makes sense that the stronger predictor obtained on

this group by using information from predicted uplift on control performs best.

balanced T/C imbalanced T/C highly imbalanced T/C

(50% of C group) (10% of C group)

DDR (T ! C) 0.06895 0.06394 0.03979

DDR (C ! T ) 0.06866 0.06444 0.04557

Table 4.3: Comparison of directions of learning in DDR approach (Qini coe�cient
Q).
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Complexity of treatment e↵ect with DDR To investigate complexity of the

link between treatment and control group we use a dummy classifier (predicting the

average within-group response) successively for one of treatment or control group

while still using the regular model for the remaining group. Intuitively if the treatment

e↵ect is a constant, additive uplift then a simple re-calibration using a dummy model

should be good enough. Conversely if there is a rich interaction between feature and

treatment to explain outcome then a second, dummy classifier would perform poorly.

Table 4.4 indicates that the rich interaction hypothesis seems more plausible in

this case, with maybe an even richer one in treated case.

balanced T/C

DDR 0.06866

DDR (dummy for C group) 0.04246

DDR (dummy for T group) 0.01712

Table 4.4: Comparison between di↵erent variants of DDR approach.

4.5.3 Performance of Shared Data Representation

Here we compare SDR with Class Variable Transformation (CVT) approach because

of similar nature of the uplift prediction. CVTmodel is learned with samples reweight-

ing as in the original paper [57].

Table 4.5 indicates that SDR significantly outperforms CVT on imbalanced cases.

Note that due to heavy down-sampling in the imbalanced cases it is not trivial to

compare Qini coe�cient Q values between columns.

balanced T/C imbalanced T/C highly imbalanced T/C

(50% of C group) (10% of C group)

CVT 0.06879 0.06450 0.05518

SDR 0.06967 0.06945 0.08842

Table 4.5: Performances of CVT and SDR approaches measured as mean Qini coef-
ficient Q.
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Usefullness of conjunction features In order to check usefulness of conjunctions

features with SDR we compare it with a trivial variant in which we simply add an

indicator variable for treatment instead of the whole feature set. This allows the

model to learn only a simple re-calibration of the prediction for treated/control.

Table 4.6 indicates that it strongly degrades model performance.

SDR (standard) SDR (T/C indicator)

Q 0.06967 0.02706

Table 4.6: Comparison between variants of SDR in balanced treatment/control con-
ditions.

Performance in imbalanced outcome condition We also compare SDR ap-

proach with CVT on CRITEO-UPLIFT1 dataset with conversion as outcome on a

random sample of 50,000. Ratio between control and treatment group is 0.18 so it is

highly imbalanced case as well but the outcome is also imbalanced with average level

at only .00229.

Table 4.7 indicates that SDR again significantly outperforms CVT in this setting.

CVT SDR

Q 0.25680 0.54228

Table 4.7: Performances of CVT and SDR in highly imbalanced conditions for both
treatment and outcome.

4.6 Summary

We proposed two new approaches for the uplift modeling problem based on dependent

and shared data representations. Experiments show that they outperform current

methods in imbalanced treatment conditions. In particular they allow to learn rich

interaction between the features and treatment to explain response. Future research
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would include learning more complex (highly non-linear) data representations per-

mitting even richer interactions between features and treatment. Particular research

is currently underway, although without meaningful results so far.
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Chapter 5

AUUC Maximization with
Generalization Guarantees

This chapter is based on published paper [18]: “Uplift Modeling with Generalization

Guarantees” – Artem Betlei, Eustache Diemert, Massih-Reza Amini, published at

KDD 2021.

5.1 Motivation

The problem with pointwise uplift prediction. Uplift modeling calls for a

ranking objective in order to choose the top most responsive individuals as it is im-

plemented in the AUUC metric. In the state-of-the-art, a large part of uplift modeling

techniques resort to pointwise prediction, which consists in predicting accurate assess-

ments of observations relevance by defining a pointwise learning objective, as a sum

or average over individual samples in the dataset (overview in Section 2.2). However,

two methods that perform equally at predicting scores may perform di↵erently at

predicting the ranking of samples.

This situation is also common in other tasks like classification where it has been

shown that algorithms designed to minimize the error rate may not lead to the best

possible Area Under the ROC Curve (AUC) as one may inadvertently degrade AUC

whilst keeping a fixed error rate [32].

Moreover, the Empirical Risk Minimization (ERM) principle gives guarantees of

generalization to unseen data for the loss that is optimized. Hence it cannot be

summoned to obtain such guarantees if the pointwise loss and the metric of interest

(i.e. AUUC) are not the same. Finally, the situation we describe happens in practice,

as it can be observed in a simple experiment: when selecting model hyperparameters

by loss one can have similar training losses that lead to very di↵erent AUUC (see Sec.
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5.6). For these theoretical and empirical reasons we propose to learn an uplift model

by optimizing a quantity that is a direct surrogate of the AUUC.

Importance of generalization bounds. Many studies in machine learning and

data-mining now often incorporate generalization bounds in the design of learning

algorithms [66]. These bounds are usually used for model selection or to analyze the

model’s generalization ability. Recent works in CATE prediction and uplift modeling

fields propose to bound generalization error of Precision when estimating Heteroge-

neous E↵ect (PEHE) [94] and the deviation of a given pointwise estimator of the uplift

with respect to a given loss function such as the least mean square error [104]. But

as discussed above, these pointwise objective functions are not the most appropriate

for AUUC.

5.2 Contributions

Considering the crucial role of treatment targeting in many applications, the need for

models that optimize the metric of interest directly and the advances in the techni-

cal tools needed to study generalization properties of ranking models, we form the

following research agenda: i) study generalization bounds for AUUC, ii) derive a

learning objective and iii) experiment the corresponding empirical performance com-

pared to traditional methods. Our main contributions in that respect are summarized

as follows.

1. We propose the first generalization bound for AUUC using data-dependent con-

centration inequalities on dependent variables.

2. We present a ranking based algorithm, referred to as AUUC-max, directly max-

imizing a lower bound of the generalization error of AUUC, usable with di↵erent

models, and that is e�cient for hyperparameters tuning.

3. We report thorough performance evaluation against a range of competitive base-

lines on two real-world datasets.

5.3 Area Under the Uplift Curve

Formalization of AUUC. We chose the “separate, relative” uplift curve intro-

duced in [38], their evaluations have concluded that this choice is robust to treatment
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imbalance and captures well the intended usage of uplift models to target future treat-

ments. We give a self-contained formula in Definition 1, corresponding to (Equations

10 and 16) of [38].

Definition 1 (Area Under the Uplift Curve). Let f(S1,
p

100n1) and f(S0,
p

100n0) be

the first p percentages of S1 and S0 respectively when both ordered by prediction of

model f . The empirical AUUC of the model f on S1 and S0 is given by:

\AUUC(f, S1, S0) =

Z 1

0

V (f, x)dx ⇡
100X

p=1

V (f,
p

100
) (5.1)

where

V (f,
p

100
) =

1

n1

X

i2f(S1,
p

100n1)

yi �
1

n0

X

j2f(S0,
p

100n0)

yj (5.2)

5.4 On the Generalization Bound of AUUC and
Learning Objective

In this section, we bound the di↵erence between AUUC and its expectation and use

this new bound to formulate a corresponding learning objective. For that purpose,

we start by drawing a connection between AUUC and bipartite ranking risk (Section

5.4.1); and by means of Rademacher concentration inequalities build a generaliza-

tion bound (Section 5.4.2). Then we define a principled optimization method with

generalization guarantees for AUUC that leverages the bound as a robust learning

objective (Section 5.4.3). Finally, we review related approaches and their merits as

found in the literature.

5.4.1 Connection between AUUC and Bipartite Ranking Risk

From the connection between the Area under the ROC curve (AUC) and the bipartite

ranking risk, we can show that AUUC is a weighted combination of ranking losses for

the treatment and control responses. Formal version of the decomposition is provided

in Proposition 2.

Proposition 2. Let \AUUC(f, S1, S0) be the empirical area under uplift curve of the

model f on the sets S1 and S0, S̃0 is control set with reverted labels; and AUUC(f) =

ES1,S0

h
\AUUC(f, S1, S0)

i
be its expectation. Then AUUC(f) is related to ranking

loss (Equation 5.4) as:

AUUC(f) = � �
⇣
�1ES1 [R̂(f, S1)] + �0ES̃0

[R̂(f, S̃0)]
⌘

(5.3)
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where

R̂(f, St) ,
1

n
+
t n

�
t

X

(xi,+1)2St

X

(xj ,0)2St

1f(xi)f(xj) (5.4)

is the empirical bipartite ranking risk, t 2 {1, 0}, n+
t , n

�
t are the amounts of positives

and negatives respectively in the set St (i.e. nt = n
+
t +n

�
t ), � = ES1,S0 [ȳ1�

(ȳ1)2

2 � (ȳ0)2

2 ]

and ȳ1, ȳ0 are average treatment and control groups’ outcomes respectively.

Proof. From Definition 1:

\AUUC(f, S1, S0) =

Z 1

0

V (f, x)dx

[99, Equation 13] allows us to express V (f, x) as a di↵erence of cumulative outcome

rates F
S1
f (x) and F

S0
f (x) (for the formal definition please refer to [99]) of collections

S1 and S0 respectively, induced by model f :

V (f, x) = F
S1
f (x)� F

S0
f (x)

Hence,

\AUUC(f, S1, S0) =

Z 1

0

V (f, x)dx =

Z 1

0

⇣
F

S1
f (x)� F

S0
f (x)

⌘
dx

=

Z 1

0

F
S1
f (x)dx�

Z 1

0

F
S0
f (x)dx (5.5)

By the mean while, we have from [99, Equation 9] a connection between F
D
f (x)

and Gini coe�cient Gini(f,D) � popular metric in binary classification indicated

the ability of the model to discriminate between positive and negative classes and

used frequently in credit scoring and direct marketing fields. So over the dataset D
connection is:

Gini(f,D) =
2
R 1

0 F
D
f (x)dx� ȳD

ȳD(1� ȳD)
(5.6)

where ȳD is average outcome rate on D. Note that the Gini coe�cient is also related

to the area under ROC curve as follows [100]:

Gini(f,D) = 2AUC(f,D)� 1 (5.7)

From (5.6) and (5.7), it then comes :

Z 1

0

F
D
f (x)dx = ȳD(1� ȳD) · AUC(f,D) +

(ȳD)2

2
(5.8)
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From (5.5) and (5.8) it comes :

\AUUC(f, S1, S0) = ȳ1(1� ȳ1) · AUC(f, S1)

� ȳ0(1� ȳ0) · AUC(f, S0) +
(ȳ1)2

2
� (ȳ0)2

2

Now by reverting labels in S0; i.e. AUC(f, S0) = (1� AUC(f, S̃0)) we get

\AUUC(f, S1, S0) = ȳ1(1� ȳ1)AUC(f, S1)

+ ȳ0(1� ȳ0)
⇣
1� AUC(f, S̃0)

⌘
+

(ȳ1)2

2
� (ȳ0)2

2
= ȳ1(1� ȳ1) · AUC(f, S1)

+ ȳ0(1� ȳ0) · AUC(f, S̃0) +
(ȳ1)2

2
+

(ȳ0)2

2
� ȳ0

Using the connection between AUC and the empirical ranking loss AUC(f,D) =

1� R̂(f,D), we have :

\AUUC(f, S1, S0) = ȳ1(1� ȳ1) ·
⇣
1� R̂(f, S1)

⌘

+ ȳ0(1� ȳ0) ·
⇣
1� R̂(f, S̃0)

⌘
+

(ȳ1)2

2
+

(ȳ0)2

2
� ȳ0

= �̂S1,S0 �
⇣
�1R̂(f, S1) + �0R̂(f, S̃0)

⌘

where, for sake of notation, we use group indices 1 and group 0 instead of datasets

S1 and S0 in the upper indices of ȳ; and �1 = ȳ1(1 � ȳ1),�0 = ȳ0(1 � ȳ0), �̂S1,S0 =

ȳ1 � (ȳ1)2

2 � (ȳ0)2

2 .

By taking the expectations in both sides of equation we finally get :

AUUC(f) = ES1,S0

h
\AUUC(f, S1, S0)

i

= � �
⇣
�1ES1 [R̂(f, S1)] + �

0ES̃0
[R̂(f, S̃0)]

⌘

where, � = ES1,S0 [�̂S1,S0 ].

5.4.2 Rademacher Generalization Bounds

Let us now consider the minimization problems of the pairwise ranking losses over

the treatment and the control subsets (Equation 5.4), and the following dyadic trans-

formation defined over each of the groups S1 and S̃0:

T (St) =
�
(z = (x,x0), ỹ)

��((x, y), (x0
, y

0))2St⇥ St ^ y 6= y
0 (5.9)
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where, t 2 {1, 0}, ỹ = +1 i↵ y = +1 and y
0 = 0 and ỹ = �1 otherwise. Here we

suppose that T (St) contains just one of the two pairs that can be formed by two

examples of di↵erent classes. This transformation corresponds then to the set of

n
+
t n

�
t pairs of observations in St that are from di↵erent classes.

From this definition and the class of functions, H, defined as:

H = {h : z = (�(x),�(x0)) 7! f(�(x))� f(�(x0)), f 2 F}, (5.10)

where, �(x) is the feature representation associated to observation x. The empirical

loss (Equation 5.4) can then be rewritten as:

R̂(h, T (St)) =
1

n
+
t n

�
t

X

(z,ỹ)2T (St)

1ỹh(z)0. (5.11)

The loss defined in (Equation 5.11) is equivalent to a binary classification error

over the pairs of examples in T (St). With this equivalence, one may expect to use

e�cient generalization bounds developed in binary classification. However, (Equation

5.11) is a sum over random dependent variables; as each training examples in St may

be present in di↵erent pairs of examples in T (St), and the study of the consistency of

the Empirical Risk Minimization principle cannot be carried out using classical tools;

as the central i.i.d. assumption on which these tools are built on is transgressed.

For this study, we consider T (St) as a dependency graph of random variables on its

nodes, and similar to [102], we decompose it using the exact proper fractional cover

of the graph proposed by [56] and defined as:

Definition 2. Let G = (V,E) be a graph. C = {(Cj,!j)}j2[J ], for some positive

integer J , with Cj ✓ V and !j 2 [0; 1] is an exact proper fractional cover of G, if:

1. it is proper: 8j, Cj is an independent set, i.e., there is no connections between

vertices in Cj;

2. it is an exact fractional cover of G: 8v 2 V,
P

j:v2Cj !j = 1.

The weight W (C) of C is given by: W (C) =
P

j2[J ] !j and the minimum weight

�
⇤(G) = minC2K(G) W (C) over the set K(G) of all exact proper fractional covers of G

is the fractional chromatic number of G.

Here, the weight W (C) of C is given by W (C) =
PJ

k=1 !k and the minimum

weight, called the fractional chromatic number, and defined as �⇤(G) = minC2K(G) W (C)
corresponds to the smallest number of subsets containing independent variables. A
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trivial property that we rely on here is that for a dependency graph induced by a bi-

partite ranking problem we always have that �⇤(G) is equal to the minimal chromatic

number which in turn is simply the cardinality of the largest class: max(n+, n�).

For the sake of clarity we show an example on Figure 5.1, where a set of example

St is composed of 2 positive (x+
1 ,x

+
2 with output y = 1) and 3 negative (x0

1
�
,x0

2
�
,x0

3
�:

y = 0) examples; the left part depicts all the possible pairs of examples over which

the ranking loss is estimated; in the right, the corresponding set T (St) and the in-

duced dependency graph G between pairs of examples (where edges denote statistical

dependence between pairs in T (St); the minimal coloring of G that are covers contain-

ing each independent pairs is, in this case, equal to the fractional chromatic number

�
⇤(G).

Figure 5.1: Dependency structure of a bipartite ranking problem composed of n+
t = 2

positive and n
�
t = 3 negative examples. (left: original data St and the composition

of pairs shown in dashed; right: induced dependency graph G; edges indicate depen-
dencies between pairs in T (St), colors show covers that contain independent pairs, in
this case we have �

⇤(G) = max(n+
t , n

�
t ) = 3).

From the definition of covers C = {(Cj,!j}j2[J ] containing independent pairs, it

is possible to adapt complexity terms, proposed to estimate the capacity of function

classes in the i.i.d. setting, to the interdependent case [102]. The resulting capacity

measure is defined as the weighted sum of complexity terms, each defined with respect

to an element of C. This capacity measure, denoted as fractional Rademacher com-

plexity can be computed over the training set for a class of functions with bounded

variance [85]; based on local Rademacher complexities [14] that have been found tight

in practice. In this case, a strategy which consists in choosing a model with the best
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generalization error tends to select functions with small variance in their predictions

and a small bounded complexity that is computable on a training set.

Definition 3. The Local Fractional Rademacher Complexity, RSt(Fr), of

the class of functions with bounded variance

Fr = {f : X 7! R : Vf  r} over the dyadic transformation, T (St) of size n
+
t n

�
t ,

of the set St, is given by:

RSt(Fr)=
1

n
+
t n

�
t

E�

2

4
X

j2[J ]

!jEXCj

2

4 sup
f2Fr

X

i2Cj

�if(xi)

3

5

3

5 (5.12)

with � = (�1, . . . , �n+
t n�

t
) being n

+
t n

�
t independent Rademacher variables verifying:

P(�i = +1) = P(�i = �1) = 1/2; 8i 2 {1, . . . , n+
t n

�
t }.

From these statements, we can now present the first data-dependent generalization

lower bound for AUUC.

Theorem 1. Let S = {xi, yi}i=1...m 2 (X ⇥ Y)m be a dataset of m examples drawn

i.i.d. according to a probability distribution D over X⇥Y, and decomposable according

to treatment S1 and reverted label control S̃0 subsets. Let T (S1) and T (S̃0) be the

corresponding transformed sets. Then for any 1 > � > 0 and 0/1 loss ` : {�1,+1}⇥
R ! [0, 1], with probability at least (1 � �) the following lower bound holds for all

f 2 Fr:

AUUC(f) � � �
⇣
�1R̂`(f, S1) + �0R̂`(f, S̃0)

⌘

� C�(Fr, S1, S̃0)�
25

48

✓
�1

n
+
1

+
�0

n
�
0

◆
log

2

�
(5.13)

where,

C�(Fr, S1, S̃0) = �1RS1(Fr) + �0RS̃0
(Fr)

+

0

@
5
2

p
RS1(Fr) +

5
4

p
2r

p
n
+
1

�1 +

5
2

q
RS̃0

(Fr) + 5
4

p
2r

p
n
�
0

�0

1

A
r
log

2

�

is defined with respect to local fractional Rademacher complexities of the class of

functions Fr estimated over the treatment and the control sets.

Proof. From Proposition 2:

AUUC(f) = � �
⇣
�1ES1 [R̂(f, S1)] + �0ES̃0

[R̂(f, S̃0)]
⌘
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From [85], we have the following upper bounds for each of the ranking losses hold

with probability 1� �/2 :

8Fr,ES1 [R̂(f, S1)]� R̂(f, S1) 

inf
a1>0

0

@(1 + a1)RS1(Fr) +
5

4

s
2r log 2

�

n
+
1

+
25

16

✓
1

3
+

1

a1

◆
log 2

�

n
+
1

1

A

8Fr,ES̃0
[R̂(f, S̃0)]� R̂(f, S̃0) 

inf
a0>0

0

@(1 + a0)RS̃0
(Fr) +

5

4

s
2r log 2

�

n
�
0

+
25

16

✓
1

3
+

1

a0

◆
log 2

�

n
�
0

1

A

The infinimums of the upper-bounds are reached for respectively

a1 =
5

4

s
log 2

�

n
+
1 RS1(Fr)

, a0 =
5

4

s
log 2

�

n
�
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By plugging back these values into the upper-bounds the result follows from the union

bound.

Note that the convergence rate of the bound is governed by least represented class

in both treatment and reverted control subsets. To the best of our knowledge this is

the first data-dependent generalization bound proposed for AUUC.

5.4.3 AUUC-max Learning Objective

From Theorem 1, we can formulate an optimization problem for the expected value

of AUUC as follows:

argmax
f2Fr

AUUC(f) ⌘ argmin
✓,r

⇣
�1R̂(f✓, S1) + �0R̂(f✓, S̃0) + C�(Fr, S1, S̃0)

⌘
(5.14)

where ✓ are parameters of the model.

There are two remarks that we can make at this point. First, both terms R̂(f✓, S1)

and R̂(f✓, S̃0) in (5.14) are defined over the instantaneous ranking loss 1ỹ(f(x)�f(x0))0

and in practice we need a di↵erentiable surrogate over these losses so that the min-

imization problem can be solved using standard optimization techniques. Second,

the local fractional Rademacher complexities RS1(Fr) and RS0(Fr) that appear in
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C�(Fr, S1, S̃0) should be estimated for some fixed class of functions Fr with a well

suited value of r.

For the first point, we propose to use di↵erentiable surrogates of the instantaneous

ranking loss [105], such as

slog (z) =
ln (1 + e

�z)

ln(2)
and spoly (z) = (� (z � µ))p 1z<µ

Note that slog (z) upper-bounds the indicator function 1z0. This is also the case for

spoly (z) with µ = 1 and p = 3.

For the second point, we propose to upper bound both local Rademacher com-

plexities RS1(Fr) and RS0(Fr) following Proposition 3.

Proposition 3. Let St be a sample of size nt with n
+
t samples with positive labels

and such that 8x 2 St k�(x)k  R. Let Fr = {�(x) 7! w>
�(x) : kwk  ⇤; f 2 F :

Vf  r}, be the class of linear functions with bounded variance and bounded norm

over the weights. Then for any 1 > � > 0, the empirical local fractional Rademacher

complexity of Fr over the set of pairs T (St) of size n
+
t n

�
t , can be bounded with prob-

ability at least 1� �
2 by:

RSt(Fr) 

s
R2⇤2

n
+
t

+

s
log 2

�

2n+
t

(5.15)
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Finally, we apply Cauchy-Swartz and Popoviciu’s inequalities to bound the vari-

ance of any function f 2 Fr, Vf , by r = ⇤2
R

2 (see Section 5.8). Noting that R
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is a constant depending on the set of feature representations we can transform the

optimization problem in (✓, r) in (Equation 5.14) to a problem in (w,⇤). Further-

more, the constraint on the weights ⇤ can be considered in practice as a max-norm

regularizer [97] and taken as a hyperparameter of the model.

From these settings, and the definition of a given surrogate loss s : R ! R+

over the instantaneous ranking loss, the version of the optimization problem (5.14)

that we consider is given in (Equation 5.16). In the following, we refer to the derived

algorithm as AUUC-max. At the high level we decompose the optimization problem

in (w,⇤) of (Equation 5.16) by choosing a grid of values for ⇤ and make use of the

generalization guarantees of the bound to select the best model w⇤, that corresponds

to the maximum lower bound value. Note that AUUC-max is working with both

linear and deep models, as we derive (Equation 16) using feature representations

�(x).

AUUC-max optimization problem

min
w

L̂w(S1, S̃0) =
1

n+
1 n

�
1

X

{xi,+1}2S1

X

{xj ,0}2S1

s(w>�(xi)�w>�(xj))

+
1

n+
0 n

�
0

X

{xk,+1}2S̃0

X

{xl,0}2S̃0

s(w>�(xk)�w>�(xl))+C�(F⇤2R2 , S1, S̃0)

subject to kwk  ⇤

(5.16)

Theoretically, a joint or alternate optimization over (w,⇤) is also possible. Inter-

estingly, a small grid of ⇤s is su�cient in practice to obtain competitive performance

(see Section 5.6).

Note that the usual practice for uplift models is to iterate over hyperparame-

ters grids (e.g. for optimization and regularization) and select the best model by

estimating the mean empirical AUUC over a k-fold cross-validation: this implies an

inner “for” loop in place of our lower bound computation and consequently additional

calculations.

5.5 Related work

In this section, we review some related works that address the problems of AUUC

maximization and the generalization study of uplift and CATE.
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SVM for Di↵erential Prediction [64] proposes to maximize AUUC directly by

expressing it as a weighted sum of two AUCs and maximizing it using a Support

Vector Machine method (see Section 2.2.3). Our work bears similarity to their seminal

work by borrowing the idea of decomposing AUUC into a weighted sum of AUCs.

We further propose to optimize di↵erentiable surrogates of the objective in the case

of imbalanced treatment, and provide an algorithm allowing to maximize AUUC

using linear or deep models with generalization guarantees as well as an e�cient

hyperparameter tuning procedure.

Promoted Cumulative Gain [38] draw a list-wise learning to rank formulation

of AUUC and use the LambdaMART [25] algorithm to optimize it, alleviating the

need for derivable surrogates at the price of more complex models.

Generalization bounds. The work of [94] provide a bound for the PEHE metric

(so usable for simulation settings) and pioneered the use of generalization bounds for

CATE. More closely to our work, [104] proposed a generalization bound for uplift

prediction. However, the main di↵erences with our approach is that the upper-bound

of AUUC proposed in [104] is a MSE-like proxy that is applicable in the case where

the variables Y and T are never observed together whereas we bound AUUC directly

without such hypothesis. Further, the definition of the proxy objective proposed in

[104] assumes that samples are i.i.d., whilst in our study the equivalence between

the ranking objective (5.4) and the classification error over the pairs of examples

(5.11) gives rise to the consideration of dependent samples that calls for specific

concentration inequalities, namely local fractional Rademacher theory, that ensures

fast convergence rates [14]. Finally, from an optimization side the approach developed

in [104] leads to a mini-max optimization problem, that is avoided in AUUC-max by

using the “revert label in control” trick.

5.6 Experimental evaluation

We conducted an number of experiments aimed at evaluating the merits of pairwise

ranking and the proposed approach for AUUC maximization.

Experimental Setting. We use two open, real-life datasets. First one is Hillstrom

(see Section 2.3.2), for which we used no-email vs women e-mail split as a binary
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treatment and “visit” as an outcome as in [83]. Second one CRITEO-UPLIFTv2 (see

Section 3), for which we picked “visit” as an outcome.

To compare algorithms1 each dataset was split into train (70%) and test (30%)

sets. Then, 5-fold cross-validation was used on train set for hyperparameters tuning

before retraining the best model on the whole train set. Hyperparameters grids for

the all algorithms are of similar size and values can be found in Section 5.8, as well as

the details about used prediction models. Finally, algorithms are compared by AUUC

on test set, using an empirical Bernstein bound [72] to compute a 95% confidence test

set bound on the expectation of AUUC. More details are provided in Section 5.8.

Evidence of generalization problem with pointwise objectives. We perform

the following experiment to highlight the problem of AUUC generalization with learn-

ing models that optimize a pointwise objective. As baseline model, we consider Class

Variable Transformation (CVT) [57] introduced in Section 2.2, which is also based

on label reverting as our approach, but that optimizes a pointwise log-loss objective,

on Hillstrom dataset. Experiments are conducted by varying the regularization pa-

rameter L2 of CVT and AUUC-max and computing the correlation, R, between the

corresponding training loss and test loss (Figure 5.2 top) and between the training

loss and AUUC on the test set (Figure 5.2 bottom). Results indicate that i) both

algorithms generalize in terms of their internal objective (top row) ii) CVT training

loss does not correlate with test AUUC and many points with a similar train loss give

very di↵erent test performance (bottom left) iii) AUUC-max training loss is mildly

correlated to test AUUC and shows better performance across di↵erent regularization

parameters (bottom right).

Tightness of Local Fractional Rademacher bounds. We also examine the

choice of local fractional Rademacher complexity in the generalization bound. For

that purpose we compute the generalization error on the Hillstrom dataset for di↵erent

variants of Theorem 1: using the local fractional Rademacher concentration inequality

on bipartite ranking risk (our proposition, in blue on Figure 5.3) or [4, 101] (in orange)

or [44] (in green). We observe that our bound makes an average error of 0.015, which

is much tighter than the alternatives. This result illustrates the benefit of a variance

based data-dependent analysis framework that we propose for AUUC.

1For research purpose we will release the code.
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Figure 5.2: AUUC generalization problem with a pointwise objective on the Hillstrom
dataset. CVT optimizing pointwise log-loss objective (left), AUUC-max optimizing
(Equation 5.16) (right). R is the correlation coe�cient.

Figure 5.3: AUUC bound tightness depending on inner bipartite ranking
risk bounding technique (closer to 0 is better).
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Influence of the constraint on ⇤. This term controls the bound tightness and

also model regularization in the AUUC-max learning objective. A smaller ⇤ gives a

tighter bound but also a more constrained model, up to some point where it is too

constrained to be useful. In practice there is a region where both are near optimal as

can be observed for the Hillstrom dataset on Figure 5.5 in Section 5.8.

Tuning parameters by bound is e�cient. Following [9] we compare our method

applied to linear model with hyperparameters chosen by bound (that is original AU-

UCmax) versus chosen by cross-validation (+CV) in Table 5.8 in Section 5.8. Models

tuned by either methods are practically equivalent (up to the 4th digit) whilst the

bound method yields computation savings in O(k) where k is the number of folds.

We observed similar behavior when using deep models.

AUUC-max is competitive in practice. Table 5.1 contains quantitative per-

formance results of AUUC-max and a large selection of competitive baselines on

Hillstrom. Firstly we remark that, in line with previous studies [39, 38, 64, 57], it

is di�cult to observe statistically significant results on this task. Nonetheless, small

increases in AUUC can lead to important gains in the application [83]. We note that

AUUC-max (deep, slog) and AUUC-max (linear, spoly) ranks 1st and 3rd respectively,

indicating that our method is competitive both in performance and training time,

which is in the last column of Table 5.1 (time is indicated relative to TM).

Additionally, Figure 5.4 presents uplift curves of the top ranked methods on the

first 30% of population on Hillstrom. It is often the case in practice that we want to

target only a small portion of the population for e�ciency or budget constraints. One

can see that bipartite ranking-based techniques (AUUC-max and SVM-DP) produce

the highest cumulative uplifts on this threshold, which is an additional evidence of

usefulness of bipartite ranking methods in uplift modeling. Figure of the full uplift

curves for all methods are provided in Section 5.8.

For evaluation on the larger CRITEO-UPLIFT v2 collection we select best per-

forming methods on Hillstrom that can be trained reasonably fast. Results in Table

5.2 show very little variability and we find that no method performing significantly

better than another, as on Hillstrom, though AUUC-max (deep, slog) ranks 2nd.
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Table 5.1: Hillstrom: comparison of baselines and AUUC-max. Top-2 results are in
bold. †: original implementation of algorithm on LIBSVM was used.

Model Train AUUC Test AUUC # params Time

TM (Equation 2.16) .03240 .02860 ± .00326 46 1.00x

CVT (Equation 2.25) .03171 .02752 ± .00324 23 0.53x

SVM-DP [64] .03273 .02957 ± .00321 23 0.02x †

DDR [17] .03218 .02842 ± .00325 47 1.10x

SDR [17] .03299 .02958 ± .00327 67 2.44x

TARNet [94] .03292 .02863 ± .00325 34,882 11.60x

GANITE [107] .02563 .02900 ± .00326 7,045 1.12x

AUUC-max (linear, spoly) .03239 .02912 ± .00326 23 0.37x

AUUC-max (deep, slog) .03246 .02999 ± .00325 15,469 1.34x

Figure 5.4: Uplift curves for the first 30% of population on Hillstrom. (higher is
better)
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Table 5.2: CRITEO-UPLIFT v2 : comparison of baselines and
AUUC-max. Top-2 results are in bold.

Model Train AUUC Test AUUC

TM (Equation 2.16) .00925 .00922 ± .00001

SVM-DP [64] .00928 .00925 ± .00002

DDR [17] .00925 .00920 ± .00001

SDR [17] .00926 .00923 ± .00001

AUUC-max (linear, spoly) .00925 .00921 ± .00001

AUUC-max (deep, slog) .00927 .00924 ± .00001

5.7 Summary

We propose the first, data-dependent generalization lower bound for the uplift mod-

eling metric, AUUC, used in numerous practical cases. Then we derive a robust

learning objective that optimizes a derivable surrogate of the AUUC lower bound.

Our method alleviates the need of cross-validation for choosing regularization and

optimization parameters, as we empirically show. As a result we highlight its sim-

plicity and computational benefits. Experiments show that our method is competitive

with the most relevant baselines from the literature, all methods being properly and

fairly tuned. An exciting area for future works would be to compare Proposition

3 with the novel techniques of bounding RSt(Fr) for deep networks [13]. Another

promising direction is about to adapt our bound to the other uplift models (e.g. SDR

or TARNet). As a final word we expect that thanks to the availability of a powerful

learning objective suited for deep models we could witness much progress in the field

in the future, especially as researchers take advantage of recent advances in neural

architecture search developed for other models and apply it to uplift modeling.
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5.8 Additional details and experiments

Bounding variance of f

Let us remind function f from Proposition 3:

f(�(x)) = w
>
�(x),where kwk  ⇤, k�(x)k  R.

We need to proof that V(f)  r = ⇤2
R

2
.

Proof. Firstly we use Cauchy-Schwartz inequality for f(�(x)):

|w>
�(x)|  kwk · k�(x)k  ⇤R,

so now �⇤R  w
>
�(x)  ⇤R.

We apply then Popoviciu inequality on variances:

V(f(�(x))) = V(w>
�(x))  (⇤R + ⇤R)2

4
= (⇤R)2 = r.

Experimental Setup details

Implementation details. Technically we implemented all surrogate losses and

methods (except SVM-DP for which we used original code implemented on LIB-

SVM codebase) in Tensorflow framework [3]. For the optimization, Adam algorithm

was used with step decay to update the learning rate.

Prediction models. For the TM, CVT, DDR and SDR methods we applied logis-

tic regression as a prediction model. As was reported on TARNet paper, feed-forward

neural network with fully-connected exponential-linear layers was used. For the deep

model of AUUC-max we used feed-forward neural network with Wide & Deep archi-

tecture [30] which is focused on training linear model and deep neural network jointly

in order to profit simultaneously from memorization and generalization.

Hyperparameters. For SVM-DP we found best parameter C on the range [1e-3,1e-

2,1e-1,1e0,1e1,1e2,1e3]. For the other algorithms we applied random search through

50 and 30 parameters combinations for Hillstrom and CRITEO-UPLIFTv2 respec-

tively, grids of the hyperparameters for the datasets are provided in Tables 5.3,5.4,5.5

and Tables 5.6,5.7 respectively.
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Generalization problem with AUUC proxies experiment (Figure 5.2). The

regularization parameter is L2 for both CVT and AUUC-max; values are 30 equally

spaced points between [0, 1]. The dataset used is Hillstrom. We experienced similar

behavior with other baselines such as TM.

Evaluation of the generalization bound (Figure 5.3). To assess the tightness

of our bound, we depict the distribution of the di↵erences between the true AUUC (=

E[AUUC]) and the lower bound computed on the Hillstrom dataset. For that purpose,

we learn an AUUC-max model and record the train and test AUUCs. E[AUUC] is

estimated from the upper bound of an Empirical Bernstein inequality [72] on the

test sets obtained from 3,500 random train/test splits, giving a precision greater or

equal than .001 with probability > .99. The distribution of the generalization error

modeled by the bound is then simply the di↵erence between train and test AUUCs.

Surrogates. For the surrogate spoly for AUUC-max we used additional hyperpa-

rameters µ and p on the ranges of [0.1,0.3,0.5,0.7,1] and [2,3] respectively, according

to the recomendations of [105]. We report the best performing surrogates in Tables

5.1 and 5.2.

Hardware information. All experiments were run on a Linux machine with 32

CPUs (Intel(R) Xeon(R) Gold 6134 CPU @ 3.20GHz), with 2 threads per core, and

120Gb of RAM, with parallelising across 16 CPUs.

Table 5.3: Hyperparameters grid for TM, CVT, DDR and SDR on Hillstrom data

Parameter TM & CVT & DDR & SDR

batch size [128,512,1024]

learning rate [1e-5,5e-5,1e-4,5e-4,1e-3,5e-3,1e-2,5e-2,1e-1]

l2 reg. term [0,1e-6,1e-5,1e-4,1e-3,1e-2]

Test set bound

We derived test set bound on AUUC in order to get tight confidence intervals using

only one train/test split. As a building block we used the test set bound for U-

statistic [81] which is based on empirical Bernstein bound [72], then we constructed
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Table 5.4: Hyperparameters grids for TARNet and GANITE on Hillstrom data

Parameter TARNet

batch size [128,512,1024]

learning rate [1e-5,5e-5,1e-4,5e-4,1e-3]

l2 reg. term [0,1e-6,1e-5,1e-4,1e-3,1e-2]

# layers [2, 3, 4]

# neurons [32, 64, 128]

Parameter GANITE

batch size [128,512,1024]

learning rate [1e-5, 1e-4, 1e-3]

# epochs [50, 100, 500]

↵ [1, 10, 100, 1000]

h dim [50, 100, 500]

Table 5.5: Hyperparameters grids for AUUC-max on Hillstrom data

Parameter AUUC-max (linear) AUUC-max (deep)

batch size [256,512,1024] [128,256,512,1024]

learning rate [1e-5,5e-5,1e-4,5e-4,1e-3,5e-3,1e-2] [1e-5,5e-5,1e-4,5e-4,1e-3,5e-3,1e-2]

⇤ [1e-2,5e-2,1e-1,5e-1,1e0,5e0,1e1,5e1,1e2] [1e-2,5e-2,1e-1,5e-1,1e0,5e0,1e1,5e1,1e2]

l2 reg. term - [0, 1e-5, 1e-3]

# layers - [2, 3, 4]

# neurons - [32, 64, 128]

Table 5.6: Hyperparameters grid for baselines on Criteo-UPLIFT v2 data

Parameter TM & DDR & SDR

batch size [128,512,1024]

learning rate [1e-5,5e-5,1e-4,5e-4,1e-3,5e-3,1e-2,5e-2,1e-1]

l2 reg. term [0,1e-6,1e-5,1e-4,1e-3,1e-2]

a union bound similarly to the our main result in Theorem 1. With probability at
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Table 5.7: Hyperparameters grids for AUUC-max on Criteo-UPLIFT v2 data

Parameter AUUC-max (linear) AUUC-max (deep)

batch size [512,1024,2048] [512,1024,2048]

learning rate [1e-5,5e-5,1e-4,5e-4,1e-3,5e-3,1e-2] [1e-5,5e-5,1e-4,5e-4,1e-3,5e-3,1e-2]

⇤ [1e-2,5e-2,1e-1,5e-1,1e0,5e0,1e1,5e1,1e2] [1e-2,5e-2,1e-1,5e-1,1e0,5e0,1e1,5e1,1e2]

l2 reg. term - [0, 1e-5, 1e-3]

# layers - [2, 3, 4]

# neurons - [32, 64, 128]

least (1� �):
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where ⌃̂2(Stest1) is empirical variance of ranking loss for the treatment subset of test

set, similarly for the control subset.

E↵ectiveness of AUUC-max for hyperparameters tuning

Table 5.8: Hillstrom: comparison of di↵erent parameter tuning techniques for AUUC-
max. Training time is indicated relative to the AUUC-max (linear, slog) + CV

Model Train AUUC Test AUUC Time

AUUC-max (linear, slog) .03230 .02878 ± .00325 0.27x

AUUC-max (linear, slog) + CV .03235 .02918 ± .00326 1.00x

AUUC-max (linear, spoly) .03239 .02912 ± .00326 0.22x

AUUC-max (linear, spoly) + CV .03240 .02934 ± .00326 0.94x
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Comparison of AUUC-max with PCG

Table 5.9: Hillstrom: comparison of AUUC-max with PCG. Result of PCG is taken
from [38], Table 11.

Model Test AUUC

PCG .03055 ± N/A

AUUC-max (linear, spoly) .02958 ± .00326

AUUC-max (deep, slog) .03069 ± .00326
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Influence of ⇤

Figure 5.5: Influence of ⇤ on bound tightness and AUUC-max model perfor-
mance.

Uplift curves on Hillstrom

Figure 5.6: Uplift curves on Hillstrom. (higher is better)
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Chapter 6

Di↵erentially Private Uplift
Modeling from Aggregated Data

This chapter is based on published paper [19]: “Di↵erentially Private Individual

Treatment E↵ect Estimation from Aggregated Data” – Artem Betlei, Théophane Gre-

goir, Thibaud Rahier, Alöıs Bissuel, Eustache Diemert, Massih-Reza Amini, accepted

to Privacy Preserving Machine Learning, virtual ACM CCS 2021 workshop.

6.1 Motivation

Many of data-driven domains imply to handle sensitive data for which there are rising

privacy concerns. Consequently, many industries are starting to enforce procedures

ensuring individual data protection. In the online advertising sector for example, a

series of changes to data access were proposed recently by Google Chrome [1] in order

to guarantee web users privacy through data aggregation and di↵erential privacy.

In consequence, the scientific community has grown a strong interest in propos-

ing uplift modeling and CATE prediction methods which fully leverage the trade-o↵

between privacy and utility.

6.2 Related work

6.2.1 Learning from aggregated data

Learning individual-level behavior from aggregated-level data has long been known as

ecological inference problem. Plenty of presented methods [60] use aggregated data,

avoiding the problem of ecological fallacy, where the inferences drawn from aggregate

level drastically di↵ers from the ground truth at the individual level.
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Besides, the most relevant level of aggregation has not yet been completely de-

termined by research community as the term “aggregated data” has been referring

to di↵erent frameworks: label similarities with complete access to features [111],

aggregated labels with complete access to features [20] or aggregated labels with ag-

gregated features [21]. Here, both features and labels will be considered as sensitive

and therefore aggregated which corresponds to the most restrictive setting.

However, regardless of the selected level of aggregation, most of these methods do

not ensure theoretical privacy guarantees without being combined with di↵erential

privacy in a query framework.

6.2.2 Di↵erential Privacy

Di↵erential privacy [42] represents one of the most widely used data protection method

in so far as it enables researchers to precisely quantify privacy guarantees while being

applicable to general setups. Di↵erential privacy should be considered as a process-

oriented method, which allows the private training of models.

In order to learn in a di↵erentially private framework, the most common techniques

include result perturbation, objective perturbation [27] or noisy iterative optimization

methods which can be performed thanks to a precise budget tracking. In particular,

di↵erentially private stochastic methods adding scaled noises for each training batch

have already shown great performances when applied to deep learning models [2, 77].

The model we propose enables a one-shot spending of the privacy budget, avoiding

both its complex tracking and adaptive spending.

6.3 Contributions

1. We introduce ✏-Aggregated Data Uplift Model (✏-ADUM), a di↵erentially pri-

vate method to learn uplift models from data aggregated along a given partition

of the feature space.

2. For ✏-ADUM, we identify and illustrate a bias-variance decomposition of the

popular metric in CATE prediction, namely the Precision in Estimation of

Heterogeneous E↵ects (PEHE) metric, highlighting the role of the underlying

partition size in the privacy-utility trade-o↵.

3. Finally we show empirically on both synthetic and real data that, for strong

privacy guarantees (✏  5), ✏-ADUM outperforms comparable ✏-di↵erentially

private models with access to individual data.
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6.4 Aggregated Data Uplift Model and its bias-
variance trade-o↵

6.4.1 Preliminaries

6.4.1.1 Variables and data

We consider random variables X (features), T (treatment) and Y (outcome) with

respective values in K (a compact convex subset of Rd), {0, 1} and R. We additionally

suppose there exists treatment/control response functions f 1
, f

0 : K ! R and a real

random variable ⇠ (independent of X) with E[⇠] = 0 and E[⇠2] = �
2, such that

Y = Tf
1(X) + (1� T )f 0(X) + ⇠. (6.1)

Under these notations, and for any x, we have that f
0(x) = E[Y | X = x, T = 0],

f
1(x) = E[Y | X = x, T = 1] and the corresponding uplift is defined as:

u(x) = f
1(x)� f

0(x). (6.2)

Finally, we assume we have access to D = {(xi, ti, yi)}1in, a dataset containing

n i.i.d. realizations of (X, T, Y ). Since we are in a randomized controlled trial (RCT)

setting, the binary treatment variable T is assumed independent of X. We denote T
and C the subsets of D which contain respectively all datapoints from the treatment

(T = 1) and control (T = 0) groups.

6.4.1.2 Space partitioning

For a fixed positive integer p we define ⇧p(K) :=
�
⇡ 2 {1, . . . , p}K : ⇡ surjective

 
,

the set of all possible partitions of K containing p elements. Let ⇡ 2 ⇧p(K) be a fixed

partition, then there exists G(1)
⇡ , . . . , G

(p)
⇡ disjoint subsets of K such that

S
1jp

G
(j)
⇡ =

K. For a given x 2 K, we denote G⇡(x) = ⇡
�1({⇡(x)}), the component of ⇡ which

contains x. For any G ⇢ K we denote |G|D =
P
i2D

1xi2G, i.e. the number of points of

D for which the feature vector xi belongs to G.

6.4.2 ADUM presentation

We now present Aggregated Data Uplift Models (ADUM). For a given partition ⇡ 2
⇧p(K), we estimate the uplift of x 2 K by the average treatment e↵ect in the group

G⇡(x). More formally, we define û : K ! R the function which to all x 2 K assigns:

û⇡(x) = f̂
1
⇡(x)� f̂

0
⇡(x), (6.3)
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where f̂
1
⇡ and f̂

0
⇡ refer respectively to aggregated-data based models of the treat-

ment and control response functions, i.e.:

f̂
1
⇡(x) =

1

|G⇡(x)|1
X

i:xi2G⇡(x)

yiti,

f̂
0
⇡(x) =

1

|G⇡(x)|0
X

i:xi2G⇡(x)

yi(1� ti).

f̂
1
⇡ and f̂

0
⇡ are piecewise constant functions defined using only aggregated informa-

tion and would therefore be computable from an aggregate reporting API [61] thanks

to SUM and COUNT queries.

We remind that the fundamental problem of causal inference (see Section 1.2.2)

causes uplift modeling to be a very unique machine learning task, where the ground

truth is unknown. By using aggregated data models for both the treatment and

control positive outcome functions, we partially circumvent the fundamental problem

of causal inference: as long as there are points from both the treatment and control

groups in any given component G⇡(x) of ⇡, the average treatment e↵ect in G⇡(x) is

consistently estimated by û(x).

Remark Besides, outside of the RCT setting, additionally assuming {⇡(X)} is a

valid adjustment set [78] for (T, Y ) — e.g. in the case where X |= T | ⇡(X) which is

a strictly weaker assumption than the RCT setting — guarantees ADUM rightfully

models the causal e↵ect of T on Y . Nevertheless, finding such a partition represents

a non-trivial task which is not the subject of this work.

6.4.2.1 General PEHE bound for ADUM

Let f̂⇡ : K ! R be a model for a given f : K ! R. For all x 2 K we define:

Bias(f̂⇡(x)) = f(x)� ED[f̂⇡(x)],

Var(f̂⇡(x)) = ED

⇣
f̂⇡(x)� ED[f̂⇡(x)]

⌘2
�
,

where ED[f̂⇡(x)] can be interpreted as the best possible ⇡�piecewise constant

approximation of f . In other words, ED[f̂⇡(x)] is the best approximation reachable

by a ⇡�ADM for f .

The (squared) bias term captures how well can f be approached by a piecewise

constant function on ⇡: the smaller the variations of f inside each of the subsets of
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K defined by ⇡, the lower the bias term. It should typically decrease when |⇡| = p

increases.

The variance term captures how close f̂⇡ is to its average in each of the components

of ⇡: The bigger the number of data points of D inside each subset of K defined by

⇡, the better the approximation of aggregated target function by f̂⇡ (Law of Large

Numbers). It should typically increase when |⇡| = p increases.

Adapting the bias-variance decomposition of the mean squared error to the Pre-

cision in Estimation of Heterogeneous E↵ects (PEHE) metric (see Section 2.1) leads

to the following

Proposition 4. Let ⇡ 2 ⇧p(K) and û⇡ the associated ADUM learned wrt data D =

T t C, then the PEHE of û⇡ satisfies:

✏PEHE(û⇡)  2EX

h
Bias2

⇣
f̂
T
⇡ (X)

⌘
+ Bias2

⇣
f̂
C
⇡ (X)

⌘i

+ 2EX

h
Var

⇣
f̂
T
⇡ (X)

⌘
+Var

⇣
f̂
C
⇡ (X)

⌘i
.

Proof.

✏PEHE(û⇡) = EX,D
⇥
(u(X)� û⇡(X))2

⇤

= EX,D

⇣�
f
1(X)� f

0(X)
�
�
⇣
f̂
1
⇡(X)� f̂

0
⇡(X)

⌘⌘2
�

= EX,D

⇣⇣
f
1(X)� f̂

1
⇡(X)

⌘
+
⇣
f̂
0
⇡(X)� f

0(X)
⌘⌘2

�

 2EX,T

⇣
f
1(X)� f̂

1
⇡(X)

⌘2
�
+ 2EX,C

⇣
f
0(X)� f̂

0
⇡(X)

⌘2
�
.

We decompose now the inner part of the first term that corresponds to treatment

population (second term, corresponding to control population, can be decomposed
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analogically). For every x:

ET

⇣
f
1(x)� f̂

1
⇡(x)

⌘2
�
= ET

⇣
f
1(x)� ET [f̂

1
⇡(x)] + ET [f̂

1
⇡(x)]� f̂

1(x)
⌘2
�

= ET

2

664
⇣
f
1(x)� ET [f̂

1
⇡(x)]

⌘2

| {z }
Independent of T

3

775+ ET

⇣
ET [f̂

1
⇡(x)]� f̂

1(x)
⌘2
�

+ 2ET

2

664
⇣
f
1(x)� ET [f̂

1
⇡(x)]

⌘

| {z }
Independent of T

·
⇣
ET [f̂

1
⇡(x)]� f̂

1(x)
⌘
3

775

=
⇣
f
1(x)� ET [f̂

1
⇡(x)]

⌘2

| {z }
Bias2(f̂T

⇡ (x))

+ET

⇣
ET [f̂

1
⇡(x)]� f̂

1(x)
⌘2
�

| {z }
Var(f̂T

⇡ (x))

+ 2
⇣
f
1(x)� ET [f̂

1
⇡(x)]

⌘
·
⇣
ET [f̂

1
⇡(x)]� ET [f̂

1
⇡(x)]

⌘

| {z }
= 0

= Bias2
⇣
f̂
T
⇡ (x)

⌘
+Var

⇣
f̂
T
⇡ (x)

⌘
.

Now, using expectancy over X for the derived term:

EX,T

⇣
f
1(X)� f̂

1
⇡(X)

⌘2
�
= EX

h
Bias2

⇣
f̂
T
⇡ (X)

⌘i
+ EX

h
Var

⇣
f̂
T
⇡ (X)

⌘i
.

Applying the same derivation for control population term and integrating the

result in the first inequality, we finally get:

✏PEHE(û⇡)  2EX

h
Bias2

⇣
f̂
T
⇡ (X)

⌘
+ Bias2

⇣
f̂
C
⇡ (X)

⌘i

+ 2EX

h
Var

⇣
f̂
T
⇡ (X)

⌘
+Var

⇣
f̂
C
⇡ (X)

⌘i
.

6.4.3 ✏-ADUM : definition and algorithm

In order to get theoretical privacy guarantees, ADUM must be combined with dif-

ferential privacy. Since ADUM is based on the computation of means, it can be

decomposed into a set of SUM and COUNT queries. Knowing the range of the outcome

Dy, the sensitivities of these queries are directly available.
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As the partition ⇡ creates disjoint subsets of the input domain, the privacy budget

✏ can be entirely spent on each group queries in parallel [73]. Here, we choose to assign

an ✏
2 budget to each SUM or COUNT query. Therefore, all the queries can be noised

thanks to a scaled Laplace noise, turning ADUM into an ✏-di↵erentially private model:

✏-ADUM (see Algorithm 1).

Algorithm 1 ✏-ADUM

1: function train((xi, ti, yi)i2[1,n], ⇡ 2 ⇧p(K), Dy > 0, ✏ > 0):
2: for k 2 [1, p] do
3: for t 2 {0, 1} do
4: Ek,t = (yi | ⇡(xi) = k, ti = t)
5: Ck,t = COUNT(Ek,t) + Lap(2✏ ) .

✏
2 -DP count

6: Sk,t = SUM(Ek,t) + Lap(2Dy

✏ ) .
✏
2 -DP sum

7: byk,t = Sk,t

Ck,t
. ✏-DP mean

8: end for
9: buk = byk,1 � byk,0 . ✏-DP piecewise constant model

10: end for
11: return (buk)k2[1,p]
12: end function
13:

14: function predict(xnew 2 K):
return bu⇡(xnew) . Assign value linked to G⇡(xnew)

15: end function

6.4.4 The bias-variance trade-o↵ for ✏�ADUM: insights from
an illustrative setting

6.4.4.1 Simplified setting

For the sake of the result we present in the next subsection, we consider the following

illustrative setting: let ⇡ be a partition ofK, with |⇡| = p components and assume that

f
1 and f

0 are respectively L1 and L0 Lipschitz on K that we suppose uni-dimensional

(d = 1) of diameter Dx. Moreover, we denote �⇡ = max
G,G02⇡

{ diam(G)
diam(G0)}, and make the

assumptions that every group G 2 ⇡ is equally populated with respect to T and C,
i.e. 8G 2 ⇡, |G|T = |G|C.

6.4.4.2 PEHE bounding for ✏�ADUM

Corollary 1. For a given � 2 (0, 12 ], let p, n 2 N, D a dataset of size n, ⇡ 2 ⇧p(K)

and ✏ � 8p log(1/�)
n . Let û⇡ be the corresponding ✏�ADUM (defined in Algorithm 1),
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then the following inequality holds with probability � 1� �:

✏PEHE(û⇡)  2(L2
0 + L

2
1)D

2
x�

2
⇡p

�2 ADUM Bias

+ 4
�
2�2 + (L2

0 + L
2
1)D

2
x

� p
n

ADUM Variance

+ D
2
y

p2

n2✏2
✏�DP term. (6.4)

We provide the sketch of proof here (assuming general function f̂⇡ – we then imply

the same reasoning for f̂T
⇡ and f̂

C
⇡ ).

Proof. 1. Firstly we bound Bias and Variance terms from Proposition 4 respec-

tively using the data constants such as Dx, L, �⇡, n and number of groups p:

EX

h
Bias2(f̂⇡(X))

i
 L

2
D

2
x�

2
⇡p

�2
. (6.5)

EX

h
Var(f̂⇡(X))

i

�
�
2 + L

2
D

2
x

� p

n
. (6.6)

2. We apply the following auxiliary lemma: for x 2 [�1
2 ,

1
2 ]:

1� x+
2

3
x
2  1

1 + x
 1� x+ 2x2

.

3. The new, ✏-DP versions of Bias and Variance terms from Proposition 4 are

defined:

Bias(f̂ ✏
⇡(x)) = f(x)� ED,NS ,NC

h
f̂
✏
⇡(x)

i

Var(f̂ ✏
⇡(x)) = ED,NS ,NC

⇣
f̂
✏
⇡(x)� ED,NS ,NC

h
f̂
✏
⇡(x)

i⌘2
�

4. For the COUNT query in Algorithm 1, we use lemma from step 2 having
N✏

C
Ck

2
[�1

2 ,
1
2 ]:

1

Ck
� N

✏
C

C
2
k

+
2(N ✏

C)
2

3C3
k

 1

Ck
· 1

1 +
N✏

C
Ck

 1

Ck
� N

✏
C

C
2
k

+ 2
(N ✏

C)
2

C
3
k

where N
✏
C denotes Laplacian noise of parameter 2

✏ .

5. Using step 5, both Bias2(f̂ ✏
⇡(x)) and Var(f̂ ✏

⇡(x)) are bounded:

Bias2(f̂ ✏
⇡(x))  Bias2(f̂⇡(x)) + biasD

2
y

p
2

n2✏2

Var(f̂ ✏
⇡(x))  Var(f̂⇡(x)) + varD

2
y

p
2

n2✏2
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6. Finally, ✏-DP version of Proposition 4 is created (assuming û⇡ as ✏-ADUM):

✏PEHE(û⇡)  2EX

h
Bias2

⇣
f̂
✏
⇡
T (X)

⌘
+ Bias2

⇣
f̂
✏
⇡
C(X)

⌘i

+ 2EX

h
Var

⇣
f̂
✏
⇡
T (X)

⌘
+Var

⇣
f̂
✏
⇡
C(X)

⌘i

 2(L2
0 + L

2
1)D

2
x�

2
⇡p

�2

+ 4
�
2�2 + (L2

0 + L
2
1)D

2
x

� p

n

+ D
2
y

p
2

n2✏2
.

When making ✏�di↵erentially private queries, it is typical to constrain ✏ to be

significantly bigger than the inverse of the population of the group upon which the

query is made [55], which is consistent with the condition on ✏ stated in the Corol-

lary 1. For instance, if n = 2 · 104, p  20 and � = 0.01, the bound holds with

probability 99% for any ✏ � 0.04.

The number of groups popt that minimizes the upper bound in (6.4) has the fol-

lowing asymptotic variations with respect to ✏ and n:

• when ✏ is small compared to
p
p/n, (6.4) is dominated by its first and last terms

and p
opt = ⇥(n✏),

• when ✏ is large compared to
p

p/n, (6.4) is dominated by its two first terms

and p
opt = ⇥(n1/3) does not depend on ✏.

This shows the flexibility of the class of ADUM models, which robustly adapt to noise

addition when the size of the underlying partition is rightfully tuned.

6.5 Experimental evaluation

6.5.1 Synthetic data

6.5.1.1 Data generation

First, ✏-ADUM is tested in a synthetic framework in order to observe its performance

in terms of PEHE. Each of the n generated individuals are attributed a covariate

X ⇠ U(�1, 1) (d = 1) and a treatment T ⇠ Bernoulli(0.5). The treatment e↵ect

surface is defined by the di↵erence between response surfaces of treatment and control

populations. Each individual couple of potential outcomes is generated following
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f
C(X) = 0, fT (X) = sinX and ⇠ ⇠ N (0, �) in order to observe a simple but non-

monotonic and noisy treatment e↵ect surface. Moreover, ✏-ADUM is computed on a

regular cut of K in order to have balanced groups (asX ⇠ U(�1, 1)) and be consistent

with Corollary 1.

6.5.1.2 Performance comparison

Here, ✏-ADUM is compared with a Two-Models (TM) [51] uplift modeling method,

formed by two ✏-di↵erentially private linear regressions [109] with polynomial features

which have access to individual data, denoted ✏-TM. For each ✏, we respectively tune

the polynomial degree and the number of groups for ✏-TM and ✏-ADUM. As high-

lighted by Figure 6.1, ✏-ADUM reaches better performances than individually-trained

models for ✏  5, while ✏ = 5 is often presented as a realistic parameter for the future

of the tech industry (including advertising [1]). Indeed, the ADUM framework o↵ers

a more robust and easily implementable adaptation to noise addition than individual

frameworks thanks to its query architecture. Nevertheless, when considering large ✏

(corresponding to low privacy guarantees), we observe that the great interaction be-

tween aggregation and noise addition is being overruled by individual models which

benefit from their complete access to granular information. The significant drop in

PEHE for ✏-TM can be explained by the privacy cost of using a supplementary poly-

nomial degree becoming profitable for a privacy budget ✏ � 2.

6.5.1.3 Bias-variance trade-o↵ illustration

The bias-variance trade-o↵ introduced in Corollary 1 is illustrated experimentally

in Figure 6.2. Indeed, for every value of ✏, as the number of groups increases, the

PEHE starts by decreasing because of the bias reduction (first term of (6.4)) before

increasing due to a penalizing variance (second term of (6.4)) and the rising impact

of the privacy-induced noise addition (third term in (6.4)) � the two latter being

due to an insu�cient population in the groups. Furthermore, this experiment also

highlights the dependency between ✏ and the optimal number of groups for ✏-ADUM.

First, when ✏ increases, the optimal number of groups increases and ✏-ADUM’s best

performance improves. Then, as illustrated by the two merged performance curves

for ✏ = 50 and ✏ = 100, ✏-ADUM enters a capped regime for which the ✏-di↵erentially

private perturbation becomes negligible compared to errors inherent to ADUM (see

2 asymptotic regimes in Section 6.4.4).
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Figure 6.1: Comparison of test PEHE (lower is better) for ✏-TM and ✏-ADUM over
20 random train/test splits selecting 20000 points. Arrows represent standard devi-
ations and the tuned number of groups for ✏-ADUM is annotated in blue. For this
experiment, � = 1.

Figure 6.2: Test PEHE (lower is better) over 20 random train/test splits selecting
20000 points, illustrating the ✏-ADUM bias-variance trade-o↵ with respect to the
number of groups p for 5 selected ✏. For this experiment, � = 0.1.
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6.5.2 Real data

We perform real data experiments based on CRITEO-UPLIFTv2 dataset (see Section

3). Results are reported for the “visit” binary outcome, hence ✏-di↵erentially private

logistic regressions [27] are used as prediction models in an ✏-TM method. Besides,

Area Under the Uplift Curve (AUUC) (see Section 2.1.2.1) built on “separate, rela-

tive” uplift curve [38] is applied as validation metric.

As presented in Section 6.4.2, ✏-ADUM is partition-dependant. For a real dataset,

trivial partitions of K such as one-dimensional regular cut are not su�cient anymore,

and we propose to find a relevant partition while preserving privacy guarantees by

decomposing our privacy budget ✏ in an ✏
2 -kmeans partitioning [98] � outputting a

partition ⇡ � and a consecutive ✏
2 -ADUM along ⇡. It is worth mentioning that in

practice, the partition and its corresponding mean queries could be provided by an

external actor in order to avoid any access to granular data.

As observed on synthetic data, ✏-ADUM appears to outperform models with access

to individual data for strict privacy guarantees (✏  5). Once again, when privacy

guarantees loosen up, the ✏-di↵erentially private TM overtakes ✏-ADUM thanks to its

access to granular data (see Figure 6.3).

Figure 6.3: Comparison of test AUUC (higher is better) between individually-trained
✏-TM and two variations of ✏-ADUM over 4 random train/test splits randomly select-
ing 1M points from CRITEO-UPLIFTv2. The tuned number of groups for ✏-ADUM
is annotated in blue and green while the tuned regularization parameter C is in red
for ✏-TM.
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Moreover, the significant impact of the partition is illustrated by the di↵erence of

performances between one-dimensional regular cut (on the first feature) and ✏
2 -kmeans

partitioning even though the consecutive ✏
2 -ADUM is performed with a halved privacy

budget.

6.6 Summary

In this article, we introduce ✏-ADUM, a new uplift ✏-di↵erentially private method to

learn uplift models from aggregated data. Then, a theoretical study of this model

is conducted giving insights on its empirical error through the expression of a bias-

variance trade-o↵ guided by the number of aggregation groups. Finally, on both

synthetic and real data, ✏-ADUM is tested and appears to outperform classical di↵er-

entially private methods for strong privacy guarantees (✏  5) although the latter can

access a granular level of data. To go further, supplementary experiments highlighting

the impact of partition design on ✏-ADUM performances could help data providers

build the most relevant partitions for uplift modeling.
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Chapter 7

Conclusions and Future
Perspectives

This dissertation has studied closely related problems of uplift modeling and CATE

prediction, which are both machine learning-based techniques for treatment e↵ect

prediction at the individual level, which have become one of the main trends in a

variety of application areas where personalization is key. Our research has mainly fo-

cused on specific problems encountered when working with uplift modeling in the field

of online advertising, such as the large scale of data, imbalance treatment conditions,

generalization, and privacy preservation.

Summary of Contributions

In Chapter 3, we released a publicly available large-scale dataset collected from

several randomized control trials, scaling up previously available datasets by order of

2. We provided details on the data collection and performed series of sanity checks

to validate the use of this data for tasks of interest. We also formalized how uplift

modeling can be performed with this data, along with the relevant evaluation metrics.

Then, we proposed synthetic response surfaces and heterogeneous treatment assign-

ment providing a general set-up for CATE prediction and reported experiments to

validate key characteristics of the dataset leveraging its size to evaluate and com-

pare � with high statistical significance � a selection of baseline uplift modeling and

CATE prediction methods.

In Chapter 4, we assumed an imbalanced treatment assignment scenario and

formulated two new model-agnostic, data representation-based methods inspired by

cascade and multi-task learning paradigms, applying the common idea of sharing the
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knowledge between treatment and control populations. Experimental results over the

several large-scale collections showed the benefits of the proposed approaches.

Then, in Chapter 5 we covered the problem of direct optimization of the Area

Under the Uplift Curve (AUUC), a popular metric in the uplift modeling. Utiliz-

ing the connection between uplift modeling and pairwise ranking we provided the

first data-dependent generalization lower bound for the AUUC and introduced the

corresponding objective of bound optimization, usable with linear and deep models.

We empirically studied the tightness of this proposed bound, its e↵ectiveness for hy-

perparameters tuning, and showed the e�ciency of the proposed learning objective

compared to a wide range of competitive baselines on two classical uplift modeling

benchmarks using real-world datasets.

Finally, in Chapter 6, we considered the problem of learning uplift models with

access to both labels and features only through aggregated queries upon groups. The

interest in this problem was motivated by the recent increase of privacy constraints

in di↵erent domains. We introduced ✏-Aggregated Data Uplift Model (✏-ADUM), a

di↵erentially private method to learn uplift models from data aggregated over a given

partition of the feature space. Then we identified a bias-variance decomposition of the

well-known metric in the field, namely the Precision in Estimation of Heterogeneous

E↵ects (PEHE) under ✏-ADUM setup, and highlighted the role of underlying partition

size in the privacy-utility trade-o↵. Series of experiments highlighted the bias-variance

trade-o↵ and confirmed theoretical derivations concerning the optimal number of

groups. Along with this, we showed, running experiments on synthetic and real data

sets, that group-based uplift models are competitive to baselines with full access to

the data, suggesting that aggregation does not significantly penalize uplift modeling

while guaranteeing privacy protection.

Future Perspectives

For Dependent Data Representation (Section 4.3) and Shared Data Representation

(Section 4.4), reasonable direction of future work includes adapting the methods to be

usable with deep neural networks, providing non-linear data representations in order

to learn richer interactions between features and treatment, similar to TARNet [94].

Particular research is currently underway, although without meaningful results so far

� we attribute this to the excessive prone of deep models to overfitting, especially in

uplift modeling. Meanwhile, techniques that are similar to the desired deep version of
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Shared Data Representation are introduced in several recent papers [35, 36], proving

the rationality of the idea.

For the work in Section 5, first area for future research would be to enhance the

current bound for RSt(Fr) (Proposition 3) in order to make bound for AUUC tighter

and to relax additional assumptions used in proposed version. As a first step, one can

apply novel approach of similar bounding for deep models from [13]. In addition, we

are interested in adapting our learning objective AUUC-max to other models in the

field, such as Shared Data Representation or TARNet – the idea is to combine rich

data representations with the ability to directly optimize AUUC.

Regarding the work in Section 6, a sensible branch of further work is improving ✏-

ADUM and theory behind for more realistic cases, omitting the simplified assumptions

of uni-dimensional data or equal sizes of treated and control units inside the groups

G. Another line of research concerns an adaptation of the method to other partition

techniques for multi-dimensional cases.
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