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iii CONTENTS My interest in the study of the dynamics of nonlinear systems and their applications started since during the days of my Master's degree program. I had Master's degree in advanced electronic systems engineering from university of Burgundy France through which I did my internship at Universitat Politecnica de Catalunya Spain, during 2016/2017 academic session. My internship concerned the design of Operational Transconductance Amplifiers (OTA) using Simulation Program with Integrated Circuit Emphasis (SPICE) and Python programming. This paved a way for me to this doctoral research which is also based on the applications of nonlinear systems to signal and image processing.

1.1/ MOTIVATIONS AND AIMS

Due to its counter-intuitive nature, understanding the dynamics of nonlinear systems has given rise to many challenges to overcome. This has brought about so many quests to answer because most systems are ubiquitously nonlinear in nature. For example, the information encoding by nonlinear neural systems brings about a rich variety of bio-inspired effects which are not yet comprehended.

As a result, the study of the dynamics of nonlinear systems has drawn the attention of researchers in various fields such as for instance, engineering and cognitive sciences.

In particular, the famous nonlinear neuronal systems have received considerable attention from researchers due to their vast applications. Presently, there are many nonlinear neuronal models developed to describe the behavior of biological neurons. Indeed, these mathematical models are ruled by set of nonlinear differential equations. Abundant of literature reported different dynamical behaviors of nonlinear neuronal models. In most cases, the validity of the numerical models was CHAPTER 1. INTRODUCTION AND ORGANIZATION OF THE THESIS proven by theoretical studies. Some models were realized as an electronic circuits to consistently comprehend the theoretical and numerical analyses. Apart from the biological behavior, these set of nonlinear differential equations can also model many other physical phenomena such as; motion of a particle in mechanical oscillators or follow of an electric charge/current in nonlinear circuits.

As a smallest unit of nervous system, neuron is an excitable electrical cell which is responsible for receiving information from external world, and which processes and transmits it through electrical signals. Biological neuron basically consists of dendrites, cell body and axon which are respectively analogous to the input, sum/threshold unit and output of the artificial neuron as depicted in the schematic of Fig. 1.1. Many mathematical models such as Integrate-and-Fire [START_REF] Lapicque | Recherches quantitatives sur l'excitation électronique des nerfs traitée comme une polarization[END_REF], McCulloch-Pitts [START_REF] Mcculloch | A logical calculus of the ideas immanent in nervous activity[END_REF], Hodgkin-Huxley (HH) [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF], Leaky integrate-and-fire [START_REF] Geisler | A stochastic model of the repetitive activity of neurons[END_REF], FitzHugh-Nagumo (FHN) [5], Morris-Lecar [START_REF] Morris | Voltage oscillations in the barnacle giant muscle fiber[END_REF] and Hindmarsh-Rose [START_REF] Hindmarsh | A model of the nerve impulse using two first-order differential equations[END_REF] models have been designed to predict the output behavior of biological neuron as a function of input stimulation. Hodgkin-Huxley (HH) and FitzHugh-Nagumo (FHN) models are still receiving attention of researchers from different fields. Enormous nonlinear dynamical behaviors were investigated but there are yet arising challenges to address such as: understanding the information encoding by a single neuron, how neurons can collectively act to process information, how lattices of the coupled elementary neurons behave under the influence of various perturbations and how to carryout experiments with the nonlinear circuits to confirm the validity of theoretical results obtained from numerical simulations. For decades, variety of fascinating dynamical phenomena were explored in nonlinear systems. Among the most studied dynamical effects in nonlinear systems are resonance induced phenomena which mainly address how perturbing the input of nonlinear system can positively affect the system's output response.

Occurrence of resonance induced effects can either be promoted by a noise perturbation or a high frequency perturbation. However, the later is now the most studied because it is easier to control without tedious mathematics and most importantly, it was reported to surpass the former in terms of performance in most scenarios.

In this thesis, out of the different dynamical properties reported in nonlinear systems, we focus on Vibrational Resonance (VR) effect, a phenomenon where high frequency perturbation enhances the output response of nonlinear systems at the low frequency [START_REF] Landa | Vibrational resonance[END_REF]. VR was investigated in many systems and in different contexts both theoretically, numerically and experimentally. Moreover, VR was reported to have many applications such as in electronics to perform signal detection, signal amplification and subthreshold images perception to mention but just a few. However, with the advent of VR exploration in different systems and contexts, there are vast of arising issues to address. It constitutes the aims of this thesis since we consider: the impact of the particle's mass on VR occurrence in a mechanical system, the effect of a truncated sinusoidal nonlinearity on VR in the Chua's circuit model and the applications of VR in subthreshold images perception. We propose to carry out these studies numerically using Matlab scripts running on the computation cluster of the University of Burgundy.

1.2/ ORGANIZATION OF THE THESIS

The subsequent chapters of this thesis consist of the following: Chapter 2 provides an overview of literature on the most famous resonance phenomena in nonlinear systems. In chapter 3, we analyze vibrational resonance occurrence in a particular mechanical system describing the motion of a particle of mass m which is damped in two different cases. More precisely, the dynamics of the system is first studied with a constant damping and lastly with an inhomogeneous space dependent damping. Moreover, in each case, the influence of the particle mass on VR is highlighted. In chapter 4, we investigate the dynamics of a modified Chua's circuit model with a truncated sinusoidal nonlinearity. In particular, we study the impact of the system's nonlinearity on the occurrence of VR and GVR. Moreover, system's dynamics observed with our proposed truncated sinusoidal nonlinearity are compared with the existing dynamics of the system experiencing a sawtooth nonlinearity.

In chapter 5, we investigate the application of VR in subthreshold noisy images perception. We first recall the existing SR-based detector for subthreshold images perception. Afterwards, we introduce a VR-based detector by replacing the noisy perturbation with a spatial high frequency signal. Lastly, chapter 6 comprises of the general conclusions and future works. This chapter presents a restrictive review of literature on the most famous resonance induced phenomena in nonlinear systems. These phenomena are of crucial importance due to their applications especially in the field of signal and image processing which constitute the topic of this thesis. In this chapter, depending on the nature of the external stimuli acting upon nonlinear systems, we choose to categorize these nonlinear resonance phenomena in nonlinear systems into random resonances and deterministic resonances.

2.1/ RANDOM RESONANCES

Random resonances in nonlinear systems refer to the resonance induced phenomena which take benefit of a noise perturbation to improve the output response of nonlinear systems. Noisy perturbations have aided the occurrence of very important phenomena in nonlinear systems which were reported to have applications in many fields of science and engineering.

Until late 19th century, it was usually considered that, noise which comes from an external environment or those that are generated by working systems/machines are nothing but disturbance to the systems. Presence of noise was then widely believed to negatively affect the performance of working systems and as a result, noise was generally accorded as something that has to be avoided.

CHAPTER 2. RESONANCE PHENOMENA IN NONLINEAR SYSTEMS

Consequently, it was then very paramount to evacuate working systems from interaction with the noisy external environment and also to minimize the noise that the system may generate by its self.

With the continuous advent in nonlinear dynamics, it was later discovered that noise can play a constructive role in the dynamics of nonlinear systems, leading to interesting phenomena. In logistic systems, Mayer-Kress and Haken demonstrated that noise can induce transition from intermittent behavior to remarkable periodicities [START_REF] Mayer-Kress | The influence of noise on the logistic model[END_REF][START_REF] Mayer-Kress | Intermittent behavior of the logistic system[END_REF]. Subsequently, Matsumoto and Tsuda revealed that external noise can induce a transition from chaotic behavior to ordered behavior [START_REF] Matsumoto | Noise-induced order[END_REF]. Pikovsky used noisy dynamical systems to demonstrate the statistics of trajectory separation [START_REF] Pikovsky | Statistics of trajectory separation in noisy dynamical systems[END_REF]. It was also shown that addition of small noise suppresses chaos and it leads to more pronounced periodicity than when the noise is larger [START_REF] Hakim | Noise-induced periodic behaviour in the globally coupled complex ginzburg-landau equation[END_REF]. Recently, Chapeau-Blondeau reported that noisy quantum bits (qubits) can enhance the estimation of quantum parameters [START_REF] Chapeau-Blondeau | Qubit state estimation and enhancement by quantum thermal noise[END_REF][START_REF] Chapeau-Blondeau | Entanglement-assisted quantum parameter estimation from a noisy qubit pair: A Fisher information analysis[END_REF][START_REF] Chapeau-Blondeau | Optimized entanglement for quantum parameter estimation from noisy qubits[END_REF].

On the other hand, the presence of an optimum noise amplitude was shown to made the oscillatory response of a non driven excitable system to be most coherent: this phenomenon is called Coherence Resonance (CR) [START_REF] Pikovsky | Coherence resonance in a noise-driven excitable system[END_REF]. Moreover, in a nonlinear system which is simultaneously driven by noisy perturbation and periodic signal, the noise was reported to improve the detection of the periodic signal in what was named Stochastic Resonance (SR) effect [START_REF] Benzi | The mechanism of stochastic resonance[END_REF][START_REF] Benzi | Stochastic resonance in climatic change[END_REF]. Coherence and stochastic resonances are both noise-induced effects reported in nonlinear systems which have received considerable attentions especially from the fields of neuroscience and engineering. Particularly, stochastic resonance, which was studied in many systems including the neuronal models, has found to have many applications.

2.1.1/ COHERENCE RESONANCE

As it was pointed, the presence of noise in nonlinear systems is unavoidable. However, the effect of noisy perturbations in stochastic systems is not all the time trivial, noise does not always induce irregularities in systems. Indeed, in absence of external periodic force, noise can induce more coherence in the oscillatory response of certain nonlinear systems. This phenomenon termed Coherence Resonance (CR) was reported by Pikovsky and Kurths in excitable systems [START_REF] Pikovsky | Coherence resonance in a noise-driven excitable system[END_REF]. They also observed that, at an optimal noise intensity, the noise-induced oscillations present a maximum of regularity. The schematic of Fig. 2.1 summarizes the coherence resonance effect. Basically, to observe this effect, the system must be tuned below a bifurcation which constitutes the subthreshold hypothesis. Moreover, the system must be driven without any external force but only with a random perturbation.

In the absence of the noisy perturbation, the system remains in its rest state, that is the output does not reveal any activity. However, addition of certain amount of noise makes the response regular and most coherent at an optimal noise intensity. Coherence resonance is the typical example of the constructive role of noise in nonlinear systems.

Coherence resonance effect was first reported in the work of Gang et al as stochastic resonance phenomena without the external periodic force [START_REF] Gang | Stochastic resonance without external periodic force[END_REF]. Later, Pikovsky and Kurths observed the same behavior in excitable system where it was named coherence resonance [START_REF] Pikovsky | Coherence resonance in a noise-driven excitable system[END_REF]. In the model of Hugkin-Huxley without external periodic force, the coherence of the system was found to be maximal at certain noise intensity [START_REF] Lee | Coherence resonance in a Hodgkin-Huxley neuron[END_REF]. Chua model submitted to chaotic medium exhibited regular oscillations in the presence of noise, whose intermediate value provided the best oscillatory response [START_REF] Palenzuela | Coherence resonance in chaotic systems[END_REF]. In the leaky integrate-and-fire model, it was demonstrated that the coherence of the spike train can be maximized or minimized depending on the noise intensity [START_REF] Lindner | Maximizing spike train coherence or incoherence in the LEAKY integrate-and-fire model[END_REF]. Other systems where coherence resonance was reported include: excitable FitzHugh-Nagumo models [START_REF] Lindner | Coherence and stochastic resonance in a two-state system[END_REF][START_REF] Shinohara | Array-enhanced coherence resonance and forced dynamics in coupled FitzHugh-Nagumo neurons with noise[END_REF][START_REF] Feng | Coherent resonance and phase locking in noise-driven excitable systems[END_REF][START_REF] Yamakou | Control of coherence resonance by self-induced stochastic resonance in a multiplex neural network[END_REF],

plasma [START_REF] Shaw | Intrinsic noise induced coherence resonance in a glow discharge plasma[END_REF], optical systems [START_REF] Dubbeldam | Excitability and coherence resonance in lasers with saturable absorber[END_REF][START_REF] Giacomelli | Experimental evidence of coherence resonance in an optical system[END_REF][START_REF] Buldú | Effect of external noise correlation in optical coherence resonance[END_REF][START_REF] Ushakov | Coherence resonance near a Hopf bifurcation[END_REF], electromechanical systems [START_REF] Kiss | Experiments on coherence resonance: Noisy precursors to Hopf bifurcations[END_REF][START_REF] Santos | Experimental evidence of coexisting periodic stochastic resonance and coherence resonance phenomena[END_REF][START_REF] Beato | Coherence resonance in a chemical excitable system driven by coloured noise[END_REF] and in electronic circuits [START_REF] Han | Interacting coherence resonance oscillators[END_REF][START_REF] Postnov | Experimental observation of coherence resonance in cascaded excitable systems[END_REF][START_REF] Calvo | Coherence resonance in chaotic electronic circuits[END_REF]. The phenomenon of stochastic resonance, the famous of all the noise-induced effects, was first reported in 1980 by Benzi et al in climatic system to demonstrate the periodic behavior of the earth's ice age [START_REF] Benzi | Stochastic resonance in climatic change[END_REF]. Here, a long-term alternation of temperature was induced when an external periodic forcing acted upon by a noise perturbation in the system. In dynamical systems, the authors observed in 1981 that external periodic forcing exhibits peak in the power spectrum (resonance) due to the noise perturbation [START_REF] Benzi | The mechanism of stochastic resonance[END_REF]. Little attention was then devoted to the study of SR until 1989 when Gammaitoni et al reported the effect in bistable systems [START_REF] Gammaitoni | Stochastic resonance in bistable systems[END_REF] and in 1990 when it was first examined in a single neuron model [START_REF] Bulsara | Stochastic resonance in a single neuron model: Theory and analog simulation[END_REF]. Henceforth, this noble effect became a subject of study in many fields, mainly in biological systems. In 1995, Dykman et al outlined the development of SR since its inception in 1980 [START_REF] Dykman | Stochastic resonance in perspective[END_REF]. Moreover, they also recall the concept of the linear response theory (LRT) previously described in [START_REF] Dykman | Comment on "stochastic resonance in bistable systems[END_REF][START_REF] Dykman | Stochastic resonance in the linear and nonlinear responses of a bistable system to a periodic field[END_REF], which provides the simplest approach of understanding SR phenomenon than the tedious computational approaches previously available. In the year 2009, Gammaitoni et al reviewed the progress of SR investigations which comprise the applications and extensions reported as of that time [START_REF] Gammaitoni | Stochastic resonance: a remarkable idea that changed our perception of noise[END_REF].

Stochastic resonance was studied in variety of systems such as: optical systems [START_REF] Mcnamara | Observation of stochastic resonance in a ring laser[END_REF][START_REF] Blanchard | Constructive action of the speckle noise in a coherent imaging system[END_REF][START_REF] Chapeau-Blondeau | Optical coherence of a scalar wave influenced by first-order and second-order statistics of its random phase[END_REF], threshold systems [START_REF] Chapeau-Blondeau | Periodic and aperiodic stochastic resonance with output signal-tonoise ratio exceeding that at the input[END_REF][START_REF] Xu | Comparison of aperiodic stochastic resonance in a bistable system realized by adding noise and by tuning system parameters[END_REF][START_REF] Duan | Encoding efficiency of suprathreshold stochastic resonance on stimulus-specific information[END_REF], sensors [START_REF] Rousseau | Stochastic resonance for nonlinear sensors with saturation[END_REF][START_REF] Chapeau-Blondeau | Enhancement by noise in parallel arrays of sensors with power-law characteristics[END_REF][START_REF] Chapeau-Blondeau | Noise-enhanced fisher information in parallel arrays of sensors with saturation[END_REF][START_REF] Chapeau-Blondeau | Noise-aided snr amplification by parallel arrays of sensors with saturation[END_REF][START_REF] Duan | Binary signal transmission in nonlinear sensors: Stochastic resonance and human hand balance[END_REF], integrate-and-fire model [START_REF] Chapeau-Blondeau | Stochastic resonance in a neuron model that transmits spike trains[END_REF], Hodkin-Huxley neuron [START_REF] Godivier | Noise-enhanced transmission of spike trains in the neuron[END_REF][START_REF] Lee | Parameter dependence of stochastic resonance in the stochastic Hodgkin-Huxley neuron[END_REF],

FitzHugh-Nagumo model [START_REF] Nozaki | Enhancement of stochastic resonance in a FitzHugh-Nagumo neuronal model driven by colored noise[END_REF][START_REF] Duan | Enhancing array stochastic resonance in ensembles of excitable systems[END_REF] and electronics circuits [START_REF] Godivier | Noise-assisted signal transmission in a nonlinear electronic comparator: Experiment and theory[END_REF][START_REF] Luchinsky | Stochastic resonance in electrical circuits. I. conventional stochastic resonance[END_REF] to mention just a few. Moreover, SR was reported to have many applications in signal detection [START_REF] Chapeau-Blondeau | Noise improvements in stochastic resonance: From signal amplification to optimal detection[END_REF][START_REF] Xu | Stochastic resonance with tuning system parameters: the application of bistable systems in signal processing[END_REF][START_REF] Rousseau | Constructive role of noise in signal detection from parallel arrays of quantizers[END_REF][START_REF] Rousseau | Evaluation of a nonlinear bistable filter for binary signal detection[END_REF][START_REF] Duan | Signal detection for frequency-shift keying via short-time stochastic resonance[END_REF][START_REF] Rousseau | Stochastic resonance and improvement by noise in optimal detection strategies[END_REF][START_REF] Fiorina | Interferer rejection improved by noise in ultra-wideband telecommunications[END_REF][START_REF] Rousseau | Noise-enhanced nonlinear detector to improve signal detection in non-gaussian noise[END_REF][START_REF] Duan | Binary modulated signal detection in a bistable receiver with stochastic resonance[END_REF][START_REF] Duan | Fisher-information condition for enhanced signal detection via stochastic resonance[END_REF][START_REF] Duan | Exploring weak-periodic-signal stochastic resonance in locally optimal processors with a Fisher information metric[END_REF][START_REF] Duan | Weak signal detection: condition for noise induced enhancement[END_REF][START_REF] Duan | Stochastic resonance with colored noise for neural signal detection[END_REF][START_REF] Duan | Non-gaussian noise benefits for coherent detection of narrowband weak signal[END_REF][START_REF] Ren | Exploiting vibrational resonance in weak-signal detection[END_REF], optimal detection/estimation [START_REF] Chapeau-Blondeau | Noise improvements in stochastic resonance: From signal amplification to optimal detection[END_REF][START_REF] Rousseau | Stochastic resonance and improvement by noise in optimal detection strategies[END_REF][START_REF] Chapeau-Blondeau | Stochastic resonance and optimal detection of pulse trains by threshold devices[END_REF][START_REF] Chapeau-Blondeau | Noise-aided nonlinear Bayesian estimation[END_REF][START_REF] Chapeau-Blondeau | Stochastic resonance for an optimal detector with phase noise[END_REF][START_REF] Rousseau | Suprathreshold stochastic resonance and noise-enhanced Fisher information in arrays of threshold devices[END_REF][START_REF] Chapeau-Blondeau | Noise-enhanced performance for an optimal Bayesian estimator[END_REF][START_REF] Chapeau-Blondeau | Constructive action of additive noise in optimal detection[END_REF][START_REF] Chapeau-Blondeau | Injecting noise to improve performance of optimal detector[END_REF][START_REF] Rousseau | Noise-improved Bayesian estimation with arrays of one-bit quantizers[END_REF][START_REF] Chapeau-Blondeau | Fisher information and noise-aided power estimation from one-bit quantizers[END_REF][START_REF] Chapeau-Blondeau | Raising the noise to improve performance in optimal processing[END_REF][START_REF] Duan | Fisher information as a metric of locally optimal processing and stochastic resonance[END_REF][START_REF] Pan | Noise enhancement in robust estimation of location[END_REF][START_REF] Duan | Noise benef i ts in combined nonlinear Bayesian estimators[END_REF][START_REF] Pan | Benefits of noise in M-estimators: Optimal noise level and probability density[END_REF], quantum information processing/estimation [START_REF] Chapeau-Blondeau | Quantum state discrimination and enhancement by noise[END_REF][START_REF] Gillard | Stochastic antiresonance in qubit phase estimation with quantum thermal noise[END_REF][START_REF] Gillard | Enhancing qubit information with quantum thermal noise[END_REF][START_REF] Gillard | Stochastic resonance with unital quantum noise[END_REF], image perception [START_REF] Blanchard | Constructive action of the speckle noise in a coherent imaging system[END_REF][START_REF] Simonotto | Visual perception of stochastic resonance[END_REF][START_REF] Rousseau | Structural similarity measure to assess improvement by noise in nonlinear image transmission[END_REF][START_REF] Delahaies | Local-feature-based similarity measure for stochastic resonance in visual perception of spatially structured images[END_REF][START_REF] Morfu | Perception enhancement of subthreshold noisy image with vibrational resonance[END_REF],

signal/information transmission [START_REF] Rousseau | Stochastic resonance for nonlinear sensors with saturation[END_REF][START_REF] Duan | Binary signal transmission in nonlinear sensors: Stochastic resonance and human hand balance[END_REF][START_REF] Godivier | Noise-assisted signal transmission in a nonlinear electronic comparator: Experiment and theory[END_REF][START_REF] Jung | Stochastic resonance in threshold devices[END_REF][START_REF] Chapeau-Blondeau | Input-output gains for signal in noise in stochastic resonance[END_REF][START_REF] Chapeau-Blondeau | Noise-enhanced capacity via stochastic resonance in an asymmetric binary channel[END_REF][START_REF] Chapeau-Blondeau | Theory of stochastic resonance in signal transmission by static nonlinear systems[END_REF][START_REF] Godivier | Stochastic resonance in the information capacity of a nonlinear dynamic system[END_REF][START_REF] Vaudelle | Stochastic resonance and noise-enhanced transmission of spatial signals in optics: The case of scattering[END_REF][START_REF] Chapeau-Blondeau | Noise-assisted propagation over a nonlinear line of threshold elements[END_REF][START_REF] Chapeau-Blondeau | Stochastic resonance at phase noise in signal transmission[END_REF][START_REF] Chapeau-Blondeau | Nonlinear signal propagation enhanced by noise via stochastic resonance[END_REF][START_REF] Duan | Parameter-induced stochastic resonance and baseband binary PAM signals transmission over an awgn channel[END_REF][START_REF] Duan | Residual aperiodic stochastic resonance in a bistable dynamic system transmitting a suprathreshold binary signal[END_REF][START_REF] Rousseau | Suprathreshold stochastic resonance and signalto-noise ratio improvement in arrays of comparators[END_REF][START_REF] Blanchard | Benefits from a speckle noise family on a coherent imaging transmission[END_REF][START_REF] Chapeau-Blondeau | Optimizing the speckle noise for maximum efficacy of data acquisition in coherent imaging[END_REF][START_REF] Rousseau | Structural similarity measure to assess improvement by noise in nonlinear image transmission[END_REF][START_REF] Chapeau-Blondeau | Renyi entropy measure of noiseaided information transmission in a binary channel[END_REF][START_REF] Delahaies | Tuning the noise in magnetic resonance imaging to maximize nonlinear information transmission[END_REF][START_REF] Duan | Stochastic resonance in Hopfield neural networks for transmitting binary signals[END_REF] and neural signal transduction [START_REF] Rousseau | Neuronal signal transduction aided by noise at threshold and at saturation[END_REF][START_REF] Blanchard | Noise enhancement of signal transduction by parallel arrays of nonlinear neurons with threshold and saturation[END_REF][START_REF] Chapeau-Blondeau | Synaptic signal transduction aided by noise in a dynamical saturating model[END_REF][START_REF] Duan | Neural signal transduction aided by noise in multisynaptic excitatory and inhibitory pathways with saturation[END_REF].

Note that, in the presence of other sources of perturbation instead of noise, other resonant-like behaviors can be observed. Indeed, it has been pointed out that the role of noise in noise-induced dynamics can also be played by a chaotic disturbance [START_REF] Ippen | Chaotic resonance: A simulation[END_REF] or high frequency perturbation [START_REF] Landa | Vibrational resonance[END_REF] instead of noise. More precisely, nonlinear system subjected to perturbation which is chaotic in nature can display a resonant-like behavior called chaotic resonance [START_REF] Ippen | Chaotic resonance: A simulation[END_REF][START_REF] Kozma | Chaotic resonance-methods and applications for robust classification of noisy and variable patterns[END_REF][START_REF] Zambrano | Chaos-induced resonant effects and its control[END_REF][START_REF] Tokuda | The role of chaotic resonance in cerebellar learning[END_REF], whereas vibrational resonance, which is the center of our studies in this thesis, is analogous to the stochastic resonance which basically makes use of high frequency perturbation instead of noise to enhance the detection of an input low frequency signal. A part will be specifically devoted to VR in the deterministic resonance section of this chapter.

2.1.3/ GHOST-STOCHASTIC RESONANCE

In a nonlinear system driven by noisy perturbation and two close frequency signals, it was revealed that noise can induce resonance in the system output at a missing input frequency lower than the two frequencies which excite the system. This phenomenon named Ghost-Stochastic Resonance (GSR) was first observed by Chialvo et al in neuronal systems [START_REF] Chialvo | Subharmonic stochastic synchronization and resonance in neuronal systems[END_REF] to understand pitch perception by the auditory system in the complex sound signal and the mechanism for the missing fundamental illusion. Indeed, it was shown that neuron fires spikes at the rate similar to the perceived pitch for the complex tone [START_REF] Chialvo | How we hear what is not there: A neural mechanism for the missing fundamental illusion[END_REF][START_REF] Balenzuela | Neural mechanism for binaural pitch perception via ghost stochastic resonance[END_REF][START_REF] Balenzuela | The ghost of stochastic resonance: an introductory review[END_REF]. Subsequently, GSR was studied in many contexts and in different systems including: FitzHugh Nagumo models/systems [START_REF] Bordet | Ghost stochastic resonance in FitzHugh-Nagumo circuit[END_REF][START_REF] Bordet | Ghost responses of the FitzHugh-Nagumo system induced by colored noise[END_REF][START_REF] Silva | Ghost stochastic resonance induced by a power-law distributed noise in the fitzhugh-nagumo neuron model[END_REF], Chua circuit [START_REF] Gomes | Ghost resonance in the chaotic chua's circuit[END_REF], electronic neurons circuit [START_REF] Calvo | Ghost stochastic resonance in an electronic circuit[END_REF][START_REF] Lopera | Ghost stochastic resonance with distributed inputs in pulse-coupled electronic neurons[END_REF][START_REF] Noguchi | Ghost stochastic resonance from an asynchronous cellular automaton neuron model[END_REF] and in optical laser [START_REF] Van Der Sande | Ghost stochastic resonance in vertical-cavity surface-emitting lasers: Experiment and theory[END_REF].

2.2/ DETERMINISTIC RESONANCES

Instead of random perturbations, nonlinear systems can also take benefit of deterministic high frequency perturbations to improve their response to an input subthreshold signal. The idea of using deterministic perturbations was first discovered after almost two decades of intensive breakthrough in the dynamics of nonlinear systems with random perturbations. However, much attention is now devoted to the investigation of dynamical responses with deterministic perturbations because it is easier to control. Moreover, studies confirmed that, the dynamical properties reported in nonlinear systems due to random perturbations can equally be obtained using deterministic perturbations.

Indeed, deterministic resonances constitute the main area of study covered in this thesis.

2.2.1/ VIBRATIONAL RESONANCE

The same role played by noise perturbation in the study of Stochastic Resonance (SR) can however be induced by high frequency perturbations. This noble idea named Vibrational Resonance (VR) was initially reported in the year 2000 by Landa and McClintock in bistable systems [START_REF] Landa | Vibrational resonance[END_REF]. The system in this setting is driven by a low frequency signal corrupted by a high frequency perturbation with relatively sharp difference between the two frequencies. They found that the response of the system at the low frequency is enhanced by an appropriate increase of the perturbation amplitude. Indeed, VR phenomenon is deterministic and easier to control unlike SR where the system is described by stochastic process. In the year 2001, Gitterman proposed an analytical approach of analyzing

the
VR occurrence which open way to more understanding of the paradigm [START_REF] Gitterman | Bistable oscillator driven by two periodic fields[END_REF]. Ulner et al experimentally reported the phenomena of VR in excitable electronic circuit and confirmed the effect numerically in FitzHugh-Nagumo model [START_REF] Ullner | Vibrational resonance and vibrational propagation in excitable systems[END_REF]. Moreover, Blekhman et al theoretically affirmed VR existence and showed that the resonance can also be induced not only by varying the ampli-tude of the high frequency excitation but also by either varying the low or high frequency [START_REF] Blekhman | Conjugate resonances and bifurcations in nonlinear systems under biharmonical excitation[END_REF].

Subsequently, VR has attracted the interest of many researchers in the last ten years and it was studied numerically, theoretically and experimentally in many systems and in different contexts. To mention but just a few, VR was reported in excitable neuronal systems [START_REF] Ullner | Vibrational resonance and vibrational propagation in excitable systems[END_REF][START_REF] Yu | Vibrational resonance in excitable neuronal systems[END_REF][START_REF] Ning | Vibrational resonance analysis in a gene transcriptional regulatory system with two different forms of time-delays[END_REF], monostable systems [START_REF] Jeyakumari | Single and multiple vibrational resonance in a quintic oscillator with monostable potentials[END_REF][START_REF] Rajasekar | Vibrational resonance in monostable systems[END_REF], bistable systems [START_REF] Landa | Vibrational resonance[END_REF][START_REF] Baltanás | Experimental evidence, numerics, and theory of vibrational resonance in bistable systems[END_REF][START_REF] Yao | Signal transmission by vibrational resonance in one-way coupled bistable systems[END_REF][START_REF] Yao | Frequency-resonance-enhanced vibrational resonance in bistable systems[END_REF][START_REF] Gui | Enhanced logical vibrational resonance in a two-well potential system[END_REF], multistable systems [START_REF] Rajasekar | Novel vibrational resonance in multistable systems[END_REF][START_REF] Chizhevsky | Experimental evidence of vibrational resonance in a multistable system[END_REF], Chua's circuit model [START_REF] Jothimurugan | Experimental evidence for vibrational resonance and enhanced signal transmission in Chua's circuit[END_REF][START_REF] Abirami | Vibrational and ghost-vibrational resonances in a modified Chua's circuit model equation[END_REF], FitzHugh-Nagumo model [START_REF] Bordet | Ghost responses of the FitzHugh-Nagumo system induced by colored noise[END_REF][START_REF] Ullner | Vibrational resonance and vibrational propagation in excitable systems[END_REF][START_REF] Bordet | Experimental and numerical study of noise effects in a FitzHugh-Nagumo system driven by a biharmonic signal[END_REF][START_REF] Morfu | On the propagation of a low frequency excitation in a perturbed FitzHugh-Nagumo system: Simulation and experiments[END_REF][START_REF] Morfu | On the correlation between phase-locking modes and vibrational resonance in a neuronal model[END_REF] optical system [START_REF] Chizhevsky | Experimental evidence of "vibrational resonance" in an optical system[END_REF], biharmonically driven plasma [START_REF] Roy-Layinde | Analysis of vibrational resonance in bi-harmonically driven plasma[END_REF] and in nonlinear dissipative systems [START_REF] Roy-Layinde | Vibrational resonance in an inhomogeneous medium with periodic dissipation[END_REF]. Moreover, vibrational resonance was reported to have applications in signal detection [START_REF] Ren | Exploiting vibrational resonance in weak-signal detection[END_REF][START_REF] Liu | Detecting the weak highfrequency character signal by vibrational resonance in the Duffing oscillator[END_REF][START_REF] Ren | Generalized energy detector for weak random signals via vibrational resonance[END_REF] and signal amplification [START_REF] Chizhevsky | Amplification of an autodyne signal in a bistable vertical-cavity surfaceemitting laser with the use of a vibrational resonance[END_REF] among others.

2.2.2/ GHOST-VIBRATIONAL RESONANCE

Ghost-Vibrational Resonance (GVR) is a variant of Vibrational Resonance (VR) which occurs in nonlinear systems driven by a high frequency perturbation and low frequency signal consisting of more than one frequency. Basically, the system reveals resonance in its output signal at a missing frequency which is lower than the input low frequencies.

GVR was first reported by Rajamani et al in duffing oscillator [START_REF] Rajamani | Ghost-vibrational resonance[END_REF] and in Chua's circuit model by Abirami et al [START_REF] Abirami | Vibrational and ghost-vibrational resonances in a modified Chua's circuit model equation[END_REF]. Ghost-Vibrational Resonance (GVR) effect is analogous to the Ghost-Stochastic Resonance (GSR) where noise acts as a perturbation instead of high frequency signal.

As more researchers are now interested in considering deterministic perturbation instead random perturbation, it will not come as surprise to anyone when GVR is revealed in the systems and contexts where GSR has been reported. Recently in this thesis, we reported the occurrence of GVR phenomenon in a Chua's circuit model with a truncated sinusoidal nonlinearity [START_REF] Usama | Vibrational resonance and ghost-vibrational resonance occurrence in Chua's circuit models with specific nonlinearities[END_REF].

In this thesis, we numerically analyze the occurrence of VR in two different nonlinear systems and also investigate application of VR in subthreshold images perception [START_REF] Morfu | Perception enhancement of subthreshold noisy image with vibrational resonance[END_REF][START_REF] Usama | Vibrational resonance and ghost-vibrational resonance occurrence in Chua's circuit models with specific nonlinearities[END_REF][START_REF] Usama | Numerical analyses of the vibrational resonance occurrence in a nonlinear dissipative system[END_REF][START_REF] Morfu | On some applications of vibrational resonance on image perception: The role of the perturbation parameters[END_REF]. The two systems considered in this manuscript are: a nonlinear damped mechanical system [START_REF] Usama | Numerical analyses of the vibrational resonance occurrence in a nonlinear dissipative system[END_REF] and a modified Chua's circuit model [START_REF] Usama | Vibrational resonance and ghost-vibrational resonance occurrence in Chua's circuit models with specific nonlinearities[END_REF]. Concerning the mechanical system which was investigated with constant/linear and nonlinear damping [START_REF] Gitterman | Bistable oscillator driven by two periodic fields[END_REF][START_REF] Blekhman | Conjugate resonances and bifurcations in nonlinear systems under biharmonical excitation[END_REF][START_REF] Rajasekar | Novel vibrational resonance in multistable systems[END_REF][START_REF] Roy-Layinde | Vibrational resonance in an inhomogeneous medium with periodic dissipation[END_REF][START_REF] Jeyakumari | Analysis of vibrational resonance in a quintic oscillator[END_REF][START_REF] Abirami | Vibrational resonance in a harmonically trapped potential system[END_REF], none of these studies have focused on the possible impact of the particle mass on VR occurrence, which constitutes the subject considered in this thesis. In the analyses of Chua's circuit model, we mainly focus on the impact of the system's nonlinearity on VR and GVR occurrence which to our knowledge has not been yet addressed. Instead of the conventional SR-detector used for subthreshold noisy images perception [START_REF] Simonotto | Visual perception of stochastic resonance[END_REF][START_REF] Delahaies | Local-feature-based similarity measure for stochastic resonance in visual perception of spatially structured images[END_REF][START_REF] Ditzinger | Noise improves three-dimensional perception: Stochastic resonance and other impacts of noise to the perception of autostereograms[END_REF][START_REF] Piana | Role of noise in image processing by the human perceptive system[END_REF], in this thesis we report for the first time that VR can also enhance visual perception of subthreshold noisy images. In this chapter, we consider the dynamics of a particular nonlinear mechanical system experiencing a multistable potential well. The system is driven by a low frequency signal corrupted by a high frequency perturbation. We study the dynamics of this system with two different damping coefficients: first as constant damping coefficient and lastly, nonlinear space-dependent damping coefficient. In
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CHAPTER 3. ANALYSES OF VR IN A DAMPED NONLINEAR SYSTEM

both the two cases of the damping, we begin by revealing vibrational resonance existence in the system by using temporal and frequency analyses. Subsequently, we study the impact of the damping coefficients for a unitary particle mass. Lastly, we consider the combined impact of varying the particle mass and the damping coefficients on vibrational resonance occurrence.

3.1/ DESCRIPTION OF THE SYSTEM

The system of our interest is similar to a multistable pendulum oscillator previously considered by

Rajasekar et al when they first reported the phenomenon of vibrational resonance (VR) in multistable systems [START_REF] Rajasekar | Novel vibrational resonance in multistable systems[END_REF]. The system describes the motion of a single particle of mass m driven by an external excitation e(t), experiencing a periodic potential Φ(x) and whose displacement x obeys to:

m d 2 x dt 2 + dΦ(x) dx + Γ(x) dx dt = e(t), (3.1) 
where Γ(x) represents the damping coefficient.

3.1.1/ THE POTENTIAL Φ(x)

In our system described by eq. (3.1), a particle of mass m is submitted to a nonlinear force f (x)

which derives from the potential Φ(x) via the relation:

dΦ(x) dx = -f (x), (3.2) 
with,

f (x) = -Φ 0 sin kx,
where Φ 0 adjusts the potential height and the parameter k accounts for the periodicity of the potential. To obtain the expression of the periodic potential, we integrate the relation (3.2) in a boundary starting from position 0 to x which leads to

Φ(x) Φ(0) dΦ(x) = u=x u=0 Φ 0 sin ku du, that is Φ(x) -Φ(0) = - Φ 0 k cos ku u=x u=0 .
The potential is then defined by: Assuming that the potential energy at the position x = 0 is

Φ(x) = Φ(0) - Φ 0 k cos kx + Φ 0 k . x (
Φ(x = 0) = - Φ 0 k
, the expression of the potential reduces to

Φ(x) = - Φ 0 k cos kx. (3.
3)

The symmetric periodic potential defined by eq. (3.3) is plotted at Fig. 3.1. The peak to peak amplitude of the potential corresponds to its height ∆Φ which depends on parameters Φ 0 and k since ∆Φ = 2Φ 0 k . Moreover, the width ∆x of the potential is defined by the distance between any two consecutive tops or bottoms of the potential, that is ∆x = 2πk.

The symmetric periodic potential depicted in Fig. 3.1 has maxima at X * max, n = ± (2n + 1)π k and minima at X * min, n = ± 2nπ k , for n = 0, 1, 2, . . . . Consequently, X * max, n and X * min, n are respectively the unstable and stable equilibrium positions of the system. This multistable periodic potential was used in many systems for different purposes, including the pendulum system considered by Rajasekar et al [START_REF] Rajasekar | Novel vibrational resonance in multistable systems[END_REF] and the nonlinear dissipative system of Roy-Layinde et al [START_REF] Roy-Layinde | Vibrational resonance in an inhomogeneous medium with periodic dissipation[END_REF] where they highlighted the phenomenon of vibrational resonance. The property of multistability was used to study VR occurrence in many systems and also it was reported to have applications in image processing tasks. In fact, multistability property of the Cellular Neural Network (CNN) was used by Morfu et al to extract regions interest of a radiography of soldering [START_REF] Morfu | On the use of multistability for image processing[END_REF].

Furthermore, multistability was used in chaotic systems to highlight different dynamical properties [START_REF] Abirami | Vibrational and ghost-vibrational resonances in a modified Chua's circuit model equation[END_REF][START_REF] Khibnik | On periodic orbits and homoclinic bifurcations in Chua's circuit with a smooth nonlinearity[END_REF][START_REF] Yu | Generation of n× m-scroll attractors under a Chua-circuit framework[END_REF][START_REF] Arathi | Stochastic and coherence resonances in a modified Chua's circuit system with multi-scroll orbits[END_REF] and also in memristors for information storage [START_REF] Radwan | Hp memristor mathematical model for periodic signals and DC[END_REF][START_REF] Yakopcic | A memristor device model[END_REF][START_REF] Kim | Memristor emulator for memristor circuit applications[END_REF].

In this chapter, we use the multistable periodic potential Φ(x) to detect a subthreshold low frequency signal by the aid of a high frequency perturbation via vibrational resonance effect.

3.1.2/ THE DAMPING COEFFICIENT Γ(x)

In the particle motion ruled by eq. (3.1), the general parameter Γ(x) characterizes the system's dissipation. In this chapter, we will consider this damping term Γ(x) in two different cases: firstly with a constant damping and secondly, space-dependent inhomogeneous damping. More precisely, Γ(x) = Γ 0 , (3.4) will refer to constant damping, while Γ(x) = Γ 0 1λ sin(kx + φ) , (3.5) will correspond to a space-dependent inhomogeneous damping. In eq. (3.5), the parameter λ sets the strength of the frictional inhomogeneity, the positive parameter Γ 0 is the whole amplitude of the nonlinear damping, k adjusts the same periodicity as in the periodic potential Φ(x), while φ denotes the phase difference between the periodic potential Φ(x) and the nonlinear dissipation Γ(x).

The case of a constant damping Γ(x) = Γ 0 was initially analyzed by Rajasekar et al when they highlighted the occurrence of VR in multistable systems [START_REF] Rajasekar | Novel vibrational resonance in multistable systems[END_REF], whereas the case of the spacedependent inhomogeneous damping obeying to eq. (3.5) has been considered by Roy-Layinde et al [START_REF] Roy-Layinde | Vibrational resonance in an inhomogeneous medium with periodic dissipation[END_REF].

In this chapter, for each case of the damping Γ(x) defined by eq. (3.4) and (3.5), we first perform preliminary studies to highlight VR occurrence. Henceforth, we show how the parameters of the damping term Γ(x) influence VR, which was not reported in the previous studies performed by Rajasekar et al in the case of a constant damping [START_REF] Rajasekar | Novel vibrational resonance in multistable systems[END_REF] and Roy-Layinde et al in the case of an inhomogeneous damping [START_REF] Roy-Layinde | Vibrational resonance in an inhomogeneous medium with periodic dissipation[END_REF].

3.1.3/ THE BICHROMATIC DRIVING OF THE SYSTEM e(t)

In our model, the particle is driven by a bichromatic excitation e(t) which consists of a low frequency signal corrupted by a high frequency perturbation, that is:

e(t) = G cos ωt + H cos Ωt, (3.6)
where G and ω are respectively the amplitude of the low frequency component and its angular frequency. Moreover, H represents the high frequency perturbation amplitude and Ω its angular frequency. Throughout this thesis, we consider the perturbation angular frequency Ω to be much greater than the low angular frequency ω, that is Ω ω. This corresponds to the usual setting of the excitation to observe vibrational resonance in nonlinear systems.

Many physical systems in engineering and science consist of this kind of two frequencies setup. This include: vertical cavity surface emitting laser used for experimental demonstration of VR [START_REF] Chizhevsky | Experimental evidence of "vibrational resonance" in an optical system[END_REF], telecommunication signals where information carriers are usually high-frequency waves modulated by a low-frequency signal [START_REF] Mironov | Detection of broadband phase-code-modulated twofrequency signals through calculation of their cross-correlation function[END_REF], ultrasonic two-frequency waves used to enhance cavity yield [START_REF] Feng | Enhancement of ultrasonic cavitation yield by multi-frequency sonication[END_REF] and a two-frequency laser signal showing high stability and high efficiency [START_REF] Su | Simple two-frequency laser[END_REF]. In this thesis, we use the high frequency perturbation to enhance the detection of a low frequency signal.

Considering eq. (3.3) which described the periodic potential and eq. (3.6) that defined the system's external excitation, then eq. (3.1) can be rewritten as:

m d 2 x dt 2 + Γ(x) dx dt + Φ 0 sin kx = G cos ωt + H cos Ωt. (3.7) 
Note that, our system defined by eq. (3.7) can identically be adapted to describe many physical systems. For example, by considering noise instead of the high frequency perturbation in the model given by eq. (3.7), ratchet effect has been highlighted [START_REF] Saikia | Dispersionless motion and ratchet effect in a square-wave-driven inertial periodic potential system[END_REF][START_REF] Saikia | Deterministic inhomogeneous inertia ratchets[END_REF][START_REF] Mulhern | Persistence of uphill anomalous transport in inhomogeneous media[END_REF][START_REF] Kharkongor | Particle dynamics in a symmetrically driven underdamped inhomogeneous periodic potential system[END_REF][START_REF] Saikia | Ratchet effect in an underdamped periodic potential and its characterisation[END_REF] as well as stochastic resonance [START_REF] Saikia | Stochastic resonance in periodic potentials[END_REF]. Also, according to Rajasekar et al [START_REF] Rajasekar | Novel vibrational resonance in multistable systems[END_REF], this model described the dynamics of rf-driven Josephson junction and phase-locked voltage-controlled oscillators.

In this chapter, we perform two different studies on VR occurrence in our system ruled by eq.

(3.7): first for the case of constant damping Γ(x) = Γ 0 and secondly, with the space-dependent inhomogeneous damping Γ(x) = Γ 0 (1-λ sin(kx+φ)). In both cases, we first perform a preliminary study of VR effect for a fix value of the particle mass, namely m = 1. This is of great interest because unitary particle mass was mainly considered in the mechanical systems where VR was initially reported [START_REF] Rajasekar | Novel vibrational resonance in multistable systems[END_REF][START_REF] Roy-Layinde | Vibrational resonance in an inhomogeneous medium with periodic dissipation[END_REF]. Subsequently, we explore the effect of jointly varying the particle mass m and the damping parameters, on the occurrence of VR.

3.1.4/ NUMERICAL PROCEDURE

This section is devoted to the numerical procedure used in this chapter to carry out our numerical experiments. The numerical simulations performed throughout this research were launched on the University of Burgundy computation cluster. Particularly in this chapter, considering the number of samples we take, the simulation time step, number of iterations and the discretization of some parameters of the system, the simulations will take larger amount of time when they are carry out on the personal computer. Indeed, by using the university computation cluster, most of the resonance curves presented in this chapter rather took some few days before the results were produced.

To perform any analysis such as computing the system's response to the bichromatic excitation e(t), the first step is to integrate the system by using any of the known numerical methods for solving nonlinear differential equations. In this chapter, we numerically integrate our system ruled by eq.

(3.7) with a fourth order Runge-Kutta algorithm using a Matlab script. The system is integrated over a temporal window which corresponds to 2000 low frequency cycles and with a total number of samples sets to N = 2 22 . Such temporal window sets the integrating time step to dt = 2000 N × 2π ω which will be sufficient for our numerical analyses. The corresponding spectral resolution is

therefore d f = 1 Ndt
. Also, we considered zero initial conditions, that is x(t = 0) = 0 and ẋ(t = 0) = 0.

While setting the algorithm, it is also convenient to transform our model given by eq. (3.7) into the system of two ordinary first order differential equations:

         dx dt = y, dy dt = -yΓ(x) -Φ 0 sin kx + G cos ωt + H cos Ωt. (3.8)
Note that, the low frequency part of the excitation G cos ωt constitutes the input of our system while x(t) will then be considered as the system's output after integrating eq. (3.8). To analyze the system's behavior, we device the Fast Fourier Transform (FFT) which estimates the Fourier Transform X( f ) of the system's output x(t) and which provides the bilateral magnitude spectrum defined by |X( f )|. Therefore, 2|X( f )|u( f ) allows to compute the corresponding unilateral magnitude spectrum where u( f ) is the following Heaviside function:

u( f ) =        0 i f f < 0, 1 i f f ≥ 0.
To quantize VR, it is important to evaluate the system's response amplitude at the low frequency

f L f = ω 2π
by determining the amplitude of the unilateral magnitude spectrum at this low frequency, namely 2|X( f = f L f )|. Indeed, this corresponds to the contribution of the low frequency component in the output unilateral magnitude spectrum 2|X( f )|. The response amplitude provides an idea of how the low frequency component of the input signal is amplified by the high frequency perturbation.

Emergence of VR is usually revealed by the classical linear response Q, which was first defined by Landa and McClintock [8] as:

Q = 2|X( f L f )| G . ( 3.9) 
Q allows to quantize VR effect since it represents the amplitude of the system's unilateral magnitude spectrum 2|X( f L f )| at the low frequency normalized by the amplitude of the low frequency input signal G. Physically, the parameter Q can be viewed as the amplification factor of the nonlinear system for the specific low frequency component.

Throughout this thesis, as in the usual VR studies, we will consider the low angular frequency ω to be very small when compared to the perturbation angular frequency Ω. Indeed, we choose Ω = 20ω, and the low frequency amplitude G is set to G =0.05. Moreover, the parameters of the potential will also remain as Φ 0 = k = 1 to provide a potential barrier Φ 0 k = 1, as already illustrated in Fig. 3.1. This setting of parameters is to ensure that, the low frequency input excitation is subthreshold and that the potential barrier is never crossed without the help of the high frequency perturbation. This scenario constitutes the hypothesis commonly used to highlight VR.

3.2/ CASE OF A CONSTANT DAMPING

In this section, we first highlight VR signature from the temporal and frequency analyses points of view. Henceforth, by using the classical linear response of eq. (3.9), we study the effect of the constant damping coefficient on the VR occurrence, for the unitary particle mass (m = 1). Lastly, we study the combined effect of varying the particle mass m and the constant damping coefficient Γ 0 on the VR occurrence.

In the model of the system defined by eq. (3.7), the general damping parameter Γ(x) becomes Γ(x) = Γ 0 for the case of constant damping, as defined by eq. (3.4). Therefore, the general equation of the system given by eq. (3.7) can now reduce to

m d 2 x dt 2 + Γ 0 dx dt + Φ 0 sin kx = G cos ωt + H cos Ωt, (3.10) 
where Γ 0 stands for the constant damping amplitude which characterizes the system's dissipation.

Therefore, it is maintained as a positive parameter throughout this chapter to stay in the dissipative mode else, it becomes an energy source to the system.

3.2.1/ HIGHLIGHT OF THE CLASSICAL VR EFFECT

This preliminary section highlights the classical VR signatures by means of temporal and frequency analyses for different perturbation amplitudes H. Moreover, by using the classical linear response Q, we study the influence of the constant damping amplitude Γ 0 on VR occurrence for a unitary mass (m = 1). is important because it allows to observe how the slow and fast oscillations are mixed and evolve through the system. This study is performed by integrating eq. (3.10) with the numerical procedure detailed in Sec. 3.1.4 to provide the temporal series of the system output.

For five different values of the perturbation amplitude H and for the specific value of the constant damping, namely Γ 0 =0.03, we present in Fig. 3.2, the temporal response of our linearly damped system defined by eq. (3.10). In each case presented at Figs. Indeed, the temporal analysis of Fig. 3.2 shows that, varying the perturbation amplitude H enhances the detection of the low frequency component in the output signal. More precisely, the best response is obtained for an intermediate value of the perturbation amplitude H. This behavior is a typical signature of vibrational resonance effect.

We also study how the constant damping amplitude Γ 0 affects the contribution of the low frequency component in the output signal. Therefore at Fig. 3.3, the value of the damping coefficient is increased to Γ 0 =0.27 instead of Γ 0 =0.03. Despite increasing the constant damping coefficient Γ 0 , VR signature is still observed from the temporal series of Fig. 3.3, which is obtained for specific values of the perturbation amplitude H. Indeed, as reported in Fig. 3.3(c), the low frequency com- 

m = 1, k = 1, Φ 0 = 1, G =0.05, ω =0.65, Ω = 13.
ponent of the output signal is best revealed for the intermediate value of the perturbation amplitude, namely H = 280.

Note that, the low frequency contributions in the temporal analyses of Fig. 3.3 are less pronounced when compared with the temporal series of Fig. 3.2. This implies that when the system is hugely damped, the low frequency signal detection in the system is lowered. Nevertheless, to have a better perception of the temporal series of Fig. 3.2 and Fig. 3.3, we therefore perform frequency analysis.

3.2.1.2/ FREQUENCY ANALYSIS

Temporal analysis is a good way of revealing the phenomenon of vibrational resonance but it is better to carry out frequency analysis to quantify this effect from the spectral point of view. Frequency analysis provides an alternative and better vision of how the low frequency component in the system's output signal x(t) is affected by the perturbation amplitude H. The spectral analyses of Fig. 3.5 clarify with better physical display than the temporal analyses of Fig. 3.3, how the perturbation amplitude H affects the system's response at the low frequency. This implies that the frequency analysis is also an important tool for our analysis despite the temporal analysis.

3.2.1.3/ HIGHLIGHT OF THE VR SIGNATURE

Having observed the behavior of the system from the perspectives of temporal and frequency analyses, it is now pertinent to quantize the spectral response of the system. It will allow to better investigate how the low frequency component of the output signal evolves when the high frequency perturbation amplitude H varies. Here, with the same set of parameter values used in our temporal and frequency analyses, we use the classical quantification tool Q defined by eq. (3.9) to highlight VR effect. Presented in Fig. 3.6 is the linear response Q as a function of the perturbation amplitude H for two values of the constant damping amplitude, namely Γ 0 =0.03 and Γ 0 =0.27. In both the two cases depicted at Fig. 3.6, we observed bell-shape curves which show that, the response amplitude Q is a non monotonous function of the perturbation amplitude H. Indeed, the linear response Q achieves its maximum for an optimal value of the perturbation amplitude H. This implies that the detection of the low frequency signal in this system can be optimized by an appropriate setting of the perturbation amplitude H, which is the typical VR signature. Moreover, it can be seen that decreasing the constant damping amplitude Γ 0 provides a better response since the maximum value of the linear response Q is greater in the case of weak damping amplitude, that is Γ 0 =0.03.

However, in the system with the space-dependent inhomogeneous damping, Roy-Layinde et al revealed that there are other resonances when the perturbation amplitude H is further increased [START_REF] Roy-Layinde | Vibrational resonance in an inhomogeneous medium with periodic dissipation[END_REF]. Therefore, in this particular system, it is also important to find out if there are other resonances when the perturbation amplitude H increases.

3.2.2/ HIGHLIGHT OF THE VIBRATIONAL MULTIRESONANCE

It is now obvious that vibrational resonance signature is observed in our system and especially, that the low frequency component can be better detected when the perturbation amplitude H is tuned to an optimal value, as shown in Fig. 3.6. In the resonance curves of Fig. 3.6, the perturbation amplitude H varies from 0 to 400 as such, we obtained single resonance. However, we are interested in exploring the behavior of the system when the perturbation amplitude H increases beyond 400.

The linear response Q as a function of the perturbation amplitude H for the two values of the constant damping coefficients Γ 0 =0.03 and Γ 0 =0.27, is presented at Fig. 3.7 for a perturbation amplitude H ranging from 0 to 1500. For both the two constant damping amplitudes, we obtain multiple resonances as the perturbation amplitude H increases. Note that, in each case, the first resonance provides the global maximum which is obtained for an intermediate value of the perturbation amplitude H. Beyond the optimal value of the perturbation amplitude H, other resonances appear with local maxima which decrease as the perturbation amplitude H keeps increasing. Moreover, it can be seen from the resonance curves of Fig. 3.7 that increasing the constant damping amplitude from Γ 0 =0.03 to Γ 0 =0.27 decreases the performance of the system. Indeed, the amplitude of the local maxima is weakest for the strongest constant damping amplitude Γ 0 . Interestingly, our system reveals vibrational multiresonance effect with the resonances depending on the intensity of the perturbation amplitude H. This typical multiresonance signature was also reported in the study of vibrational resonance in pendulum systems [START_REF] Jeyakumari | Analysis of vibrational resonance in a quintic oscillator[END_REF][START_REF] Jeevarathinam | Theory and numerics of vibrational resonance in Duffing oscillators with time-delayed feedback[END_REF][START_REF] Jeevarathinam | Effect of multiple time-delay on vibrational resonance[END_REF], neuronal models with time delay [START_REF] Jeevarathinam | Effect of multiple time-delay on vibrational resonance[END_REF][START_REF] Yang | Controlling vibrational resonance in a delayed multistable system driven by an amplitude-modulated signal[END_REF][START_REF] Yang | Controlling vibrational resonance in a multistable system by time delay[END_REF][START_REF] Yang | Delay induces quasi-periodic vibrational resonance[END_REF][START_REF] Hu | Delay-induced vibrational multiresonance in FitzHugh-Nagumo system[END_REF][START_REF] Hu | Vibrational resonance in the FitzHugh-Nagumo system with time-varying delay feedback[END_REF] and in the study of stochastic resonance [START_REF] Vilar | Stochastic multiresonance[END_REF][START_REF] Volkov | Stochastic multiresonance in the coupled relaxation oscillators[END_REF][START_REF] Duan | Double-maximum enhancement of signalto-noise ratio gain via stochastic resonance and vibrational resonance[END_REF][START_REF] Li | Stochastic multiresonance in coupled excitable FHN neurons[END_REF]. In the next section, we analyze the evolution of the second resonances depicted at Fig. Similarly, in Fig. 3.9, we study the temporal behavior of the second resonance of Fig. second resonance in Fig. 3.9 also revealed vibrational resonance effect. Indeed, the detection of the low frequency component of the output signal is best achieved for an optimal perturbation amplitude H. By contrast, the temporal response of the second resonance at Fig. 3.9 is less pronounced than the temporal response of the first resonance at Fig. 3.3 for the same value of the constant damping amplitude, namely Γ 0 =0.27. Comparing the temporal series for the second resonance when Γ 0 =0.03 in Fig. 3.8 and when Γ 0 =0.27 in Fig. 3.9, we can admit that the response decreases when the constant damping coefficient Γ 0 increases. To clearly ascertain this fact, we study the frequency analysis for the same scenarios.

3.2.2.2/ FREQUENCY ANALYSIS

In the analysis of the second resonances, as with the study of the first resonance, temporal analysis is not enough to clearly visualize the impact of the perturbation amplitude H on the system's output signal. Especially, when the constant damping coefficient Γ 0 became large. In this subsection, we study the spectral behavior of the second resonances of Fig. Having explored so much from the temporal and frequency analyses points of view, now we study the impact of the constant damping coefficient Γ 0 on the classical VR, for the unitary value of mass m = 1. The combined effect of the particle mass m and the constant damping coefficient Γ 0 will also be considered in the studies that follows. 

: m = 1, Γ 0 =0.27, k = 1, Φ 0 = 1, G =0.05, ω =0.65, Ω = 13.

3.2.3/ CONTROL OF VR BY THE CONSTANT DAMPING COEFFICIENT Γ 0

The temporal and frequency analyses performed in the previous sections highlighted the existence of VR phenomenon and also the impact of increasing the value of the constant damping coefficient Γ 0 . Moreover, the presentation of the classical linear response Q in Fig. 3.7 shaded more light on the nature of the resonance curves obtained in our system and also on the effect of increasing the constant damping coefficient Γ 0 . In this part, we use the classical VR measurement defined by eq. (3.9) to further investigate how the parameter of the constant damping Γ 0 can control the vibrational resonance occurrence for a unitary particle mass (m = 1). 

m = 1, k = 1, Φ 0 = 1, G =0.05, ω =0.65, Ω = 13.
From the mechanical point of view, one may conclude that the best linear response Q will be achieved without dissipation in the system (Γ 0 = 0). In this chapter, we do not consider this case because there is always dissipation in the real systems therefore, the case Γ 0 = 0 does not exist in reality.

The vibrational resonance behavior revealed in Fig. 3.12 shows that the linear response Q at which the global, second and third maxima are obtained depends on the constant damping amplitude Γ 0 .

For instance, the global maxima of Fig. 3.12 decreases as the constant damping amplitude Γ 0 increases. We have reported at Fig. 3.13 how the peak value Q n max of the resonance number n of Fig. 3.12 evolves versus the constant damping Γ 0 . We restricted our analyses of Fig. 3.13 to the peak of the global, second and third maxima, that is

Q 1 max , Q 2 max and Q 3 max . It is obvious in Fig. 3.13
that for smaller values of the constant damping amplitude Γ 0 , the gaps between the global, second and third maxima are the greatest. By contrast, these gaps reduce and vanish as Γ 0 increases.

Moreover, for larger Γ 0 , the magnitudes of the three resonances become almost the same and the weakest one. This implies that controlling VR in this system is more efficient for the smaller value of the constant damping coefficient Γ 0 .

Coefficient of the constant damping Γ 0 ' (arbitrary unit) 

3.2.4/ THE MEASURING TOOL INDICATING VR EXISTENCE

Until this end, our studies are restricted to the case of a particle of unitary mass, namely m = 1. Now, in this section, we investigate the combined impact of the particle mass m and the constant damping coefficient Γ 0 on the occurrence of VR phenomenon.

Depending on the particle mass m, our numerical investigations reveal two different behaviors. Fig. increasing the perturbation amplitude H can not maximized the system's response Q. Indeed, the maximum linear response in this case is obtained when the perturbation amplitude is H = 0, for all values of the constant damping coefficient Γ 0 . Note that VR phenomenon failed to exist in this later case because, the maximum linear response Q is obtained without the perturbation, that is when

H = 0.
The existence of these two behaviors highlighted in Fig. 3.14 makes it an interesting task for us to have a general view of the system's behavior when the particle mass m varies. For each value of the mass m, to identify whether the perturbation can lead to an enhancement of the low frequency detection or not, we introduce an indicator, namely Q * max , which allows to classify the behavior belonging to each particle mass. We propose to define Q * max as the ratio of the maximum linear response Q max to the linear response obtained without high frequency perturbation, that is when H = 0. We therefore define Q * max as:

Q * max = Q max Q(H = 0) ˙(3.11)
If the maximum response amplitude Q max in whatever the case is obtained without the perturbation,

our indicator Q * max equals Q * max = 1.
This means for that particular value of the particle mass, no enhancement can be achieved by adding a high frequency perturbation, as in the case of Fig.

3.14(b)

. However, if Q max is obtained for an appropriate increase of the perturbation, the indicator Q * max will exceed the value 1 as in the case of Fig. 3.14(a). Accordingly, Q * max = 1 implies no enhancement and Q * max > 1 signifies enhancement whereas the former corresponds to the case where VR phenomenon failed to exist while the latter matches the existence of VR. The indicator Q max defined by eq. ( 3.11) will be used in this chapter to identify which of these two different behaviors occurs according to the particle mass m value.

3.2.5/ COMBINED IMPACT OF THE PARTICLE MASS m AND THE CONSTANT DAMPING AM-

PLITUDE Γ 0 ON VR OCCURRENCE
In this section, we investigate the influence of the particle mass m on the occurrence of vibrational resonance for different values of the constant damping amplitude Γ 0 . For different values of the particle mass below and above m = 1, we study the evolution of the linear response Q. In each case, by using the indicator Q * max defined by eq. (3.11), we identify if the system's response can be optimized with the perturbation amplitude H, that is if Q * max > 1.

In Fig. 3.15, we present the indicator Q * max as a function of the particle mass m. This will give an idea of how the system changes its behavior, through VR effect, depending on the particle mass m.

Our result in Fig. 3.15 revealed that there is a critical value of the particle mass m * below which VR effect exists and beyond which VR effect ceases to exist. This critical value of mass m has been precisely calculated for our parameter settings as m * =2.375, for all values of the constant damping amplitude Γ 0 . Lastly, the best response Q * max is obtained for the smallest damping coefficient Γ 0 as previously reported, namely Γ 0 =0.03.

The complete analyses conducted so far correspond to the case of a system with the constant damping Γ(x) = Γ 0 which will constitute a reference for our future studies of the system experiencing a nonlinear damping. Throughout these studies, we highlighted the occurrence of VR and the influence of the constant damping amplitude Γ 0 on VR. Our analyses were first for the case of the fixed unitary particle mass m = 1 and lastly for the case of varying the particle mass. In what follows, we will study the behavior of a system experiencing a space-dependent inhomogeneous damping.

3.3/ CASE OF AN INHOMOGENEOUS AND SPACE-DEPENDENT NONLINEAR DAMPING

In the case of space-dependent nonlinear damping obeying to eq. (3.5), the equation (3.7) of the system describes the motion of a particle ruled by:

m d 2 x dt 2 + Γ 0 1 -λ sin(kx + φ) dx dt + Φ 0 sin kx = G cos ωt + H cos Ωt. (3.12)
Recall that, λ sets the strength of the frictional inhomogeneity, the positive parameter Γ 0 is the whole amplitude of the nonlinear damping, k adjusts the same periodicity as in the periodic potential Φ(x), while φ denotes the phase difference between the periodic potential Φ(x) and the nonlinear dissipation Γ(x). The case λ = 0 in eq. (3.12), which corresponds to the case of the constant damping studied in the previous section, has also been considered by Rajasekar et al when they first reported the phenomenon of VR in multistable systems [START_REF] Rajasekar | Novel vibrational resonance in multistable systems[END_REF]. Moreover, Roy-Layinde et al recently introduced nonlinear dissipative damping to the system and studied the role of its parameters on the occurrence of VR [START_REF] Roy-Layinde | Vibrational resonance in an inhomogeneous medium with periodic dissipation[END_REF].

In fact, nonlinear dissipation [START_REF] Elliott | Nonlinear damping and quasi-linear modelling[END_REF] is a very interesting property due to its wide appearance and applications in many mechanical systems such as: aerospace structures [START_REF] Wright | Introduction to aircraft aeroelasticity and loads[END_REF], nanoelectromechanical systems [START_REF] Eichler | Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene[END_REF][START_REF] Imboden | Nonlinear dissipation in diamond nanoelectromechanical resonators[END_REF][START_REF] Imboden | Dissipation in nanoelectromechanical systems[END_REF], acoustic nonlinearity of an orifice [START_REF] Ingard | Acoustic nonlinearity of an orifice[END_REF], nonlinear suspension and isolation systems [START_REF] Surace | An improved nonlinear model for an automotive shock absorber[END_REF], cochlear amplifier [START_REF] Boer | Mechanics of the cochlea: modeling efforts[END_REF], Kramers oscillator [START_REF] Semenov | Noise-induced transitions in a double-well oscillator with nonlinear dissipation[END_REF], Josephson junction [START_REF] Silvestrini | Effects of the phase-dependent dissipative term on the supercurrent decay of Josephson junctions[END_REF][START_REF] Silvestrini | Effects of nonlinear dissipation on the supercurrent decay of a Josephson junction[END_REF] and in plasma science [START_REF] Roy-Layinde | Analysis of vibrational resonance in bi-harmonically driven plasma[END_REF][START_REF] Enjieu Kadji | Nonlinear dynamics of plasma oscillations modeled by an anharmonic oscillator[END_REF]. Despite its diverse occurrences and applications, there are very few investigations that focused on the impact of nonlinear damping/dissipation on the occurrence of vibrational resonance [START_REF] Roy-Layinde | Analysis of vibrational resonance in bi-harmonically driven plasma[END_REF][START_REF] Roy-Layinde | Vibrational resonance in an inhomogeneous medium with periodic dissipation[END_REF][START_REF] Mbong | The effect of nonlinear damping on vibrational resonance and chaotic behavior of a beam fixed at its two ends and prestressed[END_REF].

In this section, we numerically first study the role of the nonlinear dissipation parameters; Γ 0 , λ and φ on the occurrence of VR for a fix unitary mass (m = 1). Especially, this preliminary studies allow to highlight the role of the mass m of the particle on the occurrence of VR, which to our knowledge, has not been yet reported.

3.3.1/ RESPONSE OF THE SYSTEM

In this section, we perform temporal and spectral analyses to study how the system with inhomogeneous damping defined by eq. (3.12) responds to an external input stimuli. Like in the case of constant damping, we subsequently study the influence of the nonlinear dissipation parameters on VR, first for unitary mass and lastly for other values of the particle mass.

3.3.1.1/ TEMPORAL ANALYSES

We analyze the temporal behavior of our dissipative system by examining the output signal x(t) for different values of the perturbation amplitude H and for the specific values of nonlinear damping amplitude Γ 0 =0.03 and Γ 0 =0.27. Note that these two values of the inhomogeneous damping amplitude correspond to the values of constant damping amplitude Γ 0 previously considered in Sec.

3.2, when the damping was maintained constant. We carry out temporal analysis to qualitatively observe the slow and the fast oscillations in the system's output signal x(t).

For five different values of the perturbation amplitude H and for the specific value of the nonlinear damping amplitude Γ 0 =0.03, we summarized at Fig. 3.16 the temporal response of the system with inhomogeneous damping. For all the perturbation amplitudes H of Fig. 3.16, the temporal series reveal a low frequency component mixed with the high frequency perturbation component.

In particular, for the smallest value of the perturbation amplitude, namely H = 20, the low frequency component is weak as shown in Fig. 3.16(a). The contribution of the low frequency in the output signal is enhanced when the perturbation amplitude H increases to H = 220, as depicted in Fig.

3.16(b). By contrast, for an intermediate value of the perturbation amplitude, namely H = 245

presented at Fig. 3.16(c), the low frequency component in the output signal is best pronounced.

In this latter case, we can see that the output signal is dominated by the low frequency signal, 

: m = 1, λ =2.4, φ =0.2, k = 1, Φ 0 = 1, G =0.05, ω =0.65, Ω = 13.
: m = 1, λ =2.4, φ =0.2, k = 1, Φ 0 = 1, G =0.05, ω =0.65, Ω = 13.
which is contrary to the case of Fig. 3.16(a) when the perturbation amplitude H was very weak.

Meanwhile, for the perturbation amplitudes beyond the intermediate value, H = 300 and H = 400

for example, the low frequency component becomes weak again as shown in Figs. [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF].16(d) and 3.16(e) respectively. This implies that the detection of the low frequency signal in the system is enhanced when the perturbation amplitude H is tuned to an intermediate value. Consequently, the temporal series of Fig. 3.16 exhibit the signature of VR.

We have performed the same temporal analysis at Fig. 3.17 for a greater nonlinear damping amplitude, namely Γ 0 =0.27 instead of Γ 0 =0.03. This study gives an insight on the impact of the nonlinear damping amplitude Γ 0 on the dynamics of the dissipative system with inhomogeneous damping. Figs. [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF].17 It is clear that, the responses obtained in Fig. 3.17 after increasing the nonlinear damping amplitude to Γ 0 =0.27 are less pronounced when compared with the responses obtained when the damping amplitude was Γ 0 =0.03 as given by Fig. 3.16. This implies that, when the nonlinear damping amplitude Γ 0 grows larger, the low frequency component in the system's output signal is less detectable. The responses obtained in these temporal analyses are in agreement with what has been observed from the system experiencing the constant damping, as such, this behavior can said to be general in both the two systems. To be more consistent with the temporal analyses of Figs. 3.16 and 3.17, we also perform the corresponding spectral analyses.

3.3.1.2/ FREQUENCY ANALYSES

We carry out frequency analyses as a complementary approach which allows to quantize the contribution of the low frequency component in the output signal corresponding to the chronograms presented at Figs. 3.16 and 3.17. Note that the spectra reported in this section at Figs. 

: m = 1, Γ 0 =0.03, λ =2.4, φ =0.2, k = 1, Φ 0 = 1, G =0.05, ω =0.65, Ω = 13.
: m = 1, Γ 0 =0.27, λ =2.4, φ =0.2, k = 1, Φ 0 = 1, G =0.05, ω =0.65, Ω = 13.
also increases. However, the amplitude of the spectrum at the low frequency appears more evidently observable for the intermediate value of the perturbation amplitude H = 245, as shown in In the case when the nonlinear damping amplitude increases to Γ 0 =0.27, the spectral analysis is presented at Fig. 3.19. Unlike in the corresponding temporal analyses of Fig. 3.17, the influence of increasing the perturbation amplitude H is better perceived in the corresponding spectral analyses of Fig. 3.19. It is also obvious from Fig. 3.19(c) that, the amplitude of the spectrum at the low frequency is best pronounced for an intermediate perturbation amplitude, below and beyond which the response is lowered.

Having going far on the study of the temporal and spectral responses of our nonlinear dissipative system, next we pay attention to the influence of nonlinear dissipation parameters; Γ 0 , λ and φ on VR. Emergence of VR effect can be revealed using the classical quantification tool defined by eq. (3.9) corresponding to the linear response Q. Indeed, the linear response Q is the amplitude of the unilateral magnitude spectrum 2|X(

f L f )| at the low frequency f L f = ω 2π
normalized by the amplitude of the low frequency input signal G.

3.3.2/ CONTROL OF VR BY NONLINEAR DAMPING PARAMETERS

In this section, using the classical linear response Q, we conduct preliminary numerical investigations for a fix value of the particle mass m = 1, to study how VR phenomenon is controlled by the nonlinear dissipation parameters: damping amplitude Γ 0 , frictional inhomogeneity λ and the phase φ between nonlinear damping and periodic potential. This preliminary study will constitute a reference to investigate the impact of the particle mass m on the occurrence of VR.

3.3.2.1/ CONTROL OF VR BY THE NONLINEAR DAMPING AMPLITUDE Γ 0

The study of the impact of nonlinear damping parameters on VR was initiated by Roy-Layinde et al [START_REF] Roy-Layinde | Vibrational resonance in an inhomogeneous medium with periodic dissipation[END_REF]. However, their study was silent on the possible effect of nonlinear damping amplitude Γ 0 on VR. In this part, to complement the work of Roy-Layinde et al [START_REF] Roy-Layinde | Vibrational resonance in an inhomogeneous medium with periodic dissipation[END_REF], we show how the damping amplitude Γ 0 affects VR, while the other dissipation parameters remain the same as those of Sec. 

: m = 1, λ =2.4, φ =0.2, k = 1, Φ 0 = 1, G =0.05, ω =0.65, Ω = 13.
Comparing the result of Fig. 3.20 with the corresponding result for the case of constant damping in Fig. 3.12, one can conclude that including the nonlinearity in the system's damping is interesting because it enhances the response Q of the system. Indeed, the responses for the case of the nonlinear damping in Fig. 3.20 are better than those for the case of the constant damping presented at Fig. 3.12.

Lastly, Fig. The parameter φ was reported to have influenced the occurrence of VR by Roy-Layinde et al [START_REF] Roy-Layinde | Vibrational resonance in an inhomogeneous medium with periodic dissipation[END_REF].

However, as they did not discuss the possibility for the phase φ to maximize VR, we addressed this particular point in this section. It may be recalled that, φ is the phase difference between the nonlinear damping Γ(x) and the periodic potential Φ(x).

We carry out the study of the linear response Q versus the perturbation amplitude H, for different values of the phase φ. Our analyses in Fig. 3.22 reveal the same behavior as in Fig. 3.20 that is, varying the perturbation amplitude H, we obtain multiple resonances for each value of the phase φ, the first resonance gives the global maximum, followed by local maxima which decrease as the perturbation amplitude H increases. Note that, varying the phase φ enhances the performance of the system and the maximum response is obtained for the optimal value of the phase φ = π 2

. Indeed, beyond the optimal value φ = π 2 , for example for φ =2.1, the resonances of the linear response Q are less pronounced, as can be seen from Fig. In fact, when φ = π 2 , the sine function of the nonlinear damping term sin(kx + π 2 ) in eq. (3.5) reduces to cos kx and it became perfectly in phase with the cosine function of the periodic potential defined by eq. (3.3). This implies that the maximum response is achieved when the modulation of the nonlinear damping force Γ(x) and that of the periodic potential Φ(x) are in phase with each other.

3.3.2.3/ CONTROL OF VR BY THE FRICTIONAL INHOMOGENEITY λ

In this subsection, we briefly recall the effect of the frictional inhomogeneity λ on VR phenomenon.

Indeed, it will provide a reference for our next study devoted to the influence of the particle mass m. The resonance curves of Fig. nonlinear damping coefficient given by eq. (3.5), we can interpret that the curve for λ = 0 in Fig. 3.24 corresponds to the case of constant damping which was reported in our previous studies of VR and also by Rajasekar et al [START_REF] Rajasekar | Novel vibrational resonance in multistable systems[END_REF].

As these typical vibrational multiresonance signatures were shown by Roy-Layinde et al in the case of a unitary particle mass [START_REF] Roy-Layinde | Vibrational resonance in an inhomogeneous medium with periodic dissipation[END_REF], one may wonder if these signatures can persist for particles of different mass or if other behaviors may appear. This constitutes the subject of the next section.

3.3.3/ COMBINED EFFECT OF THE PARTICLE MASS m AND THE NONLINEAR DISSIPATION PARAMETERS ON THE VR OCCURRENCE

As with the previous case of the constant damping, depending on the mass of the particle, our numerical investigations for the case of nonlinear damping also reveal two different behaviors. Fig. 

λ =2.4, φ =0.2, k = 1, Φ 0 = 1, G =0.05, ω =0.65, Ω = 13.
to m =2.4, increasing the perturbation amplitude H can not optimize the system's response Q.

Indeed, for m =2.4, the response Q of the system at H = 0 is the maximum response with the local maxima decreasing as the perturbation amplitude increasing. Note that VR phenomenon fails to exist in the case m =2.4 because, the maximum response amplitude is obtained without the perturbation, that is when H = 0.

Based on these two behaviors reported at Fig. Lastly, as previously shown, Fig. 3.26 also confirms that smaller value of Γ 0 yields the maximum response.

Consequently, particles with mass below m * will experience VR, whereas for particles with a mass beyond m * , no improvement of the system response can be expected by perturbing the system with a high frequency perturbation.

In a particular case of varying the phase φ, we also study Q * max as a function of the particle mass m at Fig. 3.27. For the parameter settings of Fig. 3.27, the critical mass m * beyond which VR ceases to exist does not depend on the phase φ. Indeed, we have precisely measured this value as m * =2.375. Lastly, we can also deduce from Fig. 3.27 that varying the phase φ improves the performance of the system, but the particular value φ = π 2

gives the maximum response, as reported in the earlier preliminary study.

Similarly, at Fig. 3.28, we study how Q * max evolves versus the mass m of the particle for different values of the frictional inhomogeneity λ. There also exist a critical mass m * below which VR occurs whatever the value of the frictional inhomogeneity λ. This critical mass m * is determined to be invariably the same as the one obtained in the later cases of varying Γ 0 and φ, that is m * =2.375.

Moreover, we note that the maximum response amplitude is obtained for larger values of λ. 

Mass m (arbitrary unit)

Γ 0 =0.27, φ =0.2, k = 1, Φ 0 = 1, G =0.05, ω =0.65, Ω = 13.
In summary, the simulation results presented at Figs. 3.26, 3.27 and 3.28 demonstrate that for all the nonlinear dissipation parameters considered, there exists a critical value of mass m * below which the phenomenon of VR can be observed and beyond which no enhancement can be obtained by perturbing the system.

3.4/ CONCLUSION

In this chapter, we have considered the motion of a particle experiencing a periodic potential which is driven by a bichromatic excitation in two different cases of damping; constant damping and a space-dependent nonlinear damping. More precisely, our research has mainly addressed VR occurrence when the particle mass and the damping parameters are jointly considered as control parameters.

To accomplish these analyses, it was first useful to briefly precise the setting of the system and to introduce the classical tools necessary to highlight VR. In view of these, in both the two cases of the damping, we have therefore performed preliminary studies restricted to the case of a unitary particle mass.

In the first case of constant damping and for the unitary particle mass, we have numerically revealed by using temporal and spectral analyses that, VR effect exists in the system. We highlighted that VR can be controlled by the constant damping amplitude Γ 0 and that the best responses can be obtained for the smaller values of the constant damping amplitude Γ 0 . Moreover, when the per- turbation amplitude H evolves in a wide range, the obtained responses have exhibited vibrational multiresonance signature. More precisely, among the multiple observed resonances, the first resonance corresponds to the greatest one, while the magnitude of the next resonances decreases as the perturbation amplitude H keeps increasing.

Subsequently, we studied the combined impact of the particle mass m and the constant damping amplitude Γ 0 on VR occurrence. We demonstrated that the system exhibits two different behaviors that depend on the particle mass m, one of which VR phenomenon ceased to exist. The first behavior, which corresponds to the instance of the unitary particle mass, revealed that the system's response can be optimized by an appropriate increase of the perturbation amplitude H while in the latter, the system's maximum response is obtained without the perturbation, that is when H = 0.

This change of behavior neither depends on the constant damping amplitude Γ 0 but on the variation of the particle mass m. Therefore, we then proposed an indicator, namely Q * max , which enabled us to classify the behavior belonging to each considered particle mass m. Indeed, for all values of the constant damping amplitude Γ 0 , we have identified a critical value of mass m * below which VR can be observed and beyond which it ceased to exist.

For the case of a system with nonlinear dissipation, the space-dependent nonlinear dissipation we have considered was first introduced by Roy-Layinde et al. This nonlinear dissipation can be tuned by its strength λ, its whole amplitude Γ 0 and its phase difference φ with the periodic potential of the system. We have first conducted a preliminary study for a unitary particle mass from the perspectives of temporal and frequency analyses to verify VR existence in the system. As previously pointed by Roy-Layinde et al [START_REF] Roy-Layinde | Vibrational resonance in an inhomogeneous medium with periodic dissipation[END_REF], we have numerically verified that nonlinear dissipation parameters λ and φ allow to control VR. Indeed, as in the previous case of the constant damping, we obtained response curves that exhibited multiple resonances: the first resonance corresponds to the global maximum which is achieved for an intermediate value of the perturbation amplitude H while the other local maxima decrease as the perturbation amplitude increases. However, we highlighted that an optimal value of the phase difference between the potential and the nonlinear dissipation maximizes the VR effect. This optimal value of the phase (φ = π 2

) corresponds to the case when the modulation of the nonlinear damping and the modulation of the periodic potential are in phase with each other. In addition, we have enlarged this study by analyzing the impact of the dissipation amplitude Γ 0 which also allowed to control VR. In particular, we found that decreasing the amplitude of the nonlinear damping coefficient Γ 0 enhances the response Q of the system.

After these preparatory studies, our main results in this part concerned the joint effect of the nonlinear dissipation parameters and the particle mass m on VR occurrence. Especially, as in the case of the constant damping, we demonstrated that the system exhibits two different behaviors that depend on the particle mass m, one of which VR phenomenon ceased to exist.

By comparison, we understood that the responses achieved by the system experiencing nonlinear damping amplitude Γ 0 are better than those obtained for the case of the linear damping amplitude Γ 0 . Moreover, unlike linear damping, nonlinear damping allowed to control the response of the system from its multiple parameters: modulation strength λ and the phase difference φ between damping and potential.

We suspect that our finding concerning the existence of a critical mass m * beyond which VR ceased to exist could be extended to other mechanical systems exhibiting different kinds of potential. Indeed, the depth and location of the potential wells [START_REF] Chen | Impact of depth and location of the wells on vibrational resonance in a triple-well system[END_REF], shape of the harmonically trapped potential [START_REF] Abirami | Vibrational resonance in a harmonically trapped potential system[END_REF] and the shape of an asymmetrical deformable potential were recently reported to have a significant impact on the occurrence of VR [START_REF] Vincent | Vibrational resonance in an oscillator with an asymmetrical deformable potential[END_REF]. Moreover, it is interesting to note that the existence of the critical mass m * , which is observed in our system with both constant and nonlinear damping, could allow to separate particles with different mass.

In the context of the so called ratchet effect, particle's trajectory was also studied in inhomogeneous systems experiencing symmetric periodic potential [START_REF] Saikia | Dispersionless motion and ratchet effect in a square-wave-driven inertial periodic potential system[END_REF][START_REF] Saikia | Deterministic inhomogeneous inertia ratchets[END_REF][START_REF] Mulhern | Persistence of uphill anomalous transport in inhomogeneous media[END_REF][START_REF] Kharkongor | Particle dynamics in a symmetrically driven underdamped inhomogeneous periodic potential system[END_REF][START_REF] Saikia | Ratchet effect in an underdamped periodic potential and its characterisation[END_REF]. Frictional inhomogeneity λ and initial phase of the external periodic forcing φ 0 were reported to have an effect on the sensible generation of ratchet current for unitary particle masses [START_REF] Saikia | Deterministic inhomogeneous inertia ratchets[END_REF]. We suggest that the phase difference φ, nonlinear damping amplitude Γ 0 and most especially the particle mass m may have significant impact on the directed particle transport. That is why the work presented in this chapter could be relevant in the context of ratchet effect. In this chapter, we numerically investigate the dynamics of a multistable Chua's circuit model driven by an external perturbed excitation. We mainly study the impact of the system's nonlinearity, which provides the system's multistability, on the occurrence of Vibrational Resonance (VR) and Ghost-Vibrational Resonance (GVR) phenomena. Especially, we compare the well known dynamics obtained with the classical sawtooth nonlinearity [START_REF] Abirami | Vibrational and ghost-vibrational resonances in a modified Chua's circuit model equation[END_REF] and the one produced with a truncated sinusoidal nonlinearity.

4.1/ INTRODUCTION

The nature of the nonlinearity have significant impact on the dynamical response of nonlinear systems. For instance, a multistable nonlinearity has proven to have applications in image processing [START_REF] Morfu | On the use of multistability for image processing[END_REF]. In particular, Chua's circuit model, which was first introduced to study chaotic behavior in electronic circuits, is based on a multistable nonlinearity [START_REF] Chua | The genesis of Chua's circuit[END_REF]. This model was used to study many nonlinear properties and phenomena such as the existence of multi-scroll chaotic attractors [START_REF] Yu | Generation of n× m-scroll attractors under a Chua-circuit framework[END_REF][START_REF] Suykens | Generation of n-double scrolls (n= 1[END_REF], bifurcation analysis [START_REF] Khibnik | On periodic orbits and homoclinic bifurcations in Chua's circuit with a smooth nonlinearity[END_REF][START_REF] Yang | Bifurcation analysis and chaos control of the modified Chua's circuit system[END_REF], Stochastic Resonance (SR) [START_REF] Arathi | Stochastic and coherence resonances in a modified Chua's circuit system with multi-scroll orbits[END_REF], Vibrational Resonance (VR) [START_REF] Jothimurugan | Experimental evidence for vibrational resonance and enhanced signal transmission in Chua's circuit[END_REF][START_REF] Abirami | Vibrational and ghost-vibrational resonances in a modified Chua's circuit model equation[END_REF] and Ghost-Vibrational Resonance (GVR) [START_REF] Abirami | Vibrational and ghost-vibrational resonances in a modified Chua's circuit model equation[END_REF].

Recently, Chua's circuit model was used with a multistable sawtooth force as form of nonlinearity to study the occurrence of VR and GVR [START_REF] Abirami | Vibrational and ghost-vibrational resonances in a modified Chua's circuit model equation[END_REF]. However, we must admit that the dynamics of Chua's circuit model in the context of nonlinear resonances was not explored with a truncated sinusoidal force, which is also multistable. Indeed, nonlinear systems with the truncated sinusoidal force have revealed applications in image processing [START_REF] Morfu | On the use of multistability for image processing[END_REF] and have also enabled information storage in memristors [START_REF] Radwan | Hp memristor mathematical model for periodic signals and DC[END_REF][START_REF] Yakopcic | A memristor device model[END_REF][START_REF] Kim | Memristor emulator for memristor circuit applications[END_REF]. Owing to these promising applications, it is of crucial interest to characterize the impact of a truncated sinusoidal nonlinearity on VR and GVR occurrence. In this chapter, we study how a truncated sinusoidal force affects the occurrence of VR and GVR in a modified

Chua's circuit model. Moreover, we especially compare the dynamics obtained with the well known classical sawtooth nonlinearity [START_REF] Abirami | Vibrational and ghost-vibrational resonances in a modified Chua's circuit model equation[END_REF] and the one produced with our proposed truncated sinusoidal nonlinearity.

The subsequent sections of this chapter are arranged in the following order. Firstly, the system under consideration is described in Section 4.2 with its setup and the numerical procedure used throughout the chapter. Next, the analyses of the VR and GVR are presented in Sections 4.3 and 4.4 respectively for each considered nonlinearity, that is the sawtooth function and our propose truncated sinusoidal function. Lastly, section 4.5 is devoted to the conclusion and outlooks of this chapter.

4.2/ DESCRIPTION OF THE CHUA'S MODEL

Chua's circuit was first invented in 1983 by Chua to study the existence of double-scroll chaotic attractors [START_REF] Chua | The genesis of Chua's circuit[END_REF]. These attractors were numerically confirmed in 1984 by Matsumotu [START_REF] Matsumoto | A chaotic attractor from Chua's circuit[END_REF] and the chaotic behavior of the circuit was experimentally shown one year later [START_REF] Zhong | Experimental confirmation of chaos from Chua's circuit[END_REF]. The modification of the initial nonlinearity of the system has also attracted attention since it has allowed to generate multi-scroll attractors [START_REF] Yu | Generation of n× m-scroll attractors under a Chua-circuit framework[END_REF]. In this chapter, we also focus on the impact of the nonlinearity on the dynamics of the following modified Chua's circuit model:

dx dt = αy + dΦ n (x, α) dx + e p (t) dy dt = x -y + z (4.1)
dz dt = -βy.

This three dimensional system describes the evolution of three variables x, y and z, when it is driven by an input perturbed excitation e p (t). The term Φ n (x, α) represents the potential which provides the multistability and whose derivative will refer to a nonlinearity of order n in the whole chapter.

Moreover, α is a constant parameter which also adjusts the height of the potential barrier. The corresponding nonlinear force F n (x, α) is derived from the potential Φ n (x, α) by the relation

F n (x, α) = - dΦ n (x, α) dx . ( 4.2) 

4.2.1/ THE TWO CONSIDERED NONLINEARITIES OF ORDER n

The most crucial part of the Chua's circuit model defined by the set of eqs. (4.1) is the nonlinear force F n (x, α) due to its significant impact on the dynamical response of the system. Indeed, variety of dynamical behaviors were studied while considering different nonlinear forces or nonlinearities F n (x, α) such as: a sigmoid force [START_REF] Mahla | Chua's circuit with a discontinuous nonlinearity[END_REF], a piecewise linear force [START_REF] Aziz-Alaoui | Differential equations with multispiral attractors[END_REF], a discontinuous force [START_REF] Lamarque | Chua systems with discontinuities[END_REF],

a saturated force [START_REF] Lu | Design and analysis of multiscroll chaotic attractors from saturated function series[END_REF] and a sawtooth force [START_REF] Abirami | Vibrational and ghost-vibrational resonances in a modified Chua's circuit model equation[END_REF][START_REF] Yu | Generation of n× m-scroll attractors under a Chua-circuit framework[END_REF][START_REF] Arathi | Stochastic and coherence resonances in a modified Chua's circuit system with multi-scroll orbits[END_REF] among others.

A recent study by Abirami et al reported the role of a sawtooth type nonlinearity on VR and GVR occurrence in a modified Chua's circuit model [START_REF] Abirami | Vibrational and ghost-vibrational resonances in a modified Chua's circuit model equation[END_REF]. This sawtooth force is redefined here with our own notations for convenience and to allow direct comparison with the truncated sinusoidal nonlinearity proposed in this chapter. The sawtooth force of order n and parameter α is then redefined by the following expression:

F n (x, α) = -α A 0 A x + (-1) n + 1 2 A 0 sgn(x) -A 0 n ∑ j=0 sgn x + 2 j - (-1) n -1 2 A (4.3) + sgn x -2 j - (-1) n -1 2 A ,
where sgn is a sign function, n is the order of nonlinearity and the constant parameters α, A and A 0 adjust the potential barrier. The sawtooth force F n (x, α) described by eq. ( 4.3) is presented in Fig. 4.1 with its corresponding potential Φ n (x, α) for three values of the nonlinearity order, namely n = 0, n = 1 and n = 2.

The number of stable and unstable states of the potential is controlled by n. Indeed, for each value of n, we obtain n + 1 unstable states and n + 2 stable states, whose positions are given by

X * h,n = h 4A ,
where h is an integer value in the interval [-(n + 1); n + 1], while the second index n refers to the nonlinearity order. The parameter n categorizes these stability positions in two cases:

• if n is odd, the positions X * h,n = h 4A
correspond to stable states for even values of h and unstable states for odd values of h.

• if n is even, the positions X * h,n = h 4A
correspond to stable states for odd values of h and unstable states for even values of h.

Moreover, for all values of n, the potential starts at the left with a stable state at the position

X * -(n+1),n = - n + 1 4A
and ends at the right with a stable state at position X * (n+1),n = n + 1 4A

. The potential barrier ∆Φ associated to the sawtooth force is defined by ∆Φ = αA 0 32A 3 and the spacing ∆X * between any two consecutive stable or unstable states of the potential is given as ∆X * = 1 2A

.

In this chapter, we introduce another multistable nonlinearity to investigate its impact on the dynamics of the modified Chua's circuit model, especially in the context of VR and GVR. We choose to

x (arbitrary unit) use such nonlinearity because it can be implemented in electronic devices [START_REF] Morfu | Nonlinear systems for image processing[END_REF]. More precisely, we propose a truncated sinusoidal force which is expressed as:

F n (x, α) =                  -2παV 0 k 2 [x + X * (n+1),n ], for x < X * -(n+1),n + (-1) n αV 0 k[sin(2πkx)], for X * -(n+1),n ≤ x ≤ X * (n+1),n -2παV 0 k 2 [x + X * -(n+1),n ], for x > X * (n+1),n . (4.4) 
In eq. (4.4), as for the potential driven from the sawtooth force, X * -(n+1),n and X * (n+1),n correspond to the respective positions of the two ends of the potential associated to our truncated sinusoidal force. Moreover, the truncated sinusoidal force defined in eq. (4.4) is also multistable owing to its sinusoidal behavior. Note also that, it is truncated because the force is replaced by the tangent of the sinusoidal function at both the two ends of the force as expressed in relation (4.4). Fig. 4.2 illustrates the form of the truncated sinusoidal force F n (x, α) and its corresponding potential Φ n (x, α) for the orders of nonlinearity n = 0, n = 1 and n = 2. In the definition of the truncated sinusoidal force given by eq. (4.4), the parameter k accounts for the periodicity and width of the potential ∆X * . Moreover, α and V 0 adjust the potential barrier height ∆Φ.

Similarly, n sets the number of stable and unstable states of the potential. Furthermore, this poten- x (arbitrary unit) tial still exhibits n + 1 unstable states and n + 2 stable states located at positions
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X * h,n = h 2k ,
where h is an integer in the range [-(n + 1); (n + 1)] and the second index n refers to the nonlinearity order. The stability of each of these positions depends on the parity of n: . The barrier height of the potential driven from the truncated sinusoidal force, defined in eq. ( 4.4), is ∆Φ = αV 0 π and the spacing between any consecutive stable or unstable states of the truncated sinusoidal potential is given by ∆X * = 1 k .

• if n is odd,
To compare the respective impact of the two nonlinearities defined by eqs. (4.3) and (4.4) on the system's response, it is necessary that the corresponding potentials share the same features in terms of barrier height ∆Φ and width ∆X * . This implies that, for our truncated sinusoidal force, the parameter V 0 must be tuned to V 0 = πA 0 32A 3 while the periodicity k of the truncated sinusoidal potential must be adjusted to k = 2A.

In the study of Abirami et al [START_REF] Abirami | Vibrational and ghost-vibrational resonances in a modified Chua's circuit model equation[END_REF], the parameters A 0 and A of their sawtooth force were adjusted to A 0 =0.125 and A =0.5. Consequently, throughout this chapter, the parameters of our truncated sinusoidal nonlinearity are set to V 0 = π 32 and k = 1. With these parameters settings, both potentials of the two models share the same potential barrier height ∆Φ and width ∆X * , that is numerically ∆Φ = α 32 and ∆X * = 1.

4.2.2/ INPUT PERTURBED EXCITATION e p (t)

The system defined by eqs. (4.1) is driven by an input perturbed excitation e p (t) consisting of low frequency signal(s) e(t), corrupted by an additive high frequency perturbation p(t), that is, e p (t) = e(t) + p(t). Here, e(t) refers to the input low frequency signal(s) defined as

e(t) = b cos(ω 1 t)δ + b cos(ω 1 t) + cos(ω 2 t) (1 -δ), (4.6) 
where the boolean variable δ allows to select the appropriate stimuli to investigate VR (δ = 1) or GVR (δ = 0). In eq. (4.6), the parameter b represents the low frequency amplitude whereas ω 1 and ω 2 are two close low angular frequencies whose difference will define the ghost angular frequency ω 0 . Therefore, in the whole chapter, we choose ω 1 and ω 2 so that they satisfy the classical setting to observe GVR, that is ω 1 = 2ω 0 and ω 2 = 3ω 0 . Lastly, in the input perturbed excitation e p (t) defined by eq. (4.5), p(t) stands for the high frequency perturbation which satisfies p(t) = B cos Ωt.

(4.7)

In expression (4.7), B and Ω are the perturbation amplitude and its angular frequency respectively.

Throughout this chapter, we consider the high angular frequency to be much greater than the low angular frequencies namely, Ω ω 1 and Ω ω 2 , which corresponds to the commonly used condition for achieving VR and GVR phenomena.

4.2.3/ NUMERICAL PROCEDURE

To study the dynamics of the system described by the set of eqs. (4.1), it is pertinent to first detail the numerical procedure which was used by Abirami et al when they considered a sawtooth nonlinearity [START_REF] Abirami | Vibrational and ghost-vibrational resonances in a modified Chua's circuit model equation[END_REF]. For each of the two types of nonlinearities defined by eqs. total number of samples. The corresponding integrating time step is therefore dt = ( 1000 2 22 )

2π ω i
, with ω i taken according to the angular frequency to be analyzed, that is ω i = ω 1 for the study of VR (δ = 1) and ω i = ω 0 , ω 1 or ω 2 for the study of GVR (δ = 0). When the perturbation amplitude B increases with step ∆B, last values of the system variables are considered as the initial conditions for the next simulation with amplitude B + ∆B, that is x(0) = x(T ), y(0) = y(T ) and z(0) = z(T ).

Lastly, the values of the output x(t) corresponding to the last 500 driving cycles are considered for all computations whereas the first 500 cycles are discarded as transient.

4.3/ VIBRATIONAL RESONANCE OCCURRENCE

In order to study VR, the boolean variable δ in eq. (4.6) is set to δ = 1. This reduces the input perturbed excitation e p (t) defined by eq. In this section, we study how the multistable nonlinearities defined by eqs. (4.3) and (4.4) affect VR.

Three different analyses are presented namely: temporal, frequency and phase portraits analyses.

In each of these analyses, responses of the system experiencing a truncated sinusoidal nonlinearity are compared with the responses of the system with a sawtooth nonlinearity. In this whole section, the constant parameters of the model α and β are taken as α = 6 and β = 16. Moreover, we set the amplitude of the low frequency to b =0.1, the low angular frequency to ω 1 = 1 and the perturbation angular frequency to Ω = 10ω 1 .

4.3.1/ TEMPORAL ANALYSIS

In this subsection, we study how the temporal response x(t) of the system experiencing the two different nonlinearities behave against the perturbation amplitude B. The time series analysis is conducted in such a way that, for each considered value of the perturbation amplitude B, we perform simulations starting from B = 0 with the step ∆B =0.01, saving the memory of the system each time until the chosen value of the perturbation B. 

= 1, k = 1, V 0 = π 32 , α = 6, β = 16, b =0.1, ω 1 = 1, Ω = 10ω 1 ,

4.3.3/ LINEAR RESPONSE ANALYSIS

The time series and the spectral analyses presented so far both signified the occurrence of VR in our systems. However, in the majority of studies, VR is usually studied by quantizing the spectral response at the low frequency f 1 to compute the linear response Q previously defined by eq. (3.9)

and recall hereafter:

Q = 2|X( f 1 )| b . ( 4.9) 
In eq. (4.9), b is the amplitude of the low frequency signal at the system input while 2|X( f 1 )| is its contribution at the system output. The definition (4.9) of the linear response Q expresses how a low frequency component in the output magnitude spectra is affected through the considered nonlinear systems by a high frequency perturbation. Therefore, through linear response Q, direct impact of a high frequency perturbation on a low frequency signal can be visualized more easily. Moreover, the analyses of the linear response Q will allow to better compare the impacts of the two proposed nonlinearities on VR occurrence.

Using the modus operandi given in Sec. 4.2.3, we integrate the system defined by the set of eqs. (4.1), first with our truncated sinusoidal force defined by eq. ( 4.3) and secondly, with the sawtooth force expressed by eq. (4.4). The resonance curve of Fig. 4.7 depicts the evolution of the linear response Q versus the perturbation amplitude B for the case of the system experiencing the truncated sinusoidal force with nonlinearity order n = 1. Here, we vary the perturbation amplitude B, first in the "forward direction", that is from B = 0 to B = 20, and then return in the "reverse direction" from B = 20 to B = 0. The resonance curves corresponding to the forward and reverse directions, for the system experiencing the truncated sinusoidal force are superimposed, as shown at Fig. 4.7.

The system then follows the same path in both directions and the resonance curves reveal two resonances which correspond to the number of unstable states in the system's potential well, that is n + 1. Increasing the perturbation amplitude B in the "forward direction", the first resonance gives the maximum response which decreases as the perturbation amplitude B keeps increasing.

In a similar way, considering the sawtooth nonlinearity with the order n = 1, we have obtained the resonance curves of Fig. 4.8, which was first reported in the work of Abirami et al [START_REF] Abirami | Vibrational and ghost-vibrational resonances in a modified Chua's circuit model equation[END_REF]. Fig. 4.8 confirms their work with our notation for the sawtooth force expressed in eq. ( 4.3): varying the perturbation amplitude B in the forward and returning in reverse direction, the system follows two different paths near the peak of each resonance. In the forward direction, the last resonance provides the system's maximum response contrary to the case of the truncated sinusoidal force presented in Fig. 4.7.

In comparison, the overall maximum response of our system with the truncated sinusoidal force in the forward direction is Q * =1.729, achieved for the optimal perturbation amplitude B * =4.10.

This is better than the maximum response obtained with the sawtooth force in the forward direction, that is Q * =1.587 at B * =9.81. Indeed, at Fig. 4.7, the system with our truncated sinusoidal force needs smaller perturbation amplitude B * =4.10 to reach its maximum response when compared to the system experiencing the sawtooth force at sinusoidal force and the sawtooth force respectively. In each case of Fig. 4.9, linear response Q is presented as a function of the nonlinearity order n and the perturbation amplitude B. In fact, both Fig. 4.9(a) and 4.9(b) show that there are always n + 1 resonances which correspond to the number of unstable states set by the system's potential. For each value of n in the case of the system experiencing the truncated sinusoidal force at Fig. 4.9(a), the first resonance always provides the maximum response, as depicted in Fig. 4.7 for n = 1. After the first resonance, the amplitude of the other observed resonances decreases as the perturbation amplitude B increases.

By contrast, at Fig. 4.9(b), for the system experiencing the sawtooth force, the first resonance is always the weakest one. Indeed, the response of the subsequent resonances increases with the perturbation amplitude B.

For the sake of clarity, we introduce Q * ,n m as the amplitude of the local maxima number m achieved by the linear response Q of a system with nonlinearity order n. To have another look of the general behavior of the system for each nonlinearity order n, we analyze the evolution of the local maxima Q * ,n m that the linear response Q reaches and which corresponds to the response peak number m of Fig. 4.9(a) and 4.9(b). We therefore present at Figs show that, whatever the nonlinearity order n, the first resonance is always the maximum response of our system after which, the magnitude of the m th local maxima decreases as the nonlinearity order n increases. However, performing the same analyses on the system experiencing the sawtooth force, set of Figs the intensity of the maximum linear response Q * ,n m at the peak of the m th local resonance increases as the nonlinearity order n increases.
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Note that, the maximum response Q * ,n m of the two systems from Figs. 4.10 and 4.11 tends to an asymptotic value Q a as the nonlinearity order n keeps increasing. The asymptotic value of the two systems response, which is indicated with the dashed-line on both plots of Fig. 4.10 and Fig. 4.11, is rounded to Q a =1.664. Therefore, it clearly appears that the advantage of the truncated sinusoidal nonlinearity is to provide the best response for the nonlinearity order n = 0, whereas to achieve the best resonance with the sawtooth force a greater nonlinearity order n must be considered.

The nonlinearity order n was shown to have directly controlled the number of resonances obtained in the two systems. However, we are now interested in exploring if n can enhance the system's local maximum response Q * ,n m . We study the dependence of the two systems' local maximum responses Q * ,n m on the nonlinearity order n, corresponding to the first, second, third and fourth maxima in Figs. [START_REF] Geisler | A stochastic model of the repetitive activity of neurons[END_REF].12(a), 4.12(b), 4.12(c) and 4.12(d) respectively. Circle-marked lines, which represent the response of the system submitted to the truncated sinusoidal force, are compared with the starmarked lines, which refer to the responses with the sawtooth force. As shown in all plots of Fig. 4.12, we understand that for each resonance, the maximum response Q * ,n m obtained in both the two systems does not significantly change due to the nonlinearity order n.

Furthermore, we can also understand from Fig. 4.12 that the responses of our system with the truncated sinusoidal force are more pronounced than those achieved with the sawtooth force. Lastly, as we are approaching the last maxima, the responses of the two systems tend to the asymptotic value Q a , as indicated by the dashed-lines in all the plots of Fig. 4.12.

4.3.4/ ANALYSIS BY PHASE PORTRAITS

In this part, by means of phase portraits, we analyze the dynamical behavior of the system induced by each of the two different nonlinearities. In particular, we investigate the evolution of the resonance curves presented at Figs. 4.7 and 4.8, which correspond to the responses of the system submitted to the truncated sinusoidal and sawtooth forces of order n = 1 respectively. For this nonlinearity order n = 1, according to our notations, the truncated sinusoidal and sawtooth forces present three stable states located at positions X * -2,1 = -1, X * 0,1 = 0, X * +2,1 = +1 and two unstable states at positions X * -1,1 = -0.5, X * +1,1 = +0.5. We analyze the phase portraits behavior for six selected points on each resonance curve of Figs. 4

.13, we start with B = 0 and perform five different simulations each of them starting with one of the initial conditions x(0) = -1, -0.5, 0, 0.5, 1 respectively, and y(0) = z(0) = 0. For each of these five simulations, the system exhibits periodic orbits which are centered around one of the stable or unstable positions of the system.

Therefore, setting the perturbation amplitude to B =1.5 at Fig. 4.13(a) gives rise to periodic orbits centered around the three stable positions X * -2,1 = -1, X * 0,1 = 0 and X * +2,1 = +1. This implies that the orbits for the two unstable positions: X * -1,1 = -0.5 and X * +1,1 = +0.5 are attracted to the neighboring stable states. Increasing the perturbation amplitude to B =3.5, the size of these periodic orbits increases, as shown at Fig. 4.13(b). At the peak of the first resonance of Fig. 4.7, which corresponds to B =4.13, the sizes of these three orbits increase further and the two adjacent orbits overlap the middle orbit. However, increasing the perturbation amplitude B beyond the peak of the first resonance, the linear response Q in Fig. 4.7 is decreasing. Consequently, we obtained two periodic orbits centered around the two unstable points. These orbits overlap at the bottom of the first resonance, that is when B =6.86, as presented in Fig. 4. 13(d). The sizes of these two orbits keeps increasing as the perturbation amplitude B increases until at the peak of the second resonance when B =9.38, the orbits coincide with each other as shown in Fig. 4.13(e). Lastly, for perturbation amplitudes beyond the second resonance of Fig. 4.7, there will be no other resonance. This leads to the birth of one periodic orbit centered about the stable position at X * 0,1 = 0. The size of this orbit increases as the perturbation amplitude increases, as depicted for B = 11 at Fig. 4.13(f). The phase portrait analyses presented at Fig. 4.13 illustrate that our system with the truncated sinusoidal force exhibits resonance effect when the perturbation To investigate the evolution of the hystereses depicted by the reverse direction resonance of Fig. 4.8, we present the phase portraits of Fig. 4.14(b) and 4.14(d). These phase portraits depict the orbits obtained from the forward and reverse simulations at the points of Fig. 4.8 where B =3.82 and B =9.03 respectively. For the perturbation B =3.82, which corresponds to the second peak of the reverse resonance of Fig. 4.8, forward simulation reveals three stable orbits (plotted in red) and reverse simulation reveals two unstable orbits (plotted in blue) as shown in Fig. 4.14(b). Moreover, two unstable orbits from the forward simulation and one additional stable orbit from the reverse simulation are also observed for B =9.03 as shown at Fig. 4.14(d). The additional orbits obtained in the reverse simulation for B =3.82 and B =9.03 signify the existence of hystereses in the system experiencing a sawtooth nonlinearity. Moreover, the phase portraits of Fig. 4.14 also illustrate VR effect induced by the perturbation amplitude B as previously revealed using the time series and frequency analyses in the system experiencing a sawtooth force.

4.4/ GHOST-VIBRATIONAL RESONANCE

In this section, we consider that the system is driven by two signals with close low angular frequencies ω 1 and ω 2 , corrupted by a high frequency perturbation of amplitude B and angular frequency Ω. By setting the boolean variable δ of the excitation e(t) defined by eq. (4.6) to δ = 1, the input perturbed excitation e p (t) defined by eq. (4.5) reduces to e p (t) = b cos(ω 1 t) + cos(ω 2 t) + B cos Ωt, (4.10) with ω 1 = 2ω 0 and ω 2 = 3ω 0 .

Especially, the gap ω 0 between the two input low angular frequencies ω 1 and ω 2 is fixed to ω 0 = ω 2ω 1 =0.1 and it constitutes the system's ghost angular frequency. Moreover, the amplitude of the low frequencies is set to b =0.04 while the perturbation angular frequency is tuned to Ω = 20ω 0 .

Lastly, we take the following values for the constant parameters α and β of the Chua's model: α = 4 and β = 14.

It is well known that VR and GVR effects consider a high frequency perturbation to enhance the detection of an input low frequency signals and a missing input low frequency signal respectively. These effects are induced when the perturbation amplitude B is considered as a control parameter while keeping the other parameters fixed. In this section, we propose to analyze the system response at the missing low angular frequency ω 0 and also at the two input low angular frequencies ω 1 and ω 2 to highlight GVR and VR phenomena in the Chua model experiencing the two proposed nonlinear forces. We first restrict our study to Chua model with nonlinearity order n = 0.

By using the simulation algorithm precised in Sec. 4.2.3, and considering the input perturbed excitation e p (t) defined by eq. (4.10), we integrate the system given by the set of eqs. (4.1) in the cases of the truncated sinusoidal and the sawtooth forces defined by eq. ( 4.3) and eq. (4.4) respectively.

For the system experiencing the truncated sinusoidal force, the resonance curves of Fig. 4.15 correspond to the evolution versus the perturbation amplitude B of the linear responses Q(ω 0 ), Q(ω 1 ) and Q(ω 2 ) estimated at the missing low angular frequency ω 0 and at the two input low angular frequencies ω 1 and ω 2 . Without perturbation, namely B = 0, the system's linear response Q(ω 0 ) at the missing low angular frequency ω 0 is null, contrary to the linear responses Q(ω 1 ) and Q(ω 2 ) at the two input low angular frequencies. However, as the perturbation amplitude B increases, the system reveals resonances at the missing low angular frequency ω 0 and at the two input low angular frequencies (ω 1 and ω 2 ) whose predominance can be identified within different ranges of the perturbation amplitude B. In the first resonance region, where the perturbation amplitude B is in the range [0.560; 0.597], we observe an enhancement of the system's linear response Q(ω i ) at the three input angular frequencies ω 0 , ω 1 and ω 2 . Moreover, the linear response Q(ω 0 ) at the missing angular frequency ω 0 is the predominant one. However, for the perturbation amplitude B in the perturbation amplitude B (arbitrary unit) 

n = 0, k = 1, V 0 = π 32 , α = 4, β = 14, b =0.04, ω 0 =0.1, ω 1 = 2ω 0 , ω 2 = 3ω 0 , Ω = 20ω 0 , B =0.561, ∆t =0.0015.
0.597], Fig. 4. 16(a) shows that the enclosed signal at the ghost angular frequency ω 0 synchronizes with the slow oscillations of the time series. In addition, the corresponding unilateral magnitude spectrum at Fig. 4.17(a) also confirms that the amplitude of the spectrum 2|X( f 0 )| at the ghost angular frequency ω 0 is best pronounced in this particular region.

By contrast, the system's temporal response of Fig. 4.16(b) and its corresponding spectra of Fig. 4.17(b) have been obtained for the perturbation amplitude B from the second resonance region,

where VR effect at the angular frequency ω 1 is the best pronounced resonance. In this resonance region, for which the perturbation amplitude B is in the range [0.598; 0.619], the chronogram of Fig. 4. 16(b) shows that the slow oscillations of the temporal response are in phase with the superimposed sinusoidal wave of angular frequency ω 1 . Moreover, the corresponding spectrum at Fig. 4.17(b) confirms that the response of the system at the angular frequency ω 1 is the predominant one.

In the last resonance region of Fig. 

: k = 1, V 0 = π 32 , α = 4, β = 14, b =0.04, ω 0 =0.1, ω 1 = 2ω 0 , ω 2 = 3ω 0 , Ω = 20ω 0 , ∆B =0.01, ∆t =0.0015.
illustrates the predominance of VR at the angular frequency ω 2 , since the slow oscillations of the temporal response synchronize with the superimposed sinusoidal wave at the angular frequency ω 2 . Furthermore, the corresponding spectrum at Fig. 4.17(c) proves that the system's response at the angular frequency ω 2 is the best pronounced one. Similarly, the time series of Fig. 4.16(d) and the associated spectrum at Fig. 4.17(d), obtained for B =0.629, refer to the predominance of VR effect at the angular frequency ω 1 .

These resonance behaviors of the system submitted to the truncated sinusoidal force were not obtained in the case of the system experiencing a sawtooth force, for the considered parameter settings. Indeed, our simulation of the system with the sawtooth force reported at Fig. 4.18, confirms the behavior observed by Abirami et al [START_REF] Abirami | Vibrational and ghost-vibrational resonances in a modified Chua's circuit model equation[END_REF] where: varying the perturbation amplitude B induces all the resonance effects in the same perturbation range [0.652; 0.708], with the linear response Q(ω 0 ) at the ghost angular frequency ω 0 predominant in the whole region. Note that, the system experiencing the sawtooth force can also exhibits the behavior which has been reported at Fig. 4.15 in the case of the truncated sinusoidal force. However, in this regard, it is necessary to change the system parameters such as the nonlinearity order n, the low frequencies amplitude b and the perturbation angular frequency Ω.

Concerning the system submitted to the truncated sinusoidal force, the separation of the different resonance effects in distinct ranges of perturbation amplitude B, is not restricted to the nonlinearity order n = 0. Indeed, for the nonlinearity orders n presented at Fig. 4.19, namely n = 1, 2, 3, 4 On the other hand, Fig. 4.20 reveals the system's response when submitted to the sawtooth force for the nonlinearity orders n = 1, 2, 3, 4 and 5. Contrary to the responses reported at Fig. 4.18 for n = 0, system's response at other input low frequencies can be predominant when the nonlinearity order n increases. Similarly, the same trend is observed for each corresponding resonance, whatever the nonlinearity order n.

4.5/ CONCLUSION

In this chapter, we have considered the dynamics of a modified Chua's circuit model, experiencing a truncated sinusoidal force and driven by a perturbed input excitations: low frequency signal(s) corrupted by a high frequency perturbation. In particular, we studied the impact of the system's nonlinearity on the occurrence of Vibrational Resonance (VR) and Ghost-Vibrational Resonance (GVR) phenomena. VR effect refers to the enhancement of an input low frequency signal at the system's output, by a high frequency perturbation. However, high frequency perturbation induces resonance at a missing (ghost) input low frequency in the case of GVR effect. In the previous work of Abirami et al devoted to this Chua system, VR and GVR were studied by considering a sawtooth nonlinearity [START_REF] Abirami | Vibrational and ghost-vibrational resonances in a modified Chua's circuit model equation[END_REF]. In the present work, we analyzed the impact of the system's nonlinearity on the occurrence of VR and GVR, since we compared the system responses obtained with the truncated sinusoidal force and those with the sawtooth force. Consequently, we maintained the same parameters settings, namely, the same potential barrier height and potential periodicity in both the two systems.

Our VR studies in the system experiencing the truncated sinusoidal force revealed multiple resonances whose intensity reduces as the perturbation amplitude B increases. As initially reported by Abirami et al [START_REF] Abirami | Vibrational and ghost-vibrational resonances in a modified Chua's circuit model equation[END_REF], our simulations with the sawtooth force also revealed multiple resonances.

However, we have established that the intensity of the first resonance is the weakest one. More precisely, contrary to the truncated sinusoidal force, the intensity of the local maxima increases with the perturbation amplitude B. On the other hand, we have shown that the number of resonances obtained with both nonlinearities is controlled by their order n which also represents the number of unstable states in the system.

It is interesting to remark that, the system submitted to the truncated sinusoidal force requires smaller perturbation amplitude B to reach its maximum response. Consequently, it is less energy consuming when compared to the system experiencing a sawtooth force, which requires relatively larger perturbation amplitude B to attain its maximum response. In addition, as the nonlinearity order n in both the two systems keeps increasing, the response of the two systems approaches an asymptotic value Q a which for our parameters setting has been rounded to Q a =1.664.

Next, in the case of the truncated sinusoidal force, we have interpreted the multiple resonances observed by means of phase portraits analyses. For a weak value of the perturbation amplitude B, our system revealed orbits with small amplitudes, each centered around one of the stable positions of the system's potential. Increase in the size of the existing orbits refers to the enhancement in the system's linear response Q, when the perturbation B varies. At the peak of each resonance, the existing adjacent orbits overlap with each another. However, increasing the perturbation amplitude B beyond the peak of each resonance, one of the existing orbits disappeared. After the peak of the last resonance, the system revealed just one orbit whose size increases with the increase of the perturbation amplitude B. In a similar way, phase portraits corresponding to the system submitted to sawtooth force also followed the same trend as in the case of the system experiencing the truncated sinusoidal force. However, additional orbits were revealed at the peaks of the reverse direction resonances, which explained the existence of hystereses induced by the system experiencing a sawtooth force.

Exciting the system experiencing the truncated sinusoidal nonlinearity with two close low frequency signals, we have established that a high frequency perturbation can induce resonances at the two input low angular frequencies ω 1 and ω 2 , together with another resonance at a missing input low angular frequency ω 0 . The predominance of these resonances can be identified each in a specific range of the perturbation amplitude B. In the first range of the perturbation amplitude, the system's response at the missing low angular frequency ω 0 emerged as the best pronounced resonance which indicates a strong manifestation of GVR effect. Another resonance region is defined by a second range of the perturbation amplitude B where the system's linear response at the low angular frequency ω 1 is the strongest. It corresponds to the occurrence of VR effect at the low angular frequency ω 1 . In the last region, obtained for a third range of perturbation amplitude B, VR effects at the low angular frequencies ω 2 and ω 1 interchangeably became the dominant resonances. Our temporal and spectral analyses also confirmed which resonance is the most pronounced one since the observed chronograms has revealed that the system can synchronize its response with the ghost frequency or one of the two input low frequencies. In fact, it depends on which of the previously established ranges the perturbation amplitude B is taken.

By contrast, for the system experiencing the sawtooth force, all the resonance effects occurred in only one specific range of the perturbation amplitude B, with the GVR as the predominant resonance throughout. As obtained from the study of the system with the truncated sinusoidal nonlinearity, the system experiencing a sawtooth nonlinearity can also reveal the predominance of different resonance effects in the distinct ranges of the perturbation amplitude B. However, this is possible through varying the system parameters such as the nonlinearity order n, the low frequencies amplitude b and the perturbation angular frequency Ω.

As we have shown that Chua's circuit model with the truncated sinusoidal nonlinearity provided a better response than with the sawtooth nonlinearity, we suspect that it could be interesting to analyze in the same way, the impact of the nonlinearities in other systems. It could lead to optimized application of signal detection in engineering fields. In the two previous chapters, we have studied the effect of Vibrational Resonance (VR) in the context of one-dimensional signals. This chapter extends the investigation to applications of VR in two-dimensional signals which consist of images. Precisely, we study the application of VR in subthreshold noisy images perception.

APPLICATIONS OF VIBRATIONAL RESONANCE ON SUBTHRESHOLD IMAGES

5.1/ INTRODUCTION

The analyses of the dynamics of nonlinear systems, especially their response to external input stimuli, has revealed a lot of fascinating applications. For instance, the famous Stochastic Resonance (SR) effect, where nonlinear systems take benefit of an external random perturbation to enhance their response [START_REF] Gammaitoni | Stochastic resonance[END_REF], has drawn considerable attention and revealed applications in different contexts such as image processing, visual perception and signals dithering. Indeed, parameter induced SR, which was first investigated in one-dimensional signals in the field of signal processing [START_REF] Xu | Comparison of aperiodic stochastic resonance in a bistable system realized by adding noise and by tuning system parameters[END_REF][START_REF] Xu | Stochastic resonance with tuning system parameters: the application of bistable systems in signal processing[END_REF], was later extended to two-dimensional signals to develop image processing tasks [START_REF] Yang | An investigation of two-dimensional parameterinduced stochastic resonance and applications in nonlinear image processing[END_REF][START_REF] Dylov | Nonlinear self-filtering of noisy images via dynamical stochastic resonance[END_REF][START_REF] Dylov | Nonlinear restoration of diffused images via seeded instability[END_REF][START_REF] Sun | Nonlinear restoration of pulse and high noisy images via stochastic resonance[END_REF][START_REF] Feng | Reconstruction of noisy images via stochastic resonance in nematic liquid crystals[END_REF]. In the field of pattern recognition, potential applications of SR in biometric identification has been investigated, where the extraction of low-quality fingerprint images was enhanced [228]. Indirect techniques of noise induced improvement (SR) has revealed applications in images contrast enhancement [START_REF] Chouhan | Enhancement of dark and low-contrast images using dynamic stochastic resonance[END_REF][START_REF] Chouhan | Enhancement of low-contrast images by internal noise-induced fourier coefficient rooting[END_REF], in improving magnetic resonance as well as ultrasound images in the context of medical images analyses [START_REF] Rallabandi | Enhancement of ultrasound images using stochastic resonance-based wavelet transform[END_REF][START_REF] Rallabandi | Magnetic resonance image enhancement using stochastic resonance in Fourier domain[END_REF]. It was also shown that, the noise enhanced properties of a nonlinear system can find applications in the context of image denoising and edge preserving [START_REF] Morfu | Nonlinear systems for image processing[END_REF][START_REF] Perona | Scale-space and edge detection using anisotropic diffusion[END_REF][START_REF] Histace | Noise-enhanced nonlinear PDE for edge restoration in scalar images[END_REF][START_REF] Histace | Useful noise effect for nonlinear PDE based restoration of scalar images[END_REF].

In another important scenario, it was revealed that adding an appropriate amount of noise to subthreshold images can enhance their perception through a simple threshold detector [START_REF] Simonotto | Visual perception of stochastic resonance[END_REF][START_REF] Ditzinger | Noise improves three-dimensional perception: Stochastic resonance and other impacts of noise to the perception of autostereograms[END_REF][START_REF] Piana | Role of noise in image processing by the human perceptive system[END_REF].

Moreover, at the acquisition process level of human vision, it has been established that spatiotemporal random fluctuations can enhance visual perception in a basic model of a retina [START_REF] Zozor | Does eye tremor provide the hyperacuity phenomenon?[END_REF][START_REF] Itzcovich | Stochastic resonance improves vision in the severely impaired[END_REF].

On the other hand, in the field of signal processing and during signal quantization, it is interesting to note that adding external perturbation was reported to reduce unavoidable loss of information and distortion which mainly occurred due to quantization error [START_REF] Limb | Design of dither waveforms for quantized visual signals[END_REF][START_REF] Jayant | The application of dither to the quantization of speech signals[END_REF]. This induced effect, rather called dithering, is normally applied to suprathreshold signals where the added dithering signal is often subtracted after the quantization, contrary to SR effect [START_REF] Mcdonnell | Stochastic resonance: from suprathreshold stochastic resonance to stochastic signal quantization[END_REF]. Concerning image quantization, among the dithering algorithms, ordered dithering, which consists of adding coherent patterns to the initial image before quantization, was reported to be more efficient than random dithering which uses noisy patterns [START_REF] Limb | Design of dither waveforms for quantized visual signals[END_REF]. Motivated by this fact, one may wonder if processes based on nonlinear resonances which use ordered perturbations, like VR, would be more efficient than processes which use noisy perturbations, like SR. This constitutes the content of this chapter which addresses the open question of the contribution of VR to subthreshold images perception through threshold detectors.

In this chapter, at Sec. 5.2, we first introduce a threshold detector which can be perturbed by noise to take benefit of stochastic resonance or by a high frequency spatial signal to take advantage of the enhancement induced by VR. Next, In Sec. 5.3, we highlight the limitations of stochastic resonance based detector in terms of subthreshold image perception. In Sec. 5.4, we introduce a particular spatial high frequency perturbation to show how VR overcomes the limitation of SR. Unlike classical studies which usually consider the amplitude of the perturbation as a control parameter, we also analyze the impact of the perturbation frequency in terms of image perception. We then close this chapter with concluding remarks and outlooks.

5.2/ THE DETECTOR AND ITS SET-UP

5.2.1/ INPUT OF THE DETECTOR

To perform our study, we use the noiseless images of size N × N pixels represented in Fig. 5.1 and whose gray levels evolve from 0 (black) to 1 (white). As shown in Fig. 5.1 where the scales of the images have been respected, we propose different image sizes N 2 ranging from N 2 = 64 2 pixels to N 2 = 512 2 pixels. Each of these images I is then corrupted by an additive white noise of root mean square σ to generate the noisy image I b according to:

I b i, j = I i, j + ση i, j , with i = 1, 2, , N and j = 1, 2, , N, (5.1) 
where I i, j denotes the gray level of the pixel of coordinates i, j and η i, j represents the unity gaussian variance stochastic process with autocorelation 

η i, j , η i , j = δ(i -i )δ( j -j ) (5.

5.2.2/ THE RESONANT THRESHOLD DETECTOR

The resonant detector, which is simulated in this chapter, is described at Fig. 5.3. The noisy image input I b of the threshold detector is first corrupted with an additive perturbation P which corresponds to noise in the case of a stochastic resonance based detector, while for a vibrational resonance based detector, P corresponds to an additive high frequency perturbation. Indeed, as shown at Fig. 5.3., a switch selects with a control c the appropriate perturbation between noise and high frequency sine spatial signal. The pixels gray levels I P i, j of the perturbed image I P are produced by adding the perturbation P to the noisy image I b , thus they obey to:

I P i, j = P i, j + I b i, j , with i = 1, 2, , N and j = 1, 2, , N (5.3) 
More precisely, if we introduce c as a switch control which takes the boolean value c = 0 for stochastic resonance or c = 1 for vibrational resonance, the perturbation added to each pixel of the noisy image I b is defined by:

P i, j = c × A cos 2πi jN HF N 2 + ϕ i, j + (1 -c) × γη i, j with i = 1, 2, , N and j = 1, 2, , N (5.4) 
According to the value of the switch command c, the device which has been designed corresponds to:

• A stochastic resonance based detector (SR-detector) when c = 0. Indeed, in eq. (5.4), the perturbation is the random term consisting of the unitary variance gaussian process η i, j multiplied by the noise root mean square amplitude γ. In this case, the detector can be optimized by tuning the noise intensity γ of the perturbation.

• A vibrational resonance based detector (VR-detector) when the switch control is set to c = 1.

In this case, the perturbation reduces to the high frequency cosine term of amplitude A, initial phase ϕ i, j and frequency adjusted with integer N HF . In particular, the initial phase ϕ i, j is chosen randomly in a spatial gaussian distribution with standard deviation σ ϕ =0.3π, that is ϕ i, j = σ ϕ ζ i, j where ζ i, j is a gaussian unitary variance process. Note that, in this chapter, we propose to investigate how the detector can be optimized by tuning the perturbation parameters, namely its amplitude A but also its spatial frequency which is adjusted with N HF .

In Fig. 5.3, the detector processes the perturbed image I P to produce the output black and white image T by performing a threshold filtering with threshold V th according to the following rules:

if I P i, j > V th , T i, j = 1 (white level) else T i, j = 0 (black level) (5.5) 
Moreover, the threshold detector used in eq. (5.5) is chosen such that the unperturbed image I b remains subthreshold, that is not detectable by the detector without the help of the perturbation P.

For all the results presented in this article, to ensure this condition, we use V th =1.2.

Lastly the performance of the detector is quantified by a measurement of similarity between the initial image I and the black and white detected image T . More precisely, we use the cross-covariance which constitutes a fairly appropriate measurement of similarity between two images [START_REF] Rousseau | Structural similarity measure to assess improvement by noise in nonlinear image transmission[END_REF][START_REF] Morfu | Nonlinear systems for image processing[END_REF][START_REF] Feng | Reconstruction of noisy images via stochastic resonance in nematic liquid crystals[END_REF].

This cross-covariance between image I and T is defined by:

C I,T = (I -I )(T -T ) (I -I ) 2 (T -T ) 2 , (5.6) 
where corresponds to an average over the whole image, that is an average across all the image pixels. Moreover, the cross-covariance defined by eq. (5.6) was numerically estimated by an average over a sufficient number of realizations of the noisy process.

5.3/ STOCHASTIC RESONANCE BASED DETECTOR

The switch of the detector of Fig. 5.3 takes the value c = 0 such that the perturbation is a noise source of Root Mean Square RMS amplitude γ. Therefore, in the case of a SR-detector, the perturbation defined by expression (5.4) reduces to P i, j = γη i, j with i = 1, 2, , N and j = 1, 2, , N

The black and white images T perceived by the detector are presented at Fig. Indeed, the information is better perceived through the threshold detector for this optimal noise intensity γ =0.5 at Fig. This is a qualitative signature of stochastic resonance, where an appropriate amount of noise enhances the response of a nonlinear system to a coherent input information. This effect is usually revealed by a quantitative performance measure of the system output which exhibits a resonance at an optimal RMS noise amplitude γ * . The choice of the performance measure to highlight SR most often depends on the input signal and the context of applications. For instance, the signal to noise ratio is more appropriate for periodic signals, while for aperiodic signals the mutual infor- mation, the channel capacity, the probability of error [START_REF] Chapeau-Blondeau | Noise-enhanced capacity via stochastic resonance in an asymmetric binary channel[END_REF][START_REF] Bulsara | Threshold detection of wideband signals: A noise-induced maximum in the mutual information[END_REF][START_REF] Kish | Information transfer rate of neurons: stochastic resonance of shannon's information channel capacity[END_REF][START_REF] Amblard | Revisiting the asymmetric binary channel: joint noise-enhanced detection and information transmission through threshold devices[END_REF] or the cross-covariance are rather preferred. In our case, we choose the cross-covariance C I,T defined by eq. ( 5.6) since it is commonly used in the context of image processing [START_REF] Rousseau | Structural similarity measure to assess improvement by noise in nonlinear image transmission[END_REF][START_REF] Morfu | Nonlinear systems for image processing[END_REF] where images are rather aperiodic bidimensional signals. For the proposed image of Saturn, the cross-covariance C IT is plotted with crosses against the noise level γ at Fig. 5.5.(a) when the detector threshold V th is set to V th =1.2.

The curve exhibits a non monotonous behavior versus the noise intensity γ, which is a classical SR signature. Indeed, such a typical bell shaped curve indicates that there exists an optimal value of the noise γ * which optimizes the system response. Note that, this optimal noise level γ * is γ * =0.5, and also corresponds to the noise level used in Fig. 5.4. (b) to obtain qualitatively the best image perception. Usually, the optimal performances of the system are strongly affected by the threshold of the detector. Especially, the gap between the subthreshold information signal and the threshold significantly affects the optimal performance that can be achieved by the system with the help of noise. To illustrate this feature, we have also plotted at Fig. 5.5. (a) the cross-covariance for two other values of the threshold V th , namely V th =1.05 plotted with circles and V th =1.4 plotted with diamonds. When the threshold is reduced, we observe that the optimal noise γ * =0.4 provides a better cross-covariance C I,T , while increasing the threshold to V th =1.4 involves a weaker crosscovariance. The curves presented for the three threshold values show that the more the image is far from the threshold, the less the perception of good quality image. Moreover, in the same time, a greater noise level is required to optimize the system.

This fact can be visually confirmed if we compare the images perceived through the detector for each optimal noise intensity γ * corresponding to each of the three considered thresholds, namely γ * =0.4 for V th =1.05, γ * =0.5 for V th =1.2 and γ * =0.65 for V th =1.4. These images are reported at Fig. 5.5. (b), (c) and (d). It is clear that the best perception is achieved for the weakest threshold and that the quality of the perceived image decreases as the initial image is far from the threshold detector. Note that, in the whole article and in all that follows, we restrict our study to the intermediate value of the threshold V th =1.2.

We have also analyzed the perception of the other initial images of Fig. 5.1 whose size N 2 ranges from N 2 = 64 2 pixels to N 2 = 512 2 pixels. Our results are summarized at Fig. 5.6. For all the considered initial images, a stochastic resonance type curve is observed for the evolution of the cross-covariance against the RMS noise level γ. Moreover, for each of the initial images of Fig.
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.1, we propose in subfigures 5.6. (bd) the best image perceived when the noise intensity is tuned to the noise level γ * which maximizes the cross-covariance. Except for the first image of the Coloseum, stochastic resonance reveals quite fairly the information contained in each subthreshold initial image. In fact, the effect is less pronounced for the image of the Coloseum owing to its very low resolution of N 2 = 64 2 pixels which is not the most appropriate resolution to observe image details. Note that, we have reported in table 5.1 all the necessary features of our SR-detector, that is for each initial image: the image size , the optimal noise intensity γ * and the best value of the cross-covariance C I,T achieved for γ = γ * . This values will be of crucial interest to develop the VR-detectors presented in the next section. We observe that the quality of the perceived image decreases as the noise level of the initial image increases. In fact, it is not surprising since the maxima of the cross-covariance also reduces with increasing values of noise at Fig. We also propose to analyze if the image resolution N 2 impacts the performances of the VR-detector.

Therefore, we consider the other images of Fig. 5.1 with the same level of noise ranging from σ =0.1 to σ =0.75. The cross-covariances have been estimated against the amplitude of the perturbation A, while the spatial normalized perturbation frequency remains N HF /N 2 = 1/4. Our results for the first image representing the Coloseum are reported at Fig. 5.9 with N HF = 2 10 since N 2 = 2 12 . First, we recall from Table 5.1 that the optimal noise value γ * which maximized the SRdetector was γ * =0.39 with a maximal value of the cross-covariance C I,T (γ * ) =0.274. is very poor, it requires a weaker amplitude of the perturbation A * for greater noise intensity σ to achieve the best performance. One may wonder if the normalized spatial frequency N HF /N 2 of the perturbation would have an impact on the performances achieved by the detector. It is the aim of the next subsection for which table 5.2 will constitute a reference.

5.4.2/ FREQUENCY OPTIMIZED VR-DETECTOR

We now consider that the spatial normalized frequency N HF /N 2 of the perturbation evolves, while the amplitude of the perturbation A remains constant. Our study concerning the effect of the perturbation frequency has been carried out for the five following constant perturbation amplitudes A:

0.1, 0.6, 0.8, 0.95 and 1.4. It is an appropriate choice to obtain a fairly good overview of the system behavior. Indeed, these values include the optimal amplitudes A * which have been introduced in the previous subsection at table 5.2 to maximize the perception of the images when the normalized spatial frequency was set to N HF /N 2 = 1/4. To complete the general set-up, the noise intensity σ of the noisy image I b at the input of the VR-detector is adjusted to the value which was used at the input of the SR-detector, namely σ =0.1. It allows to directly compare the performance between the two detectors in terms of image perception.

First, we analyze how the perturbation frequency influences the perception of the Saturn image through the VR-detector. For each value of the perturbation amplitude, the cross-covariance has been computed versus the normalized perturbation frequency N HF /N 2 . For a sake of clarity, our results are presented at Fig. 5.12.(a) where we have used a log 2 scale for the horizontal axis.

We remark that the curve plotted with circles and which has been obtained with the perturbation amplitude A =0.95 always remains beyond the other curves. It means that for this amplitude of the perturbation, the detector provides the best performance whatever the frequency of the perturbation.

Of course, this specific value of the perturbation amplitude also corresponds to the optimal value A * which was introduced in the previous section in table 5.2 to optimize the VR-detector versus the amplitude at constant frequency. Moreover, for the perturbation amplitudes below A * , namely A =0.8 (squares), A =0.6 (crosses) and A =0.1 (diamonds), the corresponding cross-covariance curves are ranked one on top of the others from the weakest amplitude A to the greatest one. By contrast, when the perturbation amplitude is set to A =1.4 and exceeds A * , the cross-covariance curve plotted with stars is always below the curve obtained with the optimal setting A = A * . This specific behavior indicates that irrespective of the perturbation frequency, the evolution of the crosscovariance versus the perturbation amplitude A follows the typical bell shaped curves presented in the previous section and which constitutes the signature of vibrational resonance.

On the other hand, the perturbation frequency directly impacts the quality of the perceived image since all cross-covariance curves share the same feature: whatever the considered amplitude A of the perturbation, the cross-covariance monotonously grows with the frequency until it saturates to a maximum value reached for the optimal normalized frequency N * HF /N 2 = 1. The perturbation frequency N HF is then optimally set to N * HF = N 2 which corresponds to the value of the image resolution. Note that, when the perturbation frequency N HF exceeds this optimal frequency N * HF , . The best perception of the Saturn image is achieved when the cross-covariance saturates to C I,T =0.749, that is when the perturbation is tuned to the optimal amplitude A * =0.95 and when its frequency is greater than the optimal value N * HF = N 2 = 2 14 .

the wavelength of the perturbation becomes shorter than the interpixel distance leading to the saturation of the cross-covariance. In summary, the best perception of the Saturn image is achieved when the perturbation amplitude A matches A * =0.95 and when the perturbation frequency exceeds N * HF = N 2 = 2 14 . Indeed, if we visually analyze the images obtained for the optimal amplitude A * =0.95, and presented for various frequencies at Figs. 5.12.(bd), there is no doubt that tuning the detector with the optimal frequency N * HF better enhances the image perception. Moreover, for the other frequencies chosen below the optimal value N * HF at Figs 5.12.(bc), we can note that the information can also be perceived. However, as observed for the weakest frequency at Fig. 5.12.(b), the perturbation also dominates the threshold crossing events and induces the lost of some image details.

Next, we have performed the test bench of our VR-detector by using the other images. The frequency analysis is reported at Fig. 5.13 for the image of the Coloseum whose resolution is the weakest, namely N 2 = 64 2 pixels. To comment the results, it is necessary to recall that in the previous section, we have established the exact value of the optimal perturbation amplitude A * that maximizes the cross-covariance at constant frequency. This value, A * =0.6, is one of the considered amplitudes used to plot the cross-covariance versus the perturbation frequency at Fig. . The best perception of the Coloseum image is achieved when the cross-covariance saturates to C I,T =0.562, that is when the perturbation is tuned to the optimal amplitude A * =0.6 and when its frequency is greater than the optimal value N * HF = N 2 = 2 12 .

the case of the Coloseum image, the cross-covariance saturation occurs for all perturbation amplitudes, when the frequency N HF exceeds the optimal value N * HF = 2 12 which exactly matches the image resolution N 2 = 2 12 pixels. Therefore, as visually presented at Fig 5 .13.(bd) for different perturbation frequencies, the best quality of perception is achieved when the perturbation of the VR-detector is optimally tuned with the amplitude A * =0.6 and the frequency N * HF = 2 12 .

Lastly, for the images of the Cameraman and Lena, which are displayed at Fig. 5.14 and 5.15, the cross-covariance follows the same trend and, therefore, do not alter the conclusion previously drawn with the images of Saturn and the Coloseum. Indeed, in the case of the Cameraman picture with resolution N 2 = 2 16 pixels, the cross-covariance saturates for the optimal frequency N * HF = 2 16 whatever the perturbation amplitude. Similarly, for the Lena image of resolution N 2 = 2 18 pixels, the saturation of the cross-covariance appears at frequencies N * HF = 2 18 . Moreover, for both images, the cross-covariance obtained for the optimal amplitude A * always remains the greatest irrespective of the perturbation frequency. Therefore, the existence of the classical vibrational resonance phenomenon for all the considered frequencies is clearly established whatever the considered image. d), to obtain the best perception enhancement of subthreshold images, it is confirmed that the perturbation must be adjusted with the optimal amplitude A * and the optimal frequency N * HF = N 2 . Indeed, the more the frequency is far from the optimal value N * HF = N 2 , the more the crossing threshold events are governed by the perturbation rather than the subthreshold image. It involves a qualitative lost of the image details when the frequency is too weak compared to the optimal value N * HF = N 2 . Lastly, we quantitatively compare at table 5.3 the performances . The best perception of the Lena image is achieved when the cross-covariance saturates to C I,T =0.546, that is when the perturbation is tuned to the optimal amplitude A * =0.8 and when its frequency is greater than the optimal value N * HF = N 2 = 2 18 .

Whatever the image and its resolution, the VR-detector clearly outperforms the SR-detector even if the perturbation frequency is not optimally tuned to N * HF but to N HF = N 2 /4. and N HF = 2 14 and N * HF = 2 18 

5.5/ CONCLUSION

In this chapter, we have first reviewed some applications of nonlinear resonances in the context of image processing and visual perception. Next, we have focused our study on the perception through a threshold detector of subthreshold noisy images which have different resolutions. The main feature of this detector is to use a perturbation whose parameters can be tuned to provide the best perception of the input subthreshold image whose noise level is σ.

When the perturbation corresponds to noise, the well-known stochastic resonance phenomenon takes place: there exists an optimal intensity of noise γ * which optimizes the perception of the information contained in the noisy subthreshold input image. Indeed, using the cross-covariance C I,T as a measure of the similarity between the initial image I and the perceived image T , we have determined this optimal level of noise γ * . We have shown that this specific noise value also corresponds to the critical noise intensity of the input image beyond which a spatial high frequency perturbation fails to retrieve the information of the subthreshold image. However, for images with a noise level below the critical value γ * , considering a high frequency perturbation instead of noise gives rise to the vibrational resonance phenomenon: similar to stochastic resonance, there exists an appropriate setting of the perturbation parameters which provides the best perception of the subthreshold image. We have first characterized this VR-detector at constant frequency versus the amplitude of the perturbation to highlight that an optimal amplitude A * of the perturbation maximizes the cross-covariance. It has led to a better enhancement of the visual perception through the detector than with the SR-detector. Next, we have analyzed the impact of the spatial frequency N HF of the perturbation when its amplitude A remains constant. It has been established that whatever the perturbation frequency N HF , the amplitude which provides the best visual perception through the detector is always the same, namely A * . Therefore, we have set the perturbation amplitude to this optimal value and considered different spatial frequencies of the perturbation. By considering different input subthreshold images with different sizes N 2 , we have established that the crosscorrelation coefficient C I,T , which quantizes the quality of the perceived image, saturates when the frequency exceeds the image resolution, namely N 2 . Therefore, we have clearly established that the vibrational resonance detector must be tuned with a perturbation of optimal amplitude A * and spatial frequency N HF greater than the image resolution N 2 . Using this optimal setting, the vibrational resonance detector clearly outperforms the stochastic resonance detector provided that the noise of the input images is below γ * .

In our work, we have restricted our study to spatial perturbations. It could be also interesting to consider spatio-temporal perturbations, i.e. perturbations which also evolve versus time. Indeed, as reviewed in the case of stochastic resonance, such spatio-temporal perturbations have revealed a rich variety of applications in perceptual decision-making [START_REF] Itzcovich | Stochastic resonance improves vision in the severely impaired[END_REF][START_REF] Van Der Groen | Transcranial random noise stimulation of visual cortex: stochastic resonance enhances central mechanisms of perception[END_REF][START_REF] Moret | Differential effects of high-frequency transcranial random noise stimulation (hf-tRNS) on contrast sensitivity and visual acuity when combined with a short perceptual training in adults with amblyopia[END_REF] and have also accounted for the process of perception by the retina [START_REF] Zozor | Does eye tremor provide the hyperacuity phenomenon?[END_REF]. More generally, as reported in the case of our detector, we trust that vibrational resonance based strategies could provide better results in various fields where stochastic resonance is used. Lastly, this work might constitute a starting point for further investigations of more complex detectors which could induce applications in the area of image processing. 

6.1/ CONCLUSIONS

In this thesis, we have numerically investigated resonance induced phenomena in nonlinear systems and their applications to information processing. In particular, this thesis focused on Vibrational Resonance (VR), Ghost-Vibrational Resonance (GVR) and Stochastic Resonance (SR). Consequently, the introductory part of this manuscript consists of a brief overview on the most famous resonance induced effects in nonlinear systems. Our first two analyses studied VR and VR/GVR in mechanical oscillators and Chua's circuit model respectively. Moreover, our last analysis concerned the study of the application of VR in subthreshold noisy images perception. Indeed, the major takeaway and the findings of each study are concluded as follows:

• In our first analysis, we considered the dynamics of a particular nonlinear mechanical system describing the motion of a particle of a given mass experiencing a multistable potential and driven by a low frequency signal corrupted by a high frequency perturbation. More precisely, our research has mainly addressed VR occurrence when the particle mass and the damping parameters are jointly considered as control parameters. We studied the dynamics of the system with two different damping coefficients: firstly, constant damping coefficient and secondly, nonlinear space-dependent damping coefficient. In both the two cases of the damping, we begin by studying the impact of the damping coefficients on VR occurrence for a unitary particle mass. Lastly, we studied the combined impact of varying the particle mass and parameters of the damping coefficients on VR occurrence.

In the first case of constant damping and for the unitary particle mass, vibrational multiresonance effect controlled by the constant damping amplitude is revealed. Best system's re-sponses are achieved by the first resonances and for the smallest constant damping amplitude. Moreover, considering the particle mass as a control parameter, the system revealed two different behaviors one of which VR ceased to exist because the best system's response is obtained when the perturbation is null. Therefore, we have highlighted the existence of a critical value of the particle mass below which VR phenomenon occurred and beyond which it failed to exist.

For the case of the system experiencing nonlinear dissipation and unitary particle mass, vibrational multiresonance controlled by the nonlinear dissipation parameters is revealed.

Similarly, considered dissipation parameters revealed best response at the first resonance which are better than the responses obtained in the same system but with the constant dissipation. Furthermore, considering the particle mass as a control parameter for each considered nonlinear dissipation parameters, the system revealed two different behaviors, one of which VR phenomenon ceased to exist.

By comparison, we found that, responses obtained in the case of the system experiencing nonlinear damping are better than those achieved for the case of the system experiencing constant damping. Moreover, the considered nonlinear damping allowed to control the response of the system from its multiple parameters unlike the case of constant damping where only the damping amplitude can control the system.

• In another nonlinear system, we numerically investigated the dynamics of a Chua's circuit model experiencing a truncated sinusoidal nonlinearity and driven by an external perturbed excitation. We mainly study the impact of the system's nonlinearity on the occurrence of VR and GVR phenomena. In all the studies carried out, we compared the responses achieved with our proposed truncated sinusoidal nonlinearity and the existing sawtooth nonlinearity.

VR studies in the system with the two different nonlinearities both revealed multiple resonances whose number is controlled by the nonlinear force parameter named "nonlinearity order". The system experiencing a truncated sinusoidal force attained its maximum response always at the first resonance which required smaller perturbation amplitude to be achieved. This is contrary to the system experiencing a sawtooth force as it attained its maximum response always at the last resonance which required relatively larger perturbation amplitude to be realized. Moreover, the overall maximum responses of the system experiencing our proposed truncated sinusoidal force are better than those achieved with the existing sawtooth force. However, the responses of the two systems both approach an asymptotic value as the nonlinearity order keeps increasing.

Exciting the system with a weak signal consisting of two close low frequencies corrupted by a high frequency perturbation, we observed for both the two different nonlinearities that, varying the perturbation amplitude induced resonances at the two input low frequencies and at a missing (ghost) frequency lower than the two input low frequencies. The observed VR and GVR effects can each become predominant resonance in a distinct range of the perturbation amplitude.

• In the last chapter, we studied the application of Vibrational Resonance (VR) in subthreshold noisy images perception. We first reviewed the nonlinear resonances applications in the context of image processing and visual perception. Next, to quantify the perception of subthreshold images of different resolution through a threshold detector, we employed the Cross-Covariance as a measure of similarity between the input and perceived images.

When noise perturbed the system, we briefly revisited the well-known Stochastic Resonance (SR) threshold detector, whose best performances are achieved when the noise intensity of the random perturbation is tuned to an optimal value. Next, we introduce a VR-based detector which uses a tunable spatial high frequency perturbation instead of noise to provide a much better visual perception of the input subthreshold noisy images.

However, we have shown that to take advantage of this new VR-based detector, the noise level of the input subthreshold images must be below the optimal noise intensity of the SRbased detector. Under this condition, we have established that VR-based detector clearly outperforms SR-based detector. Especially when the amplitude of the spatial perturbation tuned to its optimal value and the spatial perturbation frequency exceeded the images resolution, we have shown that the VR-based detector alloweds the best perception of the subthreshold noisy images.

6.2/ FUTURE PERSPECTIVES

Since the inception of vibrational resonance in the year 2000, a lot of advances have been reported

especially in the field of sciences and engineering. In particular, this thesis has analyzed the occurrence of VR in two different nonlinear systems and also studied application of VR in subthreshold images perception.

• Our studies of VR in a mechanical system experiencing a periodic potential has revealed the existence of a critical mass beyond which VR ceased to exist. Extending this analysis to other mechanical systems experiencing different potentials, including modifications in the shape and location of the potential wells, may lead to discovery of more interesting features.

Moreover, the existence of this critical mass might provide an opportunity of sorting particles based on VR, for instance in micro/nanofluidic devices.

• In the crucial model of Chua's circuit, different nonlinearities have reported significant advances especially, sawtooth nonlinearity which was reported to exhibits multiple resonances on VR studies. However, our proposed truncated sinusoidal nonlinearity was shown to outperformed the sawtooth nonlinearity in this thesis. We suspect that our proposed truncated sinusoidal nonlinearity may report more promising applications in the dynamical fields where sawtooth nonlinearity is usually considered.

• In our studies of the application of VR in subthreshold images perception, our proposed VR-based detector has clearly outperformed the conventional SR-based detector in terms of visual perception. We suspect that further investigations of VR applications in this fields could be developed, especially in the context of cognitive sciences. The study of resonance phenomena in nonlinear dynamical systems has drawn considerable attention for years. The most studied nonlinear resonance is undoubtedly the famous stochastic resonance, which consists of perturbing a nonlinear system with an appropriate amount of noise to enhance the detection of a subthreshold input signal. Since the introduction of stochastic resonance in the context of climate dynamics, it was later observed that a deterministic high frequency perturbation can replace noise leading to vibrational resonance. Even if this latter resonance was investigated in many areas of science for more than two decades now, it is still receiving attentions. It is the subject of this thesis, which numerically analyzes the occurrence of this phenomenon in two different nonlinear systems, and which suggests applications in the context of subthreshold images perception. First, we analyze the motion of a particle with a given mass which is submitted to a nonlinear force deriving from a double-well potential.

For both considered cases of linear and nonlinear space-dependent damping, we establish that there exists a critical mass beyond which vibrational resonance ceases to exist. Next, we analyze how the nonlinearity affects vibrational resonance in the Chua's circuit model.

Especially, we show that better resonances can be achieved when Chua's system experiences a truncated sinusoidal nonlinearity instead of the conventional sawtooth nonlinearity. Moreover, when the system driving consists of two close low frequencies, we observe that the high frequency perturbation can induce resonances at the two input low frequencies but also at a lower frequency via the mechanisms of vibrational resonance and ghost-vibrational resonance. Lastly, we consider the perception of subthreshold images through perturbed threshold detectors. In terms of image perception, we show that detectors which are based on vibrational resonance clearly outperform detectors based on stochastic resonance.

Titre : Résonances non linéaires et certaines de leurs applications en traitement de l'information

Mots-clés : Dynamiques non linéaires, résonance vibrationnelle, résonance vibrationnelle-fantôme, perception d'images subliminales.

Résumé :

Ces dernières années, un intérêt considérable a été consacré à l'étude des phénomènes de résonance dans les systèmes dynamiques non linéaires.

Parmi les résonances non linéaires, la plus étudiée est sans aucun doute la résonance stochastique, qui traduit la particularité des systèmes non linéaires à utiliser une quantité appropriée de bruit pour améliorer leur réponse à une excitation subliminale. Plus tardivement, il a été observé qu'une perturbation haute fréquence pouvait remplacer le bruit, ce qui donna naissance à l'effet de résonance vibrationnelle. Même si cette forme de résonance a été mise en évidence dans de nombreux systèmes et dans différents contextes depuis plus de deux décennies maintenant, l'étude de ce phénomène continue de susciter l'intérêt des chercheurs. C'est l'objectif de cette thèse, qui analyse numériquement l'apparition de cette résonance dans deux systèmes non linéaires, ainsi que ses applications dans le cadre de la perception d'images subliminales. Notre première étude numérique porte ainsi sur un système mécanique représentant une particule de masse donnée. Que ce soit dans le cas d'un amortissement linéaire ou spatialement non linéaire, nous avons mis en évidence l'existence d'une masse critique au-delà de laquelle la résonance vibrationelle cesse d'exister. Notre seconde étude porte sur l'impact de la non linéarité sur la résonance d'un modèle de circuit de Chua. Nous avons principalement montré numériquement qu'une non linéarité du type sinusoïdale tronquée permettait d'obtenir une résonance vibrationnelle plus marquée que la non linéarité usuelle du type dent de scie. Par ailleurs, quand deux fréquences proches excitent le système, en plus d'une résonance à chacune de ces fréquences, il apparait une résonance à une fréquence plus faible, qualifiée de fantôme. Enfin, nous avons établi qu'il était possible d'obtenir une bien meilleure perception d'images subliminales au travers d'un dispositif à seuil tirant profit de la résonance vibrationnelle plutôt que d'un dispositif basé sur la résonance stochastique.
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 21 Figure 2.1: Coherence resonance phenomenon.

2. 1

 1 Fig. 2.2. Basically, an appropriate amount of a noise perturbation enhances the detection of the deterministic subthreshold low frequency signal at the system output.

Figure 2 . 2 :

 22 Figure 2.2: Stochastic resonance phenomenon.

  maximum response is achieved for an intermediate perturbation amplitude, beyond which the system's response at the low frequency reduces. VR is analogous to the SR because the high frequency perturbation perform the same task of enhancing the detection of the low frequency signal as schematically depicted in Fig 2.3.
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 23 Figure 2.3: Vibrational resonance phenomenon.
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Figure 3 . 1 :

 31 Figure 3.1: System's periodic potential Φ(x) defined by eq. (3.3) in the specific case considered in this chapter, namely Φ 0 = 1 and k = 1. The height of the potential ∆Φ and its width ∆x are indicated with the double head arrows in this figure.

  3.2(a)-(e), the temporal series of the output signal reveals a low frequency component mixed with a high frequency perturbation component. In particular, the temporal series of Fig. 3.2(a) corresponds to the instance of the smallest perturbation amplitude considered, namely H = 30. Here, we observed that the low frequency component in the system's output is very weak and the output signal is dominated by the high frequency perturbation. As shown in Fig. 3.2(b), when the perturbation amplitude increases to H = 220, the contribution of the low frequency component in the output signal is stronger than in Fig. 3.2(a). By contrast, in Fig. 3.2(c), the low frequency component in the output signal is best observed for an intermediate value of the perturbation H = 245. However, as the perturbation amplitude exceeds the intermediate value, the low frequency component in the output signal become less observable as depicted in Fig. 3.2(d) and Fig. 3.2(e) for H = 300 and H = 405 respectively.
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 3233 Figure 3.2: Time series of the system response revealing vibrational resonance effect for the specific constant damping coefficient Γ 0 =0.03. From top to bottom, the perturbation amplitude H increases as follows: (a) H = 30, (b) H = 220, (c) H = 245, (d) H = 300 and (e) H = 405. Parameters: m = 1, k = 1, Φ 0 = 1, G =0.05, ω =0.65, Ω = 13.

Therefore, we analyzeFigure 3 . 4 :Figure 3 . 5 :

 3435 Figure 3.4: Unilateral magnitude spectra corresponding to the time series of Fig. 3.2. From top to bottom: (a) H = 30, (b) H = 220, (c) H = 245, (d) H = 300 and (e) H = 405. Parameters: m = 1, Γ 0 =0.03, k = 1, Φ 0 = 1, G =0.05, ω =0.65, Ω = 13.
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 36 Figure 3.6: Typical VR signature observed in the system defined by eq. (3.10) for two values of the constant damping amplitude Γ 0 . Parameters: m = 1, k = 1, Φ 0 = 1, G =0.05, ω =0.65, Ω = 13.

  3.7, by means of temporal and frequency analyses.

27 Figure 3 . 7 :

 2737 Figure 3.7: Vibrational multiresonance signature for two values of the constant damping amplitude Γ 0 . The linear response Q exhibits local maxima whose values decrease as the perturbation amplitude increases. Parameters: m = 1, k = 1, Φ 0 = 1, G =0.05, ω =0.65, Ω = 13.
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 38 Figure 3.8: Time series of the system response revealing the second resonance of Fig. 3.7 for the specific constant damping coefficient Γ 0 =0.03. From top to bottom, the perturbation amplitude H increases as follows: (a) H = 430, (b) H = 500, (c) H = 645, (d) H = 770 and (e) H = 935. Parameters: m = 1, k = 1, Φ 0 = 1, G =0.05, ω =0.65, Ω = 13.
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 39 Figure 3.9: Time series of the system response revealing the second resonance of Fig. 3.7 for the specific constant damping coefficient Γ 0 =0.27. From top to bottom, the perturbation amplitude H increases as follows: (a) H = 430, (b) H = 500, (c) H = 650, (d) H = 810 and (e) H = 935. Parameters: m = 1, k = 1, Φ 0 = 1, G =0.05, ω =0.65, Ω = 13.
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 37 Increasing the perturbation amplitude from H = 430 to H = 500 below the peak of the second resonance for Γ 0 =0.03, we can clearly observe how the amplitude of the spectrum at the low frequency increases from Fig.3.10(a) to Fig.3.10(b). Moreover, the amplitude of the spectrum at the low frequency is best observed at the peak of the second resonance, that is when H = 645 as reported at Fig.3.10(c). When the perturbation amplitude H increases beyond the peak of this second resonance, the contribution of the low frequency in the system output spectra become weak again as shown in Figs. 3.10(d) and 3.10(e) for H = 770 and H = 935 respectively. Meanwhile, for the second resonance in the case of Γ 0 =0.27 reported at Fig. 3.11, we obtain a better view of the resonance phenomenon with the spectral responses than with the equivalent temporal analyses presented at Fig. 3.9. Indeed, in the spectra of Figs. 3.11(a) and 3.11(b), it is obvious that the contribution of the low frequency is more pronounced when the perturbation amplitude H increases from H = 430 to H = 500. The amplitude of the spectrum at the low frequency is more evidently observed at the peak of the second resonance, that is when H = 650, as shown in Fig. 3.11(c). The response afterward decreases when the perturbation amplitude H is beyond the peak of the second resonance as shown in Fig. 3.11(d) and Fig. 3.11(e) when H = 810 and H = 935 respectively.
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 310311 Figure 3.10: Unilateral magnitude spectra corresponding to the time series of Fig. 3.8. From top to bottom: (a) H = 430, (b) H = 500, (c) H = 645, (d) H = 770 and (e) H = 935. Parameters: m = 1, Γ 0 =0.03, k = 1, Φ 0 = 1, G =0.05, ω =0.65, Ω = 13.
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 351312 Fig.3.12 reveals the linear response Q as a function of the perturbation amplitude H for different values of the constant damping coefficient Γ 0 . This shows that, increasing the perturbation am- plitude H, there exist multiple resonances whatever the value of the constant damping coefficient Γ 0 . In each case, the first resonance provides the best linear response Q which is achieved for an intermediate value of the perturbation amplitude H. Beyond the first resonance, which of course provided the global maximum, the local maxima afterward decrease as the perturbation amplitude H increases. Furthermore, the resonance curves of Fig.3.12 also convey to us that the weakest constant dissipation Γ 0 provides the best response Q of the system.
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 3313 Figure 3.13: Dependence of the local maxima Q n max of Fig. 3.12 versus the constant damping amplitude Γ 0 . Q n max donates the amplitude of the local maxima number n. Parameters: m = 1, k = 1, Φ 0 = 1, G =0.05, ω =0.65, Ω = 13.

3 .

 3 14 highlights these two cases for different values of the constant damping coefficient Γ 0 and spe- cific values of the particle mass, more precisely m = 1 and m =2.4. At Fig.3.14(a), corresponding to m = 1, the system's performance can be optimized by an appropriate setting of the perturbation amplitude H since the linear response curves versus the perturbation amplitude exhibit multiresonance shapes. By contrast, for the case reported at Fig.3.14(b), and corresponding to m =2.4,

Figure 3 . 14 :

 314 Figure 3.14: System's two different observed behaviors due to the change of the particle mass m. (a) m = 1, VR signature: A high frequency perturbation enhances the detection of the low frequency. (b) m =2.4, no enhancement of the low frequency detection. Parameters: k = 1, Φ 0 = 1, G =0.05, ω =0.65, Ω = 13.
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 315 Figure 3.15: Selective response behavior controlled by the mass m of the particle. Summary of the system's two behaviors for different values of the constant damping amplitude Γ 0 . Values of mass m that correspond to Q * max = 1 define the region where VR ceases to exist whereas those that correspond to Q * max > 1 match the existence of VR. Parameters: G =0.05, k = 1, ω =0.65, Ω = 13, Φ 0 = 1.
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 316 Figure 3.16: Time series of the system response revealing vibrational resonance effect for the specific nonlinear damping coefficient Γ 0 =0.03. From top to bottom, the perturbation amplitude H increases as follows: (a) H = 20, (b) H = 220, (c) H = 245, (d) H = 300 and (e) H = 400. Parameters: m = 1, λ =2.4, φ =0.2, k = 1, Φ 0 = 1, G =0.05, ω =0.65, Ω = 13.
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 317 Figure 3.17: Time series of the system response revealing vibrational resonance effect for the specific nonlinear damping coefficient Γ 0 =0.27. From top to bottom, the perturbation amplitude H increases as follows: (a) H = 20, (b) H = 200, (c) H = 280, (d) H = 340 and (e) H = 400. Parameters: m = 1, λ =2.4, φ =0.2, k = 1, Φ 0 = 1, G =0.05, ω =0.65, Ω = 13.

  (a)-(e) summarize the system temporal behavior, for five different values of the perturbation amplitudes. Fig. 3.17(a), which corresponds to the case of the smallest considered perturbation amplitude H = 20, shows that the low frequency component in the output signal is hardly detectable. Increasing the perturbation amplitude to H = 200 enhances the detection of the low frequency component in the output signal, as shown in Fig. 3.17(b). Moreover, for an intermediate value of the perturbation H = 280, the low frequency component in the output signal is best observed. The low frequency in the output signal becomes weak again for the values of perturbation amplitude beyond the intermediate value as shown in Figs. 3.17(d) and 3.17(e).
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 33318 Figure 3.18: Unilateral magnitude spectra corresponding to the time series of Fig. 3.16. From top to bottom: (a) H = 20, (b) H = 220, (c) H = 245, (d) H = 300 and (e) H = 400. Parameters: m = 1, Γ 0 =0.03, λ =2.4, φ =0.2, k = 1, Φ 0 = 1, G =0.05, ω =0.65, Ω = 13.
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 319 Figure 3.19: Unilateral magnitude spectra corresponding to the time series of Fig. 3.17. From top to bottom: (a) H = 20, (b) H = 200, (c) H = 280, (d) H = 340 and (e) H = 400. Parameters: m = 1, Γ 0 =0.27, λ =2.4, φ =0.2, k = 1, Φ 0 = 1, G =0.05, ω =0.65, Ω = 13.

Fig 3 .

 3 Fig 3.18(c). Eventually, the amplitude of the magnitude spectrum at the low frequency becomes weak again for the larger values of the perturbation amplitude, as displayed in Fig 3.18(d) and Fig 3.18(e) when H = 300 and H = 400 respectively. Therefore, the spectral analyses carried out at Fig. 3.18 confirm the observation of VR phenomenon revealed by the chronograms of Fig 3.16.

  3.3.1, namely, λ =2.4, φ =0.2 and k = 1.
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 3321 Fig. 3.20 depicts the linear response Q as a function of the perturbation amplitude H for different values of the nonlinear damping amplitude Γ 0 . Here, increasing the perturbation amplitude H, we obtain multiple resonances, where the first resonance corresponds to the global maximum attained

  3.21 shows how the nonlinear damping amplitude Γ 0 affects the maximum amplitude of the local, second and third resonances of the linear response presented at Fig.3.20. The results of Fig.3.21 implies that varying the nonlinear damping is more significant for smaller values of the damping amplitude Γ 0 since for larger values of the nonlinear damping amplitude Γ 0 , the response of all the maxima became less pronounced and approaches the same value.

Figure 3 . 22 : 2 Figure 3 . 23 :

 3222323 Figure 3.22: Control of VR by the phase φ of the space-dependent dissipation Γ(x). Parameters taken as: m = 1, Γ 0 =0.27, λ = 1, k = 1, Φ 0 = 1, G =0.05, ω =0.65, Ω = 13.
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 2324 Figure 3.24: Control of VR with the modulation strength λ of the space-dependent dissipation Γ(x). Parameters: m = 1, Γ 0 =0.27, φ =0.2, k = 1, Φ 0 = 1, G =0.05, ω =0.65, Ω = 13.
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 3325 Figure 3.25: System's two different observed behaviors due to the change of the particle mass m. (a) m = 1, VR signature: A high frequency perturbation enhances the detection of the low frequency. (b) m =2.4, no enhancement of the low frequency detection. Parameters: λ =2.4, φ =0.2, k = 1, Φ 0 = 1, G =0.05, ω =0.65, Ω = 13.
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 326 Figure 3.26: Selective response behavior controlled by the mass m of the particle. Summary of the system's two behaviors for different values of the nonlinear damping amplitude Γ 0 . Values of mass m that correspond to Q * max = 1 define the region where VR ceases to exist whereas those that correspond to Q * max > 1 match the existence of VR. Parameters: λ =2.4, φ =0.2, k = 1, Φ 0 = 1, G =0.05, ω =0.65, Ω = 13.
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 327328 Figure 3.27: Selective response behavior controlled by the mass m of the particle for different values of the phase φ. Parameters: Γ 0 =0.27, λ = 1, k = 1, Φ 0 = 1, G =0.05, ω =0.65, Ω = 13.
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∆ΦFigure 4 . 1 :

 41 Figure 4.1: Sawtooth force F n (x, α) and its corresponding potential Φ n (x, α) for three values of nonlinearity order n: (a) n = 0, (b) n = 1, (c) n = 2. Parameters: α = 6, A =0.5, A 0 =0.125. ∆X * represents the spacing between two consecutive stable or unstable states that is, the potential width and ∆Φ is the potential barrier height.

Figure 4 . 2 :

 42 Figure 4.2: Truncated sinusoidal force F n (x, α) and its corresponding potential Φ n (x, α) for three values of nonlinearity order n: (a) n = 0, (b) n = 1, (c) n = 2. Parameters: α = 6, V 0 = π 32 , k = 1. ∆X * represents the spacing between two consecutive stable or unstable states and ∆Φ is the potential barrier height.

  (4.3) and(4.4), taking into account zero initial conditions for all variables, namely x(0) = y(0) = z(0) = 0, we use a 4 th order Runge-Kutta algorithm in Matlab script to integrate the system of eqs. (4.1) which is driven by the input excitation of eq. (4.5). Considering first the zero perturbation case, that is B = 0, we perform simulations during a temporal window T which corresponds to 1000 low frequency cycles and 222 

  (4.5) to e p (t) = b cos ω 1 t + B cos Ωt.

For the system experiencing

  Fig.4.4(c). Indeed, varying the perturbation amplitude B, the best system response at the low frequency is achieved for an intermediate perturbation, namely B =4.72 in this case. This is the signature of VR also revealed by the system experiencing a sawtooth nonlinearity.

Figure 4 . 3 :

 43 Figure 4.3: Typical time series of the Chua's model experiencing the truncated sinusoidal force defined by eq. (4.4) and driven by the excitation of eq. (4.8). The chronograms of x have been obtained by increasing the perturbation amplitude starting from B = 0 with step ∆B =0.01 until (a) B =1.5, (b) B =4.13, (c) B =6.8. Model parameters: n = 1, k = 1, V 0 = π 32 , α = 6, β = 16, b =0.1, ω 1 = 1, Ω = 10ω 1 , numerical time step ∆t =0.0015.

Figure 4 . 4 :Frequency

 44 Figure 4.4: Typical time series of the Chua's model experiencing the sawtooth force defined by eq. (4.3) and driven by the excitation of eq. (4.8). The chronograms of x have been obtained by increasing the perturbation amplitude starting from B = 0 with step ∆B =0.01 until (a) B =1.5, (b) B =4.72, (c) B =9.79. Parameters: n = 1, A =0.5, A 0 =0.125, α = 6, β = 16, b =0.1, ω 1 = 1, Ω = 10ω 1 , ∆B =0.01, ∆t =0.0015.
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 45 Figure 4.5: Spectral response of the system experiencing the truncated sinusoidal force corresponding to the time series of Fig. 4.3. Model parameters: n = 1, k = 1, V 0 = π 32

Figure 4 . 6 :

 46 Figure 4.6: Spectral response of the system experiencing the sawtooth force corresponding to the time series of Fig. 4.4 Parameters: n = 1, A =0.5, A 0 =0.125, α = 6, β = 16, b =0.1, ω 1 = 1, Ω = 10ω 1 , ∆B =0.01, ∆t =0.0015.
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 4748 Figure 4.7: Linear response Q versus the perturbation amplitude B for a system experiencing the truncated sinusoidal force. The arrows indicate that increasing B from 0 to 20 or reducing B from 20 to 0 provide the same resonance curve. Parameters: n = 1, k = 1, V 0 = π 32 , α = 6, β = 16, b =0.1, ω 1 = 1, Ω = 10ω 1 , perturbation amplitude step ∆B =0.01, numerical time step ∆t =0.0015.
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 47549 Figure 4.9: Overall resonance behavior of the system experiencing: (a) truncated sinusoidal force (b) Sawtooth force, in the perturbation amplitude B and nonlinearity order n parameters plane. The linear response Q is plotted versus B and n. Parameters: k = 1, V 0 = π 32 , A =0.5, A 0 =0.125, α = 6, β = 16, b =0.1, ω 1 = 1, Ω = 10ω 1 , ∆B =0.01, ∆t =0.0015.

  Moreover, B * ,n m will refer to the amplitudes of the perturbation allowing to reach these local maxima Q * ,n m .

Figure 4 . 10 :

 410 Figure 4.10: Locus of the linear response local maxima Q * ,n m versus the corresponding perturbation amplitude B * ,n m at which they occur. From top to bottom, we have considered a system experiencing a truncated sinusoidal force with order (a) n = 5, (b) n = 6, (c) n = 7 and (d) n = 8. The insets at each subfigure represent the classical linear response curves deduced from Fig. 4.9 where the maxima have been labeled with alphabetical capital letters. Parameters: k = 1, V 0 = π 32 , α = 6, β = 16, b =0.1, ω 1 = 1, Ω = 10ω 1 , ∆B =0.01, ∆t =0.0015.

  . 4.10(a) -4.10(d) the locus of the maximum response Q * ,n m at the resonance peaks of Fig. 4.9(a) for the truncated sinusoidal nonlinearity with order ranging from n = 5 to n = 8, versus the corresponding perturbation amplitude B * ,n m at which they occurred. For instance, in the inset of Fig. 4.10(a), the linear response Q exhibits m = 6 resonances for the nonlinearity order n = 5. These resonances are referred by capital letters A, B, C, D, E and F. Therefore, we can see from Fig. 4.10(a), the locus of the local maxima Q * ,5 m of each of these six resonances A, B, C, D, E and F versus the corresponding optimal perturbation amplitude B * ,n m at which they occurred. Figs. 4.10(a) -4.10(d)

  . 4.11(a) -4.11(d) show that the first resonance is always the weakest. Moreover,
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 411 Figure 4.11: Locus of the linear response local maxima Q * ,n m versus the corresponding perturbation amplitude B * ,n m at which they occur. From top to bottom, we have considered a system experiencing a sawtooth force with order (a) n = 5, (b) n = 6, (c) n = 7 and (d) n = 8. The insets at each subfigure represent the classical linear response curves where the maxima have been labeled with alphabetical letters. Parameters: A = 0 5, A 0 =0.125, α = 6, β = 16, b =0.1, ω 1 = 1, Ω = 10ω 1 , ∆B =0.01, ∆t =0.0015.
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 412 Figure 4.12: Evolution of each local maxima Q * ,n m reached by the linear response Q versus the nonlinearity order n. The performance obtained with the two nonlinear forces are compared when we consider: (a) The first maxima, (b) The second maxima, (c) The third maxima, (d) The fourth maxima. Circle-marked lines correspond to the truncated sinusoidal force whereas the star-marked lines refers to the sawtooth force. Parameters: k = 1, V 0 = π 32 , A =0.5, A 0 =0.125, α = 6, β = 16, b =0.1, ω 1 = 1, Ω = 10ω 1 , ∆B =0.01, ∆t =0.0015.
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 448 All simulations here start with the perturbation B = 0. The perturbation amplitude increases with step ∆B =0.01 and the last values of the system variables from the previous simulation are maintained as the initial conditions for the next simulation. Moreover, for each selected point on Fig. 4.7 and 4.8, we perform five different simulations, each of them with one of the stable and unstable positions as initial condition for x, and zero for the remaining variables. First, for the resonance curve obtained at Fig. 4.7 with the truncated sinusoidal force, we choose the perturbation amplitudes B =1.5, 3.5, 4.13, 6.86, 9.38 and 11 to analyze the corresponding phase portraits. For example, to obtain the phase portrait for each chosen perturbation B of Fig.
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 413 Figure 4.13: Phase portraits of the coexisting orbits for the resonance curve of Fig. 4.7. The perturbation amplitude is set to: (a) B =1.5, (b) B =3.5, (c) B =4.13, (d) B =6.86, (e) B =9.38 and (f) B = 11. The equivalent truncated sinusoidal force F 1 (x, 1) is also superimposed using a dashed-line in all the cases. Parameters: n = 1, k = 1, V 0 = π 32 , α = 6, β = 16, b =0.1, ω 1 = 1, Ω = 10ω 1 , ∆t =0.0015.
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 414 Figure 4.14: Phase portraits of the coexisting orbits for the resonance curve of Fig. 4.8. The perturbation amplitude is set to: (a) B =1.5, (b) B =3.5, (c) B =4.13, (d) B =6.86, (e) B =9.38 and (f) B = 11. The equivalent truncated sinusoidal force F 1 (x, 1) is also superimposed using a dashed-line in all the cases. Parameters: n = 1, A =0.5, A 0 =0.125, α = 6, β = 16, b =0.1, ω 1 = 1, Ω = 10ω 1 , ∆t =0.0015.
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 241532416417 Figure 4.15: Linear response Q of the system estimated at the low angular frequencies ω 0 , ω 1 and ω 2 , versus the perturbation amplitude B, for the system experiencing the truncated sinusoidal force. Parameters: n = 0, k = 1, V 0 = π 32 ,
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 418 Figure 4.18: Linear response Q of the system at the angular frequencies ω 0 , ω 1 and ω 2 versus the perturbation amplitude B, for the system experiencing the sawtooth force. Parameters: n = 0, A =0.5, A 0 =0.125, α = 4, β = 14, b =0.04, ω 0 =0.1, ω 1 = 2ω 0 , ω 2 = 3ω 0 , Ω = 20ω 0 , ∆B =0.001, ∆t =0.0015.
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 419 Figure 4.19: Impact of the nonlinearity order n of the truncated sinusoidal force on the resonances. The linear response Q estimated at the angular frequencies ω 0 , ω 1 and ω 2 has been plotted versus the perturbation amplitude B, for the nonlinearity orders: (a) n = 1, (b) n = 2, (c) n = 3, (d) n = 4, (e) n = 5. Parameters: k = 1, V 0 = π 32 , α = 4, β = 14, b =0.04, ω 0 =0.1, ω 1 = 2ω 0 , ω 2 = 3ω 0 , Ω = 20ω 0 , ∆B =0.01, ∆t =0.0015.
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 420 Figure 4.20: Impact of the nonlinearity order n of the sawtooth force on the resonances. The linear response Q estimated at the angular frequencies ω 0 , ω 1 and ω 2 has been plotted versus the perturbation amplitude B, for the nonlinearity orders: (a) n = 1, (b) n = 2, (c) n = 3, (d) n = 4, (e) n = 5. Parameters: A =0.5, A 0 =0.125, α = 4, β = 14, b =0.04, ω 0 =0.1, ω 1 = 2ω 0 , ω 2 = 3ω 0 , Ω = 20ω 0 , ∆B =0.01, ∆t =0.0015.

Contents 5 . 1 77 5. 2 80 5. 3 82 5. 4

 51772803824 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The detector and its set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.2.1 Input of the detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.2.2 The resonant threshold detector . . . . . . . . . . . . . . . . . . . . . . Stochastic resonance based detector . . . . . . . . . . . . . . . . . . . . . . Vibrational resonance based detector . . . . . . . . . . . . . . . . . . . . . . 85 5.4.1 Amplitude optimized VR-detector . . . . . . . . . . . . . . . . . . . . . . 85 5.4.2 Frequency optimized VR-detector . . . . . . . . . . . . . . . . . . . . . 89 5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

2 )Figure 5 . 1 :

 251 Figure 5.1: Images used throughout the chapter with different sizes N × N. Images 1, 2, 3 and 4 represent the Roman Coloseum, Saturn, a Cameraman and Lena. The resolution of images 1, 2, 3 and 4 are N 2 = 64 2 pixels, N 2 = 128 2 pixels, N 2 = 256 2 pixels and N 2 = 512 2 pixels respectively.
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 52 Figure 5.2: The noisy images I b with noise intensity σ =0.1. Each image has been zoomed even if they don't share the same resolution N 2 . Coloseum: N 2 = 64 2 pixels, Saturn: N 2 = 128 2 pixels, Cameraman: N 2 = 256 2 pixels, Lena: N 2 = 512 2 pixels.
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 53 Figure 5.3: Sketch of the resonant detector which performs a threshold filtering of the perturbed image I p and which perceives the black and white image T . The input of the resonant detector is the noisy image I b which is perturbed by an additive perturbation P selected by a switch between noise or a sine perturbation. The switch command c chooses a noise perturbation η of intensity γ in the case of a stochastic resonance based detector, while for a vibrational resonance based detector, a sine signal of amplitude A and spatial frequency N HF is selected.
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 54 Figure 5.4: Images perceived by the SR-detector for different noise intensities γ. The initial noisy subthreshold image I b of Saturn is corrupted with the increasing noise RMS amplitude γ and threshold filtered with threshold V th =1.2 to produce the black and white images presented at subfigures (ac). (a): γ =0.2. (b): γ =0.5. (c): γ =1.2. The best perception of Saturn image is obtained for the optimal noise value γ * =0.5 represented at subfigure (b).
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 54 for growing values of the RMS amplitude of the noise perturbation, and in the case of the image 2 representing Saturn. For small noise intensities γ, as shown in Fig. 5.4.(a) for γ =0.2, threshold crossing events rarely occur. It results that they are not enough to allow the detector to retrieve the subthreshold information contained in the initial image. Next, for an intermediate value of the noise RMS amplitude, noise cooperates with the subthreshold image to reveal the coherent structure of the image.

5 . 4 .

 54 (b). Lastly, for greater noise intensities, the random nature of noise dominates the process of threshold crossing and hinders the perception of the image information through the detector. The resulting image at Fig. 5.4.(c) obtained for γ =1.2 seems completely noisy.
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 55 Figure 5.5: Perception of the Saturn image through the SR-detector for different threshold levels V th . Parameter: σ =0.1. (a): Cross-covariance C I,T versus the noise intensity γ for three different threshold values V th . Dashed lines are guides to the eye. The best perceived images obtained for the optimal noise intensity γ * are displayed for each considered threshold value V th at subfigures (bd). (b): V th =1.05 requires γ * =0.4 to achieve C I,T (γ * ) =0.386. (c): V th =1.2 requires γ * =0.5 to achieve C I,T (γ * ) =0.322. (d): V th =1.4 requires γ * =0.65 to achieve C I,T (γ * ) =0.263.
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 56 Figure 5.6: Perception of the different images through the SR-detector. Parameters: V th =1.2 and σ =0.1. (a) Crosscovariance C I,T of each image against the noise intensity γ. Dashed lines are guides to the eye. The best perceived images are displayed for the optimal noise intensity γ * at subfigures (bd). (b): image 1 requires γ * =0.39 to achieve C I,T (γ * ) =0.274. (c): image 2 requires γ * =0.5 to achieve C I,T (γ * ) =0.322. (d): image 3 requires γ * =0.59 to achieve C I,T (γ * ) =0.199. (e): image 4 requires γ * =0.465 to achieve C I,T (γ * ) =0.208.
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 5859 Figure 5.8: Perception through the VR-detector of the saturn image with different noise intensities σ. Parameter: V th =1.2. (a): Cross-covariance C I,T against the perturbation amplitude A for different levels of noise σ. Dashed lines are guides to the eye. For each noise intensity σ where a resonance of the cross-covariance occurs, we have displayed the best perceived image obtained for the optimal perturbation amplitude A * at subfigures (be). (b): σ =0.1 requires A * =0.95 to achieve C I,T (A * ) =0.554. (c): σ =0.2 requires A * =0.85 to achieve C I,T (A * ) =0.506. (d): σ =0.3 requires A = 0 8 to achieve C I,T (A * ) =0.442. (e): σ =0.45 requires A * =0.6 to achieve C I,T (A * ) =0.365.

5 . 8 .

 58 (a).On the other hand, Fig.5.8.(a) also reveals that vibrational resonance ceases to exist when the noise level σ of the initial image exceeds the optimal noise RMS value γ * of the SR-detector. Indeed, the cross-covariance is a monotonous decreasing function of the perturbation amplitude for the noise intensity σ =0.55 (squares), σ =0.65 (diamonds) and σ =0.75 (triangles) which are beyond the critical noise value γ * =0.5 of the SR-detector. It results that there exists a critical value of noise beyond which no perception enhancement can be expected with vibrational resonance.
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 59510 Figure 5.10: Perception through the VR-detector of the Cameraman image with different noise intensities σ. Parameter: V th =1.2. (a): Cross-covariance C I,T against the perturbation amplitude A for different levels of noise σ. Dashed lines are guides to the eye. For each noise intensity σ where a resonance of the cross-covariance occurs, we have displayed the best perceived image obtained for the optimal perturbation amplitude A * at subfigures (be). (b): σ =0.1 requires A * =0.95 to achieve C I,T (A * ) =0.372. (c): σ =0.2 requires A * =0.9 to achieve C I,T (A * ) =0.342. (d): σ =0.3 requires A * =0.9 to achieve C I,T (A * ) =0.292. (e): σ =0.45 requires A =0.8 to achieve C I,T =0.243.

Figure 5 . 11 :

 511 Figure 5.11: Perception through the VR-detector of the Lena image with different noise intensities σ. Parameter: V th =1.2. (a): Cross-covariance C I,T against the perturbation amplitude A for different levels of noise σ. Dashed lines are guides to the eye. For each noise intensity σ where a resonance of the cross-covariance occurs, we have displayed the best perceived image obtained for the optimal perturbation amplitude A * at subfigures (be). (b): σ =0.1 requires A * =0.8 to achieve C I,T (A * ) =0.401. (c): σ =0.2 requires A * =0.75 to achieve C I,T (A * ) =0.343. (d): σ =0.3 requires A * =0.7 to achieve C I,T (A * ) =0.288. (e): σ =0.45 requires A * =0.6 to achieve C I,T (A * ) =0.232.
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 512 Figure 5.12: Effect of the perturbation frequency on the perception of Saturn through the VR-detector. Parameters: N 2 = 2 14 , V th =1.2 and σ =0.1. (a): Cross-covariance C I,T against the normalized perturbation frequency N HF /N 2 for different amplitudes A of the perturbation. Dashed lines are guides to the eye. For the optimal perturbation amplitude A * =0.95, we have displayed the images perceived through the detector for three specific frequencies at subfigures (bd). (b): N HF = 2 11 . (c): N HF = 2 13 . (d): N HF = 214 . The best perception of the Saturn image is achieved when the cross-covariance saturates to C I,T =0.749, that is when the perturbation is tuned to the optimal amplitude A * =0.95 and when its frequency is greater than the optimal value N * HF = N 2 = 2 14 .
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 13513 Figure 5.13: Effect of the perturbation frequency on the perception of the Coloseum through the VR-detector. Parameters: N 2 = 2 12 , V th =1.2 and σ =0.1. (a): Cross-covariance C I,T against the normalized perturbation frequency N HF /N 2 for different amplitudes A of the perturbation. Dashed lines are guides to the eye. For the optimal perturbation amplitude A * =0.6, we have displayed the images perceived through the detector for three specific frequencies at subfigures (bd). (b): N HF = 2 9 . (c): N HF = 2 11 . (d): N HF = 212 . The best perception of the Coloseum image is achieved when the cross-covariance saturates to C I,T =0.562, that is when the perturbation is tuned to the optimal amplitude A * =0.6 and when its frequency is greater than the optimal value N * HF = N 2 = 2 12 .

  Lastly, as shown by the images presented for various perturbation frequencies at Figs. 5.14.(bd) and 5.15.(b

Figure 5 . 14 :

 514 Figure 5.14: Effect of the perturbation frequency on the perception of the Cameraman through the VR-detector. Parameters: N 2 = 2 16 , V th =1.2 and σ =0.1. (a): Cross-covariance C I,T against the normalized perturbation frequency N HF /N 2 for different amplitudes A of the perturbation. Dashed lines are guides to the eye. For the optimal perturbation amplitude A * =0.95, we have displayed the images perceived through the detector for three specific frequencies at subfigures (bd). (b): N HF = 2 13 . (c): N HF = 2 15 . (d): N HF = 216 . The best perception of the Cameraman image is achieved when the cross-covariance saturates to C I,T =0.565, that is when the perturbation is tuned to the optimal amplitude A * =0.95 and when its frequency is greater than the optimal value N * HF = N 2 = 216 .
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 515 Figure 5.15: Effect of the perturbation frequency on the perception of Lena through the VR-detector. Parameters: N 2 = 2 18 , V th =1.2 and σ =0.1. (a): Cross-covariance C I,T against the normalized perturbation frequency N HF /N 2 for different amplitudes A of the perturbation. Dashed lines are guides to the eye. For the optimal perturbation amplitude A * =0.8, we have displayed the images perceived through the detector for three specific frequencies at subfigures (bd). (b): N HF = 2 15 . (c): N HF = 2 17 . (d): N HF = 218 . The best perception of the Lena image is achieved when the cross-covariance saturates to C I,T =0.546, that is when the perturbation is tuned to the optimal amplitude A * =0.8 and when its frequency is greater than the optimal value N * HF = N 2 = 218 .
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 2753357457532658658711847858869 Selective response behavior controlled by the mass m of the particle for different values of the phase φ. Parameters: Γ 0 =0.27, λ = 1, k = 1, Φ 0 = 1, G =0.05, ω =0.65, Ω = 13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.28 Selective response behavior controlled by the mass m of the particle for different values of the modulation strength λ. Parameters of the system: Γ 0 =0.27, φ =0.2, k = 1, Φ 0 = 1, G =0.05, ω =0.65, Ω = 13. . . . . . . . . . . . . . . . . . . . . . . 46 4.1 Sawtooth force F n (x, α) and its corresponding potential Φ n (x, α) for three values of nonlinearity order n: (a) n = 0, (b) n = 1, (c) n = 2. Parameters: α = 6, A =0.5, A 0 =0.125. ∆X * represents the spacing between two consecutive stable or unstable states that is, the potential width and ∆Φ is the potential barrier height. . . . . . . . . 52 4.2 Truncated sinusoidal force F n (x, α) and its corresponding potential Φ n (x, α) for three values of nonlinearity order n: (a) n = 0, (b) n = 1, (c) n = 2. Parameters: α = 6, V 0 = π 32 , k = 1. ∆X * represents the spacing between two consecutive stable or unstable states and ∆Φ is the potential barrier height. . . . . . . . . . . . . . . . . . Typical time series of the Chua's model experiencing the truncated sinusoidal force defined by eq. (4.4) and driven by the excitation of eq. (4.8). The chronograms of x have been obtained by increasing the perturbation amplitude starting from B = 0 with step ∆B =0.01 until (a) B =1.5, (b) B =4.13, (c) B =6.8. Model parameters: n = 1, k = 1, V 0 = π 32 , α = 6, β = 16, b =0.1, ω 1 = 1, Ω = 10ω 1 , numerical time step ∆t =0.0015. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical time series of the Chua's model experiencing the sawtooth force defined by eq. (4.3) and driven by the excitation of eq. (4.8). The chronograms of x have been obtained by increasing the perturbation amplitude starting from B = 0 with step ∆B =0.01 until (a) B =1.5, (b) B =4.72, (c) B =9.79. Parameters: n = 1, A =0.5, A 0 =0.125, α = 6, β = 16, b =0.1, ω 1 = 1, Ω = 10ω 1 , ∆B =0.01, ∆t =0.0015. . . . Spectral response of the system experiencing the truncated sinusoidal force corresponding to the time series of Fig. 4.3. Model parameters:n = 1, k = 1, V 0 = π β = 16, b =0.1, ω 1 = 1, Ω = 10ω 1 ,numerical time step ∆t =0.0015. . . . . . Spectral response of the system experiencing the sawtooth force corresponding to the time series of Fig. 4.4 Parameters: n = 1, A =0.5, A 0 =0.125, α = 6, β = 16, b =0.1, ω 1 = 1, Ω = 10ω 1 , ∆B =0.01, ∆t =0.0015. . . . . . . . . . . . . . . . . . . Linear response Q versus the perturbation amplitude B for a system experiencing the truncated sinusoidal force. The arrows indicate that increasing B from 0 to 20 or reducing B from 20 to 0 provide the same resonance curve. Parameters: n = 1, k = 1, V 0 = π 32 , α = 6, β = 16, b =0.1, ω 1 = 1, Ω = 10ω 1 , perturbation amplitude step ∆B =0.01, numerical time step ∆t =0.0015. . . . . . . . . . . . . . . . . . . . 59 LIST OF FIGURES 4.8 Linear response Q versus the perturbation amplitude B, for a system experiencing the sawtooth force. Our simulation results are in agreement with the one obtained by Abirami et al [152]. Parameters: n = 1, A =0.5, A 0 =0.125, α = 6, β = 16, b =0.1, ω 1 = 1, Ω = 10ω 1 , ∆B =0.01, ∆t =0.0015. . . . . . . . . . . . . . . . . . . . . . . 4.9 Overall resonance behavior of the system experiencing: (a) truncated sinusoidal force (b) Sawtooth force, in the perturbation amplitude B and nonlinearity order n parameters plane. The linear response Q is plotted versus B and n. Parameters:k = 1, V 0 = π 32 , A =0.5, A 0 =0.125, α = 6, β = 16, b =0.1, ω 1 = 1, Ω = 10ω 1 , ∆B=0.01, ∆t =0.0015. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.10 Locus of the linear response local maxima Q * ,n m versus the corresponding perturbation amplitude B * ,n m at which they occur. From top to bottom, we have considered a system experiencing a truncated sinusoidal force with order (a) n = 5, (b) n = 6, (c) n = 7 and (d) n = 8. The insets at each subfigure represent the classical linear response curves deduced from Fig. 4.9 where the maxima have been labeled with alphabetical capital letters. Parameters: k = 1, V 0 = π 32 , α = 6, β = 16, b =0.1, ω 1 = 1, Ω = 10ω 1 , ∆B =0.01, ∆t =0.0015. . . . . . . . . . . . . . . . . . . . . . . 4.11 Locus of the linear response local maxima Q * ,n m versus the corresponding perturbation amplitude B * ,n m at which they occur. From top to bottom, we have considered a system experiencing a sawtooth force with order (a) n = 5, (b) n = 6, (c) n = 7 and (d) n = 8. The insets at each subfigure represent the classical linear response curves where the maxima have been labeled with alphabetical letters. Parameters: A = 0 5, A 0 =0.125, α = 6, β = 16, b =0.1, ω 1 = 1, Ω = 10ω 1 , ∆B =0.01, ∆t =0.0015. 4.12 Evolution of each local maxima Q * ,n m reached by the linear response Q versus the nonlinearity order n. The performance obtained with the two nonlinear forces are compared when we consider: (a) The first maxima, (b) The second maxima, (c) The third maxima, (d) The fourth maxima. Circle-marked lines correspond to the truncated sinusoidal force whereas the star-marked lines refers to the sawtooth force. Parameters: k = 1, V 0 = π 32 , A =0.5, A 0 =0.125, α = 6, β = 16, b =0.1, ω 1 = ∆B =0.01, ∆t =0.0015. . . . . . . . . . . . . . . . . . . . . . . . . . . 4.13 Phase portraits of the coexisting orbits for the resonance curve of Fig. 4.7. The perturbation amplitude is set to: (a) B =1.5, (b) B =3.5, (c) B =4.13, (d) B =6.86, (e) B =9.38 and (f) B = 11. The equivalent truncated sinusoidal force F 1 (x, 1) is also superimposed using a dashed-line in all the cases. Parameters: n = 1, k = 1, V 0 = π 32 , α = 6, β = 16, b =0.1, ω 1 = 1, Ω = 10ω 1 , ∆t =0.0015. . . . . . . . . . . 5.6 Perception of the different images through the SR-detector. Parameters: V th =1.2 and σ =0.1. (a) Cross-covariance C I,T of each image against the noise intensity γ. Dashed lines are guides to the eye. The best perceived images are displayed for the optimal noise intensity γ * at subfigures (bd). (b): image 1 requires γ * =0.39 to achieve C I,T (γ * ) =0.274. (c): image 2 requires γ * =0.5 to achieve C I,T (γ * ) =0.322. (d): image 3 requires γ * =0.59 to achieve C I,T (γ * ) =0.199. (e): image 4 requires γ * =0.465 to achieve C I,T (γ * ) =0.208. . . . . . . . . . . . . . . . . . . . . . . . . Images perceived by the VR-detector for different perturbation amplitudes A. The initial noisy subthreshold image I b of Saturn is corrupted with increasing perturbation amplitude A and then threshold filtered with threshold V th =1.2 to produce the black and white images presented at subfigures (a-c) . (a): A =0.3. (b): A =0.95. (c): A =1.4. The best perception of Saturn image is obtained for the optimal perturbation amplitude A =0.95 at subfigure (b). . . . . . . . . . . . . . . . . . . . . . . . . . . Perception through the VR-detector of the saturn image with different noise intensities σ. Parameter: V th =1.2. (a): Cross-covariance C I,T against the perturbation amplitude A for different levels of noise σ. Dashed lines are guides to the eye. For each noise intensity σ where a resonance of the cross-covariance occurs, we have displayed the best perceived image obtained for the optimal perturbation amplitude A * at subfigures (be). (b): σ =0.1 requires A * =0.95 to achieve C I,T (A * ) =0.554. (c): σ =0.2 requires A * =0.85 to achieve C I,T (A * ) =0.506. (d): σ =0.3 requires A = 0 8 to achieve C I,T (A * ) =0.442. (e): σ =0.45 requires A * =0.6 to achieve C I,T (A * ) =0.365. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Perception through the VR-detector of the Coloseum image with different noise intensities σ. Parameter: V th =1.2. (a): Cross-covariance C I,T against the perturbation amplitude A for different levels of noise σ. Dashed lines are guides to the eye. For each noise intensity σ where a resonance of the cross-covariance occurs, we have displayed the best perceived image obtained for the optimal perturbation amplitude A * at subfigures (bd). (b): σ =0.1 requires A * =0.6 to achieve C I,T (A * ) =0.422. (c) σ =0.2 requires A * =0.6 to achieve C I,T (A * ) =0.374. (d): σ =0.3 requires A * =0.6 to achieve C I,T (A * ) =0.325. . . . . . . . . . . . . . . . . . . . . . . . . . 87

  =0.03 and Γ 0 =0.27. This temporal analysis of the system's output signal x(t)

	3.2.1.1/ TEMPORAL ANALYSES
	In this section, temporal behavior of the system's output x(t) for different values of the perturbation
	amplitude H is examined by analyzing two different cases of the constant damping coefficient cor-
	responding to Γ 0

t (arbitrary unit) 150 160 170 180 190 200 x(t) -8 0 8 150 160 170 180 190 200 x(t) -8 0 8 150 160 170 180 190 200 x(t) -8 0 8 150 160 170 180 190 200 x(t) -8 0 8 150 160 170 180 190 200 x(t)

  3.7, for the corresponding value of the constant damping amplitude Γ 0 =0.27. Our temporal studies of the

t (arbitrary unit) 150 160 170 180 190 200 x(t) -8 0 8 150 160 170 180 190 200 x(t) -8 0 8 150 160 170 180 190 200 x(t) -8 0 8 150 160 170 180 190 200 x(t) -8 0 8 150 160 170 180 190 200 x(t)

  

0.1029 0.1033 0.1037 0.104 0.2 0.5 0.8 0.1029 0.1033 0.1037 0.104 0.2 0.5 0.8 0.1029 0.1033 0.1037 0.104 Unilateral magnitude spectrum 0.2 0.5 0.8 0.1029 0.1033 0.1037 0.104 0.2 0.5 0.8 Frequency (arbitrary unit) 0.1029 0.1033 0.1037 0.104 0.2 0.5 0.8 (f=0.1035 ; 2|X(f)|=0.1407) (f=0.1035 ; 2|X(f)|=0.2761) (f=0.1035 ; 2|X(f)|=0.8533) (f=0.1035 ; 2|X(f)|=0.4032) (f=0.1035 ; 2|X(f)|=0.1190)

  

  3.3.2.2/ CONTROL OF VR BY THE PHASE DIFFERENCE φ BETWEEN THE NONLINEAR DAMPING AND THE PERIODIC POTENTIAL

  Lastly, whatever the value of n, the two ends of the potential correspond to stable states whose

	the positions X * h,n = unstable states for odd values of h. h 2k	correspond to stable states for even values of h and
	• if n is even, the positions X * h,n = unstable states for even values of h. h 2k	correspond to stable states for odd values of h and
	positions are given as X * -(n+1),n = -	(n + 1) 2k	and X * (n+1),n =	(n + 1) 2k

  numerical time step ∆t =0.0015.

		0.18				
							B=1.50
	Unilateral magnitude spectrum	0.06 0.1 0.14					B=4.72 B=9.79
		0.02				
		0				
		0.158	0.1585	0.159	0.1595	0.16	0.1605
				Frequency (arbitrary unit)	

Table 5 . 1 :

 51 Features of the stochastic resonance based detector with threshold V th =1.2. γ * represents the optimal noise intensity which maximizes the cross-covariance C I,T .

	Image number	Image size Optimal noise Best cross-covariance
		N 2	γ *	C I,T (γ = γ * )
	Image 1: Coloseum	64 2	0.39	0.274
	Image 2: Saturn			

Table 5 . 2 :

 52 Features of the VR-detector with spatial normalized frequency N HF /N 2 = 1/4 and threshold V th =1.2. A * represents the optimal amplitude of the perturbation which maximizes the cross-covariance C I,T and γ * the critical noise value beyond which the detector cannot recover the subthreshold image. =0.95 0.506 for A * =0.85 0.442 for A * =0.83: Cameraman N 2 = 2 16 0.59 0.372 for A * =0.95 0.342 for A * =0.9 0.292 for A * =0.9 4: Lena N 2 = 218 

	Image	critical	C I,T (A * )	C I,T (A * )	C I,T (A * )
	number	noise γ * for σ =0.1	for σ =0.2	for σ =0.3
	1: Coloseum N 2 = 2 12	0.39	0.422 for A * =0.6	0.374 for A * =0.6	0.325 for A * =0.6
	2: Saturn N 2 = 2 14	0.5 0.554 for A 0.465 0.401 for A * =0.8	0.343 for A	

* * =0.75 0.288 for A * =0.7

Table 5 . 3 :

 53 Features of the VR and SR detectors when the noise level of the input subthreshold image is σ =0.1 and when the detector threshold is V th =1.2.

	Image number Best cross-covariance of	Best cross-covariance Best cross-covariance
	and size N 2	VR-detector with N HF = N 2 /4 of VR-detector	of SR-detector
		C I,T (A * , N HF = N 2 /4)	C I,T (A * , N * HF )	C I,T (γ * )
	1: Coloseum	0.422 for A * =0.6	0.562 for A * =0.6	0.274 for γ * =0.39
	N 2 = 2 12	and N HF = 2 10	and N * HF = 2 12	
	2: Saturn	0.554 for A * =0.95	0.749 for A * =0.95	0.322 for γ * =0.5
	N 2 = 2 14	and N HF = 2 12	and N * HF = 2 14	
	3: Cameraman 0.372 for A * =0.95	0.565 for A * =0.95	0.199 for γ * =0.59
	N 2 = 2 16	and N HF = 2 12	and N * HF = 2 16	
	4: Lena	0.401 for A * = 0 8	0.546 for A * =0.8	0.208 for γ * =0.465
	N 2 = 2 18			

20 25 30 Γ 0 ' =0.03 Γ 0 ' =0.15 Γ 0

20 25 30 35 Γ 0 =0.03 Γ 0 =0.15 Γ 0 =0.27 Γ 0 =0.39 Γ 0 =0.51 Figure 3.20: Control of VR with the nonlinear damping amplitude Γ 0 of the space-dependent damping coefficient Γ(x). Parameters: m = 1, λ =2.4, φ =0.2, k = 1, Φ 0 = 1, G =0.05, ω =0.65, Ω = 13.

15 20 25 30

5.4/ VIBRATIONAL RESONANCE BASED DETECTOR

By setting the switch control c of the detector to c = 1, the perturbation P of Fig. 5.3 defined by eq.

(5.4) takes the form of the following sine function: P i, j = A cos 2πi jN HF N 2 + ϕ i, j with i = 1, 2, , N and j = 1, 2, , N

In this section, we analyze how the perception of the images presented in Fig. 5.1 through the VR-detector can be optimized by tuning the perturbation amplitude A and its spatial frequency N HF . Therefore, it leads us to first define an amplitude optimized VR-detector obtained when the frequency N HF of the perturbation remains constant while its amplitude A can be adjusted.

Next, motivated by the work of Yao et al [START_REF] Yao | Frequency-resonance-enhanced vibrational resonance in bistable systems[END_REF], which have obtained better resonances when the perturbation frequency can be tuned, we propose to develop a frequency optimized VR-detector:

the amplitude of the perturbation will remain constant while its frequency will be adjusted.

5.4.1/ AMPLITUDE OPTIMIZED VR-DETECTOR

For each image of Fig 5 .1, the spatial frequency N HF of the perturbation is adjusted according to the image resolution N 2 to ensure that the normalized frequency N HF /N 2 remains constant, while the perturbation amplitude A can be tuned. We arbitrarily choose the normalized value N HF /N 2 = 1/4

which is not restrictive since the influence of the normalized frequency will be addressed in the next subsection. Like the SR-detector, we first consider the noisy image of Saturn whose resolution is N 2 = 2 14 pixels and whose level of noise is σ =0.1. It means that in this case, the frequency of the perturbation must be tuned to N HF = 2 12 to ensure N HF /N 2 = 1/4. LIST OF FIGURES (d): N HF = 2 18 . The best perception of the Lena image is achieved when the crosscovariance saturates to C I,T =0.546, that is when the perturbation is tuned to the optimal amplitude A * =0.8 and when its frequency is greater than the optimal value