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Résumé � Ce travail du doctorat est e�ectué dans le cadre du projet European Research
Council's (ERC) Advanced Grant Scale-FreeBack. L'objectif du projet Scale-FreeBack est
de développer une approche holistique de contrôle sans échelle des systèmes complexes, et
de poser de nouvelles bases pour une théorie traitant des réseaux physiques complexes avec
une dimension arbitraire. Un cas particulier est celui des systèmes de transport intelligents
capables d'empêcher l'apparition de congestions aux heures de pointe. Les contributions de
cette thèse du doctorat sont principalement liées à la conception du contrôle aux limites et
à la modélisation du tra�c sur les réseaux urbains à grande échelle. Le tra�c est consideré
du point de vue macroscopique, c'est-à-dire on le décrit en termes des variables agrégées
telles que le �ux et la densité de véhicules. L'équation dynamique correspond à l'équation
di�érentielle partielle (EDP) hyperbolique du premier ordre. On propose des techniques du
contrôle qui reposent entièrement sur les propriétés intrinsèques du modèle du tra�c. Tout
d'abord, problèmes du contrôle aux limites sont resolus sur des routes uniques (1D). L'état
du tra�c est entraîné vers une trajectoire souhaitée dépendant de l'espace et du temps qui
admet la commutation des régimes du tra�c. Une telle conception du contrôle est loin d'être
triviale en raison des non-linéarités de l'équation d'état. Ensuite, le problème est étendu aux
réseaux urbains de taille arbitraire, dont la dynamique est décrite par un modèle de loi de
conservation bidimensionnel (2D). Les paramètres du modèle sont dé�nis partout dans le plan
du continu à partir de ses valeurs sur les routes physiques qui sont ensuite interpolées. La
direction du �ux est déterminée par la géométrie du réseau et les paramètres d'infrastructure.
Ce modèle 2D est applicable dans les réseaux avec une direction de mouvement préférée.
Pour ce cas, nous élaborons une méthode unique qui simpli�e considérablement la conception
de contrôle. En particulier, nous présentons une transformation de coordonnées curvilignes
qui traduit le modèle continu en 2D en un ensemble paramétré de systèmes 1D. Cela permet
une élaboration explicite de stratégies pour diverses tâches du contrôle à résoudre: on
calcule des états stables, conceve un contrôle aux limites pour la densité 2D, applique un
contrôle de limite de vitesse variable pour conduire le tra�c vers n'importe quel équilibre.
En�n, un nouveau modèle de tra�c continu bidimensionnel multidirectionnel est présenté.
Il s'appelle le modèle NEWS, car il se compose de quatre EPD qui décrivent l'évolution
de la densité des véhicules par rapport aux directions cardinales: Nord, Est, Ouest et Sud
(North-East-West-South - NEWS). La direction du �ux est déterminée par les rapports de
braquage aux intersections. Pour ce modèle, on conceve un contrôle aux limites qui conduit le
tra�c congestionné à l'équilibre souhaité. L'e�cacité de ces contributions a été testée à l'aide
de données simulées et réelles. Dans le premier cas, les résultats sont véri�és en utilisant le
célèbre logiciel du tra�c Aimsun, qui produit des microsimulations de trajectoires de véhicules
dans un réseau modélisé. Dans le second cas, les données réelles sont obtenues à partir de
capteurs situés en centre-ville de Grenoble et collectées à l'aide du Grenoble Tra�c Lab (GTL).

Mots clés : Contrôle aux limites, réseaux de tra�c à grande échelle, Hamilton-Jacobi,
équations aux dérivées partielles.
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Abstract � This research is done in the context of European Research Council's (ERC)
Advanced Grant project Scale-FreeBack. The aim of Scale-FreeBack project is to develop
a holistic scale-free control approach to complex systems, and to set new foundations for a
theory dealing with complex physical networks with arbitrary dimension. One particular
case is intelligent transportation systems that are capable to prevent the occurrence of
congestions in rush hours. The contributions of the present PhD work are mainly related
to boundary control design and modeling of tra�c on large-scale urban networks. We
consider tra�c from a macroscopic viewpoint describing it in terms of aggregated variables
such as �ow and density of vehicles. The corresponding dynamic equation corresponds to
a �rst-order hyperbolic partial di�erential equation (PDE). Within this PhD thesis, we
propose control design techniques that rely on the intrinsic properties of the model. First
of all, we solve one-dimensional (1D) boundary control problems, i.e., for tra�c evolving
on single roads. Thereby, the tra�c state is driven to a space- and time-dependent desired
trajectory that admits tra�c regimes switching. Such control design is far from being
trivial due to nonlinearities of the state equation. Then, the problem is extended to urban
networks of arbitrary size. Large-scale tra�c dynamics are described by a two-dimensional
(2D) conservation law model. Model parameters are de�ned everywhere in a continuum
domain from their values on physical roads that are further interpolated. Tra�c �ow
direction is determined by network geometry and infrastructure parameters. This 2D model
is applicable to any urban area with a preferred direction of motion. For this case, we
elaborate a unique method that considerably simpli�es control design for urban tra�c
systems. We present a curvilinear coordinate transformation that translates a 2D continuous
tra�c model into a parametrized set of 1D systems. This enables an explicit elaboration
of strategies for various control tasks to solve on large-scale networks: calculation of steady
states, boundary control design for a mixed regime tra�c, apply variable speed limit control
to drive tra�c to any space-dependent equilibrium. Finally, a new multi-directional 2D
continuous tra�c model is presented. This model is formally derived from the demand-
supply concept at one intersection. It is called the NEWS model, since it consists of four
PDEs that describe the evolution of vehicle density with respect to cardinal directions:
North, East, West and South. The tra�c �ow direction is determined by turning ratios at
intersections. We then design a boundary control that drives multi-directional congested
tra�c to a desired equilibrium. The e�ectiveness of our contributions were tested using
simulated and real data. In the �rst case, the results are veri�ed by using the well-known
commercial tra�c Aimsun, which produces microsimulations of vehicles' trajectories in a
modeled network. In the second case, the real data are obtained from sensors located in
the downtown area of the city of Grenoble and collected using the Grenoble Tra�c Lab (GTL).

Keywords: Boundary control, large-scale tra�c networks, Hamilton-Jacobi, partial
di�erential equations.

Grenoble Images Parole Signal Automatique (GIPSA-Lab)
11 Rue des Mathématiques, 38400 Saint-Martin-d'Hères
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Résumé

L'urbanisation continue de la planète contribue à une augmentation de la demande de trans-
port, ce qui entraîne la formation de graves congestions. Cela a un impact négatif sur la vie
quotidienne. Par conséquent, des solutions e�caces pour la gestion intelligente des transports
sont d'une grande importance.

Dans ce travail de thèse, on traite principalement du contrôle et de la modélisation du tra�c
sur des réseaux urbains de dimension arbitraire avec une application à la ville de Grenoble.
Le tra�c est considéré d'un point de vue macroscopique. Son état est prédit par une équation
di�érentielle partielle (EDP) qui décrit le tra�c en termes du �ux et de la densité des véhicules
dans une zone donnée. Dans cette approche de modélisation, on suppose qu'il existe une
relation concave entre le �ux et la densité, connue sous le nom de diagramme fondamental
(Fundamental Diagram - FD). Ainsi, en fonction de la densité des véhicules, on distingue deux
régimes du tra�c: le régime du �ux libre (la densité est inférieure à la valeur critique) et le
régime de la congestion (la densité est supérieure à la valeur critique).

On propose des techniques de la conception du contrôle qui reposent sur les propriétés
intrinsèques des modèles du tra�c macroscopiques. Tout d'abord, nous résolvons des problèmes
du contrôle aux limites unidimensionnelles (1D) pour le tra�c évoluant sur des routes simples.
Ensuite, divers problèmes du contrôle sont posés et résolus pour le tra�c sur des réseaux urbains
de la taille arbitraire. La dynamique du tra�c est alors décrite par un modèle bidimensionnel
(2D) de loi de conservation. Ce modèle 2D est évolutif, c'est-à-dire qu'il décrit le tra�c urbain
par une seule EDP. Cependant, il n'est applicable qu'aux zones urbaines ayant une direction
de mouvement préférée. En�n, nous présentons un nouveau modèle du tra�c continu en 2D qui
peut capturer la véritable multidirectionnalité du tra�c. Ce modèle est formellement dérivé du
concept d'o�re et de demande à une intersection. Il se compose de quatre EDP qui décrivent
l'évolution de la densité des véhicules par rapport aux directions cardinales: Nord, Est, Ouest
et Sud (North-East-West-South - NEWS). Les performances du modèle NEWS ont été testées
en utilisant des données simulées et réelles (provenant des capteurs installés dans la ville de
Grenoble).

Les principaux résultats de cette thèse sont résumés ci-dessous.

Contrôle du tra�c sur les routes

Dans ce chapitre, l'évolution de la dynamique du tra�c est étudié sur une route unique de la
longueur �nie en utilisant le modèle de Lighthill-Whitham-Richards (LWR). Ce modèle est
une EDP hyperbolique non linéaire du premier ordre qui représente une loi de conservation,
le nombre de véhicules étant la quantité conservée. Deux problèmes du contrôle aux limites
sont posés pour suivre une densité désirée qui est une trajectoire dépendante de l'espace et du
temps. Ces dépendances sont capables de capturer des nombreuses situations réalistes lorsque
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les conditions du tra�c changent rapidement. Par exemple, il est courant qu'une route ait
des valeurs du �ux entrant di�érentes au cours d'une même journée (il peut y avoir plus de
véhicules à 9 heures du matin lorsque les gens vont au bureau et moins de voitures la nuit).
En outre, un état d'équilibre souhaité ne représente qu'un pro�l général variant dans l'espace
et dans le temps. Cependant, un tel pro�l cible général entraîne une dynamique d'erreur non
triviale.

Tout d'abord, nous considérons que le tra�c est uniquement en régime congestionné. Cela
simpli�e le modèle LWR qui devient une EDP linéaire. Ce modèle est cependant inhomogène,
puisque nous ajoutons également une fonction de perturbation générale dans le domaine dépen-
dant de l'espace. Cette fonction incorpore une éventuelle inadéquation entre le modèle et la
réalité. Par exemple, il peut y avoir un �ux non mesuré de véhicules provenant de routes
secondaires ou de véhicules en stationnement. Pour ce système linéaire inhomogène, nous
formulons des problèmes d'atténuation des perturbations tout en atteignant le pro�l souhaité
en termes de normes spatiales L2 et L∞. La trajectoire souhaitée est également restreinte au
régime congestionné pour des raisons de simplicité, c'est-à-dire qu'elle est régie par le système
linéaire homogène LWR. On traite la fonction de perturbation inconnue en utilisant la méth-
ode des caractéristiques qui permet d'exprimer la fonction de perturbation par des variables
connues (mesurées) telles que la densité des véhicules et les actions du contrôle appliquées au
cours des étapes temporelles précédentes. Le contrôle conçu se compose d'une partie à action
directe et d'une partie à rétroaction.

En outre, on considére également un problème plus complexe dans le cas où l'état et la
trajectoire souhaitée sont régis par des modèles non linéaires LWR comme dans sa formulation
originale (et sans la perturbation). Le principal dé� est alors lié aux chocs (discontinuités),
qui apparaissent dans de tels systèmes même pour des données initiales régulaires en temps
�ni. Cela rend l'analyse explicite fastidieuse, puisqu'il n'existe pas de solutions classiques,
et nous ne devons les considérer que dans un sens faible et suivre la dynamique des chocs.
Un autre dé� est lié aux conditions aux limites faibles, ce qui implique qu'aucune action de
contrôle ne peut être imposée aux limites (on doit prendre en compte l'état actuel du système).
Pour traiter ces deux problèmes, nous traduisons LWR en EDP de Hamilton-Jacobi (H-J) qui
représente sa forme intégrale. La solution de l'EDP H-J est exempte de discontinuités et,
dans le pire des cas, elle peut seulement devenir non-di�érenciable. Son état correspond au
nombre cumulé de véhicules qui peut être obtenu en intégrant la densité des véhicules. Le
système H-J peut être vu comme un problème de contrôle optimal, et sa solution est obtenue
de manière semi-explicite comme le minimum de tous les chemins valides. Dans le cas d'un FD
triangulaire, la solution est obtenue comme le minimum sur seulement trois chemins valides,
chacun associé à la condition initiale ou aux conditions limites, respectivement. Pour analyser
le comportement du système en temps asymptotique, on estime le temps minimal auquel il
est garanti que les conditions initiales n'a�ectent plus la solution H-J. La solution est alors
formulée comme un minimum de seulement deux chemins valides associés aux conditions aux
limites. La formulation intégrale du système de la circulation de Hamilton-Jacobi ainsi que
la possibilité d'exprimer exactement sa solution, nous permettent d'analyser explicitement les
périodes du temps, lorsque les limites sont restreintes pour accepter des actions du contrôle
en fonction de l'état réel de la circulation. Ces fonctions dites de restriction du contrôle
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permettent de diviser la dynamique d'erreur en trois régimes di�érents en fonction des limites
qui peuvent actuellement accepter des actions du contrôle. Nous montrons que même lorsque
les limites sont parfois incapables d'accepter les contrôles proposés, le système converge vers
la trajectoire souhaitée de manière exponentielle. Les résultats sont validés numériquement
pour di�érents gains de contrôle.

Tra�c unidirectionnel sur les réseaux

Ce chapitre est consacré au contrôle du tra�c sur les réseaux urbains de toute taille. Sa
dynamique est décrite par le modèle LWR en 2D (2D LWR) qui représente une loi de conser-
vation en deux dimensions. Le tra�c est traité comme un �uide qui se propage maintenant
sur un plan 2D continu.

Le modèle 2D LWR est inspiré de la modélisation de la foule, la seule di�érence étant
la restriction pour les véhicules de se déplacer sur des routes physiques. Ainsi, le modèle
nécessite de supposer que le réseau urbain est su�samment dense pour être considéré comme
un domaine continu. Pour modéliser le tra�c, il faut disposer d'informations sur la géométrie
et l'infrastructure du réseau urbain, c'est-à-dire l'emplacement des routes et des intersections,
le nombre de voies de chaque route et ses limites de vitesse. Ces informations sont utilisées
pour dé�nir la densité et les capacités maximales partout dans le domaine du continuum. En
particulier, on applique la pondération inverse à la distance pour attribuer des valeurs aux
variables partout en fonction de la distance aux routes. Tous ces paramètres étant spéci�ques
aux di�érents réseaux urbains sont incorporés dans un FD qui devient explicitement dépendant
de l'espace. Une analyse directe d'un tel modèle est une tâche compliquée en raison de la
dérivée seconde de l'espace. Il n'est pas non plus évident de savoir quel point limite doit être
actionné pour a�ecter un point ou une zone spéci�que du domaine.

On trouve une approche pour analyser ce modèle de telle sorte que l'on puisse suivre les
trajectoires du �ux dans la zone urbaine. Ceci est possible, car la structure du modèle 2D LWR
limite son applicabilité uniquement pour les réseaux constitués de routes unidirectionnelles.
Le champ de direction ne dépend que de la géométrie du réseau et non de l'état. S'il n'y a
pas de boucles dans un réseau, on peut dé�nir une transformation de coordonnées curviligne.
Cette transformation de coordonnées traduit le système de tra�c 2D en un ensemble paramétré
de systèmes 1D avec un FD dépendant de l'espace, ce qui est beaucoup plus facile à analyser.
Mathématiquement, cela signi�e qu'au lieu de deux dérivées partielles par rapport à l'espace,
le système modi�é n'en a qu'une. Bien que cette transformation des coordonnées ait pu être
dé�nie en raison des restrictions spéci�ques de 2D LWR, ce modèle peut néanmoins être utilisé
pour prédire l'évolution du tra�c dans plusieurs situations fréquentes, par exemple lorsque, à
l'heure de pointe du matin, tous les véhicules se dirigent vers le centre-ville où se trouvent la
plupart des bureaux.

En outre, nous présentons plusieurs résultats obtenus en analysant 2D LWR en coordonnées
curvilignes. Nous élaborons une technique permettant d'obtenir une distribution de véhicules
dans un état d'équilibre uniquement en connaissant les données du �ux entrant et du �ux
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sortant d'une zone urbaine. Cette capacité d'analyser l'équation en 2D pour obtenir des
équilibres admissibles est un résultat essentiel qui permet de formuler des tâches de contrôle
pour la stabilisation du tra�c urbain. En outre, nous concevons un contrôleur de frontière
pour atténuer les congestions dans une zone urbaine. Ainsi, pour simpli�er, le tra�c est limité
au régime de la congestion.

Ensuite, un problème de contrôle aux limites visant à approximer la trajectoire désirée du
véhicule est posé pour un régime de tra�c mixte en temps asymptotique. Pour cela, le modèle
2D LWR en coordonnées curvilignes est ensuite considéré dans le formalisme de Hamilton-
Jacobi qui facilite la gestion des discontinuités pour la conception du contrôle aux limites.
Le problème du contrôle aux limites est résolu de la même manière que pour le cas 1D. La
di�culté supplémentaire est introduite par la dépendance spatiale explicite dans le diagramme
fondamental, de sorte que la formule classique de Lax-Hopf ne peut être appliquée. Au lieu de
cela, on applique la théorie de la viabilité élaborée pour le cas des hamiltoniens dépendants
de l'espace. Pour un exemple numérique, nous prend la structure du centre-ville de Grenoble
comme réseau urbain.

En�n, le modèle 2D LWR est utilisé en coordonnées curvilignes pour concevoir un con-
trôleur de limite de vitesse variable (Variable Speed Limit - VSL). Le contrôleur VSL est
utilisé pour a�ecter directement le �ux de tra�c en imposant des restrictions temporaires
sur la vitesse autorisée, ce qui est souvent utilisé pour des situations spéci�ques telles que
les accidents, les mauvaises conditions météorologiques, etc. Il s'agit d'un contrôleur intra-
domaine qui est appliqué d'une manière continue dans l'espace sur l'ensemble du domaine. Il
agit comme une linéarisation par rétroaction de sorte que l'équation d'état perd sa structure
de loi de conservation, ce qui facilite son analyse. Le contrôleur VSL peut être utilisé pour
stabiliser le système 2D à n'importe quel équilibre souhaité variant dans l'espace. Si FD a
une dépendance concave par rapport au contrôleur dans le régime de tra�c congestionné et
une dépendance linéaire dans le régime du �ux libre, le contrôleur est di�érentiable presque
partout dans l'espace. On conçoit également un état d'équilibre optimal qui correspond à la
maximisation du �ux obtenue pour le nombre maximal possible de voitures. Dans un exemple
numérique, on utilise à nouveau la structure du centre-ville de Grenoble, puis on démon-
tre comment le contrôleur VSL conçu fait converger la densité de véhicules vers l'équilibre
souhaité.

Tra�c multidirectionnel sur les réseaux

Dans ce chapitre, nous proposons notre propre méthode pour traiter le tra�c multidirectionnel
évoluant sur des réseaux urbains de taille arbitraire à un niveau macroscopique. Le tra�c
multidirectionnel est beaucoup plus proche de la représentation du tra�c urbain dans des
situations réalistes que le modèle 2D LWR. L'idée globale consiste à dériver un modèle EDP
qui capture le comportement du tra�c évoluant dans un réseau urbain dans n'importe quelle
direction avec des croisements de �ux.

On commence par considérer un modèle du �ux du tra�c à une intersection basé sur le
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modèle classique de transmission cellulaire. Chaque intersection est caractérisée par un certain
nombre de routes entrantes et sortantes qui peuvent être orientées arbitrairement dans l'espace.
Ainsi, il y a un nombre di�érent de paramètres à régler pour chaque intersection individuelle.
Comme un réseau peut être composé de milliers d'intersections, on trouve une approche uni�ée
pour décrire le tra�c aux intersections indépendamment de leurs paramètres individuels. Ainsi,
on suppose que la dynamique du tra�c multidirectionnel peut être représentée par seulement
4 couches de direction: Nord, Est, Ouest et Sud (North-East-West-South - NEWS). Dans
le formalism du NEWS, on déploie des matrices de projection basées sur la géométrie pour
appliquer le �ux de tra�c le long de toute route dans les directions cardinales. Les poids de
projection varient continuellement avec l'angle d'orientation de la route. Ensuite, le concept du
�ux partiels est introduit pour capturer divers modèles d'origine-destination aux intersections.

Ainsi, on obtiens un modèle du �ux du tra�c qui prédit le taux de changement de
l'accumulation de véhicules à l'intersection d'une manière uni�ée. Ensuite, la méthode de
continuation est appliquée pour obtenir un modèle qui prédit l'évolution de la densité des
véhicules à proximité d'une intersection. Cette méthode est utilisée pour transformer une
EDO (modèle routier) en une EDP (modèle d'intersection), qui représente un modèle de con-
tinuum macroscopique pour une intersection. Comme chaque intersection a été décrite de la
manière uni�ée, pondération inverse à la distance est appliquée pour dé�nir tous les paramètres
d'intersection pour chaque point dans un plan continuum. La dérivation du modèle NEWS a
été faite analytiquement en utilisant une seule hypothèse sur la structure du réseau. À savoir,
les réseaux urbains doivent être bien conçus en termes de �ux maximal, c'est-à-dire que si les
véhicules se déplacent à un �ux maximal avant une intersection, ils continuent à utiliser la
capacité de la route au maximum après le virage.

En conséquence, on obtiens le modèle NEWS qui prédit l'évolution du tra�c dans quatre
directions cardinales. La propagation du �ux du tra�c dans chaque direction est pilotée par le
concept d'o�re et de demande qui s'appuie sur le diagramme fondamental. De plus, véhicules
peuvent changer de couche de direction, c'est-à-dire qu'il existe un couplage entre di�érentes
couches, ce qui est un aspect important en raison de son ubiquité physique.

Les propriétés mathématiques du modèle NEWS dérivé sont également analysées. Le
système d'EDP est hyperbolique pour tout ensemble de paramètres. Le fait de pouvoir classer
un modèle comme une EDP hyperbolique simpli�e considérablement l'analyse pour les tâches
futures, puisque de nombreux résultats analytiques ont déjà été élaborés pour ce type de
systèmes. Il a également été démontré que le modèle représente une loi de conservation, la
densité du tra�c étant la quantité conservée. De plus, il a été démontré que son état est borné,
ce qui est une hypothèse réaliste importante pour la modélisation du tra�c.

Les résultats de la prédiction du modèle sont validés à l'aide de la microsimulateur Aimsun
et de la plateforme expérimentale GTL Ville qui fournit des données en temps réel provenant
d'un réseau des capteurs installés dans le centre-ville de Grenoble. Les résultats de validation
révèlent que la distribution de la densité prédite par le modèle NEWS reste en bon accord
avec la densité de référence, soit 90 % de similarité avec Aimsun et 80 % de similarité avec
l'expérience réelle. La validation du modèle avec des données réelles est un projet open source,
c'est-à-dire que les résultats sont reproductibles et peuvent être utilisés pour des études futures.



x

En�n, le modèle NEWS est étudié du point de vue du contrôle, où on se limite au régime du
tra�c congestionné pour des raisons de simplicité. On analyse la classe d'équilibres admissibles
souhaités qui doivent satisfaire un certain système d'EDP. On pose et résolve le problème de la
recherche d'un état d'équilibre qui permet de minimiser la congestion dans un réseau urbain
sous la contrainte que sa gamme de valeurs doit rester dans le régime de congestion. De
plus, on prouve la convergence exponentielle d'un état congestionné contrôlé depuis un limite
vers cet équilibre désiré en utilisant des méthodes de Lyapunov. Le réseau du centre-ville de
Grenoble est à nouveau utilisé pour démontrer la performance du contrôleur aux limites dérivé
à l'aide d'un exemple numérique. On montre que le contrôleur fait converger la densité du
tra�c vers l'équilibre optimal désiré en temps �ni, ce qui est lié à la nature hyperbolique de
l'EDP.

Perspectives et extensions

Sur la base des résultats de cette thèse de doctorat, je vois un grand nombre de directions
intéressantes pour la recherche future. Les questions ouvertes suivantes semblent être les plus
pertinentes:

� Dans cette thèse, le tra�c a été décrit d'une manière assez simpliste, puisque LWR
représente un modèle macroscopique le plus simple du tra�c. En général, il est bien
connu que l'approche de la modélisation LWR présente plusieurs inconvénients, car elle
ne prend pas en compte de nombreux phénomènes importants tels que l'accélération
limitée ou la baisse de capacité due à la transition d'un régime �ux libre à un régime
congestionné. En outre, une façon possible d'a�ner la description du tra�c est de prendre
en compte di�érentes classes de conducteurs en fonction de leur vitesse (par exemple,
rapide et lente). Ainsi, on pourrait étudier les problèmes du contrôle des limites à l'aide
d'une approche de modélisation plus sophistiquée qui tient compte des limites du modèle
LWR (modèles d'ordre supérieur et multi-classes).

� Le modèle 2D LWR est limité à la description du tra�c sur les réseaux qui ont une
direction de mouvement préférée, ce qui n'est pas réaliste pour le tra�c général. Par
conséquent, comme une extension prometteuse de la recherche sur la modélisation macro-
scopique du tra�c urbain, on pourrait développer des algorithmes de partitionnement
qui divisent un réseau urbain en zones ayant une direction de mouvement préférée.

� Les contrôleurs aux limites sont conçus pour un tra�c évoluant sur un domaine rectan-
gulaire continu qui se rapproche du réseau urbain sous-jacent. En conséquence, on a
obtenu des lois de contrôle dé�nies sur une ligne continue, ce qui n'est pas directement
interprétable. Il serait donc intéressant d'étudier ce problème et de mettre au point
une méthode permettant de transformer les contrôleurs aux limites dé�nis sur des lignes
continues en contrôleurs réglés sur des points ou des intervalles spéci�ques sur des routes
réelles.



xi

� Le modèle NEWS est un système de seulement quatre EDP qui est capable de prédire
l'évolution du tra�c multidirectionnel sur les réseaux urbains de manière assez précise.
Il est important pour les études futures de caractériser rigoureusement les propriétés
mathématiques de ses solutions. De plus, il serait intéressant d'étudier ce modèle pour
concevoir un contrôle des limites pour le tra�c à régime mixte.
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Chapter 1

Introduction

1.1 Tra�c on roads

Tra�c models have been developed and studied in order to describe tra�c dynamics and
predict the appearance of congestions since the beginning of the twentieth century. The
origin of the tra�c �ow theory takes us back to the thirties, when Greenshields [59] collected
data from a highway road on the car headway distance (average distance of two consequative
vehicles) and their average velocity. One year later, in [58] he proposed a fundamental relation
connecting the average car velocity with the vehicle density. This empirically established law
became very famous later in the tra�c engineering community, and nowadays it is known as
the Greenshields fundamental diagram. It can also be represented in terms of vehicle density
ρ (average number of vehicles per unit length) and �ow φ (average number of vehicles per
time unit), which yields a concave relation Φ(ρ):

φ = Φ(ρ) = vmax

(
1− ρ

ρmax

)
ρ,

where ρmax is the vehicle density at the tra�c jam, and vmax = Φ′(0) is the maximal aver-
age density of vehicles on a freeway. Afterwards, many other possible shapes of fundamental
diagrams have been proposed, see [91] for a detailed overview on �ow-density curves. Nowa-
days, the most simplistic �ow-density relation that is widely used for analysis of tra�c is the
triangular (bilinear) fundamental diagram proposed by Daganzo in 1994 [38].

1.1.1 Origins of tra�c modeling

The discovery of fundamental diagram plays an essential role in the history of tra�c �ow
modeling. It was the �rst evidence that tra�c can be described and analyzed in terms of
dynamic systems rather than considering it as a collection of independent vehicles. Thus, the
ability to formulate a fundamental diagram gave rise to appearance of di�erent tra�c �ow
models, see [140] for a detailed review. In general, these can be categorized as microscopic and
macroscopic tra�c models depending on the level of description detail. Microscopic models
trace the behaviour of each individual vehicle. The main assumption of these models is that
drivers adapt their behaviour to that of the leading vehicle, i.e., car-following models, see
for example [116, 80]. On the other hand, tra�c can be alternatively described from the
macroscopic point of view. In this case, tra�c state is given in terms of aggregated variables

1



2 Chapter 1. Introduction

such as average density and average �ow, while individual vehicles are not modeled. In this
thesis, we describe tra�c in terms of macroscopic variables. This enables to analyze tra�c on
some aggregated level that is a useful approach when it comes to large-scale transportation
networks.

Macroscopic tra�c models are often compared to �uid, since they describe tra�c �ow as if
it were a continuum. In the �fties, the kinematic wave theory for tra�c has been formulated by
Lighthill and Whitham [96] and, independently, Richards [118]. This so-called LWR model is
a �uido-dynamic model that prescribes the conservation of the number of vehicles. It describes
the spatio-temporal evolution of vehicle density on an in�nite highway road as the following
�rst-order scalar hyperbolic partial di�erential equation (PDE):

∂tρ(x, t) + ∂xΦ(ρ) = 0, ∀(x, t) ∈ R× R+.

Its key assumption is the existence of a concave �ow-density relation (fundamental diagram),
which allows to consider this conservation law equation as a model for tra�c.

The LWR model was the �rst macroscopic model in the history of tra�c modeling, and it
has some physical limitations. For instance, according to the LWR model vehicles reach the
new equilibrium velocity immediately after a change in the tra�c state, which implies in�nite
acceleration. This problem was addressed in [84, 88], where the LWR model was extended to
take the bounded acceleration into account. Another drawback of the LWR model is that the
transition from the free-�ow to the congested tra�c regime occurs at the same density and
without capacity drop. This was addressed by [41, 75] by introducing lane changing. However,
even despite the appearance of more sophisticated �rst-order [35, 144, 18] or even higher-order
models [12, 57] capable of covering more realistic tra�c behaviour, the LWR model remains
the most used one to study due to its simplicity and ability to reproduce the most essential
tra�c phenomena such as wave formation and propagation. LWR model was also shown to
be consistent with car-following behaviors at the aggregated level [109].

Although being the most simple continuous tra�c model, the explicit analysis of the LWR
equation is a tedious task. In general, such partial di�erential equations are solved using
the method of characteristics [46]. However, the nonlinearity of the fundamental diagram
introduces nonlinearities in the characteristic �elds. Therefore, even with a smooth initial
datum characteristic lines may intersect, which leads to discontinuities at intersection points.
This triggers a shock or a rarefaction wave depending on the state at the moment of intersection
(Riemann problem). Then, the conservation law solution is not de�ned in the classical sense,
and therefore needs to be considered in its weak formulation. This formulation yields multiple
solutions, among which the entropy solution [8] is recognized to be the physically reasonable
one. Mathematical properties of hyperbolic conservation laws have been extensively studied,
and an interested reader is referred to [21, 70, 83].

There is however a way to study the kinematic waves of tra�c without any need to deal
with shocks in the solution. In [106, 107, 108] Newell proposed an alternative way to consider
tra�c on a macroscopic scale by numbering vehicles at the highway entry and following the
evolution of vehicle numbers at every location and time. Thus, the tra�c state can be described
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in terms of cumulative number of vehicles M that evolves as

∂tM(x, t) + Φ(∂xM) = 0, ∀(x, t) ∈ R× R+.

This equation has the structure of a Hamilton-Jacobi PDE, which represents an integral form
of the LWR PDE. Its solution is a Lipschitz continuous function that is free of shocks (in the
worst case it is only non-di�erentiable), and it can obtained by solving a simple minimization
problem.

A variational formulation of kinematic waves was studied in [36, 37], who showed that
every well-posed tra�c problem with a concave �ow-density relation can be solved as a set
of shortest paths. In general, the explicit solution of Hamilton-Jacobi PDE can be obtained
using the viability framework, which was �rst shown for the case of convex conservation laws
in [76, 77]. The viability framework is based on using Lax-Hopf formula that exploits the
structure of a dynamic programming problem, and the solution is obtained as the minimum
of all valid paths, see also [28]. Several computational algorithms have been developped to
obtain solutions of H-J PDE for some special cases in the context of tra�c modeling. Thus,
[27] presented a computational method for any piecewise a�ne initial condition. The Lax-
Hopf algorithm to compute the solution on a single link for any concave fundamental diagram
has been suggested by [100]. Its improved version with a lower computational time has been
proposed in [127].

In some cases, the exact solution to LWR PDE can be obtained using the wave-front
tracking method [65, 99, 145]. This method can also be used to prove the existence of solutions
to conservation laws, see for example [30]. The solution of a LWR PDE can also be numerically
approximated using computational methods such as the Godunov scheme [56], or the Lax-
Friedrichs method [89]. These are both �nite di�erence methods. The Godunov scheme deals
with Riemann problems at each cell, and the Lax-Friedrichs method requires adding arti�cial
viscosity.

In the nineties, a time-discrete approximation of the LWR equation was introduced in [38,
39], which is now known as the cell transmission model (CTM). This model can be viewed as a
Godunov-type discretization of LWR, and it is based on approximating links (roads) by cells.
The amount of �ux that is transmitted between cells is based on their current occupancy (the
demand-supply concept). Nowadays, CTM is the most popular model in the tra�c community
due to its simplicity and the ability of a straightforward extension to networks.

1.1.2 Road control

Continuing urbanization caused by ever-growing population of the planet implies a growing
demand for transportation. This entails formation of severe congestions that cost people
hundreds of hours per year and that also have a signi�cant negative impact on the environment.
For instance, the Urban Mobility Report [125] summarized the major daily life problems
caused by tra�c congestions in USA in 2017. According to this report, urban American
drivers experience the following losses per year on average: 8.8 billion hours of time delay,
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3.3 billion gallons of wasted fuel and an equivalent monetary cost of 179 billion dollars. This
requires the development of e�cient solutions for intelligent transportation management.

There are several common techniques to control tra�c. One of the most widely used
techniques is a suitable application of a variable speed limit (VSL) along a highway road. It is
applied such that the maximal allowed speed is decreased, which mitigates risk of accidents, as
well as it results into a lower fuel consumption and reduced emissions. Previous works [2, 95,
150] con�rmed that the VSL control enhances tra�c safety and has a positive environmental
impact. Reduced travel time is another positive e�ect of VSL controllers reported by [105,
49]. The e�ect of VSL on the shape of the fundamental diagram was studied in [23, 113].
However, the improvement of travel time achieved with VSL control revealed inconsistencies
in microscopic simulations and �eld tests [79, 124]. These inconsistencies are related to the
fact that it is hard to precisely predict tra�c conditions at some localized congested bottleneck
via the macroscopic modeling. Moreover, not every human driver adapts his/her velocity to
numbers displayed on electronic tra�c signs.

Alternatively, tra�c can be regulated from the boundary, that is either from entry or exit
of the corresponding highway road, e.g., by actuating on- and o�-ramps. By managing on-
ramp tra�c in�ows, the application of meters also reduces the travel time, harmful emissions
and improves highway safety [90]. Moreover, [148] reported that ramp metering helps reducing
the average freeway delay.

However, in most of the cases, control for a tra�c road is designed using the discretized
version of the corresponding tra�c model. According to [89], such discretizations are known to
alter essential phenomena predicted by the original macroscopic tra�c models and may lead
to inconsistent discrete versions. Recall that from the mathematical viewpoint, macroscopic
tra�c models such as LWR mostly represent conservation laws with dynamics governed by
hyperbolic partial di�erential equations. The theory on the exact controllability and exact
observability was completely developed in [122, 98] for linear and in [92] for 1D quasilinear
hyperbolic PDEs. The results on exact controllability for nonlinear scalar conservation laws
with a strictly convex �ux function were discussed in [115]. Classical techniques widely used
for control of hyperbolic conservation laws are backstepping [31], Lyapunov-based [19, 32]
and optimal control methods using adjoint-based calculus [139, 60, 72, 15]. Optimal control
tasks for tra�c are considered to solve the most common problems of tra�c regulation, i.e.,
minimization of total travel time and fuel consumption, or throughput maximization.

However, the classical control methods mentioned above are not always well suited to
handle shocks, since they require the knowledge on the internal shock dynamics. Tracking dy-
namics of shocks was done, e.g., in [20], where the weak formulation and the Rankine-Hugoniot
relation were used to stabilize solution of the Burgers equation to a constant equilibrium. In
a recent work [14] the problem of boundary control of solutions with jump discontinuities has
been considered. In both [20, 14], the desired state was stationary and the Lyapunov methods
were applied. In [43] the exact controllability of solutions to conservation laws to space- and
time-dependent trajectories has been studied. Nevertheless, the problem of stabilizing a state
with shocks to space- and time-dependent trajectories that may also contain shocks has never
been considered before. We address this problem in Chapter 2.
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1.2 Tra�c on urban networks

In its original formulation, the LWR-model is applicable only to single roads of in�nite length.
Extension to urban networks required developing a methodology for intersection modeling
within the LWR framework. This was �rst done at the end of the last century by [69], who
considered a network of uni-directional roads. Later on, this formulation was re�ned to capture
multi-directional tra�c, e.g., see [29]. The CTM has also been extended to networks in [39],
who considered networks as directed graphs consisting of links (roads) and nodes (junctions).
The general theory of tra�c �ow on networks is presented in [50]. The Cauchy problem
for complex networks (with more than two incoming and outgoing roads at junctions) was
considered in [51].

The most common way to control tra�c on a urban level is to optimize the time intervals
of green signal at signalized intersections, see [26, 52]. There exist also other control tech-
niques applied in transportation networks, such as routing of tra�c [60], ramp metering [111],
variable speed limits [113, 141], see also [112] for a general review of tra�c control strategies.
The main challenge in this link-level (discrete) representation of tra�c networks is the large
computational time. For instance, if we consider large urban networks consisting of thousands
of links, the need to use much of tra�c data considerably exaggerates validation of control
performance [152].

Another way to model tra�c on urban areas is again to consider continuous macroscopic
models. They describe tra�c as a two-dimensional �uid moving on a continuum plane that
corresponds to a dense urban network. This approach has various advantages, e.g., the problem
size does not depend on the number of roads, as well as less data are required for the model
setup. Early works on continuous urban tra�c modeling [128, 131, 66] presented static models
with the focus on determining equilibria states in urban networks. However, due to the lack
of any knowledge of a �ow-density relation on a city level, these models failed in capturing
tra�c dynamics during rush hours, see [68] for a general review of such models.

The �rst demonstration of existing macroscopic relation between density and �ow should
be recognized to [142], who used data from microsimulations. Later this relation was also
observed during an experiment conducted in the congested region of Yokohama, Japan [53],
and was then generalized in [40]. This functional relation has the same physical meaning as
the fundamental diagram for highway roads, but it was shown to exist also on urban areas.

The discovery of macroscopic fundamental diagram (MFD) plays an essential role in the
development of tra�c models for urban areas. The empirical evidence of MFD led to appear-
ance of reservoir models, which are also called accumulation models. These models predict the
rate of change of the vehicle accumulation in some urban area (reservoir) that is determined
by the di�erence between its in�ow and out�ow, see [5] for a review on several MFD-based
models. The network's MFD can be de�ned by collecting real tra�c data [53] or by running
numerical simulations [62]. In [82] it has also been shown that the MFD can be well approxi-
mated by a function of only two parameters: the density of tra�c lights and the mean red to
green ratio across the network.
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The MFD-based approach is intuitive and easy in use, which makes it popular for tra�c
control design such as perimeter control [54, 3], robust control [61], etc. It is important to note
that only homogeneously congested areas may have a well-de�ned MFD, see [55] for properties
of well-de�ned MFDs. In general, there must exist only one �ow value for a given number of
vehicles. This feature is preserved only in regions that consist of links characterized by similar
congestion levels, while this causes problems in case of regions with heterogeneous links. In
this case, one can apply partitioning algorithms that divide a problematic area into multiple
smaller areas each having a well-de�ned MFD for given tra�c conditions [63, 87]. For the
case of rapidly changing tra�c conditions (e.g., accident on a road), a dynamic clustering
algorithm has been proposed by [123]. The main drawback of MFD-based modeling is that
it assigns only one value to characterize tra�c on some urban area being the current number
of cars in this area. Thus, the level of precision to describe tra�c behaviour on a global level
depends on the number of de�ned clusters, i.e., in some sense it acts like CTM in 2D. This
leads to the loss of information during the process of congestion formation and dissolution in
a transportation network.

Another way to describe the evolution of tra�c in urban areas is to use dynamic two-
dimensional continuum models. These share a lot of features with pedestrian models [71].
The main di�erence is that crowds evolve in an open space, while vehicles are restricted to
move on roads. In [121] authors considered a model including a di�usion term and a drift
term that depends on the density. The direction of the drift vector is determined by the shape
of the network. Other works [74, 45, 73] de�ne the �ux function by solving Eikonal equations
such that the �ow follows the path of the lowest cost. For a review of 2D continuum models
the reader is referred to [5]. A recent work [103] introduced a direct extension of LWR model
in two dimensions:

∂ρ(x, y, t)

∂t
+∇ · ~Φ(x, y, ρ) = 0, ∀(x, y, t) ∈ R2 × R+.

Thereby, the �ux function became a vector. Its direction is retrieved from the geometry of
the underlying urban network, while the �ux magnitude depends on network infrastructure
parameters that are incorporated into the space-dependency of the fundamental diagram. In
Chapter 3 we investigate this model to design boundary and in-domain control for mixed-
regime urban tra�c that admits shocks.

The aforementioned references however consider tra�c �ow that has only one direction of
motion. Several years ago a dynamic continuum model for multi-directional pedestrian �ows
was presented in [67]. This model represents an extesion of CTM to pedestrian dynamics,
which however does not take urban network geometry into account. The �rst attempt to
include multiple directions in 2D continuum models for vehicular tra�c has been made also
only a few years ago by [97] who deployed dynamic user-optimal principle for the path choice.
The drawback of this model is that the tra�c density may become unbounded (it is not based
on a fundamental diagram). There exist also other works [102, 4] proposing 2D multi-layer
models with bounded densities. However, these models do not include mixing between di�erent
direction layers, i.e., vehicles can not change their direction of motion. Then, these models
are also not necessarily hyperbolic, i.e., their equation type varies with parameters, which
exaggerates its analysis and numerical simulation. Hyperbolicity for all parameters implies
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that it can be analysed like many other conservation law based models for tra�c. We �x both
of these aspects in Chapter 4 by elaborating a novel multi-directional model. Subsequently,
this model is used for boundary control design of multi-directional urban tra�c.

1.3 Problem statements and contributions

This thesis is devoted to control of urban tra�c evolving on large-scale transportation net-
works. Tra�c is described in terms of �ow and density of vehicles, i.e., from the macroscopic
point of view. The dynamic equation that predicts the spatio-temporal evolution of tra�c
corresponds to a PDE that has a structure of a conservation law. Thus, tra�c can be seen as
a 2D �uid that propagates along a continuum 2D plane with a total surface determined by the
size of the underlying urban network. To manage urban tra�c, we use a purely model-based
control design. This means that control is designed by analysing the intrinsic properties of
the model. Therefore, the obtained controller is scalable and adaptive to changing tra�c
conditions, as well as it is applicable to any urban network of arbitrary size.

� In Chapter 2, we consider tra�c evolving along a single road of �nite length with dynam-
ics governed by the LWR PDE. Our main goal thereby is to derive a boundary control
law such that the tra�c state tracks some desired space- and time-varying trajectory.
First, we consider a linear system with disturbance for congested tra�c, which can be
solved using the characteristics method. The desired trajectory is achieved by actuat-
ing the downstream boundary of the road (published in [137]). Then, we extend this
problem to a mixed-regime tra�c governed by a full LWR PDE, for which no classical
solutions exist. We solve the problem by analysing the system in its Hamilton-Jacobi
formulation. Thus, the main contribution of Chapter 2 is the boundary control design

for a mixed-regime tra�c with solution shocks that tracks the desired trajectory that also

admits solution shocks for asymptotic time. This result can be seen as a general solution
to any control problem that can be posed for LWR tra�c on �nite roads, and it was
published in [133].

� Chapter 3 is devoted to control design for tra�c on urban networks. Thereby, tra�c dy-
namics are described by the LWR model that contains an additional space dimension. It
considers tra�c as a �uid moving on a 2D plane that represents a continuous approxima-
tion of the urban area under consideration. The network infrastructure parameters are
embedded as an explicit space-dependency of the fundamental diagram. The direction
of movement is determined by the network geometry. The main limitation of this model
is that it is designed to describe tra�c on networks with uni-directional roads. Our
main contribution in this chapter is to propose a holistic approach to solve any possible

control task for uni-directional 2D tra�c, which was sent for a publication [132]. This
is done by proposing a curvilinear coordinate transformation that allows to rewrite the
2D model such that it can be treated as a parametrized 1D problem, which can be ex-
plicitly analyzed. By analyzing this tra�c model in new coordinates, we solve a variety
of control problems. First, we present a method to analytically estimate a steady-state
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knowing only network structure and in�ow data (published in [135]). Then, this result
is used for a boundary control design such that congested tra�c achieves the best equi-
librium corresponding to the throughput maximization (published in [138]). Moreover,
we also use this 2D model in curvilinear coordinates to solve a trajectory tracking task
for tra�c in a mixed regime in a similar way as in Chapter 2 but handling additional
technical issues. Finally, we also analyze the system to design a variable speed limit
control. These results on mixed-regime tra�c control were sent to a journal [132].

� In Chapter 4, we deal with the main limitation of the preceding chapter that considered
only uni-directional urban networks. The main contribution of Chapter 4 is to propose

a novel macroscopic model for multi-directional tra�c. The model is rigorously derived
from the CTM at one intersection by solely relying on the demand-supply concept. As
a result, we obtain a system of four PDEs each describing the propagation of vehicle
density in North, East, South and West direction, respectively. This model is applicable
to any urban networks with arbitrarily oriented roads. It includes interactions between
di�erent direction layers, i.e., direction is determined by turning ratios at intersections.
Our model is validated using real data provided by Grenoble Tra�c Lab, which is an
experimental platform that collects data from a network of real sensors installed in
Grenoble downtown. The model design and validation results have been sent to a pub-
lication [136]. Finally, the new model was analyzed for a boundary control design that
can mitigate congestions in multi-directional tra�c networks (the result was accepted
for a publication [134]).

This thesis is organized as follows. In Chapter 2, we introduce the LWR model and discuss
its properties and solutions, as well as the Hamilton-Jacobi theory and the Godunov scheme
are presented. Then, we present the control results obtained for tra�c on a single road. In
Chapter 3, we give details on the 2D LWR model and how it can be used to describe the
dynamics of urban tra�c, which is then also compared to an MFD-based model. Afterwards,
we introduce the curvilinear coordinate transformation for the 2D LWR and solve a variety
of control tasks for uni-directional urban tra�c. In Chapter 4, a new model for tra�c with
multiple directions is derived. We also discuss its properties and validate it with synthetic
and real data. Each chapter is divided into sections and is concluded with the summary of the
main results. In turn, each section starts with its main contributions and concludes with the
discussion of the results. All contributions and perspectives are summarized and discussed in
Conclusions and Perspectives. Finally, lists of symbols used throughout the thesis are given
in Appendix A, and technical proofs of some theorems and lemmas used in the main body of
this work are given in Appendix B.

1.4 Publications

� Journal publications:

1. L. Tumash, C. Canudas-de-Wit, M. L. Delle Monache; Multi-Directional Con-
tinuous Tra�c Model For Large-Scale Urban Networks. Submitted to
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1.5 Notations

Here we explain several notations used throughout this thesis. Let us start with notations
used in Chapter 2 devoted to 1D tra�c problems:

� We introduce the following norms with respect to the space variable x. For a function
ρ(x, t) ∈ [0, L]× R+ the L1, L2 and L∞ norms are de�ned ∀t ∈ R+ as

‖ρ(·, t)‖1 :=
L∫
0

|ρ(x, t)|dx, (1.1)

‖ρ(·, t)‖2 :=

√
L∫
0

ρ2(x, t)dx, (1.2)

‖ρ(·, t)‖∞ := sup
x∈[0,L]

|ρ(x, t)|, (1.3)

where sup (inf) indicates the essential supremum (in�mum).

� The deviation of the state from the desired vehicle density trajectory is de�ned ∀(x, t) ∈
[0, L]× R+ as

ρ̃(x, t) = ρ(x, t)− ρd(x, t). (1.4)

� The cumulative deviation from the desired vehicle density trajectory along a road of
length L (integral error term, or error in the number of vehicles) is de�ned ∀t ∈ R+ as

e(t) =

L∫
0

(ρ(s, t)− ρd(s, t)) ds. (1.5)

Now let us also explain the notations used in Chapters 3 and 4 devoted to 2D tra�c
problems:

� We introduce the L1, L2 and L∞ spatial norms for a function in 2D ρ(x, y, t) ∈ Ω×R+,
where Ω ∈ R2 : [xmin, xmax]× [ymin, ymax], as

‖ρ(·, t)‖1 =

xmax∫
xmin

ymax∫
ymin

|ρ(x, y, t)| dxdy. (1.6)

‖ρ(·, t)‖2 :=

√√√√√ xmax∫
xmin

ymax∫
ymin

ρ2(x, y, t) dx dy, ∀t ∈ R+, (1.7)

and
‖ρ(·, t)‖∞ := sup

(x,y)∈Ω
|ρ(x, y, t)|. (1.8)
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� The deviation from a 2D space-varying desired equilibrium (constant in time) is de�ned
∀(x, y, t) ∈ [xmin, xmax]× [ymin, ymax]× R+ as

ρ̃(x, y, t) = ρ(x, y, t)− ρd(x, y). (1.9)

� The deviation from a 2D time- and space-varying desired trajectory is de�ned ∀(x, y, t) ∈
[xmin, xmax]× [ymin, ymax]× R+ as

ρ̃(x, y, t) = ρ(x, y, t)− ρd(x, y, t). (1.10)





Chapter 2

Tra�c Control on Roads

This chapter is devoted to tra�c control problems on single roads of �nite length. We consider
tra�c within the macroscopic modeling approach that incorporates the kinematic wave theory
for tra�c that applies principles from �uid dynamics to predict tra�c. Using intrisic properties
of the model, we design a boundary control law to track a desired vehicle trajectory. Section 2.1
contains preliminaries that include explanation of LWR model and its mathematical properties
(weak solutions, boundary conditions, etc.), the basic numerical scheme to approximate LWR,
as well as an equivalent approach to describe tra�c in terms of Hamilton-Jacobi equation. In
Section 2.2, we �rst consider tra�c being only in the congested regime with some in-domain
disturbance, i.e., the state is driven by an inhomogeneous linear PDE system. The desired
trajectory is also restricted to congested tra�c regime for simplicity. In Section 2.3, we consider
tra�c state and desired trajectory both not being restricted to any particular tra�c regime,
i.e., boundary control design is performed for a nonlinear system, which is mathematically
quite challenging to handle due to shocks that arise in a full LWR system.

2.1 Preliminaries

The kinematic wave theory for tra�c was formulated in the �fties by Lighthill, Whitham
and Richards, and it is now known as the LWR model [96, 118]. Its main assumption is the
existence of a concave relation between the vehicle density and its �ow. This model remains
the most popular macroscopic model for tra�c due to its simplicity, while it is still able to
capture the most essential tra�c phenomena. In this section, we present the LWR framework
in more details, as well as discuss its solution, boundary conditions, the numerical scheme and
its integral formulation.

2.1.1 Lighthill-Whitham-Richards model

The LWR model is a scalar conservation law, where the conserved quantity is the number of
vehicles in some area. This conservation law model corresponds to a �rst-order hyperbolic
PDE, which also implies that the information propagates at a �nite speed. This model predicts

13
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the spatio-temporal evolution of tra�c ∀(x, t) ∈ R× R+ as follows ∂ρ(x, t)

∂t
+
∂Φ(ρ(x, t))

∂x
= 0,

ρ(x, 0) = ρ0(x),
(2.1)

where ρ : R × R+ → R+ is the vehicle density with ρ0(x) being the initial data, and Φ(ρ) :

[0, ρmax]→ R+ is the �ux function that relates vehicle �ow φ(x, t) with vehicle density ρ(x, t).
This relation is an empirically established law [58] known as fundamental diagram (FD).
Mathematically speaking, the �ux function Φ(ρ(x, t)) is a Lipschitz continuous and concave
function that admits a unique maximum φmax (capacity) attained at ρc (critical density),
while its minimum value is achieved in two cases: either if there are no vehicles, i.e., Φ(0) = 0,
or if tra�c is fully congested, i.e., Φ(ρmax) = 0, where ρmax is the tra�c jam density.

2.1.2 Fundamental diagram

The most simple �ow-density relation corresponds to the triangular (bilinear) fundamental
diagram proposed in [38], see Figure 2.1a):

Φ(ρ) =

{
vρ, ρ ∈ [0, ρc],

−ω(ρ− ρmax), ρ ∈ (ρc, ρmax],
(2.2)

where v and ω are kinematic wave speeds in the free-�ow regime (wave moving forwards) and
in the congested regime (wave moving backwards), respectively. Notice that kinematic wave
speeds are not related to velocities of individual vehicles that are determined on average as
the �ow divided by the density. For instance, in the tra�c jam (when ρ = ρmax) velocities of
vehicles are zero, while the kinematic wave propagates backwards with −ω.

Thus, the triangular FD has only two slopes, since kinematic waves can take only two
values (v and ω). The critical density ρc and the capacity φmax are de�ned as

ρc =
ω

v + ω
ρmax, φmax = vρc. (2.3)

In this thesis, we will also use the Greenshields FD that was the �rst �ow-density relation
proposed in 1935 in [58], see Figure 2.1b). This relation is given by the following smooth
concave function

Φ(ρ) = vmax

(
1− ρ

ρmax

)
ρ, (2.4)

with the critical density ρc and capacity φmax given as

ρc =
ρmax

2
, φmax =

vmaxρmax
4

, (2.5)

and vmax = Φ′(0) is the maximal kinematic wave (free-�ow) speed determined by the speed
of a vehicle moving along a freeway with ρ = 0.

Throughout this thesis, we will use ρc = 1/3ρmax for all cases when a triangular FD is
assumed, and ρc = 1/2ρmax for the case of Greenshields FD.
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Figure 2.1: Fundamental diagrams: a) triangular, b) Greenshields. Free-�ow and congested
tra�c regimes correspond to green and red areas, respectively.

Although in this work only triangular and Greenshields FDs are used to model the �ow-
density relation, there exist also many other types of FDs, see [91] for a review. Del Castillo
[25] formulated properties that must hold for realistic fundamental diagrams:

1. The velocity range should be v ∈ [0, vmax].

2. The vehicle density should be ρ ∈ [0, ρmax].

3. Cars stop moving when the tra�c jam density is reached: v(ρmax) = 0.

4. There is no tra�c �ow if there are no cars (zero density), or if cars are stuck in a tra�c
jam: Φ(0) = Φ(ρmax) = 0.

5. Maximum velocity and congestion wave speed are the slopes of the fundamental relation
at ρ = 0 and ρ = ρmax, respectively.

6. Flux is a concave function of density.

2.1.3 Unique solution

Let us discuss the Cauchy problem (2.1). It has a structure of a �rst-order hyperbolic PDE
that can be solved using the method of characteristics that yields lines along which the state
remains constant (see [46] and Appendix B.1 for details). Thus, the characteristics of (2.1)
are straight lines:

x− x0 = Φ′(ρ0(x0))t, x0 ∈ R+, (2.6)

where x0 is a point in space, from which the characteristic line originates. The density is
constant along each of these lines, that is for all (x, t) satisfying (2.6) we obtain

ρ(x, t) = ρ0(x0).

It can however happen that these lines intersect proposing two di�erent values of ρ at the
intersection point xs, i.e., a discontinuity arises in the solution ρ. Hence, in general no classical
solution exists for (2.1), and one needs to consider its solution in the weak sense.
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A function ρ : R×R+ → R+ is a weak solution of the Cauchy problem (2.1) if for any test
function ψ (which is a C1 function with compact support in R2) the following equation holds:

+∞∫
0

+∞∫
−∞

(ρψt + Φ(ρ)ψx) dx dt+

+∞∫
−∞

ρ0(x)ψ(x, 0) dx = 0. (2.7)

and the map t→ ρ(·, t) is continuous from R+ into L1
loc (set of locally integrable functions).

Given that ρ is smooth around the point of discontinuity, we can integrate (2.7) to obtain
the speed of discontinuity ẋs known as the Rankine-Hugoniot relation [126]:

ẋs =
Φ(ρr)− Φ(ρl)

ρr − ρl
, (2.8)

where ρr and ρl are values of the right and of the left limit of ρ at the point of discontinuity.

It is important to note that the Cauchy problem (2.1) can have an in�nite number of weak
solutions. Hence, the weak solution (2.7) must be completed by a uniqueness condition:

Φ′(ρr) ≤ ẋs ≤ Φ′(ρl), (2.9)

where Φ′(ρr) and Φ′(ρl) are the characteristic speeds to the right and to the left of the
discontinuity, correspondingly. In the theory of hyperbolic conservation laws, equation (2.9)
is known as the Lax admissibility condition [83]. It selects the unique solution out of a set
of weak solutions. The Lax condition has a simple geometrical interpretation. Namely, the
unique solution is the particular weak solution for which the characteristics run into the shock:
all characteristics must end at the discontinuity as illustrated in Figure 2.2.

Ansorge [8] was the �rst to consider this uniqueness condition (2.9) in the context of tra�c.
He interpreted it as driver's ride impulse, i.e., one starts driving when a tra�c light switches
from red to green. Thus, a weak solution of (2.1) satisfying (2.9) is the physically relevant
one. It is also known as the entropy solution.

In particular, considering piecewise-constant initial state ρ0(x) = ρl for x < xs and ρ0(x) =

ρr for x > xs (known also as a Riemann problem), entropy solutions can be of the two
following types:

1. If ρl < ρr, shock arises. The entropy solution remains piecewise-constant, and shock wave
propagates through space with velocity determined by (2.8): ρ(x, t) = ρl for x < xs(t)

and ρ(x, t) = ρr for x > xs(t).

2. If ρl > ρr, the entropy solution becomes continuous and propagates in a form of a
rarefaction wave. For any straight line starting from (xs, 0) the solution is constant and
is determined only by (x− xs)/t:

ρ(x, t) =


ρl, if (x− xs)/t < Φ′(ρl),

Φ−1((x− xs)/t), if (x− xs)/t ∈ [Φ′(ρl),Φ
′(ρr)],

ρr, if (x− xs)/t > Φ′(ρr).
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Figure 2.2: Geometrical interpretation of Lax admissibility condition. Thick black line: shock
curve.

2.1.4 Boundary conditions

In its original formulation, the LWR model (2.1) describes tra�c for in�nitely long highways
without any on-ramps or o�-ramps, which is a serious physical limitation. Thus, one needs to
include the boundary conditions for (2.1) in order to be able to include ramps and in general
to consider roads of �nite length (bounded domains).

Let us consider a road of length L. The conservation principle states that the evolution
of each aggregated conserved quantity in some domain [0, L] depends only on the �ows at its
boundaries and exogenous �ows. Thus, for a complete model describing tra�c evolution along
some road, we need to specify boundary conditions ρin and ρout that are all assumed to be
functions of bounded variation (as well as the initial condition ρ0). Then, the initial-boundary
value problem (IBVP) reads ∀(x, t) ∈ [0, L]× R+

∂ρ(x, t)

∂t
+
∂Φ(ρ(x, t))

∂x
= 0,

ρ(x, 0) = ρ0(x),

ρ(0, t) = ρin(t), ρ(L, t) = ρout(t).

(2.10)

The main feature of the boundary conditions in conservation laws is that they can not be
applied strongly for all time, see [13]. Thus, the boundary conditions should be viewed only
as proposed signals.

In general, boundary conditions may only be prescribed for the boundary where the char-
acteristics are incoming. Hence, if tra�c is in the free-�ow regime at road's entry for some t,
then the kinematic wave propagates forward and we can write ρ(0, t) = ρin(t), or if tra�c is
congested at the road exit, then ρ(L, t) = ρout(t). However, this behaviour is not guaranteed
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for general nonlinear conservation law systems such as (2.10). In order to guarantee that
the weak solution ρ(x, t) is the entropy one ∀(x, t) ∈ [0, L] × R+, one needs to consider weak
boundary conditions. See Section 2.1.3 for the physical sense of entropy solution.

In [129] the weak boundary conditions were considered for the case of concave �ux function.
Thus, for a weak formulation of the boundary conditions of system (2.10), one of the following
conditions must hold for the upstream boundary:

ρ(0, t) = ρin(t), or

Φ′(ρ(0, t)) ≤ 0 and Φ′(ρin(t)) ≤ 0, or

Φ′(ρ(0, t)) ≤ 0 and Φ′(ρin(t)) ≥ 0 and Φ(ρ(0, t)) ≤ Φ(ρin(t)),

(2.11)

and similarly for the downstream boundary:

ρ(L, t) = ρout(t), or

Φ′(ρ(L, t)) ≥ 0 and Φ′(ρout(t)) ≥ 0, or

Φ′(ρ(L, t)) ≥ 0 and Φ′(ρout(t)) ≤ 0 and Φ(ρ(L, t)) ≥ Φ(ρout(t)).

(2.12)

2.1.5 The demand-supply concept

In some works [86, 85], the weak boundary conditions are modeled using the demand-supply
concept. According to this concept, in case of concave �ow-density function Φ(ρ) (e.g., trian-
gular or Greenshields FD), the proposed tra�c �ow at the upstream boundary is given by the
demand function

D(ρin) =

{
Φ(ρin), if 0 ≤ ρin ≤ ρc,
φmax, if ρc < ρin ≤ ρmax,

(2.13)

and the proposed �ow at the downstream boundary is given by the supply function

S(ρout) =

{
φmax, if 0 ≤ ρout ≤ ρc,
Φ(ρout), if ρc < ρout ≤ ρmax.

(2.14)

The boundary Riemann problem for the upstream boundary �ow is then given ∀t ∈ R+ by

φin(t) = min {D(ρin(t)), S(ρ(0, t))} , (2.15)

whereas the downstream boundary �ow is de�ned as

φout(t) = min {D(ρ(L, t)), S(ρout(t))} . (2.16)

Notice that (2.15) and (2.16) are consistent with (2.11) and (2.12), i.e., these are weak
boundary conditions in terms of �ows. Thus, the amount of �ow that can enter the domain
φin is constrained by the supply at road's entry, while the tra�c �ow leaving the domain φout
is constrained by the demand at road's exit. This means that incoming cars can be blocked by
congested tra�c at the entry of the road, as well as the out�ow control may not be imposed
if there are only a few cars at the exit.
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Figure 2.3: Demand D(ρ) (in blue) and supply S(ρ) functions (in orange) for triangular FD.

In case of triangular fundamental diagram, the demand an supply functions are given by

D(ρ(t)) = min {vρ(t), φmax} ,
S(ρ(t)) = min {ω(ρmax − ρ(t)), φmax} .

(2.17)

Figure 2.3 illustrates the demand and the supply functions for the case of triangular FD.

The demand-supply concept is equivalent to the weak boundary conditions formulation
introduced above in terms of densities (2.11)-(2.12), though being much simpler. This concept
has important practical implications when dealing with numerical schemes to simulate the
LWR model, as we are going to show later in this thesis.

2.1.6 The Godunov scheme

Now let us describe the most basic numerical method for approximating conservation laws
such as the LWR model. The Godunov scheme proposed in [56] is a �rst-order numerical
method based on solutions to Riemann problems. The global idea of the Godunov scheme is
to approximate the initial datum by a piecewise linear function, then to compute solutions to
Riemann problems and then to piece these solutions together.

We start by de�ning a numerical grid in [0, L]× R+ by setting

� n to be number of cells,

� ∆x = L/n to be the space cell size,

� ∆t to be the time cell size,

� (i∆x, k∆t) for i ∈ {1, . . . , n} and k ∈ Z+ to be the grid points.

The mesh sizes ∆x and ∆t are chosen such that they satisfy the Courant-Friedrichs-Lewy
(CFL) condition [33]:

∆tmax
ρ
|Φ′(ρ)| ≤ ∆x

2
,
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where maxρ |Φ′(ρ)| corresponds to the maximal kinematic wave speed in the free-�ow regime,
e.g., v (vmax) in case of triangular (Greenshields) FD. This condition needs to be satis�ed,
since it provides the non-interaction of waves generated by di�erent Riemann problems.

The discrete density is then ρi(k), and according to the Godunov scheme, we update it as
follows ∀(i, k) ∈ {1, . . . , n} × Z+:

ρ1(k + 1) = ρ1(k) +
∆t

∆x
(ϕin(k)− ϕ2(k)) ,

ρi(k + 1) = ρi(k) +
∆t

∆x
(ϕi(k)− ϕi+1(k)) ,

ρn(k + 1) = ρn(k) +
∆t

∆x
(ϕn(k)− ϕout(k)) ,

(2.18)

where ϕi(k) is the Godunov numerical �ux between cells de�ned as

ϕi(k) = min {D(ρi−1(k)), S(ρi(k))} , (2.19)

with D(ρi−1(k)) and S(ρi(k)) being the discretized demand and supply functions that can be
taken as in (2.17). Thus, the amount of �ow transmitted from the left cell i − 1 to the right
cell i corresponds to the minimum between the demand of i − 1 and supply of i, see Figure
2.4 for the illustration of the concept.

i− 1

D(ρi−1)

i

S(ρi)

Figure 2.4: Schematic illustration of the demand-supply concept.

Notice that the discrete version of LWR model given by (2.18) together with demand
and supply functions corresponding to triangular FD (2.17) is known as the cell transmission
model (CTM). The CTM is by far the most widely used tra�c model due to its simplicity
and straightforward extension to networks.

The boundary �ows ϕin(k) and ϕout(k) from (2.18) are respectively set by specifying the
density at cells with indices i = 0 and i = n + 1. These are called ghost cells, since they do
not belong to the domain but are used to denote state at the boundaries:

ϕin(k) = min {D(ρ0(k)), S(ρ1(k))} ,
ϕout(k) = min {D(ρn(k)), S(ρn+1(k))} .

(2.20)

In the uncontrolled case, we set ρ0(k) = ρ1(k) and ρn+1(k) = ρn(k), which gives ϕin(k) =

ϕ1(k) and ϕout(k) = ϕn(k), thus the system evolves freely. In the controlled case, we set
ρ0(k) = uin(k) for the free-�ow regime and ρn+1(k) = uout(k) for the congested regime, where
uin and uout represent boundary control laws.
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2.1.7 Hamilton-Jacobi formulation

As we have seen previously in Section 2.1.3, the kinematic wave theory for tra�c incorporated
by the LWR model can have complications that arise when characteristic lines with di�erent ρ
intersect at some (x, t). This led to the necessity to introduce shocks in order to guarantee the
conservation of the number of vehicles across the pass, and handling shocks can sometimes
become a tedious task. To simplify the issue of handling nonlinearities within the LWR
formulation, an alternative formulation of highway tra�c �ow on a macroscopic level was
proposed by Newell [106, 107, 108]. He proposed to describe the tra�c state in terms of
Moskowitz function M(x, t) (or shortly, MF). The name of this function comes after Karl
Moskowitz, an engineer who �rst used it to investigate tra�c in [104], although it was �rst
mentioned only some decades later in [106].

Physically, MF corresponds to the cumulative number of vehicles. Its value is obtained by
numbering vehicles at highway's entry and following the isolines of the functions representing
vehicle numbers at all times and locations. It is assumed that vehicles can not pass each other,
thus the ordering of the vehicles is preserved everywhere. Recall that tra�c �ow φ(x, t) is the
rate at which vehicles pass some point x ∈ R+, and the tra�c density ρ(x, t) is de�ned as the
number of vehicles per unit length of road. Then, the cumulative number of vehicles can be
easily obtained by integrating �ow in space or by integrating density in time. This relation is
formalized as follows:

ρ(x, t) = −∂M(x, t)

∂x
, φ(x, t) =

∂M(x, t)

∂t
. (2.21)

Recall that the key assumption of the kinematic wave theory for tra�c is the existence
of a concave relation between �ow and density. Let us now rewrite this fundamental law
Φ (ρ(x, t)) = φ(x, t) using (2.21) as

∂M(x, t)

∂t
− Φ

(
−∂M(x, t)

∂x

)
= 0, (2.22)

which is a Hamilton-Jacobi PDE with a Lipschitz continuous function M(x, t) : [0, L] ×
R+ → R being its state. The corresponding boundary conditions for (2.22) will be added
in Section 2.1.8, where we will again consider tra�c evolution along a road of length L. In
terms of viability theory, M(x, t) can also be called the congestion function (see [11]), since
(2.22) can be considered as an optimal control problem minimizing a congestion functional
M(x, t). In particular, vehicles tend to minimize the tra�c congestion by adapting their
individual (microscopic) velocities to the kinematic wave velocity (a macroscopic quantity).
Thus, function Φ plays the role of a Hamiltonian that governs the congestion function through
the H-J PDE (2.22). More details on how to treat the H-J PDE as an optimal control problem
are given in Section 2.1.8.

Note that the LWR PDE can be obtained if (2.22) is di�erentiated w.r.t. space and
expressed in terms of density. Intuitively, one can see a relation between H-J and LWR by
performing a formal computation, that is by taking the derivative of density w.r.t. time and
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the derivative of �ow w.r.t. space (assuming both of them being continuous) and by using
(2.21), and thus obtaining the LWR PDE:

∂ρ(x, t)

∂t
+
∂Φ (ρ(x, t))

∂x
= 0 ⇔ ∂2M(x, t)

∂x∂t
− ∂2M(x, t)

∂t∂x
= 0.

The rigorous relation was shown in [76].

Note that (2.22) depends only on the derivatives of M(x, t). Therefore, for any solution
M(x, t) adding any constant M0 gives also a solution M(x, t) + M0. This is obvious, since
we can start numeration of cars from any particular number. The existence of M(x, t) itself
guarantees the conservation of number of vehicles. Being an integral form of the LWR PDE,
the solution of Hamilton�Jacobi PDE is a continuous function that has no shocks. A shock in
the vehicle density function corresponds to a discontinuity in the �rst derivative of M(x, t).
Then, the conservation equations are still valid if M(x, t) is continuous across the shock
path, which also must be �stable�. This requirement corresponds to the entropy condition
in the LWR framework, where the characteristics must run into the shock (Lax admissibility
condition). Thus, if a kinematic wave problem such as (2.10) is a well-posed problem, then it
has a unique solution with stable shocks.

Let us now express the Moskowitz function M(x, t) through in�ows φin(t) and out�ows
φout(t) of the system. This can be simply done by using the de�nitions from (2.21). Namely,
we can de�ne a conservative �eld (−ρ(x, t), φ(x, t)), which is a gradient of M(x, t) ∀(x, t) ∈
[0, L] × R+ (consider again a road of length L). By the gradient theorem, it follows that
the value of the line integral of this �eld does not depend on a particular chosen path, and
equals to only the di�erence between the values of the Moskowitz function between ending and
starting points of the path in space-time. Since M(x, t) is an integral function that is de�ned
up to a constant, we are free to assign a reference value to this function at some particular
point in space-time. Let us choose a starting point (L, 0) corresponding to the end of the
road at inital time. Then, we also set M(L, 0) = 0, since congestion functions are decreasing
functions of position and increasing functions of time, see Chapter 14 of [11]. Thus, taking
the ending point of the path as (x, t), one possible integration path is:

M(x, t) =

t∫
0

φout(τ) dτ +

L∫
x

ρ(s, t) ds, (2.23)

or if the starting point is (0, 0), then the integration path is

M(x, t) =

L∫
0

ρ0(s) ds+

t∫
0

φin(τ)dτ−
x∫

0

ρ(s, t) ds. (2.24)

2.1.8 Variational theory

Equation (2.22) is a scalar Hamilton-Jacobi PDE that can be solved semi-analytically using
initial condition function MIni(x), upstream MUp(t) and downstream MDown(t) boundary
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condition functions. Note that the boundary conditions should be consistent with the weak
boundary conditions formulation (2.15)-(2.16). Thus, let us de�ne the following IBVP for the
H-J PDE with weak boundary conditions ∀(x, t) ∈ [0, L]× R+:

∂M(x, t)

∂t
− Φ

(
−∂M(x, t)

∂x

)
= 0,

M(x, 0) = MIni(x),

M(0, t) = MUp(t),

M(L, t) = MDown(t).

(2.25)

For convenience, let us introduce the value condition function c(x, t) : Dom(c) → R+,
where Dom(c) = ({0, L} × R+) ∪ ((0, L)× {0}). It aggregates the initial and boundary con-
ditions of (2.25) (as in [28]):

c(x, t) =


MIni(x), t = 0,

MUp(t), x = 0,

MDown(t), x = L.

(2.26)

Let us determine this value condition function (2.26), which implies the calculation of
MUp(t), MDown(t) and MIni(x). The upstream boundary condition should be expressed
through in�ow φin. Thus, we obtain MUp(t) by considering (2.24) for x = 0, which results
into

MUp(t) = c(0, t) =

t∫
0

φin(τ) dτ +

L∫
0

ρ0(s) ds, ∀t ∈ R+. (2.27)

Then, the downstream boundary condition MDown(t) can be expressed by considering (2.23)
for x = L:

MDown(t) = c(L, t) =

t∫
0

φout(τ) dτ, ∀t ∈ R+. (2.28)

Finally, we can obtain the initial condition by considering either (2.24) or (2.23) for t = 0,
which gives us

MIni(x) = c(x, 0) =

L∫
x

ρ0(s) ds, ∀x ∈ [0, L]. (2.29)

The solution of a well-posed IBVP (2.25) is a set of least-cost paths in space-time, as it was
shown in [36]. In order to obtain its analytical solution, one should treat (2.25) as a capacity-
constrained optimization problem, which should be interpreted as follows. Tra�c �ow at any
point is upper bounded by the road capacity φmax at this point, which, in general, depends
on the number of lanes and speed limits. A similar capacity constraint holds, if the road is
viewed from a rigid reference frame (observer) moving along this road at a speed v′ ∈ [−ω, v]

next to a tra�c stream that is characterized by density ρ and �ow φ. Then, the maximum
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rate at which the observer attached to the frame can be passed by the tra�c stream is φ−ρv′
(the �relative capacity�).

The fundamental diagram from the observer's viewpoint becomes Φ(ρ(x, t))− ρv′, and its
relative capacity is

∀v′ ∈ [−ω, v], L(v′) = sup
ρ∈[0,ρmax]

(
Φ(ρ)− ρv′

)
, (2.30)

where v and −ω are related to kinematic wave speeds for zero density and for the tra�c jam
density, respectively, i.e.,

v = Φ′(0), −ω = Φ′(ρmax).

Note that L(v′) corresponds to the Legendre-Fenchel transform of the �ux function Φ(ρ).
Thus, L(v′) ≥ 0 is a convex and strictly decreasing function ∀v′ ∈ [−ω, v], see Figure 2.5. It
achieves minimum if the observer tends to adapt his/her velocity to the maximal kinematic
wave speed v, whereas its maximal value is achieved for v′ = −ω. Thus, L(v′) corresponds to
the �cost� per unit time [37], and the observer moves such that this cost is minimized.

cost

v′

L(v′)

φmax

−ω v

Figure 2.5: Legendre-Fenchel transform of triangular FD.

The observer traveling at time t along a valid space-time path with starting time ts ∈ R+

can not perceive a change in its associated cumulative vehicle number greater than

∆M(x, t) =

t∫
ts

L(v′)dt = (t− ts)L(v′).

In general, its associated cumulative vehicle number M(x, t) can not be larger than the value
at its origin boundary c(x− (t− ts)v′, ts) (�starting cost�) plus the maximal possible change in
its vehicle number ∆M = (t− ts)L(v′) caused by other vehicles that have passed the observer:

M(x, t) ≤ inf

(
c(x− (t− ts)v′, ts) + (t− ts)L(v′)

)
s.t. (v′, t− ts) ∈ [−ω, v]× R+

and (x− (t− ts)v′, ts) ∈ Dom(c).

(2.31)
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According to the variational theory presented in [17], this capacity constraint (2.31) is
binding, i.e., the actual value of M(x, t) is the largest possible allowed by this constraint. We
introduce a time interval T = t− ts to make the notations shorter. Thus, the unique solution
to (2.25) is found as

M(x, t) = inf

(
c(x− Tv′, t− T ) + TL(v′)

)
s.t. (v′, T ) ∈ [−ω, v]× R+

and (x− Tv′, ts) ∈ Dom(c).

(2.32)

This expression is known as the Lax-Hopf formula, which provides a semi-analytical unique
solution to the Hamilton-Jacobi system (2.25). Thus, the unique solution M(x, t) is the
in�mum of the in�nite number of functions of the value condition (see also [10]).

With a slight abuse of notation, we introduce two-argument functions MUp(x, t),
MDown(x, t) and MIni(x, t) as solutions to the Lax-Hopf formula (2.32) for corresponding
domains of the value condition function c, which are MUp(t) (2.27), MDown(t) (2.28) and
MIni(x) (2.29). Thus,MUp(x, t) comes from the upstream boundary with a given �initial cost�
MUp(t), thenMDown(x, t) comes from the downstream boundary with a knownMDown(t), and
MIni(x, t) comes from the initial condition MIni(x). For example, MUp(x, t) is obtained by

MUp(x, t) = inf

(
c(x− Tv′, t− T ) + TL(v′)

)
s.t. (v′, T ) ∈ [−ω, v]× R+

and (x− Tv′, t− T ) ∈ {0} × R+,

(2.33)

and the same formula yields MDown(x, t) for (x − Tv′, t − T ) ∈ {L} × R+ and MIni(x, t) for
(x− Tv′, t− T ) ∈ [0, L]× {0}.

This enables us to restate the solution to the Hamilton-Jacobi problem (2.25) as a minimum
of three possible �solution candidates� MUp(x, t), MDown(x, t) and MIni(x, t) ∀(x, t) ∈ [0, L]×
R+. By properties of in�mum, the original Lax-Hopf formula (2.32) can be rewritten as

M(x, t) = min {MIni(x, t),MUp(x, t),MDown(x, t)} . (2.34)

In some special cases, e.g., for a triangular FD de�ned in (2.2), we can calculate the
solution to the H-J PDE in explicit form as it is shown in Appendix B.2.
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2.2 Robust tracking boundary control design

In this section, we address two seldom studied issues: tracking time- and space-varying desired
pro�les (rather than stabilizing to an equilibrium), and dealing with uncertainties due to a
possible model mismatch. In particular, we consider an optimal boundary control problem
to track a desired vehicle density on a single road with a state being subject to unknown
space-dependent disturbances. For instance, imagine tra�c evolving along a road, for which
we want to achieve some desired density pro�le by controlling the vehicle �ow at the boundary
of this road. However, even if we know the �ow-density relation for this road, the tracking
control problem might be challenging due to unknown number of vehicles originating from
minor roads. Thus, we solve the problem of controlling the vehicle density whose value we can
not predict exactly. For this, we include the disturbance term to model the unknown change
in the number of vehicles coming from minor roads.

2.2.1 Introductions

Most works devoted to tra�c control have addressed the homogeneous (ideal) case, where
the discrepancies between model and system are ignored (like in classical LWR). Some of the
studies related to the disturbance rejection problem were devoted to disturbance attenuation
on a boundary by action from another boundary [1, 130, 6]. For example, in [130] the sliding
mode control is used to stabilize a hyperbolic system with boundary input disturbance. [1]
proposed a controller able to reject disturbance at the boundary where this disturbance acts.
Later on, [6] proposed a controller for disturbance rejection at an arbitrary point within the
domain. A model reference adaptive control problem has been solved for hyperbolic PDEs
in [7]. Therein, the authors considered harmonic disturbances with known frequencies and
designed a �lter-based control law. In a related work on robust control design for systems of
conservation laws [117], the problem of stabilization to a steady-state pro�le was considered.
Boundary control design was addressed previously in [20] for the problem of stabilizing the
vehicle density to a constant equilibrium.

The main contribution of this section is the optimal boundary controller, which leads
to attenuation of a general in-domain space-dependent disturbance. This is the �rst result
devoted to a robust controller tracking a space- and time-dependent desired tra�c density.
Space- and time-dependency of tra�c density is an important aspect to handle, since in
realistic tra�c situations it is more likely to obtain non-stationary pro�les due to rapidly
changing tra�c conditions.

The control design is based on two components. These are the feedforward control compo-
nent used to track the trajectory, whereas the feedback control component is used to minimize
spatial L2 and L∞ error norms for asymptotic time. We show that the optimal feedback term
takes di�erent forms according to the norm to be minimized. The feedback law is given in its
implicit but computationally feasible form, thus we can apply it without any explicit knowl-
edge about the disturbance. In addition, we also compute the L2 and L∞ gains resulting from
the application of the respective control laws. The special thing about these gains is that they
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depend only on system physical parameters such as length of the road stretch and parameters
of the fundamental diagram.

2.2.2 Preliminaries

The goal of this section is to design a robust boundary control law for a vehicle density governed
by equation (2.1) with disturbance such that the state tracks a desired time- and space-
dependent pro�le. Let us now describe the problem in more concrete terms by performing
the following steps: present the state equation with disturbance, perform motion planning,
analyze error dynamics and solve it explicitly by using the method of characteristics. We will
also present the general structure of the boundary controller to be designed.

2.2.2.1 System with disturbance

We assume that the vehicle density is quite high, i.e., we consider a road being in the congested
tra�c regime, which is a common problem arising during rush hours. Here we consider tra�c
on a bounded domain (road of length L), which implies that boundary conditions must also
be included as in IBVP (2.10). In case of tra�c that is restricted to the congested regime,
the system (2.10) becomes linear (like a transport equation), since it is considered only for
ρ(x, t) ∈ (ρc, ρmax] ∀(x, t) ∈ [0, L] × R+ that lets us write ∂xΦ(ρ(x, t)) = −ω∂xρ(x, t) (we
assume a triangular FD). For this case, let us also introduce an unknown disturbance term
δ(x) : [0, L] → R that is assumed to be bounded. Then, the inhomogeneous initial-boundary
value problem reads:

Σ =


∂ρ(x, t)

∂t
− ω∂ρ(x, t)

∂x
= δ(x),

ρ(x, 0) = ρ0(x),

ρ(L, t) = u(t),

(2.35)

where u(t) is a controller to be designed. The control action is applied at the downstream
boundary, since in the congested regime the kinematic wave is moving backwards. In the
free-�ow regime the kinematic wave propagates forwards, and then we would control the state
by actuating the upstream boundary x = 0. Note that the linear system Σ given by (2.35)
allows us to use the fact that characteristics always propagate only in one direction. Thus, the
downstream boundary conditions can always be enforced, which enables us to consider them
in a strong sense.

Physically, the disturbance term δ(x) in (2.35) corresponds to the additional unknown
vehicle density per time unit, an example is illustrated in Figure 2.6. Also notice that the
actual control of tra�c at road boundaries can be done only in terms of vehicle �ow, which
can be changed by, e.g., appropriately timing the tra�c light signals. However, in this section,
the boundary conditions are prescribed in terms vehicle density, which is the state of system
Σ, since it makes the analysis of the e�ect of boundary values on the system solution pretty
straightforward. Then, if we want to transfer the control result that is going to be designed
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x

δ(x)

0 L

Figure 2.6: Example of a highway road with exit/entry minor roads (left) and the correspond-
ing disturbance function (right).

for system Σ into real life, we should use the �ow-density function that allows us to obtain
the corresponding �ow value to be achieved at the boundary, which is then translated into,
e.g., time intervals during which the tra�c lights are green/red.

2.2.2.2 Motion planning

Let us now de�ne the desired trajectory for the vehicle density ρd(x, t) that we want to achieve
via the boundary control. An admissible desired trajectory ρd(x, t) must be a solution of the
following system Σd:

Σd =


∂ρd(x, t)

∂t
− ω∂ρd(x, t)

∂x
= 0,

ρd(x, 0) = ρd0(x),

ρd(L, t) = ρdout(t),

(2.36)

where ρdout is the desired state at the downstream boundary and ρd0(x) is the initial state in
the desired system. Notice that system Σd is an IBVP that looks exactly like (2.35) but with
δ(x) = 0, i.e., Σd is a homogeneous system.

To guarantee that the system Σd is well-posed, its state ρd(x, t) must always remain in the
congested tra�c regime along the road, i.e., ρd(x, t) : [0, L]× R+ → (ρc, ρmax].

2.2.2.3 Error dynamics

Let us now determine the dynamic system for the error density ρ̃(x, t) de�ned as in (1.4).
Systems Σ and Σd given by (2.35) and (2.36) are linear. Thus, we can simply subtract Σd

from Σ and obtain the following IBVP for the error ρ̃(x, t):

Σerr =


∂ρ̃(x, t)

∂t
− ω∂ρ̃(x, t)

∂x
= δ(x),

ρ̃(x, 0) = ρ̃0(x),

ρ̃(L, t) = u(t)− ρdout(t).

(2.37)
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Figure 2.7: Control scheme.

2.2.2.4 Control design

We aim to design a boundary control law that can be schematically represented as in Figure
2.7. Thus, the input is a sum of feedforward uff (t) and feedback ufb(ρ, t) terms:

u(ρ, t) = uff (t) + ufb(ρ, t). (2.38)

For simplicity of notations, the arguments of the controls are omitted, and in the following
they will be included only if not clear from the context.

Remark 2.1
Note that the feedforward term is needed to track the desired trajectory ρd(x, t), while the

feedback term is needed for disturbance attenuation.

2.2.2.5 Solution of Σerr

Let us now consider (2.37). To analyze its solution, we apply the method of characteristics
presented in [46]. The details are given in Appendix B.1, where we �nd that the error term
ρ̃(x, t) evolves along the characteristic lines as

ρ̃(x, t) =


ρ̃ (x+ ωt, 0) + ∆(x)−∆(x+ ωt), ∀t ∈

[
0,
L− x
ω

)
,

ρ̃
(
L, t− L−x

ω

)
+ ∆(x), ∀t ∈

[
L− x
ω

,+∞
)
,

(2.39)

where ∆(x) is the integral of the disturbance (disturbance accumulated along the road stretch)
de�ned as

∆(x) =
1

ω

L∫
x

δ(s) ds. (2.40)

Remark 2.2
Note that tctr = L

ω is the minimum time for control action to propagate to the end of the road

from x = L to x = 0, that is why in the following we consider solutions only for t ≥ L
ω , i.e.,

the second expression in (2.39).

Let us rewrite (2.39) using the expression for the downstream boundary in the error system
(2.37), which reads ρ̃

(
L, t− L−x

ω

)
= u

(
t− L−x

ω

)
−ρdout

(
t− L−x

ω

)
. Thus, we get the following
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solution for the error system:

ρ̃(x, t) = u

(
t− L− x

ω

)
− ρdout

(
t− L− x

ω

)
+ ∆(x). (2.41)

Note that the time dependency in the error solution (2.41) is caused by the time dependency
of the desired trajectory ρdout(t). If there would be no disturbance (∆(x) = 0), the desired
trajectory could be achieved by using only the feedforward term. Therefore, from now on we
set uff (t) = ρdout(t), and write the solution of (2.41) only as a function of a feedback term
(since u− uff = ufb):

ρ̃(x, t) = ufb
(
t− L− x

ω

)
+ ∆(x). (2.42)

2.2.3 Problem statement

We also introduce notations for the density error and feedback term in asymptotic time:

ρ̃∞(x) = lim
t→∞

ρ̃(x, t), ufb∞ = lim
t→∞

ρ̃out(t),

where the latter de�nition comes from comparing (2.42) with (2.39). Then, the density error
solution (2.42) is given by the following relation for t→∞:

ρ̃∞(x) = ufb∞ + ∆(x). (2.43)

The role of ufb∞ is thus to ensure that ρ̃(x, t) → ρ̃∞(x), and ufb∞ is such that the e�ect of the
cumulated disturbance ∆(x) is minimized in the sense of L2-space norm (Problem 2.1) and
L∞-space norm (Problem 2.2). This is formalized as follows:

Problem 2.1
Find the optimal control law u∗ composed of (2.38) such that:

(i) ρ̃(x, t)→ ρ̃∞(x),

(ii) u∗ = argmin
u
‖ρ̃∞(x)‖22.

Problem 2.2
Find the optimal control law u∗ composed of (2.38) such that:

(i) ρ̃(x, t)→ ρ̃∞(x),

(ii) u∗ = argmin
u
‖ρ̃∞(x)‖∞,

For the de�nition of L2 and L∞ norms see (1.2) and (1.3). Note that in both Problems
2.1 and 2.2, the argmin is taken over a set of all possible control functions u such that the
density from (2.35) remains in the congested regime.

Note that due to the presence of in-domain disturbance δ(x), we can not drive the error
ρ̃(x, t) to zero as t→∞ by acting only from the boundary.
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2.2.4 Convergence to an equilibrium

Let us now consider the error system Σerr given by (2.37). We will �rst prove that a feedback
controller ufb∞ that is constant for asymptotic time acting such that the error term converges
to a steady-state (as in statements (i) in Problems 2.1 and 2.2). Then, we will also derive the
optimal control law u∗ that satis�es statements (ii) of Problems 2.1 and 2.2.

Lemma 2.1. Let u(t) = uff (t) + ufb∞ with uff (t) = ρdout(t) and ufb∞ being some constant.

Then, the following statement holds:

lim
t→∞
‖ρ̃(x, t)− ρ̃∞(x)‖2 = 0.

Proof. Similar to [147], we de�ne the following Lyapunov function candidate

V (t) =
1

2

L∫
0

eωx (ρ̃(x, t)− ρ̃∞(x))2 dx, (2.44)

where eωx plays the role of a weighting function. The time derivative of (2.44) is

V̇ (t) =

L∫
0

eωx (ρ̃(x, t)− ρ̃∞(x))
∂ρ̃(x, t)

∂t
dx =

L∫
0

eωx (ρ̃(x, t)− ρ̃∞(x))

(
δ(x) + ω

∂ρ̃(x, t)

∂x

)
dx,

where the last expression comes from the error dynamics given by (2.37).

From (2.40), (2.43), and the fact that ufb∞ does not depend on x, the derivative of ρ̃∞(x)

with respect to x is
∂ρ̃∞(x)

∂x
= − 1

ω
δ(x),

and thus we get

V̇ (t) = ω

L∫
0

eωx (ρ̃(x, t)− ρ̃∞(x))
∂ (ρ̃(x, t)− ρ̃∞(x))

∂x
dx.

Integration by parts yields

V̇ (t) =
ω

2
eωx (ρ̃(L, t)− ρ̃∞(L))2 − ω

2
(ρ̃(0, t)− ρ̃∞(0))2 − ω2V (t)

6
ω

2
eωL

(
ufb∞ − ρ̃∞(L)

)2
− ω2V (t),

(2.45)

where the last inequality comes from the fact that ρ̃(L, t) = u(t)−ρdout = uff (t)+ufb∞−ρdout ,
and using that uff (t) = ρdout(t) we obtain ρ̃(L, t) = ufb∞, i.e., the error at the boundary
becomes constant as well. It follows then from (2.43) and (2.40) for x = L that ∆(L) = 0,
which results for (2.45) into

V̇ (t) ≤ ω

2
eωL∆(L)2 − ω2V (t) = −ω2V (t).

Lemma statement follows directly from ‖ρ̃(x, t)− ρ̃∞(x)‖22 6 2V (t) e−ωL, thus V (t) → 0

implies ‖ρ̃(x, t)− ρ̃∞(x)‖2 → 0.
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2.2.5 Disturbance attenuation in sense of L2 norm

The following theorem completes the previous result and gives the optimal form of ufb∗ that
acts to minimize the L2 norm of the error term as t → ∞ as speci�ed in Problem 2.1(ii).
Although the feedback term depends on unmeasured disturbance, we will be still able to
present it in a computationally feasible form.

Theorem 2.1
For the density error ρ̃(x, t) given by IBVP (2.37), the optimal boundary controller minimizing
the limit of its L2 norm as t→∞ is given by

u∗ = uff + ufb∗, where uff = ρdout(t) and (2.46)

ufb∗(t) =


0, if 0 ≤ t < L/ω,

− 1
L

L∫
0

(
ρ (x, t)− u∗

(
t− L−x

ω

))
dx, if t ≥ L/ω.

Proof. First, assume that ufb∗(t) is a constant for t ≥ L/ω. Thus note that minimization over
u(t) = uff (t)+ufb in Problem 2.1(ii) is equivalent to the minimization over ufb = ufb∞ = const:

ufb∗ = argmin
ufb

‖ρ̃∞(x)‖22 = argmin
ufb

∥∥∥ufb + ∆(x)
∥∥∥2

2
= argmin

ufb

L∫
0

(
ufb + ∆(x)

)2
dx,

where we have used the relation (2.43) and the de�nition of L2 norm from equation (1.2).
Expanding the quadratic form in the integral, we obtain

L∫
0

(
ufb + ∆(x)

)2
dx = (ufb)2L+ 2ufb

L∫
0

∆(x)dx+

L∫
0

∆2(x)dx. (2.47)

In order to compute ufb∗ minimizing the quadratic form (2.47), we need to take the derivative
of (2.47) with respect to ufb and set this expression to zero. This allows us to obtain the
optimal feedback term:

ufb∗ = − 1

L

L∫
0

∆(x)dx. (2.48)

This expression corresponds to the subtraction of the mean value of cumulative disturbance
∆(x). However, we should recall that ∆(x) is an unmeasured function. Using the solution
of the error term ρ̃(x, t) (2.39) obtained by the method of characteristics, we can express the
integral disturbance as

∆(x) = ρ(x, t)− ρd(x, t)− u∗
(
t− L− x

ω

)
+ ρdout

(
t− L− x

ω

)
,

where the last two terms come from the de�nition of the boundary conditions in the error
system (2.37). Recall that the desired density ρd(x, t) satis�es system Σd given by (2.36), which
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is a homogeneous transport equation. Then, we can again apply the method of characteristics
and get ρd(x, t) = ρdout(t − L−x

ω ), which results into the following expression for the integral
disturbance:

∆(x) = ρ(x, t)− u∗
(
t− L− x

ω

)
. (2.49)

Thus, the disturbance term in (2.49) can be computed if we know the current density ρ(x, t)

and the control action on previous time steps u∗(t− L−x
ω ). Finally, note that the quantity on

the left-hand side of (2.49) is constant in time provided that the right-hand side is well-de�ned,
i.e. for all t ≥ L/ω, irrespectively of the control action u∗(t). Thus, our initial assumption
that ufb∗ becomes constant is valid. The combination of (2.48) and (2.49) yields the �nal
expression (2.46) stated in Theorem 2.1.

Thus, the optimal controller given by (2.46) should be seen as a compensator for the
average e�ect of disturbance in number of vehicles within the whole road.

Corollary 2.1. The optimal controller (2.46) provides the following bound for the L2 norm

of the density error as t→∞:

‖ρ̃∞(x)‖22 ≤ k ‖δ(x)‖22 , with k =
L2

2ω2
.

Proof. Let us �rst explicitly calculate the L2 norm of the density error ρ̃∞(x) for t→∞ under
the optimal feedback control, for which we make use of (2.48) and get

‖ρ̃∞(x)‖22 =
∥∥∥ufb∗ + ∆(x)

∥∥∥2

2
=

L∫
0

∆2(x) dx− 1

L

 L∫
0

∆(x) dx

2

.

Using the de�nition of the integral disturbance (2.40), we obtain

∥∥∥ufb∗ + ∆(x)
∥∥∥2

2
≤

L∫
0

∆2(x) dx =
1

ω2

L∫
0

 L∫
x

δ(s) ds

2

dx.

Using the Cauchy-Schwartz inequality we can provide an upper bound for the latter expression:

∥∥∥ufb∗ + ∆(x)
∥∥∥2

2
≤ 1

ω2

L∫
0

(L− x)

L∫
x

δ2(s) ds

 dx ≤ 1

ω2
‖δ(x)‖22

L∫
0

(L− x) dx,

and �nally we get ∥∥∥ufb∗ + ∆(x)
∥∥∥2

2
≤ L2

2ω2
‖δ(x)‖22 ,

which shows that there is an upper bound of the error norm as t → ∞ and concludes the
proof.
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2.2.6 Disturbance attenuation in sense of L∞ norm

Theorem 2.2
For the density error ρ̃(x, t) given by IBVP (2.37), the optimal boundary controller minimizing
the limit of its L∞ norm as t→∞ is given by

u∗ = uff + ufb∗, where uff = ρdout(t) and (2.50)

ufb∗(t) =


0, if 0 ≤ t <

L

ω
,

−
sup

x∈[0,L]

(
ρ(x, t)− u∗

(
t− L− x

ω

))
+ inf
x∈[0,L]

(
ρ(x, t)− u∗

(
t− L− x

ω

))
2

, if t ≥ L

ω
.

Proof. Following the proof of Theorem 2.1, the minimization over u∗ in Problem 2.2(ii) is
again equivalent to the minimization over ufb = ufb∞ = const:

ufb∗ = argmin
ufb

‖ρ̃∞(x)‖∞ = argmin
ufb

∥∥∥ufb + ∆(x)
∥∥∥
∞

= argmin
ufb

sup
x∈[0,L]

|ufb + ∆(x)|.

Expanding the supremum term, we get

sup
x∈[0,L]

|ufb + ∆(x)| = max

{
sup
x∈[0,L]

(
ufb + ∆(x)

)
, − inf

x∈[0,L]

(
ufb + ∆(x)

)}

= max

{
ufb + sup

x∈[0,L]
∆(x), −ufb − inf

x∈[0,L]
∆(x)

}
.

(2.51)

The �rst argument in (2.51) is a monotonically increasing function with respect to ufb, while
the second argument is a monotonically decreasing one. Thus, the minimum can be achieved
only at the intersection point of both functions, i.e.,

ufb∗ = −1

2

(
sup
x∈[0,L]

∆(x) + inf
x∈[0,L]

∆(x)

)
. (2.52)

Substituting (2.49) in (2.52) in order to eliminate the explicit dependency on unknown dis-
turbance, we obtain the optimal feedback term (2.50) as stated in Theorem 2.2.

As in case of L2 norm, let us estimate the upper bound of L∞ norm of the error state that
this controller is able to achieve as t→∞.

Corollary 2.2. The control law given by (2.50) provides the following bound

‖ρ̃∞(x)‖∞ ≤ µ ‖δ(x)‖∞ , with µ =
L

ω
.
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Proof. In order to estimate bounds on ‖ρ̃∞(x)‖∞, we need to �nd bounds on sup
x∈[0,L]

∆(x) and

− inf
x∈[0,L]

∆(x). Let us start with the supremum:

sup
x∈[0,L]

∆(x) = sup
x∈[0,L]

 1

ω

L∫
x

δ(s) ds

 ≤ sup
x∈[0,L]

(
L− x
ω

sup
s∈[0,x]

δ(s)

)
≤

sup
x∈[0,L]

(
L− x
ω

sup
s∈[0,L]

δ(s)

)
≤


0, if sup

x∈[0,L]
δ(x) ≤ 0,

L

ω
sup
x∈[0,L]

δ(x), if sup
x∈[0,L]

δ(x) > 0.

(2.53)

For the in�mum we proceed in the same way and obtain:

inf
x∈[0,L]

∆(x) = inf
x∈[0,L]

 1

ω

L∫
x

δ(s) ds

 ≥ inf
x∈[0,L]

(
L− x
ω

inf
s∈[0,x]

δ(s)

)
≥

inf
x∈[0,L]

(
L− x
ω

inf
s∈[0,L]

δ(s)

)
≥


0, if inf

x∈[0,L]
δ(x) ≥ 0,

L

ω
inf

x∈[0,L]
δ(x), if inf

x∈[0,L]
δ(x) < 0.

(2.54)

From the bounds on supremum (2.53) and in�mum (2.54), we distinguish three possible
cases:

1. Both sup
x∈[0,L]

δ(x) and inf
x∈[0,L]

δ(x) are positive. Then, ‖δ(x)‖∞ = sup
x∈[0,L]

δ(x) and

‖ρ̃∞(x)‖∞ =
1

2

(
sup
x∈[0,L]

∆(x)− inf
x∈[0,L]

∆(x)

)
≤ L

2ω
sup
x∈[0,L]

δ(x) =
L

2ω
‖δ(x)‖∞ .

2. Both sup
x∈[0,L]

δ(x) and inf
x∈[0,L]

δ(x) are negative. Then ‖δ(x)‖∞ = − inf
x∈[0,L]

δ(x) and

‖ρ̃∞(x)‖∞ =
1

2

(
sup
x∈[0,L]

∆(x)− inf
x∈[0,L]

∆(x)

)
≤ − L

2ω
inf

x∈[0,L]
δ(x) =

L

2ω
‖δ(x)‖∞ .

3. The signs of sup
x∈[0,L]

δ(x) and inf
x∈[0,L]

δ(x) are di�erent. Then

sup
x∈[0,L]

δ(x)− inf
x∈[0,L]

δ(x) 6 2 sup
x∈[0,L]

|δ(x)| = 2 ‖δ(x)‖∞ ,

which leads to

‖ρ̃∞(x)‖∞ =
1

2

(
sup
x∈[0,L]

∆(x)− inf
x∈[0,L]

∆(x)

)

≤ L

2ω

(
sup
x∈[0,L]

δ(x)− inf
x∈[0,L]

δ(x)

)
≤ L

ω
‖δ(x)‖∞ .
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Thus, we can provide the following bound for the L∞ norm as t→∞:

‖ρ̃∞(x)‖∞ 6
L

ω
‖δ(x)‖∞ .

2.2.7 Numerical simulation

To verify our theoretical results, we provide a numerical example, which intends to illustrate
the performance of the feedback term ufb∗ used to minimize the L2 and L∞ norms of ρ̃(x, t)

as t→∞. For the simulation, we use the Godunov scheme (2.18) described in Section 2.1.6,
and the numerical grid is divided into n = 500 cells.

2.2.7.1 Simulation setup

Notice that we simulate the system only in the congested regime, thus in (2.19) the minimum
is always resolved to the bene�t of the supply function, i.e., ∀(i, k) ∈ {1, . . . , n} × Z+:

ϕi(k) = S(ρi(k)), ϕin(k) = S(ρ1(k)).

We also set ρn+1(k) = ρn(k) if no boundary conditions are speci�ed (freely evolving system),
and ρn+1(k) = u(k) in case of boundary control so that ϕout(k) = S(u(k)).

For the simulation we set the following parameters, which are taken from real tra�c data
[143]:

v = 16.667m/s, ω = 7.114m/s, L = 1000m,

ρmax = 0.181 veh/m, ρc = 0.0541 veh/m.
(2.55)

Notice that the free-�ow speed v = 16.667 m/s corresponds to 60 km/h. We also �x the initial
condition ∀i ∈ {1, . . . , n}

ρi(0) = 0.1− 0.03 cos(πi∆x/50),

the desired trajectory

ρdi(k) = 0.11 + 0.03 sin

(
π(k∆t− L− i∆x

ω
) ∗ 0.01

)
,

and the disturbance term

δi =

{
−0.0002, if i ∈ {1, . . . , n

2
}

0.0006, otherwise.

There are three possible control strategies, which can be applied at the downstream bound-
ary of the system:
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1. No control action is performed.

2. Only feedforward control u(k) = uff (k) is applied.

3. Full control u∗(k) = uff (k) + ufb∗(k) is applied. For the computation of the integral
from the feedback term in case of (2.46), we use the Riemann summation over all cells
inside the domain.

2.2.7.2 Simulation results

In Figure 2.8 we illustrate the e�ect of the feedback term on disturbance attenuation in sense
of both L2 and L∞ norms by acting from the downstream boundary. The desired density
pro�le ρd(x, t) and the freely evolving uncontrolled state ρ(x, t) with disturbance are shown
in Figures 2.8a) and 2.8b), respectively. The density values can be read from the colormap:
the smallest values are denoted by blue color, while the most congested zones are marked in
red. The disturbance term acts so that the freely evolving system becomes entirely congested
in the right part of the road, as we can see from Figure 2.8b).

In Figure 2.8c) we show what happens to the state ρ(x, t), when only the feedforward
control is applied (u = uff ) by setting ρd(L, t) at the downstream boundary. This tech-
nique provides results that are already considerably better than just letting the state evolve
freely. Finally, the state under the optimal control laws ufb∗ from (2.46) and (2.50) minimizing
‖ρ̃∞(x)‖2 and ‖ρ̃∞(x)‖∞, respectively, are shown in Figures 2.8d) and 2.8e). The feedback
term started acting after the minimal controllability time tctr = L

ω ≈ 140 s, while only feedfor-
ward control was activated prior to this time threshold. In this particular case, minimization
of L2 norm has led us to better results, since the corresponding controlled state in Figure
2.8d) is less congested than in case of L∞ minimization, as we can observe from Figure 2.8e).

Comparing Figure 2.8c) with Figures and 2.8d) and 2.8e), we see that the optimally con-
trolled density reaches a pro�le that looks more similar to the desired one from 2.8a), however
they are not identical (but the best that could be obtained for in-domain disturbance and
boundary control). In general, it is easy to see that disturbance attenuation results into a
state characterized by a much lower congestion level, which is a desirable e�ect when it comes
to control applications.

In Figure 2.9 we can see that the optimal control law applied to minimize ‖ρ̃∞(x)‖2 in
Figure 2.9a) and ‖ρ̃∞(x)‖∞ in Figure 2.9b) performs better in both cases with respect to
the case with no feedback. The feedback controller is a constant that is switched on after
the minimal controllability time tctr ≈ 140 s has passed. Then, in both cases the norms
achieve their minimal values already after 2tctr, since another time period equal to the minimal
controllability time must pass for the control action to propagate to the end of the road.
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a) desired density pro�le

b) uncontrolled state c) state obtained by applying only u = uff

d) state under ufb∗ minimizing L2 norm e) state under ufb∗ minimizing L∞ norm

Figure 2.8: a) Desired density pro�le, b) freely evolving state, and in c),d),e) the density
evolution under the disturbance term for di�erent control choices.
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a) L2 norm b) L∞ norm

Figure 2.9: Temporal evolution of density error norms obtained for the uncontrolled case
(blue line), with feedforward control only (red line), and then also with the feedback part ufb∗

(yellow line) for a) L2 norm, and b) L∞ norm. The black dashed lines indicate tctr and 2tctr.

2.2.8 Discussions

In this section, we have designed a feedback control law that minimizes the deviation of
the state from the desired time- and space-dependent trajectory as time goes to in�nity in
sense of L2 and L∞ spatial norms. The vehicle density, for which we were designing the
boundary control, is restricted to the congested tra�c regime, which allowed us to deal with
a linear problem. The control is actuated at road's downstream boundary, and physically it
corresponds to controlling the amount of tra�c �ow to leave the road. The congested tra�c
state can become unpredictably worth (such as becoming a full tra�c jam with ρ(x, t) = ρmax
∀x ∈ [0, L]) due to the presence of in-domain disturbance that has been included into the LWR
equation. This included disturbance is used to capture the contribution of vehicles originating
from minor roads having a non-zero in�ow into the road to control. The desired trajectory
solves an ideal (homogeneous) linear LWR in the same regime. The problem was posed and
solved as the disturbance attenuation problem. The results have been veri�ed by a numerical
example, which clearly illustrates that the feedback plays an important role in the designed
controller, which performs signi�cantly better for the error norm minimization than the one
including only the feedforward part.

The obtained controllers for minimization of both L2 and L∞ norms are optimal. The cor-
responding norm to be minimized should be chosen in accordance with the available knowledge
about the source of disturbance. For example, the controller to minimize the L2 norm should
be chosen if the disturbance comes from a large number of minor roads, then it makes sense
to minimize the mean-square deviation from the desired state. The controller for L∞ norm
minimization should be chosen, if the maximal deviation from the desired state should be



40 Chapter 2. Tra�c Control on Roads

attenuated. This can be a good practical choice, if the disturbance source corresponds to
vehicles coming from, e.g., another important road in case of merge intersections.

In the the following section, we extend our analysis to a more complex problem, i.e., the
tra�c state is not restricted to any particular regime, which yields a fully nonlinear problem
with all the technical challenges related to this nonlinearity, i.e., crossing characteristics and
shocks in the solution.



2.3. Boundary control design for tra�c with nonlinear dynamics 41

2.3 Boundary control design for tra�c with nonlinear dynamics

In this section, we again consider a tracking problem to be solved by properly actuating road
boundaries. This time, both the tra�c state and the desired trajectory are vehicle densities
that can take any value from its range. We consider a mixed tra�c problem, e.g., tra�c is
in the free-�ow regime at one part of the road, and congested at the other part. Hence, we
are going to analyze a fully nonlinear LWR model as in (2.10). The main technical challenge
thereby occurs when characteristics intersect (as in the case of kinematic waves moving with
di�erent speeds), which causes the emergence of shocks, see Section 2.1.3. In order to handle
shocks, we make use of the Hamilton-Jacobi formulation, which is an integral formulation of
LWR that does not contain shocks, see Section 2.1.7 for more details.

2.3.1 Introduction

There exist many works that used the structure of the Hamilton-Jacobi PDE to solve control
tasks for tra�c. For instance, optimal control methods for a tra�c network based on viability
framework are proposed in [93, 94]. The framework has also been used to develop a convex
optimization approach to reduce the fuel consumption in [153]. Also [16] considered a H-J PDE
with viscous term that allowed to perform a feedback linearization, which enabled tracking a
desired time-dependent state on some �xed space point. One of the most recent works [141]
used the analytical solution to the LWR PDE to formulate an optimization control problem
for tra�c on networks with variable speed limit and ramp metering control.

The main contributions of this section are the following:

� Tracking space- and time-dependent trajectory: we extend the results presented in [20,
14] and present a controller able to drive a state with shocks to any time- and space-

dependent vehicle density that also may contain shocks. This is the �rst boundary
controller in the tra�c community able to solve such general tasks. Moreover, if we
compare it to [16], our analysis is done for the original LWR system without linearization
and viscosity term.

� The explicit solution of H-J PDE is used to provide conditions on when and which control
can be applied: we consider a general case with weak boundary conditions, when it is
not guaranteed that control can be imposed pointwise (see Section 2.1.4). To handle
this limitation of control, we have formulated weak boundary conditions in terms of
control restriction functions, and then we use them to show that even in case of �non
acceptance� of boundary control laws the goal can still be achieved.

2.3.2 Preliminaries

We seek to design a feedback boundary control law that is able to track any desired space-
and time-dependent vehicle density. Unlike in the previous Section 2.2 where only congested
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tra�c has been considered, here we deal with a full nonlinear tra�c system as in (2.10).
Thus, prior to stating the boundary control problem, we will �rst do the following: present
the nonlinear state equation, perform motion planning to de�ne admissible trajectories to
track, then we also mention assumptions that need to hold in this section, and then we give
an explicit Hamilton-Jacobi solution describing the temporal evolution of the tra�c system.

2.3.2.1 Nonlinear tra�c system

Let us formulate a nonlinear IBVP for tra�c evolving along a single road with x ∈ [0, L] as
in (2.10), but for convenience we now specify the boundary values in terms of �ows φin, φout.
Thus, we introduce the following IBVP ∀(x, t) ∈ [0, L]× R+:

∂tρ(x, t) + ∂xΦ (ρ(x, t)) = 0,

Φ (ρ(0, t)) = φin(t), Φ (ρ(L, t)) = φout(t),

ρ(x, 0) = ρ0(x).

(2.56)

Thereby, the �ux function Φ(ρ) is again assumed to have a triangular shape as in (2.2) with
ρc = ρmax/3, and in�ows φin(t) and out�ows φout(t) are de�ned ∀t ∈ R+ as{

φin(t) = min {uin(t), S(ρ(0, t))} ,
φout(t) = min {D(ρ(L, t)), uout(t)} ,

(2.57)

where uin and uout denote the proposed �ow values for the upstream and for the downstream
boundary, correspondingly. Here, we treat uin and uout as control variables. By comparing
(2.57) to the boundary Riemann problems for x = 0 and x = L given by (2.15) and (2.16),
we establish that ∀t ∈ R+

uin(t) = D(ρin(t)), and uout(t) = S(ρout(t)),

which means that uin physically corresponds to control of the demand to enter the road, i.e,
we decide how much vehicles to let enter the domain, while uout should be viewed as control
of the supply of the exit of the road, i.e., we decide how much vehicles to let leave the domain.
Notice that both uin and uout can not always be applied, i.e., these boundary conditions (2.57)
are equivalent to the weak boundary conditions formulation in terms of densities given in [129],
see also Section 2.1.4. Thus, the problem given by (2.56) and (2.57) is well-posed.

2.3.2.2 Motion planning

Now we de�ne a desired space- and time-varying density ρd(x, t) ∀(x, t) ∈ [0, L] × R+ that
should be tracked with the help of boundary control. In order to be admissible, ρd(x, t) ∈ R+

must be a weak entropy solution of the following system:
∂ρd(x, t)

∂t
+
∂Φ (ρd(x, t))

∂x
= 0,

Φ (ρd(0, t)) = φind(t), Φ (ρd(L, t)) = φoutd(t),

ρd(x, 0) = ρ0d(x),

(2.58)
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where in�ows and out�ows in the desired system must also satisfy φind(t) ≤ S(ρd(0, t)) and
φoutd(t) ≤ D(ρd(L, t)) (weak boundary conditions). Notice that unlike Σd given by (2.36) in
Section 2.2, the system (2.58) is a nonlinear hyperbolic PDE system, in which discontinuities
may evolve even for smooth initial data.

Thus, this section is devoted to �nding ∀t ∈ R+ boundary control laws uin(t) and uout(t)
such that the density achieves a desired trajectory ρd(x, t) as t→∞. Thereby, they can take
any values from their range, i.e., ρ ∈ [0, ρmax] and ρd ∈ [0, ρmax].

2.3.2.3 Assumptions

Finally, throughout this section we make the following assumptions:

Assumption 2.1
The initial conditions have left the system, thus, the solution of system (2.56) is determined
by the values at the boundaries only.

Assumption 2.2
There exists ε > 0 such that φin and φout from system (2.56) satisfy the following inequalities

in time average:

t+T∫
t

φin(τ)dτ ≤Tφmax − ε and

t+T∫
t

φout(τ)dτ ≤ Tφmax − ε,

where t > 0 and T = min

{
L

v
,
L

ω

}
.

Thus, �ows can not hold their maximal values during the time interval given by T .

Note that Assumption 2.2 is needed to prove the exponential convergence to a desired
vehicle density pro�le, see details in the proof of Theorem 2.3.

Remark 2.3
Note that if Assumption 2.2 is satis�ed, then Assumption 2.1 holds trivially ∀t ∈ [tmin,+∞),

where tmin is de�ned as

tmin = min

{
L

v
,
L

ω

}(
1 +

⌈
L

ε
(ρmax + ρc)

⌉)
, (2.59)

as it is shown in Appendix B.3.

2.3.2.4 Hamilton-Jacobi system

Note that control enters the system through the minimum function (2.57), and in several
situations it can not be applied pointwise. Hence, control variables should be understood only



44 Chapter 2. Tra�c Control on Roads

as proposed functions. If tra�c is restricted only to the congested regime, then φout(t) =

uout(t) is always satis�ed, as it was the case for the linear system (2.35) considered in the
previous section. However, to solve control problems for a tra�c state in the mixed regime,
we must handle (2.57), since the actual �ow passing through the boundary is determined by
the tra�c state. For instance, if for some time t there are only a few cars at the end of the
road, we would obtain from (2.57)

φout(t) = D (ρ(L, t)) ⇒ uout(t) is not imposed.

In order to enable analytical treatment of weak boundary conditions, we use the Hamilton-
Jacobi formulation, which is an integral form of the LWR PDE that was explained in Section
2.1.7. In particular, we will be able to analyze, when and for how long the proposed control
values are accepted by the system. This is possible due to a cumulative description of tra�c
within the H-J approach, since the state corresponds to the cumulative number of vehicles
also known as Moskowitz function M(x, t) (MF).

Let us recall the IBVP in the H-J formulation as in (2.25), i.e., ∀(x, t) ∈ [0, L]× R+:

∂M(x, t)

∂t
− Φ

(
−∂M(x, t)

∂x

)
= 0,

M(x, 0) = MIni(x),

M(0, t) = MUp(t),

M(L, t) = MDown(t).

As already discussed in Section 2.1.8, the solution of this system can be obtained explicitly
using the Lax-Hopf formula (2.32) for the case of a triangular FD (2.2), which is also the
case here. The derivation of the solution is presented in Appendix B.2. Here we consider
the solution of the system for large enough time, which equivalently means that the e�ect of
initial conditions should have left the system (Assumption 2.1):

∀(x, t) ∈ [0, L]× [tmin,+∞) :

M(x, t) = min

{ t−x
v∫

0

φin(τ) dτ +

L∫
0

ρ0(s) ds,

t−L−x
ω∫

0

φout(τ) dτ + ρmax(L− x)

}
,

(2.60)

where tmin was estimated in Appendix B.3, which requires that Assumption 2.2 holds as well.

2.3.3 Problem statement in H-J formulation

The desired MF is obtained similar to (2.60):

∀(x, t) ∈ [0, L]× [tmin,+∞) :

Md(x, t) = min

{ t−x
v∫

0

φind(τ) dτ +

L∫
0

ρd0(s) ds,

t−L−x
ω∫

0

φoutd(τ) dτ + ρmax(L− x)

}
.

(2.61)
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Note that both M(x, t) and Md(x, t) are de�ned up to a constant since the starting point
for the numeration of cars can be arbitrary. Therefore, we state our problem in Hamilton-
Jacobi formulation as a pointwise convergence of Moskowitz functions M(x, t) to Md(x, t) as
t→∞. This is formalized as follows.

Problem 2.3
Given a desired trajectory ρd(x, t) governed by system (2.58), �nd ∀t ∈ R+ boundary control

laws uin(t) and uout(t) for system (2.56) such that

∃M0 ∈ R : ∀x ∈ [0, L] lim
t→∞

(M(x, t)−Md(x, t)) = M0.

The constant M0 should be understood as some historical di�erence in the cumulative
number of vehicles in both systems, and it does not have any e�ect on the tra�c evolution.

After we have stated Problem 2.3 in H-J formulation, let us establish the link to the LWR
formulation.

Lemma 2.2. Problem (2.3) is equivalent to the integral convergence of densities over arbi-

trarily small intervals, i.e., ∀a, b: 0 ≤ a < b ≤ L we obtain

lim
t→∞

b∫
a

(ρ(s, t)− ρd(s, t)) ds = 0, (2.62)

where a and b can be arbitrarily close points in space.

Proof. By the de�nition of the Moskowitz function (2.23), we can write

M(a, t)−M(b, t) =

L∫
a

ρ (s, t) ds−
L∫
b

ρ (s, t) ds =

b∫
a

ρ(s, t)ds, (2.63)

and

Md(a, t)−Md(b, t) =

b∫
a

ρd (s, t) ds. (2.64)

For x = a and x = b in Problem (2.3) we get M(a, t) → Md(a, t) + M0 and M(b, t) →
Md(b, t) +M0. This is equivalent to M(a, t)−M(b, t)→Md(a, t)−Md(b, t), which by (2.63)
and (2.64) can be rewritten as

b∫
a

ρ (s, t) ds→
b∫
a

ρd (s, t) ds.
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Remark 2.4
Notice that pointwise convergence of two functions does not imply the convergence for their

derivatives in any of Lp norms. However, we pose Problem 2.3 to reach the equality of the

densities over arbitrarily small intervals, which means that the state approximates the desired

trajectory as time goes to in�nity.

Thus, the density approximates the desired trajectory as in (2.62) if we �nd a control law
for system (2.56) that solves Problem 2.3 stated in the Hamilton-Jacobi formulation.

2.3.4 Control law design

Theorem 2.3
Given system (2.56) for which Assumptions 2.1 and 2.2 hold with the MF solution given by

(2.60), and the desired vehicle trajectory solving system (2.58) for which Assumption 2.1 holds

with the MF solution (2.61). Then a control law that achieves the goal stated in Problem 2.3

is given by

(1) uin(t) = φind(t)− ke(t),
(2) uout(t) = φoutd(t) + ke(t),

t ∈ R+

where e(t) =

L∫
0

(ρ(s, t)− ρd(s, t)) ds and k > 0.

(2.65)

Remark 2.5
Physically, the control law given by (2.65) makes us control in�ows and out�ows such that all

the �excess� cars, given by the integral di�erence in densities, leave the domain, and then in-

�ows and out�ows match the desired ones. When the goal is achieved, the following conditions

hold for ∀t ≥ tmin:

(i) φin(t) = φind(t), (ii) φout(t) = φoutd(t),

(iii)

t−x
v∫

0

(φin(τ)− φind(τ)) dτ +

L∫
0

(ρ0(s)− ρd0(s)) ds

=

t−L−x
ω∫

0

(φout(τ)− φoutd(τ)) dτ.

(2.66)

The derivation of these conditions is given in Appendix B.4.

Proof of Theorem 2.3. This proof consists of �ve parts: it is shown that e(t) goes to zero as
t→∞ in Sections 2.3.4.1 - 2.3.4.3, and then we show that this is enough for the convergence
of Moskowitz functions in Sections 2.3.4.4 and 2.3.4.5.
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Error e(t) is de�ned as the di�erence in the overall number of cars in the real and the
desired systems (1.5). Using (2.23) for x = 0 we can rewrite the de�nition of error as

e(t) = M (0, t)−Md (0, t) +

t∫
0

(φoutd(τ)− φout(τ)) dτ,

which by using (2.24) to evaluate M(0, t)−Md(0, t) can be further modi�ed as

e(t) =

t∫
0

(φin(τ)− φout(τ) + φoutd(τ)− φind(τ)) dτ +

L∫
0

(ρ0 (s)− ρ0d (s)) ds. (2.67)

Error dynamics are found as the time derivative of (2.67)

ė(t) = φin(t)− φout(t)− φind(t) + φoutd(t). (2.68)

Recall that the main challenge in controlling system (2.56) is related to the fact that the
boundary �ows φin and φout are not always equal to uin and uout, respectively. Thus, for
some periods of time, we lose the ability to impose any control uin or uout on the boundaries.
Let us investigate this problem in more details.

2.3.4.1 Analysis of �ow restrictions

By de�nition of the Moskowitz function (2.21), in�ows and out�ows are time derivatives
of M(0, t) and M(L, t), respectively. Let us �rst focus on the in�ow de�ned as φin(t) =

∂M(0, t)/∂t, which allows us to express M(0, t) by taking the time integral of φin(t) and get

M(0, t) =

t∫
0

φin(τ) dτ +M(0, 0), (2.69)

where M(0, 0) =
L∫
0

ρ0(s) ds is obtained from the de�nition (2.23) for the space-time point

(x, t) = (0, 0).

From now on, let us consider only t ≥ tmin with tmin being de�ned in (2.59). Then, we
can also consider the MF solution (2.60) for x = 0 and obtain

M(0, t) = min

{ t∫
0

φin(τ) dτ +

L∫
0

ρ0(s) ds,

t−L
ω∫

0

φout(τ) dτ + Lρmax

}
. (2.70)

Combining (2.69) with (2.70), we obtain the following minimum problem:

t∫
0

φin(τ)dτ +

L∫
0

ρ0(s)ds = min

{ t∫
0

φin(τ)dτ +

L∫
0

ρ0(s)ds,

t−L
ω∫

0

φout(τ)dτ + Lφmax

}
. (2.71)
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From (2.71) one can see that the following inequality holds

t∫
0

φin(τ) dτ +

L∫
0

ρ0(s) ds ≤

t−L
ω∫

0

φout(τ) dτ + Lφmax. (2.72)

In case of equality in (2.72), we must provide that the right-hand term grows more quickly than
the left-hand term. Thus, by taking the time derivative of (2.71) we obtain φin(t) ≤ φout(t−L

ω ).
Notice that if the left-hand term is strictly smaller than the right-hand term in (2.72), then
the in�ow is less constrained and we should be able to set φin(t) = uin(t).

All this can be combined in the following property. We de�ne a control restriction function

for the upstream boundary

gin(t) =

t−L
ω∫

0

φout(τ) dτ + Lρmax −
t∫

0

φin(τ) dτ −
L∫

0

ρ0(s) ds,

which represents the di�erence between two arguments of the minimum from (2.71). By (2.72)
we obtain that gin(t) ≥ 0 always. Moreover, using the de�nition of φin(t) given by (2.57), the
condition on in�ow restriction can be formulated as:

gin(t) > 0 : φin(t) = uin(t),

gin(t) = 0 : φin(t) = min

{
uin(t), φout

(
t− L

ω

)}
.

(2.73)

Note that the notation of control restriction should be understood as saturation control with
φout

(
t− L

ω

)
being the saturation time-varying threshold.

Similarly, we proceed by considering the MF solution (2.34) for x = L to analyze φout(t)
for the downstream boundary, and get its control restriction function that reads

gout(t) =

t−L
v∫

0

φin(τ) dτ +

L∫
0

ρ0(s) ds−
t∫

0

φout(τ) dτ,

and the following condition on the out�ow restriction

gout(t) > 0 : φout(t) = uout(t),

gout(t) = 0 : φout(t) = min

{
uout(t), φin

(
t− L

v

)}
.

(2.74)

Thus, any boundary control can be imposed if gin > 0 and gout > 0.

De�ning R(t) =
L∫
0

ρ(s, t)ds and R0 = R(0), and using the equality of (2.23) and (2.24)

(independence of chosen integration path), we obtain for ∀t′ ∈ R+ and x = 0

R(t′) = R0 +

t′∫
0

φin(τ) dτ −
t′∫

0

φout(τ) dτ. (2.75)
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Thus, the control restriction functions can be rewritten as

gin(t) = Lρmax −R(t′)−
t′∫

t−L
ω

φout(τ) dτ −
t∫

t′

φin(τ) dτ,

gout(t) = R(t′)−
t′∫

t−L
v

φin(τ) dτ −
t∫

t′

φout(τ) dτ.

(2.76)

Note also that in�ows and out�ows are upper bounded by the road capacity, i.e., φin ≤ φmax
and φout ≤ φmax, where φmax = vρc (see Figure 2.1). To �nd a time interval, during which
no control law can be imposed, we set gin(t) = 0 and then express R(t′) from (2.76):

R(t′) = Lρmax −
t′∫

t−L
ω

φout(τ) dτ −
t∫

t′

φin(τ) dτ

≥ Lρmax −
t′∫

t−L
ω

φmax dτ −
t∫

t′

φmax dτ = Lρmax −
L

ω
φmax = Lρc.

The same steps are performed for gout(t) = 0, and we get

gin(t) = 0 ⇒ R(t′) ≥ Lρc ∀t′ ∈
[
t− L

ω
, t

]
,

gout(t) = 0 ⇒ R(t′) ≤ Lρc ∀t′ ∈
[
t− L

v
, t

]
.

(2.77)

This means that not any control law can be applied at the upstream boundary at time t, if
during the preceding time interval

[
t− L

ω , t
]
the mean density was bigger than the critical

density (and inversely for the downstream boundary).

Using Assumption 2.2 and the fact that the critical density ρc = ρmax/3, we set gin(t) = 0

in (2.76), which implies R(t) ≥ Lρc + ε and R(t − L/ω) ≥ Lρc + ε, as well as gout(t) = 0

implies R(t) ≤ Lρc − ε and R(t− L/v) ≤ Lρc − ε.

Let us consider (2.77) to investigate whether it is possible that control can not be imposed
at both boundaries simultaneously. We pick some time point t such that gin(t) = 0 and
some time point t′ ∈ [t, t + L/v] with gout(t

′) = 0. As written above, gin(t) = 0 implies
R(t) ≥ Lρc+ε. However, t ∈ [t′−L/v, t′], thus R(t) ≤ Lρc for gout(t′) = 0 by (2.77). This is a
contradiction, since satisfying both R(t) ≥ Lρc+ε and R(t) ≤ Lρc at the same t is impossible.
Thus, the time point t′ when gout(t′) = 0 can occur at least after the interval L/v has passed
since the last gin(t) = 0.

Moreover, if t′ ≥ t + L/v and gout(t
′) = 0, then R(t′ − L/v) ≤ Lρc − ε. The maximal

in�ow is always bounded from above by φmax, therefore the di�erence in the integral densities
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R(t′ − L/v) − R(t) can be passed at least in time t′ − L/v − t ≥ 2ε/φmax. Performing the
same analysis for the inverse case, we conclude that

gin(t) = 0 ⇒ gout(t
′) > 0 ∀t′ ∈

[
t, t+

L

v
+

2ε

φmax

]
,

gout(t) = 0 ⇒ gin(t′) > 0 ∀t′ ∈
[
t, t+

L

ω
+

2ε

φmax

]
.

(2.78)

Thus, it is impossible for two boundaries to be unable to accept the control simultaneously,
and the periods of �uncontrollability� are separated in time by at least L

v + 2ε
φmax

or L
ω + 2ε

φmax
.

2.3.4.2 Dynamics of e(t)

Thus, in Section 2.3.4.1 we have established that at each moment either one of control restric-
tion functions or none of them is zero (2.78). Hence, we separate the dynamics of the integral
error term e(t) (1.5) into three possible cases.

1. Assume both gin(t) > 0 and gout(t) > 0. Then all the boundary control terms uin
and uout can be applied, which by (2.65) implies that φin(t) = φind(t) − ke(t) and φout(t) =

φoutd(t) + ke(t). According to (2.68), the error dynamics are given by

ė(t) = −2ke(t), (2.79)

and, thus, e(t) converges exponentially to zero.

2. Assume gin(t) = 0. Then, the control can not be applied at the upstream boundary,
i.e., φin(t) ≤ φind(t)− ke(t) and φout(t) = φoutd(t) + ke(t), which means

ė(t) ≤ −2ke(t). (2.80)

Thus, a positive error e(t) > 0 implies even faster convergence to zero. If e(t) < 0, such
dynamics can diverge from zero. However, it is possible to show that after a period of not
being able to impose any control at the upstream boundary, the error will not be further away
from zero than at the beginning of the period. Consider the control restriction function gind(t)
for the upstream boundary of the desired system:

gind(t) = Lρmax −Rd(t′)−
t′∫

t−L
ω

φoutd(τ) dτ −
t∫

t′

φind(τ) dτ ≥ 0, for t′ ∈
[
t− L

ω
, t

]
.

Using e(t′) = R(t′)−Rd(t′), we obtain

gind(t)− gin(t) =

t′∫
t−L

ω

(φout(τ)− φoutd(τ)) dτ +

t∫
t′

(φin(τ)− φind(τ)) dτ + e(t′) ≥ 0. (2.81)



2.3. Boundary control design for tra�c with nonlinear dynamics 51

Using the properties φin(t) ≤ φind(t)− ke(t) and φout(t) = φoutd(t) + ke(t), we obtain

e(t′) + k

t′∫
t−L

ω

e(τ) dτ − k
t∫

t′

e(τ) dτ ≥ 0.

We substitute t′ = t to get the �rst inequality, and then t′ = t− L
ω to get the second one:

1) e(t) + k

t∫
t−L

ω

e(τ) dτ ≥ 0, 2) e

(
t− L

ω

)
− k

t∫
t−L

ω

e(τ)dτ ≥ 0,

and the sum of these inequalities yields

e(t) + e

(
t− L

ω

)
≥ 0. (2.82)

3. Assume gout(t) = 0. Then, the control can not be applied at the downstream boundary,
i.e., φout(t) ≤ φoutd(t) + ke(t) and φin(t) = φind(t) − ke(t), which yields the following error
dynamics

ė(t) ≥ −2ke(t). (2.83)

Using the same analysis as above for e(t) > 0, we obtain

e(t) + e

(
t− L

v

)
≤ 0. (2.84)

2.3.4.3 Proof that e(t) converges to zero

In Table 2.1 we have summarized three regimes of error dynamics. The regimes can alternate

Table 2.1: Summary of error regimes

Regime 1 gin(t) > 0, gout(t) > 0 ė(t) = −2ke(t)

Regime 2 gin(t) = 0, gout(t
′) > 0, ė(t) ≤ −2ke(t)

∀t′ ∈
[
t, t+ L

v + 2ε
φmax

]
Regime 3 gout(t) = 0, gin(t′) > 0, ė(t) ≥ −2ke(t)

∀t′ ∈
[
t, t+ L

ω + 2ε
φmax

]
as depicted in Figure 2.10. In this part of the proof, we will show that the error can enter the
second dynamic regime (Regime 2) only being positive, while it enter Regime 3 only being
negative. Thus, if the error is positive in Regime 1 (green circle), it either remains there
forever and the exponential convergence to zero is guaranteed by (2.79), or it enters Regime 2

(violet circle). Then, being positive, by (2.80) the error converges to zero even faster than in
Regime 1. However, it can also become negative, and in this case the error might diverge from
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1
e > 0

e < 0

guaranteed
by (2.82)

FC

2

CC
e > 0

e < 0

e < 0FF

guaranteed
by (2.84)

e > 0

3

Figure 2.10: Diagram of regimes illustrating how they can alternate. Arrows denote possible
regime switches. FC, CC and FF are used to denote regimes at both boundaries, where F
stays for free-�ow and C for congested regime.

zero. Nevertheless, the divergence from zero can last only for a bounded time interval, and by
(2.82) the absolute value of the error term can not exceed the value it had some time ago. As
this happens, the error enters again Regime 1 as a negative term. It either stays there forever,
or switches to Regime 3, where it goes to zero even more quickly by (2.83). The rest can be
described in a symmetric manner. Recall also that Regimes 2 and 3 are always separated in
time by at least L

v + 2ε
φmax

or L
ω + 2ε

φmax
. Further, we provide a strict proof of the exponential

convergence of the error term to zero.

Imagine a time axis split into three types of intervals corresponding to three di�erent error
dynamic regimes as shown in Figure 2.11. Recalling that Regimes 2 and 3 cannot occur in a
row, we can observe, e.g., a sequence like this: 12121313121.... Thus, it is possible that after
Regime 2 and then Regime 1, the second regime comes again, since nothing prohibits gin(t)

to become zero again almost immediately. We denote this sequence of regimes as �gin(t) = 0

sometimes�, which is de�ned as the largest row of Regimes 1 and 2 that starts and ends
with Regime 2 and does not contain any time interval with Regime 3. The same can be
done with the regime sequence containing Regimes 1 and 3 called �gout(t) = 0 sometimes�.
These sequences �gin(t) = 0 sometimes� and �gout(t) = 0 sometimes� alternate strictly, always
having Regime 1 between them. Finally, for a time interval corresponding to the regime (or
regime sequence) with index i we can de�ne entrance time ti and exit time t̄i. By (2.78) we
see that ti − t̄i−1 ≥ L

ω + 2ε
φmax

if Regime i is �gin(t) = 0 sometimes�, and ti − t̄i−1 ≥ L
v + 2ε

φmax
if Regime i is �gout(t) = 0 sometimes�.

Let us �x i corresponding to �gin(t) = 0 sometimes� (the other case is symmetric). First
of all, by (2.82) we obtain

gin(ti) = 0 and gin(t̄i) = 0.

Therefore

e(ti) + e

(
ti −

L

ω

)
≥ 0 (2.85)
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e(t) = 0

e(t) > 0

e(t) < 0

313... 1 212...

t̄i−1 t̄i − L
ω

ti t̄iti

1

t

e(t)

Figure 2.11: A possible error behaviour e(t) (thick black line). From left to right: divergence
for �gout(t) = 0 sometimes� (in orange); exponential convergence in Regime 1 (in green); fast
convergence for �gin(t) = 0 sometimes� (in blue); then divergence for e(t′) < 0 ∀t′ ∈ [ti, t̄i];
exponential convergence in Regime 1. Blue empty circles are related to (2.86).

and

e(t̄i) + e

(
t̄i −

L

ω

)
≥ 0. (2.86)

It is clear that ti− L
ω ≥ t̄i−1, which means that the dynamics of e in the interval [ti− L

ω , ti]
are exponential. Thus, both e(ti) and e

(
ti − L

ω

)
have the same sign, and by (2.85) they are

both positive. A similar analysis can be done for the regime sequence �gout(t) = 0 sometimes�,
which means that from gout(t) = 0 to gin(t) = 0 the error term is positive and from gin(t) = 0

to gout(t) = 0 the error term is negative (and thus e(t̄i) < 0). Consequently, inside each regime
sequence i there should be a time point ti, when e(ti) = 0.

Now, by (2.86) and using that e(t̄i) is negative, we see that e
(
t̄i − L

ω

)
≥ 0, which means

that t̄i − L
ω ≤ ti (see Figure 2.11).

During the time interval [t̄i−1, ti] it is clear that the convergence is exponential (Regime
1). During the time interval [ti, ti] the dynamics are ė ≤ −2ke, and e(t) ≥ 0. The time point
t̄i − L

ω ∈ [t̄i−1, ti], therefore

e

(
t̄i −

L

ω

)
≤ e(t̄i−1) exp−2k(t̄i−Lω−t̄i−1),

which is also valid for its absolute values∣∣∣∣e(t̄i − L

ω

)∣∣∣∣ ≤ |e(t̄i−1)| exp−2k(t̄i−Lω−t̄i−1) .

Now from (2.86) and the fact that e(t̄i) < 0 we see that |e(t̄i)| ≤
∣∣e (t̄i − L

ω

)∣∣, thus
|e(t̄i)| ≤ |e(t̄i−1)| exp−2k(t̄i−Lω−t̄i−1) .

We can write t̄i − t̄i−1 ≥ ti − t̄i−1 ≥ L
ω + 2ε

φmax
, which yields

t̄i − L
ω − t̄i−1

t̄i − t̄i−1
= 1−

L
ω

t̄i − t̄i−1
≥ 1−

L
ω

L
ω + 2ε

φmax

=

2ε
φmax

L
ω + 2ε

φmax

=
2εω

Lφmax + 2εω
,
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which allows us to bound time interval in the exponential function from below by

t̄i −
L

ω
− t̄i−1 ≥

(
2εω

Lφmax + 2εω

)
(t̄i − t̄i−1) .

This �nally leads to

|e(t̄i)| ≤ |e(t̄i−1)| exp
−2k

(
2εω

Lφmax+2εω

)
(t̄i−t̄i−1)

, (2.87)

which proves the exponential convergence to zero of e(t).

2.3.4.4 Proof that integral in�ows converge

In order to further proceed with the proof of Theorem 2.3, we need to show that the integral
of in�ow di�erence in the real (2.56) and in the desired system (2.58) has a limit, as it is
required for the convergence of Moskowitz functions as stated in Problem 2.3 (see Section
2.3.4.5, where the existence of this limit is used for the introduction of constant M0):

∃ lim
t→∞

t∫
0

(φin(τ)− φind(τ)) dτ. (2.88)

By the Cauchy criterion for the convergence of functions, it su�ces to show that

lim
t1,t2→∞

t2∫
t1

(φin(τ)− φind(τ)) dτ = 0, ∀t1, t2 : t2 > t1. (2.89)

First, we �nd an upper bound for this limit (2.89). By combining (2.73) with (2.65) we obtain
φin(t) ≤ φind(t)− ke(t) ∀t ∈ R+, thus, we can write ∀t1, t2→∞

t2∫
t1

(φin(τ)− φind(τ)) dτ ≤ −k
t2∫
t1

e(τ) dτ → 0,

where we have used the exponential convergence result for the error term (2.87). This in turn
implies that the upper bound is 0:

lim
t1,t2→∞

t2∫
t1

(φin(τ)− φind(τ)) dτ ≤ 0. (2.90)

Now let us estimate the lower bound for the limit (2.89). Thereby, we distinguish two possible
cases:

1. Assume gin(t) > 0. In this case, we can write

t∫
t−L

ω

(φin(τ)− φind(τ)) dτ ≥ −k
t∫

t−L
ω

|e(τ)| dτ.
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2. Assume gin(t) = 0. Using (2.81) for t′ = t− L
ω , we get

t∫
t−L

ω

(φin(τ)− φind(τ)) dτ ≥ −e(t− L

ω
) ≥ −

∣∣∣∣e(t− L

ω
)

∣∣∣∣ .

The combination of these two cases yields

t∫
t−L

ω

(φin(τ)− φind(τ)) dτ ≥ −k
t∫

t−L
ω

|e(τ)| dτ −
∣∣∣∣e(t− L

ω
)

∣∣∣∣ . (2.91)

Now let us divide the time interval [t1, t2] into equal subintervals of length L/ω. Thus, (2.91)
can be rewritten for a larger time interval as

t2∫
t1

(φin(τ)− φind(τ)) dτ ≥ −k
t2∫
t1

|e(τ)| dτ −

⌊
t2−t1
L/ω

⌋∑
n=0

∣∣∣∣e(t1 + n
L

ω

)∣∣∣∣ .
where the sum goes over intervals of size L/ω, i.e., t1, t1 + L/ω, . . . , t2. If we take the time
limit of the latter expression for t1, t2 →∞, both right-hand terms converge to zero, as for the
sum term we can apply the integral test for convergence. Finally, we obtain the lower bound:

lim
t1,t2→∞

t2∫
t1

(φin(τ)− φind(τ)) dτ ≥ 0. (2.92)

The combination of (2.92) and (2.90) provides that the limit is zero, which proves the existence
of the limit of the integral di�erence between in�ows in both systems as in (2.88).

2.3.4.5 Proof that Moskowitz functions converge

Finally we arrived at the last part of the proof of Theorem (2.3). Let us de�ne two auxiliary
Moskowitz functions as

M1(x, t) = R0 −R0d +

t−x
v∫

0

(φin(τ)− φind(τ)) dτ, (2.93)

M2(x, t) =

t−L−x
ω∫

0

(φout(τ)− φoutd(τ)) dτ. (2.94)

Notice that M1(x, t) and M2(x, t) correspond to the left- and to the right-hand side of
(2.66)(iii), which must hold for large t. First of all, using e0 = R0−R0d and the dynamics of
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e(t) given by (2.68), we obtain that ∀x ∈ [0, L]

lim
t→∞

(M1(x, t)−M2(x, t)) =

∞∫
0

(φin(τ)− φind(τ)− φout(τ) + φoutd(τ)) dτ + e0 = lim
t→∞

e(t) = 0.
(2.95)

Moreover, as it was proven in the previous Section (2.3.4.4), M1(x, t) has a limit due to (2.88)
and e0 being constant in time. Therefore, we can de�ne

M0 := lim
t→∞

M1(x, t),

and by (2.95) we get
lim
t→∞

M2(x, t) = M0.

We can also de�ne the MF error terms as

M̃1(x, t) = M1(x, t)−M0 and M̃2(x, t) = M2(x, t)−M0.

Finally, recall that the desired MF given by (2.61) can be expressed as

Md(x, t) = min
{
MUpd

(x, t),MDownd(x, t)
}
,

since this is the general de�nition of a solution which is not a�ected by the initial conditions
(see Assumption 2.1). Thus, by using the MF solution (2.60) together with M1(x, t) (2.93)
and M2(x, t) (2.94), we obtain

M(x, t) = min
{
MUpd

(x, t) +M1(x, t),MDownd(x, t) +M2(x, t)
}
,

or
M(x, t) = min

{
MUpd

(x, t) + M̃1(x, t),MDownd(x, t) + M̃2(x, t)
}

+M0.

Minimum is a continuous function on both arguments, thus we obtain for t→∞ that

M(x, t)→Md(x, t) +M0, ∀x ∈ [0, L], (2.96)

as stated in Problem 2.3, which �nally concludes the proof.

Remark 2.6
Note that Assumption 2.2 is non-limiting. Indeed, it requires that the �ow integral over time

T is less than its maximum value by at least ε, which is always possible, except when vehicles

enter and leave the system at maximum rate during T. Obviously, in this case, it is also possible

to reach the goal.

The need to use Assumption 2.2 comes from the fact that at maximum �ow by (2.77) both
gin(t) = 0 and gout(t) = 0 for the same t, which means that with the slightest �uctuation a

boundary becomes �uncontrollable�. Thus, the state with maximum �ows at both boundaries

during time interval T is �unstable�, and therefore for this case it is impossible to prove the

exponential convergence of the error term e(t).
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2.3.5 Numerical example

We illustrate the e�ciency of the feedback boundary control law (2.65) by driving a state
being initially almost completely in a tra�c jam to a desired vehicle density trajectory being
in a mixed regime. This is done by providing results from a numerical simulation, for which
we again use the standard Godunov scheme that is described in Section 2.1.6.

2.3.6 Simulation setup

As in Section 2.2.7, here we also consider a space interval [0, L] that is divided into n = 500

cells. The feedback term given by the integral error (1.5) is computed using the Riemann
summation over cells i ∈ {2, . . . , n − 1}. Thus, here we seek to demonstrate the e�ciency of
using a state feedback for a road whose �rst quarter is initially empty, and the tra�c jam is
formed at the rest of the road:

ρ0(0 ≤ x < 1/4L) = 0 and ρ0(1/4L ≤ x ≤ L) = ρmax.

Thus, we consider here a system being almost completely in the tra�c jam as initial condition.
For the simulation, we use the same parameter set as in (2.55).

As a target state, we consider a vehicle density trajectory in a mixed tra�c regime (a
space- and time-dependent function), whose evolution is given by �ghost� cells (which are set
by copying the value from the neighbor cell) with

ρdin(t) = 0.04 + 0.04 sin (t/8) and ρdout(t) = 0.1 + 0.06 sin (t/4) .

Here, for convenience, the boundary values are prescribed in terms of densities, since it
allows a straightforward implementation of the Godunov scheme (2.18). Then, these density
values are transformed into in�ows and out�ows by using the supply-demand formulation for
the case of a triangular FD (2.17).

We will demonstrate how the feedback term given by −ke(t) for the upstream and +ke(t)

for the downstream boundary improves the result and provides the asymptotic convergence
targeting the desired pro�le. Two control strategies are compared:

1. No feedback is performed, i.e., only uin(t) = φind(t) and uout(t) = φoutd(t).

2. Feedback terms are applied, i.e., uin(t) = φind(t)− ke(t), uout(t) = φoutd(t) + ke(t).

2.3.6.1 Simulation results

The simulation results are presented in Figure 2.12. Thereby, Figure 2.12a) illustrates the
evolution of a desired density trajectory being in a mixed tra�c regime. The results of
achieving this state with and without feedback are shown below, i.e., see Figures 2.12c) - f).



58 Chapter 2. Tra�c Control on Roads

Thereby, the left column shows the evolution of tra�c under the control action, whereas on
the right column one can see the corresponding evolution of the absolute di�erence between
the real and the desired states, i.e., L1 spatial norm de�ned in (1.1). Figures 2.12c) and 2.12d)
illustrate the result if no feedback is applied at the boundaries, while plots e) and f) depict
the situation if feedback with gain k = 0.1 is applied. The corresponding error behaviour for
di�erent gains is shown in Figure 2.12b).

Comparing these plots, we can see that control including the feedback term performs
considerably better. Without feedback the congested regime almost completely occupies the
domain as time runs, while the feedback term makes the system approach the desired state
after the time inferior to the minimal controllability time, which is tctr = L

v + L
ω = 200.5 s.

The convergence results in sense of L1 norm are compared for di�erent control gains (k = 0,
k = 0.005 and k = 0.1) in Figure 2.12b). Thereby, we observe a faster convergence rate for
the largest controller gain.

Note that an open-loop control (such as applying absorbing boundary conditions until the
road becomes empty, and then applying desired in�ows and out�ows) will not achieve the goal
at all due to the di�erence in initial densities (2.67).

2.3.7 Discussion

In this section, we have designed boundary control laws that enable tracking a target space-
and time-dependent vehicle density on a single road. Both real and desired states are governed
by LWR PDEs with triangular fundamental diagram, and they are allowed to be in a mixed
tra�c regime. This means that the controller is activated at both road boundaries. It allows
us to drive any state, being in a partly congested and partly free-�ow regime or even being
completely congested, to some desired state that is also governed by a fully nonlinear LWR
PDE.

The main challenge in control design was related to the fact that we can not apply the
boundary conditions pointwise in a general nonlinear LWR system, since one always has to
deal with demand-supply concept. We could handle this issue by using the explicit solution
formula to H-J PDE that was obtained using the properties of triangular FDs due to the
convenient shape of its Legendre transform. The cumulative representation of tra�c in terms
of number of vehicles within the H-J approach allowed us to formulate and to analyze the
control restriction functions. These functions describe time periods, when a domain boundary
can accept a proposed controller. These control restriction functions could be de�ned by
exploiting the system evolution at previous times due to the integral structure of the H-
J solution. The designed controller has a feedback term, which physically corresponds to
the di�erence between the given number of vehicles on a road and in the desired system
multiplied by some controller gain. The numerical example veri�ed the results and illustrated
that feedback is absolutely necessary to achieve the goal.
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a) ρd(x, t) b) ||ρ− ρd||L1

c) ρ(x, t), no feedback d) |ρ− ρd|, no feedback

e) ρ(x, t), k = 0.1 f) |ρ− ρd|, k = 0.1

Figure 2.12: a) Desired pro�le in space-time, b) L1 error as a function of time for di�erent
control gains. Spatio-temporal evolution of the density (left) and of the absolute di�erence
between the real and the target state (right) for: c),d) k = 0; e),f) k = 0.1.
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2.4 Chapter conclusions

In this chapter, we have investigated tra�c dynamics evolution on a single road of �nite
length. This was done within the LWR modeling approach that was described in Section 2.1.
Further, we have formulated tracking problems for a desired density being a space- and time-
dependent trajectory. These dependencies were included for a better approximation of some
realistic tra�c situations when tra�c conditions change rapidly, e.g., it is common to have non
constant in�ows and out�ows at di�erent day times. Moreover, an equilibrium desired state
is just a special case of a general space- and time-varying pro�le, which can also be covered
by the theoretical results derived in this chapter. Such a general target pro�le results into a
non-trivial error dynamics that have been analyzed in both Sections 2.2 and 2.3.

Then, we have also designed feedback boundary control laws on a single road for two
di�erent systems. The �rst tra�c system that we have considered in Section 2.2 corresponds
to a linear LWR model describing tra�c in a congested regime that incorporates a possible
mismatch between the model and the reality in terms of unknown in-domain disturbance
function. We formulated disturbance attenuation problems while reaching the desired pro�le
in terms of L2 and L∞ spatial norms (Problems 2.1 and 2.2). We were able to handle unknown
disturbance using characteristics method that allowed us to express the disturbance function
through known (measured) variables such as vehicle density and control actions applied at
previous time steps. The achieved results stated in Theorems 2.1 and 2.2 were validated with
the help of a numerical simulation example, which illustrated considerable improvements of a
tra�c state under the boundary controller compared to a freely evolving tra�c system with
no boundary control. In particular, we were able to observe how easily a system can get into a
complete tra�c jam along the whole road, if we do not apply at least the feedforward control,
which is used to track the desired density. The feedforward control is able to considerably
reduce the congestion level, although the desired state must remain in the congested regime
for the well-posedness of the problem. Then, it was also shown that if in addition to the
feedforward controller we also include the feedback part used, then we track the desired state
even better. This became obvious from the temporal behaviour of L2 and L∞ norms of the
deviation from the desired trajectory illustrated in Figure 2.9.

Further, in Section 2.3, we have considered a more complex problem for the case, when
both the state and the desired trajectory are governed by full nonlinear LWR models as in its
original formulation (also without the disturbance). The main challenge thereby was related
to shocks (discontinuities), which arise in such systems for smooth initial data in �nite time.
This makes an explicit analysis a tedious ask, since then we have to consider the solution
only in a weak sense (no classical solutions any more) and track shocks dynamics. Another
challenge to deal with was related to the weak boundary conditions, which implies the non-
ability to impose any boundary control. To handle both of these issues, we translated the
LWR tra�c system into its integral form corresponding to the Hamilton-Jacobi PDE that
is free of discontinuities, and in the worst case it can only become non-di�erentiable. Its
state corresponds to a cumulative number of vehicles that can be obtained by integrating the
vehicle density. The H-J system can be seen as an optimal control problem, and its solution is
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obtained semi-explicitly as the minimum of all valid paths. In case of triangular FD that we
assumed in this chapter, the solution is obtained as the minimum over only three valid paths
each associated with one of the boundary conditions or with the initial condition. For the
analysis of the system in asymptotic time, we were able to estimate the minimal time (2.59)
upon which it is guaranteed that the initial conditions do not a�ect the H-J solution any more.
The solution can then just be formulated as a minimum of two valid paths associated with
the boundary conditions. Thus, the integral formulation of Hamilton-Jacobi tra�c system, as
well as the ability to express its solution exactly, allowed us to explicitly analyze the periods of
time, when boundaries are restricted to accept control action as a function of the actual tra�c
state. These so-called control restriction functions enabled to divide the error dynamics into
three di�erent regimes depending on which boundaries can currently accept control actions.
The main result of Section 2.3 is given by Theorem 2.3. Thereby, we have shown that even
when boundaries are sometimes unable to accept proposed controls, the system converges
to the desired trajectory exponentially. The designed boundary controller also consists of a
feedforward and a feedback part, where the latter is an essential component to achieve the
goal. The results have been validated numerically for di�erent control gains.

In the next chapter, we are going to extend this result to a large scale, i.e., we will pose and
solve various control tasks for the vehicle density de�ned in some urban area using a scalable
modeling approach by considering a conservation law for tra�c in 2D.





Chapter 3

Uni-Directional Tra�c on Networks

This chapter is devoted to tra�c control problems in large-scale urban networks with a pre-
ferred direction of tra�c �ow. The analysis and control design will be done within the same
modeling approach as in the previous Chapter 2 but in two dimensions (2D).

3.1 Preliminaries

In case of tra�c modeling on large-scale urban networks, one needs to look for macroscopic
approaches due to increasing computational complexity. However, prior to [142] who used data
from microsimulations, there has been no evidence of any existence of macroscopic relation
between density and �ow on a city level as it was established on single roads by Greenshields
[58]. Later, in 2008, Geroliminis and Daganzo observed a similar relation during data collection
in a real-life experiment conducted during a rush-hour in the city of Yokohama, Japan [53,
40]. The discovery of the so-called macroscopic fundamental diagram (or shortly, MFD) gave
rise to reservoir models, which track the number of cars in a urban area. MFD-based models
are intuitive, simple, and do not require a high computational e�ort to be applied. For an
MFD to be well-de�ned, there must exist only one �ow value for a given number of vehicles.
This feature is preserved only in regions that consist of links that have similar congested
levels, while this causes problems in case of regions with heterogeneous links. To overcome
this problem, [63, 87] presented partitioning algorithms that intend to split an urban area into
multiple homogeneous zones each having its own well-de�ned MFD.

3.1.1 LWR model in 2D

Let us present here a macroscopic model presented in [103] that corresponds to a conservation
law on a two-dimensional plane, where the conserved quantity is the total number of vehicles
in this plane. This model will be used to investigate the macroscopic tra�c behaviour in a
urban network that is represented by a 2D continuum plane (x, y) ∈ Ω ∈ R2 that is a bounded
rectangular domain, i.e., Ω : [xmin, xmax]× [ymin, ymax]. The size of the rectangular domain is
determined by the size of the urban network, i.e., xmin is associated to the intersection with
the minimal x space coordinate among all intersections (the rest is de�ned similarly).

This 2D model can be seen as an extension of the classical 1D LWR model (2.1) to two
dimensions that describes the tra�c density evolution over a continuum plane ∀(x, y, t) ∈

63
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Ω× R+ as: 
∂ρ(x, y, t)

∂t
+∇ · ~Φ(x, y, ρ(x, y, t)) = 0,

ρ(x, y, 0) = ρ0(x, y),
(3.1)

where ρ(x, y, t) : Ω×R+ → R+ is now a two-dimensional density that aggregates the number
of vehicles per square meter, ρ0(x, y) is its value at initial time. The �ux function in (3.1)
is now an explicitly space-dependent vector function with the magnitude Φ(x, y, ρ) : E →
[0, φmax] with the set of departure being E = {(x, y, ρ) : (x, y) ∈ Ω, ρ ∈ [0, ρmax(x, y)]}.
The �ux magnitude Φ(x, y, ρ) is again a concave Lipschitz continuous function that re�ects
the empirically established law relating the average 2D �ow with the average 2D density
(fundamental diagram), i.e., φ(x, y, t) = Φ(x, y, ρ). The �ux vector function is then de�ned as
a product of the magnitude Φ(x, y, ρ) and the direction vector ~dθ (unit vector):

~Φ(x, y, ρ) = Φ(x, y, ρ)~dθ(x, y), (3.2)

where

~dθ =

(
cos(θ(x, y))

sin(θ(x, y))

)
(3.3)

is a vector that depends on the network geometry given by angle θ(x, y) : Ω → [0, 2π) that
must be smooth enough (more details on its smoothness are given in Section 3.2). Angle θ(x, y)

is related to the orientation of roads in a urban network, thus, it determines the direction of
tra�c �ow. Hence, from now on, we will call ~dθ the direction �eld to stress its physical
meaning. The details on how to obtain this vector ~dθ(x, y) ∀(x, y) ∈ Ω are given in Section
3.1.3.1. Finally, the nabla operator in (3.1) is de�ned as

∇ =
(

∂
∂x ,

∂
∂y

)
.

Thus, the divergence term ∇ · ~Φ(x, y, ρ(x, y, t)) in (3.1) is a scalar. The existence and unique-
ness of solutions for a system like (3.1) were shown in [81] (see p.223 for the conditions of
uniqueness, and existence is discussed on p.230). The boundary conditions of (3.1) will be
discussed later in Section 3.1.4.

As the 2D model (3.1) represents an extension of the standard 1D LWR model (2.1),
their units and structure are compared in Table 3.1. In general, 2D models like (3.1) are not
expected to describe very precisely the density evolution in space coordinates. They are rather
used to capture the main tra�c features on a global scale such as the location and propagation
of congested areas in a transportation network.

Table 3.1: Comparison of 2D and 1D LWR models

1D LWR 2D LWR
density [ρ] = veh/m (scalar) [ρ] = veh/m2 (scalar)
velocity [v] = m/s (scalar) [~v] = m/s (vector)

�ux [Φ] = veh/s (scalar) [~Φ] = veh/(s·m) (vector)

equation ∂tρ+ ∂xΦ(ρ) = 0 ∂tρ+∇ · ~Φ(x, y, ρ) = 0
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3.1.2 Space-dependent fundamental diagram

In general, the �ux magnitude in 2D (3.1) is very similar to the �ux function in 1D (e.g., it
can be the triangular FD (2.2)) both being Lipschitz continuous concave functions. However,
unlike in the 1D case, the 2D �ux magnitude Φ(x, y, ρ) incorporates network infrastructure
parameters by having an explicit space-dependency. Imagine a urban network containing roads
that may have di�erent speed limits and number of lanes, i.e., roads usually have di�erent
transportation capacities. For instance, compare some major three-lane roads with 50 km/h as
a speed limit with minor single-lane roads with 30 km/h that can clearly accommodate less cars
than the major roads. This kind of infrastructure di�erences are captured by space-varying
parameters ρmax(x, y), ρc(x, y) and v(x, y). Thus, we can see that in a 2D representation of
tra�c, the assumption that the FD parameters are identical everywhere, does not hold any
more, since the network geometry should also be taken into account.

All these parameters still have the same physical meaning as in the 1D case introduced in
Sections 2.1.1 and 2.1.2, but their units are consistent with those in Table 3.1. For example,
ρmax(x, y) and ρc(x, y) are referred to the maximal and the critical number of cars per square
meter (veh/m2), correspondingly. Thus, space-dependent fundamental diagrams are functions
with space-dependent parameters, e.g., the triangular FD is de�ned ∀(x, y, ρ) ∈ E as:

Φ(x, y, ρ) =

{
v(x, y)ρ, ρ ∈ [0, ρc(x, y)],

−ω(x, y)(ρ− ρmax(x, y)), ρ ∈ (ρc(x, y), ρmax(x, y)],
(3.4)

and, similarly, the Greenshields space-dependent FD is de�ned ∀(x, y, ρ) ∈ E as:

Φ(x, y, ρ) = vmax(x, y)

(
1− ρ

ρmax(x, y)

)
ρ. (3.5)

Note that all FDs can still be depicted as in Figures 2.1a) and 2.1b) having in mind that they
can have di�erent peaks and slopes for di�erent space points (x, y) ∈ Ω.

3.1.3 Continuous approximation of parameters

In general, two-dimensional continuum models with a structure similar to (3.1) are commonly
used in pedestrian (crowd) modeling [64, 71]. It is however worth noting that crowds evolve
in open spaces, and, unlike vehicles, pedestrians are not constrained to move on tra�c roads.
Here, we are going to use the 2D model (3.1) to predict the propagation of tra�c in a urban
network, which represents a set of roads (links) and intersections (nodes). Thus, the equation
(3.1) is a valid model for tra�c modeling, if we assume that the urban network is dense enough
to be approximated as a continuum. As already mentioned above, we will use the network
geometry to parametrize the model, e.g., we will estimate the values of velocity and direction
�eld as a function of the distance to physical roads. Let us explain parametrization on an
example of a �ux with the magnitude corresponding to the Greenshields FD:

~Φ(x, y, ρ) = vmax(x, y)~dθ(x, y)

(
1− ρ

ρmax(x, y)

)
ρ. (3.6)
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3.1.3.1 Inverse distance weighting

From (3.1) and (3.6) we can see that the tra�c �ow direction is determined by the velocity

�eld, which is a product of direction �eld ~dθ (3.3) and the maximal kinematic wave speed
vmax. Thus, we expect more tra�c to be concentrated in areas with densely located roads and
along roads with high speed limits, e.g., highways. We achieve that by applying the inverse
distance weighting method (IDW), which assignes larger weights to space points that are close
to roads, see [103] for a detailed explanation, while in the next paragraph we will give a brief
idea.

Let us denote roads of the network by q ∈ {1, . . . , Q}. For the sake of computation, each
road is parametrized by s ∈ {1, . . . , smax} such that variable s allows to progress along the road
curvature from one intersection to the next one. Then, the velocity �eld ~dθ(x, y) vmax(x, y)

can be computed ∀(x, y) ∈ Ω as:

~dθ(x, y) vmax(x, y) =

Q∑
q=1

smax∑
s=1

w (‖(x, y)− p(q, s)‖) ~dθq vmaxq

Q∑
q=1

smax∑
s=1

w (‖(x, y)− p(q, s)‖)
, (3.7)

where p(q, s) is the spatial coordinate of cell s of road q, and the weighting function w(l) :

R+ → R+ is a decreasing function of the (Euclidean) distance, e.g., here we use the exponential
function:

w(l) = e−µl and l =

√
(x− p(q, s)x)2 + (y − p(q, s)y)2,

where µ is a weighting parameter that needs to be tuned according to the desired �accuracy�
of reproducing the network structure in a 2D representation: for a small µ the velocity �eld
follows only the global trend of the network geometry, while for a large µ the velocity �eld
follows the roads in a detailed way. These two extreme cases are illustrated in Figure 3.1,
where a small Manhattan grid area is taken as a network example.

In this work, we would like to capture the evolution of a 2D vehicle density quite accurately
but without over-resolving the network geometry, for example, see Figure 3.2a) that illustrates
the direction �eld estimated for µ = 50 for a network representing the city center of Grenoble
of the total area 1 × 1.4 km2. Thereby, we can also notice that the integral lines of the
direction �eld drawn in Figure 3.2b) do not cross. This results from the model structure,
since the integral lines can be seen as unique solutions to the di�erential equation governed
by ~dθ. Moreover, we assume that there are no loops in the urban network, i.e., there exists a
preferred direction of motion. Indeed, if there would be a loop, then there would be a point
inside of every loop where θ is unde�ned, since the direction lines cannot cross each other.
Moreover, any loop would have no boundary, thus the cars following this path would never
be created nor destroyed. The condition on not having loops plays an essential role in the
coordinate transformation that will be explained in Section (3.2). In terms of integral lines,
we require that any integral line of the directional �eld ~dθ begins and ends at the boundary of
the domain. In terms of network structure, we consider only networks (or urban areas) with
uni-directional roads that are located such that no loops arise. This is the main restriction of
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Figure 3.1: Direction �eld estimation (blue arrows) for: a) small µ = 10, b) large µ = 100.
The �gure is taken from Chapter 2 of [101]. Grey arrows indicate the direction of real roads
in a Manhattan-grid network.

the model (3.1), which limits its usability for general tra�c applications although being still
useful in several situations. For example, imagine a rush hour (e.g., at 9 am), when many
people are driving to the business center of the city located in some particular point, then the
assumption of the preferred direction of motion is realistic.

Thus, equation (3.7) constructs a velocity �eld ~dθ(x, y) vmax(x, y) at any point in the
domain as a normalized weighted average of the road directions ~dθq vmaxq such that the tra�c
�ow direction at some point is mostly impacted by the nearest roads to this point.

3.1.3.2 Kernel density estimation

To complete the de�nition of FD parameters, we also need to determine density-related pa-
rameters of the fundamental diagram, i.e., the critical density ρc(x, y) and the maximal density
ρmax(x, y) ∀(x, y) ∈ Ω. Let us �rst concentrate on the maximal density ρmax(x, y), and then
it will be straightforward to determine ρc(x, y), if we know the particular FD shape, e.g., from
real tra�c measurements.

In a 2D representation of tra�c, the maximal density depends not only on the number of
lanes of particular roads but can also increase in areas with high concentration of roads. In
order to estimate ρmax(x, y) ∀(x, y) ∈ Ω, we �ll each road of the network by placing a vehicle
at a minimum headway distance of 6 m, since this is an approximate distance between two
consecutive vehicles in a tra�c jam. Thus, we place vehicles as close as possible to determine
the maximal density by using the kernel density estimation (KDE).

The idea of this method is that each individual vehicle contributes to the total vehicle
density as a Gaussian function with a kernel located around the vehicle position. The total
estimated density then corresponds to the superposition of all their contributions.
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Figure 3.2: Result for an intermediate value of the weighting parameter µ = 50: a) estimated
direction �eld (blue arrows), b) integral lines of tra�c �ow direction (tangent of ~dθ). Grey
lines represent real roads in Grenoble city center, arrows indicate the direction of tra�c.

Let the position of a vehicle v ∈ {1, . . . , V (t)} be denoted by (xv(t), yv(t)) at some time t.
Then, the vehicle density can be estimated as follows:

ρ̃(x, y, t) =
1

2πd2
0

V (t)∑
v=1

e
− 1

2d20
((x−xv)2+(y−yv)2)

, (3.8)

where d0 is a standard deviation of a Gaussian function. Note that Gaussians are used to
preserve the conservation of vehicles, since density integrals are normalized to 1.

Parameter d0 in (3.8) determines the range of impact of the Gaussian kernel that has to be
chosen. For example, in Figure 3.3b) we can see how equidistant vehicles on a road contribute
to the global density by its Gaussian functions. In the upper plot, each car has an impact
on the density in the range of d0 = 25 m around its position, which results into a constant
density along the road. The lower plot illustrates the situation when the range of impact is
set to d0 = 100 m, which is too high, since then the reconstructed density has a bell shape due
to boundary e�ects. There are several works regarding the optimal choice of this parameter,
see [47, 48]. The authors rely on the idea that the parameter d0 should be chosen such that
equidistant cars should provide constant density.

The same qualitative e�ects can be observed also in 2D, see [103] for more details. Note that
the maximal density ρmax can be estimated by KDE (3.8), with the only di�erence being that
all the vehicles are placed as densely as possible. An application example of KDE is illustrated
in Figure 3.3a), where the density (colormap value) is obtained by using KDE from vehicles'
positions denoted by blue dots. The positions of vehicles were generated using commercial
software Aimsun that takes any network geometry as input and produces microsimulations
of tra�c on this network with the possibility to specify boundary in�ows. Note that unlike
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Figure 3.3: Density reconstruction from car positions by KDE: a) 2D density is reconstructed
from vehicle positions (blue dots) that move along a network with the geometry of Grenoble
city center (grey arrows), b) 1D density estimation from equidistant vehicles with Gaussians
having di�erent standard deviations: d0 = 25 m (upper plot) and d0 = 100 m (lower plot).

in previous density representation in 1D, the colormap in Figure 3.3a) is used to denote the
ratio of the density value to the maximal density over the whole network (absolute maximal
density), i.e., ρmax = max

(x,y)∈Ω
ρmax(x, y). Moreover, due to the space-dependency of FD, the

critical density ρc(x, y) is di�erent ∀(x, y) ∈ Ω.

3.1.4 Boundary conditions

To complete the 2D LWR model (3.1) that describes tra�c dynamics on a bounded domain,
we need to introduce the boundary conditions, as we did in Section 2.1.4 for the 1D case.

De�ne a set Γ ⊂ Ω as the boundary of a rectangular domain Ω. The boundary consists
of two subsets Γ = Γin ∪ Γout. Thereby, Γin is a set of boundary points (x, y) for which
~n(x, y) · ~dθ(x, y) > 0, where ~n(x, y) is a unit normal vector to the boundary oriented inside the
domain. In a similar way, we also de�ne Γout such that ∀(x, y) ∈ Γout : ~n(x, y) · ~dθ(x, y) < 0.

Now let us �x boundary �ows φin(x, y, t) and φout(x, y, t) for the 2D system given by (3.1)
and formulate the following IBVP:

∂ρ(x, y, t)

∂t
+∇ · ~Φ(x, y, ρ(x, y, t)) = 0,

~Φ(x, y, t) =

{
φin(x, y, t)~dθ(x, y), ∀(x, y) ∈ Γin

φout(x, y, t)~dθ(x, y), ∀(x, y) ∈ Γout

ρ(x, y, 0) = ρ0(x, y),

(3.9)
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Figure 3.4: The vehicle density in a 2D domain with indicated upstream and downstream
boundaries. The underlying network geometry corresponds to Grenoble city center (grey
arrows).

where in�ows φin(x, y, t) and out�ows φout(x, y, t) are de�ned as{
φin(x, y, t) = min {D(ρin(x, y, t)), S (ρ(x, y, t))} , (x, y) ∈ Γin

φout(x, y, t) = min {D (ρ(x, y, t)) , S (ρout(x, y, t))} , (x, y) ∈ Γout
(3.10)

where D(ρ) and S(ρ) are demand and supply functions de�ned as in Section 2.1.5 but depend-
ing on space and in two dimensions. The well-posedness of IBVP given by (3.9) and (3.10)
will be discussed in Section 3.2.

The upstream Γin and downstream Γout boundaries are the ones that should be actu-
ated when it comes to control applications. As an illustrative example, these boundaries are
indicated by black arrows in Figure 3.4.

3.1.5 Comparison between 2D LWR and MFD-based models

This section is devoted to the comparison between the newly introduced continuum model in
2D (3.9) to reservoir models based on a macroscopic fundamental diagram, which are very
popular in tra�c applications due to their simplicity. We seek to show that 2D conservation
law models such as (3.9) have their own advantages. By running the same tra�c scenario
on a Manhattan grid network with these two di�erent approaches and comparing the steady
state results to those predicted by microsimulator Aimsun, we will motivate the use of the
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2D LWR model that can be a reasonable choice for many tra�c control applications in large
urban networks.

3.1.5.1 Macroscopic fundamental diagram

As described in [3], MFD-based models (also known as reservoir models) describe the evolution
of accumulation of vehicles in some urban zone. Let us consider a heterogeneous network
partitioned into N reservoirs, e.g., N = 4 as illustrated in Figure 3.5. Let ni(t) be the
accumulation of vehicles in reservoir i at time t. The main assumption of reservoir models
is the existence of MFD φi(ni(t)), which relates the number of cars in a reservoir i with the
out�ow from this reservoir φi,out. Let us also de�ne Nin,i as a set of neighboring reservoirs,
from which cars can directly reach reservoir i, and Nout,i as a set of neighboring reservoirs
that can be directly reached by cars from reservoir i, as illustrated in Figure 3.5. Then, the
rate of change in the number of cars ni(t) in reservoir i is given by the di�erence in its in�ow
and out�ow, that is:

dni(t)

dt
= φin,i(t)− φout,i(t), with

φin,i(t) =
∑

j∈Nin,i

rji min {Dj , Si} and φout,i(t) =
∑

j∈Nout,i

rij min {Di, Sj} ,
(3.11)

where rji and rij are numbers of roads leading from reservoir j to reservoir i and from reservoir
i to reservoir j, respectively. Demand Di and supply Si functions are de�ned as

Di(ni(t)) =

{
φi(ni(t)), if ni < nc,i

φmax,i, if ni ≥ nc,i
Si(ni(t)) =

{
φmax,i, if ni ≤ nc,i
φi(ni(t)), if ni > nc,i,

(3.12)

thereby, nc denotes the critical car number that has the same implication as the critical
density ρc in (3.4), i.e., we observe the free-�ow regime if ni ≤ nc, otherwise it indicates that
the congestion has occurred. We compute MFD for each reservoir by using the GPS data
(velocities) from the microsimulator Aimsun at each t:

φi(ni(t)) =

 1

ni

ni(t)∑
m=1

vim


 ni

Qi∑
q=1

Liq

 =
1

Qi∑
q=1

Liq

ni(t)∑
m=1

vim,

where Liq corresponds to the length of road q ∈ {1, . . . , Qi} in reservoir i, and vim is the
velocity of vehicle m in reservoir i. Note this expression is the product of average velocity and
density in reservoir i. Having data as (ni, φi), we �t a cubic polynomial as it was done in [3],
and extract the maximal �ow φmax,i. The �nal step to complete the de�nition of MFD is to
get the maximal car number obtained by counting cars placed in a reservoir at the minimal
headway distance (6 meters).

[3] presented a method to perform a network partition depending on the tra�c state such
that each part has its own well-de�ned MFD (low scattering of the MFD curve). However, to
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Figure 3.5: Schematic illustration of a network divided into N = 4 zones. The variables are
de�ned with respect to reservoir i, which has its own MFD φi(ni) (�tted data, in red) with the
maximum �ow φmax,i attained with the critical number of cars nc,i. The change in vehicle's
accumulation ni(t) is determined by �ows from Nin,i = {j} and by �ows into Nout,i = {k}.

make a fair comparison between MFD-based models (3.11) and 2D LWR (3.9), we divide a
Manhattan grid network into N = 16 equal parts each having its own MFD, and then compare
the steady states achieved by using two di�erent models with the steady state obtained by
using the microsimulator Aimsun for the same in�ow and out�ow data.

A steady state in a reservoir model is reached when the accumulation of vehicles stops
changing its value over time, i.e., dni(t)/dt = 0 ∀i ∈ {1, . . . , N}. Further, by (3.11) we obtain
for each reservoir i that the number of cars is preserved whenever in�ow equals to out�ow:

φ∗in,i(t) = φ∗out,i(t), (3.13)

where the asterisk is used to denote a steady state.

We will compare steady states predicted by both models (3.1) and (3.11) with the one
obtained with microsimulator Aimsun, which simulates the dynamics of vehicle positions in
a given urban area. The vehicle positions are then used to reconstruct the density using the
kernel density estimation method that was presented in Section 3.1.3.2.

To enable a quantitative comparison of steady states, we will compute the L2 norm of
the deviation of the density predicted by one of the models ρ∗pred(x, y) from the �ground true�
distribution ρ∗sim(x, y) obtained by Aimsun in the steady state, i.e.,

‖ρ̃∗(x, y)‖2 , where ρ̃∗(x, y) = ρ∗pred(x, y)− ρ∗sim(x, y).

The L2 norm in 2D is computed as in (1.7). Note that in case of MFD-based model, ρ∗pred(x, y)

is a piecewise constant function obtained from the accumulation of vehicles in a zone multiplied
by its area.
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3.1.6 Scenario description

We consider a 10× 10 Manhattan grid network with a total surface of 1 km2, which is drawn
by grey lines on all three plots of Figure 3.6. Positions of nodes (intersections) are slightly
disordered with white noise of standard deviation that equals 10 m. We assume that all roads
are single-lane and are globally oriented towards the North-East direction (grey arrows in
Figure 3.6 are used to point the direction of tra�c on each road). The network contains a
topological bottleneck in the middle, e.g., a river with some bridges. The speed limits on most
of the roads are set to 30 km/h, and there are also two roads with 50 km/h.

In order to obtain a non-trivial congestion pattern in the steady state, we create a con-
gestion formation scenario in the Western part of the network, while the rest of the network
should remain in the free-�ow regime. We achieve that by setting appropriate in�ows (de-
mand functions). The domain contains 15 incoming roads in total: 8 roads are coming from
the North and 7 are coming from the West. We can identify the incoming roads from Figure
3.6a), where the green and red arrows are assigned to points, through which vehicles enter the
domain. Thereby, we provide a large demand in the South-Western area by setting Din = 1200

veh/h on 8 incoming roads (red arrows), while a lower demand Din = 300 veh/h is created
for the remaining boundary roads (green arrows). Notice that veh/h is the basic Aimsun unit
for tra�c �ow, while this should be veh/s in the 2D LWR model, which we can easily get by
dividing by 3600. Although we have marked these arrows only for the results related to the
MFD-based simulation, the same in�ow values are set at the same points in Aimsun (Figure
3.6c)).

We set the in�ow demand at the upstream boundary for the numerical simulation of the
2D model (3.9) by deploying the 1D kernel density estimation method. Namely, KDE is used
to reconstruct the density created by vehicles entering the domain through the continuous
boundary line. The numerical scheme for 2D LWR system given by (3.9) was discussed in
[103]. The brief idea is to perform dimensional splitting, and then for each dimension the
numerical �ux is computed using the Godunov scheme. However, the simulation result in
Figure 3.6 was obtained with our own numerical method for this model that will be presented
later in the next section. To produce the result depicted in Figure 3.6b), we perform a
numerical simulation of vehicle density governed by a 2D model, until the steady-state is
reached. It is also worth noting that the supply of the downstream boundary is set to φmax
so that cars can freely leave the domain. Notice that the result in Figure 3.6b) was obtained
with a low weighting parameter µ = 20 for the continuous approximation of velocity �eld (see
Section 3.1.3.1).

Thus, we run a dynamic scenario on Aimsun for 2 hours of simulation time setting the
time-constant in�ow values indicated above. Thereby, we see that the shape of a congested
zone does not change much after a certain simulation time indicating that the steady-state was
reached. In order to set up a simulation, Aimsun requires also to de�ne turning ratios at each
intersection. A turning ratio is assigned to a pair of roads i and j connected by a junction,
and it denotes a percentage of vehicles that turn from road i to road j. On a global scale,
turning ratios determine the overall tra�c �ow direction. Since the applicability of the 2D
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LWR model (3.9) is limited to networks that have a preferred direction of motion, we set the
turning ratios accordingly. Thus, at each 2× 2 intersection, 75% of vehicles will turn and the
rest 25% continue moving straightforward, while at each 1× 2 intersection the turning ratios
are set to 50%. During the Aimsun simulation, we save the position of all cars at each time
step, i.e., generate car trajectories. Finally, from the vehicle positions (blue dots in Figure
3.6c)) we reconstruct a two dimensional density using KDE (see Section 3.1.3.2). The density
in Figure 3.6c) was estimated with a Gaussian standard deviation d0 = 50 m, i.e., we assume
that every car contributes to the total density in 50 m range around its position. Finally, the
state governed by the MFD-based model (3.11) was updated using the forward Euler method
with the time step ∆t = 0.01 until the convergence to the steady state (3.13) was reached.

3.1.7 Comparison of steady states

In Figure 3.6 we present the steady state results predicted by the MFD-based model (panel a)),
the numerical simulation of 2D LWR (panel b)) and those obtained by running a simulation
on Aimsun (panel c)). For the case with MFD, we performed a partition into 16 zones (black
dashed lines). Then, we used Aimsun velocity data to de�ne MFD for each zone as described
in Section 3.1.5.1, and using (3.11) we �nd the number of cars for each zone n∗i , as depicted
in Figure 3.6a). Then, the vehicle density in each reservoir i ∈ {1, . . . , N} is obtained by:

ρ∗mfd(x, y) =
n∗i
si
, where i : (x, y) ∈ Ri, (3.14)

where si is the area (in m2) of reservoir with index i, and Ri is the domain taken by this
reservoir.

By comparing Figures 3.6a) and 3.6c), we can see that the MFD-based model captures
quite well the phenomenon of tra�c congestion in zones where it arises, although it provides
only 16 values in our case. To enable a quantitative comparison, we use (3.14) to compute
the L2 norm of the deviation from Aimsun and obtain ‖ρ̃∗(x, y)‖2 = 0.58, where ρ̃∗(x, y) is
the di�erence in the steady state densities predicted by MFD-based model and Aimsun.

By comparing Figures 3.6b) and 3.6c), we can observe that both steady states look very
similar, the congestion shape reproduced by the 2D LWR model (3.9) looks even better than
in the case of MFD-based model (3.11). For a quantitative comparison, we again compute
the L2 norm and obtain ‖ρ̃∗(x, y)‖2 = 0.38, which is a way smaller value than in the case
with MFD. Thus, the steady state obtained by numerical simulation of 2D LWR captures the
spatial distribution of congestion signi�cantly better than the result predicted by numerical
integration of MFD-based model.

There exist also other arguments to prefer the 2D continuum model to MFD-based models
in several situations. Thus, MFD-based models are discrete in space and, by their nature,
they do not really enable us to develop model-based control approaches. This is related to
the fact that the result of the network partitioning algorithm as in [3] depends on the current
tra�c state for MFD-based models, since the main point thereby is to de�ne zones consisting
of roads with similar congestion levels. Thus, if tra�c conditions change, e.g., a higher in�ow
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Figure 3.6: Steady-states obtained by: a) MFD-based model, b) numerical simulation of 2D
LWR, c) microsimulator.

comes through roads that did not provide a high in�ow before, this might lead to invalid
MFDs, which causes the necessity to perform the network partitioning again. Moreover, even
for stationary in�ows, the performance of the model degrades as reservoirs' areas enlarge.

Thus, we have shown that the 2D LWR model is a bene�cial representation of tra�c,
especially in a urban network with multiple congestion zones that may relocate in time. The
2D LWR model is a scalable model and it does not cost a high computational e�ort to be
applied. Moreover, unlike MFD-based models, it is able to track the shape of congestion
evolution quite well without the necessity to perform network partitioning. In the next Section
3.2 we will present a method to translate the 2D LWR model in a form that can be easily
analyzed for a large variety of model-based control design tasks that will be considered in the
current chapter.

3.2 Curvilinear coordinate transformation

The structure of the 2D LWR model (3.9) implies that the direction �eld of tra�c �ow ~dθ
given by (3.3) depends only on the network geometry and not on the state. This enables
us to describe the tra�c �ow trajectories that do not change with time. These trajectories
are obtained by building tangents to the direction �eld ~dθ. This gives us the integral lines
illustrated in Figure 3.2b).

In the following, we will perform a curvilinear coordinate transformation that trans-
lates these integral curves into a set of straight parallel lines as illustrated in Figure 3.7.
Afterwards, a tra�c state evolving along a straight line can be treated as a 1D system, which
would signi�cantly simplify any analysis of the 2D system (3.9).



76 Chapter 3. Uni-Directional Tra�c on Networks

y

x

(a) (b)

η

ξ

CRθ

Figure 3.7: Coordinate transformation mapping: (a) curved trajectories in Grenoble downtown
in (x, y)-plane into (b) straight lines in (ξ, η)-plane.

3.2.1 General idea

Let us assume that angle θ ∈ C1(Ω). We introduce new coordinates (ξ, η) in a di�erential
form: (

dξ

dη

)
= C(x, y)Rθ(x, y)

(
dx

dy

)
, (3.15)

where Rθ(x, y) is a rotation matrix given by

Rθ(x, y) =

(
cos (θ(x, y)) sin (θ(x, y))

− sin (θ(x, y)) cos (θ(x, y))

)
, (3.16)

and C(x, y) is a diagonal scaling matrix given by

C(x, y) =

(
α(x, y) 0

0 β(x, y)

)
, (3.17)

where α(x, y) and β(x, y) are positive and bounded scaling parameters needed for the existence
of the coordinate transformation (will be de�ned later in this section).

Thus, matrix Rθ(x, y) provides the rotation of the integral lines in (x, y)-plane, and the
scaling matrix C(x, y) acts such that these lines have the same metric, see Figure 3.7. In
Figure 3.7a) we have used the topological structure of Grenoble downtown (the same as in
Figure 3.2) where the direction at each road is set such that loops and �ow crossings are
impossible, i.e., all roads need to be uni-directional and there exists a preferred direction of
motion. Thus, on a global scale, the motion on this network is oriented towards North-East
of the city.
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3.2.2 Intuition: straight lines

In the case of straight lines depicted in Figure 3.7b) we have θ = 0 ∀(x, y) ∈ Ω, which
implies that the rotation (3.16) and scaling matrices (3.17) become identity matrices, i.e.,
C = Rθ = I. Then, by (3.15) the new coordinates (ξ, η) would completely coincide with (x, y)

up to a constant shift. In this case, the direction �eld de�ned in (3.3) becomes ~dθ(ξ, η) = (1, 0),
and by (3.2) we obtain:

~Φ = Φ(ξ, η, ρ)

(
1

0

)
, (3.18)

which can be inserted into the divergence term in (3.9) resulting into:(
∂
∂ξ ,

∂
∂η

)(1

0

)
Φ(ξ, η, ρ) =

∂Φ(ξ, η, ρ)

∂ξ
. (3.19)

Notice that in case of straight lines, the divergence (3.19) contains only one term instead
of two as it was in the original system with curved trajectories (3.9). Thus, the tra�c �ow
evolves only along ξ coordinates, which are tangent to the �ow motion. At the same time
there is no motion in the orthogonal direction of η, which can be treated as a parameter (a
label numbering the �ow path). Afterwards, we can treat each such line of constant η as a 1D
equation, for which we will be able to solve di�erent control tasks.

3.2.3 Curvilinear coordinate transformation

After providing an intuitive explanation on how this coordinate transformation should work,
let us �rst de�ne scaling parameters α and β from (3.17). Then, we will be able to perform the
coordinate transformation of the original 2D system (3.9) in order to turn it into a continuous
1D LWR model like (2.10) parametrized by an additional parameter η ∈ R used to label the
�ow paths.

Lemma 3.1. Assume θ ∈ C1(Ω) and α, β ∈ C1(Ω). Then there exists a bijective transforma-

tion (ξ, η) in C2(Ω) satisfying (3.15) if and only if the following PDEs hold ∀(x, y) ∈ Ω:

− sin θ
∂ (lnα)

∂x
+ cos θ

∂ (lnα)

∂y
= cos θ

∂θ

∂x
+ sin θ

∂θ

∂y
(3.20)

and

cos θ
∂ (lnβ)

∂x
+ sin θ

∂ (lnβ)

∂y
= sin θ

∂θ

∂x
− cos θ

∂θ

∂y
. (3.21)

Proof. For any function in C2, mixed partial derivatives must be equal by the Schwarz theo-
rem. In our case, this is equivalent to the invariance in the order of taking partial derivatives
of ξ and η w.r.t. x and y, i.e.,

∂

∂y

(
∂ξ(x, y)

∂x

)
=

∂

∂x

(
∂ξ(x, y)

∂y

)
, (3.22)
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dx

dy
dξdη

β
α

ξmin

ξmax

η = const

θ(x, y)

Figure 3.8: Coordinate transformation for one single line of constant η that is parametrized
by ξ(η) ∈ [ξmin(η), ξmax(η)].

and
∂

∂y

(
∂η(x, y)

∂x

)
=

∂

∂x

(
∂η(x, y)

∂y

)
. (3.23)

By applying (3.22) and (3.23) to the de�nition of the coordinate transformation (3.15) given
matrices (3.16) and (3.17), we obtain (3.20)-(3.21). Finally, ξ and η can be obtained by
integrating (3.15). Bijectivity follows since the determinant of the Jacobian (3.15) is given by
α(x, y)β(x, y), and by (3.20)-(3.21) both α(x, y) and β(x, y) are strictly positive.

Thus, α(x, y) and β(x, y) being functions of angle θ(x, y) only, can be computed from the
network geometry. In Figure 3.8 we illustrate the role of these parameters in the coordinate
transformation by considering a single line of constant η. As we can see, α and β are used
to scale the distances between the lines of constant ξ and between the lines of constant η,
respectively. In (ξ, η)-space the �ow evolves only along lines of constant η as in (3.19).

3.2.4 Model in (ξ, η)-space

According to Chapter 2 of [9], we can apply the divergence formula to calculate ∇ · ~Φ in
(ξ, η)-space:

∇ · ~Φ(ξ, η, ρ) =
1

hξhη

∂
(
~Φξhη

)
∂ξ

+
∂
(
~Φηhξ

)
∂η

 , (3.24)

where hξ and hη are known as Lamé coe�cients, which correspond to the lengths of the basis
vectors in (ξ, η)-space:

~hξ =
(
∂x
∂ξ ,

∂y
∂ξ

)T
and ~hη =

(
∂x
∂η ,

∂y
∂η

)T
. (3.25)

For the computation of (3.25), we invert the Jacobian (3.15) and get:(
dx

dy

)
=

(
1
α cos θ − 1

β sin θ
1
α sin θ 1

β cos θ

)(
dξ

dη

)
. (3.26)
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The combination of (3.26) and (3.25) yields the basis vectors in (ξ, η)-space:

~hξ =
1

α

(
cos θ

sin θ

)
, ~hη =

1

β

(
− sin θ

cos θ

)
. (3.27)

We then �nd the lengths of these vectors (3.27), which gives us Lamé coe�cients:

hξ = | ~hξ| =
1

α
, hη = | ~hη| =

1

β
. (3.28)

Using (3.28), we are able to normalize the basis vectors by dividing (3.27) by their length
(3.28): {

~eξ = ~ex cos θ + ~ey sin θ,

~eη = −~ex sin θ + ~ey cos θ,
(3.29)

where ~ex and ~ey are the normalized basis vectors of (x, y)-space, and ~eξ and ~eη are the nor-
malized basis vectors of (ξ, η)-space.

Let us now rewrite vector ~Φ given by (3.2) in (ξ, η)-space. Notice that in (x, y)-space this
vector reads:

~Φ(x, y, ρ) = Φ(x, y, ρ) cos(θ(x, y))~ex + Φ(x, y, ρ) sin(θ(x, y))~ey. (3.30)

Then, by using (3.29) we obtain:

~Φ(ξ, η, ρ) = Φ(ξ, η, ρ)~eξ. (3.31)

Having Lamé coe�cients (3.28) and the �ux vector in (ξ, η)-space (3.31), we �nalize the
calculation of the divergence term (3.24) in (ξ, η)-space as:

∇ · ~Φ(ξ, η, ρ) = α(ξ, η)β(ξ, η)

[
∂(Φ(ξ, η, ρ)/β)

∂ξ

]
. (3.32)

Thus, we have shown that our curvilinear coordinate transformation (3.15) does really re-
formulate the 2D divergence term into 1D. This means that the temporal change of vehicle
density in a 2D plane is caused by the change of tra�c �ow along only one coordinate in
(ξ, η)-space, as we were showing by (3.19) for the case of straight lines.

For simplicity, we also introduce some new functions by scaling density, �ows, demand and
supply functions as:

ρ̄ =
ρ

αβ
, Φ̄ =

Φ

β
, φ̄in =

φin
β
,

φ̄out =
φout
β
, S̄ =

S

β
, D̄ =

D

β
.

(3.33)

Finally, the last thing that needs to be clari�ed prior to rewriting the 2D LWR system (3.9)
in (ξ, η)-space, is the de�nition of a spatial domain, on which the system in new coordinates
will evolve. Thus, the new spatial domain Ω̄ is a compact domain de�ned as:

Ω̄ = {(ξ, η) : ∃ (x, y) ∈ Ω, ξ = ξ(x, y), η = η(x, y)} .
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Then, the domain boundary in (x, y)-space can be uniquely projected into the boundary in
(ξ, η)-space, i.e., ΓΩ → ΓΩ̄. In particular, ΓΩ̄ consists of points (ξmin(η), ξmax(η)) such that

ξmin(η) = min
(x,y)∈Ω,
η(x,y)=η

ξ(x, y), ξmax(η) = max
(x,y)∈Ω,
η(x,y)=η

ξ(x, y),

and we can also de�ne the maximal and minimal values of η as

ηmin = min{η | ∃ξ : (ξ, η) ∈ Ω̄}, ηmax = max{η | ∃ξ : (ξ, η) ∈ Ω̄}.

Now, using the divergence term in (ξ, η)-space (3.32), we can rewrite the 2D LWR system
(3.9) that now reads ∀(ξ, η, t) ∈ Ω̄× R+:

∂ρ̄(ξ, η, t)

∂t
+
∂Φ̄(ξ, η, ρ̄)

∂ξ
= 0,

φ̄in(η, t) = min
{
D̄ (ρ̄in(η, t)) , S̄ (ρ̄ (ξmin(η), η, t))

}
,

φ̄out(η, t) = min
{
D̄ (ρ̄ (ξmax(η), η, t)) , S̄ (ρ̄out(η, t))

}
,

ρ̄(ξ, η, 0) = ρ̄0(ξ, η),

(3.34)

where Φ̄(ξ, η, ρ̄) is now a scalar function that preserves all the FD properties such as being
Lipschitz continuous and concave, e.g., consider the Greenshields FD in (ξ, η)-space:

Φ̄(ξ, η, ρ̄) = v̄max(ξ, η)

(
1− ρ̄

ρ̄max(ξ, η)

)
ρ̄, where v̄max = αvmax, ρ̄max =

ρmax
αβ

. (3.35)

The general rule in scaling functions is the following: all functions that have �ow units (φin,
φout, S(ρ), D(ρ), Φ(ρ), φmax) have to be divided by β, all density-related functions (ρ, ρmax
and ρc) must be divided by αβ, and velocity-related functions (vmax in case of Greenshields
FD and v, ω in case of triangular FD) must be multiplied by α. Note that also here the
demand D̄(ρ̄) and supply S̄(ρ̄) functions are de�ned as in Section 2.1.5 but depending on
(ξ, η)-space and in two dimensions.

We can see that the tra�c �ow evolves now only along lines of constant η in (ξ, η)-space.
Thus, the system in new coordinates (3.34) should be seen as a continuous set of 1D LWR
equations each following a path parametrized by η. This means that we can also analyze its
solution in the same way as we do it in case of 1D LWR. Namely, in system (3.34) shocks arise
when characteristics cross at some point of space, and thus we need to consider its solution in a
weak sense, and then the unique (entropy) solution is the one that satis�es the Lax condition
(see Section 2.1.3). Moreover, to guarantee that the weak solution ρ̄(ξ, η, t) is the entropy
one ∀(ξ, η, t) ∈ Ω̄ × R+, one needs to consider the boundary conditions in the weak sense,
see Section 2.1.4. Notice, that the boundary conditions φ̄in(η, t) and φ̄out(η, t) in (3.34) are
formulated using the demand-supply concept (see Section 2.1.5 for the explanation). Thus, the
initial boundary value problem (3.34) is well-posed, see more details in [22, 146] for entropy
conditions for inhomogeneous LWR model.

Let us now summarize all the steps that need to be performed in order to be able to
describe the evolution of tra�c in (ξ, η)-space by system (3.34) in some urban area.
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1. As an input, we get some urban network as a collection of roads and junctions with
known coordinates in (x, y)-space, speed limits and the number of lanes.

2. We de�ne a rectangular plane Ω such that the corresponding urban network is contained
in it. Then, we apply approximations to �nd all variables and FD parameters ∀(x, y) ∈ Ω:
the inverse distance weighting to �nd the vector �eld ~dθ(x, y)vmax(x, y) (see Section
3.1.3.1), then the kernel density estimation to obtain ρmax(x, y) (see Section 3.1.3.2).

3. Apply 1D kernel density estimation to the boundary conditions given as in�ows and
out�ows of particular roads of the city.

4. Given road orientation angle θ(x, y) ∀(x, y) ∈ Ω obtained as arctangent of the velocity
�eld, calculate functions α(x, y) and β(x, y) by solving PDEs (3.20) and (3.21).

5. Using α(x, y) and β(x, y), calculate new coordinates (ξ, η) ∈ Ω̄ by numerical integration
of (3.15).

6. Rescale all the FD parameters, density- and �ow-related variables as in (3.33). For
example, demand and supply functions at the boundaries should be rescaled as:

D̄in(η) =
Din(η)

β(ξmin(η), η)
, S̄out(η) =

Sout(η)

β(ξmax(η), η)
.

For the rest of this chapter we will be always referring to the system written in (ξ, η)-space
(3.34). Thus, with a slight abuse of notations, we will omit bars for all the variables from
(3.34), however leaving the notations for domains Ω̄ and its boundary Γ̄ ∈ Ω̄.

3.2.5 Numerical scheme

Since the system (3.34) is essentially just a set of 1D LWR equations, its numerical solution is
found using the same Godunov scheme as described in Section 2.1.6. The di�erences emerge
from the dependency on the additional dimension η and also from the space-dependency of
FD parameters ρmax(ξ, η) and vmax(ξ, η). For convergence results for the Godunov scheme
applied to kinematic wave systems with space-dependent fundamental diagrams see [22].

We start by de�ning a numerical grid in Ω̄× R+ by setting

� m to be number of cells to discretize η dimension,

� ∆η = (ηmax − ηmin)/m to be the space cell size in η dimension,

� ηj = ηmin + j∆η to be the grid point in η dimension for j ∈ {1, ...,m},

� ∆ξ to be the space cell size in ξ dimension,

� nj = d(ξmax(ηj)− ξmin(ηj))/∆ξe to be the number of cells in ξ dimension for particular
η = ηj for j ∈ {1, ...,m},
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� ξij = ξmin(ηj) + i∆ξ to be the grid point in ξ dimension for i ∈ {1, ..., nj} and j ∈
{1, ...,m},

� ∆t to be the time cell size,

� tk = k∆t for k ∈ Z+ to be the grid point in time.

Similarily to Section 2.1.6, the mesh sizes ∆ξ and ∆t are chosen sucht that they satisfy the
Courant-Friedrichs-Lewy condition [33]:

∆t max
(ξ,η,ρ)

|Φ′(ξ, η, ρ)| ≤ ∆ξ

2
.

The discrete density is then ρi,j(k), and according to the Godunov scheme, we update it
∀j ∈ {1, . . . ,m},∀i ∈ {1, . . . , nj} and ∀k ∈ Z+ as follows:

ρ1,j(k + 1) = ρ1,j(k) +
∆t

∆ξ
(ϕin,j(k)− ϕ2,j(k)) ,

ρi,j(k + 1) = ρi,j(k) +
∆t

∆ξ
(ϕi,j(k)− ϕi+1,j(k)) ,

ρnj ,j(k + 1) = ρnj ,j(k) +
∆t

∆ξ

(
ϕnj ,j(k)− ϕout,j(k)

)
,

(3.36)

where ϕi,j(k) is the Godunov numerical �ux de�ned as

ϕi,j(k) = min {D(ρi−1,j(k)), S(ρi,j(k))} , (3.37)

with D(ρi−1,j(k)) and S(ρi,j(k)) being the discretized demand and supply functions same
as in Section 2.1.6 except that the numerical �ux in (3.36) has space-dependent parameters
ρmax(ξ, η) and vmax(ξ, η), which should be used for the computation of D(ρi−1,j(k)) and
S(ρi,j(k)) in (3.37).

The boundary �ows ϕin,j(k) and ϕout,j(k) from (3.36) are determined by specifying the
density at the ghost cells with indices i = 0 and i = nj + 1 for j ∈ {1, . . . ,m}:

ϕin,j(k) = min {D(ρ0,j(k)), S(ρ1,j(k))} ,
ϕout,j(k) = min

{
D(ρnj ,j(k)), S(ρnj+1,j(k))

}
.

(3.38)

3.2.6 Hamilton-Jacobi formulation

Let us now consider the parametrized set of 1D LWR equations with space-dependent FD
(3.34) (2D LWR in curvilinear coordinates) in Hamilton-Jacobi formulation. The Hamilton-
Jacobi formalism here is quite similar to the one presented in Section 2.1.7. The only di�erence
here is that we must carefully handle the space-dependency of FD and the additional space
parameter η ∈ [ηmin, ηmax] that is just used as a label of the �ow path rather than the
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second space dimension. Thus, let us again consider the cumulative vehicle number function
M(ξ, η, t) that is an integral function of �ow in time or density in a 2D space (see (2.21)
for 1D). This integral function can be expressed through domain out�ows as in (2.23), if the
starting point of the integration is set to the downstream boundary of �ow path η at initial
time, i.e., M(ξmax(η), η, 0) = 0. Then, the Moskowitz function in the 2D plane is de�ned
∀(ξ, η, t) ∈ Ω̄× R+ as

M(ξ, η, t) =

t∫
0

φout(η, τ)dτ +

ξmax(η)∫
ξ

ρ(ξ̂, η, t)dξ̂. (3.39)

Also we can express the Moskowitz function through domain in�ows and initial density dis-
tribution as in (2.24), if the starting point is set to the upstream boundary of η-line at initial
time, i.e., M(ξmin(η), η, 0) = 0. In this case we obtain:

M(ξ, η, t) =

ξmax(η)∫
ξmin(η)

ρ0(ξ̂, η)dξ̂ +

t∫
0

φin(η, τ)dτ−
ξ∫

ξmin(η)

ρ(ξ̂, η, t)dξ̂. (3.40)

The relation of H-J formulation to the LWR formulation is the same as discussed in
Section 2.1.7. Thus, the H-J PDE with space-dependent Lipschitz continuous Hamiltonian
can be obtained from the space-dependent �ow-density relation Φ(ξ, η, ρ) = φ(ξ, η, t), where
the �ow and density functions are then replaced by formulas similar to (2.21).

Let us introduce the following initial boundary value problem ∀(ξ, η, t) ∈ Ω × R+ in
Hamilton-Jacobi formulation:

∂M(ξ, η, t)

∂t
− Φ

(
ξ, η,−∂M(ξ, η, t)

∂ξ

)
= 0,

M(ξ, η, 0) = MIni(ξ, η),

M(ξmin(η), η, t) = MUp(η, t),

M(ξmax(η), η, t) = MDown(η, t).

(3.41)

The main advantage of the H-J PDE is that we can indeed formulate its solution in terms of
a minimization problem. For several shapes of Hamiltonian (for example, triangular FD), the
solution to the minimization problem can be found explicitly.

Solution of the H-J IBVP (3.41) can be obtained analytically in accordance with the
variational principle using only its boundary and initial conditions, which can be encoded in
the general value condition function c. For 1D it was already done in (2.26), however, in 2D
it has a di�erent set of departure, i.e., c(ξ, η, t) : Dom(c)→ R+, where

Dom(c) =
{

(ξ, η, t) : η ∈ [ηmin, ηmax], ξ ∈ {ξmin(η), ξmax(η)} , t ∈ R+
}

∪ {(ξ, η, 0) : η ∈ [ηmin, ηmax], ξ ∈ [ξmin(η), ξmax(η)]} .

This function generalizes the initial MIni(ξ, η) and boundary conditions MUp(η, t) and
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MDown(η, t) of (3.41) that are then used for the computation of the in�mum problem:

c(ξ, η, t) =


MIni(ξ, η), t = 0,

MUp(η, t), ξ = ξmin(η),

MDown(η, t), ξ = ξmax(η).

(3.42)

Now we specify the value condition function (3.42) by calculating MUp(η, t), MDown(η, t)

andMIni(ξ, η). We proceed in a similar way as in Section 2.1.8. Thus, the upstream boundary
condition MUp(η, t) can be obtained by considering (3.40) for ξ = ξmin(η), which results into

MUp(η, t) = c(ξmin(η), t) =

t∫
0

φin(η, τ)dτ +

ξmax(η)∫
ξmin(η)

ρ0(ξ̂, η)dξ̂, ∀(η, t) ∈ [ηmin, ηmax]× R+.

(3.43)
Then, the downstream boundary condition MDown(η, t) can be expressed from (3.39) for ξ =

ξmax(η):

MDown(η, t) = c(ξmax(η), t) =

t∫
0

φout(η, τ)dτ, ∀(η, t) ∈ [ηmin, ηmax]× R+. (3.44)

Finally, the initial condition MIni(ξ, η) can be expressed from either (3.40) or (3.39) for t = 0,
which yields

MIni(ξ, η) = c(ξ, η, 0) =

ξmax(η)∫
ξ

ρ0(ξ̂, η)dξ̂. (3.45)

Further, we introduce a Legendre-Fenchel transform of the space-dependent �ux function
Φ(ξ, η, ρ) as:

∀v′ ∈ [−ω(ξ, η), v(ξ, η)] :

L(ξ, η, v′) = sup
ρ∈[0,ρmax(ξ,η)]

(Φ(ξ, η, ρ)− v′ρ), (3.46)

where v(ξ, η) and −ω(ξ, η) are related to the maximal and minimal kinematic wave speeds
in free-�ow and congested tra�c regime (not necessarily as in triangular FD). This function
achieves minimum, if an observer moving in a tra�c stream adapts his/her individual speed
to the maximal kinematic wave speed (see the discussion in Section 2.1.8).

Finally, the closed-form solution to (3.41) corresponding to the in�mum among all viable
evolutions that start at initial time t− T and arrive at (ξ, η) at terminal time t reads as:

M(ξ, η, t) = inf
(T,v′)∈S

c(ξ̂(0), η, t− T
)

+

T∫
0

L
(
ξ̂(τ), η, v′(τ)

)
dτ

 , (3.47)
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where the in�mum is taken over domain S de�ned as:

S =
{

(T, v′)
∣∣∣ T ∈ R+, v′(·) ∈ L1(0, T ),

˙̂
ξ(τ) = v′(τ),

ξ̂(T ) = ξ, v′(τ) ∈
[
−ω

(
ξ̂(τ), η

)
, v
(
ξ̂(τ), η

)]
,(

ξ̂(0), η, t− T
)
∈ Dom(c)

}
.

(3.48)

Here ξ̂(τ) denotes the trajectory of an observer moving along a tra�c stream with possibly
non-constant speed v′(τ) unlike in Lax-Hopf formula (2.32), since now we consider space-
dependent FDs that include inhomogeneity of the network infrastructure. Trajectory ξ̂(τ)

originates at τ = 0 on a boundary of the domain of c and arrives at the point ξ at terminal
time τ = T .

As already mentioned, in case of a triangular FD (3.4) the solution to H-J PDE (3.41) can
be found explicitly. We show the derivation of the explicit solution in Appendix B.5, where
the solution was considered for large enough time such that the e�ect of initial conditions
is negligible. This result will be then used in Section 3.5, where we consider a boundary
control problem for tra�c in a mixed regime evolving on a large urban network and prove its
exponential convergence to the desired trajectory.

3.3 Equilibrium manifolds

Analysis of steady states emerging in large urban networks is of a key importance in under-
standing tra�c dynamics. In particular, steady states need to be studied to enable comparison
of di�erent models or to solve optimal control tasks of driving a state to some desired equi-
librium. This section is devoted to the model-based estimation of steady states for tra�c
density evolving on arbitrary large-scale urban networks. The tra�c state is governed by a
two-dimensional conservation law (3.9).

In the previous Section 3.2, we presented the curvilinear coordinate transformation for
the 2D conservation law model that could be translated into a parametrized inhomogeneous
1D LWR system (3.34), i.e., each such 1D system incorporates space-dependency in the �ux
function that is related to bottlenecks and varying speed limits along the tra�c �ow path.

This section demonstrates the �rst analytic result that can be easily obtained for this kind
of systems. In particular, we present the �rst model-based steady state estimation result for
large tra�c networks, which became possible due to this curvilinear coordinate transformation.
Thereby, we will use only the information about the network geometry and infrastructure
parameters, as well as demand and supply at network boundaries. For a 1D inhomogeneous
case (one road with bottlenecks) this was done in [146], who used the wave entropy conditions
derived in [149] to ensure the physically relevant solution. We will rely on this previous result
[146] to extract the �correct� density from the steady state �ow, which provides the entropy
solution of system (3.34).
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3.3.1 Problem statement

Let us consider the parametrized inhomogeneous PDE system (3.34). Assume that demand
at the upstream boundary and the supply at the downstream boundary are constant in time,
i.e., D(ρin(η)) and S(ρout(η)) are given ∀η ∈ Ω̄. We seek to develop a technique that yields
the steady state of (3.34) analytically. This is formalized as follows:

Problem 3.1
Given system (3.34) with constant demand and supply functions D(ρin(η)) and S(ρout(η))∀η ∈
Ω̄, �nd a time-invariant density distribution ρ∗(ξ, η) such that

∂Φ∗(ξ, η, ρ∗)

∂ξ
= 0, ∀(ξ, η) ∈ Ω̄. (3.49)

3.3.2 Steady state density

Stationary solutions to system (3.34) might be space-varying functions ρ∗(ξ, η) due to the
space-dependency of the fundamental diagram. By the mass conservation law, the steady
state tra�c �ow in (3.34) should be constant along its evolution path (lines of constant η),
that is:

φ∗(η) := Φ∗(ξ, η, ρ∗).

Recall that, in general, tra�c operates at maximum e�ciency when Φ(ξ, η, ρ) = φmax(ξ, η),
i.e., when the tra�c conditions allow to exploit roads at their capacity. However, φmax(ξ, η)

can not be the steady state �ow, since it should not depend on ξ. The equilibrium tra�c �ow
can not exceed the capacity of the �worst� bottleneck along its path (line of constant η). If
tra�c conditions do not allow that (e.g., congested tra�c along the whole η line), we need
to mind the boundary conditions as well. Assume that demand at the upstream boundary
D(ρin(η)) and supply at the downstream boundary S(ρout(η)) are given ∀η ∈ [ηmin, ηmax]. In
accordance with the analysis performed in [146], we obtain that the steady state �ow along
its path is the minimum of three functions

φ∗(η) = min{D(ρin(η)), φminmax(η), S(ρout(η))}, (3.50)

where φminmax(η) is the transportation capacity at the strongest bottleneck along the η-line
de�ned as:

φminmax(η) = min
ξ∈[ξmin(η),ξmax(η)]

φmax(ξ, η), (3.51)

and the point where the minimum is achieved is the location of the strongest bottleneck
denoted by ξ∗(η):

ξ∗(η) = argmin
ξ∈[ξmin(η),ξmax(η)]

φmax(ξ, η). (3.52)

If there are several points ξ∗ or it is an interval, then we take the left-most value (the �rst
point on the �ow path), i.e., ξ∗ = ξ∗1 in Figure 3.11.
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Thus, the steady state tra�c �ow along a line of constant η is the minimum between
the demand at its entry, the supply at its exit and the minimum bandwidth (3.51), which is
determined by the strongest bottleneck of the η-line. On a physical road, such a bottleneck can
be caused by a reduced number of lanes or by a lower speed limit. Recall that lines of constant
η are used to describe the tra�c �ow path, and they are di�erent from the physical roads as
these lines are de�ned on a continuum 2D plane using approximations of all parameters (see
Sections 3.1.3.1 and 3.1.3.2). Thus, the strongest bottleneck is determined by the level of
compression of roads, i.e., the smallest capacity is achieved in areas with highly compressed
roads. This dependency is incorporated in the scaling factor β(ξ, η), since recall that every
term in (3.50) was divided by it (as in (3.33), and then the bars were omitted to simplify the
notations).

As a next step, we need to �nd the corresponding steady state density. Due to the concavity
of the fundamental diagram (see Figure 2.1), for each �ow value (except the maximal �ow
φmax), there exist two densities corresponding to this �ow: the lower value denotes the free-
�ow tra�c regime, and the higher value denotes the congested regime.

Based on the result obtained by solving the minimum (3.50), we can distinguish three
possible cases:

1. φ(η)∗ = φminmax(η). Then, the steady state ρ∗ should be chosen to guarantee the
congested regime ∀ξ ∈ [ξmin(η), ξ∗(η)), while it must provide the free-�ow regime
∀ξ ∈ (ξ∗(η), ξmax(η)]. This is the only solution satisfying the wave entropy condition
for inhomogeneous roads (space-dependent FDs) as presented in [146, 149]. This means
that the strongest bottleneck creates congestion, and after passing it, vehicles can move
freely. As mentioned above, such bottlenecks can be caused by highly compressed roads
(characterized by a high scaling parameter β(ξ, η)), low maximal density ρmax(ξ, η) (e.g.,
on a river's bridge), or low speed limits vmax(ξ, η).

2. φ(η)∗ = D(ρin(η)). This implies that the demand to enter this �road� is too small,
and all cars can pass through the system freely. Therefore, the whole domain is in the
free-�ow tra�c regime and ξ∗(η) = ξmin(η).

3. φ(η)∗ = S(ρout(η)). This implies that the supply at the exit of this �road� is too low,
and the cars get blocked there. The strongest bottleneck is at the exit of η-line, i.e.,
ξ∗(η) = ξmax(η). Therefore, the whole domain is in the congested tra�c regime.

Notice that the steady state ρ∗ is obtained by taking the inverse of the fundamental
diagram, and the correct tra�c regime providing the entropy solution of (3.34) should be set
depending on the steady state �ow (3.50), as discussed above for three possible cases. As a
�nal step, we need to rescale the density back as:

ρ(ξ, η) = ρ̄(ξ, η)α(ξ, η)β(ξ, η),

which allows us to compare steady states obtained by a numerical simulation of (3.9) and by
performing a model-based analysis of (3.34) (see next Section 3.3.3).
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3.3.3 Steady state example

Let us now demonstrate a steady state example that can be obtained by following the steps
described in Section 3.3.2. For this, let us take a synthetic 10 × 10 Manhattan network as
described earlier in Section 3.1.6. The demand at the upstream boundary D(ρin(η)) is also set
as in Section 3.1.6, and the supply at the downstream boundary S(ρout(η)) = φmax(ξmax(η), η),
i.e., all vehicles can leave the domain freely. Further, we discretize η dimension into m = 180

cells. Following the steps described in Section 3.3.2, we obtain a steady state for a parametrized
inhomogeneous 1D LWR system (3.34) shown in Figure 3.9b). The continuous approximation
was again performed for a low weighting parameter µ = 20. We thus seek to capture only the
global trend of the velocity �eld in this example.

We compare now this steady state to the one obtained by running a numerical simulation
of tra�c density governed by a 2D LWR model (3.9), which is illustrated in Figure 3.9a).
Thereby, we use the Godunov scheme in 2D presented in Section 3.2.5 for an unscaled system
(3.34), which is the same system as (3.9) with the only di�erence that it is written in di�erent
coordinates. Additionally, we also compare the obtained steady state distribution to the one
that results from running the microsimulator Aimsun, see Figure 3.9c). Recall that Aimsun
produces vehicle trajectories, and then we use the kernel density estimation (see Section
3.1.3.2) to reconstruct the 2D density from vehicle positions. For the density reconstruction,
we again use the standard deviation of the Gaussian d0 = 50 m as in Section 3.1.6. Notice
also that Figures 3.9a) and 3.9c) are exactly the same as Figures 3.6b) and 3.6c), since we use
here the same congestion formation scenario as in Section 3.1.6.

Thus, we can observe that the analytical steady state solution presented in Figure 3.9b)
captures quite well the spatial distribution of congested and free-�ow areas compared to the
�ground true� steady state density obtained from Aimsun (Figure 3.9c)). In particular, in
plots b) and c) the lines separating congested and free-�ow areas in the South-Western part
are very similar, while in case of steady state density obtained by the numerical simulation
(Figure 3.9a)) this line lies notably lower. The L2 norm of the deviation from the Aimsun
density yields ‖ρ̃∗(x, y)‖2 = 0.4 for b) , which is almost the same as for a). Thus, the model-
based steady state calculation yields quite accurate results, which are obtained analytically
without any need to run long simulations as required in the case of 2D LWR model in Figure
3.9a) (2 hours of simulation time).

3.3.4 Discussions

In this section, we demonstrated the �rst result that can be obtained by analysing the 2D LWR
model in (ξ, η)-coordinates. The rewritten model (3.34) represents a parametrized 1D LWR
model with a space-dependent FD, where the second dimension is used to label the tra�c �ow
path. We described how to obtain its steady state that corresponds to a space-varying density
distribution by following two steps: �rst, solving the minimum (3.50) between the demand
�ow at the upstream boundary, the supply �ow at the downstream boundary and the capacity
at the strongest bottleneck, and second, by extracting the density satisfying the wave entropy
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Figure 3.9: Steady state obtained by: a) numerical simulation of density governed by the 2D
LWR system (3.9), b) model-based analysis of (3.34), c) density reconstruction from vehicle
positions predicted by Aimsun.

condition.

We then provided an example for a steady state that can be obtained by this model-based
analysis, which was then compared to the previous results obtained by running a congestion
formation scenario for 2 hours of simulation time. For this, we referred to Section 3.1.7, where
the steady-state distribution obtained by simulating a tra�c density governed by the 2D LWR
(3.34) in (x, y)-coordinates was compared to the reference steady state distribution predicted
by microsimulator Aimsun. Thus, the analytically obtained steady state from the model in
(ξ, η)-coordinates (3.34) appeared to provide quite accurate results by capturing the shape of
tra�c congestion even better in comparison to the result obtained numerically. There are two
main advantages of model-based steady state prediction: �rst, it saves a lot of computational
time, since there is no more need to run simulations until the steady state is achieved, and
second, being an explicit result it can be used to solve control related tasks for tra�c in large
urban networks. This will be shown in the following section, where the explicitly estimated
steady state will be used as a desired equilibrium to reach via a boundary control.

3.4 Boundary control for congested areas

In this section, we seek do design a boundary control for a congested area within a large urban
network using the same modeling approach as in Section 3.3. Thus, we again describe the
tra�c state by its density whose temporal evolution is given by the 2D LWRmodel rewritten in
curvilinear coordinates (3.34). We will consider a urban network that includes congested areas
that will be controlled from their downstream boundary as shown in Figure 3.10. The control
should drive the tra�c system to the equilibrium that provides the maximal throughput of
the system. This stabilized system is then characterised by a reduced average latency and a
higher average velocity.
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demand

control

Figure 3.10: A sketch of a urban network that contains a congested area (grey Manhattan
greed) to be controlled from its downstream boundary (in red).

Our main contribution here is to suggest a model-based control design technique that
requires only the knowledge about the network geometry and its infrastructure, i.e., speed
limits and transportation capacities. This is the �rst work of this kind for two-dimensional
tra�c systems providing an explicit solution to the problem.

First, we will discuss the desired equilibrium to be achieved in a congested urban area.
Then, the boundary control result will be presented. Finally, the theoretical results will be
veri�ed with the help of a numerical example, where we demonstrate the performance of the
designed controller.

3.4.1 Optimal equilibrium

In this section, our main goal is to design a boundary controller that can drive a 2D tra�c
system governed by (3.34) to a steady state providing the maximal throughput of the system.
Thereby, we rely on the steady state analysis from the previous Section 3.3.

3.4.1.1 General steady states

Recall that a steady state ρ∗(ξ, η) implies space-independent φ∗(η), which can be achieved
only for time constant D(ρin(η)) and S(ρout(η)). We obtained that the steady state �ow
along the line of constant η (3.50) is the minimum of demand at the entry, supply at the exit
and the capacity of the strongest bottleneck located at ξ∗(η) (3.51). By bottlenecks we mean
permanent capacity constraints in the network itself, e.g., a road segment with low speed limit
or with a few lanes (see Figure 3.11).

Thus, from the steady state �ow given by (3.50), we need to extract the steady state
density ρ∗ that provides the physically relevant solution (entropy solution), which was already
discussed in Section 3.3.2. Here we need to consider the minimum (3.50) of only two functions,
as the demand at the upstream boundary D(ρin(η)) is always larger than capacity at the
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bottleneck. This happens, since ρin(η) is assumed to be very high for all η-lines, which implies
by (2.13) that

D(ρin(η)) = φmax(ξmin(η), η), ∀η ∈ [ηmin, ηmax]. (3.53)

If supply at the downstream boundary is also larger S(ρout(η)) > φminmax, then ρ∗ should
be chosen to provide the congested regime ∀ξ ∈ [ξmin, ξ

∗), and the free-�ow regime occurs
∀ξ ∈ (ξ∗, ξmax]. If there are several such ξ∗ (or it is an interval), then we take the left-most
value, i.e., ξ∗ = ξ∗1 in Figure 3.11. If S(ρout(η)) is smaller than the capacity at the bottleneck,
then the whole domain is in the congested tra�c regime.

3.4.1.2 Optimal steady state

Here we consider congested urban areas, and thus the in�ow demand is assumed to be very
high as in (3.53). This also means that the minimum function in the demand-supply problem
(2.16) is resolved to the supply at the domain exit, which is treated as a control variable.
Thus, we control the area out�ow from its downstream boundary, i.e., u(η) = S (ρout(η))

∀η ∈ [ηmin, ηmax] (as it was done in Section 2.2 but now it is on a 2D domain).

From (3.50) it is clear that the maximal throughput of the system in the equilibrium
is achieved for φ∗(η) = φminmax(η) for all η-lines. In order to provide a steady state that
ensures the maximal throughput, we can actuate the downstream boundary accordingly, i.e.,
u(η) = φminmax(η) . However, this control would lead to the violation of the congested regime,
since the wave entropy condition prescribes the free-�ow tra�c regime ∀ξ ∈ (ξ∗(η), ξmax(η)],
where ξ∗(η) is given by (3.52) (see (3.50) and the discussion above). This is a situation that we
would like to avoid, since this section deals exclusively with congested areas for mathematical
simplicity.

Thus, we would like to de�ne a desired steady state �ow to be as close as possible to the
maximal possible steady state �ow (determined by the capacity at the strongest bottleneck)
that still respects the constraint on the congested tra�c regime in the whole area. For this
purpose, we introduce a small constant ε > 0 (small �ow), and then the desired steady state
�ow can be de�ned as

φd (η) = φminmax (η)− ε, ∀η ∈ [ηmin, ηmax]. (3.54)

By setting the control variable u(η) = φd(η), we translate the bottleneck to the end of
the η-line, i.e., ξ∗(η) = ξmax(η). In this case, we guarantee that the congested tra�c regime
is preserved within the whole interval [ξmin(η), ξmax(η)], see Figure 3.11. This allows us to
control the system from the exit, and this control is applied in the strong sense, since the
whole system is assumed to operate in one tra�c regime (as in Section 2.2).

From the practical viewpoint, subtraction of ε does not change much the desired state, since
ε can be set to an arbitrarily small value. Thus, in the following we will call the desired state
an ε-optimal equilibrium w.r.t. throughput maximization. Note that controlling the domain
exit can be physically realized by installing, e.g., tra�c lights.
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ξmaxξ∗1 ξ∗2ξmin

ρ

Φ(ρ)

φminmax − ε

ρ

Φ(ρ)

ρ

Φ(ρ)

S(ρout)

Figure 3.11: A single η-line with inhomogeneous capacities. Its worst bottleneck occupies a
road segment ξ∗ = [ξ∗1 , ξ

∗
2 ]. The �ow-density relation Φ(ρ) is Greenshields FD: green and red

areas indicate free-�ow and congested tra�c regimes, respectively.

De�nition 3.1
The desired ε-optimal equilibrium ρd(ξ, η) w.r.t. the throughput maximization is de�ned

∀(ξ, η) ∈ Ω̄ as

ρd(ξ, η) =
ρmax(ξ, η)

2
+

√
ρ2
max(ξ, η)

4
− ρmax(ξ, η)

vmax(ξ, η)
φd(η), (3.55)

where φd(η) is de�ned in (3.54) and ε > 0, see Figure 3.11.

Note that (3.55) was obtained by taking the inverse of (3.35) for Φ(ξ, η, ρd) = φd(η), which
leads us to the quadratic formula with two possible roots. To provide the congested tra�c
regime, we need to pick the plus sign.

3.4.2 Boundary control design

Problem 3.2
Given a urban network and its infrastructure parameters vmax(ξ, η), ρmax(ξ, η) and φmax(ξ, η)

∀(ξ, η) ∈ Ω̄ with initially congested tra�c ρ0(ξ, η) ∈ (ρc(ξ, η), ρmax(ξ, η)] whose dynamics are

governed by (3.34) with Greenshields FD (3.35), and given large constant in�ow demand at

domain entry D(ρin(η)) = φmax(η) ∀η ∈ [ηmin, ηmax], design a boundary control law u(η) =

Sout(η) such that ∀(ξ, η) ∈ Ω̄:

lim
t→∞
‖ρ̃(ξ, η, t)‖2 = 0, (3.56)
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where ρ̃(ξ, η, t) is the L2 norm of the deviation from the desired equilibrium (3.55). The L2

norm and the error term are de�ned as in (1.7) and (1.9), respectively, but in (ξ, η)-space.

Theorem 3.1
The boundary control problem of driving a congested urban area to the desired ε-optimal equi-

librium (3.55), as formulated in Problem 3.2, is solved with

u(η) = φd(η), where φd(η) = φminmax(η)− ε, ∀η ∈ [ηmin, ηmax]. (3.57)

Proof. Let us de�ne the following Lyapunov function candidate ∀η ∈ [ηmin, ηmax]

V (η, t) =
1

2

ξmax(η)∫
ξmin(η)

eξρ̃2(ξ, η, t)dξ, (3.58)

where eξ is a weighting function used to provide the exponential convergence of the Lya-
punov function (similar as in (2.44)). For simplicity of notations, we neglect variable η as an
argument. The time derivative of (3.58) is

V̇ (t) =

ξmax∫
ξmin

eξρ̃(ξ, t)
∂ρ̃(ξ, t)

∂t
dξ. (3.59)

To simplify (3.59), we use the time-independence of ρd as:

∂ρ̃(ξ, t)

∂t
=
∂ρ(ξ, t)

∂t
≡ −∂Φ (ξ, ρ)

∂ξ
= −∂Φ (ξ, ρd + ρ̃)

∂ξ
. (3.60)

We consider the most right-hand-side term and linearize the �ux function around the desired
state as follows:

Φ (ξ, ρd + ρ̃) ≈ Φ (ξ, ρd) +
∂Φ (ξ, ρd)

∂ρ
ρ̃, (3.61)

which being inserted in (3.60) yields

∂ρ̃(ξ, t)

∂t
= −∂Φ(ξ, ρd)

∂ξ
− ∂ (Φ′ (ξ, ρd) ρ̃)

∂ξ
, (3.62)

where the prime denotes Φ′ = ∂Φ/∂ρ.

Recall that, in general, the conservation law prescribes that

∂ρ(ξ, t)

∂t
= −∂Φ(ξ, ρ)

∂ξ
.

Hence, if we consider a time-constant density ρd(ξ), then by the conservation law we obtain
∂Φ(ξ, ρd)/∂t = 0. This allows us to simplify (3.62) to

∂ρ̃(ξ, t)

∂t
= −∂ (Φ′ (ξ, ρd) ρ̃(ξ, t))

∂ξ
. (3.63)
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To simplify the notations, we omit the arguments of ρ̃(ξ, t) and insert (3.63) into (3.59),
which yields

V̇ (t) =−
ξmax∫
ξmin

eξρ̃
∂ (Φ′ (ξ, ρd) ρ̃)

∂ξ
dξ = −

ξmax∫
ξmin

eξ
2Φ′ (ξ, ρd)

2Φ′ (ξ, ρd)
ρ̃
∂ (Φ′ (ξ, ρd) ρ̃)

∂ξ
dξ

= −
ξmax∫
ξmin

eξ

2Φ′ (ξ, ρd)

∂ (Φ′ (ξ, ρd) ρ̃)2

∂ξ
dξ.

(3.64)

We now consider Φ′ (ξ, ρd), which is obtained by taking a derivative of (3.35) w.r.t. density:

Φ′ (ξ, ρd) = vmax (ξ)

(
1− 2ρd (ξ)

ρmax (ξ)

)
. (3.65)

In order to estimate an upper bound of (3.64), we will evaluate the derivative Φ′ at ξ∗, which
is the location of the bottleneck. Note that being the derivative of a concave function, Φ′

achieves its maximum at the bottleneck in the congested regime (in the free-�ow regime it is
vice versa).

First, let us obtain the desired density at ξ∗ using (3.35). Recall that by (2.5), in general,
the capacity is given by φmax = vmaxρmax/4, which lets us write:

Φ (ξ∗, ρd(ξ
∗)) = φmax(ξ∗)− ε⇒ Φ (ξ∗, ρd(ξ

∗)) =
vmax(ξ∗)ρmax(ξ∗)

4
− ε.

By using (3.35), this can be further rewritten as:

vmax (ξ∗) ρd (ξ∗)−
vmax (ξ∗) ρ2

d (ξ∗)

ρmax (ξ∗)
=
vmax (ξ∗) ρmax (ξ∗)

4
− ε

⇒ ρ2
d (ξ∗)− ρd (ξ∗) ρmax (ξ∗) +

ρ2
max (ξ∗)

4
− ερmax(ξ∗)

vmax (ξ∗)
= 0

⇒ ρd (ξ∗) =
ρmax (ξ∗)

2
+

√
ερmax(ξ∗)

vmax (ξ∗)
.

(3.66)

Recall that in the solution of the quadratic equation, we need to choose the plus sign to
respect the congested tra�c regime. Thus, we insert (3.66) into (3.65) and introduce a variable
ν used to denote Φ′ at the bottleneck:

Φ′ (ξ∗) = −

√
vmax (ξ∗) ε

ρmax(ξ∗)
= −ν. (3.67)

Notice that Φ′ in (3.67) has the same physical meaning as velocity, which can be seen from
its physical units by having in mind that ε is measured in [veh/s], see (3.54).

Let us now again use the arguments of ρ̃ and η. We can bound (3.64) from above using
(3.67):

V̇ (η, t) ≤ 1

2ν

ξmax(η)∫
ξmin(η)

eξ
∂ (Φ′ (ξ, η, ρd) ρ̃(ξ, η, t))2

∂ξ
dξ. (3.68)
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Integration by parts of (3.68) yields

V̇ (η, t) =
eξmax(η)

2ν(η)
Φ′2 (ξmax(η), η, ρd) ρ̃

2 (ξmax(η), η, t)

− eξmin(η)

2ν(η)
Φ′2 (ξmin(η), η, ρd) ρ̃

2 (ξmin(η), η, t)

− 1

2ν(η)

ξmax(η)∫
ξmin(η)

eξ
(
Φ′ (ξ, η, ρd) ρ̃ (ξ, η, t)

)2
dξ.

(3.69)

The last term in (3.69) can be again bounded by ν(η) as follows:

− 1

2ν(η)

ξmax(η)∫
ξmin(η)

eξ
(
Φ′ (ξ, η, ρd) ρ̃ (ξ, η, t)

)2
dx

≤ −ν(η)

2

ξmax(η)∫
ξmin(η)

eξρ̃2 (ξ, η, t) dξ = −ν(η)V (η, t).

(3.70)

Inserting (3.70) into (3.69), we see that the only positive term is the �rst one, which can be
eliminated by providing ρ̃ (ξmax(η), η, t) = 0, i.e., ρ (ξmax(η), η, t) = ρd (ξmax(η), η). This can
be achieved by accordingly adjusting the boundary control

u(η) = φd(η), where φd(η) = φminmax(η)− ε, ∀η ∈ [ηmin, ηmax], (3.71)

as stated in Theorem 3.1. Note that the control term is di�erent for each η. Thus, with (3.71)
and (3.70), we can rewrite (3.69) as

V̇ (η, t) = −e
ξmin(η)

2ν(η)
Φ′2 (ξmin(η), η, ρd) ρ̃

2 (ξmin(η), η, t)− ν(η)V (η, t).

Thus, we have proved the L2 convergence of ρ (ξ, η, t) to the desired ε-optimal equilibrium
ρd (ξ, η) as t → ∞ ∀η ∈ [ηmin, ηmax]. It also follows that the pointwise convergence in η is
achieved, which implies the L∞ convergence in η. In bounded spaces (which is the case for
η-space) this also implies the L2 convergence in η. This proves the asymptotic L2 convergence
in the whole (ξ, η)-space.

3.4.3 Numerical example

Now let us demonstrate how this boundary control law (3.57) provides the convergence to the
desired equilibrium with the help of a numerical example. For this purpose, we will again take
a synthetic Manhattan grid network as in Section 3.1.6. The only di�erence is a larger noise
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Figure 3.12: Control of urban tra�c from the downstream boundary: a) desired steady state
distribution, b) initial state of tra�c jam, c) L2 norm of the density error as a function of
time.

in the positions of intersections with the standard deviation of 20 m (network is drawn in grey
in Figures 3.12a) and 3.12b)). For a continuous approximation of the velocity �eld vmax~dθ,
we use the weighting parameter µ = 20 (the same as in Sections 3.3.3 and 3.1.6).

Thus, we will apply the boundary control to a fully congested urban area with the initial
density distribution given by

ρ0(ξ, η) = ρmax(ξ, η), ∀(ξ, η) ∈ Ω̄.

There are a lot of vehicles at the upstream boundary of this area, i.e., ρin(η, t) =

ρmax(ξmin(η), η) ∀(η, t) ∈ [ηmin, ηmax] × R+. These vehicles permanently provide a maxi-
mal possible in�ow into the system, that is D(ρin(η)) = φmax (ξmin(η), η). This tra�c jam
distribution is illustrated in Figure 3.12b). Thereby, the di�erences in the heatmap are caused
by the variation of ρmax(ξ, η) along the domain. Thus, more yellow zones are the those char-
acterized by a low maximal density, which is usually achieved in areas with low concentration
of roads.

The desired ε-optimal steady state given by (3.55) is illustrated in Figure 3.12a) for ε =

10−5 veh/s. Notice that the desired density distribution is space-dependent, which is caused
by the variety of the infrastructure in the considered domain, e.g., inhomogeneous distribution
of roads, di�erent speed limits, etc. Recall that this desired distribution provides the maximal
possible throughput of the system at equilibrium up to a small constant ε that is introduced
to guarantee that the vehicle density is always larger than the critical value (congested tra�c
regime).

For the numerical simulation, we �rst discretize the domain by η into m = 180 cells,
and then the Godunov scheme (3.36) is implemented for every constant η. The boundary
conditions are assigned to the ghost cells, which are the cells that do not belong to the domain
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(see Section 3.2.5 for more details). Thus, for the congested system the boundary �ows (3.38)
in the numerical scheme are set to

φin,j = S(ρ1,j), φout,j = u(j), ∀j ∈ {1, . . . ,m},

where uj is the boundary controller (3.57) that was shown to provide the convergence to the
desired steady state. The performance of this controller is shown in Figure 3.12c), from which
we observe that the spatial L2 norm of the error from the desired equilibrium converges to
zero in �nite time. The �nite time convergence can be explained by the fact that in a linear
tra�c system (obtained if we consider only one regime, as we did here and in Section 2.2), the
boundary condition is propagated in the whole domain with the characteristic line that has a
�nite propagation speed.

3.4.4 Discussions

In this section, we considered large-scale urban networks from the control point of view. In
particular, we again used the 2D LWR model rewritten in curvilinear coordinates (3.34),
and demonstrated how it can be used for control design. The control goal was to drive a
fully congested area to the equilibrium state characterized by the maximal throughput of the
system, which also implies shorter traveling times. The maximal throughput at each line of
constant η (�ow path in a continuum plane) is constrained from above by the capacity of its
strongest bottleneck. For instance, imagine a road (or η-line in our terms) that consists of
segments characterized by di�erent speed limits, e.g., 30 km/h and 50 km/h. Then, the steady
state �ow is constant along the road, and its value is determined by the capacity of the road
segment with the lowest speed limit.

To simplify the problem mathematically, we restricted this part to tra�c being only in
the congested regime. This allows us to consider a linear problem (as it was done in Section
2.2), which is a set of transport PDEs parametrized by η with space-dependent FD. This
simpli�cation allows us to consider boundary conditions in a strong sense, and moreover, we
do not have to handle discontinuities in the solution. We provide the congested regime by
adding a small constant ε, and subtract it from the desired equilibrium �ow, which corresponds
to the maximal throughput minus ε. Hence, we call the desired state the ε-optimal state
w.r.t. throughput maximization. Notice that this constant was introduced for mathematical
simplicity, and its value can be arbitrarily small. Thus, the desired state can still be seen as
the equilibrium of (almost) maximal throughput.

The control design should be realized by actuating only the downstream boundary of the
congested domain. It again relies on the model (as in the previous section) and requires
only the information about the network geometry and its infrastructure parameters. The
controller (3.57) includes only the feedforward component, since the curvilinear coordinate
transformation and the restriction to only one tra�c regime allowed us to considerably simplify
the 2D network control problem. Lyapunov methods were used to prove the exponential
convergence to the desired equilibrium. Finally, we demonstrated the performance of the
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boundary controller on an example of a heavily congested network with a large in�ow demand
at its entry. The L2 norm of the error term showed a �nite time convergence.

In the next section, we are going to extend the boundary control problem to the mixed
regime tra�c, which implies considering a nonlinear PDE for a urban network (3.34).

3.5 Boundary control for mixed regime tra�c

In this section, we consider control problem for large-scale urban networks with mixed regime
tra�c. Thereby, we again rely on the 2D LWR model resulting from the curvilinear coordinate
transformation (3.34), i.e., an assumption on uni-directional tra�c must still hold. Unlike in
the previous Section 3.4, here the tra�c state satis�es a fully nonlinear PDE system without
being restricted to any particular regime. Thus, we now consider a much more general problem
that poses a lot of technical issues to handle due to discontinuities in the solutions and weak
boundary conditions.

We design a boundary control law for some uni-directional urban transportation area
explicitly by relying only on intrinsic model properties and network geometry. The main
contribution of this section is to present the �rst explicitely derived boundary controller for a
2D conservation law model that is able to track a space- and time-dependent trajectory that
admits discontinuities in its solutions. To make this possible, we use the Hamilton-Jacobi
framework as it was done in Section 2.3, but extending it to 2D and handling space-dependency
of the fundamental diagram, see Section 3.2.6 for a general theory on Hamilton-Jacobi PDE
with space-dependent Hamiltonians. This means that instead of the classical Lax-Hopf formula
(2.32), we have to apply the viability theory to the solution of a Hamilton-Jacobi-Moskowitz
problem with a space-dependent Hamiltonian explained in [44, 11].

3.5.1 Problem statement

Problem 3.3
Our objective is to design boundary control laws uin(η, t) and uout(η, t) ∀(η, t) ∈ [ηmin, ηmax]×
R+ such that the vehicle density ρ(ξ, η, t) given by the system (3.34) tracks a desired trajectory
as t→∞.

In Section 2.3 a similar problem was posed for a single homogeneous road (see Problem 2.3
and Lemma 2.2) but there was no space-dependency in the FD. Here we extend this result for
a large urban area whose infrastructure is captured by the space-dependency in the FD, which
makes its solution more technically involved. Throughout this section we make the following
assumptions:

Assumption 3.1
In�ows φin(η, t) and out�ows φout(η, t) of the 2D tra�c system (3.34) must satisfy the follow-



3.5. Boundary control for mixed regime tra�c 99

ing inequalities ∀(η, t) ∈ [ηmin, ηmax]× R+

φin(η, t) ≤ φminmax(η), φout(η, t) ≤ φminmax(η), (3.72)

where φminmax(η) is the transportation capacity at the strongest bottleneck along the η-line de�ned

in (3.51).

Moreover, there exists ε > 0 such that φin(η, t) and φout(η, t) additionally satisfy:

t+tctr(η)∫
t

φin(η, τ)dτ ≤ tctr(η)φminmax(η)− ε and

t+tctr(η)∫
t

φout(η, τ)dτ ≤ tctr(η)φminmax(η)− ε,

(3.73)

where tctr(η) is the minimal controllability time for η-line, i.e., the time needed for a solution

evolving from one end of η-line to reach the opposite end:

tctr(η) = min


ξmax(η)∫
ξmin(η)

1

v(ξ̂, η)
dξ̂,

ξmax(η)∫
ξmin(η)

1

ω(ξ̂, η)
dξ̂

 . (3.74)

It means that in�ows and out�ows for each η-line are not allowed to exceed the capacity
of the strongest bottleneck of the corresponding line instantly (3.72), and (3.73) means that
they must be strictly lower during the time interval given by tctr(η) (3.74). This assumption
is necessary for the proof of Theorem 3.2.

Assumption 3.2
The solution of IBVP (3.34) is determined by the boundary conditions only, i.e., the initial

conditions have left the system.

Remark 3.1
Note that if Assumption 3.1 is satis�ed, then Assumption 3.2 holds trivially by taking t ≥ tmin,
where tmin is the largest time, after which it is guaranteed that the initial conditions will have

left the domain Ω̄. The value of tmin is given by

tmin = max
η∈[ηmin,ηmax]

tmin(η), where

tmin(η) = tctr(η)

1 +


1

ε

ξmax(η)∫
ξmin(η)

(
ρmax(ξ̂, η) + ρc(ξ̂, η)

)
dξ̂


 ,

which corresponds to equations (B.40) and (B.41) that were derived in Appendix B.5.4.

Here we consider a vehicle density given by system (3.34). To analyze this system for a
boundary control task (as it was done in the proof of Theorem 2.3), one can obtain its solution
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in explicit form for the equivalent H-J system (3.41). Let us assume that the space-dependent
�ow-density relation in (3.34) has a triangular shape (3.4), and then apply the variational
principle (3.47) to calculate the solution to (3.41). The derivation of its solution is quite
technical and, therefore, we shift it to Appendix B.5. Thus, if Assumptions 3.1 and 3.2 hold,
the solution M(ξ, η, t) reads ∀(ξ, η, t) ∈ Ω̄× [tmin,+∞) :

M(ξ, η, t) = min

{ t−Tv(ξ,η)∫
0

φin(η, τ) dτ +

ξmax(η)∫
ξmin(η)

ρ0(ξ̂, η) dξ̂,

t−Tω(ξ,η)∫
0

φout(η, τ) dτ +

ξmax(η)∫
ξ

ρmax(ξ̂, η) dξ̂

}
,

(3.75)

where

Tv(ξ, η) =

ξ∫
ξmin(η)

1

v(ξ̂, η)
dξ̂, Tω(ξ, η) =

ξmax(η)∫
ξ

1

ω(ξ̂, η)
dξ̂. (3.76)

Recall that t ∈ [tmin,+∞) implies that the e�ect of initial conditions has left the system (see
Remark 3.1).

Remark 3.2
We widely use the solution (3.75) obtained in H-J formalism to analyze the properties of

system (3.34) in order to design the boundary control. The major reason lies in weak boundary

conditions given by (3.37), which imply that not any control can be imposed at the boundaries

at any time. Thus, (3.75) is used to estimate time periods during which controls might not be

accepted by the system in terms of control restriction functions, as it was done in Section 2.3.

3.5.2 Boundary control design

Theorem 3.2
Consider a vehicle density function ρ(ξ, η, t) governed by system (3.34) ∀(ξ, η, t) ∈ Ω̄×R+, for

which Assumptions 3.1 and 3.2 hold, and the corresponding Hamilton-Jacobi solution given

by (3.75). Assume also the desired density pro�le ρd(ξ, η, t) and boundary �ows φind(η, t) and

φoutd(η, t) that are also given by (3.34). Then, if ∀(η, t) ∈ [ηmin, ηmax] × R+ the boundary

controllers in (3.34) are set to

(1) uin(η, t) = φind(η, t)− ke(η, t),
(2) uout(η, t) = φoutd(η, t) + ke(η, t),

where e(η, t) =

ξmax(η)∫
ξmin(η)

(
ρ(ξ̂, η, t)− ρd(ξ̂, η, t)

)
dξ̂ and k > 0,

(3.77)
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then ∀a, b: ξmin(η) ≤ a < b ≤ ξmax(η) we obtain ∀η ∈ [ηmin, ηmax]

lim
t→∞

b∫
a

(
ρ(ξ̂, η, t)− ρd(ξ̂, η, t)

)
dξ̂ = 0.

Notice that the boundary controllers uin(η, t) and uout(η, t) are applied by changing the
demand at domain entry and the supply at domain exit, respectively. The control functions
enter the system (3.34) through the minimum function (and therefore are not necessarily
ful�lled pointwise):

uin(η, t) = D (ρin(η, t)) , uout(η, t) = S (ρout(η, t)) .

Proof of Theorem 3.2. The proof shows that the MF solutions converge pointwise up to a
constant shift as t→∞, see Lemma 2.2 and Remark 2.4 for implications of this convergence.
Thus, the procedure here is the same as in the proof of Theorem 2.3 for a problem in 1D apart
from a few di�erences listed in Appendix B.6.

Remark 3.3
Note that the integral convergence of densities stated in Theorem 3.2 implies that the state

approximates the desired trajectory as time goes to in�nity, since a and b can be arbitrarily

close in space, i.e., ρ ≈ ρd as t→∞.

3.5.3 Numerical example

Here we demonstrate the e�ciency of our boundary controller (3.77) applied to tra�c evolving
on a urban network with geometry as in Grenoble downtown. The total surface of the chosen
Grenoble area is approximately 1.4× 1 km2. We track a desired density pro�le that is space-
dependent and periodic in time. The geometry of the studied area in Grenoble is shown in
grey in Figure 3.13. The directions of tra�c motion on roads were however modi�ed for this
example (numerically) such that all roads are uni-directional. Thus, there exists some global
direction of tra�c �ow towards North-East of the city and no loops are allowed, which is
exactly how it is illustrated in Figure 3.7. The speed limits on roads are taken from real
Grenoble network data: some roads can be driven with 30 km/h, and others can be driven
with 50 km/h.

We de�ne a numerical grid in Ω̄×R+ and deploy the Godunov scheme in 2D, as described
in Section 3.2.5. First, discretize the η dimension into m = 180 cells. Then, we use the 2D
Godunov scheme (3.36) for every j ∈ {1, . . . ,m} with a discretization step ∆ξ = 5 m (space
cell size in ξ dimension). We also set the time cell size ∆t = 0.1 s, which provides that the
CFL condition is satis�ed. In order to compute the integral related to the feedback term
in (3.77) we perform the Riemann summation for every j ∈ {1, . . . ,m} over all ξ cells, i.e.,
i ∈ {1, . . . , nj}, where nj is the number of ξ cells contained in each cell j.
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Recall that triangular FD is characterized by ρc = ρmax/3. The initial vehicle density
distribution is given ∀(ξ, η) ∈ Ω̄ by

ρ0(ξ, η) = ρmax(ξ, η).

We set the in�ow demand D (ρind(η, t)) and the out�ow supply S (ρoutd(η, t)) in the desired
system to be time-periodic functions:

D (ρind(η, t)) = φminmax(η)
[
0.6 + 0.4 sin

(
2π
( t

1200
+ 2

η − ηmin
ηmax − ηmin

))]
,

S (ρoutd(η, t)) = φminmax(η)
[
0.6 + 0.4 sin

(
2π
( t

2400
+ 2

η − ηmin
ηmax − ηmin

))]
.

Hence, these boundary �ow functions are guaranteed to be smaller than the minimal capacity
on each line of constant η. Note that these functions were chosen such to generate a mixed
regime desired trajectory ρd(ξ, η, t) with a period of τ = 2400 seconds. Such a desired trajec-
tory is generated on purpose, since the biggest advantage of boundary controllers (3.77) is the
ability to handle mixed tra�c regimes, which is mathematically a tricky case.

We demonstrate here, how the boundary control law enhances the tra�c state if there is
a feedback, i.e., k > 0 in (3.77). The controller is applied at both upstream and downstream
boundaries of the domain, and it physically corresponds to demand at the entry and supply
of the exit, as illustrated in Figure 3.4. Thus, we will compare two possible strategies:

1. Both feedforward and feedback terms are used, i.e., ∀(η, t) ∈ [ηmin, ηmax]× R+:

uin(η, t) = φind(η, t)− ke(η, t) and uout(η, t) = φoutd(η, t) + ke(η, t).

2. Only feedforward term is used (no feedback), i.e., ∀(η, t) ∈ [ηmin, ηmax]× R+:

uin(η, t) = φind(η, t) and uout(η, t) = φoutd(η, t).

In Figure 3.13 the evolution of tra�c density within the time interval of 2τ = 4800 seconds
is shown, i.e., 2 time periods of ρd(ξ, η, t). The middle column illustrates the evolution of
density controlled with the gain k = 5 · 10−5, i.e., strategy 1). The left column corresponds to
the density evolution using only the boundary conditions of the desired system, i.e., strategy 2).
The right column is related to the time-periodic desired density trajectory with the boundary
conditions as described above. We can observe the convergence to the desired pro�les for the
case with feedback that becomes visible already at t = 2τ , while this does not happen for the
case without feedback. Notice that all the density distributions are drawn in (x, y)-coordinates
in Figure 3.13, i.e., we had to rescale the functions and to perform the back transformation
from (ξ, η)-space to (x, y)-space.

In Figure 3.14, the L1 norm of the error in the number of cars is depicted as a function
of time for di�erent control gains. The density error ρ̃(x, y, t) is de�ned as in (1.10), and
its L1 norm can be computed as in (1.6). We can clearly see that a higher control gain
k = 10−3 provides a higher convergence speed in comparison to a controller with a smaller
gain k = 5 ·10−5. On the contrary, k = 0 will not achieve the goal even if we would start from
an empty city without any cars. This could work only if there is absolutely no di�erence in
the initial conditions with the desired pro�le, which is hardly ever possible.
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a) t = 0 b) t = 0 c) t = 0

d) t = 0.5τ
e)

t = 0.5τ f) t = 0.5τ

g) t = 1τ h) t = 1τ i) t = 1τ

j) t = 2τ k) t = 2τ l) t = 2τ

Figure 3.13: Tra�c control in Grenoble downtown. Right column: desired density ρd(x, y, t);
middle column: evolution of ρ(x, y, t) with k = 5 ·10−5; left column: evolution of ρ(x, y, t)

with k = 0. All the plots represent snapshots made at: a), b), c) t = 0; d), e), f) t = 0.5τ ; g),
h), i) t = 1τ ; j), k), l) t = 2τ .
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Figure 3.14: The L1 norm of the density error as a function of time for di�erent control gains.

3.5.4 Discussions

In this section, a boundary control technique was presented for a mixed regime tra�c density
evolving on a large urban network with a preferred direction of motion. The control goal was
formulated in a similar way as in Section 2.3 but in two dimensions, which caused additional
technical di�culties. The viability solution of the Hamilton-Jacobi PDE with space-dependent
Hamiltonian (3.75) was used to prove Theorem 3.2 stating that the desired trajectory is
approximated even if controls can not be directly imposed at the boundaries, i.e., we are able
to handle weak boundary conditions in 2D using control restriction functions as in Section 2.3.
Approximating desired density trajectory implies that the number of vehicles tracks pointwise
the desired number of vehicles. Thus, from the practical view point, this control goal has even
more sense than pointwise tracking of the desired density.

The controller (3.77) is applied at all boundaries of the urban area, and it acts as to track
a space- and time-dependent trajectory that can be in any tra�c regime. Its performance
has been veri�ed with the help of a numerical example using the geometry of an area in
Grenoble downtown. Thereby, the initial density distribution corresponded to a tra�c jam.
We compared two control strategies: without the feedback part and with it. As expected from
the theoretical results, feedback plays an essential role in tracking the desired density pro�le
in the mixed tra�c regime. Moreover, the control gain a�ects the convergence speed.
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3.6 Tra�c control using variable speed limit

Let us now demonstrate how to solve control tasks using a variable speed limit (VSL) in a
2D-plane by stating a new problem in (ξ, η)-space.

We consider the following IBVP on the same bounded domain (ξ, η, t) ∈ Ω̄× R+:

∂ρ(ξ, η, t)

∂t
+
∂Φ(ξ, η, ρ(ξ, η, t), u)

∂ξ
= 0,

φin(η, t, u) = min {D (ξmin, η, ρin(η, t), u) , S (ξmin, η, ρ (ξmin, η, t) , u)} ,
φout(η, t, u) = min {D (ξmax, η, ρ (ξmax, η, t) , u) , S (ξmax, η, ρout(η, t), u)} ,
ρ(ξ, η, 0) = ρ0(ξ, η),

(3.78)

where the �ux function Φ now depends also on a control parameter u ∈ [0, 1] that represents
the variable speed limit ratio: no VSL is applied if u = 1, and no movement is allowed if u = 0.
Applying variable speed limits should be understood as a �exible (temporary) restriction on
speed at which vehicles can drive on a given stretch of road. The speed limit varies according
to the current environmental and road conditions and is displayed on electronic tra�c signs.
Setting u = 1 implies that vehicles can drive at speeds bounded by the legal maximum (e.g.,
130 km/h on French highways, or by the comfort zone of drivers on German highways).

Note that �ux Φ is still a concave function with respect to ρ, and Φ is continuous in u.
Moreover, Φ(ξ, η, ρ, 0) = Φ(ξ, η, 0, u) = 0. One should see u as the in-domain controller that
a�ects the tra�c �ow. It is applied in the whole domain including its boundaries. Therefore,
the demand and supply functions in (3.78) have u as an additional argument.

3.6.1 Contributions

The material presented in this section was inspired by a previous work [78]. However, there
are four major points that were not considered in [78], and thus will be addressed here:

1. 2D systems: this is the �rst time that VSL control is applied on a large transportation
network directly using the intrinsic properties of the model only. Hence, the VSL con-
troller is designed by analysing the structure of a 2D conservation law (3.78) without
any discretization that needs to be done to obtain a numerical solution.

2. Space-dependent diagrams: we extend the result of [78] by considering space-dependent
diagrams, which imply space-dependent desired equilibrium pro�les.

3. Realistic FDs: in [78] it was assumed that ∂Φ(ξ, η, ρ, u)/∂u > 0 holds, see Figure 3.15a).
This assumption was made for simplicity to avoid multi-valued functions, i.e., there is
only one value of u for each �ow φ. In this section, we omit this condition by allowing
more general forms of FD. In general, applying speed limits (u < 1) can cause a shift
of the critical density towards larger values in realistic fundamental diagrams. This is
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ρ

Φ(ρ)
a)

0 ρc ρmax 0 ρ

Φ(ρ)
b)

ρc1 ρc2 ρc3 ρmax

f(ρ)
φ1

φ2

Figure 3.15: Fundamental diagrams and their dependence on speed limits: a) monotonic
dependence ∂Φ(ξ, η, ρ, u)/∂u > 0 used in [78]; b) dependence we assume here, i.e., possible
increase of ρc when stronger speed limits are applied (from real data, see [24]). Blue line:
u = 1. Red line: u = 0.7. Green line: u = 0.5. Bold dashed line: maximal �ow function
de�ned in (3.80).

schematically depicted in Figure 3.15b), see red FD for u = 0.7 and green FD for u = 0.5

and compare ρc3 and ρc2 with ρc1 achieved with u = 1. This means that applying
speed limits can increase the range of vehicle density, for which the free-�ow regime
is preserved. There it is also shown how VSL can enhance tra�c �ow for some given
densities in the congested regime, e.g., compare �ows φ2 with φ1 that can be achieved
with di�erent speed limits for the same vehicle density ρc2. These VSL e�ects on the
shape of FD were revealed from data obtained due to a real-life experiment conducted
on a European VSL-equipped motorway, see [24]. In general, we have no restrictions on
how FD must depend on VSL apart from Φ(ξ, η, ρ, 0) = 0, i.e., the �ux function is zero
if there is no movement allowed.

4. Investigate the smoothness of VSL controller : considering such a general class of fun-
damental diagrams may lead to irregular control policies. We investigate whether any
conditions must be imposed on the functional dependence of FD on VSL in order to
provide smoothness.

3.6.2 Problem statement

Let us �rst introduce the following notations:

min
η

, min
η∈[ηmin,ηmax]

, min
ξ

, min
ξ∈[ξmin(η),ξmax(η)]

,

and now we can formulate the stabilization problem as follows.
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Problem 3.4
Given ∀(ξ, η) ∈ Ω̄ the fundamental diagram Φ(ξ, η, ρ, u) and the initial density ρ0(ξ, η) with

dynamics governed by (3.78), �nd a VSL controller u(ξ, η, t) such that

lim
t→∞

ρ̃(ξ, η, t) = 0, ∀(ξ, η) ∈ Ω̄ (3.79)

where ρ̃(ξ, η, t) is the deviation from a desired equilibrium ρd(ξ, η) ∈ (0, ρmax(ξ, η)).

3.6.3 VSL control design

Let us de�ne a maximal �ow function f(ξ, η, ρ), which is the maximum possible �ow that can
be achieved at a given space point for a given vehicle density over all the VSL values (see the
thick dashed line in Figure 3.15):

f(ξ, η, ρ) = max
u∈[0,1]

Φ(ξ, η, ρ, u). (3.80)

We also introduce a multi-valued function G(ξ, η, ρ, φ), which is the inverse image of the
fundamental diagram with respect to the speed limit:

G(ξ, η, ρ, φ) = {u ∈ [0, 1] : Φ(ξ, η, ρ, u) = φ}. (3.81)

In general, it is possible that several values of speed limits u provide the same �ow value, see
the black dot in Figure 3.15. Therefore, G(ξ, η, ρ, φ) for a �xed set of parameters represents a
set, not a single value.

Theorem 3.3
Let the controller u = u(ξ, η, ρ) be given ∀(ξ, η) ∈ Ω̄ and for ρ = ρ(ξ, η, t) by the following

inclusion
u(ξ, η, ρ) ∈ G(ξ, η, ρ, φd(ξ, η, ρ)), with

φd(ξ, η, ρ) = B(ξ, η, ρ) min
ξ′

f(ξ′, η, ρ(ξ′, η, t))

B(ξ′, η, ρ)

and B(ξ, η, ρ) = 1 + γ

ξ∫
ξmin(η)

ρ̃(ξ̂, η, t)dξ̂,

(3.82)

where the control gain γ is a positive constant de�ned as

0 < γ < min
η

 ξmax(η)∫
ξmin(η)

ρmax(ξ̂, η)dξ̂


−1

.

Then there exists c = c(γ, ρ0) > 0 such that for every ρ0 ∈ C1(Ω̄) the system (3.78) with

initial condition ρ(ξ, η, 0) = ρ0(ξ, η) has a unique solution ρ ∈ C1(Ω̄× R+), which satis�es

max
(ξ,η)∈Ω̄

|ρ̃(ξ, η, t)| ≤ e−ct max
(ξ,η)∈Ω̄

|ρ̃(ξ, η, 0)|, ∀t ∈ R+, (3.83)

and moreover, ∀(ξ, η) ∈ Ω̄

lim
t→∞

Φ(ξ, η, ρ(ξ, η, t), u(ξ, η, ρ)) = min
ξ′

f(ξ′, η, ρd(ξ
′, η)). (3.84)
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Remark 3.4
Note that the VSL in-domain controller u(ξ, η, ρ) depends on the state, i.e., it is a feedback

control law. Let us give several comments on the controller structure:

1. Such a controller choice (3.82) assures that the system �ow is immediately set to the

desired �ow φd, i.e.:

Φ (ξ, η, ρ, u) = φd(ξ, η, ρ), ∀(ξ, η, t) ∈ Ω̄× R+.

2. The desired �ow φd(ξ, η, ρ) is designed such that it does not exceed the maximal �ow

function f(ξ, η, ρ) in any point, i.e., ∀(ξ, η, t) ∈ Ω̄ × R+. The space-dependency of the

desired �ow is incorporated into function B(ξ, η, ρ).

3. The function B(ξ, η, ρ) is constructed in such a way that it acts as a feedback linearization

for system (3.78). Thus, the system loses the conservation law structure, and we do not

have to handle discontinuities in the solution. This will be shown later in the proof of

Theorem 3.3.

4. The lower and upper bound on control gain γ are set such to guarantee that function

B(ξ, η, ρ) is positive, i.e., B : Ω̄ × R+ → R+. The upper bound on γ is required for

situations when the density error ρ̃ has a negative value, which can appear since we

design a general controller that drives any state to any desired equilibrium.

Proof of Theorem 3.3. First of all, we need to prove that the controller given by (3.82) is well-
de�ned. Namely, we will show that the set G(ξ, η, ρ, φd(ξ, η, ρ)) is not empty, i.e., the desired
�ow takes values in a bounded range that can be achieved by the VSL control. Indeed, for all
(ξ, η) ∈ Ω̄ we get from (3.82) that

φd(ξ, η, ρ)

B(ξ, η, ρ)
= min

ξ′

f(ξ′, η, ρ)

B(ξ′, η, ρ)
≤ f(ξ, η, ρ)

B(ξ, η, ρ)
, (3.85)

and, thus, by the positivity of function B(ξ, η, ρ) (see item 4 in Remark 3.4), we get
φd(ξ, η, ρ) ∈ [0, f(ξ, η, ρ)] ∀(ξ, η, t) ∈ Ω̄× R+. This interval exactly corresponds to the range
of the �ux function Φ(ξ, η, ρ, u(ξ, η, ρ)) w.r.t. u, therefore the set function G(ξ, η, ρ, φd(ξ, η, ρ))

is not empty.

Now we substitute the constructed �ux function

Φ(ξ, η, ρ, u(ξ, η, ρ)) = B(ξ, η, ρ) min
ξ′

f(ξ′, η, ρ)

B(ξ′, η, ρ)
(3.86)

into IBVP (3.78) and obtain:

∂ρ̃(ξ, η, t)

∂t
+ min

ξ′

f(ξ′, η, ρ)

B(ξ′, η, ρ)

∂B(ξ, η, ρ)

∂ξ
= 0.

Then, if we insert the de�nition of function B(ξ, η, ρ) from (3.82), this equation can be further
simpli�ed as

∂ρ̃(ξ, η, t)

∂t
= −γρ̃(ξ, η, t) min

ξ′

f(ξ′, η, ρ(ξ′, η, t))

B(ξ′, η, ρ)
. (3.87)
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This equation does not contain any partial space derivatives, and thus the controller really
acts such that the conservation law structure is lost. Moreover, this dynamic equation has
a stable equilibrium at zero. By [78], we obtain an exponential convergence to the desired
equilibrium with rate c > 0, which depends on controller gain γ and the maximal �ow function
f de�ned in (3.80).

Finally, we see that the convergence of densities ∀(ξ, η) ∈ Ω̄ ρ(ξ, η, t)→ ρd(ξ, η) as t→ +∞
implies that function B(ξ, η, ρ)→ 1, and thus (3.86) results into

Φ(ξ, η, ρ(ξ, η, t), u(ξ, η, ρ))→ min
ξ′

f(ξ′, η, ρd(ξ
′, η)),

which coincides with (3.84), and thus concludes the proof.

Remark 3.5
Property (3.84) means that the highest possible equilibrium constant �ow is achieved for a

given ρd(ξ, η). Namely, by de�nition of (3.80), the following double inequality holds ∀η ∈
[ηmin, ηmax]

min
ξ

Φ(ξ, η, ρd, 1) ≤ min
ξ
f(ξ, η, ρd) ≤ φminmax(η), (3.88)

where φminmax(η) is the capacity at the strongest bottleneck along the η-line (3.51). The left

inequality in (3.88) implies that the same or higher tra�c �ow can be achieved with lower

speed limits than for u = 1. Thus, any VSL controller in the system can provide at most the

�ow min
ξ
f(ξ, η, ρd), which is indeed achieved by controller (3.82) due to the property (3.84).

3.6.4 Smoothness of VSL controller

The VSL controller (3.82) is de�ned via inclusion, and in general it can result in a discontinuous
function in space. For example, imagine that two di�erent speed limits are able to provide the
desired tra�c �ow. In this case, our fear would be that the speed limits jump from one value
to another along the road in�nitely many times. However, if we assume additional properties
on how the �ux function should depend on the speed limit, we will obtain that u(ξ, η, ρ) is
di�erentiable almost everywhere.

Theorem 3.4
Assume that ∀(ξ, η) ∈ Ω̄, ∀ρ ∈ [0, ρmax(ξ, η)] and ∀u ∈ [0, 1] the �ux function Φ(ξ, η, ρ, u) is

di�erentiable. Moreover, assume that it is either twice di�erentiable and strictly concave in u

(congested regime) or monotonic in u and reaches its maximum at u = 1 (free-�ow regime).

Then using controller provided in Theorem 3.3 and assuming ρ ∈ C1(Ω̄) ∀t > 0, we can choose

the speed limit function u(ξ, η, ρ) such that it is di�erentiable almost everywhere w.r.t. ξ.

Remark 3.6
This additional assumption on the functional dependence of Φ(ξ, η, ρ, u) on u can be interpreted

as follows. When tra�c is in the congested regime and speed limit decreases, the tra�c �ow

can �rst increase for a �xed value density as illustrated in Figure 3.16b), and then it drops

to zero as the speed limit approaches zero. On the contrary, when tra�c is in the free-�ow
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Figure 3.16: FD as a function of u: a) monotonic dependence for a �xed ρ in the free-�ow
regime, b) concave dependence for a �xed ρ in the congested regime.

regime, the �ow of vehicles is maximal if there are no speed limits (u = 1), and when speed

limits are applied the �ow decreases monotonically as u decreases, see Figure 3.16a).

Remark 3.7
Notice that by Theorem 3.3, vehicle density is a di�erentiable function ρ ∈ C1(Ω̄) ∀t ∈ R+ if

the initial condition function of system (3.78) is di�erentiable, i.e., ρ0 ∈ C1(Ω̄).

Proof of Theorem 3.4. For the proof, we �x time t and line η. Let us consider an interval of
all possible ξ values and split it in two subsets H1 and H2 as:

[ξmin(η), ξmax(η)] =H1 ∪H2, where

H1 =

{
ξ ∈ [ξmin(η), ξmax(η)]

∣∣∣∣∣ ∂Φ(ξ, ρ(ξ), u(ξ, ρ))

∂u
6= 0

}
,

H2 =

{
ξ ∈ [ξmin(η), ξmax(η)]

∣∣∣∣∣ ∂Φ(ξ, ρ(ξ), u(ξ, ρ))

∂u
= 0

}
.

We introduce also further subsets of H1 and H2 that correspond to their interiors:

E1 = int(H1), E2 = int(H2).

Moreover, we introduce a complementary subset E0 as

E0 = (H1 \ E1) ∪ (H2 \ E2),

such that E0 ∪ E1 ∪ E2 = H1 ∪H2 = [ξmin(η), ξmax(η)].

It is clear that sets E1 and E2 have the same Lebesgue measure as sets H1 and H2, re-
spectively. Thus, the set E0 is of measure zero. This means that showing that the controller
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function u(ξ) = u(ξ, ρ(ξ)) is di�erentiable on sets E1 and E2 would imply that it is di�eren-
tiable almost everywhere. Let us �rst consider set E1 with the following function de�ned from
(3.86):

F1(ξ, u) = Φ(ξ, ρ(ξ), u)−B(ξ, ρ(ξ))k, where k = min
ξ′

f(ξ′, ρ(ξ′))

B(ξ′, ρ(ξ′))
.

This function is di�erentiable by the assumptions made in Theorem 3.4 and is equal to zero
by (3.86). Moreover, the derivative of Φ(ξ, ρ(ξ), u) with respect to u is non-zero on set E1

by its de�nition. This immediately implies that the derivative of F1(ξ, u) with respect to u is
also non-zero. Therefore, we can use the Implicit Function Theorem, which assures that there
exists a di�erentiable function u(ξ) on this set satisfying (3.86).

In the second set E2 we de�ne another function as

F2(ξ, u) =
∂Φ(ξ, ρ(ξ), u)

∂u
.

Notice that F2(ξ, u) is zero by the de�nition of set E2, and it has a negative derivative with
respect to u, since we assumed concavity of the �ux function for the congested tra�c regime
(in a pure free-�ow regime set E2 would be empty). This means that we can use the Implicit
Function Theorem again, thus a di�erentiable function u(ξ) exists on set E2 as well.

Finally, combining these results, we obtain that the controller function u(ξ) is di�erentiable
on E1 ∪ E2, i.e., almost everywhere.

Proposition 3.1. In case of concave dependence of FD on speed limits, u(ξ, η, ρ) can some-

times be chosen from two values G(ξ, η, ρ, φd) for ρ being in congested regime, see Figure 3.16

b). Then, the most appropriate choice from the practical point of view is the minimal value,

since it provides the free-�ow tra�c regime:

u(ξ, η, ρ) := min{G(ξ, η, ρ, φd)}.

As an example, consider the intersection point (black dot) in Figure 3.15b) corresponding to

the �ow-density pair that can be achieved using either u = 1 or u = 0.7. In this case, we

should choose u = 0.7, since this provides the free-�ow regime and, thus, a more smooth tra�c

motion.

To conclude, we have shown that the VSL controller is di�erentiable almost everywhere if
the fundamental diagram depends on u is a special way, i.e., monotonically increasing function
of u in free-�ow regime and a concave function of u in congested regime. In order to be able
to apply the designed VSL controller (3.82) in practice (or in our case, it will be a numerical
example), we should �rst discuss �ux functions depending on u by suggesting an explicit
relation satisfying assumptions made in Theorem 3.4.

3.6.5 Parametrization of fundamental diagram

Let us assume that the basic shape of FD is triangular as in (3.4), which should be modi�ed
due to the dependence on speed limits. We denote v1(ξ, η) and ω1(ξ, η) as kinematic wave
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speeds for u = 1 in the free-�ow and in the congested regime, respectively. We can assume a
linear dependence of kinematic wave speeds on speed limits, e.g.,{

v(ξ, η, u) = u v1(ξ, η),

ω(ξ, η, u) = ω1(ξ, η) + (1− u)ωadd(ξ, η),
(3.89)

where ωadd(ξ, η) is an additional value expressing the e�ect of speed limit on the kinematic
wave speed in the congested regime. This value is bounded and will be de�ned later. Thus,
if speed limits are high (u � 1), drivers are moving slowly, and therefore start braking late
(larger safety distance for lower speeds). Let us estimate the range of reasonable values for
ωadd(ξ, η) such that ∀(ξ, η) ∈ Ω̄

∂φmax(ξ, η, u)

∂u
≥ 0. (3.90)

Condition (3.90) means that it is not possible to enhance the transportation capacity by apply-
ing speed limits, see (3.88). This comes from the fact that φmax is determined by the number
of lanes and free-�ow kinematic wave speed, which depends on the legal maximum speed that
takes speci�c values depending on a country and road type. Thus, the transportation capacity
is a property of urban network geometry and it should not be changed with a variable speed
limit. In the following, we skip the dependence on (ξ, η) for simplicity of notations. We insert
ω(u) and v(u) from (3.89) into the de�nition of φmax for triangular FD (2.3) and get

φmax(u) = v1ρmax
u (ω1 + (1− u)ωadd)

ω1 + v1u+ (1− u)ωadd
. (3.91)

We take the partial derivative of (3.91) w.r.t. u and obtain

∂φmax(u)

∂u
= v1ρmax

(ω1 + (1− u)ωadd)
2 − u2v1ωadd

(ω1 + v1u+ (1− u)ωadd)2
. (3.92)

In accordance with condition (3.90), we need to �nd such range of ωadd that (3.92) is positive.
We distinguish two di�erent cases, for which the nominator of (3.92) takes non-negative values
∀u ∈ [0, 1]:

1. Case ωadd ≤ 0. Then, obviously ∂φmax(u)/∂u > 0 holds always.

2. Case ωadd > 0. Then, we must provide that

ω1 + (1− u)ωadd ≥ u
√
ωaddv1 ⇒ ω1 + ωadd ≥ u (ωadd +

√
ωaddv1) .

In the worst case, this inequality must be satis�ed for u = 1, which results into

ωadd ≤
ω2

1

v1
.

This expression yields the upper bound for ωadd. By the de�nition (3.89) and the fact that
ω(u) should be non-negative, the lowest bound is −ω1. Thus, the reasonable range reads

ωadd ∈
[
− ω1,

ω2
1

v1

]
.
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For the numerical example, we will pick the largest possible value ωadd = ω2
1/v1, since by

(3.92) this value provides ∂φmax(u)/∂u = 0 at u = 1. From the physical viewpoint, this
choice implies the largest possible in�uence of VSL on FD in the congested regime (the largest
possible surface enclosed by the blue line in the congested regime and the thick dashed line in
Figure 3.17).

3.6.6 Optimal equilibrium

The controller given by (3.82) can be applied to achieve any type of desired equilibrium
ρd(ξ, η) ∈ (0, ρmax(ξ, η)) ∀(ξ, η) ∈ Ω̄. However, for the following numerical example, we seek
to achieve an optimal equilibrium ρoptd that corresponds to the throughput maximization and,
at the same time, to the density maximization, i.e., the highest possible number of cars should
be able to pass the system at maximal �ow. Thereby, the number of cars in a urban area
is directly related to the vehicle density in it that can be increased due to the change in the
shape of fundamental diagram caused by u(ξ, η, ρ), as it is shown in Figure 3.17.

The method to compute exactly equilibrium pro�les providing the maximal �ow in the
system was presented in Section 3.4.1. However, there it was done for u = 1, i.e., no speed
limits were applied. With the help of speed limits, we are now able to extend the result of
Section 3.4.1 by maximizing also the number of vehicles that can pass the system at maximal
�ow. In particular, we seek to �nd ∀(ξ, η) ∈ Ω̄ speed limits uopt(ξ, η) such that

φmax(ξ, η, uopt) = φminmax(η, 1),

where φminmax(η, 1) is the maximal possible steady state �ow determined by the capacity at the
strongest bottleneck along the η-line (3.51). Thus, the VSL controller must provide that this
steady state �ow is achieved, and at the same time

ρoptd (ξ, η) = ρc(ξ, η, u
opt).

Thus, the desired equilibrium density corresponds to the critical density achieved for uopt.
In terms of Figure 3.17, this means that if φminmax(u = 1) = φmax(uopt) for some (ξ, η) ∈ Ω̄,
then uopt is such that ρoptd = ρc(u

opt). Speaking in terms of Theorem 3.3, the desired �ow
φd = φmax(uopt). Hence, the controller should act such to provide the same maximal possible
�ow, while the density is increased, since ρoptd > ρ1. Notice that due to the change of FD
shape, at the desired equilibrium tra�c operates only at critical density, i.e., there are no
congestions in the whole area.

Let us again skip (ξ, η) in the notations for simplicity. In order to �nd uopt ∀(ξ, η) ∈ Ω̄,
we use (3.91) and (2.3), and obtain

φmax(uopt) = v1
v1 + ω1

ω1
ρc

uopt
(
ω1 + (1− uopt)ωadd

)
ω1 + v1uopt + (1− uopt)ωadd

, (3.93)

where ρc corresponds to the critical density as in (2.3) for v = v1 and ω = ω1.



114 Chapter 3. Uni-Directional Tra�c on Networks

ρ

Φ(ρ)

0 ρmaxρoptd
ρ1

φminmax(uopt)

Figure 3.17: Blue line: FD for u = 1. Red line: FD for u = uopt.

Further, we use ρcv1 = φmax1 with φmax1 being the highest possible �ow for some (ξ, η) ∈ Ω̄

reached with u = 1, and ωadd = ω2
1/v1 to rewrite (3.93) as

φmax(uopt) = φmax1
uopt

(
v1 + (1− uopt)ω1

)
ω1 + (v1 − ω1)uopt

. (3.94)

Let us now introduce a coe�cient κ ∈ (0, 1] to denote the ratio of the �ow at the strongest
bottleneck along the η-line to the maximal possible �ow at space point (ξ, η) for u = 1:

κ(ξ, η) =
φminmax(η, 1)

φmax(ξ, η, 1)
.

From (3.94) we get the following equation ∀(ξ, η) ∈ Ω̄ to be solved for uopt:

κ =
uopt

(
v1 + (1− uopt)ω1

)
ω1 + (v1 − ω1)uopt

,

which can be further expanded as(
uopt

)2
+ uopt

(
κ

(
v1

ω1
− 1

)
− v1

ω1
− 1

)
+ κ = 0.

This is a quadratic equation with respect to uopt, which yields two possible solutions. We pick
the one with the minus sign, since this guarantees that uopt remains below 1:

uopt =
µ+ 1− κ(ν − 1)−

√
(ν + 1− κ(ν − 1))2 − 4κ

2
, (3.95)

with ν = v1/ω1. Finally, the optimal equilibrium is the critical density de�ned in (2.3)
obtained for uopt from (3.95):

ρoptd =
ω(uopt)

v(uopt) + ω(uopt)
ρmax, (3.96)

where v(uopt) and ω(uopt) can be taken from (3.89) for u = uopt and ωadd = ω2
1/v1.
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3.6.7 Numerical example

As a network we again take the downtown of Grenoble. All the infrastructure parameters and
the two-dimensional discretization scheme are exactly the same as described in the numerical
example for 2D boundary control presented in Section 3.5.3.

It is again assumed that the critical density in triangular FD is ρc = ρmax/3. The initial
datum is given ∀(ξ, η) ∈ Ω̄ by

ρ0(ξ, η) = 3ρmax(ξ, η)/4,

thus, it is in the congested tra�c regime. The in�ow demand and the out�ow supply are set
to the maximal possible steady-state �ows for u = 1, that is

D (ξmin, η, ρin(η), u) = φminmax(η, 1), S (ξmax, η, ρout(η), u) = φminmax(η, 1),

which are the only possible values, if we want to maximize the throughput of the system.

The desired optimal steady state (3.96) is constructed following the steps described above,
and it is depicted in Figure 3.18b). This state is characterized by the maximal possible �ow
through the system achieved for the maximal possible number of vehicles. The numerical
scheme needed to discretize the PDE system (3.78) is again the Godunov scheme in 2D that
was described in Section 3.2.5. The only di�erence is that the for every grid point in space
and time ∀(i, j, k) ∈ {1, . . . ,m}×{1, . . . , nj}×Z+, the �ux function must include dependence
on VSL controller as in (3.89) for u = uopt from (3.95).

Note that in (3.82) there exists an upper bound for the controller gain γ that guarantees
that B(ξ, η, ρ) > 0 ∀(ξ, η, t) ∈ Ω̄ × R+. However, one can accelerate the convergence rate by
choosing the maximal possible γ(η, t) for each line of constant η and for each time. Thus, we
will compare the control results obtained with two di�erent control gains:

1. A constant control gain γ = 0.14 that is the largest possible value for a given urban
network (Grenoble downtown) that matches the bounds stated in Theorem 3.3.

2. A time- and space-varying control gain γ(η, t):

γ(η, t) =
1− ε

max
{
−min

ξ

ξ∫
ξmin(η)

ρ̃(ξ̂, η, t)dξ̂, δ
} , (3.97)

where δ > 0 is chosen to get γ > 0 even if the minimum is positive (since the arbitrarily
large γ can be used), and ε > 0 provides the lower bound for B(ξ, η, ρ).

Notice that Theorem 3.3 was proved for the case of constant γ (as in item 1). However,
the convergence can be accelerated also with γ that depends on η and t as in (3.97). The only
issue is that function B must be always positive, and also that γ can not depend on dimension
ξ, since in this case the feedback linearization would not work such that the dynamic equation
turns into(3.87) due to an additional derivative term w.r.t. ξ.
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Figure 3.18c) - f) illustrates the temporal evolution of tra�c density under the VSL control
(3.95) with a time-varying gain given by (3.97) with ε = 0.01 and δ = 0.1. Thereby, at every
time step, the demand and supply functions at domain boundaries are set to the maximal
possible throughput corresponding to the desired �ow in the system. We observe that the
state converges to the desired equilibrium, which becomes visible already after t = 2 hours of
simulation time.

Remark 3.8
Notice that at the desired equilibrium the critical density at each point of space will be higher

than at initial time, since the VSL control changes the FD shape and a�ects the desired density

is as in (3.96). Therefore, the results presented in Figure 3.18 may look like driving the tra�c

state towards more congested regime, although it is still the free-�ow (recall that in the desired

equilibrium the tra�c operates at critical density, which becomes higher with VSL control).

The tra�c �ow corresponds to the maximal possible steady state �ow that is only determined

by the network geometry (capacities at strongest bottlenecks).

Further, we compute the L1 norm of the error in the number of cars as in (1.6) with
ρoptd (ξ, η) from (3.96) being the desired state. Its temporal evolutions for two di�erent control
gains are shown in Figure 3.18a). As in the previous example, we again observe that a larger
control gain (3.97) provides a higher convergence speed in comparison to the constant γ = 0.14.
Recall that as soon as we start applying control, the tra�c system is completely set to the
free-�ow regime, since we always choose the minimal VSL value (see Proposition 3.1).

3.6.8 Discussions

In this section, we designed an in-domain controller for the tra�c state evolving on urban
networks with dynamics governed by (3.78). This controller is a parameter incorporated into
the �ux function, and it should be interpreted as the ratio of a variable speed limit to the
regular maximal allowed speed, i.e., u < 1 means that the speed limit is applied. Real data
con�rmed however that the tra�c �ow can be enhanced for a given density in the congested
regime, i.e., applying VSL might be an e�cient solution to manage congestions. It also revealed
that the VSL changes the shape of the fundamental diagram such that the critical density is
increased, i.e., applying speed limits may result into setting the tra�c state to the free-�ow
regime. This, in general, results into a more smooth tra�c motion without sudden breaking,
which has also a positive ecological impact.

The VSL controller is presented in Theorem 3.3. It is applied continuously in space and
time, and the controller a�ects the state such that the desired �ow is immediately achieved,
and the vehicle density converges to the desired equilibrium as in (3.87). Thus, the controller
changes the structure of the PDE system (3.78) such that it is not a conservation law, i.e., the
controller performs a feedback linearization. This considerably simpli�es the analysis, since
for continuous initial datum the solution to the state equation is a continuous function (and
no weak formulation is required). Thus, it was shown that the exponential convergence to the
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a) L1 error b) ρoptd

c) t = 0 d) t = 10 min

e) t = 30 min f) t = 2 hours

Figure 3.18: a) L1 norm of density error as a function of time for di�erent control gains, b) the
desired optimal equilibrium as in (3.96). Tra�c �ow control by VSL in Grenoble downtown.
Density ρ(x, y, t) at: c) t = 0, d) t = 10 min, e) t = 30 min, f) t = 2 hours.
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desired state is guaranteed under the proposed VSL controller (3.82).

Further, we analyzed the structure of the proposed controller in Theorem 3.4. Thereby, it
was assumed that FD depends on speed limits such that it monotonically increases with u for
the free-�ow tra�c regime and it reveals a concave dependence for the congested tra�c regime.
Under these assumptions, the controller was shown to be di�erentiable almost everywhere with
respect to ξ-dimension, which determines the �ow motion.

Then, we suggested a speci�c way to parametrize the triangular FD with u such that all
these assumptions hold. This analysis allowed us to obtain the explicit form of FD, which was
then analyzed to obtain the controller (3.95) providing the optimal steady state (3.96). This
desired equilibrium corresponds to the throughput maximization for the maximal possible
number of vehicles, i.e., as many vehicles as possible pass a urban area at maximal �ow (for
the same total traveling time). This is guaranteed by the modi�cations in the shape of FD
introduced by the VSL controller that shifts the critical density such that the desired state
corresponds to the critical density. Thus, the tra�c is in the free-�ow regime everywhere in
the domain, while the maximum throughput is experienced by the maximal possible number
of vehicles. The performance of the designed VSL controller was demonstrated on a numerical
example, where a congested tra�c is driven to the optimal equilibrium. The convergence to
the desired state was observed after 2 hours. Notice that the convergence speed is determined
by the controller gain that can be chosen larger, although its upper bound must not be vio-
lated. The value of the upper bound depends on the network infrastructure. The convergence
happens also faster if the state is close to the desired equilibrium.

3.7 Chapter conclusions

This chapter was devoted to control of tra�c on urban networks of any size whose dynamics
are described by a conservation law in two dimensions such as 2D LWR (3.1). Tra�c is viewed
from the macroscopic point of view within this modeling approach. As in the 1D case, tra�c
is treated as a �uid that now propagates on a continuum 2D plane.

In Section 3.1 the 2D LWR model was presented. The model is inspired from crowd
modeling with the only di�erence being the restriction for vehicles to move on real physical
roads. Thus, the model requires to assume that the urban network is dense enough to be
viewed as a continuum plane. This plane is bounded by the size of the considered urban
area. To model tra�c, one needs to have information about geometry and infrastructure of
the urban network under study, i.e., the location of roads and intersections, number of lanes
at each road and its speed limits. This information is used to de�ne the maximal density and
capacities on the network. Then, all these parameters are approximated on a continuum plane
by applying the inverse distance weighting method that assigns values to variables everywhere
as a function of the distance to real roads. All these parameters being speci�c for di�erent
urban networks are incorporated into the fundamental diagram that becomes an explicitly
space-dependent function.
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The 2D LWR model was compared to an MFD-based model in Section 3.1.5 using a
steady-state vehicle density predicted by commercial microsimulator Aimsun as a reference
distribution. It appeared that the 2D LWR model is able to predict steady-states even more
accurately than the MFD-based model. Moreover, it tracks more precisely shapes of congested
areas, which may play an important role for localized congestion mitigation control tasks.
Thus, the 2D LWR model was justi�ed as a reasonable choice for model-based control design.
However, a direct analysis of such a model is a complicated task due to the second space
derivative. It is also unclear which boundary point should be actuated to a�ect a speci�c
in-domain point or area.

We had to �nd an approach to analyze this model such that one gets information about
the trajectories followed by vehicles in the urban area. Such analysis became possible, since
the structure of the 2D LWR model limits its applicability only for networks that consist
of uni-directional roads. The direction �eld depends only on network geometry and not on
state. If there are no loops in a network we can de�ne a curvilinear coordinate transformation
that was presented in Section 3.2. This coordinate transformation translates the 2D tra�c
system into a parametrized set of 1D systems with space-dependent fundamental diagram
(3.34), which is a way easier to analyze. Mathematically, it means that instead of two partial
derivatives with respect to space the modi�ed system has only one. Although this coordinate
transformation could be de�ned due to speci�c restrictions of 2D LWR model, this model can
still be used to predict tra�c evolution in several frequently occurring situations, e.g., when
during the morning rush hour all vehicles stream to the city center where most companies are
located.

Further, we have presented several results obtained by analysing the 2D LWR system in
curvilinear coordinates. Namely, in Section 3.3 we have elaborated a technique to obtain
steady-state vehicle distribution only by knowing in�ow and out�ow data of a urban area.
This ability to analyze equation in 2D to obtain admissible equilibria is an essential result
that enables formulating control tasks for stabilization of tra�c evolving on large-scale urban
networks. Further, this result was directly used in Section 3.4, where the model was analyzed
for a boundary control design to mitigate congestions in some urban area. Thereby, tra�c
was restricted to the congested regime for mathematical simplicity, since otherwise one would
have to deal with solution discontinuities.

The Hamilton-Jacobi formalism enabled to handle discontinuities for the boundary control
design in Section 3.5, where the 2D LWR model in curvilinear coordinates was considered.
There, the problem of approximating the desired vehicle trajectory has been posed for a
mixed tra�c regime in asymptotic time. The problem was solved in a similar way as it
was done for the 1D case in Section 2.3. The additional di�culty was introduced due to
the explicit space-dependency in the fundamental diagram such that the classical Lax-Hopf
formula could not be applied. Instead, we had to apply the viability theory elaborated for
the case of space-dependent Hamiltonians. For a numerical example, we took the structure of
Grenoble downtown as a urban network. Simulation results revealed that the feedback part in
the boundary controller is an essential component that makes the convergence to the desired
vehicle trajectory possible.
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Finally, we used the 2D LWR model in curvilinear coordinates to design a variable speed
limit controller in Section 3.6. The VSL controller is used to directly a�ect the tra�c �ow by
imposing temporary restrictions on allowed speed, which is often used for speci�c situations
such as accidents, bad weather conditions, etc. This is an in-domain controller that is applied
continuously in space in the whole domain. It acts as a feedback linearization such that the
state equation loses its conservation law structure, which exempts us from considering the
solution in the weak formulation due to shocks if the initial datum is continuous. The VSL
controller can be used to stabilize the 2D system to any desired space-varying equilibrium.
If FD has a concave dependence on controller in the congested tra�c regime and a linear
one in the free-�ow regime (which is a physically intuitive assumption), then the controller
is di�erentiable almost everywhere in space. The smoothness of the VSL controller has been
studied, since the desired vehicle �ow can sometimes be achieved for several speed limit ratio
values. We have also investigated how to design an optimal steady state that corresponds to
the throughput maximization achieved for the maximal possible number of cars. In a numerical
example, we again used the structure of Grenoble downtown, and then demonstrated how the
VSL controller makes the vehicle density converge to the desired equilibrium.

In the next Chapter 4, we will extend all these results to capture urban tra�c that admits
multiple directions and �ow crossings, since assuming a network without loops was the main
limitation of this chapter.



Chapter 4

Multi-Directional Tra�c on Networks

This chapter is devoted to modeling and control of multi-directional tra�c evolving on
large-scale networks. Here we directly address the main limitation of the previous Chapter 3,
which was the assumption on the existence of some preferred direction of motion on a network
level. We propose a novel model that is able to describe tra�c evolving in multiple directions
on a urban network on a macroscopic level in Section 4.1. Thereby, we provide the derivation
of this model step-by-step from the CTM at one intersection. Then, in Section 4.2, the model
is validated using synthetic data from microsimulator, as well as using real data that we
get from real sensors installed in the center of Grenoble. Finally, in Section 4.3, we design a
boundary controller for tra�c governed by our new model that acts to mitigate congestion.

4.1 Multi-directional continuous tra�c model

In this section, we propose a new multi-directional two-dimensional continuous tra�c model.
It is called the NEWS model, since it consists of four PDEs that describe the evolution of
vehicle density in four cardinal directions: North, East, West and South. This model can be
applied to predict tra�c evolution on a general urban network of arbitrary size by knowing
only the information about its boundary �ows, as well as network topology, turning ratios at
each intersection and infrastructure parameters. The literature review on existing works in
this direction is given in Chapter 1.

The contribution of this section is the formal derivation of a macroscopic model describing
tra�c propagation in a large tra�c urban network of arbitrary size by using the classical
CTM at each intersection. The resulting NEWS model is a hyperbolic system with bounded
densities in each layer. It will also be shown that the model also corresponds to a conservation
law with the conserved quantity being the vehicle density in the domain. The main novelty
of our model is that it includes mixing between di�erent density layers, i.e., it allows cars to
change their original direction of movement. For example, imagine a car going to the North
that changed its direction and turned to the East. Thus, there is a non-zero �ow from one
layer to another, which is captured by our model. We present a method allowing to transform
tra�c evolving on arbitrarily sparse networks into a continuum model, i.e., PDE. This is a
bene�cial form when it comes to modeling on a large scale, since it allows to describe tra�c
in terms of aggregated variables rather than tracking the motion of each individual vehicle.

First of all, we review the CTM for one intersection in Section 4.1.1, thereby introducing
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φin2
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(x2, y2)
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Figure 4.1: Example of a small tra�c network consisting of 3 intersections. We consider the
intersection �lled in blue.

several important assumptions that must hold in this chapter. Then, we present the NEWS
modeling framework with all the concepts and notations in Section 4.1.2. Further, we derive
the NEWS model from the CTM in Section 4.1.3. Thereby, the model is expanded from
one intersection to cover the whole network by applying the continuation method which was
recently introduced in [110]. The continuation method turns an ordinary di�erential equation
(CTM) into a partial di�erential equation. Therefore, NEWS model is a macroscopic (PDE-
based) model that can be seen as a direct extension of the classical LWR to general urban
networks.

4.1.1 Tra�c model for one intersection

In this section, we seek to derive a multi-directional macroscopic tra�c model that is able to
predict the temporal evolution of tra�c density. To achieve this, we need �rst of all to derive
a tra�c �ow model for one intersection. During this derivation we will be able to de�ne
several important variables that will be later used to derive a continuous model for the whole
network. In particular, we use the cell transmission model (CTM) [38] at one intersection to
introduce the concept of partial �ows from one road to another. Partial �ows will then be
used to express the tra�c �ow directions as a function of the network topology (more details
are given below).

Let us consider an intersection located at (x1, y1) with two incoming and two outgoing
roads (as illustrated in Figure 4.1), and show a step-by-step derivation of the tra�c model
at this intersection. Then, the tra�c model will be generalized for an intersection with an
arbitrary number of roads.
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4.1.1.1 Flows at intersections: example

We use the demand-supply concept described in Section 2.1.5 to derive a tra�c model for the
intersection at (x1, y1) as illustrated in Figure 4.1. In particular, we need to determine in�ows
φin(t) and out�ows φout(t) for this intersection that stay in balance

φin1 + φin2 = φout1 + φout2 .

Notice that unlike in previous chapters of this thesis, we now indicate the in�ow and
out�ow w.r.t. some particular intersection (and not a domain boundary as it was meant, e.g.,
in (2.57)). Thus, we use a subscript to number roads, and a superscript is used to indicate
whether this particular road is incoming or outgoing, e.g., φinmax,1 is the capacity of incoming
road number 1.

Assume that the �ow-density relation at any road is given by a triangular FD as in (2.2).
Then, the demand and supply functions are given by (2.17).

Remark 4.1
Notice that, in general, the derivation of the model relies only on the demand-supply concept,

which is applicable also for a more general FD shape (not only triangular) as long as it is a

concave function of density. We assumed the triangular shape only to gain more clarity during

the upcoming step-by-step model derivation.

Each incoming road has its own �ow demand to enter the intersection (illustrated in Figure
4.1) that reads with (2.17):

D1 = min{vin1 ρin1 , φinmax,1}, D2 = min{vin2 ρin2 , φinmax,2}. (4.1)

A part of the �ow entering the intersection goes to the �rst outgoing road and the other
part goes to the second outgoing road. These �ows are split according to the turning ratios

(TR) αij ∈ [0, 1], where i is the index of the incoming road and j is the index of the outgoing
road. For instance, if α11 = 0.6 and α12 = 0.4, then 60% of the cars from the �rst incoming
road turn to the �rst outgoing road, and 40% turn to the second outgoing road. Note also
that the sum of turning ratios for each incoming road must be 1, i.e.,

α11 + α12 = 1, α21 + α22 = 1.

The concept of TR was discussed, for example, in [39] for the case of diverging intersections.

Let us now introduce the concept of partial demands. A partial demand refers to the
demand �ow of an incoming road to enter a particular outgoing road. These are equal to the
overall demands (4.1) (demand to enter an intersection) multiplied by the corresponding TR:

D11 = min{α11v
in
1 ρ

in
1 , α11φ

in
max,1}, D12 = min{α12v

in
1 ρ

in
1 , α12φ

in
max,1},

D21 = min{α21v
in
2 ρ

in
2 , α21φ

in
max,2}, D22 = min{α22v

in
2 ρ

in
2 , α22φ

in
max,2},
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where the �rst number in the subscript of D is related to the incoming road, and the second
number is related to the outgoing road.

In accordance with [39], each outgoing road provides supply for the �ow coming from an
intersection, which in case of triangular FD (2.17) reads:

S1 = min{ωout1 (ρoutmax,1 − ρout1 ), φoutmax,1},
S2 = min{ωout2 (ρoutmax,2 − ρout2 ), φoutmax,2}.

(4.2)

Let us also assume that each outgoing road has a particular supply for each incoming
road, e.g., S1 is split into S11 and S21 (recall that the �rst number is referred to an incoming
road). In order to de�ne these partial supplies, we introduce supply ratios (SR) βij ∈ [0, 1]

used to denote the proportion of supply of outgoing road j that it provides for the maximal
�ow coming from a particular incoming road i relative to the supply it provides for all the
incoming roads. The supply ratio βij is thus de�ned as

βij =
αijφ

in
max,i∑nin

k=1 αkjφ
in
max,k

, (4.3)

where nin is the overall number of incoming roads for some intersection, here nin = 2. Notice
that for each outgoing road the sum of its SR must be 1, i.e.,

β11 + β21 = 1, β12 + β22 = 1.

With the de�nition of supply ratios (4.3), we are now ready to formulate partial supplies
as the overall (intersection-related) supply given by (4.2) multiplied by the corresponding SR:

Sij = βijSj = min{βijωoutj (ρoutmax,j − ρoutj ), βijφ
out
max,j}.

Under the assumption of SR, we can also de�ne partial �ows as the minimum between
partial demand and partial supply, e.g., φ11 = min{D11, S11} yields:

φ11 = min{α11v
in
1 ρ

in
1 , β11ω

out
1 (ρoutmax,1 − ρout1 ), α11φ

in
max,1, β11φ

out
max,1}.

Finally, the intersection-related �ows from incoming and to outgoing roads are expressed
as sums of the corresponding partial �ows, i.e.,

φin1 = φ11 + φ12, φin2 = φ21 + φ22,

φout1 = φ11 + φ21, φout2 = φ12 + φ22.

Notice that the sum of �ows before and after the intersection is always conserved, i.e.,
φin1 + φin2 = φout1 + φout2 . Thus, we have established a tra�c �ow model at one particular
intersection from Figure 4.1 by explicitly deriving expressions for its in�ows and out�ows.
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4.1.1.2 Flows at intersections: generalization

We can now generalize the calculations from above to any intersection with nin incoming roads
with densities ρini and �ows φini for i ∈ {1, . . . , nin}, and nout outgoing roads with densities
ρoutj and �ows φoutj for j ∈ {1, . . . , nout}.

Every incoming road i has its own �ow demand Di to enter its source intersection:

Di = min{vini ρini , φinmax,i}.

Then, we de�ne partial demands from road i to road j as

Dij = αijDi = min{αijvini ρini , αijφinmax,i}.

Supply Sj of the outgoing road j is simply given by

Sj = min{ωoutj (ρoutmax,j − ρoutj ), φoutmax,j}.

Partial �ow φij from incoming road i towards outgoing road j is given by

φij = min{Dij , Sij} =

= min{αijvini ρini , βijωoutj (ρoutmax,j − ρoutj ), αijφ
in
max,i, βijφ

out
max,j}.

(4.4)

Finally, the �ow from incoming road φini is the sum over all the �ows exiting this road, and
the �ow into outgoing road φoutj is the sum over all the �ows coming into this road:

φini =

nout∑
j=1

φij , φoutj =

nin∑
i=1

φij . (4.5)

For a better overview, we have summarized all the notations introduced in this section in
Appendix A.3.1.

4.1.2 NEWS framework

We seek to develop a model capable of predicting the evolution of multi-directional tra�c
in a large-scale network that may consist of thousands of intersections. The main challenge
thereby is that roads at every intersection may be oriented arbitrarily. Hence, we would like
to obtain a model in terms of �ows that are parallel to the cardinal directions: North (N),
East (E), West (W) and South (S). This will enable us to formulate the model in macroscopic
terms, if every intersection will be described in a uni�ed way. Let us call it theNEWS-model.
Its state variables should be denoted by bars, and they represent 4-dimensional vectors, e.g.,
φ̄in = (φ̄inN , φ̄

in
E , φ̄

in
W , φ̄

in
S )T .

Notice that the resulting model is intended to describe the evolution of densities in four
direction layers, although an urban area can in general be represented as a 2D plane (x and
y). The reason to consider tra�c evolution in opposite directions (e.g., North and South)
independently is related to the idea to preserve �ow values positive, since we want to keep
information about the number of vehicles moving in each direction.
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2in

1in

EW

N

Road formulation:

S

θout1

2out

1out

φ̄outE

φ̄inW

φ̄outNφ̄inS

φ̄inNφ̄outS

φ̄inE

φ̄outW

NEWS formulation:

Figure 4.2: Idea of NEWS framework: map road original directions into North, East, West
and South directions, and then tra�c �ow can be described in terms of 4 direction layers.

4.1.2.1 Projection from roads to NEWS

In order to formulate the tra�c model in terms of NEWS, we will use only the geometric

properties of the network, such as angles of the road orientations with respect to the East
direction counter-clockwise denoted by θ that ranges from 0 to 2π, see Figure 4.2. Thereby,
roads 1in and 2out are oriented towards North-East, and roads 2in and 1out are oriented towards
South-East.

Let us consider the projection of �ows into the North. We calculate the �ow to the North
as a weighted sum of all �ows on the roads that have angles less than π/2 with the North
direction, i.e., these are roads 1in and 2out in Figure 4.2. This also means that, in general,
an angle of road's direction with non-zero projection to the North is bounded to the range
θ ∈ (0, π), while for non-zero projections to the East, West and South the angle must be
θ ∈ (0, π2 ) ∪ (3π

2 , 2π), θ ∈ (π/2, 3π/2) and θ ∈ (π, 2π), respectively. Then, out�ows in NEWS
formulation can be found from the road formulation by applying the following projection:

φ̄outN = pNθout1
φout1 + pNθout2

φout2 , φ̄outE = pEθout1
φout1 + pEθout2

φout2 ,

φ̄outW = pWθout1
φout1 + pWθout2

φout2 , φ̄outS = pSθout1
φout1 + pSθout2

φout2 ,

where pθ ∈ [0, 1] are projection coe�cients that should satisfy the following properties:

1. If a road goes exactly to the North, then pNθ = 1.

2. If a road has an angle equal to or greater than π/2 with the North direction, then
pNθ = 0.

3. The sum pNθ + pEθ + pWθ + pSθ = 1 to ensure the conservation of �ows.
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Notice that these properties are de�ned for the North direction, while the same holds also
for other directions. The simplest choice for the projection coe�cients pθ, satisfying all these
properties, is

pNθ =


sin(θ)

| cos(θ)|+ | sin(θ)|
, θ ∈ (0, π),

0, elsewhere,

pEθ =


cos(θ)

| cos(θ)|+ | sin(θ)|
, θ ∈ (0,

π

2
) ∪ (

3π

2
, 2π),

0, elsewhere.

pWθ =


− cos(θ)

| cos(θ)|+ | sin(θ)|
, θ ∈ (

π

2
,
3π

2
),

0, elsewhere,

pSθ =


− sin(θ)

| cos(θ)|+ | sin(θ)|
, θ ∈ (π, 2π),

0, elsewhere,

(4.6)

where θ is a positive angle between the direction of the road and the East direction.

Notice that, in general, each road can have non-zero weights with at most two directions.
For example, in Figure 4.2 the �ow along the �rst outgoing road 1out has non-zero weights
with South and East direction, i.e., pS

θout1
> 0 and pE

θout1
> 0.

4.1.2.2 Flows in NEWS formulation

Flows at each intersection in NEWS formulation should be given by vectors φ̄in =

(φ̄inN , φ̄
in
E , φ̄

in
W , φ̄

in
S )T and φ̄out = (φ̄outN , φ̄outE , φ̄outW , φ̄outS )T . This allows us to establish the fol-

lowing relation with �ows from the original road formulation given by (4.5):

φ̄in =


φ̄inN

φ̄inE

φ̄inW

φ̄inS

 =


pN
θin1

pN
θin2

pE
θin1

pE
θin2

pW
θin1

pW
θin2

pS
θin1

pS
θin2


(

φin1

φin2

)

and

φ̄out =


φ̄outN

φ̄outE

φ̄outW

φ̄outS

 =


pN
θout1

pN
θout2

pE
θout1

pE
θout2

pW
θout1

pW
θout2

pS
θout1

pS
θout2


(

φout1

φout2

)
.

For a general case of nin incoming and nout outgoing roads, we introduce projection ma-
trices Pin ∈ R4×nin and Pout ∈ R4×nout consisting of coe�cients pθini and pθoutj

, respectively.
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φ̄outE

φ̄inW

φ̄outNφ̄inS

φ̄inNφ̄outS

φ̄inE

φ̄outW

φ̄NE

φ̄SW

Figure 4.3: Schematic explanation of �ow directions in NEWS formulation.

Thus, in general, �ows are transformed into the NEWS formulation as follows:

φ̄in = Pinφ
in, φ̄out = Poutφ

out. (4.7)

In general, φ̄inN is the �ow on incoming roads going to the North direction before the
intersection, and φ̄outN is the �ow on outgoing roads going to the North after the intersection,
see Figure 4.3 for the illustration of this concept. They can also be represented by the sums
over partial �ows in the NEWS formulation:

φ̄inN = φ̄NN + φ̄NE + φ̄NW + φ̄NS , (4.8)

and
φ̄outN = φ̄NN + φ̄EN + φ̄WN + φ̄SN , (4.9)

where, for example, φ̄NE is the �ow consisting of cars going to the North before the intersection
and to the East after they have passed this intersection, as it is illustrated in Figure 4.3. Thus,
φ̄inN (4.8) is composed of all such �ows that were going to the North before the intersection
and then continued their way either to the North or changed to the East, West or South after
passing the intersection.

In the NEWS formulation, partial �ows are de�ned from the road formulation as follows:

φ̄EN =

nin∑
i=1

nout∑
j=1

pEθini
pNθoutj

φij , (4.10)

where pθ are the projection coe�cients from (4.6). Notice that the correctness of this de�nition
of partial �ows can be veri�ed by inserting (4.10) into (4.9):

φ̄outN =

nout∑
j=1

pNθoutj

[
nin∑
i=1

(
pNθini

+ pEθini
+ pWθini

+ pSθini

)
φij

]
=

nout∑
j=1

pNθoutj

nin∑
i=1

φij =

nout∑
j=1

pNθoutj
φoutj ,
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whereby we have used the fact that the sum of projection coe�cients over all cardinal directions
is 1 (see property 3 in the de�nition of pθ and (4.5)).

To gain more insight into the concept of partial �ows, let us consider an example of an
intersection that has one incoming and one outgoing road, as shown in Figure 4.4. Hence, we
de�ne the incoming �ow in NEWS formulation from Figure 4.4:

φ̄in =


φ̄inN

φ̄inE

φ̄inW

φ̄inS

 =


0

φ̄EN + φ̄EE

0

φ̄SN + φ̄SE

 .

Thereby, we see that φ̄inN = φ̄inW = 0, since the incoming road has a zero weight with respect to
both North and West direction, while it has non-zero weights with South and East directions.

The outgoing road has non-zero weights only with North and East direction, which results
into φ̄inS = φ̄SN + φ̄SE and φ̄inE = φ̄EN + φ̄EE . Hence, the �ow on the outgoing road yields:

φ̄out =


φ̄outN

φ̄outE

φ̄outW

φ̄outS

 =


φ̄SN + φ̄EN

φ̄SE + φ̄EE

0

0

 .

Also note that in Figure 4.4 there is no �ow in the West direction, therefore all the �ows
containing at least one �W� are zero, e.g., φ̄NW = φ̄SW = 0, etc.

1in

E

S

1out

E

N

Figure 4.4: Sketch of an intersection with one incoming road 1in and one outgoing road 1out.

4.1.2.3 Turning and supply ratios in NEWS formulation

Similar to the tra�c model in road formulation given by (4.5) and (4.4), we would like to
de�ne partial �ows in the NEWS formulation using the demand-supply concept as in (2.15)
and (2.16). For this, we will need to de�ne turning ᾱ and supply ratios β̄ in the NEWS
formulation. Moreover, we will also have to de�ne the parameters of triangular FD v̄, ω̄, ρ̄max
in the NEWS formulation to be able to derive the complete model.

Demand D̄ ∈ R4×1 and supply S̄ ∈ R4×1 functions from (2.17) can be formulated in terms
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of NEWS using coe�cient matrices Pin, Pout as in (4.7):

D̄ = Pin min{vinρin, φinmax},
S̄ = Pout min{ωout(ρoutmax − ρout), φoutmax}.

(4.11)

Now, without loss of generality, let us consider the partial �ow from East to North φ̄EN ,
which we would like to be able to express using demand and supply as in (4.4):

φ̄EN = min{ᾱEND̄E , β̄EN S̄N}, (4.12)

where ᾱEN is the TR from East to North, and β̄EN is the SR of the North provided for vehicles
arriving from the East, i.e., the same as βij from (4.3) but in the NEWS formulation.

The coe�cients ᾱEN and β̄EN need to be determined, which can be done using (4.10), in
which we substitute (4.4) that yields

φ̄EN =

nin∑
i=1

nout∑
j=1

pEθini
pNθoutj

min
{
αijv

in
i ρ

in
i , βijω

out
j (ρoutmax,j − ρoutj ), αijφ

in
max,i, βijφ

out
max,j

}
.

This expression is a sum over minimum functions, which is tedious to handle. We make the
following approximation: change the order of taking the minimum and the summations. This
leads to the minimum over just four arguments as in the demand-supply concept (4.4):

φ̄EN ≈ min


nout∑
j=1

pNθoutj

nin∑
i=1

pEθini
αijv

in
i ρ

in
i ,

nout∑
j=1

pNθoutj

nin∑
i=1

pEθini
βijω

out
j (ρoutmax,j − ρoutj ), . . .

 .

Notice that the di�erence between putting minimum inside and outside the summation is
decreasing as the level of the homogeneity in the congestion of roads increases. This approxi-
mation is exact if all roads in the network are in the same tra�c regime, i.e., either all roads
are in free-�ow or congested.

We set the latter expression equal to (4.12) for φ = φmax, and get the coe�cients ᾱEN
and β̄EN that read

ᾱEN =

nout∑
j=1

[
pN
θoutj

nin∑
i=1

αijp
E
θini
φinmax,i

]
nin∑
i=1

pE
θini
φinmax,i

, (4.13)

and

β̄EN =

nin∑
i=1

[
pE
θini

nout∑
j=1

βijp
N
θoutj

φoutmax,j

]
nout∑
j=1

pN
θoutj

φoutmax,j

. (4.14)
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4.1.2.4 FD parameters and densities in NEWS formulation

Consider demand and supply functions in the NEWS formulation. From one side, we can
calculate them using the projection matrices Pin and Pout as in (4.11). From the other side,
we would like to be able to calculate demand and supply using a fundamental diagram as in
(2.17), which should enable us to describe tra�c �ow in a uni�ed way for any intersection.
Recall that FD parameters depend on a speci�c road, while another road might already have
a di�erent speed limit or capacity.

Thus, we are going to de�ne a uni�ed FD in NEWS formulation such that the FD is
de�ned for each direction separately. This equivalently means that the parameters of FD will
all become 4-dimensional vectors or 4 × 4 diagonal matrices. Let us consider the FD for the
North direction, while similar steps should be done for other directions. That is, for D̄N and
S̄N we would like to �nd kinematic wave speeds v̄inN and ω̄outN and density transformations ρ̄inN
and ρ̄outN such that the following relations would hold:

D̄N =

nin∑
i=1

pNi min{viρi, φmax,i} ≈ min{v̄inN ρ̄inN , φ̄inmax,N},

S̄N =

nout∑
j=1

pNj min{ωj(ρmax,j − ρj), φmax,j} ≈ min{ω̄outN (ρ̄outmax,N − ρ̄outN ), φ̄outmax,N}.
(4.15)

Note that in the case when there are much more than 4 roads, we can use only approximations
of the fundamental diagram.

By approximating sum of minimum functions as a minimum of sums and writing the
conditions on maximal �ows together, we get a system of two equations

nin∑
i=1

pNi viρc,i = v̄inN ρ̄
in
c,N ,

nout∑
j=1

pNj ωj(ρmax,j − ρc,j) = ω̄outN (ρ̄outmax,N − ρ̄outc,N ).

(4.16)

System (4.16) is undetermined, since it consists of two equations that have �ve unknowns
(v̄inN , ω̄

out
N , ρ̄inc,N , ρ̄

out
c,N , ρ̄

out
max,N ).

In general, we get the coordinates of each road, its number of lanes and speed limits as
network data. Speed limits are directly related to the kinematic wave speeds vj , while the
maximal density ρmax,j on each road j (either incoming or outgoing) is determined by its
number of lanes and the minimal car-to-car distance (we again assume it to be 6 m). Knowing
ρmax,j for every road, we can easily obtain the critical density ρc,j from the shape of the
fundamental diagram (recall that we have assumed ρc = ρmax/3). Negative kinematic wave
speeds ωj can be obtained from the speed limits vj and critical density ρc,j using (2.3) as

ωj =
ρc,jvj

ρmax,j − ρc,j
.
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Both incoming and outgoing roads contribute to the vehicle density in some neighborhood
of the intersection. Moreover, since we want to have a general model, which is symmetric with
respect to incoming and outgoing roads, and in order to de�ne each parameter only once, we
assume symmetry ρ̄inN = ρ̄outN = ρ̄N , v̄inN = v̄outN = v̄N and ω̄inN = ω̄outN = ω̄N . Assume further
that densities are transformed into NEWS formulation in the same way as it is done for the
�ows (4.7), i.e.:

ρ̄N =

nin∑
i=1

pNi ρi +

nout∑
j=1

pNj ρj , (4.17)

which then also holds for maximal ρ̄max,N and critical ρ̄c,N densities. After we have de�ned
all the densities, using symmetry assumption we can express the velocities from (4.16) as

v̄N =

nin∑
i=1

pNi viρc,i +
nout∑
j=1

pNj vjρc,j

ρ̄c,N
,

ω̄N =

nin∑
i=1

pNi ωi(ρmax,i − ρc,i) +
nout∑
j=1

pNj ωj(ρmax,j − ρc,j)

ρ̄max,N − ρ̄c,N
.

Recall that all these calculations are not limited to the particular triangular shape of FD,
and thus can be performed in the same way for any type of FD as long as it is a concave
function of density as it is also assumed in the LWR model (see Remark 4.1). The only thing
that would have changed for di�erent FD shapes are formulas for its parameters (??), since
each FD can have a di�erent set of parameters.

For a better overview, we have summarized all the notations introduced in this and next
sections in Appendix A.3.2.

4.1.3 Derivation of the NEWS model

Our main goal here is to derive the macroscopic NEWS model for multi-directional tra�c
that can describe the evolution of tra�c in terms of density (as in case of 1D and 2D LWR).
For the moment, we can already describe tra�c �ow for any intersection in the uni�ed way,
which became possible due to the concept of partial �ows in the NEWS formulation given by
(4.12) with (4.13) and (4.14). The dynamic NEWS model in terms of density will be derived
by considering an intersection and its outgoing roads that should be viewed as incoming roads
for the neighboring intersections. In the end, we will be able to formulate a valid model for
the whole urban area due to a uni�ed description of tra�c behavior at any intersection. This
uni�ed description will be obtained using the continuation method that was introduced in
[110].
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4.1.3.1 Continuation

Previously, we considered in�ows φin and out�ows φout with respect to some intersection.
However, for the derivation of the macroscopic continuum model, we consider in�ows and
out�ows with respect to roads that will be denoted by ψin and ψout as in Figure 4.5.

Recall that θ is an angle between the road orientation and the East direction. Denote the
�ow in the direction θ as ψθ. Essentially, there are two �ows with direction θ: in�ow ψinθ which
is a sum of all �ows entering a road with direction θ, and out�ow ψoutθ which is a sum of all
�ows outgoing from this road. Notice that, in the following, we will deal only with outgoing

roads. Thus, we skip the superscript in the notation of angle, i.e., θoutj = θj .

(x1, y1)

(x2, y2)

lj
ψinθj

ψoutθj

θj

x2 − x1

y2 − y1

Figure 4.5: Illustration of notations used for derivation of the NEWS model.

Now consider some road j of length lj that is an outgoing road for the intersection located
at (x1, y1), see Figure 4.5. The density evolution on road j that is connecting the intersection
at (x1, y1) and the intersection at (x2, y2) is given by

∂ρj
∂t

=
1

lj

(
ψinθj (x1, y1)− ψoutθj

(x2, y2)
)
,

where θj = atan[(y2 − y1)/(x2 − x1)] as in Figure 4.5. Notice that there are no bars here in
the notations, since we again refer to the road formulation.

The equation written above depends on two di�erent space points (x1, y1) and (x2, y2).
However, we would like to obtain an equation that is given for a unique point of space. In
order to achieve that, we can perform continuation at the beginning of the road (x1, y1).
In its simplest form, the continuation method corresponds to the �rst-order term of Taylor
expansion in spatial coordinates, which reads

ψoutθj
(x2, y2) ≈ ψoutθj

(x1, y1) + (x2 − x1)
∂ψoutθj

∂x
+ (y2 − y1)

∂ψoutθj

∂y
,

and assuming this approximation to be an equality, we get the following model

∂ρj
∂t

=
1

lj

(
ψinθj (x1, y1)− ψoutθj

(x1, y1)− (x2 − x1)
∂ψoutθj

∂x
− (y2 − y1)

∂ψoutθj

∂y

)
,
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or simply

∂ρj
∂t

=
1

lj

(
ψinθj (x1, y1)− ψoutθj

(x1, y1)
)
− cos θj

∂ψoutθj

∂x
− sin θj

∂ψoutθj

∂y
.

At the same time, by performing continuation at the end of the road (x2, y2) we arrive at

∂ρj
∂t

=
1

lj

(
ψinθj (x2, y2)− ψoutθj

(x2, y2)
)
− cos θj

∂ψinθj
∂x
− sin θj

∂ψinθj
∂y

.

Since the density along the road is assumed to be constant, both continuous models can
be used to represent the original one. The �rst model is de�ned in terms of the beginning of
the road (x1, y1) and contains spatial derivatives of ψoutθj

, whereas the second model is de�ned

in terms of the end of the road (x2, y2) and contains spatial derivatives of ψinθj . However,
performing continuation not at the end points but somewhere in between can result into a
more general form that uni�es these two models.

Let us perform continuation of the model for some arbitrary point along the road (x, y)

whose coordinates lie between two endpoints (x1, y1) and (x2, y2):

x = x1γ + x2(1− γ), y = y1γ + y2(1− γ),

where γ ∈ [0, 1]. Thus, by performing continuation at (x, y), we arrive at

∂ρj
∂t

=
1

lj

(
ψinθj (x, y)− ψoutθj

(x, y)
)
− cos θj

∂((1− γ)ψinθj + γψoutθj
)

∂x

− sin θj
∂((1− γ)ψinθj + γψoutθj

)

∂y
.

(4.18)

Now let the vector-�ow on road j be

~Ψθj = ψθj

(
cos θj
sin θj

)
, where ψθj = (1− γ)ψinθj + γψoutθj

.

Then, the model (4.18) can be rewritten as

∂ρj
∂t

=
1

lj

(
ψinθj (x, y)− ψoutθj

(x, y)
)
−∇ · ~Ψθj (x, y), (4.19)

where ∇ is a nabla operator de�ned as ∇ = ( ∂
∂x ,

∂
∂y ).

This model (4.19) predicts the dynamics of the vehicle density at some outgoing road j
with direction θj . Equation (4.19) has the same form for any intersection located at (xk, yk),
where k ∈ {1, . . . ,K} is an index used to label intersections in the network. Notice that
parameter γ was introduced only for the derivation purposes, it will not explicitly appear in
the �nal model, see details below.
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4.1.3.2 The NEWS model

We would like to translate the model given in road formulation (4.19) into NEWS formulation,
which allows to describe tra�c �ow direction at any intersection in a uni�ed way indepen-
dently of the number of its outgoing roads. Recall that densities in every direction layer are
transformed as in (4.17). Let us again consider the North direction for simplicity, while the
same steps should be performed for all other directions.

Thus, multiplying the equation (4.19) by pNθj and taking the summation, we get the model
that predicts the evolution of vehicle density in the North direction on outgoing roads of an
intersection located at (xk, yk) that reads

∂ρ̄N
∂t

=

nout∑
j=1

pNθj
1

lj

(
ψinθj − ψ

out
θj

)
−∇ ·

nout∑
j=1

pNθj
~Ψθj

 . (4.20)

We cannot further simplify the equation (4.20) towards the NEWS formulation, since the
summations contain additional index-dependent coe�cients such as 1/lj , sin θj and cos θj
(embedded in ~Ψθj ). Let us then approximate the system (4.20) by averaging road lengths lj
such that the mean length of outgoing roads conserves the maximum number of cars:

L =

nout∑
j=1

ρmax,jlj

nout∑
j=1

ρmax,j

.

Further, we also approximate sine and cosine in (4.20) as

cos θN =

nout∑
j=1

pNθj cos θjφmax,j

nout∑
j=1

pNθjφmax,j

, sin θN =

nout∑
j=1

pNθj sin θjφmax,j

nout∑
j=1

pNθjφmax,j

.

Substituting these approximations into (4.20), we get

∂ρ̄N
∂t

=
1

L

nout∑
j=1

pNθj

(
ψinθj − ψ

out
θj

)

−∇ ·

nout∑
j=1

(
cos θN
sin θN

)
pNθj

(
(1− γ)ψinθj + γψoutθj

) ,

or simply
∂ρ̄N
∂t

=
1

L

(
ψ̄inN − ψoutN

)
−∇ ·

((
cos θN
sin θN

)(
(1− γ)ψ̄inN + γψ̄outN

))
, (4.21)

where we can further de�ne ψ̄N = (1− γ)ψ̄inN + γψ̄outN .
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Notice that this model (4.21) is the macroscopic NEWS model, since it does not depend
on road index j any more. In some sense, the model (4.21) is de�ned for any particular
space point in the vicinity of an intersection. Therefore, it makes no more sense to have
separate notations for �ows related to intersections φ̄ and roads ψ̄. Thus, for convenience and
consistency with other parts of this manuscript, we will again use the notation φ̄ for �ows.

The model (4.21) can be further simpli�ed in order to get rid of spatial derivatives over
multi-directional �ows, since otherwise the PDE can lose hyperbolicity and, moreover, we
want to eliminate the parameter γ.

4.1.3.3 Model simpli�cation

The term under the space derivative in (4.21) is φ̄N = (1−γ)φ̄inN +γφ̄outN . Recall that by (4.8)
and (4.9) we can express in�ows and out�ows at any point as sums over partial �ows:

φ̄inN = φ̄NN + φ̄EN + φ̄WN + φ̄SN ,

φ̄outN = φ̄NN + φ̄NE + φ̄NW + φ̄NS .

Therefore, we can insert this de�nition into φ̄N and get

φ̄N = φ̄NN +
[
(1− γ)φ̄EN + γφ̄NE

]
+

+
[
(1− γ)φ̄WN + γφ̄NW

]
+
[
(1− γ)φ̄SN + γφ̄NS

]
.

(4.22)

This means that (4.21) requires taking spatial derivatives over multi-directional �ows. How-
ever, the model (4.21) would be considerably simpli�ed if each term under the spatial derivative
could be written only as a function of demand and supply of the corresponding direction, i.e.,

φ̄N = min{D̄N , S̄N}. (4.23)

Now we make an assumption that the network is well-designed in terms of maximal �ows,
that is

ᾱNEφ̄max,N = β̄NEφ̄max,E . (4.24)

Physically, this assumption means that if vehicles move at maximal possible �ow before an
intersection, they continue to use roads' transportation capacities at maximum after the in-
tersection.

The proof that (4.23) holds under the assumption of a well-designed network (4.24), being
rather technical, is shifted to Appendix B.7, where we show that there exists parameter γ
such that (4.23) holds. Thus, the transported term under the derivative in (4.21) can be
approximated by a standard �ow in the demand-supply formulation that depends only on the
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density of the same direction. Hence, the full system of equations can be written as

∂ρ̄N
∂t

=
1

L

(
φ̄inN − φ̄outN

)
− ∂(cos θN φ̄N )

∂x
− ∂(sin θN φ̄N )

∂y
,

∂ρ̄E
∂t

=
1

L

(
φ̄inE − φ̄outE

)
− ∂(cos θEφ̄E)

∂x
− ∂(sin θEφ̄E)

∂y
,

∂ρ̄W
∂t

=
1

L

(
φ̄inW − φ̄outW

)
− ∂(cos θW φ̄W )

∂x
− ∂(sin θW φ̄W )

∂y
,

∂ρ̄S
∂t

=
1

L

(
φ̄inS − φ̄outS

)
− ∂(cos θSφ̄S)

∂x
− ∂(sin θSφ̄S)

∂y
,

(4.25)

where the term φ̄in − φ̄out is given by
φ̄inN − φ̄outN

φ̄inE − φ̄outE

φ̄inW − φ̄outW

φ̄inS − φ̄outS

 =


φ̄EN + φ̄WN + φ̄SN − φ̄NE − φ̄NW − φ̄NS
φ̄NE + φ̄WE + φ̄SE − φ̄EN − φ̄EW − φ̄ES
φ̄NW + φ̄EW + φ̄SW − φ̄WN − φ̄WE − φ̄WS

φ̄NS + φ̄ES + φ̄WS − φ̄SN − φ̄SE − φ̄SW

 ,

where partial �ows between two direction layers are obtained as demand-supply problem, e.g.:

φ̄EN = min{ᾱEND̄E , β̄EN S̄N}.

This system of equations describes the density evolution in the vicinity of one intersection.
Thus, the density ρ̄(x, y, t) and the �ow φ̄(x, y, t) are space- and time-dependent functions,
whereas all the parameters are constant (ᾱ, β̄, L, v̄, ω̄, ρ̄max, cos θ, sin θ).

Notice that the term φ̄in − φ̄out is responsible for mixing between di�erent density layers,
e.g., φ̄inN = φ̄SN + φ̄WN + φ̄EN accounts for vehicles that were moving to the South, West and
East, and then turned to the North.

System (4.25) together with a 4-dimensional fundamental diagram (that can be any con-
cave Lipschitz continuous vector function) represents the NEWS model, which is one of the
main results of this whole chapter. It models the evolution of vehicle density on outgoing
roads of an intersection in all cardinal directions: North, East, West and South.

The last step that needs to be taken is to obtain a continuous PDE system describing
tra�c �ow propagation in the whole network. This can be done by approximating the entire
parameters of system (4.25) over the whole continuum domain. Let us again de�ne a bounded
rectangular domain Ω ∈ R2 : [xmin, xmax] × [ymin, ymax], as it was done for 2D LWR model
in Section 3.1.1. The size of Ω is determined by the size of the considered urban network.

First, we calculate ᾱ, β̄, L, v̄, ω̄, ρ̄max, cos θ, sin θ for all K intersections in the network.
Then, we apply the inverse distance weighting method described in Section 3.1.3.1 to approx-
imate all these parameters over a continuum plane, e.g., the value of an average road length
can be de�ned ∀(x, y) ∈ Ω

L(x, y) =

K∑
k=1

L(xk, yk)wke
−µ
√

(x−xk)2+(y−yk)2

K∑
k=1

wke
−η
√

(x−xk)2+(y−yk)2
, (4.26)
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where µ is a weighting parameter used to denote the sensitivity of the estimated variables to
the distance from the intersections (and not roads as it was meant in Section 3.1.3.1). Thus,
the in�uence of the intersection parameter, e.g. L(xk, yk), decreases exponentially with the
distance to this intersection.

Further, wk in (4.26) is the weight of intersection k, which can be used to assign larger
weights to intersections with important roads. If one wants to emphasize the main transporta-
tion arteries of the city (its most used roads), wk can be set to larger values for particular
intersections (i.e., wk > 1). The main arteries are revealed from the historical (TomTom) data
(see [42] for Functional Road Classi�cation). Note that the most used roads are not neces-
sarily the roads with largest transportation capacities due to a non-optimal design of a urban
network. For example, imagine a road with many lanes that does not connect any important
points in a city, and thus it is not used at maximum. At the same time, another road with the
same transportation capacity connecting important locations has been used more extensively
according to historical data, and thus one can assign larger weights to intersections that are
connected to this road directly. Otherwise, setting all wk = 1 assures that pure network infras-
tructure data are used. Notice that the intersection weights wk change only the interpolation
procedure and not the network and model parameters itself, and it can be calculated as:

wk =
1

nin,k + nout,k

nin,k∑
i=1

wq,i +

nout,k∑
j=1

wq,j , ∀k ∈ {1, . . . ,K}, (4.27)

where wq are weights of roads based on their importance classes. There are 7 road classes in
total, see Figure 4.11. We assign wq = 2 for all roads of classes 1 and 2 (all major roads of
high importance), and for any other case (classes from 3 to 7) we set wq = 1.

Thus, we de�ne all the geometrical and FD parameters ∀(x, y) ∈ Ω using inverse distance
weighting (IDW) as in (4.26). As a result, we obtain a continuous PDE system that looks like
(4.25) with time- and space-dependent density ρ̄(x, y, t) and �ow φ̄(x, y, ρ̄), while all param-
eters are obtained using (4.26), which makes them space-dependent functions, i.e., ᾱ(x, y),
β̄(x, y), v̄(x, y), etc.

4.1.3.4 Extended model with source and sink terms

In a urban network of �nite size there exist roads, through which cars can enter or exit the
domain. Such roads are called sources and sinks, respectively. The boundary conditions for
the PDE system (4.25) are thus directly determined by these sources and sinks, i.e., upstream
and downstream boundary conditions are speci�ed for sources and sinks, respectively. It
appears that they can be trivially captured by the NEWS model, which will also allow us to
design boundary control for multi-directional urban tra�c in Section 4.3. Let us now show
how sources are implemented into the model (4.25), while the implementation of sinks can be
done in the same way.

We consider some road j, and the exterior vehicles penetrate its entry at �ow ψsourceθj
(we

use again ψ for �ow, since it is here formulated in terms of roads). We take this additional
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�ow of vehicles into account by adding it into equation (4.19) for road j, which yields

∂ρj
∂t

=
1

lj

(
ψinθj − ψ

out
θj

)
−∇ · ~Ψθj +

1

lj
ψsourceθj

. (4.28)

In general, when we want to specify in�ow for some road, we can only propose it in terms
of demand function. This is equivalent to the weak boundary conditions, see Section 2.1.5.
Then, the amount of �ow entering this road depends on its supply, which is in turn determined
by the tra�c state of this road:

ψsourceθj
= min{Dsource

θj
, Sθj (ρj)}.

We can rewrite (4.28) in NEWS formulation by performing the transformations described
in Section 4.1.3.2, which leads us to the extended NEWS model (with sinks also included):

∂ρ̄N
∂t

=
1

L

(
φ̄inN − φ̄outN + φ̄sourceN − φ̄sinkN

)
− ∂(cos θN φ̄N )

∂x
− ∂(sin θN φ̄N )

∂y
,

∂ρ̄E
∂t

=
1

L

(
φ̄inE − φ̄outE + φ̄sourceE − φ̄sinkE

)
− ∂(cos θEφ̄E)

∂x
− ∂(sin θEφ̄E)

∂y
,

∂ρ̄W
∂t

=
1

L

(
φ̄inW − φ̄outW + φ̄sourceW − φ̄sinkW

)
− ∂(cos θW φ̄W )

∂x
− ∂(sin θW φ̄W )

∂y
,

∂ρ̄S
∂t

=
1

L

(
φ̄inS − φ̄outS + φ̄sourceS − φ̄sinkS

)
− ∂(cos θSφ̄S)

∂x
− ∂(sin θSφ̄S)

∂y
,

(4.29)

where
φ̄sourceN = min{D̄source

N , S̄N}, φ̄sinkN = min{D̄N , S̄
sink
N },

with

D̄source
N =

nout∑
j=1

pNθjD
source
θj

, S̄sinkN =

nout∑
j=1

pNθjS
sink
θj

.

Further, one needs to approximate D̄source
N and S̄sinkN in the whole domain, since originally

we specify it in terms of roads of the network. In contrast to all other variables obtained by
(4.26), the overall number of incoming cars should be conserved. Thus, we choose Gaussian
kernel for the approximation of demand and supply functions:

D̄source
N (x, y) =

K∑
k=1

D̄source
N (xk, yk)Gσ(x− xk, y − yk),

where Gd0(x, y) is a two-dimensional symmetric Gaussian kernel with standard deviation d0:

Gd0(x, y) =
1

2πd0
2 e
− 1

2d0
2 (x2+y2)

,

which is very similar to the kernel density estimation (3.8). The di�erence is that here the
function depends on the positions of intersections. Parameter d0 can be tuned to change the
range of in�uence of demand and supply functions around the intersection. Note that such
a choice of Gd0(x, y) provides that its integral over the whole domain equals 1, therefore the
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overall incoming demand in (4.29) is the same as in the original network model (4.28) (road
formulation).

Notice that from now on, we will consider all the variables and parameters only in terms of
NEWS formulation. Therefore, for the remaining part of this thesis, we omit bars everywhere
in the notations of NEWS variables keeping in mind that these are 4-dimensional vectors, e.g.,
density and FD, or 4× 4 diagonal matrices, e.g., TR and SR matrices. We keep the overlines
only for cos θ and sin θ, since these do not preserve the sense of cosine and sine functions in
NEWS formulation (the sum of their squares is not necessarily equal to 1).

4.1.4 Mathematical properties of NEWS model

Let us now investigate the properties of the NEWS model. For its explicit analysis, we take
system (4.25) that does not include any source terms. In this section, we will check whether
our system represents a conservation law, then we will discuss the boundedness of its state ρ,
and, �nally, we will show that the model represents a hyperbolic PDE system.

4.1.4.1 Conservation law

The overall density in the network is the sum over the densities in all four directions, that is

ρ = ρN + ρE + ρW + ρS .

By taking its time derivative we get

∂ρ

∂t
=
∂ρN
∂t

+
∂ρE
∂t

+
∂ρW
∂t

+
∂ρS
∂t

,

and for each of these terms we can substitute the corresponding PDE from our model (4.25).
It appears that all the mixing terms (φin − φout) cancel each other, and we simply get

∂ρ

∂t
= −∇ · Φ, (4.30)

where

Φ =

(
cos θN
sin θN

)
φN +

(
cos θE
sin θE

)
φE +

(
cos θW
sin θW

)
φW +

(
cos θS
sin θS

)
φS ,

which has a form of a conservation law, where the conserved quantity is the overall density in
the network.

4.1.4.2 Boundedness of the state

The boundedness of the density ρ ∈ [0, ρmax] is not violated in the model given by (4.25),
since the terms under the derivatives are resolved using the standard Godunov scheme, i.e.,
tra�c �ow in each direction is determined by the minimum between demand and supply, as in
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LWR formalism. For example, consider the North direction, then the term under the spatial
derivative in (4.25) is just

φN = min{DN , SN}.

Mixing terms with a positive sign (these are φSN , φWN and φEN in the equation for ρN )
depend on the supply of N , e.g.,

φEN = min{αENDE , βENSN}.

If ρN = ρmax,N , then

SN = 0⇒ φEN = 0⇒ ∂ρN
∂t
≤ 0,

which means that positive terms can not contribute to the increase of density, whenever it has
reached ρmax,N .

Let us now consider negative mixing terms. These depend on the demand of the North
direction, e.g.,

φNE = min{αNEDN , βNESE},

which in case of ρN = 0⇒ DN = 0 yields

φNE = 0⇒ ∂ρN
∂t
≥ 0.

This implies that negative terms do not contribute to the decrease of density when it is already
zero.

4.1.4.3 Hyperbolicity

Let us now investigate whether the model (4.25) is a hyperbolic PDE (as it is the case for 1D
LWR (2.1) but not the general case for multi-directional 2D LWR [102]). Hyperbolicity is a
fundamental property determining the behavior of solutions, which also plays an important
role in the choice of the corresponding numerical scheme. For example, if we show that the
model is a hyperbolic PDE, then we can apply the Godunov scheme for numerical simulation,
as it is usually done for hyperbolic models such as 1D LWR.

In contrast to other types of partial di�erential equations, in a hyperbolic PDE any dis-
turbance made in the initial data travels along the characteristics of the equation with a �nite
propagation speed. Although the de�nition of hyperbolicity is fundamentally a qualitative
one, there are precise criteria with which one can de�ne whether a partial di�erential equation
is hyperbolic. Thus, equation (4.25) can be written in a following general form:

∂tρ+ ∂x
[
F x(ρ, x, y)

]
+ ∂y

[
F y(ρ, x, y)

]
= g(ρ, x, y), (4.31)

where F x and F y are the �ow matrices de�ned from (4.25) as

F x =


cos θNφN 0 0 0

0 cos θEφE 0 0

0 0 cos θWφW 0

0 0 0 cos θSφS

 ,
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and

F y =


sin θNφN 0 0 0

0 sin θEφE 0 0

0 0 sin θWφW 0

0 0 0 sin θSφS

 .
The right-hand side term g(ρ, x, y) from (4.31) corresponds to the vector containing all the
mixing terms from (4.25):

g(ρ, x, y) =
1

L


φEN + φWN + φSN − φNE − φNW − φNS
φNE + φWE + φSE − φEN − φEW − φES
φNW + φEW + φSW − φWN − φWE − φWS

φNS + φES + φWS − φSN − φSE − φSW

 .

The spatial derivatives of �ow matrices from (4.31) can be written as a chain rule

∂x
[
F x(ρ, x, y)

]
= ∂ρF

x(ρ, x, y) · ∂xρ+ ∂xF
x(ρ, x, y), and

∂y
[
F y(ρ, x, y)

]
= ∂ρF

y(ρ, x, y) · ∂yρ+ ∂yF
y(ρ, x, y),

which is further inserted into equation (4.31) that yields

∂tρ+ ∂ρF
x(ρ, x, y) · ∂xρ+ ∂ρF

y(ρ, x, y) · ∂yρ = b(ρ, x, y), (4.32)

where b(ρ, x, y) = g(ρ, x, y)− ∂xF x(ρ, x, y)− ∂yF y(ρ, x, y). According to Section 3.1 of [126],
the right-hand side part of (4.32) b(ρ, x, y) does not play any signi�cant role for the analysis
of the equation. Thus, we simply omit it by setting b(ρ) = 0.

Let us further rewrite (4.32) as

∂tρ+Ax∂xρ+Ay∂yρ = 0, (4.33)

where Ax = ∂F x/∂ρ and Ay = ∂F y/∂ρ represent matrices of �ow derivatives:

Ax =


cos θN

∂φN
∂ρ 0 0 0

0 cos θE
∂φE
∂ρ 0 0

0 0 cos θW
∂φW
∂ρ 0

0 0 0 cos θS
∂φS
∂ρ

 ,
and

Ay =


sin θN

∂φN
∂ρ 0 0 0

0 sin θE
∂φE
∂ρ 0 0

0 0 sin θW
∂φW
∂ρ 0

0 0 0 sin θS
∂φS
∂ρ

 .
The system (4.33) is symmetrisable hyperbolic, since matrices Ax and Ay are both symmetric.
This implies that the system (4.33) is hyperbolic [126], which equivalently means that our
model given by (4.25) is a hyperbolic PDE system.
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4.1.5 Discussions

In this section, we have rigorously derived a new macroscopic tra�c model to predict tra�c
evolution from the cell transmission model on one intersection. The main challenge thereby
was to �nd a uni�ed approach to describe the direction of tra�c �ow at intersections that have
di�erent number of incoming and outgoing roads and might be oriented arbitrarily. We faced
this challenge by introducing the NEWS formulation of tra�c in Section 4.1.2, where �ow and
densities are formulated such if there would exist only four principal directions of tra�c: North,
East, West and West (which gave the abbreviation NEWS). To enable such a formulation,
we introduced projection matrices that use the intersection geometry to determine, in which
direction it has more impact. For instance, we classify a road to be oriented towards North-
East, if its orientation has non-zero projection weights for North and East directions. From a
uni�ed model for one intersection (that can be seen just as a point in space), we moved to the
continuation of this model. This is a special technique that helped us to translate an ODE-like
model into a PDE-like model. As a result, we could formulate the model (4.25) for vehicle
density evolving in 4 directions on outgoing roads in the vicinity of intersections. Then, we
applied inverse distance weighting to de�ne the parameters everywhere in a continuum plane
that may incorporate any urban network of interest.

While deriving the NEWS model (4.25), we had to introduce several new concepts. The
main of them is the concept of partial �ows that allowed us to capture the truly multi-
directional behaviour of tra�c. Thus, the model includes tra�c �ow that changes its original
direction of movement. For example, there is a non-zero �ow from the North direction layer
to the East, since there might be vehicles that move to the North, and then they reach an
intersection and turn to the East. This modeling phenomenon is equivalent to including
turning ratio information at intersections in NEWS formulation. Thus, for every intersection
we consider 16 origin-destination pairs, as shown in Figure 4.3. One of the major assumptions
that were made is that the urban network is well-designed in terms of road capacities. Thus,
road capacities must be such that cars do not get blocked when they turn, i.e., high demand
to enter roads with large capacities (e.g., highways or major tra�c roads) and low demand to
enter minor roads.

The NEWS model corresponds to a conservation law, where the conserved quantity is the
number of vehicle density in a network. The state of this model was shown to be bounded,
and moreover, the NEWS model represents a hyperbolic PDE. In the next Section 4.2, we will
validate this model by using synthetic data from microsimulator, as well as by using real data
from sensors installed in Grenoble downtown.

4.2 Validation of NEWS model

This section is devoted to validation of the NEWS model that was derived and analyzed in
the previous Section 4.1. First, we will discuss the numerical method used to simulate tra�c
with NEWS model. Then, the similarity measure will be introduced to enable a quantitative
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comparison of two density distributions. Further, we will compare the density predicted by
the numerical simulation of NEWS model (4.25) with the results predicted by commercial
software Aimsun. Finally, we will compare the prediction results with the data obtained from
real-life measurements in Grenoble city center.

a) Google satellite view b) Network in Aimsun

Figure 4.6: Selected area in Grenoble downtown.

4.2.1 Numerical scheme

As a network, we take an area located in Grenoble downtown with a total surface of around
1.4 × 1 km2, see Figure 4.6a) for the Google satellite view and Figure 4.6b) for the network
model in Aimsun of this area. Notice that this is the same area as in Figures 3.13 and 3.18.

For the numerical simulation of (4.25), we use the Godunov scheme in two dimensions.
We start by de�ning a numerical grid in Ω× R+ by setting

� nx to be number of cells to discretize x dimension,

� ny to be number of cells to discretize y dimension,

� ∆x = (xmax − xmin)/nx to be the space cell size in x dimension,

� ∆y = (ymax − ymin)/ny to be the space cell size in y dimension,

� ∆t to be the time cell size,

� (i∆x, j∆y, k∆t) for i ∈ {1, . . . , nx}, j ∈ {1, . . . , ny} and k ∈ Z+ to be the grid point.

For the simulation of tra�c on this area of Grenoble, we set nx = 60 and ny = 60, i.e.,
the 2D plane is divided into nx × ny = 3600 cells. Similarily to Section 2.1.6, the mesh sizes
∆x and ∆y and time step ∆t are chosen such that they satisfy the Courant-Friedrichs-Lewy
condition.
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The discrete density vector is then ρk(i, j) =
(
ρkN (i, j), ρkE(i, j), ρkW (i, j), ρkS(i, j)

)T
. The

density in each direction s = {N,E,W, S} is updated ∀(i, j, k) ∈ {1, . . . , nx}×{1, . . . , ny}×Z+

as
ρk+1
s (i, j) =ρks(i, j) + ∆t

[
Eks (i, j) + F kx,s(i, j) + F ky,s(i, j) +Hk

s (i, j)
]
,

where Eks (i, j) corresponds to the mixing term between direction layers

Eks (i, j) =
1

L(i, j)

4∑
r=1
r 6=s

(
min

{
αrs(i, j)D

k
r (i, j), βrs(i, j)S

k
s (i, j)

}

−min
{
αsr(i, j)D

k
s (i, j), βsr(i, j)S

k
r (i, j)

})
,

and F kx,s(i, j), F
k
y,s(i, j) correspond to derivative terms. The derivative term w.r.t. x dimension

can be computed as

F kx,s(i, j) =
cos θs(i, j) + cos θs(i− 1, j)

2∆x
min

{
Dk
s (i− 1, j), Sks (i, j)

}
− cos θs(i, j) + cos θs(i+ 1, j)

2∆x
min

{
Dk
s (i, j), Sks (i+ 1, j)

}
,

while the derivative term w.r.t. y dimension is similarly computed as

F ky,s(i, j) =
sin θs(i, j) + sin θs(i, j − 1)

2∆y
min

{
Dk
s (i, j − 1), Sks (i, j)

}
− sin θs(i, j) + sin θs(i, j + 1)

2∆y
min

{
Dk
s (i, j), Sks (i, j + 1)

}
.

Notice that F kx,s(i, j), F
k
y,s(i, j) are obtained using the upwind scheme [34] for cos θs(i, j) > 0,

sin θs(i, j) > 0. The upwind scheme is used to guarantee the correct direction of information
propagation in a �ow �eld, which needs to be reversed if cos θs(i, j) < 0 for F kx,s(i, j) and
sin θs(i, j) < 0 for F ky,s(i, j).

Finally, Hk
s (i, j) includes source and sink terms, thus it is computed as

Hk
s (i, j) =

1

L(i, j)

(
min

{
Dsource,k
s (i, j), Sks (i, j)

}
−min

{
Dk
s (i, j), Ssink,ks (i, j)

})
.

4.2.2 Structural similarity measure

In order to enable a quantitative comparison between two density distributions, we use
the structural similarity measure (SSIM) [151]. This should be understood as an index
used to measure the similarity between two images. Thereby, three di�erent image prop-
erties are compared: luminance, contrast and structure. In general, the SSIM between
two density distributions ρ1(i, j) (NEWS prediction) and ρ2(i, j) (reference distribution)
∀(i, j) ∈ {1, . . . , nx} × {1, . . . , ny} can be calculated as:

SSIM(ρ1, ρ2) =
(2ζ1ζ2 + c) (2σ12 + c)(

ζ2
1 + ζ2

2 + c
) (
σ2

1 + σ2
2 + c

) , (4.34)
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where ζ1 and ζ2 are the mean values of distributions ρ1 and ρ2 over the domain that are
computed as:

ζ(ρ) =
1

nx

1

ny

S∑
s=N

nx∑
i=1

ny∑
j=1

ρs(i, j). (4.35)

This term is used to compare luminance of two images. Then, σ1 and σ2 in (4.34) are the
standard deviations of density distributions used to compare the signal contrasts:

σ(ρ) =

√√√√√ 1

nx

1

ny

nx∑
i=1

ny∑
j=1

(
S∑

s=N

ρs(i, j)− ζ(ρ)

)2

,

and σ12 is the correlation coe�cient of two density distributions used to measure the similarity
of their structures:

σ(ρ1, ρ2) =
1

nx

1

ny

nx∑
i=1

ny∑
j=1

(
S∑

s=N

ρs,1(i, j)− ζ1

)(
S∑

s=N

ρs,2(i, j)− ζ2

)
.

Finally, c > 0 in (4.34) is a constant that needs to be small, e.g., we take c = 1 · 10−13 for the
computation. This constant prevents instability, when the denominator is close to zero. The
range of SSIM is [−1, 1], where 1 is achieved if two images are identical, whereas −1 means
that one image is the inverse of the second image.

The main advantage of using SSIM is that it is a perception-based metric used to detect
structural changes in the image, while, for example, the mean square error evaluates only the
absolute error rather than the di�erences in congestion patterns. Thus, even if two density
distributions are characterized to have the same number of cars, the SSIM is still able to detect
whether congested zones have di�erent shapes.

4.2.3 Model validation with Aimsun

We run a scenario of congestion formation in the selected area of Grenoble downtown (see
Figure 4.6). For this, we use microsimulator Aimsun and perform also a numerical simulation
of tra�c density governed by NEWS model (4.29). For the numerical simulation we deploy
the Godunov scheme in two dimensions described in Section 4.2.1. Then, the obtained steady
states are compared, as it was done for the comparison of 2D LWR model and MFD-based
model with Aimsun in Section 3.1.7. Recall that Aimsun takes network, turning ratios and
in�ows as input, and produces microsimulations of vehicle trajectories. We then reconstruct
the density distribution from vehicle positions in Aimsun and compare it to the state predicted
by NEWS model. The density reconstruction is done using KDE method, see Section 3.1.3.2.

In general, we have access to the following network data: (x, y) coordinates of all intersec-
tions and its corresponding roads, as well as speed limits and number of lanes for each road.
Using these data, we compute the parameters of the fundamental diagram v, ω, ρmax and the
intersection parameters α, β, L, cos θ, sin θ in the NEWS framework for all the intersections
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as follows. For each road j in the selected Grenoble area, we read the free-�ow velocity vj from
its speed limit data. Then, the maximal density ρmax,j is computed by placing a car every
6 m at every road, and then KDE is used as described in Section 3.1.3.2. Here we assume
that each vehicle has in�uence within d0 = 70 m range around its position, see (3.8). Further,
we assume that the critical density ρc,j = ρmax,j/3 everywhere (triangular FD), which allows
us also to calculate the negative kinematic wave speed ωj and the road capacities φmax,j .
Then, these parameters are translated into NEWS formulation using the network geometry,
see Section 4.1.2.4 for more details.

In order to determine the tra�c �ow direction, we use turning ratios αij for each road i
towards road j that are estimated as a function of road capacities:

αij =
φmax,j

nout∑
q=1

φmax,q

.

Then, supply ratios βij are calculated using (4.3). Both ratios α and β are translated into
NEWS formulation as in (4.13) and (4.14). Further, the coordinates of road's both ends are
used to determine its length lj and orientation angle θj , from which we then obtain L, cos θ,
sin θ in NEWS formulation as described in Section 4.1.3.2.

Then, all these intersection and FD parameters are approximated for every grid point
(i, j) ∈ {1, . . . , nx} × {1, . . . , ny} using IDW method, see Section 4.1.3.3. Thereby, we do not
deploy intersection weights, i.e., all wk = 1 in (4.26), since here the pure network infrastructure
data are used. Weights are assigned to intersections with important roads for the validation
with real data in Section 4.2.4. For the results presented here, we choose the weighting
parameter µ = 20, which is a relatively low value meaning that only the global trend in the
network geometry is reproduced, see Figure 3.1 for more intuition.

First of all, we load the Grenoble network into Aimsun (see Figure 4.6b)), and let vehicles
enter through its boundaries by specifying in�ows. We choose in�ows such that the main
stream of vehicles comes from the South of the area. The microsimulations evolve for 2.5

min, and then the state is saved and later used as an initial condition for both Aimsun and
numerical simulation of the NEWS model. Afterwards, we continue the microsimulation on
Aimsun until we do not perceive any structural changes in the state, which indicates that a
steady state has been achieved. The results are saved as vehicle positions at all time instants.
Therefore, we use KDE to transform the standard Aimsun data into a density distribution.
KDE in 1D is also used to smooth in�ows such that they enter the domain in a continuous
line rather than at discrete points of space. We set constant in�ows in order to let the system
converge to a steady state. We then perform a numerical simulation of the NEWS model as
described in Section 4.2.1 using the initial conditions from Aimsun.

The results are depicted in Figure 4.7, where the comparison of both density distributions
is shown for t ∈ [0, 50] min. We see that in both cases the distributions look quite similar but
not identical, which might be caused by several things. In Aimsun, vehicles are restricted to
move only on real physical roads, while more freedom of movement is perceived in a PDE-
driven system. Moreover, in Aimsun, turning ratios indicate the probability with which a car
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Figure 4.7: Congestion formation in Grenoble downtown for t ∈ [0, 50] min: numerical simu-
lation of density governed by NEWS model (left plots) and Aimsun (right plots). Weighting
parameter: µ = 20. Black dashed lines separate Grenoble in zones used for the calculation of
SSIM.

turns to one or another road, whenever it reaches an intersection at some time instant. Thus,
TR in Aimsun should be understood as mathematical expectation rather than deterministic
values. Hence, it often appears that scenarios in Aimsun, although having the same initial
condition and in�ows, converge to di�erent density distributions. Vehicles might get stuck in
di�erent parts of the city, while this is unlikely to happen during the numerical simulation
of NEWS density, where cars move on a continuum space. However, on a global scale tra�c
regimes seem to be reproduced correctly in most parts of the city.

Let us now compute the structural similarity measure (4.34) to compare two density distri-
butions from Figure 4.7. For that the domain is divided into 9 windows of equal size, as drawn
in Figure 4.8a). We do this in order to be able to compare density distributions zone-by-zone.
The zones are numbered from top left to bottom right, as shown in Figure 4.8a). The SSIM
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Figure 4.8: a) Zone numbering in Grenoble network, b) structural similarity zone-by-zone:
SSIMl with l = {1, . . . , 9}.

of the whole domain is then calculated as the mean value over all zones:

SSIM(ρ1, ρ2) =

N∑
l=1

SSIMl ζl(ρ2)

N∑
l=1

ζl(ρ2)

, (4.36)

where N = 9 is the total number of zones in the domain, SSIMl is referred to zone l each
given by (4.34), and ζl(ρ2) is the average of the density distribution used to assign larger
weights to zones that are strongly occupied in the reference distribution (here, ρ2 is the total
density in Aimsun). Thus, the fewer cars a zone has, the smaller is its weight. The weights
are assigned in order to avoid giving too much importance to zones that are currently almost
empty. Notice that ζl(ρ2(t)) is a time-dependent parameter.

In its original formulation, SSIM values range from −1 to 1. In order to facilitate the
interpretation of this index in the context of density comparison, we make its range to be
SSIM ∈ [0, 1] by doing (SSIM + 1)/2. Thus, SSIM = 1 implies that two distributions are
identical, and SSIM = 0 means that one distribution is completely the opposite of the second
one (inverted image).

The SSIM of corresponding zones in both distributions is depicted as a function of time
in Figure 4.8b). It seems that the most problematic zones are the most empty ones that are
concentrated in the upper part of the domain (zones 2 and 3), while the best captured zones
are the most congested ones (zones 4 and 9). This can be explained by the fact that the main
stream of vehicles enters the domain from the South (since this is where the largest in�ows
are set), where they build the most congested areas. Thus, cars might not have reached the
upper part in Aimsun, since they got stuck in the Southern part of the area.

Finally, in order to unable a quantitative comparison of the density in the whole Grenoble
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Figure 4.9: Mean value over zones of SSIM computed by (4.36) between densities obtained
with Aimsun and numerical simulation of NEWS as a function of time.

area, the SSIM is averaged over all zones by using (4.36), and we obtain the result depicted in
Figure 4.9. Thereby, we can see that the overall SSIM is approximately equal to 0.9 (≈ 90%

accuracy), which indicates that the congested steady state is close to be reproduced correctly
by our model (4.25).

4.2.4 Model validation with real data

For the model validation with real data, we make use of Grenoble Tra�c Lab for Urban
Networks known as GTL Ville, see http://gtlville.inrialpes.fr/. This is an experimental
platform for real-time collection of tra�c data coming from a network of stationary �ow sensors
installed in Grenoble downtown, see Figure 4.10. This platform also provides real-time tra�c
indicators oriented towards the users of the city, tra�c operators and researchers [143]. The
collected data and computed indicators are available for download at the GTL website.

Moreover, for model validation with real data we use the available information on road
importance that is obtained from historical TomTom data, see Figure 4.11 for Functional
Road Classi�cation (FRC) of the selected zone in Grenoble. The road classes are used to
distinguish major roads that experience heavy tra�c from minor roads that are usually related
to residential areas and experience only light tra�c. The major roads of high importance
(highways) belong to class 1, and the class number increases as the road importance decreases
(the least important roads are of class 7). These roads classes are used to assign larger
weights to important roads (4.27), which is then used for the IDW (4.26) to approximate

http://gtlville.inrialpes.fr/
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a) Fixed sensors b) Bluetooth devices

Figure 4.10: Sensor location in Grenoble downtown: a) �xed �ow sensors: R denote radars
and L denote induction loops, b) automatic vehicle identi�ers using Bluetooth installed at 12

intersections of Grenoble during a measurement campaign lasting one week. These �gures are
taken from [120].

network parameters.

The maximal densities at every road ρmax,j , capacities φmax,j , road lengths lj and orien-
tations θj are the same as described above, since these parameters are de�ned by the network
topology, which remains the same for the real-life experiment. However, the free-�ow speed
data are now taken from �oating car data reported from several vehicles that are equipped
with devices such as a GPS navigator. The free-�ow speed is estimated as the maximal speed
of a vehicle in the absence of other cars, and it starts decreasing as the density of surrounding
cars increases. It is worth noting that, in general, the free-�ow speed is lower than the corre-
sponding speed limit value, since in reality cars lose their average velocity, e.g., by stopping
at tra�c lights. Thus, our data indicate that the free-�ow speed is approximately equal to
60− 70% of road's speed limit.

Now let us explain how do we get turning ratios αij . These data are obtained from
automatic vehicle identi�ers using Bluetooth devices that were installed at adjacent incoming
and outgoing roads of 12 intersections in total, see their location in Figure 4.10b). These
identi�ers are able to detect vehicles equipped with another Bluetooth device, which enables to
assign origin and destination roads of individual vehicles. For the estimation of the remaining
turning ratios (since there are more than 12 intersections in total), the information on road
importance is used (FRC), and then the optimization problem minimizing the deviation of
predicted and actual �ows is solved.

Finally, we also get the estimated density values for every road ρj for every minute of the
8th of January 2021 from 6 am to 9 pm, as well as in�ows and out�ows at domain boundaries.
Notice that in this scenario in�ows are time-dependent functions. Estimation of free-�ow
speed, turning ratios, vehicle density and boundary �ows is described in more details in [119].
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Figure 4.11: Functional Road Classi�cation of Grenoble downtown. The image is taken from
[120].

In Figure 4.10a) the sensors marked in blue are those giving boundary in�ows and red
sensors give boundary out�ows. Sensors marked in green were used for the validation of state
estimation procedure. Notice that the state estimation procedure is not free of error and it
does not reconstruct the state exactly, since there are only a limited number of sensors due to
economical cost.

In order to get density values all over the continuum plane, i.e., at every point in Grenoble
downtown (not only at physical roads), we divide each road into 10 parts, and at the boundary
between each part we set a group of vehicles. Thus, there is a known number of vehicles at
10 points of every road. We then assume that all these cars contribute to the global density
around d0 = 70 m from its positions using KDE method, see Section 3.1.3.2. We also use
KDE for the in�ow values, as it was done in the previous example.

The results are depicted in Figure 4.12, where the comparison of two density distributions is
shown. Again, we see that in both cases the distributions look quite similar. The �rst possible
reason for these distributions to be non-identical is the probabilistic nature of turning ratios
in reality opposed to deterministic nature in numerical simulation. Another reason is that
the NEWS model does not include tra�c lights, as well as it is not able to capture accidents
or the e�ect of pedestrians crossing a road. Moreover, the NEWS model does not take into
account parking lots. Thus, in reality parking vehicles are seen as stationary objects that do
not contribute to the tra�c �ow any more, while in NEWS-driven system these vehicles stay
in the domain and create congestions, since the NEWS model is a conservation law.

Another source of mismatch could be induced by data on in�ows and out�ows. The
problem is that the data represent estimated measurements of the �ows in the city that we
can not enforce in our system, since there is always a demand-supply problem that needs to
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Figure 4.12: Evolution of tra�c density in Grenoble downtown on 8th of January, 2021 from
t = 6 am to t = 9 pm: numerical simulation of NEWS model (left plots) and real data (right
plots). Weighting parameter µ = 20.

be solved, i.e.,

φsource = min{Dext, S(ρ)}, φsink = min{D(ρ), Sext},

where ext is used in the subscript to highlight that these functions depend on what happens
outside the domain. Thus, the available data are not related to demand and supply at domain
boundaries but to actual in�ow φ̂source and out�ow φ̂sink of the system (hats are used to
denote the measurement data).

To understand which problems can be provoked by these issues, let us consider some
measured out�ow φ̂sink, which in turn is also just a result of solving the minimum between
demand and supply, i.e.,

φ̂sink = min{D(ρ̂), Sext}, (4.37)

where demand D(ρ̂) depends on the measured density, which might be something di�erent
than the one we get from the numerical simulation of NEWS-driven density.

For the numerical simulation, the best thing we can do with the measured out�ow data
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Figure 4.13: a) Mean SSIM (4.36) between the density ρ1 predicted by numerical simulation
of NEWS model and the density ρ2 estimated from real data as a function of time, b) similarity
zone-by-zone: SSIMl with l = {1, . . . , 9}. Weighting parameter: µ = 20.

φ̂sink is to use it as a supply of the external area:

φsink = min{D(ρ), φ̂sink}. (4.38)

However, it follows from (4.37) that φ̂sink ≤ Sext, where the equality holds in case of congested
tra�c. If the tra�c is not congested, then setting the external supply to be equal to measured
out�ow might lead to blocking vehicles at domain exit instead of letting them come out.

Two distributions are again compared by using the weighted SSIM averaged over 9 zones
as in the previous case using (4.36) and (4.34). The result is depicted in Figure 4.13a), while
Figure 4.13b) is referred to SSIM for each zone computed using (4.34). Notice that the zone
numbering here is preserved the same as in Figure 4.8a). The worst captured zones are 1 and
2 located on the upper part of the city, and the best results are achieved for zones 5, 4 and 8.
A possible reason might be the fact that the cars get stuck at the bottom of the city in the real
experiment, while they move more freely in a PDE governed system (as in Section 4.2.3). In
general, notice that the best results are achieved for the time when the congestion level is the
highest, as we can see from Figure 4.13a). This is related to the weighting parameters used for
the calculation of SSIM (4.36). Weights tend to introduce more noisiness into computation,
when there are only a few cars in the city. Finally, recall that the real-life data are also
an approximation, since these densities are obtained by the estimation procedure that is not
error-free due to the lack of sensors at every road. On average, the total SSIM is around 0.8

(80% accuracy), which indicates that two density distributions are still quite close.
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4.2.5 Reproducibility of the results

It is worth noting that the source code used for model validation is an open source project
that you can �nd here: https://github.com/Lyurlik/multidirectional-traffic-model.
The README.md �le contains all the essential information about the code structure and the
data �les such that anyone can get use of it for di�erent purposes (e.g., prediction of tra�c
density for a di�erent urban network). Thus, the results are made to be reproducible.

This code is used to produce two di�erent vehicle density distributions: by running a
numerical simulation of NEWS model (4.25), and the other one is the reconstructed density
from data obtained from real sensors.

In order to run the code, one needs to have the following �les:

Network topology

1. �../ModelValidation/IntersectionTable.csv� � contains information about intersections:
x and y coordinates of every intersection (columns 1 and 2), its ID (column 3) and
whether it is a node on border (column 4), which means that this intersection is located
at domain boundary through which vehicles may enter (in�ows), or exit (out�ows);

2. �../ModelValidation/RoadTable.csv� � contains information about roads: ID1 and ID2

(columns 3 and 4) are the id's of corresponding intersections that the road is connecting,
ID_road (column 5) is the road's ID, max_vel (column 6) is its free-�ow limit estimated
from real measurements, then we have number of lanes (column 7) and road's length
(column 8);

3. �../ModelValidation/RoadFRC.csv� � contains information about road importance: col-
umn 1 is the road's ID, and column 2 is its importance class from 1 to 7 with roads of
class 1 being the most important;

4. �../ModelValidation/TurnTable.csv� � contains turning ratios between any pair of roads:
ID1 of incoming road (column 1), ID2 of outgoing road (column 2) and the turning ratio
between these roads (column 5).

Data from real sensors

5. "../ModelValidation/Timestamp.csv"� contains time in seconds at which the data are
given (unix timestamp), the time step equals to one minute;

6. "../ModelValidation/Density.csv" � contains estimated density from real sensors: �rst
number is road_id followed by its density (that is assumed to be constant within one
road) at all time instants, then the next road_id with its density data for each time
instant and so on;

7. "../ModelValidation/AllIn�ows.csv" � contains in�ow values (in veh/hour) for every
road for every time step (one minute). If road is outgoing from intersection that is not
on border, then the in�ow value is zero;

https://github.com/Lyurlik/multidirectional-traffic-model
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8. "../ModelValidation/AllOut�ows.csv" � contains out�ow values (in veh/hour) for every
road for every time step (one minute). If road is incoming into intersection that is not
on border, then the out�ow value is zero.

Code structure

The main �le of the project is mainwindow.cpp: in its constructor we specify the �le
names to be loaded, simulation starting time (line 27) and simulation step size (line 29).
The paths to �les containing network and density data are also speci�ed there. We can also
change the weighting parameter µ used to approximate parameters for every cell (line 4), and
parameter d0 (line 5) is the standard deviation parameter used for Gaussian kernel estimation.

Other important classes are:

� UrbanNetwork, which contains all the network geometry information (this is the place,
where all the network �les are read). This network is used for both density predictions.
In its function loadRoads, one needs to specify the minimum distance between the heads
of two consequential vehicles, which is then used for the computation of ρmax (we set
it to 6 m).

� NEWSModel, which contains translation procedure of all network and intersection pa-
rameters into NEWS formulation (function processIntersections). After all parameters
are de�ned in NEWS terms, it calls constructInterpolation function that approximates
these parameters on every grid point in space using their known values at every intersec-
tion. Then update is performed, where the Godunov numerical scheme is applied for the
state update using NEWS model. There is also a function getSSIMDi�_mean_weighted

used to compute the weighted SSIM between two densities (4.36).

� GrenobleData, where all the data estimated from the real-life experiments are loaded.
In function reconstructDensity, the density initially given for each road is de�ned for
every cell. Thereby, every road is divided in 10 parts, and density values are presented
as points on the border between these parts. Then, Gaussian kernel estimation is used
to determine density for every cell in the domain.

� Tra�cSystem, which implements concurrent threads for a parallel NEWS simulation
relative to the main visualization thread.

4.2.6 Discussions

In this section, we demonstrated how the NEWS model predicts the tra�c state compared
to the ground true results. For this purpose, we deployed the Godunov scheme in 2D to run
a numerical simulation of vehicle density governed by NEWS model. The predicted density
was then compared to the reference density distribution obtained from two di�erent sources:
microsimulator Aimsun (Figure 4.7) that produced vehicle trajectories using synthetic data,
and estimated density from data coming from sensors installed in Grenoble downtown (Figure
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4.12). These data from real-life measurements are available for download at our experimental
platform GTL Ville. To enable a quantitative comparison of vehicle densities, we implemented
the measure of structural similarity, which is an index used to reveal to which extent are two
images similar.

In both cases, the predicted density looked quite similar to the reference density distribu-
tion, i.e., the index revealed at least 80% similarity in both cases. In the �rst case (NEWS
vs Aimsun), the predicted densities are similar to 90%. There are several sources of mis-
match. The �rst one to name is that in Aimsun as well as in a real urban network, vehicles
are restricted to move along physical roads, while in a PDE-driven system this is not that
strict, since the underlying surface is a 2D continuum plane. Another reason is that, in real-
ity, turning ratios are only expectation values rather than deterministic values as in NEWS
model. Thus, the proportion of cars turning to one or another road may be di�erent from
the given �xed proportion due to the �nite duration of experiment. The NEWS framework
assumes also that there are 4 possible directions for tra�c at every intersection. If there are at
least two roads with di�erent orientation angles θ going approximately in the same direction
(e.g., North-East), then the NEWS framework introduces mismatches due to approximations
it makes with projection matrices. Another assumption of NEWS relies on optimally designed
networks in terms of capacities. This assumption means that the usage of roads is related to
its capacities, i.e., more cars tend to turn to highways than to roads of minor importance.

In the second case (NEWS vs real data), we had to deal with some additional problems.
The �rst problem to name is that not all the roads in Grenoble downtown are equipped with
sensors due to high economical cost. Thus, the data available for every road come from the
estimation procedure that is not free of errors. The second problem to be mentioned is related
to boundary �ows. Namely, the measured �ow data can not be enforced in our NEWS model.
They can only be suggested as boundary conditions, which are ful�lled only if the tra�c state
at the boundary points admits it (demand-supply problem). Finally, we can also name the
parking lots as sources of errors. In the real-life experiment, cars stop at parking lots and
are not detected by sensors, thus, the reconstructed density does not take them into account.
On the contrary, the NEWS model is based on a conservation law. Thus, if vehicles stop at
parking lots before exiting the domain, they are counted as obstacles that create congestions.

However, the validation results revealed a good agreement with the prediction. The NEWS
model appeared to be a good approximation of multi-directional tra�c in urban networks,
which was con�rmed by real-life measurement data. The code used for model validation is
available as an open source project, and the NEWS model can be deployed to predict tra�c
on any urban network of interest in further research projects. In the next section, we will
suggest a boundary control technique used to mitigate congestions in a urban network with
multi-directional tra�c governed by NEWS model.
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4.3 Boundary control for multi-directional tra�c

In this section, we design a boundary control law for a multi-directional urban tra�c governed
by NEWS model. This controller acts such that initially congested tra�c achieves the best
possible desired equilibrium. This steady state provides congestion mitigation, which equiva-
lently implies throughput maximization of the transportation network. Thus, the control goal
here is similar to what has already been done for uni-directional urban tra�c in Section 3.4.

Our main contribution here is an extensive analysis of possible desired space-varying pro-
�les that the system can achieve. In this section, we will see that �nding an admissible steady
state is far from being trivial for multi-directional tra�c systems. Moreover, we will also use
Lyapunov methods to show the exponential convergence of the tra�c state to the desired
equilibrium.

4.3.1 NEWS model for congested tra�c regime

Let us consider the NEWS model (4.25) for a special case of congested tra�c regime. Re-
stricting to one tra�c regime allows to considerably simplify the system for analysis, as
it was done in Sections 3.4 and 2.2. A congested tra�c in some urban area will be con-
trolled from its downstream boundary such that the level of congestion is minimized under
the constraint that ρ(x, y, t) ≥ ρc(x, y) ∀(x, y, t) ∈ Ω × R+ for all 4 directions. Recall that
Ω ∈ R2 : [xmin, xmax]×[ymin, ymax] is a bounded rectangular domain, whose size is determined
by the size of the urban area under study.

Without loss of generality, consider a partial �ow φEN of vehicles that originate from the
North and then turn to the East, as drawn in Figure 4.3. Its value is determined by the
minimum of �ow demand of the East layer and supply of the North layer, i.e., recall (4.12):

φEN = min{αENDE , βENSN},

with turning and supply rations being given by (4.13), (4.14). Using the de�nition of demand
and supply functions for triangular FD (4.15), we can further rewrite φEN as

φEN = min{αENvEρE , αENφmax,E , βENωN (ρmax,N − ρN ), βENφmax,N}. (4.39)

In the congested tra�c regime, the minimum in demand-supply problem is always resolved
to the bene�t of supply. This in turn implies for (4.39) that

φEN = βENωN (ρmax,N − ρN ).

Using this expression and �xing ρ0(x, y) ∈ [ρc(x, y), ρmax(x, y)] ∀(x, y) ∈ Ω as initial density
distribution condition, we can now introduce the following IBVP for the NEWS model (4.25)
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Figure 4.14: Vehicle density in a 2D continuum plane that incorporates Grenoble downtown.
Downstream boundaries for control of multi-directional tra�c are indicated by colorful arrows:
North in blue (uN ), East in dark red (uE), West in green (uW ) and South in orange (uS).

that describes the dynamics of congested tra�c density on some urban area:


∂ρ

∂t
=

1

L
(I −B)W (ρmax − ρ)− ∂[CW (ρmax − ρ)]

∂x
− ∂[SW (ρmax − ρ)]

∂y
,

ρ(x, y, t) = u(x, y, t), ∀(x, y) ∈ Γout,

ρ(x, y, 0) = ρ0(x, y),

(4.40)

where Γout ⊂ Ω represents a set of boundary points (x, y) associated with the domain exit
(downstream boundary):

Γout = (ymax, xmax, xmin, ymin)T .

The congested tra�c state governed by the NEWS system (4.40) is controlled at the down-
stream boundary Γout by specifying the control vector u = (uN , uE , uW , uS)T . See Figure
4.14, where the arrows are used to denote the boundaries to be activated for control of tra�c
in each direction.

Finally, C, S, W and B in (4.40) are all 4 × 4 matrices such that C and S are diagonal
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matrices, W is a positive-de�nite diagonal matrix, and B is a non-negative matrix:

C =


cos θN 0 0 0

0 cos θE 0 0

0 0 cos θW 0

0 0 0 cos θS

 , S =


sin θN 0 0 0

0 sin θE 0 0

0 0 sin θW 0

0 0 0 sin θS

 ,

W =


ωN 0 0 0

0 ωE 0 0

0 0 ωW 0

0 0 0 ωS

 , B =


βNN βNE βNW βNS
βEN βEE βEW βES
βWN βWE βWW βWS

βSN βSE βSW βSS

 .

4.3.2 Desired equilibrium

Let the error from the desired equilibrium be denoted by ρ̃(x, y, t), which is de�ned as in
(1.9). To keep everything simple, the desired space-varying equilibria take values only in the
congested regime range, i.e., ρd(x, y) ≥ ρc(x, y) ∀(x, y) ∈ Ω.

The time derivatives of state and error coincide, which in combination with (4.40) yields

∂ρ̃

∂t
=

1

L
(I −B)W (ρmax − ρd − ρ̃)− ∂[CW (ρmax − ρd − ρ̃)]

∂x
− ∂[SW (ρmax − ρd − ρ̃)]

∂y
.

(4.41)
Let us also write the dynamics of the desired density that is a time-constant function:

∂ρd
∂t

= 0 =
1

L
(I −B)W (ρmax − ρd)−

∂[CW (ρmax − ρd)]
∂x

− ∂[SW (ρmax − ρd)]
∂y

. (4.42)

If we subtract (4.42) from (4.41), we also obtain the pure error term dynamics:

∂ρ̃

∂t
=

1

L
(B − I)Wρ̃+

∂[CWρ̃]

∂x
+
∂[SWρ̃]

∂y
. (4.43)

We seek to �nd a desired density distribution that corresponds to congestion minimiza-
tion, and then to design a boundary control that stabilizes the tra�c state to that desired
equilibrium. Thereby, the desired density pro�le must remain in the congested regime, i.e.,
ρd(x, y) ≥ ρc(x, y) ∀(x, y) ∈ Ω, and its values at the boundaries should be proportional to the
maximal densities at the corresponding boundary coordinates, i.e., ∃γ ∈ [1/3, 1] such that

ρd(x, y) = γρmax(x, y), ∀(x, y) ∈ Γout. (4.44)

The range of constant γ is related to the requirement for ρd to stay in the congested regime,
since with γ = 1/3 the desired state equals the critical density ρc (recall that ρc = 1/3ρmax
in case of triangular FD). Thus, we need to determine constant γ that provides congestion
minimization given (4.44).

Problem 4.1
Find the desired space-varying density ρd(x, y) ∀(x, y) ∈ Ω that corresponds to the state of

minimal congestion under the constraints that ρd(x, y) ≥ ρc(x, y) ∀(x, y) ∈ Ω, and boundary

values being proportional to maximal densities (4.44).
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Remark 4.2
Minimizing congestion means �nding ρd(x, y) ≥ ρc(x, y) ∀(x, y) ∈ Ω such that

‖ρd(·)− ρc(·)‖∞ is minimized. The L∞ space norm is de�ned as in (1.8).

Remark 4.3
Physically, a proportional relation of density values at the boundaries to the corresponding

maximal densities (4.44) implies that boundaries are �lled in a homogeneous way. This might

be useful in a situation when vehicles concentrated in a city center tend to leave it simultane-

ously, e.g., when people drive back home from their o�ces.

In order to �nd a desired pro�le satisfying Problem 4.1, we need to solve the PDE (4.42)
that describes its structural dependence on (x, y). First of all, we need to introduce a change
of variables ρ̂(x, y) ∀(x, y) ∈ Ω as

ρ̂(x, y) = ρmax(x, y)− ρd(x, y), (4.45)

which being inserted into (4.42) yields

1

L
(I −B)Wρ̂ =

∂[CWρ̂]

∂x
+
∂[SWρ̂]

∂y
. (4.46)

Then, we compute the desired state ρd(x, y) ∀(x, y) ∈ Ω by performing the following steps:

1. Initial guess: set the desired density at the downstream boundary Γout equal to the
corresponding critical values, i.e., pick the lowest possible γ = 1/3, which leads to

ρ̂(x, y) =
2

3
ρmax(x, y), ∀(x, y) ∈ Γout.

2. Consider the same area in Grenoble city center as in all previous sections, also see
Figure 4.6. De�ne a numerical grid for this area in Ω as in Section 4.2.1 but without
discretization of time, since we deal with a time-constant PDE.

3. Discretize the PDE system given by (4.46). For convenience, we consider the PDE for
the density in the North direction, and then the same steps should be done for the
remaining directions. In accordance with the upwind scheme [34] used to provide the
correct direction of information propagation in a �ow �eld, the discretization scheme
of cos θNωN ρ̂N and sin θNωN ρ̂N depends on the signs of cos θN and sin θN , that is
∀(i, j) ∈ {1, . . . , nx} × {1, . . . , ny}:

cos θN (i, j) > 0 :
cos θN (i+ 1, j)ωN (i+ 1, j)ρ̂N (i+ 1, j)− cos θN (i, j)ωN (i, j)ρ̂N (i, j)

∆x
,

cos θN (i, j) < 0 :
cos θN (i, j)ωN (i, j)ρ̂N (i, j)− cos θN (i− 1, j)ωN (i− 1, j)ρ̂N (i− 1, j)

∆x
.

The same can be written for sin θN and for y-direction, for which we �x i and vary j.
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Therefore, we can de�ne 4 × 4 diagonal matrices Qx, Qy, Rx and Ry that capture the
upwind scheme as

cos θN (i, j) > 0 :

QxNN (i, j) =
cos θN (i+ 1, j)ωN (i+ 1, j)

∆x
, RxNN (i, j) = 0,

else :

QxNN (i, j) = 0, RxNN (i, j) = −cos θN (i− 1, j)ωN (i− 1, j)

∆x
,

and the same can be written for sin θN and y-direction, for which we �x i and vary j.

4. De�ne also a 4× 4 matrix P as:

P (i, j) =
1

L(i, j)
(B(i, j)− I)W (i, j)− |C(i, j)|W (i, j)

∆x
− |S(i, j)|W (i, j)

∆y
.

Using the de�nition of matrices P , Qx, Qy, Rx and Ry, we can now write the PDE system
for ρ̂ given by (4.46) in a discretized form that reads ∀(i, j) ∈ {1, . . . , nx} × {1, . . . , ny}:

P (i, j)ρ̂(i, j) +Qx(i, j)ρ̂(i+ 1, j) +Qy(i, j)ρ̂(i, j + 1)

+Rx(i, j)ρ̂(i− 1, j) +Ry(i, j)ρ̂(i, j − 1) = 0.
(4.47)

Notice that ρ̂(0, j), ρ̂(nx + 1, j), ρ̂(i, 0), ρ̂(i, ny + 1) take the values from the boundary
conditions (ghost cells).

5. System (4.47) is solved using the alternating direction implicit method, which is equiv-
alently known as dimensional splitting, see [114]. At each iteration, �rst x and then y
steps are performed. At each x step, the terms ρ̂(i, j−1) and ρ̂(i, j+1) take �xed values
from the previous iteration, while ρ̂(i− 1, j) and ρ̂(i+ 1, j) are �xed for each y step. At
x step, our system (4.47) is solved for every j by the block tridiagonal matrix algorithm,
while at y step this algorithm is applied for every column i.

6. Thus, we have described the numerical method to obtain a solution ρ̂ for the PDE
(4.47), which is not necessarily optimal. Since this PDE (4.47) is a linear system, αρ̂
for α ∈ [0, 1] is also its solution. Let us estimate the parameter α∗ that provides the
optimal equilibrium as in Problem 4.1.

Consider again the desired state ρd that is obtained from (4.45) as

ρd = ρmax − αρ̂. (4.48)

By choosing α = 0 we obtain ρd = ρmax, while by choosing α = 1 we achieve ρd = ρc
at the boundaries (see step 1 and use ρc = 1/3ρmax). This implies that by taking an
intermediate value of α, we guarantee the congested tra�c regime at the boundaries.
Let us calculate α∗ that provides for the desired state ρd to be as close as possible to
ρc while staying in the congested regime (see Remark 4.2), for which in general we can
write:

ρd
ρc
≥ 1⇒ ρmax − αρ̂

1/3ρmax
≥ 1⇒ 3− 3α

ρ̂

ρmax
≥ 1⇒ α ≤ 2

3

ρmax
ρ̂

, ∀(x, y) ∈ Ω.
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From the discussion above, it follows that the optimal state is achieved if ∃(x∗, y∗), for
which

α∗ = min
(x,y)∈Ω

s∈{N,E,W,S}

2

3

ρmax,s(x, y)

ρ̂s(x, y)
. (4.49)

Thus, the optimal desired pro�le in the whole domain Ω can be obtained from (4.48) for
optimal α = α∗

ρd(x, y) = ρmax(x, y)− α∗ρ̂(x, y), (x, y) ∈ Ω, (4.50)

with α∗ being given by (4.49). To get an expression for the optimal desired pro�le ρd(x, y) at
the boundary ∀(x, y) ∈ Γout, we take ρ̂ from step 1 and insert it into (4.50), which yields

ρd(x, y) = γ∗ρmax(x, y), with γ∗ = 1− 2

3
α∗, ∀(x, y) ∈ Γout. (4.51)

As a result, we have derived the expression for optimal desired equilibrium (4.50) that
corresponds to the state of minimal congestion. As we can see, it depends on the solution ρ̂
of system (4.47) that can be found numerically using alternation direction implicit method.
We could also get an explicit formula for optimal equilibrium at the domain boundary Γout
given by (4.51). This is a useful expression, since it directly determines the boundary control
variables u(x, y) from (4.40), see details below.

4.3.3 Boundary control design

After we have analyzed the desired pro�le corresponding to the state of minimal congestion
(see Remark 4.2), let us formulate the boundary control design problem as follows.

Problem 4.2
Find a time-constant boundary controller u(x, y) such that a congested density governed by

NEWS system (4.40) converges to the desired space-varying density ρd(x, y) given by (4.50)
∀(x, y) ∈ Ω as t→∞.

In order to prove the convergence to the desired pro�le, we have to assume that the main
directions of transportation coincide with the cardinal directions, which for example holds for
a Manhattan grid type of tra�c networks.

Assumption 4.1
The matrices C and S from (4.40) are constant in space, e.g., they can be de�ned as:

cos θN = 0, , cos θE = 1 cos θW = −1, cos θS = 0,

sin θN = 1, sin θE = 0, sin θW = 0, sin θS = −1.
(4.52)

In general, the further analysis requires these variables to be just constant in space, but
we choose (4.52) for simplicity. We also make an assumption on supply ratios:
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Assumption 4.2
SR matrix B is constant in space, which in turn implies that every intersection has the same

turning ratio pattern.

Let us now show that setting the boundary controller equal to the desired state at the
boundary under Assumptions 4.1 and 4.2 provides the exponential convergence of tra�c state
to the desired equilibrium in the whole domain. This is formalized as follows.

Theorem 4.1
Under Assumptions 4.1 and 4.2, let the boundary controller be de�ned as

u(x, y) =


ρd,N (x, ymax)

ρd,E(xmax, y)

ρd,W (xmin, y)

ρd,S(x, ymin)

 , ∀(x, y) ∈ Γout, (4.53)

then ∃K, k > 0 such that

‖ρ(t)− ρd‖2L2 6 e−ktK ‖ρ(0)− ρd‖2L2 ,

i.e., the state ρ(x, y, t) exponentially converges to the desired equilibrium ρd(x, y) ∀(x, y) ∈ Ω

as t→∞.

Remark 4.4
Although for simplicity of the proof we assumed a regular Manhattan grid structure (Assump-

tion 4.1), the feedforward boundary controller (4.53) can be applied to a more general network,

as will be shown on a numerical example, for which we take the network of Grenoble downtown.

Proof of Theorem 4.1. Let us �rst analyze matrix B − I. Its non-diagonal elements are posi-
tive, and its diagonal elements are negative. Moreover, B− I has one eigenvalue equal to zero
and all others are negative, as it is shown in Appendix B.8. Therefore, B − I is a negative
singular M -matrix with one zero eigenvalue. Thus, there exists a positive-de�nite diagonal
4× 4 matrix D such that

D(B − I) + (BT − I)D 6 0. (4.54)

Let us also introduce a diagonal 4×4 matrix composed by exponential functions as follows:

E =


ey 0 0 0

0 ex 0 0

0 0 e−x 0

0 0 0 e−y

 .
This matrix is used as weights in each direction that helps achieving exponential convergence.
We de�ne the following Lyapunov function candidate:

V =

xmax∫
xmin

ymax∫
ymin

ρ̃TWDEρ̃ dydx =

xmax∫
xmin

ymax∫
ymin

(ρ̃2
NωNDNe

y

+ ρ̃2
EωEDEe

x + ρ̃2
WωWDW e

−x + ρ̃2
SωSDSe

−y) dydx,

(4.55)
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where DN , DS , DW and DE are the diagonal elements of matrix D.

The function (4.55) is obviously positive-de�nite, since matrix WDE > 0. Let us now
take its time derivative, which yields

V̇ =

xmax∫
xmin

ymax∫
ymin

2
∂ρ̃T

∂t
WDEρ̃ dydx, (4.56)

where the error dynamics ∂ρ̃/∂t should be taken from (4.43), which allows us to further expand
(4.56) as:

V̇ =

xmax∫
xmin

ymax∫
ymin

1

L
(Wρ̃)T

(
DE(B − I) + (BT − I)DE

)
Wρ̃ dydx

+ 2

xmax∫
xmin

ymax∫
ymin

(Wρ̃)TDE

(
∂[CWρ̃]

∂x
+
∂[SWρ̃]

∂y

)
dydx.

(4.57)

Let us now denote the �rst term of (4.57) as V̇1 and the second term as V̇2. The term V̇1 is
negative due to (4.54) and the fact that matrix E is non-negative, i.e.,

V̇1 =

xmax∫
xmin

ymax∫
ymin

1

L
(Wρ̃)T

(
DE(B − I) + (BT − I)DE

)
Wρ̃ dydx < 0.

We further consider V̇2 by inserting the values of matrices C and S (4.52) from Assumption
4.1

V̇2 = 2

xmax∫
xmin

ymax∫
ymin

(
ωE ρ̃EDEe

x∂(ωE ρ̃E)

∂x
− ωW ρ̃WDW e

−x∂(ωW ρ̃W )

∂x

+ ωN ρ̃NDNe
y ∂(ωN ρ̃N )

∂y
− ωS ρ̃SDSe

−y ∂(ωS ρ̃S)

∂y

)
dydx.



166 Chapter 4. Multi-Directional Tra�c on Networks

This expression is then integrated by parts, which yields:

V̇2 =

ymax∫
ymin

[
e−x(

√
DWωW ρ̃W )2 − ex(

√
DEωE ρ̃E)2

]
x=xmin

dy

+

ymax∫
ymin

[
ex(
√
DEωE ρ̃E)2 − e−x(

√
DWωW ρ̃W )2

]
x=xmax

dy

+

xmax∫
xmin

[
e−y(

√
DSωS ρ̃S)2 − ey(

√
DNωN ρ̃N )2

]
y=ymin

dx

+

xmax∫
xmin

[
ey(
√
DNωN ρ̃N )2 − e−y(

√
DSωS ρ̃S)2

]
y=ymax

dx

−
xmax∫
xmin

ymax∫
ymin

(
exDE(ωE ρ̃E)2 + e−xDW (ωW ρ̃W )2

+ eyDN (ωN ρ̃N )2 + e−yDS(ωS ρ̃S)2
)
dydx.

(4.58)

By setting the boundary controller u(x, y) as in (4.53), we achieve that ∀t ∈ R+

ρ̃N (x, ymax, t) = 0, ρ̃S(x, ymin, t) = 0, ∀x ∈ [xmin, xmax],

ρ̃W (xmin, y, t) = 0, ρ̃E(xmax, y, t) = 0, ∀y ∈ [ymin, ymax],
(4.59)

and one ensures that the �rst four integrals in (4.58) go to zero. The last term in (4.58) can
be bounded as follows

xmax∫
xmin

ymax∫
ymin

(
exDE(ωE ρ̃E)2 + e−xDW (ωW ρ̃W )2

+ eyDN (ωN ρ̃N )2 + e−yDS(ωS ρ̃S)2
)
dydx

≤ − min
(x,y)∈Ω

q∈{N,S,W,E}

ωq(x, y)

xmax∫
xmin

ymax∫
ymin

(
exDEωE ρ̃

2
E

+ e−xDWωW ρ̃
2
W + eyDNωN ρ̃

2
N + e−yDSωS ρ̃

2
S

)
dydx,

(4.60)

where we have used the fact that the kinematic wave speed is positive by de�nition, i.e., ω > 0.

The integral on the right-hand side of (4.60) coincides with the Lyapunov function (4.55).
This means that by inserting (4.59) into (4.58) and also by using the bound from (4.60), we
can write

V̇ = V̇1 + V̇2 ≤ V̇2 ≤ −kV,
where k ∈ R+ is a positive constant

k = min
(x,y)∈Ω

q∈{N,E,W,S}

ωq(x, y).
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One can also prove that the state ρ̃ converges to zero in L2 norm exponentially. Indeed,
note that the Lyapunov function V from (4.55) de�nes an equivalent norm on the density
space:

m ‖ρ̃‖2L2 6 V 6M ‖ρ̃‖2L2

with
m = min

(x,y)∈Ω
q∈{N,E,W,S}

ωq(x, y)DqEq(x, y),

M = max
(x,y)∈Ω

q∈{N,E,W,S}

ωq(x, y)DqEq(x, y).

By the exponential convergence of the Lyapunov function we have

V (t) 6 e−ktV (0),

therefore ∀(x, y) ∈ Ω

‖ρ̃(t)‖2L2 6 e−kt
M

m
‖ρ̃(0)‖2L2 .

Remark 4.5
Assumption 4.2 on space-independent B can be relaxed, if it is possible to �nd such a matrix

D that satis�es inequality (4.54), and whose elements DE(y) and DW (y) may depend on y,

while DN (x) and DS(x) may depend on x.

4.3.4 Numerical example

Finally, we demonstrate how a boundary control given by (4.53) works in practice using a
selected area Grenoble downtown with a total surface of around 1.4 × 1 km2, which is the
same area as in all previous sections of this chapter, e.g., see Figure 4.6. For the numerical
simulation of tra�c density evolution governed by NEWS system (4.40) in the congested
regime, we again deploy the Godunov scheme in 2D as described in 4.2.1. The downstream
boundary conditions in (4.40) are set to the desired optimal density as in (4.53), while the
upstream boundary conditions are initialised with the maximal possible �ow as in Section
3.4.3, where the control of congested uni-directional tra�c was considered. We will thus
demonstrate how the boundary controller (4.53) performs for congestion mitigation purposes
given the initial state

ρ0(x, y) = ρmax(x, y), ∀(x, y) ∈ Ω.

The results of control performance on a congested tra�c in Grenoble downtown are shown
in Figure 4.15. The continuous approximation of FD and network parameters using IDW
method (4.26) was done with a low weighting parameter µ = 5, such that only the global
trend of motion is reproduced.

Figure 4.15a) illustrates the initial vehicle density that indicates the state of a tra�c
jam. The optimal desired equilibrium pro�le ρd obtained by following all the steps in Section
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4.3.2 is illustrated in Figure 4.15b). Recall that the desired state corresponds to congestion
minimization under the constraints formulated in Problem 4.1. The desired state is found by
�rst solving the PDE for ρ̂ given by (4.47) and then using (4.50), where we use α∗ = 0.51 that
was obtained using (4.49). Further, we show the impact of boundary controller (4.53) on the
congested tra�c state after t = 5 min, t = 20 min and t = 50 min in Figures 4.15c), 4.15d)
and 4.15e), respectively. We can see that the controlled state at t = 50 min is identical to the
desired equilibrium from Figure 4.15b).

We could quantitatively measure the similarity between two density distributions by de-
ploying the mean SSIM (denoted by SSIM), see Section 4.2.2 and (4.36). Thereby, the
Grenoble area was again divided into 9 zones to compute SSIM using (4.36). Notice that
SSIM as a function of time is shown in Figure 4.15f), where range of SSIM is preserved as
in its original formulation, i.e., SSIM ∈ [−1, 1]. Thus, after t = 50 min of boundary control
action, SSIM approaches 1, which implies that two density distributions in Figures 4.15e) and
4.15b) are identical.

4.4 Chapter conclusions

In this chapter, we suggested our own way to deal with multi-directional tra�c evolving on
urban networks of arbitrary size. Multi-directional tra�c is much more close to represent
urban tra�c in realistic situations compared to 2D LWR approach considered in the previous
Chapter 3. The global idea was to derive a PDE model that captures the tra�c behaviour
evolving in a urban network in any direction with �ow crossings.

We started elaborating a modeling approach for multi-directional tra�c by considering a
tra�c �ow model at one intersection based on the classical CTM. Each intersection is charac-
terized by a certain number of incoming and outgoing roads that may be arbitrarily oriented
in space. Thus, the tra�c �ow model has a di�erent number of parameters to tune for each
individual intersection. As a network may consist of thousands of intersections, we had to �nd
a uni�ed approach to describe tra�c at intersections regardless of their individual parameters.
Thereby, we assumed that the dynamics of multi-directional tra�c can be represented by only
4 direction layers: North, East, West and South. This led to the formulation of NEWS frame-
work that deploys geometry-based projection matrices to map the tra�c �ow along any road
into the nearest cardinal directions. The projection weights vary continuously with road's
orientation angle. For instance, if a road goes exactly to the North, the projection weight for
the North direction is equal to 1 (maximal possible angle), while it is equal to 0.5 if the road
is oriented perfectly towards North-East or North-West. We have also introduced the concept
of partial �ows to capture various origin-destination patterns at intersections. For instance,
φNE is the �ow of vehicles that were moving along a road oriented to the North, and then at
intersection turned to the road oriented to the East direction.

Thus, we were able to obtain a tra�c �ow model that predicts the rate of change of vehicle
accumulation at intersection in a uni�ed way. However, since our goal was the derivation of
a tra�c model on a macroscopic scale, we wanted to formulate the tra�c state in terms of
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Figure 4.15: Boundary control of congested tra�c in Grenoble downtown: a) initial congested
state ρ0, b) desired equilibrium ρd; controlled state after: c) t = 5 min, d) t = 20 min, e)
t = 50 min; d) SSIM between the state and the desired density as a function of time.
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density. Therefore, we also applied the continuation method to be able to de�ne the model
predicting the evolution of vehicle density in the vicinity of an intersection. This method
was used to turn an ODE into a PDE, which allowed us to obtain a macroscopic continuum
model for one intersection. Since every intersection was described in a uni�ed way, we �nally
applied the inverse distance weighting to de�ne all the intersection parameters for every point
in a continuum plane. The derivation of the NEWS model was done analytically using only
one assumption on network structure. Namely, urban networks under consideration must
be well-designed in terms of maximal �ows, i.e., if vehicles move at maximal �ow before an
intersection, they continue using the road capacity at maximum after the turn.

As a result, in Section 4.1, we derived the NEWS model (4.29) that predicts the evolution
of tra�c in four cardinal directions. The propagation of tra�c �ow in each direction is driven
by the demand-supply concept that uses a fundamental diagram. Moreover, vehicles moving
in some layer can switch to another layer, i.e., there is a mixing between di�erent layers, which
is an important aspect due to its physical ubiquity.

The mathematical properties of the NEWS model have also been analyzed. The PDE
system was shown to be hyperbolic for any parameter set, as it is often the case for conservation
law based tra�c models. Being able to classify a model as a hyperbolic PDE signi�cantly
simpli�es the analysis for future tasks such as explicit control design or steady state estimation,
since a lot of analytical results have already been elaborated for this type of systems. It was also
shown that the model represents a conservation law with tra�c density being the conserved
quantity. Moreover, it was shown that its state is bounded, which is a realistic assumption
for tra�c modeling, since vehicles can not be located in�nitely dense.

The model prediction results have been validated in Section (4.2) using microsimulation
Aimsun, and experimental platform GTL Ville that provides real-time data from a network of
real sensors installed in Grenoble downtown. The validation results revealed that the density
distribution predicted by NEWS model stays in a good agreement with the reference density,
i.e., 90% of similarity with Aimsun and 80% similarity with the real-life experiment. Although
the validation results proved a high prediction quality with the NEWS model, it is however
not completely error-free, since it is based on several assumptions that do not necessarily hold
for a general tra�c situation in reality. The model validation with real data was made to
be an open source project such that the results are reproducible and can be used for future
studies.

In the last Section 4.3 of this chapter, the NEWS model has been investigated from the
control perspective, whereby we restricted to the congested tra�c regime for simplicity. We
have analyzed the class of admissible desired equilibria that must satisfy a certain system of
PDEs. We have posed and solved the problem of �nding an equilibrium state that corresponds
to the state of congestion minimization in a urban network under the constraint that its range
must remain in the congested regime. Further, we proved the exponential convergence of
a congested state controlled from the boundary to this desired equilibrium using Lyapunov
methods. Thereby, for the proof, we had to assume several restrictive assumptions such as
Manhattan grid like topology of underlying urban networks, and similar turning ratio patterns
at intersections. These assumptions were introduced only to simplify the proof and are not
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necessarily real restrictions needed to provide the functionality of the suggested controller,
which was shown in a numerical example. Finally, we again used the same area in Greno-
ble downtown as in Section 4.2 to demonstrate the performance of the derived feedforward
boundary controller with the help of a numerical example. It was shown that the controller
acts such that the tra�c density converges to the desired optimal equilibrium in �nite time,
which is related to the hyperbolic nature of NEWS PDE.

An appealing direction for future studies might be �nding equilibria pro�les that admit
mixed tra�c regimes. Another possible extension may include elaborating a boundary con-
troller under the constraint that the activation boundary is a set of points on real roads
rather than a continuous line, as it is assumed to be in a PDE-driven model. More research
perspectives are given in Chapter Conclusions and Perspectives.





Conclusions and Perspectives

Summary of contributions

This thesis was devoted to tra�c control on urban networks. Thereby, we have used the
macroscopic modeling approach that enables characterizing tra�c as a �uido-dynamic system,
and its state is described in terms of vehicle density. This is a bene�cial form to analyze tra�c
on large-scale networks, since it allows us to consider tra�c as a single dynamic object rather
than a collection of vehicles. By considering tra�c on a macroscopic scale, the model-based
control design becomes scalable and easy to validate even for arbitrarily large urban networks.
We were mainly interested in predicting congestion formations in large transportation networks
and in dissolving them through the boundary control, i.e., by setting appropriate on- and o�-
ramps. Reaching such a goal implies taking a big step towards the development of intelligent
transportation networks. In this work, we proceeded towards the global goal of tra�c control
on any urban network step-by-step. First, tra�c on single roads was considered and analyzed
for control. Then, we looked at tra�c on urban networks with a preferred direction of motion.
Finally, we developed our own approach to modeling tra�c with any direction of movement.
Let us summarize the main contributions that have been achieved at each of these stages.

Tra�c control on roads

We considered tra�c evolving on single roads of �nite lengths using the LWR approach in
Chapter 2. The goal of this chapter was to design a boundary control law that acts such that
any desired space- and time-varying vehicle density pro�le is tracked for asymptotic time. To
be admissible, the desired vehicle density must be governed by the LWR PDE as well. A
space- and time-dependent desired state can be seen as a generalization of any desired state.
Stabilization of tra�c to some desired equilibrium is just a special case of trajectory tracking,
and can be achieved by applying the same control law. Also notice that non-stationary pro�les
are more frequent in real tra�c situations.

There are however two major di�culties that arise for LWR-driven tra�c control design.
The �rst di�culty is that there are no classical solutions to the LWR PDE due to the non-
linearity of the fundamental diagram even for a smooth initial datum. Characteristic lines
propagate with di�erent speeds, and whenever they cross, the discontinuities in the solution
arise. This requires considering solutions in the weak sense, and the unique solution is the one
that satis�es the Lax entropy condition. Thus, treating discontinuities is a tedious procedure
that gets even more complicated, if we design control to track some trajectory that also does
not exist in the classical sense.

The second di�culty is that considering tra�c governed by LWR PDE on �nite roads
requires to include boundary conditions into the consideration. One needs to consider these
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conditions also in the weak sense, since in general they can not be imposed for all time,
which equivalently means that the demand-supply problem needs to be solved. This triggers
a general problem, when the boundary conditions need to be designed for tra�c control. We
can not even analyze how the system evolves under the e�ect of control in a straightforward
way, since the controller may not be accepted by the system.

Thus, we �rst considered a more simple case by restricting only to congested tra�c in
Section 2.2. Considering tra�c only in the congested regime considerably facilitates the struc-
ture of the tra�c system that becomes linear, as well as boundary conditions can be imposed
in a strong sense. We also added a general unknown in-domain disturbance to the system.
This was done to capture the unmeasured in�uence of vehicles that come from minor roads
and aggravate congestion. Thus, we designed the optimal boundary controller that acts to
minimize the deviation from the desired trajectory while attenuating disturbance. The devia-
tion is minimized in sense of L2 norm if the boundary controller from Theorem 2.1 is applied.
We also achieved the minimization of the deviation in sense of L∞ norm by applying the
boundary control law from Theorem 2.2. When it comes to practical applications, the mini-
mization norm should be chosen based on the available knowledge of the disturbance source,
i.e., L2 norm should be minimized if the unmeasured �ow of vehicles originates from many
minor roads, while we choose the L∞ minimization if the disturbance is related to a stream
of vehicles originating from a single major road. In both cases, the designed controllers have
feedback parts used to attenuate the disturbance. Although the controllers are optimal, in
general, the in-domain disturbance can not be completely rejected by acting only from the
boundary due to a �nite propagation speed of information, which is a general property of
hyperbolic systems. The material of Section 2.2 was published in [137].

In Section 2.3, we extended this result by considering the full LWR system (without
disturbance), for which no classical solutions exist. The tra�c state as well as the desired
trajectory are governed by the LWR PDE, which implies that they can be in di�erent tra�c
regimes. Solving a boundary control task for such a system is a much more general result,
since real-life tra�c usually builds non-trivial density patterns, e.g., it can be partially in the
free-�ow tra�c regime and partially congested. We could solve this problem by considering the
LWR system in Hamilton-Jacobi formulation that represents its integral (cumulative) form.
This formulation enabled us to obtain a continuous solution to the LWR system explicitly for
large enough time. It was possible due to a convenient shape of the triangular fundamental
diagram. The solution to the LWR system in H-J formulation was then used to analyze the
boundary conditions in terms of control restrictive functions. The cumulative H-J formulation
thus enabled us to estimate the time periods during which the road boundaries can not accept
the proposed controller values. The main result of this section is the boundary control law
with feedback term in Theorem 2.3, and we can also say that it is the main result of the

whole Chapter 2. We have shown that even with time periods during which no control can
be imposed, the system exponentially converges to the desired trajectory in Hamilton-Jacobi
formulation. This result implies that under this control law, the number of vehicles on the
controlled tra�c road converges to the desired number of vehicles pointwise. This also means
that the vehicle density converges to the desired trajectory in the integral sense over arbitrarily
small intervals. Thus, we suggested a general approach to solve any control task for LWR-



Conclusions and Perspectives 175

driven mixed-regime tra�c on a single road by acting only from the road boundary, and it
was published in [133].

Uni-directional tra�c on networks

After the boundary control problem for a general tra�c state was solved for a single road, we
were seeking to �nd a holistic approach to solve any control tasks for urban tra�c in Chapter 3.
This was done within the same modeling approach but in two dimensions, i.e., we used the 2D
LWR model to predict the evolution of tra�c on a urban network by approximating it as a 2D
continuum plane. Namely, tra�c is again seen as a �uid that propagates along a 2D plane that
is a rectangular domain whose size is determined by the size of the underlying network that
represents a set of roads and intersections. The network infrastructure is incorporated as an
explicit space-dependency of the fundamental diagram that captures various speed limits and
transportation capacities along the roads of urban network. The FD parameters are approxi-
mated everywhere in the continuum, and its values are mostly in�uenced by the parameters of
the closest roads. The direction of tra�c �ow propagation is determined by the direction �eld
that depends on the network geometry. The structure of the model implies that the integral
lines of the direction �eld do not cross. Moreover, to be well-de�ned on a continuum plane, we
can apply this model only to urban networks that contain no loops. These two requirements
(no crossing lines and no loops) makes this model applicable only to uni-directional networks,
i.e., there must be a preferred direction of motion. This restriction makes it di�cult to use
this model for a general multi-directional tra�c. However, the 2D LWR model can be useful
in a variety of situations. For example, many people driving simultaneously to the business
district (e.g., at 9 am on a weekday) create a uni-directional tra�c pattern.

The second space dimension makes it di�cult to analyze the 2D LWR model in its original
form for the control design. For example, it was not clear which boundary point should be
actuated such that some area inside the domain is a�ected. In Section 3.2, we elaborated a
technique that turns this 2D model into a parametrized system of 1D LWR equations with
an explicitly space-dependent FD. This technique is the main contribution of Chapter 3. It
is based on the curvilinear coordinate transformation that scales and rotates the space such
that it is then treated as a continuum, in which tra�c propagates along straight lines (as in
Figure 3.7). Thus, the 2D LWR model was rewritten in new coordinates (3.34), and it is seen
as a continuum plane composed of inhomogeneous roads. The big advantage of this system
is that we could apply similar control techniques as in the previous chapter but handling the
explicit space-dependency of FD and an additional space parameter.

In Section 3.3, we discussed the equilibria that can be achieved in urban networks given
in�ows and network structure (published in [135]). Then, this result was used in Section
3.4 to obtain the optimal equilibrium state corresponding to congestion mitigation. Thereby,
we considered a simplistic case of tra�c being only in the congested regime. The boundary
controller is given in Theorem 3.1, and it was shown that it is able to drive congested urban
tra�c to an equilibrium of maximal throughput (published in [138]). Next, in Section 3.5,
we solved the problem of boundary control design for mixed-regime urban tra�c such that
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it tracks any desired space- and time-dependent trajectory. This is the same problem as
considered for 1D case, and thus it could also be solved using the H-J formulation. This was
however more technically involved and not that straightforward due to the space-dependency
of the Hamiltonian. The designed boundary controller is presented in Theorem 3.2. This
result is a general solution to the boundary control problem for any urban network that has a
preferred direction of motion that can achieve any time- and space-dependent pro�le governed
by the 2D LWR model.

Finally, in Section 3.6, control was designed in a di�erent way than in all the preceding
parts. Namely, we demonstrated the ability to control urban tra�c using the variable speed
limit applied continuously in space and time (in-domain controller). The VSL controller
given in Theorem 3.3 is able to drive urban tra�c to any desired equilibrium. The di�erence
with respect to the previous boundary control result is that this desired equilibrium is not
even restricted to satisfy the conservation law equation. This is possible, since the controller is
designed such that the closed-loop system loses the conservation law structure, i.e., it feedback
linearizes the system. Thus, the desired equilibrium is bounded only by the maximal density
that is determined by the network structure. It was shown that the controller is smooth in
space for some special dependencies of FD on VSL in Theorem 3.4. Then we also designed an
equilibrium that provides that the system is used at its maximal theoretical throughput by
the maximal possible number of drivers. The material presented in Sections 3.5 and 3.6 was
sent for a publication [132].

Multi-directional tra�c on networks

In Chapter 4, we addressed the main limitation of the previous results that have been developed
only for uni-directional tra�c. A new model for tra�c with multiple directions was introduced
in Section 4.1. This model is explicitly derived from the demand-supply concept for one
intersection. Since a urban network usually contains much more than one intersection, we
had to develop a new framework that can describe tra�c in a uni�ed way for all intersections.
The main di�culty was introduced by the fact that every intersection may have an arbitrary
number of incoming and outgoing roads.

We suggested to introduce a projection matrix that assigns weights to every road with
respect to 4 cardinal directions, which are North, East, West and South (NEWS). Thus,
every intersection is approximated as if it would have 4 incoming and 4 outgoing roads in
each direction, i.e., 16 pairs of origin-destination �ows can be de�ned. This enabled us to
formulate a tra�c �ow model at every intersection in a unique way such that it predicts the
rate of change in the number of vehicles at intersection given in�ows and out�ows in NEWS
formulation. Further, the continuation method was applied to translate this ODE model into
a PDE that describes the evolution of vehicle density in the vicinity of an intersection. This
was done, since our goal was to derive a macroscopic continuous model, as in the previous
chapters but allowing any possible direction. Thus, we obtained a unique model that describes
the evolution of density in 4 direction layers at every intersection in the same way. Using
approximation methods, we de�ned also the parameters of FD everywhere in the continuum.



Conclusions and Perspectives 177

Therefore, we obtained the NEWS model (4.25) that is the main contribution of Chapter 4.
It consists of mixing and transportation terms. The mixing term is responsible for modeling
of inter-layer tra�c �ow, which is an essential phenomenon that allows to capture turning
ratios correctly. The transportation term describes the spatial propagation of tra�c �ow in
each direction layer that depends only on demand and supply functions of the corresponding
direction.

In Section 4.1.4, the properties of this new model have been studied. It was shown that
this model represents a conservation law. Its state is always positive and bounded by the
tra�c jam density that is determined by the network topology. Then, we also showed that
this model corresponds to a hyperbolic partial di�erential equation for any possible parameter
set. Being able to classify a tra�c model as a hyperbolic conservation law allows to consider
the properties of its solution in the same way as it is done for other hyperbolic conservation
laws such as 1D LWR, as well as the same �nite di�erence approximation method can be
applied for numerical simulations.

The ability to consistently predict tra�c evolution on large-scale networks using the NEWS
model was validated in Section 4.2. First, we used synthetic tra�c data obtained by running
a congestion formation scenario on a commercial microsimulator Aimsun. It predicts the
trajectories of individual vehicles given some network with de�ned road and intersection pa-
rameters as well as the in�ow rate. The same scenario and parameters were taken for the
numerical simulation of tra�c with NEWS-driven dynamics. The results were compared us-
ing the structural similarity index that is a perception-based measure of similarity between
two images (density distributions). The index revealed 90% of similarity meaning that the
NEWS model is able to predict the evolution of tra�c with the accuracy of 90%. The main
factor explaining that two distributions are not identical is a pure continuous nature of the
NEWS model, which does not strictly prohibit cars to move outside of real roads.

Then, the NEWS prediction results were also validated with real data obtained from the
experimental platform GTL Ville (Grenoble Tra�c Lab) that collects tra�c data from a set
of real sensors installed in Grenoble downtown. These data are related to in�ows and out�ows
at stationary points, turning ratios were obtained with Bluetooth devices, and TomTom data
provide velocities. It is important to note that due to economic cost sensors are not installed
at every road. The rest of the tra�c state in Grenoble downtown was reconstructed using
heuristic algorithms. Thus, the NEWS tra�c density was compared to the tra�c density
reconstructed from real measurements, and the similarity index revealed 80% of similarity.
The results are presented in Figure 4.12, which is the major contribution of Section 4.2 (and
one of the main contributions of this whole chapter). An additional source of distribution
mismatch comes through the disability to enforce the same in�ow and out�ow data as in the
real-life experiment due to the demand-supply problem. The derivation of NEWS model and
its validation with synthetic and real data was sent for a publication [136].

Finally, we analyzed the NEWS model for the case of multi-directional tra�c in the con-
gested regime, and designed a boundary control law to manage this tra�c in Section 4.2 (sent
for a publication [134]). The control goal thereby was again to drive the system to the best
equilibrium proving the maximal throughput under the constraint that mathematically tra�c
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could still be described by the NEWS system in congested tra�c regime. The most non-trivial
thing was to analyze admissible equilibria, for which some PDEs had to be solved. The de-
signed boundary controller is presented in Theorem 4.1. For its proof, we had to assume a
Manhattan grid structure of network and a similar supply ratio pattern at every intersection,
which are however not necessarily real restrictions that need to hold in order to achieve the
convergence to the desired state with the boundary controller.

Perspectives and extensions

Based on the results of this PhD thesis, I see a plenty of appealing directions for the future
research. The following open questions seem to be the most relevant ones:

� In this thesis, tra�c was described in a quite simplistic way, since LWR model repre-
sents the most simple macroscopic model of tra�c. In general, it is well known that
LWR modeling approach has several drawbacks, since it does not take many important
phenomena such as bounded acceleration or capacity drop due to the transition from
free-�ow to congested tra�c regime. Moreover, a possible way to re�ne the description
of tra�c is to take into account di�erent driver classes based on their velocity (fast
and slow). Thus, one could investigate the boundary control problem to track a de-
sired space- and time-varying pro�le using a more sophisticated modeling approach that
addresses limitations of LWR model (higher-order and multi-class models).

� The 2D LWR model is restricted to describe tra�c on networks that have a preferred
direction of motion, which is not realistic for general tra�c. A similar problem was
encountered for MFD-based models. Recall that MFD becomes ill-de�ned in zones with
heterogeneously congested roads, and partitioning algorithms had to be developed to
divide a network into homogeneously congested zones. Thus, as a promising extension
of research on macroscopic urban tra�c modeling, one could develop partitioning algo-
rithms that would divide a urban network into zones that have a preferred direction of
motion.

� In both Chapters 3 and 4, the boundary controllers were designed for tra�c evolving
on a continuum rectangular domain that approximates the underlying urban network.
As a result, we obtained control laws de�ned on a continuum line, which is not directly
interpretable physically. It would be thus interesting to investigate this problem and
to develop a method to map the boundary controllers de�ned on continuous lines into
actuators that are set on speci�c points or intervals on real roads.

� In Chapter 4 the NEWS model was derived. This model is a system of only four PDEs
that is able to predict the evolution of multi-directional tra�c on urban networks quite
accurately (which was con�rmed with experimental data). It is important for future
studies to rigorously characterize the mathematical properties of its solutions. Moreover,
the last Section 4.3 presented the �rst control result for tra�c governed by the NEWS
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model, however for a simpli�ed case of congested tra�c. It would be thus appealing to
extend this result to capture mixed-regime tra�c.





Appendix A

Appendix A: List of symbols

A.1 Tra�c on one road

ρ(x, t) one-dimensional vehicle density veh/m

φ(x, t) one-dimensional vehicle �ow veh/s

ρd(x, t) desired vehicle density trajectory veh/m

ρ̃(x, t) deviation of the state from the desired density veh/m

Φ(ρ) �ux function (constant parameters) veh/s

D(ρ) demand function veh/s

S(ρ) supply function veh/s

ρin(t) proposed density at the upstream boundary veh/m

ρout(t) proposed density at the downstream boundary veh/m

ρ0(x) initial density at t = 0 veh/m

φin(t) in�ow to the road stretch veh/s

φout(t) out�ow from the road stretch veh/s

v, ω kinematic wave speeds in triangular FD (constant) m/s

ρc critical density (constant) veh/m

ρmax maximal density (constant) veh/m

φmax road capacity (constant) veh/s

L road length (constant) m

tctr minimal controllability time s

MIni(x) initial cumulative vehicle number at t = 0 veh

MUp(t) cumulative vehicle number at road entry x = 0 veh

MDown(t) cumulative vehicle number at road exit x = L veh

181
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A.2 Uni-directional tra�c on a 2D plane

Variable Meaning Units

ρ(x, y, t) two-dimensional vehicle density veh/m2

~Φ(x, y, ρ) �ux vector function veh/(s·m)

Φ(x, y, ρ) �ux magnitude (space-varying parameters) veh/(s·m)

~dθ(x, y) direction �eld set by network geometry -

Ω bounded continuum domain that approximates network m

∇ two-dimensional nabla operator 1/m

ρ0(x, y) initial density at t = 0 veh/m2

v(x, y), ω(x, y) kinematic wave speeds (triangular FD) m/s

vmax(x, y) maximal free-way kinematic wave speed (Greenshields FD) m/s

ρc(x, y) critical density veh/m2

ρmax(x, y) maximal density veh/m2

φmax(x, y) road capacity veh/(s·m)

µ weighting parameter for continuous approximation 1/m

(ξ, η) curvilinear spatial coordinates m

α(ξ, η), β(ξ, η) scaling factors used to preserve the metric in (ξ, η)-space -

ρmax(ξ, η) maximal density in (ξ, η)-space veh/m2

φmax(ξ, η) road capacity in (ξ, η)-space veh/(s·m)

v(ξ, η), ω(ξ, η) kinematic wave speeds in (ξ, η)-space (triangular FD) m/s

vmax(ξ, η)
maximal free-way kinematic wave speed in (ξ, η)-space
(Greenshields FD)

m/s

D(ρin(η)) demand at the upstream boundary of η-line veh/(s·m)

S(ρout(η)) supply at the downstream boundary of η-line veh/(s·m)

φminmax(η) capacity at the strongest bottleneck along the η-line -

tctr(η) minimal controllability time for η-line s
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A.3 Multi-directional tra�c on a 2D plane

A.3.1 Road formulation

Variable Meaning Units

ρ(x, y, t) vehicle density veh/m

Φ(x, y, ρ) �ow function veh/s

v(x, y) kinematic wave speed in free-�ow regime m/s

ω(x, y) kinematic wave speed in congested regime m/s

ρc(x, y) critical vehicle density veh/m

φmax(x, y) �ow capacity veh/s

D(ρ) demand function veh/s

S(ρ) supply function veh/s

φini in�ow to intersection from road i veh/s

φoutj out�ow from intersection to road j veh/s

ψinj in�ow into road j veh/s

ψoutj out�ow from road j veh/s

nin number of incoming roads for intersection -

nout number of outgoing roads from intersection -

φij �ow from road i to road j veh/s

αij turning ratio from road i to road j -

βij supply coe�cient of road j for the �ow from road i -

Dij �ow demand of road i to enter road j veh/s

Sij supply of road j for �ow coming from road i veh/s

θi angle that road i builds with the East direction rad

li length of road i m
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A.3.2 The NEWS formulation

Variable Meaning Units

pNθ , p
E
θ , p

W
θ , p

S
θ projection coe�cients w.r.t. corresponding directions -

Pin ∈ R4×nin projection matrix for incoming roads into NEWS -

Pout ∈ R4×nout projection matrix for outgoing roads into NEWS -

ρ̄(x, y, t) 4-dim density vector veh/m

Φ̄(x, y, ρ̄) 4-dim �ow function veh/s

ρ̄max(x, y) 4-dim maximal density veh/m

v̄(x, y), ω̄(x, y) 4-dim kinematic wave speeds m/s

ρ̄c(x, y) 4-dim critical density veh/m

φ̄max(x, y) 4-dim �ow capacity veh/s

D̄(x, y, ρ̄) 4-dim demand function veh/s

S̄(x, y, ρ̄) 4-dim supply function veh/s

φ̄inN (x, y) in�ow into intersection in the North direction veh/s

φ̄outN (x, y) out�ow from intersection in the North direction veh/s

φ̄NE(x, y) partial �ow from North to East wrt intersection veh/s

ψ̄inN (x, y) in�ow into outgoing road in the North direction veh/s

ψ̄outN (x, y) out�ow from outgoing road in the North direction veh/s

ψ̄NE(x, y) partial �ow from North to East wrt outgoing roads veh/s

ᾱEN (x, y) turning ratio from East to North layer -

β̄EN (x, y) supply of East layer for the �ow from the North -

cos θ(x, y),
sin θ(x, y)

average direction parameters of intersection -

L(x, y) average length of outgoing roads of intersection m
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Appendix B: Analysis of tra�c
systems

B.1 Method of characteristics for a system with disturbance

Here we provide the details on how to obtain a solution ρ̃(x, t) to a transport equation with a
disturbance term (2.37). Since in this case we are dealing with a linear system (2.37), we can
apply the method of characteristics to �nd its solution ρ̃(x, t) ∀(x, t) ∈ [0, L]×R+. According
to the method of characteristics, �nding a solution is equivalent to �nding an integral surface
S such that the coe�cient vector �eld V = (1,−ω, δ(x)) is tangent at each point for any curve
Γ ∈ S [46].

Let us introduce a variable s used for the parametrization of Γ. Thus, we need to �nd a
curve Γ = (x(s), y(s), z(s)) ∈ R3 such that the following system of ODEs is satis�ed:

dx

ds
= −ω,

dt

ds
= 1,

dz

ds
= δ(x(s)).

By eliminating s from the �rst two ODEs, we obtain the projection of the characteristic
curve in (x, t)-plane : t− L−x

ω = const. Note that we consider only t ≥ L−x
ω , since the control

action has a �nite propagation time tctr = L
ω .

Now let us estimate ρ̃(x, t) from the third ODE. For this, we need to parametrize the line
passing through two points (x, t) and (L, t − L−x

ω ): in the �rst variable it is x(y) = y as y

varies from x to L, and in the second variable it is t(y) = (t − (y−x)
ω ). If z has to be on the

integral curve, then z(y) = ρ̃(y, t− (y−x)
ω ). Therefore, the third ODE becomes

−ωdz
dy

= δ(y).

Integration from L to x of both sides yields

1

ω

L∫
x

δ(y)dy = ρ̃(x, t)− ρ̃(L, t− L− x
ω

).

185
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Notice that we need to perform similar steps in order to obtain a solution ρ̃(x, t) for
t < L−x

ω . In this case, the projection of the characteristic curve in (x, t)-plane is x+ωt = const.

B.2 Solution of a Hamilton-Jacobi system

Here we explicitly derive the analytic solution of a H-J problem as in (2.25) for the special case
of Hamiltonian being a triangular FD. In this case, the convex transform (2.30) of a triangular
FD (2.2) yields

L(v′) = φmax − ρcv′, ∀v′ ∈ [−ω, v], (B.1)

and it is illustrated in Figure 2.5.

In order to obtain a unique solution M(x, t) ∀(x, t) ∈ [0, L]×R+ for the case of triangular
FD, we should explicitly calculate �solution candidates� MUp(x, t),MDown(x, t) andMIni(x, t),
and then extract the minimum of these functions as in (2.34).

B.2.1 Upstream boundary condition

The function MUp(x, t) denotes the solution of the Lax-Hopf formula (2.32) that originates
from the upstream boundary x = 0 at time t − T given the initial cost MUp(T − t) (a more
detailed explanation is given in 2.1.8).

By looking at the value condition function c de�ned in (2.26), we establish that the initial
cost in (2.33) is given by c(x − Tv′, t − T ) = MUp(t − T ). The equality to zero of the �rst
argument of function c is achieved for T = x

v′ , where v
′ ∈ [−ω, v]. Since T can only be positive

by de�nition, the minimal value of the time interval should be Tmin = x
v . Using (B.1), this

results into the following in�mum problem:

MUp(x, t) = inf
T∈[x

v
,+∞]

(MUp(t− T ) + Tφmax)− xρc.

Using the expression for the upstream boundary condition (2.27), the in�mum problem reads

MUp(x, t) = inf
T∈[x

v
,+∞]

 t−T∫
0

φin(τ)dτ + Tφmax

+

L∫
0

ρ0(s)ds− xρc,

which by using Tφmax =
T∫

t−T
φmaxdτ can be rewritten as

MUp(x, t) = inf
T∈[x

v
,+∞]

 t∫
t−T

(φmax − φin(τ)) dτ

+

L∫
0

ρ0(s)ds+

t∫
0

φin(τ)dτ − xρc.
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The in�mum is achieved for T = Tmin = x
v , i.e., the correct solution is related to the path

along which the vehicle has the maximal velocity. Substituting T = Tmin, we get ∀x ∈ [0, L]

t <
x

v
: MUp(x, t) = +∞,

t ≥ x

v
: MUp(x, t) =

t−x
v∫

0

φin(τ) dτ +

L∫
0

ρ0(s) ds,
(B.2)

where for t < x/v the value of MUp(x, t) is unde�ned, thus, we set it to in�nity.

B.2.2 Downstream boundary condition

Further, we need to calculateMDown(x, t), which is related to the downstream boundary x = L.
The space argument in the value condition function now becomes x − Tv′ = L ⇒ T = x−L

v′

with v′ ∈ [−ω, v]. Thus, the smallest value of the time interval should be Tmin = x−L
−ω . The

calculation is done performing the same steps as for MUp(x, t), and we obtain ∀x ∈ [0, L]

t <
L− x
ω

: MDown(x, t) = +∞,

t ≥ L− x
ω

: MDown(x, t) =

t−L−x
ω∫

0

φout(τ) dτ + ρmax(L− x).

(B.3)

B.2.3 Initial condition

Finally, we calculate the function MIni(x, t) determined by the vehicle with known label at
t = 0 (2.29). The equality to zero of the time argument in the value condition function is
provided by T = t. This yields

MIni(x, t) = inf
v′∈[−ω,v]

(
MIni(x− tv′)− tρcv′

)
+ tφmax.

Using the de�nition of MIni(x) from (2.29), we obtain

MIni(x, t) = inf
v′∈[−ω,v]

 L∫
x−tv′

ρ0(s) ds− tρcv′
+ tφmax.

We decompose the integral as

L∫
x−tv′

ρ0(s) ds =

L∫
x

ρ0(s) ds+

x∫
x−tv′

ρ0(s) ds,
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and the second term as −tρcv′ =
x∫

x−tv′
−ρc ds, which leads us to

MIni(x, t) =

L∫
x

ρ0(s) ds+ tφmax + inf
v′∈[−ω,v]

 x∫
x−tv′

(ρ0(s)− ρc) ds

 .

We de�ne y = x− tv′ and take the in�mum over y:

MIni(x, t) =

L∫
x

ρ0(s) ds+ tφmax + inf
y∈[x−tv,x+tω]

 x∫
y

(ρ0(s)− ρc) ds

 .

Note that the space coordinates should not lie outside the road stretch, i.e., we must
provide that x ∈ [0, L], which is achieved in four possible cases:

t < min

{
x

v
,
L− x
ω

}
: MIni(x, t) = H(x, t) + inf

y∈[x−tv,x+tω]

 x∫
y

(ρ0(s)− ρc) ds

 ,

t ∈
[
L− x
ω

,
x

v

)
: MIni(x, t) = H(x, t) + inf

y∈[x−tv,L]

 x∫
y

(ρ0(s)− ρc) ds

 ,

t ∈
[
x

v
,
L− x
ω

)
: MIni(x, t) = H(x, t) + inf

y∈[0,x+tω]

 x∫
y

(ρ0(s)− ρc) ds

 ,

t ≥ max

{
x

v
,
L− x
ω

}
: MIni(x, t) = H(x, t) + inf

y∈[0,L]

 x∫
y

(ρ0(s)− ρc) ds

 ,

with H(x, t) =

L∫
x

ρ0(s) ds+ tφmax.

(B.4)

In general, the in�mum value is related to the number of crossings of critical density, and
it cannot be exactly calculated for a general case unless additional assumptions on initial
conditions are imposed.

B.2.4 Unique solution

In order to obtain the unique solution to H-J system (2.25), we need to �nd the minimum of
(B.2), (B.3) and (B.4) as in (2.34). Thus, depending on the values of t, the explicit solution



B.3. H-J solution for large time 189

to H-J system (2.25) can be divided into four di�erent cases ∀x ∈ [0, L] (see a) - d) below).

a) t < min

{
x

v
,
L− x
ω

}
:

M(x, t) = H(x, t) + inf
y∈[x−tv,x+tω]

 x∫
y

(ρ0(s)− ρc) ds

 ,

b) t ∈
[
L− x
ω

,
x

v

)
:

M(x, t) = min

{
H(x, t) + inf

y∈[x−tv,L]

 x∫
y

(ρ0(s)− ρc) ds

 ,

t−L−x
ω∫

0

φout(τ) dτ + ρmax(L− x)

}
,

c) t ∈
[
x

v
,
L− x
ω

)
:

M(x, t) = min

{
H(x, t) + inf

y∈[0,x+tω]

 x∫
y

(ρ0(s)− ρc) ds

 ,

t−x
v∫

0

φin(τ) dτ +

L∫
0

ρ0(s)ds

}
,

d) t ≥ max

{
x

v
,
L− x
ω

}
:

M(x, t) = min

{
H(x, t) + inf

y∈[0,L]

 x∫
y

(ρ0(s)− ρc) ds

 ,

t−x
v∫

0

φin(τ)dτ +

L∫
0

ρ0(s) ds,

t−L−x
ω∫

0

φout(τ) dτ + ρmax(L− x)

}
,

with H(x, t) =

L∫
x

ρ0(s) ds+ tφmax.

(B.5)

As already mentioned above, in all the cases a) - d) the information on crossings of the critical
value by the initial density is required in order to solve the in�mum problem.

B.3 H-J solution for large time

The solution to the Hamilton-Jacobi system is given by (B.5), which is divided into four
di�erent cases depending on the value of time t. Let us determine the solution for large time,
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which is then used for the analysis of the tra�c system behaviour for t → ∞. Notice that
the solution candidate MIni(x, t) associated with the initial condition given by (B.4) is the
most �confusing� term, since it contains an unresolved in�mum problem. However, the only
time-depending term in (B.4) is tφmax, thus dMIni/dt = φmax. Taking the time derivative for
other terms yields dMUp/dt = φin(t − x/v) and dMDown/dt = φout(t − (L − x)/ω). By the
capacity constraint φ(ρ(·, ·)) ≤ φmax, we establish that the term MIni grows faster than the
others (or in some special cases equally fast).

B.3.1 Time when initial conditions leave the system

Let us estimate the minimal time tmin, after which the initial condition does not a�ect the
solution of a H-J system (2.25), i.e., ∀(x, t) ∈ [0, L] × [tmin,+∞): MIni(x, t) ≥ MUp(x, t)

or MIni(x, t) ≥ MDown(x, t). Let us �rst establish the earliest time, for which MIni(x, t) ≥
MUp(x, t), then we will do the same for MDown(x, t), and then the �nal value will be the
minimum of two cases.

Thus, using MUp(x, t) from (B.2) and MIni(x, t) from (B.4) with tφmax =
t−x

v∫
0

φmax dτ +

x
vφmax, we can write ∀(x, t) ∈ [0, L]×

[
max

{
x
v ,

L−x
ω

}
,+∞

)
that

MIni(x, t)−MUp(x, t) =

t−x
v∫

0

(φmax − φin(τ)) dτ +
x

v
φmax

−
x∫

0

ρ0(s) ds+ inf
y∈[0,L]

x∫
y

(ρ0(s)− ρc) ds.

(B.6)

Let us use the following bounds

x

v
φmax ≥ 0, −

x∫
0

ρ0(s)ds ≥ −Lρmax, and inf
y∈[0,L]

 x∫
y

(ρ0(s)− ρc) ds

 ≥ −Lρc,
which are then inserted into (B.6), and we get the following lower bound

MIni(x, t)−MUp(x, t) ≥

t−x
v∫

0

(φmax − φin(τ)) dτ − L (ρmax + ρc) . (B.7)

Further, using Assumption 2.2 we can make another lower bound:

t−x
v∫

0

(φmax − φin(τ)) dτ ≥
⌊
t− x

v

T

⌋
ε,
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where ε > 0 and T = min
{
L
v ,

L
ω

}
. This enables us to provide a further lower bound of (B.7):

MIni(x, t)−MUp(x, t) ≥

⌊
t− L

v

T

⌋
ε− L (ρmax + ρc) . (B.8)

Finally, we use (B.8) to determine the lowest t, for which the term MIni(x, t) − MUp(x, t)

becomes non-negative ∀x ∈ [0, L]:

t ≥ L

v
+

⌈
L

ε
(ρmax + ρc)

⌉
min

{
L

v
,
L

ω

}
. (B.9)

Following the same steps, we obtain that MIni(x, t) −MDown(x, t) ≥ 0 for all such t that are
not smaller than

t ≥ L

ω
+

⌈
L

ε
(ρmax + ρc)

⌉
min

{
L

v
,
L

ω

}
. (B.10)

The earliest time after which we can neglect the e�ect of the initial condition on the solution
is thus the minimum of (B.9) and (B.10):

tmin = min

{
L

v
,
L

ω

}(
1 +

⌈
L

ε
(ρmax + ρc)

⌉)
. (B.11)

B.3.2 H-J solution for t ≥ tmin

Thus, we have estimated the minimal time tmin (B.11) needed for the initial conditions to
leave the system. Thus, in the H-J solution given by (B.5), the term MIni can be excluded
from the minimum operator ∀t ∈ [tmin,+∞):

M(x, t) = min

{ t−x
v∫

0

φin(τ) dτ +

L∫
0

ρ0(s) ds,

t−L−x
ω∫

0

φout(τ) dτ + ρmax(L− x)

}
,

which is the solution of the Hamilton-Jacobi system for all t ≥ tmin. This expression can be
used to study the asymptotic behavior of systems governed by H-J PDEs with a triangular
FD being their Hamiltonian.

B.4 Necessary conditions for tracking desired state

In accordance with Problem 2.3, we should �nd uin(t) and uout(t) ∀t ∈ R+ such that the
equality of M(x, t) and Md(x, t) up to some constant M0 is guaranteed ∀x ∈ [0, L] as t→∞.
For the equality of two minimum functions (2.60) and (2.61), it is su�cient to provide the
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equality of their arguments, thus, ∀ (x, t) ∈ [0, L]× [tmin,+∞) we get

t−x
v∫

0

φind(τ) dτ +

L∫
0

ρd0(s) ds+M0 =

t−x
v∫

0

φin(τ) dτ +

L∫
0

ρ0(s) ds,

t−L−x
ω∫

0

φoutd(τ) dτ + ρmax(L− x) +M0 =

t−L−x
ω∫

0

φout(τ) dτ + ρmax(L− x).

(B.12)

Firstly, by taking the time derivative of (B.12), we see that in the steady-state φin(t) ≡
φind(t) and φout(t) ≡ φoutd(t).

Secondly, by expressing M0 from both parts of (B.12), we obtain the necessary condition
(2.66) to track ρd.

B.5 Solution of a H-J PDE with space-dependent Hamiltonian

Here we consider the initial boundary value problem in Hamilton-Jacobi formulation given by
(3.41) for a tra�c system evolving on a large urban network. This problem contains an explicit
space-dependency in the fundamental diagram that captures the network infrastructure. We
�nd its solution explicitly for the case of space-dependent triangular FD using the variational
principle (3.47).

In the following, we will skip writing η in the arguments to make the notations less heavy.
Let us here assume that we solve the H-J PDE explicitly for each line of constant η. The
Legendre transform (2.30) of the triangular FD is

L(ξ, v′) = φmax(ξ)− ρc(ξ)v′ ∀v′ ∈ [−ω(ξ), v(ξ)]. (B.13)

We need to calculate the viability episolutions MUp(ξ, t), MDown(ξ, t) and MIni(ξ, t) asso-
ciated with given value conditions MUp(t), MDown(t) and MIni(ξ), respectively, using (3.43),
(3.44), (3.45) and (3.47). Notice that these viability episolutions are equivalent to �solution
candidates� that were discussed in Section 2.1.8. Finally, the unique solution of (3.41) corre-
sponds to the minimum of three functions:

M(ξ, t) = min {MUp(ξ, t),MDown(ξ, t),MIni(ξ, t)} , (B.14)

which is similar to (2.34) but in (ξ, η)-space.

Notice that, in the following, we will consider only solutions for large enough time

t ≥ max


ξmax∫
ξmin

1

v(ξ̂)
dξ̂,

ξmax∫
ξmin

1

ωξ̂)
dξ̂

 . (B.15)
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B.5.1 Upstream boundary condition

The solution candidateMUp(ξ, t) is related to the cumulative vehicle number originating from
the upstream boundary ξmin at initial time.

From the de�nition of the value condition function (3.42), we get c(ξ̂(0), t−T ) = MUp(t−T )

in (3.47). The upstream boundary condition is assigned to the upstream boundary ξmin, which
implies the following start and end points of the observer trajectory that starts traveling from
the upstream boundary with non-constant speed v′(τ):

ξ̂(0) = ξmin, ξ̂(t) = ξmin +

t∫
0

v′(τ) dτ, where v′(τ) ∈
[
−ω

(
ξ̂(τ)

)
, v
(
ξ̂(τ)

)]
. (B.16)

Using (B.13) and (3.47), we formulate the following problem associated to the solution that
originates from this boundary:

MUp(ξ, t) = inf
(T,v′)∈SUp

MUp(t− T ) +

T∫
0

φmax

(
ξ̂(τ)

)
dτ −

T∫
0

ρc(ξ̂(τ))v′(τ) dτ

 ,

where the in�mum is taken over domain SUp that is de�ned exactly as in (3.48) but with(
ξ̂(0), t− T

)
∈ Dom(cUp), where cUp = MUp(t) as in (3.42).

With the expression for the upstream boundary condition (3.43), the in�mum problem can
be rewritten as

MUp(ξ, t) = inf
(T,v′)∈SUp

( t−T∫
0

φin(τ) dτ +

ξmax∫
ξmin

ρ0(ξ̂) dξ̂+

T∫
0

φmax

(
ξ̂(τ)

)
dτ −

T∫
0

ρc

(
ξ̂(τ)

)
v′(τ) dτ

)
.

(B.17)

Now let us consider in more details the last term
T∫
0

ρc

(
ξ̂(τ)

)
v′(τ)dτ . By de�nition dξ̂ =

v′(τ)dτ , which allows us to perform the following change of variables:

T∫
0

ρc

(
ξ̂(τ)

)
v′(τ) dτ =

ξ∫
ξmin

ρc(ξ̂) dξ̂ =: Rc(ξ), (B.18)

where Rc(ξ) is a new variable that denotes the cumulative critical density. Further, we can
decompose the integrals in (B.17) as

t−T∫
0

φin(τ)dτ+

T∫
0

φmax(ξ̂(τ))dτ =

t∫
0

φin(τ)dτ+

T∫
0

(
φmax(ξ̂(τ))− φin(t− T + τ)

)
dτ. (B.19)
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Thus, using (B.18) and (B.19) we can rewrite (B.17) as

MUp(ξ, t) = inf
(T,v′)∈SUp

 T∫
0

(
φmax(ξ̂(τ))− φin(t− T + τ)

)
dτ


+

t∫
0

φin(τ) dτ +

ξmax∫
ξmin

ρ0(ξ̂) dξ̂ −Rc(ξ).

(B.20)

From Assumption 3.1 on the restrictions for in�ows and out�ows, we have φin(t) ≤
φmax(ξ) ∀(ξ, t) ∈ [ξmin, ξmax] × R+, which means that the �rst integral in (B.20) is always
positive. Hence, the in�mum in (B.20) is achieved, when the traveling time T is minimized.
This implies that the solution is assigned to a traveler that moves with the maximal speed at
each space point, i.e., (B.16) becomes

ξ̂(t) = ξmin +

t∫
0

v(ξ̂(τ)) dτ, (B.21)

where v is the maximal kinematic wave speed. Thus, in the in�mum, T is the solution to
(B.21) for t = T :

∂ξ

∂T
= v(T ) ⇒ ∂T

∂ξ
=

1

v(ξ)
⇒ Tv(ξ) =

ξ∫
ξmin

1

v(ξ̂)
dξ̂. (B.22)

With (B.22), the viability solution related to the upstream boundary yields for (B.17)

MUp(ξ, t) =

Tv(ξ)∫
0

φmax(ξ̂(τ)) dτ +

t−Tv(ξ)∫
0

φin(τ) dτ +

ξmax∫
ξmin

ρ0(ξ̂) dξ̂ −Rc(ξ). (B.23)

We rewrite the �rst term on the right-hand side of (B.23) as

Tv(ξ)∫
0

φmax(ξ̂(τ)) dτ =

Tv(ξ)∫
0

ρc(ξ̂(τ))v(ξ̂(τ)) dτ.

Using (B.21), we can perform the change of variables in the latter integral as

Tv(ξ)∫
0

ρc(ξ̂(τ))v(ξ̂(τ)) dτ =

ξ∫
ξmin

ρc(ξ̂(τ)) dξ̂ = Rc(ξ).

With this result, two Rc(ξ) terms with opposite signs in (B.23) cancel each other, and we
obtain the solution associated with the upstream boundary

MUp(ξ, t) =

t−T (ξ)∫
0

φin(τ) dτ +

ξmax∫
ξmin

ρ0(ξ̂) dξ̂. (B.24)
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B.5.2 Downstream boundary condition

As the second step, we need to obtain the solution MDown(ξ, t) that is related to the down-
stream boundary ξmax. Notice that viable evolutions related to this boundary are characterized
by the following start and end points of traveling:

ξ̂(0) = ξmax, ξ̂(t) = ξmax +

t∫
0

v′(τ) dτ, where v′(τ) ∈
[
−ω

(
ξ̂(τ)

)
, v
(
ξ̂(τ)

)]
. (B.25)

As in the previous case, we use the expression for the downstream boundary condition
MDown(t) from (3.44) and the result from (B.19), and write the following in�mum problem

MDown(ξ, t) = inf
(T,v′)∈SDown

( T∫
0

(
φmax(ξ̂(τ))− φout(t− T + τ)

)
dτ

−
T∫

0

ρc(ξ̂(τ))v′(τ) dτ

)
+

t∫
0

φout(τ) dτ,

(B.26)

where the in�mum is now taken over domain SDown de�ned as in (3.48) with
(
ξ̂(0), t− T

)
∈

Dom(cDown), where cDown = MDown(t) as in (2.26).

Again using Assumption 3.1, we obtain that the in�mum is achieved for the minimal
traveling time interval T , which corresponds to:

Tω(ξ) =

ξmax∫
ξ

1

ω(ξ̂)
dξ̂ and v′ = −ω. (B.27)

We use (B.27) and φmax = ρcv to solve the in�mum problem (B.26), which yields:

MDown(ξ, t) =

t−Tω(ξ)∫
0

φout(τ) dτ +

Tω(ξ)∫
0

ρc(ξ̂(τ))v(ξ̂(τ)) dτ +

Tω(ξ)∫
0

ρc(ξ̂(τ))ω(ξ̂(τ)) dτ. (B.28)

From de�nition of the critical density for triangular FD (2.3) we get

ρc =
ρmaxω

v + ω
⇒ ρmaxω = ρc(v + ω),

which is then inserted into (B.28):

MDown(ξ, t) =

t−Tω(ξ)∫
0

φout(τ) dτ +

Tω(ξ)∫
0

ρmax(ξ̂(τ))ω(ξ̂(τ)) dτ.

Finally, we perform the change of variables

Tω(ξ)∫
0

ρmax(ξ̂(τ))ω(ξ̂(τ)) dτ =

ξmax∫
ξ

ρmax(ξ̂) dξ̂,



196 Appendix B. Appendix B: Analysis of tra�c systems

and thus obtain the solution associated with the downstream boundary:

MDown(ξ, t) =

t−Tω(ξ)∫
0

φout(τ)dτ +

ξmax∫
ξ

ρmax(ξ̂) dξ̂. (B.29)

B.5.3 Initial condition

As the third step, we need to calculate MIni(ξ, t) that is related to the vehicle with known
label at initial time that follows the path of viable evolution (see (2.29)).

We can already establish that T = t, since the viability evolution starts its path at initial
time. Thus, using the variational principle (3.47) with initial condition given by (3.45), we
can state the in�mum problem as

MIni(ξ, t) = inf
v′∈SIni

 ξmax∫
ξ̂0

ρ0(ξ̂) dξ̂ +

t∫
0

φmax(ξ̂(τ)) dξ̂ −
t∫

0

ρc(ξ̂(τ))v′(τ) dτ

 , (B.30)

where domain SIni is de�ned as in (3.48) for T = t:

SIni =
{
v′
∣∣∣ v′(·) ∈ L1(0, t),

˙̂
ξ(τ) = v′(τ),

ξ̂(t) = ξ, v′(τ) ∈
[
−ω

(
ξ̂(τ)

)
, v
(
ξ̂(τ)

)]
,

ξ̂(0) ∈ [ξmin, ξmax]
}
.

(B.31)

In the �rst term of the right-hand side of (B.30), the integral runs from ξ̂0 used to de�ne the
coordinate from which the viable evolution starts its path at initial time:

ξ̂(0) = ξ̂0, ξ̂(t) = ξ̂0 +

t∫
0

v′(τ) dτ, where v′(τ) ∈
[
−ω

(
ξ̂(τ)

)
, v
(
ξ̂(τ)

)]
. (B.32)

Again we use the change of variables such that v′(τ)dτ = dξ̂ and rewrite (B.30) as

MIni(ξ, t) = inf
v′∈SIni

 ξmax∫
ξ̂0

ρ0(ξ̂) dξ̂ −
ξ∫

ξ̂0

ρc(ξ̂) dξ̂ +

t∫
0

φmax(ξ̂(τ)) dξ̂

 . (B.33)

We can not further simplify (B.33), unless some speci�c information about the initial condi-
tions is known. However, we can estimate the lower bound of (B.33) term by term:

MIni(ξ, t) ≥ 0−
ξmax∫
ξmin

ρc(ξ̂) dξ̂ +

t∫
0

φminmax dτ, (B.34)
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where φminmax is the capacity at the strongest bottleneck along the η-line de�ned in (3.51).

As already mentioned above, the unique solution (B.14) is the minimum of three functions.
In the following section, we will show that starting from some time tmin, the initial conditions
will have left the system and thus can be excluded from the minimum operator.

B.5.4 Time when initial conditions leave the system

Here we aim to estimate the minimal time tmin(η) such that ∀(ξ, η, t) ∈ Ω̄ × [tmin(η),+∞):
MIni(ξ, η, t) ≥MUp(ξ, η, t) or MIni(ξ, η, t) ≥MDown(ξ, η, t). This was already done for the 1D
case in Appendix B.3.1. However, now this minimal time is di�erent for each η-line. Therefore,
we will again write the dependence on η in the notations to gain more clarity.

First of all, we will estimate the time after which MIni(ξ, η, t) ≥ MUp(ξ, η, t), then we do
the same for MIni(ξ, η, t) ≥ MDown(ξ, η, t). Finally, tmin(η) is found as the smallest value of
these two results.

We combine the result forMUp(ξ, η, t) (B.24) with the lower bound forMIni(ξ, η, t) (B.34),
and write

MIni(ξ, η, t)−MUp(ξ, η, t) ≥ −
ξmax(η)∫
ξmin(η)

ρc(ξ̂, η) dξ̂ −
ξmax(η)∫
ξmin(η)

ρ0(ξ̂, η) dξ̂

+

t−Tv(ξ,η)∫
0

(
φminmax(η)− φin(η, τ)

)
dτ +

Tv(ξ,η)∫
0

φminmax(η) dτ.

(B.35)

Now let us estimate the lower bounds for the terms from (B.35) as

Tv(ξ,η)∫
0

φminmax(η) dτ ≥ 0 and −
ξmax(η)∫
ξmin(η)

ρ0(ξ̂, η) dξ̂ ≥ −
ξmax(η)∫
ξmin(η)

ρmax(ξ̂, η) dξ̂.

which yields

MIni(ξ, η, t)−MUp(ξ, η, t) ≥ −
ξmax(η)∫
ξmin(η)

(
ρmax(ξ̂, η) + ρc(ξ̂, η)

)
dξ̂

+

t−Tv(ξ,η)∫
0

(
φminmax(η)− φin(η, τ)

)
dτ.

(B.36)

Using Assumption 3.1, we are able to estimate the following lower bound for the second term
on the right-hand side of (B.36):

t−Tv(ξ,η)∫
0

(
φminmax(η)− φin(η, τ)

)
dτ ≥

⌊
t− Tv(ξ, η)

tctr(η)

⌋
ε,
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with ε > 0, and tctr(η) is the minimal controllability time de�ned in (3.74), which can be used
to rewrite (B.36) as

MIni(ξ, η, t)−MUp(ξ, η, t) ≥
⌊
t− Tv(ξmax(η))

tctr(η)

⌋
ε−

ξmax(η)∫
ξmin(η)

(
ρmax(ξ̂, η) + ρc(ξ̂, η)

)
dξ̂. (B.37)

Now we can determine the minimal time, after which the right-hand side of (B.37) is non-
negative:

t(η) ≥
ξmax(η)∫
ξmin(η)

1

v(ξ̂, η)
dξ̂ +


1

ε

ξmax(η)∫
ξmin(η)

(
ρmax(ξ̂, η) + ρc(ξ̂, η)

)
dξ̂

tctr(η). (B.38)

Afterwards, the same steps are performed to obtain the minimal time, after which
MIni(ξ, η, t)−MDown(ξ, η, t) ≥ 0 holds:

t(η) ≥
ξmax(η)∫
ξmin(η)

1

ω(ξ̂, η)
dξ̂ +


1

ε

ξmax(η)∫
ξmin(η)

(
ρmax(ξ̂, η) + ρc(ξ̂, η)

)
dξ̂

tctr(η). (B.39)

Then, tmin(η) is the minimum between (B.38) and (B.39) ∀η ∈ [ηmin, ηmax]:

tmin(η) = tctr(η)

1 +


1

ε

ξmax(η)∫
ξmin(η)

(
ρmax(ξ̂, η) + ρc(ξ̂, η)

)
dξ̂


 . (B.40)

Finally, we de�ne the time when initial conditions will leave the system as a whole as tmin,
which is not dependent on η. Therefore, it should be computed as the maximum possible
value of all tmin(η) for particular η:

tmin = max
η∈[ηmin,ηmax]

tmin(η). (B.41)

B.5.5 Unique solution

The �nal solution M(ξ, η, t) of the H-J system (3.41) can �nally be found as a minimum of
solutions associated with the upstream (B.24) and downstream (B.29) boundary conditions
∀t ∈ [tmin,+∞), thus, the e�ect of initial conditions is negligible:

M(ξ, η, t) = min

{ t−Tv(ξ,η)∫
0

φin(η, τ) dτ +

ξmax(η)∫
ξmin(η)

ρ0(ξ̂, η) dξ̂,

t−Tω(ξ,η)∫
0

φout(η, τ)dτ +

ξmax(η)∫
ξ

ρmax(ξ̂, η) dξ̂

}
.
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B.6 Di�erences in the proofs of Theorems 2.3 and 3.2

Due to the space-dependency in the fundamental diagram in 2D system (3.34), the proof of
Theorem 3.2 will be di�erent from the proof of Theorem 2.3. In particular, it must be modi�ed
by taking the following di�erences into account:

1. Space intervals for a 1D road of length L vary as a function of line number η, i.e., [0, L]→
[ξmin(η), ξmax(η)]. This implies that Lv → Tv(ξmax(η), η) and L

ω → Tω(ξmin(η), η), where
Tv(ξmax(η), η) and Tω(ξmin(η), η) should be taken from (3.76) for ξ = ξmax(η) and
ξ = ξmin(η), respectively.

2. Every occurrence of Lρmax should be substituted by the integral
ξmax(η)∫
ξmin(η)

ρmax(ξ̂, η) dξ̂.

3. Equation (2.77) in the proof of Theorem 2.3 should be rewritten as:

gin(η, t) = 0 ⇒ R(η, t′) ≥
ξmax(η)∫
ξmin(η)

ρc(ξ̂, η) dξ̂, ∀t′ ∈ [t− Tω(ξmin(η), η), t] ,

gout(η, t) = 0 ⇒ R(η, t′) ≤
ξmax(η)∫
ξmin(η)

ρc(ξ̂, η) dξ̂, ∀t′ ∈ [t− Tv(ξmax(η), η), t] .

(B.42)

We obtain (B.42) by using the following upper bound:

t′∫
t−Tω(ξmin(η),η)

φout(η, τ) dτ +

t∫
t′

φin(η, τ)dτ ≤ Tω(ξmin(η), η)φminmax(η)

≤
ξmax(η)∫
ξmin(η)

φmax(ξ̂, η)

ω(ξ̂, η)
dξ̂ =

ξmax(η)∫
ξmin(η)

(
ρmax(ξ̂, η)− ρc(ξ̂, η)

)
dξ̂.

B.7 Proof that φ̄N = min{D̄N , S̄N}

Here we prove that the �ow in some direction (here North) can be written as a function of
demand and supply of the same direction:

φ̄N = min{D̄N , S̄N},

which allows to simplify the model (4.21). Thus, here we seek to prove that equation (4.23)
holds. The main assumption that needs to be made thereby is that the urban network is
well-designed in terms of maximal �ows, see (4.24).
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Let us consider the term (1− γ)φ̄EN + γφ̄NE from (4.22). Using the de�nition of partial
�ows (4.12), we can write

φ̄EN = min{ᾱEND̄E , β̄EN S̄N}, φ̄NE = min{ᾱNED̄N , β̄NES̄E}.

Recall that by de�nition of the demand-supply formulation, if D̄E < φ̄max,E , then S̄E =

φ̄max,E and vice versa, see Figure 2.3. The same holds for D̄N and S̄N . To simplify the
notations, let us denote Q(γ) = (1 − γ)φ̄EN + γφ̄NE . We will prove that there always exists
γ such that Q(γ) = min{ᾱNED̄N , β̄EN S̄N}. In total, there are six di�erent cases to consider
for partial �ows φ̄EN and φ̄NE :

1. ᾱEND̄E < β̄EN S̄N and ᾱNED̄N > β̄NES̄E . From the �rst inequality we obtain

ᾱEND̄E < β̄EN S̄N ≤ β̄EN φ̄max,N = ᾱEN φ̄max,E ,

where the last equality comes for the assumption that the network is well-designed (4.24).
Thus, we get that

D̄E < φ̄max,E .

From the other side, if we consider the second inequality, we get

β̄NES̄E < ᾱNED̄N ≤ ᾱNEφ̄max,E ⇒ S̄E < φ̄max,E .

According to the demand-supply formulation, it is however not possible that D̄E <

φ̄max,E and S̄E < φ̄max,E hold at the same time. Thus, this case can be excluded from
consideration.

2. ᾱEND̄E > β̄EN S̄N and ᾱNED̄N < β̄NES̄E . This case is also impossible, since from the
�rst inequality we get S̄N < φ̄max,N and from the second inequality we get D̄N < φ̄max,N ,
which violates the demand-supply formulation.

3. ᾱNED̄N ≤ β̄NES̄E and ᾱNED̄N ≤ β̄EN S̄N . In this case taking γ = 1 results into

Q(1) = φ̄NE = min{ᾱNED̄N , β̄NES̄E} = ᾱNED̄N ,

which in combination with the second inequality yields

Q(1) = min{ᾱNED̄N , β̄EN S̄N},

which is the desired property achieved with γ = 1 (demand and supply refer to the same
direction).

4. ᾱEND̄E ≤ β̄EN S̄N , ᾱNED̄N ≤ β̄NES̄E and ᾱNED̄N > β̄EN S̄N .

From the �rst inequality for γ = 0 we obtain

Q(0) = φ̄EN = min{ᾱEND̄E , β̄EN S̄N} = ᾱEND̄E ≤ β̄EN S̄N .
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From the second inequality for γ = 1 we obtain

Q(1) = φ̄NE = min{ᾱNED̄N , β̄NES̄E} = ᾱNED̄N ,

and from the third inequality we get

Q(1) > β̄EN S̄N .

Combining these results all together, we show the desired property:{
Q(0) ≤ β̄EN S̄N ,
Q(1) > β̄EN S̄N ,

⇒ ∃γ ∈ [0, 1) : Q(γ) = β̄EN S̄N = min{ᾱNED̄N , β̄EN S̄N}.

5. ᾱEND̄E ≤ β̄EN S̄N , ᾱNED̄N ≤ β̄NES̄E and ᾱNED̄N ≤ β̄EN S̄N . The analysis here is the
same as in case (3): we take γ = 1, which results into Q(1) = min{ᾱNED̄N , β̄NES̄N}.

6. ᾱEND̄E ≥ β̄EN S̄N , ᾱNED̄N ≥ β̄NES̄E and ᾱNED̄N > β̄EN S̄N . Here we should proceed
as we did in case (4): taking γ = 0 results into Q(0) = β̄EN S̄N . Further, by the
second condition we obtain Q(1) ≤ ᾱNED̄N . Therefore, there exists γ ∈ [0, 1] such that
Q(γ) = min{ᾱNED̄N , β̄EN S̄N}.

Hence, if we assume that γ can be manipulated independently for every pairwise
�ow, we can summarize the discussion above in the formula: (1 − γ)φ̄EN + γφ̄NE =

min{ᾱNED̄N , β̄EN S̄N}. This leads to the following transformation of (4.22):

φ̄N = φ̄NN + min{ᾱNSD̄N , β̄SN S̄N}+
+ min{ᾱNW D̄N , β̄WN S̄N}+ min{ᾱNED̄N , β̄EN S̄N}.

Finally, using the approximation by replacing the sum of minima with the minimum of sums,
we can write

φ̄N = min{ᾱNND̄N + ᾱNSD̄N + ᾱNW D̄N + ᾱNED̄N ,

β̄NN S̄N + β̄SN S̄N + β̄WN S̄N + β̄EN S̄N} = min{D̄N , S̄N},

which is exactly the property we wanted to prove (4.23).

B.8 Eigenvalues of matrix B − I

Let us now analyze eigenvalues of matrix B − I, where B is the SR matrix from (4.40). To
simplify the notations, we introduce B̄ = B − I that reads

B̄ =


βNN − 1 βNE βNW βNS

βEN βEE − 1 βEW βES

βWN βWE βWW − 1 βWS

βSN βSE βSW βSS − 1

 . (B.43)
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By Gershgorin circle theorem, every eigenvalue of B̄ lies within at least one of the Gersh-
gorin discs d(b̄ii, Ri), where d is a closed disc centered at b̄ii with radius Ri =

∑
j 6=i
|b̄ji|.

Consider the �rst row of matrix B̄ given by (B.43). The Gershgorin disc is centred at
βNN − 1, and its radius is R1 = βNE +βNW +βNS = 1−βNN . The remaining rows of matrix
B̄ can be analyzed in exactly the same way. Due to the Gershgorin theorem, in general, every
result looks similar to

|λ− (βNN − 1)| ≤ (1− βNN ),

which implies that Reλ(B̄) ≤ 0 ∀λ(B̄) and if Reλ(B̄) = 0, then λ(B̄) = 0.

Let us consider λ(B̄) = 0 with x being the corresponding eigenvector:

xT B̄ = 0 = xTλ(B̄).

Using the de�nition of matrix B̄, we further get

xT (B − I) = 0⇒ xTB = xT .

Thus, it follows that x is also the eigenvector of matrix B associated with the eigenvalue
λ(B) = 1.

Note that matrix B is a positive matrix, i.e., βij > 0 for 1 ≤ i, j ≤ 4 (assume we have no
zero turning ratios). Then, by Perron-Frobenius theorem, λ(B) = 1 is a Perron root (since
all columns of B sum to 1), and thus it is a simple root. It follows that all the eigenvalues of
matrix B̄ = B − I are strictly negative and only one eigenvalue is zero.
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