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Résumé — Ce travail du doctorat est effectué dans le cadre du projet European Research
Council’s (ERC) Advanced Grant Scale-FreeBack. L’objectif du projet Scale-FreeBack est
de développer une approche holistique de controle sans échelle des systémes complexes, et
de poser de nouvelles bases pour une théorie traitant des réseaux physiques complexes avec
une dimension arbitraire. Un cas particulier est celui des systémes de transport intelligents
capables d’empécher ’apparition de congestions aux heures de pointe. Les contributions de
cette thése du doctorat sont principalement liées & la conception du controle aux limites et
a la modélisation du trafic sur les réseaux urbains & grande échelle. Le trafic est consideré
du point de vue macroscopique, c’est-a-dire on le décrit en termes des variables agrégées
telles que le flux et la densité de véhicules. L’équation dynamique correspond a 1’équation
différentielle partielle (EDP) hyperbolique du premier ordre. On propose des techniques du
contréle qui reposent entiérement sur les propriétés intrinseques du modéle du trafic. Tout
d’abord, problémes du contrdle aux limites sont resolus sur des routes uniques (1D). L’état
du trafic est entrainé vers une trajectoire souhaitée dépendant de l'espace et du temps qui
admet la commutation des régimes du trafic. Une telle conception du controle est loin d’étre
triviale en raison des non-linéarités de ’équation d’état. Ensuite, le probléme est étendu aux
réseaux urbains de taille arbitraire, dont la dynamique est décrite par un modéle de loi de
conservation bidimensionnel (2D). Les paramétres du modéle sont définis partout dans le plan
du continu & partir de ses valeurs sur les routes physiques qui sont ensuite interpolées. La
direction du flux est déterminée par la géométrie du réseau et les parametres d’infrastructure.
Ce modéle 2D est applicable dans les réseaux avec une direction de mouvement préférée.
Pour ce cas, nous élaborons une méthode unique qui simplifie considérablement la conception
de contrdle. En particulier, nous présentons une transformation de coordonnées curvilignes
qui traduit le modeéle continu en 2D en un ensemble paramétré de systémes 1D. Cela permet
une élaboration explicite de stratégies pour diverses taches du contréle & résoudre: on
calcule des états stables, conceve un contrdle aux limites pour la densité 2D, applique un
contréle de limite de vitesse variable pour conduire le trafic vers n’importe quel équilibre.
Enfin, un nouveau modéle de trafic continu bidimensionnel multidirectionnel est présenté.
Il s’appelle le modéle NEWS, car il se compose de quatre EPD qui décrivent 1’évolution
de la densité des véhicules par rapport aux directions cardinales: Nord, Est, Ouest et Sud
(North-East-West-South - NEWS). La direction du flux est déterminée par les rapports de
braquage aux intersections. Pour ce modéle, on conceve un contrdle aux limites qui conduit le
trafic congestionné & ’équilibre souhaité. L’efficacité de ces contributions a été testée a 1’aide
de données simulées et réelles. Dans le premier cas, les résultats sont vérifiés en utilisant le
célebre logiciel du trafic Aimsun, qui produit des microsimulations de trajectoires de véhicules
dans un réseau modélisé. Dans le second cas, les données réelles sont obtenues & partir de
capteurs situés en centre-ville de Grenoble et collectées & ’aide du Grenoble Traffic Lab (GTL).

Mots clés : Controle aux limites, réseaux de trafic & grande échelle, Hamilton-Jacobi,
équations aux dérivées partielles.
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Abstract — This research is done in the context of European Research Council’s (ERC)
Advanced Grant project Scale-FreeBack. The aim of Scale-FreeBack project is to develop
a holistic scale-free control approach to complex systems, and to set new foundations for a
theory dealing with complex physical networks with arbitrary dimension. One particular
case is intelligent transportation systems that are capable to prevent the occurrence of
congestions in rush hours. The contributions of the present PhD work are mainly related
to boundary control design and modeling of traffic on large-scale urban networks. We
consider traffic from a macroscopic viewpoint describing it in terms of aggregated variables
such as flow and density of vehicles. The corresponding dynamic equation corresponds to
a first-order hyperbolic partial differential equation (PDE). Within this PhD thesis, we
propose control design techniques that rely on the intrinsic properties of the model. First
of all, we solve one-dimensional (1D) boundary control problems, i.e., for traffic evolving
on single roads. Thereby, the traffic state is driven to a space- and time-dependent desired
trajectory that admits traffic regimes switching. Such control design is far from being
trivial due to nonlinearities of the state equation. Then, the problem is extended to urban
networks of arbitrary size. Large-scale traffic dynamics are described by a two-dimensional
(2D) conservation law model. Model parameters are defined everywhere in a continuum
domain from their values on physical roads that are further interpolated. Traffic flow
direction is determined by network geometry and infrastructure parameters. This 2D model
is applicable to any urban area with a preferred direction of motion. For this case, we
elaborate a unique method that considerably simplifies control design for urban traffic
systems. We present a curvilinear coordinate transformation that translates a 2D continuous
traffic model into a parametrized set of 1D systems. This enables an explicit elaboration
of strategies for various control tasks to solve on large-scale networks: calculation of steady
states, boundary control design for a mixed regime traffic, apply variable speed limit control
to drive traffic to any space-dependent equilibrium. Finally, a new multi-directional 2D
continuous traffic model is presented. This model is formally derived from the demand-
supply concept at one intersection. It is called the NEWS model, since it consists of four
PDEs that describe the evolution of vehicle density with respect to cardinal directions:
North, East, West and South. The traffic flow direction is determined by turning ratios at
intersections. We then design a boundary control that drives multi-directional congested
traffic to a desired equilibrium. The effectiveness of our contributions were tested using
simulated and real data. In the first case, the results are verified by using the well-known
commercial traffic Aimsun, which produces microsimulations of vehicles’ trajectories in a
modeled network. In the second case, the real data are obtained from sensors located in
the downtown area of the city of Grenoble and collected using the Grenoble Traffic Lab (GTL).

Keywords: Boundary control, large-scale traffic networks, Hamilton-Jacobi, partial
differential equations.

Grenoble Images Parole Signal Automatique (GIPSA-Lab)
11 Rue des Mathématiques, 38400 Saint-Martin-d’Héres
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Résumé

L’urbanisation continue de la planéte contribue & une augmentation de la demande de trans-
port, ce qui entraine la formation de graves congestions. Cela a un impact négatif sur la vie
quotidienne. Par conséquent, des solutions efficaces pour la gestion intelligente des transports
sont d’une grande importance.

Dans ce travail de thése, on traite principalement du controle et de la modélisation du trafic
sur des réseaux urbains de dimension arbitraire avec une application & la ville de Grenoble.
Le trafic est considéré d’un point de vue macroscopique. Son état est prédit par une équation
différentielle partielle (EDP) qui décrit le trafic en termes du flux et de la densité des véhicules
dans une zone donnée. Dans cette approche de modélisation, on suppose qu’il existe une
relation concave entre le flux et la densité, connue sous le nom de diagramme fondamental
(Fundamental Diagram - FD). Ainsi, en fonction de la densité des véhicules, on distingue deux
régimes du trafic: le régime du flux libre (la densité est inférieure a la valeur critique) et le
régime de la congestion (la densité est supérieure & la valeur critique).

On propose des techniques de la conception du controle qui reposent sur les propriétés
intrinseéques des modéles du trafic macroscopiques. Tout d’abord, nous résolvons des problémes
du controle aux limites unidimensionnelles (1D) pour le trafic évoluant sur des routes simples.
Ensuite, divers problémes du contréle sont posés et résolus pour le trafic sur des réseaux urbains
de la taille arbitraire. La dynamique du trafic est alors décrite par un modéle bidimensionnel
(2D) de loi de conservation. Ce modéle 2D est évolutif, c’est-a-dire qu'il décrit le trafic urbain
par une seule EDP. Cependant, il n’est applicable qu’aux zones urbaines ayant une direction
de mouvement préférée. Enfin, nous présentons un nouveau modéle du trafic continu en 2D qui
peut capturer la véritable multidirectionnalité du trafic. Ce modéle est formellement dérivé du
concept d’offre et de demande & une intersection. Il se compose de quatre EDP qui décrivent
I’évolution de la densité des véhicules par rapport aux directions cardinales: Nord, Est, Ouest
et Sud (North-East-West-South - NEWS). Les performances du modeéle NEWS ont été testées
en utilisant des données simulées et réelles (provenant des capteurs installés dans la ville de
Grenoble).

Les principaux résultats de cette thése sont résumés ci-dessous.

Controle du trafic sur les routes

Dans ce chapitre, I’évolution de la dynamique du trafic est étudié sur une route unique de la
longueur finie en utilisant le modele de Lighthill- Whitham-Richards (LWR). Ce modéle est
une EDP hyperbolique non linéaire du premier ordre qui représente une loi de conservation,
le nombre de véhicules étant la quantité conservée. Deux problémes du contrdle aux limites
sont posés pour suivre une densité désirée qui est une trajectoire dépendante de ’espace et du
temps. Ces dépendances sont capables de capturer des nombreuses situations réalistes lorsque
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les conditions du trafic changent rapidement. Par exemple, il est courant qu’une route ait
des valeurs du flux entrant différentes au cours d’une méme journée (il peut y avoir plus de
véhicules a 9 heures du matin lorsque les gens vont au bureau et moins de voitures la nuit).
En outre, un état d’équilibre souhaité ne représente qu’un profil général variant dans ’espace
et dans le temps. Cependant, un tel profil cible général entraine une dynamique d’erreur non
triviale.

Tout d’abord, nous considérons que le trafic est uniquement en régime congestionné. Cela
simplifie le modéle LWR qui devient une EDP linéaire. Ce modéle est cependant inhomogéne,
puisque nous ajoutons également une fonction de perturbation générale dans le domaine dépen-
dant de l'espace. Cette fonction incorpore une éventuelle inadéquation entre le modéle et la
réalité. Par exemple, il peut y avoir un flux non mesuré de véhicules provenant de routes
secondaires ou de véhicules en stationnement. Pour ce systéme linéaire inhomogéne, nous
formulons des problémes d’atténuation des perturbations tout en atteignant le profil souhaité
en termes de normes spatiales Ly et L. La trajectoire souhaitée est également restreinte au
régime congestionné pour des raisons de simplicité, c’est-a-dire qu’elle est régie par le systéme
linéaire homogéne LWR. On traite la fonction de perturbation inconnue en utilisant la méth-
ode des caractéristiques qui permet d’exprimer la fonction de perturbation par des variables
connues (mesurées) telles que la densité des véhicules et les actions du controle appliquées au
cours des étapes temporelles précédentes. Le controle concu se compose d’une partie & action
directe et d’une partie & rétroaction.

En outre, on considére également un probléme plus complexe dans le cas o ’état et la
trajectoire souhaitée sont régis par des modeéles non linéaires LWR, comme dans sa formulation
originale (et sans la perturbation). Le principal défi est alors lié aux chocs (discontinuités),
qui apparaissent dans de tels systémes méme pour des données initiales régulaires en temps
fini. Cela rend l'analyse explicite fastidieuse, puisqu’il n’existe pas de solutions classiques,
et nous ne devons les considérer que dans un sens faible et suivre la dynamique des chocs.
Un autre défi est lié aux conditions aux limites faibles, ce qui implique qu’aucune action de
controle ne peut étre imposée aux limites (on doit prendre en compte ’état actuel du systéme).
Pour traiter ces deux problémes, nous traduisons LWR en EDP de Hamilton-Jacobi (H-J) qui
représente sa forme intégrale. La solution de PEDP H-J est exempte de discontinuités et,
dans le pire des cas, elle peut seulement devenir non-différenciable. Son état correspond au
nombre cumulé de véhicules qui peut étre obtenu en intégrant la densité des véhicules. Le
systeme H-J peut étre vu comme un probléme de contréle optimal, et sa solution est obtenue
de maniére semi-explicite comme le minimum de tous les chemins valides. Dans le cas d’un FD
triangulaire, la solution est obtenue comme le minimum sur seulement trois chemins valides,
chacun associé & la condition initiale ou aux conditions limites, respectivement. Pour analyser
le comportement du systéme en temps asymptotique, on estime le temps minimal auquel il
est garanti que les conditions initiales n’affectent plus la solution H-J. La solution est alors
formulée comme un minimum de seulement deux chemins valides associés aux conditions aux
limites. La formulation intégrale du systéme de la circulation de Hamilton-Jacobi ainsi que
la possibilité d’exprimer exactement sa solution, nous permettent d’analyser explicitement les
périodes du temps, lorsque les limites sont restreintes pour accepter des actions du contrdle
en fonction de I’état réel de la circulation. Ces fonctions dites de restriction du controéle
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permettent de diviser la dynamique d’erreur en trois régimes différents en fonction des limites
qui peuvent actuellement accepter des actions du contréle. Nous montrons que méme lorsque
les limites sont parfois incapables d’accepter les controles proposés, le systéme converge vers
la trajectoire souhaitée de maniére exponentielle. Les résultats sont validés numériquement
pour différents gains de controle.

Trafic unidirectionnel sur les réseaux

Ce chapitre est consacré au controle du trafic sur les réseaux urbains de toute taille. Sa
dynamique est décrite par le modéle LWR en 2D (2D LWR) qui représente une loi de conser-
vation en deux dimensions. Le trafic est traité comme un fluide qui se propage maintenant
sur un plan 2D continu.

Le modéle 2D LWR est inspiré de la modélisation de la foule, la seule différence étant
la restriction pour les véhicules de se déplacer sur des routes physiques. Ainsi, le modeéle
nécessite de supposer que le réseau urbain est suffisamment dense pour étre considéré comme
un domaine continu. Pour modéliser le trafic, il faut disposer d’informations sur la géométrie
et 'infrastructure du réseau urbain, c’est-a-dire 'emplacement des routes et des intersections,
le nombre de voies de chaque route et ses limites de vitesse. Ces informations sont utilisées
pour définir la densité et les capacités maximales partout dans le domaine du continuum. En
particulier, on applique la pondération inverse & la distance pour attribuer des valeurs aux
variables partout en fonction de la distance aux routes. Tous ces paramétres étant spécifiques
aux différents réseaux urbains sont incorporés dans un FD qui devient explicitement dépendant
de l'espace. Une analyse directe d’un tel modéle est une tache compliquée en raison de la
dérivée seconde de ’espace. Il n’est pas non plus évident de savoir quel point limite doit étre
actionné pour affecter un point ou une zone spécifique du domaine.

On trouve une approche pour analyser ce modéle de telle sorte que 'on puisse suivre les
trajectoires du flux dans la zone urbaine. Ceci est possible, car la structure du modéle 2D LWR
limite son applicabilité uniquement pour les réseaux constitués de routes unidirectionnelles.
Le champ de direction ne dépend que de la géométrie du réseau et non de I'état. S’il n’y a
pas de boucles dans un réseau, on peut définir une transformation de coordonnées curviligne.
Cette transformation de coordonnées traduit le systéme de trafic 2D en un ensemble paramétré
de systémes 1D avec un FD dépendant de ’espace, ce qui est beaucoup plus facile & analyser.
Mathématiquement, cela signifie qu’au lieu de deux dérivées partielles par rapport a 'espace,
le systéme modifié n’en a qu’une. Bien que cette transformation des coordonnées ait pu étre
définie en raison des restrictions spécifiques de 2D LWR, ce modéle peut néanmoins étre utilisé
pour prédire I’évolution du trafic dans plusieurs situations fréquentes, par exemple lorsque, a
I’heure de pointe du matin, tous les véhicules se dirigent vers le centre-ville oil se trouvent la
plupart des bureaux.

En outre, nous présentons plusieurs résultats obtenus en analysant 2D LWR en coordonnées
curvilignes. Nous élaborons une technique permettant d’obtenir une distribution de véhicules
dans un état d’équilibre uniquement en connaissant les données du flux entrant et du flux
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sortant d’une zone urbaine. Cette capacité d’analyser 1’équation en 2D pour obtenir des
équilibres admissibles est un résultat essentiel qui permet de formuler des taches de controle
pour la stabilisation du trafic urbain. En outre, nous concevons un contréleur de frontiére
pour atténuer les congestions dans une zone urbaine. Ainsi, pour simplifier, le trafic est limité
au régime de la congestion.

Ensuite, un probléme de contréle aux limites visant & approximer la trajectoire désirée du
véhicule est posé pour un régime de trafic mixte en temps asymptotique. Pour cela, le modéle
2D LWR en coordonnées curvilignes est ensuite considéré dans le formalisme de Hamilton-
Jacobi qui facilite la gestion des discontinuités pour la conception du contréle aux limites.
Le probléme du contréle aux limites est résolu de la méme maniére que pour le cas 1D. La
difficulté supplémentaire est introduite par la dépendance spatiale explicite dans le diagramme
fondamental, de sorte que la formule classique de Lax-Hopf ne peut étre appliquée. Au lieu de
cela, on applique la théorie de la viabilité élaborée pour le cas des hamiltoniens dépendants
de 'espace. Pour un exemple numeérique, nous prend la structure du centre-ville de Grenoble
comme réseau urbain.

Enfin, le modéle 2D LWR est utilisé en coordonnées curvilignes pour concevoir un con-
troleur de limite de vitesse variable (Variable Speed Limit - VSL). Le controleur VSL est
utilisé pour affecter directement le flux de trafic en imposant des restrictions temporaires
sur la vitesse autorisée, ce qui est souvent utilisé pour des situations spécifiques telles que
les accidents, les mauvaises conditions météorologiques, etc. Il s’agit d’un controleur intra-
domaine qui est appliqué d’une maniére continue dans I’espace sur I’ensemble du domaine. Il
agit comme une linéarisation par rétroaction de sorte que I’équation d’état perd sa structure
de loi de conservation, ce qui facilite son analyse. Le controleur VSL peut étre utilisé pour
stabiliser le systéme 2D & n’importe quel équilibre souhaité variant dans ’espace. Si FD a
une dépendance concave par rapport au contréleur dans le régime de trafic congestionné et
une dépendance linéaire dans le régime du flux libre, le contréleur est différentiable presque
partout dans l'espace. On congoit également un état d’équilibre optimal qui correspond a la
maximisation du flux obtenue pour le nombre maximal possible de voitures. Dans un exemple
numérique, on utilise & nouveau la structure du centre-ville de Grenoble, puis on démon-
tre comment le contréleur VSL concu fait converger la densité de véhicules vers 1’équilibre
souhaité.

Trafic multidirectionnel sur les réseaux

Dans ce chapitre, nous proposons notre propre méthode pour traiter le trafic multidirectionnel
évoluant sur des réseaux urbains de taille arbitraire & un niveau macroscopique. Le trafic
multidirectionnel est beaucoup plus proche de la représentation du trafic urbain dans des
situations réalistes que le modele 2D LWR. L’idée globale consiste & dériver un modéle EDP
qui capture le comportement du trafic évoluant dans un réseau urbain dans n’importe quelle
direction avec des croisements de flux.

On commence par considérer un modéle du flux du trafic & une intersection basé sur le
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modéle classique de transmission cellulaire. Chaque intersection est caractérisée par un certain
nombre de routes entrantes et sortantes qui peuvent étre orientées arbitrairement dans 1’espace.
Ainsi, il y a un nombre différent de paramétres a régler pour chaque intersection individuelle.
Comme un réseau peut étre composé de milliers d’intersections, on trouve une approche unifiée
pour décrire le trafic aux intersections indépendamment de leurs paramétres individuels. Ainsi,
on suppose que la dynamique du trafic multidirectionnel peut étre représentée par seulement
4 couches de direction: Nord, Est, Ouest et Sud (North-East-West-South - NEWS). Dans
le formalism du NEWS, on déploie des matrices de projection basées sur la géométrie pour
appliquer le flux de trafic le long de toute route dans les directions cardinales. Les poids de
projection varient continuellement avec I’angle d’orientation de la route. Ensuite, le concept du
flux partiels est introduit pour capturer divers modeles d’origine-destination aux intersections.

Ainsi, on obtiens un modéle du flux du trafic qui prédit le taux de changement de
l'accumulation de véhicules a l'intersection d’une maniére unifiée. Ensuite, la méthode de
continuation est appliquée pour obtenir un modéle qui prédit ’évolution de la densité des
véhicules & proximité d’une intersection. Cette méthode est utilisée pour transformer une
EDO (modéle routier) en une EDP (modéle d’intersection), qui représente un modele de con-
tinuum macroscopique pour une intersection. Comme chaque intersection a été décrite de la
maniére unifiée, pondération inverse a la distance est appliquée pour définir tous les paramétres
d’intersection pour chaque point dans un plan continuum. La dérivation du modéle NEWS a
été faite analytiquement en utilisant une seule hypothése sur la structure du réseau. A savoir,
les réseaux urbains doivent étre bien congus en termes de flux maximal, ¢’est-a-dire que si les
véhicules se déplacent & un flux maximal avant une intersection, ils continuent & utiliser la
capacité de la route au maximum apreés le virage.

En conséquence, on obtiens le modéle NEWS qui prédit I’évolution du trafic dans quatre
directions cardinales. La propagation du flux du trafic dans chaque direction est pilotée par le
concept d’offre et de demande qui s’appuie sur le diagramme fondamental. De plus, véhicules
peuvent changer de couche de direction, c’est-a-dire qu’il existe un couplage entre différentes
couches, ce qui est un aspect important en raison de son ubiquité physique.

Les propriétés mathématiques du modéle NEWS dérivé sont également analysées. Le
systéme d’EDP est hyperbolique pour tout ensemble de paramétres. Le fait de pouvoir classer
un modéle comme une EDP hyperbolique simplifie considérablement 1’analyse pour les taches
futures, puisque de nombreux résultats analytiques ont déja été élaborés pour ce type de
systémes. 11 a également été démontré que le modéle représente une loi de conservation, la
densité du trafic étant la quantité conservée. De plus, il a été démontré que son état est borné,
ce qui est une hypotheése réaliste importante pour la modélisation du trafic.

Les résultats de la prédiction du modéle sont validés & ’aide de la microsimulateur Aimsun
et de la plateforme expérimentale GTL Ville qui fournit des données en temps réel provenant
d’un réseau des capteurs installés dans le centre-ville de Grenoble. Les résultats de validation
révélent que la distribution de la densité prédite par le modéle NEWS reste en bon accord
avec la densité de référence, soit 90 % de similarité avec Aimsun et 80 % de similarité avec
I’expérience réelle. La validation du modéle avec des données réelles est un projet open source,
c’est-a-dire que les résultats sont reproductibles et peuvent étre utilisés pour des études futures.



Enfin, le modele NEWS est étudié du point de vue du contréle, ot on se limite au régime du
trafic congestionné pour des raisons de simplicité. On analyse la classe d’équilibres admissibles
souhaités qui doivent satisfaire un certain systéme d’EDP. On pose et résolve le probléme de la
recherche d™un état d’équilibre qui permet de minimiser la congestion dans un réseau urbain
sous la contrainte que sa gamme de valeurs doit rester dans le régime de congestion. De
plus, on prouve la convergence exponentielle d'un état congestionné contrélé depuis un limite
vers cet équilibre désiré en utilisant des méthodes de Lyapunov. Le réseau du centre-ville de
Grenoble est & nouveau utilisé pour démontrer la performance du contréleur aux limites dérivé
a l'aide d’un exemple numérique. On montre que le controleur fait converger la densité du
trafic vers ’équilibre optimal désiré en temps fini, ce qui est lié & la nature hyperbolique de
I'EDP.

Perspectives et extensions

Sur la base des résultats de cette thése de doctorat, je vois un grand nombre de directions
intéressantes pour la recherche future. Les questions ouvertes suivantes semblent étre les plus
pertinentes:

e Dans cette thése, le trafic a été décrit d’une maniére assez simpliste, puisque LWR
représente un modéle macroscopique le plus simple du trafic. En général, il est bien
connu que ’approche de la modélisation LWR présente plusieurs inconvénients, car elle
ne prend pas en compte de nombreux phénomeénes importants tels que 1’accélération
limitée ou la baisse de capacité due a la transition d’un régime flux libre a un régime
congestionné. En outre, une fagon possible d’affiner la description du trafic est de prendre
en compte différentes classes de conducteurs en fonction de leur vitesse (par exemple,
rapide et lente). Ainsi, on pourrait étudier les problémes du controle des limites a Iaide
d’une approche de modélisation plus sophistiquée qui tient compte des limites du modéle
LWR (modeles d’ordre supérieur et multi-classes).

e Le modele 2D LWR est limité a la description du trafic sur les réseaux qui ont une
direction de mouvement préférée, ce qui n’est pas réaliste pour le trafic général. Par
conséquent, comme une extension prometteuse de la recherche sur la modélisation macro-
scopique du trafic urbain, on pourrait développer des algorithmes de partitionnement
qui divisent un réseau urbain en zones ayant une direction de mouvement préférée.

o Les controleurs aux limites sont concus pour un trafic évoluant sur un domaine rectan-
gulaire continu qui se rapproche du réseau urbain sous-jacent. En conséquence, on a
obtenu des lois de controle définies sur une ligne continue, ce qui n’est pas directement
interprétable. Il serait donc intéressant d’étudier ce probléme et de mettre au point
une méthode permettant de transformer les controleurs aux limites définis sur des lignes
continues en controleurs réglés sur des points ou des intervalles spécifiques sur des routes
réelles.



xi

e Le modéle NEWS est un systéme de seulement quatre EDP qui est capable de prédire
I’évolution du trafic multidirectionnel sur les réseaux urbains de maniére assez précise.
Il est important pour les études futures de caractériser rigoureusement les propriétés
mathématiques de ses solutions. De plus, il serait intéressant d’étudier ce modéle pour
concevoir un controle des limites pour le trafic & régime mixte.
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CHAPTER 1

Introduction

1.1 Traffic on roads

Traffic models have been developed and studied in order to describe traffic dynamics and
predict the appearance of congestions since the beginning of the twentieth century. The
origin of the traffic flow theory takes us back to the thirties, when Greenshields [59] collected
data from a highway road on the car headway distance (average distance of two consequative
vehicles) and their average velocity. One year later, in [58] he proposed a fundamental relation
connecting the average car velocity with the vehicle density. This empirically established law
became very famous later in the traffic engineering community, and nowadays it is known as
the Greenshields fundamental diagram. It can also be represented in terms of vehicle density
p (average number of vehicles per unit length) and flow ¢ (average number of vehicles per
time unit), which yields a concave relation ®(p):

QZ):(I)(p):Umax(l_ P >P7

Pmazx
where pmae is the vehicle density at the traffic jam, and vy,q, = ®'(0) is the maximal aver-
age density of vehicles on a freeway. Afterwards, many other possible shapes of fundamental
diagrams have been proposed, see [91] for a detailed overview on flow-density curves. Nowa-
days, the most simplistic flow-density relation that is widely used for analysis of traffic is the
triangular (bilinear) fundamental diagram proposed by Daganzo in 1994 [38].

1.1.1 Origins of traffic modeling

The discovery of fundamental diagram plays an essential role in the history of traffic flow
modeling. It was the first evidence that traffic can be described and analyzed in terms of
dynamic systems rather than considering it as a collection of independent vehicles. Thus, the
ability to formulate a fundamental diagram gave rise to appearance of different traffic flow
models, see [140] for a detailed review. In general, these can be categorized as microscopic and
macroscopic traffic models depending on the level of description detail. Microscopic models
trace the behaviour of each individual vehicle. The main assumption of these models is that
drivers adapt their behaviour to that of the leading vehicle, i.e., car-following models, see
for example [116, 80]. On the other hand, traffic can be alternatively described from the
macroscopic point of view. In this case, traffic state is given in terms of aggregated variables

1



2 Chapter 1. Introduction

such as average density and average flow, while individual vehicles are not modeled. In this
thesis, we describe traffic in terms of macroscopic variables. This enables to analyze traffic on
some aggregated level that is a useful approach when it comes to large-scale transportation
networks.

Macroscopic traffic models are often compared to fluid, since they describe traffic flow as if
it were a continuum. In the fifties, the kinematic wave theory for traffic has been formulated by
Lighthill and Whitham [96] and, independently, Richards [118]|. This so-called LWR model is
a fluido-dynamic model that prescribes the conservation of the number of vehicles. It describes
the spatio-temporal evolution of vehicle density on an infinite highway road as the following
first-order scalar hyperbolic partial differential equation (PDE):

Op(x,t) + 0, P(p) =0, V(z,t) € R x RT.

Its key assumption is the existence of a concave flow-density relation (fundamental diagram),
which allows to consider this conservation law equation as a model for traffic.

The LWR model was the first macroscopic model in the history of traffic modeling, and it
has some physical limitations. For instance, according to the LWR model vehicles reach the
new equilibrium velocity immediately after a change in the traffic state, which implies infinite
acceleration. This problem was addressed in [84, 88|, where the LWR model was extended to
take the bounded acceleration into account. Another drawback of the LWR model is that the
transition from the free-flow to the congested traffic regime occurs at the same density and
without capacity drop. This was addressed by [41, 75] by introducing lane changing. However,
even despite the appearance of more sophisticated first-order |35, 144, 18] or even higher-order
models [12, 57| capable of covering more realistic traffic behaviour, the LWR model remains
the most used one to study due to its simplicity and ability to reproduce the most essential
traffic phenomena such as wave formation and propagation. LWR model was also shown to
be consistent with car-following behaviors at the aggregated level [109].

Although being the most simple continuous traffic model, the explicit analysis of the LWR
equation is a tedious task. In general, such partial differential equations are solved using
the method of characteristics [46]. However, the nonlinearity of the fundamental diagram
introduces nonlinearities in the characteristic fields. Therefore, even with a smooth initial
datum characteristic lines may intersect, which leads to discontinuities at intersection points.
This triggers a shock or a rarefaction wave depending on the state at the moment of intersection
(Riemann problem). Then, the conservation law solution is not defined in the classical sense,
and therefore needs to be considered in its weak formulation. This formulation yields multiple
solutions, among which the entropy solution [8] is recognized to be the physically reasonable
one. Mathematical properties of hyperbolic conservation laws have been extensively studied,
and an interested reader is referred to [21, 70, 83].

There is however a way to study the kinematic waves of traffic without any need to deal
with shocks in the solution. In [106, 107, 108] Newell proposed an alternative way to consider
traffic on a macroscopic scale by numbering vehicles at the highway entry and following the
evolution of vehicle numbers at every location and time. Thus, the traffic state can be described
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in terms of cumulative number of vehicles M that evolves as
M (z,t) + ®(0;M) = 0, V(z,t) € R x RT.

This equation has the structure of a Hamilton-Jacobi PDE, which represents an integral form
of the LWR PDE. Its solution is a Lipschitz continuous function that is free of shocks (in the
worst case it is only non-differentiable), and it can obtained by solving a simple minimization
problem.

A variational formulation of kinematic waves was studied in [36, 37|, who showed that
every well-posed traffic problem with a concave flow-density relation can be solved as a set
of shortest paths. In general, the explicit solution of Hamilton-Jacobi PDE can be obtained
using the viability framework, which was first shown for the case of convex conservation laws
in [76, 77]. The viability framework is based on using Lax-Hopf formula that exploits the
structure of a dynamic programming problem, and the solution is obtained as the minimum
of all valid paths, see also [28]. Several computational algorithms have been developped to
obtain solutions of H-J PDE for some special cases in the context of traffic modeling. Thus,
[27] presented a computational method for any piecewise affine initial condition. The Lax-
Hopf algorithm to compute the solution on a single link for any concave fundamental diagram
has been suggested by [100]. Its improved version with a lower computational time has been
proposed in [127].

In some cases, the exact solution to LWR PDE can be obtained using the wave-front
tracking method [65, 99, 145]. This method can also be used to prove the existence of solutions
to conservation laws, see for example [30]. The solution of a LWR PDE can also be numerically
approximated using computational methods such as the Godunov scheme [56], or the Lax-
Friedrichs method [89]. These are both finite difference methods. The Godunov scheme deals
with Riemann problems at each cell, and the Lax-Friedrichs method requires adding artificial
viscosity.

In the nineties, a time-discrete approximation of the LWR equation was introduced in [38,
39], which is now known as the cell transmission model (CTM). This model can be viewed as a
Godunov-type discretization of LWR, and it is based on approximating links (roads) by cells.
The amount of flux that is transmitted between cells is based on their current occupancy (the
demand-supply concept). Nowadays, CTM is the most popular model in the traffic community
due to its simplicity and the ability of a straightforward extension to networks.

1.1.2 Road control

Continuing urbanization caused by ever-growing population of the planet implies a growing
demand for transportation. This entails formation of severe congestions that cost people
hundreds of hours per year and that also have a significant negative impact on the environment.
For instance, the Urban Mobility Report [125] summarized the major daily life problems
caused by traffic congestions in USA in 2017. According to this report, urban American
drivers experience the following losses per year on average: 8.8 billion hours of time delay,



4 Chapter 1. Introduction

3.3 billion gallons of wasted fuel and an equivalent monetary cost of 179 billion dollars. This
requires the development of efficient solutions for intelligent transportation management.

There are several common techniques to control traffic. One of the most widely used
techniques is a suitable application of a variable speed limit (VSL) along a highway road. It is
applied such that the maximal allowed speed is decreased, which mitigates risk of accidents, as
well as it results into a lower fuel consumption and reduced emissions. Previous works |2, 95,
150] confirmed that the VSL control enhances traffic safety and has a positive environmental
impact. Reduced travel time is another positive effect of VSL controllers reported by [105,
49]. The effect of VSL on the shape of the fundamental diagram was studied in [23, 113].
However, the improvement of travel time achieved with VSL control revealed inconsistencies
in microscopic simulations and field tests |79, 124]. These inconsistencies are related to the
fact that it is hard to precisely predict traffic conditions at some localized congested bottleneck
via the macroscopic modeling. Moreover, not every human driver adapts his/her velocity to
numbers displayed on electronic traffic signs.

Alternatively, traffic can be regulated from the boundary, that is either from entry or exit
of the corresponding highway road, e.g., by actuating on- and off-ramps. By managing on-
ramp traffic inflows, the application of meters also reduces the travel time, harmful emissions
and improves highway safety [90]. Moreover, [148] reported that ramp metering helps reducing
the average freeway delay.

However, in most of the cases, control for a traffic road is designed using the discretized
version of the corresponding traffic model. According to [89], such discretizations are known to
alter essential phenomena predicted by the original macroscopic traffic models and may lead
to inconsistent discrete versions. Recall that from the mathematical viewpoint, macroscopic
traffic models such as LWR mostly represent conservation laws with dynamics governed by
hyperbolic partial differential equations. The theory on the exact controllability and exact
observability was completely developed in [122, 98] for linear and in [92] for 1D quasilinear
hyperbolic PDEs. The results on exact controllability for nonlinear scalar conservation laws
with a strictly convex flux function were discussed in [115]. Classical techniques widely used
for control of hyperbolic conservation laws are backstepping [31]|, Lyapunov-based [19, 32]
and optimal control methods using adjoint-based calculus [139, 60, 72, 15]. Optimal control
tasks for traffic are considered to solve the most common problems of traffic regulation, i.e.,
minimization of total travel time and fuel consumption, or throughput maximization.

However, the classical control methods mentioned above are not always well suited to
handle shocks, since they require the knowledge on the internal shock dynamics. Tracking dy-
namics of shocks was done, e.g., in [20], where the weak formulation and the Rankine-Hugoniot
relation were used to stabilize solution of the Burgers equation to a constant equilibrium. In
a recent work [14] the problem of boundary control of solutions with jump discontinuities has
been considered. In both [20, 14], the desired state was stationary and the Lyapunov methods
were applied. In [43] the exact controllability of solutions to conservation laws to space- and
time-dependent trajectories has been studied. Nevertheless, the problem of stabilizing a state
with shocks to space- and time-dependent trajectories that may also contain shocks has never
been considered before. We address this problem in Chapter 2.
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1.2 Traffic on urban networks

In its original formulation, the LWR-model is applicable only to single roads of infinite length.
Extension to urban networks required developing a methodology for intersection modeling
within the LWR framework. This was first done at the end of the last century by [69], who
considered a network of uni-directional roads. Later on, this formulation was refined to capture
multi-directional traffic, e.g., see [29]. The CTM has also been extended to networks in [39],
who considered networks as directed graphs consisting of links (roads) and nodes (junctions).
The general theory of traffic flow on networks is presented in [50]. The Cauchy problem
for complex networks (with more than two incoming and outgoing roads at junctions) was
considered in [51].

The most common way to control traffic on a urban level is to optimize the time intervals
of green signal at signalized intersections, see [26, 52]. There exist also other control tech-
niques applied in transportation networks, such as routing of traffic [60], ramp metering [111],
variable speed limits [113, 141], see also [112] for a general review of traffic control strategies.
The main challenge in this link-level (discrete) representation of traffic networks is the large
computational time. For instance, if we consider large urban networks consisting of thousands
of links, the need to use much of traffic data considerably exaggerates validation of control
performance [152].

Another way to model traffic on urban areas is again to consider continuous macroscopic
models. They describe traffic as a two-dimensional fluid moving on a continuum plane that
corresponds to a dense urban network. This approach has various advantages, e.g., the problem
size does not depend on the number of roads, as well as less data are required for the model
setup. Early works on continuous urban traffic modeling [128, 131, 66| presented static models
with the focus on determining equilibria states in urban networks. However, due to the lack
of any knowledge of a flow-density relation on a city level, these models failed in capturing
traffic dynamics during rush hours, see [68] for a general review of such models.

The first demonstration of existing macroscopic relation between density and flow should
be recognized to [142], who used data from microsimulations. Later this relation was also
observed during an experiment conducted in the congested region of Yokohama, Japan [53],
and was then generalized in [40]. This functional relation has the same physical meaning as
the fundamental diagram for highway roads, but it was shown to exist also on urban areas.

The discovery of macroscopic fundamental diagram (MFD) plays an essential role in the
development of traffic models for urban areas. The empirical evidence of MFD led to appear-
ance of reservoir models, which are also called accumulation models. These models predict the
rate of change of the vehicle accumulation in some urban area (reservoir) that is determined
by the difference between its inflow and outflow, see [5] for a review on several MFD-based
models. The network’s MFD can be defined by collecting real traffic data [53] or by running
numerical simulations [62]. In [82] it has also been shown that the MFD can be well approxi-
mated by a function of only two parameters: the density of traffic lights and the mean red to
green ratio across the network.
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The MFD-based approach is intuitive and easy in use, which makes it popular for traffic
control design such as perimeter control [54, 3|, robust control [61], etc. It is important to note
that only homogeneously congested areas may have a well-defined MFD, see |55] for properties
of well-defined MFDs. In general, there must exist only one flow value for a given number of
vehicles. This feature is preserved only in regions that consist of links characterized by similar
congestion levels, while this causes problems in case of regions with heterogeneous links. In
this case, one can apply partitioning algorithms that divide a problematic area into multiple
smaller areas each having a well-defined MFD for given traffic conditions [63, 87]. For the
case of rapidly changing traffic conditions (e.g., accident on a road), a dynamic clustering
algorithm has been proposed by [123]. The main drawback of MFD-based modeling is that
it assigns only one value to characterize traffic on some urban area being the current number
of cars in this area. Thus, the level of precision to describe traffic behaviour on a global level
depends on the number of defined clusters, i.e., in some sense it acts like CTM in 2D. This
leads to the loss of information during the process of congestion formation and dissolution in
a transportation network.

Another way to describe the evolution of traffic in urban areas is to use dynamic two-
dimensional continuum models. These share a lot of features with pedestrian models [71].
The main difference is that crowds evolve in an open space, while vehicles are restricted to
move on roads. In [121] authors considered a model including a diffusion term and a drift
term that depends on the density. The direction of the drift vector is determined by the shape
of the network. Other works [74, 45, 73| define the flux function by solving Eikonal equations
such that the flow follows the path of the lowest cost. For a review of 2D continuum models
the reader is referred to [5]. A recent work [103] introduced a direct extension of LWR model
in two dimensions:

op(z,y,t)
ot

Thereby, the flux function became a vector. Its direction is retrieved from the geometry of

+V-<I_5(x,y,p)20, V(z,y,t) € R x RY.

the underlying urban network, while the flux magnitude depends on network infrastructure
parameters that are incorporated into the space-dependency of the fundamental diagram. In
Chapter 3 we investigate this model to design boundary and in-domain control for mixed-
regime urban traffic that admits shocks.

The aforementioned references however consider traffic flow that has only one direction of
motion. Several years ago a dynamic continuum model for multi-directional pedestrian flows
was presented in [67]. This model represents an extesion of CTM to pedestrian dynamics,
which however does not take urban network geometry into account. The first attempt to
include multiple directions in 2D continuum models for vehicular traffic has been made also
only a few years ago by [97] who deployed dynamic user-optimal principle for the path choice.
The drawback of this model is that the traffic density may become unbounded (it is not based
on a fundamental diagram). There exist also other works [102, 4] proposing 2D multi-layer
models with bounded densities. However, these models do not include mixing between different
direction layers, i.e., vehicles can not change their direction of motion. Then, these models
are also not necessarily hyperbolic, i.e., their equation type varies with parameters, which
exaggerates its analysis and numerical simulation. Hyperbolicity for all parameters implies
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that it can be analysed like many other conservation law based models for traffic. We fix both
of these aspects in Chapter 4 by elaborating a novel multi-directional model. Subsequently,
this model is used for boundary control design of multi-directional urban traffic.

1.3 Problem statements and contributions

This thesis is devoted to control of urban traffic evolving on large-scale transportation net-
works. Traffic is described in terms of flow and density of vehicles, i.e., from the macroscopic
point of view. The dynamic equation that predicts the spatio-temporal evolution of traffic
corresponds to a PDE that has a structure of a conservation law. Thus, traffic can be seen as
a 2D fluid that propagates along a continuum 2D plane with a total surface determined by the
size of the underlying urban network. To manage urban traffic, we use a purely model-based
control design. This means that control is designed by analysing the intrinsic properties of
the model. Therefore, the obtained controller is scalable and adaptive to changing traffic
conditions, as well as it is applicable to any urban network of arbitrary size.

e In Chapter 2, we consider traffic evolving along a single road of finite length with dynam-
ics governed by the LWR PDE. Our main goal thereby is to derive a boundary control
law such that the traffic state tracks some desired space- and time-varying trajectory.
First, we consider a linear system with disturbance for congested traffic, which can be
solved using the characteristics method. The desired trajectory is achieved by actuat-
ing the downstream boundary of the road (published in [137]). Then, we extend this
problem to a mixed-regime traffic governed by a full LWR PDE, for which no classical
solutions exist. We solve the problem by analysing the system in its Hamilton-Jacobi
formulation. Thus, the main contribution of Chapter 2 is the boundary control design
for a mized-regime traffic with solution shocks that tracks the desired trajectory that also
admits solution shocks for asymptotic time. This result can be seen as a general solution
to any control problem that can be posed for LWR traffic on finite roads, and it was
published in [133].

e Chapter 3 is devoted to control design for traffic on urban networks. Thereby, traffic dy-
namics are described by the LWR model that contains an additional space dimension. It
considers traffic as a fluid moving on a 2D plane that represents a continuous approxima-
tion of the urban area under consideration. The network infrastructure parameters are
embedded as an explicit space-dependency of the fundamental diagram. The direction
of movement is determined by the network geometry. The main limitation of this model
is that it is designed to describe traffic on networks with uni-directional roads. Our
main contribution in this chapter is to propose a holistic approach to solve any possible
control task for uni-directional 2D traffic, which was sent for a publication [132]. This
is done by proposing a curvilinear coordinate transformation that allows to rewrite the
2D model such that it can be treated as a parametrized 1D problem, which can be ex-
plicitly analyzed. By analyzing this traffic model in new coordinates, we solve a variety
of control problems. First, we present a method to analytically estimate a steady-state



8 Chapter 1. Introduction

knowing only network structure and inflow data (published in [135]). Then, this result
is used for a boundary control design such that congested traffic achieves the best equi-
librium corresponding to the throughput maximization (published in [138]). Moreover,
we also use this 2D model in curvilinear coordinates to solve a trajectory tracking task
for traffic in a mixed regime in a similar way as in Chapter 2 but handling additional
technical issues. Finally, we also analyze the system to design a variable speed limit
control. These results on mixed-regime traffic control were sent to a journal [132].

e In Chapter 4, we deal with the main limitation of the preceding chapter that considered
only uni-directional urban networks. The main contribution of Chapter 4 is to propose
a novel macroscopic model for multi-directional traffic. 'The model is rigorously derived
from the CTM at one intersection by solely relying on the demand-supply concept. As
a result, we obtain a system of four PDEs each describing the propagation of vehicle
density in North, East, South and West direction, respectively. This model is applicable
to any urban networks with arbitrarily oriented roads. It includes interactions between
different direction layers, i.e., direction is determined by turning ratios at intersections.
Our model is validated using real data provided by Grenoble Traffic Lab, which is an
experimental platform that collects data from a network of real sensors installed in
Grenoble downtown. The model design and validation results have been sent to a pub-
lication [136]. Finally, the new model was analyzed for a boundary control design that
can mitigate congestions in multi-directional traffic networks (the result was accepted
for a publication [134]).

This thesis is organized as follows. In Chapter 2, we introduce the LWR model and discuss
its properties and solutions, as well as the Hamilton-Jacobi theory and the Godunov scheme
are presented. Then, we present the control results obtained for traffic on a single road. In
Chapter 3, we give details on the 2D LWR model and how it can be used to describe the
dynamics of urban traffic, which is then also compared to an MFD-based model. Afterwards,
we introduce the curvilinear coordinate transformation for the 2D LWR and solve a variety
of control tasks for uni-directional urban traffic. In Chapter 4, a new model for traffic with
multiple directions is derived. We also discuss its properties and validate it with synthetic
and real data. Each chapter is divided into sections and is concluded with the summary of the
main results. In turn, each section starts with its main contributions and concludes with the
discussion of the results. All contributions and perspectives are summarized and discussed in
Conclusions and Perspectives. Finally, lists of symbols used throughout the thesis are given
in Appendix A, and technical proofs of some theorems and lemmas used in the main body of
this work are given in Appendix B.

1.4 Publications

e Journal publications:

1. L. Tumash, C. Canudas-de-Wit, M. L. Delle Monache; Multi-Directional Con-
tinuous Traffic Model For Large-Scale Urban Networks. Submitted to
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//hal.archives-ouvertes.fr/hal-03236552

2. L. Tumash, C. Canudas-de-Wit, M. L. Delle Monache; Boundary and VSL Con-
trol for Large-Scale Urban Traffic Networks. Submitted to IEEE Transac-
tions on Automatic Control, 2020. Preprint: https://hal.archives-ouvertes.
fr/hal-03167733

3. L. Tumash, C. Canudas-de-Wit, M. L. Delle Monache; Boundary Control De-
sign for Traffic with Nonlinear Dynamics. Published in: IEEE Transactions
on Automatic Control (early access), doi: 10.1109/TAC.2021.3069394. Accessible
at: https://hal.archives-ouvertes.fr/hal-02955853

4. M. U. B. Niazi, C. Canudas-de-Wit, A. Y. Kibangou, D. Nikitin, L. Tumash, P.-
A. Bliman; Modeling and control of COVID-19 epidemic through testing
policies. Submitted to Annual Reviews in Control, 2020. Preprint: https://hal.
archives-ouvertes.fr/hal-02986566

o Conference publications:

5. L. Tumash, C. Canudas-de-Wit, M. L. Delle Monache; Boundary Control for
Multi-Directional Traffic on Urban Networks. Accepted to 2021 IEEE 60th
Conference on Decision and Control (CDC), December 2021, Austin, Texas, USA.
Preprint: https://hal.archives-ouvertes.fr/hal-03182546
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ber 2020, Rhodes, Greece, doi: 10.1109/ITSC45102.2020.9294280. Accessible:
https://hal.archives-ouvertes.fr/hal-02860455v2

7. L. Tumash, C. Canudas-de-Wit, M. L. Delle Monache; Equlibrium manifolds in
2D fluid traffic models. IFAC 2020 — 21st IFAC World Congress 2020, July 2020,
Berlin, Germany. Preprint: https://hal.archives-ouvertes.fr/hal-02513273

8. L. Tumash, C. Canudas-de-Wit, M. L. Delle Monache; Robust track-
ing control design for fluid traffic dynamics. 2019 IEEE 58th
Conference on Decision and Control (CDC), December 2019, Nice,
France, doi:  10.1109/CDC40024.2019.9029559. Accessible at:  https:
//hal.archives-ouvertes.fr/hal-02331493
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Bliman; Testing policies for epidemic control. Submitted to Submitted to 2021
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The material contained in publications 3 and 8 is presented in Chapter 2. The material from
publications 2, 7 and 6 constitutes Chapter 3. Finally, the material from publications 1 and
5 is presented in Chapter 4.
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1.5 Notations

Here we explain several notations used throughout this thesis. Let us start with notations
used in Chapter 2 devoted to 1D traffic problems:

¢ We introduce the following norms with respect to the space variable . For a function
p(z,t) € [0,L] x RT the Ly, Ly and Lo, norms are defined V¢ € RT as

L

(Bl == ({ p(z,t)|dz, (1.1)
[ L

1o, )l := sup |p(x,1)], (1.3)
z€[0,L]

where sup (inf) indicates the essential supremum (infimum).

e The deviation of the state from the desired vehicle density trajectory is defined V(z,t) €
[0,L] x Rt as
plx,t) = p(x,t) — palz,t). (1.4)

e The cumulative deviation from the desired vehicle density trajectory along a road of
length L (integral error term, or error in the number of vehicles) is defined Vt € R as

L
o(t) = [ (pls.1) = pals. 1) ds. (1.5)
0

Now let us also explain the notations used in Chapters 3 and 4 devoted to 2D traffic
problems:

e We introduce the L, Ly and Ly, spatial norms for a function in 2D p(z,y,t) € Q x RT,
where 2 € R? : [xmina xmam] X [ymina ymax}y as

Tmaz Ymax

o0l = [ [ lo(o.p.0)]dudy. (16)

Tmin Ymin

Tmaz Ymazx
loCtlei= | [ [ Pletdedy, veerr, (1.7)

and

(z,y)EN
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e The deviation from a 2D space-varying desired equilibrium (constant in time) is defined
V(Jfay,t) € [xmmyxmax] X [ymimymagj] x RT as

ﬁ($>y7t) :p('rayvt)_pd(xay) (19)

e The deviation from a 2D time- and space-varying desired trajectory is defined V(z, y,t) €

[wminyxmax] X [ymin7yma:r] x Rt as

ﬁ(m,y,t) :p(xayat) _pd($ayvt)‘ (110)






CHAPTER 2

Traffic Control on Roads

This chapter is devoted to traffic control problems on single roads of finite length. We consider
traffic within the macroscopic modeling approach that incorporates the kinematic wave theory
for traffic that applies principles from fluid dynamics to predict traffic. Using intrisic properties
of the model, we design a boundary control law to track a desired vehicle trajectory. Section 2.1
contains preliminaries that include explanation of LWR model and its mathematical properties
(weak solutions, boundary conditions, etc.), the basic numerical scheme to approximate LWR,
as well as an equivalent approach to describe traffic in terms of Hamilton-Jacobi equation. In
Section 2.2, we first consider traffic being only in the congested regime with some in-domain
disturbance, i.e., the state is driven by an inhomogeneous linear PDFE system. The desired
trajectory is also restricted to congested traffic regime for simplicity. In Section 2.3, we consider
traffic state and desired trajectory both not being restricted to any particular traffic regime,
i.e., boundary control design is performed for a nonlinear system, which is mathematically
quite challenging to handle due to shocks that arise in a full LWR system.

2.1 Preliminaries

The kinematic wave theory for traffic was formulated in the fifties by Lighthill, Whitham
and Richards, and it is now known as the LWR model [96, 118]. Its main assumption is the
existence of a concave relation between the vehicle density and its flow. This model remains
the most popular macroscopic model for traffic due to its simplicity, while it is still able to
capture the most essential traffic phenomena. In this section, we present the LWR framework
in more details, as well as discuss its solution, boundary conditions, the numerical scheme and
its integral formulation.

2.1.1 Lighthill-Whitham-Richards model

The LWR model is a scalar conservation law, where the conserved quantity is the number of
vehicles in some area. This conservation law model corresponds to a first-order hyperbolic
PDE, which also implies that the information propagates at a finite speed. This model predicts

13
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the spatio-temporal evolution of traffic V(z,t) € R x RT as follows

dp(x, 1) N 0®(p(x,1))
ot ox
p(z,0) = po(z),

=0, (2.1)

where p : R x RT — RT is the vehicle density with pg(z) being the initial data, and ®(p) :
[0, prmaz] — RT is the flux function that relates vehicle flow ¢(z,t) with vehicle density p(z,t).
This relation is an empirically established law [58] known as fundamental diagram (FD).
Mathematically speaking, the flux function ®(p(z,t)) is a Lipschitz continuous and concave
function that admits a unique maximum ¢,,,, (capacity) attained at p. (critical density),
while its minimum value is achieved in two cases: either if there are no vehicles, i.e., ®(0) = 0,
or if traffic is fully congested, i.e., ®(pmaz) = 0, where ppq. is the traffic jam density.

2.1.2 Fundamental diagram

The most simple flow-density relation corresponds to the triangular (bilinear) fundamental
diagram proposed in [38], see Figure 2.1a):

_ ) vps p € [0, pc],
20} = { ~w(p = Pmaz)s P € (Pe; Pmaz); (22)

where v and w are kinematic wave speeds in the free-flow regime (wave moving forwards) and
in the congested regime (wave moving backwards), respectively. Notice that kinematic wave
speeds are not related to velocities of individual vehicles that are determined on average as
the flow divided by the density. For instance, in the traffic jam (when p = ppas) velocities of
vehicles are zero, while the kinematic wave propagates backwards with —w.

Thus, the triangular FD has only two slopes, since kinematic waves can take only two
values (v and w). The critical density p. and the capacity ¢pq, are defined as

W

= mpmaxa Qbmam = VpPec. (2-3)

Pc

In this thesis, we will also use the Greenshields FD that was the first flow-density relation
proposed in 1935 in [58], see Figure 2.1b). This relation is given by the following smooth
concave function

B(p) = Vinas (1 - p:a) , (2.4

with the critical density p. and capacity ¢mqz given as

__ Pmax

Pec = 5

Umaz Pmax
_— 2.5
fs 25)

¢maz =

and vpmae = ®'(0) is the maximal kinematic wave (free-flow) speed determined by the speed
of a vehicle moving along a freeway with p = 0.

Throughout this thesis, we will use p. = 1/3pmas for all cases when a triangular FD is
assumed, and p. = 1/2ppq, for the case of Greenshields FD.
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®(p) ®(p)
a a
Iy
¢maa: ””” ‘ ¢max [~ ﬂ ST ‘
v : —Ww II :
0 Pec Pmax P 0 Pe Pmazx P

Figure 2.1: Fundamental diagrams: a) triangular, b) Greenshields. Free-flow and congested

traffic regimes correspond to green and red areas, respectively.

Although in this work only triangular and Greenshields FDs are used to model the flow-
density relation, there exist also many other types of FDs, see [91] for a review. Del Castillo
[25] formulated properties that must hold for realistic fundamental diagrams:

1. The velocity range should be v € [0, Upqz]-

2. The vehicle density should be p € [0, pmaz]-
3. Cars stop moving when the traffic jam density is reached: v(pmas) = 0.

4. There is no traffic flow if there are no cars (zero density), or if cars are stuck in a traffic
jam: ®(0) = ®(paz) = 0.
5. Maximum velocity and congestion wave speed are the slopes of the fundamental relation

at p =0 and p = Pas, respectively.

6. Flux is a concave function of density.

2.1.3 Unique solution

Let us discuss the Cauchy problem (2.1). It has a structure of a first-order hyperbolic PDE
that can be solved using the method of characteristics that yields lines along which the state
remains constant (see [46] and Appendix B.1 for details). Thus, the characteristics of (2.1)

are straight lines:
x —x0 = D' (po(z0))t, ro € RT, (2.6)

where g is a point in space, from which the characteristic line originates. The density is
constant along each of these lines, that is for all (z,t) satisfying (2.6) we obtain
p(z,t) = po(wo).

It can however happen that these lines intersect proposing two different values of p at the
intersection point x;, i.e., a discontinuity arises in the solution p. Hence, in general no classical
solution exists for (2.1), and one needs to consider its solution in the weak sense.
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A function p: R x RT — R™ is a weak solution of the Cauchy problem (2.1) if for any test
function v (which is a O function with compact support in R?) the following equation holds:

“+o00 +o00 “+o00

/ / (o + (o)) i it + / po()(z, 0) de = 0. 27)

0 —oo -

1

e (set of locally integrable functions).

and the map ¢t — p(-,t) is continuous from R* into L

Given that p is smooth around the point of discontinuity, we can integrate (2.7) to obtain
the speed of discontinuity &5 known as the Rankine-Hugoniot relation [126]:

o = 20pr) —2(p) (2.8)
° pr—pi '

where p, and p; are values of the right and of the left limit of p at the point of discontinuity.

It is important to note that the Cauchy problem (2.1) can have an infinite number of weak
solutions. Hence, the weak solution (2.7) must be completed by a uniqueness condition:

' (pr) < is < @' (1), (2.9)

where ®'(p,) and ®'(p;) are the characteristic speeds to the right and to the left of the
discontinuity, correspondingly. In the theory of hyperbolic conservation laws, equation (2.9)
is known as the Laz admissibility condition [83]. It selects the unique solution out of a set
of weak solutions. The Lax condition has a simple geometrical interpretation. Namely, the
unique solution is the particular weak solution for which the characteristics run into the shock:
all characteristics must end at the discontinuity as illustrated in Figure 2.2.

Ansorge |8] was the first to consider this uniqueness condition (2.9) in the context of traffic.
He interpreted it as driver’s ride impulse, i.e., one starts driving when a traffic light switches
from red to green. Thus, a weak solution of (2.1) satisfying (2.9) is the physically relevant
one. It is also known as the entropy solution.

In particular, considering piecewise-constant initial state po(x) = p; for x < x5 and po(x) =
pr for x > x4 (known also as a Riemann problem), entropy solutions can be of the two
following types:

1. If p; < pr, shock arises. The entropy solution remains piecewise-constant, and shock wave
propagates through space with velocity determined by (2.8): p(x,t) = p; for z < x4(t)
and p(z,t) = p, for x > x4(t).

2. If p; > pr, the entropy solution becomes continuous and propagates in a form of a
rarefaction wave. For any straight line starting from (xg,0) the solution is constant and
is determined only by (z — xg)/t:

pL; if (2 — )/t < ' (p1),
o) = 4 BN ((w—w,) /1), (2 — 2)/t € [@(p1), D ()],
Prs if (x—xs)/t > ¥ (p,).
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Figure 2.2: Geometrical interpretation of Lax admissibility condition. Thick black line: shock
curve.

2.1.4 Boundary conditions

In its original formulation, the LWR model (2.1) describes traffic for infinitely long highways
without any on-ramps or off-ramps, which is a serious physical limitation. Thus, one needs to
include the boundary conditions for (2.1) in order to be able to include ramps and in general
to consider roads of finite length (bounded domains).

Let us consider a road of length L. The conservation principle states that the evolution
of each aggregated conserved quantity in some domain [0, L] depends only on the flows at its
boundaries and exogenous flows. Thus, for a complete model describing traffic evolution along
some road, we need to specify boundary conditions p;, and pyy that are all assumed to be
functions of bounded variation (as well as the initial condition pg). Then, the initial-boundary
value problem (IBVP) reads V(z,t) € [0, L] x RT

Op(t) _ (p(,1)
ot oz

p(z,0) = po(z),

p(O,t) - pin(t)a p(L,t) - pout(t)'

=0,
(2.10)

The main feature of the boundary conditions in conservation laws is that they can not be
applied strongly for all time, see [13]. Thus, the boundary conditions should be viewed only
as proposed signals.

In general, boundary conditions may only be prescribed for the boundary where the char-
acteristics are incoming. Hence, if traffic is in the free-flow regime at road’s entry for some ¢,
then the kinematic wave propagates forward and we can write p(0,t) = pin(t), or if traffic is
congested at the road exit, then p(L,t) = pout(t). However, this behaviour is not guaranteed
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for general nonlinear conservation law systems such as (2.10). In order to guarantee that
the weak solution p(x,t) is the entropy one V(x,t) € [0, L] x RT, one needs to consider weak
boundary conditions. See Section 2.1.3 for the physical sense of entropy solution.

In [129] the weak boundary conditions were considered for the case of concave flux function.
Thus, for a weak formulation of the boundary conditions of system (2.10), one of the following
conditions must hold for the upstream boundary:

p(0,t) = pin(t), or
"(p(0,t)) <0 and ¥'(pin(t)) <0, or (2.11)
&(p(0,1)) <0 and B (pin(t)) > 0 and B(p(0,1)) < (pin(),

K

and similarly for the downstream boundary:

p(L, t) = pout(t)v or
' (p(L,t)) >0 and &' (pour(t)) >0, or (2.12)
O'(p(L,t)) = 0 and ®'(pout(t)) <0 and @(p(L,1)) > P(pour(t))-

2.1.5 The demand-supply concept

In some works [86, 85|, the weak boundary conditions are modeled using the demand-supply
concept. According to this concept, in case of concave flow-density function ®(p) (e.g., trian-
gular or Greenshields FD), the proposed traffic flow at the upstream boundary is given by the
demand function

(I)<Pin)a it 0 < pin < pe,
D(pin) = { (2.13)

¢ma:ca if Pe < Pin < Pmacs

and the proposed flow at the downstream boundary is given by the supply function

it 0< Pout < Pe,

S(Pout) = Omaz _ (2.14)
(I)(pout>7 it Pe < Pout < Pmaz-

The boundary Riemann problem for the upstream boundary flow is then given Vt € Rt by

Gin(t) = min{D(pin(t)), S(p(0,1))} , (2.15)
whereas the downstream boundary flow is defined as
¢out (t) = min {D(p(La t))a S(pout(t))} . (216)

Notice that (2.15) and (2.16) are consistent with (2.11) and (2.12), i.e., these are weak
boundary conditions in terms of flows. Thus, the amount of flow that can enter the domain
¢in s constrained by the supply at road’s entry, while the traffic flow leaving the domain ¢gy;
is constrained by the demand at road’s exit. This means that incoming cars can be blocked by
congested traffic at the entry of the road, as well as the outflow control may not be imposed
if there are only a few cars at the exit.
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®(p)
D(p)
¢ma.’1} ‘
0 Pc Pmaz P

Figure 2.3: Demand D(p) (in blue) and supply S(p) functions (in orange) for triangular FD.

In case of triangular fundamental diagram, the demand an supply functions are given by

D(p(t)) = min {vp(t)7 (bmaac} )
S(p(t)) = min{w(pmaz — p(t)), Pmac} -

Figure 2.3 illustrates the demand and the supply functions for the case of triangular FD.

(2.17)

The demand-supply concept is equivalent to the weak boundary conditions formulation
introduced above in terms of densities (2.11)-(2.12), though being much simpler. This concept
has important practical implications when dealing with numerical schemes to simulate the
LWR model, as we are going to show later in this thesis.

2.1.6 The Godunov scheme

Now let us describe the most basic numerical method for approximating conservation laws
such as the LWR model. The Godunov scheme proposed in [56] is a first-order numerical
method based on solutions to Riemann problems. The global idea of the Godunov scheme is
to approximate the initial datum by a piecewise linear function, then to compute solutions to
Riemann problems and then to piece these solutions together.

We start by defining a numerical grid in [0, L] x RT by setting

e 1 to be number of cells,

e Az = L/n to be the space cell size,

e At to be the time cell size,

e (iAx,kAt) for i € {1,...,n} and k € Z* to be the grid points.

The mesh sizes Az and At are chosen such that they satisfy the Courant-Friedrichs-Lewy
(CFL) condition [33]:

A
At max | (p)| < =2,
P 2



20 Chapter 2. Traffic Control on Roads

where max, |®'(p)| corresponds to the maximal kinematic wave speed in the free-flow regime,
e.g., U (Umag) in case of triangular (Greenshields) FD. This condition needs to be satisfied,
since it provides the non-interaction of waves generated by different Riemann problems.

The discrete density is then p;(k), and according to the Godunov scheme, we update it as
follows V(i, k) € {1,...,n} x Z":

pr(k 1) = pa(k) + £ (PinlK) — 22(K)
il +1) = pilh) + S (@ilK) — pira () (218)
pul+1) = pu(k) + £ (on(h) — o (R)),

where ;(k) is the Godunov numerical flux between cells defined as

@i(k) = min{D(pi-1(k)), S(pi(k))} , (2.19)

with D(p;—1(k)) and S(p;(k)) being the discretized demand and supply functions that can be
taken as in (2.17). Thus, the amount of flow transmitted from the left cell i — 1 to the right
cell ¢ corresponds to the minimum between the demand of ¢ — 1 and supply of i, see Figure
2.4 for the illustration of the concept.

1—1 i

— —
S

D(pi-1) (pi)

Figure 2.4: Schematic illustration of the demand-supply concept.

Notice that the discrete version of LWR model given by (2.18) together with demand
and supply functions corresponding to triangular FD (2.17) is known as the cell transmission
model (CTM). The CTM is by far the most widely used traffic model due to its simplicity
and straightforward extension to networks.

The boundary flows @i, (k) and @eut (k) from (2.18) are respectively set by specifying the
density at cells with indices i = 0 and ¢+ = n + 1. These are called ghost cells, since they do
not belong to the domain but are used to denote state at the boundaries:

@in(k) = min {D(po(k)), S(p1(k))} ,

_ (2.20)
Pout(k) = min {D(pn(k)), S(pnt1(k))} -

In the uncontrolled case, we set po(k) = p1(k) and pnp11(k) = pn(k), which gives @, (k) =
v1(k) and pout(k) = ©n(k), thus the system evolves freely. In the controlled case, we set
po(k) = uin (k) for the free-flow regime and pp,41(k) = ueue(k) for the congested regime, where
Uin and gy represent boundary control laws.
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2.1.7 Hamilton-Jacobi formulation

As we have seen previously in Section 2.1.3, the kinematic wave theory for traffic incorporated
by the LWR model can have complications that arise when characteristic lines with different p
intersect at some (z,t). This led to the necessity to introduce shocks in order to guarantee the
conservation of the number of vehicles across the pass, and handling shocks can sometimes
become a tedious task. To simplify the issue of handling nonlinearities within the LWR
formulation, an alternative formulation of highway traffic low on a macroscopic level was
proposed by Newell [106, 107, 108]. He proposed to describe the traffic state in terms of
Moskowitz function M (z,t) (or shortly, MF). The name of this function comes after Karl
Moskowitz, an engineer who first used it to investigate traffic in [104], although it was first
mentioned only some decades later in [106].

Physically, MF corresponds to the cumulative number of vehicles. Its value is obtained by
numbering vehicles at highway’s entry and following the isolines of the functions representing
vehicle numbers at all times and locations. It is assumed that vehicles can not pass each other,
thus the ordering of the vehicles is preserved everywhere. Recall that traffic flow ¢(z,t) is the
rate at which vehicles pass some point z € RT, and the traffic density p(z,t) is defined as the
number of vehicles per unit length of road. Then, the cumulative number of vehicles can be
easily obtained by integrating flow in space or by integrating density in time. This relation is
formalized as follows:

OM (z,t)
ot

_OM(x,t)

p(.%‘,t) =T a. ¢(xat) =

o . (2.21)

Recall that the key assumption of the kinematic wave theory for traffic is the existence

of a concave relation between flow and density. Let us now rewrite this fundamental law
D (p(x,t)) = ¢(x,t) using (2.21) as

8Ma(f,t) _ & <_ 8]\48(xx,t)> _o, (2.22)

which is a Hamilton-Jacobi PDE with a Lipschitz continuous function M (z,t) : [0, L] X
R* — R being its state. The corresponding boundary conditions for (2.22) will be added
in Section 2.1.8, where we will again consider traffic evolution along a road of length L. In
terms of viability theory, M (z,t) can also be called the congestion function (see [11]), since
(2.22) can be considered as an optimal control problem minimizing a congestion functional
M(z,t). In particular, vehicles tend to minimize the traffic congestion by adapting their
individual (microscopic) velocities to the kinematic wave velocity (a macroscopic quantity).
Thus, function ® plays the role of a Hamiltonian that governs the congestion function through
the H-J PDE (2.22). More details on how to treat the H-J PDE as an optimal control problem
are given in Section 2.1.8.

Note that the LWR PDE can be obtained if (2.22) is differentiated w.r.t. space and
expressed in terms of density. Intuitively, one can see a relation between H-J and LWR by
performing a formal computation, that is by taking the derivative of density w.r.t. time and
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the derivative of flow w.r.t. space (assuming both of them being continuous) and by using
(2.21), and thus obtaining the LWR PDE:

Op(e,t) 0D (p(w,t) _,  O°M(zt) _OM(x,1)
ot ox - 0xot otox

The rigorous relation was shown in [76].

=0.

Note that (2.22) depends only on the derivatives of M (z,t). Therefore, for any solution
M (z,t) adding any constant My gives also a solution M (z,t) + My. This is obvious, since
we can start numeration of cars from any particular number. The existence of M(x,t) itself
guarantees the conservation of number of vehicles. Being an integral form of the LWR PDE;,
the solution of Hamilton—Jacobi PDE is a continuous function that has no shocks. A shock in
the vehicle density function corresponds to a discontinuity in the first derivative of M(x,t).
Then, the conservation equations are still valid if M(x,t) is continuous across the shock
path, which also must be “stable”. This requirement corresponds to the entropy condition
in the LWR framework, where the characteristics must run into the shock (Lax admissibility
condition). Thus, if a kinematic wave problem such as (2.10) is a well-posed problem, then it
has a unique solution with stable shocks.

Let us now express the Moskowitz function M (z,t) through inflows ¢;,(t) and outflows
Gout(t) of the system. This can be simply done by using the definitions from (2.21). Namely,
we can define a conservative field (—p(x,t), ¢(x,t)), which is a gradient of M (x,t) V(z,t) €
[0, L] x RT (consider again a road of length L). By the gradient theorem, it follows that
the value of the line integral of this field does not depend on a particular chosen path, and
equals to only the difference between the values of the Moskowitz function between ending and
starting points of the path in space-time. Since M (z,t) is an integral function that is defined
up to a constant, we are free to assign a reference value to this function at some particular
point in space-time. Let us choose a starting point (L, 0) corresponding to the end of the
road at inital time. Then, we also set M(L,0) = 0, since congestion functions are decreasing
functions of position and increasing functions of time, see Chapter 14 of [11]. Thus, taking
the ending point of the path as (x,t), one possible integration path is:

L

M(z,t) = /(;Sout(T) dT—l—/p(s,t) ds, (2.23)
0

T
or if the starting point is (0,0), then the integration path is

t T

L
M(x,t) —/po(s) ds—&-/qu(T)dT—/p(s,t) ds. (2.24)
0 0 0

2.1.8 Variational theory

Equation (2.22) is a scalar Hamilton-Jacobi PDE that can be solved semi-analytically using
initial condition function Miyi(z), upstream My, (t) and downstream Mpown(t) boundary
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condition functions. Note that the boundary conditions should be consistent with the weak
boundary conditions formulation (2.15)-(2.16). Thus, let us define the following IBVP for the
H-J PDE with weak boundary conditions V(z,t) € [0, L] x R™:

OM (z,1) OM (z,t)
B <ax> =0
M (z,0) = Myi(z), (2.25)
M(0,t) = Myp(t),

M(L,t) = Mpown(t).

For convenience, let us introduce the value condition function c(z,t) : Dom(c) — RT,
where Dom(c) = ({0, L} x RT) U ((0, L) x {0}). It aggregates the initial and boundary con-
ditions of (2.25) (as in [28]):

MIni(x)a t =0,
c(x,t) = ¢ Muyp(t), x =0, (2.26)
MDOWH(t>7 =1L

Let us determine this value condition function (2.26), which implies the calculation of
Mup(t), Mpown(t) and Mii(z). The upstream boundary condition should be expressed
through inflow ¢;,. Thus, we obtain Myp(t) by considering (2.24) for z = 0, which results

nto
t

L
Mup(t) = ¢(0,t) = /¢m(7‘) dr + /po(s) ds, vVt € RT. (2.27)
0 0

Then, the downstream boundary condition Mpewn(t) can be expressed by considering (2.23)
for x = L:

t
Mpown(t) = ¢(L,t) = / Gout(T) dT, YVt e RT. (2.28)
0

Finally, we can obtain the initial condition by considering either (2.24) or (2.23) for t = 0,

which gives us
L

Mni(z) = ¢(z,0) = /po(s) ds, vV € [0, L]. (2.29)

T

The solution of a well-posed IBVP (2.25) is a set of least-cost paths in space-time, as it was
shown in [36]. In order to obtain its analytical solution, one should treat (2.25) as a capacity-
constrained optimization problem, which should be interpreted as follows. Traffic flow at any
point is upper bounded by the road capacity ¢mq, at this point, which, in general, depends
on the number of lanes and speed limits. A similar capacity constraint holds, if the road is
viewed from a rigid reference frame (observer) moving along this road at a speed v’ € [—w, v]
next to a traffic stream that is characterized by density p and flow ¢. Then, the maximum
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rate at which the observer attached to the frame can be passed by the traffic stream is ¢ — pv’

(the “relative capacity”).

The fundamental diagram from the observer’s viewpoint becomes ®(p(x,t)) — pv’, and its
relative capacity is

V' € [~w, ], Lw)= sup (®(p)—pv'), (2.30)
PE[0,pmacz]

where v and —w are related to kinematic wave speeds for zero density and for the traffic jam
density, respectively, i.e.,

v = ®'(0), —w = Y (pmaz)-

Note that L(v') corresponds to the Legendre-Fenchel transform of the flux function ®(p).
Thus, L(v') > 0 is a convex and strictly decreasing function Yo' € [—w,v], see Figure 2.5. It
achieves minimum if the observer tends to adapt his/her velocity to the maximal kinematic
wave speed v, whereas its maximal value is achieved for v' = —w. Thus, L(v’) corresponds to
the “cost” per unit time [37], and the observer moves such that this cost is minimized.

L(v")

Figure 2.5: Legendre-Fenchel transform of triangular FD.

The observer traveling at time ¢ along a valid space-time path with starting time ¢, € R™
can not perceive a change in its associated cumulative vehicle number greater than

AM (z,t) = /L(v’)dt = (t —ts) L(v').

ls

In general, its associated cumulative vehicle number M (zx,t) can not be larger than the value
at its origin boundary c(x — (t —t5)v', t5) (“starting cost”) plus the maximal possible change in
its vehicle number AM = (¢t — t5) L(v') caused by other vehicles that have passed the observer:

M(x,t) <inf (c(x — (t =tV ts) + (t — ts)L(v’)>

(2.31)
st (V,t—ts) € [~w,v] x RT

and (x — (t —t5)v', ts) € Dom(c).
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According to the variational theory presented in [17], this capacity constraint (2.31) is
binding, i.e., the actual value of M (x,t) is the largest possible allowed by this constraint. We
introduce a time interval T' =t — t5 to make the notations shorter. Thus, the unique solution
to (2.25) is found as

M (z,t) =inf (c(:z: —Tv t—T)+ TL(UI)>

st. (V,T) € [~w,v] x RT (2:32)

and (z — TV, ts) € Dom(c).

This expression is known as the Laz-Hopf formula, which provides a semi-analytical unique
solution to the Hamilton-Jacobi system (2.25). Thus, the unique solution M (z,t) is the
infimum of the infinite number of functions of the value condition (see also [10]).

With a slight abuse of notation, we introduce two-argument functions Muyy(z,t),
Mpown(z,t) and Mmyi(x,t) as solutions to the Lax-Hopf formula (2.32) for corresponding
domains of the value condition function ¢, which are My, (t) (2.27), Mpewn(t) (2.28) and
Mii(z) (2.29). Thus, Myp(z,t) comes from the upstream boundary with a given “initial cost”
Muyp(t), then Mpown(z,t) comes from the downstream boundary with a known Mpown (%), and
Mini(x,t) comes from the initial condition Mipi(x). For example, Myp(x,t) is obtained by

Myp(z,t) =inf <c(:1: — TV, t—T)+ TL(U’))

st. (V,T) € [~w,v] x RT (2.33)

and (z —Tv',t—T) € {0} x R,

and the same formula yields Mpown(7,t) for (z —Tv',t —T) € {L} x RT and Myy;(z,t) for
(x =TV, t—T) € [0, L] x {0}

This enables us to restate the solution to the Hamilton-Jacobi problem (2.25) as a minimum
of three possible “solution candidates” Muyp(x,t), Mpown(2,t) and Mi(x,t) V(z,t) € [0, L] x
R*. By properties of infimum, the original Lax-Hopf formula (2.32) can be rewritten as

M (x,t) = min { Mi(z,t), Myp(z,t), Mpewn(x,t)} . (2.34)

In some special cases, e.g., for a triangular FD defined in (2.2), we can calculate the
solution to the H-J PDE in explicit form as it is shown in Appendix B.2.
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2.2 Robust tracking boundary control design

In this section, we address two seldom studied issues: tracking time- and space-varying desired
profiles (rather than stabilizing to an equilibrium), and dealing with uncertainties due to a
possible model mismatch. In particular, we consider an optimal boundary control problem
to track a desired vehicle density on a single road with a state being subject to unknown
space-dependent disturbances. For instance, imagine traffic evolving along a road, for which
we want to achieve some desired density profile by controlling the vehicle flow at the boundary
of this road. However, even if we know the flow-density relation for this road, the tracking
control problem might be challenging due to unknown number of vehicles originating from
minor roads. Thus, we solve the problem of controlling the vehicle density whose value we can
not predict exactly. For this, we include the disturbance term to model the unknown change
in the number of vehicles coming from minor roads.

2.2.1 Introductions

Most works devoted to traffic control have addressed the homogeneous (ideal) case, where
the discrepancies between model and system are ignored (like in classical LWR). Some of the
studies related to the disturbance rejection problem were devoted to disturbance attenuation
on a boundary by action from another boundary [1, 130, 6]. For example, in [130] the sliding
mode control is used to stabilize a hyperbolic system with boundary input disturbance. [1]
proposed a controller able to reject disturbance at the boundary where this disturbance acts.
Later on, [6] proposed a controller for disturbance rejection at an arbitrary point within the
domain. A model reference adaptive control problem has been solved for hyperbolic PDEs
in [7]. Therein, the authors considered harmonic disturbances with known frequencies and
designed a filter-based control law. In a related work on robust control design for systems of
conservation laws [117], the problem of stabilization to a steady-state profile was considered.
Boundary control design was addressed previously in [20] for the problem of stabilizing the
vehicle density to a constant equilibrium.

The main contribution of this section is the optimal boundary controller, which leads
to attenuation of a general in-domain space-dependent disturbance. This is the first result
devoted to a robust controller tracking a space- and time-dependent desired traffic density.
Space- and time-dependency of traffic density is an important aspect to handle, since in
realistic traffic situations it is more likely to obtain non-stationary profiles due to rapidly
changing traffic conditions.

The control design is based on two components. These are the feedforward control compo-
nent used to track the trajectory, whereas the feedback control component is used to minimize
spatial Ly and L, error norms for asymptotic time. We show that the optimal feedback term
takes different forms according to the norm to be minimized. The feedback law is given in its
implicit but computationally feasible form, thus we can apply it without any explicit knowl-
edge about the disturbance. In addition, we also compute the Lo and Lo gains resulting from
the application of the respective control laws. The special thing about these gains is that they
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depend only on system physical parameters such as length of the road stretch and parameters
of the fundamental diagram.

2.2.2 Preliminaries

The goal of this section is to design a robust boundary control law for a vehicle density governed
by equation (2.1) with disturbance such that the state tracks a desired time- and space-
dependent profile. Let us now describe the problem in more concrete terms by performing
the following steps: present the state equation with disturbance, perform motion planning,
analyze error dynamics and solve it explicitly by using the method of characteristics. We will
also present the general structure of the boundary controller to be designed.

2.2.2.1 System with disturbance

We assume that the vehicle density is quite high, i.e., we consider a road being in the congested
traffic regime, which is a common problem arising during rush hours. Here we consider traffic
on a bounded domain (road of length L), which implies that boundary conditions must also
be included as in IBVP (2.10). In case of traffic that is restricted to the congested regime,
the system (2.10) becomes linear (like a transport equation), since it is considered only for
p(z,t) € (pey pmaz) Y(z,t) € [0,L] x RT that lets us write 9,P(p(z,t)) = —wdpp(x,t) (we
assume a triangular FD). For this case, let us also introduce an unknown disturbance term
0(x) : [0,L] — R that is assumed to be bounded. Then, the inhomogeneous initial-boundary
value problem reads:

Op(z,t) _ Op(z,t)

o aw W)
=) ol 0) = po(a), (233)
p(L1) = ult),

where u(t) is a controller to be designed. The control action is applied at the downstream
boundary, since in the congested regime the kinematic wave is moving backwards. In the
free-flow regime the kinematic wave propagates forwards, and then we would control the state
by actuating the upstream boundary x = 0. Note that the linear system X given by (2.35)
allows us to use the fact that characteristics always propagate only in one direction. Thus, the
downstream boundary conditions can always be enforced, which enables us to consider them
in a strong sense.

Physically, the disturbance term d(x) in (2.35) corresponds to the additional unknown
vehicle density per time unit, an example is illustrated in Figure 2.6. Also notice that the
actual control of traffic at road boundaries can be done only in terms of vehicle flow, which
can be changed by, e.g., appropriately timing the traffic light signals. However, in this section,
the boundary conditions are prescribed in terms vehicle density, which is the state of system
>, since it makes the analysis of the effect of boundary values on the system solution pretty
straightforward. Then, if we want to transfer the control result that is going to be designed
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o()

Figure 2.6: Example of a highway road with exit/entry minor roads (left) and the correspond-
ing disturbance function (right).

for system X into real life, we should use the flow-density function that allows us to obtain
the corresponding flow value to be achieved at the boundary, which is then translated into,
e.g., time intervals during which the traffic lights are green/red.

2.2.2.2 Motion planning

Let us now define the desired trajectory for the vehicle density pq(x,t) that we want to achieve
via the boundary control. An admissible desired trajectory pq(z,t) must be a solution of the
following system X4:

Opa(x,t) _ Opa(@,?)
ot ox

pd(xa 0) = Pdo(ﬂf),

pd(L’ t) = pdout (t)’

=0,

Y, = (2.36)

where pg,,, is the desired state at the downstream boundary and pg,(x) is the initial state in
the desired system. Notice that system Y, is an IBVP that looks exactly like (2.35) but with
0(x) =0, i.e., X4 is a homogeneous system.

To guarantee that the system X is well-posed, its state pg(z,t) must always remain in the
congested traffic regime along the road, i.e., pg(x,t) : [0, L] x RT = (pe, prmaz)-

2.2.2.3 Error dynamics

Let us now determine the dynamic system for the error density p(x,t) defined as in (1.4).
Systems 3 and X, given by (2.35) and (2.36) are linear. Thus, we can simply subtract X4
from ¥ and obtain the following IBVP for the error p(z,t):

Op(et) _ Opwt)
—w - (l‘),
ot Ox
Ferr =\ ple,0) = pola), (2:37)

PLyt) = u(t) = Pdgu (1)-
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Figure 2.7: Control scheme.

2.2.2.4 Control design

We aim to design a boundary control law that can be schematically represented as in Figure
2.7. Thus, the input is a sum of feedforward u//(¢) and feedback u/®(p,t) terms:

u(p,t) = w7 (t) + u®(p, t). (2.38)

For simplicity of notations, the arguments of the controls are omitted, and in the following
they will be included only if not clear from the context.

Remark 2.1
Note that the feedforward term is needed to track the desired trajectory pg(x,t), while the
feedback term is needed for disturbance attenuation.

2.2.2.5 Solution of X,

Let us now consider (2.37). To analyze its solution, we apply the method of characteristics
presented in [416]. The details are given in Appendix B.1, where we find that the error term
p(x,t) evolves along the characteristic lines as

p(z+ wt,0) + A(z) — Az + wt), vt € 07L—1:>7
w

pla,t) = LY (239
(Lt —L=2) 4 A), Vi € w,—i—oo),

where A(z) is the integral of the disturbance (disturbance accumulated along the road stretch)
defined as

L
Alz) = 5 / 5(s) ds. (2.40)

Remark 2.2

Note that to, = % 1s the minimum time for control action to propagate to the end of the road
from x = L to x = 0, that is why in the following we consider solutions only for t > %, i.e.,
the second expression in (2.39).

Let us rewrite (2.39) using the expression for the downstream boundary in the error system
(2.37), which reads p (L, t — L“’”) =u(t— @) — Pdpur (T — %) Thus, we get the following

w w
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solution for the error system:

Bz, t) = u (t _ L= ‘””) — P <t _ L= x) + Ax). (2.41)

w w

Note that the time dependency in the error solution (2.41) is caused by the time dependency
of the desired trajectory pg,,,(t). If there would be no disturbance (A(z) = 0), the desired
trajectory could be achieved by using only the feedforward term. Therefore, from now on we
set ulf(t) = pg,,,(t), and write the solution of (2.41) only as a function of a feedback term
(since u — ufl = uf?):

L—=zx

plz,t) = ul® <t — ) + A(x). (2.42)

2.2.3 Problem statement

We also introduce notations for the density error and feedback term in asymptotic time:
foo(@) = lim p(x,t),  ull= lm pou(t),

where the latter definition comes from comparing (2.42) with (2.39). Then, the density error
solution (2.42) is given by the following relation for ¢t — co:

o) = ull + A(x). (2.43)

The role of ufl is thus to ensure that j(z,t) — feo(z), and ufl is such that the effect of the
cumulated disturbance A(z) is minimized in the sense of Lg-space norm (Problem 2.1) and
Loo-space norm (Problem 2.2). This is formalized as follows:

Problem 2.1

Find the optimal control law u* composed of (2.38) such that:
(1) p(x,t) = poo(x),
(if) w* = argmin || foo () 5.

Problem 2.2

Find the optimal control law u* composed of (2.38) such that:
(1) plz,t) = poo(),

(i) u* = argmin || poo(2)| o
u

For the definition of Ly and Lo norms see (1.2) and (1.3). Note that in both Problems
2.1 and 2.2, the argmin is taken over a set of all possible control functions u such that the
density from (2.35) remains in the congested regime.

Note that due to the presence of in-domain disturbance §(z), we can not drive the error
p(x,t) to zero as t — oo by acting only from the boundary.
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2.2.4 Convergence to an equilibrium

Let us now consider the error system Y, given by (2.37). We will first prove that a feedback
controller ugg that is constant for asymptotic time acting such that the error term converges
to a steady-state (as in statements (i) in Problems 2.1 and 2.2). Then, we will also derive the
optimal control law u* that satisfies statements (ii) of Problems 2.1 and 2.2.

Lemma 2.1. Let u(t) = u//(t) + ull with w/f(t) = pa,,,(t) and ull being some constant.
Then, the following statement holds:

Jim [|p(2,t) = poo(2)l, = 0.

Proof. Similar to [147], we define the following Lyapunov function candidate
L

/ 67 (P(,1) — oo (2))* i, (2.44)

0

V(t) =

| =

where e“® plays the role of a weighting function. The time derivative of (2.44) is

L N L 5
V(t) - /e“”” (p(x,t) — poo()) 8pgz, t dx = /ewx (p(x,t) = poo(T)) (5(1) + wapézt)) dz,
0

0

where the last expression comes from the error dynamics given by (2.37).

From (2.40), (2.43), and the fact that ul? does not depend on x, the derivative of Poo ()
with respect to x is

alaoo(x) 1
or _;5(1:)3
and thus we get
L oo
V)= [ (pa,t) — puele)) ZABO=P=D) g,
0

Integration by parts yields

V(t) = 5 (AL, 1) = po(D)) = 5 (A(0,) = pe(0)* = w?V (1)

2 (2.45)
< St (ull - (D) — PV ),

where the last inequality comes from the fact that (L, t) = u(t) — pa,,, = u// (t) +ufl— Pelgur s

and using that u//(t) = pg,,,(t) we obtain p(L,t) = ull, ie., the error at the boundary
becomes constant as well. It follows then from (2.43) and (2.40) for x = L that A(L) = 0,
which results for (2.45) into

V() < %e“LA(L)Q WAV () = —w?V (1)

Lemma statement follows directly from ||5(x,t) — poo(x)||5 < 2V (t) e=L, thus V(t) — 0
implies ||p(x,t) — poo(x)]|5 — O. O
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2.2.5 Disturbance attenuation in sense of L, norm

The following theorem completes the previous result and gives the optimal form of u/%* that
acts to minimize the Ly norm of the error term as ¢ — oo as specified in Problem 2.1(i7).
Although the feedback term depends on unmeasured disturbance, we will be still able to
present it in a computationally feasible form.

Theorem 2.1
For the density error p(x,t) given by IBVP (2.37), the optimal boundary controller minimizing
the limit of its Lo morm as t — oo is given by

U* — uff + Ufb*, where Uff = Ddyus (t) and (246)
0, if 0<t<Ljw,
ufb*(t) — 1 L i} L »
_f{(p(xat)_u (t_T))dﬂf, if t>L/w.

Proof. First, assume that u/*(t) is a constant for ¢ > L/w. Thus note that minimization over

u(t) = u/ T (t)+uf in Problem 2.1(ii) is equivalent to the minimization over uf® = ull = const:

L
2 2
ul™ = argmin || poo () ]|3 = argmin Hufb + A(l‘)” = argmin/ (ufb + A(z)) dx,

ufb ufb 2 ufb

where we have used the relation (2.43) and the definition of Ly norm from equation (1.2).
Expanding the quadratic form in the integral, we obtain

L L

L
W+ A@)) dr = @)L 1 2" [ Az + [ A2(x)da. (2.47)
v o

0 0

In order to compute u/** minimizing the quadratic form (2.47), we need to take the derivative
of (2.47) with respect to u/® and set this expression to zero. This allows us to obtain the
optimal feedback term:

ub —

St

L
/A(x)da:. (2.48)
0

This expression corresponds to the subtraction of the mean value of cumulative disturbance
A(x). However, we should recall that A(z) is an unmeasured function. Using the solution
of the error term p(z,t) (2.39) obtained by the method of characteristics, we can express the
integral disturbance as

Ala) = plant) = pant) = (1= E2 ) b (1= 20,

W

where the last two terms come from the definition of the boundary conditions in the error
system (2.37). Recall that the desired density pq(x,t) satisfies system X4 given by (2.36), which
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is a homogeneous transport equation. Then, we can again apply the method of characteristics

and get pa(z,t) = pg,,, (t — £=%), which results into the following expression for the integral

disturbance:

A(z) = pla,t) — u* <t Lf) (2.49)
Thus, the disturbance term in (2.49) can be computed if we know the current density p(z, )
and the control action on previous time steps u*(t — %) Finally, note that the quantity on
the left-hand side of (2.49) is constant in time provided that the right-hand side is well-defined,
ie. for all t > L/w, irrespectively of the control action w*(¢). Thus, our initial assumption
that u/" becomes constant is valid. The combination of (2.48) and (2.49) yields the final
expression (2.46) stated in Theorem 2.1. O

Thus, the optimal controller given by (2.46) should be seen as a compensator for the
average effect of disturbance in number of vehicles within the whole road.

Corollary 2.1. The optimal controller (2.46) provides the following bound for the La norm
of the density error ast — oo:

. : L?
5@}l < KIS@I3,  with k=52

Proof. Let us first explicitly calculate the Ly norm of the density error poo () for ¢ — co under
the optimal feedback control, for which we make use of (2.48) and get

L

L 2
@l = [ + A, = [A%a)do - | [A@)as) -
0 0

Using the definition of the integral disturbance (2.40), we obtain

H 1o N (7 2
u +A(az)H2 < /A (z)dx = = /5(8) ds | dx.
0 0 T

Using the Cauchy-Schwartz inequality we can provide an upper bound for the latter expression:

L L L
[ + a)|) < wg/ (L—x)/dQ(s)ds iz < ;Hd(a})ﬂg/(L—m) da,

2
0 T 0

and finally we get

L? 9
22 [0()][3
which shows that there is an upper bound of the error norm as ¢ — oo and concludes the
proof. O

o s
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2.2.6 Disturbance attenuation in sense of L., norm

Theorem 2.2
For the density error p(x,t) given by IBVP (2.37), the optimal boundary controller minimizing
the limit of its Loo norm as t — oo 1s given by

= ulf ", where W/ =pg,,,(t) and (2.50)
0 i 0<i<Z,
bx _ _
u! (t) = sup (p(w,t) —u* (t _L x)) + inf (p(:mt) —u” (t _L 1‘))
z€0,L] w z€[0,L] w . L
— 5 , if t> o

Proof. Following the proof of Theorem 2.1, the minimization over u* in Problem 2.2(i7) is

again equivalent to the minimization over uf® = ull = const:

:argminHufb—&—A(x)H = argmin sup |u/® + A(z)|.

ufb* = argmin ||ﬁoo($>||oo
: 0o ufb  x€l0,1]

Uf ufb

Expanding the supremum term, we get

sup |uf’ + A(z)| = max{ sup (ufb + A(x)) , — inf (ufb + A(m))}
z€[0,L] z€[0,L] z€[0,L] (2 51)

=max{u/’ + sup A(z), —u/’— inf A(z)}.
z€[0,L] xz€[0,L]

The first argument in (2.51) is a monotonically increasing function with respect to u/?, while
the second argument is a monotonically decreasing one. Thus, the minimum can be achieved
only at the intersection point of both functions, i.e.,

ufb*:—1 sup A(z)+ inf A(z)|. (2.52)
z€[0,L] z€[0,L]

Substituting (2.49) in (2.52) in order to eliminate the explicit dependency on unknown dis-
turbance, we obtain the optimal feedback term (2.50) as stated in Theorem 2.2. O
As in case of Lo norm, let us estimate the upper bound of L., norm of the error state that

this controller is able to achieve as ¢t — 0.

Corollary 2.2. The control law given by (2.50) provides the following bound

- _ L
1oo(@)llo < plld(@)llog,  with  p=—.



2.2. Robust tracking boundary control design 35

Proof. In order to estimate bounds on ||poo ()|, We need to find bounds on sup A(z) and
xz€[0,L]
— inf A(z). Let us start with the supremum:

z€[0,L]
sup A(z) = sup /5 < sup Loz sup 40(s) | <
z€[0,L] :L‘E[OL z€[0,L] W sef0,z]
<

0, if sup d(x) <0, (2.53)
L —x z€[0,L]
sup < sup (5(3)) <<{7
z€l0,1] W sefo,L] — sup 6(x), if sup d(z) > 0.
z€[0,L] z€[0,L]

For the infimum we proceed in the same way and obtain:

L
inf A(z)= inf (1/6(8)618) > inf <L T inf (55>
z€[0,L] z€[0,L] \ w z€[0,L] s€[0,x]
>0

x

0, if inf o(z) (2.54)
. L—z | z€[0,L]
inf inf d(s)) >4
=€[0L]\ W s€[0.L] = inf 6(x), if inf O0(x) <0

w z€[0,L] z€[0,L]

From the bounds on supremum (2.53) and infimum (2.54), we distinguish three possible
cases:

1. Both sup d(z) and inf 0(x) are positive. Then, ||§(x)||,, = sup d(x) and
x€[0,L)] z€[0,L] x€[0,L)]

\mmww:;<pr@w-mfAm><Lwpaw:iwawu

x€[0,L)] z€[0,L] W zel0,L)
2. Both sup 6(z) and inf ¢&(x) are negative. Then ||§(x)||, = — inf J(z) and
x€[0,L)] z€[0,L] x€[0,L]

z€[0,L] z€[0,L] 2w ze€l0,L)

H%MMM—;<wPA@%-mfA@0§—Lmf&@-iﬂ&ﬁ@

3. The signs of sup d(z) and inf J(x) are different. Then
x€[0,L)] z€[0,L]

sup 0(z) — inf 0(z) <2 sup [6(z)| =20(2)| -
x€[0,L) z€[0,L] x€[0,L)]

which leads to

ummww=§<mpAuw—mfA@0

z€[0,L)] z€[0,L]

< L ( sup o(z) — inf 5(35‘)) < —[6(2) | -

2w 2€[0,L] z€[0,L]
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Thus, we can provide the following bound for the Lo, norm as ¢ — oco:

7@l < 2 15)]c-

2.2.7 Numerical simulation

To verify our theoretical results, we provide a numerical example, which intends to illustrate
the performance of the feedback term u/** used to minimize the Lo and Lo, norms of j(z,t)
as t — oo. For the simulation, we use the Godunov scheme (2.18) described in Section 2.1.6,
and the numerical grid is divided into n = 500 cells.

2.2.7.1 Simulation setup

Notice that we simulate the system only in the congested regime, thus in (2.19) the minimum
is always resolved to the benefit of the supply function, i.e., V(i, k) € {1,...,n} x Z*:

pi(k) = S(pi(k)), in(k) = S(p1(k)).

We also set pp+1(k) = pn(k) if no boundary conditions are specified (freely evolving system),
and pp4+1(k) = u(k) in case of boundary control so that @eu (k) = S(u(k)).

For the simulation we set the following parameters, which are taken from real traffic data
[143]:
v =16.667m/s, w="7.114m/s, L = 1000 m,

2.55
Pmaz = 0.181veh/m, p. = 0.0541 veh /m. ( )

Notice that the free-flow speed v = 16.667 m/s corresponds to 60 km/h. We also fix the initial
condition Vi € {1,...,n}
pi(0) = 0.1 — 0.03 cos(miAx/50),

the desired trajectory

L —iAx

pa;(k) = 0.11 4+ 0.03 sin <7T(k/‘At - ) * 0.01) ,

and the disturbance term

s —ooo2, e {1,...,%}
' 0.0006, otherwise.

There are three possible control strategies, which can be applied at the downstream bound-
ary of the system:
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1. No control action is performed.

2. Only feedforward control u(k) = u// (k) is applied.

3. Full control w*(k) = u/f (k) + u/**(k) is applied. For the computation of the integral
from the feedback term in case of (2.46), we use the Riemann summation over all cells
inside the domain.

2.2.7.2 Simulation results

In Figure 2.8 we illustrate the effect of the feedback term on disturbance attenuation in sense
of both Ly and Ly norms by acting from the downstream boundary. The desired density
profile py(z,t) and the freely evolving uncontrolled state p(z,t) with disturbance are shown
in Figures 2.8a) and 2.8b), respectively. The density values can be read from the colormap:
the smallest values are denoted by blue color, while the most congested zones are marked in
red. The disturbance term acts so that the freely evolving system becomes entirely congested
in the right part of the road, as we can see from Figure 2.8b).

In Figure 2.8¢) we show what happens to the state p(x,t), when only the feedforward
control is applied (v = u//) by setting pg(L,t) at the downstream boundary. This tech-
nique provides results that are already considerably better than just letting the state evolve
freely. Finally, the state under the optimal control laws u/** from (2.46) and (2.50) minimizing
|poo (z) ||y and ||poc ()|, respectively, are shown in Figures 2.8d) and 2.8e). The feedback
term started acting after the minimal controllability time ¢, = % ~ 140 s, while only feedfor-
ward control was activated prior to this time threshold. In this particular case, minimization
of Ly norm has led us to better results, since the corresponding controlled state in Figure
2.8d) is less congested than in case of Lo minimization, as we can observe from Figure 2.8e).

Comparing Figure 2.8c) with Figures and 2.8d) and 2.8¢e), we see that the optimally con-
trolled density reaches a profile that looks more similar to the desired one from 2.8a), however
they are not identical (but the best that could be obtained for in-domain disturbance and
boundary control). In general, it is easy to see that disturbance attenuation results into a
state characterized by a much lower congestion level, which is a desirable effect when it comes
to control applications.

In Figure 2.9 we can see that the optimal control law applied to minimize ||pso()l], in
Figure 2.9a) and ||po(7)||, in Figure 2.9b) performs better in both cases with respect to
the case with no feedback. The feedback controller is a constant that is switched on after
the minimal controllability time t., =~ 140 s has passed. Then, in both cases the norms
achieve their minimal values already after 2¢.,, since another time period equal to the minimal
controllability time must pass for the control action to propagate to the end of the road.
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Figure 2.8: a) Desired density profile, b) freely evolving state, and in c),d),e) the density
evolution under the disturbance term for different control choices.
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Figure 2.9: Temporal evolution of density error norms obtained for the uncontrolled case
(blue line), with feedforward control only (red line), and then also with the feedback part u/**
(yellow line) for a) Lo norm, and b) Ly norm. The black dashed lines indicate te, and 2t

2.2.8 Discussions

In this section, we have designed a feedback control law that minimizes the deviation of
the state from the desired time- and space-dependent trajectory as time goes to infinity in
sense of Lo and Lo, spatial norms. The vehicle density, for which we were designing the
boundary control, is restricted to the congested traffic regime, which allowed us to deal with
a linear problem. The control is actuated at road’s downstream boundary, and physically it
corresponds to controlling the amount of traffic flow to leave the road. The congested traffic
state can become unpredictably worth (such as becoming a full traffic jam with p(z,t) = pmax
Vz € [0, L]) due to the presence of in-domain disturbance that has been included into the LWR
equation. This included disturbance is used to capture the contribution of vehicles originating
from minor roads having a non-zero inflow into the road to control. The desired trajectory
solves an ideal (homogeneous) linear LWR in the same regime. The problem was posed and
solved as the disturbance attenuation problem. The results have been verified by a numerical
example, which clearly illustrates that the feedback plays an important role in the designed
controller, which performs significantly better for the error norm minimization than the one
including only the feedforward part.

The obtained controllers for minimization of both Lo and Lo, norms are optimal. The cor-
responding norm to be minimized should be chosen in accordance with the available knowledge
about the source of disturbance. For example, the controller to minimize the Lo norm should
be chosen if the disturbance comes from a large number of minor roads, then it makes sense
to minimize the mean-square deviation from the desired state. The controller for L., norm
minimization should be chosen, if the maximal deviation from the desired state should be
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attenuated. This can be a good practical choice, if the disturbance source corresponds to
vehicles coming from, e.g., another important road in case of merge intersections.

In the the following section, we extend our analysis to a more complex problem, i.e., the
traffic state is not restricted to any particular regime, which yields a fully nonlinear problem
with all the technical challenges related to this nonlinearity, i.e., crossing characteristics and
shocks in the solution.
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2.3 Boundary control design for traffic with nonlinear dynamics

In this section, we again consider a tracking problem to be solved by properly actuating road
boundaries. This time, both the traffic state and the desired trajectory are vehicle densities
that can take any value from its range. We consider a mixed traffic problem, e.g., traffic is
in the free-flow regime at one part of the road, and congested at the other part. Hence, we
are going to analyze a fully nonlinear LWR model as in (2.10). The main technical challenge
thereby occurs when characteristics intersect (as in the case of kinematic waves moving with
different speeds), which causes the emergence of shocks, see Section 2.1.3. In order to handle
shocks, we make use of the Hamilton-Jacobi formulation, which is an integral formulation of
LWR that does not contain shocks, see Section 2.1.7 for more details.

2.3.1 Introduction

There exist many works that used the structure of the Hamilton-Jacobi PDE to solve control
tasks for traffic. For instance, optimal control methods for a traffic network based on viability
framework are proposed in [93, 94]. The framework has also been used to develop a convex
optimization approach to reduce the fuel consumption in [153]. Also [16] considered a H-J PDE
with viscous term that allowed to perform a feedback linearization, which enabled tracking a
desired time-dependent state on some fixed space point. One of the most recent works [141]
used the analytical solution to the LWR PDE to formulate an optimization control problem
for traffic on networks with variable speed limit and ramp metering control.

The main contributions of this section are the following:

e Tracking space- and time-dependent trajectory: we extend the results presented in |20,
14] and present a controller able to drive a state with shocks to any time- and space-
dependent vehicle density that also may contain shocks. This is the first boundary
controller in the traffic community able to solve such general tasks. Moreover, if we
compare it to [16], our analysis is done for the original LWR system without linearization
and viscosity term.

e The explicit solution of H-J PDE is used to provide conditions on when and which control
can be applied: we consider a general case with weak boundary conditions, when it is
not guaranteed that control can be imposed pointwise (see Section 2.1.4). To handle
this limitation of control, we have formulated weak boundary conditions in terms of
control restriction functions, and then we use them to show that even in case of “non
acceptance” of boundary control laws the goal can still be achieved.

2.3.2 Preliminaries

We seek to design a feedback boundary control law that is able to track any desired space-
and time-dependent vehicle density. Unlike in the previous Section 2.2 where only congested
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traffic has been considered, here we deal with a full nonlinear traffic system as in (2.10).
Thus, prior to stating the boundary control problem, we will first do the following: present
the nonlinear state equation, perform motion planning to define admissible trajectories to
track, then we also mention assumptions that need to hold in this section, and then we give
an explicit Hamilton-Jacobi solution describing the temporal evolution of the traffic system.

2.3.2.1 Nonlinear traffic system

Let us formulate a nonlinear IBVP for traffic evolving along a single road with = € [0, L] as
in (2.10), but for convenience we now specify the boundary values in terms of flows ¢, Pout-
Thus, we introduce the following IBVP V(z,t) € [0, L] x R™:

Dup(,) + 0, (p(, 1)) = 0,
@ (p(0,1)) = Pin(t), @ (p(L;1)) = bout(t), (2.56)
p(x,0) = po().

Thereby, the flux function ®(p) is again assumed to have a triangular shape as in (2.2) with

Pe = Pmaz/3, and inflows ¢, (t) and outflows oy (t) are defined Vt € RT as

{d)m(t) = min {uin(t), S(p(0,1))}, (2.57)

(bout(t) = min {D(p(L7 t))? uout(t)} )
where u;;, and uq,: denote the proposed flow values for the upstream and for the downstream
boundary, correspondingly. Here, we treat wu;, and wuy,; as control variables. By comparing
(2.57) to the boundary Riemann problems for x = 0 and x = L given by (2.15) and (2.16),
we establish that V¢t € RT

uin(t) = D(pin(t)), and  uout(t) = S(pout(t)),

which means that wu;, physically corresponds to control of the demand to enter the road, i.e,
we decide how much vehicles to let enter the domain, while u,,: should be viewed as control
of the supply of the exit of the road, i.e., we decide how much vehicles to let leave the domain.
Notice that both u;, and u,; can not always be applied, i.e., these boundary conditions (2.57)
are equivalent to the weak boundary conditions formulation in terms of densities given in [129],
see also Section 2.1.4. Thus, the problem given by (2.56) and (2.57) is well-posed.

2.3.2.2 Motion planning

Now we define a desired space- and time-varying density pq(z,t) V(x,t) € [0, L] x RT that
should be tracked with the help of boundary control. In order to be admissible, pg(x,t) € R
must be a weak entropy solution of the following system:
8pd(x, t) + 0P (pd(wa t))
ot Ox
o 0 = &, ) L — (2.58)
(Pd( 7t)) = ¢’md(t)7 (Pd( 7t)) - ¢outd(t)a

pa(r,0) = po, (),

=0,



2.3. Boundary control design for traffic with nonlinear dynamics 43

where inflows and outflows in the desired system must also satisfy ¢, () < S(pq(0,t)) and
bout, (t) < D(pa(L,t)) (weak boundary conditions). Notice that unlike ¥4 given by (2.36) in
Section 2.2, the system (2.58) is a nonlinear hyperbolic PDE system, in which discontinuities
may evolve even for smooth initial data.

Thus, this section is devoted to finding V¢ € RT boundary control laws u;,(t) and ey (t)
such that the density achieves a desired trajectory pq(x,t) as t — oo. Thereby, they can take
any values from their range, i.e., p € [0, pmaz) and pg € [0, prmaz)-

2.3.2.3 Assumptions

Finally, throughout this section we make the following assumptions:

Assumption 2.1
The initial conditions have left the system, thus, the solution of system (2.56) is determined
by the values at the boundaries only.

Assumption 2.2
There exists € > 0 such that ¢ and Qour from system (2.56) satisfy the following inequalities
i time average:

t+T t+T
/ gbm(T)dT §T¢mam —c and / ¢out(7_)d7— < T¢mam — g,
t t
L L
where t>0 and T—min{,}.
v ow

Thus, flows can not hold their mazimal values during the time interval given by T.

Note that Assumption 2.2 is needed to prove the exponential convergence to a desired
vehicle density profile, see details in the proof of Theorem 2.3.

Remark 2.3
Note that if Assumption 2.2 is satisfied, then Assumption 2.1 holds trivially Yt € [tyin, +00),
where tyin 1s defined as

tmin = min {i i} (1 + E (Pmaz + pC)D : (2.59)

as it is shown in Appendiz B.S3.

2.3.2.4 Hamilton-Jacobi system

Note that control enters the system through the minimum function (2.57), and in several
situations it can not be applied pointwise. Hence, control variables should be understood only
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as proposed functions. If traffic is restricted only to the congested regime, then ¢uu:(t) =
oyt (t) is always satisfied, as it was the case for the linear system (2.35) considered in the
previous section. However, to solve control problems for a traffic state in the mixed regime,
we must handle (2.57), since the actual flow passing through the boundary is determined by
the traffic state. For instance, if for some time t there are only a few cars at the end of the
road, we would obtain from (2.57)

Gout(t) = D (p(L,t)) = upw(t) is not imposed.

In order to enable analytical treatment of weak boundary conditions, we use the Hamilton-
Jacobi formulation, which is an integral form of the LWR PDE that was explained in Section
2.1.7. In particular, we will be able to analyze, when and for how long the proposed control
values are accepted by the system. This is possible due to a cumulative description of traffic
within the H-J approach, since the state corresponds to the cumulative number of vehicles
also known as Moskowitz function M (z,t) (MF).

Let us recall the IBVP in the H-J formulation as in (2.25), i.e., V(z,t) € [0, L] x R*:

M(x,0) = Mp;(x),
M<07 t) = MUp(t)7
M(L,t) = Mpown(t).

As already discussed in Section 2.1.8, the solution of this system can be obtained explicitly
using the Lax-Hopf formula (2.32) for the case of a triangular FD (2.2), which is also the
case here. The derivation of the solution is presented in Appendix B.2. Here we consider
the solution of the system for large enough time, which equivalently means that the effect of
initial conditions should have left the system (Assumption 2.1):

V(z,t) € [0, L] X [tmin, +00) :

t— L—x

e L 7 (2.60)
M(-Tat) = min{ / Qbm(T) dT+/p0(S) ds, / Qbout(T) dT+Pmam(L - 51:)}7
0 0 0

where t,,;, was estimated in Appendix B.3, which requires that Assumption 2.2 holds as well.

2.3.3 Problem statement in H-J formulation

The desired MF is obtained similar to (2.60):

V(xz,t) € [0, L] X [tmin, +00) :

—2

: L (2.61)
My(x,t) = min { / Ging (T)dT + /Pdo (s)ds, / Gouty (T) AT + pmaz(L — ;U)}
0 0

0

t— L=z
w
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Note that both M (z,t) and My(z,t) are defined up to a constant since the starting point
for the numeration of cars can be arbitrary. Therefore, we state our problem in Hamilton-
Jacobi formulation as a pointwise convergence of Moskowitz functions M (x,t) to My(x,t) as
t — oo. This is formalized as follows.

Problem 2.3
Given a desired trajectory py(x,t) governed by system (2.58), find Vt € RT boundary control
laws win () and uey(t) for system (2.56) such that

dMy e R : Vo € [0,L] lim (M(z,t) — Mg(x,t)) = M.

t—o00

The constant My should be understood as some historical difference in the cumulative
number of vehicles in both systems, and it does not have any effect on the traffic evolution.

After we have stated Problem 2.3 in H-J formulation, let us establish the link to the LWR
formulation.

Lemma 2.2. Problem (2.3) is equivalent to the integral convergence of densities over arbi-
trarily small intervals, i.e., Va,b: 0 < a < b < L we obtain

lim (p(s, t) - pd(sa t)) ds =0, (262)
where a and b can be arbitrarily close points in space.

Proof. By the definition of the Moskowitz function (2.23), we can write

L L b
M(a, M(b,t) :/p s,t)d /p s:/p(s,t)ds, (2.63)
a b a

b
My(a,t) — My(b,t) = /pd (s,t)ds. (2.64)

a

For x = a and « = b in Problem (2.3) we get M(a,t) — Mgy(a,t) + My and M(b,t) —
M(b,t) + My. This is equivalent to M (a,t) — M (b,t) — My(a,t) — My(b,t), which by (2.63)

and (2.64) can be rewritten as
b b
/p(s,t)ds%/pd(s,t)ds.

and
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Remark 2.4

Notice that pointwise convergence of two functions does not imply the convergence for their
derivatives in any of LP norms. However, we pose Problem 2.3 to reach the equality of the
densities over arbitrarily small intervals, which means that the state approximates the desired
trajectory as time goes to infinity.

Thus, the density approximates the desired trajectory as in (2.62) if we find a control law
for system (2.56) that solves Problem 2.3 stated in the Hamilton-Jacobi formulation.

2.3.4 Control law design

Theorem 2.3

Given system (2.56) for which Assumptions 2.1 and 2.2 hold with the MF solution given by
(2.60), and the desired vehicle trajectory solving system (2.58) for which Assumption 2.1 holds
with the MF solution (2.61). Then a control law that achieves the goal stated in Problem 2.3
1s given by

(1) win(t) = din,(t) — ke(?),

teRT
(2) Uout( ) = ¢outd( ) e@)?
L (2.65)
where e(t / — pd(s,t))ds and k> 0.
0

Remark 2.5
Physically, the control law given by (2.65) makes us control inflows and outflows such that all
the “excess” cars, given by the integral difference in densities, leave the domain, and then in-

flows and outflows match the desired ones. When the goal is achieved, the following conditions
hold for ¥t > tpin:

(Z) (z)zn(t) = (Z)znd (t)a (”) ¢out(t) - ¢outd (t)7

t—2 L
(i) [ Gan(r) = Gins(Dr + [(o0(s) = puls)) s
0 0
o La (2.66)
= / (¢0ut(7—) - (boutd (T)) dr
0

The derivation of these conditions is given in Appendiz B./.

Proof of Theorem 2.3. This proof consists of five parts: it is shown that e(t) goes to zero as
t — oo in Sections 2.3.4.1 - 2.3.4.3, and then we show that this is enough for the convergence
of Moskowitz functions in Sections 2.3.4.4 and 2.3.4.5.
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Error e(t) is defined as the difference in the overall number of cars in the real and the
desired systems (1.5). Using (2.23) for x = 0 we can rewrite the definition of error as

t
e(t) = M(O,t) Md 0 t +/ Qboutd Qbout(T)) dr
0

which by using (2.24) to evaluate M (0,t) — My(0,t) can be further modified as

t L
/ d)zn ¢out (T) + ¢outd( ) lend dT + / Pod )) ds. (267)
0 0

Error dynamics are found as the time derivative of (2.67)

é(t) = (bm(t) - ¢0ut(t> - Qbind (t> + ¢outd (t) (2.68)

Recall that the main challenge in controlling system (2.56) is related to the fact that the
boundary flows ¢;, and ¢y are not always equal to wu;, and wugy, respectively. Thus, for
some periods of time, we lose the ability to impose any control u;, or Uy, on the boundaries.
Let us investigate this problem in more details.

2.3.4.1 Analysis of flow restrictions

By definition of the Moskowitz function (2.21), inflows and outflows are time derivatives
of M(0,t) and M(L,t), respectively. Let us first focus on the inflow defined as ¢, (t) =
OM(0,t)/0t, which allows us to express M(0,t) by taking the time integral of ¢;,(t) and get

M(0,4) = / Gin(7) dr + M(0,0), (2.69)

L

where M(0,0) = [ po(s)ds is obtained from the definition (2.23) for the space-time point
0

(z,t) = (0,0).

From now on, let us consider only ¢ > ¢, with t,,;, being defined in (2.59). Then, we
can also consider the MF solution (2.60) for x = 0 and obtain

L t—L

M(0,1) = min { / bon(7) dr + / po(s) ds, / Gom(7) dr + mem}. (2.70)
0 0

0
Combining (2.69) with (2.70), we obtain the following minimum problem:

t—L

¢ L . L
O/¢z‘n dT—I-/po ds-mm{/qu dT—I—O/pg(s)ds, 0/ Cbout(T)dT—l-qubmax}. (2.71)

0
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From (2.71) one can see that the following inequality holds

t—L
w

t L
Gin(T)dT + | po(s)ds < Gout(T) AT + Ldmaz- (2.72)
[outies s |

In case of equality in (2.72), we must provide that the right-hand term grows more quickly than
the left-hand term. Thus, by taking the time derivative of (2.71) we obtain ¢, (t) < gbout(t—%).
Notice that if the left-hand term is strictly smaller than the right-hand term in (2.72), then
the inflow is less constrained and we should be able to set ¢, () = win(t).

All this can be combined in the following property. We define a control restriction function
for the upstream boundary

t—L

w t L
gin(t) = / Gout(T) AT + Lpmaz — | Gin(T) dT — /po(s) ds,
0 0 0

which represents the difference between two arguments of the minimum from (2.71). By (2.72)
we obtain that g;,(t) > 0 always. Moreover, using the definition of ¢y, (t) given by (2.57), the
condition on inflow restriction can be formulated as:

gin(t) > 02 din(t) = win(t),
gin(t) = 0: Pin(t) = min {um(t), Dout (t - i) } _ (2.73)

Note that the notation of control restriction should be understood as saturation control with
Dout (t — %) being the saturation time-varying threshold.

Similarly, we proceed by considering the MF solution (2.34) for z = L to analyze ¢uu(t)
for the downstream boundary, and get its control restriction function that reads

L
[ters L

Jout (t) = / Gin(T) dT+/Po(S) ds/téf)out(T) dr,
0 0 0

and the following condition on the outflow restriction
gout(t) >0: ¢out(t) = uout(t)u
. L (2.74)
gout(t) =0: Qbout(t) = min Uout(t)y ¢m t— — .

v

Thus, any boundary control can be imposed if g;,, > 0 and gyt > 0.

L
Defining R(t) = [ p(s,t)ds and Ry = R(0), and using the equality of (2.23) and (2.24)
0

(independence of chosen integration path), we obtain for V¢/ € RT and x = 0

R() = Ry + / Gin(r) dr — / bout(7) d. (2.75)
0 0
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Thus, the control restriction functions can be rewritten as

t t
gzn(t) = Lpmazx R(t,) - / ¢out(7—) dr /¢zn(7-) dr,
t—L t!

(2.76)

Note also that inflows and outflows are upper bounded by the road capacity, i.e., ¢in < Gmaz
and dout < Omaz, Where dpar = vpe (see Figure 2.1). To find a time interval, during which
no control law can be imposed, we set ¢;,(t) = 0 and then express R(t') from (2.76):

t t
R(t/) = meaac - / ¢out(T) dr — /¢Z”(T) dr
t—L v

t t
L
> meax - / Omaz AT — /¢max dr = meax - a¢max = L,Oc-
t—L t!

w

The same steps are performed for go,:(t) = 0, and we get

L
gin(t)=0 = R(')>Lp. W€ [t - wvt] ,

s (2.77)
Jour(t) =0 = R(t/) < Lpc vt e |:t - th:| .

This means that not any control law can be applied at the upstream boundary at time t, if
during the preceding time interval [t — g,t] the mean density was bigger than the critical
density (and inversely for the downstream boundary).

Using Assumption 2.2 and the fact that the critical density p. = pmaz/3, We set gin(t) =
in (2.76), which implies R(t) > Lp. + € and R(t — L/w) > Lp. + €, as well as gout(t) =
implies R(t) < Lp. — e and R(t — L/v) < Lp. — €.

Let us consider (2.77) to investigate whether it is possible that control can not be imposed
at both boundaries simultaneously. We pick some time point ¢ such that g;,(t) = 0 and
some time point t' € [t,t + L/v] with gou(t') = 0. As written above, ¢;,(t) = 0 implies
R(t) > Lp.+e. However, t € [t' — L/v,t'], thus R(t) < Lp. for gout(t') = 0 by (2.77). This is a
contradiction, since satisfying both R(t) > Lp.+¢ and R(t) < Lp. at the same ¢ is impossible.
Thus, the time point ¢ when gy, (') = 0 can occur at least after the interval L/v has passed
since the last g;n(t) = 0.

Moreover, if t' > t + L/v and gowt(t') = 0, then R(t' — L/v) < Lp, — e. The maximal
inflow is always bounded from above by ¢4z, therefore the difference in the integral densities
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R(t' — L/v) — R(t) can be passed at least in time ¢’ — L/v — t > 2¢/¢mae. Performing the
same analysis for the inverse case, we conclude that

L 2¢e
gn(t) =0 = gou(t) >0 V'€ [t,t+ =+ ] ,
/ / L 2e ’
gout(t)zo = gin(t)>0 vt e t,t+ —+ .
w d)max

Thus, it is impossible for two boundaries to be unable to accept the control simultaneously,

and the periods of “uncontrollability” are separated in time by at least % + ¢2€ or g + %

2.3.4.2 Dynamics of e(t)

Thus, in Section 2.3.4.1 we have established that at each moment either one of control restric-
tion functions or none of them is zero (2.78). Hence, we separate the dynamics of the integral
error term e(t) (1.5) into three possible cases.

1. Assume both g, (t) > 0 and gy (t) > 0. Then all the boundary control terms wu;,
and uey, can be applied, which by (2.65) implies that ¢i,(t) = Gin, (t) — ke(t) and gou(t) =
Gout, (t) + ke(t). According to (2.68), the error dynamics are given by

é(t) = —2ke(t), (2.79)
and, thus, e(t) converges exponentially to zero.

2. Assume g;,(t) = 0. Then, the control can not be applied at the upstream boundary,
ie., Gin(t) < iny(t) — ke(t) and ¢out(t) = dout, (t) + ke(t), which means

é(t) < —2ke(t). (2.80)

Thus, a positive error e(t) > 0 implies even faster convergence to zero. If e(t) < 0, such
dynamics can diverge from zero. However, it is possible to show that after a period of not
being able to impose any control at the upstream boundary, the error will not be further away
from zero than at the beginning of the period. Consider the control restriction function gin,(t)
for the upstream boundary of the desired system:

¢ t
L
Ging(t) = Lpmaz — Ra(t') — / Gout, (T) dT — /gbmd(T) dr >0, fort € [t - w,t] .
t—L t/

Using e(t') = R(t') — Ry(t'), we obtain

t/

gmd(t) - gin(t) = / (¢out(7—) - d’outd (T)) dr + /(¢zn(7) - qbin@ (T)) dr + e(t/) = 0. (2'81)

L /
t—L& 3
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Using the properties ¢in(t) < i, (t) — ke(t) and @out(t) = dout,(t) + ke(t), we obtain

e(t) + k /t e(r) dr — k/te(f) dr > 0.

t— t

€ |t~

We substitute ¢’ =t to get the first inequality, and then ¢’ =t — £ to get the second one:

1) e(t)+k/te(7')d7'20, 2)e<t—£>—k/te(7')d7' >0,

and the sum of these inequalities yields

e(t) + e (t - L) > 0. (2.82)

w

3. Assume gyt (t) = 0. Then, the control can not be applied at the downstream boundary,
e, Pout(t) < Pout,(t) + ke(t) and ¢in(t) = Gin,(t) — ke(t), which yields the following error
dynamics

é(t) > —2ke(t). (2.83)

Using the same analysis as above for e(t) > 0, we obtain

e(t) +e <t - L) <0. (2.84)

(Y

2.3.4.3 Proof that e(t) converges to zero

In Table 2.1 we have summarized three regimes of error dynamics. The regimes can alternate

Table 2.1: Summary of error regimes

Regime 1 Gin(t) >0, gour(t) >0 é(t) = —2ke(t)

Regime 2 gin(t) =0,  goue(t') >0, é(t) < —2ke(t)
Vit € [t Lt g2 ]

Regime 3 Jout(t) =0,  gin(t') >0, é(t) > —2ke(t)
Vi€ [t + Loy g2

as depicted in Figure 2.10. In this part of the proof, we will show that the error can enter the
second dynamic regime (Regime 2) only being positive, while it enter Regime 3 only being
negative. Thus, if the error is positive in Regime 1 (green circle), it either remains there
forever and the exponential convergence to zero is guaranteed by (2.79), or it enters Regime 2
(violet circle). Then, being positive, by (2.80) the error converges to zero even faster than in
Regime 1. However, it can also become negative, and in this case the error might diverge from
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Figure 2.10: Diagram of regimes illustrating how they can alternate. Arrows denote possible
regime switches. FC, CC and FF are used to denote regimes at both boundaries, where F
stays for free-flow and C for congested regime.

zero. Nevertheless, the divergence from zero can last only for a bounded time interval, and by
(2.82) the absolute value of the error term can not exceed the value it had some time ago. As
this happens, the error enters again Regime 1 as a negative term. It either stays there forever,
or switches to Regime 3, where it goes to zero even more quickly by (2.83). The rest can be
described in a symmetric manner. Recall also that Regimes 2 and 3 are always separated in
time by at least & 4+ %

¢maz

convergence of the error term to zero.

or 5 + ﬁ Further, we provide a strict proof of the exponential

Imagine a time axis split into three types of intervals corresponding to three different error
dynamic regimes as shown in Figure 2.11. Recalling that Regimes 2 and 3 cannot occur in a
row, we can observe, e.g., a sequence like this: 12121313121.... Thus, it is possible that after
Regime 2 and then Regime 1, the second regime comes again, since nothing prohibits g, (t)
to become zero again almost immediately. We denote this sequence of regimes as “g;,(t) = 0
sometimes”, which is defined as the largest row of Regimes 1 and 2 that starts and ends
with Regime 2 and does not contain any time interval with Regime 3. The same can be
done with the regime sequence containing Regimes 1 and 3 called “gout(t) = 0 sometimes”.
These sequences “gi, (t) = 0 sometimes” and “ g (t) = 0 sometimes” alternate strictly, always
having Regime 1 between them. Finally, for a time interval corresponding to the regime (or
regime sequence) with index ¢ we can define entrance time t; and exit time ¢;. By (2.78) we
see that t; — t;—1 > 5 + -2 if Regime i is “gin(t) = 0 sometimes”, and t; — t;_1 > % + @iﬁ

¢maz
if Regime i is “gout(t) = 0 sometimes”.

Let us fix ¢ corresponding to “gin(t) = 0 sometimes” (the other case is symmetric). First
of all, by (2.82) we obtain

gln(ﬁz) =0 and gm(fz) = 0.
Therefore
L
e(t;) +e <ti - w) >0 (2.85)
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Figure 2.11: A possible error behaviour e(¢) (thick black line). From left to right: divergence
for “gout(t) = 0 sometimes” (in orange); exponential convergence in Regime 1 (in green); fast
convergence for “g;,(t) = 0 sometimes” (in blue); then divergence for e(t') < 0 Vt' € [t;, 4;];
exponential convergence in Regime 1. Blue empty circles are related to (2.86).

and

dm+f<m—i>>o. (2.86)

It is clear that t; — % > t;—1, which means that the dynamics of e in the interval [t; — g,g]
are exponential. Thus, both e(t;) and e (t; — £) have the same sign, and by (2.85) they are
both positive. A similar analysis can be done for the regime sequence “ gyt (t) = 0 sometimes”,
which means that from gey:(t) = 0 to gin(t) = 0 the error term is positive and from g;,(t) = 0
t0 gout (t) = 0 the error term is negative (and thus e(¢;) < 0). Consequently, inside each regime
sequence 4 there should be a time point ¢;, when e(t;) = 0.

Now, by (2.86) and using that e(Z;) is negative, we see that e (£, — £) > 0, which means
that #; — £ < ¢; (see Figure 2.11).

During the time interval [¢;_1,t;] it is clear that the convergence is exponential (Regime
1). During the time interval [t;, ¢;] the dynamics are é < —2ke, and e(t) > 0. The time point
t_l' — % € [t_i—h ti], therefore

_ L _ _ _
€ (ti - ) <e(ti-1) exp_%(ti_f—ti—l)’
w

which is also valid for its absolute values

e<a—i)

Now from (2.86) and the fact that e(f;) < 0 we see that |e(%;)| < |e (& — £)], thus

- . L_7
< le(fi-1)| expMEmEh1)

le(t:)| < |e(ti-—1)| exp*%(fi*%*fiﬂ) _

We can write t; — t;—1 > t; — ti—1 > 5 + Qiz, which yields

Pm
t, — L1 L L 2
Bog b 8 o8 Gee 2w
ot ol T ftan btan Domet2
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which allows us to bound time interval in the exponential function from below by
ti — L tio1 > (25&1) (ti —ti1).
w Lpmaz + 2ew
This finally leads to
()] < le(imr)| exp™ 2 (Tomassam) (o), (2.8)

which proves the exponential convergence to zero of e(t).

2.3.4.4 Proof that integral inflows converge

In order to further proceed with the proof of Theorem 2.3, we need to show that the integral
of inflow difference in the real (2.56) and in the desired system (2.58) has a limit, as it is
required for the convergence of Moskowitz functions as stated in Problem 2.3 (see Section
2.3.4.5, where the existence of this limit is used for the introduction of constant My):

¢
= tlim (Din(T) — Diny (7)) dr. (2.88)
0
By the Cauchy criterion for the convergence of functions, it suffices to show that

to
lim (gﬁm(T) — (Z)md (T)) dr = 0, th,tg Dty > 1. (289)
t1,t2—00
t1

First, we find an upper bound for this limit (2.89). By combining (2.73) with (2.65) we obtain
Gin(t) < Pin, (t) — ke(t) V¢ € RT, thus, we can write Vi1, ta— 00

to to

[ Gu(r) = duna(mydr < =k [ erar 0,

t1 t1
where we have used the exponential convergence result for the error term (2.87). This in turn
implies that the upper bound is 0:
to

lim (Pin(T) — iny (1)) dT < 0. (2.90)

t1,ta—00
t1

Now let us estimate the lower bound for the limit (2.89). Thereby, we distinguish two possible
cases:

1. Assume g;,(t) > 0. In this case, we can write

t

/t(sbm(f) = Gin, (7)) dT = —k / le(7)]| dr.

L
=g
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2. Assume g;,(t) = 0. Using (2.81) for ¢/ =t — £, we get

t

L L
/ (G07) = Gun (7)) r = elt = £) 2 = et~ 1)
The combination of these two cases yields
¢ t .
/ Gin(7) — bon, (1)) dr > —k / le(7)| dr — |et — w)'. (2.91)

t—L
w

Now let us divide the time interval [t1, 2] into equal subintervals of length L/w. Thus, (2.91)
can be rewritten for a larger time interval as
( L) ‘
el{ti1+n—||.
w

ta ty |57
[ Gnlr) = duna(odr = =k [ 1em)lar =3
t t n=0
where the sum goes over intervals of size L/w, i.e., t1, t1 + L/w, ..., ta. If we take the time
limit of the latter expression for ¢1,t2 — oo, both right-hand terms converge to zero, as for the
sum term we can apply the integral test for convergence. Finally, we obtain the lower bound:

to
e (Gin(T) = Gingy (7)) dT > 0. (2.92)
t1

The combination of (2.92) and (2.90) provides that the limit is zero, which proves the existence
of the limit of the integral difference between inflows in both systems as in (2.88).

2.3.4.5 Proof that Moskowitz functions converge

Finally we arrived at the last part of the proof of Theorem (2.3). Let us define two auxiliary
Moskowitz functions as

M, ($7 t) =Ry — ROd + / (QSm(T) - gbind (T)) dTa (293)
0
/ ¢out Cboutd (T)) dr. (294:)
0

Notice that M;(x,t) and Ma(x,t) correspond to the left- and to the right-hand side of
(2.66)(7it), which must hold for large ¢. First of all, using ey = Ry — Ry, and the dynamics of
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e(t) given by (2.68), we obtain that Vz € [0, L]

tliglo(Ml(x, t) — Ma(z,t)) =

o0

/(¢zn(7) — Ging(T) = Pout(T) + Pout, (7)) dT + 0 = tliglo e(t) = 0.

0

(2.95)

Moreover, as it was proven in the previous Section (2.3.4.4), M;(x,t) has a limit due to (2.88)
and eg being constant in time. Therefore, we can define

My := lim M;(z,t),

t—o0

and by (2.95) we get
lim Mg(l',t) = M().

t—00

We can also define the MF error terms as

Ml(x,t) = Ml(l“,t) — MO and Mg(x,t) = Mg(:l:,t) — M().

Finally, recall that the desired MF given by (2.61) can be expressed as
Mgy(z,t) = min { Muyy, (2, t), Mpown, (%)},

since this is the general definition of a solution which is not affected by the initial conditions
(see Assumption 2.1). Thus, by using the MF solution (2.60) together with M (x,t) (2.93)
and Ms(x,t) (2.94), we obtain

M (z,t) = min { Myp, (z,t) + Mi(,t), Mpown, (2, t) + Ma(z,t)}

or
M (z,t) = min {MUpd(fU,t) + M (2, 1), Mpown, (z,t) + Mz(%t)} + Mp.

Minimum is a continuous function on both arguments, thus we obtain for ¢ — oo that
M (z,t) = Mg(z,t) + Moy, Yz € [0, L], (2.96)
as stated in Problem 2.3, which finally concludes the proof. O

Remark 2.6

Note that Assumption 2.2 is non-limiting. Indeed, it requires that the flow integral over time
T s less than its mazimum value by at least €, which is always possible, except when vehicles
enter and leave the system at mazimum rate during T. Obviously, in this case, it is also possible
to reach the goal.

The need to use Assumption 2.2 comes from the fact that at mazimum flow by (2.77) both
9gin(t) = 0 and gout(t) = 0 for the same t, which means that with the slightest fluctuation a
boundary becomes “uncontrollable”. Thus, the state with maximum flows at both boundaries
during time interval T is “unstable”, and therefore for this case it is impossible to prove the
exponential convergence of the error term e(t).
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2.3.5 Numerical example

We illustrate the efficiency of the feedback boundary control law (2.65) by driving a state
being initially almost completely in a traffic jam to a desired vehicle density trajectory being
in a mixed regime. This is done by providing results from a numerical simulation, for which
we again use the standard Godunov scheme that is described in Section 2.1.6.

2.3.6 Simulation setup

As in Section 2.2.7, here we also consider a space interval [0, L] that is divided into n = 500
cells. The feedback term given by the integral error (1.5) is computed using the Riemann
summation over cells i € {2,...,n — 1}. Thus, here we seek to demonstrate the efficiency of
using a state feedback for a road whose first quarter is initially empty, and the traffic jam is
formed at the rest of the road:

po(0<z<1/4L)=0 and po(1/4L <z <L) = pmaz-

Thus, we consider here a system being almost completely in the traffic jam as initial condition.
For the simulation, we use the same parameter set as in (2.55).

As a target state, we consider a vehicle density trajectory in a mixed traffic regime (a
space- and time-dependent function), whose evolution is given by “ghost” cells (which are set
by copying the value from the neighbor cell) with

pd,, (t) =0.04 +0.04sin (¢/8) and pg,,,(t) =0.1+0.06sin (t/4).

Here, for convenience, the boundary values are prescribed in terms of densities, since it
allows a straightforward implementation of the Godunov scheme (2.18). Then, these density
values are transformed into inflows and outflows by using the supply-demand formulation for
the case of a triangular FD (2.17).

We will demonstrate how the feedback term given by —ke(t) for the upstream and +ke(t)
for the downstream boundary improves the result and provides the asymptotic convergence
targeting the desired profile. Two control strategies are compared:

1. No feedback is performed, i.e., only un(t) = ¢in,(t) and weut(t) = dout,(t)-

2. Feedback terms are applied, i.e., ujn(t) = din,(t) — ke(t), Uout(t) = dout,(t) + ke(t).

2.3.6.1 Simulation results

The simulation results are presented in Figure 2.12. Thereby, Figure 2.12a) illustrates the
evolution of a desired density trajectory being in a mixed traffic regime. The results of
achieving this state with and without feedback are shown below, i.e., see Figures 2.12c) - f).
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Thereby, the left column shows the evolution of traffic under the control action, whereas on
the right column one can see the corresponding evolution of the absolute difference between
the real and the desired states, i.e., L spatial norm defined in (1.1). Figures 2.12c) and 2.12d)
illustrate the result if no feedback is applied at the boundaries, while plots e) and f) depict
the situation if feedback with gain & = 0.1 is applied. The corresponding error behaviour for
different gains is shown in Figure 2.12b).

Comparing these plots, we can see that control including the feedback term performs
considerably better. Without feedback the congested regime almost completely occupies the
domain as time runs, while the feedback term makes the system approach the desired state
after the time inferior to the minimal controllability time, which is tq, = % + g = 200.5 s.
The convergence results in sense of L norm are compared for different control gains (k = 0,
k = 0.005 and k£ = 0.1) in Figure 2.12b). Thereby, we observe a faster convergence rate for
the largest controller gain.

Note that an open-loop control (such as applying absorbing boundary conditions until the
road becomes empty, and then applying desired inflows and outflows) will not achieve the goal
at all due to the difference in initial densities (2.67).

2.3.7 Discussion

In this section, we have designed boundary control laws that enable tracking a target space-
and time-dependent vehicle density on a single road. Both real and desired states are governed
by LWR PDEs with triangular fundamental diagram, and they are allowed to be in a mixed
traffic regime. This means that the controller is activated at both road boundaries. It allows
us to drive any state, being in a partly congested and partly free-flow regime or even being
completely congested, to some desired state that is also governed by a fully nonlinear LWR
PDE.

The main challenge in control design was related to the fact that we can not apply the
boundary conditions pointwise in a general nonlinear LWR system, since one always has to
deal with demand-supply concept. We could handle this issue by using the explicit solution
formula to H-J PDE that was obtained using the properties of triangular FDs due to the
convenient shape of its Legendre transform. The cumulative representation of traffic in terms
of number of vehicles within the H-J approach allowed us to formulate and to analyze the
control restriction functions. These functions describe time periods, when a domain boundary
can accept a proposed controller. These control restriction functions could be defined by
exploiting the system evolution at previous times due to the integral structure of the H-
J solution. The designed controller has a feedback term, which physically corresponds to
the difference between the given number of vehicles on a road and in the desired system
multiplied by some controller gain. The numerical example verified the results and illustrated
that feedback is absolutely necessary to achieve the goal.
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Figure 2.12: a) Desired profile in space-time, b) Ly error as a function of time for different

control gains.
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2.4 Chapter conclusions

In this chapter, we have investigated traffic dynamics evolution on a single road of finite
length. This was done within the LWR modeling approach that was described in Section 2.1.
Further, we have formulated tracking problems for a desired density being a space- and time-
dependent trajectory. These dependencies were included for a better approximation of some
realistic traffic situations when traffic conditions change rapidly, e.g., it is common to have non
constant inflows and outflows at different day times. Moreover, an equilibrium desired state
is just a special case of a general space- and time-varying profile, which can also be covered
by the theoretical results derived in this chapter. Such a general target profile results into a
non-trivial error dynamics that have been analyzed in both Sections 2.2 and 2.3.

Then, we have also designed feedback boundary control laws on a single road for two
different systems. The first traffic system that we have considered in Section 2.2 corresponds
to a linear LWR model describing traffic in a congested regime that incorporates a possible
mismatch between the model and the reality in terms of unknown in-domain disturbance
function. We formulated disturbance attenuation problems while reaching the desired profile
in terms of Ly and L spatial norms (Problems 2.1 and 2.2). We were able to handle unknown
disturbance using characteristics method that allowed us to express the disturbance function
through known (measured) variables such as vehicle density and control actions applied at
previous time steps. The achieved results stated in Theorems 2.1 and 2.2 were validated with
the help of a numerical simulation example, which illustrated considerable improvements of a
traffic state under the boundary controller compared to a freely evolving traffic system with
no boundary control. In particular, we were able to observe how easily a system can get into a
complete traffic jam along the whole road, if we do not apply at least the feedforward control,
which is used to track the desired density. The feedforward control is able to considerably
reduce the congestion level, although the desired state must remain in the congested regime
for the well-posedness of the problem. Then, it was also shown that if in addition to the
feedforward controller we also include the feedback part used, then we track the desired state
even better. This became obvious from the temporal behaviour of Lo and L., norms of the
deviation from the desired trajectory illustrated in Figure 2.9.

Further, in Section 2.3, we have considered a more complex problem for the case, when
both the state and the desired trajectory are governed by full nonlinear LWR models as in its
original formulation (also without the disturbance). The main challenge thereby was related
to shocks (discontinuities), which arise in such systems for smooth initial data in finite time.
This makes an explicit analysis a tedious ask, since then we have to consider the solution
only in a weak sense (no classical solutions any more) and track shocks dynamics. Another
challenge to deal with was related to the weak boundary conditions, which implies the non-
ability to impose any boundary control. To handle both of these issues, we translated the
LWR traffic system into its integral form corresponding to the Hamilton-Jacobi PDE that
is free of discontinuities, and in the worst case it can only become non-differentiable. Its
state corresponds to a cumulative number of vehicles that can be obtained by integrating the
vehicle density. The H-J system can be seen as an optimal control problem, and its solution is
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obtained semi-explicitly as the minimum of all valid paths. In case of triangular FD that we
assumed in this chapter, the solution is obtained as the minimum over only three valid paths
each associated with one of the boundary conditions or with the initial condition. For the
analysis of the system in asymptotic time, we were able to estimate the minimal time (2.59)
upon which it is guaranteed that the initial conditions do not affect the H-J solution any more.
The solution can then just be formulated as a minimum of two valid paths associated with
the boundary conditions. Thus, the integral formulation of Hamilton-Jacobi traffic system, as
well as the ability to express its solution exactly, allowed us to explicitly analyze the periods of
time, when boundaries are restricted to accept control action as a function of the actual traffic
state. These so-called control restriction functions enabled to divide the error dynamics into
three different regimes depending on which boundaries can currently accept control actions.
The main result of Section 2.3 is given by Theorem 2.3. Thereby, we have shown that even
when boundaries are sometimes unable to accept proposed controls, the system converges
to the desired trajectory exponentially. The designed boundary controller also counsists of a
feedforward and a feedback part, where the latter is an essential component to achieve the
goal. The results have been validated numerically for different control gains.

In the next chapter, we are going to extend this result to a large scale, i.e., we will pose and
solve various control tasks for the vehicle density defined in some urban area using a scalable
modeling approach by considering a conservation law for traffic in 2D.






CHAPTER 3

Uni-Directional Traffic on Networks

This chapter is devoted to traffic control problems in large-scale urban networks with a pre-
ferred direction of traffic flow. The analysis and control design will be done within the same
modeling approach as in the previous Chapter 2 but in two dimensions (2D).

3.1 Preliminaries

In case of traffic modeling on large-scale urban networks, one needs to look for macroscopic
approaches due to increasing computational complexity. However, prior to [142] who used data
from microsimulations, there has been no evidence of any existence of macroscopic relation
between density and flow on a city level as it was established on single roads by Greenshields
[58]. Later, in 2008, Geroliminis and Daganzo observed a similar relation during data collection
in a real-life experiment conducted during a rush-hour in the city of Yokohama, Japan [53,
40]. The discovery of the so-called macroscopic fundamental diagram (or shortly, MFD) gave
rise to reservoir models, which track the number of cars in a urban area. MFD-based models
are intuitive, simple, and do not require a high computational effort to be applied. For an
MFD to be well-defined, there must exist only one flow value for a given number of vehicles.
This feature is preserved only in regions that consist of links that have similar congested
levels, while this causes problems in case of regions with heterogeneous links. To overcome
this problem, [63, 87| presented partitioning algorithms that intend to split an urban area into
multiple homogeneous zones each having its own well-defined MFD.

3.1.1 LWR model in 2D

Let us present here a macroscopic model presented in [103] that corresponds to a conservation
law on a two-dimensional plane, where the conserved quantity is the total number of vehicles
in this plane. This model will be used to investigate the macroscopic traffic behaviour in a
urban network that is represented by a 2D continuum plane (z,y) € Q € R? that is a bounded
rectangular domain, i.e., Q : [Zmin, Tmaz] X [Ymin, Ymaz)- The size of the rectangular domain is
determined by the size of the urban network, i.e., ., is associated to the intersection with
the minimal z space coordinate among all intersections (the rest is defined similarly).

This 2D model can be seen as an extension of the classical 1D LWR model (2.1) to two
dimensions that describes the traffic density evolution over a continuum plane V(z,y,t) €

63
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Q x RT as:
Ip(w,y,t)
ot
p(xayvo) :po(may)a

V.o ) =0
+ (z,y,p(x,y,t)) =0, (3.1)

where p(z,y,t) : 2 x RT — RT is now a two-dimensional density that aggregates the number
of vehicles per square meter, po(z,y) is its value at initial time. The flux function in (3.1)
is now an explicitly space-dependent vector function with the magnitude ®(x,y,p) : E —
[0, maz] with the set of departure being E = {(z,y,p) : (z,y) € Q, p € [0, pmaz(x,y)]}.
The flux magnitude ®(x,y, p) is again a concave Lipschitz continuous function that reflects
the empirically established law relating the average 2D flow with the average 2D density
(fundamental diagram), i.e., ¢(z,y,t) = ®(x,y, p). The flux vector function is then defined as
a product of the magnitude ®(x,y, p) and the direction vector Jg (unit vector):

- -

(z,y,p) = ®(x,y, p)do(z,y), (3.2)

> (cos(f(x,y))
= (Sntoem) (33)

is a vector that depends on the network geometry given by angle 6(z,y) : ©Q — [0,27) that
must be smooth enough (more details on its smoothness are given in Section 3.2). Angle 6(z, y)
is related to the orientation of roads in a urban network, thus, it determines the direction of
traffic flow. Hence, from now on, we will call CZ@ the direction field to stress its physical
meaning. The details on how to obtain this vector dy(z,y)V(z,y) € Q are given in Section
3.1.3.1. Finally, the nabla operator in (3.1) is defined as

v=( % %)

Thus, the divergence term V - ®(z,y, p(z,y,t)) in (3.1) is a scalar. The existence and unique-
ness of solutions for a system like (3.1) were shown in [81] (see p.223 for the conditions of

where

uniqueness, and existence is discussed on p.230). The boundary conditions of (3.1) will be
discussed later in Section 3.1.4.

As the 2D model (3.1) represents an extension of the standard 1D LWR model (2.1),
their units and structure are compared in Table 3.1. In general, 2D models like (3.1) are not
expected to describe very precisely the density evolution in space coordinates. They are rather
used to capture the main traffic features on a global scale such as the location and propagation
of congested areas in a transportation network.

Table 3.1: Comparison of 2D and 1D LWR models

1D LWR 2D LWR
density [p] = veh/m (scalar) [p] = veh/m? (scalar)
velocity [v] = m/s (scalar) [U] = m/s (vector)
flux [®] = veh/s (scalar) [®] = veh/(s-m) (vector)
equation Ap+ 0,D(p) =0 Op+V - B(z,y,p) =0
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3.1.2 Space-dependent fundamental diagram

In general, the flux magnitude in 2D (3.1) is very similar to the flux function in 1D (e.g., it
can be the triangular FD (2.2)) both being Lipschitz continuous concave functions. However,
unlike in the 1D case, the 2D flux magnitude ®(z,y, p) incorporates network infrastructure
parameters by having an explicit space-dependency. Imagine a urban network containing roads
that may have different speed limits and number of lanes, i.e., roads usually have different
transportation capacities. For instance, compare some major three-lane roads with 50 km /h as
a speed limit with minor single-lane roads with 30 km/h that can clearly accommodate less cars
than the major roads. This kind of infrastructure differences are captured by space-varying
parameters pPmaz(T,y), pe(z,y) and v(z,y). Thus, we can see that in a 2D representation of
traffic, the assumption that the FD parameters are identical everywhere, does not hold any
more, since the network geometry should also be taken into account.

All these parameters still have the same physical meaning as in the 1D case introduced in
Sections 2.1.1 and 2.1.2, but their units are consistent with those in Table 3.1. For example,
Pmaz(x,y) and p.(z,y) are referred to the maximal and the critical number of cars per square
meter (veh/m?), correspondingly. Thus, space-dependent fundamental diagrams are functions
with space-dependent parameters, e.g., the triangular FD is defined V(x,y, p) € E as:

T _ U(Jf,y)p, p S [O,pc(x,y)],
(I)( 7y7p) B { —w(:zr,y)(p— pmax(xvy))? P € (pc(xvy)vpma:c(xvy)L (34)

and, similarly, the Greenshields space-dependent FD is defined V(x,y, p) € E as:

pmaxﬁzx y)) P (35)

Note that all FDs can still be depicted as in Figures 2.1a) and 2.1b) having in mind that they
can have different peaks and slopes for different space points (z,y) € Q.

(I)(a;aya P) = Umaac<x7y) (1 -

3.1.3 Continuous approximation of parameters

In general, two-dimensional continuum models with a structure similar to (3.1) are commonly
used in pedestrian (crowd) modeling [64, 71]. It is however worth noting that crowds evolve
in open spaces, and, unlike vehicles, pedestrians are not constrained to move on traffic roads.
Here, we are going to use the 2D model (3.1) to predict the propagation of traffic in a urban
network, which represents a set of roads (links) and intersections (nodes). Thus, the equation
(3.1) is a valid model for traffic modeling, if we assume that the urban network is dense enough
to be approximated as a continuum. As already mentioned above, we will use the network
geometry to parametrize the model, e.g., we will estimate the values of velocity and direction
field as a function of the distance to physical roads. Let us explain parametrization on an
example of a flux with the magnitude corresponding to the Greenshields FD:

(f)(ﬂ?,y,p) = Umaa:(*ray)dc;(xay) <1 - (36)

p
Pmax (l‘, y) ) P
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3.1.3.1 Inverse distance weighting

From (3.1) and (3.6) we can see that the traffic flow direction is determined by the wvelocity
field, which is a product of direction field cfg (3.3) and the maximal kinematic wave speed
Umaz- Lhus, we expect more traffic to be concentrated in areas with densely located roads and
along roads with high speed limits, e.g., highways. We achieve that by applying the inverse
distance weighting method (IDW), which assignes larger weights to space points that are close
to roads, see [103] for a detailed explanation, while in the next paragraph we will give a brief
idea.

Let us denote roads of the network by g € {1,...,Q}. For the sake of computation, each
road is parametrized by s € {1,. .., Syaz } sSuch that variable s allows to progress along the road
curvature from one intersection to the next one. Then, the velocity field cfg(x, Y) Umaz (T, Y)
can be computed V(z,y) € § as:

Q 5
; w ([[(z,y) — p(g, s)|l) do, vmaz,
d@(%,y) Umax(xay) =T

Smax
S

, (3.7)

Mol L

e - pla.9))

q=1

where p(q, s) is the spatial coordinate of cell s of road ¢, and the weighting function w(l) :
R* — R* is a decreasing function of the (Euclidean) distance, e.g., here we use the exponential
function:

w(l) = e and 1= /(2 — plg,5)e)> + (v — p(,5),)%,

where p is a weighting parameter that needs to be tuned according to the desired “accuracy”
of reproducing the network structure in a 2D representation: for a small yu the velocity field
follows only the global trend of the network geometry, while for a large p the velocity field
follows the roads in a detailed way. These two extreme cases are illustrated in Figure 3.1,
where a small Manhattan grid area is taken as a network example.

In this work, we would like to capture the evolution of a 2D vehicle density quite accurately
but without over-resolving the network geometry, for example, see Figure 3.2a) that illustrates
the direction field estimated for p = 50 for a network representing the city center of Grenoble
of the total area 1 x 1.4 km?. Thereby, we can also notice that the integral lines of the
direction field drawn in Figure 3.2b) do not cross. This results from the model structure,
since the integral lines can be seen as unique solutions to the differential equation governed
by (fg. Moreover, we assume that there are no loops in the urban network, i.e., there exists a
preferred direction of motion. Indeed, if there would be a loop, then there would be a point
inside of every loop where 6 is undefined, since the direction lines cannot cross each other.
Moreover, any loop would have no boundary, thus the cars following this path would never
be created nor destroyed. The condition on not having loops plays an essential role in the
coordinate transformation that will be explained in Section (3.2). In terms of integral lines,
we require that any integral line of the directional field d_'g begins and ends at the boundary of
the domain. In terms of network structure, we consider only networks (or urban areas) with
uni-directional roads that are located such that no loops arise. This is the main restriction of
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Figure 3.1: Direction field estimation (blue arrows) for: a) small g = 10, b) large u = 100.

—

The figure is taken from Chapter 2 of [L01]. Grey arrows indicate the direction of real roads
in a Manhattan-grid network.

the model (3.1), which limits its usability for general traffic applications although being still
useful in several situations. For example, imagine a rush hour (e.g., at 9 am), when many
people are driving to the business center of the city located in some particular point, then the
assumption of the preferred direction of motion is realistic.

Thus, equation (3.7) constructs a velocity field J;)(:c,y) Umaz(Z,y) at any point in the
domain as a normalized weighted average of the road directions dgq Umaz, Such that the traffic
flow direction at some point is mostly impacted by the nearest roads to this point.

3.1.3.2 Kernel density estimation

To complete the definition of FD parameters, we also need to determine density-related pa-
rameters of the fundamental diagram, i.e., the critical density p.(z,y) and the maximal density
Pmaz(T,y) V(z,y) € Q. Let us first concentrate on the maximal density pmaz(x,y), and then
it will be straightforward to determine p.(x,y), if we know the particular FD shape, e.g., from
real traffic measurements.

In a 2D representation of traffic, the maximal density depends not only on the number of
lanes of particular roads but can also increase in areas with high concentration of roads. In
order to estimate ppqz(z,y) Y(z,y) € Q, we fill each road of the network by placing a vehicle
at a minimum headway distance of 6 m, since this is an approximate distance between two
consecutive vehicles in a traffic jam. Thus, we place vehicles as close as possible to determine
the maximal density by using the kernel density estimation (KDE).

The idea of this method is that each individual vehicle contributes to the total vehicle
density as a Gaussian function with a kernel located around the vehicle position. The total
estimated density then corresponds to the superposition of all their contributions.



68 Chapter 3. Uni-Directional Traffic on Networks

D B LIS AL S e R e

» A a
S S A A S S S SN A

B A T ST T e / ’

Figure 3.2: Result for an intermediate value of the weighting parameter p = 50: a) estimated
direction field (blue arrows), b) integral lines of traffic flow direction (tangent of dp). Grey
lines represent real roads in Grenoble city center, arrows indicate the direction of traffic.

Let the position of a vehicle v € {1,...,V(¢)} be denoted by (z,(t), y,(t)) at some time ¢.
Then, the vehicle density can be estimated as follows:

ve)
- 1 —az ((@=20)?+(y—y0)?)
plx,y,t) = Fd% UE:1 e *% , (3.8)

where dy is a standard deviation of a Gaussian function. Note that Gaussians are used to
preserve the conservation of vehicles, since density integrals are normalized to 1.

Parameter dj in (3.8) determines the range of impact of the Gaussian kernel that has to be
chosen. For example, in Figure 3.3b) we can see how equidistant vehicles on a road contribute
to the global density by its Gaussian functions. In the upper plot, each car has an impact
on the density in the range of dy = 25 m around its position, which results into a constant
density along the road. The lower plot illustrates the situation when the range of impact is
set to dg = 100 m, which is too high, since then the reconstructed density has a bell shape due
to boundary effects. There are several works regarding the optimal choice of this parameter,
see [17, 48]. The authors rely on the idea that the parameter dy should be chosen such that
equidistant cars should provide constant density.

The same qualitative effects can be observed also in 2D, see [103] for more details. Note that
the maximal density pmq. can be estimated by KDE (3.8), with the only difference being that
all the vehicles are placed as densely as possible. An application example of KDE is illustrated
in Figure 3.3a), where the density (colormap value) is obtained by using KDE from vehicles’
positions denoted by blue dots. The positions of vehicles were generated using commercial
software Aimsun that takes any network geometry as input and produces microsimulations
of traffic on this network with the possibility to specify boundary inflows. Note that unlike
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-

position on road

Figure 3.3: Density reconstruction from car positions by KDE: a) 2D density is reconstructed
from vehicle positions (blue dots) that move along a network with the geometry of Grenoble
city center (grey arrows), b) 1D density estimation from equidistant vehicles with Gaussians
having different standard deviations: dyp = 25 m (upper plot) and dy = 100 m (lower plot).

in previous density representation in 1D, the colormap in Figure 3.3a) is used to denote the

ratio of the density value to the maximal density over the whole network (absolute maximal

density), i.e., pmaz = (me)mxﬂ Pmaz(x,y). Moreover, due to the space-dependency of FD, the
€

)

critical density p.(x,y) is different V(z,y) € Q.

3.1.4 Boundary conditions

To complete the 2D LWR model (3.1) that describes traffic dynamics on a bounded domain,
we need to introduce the boundary conditions, as we did in Section 2.1.4 for the 1D case.

Define a set I' C €2 as the boundary of a rectangular domain ). The boundary consists
of two subsets I' = T';, U 'yys. Thereby, I';, is a set of boundary points (z,y) for which
fi(x,y) -cfg(az, y) > 0, where 7i(z, y) is a unit normal vector to the boundary oriented inside the
domain. In a similar way, we also define I'y,; such that V(z,y) € T : iz, y) - cfg(w, y) < 0.

Now let us fix boundary flows ¢, (z, y,t) and ¢oui(z,y, t) for the 2D system given by (3.1)
and formulate the following IBVP:

(0 Yt =
% +V- (I)(Zl?,y,p(l‘,y,t)) = 07
= in\Ls ’t I s 9)s v ) € Fin
B,y 1) = {¢ (2,9, )do(, ), V() (3.9)
¢out(xay7t)d9(x7y)v ‘v’(a:,y) € Lout

\p(il?, yvo) = Po(li,y),



70 Chapter 3. Uni-Directional Traffic on Networks

SOUf
T

max

71
D.fn

Figure 3.4: The vehicle density in a 2D domain with indicated upstream and downstream
boundaries. The underlying network geometry corresponds to Grenoble city center (grey
arrows).

where inflows ¢in(z,y,t) and outflows ¢oui(z,y,t) are defined as

{qu(a;’ y,t) = min {D(pin(z,y,1)), S (p(z,y,t))}, (x,y) € Tin (3.10)

qbout(xvyat) = min {D (p(x,y,t)) S (pout(mmyvt))}’ (Iay) € Tout

where D(p) and S(p) are demand and supply functions defined as in Section 2.1.5 but depend-
ing on space and in two dimensions. The well-posedness of IBVP given by (3.9) and (3.10)
will be discussed in Section 3.2.

The upstream I';, and downstream I',,; boundaries are the ones that should be actu-
ated when it comes to control applications. As an illustrative example, these boundaries are
indicated by black arrows in Figure 3.4.

3.1.5 Comparison between 2D LWR and MFD-based models

This section is devoted to the comparison between the newly introduced continuum model in
2D (3.9) to reservoir models based on a macroscopic fundamental diagram, which are very
popular in traffic applications due to their simplicity. We seek to show that 2D conservation
law models such as (3.9) have their own advantages. By running the same traffic scenario
on a Manhattan grid network with these two different approaches and comparing the steady
state results to those predicted by microsimulator Aimsun, we will motivate the use of the
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2D LWR model that can be a reasonable choice for many traffic control applications in large
urban networks.

3.1.5.1 Macroscopic fundamental diagram

As described in 3], MFD-based models (also known as reservoir models) describe the evolution
of accumulation of vehicles in some urban zone. Let us consider a heterogeneous network
partitioned into N reservoirs, e.g., N = 4 as illustrated in Figure 3.5. Let n;(t) be the
accumulation of vehicles in reservoir ¢ at time . The main assumption of reservoir models
is the existence of MED ¢;(n;(t)), which relates the number of cars in a reservoir ¢ with the
outflow from this reservoir ¢; out. Let us also define Ny, ; as a set of neighboring reservoirs,
from which cars can directly reach reservoir ¢, and Noutﬂ' as a set of neighboring reservoirs
that can be directly reached by cars from reservoir 4, as illustrated in Figure 3.5. Then, the
rate of change in the number of cars n;(t) in reservoir 7 is given by the difference in its inflow
and outflow, that is:

dn(;t(t) = ¢in,i(t) - ¢01Lt,i(t)a with

¢in,i(t) = Z Tji min {Dj, Sl} and ¢out,i(t) = Z Tij min {DZ, Sj} s

jEMn,i jeNou,t,i

(3.11)

where r;; and r;; are numbers of roads leading from reservoir j to reservoir 7 and from reservoir
1 to reservoir j, respectively. Demand D; and supply S; functions are defined as

P di(ni(t)), if n; <ney oy ) Pmazis if n; <ne;
Dilnale)) = { Selma(d)) = {¢i(ni(t))’ if n; >ne, (3.12)

(bmaac,iy if n; > Ne,i

thereby, n. denotes the critical car number that has the same implication as the critical
density p. in (3.4), i.e., we observe the free-flow regime if n; < n., otherwise it indicates that
the congestion has occurred. We compute MFD for each reservoir by using the GPS data
(velocities) from the microsimulator Aimsun at each ¢:

ng (t) g (t)

dilmi) = [ 3 v | | 5o | = g 2 vim:

n;

m=1 > Liq > Liq m=l
q=1 q=1
where L;, corresponds to the length of road ¢ € {1,...,Q;} in reservoir i, and v;, is the

velocity of vehicle m in reservoir ¢. Note this expression is the product of average velocity and
density in reservoir i. Having data as (n;, ¢;), we fit a cubic polynomial as it was done in [3],
and extract the maximal flow ¢y,q,,;. The final step to complete the definition of MFD is to
get the maximal car number obtained by counting cars placed in a reservoir at the minimal
headway distance (6 meters).

[3] presented a method to perform a network partition depending on the traffic state such
that each part has its own well-defined MFD (low scattering of the MFD curve). However, to
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k
rar min{D;, Sk}

Figure 3.5: Schematic illustration of a network divided into N = 4 zones. The variables are
defined with respect to reservoir ¢, which has its own MFD ¢;(n;) (fitted data, in red) with the
maximum flow ¢4, attained with the critical number of cars n.;. The change in vehicle’s
accumulation n;(t) is determined by flows from N, ; = {j} and by flows into Npy.; = {k}.

make a fair comparison between MFD-based models (3.11) and 2D LWR (3.9), we divide a
Manhattan grid network into N = 16 equal parts each having its own MFD, and then compare
the steady states achieved by using two different models with the steady state obtained by
using the microsimulator Aimsun for the same inflow and outflow data.

A steady state in a reservoir model is reached when the accumulation of vehicles stops
changing its value over time, i.e., dn;(t)/dt = 0 Vi € {1,..., N}. Further, by (3.11) we obtain
for each reservoir ¢ that the number of cars is preserved whenever inflow equals to outflow:

¢;<n7i(t) = (b:ut,i (t)v (313)

where the asterisk is used to denote a steady state.

We will compare steady states predicted by both models (3.1) and (3.11) with the one
obtained with microsimulator Aimsun, which simulates the dynamics of vehicle positions in
a given urban area. The vehicle positions are then used to reconstruct the density using the
kernel density estimation method that was presented in Section 3.1.3.2.

To enable a quantitative comparison of steady states, we will compute the Lo norm of
the deviation of the density predicted by one of the models p;red(x, y) from the “ground true”
distribution pZ, (z,y) obtained by Aimsun in the steady state, i.e.,

167 (,y)lly,  where p*(2,y) = pirea(®,y) — Piim (T, Y)-

The Ly norm in 2D is computed as in (1.7). Note that in case of MFD-based model, pf .q(z, y)
is a piecewise constant function obtained from the accumulation of vehicles in a zone multiplied
by its area.
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3.1.6 Scenario description

We consider a 10 x 10 Manhattan grid network with a total surface of 1 km?, which is drawn
by grey lines on all three plots of Figure 3.6. Positions of nodes (intersections) are slightly
disordered with white noise of standard deviation that equals 10 m. We assume that all roads
are single-lane and are globally oriented towards the North-East direction (grey arrows in
Figure 3.6 are used to point the direction of traffic on each road). The network contains a
topological bottleneck in the middle, e.g., a river with some bridges. The speed limits on most
of the roads are set to 30 km/h, and there are also two roads with 50 km /h.

In order to obtain a non-trivial congestion pattern in the steady state, we create a con-
gestion formation scenario in the Western part of the network, while the rest of the network
should remain in the free-flow regime. We achieve that by setting appropriate inflows (de-
mand functions). The domain contains 15 incoming roads in total: 8 roads are coming from
the North and 7 are coming from the West. We can identify the incoming roads from Figure
3.6a), where the green and red arrows are assigned to points, through which vehicles enter the
domain. Thereby, we provide a large demand in the South-Western area by setting D;, = 1200
veh/h on 8 incoming roads (red arrows), while a lower demand D;, = 300 veh/h is created
for the remaining boundary roads (green arrows). Notice that veh/h is the basic Aimsun unit
for traffic flow, while this should be veh/s in the 2D LWR model, which we can easily get by
dividing by 3600. Although we have marked these arrows only for the results related to the
MFD-based simulation, the same inflow values are set at the same points in Aimsun (Figure
3.6¢)).

We set the inflow demand at the upstream boundary for the numerical simulation of the
2D model (3.9) by deploying the 1D kernel density estimation method. Namely, KDE is used
to reconstruct the density created by vehicles entering the domain through the continuous
boundary line. The numerical scheme for 2D LWR system given by (3.9) was discussed in
[103]. The brief idea is to perform dimensional splitting, and then for each dimension the
numerical flux is computed using the Godunov scheme. However, the simulation result in
Figure 3.6 was obtained with our own numerical method for this model that will be presented
later in the next section. To produce the result depicted in Figure 3.6b), we perform a
numerical simulation of vehicle density governed by a 2D model, until the steady-state is
reached. It is also worth noting that the supply of the downstream boundary is set to dmax
so that cars can freely leave the domain. Notice that the result in Figure 3.6b) was obtained
with a low weighting parameter u = 20 for the continuous approximation of velocity field (see
Section 3.1.3.1).

Thus, we run a dynamic scenario on Aimsun for 2 hours of simulation time setting the
time-constant inflow values indicated above. Thereby, we see that the shape of a congested
zone does not change much after a certain simulation time indicating that the steady-state was
reached. In order to set up a simulation, Aimsun requires also to define turning ratios at each
intersection. A turning ratio is assigned to a pair of roads ¢ and j connected by a junction,
and it denotes a percentage of vehicles that turn from road 7 to road j. On a global scale,
turning ratios determine the overall traffic flow direction. Since the applicability of the 2D
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LWR model (3.9) is limited to networks that have a preferred direction of motion, we set the
turning ratios accordingly. Thus, at each 2 x 2 intersection, 75% of vehicles will turn and the
rest 25% continue moving straightforward, while at each 1 x 2 intersection the turning ratios
are set to 50%. During the Aimsun simulation, we save the position of all cars at each time
step, i.e., generate car trajectories. Finally, from the vehicle positions (blue dots in Figure
3.6¢)) we reconstruct a two dimensional density using KDE (see Section 3.1.3.2). The density
in Figure 3.6¢) was estimated with a Gaussian standard deviation dp = 50 m, i.e., we assume
that every car contributes to the total density in 50 m range around its position. Finally, the
state governed by the MFD-based model (3.11) was updated using the forward Euler method
with the time step At = 0.01 until the convergence to the steady state (3.13) was reached.

3.1.7 Comparison of steady states

In Figure 3.6 we present the steady state results predicted by the MFD-based model (panel a)),
the numerical simulation of 2D LWR (panel b)) and those obtained by running a simulation
on Aimsun (panel c¢)). For the case with MFD, we performed a partition into 16 zones (black
dashed lines). Then, we used Aimsun velocity data to define MFD for each zone as described
in Section 3.1.5.1, and using (3.11) we find the number of cars for each zone n}, as depicted

in Figure 3.6a). Then, the vehicle density in each reservoir ¢ € {1,..., N} is obtained by:

%

n ‘
Pragd (T, y) = S—Z, where i: (z,y) € R;, (3.14)
i
where s; is the area (in m?) of reservoir with index 4, and R; is the domain taken by this
reservoir.

By comparing Figures 3.6a) and 3.6¢), we can see that the MFD-based model captures
quite well the phenomenon of traffic congestion in zones where it arises, although it provides
only 16 values in our case. To enable a quantitative comparison, we use (3.14) to compute
the Ly norm of the deviation from Aimsun and obtain ||p*(z,y)|l, = 0.58, where p*(x,y) is
the difference in the steady state densities predicted by MFD-based model and Aimsun.

By comparing Figures 3.6b) and 3.6¢), we can observe that both steady states look very
similar, the congestion shape reproduced by the 2D LWR model (3.9) looks even better than
in the case of MFD-based model (3.11). For a quantitative comparison, we again compute
the Ly norm and obtain ||p*(x,y)||; = 0.38, which is a way smaller value than in the case
with MFD. Thus, the steady state obtained by numerical simulation of 2D LWR captures the
spatial distribution of congestion significantly better than the result predicted by numerical
integration of MFD-based model.

There exist also other arguments to prefer the 2D continuum model to MFD-based models
in several situations. Thus, MFD-based models are discrete in space and, by their nature,
they do not really enable us to develop model-based control approaches. This is related to
the fact that the result of the network partitioning algorithm as in [3] depends on the current
traffic state for MFD-based models, since the main point thereby is to define zones consisting
of roads with similar congestion levels. Thus, if traffic conditions change, e.g., a higher inflow
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Figure 3.6: Steady-states obtained by: a) MFD-based model, b) numerical simulation of 2D
LWR, ¢) microsimulator.

comes through roads that did not provide a high inflow before, this might lead to invalid
MFDs, which causes the necessity to perform the network partitioning again. Moreover, even
for stationary inflows, the performance of the model degrades as reservoirs’ areas enlarge.

Thus, we have shown that the 2D LWR model is a beneficial representation of traffic,
especially in a urban network with multiple congestion zones that may relocate in time. The
2D LWR model is a scalable model and it does not cost a high computational effort to be
applied. Moreover, unlike MFD-based models, it is able to track the shape of congestion
evolution quite well without the necessity to perform network partitioning. In the next Section
3.2 we will present a method to translate the 2D LWR model in a form that can be easily
analyzed for a large variety of model-based control design tasks that will be considered in the
current chapter.

3.2 Curvilinear coordinate transformation

The structure of the 2D LWR model (3.9) implies that the direction field of traffic flow dy
given by (3.3) depends only on the network geometry and not on the state. This enables
us to describe the traffic flow trajectories that do not change with time. These trajectories
are obtained by building tangents to the direction field afg. This gives us the integral lines
illustrated in Figure 3.2b).

In the following, we will perform a curvilinear coordinate transformation that trans-
lates these integral curves into a set of straight parallel lines as illustrated in Figure 3.7.
Afterwards, a traffic state evolving along a straight line can be treated as a 1D system, which
would significantly simplify any analysis of the 2D system (3.9).
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(a) (b)

r §

Figure 3.7: Coordinate transformation mapping: (a) curved trajectories in Grenoble downtown
in (z,y)-plane into (b) straight lines in (£, n)-plane.

3.2.1 General idea

Let us assume that angle § € C'(Q). We introduce new coordinates (£,7) in a differential

) = CaBotay) (7). (5.15)
(o y

where Ry(x,y) is a rotation matrix given by

Ry, y) = < cos (0(z,y)) sin (H(x,y))) 7 (3.16)

form:

—sin (6(z,y)) cos(0(z,y))

and C(z,y) is a diagonal scaling matrix given by

Clz,y) = <O‘(‘E’ v) B(:S, y)> , (3.17)

where a(x,y) and §(x,y) are positive and bounded scaling parameters needed for the existence
of the coordinate transformation (will be defined later in this section).

Thus, matrix Ry(x,y) provides the rotation of the integral lines in (z,y)-plane, and the
scaling matrix C(x,y) acts such that these lines have the same metric, see Figure 3.7. In
Figure 3.7a) we have used the topological structure of Grenoble downtown (the same as in
Figure 3.2) where the direction at each road is set such that loops and flow crossings are
impossible, i.e., all roads need to be uni-directional and there exists a preferred direction of
motion. Thus, on a global scale, the motion on this network is oriented towards North-East
of the city.
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3.2.2 Intuition: straight lines

In the case of straight lines depicted in Figure 3.7b) we have § = 0 V(x,y) € , which
implies that the rotation (3.16) and scaling matrices (3.17) become identity matrices, i.e.,
C' = Ry = 1. Then, by (3.15) the new coordinates (£,n) would completely coincide with (z,y)
up to a constant shift. In this case, the direction field defined in (3.3) becomes dy(¢,7) = (1,0),
and by (3.2) we obtain:

> 1
& = a(cnn) (o). (3.18)
which can be inserted into the divergence term in (3.9) resulting into:
1 0% (&, m, p)
(e #) (o) 2lemo = 2E22, (3.19)

Notice that in case of straight lines, the divergence (3.19) contains only one term instead
of two as it was in the original system with curved trajectories (3.9). Thus, the traffic flow
evolves only along £ coordinates, which are tangent to the flow motion. At the same time
there is no motion in the orthogonal direction of 1, which can be treated as a parameter (a
label numbering the flow path). Afterwards, we can treat each such line of constant 7 as a 1D
equation, for which we will be able to solve different control tasks.

3.2.3 Curvilinear coordinate transformation

After providing an intuitive explanation on how this coordinate transformation should work,
let us first define scaling parameters o and § from (3.17). Then, we will be able to perform the
coordinate transformation of the original 2D system (3.9) in order to turn it into a continuous
1D LWR model like (2.10) parametrized by an additional parameter n € R used to label the
flow paths.

Lemma 3.1. Assume 6 € C1(Q) and o, 8 € C1(2). Then there exists a bijective transforma-
tion (&,m) in C%(Q) satisfying (3.15) if and only if the following PDEs hold ¥(x,y) € Q:

. ,0(lna) O(lna)y 00 . 00
sin 0 9 + cos @ oy coseax + sm@ay (3.20)
and 9 (In B) 9 (In B) 06 06
n . n .
OS 987 —+ SlneTy — Sin Haix — COS 0873/ (321)

Proof. For any function in C?, mixed partial derivatives must be equal by the Schwarz theo-
rem. In our case, this is equivalent to the invariance in the order of taking partial derivatives
of £ and n w.r.t. x and y, i.e.,

;y(%g;@) :i(ﬁfgﬂzy)) (3.22)
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Figure 3.8: Coordinate transformation for one single line of constant n that is parametrized
by £(n) € [Emin(1), Emaz (m)]-

and

By applying (3.22) and (3.23) to the definition of the coordinate transformation (3.15) given
matrices (3.16) and (3.17), we obtain (3.20)-(3.21). Finally, £ and n can be obtained by
integrating (3.15). Bijectivity follows since the determinant of the Jacobian (3.15) is given by
a(z,y)B(x,y), and by (3.20)-(3.21) both a(z,y) and f(x,y) are strictly positive. O

Thus, a(z,y) and S(z,y) being functions of angle 0(x,y) only, can be computed from the
network geometry. In Figure 3.8 we illustrate the role of these parameters in the coordinate
transformation by considering a single line of constant 7. As we can see, o and § are used
to scale the distances between the lines of constant £ and between the lines of constant 7,
respectively. In (&, n)-space the flow evolves only along lines of constant n as in (3.19).

3.2.4 Model in (&, n)-space

According to Chapter 2 of [9], we can apply the divergence formula to calculate V - d in
(&, m)-space:

1 [0(Behy) K (B4he)

hehy | 06 o |’ (324)

where h¢ and hy are known as Lamé coefficients, which correspond to the lengths of the basis
vectors in (&, n)-space:

T T
N 0 - 0
he= (% %) and k= (% %) (3.25)

For the computation of (3.25), we invert the Jacobian (3.15) and get:

dx Lcosh —Lsing d¢
— [ B
<dy) (i sin 0 % cosf > <d77) ' (3.26)
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The combination of (3.26) and (3.25) yields the basis vectors in (£, n)-space:

- 1 [cosf - 1 (—sinf
he = a <sin9> o = B < cos 6 > ' (3:27)
We then find the lengths of these vectors (3.27), which gives us Lamé coefficients:

-1 -1

he = |hel = —,  hy = |hy| = .

¢ = |hel o n = |h] 3

Using (3.28), we are able to normalize the basis vectors by dividing (3.27) by their length
(3.28):

(3.28)

(3.29)

€ = €z cost + €, sind,
€y = —€zpsinf + ¢, cosd,

where €, and €, are the normalized basis vectors of (z,y)-space, and € and €, are the nor-
malized basis vectors of (&, n)-space.

Let us now rewrite vector ® given by (3.2) in (£,7n)-space. Notice that in (z,7)-space this
vector reads:

B(a.y.p) = Da,y, p) cos(0(, ))& + D(a.y. p) sin(0(z, 4))é,. (3.30)

Then, by using (3.29) we obtain:

®(&,m, p) = (&, 7, p)ee. (3.31)

Having Lamé coefficients (3.28) and the flux vector in (£, n)-space (3.31), we finalize the
calculation of the divergence term (3.24) in (&, n)-space as:

@n.0/0)]

V- B(&,m,p) = al&n)BE ) [a o€ (3.32)

Thus, we have shown that our curvilinear coordinate transformation (3.15) does really re-
formulate the 2D divergence term into 1D. This means that the temporal change of vehicle
density in a 2D plane is caused by the change of traffic low along only one coordinate in
(&,m)-space, as we were showing by (3.19) for the case of straight lines.

For simplicity, we also introduce some new functions by scaling density, flows, demand and
supply functions as:

— 14 D — ? T (bm

p - Oéﬁ, q) 57 ¢2n B I (3 33)

é = (Z)O’U/t 5’: § D = — .
out 5 Y ﬁ’ ﬂ'

Finally, the last thing that needs to be clarified prior to rewriting the 2D LWR system (3.9)
in (&,m)-space, is the definition of a spatial domain, on which the system in new coordinates
will evolve. Thus, the new spatial domain  is a compact domain defined as:

Q={(&n) : 3I(z,y) € E=E&(x,y), n=n(z,y)}.
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Then, the domain boundary in (z,y)-space can be uniquely projected into the boundary in
(&,m)-space, i.e., I'qg — I'g. In particular, I'g consists of points (§min(7), Emaz(n)) such that

min = min z,Y), max = max z,Y),
Emin(n) (x,y)eﬂ,£< Y),  Emaz(n) (xyy)eﬂﬁ( Y)
n(z,y)=n n(z,y)=n

and we can also define the maximal and minimal values of n as

Nmin = min{ﬁ ’ 3 : (6777) € Q}, Thmax = maX{U | 3¢ : (5777) € Q}

Now, using the divergence term in (§,n)-space (3.32), we can rewrite the 2D LWR system
(3.9) that now reads V(&,7,t) € Q x RT:

op(&,m,t)  0®(&,m, p)
ot 0¢

Gin(1,1) = min { D (pin(1,1)) , S (9 (Emin(n), 05 1))}, (3.34)
ngut(na t) = mln{D (§maz(n),m, 1)), S(Pout(m ))}7
ﬁ(faﬁao) = PO(fan)a

:07

where ®(£, 7, p) is now a scalar function that preserves all the FD properties such as being
Lipschitz continuous and concave, e.g., consider the Greenshields FD in (&, n)-space:

(i)(£7777 ﬁ) = 17max(§777) (1 - pmaajéan)) P where Umaz = QUmaz, Pmaz = p;n;x. (335)
The general rule in scaling functions is the following: all functions that have flow units (¢,
Gout, S(p), D(p), ®(p), Gmaz) have to be divided by S, all density-related functions (p, pmax
and p.) must be divided by «f3, and velocity-related functions (vy,q, in case of Greenshields
FD and v, w in case of triangular FD) must be multiplied by «. Note that also here the
demand D(p) and supply S(p) functions are defined as in Section 2.1.5 but depending on
(&,m)-space and in two dimensions.

We can see that the traffic flow evolves now only along lines of constant 7 in (&, n)-space.
Thus, the system in new coordinates (3.34) should be seen as a continuous set of 1D LWR
equations each following a path parametrized by 7. This means that we can also analyze its
solution in the same way as we do it in case of 1D LWR. Namely, in system (3.34) shocks arise
when characteristics cross at some point of space, and thus we need to consider its solution in a
weak sense, and then the unique (entropy) solution is the one that satisfies the Lax condition
(see Section 2.1.3). Moreover, to guarantee that the weak solution p(&,n,t) is the entropy
one Y(&,m,t) € © x RT, one needs to consider the boundary conditions in the weak sense,
see Section 2.1.4. Notice, that the boundary conditions ¢, (n,t) and Gy (n,t) in (3.34) are
formulated using the demand-supply concept (see Section 2.1.5 for the explanation). Thus, the
initial boundary value problem (3.34) is well-posed, see more details in [22, 146] for entropy
conditions for inhomogeneous LWR model.

Let us now summarize all the steps that need to be performed in order to be able to
describe the evolution of traffic in (£, n)-space by system (3.34) in some urban area.
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1. As an input, we get some urban network as a collection of roads and junctions with
known coordinates in (z,y)-space, speed limits and the number of lanes.

2. We define a rectangular plane 2 such that the corresponding urban network is contained
in it. Then, we apply approximations to find all variables and FD parameters V(x, y) € Q:
the inverse distance weighting to find the vector field dp(x,y)vmaez(2,y) (see Section
3.1.3.1), then the kernel density estimation to obtain pq..(z,y) (see Section 3.1.3.2).

3. Apply 1D kernel density estimation to the boundary conditions given as inflows and
outflows of particular roads of the city.

4. Given road orientation angle (z,y) V(z,y) €  obtained as arctangent of the velocity
field, calculate functions a(z,y) and S(z,y) by solving PDEs (3.20) and (3.21).

5. Using a(z,y) and B(z,y), calculate new coordinates (&,7) € Q by numerical integration
of (3.15).

6. Rescale all the FD parameters, density- and flow-related variables as in (3.33). For
example, demand and supply functions at the boundaries should be rescaled as:

o Dul) g Swln)
Din (n) B B(fmin(n)v 77) ’ SOML (n) 6(51%&33 (77), 77) ’

For the rest of this chapter we will be always referring to the system written in (£, n)-space
(3.34). Thus, with a slight abuse of notations, we will omit bars for all the variables from
(3.34), however leaving the notations for domains Q and its boundary I' € €.

3.2.5 Numerical scheme

Since the system (3.34) is essentially just a set of 1D LWR equations, its numerical solution is
found using the same Godunov scheme as described in Section 2.1.6. The differences emerge
from the dependency on the additional dimension 7 and also from the space-dependency of
FD parameters ppqaz(£,1) and vpmee(§,1). For convergence results for the Godunov scheme
applied to kinematic wave systems with space-dependent fundamental diagrams see [22].

We start by defining a numerical grid in Q x RT by setting

e m to be number of cells to discretize 1 dimension,
e AN = (Mmaz — Mmin)/m to be the space cell size in n dimension,

® 1) = Nmin + jAN to be the grid point in 7 dimension for j € {1,...,m},

A& to be the space cell size in ¢ dimension,

nj = [(&maz(Mj) — Emin(nj))/AE] to be the number of cells in £ dimension for particular
n =mn; for j € {1,...,m},
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o & = &min(nj) + 1AE to be the grid point in ¢ dimension for ¢ € {1,...,n;} and j €
{1,...,m},

e At to be the time cell size,
o tp = kAt for k € Z* to be the grid point in time.

Similarily to Section 2.1.6, the mesh sizes A£ and At are chosen sucht that they satisfy the
Courant-Friedrichs-Lewy condition [33]:

AL
At max |®'(&,n, p)| < =.
: aw)’ &m o)l = =

The discrete density is then p; j(k), and according to the Godunov scheme, we update it
Vie{l,....m},Vie{l,...,n;} and Vk € Z* as follows:

prj(k+1) = p1;(k) + 22 (¢inj(k) — @2 (k)),
pij(k+1) = pi;(k) + 22 (i (k) — piv1,;(k)), (3.36)

At
Pn]’,j(k + 1) = Pnj,j (k) + E ((pnj,j(k) - Spout,j(k)) y
where ¢; ;(k) is the Godunov numerical flux defined as

@i j(k) = min {D(p;i-1,;(k)), S(pi;(k))}, (3.37)

with D(p;—1,j(k)) and S(p;;(k)) being the discretized demand and supply functions same
as in Section 2.1.6 except that the numerical flux in (3.36) has space-dependent parameters
Pmaz(§:m) and vmee(§,m), which should be used for the computation of D(p;—1;(k)) and
S(psg(k)) in (3.37).

The boundary flows ¢;y, (k) and @y (k) from (3.36) are determined by specifying the
density at the ghost cells with indices i =0 and ¢ = n; + 1 for j € {1,...,m}:

pinj (k) = min {D(po,;(k)), S(p1,;(k))},

3.38
@out,j(k) = min {D(pnj,j(k))v S(pnﬂ‘l,j(k))} : ( )

3.2.6 Hamilton-Jacobi formulation

Let us now consider the parametrized set of 1D LWR equations with space-dependent FD
(3.34) (2D LWR in curvilinear coordinates) in Hamilton-Jacobi formulation. The Hamilton-
Jacobi formalism here is quite similar to the one presented in Section 2.1.7. The only difference
here is that we must carefully handle the space-dependency of FD and the additional space
parameter 1 € [Nmin, Mmaz) that is just used as a label of the flow path rather than the
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second space dimension. Thus, let us again consider the cumulative vehicle number function
M(&,n,t) that is an integral function of flow in time or density in a 2D space (see (2.21)
for 1D). This integral function can be expressed through domain outflows as in (2.23), if the
starting point of the integration is set to the downstream boundary of flow path 7 at initial
time, i.e., M(&mnaz(n),m,0) = 0. Then, the Moskowitz function in the 2D plane is defined
V(€ m,t) € Q x RT as

t fmuw(n)
M(En,t) = [ Gout(n, 7)dT + p(€,m,t)dE. (3.39)
Jpmtanirs ]

Also we can express the Moskowitz function through domain inflows and initial density dis-
tribution as in (2.24), if the starting point is set to the upstream boundary of n-line at initial
time, i.e., M (&mnin(n),n,0) = 0. In this case we obtain:

gmax(n) t 6
M(&,,1) = / po(€.n)dé + / fin(1,7)dT— / p(€m, t)dE. (3.40)
fmin(n) 0 fmin(n)

The relation of H-J formulation to the LWR formulation is the same as discussed in
Section 2.1.7. Thus, the H-J PDE with space-dependent Lipschitz continuous Hamiltonian
can be obtained from the space-dependent flow-density relation ®(&,n,p) = (£, n,t), where
the flow and density functions are then replaced by formulas similar to (2.21).

Let us introduce the following initial boundary value problem V(&,7,t) € Q x R in
Hamilton-Jacobi formulation:

OM(&,m,t) OM(&,n,t)\ _
ot _¢<5’”’_ o€ )_0’
M(£7n70) = MIni(ﬁa”): (341)

M (Emin(n),n,t) = MUp(m t),
M(fmax (77)’ m, t) = MDOWH(U? t)'

The main advantage of the H-J PDE is that we can indeed formulate its solution in terms of
a minimization problem. For several shapes of Hamiltonian (for example, triangular FD), the
solution to the minimization problem can be found explicitly.

Solution of the H-J IBVP (3.41) can be obtained analytically in accordance with the
variational principle using only its boundary and initial conditions, which can be encoded in
the general value condition function c. For 1D it was already done in (2.26), however, in 2D
it has a different set of departure, i.e., ¢(£,n,t) : Dom(c) — R, where

DOID(C) = {(577% t) n € [77mm, nmam]a 5 € {gmin(n)agmax(n>} ’ le R+}
U{(&n,0) © 1 € Nmins Mmazls § € [Emin(n)s Emaz ()]} -

This function generalizes the initial Mini(§,7) and boundary conditions Myp(n,t) and
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Mpown(n,t) of (3.41) that are then used for the computation of the infimum problem:

Mlni(fa 77)7 = 07
0(57 7, t) = MUp(n» t)v §= gmm(n)v (342)
Mpown (777 t), 5 = Emaa: (77)

Now we specify the value condition function (3.42) by calculating Myp(n,t), Mpown (7, 1)
and My (€,n). We proceed in a similar way as in Section 2.1.8. Thus, the upstream boundary
condition Myp(n,t) can be obtained by considering (3.40) for £ = &nin(n), which results into

t fmax(n)
Mup(n,t) = c(&min(n), t) = / Gin(n, T)dT + / po(€,m)dE,  ¥(1,t) € [Mmin, Mmaz) X R
0 Emm(ﬁ)

(3.43)
Then, the downstream boundary condition Mpown (7, t) can be expressed from (3.39) for £ =

Emaz(N):
t
MDown(nvt) = C(fma:c(n)at) = /¢0ut(7777_)d7_7 v(na t) € [nmiTu nmaz] X R+~ (344)
0

Finally, the initial condition Mpy,;(€,n) can be expressed from either (3.40) or (3.39) for ¢t = 0,
which yields
Emaz (1)

Mini(€,7) = ¢(€,1,0) = / po(€.m)dé. (3.45)

Further, we introduce a Legendre-Fenchel transform of the space-dependent flux function

®(&,n, p) as:
V'U/ € [_w(§7 77)7 v(iv 77)] :
L& n,v) = sup  (®(&n,p) —V'p), (3-46)
p€[0ﬁmam(§f’7)]

where v(€,n) and —w(&,n) are related to the maximal and minimal kinematic wave speeds
in free-flow and congested traffic regime (not necessarily as in triangular FD). This function
achieves minimum, if an observer moving in a traffic stream adapts his/her individual speed
to the maximal kinematic wave speed (see the discussion in Section 2.1.8).

Finally, the closed-form solution to (3.41) corresponding to the infimum among all viable
evolutions that start at initial time ¢t — 7" and arrive at (£,7n) at terminal time ¢ reads as:

(Tw")esS

T
M, n,t) = inf c (é(O),n,t — T) + /L (é(T),n,’U,(T)) dr |, (3.47)
0
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where the infimum is taken over domain S defined as:

S:{(T,v’) T eRY, /() € LN0,T), é(r) =
&) =¢ v(r) € [~w (&) v (ém)m)], (3.48)

(é(o),n,t - T) e Dom(c)}.

Here 5(7') denotes the trajectory of an observer moving along a traffic stream with possibly
non-constant speed v'(7) unlike in Lax-Hopf formula (2.32), since now we consider space-
dependent FDs that include inhomogeneity of the network infrastructure. Trajectory é (1)
originates at 7 = 0 on a boundary of the domain of ¢ and arrives at the point ¢ at terminal
time 7 = T.

As already mentioned, in case of a triangular FD (3.4) the solution to H-J PDE (3.41) can
be found explicitly. We show the derivation of the explicit solution in Appendix B.5, where
the solution was considered for large enough time such that the effect of initial conditions
is negligible. This result will be then used in Section 3.5, where we consider a boundary
control problem for traffic in a mixed regime evolving on a large urban network and prove its
exponential convergence to the desired trajectory.

3.3 Equilibrium manifolds

Analysis of steady states emerging in large urban networks is of a key importance in under-
standing traffic dynamics. In particular, steady states need to be studied to enable comparison
of different models or to solve optimal control tasks of driving a state to some desired equi-
librium. This section is devoted to the model-based estimation of steady states for traffic
density evolving on arbitrary large-scale urban networks. The traffic state is governed by a
two-dimensional conservation law (3.9).

In the previous Section 3.2, we presented the curvilinear coordinate transformation for
the 2D conservation law model that could be translated into a parametrized inhomogeneous
1D LWR system (3.34), i.e., each such 1D system incorporates space-dependency in the flux
function that is related to bottlenecks and varying speed limits along the traffic flow path.

This section demonstrates the first analytic result that can be easily obtained for this kind
of systems. In particular, we present the first model-based steady state estimation result for
large traffic networks, which became possible due to this curvilinear coordinate transformation.
Thereby, we will use only the information about the network geometry and infrastructure
parameters, as well as demand and supply at network boundaries. For a 1D inhomogeneous
case (one road with bottlenecks) this was done in [146], who used the wave entropy conditions
derived in [149] to ensure the physically relevant solution. We will rely on this previous result
[146] to extract the “correct” density from the steady state flow, which provides the entropy
solution of system (3.34).
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3.3.1 Problem statement

Let us consider the parametrized inhomogeneous PDE system (3.34). Assume that demand
at the upstream boundary and the supply at the downstream boundary are constant in time,
i.e., D(pin(n)) and S(pout(n)) are given ¥n € Q. We seek to develop a technique that yields
the steady state of (3.34) analytically. This is formalized as follows:

Problem 3.1
Given system (3.34) with constant demand and supply functions D(pin(n)) and S(pout(n)) Vn €
Q, find a time-invariant density distribution p*(£,n) such that

o*(&,n, p*)

e =0 VEme Q. (3.49)

3.3.2 Steady state density

Stationary solutions to system (3.34) might be space-varying functions p*(§,7n) due to the
space-dependency of the fundamental diagram. By the mass conservation law, the steady
state traffic flow in (3.34) should be constant along its evolution path (lines of constant 1),
that is:

¢*(n) := ®*(&;m, p*).

Recall that, in general, traffic operates at maximum efficiency when ®(&, 1, p) = dmaz (&, 1),
i.e., when the traffic conditions allow to exploit roads at their capacity. However, ¢maqz(€,7)
can not be the steady state flow, since it should not depend on &. The equilibrium traffic flow
can not exceed the capacity of the “worst” bottleneck along its path (line of constant 7). If
traffic conditions do not allow that (e.g., congested traffic along the whole 7 line), we need
to mind the boundary conditions as well. Assume that demand at the upstream boundary
D(pin(n)) and supply at the downstream boundary S(pout(n)) are given ¥n € [Mmin, Mmaz)- In
accordance with the analysis performed in [146], we obtain that the steady state flow along
its path is the minimum of three functions

¢ (1) = min{ D(pin(n)), s (1), S(Pout(n)) }, (3.50)

min
where ¢"'n

defined as:

(n) is the transportation capacity at the strongest bottleneck along the 7-line

min (n) = min o (€,1), .
(77) §E[§min(n)7§max(n)]¢ (5 77) ( )

and the point where the minimum is achieved is the location of the strongest bottleneck
denoted by £*(n):

g* (77) = argmin gbmax(ga 77)' (352)
E€[Emin (1) ,Emaz (1)]

If there are several points £* or it is an interval, then we take the left-most value (the first
point on the flow path), i.e., £ = &} in Figure 3.11.
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Thus, the steady state traffic low along a line of constant 7 is the minimum between
the demand at its entry, the supply at its exit and the minimum bandwidth (3.51), which is
determined by the strongest bottleneck of the n-line. On a physical road, such a bottleneck can
be caused by a reduced number of lanes or by a lower speed limit. Recall that lines of constant
71 are used to describe the traffic flow path, and they are different from the physical roads as
these lines are defined on a continuum 2D plane using approximations of all parameters (see
Sections 3.1.3.1 and 3.1.3.2). Thus, the strongest bottleneck is determined by the level of
compression of roads, i.e., the smallest capacity is achieved in areas with highly compressed
roads. This dependency is incorporated in the scaling factor 5(&,n), since recall that every
term in (3.50) was divided by it (as in (3.33), and then the bars were omitted to simplify the
notations).

As anext step, we need to find the corresponding steady state density. Due to the concavity
of the fundamental diagram (see Figure 2.1), for each flow value (except the maximal flow
Gmaz), there exist two densities corresponding to this flow: the lower value denotes the free-
flow traffic regime, and the higher value denotes the congested regime.

Based on the result obtained by solving the minimum (3.50), we can distinguish three
possible cases:

1. ¢(n)* = ¢™n(n). Then, the steady state p* should be chosen to guarantee the
congested regime V¢ € [£min(n),£%(n)), while it must provide the free-flow regime
V¢ € (£°(n), &max(n)]. This is the only solution satisfying the wave entropy condition
for inhomogeneous roads (space-dependent FDs) as presented in [146, 149]. This means
that the strongest bottleneck creates congestion, and after passing it, vehicles can move
freely. As mentioned above, such bottlenecks can be caused by highly compressed roads
(characterized by a high scaling parameter (£, 7)), low maximal density ppmq(§,7) (€.g.,

on a river’s bridge), or low speed limits vy, (&, 7).

2. ¢(n)* = D(pin(n)). This implies that the demand to enter this “road” is too small,
and all cars can pass through the system freely. Therefore, the whole domain is in the
free-flow traffic regime and £*(n) = &min(n).

3. &(n)* = S(pout(n)). This implies that the supply at the exit of this “road” is too low,
and the cars get blocked there. The strongest bottleneck is at the exit of n-line, i.e.,
& (M) = &max(n). Therefore, the whole domain is in the congested traffic regime.

Notice that the steady state p* is obtained by taking the inverse of the fundamental
diagram, and the correct traffic regime providing the entropy solution of (3.34) should be set
depending on the steady state flow (3.50), as discussed above for three possible cases. As a
final step, we need to rescale the density back as:

p(&;m) = p(&,n)a(&n)BEn),

which allows us to compare steady states obtained by a numerical simulation of (3.9) and by
performing a model-based analysis of (3.34) (see next Section 3.3.3).



88 Chapter 3. Uni-Directional Traffic on Networks

3.3.3 Steady state example

Let us now demonstrate a steady state example that can be obtained by following the steps
described in Section 3.3.2. For this, let us take a synthetic 10 x 10 Manhattan network as
described earlier in Section 3.1.6. The demand at the upstream boundary D(p;,(n)) is also set
as in Section 3.1.6, and the supply at the downstream boundary S(pout (1)) = Gmaz(Emaz(n), 1),
i.e., all vehicles can leave the domain freely. Further, we discretize 1 dimension into m = 180
cells. Following the steps described in Section 3.3.2, we obtain a steady state for a parametrized
inhomogeneous 1D LWR system (3.34) shown in Figure 3.9b). The continuous approximation
was again performed for a low weighting parameter p = 20. We thus seek to capture only the
global trend of the velocity field in this example.

We compare now this steady state to the one obtained by running a numerical simulation
of traffic density governed by a 2D LWR model (3.9), which is illustrated in Figure 3.9a).
Thereby, we use the Godunov scheme in 2D presented in Section 3.2.5 for an unscaled system
(3.34), which is the same system as (3.9) with the only difference that it is written in different
coordinates. Additionally, we also compare the obtained steady state distribution to the one
that results from running the microsimulator Aimsun, see Figure 3.9¢). Recall that Aimsun
produces vehicle trajectories, and then we use the kernel density estimation (see Section
3.1.3.2) to reconstruct the 2D density from vehicle positions. For the density reconstruction,
we again use the standard deviation of the Gaussian dy = 50 m as in Section 3.1.6. Notice
also that Figures 3.9a) and 3.9¢) are exactly the same as Figures 3.6b) and 3.6¢), since we use
here the same congestion formation scenario as in Section 3.1.6.

Thus, we can observe that the analytical steady state solution presented in Figure 3.9b)
captures quite well the spatial distribution of congested and free-flow areas compared to the
“ground true” steady state density obtained from Aimsun (Figure 3.9¢)). In particular, in
plots b) and c) the lines separating congested and free-flow areas in the South-Western part
are very similar, while in case of steady state density obtained by the numerical simulation
(Figure 3.9a)) this line lies notably lower. The Ly norm of the deviation from the Aimsun
density yields ||p*(z,y)||, = 0.4 for b) , which is almost the same as for a). Thus, the model-
based steady state calculation yields quite accurate results, which are obtained analytically
without any need to run long simulations as required in the case of 2D LWR model in Figure
3.9a) (2 hours of simulation time).

3.3.4 Discussions

In this section, we demonstrated the first result that can be obtained by analysing the 2D LWR
model in (£, n)-coordinates. The rewritten model (3.34) represents a parametrized 1D LWR
model with a space-dependent FD, where the second dimension is used to label the traffic flow
path. We described how to obtain its steady state that corresponds to a space-varying density
distribution by following two steps: first, solving the minimum (3.50) between the demand
flow at the upstream boundary, the supply flow at the downstream boundary and the capacity
at the strongest bottleneck, and second, by extracting the density satisfying the wave entropy
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\ 1P

Figure 3.9: Steady state obtained by: a) numerical simulation of density governed by the 2D
LWR system (3.9), b) model-based analysis of (3.34), c) density reconstruction from vehicle
positions predicted by Aimsun.

condition.

We then provided an example for a steady state that can be obtained by this model-based
analysis, which was then compared to the previous results obtained by running a congestion
formation scenario for 2 hours of simulation time. For this, we referred to Section 3.1.7, where
the steady-state distribution obtained by simulating a traffic density governed by the 2D LWR
(3.34) in (x, y)-coordinates was compared to the reference steady state distribution predicted
by microsimulator Aimsun. Thus, the analytically obtained steady state from the model in
(&,m)-coordinates (3.34) appeared to provide quite accurate results by capturing the shape of
traffic congestion even better in comparison to the result obtained numerically. There are two
main advantages of model-based steady state prediction: first, it saves a lot of computational
time, since there is no more need to run simulations until the steady state is achieved, and
second, being an explicit result it can be used to solve control related tasks for traffic in large
urban networks. This will be shown in the following section, where the explicitly estimated
steady state will be used as a desired equilibrium to reach via a boundary control.

3.4 Boundary control for congested areas

In this section, we seek do design a boundary control for a congested area within a large urban
network using the same modeling approach as in Section 3.3. Thus, we again describe the
traffic state by its density whose temporal evolution is given by the 2D LWR model rewritten in
curvilinear coordinates (3.34). We will consider a urban network that includes congested areas
that will be controlled from their downstream boundary as shown in Figure 3.10. The control
should drive the traffic system to the equilibrium that provides the maximal throughput of
the system. This stabilized system is then characterised by a reduced average latency and a
higher average velocity.
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Figure 3.10: A sketch of a urban network that contains a congested area (grey Manhattan
greed) to be controlled from its downstream boundary (in red).

Our main contribution here is to suggest a model-based control design technique that
requires only the knowledge about the network geometry and its infrastructure, i.e., speed
limits and transportation capacities. This is the first work of this kind for two-dimensional
traffic systems providing an explicit solution to the problem.

First, we will discuss the desired equilibrium to be achieved in a congested urban area.
Then, the boundary control result will be presented. Finally, the theoretical results will be
verified with the help of a numerical example, where we demonstrate the performance of the
designed controller.

3.4.1 Optimal equilibrium

In this section, our main goal is to design a boundary controller that can drive a 2D traffic
system governed by (3.34) to a steady state providing the maximal throughput of the system.
Thereby, we rely on the steady state analysis from the previous Section 3.3.

3.4.1.1 General steady states

Recall that a steady state p*(&,7n) implies space-independent ¢*(n), which can be achieved
only for time constant D(p;n(n)) and S(pout(n)). We obtained that the steady state flow
along the line of constant n (3.50) is the minimum of demand at the entry, supply at the exit
and the capacity of the strongest bottleneck located at £*(n) (3.51). By bottlenecks we mean
permanent capacity constraints in the network itself, e.g., a road segment with low speed limit
or with a few lanes (see Figure 3.11).

Thus, from the steady state flow given by (3.50), we need to extract the steady state
density p* that provides the physically relevant solution (entropy solution), which was already
discussed in Section 3.3.2. Here we need to consider the minimum (3.50) of only two functions,
as the demand at the upstream boundary D(p;,(n)) is always larger than capacity at the
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bottleneck. This happens, since p;, () is assumed to be very high for all n-lines, which implies
by (2.13) that

D(pin(1)) = Pmaz(Emin(1),1)s YN € [Mmin, Mmaz]- (3.53)

If supply at the downstream boundary is also larger S(pout(n)) > @7 then p* should
be chosen to provide the congested regime V& € [£in, &), and the free-flow regime occurs
VE € (€, &max]. If there are several such £* (or it is an interval), then we take the left-most
value, i.e., & = &} in Figure 3.11. If S(pout(n)) is smaller than the capacity at the bottleneck,

then the whole domain is in the congested traffic regime.

3.4.1.2 Optimal steady state

Here we consider congested urban areas, and thus the inflow demand is assumed to be very
high as in (3.53). This also means that the minimum function in the demand-supply problem
(2.16) is resolved to the supply at the domain exit, which is treated as a control variable.
Thus, we control the area outflow from its downstream boundary, i.e., u(n) = S (pout(n))
V0 € [Mmin, Mmaz) (as it was done in Section 2.2 but now it is on a 2D domain).

From (3.50) it is clear that the maximal throughput of the system in the equilibrium

is achieved for ¢*(n) = @™ (n) for all n-lines. In order to provide a steady state that

max
ensures the maximal throughput, we can actuate the downstream boundary accordingly, i.e.,
u(n) = ¢ (n) . However, this control would lead to the violation of the congested regime,
since the wave entropy condition prescribes the free-flow traffic regime V¢ € (£*(n), &maz(1)]s
where £*(n) is given by (3.52) (see (3.50) and the discussion above). This is a situation that we
would like to avoid, since this section deals exclusively with congested areas for mathematical

simplicity.

Thus, we would like to define a desired steady state flow to be as close as possible to the
maximal possible steady state flow (determined by the capacity at the strongest bottleneck)
that still respects the constraint on the congested traffic regime in the whole area. For this
purpose, we introduce a small constant € > 0 (small flow), and then the desired steady state
flow can be defined as

(bd (n) = %fﬁz (77) — €, V77 € [nminv nmar]- (354)

By setting the control variable u(n) = ¢4(n), we translate the bottleneck to the end of
the n-line, i.e., £*(n) = &mnax(n). In this case, we guarantee that the congested traffic regime
is preserved within the whole interval [£min(n), Emaz(n)], see Figure 3.11. This allows us to
control the system from the exit, and this control is applied in the strong sense, since the
whole system is assumed to operate in one traffic regime (as in Section 2.2).

From the practical viewpoint, subtraction of € does not change much the desired state, since
€ can be set to an arbitrarily small value. Thus, in the following we will call the desired state
an e-optimal equilibrium w.r.t. throughput mazimization. Note that controlling the domain
exit can be physically realized by installing, e.g., traffic lights.
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E min éik g; 5 max

Figure 3.11: A single n-line with inhomogeneous capacities. Its worst bottleneck occupies a
road segment £* = [£],&5]. The flow-density relation ®(p) is Greenshields FD: green and red
areas indicate free-flow and congested traffic regimes, respectively.

Definition 3.1
The desired e-optimal equilibrium pg(§,m) w.r.t. the throughput mazimization is defined
V(€,m) € Q as

_ Pmax(§,1M) Paaz(&:1)  Pmaz(€,1)
pa(§,m) = 5 - \/ 1 o) ba(n), (3.55)

where ¢q(n) is defined in (3.54) and € > 0, see Figure 3.11.

Note that (3.55) was obtained by taking the inverse of (3.35) for ®(&, 7, pg) = ¢4(n), which
leads us to the quadratic formula with two possible roots. To provide the congested traffic
regime, we need to pick the plus sign.

3.4.2 Boundary control design

Problem 3.2

Given a urban network and its infrastructure parameters Vimaz(§,M), pmaz(§,M) and dmaz(§,M)
Y(€,m) € Q with initially congested traffic po(€,m) € (pe(€,1), Pmaz(&,1)] whose dynamics are
governed by (3.34) with Greenshields FD (3.35), and given large constant inflow demand at
domain entry D(pin(n)) = Gmaz(N) Y1 € [Nmin, Mmaz), design a boundary control law u(n) =
Sout(n) such that ¥(&,n) € Q:

tliglo ||IO(£7 nvt)H2 = 07 (356)
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where p(&,m,t) is the Lo norm of the deviation from the desired equilibrium (3.55). The Lo
norm and the error term are defined as in (1.7) and (1.9), respectively, but in (&, n)-space.

Theorem 3.1
The boundary control problem of driving a congested urban area to the desired e-optimal equi-
librium (3.55), as formulated in Problem 3.2, is solved with

U(n) = ¢d(77)7 where ¢d<77) = %ZZ;(U) -6 VT] € [T/minvnmax]' (357)

Proof. Let us define the following Lyapunov function candidate VY0 € [min, Pmaz)

Emaz (M)

V=5 [ EPen i (3.58)

where ef is a weighting function used to provide the exponential convergence of the Lya-
punov function (similar as in (2.44)). For simplicity of notations, we neglect variable n as an
argument. The time derivative of (3.58) is

ma )
V(t) = / eE5(€.1) a’)(;t’ D ge. (3.59)

gmin

To simplify (3.59), we use the time-independence of py as:

op(&,t) _ Op(&t) _ 0P(&p)  OP( patp) (3.60)
o ot o8& ¢ ' '

We consider the most right-hand-side term and linearize the flux function around the desired
state as follows:

0
@(€7Pd+ﬁ)w¢(§,pd)+q)g[;pd)ﬁ, (3.61)
which being inserted in (3.60) yields
aﬁ(gvt) _ _aq)(gvpd) _ a((I)/ (€7pd) ﬁ) (362)

ot ¢ ¢ ’
where the prime denotes ® = 9®/dp.

Recall that, in general, the conservation law prescribes that

Ip€.t)  02(& p)
ot oc

Hence, if we consider a time-constant density pg(€), then by the conservation law we obtain
0P (&, pg)/0t = 0. This allows us to simplify (3.62) to

(9,5(5775) _8((1)’ (£7pd) ﬁ(&at))

o 5 . (3.63)
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To simplify the notations, we omit the arguments of p(&,t) and insert (3.63) into (3.59),
which yields

Emax Emax
sy = [ 502 & pa)P) e [ e297(E pa) O (P (€, pa) P)
O R Sl I el e
gmmg e (3.64)
¢ 0@ (& pa)p) 4
2/ (€.p0) O |

™

We now consider ® (£, pg), which is obtained by taking a derivative of (3.35) w.r.t. density:

2p4 (§) )
Pmax (5 ) '
In order to estimate an upper bound of (3.64), we will evaluate the derivative ® at £*, which
is the location of the bottleneck. Note that being the derivative of a concave function, @’
achieves its maximum at the bottleneck in the congested regime (in the free-flow regime it is

P’ (éu Pd) = Umax (5) <1 - (365)

vice versa).

First, let us obtain the desired density at £* using (3.35). Recall that by (2.5), in general,
the capacity is given by ¢maez = UmazPmaz/4, which lets us write:

D€, pul€")) = Gman(€) — e = B (€7, pale?)) = ot )Pmanl€)

By using (3.35), this can be further rewritten as:
Vrmaz (§7) P?z (&) Vmaz (§) Pmaz (£¥)

Umazx (5 )pd (6 ) - Drmaz (g*) = 4 —€
* * * pgnam (£*> €Pmax (5*)

= p(€") = Pa () pmax (67) + 7552 — o (69 = © (3.66)
%y _ Pmax (f*) Gpmaac(f )

:>pd(§)_ 2 + Umax(ﬁ)

Recall that in the solution of the quadratic equation, we need to choose the plus sign to
respect the congested traffic regime. Thus, we insert (3.66) into (3.65) and introduce a variable
v used to denote ® at the bottleneck:

o' (¢") =~ % = - (3.67)

Notice that ® in (3.67) has the same physical meaning as velocity, which can be seen from
its physical units by having in mind that € is measured in [veh/s], see (3.54).

Let us now again use the arguments of g and . We can bound (3.64) from above using
(3.67):
L @ (€m0 e 1))
> 15 Pd) PAS, T,
1% — ¢ d
mi<y | o .
gmzn(n)

3 (3.68)
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Integration by parts of (3.68) yields

V egmaz (m) @/2 9
(n,t) = 2000 (Emaz(M)s 1, pa) P~ (Emaz (1), M, t)
efmin(n) @’2 2
min s Iy 0 min 5 7t
20 (Emin(n), 1, pd) B~ (Emin(n), 1, 1) (3.69)
Emaz(N)
R € (9 (&,m,pa) 5 (6,1, 0) de.
2v(n)
gmzn(n)
The last term in (3.69) can be again bounded by v(n) as follows:
Emaz ()
S € (O (€,1,pa)  (€,1,8)) % do
21/(77)6 (n)
min\7]
3.70
Emaz(N) ( )
v(n)

5% (&, t) dE = —v(n)V (n,1).

Inserting (3.70) into (3.69), we see that the only positive term is the first one, which can be

eliminated by providing p (§maz(n),n,t) = 0, i.e.; p (Emaz(n),1,t) = pa (Emaz(n),n). This can
be achieved by accordingly adjusting the boundary control

U(Tl) = ¢d(77)7 where ¢d(77) = m;ﬁ:(n) -6 VTI € [nmin7nmax]7 (371)

as stated in Theorem 3.1. Note that the control term is different for each 1. Thus, with (3.71)
and (3.70), we can rewrite (3.69) as

. e{min(n)
V(nvt) == 2]/(77)

9" (Emin(1), M, pd) /32 (Emin(n),n,t) —v(m)V(n,t).

Thus, we have proved the Lo convergence of p (§,7,t) to the desired e-optimal equilibrium
pa(&,m) as t — 00 VN € [Mmin, Mmaz]- It also follows that the pointwise convergence in 7 is
achieved, which implies the Lo convergence in 1. In bounded spaces (which is the case for
n-space) this also implies the Lo convergence in 7. This proves the asymptotic Ly convergence
in the whole (£, n)-space.

3.4.3 Numerical example

Now let us demonstrate how this boundary control law (3.57) provides the convergence to the
desired equilibrium with the help of a numerical example. For this purpose, we will again take
a synthetic Manhattan grid network as in Section 3.1.6. The only difference is a larger noise
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Figure 3.12: Control of urban traffic from the downstream boundary: a) desired steady state
distribution, b) initial state of traffic jam, ¢) Ls norm of the density error as a function of
time.

in the positions of intersections with the standard deviation of 20 m (network is drawn in grey
in Figures 3.12a) and 3.12b)). For a continuous approximation of the velocity field vp,qzdp,
we use the weighting parameter p = 20 (the same as in Sections 3.3.3 and 3.1.6).

Thus, we will apply the boundary control to a fully congested urban area with the initial
density distribution given by

po(€,1) = pmac(&m), V(& n) €

There are a lot of vehicles at the upstream boundary of this area, i.e., pin(n,t) =
Pmaz (Emin(1)sm) Y(1,1) € [Mmin, Mmaz) X RT. These vehicles permanently provide a maxi-
mal possible inflow into the system, that is D(pin(1)) = Gmaz (§min(n),n). This traffic jam
distribution is illustrated in Figure 3.12b). Thereby, the differences in the heatmap are caused
by the variation of pma.(§,n) along the domain. Thus, more yellow zones are the those char-
acterized by a low maximal density, which is usually achieved in areas with low concentration
of roads.

The desired e-optimal steady state given by (3.55) is illustrated in Figure 3.12a) for € =
107° veh/s. Notice that the desired density distribution is space-dependent, which is caused
by the variety of the infrastructure in the considered domain, e.g., inhomogeneous distribution
of roads, different speed limits, etc. Recall that this desired distribution provides the maximal
possible throughput of the system at equilibrium up to a small constant e that is introduced
to guarantee that the vehicle density is always larger than the critical value (congested traffic
regime).

For the numerical simulation, we first discretize the domain by 7 into m = 180 cells,
and then the Godunov scheme (3.36) is implemented for every constant 7. The boundary
conditions are assigned to the ghost cells, which are the cells that do not belong to the domain
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(see Section 3.2.5 for more details). Thus, for the congested system the boundary flows (3.38)
in the numerical scheme are set to

d)m,j = S(pl,j)a ¢>0ut7j = 'LL(]), vj € {17 . '7m}7

where u; is the boundary controller (3.57) that was shown to provide the convergence to the
desired steady state. The performance of this controller is shown in Figure 3.12c), from which
we observe that the spatial Ly norm of the error from the desired equilibrium converges to
zero in finite time. The finite time convergence can be explained by the fact that in a linear
traffic system (obtained if we consider only one regime, as we did here and in Section 2.2), the
boundary condition is propagated in the whole domain with the characteristic line that has a
finite propagation speed.

3.4.4 Discussions

In this section, we considered large-scale urban networks from the control point of view. In
particular, we again used the 2D LWR model rewritten in curvilinear coordinates (3.34),
and demonstrated how it can be used for control design. The control goal was to drive a
fully congested area to the equilibrium state characterized by the maximal throughput of the
system, which also implies shorter traveling times. The maximal throughput at each line of
constant n (flow path in a continuum plane) is constrained from above by the capacity of its
strongest bottleneck. For instance, imagine a road (or n-line in our terms) that consists of
segments characterized by different speed limits, e.g., 30 km/h and 50 km /h. Then, the steady
state flow is constant along the road, and its value is determined by the capacity of the road
segment with the lowest speed limit.

To simplify the problem mathematically, we restricted this part to traffic being only in
the congested regime. This allows us to consider a linear problem (as it was done in Section
2.2), which is a set of transport PDEs parametrized by n with space-dependent FD. This
simplification allows us to consider boundary conditions in a strong sense, and moreover, we
do not have to handle discontinuities in the solution. We provide the congested regime by
adding a small constant €, and subtract it from the desired equilibrium flow, which corresponds
to the maximal throughput minus e. Hence, we call the desired state the e-optimal state
w.r.t. throughput maximization. Notice that this constant was introduced for mathematical
simplicity, and its value can be arbitrarily small. Thus, the desired state can still be seen as
the equilibrium of (almost) maximal throughput.

The control design should be realized by actuating only the downstream boundary of the
congested domain. It again relies on the model (as in the previous section) and requires
only the information about the network geometry and its infrastructure parameters. The
controller (3.57) includes only the feedforward component, since the curvilinear coordinate
transformation and the restriction to only one traffic regime allowed us to considerably simplify
the 2D network control problem. Lyapunov methods were used to prove the exponential
convergence to the desired equilibrium. Finally, we demonstrated the performance of the
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boundary controller on an example of a heavily congested network with a large inflow demand
at its entry. The Ly norm of the error term showed a finite time convergence.

In the next section, we are going to extend the boundary control problem to the mixed
regime traffic, which implies considering a nonlinear PDE for a urban network (3.34).

3.5 Boundary control for mixed regime traffic

In this section, we consider control problem for large-scale urban networks with mixed regime
traffic. Thereby, we again rely on the 2D LWR model resulting from the curvilinear coordinate
transformation (3.34), i.e., an assumption on uni-directional traffic must still hold. Unlike in
the previous Section 3.4, here the traffic state satisfies a fully nonlinear PDE system without
being restricted to any particular regime. Thus, we now consider a much more general problem
that poses a lot of technical issues to handle due to discontinuities in the solutions and weak
boundary conditions.

We design a boundary control law for some uni-directional urban transportation area
explicitly by relying only on intrinsic model properties and network geometry. The main
contribution of this section is to present the first explicitely derived boundary controller for a
2D conservation law model that is able to track a space- and time-dependent trajectory that
admits discontinuities in its solutions. To make this possible, we use the Hamilton-Jacobi
framework as it was done in Section 2.3, but extending it to 2D and handling space-dependency
of the fundamental diagram, see Section 3.2.6 for a general theory on Hamilton-Jacobi PDE
with space-dependent Hamiltonians. This means that instead of the classical Lax-Hopf formula
(2.32), we have to apply the viability theory to the solution of a Hamilton-Jacobi-Moskowitz
problem with a space-dependent Hamiltonian explained in [44, 11].

3.5.1 Problem statement

Problem 3.3

Our objective is to design boundary control laws win(n,t) and eyt (n,t) Y(0,t) € [Nmins Mmaz] X
R* such that the vehicle density p(&,n,t) given by the system (3.34) tracks a desired trajectory
ast — oo.

In Section 2.3 a similar problem was posed for a single homogeneous road (see Problem 2.3
and Lemma 2.2) but there was no space-dependency in the FD. Here we extend this result for
a large urban area whose infrastructure is captured by the space-dependency in the FD, which
makes its solution more technically involved. Throughout this section we make the following
assumptions:

Assumption 3.1
Inflows ¢in(n,t) and outflows Gour(n,t) of the 2D traffic system (3.34) must satisfy the follow-
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ing inequalities ¥(n,t) € [Mmin, Mmaz) X RT

¢m(77775) < ¢%fﬁc(77)> d)out(nvt) < (Z)%Z:i:(n% (372)
where ¢ (1) is the transportation capacity at the strongest bottleneck along the n-line defined
in (3.51).

Moreover, there exists € > 0 such that ¢in(n,t) and dour(n,t) additionally satisfy:

t+tct'r(7])
Gin(n, T)AT < tar(n)dmat(n) —e  and

t
btoen () (3.73)

¢out<777 T)dT < tct'r(n) migc (77) - &,
t

where ter(n) is the minimal controllability time for n-line, i.e., the time needed for a solution
evolving from one end of n-line to reach the opposite end:

Emaz(n) 1 Emaz (1) 1
tetr(n) = min / ~ dg, / - dé ) (3.74)
v(&:m) w(&,m)
&mzn(n) fmin 77)

It means that inflows and outflows for each 7-line are not allowed to exceed the capacity
of the strongest bottleneck of the corresponding line instantly (3.72), and (3.73) means that
they must be strictly lower during the time interval given by tqr(n) (3.74). This assumption
is necessary for the proof of Theorem 3.2.

Assumption 3.2
The solution of IBVP (3.34) is determined by the boundary conditions only, i.e., the initial
conditions have left the system.

Remark 3.1

Note that if Assumption 3.1 is satisfied, then Assumption 3.2 holds trivially by taking t > tpin,
where toyin 15 the largest time, after which it is guaranteed that the initial conditions will have
left the domain Q. The value of tmin is given by

tinin = max  tmin(n), where
ne[nminanmaw
1 g'maw(n)
i) = tee ) (14| £ [ (pmact€om) + peéom) €] |
fmln(n)

which corresponds to equations (B.40) and (B.41) that were derived in Appendiz B.5.4.

Here we consider a vehicle density given by system (3.34). To analyze this system for a
boundary control task (as it was done in the proof of Theorem 2.3), one can obtain its solution
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in explicit form for the equivalent H-J system (3.41). Let us assume that the space-dependent
flow-density relation in (3.34) has a triangular shape (3.4), and then apply the variational
principle (3.47) to calculate the solution to (3.41). The derivation of its solution is quite
technical and, therefore, we shift it to Appendix B.5. Thus, if Assumptions 3.1 and 3.2 hold,
the solution M (&,n,t) reads V(£,1,t) € Q X [tmin, +00) :

t_Tv(§777) g’maz(n)
M(&,n,t) Zmin{ / Gin(n, 7) dT + / po(&,m) dE,
0 fmi'n("]) (375)
t—Tw(&n) Emaz(N)
¢out (777 T) dr + / Pmazx (éa 77) dé}a
0 '3
where
¢ ) Emaa(n) .
L= [ ook e = [ —id (3.76)
o v(&n) w(&,m)

Recall that ¢ € [tyn, +00) implies that the effect of initial conditions has left the system (see
Remark 3.1).

Remark 3.2

We widely use the solution (3.75) obtained in H-J formalism to analyze the properties of
system (3.34) in order to design the boundary control. The major reason lies in weak boundary
conditions given by (3.37), which imply that not any control can be imposed at the boundaries
at any time. Thus, (3.75) is used to estimate time periods during which controls might not be
accepted by the system in terms of control restriction functions, as it was done in Section 2.5.

3.5.2 Boundary control design

Theorem 3.2

Consider a vehicle density function p(€,m,t) governed by system (3.34) V(&,n,t) € QxRT, for
which Assumptions 8.1 and 3.2 hold, and the corresponding Hamilton-Jacobi solution given
by (3.75). Assume also the desired density profile pa(&,n,t) and boundary flows ¢in,(n,t) and
Gout, (1, t) that are also given by (3.34). Then, if V(n,t) € [Mmin, Mmax] X RT the boundary
controllers in (3.34) are set to

(1) uin(na t) - (bind(n? t) - ke(n7 t)v
(2) uout(nv t) = ¢outd ("7, t) + k’e(??, t)v
Emaz (1) (377)

~

atere c(n.0) = [ (p(€n.0) ~ pulén.) dé and k>0,
Emin(n)
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then Ya,b: Emin(n) < a < b < &nax(n) we obtain Y1 € [Mmin, Mmaz)

b

lim (p(é, n,t) — pa(&,m, t)) dé = 0.

t—o00
a

Notice that the boundary controllers w;,(n,t) and wey(n,t) are applied by changing the
demand at domain entry and the supply at domain exit, respectively. The control functions
enter the system (3.34) through the minimum function (and therefore are not necessarily
fulfilled pointwise):

Um(??a t) =D (pin(na t)) ) uout(na t) =S (pout(na t)) :

Proof of Theorem 3.2. The proof shows that the MF solutions converge pointwise up to a
constant shift as t — oo, see Lemma 2.2 and Remark 2.4 for implications of this convergence.
Thus, the procedure here is the same as in the proof of Theorem 2.3 for a problem in 1D apart
from a few differences listed in Appendix B.6. O

Remark 3.3

Note that the integral convergence of densities stated in Theorem 3.2 implies that the state
approzimates the desired trajectory as time goes to infinity, since a and b can be arbitrarily
close in space, i.e., p = pg ast — oco.

3.5.3 Numerical example

Here we demonstrate the efficiency of our boundary controller (3.77) applied to traffic evolving
on a urban network with geometry as in Grenoble downtown. The total surface of the chosen
Grenoble area is approximately 1.4 x 1 km?. We track a desired density profile that is space-
dependent and periodic in time. The geometry of the studied area in Grenoble is shown in
grey in Figure 3.13. The directions of traffic motion on roads were however modified for this
example (numerically) such that all roads are uni-directional. Thus, there exists some global
direction of traffic flow towards North-East of the city and no loops are allowed, which is
exactly how it is illustrated in Figure 3.7. The speed limits on roads are taken from real
Grenoble network data: some roads can be driven with 30 km/h, and others can be driven
with 50 km/h.

We define a numerical grid in Q x Rt and deploy the Godunov scheme in 2D, as described
in Section 3.2.5. First, discretize the 7 dimension into m = 180 cells. Then, we use the 2D
Godunov scheme (3.36) for every j € {1,...,m} with a discretization step A =5 m (space
cell size in £ dimension). We also set the time cell size At = 0.1 s, which provides that the
CFL condition is satisfied. In order to compute the integral related to the feedback term
in (3.77) we perform the Riemann summation for every j € {1,...,m} over all £ cells, i.e.,
i€ {l,...,n;}, where n; is the number of £ cells contained in each cell j.
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Recall that triangular FD is characterized by p. = pmaz/3. The initial vehicle density
distribution is given V(&,7) € Q by

po(&,1) = Pmax(€,7)-
We set the inflow demand D (pjn,(n,t)) and the outflow supply S (pout,(n,t)) in the desired

system to be time-periodic functions:

D (pin,(1,1)) = 63t (1) [0.6 + 0.4sin (2 (0 + 2, A tmin))|,

) ) t N — Nmin
(Poutd (n,t)) maz (1) + s 27 ( 2400 + Nmaxz — Nmin )

Hence, these boundary flow functions are guaranteed to be smaller than the minimal capacity

on each line of constant 1. Note that these functions were chosen such to generate a mixed
regime desired trajectory pg(£,n,t) with a period of 7 = 2400 seconds. Such a desired trajec-
tory is generated on purpose, since the biggest advantage of boundary controllers (3.77) is the
ability to handle mixed traffic regimes, which is mathematically a tricky case.

We demonstrate here, how the boundary control law enhances the traffic state if there is
a feedback, i.e., k > 0 in (3.77). The controller is applied at both upstream and downstream
boundaries of the domain, and it physically corresponds to demand at the entry and supply
of the exit, as illustrated in Figure 3.4. Thus, we will compare two possible strategies:

1. Both feedforward and feedback terms are used, i.e., V(1,t) € [Nmin, Mmaz] X RT:
uln(777 t) = (bind (na t) - ke(na t) and uout(nv t) = (z)Outd (777 t) + ke(nv t)
2. Only feedforward term is used (no feedback), i.e., V(1,t) € [min, Mmaz) X RT:

Um(% t) = ¢ind (777 t) and  Uout (777 t) = ¢outd (7]7 t)'

In Figure 3.13 the evolution of traffic density within the time interval of 27 = 4800 seconds
is shown, i.e., 2 time periods of pg(§,7n,t). The middle column illustrates the evolution of
density controlled with the gain k = 5-1079, i.e., strategy 1). The left column corresponds to
the density evolution using only the boundary conditions of the desired system, i.e., strategy 2).
The right column is related to the time-periodic desired density trajectory with the boundary
conditions as described above. We can observe the convergence to the desired profiles for the
case with feedback that becomes visible already at t = 27, while this does not happen for the
case without feedback. Notice that all the density distributions are drawn in (z, y)-coordinates
in Figure 3.13, i.e., we had to rescale the functions and to perform the back transformation
from (&, n)-space to (z,y)-space.

In Figure 3.14, the L; norm of the error in the number of cars is depicted as a function
of time for different control gains. The density error p(z,y,t) is defined as in (1.10), and
its L1 norm can be computed as in (1.6). We can clearly see that a higher control gain
k = 1073 provides a higher convergence speed in comparison to a controller with a smaller
gain k = 5-107°. On the contrary, k = 0 will not achieve the goal even if we would start from
an empty city without any cars. This could work only if there is absolutely no difference in
the initial conditions with the desired profile, which is hardly ever possible.
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I

) t=2r

Figure 3.13: Traffic control in Grenoble downtown. Right column: desired density pq(x, y, t);
middle column: evolution of p(z,y,t) with k = 5-107%; left column: evolution of p(x,y,t)
with k£ = 0. All the plots represent snapshots made at: a), b), ¢) t =0; d), e), {) t = 0.57; g),
h),i) t =17;j), k), 1) t = 27.
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Figure 3.14: The L; norm of the density error as a function of time for different control gains.

3.5.4 Discussions

In this section, a boundary control technique was presented for a mixed regime traffic density
evolving on a large urban network with a preferred direction of motion. The control goal was
formulated in a similar way as in Section 2.3 but in two dimensions, which caused additional
technical difficulties. The viability solution of the Hamilton-Jacobi PDE with space-dependent
Hamiltonian (3.75) was used to prove Theorem 3.2 stating that the desired trajectory is
approximated even if controls can not be directly imposed at the boundaries, i.e., we are able
to handle weak boundary conditions in 2D using control restriction functions as in Section 2.3.
Approximating desired density trajectory implies that the number of vehicles tracks pointwise
the desired number of vehicles. Thus, from the practical view point, this control goal has even
more sense than pointwise tracking of the desired density.

The controller (3.77) is applied at all boundaries of the urban area, and it acts as to track
a space- and time-dependent trajectory that can be in any traffic regime. Its performance
has been verified with the help of a numerical example using the geometry of an area in
Grenoble downtown. Thereby, the initial density distribution corresponded to a traffic jam.
We compared two control strategies: without the feedback part and with it. As expected from
the theoretical results, feedback plays an essential role in tracking the desired density profile
in the mixed traffic regime. Moreover, the control gain affects the convergence speed.
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3.6 Traffic control using variable speed limit

Let us now demonstrate how to solve control tasks using a variable speed limit (VSL) in a
2D-plane by stating a new problem in (&, n)-space.

We consider the following IBVP on the same bounded domain (&,7,t) € Q x RT:

op(&,m,t) | OP(&,n, p(&,m,t),u)
ot o€

Gin(n, t,u) = min{D (&min, 1, pin(n, 1), 1) , S (Emins 1, p (Emin, 0:1) ,w)} (3.78)
Gout (1, t, ) = min {D (&mazs 75 P (Emaz> 1, ) 1) 5 S (Emaws M5 Pout (1, 1), w) }
p(ga m, 0) — pO(f’ n)v

:0’

where the flux function ® now depends also on a control parameter u € [0, 1] that represents
the variable speed limit ratio: no VSL is applied if u = 1, and no movement is allowed if u = 0.
Applying variable speed limits should be understood as a flexible (temporary) restriction on
speed at which vehicles can drive on a given stretch of road. The speed limit varies according
to the current environmental and road conditions and is displayed on electronic traffic signs.
Setting u = 1 implies that vehicles can drive at speeds bounded by the legal maximum (e.g.,
130 km/h on French highways, or by the comfort zone of drivers on German highways).

Note that flux ® is still a concave function with respect to p, and ® is continuous in wu.
Moreover, ®(&,n, p,0) = ®(£,1,0,u) = 0. One should see u as the in-domain controller that
affects the traffic flow. It is applied in the whole domain including its boundaries. Therefore,
the demand and supply functions in (3.78) have u as an additional argument.

3.6.1 Contributions

The material presented in this section was inspired by a previous work [78|. However, there
are four major points that were not considered in [78], and thus will be addressed here:

1. 2D systems: this is the first time that VSL control is applied on a large transportation
network directly using the intrinsic properties of the model only. Hence, the VSL con-
troller is designed by analysing the structure of a 2D conservation law (3.78) without
any discretization that needs to be done to obtain a numerical solution.

2. Space-dependent diagrams: we extend the result of [78] by considering space-dependent
diagrams, which imply space-dependent desired equilibrium profiles.

3. Realistic FDs: in [78] it was assumed that 0P (&, n, p,u)/0u > 0 holds, see Figure 3.15a).
This assumption was made for simplicity to avoid multi-valued functions, i.e., there is
only one value of u for each flow ¢. In this section, we omit this condition by allowing
more general forms of FD. In general, applying speed limits (u < 1) can cause a shift
of the critical density towards larger values in realistic fundamental diagrams. This is
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0 : P

Pc Pmazx 0

Figure 3.15: Fundamental diagrams and their dependence on speed limits: a) monotonic
dependence 0®(&,n, p,u)/0u > 0 used in [78]; b) dependence we assume here, i.e., possible
increase of p. when stronger speed limits are applied (from real data, see [24]). Blue line:
u = 1. Red line: v = 0.7. Green line: v = 0.5. Bold dashed line: maximal flow function
defined in (3.80).

schematically depicted in Figure 3.15b), see red FD for u = 0.7 and green FD for u = 0.5
and compare p3 and peo with p. achieved with v = 1. This means that applying
speed limits can increase the range of vehicle density, for which the free-flow regime
is preserved. There it is also shown how VSL can enhance traffic flow for some given
densities in the congested regime, e.g., compare flows ¢o with ¢; that can be achieved
with different speed limits for the same vehicle density p.o. These VSL effects on the
shape of FD were revealed from data obtained due to a real-life experiment conducted
on a European VSL-equipped motorway, see [24]. In general, we have no restrictions on
how FD must depend on VSL apart from ®(§,n, p,0) = 0, i.e., the flux function is zero
if there is no movement allowed.

. Investigate the smoothness of VSL controller: considering such a general class of fun-

damental diagrams may lead to irregular control policies. We investigate whether any
conditions must be imposed on the functional dependence of FD on VSL in order to
provide smoothness.

3.6.2 Problem statement

Let us first introduce the following notations:

. A . A .
min = min s min = min s
n 776[77mm777max] £ Ee[gmin (n)afmax(n)]

and now we can formulate the stabilization problem as follows.
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Problem 3.4
Given V(&,n) € Q the fundamental diagram ®(&,n, p,u) and the initial density po(€,m) with
dynamics governed by (3.78), find a VSL controller w(&,n,t) such that

Jim A€, m,0) =0, V(&) €9 (3.79)

where p(&,n,t) is the deviation from a desired equilibrium pg(&,m) € (0, pmaz(§,1)).

3.6.3 VSL control design

Let us define a mazimal flow function f(&,n, p), which is the maximum possible flow that can
be achieved at a given space point for a given vehicle density over all the VSL values (see the
thick dashed line in Figure 3.15):

f(&n,p) = max ®(&,n,p,u). (3.80)
u€l(0,1]

We also introduce a multi-valued function G(§,n, p, ¢), which is the inverse image of the
fundamental diagram with respect to the speed limit:

G(&n,p,¢) ={u€[0,1]: (&, n, p,u) = ¢} (3.81)

In general, it is possible that several values of speed limits u provide the same flow value, see
the black dot in Figure 3.15. Therefore, G(&,n, p, ¢) for a fixed set of parameters represents a
set, not a single value.

Theorem 3.3
Let the controller uw = u(&,n, p) be given Y(&,n) € Q and for p = p(€,m,t) by the following

nclusion
u(&,n,p) € G(&,m, p, da(§,m, p)), with

_ [ n, p(€ n,t))
¢d(£a777p) - B(&ﬁap) Hgn B(f/,n’p)

(3.82)

wnd Blenp =147 [ olnvi
where the control gain 7 is a positive constant defined as
gmaz(n) -1
0.<7<min / pmaa (€, m)dE
émz’n(n)
Then there exists ¢ = c(7,po) > 0 such that for every py € C1(Q) the system (3.78) with
initial condition p(&,m,0) = po(&,n) has a unique solution p € C1(Q x RT), which satisfies

max (&, n,0)] < e max [5(E,n,0), Ve RY, (3.83)
(&meq (&m)eQ

and moreover, V(&,n) € Q
Jim @(&,m, (&, m, 1), u(S, m, p)) = min f(E&m,pa(€ ). (3.84)
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Remark 3.4
Note that the VSL in-domain controller u(&,n, p) depends on the state, i.e., it is a feedback
control law. Let us give several comments on the controller structure:

1. Such a controller choice (3.82) assures that the system flow is immediately set to the
desired flow ¢gq, i.€.:

P (57777,07 U) = ¢d(§7777p)7 V(f,n,t) € O xRT.

2. The desired flow ¢q4(&,m,p) is designed such that it does not exceed the mazimal flow
function f(€,m,p) in any point, i.e., V(&,n,t) € Q x RY. The space-dependency of the
desired flow is incorporated into function B(&,n, p).

3. The function B(§,n, p) is constructed in such a way that it acts as a feedback linearization
for system (3.78). Thus, the system loses the conservation law structure, and we do not
have to handle discontinuities in the solution. This will be shown later in the proof of
Theorem 3.3.

4. The lower and upper bound on control gain v are set such to guarantee that function
B(&,n, p) is positive, i.e., B : Q x RY — R*. The upper bound on v is required for
situations when the density error p has a negative value, which can appear since we
design a general controller that drives any state to any desired equilibrium.

Proof of Theorem 3.3. First of all, we need to prove that the controller given by (3.82) is well-
defined. Namely, we will show that the set G(&,n, p, pa(&,n, p)) is not empty, i.e., the desired
flow takes values in a bounded range that can be achieved by the VSL control. Indeed, for all
(€,m) € Q we get from (3.82) that

B(E,np) & B(Enp) = BEmnp)

and, thus, by the positivity of function B(&,7,p) (see item 4 in Remark 3.4), we get
ba(€,m,p) €10, F(€,m,p)] V(€,m,t) € Q x RT. This interval exactly corresponds to the range
of the flux function ®(&, n, p, u(§,n, p)) w.r.t. u, therefore the set function G(&, 7, p, ¢4(&,n, p))
is not empty.

Now we substitute the constructed flux function

_ [ p)
(I)(éa m, 0, u(éa m, p)) - B(S’ m, p) Hé}n B(gl, n, p) (386)
into IBVP (3.78) and obtain:
op&,m,t) o fE&n.p) 9B(Emp) _

ot ¢ B(&,m,p) 08

Then, if we insert the definition of function B(,n, p) from (3.82), this equation can be further

simplified as

85(5’ ik t) = _’7:5(57 m, t) Hgn

f(E&,n,p(€' n,1))
- . (3.87)

B(&',n,p)
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This equation does not contain any partial space derivatives, and thus the controller really
acts such that the conservation law structure is lost. Moreover, this dynamic equation has
a stable equilibrium at zero. By [78], we obtain an exponential convergence to the desired
equilibrium with rate ¢ > 0, which depends on controller gain v and the maximal flow function
f defined in (3.80).

Finally, we see that the convergence of densities V(&,7) € Q p(&,n,t) — pa(€, 1) ast — +o0
implies that function B(&,n, p) — 1, and thus (3.86) results into

(&, p(&,1,1), u(€, 7, p)) — main f(E& i, pa(€ i),
which coincides with (3.84), and thus concludes the proof. O

Remark 3.5
Property (3.84) means that the highest possible equilibrium constant flow is achieved for a
given pq(§,m). Namely, by definition of (3.80), the following double inequality holds ¥n €

[nminy nmax]

min @(¢, 7, pg; 1) < min f(&, 11, pa) < Do (1) (3.88)

where ¢ (n) is the capacity at the strongest bottleneck along the n-line (3.51). The left
inequality in (3.88) implies that the same or higher traffic flow can be achieved with lower
speed limits than for u = 1. Thus, any VSL controller in the system can provide at most the

flow msin f(&,n, pa), which is indeed achieved by controller (3.82) due to the property (3.84).

3.6.4 Smoothness of VSL controller

The VSL controller (3.82) is defined via inclusion, and in general it can result in a discontinuous
function in space. For example, imagine that two different speed limits are able to provide the
desired traffic flow. In this case, our fear would be that the speed limits jump from one value
to another along the road infinitely many times. However, if we assume additional properties
on how the flux function should depend on the speed limit, we will obtain that u(&,n,p) is
differentiable almost everywhere.

Theorem 3.4

Assume that V(€,m) € Q, Yp € [0, pmax(&,m)] and Yu € [0,1] the fluz function ®(£,m, p,u) is
differentiable. Moreover, assume that it is either twice differentiable and strictly concave in u
(congested regime) or monotonic in u and reaches its mazimum at u = 1 (free-flow regime).
Then using controller provided in Theorem 3.3 and assuming p € C1(Q) Vt > 0, we can choose
the speed limit function u(§,n, p) such that it is differentiable almost everywhere w.r.t. €.

Remark 3.6

This additional assumption on the functional dependence of ®(&, 1, p,u) on u can be interpreted
as follows. When traffic is in the congested regime and speed limit decreases, the traffic flow
can first increase for a fized value density as illustrated in Figure 3.16b), and then it drops
to zero as the speed limit approaches zero. On the contrary, when traffic is in the free-flow
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p in cong

1 u

Figure 3.16: FD as a function of u: a) monotonic dependence for a fixed p in the free-flow
regime, b) concave dependence for a fixed p in the congested regime.

regime, the flow of vehicles is mazimal if there are no speed limits (u = 1), and when speed
limits are applied the flow decreases monotonically as u decreases, see Figure 3.16a).

Remark 3.7
Notice that by Theorem 3.3, vehicle density is a differentiable function p € C1(Q) Vt € R if
the initial condition function of system (3.78) is differentiable, i.e., pg € C1(£2).

Proof of Theorem 3.4. For the proof, we fix time ¢ and line n. Let us consider an interval of
all possible £ values and split it in two subsets H1 and Hs as:

[Emin(0), Emaz(n)] =H1 U Hy,  where

Hl = {5 € [émin(n)’fmaz(n)] ou

0D (€, pl6), ul€,p)) 0}7

s = {5 € lmin(1): Emas ()] | I 0, ule, ) o}.

ou
We introduce also further subsets of H; and Hs that correspond to their interiors:
E, =int(H,), E; = int(Ha).
Moreover, we introduce a complementary subset Ey as
Ey = (Hi\ E1) U (Hz \ Ey),
such that EgU Ey U Ey = Hy U Hy = [Emin(0) s Emaz(0)]-

It is clear that sets Fy and E5 have the same Lebesgue measure as sets H; and Hy, re-
spectively. Thus, the set Ejy is of measure zero. This means that showing that the controller
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function u(§) = u(§, p(§)) is differentiable on sets Fy and Fy would imply that it is differen-
tiable almost everywhere. Let us first consider set F; with the following function defined from
(3.86): € o)
(&, p(€
F1(€7U) - <I>(§7p(§)7u) B(f?ﬂ(&))lﬁ where k - 1'1211 B(f’,p(f’)) :

This function is differentiable by the assumptions made in Theorem 3.4 and is equal to zero
by (3.86). Moreover, the derivative of ®(&, p(§),u) with respect to w is non-zero on set Ej
by its definition. This immediately implies that the derivative of F;(&,u) with respect to w is
also non-zero. Therefore, we can use the Implicit Function Theorem, which assures that there
exists a differentiable function u(£) on this set satisfying (3.86).

In the second set E5 we define another function as

006, pl6),w)
ou ’

Notice that F5(&,u) is zero by the definition of set Fs, and it has a negative derivative with

FQ(&? ’LL)

respect to u, since we assumed concavity of the flux function for the congested traffic regime
(in a pure free-flow regime set Fy would be empty). This means that we can use the Implicit
Function Theorem again, thus a differentiable function u(§) exists on set Ea as well.

Finally, combining these results, we obtain that the controller function u(&) is differentiable
on F1 U FEy, i.e., almost everywhere. O

Proposition 3.1. In case of concave dependence of FD on speed limits, u(&,n, p) can some-
times be chosen from two values G(&,m, p, @q) for p being in congested regime, see Figure 3.16
b). Then, the most appropriate choice from the practical point of view is the minimal value,
since it provides the free-flow traffic regime:

U(f, m, p) = mln{G({, 0, ¢d)}

As an example, consider the intersection point (black dot) in Figure 3.15b) corresponding to
the flow-density pair that can be achieved using either w = 1 or u = 0.7. In this case, we
should choose u = 0.7, since this provides the free-flow regime and, thus, a more smooth traffic
motion.

To conclude, we have shown that the VSL controller is differentiable almost everywhere if
the fundamental diagram depends on w is a special way, i.e., monotonically increaging function
of u in free-flow regime and a concave function of u in congested regime. In order to be able
to apply the designed VSL controller (3.82) in practice (or in our case, it will be a numerical
example), we should first discuss flux functions depending on u by suggesting an explicit
relation satisfying assumptions made in Theorem 3.4.

3.6.5 Parametrization of fundamental diagram

Let us assume that the basic shape of FD is triangular as in (3.4), which should be modified
due to the dependence on speed limits. We denote v1(§,n) and w;(&,n) as kinematic wave
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speeds for u = 1 in the free-flow and in the congested regime, respectively. We can assume a
linear dependence of kinematic wave speeds on speed limits, e.g.,

v(&,nu) =uv(&,n),
{ w(&,mu) = wi(€,n) 4+ (1 — w)waeaa(&, 1), (3.89)

where wgqq(&,n) is an additional value expressing the effect of speed limit on the kinematic
wave speed in the congested regime. This value is bounded and will be defined later. Thus,
if speed limits are high (u < 1), drivers are moving slowly, and therefore start braking late
(larger safety distance for lower speeds). Let us estimate the range of reasonable values for
wada(€,m) such that V(&,n) € O : )

8¢maz 57 ’r}? U

TS 2 0. (3.90)
Condition (3.90) means that it is not possible to enhance the transportation capacity by apply-
ing speed limits, see (3.88). This comes from the fact that ¢4, is determined by the number
of lanes and free-flow kinematic wave speed, which depends on the legal maximum speed that
takes specific values depending on a country and road type. Thus, the transportation capacity
is a property of urban network geometry and it should not be changed with a variable speed
limit. In the following, we skip the dependence on (£, n) for simplicity of notations. We insert
w(u) and v(u) from (3.89) into the definition of ¢pq, for triangular FD (2.3) and get

u(wr + (1 — u)wedd)

= . 3.91
¢mam(U> V1 Pmax w1 + viu + (1 — U)wadd ( )
We take the partial derivative of (3.91) w.r.t. w and obtain
Obmaz(u) (Wi + (1 — u) Waga)® — u?V1Waad
— " = V1Pmaz 5 (3.92)
ou (w1 +v1u+ (1 — u)wedq)

In accordance with condition (3.90), we need to find such range of w,qq that (3.92) is positive.
We distinguish two different cases, for which the nominator of (3.92) takes non-negative values
Vu € [0, 1]:

1. Case wggq < 0. Then, obviously 0¢mmar(u)/Ou > 0 holds always.

2. Case wggg > 0. Then, we must provide that

wi + (1 — u) Wadd > U\/WaddV1 = Wi + Wadd > U (Wadd + /WaddV1) -

In the worst case, this inequality must be satisfied for v = 1, which results into

wi
Wadd < vf
1

This expression yields the upper bound for wgqq. By the definition (3.89) and the fact that
w(u) should be non-negative, the lowest bound is —w;. Thus, the reasonable range reads

2

Wi
Wadd € | — W1, — |-
U1
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For the numerical example, we will pick the largest possible value wyqq = w?/v1, since by
(3.92) this value provides O¢maz(u)/0u = 0 at w = 1. From the physical viewpoint, this
choice implies the largest possible influence of VSL on FD in the congested regime (the largest
possible surface enclosed by the blue line in the congested regime and the thick dashed line in
Figure 3.17).

3.6.6 Optimal equilibrium

The controller given by (3.82) can be applied to achieve any type of desired equilibrium
pa(€,1) € (0, pmaz(&,1)) V(€,1) € Q. However, for the following numerical example, we seek
to achieve an optimal equilibrium p}” " that corresponds to the throughput maximization and,
at the same time, to the density maximization, i.e., the highest possible number of cars should
be able to pass the system at maximal flow. Thereby, the number of cars in a urban area
is directly related to the vehicle density in it that can be increased due to the change in the
shape of fundamental diagram caused by u(&,n, p), as it is shown in Figure 3.17.

The method to compute exactly equilibrium profiles providing the maximal flow in the
system was presented in Section 3.4.1. However, there it was done for v = 1, i.e., no speed
limits were applied. With the help of speed limits, we are now able to extend the result of
Section 3.4.1 by maximizing also the number of vehicles that can pass the system at maximal
flow. In particular, we seek to find V(&,n) € Q speed limits u°Pt(¢,n) such that

Gmaz (&M, Uopt) = %@(% 1)a

where ¢ (1) is the maximal possible steady state flow determined by the capacity at the

strongest bottleneck along the n-line (3.51). Thus, the VSL controller must provide that this
steady state flow is achieved, and at the same time

pTH(Em) = pe(&,m, uPh).

Thus, the desired equilibrium density corresponds to the critical density achieved for u°Pt.
In terms of Figure 3.17, this means that if ¢ (u = 1) = G (u??) for some (&,1) € Q,

°Pt ig such that pzpt = pc(u?t). Speaking in terms of Theorem 3.3, the desired flow
bq = Gmaz(uPt). Hence, the controller should act such to provide the same maximal possible

flow, while the density is increased, since pgp S p1- Notice that due to the change of FD

then u

shape, at the desired equilibrium traffic operates only at critical density, i.e., there are no
congestions in the whole area.

Let us again skip (&,7) in the notations for simplicity. In order to find u®?’ ¥(&,7) € €,
we use (3.91) and (2.3), and obtain

V1 + w1 ulPt (wl + (1 - UOpt)Wadd)
1

3.93
w1 Cw1 + vyuoPt + (1 — "U«Opt)wadd7 ( )

Pmaz (uopt) =v

where p. corresponds to the critical density as in (2.3) for v = v; and w = wy.
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0 P1 opt Pmax P

Figure 3.17: Blue line: FD for u = 1. Red line: FD for u = u°".

Further, we use p.v1 = Gmaz, With dpmaz, being the highest possible flow for some (€,7) € Q
reached with u = 1, and weqq = w?/v; to rewrite (3.93) as

u%P' (v + (1 — uPt)wy)

opty _
(bmaz(u ) ¢mam1 w1 + (Ul — w1> 2oPt

(3.94)

Let us now introduce a coefficient x € (0, 1] to denote the ratio of the flow at the strongest
bottleneck along the n-line to the maximal possible flow at space point (&,n) for u = 1:

g (n, 1)
e = e

From (3.94) we get the following equation V(&,1) € Q to be solved for u°P*:

CufP (g + (1 — uf)w)

w1 + (v1 — wy) uoPt

which can be further expanded as

(u‘)pt)2+u°pt </@ <Ul—1> — 1)1_1> +k=0.

w1

This is a quadratic equation with respect to u°P!, which yields two possible solutions. We pick

opt

the one with the minus sign, since this guarantees that u°?* remains below 1:

p+1—rr-—1 —\/1/—1—1—/1 v—1))% -4k

vl _ (v —=1) =/ (v—1) | (3.95)
2

with ¥ = v1/w;. Finally, the optimal equilibrium is the critical density defined in (2.3)

obtained for u°?* from (3.95):

opt w(uopt)
Pa = 0(uot) + w(uort

)pmax, (3.96)

where v(u’!) and w(uP!) can be taken from (3.89) for u = uept and wygq = w?/vy.
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3.6.7 Numerical example

As a network we again take the downtown of Grenoble. All the infrastructure parameters and
the two-dimensional discretization scheme are exactly the same as described in the numerical
example for 2D boundary control presented in Section 3.5.3.

It is again assumed that the critical density in triangular FD is p. = pmas/3. The initial
datum is given V(£,7) € Q by

po(&:1) = 3pmax(&,m)/4,

thus, it is in the congested traffic regime. The inflow demand and the outflow supply are set
to the maximal possible steady-state flows for v = 1, that is

D (fmm, 7, Pm(ﬁ), u) = %3;(777 1)7 S (fmaxa 7, pout(n>7 u) = mfgy(nv 1)7
which are the only possible values, if we want to maximize the throughput of the system.

The desired optimal steady state (3.96) is constructed following the steps described above,
and it is depicted in Figure 3.18b). This state is characterized by the maximal possible flow
through the system achieved for the maximal possible number of vehicles. The numerical
scheme needed to discretize the PDE system (3.78) is again the Godunov scheme in 2D that
was described in Section 3.2.5. The only difference is that the for every grid point in space
and time V(i,j, k) € {1,...,m} x{1,...,n;} x ZT, the flux function must include dependence
on VSL controller as in (3.89) for u = u°* from (3.95).

Note that in (3.82) there exists an upper bound for the controller gain « that guarantees
that B(&,n,p) > 0 V(£,m,t) € Q x RT. However, one can accelerate the convergence rate by
choosing the maximal possible (7, t) for each line of constant 7 and for each time. Thus, we
will compare the control results obtained with two different control gains:

1. A constant control gain v = 0.14 that is the largest possible value for a given urban
network (Grenoble downtown) that matches the bounds stated in Theorem 3.3.

2. A time- and space-varying control gain ~(n,t):

1—e€
v(n,t) = : : (3.97)
max{ —min [ p(E,m, t)dE, (5}

where § > 0 is chosen to get v > 0 even if the minimum is positive (since the arbitrarily
large v can be used), and € > 0 provides the lower bound for B(&,n, p).

Notice that Theorem 3.3 was proved for the case of constant « (as in item 1). However,
the convergence can be accelerated also with  that depends on 7 and ¢ as in (3.97). The only
issue is that function B must be always positive, and also that v can not depend on dimension
&, since in this case the feedback linearization would not work such that the dynamic equation
turns into(3.87) due to an additional derivative term w.r.t. &.
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Figure 3.18c) - f) illustrates the temporal evolution of traffic density under the VSL control
(3.95) with a time-varying gain given by (3.97) with e = 0.01 and 6 = 0.1. Thereby, at every
time step, the demand and supply functions at domain boundaries are set to the maximal
possible throughput corresponding to the desired flow in the system. We observe that the
state converges to the desired equilibrium, which becomes visible already after t = 2 hours of
simulation time.

Remark 3.8

Notice that at the desired equilibrium the critical density at each point of space will be higher
than at initial time, since the VSL control changes the FD shape and affects the desired density
is as in (3.96). Therefore, the results presented in Figure 3.18 may look like driving the traffic
state towards more congested regime, although it is still the free-flow (recall that in the desired
equilibrium the traffic operates at critical density, which becomes higher with VSL control).
The traffic flow corresponds to the maximal possible steady state flow that is only determined
by the network geometry (capacities at strongest bottlenecks).

Further, we compute the L; norm of the error in the number of cars as in (1.6) with
pF (€, m) from (3.96) being the desired state. Its temporal evolutions for two different control
gains are shown in Figure 3.18a). As in the previous example, we again observe that a larger
control gain (3.97) provides a higher convergence speed in comparison to the constant v = 0.14.
Recall that as soon as we start applying control, the traffic system is completely set to the
free-flow regime, since we always choose the minimal VSL value (see Proposition 3.1).

3.6.8 Discussions

In this section, we designed an in-domain controller for the traffic state evolving on urban
networks with dynamics governed by (3.78). This controller is a parameter incorporated into
the flux function, and it should be interpreted as the ratio of a variable speed limit to the
regular maximal allowed speed, i.e., u < 1 means that the speed limit is applied. Real data
confirmed however that the traffic flow can be enhanced for a given density in the congested
regime, i.e., applying VSL might be an efficient solution to manage congestions. It also revealed
that the VSL changes the shape of the fundamental diagram such that the critical density is
increased, i.e., applying speed limits may result into setting the traffic state to the free-flow
regime. This, in general, results into a more smooth traffic motion without sudden breaking,
which has also a positive ecological impact.

The VSL controller is presented in Theorem 3.3. It is applied continuously in space and
time, and the controller affects the state such that the desired flow is immediately achieved,
and the vehicle density converges to the desired equilibrium as in (3.87). Thus, the controller
changes the structure of the PDE system (3.78) such that it is not a conservation law, i.e., the
controller performs a feedback linearization. This considerably simplifies the analysis, since
for continuous initial datum the solution to the state equation is a continuous function (and
no weak formulation is required). Thus, it was shown that the exponential convergence to the
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Figure 3.18: a) L; norm of density error as a function of time for different control gains, b) the
desired optimal equilibrium as in (3.96). Traffic flow control by VSL in Grenoble downtown.
Density p(z,y,t) at: ¢) t =0, d) ¢t = 10 min, e) ¢ = 30 min, f) ¢ = 2 hours.
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desired state is guaranteed under the proposed VSL controller (3.82).

Further, we analyzed the structure of the proposed controller in Theorem 3.4. Thereby, it
was assumed that FD depends on speed limits such that it monotonically increases with w for
the free-flow traffic regime and it reveals a concave dependence for the congested traffic regime.
Under these assumptions, the controller was shown to be differentiable almost everywhere with
respect to {-dimension, which determines the flow motion.

Then, we suggested a specific way to parametrize the triangular FD with « such that all
these assumptions hold. This analysis allowed us to obtain the explicit form of FD, which was
then analyzed to obtain the controller (3.95) providing the optimal steady state (3.96). This
desired equilibrium corresponds to the throughput maximization for the maximal possible
number of vehicles, i.e., as many vehicles as possible pass a urban area at maximal flow (for
the same total traveling time). This is guaranteed by the modifications in the shape of FD
introduced by the VSL controller that shifts the critical density such that the desired state
corresponds to the critical density. Thus, the traffic is in the free-flow regime everywhere in
the domain, while the maximum throughput is experienced by the maximal possible number
of vehicles. The performance of the designed VSL controller was demonstrated on a numerical
example, where a congested traffic is driven to the optimal equilibrium. The convergence to
the desired state was observed after 2 hours. Notice that the convergence speed is determined
by the controller gain that can be chosen larger, although its upper bound must not be vio-
lated. The value of the upper bound depends on the network infrastructure. The convergence
happens also faster if the state is close to the desired equilibrium.

3.7 Chapter conclusions

This chapter was devoted to control of traffic on urban networks of any size whose dynamics
are described by a conservation law in two dimensions such as 2D LWR (3.1). Traffic is viewed
from the macroscopic point of view within this modeling approach. As in the 1D case, traffic
is treated as a fluid that now propagates on a continuum 2D plane.

In Section 3.1 the 2D LWR model was presented. The model is inspired from crowd
modeling with the only difference being the restriction for vehicles to move on real physical
roads. Thus, the model requires to assume that the urban network is dense enough to be
viewed as a continuum plane. This plane is bounded by the size of the considered urban
area. To model traffic, one needs to have information about geometry and infrastructure of
the urban network under study, i.e., the location of roads and intersections, number of lanes
at each road and its speed limits. This information is used to define the maximal density and
capacities on the network. Then, all these parameters are approximated on a continuum plane
by applying the inverse distance weighting method that assigns values to variables everywhere
as a function of the distance to real roads. All these parameters being specific for different
urban networks are incorporated into the fundamental diagram that becomes an explicitly
space-dependent function.
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The 2D LWR model was compared to an MFD-based model in Section 3.1.5 using a
steady-state vehicle density predicted by commercial microsimulator Aimsun as a reference
distribution. It appeared that the 2D LWR model is able to predict steady-states even more
accurately than the MFD-based model. Moreover, it tracks more precisely shapes of congested
areas, which may play an important role for localized congestion mitigation control tasks.
Thus, the 2D LWR model was justified as a reasonable choice for model-based control design.
However, a direct analysis of such a model is a complicated task due to the second space
derivative. It is also unclear which boundary point should be actuated to affect a specific
in-domain point or area.

We had to find an approach to analyze this model such that one gets information about
the trajectories followed by vehicles in the urban area. Such analysis became possible, since
the structure of the 2D LWR model limits its applicability only for networks that consist
of uni-directional roads. The direction field depends only on network geometry and not on
state. If there are no loops in a network we can define a curvilinear coordinate transformation
that was presented in Section 3.2. This coordinate transformation translates the 2D traffic
system into a parametrized set of 1D systems with space-dependent fundamental diagram
(3.34), which is a way easier to analyze. Mathematically, it means that instead of two partial
derivatives with respect to space the modified system has only one. Although this coordinate
transformation could be defined due to specific restrictions of 2D LWR model, this model can
still be used to predict traffic evolution in several frequently occurring situations, e.g., when
during the morning rush hour all vehicles stream to the city center where most companies are
located.

Further, we have presented several results obtained by analysing the 2D LWR system in
curvilinear coordinates. Namely, in Section 3.3 we have elaborated a technique to obtain
steady-state vehicle distribution only by knowing inflow and outflow data of a urban area.
This ability to analyze equation in 2D to obtain admissible equilibria is an essential result
that enables formulating control tasks for stabilization of traffic evolving on large-scale urban
networks. Further, this result was directly used in Section 3.4, where the model was analyzed
for a boundary control design to mitigate congestions in some urban area. Thereby, traffic
was restricted to the congested regime for mathematical simplicity, since otherwise one would
have to deal with solution discontinuities.

The Hamilton-Jacobi formalism enabled to handle discontinuities for the boundary control
design in Section 3.5, where the 2D LWR model in curvilinear coordinates was considered.
There, the problem of approximating the desired vehicle trajectory has been posed for a
mixed traffic regime in asymptotic time. The problem was solved in a similar way as it
was done for the 1D case in Section 2.3. The additional difficulty was introduced due to
the explicit space-dependency in the fundamental diagram such that the classical Lax-Hopf
formula could not be applied. Instead, we had to apply the viability theory elaborated for
the case of space-dependent Hamiltonians. For a numerical example, we took the structure of
Grenoble downtown as a urban network. Simulation results revealed that the feedback part in
the boundary controller is an essential component that makes the convergence to the desired
vehicle trajectory possible.
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Finally, we used the 2D LWR model in curvilinear coordinates to design a variable speed
limit controller in Section 3.6. The VSL controller is used to directly affect the traffic flow by
imposing temporary restrictions on allowed speed, which is often used for specific situations
such as accidents, bad weather conditions, etc. This is an in-domain controller that is applied
continuously in space in the whole domain. It acts as a feedback linearization such that the
state equation loses its conservation law structure, which exempts us from considering the
solution in the weak formulation due to shocks if the initial datum is continuous. The VSL
controller can be used to stabilize the 2D system to any desired space-varying equilibrium.
If FD has a concave dependence on controller in the congested traffic regime and a linear
one in the free-flow regime (which is a physically intuitive assumption), then the controller
is differentiable almost everywhere in space. The smoothness of the VSL controller has been
studied, since the desired vehicle flow can sometimes be achieved for several speed limit ratio
values. We have also investigated how to design an optimal steady state that corresponds to
the throughput maximization achieved for the maximal possible number of cars. In a numerical
example, we again used the structure of Grenoble downtown, and then demonstrated how the
VSL controller makes the vehicle density converge to the desired equilibrium.

In the next Chapter 4, we will extend all these results to capture urban traffic that admits
multiple directions and flow crossings, since assuming a network without loops was the main
limitation of this chapter.



CHAPTER 4

Multi-Directional Traffic on Networks

This chapter is devoted to modeling and control of multi-directional traffic evolving on
large-scale networks. Here we directly address the main limitation of the previous Chapter 3,
which was the assumption on the existence of some preferred direction of motion on a network
level. We propose a novel model that is able to describe traffic evolving in multiple directions
on a urban network on a macroscopic level in Section 4.1. Thereby, we provide the derivation
of this model step-by-step from the CTM at one intersection. Then, in Section 4.2, the model
is validated using synthetic data from microsimulator, as well as using real data that we
get from real sensors installed in the center of Grenoble. Finally, in Section 4.3, we design a
boundary controller for traffic governed by our new model that acts to mitigate congestion.

4.1 Multi-directional continuous traffic model

In this section, we propose a new multi-directional two-dimensional continuous traffic model.
It is called the NEWS model, since it consists of four PDEs that describe the evolution of
vehicle density in four cardinal directions: North, East, West and South. This model can be
applied to predict traffic evolution on a general urban network of arbitrary size by knowing
only the information about its boundary flows, as well as network topology, turning ratios at
each intersection and infrastructure parameters. The literature review on existing works in
this direction is given in Chapter 1.

The contribution of this section is the formal derivation of a macroscopic model describing
traffic propagation in a large traffic urban network of arbitrary size by using the classical
CTM at each intersection. The resulting NEWS model is a hyperbolic system with bounded
densities in each layer. It will also be shown that the model also corresponds to a conservation
law with the conserved quantity being the vehicle density in the domain. The main novelty
of our model is that it includes mixing between different density layers, i.e., it allows cars to
change their original direction of movement. For example, imagine a car going to the North
that changed its direction and turned to the East. Thus, there is a non-zero flow from one
layer to another, which is captured by our model. We present a method allowing to transform
traffic evolving on arbitrarily sparse networks into a continuum model, i.e., PDE. This is a
beneficial form when it comes to modeling on a large scale, since it allows to describe traffic
in terms of aggregated variables rather than tracking the motion of each individual vehicle.

First of all, we review the CTM for one intersection in Section 4.1.1, thereby introducing
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($2,y2) —_—

(z3,y3) | —>

Figure 4.1: Example of a small traffic network consisting of 3 intersections. We consider the
intersection filled in blue.

several important assumptions that must hold in this chapter. Then, we present the NEWS
modeling framework with all the concepts and notations in Section 4.1.2. Further, we derive
the NEWS model from the CTM in Section 4.1.3. Thereby, the model is expanded from
one intersection to cover the whole network by applying the continuation method which was
recently introduced in [110]. The continuation method turns an ordinary differential equation
(CTM) into a partial differential equation. Therefore, NEWS model is a macroscopic (PDE-
based) model that can be seen as a direct extension of the classical LWR to general urban
networks.

4.1.1 Traffic model for one intersection

In this section, we seek to derive a multi-directional macroscopic traffic model that is able to
predict the temporal evolution of traffic density. To achieve this, we need first of all to derive
a traffic flow model for one intersection. During this derivation we will be able to define
several important variables that will be later used to derive a continuous model for the whole
network. In particular, we use the cell transmission model (CTM) [38] at one intersection to
introduce the concept of partial flows from one road to another. Partial flows will then be
used to express the traffic flow directions as a function of the network topology (more details
are given below).

Let us consider an intersection located at (z1,y1) with two incoming and two outgoing
roads (as illustrated in Figure 4.1), and show a step-by-step derivation of the traffic model
at this intersection. Then, the traffic model will be generalized for an intersection with an
arbitrary number of roads.
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4.1.1.1 Flows at intersections: example

We use the demand-supply concept described in Section 2.1.5 to derive a traffic model for the
intersection at (z1,y;) as illustrated in Figure 4.1. In particular, we need to determine inflows
™ (t) and outflows ¢°%(t) for this intersection that stay in balance

O + 65" = o7 + 65"

Notice that unlike in previous chapters of this thesis, we now indicate the inflow and
outflow w.r.t. some particular intersection (and not a domain boundary as it was meant, e.g.,
in (2.57)). Thus, we use a subscript to number roads, and a superscript is used to indicate
whether this particular road is incoming or outgoing, e.g., ¢
road number 1.

a1 1s the capacity of incoming

Assume that the flow-density relation at any road is given by a triangular FD as in (2.2).
Then, the demand and supply functions are given by (2.17).

Remark 4.1

Notice that, in general, the derivation of the model relies only on the demand-supply concept,
which is applicable also for a more general FD shape (not only triangular) as long as it is a
concave function of density. We assumed the triangular shape only to gain more clarity during
the upcoming step-by-step model derivation.

Each incoming road has its own flow demand to enter the intersection (illustrated in Figure
4.1) that reads with (2.17):

m in in

mazx,1 > D, = min{v2 P2 max,Q}' (41)

Dy = min{ui"{",

A part of the flow entering the intersection goes to the first outgoing road and the other
part goes to the second outgoing road. These flows are split according to the turning ratios
(TR) ayj € [0, 1], where 4 is the index of the incoming road and j is the index of the outgoing
road. For instance, if @11 = 0.6 and a2 = 0.4, then 60% of the cars from the first incoming
road turn to the first outgoing road, and 40% turn to the second outgoing road. Note also
that the sum of turning ratios for each incoming road must be 1, i.e.,

a1l +ap =1, a9l + a9 = 1.
The concept of TR was discussed, for example, in [39] for the case of diverging intersections.

Let us now introduce the concept of partial demands. A partial demand refers to the
demand flow of an incoming road to enter a particular outgoing road. These are equal to the
overall demands (4.1) (demand to enter an intersection) multiplied by the corresponding TR:

: in in in : in in in
D1y = min{aq1v]"p} ,anquax,l}, D12 = min{a12v7"pf 7a12¢ma1’,1}7

: mn _in in : mn _in in
Day = min{a1v3"py", 021@n4 0}, Doz = min{aggvy’ 05", asedryas o}
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where the first number in the subscript of D is related to the incoming road, and the second
number is related to the outgoing road.

In accordance with [39], each outgoing road provides supply for the flow coming from an
intersection, which in case of triangular FD (2.17) reads:

S1 = mln{wout(P?gml P, Z%ml ; (4.2)
Sa = min{ws™ Py o — P5*), Dm0}

Let us also assume that each outgoing road has a particular supply for each incoming
road, e.g., Sy is split into S1; and Sa; (recall that the first number is referred to an incoming
road). In order to define these partial supplies, we introduce supply ratios (SR) f;; € [0,1]
used to denote the proportion of supply of outgoing road j that it provides for the maximal
flow coming from a particular incoming road ¢ relative to the supply it provides for all the
incoming roads. The supply ratio 3;; is thus defined as

al] ¢maz K

Nin
Zk 1 ak] ma:pk

Bij = (4.3)

where n;, is the overall number of incoming roads for some intersection, here n;, = 2. Notice
that for each outgoing road the sum of its SR must be 1, i.e.,

B11 + fo1 =1, P12 + B2 = 1.

With the definition of supply ratios (4.3), we are now ready to formulate partial supplies
as the overall (intersection-related) supply given by (4.2) multiplied by the corresponding SR:

: t t t t
Sij = BijSj = min{B;;w" (Prraz.; — P57 )s BijPrmaz.; }-

Under the assumption of SR, we can also define partial flows as the minimum between
partial demand and partial supply, e.g., ¢11 = min{Dj1, S11} yields:

o1 = min{allvinplinv /Bllwout(ngcfx 1= pl ) allgbigax,lv Bll(b(r):gx,l}‘

Finally, the intersection-related flows from incoming and to outgoing roads are expressed
as sums of the corresponding partial flows, i.e.,

= ¢11 + d12, O = B2 + oz,
¢ = P11 + P, S = 1o + ¢aa.

Notice that the sum of flows before and after the intersection is always conserved, i.e.,
P + ¢t = @9 + ¢9ut. Thus, we have established a traffic low model at one particular
intersection from Figure 4.1 by explicitly deriving expressions for its inflows and outflows.
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4.1.1.2 Flows at intersections: generalization

We can now generalize the calculations from above to any intersection with n;, incoming roads
with densities pﬁ” and flows qﬁ%" for i € {1,...,ni}, and nyy, outgoing roads with densities
p?“t and flows gzﬁ?“t for j € {1,...,nout}-

Every incoming road ¢ has its own flow demand D; to enter its source intersection:

Dl —IHIII{UZ- Pi s ma;r,i}‘

Then, we define partial demands from road 7 to road j as
Dij = ai;Di = min{a;v]"p", ijrraai}-
Supply S; of the outgoing road j is simply given by
Sj = min{%o‘m(ﬂ%;x,j - ﬂ?ut)a %g:cg}
Partial flow ¢;; from incoming road ¢ towards outgoing road j is given by
¢ij = min{D;;, S;;} =

: in i t( out t ' t
= min{a;;0;"p;"; Bijwi" (Pmaz.; — P7" ) XijPmaz.is BijPmaz,i)-

(4.4)

Finally, the flow from incoming road qﬁﬁ” is the sum over all the flows exiting this road, and
the flow into outgoing road quJO-“t is the sum over all the flows coming into this road:

Nout Nin

6= i, =Dy (4.5)
= i=1

For a better overview, we have summarized all the notations introduced in this section in
Appendix A.3.1.

4.1.2 NEWS framework

We seek to develop a model capable of predicting the evolution of multi-directional traffic
in a large-scale network that may consist of thousands of intersections. The main challenge
thereby is that roads at every intersection may be oriented arbitrarily. Hence, we would like
to obtain a model in terms of flows that are parallel to the cardinal directions: North (N),
East (E), West (W) and South (S). This will enable us to formulate the model in macroscopic
terms, if every intersection will be described in a unified way. Let us call it the NEW S-model.
Its state variables should be denoted by bars, and they represent 4-dimensional vectors, e.g.,

5" = (R0, 6 68T

Notice that the resulting model is intended to describe the evolution of densities in four
direction layers, although an urban area can in general be represented as a 2D plane (x and
y). The reason to consider traffic evolution in opposite directions (e.g., North and South)
independently is related to the idea to preserve flow values positive, since we want to keep
information about the number of vehicles moving in each direction.



126 Chapter 4. Multi-Directional Traffic on Networks

Road formulation: NEWS formulation:
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2in
W < ! >
~’~ Q?Ut zin Jout
[ E %
m
1out
s i oy

Figure 4.2: Idea of NEWS framework: map road original directions into North, East, West
and South directions, and then traffic flow can be described in terms of 4 direction layers.

4.1.2.1 Projection from roads to NEWS

In order to formulate the traffic model in terms of NEWS, we will use only the geometric
properties of the network, such as angles of the road orientations with respect to the Fast
direction counter-clockwise denoted by 0 that ranges from 0 to 27, see Figure 4.2. Thereby,
roads 1™ and 2°* are oriented towards North-East, and roads 27 and 1°“ are oriented towards
South-East.

Let us consider the projection of flows into the North. We calculate the flow to the North
as a weighted sum of all flows on the roads that have angles less than 7/2 with the North
direction, i.e., these are roads 1" and 2°“! in Figure 4.2. This also means that, in general,
an angle of road’s direction with non-zero projection to the North is bounded to the range
6 € (0,7), while for non-zero projections to the East, West and South the angle must be
0 € (0,2)U(38,2m), 0 € (7/2,37/2) and 0 € (m,27), respectively. Then, outflows in NEWS
formulation can be found from the road formulation by applying the following projection:

~Tout N out N out “Tout E out E out
N = Pgout o7 + Ppgut ¥, E = Ppout o1 + Ppgut ¥,
Jout W out w out Jout __ S out S out
W = Pgout o7 + Ppgut 3", Pg" = Ppout o1 + Ppgut ¥,

where pg € [0, 1] are projection coefficients that should satisfy the following properties:

1. If a road goes exactly to the North, then pév =1

2. If a road has an angle equal to or greater than 7/2 with the North direction, then
N

3. The sum pév + pg + ng +pg = 1 to ensure the conservation of flows.
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Notice that these properties are defined for the North direction, while the same holds also
for other directions. The simplest choice for the projection coeflficients py, satisfying all these
properties, is

sin(6)
—, € (0,m),
py =4 | cos(0)| + |sin(6)]
0, elsewhere,
cos(0) T 3
s ) 9 € 077 U 772 )
pE = { Teos(0)] + [ sin(0)] 0.5V (72
0, elsewhere.
(4.6)
—cos(6) 0e (z 31)
py = { lcos(0)| + |sin(0)]’ 2727
0, elsewhere,
—sin(#)
- , 0¢€(m2m),
pg = { | cos(0)] + | sin(0)|
0, elsewhere,

where 0 is a positive angle between the direction of the road and the East direction.

Notice that, in general, each road can have non-zero weights with at most two directions.
For example, in Figure 4.2 the flow along the first outgoing road 1°“* has non-zero weights
with South and East direction, i.e., pgout > 0 and peEout > 0.

1 1

4.1.2.2 Flows in NEWS formulation

Flows at each intersection in NEWS formulation should be given by vectors o =
(o, o', _%, Gf_)ZSn)T and ¢ = (¥, o34, QZ;O“t,qz_SOS“t)T. This allows us to establish the fol-
lowing relation with flows from the original road formulation given by (4.5):

Zin N N
2in E E mn
gn_ | PE|_| Por e ( ¢1>
2in w W n
W Pgin Py b
d)g*n L pg%n pgén_
and _ -
Tout N N
Qb?\’lf pgi)ut pegut
Tout E E out
| || e el ()
Tout W w t ’
i Pogut Ppgui ¢5"
I S S
¢%Ut pgimt pegut

For a general case of n;, incoming and n,; outgoing roads, we introduce projection ma-
trices Py, € RY"n and P, € R¥*"ut consisting of coefficients pyin and pyout, respectively.
i J
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Figure 4.3: Schematic explanation of flow directions in NEWS formulation.

Thus, in general, flows are transformed into the NEWS formulation as follows:

Qgin = Bn¢zn’ Qf;OUt = Pout¢0ut‘ (47)

In general, ¢% is the flow on incoming roads going to the North direction before the
intersection, and ¢3¥ is the flow on outgoing roads going to the North after the intersection,
see Figure 4.3 for the illustration of this concept. They can also be represented by the sums
over partial flows in the NEWS formulation:

O = ONN + ONE + dNw + O, (4.8)

and
PN = ONN + dEN + dWN + 5N, (4.9)
where, for example, ¢ is the flow consisting of cars going to the North before the intersection
and to the East after they have passed this intersection, as it is illustrated in Figure 4.3. Thus,
% (4.8) is composed of all such flows that were going to the North before the intersection

and then continued their way either to the North or changed to the East, West or South after
passing the intersection.

In the NEWS formulation, partial flows are defined from the road formulation as follows:

Nin MNout
BN =D D DygnPout bij, (4.10)
i=1 j=1

where py are the projection coefficients from (4.6). Notice that the correctness of this definition
of partial flows can be verified by inserting (4.10) into (4.9):

Nout Nin

“Lout N N E w S
=1 0 L=t
Nout Nin Nout

N _ N t
S 800 = St
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whereby we have used the fact that the sum of projection coefficients over all cardinal directions
is 1 (see property 3 in the definition of py and (4.5)).

To gain more insight into the concept of partial flows, let us consider an example of an
intersection that has one incoming and one outgoing road, as shown in Figure 4.4. Hence, we
define the incoming flow in NEWS formulation from Figure 4.4:

o 0
gin = GE}? _ BN + PEE
o 0
GB? dsN + dsE

Thereby, we see that ¢ = é% = 0, since the incoming road has a zero weight with respect to
both North and West direction, while it has non-zero weights with South and East directions.

The outgoing road has non-zero weights only with North and East direction, which results
into 79” = ¢psn + dsE and ¢ = dppN + ¢pr. Hence, the flow on the outgoing road yields:

Pt bsN + BN
gout — o%' | | dsE+ dEE

iy 0

gg%ut O

Also note that in Figure 4.4 there is no flow in the West direction, therefore all the flows
containing at least one “W” are zero, e.g., oyw = dgw = 0, etc.

N
1in 4 1out
\\E /E'

S

Figure 4.4: Sketch of an intersection with one incoming road 1" and one outgoing road 1°%.

4.1.2.3 Turning and supply ratios in NEWS formulation

Similar to the traffic model in road formulation given by (4.5) and (4.4), we would like to
define partial flows in the NEWS formulation using the demand-supply concept as in (2.15)
and (2.16). For this, we will need to define turning & and supply ratios 3 in the NEWS
formulation. Moreover, we will also have to define the parameters of triangular FD v, @, pmax
in the NEWS formulation to be able to derive the complete model.

Demand D € R**! and supply S € R**! functions from (2.17) can be formulated in terms
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of NEWS using coefficient matrices Py, Py as in (4.7):

D =P, 1n{vm in fgw}, (4.11)
S = P min{u™ (3, — ), 1L,

Now, without loss of generality, let us consider the partial flow from East to North ¢py,
which we would like to be able to express using demand and supply as in (4.4):

¢pn = min{agnDg, Ben SN}, (4.12)

where agy is the TR from East to North, and Bgy is the SR of the North provided for vehicles
arriving from the East, i.e., the same as f;; from (4.3) but in the NEWS formulation.

The coefficients agy and gy need to be determined, which can be done using (4.10), in
which we substitute (4.4) that yields

Nin Nout
I _ E N . n _in out [ out out in out
bEN = E E pg;énpgg?“t min {aijvi Pi > Bijwj (pmax,] Py )7 aij¢mam,i’ Bij mam,j}‘
=1 j=1

This expression is a sum over minimum functions, which is tedious to handle. We make the
following approximation: change the order of taking the minimum and the summations. This
leads to the minimum over just four arguments as in the demand-supply concept (4.4):

Nout Nin Nout Nin

n _in N E out out out
¢EN A min E pgout E pgmal]v Pi E p@;ut § p@;ﬂﬁl]w] pmaz,j —Pj )7 tee
j=1 i=1

Notice that the difference between putting minimum inside and outside the summation is
decreasing as the level of the homogeneity in the congestion of roads increases. This approxi-
mation is exact if all roads in the network are in the same traffic regime, i.e., either all roads
are in free-flow or congested.

We set the latter expression equal to (4.12) for ¢ = ¢z, and get the coefficients agy
and Bgy that read

Nout in
Z]_ |:p9]0ut Z al]pezn ¢)max 1,:|
apy = = . , (4.13)

E in
Z pgin max,t
=1

and

ey E et N out
Z pg@'n Z ﬁijpgqut ¢maz7j
=1 ioj=1 J

_ i
BEN =

(4.14)

Nout

N out
5 o,
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4.1.2.4 FD parameters and densities in NEWS formulation

Consider demand and supply functions in the NEWS formulation. From one side, we can
calculate them using the projection matrices Py, and P, as in (4.11). From the other side,
we would like to be able to calculate demand and supply using a fundamental diagram as in
(2.17), which should enable us to describe traffic flow in a unified way for any intersection.
Recall that FD parameters depend on a specific road, while another road might already have
a different speed limit or capacity.

Thus, we are going to define a unified FD in NEWS formulation such that the FD is
defined for each direction separately. This equivalently means that the parameters of FD will
all become 4-dimensional vectors or 4 x 4 diagonal matrices. Let us consider the FD for the
North direction, while similar steps should be done for other directions. That is, for Dy and
Sy we would like to find kinematic wave speeds @i and ¢ and density transformations ﬁﬁ{}

and p3¥ such that the following relations would hold:
Tin
sz min{v;pi, Pmaz,i} ~ mln{v%p%v ZrZaa:,N}v
i=1
Nout (415)
SN = Z péV min{wj (pmal’,j ) ¢maa€ j} ~ mln{wOUt (p(r)#zix N ™ p?\?t) ?r?a%x,N :
j=1

Note that in the case when there are much more than 4 roads, we can use only approximations
of the fundamental diagram.

By approximating sum of minimum functions as a minimum of sums and writing the
conditions on maximal flows together, we get a system of two equations

Nin

N —in ~in
E P; ViPci = VN Pe,N>

. (4.16)
Zp;-ij (pmar,j - pc,j) (p?’:;x N — pg%)
=1

System (4 16) is undetermined, since it consists of two equations that have five unknowns
(U out sout  sout )

N> wN 7ch’p(‘N7pmaacN

In general, we get the coordinates of each road, its number of lanes and speed limits as
network data. Speed limits are directly related to the kinematic wave speeds v;, while the
maximal density pmaz,; on each road j (either incoming or outgoing) is determined by its
number of lanes and the minimal car-to-car distance (we again assume it to be 6 m). Knowing
Pmaz,; for every road, we can easily obtain the critical density p.; from the shape of the
fundamental diagram (recall that we have assumed p. = ppmaz/3). Negative kinematic wave
speeds w; can be obtained from the speed limits v; and critical density p. ; using (2.3) as

Pe,jV5

wj = .
Pmaz,j — Pc,j
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Both incoming and outgoing roads contribute to the vehicle density in some neighborhood
of the intersection. Moreover, since we want to have a general model, which is symmetric with
respect to incoming and outgoing roads, and in order to define each parameter only once, we
assume symmetry pit = p¥t = py, 09 = %% = vy and WY = W = Oy. Assume further
that densities are transformed into NEWS formulation in the same way as it is done for the
flows (4.7), i.e.:

Nin Nout
pN =Y _ppi+ Y P pis (4.17)
=1 7=1

which then also holds for maximal Py~ and critical p. n densities. After we have defined
all the densities, using symmetry assumption we can express the velocities from (4.16) as

Nin Nout
N N
Py Vibei + 22 D) UjPej
_ =1 j=1
UN = — )
Pec,N
Nin Nout
N N
Z D; Wi(pma:r,i - pc,i) + Z by wj (pmal“,j - pC,j)
_ =1 =1
WN — J

ﬁmaac,N - ﬁc,N

Recall that all these calculations are not limited to the particular triangular shape of FD,
and thus can be performed in the same way for any type of FD as long as it is a concave
function of density as it is also assumed in the LWR model (see Remark 4.1). The only thing
that would have changed for different FD shapes are formulas for its parameters (77), since
each FD can have a different set of parameters.

For a better overview, we have summarized all the notations introduced in this and next
sections in Appendix A.3.2.

4.1.3 Derivation of the NEWS model

Our main goal here is to derive the macroscopic NEWS model for multi-directional traffic
that can describe the evolution of traffic in terms of density (as in case of 1D and 2D LWR).
For the moment, we can already describe traffic flow for any intersection in the unified way,
which became possible due to the concept of partial flows in the NEWS formulation given by
(4.12) with (4.13) and (4.14). The dynamic NEWS model in terms of density will be derived
by considering an intersection and its outgoing roads that should be viewed as incoming roads
for the neighboring intersections. In the end, we will be able to formulate a valid model for
the whole urban area due to a unified description of traffic behavior at any intersection. This
unified description will be obtained using the continuation method that was introduced in
[110].
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4.1.3.1 Continuation

Previously, we considered inflows ¢ and outflows ¢°* with respect to some intersection.
However, for the derivation of the macroscopic continuum model, we consider inflows and
outflows with respect to roads that will be denoted by 1™ and ¢°% as in Figure 4.5.

Recall that 6 is an angle between the road orientation and the East direction. Denote the
flow in the direction 6 as vy. Essentially, there are two flows with direction 6: inflow %,” which
is a sum of all flows entering a road with direction 6, and outflow §* which is a sum of all
flows outgoing from this road. Notice that, in the following, we will deal only with outgoing
roads. Thus, we skip the superscript in the notation of angle, i.e., G?Ut = 0;.

) (962, y2)
ou
vy
l |
Vo, }?ﬂ —u
2NV |
~
(x1,y1) T2 — o1

Figure 4.5: Illustration of notations used for derivation of the NEWS model.

Now consider some road j of length /; that is an outgoing road for the intersection located
at (z1,y1), see Figure 4.5. The density evolution on road j that is connecting the intersection
at (x1,y1) and the intersection at (xg2,ys2) is given by

dp; 1/ .

87; = 7 <¢gf($1a?/1) - ¢g:t(x27y2)) P

where 6; = atan[(y2 — y1)/(x2 — z1)] as in Figure 4.5. Notice that there are no bars here in
the notations, since we again refer to the road formulation.

The equation written above depends on two different space points (z1,y1) and (z2,y2).
However, we would like to obtain an equation that is given for a unique point of space. In
order to achieve that, we can perform continuation at the beginning of the road (z1,y1).
In its simplest form, the continuation method corresponds to the first-order term of Taylor
expansion in spatial coordinates, which reads

o gt
out ~ o/out _ J _ J
g (22, y2) R U5 (@1, 91) + (22 — 21) —= + (2 = 41) By

and assuming this approximation to be an equality, we get the following model

Opi _ 1 yim out v G
o <¢9j (@1,91) = ¥g;" (@1, 51) — (22 —21)— = = (12 = 41) 3y )
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or simply

0p; 1 : ou
i 2 ( 5?(3317%) - wejt($1,y1)> cos 0;

87;Z) out @wout
ot '

8:5 i oy

At the same time, by performing continuation at the end of the road (x2,y2) we arrive at

6wm 8wm
Oz T oy

ap' 1 in ou
5 = I (wej (2, 92) — %jt(xz,yz)) cos

Since the density along the road is assumed to be constant, both continuous models can
be used to represent the original one. The first model is defined in terms of the beginning of
the road (z1,y1) and contains spatial derivatives of w"“t whereas the second model is defined

in terms of the end of the road (x2,y2) and Contalns spatial derivatives of wé?. However,
performing continuation not at the end points but somewhere in between can result into a
more general form that unifies these two models.

Let us perform continuation of the model for some arbitrary point along the road (x,y)
whose coordinates lie between two endpoints (z1,y1) and (z2, y2):

x:1’1’y+$2(1—’7>, y:yl’7+y2(1_7)7
where v € [0, 1]. Thus, by performing continuation at (z,y), we arrive at

O((1 — )y +1¢5:)

9pj — (W”( y) — ¢0“t( )) — cosb;

o Ou (4.18)
g O =]+
sin 6; 8y :
Now let the vector-flow on road j be
= o, (“P0) . where iy, = (1 - ) + g
9 SIDH ) W 9‘»,' - ’7 ’7 *
Then, the model (4.18) can be rewritten as
9p; 1 ou I
5 = 1 () = v @) = V() (4.19)
where V is a nabla operator defined as V = (a%, 6%).

This model (4.19) predicts the dynamics of the vehicle density at some outgoing road j
with direction 6;. Equation (4.19) has the same form for any intersection located at (z, yx),
where k € {1,..., K} is an index used to label intersections in the network. Notice that
parameter v was introduced only for the derivation purposes, it will not explicitly appear in
the final model, see details below.
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4.1.3.2 The NEWS model

We would like to translate the model given in road formulation (4.19) into NEWS formulation,
which allows to describe traffic flow direction at any intersection in a unified way indepen-
dently of the number of its outgoing roads. Recall that densities in every direction layer are
transformed as in (4.17). Let us again consider the North direction for simplicity, while the
same steps should be performed for all other directions.

Thus, multiplying the equation (4.19) by pe and taking the summation, we get the model
that predicts the evolution of vehicle density in the North direction on outgoing roads of an
intersection located at (xg,yx) that reads

Nout Nout

ap N1 -
*%=Z r@ ¢$FV';%%7- (4.20)

We cannot further simplify the equation (4.20) towards the NEWS formulation, since the
summations contain additional index-dependent coefficients such as 1/l;, sinf; and cos0;
(embedded in \ffgj). Let us then approximate the system (4.20) by averaging road lengths [;
such that the mean length of outgoing roads conserves the maximum number of cars:

Nout

et pmaa},jlj
==

Nout

Pmaz,j
i=1

Further, we also approximate sine and cosine in (4.20) as

Nout Nout

Z pe €08 0 Pmaz,j Z pe sin 0 dmaz,j
—_— J=
costn = —— , sinfy = ——
Z pé\;(bmaac,j Z pé\;(bmaac,j
j=1 =1

Substituting these approximations into (4.20), we get

Nout

%V_LZ ( _Om)

o™ COs 0N N in out
_v.;@MJ%OPW%H%)a

or simply

sin 0

8%\/ - % (VR —vR") - V- <<COS0N> (1= +7¢"“t)> : (4.21)

where we can further define 1y = (1 — )i + y¥.
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Notice that this model (4.21) is the macroscopic NEWS model, since it does not depend
on road index j any more. In some sense, the model (4.21) is defined for any particular
space point in the vicinity of an intersection. Therefore, it makes no more sense to have
separate notations for flows related to intersections ¢ and roads 1. Thus, for convenience and
consistency with other parts of this manuscript, we will again use the notation ¢ for flows.

The model (4.21) can be further simplified in order to get rid of spatial derivatives over
multi-directional flows, since otherwise the PDE can lose hyperbolicity and, moreover, we
want to eliminate the parameter ~.

4.1.3.3 Model simplification

The term under the space derivative in (4.21) is ¢ = (1 — )P +~vd%%. Recall that by (4.8)
and (4.9) we can express inflows and outflows at any point as sums over partial flows:

_%} = dNN + PEN + dwN + DN,
Qg%bt = ¢NN + ONE + ONW + ONs-

Therefore, we can insert this definition into ¢ and get

on = dnn + [(1 =) dEN +VoNE] + (4.22)
+ [ =7)opwn +vonw] + [(1 —7)dsn +vdns] - '

This means that (4.21) requires taking spatial derivatives over multi-directional flows. How-
ever, the model (4.21) would be considerably simplified if each term under the spatial derivative
could be written only as a function of demand and supply of the corresponding direction, i.e.,

¢n = min{Dy, Sy}. (4.23)

Now we make an assumption that the network is well-designed in terms of mazimal flows,
that is

@NEémaz,N = BNE(Z_)mam,E- (424)

Physically, this assumption means that if vehicles move at maximal possible flow before an
intersection, they continue to use roads’ transportation capacities at maximum after the in-
tersection.

The proof that (4.23) holds under the assumption of a well-designed network (4.24), being
rather technical, is shifted to Appendix B.7, where we show that there exists parameter ~
such that (4.23) holds. Thus, the transported term under the derivative in (4.21) can be
approximated by a standard flow in the demand-supply formulation that depends only on the
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density of the same direction. Hence, the full system of equations can be written as

a’l _ l (_zn o Q_Sout) o 8(005 0N§Z_§N) . a(mNéN)
ot - L N N ox 8y )
Ope _ 1 (B — gaut) — d(cosOpor) O(sinbpor)
R o oo (4.25)
aﬁw _ l (7in _ (Eout) _ a(COS 9W¢;W) _ a(mW$W)
oo LVW W o y ;
aﬁ _ l (_in o _out) _ a(COS QS&S) o 8(m5¢_§s)
ot L\ s ox Oy ’
where the term ¢™ — ¢ is given by
@G — % PEN + QWN + SN — ONE — ONW — PN
0% — 0% | _ | onE+ SWwE + $sE — SEN — SEW — PEs
o — o onw + dpw + dsw — dwN — dwE — dws
P — o3 ONS + PES + dws — SN — PSE — Psw

where partial flows between two direction layers are obtained as demand-supply problem, e.g.:
¢pn = min{apnDp, Ben SN}

This system of equations describes the density evolution in the vicinity of one intersection.
Thus, the density p(x,y,t) and the flow ¢(z,y,t) are space- and time-dependent functions,

whereas all the parameters are constant (&, 8, L, U, @, pmaz, cosb, sinf).

Notice that the term ¢™ — ¢°% is responsible for mixing between different density layers,
e.g., _% = pgn + dwnN + dEn accounts for vehicles that were moving to the South, West and
East, and then turned to the North.

System (4.25) together with a 4-dimensional fundamental diagram (that can be any con-
cave Lipschitz continuous vector function) represents the NEWS model, which is one of the
main results of this whole chapter. It models the evolution of vehicle density on outgoing
roads of an intersection in all cardinal directions: North, East, West and South.

The last step that needs to be taken is to obtain a continuous PDE system describing
traffic flow propagation in the whole network. This can be done by approximating the entire
parameters of system (4.25) over the whole continuum domain. Let us again define a bounded
rectangular domain Q € R? : [Zmin, Tmaz] X [Ymin, Ymaz), as it was done for 2D LWR model
in Section 3.1.1. The size of (2 is determined by the size of the considered urban network.

First, we calculate &, 8, L, U, @, pmaz, cosd, sin@ for all K intersections in the network.
Then, we apply the inverse distance weighting method described in Section 3.1.3.1 to approx-
imate all these parameters over a continuum plane, e.g., the value of an average road length
can be defined V(z,y) € Q

K
S Lag, y)wpe PV @=a)* +-u)?

L(z,y) = =— , (4.26)
S wpe MV (@22 y—ur)?
k=1
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where p is a weighting parameter used to denote the sensitivity of the estimated variables to
the distance from the intersections (and not roads as it was meant in Section 3.1.3.1). Thus,
the influence of the intersection parameter, e.g. L(xg,yx), decreases exponentially with the
distance to this intersection.

Further, wy in (4.26) is the weight of intersection k, which can be used to assign larger
weights to intersections with important roads. If one wants to emphasize the main transporta-
tion arteries of the city (its most used roads), wy can be set to larger values for particular
intersections (i.e., wg > 1). The main arteries are revealed from the historical (TomTom) data
(see |42] for Functional Road Classification). Note that the most used roads are not neces-
sarily the roads with largest transportation capacities due to a non-optimal design of a urban
network. For example, imagine a road with many lanes that does not connect any important
points in a city, and thus it is not used at maximum. At the same time, another road with the
same transportation capacity connecting important locations has been used more extensively
according to historical data, and thus one can assign larger weights to intersections that are
connected to this road directly. Otherwise, setting all wg = 1 assures that pure network infras-
tructure data are used. Notice that the intersection weights wy change only the interpolation
procedure and not the network and model parameters itself, and it can be calculated as:

Nin,k Nout,k

wp = > Wi+ Z we;,  Vke{l,...,K}, (4.27)

nznk+noutk i—1

where w, are weights of roads based on their importance classes. There are 7 road classes in
total, see Figure 4.11. We assign w, = 2 for all roads of classes 1 and 2 (all major roads of
high importance), and for any other case (classes from 3 to 7) we set w, = 1.

Thus, we define all the geometrical and FD parameters V(z,y) € € using inverse distance
weighting (IDW) as in (4.26). As a result, we obtain a continuous PDE system that looks like
(4.25) with time- and space-dependent density p(x,y,t) and flow ¢(x,y, p), while all param-
eters are obtained using (4.26), which makes them space-dependent functions, i.e., a(z,y),

B(x,y), v(z,y), etc.

4.1.3.4 Extended model with source and sink terms

In a urban network of finite size there exist roads, through which cars can enter or exit the
domain. Such roads are called sources and sinks, respectively. The boundary conditions for
the PDE system (4.25) are thus directly determined by these sources and sinks, i.e., upstream
and downstream boundary conditions are specified for sources and sinks, respectively. It
appears that they can be trivially captured by the NEWS model, which will also allow us to
design boundary control for multi-directional urban traffic in Section 4.3. Let us now show
how sources are implemented into the model (4.25), while the implementation of sinks can be
done in the same way.

We consider some road j, and the exterior vehicles penetrate its entry at flow w;;_’“"ce (we
use again v for flow, since it is here formulated in terms of roads). We take this additional
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flow of vehicles into account by adding it into equation (4.19) for road j, which yields

apj 1 in out) T 1

— = — Vgt ) — V- Wy, + —ahpotTee, 4.28
ot (wej b; ot Y, (4.28)
In general, when we want to specify inflow for some road, we can only propose it in terms
of demand function. This is equivalent to the weak boundary conditions, see Section 2.1.5.
Then, the amount of flow entering this road depends on its supply, which is in turn determined
by the traffic state of this road:

T = min{D", S, (p5)}-

We can rewrite (4.28) in NEWS formulation by performing the transformations described
in Section 4.1.3.2, which leads us to the extended NEWS model (with sinks also included):

aﬁN _ l (7in _ Tout + Qgsource _ 7sink) _ a(COS GN(ZEN) _ a(Sin QNQBN)
aﬁ 1 1in Tou Lsource 1sin 0 cos QZ_) 8 sin 0 Q_S
IPE _ Z (gin — pout 4 giouree _ gaink) _ (cosbrdr)  O( EE)’
ok o %y (4.29)
aﬁW _ l (éin _ Tout + (Esource _ 751'77,1@) _ a(COS 9W<£W) . 8(Sin QW(EW)
aﬁs _ 1 Tin “Jout “source Tsink 8(005 GSQBS) a(Sin GSQES)
ot L (¢S ¢S +¢S ¢S ) or 8?} ’
where
(Zgi\?urce — Inin{‘D‘]s\?urce7 gN}7 (Z)}e\z[nk _ min{DN, Sf\%nk 7
with
Nout Nout
» N Qsink N gsink
D?\?urce _ Z pGj D;;)urce, S}s\}n _ Zpej ngzn )
=1 j=1

Further, one needs to approximate Df\‘,’urce and S f\}"k in the whole domain, since originally
we specify it in terms of roads of the network. In contrast to all other variables obtained by
(4.26), the overall number of incoming cars should be conserved. Thus, we choose Gaussian
kernel for the approximation of demand and supply functions:

K
D]S\?urce(x, y) = Z D}g\?urce(.’f}g, yk)Gg(fU — Tk, Y — yk)7
k=1

where Gy, (z,y) is a two-dimensional symmetric Gaussian kernel with standard deviation dy:

i (4

Gdo (‘Tvy) = 27Td02 )

which is very similar to the kernel density estimation (3.8). The difference is that here the
function depends on the positions of intersections. Parameter dy can be tuned to change the
range of influence of demand and supply functions around the intersection. Note that such
a choice of Gg,(x,y) provides that its integral over the whole domain equals 1, therefore the
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overall incoming demand in (4.29) is the same as in the original network model (4.28) (road
formulation).

Notice that from now on, we will consider all the variables and parameters only in terms of
NEWS formulation. Therefore, for the remaining part of this thesis, we omit bars everywhere
in the notations of NEWS variables keeping in mind that these are 4-dimensional vectors, e.g.,
density and FD, or 4 x 4 diagonal matrices, e.g., TR and SR matrices. We keep the overlines
only for cosf and sin#, since these do not preserve the sense of cosine and sine functions in
NEWS formulation (the sum of their squares is not necessarily equal to 1).

4.1.4 Mathematical properties of NEWS model

Let us now investigate the properties of the NEWS model. For its explicit analysis, we take
system (4.25) that does not include any source terms. In this section, we will check whether
our system represents a conservation law, then we will discuss the boundedness of its state p,
and, finally, we will show that the model represents a hyperbolic PDE system.

4.1.4.1 Conservation law

The overall density in the network is the sum over the densities in all four directions, that is

p=pN +pE+pw + ps.
By taking its time derivative we get

Op _Opn  Ope  Opw | Ops
ot ot ot ot ot’

and for each of these terms we can substitute the corresponding PDE from our model (4.25).
It appears that all the mixing terms (¢™ — ¢°%) cancel each other, and we simply get

o _
ot

cos 6 cos cos 0 cos 6
=1 N ON + | = B O+ | = W ow + | =— s ¢s,
sin 6 sinfg sin Oy sinfg

which has a form of a conservation law, where the conserved quantity is the overall density in

~V- 9, (4.30)

where

the network.

4.1.4.2 Boundedness of the state

The boundedness of the density p € [0, pmaz] is not violated in the model given by (4.25),
since the terms under the derivatives are resolved using the standard Godunov scheme, i.e.,
traffic flow in each direction is determined by the minimum between demand and supply, as in
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LWR formalism. For example, consider the North direction, then the term under the spatial
derivative in (4.25) is just

¢N = min{DN, SN}
Mixing terms with a positive sign (these are ¢gn, ¢wn and ¢py in the equation for py)
depend on the supply of N, e.g.,

¢pN = min{apnDg, BENSN}.

It PN = Pmaz,N; then

0
SNZO:>¢EN:0$%SO,

which means that positive terms can not contribute to the increase of density, whenever it has
reached praz,N-

Let us now consider negative mixing terms. These depend on the demand of the North
direction, e.g.,
¢ng = min{aygDn, BNeSE},
which in case of py = 0= Dy = 0 yields

Opn
=0=——2>0.
ONE 5 =

This implies that negative terms do not contribute to the decrease of density when it is already
Zero.

4.1.4.3 Hyperbolicity

Let us now investigate whether the model (4.25) is a hyperbolic PDE (as it is the case for 1D
LWR (2.1) but not the general case for multi-directional 2D LWR [102]). Hyperbolicity is a
fundamental property determining the behavior of solutions, which also plays an important
role in the choice of the corresponding numerical scheme. For example, if we show that the
model is a hyperbolic PDE, then we can apply the Godunov scheme for numerical simulation,
as it is usually done for hyperbolic models such as 1D LWR.

In contrast to other types of partial differential equations, in a hyperbolic PDE any dis-
turbance made in the initial data travels along the characteristics of the equation with a finite
propagation speed. Although the definition of hyperbolicity is fundamentally a qualitative
one, there are precise criteria with which one can define whether a partial differential equation
is hyperbolic. Thus, equation (4.25) can be written in a following general form:

Op + 0n [F* (p,2,9)] + 0y [F¥(p, x,y)] = g(p, 2, y), (4.31)

where F'* and FY are the flow matrices defined from (4.25) as

cosOnopN 0 0 0
e 0 costpop 0 0
N 0 0 cos Ow ow 0 ’

0 0 0 cosfgpg



142 Chapter 4. Multi-Directional Traffic on Networks

and
sinfyon 0 0 0
Fy _ 0 Sin9E¢E 0 0
0 0 sin ngﬁw 0
0 0 0 sin Og¢g

The right-hand side term g(p,x,y) from (4.31) corresponds to the vector containing all the
mixing terms from (4.25):

¢EN + dwN + dsN — ONE — ONW — NS
1| ¢NE+ OWE + OsE — PEN — PEW — QES
L | énw + dw + dsw — dwn — dwe — dws

ONs + OEs + dws — PsN — PsE — Psw

g(psz,y) =

The spatial derivatives of flow matrices from (4.31) can be written as a chain rule

O [F*(p,,y)] = 0,F*(p,2,y) - Oup + 0, F*(p,,y), and
Oy [F¥(p, x,y)] = 0,F¥(p,z,y) - Oyp + 0y F¥(p, x,y),

which is further inserted into equation (4.31) that yields
O+ OpF*(p, 2, y) - Oup + OpFY (p, 2, y) - Oyp = b(p, z,y), (4.32)

where b(p,xz,y) = g(p,x,y) — 0 F*(p,x,y) — 0y F¥(p, x,y). According to Section 3.1 of [126],
the right-hand side part of (4.32) b(p, z,y) does not play any significant role for the analysis
of the equation. Thus, we simply omit it by setting b(p) = 0.

Let us further rewrite (4.32) as
Op + A%0pp + AY0yp = 0, (4.33)

where A = 0F%/0p and AY = OFY/0p represent matrices of flow derivatives:

cos GN‘%N 0 0 0
4% — 0 cos HE(%? 0 0
0 0 cos 0W8¢W 0 ’
0 0 0 cos (95‘%5
and
sin GN‘%N 0 0 0
in A 9%E
A — 0 sinfg 65 | 0 oo 0
0 0 sin Oy aw 0
0 0 0 sin 0 %95

The system (4.33) is symmetrisable hyperbolic, since matrices A* and AY are both symmetric.
This implies that the system (4.33) is hyperbolic [126], which equivalently means that our
model given by (4.25) is a hyperbolic PDE system.
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4.1.5 Discussions

In this section, we have rigorously derived a new macroscopic traffic model to predict traffic
evolution from the cell transmission model on one intersection. The main challenge thereby
was to find a unified approach to describe the direction of traffic flow at intersections that have
different number of incoming and outgoing roads and might be oriented arbitrarily. We faced
this challenge by introducing the NEWS formulation of traffic in Section 4.1.2, where flow and
densities are formulated such if there would exist only four principal directions of traffic: North,
East, West and West (which gave the abbreviation NEWS). To enable such a formulation,
we introduced projection matrices that use the intersection geometry to determine, in which
direction it has more impact. For instance, we classify a road to be oriented towards North-
East, if its orientation has non-zero projection weights for North and East directions. From a
unified model for one intersection (that can be seen just as a point in space), we moved to the
continuation of this model. This is a special technique that helped us to translate an ODE-like
model into a PDE-like model. As a result, we could formulate the model (4.25) for vehicle
density evolving in 4 directions on outgoing roads in the vicinity of intersections. Then, we
applied inverse distance weighting to define the parameters everywhere in a continuum plane
that may incorporate any urban network of interest.

While deriving the NEWS model (4.25), we had to introduce several new concepts. The
main of them is the concept of partial flows that allowed us to capture the truly multi-
directional behaviour of traffic. Thus, the model includes traffic flow that changes its original
direction of movement. For example, there is a non-zero flow from the North direction layer
to the East, since there might be vehicles that move to the North, and then they reach an
intersection and turn to the East. This modeling phenomenon is equivalent to including
turning ratio information at intersections in NEWS formulation. Thus, for every intersection
we consider 16 origin-destination pairs, as shown in Figure 4.3. One of the major assumptions
that were made is that the urban network is well-designed in terms of road capacities. Thus,
road capacities must be such that cars do not get blocked when they turn, i.e., high demand
to enter roads with large capacities (e.g., highways or major traffic roads) and low demand to
enter minor roads.

The NEWS model corresponds to a conservation law, where the conserved quantity is the
number of vehicle density in a network. The state of this model was shown to be bounded,
and moreover, the NEWS model represents a hyperbolic PDE. In the next Section 4.2, we will
validate this model by using synthetic data from microsimulator, as well as by using real data
from sensors installed in Grenoble downtown.

4.2 Validation of NEWS model

This section is devoted to validation of the NEWS model that was derived and analyzed in
the previous Section 4.1. First, we will discuss the numerical method used to simulate traffic
with NEWS model. Then, the similarity measure will be introduced to enable a quantitative
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comparison of two density distributions. Further, we will compare the density predicted by
the numerical simulation of NEWS model (4.25) with the results predicted by commercial
software Aimsun. Finally, we will compare the prediction results with the data obtained from
real-life measurements in Grenoble city center.

a) Google satellite view b) Network in Aimsun

Figure 4.6: Selected area in Grenoble downtown.

4.2.1 Numerical scheme

As a network, we take an area located in Grenoble downtown with a total surface of around
1.4 x 1 km?, see Figure 4.6a) for the Google satellite view and Figure 4.6b) for the network
model in Aimsun of this area. Notice that this is the same area as in Figures 3.13 and 3.18.

For the numerical simulation of (4.25), we use the Godunov scheme in two dimensions.
We start by defining a numerical grid in  x R* by setting

e 1, to be number of cells to discretize  dimension,

e n, to be number of cells to discretize y dimension,

Az = (Tymazr — Tmin)/Na to be the space cell size in = dimension,

AY = (Ymaz — Ymin)/My to be the space cell size in y dimension,

At to be the time cell size,

(iAx, jAy, kAt) for i € {1,...,nz}, 5 € {1,...,n,} and k € ZT to be the grid point.

For the simulation of traffic on this area of Grenoble, we set n, = 60 and n, = 60, i.e.,
the 2D plane is divided into n, x n, = 3600 cells. Similarily to Section 2.1.6, the mesh sizes
Az and Ay and time step At are chosen such that they satisfy the Courant-Friedrichs-Lewy
condition.
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The discrete density vector is then p*(i,5) = (p& (4, 7), pl (i, j) pﬁv(i,j),pg(i,j))T. The
density in each direction s = {N, E, W, S} is updated V(i, j, k) € {1,...,ny} x{1,...,ny} xZ7
as

P10, 5) =k (i) + Ot | BEGL ) + FE (i) + B () + HEGL )|,

where E¥(i,7) corresponds to the mixing term between direction layers

N U YA -
BN =577 2 (min {ars(i,3) D (). Bralis )55 ) }

s
— min { (i, YD, ) Bur i $)SE )} ),

and Ff <(1,7), Fgff (i, 7) correspond to derivative terms. The derivative term w.r.t. = dimension

can be computed as

cosbs(i,j) +cosbs(i —1,7) . k- N ok -
AT mln{DS(z—l,]),Ss(z,j)}

~coss(i,j) +cosbs(i+1,5)
2Ax

while the derivative term w.r.t. y dimension is similarly computed as

Fﬁ,s(lv.]) =

min {D’;(i,j), S (i + 1,.7')} :

sin (i, 5) + sinfy(i,5 — 1)

Fpis7) = 3A; min { DX, — 1), 5(5,)}
"705 . . 1.795. . 1
_sin (W;ZL‘ (i, + )min{Dﬁ(z‘,j),SﬂaHl)}-

Notice that FJ (i, ), Fy,(i,]) are obtained using the upwind scheme [34] for cos (i, j) > 0,
sinf4(i,7) > 0. The upwind scheme is used to guarantee the correct direction of information
propagation in a flow field, which needs to be reversed if cosf,(i,j) < 0 for Fgﬁs(i,j) and
sinf,(i, j) < 0 for Fy (i, ).

Finally, H¥(i, j) includes source and sink terms, thus it is computed as

(min{Dsourcek(Z 7), Sk, ])} —min{D (i,5), SEmhF (4 J)})

b o1
Hs(za])_ L(Z,j)

4.2.2 Structural similarity measure

In order to enable a quantitative comparison between two density distributions, we use
the structural similarity measure (SSIM) [151]. This should be understood as an index
used to measure the similarity between two images. Thereby, three different image prop-
erties are compared: luminance, contrast and structure. In general, the SSIM between
two density distributions p1(i,j) (NEWS prediction) and p2(i,7) (reference distribution)
V(i,7) € {1,...,nz} x {1,...,ny} can be calculated as:

(2¢1¢2 + ¢) (2012 + ¢)
((F+G+e)(of+o3+c)

SSIM (p1, p2) = (4.34)
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where (1 and (o are the mean values of distributions p; and po over the domain that are
computed as:

Z ijps (i.5). (4.35)
nznys N i=1 j=1

This term is used to compare luminance of two images. Then, o; and o3 in (4.34) are the
standard deviations of density distributions used to compare the signal contrasts:

2
o(p) = nxnyZZ<Zpsw >>7

i=1 j=1 \s=N

and o019 is the correlation coefficient of two density distributions used to measure the similarity
of their structures:

a(p1, p2) ZZ <Z pa (i, ) ) <ZS: ps2(i; ) —Cz) :

zl]lsN s=N

Finally, ¢ > 0 in (4.34) is a constant that needs to be small, e.g., we take ¢ = 1-10713 for the
computation. This constant prevents instability, when the denominator is close to zero. The
range of SSIM is [—1, 1], where 1 is achieved if two images are identical, whereas —1 means
that one image is the inverse of the second image.

The main advantage of using SSIM is that it is a perception-based metric used to detect
structural changes in the image, while, for example, the mean square error evaluates only the
absolute error rather than the differences in congestion patterns. Thus, even if two density
distributions are characterized to have the same number of cars, the SSIM is still able to detect
whether congested zones have different shapes.

4.2.3 Model validation with Aimsun

We run a scenario of congestion formation in the selected area of Grenoble downtown (see
Figure 4.6). For this, we use microsimulator Aimsun and perform also a numerical simulation
of traffic density governed by NEWS model (4.29). For the numerical simulation we deploy
the Godunov scheme in two dimensions described in Section 4.2.1. Then, the obtained steady
states are compared, as it was done for the comparison of 2D LWR model and MFD-based
model with Aimsun in Section 3.1.7. Recall that Aimsun takes network, turning ratios and
inflows as input, and produces microsimulations of vehicle trajectories. We then reconstruct
the density distribution from vehicle positions in Aimsun and compare it to the state predicted
by NEWS model. The density reconstruction is done using KDE method, see Section 3.1.3.2.

In general, we have access to the following network data: (z,y) coordinates of all intersec-
tions and its corresponding roads, as well as speed limits and number of lanes for each road.
Using these data, we compute the parameters of the fundamental diagram v, w, pmqr and the
intersection parameters o, 3, L, cos@, sin@ in the NEWS framework for all the intersections



4.2. Validation of NEWS model 147

as follows. For each road j in the selected Grenoble area, we read the free-flow velocity v; from
its speed limit data. Then, the maximal density ppqz,; 1S computed by placing a car every
6 m at every road, and then KDE is used as described in Section 3.1.3.2. Here we assume
that each vehicle has influence within dy = 70 m range around its position, see (3.8). Further,
we assume that the critical density pcj = pmaa,j/3 everywhere (triangular FD), which allows
us also to calculate the negative kinematic wave speed w; and the road capacities ¢maz ;-
Then, these parameters are translated into NEWS formulation using the network geometry,
see Section 4.1.2.4 for more details.

In order to determine the traffic flow direction, we use turning ratios «y; for each road i
towards road j that are estimated as a function of road capacities:

¢max,j
Nout

Q5 = .
Z ¢max,q

q=1

Then, supply ratios f3;; are calculated using (4.3). Both ratios « and / are translated into
NEWS formulation as in (4.13) and (4.14). Further, the coordinates of road’s both ends are
used to determine its length /; and orientation angle 6;, from which we then obtain L, cos 0,
sin @ in NEWS formulation as described in Section 4.1.3.2.

Then, all these intersection and FD parameters are approximated for every grid point
(1,7) € {1,...,nz} x {1,...,ny} using IDW method, see Section 4.1.3.3. Thereby, we do not
deploy intersection weights, i.e., all wy, = 1in (4.26), since here the pure network infrastructure
data are used. Weights are assigned to intersections with important roads for the validation
with real data in Section 4.2.4. For the results presented here, we choose the weighting
parameter p = 20, which is a relatively low value meaning that only the global trend in the
network geometry is reproduced, see Figure 3.1 for more intuition.

First of all, we load the Grenoble network into Aimsun (see Figure 4.6b)), and let vehicles
enter through its boundaries by specifying inflows. We choose inflows such that the main
stream of vehicles comes from the South of the area. The microsimulations evolve for 2.5
min, and then the state is saved and later used as an initial condition for both Aimsun and
numerical simulation of the NEWS model. Afterwards, we continue the microsimulation on
Aimsun until we do not perceive any structural changes in the state, which indicates that a
steady state has been achieved. The results are saved as vehicle positions at all time instants.
Therefore, we use KDE to transform the standard Aimsun data into a density distribution.
KDE in 1D is also used to smooth inflows such that they enter the domain in a continuous
line rather than at discrete points of space. We set constant inflows in order to let the system
converge to a steady state. We then perform a numerical simulation of the NEWS model as
described in Section 4.2.1 using the initial conditions from Aimsun.

The results are depicted in Figure 4.7, where the comparison of both density distributions
is shown for ¢ € [0, 50] min. We see that in both cases the distributions look quite similar but
not identical, which might be caused by several things. In Aimsun, vehicles are restricted to
move only on real physical roads, while more freedom of movement is perceived in a PDE-
driven system. Moreover, in Aimsun, turning ratios indicate the probability with which a car
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Figure 4.7: Congestion formation in Grenoble downtown for ¢ € [0, 50] min: numerical simu-
lation of density governed by NEWS model (left plots) and Aimsun (right plots). Weighting
parameter: p = 20. Black dashed lines separate Grenoble in zones used for the calculation of
SSIM.

turns to one or another road, whenever it reaches an intersection at some time instant. Thus,
TR in Aimsun should be understood as mathematical expectation rather than deterministic
values. Hence, it often appears that scenarios in Aimsun, although having the same initial
condition and inflows, converge to different density distributions. Vehicles might get stuck in
different parts of the city, while this is unlikely to happen during the numerical simulation
of NEWS density, where cars move on a continuum space. However, on a global scale traffic
regimes seem to be reproduced correctly in most parts of the city.

Let us now compute the structural similarity measure (4.34) to compare two density distri-
butions from Figure 4.7. For that the domain is divided into 9 windows of equal size, as drawn
in Figure 4.8a). We do this in order to be able to compare density distributions zone-by-zone.
The zones are numbered from top left to bottom right, as shown in Figure 4.8a). The SSIM
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Figure 4.8: a) Zone numbering in Grenoble network, b) structural similarity zone-by-zone:
SSIM; with I ={1,...,9}.

of the whole domain is then calculated as the mean value over all zones:

N
> SSIM; G(p2)
SSIM (p1,p2) = = ; (4.36)

N
l; Cl(,02)

where N = 9 is the total number of zones in the domain, SSIM; is referred to zone [ each
given by (4.34), and (j(p2) is the average of the density distribution used to assign larger
weights to zones that are strongly occupied in the reference distribution (here, py is the total
density in Aimsun). Thus, the fewer cars a zone has, the smaller is its weight. The weights
are assigned in order to avoid giving too much importance to zones that are currently almost
empty. Notice that (;(p2(t)) is a time-dependent parameter.

In its original formulation, SSIM values range from —1 to 1. In order to facilitate the
interpretation of this index in the context of density comparison, we make its range to be
SSIM € [0,1] by doing (SSIM + 1)/2. Thus, SSIM = 1 implies that two distributions are
identical, and SSIM = 0 means that one distribution is completely the opposite of the second
one (inverted image).

The SSIM of corresponding zones in both distributions is depicted as a function of time
in Figure 4.8b). It seems that the most problematic zones are the most empty ones that are
concentrated in the upper part of the domain (zones 2 and 3), while the best captured zones
are the most congested ones (zones 4 and 9). This can be explained by the fact that the main
stream of vehicles enters the domain from the South (since this is where the largest inflows
are set), where they build the most congested areas. Thus, cars might not have reached the
upper part in Aimsun, since they got stuck in the Southern part of the area.

Finally, in order to unable a quantitative comparison of the density in the whole Grenoble
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Figure 4.9: Mean value over zones of SSIM computed by (4.36) between densities obtained
with Aimsun and numerical simulation of NEWS as a function of time.

area, the SSIM is averaged over all zones by using (4.36), and we obtain the result depicted in
Figure 4.9. Thereby, we can see that the overall SSIM is approximately equal to 0.9 (=~ 90%
accuracy ), which indicates that the congested steady state is close to be reproduced correctly
by our model (4.25).

4.2.4 Model validation with real data

For the model validation with real data, we make use of Grenoble Traffic Lab for Urban
Networks known as GTL Ville, see http://gtlville.inrialpes.fr/. Thisisan experimental
platform for real-time collection of traffic data coming from a network of stationary flow sensors
installed in Grenoble downtown, see Figure 4.10. This platform also provides real-time traffic
indicators oriented towards the users of the city, traffic operators and researchers [143]. The
collected data and computed indicators are available for download at the GTL website.

Moreover, for model validation with real data we use the available information on road
importance that is obtained from historical TomTom data, see Figure 4.11 for Functional
Road Classification (FRC) of the selected zone in Grenoble. The road classes are used to
distinguish major roads that experience heavy traffic from minor roads that are usually related
to residential areas and experience only light traffic. The major roads of high importance
(highways) belong to class 1, and the class number increases as the road importance decreases
(the least important roads are of class 7). These roads classes are used to assign larger
weights to important roads (4.27), which is then used for the IDW (4.26) to approximate
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a) Fixed sensors b) Bluetooth devices

Figure 4.10: Sensor location in Grenoble downtown: a) fixed flow sensors: R denote radars
and L denote induction loops, b) automatic vehicle identifiers using Bluetooth installed at 12
intersections of Grenoble during a measurement campaign lasting one week. These figures are
taken from [120].

network parameters.

The maximal densities at every road pmaz,j, capacities ¢z, j, Toad lengths [; and orien-
tations 0; are the same as described above, since these parameters are defined by the network
topology, which remains the same for the real-life experiment. However, the free-flow speed
data are now taken from floating car data reported from several vehicles that are equipped
with devices such as a GPS navigator. The free-flow speed is estimated as the maximal speed
of a vehicle in the absence of other cars, and it starts decreasing as the density of surrounding
cars increases. It is worth noting that, in general, the free-flow speed is lower than the corre-
sponding speed limit value, since in reality cars lose their average velocity, e.g., by stopping
at traffic lights. Thus, our data indicate that the free-flow speed is approximately equal to
60 — 70% of road’s speed limit.

Now let us explain how do we get turning ratios «;;. These data are obtained from
automatic vehicle identifiers using Bluetooth devices that were installed at adjacent incoming
and outgoing roads of 12 intersections in total, see their location in Figure 4.10b). These
identifiers are able to detect vehicles equipped with another Bluetooth device, which enables to
assign origin and destination roads of individual vehicles. For the estimation of the remaining
turning ratios (since there are more than 12 intersections in total), the information on road
importance is used (FRC), and then the optimization problem minimizing the deviation of
predicted and actual flows is solved.

Finally, we also get the estimated density values for every road p; for every minute of the
8th of January 2021 from 6 am to 9 pm, as well as inflows and outflows at domain boundaries.
Notice that in this scenario inflows are time-dependent functions. Estimation of free-flow
speed, turning ratios, vehicle density and boundary flows is described in more details in [119].
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Figure 4.11: Functional Road Classification of Grenoble downtown. The image is taken from
[120].

In Figure 4.10a) the sensors marked in blue are those giving boundary inflows and red
sensors give boundary outflows. Sensors marked in green were used for the validation of state
estimation procedure. Notice that the state estimation procedure is not free of error and it
does not reconstruct the state exactly, since there are only a limited number of sensors due to
economical cost.

In order to get density values all over the continuum plane, i.e., at every point in Grenoble
downtown (not only at physical roads), we divide each road into 10 parts, and at the boundary
between each part we set a group of vehicles. Thus, there is a known number of vehicles at
10 points of every road. We then assume that all these cars contribute to the global density
around dgp = 70 m from its positions using KDE method, see Section 3.1.3.2. We also use
KDE for the inflow values, as it was done in the previous example.

The results are depicted in Figure 4.12, where the comparison of two density distributions is
shown. Again, we see that in both cases the distributions look quite similar. The first possible
reason for these distributions to be non-identical is the probabilistic nature of turning ratios
in reality opposed to deterministic nature in numerical simulation. Another reason is that
the NEWS model does not include traffic lights, as well as it is not able to capture accidents
or the effect of pedestrians crossing a road. Moreover, the NEWS model does not take into
account parking lots. Thus, in reality parking vehicles are seen as stationary objects that do
not contribute to the traffic flow any more, while in NEWS-driven system these vehicles stay
in the domain and create congestions, since the NEWS model is a conservation law.

Another source of mismatch could be induced by data on inflows and outflows. The
problem is that the data represent estimated measurements of the flows in the city that we
can not enforce in our system, since there is always a demand-supply problem that needs to
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a) t=6am

io

Figure 4.12: Evolution of traffic density in Grenoble downtown on 8th of January, 2021 from
t =6 am to t = 9 pm: numerical simulation of NEWS model (left plots) and real data (right
plots). Weighting parameter p = 20.

be solved, i.e.,
(bsource = miD{Dexh S(p)}v (bsink' = min{D(p), Semt}’

where ext is used in the subscript to highlight that these functions depend on what happens
outside the domain. Thus, the available data are not related to demand and supply at domain
boundaries but to actual inflow (;ASS"“’"C@ and outflow q@smk of the system (hats are used to
denote the measurement data).

To understand which problems can be provoked by these issues, let us consider some

measured outflow qgsmk, which in turn is also just a result of solving the minimum between

demand and supply, i.e.,
d;sink = mln{D(ﬁ)v Sezt}, (437)

where demand D(p) depends on the measured density, which might be something different
than the one we get from the numerical simulation of NEWS-driven density.

For the numerical simulation, the best thing we can do with the measured outflow data
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Figure 4.13: a) Mean SSTM (4.36) between the density p; predicted by numerical simulation
of NEWS model and the density py estimated from real data as a function of time, b) similarity
zone-by-zone: SSIM; with | = {1,...,9}. Weighting parameter: pu = 20.

$5™F is to use it as a supply of the external area:
(bsink — mm{D(p), észnk} (438)

However, it follows from (4.37) that gz@smk’ < Sext, where the equality holds in case of congested
traffic. If the traffic is not congested, then setting the external supply to be equal to measured
outflow might lead to blocking vehicles at domain exit instead of letting them come out.

Two distributions are again compared by using the weighted SSIM averaged over 9 zones
as in the previous case using (4.36) and (4.34). The result is depicted in Figure 4.13a), while
Figure 4.13b) is referred to SSIM for each zone computed using (4.34). Notice that the zone
numbering here is preserved the same as in Figure 4.8a). The worst captured zones are 1 and
2 located on the upper part of the city, and the best results are achieved for zones 5, 4 and 8.
A possible reason might be the fact that the cars get stuck at the bottom of the city in the real
experiment, while they move more freely in a PDE governed system (as in Section 4.2.3). In
general, notice that the best results are achieved for the time when the congestion level is the
highest, as we can see from Figure 4.13a). This is related to the weighting parameters used for
the calculation of SSIM (4.36). Weights tend to introduce more noisiness into computation,
when there are only a few cars in the city. Finally, recall that the real-life data are also
an approximation, since these densities are obtained by the estimation procedure that is not
error-free due to the lack of sensors at every road. On average, the total SSIM is around 0.8
(80% accuracy), which indicates that two density distributions are still quite close.
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4.2.5 Reproducibility of the results

It is worth noting that the source code used for model validation is an open source project
that you can find here: https://github.com/Lyurlik/multidirectional-traffic-model.
The README.md file contains all the essential information about the code structure and the
data files such that anyone can get use of it for different purposes (e.g., prediction of traffic
density for a different urban network). Thus, the results are made to be reproducible.

This code is used to produce two different vehicle density distributions: by running a
numerical simulation of NEWS model (4.25), and the other one is the reconstructed density
from data obtained from real sensors.

In order to run the code, one needs to have the following files:

Network topology

1. “./ModelValidation/IntersectionTable.csv” — contains information about intersections:
x and y coordinates of every intersection (columns 1 and 2), its ID (column 3) and
whether it is a node on border (column 4), which means that this intersection is located
at domain boundary through which vehicles may enter (inflows), or exit (outflows);

2. “./ModelValidation/RoadTable.csv” — contains information about roads: ID1 and ID2
(columns 3 and 4) are the id’s of corresponding intersections that the road is connecting,
ID_road (column 5) is the road’s ID, max_vel (column 6) is its free-flow limit estimated
from real measurements, then we have number of lanes (column 7) and road’s length
(column 8);

3. “./ModelValidation/RoadFRC.csv” — contains information about road importance: col-
umn 1 is the road’s ID, and column 2 is its importance class from 1 to 7 with roads of
class 1 being the most important;

4. “./ModelValidation/TurnTable.csv” — contains turning ratios between any pair of roads:
ID1 of incoming road (column 1), ID2 of outgoing road (column 2) and the turning ratio
between these roads (column 5).

Data from real sensors

5. "../ModelValidation/Timestamp.csv"— contains time in seconds at which the data are
given (unix timestamp), the time step equals to one minute;

6. "../ModelValidation/Density.csv” — contains estimated density from real sensors: first
number is road_id followed by its density (that is assumed to be constant within one
road) at all time instants, then the next road_id with its density data for each time
instant and so on;

7. "../ModelValidation/AllInflows.csv" — contains inflow values (in veh/hour) for every
road for every time step (one minute). If road is outgoing from intersection that is not
on border, then the inflow value is zero;
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8. "../ModelValidation/AllOutflows.csv" — contains outflow values (in veh/hour) for every
road for every time step (one minute). If road is incoming into intersection that is not
on border, then the outflow value is zero.

Code structure

The main file of the project is mainwindow.cpp: in its constructor we specify the file
names to be loaded, simulation starting time (line 27) and simulation step size (line 29).
The paths to files containing network and density data are also specified there. We can also
change the weighting parameter p used to approximate parameters for every cell (line 4), and
parameter dy (line 5) is the standard deviation parameter used for Gaussian kernel estimation.

Other important classes are:

e UrbanNetwork, which contains all the network geometry information (this is the place,
where all the network files are read). This network is used for both density predictions.
In its function loadRoads, one needs to specify the minimum distance between the heads
of two consequential vehicles, which is then used for the computation of p,,az (we set
it to 6 m).

o NEWSModel, which contains translation procedure of all network and intersection pa-
rameters into NEWS formulation (function processIntersections). After all parameters
are defined in NEWS terms, it calls constructInierpolation function that approximates
these parameters on every grid point in space using their known values at every intersec-
tion. Then update is performed, where the Godunov numerical scheme is applied for the
state update using NEWS model. There is also a function getSSIMDiff mean_weighted
used to compute the weighted SSIM between two densities (4.36).

o GrenobleData, where all the data estimated from the real-life experiments are loaded.
In function reconstructDensity, the density initially given for each road is defined for
every cell. Thereby, every road is divided in 10 parts, and density values are presented
as points on the border between these parts. Then, Gaussian kernel estimation is used
to determine density for every cell in the domain.

e TrafficSystem, which implements concurrent threads for a parallel NEWS simulation
relative to the main visualization thread.

4.2.6 Discussions

In this section, we demonstrated how the NEWS model predicts the traffic state compared
to the ground true results. For this purpose, we deployed the Godunov scheme in 2D to run
a numerical simulation of vehicle density governed by NEWS model. The predicted density
was then compared to the reference density distribution obtained from two different sources:
microsimulator Aimsun (Figure 4.7) that produced vehicle trajectories using synthetic data,
and estimated density from data coming from sensors installed in Grenoble downtown (Figure
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4.12). These data from real-life measurements are available for download at our experimental
platform GTL Ville. To enable a quantitative comparison of vehicle densities, we implemented
the measure of structural similarity, which is an index used to reveal to which extent are two
images similar.

In both cases, the predicted density looked quite similar to the reference density distribu-
tion, i.e., the index revealed at least 80% similarity in both cases. In the first case (NEWS
vs Aimsun), the predicted densities are similar to 90%. There are several sources of mis-
match. The first one to name is that in Aimsun as well as in a real urban network, vehicles
are restricted to move along physical roads, while in a PDE-driven system this is not that
strict, since the underlying surface is a 2D continuum plane. Another reason is that, in real-
ity, turning ratios are only expectation values rather than deterministic values as in NEWS
model. Thus, the proportion of cars turning to one or another road may be different from
the given fixed proportion due to the finite duration of experiment. The NEWS framework
assumes also that there are 4 possible directions for traffic at every intersection. If there are at
least two roads with different orientation angles 6 going approximately in the same direction
(e.g., North-East), then the NEWS framework introduces mismatches due to approximations
it makes with projection matrices. Another assumption of NEWS relies on optimally designed
networks in terms of capacities. This assumption means that the usage of roads is related to
its capacities, i.e., more cars tend to turn to highways than to roads of minor importance.

In the second case (NEWS vs real data), we had to deal with some additional problems.
The first problem to name is that not all the roads in Grenoble downtown are equipped with
sensors due to high economical cost. Thus, the data available for every road come from the
estimation procedure that is not free of errors. The second problem to be mentioned is related
to boundary flows. Namely, the measured flow data can not be enforced in our NEWS model.
They can only be suggested as boundary conditions, which are fulfilled only if the traffic state
at the boundary points admits it (demand-supply problem). Finally, we can also name the
parking lots as sources of errors. In the real-life experiment, cars stop at parking lots and
are not detected by sensors, thus, the reconstructed density does not take them into account.
On the contrary, the NEWS model is based on a conservation law. Thus, if vehicles stop at
parking lots before exiting the domain, they are counted as obstacles that create congestions.

However, the validation results revealed a good agreement with the prediction. The NEWS
model appeared to be a good approximation of multi-directional traffic in urban networks,
which was confirmed by real-life measurement data. The code used for model validation is
available as an open source project, and the NEWS model can be deployed to predict traffic
on any urban network of interest in further research projects. In the next section, we will
suggest a boundary control technique used to mitigate congestions in a urban network with
multi-directional traffic governed by NEWS model.



158 Chapter 4. Multi-Directional Traffic on Networks

4.3 Boundary control for multi-directional traffic

In this section, we design a boundary control law for a multi-directional urban traffic governed
by NEWS model. This controller acts such that initially congested traffic achieves the best
possible desired equilibrium. This steady state provides congestion mitigation, which equiva-
lently implies throughput maximization of the transportation network. Thus, the control goal
here is similar to what has already been done for uni-directional urban traffic in Section 3.4.

Our main contribution here is an extensive analysis of possible desired space-varying pro-
files that the system can achieve. In this section, we will see that finding an admissible steady
state is far from being trivial for multi-directional traffic systems. Moreover, we will also use
Lyapunov methods to show the exponential convergence of the traffic state to the desired
equilibrium.

4.3.1 NEWS model for congested traffic regime

Let us consider the NEWS model (4.25) for a special case of congested traffic regime. Re-
stricting to one traffic regime allows to considerably simplify the system for analysis, as
it was done in Sections 3.4 and 2.2. A congested traffic in some urban area will be con-
trolled from its downstream boundary such that the level of congestion is minimized under
the constraint that p(z,y,t) > pe(z,y) V(z,y,t) € Q x R for all 4 directions. Recall that
0 ecR?: [Tmins Tmaz) X [Ymins Ymaz) 15 @ bounded rectangular domain, whose size is determined
by the size of the urban area under study.

Without loss of generality, consider a partial flow ¢gxn of vehicles that originate from the
North and then turn to the East, as drawn in Figure 4.3. Its value is determined by the
minimum of flow demand of the East layer and supply of the North layer, i.e., recall (4.12):

¢pN = min{apnDEg, BENSN},

with turning and supply rations being given by (4.13), (4.14). Using the definition of demand
and supply functions for triangular FD (4.15), we can further rewrite ¢ppy as

¢EN = min{apNVEPE, AEN Pmaz,Es BENWN (Pmaz,N — PN); BEN®Pmaz,N}- (4.39)

In the congested traffic regime, the minimum in demand-supply problem is always resolved
to the benefit of supply. This in turn implies for (4.39) that

$EN = BENWN(Pmaz,N — PN)-

Using this expression and fixing po(z,v) € [pe(2, ), pmaz(x,y)] V(z,y) € Q as initial density
distribution condition, we can now introduce the following IBVP for the NEWS model (4.25)



4.3. Boundary control for multi-directional traffic 159

Un
BEBREEEEREER

max

’t

IQ
|

IR EEENE
3

RERREREEERERE

ttttt ettt
Us

Figure 4.14: Vehicle density in a 2D continuum plane that incorporates Grenoble downtown.
Downstream boundaries for control of multi-directional traffic are indicated by colorful arrows:
North in blue (uy), East in dark red (ug), West in green (uy) and South in orange (ug).

that describes the dynamics of congested traffic density on some urban area:

dp 1
E = L(I_B)W(pmax _:0)

p(m,y,t) = U(%y,t), V(l’,’y) € Fout:
p(x’yvo) = pO(xay)a

B ICW (pmaz — p)] _ O[SW (pmaz — p)]
Ox oy ’

(4.40)

where 'y C € represents a set of boundary points (z,y) associated with the domain exit
(downstream boundary):

T
Lowt = (ymaxa Tmazs Tmin, ymin) .

The congested traffic state governed by the NEWS system (4.40) is controlled at the down-
stream boundary Iy, by specifying the control vector v = (un,ug,uw,us)’. See Figure
4.14, where the arrows are used to denote the boundaries to be activated for control of traffic
in each direction.

Finally, C, S, W and B in (4.40) are all 4 x 4 matrices such that C' and S are diagonal
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matrices, W is a positive-definite diagonal matrix, and B is a non-negative matrix:

cosfOy 0 0 0 sinfy 0 0 0
C— 0 cosOp 70 0 g 0 sinfg 70 0
0 0 cos Oy 0 ’ 0 0 sin Oy 0 ’
0 0 0  cosfg 0 0 0  sinfg
wy 0 0 0 BNN  BNE  BNw Bas
W 0 wg 0 O B_ Ben Bee Bew Bes
0 0 ww O}’ Bwn Bwe Bww Bws
0 0 0 ws Bsn  Bse Bsw  Bss

4.3.2 Desired equilibrium

Let the error from the desired equilibrium be denoted by p(z,y,t), which is defined as in
(1.9). To keep everything simple, the desired space-varying equilibria take values only in the
congested regime range, i.e., pg(z,y) > pe(z,y) V(x,y) € Q.

The time derivatives of state and error coincide, which in combination with (4.40) yields

aﬁ 1 ~ a[C W (pmax — Pd — ﬁ)] a[SW (pmam — Pd — ﬁ)]
—=—{[—-B maxr - - - .
5 ~ I W (p pd—p) o dy
(4.41)
Let us also write the dynamics of the desired density that is a time-constant function:
9pa 1 OCW (pmaz — pa)] _ OIS W (pmaz — pa)
22 —0=—(I = BYW (pmaz — — — ) 4.42
If we subtract (4.42) from (4.41), we also obtain the pure error term dynamics:
op 1 _ O0[CWp]  O[SWp]
—=—-(B-1 : 44
ot L BTVt =5 T, (443)

We seek to find a desired density distribution that corresponds to congestion minimiza-
tion, and then to design a boundary control that stabilizes the traffic state to that desired
equilibrium. Thereby, the desired density profile must remain in the congested regime, i.e.,
pa(x,y) > pe(z,y) Y(x,y) € Q, and its values at the boundaries should be proportional to the
maximal densities at the corresponding boundary coordinates, i.e., 3y € [1/3,1] such that

pd(xa y) = YPmax (% y)> V(xa y) € Lout- (4-44)

The range of constant + is related to the requirement for pg to stay in the congested regime,
since with v = 1/3 the desired state equals the critical density p. (recall that p. = 1/3pmaq
in case of triangular FD). Thus, we need to determine constant - that provides congestion
minimization given (4.44).

Problem 4.1

Find the desired space-varying density pq(x,y) V(z,y) € Q that corresponds to the state of
minimal congestion under the constraints that pg(z,y) > pc(x,y) V(z,y) € Q, and boundary
values being proportional to mazimal densities (4.44).
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Remark 4.2
Minimizing congestion means finding pq(z,y) >  pe(z,y) V(z,y) € Q such that

llpa(:) = pe(-)|lo is minimized. The Loo space norm is defined as in (1.8).

Remark 4.3

Physically, a proportional relation of density values at the boundaries to the corresponding
mazimal densities (4.44) implies that boundaries are filled in a homogeneous way. This might
be useful in a situation when vehicles concentrated in a city center tend to leave it simultane-
ously, e.qg., when people drive back home from their offices.

In order to find a desired profile satisfying Problem 4.1, we need to solve the PDE (4.42)
that describes its structural dependence on (z,y). First of all, we need to introduce a change
of variables p(x,y) Y(z,y) € Q as

P, y) = pmaz(T,y) = pa(e,y), (4.45)
which being inserted into (4.42) yields

1 I[C W p] n I[S W p)
ox oy

. (4.46)

Then, we compute the desired state pg(z,y) V(x,y) € Q by performing the following steps:

1. Initial guess: set the desired density at the downstream boundary I'y,: equal to the
corresponding critical values, i.e., pick the lowest possible v = 1/3, which leads to

. 2
p(x,y) = gpmaz(l'ay)> V(x,y) € Lout-

2. Consider the same area in Grenoble city center as in all previous sections, also see
Figure 4.6. Define a numerical grid for this area in ) as in Section 4.2.1 but without
discretization of time, since we deal with a time-constant PDE.

3. Discretize the PDE system given by (4.46). For convenience, we consider the PDE for
the density in the North direction, and then the same steps should be done for the
remaining directions. In accordance with the upwind scheme [34] used to provide the
correct direction of information propagation in a flow field, the discretization scheme
of cosOywnpn and sinfywnpy depends on the signs of cosfy and sinfy, that is

V(i,7) € {1,...,nz} x{1,...,ny}:

cosOn(i+ 1, ))wn(i+1,7)pn(i+1,5) — cosOn (i, j)wn (i, 7)pn (4, 7)
o _ Az ’
Ax

cosOn(i,j) >0 :

cosOn(i,j) <O :

The same can be written for sin #5 and for y-direction, for which we fix ¢ and vary j.
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Therefore, we can define 4 x 4 diagonal matrices Q%, @Y, R* and RY that capture the
upwind scheme as
cosOn(i,j) >0 :

. cosOn(i+ 1,7 )wn(i+1,7) T o
Qun(i,]) = ( Ay , Ryn(i,j) =0,

else :

_costn(i—1,j)wn(i—1,7)
Ax ’

Q?VN(ZLJ) =0, R%VN(%]) =
and the same can be written for sin § and y-direction, for which we fix ¢ and vary j.

4. Define also a 4 x 4 matrix P as:

L o CGAIWG) 186DV ()
T3y (BlEd) = DW i) — T s - RS e,

Using the definition of matrices P, Q%, QY, R* and RY, we can now write the PDE system
for p given by (4.46) in a discretized form that reads V(i,75) € {1,...,n} x {1,...,ny}:
P(i, 3)p(i, 3) + Q%(i,5)p(i + 1, 7) + QY(4,5)p(4, j + 1)

(4.47)

Notice that p(0,j), p(ne + 1,7), p(2,0), p(i,ny + 1) take the values from the boundary
conditions (ghost cells).

5. System (4.47) is solved using the alternating direction implicit method, which is equiv-
alently known as dimensional splitting, see [114]. At each iteration, first x and then y
steps are performed. At each z step, the terms p(i, 7 —1) and p(4,j+ 1) take fixed values
from the previous iteration, while p(i — 1, 7) and p(i + 1, j) are fixed for each y step. At
x step, our system (4.47) is solved for every j by the block tridiagonal matrix algorithm,
while at y step this algorithm is applied for every column 4.

6. Thus, we have described the numerical method to obtain a solution p for the PDE
(4.47), which is not necessarily optimal. Since this PDE (4.47) is a linear system, ap
for v € [0,1] is also its solution. Let us estimate the parameter o* that provides the
optimal equilibrium as in Problem 4.1.

Consider again the desired state pg that is obtained from (4.45) as
Pd = Pmaz — OP. (4.48)

By choosing oo = 0 we obtain pg = pmaz, While by choosing @ = 1 we achieve pg = p.
at the boundaries (see step 1 and use p. = 1/3pmaz). This implies that by taking an
intermediate value of «, we guarantee the congested traffic regime at the boundaries.
Let us calculate o* that provides for the desired state pg to be as close as possible to
pe while staying in the congested regime (see Remark 4.2), for which in general we can
write:

~ A~

_ 2
Pd 5 q o Pmar 7P 5 1 o g3 302 zl:wggpm#, V(z,y) € Q.

Pc l/gpmaz Pmazx P
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From the discussion above, it follows that the optimal state is achieved if 3(z*, y*), for

which )
a* = min fpmAL(x’y). (4.49)
(z,y)€Q 3 ﬂs(xa?/)
se{N,E,W,S}

Thus, the optimal desired profile in the whole domain  can be obtained from (4.48) for
optimal o = o*
Pa(T,Y) = Pmaa(@,y) — a*plz,y),  (z,y) €, (4.50)

with o being given by (4.49). To get an expression for the optimal desired profile py(z,y) at
the boundary V(z,y) € Ty, we take p from step 1 and insert it into (4.50), which yields

* . * 2 *
pd(x,y) =Y pmaz (T, ), with v* =1 — ga , V(x,y) € Tous- (4.51)

As a result, we have derived the expression for optimal desired equilibrium (4.50) that
corresponds to the state of minimal congestion. As we can see, it depends on the solution p
of system (4.47) that can be found numerically using alternation direction implicit method.
We could also get an explicit formula for optimal equilibrium at the domain boundary ',
given by (4.51). This is a useful expression, since it directly determines the boundary control
variables u(x,y) from (4.40), see details below.

4.3.3 Boundary control design

After we have analyzed the desired profile corresponding to the state of minimal congestion
(see Remark 4.2), let us formulate the boundary control design problem as follows.

Problem 4.2

Find a time-constant boundary controller u(x,y) such that a congested density governed by
NEWS system (4.40) converges to the desired space-varying density pq(z,y) given by (4.50)
V(z,y) € Q ast — oo.

In order to prove the convergence to the desired profile, we have to assume that the main
directions of transportation coincide with the cardinal directions, which for example holds for
a Manhattan grid type of traffic networks.

Assumption 4.1
The matrices C and S from (4.40) are constant in space, e.g., they can be defined as:

cosOny =0, ,cosfp=1 cosfy = —1, cosbfs =0, (4.52)
sinfy =1, sinfg =0, sinfy =0, sinfg = —1. '

In general, the further analysis requires these variables to be just constant in space, but
we choose (4.52) for simplicity. We also make an assumption on supply ratios:
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Assumption 4.2
SR matriz B is constant in space, which in turn implies thal every intersection has the same
turning ratio pattern.

Let us now show that setting the boundary controller equal to the desired state at the
boundary under Assumptions 4.1 and 4.2 provides the exponential convergence of traffic state
to the desired equilibrium in the whole domain. This is formalized as follows.

Theorem 4.1
Under Assumptions 4.1 and 4.2, let the boundary controller be defined as

Pd,N(an ymax)
pd,E(xmam; y)
Pd,w (Tmin, Y)
Pd,S(% ymzn)

u(z,y) = , Y(z,y) € Tour, (4.53)

then 3K,k > 0 such that

Ip(t) = pall72 < e K [|p(0) — pall 72,

i.e., the state p(x,y,t) ezponentially converges to the desired equilibrium py(z,y) ¥(x,y) €
as t — oo.

Remark 4.4

Although for simplicity of the proof we assumed a reqular Manhattan grid structure (Assump-
tion 4.1), the feedforward boundary controller (4.53) can be applied to a more general network,
as will be shown on a numerical example, for which we take the network of Grenoble downtown.

Proof of Theorem 4.1. Let us first analyze matrix B — I. Its non-diagonal elements are posi-
tive, and its diagonal elements are negative. Moreover, B — I has one eigenvalue equal to zero
and all others are negative, as it is shown in Appendix B.8. Therefore, B — I is a negative
singular M-matrix with one zero eigenvalue. Thus, there exists a positive-definite diagonal
4 x 4 matrix D such that

DB-1)+ (BT —I)D<o. (4.54)

Let us also introduce a diagonal 4 x 4 matrix composed by exponential functions as follows:

ey 0 0 0
0 ¢ 0 0
0 0 e* 0
0 0 0 €Y

E =

This matrix is used as weights in each direction that helps achieving exponential convergence.
We define the following Lyapunov function candidate:

Tmax Ymazx Tmax Ymazx
V= / / o' WDEp dydx = / / (parwnDye?
(4.55)
Tmin Ymin Tmin Ymin

+ prwpDpe® + ﬁ%,vwWDWe_”: + ﬁQSwSDSe_y) dydz,
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where Dy, Dg, Dy and Dp are the diagonal elements of matrix D.

The function (4.55) is obviously positive-definite, since matrix WDE > 0. Let us now
take its time derivative, which yields

Tmaz Ymax
. L
V= / p

25 ~WDEp dydr, (4.56)

Tmin Ymin

where the error dynamics 9p/0t should be taken from (4.43), which allows us to further expand
(4.56) as:

Tmax Ymax

V= / / %(Wﬁ)T (DE(B —1I)+ (BT — I)DE) Wj dydz

B (4.57)
+2 / / (Wp)T'DE W) + NS W) dydzx.
Oz oy

Tmin Ymin

Let us now denote the first term of (4.57) as V4 and the second term as Va. The term V; is
negative due to (4.54) and the fact that matrix E is non-negative, i.e.,

Tmaz Ymazx
. 1
= / / —(W)T (DE(B — 1)+ (BT — )DE) W} dydz < 0.

Tmin Ymin

We further consider V5 by inserting the values of matrices C' and S (4.52) from Assumption
4.1

Tmaz Ymax
. a ~ 6 ~
V2 =2 (WEﬁEDEem(waEpE) — wWﬁWDwe_m(wgV’OVV)
x x

Tmin Ymin

+wypn Dyt QENPN) s DSG*QJM> dydz.
dy dy



166 Chapter 4. Multi-Directional Traffic on Networks

This expression is then integrated by parts, which yields:

Ymazx

VQZ/ [e_x(\/mwwﬁwffez( DEWEﬁE)Q} dy

T=Tmin

Ymin
Ymazx )
+ / " (v/Dpwepr)® —e (v wawﬁwﬂ dy
L T=Tmaz
Ymin
Tmazx
+ / e Y(y/ D5w5ﬁ5)2 —eY(v/ DNwa)N)Q} B dx
Tmin ) Y (458)
Tmax
+ / e’ (v/ DNWN/;N)2 —e V(v DSWSﬁS)ﬂ dx
L Y=Ymax
Tmin

Tmax Ymax
— / / (exDE(WEﬁE)Q+€7IDW(WW/5W)2

Tmin Ymin

+ /Dy (wnpn)? + e Ds(wsps)? ) dyda.

By setting the boundary controller u(z,y) as in (4.53), we achieve that V¢t € Rt

pN(xaymaxat) =0, ﬁS(xvyminat) =0, Va € [xminaxmaa:]’ (4 59)
ﬁW(xmina Y, t) = 07 ﬁE(xmaacv Y, t) = 07 vy S [ymina y’max]7

and one ensures that the first four integrals in (4.58) go to zero. The last term in (4.58) can
be bounded as follows

Tmaz Ymax

<€xDE (wepE)? + e Dw (wwpw)?

Tmin Ymin

+ e Dy (wnpn)? + ¢ Ds(wsps)? ) dyde

Tmax Ymazx (460)
<—  min  wy(z,y) (exDEwEﬁ%
(z,y)e
qE{N,S,W,E} Tmin Ymin

+ e_wDWwWﬁ%,V + eYDnwypa + e_stwSﬁ?g> dydx,

where we have used the fact that the kinematic wave speed is positive by definition, i.e., w > 0.

The integral on the right-hand side of (4.60) coincides with the Lyapunov function (4.55).
This means that by inserting (4.59) into (4.58) and also by using the bound from (4.60), we
can write

V=W+V, <V <-FkV,
where k € R™ is a positive constant
k= min  wy(z,y).

(z,y)€Q
qE{N’E7W7S}
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One can also prove that the state p converges to zero in Ls norm exponentially. Indeed,
note that the Lyapunov function V' from (4.55) defines an equivalent norm on the density
space:

") <112
m|plz: <V < M||pl|7.
with
m = min wolx,y)DeEy(x,y),
(20)EQ g(z,y)DgEq(z, y)
qe{N7E7W7S}
M= max wy(z,y)DeEy(z,y).
(z,y)€Q
qe{N7E?W75}

By the exponential convergence of the Lyapunov function we have
V() < eTMV(0),
therefore V(z,y) € Q
603 < 2 O]

Remark 4.5

Assumption 4.2 on space-independent B can be relazed, if it is possible to find such a matriz
D that satisfies inequality (4.54), and whose elements Dg(y) and Dw (y) may depend on y,
while Dy (x) and Dg(x) may depend on x.

4.3.4 Numerical example

Finally, we demonstrate how a boundary control given by (4.53) works in practice using a
selected area Grenoble downtown with a total surface of around 1.4 x 1 km?, which is the
same area as in all previous sections of this chapter, e.g., see Figure 4.6. For the numerical
simulation of traffic density evolution governed by NEWS system (4.40) in the congested
regime, we again deploy the Godunov scheme in 2D as described in 4.2.1. The downstream
boundary conditions in (4.40) are set to the desired optimal density as in (4.53), while the
upstream boundary conditions are initialised with the maximal possible flow as in Section
3.4.3, where the control of congested uni-directional traffic was considered. We will thus
demonstrate how the boundary controller (4.53) performs for congestion mitigation purposes
given the initial state

p0(Z,Y) = Pmaz(T,Y), V(z,y) € .

The results of control performance on a congested traffic in Grenoble downtown are shown
in Figure 4.15. The continuous approximation of FD and network parameters using IDW
method (4.26) was done with a low weighting parameter 4 = 5, such that only the global
trend of motion is reproduced.

Figure 4.15a) illustrates the initial vehicle density that indicates the state of a traffic
jam. The optimal desired equilibrium profile pg obtained by following all the steps in Section
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4.3.2 is illustrated in Figure 4.15b). Recall that the desired state corresponds to congestion
minimization under the constraints formulated in Problem 4.1. The desired state is found by
first solving the PDE for p given by (4.47) and then using (4.50), where we use a* = 0.51 that
was obtained using (4.49). Further, we show the impact of boundary controller (4.53) on the
congested traffic state after ¢ = 5 min, ¢ = 20 min and ¢ = 50 min in Figures 4.15¢), 4.15d)
and 4.15e), respectively. We can see that the controlled state at ¢ = 50 min is identical to the
desired equilibrium from Figure 4.15b).

We could quantitatively measure the similarity between two density distributions by de-
ploying the mean SSIM (denoted by SSIM), see Section 4.2.2 and (4.36). Thereby, the
Grenoble area was again divided into 9 zones to compute SSIM using (4.36). Notice that
SSIM as a function of time is shown in Figure 4.15f), where range of SSIM is preserved as
in its original formulation, i.e., SSIM € [—1,1]. Thus, after ¢ = 50 min of boundary control
action, SSIM approaches 1, which implies that two density distributions in Figures 4.15¢) and
4.15b) are identical.

4.4 Chapter conclusions

In this chapter, we suggested our own way to deal with multi-directional traffic evolving on
urban networks of arbitrary size. Multi-directional traffic is much more close to represent
urban traffic in realistic situations compared to 2D LWR approach considered in the previous
Chapter 3. The global idea was to derive a PDE model that captures the traffic behaviour
evolving in a urban network in any direction with flow crossings.

We started elaborating a modeling approach for multi-directional traffic by considering a
traffic flow model at one intersection based on the classical CTM. Each intersection is charac-
terized by a certain number of incoming and outgoing roads that may be arbitrarily oriented
in space. Thus, the traffic flow model has a different number of parameters to tune for each
individual intersection. As a network may consist of thousands of intersections, we had to find
a unified approach to describe traffic at intersections regardless of their individual parameters.
Thereby, we assumed that the dynamics of multi-directional traffic can be represented by only
4 direction layers: North, East, West and South. This led to the formulation of NEWS frame-
work that deploys geometry-based projection matrices to map the traffic flow along any road
into the nearest cardinal directions. The projection weights vary continuously with road’s
orientation angle. For instance, if a road goes exactly to the North, the projection weight for
the North direction is equal to 1 (maximal possible angle), while it is equal to 0.5 if the road
is oriented perfectly towards North-East or North-West. We have also introduced the concept
of partial flows to capture various origin-destination patterns at intersections. For instance,
¢nE is the flow of vehicles that were moving along a road oriented to the North, and then at
intersection turned to the road oriented to the East direction.

Thus, we were able to obtain a traffic flow model that predicts the rate of change of vehicle
accumulation at intersection in a unified way. However, since our goal was the derivation of
a traffic model on a macroscopic scale, we wanted to formulate the traffic state in terms of
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Figure 4.15: Boundary control of congested traffic in Grenoble downtown: a) initial congested

state pg, b) desired equilibrium pg; controlled state after: ¢) ¢ = 5 min, d) ¢ = 20 min, e)
t = 50 min; d) SSTM between the state and the desired density as a function of time.
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density. Therefore, we also applied the continuation method to be able to define the model
predicting the evolution of vehicle density in the vicinity of an intersection. This method
was used to turn an ODE into a PDE, which allowed us to obtain a macroscopic continuum
model for one intersection. Since every intersection was described in a unified way, we finally
applied the inverse distance weighting to define all the intersection parameters for every point
in a continuum plane. The derivation of the NEWS model was done analytically using only
one assumption on network structure. Namely, urban networks under consideration must
be well-designed in terms of maximal flows, i.e., if vehicles move at maximal flow before an
intersection, they continue using the road capacity at maximum after the turn.

As a result, in Section 4.1, we derived the NEWS model (4.29) that predicts the evolution
of traffic in four cardinal directions. The propagation of traffic flow in each direction is driven
by the demand-supply concept that uses a fundamental diagram. Moreover, vehicles moving
in some layer can switch to another layer, i.e., there is a mixing between different layers, which
is an important aspect due to its physical ubiquity.

The mathematical properties of the NEWS model have also been analyzed. The PDE
system was shown to be hyperbolic for any parameter set, as it is often the case for conservation
law based traffic models. Being able to classify a model as a hyperbolic PDE significantly
simplifies the analysis for future tasks such as explicit control design or steady state estimation,
since a lot of analytical results have already been elaborated for this type of systems. It was also
shown that the model represents a conservation law with traffic density being the conserved
quantity. Moreover, it was shown that its state is bounded, which is a realistic assumption
for traffic modeling, since vehicles can not be located infinitely dense.

The model prediction results have been validated in Section (4.2) using microsimulation
Aimsun, and experimental platform GTL Ville that provides real-time data from a network of
real sensors installed in Grenoble downtown. The validation results revealed that the density
distribution predicted by NEWS model stays in a good agreement with the reference density,
i.e., 90% of similarity with Aimsun and 80% similarity with the real-life experiment. Although
the validation results proved a high prediction quality with the NEWS model, it is however
not completely error-free, since it is based on several assumptions that do not necessarily hold
for a general traffic situation in reality. The model validation with real data was made to
be an open source project such that the results are reproducible and can be used for future
studies.

In the last Section 4.3 of this chapter, the NEWS model has been investigated from the
control perspective, whereby we restricted to the congested traffic regime for simplicity. We
have analyzed the class of admissible desired equilibria that must satisfy a certain system of
PDEs. We have posed and solved the problem of finding an equilibrium state that corresponds
to the state of congestion minimization in a urban network under the constraint that its range
must remain in the congested regime. Further, we proved the exponential convergence of
a congested state controlled from the boundary to this desired equilibrium using Lyapunov
methods. Thereby, for the proof, we had to assume several restrictive assumptions such as
Manhattan grid like topology of underlying urban networks, and similar turning ratio patterns
at intersections. These assumptions were introduced only to simplify the proof and are not
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necessarily real restrictions needed to provide the functionality of the suggested controller,
which was shown in a numerical example. Finally, we again used the same area in Greno-
ble downtown as in Section 4.2 to demonstrate the performance of the derived feedforward
boundary controller with the help of a numerical example. It was shown that the controller
acts such that the traffic density converges to the desired optimal equilibrium in finite time,
which is related to the hyperbolic nature of NEWS PDE.

An appealing direction for future studies might be finding equilibria profiles that admit
mixed traffic regimes. Another possible extension may include elaborating a boundary con-
troller under the constraint that the activation boundary is a set of points on real roads
rather than a continuous line, as it is assumed to be in a PDE-driven model. More research
perspectives are given in Chapter Conclusions and Perspectives.






Conclusions and Perspectives

Summary of contributions

This thesis was devoted to traffic control on urban networks. Thereby, we have used the
macroscopic modeling approach that enables characterizing traffic as a fluido-dynamic system,
and its state is described in terms of vehicle density. This is a beneficial form to analyze traffic
on large-scale networks, since it allows us to consider traffic as a single dynamic object rather
than a collection of vehicles. By considering traffic on a macroscopic scale, the model-based
control design becomes scalable and easy to validate even for arbitrarily large urban networks.
We were mainly interested in predicting congestion formations in large transportation networks
and in dissolving them through the boundary control, i.e., by setting appropriate on- and off-
ramps. Reaching such a goal implies taking a big step towards the development of intelligent
transportation networks. In this work, we proceeded towards the global goal of traffic control
on any urban network step-by-step. First, traffic on single roads was considered and analyzed
for control. Then, we looked at traffic on urban networks with a preferred direction of motion.
Finally, we developed our own approach to modeling traffic with any direction of movement.
Let us summarize the main contributions that have been achieved at each of these stages.

Traffic control on roads

We considered traffic evolving on single roads of finite lengths using the LWR approach in
Chapter 2. The goal of this chapter was to design a boundary control law that acts such that
any desired space- and time-varying vehicle density profile is tracked for asymptotic time. To
be admissible, the desired vehicle density must be governed by the LWR PDE as well. A
space- and time-dependent desired state can be seen as a generalization of any desired state.
Stabilization of traffic to some desired equilibrium is just a special case of trajectory tracking,
and can be achieved by applying the same control law. Also notice that non-stationary profiles
are more frequent in real traffic situations.

There are however two major difficulties that arise for LWR-driven traffic control design.
The first difficulty is that there are no classical solutions to the LWR PDE due to the non-
linearity of the fundamental diagram even for a smooth initial datum. Characteristic lines
propagate with different speeds, and whenever they cross, the discontinuities in the solution
arise. This requires considering solutions in the weak sense, and the unique solution is the one
that satisfies the Lax entropy condition. Thus, treating discontinuities is a tedious procedure
that gets even more complicated, if we design control to track some trajectory that also does
not exist in the classical sense.

The second difficulty is that considering traffic governed by LWR PDE on finite roads
requires to include boundary conditions into the consideration. One needs to consider these
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conditions also in the weak sense, since in general they can not be imposed for all time,
which equivalently means that the demand-supply problem needs to be solved. This triggers
a general problem, when the boundary conditions need to be designed for traffic control. We
can not even analyze how the system evolves under the effect of control in a straightforward
way, since the controller may not be accepted by the system.

Thus, we first considered a more simple case by restricting only to congested traffic in
Section 2.2. Considering traffic only in the congested regime considerably facilitates the struc-
ture of the traffic system that becomes linear, as well as boundary conditions can be imposed
in a strong sense. We also added a general unknown in-domain disturbance to the system.
This was done to capture the unmeasured influence of vehicles that come from minor roads
and aggravate congestion. Thus, we designed the optimal boundary controller that acts to
minimize the deviation from the desired trajectory while attenuating disturbance. The devia-
tion is minimized in sense of Lo norm if the boundary controller from Theorem 2.1 is applied.
We also achieved the minimization of the deviation in sense of Lo, norm by applying the
boundary control law from Theorem 2.2. When it comes to practical applications, the mini-
mization norm should be chosen based on the available knowledge of the disturbance source,
i.e., Ly norm should be minimized if the unmeasured flow of vehicles originates from many
minor roads, while we choose the Lo, minimization if the disturbance is related to a stream
of vehicles originating from a single major road. In both cases, the designed controllers have
feedback parts used to attenuate the disturbance. Although the controllers are optimal, in
general, the in-domain disturbance can not be completely rejected by acting only from the
boundary due to a finite propagation speed of information, which is a general property of
hyperbolic systems. The material of Section 2.2 was published in [137].

In Section 2.3, we extended this result by considering the full LWR system (without
disturbance), for which no classical solutions exist. The traffic state as well as the desired
trajectory are governed by the LWR PDE, which implies that they can be in different traffic
regimes. Solving a boundary control task for such a system is a much more general result,
since real-life traffic usually builds non-trivial density patterns, e.g., it can be partially in the
free-flow traffic regime and partially congested. We could solve this problem by considering the
LWR system in Hamilton-Jacobi formulation that represents its integral (cumulative) form.
This formulation enabled us to obtain a continuous solution to the LWR system explicitly for
large enough time. It was possible due to a convenient shape of the triangular fundamental
diagram. The solution to the LWR system in H-J formulation was then used to analyze the
boundary conditions in terms of control restrictive functions. The cumulative H-J formulation
thus enabled us to estimate the time periods during which the road boundaries can not accept
the proposed controller values. The main result of this section is the boundary control law
with feedback term in Theorem 2.3, and we can also say that it is the main result of the
whole Chapter 2. We have shown that even with time periods during which no control can
be imposed, the systemn exponentially converges to the desired trajectory in Hamilton-Jacobi
formulation. This result implies that under this control law, the number of vehicles on the
controlled traffic road converges to the desired number of vehicles pointwise. This also means
that the vehicle density converges to the desired trajectory in the integral sense over arbitrarily
small intervals. Thus, we suggested a general approach to solve any control task for LWR-
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driven mixed-regime traffic on a single road by acting only from the road boundary, and it
was published in [133].

Uni-directional traffic on networks

After the boundary control problem for a general traffic state was solved for a single road, we
were seeking to find a holistic approach to solve any control tasks for urban traffic in Chapter 3.
This was done within the same modeling approach but in two dimensions, i.e., we used the 2D
LWR model to predict the evolution of traffic on a urban network by approximating it as a 2D
continuum plane. Namely, traffic is again seen as a fluid that propagates along a 2D plane that
is a rectangular domain whose size is determined by the size of the underlying network that
represents a set of roads and intersections. The network infrastructure is incorporated as an
explicit space-dependency of the fundamental diagram that captures various speed limits and
transportation capacities along the roads of urban network. The FD parameters are approxi-
mated everywhere in the continuum, and its values are mostly influenced by the parameters of
the closest roads. The direction of traffic flow propagation is determined by the direction field
that depends on the network geometry. The structure of the model implies that the integral
lines of the direction field do not cross. Moreover, to be well-defined on a continuum plane, we
can apply this model only to urban networks that contain no loops. These two requirements
(no crossing lines and no loops) makes this model applicable only to uni-directional networks,
i.e., there must be a preferred direction of motion. This restriction makes it difficult to use
this model for a general multi-directional traffic. However, the 2D LWR model can be useful
in a variety of situations. For example, many people driving simultaneously to the business
district (e.g., at 9 am on a weekday) create a uni-directional traffic pattern.

The second space dimension makes it difficult to analyze the 2D LWR model in its original
form for the control design. For example, it was not clear which boundary point should be
actuated such that some area inside the domain is affected. In Section 3.2, we elaborated a
technique that turns this 2D model into a parametrized system of 1D LWR equations with
an explicitly space-dependent FD. This technique is the main contribution of Chapter 3. It
is based on the curvilinear coordinate transformation that scales and rotates the space such
that it is then treated as a continuum, in which traffic propagates along straight lines (as in
Figure 3.7). Thus, the 2D LWR model was rewritten in new coordinates (3.34), and it is seen
as a continuum plane composed of inhomogeneous roads. The big advantage of this system
is that we could apply similar control techniques as in the previous chapter but handling the
explicit space-dependency of FD and an additional space parameter.

In Section 3.3, we discussed the equilibria that can be achieved in urban networks given
inflows and network structure (published in |135]). Then, this result was used in Section
3.4 to obtain the optimal equilibrium state corresponding to congestion mitigation. Thereby,
we considered a simplistic case of traffic being only in the congested regime. The boundary
controller is given in Theorem 3.1, and it was shown that it is able to drive congested urban
traffic to an equilibrium of maximal throughput (published in [138]). Next, in Section 3.5,
we solved the problem of boundary control design for mixed-regime urban traffic such that
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it tracks any desired space- and time-dependent trajectory. This is the same problem as
considered for 1D case, and thus it could also be solved using the H-J formulation. This was
however more technically involved and not that straightforward due to the space-dependency
of the Hamiltonian. The designed boundary controller is presented in Theorem 3.2. This
result is a general solution to the boundary control problem for any urban network that has a
preferred direction of motion that can achieve any time- and space-dependent profile governed
by the 2D LWR model.

Finally, in Section 3.6, control was designed in a different way than in all the preceding
parts. Namely, we demonstrated the ability to control urban traffic using the variable speed
limit applied continuously in space and time (in-domain controller). The VSL controller
given in Theorem 3.3 is able to drive urban traffic to any desired equilibrium. The difference
with respect to the previous boundary control result is that this desired equilibrium is not
even restricted to satisfy the conservation law equation. This is possible, since the controller is
designed such that the closed-loop system loses the conservation law structure, i.e., it feedback
linearizes the system. Thus, the desired equilibrium is bounded only by the maximal density
that is determined by the network structure. It was shown that the controller is smooth in
space for some special dependencies of FD on VSL in Theorem 3.4. Then we also designed an
equilibrium that provides that the system is used at its maximal theoretical throughput by
the maximal possible number of drivers. The material presented in Sections 3.5 and 3.6 was
sent for a publication [132].

Multi-directional traffic on networks

In Chapter 4, we addressed the main limitation of the previous results that have been developed
only for uni-directional traffic. A new model for traffic with multiple directions was introduced
in Section 4.1. This model is explicitly derived from the demand-supply concept for one
intersection. Since a urban network usually contains much more than one intersection, we
had to develop a new framework that can describe traffic in a unified way for all intersections.
The main difficulty was introduced by the fact that every intersection may have an arbitrary
number of incoming and outgoing roads.

We suggested to introduce a projection matrix that assigns weights to every road with
respect to 4 cardinal directions, which are North, East, West and South (NEWS). Thus,
every intersection is approximated as if it would have 4 incoming and 4 outgoing roads in
each direction, i.e., 16 pairs of origin-destination flows can be defined. This enabled us to
formulate a traffic flow model at every intersection in a unique way such that it predicts the
rate of change in the number of vehicles at intersection given inflows and outflows in NEWS
formulation. Further, the continuation method was applied to translate this ODE model into
a PDE that describes the evolution of vehicle density in the vicinity of an intersection. This
was done, since our goal was to derive a macroscopic continuous model, as in the previous
chapters but allowing any possible direction. Thus, we obtained a unique model that describes
the evolution of density in 4 direction layers at every intersection in the same way. Using
approximation methods, we defined also the parameters of FD everywhere in the continuum.
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Therefore, we obtained the NEWS model (4.25) that is the main contribution of Chapter 4.
It consists of mixing and transportation terms. The mixing term is responsible for modeling
of inter-layer traffic flow, which is an essential phenomenon that allows to capture turning
ratios correctly. The transportation term describes the spatial propagation of traffic flow in
each direction layer that depends only on demand and supply functions of the corresponding
direction.

In Section 4.1.4, the properties of this new model have been studied. It was shown that
this model represents a conservation law. Its state is always positive and bounded by the
traffic jam density that is determined by the network topology. Then, we also showed that
this model corresponds to a hyperbolic partial differential equation for any possible parameter
set. Being able to classify a traffic model as a hyperbolic conservation law allows to consider
the properties of its solution in the same way as it is done for other hyperbolic conservation
laws such as 1D LWR, as well as the same finite difference approximation method can be
applied for numerical simulations.

The ability to consistently predict traffic evolution on large-scale networks using the NEWS
model was validated in Section 4.2. First, we used synthetic traffic data obtained by running
a congestion formation scenario on a commercial microsimulator Aimsun. It predicts the
trajectories of individual vehicles given some network with defined road and intersection pa-
rameters as well as the inflow rate. The same scenario and parameters were taken for the
numerical simulation of traffic with NEWS-driven dynamics. The results were compared us-
ing the structural similarity index that is a perception-based measure of similarity between
two images (density distributions). The index revealed 90% of similarity meaning that the
NEWS model is able to predict the evolution of traffic with the accuracy of 90%. The main
factor explaining that two distributions are not identical is a pure continuous nature of the
NEWS model, which does not strictly prohibit cars to move outside of real roads.

Then, the NEWS prediction results were also validated with real data obtained from the
experimental platform GTL Ville (Grenoble Traffic Lab) that collects traffic data from a set
of real sensors installed in Grenoble downtown. These data are related to inflows and outflows
at stationary points, turning ratios were obtained with Bluetooth devices, and TomTom data
provide velocities. It is important to note that due to economic cost sensors are not installed
at every road. The rest of the traffic state in Grenoble downtown was reconstructed using
heuristic algorithms. Thus, the NEWS traffic density was compared to the traffic density
reconstructed from real measurements, and the similarity index revealed 80% of similarity.
The results are presented in Figure 4.12, which is the major contribution of Section 4.2 (and
one of the main contributions of this whole chapter). An additional source of distribution
mismatch comes through the disability to enforce the same inflow and outflow data as in the
real-life experiment due to the demand-supply problem. The derivation of NEWS model and
its validation with synthetic and real data was sent for a publication [136].

Finally, we analyzed the NEWS model for the case of multi-directional traffic in the con-
gested regime, and designed a boundary control law to manage this traffic in Section 4.2 (sent
for a publication [134]). The control goal thereby was again to drive the system to the best
equilibrium proving the maximal throughput under the constraint that mathematically traffic
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could still be described by the NEWS system in congested traffic regime. The most non-trivial
thing was to analyze admissible equilibria, for which some PDEs had to be solved. The de-
signed boundary controller is presented in Theorem 4.1. For its proof, we had to assume a
Manhattan grid structure of network and a similar supply ratio pattern at every intersection,
which are however not necessarily real restrictions that need to hold in order to achieve the
convergence to the desired state with the boundary controller.

Perspectives and extensions

Based on the results of this PhD thesis, I see a plenty of appealing directions for the future
research. The following open questions seem to be the most relevant ones:

e In this thesis, traffic was described in a quite simplistic way, since LWR model repre-
sents the most simple macroscopic model of traffic. In general, it is well known that
LWR modeling approach has several drawbacks, since it does not take many important
phenomena such as bounded acceleration or capacity drop due to the transition from
free-flow to congested traffic regime. Moreover, a possible way to refine the description
of traffic is to take into account different driver classes based on their velocity (fast
and slow). Thus, one could investigate the boundary control problem to track a de-
sired space- and time-varying profile using a more sophisticated modeling approach that
addresses limitations of LWR model (higher-order and multi-class models).

e The 2D LWR model is restricted to describe traffic on networks that have a preferred
direction of motion, which is not realistic for general traffic. A similar problem was
encountered for MFD-based models. Recall that MFD becomes ill-defined in zones with
heterogeneously congested roads, and partitioning algorithms had to be developed to
divide a network into homogeneously congested zones. Thus, as a promising extension
of research on macroscopic urban traffic modeling, one could develop partitioning algo-
rithms that would divide a urban network into zones that have a preferred direction of
motion.

e In both Chapters 3 and 4, the boundary controllers were designed for traffic evolving
on a continuum rectangular domain that approximates the underlying urban network.
As a result, we obtained control laws defined on a continuum line, which is not directly
interpretable physically. It would be thus interesting to investigate this problem and
to develop a method to map the boundary controllers defined on continuous lines into
actuators that are set on specific points or intervals on real roads.

e In Chapter 4 the NEWS model was derived. This model is a system of only four PDEs
that is able to predict the evolution of multi-directional traffic on urban networks quite
accurately (which was confirmed with experimental data). It is important for future
studies to rigorously characterize the mathematical properties of its solutions. Moreover,
the last Section 4.3 presented the first control result for traffic governed by the NEWS
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model, however for a simplified case of congested traffic. It would be thus appealing to
extend this result to capture mixed-regime traffic.






APPENDIX A

Appendix A: List of symbols

A.1 Traffic on one road

p(z,t) one-dimensional vehicle density veh/m
o(x,t) one-dimensional vehicle flow veh/s
pa(x,t) desired vehicle density trajectory veh/m
plz,t) deviation of the state from the desired density veh/m
d(p) flux function (constant parameters) veh/s
D(p) demand function veh/s
S(p) supply function veh/s
Pin(t) proposed density at the upstream boundary veh/m
Pout(t) proposed density at the downstream boundary veh/m
po(z) initial density at t =0 veh/m
Din(t) inflow to the road stretch veh/s
Dout(t) outflow from the road stretch veh/s
v, w kinematic wave speeds in triangular FD (constant) m/s
Pe critical density (constant) veh/m
Pmaz maximal density (constant) veh/m
Pmaz road capacity (constant) veh/s
L road length (constant) m

tetr minimal controllability time S
Mipi(x) initial cumulative vehicle number at ¢ = 0 veh
Muy,(t) cumulative vehicle number at road entry z =0 veh
Mpown(t) cumulative vehicle number at road exit z = L veh
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A.2 Uni-directional traffic on a 2D plane

Variable Meaning Units
p(x,y,t) two-dimensional vehicle density veh /m?
&(xz,y, p) flux vector function veh/(s'm)
O(x,y,p) flux magnitude (space-varying parameters) veh/(s'm)
dy(z,y) direction field set by network geometry -
Q bounded continuum domain that approximates network m
\Y two-dimensional nabla operator 1/m
po(x,y) initial density at ¢t = 0 veh /m?
v(z,y), w(z,y) | kinematic wave speeds (triangular FD) m/s
Umaz (T, Y) maximal free-way kinematic wave speed (Greenshields FD) | m/s
pe(z,y) critical density veh /m?
Pmaz (T, Y) maximal density veh /m?
Gmaz(T,Y) road capacity veh/(s-m)
" weighting parameter for continuous approximation 1/m
(&,m) curvilinear spatial coordinates m
a(é,n), B(&,n) | scaling factors used to preserve the metric in (£, n)-space -
Pmaz(§,1) maximal density in (&, n)-space veh /m?
Omaz(&,M) road capacity in (£, n)-space veh/(s'm)
v(&,n), w(&n) | kinematic wave speeds in (£, n)-space (triangular FD) m/s
maximal free-way kinematic wave speed in (&, n)-space
Umaa(§,1) (Greenshields FD) m/s
D(pin(n)) demand at the upstream boundary of 7-line veh/(s'm)
S(pout(n)) supply at the downstream boundary of n-line veh/(s'm)
min () capacity at the strongest bottleneck along the 7-line -

tetr(n)

minimal controllability time for n-line
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A.3 Multi-directional traffic on a 2D plane

A.3.1 Road formulation

Variable Meaning Units
p(x,y,t) vehicle density veh/m
O(x,y,p) flow function veh/s
v(z,y) kinematic wave speed in free-flow regime m/s
w(zx,y) kinematic wave speed in congested regime m/s
pe(x,y) critical vehicle density veh/m
Omaz(T,y) | flow capacity veh/s
D(p) demand function veh/s
S(p) supply function veh/s
pin inflow to intersection from road ¢ veh/s
gb;?"t outflow from intersection to road j veh/s
1/15-” inflow into road j veh/s
w;?“t outflow from road j veh/s
Nin number of incoming roads for intersection -

Nout number of outgoing roads from intersection -

bij flow from road ¢ to road j veh/s
Qij turning ratio from road ¢ to road j -

Bij supply coefficient of road j for the flow from road i -

D;; flow demand of road ¢ to enter road j veh/s
Sij supply of road j for flow coming from road veh/s
0; angle that road ¢ builds with the East direction rad

l; length of road ¢ m
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A.3.2 The NEWS formulation

Variable Meaning Units
pév , peE , pgv, p*g projection coefficients w.r.t. corresponding directions -

P, € R¥7in projection matrix for incoming roads into NEWS -

P, € R¥xnout projection matrix for outgoing roads into NEWS -
p(z,y,t) 4-dim density vector veh/m
(z,y, p) 4-dim flow function veh/s
Pmaz (T, Y) 4-dim maximal density veh/m
o(z,y), w(z,y) | 4-dim kinematic wave speeds m/s
pe(z,y) 4-dim critical density veh/m
Grmaz(T,7) 4-dim flow capacity veh/s
D(z,y,p) 4-dim demand function veh/s
S(z,y,p) 4-dim supply function veh/s
P (z,y) inflow into intersection in the North direction veh/s
p (z,y) outflow from intersection in the North direction veh/s
onEe(T,Y) partial flow from North to East wrt intersection veh/s
b (z,y) inflow into outgoing road in the North direction veh/s
7?\}“5(.%, Y) outflow from outgoing road in the North direction veh/s
YnEe(T,y) partial flow from North to East wrt outgoing roads veh/s
agn(z,y) turning ratio from East to North layer -
Ben(z,7) supply of East layer for the flow from the North -
cosO(z,y), . . . .

S0z, y) average direction parameters of intersection -
L(z,y) average length of outgoing roads of intersection m
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Appendix B: Analysis of traffic
systems

B.1 Method of characteristics for a system with disturbance

Here we provide the details on how to obtain a solution p(z,t) to a transport equation with a
disturbance term (2.37). Since in this case we are dealing with a linear system (2.37), we can
apply the method of characteristics to find its solution p(z,t) V(z,t) € [0, L] x R*. According
to the method of characteristics, finding a solution is equivalent to finding an integral surface
S such that the coefficient vector field V' = (1, —w, §(z)) is tangent at each point for any curve
I'e S [46].

Let us introduce a variable s used for the parametrization of I'. Thus, we need to find a
curve I' = (z(s),y(s), 2(s)) € R? such that the following system of ODEs is satisfied:

dj
ds
@
ds
dz
= b(als).

By eliminating s from the first two ODEs, we obtain the projection of the characteristic
curve in (x,t)-plane: ¢t — % = const. Note that we consider only ¢ > %, since the control
action has a finite propagation time tq; = %

Now let us estimate p(x,t) from the third ODE. For this, we need to parametrize the line
passing through two points (z,t) and (L,t — %) in the first variable it is z(y) = y as y
varies from x to L, and in the second variable it is t(y) = (¢t — @) If z has to be on the
integral curve, then z(y) = p(y,t — (y;—i)) Therefore, the third ODE becomes

Integration from L to x of both sides yields

L—=x

L
o [ 8wy = et~z - 225,
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Notice that we need to perform similar steps in order to obtain a solution p(z,t) for

L—x

t < ==%. In this case, the projection of the characteristic curve in (z,t)-plane is 2 +wt = const.

B.2 Solution of a Hamilton-Jacobi system

Here we explicitly derive the analytic solution of a H-J problem as in (2.25) for the special case
of Hamiltonian being a triangular FD. In this case, the convex transform (2.30) of a triangular
FD (2.2) yields

L(U/) = Pmaz — pcvla Vo' € [_Wﬂ}], (B.l)
and it is illustrated in Figure 2.5.

In order to obtain a unique solution M (z,t) V(x,t) € [0, L] x R for the case of triangular
FD, we should explicitly calculate “solution candidates” Myyp(z,t), Mpown (2, t) and Mini(z, t),
and then extract the minimum of these functions as in (2.34).

B.2.1 Upstream boundary condition

The function Myp(x,t) denotes the solution of the Lax-Hopf formula (2.32) that originates
from the upstream boundary & = 0 at time ¢t — T" given the initial cost Myy (T —t) (a more
detailed explanation is given in 2.1.8).

By looking at the value condition function ¢ defined in (2.26), we establish that the initial
cost in (2.33) is given by c(z —TV',t — T) = Mup(t — T). The equality to zero of the first
argument of function c is achieved for T'= 7, where v' € [~w,v]. Since T can only be positive
by definition, the minimal value of the time interval should be Ty, = . Using (B.1), this
results into the following infimum problem:

Muyp(z,t) = Te[iﬁnioo] (Myp(t —=T) + Tédmaz) — Tpe-

Using the expression for the upstream boundary condition (2.27), the infimum problem reads

t—T L
Mup(e.t) = ot | [ 6u@dr + Tonas | + [ po(s)ds - ap.
Te[3,+o0]
0 0
T
which by using T¢maez = f OmaxrdT can be rewritten as
t—T

t

L
Muyp(z,t) = inf / (dmaz — Gin(T)) dT —i—/pg(s)ds—i—/qu(T)dT—xpc.
0 0

Te[T,+o0] .

t
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The infimum is achieved for T' = T, = 7, i.e., the correct solution is related to the path

along which the vehicle has the maximal velocity. Substituting 7' = T}, we get Va € [0, L]

t< % : Muyp(z,t) = 400,
. o L (B.2)
t> o Muyp(z,t) = / Gin(T) dT + /po(s) ds,
0 0

where for ¢ < /v the value of Myy(x,t) is undefined, thus, we set it to infinity.

B.2.2 Downstream boundary condition

Further, we need to calculate Mpown (2, t), which is related to the downstream boundary = = L.
The space argument in the value condition function now becomes x — TV = L = T = z;L
with v/ € [~w,v]. Thus, the smallest value of the time interval should be T},;, = SU:LUL. The

calculation is done performing the same steps as for My, (z,t), and we obtain Vz € [0, L]

L _
t < w S MDown(xyw = +00,
. =5 (B.3)
— X
t> w : MDown(x7 t) = / (Z)out(T) dr + pma:c(L - I)
0

B.2.3 Inmitial condition

Finally, we calculate the function Myy;(x,t) determined by the vehicle with known label at

t =0 (2.29). The equality to zero of the time argument in the value condition function is
provided by T = ¢. This yields

Mpi(z,t) = inf (Mui(z — t0") — tpev') + tdmaz-

v E[—w,v]
Using the definition of My;(x) from (2.29), we obtain
L
Mui(z,t) = inf / po(s)ds —tpv' | + tdmaz-

v €[—w,v]
—tv’

We decompose the integral as
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T

and the second term as —tp.v' = [ —p.ds, which leads us to
x—tv’
L x
Mis(e.t) = [ mo)ds + tomac+inf | [ (ools) = po)ds
x ’ —tv’

We define y = z — tv’ and take the infimum over y:

T

L
Mipi(z,t) = /po(s) ds + tomaz + inf /(po(s) — pe)ds
yElz—tv,z+tw]
x )

Note that the space coordinates should not lie outside the road stretch, i.e., we must
provide that = € [0, L], which is achieved in four possible cases:

T

L —
t<min{m7 x} : MIni(wat) :H(mvt)+ inf /(PO(S)_Pc) ds )
v w yElz—tv,x+tw]
Yy
pe |bzr 2y Muyi(2,t) = H(z,t)+  inf /x( (s) = pe) ds
o o : milZ, 1) = s yeli—tv.1] Po Pc ;

Yy

te[x L_””“>. Mui(z,t) = H(z,t) + _inf ]( (s) = pc) ds (B.4)

v’ w N Ini 3 — 9 yE[O,x«l»tw} pO pC 9 .

Y

T

t> max{x, L= JU} : M(x,t) = H(z,t) + inf /(po(s) —pe)ds |,
ye[0,1]

Y

with  H(z,t) = /po(s) ds + tomaz-

T

In general, the infimum value is related to the number of crossings of critical density, and
it cannot be exactly calculated for a general case unless additional assumptions on initial
conditions are imposed.

B.2.4 Unique solution

In order to obtain the unique solution to H-J system (2.25), we need to find the minimum of
(B.2), (B.3) and (B.4) as in (2.34). Thus, depending on the values of ¢, the explicit solution
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to H-J system (2.25) can be divided into four different cases Vz € [0, L] (see a) - d) below).

. {3: L—x}
a) t<minq —, :

vow
M(x,t) = H(xz,t) + inf /(po(s) —pe)ds |,
yElz—tv,x+tw]
y
b) te [L — x)
w v
M (z,t) = min {H(m,t) + inf /(po(s) —pe)ds |,
yElz—tv,L]
y
t— L=z
/ ¢out(7—) dr + pma:c(L - x)}7
0
z L—=x
C) te |:’U7 w ) :
M(x,t) = min {H(x,t) + inf /(pg(s) —pe)ds |, (B.5)
y€[0,z+tw]
y
t—2 L
/ Gin(T) dT + /po(s)ds},
0 0
d) thaX{z’L—x} :
v ow
x t_% L
M(z,t) = min {H@:,t) it | i) —pds |, [ ouar+ [ mis)as
y€[0,L] ' / /
t— L=z

/ ¢out(7—) dr + pmaz(L - :E)},
0

L
with  H(z,t) = /po(s) ds + tdmaz -

xT

As already mentioned above, in all the cases a) - d) the information on crossings of the critical
value by the initial density is required in order to solve the infimum problem.

B.3 H-J solution for large time

The solution to the Hamilton-Jacobi system is given by (B.5), which is divided into four
different cases depending on the value of time ¢. Let us determine the solution for large time,
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which is then used for the analysis of the traffic system behaviour for ¢ — co. Notice that
the solution candidate Mmi(x,t) associated with the initial condition given by (B.4) is the
most “confusing” term, since it contains an unresolved infimum problem. However, the only
time-depending term in (B.4) is t¢maq, thus dMjn;/dt = ¢maes. Taking the time derivative for
other terms yields dMuyp/dt = ¢in(t — x/v) and dMpewn/dt = ¢ou(t — (L — )/w). By the
capacity constraint ¢(p(+,)) < ¢maz, we establish that the term Myy,; grows faster than the
others (or in some special cases equally fast).

B.3.1 Time when initial conditions leave the system

Let us estimate the minimal time %,,;,, after which the initial condition does not affect the
solution of a H-J system (2.25), i.e., V(x,t) € [0,L] X [tmin, +00): Mui(z,t) > Muyp(x,t)
or Mpi(xz,t) > Mpown(z,t). Let us first establish the earliest time, for which M (z,t) >
Myp(x,t), then we will do the same for Mpewn(x,t), and then the final value will be the
minimum of two cases.

x
t v

Thus, using Myp(z,t) from (B.2) and Mipi(z,t) from (B.4) with t¢mez = [ Omaz dT +
0
L Grmaz, We can write V(z,t) € [0, L] x [max {Z, %} ,+00) that

t—Z

v

M[nj(l',t) - MUp(x7t) = / (¢mam - ¢zn(7)) dr + %(bmaac

0
" . (B.6)
— /po(s) ds + inf /(pg(s) — pe) ds.
y€e[0,L]
0 Yy
Let us use the following bounds
x xT
x .
—®maz > 0, _/pO(S)dS > _mea:v7 and inf /(:00(8) - pC) ds | > —ch,
v y€[0,L]
0 Yy
which are then inserted into (B.6), and we get the following lower bound
-
M[ni(l', t) - MUp(JZ’, t) > / (d)max - ¢zn(7)) dr — L (pmax + pc) . (B7)
0

Further, using Assumption 2.2 we can make another lower bound:

7 (bma — o) dr > | "2
0
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L L

where € > 0 and 7 = min { £, £}. This enables us to provide a further lower bound of (B.7):

_ L
v

Mi(z,t) — Myp(z,t) > \‘t JE — L (pmaz + pe) - (B.8)

Finally, we use (B.8) to determine the lowest ¢, for which the term Myi(z,t) — Myp(x,t)
becomes non-negative Vz € [0, L]:

e [f (pmaﬁpcﬂ min{L7L}- (B.9)

v v W

Following the same steps, we obtain that Min;i(x,t) — Mpown(z,t) > 0 for all such ¢ that are
not smaller than
L

L L
€

(o + po) | in { £, . (5.10)

L
t>=4
W v W

The earliest time after which we can neglect the effect of the initial condition on the solution
is thus the minimum of (B.9) and (B.10):

tmin = min {5 i} <1 + ﬁ (Pmaz + pc)b : (B.11)

B.3.2 H-J solution for t > t,,;,

Thus, we have estimated the minimal time ¢,,;, (B.11) needed for the initial conditions to
leave the system. Thus, in the H-J solution given by (B.5), the term Mp,; can be excluded
from the minimum operator YVt € [tyin, +00):

t— L—x

t—Z

v

M (x,t) Zmin{ / Gin(T) dT+/LPO(S) ds, /“ Pout (T) d7+pmax(L_x)}a
0 0

0

which is the solution of the Hamilton-Jacobi system for all £ > t,,,,. This expression can be
used to study the asymptotic behavior of systems governed by H-J PDEs with a triangular
FD being their Hamiltonian.

B.4 Necessary conditions for tracking desired state

In accordance with Problem 2.3, we should find w;,(t) and wey(t) Vt € R7T such that the
equality of M (x,t) and My(z,t) up to some constant My is guaranteed Vz € [0, L] as t — oo.
For the equality of two minimum functions (2.60) and (2.61), it is sufficient to provide the
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equality of their arguments, thus, V (z,t) € [0, L] X [tmin, +00) we get

t—= L t—% L
/ Ging (T) dT + /pdo(s) ds + My = / Gin(T)dT + /po(s) ds,
0 0 0 0
i L (B.12)

/ d)OUtd (7—) dr + pmafﬂ(L - :U) + MU = / ¢out(7_) dr + Pma:p(L - l’)
0 0

Firstly, by taking the time derivative of (B.12), we see that in the steady-state ¢, (t) =
¢ind (t) and ¢out(t) = ¢outd (t)

Secondly, by expressing My from both parts of (B.12), we obtain the necessary condition
(2.66) to track pg.

B.5 Solution of a H-J PDE with space-dependent Hamiltonian

Here we consider the initial boundary value problem in Hamilton-Jacobi formulation given by
(3.41) for a traffic system evolving on a large urban network. This problem contains an explicit
space-dependency in the fundamental diagram that captures the network infrastructure. We
find its solution explicitly for the case of space-dependent triangular FD using the variational
principle (3.47).

In the following, we will skip writing 7 in the arguments to make the notations less heavy.
Let us here assume that we solve the H-J PDE explicitly for each line of constant 1. The
Legendre transform (2.30) of the triangular FD is

L(&v") = ¢maa(§) — pe(E)v W' € [~w(§),v(E)]- (B.13)

We need to calculate the viability episolutions Mup(&,t), Mpown(&,t) and Myi(§,t) asso-
ciated with given value conditions My, (t), Mpown(t) and Miyi(§), respectively, using (3.43),
(3.44), (3.45) and (3.47). Notice that these viability episolutions are equivalent to “solution
candidates” that were discussed in Section 2.1.8. Finally, the unique solution of (3.41) corre-
sponds to the minimum of three functions:

M(gv t) = min {MUp (67 t)u MDOWII(gv t)u Mlni(ga t)} ) (B14)
which is similar to (2.34) but in (&, n)-space.
Notice that, in the following, we will consider only solutions for large enough time
57”@()3 Sm(lft
1 . 1 -
t > max / —d¢, / —d¢ . (B.15)
v() wg)

min min
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B.5.1 Upstream boundary condition

The solution candidate My, (€, ) is related to the cumulative vehicle number originating from
the upstream boundary &,,;, at initial time.

From the definition of the value condition function (3.42), we get ¢(£(0),t—T) = My, (t=T)
in (3.47). The upstream boundary condition is assigned to the upstream boundary &, which
implies the following start and end points of the observer trajectory that starts traveling from
the upstream boundary with non-constant speed v'(7):

E(0) = Emims E(8) = Emin + / V(r)dr, where () € [~ (€n)) .0 (€0)]. (BIS)
0

Using (B.13) and (3.47), we formulate the following problem associated to the solution that
originates from this boundary:

T

Muyy(&,t) = inf | My,(t—=T mwAd—p T)dr |,
up(&, 1) s | Mo ¢ f T 0/ pe( T

where the infimum is taken over domain Sy, that is defined exactly as in (3.48) but with
(é(O),t - T) € Dom(cyp), where cyp = Myp(t) as in (3.42).

With the expression for the upstream boundary condition (3.43), the infimum problem can
be rewritten as

- Emac
Mp(€,t) = M%%</ e+ [ po(@)dér
0 Smin (B.17)
T
(bmaas Pec ) dT> .
[ ti)ir e

T . .
Now let us consider in more details the last term [ p. <§(7’)) v'(T)dr. By definition d§ =
0

v'(7)dr, which allows us to perform the following change of variables:

T £
/% mm-/&@ﬁ:Rﬁx (B.15)
0 Emin

where R.(£) is a new variable that denotes the cumulative critical density. Further, we can
decompose the integrals in (B.17) as

t T
/¢m dﬁ/gbmm dT—/gbm d7+0/ Dmaz(E(T ¢m(t—T+7)) dr. (B.19)
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Thus, using (B.18) and (B.19) we can rewrite (B.17) as

T
Mupl.) = it | [ (Guaalér) = oult =T +7) ar
0
. fran (B.20)
+ [ontrar+ [ m@dé-rie)
0 Emin

From Assumption 3.1 on the restrictions for inflows and outflows, we have ¢;,(t) <
Gmaz (&) Y(E,1) € [Emin, Emaz] X RT, which means that the first integral in (B.20) is always
positive. Hence, the infimum in (B.20) is achieved, when the traveling time 7 is minimized.
This implies that the solution is assigned to a traveler that moves with the maximal speed at
each space point, i.e., (B.16) becomes

E(t) = Epin + / v(é(r)) dr, (B.21)
0

where v is the maximal kinematic wave speed. Thus, in the infimum, T is the solution to
(B.21) for t =T

3
¢ _ ar 1 1
57 =0 = Ge = ms = TO) = / _dé. (B.22)

£'min

With (B.22), the viability solution related to the upstream boundary yields for (B.17)

Ty (€) t—Ty, () Emaz
Mup(£,1) = / Gmas (7)) dr + / din(r) dr + / p(@) dé — Ro(6).  (B23)
0 Emin

We rewrite the first term on the right-hand side of (B.23) as

T (€) Tu(€)
/ d)max(é(T))dT = / pc(é(T))U(é(T)) dr.
0 0

Using (B.21), we can perform the change of variables in the latter integral as

Ty (§) 13
/ pel€(r)o(E(r)) dr = / pelé(r)) dé = Ru(€).
0 Emin

With this result, two R.(£) terms with opposite signs in (B.23) cancel each other, and we
obtain the solution associated with the upstream boundary

t=T(&) Emax
MUp Et / ¢m d7+ / Po(f) dg (B'24)

gmzn
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B.5.2 Downstream boundary condition

As the second step, we need to obtain the solution Mpeywn(&,t) that is related to the down-
stream boundary &,,4.- Notice that viable evolutions related to this boundary are characterized
by the following start and end points of traveling:

£(0) = Emaz,  E() = Emas + /U/(T) dr, where (7)€ {—w (5(7’)) U (5(7))} . (B.25)
0

As in the previous case, we use the expression for the downstream boundary condition
Mnpown (t) from (3.44) and the result from (B.19), and write the following infimum problem

T

Mpown(§,t) = | inf ( / (@mar(€() = doualt = T+ 7)) dr

(Tvvl)esDown
(B.26)

- /T pe(€(m)v'(7) dT> + ] Pout(T) d,
0 0

where the infimum is now taken over domain Spewy defined as in (3.48) with (f 0),t—-T > €

Dom(cpown ), where ¢pown = Mpown () as in (2.26).

Again using Assumption 3.1, we obtain that the infimum is achieved for the minimal
traveling time interval T', which corresponds to:

Emax
T, (&) = édé and v = —w. (B.27)
w(§)
We use (B.27) and ¢pazr = pev to solve the infimum problem (B.26), which yields:
t=T.(€) T (8) T ()
Mooal&st) = [ doulr)dr+ [ puéeno@enar+ [ pErém)ar ®2s)
0 0 0
From definition of the critical density for triangular FD (2.3) we get
pc = % = Pmazw = pe(v + w),
which is then inserted into (B.28):
=T, () Tw(8)
Moonl€,t) = [ dour)dr [ pras(€r)té(r)dr.
0 0

Finally, we perform the change of variables
Tw(f) f’mam
[ pnase@léar = [ panlé dé
0 §
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and thus obtain the solution associated with the downstream boundary:

t— Tw(ﬁ) gmar
Mpown (€. ) = / ot (T)dr + / P () dE. (B.29)
I3

B.5.3 Initial condition

As the third step, we need to calculate Myy;(&,t) that is related to the vehicle with known
label at initial time that follows the path of viable evolution (see (2.29)).

We can already establish that T" = ¢, since the viability evolution starts its path at initial
time. Thus, using the variational principle (3.47) with initial condition given by (3.45), we
can state the infimum problem as

Emaz t t
M) = it | [ w@dé+ [munlérndé [péowmar |, ®a0
é 0 0

where domain Sy is defined as in (3.48) for 7' = t:
S ={v' [ /() € '(0,8), €(r) = v'(7),
W =¢ vin) e |-w(ém).v (ém)]. (B.31)
£(0) € [Emin Emae] |-

In the first term of the right-hand side of (B.30), the integral runs from &o used to define the
coordinate from which the viable evolution starts its path at initial time:

t

0=k &0 =bo+ [Vn)dr, where v(r) € [-w (ém) 0 (60)]. B2

0

Again we use the change of variables such that v/(7)dr = dé and rewrite (B.30) as

Emaa 3
V&)= nt | [ mi@aé - [ oi@rac + / Smaal€(r)) dE | (B.33)
3 o

We can not further simplify (B.33), unless some specific information about the initial condi-
tions is known. However, we can estimate the lower bound of (B.33) term by term:

f'mam t
Mini(£,8) > 0 / pel() dé + / gmn dr, (B.34)
Emin 0
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where ¢ is the capacity at the strongest bottleneck along the 7-line defined in (3.51).

max

As already mentioned above, the unique solution (B.14) is the minimum of three functions.
In the following section, we will show that starting from some time t,,;,,, the initial conditions
will have left the system and thus can be excluded from the minimum operator.

B.5.4 Time when initial conditions leave the system

Here we aim to estimate the minimal time ¢,,;,(n) such that V(£,1,t) € Q X [tmin(n), +00):
Mi(§,m,t) > Myp(€,n,t) or Mmni(&,1,t) > Mpewn(&,1,t). This was already done for the 1D
case in Appendix B.3.1. However, now this minimal time is different for each n-line. Therefore,
we will again write the dependence on 7 in the notations to gain more clarity.

First of all, we will estimate the time after which Mmy;(§,n,t) > Mup(§,n,t), then we do
the same for My,i(&,1,t) > Mpewn(&,1,t). Finally, t,n,(n) is found as the smallest value of
these two results.

We combine the result for Myp(€,n,t) (B.24) with the lower bound for Miy,;i(§,7,t) (B.34),
and write

Emaz (1) Emax ()
Misi(€.0,) — Muy (€., ) > — / pelé, ) dé - / po(€.m) dé
Emin (1) Emin(n) (B.35)
t—Ty(&,m) Ty (&,m)
v [ e - sntnn) dr [ omnan
0 0

Now let us estimate the lower bounds for the terms from (B.35) as

Tv(fﬂ?) gmaz(n) gmax(n)
[ emmmarzo aa — [ p@ndez- [ puaémd
0 gmzn("]) Emin(n)

which yields

Emaz (M)
MIni(§7 7, t) - MUp(§7 m, t) > - / (pmaac(év 77) + pc(é, 77)) dé
Emin(n) (B.gﬁ)
t=T(&m)
+ / (o () — din(n, 7)) dr.
0

Using Assumption 3.1, we are able to estimate the following lower bound for the second term
on the right-hand side of (B.36):

tiT’U (57"7)

(625 (1) — Gin(n, 7)) dr > V‘T@”)J ‘

tctr(n)
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with € > 0, and t. () is the minimal controllability time defined in (3.74), which can be used
to rewrite (B.36) as

Emaz (1)
t— Tv fmax Ui F F F
Mo ,0) = Moy t) > | 2D e [ (@ 4 et de (BT
5min(77)
Now we can determine the minimal time, after which the right-hand side of (B.37) is non-
negative:
Emaz (1) Emaz(n)
1 y 1 - - y
tn) > —dit (= [ (pmar(€m) + pel€m)) d€ | tar (). (B.38)
v(€,m) €

Afterwards, the same steps are performed to obtain the minimal time, after which
MIni(§7n7t) - MDown(ga 7],t> > 0 holds:

Emaz (M) 1 1 Emaz (1)
t(n) = / —dS+ |- / (,omax(&n)erc(&n)) d€ | terr () (B.39)
w(&,mn) €
gmi'n("]) g'min(n)

Then, tymin(n) is the minimum between (B.38) and (B.39) V1 € [Mmin, Mmaxz):

Emaa (1)
tmin() = ter ) [ 14 |5 [ (pmac@n) +pe€m) dé| | (a0

gmin (77)

Finally, we define the time when initial conditions will leave the system as a whole as t.,in,
which is not dependent on 7. Therefore, it should be computed as the maximum possible
value of all t,,;,,(n) for particular 7:

tinin = max  tmin(n). (B.41)
ne[nminy'r]maac]

B.5.5 Unique solution

The final solution M (&, n,t) of the H-J system (3.41) can finally be found as a minimum of
solutions associated with the upstream (B.24) and downstream (B.29) boundary conditions
Vt € [tmin, +00), thus, the effect of initial conditions is negligible:

t—Ty(&,m) Emaz (1)

M(é,n,t)Zmin{ / Gin(n, 7) dT + / po(€,m) dé,
0 Emin(n)
t—T.,(&m) Emaz (M)
Gout (1, T)dT + / Pmaz (év n) dé}
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B.6 Differences in the proofs of Theorems 2.3 and 3.2

Due to the space-dependency in the fundamental diagram in 2D system (3.34), the proof of
Theorem 3.2 will be different from the proof of Theorem 2.3. In particular, it must be modified
by taking the following differences into account:

1. Space intervals for a 1D road of length L vary as a function of line number 7, i.e., [0, L] —

[Emin (M), Emaz(n)]. This implies that % — Ty(&maz(n),n) and % — Tow(&min(n),n), where
Ty (&Emaz(n),n) and Ty, (&min(n),n) should be taken from (3.76) for & = &nax(n) and

& = &min(n), respectively.

Emaz (1) ~ “
2. Every occurrence of Lpy,q, should be substituted by the integral [ pmaz(E,n) d€.

3. Equation (2.77) in the proof of Theorem 2.3 should be rewritten as:

Emaz (1)
Gin(mt) =0 = R(nt) > / pel€ ) dé, € [t — To(Emin(n), ), 1],
fmin("])
B.42
fmaw(n) ( )
Jour(m,t) =0 = R(n,t') < / pe(&m)de, V' € [t — Ty(Emaz(n),m), 1] .
§mm(77)
We obtain (B.42) by using the following upper bound:
% t
[ tantnrydrt [ Gt < Tulmntn)n) o0
t—T (Emin(n),m) 14
fmam("l)¢ (é ) Emaz (1)
< | e S0 = [ (omastéom — putém) .
g'min(n) ’ é'min(n)

B.7 Proof that ¢y = min{Dy, Sy}

Here we prove that the flow in some direction (here North) can be written as a function of
demand and supply of the same direction:

gf_)N = min{DN, SN},

which allows to simplify the model (4.21). Thus, here we seek to prove that equation (4.23)
holds. The main assumption that needs to be made thereby is that the urban network is
well-designed in terms of maximal flows, see (4.24).



200 Appendix B. Appendix B: Analysis of traffic systems

Let us consider the term (1 — v)¢py + Ydng from (4.22). Using the definition of partial
flows (4.12), we can write

¢pn = min{agnDg, BenSn}, éng = min{aygpDy, BNeSE}-

Recall that by definition of the demand-supply formulation, if Dg < éma@ g, then Sp =
gigmax,E and vice versa, see Figure 2.3. The same holds for Dy and Sy. To simplify the
notations, let us denote Q(7) = (1 — v)opn + vdnE. We will prove that there always exists
7 such that Q(v) = min{anygDy, BenSn}. In total, there are six different cases to consider
for partial flows ¢py and onE:

1. apnDg < BenSn and aygDy > ByeSe. From the first inequality we obtain
apnDp < BenSN < BEN®maz,N = AEN Omaz,E

where the last equality comes for the assumption that the network is well-designed (4.24).
Thus, we get that

DE < ngaw,E'
From the other side, if we consider the second inequality, we get
BNeESE < aneDN < ANEGmas,E = SE < Gmas,EB-

According to the demand-supply formulation, it is however not possible that D <
gZ;ma%E and Sg < gEmaw,E hold at the same time. Thus, this case can be excluded from
consideration.

2. agnDg > BENS’N and aygDy < BNESE. This case is also impossible, since from the
first inequality we get Sy < &ma% ~ and from the second inequality we get Dy < qgma% N,
which violates the demand-supply formulation.

3. angDn < ByeSE and aypDy < fpnSy. In this case taking v = 1 results into

Q(1) = ¢np = min{angDn, BneSe} = aneDy,
which in combination with the second inequality yields
Q(1) = min{ane Dy, BEnSn},

which is the desired property achieved with v = 1 (demand and supply refer to the same
direction).

4. apnDg < BenSN, angDy < ByeSg and aypDy > BenSN.

From the first inequality for v = 0 we obtain

Q(0) = ¢ppn = min{agnDg, BenSn} = apnDr < BenSN.



B.8. Eigenvalues of matrix B — 1 201

From the second inequality for v = 1 we obtain
Q(1) = ¢np = min{aypDy, SveSe} = aneDy,
and from the third inequality we get

Q(1) > BeNnSn-
Combining these results all together, we show the desired property:

0) < BenSw, - -
{2228 ; gjgsg’ = Iy €0,1): Q(v) = BenSy = min{angDn, BenSn}-

5. @ENDE < BENSN; @NEDN < BNESE and @NEDN < BEN§N~ The analysis here is the
same as in case (3): we take v = 1, which results into Q(1) = min{axgDy, SNESN}-

6. apnDp > BENS’N, avgDy > BNESE and aygDy > BENSN. Here we should proceed
as we did in case (4): taking v = 0 results into Q(0) = BgnySy. Further, by the
second condition we obtain Q(1) < aygDy. Therefore, there exists v € [0, 1] such that
Q(v) = min{angDy, BenSn}-

Hence, if we assume that v can be manipulated independently for every pairwise
flow, we can summarize the discussion above in the formula: (1 — ¥)¢py + YoNE =
min{ayg Dy, BenSn}. This leads to the following transformation of (4.22):

én = dnn +min{aysDy, BsySn -+
+min{ayw Dy, fwnSn} +min{axe Dy, Ben Sy}

Finally, using the approximation by replacing the sum of minima with the minimum of sums,
we can write

¢n = min{ayyDy + ansDn + anw Dy + angDy,
BNNSN + BsnSn + BwnSn + BenSn} = min{Dy, Sy},

which is exactly the property we wanted to prove (4.23).

B.8 Eigenvalues of matrix B — [

Let us now analyze eigenvalues of matrix B — I, where B is the SR matrix from (4.40). To
simplify the notations, we introduce B = B — I that reads

—ﬂNN -1  BnEe BNw Bns
B Ben  Bee—1  Bew BEs (B.43)
BwN Pwe  Bww —1 Bws
| Bsn Bske Bsw  Bss —1]
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By Gershgorin circle theorem, every eigenvalue of B lies within at least one of the Gersh-
gorin discs d(by;, R;), where d is a closed disc centered at by with radius R; = > |l_)j¢\.
J#i
Consider the first row of matrix B given by (B.43). The Gershgorin disc is centred at
Byn — 1, and its radius is Ry = Syg+ Bvw + Bnvs = 1 — Byn. The remaining rows of matrix
B can be analyzed in exactly the same way. Due to the Gershgorin theorem, in general, every
result looks similar to

A= (Byy —1)| < (1= BNN)s
which implies that ReA(B) < 0 VA(B) and if ReA(B) = 0, then A\(B) = 0.

Let us consider A\(B) = 0 with x being the corresponding eigenvector:
"B =0=2z"\B).
Using the definition of matrix B, we further get
' (B=1)=0=2TB=2".

Thus, it follows that x is also the eigenvector of matrix B associated with the eigenvalue
AB) = 1.

Note that matrix B is a positive matrix, i.e., §;; > 0 for 1 <4, j < 4 (assume we have no
zero turning ratios). Then, by Perron-Frobenius theorem, A(B) = 1 is a Perron root (since
all columns of B sum to 1), and thus it is a simple root. It follows that all the eigenvalues of
matrix B = B — I are strictly negative and only one eigenvalue is zero.
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