N

N

Neuromorphic algorithms and hardware for event-based
processing

Gregor Lenz

» To cite this version:

Gregor Lenz. Neuromorphic algorithms and hardware for event-based processing. Robotics [cs.RO].
Sorbonne Université, 2021. English. NNT: 2021SORUS108 . tel-03474197

HAL I1d: tel-03474197
https://theses.hal.science/tel-03474197v1
Submitted on 10 Dec 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-03474197v1
https://hal.archives-ouvertes.fr

Q SORBONNE /‘;/

- INSTITUT DE
UNIVERSITE LAVISION

*PARIS

THESE DE DOCTORAT
DE SORBONNE UNIVERSITE

Spécialité : Ingénierie Neuromorphique

Ecole doctorale n®391: Sciences mécaniques, acoustique, électronique et robotique

Sujet de la theése :

Neuromorphic Algorithms and Hardware for

Event-based Processing
réalisée
A PInstitut de la Vision - Equipe vision et calcul naturel

sous la direction de Sio-Hoi Ieng

présentée par

Gregor Lenz

pour obtenir le grade de :

DOCTEUR DE SORBONNE UNIVERSITE

soutenue le 6 juillet 2021

devant le jury composé de :

Pr. Alejandro Linares-Barranco Rapporteur
Pr. Sylvain Saighi Rapporteur
Pr. Bruno Gas Examinateur

Dr. Sio-Hoi Ieng Directeur de these

Neuromorphic Algorithms and Hardware for Event-based

Processing

Abstract: The demand for computing power steadily increases to enable new and more intelligent
functionalities in our current technology. The combined computing power of mobile systems such as
phones, drones, autonomous vehicles and embedded systems increases rapidly, but each system has a
limited power budget. Efficient computation is thus of utmost importance. For the past decades we
have relied on the growing amount of transistors per unit area to keep up with computing demand
while keeping power consumption in check, but this trend is declining as transistor sizes are reaching
physical limits. While architecture improvements stagnate, we find ourselves in the early stages
of creating intelligent systems, which raises the question how current system can scale and which
makes the exploration of alternative computing principles worth wile. This thesis examines the role
of new bio-inspired computation paradigms for low-power computation, to drive a future generation
of intelligent systems. Neuromorphic computing is an emerging interdisciplinary field that looks at
biological systems such as the retina or the brain for inspiration on how to compute efficiently. From
that it is possible to create sensors, algorithms and hardware that process information much closer to
how the biological model works than current conventional computer architecture. We examine how
neuromorphic cameras, algorithms and hardware can gradually replace conventional components to
make the system overall use less power. We approach the issue through the lens of efficiency, and
propose an event-based face detection algorithm, a framework that brings event-based computer vision
to mobile devices with optimised hardware and methods based on precise timing for spiking neural
networks on neuromorphic hardware. In this attempt we bring technology into being that starts to

resemble the organic counterpart, to show the capabilities of brain-inspired computing.

Keywords: neuromorphic computing, event-based processing, non-von neumann computing, low-power

computer vision, neuromorphic hardware, spiking neural networks

Algorithmes et Architectures Matérielles Neuromorphiques pour le

Calcul Evénementiel

Résumé : La demande en puissance de calcul augmente régulierement pour permettre de nouvelles
fonctionnalités plus intelligentes au vu de la technologie actuelle. La puissance de calcul disponible des
systémes mobiles tels que les téléphones, les drones, les véhicules autonomes et les systemes embarqués
augmente rapidement, mais chaque systeme a un budget limité. Le calcul efficace est donc de la
plus haute importance. Au cours des derniéres décennies, nous nous sommes appuyés sur la densité
croissante de transistors integrés dans un processeur, pour répondre a la demande en puissance de
calcul tout en mafitrisant la consommation d’énergie, mais cette tendance diminue a mesure que les
tailles des transistors atteignent leurs limites physiques. Alors que les améliorations de I'architecture
stagnent, nous nous trouvons dans les premieres étapes de la création de systémes intelligents, ce
qui rend l'exploration de principes de calcul alternatifs indispensable. Cette thése examine le role
des nouveaux paradigmes de calcul bio-inspirés permettant le calcul a faible cofit indispensable a la
conception de la future génération de systemes intelligents. Le calcul neuromorphique est un domaine
interdisciplinaire émergent qui s’inspire des systémes biologiques tels que la rétine ou le cerveau pour
calculer efficacement. A partir de 13, il est possible de créer des capteurs, des algorithmes et du
matériel qui traitent les informations de fagon bio-inspirée. Nous examinons comment les caméras
neuromorphiques, les algorithmes et ainsi que le matériel peuvent remplacer progressivement les
composants conventionnels pour arriver a un systéme moins gourmand en énergie. Nous abordons le
probléme a travers le prisme de Defficacité et proposons un algorithme bio-inspiré de détection de visage,
puis un cadriciel permettant de développer des algorithmes neuromorphiques sur des smartphones.
Enfin nous proposons de porter des méthodes basées sur la précision temporelle dans les réseaux de
neurones impulsionnels sur du matériel neuromorphique. Avec cette tentative, nous apportons une
technologie qui commence a ressembler & la contrepartie organique, pour montrer les capacités de

I'informatique inspirée du cerveau.

Mots clés : calcul neuromorphique, calcul évenementiel, vision par ordinateur & faible puissance,

matériel neuromorphique, efficacité énergétique, réseaux de neurones impulsionnels

Acknowledgments

I would like to thank the many people who have helped this thesis to see the light of the
day. I would like to express my gratitude:

To Ryad for showing me how to walk off the beaten path and the fact that he give me a

chance to prove myself.
To Sio for making sure that I do things the right way.
To Serge for helping me out in a difficult situation.

To Alexandre for his way to explain things in detail, stimulating discussions and writing

great software that made a lot of my work possible.

To Lena, who is amazing at what she does and incredibly humble at the same time. I can

learn a lot from you.
To Gerhard and Vera who have always supported me, no matter what path I chose.

To Ozan, Jose, Carlos, Jorge and Jonathan, from whom I learned so much over the
years. I’'m lucky to be able to call you my friends and I cannot wait for the next time we

meet!

To les loulous, with whom I enjoyed exploring the beautiful city of Paris and its hidden

corners!

To Marco and Dounia, with whom I had really good times in- and outside the lab. I miss

you!
To Clemi for an amazing friendship and bond. Many more years to come!

To my catamaran sailing gym buddy, Iftar host and good friend Omar, who helped me keep

my sanity and without whom I probably couldn’t have completed this manuscript.

To Ira Bunny, who has supported me with all her heart, whom I admire deeply and whose

love I cherish.

List of contributions

Journals

e Lenz G, Ieng SH and Benosman R. High Speed Event-based Face Detection and
Tracking Using the Dynamics of Eye Blinks, Frontiers of Neuroscience 2020 [1].

e Lenz G, Oubari O, Orchard G and leng SH. Neural Computation Using Precise
Timing on Loihi, in preparation 2021.

e Lenz G and leng SH. A Framework for Fvent-based Computer Vision on a Mobile

Device, in preparation 2021.

e Oubari O, Exarchakis G, Lenz G, Benosman R and leng SH. Efficient Spatio-
temporal Feature Clustering for Large Event-based Datasets, submitted 2021.

Conferences

e Maro JM, Lenz G, Reeves C and Benosman R. Event-based Visual Gesture Recog-
nition with Background Suppression running on a smart-phone, 14th ICAG 2019 [2].

e Haessig G, Lesta DG, Lenz G, Benosman R and Dudek P. A Mized-Signal Spatio-
Temporal Signal Classifier for On-Sensor Spike Sorting, ISCAS 2020 [3].

Awards
¢ 14th IEEE International Conference on Automatic Face & Gesture Recognition Best
Demo Award, 2019.
Open source software
e Frog: An Android framework for event-based vision.
e Loris: Python library to handle files from neuromorphic cameras.
e Tonic: Event-based datasets and transformations based on PyTorch.

e Quartz: ANN to SNN conversion using temporal coding.

https://github.com/neuromorphic-paris/frog
https://github.com/neuromorphic-paris/loris
https://github.com/neuromorphs/tonic
https://github.com/biphasic/Quartz

Contents

1 Introduction

1.1 Motivation and Objectives oL
1.2 Rethinking the Way our Cameras See
1.2.1 Taking Inspiration from the Human Visual System
1.2.2 A Paradigm Shift in Signal Acquisition
1.2.3 A Novel Sensor for Machine Vision
1.3 Event-based Computer Vision and Applications
1.3.1 A Temporal Component to Understand Visual Input
1.3.2 The Era of Deep Learning
1.3.3 Event-based Processing
1.4 Spiking Neural Networks
1.4.1 Sparse Data Representations
1.4.2 Training Spiking Neural Networks
1.5 Low-power Hardware for Mobile Systems
1.5.1 Neuromorphic Hardware
1.5.2 Hardware Benchmarking and Scalability
1.6 Thesis Outline

Event-based Processing: Face Detection and Tracking

2.1 Introduction e
2.1.1 ATIS e
2.1.2 Face Detection o
2.1.3 Human Eye Blinks 0oL

2.2 Methods e
2.2.1 Temporal Signature of an Eye Blink
2.2.2 Gaussian Tracker
2.2.3 Global Algorithm

2.3 Experiments and Results.,
2.3.1 Indoor and Outdoor Face Detection
2.3.2 Face Scale Changes
2.3.3 Multiple Faces Detection
2.3.4 Pose Variation Sequences,
235 Summary oL

2.4 DiscussSion e

vii

© N O Ot e

10
10
11
12
13
13
15
17
18
19
20

viii CONTENTS
3 A Mobile Framework for Event-based Computer Vision 39
3.1 Introduction e 39
3.2 Mobile Device and Event Camera 42
3.3 Android Application Framework 44
3.3.1 Main Activity 45

3.3.2 Camera Module and Event Buffer 45

3.3.3 Processing Module oL, 46

3.4 Performance Measurement Methods 47
3.4.1 Camera Latency o 47

3.4.2 Buffering Latency oL 47

3.4.3 Execution Latency 0. 47

3.5 Experiments and Results. 0oL 48
3.5.1 Measuring Throughput of Camera Module and Event Buffer Latency 48

3.5.2 Aperture Robust Event-based Optical Flow 49

3.5.3 Event-by-event Gesture Recognition 50

3.5.4 Leveraging Pre-trained Neural Networks for Image Reconstruction 53

3.6 Discussion L L e 55

4 Neural Computation on Loihi 57
4.1 Introduction L 58
4.2 STICK o e 59
4.3 Loihi e 60
4.3.1 Hardware 60

4.3.2 Neuron Models Implement STICK Synapses 62

4.3.3 Value Encoding Using Delays 63

4.4 Composing Networks For Computation Using STICK 64
4.4.1 Storing Values o 64

4.4.2 Branching Operations Minimum and Maximum 65

4.4.3 Linear Operations, 67

4.4.4 Nonlinear Operations 68

4.4.5 ANN-SNN Network Conversion 70

4.5 Experimentsand Results. 72
4.5.1 Computing Dynamic Systems 73

4.5.2 Converting Pre-trained ANNs 77

4.6 Discussion 80

5 Conclusion 83

A Authored Software Packages 91

CONTENTS ix

A1 Loris o 91
A2 Tonic. e e 92
A3 Frog 94
Ad Quartz L 96

Bibliography 99

Acronyms

AT Artificial Intelligence. 2, 4, 5, 17, 18, 20
ANN Artificial Neural Network. 12, 14-16, 58, 70-72, 77, 78, 81, 88, 96, 97

ATIS Asynchronous Time-based Image Sensor. 10, 13, 24, 25, 41-43, 91, 95

CF Correlation Filter. 32, 36, 37
CNN Convolutional Neural Network. 10, 32, 96

CPU Central Processing Unit. 3, 5, 12, 17, 32, 38, 45, 48, 55, 79, 80, 86

DAVIS Dynamic and Active pixel Vision Sensor. 10, 12

DVS Dynamic Vision Sensor. 10, 13, 24, 42, 91
EDP Energy Delay Product. 78-80, 82, 88

FPGA Field-Programmable Gate Array. 12, 42, 45, 78
fps frames per second. 32, 38

FRCNN Faster Region Based Convolutional Neural Network. 32, 36-38

GPU Graphics Processing Unit. 2, 4, 10, 12, 15, 17, 18, 25, 38, 55-57, 77, 80, 83, 85, 86,
88, 90, 96

HATS Histogram of Averaged Time Surfaces. 38

HOTS Hierarchy of Time Surfaces. 12, 38, 51, 52
IoT Internet of Things. 10, 18, 89
MIPI Mobile Industry Processor Interface. 56, 95

NDK Native Development Kit. 41, 46, 52, 54, 55

NEF Neural Engineering Framework. 73, 80, 86

xi

xii Acronyms

RISC Reduced Instruction Set Computer. 17, 39, 89, 90

RNN Recurrent Neural Network. 15, 20, 88

SNN Spiking Neural Network. 13-16, 18, 21, 57, 58, 70-72, 77-79, 81, 82, 86-88, 96
SoC System on Chip. 17

SSD Single Shot Detector. 32, 36-38

STDP Spike-Time Dependent Plasticity. 15, 16

STICK Spike Time Computation Kernel. 57, 59-62, 70, 72, 74, 77, 79, 80, 82, 87

TPU Tensor Processing Unit. 18, 25

TTFS Time To First Spike. 71, 72, 78, 81, 88

USB Universal Serial Bus. 10, 41-48, 56, 85, 95

VJ Viola-Jones. 32, 3638

List of Figures

1.1
1.2
1.3
14
1.5
1.6
1.7
1.8
1.9
1.10
1.11

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5

3.6
3.7
3.8

3.9

Number of operations needed to train machine learning models.
Image blur in frames when using conventional cameras.
Center-surround receptive fields in the mammalian retina.
Different sampling theorems: digital and level crossing sampling.
Event stream visualisation. o000
Point cloud that encodes an object needs temporal components.
Time surface features and their generation.
Neuron models in an ANN and inan SNN.
Commonly used derivatives as a replacement for spike activation.
Comparison of two System on Chips from 2018 and 2020.
Energy and latency comparison of neuromorphic hardware to other archi-

tectures. e e e e e e e e

Event-based face detection exemplary results.
ATIS event camera working principle for grey-level encoding.
Activity profile for a human blink generated from events.
Activity of ON and OFF events when subject is blinking.
Sparse cross correlation method. L.
Face tracking recording for one subject.
Face tracking recording while verifying robustness to scale.
Face tracking recording for multiple faces at the same time.

Face tracking results for varying pose.

Screenshots of proposed Android app for live view and gesture recognition.

Prototype device that shows connected event camera.
Small form-factor event camera assembly.
Android application software architecture.
Accumulated latency per second for aperture robust event-based optical
flow on a mobile phone. Lo
Visual results when computing aperture-robust event-based optical flow. .
Gesture recognition method overview.
Accumulated latency per second when computing HOTS features and
classifying on the phone. L.

Event-by-event gesture classification results on NavGesture-sit.

xiii

© 00 N O N

11
13
14
16
17

20

23
25
26
27
29
33
34
35
36

41
43
43
44

49
50
51

52
52

Xiv

3.10

3.11

3.12

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20

4.21
4.22

Al
A2

LIST OF FIGURES

Gray-level frame reconstruction from events using a pre-trained FireNet

Accumulated latency per second when reconstructing grey-level frames from
events on the phone. o o

Event frames per second for an example gesture recording of 3.5s.

The effect of three different synapses V, gcand gy.
Three different Loihi neurons V', ge and g¢.
Dendritic tree for Loihi multicompartment neuron.
Delay encoder network on Loihi. 00 0L
Router network on Loihi.
Inverting memory network on Loihi.
Memory network on Loihi.o
Signed memory network on Loihi. o000
Synchroniser network on Loihi. 0oL,
Minimum and maximum networks on Loihi.
Subtractor network on Loihi.
Linear Combination network on Loihi.
Natural logarithm network on Loihi.
Exponential network on Loihi..
Multiplier network on Loihi. oL
Conversion of 2 ANN units to an SNN using STICK on Loihi.
Outputs of a first order system network on Loihi.
Outputs of a second order system network on Loihi.
Outputs in X, Y and Z for Lorenz system network on Loihi.
Performance comparison between proposed networks and Nengo implemen-
tation for 3 dynamic systems. L L oL
Classification error plotted over Energy-delay product for MNIST.

Converted spiking neural network architecture diagram.

Logos for Frog and Tonic software packages.

Screenshots for Frog Android app. L.

53

54
95

59
61
62
63
64
64
65
66
66
67
68
69
69
70
70
71
73
74
75

List of Tables

21
2.2

3.1

4.1

4.2

Mean blinking rates for human subjects. 27
Summary of face tracking detection results. 37
Classification latency for 6 different gestures from the Navgesture database. 53

Comparison of accuracy and performance to other SNNs for a classification
task on MINIST. oo o 78
Breakdown of static and dynamic power consumption per MNIST classifi-

cation inference on Loihi. 79

XV

Chapter 1

Introduction

How much of a machine is human? And how much of a human is a machine? This question
will become somewhat more important and at the same time more difficult to answer in
the future as the dividing lines will gradually get blurrier [4]. Modern technology is a
powerful tool that provides humanity with the means to transform cognitive abilities into
skills and machines. Our biological bodies will inevitably merge with this technology to
extend and offload capabilities. It will feel very natural, as new generations raised in the
information age experience the extraordinary benefits and looming drawbacks of being
online on-demand and in an instant. We are not far now from the point where we will have
a direct, physical connection to a mobile system such as a brain machine interface [5, 6].
To be implanted such an interface will become as much of a routine treatment as getting
dental braces or replacing a hip joint. To make the connection between human body
and human-made technology as natural as possible, one can imagine that a system that
processes information much like a biological organism does, is much easier to interface
with [7, 8].

From a certain standpoint, humans can already be considered cyborgs [9, 10], defined as
beings with both organic and artificial body parts. Examples of such parts are pacemakers,
prostheses or neurostimulators. We might not have a physical connection to our beloved
handheld devices such as phones and tablets, but it would not be an overstatement to say
that we are at least psychologically attached to them. One could even go as far as to claim
that we are overly dependent on them [11]. It’s specifically the smart ones, those that
can tell us jokes and enable us to connect to anyone and anything on the internet around
the world in a matter of seconds. Mobile handheld devices have truly taken the world by
storm since the year the smartphone took off in 2008. With the iPhone and Android fresh
into the market back then, 17% of people in the Western world owned a smartphone at
that time. Since then this number has risen to 93% across adults in the Western world [12].
In developing countries, mobile communication has largely leapfrogged wired telephone
lines and conventional banking all together [13, 14]. Our smartphones or tablets are now
embedded in our daily lives and act as a central hub to an even larger array of connected

devices, such as smart speakers, watches or cameras.

2 CHAPTER 1. INTRODUCTION

As those devices become somewhat more intelligent and human-like, Artificial Intelligence
(AI)-driven features become critical differentiating factors for a saturated market of smart
technology. Voice or automated driving assistants add an undeniable surplus value to
existing systems, and no company that produces consumer goods can afford to ignore this
trend. The training of modern AI models consumes enormous amounts of energy, and
these energy requirements are growing at a breathtaking rate. In the deep learning era,
the computational resources needed to produce a best-in-class AI model has on average
doubled every 3.4 months [15] as illustrated in Figure 1.1. As a result these models are
costly to train and develop, both financially, due to the cost of hardware and electricity or
cloud compute time, and environmentally, due to the carbon footprint required to fuel
modern tensor processing hardware [16]. Generative Pre-trained Transformer-3, the latest
language model by OpenAl to produce human-like text, consists of 175 billion parameters,
more than a 100 times more than the previous year’s biggest model [17]. It took an
estimated 355 Graphics Processing Unit (GPU)-years, $4.6m and 1 GWh of energy to
train it. We see diminishing returns from scaling up machine learning models with a

breathtaking rate.

Petaflop/s-days
le+é

AlphaGoZero

le+2 Neural Machine

Translation

TI7 Dota 1vl
le+0
VGG
ResNets
le-2 AlexNet
3.4-month doubling
le-4 Deep Belief Nets and
layer-wise pretraining
DQN
le-6
TD-Gammon v2.1
BiLSTM for Speech
le-8 LeNet-5
NETtalk RNN for Speech
ALVINN

le-10
le-12 2-year doubling (Moore's Law)
1e-14 Perceptron ¢ First Era Modern Era >

1960 1970 1980 1990 2000 2010 2020

Fig. 1.1 Number of total operations needed to train some of the most well-
known models in computer vision, natural language processing and reinforcement

learning. Image taken from OpenAI’s blog post [15].

This stands in contrast to battery density that has been improving at an averaged rate of
7.5 percent a year between 2011 to 2017 [18]. While the daily usage of smart mobile devices
especially among younger adults has steadily increased [19], the time a device can be used
before it needs recharging has stagnated. Over time, more and more features have merged
into our mobile devices, which is very costly in terms of computation. Therefore a lot of
smart functionality is offloaded to be computed in the cloud, on a remote server. But the
continuous exchange of private data over the network raises privacy concerns for end users.
It also means that many devices stop being smart when problems with server availability
or Wi-Fi connections arise. For the smart functionality that does not require a network
connection, we have relied on the growth of numbers of transistors per unit area to satisfy
the growing demand in computing power. Nowadays we are encountering the physical
limits of this scaling process [20], with fabrication processes constructing transistors as
little as 5nm apart [21, 22]. Not only does processing logic reach physical speed limits,
but already today Central Processing Unit (CPU)s spend a lot of their time waiting for
new data to be fetched from memory, which is an issue that is only going to become more
problematic with growing amounts of data to be processed. In response to that, industry
has largely changed to horizontal scaling such as increasing the number of cores among
other mitigation tactics in order to guarantee performance improvements. But the issue
remains one around bandwidth and the sequential nature of reading instructions from

memory, processing them and storing the result.

The race is on to explore new computing architectures and paradigms, which seem more
promising than ever before. The field of neuromorphic engineering is one alternative route,
exploring biological concepts of information processing in order to imitate them on a
hardware level. It takes inspiration from neuroscience, machine learning and electrical
engineering to build hardware that computes using silicon neurons [23, 24]. The guiding
philosophy is not to copy the wetware such as our brain in complete detail, but to search for
organising principles that can be applied in practical devices [25]. The essential components
are artificial neurons, which emit short electrical pulses of action-potentials called spikes to
other neurons via synaptic connections. Even so, building and connecting large numbers
of artificial neurons on its own is not enough. With a new kind of hardware comes the
need for new algorithms, which handle spikes from neurons in an asynchronous fashion.
By doing that, the hope is to find a more efficient way to represent information and to
compute. This parallel track to classic computing will not replace clocked, synchronous,
high-throughput computation anytime soon. Rather it should be seen as catering to a
growing demand for efficient, fault-tolerant, low-power computation. This demand is
especially pressing on mobile systems, where specialised chips can naturally co-exist with
current systems on a single device, devices that have an increasing gamut of functionalities

that we happily rely on.

4 CHAPTER 1. INTRODUCTION

1.1 Motivation and Objectives

The current success story of deep learning and Al is powered by the interplay of data,
algorithms and dedicated hardware. This hardware is based on the same computing
architecture since the inception of the modern computer that separates processing unit
from memory. Given that we stand just at the beginning of an age of Al, we have to ask
the question how current trends in machine learning model sizes can continue to scale.
Moore’s law has been surpassed by Huang’s law, named after NVIDIA’s chief executive
officer Jensen Huang, which predicts that the performance of GPUs will more than double
every two years [26]. For battery-powered devices that rely on a lot of dedicated hardware
to be efficient, advancements in powerhouse technology alone will not cut it. As technology
powered by machine learning enters cars, watches, tablets and other mobile systems, power

consumption in such environments will be critical to the success of those systems.

The goal of this thesis is to find ways that are inspired by biology to compute more
efficiently than current computer systems. Neuromorphic engineering, taking inspiration
from biological systems, rethinks computation from the ground up, as our brains do
not separate memory from processing but combine the two principles in each and every
neuron. We could build an end-to-end neuromorphic pipeline that exists in parallel to
existing systems, but due to expensive sensors and processing hardware that is still in a
research stage, this is not a straightforward feat. Alternatively we can replace parts of the
conventional machine learning pipeline and examine how neuromorphic equivalents can
contribute to saving power. These replacements are neuromorphic cameras, algorithms

and hardware.

Neuromorphic cameras use a novel sampling theorem to imitate the asynchronous firing
pattern of the mammal retina to avoid capturing redundant information and therefore save
energy. This class of vision sensors has promising applications in machine vision that need
to record a visual scene as efficiently as possible, while still exhibiting superior dynamic
range and temporal resolution. We raise the question to what extent we can make use
of event camera properties in neuromorphic algorithms to compute more efficiently than

conventional architectures that use image-capturing cameras.

Mobile devices with their optimised processing hardware should be able to profit directly
from such efficient sensors and algorithms. They already integrate a growing amount of
sensors for specific tasks and specialised hardware that takes up an increasing share of
silicon area. Neuromorphic sensors and algorithms can be added to this mix to help reduce
power consumption further. The integration should be seamless to ensure adoption for

devices that are ubiquitous in our lives.

The use of low-power conventional hardware as used in mobile devices can be seen as

1.2 RETHINKING THE WAY OUR CAMERAS SEE 5

intermediate step, but neuromorphic computing will eventually make use of dedicated
hardware to unlock its full potential. Much like conventional neural networks do not seem
as powerful when executed on a CPU, bio-inspired algorithms will benefit from hardware
that boasts artificial neurons. The recent past has shown that the co-design of algorithms

and hardware is more important than ever.

We explore algorithms that use asynchronous, event-based computation on both conven-
tional hardware that is widely available today and on neuromorphic hardware that is
emerging. Neuromorphic computing has the potential to follow a similar success story as
deep learning and outperform current Al and machine learning architectures when it comes
to power efficiency. Artificial general intelligence using 20 Watts is the ultimate goal to be
as efficient as our brain, but until then it is still a long way to go. The advancements in
neuromorphic technology will at the very least help devices to use less power and hopefully
make technology function more human-like. Starting from the basic elements of neurons,

the goal is to facilitate the successful merging of human and machine.

In the remainder of our introduction, we provide an overview about components of a
neuromorphic system that can gradually replace and complement current technology. The
combination of new sensors, algorithms and hardware will help to enable applications
that are inherently low-power and might help us find new ways of biologically plausible

learning.

1.2 Rethinking the Way our Cameras See

We want machines to be able to see like us, and in that effort have created cameras.
The field of modern computer vision is based on the common output format of those
sensors: frames. However, the way we humans perceive the world with our eyes is very
different. Most importantly, we do it with a fraction of the energy needed by a conventional
camera [27]. The field of neuromorphic vision tries to understand how our visual system
processes information, in order to give modern cameras that same efficiency and it looks

like a substantial shift in technology for machine vision.

We are so focused on working with data that modern cameras provide, that little thought
is given about how to capture a scene more efficiently in the first place. Current cameras
acquire frames by reading the brightness value of all pixels at the same time at a fixed
time interval, the frame rate, regardless of whether the recorded information has actually
changed. A single frame acts as a photo; as soon as we stack multiple of them per second it
becomes a motion picture. This synchronous mechanism makes acquisition and processing
predictable. But it comes with a price, namely the recording of redundant data. And not

too little of it. As shown in Figure 1.2, redundant information about the background is

6 CHAPTER 1. INTRODUCTION

captured even though it does not change from frame to frame, when at the same time,

high velocity scene activity results in motion blur.

y y

@ Q
l‘.;‘ l"

o 4 \,t

Fig. 1.2 Image blur can occur in a frame depending on the exposure time.

1.2.1 Taking Inspiration from the Human Visual System

The human retina has evolved to encode information extremely efficiently. Narrowing
down the stimuli of about 125 million light sensitive photoreceptors to just 1 million
ganglion cells which relay information to the rest of the brain, the retina compresses a
visual scene into its most essential parts. Photoreceptor outputs are bundled into receptive
fields of different sizes for each retinal ganglion cell as shown in Figure 1.3. The way a
receptive field in the retina is organised into center and surround allows ganglion cells
to transmit information about spatial contrast, encoded as the differences of firing rates
of cells in the center and surround. Retinal ganglion cells are furthermore capable of
firing independently of each other, thus decoupling the activity of receptive fields from
each other. Even if not triggered by external stimulus, a retinal ganglion cell will have a
spontaneous firing rate, resulting in millions of spikes per second that travel along the
optic nerve. It is thought that in order to prevent the retinal image from fading and thus
be able to see the non-moving objects, our eyes perform unintentional rapid jumps called
micro-saccades. This movement only happens once or twice per second, so in between
micro-saccades, our vision system probably relies on motion. To put it in a nutshell, our
retina acts as a pre-processor for our visual system, extracting contrast as an important
stream of information that then travels along the optical nerve to the visual cortex. In

the cortex it is processed for higher-level conscious processing of the visual scene.

Inspired by the efficiency and complexity of the human visual system, Misha Mahowald
developed a new artificial stereo vision system in the late 80s [28]. She was one of Carver
Mead’s students, a scientist at Caltech who spawned the field of Neuromorphic Engineering

at that time. In his lab, Misha built what would become the first silicon retina in the

1.2 RETHINKING THE WAY OUR CAMERAS SEE 7

On center cell Off center cell

Light on
center
only

Ganglion cell fires rapidly Ganglion cell does not fire

Light on
surround
only

Cell does not fire Cell fires rapidly

Fig. 1.3 Center-surround receptive fields in the mammalian retina.

early 90s [29]. It was based on the same principle of center-surround receptive fields in the
human retina, which emit spikes independently of each other depending on the contrast

pattern observed.

Although Misha drafted the beginning of a new imaging sensor, the design did not provide
a practical implementation at first. In response, the neuromorphic community simplified
the problem by dropping the principle of center-surround pixels [30]. Instead of encoding
spatial contrast across multiple pixels which needed sophisticated circuits, the problem
could be alleviated by realising a circuit that could encode temporal contrast for single
pixels. That way, pixels could still operate individually as processing units just as receptive
fields in the retina do and report any deviations in illuminance over time. While the
first silicon retinas where fully analog [31, 32], it would take until 2008 when the first
refined temporal contrast sensors was published based on digital architecture [33], the

event cameras as they are known today.

1.2.2 A Paradigm Shift in Signal Acquisition

The new architecture led to a paradigm shift in signal acquisition, illustrated in Figure 1.4.
Standard cameras capture absolute illuminance at the same time for all pixels driven
by a clock and encoded as frames. One fundamental approach to dealing with temporal
redundancy in classical videos is frame difference encoding. This simplest form of video
compression includes transmitting only pixel values that exceed a defined intensity change

threshold from frame to frame after an initial key-frame. Frame differencing is naturally

8 CHAPTER 1. INTRODUCTION

performed in post-processing, when the data has already been recorded. Trying to take
inspiration from the way our eyes encode information, event cameras capture changes in
illuminance over time for individual pixels corresponding to one retinal ganglion cell and

its receptive field.

A analog
> t
A interval sampling
threshold crossing

Il | .

Fig. 1.4 Different sampling theorems. The ’real world’ is a collection of analog

signals, which in order to store and digitise it we transform into numbers. Digital
signal acquisition relies on regular sampling along the time axis. An alternative
approach is level or threshold crossing, where the signal is sampled whenever it

surpasses a threshold on the y-axis.

If light increases or decreases by a certain percentage, one pixel will trigger what’s called
an event, which is the technical equivalent of a cell’s action potential. One event will
contain information about a timestamp, x/y coordinates and a polarity depending on the
sign of the change. Pixels can trigger completely independently of each other, resulting in
an overall event rate that is directly driven by the activity of the scene. It also means that
if nothing moves in front of a static event camera, no new information is available hence
no pixels fire apart from some noise. The absence of accurate measurements of absolute
lighting information is a direct result of recording change information. This information

can be refreshed by moving the event camera itself, much like a saccade.

Because of the considerable size of the circuit that enables temporal contrast for each
pixel, it didn’t leave much room for the photo diode to capture incoming photons. The

ratio of a pixel’s light sensitive area versus the total area is called fill factor and amounted

1.2 RETHINKING THE WAY OUR CAMERAS SEE 9

to 9.4% for the first event camera [33]. Modern CMOS (Complementary Metal Oxide
Semiconductor) technology will enable a fill factor of above 90% at a fabrication process
of 180nm. With a reduced fill factor the photon yield will be low, which will in turn
drive image noise. This was thus a major obstacle for event camera mass production
early on. Nevertheless already this first camera was able to record contrast changes under
moonlight conditions. New generations of event cameras use backside illumination in order
to decouple the processing circuit for each pixel from the photo diode, by flipping the
silicon wafer during manufacturing [34]. Most of today’s smartphone cameras already use
backside illumination in order to maximise illumination yield at the expense of fabrication

cost.

y y y

Fig. 1.5 An event-camera will only record change in brightness and encode it
as events in x, y and time. Colour is artificial in this visualisation. Note the
fine-grained resolution on the t-axis in comparison with the frame animation in
Figure 1.2. Thanks to Alexandre Marcireau for the data. Visualisation has been

created using Rainmaker”.

1.2.3 A Novel Sensor for Machine Vision

Overall an event camera has three major advantages compared to conventional cameras:
since pixel exposure times are decoupled of each other, very bright and very dark parts can
be captured at the same time, resulting in a dynamic range of up to 125dB. The decoupled,
asynchronous nature furthermore frees bandwidth so that changes for one pixel can be
recorded at a temporal resolution and latency of microseconds. This makes it possible to
track objects with very high speed and without blur as exemplified in Figure 1.5. The third
advantage is low power consumption due to the sparse output of events, which makes the
camera suitable for mobile and embedded applications. As long as nothing in front of the
camera moves, no redundant data is recorded by the sensor which reduces computational
load overall. It also relieves the need for huge raw data files. Current drawbacks for most

commercially event cameras available today are actually further downstream, namely

*https://github.com/neuromorphic-paris/command_line_tools

https://github.com/neuromorphic-paris/command_line_tools

10 CHAPTER 1. INTRODUCTION

the lack of hardware and algorithms that properly exploit the sparse nature of an event
camera’s data. Rethinking even the most basic computer vision algorithms without frames

takes a considerable effort.

Over the years, event cameras have seen drastic improvements in spatial resolution and
signal to noise ratio. The main generations of cameras are Dynamic Vision Sensor
(DVS) [33], Asynchronous Time-based Image Sensor (ATIS) [35] and the Dynamic and
Active pixel Vision Sensor (DAVIS) [36]. Examples of companies that produce commercially
available event cameras are Samsung [37], Prophesee [38], Celepixel and Insigthness [36].
Most commercially available event cameras are still large in size, but small form factor
version have been developed too. Event cameras for mobile applications include a small
embedded DVS system [39] and a small ATIS which can be connected via mini-Universal
Serial Bus (USB) [40], which is explained in more detail in Chapter 3. The first commercially
available single-chip neuromorphic vision system for mobile and Internet of Things (IoT)
applications is called Speck!, which combines a DVS and the Dynap-se neuromorphic
Convolutional Neural Network (CNN) processor. The rise of the event camera has been
relatively slow, as larger gains in power efficiency are being made by focusing on the
processing of image data further downstream, notably on a GPU. This trend however is
also likely to saturate at some point and will make it worth to further explore and employ

this novel image sensor [41].

1.3 Event-based Computer Vision and Applications

1.3.1 A Temporal Component to Understand Visual Input

In 1975, Swedish perceptual psychologist Gunnar Johannson writes:

The eye is often compared to the camera, but there is one enormous difference between the
two. In all ordinary cameras a shutter ’freezes’ the image [...]. In all animals, however,
the eye operates without a shutter. Why, then, is the world we see through our eyes not a

complete blur? [412]

Animals integrate visual information over time into a continuous, conscious stream.
Johannson proposed that an object can be recognised purely by its motion, based on the
idea of continuous input [43]. Figure 1.6 shows one of his examples and more can be found
online*. Humans can indeed easily recognise objects that are represented by several simple
dots moving, suggesting that timing is important for our visual system. At the same time,
research has also shown that it is harder for humans to correctly identify a point-light

walker when it is positioned upside down, suggesting that a spatial component is in fact

Thttps://www.speck.ai/
A video of a Johannson experiment can be found under https://youtu.be/rEVBEkW9p6k

https://www.speck.ai/
https://youtu.be/rEVB6kW9p6k

1.3 EVENT-BASED COMPUTER VISION AND APPLICATIONS 11

also necessary to detect an object [44].

Fig. 1.6 The points themselves make it hard to identify the object behind
it. Can you guess what it is once the points start to move? Check https:

//tinyurl. com/y3yehcur

1.3.2 The Era of Deep Learning

The success of deep learning using neural networks has proven triumphantly that a computer
can recognise objects at a superhuman level by analysing purely spatial compositions (such
as an image). To understand more subtle concepts such as actions, intents or emotions
in an effort to be more intelligent, there has to happen some form of aggregation of
information over time. And to make that possible on an embedded system, computation
using frames that carry a lot of redundant information seems counter-intuitive. Recent
research focuses on making neural networks more efficient by using techniques such
as pruning [45, 46], quantization [47, 48, 49, 50], knowledge distilling [51] or finding
functionally similar but smaller sub-networks [52]. Taking quantization to the extreme leads
to binary weights, which significantly reduces model size and inference time [53, 54]. Neural
networks have successfully been optimised to use fewer multiplier-accumulator operations
and parameters by designing novel network architectures that exploit computation or
memory efficient operations such as depthwise separable convolutions to fit on mobile
devices [55, 56, 57, 58]. The most prominent examples of this endeavour are the MobileNet
architectures, which is a family of computer vision neural network models designed to
maximise accuracy while being mindful of the restricted resources for an on-device or
embedded application [59, 60, 61].

These measures take effect late in the pipeline, still recording and processing redundant
data. If we work with highly sparse data such as from event cameras in order to save

power, we need a form of temporal component in our models.

https://tinyurl.com/y3yehcur
https://tinyurl.com/y3yehcur

12 CHAPTER 1. INTRODUCTION

1.3.3 Event-based Processing

The field of event-based computer vision has grown rapidly over the last years, as event
cameras have the potential to displace standard cameras in wearable technology, robotics
and mobile applications. Applications that are currently available specifically on mobile
systems include drowsiness driving detection systems [62], proximity sensing for handheld
devices [63], motion detection [64] or gesture recognition as described in Chapter 3.
Mobile autonomous robots can learn to cooperate [65] and drones learn autonomous
flight [66, 67, 68].

Rooted in classical computer vision, a lot of work focuses on accumulating events into
bins of fixed or variable length depending on scene activity [69], thus artificially creating
frames from a sparse output signal. This group of algorithms leverages existing advances,
most notably analog artificial neural networks to use them for optical flow [70, 71], depth
prediction [72], high dynamic range image reconstruction from events [73, 74, 75], or
Simultaneous Localisation and Mapping (SLAM) [76, 66]. Other applications include
image deblurring [77], star tracking [78] or object segmentation [79, 80].

This approach also allows the use of GPUs when spatially sparse frames or volumes are
processed using Artificial Neural Network (ANN)s, which results in processing a lot of
redundant information because of the high temporal data precision. Aiming to increase
the speed and power efficiency with which inference can be done, certain computations
can be skipped using dedicated hardware [81, 82, 83, 84].

Another approach tries to get the best of both worlds, frames and events, by mixing them
together, which works well with hybrid sensors such as the DAVIS but is computationally
very demanding [86, 69, 87]. Methods that can possibly achieve the lowest latency and
power consumption work on an event-by-event basis. This approach advocates short,
incremental calculations triggered by each event, and requires rethinking computer vision
algorithms from the ground up. The downside of this method is that they cannot make
use of dedicated hardware such as GPUs at the moment, being restricted to highly parallel
CPUs in most cases. There are exemptions of Field-Programmable Gate Array (FPGA)
implementations to speed up the low-latency processing [88, 89, 90, 91]. Exemplary
applications of event-by-event methods include event stream classification [85, 92], optical
flow [93, 94, 95, 96], corner detection [97, 98, 99], pose estimation [100] and tracking [101].
It lead to the emergence of new features called time surfaces [85, 78, 102], which are
spatio-temporal features generated for each event as shown in Figure 1.7. They resemble
local patches of temporal gradients and have been employed in bag-of-features methods
such as Hierarchy of Time Surfaces (HOTS) [85], which creates a hierarchy of time surfaces

with different time constants. Other bag-of-features methods build on time surfaces as

1.4 SPIKING NEURAL NETWORKS 13

(a) Event-driven time-based
vision sensor (ATIS or DVS)

(f) Time surface

surface amplitude

= .20
X (spatial)

S(z0, 0, t0)

M /

ON events / OFF events

B 3 7] I\t'\\ .
/(e) Exponenotial kernels

(c)
(d) Time context

Fig. 1.7 Time surface generation from the spatio-temporal context of events.
A time surface resembles a local image patch that is generated for each event.
(a,b) An event camera such as the ATIS or DVS records motion in a visual
scene, represented by ON and OFF events over time. (c) If we represent the
accumulated events in one image, brighter pixels signify more recent events. (d)
focusing on a spatial region of interest we generate a local time surface by applying
an exponential kernel (e) to the timing of events in the neighbourhood. Image

taken from Lagorce et al. [85].

well [103, 92].

1.4 Spiking Neural Networks

1.4.1 Sparse Data Representations

A more biologically-inspired possibility is to turn to a Spiking Neural Network (SNN) for
learning tasks. Labelled as the 3rd generation neural network archetype [104], data is
represented in binary form, where a neuron can either spike or not. Every neuron has
an internal state such as membrane potential, threshold and decay times. Neurons in an
SNN do not fire automatically when new input is presented, but only when enough spikes
per time unit accumulate so as to push the membrane potential across its threshold. The
spike emitted will then be propagated forward, subject to synapse weights and delays. The

sparse nature of communication offers the potential to encode and transmit information

14 CHAPTER 1. INTRODUCTION

in a significantly more energy efficient manner.

Figure 1.8 shows the principal difference between a neuron unit in an ANN and in an SNN.
Whereas the input for an ANN is typically a tensor with high data precision, but low
temporal resolution, the input for an SNN are binary flags of spikes with comparatively
high temporal precision in the order of ps. The unit in the SNN integrates all of the
incoming spikes, which affect the internal parameters such as membrane potential. The
unit in the ANN merely computes the linear combination for inputs on all synapses and
outputs that. Although there are ANN units with memory characteristics and internal
states such as recurrent or long short-term memory units [105, 106], they typically operate
on much wider time frames such as a few words in a sentence or a video frame that is

captured every 25 ms.

Xo Synapse A _{Continuous Activation
Spatial Domain

Activation

sk d L

1.1 0 1
Pre-spikes

Synapse SNN{ Binary Spike
b4 Spatio-temporal Domain

Fig. 1.8 Basic neuron model in (a) ANNs and (b) SNNs. Picture taken from
Deng et al. [107].

The development in SNNs has focused to a great extent on vision tasks such as image
classification or object detection, largely driven by the need to compare new work to
existing classical architectures. However, SNNs are likely not going to outperform ANNs
in every aspect, but rather fill a niche. What this niche is, is an interesting research
question at the moment. Some groups have developed spiking sorting algorithms [108],
or spike time encoded addressable memory [109]. Certainly the ability for near-sensor

feature extraction, ultra-low power neural network inference, local continual learning [110]

1.4 SPIKING NEURAL NETWORKS 15

or constraint satisfaction problems [111, 112] are tasks where SNNs can already excel. The
stateful, recurrent architecture of Recurrent Neural Network (RNN) also seems suitable to
be mapped to SNNs [113, 114].

There are other areas of artificial intelligence that are little explored when it comes
to employing SNNs, such as in reinforcement learning [115] or attention-based models.
Deep reinforcement learning uses deep learning to model complex value functions for
continuous high-dimensional state spaces that allows an agent to perform actions even
though while training it only encountered a small subset of states during trial and error
learning [116, 117]. Deep reinforcement learning suffers from high sensitivity to noisy,
incomplete, and misleading input data and SNNs with their inherent stochastic nature
could provide some robustness to that [115]. In the same vein, ANNs are notoriously
sensitive to malevolent adversarial attacks. Sharmin et al. demonstrate that SNNs tend
to show more resiliency compared to ANN under black box attack scenario, which could

help deploy them in real-world scenarios [118].

So far SNNs have not proven that they perform better in general. The rise of attention-
based deep neural network architectures called transformers [119, 120] make it clear that
time and recurrent architectures are not a necessity when computing on sequences. They
allow for parallel training on multiple tokens at the same time but need lots of parameters.
Transformers are causing a stir in deep learning and are being used not only in natural
language processing but also vision and audio tasks. However, they work with highly
dense training data such as images and regularly sampled audio files. A crucial point that
neuromorphic computing relies on is sparsity. This is, after all, the strength of event-based
sensing and the principle of threshold crossing. No change in the input signal means no
data recorded. Nevertheless there are different training methods how an SNN can extract

features from input data.

1.4.2 Training Spiking Neural Networks

Training SNNs follows one of 3 major pathways: converting the weights of pre-trained
ANN [121, 122], supervised learning using backpropagation with spikes [123, 124, 125, 120]
or local learning rules based on Spike-Time Dependent Plasticity (STDP) [127, 128] or local
errors [129]. The most straightforward path to create an SNN is to convert an ANN which
had previously been trained on a GPU. The idea is to trade a small impact in performance
for reduced latency and power efficiency. Continuous values are hereby transformed
into rate-coded schemes [122]. Alternatively, the network can also be converted using a
temporal coding scheme [130], which we explore in more detail in Chapter 4. Converted
SNNs benefit from a large ecosystem available for GPU-based training of ANNs and certain

training mechanisms such as batch normalisation [131] or dropout [132].

16 CHAPTER 1. INTRODUCTION

Deriv. of step —
Piece-wise lin. —
SuperSpike

SLAYER

Derivative

0 Z
1 1

0 0.5 1
Membrane potential U

Fig. 1.9 Commonly used derivatives as a replacement for spike activation to
provide a differentiable signal when training spiking neural networks. The step
function has zero derivative (violet) everywhere except at 0 where it is ill defined.
Examples of replacement derivatives which have been used to train SNNs are in
Green: Piece-wise linear [133, 134, 135]. Blue: Derivative of a fast sigmoid [130].
Orange: Exponential [124]. Figure taken from Neftci et al. [137].

In order to facilitate learning in an SNN directly, we can apply methods from classical
neural network training, such as backpropagation through time [138], to our SNN. Since the
activation of a single spike, which resembles a Dirac impulse, is not differentiable, methods
resort to smoothing spike activation itself [135, 136, 133, 137] as shown in Figure 1.9. A
recent method has also adapted backpropagation to spikes without approximations [126].
Training methods using a global error signal achieve very good results, but are not
very plausible to happen in the brain. SNNs that have been trained directly with
backpropagation have yet to achieve the accuracy of converted SNNs when it comes to
deeper networks, but the end-to-end training also speeds up the overall time needed for

one network propagation and therefore reduces latency [139].

Local learning rules strive for biological plausibility without sacrificing performance too
much. DECOLLE [110] and e-prop [114] are two recent examples of those algorithms
that can both be implemented in neuromorphic hardware. Lastly, unsupervised feature
extraction using local learning rules such as STDP [140, 141] relies purely on the timing
between pre- and postsynaptic spike. It is biological plausible since it is without need for
a global error signal, but has yet to reach ANN performance. The introduction of a third
factor such as a global reward signal to complement the learning rule [142, 143] seems
like a promising path forward. Overall, event-based vision promises efficient processing
for naturally sparse inputs. An asynchronous network such as an SNN however needs

asynchronous hardware to fully exploit its advantages.

1.5 LOow-POWER HARDWARE FOR MOBILE SYSTEMS 17

1.5 Low-power Hardware for Mobile Systems

When power efficiency for a computing system is of utmost importance, dedicated hardware
plays a crucial role. A System on Chip (SoC), soldered onto the mainboard of a mobile
device, bundles multiple components into single chip to save space, cost and power
consumption. It combines CPU, GPU and neural processing unit among other vital
parts to act as integral computation unit of the device. ARM cores with their Reduced
Instruction Set Computer (RISC) architecture achieve a much better performance per
Watt ratio as opposed to x86 cores which use complex instruction sets and have become
the de facto industry standard for CPUs in mobile phones and tablets. Apple announcing
in 2020 that it is going to switch to ARM-based architecture for their latest laptop series
products underlines the importance of low-power computer architecture in the mid-term
future [144]. The SoC also includes dedicated graphics processors, as demand for high-
fidelity, multi-user games has continuously increased over the years. Although GPUs have
been diverted as Al accelerators on desktops, where power consumption does not play
such an important role, mobile systems cannot afford the overhead of computing with
double precision and off-chip memory. Neural processing unit, Al accelerator or Machine
Learning processor are all terms that describe hardware which is specifically optimised
for neural network operations. These processors are the newest class of dedicated silicon
within a SoC and take up a growing percentage of the overall chip as shown in Figure 1.10.
They make their way into mobile devices to enable biometric security features such as
face or fingerprint unlocks, predictive text, voice assistants, content providers, system

optimisation, navigation, health monitoring, intelligent cameras and more.

Fig. 1.10 Two of Apple’s SoCs, from 2018 on the left and 2020 on the right.
The amount of silicon space dedicated to neural network accelerators is growing

from year to year, up to a quarter in the latest version.

Specifically photo and video capturing is an important feature for consumers, with phone

manufacturers embedding no less than 4 cameras into their phones in 2020 [145]. Because

18 CHAPTER 1. INTRODUCTION

of the high power consumption involved in capturing and processing photos and videos
in comparison to other embedded sensors [146], Vision Processing Units are yet another
AT accelerator designed to improve performance of specific machine vision tasks that
use embedded cameras. They are different from GPUs since they may include direct
interfaces to the cameras, process using on-chip buffers and low precision fixed point
arithmetic for image processing. Intel’s Movidius Vision Processing Units [147] targets
mobile devices, the IoT and the digital camera market. Qualcomm introduced the Darwin
Neural Processing Unit already in 2015, which is a highly configurable neuromorphic
hardware co-processor based on SNNs implemented with digital logic [148]. In the same
year Google introduced the first generation of its Tensor Processing Unit (TPU), another
neural network accelerator to speed up training and inference and has since made it
available for third party use [149, 150]. In 2018 they announced the Edge TPU as part
of their Coral line¥, which is a smaller and low-power version specifically for inference
on power-constrained devices. An integrated version of the Edge TPU is already used in

Google’s own mobile phone series, the Google Pixel 4 [151].

1.5.1 Neuromorphic Hardware

Companies increasingly focus on a tight integration between hardware and software by
designing the chips themselves to get a competitive advantage, as the race for more
compute accelerates. Neuromorphic chips are posed to claim a share of the dedicated
computing space for machine learning related tasks. A decisive factor will be whether
hardware and algorithms together can exploit the sparsity inherent to some sensors, such
as event cameras, to accomplish the same task using less energy. The hardware mimics
the natural biological structures of a mammal nervous system, trying to imitate the
power-efficient brain as a whole by rebuilding its basic components, the neurons, in silicon.
This network of silicon neurons is the matching hardware to SNNs in the software domain.
At the moment, neuromorphic chip design targets three main areas of research: 1. the
exploration of new, asynchronous, bio-inspired algorithms for computation 2. helping
neuroscientists understand the brain by being able to use billions of artificial neurons in

scaled-up systems [152] 3. low-power applications more generally.

Neuromorphic hardware is either based on a fully digital design or alternatively brings
analog components into the mix. Analog circuitry emulates the behaviour of neurons
directly [153, 24], which means that a neuron’s membrane potential and spike behaviour
on chip can be followed on an oscilloscope if so desired. The routing of spikes however still
uses digital circuitry and an asynchronous communication protocol [154]. Examples of this
approach are CAVIAR [155], BrainScaleS [156], DYNAPs [157, 158] and Neurogrid [159].

§’https ://www.coral.ai/

https://www.coral.ai/

1.5 LOow-POWER HARDWARE FOR MOBILE SYSTEMS 19

Their major advantage is power efficiency by using transistors in a sub-threshold regime,
and the operation in real-time independently of the model size or complexity. The drawback
is a large silicon area per neuron, reducing the number of neurons per chip overall, as
well as sensitivity to temperature, noise and mismatch, which is a term to summarise
production variations of transistors across the silicon wafer. This class of neuromorphic
hardware is used when low power is of utmost importance, but boundaries are pushed even
further by exploring new materials to replace the relatively large analog circuits. A new
electrical 2-terminal component called memristor [160, 161] can be used as an artificial
synapse with adjustable weights [162, 163]. Memristors can be packed extremely densely
in so-called crossbar arrays, to which the weights of a neural network can be mapped

directly to perform in-place computation.

Digital chips abstract away some of the downsides of analog logic at the expense of
power consumption. Examples of fully digital chips are SpiNNaker v1 and v2 [164, 165],
TrueNorth [166] and Loihi [167]. They contain many processing cores distributed across the
chip, where each core simulates a bundle of neurons and stores their membrane potential
and variables related to learning in memory. Their advantage is deterministic neuron
behaviour and fully-fledged learning capabilities. Fully digital architectures are used to
help drive the exploration of novel spike-based algorithms, as they provide more reliable

systems.

1.5.2 Hardware Benchmarking and Scalability

Research currently encounters a growing interest in benchmarking the power consumption
of machine learning models [168] and making efficiency an evaluation criterion alongside
accuracy as a related measure [169, 107]. Some preliminary work has explored the
advantages of event-based sensing over classical frame-based methods in terms of power
consumption during motion tracking [1], object tracking [170] or resilience to difficult
lighting conditions [30]. Figure 1.11 shows the time to solution plotted over energy spent
in comparison to Loihi for different tasks. This is an important task to carve out the areas
where neuromorphic computing can excel and to guide future research. To put a price on
energy used for machine learning models will also play a vital role in the effort to produce
computing systems that are not completely detached from the limits of what biology can
do.

An important question of hardware is the question of scalability. Neuromorphic hardware
developed in research labs has seen a steady increase in amount of artificial neurons and
learning capabilities over the past decade. Some large-scale neuromorphic systems that
contain hundreds of chips in parallel now make available for computation an amount of

artificial neurons that is comparable to the brain of a mouse [172, 173, 174]. Industry

20 CHAPTER 1. INTRODUCTION

1000
E [Task 1] Keyword Spotter DNN

[Task 1] Keyword spotting (batch size > 1)

100 E [Task 2] Image retrieval (batch size 1)

O e O e

. L] [Task 2] Image retrieval (batch size > 1)
[Task 3] Image Segmentation

10 K
E [Task 4] CIFAR-10 classification

[Task 5] DVS gesture recognition vs TrueNorth
[Task 6] Visual-tactile sensing

[Task 7] Seq MNIST (batch size 1)

0.1 F [Task 7] SegMNIST (batch size 64)

Solution Time Ratio (vs Loihi)
[

[Task 8] Adaptive arm controller (PES)
[Task 9] LASSO

[Task 10] 1D SLAM

® ® ¢ ¢ 0O @ @ X ©

[Task 11] k-NN GIST 1M

0.001 s - - 4 - [Task 12] Graph search
0.1 1 10 100 1000 10000 100000

[Task 13] Constraint Satisfaction

Energy Ratio (vs Loihi) Unit energy delay product (EDP) ratio

Fig. 1.11 This plot compares the latest neuromorphic hardware against other
architectures in terms of energy and latency for certain tasks. Whereas Loihi
is really good at solving constraint satisfaction problems, large scale nearest
neighbour search or RNN, the situation for feed forward networks is not so clear
yet. Plot taken from Davies et al. [171].

currently releases ultra-low power programmable chips for edge computing such as GrAl
One [175] or the Akida Neural Processor [176]. As the spiking ecosystem evolves, it will

define the area of where it will excel over and succumb to classical Al accelerators.

1.6 Thesis Outline

In this thesis we look at neuromorphic algorithms that are combined with both von
Neumann and neuromorphic hardware to compute more efficiently than conventional

Systems.

In Chapter 2 we make use of event camera properties such as high temporal precision and
robustness to different lighting conditions to explore the generation of spatio-temporal
features that take into account fine-grained temporal signatures. We use the spatio-
temporal signature of eye blinks that can be captured well with event cameras for event-
based face detection and tracking. We do not rely on frame representations as as an
alternative to conventional, frame-based methods. We show that when exploiting the

sparse nature of the camera, we can use less power than gold-standard alternatives.

In Chapter 3 we turn to hardware that is optimised for battery-powered systems . Much

1.6 THESIS OUTLINE 21

of the efficiency in mobile systems comes from several dedicated chips that are designed to
execute specific tasks. Due to the use of conventional cameras however, such systems are not
suited for always-on sensing. Always-on sensing is too costly when done using conventional
cameras, especially for tasks that happen infrequently such as gesture recognition. This is
unfortunate as it it deprives a growing population of elderly and visually impaired users of
an intuitive interface. We present an Android framework that enables always-on sensing
using an event camera, by avoiding computation in the absence of new visual information.
Our framework connects the world of event-based computer vision to mobile devices that

are powered by conventional hardware.

Neuromorphic computing is designed to work with artificial neurons and spikes. To
leverage its full potential, we explore SNNs on neuromorphic hardware in Chapter 4.
This hardware enables us to execute execute asynchronous algorithms efficiently. The
chapter shines light on how it is possible to compute using the precise timing of spikes on
neuromorphic hardware and how pre-trained networks can be ported for power-efficient
inference on Loihi. This platform has superb support for power benchmarking, which
plays a vital role in evaluating the strengths and weaknesses of spiking hardware over

other specialised hardware.

Chapter 5 concludes our work and puts it into a bigger perspective. We draw parallels
to the ascent of deep learning and how it is similarly backed by the development of
dedicated hardware and give an outlook of developments in neuromorphic computing yet

to come.

Chapter 2

Event-based Processing: Face Detec-
tion and Tracking

We start by looking at algorithms for event-based processing and introduce the first purely
event-based method for face detection. It uses the high temporal resolution properties of
an event-based camera to detect the presence of a face in a scene using eye blinks. Eye
blinks are a unique and stable natural dynamic temporal signature of human faces across
population that can be fully captured by event-based sensors. We show that eye blinks
have a unique temporal signature over time that can be easily detected by correlating
the acquired local activity with a generic temporal model of eye blinks that has been
generated from a wide population of users. In a second stage once a face has been located
it becomes possible to apply a probabilistic framework to track its spatial location for
each incoming event while using eye blinks to correct for drift and tracking errors. Results
are shown for several indoor and outdoor experiments as exemplified in Figure 2.1. We

also released an annotated data set that can be used for future work on the topic.

Fig. 2.1 Event-based face tracking in different scenes. From left to right, top to
bottom: a) indoors b) varying scale ¢) with one eye occluded d) multiple faces

at the same time.

23

24 CHAPTER 2. EVENT-BASED PROCESSING: FACE DETECTION AND TRACKING

2.1 Introduction

The method exploits the dynamic properties of human faces to detect, track and update
multiple faces in an unknown scene. Although face detection and tracking are considered
practically solved in classic computer vision, it is important to emphasise that current per-
formances of conventional frame based techniques come at a high operating computational
cost after days of training on large databases of static images. Event-based cameras record
changes in illumination at high temporal resolutions (in the range of 1ps to 1ms) and are
therefore able to acquire the dynamics of moving targets present in a scene [33]. In this
work we will rely on eye blink detection to determine the presence of a face in a scene to
in a second stage initialise the position of a Bayesian tracker. The permanent computation
of eye blinks will allow to correct tracking drifts and reduce localisation errors over time.
Blinks produce a unique space-time signature that is temporally stable across populations
and can be reliably used to detect the position of eyes in an unknown scene. This work

extends the sate-of-art by:

¢ Implementing a low-power human eye-blink detection that exploits the high temporal

precision provided by event-based cameras.

o Tracking of multiple faces simultaneously at ps precision, once they have been
detected.

The developed methodology is entirely event-based as every event output by the camera is
processed into an incremental, non-redundant scheme rather than creating frames from
events to recycle existing image-based methodology. We also show that the method is
inherently robust to scale changes of faces by continuously inferring the scale from the
distance of the two eyes of the tracked face from detected eye blinks. The method is
compared to existing image-based face detection techniques [177, 178, 179, 180]. It is also
tested on a range of scenarios to show its robustness in different conditions: indoor and
outdoor scenes to test for the change in lighting conditions; a scenario with a face moving
close and moving away to test for the change of scale, a setup of varying pose and finally
a scenario where multiple faces are detected and tracked simultaneously. Comparisons

with existing frame-based methods are also provided.

2.1.1 ATIS

In this work, we use the ATIS [35] event camera as it also provides events that encode
absolute luminance information in an asynchronous manner. Apart from the regular change
detection events known from of a DVS, this camera also sends a pair of spikes with an
artificial polarity encoding for the grey-level information. The interval between the pair of

grey-level spikes at the same pixel is indirectly proportional to the light intensity, meaning

2.1 INTRODUCTION 25

4 Log pixel illuminance

(change events (ON!OFF /

Lllm&—’

t]_ tQ time encoded grayscale events

Ecam (Pa tO)

Fig. 2.2 Working principle of an ATIS and two types of events. 1) change event
of type ON is generated at tg as voltage generated by incoming light crosses a
voltage threshold. 2) time ty — t1 to receive a certain amount of light is converted

into an absolute grey-level value, emitted at to used for ground truth in this work.

that areas of low exposure will have a long integration time. Grey-level information from
an event camera allows for direct and easier comparisons with the frame-based world.
To be able to handle the many different file formats available when using event cameras
including the ATIS, we also made available a python library that can handle multiple

formats®.

2.1.2 Face Detection

State-of-the-art face detection relies on neural networks that are trained on large databases
of face images, to cite the latest from a wide literature, readers should refer to [181, 178, 182,
183]. Neural Networks usually rely on intensive computation that necessitates dedicated
hardware co-processors (usually GPU) to enable real-time operations [184]. Currently
dedicated chips such as Google’s TPU or Apple’s Neural Engine have become an essential
tool for frame-based vision. They are designed to accelerate matrix multiplications at
the core of neural networks inference. However the computation costs associated to these

computations are extremely high.

Dedicated blink detection using conventional frame-based techniques operate on a single
frame. To constrain the region of interest, a face detection algorithm is used before-

hand [185]. In an event-based approach, the computational scheme can be inverted as

*The library is available under https://github.com/neuromorphic-paris/loris and a description

in Appendix A.1

https://github.com/neuromorphic-paris/loris

26 CHAPTER 2. EVENT-BASED PROCESSING: FACE DETECTION AND TRACKING

detecting blinks is the mechanism that drives face detection.

1.25

1.00 -

0751

)
/

normalised
activity [events/s]

050}
0251 — ONactivity | |
—— OFF activity
0.00 1
250ms

Fig. 2.3 Mean and variance of the continuous activity profile of averaged blinks
in the outdoor data set with a decay constant of 50 ms. a) minimal movement of
the pupil, almost no change is recorded. b) eye lid is closing within 100 ms, lots
of ON-events (in white) are generated. c) eye is in a closed state and a minimum
of events is generated. d) opening of the eye lid is accompanied by the generation
of mainly OFF-events (in black).

2.1.3 Human Eye Blinks

Humans blink synchronously in correlation to their cognitive activities and more often than
required to keep the surface of the eye hydrated and lubricated. Neuroscience research
suggests that blinks are actively involved in the release of attention [186]. Generally,
the observed eye blinking rates in adults depend on the subject’s activity and level of
focus. Rates can range from 3 blinks/min when reading to up to 30 blinks/min during
conversation (Table 2.1). Fatigue significantly influences blinking behaviours, increasing
both rate and duration [187]. In this work we will not consider these boundary cases
that will the be subject of further work on non-intrusive driver monitoring [188, 189]. A
typical blink duration is between 100 — 150 ms [190]. It shortens with increasing physical

workload, increased focus or airborne particles related to air pollution [191].

To illustrate what happens during an event-based recording of an eye blink, Figure 2.3
shows different stages of the eye lid closure and opening. If the eye is in a static state,
few events will be generated (a). The closure of the eye lid happens within 100 ms and
generates a substantial amount of ON events, followed by a slower opening of the eye (c,d)

and the generation of primarily OFF events. From this observation, we devise a method

2.2 METHODS 27

Activity (blinks/min) | [192] | [187]
reading | 4.5 3-7

at rest 17 -
communicating | 26 -
not reading | - 15-30

Table 2.1: Mean blinking rates according to [192] and [187].

to build a temporal signature of a blink. This signature can then be used to signal the

presence of a single eye or pair of eyes in the field of view that can then be interpreted as

.:.I Y
| !! |
[ON activity

[OFF activity ﬂ
\\/\« L LJ\ . L L L " k L k .
2 4 6 8 10 12 14

Time [s]

the presence of a face.

[
w

[
o

I
n

activity [events/s]

o
o

o]

Fig. 2.4 Showing ON (red) and OFF (blue) activity for one tile which lines
up with one of the subject’s eyes. Multiple snapshots of accumulated events for
250 ms are shown, which corresponds to the grey areas.a-e) Blinks. Subject is
blinking. f) Subject moves as a whole and a relatively high number of events is

generated.

2.2 Methods

2.2.1 Temporal Signature of an Eye Blink

Eye blinks can be represented as a temporal signature. To build a canonical eye blink
signature A(t;) of a blink, we convert events acquired from the sensor into temporal

activity. For each incoming event ev = (x;, y;, ti, pi), we update A(t;) as follows:

(2.1)

ti—tu)

A(ly) = Aon(t;) = Aon(tw)e” "7 + sctlzle if p;=ON
v ti—ty)

Aorr(t) = Aopp(ty)e” "7 + i if p;=OFF

scale

where t,, and t, are the times an ON or OFF event occurred before t;. The respective

1
scale

activity function is increased by each time t, an event ON or OFF is registered

28 CHAPTER 2. EVENT-BASED PROCESSING: FACE DETECTION AND TRACKING

(light increasing or decreasing). The quantity scale initialised to 1 acts as a corrective
factor to account for a possible change in scale, as a face that is closer to the camera will
inevitably trigger more events. Figure 2.4 shows the two activity profiles where 5 profiles
of a subject’s blinks are shown, as well as much higher activities at the beginning and the
end of the sequence when the subject moves as a whole. From a set of manually annotated
blinks we build such an activity model function as shown in Figure 2.3 where red and blue

curve respectively represent the ON and OFF parts of the profile.

Our algorithm detects blinks by checking whether the combination of local ON- and
OFF-activities correlates with the canonical model of a blink that had previously been
learned from annotated material. To compute the local activity, the overall input focal
plane is divided into one grid of n x n tiles, overlapped with a second similar grid made of
(n—1) x (n—1) tiles. Each of these are rectangular patches, given the event-camera’s
resolution of 304 x 240 pixels. The second grid is shifted by half the tile width and height
to allow for redundant coverage of the focal plane. In this work we set experimentally
n = 16 as it corresponds to the best compromise between performance and the available

computational power of the used hardware.

2.2.1.1 Blink Model Generation

A total of M = 120 blinks from 6 subjects are manually annotated from the acquired data
to build the generic model of an eye blink shown in Figure 2.3. Each blink, extracted within
a time window of 250ms is used to compute an activity function as defined in Equation 2.1.

The blink model is then obtained as the average of these activity functions:

M
Bon(t) = kzl Aowlt) it p;=ON
B(t) = = 2.2
() . W aort) o opr (2.2)
orr(t) kZl T UDi

To provide some robustness and invariance to scale and time changes to the blink model,
we also define N, the number of events per unit of time and normalised by the scale factor.
This number provides the number of samples necessary to calculate the cross-correlation
to detect blink as explained in section 2.2.1.2.2.1.2. Formally, N = | &% | " where || is

T'.scale

F#events
T.scale *

the floor function giving the largest integer smaller than

Finally, we used two different models for indoor and outdoor scenes, as experiments showed
that the ratio between ON and OFF events change substantially according to the lighting
conditions. Although the camera is supposed to be invariant to absolute illumination, this
is practically not the case due to hardware limitations of early camera generation that we

used for this work.

2.2 METHODS 29

normalised activity

continuous model
------ @ sparse model
A activity of events received
ToRE on wosem myowm e o) 2 8

250ms

Fig. 2.5 Example of the samples used to calculate the sparse cross-correlation for
the OFF activity of an actual blink. The grey area represents Bopp, the activity
model for OFF events (in that particular example, it is previously built for outdoor
data sets). Blue triangles correspond to the activity A(t;) for which events have
been received in the current time window. Black dots are the Bopr(t;), the value

of activity in the model at the same times-tamps as incoming events.

2.2.1.2 Sparse Cross-correlation

When streaming data from the camera, the most recent activity within a 7" = 250 ms
time window is taken into account in each tile to calculate the similarity score, here the
cross-correlation score, for the ON and OFF activities. This cross-correlation is only
computed if the number of recent events exceeds an amount N defined experimentally
according to the hardware used. The cross-correlation score between the incoming stream

of events and the model is given by:

C(tk) = OzCON(tk) + (1 — Oé)COFF(tk), (2.3)
where
N
Cp(te) = Ap(ti)Bp(ti — t), (2.4)
=0

with p € {ON,OFF}. The ON and OFF parts of the correlation score are weighted by
a parameter « set experimentally that tunes the contribution of the ON vs OFF events.
This is a necessary step as due to the camera manual parameter settings, the amount of

ON and OFF events are usually not balanced. For all experiments, « is set to %

It is important for implementation reasons to compute the correlation as it appears in
Equation 2.4. While it is possible to calculate the value of the model B(t —tj) at anytime ¢,
samples for A are only known for the set of times {t;}, from the events. This is illustrated

as an example by Figure 2.5, for an arbitrary time ti, where triangles outline the samples

o N o ooxN W

30 CHAPTER 2. EVENT-BASED PROCESSING: FACE DETECTION AND TRACKING

of the activity for calculated events at ¢; and the circles show the samples calculated at
the same time ¢; with the model. If C(t;) exceeds a certain threshold, we create what we
call a blink candidate event for the tile in which the event that triggered the correlation
occurred. Such a candidate is represented as the n-tuple eb = (r, ¢, t), where (r, c) are the
row and column coordinates of the grid tile and ¢ is the timestamp. We do this since we
correlate activity for tiles individually and only in a next step combine possible candidates
to a blink.

2.2.1.3 Blink Detection

To detect the synchronous blinks generated by two eyes, blink candidates across grids
generated by the cross-correlation are tested against additional constraints for verification.
As a human blink has certain physiological constraints in terms of timing, we check for
temporal and spatial coherence of candidates in order to find true positives. The maximum
temporal difference between candidates will be denoted as AT, 4. and is set experimentally
to 50 ms, the maximum horizontal spatial disparity AH . is set to half the sensor width
and the maximum vertical difference AV,,,, is set to a fifth of the sensor height. Following
these constraints we will not detect blinks that happen extremely close to the camera or
stem from substantially rotated faces. Algorithm 1 summarises the set of constraints to
validate the detection of a blink. The scale factor here refers to a face that has already
been detected.

Algorithm 1: Blink detection

Inputs: A pair of consecutive blink candidate events eb, = (7, ¢y, t,) and
eby = (ry, Cy, ty) With ¢, > t,
if (t, —ty < ATpaz) AND (Iry — 14| < AVipas X scale) AND
(Icc — cv| < AHpaz X scale) then
if face is a new face then
‘ return 2 trackers with scale =1
else
‘ return 2 trackers with previous scale

end

end

2.2.2 Gaussian Tracker

Once a blink is detected with sufficient confidence, a tracker is initiated at the detected
location. We use trackers such as the ones presented in [101] that rely on bivariate normal

distributions to locally model the spatial distribution of events. For each event, every

® I o o BRwW N =

©

2.3 EXPERIMENTS AND RESULTS 31

tracker is assigned a score that represents the probability of the event to belong to the
tracker:
1 _
plu) = 5 [S]72em 2l (2.5)

where u = [x,y]7 is the pixel location of the event, is covariance matrix ¥ that defines
the shape and size of the tracker. The tracker with the highest probability is updated
according to the activity of pixels and also according to the estimated distance between

the spatial locations of the detected eyes.

2.2.3 Global Algorithm

The detection and tracking blocks combined operations are summarized by following

algorithm:

Algorithm 2: Event-based face detection and tracking algorithm

for each event ev(x, y, t, p) do
if at least one face has been detected then
update best blob tracker for ev as in (2.5)
update scale of face for which tracker has moved according to tracker distance
end
update activity according to (2.1)
correlate activity with model blink as in (2.3)
run Algorithm 1 to check for a blink

end

2.3 Experiments and Results

We evaluated the algorithm’s performance by running cross-validation on a total of 48
recordings from 10 different subjects, comprising 248 blinks. Our annotated dataset is
publicly available to encourage further research in this directionf. The recordings are
divided into 5 sets of experiments to assess the method’s performances under realistic
constraints encountered in natural scenarios. The event-based camera is kept static and

test the following scenarios of sequences of:
¢ indoor and outdoor sequences showing a single subject moving in front of the camera,

¢ a single face moving back and forth w.r.t. the camera to test the robustness of scale

change,

TDataset is available under https://tinyurl.com/face-detection-dataset

https://tinyurl.com/face-detection-dataset

32 CHAPTER 2. EVENT-BASED PROCESSING: FACE DETECTION AND TRACKING

o several subjects discussing, facing the camera to test for multi-detection,
o a single face changing its orientation w.r.t. the camera to test for occlusion resilience.

The presented algorithm has been implemented in C++ and runs in real-time on an In-
tel Core i5-7200U laptop CPU. We are quantitatively assessing the proposed method’s
accuracy by comparing it with state of the art and gold standard face detection algo-
rithms from frame-based computer-vision. As these approaches require frames, we are
generating grey-levels from the camera when this mode is available. The Viola-Jones
(VJ) algorithm [177] provides the gold standard face detector but we also considered
the Faster Region Based Convolutional Neural Network (FRCNN) [193] and the Single
Shot Detector (SSD) network [179] that have been trained on the Wider Face[194] data
set. This allows us to compare the performances of the event-based blink detection and
tracking with state-of-the-art face detectors based on deep learning. Finally, we also tested
a conventional approach that combines a CNN with a correlation filter presented in [180].
It is referred to as Correlation Filter (CF) for the rest of the chapter. This technique
relies on creating frames by summing the activities of pixels within a predefined time

window.

An important statement to keep in mind is that the proposed blink detection and face
tracking technique requires reliable detection. We do not actually need to detect all blinks
since a single detection is already sufficient to initiate the trackers. Additional blink

detections are used to correct a trackers’ potential drifts regularly.

2.3.1 Indoor and Outdoor Face Detection

The indoor data set consists of recordings in controlled lighting conditions. Figure 2.6
shows tracking results. The algorithm starts tracking as soon as a single blink is detected
(a). Whereas tracking accuracy on the frame-based implementation is constant (25 frames
per second (fps)), our algorithm is updated event-by-event depending on the movements
in the scene. If the subject stays still, the amount of computation is drastically reduced
as there is a significantly lower number of events. Head movement causes the tracker to

update within ps (b).

Subjects in the outdoor experiments were asked to step from side to side in front of a
camera placed in a courtyard under natural lighting conditions. They were asked to gaze
into a general direction, partly engaged in a conversation with the person who recorded
the video. Table 2.2 shows that results are similar to indoor conditions. The slight
difference is due to the non-idealities of the sensor (same camera parameters as in the
indoor experiment). It is important to emphasise that event-based cameras still lack an

automatic tuning system of their parameters that hopefully will be developed for the

2.3 EXPERIMENTS AND RESULTS 33

—— tracker Y position :

c L :

o 200 == GTY position :

5 T e —— tracker X position
3-5 b e ————— == 5T X position

27 100} ; :

10 —— tracker Y error

E _ i = gverage ¥ error

T -

ox Or - :

[=R i L T

é'— """"‘" " — tracker X error

=10 : = gverage X emror

| 1 1 1 1 N 1 1 1
0 5 10 15 20 25 30 35 40

time [s]

Fig. 2.6 face tracking of one subject over 45s. a) subject stays still and eyes
are being detected. Movement in the background to the right does not disrupt

detection. b) when the subject moves, several events are generated

future generations of a cameras.

2.3.2 Face Scale Changes

In 3 recordings the scale of a person’s face varies by a factor of more than 5 between the
smallest to the largest detected occurrence. Subjects were instructed to approach the
camera within 25 cm from their initial position to then move away from the camera after
10s to about 150 cm. Figure 2.7 shows tracking data for such a recording. The first blink
is detected after 3s at around 1m in front of the camera (a). The subject then moves very
close to the camera and to the left so that not even the whole face bounding box is seen
anymore (b). Since the eyes are still visible, this is not a problem for the tracker. However,
ground truth had to be partly manually annotated for this part of the recording, as two of
the frame-based methods failed to detect the face that was too close to the camera. The

subject then moves backwards and to the right, followed by further re-detections (c).

34 CHAPTER 2. EVENT-BASED PROCESSING: FACE DETECTION AND TRACKING

tracker X position N

= [}

E = 200 : ——. GT X position
83 :

o=

8 ,s 100 i — tracker ¥ position
Jo == GT Y position

—— position error
—_— Fverage position error

—
o

position error
[pixel]

2.7

face scale

1.0
0.5

time [5]

Fig. 2.7 Verifying robustness to scale. a) first blink is detected at initial location.
Scale value of 1 is assigned. b) Subject gets within 25cm of the camera, resulting
in a three-fold scale change. c) Subject veers away to about 150cm, the face is

now 35% smaller than in a)

2.3.3 Multiple Faces Detection

We recorded 3 sets of 3 subjects sitting at a desk talking to each other. No instructions
where given to the subjects. Figure 2.8 shows tracking results for the recording. The
three subjects stay relatively still, but will look at each other from time to time as they
are engaged in a conversation or sometimes focus on a screen in front of them. Lower
detection rates (see Table 2.2) are caused by an increased pose variation, however this

does not result in an increase of the tracking errors due to the absence of drift.

2.3.4 Pose Variation Sequences

The subjects in these sequences are rotating their head from one side to the other until

only one eye is visible in the scene. Experiments show that the presence of a single eye

2.3 EXPERIMENTS AND RESULTS 35

face 3 blink

[A
s 200 -!— GT & tracker 3
C]
E ‘B .4:_.,______,;.i T - M face 2 blink i T
'E; 100 H A ! — GT & tracker 2 A
g_E i i i A face 1blink
fazseareads . ' —— GT & tracker 1 |
0 rF 1 i 1 i "| 1 “I 1
1 1]
1 1 I
150 4: E i ! —— GT & tracker 1
mﬁ ! ! — GT & tracker 2
a — o
.Q-E 140 _: m GT & tracker 3)
é:—
£ 130

— grror and average error 1
—— error and average error 2
—— grror and average error 3

position
errors [pixel]
=
o
1 _3_____ |2
-

1 6 11 16 21 26 31 36
time [s]
Fig. 2.8 Multiple face tracking in parallel. Face positions in X and Y show
three subjects sitting next to each other, their heads are roughly on the same
height. a) subject to the left blinks at first. b) subject in the centre blinks next,
considerably varying their face orientation when looking at the other two. c)

third subject stays relatively still.

does not affect the performances of the algorithm (see Figure 2.9). These experiments
have been carried out with an event-based camera that has a resolution of 640 x 480 pixels.
While this camera provides better temporal accuracy and spatial resolution, it does not

provide grey-level events measurements.

Although we fed frames from the change detection events (which do not contain absolute
grey-level information but are binary) to the frame-based methods, none of them could
detect a face. This can be expected as the networks have been trained on grey-level images

instead.

36 CHAPTER 2. EVENT-BASED PROCESSING: FACE DETECTION AND TRACKING

Fig. 2.9 Pose variation experiment. A) Face tracker is initialised after blink.
B) subject turns to the left. C-D) One eye is occluded, but tracker is able to

recover.

2.3.5 Summary

Table 2.2 summarises the relative accuracy of the detection and the tracking performances
of the presented method, in comparison to VJ [177], FRCNN [193], SSD [179] and CF [180].
We also compiled a video that shows visual results ¥. We set the correlation threshold to
a value that is guaranteed to prohibit false positive detections, in order to (re-)initialise
trackers at correct positions. The ratio of detected blinks is highest in controlled indoor
conditions and detection rates in outdoor conditions are only slightly inferior. We attribute
this fact to the aforementioned hardware limitations of earlier camera generations that
are sensitive to lighting conditions. A lower detection rate for multiple subjects is mostly

due to occluded blinks when subjects turn to speak to each other.

The tracking errors are the deviations from the frame-based bounding box centre, nor-
malised by the bounding box’s width. The normalisation provides a scale invariance so
that errors estimated for a large bounding box from a close-up face have the same meaning

as errors for a small bounding box of a face further away.

VJ, FRCNN and SSD re-detect faces at every frame and discard face positions in previous
frames, resulting in slightly erratic tracking over time. They do however give visually
convincing results when it comes to accuracy, as they can detect a face right from the
start of the recording and at greater pose variation given the complex model of a neural

network. CF uses a tracker that updates its position at every frame that is created from

#The result video is available under https://youtu.be/F5UzXQsr5Es

https://youtu.be/F5UzXQsr5Es

2.4 DISCUSSION 37

of blinks error error (%) error error
recordings detected (%) VJ (%) FRCNN SSD (%) CF (%)

indoor 21 68.4 5.92 9.42 9.21 10.51
outdoor 21 52.3 7.6 14.57 15.08 14.88
scale 3 62.6 4.8 10.17 10.22 17.6
multiple 3 36.8 15 16.15 14.61 n/a
total 48 59 7.68 11.77 11.52 12.82

Table 2.2: Summary of results for detection and tracking for 4 sets of experiments. %
of blinks detected relates to the total number of blinks in a recording. Tracking errors
are Euclidean distances in pixel between the proposed and respective method’s bounding
boxes, normalised by the frame-based bounding box width and height in order to account

for different scales.

binning the change detection events, rather than working on grey-level frames. The tracker
update at each frame based on the previous position ensures a certain spatial consistency
and smoothness when tracking, at the temporal resolution of the frame rate. However,
since a correlation filter was initially designed for classic (grey-level) images, it relies on
visual information of the object to track to be present at all time, which is not necessarily

the case for an event-camera.

The CF technique from [180] requires the camera to move constantly in order to obtain
visual information from the scene to maintain the tracking, as the algorithms uses rate-
coded frames. This required us to modify their algorithm since in our data, tracked subjects
can stop w.r.t. to the camera, hence they became invisible. We added a mechanism to
the correlation filter that freezes the tracker’s position when the object disappears. We
use a maximum threshold of the peak-to-sidelobe ratio [195], which measures the strength
of a correlation peak and can therefore be used to detect occlusions or tracking failure
while being able to continue the online update when the subject reappears. This results
in delays in tracking whenever an object starts to move again and results in tracking
penalties. CF has further limitations at tracking at high scale variance and cannot track

multiple objects of the same nature at the same time.

2.4 Discussion

We introduced a method able to perform face detection and tracking using the output of
an event-based camera. We have shown that these sensors can detect eye blinks in real

time. This detection can then be used to initialise a tracker and avoid drifts. The approach

38 CHAPTER 2. EVENT-BASED PROCESSING: FACE DETECTION AND TRACKING

makes use of dynamical properties of human faces rather than relying on an approach
that only uses static information of faces and therefore only their spatial structure. The
face’s location is updated at ps precision once the trackers have been initialised, which
corresponds to the native temporal resolution of the camera. Tracking and re-detection
are robust to more than a five-fold scale, corresponding to a distance in front of the
camera ranging from 25cm to 1.50m. A blink provides robust temporal signatures as its
overall duration changes little from subject to subject. The amount of events received and
therefore the resulting activity amplitude varies only substantially when lighting of the
scene is extremely different (i.e. indoor office lighting vs bright outdoor sunlight). The
model generated from an initial set of manually annotated blinks has proven to be robust
to those changes across a wide set of sequences. The algorithm mechanism is also robust
to eye occlusions and can still operate when face moves from side to side allowing only a
single blink to be detected. In the most severe cases of occlusion, the tracker manages to

reset correctly at the next detected blink.

The occlusion problem could be further mitigated by using additional trackers to track
more facial features such as the mouth or the nose and by linking them to build a part-
based model of a face as it has been tested successfully in [196]. The blink detection
approach is simple and yet robust enough for the technique to handle up to several faces
simultaneously. We expect to be able to improve detection accuracy by learning the
dynamics of blinks via techniques such as HOTS [85] or Histogram of Averaged Time
Surfaces (HATS) [92]. At the same time with increasingly efficient event-based cameras
providing higher spatial resolution, the algorithm is expected to increase its performance
and range of operations. We estimated the power consumption of the compared algorithms

to provide numbers in terms of efficiency:

o The presented event-based algorithm runs in real-time using 70% of the resources of
a single core of an Intel i5-7200U CPU for mobile Desktops, averaging to 5.5 W of

power consumption while handling a temporal precision of 1pus [197].

e The OpenCV implementation of VJ is able to operate at 24 of the 25 fps in real-time,
using a full core at 7.5 W [197]).

e The FRCNN Caffe implementation running on the GPU uses 175 W on average on a
Nvidia Tesla K40c with 4-5 fps.

e The SSD implementation in Tensorflow runs in real-time, using 106 W on average
on the same GPU model.

These numbers show that spike-based computation can outperform conventional approaches
in terms of power efficiency, even when executed on a regular desktop. Specialised hardware

has the potential to further amplify those advantages.

Chapter 3

A Framework for Event-based Com-
puter Vision on a Mobile Phone

In this chapter we examine how mobile systems can benefit from the event-driven nature
of event-based algorithms. The optimised, RISC-based hardware can be seen as an
intermediate step to dedicated neuromorphic hardware. The key to saving energy is,
as in the previous chapter, to exploit the fact that camera output is directly driven by
visual scene activity, contrary to conventional sensors that are clocked. Downstream
processing can therefore be prevented in the absence of visual stimuli. This opens up the
possibility for power-efficient always-on sensing on a mobile phone. For tasks that happen
infrequently when interacting with the phone, we see an increasing return of investment
when employing event-based algorithms. Gesture recognition is an example application
that needs always-on sensing and conventional cameras have played a central role in
facilitating such tasks. But they cannot record continuously, as the amount of redundant
information recorded is costly to process. To overcome this limitation, we present an
Android framework that connects efficient event-based sensors and algorithms to resource
constrained mobile devices for a new generation of low-power human-computer interfaces.
The mobile framework allows us to stream events in real-time and opens up the possibilities
for always-on and on-demand sensing on mobile phones. To combine the asynchronous
event camera output with synchronous hardware used in mobile phones, we look at how
buffering events and processing them in batches can benefit on-device computer vision
applications. We evaluate our framework in terms of latency and throughput and show
examples of computer vision tasks that involve both event-by-event and pre-trained neural

network methods applied to a dataset of mid-air hand gestures.

3.1 Introduction

Mobile handheld devices are indispensable technology nowadays. An increasing range of
their functionality is powered by machine learning models and in particular neural networks
that are trained offline and deployed for inference. To be able to perform on-device inference

instead of computing in the cloud is important for a number of reasons [198]:

39

40 CHAPTER 3. A MOBILE FRAMEWORK FOR EVENT-BASED COMPUTER VISION

Since there is no round-trip to a server, latency is greatly reduced.

No data needs to leave the device, which avoids issues regarding the user’s privacy.

An internet connection is not required, which is beneficial to autonomy.

Network connections are power hungry and should therefore be avoided if possible.

The number of parameters in neural network models grows rapidly every year. To be able
to employ them on mobile devices that have constraint power budgets, we have seen the
emergence of specialised neural network accelerator hardware and different approaches
to reduce model size, number of floating point operations as well as latency [199, 51, 48].
But no matter the optimisations performed, neural networks still have to crunch a lot of
redundant data, preventing mobile devices from continuously making use of them. For
computer vision applications, this is because normally the visual scene is recorded using
a conventional camera with a fixed frame rate, which is independent of the scene being
recorded. Multiple cameras that are embedded into phones today not only serve to take
pictures, but also facilitate tasks such as recognition of faces, gestures, objects, activities,
and landmarks. Since image capturing and neural network inference are expensive, these
tasks are often triggered by less computationally demanding sensors such as accelerometers
or gyroscopes instead. In today’s systems with a tight power budget it is essential to
intelligently manage high fidelity sensors and processing to reduce power consumption
as much as possible. But this can lead to latency issues or inaccurate triggering of the
demanding processing in question and therefore consumes energy that could otherwise be

saved.

Event-based computer vision tackles the need for efficiency by using a novel image sensor.
It employs event cameras [33, 35, 200, 201, 36], which are emerging, biologically-inspired
vision sensors that can operate in an always-on fashion using very little power. Their
pixels are fully asynchronous and only ever triggered by a change in log illuminance.
The amount of events that are output is thus directly driven by activity in the visual
scene and can range from a few to hundreds of thousands events per second. Power
consumption is coupled to the amount of events recorded, which gives event cameras an

edge for applications that might happen infrequently over time.

Previous work has shown that mobile devices can profit from event cameras for low-power
tasks such as visual activity detection [202], face detection [1], gesture recognition [2, 40],
sensor fusion [203] or image deblurring [77, 204]. Event cameras have successfully been
employed on robotic platforms, which have similar limited power constraints [205, 206,
207, 66]. Apart from the low power consumption, applications can also profit from high

temporal resolution and good low-level light capture.

3.1 INTRODUCTION 41

An Android framework for An Android framework for
event-based vision event-based vision
et gE s 4 G e ———
; . %
¢

RECORD GESTURE @ RECORD GESTURE @

Right

Fig. 3.1 Screenshots of our Android app. Left: showing the live view of a
connected event camera that renders in real-time. Right: Capturing a hand

gesture being performed that signifies Right.

In this work we use a prototype device for our experiments consisting of an off-the-shelf
mobile phone to which we connect a small form-factor ATIS [35] event camera via mini-USB
connection as shown in Figure 3.2. We mount the event camera on a printed frame such
that it faces the user. The device is self-contained and does not need any external cabling.
Once the camera is connected, our Android framework is able to stream data from the
event camera in real-time, enabling on-device processing. We make it straightforward for
a user to deploy their own code using Android’s Native Development Kit (NDK) or to use
pre-trained neural network models in combination with the Tensorflow Lite library. We
give details about app architecture and how the different modules within depend on each
other. We also provide examples of computer vision tasks that show the applicability of
event cameras on mobile devices and benchmark throughput as well as latency to motivate

further exploration in that direction. Overall, our contributions are as follows:

¢ A publicly available mobile framework to stream events from an event camera in

real-time*.

¢ Real-time application of event-driven algorithms or pre-trained neural networks on

*The framework Frog is available under https://github.com/neuromorphic-paris/frog and the
description in Appendix A.3.

https://github.com/neuromorphic-paris/frog

42 CHAPTER 3. A MOBILE FRAMEWORK FOR EVENT-BASED COMPUTER VISION

events on a mobile phone.

o A self-contained device that uses a variable trigger in the form of an event camera

for always-on computer vision applications.

Processing event by event from our camera can potentially achieve the lowest latency,
as new information is integrated as soon as it is available. This kind of processing
which does not use conventional frames needs rethinking computer vision algorithms
from the ground up and has seen promising applications in event stream classification or
detection [85, 208, 92, 1]. Since we execute event-based algorithms on conventional von
Neumann as opposed to specialised neuromorphic hardware, the event-by-event approach
of asynchronous input does come with an overhead when repeatedly updating a state up
to hundreds of thousands of times per second. von Neumann hardware is designed to
compute on bulks of memory, and not for fine-grained parallelism. We therefore examine
the effect of buffering events, to be able to process them in batches. Depending on the
algorithm, this can alleviate some of the computational burden, but also incurs latency.
Buffering events means balancing a power /latency trade-off that depends on the number
of input events per second. On one end of the spectrum, an input event rate of hundreds
of thousands events per second for an active visual scene and a buffer size of 1 is likely
to overwhelm a device such as a mobile phone with many updates. On the other end, a
large buffer size when there are only few input events will not trigger any update at all.
Depending on the application, we show how an acceptable trade-off can look like, to bring

event-based computer vision to power-constrained mobile devices.

3.2 Mobile Device and Event Camera

Our device prototype as shown in Figure 3.2 consists of a Samsung Galaxy S6 smartphone
and a small form-factor event camera. Small form-factor event cameras such as the
embedded DVS [39] have a lower spatial resolution and optimised power consumption
in comparison to normal event cameras since they target battery-powered devices. Our
low-power version of an ATIS [35] has a spatial resolution of 304 x 240 pixels, is fixed on a
3d-printed external frame and connected to the device via the mini USB port. The camera
die of size 5000 x 5000m? with a fill factor of 30% was fabricated using a UMC 180 nm
process. Power consumption for the chip depends directly on scene activity, where one
pixel draws 300 nW under static conditions or 900 nW under high activity. The readout
of events is facilitated using an FPGA and draws 30 mW for high activity of all pixels.
Input/output communication for the USB connections needs further 20 mW. The camera
is embedded in a printed case on top of the mobile phone, to be able to directly face the

user. In order to ensure flexibility and compactness, a stacked design of two printed circuit

3.3 ANDROID APPLICATION FRAMEWORK 43

Fig. 3.2 Prototype device, consisting of a Samsung Galaxy S6 and a small
form-factor ATIS connected via mini-USB port. The camera is held in place with
a 3D-printed frame that attaches to the phone.

boards was chosen as depicted in Figure 3.3. In theory also other event cameras can be
connected via USB as long as drivers are open source, although standalone cameras will

need an external power supply.

Top board : ATIS bonded on PCB + Housing + Lens

board : FPGA+USB

\20 mm
FPGA I/F . SPI Master,

SPI Slave, JTAG \\
AN

‘ ~18 mm

40-50 mm

USB Processor

P
20 mm

Fig. 3.3 Small form-factor event camera assembly. the stacked PCB is located

within the housing on top of the phone, as shown in Figure 3.2.

44 CHAPTER 3. A MOBILE FRAMEWORK FOR EVENT-BASED COMPUTER VISION

Camera module

’ ted? . 1
@, s Camera service ;

/ I \ ‘ J/
0 == USB ¢—> polling
Main Activity 3 r ‘L’ 5 3
| ecoding |
; filtering ‘
Camera R |
live view
event buffer
~

~

,; Processing | module '
(RN

Results view

Processing

Tensor
flow

|
|
o ¢ |
|
' ' ‘
|
|
An Android framework for |
event-based vision
|
|
|
|

Fig. 3.4 Application software architecture. Based on Android, we make use
of a Camera module to handle the streaming of events from a camera and a
Processing module that is able to run different algorithms depending on the

backend. Both modules update Views in the Main Activity.

3.3 Android Application Framework

Our proposed Android app facilitates the readout and processing of events from an event
camera in a power-efficient way. We split the streaming of data packets via USB from the
rendering and processing of user-defined code into separate modules, which are outlined

in Figure 3.4:
1. The main activity which renders the user interface.

2. The camera module that deals with transferring events from the camera as well as

accumulating them in a buffer.

3. The processing module that can be called on demand to execute algorithms on the

events in the buffer.

From a functional standpoint, as soon as the event camera is connected, a live view will

3.3 ANDROID APPLICATION FRAMEWORK 45

start rendering the camera output on the screen so that the user can have visual feedback
of how they interact with the device as shown in Figure 3.1 on the left. Data received
from the camera is checked for isolated noise events and constantly firing pixels, which
are filtered and discarded to not unnecessarily strain the downstream processing. In this

phase, there is no computationally heavy processing necessary.

Whenever the user gives the signal to start processing the events with a pre-defined
algorithm by pressing a button on screen, the app accumulates events in an event buffer,
where they await further processing. The live view continues uninterrupted. As soon as
the buffer of a specific size is full, the processing routine will be called in a separate worker
thread. The event buffer size can be adjusted, which indirectly determines how often the
processing routine is called. If the buffer size is too small, the amount of computations
per second might overwhelm the phone’s CPU. If the buffer size is too large, results are
presented to the main activity very infrequently and might impact user experience. The
right buffer size causes events to be processed in batches, balancing computational cost and
result latency. The processing routine then returns a result depending on the algorithm
used, such as a specific classification outcome or optical flow speeds. The result that is
presented to the main activity can be displayed in a text box or used as an overlay for
the live camera view. In the following part we will describe the 3 modules that the app

consists of in more detail.

3.3.1 Main Activity

The main activity is responsible for the app life cycle and for rendering the user interface,
bundling together the camera live view as well as results view. It is also responsible for
handling the necessary permissions for USB devices, which a user has to agree to when
they connect a new device. Any continuously ongoing processing such as USB polling
has to be done in background threads, as otherwise the user experience would suffer if
the interface started to lag or stall. The live camera view is rendered at the native frame
rate of the phone, which is 60 Hz for the Samsung Galaxy S6. For efficiency reasons, the
live camera view renders a binary bitmap at the native resolution of the event camera,
which is then scaled up to display view size. The results view will update whenever the

processing routine in the processing module returns a new result.

3.3.2 Camera Module and Event Buffer

This module deals with receiving the events from the event camera via USB and pre-
processing them. As soon as such an event camera is connected, a camera service as part
of the main thread will be started, which deals with the camera initialisation and handles

two background threads for polling and decoding. The event camera and its FPGA need

46 CHAPTER 3. A MOBILE FRAMEWORK FOR EVENT-BASED COMPUTER VISION

2-3 seconds to power up, after which the camera’s biases are set and it is switched into
readout mode. The polling thread managed by the camera service is periodically querying
the USB interface for new data packets, about every 1ms. A packet can be anything
from 0 to 16 kB, depending on the scene activity and therefore the event camera’s output.
Those packets are placed in a packet buffer, so that the polling can continue uninterrupted.
The decoding thread managed by the camera service takes a USB packet from the packet
buffer whenever available, and converts the binary blob into a number of events. The user
can decide to apply simple refractory periods for each pixel to prevent excessive firing
of pixels, or to apply additional filtering to remove noisy events. The same thread also
directly updates the bitmap used by the Camera live view, at potentially much higher rate
than the display refresh rate. If the user has triggered algorithm execution, the filtered
events that were used to update the bitmap are then accumulated in an event buffer of
size N. This buffer will act as a gate for downstream processing and will only trigger a

computation when the buffer is full.

3.3.3 Processing Module

This module is responsible for the execution of algorithms using the batch of events that is
passed from the event buffer. A third background thread is started whenever the processing
routine is triggered. The routine can make use of different backends to make computation
as efficient as possible. One option is the deployment of user code in C++, which can
be executed natively on the phone using Android’s NDK. The process routine can then
call those native functions via the Java Native Interface, which take one or more events
as parameter, to efficiently compute and return a result for that same batch. Calling a
function through the Java Native Interface incurs an overhead, but the efficiency of native
code execution often makes it worth wile. It should be noted that this backend uses a

single background thread only.

Another option is to make use of a TensorFlow Lite backend [209], which is a framework
for neural network inference for edge devices with hardware support on Android platforms.
A neural network that has been trained offline can be processed to suit the deployment on
an Android phone, by fusing and dropping as many operations as possible or quantizing
weights to reduce computational effort and latency. The compressed network can be
bundled with the Android app. Given an input, such a condensed network returns a
similar result as the full precision network up to an error margin. A neural net that has
been trained on events takes an accumulated event frame as input, so the event buffer size
N will typically be higher in this setting. The neural network output and result can also

be reported to the main activity to update the result and/or the live view.

3.4 PERFORMANCE MEASUREMENT METHODS 47

3.4 Performance Measurement Methods

We benchmark the components of our system that contribute to the overall latency from
the point when the event camera emits an event until a result is computed and measure
the amount of events that can be handled per second. These components are the Camera

module including its event buffer and the Processing module.

3.4.1 Camera Latency

At first we want to measure how quickly we can transfer, decode and filter events sent
from our event camera connected via USB. Depending on scene activity, the event camera
can generate up to hundreds of thousands of events per second. We denote the rate of
events/s recorded by the camera as R. It serves a proxy for activity in the visual scene.
The latency incurred by the camera module is the time it takes to transfer, decode and
filter a USB packet of events: Acam = (ttransfer + tdecoding + tﬁlter)N;llck or» Where Npgcpet
is the number of events in a USB packet. The accumulated latency per second for the

camera module is:

Lcam(R) = RAcam (3.1)

3.4.2 Buffering Latency

After the events have been decoded, they are placed in the event buffer. Performing
computation on each event individually incurs a large overhead when looking up and
dereferencing functions [210]. We can therefore accumulate multiple events in our event
buffer of size N to then process them as a batch. This typically saves overhead costs of
creating new threads and updating states with every event, but the buffer size has to be
chosen depending on the application and R. The accumulation of events causes latency
per event that is the inverse of the input stream event rate, Apuffer = R Bigger buffer
sizes will cause longer latency and vice versa. The cost of moving data to and from the
buffer is factored into camera and processing module respectively. To calculate the latency

that is accumulated per second, we write:

Ebuffer(R, N) = AZ)‘buﬁ"ersi1 (32)

3.4.3 Execution Latency

We measure the latency for a certain algorithm A as a function of buffer size, Aexec =
A(N). If this function exhibits sublinear behaviour, the algorithm benefits from batching
operations. To calculate accumulated latency per second, we multiply by the number of

executions per second:

['exec(Aa Rv N) = %Aexec (33)

48 CHAPTER 3. A MOBILE FRAMEWORK FOR EVENT-BASED COMPUTER VISION

Together, these terms provide us with a tool to measure latency:

[,(A, R, N) = [fcam + ['buffer + [fexec (34)

L(A, R, N) computes a dimensionless output that tells us how many seconds of latency is
accumulated per second from the moment that an event originates at the camera to the
point when an algorithm returns a result. Everything at or under a value of 1 will be able

to run in real-time.

3.5 Experiments and Results

We benchmark the amount of events that we can handle in real-time from our event
camera within the camera module, calculate buffer latency for different input event rates
R and implement 3 different computer vision algorithms on a mobile phone with the help
of our framework. In the following experiments, we study event buffer size and its effect
on latency for gesture recognition, computation of optical flow and image reconstruction
from events. Optical flow computation is a relatively lightweight algorithm, which gives
low-level information about direction and speed of events and which can benefit from
batching operations. With gesture recognition we want to exploit the event camera’s
natural suitability as a motion detector to extract higher-level information and make use of
an event-based learned model. The frame reconstruction is an example of a comparatively
inexpensive neural network model that has been trained on events directly and that can
make use of the TensorFlow backend. It also serves as a connection between purely

event-based and conventional machine learning applications.

3.56.1 Measuring Throughput of Camera Module and Event Buffer Latency

For a scene where a user is holding the phone in front of them, we observe 0.91 ms of
latency on average to transfer a USB packet that encodes 1024 events. The decoding of
such a packet including filtering and setting the shared bitmap live view takes another
0.73 ms on a separate thread on average. The filtering is done to alleviate computational
burden on our test device, where we remove about two thirds of events from the input
stream. For that we use a refractory period of 1 ms, a spatiotemporal filter of 1 pixel and

1ms and also remove 2 constantly firing pixels completely. This results in
Acam = 1.6 £ 0.3us/Event (3.5)

of latency for transferring, decoding and filtering events from the camera. This translates
to a maximum event rate of 624.39 kEvents/s that we can sustain for real-time live view

using a single CPU thread.

3.5 EXPERIMENTS AND RESULTS 49

For reasons of reproducibility and comparability, we benchmark all downstream components
using a pre-recorded dataset. We use gesture recordings from the Navgesture database [40]
which have been acquired with the same camera as ours. It contains 1342 recordings of 6
different mid-air hand gestures performed. About 1 billion events are distributed over 47
minutes of recording time, which when distributed equally corresponds to an average R of
365.6 kEvents/s. Applying the same filtering as in the previous camera module experiment,

this leaves us with an average input R of 113.9 kEvents/s.

035

030 \

025 \

020 .

Latency per second £iR, N)
!
’I

R = 365.6 kEvents/s
010 R = 1139 kEvents/s

] 5000 10000 15000 20000 25000 30000 35000
Number of events in event buffer N [events]

Fig. 3.5 Accumulated latency per second for different event rates when computing
event-based, aperture robust optical flow [96]. For high event rates (orange
line) the overhead of calling a function repeatedly when the buffer size is low
dominates the overall latency. For lower event rates (yellow line), buffer size can
be considerably lower while still being able to compute in real-time. High buffer
size combined with fewer input events means that events are spending a lot of

time in the buffer which increases latency again.

3.56.2 Aperture Robust Event-based Optical Flow

We implement and benchmark event-based aperture-robust flow as in Alkolkar et al [96].
Standard event-based flow as in Benosman et al. [93] provides directions that are perpen-
dicular to the surface formed by the events, which does not necessarily correspond to the
true direction of motion. Alkolkar et al. propose an algorithm that corrects the optical
flow over a spatial region. It can be divided into three steps: At first, local optical flow for
each event is computed via a least-squares minimisation of a plane, as described in [94]. In
the second step, different spatial scales are evaluated over which the mean magnitude of
local flows is maximised. In the third step, the mean direction of local flows is calculated

for the previously found optimal spatial scale.

50 CHAPTER 3. A MOBILE FRAMEWORK FOR EVENT-BASED COMPUTER VISION

This algorithm, especially the second step, can directly benefit from batching operations,
as multiple spatial scales can be evaluated more efficiently. Figure 3.5 shows the effect
of accumulated latency per second when computing the corrected flow. The algorithm
computes in real-time even for high event rates of > 365 kEvents/s. We observe a drop in
accumulated latency for batch sizes at around 5000. For larger batch sizes, the effect of
buffer latency starts to dominate, which is especially apparent for lower input event rates.
Independent of the buffer size, we achieve correct flow measurements that indicate the

direction of the gesture performed, as shown in an example in Figure 3.6.

3.5.3 Event-by-event Gesture Recognition

We implement and benchmark an event-based gesture recognition algorithm including
background suppression for mobile phones [40]. The algorithm was trained using the
NavGesture dataset [40] so that a user can perform one of 6 gestures: Up, Down, Left,
Right, Select and Home. An overview of the algorithm is shown in Figure 3.7. As
soon as the user presses a button, two seconds of events are recorded, at the end of
which a predicted gesture is displayed in the result view. The processing happens in two
stages. During the two seconds of input events, the algorithm computes a spatio-temporal
descriptor called a time surface [85] for each event, which will be used as features during
classification. The time surface represents the spatio-temporal context of an incoming

event by linearly decaying events in its surroundings and encodes both static information

2000 events 5000 events

Fig. 3.6 Aperture-robust event-based optical flow [96] computed on a recording
of a person performing a mid-air hand gesture. The events are colour-coded
to represent the direction of computed flow. Left: 2000 events are taken into
account when computing flow, which provides a thin outline but correctly detects
the direction. Right: 5000 events are accumulated for visualisation, equally
achieving good results in terms of direction sensitivity. The motion looks blurry

due to the longer time window of events.

3.5 EXPERIMENTS AND RESULTS 51

such as shape and dynamic information such as trajectory and speed. The time surface is
then matched against learned time surfaces prototypes using a HOTS architecture [85],
triggering activation for the closest matching one. This process happens continuously for

the duration of the two seconds.

A Stimulus B Layer
$syg bank of patterns

< Stream of
pattern events
e
J
ATATF_Sqmgra ./
| Time-surface [}» . 3
< *“_ — atterns: '23
Stream of = ¢
visual events / ‘ H> % .
o ! ‘/ Histogram
~ L
T e
— k-nn Classifier

Polarities: 0 1

Fig. 3.7 (A) A stimulus is presented in front of a neuromorphic camera, which
encodes it as a stream of events. (B) A time-surface can be extracted from
this stream. (C) This time-surface is matched against known patterns, called
prototypes. The number of occurrences of each prototype can be used as a feature

for classification in the form of a histogram. Figure adapted from Maro et al. [10]

Figure 3.8 shows how the event buffer size impacts accumulated latency per second. This
algorithm as currently implemented does not profit from batched operation, so we can see
that latency is relatively stable. We do notice a slight overhead when buffer size approaches
1, and also see the impact of buffer latency Lyufer towards the other end. Overall, the
feature generation can happen in real-time for event-rates at about 150 kEvents/s and

less.

After the last feature has been generated, the second processing stage is triggered. The
number of occurrences of all prototypes over a period of time is compiled into a histogram
which is used as the gesture signature. The classification is done using k-Nearest-Neighbours.
Here there is no option to break down or buffer the computation, so we just provide
measurements of mean latency for the second processing stage of classification in Table 3.1
when no event filtering is applied. The home gesture with its dynamic back and forth
motion causes many more events to be recorded, which has a significant impact on the

time to prediction.

The filtering of input events has an impact on algorithm performance, so we plot the

classification accuracy over amount of filtered events in Figure 3.9. 100% of events

52 CHAPTER 3. A MOBILE FRAMEWORK FOR EVENT-BASED COMPUTER VISION

b \./0——’/' ‘
= 20 —— R = 365.5 kFvents/s
= R = 1139 kEvents/s
E —— R =57 kEvents/s
E L5 real-time operation
E 10
=L
=
A

05 &

——

0.0

] 1000 2000 3000 4000 5000 600D
Number of events in event buffer N [events]

Fig. 3.8 Accumulated latency per second when computing HOTS [85] features
for classification. Features can be generated in real-time for input event rates of
about 150 kEvents/s and beneath. From the measured stability in accumulated
latency over batch size we can conclude that the algorithm, making use of a single
thread and the NDK backend, does not benefit from batching.

correspond to all events from the Navgesture database. We show that we can filter about

half of all events without a drastic drop in accuracy.

:

Classification accuracy [%]

0 0 &0 80 100

Percentage of original Navgesture events
Fig. 3.9 Event-by-event gesture classification results on NavGesture-sit [40]. By
using spatiotemporal filters and refractory periods, we can reduce the amount

of events and therefore computational cost considerably, without impacting

classification accuracy too much.

3.5 EXPERIMENTS AND RESULTS 53

Table 3.1: Classification latency for 6 different gestures from the Navgesture database [40].

Mean latency is calculated over 5 trials each.

Up Down Left Right Select Home

mean latency [ms] 94.2 49 78.3 41 46.8 2825.6

Fig. 3.10 Gray-level frame reconstruction from events using a pre-trained
FireNet [211] model that has been converted to TensorFlow Lite. The two
pictures differ in terms of number of events that have been used as input to the
network. Left: 3192 events are used to create a voxel grid. The reconstructed
frame exhibits strong smearing artifacts. Right: 12768 events are fed to the
network, which increases latency, but also improves the visual results, for example

details in the face or the door to the right.

3.5.4 Leveraging Pre-trained Neural Networks for Image Reconstruction

We convert the pre-trained model published by Scheerlinck et al. for fast image recon-
struction from events [211] to a TensorFlow Lite model that we can execute on the phone.
This network has 38k parameters and uses voxel grids as input, which are accumulated
and weighted accumulations of events into frames [212]. The aim is to show that we can
reconstruct change detection events from the NavGesture database depending on scene
activity, potentially allowing processing of conventional computer vision pipelines triggered
by our inexpensive gate. It might also serve as a way to render a visually appealing live

view to the user.

Depending on the buffer size and unlike for the previous algorithms, we do observe results
of different visual quality that depends on the event buffer size. Figure 3.10 shows the
difference between the accumulation of 3192 events fed to the network that results in an
image that exhibits strong smearing artefacts and lack of detail. The accumulation of 4

times the amount of events, 12768, results in much more consistent results.

Voxel grids as a representation for events inherit some of the downsides of conventional

54 CHAPTER 3. A MOBILE FRAMEWORK FOR EVENT-BASED COMPUTER VISION

frames, namely an abundant amount of redundant information. This is costly to process,
and therefore we need to process events in higher buffer sizes. Figure 3.11 shows the effect
of buffer size on accumulated latency. Using the Tensorflow Lite backend, we can make use
of special hardware acceleration, owing to the success of deep learning. It is therefore not
a direct comparison to the previous two algorithms that make use of the NDK backend.
A low buffer size of < 7000 triggers the processing routine very often, swamping it with
additional, redundant input data that is generated from the voxel grids. When R is high,
this is not sustainable for real-time operation, even with the use of dedicated hardware

acceleration. A sweet spot seems to be at around a buffer size of 15000 events.

Until now we have worked under the assumption that events are evenly distributed over
time, which is not the case for event camera recordings. Therefore we also want to show
how many event voxel grids are generated over time for an example recording, shown in
Figure 3.12. The bump in number of frames per second is caused by the gesture being
performed, as the beginning and ending of the recording have little events that occur.
Depending on the buffer size, this can trigger computation that refreshes the result more
often than what the display is capable of rendering. Such computation could therefore be

clipped to save energy.

—— R = 3656 kEvents/s
16 R = 113.9 KEvents/s
14 —— R = 57 kEvents/s
= real-time operation
o
i
g
g 10
(%]
oo
&
g 06
g
04
02

] 10000 20000 30000 40000 50000
Number of events in event buffer N [events]

Fig. 3.11 Latency per second L(R, N) over number of events in event buffer
for gray-level frame reconstruction from events using the FireNet [211] neural
network architecture and TensorFlow Lite backend. Using a low buffer size will
trigger this expensive operation very often for high R, which is not permanently
sustainable. If buffer size on the other hand is too big, no updates at all will be

computed and events spend time waiting.

3.6 DISCUSSION 55

—— Ewent buffer size 5000
80 Event buffer size 10000
= [isplay refresh rate

20

Frames from events per second

Y 05 10 15 20 25 30 35
Time [s]
Fig. 3.12 Event frames per second for an example gesture recording of 3.5s
and two event buffer sizes of 5000 and 10000 events. The number of events and

therefore frames depends directly on the visual scene activity and is thus highest

when the gesture is performed. Display refresh rate is also shown for reference.

3.6 Discussion

This work presents a first step to integrate event cameras into mobile devices. Continuous
processing of frames from conventional cameras is very costly on battery-powered devices
and therefore only triggered when absolutely necessary. By swapping the conventional
camera for our event camera that naturally acts as a motion detector, we can reduce
computational load when there is no new information in the visual scene, and at the
same time reduce latency to a minimum when computing results for fast motion. This
approach is complementary to previous efforts of shrinking model sizes or algorithm foot

prints.

We show that we can process input in real-time depending on different scenarios of visual
activity. The algorithms we tested are subject to a trade-off between computational
demand and latency. It is worth mentioning that we process event-based data via the NDK
backend on a single CPU thread on conventional von Neumann hardware, which is not
designed for the level of fine-grained parallelism needed in some event-based approaches.
Nevertheless, our results on optical flow and gesture recognition that can be computed
in real-time show the efficient nature of event-based computation. The TensorFlow Lite
backend on the other hand makes use of special hardware acceleration such as the GPU to
be able to reach sustainable throughput rates even though a lot of redundant information
is generated in this case. In reality, our input event rate R will change continually. Even

if an algorithm accumulates more than a second of latency per second, computations can

56 CHAPTER 3. A MOBILE FRAMEWORK FOR EVENT-BASED COMPUTER VISION

be skipped or allowed to catch up over time if input event rate drops again.

To increase the efficiency even further, one option would be to dynamically adjust event
buffer size so as to minimise £(A, R, N). Work in this direction was done by Tapia et
al. [213], although events are discarded if there are too many. Another option would be
to cap computation at any rate higher than the display refresh rate. It would also be
desirable to make use of a more efficient connection than USB to connect the event camera
directly to the mainboard, such as Mobile Industry Processor Interface (MIPI) buses which
are designed for low-power applications. Not only could the camera be integrated into the
phone, but dedicated neuromorphic hardware which is specialised to execute spiking neural
networks could help leverage the full potential of power-efficient computation. Event-based
algorithms can make use of spiking neural networks that do not rely on the creation of

voxel grids or other frame representations from events.

Connecting the world of event-based vision to a mobile device enables a range of potential
applications such as face recognition, eye tracking, image deblurring, super slow-motion
recordings or voice activity detection [202]. Our work opens up the route to always-on
sensing on battery-powered devices that make direct use of a vision sensor and that do not
have to rely on low fidelity sensors to trigger expensive computation. Neuromorphic cameras
and algorithms can make current conventional systems more efficient by reacting to changes
in the visual scene. The computation however is still done using von Neumann hardware.
Even specialised neural network accelerators in the form of GPU-derived hardware do not
exactly meet neuromorphic’s demand for artificial neurons that can perform asynchronous
computation. In the next chapter, we explore whether neuromorphic hardware can further

reduce power costs to justify yet another piece of specialised hardware in the mix.

Chapter 4

Neural Computation on Neuromorphic
Hardware Using Precise Timing

Conventional hardware, even when optimised for mobile applications, is not designed to
work with event-based data. Current hardware for computer vision systems is tailored to
images in the form of GPUs or other neural network accelerators. That is why we resorted
to batching operations in the previous chapter to maximise throughput overall. To take
computing efficiency a step further and away from conventional hardware architectures, we
explore the full potential of event-based algorithms on dedicated hardware. Neuromorphic
hardware starts replicating the brain from its essential components and employs thousands
of spiking artificial neurons per chip. Even though we can imitate the biological hardware
as such up to a certain level of abstraction, it is not entirely clear how the brain encodes
information. We know of at least two major coding schemes in the brain, temporal coding
and rate coding. Since we want to compute as efficiently as possible on neuromorphic
hardware, we also want to use the most efficient coding scheme. Temporal neural encoding
schemes generally have lower latency and employ fewer spikes than the currently dominant
rate coding schemes, verified by observations of precise spike timing in biological systems.
Using temporal encoding to compute with spiking neurons on neuromorphic hardware
has the potential to show advantages in terms of power consumption over conventional
hardware.

Spike Time Computation Kernel (STICK) is a framework that allows us to encode values
and compute arbitrary mathematical systems using temporal coding in spiking neural
networks. It encodes information in the interval between two spikes and provides networks
for mathematical operations such as addition or exponentiation. We implement and extend
STICK on Loihi, a fully digital spiking neural network processor. Since synaptic weight
precision is typically greatly reduced on neuromorphic hardware, we make use of the time
axis as primary means of encoding information. We show that using temporal coding on
Loihi, we can combine small functional neuron blocks into larger, more complex SNNs to
accurately compute arbitrary mathematical functions. We also show that we can achieve
state-of-the-art classification accuracy when converting a pre-trained feed-forward artificial

neural network. We compare to existing rate coding frameworks on the same hardware and

57

58 CHAPTER 4. NEURAL COMPUTATION ON LOIHI

provide evidence that temporal coding can have advantages in terms of power consumption,
throughput, and latency for similar numerical accuracy. Our work opens up the route for
an efficient, Turing-complete computer system that might be based on neurons only, in

domains such as scientific, frugal, or massively parallel computing.

4.1 Introduction

Computer programs make use of elementary operations, branching and external mem-
ory [214]. The retrieval and writing of instructions to and from memory, known as the von
Neumann bottleneck, not only constricts the data traffic between processor and memory,
it is also an intellectual bottleneck that has tied us to instruction-at-a-time thinking [215].
Since Moore’s law and the proposed growth of transistors per area unit is slowing down as
we encounter physical limitations [20], alternatives to the classic von Neumann architecture

become increasingly interesting to explore [216, 217, 218].

Biological neural networks such as the brain process information significantly more ef-
ficiently than current artificial neural networks on any computer system today, using
only 20 W [219]. Instead of separating the processing unit from memory which stores
instructions, the brain uses its neurons for both computation and storage at the same
time. Spike-based computation in conjunction with an incredible amount of recurrent
connections and parallel structures makes neural information processing efficient and has
the potential to outperform classical computing [220, 108]. Spiking neural networks try to
emulate some of these principles to find ways to compute much more efficiently than non
spike-based, classical computation. They need specialized neuromorphic hardware which
comprises artificial neurons and synapses in silicon. Silicon as a replacement substrate
to biological neurons can process and transmit signals significantly faster than what a
biological system is capable of [221, 164, 167], considering the mobility of electrons in
silicon is about 107 times that of ions in solution, therefore potentially even outperforming
the brain.

Even if we emulate a brain-like system with all its components, it is not clear how
information is actually encoded and decoded. Multiple neural coding schemes have been
suggested to be active in the brain at the same time and their relevance for computation
and learning is a topic of intense debate within the neuroscience community. When we
transfer analog values into the spiking domain to compute using neurons in the hope
of increased efficiency, rate coding is a dominant encoding scheme. Rate coding can be
used for general purpose computation [222] and has also been used to convert ANNs into
SNNs for efficient inference [122, 223] following the success of deep learning. Rate coding

integrates spikes over discrete time intervals in order to correlate the firing rate of a neuron

4.2 STICK 99

to the strength of a stimulus. This strategy is seemingly easy to implement but relies on a

large number spikes, which can be very costly on a neuromorphic system.

Spiking neurons can also adopt a temporal coding scheme where the relative timing of
spikes is considered to carry meaningful information despite the presence of noise and
have been shown to be powerful computational models [104]. Precise timing is known to
be an important paradigm in biological systems [224, 225, 226] and especially so in the
human brain [227, 228, 229, 230]. For instance, the information carried in spike timing
can be leveraged for sound localization [231, 232, 233], fast visual processing [234] and
arbitrary nonlinear function approximation via an encoding scheme that relies on the inter
spike interval of spike pairs [235, 236]. Taking advantage of spike timing can increase the
efficiency of a spiking neural network by requiring significantly fewer neurons and spikes for
computation. We implement and extend the Spike Time Computation Kernel framework,
in short STICK [237], on neuromorphic hardware called Loihi [167], which provides us
with a temporal encoding scheme and networks for mathematical operations. Given the
brain’s incredible power efficiency, biologically-inspired architectures might one day offer
a viable alternative to the classical von Neumann architecture, and various spike-based

computing models are already being actively explored in that regard [238, 174].

Vv V-synapse (0.5wpg) V) ge-Synapse (Wacc) v gf-synapse (Wexp)

Fig. 4.1 The effect of three different STICK synapses V', g. and gy and their
respective weights on neuron membrane potential over time. The V-synapse
injects an instantaneous current, g. injects constant current and gy injects an

exponentially decaying current.

4.2 STICK

The Spike Time Computation Kernel [237] encodes numbers in spike intervals and provides
3 different synapses that differ in how current is integrated into the target neuron over
time. Neurons act both as local computation as well as storage units. The timing and
weight of current that is injected during the time between two input spikes determines
the calculation, where it is integrated into the target neuron’s membrane potential. By
turning input spikes into a membrane potential, the target neuron also acts as storage
unit, given a large enough decay constant. Combined with the asynchronous and highly

sparse nature of spike-based communication, Loihi provides us with hardware that can

60 CHAPTER 4. NEURAL COMPUTATION ON LOIHI

unfold STICK’s full potential in the hope to save power and to show the potential of a
Turing complete machine on neuromorphic hardware. The neuronal units in STICK use

the following model:

dVv
Tm—— = ge + gate gy
dt
dge
= 4.1
5 =0 (4.1)
L

where V' is the neuron’s membrane potential, g. represents a constant input current and
gy represents exponential current dynamics that are turned on and off by gate € {0, 1}.
Tm is set to a much slower (x1000) time constant than other time constants such as 7
in the system, resulting in a comparatively small leakage current. The effects of V', g,

and gy synapses are illustrated in Figure 4.1. They have respective weights we, Wacc and

Wexp-

Notably, on a discrete time axis, the precision of the encoded number and its spike interval
depends on the largest chosen interval. The system’s precision is inversely proportional
to its speed, as increased resolution of a time interval needs more simulated time steps
and more time steps to encode the same value result in slower computation. The spiking
neural models in STICK also take into account a delay for the time it takes for a neuron to
fire, called They. In order to encode a real value z € [0,1] into a time interval AT, STICK

uses the following linear function:
AT = f(l’) = Trnin + x(Tmax - Tmin) (42)

where Thin is @ minimum time interval to encode the value 0 and Ti,,x encodes the value
1.

4.3 Loihi

4.3.1 Hardware

Loihi is a neuromorphic research chip that implements spiking neural networks in a
fully digital architecture[167]. It features 131,072 artificial neurons and 130 million
synapses across 128 neuromorphic cores per chip and connections can be routed in between
chips to scale up the total amount of neurons. Using Intel’s 14 nm process, it achieves
high-speed asynchronous computation. Continuous functions of membrane potentials are
approximated in discrete time steps whereby all neurons maintain a timestamp synchronised
throughout the entire system. For every neuron that enters a firing state, a spike message

is sent across the mesh to the receiving cores. Those spike messages are communicated

4.3 LoIHI 61

V-neuron AV

0.5w,

Je-neuron

wacc

5 =212
A=Eqg.6

Fig. 4.2 Three different Loihi neurons V', g. and gy that implement the behaviour
of the respective STICK synapses. The parameters § and \ refer to the equations
on Loihi for current accumulation and membrane potential decay (Equation 4.3
and Equation 4.4).

independently across cores, although all cores send out messages within the same time

step.

Neurons on Loihi will accumulate current from attached synapses and decay it using the
following model given by the hardware [239]:

i(t) =i(t — 1)(2" =)27 + 20773 “aw;s;(t) (4.3)

J

where § € [0..21%] is a current decay factor and n € [0..7] is a weight exponent scaling
factor. These factors and exponents are used to approximate exponential decays in a
digital system with limited resolution. w is the weight and s € {0, 1} the spike indicator
for a connected synapse j. The summed input current is then integrated into the neuron’s

membrane potential, calculated as follows:
V(t)=V(t—1)22 - 272 i) (4.4)

where A € [0..2'2] is a voltage decay factor. The decay is again approximated on a

digital system. As soon as V(t) reaches or exceeds the membrane voltage threshold

62 CHAPTER 4. NEURAL COMPUTATION ON LOIHI

Vipike = Vin X 26 the neuron emits a spike and V is reset to zero. Loihi also supports
axonal delays o, which schedule all outgoing spikes to arrive at a future time step and

thus determine a maximum transmission delay between two neurons.

4.3.2 Neuron Models Implement STICK Synapses

We model STICK’s neuron model and 3 synapse types described in Equation 4.1 and
Figure 4.1 with the help of 3 different neuron models on Loihi that specify how current from
synaptic inputs is integrated. The three neuron types V', g. and gy are depicted in Figure 4.2.
The V and gg-neurons have instantaneous current decay d = 212 whereas the current from
incoming synapses at g.-neurons does not decay, therefore § = 0 in Equation 4.3. Neither
V nor g, neuron have voltage leakage, therefore A = 0 in Equation 4.4. In contrast, the

membrane voltage of the gy neuron decays exponentially over time following
V(t) = igeloD/A (4.5)

where ig is the input current at time ¢g of spike arrival. The exponential voltage decay on
Loihi is approximated in Equation 4.4. We choose the voltage decay factor A to scale with

Thax in the following way:
212

(4.6)

gf-neuron Wexp

Fig. 4.3 Dendritic tree for Loihi multicompartment neuron. It integrates voltage
from a g.- and a gy-neuron into into a common output via voltage join operations
PASS and ADD defined in Equations 4.7 and 4.8. The former rule makes sure
that voltage from the gg-neuron is only ever integrated when gate is firing and the
second rule adds the constant current from a ge-neuron to it. Coloured synapses

define excitatory, empty synapses define inhibitory connections.

Some networks need more complex current dynamics than what any single neuron could
provide. We therefore connect together all three neuron types within a binary dendritic tree
to form a multicompartment neuron, as shown in Figure 4.3. The goal is to combine linear

and nonlinear currents from g. and g; neurons in a single neuron membrane potential.

4.3 LoIHI 63

The dendritic tree makes it possible to define rules on how voltage from child neurons is
integrated into the parent neuron. Current integration from a gg-neuron to the output is
controlled via a gate and a PASS operation. This is formally defined as:

ipass + V;]f if Sgate:]-

AVpass = { (4.7)

0 if Sgatezo

where ¢ is input current, V' is voltage and sgate an indicator whether the neuron has spiked
at the current timestamp. gy neuron voltage will thus only be integrated when gate is
firing. A second rule adds together pass and g. neuron voltages via an ADD operation,

formally defined as:
d‘/output = Vpass +V e (48)

We can thus combine both exponentially decaying as well as constant membrane voltage

characteristics at the output, which in turn connects to other neurons.

output I — t

Fig. 4.4 Delay encoder network that maps a real value x to a time interval AT.
We define f(z) in Equation 4.2.

4.3.3 Value Encoding Using Delays

In our implementation on Loihi, we use T, and Tiax from Equation 4.2, which correspond
to the number of simulated time steps for a given time interval. We set T, = 1 time step
to represent an interval that encodes the value 0 and use Ty,ax = 2P, where p € N to be
able to tune the trade-off between network speed and precision, since longer time intervals
between spikes will necessarily slow down the overall system, but also be able to provide a
more fine-grained resolution on the time axis. We model T,, = 1 time steps, as it takes 1

time step to emit and propagate one spike on Loihi.

In an encoder network that uses V-neurons only, we vary the axon delay o of an en-
coder neuron to represent our value f(x) = AT following Equation 4.2, as shown in
Figure 4.4.

64 CHAPTER 4. NEURAL COMPUTATION ON LOIHI

4.4 Composing Networks For Computation Using STICK

Now we turn to the process of combining the previously proposed neuron models into
functional blocks, and how multiple blocks can be combined to bigger networks which
might perform more complicated operations. We start with a straightforward routing
network, the Router, pictured in Figure 4.5. A pair of spikes that are received at input
will be routed to two separate outputs first and second. This block is often used to feed

inputs to different paths in other networks.

O V-neuron <>—‘ We

Fig. 4.5 The router network routes two consecutive spikes at input into different

outputs first and second.

4.4.1 Storing Values
4.4.1.1 Inverting Memory

Figure 4.6 shows a simple network that can store an input spike interval x and output an
interval corresponding to the input’s inverse 1 — Z. A single spike from recall will trigger a

spike pair at output with an interval AT = Tiax(1 —).

1 tmin
| | router acc
2
OV—neuron T‘iwe OUtpUt

O ge-neuron 40 Wace

Fig. 4.6 Inverting memory. The first input spike triggers the accumulation at
the membrane of the acc neuron, which is stopped by the second input spike.

The recall neuron will trigger a readout of an inverted value.

4.4 CoMPOSING NETWORKS For CoMPUTATION USING STICK 65

4.4.1.2 Non-inverting Memory

A Memory network to help route two input spikes to different accumulation neurons. The
Memory block can store a value as membrane potential of acc2 and output it whenever

recall is triggered. Figure 4.7 pictures the network that uses V' and g, neurons.

acc read
| | router y

2

Sy
OV—neuron <>—‘ We -.|

O ge-neuron 4@ Wacc

Fig. 4.7 Memory block. This network stores an input spike interval as membrane
potential of the acc2 neuron. The first input spike will immediately trigger a
constant input current for accumulation neuron acc. The second input spike
causes the membrane potential of acc2 to rise. As soon as acc reaches Vi, it
signals to ready that the output is ready for readout and inhibits acc2, which
now stores At that represents the encoded value x. A single spike from recall is

enough to reproduce the original spike pair at output.

4.4.1.3 Signed Memory

Using the memory block, we can create a network shown in Figure 4.8 that can store spike
intervals for positive and negative numbers by adding further neurons that represent the
number’s sign. Depending on which input path a spike pair is received, we then interpret

the value as positive or negative.

4.4.1.4 Synchroniser

Figure 4.9 shows a network that can synchronise n inputs, so that the first spike of all
outputs will be aligned. Making use of N memory blocks, the last block to receive its

input will trigger a sync neuron to start the synchronous readout.

4.4.2 Branching Operations Minimum and Maximum

Using a combination of excitatory and inhibitory connections shown in the Minimum
network in Figure 4.10, we can detect the smaller of two synchronised inputs as soon as

the second spike thereof arrives. The output neuron will emit the smaller input and the

66 CHAPTER 4. NEURAL COMPUTATION ON LOIHI

output-

©)

memory

\< Q=

2We

Fig. 4.8 Signed memory. This network employs additional neurons on top of

the memory network to signify positive or negative stored values.

output

input 1 / O 1

memory [

Bo)
<o

/ O
memory [
§ 9

We /N
we /N

sync
V-neuron %‘ We

Fig. 4.9 Synchroniser. This network can store N inputs that are received at
arbitrary times in memory units and triggers the synchronous readout of all cells

as soon as the last input is received.

presence of a spike at either smaller! or smaller?2 will mark which input was the smaller

one.

The Maximum network shown in Figure 4.10 will indicate the larger of two synchronised

inputs as soon as the smaller input has fired its second spike. This will be indicated on

4.4 CoMPOSING NETWORKS For CoMPUTATION USING STICK 67

either larger! or larger2. The output neuron then mirrors the larger of the two inputs

afterwards.

Minimum

Fig. 4.10 Minimum and maximum branching operations for two inputs. The
first complete input will signify in both networks which of the two inputs is the

smaller one. For these networks to work, the inputs have to be synchronized.

4.4.3 Linear Operations
4.4.3.1 Subtractor

Figure 4.11 shows a network that computes the difference between two synchronised inputs.
The difference between the two spike time intervals will be another interval, but may be
output to either output+ or output-, depending on the sign. We also use an additional

zero neuron that fires if the inputs are equal.

4.4.3.2 Linear Combination

We can compute the linear combination of n different inputs given the coefficients ay, . . . , o,
using the network shown in Figure 4.12. Each input will either be directed to a positive
or negative input path, depending on its sign. Neuron accl+ accumulates values for
all positive inputs, whereas acci1- does the same for all negative inputs. The difference
between the two accumulated values is then synchronised and subtracted. A start neuron

indicates the result being ready for readout.

68 CHAPTER 4. NEURAL COMPUTATION ON LOIHI

V-neuron <>_‘ We € tneu '<'>?. 2t neu

tmin + 2tneu

Fig. 4.11 Subtractor. Connections related to the zero neuron that have a delay

of They are colour-coded for better visibility.

4.4.4 Nonlinear Operations

4.4.4.1 Logarithm

We might also exploit the more complex characteristics of a multicompartment neuron
to compute the natural logarithm of an input f(x), as shown in Figure 4.13. The first
input spike triggers g. current characteristics, whereas the second input spike triggers the

nonlinear g; neuron. That way the network can output a spike interval as follows:

(4.9)

4.4.4.2 Exponential

When we exchange the sequence of nonlinear and linear current accumulation in the
Natural Logarithm network, we are able to calculate the exponential of a given value x.
The network is shown in Figure 4.14. The first input spike connects to decay and gate
compartments and starts nonlinear accumulation. The second input spike stops the gate
from spiking, thus inhibiting any further influence of the decay compartment on multi. It

also triggers the first spike on output, which outputs a spike pair corresponding to:

& = At/ Tmax (4.10)

4.4 CoMPOSING NETWORKS For CoMPUTATION USING STICK 69

| input1

ar||input 1>0
w,

We /N
anllinputn <0 /oy apaee

OV—neuron %‘ We

Q ge-neuron S € wWyee

I'] inputn

Fig. 4.12 Linear combination. Amount of neurons is 6n + 40, where n is the
number of inputs. The overall network consists of accumulation parts for positive

and negative coefficients plus a synchroniser and subtractor sub network.

4.4.4.3 Multiplier

We can combine Natural Logarithm and Exponential networks to provide the product of

two inputs 1, 9 as follows:
T =x1x9 =exp(lnz; +Inxy) (4.11)

On arrival of the very last spike of the two inputs, both values x1 and x5 have been loaded
onto the membrane potentials of acc logl and acc log2 respectively. The sync neuron
triggers accumulation on exp. Its gate has to be deactivated after a time corresponding to

the sum of the natural logarithm of the two inputs in order to obtain their product.

| | router

OV—neuron@‘— We Oge-neuron € Wace gf-neuron Wexp

Fig. 4.13 Natural logarithm. The first spike to arrive will trigger accumulation
on neuron multi, which will be stopped by the second spike. The second input

spike will also immediately trigger the first spike at output.

70

CHAPTER 4. NEURAL COMPUTATION ON LOIHI

tmin

| | router multi- 0 banin

output
2 comp

OV—neuron <>_‘ We O gde-neuron %’ Wacce gf-neuron Wexp

Fig. 4.14 Exponential. The first spike to arrive will trigger nonlinear current
accumulation on neuron multi, which will be replaced by linear current integration
as soon as the second spike arrives. The second input spike also triggers the first

output spike.

] tmin/’c OV—neuron <>—‘ We

- o= w
| | router |Og1 O Oge neuron ~® EE
2 gf-neuron Wexp

| | router

Fig. 4.15 Multiplier. The two inputs are accumulated in logarithm networks
logl and log2. Their sum is then fed to an exponential unit exp, which outputs

the product of the original inputs.

We implement all the above networks, which we re-parameterize for the sake of our

implementation, on Loihi. Overall, the networks provided by STICK allow us to compute

arbitrary mathematical systems in an asynchronous manner.

4.4.5 ANN-SNN Network Conversion

To build a spike-based computer that is able to solve increasingly complex task, we also

investigate the conversion of trained neural network graphs onto Loihi using the STICK

framework. After all, neural network inference of converted models on neuromorphic

hardware bears the promise to decrease power cost of deep learning models. Most current
ANN to SNN conversion techniques are based on rate coding [240, 122, 241, 223, 242],

which is straightforward to implement, robust to firing errors and propagates a signal

4.4 CoMPOSING NETWORKS For CoMPUTATION USING STICK 71

A 21 = 0.75, 29 = 0.25
O¥newron () gerneuron " ot = 1.0 01,8 100
, s
input1 > t
T2
t
input2 > t
. ﬂn;xx * I}l)ax
readout I > t
rectifier t > t
- Vth
Bwacc Y1
outputi T > t
Vith
U2
output2 % > t

Fig. 4.16 Conversion of 2 ANN units to an SNN on Loihi, using V and g.-neurons.
Left: The weights in the ANN can be directly used for synaptic weight coefficients
in the SNN, in this example oy 9y. Inputs x4y oy are encoded using latency coding.
The readout neuron ensures that at the end of Thax time steps for one layer, all
input currents for a neuron are balanced by injecting a current that is the negative
sum of all inputs plus w,c.. The readout time converts the value that is encoded
in the membrane potential into a spike interval for the next layer. The rectifier
injects a large current with 3 > « to force a neuron to spike if it hasn’t yet at the
last time step of a layer. The neuron outputl computes §; = max(0, ayx1 + agz2),
whereas output2 computes o = max(0, agx; + ajx2). Right: Chronogram
of the same network, with example inputs x1 = 0.75,29 = 0.25 and weights
a1 = 1,a9 = —1. Whereas outputl outputs the expected 1 x 0.75 —1 x 0.25 = 0.5,
output2 with 1 x 0.25 — 1 x 0.75 = —0.5 is forced to spike early by injecting a
high current at time step 21,.x. This spike coincides with the readout of the
next layer (not shown here), where their effects will cancel out because the output
is 0. For this diagram T,y is assumed to be large so that transmission delays

Theu are negligible.

fairly quickly through the network. It can however exhibit issues with propagating the
signal to deeper layers, which scales unfavourably for larger networks. Rate coding can
therefore ’starve’ downstream parts of a network, while still employing millions of spikes
per inference [243, 122].

In contrast, conversion frameworks based on temporal coding have made significant
advances as of late, at much fewer spikes in comparison to rate coded SNNs [244, 245, 246].

Time To First Spike (TTFS) uses the least amount of spikes, leading to great energy

72 CHAPTER 4. NEURAL COMPUTATION ON LOIHI

efficiency and possibly achieving very low latency. It is however very sensitive to the order
of inputs and needs large refractory periods to ensure a single spike per unit. Most TTFS
methods also use dynamic neuron membrane thresholds to prevent early firing [130, 247].
Such mechanisms can be used in SNN simulators, but are not directly transferable to
neuromorphic hardware or are at least very costly to execute. Using STICK, we rely on
the structure of the network itself, using neurons and synapses only without the need for

dynamic threshold adaptation.

Figure 4.16 shows the network diagram and chronogram of an SNN that has been converted
from two ANN units. We can make direct use of the ANN’s weights to connect the units
in our SNN. Every layer computes over Tiax time steps, so that we can choose a desired
trade-off between accuracy and latency. In addition, every layer will have 2 additional
neurons readout and rectifier which trigger the readout for the next layer and ensure
that no negative membrane potentials are decoded. Because ANNs typically have very
large numbers of neurons, we choose an optimised approach for this task. Since layers
(including the inputs) in an ANN are synchronised, we employ the same principle in
our converted SNN blocks and align all input spikes in a layer along the time step of
the readout neuron for that layer. The readout neuron connects to every neuron in its
layer with a negative sum of all input weights for that neuron to balance the input
current, plus 1 to trigger the readout. Thus, for a minor cost in synapses (1-2 additional
per neuron in comparison to rate coding), we now have a reference spike for each layer
that triggers the readout at pre-defined times and converts the membrane potential that
reflects the stored value at that point again in to a spike interval: u(t) < x,t € nTax,
where n € N. The main difference to other TTFS methods is the balancing second spike
that acts as a counterweight, which provides us with better accuracy. The fact that we
have counterweights allows us to use the same membrane threshold for all accumulating
compartments and readout with a pre-defined input current. Conversion methods based
on similar temporal coding schemes [248, 249, 250] have achieved very good accuracy,

albeit not yet on neuromorphic hardware.

In summary this section presented the tools to cast arithmetic operations into spiking
neural networks on Loihi. This is the most crucial part of any computing system. In the
following results section, we will look at how SNNs that use temporal coding perform

when compared against rate-coded networks.

4.5 Experiments and Results

We begin by showing that the numerical precision of networks using precise timing on

Loihi is more than sufficient to compute complex dynamic systems and extensive converted

4.5 EXPERIMENTS AND RESULTS 73

graphs of neural networks. Being able to manipulate numbers is a key element for

computing machines, alongside branching operations.

4.5.1 Computing Dynamic Systems

The higher-level network composition for first order, second order and Lorenz system are
conceptually equal to the ones in [237], but is now based on our implemented networks
on Loihi. The basic building blocks are shown in section 4.4. We compare the output to
another system of spiking neurons with the same parameters on the same hardware using
population coding, using support of the Nengo framework [251] with Loihi as a backend.
Neural Engineering Framework (NEF) and by extension Nengo [252, 251] take the mean
firing frequency of a homogeneous population of neurons instead of relying on a single
rate-coded neuron for computation. Population coding can be considered more biologically
plausible due to the added stability [253] and the ability to quickly respond to changes in
the input information [254], but, while computationally powerful, relies on a large number

of neurons as well as spikes.

0.8 o T=2Xw=0
0.6 T=4, Xipr=0
'E- T=8,Xpr=10
l‘g 0.4 4]
c
o
> 0.2 4 .
e
0.0 I T T o o
T T T T T T
0 5 10 15 20 25
1.00 A
—_— T=2,Xpr=10
-
3 0754 T=4, Xpr =0
b=
§ 0.50 T=8, Xinr =0
S
= 0.25 4
o W, ST R
S 0.00 A i b P AL/ YR LYY
g X
OCJ 0.25 %‘I"ln‘l 1I|’l '
T T T T T T T T
0.0 2.5 5.0 1.5 10.0 12.5 15.0 17.5

time in ms

Fig. 4.17 Outputs of a first order system networks using precise timing and
population coding for different T € {2,4,8}. Both networks use 117 neurons.
Above: our network with Tpa = 25. Below: Nengo network across 30000 time

steps.

74 CHAPTER 4. NEURAL COMPUTATION ON LOIHI
4.5.1.1 First Order System

We demonstrate general purpose computation capabilities by calculating a first order

System

dX
r O X(1) = X (4.12)

We combine an encoder that outputs Xjpf, a linear combinator that computes dX/dt¢ and
an integrator that computes X from its derivative. The composite network comprises 117

neurons.

We evaluate the amount of time steps it takes for the system to reach a steady state and
the error for each output value. The network is capable to reliably compute different
function parameters 7, shown in Figure 4.17 on top. Using the same amount of neurons in
population coding to compute the same system, the signal is much noisier as shown in
Figure 4.17 at the bottom.

P
L .
0.6 4 P -
] % -
5 - s
£ 04 ‘ Tteeeeett
[=] []
& o s« 0=05,£=05
x 0.2 4
s Q=0.75, £=0.5
I]
Q=1,£=0.5
0.0 «° g
T T T T T T T
0 20 40 60 80 100 120
0.8 -
Y iy
2 L
= 0.6 ' Y
3 J ,rj..mmwmup
£ 044
2
o — = =
S 021 Q=0.5, £=0.5
g o ul 0=0.75, £=0.5
= 0.0 4) 0=1,£=05
T T T T T T T T
0.0 2.5 5.0 7.5 10.0 125 150 175

time in ms

Fig. 4.18 Outputs of second order system networks using precise timing and
population coding for different parameters €2 and £. Both networks use 185
neurons. Above: STICK network with Tyax = 28. Below: Nengo network

across 30000 time steps.

4.5 EXPERIMENTS AND RESULTS 75

4.5.1.2 Second Order System

In order to increase the complexity, we also compute a second order system

1 d®’X €dX
— 4> L X(t) = Xin 4.1
oar Taoa T X0 f (4.13)

The results of which can be seen in Figure 4.18. Again our network using precise timing is
able to compute a much cleaner output as a population-coded network, using the same
amount of 185 neurons. Our network does need more time steps for the error to stay
low. It takes 126 ms of spiking time for a Tjy.y of 28, whereas the Nengo network can be

simulated within 18 ms.

Fig. 4.19 Outputs in X, Y and Z for Lorenz system networks computed with

precise timing and population coding. Both networks use parameters p = 28,
o =10, g = 8/3. Left: our network uses 598 neurons and takes 20 ms to compute

using Tmax = 2'°. Right: Nengo network computed across 100000 time steps.

4.5.1.3 Lorenz System

So far we have only used linear buildings blocks such as linear combinations and subtraction
to differentiate and integrate over time. We also implement a Multiplier network (shown
in Figure 4.15), which combines nonlinear networks to provide the product of two inputs.
To show the fine granularity that our non-linear systems are capable of, we compute an
example of a system of ordinary differential equations that relies on a multiplicative factor,

known as the Lorenz attractor. It is defined as follows:

76 CHAPTER 4. NEURAL COMPUTATION ON LOIHI

% =o(Y(t) — X(t)), (4.14)
% = pX(t) = Y(t) - X()Z(t), (4.15)
W~ Xy () - p2(0) (4.16)

The system has chaotic solutions given certain parameters and we choose p = 28, ¢ = 10,
B =8/3. As can be seen in Figure 4.19, we can faithfully replicate the chaotic behaviour
using just 598 neurons. The Nengo network on Loihi exhibits strong stochastic behaviour
and has troubles with synaptic weight quantisation on Loihi, leading to a largely reduced
output precision even though it uses 3000 neurons. Using fewer neurons in this population

coding implementation fails to replicate the Lorenz system completely.

100 =@ e T e —————

——=- Nengo baseline

—— Energy use
Execution time

—— Dynamic system error

10-14

perfomance in comparison to Nengo baseline

T T T T T
24 25 26 27 28

tmax

Fig. 4.20 Performance comparison between proposed networks and Nengo im-
plementation for 3 dynamic systems. For lower Ty.x, precise timing is able
to compute faster and using less energy, with comparable error performance.

Number of neurons is always equal.

4.5.1.4 Dynamic System Performance

We benchmark the performance of dynamic systems shown in this section that use precise
timing and compare it to a baseline of a Nengo implementation using population coding
on Loihi. By varying Ti,.x, we can see the effects of speed-up versus average error of the
system, shown in Figure 4.20. Decreasing T ,x will calculate the same system faster, but
will do so with a more coarse-grained resolution on the time axis, which causes the error

to increase. Overall, networks using precise timing do have a region in parameter space

4.5 EXPERIMENTS AND RESULTS 77

where they can compute both faster and more precise, given the same amount of neurons.

Increasing computation precision takes both more time and energy.

4.5.2 Converting Pre-trained ANNs

We also benchmark the conversion of an ANN which had previously been trained on a GPU
to an SNN using the MNIST image classification task. We show that we can successfully
deploy converted models on constrained neuromorphic hardware and provide evidence
that STICK’s temporal encoding has several advantages in comparison to the dominant
rate-coding conversion scheme. The conversion framework as well as the pre-trained model

will be made publicly available* and example code is available in Appendix A.4.

4.5.2.1 Training and Converting the Graph

For MNIST, we choose to convert a convolutional architecture with several channels,
followed by max-pooling layers. The converted network is illustrated in Figure 4.22 and
is trained with a fixed learning rate of 0.001, the ADAM optimiser [255] and dropout
regularisation [132]. We also apply important loss penalties on all activations and weights to
prevent outliers, which narrows the parameter distributions. When converting the trained
weights for the SNN, previous work [240, 122, 242] has demonstrated the importance of
data-based weight normalisation, when jointly scaling the weight and bias parameters in
each layer. In heavily-tailed parameter distributions, we can focus on a given percentage
of the distribution mass to help increase the dynamic range of weights we can map onto
Loihi. For our conversion, we choose the 99.9'" percentile of activations as a target for our

scaling process. Biases are encoded using delays, as exemplified in Figure 4.4.

With the help of our ANN-SNN conversion framework, we can recreate convolutional,
fully-connected and max-pooling layers. Convolutional as well as fully connected layers
are comprised of one g.-neuron for each unit in the ANN plus one V' encoder neuron that
provides the biases for every output channel. For convolutional layers, we implemented the
possibility for different kernel sizes, strides, padding and groups. Max-pooling can be easily

achieved by connecting groups of neurons from the previous layer using V-neurons.

4.5.2.2 Classification Accuracy

In Table 4.1 we list literature results and our results that have been implemented and
benchmarked on spiking hardware, to allow for a fairer comparison. We achieve near
state-of-the-art classification accuracy at a cost of one spike per neuron. Figure 4.21 shows

the trade-off between more accurate versus faster computation, which is controlled using

*https://github.com/biphasic/Quartz

https://github.com/biphasic/Quartz

78 CHAPTER 4. NEURAL COMPUTATION ON LOIHI

10°
@ TIFS conversion MMIST (ours)
@ Rate conversion MNIST (Rueckauer et al., 2021)
=
5
o 10}
=
=]
]
o
A
%]
=
[w]
100 -
L] L

15 20 25 L 35 40 45
EDP [uls]

Fig. 4.21 Classification error plotted over Energy Delay Product (EDP) for

MNIST in comparison to Rueckauer et al. [2412] measured on the same platform.

Table 4.1: Comparison of accuracy and performance to other SNNs for a classification
task on MNIST. Sorted after publication date.

Method SNN # spikes # neurons spiking
error (%] hardware

Rate [256] 1.3 - 1306 Simulated 28 nm

TTFS [257] 3.02 135 1394 FPGA

Rate [258] 10 - 316 Simulated 65 nm

Rate [259) 1.4 130k 2330 10nm FinFET

TTFS [260] 3.1 162 1000 Simulated 0.35 pm

Rate [261] 1.3 - 8266 Loihi

Rate [242] 0.79 - Ak Loihi
TTFS (ours) 0.9 5422 5422 Loihi

the Thax parameter in our network. While our trained ANN exhibited a classification
accuracy error of 0.73%, we achieve a range of errors in our SNN depending on the latency
from 38.79% to 0.79%. We observe a sweet spot of 0.9% classification accuracy error with
a delay of 6.3 ms when using Tuax = 2%. For this parameter setting, the first spike in the

last layer is received after 67 time steps on average, whereas the full presentation takes 90
time steps.

4.5 EXPERIMENTS AND RESULTS 79

Table 4.2: Breakdown of static and dynamic power consumption per MNIST classification
inference for neuromorphic cores and Lakemont x86 CPUs as well as latency on Loihi.

Setting Thax = 2% results in 0.9% classification error for our converted network.

Power consumption [mW] x86 Neuron Total

Static 0.14 8.7 8.84
Dynamic 234 84 31.8
Total 23.54 17.1 40.64
Latency [ms] 6.3
Time steps per inference 90
Energy per inference [pJ] 256.7
EDP [pJs] 1.62
® ge-neuron :
® V-neuron ®
°
S
Bk PR
ooeo ° °
input 28x28 conv 6x24x24 pool 6x12x12 conv 12x8x8 pool 12x4x4 fc 120 fc 10

Fig. 4.22 Converted spiking neural network architecture with convolutional
(conv), max-pooling (pool) and fully connected (fc) layers based on V and g.
STICK neurons. The input is encoded using latency coding.

4.5.2.3 Power Measurements

NxSDK is a library to configure networks on Loihi and it provides tools that break
down power draw for workloads into dynamic and static components. This is done for
neuromorphic cores, which store neuron states and emit spikes, and the x86 Lakemont
CPUs which are responsible for executing user scripts. Static power consumption is
independent of the workload and depends to a great extent on the number of active
components and the manufacturing process. As such it is not relevant for comparing
algorithm performance, because we typically want to benchmark workloads. Dynamic
energy is consumed by switching transistors to update neuron states and route spikes. It
does not depend on the time it takes to compute one algorithmic time step. A complete
table that breaks down static and dynamic power consumption across neuromorphic
cores and Lakemont CPUs is provided in Table 4.2. Our converted SNN model that

uses Tmax = 2% time steps per layer occupies 18 of the 128 neuromorphic cores on one

80 CHAPTER 4. NEURAL COMPUTATION ON LOIHI

chip and consumes 256.7 1nJ of energy per inference sample for both neuromorphic cores
and Lakemont CPUs, of which 200.34 nJ is dynamic energy. A preferred metric when
benchmarking neuromorphic algorithm performance on hardware is the product of energy
consumption and latency, the Energy Delay Product (EDP) [262]. For our experiment it
amounts to 1.62 nJs. All measurements were obtained using NxSDK 0.9.8 on a Nahuku
board with 32 chips. For comparison, the best-in-class rate-coded model on Loihi has an
EDP of 4.38 nJs at a classification error of 0.79 %, and a GPU that computes using single
batches achieves an EDP of 222 pJs for an error of 0.73 % [242].

4.6 Discussion

In this paper we show that temporal coding can have advantages over rate-coding in
terms of power consumption and numerical accuracy when performing computations
using artificial neurons on neuromorphic hardware. Nowadays the search for alternative
mechanisms of computing becomes increasingly viable, as von Neumann computing is
encountering physical limits. Apart from quantum computing, neuromorphic computing
is one such alternative avenue. The dominant rate-coding scheme often means employing
a large number of neurons and spikes, which can scale unfavourably for bigger networks.
The Spike Time Computation Kernel [237] framework provides us with an alternative
based on temporal coding. By means of concrete examples, we compare the performance
of temporal versus rate encoding in terms of power, latency and numerical accuracy. The

digital architecture of Loihi allows us to compute fully deterministic results.

For a set of general purpose dynamical system tasks that include nonlinear dynamics,
we show that temporal coding can compute much more accurately in comparison to
population coding, using an equal amount of neurons. NEF has been designed with
biological plausibility in mind, so the results are noisy. The accuracy of the approximation
depends not only on the neural properties but also on the functions being computed [263].
An increase in population size of neurons in Nengo normally leads to better and less
noisier results using a normal computer as a backend, but the quantisation of weights
and time on Loihi seems to pose a problem for that framework, which normally relies
on fine-grained neuron tuning curves available on conventional hardware. Increasing the
time step resolution in Nengo as suggested in [264] did not have a positive effect on the
network’s performance but only lead to longer execution times in our experiments. STICK
does not rely as much on synaptic weight resolution and can therefore output less noisy
results on this digital neuromorphic hardware, even if that means that the output is much

coarser over time.

Not only do we evaluate static blocks that can be combined to compute more complex

4.6 DISCUSSION 81

systems, we also look at converting graphs of learned neural networks for efficient inference
on Loihi. Again, nowadays rate coding is the dominant conversion technique from ANNs
to SNNs. We show that SNNs that use temporal coding have a number of advantages or

are at least on par with rate coded networks:

e In order to propagate spikes to the deeper layers, neurons do not need to undergo a

strong transient response resulting in uneven firing rates across time.

e Value signals that are passed from layer to layer do not deteriorate or starve in
deeper layers since all values are encoded using the same number of spikes using

TTFS encoding. Only the timing changes.
e Naturally suitable for max-pooling.
e Number of spikes is drastically reduced and not dependent on the number of layers.
o Equal capabilities to use bias conversion or batch normalisation folding.

e The input signal propagates through the network like a wave and each layer’s
activities are decoupled from each other. That means that the input signal does not

have to be presented for an extended time to arrive in later layers.

o Ability to represent negative values when spikes of an interval originate from different
neuron sources and can therefore encode a negative interval. This typically helps

with the last layer of a network that outputs logits.
e No soft reset of membrane spike threshold needed to achieve good results.

Rate-coded converted networks present a large number of input spikes for extended
duration at the first layer, which causes a strong transient response in early layers to
propagate the signal through the network, but might still not be enough to reach deep
layers because neurons that output low values spike less frequently. Layers in a converted
SNN using our method sequentially process the input, following the functional principle
of an ANN. The spiking activity in different layers can thus be decoupled from that of
another layer once the spikes have been received or transmitted. That allows us to feed
new input at the beginning of the network while later layers are still computing a previous
input, considerably increasing throughput. We achieve a form of temporal batching which
is independent of network depth. A further consequence of the decoupled layers is that
we can choose different time constants for each layer. Since errors in early layers that
necessarily occur because of quantisation will accumulate for downstream layers, we could
choose a larger Tiax in the first layer and gradually reduce it in deeper layers. We are
on par with other conversion methods when it comes to the number of neurons used for

the conversion, apart from 2 support neurons per layer. These support neurons readout

82 CHAPTER 4. NEURAL COMPUTATION ON LOIHI

and rectifier are responsible for an additional amount of synapses in the network, as they
connect to every neuron. This however suits Loihi’s architecture, which is designed to

have many more synapses than neurons.

Massa et al. [261] and Rueckauer et al. [242] allow for the most direct comparison for image
classification performance on the same hardware. Whereas Massa et al. only provide
classification results, Rueckauer et al. provide power benchmarks for static and dynamic
power combined without breaking down the individual components. Our EDP when
using the same metrics is a factor of 2-3 lower than the best highly optimised rate-coded
network, which we assume is due to the lower amount of spikes used. We provide a detailed
breakdown of power consumption into static and dynamic components, in the hope that

future work will be able to compare in greater detail.

One of the limitations of our architecture is the need to encode zeros. Since we compute
using intervals and counterweights, a zero has to be represented by two spikes from input
and readout neurons arriving at the same time so that their weights cancel each other out.
A rate-coded architecture can omit to send spikes when the value is zero. The sparsity of
frame-based datasets and therefore the opportunity to exploit this circumstance is highly
variable, with MNIST containing 80.7% zeros, whereas CIFAR10 only has 0.25% zeros. In
either case, even for a dataset such as MNIST, we still use orders of magnitudes fewer
spikes than rate-coded techniques. Another limitation is the robustness to external noise
injected into the network. A few spikes that are dropped or inserted might jeopardise the

whole network execution.

In terms of possible further improvements, we can think of using g neurons for logarithmic
activation functions in a converted network, which has been shown to increase classification
accuracy [265]. Such computations are normally very costly on conventional hardware,
but could potentially be cheaper on Loihi. Furthermore we could imagine exploring the
combination of temporal and rate coding approaches in SNNs using a Time Difference
Encoder [266] that translates a spike time interval into a spike rate, to try to combine
the best of both worlds. Additional SNN blocks for recurrent or skip connections could
be envisioned. The asynchronous nature of neuromorphic hardware could hereby help to
reduce latency and improve accuracy when considering other rollout schemes than classical

sequential rollout [267].

Spiking neural networks are an interesting avenue to explore for scientific computing but
have until now scaled unfavourably when using rate-coding schemes [268, 269]. The ability
to perform elementary computations, together with branching networks previously shown
by STICK, paves the way for a frugal general-purpose computing machine. Together with
other works based on STICK [270, 109], we hope that our implementation on neuromorphic

hardware aids the development of precise timing frameworks.

Chapter 5

Conclusion

This thesis explores the components of a neuromorphic system and how they can help
current technology to compute more efficiently. When we compare such a system to
currently dominant technology and deep learning, we can reconstruct a similar trajectory
of its success story. It was only the combination of algorithms which had existed since
the 70s, large amounts of data available via the internet and the right hardware that
enabled its success. Hooker [271] introduced the idea of a hardware lottery, claiming that
a research idea wins because it is suited to the available software and hardware at that
time, and not because the idea is superior to alternative research directions. When GPUs
were widely available as highly parallel graphics processors, the research community drilled
down a certain path of algorithm exploration because it worked well [272]. And indeed,
groups have shown impressive results in various fields that use deep learning ranging from
computer vision over natural language processing to speech recognition, but progress across
application areas is strongly reliant on increases in computing power. Extrapolating forward
this reliance reveals that progress along current lines is rapidly becoming economically,
technically, and environmentally unsustainable which is detrimental to the deployment on
battery-powered devices [273, 169]. It is these factors that drive the exploration of novel
sensors, computational principles, and hardware. Neuromorphic engineering offers such
alternatives, which have yet to prove successful. In order for neuromorphic systems to
have a clear advantage over currently optimised systems, we argue that a full end-to-end
pipeline is necessary to guarantee computation at significantly lower power. This pipeline
consists of an event-based sensor and its output, which is in turn processed using an

asynchronous algorithm on spiking hardware.

In chapter 2 we showed how an event-by-event algorithm can detect and track faces using
less power than gold standard frame-based alternatives. The event camera provides us
with a fine-grained temporal dimension that we can make use of in our features, which
works well when detecting a spatio-temporal event such as an eye blink. Our work opens
up the route for always-on detection capabilities on power-constrained systems such as
robots or mobile devices that need to be able to detect the presence of a human face.
The event-by-event driven nature allows the algorithm to have minimal latency when it

comes to tracking the user’s head, but in practice, this is often not needed. Much like

83

84 CHAPTER 5. CONCLUSION

we down-sampled the signal received from the event camera in chapter 3, we could apply
similar methods of spatio-temporal filtering in this case to record less data. This would
allow us to reduce power consumption even further, which is arguably the main drawback
of current conventional camera systems. We could extend our face detection algorithm
to not only tell where and when a user blinks, but also to track their gaze. An event
sensor with adequate spatio-temporal resolution would be able to track fine-grained eye
movement to follow where a user is looking [274], potentially allowing the control of a

device by otherwise physically handicapped people.

Our features were handcrafted, even though machine learning teaches us that we should let
the data speak for itself. This is in part because we had a limited amount of data at hand
for modern day standards to feed to our algorithm. Since there was no publicly available
dataset for event-based face tracking available, we recorded our own database that we
made available [1] in order to train and test our algorithm. Neuromorphic computing being
an emerging field, this is a fairly common issue, although the situation is improving and
increasingly large event-based vision datasets [275, 276] are available. Some works have
resorted to generating the output of event cameras by converting videos from conventional
cameras to events [277, 278] to be able to leverage already existing datasets or simulated
them from scratch [279] to dramatically increase the amount of data available. What’s
interesting in both the datasets we use in chapters 2 and 3 is that they are real-world
recordings of people [1] and gestures [2], contrary to several monitor recording datasets
executed with an event camera that provide spiking versions of images [280, 281]. Artificial
temporal correlation between events simply does not reflect real-world applications when
dealing with neuromorphic algorithms because it ignores time as a potentially important
feature and as such might be of limited value. To motivate further research activity
with event-based datasets, we made publicly available a python library to facilitate the

download of such datasets*. Part of its documentation is available in Appendix A.2.

We continued to use spatio-temporal features in chapter 3, where we connect event-
based gesture recognition and other computer vision tasks to mobile phones that embed
optimised hardware. We benchmark our algorithms on a database for mid-air hand
gestures, since gesture recognition is poised to play a major role for future touchless user
interfaces [282, 283, 284]. Currently such interfaces are not commonly seen on mobile
systems, as frame-based or even active sensing approaches such as radar [285] are very
costly to process. A passive sensor that is directly coupled to scene activity such as an
event camera can afford to stay on for extended periods, thus making interaction with
mobile technology accessible and intuitive. Our Android framework for mobile devices

makes it easy to parse events from a small embedded event camera and our prototype

*The library Tonic is available under https://github.com/neuromorphs/tonic

https://github.com/neuromorphs/tonic

85

device is able to execute different algorithms in real-time with low latency. Our event
camera uses a relatively low spatial resolution of 304 x 240 pixels, but the event cameras
are maturing fast, going from 128 x 128 pixels to full high definition resolution in a few
years time. Even though it is desirable to have the option, event-based computer vision
on mobile platforms might not need very high spatial resolution for every task, which is
costly to process even on asynchronous hardware. Instead, a sensor with the adequate
spatial and temporal resolution should be used that is suitable for the task at hand. In
the case of on-demand frame reconstruction, an event camera will need higher spatial than
temporal resolution, whereas in the case of gesture recognition, the reverse might be true.
We already see the number of specialised sensors in an embedded device proliferating and

event cameras could be a worthy addition to that.

From our setup it becomes immediately apparent that the integration of an external sensor
is not a straightforward feat on a mobile consumer device such as a phone. The fact that
the camera is connected via a USB cable results in higher power usage and bandwidth
issues that are not present to such an extent with integrated sensors. This stresses the
need for a tight integration between sensor and underlying processing hardware. The
embedding of an event camera into a device such as a phone or tablet is likely to happen
in the mid-term future, but faces hurdles since such devices are manufactured in vertically
integrated processes that make the addition of single components a complicated task.
Showing always-on visual detection or recognition pipelines on mobile devices that on
average uses a fraction of the power of a conventional system will speed up industry

adoption.

On our prototype device, we also made use of the Tensorflow Lite backend, which in turn
uses neural network accelerator hardware for efficient inference. The issue is, however,
that when we convert events into frame representations, we lose a lot of the advantages of
event cameras. As mentioned in the beginning of this conclusion, the hardware lottery
gave us GPUs to work with, but they are designed for a different kind of data. GPUs are
a great workhorse when it comes to parallelising compute-intense tasks, but they fail to
exploit high sparsity in signals. That is why sparse computation on GPUs is something
that the research community is actively looking into at the moment [286, 287]. NVIDIA
announced in 2020 that their latest generation of tensor cores would be able to transform
dense matrices into sparse matrices using a transformation called 4:2 sparsity, where the
cost of computation is reduced by half. This accelerates inference up to a factor of 2 for a
minor hit of accuracy [288], but such a feature requires supplementary hardware to check
for zeros in the data.

On neuromorphic hardware, the sparse input directly drives asynchronous transistor

switching activity, without the need for additional checks. The difference is essentially the

86 CHAPTER 5. CONCLUSION

lack of input in comparison to lots of zeros of input in the case of GPUs. Even though
GPUs and TensorFlow Lite are making amends to reduce the need to process unnecessary
zeros, neuromorphic computing tackles different application scenarios. Sparsity in signals
from an event-based sensor reaches levels of 99% depending on scene activity and is
therefore much higher than what a 4:2 sparsity could achieve to shrink. In the end
neuromorphic computing that can exploit the absence of new input information will have
a head start in certain applications for power-critical systems that track spurious events
at high speeds. This is where GPUs that apply sparsity checks to avoid computation in a

later step will not be able to compete.

SNNs are built to exploit sparsity. But it is not a straightforward task to train them using
hardware that was not built for that. Currently, supervised training algorithms based on
backpropagation show the best performance when it comes to detection or classification
tasks [124, 137, 126]. Backpropagation as currently used is not biologically plausible [289)]
and thus goes against the grain of neuromorphic computing, but it seems as if some of
the constraints that have been thought essential in backpropagation can be relaxed to
bring it in line with biology. One of the constraints that can be relaxed is known as the
wetght transport problem, which means that forward and backward passes need symmetric
weights. By using a fixed random matrix in the backward pass, it was shown that the
network is still able to learn well [290, 291]. Another constraint is that errors that are
passed backwards are signed and that rate-coded neurons would not easily be able to
represent a negative value [289]. Interestingly, we show in chapter 4 that by using a
reference timing spike, we can easily encode negative activations, even though it is not
clear how the reference timing would be triggered in the brain. Overall, some works have
focused on local approximations of a global error signals [114, 110], which is a promising

avenue forward to biologically plausible learning.

From a practical perspective, it is relevant for researchers and practitioners alike how easy it
is to train an SNN once data and potentially annotations are available. Currently, certainly
due to the relative novelty of the field, there is no default tool chain that one can turn to.
Deep learning has spawned and evolved over a multitude of open source frameworks and
neuromorphic computing will need a similar ecosystem to ease development, training and
exploration. Nengo [251] developed by Applied Brain Research comes closest to such an
open neuromorphic ecosystem at the moment, but still employs restrictive licensing that
prevents other companies from using their code. Furthermore its theoretical basis NEF
is based on population coding rather than precise timing, which can be costly in certain
cases as shown in Chapter 4. A crucial addition in neuromorphic training tools will be the
option to execute code on neuromorphic hardware and not just CPU or GPU backends.

Nengo does already support training and inference on different hardware backends.

87

We now turn to explore in more detail what neuromorphic hardware is capable of at
the moment. An essential feature is the ability to compute using time. That means
that asynchronous hardware such as TrueNorth [166] or Loihi [167] will compute using
algorithmic time steps, which might execute faster or slower when measured in wall clock
time depending on the workload. Computation using time has recently seen interesting
applications on Loihi such as large scale nearest neighbour search [174], dynamic program-
ming [292] or stochastic constraint optimisation [112]. Chapter 4 explores spiking neural
networks on Loihi using a temporal instead of the currently prevalent rate encoding scheme
and we show that using STICK [237] we can implement an efficient Turing complete
system. Computation and memory are combined in every neuron that integrate input

currents over time.

Spiking general purpose computation might one day be used as a resilient and fault-tolerant
way to compute reliably and using little power. Currently, there is little to no error
correction in place to detect faulty behaviour in conventional hardware systems. During
production, areas of faulty transistors might be re-routed or powered down completely to
retain a downgraded version of a chip that will still be able to sell, but after it has left the
fab, no further checks or modifications will be executed. In extremely harsh environments
such as in space or in radioactively contaminated areas this leads to systems having to
carry redundant computer systems in case parts of it are irreversibly damaged. SNNs
and neuromorphic hardware might exploit neuroplasticity mechanisms to realise efficient
fault-tolerant and reconfigurable systems [293, 294], where neuroplasticity refers to the
ability of the brain to adapt and reconfigure during lifetime operation. Additional support
neurons in the system, much like the glia cells in the brain, could detect if a synapse is
faulty and will increase probability of healthy synapses to transmit a spike in order to
keep up the firing rate of target neuron. This can happen while the system is running
and might offer the option for a degradation in system performance if parts are damaged

rather than catastrophic hardware failures [295].

Spiking computing might also form a part of heterogeneous high performance computing
due to its potential to implement large scale computations with a small power footprint [269].
Such a large scale system that computes with time will have its own areas of applications
where it outperforms conventional computing. One such example that is straightforward
to visualise is the search for the shortest path in a graph such as a road network [296].
Whereas conventional systems have to perform computation on every node and slowly
integrate over path lengths [297], a neuromorphic system can just send out a wave front
of spikes and automatically stop once a spike is received at the destination node. Such a

graph search spiking system scales sub-linearly, in contrast to conventional systems.

Apart from using spikes for general purpose computation, we also explored the conversion

88 CHAPTER 5. CONCLUSION

from feed-forward ANNs to SNNs using our temporal encoding scheme. We demonstrated
a functional advantage as well as lower power usage over rate-coded networks in that
respect. The comparison within the neuromorphic world (rate versus temporal coding)
is a clear win for temporal coding in the scenarios tested, and both methods can beat
EDP for inference on a GPU, for the specific case of a batch size of 1 [242]. Since GPUs
are designed for high throughput, a single batch burns more power on them than on a
neuromorphic chip for this task. As elucidated in Figure 1.11 however, neuromorphic
hardware cannot compete with the execution of feed-forward neural nets on GPUs for

higher batch sizes. This leads us to the following conclusions:

1. Use cases for neuromorphic chips to process static dense inputs such as images are
very limited. This makes sense when we consider that GPUs have essentially been

designed to display a sequence of static images at display frame rate.

2. Even though feed-forward network inference on neuromorphic hardware might not
be ideal, the situation with recurrent architectures looks more promising. This is
actually in favour of the biological model: our brain is a network of neurons with
feedback connections. RNNs use the notion of time for sequence learning, which
is quite costly to compute on GPUs but comes almost for free on neuromorphic

hardware.

3. When dealing with one input at a time, neuromorphic hardware can compete with
GPUs. This has interesting consequences for real-world applications. It is currently
very costly for a machine learning model to be continually updated on the fly given
an infrequent novel input over time. All this has to happen while at the same time
preventing the model to completely forget things it learned in the past, which is
called catastrophic forgetting. Continual learning is a field that seems promising to
explore on neuromorphic hardware, to incorporate newly learned information into
a model using little energy. This could become a critical differentiation feature in
a market of neuromorphic edge devices, where a model should ideally continue to
learn on demand once deployed with as little resources as possible. Some recent
work has shown promising results of continual model updates on Loihi inspired by
the olfactory circuit [298].

Overall, ANN-SNN conversion methods might be able to exploit some training tricks
that are currently only available to ANNs, but this will only be an intermediate step. As
neuromorphic hardware incorporates different learning capabilities and software training
tool chains mature, SNNs will be trained natively using a backend that suits the task at
hand. The sparing use of spikes in TTFS coding seems like a promising way forward for
problems that make use of time on neuromorphic hardware. But as mentioned earlier

regarding artificial time dimensions in synthetic event datasets, we have to be prudent not

89

to introduce time as a factor into computational problems that cannot make any use of
it.

Spiking neural networks have been inspired by their biological counterpart, so one might
ask the question at what point we will be able to connect the synthetic hardware to
the different substrate that is our bodies given that the similarity between artificial
and biological neurons will make interfacing easier [7]. Brain machine interfaces that
record from dense multi-electrode arrays on the cortex currently suffer from high power
consumption, increased heat dissipation, low channel count as well as an enormous amount
of raw data to put through. By pre-processing signals close to where they originate, less
energy has to be spent downstream to transmit information and tell different neurons
apart. Mixed-signal neuromorphic processing units promise low-power sensory-processing
and edge-distributed computation on hardware platforms, making use of the threshold
crossing sampling theorem. In Haessig et al. [3] we present a local computation primitive
of a spatio-temporal signal classifier that does on-sensor spike sorting in real-time. This
work represents a first step towards the design of a large-scale neuromorphic processing
system, and together with high-bandwidth systems that provide high channel count [299]

will bring us closer to brain machine interfaces.

So far we have seen that a tight integration of hardware and software is more important
than ever. This is an increasingly pressing topic for industry, for example when developing
a product for the mobile or IoT world today. Already a simple consumer product has
multiple different chips built in which take care of power delivery, battery life, storage
controllers, sensor electronics, signal processors and more. Today, small companies do not
have the financial power available that is needed to design their own chips. But a solution
with off-the-shelf hardware will often not be competitive anymore when it comes to power
efficiency. If companies need custom hardware, they are left with few choices. In most
cases, companies will have to make do with off-the-shelf chips that come as close as possible
to what they need. This could change however with the development of open-hardware
that would allow smaller players to crowdsource and license designs that are specific to
their needs. RISC-V is a computer architecture that was originally designed to support
research and education by providing an open standard [300]. Recently this architecture
has seen considerable traction and is poised to trigger an open-hardware revolution, much
like what GNU/Linux did to the software world. The democratisation in hardware design
follows similar reasoning in the sense that the way computer chips are designed has now
become ubiquitous and common knowledge. Chips will be able to be customised to specific
needs and therefore optimise power, space or cost. Due to the open design, they will also
be less susceptible to security flaws [218]. Companies have already started putting their

chip designs on GitHub [301]. As neuromorphic computing finds its niche in the vast

90 CHAPTER 5. CONCLUSION

computing sector, it too will be subject of interest to educators, tinkerers and hackers of
all sorts. Neuromorphic architectures based on RISC-V are already available [302] and

the space will hopefully continue to grow.

Much like we have seen the breakout of memory into separate chips or the emergence of
GPUs as dedicated hardware for high-throughput, parallel computation, we will see more
specialised hardware arriving on the scene. Steve Furber paints a picture of heterogeneity
in future processors, where specialised hardware accelerators will be coordinated by general-
purpose cores [303]. Neuromorphic technology has the potential to form a part of this
modern day computing, for tasks that use time to compute, that have sparse input signals,
need to be fault-tolerant or extremely low-power. Within the neuromorphic sector we
will see further proliferation into specialised variants of spiking hardware for inference,
ultra-low power memristive architectures and more general-purpose spiking hardware [304].
When it comes to the software stack on top, responsible for training and deployment, we
will hopefully see it converge to some common frameworks used by industry and research
labs alike. Mobile platforms such as Mars robots, drones, brain-machine interfaces or
satellites are just a few examples that can benefit from a highly specialised approach to
computing. Today’s handsets handle a wider range of workloads than ever before and as
we humans rely more and more on our technology, the technology also meets us halfway

and becomes a bit more like us. Such is the course of human-made inventions.

Appendix A

Authored Software Packages

A.1 Loris

This package was conceived because of the need for easy data parsing of files from
neuromorphic cameras®. There existed already various standards for cameras such as
AEDAT, or DAT but support to read files into Python was scarce and mainly based
on scripts that circulated within labs. These scripts were mostly split between C++ and
Matlab and a single point of entry to read multiple file types into Python was lacking.
Loris is an easy to install versioned package and available on PyPi. It can read and write
different file formats from neuromorphic cameras such as .aedat4, .dat, .es or .csv.
Loris automatically deducts sensor size, total number of events and event type, such as
DVS events or ATIS events that contain grey-level information too. A simple example of

how to parse a file can be seen in Listing 1.

import loris
my_file = loris.read_file("/path/to/my-file.dat")

events = my_file["events"]

for event in events:

print("ts:", event.t, "x:", event.x, "y:", event.y, "p:", event.p)

Listing 1: Python example code for Loris that shows how to read a file generated from a

neuromorphic camera, for example a .dat file and afterwards loops over all events.

The package combines simple to understand parsing logic in Python with a fast C++
backend that allows to read files extremely fast. The frontend Python code relies on a
loris extension module to read and write files in the Eventstream format. To support

reading from aedat version 4, Alexandre Marcireau added support for another Python

*The source code is available at https://github.com/neuromorphic-paris/loris

91

https://github.com/neuromorphic-paris/loris

92 APPENDIX A. AUTHORED SOFTWARE PACKAGES

package that is based on Rust and therefore similarly fast.

A.2 Tonic

Tonic provides publicly available spike-based datasets and data transformations based
on PyTorch. Tt is inspired by the PyTorch Vision package that provides image and
video datasets in a similar easy manner and has received multiple contributions from
the community. The goal is to provide researchers with an easy tool to work with
different datasets to benchmark their algorithms. The optional transformations provide
an additional way to filter, modify and batch the events before they are read. A simple
example to read events from the NMNIST dataset, denoise them and create a time surface
for each event can be executed with just a few lines, as shown in Listing 2 below. The

installation is straightforward as it is available on PyPi.

import tomnic

import tonic.transforms as T

transform = T.Compose([T.Denoise(time_£filter=10000),
T.ToTimesurface (surface_dimensions=(7,7),
< tau=5e3),])

testset = tonic.datasets.NMNIST(save_to='./data',
train=False,

transform=transform)

testloader = tonic.datasets.Dataloader(testset, shuffle=True)
for surfaces, target in iter(testloader):

print ("{} surfaces for target {}".format(len(surfaces), target))

Listing 2: Example code of loading data points of N-MNIST with a default batch size of 1
and applying two transformations to it. The first one drops all events that are temporally
and spatially isolated, therefore denoising the recording. The second transformation

creates time surfaces for each event.

TThe source code is available at https://github.com/neuromorphs/tonic

https://github.com/neuromorphs/tonic

A.2 ToNIC 93

Datasets

All datasets are subclasses of torch.utils.data.Dataset, that means that they have
getitem and _len_ methods implemented. Hence, they can all be passed to a torch
.utils.data.DatalLoader which can load multiple samples in parallel using workers

provided in torch.multiprocessing. For example:

dataset = tonic.datasets.NMNIST(save_to='./data', train=False)
dataloader = tonic.datasets.Dataloader(dataset, shuffle=True,

— num_workers=4)

All the datasets have almost similar API. They all have two common arguments: transform
and target_transform to transform the input and target respectively. Currently Tonic

provides support for the following datasets:
o DVS gestures [305]
« N-CALTECH 101 [280]
« N-CARS [92]
« N-MNIST [280]
o NavGesture-sit and NavGesture-walk [40]

« POKER DVS [306]

Transforms

Transforms are common event transformations. They can be chained together using
Compose. Additionally, there is the tonic.functional module. Functional transforms
give fine-grained control over the transformations. This is useful if you have to build
a more complex transformation pipeline. Tonic provides the following transformations,

where community contributions are marked with a symbol(7):

Functional transformations

Crop Crops the sensor size to a smaller sensor and removes events outsize of the target

sensor and maps.

Denoise Cycles through all events and drops it if there is no other event within a time

of time_filter and a spatial neighbourhood of 1.

DropEventst Drops events with a certain probability.

94 APPENDIX A. AUTHORED SOFTWARE PACKAGES

FlipLR Mirrors x coordinates of events and images (if present).
FlipPolarityt Changes polarities 1 to -1 and polarities [-1, 0] to 1.
FlipUD Mirrors y coordinates of events and images (if present).

RefractoryPeriod Cycles through all events and drops event if within refractory period

for that pixel.

SpatialJitter Blurs x and y coordinates of events. Integer or subpixel precision possi-
ble.

TimedJitter Blurs timestamps of events. Will clip negative timestamps by default.
TimeReversalt Will reverse the timestamps of events with a certain probability.
TimeSkewt Scale and/or offset all timestamps.

UniformNoise Inject noise events.

Event representations

ToAveragedTimesurfacet Creates Averaged Time Surfaces as in [92].
ToRatecodedFrame Bins events to frames of different time length.
ToSparseTensor Turn event array (N,E) into sparse Tensor (B,T,W H).

ToTimesurface Create Time surfaces for each event as in [85].

Target transforms
ToOneHotEncoding Transforms one or more targets into a one hot encoding scheme.

Repeat Copies target n times. Useful to transform sample labels into sequences.

A.3 Frog

An Android framework for
event-based vision

Fig. A.1 The Frog logo to the left and Tonic logo to the right.

A.3 FrROG 95

Frog is an Android framework packaged as app which lets you use an event-camera that
is connected via USB to the phonef. It is then possible to parse the events with custom
C++ code or use the Tarsier toolbox. To install the framework, it’s easiest to use Android
Studio, for superb support of both Java and C++ code and the Gradle build tool.

Frog was born in an effort to reconcile event cameras with mobile phones to showcase a
prototype interface. Until an event camera is eventually connected via a MIPI interface
directly to the motherboard of a mobile device, the USB connection serves as a plug and
play replacement. Frog takes care of managing the permissions and life cycle of when a
camera is connected and eventually disconnected. It will poll the camera for new event
packets, which will be displayed real time in a live preview. This is possible since the event
handling is done in C++, which allows for minimal lag. Apart from the live preview, the
Frog framework will also pass the events to some custom C++ code which can be inserted
by the user for algorithmic processing. We tested a gesture recognition algorithm based
on HOTS [85] and NavGestures [2], with a 93% recognition rate. Frog currently supports
the ATIS camera.

4180
ol

An Android framework for An Android framework for An Andfroid framework for

l‘lFrOg |‘|Fr09 |'|Fr09

Please connect an ATIS camera

RECORD GESTURE @ RECORD GESTURE @ RECORD GESTURE

Right

Fig. A.2 App screenshots from left to right: Camera disconnected, camera

starting, gesture being recognised.

#The source code is available at https://github.com/neuromorphic-paris/frog

https://github.com/neuromorphic-paris/frog

96 APPENDIX A. AUTHORED SOFTWARE PACKAGES

A.4 Quartz

Quartz is an ANN to SNN conversion framework to facilitate efficient inference on
neuromorphic hardwareS. Contrary to the majority of conversion frameworks currently
available that are based on rate coding, Quartz uses precise timing of spikes. A number is
encoded in the inter spike interval (ISI), which allows to drastically reduce the number of

spikes overall in comparison to rate coding. Quartz currently supports the following layer

types:
e Dense
o Convolutional 2D
o Maxpooling

With this setup, simple CNNs can be encoded efficiently. After training your network
with the help of a GPU, one selects the same architecture within Quartz and passes the
weights and biases. Quartz will take care of quantization. A simple example is shown in

Listing 3 below.

$The source code is available at https://github.com/biphasic/Quartz

https://github.com/biphasic/Quartz

A.4 QUARTZ 97

import quartz

from quartz import layers

t_max = 2%*8

input_dims = (1,28,28)
pool_kernel _size = [2,2]
batch_size = 100

load weights and biases of ANN model

loihi_model = quartz.Network(t_max=t_max, layers=[
layers.InputLayer(dims=input_dims),
layers.ConvPool2D(weights=weights[0], biases=biases[0],
— pool_kernel_size=pool_kernel_size),
layers.ConvPool2D(weights=weights[1], biases=biases[1],
< pool_kernel_size=pool_kernel_size),
layers.Conv2D(weights=weights[2], biases=biases[2]),
layers.Dense(weights=weights[3], biases=biases[3]),
layers.Dense(weights=weights[4], biases=biases[4]),

D

load inputs, for example an image

loihi_output = loihi_model (inputs)

Listing 3: Example code of how to convert an ANN model to an equivalent spiking model.
Simply by passing the input to the model together with the number of steps per image for

batch sizes larger than 1 will execute inference on Loihi and return the results.

Bibliography

1]

[9]

[10]

G. Lenz, S. H. Ieng, and R. B. Benosman, “Event-based face detection and tracking
using the dynamics of eye blinks,” Frontiers in Neuroscience, vol. 14, p. 587, 2020.
v, 19, 40, 42, 84

J.-M. Maro, G. Lenz, C. Reeves, and R. Benosman, “Event-based visual gesture
recognition with background suppression running on a smart-phone,” in 2019 14th
IEFEFE International Conference on Automatic Face & Gesture Recognition (FG 2019).
IEEE, 2019, pp. 1-1. v, 40, 84, 95

G. Haessig, D. G. Lesta, G. Lenz, R. Benosman, and P. Dudek, “A mixed-signal
spatio-temporal signal classifier for on-sensor spike sorting,” in 2020 IEEFE Inter-
national Symposium on Clircuits and Systems (ISCAS). 1EEE, 2020, pp. 1-5. v,
89

S. Bamford and J. Danaher, “Transfer of personality to a synthetic human ("mind
uploading’) and the social construction of identity,” Journal of Consciousness Studies,
vol. 24, no. 11-12, pp. 6-30, 2017. 1

W. M. Grill, S. E. Norman, R. V. Bellamkonda et al., “Implanted neural interfaces:
biochallenges and engineered solutions,” Annual review of biomedical engineering,
vol. 11, no. 1, pp. 1-24, 2009. 1

N. Lago and A. Cester, “Flexible and organic neural interfaces: A review,” Applied
Sciences, vol. 7, no. 12, p. 1292, 2017. 1

F. D. Broccard, S. Joshi, J. Wang, and G. Cauwenberghs, “Neuromorphic neural
interfaces: from neurophysiological inspiration to biohybrid coupling with nervous

systems,” Journal of neural engineering, vol. 14, no. 4, p. 041002, 2017. 1, 89

F. Corradi and G. Indiveri, “A neuromorphic event-based neural recording system
for smart brain-machine-interfaces,” IEEFE transactions on biomedical circuits and
systems, vol. 9, no. 5, pp. 699-709, 2015. 1

A. Clark, “Natural-born cyborgs?” in International Conference on Cognitive Tech-

nology. Springer, 2001, pp. 17-24. 1
W. Barfield, Cyber-humans: Our future with machines. Springer, 2015. 1

99

100

[11]

[12]

[14]

[15]

[16]

[17]

[20]

[21]

BIBLIOGRAPHY

R. Rosenberger, “An experiential account of phantom vibration syndrome,” Com-
puters in Human Behavior, vol. 52, pp. 124-131, 2015. 1

Ofcom, “Adults’ media use and attitudes report 2020,” accessed: 2020-06-30.
[Online]. Available: https://www.ofcom.org.uk/ data/assets/pdf file/0033/
196458 /adults-media-use-and-attitudes-2020-full-chart-pack.pdf 1

J. James, “Leapfrogging in mobile telephony: A measure for comparing country
performance,” Technological Forecasting and Social Change, vol. 76, no. 7, pp.
991-998, 2009. 1

M. W. Fong, “Technology leapfrogging for developing countries,” in Encyclopedia
of Information Science and Technology, Second Edition. 1GI Global, 2009, pp.
3707-3713. 1

D. Amodei and D. Hernandez, “Neuromorphic computing gets ready for
the (really) big time,” 2018, accessed: 2020-09-25. [Online]. Available:

https://openai.com/blog/ai-and-compute/ 2

E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy considerations for
deep learning in nlp,” arXiv preprint arXiv:1906.02243, 2019. 2

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakan-

tan, P. Shyam, G. Sastry, A. Askell et al., “Language models are few-shot learners,’
arXiv preprint arXiw:2005.14165, 2020. 2

Bloomberg, “Tesla’s newest promises break the laws of batteries,” 2017,
accessed: 2020-11-30. [Online]. Available: https://www.bloomberg.com/news/

articles/2017-11-24 /tesla-s-newest-promises-break-the-laws-of-batteries 3

O. Lopez-Fernandez, D. J. Kuss, L. Romo, Y. Morvan, L. Kern, P. Graziani,
A. Rousseau, H.-J. Rumpf, A. Bischof, A.-K. Géssler et al., “Self-reported dependence
on mobile phones in young adults: A european cross-cultural empirical survey,’
Journal of behavioral addictions, vol. 6, no. 2, pp. 168-177, 2017. 3

9

M. M. Waldrop, “The chips are down for moore’s law,” Nature News, vol. 530, no.
7589, p. 144, 2016. 3, 58

F.-L. Yang, D.-H. Lee, H.-Y. Chen, C.-Y. Chang, S.-D. Liu, C.-C. Huang, T.-X.
Chung, H.-W. Chen, C.-C. Huang, Y.-H. Liu et al., “5nm-gate nanowire finfet,” in
Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004. IEEE,
2004, pp. 196-197. 3

https://www.ofcom.org.uk/__data/assets/pdf_file/0033/196458/adults-media-use-and-attitudes-2020-full-chart-pack.pdf
https://www.ofcom.org.uk/__data/assets/pdf_file/0033/196458/adults-media-use-and-attitudes-2020-full-chart-pack.pdf
https://openai.com/blog/ai-and-compute/
https://www.bloomberg.com/news/articles/2017-11-24/tesla-s-newest-promises-break-the-laws-of-batteries
https://www.bloomberg.com/news/articles/2017-11-24/tesla-s-newest-promises-break-the-laws-of-batteries

BIBLIOGRAPHY 101

[22]

33]

[34]

Y .-C. Huang, M.-H. Chiang, S.-J. Wang, and J. G. Fossum, “Gaafet versus pragmatic
finfet at the 5nm si-based cmos technology node,” IEEE Journal of the Electron
Devices Society, vol. 5, no. 3, pp. 164-169, 2017. 3

M. Mahowald and R. Douglas, “A silicon neuron,” Nature, vol. 354, no. 6354, pp.
515-518, 1991. 3

G. Indiveri, B. Linares-Barranco, T. J. Hamilton, A. Van Schaik, R. Etienne-
Cummings, T. Delbruck, S.-C. Liu, P. Dudek, P. Héafliger, S. Renaud et al., “Neuro-

morphic silicon neuron circuits,” Frontiers in neuroscience, vol. 5, p. 73, 2011. 3,
18

D. Monroe, “Neuromorphic computing gets ready for the (really) big time,” 2014. 3

T. S. Perry, “Move over, moore’s law. make way for huang’s law [spectral lines)],”
IEEFE Spectrum, vol. 55, no. 5, pp. 7-7, 2018. 4

W. Maass, C. H. Papadimitriou, S. Vempala, and R. Legenstein, “Brain computation:

)

a computer science perspective,’
2019, pp. 184-199. 5

in Computing and Software Science. Springer,

M. A. Mahowald and T. Delbriick, “Cooperative stereo matching using static

and dynamic image features,”

Springer, 1989, pp. 213-238. 6

in Analog VLSI implementation of neural systems.

M. Mahowald, “The silicon retina,” in An Analog VLSI System for Stereoscopic
Vision. Springer, 1994, pp. 4-65. 7

G. Gallego, T. Delbruck, G. Orchard, C. Bartolozzi, B. Taba, A. Censi, S. Leuteneg-
ger, A. Davison, J. Conradt, K. Daniilidis et al., “Event-based vision: A survey,”
arXiv preprint arXiw:1904.08405, 2019. 7, 19

T. Delbruck, “Silicon retina with correlation-based, velocity-tuned pixels,” IEFEE
Transactions on neural networks, vol. 4, no. 3, pp. 529-541, 1993. 7

S. Kameda and T. Yagi, “A silicon retina calculating high-precision spatial and
temporal derivatives,” in IJCNN’01. International Joint Conference on Neural
Networks. Proceedings (Cat. No. 01CHS37222), vol. 1. IEEE, 2001, pp. 201-205. 7

P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128x 128 120 db 15us latency
asynchronous temporal contrast vision sensor,” IEFE journal of solid-state circuits,
vol. 43, no. 2, pp. 566-576, 2008. 7, 9, 10, 24, 40

G. Taverni, D. P. Moeys, C. Li, C. Cavaco, V. Motsnyi, D. S. S. Bello, and T. Del-

bruck, “Front and back illuminated dynamic and active pixel vision sensors compari-

102 BIBLIOGRAPHY

son,” IEEFE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 5,
pp. 677-681, 2018. 9

[35] C. Posch, D. Matolin, and R. Wohlgenannt, “A qvga 143 db dynamic range frame-
free pwm image sensor with lossless pixel-level video compression and time-domain
cds,” IEEE Journal of Solid-State Circuits, vol. 46, no. 1, pp. 259-275, 2010. 10, 24,
40, 41, 42

[36] C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck, “A 240x 180 130 db 3
us latency global shutter spatiotemporal vision sensor,” IEEE Journal of Solid-State
Circutts, vol. 49, no. 10, pp. 2333-2341, 2014. 10, 40

[37] B. Son, Y. Suh, S. Kim, H. Jung, J.-S. Kim, C. Shin, K. Park, K. Lee, J. Park, J. Woo
et al., “4.1 a 640x 480 dynamic vision sensor with a 9um pixel and 300meps address-
event representation,” in 2017 IEEFE International Solid-State Circuits Conference
(ISSCC). 1EEE, 2017, pp. 66-67. 10

[38] T. Finateu, A. Niwa, D. Matolin, K. Tsuchimoto, A. Mascheroni, E. Reynaud,
P. Mostafalu, F. Brady, L. Chotard, F. LeGoff et al., “5.10 a 1280x 720 back-
illuminated stacked temporal contrast event-based vision sensor with 4.86 um
pixels, 1.066 geps readout, programmable event-rate controller and compressive data-
formatting pipeline,” in 2020 IEEE International Solid-State Circuits Conference-
(1SSCC). 1EEE, 2020, pp. 112-114. 10

[39] J. Conradt, “On-board real-time optic-flow for miniature event-based vision sensors,”
in 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO).
IEEE, 2015, pp. 1858-1863. 10, 42

[40] J.-M. Maro, S.-H. Ieng, and R. Benosman, “Event-based gesture recognition with
dynamic background suppression using smartphone computational capabilities,”
Frontiers in Neuroscience, vol. 14, p. 275, 2020. 10, 40, 49, 50, 51, 52, 53, 93

[41] T. Delbruck, “The slow but steady rise of the event camera,”
2020, accessed: 2020-09-30. [Online|. Available: https://www.eetimes.com/

the-slow-but-steady-rise-of-the-event-camera/ 10

[42] G. Johansson, “Visual motion perception,” Scientific American, vol. 232, no. 6, pp.
76-89, 1975. 10

[43] ——, “Visual perception of biological motion and a model for its analysis,” Perception
& psychophysics, vol. 14, no. 2, pp. 201-211, 1973. 10

[44] T. F. Shipley, “The effect of object and event orientation on perception of biological
motion,” Psychological science, vol. 14, no. 4, pp. 377-380, 2003. 11

https://www.eetimes.com/the-slow-but-steady-rise-of-the-event-camera/
https://www.eetimes.com/the-slow-but-steady-rise-of-the-event-camera/

BIBLIOGRAPHY 103

[45]

[48]

[49]

[50]

[54]

[56]

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding,” arXiv preprint
arXw:1510.00149, 2015. 11

S. Changpinyo, M. Sandler, and A. Zhmoginov, “The power of sparsity in convolu-
tional neural networks,” arXiv preprint arXiv:1702.06257, 2017. 11

D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quantization of deep con-

7

volutional networks,” in International conference on machine learning, 2016, pp.

2849-2858. 11

B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and
D. Kalenichenko, “Quantization and training of neural networks for efficient integer-
arithmetic-only inference,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 2704-2713. 11, 40

F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” arXiv preprint
arXiw:1605.04711, 2016. 11

S. K. Esser, J. L. McKinstry, D. Bablani, R. Appuswamy, and D. S. Modha, “Learned
step size quantization,” arXiv preprint arXiv:1902.08153, 2019. 11

G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,”
arXiv preprint arXiv:1508.02551, 2015. 11, 40

J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse, trainable
neural networks,” arXiv preprint arXiv:1803.03635, 2018. 11

M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet
classification using binary convolutional neural networks,” in European conference

on computer vision. Springer, 2016, pp. 525-542. 11

M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training deep neural
networks with binary weights during propagations,” in Advances in neural informa-

tion processing systems, 2015, pp. 3123-3131. 11

F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,
“Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model
size,” arXiv preprint arXiv:1602.07360, 2016. 11

A. Gholami, K. Kwon, B. Wu, Z. Tai, X. Yue, P. Jin, S. Zhao, and K. Keutzer,
“Squeezenext: Hardware-aware neural network design,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, 2018, pp.
1638-1647. 11

104

[57]

[61]

[63]

[66]

[67]

BIBLIOGRAPHY

X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely efficient convolu-
tional neural network for mobile devices,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2018, pp. 6848-6856. 11

L. Sifre and S. Mallat, “Rigid-motion scattering for image classification,” Ph. D.
thestis, 2014. 11

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for

mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017. 11

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2:
Inverted residuals and linear bottlenecks,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2018, pp. 4510-4520. 11

A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu,
R. Pang, V. Vasudevan et al., “Searching for mobilenetv3,” in Proceedings of the
IEEE International Conference on Computer Vision, 2019, pp. 1314-1324. 11

G. Chen, L. Hong, J. Dong, P. Liu, J. Conradt, and A. Knoll, “Eddd: Event-based
drowsiness driving detection through facial motion analysis with neuromorphic vision
sensor,” IEEE Sensors Journal, vol. 20, no. 11, pp. 6170-6181, 2020. 12

J.-Y. Won, H. Ryu, T. Delbruck, J. H. Lee, and J. Hu, “Proximity sensing based
on a dynamic vision sensor for mobile devices,” IEEE Transactions on industrial
electronics, vol. 62, no. 1, pp. 536-544, 2014. 12

V. Vasco, A. Glover, E. Mueggler, D. Scaramuzza, L. Natale, and C. Bartolozzi,
“Independent motion detection with event-driven cameras,” in 2017 18th International
Conference on Advanced Robotics (ICAR). IEEE, 2017, pp. 530-536. 12

N. Waniek, J. Biedermann, and J. Conradt, “Cooperative slam on small mobile
robots,” in 2015 IEEE International Conference on Robotics and Biomimetics
(ROBIO). IEEE, 2015, pp. 1810-1815. 12

A. R. Vidal, H. Rebecq, T. Horstschaefer, and D. Scaramuzza, “Ultimate slam?
combining events, images, and imu for robust visual slam in hdr and high-speed
scenarios,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 994-1001, 2018.
12, 40

J. Delmerico, T. Cieslewski, H. Rebecq, M. Faessler, and D. Scaramuzza, “Are we
ready for autonomous drone racing? the uzh-fpv drone racing dataset,” in 2019
International Conference on Robotics and Automation (ICRA). IEEE, 2019, pp.
6713-6719. 12

BIBLIOGRAPHY 105

[68]

[71]

[73]

[74]

[77]

78]

B. J. Pijnacker Hordijk, K. Y. Scheper, and G. C. De Croon, “Vertical landing for
micro air vehicles using event-based optical flow,” Journal of Field Robotics, vol. 35,
no. 1, pp. 69-90, 2018. 12

D. P. Moeys, F. Corradi, E. Kerr, P. Vance, G. Das, D. Neil, D. Kerr, and T. Del-
briick, “Steering a predator robot using a mixed frame/event-driven convolutional
neural network,” in 2016 Second International Conference on FEvent-based Control,
Communication, and Signal Processing (EBCCSP). 1EEE, 2016, pp. 1-8. 12

A. Z. Zhu, L. Yuan, K. Chaney, and K. Daniilidis, “Ev-flownet: Self-supervised
optical flow estimation for event-based cameras,” arXiv preprint arXiv:1802.06898,
2018. 12

——, “Unsupervised event-based learning of optical flow, depth, and egomotion,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 989-997. 12

D. Gehrig, M. Riiegg, M. Gehrig, J. H. Carrio, and D. Scaramuzza, “Combining
events and frames using recurrent asynchronous multimodal networks for monocular
depth prediction,” arXiv preprint arXiv:2102.09320, 2021. 12

H. Kim, S. Leutenegger, and A. J. Davison, “Real-time 3d reconstruction and 6-
dof tracking with an event camera,” in Furopean Conference on Computer Vision.
Springer, 2016, pp. 349-364. 12

H. Rebecq, R. Ranftl, V. Koltun, and D. Scaramuzza, “Events-to-video: Bringing
modern computer vision to event cameras,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 3857-3866. 12

——, “High speed and high dynamic range video with an event camera,” I[EFFFE

Transactions on Pattern Analysis and Machine Intelligence, 2019. 12

H. Kim, A. Handa, R. Benosman, S. Ieng, and A. Davison, “Simultaneous mosaicing
and tracking with an event camera,” in BMVC 201/4-Proceedings of the British
Machine Vision Conference 2014, 2014. 12

L. Pan, C. Scheerlinck, X. Yu, R. Hartley, M. Liu, and Y. Dai, “Bringing a blurry
frame alive at high frame-rate with an event camera,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2019, pp. 6820-6829. 12,
40

S. Afshar, A. P. Nicholson, A. van Schaik, and G. Cohen, “Event-based object detec-
tion and tracking for space situational awareness,” arXiv preprint arXiv:1911.08730,
2019. 12

106

[79]

[80]

[81]

[82]

[85]

[36]

[87]

BIBLIOGRAPHY

A. Mitrokhin, Z. Hua, C. Fermuller, and Y. Aloimonos, “Learning visual motion
segmentation using event surfaces,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 14414-14423. 12

E. Perot, P. de Tournemire, D. Nitti, J. Masci, and A. Sironi, “Learning to detect
objects with a 1 megapixel event camera,” arXiv preprint arXiv:2009.13436, 2020.
12

A. Aimar, H. Mostafa, E. Calabrese, A. Rios-Navarro, R. Tapiador-Morales, 1.-A.
Lungu, M. B. Milde, F. Corradi, A. Linares-Barranco, S.-C. Liu et al., “Nullhop: A
flexible convolutional neural network accelerator based on sparse representations of

feature maps,” IEEFE transactions on neural networks and learning systems, vol. 30,
no. 3, pp. 644-656, 2018. 12

P. Spilger, E. Miiller, A. Emmel, A. Leibfried, C. Mauch, C. Pehle, J. Weis, O. Bre-
itwieser, S. Billaudelle, S. Schmitt et al., “hxtorch: Pytorch for anns on brainscales-2,”
arXiv preprint arXiw:2006.13138, 2020. 12

M. R. Azghadi, C. Lammie, J. K. Eshraghian, M. Payvand, E. Donati, B. Linares-
Barranco, and G. Indiveri, “Hardware implementation of deep network accelerators
towards healthcare and biomedical applications,” arXiv preprint arXiv:2007.05657,
2020. 12

M. Parsa, J. P. Mitchell, C. D. Schuman, R. M. Patton, T. E. Potok, and K. Roy,
“Bayesian multi-objective hyperparameter optimization for accurate, fast, and efficient
neural network accelerator design,” Frontiers in Neuroscience, vol. 14, p. 667, 2020.
12

X. Lagorce, G. Orchard, F. Galluppi, B. E. Shi, and R. B. Benosman, “Hots: a
hierarchy of event-based time-surfaces for pattern recognition,” IFEFE transactions
on pattern analysis and machine intelligence, vol. 39, no. 7, pp. 1346-1359, 2016. 12,
13, 38, 42, 50, 51, 52, 94, 95

H. Liu, D. P. Moeys, G. Das, D. Neil, S.-C. Liu, and T. Delbriick, “Combined frame-
and event-based detection and tracking,” in 2016 IEEE International Symposium
on Clircuits and Systems (ISCAS). 1EEE, 2016, pp. 2511-2514. 12

D. Tedaldi, G. Gallego, E. Mueggler, and D. Scaramuzza, “Feature detection and
tracking with the dynamic and active-pixel vision sensor (davis),” in 2016 Sec-
ond International Conference on Event-based Control, Communication, and Signal
Processing (EBCCSP). 1EEE, 2016, pp. 1-7. 12

BIBLIOGRAPHY 107

[38]

[90]

[93]

[95]

[96]

[97]

C. Zamarreno-Ramos, A. Linares-Barranco, T. Serrano-Gotarredona, and B. Linares-
Barranco, “Multicasting mesh aer: A scalable assembly approach for reconfigurable
neuromorphic structured aer systems. application to convnets,” IEEFE transactions

on biomedical circuits and systems, vol. 7, no. 1, pp. 82-102, 2012. 12

M. Ambroise, T. Levi, Y. Bornat, and S. Saighi, “Biorealistic spiking neural network
on fpga,” in 2018 47th Annual Conference on Information Sciences and Systems
(CISS). 1EEE, 2013, pp. 1-6. 12

L. A. Camunas-Mesa, Y. L. Dominguez-Cordero, A. Linares-Barranco, T. Serrano-
Gotarredona, and B. Linares-Barranco, “A configurable event-driven convolutional
)

node with rate saturation mechanism for modular convnet systems implementation,’

Frontiers in neuroscience, vol. 12, p. 63, 2018. 12

R. Tapiador-Morales, J.-M. Maro, A. Jimenez-Fernandez, G. Jimenez-Moreno,
R. Benosman, and A. Linares-Barranco, “Event-based gesture recognition through a

hierarchy of time-surfaces for fpga,” Sensors, vol. 20, no. 12, p. 3404, 2020. 12

A. Sironi, M. Brambilla, N. Bourdis, X. Lagorce, and R. Benosman, “Hats: His-
tograms of averaged time surfaces for robust event-based object classification,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 1731-1740. 12, 13, 38, 42, 93, 94

R. Benosman, S.-H. Ieng, C. Clercq, C. Bartolozzi, and M. Srinivasan, “Asynchronous
frameless event-based optical flow,” Neural Networks, vol. 27, pp. 32-37, 2012. 12,
49

R. Benosman, C. Clercq, X. Lagorce, S.-H. Ieng, and C. Bartolozzi, “Event-based
visual flow,” IEEFE transactions on neural networks and learning systems, vol. 25,

no. 2, pp. 407-417, 2013. 12, 49

M. B. Milde, O. J. Bertrand, R. Benosmanz, M. Egelhaaf, and E. Chicca, “Bioinspired
event-driven collision avoidance algorithm based on optic flow,” in 2015 Interna-
tional Conference on Fvent-based Control, Communication, and Signal Processing

(EBCCSP). 1EEE, 2015, pp. 1-7. 12

H. Akolkar, S. H. Ieng, and R. Benosman, “Real-time high speed motion prediction
using fast aperture-robust event-driven visual flow,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2020. 12, 49, 50

X. Clady, S.-H. Ieng, and R. Benosman, “Asynchronous event-based corner detection
and matching,” Neural Networks, vol. 66, pp. 91-106, 2015. 12

108

98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

BIBLIOGRAPHY

E. Mueggler, C. Bartolozzi, and D. Scaramuzza, “Fast event-based corner detection.”
in British Machine Vision Conference (BMVC), no. CONF, 2017. 12

J. Manderscheid, A. Sironi, N. Bourdis, D. Migliore, and V. Lepetit, “Speed invariant
time surface for learning to detect corner points with event-based cameras,” in

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 10245-10254. 12

D. Reverter Valeiras, G. Orchard, S.-H. Ieng, and R. B. Benosman, “Neuromorphic

event-based 3d pose estimation,” Frontiers in neuroscience, vol. 9, p. 522, 2016. 12

X. Lagorce, C. Meyer, S.-H. Ieng, D. Filliat, and R. Benosman, “Asynchronous
event-based multikernel algorithm for high-speed visual features tracking,” IEFE
transactions on neural networks and learning systems, vol. 26, no. 8, pp. 1710-1720,
2014. 12, 30

S. Afshar, T. J. Hamilton, J. Tapson, A. van Schaik, and G. Cohen, “Investigation
of event-based surfaces for high-speed detection, unsupervised feature extraction,

and object recognition,” Frontiers in neuroscience, vol. 12, p. 1047, 2019. 12

X. Clady, J.-M. Maro, S. Barré, and R. B. Benosman, “A motion-based feature for

event-based pattern recognition,” Frontiers in neuroscience, vol. 10, p. 594, 2017. 13

W. Maass, “Networks of spiking neurons: the third generation of neural network
models,” Neural networks, vol. 10, no. 9, pp. 1659-1671, 1997. 13, 59

J. J. Hopfield, “Hopfield network,” Scholarpedia, vol. 2, no. 5, p. 1977, 2007. 14

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735-1780, 1997. 14

L. Deng, Y. Wu, X. Hu, L. Liang, Y. Ding, G. Li, G. Zhao, P. Li, and Y. Xie,
“Rethinking the performance comparison between snns and anns,” Neural Networks,
vol. 121, pp. 294-307, 2020. 14, 19

S. J. Verzi, F. Rothganger, O. D. Parekh, T.-T. Quach, N. E. Miner, C. M. Vineyard,
C. D. James, and J. B. Aimone, “Computing with spikes: The advantage of fine-
grained timing,” Neural computation, vol. 30, no. 10, pp. 2660-2690, 2018. 14,
58

J. V. Monaco, M. M. Vindiola, and R. Benosman, “Steam: Spike time encoded
addressable memory,” unpublished, 2018. 14, 82

BIBLIOGRAPHY 109

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

J. Kaiser, H. Mostafa, and E. Neftci, “Synaptic plasticity dynamics for deep contin-
uous local learning (decolle),” Frontiers in Neuroscience, vol. 14, p. 424, 2020. 14,
16, 86

G. A. Fonseca Guerra and S. B. Furber, “Using stochastic spiking neural networks
on spinnaker to solve constraint satisfaction problems,” Frontiers in neuroscience,
vol. 11, p. 714, 2017. 15

C. Yakopcic, N. Rahman, T. Atahary, T. M. Taha, and S. Douglass, “Solving
constraint satisfaction problems using the loihi spiking neuromorphic processor,”
in 2020 Design, Automation & Test in Europe Conference € Ezxhibition (DATE).

IEEE, 2020, pp. 1079-1084. 15, 87

B. Yin, F. Corradi, and S. M. Bohté, “Effective and efficient computation with
multiple-timescale spiking recurrent neural networks,” in International Conference
on Neuromorphic Systems 2020, 2020, pp. 1-8. 15

G. Bellec, F. Scherr, A. Subramoney, E. Hajek, D. Salaj, R. Legenstein, and
W. Maass, “A solution to the learning dilemma for recurrent networks of spiking

neurons,” bioRxiv, p. 738385, 2020. 15, 16, 86

D. Patel, H. Hazan, D. J. Saunders, H. T. Siegelmann, and R. Kozma, “Improved
robustness of reinforcement learning policies upon conversion to spiking neuronal
network platforms applied to atari breakout game,” Neural Networks, vol. 120, pp.
108-115, 2019. 15

H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double
g-learning,” arXiv preprint arXiv:1509.06461, 2015. 15

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mastering
the game of go with deep neural networks and tree search,” nature, vol. 529, no.
7587, pp. 484-489, 2016. 15

S. Sharmin, P. Panda, S. S. Sarwar, C. Lee, W. Ponghiran, and K. Roy, “A com-
prehensive analysis on adversarial robustness of spiking neural networks,” in 2019
International Joint Conference on Neural Networks (IJCNN). IEEE, 2019, pp. 1-8.
15

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need,” Advances in neural information
processing systems, vol. 30, pp. 5998-6008, 2017. 15

110

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

BIBLIOGRAPHY

K. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane, T. Sarlos,
P. Hawkins, J. Davis, A. Mohiuddin, L. Kaiser et al., “Rethinking attention with
performers,” arXiv preprint arXiv:2009.14794, 2020. 15

M. Pfeiffer and T. Pfeil, “Deep learning with spiking neurons: opportunities and

challenges,” Frontiers in neuroscience, vol. 12, p. 774, 2018. 15

B. Rueckauer, 1.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu, “Conversion of
continuous-valued deep networks to efficient event-driven networks for image classifi-
cation,” Frontiers in neuroscience, vol. 11, p. 682, 2017. 15, 58, 70, 71, 77

J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking neural networks

using backpropagation,” Frontiers in neuroscience, vol. 10, p. 508, 2016. 15

S. B. Shrestha and G. Orchard, “Slayer: Spike layer error reassignment in time,” in
Advances in Neural Information Processing Systems, 2018, pp. 1412-1421. 15, 16, 86

S. R. Kheradpisheh and T. Masquelier, “S4nn: temporal backpropagation for spiking
neural networks with one spike per neuron,” arXiv preprint arXiv:1910.09495, 2019.
15

T. C. Wunderlich and C. Pehle, “Eventprop: Backpropagation for exact gradients in
spiking neural networks,” arXiv preprint arXiv:2009.08378, 2020. 15, 16, 86

G.-q. Bi and M.-m. Poo, “Synaptic modification by correlated activity: Hebb’s
postulate revisited,” Annual review of neuroscience, vol. 24, no. 1, pp. 139-166, 2001.
15

P. J. Sjostrom, E. A. Rancz, A. Roth, and M. Hausser, “Dendritic excitability and
synaptic plasticity,” Phystological reviews, vol. 88, no. 2, pp. 769-840, 2008. 15

H. Mostafa, V. Ramesh, and G. Cauwenberghs, “Deep supervised learning using

local errors,” Frontiers in neuroscience, vol. 12, p. 608, 2018. 15

B. Rueckauer and S.-C. Liu, “Conversion of analog to spiking neural networks using
sparse temporal coding,” in 2018 IEEE International Symposium on Circuits and
Systems (ISCAS). 1EEE, 2018, pp. 1-5. 15, 72

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015. 15

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting,” The journal of
machine learning research, vol. 15, no. 1, pp. 1929-1958, 2014. 15, 77

BIBLIOGRAPHY 111

133

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, and W. Maass, “Long short-term
memory and learning-to-learn in networks of spiking neurons,” in Advances in Neural
Information Processing Systems, 2018, pp. 787-797. 16

S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy, A. Andreopou-
los, D. J. Berg, J. L. McKinstry, T. Melano, D. R. Barch et al., “Convolutional
networks for fast, energy-efficient neuromorphic computing,” Proceedings of the
national academy of sciences, vol. 113, no. 41, pp. 11441-11 446, 2016. 16

S. M. Bohte, “Error-backpropagation in networks of fractionally predictive spiking

)

neurons,” in International Conference on Artificial Neural Networks. Springer,

2011, pp. 60-68. 16

F. Zenke and S. Ganguli, “Superspike: Supervised learning in multilayer spiking

neural networks,” Neural computation, vol. 30, no. 6, pp. 1514-1541, 2018. 16

E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learning in spiking
neural networks,” IEEFE Signal Processing Magazine, vol. 36, pp. 61-63, 2019. 16, 86

P. J. Werbos, “Backpropagation through time: what it does and how to do it,”
Proceedings of the IEEFE, vol. 78, no. 10, pp. 1550-1560, 1990. 16

K. Roy, A. Jaiswal, and P. Panda, “Towards spike-based machine intelligence with
neuromorphic computing,” Nature, vol. 575, no. 7784, pp. 607-617, 2019. 16

T. Masquelier and S. J. Thorpe, “Unsupervised learning of visual features through

spike timing dependent plasticity,” PLoS Comput Biol, vol. 3, no. 2, p. e31, 2007. 16

S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe, and T. Masquelier, “Stdp-based
spiking deep convolutional neural networks for object recognition,” Neural Networks,
vol. 99, pp. 5667, 2018. 16

N. Frémaux and W. Gerstner, “Neuromodulated spike-timing-dependent plasticity,
and theory of three-factor learning rules,” Frontiers in neural circuits, vol. 9, p. 85,
2016. 16

W. Gerstner, M. Lehmann, V. Liakoni, D. Corneil, and J. Brea, “Eligibility traces and
plasticity on behavioral time scales: experimental support of neohebbian three-factor

learning rules,” Frontiers in neural circuits, vol. 12, p. 53, 2018. 16

“Apple Silicon (Arm) Macs,” accessed: 2020-07-30. [Online]. Available:

https://www.macrumors.com/guide/apple-silicon/ 17

“Hands on: Huawei p40 review,” accessed: 2020-07-30. [Online]. Available:

https://www.techradar.com/reviews/huawei-p40 17

https://www.macrumors.com/guide/apple-silicon/
https://www.techradar.com/reviews/huawei-p40

112

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

BIBLIOGRAPHY

A. Carroll, G. Heiser et al., “An analysis of power consumption in a smartphone.” in
USENIX annual technical conference, vol. 14. Boston, MA, 2010, pp. 21-21. 18

B. Barry, C. Brick, F. Connor, D. Donohoe, D. Moloney, R. Richmond, M. O’Riordan,
and V. Toma, “Always-on vision processing unit for mobile applications,” IFEFE
Micro, vol. 35, no. 2, pp. 5666, 2015. 18

D. Ma, J. Shen, Z. Gu, M. Zhang, X. Zhu, X. Xu, Q. Xu, Y. Shen, and G. Pan,
“Darwin: A neuromorphic hardware co-processor based on spiking neural networks,”
Journal of Systems Architecture, vol. 77, pp. 43-51, 2017. 18

N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter performance analysis of a
tensor processing unit,” in Proceedings of the 44th Annual International Symposium
on Computer Architecture, 2017, pp. 1-12. 18

N. Jouppi, C. Young, N. Patil, and D. Patterson, “Motivation for and evaluation of
the first tensor processing unit,” IEEE Micro, vol. 38, no. 3, pp. 10-19, 2018. 18

“Introducing the next generation of on-device vision models: Mobilenetv3
and mobilenetedgetpu,” 2019, accessed: 2020-07-30. [Online|. Available:

https: //ai.googleblog.com/2019/11 /introducing-next-generation-on-device.html 18

S. J. van Albada, A. G. Rowley, J. Senk, M. Hopkins, M. Schmidt, A. B. Stokes,
D. R. Lester, M. Diesmann, and S. B. Furber, “Performance comparison of the
digital neuromorphic hardware spinnaker and the neural network simulation software

nest for a full-scale cortical microcircuit model,” Frontiers in neuroscience, vol. 12,
p- 291, 2018. 18

R. Douglas, M. Mahowald, and C. Mead, “Neuromorphic analogue vlsi,” Annual
review of neuroscience, vol. 18, no. 1, pp. 255-281, 1995. 18

K. A. Boahen, “Point-to-point connectivity between neuromorphic chips using
address events,” IEEE Transactions on Circuits and Systems II: Analog and Digital
Signal Processing, vol. 47, no. 5, pp. 416-434, 2000. 18

R. Serrano-Gotarredona, M. Oster, P. Lichtsteiner, A. Linares-Barranco, R. Paz-
Vicente, F. Gomez-Rodriguez, L. Camunas-Mesa, R. Berner, M. Rivas-Pérez, T. Del-
bruck et al., “Caviar: A 45k neuron, 5m synapse, 12g connects/s aer hardware
sensory—processing—learning—actuating system for high-speed visual object recog-
nition and tracking,” IFEE Transactions on Neural networks, vol. 20, no. 9, pp.
1417-1438, 2009. 18

https://ai.googleblog.com/2019/11/introducing-next-generation-on-device.html

BIBLIOGRAPHY 113

[156]

[157]

[158]

[159)]

[160]

[161]

[162]

[163]

[164]

[165]

J. Schemmel, D. Briiderle, A. Griibl, M. Hock, K. Meier, and S. Millner, “A wafer-
scale neuromorphic hardware system for large-scale neural modeling,” in Proceedings
of 2010 IEEFE International Symposium on Circuits and Systems. TEEE, 2010, pp.
1947-1950. 18

N. Qiao, H. Mostafa, F. Corradi, M. Osswald, F. Stefanini, D. Sumislawska, and
G. Indiveri, “A reconfigurable on-line learning spiking neuromorphic processor
comprising 256 neurons and 128k synapses,” Frontiers in neuroscience, vol. 9, p.
141, 2015. 18

S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri, “A scalable multicore architecture
with heterogeneous memory structures for dynamic neuromorphic asynchronous
processors (dynaps),” IEEE transactions on biomedical circuits and systems, vol. 12,
no. 1, pp. 106-122, 2017. 18

B. V. Benjamin, P. Gao, E. McQuinn, S. Choudhary, A. R. Chandrasekaran, J.-M.
Bussat, R. Alvarez-Icaza, J. V. Arthur, P. A. Merolla, and K. Boahen, “Neurogrid: A
mixed-analog-digital multichip system for large-scale neural simulations,” Proceedings
of the IEEE, vol. 102, no. 5, pp. 699-716, 2014. 18

L. Chua, “Memristor-the missing circuit element,” IEEE Transactions on circuit
theory, vol. 18, no. 5, pp. 507-519, 1971. 19

A. Chanthbouala, V. Garcia, R. O. Cherifi, K. Bouzehouane, S. Fusil, X. Moya,
S. Xavier, H. Yamada, C. Deranlot, N. D. Mathur et al., “A ferroelectric memristor,”
Nature materials, vol. 11, no. 10, pp. 860-864, 2012. 19

S. Saighi, C. G. Mayr, T. Serrano-Gotarredona, H. Schmidt, G. Lecerf, J. Tomas,
J. Grollier, S. Boyn, A. F. Vincent, D. Querlioz et al., “Plasticity in memristive

devices for spiking neural networks,” Frontiers in neuroscience, vol. 9, p. 51, 2015.
19

S. Boyn, J. Grollier, G. Lecerf, B. Xu, N. Locatelli, S. Fusil, S. Girod, C. Carrétéro,
K. Garcia, S. Xavier et al., “Learning through ferroelectric domain dynamics in

solid-state synapses,” Nature communications, vol. 8 no. 1, pp. 1-7, 2017. 19

S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The spinnaker project,”
Proceedings of the IEEFE, vol. 102, no. 5, pp. 652-665, 2014. 19, 58

C. Mayr, S. Hoeppner, and S. Furber, “Spinnaker 2: A 10 million core processor
system for brain simulation and machine learning,” arXiv preprint arXiv:1911.02385,
2019. 19

114

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

BIBLIOGRAPHY

F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam,
Y. Nakamura, P. Datta, G.-J. Nam et al., “Truenorth: Design and tool flow of
a 65 mw 1 million neuron programmable neurosynaptic chip,” IEEFE transactions

on computer-aided design of integrated circuits and systems, vol. 34, no. 10, pp.

1537-1557, 2015. 19, 87

M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou,
P. Joshi, N. Imam, S. Jain et al., “Loihi: A neuromorphic manycore processor with
on-chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82-99, 2018. 19, 58, 59, 60, 87

E. Garcia-Martin, C. F. Rodrigues, G. Riley, and H. Grahn, “Estimation of energy
consumption in machine learning,” Journal of Parallel and Distributed Computing,
vol. 134, pp. 75-88, 2019. 19

R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green ai,” arXiv preprint
arXiv:1907.10597, 2019. 19, 83

B. Ramesh, A. Ussa, L. Della Vedova, H. Yang, and G. Orchard, “Low-power dynamic
object detection and classification with freely moving event cameras,” Frontiers in
Neuroscience, vol. 14, p. 135, 2020. 19

M. Davies, A. Wild, G. Orchard, Y. Sandamirskaya, G. A. F. Guerra, P. Joshi,
P. Plank, and S. R. Risbud, “Advancing neuromorphic computing with loihi: A
survey of results and outlook,” Proceedings of the IEEE, 2021. 20

“Human brain supercomputer with 1 million proces-
sors switched on for first time,” accessed: 2020-07-
30. [Online|. Available: https://www.manchester.ac.uk/discover /news/

human-brain-supercomputer-with- 1million-processors-switched-on-for-first-time 19

C. S. Thakur, J. L. Molin, G. Cauwenberghs, G. Indiveri, K. Kumar, N. Qiao,
J. Schemmel, R. Wang, E. Chicca, J. Olson Hasler et al., “Large-scale neuromorphic
spiking array processors: A quest to mimic the brain,” Frontiers in neuroscience,
vol. 12, p. 891, 2018. 19

E. P. Frady, G. Orchard, D. Florey, N. Imam, R. Liu, J. Mishra, J. Tse, A. Wild,
F. T. Sommer, and M. Davies, “Neuromorphic nearest-neighbor search using intel’s
pohoiki springs,” arXiv preprint arXiv: 2004.12691, 2020. 19, 59, 87

O. Moreira, A. Yousefzadeh, F. Chersi, G. Cinserin, R.-J. Zwartenkot, A. Kapoor,
P. Qiao, P. Kievits, M. Khoei, L. Rouillard et al., “Neuronflow: a neuromorphic

processor architecture for live ai applications,” in 2020 Design, Automation & Test
in Europe Conference € Exhibition (DATE). TEEE, 2020, pp. 840-845. 20

https://www.manchester.ac.uk/discover/news/human-brain-supercomputer-with-1million-processors-switched-on-for-first-time
https://www.manchester.ac.uk/discover/news/human-brain-supercomputer-with-1million-processors-switched-on-for-first-time

BIBLIOGRAPHY 115

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

P. A. van der Made and A. S. Mankar, “Neural processor based accelerator system
and method,” Jan. 26 2017, uS Patent App. 15/218,075. 20

P. Viola and M. J. Jones, “Robust real-time face detection,” International journal
of computer vision, vol. 57, no. 2, pp. 137-154, 2004. 24, 32, 36

H. Jiang and E. Learned-Miller, “Face detection with the faster r-cnn,” in 2017
12th IEEE International Conference on Automatic Face € Gesture Recognition (FG
2017). 1EEE, 2017, pp. 650-657. 24, 25

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg,
“Ssd: Single shot multibox detector,” in European conference on computer vision.
Springer, 2016, pp. 21-37. 24, 32, 36

H. Li and L. Shi, “Robust event-based object tracking combining correlation filter

and cnn representation,” Frontiers in neurorobotics, vol. 13, 2019. 24, 32, 36, 37

S. Yang, P. Luo, C. C. Loy, and X. Tang, “Faceness-net: Face detection through
deep facial part responses,” IEEFE transactions on pattern analysis and machine
intelligence, vol. 40, no. 8, pp. 1845-1859, 2017. 25

X. Sun, P. Wu, and S. C. Hoi, “Face detection using deep learning: An improved
faster renn approach,” Neurocomputing, vol. 299, pp. 42-50, 2018. 25

V. Bazarevsky, Y. Kartynnik, A. Vakunov, K. Raveendran, and M. Grundmann,
“Blazeface: Sub-millisecond neural face detection on mobile gpus,” arXiv preprint
arXw:1907.05047, 2019. 25

J. Ren, N. Kehtarnavaz, and L. Estevez, “Real-time optimization of viola-jones face
detection for mobile platforms,” in Circuits and Systems Workshop: System-on-Chip-
Design, Applications, Integration, and Software, 2008 IEEFE Dallas. TEEE, 2008,
pp. 1-4. 25

M. Noman, T. Bin, M. Ahad, and A. Rahman, “Mobile-based eye-blink detection

performance analysis on android platform,” Frontiers in ICT, vol. 5, p. 4, 2018. 25

T. Nakano, M. Kato, Y. Morito, S. Itoi, and S. Kitazawa, “Blink-related momentary
activation of the default mode network while viewing videos,” Proceedings of the
National Academy of Sciences, vol. 110, no. 2, pp. 702-706, 2013. 26

J. A. Stern, D. Boyer, and D. Schroeder, “Blink rate: a possible measure of fatigue,”
Human factors, vol. 36, no. 2, pp. 285297, 1994. 26, 27

116

[188]

[189)]

[190]

[191]

[192]

(193]

[194]

[195]

[196]

[197]

[198]

BIBLIOGRAPHY

Q. Wang, J. Yang, M. Ren, and Y. Zheng, “Driver fatigue detection: a survey,” in
2006 6th world congress on intelligent control and automation, vol. 2. IEEE, 2006,
pp- 8587-8591. 26

H. Hakkénen, H. Summala, M. Partinen, M. Tiihonen, and J. Silvo, “Blink duration
as an indicator of driver sleepiness in professional bus drivers,” Sleep, vol. 22, no. 6,
pp- 798-802, 1999. 26

S. Benedetto, M. Pedrotti, L. Minin, T. Baccino, A. Re, and R. Montanari, “Driver
workload and eye blink duration,” Transportation research part F: traffic psychology
and behaviour, vol. 14, no. 3, pp. 199-208, 2011. 26

J. C. Walker, M. Kendal-Reed, M. J. Utell, and W. S. Cain, “Human breathing and
eye blink rate responses to airborne chemicals.” Environmental health perspectives,
vol. 109, no. suppl 4, pp. 507-512, 2001. 26

A. R. Bentivoglio, S. B. Bressman, E. Cassetta, D. Carretta, P. Tonali, and A. Al-
banese, “Analysis of blink rate patterns in normal subjects,” Movement disorders,
vol. 12, no. 6, pp. 1028-1034, 1997. 27

S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object de-
tection with region proposal networks,” in Advances in neural information processing
systems, 2015, pp. 91-99. 32, 36

S. Yang, P. Luo, C.-C. Loy, and X. Tang, “Wider face: A face detection benchmark,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,

2016, pp. 5525-5533. 32

D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual object tracking
using adaptive correlation filters,” in 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. TEEE, 2010, pp. 2544-2550. 37

D. R. Valeiras, X. Lagorce, X. Clady, C. Bartolozzi, S.-H. Ieng, and R. Benosman,
“An asynchronous neuromorphic event-driven visual part-based shape tracking,”

IEFEFE transactions on neural networks and learning systems, vol. 26, no. 12, pp.
3045-3059, 2015. 38

IntelCorporation, “7th Generation Intel ® Processor Family and 8th Generation
Intel ® Processor Family for U Quad Core Platforms Specification Data sheet,” Tech
reports, 2017. 38

“Tensorflow lite guide,” 2021, accessed: 2021-03-05. [Online]. Available:
https://www.tensorflow.org/lite/guide 39

https://www.tensorflow.org/lite/guide

BIBLIOGRAPHY 117

[199)]

[200]

[201]

[202]

[203]

[204]

205]

206]

207]

208]

M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural

7

networks,” in International Conference on Machine Learning. PMLR, 2019, pp.

6105-6114. 40

T. Serrano-Gotarredona and B. Linares-Barranco, “A 128 x128 1.5% contrast
sensitivity 0.9% fpn 3 us latency 4 mw asynchronous frame-free dynamic vision
sensor using transimpedance preamplifiers,” IEEE Journal of Solid-State Circuits,
vol. 48, no. 3, pp. 827-838, 2013. 40

R. Berner, C. Brandli, M. Yang, S.-C. Liu, and T. Delbruck, “A 240x 180 10mw
12us latency sparse-output vision sensor for mobile applications,” in 2013 Symposium
on VLSI Circuits. TEEE, 2013, pp. C186-C187. 40

A. Savran, R. Tavarone, B. Higy, L. Badino, and C. Bartolozzi, “Energy and com-
putation efficient audio-visual voice activity detection driven by event-cameras,” in
2018 13th IEEE International Conference on Automatic Face & Gesture Recognition
(FG 2018). IEEE, 2018, pp. 333-340. 40, 56

E. Ceolini, G. Taverni, L. Khacef, M. Payvand, and E. Donati, “Sensor fusion using
emg and vision for hand gesture classification in mobile applications,” in 2019 IEEE
Biomedical Circuits and Systems Conference (BioCAS). IEEE, 2019, pp. 1-4. 40

7. Jiang, Y. Zhang, D. Zou, J. Ren, J. Lv, and Y. Liu, “Learning event-based motion
deblurring,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 3320-3329. 40

F. Galluppi, C. Denk, M. C. Meiner, T. C. Stewart, L. A. Plana, C. Eliasmith,
S. Furber, and J. Conradt, “Event-based neural computing on an autonomous mobile
platform,” in 2014 IEEFE International Conference on Robotics and Automation
(ICRA). 1EEE, 2014, pp. 2862-2867. 40

E. Mueggler, G. Gallego, and D. Scaramuzza, “Continuous-time trajectory estimation

for event-based vision sensors,” University of Zurich, Tech. Rep., 2015. 40

A. Censi and D. Scaramuzza, “Low-latency event-based visual odometry,” in 2014
IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2014,
pp- 703-710. 40

G. Haessig and R. Benosman, “A sparse coding multi-scale precise-timing machine
learning algorithm for neuromorphic event-based sensors,” in Micro-and Nanotech-
nology Sensors, Systems, and Applications X, vol. 10639. International Society for
Optics and Photonics, 2018, p. 106391U. 42

118

209

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

BIBLIOGRAPHY

J. Lee, N. Chirkov, E. Ignasheva, Y. Pisarchyk, M. Shieh, F. Riccardi, R. Sarokin,
A. Kulik, and M. Grundmann, “On-device neural net inference with mobile gpus,”
arXiv preprint arXiw:1907.01989, 2019. 46

A. Marcireau, S.-H. Ieng, and R. Benosman, “Sepia, tarsier, and chameleon: A
modular c++ framework for event-based computer vision,” Frontiers in neuroscience,

vol. 13, p. 1338, 2020. 47

C. Scheerlinck, H. Rebecq, D. Gehrig, N. Barnes, R. Mahony, and D. Scaramuzza,
“Fast image reconstruction with an event camera,” in Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, 2020, pp. 156-163. 53, 54

D. Gehrig, A. Loquercio, K. G. Derpanis, and D. Scaramuzza, “End-to-end learning of
representations for asynchronous event-based data,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 5633-5643. 53

R. Tapia, A. G. Eguluz, J. Martinez-de Dios, and A. Ollero, “Asap: Adaptive
scheme for asynchronous processing of event-based vision algorithms,” in 2020 IEFEE
ICRA Workshop on Unconventional Sensors in Robotics. IEEE, 2020. 56

A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,”

arXiv:1410.5401, 2014. 58

arXiv preprint

J. Backus, “Can programming be liberated from the von neumann style? a functional
style and its algebra of programs,” Communications of the ACM, vol. 21, no. 8, pp.
613641, 1978. 58

R. K. Cavin, P. Lugli, and V. V. Zhirnov, “Science and engineering beyond moore’s
law,” Proceedings of the IEEFE, vol. 100, no. Special Centennial Issue, pp. 1720-1749,
2012. 58

K. Berggren, Q. Xia, K. K. Likharev, D. B. Strukov, H. Jiang, T. Mikolajick,
D. Querlioz, M. Salinga, J. R. Erickson, S. Pi et al., “Roadmap on emerging
hardware and technology for machine learning,” Nanotechnology, vol. 32, no. 1, p.
012002, 2020. 58

J. L. Hennessy and D. A. Patterson, “A new golden age for computer architecture,”
Communications of the ACM, vol. 62, no. 2, pp. 48-60, 2019. 58, 89

D. Drubach, The brain explained. Prentice Hall, 2000. 58

J. B. Aimone, O. Parekh, and W. Severa, “Neural computing for scientific computing
applications: more than just machine learning,” in Proceedings of the Neuromorphic

Computing Symposium, 2017, pp. 1-6. 58

BIBLIOGRAPHY 119

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

[232]

S. Furber and S. Temple, “Neural systems engineering,” in Computational intelligence:
A compendium. Springer, 2008, pp. 763-796. 58

D. F. Goodman and R. Brette, “Brian: a simulator for spiking neural networks in

python,” Frontiers in neuroinformatics, vol. 2, p. 5, 2008. 58

A. Sengupta, Y. Ye, R. Wang, C. Liu, and K. Roy, “Going deeper in spiking neural
networks: Vgg and residual architectures,” Frontiers in neuroscience, vol. 13, p. 95,
2019. 58, 70

R. VanRullen, R. Guyonneau, and S. J. Thorpe, “Spike times make sense,” Trends
in neurosciences, vol. 28, no. 1, pp. 14, 2005. 59

J. Putney, R. Conn, and S. Sponberg, “Precise timing is ubiquitous, consistent, and
coordinated across a comprehensive, spike-resolved flight motor program,” Proceed-
ings of the National Academy of Sciences, vol. 116, no. 52, pp. 26 951-26 960, 2019.
59

J. Luo, S. Macias, T. V. Ness, G. T. Einevoll, K. Zhang, and C. F. Moss, “Neural
timing of stimulus events with microsecond precision,” PLoS biology, vol. 16, no. 10,
p- €2006422, 2018. 59

M. J. Berry, D. K. Warland, and M. Meister, “The structure and precision of retinal
spike trains,” Proceedings of the National Academy of Sciences, vol. 94, no. 10, pp.
5411-5416, 1997. 59

P. Reinagel and R. C. Reid, “Temporal coding of visual information in the thalamus,”

Journal of Neuroscience, vol. 20, no. 14, pp. 5392-5400, 2000. 59

G. Buzséki, R. Llinas, W. Singer, A. Berthoz, and Y. Christen, Temporal coding in
the brain. Springer Science & Business Media, 2012. 59

G. T. Buracas, A. M. Zador, M. R. DeWeese, and T. D. Albright, “Efficient discrim-
ination of temporal patterns by motion-sensitive neurons in primate visual cortex,”

Neuron, vol. 20, no. 5, pp. 959-969, 1998. 59

C. Carr and M. Konishi, “A circuit for detection of interaural time differences in the
brain stem of the barn owl,” Journal of Neuroscience, vol. 10, no. 10, pp. 3227-3246,
1990. 59

W. Gerstner, R. Kempter, J. L. Van Hemmen, and H. Wagner, “A neuronal learning
rule for sub-millisecond temporal coding,” Nature, vol. 383, no. 6595, pp. 7678,
1996. 59

120

233

[234]

[235]

[236]

237]

238]

239

[240]

[241]

[242]

[243]

[244]

BIBLIOGRAPHY

G. Haessig, M. B. Milde, P. V. Aceituno, O. Oubari, J. C. Knight, A. van Schaik,
R. B. Benosman, and G. Indiveri, “Event-based computation for touch localization

based on precise spike timing,” Frontiers in Neuroscience, vol. 14, 2020. 59

S. Thorpe, A. Delorme, and R. Van Rullen, “Spike-based strategies for rapid pro-
cessing,” Neural networks, vol. 14, no. 6-7, pp. 715-725, 2001. 59

N. Iannella and A. D. Back, “A spiking neural network architecture for nonlinear

function approximation,” Neural networks, vol. 14, no. 6-7, pp. 933-939, 2001. 59

W. Maass, “Fast sigmoidal networks via spiking neurons,” Neural Computation,
vol. 9, no. 2, pp. 279-304, 1997. 59

X. Lagorce and R. Benosman, “Stick: spike time interval computational kernel, a
framework for general purpose computation using neurons, precise timing, delays,
and synchrony,” Neural computation, vol. 27, no. 11, pp. 2261-2317, 2015. 59, 73,
80, 87

X. Wang, T. Song, F. Gong, and P. Zheng, “On the computational power of spiking
neural p systems with self-organization,” Scientific reports, vol. 6, p. 27624, 2016. 59

C.-K. Lin, A. Wild, G. N. Chinya, T.-H. Lin, M. Davies, and H. Wang, “Map-
ping spiking neural networks onto a manycore neuromorphic architecture,” ACM
SIGPLAN Notices, vol. 53, no. 4, pp. 78-89, 2018. 61

P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and M. Pfeiffer, “Fast-classifying,
high-accuracy spiking deep networks through weight and threshold balancing,” in
2015 International Joint Conference on Neural Networks (IJCNN). ieee, 2015, pp.
1-8. 70, 77

Y. Hu, H. Tang, Y. Wang, and G. Pan, “Spiking deep residual network,” arXiv
preprint arXiv:1805.01352, 2018. 70

B. Rueckauer, C. Bybee, R. Goettsche, Y. Singh, J. Mishra, and A. Wild, “Nxtf:
An api and compiler for deep spiking neural networks on intel loihi,” arXiv preprint
arXiv:2101.04261, 2021. 70, 77, 78, 80, 82, 88

B. Rueckauer, I.-A. Lungu, Y. Hu, and M. Pfeiffer, “Theory and tools for the
conversion of analog to spiking convolutional neural networks,” arXiv preprint
arXiv:1612.04052, 2016. 71

M. Mozafari, M. Ganjtabesh, A. Nowzari-Dalini, and T. Masquelier, “Spyketorch:
Efficient simulation of convolutional spiking neural networks with at most one spike

per neuron,” Frontiers in neuroscience, vol. 13, 2019. 71

BIBLIOGRAPHY 121

[245]

[246]

[247]

[248]

[249]

[250]

[251]

[252]

253]

[254]

[255]

[256]

J. Goltz, A. Baumbach, S. Billaudelle, O. Breitwieser, D. Dold, L. Kriener, A. F.
Kungl, W. Senn, J. Schemmel, K. Meier et al., “Fast and deep neuromorphic learning
with time-to-first-spike coding,” arXiv preprint arXiv:1912.11448, 2019. 71

K. T. N. Chu, Y. Tavva, J. Wu, M. Zhang, H. Li, T. E. Carlson et al., “You only
spike once: Improving energy-efficient neuromorphic inference to ann-level accuracy,”

arXiv preprint arXiv:2006.09982, 2020. 71

S. Park, S. Kim, B. Na, and S. Yoon, “T2fsnn: Deep spiking neural networks with
time-to-first-spike coding,” arXiv preprint arXiv:2003.117/1, 2020. 72

B. Han and K. Roy, “Deep spiking neural network: Energy efficiency through time

based coding,” in Furopean Conference on Computer Vision, 2020. 72

C. Stockl and W. Maass, “Recognizing images with at most one spike per neuron,”
arXiv preprint arXiw:2001.01682, 2019. 72

, “Classifying images with few spikes per neuron,” arXiv preprint
arXiw:2002.00860, 2020. 72

T. Bekolay, J. Bergstra, E. Hunsberger, T. DeWolf, T. C. Stewart, D. Rasmussen,
X. Choo, A. Voelker, and C. Eliasmith, “Nengo: a python tool for building large-scale

functional brain models,” Frontiers in neuroinformatics, vol. 7, p. 48, 2014. 73, 86

C. Eliasmith, “A unified approach to building and controlling spiking attractor
networks,” Neural computation, vol. 17, no. 6, pp. 1276-1314, 2005. 73

J. S. Montijn, G. T. Meijer, C. S. Lansink, and C. M. Pennartz, “Population-level
neural codes are robust to single-neuron variability from a multidimensional coding
perspective,” Cell reports, vol. 16, no. 9, pp. 2486-2498, 2016. 73

P. Berens, A. S. Ecker, R. J. Cotton, W. J. Ma, M. Bethge, and A. S. Tolias, “A fast
and simple population code for orientation in primate v1,” Journal of Neuroscience,
vol. 32, no. 31, pp. 10618-10626, 2012. 73

)

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014. 77

S. Yin, S. K. Venkataramanaiah, G. K. Chen, R. Krishnamurthy, Y. Cao,
C. Chakrabarti, and J.-s. Seo, “Algorithm and hardware design of discrete-time
spiking neural networks based on back propagation with binary activations,” in 2017
IEEE Biomedical Circuits and Systems Conference (BioCAS). 1EEE, 2017, pp. 1-5.
78

122

257]

[258]

259

260]

[261]

[262]

263]

[264]

265

[266]

267

BIBLIOGRAPHY

H. Mostafa, B. U. Pedroni, S. Sheik, and G. Cauwenberghs, “Fast classification
using sparsely active spiking networks,” in 2017 IEEFE International Symposium on
Circuits and Systems (ISCAS). 1EEE, 2017, pp. 1-4. 78

N. Zheng and P. Mazumder, “A low-power hardware architecture for on-line super-
vised learning in multi-layer spiking neural networks,” in 2018 IEEFE International
Symposium on Circuits and Systems (ISCAS). 1EEE, 2018, pp. 1-5. 78

G. K. Chen, R. Kumar, H. E. Sumbul, P. C. Knag, and R. K. Krishnamurthy,
“A 4096-neuron lm-synapse 3.8-pj/sop spiking neural network with on-chip stdp
learning and sparse weights in 10-nm finfet cmos,” IEEE Journal of Solid-State
Circuits, vol. 54, no. 4, pp. 992-1002, 2018. 78

S. Oh, D. Kwon, G. Yeom, W.-M. Kang, S. Lee, S. Y. Woo, J. S. Kim, M. K.
Park, and J.-H. Lee, “Hardware implementation of spiking neural networks using
time-to-first-spike encoding,” arXiv preprint arXiv:2006.05033, 2020. 78

R. Massa, A. Marchisio, M. Martina, and M. Shafique, “An efficient spiking neural
network for recognizing gestures with a dvs camera on the loihi neuromorphic

processor,” arXiv preprint arXiv:2006.09985, 2020. 78, 82

M. Davies, “Benchmarks for progress in neuromorphic computing,” Nature Machine

Intelligence, vol. 1, no. 9, pp. 386—-388, 2019. 80

T. C. Stewart, “A technical overview of the neural engineering framework,” University
of Waterloo, 2012. 80

“Nengo examples: Communication channel,” accessed: 2020-06-30. [Online].
Available: https://www.nengo.ai/nengo-loihi/examples/communication-channel.

html 80

Y. Liu, J. Zhang, C. Gao, J. Qu, and L. Ji, “Natural-logarithm-rectified activation
function in convolutional neural networks,” in 2019 IEEE 5th International Con-
ference on Computer and Communications (ICCC). I1EEE, 2019, pp. 2000-2008.
82

G. D’Angelo, E. Janotte, T. Schoepe, J. O’keeffe, M. B. Milde, E. Chicca, and
C. Bartolozzi, “Event-based eccentric motion detection exploiting time difference

encoding,” Frontiers in Neuroscience, vol. 14, p. 451, 2020. 82

V. Fischer, J. Kohler, and T. Pfeil, “The streaming rollout of deep networks-towards
fully model-parallel execution,” in Advances in Neural Information Processing Sys-
tems, 2018, pp. 4039-4050. 82

https://www.nengo.ai/nengo-loihi/examples/communication-channel.html
https://www.nengo.ai/nengo-loihi/examples/communication-channel.html

BIBLIOGRAPHY 123

268]

269]

[270]

[271]

[272]

273

[274]

275]

276]

277]

278]

279]

W. Severa, O. Parekh, K. D. Carlson, C. D. James, and J. B. Aimone, “Spiking
network algorithms for scientific computing,” in 2016 IEEFE international conference
on rebooting computing (ICRC). ITEEE, 2016, pp. 1-8. 82

S. G. Cardwell, C. Vineyard, W. Severa, F. S. Chance, F. Rothganger, F. Wang,
S. Musuvathy, C. Teeter, and J. B. Aimone, “Truly heterogeneous hpc: Co-design to
achieve what science needs from hpc,” in Smoky Mountains Computational Sciences
and Engineering Conference. Springer, 2020, pp. 349-365. 82, 87

J. V. Monaco and R. B. Benosman, “General purpose computation with spiking
neural networks: Programming, design principles, and patterns,” in Proceedings of

the Neuro-inspired Computational Elements Workshop, 2020, pp. 1-9. 82
S. Hooker, “The hardware lottery,” arXiw preprint arXiv:2009.06489, 2020. 83

J. Bhattacharya and M. Packalen, “Stagnation and scientific incentives,” National
Bureau of Economic Research, Tech. Rep., 2020. 83

N. C. Thompson, K. Greenewald, K. Lee, and G. F. Manso, “The computational
limits of deep learning,” arXiv preprint arXiv:2007.05558, 2020. 83

A. N. Angelopoulos, J. N. Martel, A. P. Kohli, J. Conradt, and G. Wetzstein, “Event
based, near eye gaze tracking beyond 10,000 hz,” arXiv preprint arXiv:2004.03577,
2020. 84

A. Z. Zhu, D. Thakur, T. Ozaslan, B. Pfrommer, V. Kumar, and K. Daniilidis,
“The multivehicle stereo event camera dataset: An event camera dataset for 3d
perception,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2032—2039,
2018. 84

P. de Tournemire, D. Nitti, E. Perot, D. Migliore, and A. Sironi, “A large scale
event-based detection dataset for automotive,” arXiv, pp. arXiv—2001, 2020. 84

D. Gehrig, M. Gehrig, J. Hidalgo-Carrié, and D. Scaramuzza, “Video to events:
Recycling video datasets for event cameras,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp. 3586-3595. 84

A. Z. Zhu, Z. Wang, K. Khant, and K. Daniilidis, “Eventgan: Leveraging large scale
image datasets for event cameras,” arXiv preprint arXiv:1912.01584, 2019. 84

H. Rebecq, D. Gehrig, and D. Scaramuzza, “Esim: an open event camera simulator,”
in Conference on Robot Learning, 2018, pp. 969-982. 84

124

[280]

[281]

[282]

[283]

[284]

[285]

[286]

[287]

[288]

[289]

290]

[291]

BIBLIOGRAPHY

G. Orchard, A. Jayawant, G. K. Cohen, and N. Thakor, “Converting static image
datasets to spiking neuromorphic datasets using saccades,” Frontiers in neuroscience,
vol. 9, p. 437, 2015. 84, 93

H. Li, H. Liu, X. Ji, G. Li, and L. Shi, “Cifar10-dvs: an event-stream dataset for

object classification,” Frontiers in neuroscience, vol. 11, p. 309, 2017. 84

M. Bhuiyan, R. Picking et al., “A gesture controlled user interface for inclusive
design and evaluative study of its usability,” Journal of software engineering and
applications, vol. 4, no. 09, p. 513, 2011. 84

K. M. Gerling, K. K. Dergousoff, R. L. Mandryk et al., “Is movement better? com-
paring sedentary and motion-based game controls for older adults,” in Proceedings-

Graphics Interface. Canadian Information Processing Society, 2013, pp. 133-140.
84

L. Hakobyan, J. Lumsden, D. O’Sullivan, and H. Bartlett, “Mobile assistive technolo-
gies for the visually impaired,” Survey of ophthalmology, vol. 58, no. 6, pp. 513-528,
2013. 84

“Google project soli,” 2021, accessed: 2021-04-05. [Online|. Available:
https://atap.google.com/soli/ 84

7

S. Gray, A. Radford, and D. P. Kingma, “Gpu kernels for block-sparse weights,
arXiv preprint arXiv:1711.09224, vol. 3, 2017. 85

I

T. Gale, M. Zaharia, C. Young, and E. Elsen, “Sparse gpu kernels for deep learning,’
arXiv preprint arXiw:2006.10901, 2020. 85

D. Salvator, “How sparsity adds umph to ai inference,” 2020, accessed: 2020-10-05.
[Online]. Available: https://blogs.nvidia.com/blog/2020/05/14 /sparsity-ai-inference/
85

T. P. Lillicrap, A. Santoro, L.. Marris, C. J. Akerman, and G. Hinton, “Backprop-
agation and the brain,” Nature Reviews Neuroscience, vol. 21, no. 6, pp. 335—346,
2020. 86

T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman, “Random synaptic
feedback weights support error backpropagation for deep learning,” Nature commu-
nications, vol. 7, no. 1, pp. 1-10, 2016. 86

E. O. Neftci, C. Augustine, S. Paul, and G. Detorakis, “Event-driven random
back-propagation: Enabling neuromorphic deep learning machines,” Frontiers in
neurosctence, vol. 11, p. 324, 2017. 86

https://atap.google.com/soli/
https://blogs.nvidia.com/blog/2020/05/14/sparsity-ai-inference/

BIBLIOGRAPHY 125

[292]

[293]

[294]

[295]

296]

297]

298]

[299]

300]

301]

302]

J. B. Aimone, O. Parekh, C. A. Phillips, A. Pinar, W. Severa, and H. Xu, “Dynamic
programming with spiking neural computing,” in Proceedings of the International

Conference on Neuromorphic Systems, 2019, pp. 1-9. 87

J. Liu, J. Harkin, L. P. Maguire, L. J. McDaid, and J. J. Wade, “Spanner: A
self-repairing spiking neural network hardware architecture,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 29, no. 4, pp. 1287-1300, 2017. 87

A. P. Johnson, J. Liu, A. G. Millard, S. Karim, A. M. Tyrrell, J. Harkin, J. Timmis,
L. J. McDaid, and D. M. Halliday, “Homeostatic fault tolerance in spiking neural
networks: a dynamic hardware perspective,” IEEE Transactions on Circuits and
Systems I: Reqular Papers, vol. 65, no. 2, pp. 687-699, 2017. 87

C. D. Schuman, J. P. Mitchell, J. T. Johnston, M. Parsa, B. Kay, P. Date, and R. M.
Patton, “Resilience and robustness of spiking neural networks for neuromorphic
systems,” in 2020 International Joint Conference on Neural Networks (IJCNN).
IEEE, 2020, pp. 1-10. 87

J. B. Aimone, Y. Ho, O. Parekh, C. A. Phillips, A. Pinar, W. Severa, and Y. Wang,
“Provable neuromorphic advantages for computing shortest paths,” in Proceedings of
the 32nd ACM Symposium on Parallelism in Algorithms and Architectures, 2020, pp.
497-499. 87

E. W. Dijkstra et al., “A note on two problems in connexion with graphs,” Numerische
mathematik, vol. 1, no. 1, pp. 269-271, 1959. 87

N. Imam and T. A. Cleland, “Rapid online learning and robust recall in a neuro-
morphic olfactory circuit,” Nature Machine Intelligence, vol. 2, no. 3, pp. 181-191,
2020. 88

E. Musk et al., “An integrated brain-machine interface platform with thousands of
channels,” Journal of medical Internet research, vol. 21, no. 10, p. e16194, 2019. 89

A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic, “The risc-v instruction set
manual, volume i: Base user-level isa,” EECS Department, UC Berkeley, Tech. Rep.
UCB/EECS-2011-62, vol. 116, 2011. 89

“Eh2 swerv risc-v core 1.2 from western digital,” 2020, accessed: 2020-12-05.
[Online|. Available: https://github.com/chipsalliance/Cores-SweRV-EH2 89

A. Zelensky, A. Alepko, V. Dubovskov, and V. Kuptsov, “Heterogeneous neuro-
morphic processor based on risc-v architecture for real-time robotics tasks,” in
Artificial Intelligence and Machine Learning in Defense Applications II, vol. 11543.
International Society for Optics and Photonics, 2020, p. 115430L. 90

https://github.com/chipsalliance/Cores-SweRV-EH2

126 BIBLIOGRAPHY

[303] S. Furber, “Microprocessors: the engines of the digital age,” Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sciences, vol. 473, no. 2199, p.
20160893, 2017. 90

[304] J. B. Aimone, “A roadmap for reaching the potential of brain-derived computing,”
Advanced Intelligent Systems, p. 2000191, 2020. 90

[305] A. Amir, B. Taba, D. Berg, T. Melano, J. McKinstry, C. Di Nolfo, T. Nayak,
A. Andreopoulos, G. Garreau, M. Mendoza et al., “A low power, fully event-based
gesture recognition system,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 7243-7252. 93

[306] T. Serrano-Gotarredona and B. Linares-Barranco, “Poker-dvs and mnist-dvs. their
history, how they were made, and other details,” Frontiers in neuroscience, vol. 9, p.

481, 2015. 93

	Acknowledgments
	Publications
	1 Introduction
	1.1 Motivation and Objectives
	1.2 Rethinking the Way our Cameras See
	1.2.1 Taking Inspiration from the Human Visual System
	1.2.2 A Paradigm Shift in Signal Acquisition
	1.2.3 A Novel Sensor for Machine Vision

	1.3 Event-based Computer Vision and Applications
	1.3.1 A Temporal Component to Understand Visual Input
	1.3.2 The Era of Deep Learning
	1.3.3 Event-based Processing

	1.4 Spiking Neural Networks
	1.4.1 Sparse Data Representations
	1.4.2 Training Spiking Neural Networks

	1.5 Low-power Hardware for Mobile Systems
	1.5.1 Neuromorphic Hardware
	1.5.2 Hardware Benchmarking and Scalability

	1.6 Thesis Outline

	2 Event-based Processing: Face Detection and Tracking
	2.1 Introduction
	2.1.1 ATIS
	2.1.2 Face Detection
	2.1.3 Human Eye Blinks

	2.2 Methods
	2.2.1 Temporal Signature of an Eye Blink
	2.2.2 Gaussian Tracker
	2.2.3 Global Algorithm

	2.3 Experiments and Results
	2.3.1 Indoor and Outdoor Face Detection
	2.3.2 Face Scale Changes
	2.3.3 Multiple Faces Detection
	2.3.4 Pose Variation Sequences
	2.3.5 Summary

	2.4 Discussion

	3 A Mobile Framework for Event-based Computer Vision
	3.1 Introduction
	3.2 Mobile Device and Event Camera
	3.3 Android Application Framework
	3.3.1 Main Activity
	3.3.2 Camera Module and Event Buffer
	3.3.3 Processing Module

	3.4 Performance Measurement Methods
	3.4.1 Camera Latency
	3.4.2 Buffering Latency
	3.4.3 Execution Latency

	3.5 Experiments and Results
	3.5.1 Measuring Throughput of Camera Module and Event Buffer Latency
	3.5.2 Aperture Robust Event-based Optical Flow
	3.5.3 Event-by-event Gesture Recognition
	3.5.4 Leveraging Pre-trained Neural Networks for Image Reconstruction

	3.6 Discussion

	4 Neural Computation on Loihi
	4.1 Introduction
	4.2 STICK
	4.3 Loihi
	4.3.1 Hardware
	4.3.2 Neuron Models Implement STICK Synapses
	4.3.3 Value Encoding Using Delays

	4.4 Composing Networks For Computation Using STICK
	4.4.1 Storing Values
	4.4.2 Branching Operations Minimum and Maximum
	4.4.3 Linear Operations
	4.4.4 Nonlinear Operations
	4.4.5 ANN-SNN Network Conversion

	4.5 Experiments and Results
	4.5.1 Computing Dynamic Systems
	4.5.2 Converting Pre-trained ANNs

	4.6 Discussion

	5 Conclusion
	A Authored Software Packages
	A.1 Loris
	A.2 Tonic
	A.3 Frog
	A.4 Quartz

	Bibliography

