
HAL Id: tel-03474854
https://theses.hal.science/tel-03474854v1

Submitted on 10 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Some contributions of machine learning to quantitative
finance : volatility, nowcasting, cva compression

Marc Chataigner

To cite this version:
Marc Chataigner. Some contributions of machine learning to quantitative finance : volatility, nowcast-
ing, cva compression. Statistics [math.ST]. Université Paris-Saclay, 2021. English. �NNT : 2021UP-
ASM045�. �tel-03474854�

https://theses.hal.science/tel-03474854v1
https://hal.archives-ouvertes.fr

Th
ès

e
de

 d
oc

to
ra

t
N

N
T:

2
0
2
1
U

PA
S
M

0
4
5

Quelques contributions de
l’apprentissage statistique à la
finance : Volatilité, nowcasting,

compression de CVA.
Some contributions of machine learning to

finance : Volatility, nowcasting, CVA
compression.

Thèse de doctorat de l’Université Paris-Saclay

Ecole Doctorale de Mathématique Hadamard (EDMH) n◦ 574
Spécialité de doctorat : Mathématiques appliquées

Unité de recherche : Université Paris-Saclay, CNRS, Univ Evry,
Laboratoire de Mathématiques et Modélisation d’Evry, 91037,

Evry-Courcouronnes, France.
Référent : Université d’Evry-Val d’Essonne

Thèse présentée et soutenue à Évry, le 18 octobre 2021, par

Marc Chataigner
Au vu des rapports de :

Christa Cuchiero Rapportrice
Professeure, University of Vienna
Christoph Reisinger Rapporteur
Professeur, Oxford University

Composition du jury :

Olivier Guéant Président
Professeur, Université Paris 1 Panthéon-Sorbonne
Christa Cuchiero Rapporteure
Professeure, University of Vienna
Christoph Reisinger Rapporteur
Professeur, Oxford University
Agathe Guilloux Examinatrice
Professeure, Université d’Évry Val d’Essonne
Blanka Horvath Examinatrice
Maître de conférences, King’s College London
John C. Hull Examinateur
Professeur, University of Toronto

Encadrants :

Stéphane Crépey Directeur
Professeur, Université Paris-Saclay GS Economie & Man-
agement
Stéphane Afchain Invité
Docteur, HSBC

1

Contents

1 Introduction 8
1.1 Apprentissage statistique en finance 8

1.1.1 La quête d’approximations 9
1.1.2 Résolution de problèmes encore ouverts 11
1.1.3 L’émergence des réseaux de neurones 12

1.2 Réseaux de neurones non-arbitrables 14
1.2.1 Inquiétudes des régulateurs pour ces nouvelles techniques . . 14
1.2.2 Contraintes dures versus contraintes souples 16
1.2.3 Autres approximations nonarbitrables 17

1.3 Traiter des données brutes . 18
1.3.1 Défauts des données intra-journalières 18
1.3.2 Détection de valeurs aberrantes 18
1.3.3 Compléter des données à indexation variable 19

1.4 Compression des XVAs . 21
1.4.1 Le tournant de 2008 . 21
1.4.2 Valoriser le risque de défaut 22
1.4.3 Valoriser le financement du collatéral 24
1.4.4 Valoriser des provisions en capital 25

2 Arbitrage-Free neural network 44
2.1 Introduction . 44
2.2 Problem Statement . 45
2.3 Shape Preserving Neural Networks 47

2.3.1 Hard Constraints Approach 48
2.3.2 Soft Constraints Approach 49
2.3.3 Learning problems . 50

2.4 DAX Numerical Experiments . 53
2.4.1 Experimental Design . 53
2.4.2 Numerical Results Without Dupire Penalization 56
2.4.3 Numerical Results With Dupire Penalization 58
2.4.4 Robustness . 62

2

Numerical Stability Through Recalibration 63
Monte Carlo Backtesting Repricing Error 63

2.5 Gaussian process regression for learning arbitrage-free price surfaces 67
2.5.1 Imposing the no-arbitrage conditions 68
2.5.2 Hyper-parameter learning 70
2.5.3 The most probable response surface and measurement noises 70
2.5.4 Sampling finite dimensional Gaussian processes under shape

constraints . 70
2.5.5 Local volatility . 71

2.6 Arbitrage-free SVI . 71
2.6.1 SVI parameterizations . 71
2.6.2 No-arbitrage conditions on SVI parameters 72
2.6.3 Slice parameter interpolation 74

2.7 SPX Numerical Experiments . 74
2.7.1 Experimental design . 74
2.7.2 Calibration results . 75
2.7.3 In-sample and out-of-sample calibration errors 79
2.7.4 Backtesting results . 79

2.8 Conclusion . 79

3 Nowcasting network 81
3.1 Introduction . 81
3.2 Problems . 83

3.2.1 Compression . 83
3.2.2 Completion . 84
3.2.3 Outlier Detection . 86

3.3 Models . 87
3.3.1 The Convolutional (Autoencoder) Approach 88
3.3.2 The Linear Projection Approach 88
3.3.3 The Functional Approach 88
3.3.4 Synthesis . 89

3.4 Experimental Methodology and Setting 92
3.4.1 Performance Metrics . 93
3.4.2 Introduction to the Case Studies 94
3.4.3 Discussion of the Arbitrage Issue 94

3.5 Repo Curves . 95
3.5.1 Functional Network Architecture 96
3.5.2 Numerical Results . 96

3.6 Equity Derivative Implied Volatility Surfaces 97
3.6.1 Compression . 99
3.6.2 Outlier Detection and Correction 101

3

3.6.3 Completion . 104
3.7 At-the-Money Swaption Surfaces 109

3.7.1 Network Architectures . 110
3.7.2 Numerical Results . 113

3.8 Conclusions and Perspectives . 117

4 XVA compression 119
4.1 Introduction . 119

4.1.1 Outline and Contributions 121
4.2 CVA Compression Modeling . 122

4.2.1 Credit Valuation Adjustment 122
4.2.2 Fitness Criterion . 123
4.2.3 Genetic Optimization Algorithm 125

4.3 Acceleration Techniques . 128
4.3.1 MtM Store-and-Reuse Approach for Trade Incremental XVA

Computations . 129
4.3.2 Parallelization of the Genetic Algorithm 132

4.4 Case Study . 133
4.4.1 New Deal Parameterization 133
4.4.2 Design of the Genetic Algorithm 134
4.4.3 Results in the Case of Payer Portfolio Without Penalization 135
4.4.4 Results in the Case of Payer Portfolio With Penalization . . 136
4.4.5 Results in the Case of a Hybrid Portfolio With Penalization 139

4.5 Conclusion . 143

4

Remerciements

Cette thèse est l’aboutissement d’un travail de trois années que l’on perçoit trop
souvent comme une aventure solitaire mais qui est au contraire un résultat collectif.

Je remercie tout d’abord mon directeur de thèse, Stéphane, pour m’avoir donné
ma chance bien avant le début officiel de cette thèse mais surtout pour avoir cru en
moi malgré mes nombreux doutes. Cette confiance j’en suis redevable également
envers Samuel Drapeau notamment pour avoir appuyé ma candidature à la suite
d’un atelier de mathématiques à Shanghai.

Mes remerciements vont également aux rapporteurs Pr Reisinger et Pr Cuchiero
pour le temps consacré à la relecture de cette thèse ainsi que les corrections ap-
portées au présent manuscrit. Je suis également reconnaissant envers Mme Hor-
vath, Pr Guilloux, Pr Hull et Pr Guéant d’avoir accepté de faire partie de mon
jury de thèse. Leurs remarques enrichissantes durant la soutenance ont ouvert de
nouvelles pistes d’amélioration de ces travaux de recherche.

Je remercie aussi HSBC France pour le soutien financier, leur accueil et leur
aide matériel à la réalisation de plusieurs travaux de cette thèse.1. Les expériences
numériques des chapitres 3 et 4 n’auraient jamais pu voir le jour sans les données
fournies par HSBC. Je joins à ces remerciements l’institut Europlace de finance
pour leur aide financière avant et pendant cette thèse et en particulier Guillaume
Macey, Nicolas Grandchamps des Raux et Olivier Guéant pour les échanges con-
structifs au sein de l’Initiative de Recherche.

Un grand merci également aux équipes quants pour leur accueil chaleureux
et leurs précieux conseils en particulier Stéphane (A.), Éric, Hugo, Mahamadou,
Eugène, Jérome, Boris, Yann, Côme... Je m’arrête là sinon la liste serait trop
longue.

Cette aide matérielle est aussi le fait de l’école doctarale de mathématiques
Hadamard qui à travers la bourse du labex LMH m’a permis d’aborder sereinement
cette thèse. Par ailleurs le suivi de l’EDMH fut précieux et à ce titre il m’est
nécessaire de souligner le travail Pierre Gilles Lemarié-Rieusset, Vincent Sécherre,

1The PhD thesis of Marc Chataigner is co-funded by the Research Initiative “Modélisation
des marchés actions, obligations et dérivés”, financed by HSBC France under the aegis of the
Europlace Institute of Finance, and by the public grant ANR-11-LABX-0056-LLH LabEx LMH.

5

Frédéric Paulin ou encore Clothilde Dépenoux.
Du côté de l’université d’Évry, je souhaite remercier les membres du LaMME

pour les séminaires tous aussi intéressants bien que la crise sanitaire et les con-
traites de temps ne m’aient pas permis de vous rencontrer plus souvent. Merci en
particulier à Valérie et Maouloud pour leur aide durant mon installation.

Ces trois années ont donné lieu à des collaborations fructueuses et ce fut un
plaisir de travailler avec vous Matthew, Djibril, Aresky et et Jiang. La qualité
de ces travaux est aussi le fruit de votre disponibilité et vos conseils lorsque les
résultats semblaient insatisfaisants.

Ces remerciements incluent également Bouazza et Hoang pour leurs coopéra-
tions lors de projets de recherche ou de travaux dirigés. Je ne doute pas que votre
abnégation sera à votre tour récompensée.

Par ailleurs je ne peux pas oublier l’aide apportée par mon parrain, tante Myr-
iame, Solène, Johannes et Rita notamment pour m’avoir logé en région parisienne.
Il n’est parfois pas facile de cohabiter avec un doctorant, surtout lors d’un con-
finement, et je tenais à souligner leur compréhension.

Un grand merci également à mon oncle Jacky pour m’avoir montré la route à
suivre (il comprendra) et à ma sœur Noémie pour son appui.

Enfin cette thèse je la dois aussi à ma grand-mère qui me rappelle d’où je viens
et à mes parents qui n’ont eu de cesse de me soutenir pour réaliser les études que
je souhaitais.

6

"Le simple est toujours faux. Ce qui ne l’est pas est inutilisable."
Paul Valéry, (Œuvres II, 1942)

7

Chapter 1

Introduction

1.1 Apprentissage statistique en finance
L’apprentissage statistique (ou Machine Learning en anglais) vise à améliorer
un programme informatique avec l’observation de données statistiques (Mitchell
1997). Cette discipline se situe à l’intersection des statistiques et de l’informatique.

Si l’emploi des statistiques en finance n’a rien de nouveau (voir par exemple
(Markowitz 1952)), son usage s’est en revanche intensifié ces dernières années pour
diverses raisons :

1. Les régulateurs demandent une validation des modèles mathématiques sur
données historiques par le biais de backtests (voir par exemple les pages 40-50
de (Basel Committee on Banking Supervision 2011)).

2. La complexité des calculs réglementaires nécessitent l’emploi
d’approximations statistiques pour rendre ces calculs accessibles en
intra-journalier (cf. section 4.3 de (Crépey, Hoskinson, and Saadeddine
2021)).

3. Les agents financiers souhaitent inclure des données financières non conven-
tionnelles pour dégager davantage de rendement (voir chapitre 5 de (Xing,
Cambria, and Welsch 2019) ou encore (Bartram, Branke, and Motahari
2020)).

4. Certains modèles mathématiques ont failli (ou ont été mal utilisé) lors de
précédentes périodes de stress financiers. Certains acteurs financiers souhait-
ent alors relâcher certaines hypothèses sur la dynamique des actifs financiers
pour calibrer des modèles plus agnostiques : méthodes non paramétriques
(cf. (Chen, Pelger, and Zhu 2020)), volatilité rugueuse (cf. (Gatheral, Jais-
son, and Rosenbaum 2018))) ...

8

L’objectif de cete thèse est de traiter quelques problèmes de la finance quantita-
tive avec des outils issus de l’apprentissage statistique. Les problématiques traitées
par la suite s’apparentent aux points 1, 2 et 4 précédents et nous reviendrons dans
cette section sur ces points. En particulier nous évoquerons des cas d’applications
de la littérature dans les sous-sections 1.1.1 et 1.1.2 pour conclure en discutant
quelques fondements des réseaux de neurones.

1.1.1 La quête d’approximations

Un des attraits de l’apprentissage statistique réside dans son évaluation rapide
à supposer que celle-ci n’inclut pas la procédure d’apprentissage. Ces approx-
imations statistiques rapides ou ”Fast pricing“ dans la littérature anglaise font
références la plupart du temps à des réseaux de neurones. Leur introduction dans
la valorisation de produits dérivés date des années 1990 (cf. (Hutchinson, Lo, and
Poggio 1994)) mais leur emploi s’est généralisé bien plus tard et ce pour deux
raisons. Tout d’abord la précision de ces approches laissait à désirer, ce qui néces-
sitait d’affiner l’architecture selon les données (cf. (Garcia and Gençay 2000)). Par
ailleurs l’enjeu du temps de calcul n’émerge qu’à partir des années 2010 à cause
de modèles de valorisations plus complexes : modèle de Bergomi pour (Horvath,
Muguruza, and Tomas 2019) ou calculs de XVA pour (Crépey, Hoskinson, and
Saadeddine 2021).

La hausse de la complexité des calculs s’explique par exemple par des valorisa-
tions qui incluent des simulations imbriquées. C’est notamment le cas des XVAs
(cf. section 1.4) ou d’autres mesures de risques conditionnelles qui rigoureusement
appelleraient des simulations de Monte Carlo imbriqués (cf. (Abbas-Turki, Crépey,
and Diallo 2018)). Néanmoins les temps de calculs ou plus généralement les con-
traintes techniques (comme la mémoire des CPUs/GPUs) empêchent la généralisa-
tion de ces schémas de simulation pour des XVAs plus complexes comme l’illustre
le schéma 1.1.1. Les solutions proposées dans la littérature se basent essentielle-
ment sur des schémas de régression. Ainsi l’espérance conditionnelle est assimilée
au prédicteur de Bayes tandis que les quantiles conditionnels sont réécrits sous la
forme d’espérance (cf. (Fissler, Ziegel, and Gneiting 2016)).

Le schéma de régression s’apparente à celui de Longstaff-schwartz (voir (Longstaff
and Schwartz 2001)) à savoir que l’on simule (et enregistre) dans un premier temps
les facteurs de risque jusqu’à une date finale d’une discrétisation temporelle. Puis,
à partir de conditions terminales ou payoffs, on régresse les payoffs de la date
suivante à partir des facteurs de risque de la date courante. On répète l’opération
afin de remonter jusqu’à la date initiale pour obtenir le prix désiré. Traditionnelle-
ment la régression était linéaire mais la hausse du nombre de facteurs de risque
et surtout la non-linéarité des valorisations des produits dérivés par rapport aux
sous-jacents a motivé l’emploi de réseaux de neurones.

9

KVA0

ECs, 0<s<T

ECs

FVAt=s,...,s+1

CVAt, MVAt, t=s,...,s+1

IMt=s,...,s+1

 , MtMt=s,...,s+1

FVAt

CVAu, MVAu, u=t,...,T

IMu=t,...,T

 , MtMu=t,...,T MVAu, CVAu

IMv=u,...,T

 , MtMv=u,...,T

IMv

 , MtMw=v,...,v+

 , MtMw

Depth

Mcva
Mfva

Mkva

Mec

Mim Mmtm

. .
 .

. .

. .
 .

.

. .
 .

.

. .
 .

. .
 .

. .

Figure 1.1.1: Arbre de dépendance des XVAs : plus on se déplace à gauche plus la
complexité des simulations augmente. La figure est tirée de (Crépey, Hoskinson,
and Saadeddine 2021).

Plus généralement les réseaux de neurones sont utiles pour la résolution
d’équations aux dérivées partielles (cf. (Lu, Jin, and Karniadakis 2019), (Blech-
schmidt and Ernst)) car réputés plus résistants face à la malédiction de la dimen-
sion.

Ces EDPs peuvent également se reformuler sous la forme d’une équation dif-
férentielle stochastique rétrograde (cf. (Weinan, Han, and Jentzen 2017)) dans
laquelle le réseau de neurones joue le rôle du gradient de la solution.

Une dernière motivation pour ces approximations rapides est l’emploi de mod-
èles de valorisations plus complexes. On ne cherche pas alors à inclure un ap-
prenant dans un schéma numérique mais à court-circuiter le modèle d’évaluation
dans son ensemble (cf. (Ferguson and Green 2018)). Ceci est d’autant plus crucial
si l’on souhaite estimer en intra-journalier les sensibilités du modèle de valorisa-
tion (ou ”pricer“ en anglais) à des fins de couverture par exemple. Ceci ce justifie
dans des situations où l’implémentation de la différentiation algorithmique peut-
être délicate. On peut alors soit estimer une approximation pour obtenir par

10

différence finie des sensibilités bump-and-revalue ou alors plus simplement estimer
ces dérivés partielle par rétro-propagation (cf. (Huge and Savine 2020). La dif-
férentiation algorithmique est en effet native dans des librairies d’apprentissage
statistique comme Tensorflow (avec des calculs structurés sous forme de graphe)
ou pytorch (dont les calculs sont plutôt organisés autour d’un ruban). Ces sensibil-
ités peuvent également servir à calibrer plus rapidement ces modèles d’évaluations
complexes (cf. (Horvath, Muguruza, and Tomas 2019)).

1.1.2 Résolution de problèmes encore ouverts

Certains problèmes en finance quantitative ne sont solubles qu’en les formulant
sous forme de problèmes d’apprentissage statistique. Une première application
consiste à reformuler le problème d’évaluation comme un problème de couverture
en marché incomplet c’est-à-dire que le prix n’est plus donné par une espérance
mais par la minimisation d’une mesure de risque sur la valorisation du portefeuille
couvert. Cette approche a été popularisée entre autres par (Bühler, Gonon, Te-
ichmann, and Wood 2019) qui vise à calibrer, à chaque date de simulation, un
réseau de neurones profond pour déterminer à la fois un processus de couverture
mais également un prix. La seule restriction porte sur la classe des processus de
couverture à travers la paramétrisation du réseau neuronal.

Plus généralement ces réseaux profonds sont utilisés pour résoudre des prob-
lèmes de contrôle stochastique sous la forme d’EDSR. À la différence de la sous-
section précédente, l’utilisation des réseaux neuronaux ne permet pas seulement
l’accélération du temps de calcul mais également leur résolution lorsque le pro-
cessus de contrôle est déterminé par une classe de fonctions engendrée par la
paramétrisation du réseau (cf. (Bachouch, Huré, Langrené, and Pham 2021)).

L’apprentissage statistique permet également d’utiliser des données qui
n’étaient pas traitées jusqu’à présent car non standards ou difficiles à formater.

Parmi ces sources de données non conventionnelles, on peut citer des cartes
satellitaires pour prédire l’offre de pétrole ou les ventes de commerces de détail
((Katona, Painter, Patatoukas, and Zeng 2018)), l’analyse des réseaux sociaux
(sentiment analysis en anglais) pour anticiper une baisse ou hausse des ventes d’une
entreprise ((Sprenger, Sandner, Tumasjan, and Welpe 2014)) ou encore le traite-
ment automatisé d’un flux d’actualités pour anticiper le cours d’une entreprise
((Azimi and Agrawal 2019)). Les problèmes financiers sont alors de l’ordre de la
prédiction et évalués sur des données historiques.

Enfin l’émergence des réseaux génératifs (GANs, autœncodeurs variationels)
ouvre la voie à la génération de scénarios financiers (cf. (Allouche, Girard, and
Gobet 2021)). Ces données générées artificiellement peuvent servir pour des tests
de résistance (plus communément appelés stress-tests) ou encore pour produire des

11

jeux de données plus conséquents 1 comme l’expliquent Buhler, Horvath, Lyons,
Arribas, Wood, et al. (2020).

1.1.3 L’émergence des réseaux de neurones

L’apprentissage statistique ne se résume certainement pas à l’étude de réseaux de
neurones mais ceux-ci répresentent une très large majorité des objets présentés
dans ce rapport. Par ailleurs les réseaux de neurones sont l’outil statistique le
plus employé par la recherche en finance quantitative et Ruf and Wang (2020)
proposent un revue d’articles sur le sujet. Après une brève introduction formelle
des réseaux de neurones, nous expliquons l’engouement récent pour cet outil en
finance quantitative puis nous donnons l’état de l’art des résultats théoriques de
convergence. On se limitera aux réseaux de neurones à propagation avant (ou
feedforward en anglais).

Un réseau de neurones à propagation avant est une cascade de régression non-
linéaire. S’inspirant du cerveau humain, ce réseau est constitué d’une succession
de couches elles-mêmes constituées de neurones. Chaque neurone est composé des
éléments suivants :

• Une matrice de poids W qui pondère chacun des neurones de la couche
précédente. Des connexions peuvent être ignorées ce qui réduit la taille de
cette matrice.

• Un biais b qui en conjonction de la fonction d’activation assure la sparsité
du réseau lorsque ce biais est très petit.

• Une fonction d’activation non-linéaire ς qui très souvent joue le rôle de seuil.
Dans la cas d’une régression, la fonction d’activation de la couche de sortie
(dernière couche) est absente. Si aucune fonction d’activation n’est ajoutée
alors on retombe dans une régression linéaire standard.

En résumé un neurone s’écrit comme :

f := ς(Wx+ b)

avec x un vecteur réel retourné par l’entièreté ou un sous-ensemble de la couche
précédente si on souhaite ignorer certaines connexions.

En toute généralité ces réseaux prennent en entrée et retournent en sortie un
vecteur à valeurs réelles, mais l’utilisateur peut affiner l’image du réseau selon la
fonction d’activation de la couche de sortie. Dans le cas d’une régression logistique
une fonction sigmoïde permettra d’estimer une probabilité.

1La génération ou l’enrichissement de jeux de données sont couramment appelés data aug-
mentation dans la littérature scientifique.

12

Un réseau de neurones se conçoit dans le cas d’une régression comme une
régression linéaire contre un noyau. Ce noyau est constitué des couches inférieures
2 qui agissent comme des fonctions de base non-linéaires et génèrent des variables
artificielles (ou features en anglais). La couche de sortie régresse alors linéairement
ces variables. Ainsi une régression neuronale se rapproche d’une régression linéaire
généralisée mais, à la différence de cette dernière, on apprend conjointement les
fonctions de base et la projection sur cette base.

L’apprentissage de ces réseaux repose sur l’algorithme de rétropropagation :
le gradient de l’erreur est rétropropagé de la sortie jusqu’aux poids de la couche
d’entrée en appliquant la règle de dérivation des fonctions composées. La rétro-
propagation, qui est un cas particulier de l’AAD 3, est illustrée point par point
dans la section 8 de Savine (2018). L’avantage de la rétropropagation est que le
calcul de gradient de l’erreur par rapport à (W, b) est du même ordre de grandeur
qu’une évaluation de réseau de neurone puisque cette erreur est un scalaire. En
revanche si on souhaite calculer le gradient d’une sortie multidimensionnelle du
réseau alors le temps de rétropropagation augmente proportionnellement avec la
dimension de la couche de sortie.

La rétropagation du gradient permet de calibrer les poids du réseau par de-
scente de gradient. Cette descente est dite stochastique si lors de chaque itération
on tire aléatoirement les observations servant à évaluer le gradient. Le souci de
l’apprentissage d’un réseau de neurones vient de la non-convexité des problèmes
d’apprentissages c’est-à-dire de la fonction de risque par rapport aux poids du
réseau. Pour palier à cette non-convexité, les poids W sont initialisés aléatoire-
ment tandis que les biais sont mis à zéro. Néanmoins on doit se contenter d’un
minimum local et la difficulté réside dans la sélection de ceux qui conviennent. De
plus un grand nombre d’observations est nécessaire pour obtenir une estimation
convenable de ce minimum local.

Le succès des réseaux de neurones vient des gains de puissance des machines
informatiques avec par exemple l’arrivée des cartes graphiques GPU qui perme-
ttent entre autres de manipuler des jeux de données bien plus conséquents. Par
ailleurs la médiatisation des travaux en traitement de vidéo et d’image a éveillé
la curiosité des acteurs de la place financière. En effet le premier réseau de neu-
rones fonctionnel est réputé être le perceptron de Rosenblatt (1958). L’algorithme
de rétropagation n’émerge qu’avec Rumelhart, Hinton, and Williams (1985) et
les réseaux convolutionnels avec entre autres LeCun, Boser, Denker, Henderson,
Howard, Hubbard, and Jackel (1989). Ce sont ces avancées expérimentales qui
ont motivées l’importation des méthodes d’apprentissage profond dans le milieu
financier.

2c’est-à-dire antérieures à la couche de sortie.
3Différentiation algorithmique adjointe

13

Quelques résultats de convergence permettent l’approximation de n’importe
quelle fonction continue par un réseau à une couche caché (ou ”shallow network“).
Parmi ces résultats on peut citer des théorèmes d’approximation universelle tels
que la proposition 2 de Leshno, Lin, Pinkus, and Schocken (1993) qui suppose des
fonctions d’activation non polynomiales. D’autre résultats traitent des réseaux
profonds parmi lesquels on peut citer (Schmidt-Hieber 2020). Il faut toutefois
modérer l’enthousiasme à l’égard de ces résultats puisque le réseau nécessite un
très grand nombre de neurones pour atteindre une erreur suffisamment faible. Par
ailleurs on n’a pas de contrôle de l’erreur lors de la calibration du réseau sauf cas
très rare si on se ramène à un problème d’optimisation convexe (voir théorème 1
et 2 de Vaswani, Bach, and Schmidt (2019)).

1.2 Réseaux de neurones non-arbitrables

1.2.1 Inquiétudes des régulateurs pour ces nouvelles tech-
niques

Dans la section précédente nous avons donné quelques preuves de l’engouement
du secteur financier en ce qui concerne l’apprentissage statistique et plus par-
ticulièrement l’apprentissage profond. Néanmoins ces nouveaux outils soulèvent
quelques inquiétudes du régulateur et pour les référencer nous nous appuyons sur
la publication de la banque de france (cf. (Dupont, Fliche, and Yang 2020)).

La banque de France a dégagé quatre critères d’évaluation des algorithmes
d’intelligence artificielle :

• La gestion des données avec notamment la confidentialité des informations
et le pré-traitement des données (”features engineering“).

• La performance de l’algorithme en incluant par exemple la précision du mod-
èle mais également d’autres contraintes potentiellement réglementaires.

• La stabilité de l’algorithme à travers le temps si la distribution des données
change à travers le temps ou en généralisant à un nouveau jeu de données et
si le modèle est réentrainé.

• L’explicabilité de l’algorithme qui signifie comprendre son comportement,
le sens de ses (hyper)paramètres ou encore avoir des preuves de son
(dys)fonctionnement.

Dans la suite de ce rapport on ne traitera essentiellement que les trois derniers
critères.

14

Les réseaux de neurones présentent des difficultés pour remplir ces conditions.
Leurs poids sont initialisés aléatoirement ce qui affecte la stabilité des réseaux après
un entrainement. Par ailleurs leurs paramétrisation riche rend fréquent le surap-
prentissage il est donc souvent nécessaire de régulariser le critère d’apprentissage
comme nous le ferons dans le chapitre 2.

Un critère de convergence en moindre carrés peut se révéler trompeur si les
données sous-jacentes sont arbitrables. Il faut donc inclure d’autres critères de
performance comme la non-arbitrabilité et pouvoir évaluer a posteriori le respect
de ces conditions.

Le choix de l’architecture d’un réseau n’obéit pas à une règle universelle et les
paramètres du réseau n’ont pas d’interprétation triviale. Il est alors indispens-
able de dégager une procédure de sélection des hyperparamètres pour motiver la
construction du réseau.

Toutes ces critiques envers l’apprentissage profond provoquent un certain scep-
ticisme des régulateurs comme le montre la figure 1.2.1 de la section 10 de Dupont,
Fliche, and Yang (2020). Selon ce schéma, les réseaux de neurones n’offrent pas de

Figure 1.2.1: Compromis simplicité/performance selon la classe d’algorithme
d’apprentissage statistique.

15

compromis entre la complexité du modèle (au sens où l’on saisit son comportement)
et sa performance. Un réseau performant est selon le régulateur souvent abscons
(phénomène de ”boîte noire”) et appelle une gouvernance modèle particulièrement
rigoureuse.

1.2.2 Contraintes dures versus contraintes souples

La précision d’un algorithme n’est pas une fin en soi comme le souligne la sous-
section précédente. Si l’on prend le cas de l’interpolation des prix d’options
européennes, des contraintes d’arbitrage doivent impérativement être respectées
pour satisfaire aux obligations de contrôle interne des banques. Ces contraintes
d’arbitrages se déclinent en contraintes de forme c’est-à-dire portant sur les dérivées
partielles de l’interpolateur (notamment vis-à-vis du strike ou de la maturité).

Un réseau de neurones devrait en théorie (voir section 6 de Schmidt-Hieber
(2020)) voir ses dérivées partielles converger vers les sensibilités de la fonction de
prix. Cependant l’obtention de minimum local de la fonction de risque du réseau
n’assure pas en pratique une précision convenable des dérivées du réseau. De
plus les données peuvent elles-mêmes violer ces contraintes de forme et il est alors
nécessaire de régulariser l’apprentissage du réseau pour ne pas surapprendre.

Il existe alors deux approches pour imposer ces contraintes :

• Les contraintes dures (”hard constraints“ en anglais) garantissent le respect
de ces conditions quelles que soient les données en entrée du réseau ce qui
en interpolation signifie quelle que soit la localisation de l’option.

• Les contraintes souples (”soft constraints“ en anglais) pénalisent la fonc-
tion de risque si les conditions d’arbitrage sont violées sur des observations
de l’ensemble d’apprentissage. Cette approche se traduit en pénalisations
dans la routine d’optimisation qui peuvent imposer la non-arbitrabilité sur
l’ensemble d’apprentissage mais n’offrent aucune garantie sur de nouvelles
observations par exemple dans l’ensemble de test.

Les contraintes dures se traduisent dans le cas d’un réseau de neurones par la
construction d’une architecture qui intègre ces contraintes de forme (cf. Dugas,
Bengio, Bélisle, Nadeau, and Garcia (2009)). Néanmoins l’architecture induit une
classe de fonctions trop restrictive vis-à-vis de la fonction de prix à approcher.
Le théorème d’approximation universelle n’est alors plus applicable dans ce cas.
Par ailleurs il n’existe pas d’architecture assurant la non-arbitrabilité dans des cas
où la condition est plus complexe (voir notamment la condition butterfly4 pour
l’interpolation de volatilité implicite).

4Condition qui contrôle les variations spatiales du prix ou plus précisément les dérivées par-
tielles par rapport au strike ou à la log-moneyness.

16

Les contraintes souples offrent en revanche la souplesse nécessaire pour pé-
naliser des conditions complexes. L’idée de la pénalisation est d’assurer le respect
de conditions de non-arbitrage aux nœuds définis par la grille d’apprentissage. Le
pari des contraintes souples est d’exploiter la régularité du réseau pour que ces
conditions soient également respectées aux voisinages des nœuds de l’ensemble
d’apprentissage.

1.2.3 Autres approximations nonarbitrables

D’autres modèles d’apprentissage statistique peuvent mêler interpolation et respect
des contraintes d’arbitrage. Parmi ces modèles on citera les processus gaussiens
qui supposent que tous les prix sont distribués selon un vecteur gaussien. La
localisation des options, à travers des variables comme la maturité ou le strike,
intervient dans le calcul de la corrélation des différents prix. C’est l’objet du
noyau qui assigne une corrélation plus forte à des prix dont les coordonnées sont
voisines. Un calcul gaussien (voir la sous-section 15.2.1 de Murphy (2012b)) per-
met ensuite d’interpoler le prix de nouvelles options en exploitant leur corrélation
avec les observations d’une grille d’apprentissage. Cousin, Maatouk, and Rullière
(2016a) proposent une méthode pour construire des processus gaussiens respectant
les contraintes de formes linéaires et ce de manière dure. L’idée est de simuler des
trajectoires d’un processus gaussien tronqué c’est-à-dire de rejeter par exemple des
réalisation du processus qui ne respecteraient pas les contraintes de monotonie sur
une grille discrète. D’autres contraintes linéaires (d’égalité) sont incorporées en
modifiant la distribution du processus gaussien (voir page 14 de Cousin, Maatouk,
and Rullière (2016a)).

Aubin-Frankowski and Szabo (2020) modélisent des contraintes de forme pour
des estimateurs à base d’espace de Hilbert à noyau reproduisant. Le noyau k
dans ce cas joue le rôle d’un changement de variable sensé faciliter l’apprentissage
d’un estimateur f . Les auteurs renforcent leurs contraintes de forme du type
Df(xm)+b ≥ 0 appliquées aux nœuds de l’ensemble de l’apprentissage en ajoutant
une constante pour arriver à Df(xm) + b ≥ η. Cette constante η est calibrée en
fonction de la régularité du noyau de façon à garantir le respect des contraintes
de formes pour un voisinage de tous les points xm de l’ensemble d’apprentissage,
typiquement :

η = sup
m∈{1,..,M},u∈B‖.‖(0,1)

‖Dk(xm, .)−Dk(xm + δu, .)‖

Cependant ce procédé n’est pas compatible avec des contraintes de formes non-
linéaires.

17

1.3 Traiter des données brutes

1.3.1 Défauts des données intra-journalières

Différents fournisseurs de données (Bloomberg, ICAP, ...) informent en continu
les opérateurs de marché des valorisations de divers actifs ou produits financiers.
Seulement ces données ne peuvent pas être traitées en l’état demandant des post-
traitements supplémentaires. Si ces données sont intra-journalières (c’est-à-dire
datent de la séance de marché courante) alors il est très probable que l’information
soit incomplète. Certains contrats financiers sont par exemple moins liquides et
peuvent ne pas être négociés durant la journée ou seulement dans un volume
anecdotique.

Par ailleurs des valeurs renseignées pour le fournisseur de données peuvent
être incohérentes ou paraître erronées à l’œil d’un expert. Ceci peut s’expliquer
par des raisons opérationnelles (erreur humaine, faible volume d’échange), ou à
cause d’observations incohérentes temporellement (certaines données n’ont pas été
actualisées). On se propose dans le chapitre 3 de corriger ces flux de données.

Les données que nous traiterons ont pour point commun de se structurer sous
la forme d’un tenseur. Par tenseur on entend ici une structure de données in-
dexée selon plusieurs dimensions. Par exemple la volatilité implicite d’options
européennes s’organise selon un tenseur d’ordre 2 (une matrice) indexé selon la
maturité et le strike. L’indexation joue un rôle important puisqu’elle définit la no-
tion de proximité entre les élément du tenseur. Dans ce rapport nous ne traiterons
que des tenseurs d’ordre 2 au plus mais il est tout à fait possible d’observer des
tenseurs d’ordre supérieur : les volatilité implicites de swaptions sont agencées
selon un cube. De plus l’indexation peut varier au cours du temps au sens où les
maturités observées un jour peuvent être différentes le lendemain en valeur et en
nombre. On ne peut pas ainsi se contenter d’identifier un élément selon ses rangs
d’indices.

1.3.2 Détection de valeurs aberrantes

La définition d’une valeur aberrante (ou outlier en anglais) est controversée puisque
sa détection nécessite l’avis d’un expert. Si l’on se réfère à Hawkins (1980), une
valeur aberrante est une observation qui diffère suffisamment d’autres observations
d’un même jeu de données pour soulever un doute sur sa validité. Une valeur
aberrante peut se matérialiser par des données corrompues, incomplètes ou encore
atypiques en forme.

Il existe plusieurs approches pour formaliser la détection d’observations anor-
males parmi lesquelles :

• Une valeur aberrante est une observation significativement distante des autres

18

selon une métrique calculée à partir des variables de l’échantillon. Une anal-
yse de partitionnement (ou clustering en anglais), basée par exemple sur la
méthode des K plus proches voisins (Knorr and Ng 1998), peut ensuite être
appliquée au jeu de données en basant la règle décision sur la distance ci-
dessus évoquée. Une façon de construire cette distance est d’effectuer un
changement de coordonnées à travers une analyse en composantes princi-
pales (cf. section 3.3 de (Aggarwal 2017)) ou un noyau (cf. section 3.4.3 de
(Aggarwal 2017)).

• Une valeur aberrante peut se modéliser selon un modèle statistique duquel
découle une notion de vraissemblance. Une observation atypique se traduit
alors par un faible niveau de vraisssemblance. Parmi les modèles statistiques
on peut citer le filtre de Kalman (cf. (Ting, Theodorou, and Schaal 2007),
(Liu, Shah, and Jiang 2004)) ou des modèles de Markov cachés (section 9.3.3
de (Aggarwal 2017)).

• Une valeur aberrante est une observation ne respectant pas la structure la-
tente de l’échantillon. Dans cette perspective, une représentation en basse
dimension (avec une ACP ou un autœncodeur selon Aggarwal (2017)) permet
de discriminer une observation anormale selon son erreur de reconstruction.

Dans le chapitre 3 notre détection de valeurs aberrantes s’inscrit selon la troisième
approche. Néanmoins les ACP/autœncodeurs sont difficilement réconciliables avec
des indexations variables à travers le temps puisque ces projections supposent une
dimension des observations fixe à travers le temps.

1.3.3 Compléter des données à indexation variable

La complétion matricielle est une sous-catégorie de la branche des statistiques
visant à imputer les valeurs manquantes. La complétion suppose que le jeu de
données incomplet possède une structure à rang faible ce qui se justifie si les
variables de notre dataset sont fortement liées ou si les observations se struc-
turent autour de catégories. Dans cette partie, on notera D ∈ Rm×n une matrice
représentant le dataset avecm observations (individus) et n variables. L’hypothèse
de rang faible signifie que l’on peut factoriser par décomposition en valeurs sin-
gulières (tronquée) la matrice D sous la forme UΣV avec U ∈ Rm×r, Σ ∈ Rr×r

une matrice diagonale et V ∈ Rr×n. Plus le rang r est faible et plus les con-
nexions entre les variables/observations sont fortes et meilleure sera l’imputation
des valeurs manquantes. Si on introduit des valeurs manquantes à D alors une
décomposition en valeurs singulières n’est plus possible et il est alors nécessaire
d’estimer (U, V,Σ) avec les valeurs restantes du dataset. Il existe alors plusieurs
méthodes pour estimer (U, V,Σ) à partir de jeu de données incomplet telles que

19

l’algorithme Alternating Least Square (Hastie, Mazumder, Lee, and Zadeh 2015)
ou encore softImpute (Mazumder, Hastie, and Tibshirani 2010).

Toute cette branche de l’apprentissage statistique est motivée par les systèmes
de recommandations des entreprises du numérique et du marketing en ligne. Les
observations du dataset représentent des utilisateurs d’une plateforme et les vari-
ables sont des notes de produits vendus en ligne. La complétion permet alors au
propriétaire de la plateforme d’inférer les notes non renseignées pour proposer à
ses clients des produits qui leurs conviendraient. Ce cas d’application a donné lieu
à une compétition (le prix Netflix) dont le jeu de données fait office de dataset
de référence dans la littérature (cf. (Nguyen, Kim, and Shim 2019)). Des revues
bibliographiques sont disponibles sur le sujet, comme Li, Huang, So, and Zhao
(2019) et Nguyen, Kim, and Shim (2019).

Néanmoins la littérature en complétion ne s’applique pas aux données de volatil-
itiés implicites d’option étudiées dans le chapitre 3 :

• Les colonnes ne sont pas identifiées à des variables puisqu’une option peut
expirer un jour et laisser sa place dans la colonne à une option ayant une
autre maturité résiduelle.

• La structure matricielle n’encode pas d’informations au sujet de l’indexation
des variables. Or cette information est nécessaire pour définir une notion de
proximité entre les variables.

• Seule la dernière ligne, correspondant à la journée de cotation courante,
contient des valeurs manquantes. Les autres lignes ayant été observées dans
le passé, le nombre de valeurs manquantes est réduit et localisé à la différence
des jeux de données d’expérience utilisateur (à la ”Netflix“).

Le chapitre 3 vise à réconcilier l’imputation des valeurs manquantes avec la
gestion de données dont l’indexation varie d’un jour sur l’autre. Une structure de
faible rang sera toujours apprise à partir de l’historique en apprenant un décodeur
mais l’encodeur sera implicite pour pallier au nombre variable d’entrées. Enfin
nous supposerons uniquement des liens entre les variables (volatilités implicites)
et non entre les journées de cotation. Ceci s’apparente dans la littérature à une
approche ”item-based“5.

5Dans la littérature des systèmes de recommandation, les lignes des jeux de données sont
généralement identifiées à des utilisateurs (users en anglais) et les colonnes à des notations des
produits (items en anglais). Les méthodes de complétion sont alors classées comme des approches
”item-based“ si elles exploitent les intéractions entre les variables plutôt que les intéractions entre
les observations. Dans le cas contraire on parle d’approche ”user-based“.

20

1.4 Compression des XVAs

1.4.1 Le tournant de 2008

L’acronyme XVA désigne une famille d’ajustements de risques de contrepartie et
plus littéralement le X désigne une lettre muette précédant ”Value Adjustments“.
On classera ces primes de risque en trois grandes catégories : les primes de risque
de défaut, les primes dénotant le coût de financement du collatéral et les primes
de financement de capital réglementaire.

Ces ajustements visent en partie à modéliser deux types de pertes :

• La dépréciation sur le marché d’un contrat financier ne se justifiant que par
une perte de confiance dans la solvabilité de la contrepartie. La perte de
valeur n’est donc pas reliée aux caractéristiques intrinsèques du contrat.

• Le défaut de la contrepartie qui échoue à honorer ses engagements. Les
paiements du contrat échéant après la date de défaut sont alors modélisés
comme des flux à couvrir au titre du risque de contrepartie.

La crise financière de 2008 a matérialisé les pertes occassionées par le risque de
contrepartie. Tout d’abord le nombre de défauts a augmenté en particulier dans le
secteur des crédits hypothécaires américains impactant les marchés financiers par
le biais de la titrisation. Un effet de contagion provoque une hausse des spreads
de crédit sur l’ensemble des marchés financiers et une pression à la baisse sur les
produits dérivés de peur de nombreuses faillites. Par ailleurs le financement des
banques est fragilisé : les collatéraux ne sont acceptés qu’en contrepartie de rabais
plus important, les taux interbancaires flambent avec un écart de 3,5 % avec l’OIS6.
La valeur des portefeuilles dérivés des banques étant dépréciée et les besoins de
financement plus nombreux pour faire face aux risques, les banques doivent vendre
certains de leurs actifs (actions, obligations) pour restaurer leur ratio de capitaux
et rétablir la confiance. Or ces ventes forcées (firesales en anglais) accélèrent la
baisse des actifs sur les marchés financiers créant ainsi une spirale négative. Cette
crise possède ainsi toutes les caractérisques auxquelles souhaitent répondre les
XVAs : valoriser les pertes liées aux défauts, anticiper les coûts de financement de
collatéral7, renforcer les capitaux propres des banques pour passer sans encombres
les périodes de stress financiers.

6L’overnight indexed swap (ou swap de taux au jour le jour) est considéré comme une ap-
proximation du taux sans risque. Ce taux correspond à un swap dont la patte flottante paie le
taux au jour le jour par exemple le SOFR aux États-Unis. L’écart LIBOR-OIS est un abus de
langage renvoyant à l’écart entre les taux de swap calculés sur le LIBOR et sur le taux au jour
le jour. Habituellement le LIBOR (taux interbancaire) était proche du taux au jour le jour mais
cette observation a été remise en cause en 2008.

7Actif financier donné en garantie.

21

Pour formaliser ces concepts il est nécessaire de faire la différence entre la
valeur intrinsèque8 d’un contrat U et sa valeur de marché V censée appréhender la
confiance dans la contrepartie. La différence U−V valorise ce risque de contrepartie
et fait référence à la CVA et la FVA que l’on décrira par la suite. Les banques
inscrivent dès lors ces quantités à leur bilan comptable pour affiner la valorisation
de leurs produits et mettre en place des stratégies de couverture.

Dans cette section, nous présenterons brièvement, pour chaque ajustement de
contrepartie, les méthodologies de calcul proposées par le régulateur. Puis nous
évoquerons une formulation plus quantitative de ces ajustements de contrepartie
afin de mettre en valeur les incomplétudes de marché inhérentes à chaque XVA.

1.4.2 Valoriser le risque de défaut

La CVA, ou plus précisément Credit Value Adjustment en anglais, est une prime
de risque pour le défaut de la contrepartie. En effet la banque enregistre une perte
si la contrepartie engagée dans un contrat envers la banque fait défaut. Cette perte
se mesure à l’aune de l’exposition du client envers la banque si celle-ci est négative
(i.e. la contrepartie doit de l’argent à la banque).

On recense plusieurs approches pour évaluer une CVA dite comptable c’est-à-
dire reflétant le plus fidèlement les pertes occasionnées par le risque en question.
On se limitera au cas unilateral c’est-à-dire la situation ou seul le défaut de la
contrepartie est considéré.

La première approche, dite de semi-réplication (Burgard and Kjaer 2011), se
prête davantage à la résolution par EDP. Le terme semi fait référence au carac-
tère imparfait de la couverture : le processus de recouvrement R 9 est inconnu
et il n’existe pas sur le marché d’instruments de couverture permettant une ré-
plication parfaite du défaut de la contrepartie. D’autres méthodologies ont été
proposées pour valoriser des XVAs. On peut notamment citer Albanese, Crépey,
and Chataigner (2018) qui modélise le bilan complet de la banque. Ceci permet de
calculer la FVA pour un groupe de contreparties et de bénéficier d’un financement
mutualisé du collatéral. Par ailleurs la KVA n’est plus considérée comme une dette
(liability en anglais) de la banque mais est intégrée à ses capitaux propres ce qui
signifie que la KVA n’intervient pas dans le compte de pertes et profits (abrégé
P&L en anglais) lié à la contrepartie.

La formule pour la CVA ci-dessous est démontrée dans la section 9.4.1 de Green
(2015) dans ce cadre de semi-réplication. Dans le chapitre 4, la métrique optimisée
sera calculée selon cette formule (1.1).

8La valeur intrinsèque (”clean value“ en anglais) ne dépend que des caractéristiques du contrat
mais ne fait pas référence à l’identité des signataires.

9Pourcentage de l’exposition perdu au moment du défaut.

22

CVA = (1−R)

∫ T

0

λCse
−
∫ t
s ru+λCuduE

[
(Vs −Xs)

+
]
ds (1.1)

avec Xs le montant de collatéral posté à la date s, T la maturité du portefeuille
et λC le spread de crédit de la contrepartie.

En réalité cette formule est le fruit d’une hypothèse simplicatrice qui suppose
l’indépendance entre le montant de l’exposition V −X et le risque de défaut de la
contrepartie c’est-à-dire λC . Ainsi dans Albanese, Crépey, and Chataigner (2018),
le risque de défaut devrait se modéliser plus généralement selon la formule suivante:

CVA = (1−R)E
[
(Vτ −Xτ)

+1τ≤T
]

(1.2)

ou τ désigne le temps de défaut de la contrepartie.
Il est intéressant de s’attarder sur l’exécution opérationnelle de ce genre de

formule. La valeur sans risque de contrepartie V (clean value en anglais) peut
s’enregistrer suivant un tenseur d’ordre 3 que l’on appelle cube de valeur sans risque
de défaut (mark-to-market cube en anglais). Il contient toutes les valeurs des trans-
actions pour toutes les trajectoires d’exposition, toutes les dates jusqu’à maturité.
L’enjeu pour l’équipe de la banque en charge du risque de crédit est de valoriser un
cube de valeur sans risque de défaut qui soit cohérent avec la méthodologie de val-
orisation de l’équipe risque de marché. Cette équipe de risque de marché, qui val-
orise et couvre les transactions indépendamment du signataire, doit s’entendre avec
l’équipe risque de crédit sur l’environnement qu’elle utilise (données de marchés,
calibration des paramètres modèles) afin d’accorder sa stratégie de couverture du
risque de marché avec la couverture des XVAs de l’équipe risque de crédit. En effet
l’exposition joue un rôle central dans l’évaluation des XVAs et affecte leurs sensi-
bilités. Dans le cas des CVAs, l’exposition affecte la couverture par rapport à des
instruments de marché n’appartenant pas à la classe crédit comme des courbes de
taux par exemple. Cet échange rigoureux et automatisé d’information est désigné
dans le chapitre 4 sous le nom de ségrégation des desks10. Il est d’ailleurs im-
plicitement encouragé par le régulateur qui, dans sa révision des calculs CVA (voir
section 4 de Basel Committee on Banking Supervision (2015)) ou avec FRTB-
CVA, demande d’inclure la couverture dans le calcul des charges de capital. De
plus les CVAs réglementaires devront utiliser des paramètres (drifts, probabilités
de défauts, ...) calibrés selon l’approche risque neutre (pages 2-3 de Basel Commit-
tee on Banking Supervision (2015)). Le régulateur tend donc à aligner ses calculs
réglementaires sur des valorisations comptables (IFRS 13 toujours selon la page 2
du même rapport) qui sont elles alignées avec les valorisations de l’équipe risque
de marché.

10Un desk est une équipe de trading au sens large.

23

Enfin la complexité du cube de valeur sans risque de défaut est très élevée
et la CVA n’est pas linéaire par rapport au portefeuille. Si la banque conclut
une nouvelle transaction avec la contrepartie alors le cube de valeur sans risque de
défaut doit être réévalué dans son intégralité pour connaître le nouveau montant de
la CVA. Ce contretemps sera limité dans le chapitre 4 grâce au calcul incrémental.

1.4.3 Valoriser le financement du collatéral

On a justifié dans la sous-section précédente qu’une réplication parfaite liée au
défaut de la contrepartie est impossible. Dés lors il faut minimiser l’exposition
pour réduire le risque résiduel. Une pratique standard du marché est de demander
un collatéral en gage de la valeur du portefeuille. Si l’exposition de la banque
est négative alors elle doit apporter du collateral et dans le cas contraire c’est à
la contrepartie d’apporter le collatéral à la banque. Cet échange de collatéral se
produit également entre la banque et les entités auprès desquelles la banque se
couvre 11 sauf que la banque poste du collatéral auprès de ces entités si elle reçoit
du collatéral de la contrepartie.

Généralement le collateral est un titre financier de bonne qualité comme une
obligation souveraine de bonne notation ou simplement des liquidités. Si la garantie
est jugée peu fiable alors un rabais est appliqué à la valeur du collatéral et il est
nécessaire de mobiliser un nominal plus important en gage.

Il existe plusieurs catégories de collatéral caractérisées par leur mode de calcul:

• La marge de variation (variation margin en anglais) qui est indexée sur le
montant du MtM à chaque date de rafraichissement. Le montant posté en-
tre deux appels de marges dépend du montant de collatéral déjà posté et
diverses modalités comme des montants minimaux de transfert, des seuils de
déclenchement (voir chapitre 6 de (Gregory 2015) pour plus de détails) ... La
marge de variation peut être réutilisée comme garantie dans d’autres trans-
actions par le destinataire du collatéral avant l’expiration de la transaction.
Ceci signifie que le coût d’emprunt du collatéral pour la couverture est nul
si on peut poster le collatéral apporté par la contrepartie. En revanche si la
contrepartie ne poste pas de collatéral, parce qu’elle n’a pas signé de credit
support annex 12, alors la banque doit emprunter ce collatéral sur les marchés
à un coût généralement supérieur à sa rémunération (souvent égale à l’OIS).
La Funding Value Adjustment (FVA, pour sa formulation voir chapitre 9 de

11Un cas de couverture fréquemment rencontré consiste à ouvrir une position exactement
inverse à la position que l’on souhaite couvrir. On parle alors de couverture ”back-to-back“.

12Un credit support annex (CSA en abrégé) est un document juridique qui régie les échanges
de collatéral entre les contreparties dans le cadre d’une transaction de produits dérivés.

24

(Green 2015)) correspond au coût de financement de la marge de variation
si la contrepartie n’en poste pas ou pas assez.

• La marge initiale (initial margin en anglais) est un coussin de sécurité min-
imal visant à couvrir le risque de dérapage du MtM entre deux appels de
marge13. Pour chaque date de raffraichissement, le montant de collatéral
est indexé sur une mesure de risque du portefeuille : Value-at-Risk ou un
dérivé de VaR à base de sensibilités dans le cas d’une IM SIMM (Standard-
ized initial margin method). Le coût de financement de cette marge initiale
constitue la Margin Value Adjustment (ou MVA, voir chapitre 16 de (Gre-
gory 2015) ou l’annexe de (Crépey, Hoskinson, and Saadeddine 2021) pour
sa formulation). La marge initiale ne peut pas être en général réutilisé par
son destinataire pour d’autres transactions c’est-à-dire qu’elle est séquestrée.

Les coûts de financement interviennent dans d’autres situations comme avec
les chambres de compensations (voir (Armenti and Crépey 2017)). Le régula-
teur encourage d’ailleurs la compensation des transactions de dérivés voire la rend
obligatoire (voir section 9.3 de (Gregory 2015)). Les CCPs (acronyme de central
counterparty clearing) n’entreront pas dans le cadre de l’étude du chapitre 4.

La collatéralisation permet de réduire, voire d’annuler la CVA et la FVA. En
revanche elle peut donner lieu à d’autres coûts comme la MVA.

1.4.4 Valoriser des provisions en capital

Parallèlement à ces écritures comptables, le régulateur a souhaité imposer des
réserves en capital aux banques (premier pilier des réglementations de Bâle) afin
d’empêcher la mise en place de pyramides de Ponzi. Le principe de ce montage
financier est d’entrer dans de nouveaux contrats afin de financer les pertes d’un
portefeuille pré-existant. Or les réserves de capital sont chères à lever auprès des
actionnaires puisqu’ils demandent en général un rendement bien supérieur au coût
de financement sur le marché interbancaire par exemple. La mise en place d’une
transaction est alors plus coûteuse et empêche la contruction d’une pyramide de
Ponzi. Les réserves de capital réglementaires sont avant tout conservatives et ne
visent pas à couvrir une perte de manière exacte mais plutôt à constituer un coussin
de sécurité en prévision de périodes de stress.

Parmi les réserves de capital on peut citer :

• La charge en capital au titre du risque de crédit qui provisionne le défaut
des clients de la banque.

13Ce risque de dérapage est valorisé sous le terme de Margin period of risk.

25

• La charge en capital au titre de la CVA qui provisionne des dépréciations de
la valeur des actifs de la banque si la signature de ses débiteurs se dégrade.

• La Risk-weighted asset (ou actifs à risques pondérés) qui sert de référence
pour provisionner les fonds propres réglementaires de la banque (ratio de
Bâle). Tout le bilan de la banque et toutes les classes de risque se veulent
capturés par la RWA.

Le détail des formules de chaque réserve de capital peut être trouvé dans
(Basel Committee on Banking Supervision 2015) (ou le chapitre 8 de (Gregory
2015)) mais on peut dégager quelques similitudes. Tout d’abord le régulateur pro-
pose au moins deux méthodologies de calculs pour s’adapter aux capacités finan-
cières de chaque établissement. Parmi ces approches il y a toujours une méthode
paramétrique, plus simple à calculer, mais plus conservative. Une autre approche,
plus complexe, autorise l’utilisation de modèles d’évaluation internes aux banques
ce qui nécessite bien souvent de simuler l’exposition comme pour les autres XVAs.

Par ailleurs toutes ces quantités désignent des montants de capital à réserver
mais c’est leur coût de financement qui est chargé au client. La capital value
adjustment (KVA) vise à estimer ce coût pour ensuite l’ajouter à la valeur sans
risque de défaut V du contrat au côté de la CVA et la FVA. Toutefois la réserve en
capital intervenant dans la KVA n’est pas nécessairement basée sur une des réserves
de capital réglementaire précédentes mais peut alternativement être basée sur le
capital économique. Le capital économique est une mesure de risque désignant
quel montant la banque doit posséder en réserve pour traverser une crise. Il s’agit
généralement d’une Value-at-Risk14 ou d’une expected shortfall15 calculée sur les
pertes à l’horizon d’une année de la banque. En notant h le taux de rendement
pour les actionnaires des capitaux placés dans la banque, Crépey, Hoskinson, and
Saadeddine (2021) dans leur annexe formulent la KVA comme :

KV A = E
[∫ T∧τ

0

he−hs max (ECs, KV As) ds

]
(1.3)

La KVA capture ainsi toutes les pertes issues du risque de contrepartie qui
ne peuvent pas être couvertes. Au même titre que la CVA, la KVA et les autres
réserves de capital pourraient être optimisées. Toutefois la complexité calculatoire
de la KVA rend pour l’instant inaccessible sa compression. À notre connaissance,
seule la MVA dans une forme simpliste avec (Kondratyev and Giorgidze 2017) a
été l’objet d’une procédure de compression dans la littérature. Nous proposons
d’optimiser la CVA et d’en préciser les enjeux opérationnels dans le chapitre 4.

14Quantile qui sert à exprimer la pire perte que l’on rencontrerais pour un niveau de confiance
fixé (généralement 95%).

15Espérance de la Value-at-Risk ayant un niveau de confiance supérieur à un seuil (générale-
ment 97,5%).

26

Chapter 1

Introduction

1.1 Machine learning in finance
Machine Learning aims at improving a computer program with the observation of
statistical data (Mitchell 1997). This discipline is located at the intersection of
statistics and computer science.

If the use of statistics in finance is a novel idea (see for example (Markowitz
1952)), its use has intensified in recent years for various reasons:

1. Regulators require validation of mathematical models on historical data
through backtests (see for example pages 40-50 of (Basel Committee on Bank-
ing Supervision 2011)).

2. The complexity of regulatory calculations requires the use of statistical ap-
proximations to make these calculations accessible on an intraday basis (see
section 4.3 of (Crépey, Hoskinson, and Saadeddine 2021)).

3. Financial agents want to include unconventional financial data to generate
more returns (see chapter 5 of (Xing, Cambria, and Welsch 2019) or (Bar-
tram, Branke, and Motahari 2020)).

4. Some mathematical models have failed (or been misunderstood) during pre-
vious periods of financial stress. Some financial players then wish to relax
certain assumptions on the dynamics of financial assets in order to calibrate
more agnostic models : non-parametric methods (see (Chen, Pelger, and Zhu
2020)), rough volatility (see (Gatheral, Jaisson, and Rosenbaum 2018))).

The objective of this thesis is to treat some problems of quantitative finance
with some tools issued from statistical learning. Treated problems thereafter are
related to the previous points 1, 2 and 4 and we will examine these points in

27

greater details in this section. In particular we will evoke cases of applications of
the literature in the subsections 1.1.1 and 1.1.2 to conclude by discussing some
foundations of neural networks.

1.1.1 The need for surrogate models

One of the appeals of statistical learning is its rapid evaluation, assuming we do
not include the learning procedure. These fast statistical approximations or ”Fast
pricing“ in quantitative finance refer most of the time to neural networks. Their
implementation for the valuation of derivative products dates back to the 1990s
(see (Hutchinson, Lo, and Poggio 1994)) but their use became widespread much
later for two reasons. First of all, the precision of these approaches left something
to be desired, which called for refining the architecture according to the data
(see (Garcia and Gençay 2000)). In addition, the issue of calculation time did
not emerge until the 2010s because of more complex valuation models: Bergomi
model for (Horvath, Muguruza, and Tomas 2019) or XVA calculations for (Crépey,
Hoskinson, and Saadeddine 2021).

The increase in the complexity of the calculations is explained, for example,
by valuation procedures that include nested simulations. This is notably the case
of XVAs (see section 1.4) or other conditional risk measures which would rigor-
ously call for nested Monte Carlo (cf. (Abbas-Turki, Crépey, and Diallo 2018)) .
However, the calculation times or more generally the technical constraints (such
as the memory of the CPUs / GPUs) prevent the generalization of these simula-
tion schemes for more complex XVAs as shown in the figure 1.1.1. The solutions
proposed in the literature are essentially based on regression schemes. Thus the
conditional expectation is assimilated to the Bayes predictor while the conditional
quantiles are reformulated in the form of expectation (cf. (Fissler, Ziegel, and
Gneiting 2016)).

The regression scheme is similar to that of Longstaff-schwartz (see (Longstaff
and Schwartz 2001)) namely that we first simulate (and record) the risk factors
until the terminal date of a temporal discretization. Then, the payoffs for the
following date are regressed on the basis of the risk factors for the current date.
The operation is repeated in order to go back to the initial date in order to obtain
the desired price. Traditionally, the regression was linear, but the increase in
the number of risk factors and especially the non-linearity of the valuations of
derivative products with respect to the underlying has motivated the use of neural
networks.

More generally, neural networks are useful for solving partial derivative equa-
tions (cf. (Lu, Jin, and Karniadakis 2019), (Blechschmidt and Ernst)) because
they are claimed to be more resilient to the curse of dimensionality.

These EDPs can also be reformulated in the form of a backward stochastic

28

KVA0

ECs, 0<s<T

ECs

FVAt=s,...,s+1

CVAt, MVAt, t=s,...,s+1

IMt=s,...,s+1

 , MtMt=s,...,s+1

FVAt

CVAu, MVAu, u=t,...,T

IMu=t,...,T

 , MtMu=t,...,T MVAu, CVAu

IMv=u,...,T

 , MtMv=u,...,T

IMv

 , MtMw=v,...,v+

 , MtMw

Depth

Mcva
Mfva

Mkva

Mec

Mim Mmtm

. .
 .

. .

. .
 .

.

. .
 .

.

. .
 .

. .
 .

. .

Figure 1.1.1: Dependency tree for XVAs : the more we move to the left, the
more the complexity of the simulations increases. Figure is drawn from (Crépey,
Hoskinson, and Saadeddine 2021).

differential equation (cf. (Weinan, Han, and Jentzen 2017)) in which the neural
network plays the role of the gradient of the solution.

A final motivation for these quick approximations is the use of more complex
valuation models. In that situation, we do not try to include a proxy in a numerical
scheme but to bypass the pricer as a whole (see (Ferguson and Green 2018)). This
is even more crucial if one wishes to estimate on an intraday basis the sensitivi-
ties of the pricer for hedging purposes, for example. This is justified in situations
where the implementation of algorithmic differentiation can be delicate. We can
then either estimate a proxy to obtain bump-and-revalue sensitivities by finite dif-
ference or more simply estimate these partial derivatives by back-propagation (cf.
(Huge and Savine 2020). Algorithmic differentiation is indeed native in machine
learning frameworks like Tensorflow (with calculations structured in as a graph)
or pytorch (whose calculations are rather organized around a tape). These sensi-
tivities can also be used to calibrate these complex valuation models more quickly
(see (Horvath, Muguruza, and Tomas 2019)).

29

1.1.2 Solving opened problems

Some problems in quantitative finance can only be solved by formulating them in
the form of statistical learning problems. A first application consists in reformu-
lating the valuation problem as an incomplete market hedging problem, that is
the price is no longer given by an expectation but by the minimization of a risk
measure on the valuation of the hedged portfolio. This approach was popular-
ized among others by (Bühler, Gonon, Teichmann, and Wood 2019) which aims
to calibrate, at each simulation date, a deep neural network to determine both a
hedging process and also a price. The only restriction concerns the class of hedging
processes through the parametrization of the neural network.

More generally, these deep networks are used to solve stochastic control prob-
lems in the form of BSDE. Unlike the previous subsection, the use of neural net-
works not only accelerates the computation time but also allows their resolution
when the control process is determined by a function class defined by the network
parameterization (see (Bachouch, Huré, Langrené, and Pham 2021)).

Machine learning enables financial companies to use data that was not pro-
cessed until now because they were non-standard or difficult to format.

These unconventional data sources include satellite maps to predict oil supply
or retail sales ((Katona, Painter, Patatoukas, and Zeng 2018)), social media analy-
sis (also called sentiment analysis) to anticipate a decrease/increase in a company’s
sales ((Sprenger, Sandner, Tumasjan, and Welpe 2014)) or even the automated
processing of a newsfeed to anticipate the stock value of a company ((Azimi and
Agrawal 2019)). Financial problems are then in the domain of prediction and
assessed on historical data.

Finally, the emergence of generative networks (GANs, variational autoencoders)
opens the way to the generation of financial scenarios (see (Allouche, Girard, and
Gobet 2021)). These artificially generated data can be used for stress tests or to
produce larger datasets (data augmentation) as Buhler, Horvath, Lyons, Arribas,
Wood, et al. (2020) explains.

1.1.3 The neural network upheaval

Statistical learning cannot be restricted to the study of neural networks, but they
represent a very large majority of the objects presented in this report. In addition,
neural networks are the statistical tool most used by quantitative finance research
and Ruf and Wang (2020) offer a review of articles on the subject. After a brief
formal introduction of neural networks, we explain the recent popularity for this
tool in quantitative finance and then we give recent theoretical convergence results.
We will limit ourselves to feedforward neural networks.

A feedforward neural network is a cascade of nonlinear regressions. Inspired

30

by the human brain, this network is made up of a succession of layers themselves
comprised of neurons. Each neuron contains the following elements :

• A matrixW weighting each of the neurons of the previous layer. Connections
can be skipped which reduces the size of this matrix.

• A b bias which in conjunction with the activation function ensures network
sparsity when this bias is very small.

• A non-linear activation function ς which very often acts as a threshold. In
the case of a regression, the activation function of the output layer (the latest
layer) is absent. If no activation function is added then we fall back into an
ordinary linear regression.

In summary, a neuron is written as:

f := ς(Wx+ b)

with x a real vector returned by the whole or a subset of the previous layer if we
want to skip certain connections.

In general, these networks take as input and return as output a vector with
real values, but the user can restrain the image of the network according to the
activation function of the output layer. In the case of a logistic regression, a
sigmoid function is added to estimate a probability.

A neural network can be seen in the case of a regression as a linear regression
against a kernel function. This kernel is made up of the lower layers 1 which act as
non-linear basis functions and generate artificial features. The output layer then
linearly regresses these features. Thus a neuronal regression approaches a gener-
alized linear regression but, unlike the latter, we jointly learn the basis functions
and the projection coefficients on this basis.

The learning of these networks is based on the backpropagation algorithm :
the loss gradient is backpropagated from the output to the weights of the input
layer by applying the chain rule. The back-propagation, which is a special case
of the AAD 2, is illustrated step by step in section 8 of Savine (2018). The ad-
vantage of backpropagation is that the gradient computation of the loss relative
to (W, b) is of the same order of magnitude as a neural network evaluation since
this loss is a scalar. On the other hand, if one wishes to calculate the gradient of a
multidimensional output of the network then the backpropagation time increases
proportionally with the dimension of the output layer.

The backpropagation of the gradient allows for the calibration of the weights of
the network with a gradient descent. This gradient descent is said to be stochastic

1That is to say before the output layer.
2Adjoint algorithmic differentiation

31

if, during each iteration, the observations used to evaluate the gradient are sampled
randomly. The concern about the learning of a neural network comes from the
non-convexity of the learning problems, that is to say from the risk function with
respect to the network weights. To overcome this non-convexity, the weights W
are initialized randomly while the biases are set to zero. Nevertheless we have to
be satisfied with a local minimum and the difficulty lies in the selection of those
which are suitable. In addition, a large number of observations is necessary to
obtain a suitable estimate of this local minimum.

The success of neural networks comes from the power gains of computer ma-
chines with, for example, the arrival of GPU graphics cards which, among other
things, allow much larger datasets to be treated. In addition, the progress of
video and image processing work has aroused the curiosity of stakeholders in the
financial sector. Indeed, the first functional neural network is reputed to be the
Rosenblatt (1958) perceptron. The back propagation algorithm only emerges with
Rumelhart, Hinton, and Williams (1985) and convolutional networks with, among
others, LeCun, Boser, Denker, Henderson, Howard, Hubbard, and Jackel (1989).
It is these experimental breakthroughs that have motivated the introduction of
deep learning methods into the financial world.

Some convergence results promise the approximation of any continuous func-
tion with a shallow neural network. Among these results we can cite universal ap-
proximation theorems such as Proposition 2 of Leshno, Lin, Pinkus, and Schocken
(1993) assuming non-polynomial activation functions. Other results deal with deep
networks among which we can cite (Schmidt-Hieber 2020). However, the enthusi-
asm for these results must be moderated since the network requires a very large
number of neurons to achieve a sufficient accuracy. In addition, we have no error
control during network calibration except in very rare cases if we fall on a con-
vex optimization problem (see theorem 1 and 2 of Vaswani, Bach, and Schmidt
(2019)).

1.2 Arbitrage-Free neural networks

1.2.1 Criticisms of neural network from a regulatory per-
spective

In the previous section we gave some evidence of the enthusiasm of the finan-
cial sector with regard to statistical learning and more particularly deep learning.
However, these new tools raise some concerns from the regulator and in order to
reference them we relate our analysis on the publication of the Banque de France
(see (Dupont, Fliche, and Yang 2020)).

The bank of France has identified four criteria for evaluating artificial intelli-

32

gence algorithms :

• Data management including data protection and features engineering.

• The performance of the algorithm including for example the accuracy of the
model but also other potentially regulatory constraints.

• The stability of the algorithm over time if data are not stationary (or involve
a new dataset) and if the model is retrained.

• The explicability of the algorithm which means understanding its behav-
ior, the meaning of its (hyper) parameters or even having evidence of its
(dys)function.

In the remainder of this report, we will mainly deal with the last three criteria.
Neural networks show difficulties in meeting these conditions. Their weights

are randomly initialized which affects the stability of the networks after training.
Moreover, their rich parameterization makes overfitting frequent, so it is often
necessary to regularize the learning criterion as we will do in the chapter 2.

A least square convergence criterion can be misleading if the underlying data
is arbitrable. It is therefore necessary to include other performance criteria such
as non-arbitrability and we must be able to assess a posteriori compliance with
these conditions.

The choice of the neural network architecture is not subject to a universal
rule and the parameters of the network have no trivial interpretation. It is thus
essential to build a procedure for selecting hyperparameters to motivate the design
of the network.

All of these criticisms about deep learning arouse some skepticism from regu-
lators as shown in figure 1.2.1 in section 10 of Dupont, Fliche, and Yang (2020).
According to this diagram, neural networks can not offer a good compromise be-
tween the complexity of the model (in the sense of understanding its behavior)
and its performance. An efficient neural network, from the point of view of the
regulator, is often abstruse (the so-called black box phenomenon) and calls for a
particularly rigorous model governance.

1.2.2 Hard constraints versus soft constraints

The accuracy of an algorithm is not an end in itself as underlined in the previ-
ous subsection. For instance in the case of the interpolation of European option
prices, arbitrage constraints have to be imperatively respected in order to meet
the obligations of internal bank controls. These arbitrage constraints are declined
in shape constraints, i.e. involving the partial derivatives of the interpolator (in
particular with respect to the strike or the maturity).

33

Figure 1.2.1: Compromis simplicité/performance selon la classe d’algorithme
d’apprentissage statistique.

A neural network should in theory (see section 6 of Schmidt-Hieber (2020))
see its partial derivatives converge to the sensitivities of price functions. However,
obtaining the local minimum of the risk function does not in practice ensure a
suitable precision of the neural network derivatives. In addition, the data can
itself violate these shape constraints and it is then necessary to regularize the
learning of the network so as not to overfit.

There are then two approaches to impose these constraints:

• The hard constraints guarantee the respect of these conditions whatever the
input data. This means no-arbitrage, in the interpolation context, whatever
the option coordinates.

• Soft constraints penalize the risk function if the no-arbitrage conditions are
violated for some observations of the training set. This approach results in
penalizations in the optimization routine that can impose non-arbitrability
on the training set but offer no guarantee on new observations for example
in the testing set.

34

The hard constraints are reflected in the case of a neural network by the con-
struction of an architecture which integrates these shape constraints (see Dugas,
Bengio, Bélisle, Nadeau, and Garcia (2009)). However, the architecture induces
a class of functions that is too restrictive with respect to the price function to
be approached. The universal approximation theorem is then no longer valid in
this case. In addition, there is no architecture ensuring non-arbitrability in cases
where the condition is more complex (see in particular the butterfly condition for
the interpolation of implied volatility).

Soft constraints, on the other hand, provide the flexibility necessary to penalize
complex conditions. The idea of penalization is to ensure compliance with non-
arbitrage conditions at the nodes defined by the learning grid. The wager of
the flexible constraints is to exploit the neural network regularity so that these
conditions are also respected in the neighborhoods of the learning set nodes.

1.2.3 Other non-arbitrable surrogate models

Other statistical learning models can mix interpolation and respect for arbitrage
constraints. Among these models we can cite the Gaussian processes which assume
that all the prices are distributed according to a Gaussian vector. The option
locations, through variables such as maturity or strike, is involved in the calculation
of the correlation of different prices. It is the purpose of the kernel which assigns a
stronger correlation to prices whose coordinates are close. A Gaussian calculation
(see subsection 15.2.1 of Murphy (2012b)) then makes it possible to interpolate
the price of new options by exploiting their correlation with the observations of a
training grid. Cousin, Maatouk, and Rullière (2016a) propose a method to build
Gaussian processes that ensure linear constraints in a hard way. The idea is to
simulate the trajectories of a truncated Gaussian process, and more precisely to
reject samples of the process which do not respect, for example, monotonicity
constraints on a discrete grid. Other linear (equality) constraints are modeled by
tuning the distribution of the Gaussian process (see page 14 of Cousin, Maatouk,
and Rullière (2016a)).

Aubin-Frankowski and Szabo (2020) model shape constraints for reproducing
kernel Hilbert space based estimators. The kernel k in this case plays the role of
a change of variable which is supposed to facilitate the learning of an estimator
f . The authors reinforce their shape constraints of the type Df(xm) + b ≥ 0
to apply them to any node of the training set by adding a constant to obtain
Df(xm) + b ≥ η. This constant η is calibrated according to the regularity of the
kernel so as to guarantee the respect of the shape constraints for a neighborhood
of all the points xm of the training set, typically:

η = sup
m∈{1,..,M},u∈B‖.‖(0,1)

‖Dk(xm, .)−Dk(xm + δu, .)‖

35

However, this procedure is not compatible with non-linear constraints.

1.3 Dealing with empirical data

1.3.1 Intraday data shortcomings

Various data providers (Bloomberg, ICAP, etc.) continuously inform market op-
erators of the valuations of various financial assets or products. But these data
cannot be processed in that condition and require additional post-processing. If
this data is intraday (i.e. coming from the current market session) then it is very
likely that the information is incomplete. Some financial contracts, for example,
are less liquid and are not traded during the day or only in a negligible volume.

In addition, the values provided by the data supplier may be inconsistent or
appear erroneous for an expert eye. This can be explained by operational reasons
(human error, low volume of exchange), or because of temporally inconsistent
observations (some data has not been updated). We propose in the chapter 3 a
way to correct these data flows.

The data that we will process have in common that they are structured in
the form of a tensor. By tensor is meant here a data structure indexed according
to several dimensions. For example, the implied volatility of European options is
organized as a tensor of order 2 (a matrix) and indexed along to the maturity and
the strike. Indexing plays an important role since it defines the notion of proximity
between the elements of the tensor. In this report we will only deal with tensors
of order 2 at most but it is quite possible to observe tensors of higher order: the
implicit volatility of swaptions are for instance arranged according to a cube. In
addition, indexation may vary over time in the sense that the maturities observed
one day may be different the next day in value and number. We cannot thus be
satisfied with identifying an element according to its rank of indices.

1.3.2 Outlier detection

The definition of an outlier is controversial since its detection requires expert ad-
vice. Referring to Hawkins (1980), an outlier is an observation that differs sig-
nificantly from other observations in the same dataset to raise a doubt about its
validity. An outlier can be materialized by corrupted, incomplete or even atypical
data in terms of shape.

There are several approaches to formalize the detection of abnormal observa-
tions, including:

• An outlier is an observation significantly distant from the others according
to a metric calculated from the sample features. A clustering analysis, based

36

for example on the method of K nearest neighbors (Knorr and Ng 1998), can
then be applied to the dataset by basing the decision rule on the distance
previously mentioned. One way to build this distance is to perform a coor-
dinate change through a PCA (see section 3.3 of (Aggarwal 2017)) or using
a kernel (see section 3.4.3 of (Aggarwal 2017)).

• An outlier can be modeled according to a statistical model from which a
notion of likelihood derives. An atypical observation then results in a low
level of likelihood. Among the statistical models we can cite the Kalman
filter (cf. (Ting, Theodorou, and Schaal 2007), (Liu, Shah, and Jiang 2004))
or hidden Markov models (section 9.3.3 of (Aggarwal 2017)).

• An outlier is an observation that does not respect the latent structure of the
sample. In this perspective, a low-dimensional representation (with a PCA
or an autoencoder according to Aggarwal (2017)) enables us to discriminate
an abnormal observation with its reconstruction error.

In chapter 3 our detection of outliers follows the third approach. However, PCA/au-
toencoders are difficult to reconcile with indexations that vary over time since these
projections assume a dimension of the observations that is fixed over time.

1.3.3 Completing observations with variable indexation

Matrix completion is a subcategory of the statistics branch aiming to impute miss-
ing values. Completion assumes that the incomplete dataset has a low rank struc-
ture, which is justified if the variables in our dataset are strongly related or if
the observations are structured around categories. In this part, we will denote by
D ∈ Rm×n a matrix representing the dataset with m observations (individuals)
and n variables. The low rank hypothesis means that we can factorize by singular
value decomposition (truncated) the matrix D in the form UΣV with U ∈ Rm×r,
Σ ∈ Rr×r a diagonal matrix and V ∈ Rr×n. The lower the rank r and the stronger
the connections between the variables/observations, the better the imputation of
the missing values will be. If we introduce missing values to D then a SVD is no
longer possible and it is then necessary to estimate (U, V,Σ) with the remaining
values of the dataset. There are then several methods to estimate (U, V,Σ) such as
the softImpute algorithm (Mazumder, Hastie, and Tibshirani 2010) or Alternating
Least Square (Hastie, Mazumder, Lee, and Zadeh 2015).

This whole branch of statistical learning is driven by the recommendation sys-
tems of digital companies and online marketing. The observations in the dataset
represent users of a platform and the features are ratings of sold products. Com-
pletion then allows the platform owner to infer the missing ratings in order to
propose their customers products that would interest them. This application case

37

gave rise to a competition (the netflix price) whose dataset now serves as a refer-
ence dataset in the literature (cf. (Nguyen, Kim, and Shim 2019)). Bibliographic
reviews are available on the subject such as Li, Huang, So, and Zhao (2019) and
Nguyen, Kim, and Shim (2019).

However, the literature in completion does not apply to the implicit option
volatility data studied in the 3 chapter:

• The columns are not identified with variables since an option can expire one
day and leave its place in the column to an option having another residual
maturity.

• The matrix structure does not encode information about the indexing of
variables. Yet, this information is necessary to define a notion of proximity
between the variables.

• Only the last line, corresponding to the current quotation day, contains miss-
ing values. As the other lines have been observed in the past, the number of
missing values is reduced and localized unlike user experience datasets (a la
” netflix“).

The 3 chapter aims at reconciling the imputation of missing values with the
management of data whose indexing varies from day to day. A low rank structure
will always be learned from the past by learning a decoder but the encoder will
be implicit to deal with the variable number of entries. Finally, we will only
consider connections between the variables (implicit volatilities) and not between
the trading days. This is similar in the literature to an item-based approach.

1.4 XVAs compression

1.4.1 The 2008 turmoils

The acronym XVA designates a family of counterparty risk adjustments and more
literally the X designates a blank letter preceding Value Adjustments. These risk
premiums will be classified into three main categories: default risk premiums,
premiums denoting the cost of funding collateral and premiums for financing reg-
ulatory capital.

These adjustments aim in part to model two types of losses:

• Depreciation on the market of a financial contract that is only justified by
a loss of confidence in the solvency of the counterparty. The loss in value is
therefore not linked to the intrinsic characteristics of the contract.

38

• The default of the counterparty who fails to honor its payments. Contract
payments maturing after the default date are then modeled as payoffs to be
hedged as part of counterparty risk.

The 2008 financial crisis materialized the losses caused by the counterparty
risk. First of all, the number of defaults has increased, in particular in the US
mortgage loan sector, impacting the financial markets through securitization. A
contagion effect causes credit spreads to rise in all financial markets and a down-
ward pressure on derivatives for fear of numerous bankruptcies. In addition, bank
financing is weakened: collaterals are only accepted in return for larger haircuts,
interbank rates soar with a spread of 3.5 % against the OIS 3. With the value of
banks’ derivative portfolios depreciated and the need for more fundings to face
risks, banks must sell some of their assets (stocks, bonds) to restore their capi-
tal ratio and confidence. However, these firesales accelerate the depreciation of
assets on the financial markets, thus creating a negative spiral. This crisis thus
has all the characteristics to which the XVAs wish to respond: valuing the losses
linked to defaults, anticipating the costs of financing collateral 4, reinforcing the
shareholders’ equity of the banks to pass the financial stress periods smoothly.

To formalize these concepts it is necessary to differentiate between the intrinsic
value 5 of a contract U and its market value V supposed to capture confidence in
the counterparty. The difference U − V values this counterparty risk and refers
to the CVA and the FVA which will be described later. Banks therefore list these
quantities in their balance sheet so as to refine the valuation of their products and
set up hedging strategies.

In this section, we will briefly present, for each counterparty adjustment, the
calculation methodologies proposed by the regulator. Then we will discuss a more
quantitative formulation of these counterparty adjustments in order to highlight
the market incompleteness behind each XVA.

1.4.2 Pricing default risk

The CVA, or more precisely Credit Value Adjustment in English, is a risk premium
for the default of the counterparty. In fact, the bank records a loss if the counter-
party engaged under a contract with the bank defaults. This loss is measured by

3The overnight indexed swap (or overnight swap rate) is considered as a risk-free rate proxy.
The LIBOR-OIS spread is a misnomer which refers to the gap between the swap rate based on
LIBOR rate and the swap rate based on the overnight rate. Usually the LIBOR (interbank rate)
was close to the OIS but the subprime crisis negated this assumption.

4Financial asset given as a guarantee.
5The intrinsic value (or clean value) depends only on the characteristics of the contract but

does not refer to the identity of the signatories.

39

the client’s exposure to the bank if it is negative (i.e. the counterparty owes the
bank money).

There are several approaches to assess a so-called accounting CVA, that is to
say the CVA that most faithfully reflects the losses caused by the default risk. We
will limit ourselves to the unilateral case, that is to say the situation where only
the default of the counterparty is valued.

The first approach, called semi-replication (Burgard and Kjaer 2011), is more
suited for the resolution by EDP. The term semi refers to the imperfect nature of
the hedge: the recovery process R 6 is unknown and there are no hedging instru-
ments on the market allowing a perfect replication of the counterparty’s default.
Other methodologies have been proposed to value XVAs. We can notably cite Al-
banese, Crépey, and Chataigner (2018) which models the bank’s complete balance
sheet. This makes it possible to calculate the FVA for a group of counterparties
and to benefit from mutual funding of the collateral. In addition, the KVA is no
longer considered as a liability of the bank but is integrated into its equity, which
means that the KVA does not intervene in the P&L associated to the counterparty.

The formula for CVA below is demonstrated in section 9.4.1 of Green (2015) in
this semi-replication setting. In chapter 4, the optimized metric will be calculated
according to this formula (1.1).

CVA = (1−R)

∫ T

0

λCse
−
∫ t
s ru+λCuduE

[
(Vs −Xs)

+
]
ds (1.1)

with Xs the amount of collateral posted on the date s, T the maturity of the
portfolio and λC the credit spread of the counterpart.

In reality this formula is the result of a simplistic assumption that assumes the
independence between the exposure V −X and the default risk of the counterparty,
measured by lambdaC . Thus in Albanese, Crépey, and Chataigner (2018), the
default risk should be modeled more generally according to the following formula:

CVA = (1−R)E
[
(Vτ −Xτ)

+1τ≤T
]

(1.2)

where tau designates the counterpart default time.
It is interesting to dwell on the operational execution of this kind of formula.

The clean value V can be recorded as a tensor of order 3 called mark-to-market
cube. It contains all trade values for all exposure trajectories, all dates until ma-
turity. The challenge for the bank’s credit desk is to value a mark-to-market cube
that is consistent with the trading desk’s pricing methodology. This trading desk,
which values and hedges trades independently of the creditworthiness, must fit in
with the credit desk on the environment it uses (market data, calibration of model
parameters) in order to match the counterparty risk hedging strategy of the credit

6Percentage of the exposure lost at the time of default.

40

desk with market risk hedge of the trading desk. Indeed, exposure plays a central
role in the valuation of XVAs and affects their sensitivities. In the case of CVAs,
the exposure affects the hedge against non-credit instruments such as yield curves
for example. This rigorous and automated exchange of information is referred in
chapter 4 under the name of desk segregation. It is moreover implicitly encouraged
by the regulator which, in its revision of the CVA calculations (see section 4 of
Basel Committee on Banking Supervision (2015)) or with FRTB-CVA, asks to in-
clude the hedge in the calculations of capital charges. In addition, regulatory CVAs
must use parameters (drifts, probabilities of default, etc.) calibrated according to
the risk-neutral approach (page 2-3 of Basel Committee on Banking Supervision
(2015)). The regulator therefore tends to align its regulatory calculations with
accounting valuations (IFRS 13 still according to page 2 of the same report) which
are aligned with the valuations of the trading desk.

Finally, the complexity of the Mark-to-market cube is very important and the
CVA is not linear with respect to the portfolio. If the bank concludes a new
trade with the counterparty then the mark-to-market cube must be revalued in
its entirety to know the new amount of the CVA. This setback will be limited in
chapter 4 thanks to the incremental computation.

1.4.3 Pricing collateral funding costs

We justified in the previous sub-section that a perfect replication linked to the
default of the counterpart is impossible. Therefore, exposure must be minimized
in order to reduce the residual risk. Standard market practice use collateral as
a pledge of the value of the portfolio. If the bank’s exposure is negative then it
must post collateral and otherwise it is up to the counterpart to post the collateral
to the bank. This exchange of collateral also occurs between the bank and the
entities with which the bank hedges (back-to-back hedge) except that the bank
posts collateral with these entities if it receives collateral from the counterpart.

Generally the collateral is a good quality financial security such as a sovereign
bond of good rating or simply cash. If the guarantee is deemed unreliable then a
discount (haircut) is applied to the value of the collateral and it is necessary to
mobilize a larger notional amount as a pledge.

There are several categories of collateral characterized by their method of cal-
culation:

• The Variation margin which is indexed to the amount of MtM at each re-
fresh date. The amount posted between two margin calls depends on the
amount of collateral already posted and various clauses such as minimum
transfer amounts, trigger thresholds (see chapter 6 of (Gregory 2015) for
more details) ... The variation margin can be reused as collateral in other

41

transactions by the collateral recipient before the transaction expires. This
means that the cost of borrowing collateral for the hedge is zero if we can
post the collateral provided by the counterpart. On the other hand, if the
counterparty does not post collateral, because it has not signed an credit
support annex, then the bank must borrow this collateral on the markets
at a cost generally greater than its remuneration (often equal to the OIS) .
The Funding Value Adjustment (FVA, for its formulation see chapter 9 of
(Green 2015)) corresponds to the cost of financing the variation margin if
the counterpart does not or not enough.

• The initial margin is a minimum safety cushion aimed at covering the risk
of the MtM slipping between two margin calls 7. For each margin call,
the amount of collateral is based on a portfolio risk measure: Value-at-Risk
or a derivative of VaR based on sensitivities in the case of an IM SIMM
(Standardized initial margin method). The cost of financing this initial
margin gives rise to the Margin Value Adjustment (or MVA, see chapter 16
of (Gregory 2015) or the appendix of (Crépey, Hoskinson, and Saadeddine
2021) for its formulation). The initial margin cannot in general be reused by
its recipient for other transactions, that is to say it is segregated.

Funding costs occur on other occasions such as clearing houses (see (Armenti
and Crépey 2017)). The regulator also encourages the clearing of derivative trans-
actions or even makes it mandatory (see section 9.3 of (Gregory 2015)). CCPs will
not be included in the study of chapter 4.

b Collateralisation can reduce or even cancel CVA and FVA. However, it can
give rise to other costs such as MVA.

1.4.4 Pricing capital funding costs

Along with these accounting entries, the regulator wanted to impose capital re-
serves on banks (the first pillar of the Basel regulation) in order to prevent the
appearance of Ponzi schemes. The principle of this financial arrangement is to
enter into new contracts in order to finance the losses of a pre-existing portfolio.
However, capital reserves are expensive to raise from shareholders since they gen-
erally require a much higher return than the funding cost on the interbank market,
for example. Setting up a trade is then more expensive and prevents the construc-
tion of a Ponzi scheme. Regulatory capital reserves are primarily conservative and
are not intended to exactly cover a loss but rather to provide a safety cushion in
anticipation of turmoils.

Among the capital reserves we can mention:
7This slippage risk is valued under the term Margin period of risk.

42

• The counterparty credit risk capital charge that covers the default of the
bank’s customers.

• The CVA capital charge which provisions for depreciations of the value of
the bank’s assets if the creditworthiness of its debtors deteriorates.

• The Risk weighted asset which serves as a reference for provisioning the
bank’s regulatory capital (Basel ratio). All the bank’s balance sheet and all
risk classes are captured by the RWA.

Details of the formulas for each capital reserve can be found in (Basel Com-
mittee on Banking Supervision 2015) (or chapter 8 of (Gregory 2015)) but we can
identify some similarities. First of all, the regulator offers at least two calcula-
tion methodologies to adapt to the computation capacities of each establishment.
Among these approaches there is always a parametric method, simpler to calcu-
late, but more conservative. Another, more complex approach allows the use of
internal bank valuation models, which often requires simulating exposure as for
other XVAs.

In addition, all these quantities designate amounts of capital to be reserved
but it is their funding cost which is charged to the customer. The capital value
adjustment (KVA) aims to estimate this cost and then add it to the clean value
V of the contract alongside the CVA and the FVA. However, the capital reserve
involved in the KVA is not necessarily based on one of the previous regulatory
capital reserves but can alternatively be based on economic capital. Economic
capital is a measure of risk of how much the bank must have in reserve to weather
a crisis. This is generally a Value-at-Risk or an expected shortfall calculated on the
bank’s losses with an one year horizon. Noting h the hurdel rate of shareholders on
capital invested in the bank, Crépey, Hoskinson, and Saadeddine (2021) in their
appendix formulate the KVA as:

KV A = E
[∫ T∧τ

0

he−hs max (ECs, KV As) ds

]
(1.3)

The KV A thus captures all losses arising from counterparty risk that cannot
be hedged. Like the CVA, the KVA and other capital reserves could be optimized.
However, the computational complexity of the KVA makes its compression inac-
cessible for the moment. To our knowledge, only the MVA (in a simplistic form)
with (Kondratyev and Giorgidze 2017) has been the subject of a compression pro-
cedure in the literature. We propose to optimize the CVA and to describe the
operational stakes in the chapter 4.

43

Chapter 2

Arbitrage-Free neural network

Machine learning for option pricing has emerged as a novel methodology for fast
computations with applications in calibration and computation of Greeks. How-
ever, most of these approaches do not enforce any no-arbitrage conditions. In this
article, we develop a neural network approach for no-arbitrage interpolation of
European vanilla option prices. In particular, we demonstrate the modification of
the standard deep learning methodology to enforce the no-arbitrage constraint and
we specify the experimental design parameters that are needed for adequate perfor-
mance. A novel component is the use of the Dupire formula to enforce bounds on
the local volatility associated with (non-arbitrable) option prices, during the net-
work fitting. Numerical results1 on real datasets of DAX and SPX vanilla options
demonstrate the numerical error in the price, implied volatility and local volatility
surface.

2.1 Introduction
A recent approach to option pricing involves reformulating the pricing problem
as a surrogate modeling problem. Once reformulated, the problem is amenable
to standard supervised machine learning methods such as Neural networks and
Gaussian processes. This is particularly suitable in situations with a need for fast
computations and a tolerance to in-exact approximation.

In their seminal paper, (Hutchinson, Lo, and Poggio 1994) use a radial basis
function neural network for delta-hedging. Their network is trained to Black-
Scholes prices, using the time-to-maturity and the moneyness as input variables,

1A Python notebook, compatible with Google Colab, and accompanying data are
available in https://github.com/mChataign/Beyond-Surrogate-Modeling-Learning-the-Local-
Volatility-Via-Shape-Constraints. Due to file size constraints, the notebook must be run to
reproduce the figures and results in this article.

44

without shape constraints. They use the hedging performance of the ensuing
delta-hedging strategy as a performance criterion. (Garcia and Gençay 2000) and
(Gençay and Qi 2001) improve the stability of the previous approach by adding
the outputs of two such neural networks, weighted by respective moneyness and
time-to-maturity functionals. (Dugas, Bengio, Bélisle, Nadeau, and Garcia 2009)
introduce the first neural network architecture guaranteeing arbitrage-free vanilla
option pricing. However, (Ackerer, Tagasovska, and Vatter 2019) show that the
corresponding hard constrained networks are very difficult to train in practice.
Instead, they advocate the learning of the implied volatility (rather than the prices)
by a standard feedforward neural network with soft-constraints, i.e. regularization,
which penalizes calendar spread and butterfly arbitrages. The call and put prices
must also be decreasing and increasing by strike respectively.

We propose simple neural network architectures and training methodology
which satisfy these shape constraints. In contrast to Dugas, Bengio, Bélisle,
Nadeau, and Garcia (2009), following Ackerer, Tagasovska, and Vatter (2019),
we also explore soft constraints alternatives to hard constraints in the network
configuration, due to the loss of representation power of the latter. Moreover,
a novel aspect of our approach is to focus on the associated local volatility sur-
face, considered both for itself and as a penalization device in our soft constraints
approach.

Another contribution of the chapter is to introduce a neural network approx-
imation of the implied volatility surface, again penalizing arbitrages on the basis
of the Dupire formula, which is also used for extracting the corresponding local
volatility surface. This is all evidenced on an SPX option dataset and bench-
marked against the SSVI industry standard and an arbitrage free GP interpolation
approach.

This section is the merge of two different articles (see (Chataigner, Crépey, and
Dixon 2020) and (Chataigner, Cousin, Crépey, Dixon, and Gueye 2021)) using dif-
ferent datasets. As a result training methodology and neural architecture evolved
accordingly to each dataset. During all of our experiments, neural local volatil-
ity is derived though back-propagation algorithm and then is backtested against
various benchmarks depending on the dataset.

2.2 Problem Statement
We consider European vanilla option prices on a stock or index S. We assume that
a deterministic short interest rate term structure r(t) of the corresponding economy
has been bootstrapped from the its zero coupon curve, and that a term structure
of deterministic continuous-dividend-yields q(t) on S has then been extracted from
the prices of the forward contracts on S. The assumption of deterministic rates

45

and dividends is for consistency with local volatility models, in the perspective,
later in the chapter, of numerical experiments on equity options (using (Crépey
2002) as a benchmark).

Without restriction given the call-put parity relationship, we only consider put
option prices. We denote by P ?(T,K) the market price of the put option with
maturity T and strike K on S, observed for a finite number of pairs (T,K) at a
given day.

Our goal is to construct a nonarbitrable put price surface P : R+ × R+ → R+

in C1,2((0,+∞)×R?
+)∩C0(R+×R?

+), interpolating P ? up to some error term. As
is well known, the corresponding local volatility surface, say σ(·, ·), is given by the
Dupire (1994) formula

σ2(T,K)

2
=
∂TP (T,K) + (r − q)K∂KP (T,K) + qP (T,K)

K2∂2
K2P (T,K)

.

In terms of P (T, k) = exp (
∫ T

0
q(t)dt)P (T,K), where k =

K exp (−
∫ T

0
(r(t)− q(t))dt), the formula reads

σ2(T,K)

2
= dup(T, k) :=

∂TP (T, k)

k2∂2
k2P (T, k)

=:
calT (P)

buttk(P)
(T, k). (2.1)

We then learn the modified market prices P ? = P ?(T, k). Given a rectangular
domain of interest in maturity and strike, we rescale further the inputs, T ′ =
(T − min(T))/(max(T) − min(T)) and k′ = (k − min(k))/(max(k) − min(k)),
so that the domain of the pricing map is Ω := [0, 1]2. This rescaling avoids any
one independent variable dominating over another during the fitting. For ease of
notation, we shall hereon drop the ′ superscript.

For the Dupire formula (2.1) to be meaningful, its output must be nonnegative.
This holds, in particular, whenever the interpolating map P exhibits nonnegative
derivatives w.r.t. T and second derivative w.r.t. k, i.e.

∂TP (T, k) ≥ 0, ∂2
k2P (T, k) ≥ 0. (2.2)

In both networks considered in the chapter, these derivatives are available ana-
lytically via the neural network automatic differentiation capability. Hard or soft
constraints can be used to enforce these shape properties, exactly in the case of
hard constraints and approximately (via regularization) in the case of soft con-
straints. More generally, see (Roper 2010, Theorem 2.1) for a full and detailed
statement of the static non-arbitrage relationships conditions on European vanilla
call (easily transposable to put) option prices, also including, in particular, an ini-
tial condition at T = 0 given by the option payoffs. During the DAX experiments,
this initial payoff condition will also be incorporated to our learning schemes, in a
way described in Section 2.4.1.

46

If we now consider implied volatilities Σ instead of price options P then our
neural network will take as input maturity T and log-forward maturity κ = log(k

S0
).

The corresponding local volatility surface σ is then given by the following local
volatility implied variance formula, i.e. the Dupire formula stated in terms of the
implied total variance2 Θ(T, κ) = Σ2(T, κ)T (assuming Θ of class C1,2 on {T > 0}):

σ2(T,K)=
∂TΘ

1− κ
Θ
∂κΘ+ 1

4(− 1
4−

1
Θ

+ κ2

Θ2)(∂κΘ)2+ 1
2 ∂κ2Θ

(T,κ)=:
calT (Θ)

buttκ(Θ)
(T,κ). (2.3)

T and κ are subject to the same scalings as T and k in the context of neural
network learning prices.

Similarly to price based neural networks, no arbitrage conditions in presence of
implied volatilities are also obtained through back-propagation algorithm. In the
rest of this chapter we refer to butterfly constraint as the condition with respect
to strike-logmoneyness and calendar condition denotes the condition with respect
to maturity, The following table summarizes the above no arbitrage condition in
any experimental setting.

Learned quantity
Condition calendar butterfly

Price ∂TP ≥ 0 k2∂2
k2P (T, k) ≥ 0

Implied Volatility ∂TΘ ≥ 0 ∂TΘ1− κ
Θ
∂κΘ + 1

4

(
−1

4
− 1

Θ
+ κ2

Θ2

)
(∂κΘ)2 + 1

2
∂κ2Θ(T, κ) ≥ 0

2.3 Shape Preserving Neural Networks
We consider parameterized maps p = pW,b

(T, k) 3 R2
+

P−→ PW,b(T, k) ∈ R+,

given as deep neural networks with two hidden layers. As detailed in (Goodfellow,
Bengio, and Courville 2016), these take the form of a composition of simpler
functions:

PW,b(x) = f
(3)

W (3),b(3) ◦ f
(2)

W (2),b(2) ◦ f
(1)

W (1),b(1)(x),

where
W = (W (1),W (2),W (3)) and b = (b(1), b(2), b(3))

are weight matrices and bias vectors, and the f (l) := ς(l)(W (l)x + b(l)) are semi-
affine, for nondecreasing activation functions ς(l) applied to their (vector-valued)
argument componentwise. Any weight matrix W (`) ∈ Rm×n can be expressed as

2This follows from the Dupire formula by simple transforms detailed in (Gatheral 2011, p.13).

47

an n column W (`) = [w
(`)
1 , . . . ,w

(`)
n] of m-vectors, for successively chained pairs

(n,m) of dimensions varying with l = 1, 2, 3, starting from n = 2, the number of
inputs, for l = 1, and ending up with m = 1, the number of outputs, for l = 3.

A feedforward NN with weights W, biases b and smooth activation functions
is also used for parameterizing the implied volatility and total variance, which we
denote by

Σ = ΣW,b, Θ = ΘW,b.

2.3.1 Hard Constraints Approach

In the hard constraints case, our network is sparsely connected in the sense that,
with x = (T, k) as above,

f
(1)

W (1),b(1)(x) = [f
(1,T)

W (1,T),b(1,T)(T), f
(1,k)

W (1,k),b(1,k)(k)],

where W (1,T), b(1,T) and W (1,k), b(1,k) correspond to parameters of sub-graphs for
each input, and

f (1,T)(T) := ς(1,T)(W (1,T)T + b(1,T)), f (1,k)(k) := ς(1,k)(W (1,k)k + b(1,k)).

To impose the shape constraints relevant for put options, it is then enough
to restrict ourselves to nonnegative weights, and to convex (and nondecreasing)
activation functions, namely

softplus(x) := ln(1 + ex),

except for ς(1,T), which will be taken as an S-shaped sigmoid (1+e−x)−1. Imposing
non-negative constraints on weights can be achieved in back-propagation using
projection functions applied to each weight after each gradient update.

Hence, the network is convex and nondecreasing in k, as a composition (re-
stricted to the k variable) of convex and nondecreasing functions of k. In T , the
network is nondecreasing, but not necessarily convex, because the activation func-
tion for the maturity subnetwork hidden layer is not required to be convex - in
fact, we choose a sigmoid function.

However such hard constrained architecture is not possible when dealing with
implied volatility. The butterfly condition buttκ(Θ) ≥ 0 does no longer reduce
with respect to κ and we can only employ soft constraint as described in 2.3.2.

Figure 2.3.1 illustrates the shape preserving feed forward architecture with two
hidden layers containing 10 hidden nodes. For avoidance of doubt, the figure is not
representative of the number of hidden neurons used in our experiments. However,

48

the connectivity is representative. The first input variable, T , is only connected
to the first 5 hidden nodes and the second input variable, k, is only connected to
the last 5 hidden nodes. Effectively, two sub-networks have been created where no
information from the input layer crosses the sub-networks until the second hidden
layer. In other words, each sub-network is a function of only one input variable.
This property is the key to imposing different hard shape constraints w.r.t. each
input variable.

T k

P (T, k)

Figure 2.3.1: A shape preserving (sparse) feed forward architecture with one hidden
layer containing 10 hidden nodes. The first input variable, T , is only connected to
the 5 left most hidden nodes and the second input variable, k, is only connected to
the 5 right most hidden nodes.

2.3.2 Soft Constraints Approach

However, Theorem 4.1 in (Ohn and Kim 2019), provides support for our obser-
vation, presented in Section 2.4.2, that sparsening the network (i.e. splitting)
increases the approximation error. Hence, in what follows, we also consider the so
called soft constraints approach using a fully connected network, where the static
no arbitrage conditions (2.2) are favored by penalization, as opposed to imposed
to hold exactly in the previous hard constraint approach.

Note that only the “hard constraints” approach theoretically guarantees that
the associated Dupire formula (2.1) returns a positive function. While soft con-
straints reduce the risk of static arbitrage in the sense of mismatch between model

49

and market prices, they do not however fully prevent arbitrages in the sense of
violations of the shape conditions (2.2) in the predicted price surface, especially
far from the grid nodes of the training set.

In particular, the penalties only control the corresponding derivatives on a dis-
crete set of points. Compliance with the no-arbitrage constraints on the majority
of the points in the test set is due only to the regularity of these derivatives.
This is not a novel idea. (Aubin-Frankowski and Szabo 2020) exploit reproduc-
ing kernel Hilbert space regularity to ensure conditions on derivatives in a hard
constraint manner with a second order cone optimization. They add a margin to
the penalizations so that these derivative conditions are ensured over a targeted
neighbourhood of training points. In our case we do not add such a margin to
our penalizations. Instead, we add a further half-variance bounds penalization,
which both favors even more the shape constraints (without guaranteeing them in
theory) and stabilizes the local volatility function calibration, as detailed below.
This penalty is activated when the half-variance (see formula 2.1) leaves an interval
especially if it becomes negative.

In addition we propose a novel approach on the SPX dataset which enables
the network to emancipate from training options coordinates (that is, from the
specific (Ti, ki) or (Ti, κi) of the dataset). This is realized with the introduction
of a penalization grid which defines a mesh of points where soft constraints are
assessed. If that grid is refined enough then we can have a degree of trust on
the entire domain (Ω) concerning the respect of arbitrage condition thanks to
neural network regularity. This additional mesh is flexible and allows arbitrage-
free extrapolation.

2.3.3 Learning problems

In general, to fit our fully connected or sparse networks to the available option mar-
ket prices at a given time, we solve a loss minimization problem of the following
form (with λ = 0 in the non-penalized and hard-constrained cases), using obser-
vations {xi = (Ti, ki), P

?(xi)}ni=1 of n maturity-strike pairs and the corresponding
market put prices:

min
W,b

1

n

n∑
i=1

(
|P ?(xi)− P (xi)|+ λTφ(xi)

)
. (2.4)

Here p = PW,b, φ = φW,b is a regularization penalty vector

φ := [(∂TP)−, (∂2
k2P)−, (dup− a)+ + (dup− a)−],

and dup is related to P through (2.1). The choice to measure the error P ? − P
under the L1 norm, rather than L2 norm, in (2.4) is motivated by a need to

50

avoid allocating too much weight to the deepest in-the-money options. Note that
(Ackerer, Tagasovska, and Vatter 2019) consider a combination of L1 and L2 norms.
In a separate experiment, not reported here, we additionally investigated using the
market convention of vega weighted option prices, albeit to no effect beyond simply
using L1 regularization.

The loss function is non-convex, possessing many local minima and it is gen-
erally difficult to find a global minimum. The first two elements in the penalty
vector favor the shape conditions (2.2) and the third element favors lower and up-
per bounds a and a on the estimated half-variance, dup, where constants (which
could also be functions of time) 0 < a < a respectively denote desired lower and
upper bounds on the surface (at each point in time). Of course, as soon as penal-
izations are effectively used (i.e. for λ 6= 0), a further difficulty, typically involving
grid search, is the need to determine suitable values of the corresponding “Lagrange
multipliers"

λ = (λ1, λ2, λ3) ∈ R3
+, (2.5)

ensuring the right balance between fit to the market prices and the targeted con-
straints.

Algorithm 1 The NN-Price algorithm for local volatility surface approximation.
Data: Market option price surface P∗
Result: The local volatility surface

√
2 calT

buttk
(PŴ,b̂)

1 (Ŵ, b̂)← Minimize the penalized training loss (2.4) w.r.t. (W,b);

2

√
calT
buttk

(PŴ,b̂)← AAD differentiation of the trained NN option price surface

Our second goal is to use neural nets (NN) to construct an implied volatility
(IV) put surface Σ : R+ ×R→ R+, interpolating implied volatility market quotes
Σ∗ up to some error term, both being stated in terms of a put option maturity T
and log-(forward) moneyness κ = log(k

S0
) = log

(
K
S0

)
− (r−q)T . The advantage of

using implied volatilities rather than prices, both being in bijection via the Black-
Scholes put pricing formula as well known, is their lower variability, hence better
performance as we will see.

The terms calT (ΘW,b) and buttκ(ΘW,b) are also available analytically, by
automatic differentiation, which we exploit below to penalize calendar spread
arbitrages, i.e. negativity of calT (Θ), and butterfly arbitrage, i.e. negativity of
buttκ(Θ).

An optimization challenge is that maturity-log moneyness pairs with quoted
option prices are unevenly distributed and the NN may favor fitting to a clus-
ter of quotes to the detriment of fitting isolated points. To remedy this non-
uniform data fitting problem, we re-weight the SPX observations by the Eu-

51

clidean distance between neighboring points. More precisely, given n observations
χi = (Ti, κi) of maturity-log moneyness pairs and of the corresponding market
implied volatilities Σ∗(χi), we construct the n × n distance matrix with general

term d(χi, χj) =
√

(Tj − Ti)2 + (κj − κi)2. We then define the loss weighting wi
for each point χi as the distance wi = min

j,j 6=i
d(χi, χj). with the closest point. These

modifications aim at reducing error for any isolated points. In addition, in order
to avoid linear saturation of the neural network, we apply a further log-maturity
change of variables (adapting the partial derivatives accordingly). We note how-
ever that loss presented in the following sections are standard root mean squared
error which do not involve any reweighting or log-transform. This allows a fair
comparison of all models.

Learning the weights W and biases b to the data subject to no arbitrage
soft constraints (i.e. with penalization of arbitrages) then takes the form of the
following (nonconvex) loss minimization problem:

arg min
W,b

√√√√ 1

n

∑
i

(
wi

ΣW,b(χi)− Σ∗(χi)

Σ∗(χi)

)2

+
Pw
m

∑
ξ∈Ωh

λTR(ΘW,b)(ξ), (2.6)

where λ = [λ1, λ2, λ3]> ∈ R3
+ and

R(Θ) = [cal−T (Θ), butt−κ (Θ),
(calT
buttκ

(Θ)− a
)+

+
(calT
buttκ

(Θ)− a
)−

]>

is a regularization penalty vector evaluated over a penalty grid Ωh with m nodes
as detailed below. The error criterion is calculated as a root mean square error on
relative difference, so that it does not discriminate high or low implied volatilities.
The first two elements in the penalty vectorR(Θ) favor the no-arbitrage conditions
(2.2) and the third element favors desired lower and upper bounds 0 < a < a
(constants or functions of T) on the estimated local variance σ2(T,K). In order
to adjust the weight of penalization, we multiply our penalties by the weighting
mean Pw := 1

m

∑
i

wi.

As with the learning problem 2.4, suitable values of the “Lagrange multipliers"
λ, ensuring the right balance between fit to the market implied volatilities and
the constraints, are then obtained by grid search. Of course a soft constraint
(penalization) approach does not fully prevent arbitrages. However, for large λ,
arbitrages are extremely unlikely to occur, except perhaps very far from Ω. With
this in mind, we use a penalty grid Ωh that extends well beyond the domain of
the IV interpolation. As previously discussed in section 2.3.2, this is intended
so that the penalty term penalizes arbitrages outside of the domain used for IV
Interpolation. See Algorithm 3.1 for the pseudo-code of the NN approach.

52

Algorithm 2 The NN-IV algorithm for local volatility surface approximation.
Data: Market implied volatility surface Σ∗

Result: The local volatility surface
√

calT
buttκ

(ΘŴ,b̂)

1 (Ŵ, b̂)← Minimize the penalized training loss (2.6) w.r.t. (W,b);

2

√
calT
buttκ

(ΘŴ,b̂)← AAD differentiation of the trained NN implied vol. surface

We also want to assess the local volatility surface that arises from the trained
neural nets. Local volatility is characterized by below diffusion :

dSt
St

= (r(t)− q(t)) dt+ σ(t, St)dWt, (2.7)

Therefore we should retrieve for any dataset the options prices by plugging our
neural local volatility in equation 2.7.

This is done with our DAX dataset in section 2.4.4 by Monte Carlo simula-
tion whereas our backtests on SPX dataset include a Monte Carlo simulation and
Crank-Nicolson PDE scheme.

2.4 DAX Numerical Experiments

2.4.1 Experimental Design

As a benchmark, reference method for assessing the performance of our neural
network approaches, we use the Tikhonov regularization approach surveyed Section
9.1 of (Crépey 2013), i.e. nonlinear least square minimization of the squared
distance to market prices plus a penalisation proportional to the H1 squared norm
of the local volatility function over the (time, space) surface (or, equivalently, to
the L2 norm of the gradient of the local volatility). Our motivation for this choice
as a benchmark is, first, the theoretical, mathematical justification for this method
provided by Theorems 6.2 and 6.3 in Crépey (2003). Second, it is price (as opposed
to implied volatility) based, which makes it at par with our focus on price based
neural network local volatility calibration schemes with DAX options. Third, it is
non parametric (’model free’ in this sense), like our neural network schemes again,
and as opposed to various parameterizations such as SABR or SSVI that are used
as standard in various segments of the industry, but come without theoretical
justification for robustness, are restricted to specific industry segments on which
they play the role of a market consensus, and are all implied volatility based.
Fourth, an efficient numerical implementation of the Tikhonov method (as we call
it for brevity hereafter), already put to the test of hundreds of real datasets in the
context of Crépey (2004), is available through Crépey (2002). Fifth, this method

53

is itself benchmarked to other (spline interpolation and constrained stochastic
control) approaches Section 7 of Crépey (2002).

Our training sets are prepared using daily datasets of DAX index European
vanilla options of different available strikes and maturities, listed on the 7th, 8th

(by default below), and 9th, August 2001, i.e. same datasets as already used in
previous work Crépey (2002, Crépey (2004), for benchmarking purposes. The
corresponding values of the underlying are S = 5752.51, 5614.51 and 5512.28.
The associated interest rate and dividend yield curves are constructed from zero-
coupon and forward curves, themselves obtained from quotations of standard fixed
income linear instruments and from call/put parity applied to the option market
prices. Each training set is composed of about 200 option market prices plus the
put payoffs for all strikes present in the training grid. For each day of data (see
e.g. Figures 2.4.1-2.4.2), a test set of about 350 points is generated by computing,
thanks to a trinomial tree, option prices for a regular grid of strikes and maturities,
in the local volatility model calibrated to the corresponding training set by the
benchmark Tikhonov calibration method of (Crépey 2002).

Each network has two hidden layers, each with 200 neurons per hidden layer.
Note that (Dugas, Bengio, Bélisle, Nadeau, and Garcia 2009) only uses one hidden
layer. Two was found important in practice in our case. All networks are fitted with
an ADAM optimizer. In order to achieve the convergence of the training procedure
toward a local minimum of the loss criterion, the learning rate is divided by 10
whenever no improvement in the error on the training set is observed during 100
consecutive epochs. The total number of epochs is limited to 10, 000 because of the
limited number of market prices. Thus we opt for a batch learning with numerous
epochs.

After training, a local volatility surface is extracted from the interpolated prices
by application of the Dupire formula (2.1), leveraging on the availability of the
corresponding exact sensitivities, i.e., using automatic algorithmic differentiation
(AAD) and not finite differences. This local volatility surface is then compared
with the one obtained in (Crépey 2002).

Moreover, we will assess numerically four different combinations of network
architectures and optimization criteria, i.e.

• sparse (i.e. split) network and hard constraints, so λ1 = λ2 = 0 in (2.4)-(2.5),

• sparse network but soft constraints, i.e. ignoring the non-negative weight
restriction in Section 2.3.1, but using λ1, λ2 > 0 in (2.4)-(2.5),

• dense network and soft constraints, i.e. for λ1, λ2 > 0 in (2.4)-(2.5),

• dense network and no shape constraints, i.e. λ1 = λ2 = 0 in (2.4)-(2.5).

54

Figure 2.4.1: DAX put prices from training grid (red points) and testing grid (blue
points), 8 Aug 2001.

Figure 2.4.2: Same as Figure 2.4.1 in implied volatility scale.

55

Moreover, these four configurations will be tried both without (Section 2.4.2) and
with (Section 2.4.3) half-variance bounds penalization, i.e. for λ3 = 0 vs. λ3 > 0
in (2.4)-(2.5), cases referred to hereafter as without / with Dupire penalization.

In each case the error between the prices of the calibrated model and the
market data are evaluated on both the training and an out-of-sample test set.
Unless reported otherwise, all numerical results shown below correspond to test
sets.

All our numerical experiments were run under google colab with 13 Gos of Ram
and a dual core CPU of 2.2GHz.

2.4.2 Numerical Results Without Dupire Penalization

Table 2.4.1 shows the pricing RMSEs for four different combinations of architecture
and optimization criteria without half-variance bounds, i.e. for λ3 = 0 (2.4)-
(2.5). For the sparse network with hard constraints, we thus have λ = 0. For the
sparse and dense networks with soft constraints (i.e. penalization but without the
conditions on the weights of Section 2.3), we set λ = [1.0× 105, 1.0× 103, 0].

The sparse network with hard constraints is observed to exhibit significant
pricing error, which suggests that this approach is too limited in practice to ap-
proach market prices. This conclusion is consistent with (Ackerer, Tagasovska,
and Vatter 2019), who choose a soft-constraints approach in the implied volatility
approximation (in contrast to our approach which approximates prices).

Sparse network Dense network
Hard constraints Soft constraints Soft constraints No constraints

Training dataset 28.13 6.87 2.28 2.56
Testing dataset 28.91 4.09 3.53 3.77
Indicative training times 200s 400s 200s 120s

Table 2.4.1: Pricing RMSE (absolute pricing errors) and training times without
Dupire penalization.

Figure 2.4.3 compares the percentage errors in implied volatilities using the
sparse network with hard constraints and the dense network with soft constraints
approaches, corresponding to the columns 1 and 3 of Table 2.4.1. Relative errors
with hard constraints exceed 10% on most the training grid oppositely to dense
network with soft constraints. This confirms that the error levels of the hard
constraints approach are too high to imagine a practical use of this approach: the
corresponding model would be immediately arbitrable in relation to the market.
Those of the soft constraint approach are much more acceptable, with high errors
confined to short maturities or far from the money, i.e. in the region where prices
provide little information on volatility.

56

Figure 2.4.3: Percentage relative error in the implied volatilities using (top) hard
constraints (bottom) dense networks with soft constraints.

57

Table 2.4.2 shows the fraction of points in the neural network price surface
which violate the static arbitrage conditions. The table compares the same four
methods listed in Table 2.4.3 applied to training and testing sets. We recall that, in
theory, only the sparse network with hard constraints guarantees zero arbitrages.
However, we observe that the inclusion of soft constraints reduces the number of
arbitrage constraints on the training set when compared with no constraints. The
trend is less pronounced for the test set. But in the absence of hard constraints, the
effect of adding soft constraints is always preferable than excluding them entirely.

Sparse network Dense network
Hard constraints Soft constraints Soft constraints No constraints

Training dataset 0 1/254 0 63/254
Testing dataset 0 2/360 0 44/360

Table 2.4.2: The fraction of static arbitrage violations without Dupire penalization.

2.4.3 Numerical Results With Dupire Penalization

We now introduce half-variance bounds into the penalization to improve the overall
fit in prices and stabilize the local volatility surface. Table 2.4.3 shows the RMSEs
in absolute pricing resulting from repeating the same set of experiments reported in
Table 2.4.1, but with the half-variance bounds included in the penalization. For the
sparse network with hard constraints, we set λ = [0, 0, 10] and choose a = 0.052/2
and a = 0.42/2. For the sparse and dense networks with soft constraints, we set
λ = [1.0 × 105, 1.0 × 103, 10]. Compared to Table 2.4.1, we observe improvement
in the test error for the hard and soft constraints approaches when including the
additional local volatility penalty term. Table 2.4.4 is the analog of Table 2.4.2,
with similar conclusions. Note that, here as above, the arbitrage opportunities
that arise are not only very few (except in the unconstrained case), but also very
far from the money and, in fact, mainly regard the learning of the payoff function,
corresponding to the horizon T = 0. See for instance Figure 2.4.4 for the location
of the violations that arise in the unconstrained case with Dupire penalization.
Hence such apparent ’arbitrage opportunities’ cannot necessarily be monetised
once liquidity is accounted for.

Figure 2.4.6 is the analog of Figure 2.4.1, with test (i.e. Tikhonov trinomial
tree) prices in blue replaced by the prices predicted by the dense network with soft
constraints and Dupire penalization. The (blue) prices predicted by the neural
network in Figure 2.4.6, and the corresponding implied volatilities in Figure 2.4.7,
do not exhibit any visible inter-extrapolation pathologies, they are in fact visually
indistinguishable from the respective (blue) testing prices and implied volatilities
of Figures 2.4.1 and 2.4.2.

58

Sparse network Dense network
Hard constraints Soft constraints Soft constraints No constraints

Training dataset 28.04 3.44 2.48 3.48
Testing dataset 27.07 3.33 3.36 4.31
Indicative training times 400s 600s 300s 250s

Table 2.4.3: Price RMSE (absolute pricing errors) and training times with Dupire
penalization.

Sparse network Dense network
Hard constraints Soft constraints Soft constraints No constraints

Training dataset 0 0 0 30/254
Testing dataset 0 2/360 0 5/360

Table 2.4.4: The fraction of static arbitrage violations with Dupire penalization.

Figure 2.4.4: Location of the violations, denoted by black crosses, corresponding to
the right column in Table 2.4.4.

For completeness, we additionally provide further diagnostic results. Figure
2.4.5 shows the convergence of the loss function against the number of epochs
using either hard constraints or soft constraints. The spikes trigger decays of the
learning rates so that the training procedure can converge toward a local minimum
of the loss criterion (cf. Section 2.4.1). We observe that the loss function converges
to a much smaller value using a dense network with soft constraints and that either
approach converge in at most 2000 epochs.

Table 2.4.5 provides some further insight into the effect of architectural param-

59

Figure 2.4.5: Logarithmic RMSE through epochs (top) hard constraints (bottom)
dense networks with soft constraints.

60

Figure 2.4.6: Put prices from training grid (red points) and NN predicted prices at
testing grid nodes (blue points), DAX 8 Aug 2001.

Figure 2.4.7: Same as Figure 2.4.6 in implied volatility scale.

61

eters, although it is not intended to be an exhaustive study. Here, only the number
of units in the hidden layers is varied, while keeping all other parameters except
the learning rate fixed, to study the effect on error in the price and implied volatil-
ity surfaces. The price RMSE for the testing set primarily provides justification
for the choice of 200 hidden units per layer: the RMSE is 3.55. We further observe
the effect of reduced pricing error on the implied volatility surface: 0.0036 is the
lowest RMSE of the implied volatility test surface across all parameter values.

Hidden Units Surface RMSE
Training Testing

50 Price 3.01 3.60
Impl. Vol. 0.0173 0.0046

100 Price 3.14 3.66
Impl. Vol. 0.0304 0.0049

200 Price 2.73 3.55
Impl. Vol. 0.0181 0.0036

300 Price 2.84 3.88
Impl. Vol. 0.0180 0.0050

400 Price 2.88 3.56
Impl. Vol. 0.0660 0.0798

Table 2.4.5: Sensitivity of the errors to the number of hidden units. Note that
these results are generated using the dense network with soft constraints and Dupire
penalization.

Table 2.4.6 shows the pricing RMSEs resulting from the application of dif-
ferent stochastic gradient descent algorithms under the soft constraints approach
with dense network and Dupire penalization. ADAM (our choice everywhere else
in the chapter, cf. the next-to-last column in Table 2.4.3) and RMSProp (root
mean square propagation, another well known SGD procedure) exhibit a compa-
rable performance. A Nesterov accelerated gradient procedure, with momentum
parameter set to 0.9 as standard, obtains much less favorable results. As opposed
to ADAM and RMSProp, Nesterov accelerated momentum does not reduce the
learning rate during the optimization.

2.4.4 Robustness

In this concluding section of the DAX experiments, we assess the robustness of the
different approaches in terms of, first, the numerical stability of the local volatility
function recalibrated across successive calendar days and, second, of a Monte Carlo
backtesting repricing error.

62

Train RMSE Test RMSE
ADAM 2.48 3.36

Nesterov accelerated gradient 5.67 6.92
RMSProp 2.76 3.66

Table 2.4.6: Pricing RMSEs corresponding to different stochastic gradient descents
(soft constraints approach with dense network and Dupire penalization).

Numerical Stability Through Recalibration

Figures 2.4.8, 2.4.9 and 2.4.10 show the comparison of the local volatility surfaces
obtained using hard constraints (sparse network) without Dupire penalization,
dense network and soft constraints without and with Dupire penalization, as well
as the Tikhonov regularization approach of (Crépey 2002), on price quotes listed
on August 7th, 8th, and 9th, 2001, respectively. The soft constraint approach
without Dupire penalization is both irregular (exhibiting outliers on a given day)
and unstable (from day to day). In contrast, the soft constraint approach with
Dupire penalization yields a more regular (at least, less spiky) local volatility
surface, both at fixed calendar time and in terms of stability across calendar time.
From this point of view the results are then qualitatively comparable to those
obtained by Tikhonov regularization (which is however quicker, taking of the order
of 30s to run).

Monte Carlo Backtesting Repricing Error

Finally, we evaluate the performance of the models in a backtesting Monte Carlo
exercise. Namely, the options in each testing grid are repriced by Monte Carlo
with 105 paths of 100 time steps in the model 2.7 using differently calibrated local
volatility functions σ(·, ·) in (2.7), for each of the 7th, 8th, and 9th August dataset.
Table 2.4.7 shows the corresponding Monte Carlo backtesting repricing errors, us-
ing the option market prices from the training grids as reference values in the cor-
responding RMSEs. The neural network approaches provide a full surface of prices
and local volatilities, as opposed to values at the calibration trinomial tree nodes
only in the case of Tikhonov, for which the Monte Carlo backtesting exercise thus
requires an additional layer of local volatility inter-extrapolation, here achieved by
a nearest neighbors algorithm. We see from the table that both the benchmark
Tikhonov method and the dense network soft constraints approach with Dupire
penalization yield very reasonable and acceptable repricing errors (with still a cer-
tain advantage to the Tikhonov method), unlike the hard constraints approaches.
Moreover, the Dupire penalization is essential for extracting a decent local volatil-
ity function: The dense network with soft constraint but without this penalization

63

(a
)
H
ar
d
C
on

st
ra
in
ts

(b
)
So

ft
co
ns
tr
ai
nt
s
(w

/o
lo
ca
lv

ol
.
co
ns
tr
ai
nt
s)

(c
)
So

ft
co
ns
tr
ai
nt
s
(w

it
h
lo
ca
lv

ol
.
co
ns
tr
ai
nt
s)

(d
)
T
ik
ho

no
v
lo
ca
lv

ol
at
ili
ty

F
ig
ur
e
2.
4.
8:

Lo
ca
lv

ol
at
ili
ty

fo
r
07
/0
8/
20
01
.

64

(a
)
H
ar
d
C
on

st
ra
in
ts

(b
)
So

ft
co
ns
tr
ai
nt
s
(w

/o
lo
ca
lv

ol
.
co
ns
tr
ai
nt
s)

(c
)
So

ft
co
ns
tr
ai
nt
s
(w

it
h
lo
ca
lv

ol
.
co
ns
tr
ai
nt
s)

(d
)
T
ik
ho

no
v
lo
ca
lv

ol
at
ili
ty

F
ig
ur
e
2.
4.
9:

Lo
ca
lv

ol
at
ili
ty

fo
r
08
/0
8/
20
01
.

65

(a
)
H
ar
d
C
on

st
ra
in
ts

(b
)
So

ft
co
ns
tr
ai
nt
s
(w

/o
lo
ca
lv

ol
.
co
ns
tr
ai
nt
s)

(c
)
So

ft
co
ns
tr
ai
nt
s
(w

it
h
lo
ca
lv

ol
.
co
ns
tr
ai
nt
s)

(d
)
T
ik
ho

no
v
lo
ca
lv

ol
at
ili
ty

F
ig
ur
e
2.
4.
10

:
Lo

ca
lv

ol
at
ili
ty

fo
r
09
/0
8/
20
01
.

66

yields very poor Monte Carlo repricing RMSEs.

σ(·, ·) Tikhonov
Monte Carlo

Dense network
with soft constraints
and Dup. penal.

Dense network
with soft constraints

Hard constraint
with Dup. penal.

Hard constraint
w/o Dup. Pen.

07/08/2001 5.42 10.18 68.48 48.57 50.44
08/08/2001 5.55 7.44 50.82 56.63 56.98
09/08/2001 4.60 8.18 59.39 66.23 65.50

Table 2.4.7: Monte Carlo backtesting repricing RMSEs on training grid against
market prices.

The residual gap between the Monte Carlo RMSEs of the (even best) neural
network local volatility and of the Tikhonov local volatility can seem disappointing.
However we should keep in mind that the neural network can evaluate quickly a lo-
cal volatility on any node outside the training grid, whereas Tikhonov then requires
a further layer of interpolation (or a new calibration). Furthermore, any vanilla
option price can be accurately and quickly obtained by neural prediction (better
than by Monte Carlo repricing as above). Table 2.4.8 shows training set RMSEs of
thus predicted prices against markets prices equivalent to (in fact, slightly better
than) RMSEs of Tikhonov trinomial tree prices against the same markets prices.
These are of course only in-sample errors, but the additional findings of Table 2.4.7
suggest that these good results are not just overfitting.

σ(·, ·) Tikhonov trin. tree NN pred. (dense network with
soft constraints and Dup. penal).

07/08/2001 2.42 2.66
08/08/2001 2.67 2.48
09/08/2001 2.45 2.34

Table 2.4.8: Training set RMSEs of Tikhonov trinomial tree vs. NN predicted
prices against market prices.

2.5 Gaussian process regression for learning
arbitrage-free price surfaces

In this section, we consider as a first benchmark a zero-mean Gaussian process
prior on the mapping P = P (x)x∈Ω with correlation function c given, for any

67

x = (T, k), x′ = (T ′, k′) ∈ Ω, by

c(x, x′) = σ2γT (T − T ′, θT)γk(k − k′, θk). (2.8)

The introduction of Gaussian processes as an arbitrage-free surrogate model is
a recent proposal. Tegnér & Roberts (Tegnér and Roberts 2019, see their Eq. (10))
first attempt the use of GPs for local volatility modeling by placing a Gaussian
prior directly on the local volatility surface. Such an approach leads to a nonlinear
least squares training loss function, which is not obviously amenable to gradient
descent (stochastic or not), so the authors resort to a MCMC optimization. Maa-
touk & Bay (Maatouk and Bay 2017) introduce finite dimensional approximation
of Gaussian processes (GP) for which shape constraints are straightforward to
impose and verify. Cousin et al. (Cousin, Maatouk, and Rullière 2016b) apply
this technique to ensure arbitrage-free and error-controlled yield-curve and CDS
curve interpolation and below we present their most recent approach detailed in
(Chataigner, Cousin, Crépey, Dixon, and Gueye 2021).

Here (θT , θk) = θ and σ2 correspond to length scale and variance hyper-
parameters of the kernel function c, whereas the functions γT and γk are kernel
correlation functions.

Without consideration of the conditions (2.2), (unconstrained) prediction and
uncertainty quantification are made using the conditional distribution P | P (x) +
ε = y, where y = [y1, . . . , yn]> are n noisy observations of the function P at
input points x = [x1, . . . , xn]>, corresponding to observed maturities and strikes
xi = (Ti, ki); the additive noise term ε = [ε1, . . . , εn]> is assumed to be a zero-mean
Gaussian vector, independent from P (x), and with an homoscedastic covariance
matrix given as ς2In, where In is the identity matrix of dimension n. Note that
bid and ask prices are considered here as (noisy) replications at the same input
location.
2.5.1 Imposing the no-arbitrage conditions

To deal with the constraints (2.2), we adopt the solution of Cousin et al. (Cousin,
Maatouk, and Rullière 2016b) that consists in constructing a finite dimensional
approximation P h of the Gaussian prior P for which these constraints can be
imposed in the entire domain Ω with a finite number of checks. One then recovers
the (non Gaussian) constrained posterior distribution by sampling a truncated
Gaussian process.

Remark 1. Switching to a finite dimensional approximation can also be viewed
as a form of regularization, which is also required to deal with the ill-posedness of
the (numerical differentiation) Dupire formula.

We first consider a discretized version of the (rescaled) input space Ω = [0, 1]2

as a regular grid (ıh)ı, where ı = (i, j), for a suitable mesh size h and indices i, j

68

ranging from 0 to 1/h (taken in N?). For each knot ı = (i, j), we introduce the
hat basis functions φı with support [(i− 1)h, (i+ 1)h]× [(j − 1)h, (j + 1)h] given,
for x = (T, k), by

φı(x) = max(1− |T − ih|
h

, 0) max(1− |k − jh|
h

, 0).

We take V = H1(Ω) = {u ∈ L2(Ω) : Dαu ∈ L2(Ω), |α| ≤ 1}, where Dαu
is a weak derivative of order |α|, as the space of (the realizations of) P . Let
V h ⊂ V denote the finite dimensional linear subspace spanned by the M linearly
independent basis functions φı. The (random) surface P in V is projected onto
V h as

P h(x) =
∑
ı

P (ıh)φı(x), ∀x ∈ Ω. (2.9)

If we denote Lı = P (ıh), then L = (Lı)ı is a zero-mean Gaussian column vector
(indexed by ı) with M ×M covariance matrix Γh such that Γhı, = c(ıh, h), for
any two grid nodes ı and . Let φ(x) denote the vector of size M given by
φ(x) = (φı(x))ı. The equality (2.9) can be rewritten as P h(x) = φ(x) ·L. Denoting
by P h(x) = [P h(x1), . . . , P h(xn)]> and by Φ(x) the n×M matrix of basis functions
where each row ` corresponds to the vector φ(x`), one has P h(x) = Φ(x) · L. By
application of the results of (Maatouk and Bay 2017):

Proposition 2. (i) The finite dimensional process P h converges uniformly to P
on Ω as h→ 0, almost surely,
(ii) P h(T, k) is a nondecreasing function of T if and only if Li+1,j ≥ Li,j,∀(i, j),
(iii) P h(T, k) is a convex function of k if and only if Li,j+2 − Li,j+1 ≥ Li,j+1 −
Li,j,∀(i, j).

In view of (i), denoting by I the set of 2d continuous positive functions which are
nondecreasing in T and convex in k, we choose as constrained GP metamodel for
the put price surface the law of P h conditional on{

P h(x) + ε = y
P h ∈ I.

In view of (ii)-(iii), P h ∈ I if and only if L ∈ Ih, where Ih corresponds to the set
of (ı indexed) vectors ρ = (ρı)ı such that ρi+1,j ≥ ρi,j and ρi,j+2−ρi,j+1 ≥ ρi,j+1−ρi,j
∀(i, j). Hence, our GP metamodel for the put price surface can be reformulated
as the law of L conditional on{

Φ(x) ·L+ ε = y
L ∈ Ih. (2.10)

69

2.5.2 Hyper-parameter learning

Hyper-parameters consist in the length scales θ and the variance parameter σ2 in
(2.8), as well as the noise variance ς. Up to a constant, the so called marginal
log likelihood of L at λ = [θ, σ, ς]> can be expressed as (see e.g. (Murphy 2012a,
Section 15.2.4, p. 523)):

L(λ) = −1
2
y>
(
Φ(x)ΓhΦ(x)> + ς2In

)−1
y − 1

2
log
(

det
(
Φ(x)ΓhΦ(x)> + ς2In

))
.

We maximize L for learning the hyper-parameters λ (MLE estimation).

Remark 3. The above expression does not take into account the inequality con-
straints in the estimation. However, Bachoc et al. (Bachoc, Lagnoux, López-
Lopera, et al. 2019, see e.g. their Eq. (2)) argue (and we observed empirically) that,
unless the sample size is very small, conditioning by the constraints significantly
increases the computational burden with negligible impact on the MLE.

2.5.3 The most probable response surface and measurement
noises

We compute the joint MAP (ρ̂, ê) of the truncated Gaussian vector L and of the
Gaussian noise vector ε,

(ρ̂, ê) = arg max
(ρ,e)

Prob
(
L ∈ [ρ,ρ+ dρ], ε ∈ [e, e+ de] | Φ(x) ·L+ ε = y, L ∈ Ih

)
(for the probability measure Prob underlying the GP model). As (L, ε) is Gaus-
sian centered with block-diagonal covariance matrix with blocks Γh and ς2In, this
implies that the MAP (ρ̂, ê) is a solution to the following quadratic problem :

arg min
Φ(x)·ρ+e=y,ρ∈Ih

(
ρ>(Γh)−1ρ+ e>(ς2In)−1e

)
. (2.11)

We define the most probable measurement noise to be ê and the most probable
response surface p̂h(x) = Φ(x)·ρ̂. Distance to the data can be an effect of arbitrage
opportunities within the data and/or misspecification / lack of expressiveness of
the kernel.

2.5.4 Sampling finite dimensional Gaussian processes under
shape constraints

The conditional distribution of L | Φ(x) ·L+ ε = y is multivariate Gaussian with
mean ηy(x) and covariance matrix Cy(x) such that

ηy(x) = ΓhΦ(x)>(Φ(x)ΓhΦ(x)> + ς2In)−1y (2.12)
Cy(x) = ΓhΦ(x)>(Φ(x)ΓhΦ(x)> + ς2In)−1Φ(x)Γh. (2.13)

70

In view of (2.10), we thus face the problem of sampling from this truncated mul-
tivariate Gaussian distribution, which we do by Hamiltonian Monte Carlo, using
the MAP L̂ of L as the initial vector (which must verify the constraints) in the
algorithm.

2.5.5 Local volatility

Due to the shape constraints and to the ensuing finite-dimensional approxima-
tion with basis functions of class C0 (for the sake of Proposition 2), P h is not
differentiable. Hence, exploiting GP derivatives analytics, as done for the mean in
(Crépey and Dixon 2020, cf. Eq. (10)) and also for the covariance in (Ludkovski
and Saporito 2020), is not possible for deriving the corresponding local volatility
surface here. Computation of derivatives involved in the Dupire formula is im-
plemented by finite differences with respect to a coarser grid (than the grid of
basis functions). Another related solution would be to formulate a weak form of
the Dupire equation and construct a local volatility surface approximation using
a finite element method.

See Algorithm 2.1 for the main steps of the GP approach.

Algorithm 3 The GP algorithm for local volatility surface approximation.
Data: Put price training set P?
Result: M realizations of the local volatility surface {duphi }Mi=1

3 λ̂ ← Maximize the marginal log-likelihood of the put price surface ph w.r.t. λ
// Hyperparameter fitting

4 (ρ̂, ê)← Minimize quadratic problem (2.11) based on λ̂ // Joint MAP estimate
5 ρ̂→ Initialize a Hamiltonian MC sampler
6 P h

1 , . . . , P
h
M ← Hamiltonian MC Sampler // Sampling price surfaces

7 duphi ← Finite difference approximation using each P h
i , i := 1→M

2.6 Arbitrage-free SVI

2.6.1 SVI parameterizations

We also benchmark the machine learning results with the industry standard pro-
vided by the arbitrage free stochastic volatility inspired (SVI) model of (Gatheral
and Jacquier 2014). Under the “natural parameterization" SVI = (∆,P, ρ, ω, ζ),
the implied total variance is given, for any fixed T , by

ΘSVI(κ) = ∆ +
ω

2

(
1 + ρ(κ− P)ζ +

√
(ζ(κ− P) + ρ)2 + (1− ρ2)

)
. (2.14)

71

In order to explain the arbitrage-free SSVI methodology, we need to introduce
the companion parameterizations. The raw SVI parameterization was the first SVI
model introduced at Merryl Lynch in 1999 and then reported in the litterature (see
(Gatheral 2004)). Under this raw parameterization, the implied total variance has
the advantage , for a fixed maturity , to be a linear function of the log-moneyness
for large strike which is consistent with the Roger Lee’s moment formula.

This raw parameterization (a, b, L,m, σ) is in bijection with the natural pa-
rameterization :

a = ∆ + ω
2
(1− L2)

L = ρ

b = ωζ
2

m = P− L
ζ

σ =
√

1−L2

ζ

(2.15)

The Jump-Wings SVI prametrization (v, p, ψ, c, v̂) is more intuitive in so far
as its parameters are closely related to the geometry of the slice. For instance v
yields the at-the-money implied total variance, ψ gives the ATM skew, p and c
the slope for respectively the left put and the right call wing and v̂ the minimum
implied variance.

The Jump-Wings SVI parameterization is also in bijection with the SVI raw
parameterization ∀t ≥ 0 :

b =
√
w

2(c+p)

L = 1− p
√
w
b

a = L− 2ψ
√
w

b

m = (v−v̂)t

b(−L+sign(α)
√

1+α2−α
√

1−α2)

σ = αm

(2.16)

with w = vt, α = sign(β)
√

1
β2 − 1 and β = L− 2ψ

√
w

b
.

2.6.2 No-arbitrage conditions on SVI parameters

Arbitrage Free surface SVI model requires monotonicity of at-the-money implied
total variance. In our data some slices are unbalanced and does not contain at-
the-money logmoneyness in their domain. This leads to the estimation of ATM
implied total variance breaking that monotony. To circumvent that problem, we
estimate ATM implied total variance only with slices containing zero forward log-
moneyness. Then we interpolate linearly that implied total variance and we ensure

72

monotonicity by taking for each t the maximum of previous ATM total variance
max
s≤t

Θ(s, 0) :

Θ(t, 0) =

max
s≤t

Θ(s, 0) if 0 ∈ [min
{κ s.t. χi(t,κ)∈Ω}

κ, max
{κ s.t. χi(t,κ)∈Ω}

κ]

t−t−
t+−t− min{

s≥t+ , s.t. Θ(s,0)≤max
s≤t−

Θ(s,0)

}Θ(s, 0) + t+−t
t+−t− max

s≤t−
Θ(s, 0) otherwise

(2.17)
The first step for an arbitrage-free SVI slice is to get an arbitrage-free ini-

tial guess. This is done for all slice with a single calibration of Surface SVI
model (or SSVI). SSVI is a particular case of natural SVI parameterization namely
(0, 0, ρ,Θ(t, 0), φ(Θ(t, 0))) where φ is the so-called ”power law“ function :

φ(Θ) =
η

Θγ(1 + Θ)1−γ .

When γ = 0.5, (Gatheral and Jacquier 2014, Remark 4.4) shows that no-
arbitrage conditions are respected under the constraint η(1+|L|)−2 ≥ 0 (assuming
that the ATM implied total variance is also nondecreasing).

SSVI model is thus calibrated on training dataset through the following opti-
mization problem :

SSV I ← arg min
(η,L)

η(1+|L|)−2≥0

√
1

n

∑
i

((
ΣSV Inatt

(χi,Θ(t, 0), L, η)− Σ∗(χi)
))2

, (2.18)

The subsequent initial guess SSV I is then plugged in an optimization routine
(2.19) specific to each slice. The calendar condition is maintained between two
consecutive slices with a crossedness penalty. Denoting by SV I t the arbitrage-free
SVI parameters for a slice of implied volatility at time t, the crossedness penalty
is defined as : C(t) = max

κj

(
ΘSV I(t−, κj)−ΘSV I(t, κj)

)+ where (κj){j∈{1,..,n}} is an

arbitrary forward log-moneyness discretization.
For each maturity t in the training set we solve the following optimization

problem :

SV I t ← arg min
(v,p,ψ)

√
1

n

∑
i

((
ΣSV IJWt

(χi)− Σ∗(χi)
))2

+ λC(t), (2.19)

where λ ∈ R+ and SV IJWt employs the SVI-Jump-Wings parameterization at time
t (v, p, ψ, ψ + 2p, 4vψ(ψ+2p)

(ψ+ψ+2p)2).

73

2.6.3 Slice parameter interpolation

When we are looking for an implied total variance with a maturity outside the
training set, we need to interpolate the SVI parameters of the two nearest slices.
Let denote t− and t+ the closest maturities in the training set surrounding an
arbitrary date t. Let us assume that parameters SV I t+ and SV I t− are arbitrage-
free. Then the following interpolation guarantee an arbitrage-free SVI slice :

SV I t = αtSV I t+ + (1− αt)SV I t−

with αt = Θ(t,0)−Θ(t−,0)
Θ(t+,0)−Θ(t−,0)

and Θ(., 0) the ATM implied total variance curve.
When t is greater than the largest maturity in the training set, Θ(t, .) is ex-

trapolated as follow :

Θ(t, κ) = Θ(t−, κ) + Θ̂(t, 0)−Θ(t−, 0),∀κ

with Θ̂(t, 0) is the ATM implied total variance linearly extrapolated from ATM
implied total variance of the training set.

If t is smaller than the smallest training maturity, implied volatility is calibrated
on a combination of payoff P0(k) and price Pt+ . In our case Θ(t, k) is obtained
with a bissection algorithm on interpolated price Pt(k):

Pt(k) = αt
P0(k)

K0

+ (1− αt)
Pt+

Kt+

with αt = Θ(t+,0)−Θ(t,0)
Θ(t,0)

and Kt = e−kFt where Ft is the forward price at time t.
Once the SVI slices are fitted, the corresponding local volatility is extracted by

finite difference approximation of (2.3). As, in practice, no arbitrage constraints
are implemented for SSVI by penalization (see (Gatheral and Jacquier 2014, Sec-
tion 5.2)), in the end the SSVI approach is in fact only practically arbitrage-free,
much like our NN approach, whereas it is only the GP approach that is proven
arbitrage-free.

2.7 SPX Numerical Experiments

2.7.1 Experimental design

Our training set is prepared using SPX European puts with different available
strikes and maturities ranging from 0.005 to 2.5 years, listed on 18th May 2019,
with S0 = $2859.53. Each contract is listed with a bid/ask price and an im-
plied volatility corresponding to the mid-price. The associated interest rate is
constructed from US treasury yield curve and dividend yield curve rates are then

74

obtained from call/put parity applied to the option market prices and forward
prices. We preprocess the data by removing the shortest maturity options, with
T < 0.055, and the numerically inconsistent observations for which the gap be-
tween the listed implied volatility and the implied volatility calibrated from mid-
price with our interest/dividend curves exceeds 5% of the listed implied volatility.
But we do not remove arbitrable observations in the sense of violation of arbitrage
relationships on training set (as assessed on the basis of discretely approximated
calendar and butterfly conditions). The preprocessed training set is composed of
1720 market put prices. The testing set consists of a disjoint set of 1725 put prices.

All results for the GP method are based on using Matern ν = 5/2 kernels over a
[0, 1]2 domain with fitted kernel standard-deviation hyper-parameter σ̂ = 185.7611,
length-scale hyper-parameters θ̂k = 0.3282 and θ̂T = 0.2211, and homoscedastic
noise standard deviation, ς̂ = 0.6876.3 The grid of basis functions for constructing
the finite-dimensional process P h has 100 nodes in the modified strike direction and
25 nodes in the maturity direction. The Matlab interior point convex algorithm
quadprog is used to solve the MAP quadratic program (2.11).

Regarding the NN approach, we use a three layer architecture similar to the
one based on prices (instead of implied volatilities in Section 2.3.3) in (Chataigner,
Crépey, and Dixon 2020), to which we refer the reader for implementation details.
We use a penalty grid Ωh withm = 50×100 nodes. In the moneyness and maturity
coordinates, the domain of the penalty grid is [0.005, 10]× [0.5, 2].

2.7.2 Calibration results

Training times for SSVI, GP, and NNs are reported in the last row of Table 2.7.1
which, for completeness, also includes numerical results obtained by NN interpo-
lation of the prices as per (Chataigner, Crépey, and Dixon 2020). Because price
based NN results are outperformed by IV based NN results we only focus on the IV
based NN in the figures that follow, referring to (Chataigner, Crépey, and Dixon
2020) for every detail on the price based NN approach. We recall that, in contrast
to the SSVI and NNs which fit to mid-quotes, GPs fit to the bid-ask prices.

The GP implementation is in Matlab whereas the SSVI and NN approaches
are implemented in Python. On our (large) dataset, the constrained GP has the
longest training time. Training is longer for constrained SSVI than for uncon-
strained SSVI because of the ensuing amendments to the optimization routine.
There are no arbitrage violations observed for any of the constrained methods in
neither the training or the testing grid. Unconstrained methods yield 18 viola-
tions with NN and 177 with SSVI on the testing set, out of a total of 1725 testing

3When re-scaled back to the original input domain, the fitted length scale parameters of the
2D Matern ν = 5/2 are θ̂k = 973.1901 and θ̂T = 0.5594.

75

IV RMSE
(Price RMSE) SSVI GP IV based

NN
Price

based NN
SSVI

Unconstr.
GP

Unconstr.

IV based
NN

Unconstr.

Price
based NN
Unconstr.

Calibr. fit on
the training set

1.37%
(2.574)

0.58%
(0.338)

1.23%
(2.897)

13.70%
(9.851)

1.04%
(2.691)

0.60%
(0.321)

0.84%
(2.163)

5.65 %
(2.456)

Calibr. fit on
the testing set

1.52%
(2.892)

0.57%
(0.355)

1.29%
(2.966)

14.27%
(10.347)

1.09%
(2.791)

0.57%
(0.477)

0.86%
(2.045)

6.14%
(2.888)

MC backtest 8.69%
(22.826)

19.76%
(74.017)

2.95%
(4.989)

6.37%
(11.764) N/A N/A N/A N/A

CN backtest 6.88%
(33.545)

7.86%
(35.270)

3.43%
(11.976)

5.56%
(26.785) N/A N/A N/A N/A

Comput. time
(seconds) 33 856 191 185 1 16 76 229

Table 2.7.1: The IV and price RMSEs of the SSVI, GP and NN approaches. Last
row: computation times (in seconds).

points, i.e. violations in 1.04% and 10.26% of the test nodes. The unconstrained
GP approach yields constraint violations on 12.5% of the basis function nodes ıh.
The NN penalizations (calT)− and (buttκ)− vanish identically on the penalty grid
Ωh in the constrained case, whereas in the unconstrained case their averages across
grid nodes in Ωh are (calT)− = 3.91 × 10−6 and (buttκ)− = 1.60 × 10−2 with the
IV based NN.

Fig. 2.7.1(a-b) respectively compare the fitted IV surfaces and their errors with
respect to the market mid-implied volatilities, among the constrained methods.
The surface is sliced at various maturities (more slices are available in the github)
and the IVs corresponding to the bid-ask price quotes are also shown – the blue
and red points respectively denote training and test observations.

We generally observe good correspondence between the models and that each
curve typically falls within the bid-ask spread, except for the shortest maturity
contracts where there is some departure from the bid-ask spreads for observations
with the lowest log-moneyness values. We see on Fig. 2.7.1(b) that the GP IV
errors are small and mostly less than 5 volatility points, whereas NN and SSVI
exhibit IV error that may exceed 15 volatility points. The green line and the red
shaded envelopes respectively denote the GP MAP estimates and the posterior
uncertainty bands under 100 samples per observation. The support of the posterior
GP process assessed on the basis of 100 simulated paths of the GP captures the
majority of bid-ask quotes. The GP MAP estimate occasionally corresponds to
the boundary of the support of the posterior simulation. This indicates that the
posterior truncated Gaussian distribution is heavily skewed for some points, and
that the MAP estimate consequently saturates the arbitrage constraints. This
indicates a tension between these constraints and the calibration requirement,
which cannot be fully reconciled, most likely because some of the (short maturity)
data are arbitrable (they are at least illiquid and hence noisy). See notebook for

76

location of arbitrages in the unconstrained approach.
Fig. 2.7.1(a-b) suggest that the data may exhibit arbitrage at the lowest maturi-

ties where the methods depart from the bid-ask spreads. This is further supported
in Fig. 2.7.2(a-b) which shows the corresponding methods without the no-arbitrage
constraints. In Fig. 2.7.2(a-b) we observe that the estimated IVs now fall within
close proximity of the bid-ask spreads–all methods exhibit an error typically less
than 5 volatility points. Note that the y-axis has been scaled for each plot in
Fig. 2.7.2(b) to accommodate the wide uncertainty band of the posterior for the
unconstrained GP. Whereas the uncertainty band of the constrained GP spanned
at most 10 volatility points, the uncertainty band of the unconstrained GP is an
order of magnitude larger, sometimes spanning more than 100 volatility points.

(a) Implied volatilities.

(b) Fitted IV errors with respect to mid-price IVs.

Figure 2.7.1: Slices of constrained GP (green), NN (purple), and SSVI (black)
models of SPX puts with training bid-asks IVs (+) and testing bid-asks IVs as a
function of log forward moneyness (+)(the bid-ask IVs are reconstructed numer-
ically from the corresponding bid-ask market prices). The shaded envelopes show
100 paths of the constrained GP’s posterior.

Fig. 2.7.3 shows the local volatility surfaces that stem from the three con-
strained approaches. Fig. 2.7.3(a) shows the spiky local volatility surface generated
by SSVI, capped at the 200% level for scaling convenience. Fig. 2.7.3(b) shows

77

(a) Implied volatilities.

(b) Fitted IV errors with respect to mid-price IVs.

Figure 2.7.2: Same as Figure 2.7.1 but for unconstrained GP, NN and SSVI.

(a) The local volatility surface gen-
erated by SSVI with finite differences,
capped at the 200% level.

(b) The MAP estimate of the GP
local volatility surface, capped at the
200% level.

(c) The implied volatility based NN
local volatility surface (with the local
volatility penalization).

Figure 2.7.3: The GP, SSVI, and NN local volatility estimate.

78

the capped local volatility surface constructed from the GP MAP price estimate.
Fig. 2.7.3(c) shows the (complete) NN local volatility surface.

2.7.3 In-sample and out-of-sample calibration errors

The error between the prices of the calibrated models and the market data are
evaluated on both the training and the out-of-sample data set. The first two
rows of Table 2.7.1 compare the in-sample and out-of-sample RMSEs of the prices
and implied volatilities across the different approaches. The differences between
the training and testing RMSEs are small, suggesting that all approaches are not
over-fitting the training set. The GP exhibits the lowest price RMSEs.

2.7.4 Backtesting results

The first repricing backtest estimates the prices of the European options corre-
sponding to the testing set, by Monte Carlo sampling in each calibrated local
volatility model (same methodology as in (Chataigner, Crépey, and Dixon 2020,
Section 7.2)). The second approach uses finite differences to price the options
with the calibrated local volatility surfaces. The pricing PDEs with local volatility
are discretized using a Crank-Nicolson (CN) scheme implemented on a 100× 100
backtesting grid. The last two rows in Table 2.7.1 compare the resulting price
backtest RMSEs across the different approaches. The NN fitted to implied volatil-
ities exhibit significantly lower errors in the backtests, followed by NN based on
prices, SSVI and GP. To quantify discretization error in these backtesting results
(as opposed to the part of the error stemming from a wrong local volatility), we
ran the same backtests in a Black-Scholes model with 20% volatility and the as-
sociated prices. The corresponding Monte Carlo and Crank-Nicholson backtesting
IV(price) RMSEs are 2.90%(1.56) and 0.846%(4.10), confirming the significance
of the above results.

2.8 Conclusion
We introduced three variations of neural net methodology to enforce no-arbitrage
interpolation of European vanilla put option quotes:

1. modification of the network architecture to embed shape conditions (hard
constraints).

2. use of shape penalization to favor these conditions (soft constraints).

3. additional use of local half-variance bounds in the penalization via the Dupire
formula.

79

Our experimental results confirm that hard constraints, although providing
the only fail-safe approach to no-arbitrage approximation, reduce too much the
representational power of the network numerically.

Soft constraints provide much more accurate prices and implied volatilities,
while only leaving space for sporadic arbitrage opportunities, which are not only
occasional but also very far from the money, hence do not necessarily correspond
to monetizable arbitrage opportunities once liquidity is accounted for. Once the
Dupire formula is included in the penalization, the corresponding local volatility
surface is also reasonably regular, at fixed day, and stable, in terms of both out-
of-sample performance at fixed day and dynamically from day to day. Finally the
additional penalization grid allows a more robust control of no-arbitrage conditions
on a flexible domain that can be customized by the final user.

The performance of the neural network local volatility calibration method then
gets close to the one of the classical Tikhonov regularization method of (Crépey
2002), but not better. However the obtention of local volatility is fast at any loca-
tion once the neural net has been calibrated whereas with Tikhonov trinomial tree,
local volatility needs to be estimated each time we plug a new grid. Moreover the
performance are better when the neural net is calibrated with implied volatilities
and the local volatility that arises from the neural net is more consistent with
option quotes than with GPs or SSVI.

We thus enrich the associated machine learning literature on neural networks
metamodeling of vanilla option quotes in three respects: first, by considering the
associated local volatility, which is interesting both in itself and as a tool for
improving the learning of the option prices in the first place; second, by working
with real data; third, by systematically benchmarking our results with the help of
a proven (both mathematically and numerically) classical, non machine learning
calibration procedure, i.e. Tikhonov regularization, GPs or SSVI.

80

Chapter 3

Nowcasting network

We devise a neural network based compression/completion methodology for finan-
cial nowcasting. The latter is meant in a broad sense encompassing completion
of gridded values, interpolation, or outlier detection, in the context of financial
time series of curves or surfaces (also applicable in higher dimensions, at least in
theory). In particular, we introduce an original architecture amenable to the treat-
ment of data defined at variable grid nodes (by far the most common situation in
financial nowcasting applications, so that PCA or classical autoencoder methods
are not applicable). This is illustrated by three case studies on real data sets. First,
we introduce our approach on repo curves data (with moving time-to-maturity as
calendar time passes). Second, we show that our approach outperforms elementary
interpolation benchmarks on an equity derivative surfaces data set (with moving
time-to-maturity again). We also obtain a satisfying performance for outlier detec-
tion and surface completion. Third, we benchmark our approach against PCA on
at-the-money swaption surfaces redefined at constant expiry/tenor grid nodes. Our
approach is then shown to perform as well as (even if not obviously better than)
the PCA (which, however, is not be applicable to the native, raw data defined on
a moving time-to-expiry grid).

3.1 Introduction
In this chapter, we devise a neural network based methodology for financial now-
casting. The latter is meant in a broad sense encompassing completion of gridded
values, interpolation, or outlier detection, in the context of financial time series
of curves or surfaces. Toward this end we develop a generic two-step methodol-
ogy, whereby a pre-processing compression stage is followed by a completion stage.
Moreover, we detail two variations along this baseline, corresponding to two slightly
different perspectives and significantly distinct neural network architectures.

81

As such our approach is not bound to vectors and matrices. For generality
and notational convenience it is presented in the methodological part on arbitrary
tensors (but we do not address the strong aspect of dimension reduction that
typically comes with genuine tensors as opposed to matrices and vectors).

Under the so called convolutional approach, which is of the autoencoder type,
we assume that the information contained in an observed tensor can be encoded
into a reduced set of variables, dubbed factors. Conversely, given the factors, we
can reconstruct the whole tensor with a decoder. As a limiting case, we obtain
a linear, principal component analysis (PCA) kind of approach, but one itself
implemented in the optimization training mode, as an autoencoder with linear
activation functions (as opposed to spectral decomposition in the classical PCA
case).

Under the so called functional approach, factors are rather used as a way to
adjust a map taking as input a location (coordinates that may be part or not of
the original tensor nodes) and returning the corresponding reconstructed value.

The convolutional approach is more particularly dedicated to completion of
values on a fixed grid of coordinates, whereas the functional approach can handle
moving grids, which corresponds to the vast majority of applications in financial
nowcasting applications (unless the data have been transformed in a preprocessing
stage to make them fit a fixed grid, entailing an undesirable layer of approxi-
mation). Moreover, in the functional approach, including additional variables is
straightfoward.

The use of autoencoders as a nonlinear extension of the PCA can be traced
back to the 1980s (see Chapter 14 in Bengio, Goodfellow, and Courville (2017)
for a survey of autoencoder-based learning). Autoencoders have also already been
used in data completion (see Kiran, Thomas, and Parakkal (2018), Strub, Gaudel,
and Mary (2016)). In contrast, the neural network architecture of our functional
approach is new to the best of our knowledge.

At the intersection between neural networks and finance, the related paper by
Kondratyev (2018) is more about forecasting. Accordingly, we work in a mostly
unsupervised setting, whereas Kondratyev (2018) is in a mostly supervised setting.
Kondratyev (2018) predicts a new curve given a shock on a curve. The neural
network is trained for shocks applied to a particular location. Hence, to consider
a new shock, the model needs to be retrained. In contrast, our convolutional
network has a latent structure capturing interdependencies between all points in
the grid. This is even more obvious in the case of our functional approach, where
extra variables can be provided as direct inputs to the model.

Autoencoders (hence, unsupervised learning) are also considered in Section 5.4
in Kondratyev (2018). However, this is then with a focus on curve regularization
on a fixed grid, which can be done directly by decoding. The completion problem

82

that we are dealing in this work is more general and it requires one additional
layer of numerical optimization. Moreover, Kondratyev (2018) only deals with the
univariate case of curves, for which spatial regularity is a much less challenging
issue.

The chapter is outlined as follows. Sections 3.2 and 3.3 introduce the problems
and models. By the latter, we mean different algorithmic strategies and neural
network architectures that can be used for addressing the former. Section 3.4
lays an experimental setup putting the different models on comparable grounds.
Sections 3.5, 3.6 and 3.7 present repo curves, equity derivative implied volatility
surfaces and at-the-money swaption implied volatility surfaces case studies on real
data sets. Section 3.8 concludes and discusses further research perspectives in
connection with the quantitative finance and machine learning literatures.

Any notation of the form minx Λ(x, y) means that we minimize in x a loss Λ
given the value y of additional parameters; x? then refers to a numerical minimizer
of Λ(x, y) (which is typically nonconvex in x), for this given y.

3.2 Problems
We consider a data set consisting of a time series of observations, each consisting
of m points, or features, structured as a multivariate tensor. By the latter, we
mean a discretized cube (curve or surface in our case studies, but the methodology
is generic) of values of homogenous quantities, such as rates of different terms,
implied volatilities of different strikes and maturities, etc., defined at each tensor
grid node.

3.2.1 Compression

The compression problem is mainly a pre-processing stage that aims at reducing
the dimensionality m of a feature space, i.e. the number of grid nodes in each
tensor (here assumed constant across observations ω, see Section 3.3.3 regarding
the variant of the functional approach with a possibly variable mω). Assume
that each observation takes its values in (a subset of) Rm. We call encoder E any
injective map from a relevant subset S of Rm to a space Rf of factors, where f � m
is the number of factors. Conversely, one would like to be able to reconstruct the
m values of a tensor from any set of factors, or code, thanks to a map, called
decoder, D : Rf → S. The compression challenge is to build D and E such that
D ◦ E : S → S is bijective and “as close as possible to identity” (cf. Bengio,
Goodfellow, and Courville (2017, Chapter 14)).

The inspection of common financial time series of tensors suggests that, in their
case, this challenge is somehow not unreasonable. Indeed, structural constraints

83

often exist between the values at different tensor nodes, e.g. arbitrage pricing re-
lationships throughout the option chain. Moreover, usual financial tensors exhibit
some spatial regularity, in the sense that values at grid nodes vary smoothly with
respect to node location (think of interest rates with respect to their term or im-
plied volatilities with respect to the maturity and strike of an option). In addition,
some coordinates may have a regularizing effect. For instance, in the region of large
expiries, the at-the-money swaption implied volatility surface is mostly affected by
translation moves (and not so much by steepening, etc.) as time passes (see Sec-
tion 3.7). Last, some (monotonicity, convexity,...) patterns are often apparent (e.g.
the well-known volatility smile in equity derivative, and some similar features in
interest rate swaption implied volatility surfaces, cf. Figure 3.7.1).

Both maps E andD are sought within classes of neural networks with respective
parameters ε and δ, collectively denoted by θ. The motivation for using neural
networks in this context is their nonparametric (or, at least, very expressive) and
nonlinear features. Gaussian processes for instance would be much less flexible,
with only a few, e.g. two, kernel hyperparameters for squared exponential kernel
to calibrate a full data set of thousands of tensors.

We include into θ weights, biases, as well as any variable calibrated during the
compression stage. Denoting E = Eε and D = Dδ in reference to this parameter-
ization, the compression stage is the training of the neural networks according to
the following optimization problem:

min
θ=(δ,ε)

∑
ω∈Ω

∑
(n,y)∈ω

(
y −

(
Dδ

(
Eε(ω)

))
n

)P
, (3.1)

where Ω stands for the training data set (cf. Section 3.4).
Certain additional properties are desirable for D and E. The parameterization

θ should allow for a robust and fast numerical solution to the problem (3.1).
This may be harder to achieve for some deep neural networks too sensitive to the
initialization of their parameters. In particular, two similar tensors should give rise
to similar codes and vice versa, i.e. we want D and E to be “sufficiently smooth”
in such way as to preserve distance in the subspace.

3.2.2 Completion

Having found a parameterization θ? = (δ?, ε?) that ensures a satisfying reconstruc-
tion loss in (3.1), the completion task consists in the exploitation of Dδ? in order
to find the missing values of an incomplete observation ω (of the current day, say,
to be completed based on the complete observations of the previous days, used as
training set).

84

Toward this end, we introduce the following optimization problem:

min
c

∑
(n,y)∈ω

(
y −

(
Dδ(c)

)
n

)P
, (3.2)

considered for δ = δ?. The completed tensor is then defined as the image Dδ?(c
?)

of the code c? by the decoder Dδ? . Obviously, the more missing values, the harder
the completion task (higher overfitting risk, unless some appropriate regularization
is used).

Note that, thanks to the compression step, the number of variables to estimate
is drastically reduced in (3.2), to some reference number, i.e. the dimensionality of c
(e.g. 4, 15, or 8 in our repo, equity index derivative and interest-rate swaption case
studies), independent of the number of unknowns in the native, “uncompressed”
completion problem (such as the number of missing implied volatility values in
a to-be-completed surface). Moreover, a factorial representation with f � m
filters out the unlikely tensors (as outlined by the reconstruction error from our
neural networks, cf. Section 3.2.3) that could otherwise arise from a decoding due
to the ill-posedness of large-scale arg-minimization problems. The regularity of
the map Dδ? can sometimes be exploited to ease the completion, by initializing
the numerical solution of (3.2) with the encoding of the last fully observed (e.g.
already completed) tensor.

Literature Review The literature on completion primarily deals with data
structured on a fixed grid. This means that columns in the data set refer to the
same feature (in our case: financial instrument). This is not consistent with most
financial nowcasting applications, for which, in particular, the time-to-maturity
decreases with calendar time. To the best of our knowledge, only naive interpo-
lation methods on a given tensor, without possible exploitation of a data set, are
available in the case of a moving grid.

The standard completion framework relies on a low rank representation of the
data set (see Nguyen, Kim, and Shim (2019)). Along this line (but on a possibly
moving grid), we compress each observation in a code which can be seen as a
latent vector. However, in contrast with methods such as SVD, alternating least
squares (see Hastie, Mazumder, Lee, and Zadeh (2015)), or denoising autoencoders
(see Strub and Mary (2015)), which learn a user matrix, we do not consider the
interaction between the observations (i.e. the dynamics): at this stage at least, we
focus on the interaction between the variables (instruments).

Finally, standard completion methods in recommender systems assume missing
completely at random (MCAR) values dispersed throughout the whole data set.
In our case studies missing values are located completely at random but only for
the current observation.

85

3.2.3 Outlier Detection

Hawkins (1980) defines outliers as “observation which deviates so much from other
observations as to arouse suspicion it was generated by a different mechanism".
Outlier detection is of course a crucial issue in finance. For instance, investment
banks receive market information from a data provider. Sometimes, the data can
be polluted with errors of various sources, or “different mechanism", whether it is
data feed bugs, fat finger of other market participants, or failure from computation
processes (for instance, implicitation of volatility surface from option prices). It
can be either a punctual outlier, i.e. a single value of the tensor is too far away
from what it should be, or the whole tensor may have a shape that is very unlikely.

To detect the punctual outliers, many simple methods are available, based on
smoothness metrics or on historical percentile ranges of the values. To detect shape
outliers, some criteria can be checked for very specific data sets, e.g. non-arbitrage
butterfly/calendar spread conditions in the case of option prices.

Here we propose a general method to detect both punctual outliers and shape
aberration. The functional variant of our method works on an unstructured grid.

To say that the tensors generated from the “normal mechanism" is of a cer-
tain form is equivalent to say that the mechanism generates values that lie in a
sub-manifold S of the initial feature space (cf. Section 3.2.1). Finding this sub-
manifold is equivalent to detecting anomalies. From this point of view, anomaly
detection and compression/decompression are two sides of the same coin. Indeed,
from an information theory point of view, there is an equivalence between being
an anomaly and being hard to reconstruct (large reconstruction error in a lossy
data compression setup, low or even negative compression rate in a lossless data
compression setup): See the seminal paper by Shannon (1948) or Chapter 4 in
MacKay and Mac Kay (2003). That is, a compression/decompression setup pro-
vides a natural anomaly detection tool.

Specifically, we identify an outlier as an observation whose reconstruction error
(cf. (3.1)) is above a predefined threshold.

Some key practical questions in outlier detection are how a threshold for outlier
detection should be chosen or how one can validate the method. In principle this
can only be addressed by human expertise. An expert would gradually diminish
the threshold until the newly detected ‘outliers’ are no longer considered such
by the expert. The method is valid and performs well if the outlier detection
in a validation set is consistent with the expert view (so that, in particular, the
threshold is stable through time and does not need to be reassessed too frequently).

However, our compression methodology also provides a validation tool for the
quality of our outlier detection method. Namely, one can corrupt some of the data
(manually or in an automated fashion) and check whether the outlier detection
procedure identifies the corrupted data.

86

Our approach also provides guidance to a human expert for anomaly correction.
Currently experts only rely on naive heuristics, such as interpolation between dif-
ferent points of a surface, who cannot automatically exploit the overall data set of
surfaces. In the outlier detection validation framework of the previous paragraph,
one can also check whether the correction that our approach provides is closer to
the true data than to the corrupted ones.

Literature Review Among many related references on outlier detection:

• Patcha and Park (2007), Chandola, Banerjee, and Kumar (2009), Omar,
Ngadi, and Jebur (2013), or Anandakrishnan, Kumar, Statnikov, Faruquie,
and Xu (2018) provide surveys, the last one specialized in finance and the
next-to-last one on machine learning techniques;

• Lakhina, Joseph, and Verma (2010) use PCA, An and Cho (2015) vari-
ational autoencoders, Schlegl, Seeböck, Waldstein, Langs, and Schmidt-
Erfurth (2019) generative adversarial networks, Lakhina, Joseph, and Verma
(2010) and Cappozzo, Greselin, and Murphy (2020) semi-supervised learn-
ing. Chaloner and Brant (1988) and Cansado and Soto (2008) resort to
Bayesian methodologies;

• Ro, Zou, Wang, and Yin (2015) is about high-dimensional data, Anan-
dakrishnan, Kumar, Statnikov, Faruquie, and Xu (2018) about high dimen-
sional big data, Rocke and Woodruff (1996) about multivariate data, Goix,
Sabourin, and Clémençon (2017) and Goix, Sabourin, and Clémençon (2015)
about detection of anomalies among extremes.

3.3 Models
The main innovation of this work is the functional approach. The description of
the PCA and linear projection methods are mainly provided so that the reader can
compare carefully both frameworks. The PCA and linear projection methods are
also used for benchmarking purposes in the swaption case study of Section 3.7 for
which both approaches are available. The base PCA method is of course standard.
The linear projection variant of it is detailed in Section 3.3.2. The description is
short because the method falls directly under the umbrella of sections 3.2.1 and
3.2.2 (as opposed to the functional approach of section 3.3.3, which requires a
specific development).

87

3.3.1 The Convolutional (Autoencoder) Approach

Typical autoencoder architectures are composed of two successive feedforward neu-
ral networks E and D, the encoder and the decoder. Both networks can be con-
stituted of several layers, intermediated by nonlinear activation functions, with an
overall bottleneck structure (to enforce compression in the middle).

Convolutional layers have been introduced for image processing and, more gen-
erally, any data structure represented as a tensor. These networks aim to model
the interactions between close points (whereas dense layers bind any output unit
to all input units). Spatial regularity properties are handled by a convolutional
structure of the neural network architectures, whereby the only (non-zero) connec-
tions are between units corresponding to adjacent (in a suitable sense) grid nodes
(cf. Figure 3.7.3). The network then also uses fewer parameters, which reduces the
complexity of the corresponding compression problem. For implementation details
such as kernels and padding, we refer to Chapter 9 in Bengio, Goodfellow, and
Courville (2017).

3.3.2 The Linear Projection Approach

It is well known that an autoencoder with linear activation functions and an L2

reconstruction error is equivalent to a PCA (see Chapter 14 in Bengio, Goodfel-
low, and Courville (2017)). As a limiting case of the above, we consider a linear,
PCA kind of benchmark, but one itself implemented as an autoencoder with lin-
ear activation functions (as opposed to spectral decomposition for classical PCA
implementation). With respect to classical PCA (which will also be included in
our case studies), this approach involves an additional bias parameter. Moreover,
it allows benefiting from the implicit regularization provided by early stopping in
the related training procedure (see Section 3.4), as opposed to a regularization
provided by truncation of the lowest eigenvalues in spectral decomposition based
PCA implementation.

3.3.3 The Functional Approach

We introduce a variant of the above, especially suited to interpolation purposes
(without reference to a fixed grid of nodes). This approach relies on a parameter-
ized function D = Dδ(c, n) of a code c and a node location n, where the latter no
longer needs belong to a pre-determined grid. Here δ corresponds to the parame-
ters of the decoder D, whereas the approach does not entail any encoder (at least,
not explicitly).

The compression is written as (compare with (3.1), using a similar notation as

88

well as C = (Cω)ω∈Ω)

min
δ,C

∑
ω∈Ω

∑
(n,y)∈ω

(
y −Dδ

(
Cω, n

))P
. (3.3)

Then, given a single, possibly partial observation ω, the completion is given as
(similar to (3.2))

min
c

∑
(n,y)∈ω

(
y −Dδ

(
c, n
))P

, (3.4)

considered for δ = δ?. Importantly, for each given δ, the minimization (3.3)
decouples into one (full observation) minimization (3.4) for each ω ∈ Ω. Hence,
the larger compression problem (3.3) can be solved numerically as a succession
of smaller problems (3.4), in conjunction with gradient iterations in the direction
of δ. This ensures the scalability of the approach. It also makes it amenable to
online learning. The above observation also shows the consistency between (3.3)
and (3.4) in the sense that, if a full observation ω is used in (3.4), it should yield
c? = C?

ω (assuming global and unique minima to all problems for the sake of the
argument).

Under this approach, dubbed functional, the decoder takes as input the location
n of the point, in addition to the factors c (see Figure 3.5.1). It rebuilds each point
individually, as per n→ Dδ(c, n). The network is thus able to interpolate between
the nodes of the data grid. The concept of neighborhood intervenes through the
argument n of D, but the parameterization δ as well as the code c are common to
all locations n. The compression (3.3) can also accommodate incomplete data or
discretization changes, i.e. varying grids in the training data. This feature allows
training the functional network with “missing completely at random data” (MCAR,
in the statistical missing data terminology).

By comparison, under the convolutional approach of Section 3.3.1, the concept
of neighborhood intervenes through θ = (δ, ε), since each point of the grid is only
sensitive to a subset of connections (the convolutional architecture only connects
neighbouring points, cf. Figure 3.7.3). The encoding c is obtained directly thanks
to E, when the observation is complete, or by numerical completion (as always
under the functional approach) otherwise.

3.3.4 Synthesis

To conclude this section, Tables 3.3.1 and 3.3.2 summarize and put into perspective
the different approaches referred to in the above.

Also note that, from a numerical complexity point of view, the functional
approach is less sensitive to the dimension than, say, a classical autoencoder on

89

Encoder
Implicit and non-linear

ĉ = arg min
c

∑
(n,y)∈ω

(
y −Dδ

(
c, n
))P

Decoder Analytic and non-linear
ŷ = Dδ

(
c, n
)

Compression (training)
step

Optimization w.r.t. (δ, c)

minδ,C
∑

ω∈Ω

∑
(n,y)∈ω

(
y −Dδ

(
Cω, n

))P
Reconstructed surface

Reconstruction

Implicit

ŷ = D

(
arg min

c

∑
(n,y)∈ω

(
y −Dδ

(
c, n
))P

, n

)
Completed
surface ŷ = D

(
arg min

c

∑
(n,y)∈ω

(
y −Dδ

(
c, n
))P

, n

)

Table 3.3.1: The functional approach.

PCA Convolutional

Encoder Analytic and Linear
ĉ = Eε(y)

Analytic and non-linear
ĉ = Eε(y)

Decoder Analytic and linear
ŷ = Dδ

(
c
) Analytic and non-linear

ŷ = Dδ

(
c
)

Compression (training)
step

Optimization w.r.t. (δ, ε)

minθ=(δ,ε)

∑
ω∈Ω

∑
(n,y)∈ω

(
y −

(
Dδ

(
Eε(ω)

))
n

)P Optimization w.r.t. (δ, ε)

minθ=(δ,ε)

∑
ω∈Ω

∑
(n,y)∈ω

(
y −

(
Dδ

(
Eε(ω)

))
n

)P
Reconstructed surface

Reconstruction
Explicit/analytic
ŷ = D (E(y))

Explicit/analytic
ŷ = D (E(y))

Completed
surface ŷ = D

(
arg min

c

∑
(n,y)∈ω

(
y −Dδ

(
c
))P)

ŷ = D

(
arg min

c

∑
(n,y)∈ω

(
y −Dδ

(
c
))P)

Table 3.3.2: PCA and convolutional approaches.

90

a fixed grid (including our convolutional approach), for which the size of the grid
typically grows exponentially with the dimension.

91

3.4 Experimental Methodology and Setting
The data and code for the equity and repo case studies can be found on a public
github repository https://github.com/mChataign/smileCompletion (the data
and code for the swaption case study are proprietary).

In this section, we devise an experimental methodology and the learning pro-
cedures, so that all models are set on comparable grounds.

All the optimization (compression or completion) problems are solved with
the Adam adaptive learning rate stochastic gradient algorithms of Kingma and Ba
(2015). The output of a neural network is by construction non-convex with respect
to its parameters. So are therefore all our loss functions. The Adam algorithm
has proven its robustness in non-convex optimization context. With the help of
automatic adjoint differentiation, it provides fast training for most neural networks
architectures. However, no convergence is guaranteed theoretically.

For the compression stage, we make a 80 : 20 split of a full data set into a
training set and a test set. The split is chronological in order to avoid look-ahead
bias (cf. Ruf and Wang (2020)). The training set is further split into a calibration
and a validation data set. The former is used for computing the gradients driving
the numerical optimization in the training problem, whereas the latter is used for
determining an early stopping rule that provides implicit regularization, as detailed
below.

The learning rate of the Adam optimizer is set to 0.001. Mini-batch learning is
used in the repo and equity index derivative case studies, whereas batch-learning
is employed with swaption volatilities. The gradient descent is driven by the loss
computed on the calibration set, but the validation error is the loss function com-
puted on the validation data set. The learning procedure is stopped when we
do not observe any decrease of the validation error during a certain number of
iterations, called patience. The parameterization returned by the compression is
the one that minimizes the validation error. Early stopping in this sense limits
the generalization error (cf. Engl, Hanke, and Neubauer (1996)), i.e. the gap be-
tween the reconstruction errors computed on the calibration data set and a new,
unobserved data set, the role of which is played by the test set. Sometimes, as
detailed later, a penalization term is added to the compression loss function in
order to provide a more regular and stable minimization. A maximum number
of iterations is fixed to 104 at compression stage and 103 at completion stage, in
order to cap the length of the optimizations.

All approaches are implemented in Python, using the tensorflow package in the
swaption case study and pytorch in the two others. Note that all hyperparame-
ters are chosen manually, rather than by grid search or random search techniques.
Grid search is not possible because we have too many hyperparameters. Exploring
different neural net architectures would be too demanding computationally. How-

92

https://github.com/mChataign/smileCompletion

ever, some of the hyperparameters can be fixed based on human expertise. For
instance, 15 factors in our case study of Section 3.6 is the number of factors that
equity derivative traders commonly use in PCAs (after interpolation on a fixed
grid, as they are faced with moving grids).

3.4.1 Performance Metrics

We want to assess, for each approach, the performance of the corresponding com-
pression and completion procedures, as well as the behavior (distribution and
dynamics) of the resulting factors. For the compression, we consider the aver-
age root mean square reconstruction error RMSEω on the test set Ω′ (root mean
square error RMSEω between the values at the nodes of the tensor ω and their
reconstructed counterparts, i.e.√

1

m

∑
(n,y)∈ω

(
y −

(
Dδ?
(
Eε?(ω)

))
n

)2

(3.5)

(or the analogous quantities with mω and Dδ?
(
C?
ω, n
)

instead of m and(
Dδ?
(
Eε?(ω)

))
n
, as relevant). In the case of the functional approach the encoder

E is implicit and its definition is detailed in table 3.3.1. We refer to (3.5) as the
reconstruction loss in the compression stage of our case studies given that ω is a
complete surface.

In constrast with (3.5),√
1

m

∑
(n,y)∈ω

(
y −

(
Dδ?
(
ĉ
))

n

)2

(3.6)

(or mω rather than m in the case of the functional approach) is called the comple-
tion loss when we compare the complete original observation with the completed
observation. This completed observation is given by the decoder for code values ĉ
which are calibrated on the incomplete view provided by ω.

In the case of interpolation benchmarks, there is no compression stage and no
code is involved at the completion stage: the completion loss is then defined by the
RMSE between the interpolated surface (from an incomplete ω) and the original
complete ω.

We provide a focus on the observation ω leading to the worst RMSEω over
the test set, in order to identify the locations that are less well handled (e.g. short
option maturities). In addition, we display the time series of the codes. A good
compression should exploit each factor in the code (we should not observe factors
stuck at zero).

93

The quality of the completion is assessed by a backtest on the test set. Each
day of Ω′, we solve the problem (3.2) or (3.4), initialiazing the factors with the
fully informed encoding of the previous day. We then mask 90 % of the points
in each tensor of the test set. For each such observation ω ∈ Ω′, we check the
reconstruction RMSEω between the completed surface and the true one. Like for
compression, we plot the worst completion obtained on the test set Ω′.

3.4.2 Introduction to the Case Studies

We provide numerical results on three daily time series of real financial data:
repurchase agreement yield rates, equity implied volatility surfaces and at-the-
money swaption implied volatilities. However, the swaption implied volatilities
have been preprocessed by our data provider to fit a fixed grid (whereas the native,
raw data had a moving time-to-expiry). A preprocessing entails an unquantifiable
bias and our recommendation would be to apply the functional approach to the
original data (whenever available). The main motivation for the third example
is that one can then benchmark the functional approach against PCA and the
convolutional approach.

The advantage of working with yield rates or implied volatilities, instead of the
corresponding option prices, is that these are scaled quantities, exempt from first
order dependence on contract characteristics such as nominal, time-to-maturity,
actual level of the underlying in at-the-money option data, etc., which should
otherwise be added to the set of explanatory variables in all learning procedures.
The ensuing arbitrage issue is discussed in the next subsection.

3.4.3 Discussion of the Arbitrage Issue

Arbitrage constraints can be expressed naturally in terms of options prices using
calendar spread and butterfly. But in terms of implied volatility, they are non-
trivial, even in the simplest case of equity derivatives (for which they are fully
stated in Roper (2010)). No compression/completion method applied to implied
volatility surfaces provides a way to deal with those constraints without coming
back inherently to option prices. In order to circumvent that problem, one could
apply our approach to the coefficients of a (e.g. local vol) model, from which
non arbitrable prices and implied volatilities could be derived in a second step.
However, we do not choose this route because:

• the market practitioners, who play both the roles of human experts and
users, have built intuitions over decades on implied volatilities. They think
of option prices directly in terms of implied volatilities. Providing them with

94

a good recommendation tool in terms of a quantity that is familiar to them
is of great value and the primary purpose of our approach;

• most of the times, the starting point for calibrating a model (e.g. Dupire)
is nothing else than the implied volatilities. Therefore the trader must cor-
rect the anomalies before the implied volatility surface can be plugged as an
input to model calibration. Hence one of the requirements of our proposed
approach is that it should be model-free;

• Having said this, if one assumes that, on the one hand, most of the surfaces
in our database are arbitrage-free and, on the other hand, a more regular
surface is less prone to arbitrage opportunities, then one concludes that our
model should tend to remove part of the arbitrages present in the data. This
can actually be seen empirically on some of the examples in Section 3.6. This
is a natural by-product of anomaly correction and it also eases the calibration
process.

Similar comments apply on most markets (beyond equity implied volatility), in-
cluding the ones of our three case studies, i.e. repo contracts, handled by traders
in terms of yield curves, and equity index derivatives and swaptions, which are
handled in terms of implied volatility.

3.5 Repo Curves
Our first case study bears on the nowcasting of repo rates, based on an 2013–2019
daily time series of repo yield curves (repo rates, where repo is a shorthand for
repurchase agreement).

The grid of nodes in the data is unstructured, in the sense that the correspond-
ing dates (time-to-maturities of bonds with standardized maturity dates) vary, in
both number and location, from day to day (with as little as two or three points on
particularly idle days), see e.g. Figure 3.5.2. Indeed, as the expiration dates used
to compute the repo curve are fixed, and the variable of interest for the repo curve
shape is rather time to expiry, the latter decreases as the expiry date approaches.
For a given repo curve, the times to expiry for which the repo value is available
is not known in advance for that reason. Therefore, there is no canonical way to
have a systematic representation of repo curves on a fixed grid, one would need to
introduce artificial time to expiry of interest and interpolate/extrapolate (which
poses issues of its own) the repo curve to get the values, and then working on trans-
formed data. This is the situation the functional approach is tailored for. By not
making any assumptions on the domain of input (time to expiry), the functional
approach enables to handle unaltered data, by treating the time-to-maturity of a
transaction as an input value (cf. Figure 3.5.1).

95

3.5.1 Functional Network Architecture

Our functional approach is implemented by a single feed-forward neural network
composed of three fully-connected layers with 20, 20 and 1 units (see Figure 3.5.1).
Hyperbolic tangent activation is applied to each but the output layer for the same

Input Layer ⁵∈ ℝ⁵ ℝ⁵ Hidden Layer ²∈ ℝ⁵ ℝ⁵ ⁰ Hidden Layer ²∈ ℝ⁵ ℝ⁵ ⁰ Output Layer ¹∈ ℝ⁵ ℝ⁵

Time to maturity T

4 factors
Yield (T)

Figure 3.5.1: Network of the functional approach used in the repo case study.
Here and in Figures 3.6.1 and 3.7.2 below, the graphs have been produced using
the style FCNN of the NN-SVG software: the units and the connections between
them are represented by circles and edges.

reasons as above (and the output layer is linear).

3.5.2 Numerical Results

As the bottom panels of Figure 3.5.2 illustrate, the parameterization is flexible
and can accomodate different curve shapes or node localizations.

As explained in Section 3.2.3, the compression stage can be used for detecting
an abnormal curve and correcting it with a more likely one. The distinction be-
tween inliers and outliers is determined by a threshold on the reconstruction error.

96

A bad reconstruction is taken as a signal that the codebook is not able to explain
the corresponding observation. We then conclude that the latter does not lie in
the manifold S of the “usual” curves, hence we classify it as an outlier (see Section
3.2.3). We can then correct (replace) these data by the curve reconstructed from
the decoder with the factors calibrated on the current values, i.e. by the output
of the corresponding completion (3.4).

The lower panels of Figure 3.5.2 show the gap between the observed data
points and the reconstructed ones. The upper left panel spots the outliers at a
0.035 absolute RMSE threshold. The upper right panel gives an example of outlier
correction.

Figure 3.5.2: (Bottom) Interpolation of two inlier repo curves; (Top left) Time
series of the (absolute) RMSEs on the repo data and 0.035 RMSE threshold; the
spotted values correspond to the outliers at the chosen threshold. (Top right)
Interpolation of an outlier repo curve.

3.6 Equity Derivative Implied Volatility Surfaces
As a second experiment, we apply our functional approach to Black–Scholes im-
plied volatilities surfaces of equity index derivatives. The corresponding volatilities
price options on the Nikkei 225 index from 2015 to 2018 (included), corresponding

97

to 1544 observable surfaces. The order of magnitude of implied volatilities fluctu-
ates between 0.15 and 1.2. We include the forward rate as an exogenous variable
that can be plugged into the functional network (3.5.1) along with log-maturity
and log-moneyness.

As in the repo case study, the grid of nodes in the data is unstructured, in
the sense that the corresponding dates (time-to-maturities of equity index options
with standardized maturity dates) vary over time. But, again, this is the situation
the functional approach is tailored for (cf. Figure 3.5.1). The corresponding archi-
tecture of the functional approach is then similar to the one used for repo curves in
the previous section, except that the log-time-to-maturity and the log-moneyness
are used as the (two dimensional) localization inputs, and that 15 latent variables
are used as input for the decoder for encoding each volatility surface (instead of
only 4 previously): see Figure 3.6.1. Moreover, one can also easily incorporate the
forwards as exogenous variables. For taking them into account, it suffices to add to
the network of Figure 3.6.1 an additional feature (input unit) containing the level
of the forward swap rate with maturity T . Hence, the units for the maturity T
indicate the common location of the corresponding volatilities and forward rates.

Input Layer ¹⁷∈ ℝ¹⁷ ℝ¹⁷ Hidden Layer ²∈ ℝ¹⁷ ℝ¹⁷ ⁰ Hidden Layer ²∈ ℝ¹⁷ ℝ¹⁷ ⁰ Output Layer ¹∈ ℝ¹⁷ ℝ¹⁷

Log Moneyness X

Log Maturity T

15 factors

Implied Volatility
at (X,T)

Figure 3.6.1: Network of the functional approach used in the equity case study
(style FCNN of the NN-SVG software, cf. Figure 3.5.1).

98

3.6.1 Compression

We first calibrate our functional approach with the compression stage. Toward
this end, we execute the optimization (3.1) on the training set and then calibrate
codes with (3.2) for each observation in both testing and training data sets. The
quality of the compression is assessed through the reconstruction errors reported in
Table 3.6.1. By reconstruction error we mean the gap between the original surface
and the surface induced by the code calibrated from (3.2).

We emphasize the difference between a reconstucted surface (as above) and a
completed surface (considered later): the code leading to the completed surface
is calibrated from an incomplete surface whereas the one for the reconstructed
surface is obtained from a complete real surface.

Functional Functional
with Forward

Training set 0.0070 0.0063
Testing set 0.0058 0.0064

Table 3.6.1: RMSEs for reconstructed implied volatilities.

In all four cases, the RMSEs in Table 3.6.1 are very small compared to the order
of magnitude of implied volatilities (between 0.15 and 1.2). The results show no
sign of overfitting (the reconstructions error are similar on the training set and
the testing set). Moreover the comparison between the two columns of the table
indicates that there is no benefit in including the forward price as an exogenous
variable in our network.

Another way to assess the performance of the compression stage is to consider
the worst compression, i.e. the surface yielding the highest reconstruction error.
This worst reconstruction corresponds to a RMSE of 0.0096. It is represented
in Figure 3.6.2, with the real surface on the top-left corner, the reconstructed
couterpart on the top-right corner and the pointwise absolute difference between
the two at the bottom.

We notice that the errors are concentrated on the upper tail (deep in the money
call options) and for short maturities, which corresponds to illiquid options.

A bad reconstruction of a surface can also be used for qualifying it as an outlier.
For instance, Figure 3.6.3 shows the implied volatility values corresponding to the
most extreme strikes in Figure 3.6.2: original data points as dots and curves from
the reconstructed surface. The left panel corresponding to the illiquid upper tail
shows around the maturity 1.5 year a very low point that an expert would indeed
qualify as an anomaly. The correction (i.e. the reconstructed surface) ignores this
anomaly and has a more reasonable shape from a practitioner of view.

99

Figure 3.6.2: Original surface vs compressed surface yielding worst RMSE.

100

Figure 3.6.3: Tails of compressed surface vs original implied volatilities.

The left part of Figure 3.6.5 shows that the corrected surface is not prone to
calendar arbitrage: the sensitivity to the maturity of the corresponding implied
total variance is positive for every maturity T .1 Sensitivity is computed thanks to
adjoint automatic differentiation from neural network.

The above example shows that the functional neural network is indeed apt
to learn from the compression stage a low-dimensional representation of likely
observations. The low-dimensional representation gives large reconstruction errors
to the surfaces of the testing set atypical with respect to the past observations (the
training set in our experiments) and their latent structure.

3.6.2 Outlier Detection and Correction

To confirm our views on outliers, we propose the following sanity check. An obser-
vation (first volatility surface in the testing set) is chosen and articially corrupted
by doubling the values on four randomly chosen points: see the top-left corner in
Figure 3.6.4.

Then we run the optimization (3.2) on this corrupted surface and obtain re-
calibrated codes. These code produce with the decoder the reconstructed surface
(called correction) on the top-right corner. The correction is a smooth surface in
which the corrupted values have been overwritten by values close to the original
(non corrupted) ones. The bottom-left panel shows that only the corrupted values
have been modifed significantly by the correction stage. The bottom-right figure
indicates that the corrected surface is very close to the original one. The RMSE
between the corrupted and the corrected surface is 0.0446 whereas the one between
the correction and the original surface is 0.0151.

Note that the calendar arbitrage condition is still respected (see figure 3.6.5)
1Regarding butterfly arbitrages, Durrleman’s condition on the density (involving sensitivity

with respect to forward log-moneyness, cf. Roper (2010)) can unfortunately not be checked for
lack of data regarding dividends and discounting.

101

Figure 3.6.4: Outlier correction : Corrupted surface (Top-left), Corrected surface
(Top-right), absolute error between corruption and correction (bottom-left), abso-
lute error between correction and original surface before corruption (bottom-right)

102

for the correction, which exhibits a positive sensitivity of the implied total variance
with respect to the maturity of the option.

Figure 3.6.5: Implied total variance theta for worst reconstruction on top-left,
outlier correction on top-right and worst completion at the bottom.

This experiment confirms that a high reconstruction error is a good indicator
of an outlier. The calibrated latent structure of the functional network smoothes
the corresponding surface by identifying and correcting its anomalous points.

103

3.6.3 Completion

We now want to leverage on the calibrated low-dimensional latent structure of the
functional network to recover a complete surface from partial information. Our
hope is that this procedure will generate likely surfaces while approaching the
available values (including on moving grids).

For each observation (surface) in the testing set, we select 40 points among the
255 points and remove all the others. Then we calibrate the latent variables by
solving numerically the problem (3.2) with loss corresponding to these 40 points.

In order to benchmark the functional approach and assess the contribution of
the historical data to the performance of the method, we report average completion
errors 2 on the testing set for standard interpolation procedures (within each given
surface, without exploitation of the information provided by the others):

1. Linear interpolation: given a triangulation of the 2D maturity and log-
moneyness space base on the locations of the 40 available points, the in-
terpolated value is taken as the barycenter on each triangle;

2. Spline interpolation: uses in each triangle as above a piecewise cubic inter-
polating Bezier polynomial (see Alfeld (1984) and the scipy documentation
of the CloughTocher2DInterpolator method);

3. Gaussian process regression and squared exponential kernel: denoting by
X the observed locations (maturity and log-moneyness), by Y the observed
lognormal volatilities at locations X, by X? the locations without values
and by Y ? the unknown (looked for) implied volatilities, a Gaussian process
regression assumes a Gaussian distribution

(Y,Y ?)∼N (0,

K(X,X) K(X,X?)
K(X?, X) K(X?, X?)

) with K(X,X?)ij=σ exp

(
−
‖xi−xj‖

2

l2

)
, (3.7)

where σ and l are two hyperparameters calibrated by log-likelihood to the
available values. In (3.7),

‖xi − xj‖2 = (Ti − Tj)2 + (ln (mi)− ln (mj))
2 ,

where T denotes a maturity and ln (m) a log-moneyness;

4. Gaussian process regression with flat extrapolation; similar to 3, except that
the Gaussian process predictor is only used for interpolation purposes; ex-
trapolation whenever required is performed by the nearest neighbour method.

2Gap between the original surface and the completed one.

104

Again, a major difference between our functional (or neural net more gener-
ally) approach and these interpolation benchmarks is that, in order to interpolate
a given surface, the neural network takes into account the information contained
in all the surfaces of the data set, which is used as training set at the compression
stage. In contrast, the above interpolation benchmarks only use the information
provided by the available points of the currently interpolated surface, without con-
sideration of the other surfaces in the data set. In particular, by Gaussian process
regression in 3. and 4., we just mean interpolation within a given surface, using
the available points in this surface as training set (unrelated to the potential use of
Gaussian processes as an alternative to neural networks in our compression/com-
pletion approaches, which would be unrealistic as discussed in Subsection 3.2.1).

Accordingly, the functional approach exhibits significantly smaller completion
errors. In Table 3.6.2, we reported these errors for two different choices of the 40
visible points :

• Less correlated points, i.e. locations for which the implied volatilities are the
less correlated;

• Uniformly spread points, i.e.a random selection of at least 2 points per ma-
turity. The lowest maturity can be assigned 3 visible points in order to reach
a total number of 40 points.

As the loss in (3.2) is now computed on much fewer points (partial information in
this sense), the compression errors of the functional approach are obviously higher
than the reconstruction errors from Table 3.6.1. Smaller error are reported in
the second case above because less correlated points are rather located on short
maturities, so that, in the first case little information, is available for the long
maturities.

Functional Functional
with Forward

Linear
interpolation

Spline
interpolation

Gaussian process
no extrapolation

Gaussian process
flat extrapolation

Less correlated points 0.0262 0.0265 0.0632 0.0462 0.0555 0.0459
Uniformly spread points 0.0076 0.0091 0.0211 0.0168 0.0201 0.0208

Table 3.6.2: RMSEs for completed implied volatilities.

All the completion results reported hereafter correspond to the case of uni-
formly spread visible points.

The completion method provided by the functional approach is also robust:
even the worst completion does not produce an outlier, i.e.

• the completed surface is smooth,

• the completed surface has a shape similar to the one of the original surface
(the pointwise errors between the original and the completed surfaces are
uniformly distributed),

105

• the implied total variance sensitivity with respect to the maturity is still
positive (see Figure 3.6.5), inducing no calendar arbitrage opportunity,

• tails are consistent with the original points (see Figure 3.6.7) and not irreg-
ular.

Figure 3.6.6: Original surface vs. completed surface yielding the worst RMSE.
Black crosses mark visible points.

106

Figure 3.6.7: Tails of completed surface vs. original implied volatilities.

Such robustness is not provided by the interpolation benchmarks. For instance,
in the case of the worst completion with the spline interpolation, the completed
surface (top-right corner of Figure 3.6.8) is irregular in the tails.

107

Figure 3.6.8: Original surface vs. completed surface yielding the worst RMSE with
spline interpolation. Black crosses mark visible points.

108

3.7 At-the-Money Swaption Surfaces
The previous section was showing a case where the functional approach outper-
forms elementary interpolation benchmarks in an situation (in fact, the most com-
mon in the context of financial nowcasting applications) involving a moving grid.

We now consider an application where the grid is constant (after a preprocessing
by our data provider) so that PCA or more classical autoencoder approaches are
also available. The results show that the functional approach then performs as
well as these classical benchmarks (which, however, would not be available on the
original data with variable time-to-maturity).

A swaption is a financial contract allowing a client to enter into an interest rate
swap with some strike K at some future expiry date U , for some tenor length T .
A large body of literature deals with the swaption implied volatility as a function
of the strike parameter.

By contrast, very few works are dealing with the swaption implied volatility as
a function of the expiry and tenor parameters (see Figure 3.7.1). One exception is

Figure 3.7.1: Different patterns of at-the-money swaption volatility surface.

Trolle and Schwartz (2010), who, based on a time series of swaption cubes, inves-
tigate how the conditional moments of the underlying swap rate distributions vary
with expiry, tenor, and calendar time. One possible reason for this relative lack of
literature may be that swaption arbitrage pricing relationships are mainly known
along the strike direction. Across expiries and tenors, one only has “statistical
arbitrage” relations, reflecting the overlap between the cash flow streams of the

109

underlying swaps.
In the following case study, we focus on at-the-money (ATM, which are also the

most liquid) swaption implied volatilities as a function of U and T . The approach
is model free in the sense that we do not formulate or use any hypothesis on the
underlying forward swap rate processes.

Our study is conducted on a daily database of monocurrency (euro) ATM
swaption normal3 implied volatilities, covering 2400 business days corresponding
to the period from 2007 to 2017. The training calibration and validation set Ω
covers the 2007 to 2014 sub-period (1900 first observation days of the data set),
whereas the test set Ω′ ranges from 2015 to 2017 (500 subsequent ones). The data
have been preprocessed by our provider so that all the ATM implied volatility
surfaces are defined on a common rectangular grid of eighty (U, T) nodes, without
missing implied volatility values at any day or node, corresponding to the ten
expiries (with M for month and Y for year)

U ∈ (1M, 3M, 6M, 1Y, 2Y, 5Y, 7Y, 10Y, 20Y, 30Y)

and the eight tenors

T ∈ (3M, 1Y, 2Y, 5Y, 10Y, 15Y, 20Y, 30Y).

For testing our completion approach, we mask 90% of the points in each surface
of the test set Ω′, only keeping the volatility points corresponding to the grid nodes
(U, T) in

(1M, 3M), (1M, 10Y), (1M, 30Y), (6M, 2Y),

(6M, 15Y), (5Y, 1Y), (5Y, 20Y), (10Y, 5Y).
(3.8)

Such specification is in line with the reality of a market where the shortest expiries
are the most liquidly traded ones (as well as the most volatile). Hence, our com-
pletion exercise corresponds to the intraday situation of a swaption trader facing
mostly short expiry ATM implied volatility data, and left with the task of guessing
the “most likely values” of the remaining implied volatilities.

3.7.1 Network Architectures

The corresponding architecture of the functional approach is then similar to the
one used for equity derivatives in Section 3.5.1, except that the expiry U and
tenor T are used as the localization inputs, and only 8 latent variables are used
(instead of 15 previously): see Figure 3.7.2. Moreover, one can also incorporate

3rather than Black–Scholes, because of the negative rates environment.

110

Input Layer ¹∈ ℝ¹⁰ ℝ¹⁰ ⁰ Hidden Layer ²∈ ℝ¹⁰ ℝ¹⁰ ⁰ Hidden Layer ²∈ ℝ¹⁰ ℝ¹⁰ ⁰ Output Layer ¹∈ ℝ¹⁰ ℝ¹⁰

Expiry U

Tenor T

8 factors

Implied Volatility
at (U,T)

Figure 3.7.2: Network of the functional approach used in the swaption case study
(style FCNN of the NN-SVG software, cf. Figure 3.5.1).

111

the forward swap rates as exogenous variables. These are the underlyings of the
swaptions and they are structured similarly to the ATM implied volatilities of the
latter, located by an expiry and a tenor. For taking them into account, it suffices
to add to the network of Figure 3.7.2 an additional feature (input unit) containing
the level of the forward swap rate with expiry U and tenor T . Hence, the units for
the expiry U and the tenor T indicate the common location of the corresponding
ATM volatilities and forward swap rates.

The convolutional autoencoders use feed-forward neural networks for the en-
coder and the decoder, with four hidden layers each: one dense layer is applied on
top of three convolutional layers for the encoder and, symmetrically, three decon-
volutional layers are built on top of one dense layer. The data set is reshaped as a
(10, 8) tensor per day. The convolution layers are built with the respective kernels
(used for specifying the localization of the weights) (5, 4), (4, 3), and (3, 3). Each

1 Tensor
of dimension (10,8)

3 Tensors
of dimension (6,5)

9 Tensors
of dimension (3,3)

Vector
of 27 elements

Factors : Vector
of 8 elements

Figure 3.7.3: Architecture of the convolutional encoder used in our ATM swaption
case study. Graph produced using the style LeNet of the NN-SVG software: Each
of the four layers is represented by a triangle; The inputs of each of the three
convolutional layers are displayed as collections of tensors; The ones of the last,
dense layer are represented as a series of dots.

convolution layer produces 3 channels (see Figure 3.7.3) and, symmetrically, each
deconvolution layer has in input 3 times more channels than in output. Padding is
set as VALID in order to reduce the size of the hidden units after each convolution
layer. As output of the three convolution layers, we have a hidden layer of 27
units, corresponding to 27 channels of size (1, 1). A softplus (regularized ReLU)
activation function is chosen after each convolution layer. This results in sparsity
of the calibrated network (the compression stage sets very negative biases on the
intermediate units that the neural network wants to ignore, cf. Bengio (2012)),

112

as well as positivity and regularity of the ensuing implied volatility surface. The
dense layers between the factors and the (de)convolution layers are linear. Hence,
the convolution layers can be seen as a kernel that linearly separates the features.

Following a divide-and-conquer, sequential training strategy, we train the con-
volutional layers by pairs, from the most outer to the most inner ones, i.e. the
layers surrounding the latent variables (greedy layer-wise pre-training as per Hin-
ton, Osindero, and Teh (2006) and Bengio, Lamblin, Popovici, and Larochelle
(2007)). A final optimization fine-tunes the weights of all the layers together.
This also allows exploiting any hierarchical structure of the data (cf. Masci, Meier,
Cireşan, and Schmidhuber (2011)): The outer layers detect the greatest patterns,
while inner layers detect the finest ones.

In the case of the fully connected networks that are used in the linear projection
and in the functional approaches, we use the Glorot and Bengio (2010) initializa-
tion rule for the weights, with a centered normal distribution of standard deviation
equal to

√
4

ninputs+noutputs
. In the case of the convolutional layers we use a truncated

normal distribution with 0.1 standard deviation. All biases are initialized to zero.
Each iteration leads to the computation of the loss gradient on the whole cal-

ibration data set. Indeed, given the relatively small size of our data sets, full
gradient evaluation is not an issue in practice. Moreover, mini-batch would re-
quire that each batch sample has approximately the same distribution, which is
notoriously violated in the case of (non-stationary) financial time series.

Penalization is used at the compression stage for regularizing the calibrated
parameters. More precisely, ridge regularization is used for the kernel weights of
the fully-connected layers of the convolutional and of the functional approaches,
with a penalization coefficient of 0.1 intended to balance the reconstruction loss
and the penalization term at the minimum.

3.7.2 Numerical Results

Table 3.7.1 is a report on the errors of all our approaches (cf. Section 3.4.2). It is
based on the absolute daily RMSEs (cf. (3.5) and (3.6)).

The last row of Table 3.7.1 displays the corresponding training times for all
but the standard PCA approach, which involves no training and is in fact much
faster than all the others (as it essentially reduces to the inversion of an m ×m
matrix, withm = 80). The dates in brackets in the tables identify the observations
corresponding to the worst errors.

At the completion stage, we take as initial factor values the volatility encoding
of the previous day. Figure 3.7.4 shows the stability through calendar time of the
codes obtained by the linear projection approach.

As shown by Figure 3.7.5 in the case of the linear projection approach (but this

113

Standard
PCA

Linear
projection

Convolutional
autoencoder

Functional
approach

Functional approach
with forward rate

Average compression error
on Ω

1.23 1.58 1.97 1.85 2.29

Average compression error
on Ω′

3.71 3.54 6.19 3.77 3.02

Worst compression error
on Ω [day] ([day])

4.15
[2008-12-03]

3.98
[2008-12-09]

7.18
[2008-12-08]

8.32
[2008-10-09]

6.93
[2008-10-10]

Worst compression error
on Ω′ [day] ([day])

5.76
[2016-04-28]

5.18
[2016-04-28]

12.0
[2015-07-07]

6.34
[2015-12-21

5.16
[2015-12-18]

Average completion error
on Ω′

6.19 4.07 5.03 6.41 5.19

Worst completion error
on Ω′ [day] ([day])

12.6
[2015-06-30]

6.50
[2015-07-10]

9.89
[2015-07-10]

12.8
[2015-03-09]

9.09
[2016-01-14]

Training time in seconds ∅ 9 411 1287 276

Table 3.7.1: RMSEs in the sense of (3.5) and (3.6)

Figure 3.7.4: Time series of the factors obtained by encoding of the training ob-
servations under the linear projection approach.

114

is also true of the nonlinear approaches), the dominant errors are concentrated on

Figure 3.7.5: Linear projection approach: (Top left) Original (full) tensor; (Top
right) Tensor Dδ?(c

?) completed based on the 8 points of the latter given by (3.8);
(Bottom) Pointwise absolute error between the two, for the worst observation in
Ω′.

the shortest expiries. This is because the implied volatilities corresponding to these
shortest expiries are the more volatile. Hence, their spatial dependence structure
is less informative. To recover these points better, one could think of providing
extra information through exogenous variables, such as the level of the underlying

115

forward swap rates. Under the functional approach, this can easily be done in the
way explained in Section 3.5.1. However, the last columns in Table shows that
this only has a minor positive impact.

The linear approaches are as accurate as the nonlinear ones and the convolu-
tional approach is typically outperformed by at least the linear projection or the
functional approach.

Figure 3.7.7 illustrates that the functional approach enables to interpolate
smoothly the surface over an arbitrarily fine grid, in this case 104 points obtained
by the corresponding interpolation of the tensor of Figure 3.7.6.

Figure 3.7.6: Complete tensor corresponding to the first observation in Ω′. The
black crosses designate the “available points”, specified by (3.8), that are used in
the completion exercise.

116

Figure 3.7.7: Surface with 104 points obtained by the functional approach applied
to the first observation in Ω′.

3.8 Conclusions and Perspectives
We have devised a generic neural network based curve or surface (or more general
tensor) compression/completion methodology, for which we propose two concrete
specifications: the functional approach, amenable to the treatment of unstructured
data with varying grid nodes (as natively the case in most financial nowcasting
applications), and a convolutional autoencoder approach, including PCA or PCA-
like projections as linear special cases, applicable in the special case of a constant
grid (natively or possibly after some preprocessing). The compression stage also
allows for outlier detection and correction by generating surfaces or curves in line
with training samples.

The analysis of the corresponding reconstruction errors suggests that linear
methods are sufficient to compress structured tensors, corresponding to a constant
grid of nodes, into few factors coefficients. The completion stage allows recovering
with success about 90% values of the data, starting from about 10% of known
values. But the functional approach is the only one that is able to directly deal
(without preprocessing) with the most common situation of unstructured tensors.
The only alternative is then naive interpolation benchmarks that do not exploit
the data set, and which the functional approach is shown to outperform in our
equity derivative case study.

All approaches suffer from non-stationarities occurring during extreme events
or change of market regimes. This can be seen as an advantage with respect to

117

anomaly detection. For other purposes, it would plead in favor of further modeling
of the factor dynamics, whether this relies on times series machine learning or
Markov chain Monte Carlo (filtering) techniques. More generally, it would be
interesting to extend this study in several directions, such as the introduction of
backtesting hedging criteria (cf. Garcia and Gençay (2000)), scenario simulation
in a context of variational networks (see Tschannen, Bachem, and Lucic (2018)),
application of the method to the whole swaption volatility cube, strike dimension
included (cf. Trolle and Schwartz (2010)), or specification of dynamics on the
factors (for instance by Kalman filters).

118

Chapter 4

XVA compression

Since the 2008–09 financial crisis, banks have introduced a family of X-valuation
adjustments (XVAs) to quantify the cost of counterparty risk and of its capital and
funding implications. XVAs represent a switch of paradigm in derivative man-
agement, from hedging to balance sheet optimization. They reflect market ineffi-
ciencies that should be compressed as much as possible. In this work we present a
genetic algorithm applied to the compression of credit valuation adjustment (CVA),
the expected cost of client defaults to a bank. The design of the algorithm is fine-
tuned to the hybrid structure, both discrete and continuous parameter, of the cor-
responding high-dimensional and nonconvex optimization problem. To make in-
tensive trade incremental XVA computations practical in real-time as required for
XVA compression purposes, we propose an approach that circumvents portfolio
revaluation at the cost of disk memory, storing the portfolio exposure of the night
so that the exposure of the portfolio augmented by a new deal can be obtained at
the cost of computing the exposure of the new deal only. This is illustrated by a
CVA compression case study on real swap portfolios.

4.1 Introduction
XVAs, where VA stands for valuation adjustment and X is a catch-all letter to
be replaced by C for credit, F for funding, M for margin, and K for capital, have
been implemented by banks in reaction to the regulatory changes aroused by 2008
financial turmoils. They monetize counterparty risk and its funding and capital
consequences by add-ons to derivative entry prices sourced from clients. According
to the cost-of-capital XVA approach of Crépey, Hoskinson, and Saadeddine (2021),
accounting for the impossibility for a bank to replicate the jump-to-default related
cash flows, the final, all-inclusive XVA formula reads

CVA + FVA + MVA + KVA, (4.1)

119

to be sourced by the bank from clients on an incremental run-off basis at every
new deal.

As stated by the Basel Committee on Banking Supervision (2015), major coun-
terparty credit losses on OTC derivative portfolios in 2008 arose from XVA ac-
counting losses rather than from actual client defaults. In particular, a bank incurs
a CVA loss when the market perceives a deterioration of the credit risk of a client.
This has motivated the creation of XVA desks for dealing with these risks.

In this chapter, we deal with CVA compression, i.e. the minimization of the
CVA of a client portfolio by the introduction of an incremental trade, subject to the
constraint of not altering too much the market risk of the portfolio. In the financial
derivative industry, the term compression term is generally applied in the context
of “trade compression”, i.e. the reduction of the gross notional of positions in the
market. Trade compression aims notably at reducing certain capital requirements,
the number of transactions, and their amount (see section 5.3 of Gregory (2015)).
As reflected by the proliferation of related industry presentations1, this kind of
balance sheet optimization is very active in top tier banks at the moment.

XVAs reflect market inefficiencies that should be compressed as much as pos-
sible. Here we focus on CVA compression for concreteness and simplicity, but the
developed XVA compression methodology is generic. It could and should be ap-
plied to further XVA metrics, as soon as these are available with sufficient speed,
for computation at the portfolio level, and accuracy, for numerical significance of
the results at the incremental trade level: see Section 5 in Albanese, Chataigner,
and Crépey (2019), which emphasizes the XVA compression perspective on the
pricing and risk management of financial derivatives in the post-2008–09 global
financial crisis era, and cf. Kondratyev and Giorgidze (2017), who use a genetic
algorithm for determining an optimal trade-off between MVA compression and
transaction costs.

The complexity of XVA compression problems stems, in particular, from the
hybrid nature of the state space of the corresponding optimization problems. In-
deed, a new trade (financial derivative) is described by a combination of continuous
and discrete parameters. This rules out the use of standard convex optimization
schemes for such problems. Instead, we are lead to the use of metaheuristic algo-
rithms: In this chapter, we show how a genetic algorithm with penalization can
efficiently find a CVA offsetting trade, while limiting the impact of the trade on
the market exposure profile. The latter is necessary for staying in line with the
separation of mandates between the XVA desks, in charge of managing counter-
party risk, and the other, dubbed “clean”, trading desks of the bank, in charge of
hedging the market risk of the bank positions.

1cf. e.g. David Bachelier, panel discussion Capital & margin optimisation, Quantminds Inter-
national 2018 conference, Lisbon, 16 May 2018.

120

The other XVA compression challenge is execution time, with intensive valua-
tion of the involved XVA metrics as a bottleneck. The XVA metrics are primarily
defined at the portfolio level: Time-0 XVAs can be formulated as expectations of
nonlinear functionals of the bank derivative portfolio exposure, i.e. “clean” valua-
tion (or “mark-to-market” MtM ignoring counterparty risk) of the bank portfolio,
assessed at randomly sampled times and scenarios. Each new deal gives rise to
XVA add-ons computed as the corresponding trade incremental XVA amounts,
i.e. the differences between the XVAs of the portfolios including and excluding
the new deal. To make intensive trade incremental XVA computations practical in
real-time as required for XVA compression purposes, our proposed MtM store-and-
reuse approach circumvents clean revaluation at the cost of disk memory, storing
the portfolio exposure of the night so that the exposure of the portfolio augmented
by a new deal can be obtained at the cost of computing the exposure of the new
deal only.

4.1.1 Outline and Contributions

The chapter is outlined as follows. Section 4.2 formulates the penalized CVA
compression problem and introduces the related genetic optimization algorithm.
Section 4.3 is about two key acceleration techniques in this regard. Section 4.4
presents a numerical case study on real swap portfolios. Section 4.5 concludes.

The main contributions of the chapter are the design of a parallelized genetic
algorithm for the CVA compression task, the MtM store-and-reuse acceleration
technique for trade incremental XVA computations, and the numerical CVA com-
pression case study on real swap portfolios.

More broadly, this chapter enriches the literature on the use of genetic (also
called evolutionary) optimization algorithms in finance. Hamida and Cont (2005)
applied evolutionary algorithms to investigate a set of co-calibrated model parame-
terizations in order to assess the associated model risk. Kroha and Friedrich (2014)
compared different genetic algorithms for automatic trading. Jin, Yang, and Yuan
(2019) applied evolutionary algorithms to optimal investment and consumption
stochastic control problems. For wider reviews of genetic algorithms in finance,
we refer the readers to Drake and Marks (2002) and Chen (2012).

We refer the reader to the end of the chapter for a list of the main abbreviations.

121

4.2 CVA Compression Modeling

4.2.1 Credit Valuation Adjustment

We consider a complete stochastic basis (Ω,F,P), for a reference market filtration
(ignoring the default of the bank itself) F = (Ft)t∈R+ , satisfying the usual condi-
tions, and a risk-neutral pricing measure P, calibrated to market quotes of fully
collateralized transactions. All the processes of interest are F adapted and all the
random times of interest are F stopping times. This holds at least after so-called
reduction of all the data to F, starting from a larger filtration G including the
default of the bank itself as a stopping time, assuming immersion from F into G
for simplicity (see Crépey, Hoskinson, and Saadeddine (2021) for the detail). The
P expectation and (Ft,P) conditional expectation are denoted by E and Et.

In developed markets, the overnight indexed swap (OIS) rate is together the
reference remuneration rate for posted collateral and the best market proxy for a
risk-free rate. We denote by r = (rt)t∈R+ an F progressive OIS rate process and
we write β = e−

∫ ·
0 rsds for the corresponding risk-neutral discount factor.

By clean valuation or mark-to-market of a contract (or portfolio), we mean
the (trade additive) risk-neutral conditional expectation of its OIS discounted fu-
ture promised cash flows, ignoring counterparty risk and its capital and funding
implications.

We consider a bank engaged into bilateral trading with a single corporate coun-
terparty (client). with default time and recovery rate τc and Rc. This setup, which
is chosen for simplicity, is consistent with a common situation where credit risk
budget is assigned at each counterparty level within the bank. We denote by MtM
the corresponding mark-to-market process of the client portfolio to the bank.

The (time 0) CVA of the bank is its expected discounted loss in case of client
default, i.e.

CVA = E
[
1{τc≤T}β

−1
t βτc(1−Rc)MtM+

τc

]
. (4.2)

Assuming deterministic interest rates, this can be rewritten as

CVA = (1−Rc)

∫ T

0

βtEPE(t)P(τc ∈ dt), (4.3)

where the expected positive exposure (EPE) is defined as

EPE(t) = E(MtM+
s |s = τc)|τc=t. (4.4)

The formula (4.3) is popular with practitioners because it allows obtaining the
CVA as the integral of the EPE against the client CDS curve. But it is only really
practical in simplistic models where the market and credit sides of the problem are

122

independent, so that EPE(t) = E(MtM+
t). However, a key CVA modeling issue is

wrong-way risk, i.e. the risk of adverse dependence between market and credit (see
Pykhtin (2012), Hull and White (2012), Li and Mercurio (2015), Taarit (2018),
Crépey and Song (2016, Crépey and Song (2017), Brigo and Vrins (2018),Glasser-
man and Yang (2018)).

Assuming the client default time endowed with an intensity γc, a more flexible
formula is

CVA = (1−Rc)E
∫ T

0

βse
−
∫ s
0 γ

c
uduγcsMtM+

s ds. (4.5)

Under a credit support agreement (CSA), MtM should be replaced by (MtM−
C) in all equations above, where C is the collateral posted by the counterparty.
Obviously, collateral can mitigate the EPE and the CVA considerably. In the data
of our case study there is no CSA, i.e. C = 0.

Non-linearity of MtM+ with respect to the portfolio payoff components imposes
CVA calculations at the counterparty portfolio (netting set) level.

Similar approaches apply to FVA computations, with analogous comments,
whereas the MVA can be computed based on quantile regression for the embed-
ded dynamic initial margin calculations (see Crépey, Hoskinson, and Saadeddine
(2021)). In any case, the numerical bottleneck of XVA computations lies in inten-
sive MtM calculations.

4.2.2 Fitness Criterion

By the augmented, respectively initial, portfolio, we mean the portfolio of the
bank inclusive, respectively exclusive, of a newly considered deal with the client.
The aim of an XVA compression problem is to find a new trade that minimizes
the corresponding XVA metric of the augmented portfolio. This is equivalent to
minimize the incremental CVA, which we denote by

∆CVA = (1−Rc)E
∫ T

0

βse
−
∫ s
0 γ

c
uduγcs(MtMaugm

s)+ds− (1−Rc)E
∫ T

0

βse
−
∫ s
0 γ

c
uduγcs(MtMinit

s)+ds

(4.6)

= (1−Rc)E
∫ T

0

βse
−
∫ s
0 γ

c
uduγcs

(
(MtMaugm

s)+ − (MtMinit
s)+

)
ds, (4.7)

where the indices init and augm refer to the initial portfolio and augmented portfo-
lio. We emphasize that trade incremental CVA computations require two portfolio-
wide calculations: one without the new trade and another one including it.

Minimizing an XVA metric is most easily obtained through a significant defor-
mation of the portfolio exposure process (especially in the context of this work of a
portfolio with a single counterparty). But an XVA compression procedure should
not affect too much the market risk of the portfolio, because market risk is the

123

mandate of the clean desks of the bank, who, in particular, are subject to trading
limits.

This motivates the addition of a penalization to the incremental XVA criterion.
In our case study, the incremental deal will consist of an interest rate swap. As
such product is mostly sensitive to interest rate moves, a natural penalization is
then in terms of its DV01 (dollar value of an 01), i.e. the variation of its mark-
to-market (at time 0) under a parallel shift of the yield curve by one basis point
(= 10−4).

More precisely, an interest rate swap exchanges one leg indexed on a floating
interest rate against one leg paying a fixed interest rate, called swap rate. The
swap is said to be payer (resp. receiver) for the party that pays (resp. receives)
the floating payments. A monocurrency swap exchanges both legs in the same
currency. It is mainly sensitive to the fluctuations of the corresponding floating
interest rate term structure. DV01 measures the associated risk as the difference
between the prices of the swap under the baseline (actual market data observed in
the real market) and for a bumped yield curve defined as the concatenation of the
money market rates, forward rates, and swap rates, on the relevant (successive)
time segments. Bumping the yield curve typically means adding 10−4 to each tenor
of this curve and updating the other reference curves (zero coupon rates, forward
rates, . . .) accordingly.

Focusing on the CVA metric in this chapter, we obtain the following fitness
minimization problem:

minimize
x∈A

f(x) = ∆CVA(x) + α|DV01(x)|, (4.8)

where x parameterizes a new deal (swap) to be found in a suitable search space A
(see Sect. 4.4.1), ∆CVA(x) is its incremental CVA (cf. (4.6)), DV01(x) is its DV01,
and α is a penalization parameter controlling the trade-off between CVA reduction
and market risk profile preservation. By solving (4.8), we aim at identifying a new
deal which, if added to the current client portfolio of the bank, would diminish
its counterparty risk without impacting too much its market risk. Note that, for
scaling reasons (with, in particular, market penalization), we address the XVA
compression problem in terms of trade incremental (as opposed to augmented
portfolio) XVA numbers.

A new deal is determined by a combination of quantitative (e.g. notional, ma-
turity,...) and qualitative (e.g. currency, long or short direction,...) parameters, so
that no gradient or Hessian is available for the fitness function f in (4.8). More-
over, one is interested in exploring a variety of local minima of f , to see different
trading opportunities emerge from the optimization procedure. Furthermore, we
can guess that some (crucial) parameters need be learned first, such as currency
or maturity; other parameters, such as notional, can be refined in a second stage.

124

All these features lead us to addressing (4.8) by means of a genetic optimization
algorithm.

4.2.3 Genetic Optimization Algorithm

Genetic optimization algorithms belong to the class of derivative-free optimizers,
which is surveyed and benchmarked numerically in Rios and Sahinidis (2013) (in-
cluding the CMA-ES and DAKOTA/EA genetic algorithms).

The idea of genetic (or evolutionary) optimization algorithms is to evolve a
population of individuals through cycles of modification (mutation) and selection
in order to improve the performance of its individuals, as measured by a given
fitness function. In addition, so-called crossover is used to enhance the search in
parameter space. To the best of our knowledge, evolutionary algorithms were first
explicitly introduced in Turing (2009, chapter 7 Learning Machines, p.456). See the
classical monographs by Holland et al. (1992), Goldberg (1989), and Back (1996).
They then experienced the general artificial intelligence disgrace and comeback
before and after the 2000s. But they always stayed an active field of research,
seen from different perspectives, such as particle filtering, MCMC, or sequential
monte carlo methods (see Del Moral and Formulae (2004)). Beyond its financial
applications reviewed at the end of Sect. 4.1, genetic optimization has been used
in many different fields, such as mechanics Verma and Lakshminiarayanan (2006),
calibration of neural networks hyperparameters Young, Rose, Karnowski, Lim,
and Patton (2015), or operational research Larranaga, Kuijpers, Murga, Inza, and
Dizdarevic (1999).

Genetic optimization offers no theoretically guaranteed rate of convergence,
but it is often found the most efficient approach in practice for dealing with hy-
brid (partly continuous, partly discrete/combinatorial, hence without well defined
gradient and Hessian), nonconvex (in the sense of one local minimum, at least, for
each set of values of the discrete parameters), and high-dimensional optimization
problems such as (4.8).

At each iteration, the fitness f(x) is computed for each individual (also named
chromosome) x of an initial population (a set of chromosomes). The values re-
turned by the objective function are used for selecting chromosomes from the
population. Among numerous selection methods (see Blickle and Thiele (1995)),
we can quote fitness proportionate selection, ranking proportionate selection (in
order to avoid the overrepresentation of the chromosomes with the highest fitness
values), and tournament selection (selection of the best among randomly drawn
chromosomes). The common intention of these selection methods is to sample in
priority individuals with the best fitness values. A genetic algorithm is dubbed
elitist if the selection operator always keeps the chromosome with the best fit-
ness value. Otherwise (as in our case), there is no guarantee that the best visited

125

chromosome is contained in the population corresponding to the final iteration.
The mutation stage is intended to maintain some diversity inside the popula-

tion, in order to avoid the algorithm being trapped by local minima. A mutation
randomly changes one gene, i.e. one component (e.g., in our case, the notional of
a new swap) of a chromosome.

Selection and mutation play opposite roles: a focus on fitness leads to a quicker
convergence toward a local minimum; conversely, a too heavily mutated population
results into a slow random research.

In addition, a crossover operator plays the role of a reproduction inside the
algorithm. The principle of crossover is to build two children chromosomes from
parent chromosomes. A distribution (often the same as the one used for selection)
is chosen for picking chromosomes from a population of the previous iteration and
for recombining pairs of selected chromosomes. Children share gene values of their
parents but a gene value from one parent cannot be inherited by both children.
A crossover mask decides for each gene in which parent a child can copy the gene
version. One of the most popular crossover masks is single point crossover (see
remark 4).

The role of the crossover operator is paradoxical, as crossover can be seen as
a combination of mutations, which increase the genetic diversity, while crossover
also promotes chromosomes with higher fitnesses. Crossover aims at benefiting of
a presupposed proximity of best solutions.

The above operators are applied iteratively until a suitable stopping condition
is satisfied. The most basic one is a fixed number of iteration, but customized
criteria may also be used to limit further the number of iterations. For instance,
the algorithm can be interrupted when the minimum (or sometimes even the max-
imum) fitness value within the population at the beginning of an iteration is below
a predefined threshold.

See Algorithm 4 and Figure 4.2.1 for the algorithm in pseudo-code and skeleton
forms, denoting by rm the mutation rate, i.e. the percentage of individuals in a
population affected by a mutation, and by rc the crossover rate, i.e. the percentage
of individuals affected by crossover recombination.

The behavior of a genetic optimization algorithm is essentially determined by
the choice of the selection operator, the number of solutions affected by a mu-
tation, and the number of chromosomes affected by a crossover. See Tabassum
and Mathew (2014) for a user guide to the main genetic algorithm ingredients and
Carvalho, Bittencourt, and Maia (2011) for applications of genetic optimization
algorithms to benchmark functions.

126

Algorithm 4 Pseudo-code of an optimization genetic algorithm.
Data: An initial population Pinit of size P and the associated fitness values for

each chromosome, a crossover rate rc, and a mutation rate rm.
8 Initialization
9 while a stopping condition is not satisfied do

10 Save b(1 − rc) ∗ P c chromosomes, chosen by an appropriate selection method
from Pinit, in Pselected

11 Save brc ∗ P c chromosomes, chosen by an appropriate selection method from
Pinit, in Pcrossover

12 Recombine, uniformly without replacement, b rc∗P
2
c pairs from Pcrossover

13 Merge Pcrossover and Pselected in Pmutated
14 Mutate randomly brm ∗ P c in Pmutated
15 for Each chromosome c in Pmutated do
16 Compute the fitness value of c

Result: A new population and the associated fitness values.

Remark 4 (Single Point Crossover). Let (p1, p2) be a pair of chromosomes chosen
as parents and let (c1, c2) denote the children. We assume that each chromosome
has four genes A,B,C,D, that p1 has gene versions {A1, B1, C1, D1} and p2 has
gene versions {A2, B2, C2, D2}. For a single point crossover, we draw uniformly
an integer i such the first i genes for c1 are inherited from p1 and the remaining
genes are transferred from p2 to c1, and symmetrically so for c2. For instance, if
we draw i = 2, then c1 has gene versions {A1, B1, C2, D2}, and c2 has gene values
{A2, B2, C1, D1}.

127

Start

Sampling

Fitness Evaluation

Termination test

Crossover Selection

Mutation

Stop

Population of size P

Population with asso-
ciated fitness values.

Population of b rc∗P
2
c

recombined pairs
Selected population

of size b(1 − rc) ∗ P c

Population with brm ∗ P c
mutated chromosomes

Figure 4.2.1: Skeleton of an optimization genetic algorithm.

4.3 Acceleration Techniques
Without suitable acceleration techniques, the above CVA compression approach
is not workable in real time on realistic banking portfolios: on the examples of
Section 4.4, a naive (desktop) implementation requires about 20 hours of compu-
tations. This becomes even more problematic for hyperparameters tuning (such as

128

α, crossover rate rc, etc.). Hyperparameters are generally chosen with grid search,
random search (see Bergstra, Bardenet, Bengio, and Kégl (2011)), Bayesian op-
timization (see Snoek, Larochelle, and Adams (2012)) or even evolutionary algo-
rithms again (see Young, Rose, Karnowski, Lim, and Patton (2015)). In any case,
their calibration is greedy in terms of overall genetic algorithm execution.

In this section we deal with the two following acceleration techniques, which
may be used simultaneously:

• A MtM store-and-reuse approach for trade incremental XVA computations,
speeding up the unitary evaluation of the fitness function;

• A parallelization of the genetic algorithm accelerating the fitness evaluation
at the level of the population.

4.3.1 MtM Store-and-Reuse Approach for Trade Incremen-
tal XVA Computations

Most of the time in portfolio-wide XVA calculations is spent in clean valuation
(i.e. mark-to-market MtM) computations: by comparison, simulation of the risk
factors or of the collateral are typically negligible.

Our case study is based on the CVA metric. As observed after (4.6), by lack of
trade-additivity of the (portfolio-wide) CVA, trade incremental XVA computations
require two portfolio-wide calculations: one without the new trade and another
one including it. But it is possible to store the (including MtM) paths simulated
for the initial portfolio and reuse them each time we want to compute a new trade
incremental XVA. Then, each trade incremental XVA computation only requires
the forward simulation of the mark-to-market process of the new deal.

The corresponding MtM store-and-reuse approach to trade incremental XVA
computations circumvents repeated valuations at the cost of disk memory. It
exploits the trade additivity of clean valuation by recording the MtM paths of the
initial portfolio on a disk. For every new deal, the augmented portfolio exposure is
obtained by adding, along the paths of the risk factors, the mark-to-market of the
initial portfolio and of the new deal. This augmented portfolio exposure is then
plugged into the XVA engine.

An optimally implemented MtM store-and-reuse approach brings down trade
incremental XVA computations to the time of generating the clean price process of
the trade itself, instead of the one of the augmented portfolio as a whole. Another
advantage of this approach is its compliance with desk segregation: As far as clean
valuation is concerned, the XVA desks just use the pricers of the clean desks.
Hence, the MtM process plugged into the XVA computations is consistent with
the one used for producing the market risk hedging sensitivities.

129

However, such an approach comes at the costs of memory disk (obviously),
but also data slippage as, for consistency, it requires to anchor all the trade incre-
mental XVA computations at the market data and parameters corresponding to
the generation of the initial portfolio exposure. In practice, an MtM process at
the overall portfolio level can only be generated during night runs, between two
market sessions.

Moreover, we have to distinguish between first order (or first generation) XVAs,
which are options on the MtM process, and higher order (or second generation)
XVAs (see Crépey, Hoskinson, and Saadeddine (2021)), which can be viewed as
compound options of order two or more on the MtM process. Second generation
XVAs may also involve conditional risk measures, e.g. conditional value-at-risk for
the dynamic initial margin calculations that are required for MVA 2 computations,
as opposed to conditional expectations only in the case of first generation XVAs.

A Monte Carlo simulation diffuses risk factors X (such as interest rates, credit
spreads, etc.) along drivers Z (such as Brownian motions, Poisson processes, etc.),
according to a model formulated as a Markovian system of stochastic differential
equations, starting from some given initial conditionX0 for all risk factors, suitably
discretized in time and space. Modulo calibration, X0 can be identified with the
time 0 market data. We denote by Ŷ a suitable estimate of a process Y at all
(outer) nodes of a Monte Carlo XVA engine. In particular, M̂tM is the fully
discrete counterpart of the MtM process of the initial portfolio, namely the clean
value of the portfolio at future exposure dates in a time grid and for different
scenario paths.

At first sight, an MtM store-and-reuse approach is unsuitable for second order
XVAs, such as the MVA and the KVA (but also the CVA in the case of a CSA
where the bank receives so-called initial margin), Indeed, in their case, the principle
of swapping computations against storage would require to store not one portfolio
exposure M̂tM, but a whole family of resimulated, future conditional portfolio
exposures, (at least, over a certain time horizon), which seems hardly feasible in
practice. However, even in the case of second order XVA metrics, an MtM store
and reuse approach can be implemented with the help of appropriate regression
techniques (at the cost of an additional regression error, see Crépey, Hoskinson,
and Saadeddine (2021)).

Formalizing the above discussion, the conditions for a straightforward and sat-
isfactory application of the MtM store-and-reuse approach to a given XVA metric
are as follows, referring by indices init, incr, and augm to the initial portfolio, the
new deal, and the augmented portfolio:

1. (No nested resimulation of the portfolio exposure required) The formula for
2For details regarding the initial margin and the MVA, see Crépey, Hoskinson, and Saadeddine

(2021, sections 3.4 and A.4).

130

the corresponding (portfolio-wide, time-0) XVA metric should be estimatable
without nested resimulation, only based on the portfolio exposure rooted at
(0, X0). A priori, additional simulation level makes nonpractical the MtM
store-and-reuse idea of swapping execution time against storage;

2. (Common random numbers) M̂tM
incr

should be based on the same paths of
the drivers as M̂tM

init
. Otherwise, numerical noise (or variance) would arise

during M̂tM aggregation;

3. (Lagged market data) M̂tM
incr

should be based on the same time, say 0,
and initial condition X0 (including, modulo calibration, market data), as
M̂tM

init
. This condition ensures a consistent aggregation of M̂tM

init
and

M̂tM
incr

into M̂tM
augm

.

These conditions have the following implications:

1. seems to ban second order generation XVAs, such as CVA in presence of
initial margin, but these can in fact be included with the help of appropriate
regression techniques;

2. implies to store the driver paths that were simulated for the purpose of
obtaining M̂tM

init
; it also puts a bound on the accuracy of the estimation

of MtMincr, since the number of Monte Carlo paths is imposed by the initial
run. Furthermore, the XVA desks may want to account for some wrong way
risk dependency between the portfolio exposure and counterparty credit risk
(see Sect. 4.2.1); approaches based on correlating the default intensity and
the market exposure in (4.5) are readily doable in the present framework,
provided the trajectories of the drivers and/or risk factors are shared between
the clean and XVA desks;

3. induces a lag between the market data (of the preceding night) that are
used in the computation of M̂tM

incr
and the exact MtMincr process; when

the lag on market data becomes unacceptably high (because of time flow
and/or volatility on the market), a full reevaluation of the portfolio exposure
is required.

Figure 4.3.1 depicts the embedding of an MtM store-and-reuse approach into the
trade incremental XVA engine of a bank.

131

Clean Pricers

Clean desks

Aggregate

XVA desks

XVA Engine X̂V A
augmDataBase

Market Data Database

Initial run :
M̂tM

init
, Ẑ init

Incremental run :
M̂tM

init
, Ẑ init

M̂tM
augm

, Ẑaugm

Incremental run :
M̂tM

incr
, Ẑ incr

Incremental run : Ẑ init

Data from the night

Figure 4.3.1: MtM store-and-reuse implementation of a trade incremental XVA
engine with drivers Z.

4.3.2 Parallelization of the Genetic Algorithm

Most of the XVA compression computational time is spent in the evaluation of the
incremental XVA metric involved in the fitness criterion visible in (4.8). The MtM
store-and-reuse approach allows reducing the complexity of such trade incremental
XVA computations to trade (as opposed to portfolio) size. However, in order to
achieve XVA compression in real time, this is not enough; another key step is the
parallelization of the genetic algorithm that is used for solving (4.8).

The genetic algorithm is a population based method, which implies to maintain
a population of individuals (tentative new deals) through each iteration of the
algorithm. The calculation of the objective function, for a given individual, does
not depend on the fitness value of the other individuals. Therefore we can vectorize
the computation of the fitness values within the population. Provided a suitable
parallel architecture is available, a perfectly distributed genetic algorithm makes
the execution time independent of the population size P (see Algorithm 4 and
Figure 4.2.1).

This makes an important difference with other metaheuristic optimization algo-
rithm, such as simulated annealing or stochastic hill climbing, which only evaluate
one or very few solutions per iteration, but need much more iterations to converge
toward a good minimum (see Adler (1993) and Ram, Sreenivas, and Subrama-
niam (1996)). As discussed in Pardalos, Pitsoulis, Mavridou, and Resende (1995),
the above parallelization of the fitness function evaluation, for a given popula-
tion, should not be confused with a parallel genetic algorithm in the sense of an
independent evolution of several smaller populations.

132

In our context where individuals only represent incremental trades, a paral-
lelization of population fitness evaluation is compatible with an MtM store-and-
reuse approach for the trade incremental XVA computations. Combining the two
techniques results in an XVA compression time independent of the sizes of the
initial portfolio of the bank and of the population of the genetic algorithm used
for the optimization, which represents an XVA compression computation time gain
factor of the order of

Number of trades in the initial portfolio× population size.

4.4 Case Study
In the remainder of the chapter, we present CVA compression results on real
swap portfolios3, using an additional swap for the CVA compression. We aim at
addressing issues such as:

• Which type of swap is suitable for achieving the compression of the CVA, in
the context of a given initial portfolio?

• How does the compression distort the portfolio exposure, with or without
penalization?

To ease the implementation of the MtM store-and-reuse approach, we assume no
CSA (cf. Sect. 4.3.1).

4.4.1 New Deal Parameterization

A swap is parameterized by its notional, its maturity, its direction, and its currency.
The quantitative parameters are encoded through grids of values:

• Notional: from 105 to 107 by step of 105 dollars,

• Maturity: from 1 to 20 years by step of 1 year, 30 years and 50 years.

The qualitative parameters are encoded as enumerations of values:

• currency : Euro, US dollar, GBP or Yen.

• direction : A binary variable for payer or receiver.
3The underlying interest rate and FX models are proprietary and cannot be disclosed in the

chapter. We use a deterministic credit spread model for the counterparty, calibrated to the CDS
term structure of the latter.

133

Moreover we impose the additional swap to be at par so that it can be entered at
no cost, which is equally desirable from the bank and the client perspectives.

The above parameterization defines a discrete search space A with 100× 22×
4× 2 = 1.76× 104 elements.

4.4.2 Design of the Genetic Algorithm

We address the optimization problem (4.8) by a genetic algorithm as per Section
4.2.3. The new deal space A in (4.8) is viewed as a space of chromosomes x,
the genes (deal parameters) of which evolve randomly along the iterations of the
algorithm as detailed in Sect. 4.2.3.

In the theoretical literature on genetic algorithms, an individual is represented
as a bit string . In practice, however, bit string representation of parameters does
not give enough control on the mutation distribution. Namely, in bit string rep-
resentation, mutations affect all bits uniformly, whereas we might want to mutate
some parameters more frequently (the quantitative parameters, in particular, as
the algorithm tends to quickly identify the relevant values of the qualitative pa-
rameters). Hence, we rather model our individuals x by a variable string, a choice
also made in Kondratyev and Giorgidze (2017).

We choose rank proportionate selection to avoid fitness scaling issues. More
precisely, if we have a population P = {1, ..., P} of P individuals and the associated
fitnesses (fi)i∈P , then the probability to select chromosome i is

pi =
2rank(fi)

P (P + 1)
,

where rank is a function that ranks chromosoms according to their fitness value
(returning one for the highest value, in the context of a minimization problem).

Regarding the crossover operator, we use a uniform crossover mask, i.e. the
choice of gene inherited from one parent or another is drawn with a uniform prob-
ability.

Regarding mutations, the probability to mutate a gene is proportional to the
number of alleles (values) that it can take. The mutation operator then selects
uniformly a new gene allele (value).

In our experiments, the notional of the new swap can take 100 different values,
its currency 4 values, its position 2 values, its maturity 22 values. Hence, when a
chromosome is selected for mutation, the probability to mutate each of its genes
is equal to 100

128
for the notional, 22

128
for the maturity, 4

128
for the currency, and

2
128

for the position. Indeed , a more frequent mutation of notional and maturity
parameters are desirable. Diversity for currency and position is ensured at the
initialization of the algorithm (with a large population) and maintained across

134

the iterations thanks to the crossover operator. A prerequisite for a successful
implementation is a reasonable specification of the search space A.

Hyperparameters strongly impact the behavior of the algorithm. In the case
of XVA compression, which is time-consuming, searching good values for the hy-
perparameters by a grid search method would be too demanding computationally.
In our numerics, the mutation rate rm is set to 20% and the crossover rate rc to
50%. In the genetic algorithms literature the crossover rate is often close to one,
but for problems with few genes (i.e. components of x, or parameters, only four in
our case), it is recommended to select a smaller value.

With parallelization in mind (see Sect. 4.3.2), we prefer to decrease the number
of iterations even if it implies to explore more solutions. We set the genetic algo-
rithm population size to P = 100 individuals and we limit the number of iterations
to 5. Hence, we value the fitness function on 600 tentative new swaps x.

4.4.3 Results in the Case of Payer Portfolio Without Penal-
ization

First, we consider a portfolio only composed of payer swaps. The expected ex-
posure (EE) and the expected positive and negative exposures (EPE and ENE),
i.e. EMtMt and EMtM±t , are shown as a function of time t in Figure 4.4.1, which
illustrates the asymmetric market risk profile of the portfolio.

Figure 4.4.1: Market risk profile of the portfolio (payer portfolio without penal-
ization)

Our first point is to verify that the algorithm without penalization, i.e. for
α = 0 in (4.8), will select a receiver swap with a maturity comparable to those of
the swap of the initial portfolio.

Table 4.4.1 reports after each iteration the three best solutions (from top to
bottom) ever found since the beginning of the algorithm (in terms of the fitness

135

criterion (4.8) with α = 0, i.e. ∆CVA=). A negative incremental CVA means that
the new swap decreases the counterparty risk of the bank. The initial portfolio
CVA amounts to 34929e. We also report the |DV01|s of the augmented portfolios
in order to be able to assess the impact of the penalization in our next experiment.

Iter. Mat. (yrs) Not. (Ke) Rate (%) Curr. Pos. ∆CVA (e) −∆CVA
CVA (in %) |DV01|(e)

0
10 4800000 1.6471 GBP Receive -8019 23.0 4484
10 4700000 1.6471 GBP Receive -7948 22.8 4390
10 4600000 1.6471 GBP Receive -7872 22.5 4297

1
17 5600000 1.4623 EUR Receive -17249 49.4 8648
12 5400000 1.7036 GBP Receive -9163 26.2 5957
16 3900000 0.6377 JPY Receive -8760 25.1 6137

2
14 6600000 1.3416 EUR Receive -21680 62.1 8626
17 5100000 1.4623 EUR Receive -19729 56.5 7875
17 5600000 1.4623 EUR Receive -17249 49.4 8648

3
14 6600000 1.3416 EUR Receive -21680 62.1 8626
17 5100000 1.4623 EUR Receive -19729 56.5 7875
17 5600000 1.4623 EUR Receive -17249 49.4 8648

4
17 3300000 1.4623 EUR Receive -27300 78.2 5096
12 6100000 1.2203 EUR Receive -25382 72.7 6959
11 5600000 1.147 EUR Receive -23009 65.9 5908

5
17 3300000 1.4623 EUR Receive -27300 78.2 5096
12 6100000 1.2203 EUR Receive -25382 72.7 6959
12 5100000 1.2203 EUR Receive -25264 72.3 5818

Table 4.4.1: Evolution of optimal solutions after each iteration (payer portfolio
without penalization).

As seen in Figure 4.4.2, a stabilization of the algorithm is observed after 4
iterations, on a new swap leading to a CVA gain of about 27300e, i.e. about 78%
of the initial portfolio CVA. The maturity and the notional are found the two
most sensitive genes in the optimization. The maturity of the swap is chosen by
the algorithm so as to reduce the exposure peak: The decrease of the exposure on
the first 8 years of the portfolio is visible in terms of EPE profile on figure 4.4.3
and of CVA profile4 on Figure 4.4.4.

4.4.4 Results in the Case of Payer Portfolio With Penaliza-
tion

We keep the same initial portfolio but we now penalize our objective function by
the |DV01| of the new swap, setting the regularization parameter α to one in (4.8).
As will be seen below, this choice achieves a good balance between the two terms
∆CVA and αDV01 in (4.8).

4Term structure obtained by integrating the EPE profile against the CDS curve of the coun-
terparty from time 0 to an increasing upper bound t ≤ T (cf. (4.3)).

136

Figure 4.4.2: Fitness value as a function of iteration number (payer portfolio
without penalization).

Figure 4.4.3: Market risk profile of the portfolio before and after optimization
(payer portfolio without penalization).

137

Figure 4.4.4: CVA profile before and after optimization (payer portfolio without
penalization).

Iter. Mat. (yrs) Not. (Ke) Rate (%) Curr. Pos. ∆CVA (e) −∆CVA
CVA (in %) |DV01|(e)

0
10 4500000 1.6471 GBP Receive -7790 22.3 4218
10 4600000 1.6471 GBP Receive -7871 22.5 4311
10 4700000 1.6471 GBP Receive -7947 22.8 4405

1
17 5600000 1.4731 EUR Receive -16892 48.4 8706
10 4500000 1.6471 GBP Receive -7790 22.3 4217
10 4600000 1.6471 GBP Receive -7871 22.5 4311

2
14 6600000 1.3336 EUR Receive -21888 62.7 8654
17 5600000 1.4731 EUR Receive -16892 48.4 8706
17 6100000 1.4531 EUR Receive -15038 43.1 9466

3
14 6600000 1.3336 EUR Receive -21888 62.7 8654
17 5600000 1.4731 EUR Receive -16892 48.4 8706
9 4500000 0.9584 EUR Receive -10454 29.9 3945

4
10 6600000 1.3336 EUR Receive -21888 62.7 8654
11 6600000 1.3999 EUR Receive -18825 53.9 9207
17 5600000 1.4731 EUR Receive -16892 48.4 8706

5
11 2900000 1.3811 EUR Receive -25059 71.7 4039
18 1500000 1.48 EUR Receive -18258 52.3 2442
17 1500000 1.4531 EUR Receive -16553 47.4 2327

Table 4.4.2: Evolution of optimal solutions after each iteration (payer portfolio
with penalization).

138

Figure 4.4.5: Fitness as a function of iteration number (payer portfolio with pe-
nalization).

In the present context of a payer portfolio, |DV01| control and CVA gain are
two antagonistic targets. This may explain why the algorithm seems to struggle
in finding a stable solution: indeed, the last iteration still decreases the fitness
significantly (see Figure 4.4.5).

During the execution (see Table 4.4.2), the algorithm first optimizes the CVA
and then (in iteration 5) reduces the |DV01|. This is due to the difference of
order of magnitude between ∆CVA and |DV01| (recalling α = 1): ∆CVA is more
important, hence the algorithm only takes care of the penalization once ∆CVA
has been compressed.

In the end, the gains in CVA are of the same order of magnitude as in the case
without penalization (92% of the CVA gain without penalization), but for about
20% of |DV01| less than before. The second and third best solutions also achieve
a great CVA gain, while diminishing the |DV01| by a factor three with respect
to the nonpenalized case. By comparison with the unpenalized case (cf. Tables
4.4.1 and 4.4.2), the trades identified by the algorithm have a lower maturity or a
smaller notional, hence a smaller |DV01|.

See Figures 4.4.6 and 4.4.7 for the corresponding market risk and CVA profiles
before and after the optimization.

4.4.5 Results in the Case of a Hybrid Portfolio With Penal-
ization

Next, we challenge our algorithm with a more balanced initial portfolio, as shown
in Figure 4.4.8 (to be compared with Figure 4.4.1). The initial CVA is now 6410e.
We set the regularization parameter α in (4.8)) to 0.3, as opposed to 1 in the

139

Figure 4.4.6: Market risk profile of portfolio before and after optimization (payer
portfolio with penalization).

Figure 4.4.7: CVA profile before and after optimization (payer portfolio with
penalization).

140

previous case, in view of the lower CVA of the initial portfolio.

Figure 4.4.8: Market risk profile of the portfolio (hybrid portfolio with penaliza-
tion).

Figure 4.4.9: Fitness value as a function of iteration number (hybrid portfolio with
penalization)

As visible in Figure 4.4.9, the stabilization of the algorithm occurs after three
iterations, showing that, for the hybrid portfolio, |DV01| penalization and ∆CVA
play less antagonistic roles. This is obtained by a relatively small notional and a
maturity limited to 9 years, versus 11 years in the previous case of a payer portfolio
with penalization. The corresponding market risk and CVA profiles, before and
after the optimization, are displayed in Figures 4.4.10 and 4.4.11. Figure 4.4.10
explains the choices operated by the algorithm : As we restrict our incremental

141

Iter. Mat. (yrs) Not. (Ke) Rate (%) Curr. Pos. ∆CVA (e) −∆CVA
CVA (in %) |DV01|(e)

0
1 6000000 0.025 JPY Receive 14 -0.2 609
1 6100000 0.025 JPY Receive 14 -0.2 619
1 6300000 0.025 JPY Receive 14 -0.2 640

1
8 1500000 0.8565 EUR Receive -1905 29.7 1177
6 2300000 0.586 EUR Receive -1166 18.2 1370
9 700000 1.608 GBP Receive -820 12.8 595

2
8 1500000 0.8565 EUR Receive -1905 29.7 1177
6 2300000 0.586 EUR Receive -1166 18.2 1370
9 700000 1.608 GBP Receive -82 12.8 595

3
9 1900000 0.9584 EUR Receive -2284 35.6 1665
8 1500000 0.8565 EUR Receive -1905 29.7 1177
7 2700000 0.7225 EUR Receive -1628 25.4 1865

4
9 1900000 0.9584 EUR Receive -2284 35.6 1665
8 1500000 0.8565 EUR Receive -1905 29.7 1177
7 2700000 0.7225 EUR Receive -1628 25.4 1865

5
9 1900000 0.9584 EUR Receive -2284 35.6 1665
8 1500000 0.8565 EUR Receive -1905 29.7 1177
9 2500000 0.9584 EUR Receive -1942 30.3 2192

Table 4.4.3: Evolution of optimal solutions after each iteration (hybrid portfolio
with penalization).

strategy to one swap, the algorithm limits the EPE until the first positive peak
before 2026. A better strategy, but one outside our search space A, would be to
add a second swap with entry date in 2028 and end date in 2037.

Figure 4.4.10: Market risk profile of portfolio before and after optimization (hybrid
portfolio with penalization).

142

Figure 4.4.11: CVA profile before and after optimization (hybrid portfolio with
penalization).

4.5 Conclusion
There exists a trade-off between CVA compression and DV01 penalization, which
have antagonistic influences on the incremental exposure. Provided the search
space for incremental trades is adequately chosen and parameterized, genetic op-
timization can result in significant CVA gains and, under DV01 penalization, this
can be achieved without too much impact on the market risk of the bank position.

On the portfolios considered in our case studies, with ten to twenty trades,
a basic XVA compression run on a standard PC without the acceleration tech-
niques of Section 4.3 takes about 20 hours. The time gain resulting from an MtM
store-and-reuse implementation of the trade incremental XVA computations as
per Section 4.3.1 primarily depends on the size of the initial portfolio, but also
on the maturity, and complexity more generally (vanilla vs. callable or path-
dependent,...), of the constituting trades. Likewise, the time gain resulting from
a parallel implementation of the genetic algorithm as per Section 4.3.2 primar-
ily depends on the population size P , but it can be deteriorated by grid latency,
hardware limitation, or data flow management, features. In our simulations, an
MtM store-and-reuse implementation of the trade incremental XVA computations
reduces the XVA compression time to about seven hours; A further parallel im-
plementation of the genetic optimization algorithm lowers the execution time to
about one hour.

The case study of this chapter is only a first step toward more complex op-
timizations. One could thus enlarge the search space with, e.g., crosscurrency
swaps. In this case, the market risk penalization should be revisited to penalize
other risk factors, beyond interest rate risk that is already accounted for by |DV01|.
The penalization could also be refined with a focus on forward mark-to-market,
i.e. market risk in the future (our current |DV01| penalization only controls spot

143

market risk).
CVA compression strategies involving several additional trades could be imple-

mented. A first step toward such a multi-variate, multi-trade, compression would
be an iterated application of single-trade XVA compressions, whereby, after each
compression, the optimally augmented portfolio becomes the initial portfolio for
the next compression. The benefit of such an iterative approach would be the
ability to work with a search space A (or a sequence of them) of constant size, as
opposed to a global search space A that would need to grow exponentially with
the number of new trades in the case of a single multi-trade compression cycle.

Additional XVA metrics, and ultimately the all-inclusive XVA add-on (4.1),
should be included in the compression (which, in particular, would allow one to
identify possible XVA cuts across different netting sets).

144

Bibliography

Abbas-Turki, L. A., S. Crépey, and B. Diallo (2018). XVA Principles, Nested
Monte Carlo Strategies, and GPU Optimizations. International Journal of
Theoretical and Applied Finance 21, 1850030.

Ackerer, D., N. Tagasovska, and T. Vatter (2019). Deep smoothing of the implied
volatility surface. Available at SSRN 3402942 .

Adler, D. (1993). Genetic algorithms and simulated annealing: A marriage pro-
posal. In IEEE International Conference on Neural Networks, pp. 1104–1109.
IEEE.

Aggarwal, C. C. (2017). Outlier analysis second edition. Springer.

Albanese, C., M. Chataigner, and S. Crépey (2019). Wealth transfers, indiffer-
ence pricing, and XVA compression schemes. In Y. Jiao (Ed.), From Proba-
bility to Finance—Lecture note of BICMR summer school on financial math-
ematics, Mathematical Lectures from Peking University Series. Springer.
Forthcoming.

Albanese, C., S. Crépey, and M. Chataigner (2018). Wealth transfers, indiffer-
ence pricing, and xva compression schemes. From Probability to Finance -
Lecture note of BICMR summer school on financial mathematics .

Alfeld, P. (1984). A trivariate clough—tocher scheme for tetrahedral data. Com-
puter Aided Geometric Design 1 (2), 169–181.

Allouche, M., S. Girard, and E. Gobet (2021). Tail-gan: Simulation of extreme
events with relu neural networks.

An, J. and S. Cho (2015). Variational autoencoder based anomaly detection
using reconstruction probability. Special Lecture on IE 2 (1), 1–18.

Anandakrishnan, A., S. Kumar, A. Statnikov, T. Faruquie, and D. Xu (2018).
Anomaly detection in finance: editors’ introduction. In KDD 2017 Workshop
on Anomaly Detection in Finance, pp. 1–7.

Armenti, Y. and S. Crépey (2017). Central clearing valuation adjustment. SIAM
Journal on Financial Mathematics 8 (1), 274–313.

145

Aubin-Frankowski, P.-C. and Z. Szabo (2020). Hard shape-constrained kernel
machines. arXiv:2005.12636.

Azimi, M. and A. Agrawal (2019). Is positive sentiment in corporate annual re-
ports informative? evidence from deep learning. The Review of Asset Pricing
Studies .

Bachoc, F., A. Lagnoux, A. F. López-Lopera, et al. (2019). Maximum likelihood
estimation for Gaussian processes under inequality constraints. Electronic
Journal of Statistics 13 (2), 2921–2969.

Bachouch, A., C. Huré, N. Langrené, and H. Pham (2021). Deep neural networks
algorithms for stochastic control problems on finite horizon: numerical ap-
plications. Methodology and Computing in Applied Probability , 1–36.

Back, T. (1996). Evolutionary Algorithms in Theory and Practice: Evolution
Strategies, Evolutionary Programming, Genetic Algorithms. Oxford Univer-
sity Press.

Bartram, S. M., J. Branke, and M. Motahari (2020). Artificial intelligence in
asset management. Number 14525. CFA Institute Research Foundation.

Basel Committee on Banking Supervision (2011, June). Basel iii: A global regu-
latory framework for more resilient banks and banking systems. Consultative
document.

Basel Committee on Banking Supervision (2015). Review of the credit valuation
adjustment risk framework. Consultative document.

Bengio, Y. (2012). Practical recommendations for gradient-based training of
deep architectures. In Neural networks: Tricks of the trade, pp. 437–478.
Springer.

Bengio, Y., I. Goodfellow, and A. Courville (2017). Deep Learning, Volume 1.
Citeseer.

Bengio, Y., P. Lamblin, D. Popovici, and H. Larochelle (2007). Greedy layer-
wise training of deep networks. In Advances in neural information processing
systems, pp. 153–160.

Bergstra, J., R. Bardenet, Y. Bengio, and B. Kégl (2011). Algorithms for
hyper-parameter optimization. Advances in neural information processing
systems 24.

Blechschmidt, J. and O. G. Ernst. Three ways to solve partial differential equa-
tions with neural networks—a review. GAMM-Mitteilungen, e202100006.

Blickle, T. and L. Thiele (1995). A comparison of selection schemes used in
genetic algorithms. TIK-Report.

146

Brigo, D. and F. Vrins (2018). Disentangling wrong-way risk: pricing credit val-
uation adjustment via change of measures. European Journal of Operational
Research 269 (3), 1154–1164.

Bühler, H., L. Gonon, J. Teichmann, and B. Wood (2019). Deep hedging. Quan-
titative Finance 19 (8), 1271–1291.

Buhler, H., B. Horvath, T. Lyons, I. P. Arribas, B. Wood, et al. (2020). A
data-driven market simulator for small data environments. Technical report.

Burgard, C. and M. Kjaer (2011). PDE Representations of Options with Bi-
lateral Counterparty Risk and Funding Costs. Journal of Credit Risk 7 (3),
1–19.

Cansado, A. and A. Soto (2008). Unsupervised anomaly detection in large
databases using Bayesian networks. Applied Artificial Intelligence 22 (4),
309–330.

Cappozzo, A., F. Greselin, and T. B. Murphy (2020). Anomaly and novelty
detection for robust semi-supervised learning. Statistics and Computing , 1–
27.

Carvalho, D. B., J. N. Bittencourt, and T. D. Maia (2011). The simple genetic
algorithm performance: A comparative study on the operators combination.
In The First International Conference on Advanced Communications and
Computation.

Chaloner, K. and R. Brant (1988). A Bayesian approach to outlier detection
and residual analysis. Biometrika 75 (4), 651–659.

Chandola, V., A. Banerjee, and V. Kumar (2009). Anomaly detection: A survey.
ACM computing surveys (CSUR) 41 (3), 1–58.

Chataigner, M., A. Cousin, S. Crépey, M. Dixon, and D. Gueye (2021). Beyond
surrogate modeling: Learning the local volatility via shape constraints. SIAM
Journal on Financial Mathematics / Short Communications . Forthcoming.

Chataigner, M., S. Crépey, and M. Dixon (2020). Deep local volatility.
Risks 8 (3), 82.

Chen, L., M. Pelger, and J. Zhu (2020). Deep learning in asset pricing. Available
at SSRN 3350138 . Working paper.

Chen, S.-H. (2012). Genetic algorithms and genetic programming in computa-
tional finance. Springer Science & Business Media.

Cousin, A., H. Maatouk, and D. Rullière (2016a). Kriging of financial term
structures. European Journal of Operational Research 255, 631–648.

147

Cousin, A., H. Maatouk, and D. Rullière (2016b). Kriging of financial term-
structures. European J. Oper. Res. 255 (2), 631–648.

Crépey, S. (2002). Calibration of the local volatility in a trinomial tree using
Tikhonov regularization. Inverse Problems 19 (1), 91.

Crépey, S. (2003). Calibration of the local volatility in a generalized Black–
Scholes model using Tikhonov regularization. SIAM Journal on Mathemat-
ical Analysis 34 (5), 1183–1206.

Crépey, S. (2004). Delta-hedging vega risk? Quantitative Finance 4 (5), 559–
579.

Crépey, S. (2013). Financial Modeling: A Backward Stochastic Differential
Equations Perspective. Springer Finance Textbooks.

Crépey, S., R. Hoskinson, and B. Saadeddine (2021). XVA analysis from the
balance sheet. Quantitative Finance 21 (1), 99–123.

Crépey, S. and S. Song (2016). Counterparty risk and funding: Immersion and
beyond. Finance and Stochastics 20 (4), 901–930.

Crépey, S. and S. Song (2017). Invariance properties in the dynamic gaussian
copula model. ESAIM: Proceedings and surveys 56, 22–41.

Crépey, S. and M. Dixon (2020). Gaussian process regression for derivative port-
folio modeling and application to CVA computations. Journal of Computa-
tional Finance 24 (1), 47–81.

Del Moral, P. and F.-K. Formulae (2004). Genealogical and interacting particle
systems with applications.

Drake, A. E. and R. E. Marks (2002). Genetic algorithms in economics and
finance: Forecasting stock market prices and foreign exchange—a review. In
Genetic algorithms and genetic programming in computational finance, pp.
29–54. Springer.

Dugas, C., Y. Bengio, F. Bélisle, C. Nadeau, and R. Garcia (2009). Incorporat-
ing functional knowledge in neural networks. Journal of Machine Learning
Research 10 (Jun), 1239–1262.

Dupire, B. (1994). Pricing with a smile. Risk 7, 18–20.

Dupont, L., O. Fliche, and S. Yang (2020). Governance of artificial intelligence
in finance. Banque De France.

Engl, H., M. Hanke, and A. Neubauer (1996). Regularization of Inverse Prob-
lems. Kluwer.

Ferguson, R. and A. Green (2018). Deeply learning derivatives. arXiv preprint
arXiv:1809.02233 .

148

Fissler, T., J. F. Ziegel, and T. Gneiting (2016). Expected shortfall is jointly
elicitable with value at risk-implications for backtesting. Risk Magazine.

Garcia, R. and R. Gençay (2000). Pricing and hedging derivative securities with
neural networks and a homogeneity hint. Journal of Econometrics 94 (1-2),
93–115.

Gatheral, J. (2004). A parsimonious arbitrage-free implied volatility parameteri-
zation with application to the valuation of volatility derivatives. Presentation
at Global Derivatives & Risk Management, Madrid , 0.

Gatheral, J. (2011). The volatility surface: a practitioner’s guide. Wiley.

Gatheral, J. and A. Jacquier (2014). Arbitrage-free SVI volatility surfaces.
Quantitative Finance 14 (1), 59–71.

Gatheral, J., T. Jaisson, and M. Rosenbaum (2018). Volatility is rough. Quan-
titative finance 18 (6), 933–949.

Gençay, R. and M. Qi (2001). Pricing and hedging derivative securities with
neural networks: Bayesian regularization, early stopping, and bagging. IEEE
Transactions on Neural Networks 12 (4), 726–734.

Glasserman, P. and L. Yang (2018). Bounding wrong-way risk in cva calculation.
Mathematical Finance 28 (1), 268–305.

Glorot, X. and Y. Bengio (2010). Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics, pp. 249–256.

Goix, N., A. Sabourin, and S. Clémençon (2015). On anomaly ranking and
excess-mass curves. In Artificial Intelligence and Statistics, pp. 287–295.

Goix, N., A. Sabourin, and S. Clémençon (2017). Sparse representation of mul-
tivariate extremes with applications to anomaly detection. Journal of Mul-
tivariate Analysis 161, 12–31.

Goldberg, D. (1989). Genetic Algorithms in Search Optimization and Machine
Learning. Addison-Wesley.

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep Learning. MIT Press.

Green, A. (2015). XVA: Credit, Funding and Capital Valuation Adjustments.
John Wiley & Sons.

Gregory, J. (2015). The xVA Challenge: counterparty credit risk, funding, col-
lateral and capital. John Wiley & Sons.

Hamida, S. B. and R. Cont (2005). Recovering volatility from option prices by
evolutionary optimization. The Journal of Computational Finance.

149

Hastie, T., R. Mazumder, J. D. Lee, and R. Zadeh (2015). Matrix completion
and low-rank svd via fast alternating least squares. The Journal of Machine
Learning Research 16 (1), 3367–3402.

Hawkins, D. M. (1980). Identification of outliers, Volume 11. Springer.
Hinton, G. E., S. Osindero, and Y.-W. Teh (2006). A fast learning algorithm for

deep belief nets. Neural computation 18 (7), 1527–1554.
Holland, J. H. et al. (1992). Adaptation in natural and artificial systems: an

introductory analysis with applications to biology, control, and artificial in-
telligence. MIT press.

Horvath, B., A. Muguruza, and M. Tomas (2019). Deep learning volatility. Avail-
able at SSRN 3322085 .

Huge, B. N. and A. Savine (2020). Differential machine learning. Available at
SSRN 3591734 .

Hull, J. and A. White (2012). Cva and wrong-way risk. Financial Analysts Jour-
nal 68 (5), 58–69.

Hutchinson, J. M., A. W. Lo, and T. Poggio (1994). A nonparametric approach
to pricing and hedging derivative securities via learning networks. The Jour-
nal of Finance 49 (3), 851–889.

Jin, Z., Z. Yang, and Q. Yuan (2019). A genetic algorithm for investment–
consumption optimization with value-at-risk constraint and information-
processing cost. Risks 7 (1), 32.

Katona, Z., M. Painter, P. N. Patatoukas, and J. Zeng (2018). On the capital
market consequences of alternative data: Evidence from outer space. In 9th
Miami Behavioral Finance Conference.

Kingma, D. P. and J. Ba (2015). Adam: A method for stochastic optimization.
In International Conference on Learning Representations.

Kiran, B. R., D. M. Thomas, and R. Parakkal (2018). An overview of deep learn-
ing based methods for unsupervised and semi-supervised anomaly detection
in videos. Journal of Imaging 4 (2), 36.

Knorr, E. M. and R. T. Ng (1998). Algorithms for mining distance-based outliers
in large datasets. In VLDB, Volume 98, pp. 392–403. Citeseer.

Kondratyev, A. (2018). Curve dynamics with artificial neural net-
works. Risk Magazine, May. Preprint version available at
https://ssrn.com/abstract=3041232.

Kondratyev, A. and G. Giorgidze (2017). Evolutionary algos for opti-
mising MVA. Risk Magazine, December. Preprint version available at
https://ssrn.com/abstract=2921822.

150

Kroha, P. and M. Friedrich (2014). Comparison of genetic algorithms for trading
strategies. In International Conference on Current Trends in Theory and
Practice of Informatics, pp. 383–394. Springer.

Lakhina, S., S. Joseph, and B. Verma (2010). Feature reduction using principal
component analysis for effective anomaly–based intrusion detection on NSL-
KDD.

Larranaga, P., C. M. H. Kuijpers, R. H. Murga, I. Inza, and S. Dizdarevic
(1999). Genetic algorithms for the travelling salesman problem: A review of
representations and operators. Artificial Intelligence Review 13 (2), 129–170.

LeCun, Y., B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and
L. Jackel (1989). Handwritten digit recognition with a back-propagation net-
work. Advances in neural information processing systems 2.

Leshno, M., V. Y. Lin, A. Pinkus, and S. Schocken (1993). Multilayer feedfor-
ward networks with a nonpolynomial activation function can approximate
any function. Neural networks 6 (6), 861–867.

Li, M. and F. Mercurio (2015). Jumping with default: wrong-way risk modelling
for cva. Risk Magazine, November .

Li, X. P., L. Huang, H. C. So, and B. Zhao (2019). A survey on matrix comple-
tion: Perspective of signal processing. arXiv preprint arXiv:1901.10885 .

Liu, H., S. Shah, and W. Jiang (2004). On-line outlier detection and data clean-
ing. Computers & chemical engineering 28 (9), 1635–1647.

Longstaff, F. A. and E. S. Schwartz (2001). Valuing american options by simula-
tion: a simple least-squares approach. The review of financial studies 14 (1),
113–147.

Lu, L., P. Jin, and G. E. Karniadakis (2019). Deeponet: Learning nonlinear
operators for identifying differential equations based on the universal ap-
proximation theorem of operators. arXiv preprint arXiv:1910.03193 .

Ludkovski, M. and Y. Saporito (2020). Krighedge: Gaussian process surrogates
for delta hedging. arXiv:2010.08407.

Maatouk, H. and X. Bay (2017). Gaussian process emulators for computer ex-
periments with inequality constraints. Math. Geosci. 49 (5), 557–582.

MacKay, D. J. and D. J. Mac Kay (2003). Information theory, inference and
learning algorithms. Cambridge university press.

Markowitz, H. (1952). " portfolio selection". the journal of finance 7 (1): 77-91.
Masci, J., U. Meier, D. Cireşan, and J. Schmidhuber (2011). Stacked convo-

lutional auto-encoders for hierarchical feature extraction. In International
Conference on Artificial Neural Networks, pp. 52–59. Springer.

151

Mazumder, R., T. Hastie, and R. Tibshirani (2010). Spectral regularization
algorithms for learning large incomplete matrices. The Journal of Machine
Learning Research 11, 2287–2322.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.

Murphy, K. (2012a). Machine Learning: A Probabilistic Perspective. MIT Press.

Murphy, K. P. (2012b). Machine learning: a probabilistic perspective. MIT press.

Nguyen, L. T., J. Kim, and B. Shim (2019). Low-rank matrix completion: A
contemporary survey. IEEE Access 7, 94215–94237.

Ohn, I. and Y. Kim (2019, June). Smooth Function Approximation by Deep
Neural Networks with General Activation Functions. Entropy 21 (7), 627.

Omar, S., A. Ngadi, and H. H. Jebur (2013). Machine learning techniques for
anomaly detection: an overview. International Journal of Computer Appli-
cations 79 (2).

Pardalos, P. M., L. Pitsoulis, T. Mavridou, and M. G. Resende (1995). Par-
allel search for combinatorial optimization: Genetic algorithms, simulated
annealing, tabu search and grasp. In International Workshop on Parallel
Algorithms for Irregularly Structured Problems, pp. 317–331. Springer.

Patcha, A. and J.-M. Park (2007). An overview of anomaly detection tech-
niques: Existing solutions and latest technological trends. Computer net-
works 51 (12), 3448–3470.

Pykhtin, M. (2012). General wrong-way risk and stress calibration of exposure.
Journal of Risk Management in Financial Institutions 5 (3), 234–251.

Ram, D. J., T. Sreenivas, and K. G. Subramaniam (1996). Parallel simulated
annealing algorithms. Journal of parallel and distributed computing 37 (2),
207–212.

Rios, L. M. and N. V. Sahinidis (2013). Derivative-free optimization: a review of
algorithms and comparison of software implementations. Journal of Global
Optimization 56 (3), 1247–1293.

Ro, K., C. Zou, Z. Wang, and G. Yin (2015). Outlier detection for high-
dimensional data. Biometrika 102 (3), 589–599.

Rocke, D. M. and D. L. Woodruff (1996). Identification of outliers in multivariate
data. Journal of the American Statistical Association 91 (435), 1047–1061.

Roper, M. (2010). Arbitrage free implied volatility surfaces.
https://talus.maths.usyd.edu.au/u/pubs/publist/preprints/2010/roper-
9.pdf .

152

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review 65 (6), 386.

Ruf, J. and W. Wang (2020). Neural networks for option pricing and hedging:
a literature review. Journal of Computational Finance 24 (1).

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1985). Learning internal
representations by error propagation. Technical report, California Univ San
Diego La Jolla Inst for Cognitive Science.

Savine, A. (2018). Modern Computational Finance: AAD and Parallel Simula-
tions. Wiley.

Schlegl, T., P. Seeböck, S. M. Waldstein, G. Langs, and U. Schmidt-Erfurth
(2019). f-anogan: Fast unsupervised anomaly detection with generative ad-
versarial networks. Medical image analysis 54, 30–44.

Schmidt-Hieber, J. (2020). Nonparametric regression using deep neural networks
with relu activation function. The Annals of Statistics 48 (4), 1875–1897.

Shannon, C. E. (1948). A mathematical theory of communication. Bell system
technical journal 27 (3), 379–423.

Snoek, J., H. Larochelle, and R. P. Adams (2012). Practical bayesian opti-
mization of machine learning algorithms. Advances in neural information
processing systems 25.

Sprenger, T. O., P. G. Sandner, A. Tumasjan, and I. M. Welpe (2014). News or
noise? using twitter to identify and understand company-specific news flow.
Journal of Business Finance & Accounting 41 (7-8), 791–830.

Strub, F., R. Gaudel, and J. Mary (2016). Hybrid recommender system based
on autoencoders. In Proceedings of the 1st Workshop on Deep Learning for
Recommender Systems, pp. 11–16. ACM.

Strub, F. and J. Mary (2015). Collaborative filtering with stacked denoising
autoencoders and sparse inputs. In NIPS workshop on machine learning for
eCommerce.

Taarit, M. I. (2018). Pricing of XVA adjustments: from expected exposures to
wrong-way risks. Ph. D. thesis, Université Paris-Est.

Tabassum, M. and K. Mathew (2014). A genetic algorithm analysis towards op-
timization solutions. International Journal of Digital Information and Wire-
less Communications (IJDIWC) 4 (1), 124–142.

Tegnér, M. and S. Roberts (2019). A probabilistic approach to nonparametric
local volatility. arXiv preprint arXiv:1901.06021 .

153

Ting, J.-A., E. Theodorou, and S. Schaal (2007). A kalman filter for robust
outlier detection. In 2007 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 1514–1519. IEEE.

Trolle, A. B. and E. S. Schwartz (2010, November). An empirical analysis of
the swaption cube. Working Paper 16549, National Bureau of Economic
Research.

Tschannen, M., O. Bachem, and M. Lucic (2018). Recent ad-
vances in autoencoder-based representation learning. arXiv preprint
arXiv:1812.05069 .

Turing, A. M. (2009). Computing machinery and intelligence. In Parsing the
turing test, pp. 23–65. Springer.

Vaswani, S., F. Bach, and M. Schmidt (2019). Fast and faster convergence of
sgd for over-parameterized models and an accelerated perceptron. In The
22nd International Conference on Artificial Intelligence and Statistics, pp.
1195–1204. PMLR.

Verma, R. and P. Lakshminiarayanan (2006). A case study on the application
of a genetic algorithm for optimization of engine parameters. Proceedings
of the Institution of Mechanical Engineers, Part D: Journal of Automobile
Engineering 220 (4), 471–479.

Weinan, E., J. Han, and A. Jentzen (2017). Deep learning-based numerical
methods for high-dimensional parabolic partial differential equations and
backward stochastic differential equations. Communications in Mathematics
and Statistics 5 (4), 349–380.

Xing, F., E. Cambria, and R. Welsch (2019). Intelligent Asset Management.
Springer.

Young, S. R., D. C. Rose, T. P. Karnowski, S.-H. Lim, and R. M. Patton
(2015). Optimizing deep learning hyper-parameters through an evolutionary
algorithm. In Proceedings of the Workshop on Machine Learning in High-
Performance Computing Environments, pp. 4. ACM.

Titre: Quelques contributions de l’apprentissage statistique à la finance : Volatilité, now-
casting, compression de CVA.

Mots clés: finance quantitative, analyse XVA, apprentissage statistique

Résumé: La complexité des enjeux régula-
toires a motivé l’usage intensif de l’apprentissage
statistique en finance de marché. Cette thèse
vise à démontrer les ponts possibles entre la fi-
nance quantitative et des outils récents en ma-
chine learning. On s’attache dans un premier
temps à rendre compatible ces nouveaux outils
que sont les réseaux de neurones avec des con-
traintes inhérentes à la valorisation de produits
dérivés. Le respect de ces contraintes rend pos-
sible l’obtention de la volatilité locale dont nous

évoluons la validité par le biais de backtests.
Puis une variation des auto-encodeurs est intro-
duite pour détecter des outliers et corriger des
observations incomplètes si nécessaire. La nou-
veauté de cette approche réside dans sa capacité
à traiter des données dont l’indexation varie au
cours du temps. Enfin on optimise grâce à un
algorithme génétique une mesure de risque de
contrepartie, à savoir la CVA. On détaille au
passage les défis opérationnels liés à la mise en
oeuvre des routines de compression de métriques
XVA.

Title: Some contributions of machine learning to finance : volatility, nowcasting, CVA
compression.

Keywords: quantitative finance, XVA analysis, machine learning

Abstract: The complexity of regulatory is-
sues has motivated the intensive use of machine
learning in investment banking. This thesis dis-
sertation aims at demonstrating the possible in-
teractions between quantitative finance and re-
cent machine learning tools. Firstly, we en-
deavor to reconcile some new tools, which are
neural networks, with the constraints inherent
in the valuation of derivative products. Respect-
ing these constraints makes it possible to obtain

local volatility which is validated through back-
tests. Then a variation of the autoencoders is
introduced to detect outliers and correct incom-
plete observations if necessary. The novelty of
this approach lies in its ability to deal with data
whose indexation varies over time. Finally, we
optimize a counterparty risk measure, namely
the CVA, using a genetic algorithm. We detail
the operational challenges related to the imple-
mentation of the XVA metric compression rou-
tines.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery

Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

155

	Introduction
	Apprentissage statistique en finance
	La quête d'approximations
	Résolution de problèmes encore ouverts
	L'émergence des réseaux de neurones
	Réseaux de neurones non-arbitrables
	Inquiétudes des régulateurs pour ces nouvelles techniques
	Contraintes dures versus contraintes souples
	Autres approximations nonarbitrables
	Traiter des données brutes
	Défauts des données intra-journalières
	Détection de valeurs aberrantes
	Compléter des données à indexation variable
	Compression des XVAs
	Le tournant de 2008
	Valoriser le risque de défaut
	Valoriser le financement du collatéral
	Valoriser des provisions en capital
	Introduction
	Machine learning in finance
	The need for surrogate models
	Solving opened problems
	The neural network upheaval
	Arbitrage-Free neural networks
	Criticisms of neural network from a regulatory perspective
	Hard constraints versus soft constraints
	Other non-arbitrable surrogate models
	Dealing with empirical data
	Intraday data shortcomings
	Outlier detection
	Completing observations with variable indexation
	XVAs compression
	The 2008 turmoils
	Pricing default risk
	Pricing collateral funding costs
	Pricing capital funding costs
	Arbitrage-Free neural network
	Introduction
	Problem Statement
	Shape Preserving Neural Networks
	Hard Constraints Approach
	Soft Constraints Approach
	Learning problems

	DAX Numerical Experiments
	Experimental Design
	Numerical Results Without Dupire Penalization
	Numerical Results With Dupire Penalization
	Robustness
	Numerical Stability Through Recalibration
	Monte Carlo Backtesting Repricing Error

	Gaussian process regression for learning arbitrage-free price surfaces
	Imposing the no-arbitrage conditions
	Hyper-parameter learning
	The most probable response surface and measurement noises
	Sampling finite dimensional Gaussian processes under shape constraints
	Local volatility

	Arbitrage-free SVI
	SVI parameterizations
	No-arbitrage conditions on SVI parameters
	Slice parameter interpolation

	SPX Numerical Experiments
	Experimental design
	Calibration results
	In-sample and out-of-sample calibration errors
	Backtesting results

	Conclusion

	Nowcasting network
	Introduction
	Problems
	Compression
	Completion
	Outlier Detection

	Models
	The Convolutional (Autoencoder) Approach
	The Linear Projection Approach
	The Functional Approach
	Synthesis

	Experimental Methodology and Setting
	Performance Metrics
	Introduction to the Case Studies
	Discussion of the Arbitrage Issue

	Repo Curves
	Functional Network Architecture
	Numerical Results

	Equity Derivative Implied Volatility Surfaces
	Compression
	Outlier Detection and Correction
	Completion

	At-the-Money Swaption Surfaces
	Network Architectures
	Numerical Results

	Conclusions and Perspectives

	XVA compression
	Introduction
	Outline and Contributions

	CVA Compression Modeling
	Credit Valuation Adjustment
	Fitness Criterion
	Genetic Optimization Algorithm

	Acceleration Techniques
	MtM Store-and-Reuse Approach for Trade Incremental XVA Computations
	Parallelization of the Genetic Algorithm

	Case Study
	New Deal Parameterization
	Design of the Genetic Algorithm
	Results in the Case of Payer Portfolio Without Penalization
	Results in the Case of Payer Portfolio With Penalization
	Results in the Case of a Hybrid Portfolio With Penalization

	Conclusion

