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Résumé. La présente thèse expose une approche s'appuyant sur les 2-catégories pour l'étude des représentations modulaires des groupes finis et de la fusion dans les groupes finis. Le socle de cette approche est l'ubiquité des 2-faisceaux dans la théorie des représentations des groupes finis et leur bonne compatibilité avec diverses constructions catégoriques et bicatégoriques, telles que les produits et les adjonctions. Notamment, une généralisation du théorème de Bénabou-Roubaud permet d'établir une correspondance entre 2-foncteurs de Mackey cohomologiques et 2-faisceaux. Cette correspondance conduit à une formule analogue à celle des éléments stables de Cartan et Eilenberg pour de nombreuses catégories pertinentes pour la théorie des représentations des groupes finis, comme la catégorie stable des modules ou la catégorie dérivée de la catégorie des modules.

Abstract. This thesis exposes an approach based on 2-categories to the study of modular representations of finite groups and fusion in finite groups. The fundamental basis of this approach is the ubiquity of 2-sheaves in the theory of groups representations and their wellbehaved compatibility with various categorical and bicategorical constructions, such as products and adjunctions. Most importantly, a generalization of the Bénabou-Roubaud theorem allows us to establish a correspondence between 2-sheaves and cohomological Mackey 2-functors. This correspondence leads to an analogous Cartan-Eilenberg stable elements formula for categories relevant to the representation of finite groups, such as the stable modules category and the derived category of the modules category.

Introduction

Finite groups, despite being simultaneously one of the most basic and scrutinized algebraic structure, remain an important source of yet unsolved mathematical problems. A well-established method to study a mathematical object is to decompose it into simpler, more manageable parts. Finite groups are no exception, with well-known structures such as the composition series. Another strategy is to work one prime number p at a time. There is already a well-defined topological way to isolate the p-local information of a finite group G: the p-completion BG ∧ p of the standard topological model of G, the classifying space BG. Our goal is to explore a well-behaved algebraic notion of the p-local part of a group or, dually, of a p-local invariant of a group. In particular, the mod p cohomology of a group should be a p-local invariant. We follow two well-known main tracks:

• The p-fusion of a finite group: a finite group G acts by conjugation on the subgroups of a p-Sylow subgroup. Aggregating these actions together allows one to define a category F S (G), the fusion system associated to G. The mod p cohomology of G only depends on the fusion system F S (G); and there is a partial converse result [START_REF] Mislin | On Group Homomorphisms Inducing Mod-p Cohomology Isomorphisms[END_REF]. Still, it is difficult to define a relevant notion of morphism of fusion systems and, by consequence, to compare fusion systems of two too different groups. A general perspective on fusion systems is given by [START_REF] Aschbacher | Fusion Systems in Algebra and Topology[END_REF]. • The p-modular representation theory of a finite group: given a field k of characteristic p > 0, a p-modular representation of finite group G is a module for the group algebra kG. These representations form an abelian category Mod(kG), with an associated derived category D(kG) and stable category stMod(kG). In particular, the cohomology H * (G; k), with its structure of k-algebra, is given by a graded endomorphism set of D(kG); similarly the Tate cohomology Ĥ * (G; k) shows up as a graded endomorphism set of stMod(kG). Moreover the categories Mod(kG), D(kG) and stMod(kG) are functorial in G: each of them defines a contravariant functor gp op → Cat from finite groups to categories. The exact relation between the fusion system and the modular representation categories of a finite group is not straightforward. In this thesis, we aim at clarifying it. We chose the Cartan-Eilenberg stable elements formula as a starting point. This formula expresses the mod p cohomology of a finite group G in terms of the mod p cohomology of the p-subgroups of G and its fusion system F S (G):

H * (G; F p ) ∼ = lim P ∈F S (G) op H * (P ; F p ) An analogous formula exists for any (global) cohomological Mackey functor [START_REF] Park | Mislin's Theorem for Fusion Systems through Mackey Functors[END_REF], a wellbehaved generalization of the mod p cohomology functor of finite groups. Each of the three functors that the various categories of modular representations define is actually part of a richer structure of cohomological Mackey 2-functor. The latter is a categorification of cohomological Mackey functors, consisting of a 2-functor

M : gpd op → Add v INTRODUCTION
between the opposite of the 2-category gpd of finite groupoids and the 2-category Add of additive categories, which preserves products, satisfies the (ambidextrous) Beck-Chevalley property (definition 3.1.2) and a cohomological identity (definition 4.1.8). This naturally leads us to look for a categorified version of the Cartan-Eilenberg formula for cohomological Mackey 2-functors.

We prove in this work a categorified Cartan-Eilenberg formula (theorem 4.2.12) for any pmonadic Mackey 2-functor M : gpd op → Add. In particular, a cohomological Mackey 2-functor taking values in Z (p) -linear and idempotent complete categories is p-monadic. Our formula states that, for any group G, there is an equivalence of categories:

M(G) bilim P ∈ TS (G)
op M(P ).

Compared to the classical formula, the isomorphism has been replaced by an equivalence and the limit by a pseudo bilimit, as we are now working in a bicategorical setting. Moreover the 2-category indexing the bilimit is now a newly introduced 2-category, the extended transporter category TS (G) (which is biequivalent to the classical orbit 1-category O S (G)), and not the fusion system F S (G) anymore. While a direct proof of this formula is possible (as is done in [START_REF] Maillard | A Categorification of the Cartan-Eilenberg Formula[END_REF]), we rather have chosen to make explicit the correspondence between p-monadic Mackey 2-functors and 2-sheaves on gpd for an adequate topology, the p-local topology. Then, by a 2-finality argument, we transform the descent condition of 2-sheaves into the categorified Cartan-Eilenberg formula.

The main original contributions of this thesis are the following.

• We prove a generalization of the Bénabou-Roubaud theorem (theorem 3.2.1) and an extension property for 2-sheaves of the Beck-Chevalley property (proposition 3.3.1). Combining these two results lets us deduce a correspondence between p-monadic Mackey 2-functors and 2-sheaves for the p-local topology (theorem 4.1.18). • By the aforementioned correspondence, we obtain a biequivalence between p-monadic Mackey 2-functors on finite groupoids and Mackey 2-functors on finite p-groupoids (theorem 4.1.22). • We prove a criterion characterizing 2-final 2-functors (theorem 1.3.13) and use it to compare descent bilimits with bilimits indexed by the extended transporter category TS (G) (proposition 4.2.10). This allows us to express the categorified Cartan-Eilenberg formula (theorem 4.2.12). The thesis is structured as follows. In chapter 1, we recall usual bicategorical notions; we also introduce our notations for bipullbacks as they play a major role in the general theory of 2sheaves. We give an original proof of a topological criterion characterizing 2-final 2-functors (this result appears in [START_REF] Maillard | On 2-Final 2-Functors[END_REF] as a standalone article). In chapter 2, we give a detailed introduction to the general theory of 2-sites and 2-sheaves; our framework mostly reflects the classical ones of sheaves or stacks. In chapter 3, we introduce the Beck-Chevalley property and prove two related fundamental results: the Bénabou-Roubaud theorem and the extension property for 2-sheaves of the Beck-Chevalley property. In chapter 4, we apply these results to the study of p-monadic Mackey 2-functors. We obtain our categorified Cartan-Eilenberg formula and show how it can be decategorified to recover the classical Cartan-Eilenberg formulas.

CHAPTER 1

2-Categories

The goal of this chapter is to summarize the basic bicategorical notions we will need throughout this thesis; a detailed presentation of bicategories can be found in [START_REF] Johnson | 2 Dimensional Categories[END_REF]. Most of the constructions and results covered in this chapter are straightforward generalization of their 1categorical counterparts, which can be found in classical references such as [START_REF] Lane | Categories for the Working Mathematician[END_REF].

We have chosen to work exclusively with strict 2-categories and strict 2-functors. This is a deliberate trade-off: while most of our intermediary results could certainly be generalized to a more relaxed setting, it would definitely increase the verbosity of our proofs, for little gain, as all our applications only involve strict 2-categories and strict 2-functors. Nevertheless, even in such a strict setting, the relevant constructions need some flexibility: we will use pseudo slice 2category (example 1.1.20) and pseudo bilimits (definition 1.2.1). We avoid introducing variations over the same concept; specifically, we will not deal with lax or oplax notions.

We also inspect the concept of finality for a 2-functor and give a useful characterization of it (see theorem 1.3.13). This characterization is an original result of this thesis.

Preliminaries on 2-categories

General definitions. We define 2-categories and give the adequate notion of (higher) morphisms of 2-categories. satisfying the usual axioms of a category

f = f • Id A = Id B •f (2C id ) (f • g) • h = f • (g • h) (2C asso )
via the appropriate identities of composite functors.

In a 2-category C, we call

• Objects: the elements of Ob C,

• 1-Morphisms (or simply morphisms): the objects of the hom-categories C(A, B), and • 2-Morphisms: the morphisms of the hom-categories C(A, B). There is an internal notion of equivalence in a 2-category.

1.1.2. Definition. Let C be a 2-category and f : A → B be a 1-morphism of C. The 1-morphism f is an equivalence if there exists a morphism g : B → A and two invertible 2-morphisms f g ∼ = Id B and gf ∼ = Id A .

Two objects A and B of C are equivalent if there exists an equivalence f : A → B; we write in this case A B.

1.1.3. Definition. A (2, 1)-category C is a 2-category in which all the 2-morphisms are invertible. • for each objects A, B, C of C, a natural isomorphism

F 2 C(B, C) × C(A, B) C(A, C) D(FB, FC) × D(FA, FB) D(FA, FC) • F F • F 2
subject to the relations given by the following commutative diagrams:

Fh • Fg • Ff Fh • F(g • f ) F(h • g) • Ff F(h • g • f ) F 2 h,g •Ff Fh•F 2 g,f F 2 h,g•f F 2 h•g,f Ff • F Id A Ff F Id B •Ff Ff F 2 Id A ,f Ff •F 0 A F 0 B •Ff F 2 f,Id B
1.1.5. Definition. A 2-functor F : C → D is a pseudofunctor where all the natural isomorphisms F 0 and F 2 are identities.

1.1.6. Example. Let C, D be 2-categories and let D be an object of D. The constant 2-functor at D is the 2-functor ∆D :

       C → D C → D f → Id D φ → Id Id D
We will regularly use the above notation to define 2-functors. The three mappings respectively refer to the mapping of objects, of 1-morphisms and of 2-morphisms by the 2-functor.

1.1.7. Remark. Whenever we work with a single 2-functor F : C op → Cat, we will use the following shortened notations:

• For a 1-morphism f : A → B of C, the symbol f * denotes the 1-morphism F(f ) : F(B) → F(A).
• For a 2-morphism φ : f → g of C, the symbol φ * denotes the 2-morphism F(φ) : F(f ) → F(g).

1.1.8. Definition. A pseudonatural transformation φ between pseudofunctors F, G :

C → D is the data of • for each object A of C, a 1-morphism φ A : FA → GA • for each 1-morphism f : A → B in C, a 2-isomorphism φ f FA FB GA GB φ A Ff φ B Gf φ f
making the following squares commute:

φ A φ A (G Id A ) • φ A φ A • (F Id A ) G 0 A φ A φ A F 0 A φ Id A Gf • Gg • φ A Gf • φ B • Fg φ C • Ff • Fg G(f • g) • φ A φ C • F(f • g) (Gf )φg G 2 f,g φ A φ f (Fg) φ C F 2 f,g φ f •g 1.1.9. Definition. A modification m between two pseudonatural transformations φ, ψ : F → G : C → D is the data, for each object A in C, of a 2-morphism m A : φ A → ψ A subject to the relations Gf • φ A Gf • ψ A φ B • Ff ψ B • Ff (Gf )m A φ f ψ f m B (Ff )
1.1.10. Example. We now have several examples of 2-categories:

• the 2-category 1 with exactly one object and the identities as 1-morphisms and 2morphisms. • more generally, if C is a 1-category, it can be viewed as a 2-category with only identities as 2-morphisms. • the 2-category Cat of small categories, with functors as 1-morphisms and natural transformations as 2-morphisms. • the (2, 1)-category gpd of finite groupoids, with functors as 1-morphisms and natural transformations as 2-morphisms. It is a full, 2-full sub-2-category of Cat. • the (2, 1)-category gpd f of finite groupoids, with faithful functors as 1-morphisms and natural transformations as 2-morphisms. We should cite the following results, which mostly allows us to only consider 2-functors.

•
1.1.13. Proposition. Let C be a small 2-category. Note 2Func(C, Cat) the 2-category of 2functors (with pseudonatural transformations and modifications), and recall that [C, Cat] is the 2-category of pseudofunctors (with pseudonatural transformations and modifications). Then the inclusion 2-functor

2Func(C, Cat) → [C, Cat] is a biequivalence. Proof. This is precisely [Pow89, §4.2]
We have already seen that 1-categories are examples of 2-categories. Conversely, a 2-category canonically define two associated 1-categories.

1.1.14. Definition. Let C be a 2-category. The truncated 1-category τ 1 C of C is the 1-category with:

• Objects: the objects X of C • Morphisms: the equivalence class of 1-morphisms of C up to isomorphism. • Composition is induced by the composition of 1-morphisms in C.
Moreover there is a canonical projection 2-functor

π : C → τ 1 (C)
1.1.15. Definition. Let C be a 2-category. The underlying 1-category C (1) of C is the 1category with:

• Objects: the objects X of C • Morphisms: the 1-morphisms of C. • Composition is the composition of 1-morphisms in C.
Moreover there is a canonical injection 2-functor

ι : C (1) → C 1.1.16. Definition. Let C be a 2-category and f : X → Y a 1-morphism of C.
• f is faithful if for any object W , the induced functor

f * : C(W, X) → C(W, Y ) is faithful. • f is full if for any object W , the induced functor f * : C(W, X) → C(W, Y ) is full.
1.1.17. Remark. In the 2-category Cat of small 1-categories, a 1-morphism is faithful (in the 2-categorical sense) if and only if it is a faithful functor (in the usual sense). The same is true for fullness.

Common constructions. We present the constructions of the opposite 2-category and the arrow 2-category.

The opposite 2-category is obtained by reversing the orientation of all 1-morphisms (but keeping the orientation of the 2-morphisms). Similarly to the 1-categorical construction, this is generally useful to define dual notions, to obtain dual results and to define contravariant 2-functors.

1.1.18. Definition. Let C be a 2-category. The opposite 2-category C op of C is the 2-category with:

• Objects: the objects C of C. • 1-Morphisms C 1 → C 2 : the 1-morphisms f : C 2 → C 1 of C. • 2-Morphisms f 1 → f 2 : the 2-morphisms φ : f 1 → f 2 .
The arrow 2-category is a (higher) pullback for 2-categories; we are mainly interested in specific instances of this construction: the slice 2-categories. • Objects: the triples (A, B, f ) consisting of an object A of A, an object B of B and a

1-morphism f : Ra → Sb of C. • 1-Morphisms (A 1 , B 1 , f 1 ) → (A 2 , B 2 , f 2 ): the triples (r, s, φ) consisting of a 1-morphism r : A 1 → A 2 of A, a 1-morphism s : B 1 → B 2 of B and an invertible 2-morphism φ: RA 1 SB 1 RA 2 SB 2 Rr f1 Ss f2 φ ∼
• 2-Morphisms (r 1 , s 1 , φ 1 ) → (r 2 , s 2 , φ 2 ): the pairs (ρ, σ) consisting of a 2-morphism ρ : r 1 → r 2 and a 2-morphism σ : s 1 → s 2 such that:

RA 1 SB 1 RA 2 SB 2 Rr1 f1 Ss1 Ss2 Sσ f2 φ1 ∼ = RA 1 SB 1 RA 2 SB 2 f1 Rr1 Rr2 Rρ Ss2 f2 φ2 ∼
1.1.20. Example. We are specifically interested in a few instances of the arrow construction: Adjunctions and monads. We recall the definitions of adjunctions and monads, and some of their basic properties in Cat. We will not give any proof, further details can be found in [START_REF] Johnson | 2 Dimensional Categories[END_REF]§6] for the general case, and in [START_REF] Lane | Categories for the Working Mathematician[END_REF]§IV and §VI] for the case of Cat. Moreover it is an Eilenberg-Moore object on T.

• Let C be a 2-
String diagrams. String diagrams are used to depict 2-morphisms in a 2-category. They are the dual diagrams of the "usual" pasting diagrams. We recall the general ideas of string diagrams, and introduce our notations. A fully detailed description of string diagrams can be found in [JY21, §3.7].

1.1.36. Notation. We will use the following notations for string diagrams:

• An object A is represented by a labeled surface

A • A 1-morphism f : A → B is represented by a labeled vertical edge f A B
with the source on the left and the target on the right.

• A 2-morphism φ : f ⇒ g : A → B is represented by a labeled vertex f φ g A B
with the source above and the target below. The identity 1-morphisms may be omitted. • We will occasionally represent identity 2-morphisms by a white dot, that is, the string diagram

f g A B
is the identity between the 1-morphisms f and g. • When dealing with an adjunction r (definition 1.1.21), units and counits will be represented by black dots. For instance, the string diagram r is the unit of the adjunction r.

1.1.37. Remark. The notation for the unit and the counit of an adjunction r gives a simple interpretation of the unit-counit laws (eq. 

C(-, L) → [I, C](∆-, D)
In particular, for a bilimit (L, Ψ), the pseudonatural transformation induced by the standard cone Ψ L (Id L ) is isomorphic to Ψ. We will generally describe a bilimit as a pair (L, ψ) with L an object of C and ψ : ∆L → D a cone over D with vertex L, which corresponds to the standard cone. Biproducts. A biproduct is the counterpart of a product for bilimits. The terminology is slightly unfortunate, as the term biproduct is already used in the literature to denote an object of a category which is both a product and a coproduct. In this work, it will always denote the bilimit we present in this subsection.

1.2.6. Definition. Let n be a positive integer. The 2-category n is the 2-category with n objects 1, . . . , n and only identities as 1-morphisms and 2-morphisms.

1.2.7. Definition. Let C be a 2-category and A 1 , . . . , A n be n objects of C. The objects

(A i ) define a diagram: n → C k → A k Its bilimit, if it exists, is called the biproduct of A 1 , . . . , A n and is noted A 1 × . . . × A n .
1.2.8. Remark. We have chosen to use the usual notation of products for biproduct. This is only slightly ambiguous, as a product of A 1 , . . . , A n is also a biproduct of A 1 , . . . , A n . However, the converse is not true: a biproduct of A 1 , . . . , A n may exist even if there is no product of A 1 , . . . , A n .

We will set up some general conventions when using biproducts.

1.2.9. Notation. The structural 1-morphisms are underlined and the structural 2-morphisms are overlined. By definition, the biproduct A 1 ×. . .×A n is endowed with n projection morphisms:

i : A 1 × . . . × A n → A i 1 ≤ i ≤ n
For an ordered subset {i 1 < . . . < i k } ⊂ {1, . . . , n}, there is a canonical 1-morphism induced by the projections i 1 , . . . i k ,

i 1 . . . i k : A 1 × . . . × A n → A i1 × . . . × A i k with, for each 1 ≤ j ≤ k, a structural 2-isomorphism: (i 1 . . . i k ) j : j • i 1 . . . i k ⇒ i j
In the case n = 3, we can unfold these notations. There are three 1-morphisms:

12 : A 1 × A 2 × A 3 → A 1 × A 2 13 : A 1 × A 2 × A 3 → A 1 × A 3 23 : A 1 × A 2 × A 3 → A 2 × A 3
The structural 2-isomorphisms can be combined to form:

1 = (13 1 ) -1 • 12 1 : 1 • 12 ⇒ 1 • 13 2 = (23 1 ) -1 • 12 2 : 2 • 12 ⇒ 1 • 23 3 = (23 2 ) -1 • 13 2 : 2 • 13 ⇒ 2 • 23
Bipullback. A bipullback is a straightforward analog of pullback for bilimits. They are usually only defined for a pair of 1-morphisms. Since they are associative (up-to equivalence), the bipullback of n 1-morphisms can be essentially defined by iterating the pullback of two 1-morphisms. We prefer giving a direct, unbiased definition of the pullback n 1-morphisms.

1.2.10. Definition. Let n be a positive integer. The (1-)category Confl n is the category freely generated on the graph:

1 0 n 1 . . . n 1.2.11. Definition.
Let C be a 2-category, and f 1 : X 1 → X 0 , . . . , f n : X n → X 0 be n morphisms with the same target. The bipullback of f 1 , . . . , f n is the bilimit

(f 1 | . . . |f n ) := bilim Confln F f1,...,fn
where Confl n is seen as a locally discrete 2-category and F f1,...,fn :

   Confl n → C i → X i for 0 ≤ i ≤ n i → f i for 1 ≤ i ≤ n
1.2.12. Remark. Let C be a 2-category. A collection of morphisms (f i :

X i → X) i of C
is precisely a collection of objects (X i , f i ) i of the slice 2-category C/X, and the bipullback

(f 1 | . . . |f n ) in C corresponds to the biproduct (X 1 , f 1 ) × . . . × (X n , f n ) in the slice.
1.2.13. Notation. We will take the following naming conventions for the components of the standard cone

C of (f 1 | . . . |f n ): (f 1 | . . . |f n ) = C 0 : (f 1 | . . . |f n ) → X 0 (f 1 | . . . |f i | . . . |f n ) = C i : (f 1 | . . . |f n ) → X i (f 1 | . . . |f i | . . . |f n ) = C i : f i • (f 1 | . . . |f i | . . . |f n ) → (f 1 | . . . |f n )
We are mostly interested in the case where n is 2 or 3, since those are the one used to define descent for a 2-functor (definition 2.2.3). When n = 2, the standard cone can be represented as a square (with a diagonal):

X 1 (f 1 |f 2 ) X 0 X 2 (f1|f2) f1 (f1|f2) (f1|f2) (f1|f2) (f1|f2) f2
Following remark 1.2.12, we will also use short notations of biproducts for the 1-morphisms 1 = (f 1 |f 2 ) and 2 = (f 1 |f 2 ). When n = 3, we will use short notations of biproducts, which can be organized into a cube:

(1.2.14)

X 1 X 0 (f 1 |f 2 ) X 2 (f 1 |f 3 ) X 3 (f 1 |f 2 |f 3 ) (f 2 |f 3 ) f1 1 1 2 f2 2 f3 12 13 23 1 2
The faces adjacent to the bottom-left corner of the cube are:

1 : 1 • 12 → 1 • 13 2 : 2 • 12 → 1 • 23 3 : 2 • 13 → 2 • 23
The faces adjacent to the top-right corner are the bipullbacks (f 1 |f 2 ), (f 1 |f 3 ) and (f 2 |f 3 ).

1.2.15. Remark. The 2-morphisms 1, 2 and 3 are bipullback squares.

Properties of bipullbacks. We give an overview of properties of bipullback we will use throughout this thesis. These results are either direct application of the definition of bipullback or classical manipulations.

A bipullback of a 1-morphism with itself has an associated diagonal 1-morphism.

1.2.16. Lemma. Let C be a 2-category and f : X → Y a morphism of C. There is a unique (up to a unique 2-isomorphism) 1-morphism ∆ :

X → (f |f ) with, for each k = 1, 2, a structural 2-isomorphism ∆ k : k • ∆ → Id X such that: f f ∆ -1 1 (f |f ) ∆ 2 ∆ = f f
Similarly, a triple bipullback of a single 1-morphism has an associated diagonal 1-morphism.

1.2.17. Lemma. Let C be a 2-category and f : X → Y a morphism of C. There is a unique (up to a unique 2-isomorphism) 1-morphism ∆ 3 : X → (f |f |f ) with three 2-isomorphisms ∆ 12 : 12 • ∆ 3 → ∆, ∆ 13 : 13 • ∆ 3 → ∆ and ∆ 23 : 23 • ∆ 3 → ∆, satisfying the equations:

(1.2.18)

1 ∆ 1 ∆ ∆ -1 12 1 ∆ 13 ∆ 3 = 1 ∆ 1 ∆ (1.2.19) 2 ∆ 1 ∆ ∆ -1 12 2 ∆ 23 ∆ 3 = 2 ∆ 1 ∆ ∆ 2 ∆ -1 (1.2.20) 2 ∆ 2 ∆ ∆ -1 13 3 ∆ 23 ∆ 3 = 2 ∆ 2 ∆
Applying the universal property of bipullbacks give simple results relating bipullbacks and composition of 1-morphisms.

1.2.21. Lemma. Let C be a 2-category and f : x → y, g : x → y and h : y → z be morphisms of C. There is a unique (up to a unique isomorphism) 1-morphism

∇ h : (f |g) → (hf |hg)
fitting in the equation:

x (f |g) y z x f (f |g) (f |g) (f |g) h g = x (f |g) (hf |hg) z x hf (f |g) ∇ h (f |g) (f |g) (hf |hg) (hf |hg) ∼ = ∼ = hg 1.2.22. Lemma.
Let C be a 2-category and f 1 : y 1 → z, f 2 : y 2 → z, g 1 : x 1 → y 1 and g 2 : x 2 → y 2 be morphisms of C. There is a unique (up to a unique isomorphism) 1-morphism

Ξ : (f 1 g 1 |f 2 g 2 ) → (f 1 |g 1 )
fitting in the equation:

x 1 y 1 (f 1 g 1 |f 2 g 2 ) (f 1 |f 2 ) z x 2 y 2 g1 ∼ = f1 (f1|f2) 1 Ξ 2 1 2 g2 ∼ = f2 = x 1 (f 1 g 1 |f 2 g 2 ) z x 2 f1g1 (f1g1|f2g2) 1 2 f2g2
1.2.23. Lemma. Let C be a 2-category and f 1 : y 1 → z, f 2 : y 2 → z, f 3 : y 3 → z, g 1 : x 1 → y 1 and g 2 : x 2 → y 2 , g 3 : x 3 → y 3 be morphisms of C. There is a unique (up to a unique isomorphism)

1-morphism Ξ : (f 1 g 1 |f 2 g 2 |f 3 g 3 ) → (f 1 |f 2 |f 3 )
with three isomorphisms Ξ k : kΞ → g k k (for k = 1, 2, 3) such that for any k < k ,

x k y k (f 1 g 1 |f 2 g 2 |f 3 g 3 ) (f 1 |f 2 |f 3 ) z x k y k g k ∼ = f k kk k Ξ k k k g k ∼ = f k = x k (f 1 g 1 |f 2 g 2 |f 3 g 3 ) z x k f k g k kk k k f k g k
Similarly to (regular) pullbacks, a pasting of bipullbacks is a bipullback, and there is a partial converse result:

1.2.24. Lemma. Let C a 2-category. Consider the diagram in C: X Y Z X Y Z f ∼ = g ∼ = h h
Assume that the rightmost inner square is a bipullback (of g and h). Then the leftmost inner square is a bipullback (of f and h ) if and only the outer rectangle is a bipullback (of gf and h).

An easy corollary is the following result, allowing to deal with bipullbacks of bipullbacks.

1.2.25. Lemma. Let C be 2-category. Let f : y → x, g 1 : x 1 → x and g 2 : x 2 → y. We consider the bipullback, for l = 1, 2:

x l x y l y g l f l h l f
There is a unique (up to a unique isomorphism) 1-morphism

(f 1 |f 2 ) : (h 1 |h 2 ) → (g 1 |g 2 )
fitting in the cube

x 1 x (g 1 |g 2 ) x 2 y 1 y (h 1 |h 2 ) y 2 g1 g2 h1 f (f1|f2) h2
Moreover all the faces of this cube are bipullbacks.

As a universal construction, bipullbacks are obviously pseudofunctorial.

1.2.26. Lemma. Let C be a 2-category and f : y → z, g : x → z and g : x → z be 1-morphisms of C. Recall they define objects g = (x, g) and g = (x , g ) of the slice 2-category C/z. Similarly their bipullbacks define objects

(f |g) = ((f |g), (f |g)) and (f |g ) = ((f |g ), (f |g )) of the slice 2-category C/y.
There is a canonical functor:

(f |-) : (C/z)(g, g ) → (C/y)((f |g), (f |g ))
1.2.27. Proposition. Let C be 2-category and f : y → z be a 1-morphism of C. Then the 1-morphism f defines a pseudofunctor

(f |-) : C/z → C/y
1.2.28. Remark. Strictly speaking, the 2-functor (f |-) is only defined up to equivalence on objects, hence we actually need a choice of a 2-pullback (f |g) for each 1-morphism g : x → z.

Bipullbacks also preserves faithfulness and fullness of 1-morphisms.

1.2.29. Lemma. Let C be a 2-category and f : x → z, g : y → z be 1-morphisms of C. Consider the bipullback:

x z

(f |g) y f ∼ = g f g Then: • if f is faithful, f is also faithful • if f is full, f is also full 1.3. 2-Final 2-functors
A 2-final 2-functor F : A → B is a functor that allows the restriction of 2-diagrams of shape B to A without changing their bicolimits. We present in this section a criterion characterizing 2-final 2-functors with homotopy invariants. This criterion can be seen as a 2-categorification of the one for final

1-functors [Mac71, §IX.3]. A related characterization for 2-filtered 2-functors is proved in [Des15, §1.3].
Combinatorial paths and homotopies in a 2-category. A 2-category C has an associated CW-complex |C|, defined using the Duskin nerve [JY21, §5.4], which maps objects of C to vertices, 1-morphisms to 1-simplices and 2-morphisms to 2-simplices. There are thus notions of paths and homotopies of paths in C. We give in this section a combinatorial approach to these.

We fix a 2-category C.

1.3.1. Definition. A path (of 1-morphism) in C is a finite sequence of objects (a i ) 0≤i≤n and a family of pairs (ε i , f i ) 1≤i≤n consisting of a sign ε ∈ {-1, 1} and a morphism

f i : a i-1 → a i if ε i = 1 a i → a i-1 if ε i = -1
Such a path is said to have source a 0 and target a n .

1.3.2. Notation. We write p : a 0 a n to denote a path with source a 0 and target a n .

A path can be pictured as a zig-zag of morphisms (potentially with consecutive morphisms in the same direction): There is an obvious notion of concatenation of paths with compatible target and source, given by the concatenation of the sequence of morphisms.

a 0 f1 -→ a 1 f2 ← -a 2 f3 ← -. . .
1.3.3. Definition. We say two paths p, p of C are elementary homotopic, written p ∼ elem p , in any of the following cases:

1. 2-CATEGORIES (1) a Id -→ a ∼ elem a, for any object a (2) a Id ← -a ∼ elem a, for any object a (3) a 0 f1 -→ a 1 f2 -→ a 2 ∼ elem a 0 f2f1 ---→ a 2 , for any composable pair f 1 , f 2 of morphisms (4) a 0 f1 ← -a 1 f2 ← -a 2 ∼ elem a 0 f1f2 ← ---a 2 , for any composable pair f 1 , f 2 of morphisms (5) a 0 u ← -a 1 v -→ a 2 ∼ elem a 0 u -→ a 1 v ← -a 2 , for any 2-morphism a 1 a 0 a 2 a 1 u v u v
We then define a homotopy relation ∼ on paths as the smallest congruent (for the concatenation of paths), reflexive, symmetric and transitive relation encompassing the relation ∼ elem .

1.3.4. Remark. We should pause to consider two consequences of (5):

• a 2-morphism a 0 a 1 f0 f1
can be arranged into the following square:

a 1 a 0 a 1 a 0 f0 Id Id f1
This shows, together with (1) and (2), that a 0 f0 -→ a 1 ∼ a 0 f1 -→ a 1 , as one would expect.

• a 1-morphism a 0 f -→ a 1 can be used to form the square:

a 1 a 1 a 1 a 0 Id Id f f
Once again using (1) and (2), this proves that (a

1 f ← -a 0 f -→ a 1 ) ∼ a 1 . A similar argument (putting f on the upper side of the square) shows that (a 0 f -→ a 1 f ← -a 0 ) ∼ a 0 .
Hence, up to homotopy, the paths a 0 f -→ a 1 and a 1 f ← -a 0 are mutual inverses.

Note that for two paths to be homotopic, they must have the same source and the same target.

It is natural to look for a category of paths up to homotopy:

1.3.5. Definition. The (algebraic) fundamental groupoid Π 1 (C) of C is the 1-category with:

• Objects: the objects of C.

• Morphisms: the classes of paths between objects modulo the homotopy relation.

• Composition is induced by the concatenation of paths.

1.3.6. Definition. The 2-category C is said to be connected if for any pair of objects a, a there is a path with source a and target a . The 2-category C is said to be simply connected if p ∼ p for any pair of paths p, p with same source and same target.

1.3.7. Remark. A 2-category C is nonempty, connected and simply connected if and only if its fundamental groupoid Π 1 (C) is equivalent to 1, the category with exactly one object and one morphism.

1.3.8. Remark. Given a 2-category C which is nonempty, connected and simply connected, its nerve |C| is not necessarily weakly contractible. Indeed higher homotopy groups may be nontrivial. For instance, one can realize the sphere S 2 as the nerve of the 2-category with two objects, two parallel 1-morphisms between these objects, and two parallel 2-morphisms between these 1-morphisms.

1.3.9. Remark. For any algebraic path p in C, there is an associated topological path |p| : I → |C|. The following assertions, which should result from simplicial approximation, motivate the definitions of this section:

The 2-category C is connected (resp. simply connected) if and only if the CW-complex |C| is connected (resp. simply connected).

Two algebraic paths p, p in C are homotopic if and only if the topological paths |p|, |p | are homotopic.

The categories Π 1 (C) and Π 1 (|C|) are equivalent.

A criterion for 2-final 2-functors. 1.3.11. Remark. In the above definition, E is only assumed to be a 2-category. However, if B is a (2, 1)-category, the pseudo bicolimits can be equivalently computed in E g , the (2, 1)-category with the objects of E, the 1-morphisms of E, and the invertible 2-morphisms of E. Hence we could assume E to be a (2, 1)-category, without changing the meaning of the definition.

1.3.10. Definition. A 2-functor F : A → B between 2-categories is 2-final if for any 2-diagram D : B → E,
1.3.12. Remark. A 1-final 1-functor F : A → B between 1-categories is a functor such that, for any diagram D : B → E, the colimits colim B D and colim A D • F each exists if and only if the other one exists, and the canonical comparison morphism

colim A D • F → colim B D is an isomorphism. A 2-final 1-functor F : A → B between 1-
categories (seen as 2-categories with only the identities as 2-morphisms) is 1-final, since any diagram is also a 2-diagram. The converse is not true, though: there are 1-final functors which are not 2-final.

1.3.13. Theorem. Let A, B be two 2-categories. A 2-functor F : A → B is 2-final (definition 1.3.10) if and only if, for any object b ∈ B, the slice 2-category b/F is nonempty, connected and simply connected (definition 1.3.6).

We will first prove the backward implication. Fix a 2-functor D : B → E. We will construct a pseudoinverse to the canonical comparison morphism bicolim

A D • F → bicolim B D
This morphism correspond to a family of functors, pseudonatural in e:

K : [B, E](D, ∆e) → [A, E](D • F, ∆e).
We will construct a pseudoinverse L to K. Given a cone φ : D • F ⇒ ∆e, we obtain a cone L(φ) : D ⇒ ∆e as follows:

• objects in the slice 2-categories b/F define the 1-morphism components L(φ) b (see def- inition 1.3.14),
• paths in b/F define natural transformations between the components (see definition 1.3.16),

• homotopies between paths ensure the cohesion of these constructions (see proposition 1.3.17).

Consider an arbitrary cone under D • F with vertex e ∈ E, that is, a pseudonatural transformation φ : D • F → ∆(e). We first want to define a cone ψ under D with vertex e, using the cone φ.

As a first step, we fix an object We then consider the dependence of

ψ (a(b),α(b)) on (a(b), α(b)). Fix another object (a (b), α (b)) ∈ b/F. Since b/F is connected there is a path p : (a 0 , α 0 ) = (a(b), α(b)) (a n , α n ) = (a (b), α (b))
which can be pictured as:

F(a 0 ) F(a 1 ) F(a 2 ) F(a n ) b Fu1 Fu2 • • • α0 α1 α2 αn µ1 ∼ µ2 ∼
Applying the 2-functor D and using the cone φ, we obtain the pasting diagram:

(1.3.15)

DF(a 0 ) D(b) DF(a 1 ) e DF(a 2 ) DF(a n ) DF(u1) DF (u2) 
. . .

D(µ1) φu 1 D(µ2) -1 φ -1 u 2
We can thus define:

1.3.16. Definition. Any path p : (a, α) (a , α ) in b/F defines a 2-isomorphism in E j(p) : ψ (a,α) → ψ (a ,α )
as given by the above pasting diagram 1.3.15.

1.3.17. Proposition. For any paths p, p : (a, α) (a , α ) in b/F with same source and target,

j(p) = j(p ).
Proof. We first prove that two elementary homotopic paths p ∼ elem p induce the same 2-isomorphism j(p) = j(p ). The four first cases are immediate consequences of the pseudonaturality of φ. We can thus assume that

p = F(a 0 ) F(a 1 ) F(a 2 ) b Fu Fv µ ν p = F(a 0 ) F(a 1 ) F(a 2 ) b Fu Fv µ ν
and that there is a 2-morphism ζ :

u u ⇒ v v such that F(a 1 ) b F(a 0 ) F(a 0 ) F(a 1 ) µ Fu µ Fζ Fv Fu Fv = F(a 1 ) b F(a 0 ) F(a 1 ) ν ν Fv Fv
We can apply the 2-functor D and express this relation using string diagrams (see the subsection "String diagrams" of section 1.1):

(1. Similarly, the pseudonaturality of φ gives the relation:

(1.3.19) DFu DFu φ a 1 φ a1 φ u φ u = DFu DFu φ a 1 φ a1 DFζ φ v φ v
We can now compute j(p):

j(p) = Dα 0 φ a0 Dα 2 φ a2 Dµ φ u φ -1 v Dν -1 (1.3.19) = Dµ φ -1 u DFζ φ v Dν -1 = φ -1 u Dµ DFζ Dν -1 φ v (1.3.18) = Dα 0 φ a0 Dα 2 φ a2 φ -1 u Dµ -1 Dν φ v = j(p )
We now show that, for two homotopic paths p ∼ p , we have j(p) = j(p ). It suffices to show that the relation R on paths defined by

pRp ⇐⇒ j(p) = j(p )
is reflexive, symmetric, transitive and congruent, since we have already proved that it contains ∼ elem . The three first properties are obviously satisfied. The last one is a direct consequence of the compatibility of j with the concatenation of paths:

j(p • p ) = j(p )j(p).
Since b/F is simply connected by hypothesis and j is homotopy invariant, the 2-isomorphism j(p) only depends on the source and the target of p. Hence for any two objects (a, α) and 

(a , α ) in b/F, there is a unique 2-isomorphism ψ (a,α) ⇒ ψ (a ,α ) in E induced
u * :        b /F → b/F (x, χ) → (x, χ • u) (v, ν) → (v, ν • u) ζ → ζ
Note that this 2-functor also extends to a function between the respective sets of paths. ) and recall that, by definition, ψ u = j(p). We consider the path p of length one:

p = (a(b ), α(b )u) (Id,α(b )δ) ← -------(a(b ), α(b )u ) = a(b ) a(b ) b b b u u δ
The above pasting (1.3.22) is then induced by the concatenation p • p of p and p.

Through similar arguments, we can see that any other choice of the objects (a(b), α(b)) b∈B leads to an isomorphic cone.

From now on, we assume that the objects (a(b), α(b)) b∈B are fixed and we write L(φ) for the cone ψ under D induced from the cone φ under D • F. Since we will not work with a single fixed cone φ anymore, we should write j φ instead of j.

We would like to extend this mapping φ → Lφ to a functor

L : [A, E](D • F, ∆e) → [B, E](D, ∆e).
We use the proposition: 

1.3.
φa φ a ma φ a φ -1 u DFu Dµ -1
The lower parts of these diagrams are the same and the upper parts are equal, by the property of the modification m. Hence eq. (1.3.24) holds for a path p = ((a, α)

(u,µ)
---→ (a , α )). A similar decomposition of the diagrams shows that it also holds for a path p = ((a, α)

(u,µ) ← ---(a , α
)) of length one in the reverse direction.

Since j φ and j φ are compatible with paths concatenation, if eq. (1.3.24) holds for two composable paths p and p , it also holds for their concatenation pp . We can thus conclude that it holds for any path p, as the path p is generated by paths of length 1. This property directly implies that the components

L(m) b = D(b) D(a(b)) e m a(b) define a 2-morphism L(φ) → L(φ ).
The functoriality of L is straightforward. Now consider the canonical functor

K :    [B, E](D, ∆e) → [A, E](D • F, ∆e) ψ • → ψ F(•) m • → m F(•)
sending cones under D with vertex e to cones under D • F with vertex e. We are now ready to show that L and K are mutual pseudo-inverses.

Proposition.

There is a natural isomorphism η : Id ⇒ KL.

Proof. Let φ ∈ [A, E](D • F, ∆e) be a cone under D • F with vertex e. We will write j = j φ . We want to define the component η φ : φ → KLφ of η at φ. Since η φ must be a modification, we have to define its components at each object a 0 ∈ A:

η φ,a0 : φ a0 ⇒ φ a(Fa0) • DαFa 0 .
Both (a 0 , Id Fa0 ) and (a(Fa 0 ), α(Fa 0 )) are objects of Fa 0 /F, which is connected. Hence, there is a path in Fa 0 /F: p : (a 0 , Id Fa0 ) (a(Fa 0 ), α(Fa 0 ))

We can then define η φ,a0 as:

η φ,a0 = j(p).
We have to check that η φ is a modification. That is, for any morphism f : a 0 → a 1 in A, we have to check the commutativity of:

φ a φ a(Fa0) • Dα(Fa 0 ) φ a1 • DFf φ a(Fa1) • Dα(Fa 1 ) • DFf η φ,a 0 φ f L(φ) Ff η φ,a 1 •DFf
We first remark that there is a path p 0 = ((a 0 , Id)

(f,Id)
---→ (a 1 , Ff )) in Fa 0 /F and the induced 2-isomorphism is φ f = j(p 0 ). Moreover, expanding the definitions, we have

η φ,a0 = j(p 1 )
for some p 1 : (a 0 , Id) (a(Fa 0 ), α(Fa 0 ))

η φ,a1 = j(p 2 )
for some p 2 : (a 1 , Id) (a(Fa 1 ), α(Fa 1 ))

L(φ) Ff = j(p 3 ) for some p 3 : (a(Fa 0 ), α(Fa 0 )) F(f ) * (a(Fa 1 ), α(Fa 1 ))
where p 1 and p 3 are paths in Fa 0 /F, and p 2 is a path in Fa 1 /F. We can check that p 1 • p 3 and

p 0 • F(f ) * p 2 are paths (a 0 , Id) F(f ) * (a(Fa 1 ), α(Fa 1 )).
Hence

(η φ,a1 • DFf ) • φ f = j(F(f ) * p 2 ) • j(p 0 ) = j(p 0 • F(f ) * p 2 ) = j(p 1 • p 3 ) = j(p 3 ) • j(p 1 ) = L(φ) Ff • η φ,a0
We also have to check the naturality of η. For any modification m : φ → φ , we want the commutativity of the square:

φ KLφ φ KLφ η φ m KLm η φ
That is, for any object a 0 ∈ A:

φ a0 φ a(Fa0) • Dα(Fa 0 ) φ a0 KLφ a0 j φ (p) ma 0 m Fa 0 j φ (p)
where p : (a 0 , Id) (a(Fa 0 ), α(Fa 0 )) is a path in Fa 0 /F. This last square commutes by proposition 1.3.23.

In the reverse direction we show:

1.3.26. Proposition. There is a natural isomorphism : LK ⇒ Id.

Proof. Fix a cone ψ : D ⇒ ∆e under D. Write ψ = LK(ψ). For any b ∈ B, we have: Finally we have to check the naturality of : LK → Id, that is, for any modification of cones m : ψ → ψ , the commutativity of the square:

ψ b = K(ψ) a(b) • D(α(b)) = ψ F(
LKψ ψ LKψ ψ ψ LKm m ψ Indeed, for any object b ∈ B: ψ ,b • (LKm) b = ψ α(b) • m a(b) α(b) = m b • ψ α(b) .
Putting together proposition 1.3.25 and proposition 1.3.26, we deduce:

1.3.27. Proposition. The canonical functor K : [B, E](D, ∆e) → [A, E](D • F, ∆e)
is an equivalence.

Since this is true for any object e of E, clearly bicolim D exists if and only if bicolim D • F exists and, if it is the case, they are canonically equivalent.

We have thus proved one implication of theorem 1.3.13:

1.3.28. Proposition. Let F : A → B be a 2-functor. If for any object b ∈ B, the slice 2-category b/F is nonempty, connected and simply connected, then the 2-functor F is 2-final.

The reverse implication is proved by observing the following fact:

1.3.29. Proposition. Let F : A → B be a 2-functor. Then Π 1 (b/F) bicolim a∈A B(b, Fa).
Proof. The wanted equivalence can be proved by constructing a family of equivalences, pseudonatural in the category T : For any object (a, α : b → F(a)) of Π 1 (b/F), set:

C T : [A, Cat](B(b, F-), ∆T ) [Π 1 (b/F), T ].
C T (ψ)(a, α) = ψ a (α)
For any morphism (u, µ : uα ⇒ α ) : (a, α) → (a , α ) of b/F, define the composite isomorphism:

C T (ψ)(u, µ) : ψ a (α) ψ a (u • α) ψ a (α ) (ψu)α ψ a (µ)
This can be extended to paths using the relations:

C T (ψ)((a , α ) (u,µ) ← ---(a, α)) = C T (ψ)((a, α) (u,µ) ---→ (a , α )) -1 C T (ψ)((a, α)) = Id ψa(α) C T (ψ)(p • p ) = C T (ψ)(p ) • C T (ψ)(p)
One can check that such a definition is homotopy invariant, and gives a well-defined functor

C T (ψ) : Π 1 (b/F) → T .
For a modification m : ψ → ψ , we define a natural transformation

C T (m) : C T (ψ) ⇒ C T (ψ )
with components:

(1.3.30)

C T (m) (a,α) = (m a ) α
To show that C T is an equivalence, we show that it is a fully faithful and essentially surjective functor.

Indeed it is clear that (1.3.30) defines a bijection between modifications ψ → ψ and natural transformations C T (ψ) ⇒ C T (ψ ). Hence C T is fully faithful.

Moreover, given any functor F : Π 1 (b/F) → T , one can define a pseudonatural transformation ψ : B(b, F-) → ∆T by:

ψ a :    B(b, Fa) → T α → F (a, α) ν → F (Id a , ν) (ψ u ) α : F (a, α) F (u,Id)
-----→ F (a , u • α) for any object a and morphism u : a → a of A. It is straightforward to check:

F = C T (ψ)
Hence C T is also essentially surjective.

We can now prove:

1.3.31. Proposition. Let F : A → B be a 2-final 2-functor. Then, for any object b in B:

Π 1 (b/F) 1
Proof. We have a chain of equivalences:

Π 1 (b/F) 1.3.29 bicolim a∈A B(b, Fa) (1) bicolim b ∈B B(b, b ) (2) 
1

The equivalence (1) is an application of the 2-finality of F. The equivalence (2) is a consequence of the Yoneda lemma for 2-categories. Indeed we have the chain of equivalences, for any 1-category T , and pseudonatural in T :

[B, Cat](B(b, -), ∆T ) ∆T (b) ∼ = T ∼ = Cat(1, T )
By combining proposition 1.3.31 and remark 1.3.7, we have:

1.3.32. Proposition. Let F : A → B be a 2-final 2-functor. Then, for any object b in B, the 2-category b/F is nonempty, connected and simply connected.

There is a dual notion of 2-initial 2-functor, with a dual criterion, proven by a duality argument. 

2-Sheaves

We introduce in this chapter the notion of 2-sheaves. As suggested by their name, 2-sheaves are a categorification of sheaves; they are also a generalization of stacks. A 2-sheaf is a 2-functor between 2-categories X : C op → Cat satisfying some gluing conditions. To make this a precise definition, it is first necessary to have an adequate notion of topology on a 2-category: this is the role of the Grothendieck coverages, defined with 2-sieves. In practice, it is often easier to generate a Grothendieck coverage using covering families of morphisms. In general, the pasting condition for 2-sheaves is defined using the Grothendieck coverage (definition 2.3.1). However, if the base 2-category C has finite bipullbacks, it can be reduced to a descent condition with respect to the covering families (definition 2.3.4). In practice, it is generally easier to check that a 2-functor satisfies the descent conditions for a set of covering families. The equivalence of the two notions (proposition 2.3.9) occupies a large part of this chapter. We prove along the way a useful criterion for checking the descent condition (proposition 2.2.4). Our main reference for 2-sheaves is [Str82]. However we took a slightly different approach to 2-sites, with a distinct terminology (borrowed from 1-sites). We will motivate and highlight those disparities as we introduce our notions.

Our major motivation for introducing and using 2-sheaves is their well-behaved extension properties, similar to those of sheaves and stacks. In section 2.4, we state that a 2-sheaf on a suitable 2-category has an essentially unique extension to a 2-sheaf on a larger 2-category (proposition 2.4.6). In the following chapter, we will see that, in a similar setting, we can also extend the existence of some adjoint functors (proposition 3.3.1).

Section 2.5 is a short aside discussing the relation between coproducts in 2-sites and productpreserving 2-sheaves.

As previously asserted, we would like to avoid considerations of size of our 2-categories. We will thus make the simplifying assumption that all the 2-categories we introduce are small, without stating it again.

2-Sites

A 2-site is a 2-category with a prescribed topology. The appropriate notion of a topology for a 2-category is the data of a Grothendieck coverage, that is, a set of right-ideals of morphisms, called 2-sieves, closed under certain operations. 

(f * |-) : [C op , Cat]/C(-, C) → [C op , Cat]/C(-, D).
In turn, by lemma 1.2.29 and remark 2.1.4, this 2-functor restricts to a 2-functor f * : 2Sieve/C → 2Sieve/D as claimed.

2.1.8. Remark. To pull back 2-sieves along morphisms of C, we do not need C to have bipullbacks, since the bipullback we consider is taken in [C op , Cat], which has all (small) bilimits.

2-Sites.

2.1.9. Definition. Let C be a 2-category. A Grothendieck 2-coverage R on C is the data of a set of 2-sieves R C on C, for each object C of C, called covering 2-sieves, satisfying the following axioms:

(GC1) For each object C of C, the set R C is closed under equivalence (in the 2-category of 2-sieves 2Sieve/C). (GC2) For each morphism f : D → C in C and covering 2-sieve (R, ι) ∈ R C , we have f * (R, ι) ∈ R D . (GC3)
For each object C of C, the trivial 2-sieve is covering:

(C(-, C), Id) ∈ R C (GC4) Let C be an object of C, (S, ι S ) a 2-sieve on C and (R, ι R ) ∈ R C a covering 2-sieve on C. If for every object D of C and every object r ∈ R(D), the 2-sieve (ι R r) * (S, ι S ) is in R D , then (S, ι S ) is in R C .
2.1.10. Definition. A 2-site is a 2-category C endowed with a Grothendieck 2-coverage.

2.1.11. Remark. We will informally use the term topology as an equivalent for Grothendieck 2-coverage.

Covering families and 2-coverages. As in the classical case of a site over a 1-category, a Grothendieck 2-coverage can be presented by covering families of 1-morphisms. Compared to the pre-topologies defined in [Str82], we have chosen to take a much more flexible definition for our 2-coverages. This will require slightly more work from us in the following sections but will later greatly ease the definition of a specific topology on a 2-category. Note that a 2-coverage is a totally distinct notion from a Grothendieck 2-coverage; while there are related, we should never identify one with the other. (Cov3) Let F ∈ C C be a covering family and, for each f : 

C f → C ∈ F, let G f ∈ C C f be a family covering C f . Then the family of morphisms {f • g | f ∈ F, g ∈ G f } covers C.
D C C i g ∼ = fi
Endowed with the canonical inclusions, the categories (R F D) D define a 2-sieve R F on C, called the 2-sieve generated by F.

2.1.16. Remark. Any 2-sieve (R, ι R ) is generated (up to equivalence) by a family of morphisms. Indeed consider the family of morphisms given by the reunion of the essential images of ι R :

F = Y ∈C ι R,Y (RY ).
Then (R, ι R ) is equivalent to the 2-sieve R F generated by F.

2.1.17. Proposition. Let C be a 2-category endowed with a saturated 2-coverage C. For each object C of C, define the following set of 2-sieves on C: 

R C C = {(R, ι R ) | ∃F ∈ C C and ∃R F → (R, ι R ) in 2Sieve/C}
E D C D C k (2) ∼ = h (1) ∼ =
The isomorphism (1) is given by the definition of R G (definition 2.1.15) and the isomorphism (2) by the axiom (Cov2). Thus, the pseudonatural transformation

h * : C(-, D) → C(-, C)
fits in the commutative diagram:

C(-, D) C(-, C) R G R F h *
By the universal property of bipullbacks, this diagram induces a 1-morphism in 2Sieve/D:

R G → h * (R F ).
Postcomposing by h * (µ, m) :

h * (R F ) → h * (R, ι), we obtain the wanted 1-morphism R G → h * (R, ι).
We then show that (GC4) is satisfied. Fix an object C of C, a 2-sieve (S, ι S ) on C and a covering 2-sieve (R, ι R ). Assume that for each object D of C and for each object r of RD, the 2-sieve (ι R r) * (S) is covering. There is a covering family F ∈ C C and a 1-morphism µ : R F → R of 2-sieves. For any covering morphism f : C → C in F, the sieve f * S is covering, since it is equivalent to the covering sieve (ι R µf ) * (S). Hence there is a covering family G f ∈ C C and a 1-morphism µ f : R G f → f * S of 2-sieves. By the axiom (Cov3), the family of morphisms

F = {f • g | f ∈ F, g ∈ G f } covers C. Moreover there is a 1-morphism of 2-sieves R F → S induced by the mapping f • g → (f * • µ f )(g)
, which means that the 2-sieve S is a covering 2-sieve.

2.1.18. Definition. Let C be a 2-category endowed with a 2-coverage C. The Grothendieck coverage R C generated by C is the Grothendieck coverage R C sat given by proposition 2.1.17.

Descent

For a 2-functor F : C op → Cat descent describes a process for gluing together categories FX i along a family of morphisms (X i → X) i with the same codomain. This section is vastly inspired by [START_REF] Vistoli | Grothendieck Topologies, Fibered Categories and Descent Theory[END_REF], which explains in great details the notion of descent for stacks. Note that our descent diagrams are not the same as those described in [Str82] and [START_REF] Bunge | Van Kampen Theorems for Toposes[END_REF]; nevertheless their bilimits are the same, as they have the same model (definition 2.2.7).

Descent diagrams. with three additional (non-trivial) 2-isomorphisms (and their inverses): where the faces are precisely the 2-isomorphisms 1, 2 and 3. This diagram should be compared to the cube (1.2.14) naturally defined by a bipullback of three 1-morphisms.

1 : 1 • 12 ⇒ 1 • 13 2 : 2 • 12 ⇒ 1 • 23 3 : 2 • 13 ⇒ 2 • 23 2. 2-SHEAVES 2 
2.2.3. Definition. Let C be a 2-category with finite bipullbacks and X : C op → Cat a 2-functor.

Let (f i : X i → X) i∈I be a family of morphisms in C with the same codomain X. The descent diagram for the family (f i ) is the 2-functor D X (fi) : Desc op → Cat defined as follows.

• On objects, D X (fi) is defined by the mapping

   0 → i∈I X(X i ) 1 → i,j∈I X(f i |f j ) 2 → i,j,k∈I X(f i |f j |f k ) • On 1-morphisms, D X
(fi) is defined using the corresponding structural 1-morphisms of the bipullbacks. For instance, for each i, j ∈ I, there is a structural 1-morphism

1 : (f i |f j ) → X i which is mapped by X to X(1) : X(X i ) → X(f i |f j ).
Grouping together these 1-morphisms yields a 1-morphism:

D X (fi) (1) : i∈I X(X i ) → i,j∈I X(f i |f j )
• On 2-morphisms, D X (fi) is similarly defined using the corresponding structural 2-morphisms of the bipullbacks.

We are interested in the bilimits of the form bilim Desc op D X (fi) .

However, directly manipulating descent diagrams turns out to be quite cumbersome. The following proposition provides an easier method to deal with bilimits of descent diagrams.

Proposition.

Let C be a 2-category with finite bipullbacks and X : C op → Cat a 2functor. Let (f i : X i → X) i∈I be a family of morphisms in C with the same codomain X.

The data of a 1-morphism ũ : V → bilim Desc op D X fi is equivalent to the data of a family of 1-morphisms u i : V → XX i and for any i, j, a natural isomorphism

ζ ij V XX i XX j X(f i |f j ) ui uj (fi|fj ) * ζij (fi|fj ) *
such that for any i, j, k, the following cubical law holds:

(2.2.5)

V XX i XX k X(f i |f j ) X(f i |f k ) X(f j |f k ) X(f i |f j |f k ) ui u k ζ i,k ∼ = ∼ = = V XX i XX j XX k X(f i |f j ) ∼ = X(f j |f k ) X(f i |f j |f k ) ui uj u k ζij ζ jk
Under this correspondence:

• The functor ũ is faithful if and only if the morphism

(u i ) i : V → i XX i is faithful.
• The functor ũ is full if and only if the following holds: for any objects a, b ∈ V and any family of morphisms (g i : u i a → u i b) i such that for any i, j the following square commutes

1 * u i a 2 * u j a 1 * u i b 2 * u j b ζij 1 * gi 2 * gj ζij
there is a morphism g : a → b such that for all i, g i = u i g. • The functor ũ is essentially surjective if and only if the following holds: for any family of objects (a i ∈ XX i ) i∈I and morphisms z ij : X1a i → X1a j ij such that for any i, j, k ∈ I the following diagram in X(f i |f j |f k ) commutes

(12 * 1 * u i )a i (13 * 1 * u i )a i (13 * 2 * u k )a k (12 * 2 * u j )a j (23 * 1 * u j )a j (23 * 2 * u k )a k (1 * ui)a i 12 * zij 13 * z ik (3 * u k )a k (2 * uj )a j 23 * z jk
there is an object a ∈ XX and, for each i ∈ I, an isomorphism α i : a → f i a such that for any i, j ∈ I, the following diagram in X(f i |f j ) commutes

1 * u i a 2 * u j a 1 * a i 2 * a i ζij 1 * αi 2 * αj zij
Proof. These are direct consequences of proposition 2.2.12 below.

Category of descent data. The goal of this subsection is to construct an explicit model of the bilimit of a descent diagram bilim Desc op D X (fi)

for a 2-functor X and a family of morphisms (f i :

X i → Y ) i .
A descent datum for a family of morphisms (f i : X i → Y ) i is a pair consisting of a family of objects (M i ∈ XX i ) i , seen as functors M i : 1 → XX i and a family of natural transformations

(ζ ij : (f i |f j ) * M i ⇒ (f i |f j ) * M j ) ij subject to the cubical relation: (2.2.6) 1 XX i XX k X(f i |f j ) X(f i |f k ) X(f j |f k ) X(f i |f j |f k ) Mi M k ζ i,k ∼ = ∼ = = 1 XX i XX j XX k X(f i |f j ) ∼ = X(f j |f k ) X(f i |f j |f k ) Mi Mj M k ζij ζ jk
The descent data for a family of morphisms (f i ) can be organized into a category:

2.2.7. Definition. The category of descent data D(X, (f i ) i ) for the family of morphisms (f i : X i → Y ) is the category with:

• Objects: the descent data

((M i ) i , (ζ ij ) ij ). • Morphisms ((M i ), (ζ ij )) → ((M i ), (ζ ij )):
the families of natural transformations (a i : M i ⇒ M i ) i such that for any i, j, the following square commutes:

(f i |f j ) * M i (f i |f j ) * M i (f i |f j ) * M j (f i |f j ) * M j ζij (fi|fj ) * ai ζ ij (fi|fj ) * aj
This category gives an alternative description of the cones over D X fi with vertex 1: 2.2.8. Proposition. There is an equivalence of categories:

E : D(X, (f i )) [Desc op , Cat](∆1, D X (fi) )
Proof. We give an explicit construction of E and show that it is fully faithful and essentially surjective. To reduce the notations, we present a proof in the case where the family (f i ) i is reduced to one morphism f : X → Y , but the general proof is analogous.

We associate to a descent datum (M, ζ) a pseudonatural transformation

E(M, ζ) = C : ∆1 → D X fi
as follows:

C 0 : 1 → XX = M C 1 : 1 → X(f |f ) = 1 * M C 2 : 1 → X(f |f |f ) = 12 * 1 * M C 1 : 1 * C 0 ⇒ C 1 = Id C 2 : 2 * C 0 ⇒ C 1 = ζ C 12 : 12 * C 1 ⇒ C 2 = Id C 13 : 13 * C 1 ⇒ C 2 = (1 -1 ) * M C 23 : 23 * C 1 ⇒ C 2 = 12 * ζ • (2 -1 ) * M
The compatibility with the faces 1 * and 2 * can be read on the definition, and the compatibility with the face 3 * is a direct consequence of eq. (2.2.6).

Given a morphism a : (M, ζ) → (M , ζ ), we obtain a modification

E(a) = m : E(M, ζ) → E(M , ζ )
as follows:

m 0 = a m 1 = 1 * a m 2 = 12 * 1 * a
It is clear that these mappings define a functor E : D(X, f ) → [Desc op , Cat](∆1, D X f ), which is moreover faithful. Furthermore, given any modification n : E(M, ζ) E(M , ζ ), we have:

(2 * n 0 )ζ = (2 * n 0 )E(M, ζ) 2 = E(M , ζ ) 2 (2 * n 0 ) = ζ (2 * n 0 ) (2.2.9) n 1 = n 1 E(M, ζ) 1 = E(M , ζ ) 1 (1 * n 0 ) = 1 * n 0 (2.2.10) n 2 = n 2 E(M, ζ) 12 = E(M , ζ ) 12 (12 * n 1 ) = 12 * n 1 (2.2.11)
Using eq. (2.2.9), we check that n 0 : (M, ζ) → (M , ζ ) is a morphism of object of descent data; eq. (2.2.10) and eq. (2.2.9) imply that n = E(n 0 ). Hence E is also full.

Finally we check the essential surjectivity of E. Given a cone C : ∆1 → D X f , we consider the functor M = C 0 : 1 → XX and the natural transformation

ζ : 1 * M C 1 2 * M C1 C -1 2 . The pair (M, ζ
) is an object of descent data. Moreover there is an isomorphism m : E(M, ζ) → C with components:

m 0 = Id m 1 = C 1 m 2 = C 12
Hence C is in the essential image of E. Since E is essentially surjective and fully faithful, it is an equivalence.

From the general description of bilimits in Cat, we deduce:

2.2.12. Proposition. There is an equivalence

D(X, (f i )) ∼ = bilim Desc D X fi
Descent condition. A 2-functor X satisfies the descent condition for a family of morphisms (f i : X i → X) if its value X(X) can be recovered by the process of descent previously described.

We first note that there is always a comparison 1-morphisms between the category X(X) and the descent bilimit of X along the (f i ) i .

2.2.13. Definition. Let C be a 2-category with finite bipullbacks and X : C op → Cat a 2functor. Let (f i : X i → X) i∈I be a family of morphisms in C with the same codomain X. The functors (Xf i ) and the natural transformations X(f i |f j ) define, by proposition 2.2.4, a canonical functor:

X(X) → bilim Desc op D X (fi)
2. 2-SHEAVES 2.2.14. Definition. Let C be a 2-category with finite bipullbacks and X : C op → Cat a 2functor. Let (f i : X i → X) i∈I be a family of morphisms in C with the same codomain X.

The 2-functor X satisfies the descent condition for the family

(f i ) if the canonical comparison 1-morphism X(X) → bilim Desc op D X (fi)
is an equivalence.

We show that the descent condition only depends on the isomorphism classes of the 1morphisms.

2.2.15. Lemma. Let C be a 2-category with finite bipullbacks and X : C op → Cat a 2-functor. Let (f i : X i → X) i∈I and (g i : X i → X) i∈I be two families of morphisms with the same codomain X. Suppose that, for each i ∈ I, there is an isomorphism

f i ∼ = g i
Then X satisfies the descent condition for the (f i ) if and only if it satisfies the descent condition for the (g i ).

Proof. For each i ∈ I, there is an isomorphism α i : f i → g i . By the universal property of bipullbacks, they induce a pseudonatural equivalence

D X (gi) → D X (fi)
and thus an equivalence of categories fitting in the diagram:

X(X) bilim Desc op D X (gi) bilim Desc op D X (fi)
Hence the 2-functor X satisfies the descent condition for the (f i ) if and only if it satisfies the descent condition for the (g i ).

We would like the descent condition to remain true under composition of families of 1morphisms; this is not true in general, but we have the following result with slightly stronger hypotheses.

2.2.16. Lemma. Let C be a 2-category with finite bipullbacks and X : C op → Cat a 2-functor. Let (f i : X i → X) i∈I be a family of morphisms in C with the same codomain X and, for each i ∈ I, let (f ij : X ij → X i ) j∈Ji be a family of morphisms with the same codomain X i . Consider the family of composite morphisms

G = {g ij = f i • f ij | i ∈ I, j ∈ J i } and its canonical functor G : X(X) → bilim Desc op D X G
Suppose that:

• The 2-functor X satisfies the descent condition for the family (f i ) i .

• For each i ∈ I, the 2-functor X satisfies the descent condition for the family (f ij ) j .

Under these common hypotheses, we have the following propositions:

(a) G is faithful (b) Assume that, for each i, i ∈ I, the comparison functor

X(f i |f i ) → bilim Desc op D X (Ξ jj ) jj
is faithful, where, for each j ∈ J i and j ∈ J i , the 1-morphism Ξ jj : (f i |f i ) → (g ij |g i j ) is given by lemma 1.2.22. Then G is full. (c) Assume that:

• for each i, i ∈ I, the comparison functor

X(f i |f i ) → bilim Desc op D X (Ξ jj ) jj
is fully faithful, where, for each j ∈ J i and j ∈ J i , the 1-morphism Ξ jj :

(f i |f i ) → (g ij |g i j
) is given by lemma 1.2.22. • for each i 1 , i 2 , i 3 ∈ I, the functor

X(f i1 |f i2 |f i3 ) j1,j2,j3 X(g i1j1 |g i2j2 |g i3j3 ) (Ξ * j 1 j 2 j 3 )j 1 j 2 j 3
is faithful, where, for each

j 1 ∈ J i1 , j 2 ∈ J i2 , j 3 ∈ J i3 , the 1-morphism Ξ j1j2j3 : (f i1 |f i2 )f i3 → (g i1j1 |g i2j2
)g i3j3 is given by lemma 1.2.23. Then G is essentially surjective.

Proof. The comparison functor

G : X(X) → bilim

Desc op D X G is induced by the functors g * ij and the natural transformations

ζ iji j = (g ij |g i j ) *
. We use the criteria of proposition 2.2.4 to show that G is fully faithful and essentially surjective.

(a) Faithfulness. First note that we have the decomposition:

(g * ij ) ij ∼ = (f * ij • f * i ) ij = i (f * ij ) j • ((f * i ) i )
Since, for each i, the functor

(f * ij ) j : X(X i ) → j X(X ij )
is faithful, so is the functor

i (f * ij ) j : i X(X i ) → i j X(X ij ).
As the functor

(f * i ) i : X(X) → i X(X i )
is also faithful, the composite functor (g * ij ) ij is faithful. (b) Fullness. Fix two objects a, b of the category XX and a family of morphisms (z ij : g * ij a → g * ij b) ij such that for any i, j, i , j the following square in X(g ij |g i j ) commutes:

(2.2.17)

1 * g * ij a 2 * g * i j a 1 * g * ij b 2 * g * i j b ζ iji j ,a 1 * zij 2 * z i j ζ iji j ,b
Fix i ∈ I. We consider the objects a = f * i a and b = f * i b of XX i , and the family of morphisms

(z ij : f * ij a → f * ij b ) j . Fix j, j ∈ J i . There is a 1-morphism ∇ : (f ij |f ij ) → (g ij |g ij )
given by lemma 1.2.21, with structural 2-isomorphisms

∇ k : ∇ • k → k for k = 1, 2.
Applying ∇ * to the square 2.2.17 and composing with the structural 2-isomorphisms gives the commutative diagram:

1 * f * ij a ∇ * 1 * f * ij a ∇ * 1 * f * ij a 2 * f * ij a 1 * f * ij b ∇ * 1 * f * ij b ∇ * 1 * f * ij b 2 * f * ij b (∇ * 1 ) -1 f * ij a (fij |f ij ) * a 1 * zij ∇ * ζ ijij ,a ∇ * 1 * zij (∇ * 2 ) f * ij a ∇ * 2 * zij 2 * z ij (∇ * 1 ) -1 f * ij b (fij |f ij ) * b ∇ * ζ ijij ,b (∇ * 2 ) f * ij b
Hence there is a morphism

z i : f * i a → f * i b such that z ij = (Xf ij )z i for all j ∈ J i .
Since this is true for any i ∈ I, we obtain a family of morphisms (z i :

f * i a → Xf * i b) i .
We have to check that for any i 1 , i 2 ∈ I, the square

1 * f * i1 a 2 * f * i2 a 1 * f * i1 b 2 * f * i2 b (fi 1 |fi 2 ) * a 1 * zi 1 2 * zi 2 (fi 1 |fi 2 ) * b
in X(f i1 |f i2 ) commutes. Since, by hypothesis, the functor

j1,j2 Ξ * j1j2 : X(f i1 |f i2 ) → X(g i1j1 |g i2j2 )
is faithful, it is sufficient to check that, for each j 1 ∈ J i1 and j 2 ∈ J i2 , the square

Ξ * j1j2 1 * f * i1 a Ξ * j1j2 2 * f * i2 a Ξ * j1j2 1 * f * i1 b Ξ * j1j2 2 * f * i2 b Ξ * j 1 j 2 (fi 1 |fi 2 ) * a Ξ * j 1 j 2 1 * zi 1 Ξ * j 1 j 2 2 * zi 2 Ξ * j 1 j 2 (fi 1 |fj 1 ) * b
commutes. Up to the composition with the structural 2-morphisms of Ξ j1j2 , this is precisely the square 2.2.17, hence it commutes. This guarantees the existence of a morphism z : a → b such that f * i z = z i , for all i ∈ I, hence g * ij z = z ij for all iI and j ∈ J i . Hence we have proved the fullness of the comparison functor G.
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in X(f i |f i ). For each j ∈ J i , j ∈ J i there is a morphism in X(g ij |g i j ):

ziji j Ξ * jj 1 * a i 1 * a ij 2 * a i j Ξ * jj 2 * a j : ∼ z iji j ∼
A careful expansion of the definition show that the following square commutes, for any j 1 , j 2 ∈ J i , j 1 , j 2 ∈ J i :

1 * Ξ * j1j 1 1 * a i 2 * Ξ * j2j 2 1 * a i 1 * Ξ * j1j 1 2 * a i 2 * Ξ * j2j 2 2 * a i (Ξ j 1 j 1 |Ξ j 2 j 2 ) * 1 * a i 1 * z ij 1 i j 1 2 * z ij 2 i j 2 (Ξ j 1 j 1 |Ξ j 2 j 2 ) * 2 * a i
Since the functor

X(f i |f i ) → bilim Desc op D X (Ξ jj ) jj is full, this show the existence of morphisms z ii : 1 * a i → 2 * a i such that Ξ * jj z ii ∼ = ziji j .
Using the faithfulness of the functors

X(f i1 |f i2 |f i3 ) → j1,j2,j3 X(g i1j1 |g i2j2 |g i3j3 )
one can show that the (z i ) i∈I satisfy the cubical law; hence there is a a : 1 → XX such that (a i ∼ = f * i a) i , and these isomorphisms are coherent with the (z ii ). Unrolling the definitions, we deduce a family of isomorphisms (a ij ∼ = g * ij a) ij , coherent with the (z iji j ). Hence the functor G is essentially surjective.

Refinement of covering families.

2.2.20. Definition. Let C be a 2-category. Let F and G be two families of 1-morphisms of C which all have the same codomain X. We say that G is a refinement of F if for any 1-morphism g : X g → X in G, there is a 1-morphism f : X f → X in F and a 1-morphism h : X g → X f such that f h ∼ = g.

Remark. If

G is a refinement of F, we may say that G is finer than F and F is coarser than G.

We would hope the descent condition to hold for a family of morphisms F, if it holds for a finer family G. This is not true without stronger hypotheses (lemma 2.3.7), but we still have the following partial result.

Lemma.

Let C be a 2-category and X : C op → Cat a 2-functor. Let F = (f i : X i → X) i∈I and G = (g j : Y j → X) j∈J be two families of 1-morphisms of C which all have the same codomain X. Suppose that G is a refinement of F and consider the canonical functors:

F : X(X) → bilim Desc op D X F G : X(X) → bilim Desc op D X G Then: (a) If G is faithful, F is faithful. (b) If G is full, F is full.
Proof. First, note that G factors through F :

X(X) bilim Desc op D X F bilim Desc op D X G F G ∼ =
This factorization proves both implications.

2-Sheaves

In this section, we define 2-sheaves both for Grothendieck 2-coverages and for 2-coverages. We then show the equivalence of the two definitions.

2.3.1. Definition. Let (C, R) be a 2-site. A 2-sheaf on the 2-site C is a 2-functor X : C op → Cat such that for any object C of C and for any covering 2-sieve (R, ι R ) ∈ R C , the canonical functor R,X) is an equivalence. A 2-sheaf on C for the coverage C is a 2-functor X : C op → Cat such that the following holds: for each object X of C and each covering family G ∈ C X , the 2-functor X satisfies the descent condition for G.

ι * R : X(c) [C op , Cat](C(-, C), X) -→ [C op , Cat](
We are now able to complete the lemmas of the previous section: we will show that a 2sheaf for a coverage also satisfies the descent condition for composite of covering families and for families coarser than covering families.

2.3.5. Lemma. Let C be a 2-category with finite bipullbacks and C a coverage on C. Let X be a sheaf on C for the coverage C. Let f 1 : X 1 → X and f 2 : X 2 → X be morphisms of C with the same codomain X and F ∈ C Y be covering families of X , for = 1, 2. Write F = (f i : X i → X ) i∈I . Then the functor

X(f 1 |f 2 ) → bilim Desc op D X (Ξi 1 i 2 )i 1 i 2 is fully faithful, where the 1-morphisms Ξ i1i2 : (f 1 f 1i1 |f 2 f 2i2 ) → (f 1 |f 2 ) are given by lemma 1.2.22.
Proof. Since C is a coverage, we can find a covering family

G = (g j : Y j → (f 1 |f 2 )) j∈J
such that, for all j ∈ J , there is an index φ(j) ∈ I 1 and an isomorphism

(f 1 |f 2 ) X 1 Y j X 1φ(j) 1 ∼ = gj f 1φ(j)
Then, for each j ∈ J , there is a covering family H j = (h jk : Z jk → Y j ) k∈Kj such that for all k ∈ K j , there is an index ψk ∈ I 2 and an isomorphism

Y j X 2 Z jk X 2ψ(k) 2gj ∼ = h jk f 2ψ(k)
We consider the composite family of morphisms:

E = {g j h jk |j ∈ J , k ∈ K j }
Remark that E is a refinement of (Ξ i1i2 ) i1i2 , hence, by lemma 2.2.22, it is sufficient to show that the functor

E : X(f 1 |f 2 ) → bilim Desc op D X E
is fully faithful. By the first part of lemma 2.2.16, the functor E is faithful. Hence the same argument can be used to show that, for any j, j the functor

X(g j |g j ) → bilim Desc op D X ( Ξjkj k )
is faithful, where the XX jkj k : (g j h jk |g j h j k ) are given by lemma 1.2.22. Hence, we can apply the second part of lemma 2.2.16 to show that E is full.

2.3.6. Lemma. Let C be a 2-category with finite bipullbacks and C a coverage on C. Let X be a sheaf on C for the coverage C. Let f : X → X be morphisms of C with the same codomain X and F ∈ C Y be covering families of X , for = 1, 2, 3.

Write F = (f i : X i → X ) i∈I . Then the functor X(f 1 |f 2 |f 3 ) → bilim Desc op D X Ξi 1 i 2 i 3 is faithful, where the 1-morphisms Ξ i1i2i3 : (f 1 f 1i1 |f 2 f 2i2 |f 3 f 3i3 ) → (f 1 |f 2 |f 3 ) are given by lemma 1.2.22.
Proof. This is an argument similar to the one of lemma 2.3.5 2.3.7. Lemma. Let C be a 2-category with finite bipullbacks and C be a saturated coverage on C. Let X be a sheaf on C for the coverage C. Let F be a (not necessarily covering) family of morphisms of C with the same codomain X and G ∈ C X be a family covering X. Assume that G is refinement of F. Then the 2-functor X satisfies the descent condition for F.

Proof. By lemma 2.2.22, it is sufficient to prove that the comparison functor XX → bilim Desc op D X F is essentially surjective. We write F = (f i : Y i → X) i∈I and G = (g j : Z j → X) j∈J . By hypothesis and lemma 2.2.15, we can assume that, for each j ∈ J , there is an index φ(j) ∈ I and a 1-morphisms h j : Z j → Y φ(j) such that g j = f φ(j) h j . Let (a i : 1 → XY i ) i be a family of functors in Cat and (z ii : 1 * a i → 2 * a i ) ii a family of natural transformations which satisfy the cubical laws induced by the (f i ). We can form a family of functors (a j = h * j a φ(j) : 1 → XZ j ) j and natural transformations (z jj = Ξ * jj z φ(j)φ(j ) : 1 * a j → 2a j ) jj where the Ξ jj : (g j |g j ) → (f φ(j) |f φ(j ) ) Clearly, the (z jj ) satisfy the cubical laws for the (g j ), hence there are a functor a : 1 → XX and, for each j ∈ J , an isomorphism g * j a ∼ = a j , which are compatible with the (z jj ).

We have to construct, for each i ∈ I, an isomorphism f * i a ∼ = a i . Fix i ∈ I. There is a covering family of (e k : w k → Y i ) k∈K ∈ C Yi of Y i such that, for each k ∈ K, there is an index ψ(k) ∈ J and an isomorphism

Y i x w k Z ψ(k) fi ∼ = e k g ψ(k)
which induce a 1-morphism w k → (f i |f φψ(k) ), and its structural 2-isomorphisms. Hence, for each k, we can construct the following natural isomorphism α k (all faces being natural isomorphisms):

1

XX XY i XY φψ(k) XY φψ(k) XY i X(f i |f φψ(k) ) XZ ψ(k) X(f i |f φψ(k) ) Xw k a a φψ(k) ai e * k e * k
This should be read as a (convoluted) conjugation of the isomorphism g ψ(k) a ∼ = h ψ(k) a φψ(k) . We have thus defined a family of isomorphisms (α k : e * k f * i a → e * k a i ) k . One can check that for each k, k the following square in X(e k |e k ) commutes:

1 * e * k f * i a 2 * e * k f * i a e * k a i e * k a i 1 * α k (e k |e k ) * f * i a 2 * α k (e k |e k ) * a i
Since (e k ) is a covering family, this shows that the family (α k ) defines an isomorphism f * i a ∼ = a i . The same construction can be done for all i ∈ I and one can check that these isomorphisms are compatible with the given (z ii ). Hence the functor

XX → bilim Desc op D X F is essentially surjective.
Finally we need a comparison between our gluing construction for 2-sieves and the gluing obtained by descent.

2-SHEAVES

2.3.8. Proposition. Let C be a 2-category with finite bipullbacks. Let F = (f i : X i → X) i∈I be a family of morphisms of C with the same codomain X and X : C op → Cat a 2-functor. Then there is an canonical equivalence e : PsNat(R F , X) → bilim Desc op D X F which fits in the diagram:

PsNat(C(-, X), X) XX PsNat(R F , X) bilim Desc op D X F ∼ = e
Proof. We use proposition 2.2.4 to define e and to show that it is an equivalence.

For each i ∈ I we define the component:

e i :    PsNat(R F , X) → X(X i ) (α : R F → X) → α Xi (f i ) (m : α → β) → m Xi (f i )
For each i, j ∈ I we define the natural transformation

ζ ij : 1 * e i ⇒ 2 * e j
with components:

ζ ij,α : 1 * α Xi (f i ) α (fi|fj ) (f i 1) α (fi|fj ) (f j 2) 2 * α Xj (f j ) ∼ α (f i |f j ) ((fi|fj )) ∼
One can check that the (ζ ij ) ij satisfy the cubical law (with respect to the (f i )), hence we have defined a functor e : PsNat(R F , X) → bilim Desc op D X F . We will show the faithfulness of e; fullness and essential surjectivity may be proved by similar arguments. Let α, β : R F → X be pseudonatural transformations and s, t : α → β parallel modifications. Assume that, for all i ∈ I,

s Xi (f i ) = t Xi (f i ).
We want to prove that for any object Y of C and morphism f ∈ R F Y :

s Y (f ) = t Y (f ).
Indeed, there is an i ∈ I and g : Y → X i with an isomorphism

γ : f → f i g
Hence we have the four equations:

s Y (f ) = β Y (γ -1 )s Y (g * f i )α Y (γ) s Y (g * f i ) = β g (f i ) -1 [g * s Xi (f i )]α g (f i ) t Y (g * f i ) = β g (f i ) -1 [g * t Xi (f i )]α g (f i ) t Y (f ) = β Y (γ -1 )t Y (g * f i )α Y (γ) Since s Xi (f i ) = t Xi (f i ), we have s Y (f ) = t Y (f ).
This shows s = t, and thus proves the faithfulness of e.

2.3.9. Proposition. Let C be a 2-category with finite bipullbacks, C a coverage on C and X : C op → Cat a 2-functor. The following propositions are equivalent:

(i) X is a sheaf for the coverage C.

(ii) X is a sheaf for the saturated coverage C sat . (iii) X is a sheaf for the Grothendieck coverage R C generated by C.

Proof. We prove (i) ⇒ (ii) and (ii) ⇒ (iii).

• (i) ⇒ (ii): We apply lemma 2.2.16; by lemma 2.3.5 and lemma 2.3.6, the 2-functor X also satisfies the descent condition for the composite families. • (ii) ⇒ (ii): By proposition 2.3.8, for any family F covering an object X, the canonical functor X(X) → PsNat(R F , X) is an equivalence. Now consider a sieve (R, ι R ) covering an object X. There exists a 1morphism of sieves R G → (R, ι R ) with G a covering family. Moreover, by remark 2.1.16, we can replace (R, ι R ) by a sieve R F generated by a family of morphisms F. Notice that G is refinement of F, hence, by lemma 2.3.7 the canonical functor

X(X) → PsNat(R F , X) is an equivalence. The implication (iii) ⇒ (i) is obvious. 2.3.10. Example. A (usual) 1-sheaf X : C op → Set on a 1-site C is a 2-sheaf, viewing Set as a full, 2-full subcategory of Cat. 2.3.11. Example. A stack X : C op → Cat on a 1-site C is a 2-sheaf.
2.3.12. Remark. Let C be a 1-site. The 2-category Sh(C) of 2-sheaves on C is precisely the 2-category of stacks on C. In particular, it should not be mistaken with the category of 1-sheaves on C.

Morphisms of 2-sites

Given a 2-functor W : D → C between 2-sites, we would like to be able to define a restriction 2-functor W * : Sh(C) → Sh(D) and an extension 2-functor W * : Sh(D) → Sh(D) on sheaves. The propositions of this section present sufficient conditions to define each.

2.4.1. Definition. Let (C, R) be a 2-site, D a 2-category and W : D → C be a 2-functor. The induced Grothendieck 2-coverage W * R on D is the largest Grothendieck 2-coverage on D such that for any 2-sheaf X on C, the composite 2-functor XW is a sheaf on D. 2.4.2. Proposition. Let (C, R) and (D, S) be 2-sites, W : D → C be a 2-functor and X : 2.4.5. Remark. We generally view a covering subsite as a full, 2-full sub-2-category and omit the inclusion 2-functor I.

C op → Cat be a 2-sheaf on C. Suppose that S ⊂ W * R. Then W * (X) = XW : D op → Cat is a 2-sheaf on D.
2.4.6. Proposition. Let C be a 2-site, (D, I) a covering subsite of C. Then the restriction along I I * : Sh(C) → Sh(D) is a biequivalence. That is, there is a (essentially unique) extension 2-functor along I:

I * : Sh(D) → Sh(C)
Proof. This is precisely [Str82, Theorem 3.8].

Descent and coproduct

In this section, we will investigate the interactions between the descent condition and coproducts.

Consider a 2-category C with coproducts and finite bipullbacks. A product-preserving 2functor X : C op → Cat sends coproducts of C to products:

X i X i i X(X i )
Hence, given a family of morphisms (f i :

X i → X) i∈I , writing g = (f i ) : i X i → X a product-preserving 2-functor X : C op → Cat induces a natural isomorphism D X (fi)i ∼ = D X g
and X satisfies the descent condition for the family (f i ) i if and only it satisfies the descent condition for the 1-morphism g. This remark leads to the following proposition.

2.5.1. Proposition. Let C be a 2-category with coproducts and C be a coverage on C. Let X : C op → Cat be a product-preserving 2-functor. Then X is a 2-sheaf on C if and only for any covering family F ∈ C, X satisfies the descent condition for the induced 1-morphism:

(f ) (f :X f →X)∈F : f X f → X 2.5.2. Remark. For a single 1-morphism g : Y → X, the descent diagram D X g factors though X: D X g : Desc op Dop g --→ C op X -→ Cat
The 2-functor Dg is defined on objects by

Dg (0) = X Dg (1) = (g|g) Dg (2) = (g|g|g)
and in the most obvious way on 1-morphisms and 2-morphisms.

2.5.3. Proposition. Let C be a 2-category with coproducts and finite bipullbacks and g : Y → X a morphism of C. Let X : C op → Cat be a bilimit-preserving functor. Assume that the canonical 1-morphism bicolim Desc Dg → X is an equivalence. Then X satisfies the descent condition for g.

Proof. There is a commutative diagram in Cat X(X) X(bicolim Desc ( Dg )) bilim Desc op D X g ∼ =
The rightmost 1-morphism is an equivalence since X preserves bilimits. The top 1-morphism is an equivalence, since it is the image by X of bicolim Desc Dg → X which is an equivalence by hypothesis. Hence the comparison 1-morphism

X(X) → bilim Desc D X g is an equivalence.
To have a productive discussion in the case where the coproduct is the covered object, we need to assume the extensivity of C, which mostly amount to the disjointness of coproducts. We will use the characterization given by [BL03, Theorem 2.3] as our definition.

2.5.4. Definition. Let C be a 2-category with finite coproducts and finite bipullbacks. The 2-category C is extensive if, for all j ∈ J , with J finite, the diagrams

X j j X j X j Z i X j ∼ = x j z
are bipullback squares if and only if the induced morphism

(x j ) j : j X j → Z
is an equivalence.

2.5.5. Remark. Let C be an extensive 2-category with finite coproducts and finite bipullbacks. Let X and Y be objects of C and denote by 0 the initial object of C. Then, the following commutative square

X X Y 0 Y i X i Y
is a bipullback square.

2.5.6. Lemma. Let C be an extensive 2-category with finite coproducts and finite bipullbacks and X : C op → Cat be a 2-functor such that X(0) = 1. Let (f j : X j → Y j ) j be a finite family of 1-morphisms in C. For each j, write the composite

fj : X j → Y j → k Y k
Then, there is a pseudonatural equivalence

D X ( fj )j → j D X fj
which induces an equivalence fitting in the commutative diagram:

X( j Y j ) bilim Desc op D X ( fj )j j X(Y j ) j bilim Desc op D X fj
Proof. By remark 2.5.5, for any j = k, we have

( fj | fk ) = 0.
Hence it suffices to check that for any j,

( fj | fj ) (f j |f j )
and

( fj | fj | fj ) (f j |f j |f j ).
We show the first equivalence; the second is similar. Fix an index j. We can aggregate the following bipullback squares:

X j Y j k Y k X j Y j Y j (f j |f j ) X j X j fj i Y j fj i Y j fj fj
Note that the top-right square is a bipullback by the extensivity of C. Using lemma 1.2.24, the outer square is also a bipullback square, hence (f j |f j ) is a bipullback of fj with itself.

2.5.7. Proposition. Let C be an extensive 2-category with finite coproducts and finite bipullbacks. Let f : X → j∈J Y j be a 1-morphism, with J finite, and, for each j ∈ J , consider the bipullback:

X i Y j X j Y j f fj i Y j
Let X : C op → Cat be a 2-functor preserving finite products. Suppose that X satisfies the descent condition for each morphism f j . Then X satisfies the descent condition for the morphism f .

Proof. Consider the morphism:

g = j f j : j X j → j Y j
By extensivity, we can identify (through an equivalence) j X j and X and under this identification, we have f ∼ = g. Moreover since X preserves products, the equivalence given by lemma 2.5.6 yields a natural equivalence

D X g → j D X fj
which fits in the commutative diagram:

X( j Y j ) bilim Desc op D X g j X(Y j ) j bilim Desc op D X fj
The uppermost morphism is an equivalence, since all the other morphisms are equivalences.

2.5.8. Proposition. Let C be an extensive 2-category with finite coproducts and finite bipullbacks and C be a 2-coverage on C. Assume that for any finite coproduct j X j the family of inclusions (i Xj ) j is a covering family. Then, for any 2-sheaf X for the 2-coverage C such that X(0) = 1, X preserves finite products.

Proof. Consider a family of objects (X j ) j of C. By lemma 2.5.6, there is a natural equivalence

D X (i X j )j → j D X Id X j
which fits in the commutative diagram:

X( j Y j ) bilim Desc op D X g j X(Y j ) j bilim Desc op D X fj
The leftmost morphism is an equivalence, since all the other morphisms are equivalences.

2.5.9. Remark. We restricted our attention to finite coproducts; all the propositions in this section hold if we bound coherently the size of the coproducts and the size of the covering families.

For instance, we can have a similar discussion for a 2-category with small coproducts (and the corresponding notion of extensiveness), small covering families and 2-functors preserving small products.

CHAPTER 3

2-Sheaves and adjunctions

The goal of this chapter is to explore the interactions between 2-sheaves and adjunctions. In section 3.2, we prove an extension to 2-categories (theorem 3.2.1) of the Bénabou-Roubaud theorem [START_REF] Bénabou | Monades et Descente[END_REF], relating some descent bilimits to associated Eilenberg-Moore categories. It gives us a simple characterization of 2-sheaves over suitable topologies (proposition 3.2.13). In the reverse direction, we show that 2-sheaves are able to extend the existence of adjoints from suitable sub-2-sites (proposition 3.3.1).

We will heavily use string diagrams throughout this chapter (see notation 1.1.36).

The Beck-Chevalley property

The Beck-Chevalley (or base-change, BC for short) property is a coherence property between morphisms adjunct to images of the same 2-functor.

3.1.1. Definition. Let C be 2-category with finite bipullbacks. A class of morphisms J ⊂ C is stable under bipullbacks if for any morphism j : X → Z in J and any morphism k :

Y → Z of C, taking a bipullback X Z (j|k) Y j ∼ = (j|k) k yields (j|k) ∈ J.
3.1.2. Definition. Let C be a 2-category and J ⊂ C a class of morphisms stable under bipullbacks. A 2-functor F : C op → Cat has the left BC property with respect to J if :

• For any morphism f : X → Y in J, the 1-morphism f * = F(f ) has a left adjoint f ! .

• For any bipullback square in C

x z

(f |g) y f g with f ∈ J, the mate (f |g) ! : (f |g) ! (f |g) * ⇒ g * f ! (f |g) ! = (f |g) * (f |g) ! (f |g) * f ! g * of (f |g) *
is an isomorphism.
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A 2-functor F : C op → Cat has the right BC property with respect to J if :

• For any morphism f : X → Y in J, the functor f * = F(f ) has a right adjoint f * .

• For any bipullback square in C

x z

(f |g) y f g with g ∈ J, the mate (f |g) * : f * g * ⇒ (f |g) * (f |g) * (f |g) * = g * f * (f |g) (f |g) * (f |g) * of (f |g) * is an isomorphism.
A 2-functor F : C op → Cat has the ambidextrous BC property with respect to J to if it has both the left and right BC property, and the left and right adjoints are isomorphic, for any f ∈ J:

f ! ∼ = f *

Bénabou-Roubaud for 2-functors

We will prove in this section an extension of Bénabou-Roubaud theorem [START_REF] Bénabou | Monades et Descente[END_REF]. For a pseudofunctor X : C op → Cat with domain a 1-category C and satisfying a left BC-property, the original theorem gives an equivalence between the Eilenberg-Moore category X(X) i * i ! and the category of descent data for i (definition 2.2.7). Our version allows the domain to be a 2-category. We have chosen to replace the category of descent data by the descent bilimit it models, but this is purely to better fit it in our framework of 2-sheaves. The proof is similar to the original one.

3.2.1. Theorem (Bénabou-Roubaud). Let C be a 2-category with finite bipullbacks and J ⊂ C a class of morphisms stable under bipullbacks. Let F : C op → Cat be a 2-functor with the left BC property with respect to J (definition 3.1.2). Fix i : X → Y in J. The functor i * : F(Y ) → F(X) has a left adjoint i ! , hence defines a monad T = i * i ! on F(X) (see proposition 1.1.25). Then the forgetful functor u : F(X) T → F(X) induces an equivalence

F(X) T bilim Desc op D F i 3.2.2. Remark.
Requiring that the 2-functor F satisfies the left BC-property for a class of morphisms stable under bipullbacks is certainly an overly cautious assumption. A simple review of the proof shows that we only need a few mates associated to the bipullbacks (i|i) and (i|i|i) to be invertible.

We will need a technical lemma relating descent and the diagonal morphism ∆ : X → (i|i):

3.2.3. Lemma. Let C be a 2-category with finite bipullbacks and F : C op → Cat be a 2-functor. Fix a 1-morphism i : X → Y . We consider the bipullback of i with itself (i|i), with its two projections 1, 2 : (i|i) → X. Let u : V → FX be a 1-morphism in Cat and ζ : 1 * u → 2 * u be a 2-morphism, such that the pair (u, ζ) satisfies the cubical relation (2.2.5) with respect to i. Then

u u (∆ -1 1 ) * ζ ∆ * 2 ∆ * = Id u
where ∆, ∆ 1 and ∆ 2 are given by lemma 1.2.16.

Proof. Let ∆ 3 : X → (i|i|i) be the diagonal morphism given by lemma 1.2.17. We have the following computation, where the first and fourth equation use the relations of lemma 1.2.17, and the third uses the cubical law (2.2.5) for ζ:

u 1 * ∆ * u 2 * ∆ * ζ = u 1 * ∆ * u 2 * ∆ * (∆ -1 12 ) * 1 * ∆ * 13 ζ (∆ -1 13 ) * 3 * ∆ * 23 = u 1 * ∆ * u 2 * ∆ * (∆ -1 12 ) * 1 * ζ 3 * ∆ * 23 = u 1 * ∆ * u 2 * ∆ * (∆ -1 12 ) * ζ 2 * ζ ∆ * 23 = u 1 * ∆ * u 2 * ∆ * ζ ∆ * 2 (∆ -1 1 ) * ζ
Hence, we have the equation

u u (∆ -1 1 ) * ζ ∆ * 2 = Id u
which is precisely the identity we wanted to prove.

We can now turn to the proof of theorem 3.2.1.

Proof. Keeping the same notations as above, we fix λ = (i|i) : i(i|i) → i(i|i), β = λ ! the invertible mate of λ * and

L = bilim Desc op D F i
We note α : Tu ⇒ u the canonical natural transformation. We will use proposition 2.2.4 to define a functor

F(X) T → L
and prove that it is an equivalence. Let (3.2.4)

ζ = ζ λ = 1 * u 1 * i * i ! u 2 * i * i ! u 2 * u 1 * ηu λ * i ! u 2 * α
Remark that we can express α using ζ, explicitly:

(3.2.5) α = Tu 2 ! 1 * u 2 ! 2 * u u β -1 u 2 ! ζ u Symmetrically, ζ λ -1 • ζ λ = Id 1 * u .
We have to check that the cubical law holds:

u 1 * 12 * ζ 2 * ζ u 2 * 23 * (3.2.4) = u 1 * 12 * λ * α 2 * λ * α u 2 * 23 * (3.2.6) = u 1 * 12 * λ * 2 * λ * α u 2 * 23 * = u 1 * 12 * 1 * λ * 3 * α u 2 * 23 * = u 1 * 12 * 1 * ζ 3 * u 2 * 23 *
Hence, by proposition 2.2.4, u and ζ define a functor:

ũ : F(X) T → L Since u : F(X) T → F(X) is faithful, so is ũ.
It remains to check the fullness of ũ. Let A, B be objects of F(X) T and f : uA → uB a morphism of F(X) T such that

1 * uA 2 * uA 1 * uB 2 * uB ζ A 1 * f 1 * f ζ B
We have to check that f is a morphism of left T-module, that is that the following square commutes:

TuA uA TuB uB α A Tf f α B
This last square can be decomposed into (using eq. (3.2.5)):

TuA 2 ! 1 * uA 2 ! 2 * uA uA TuB 2 ! 1 * uB 2 ! 2 * uB uB β -1 A u Tf 2 ! ζ A 2 ! 1 * f A u 2 ! 2 * f f β -1 B u 2 ! ζ B B u
The middle square commutes by hypothesis, the leftmost and rightmost by naturality; hence the outter square commutes. This proves the fullness of ũ. Finally, we prove the essential surjectivity of ũ. We fix a functor û : 1 → F(X) and a natural transformation ζ : 1 * û ⇒ 2 * û, subject to the relation (2.2.5). We want to define a structure of left T-module on û by

α = Tû 2 ! 1 * û 2 ! 2 * û û β -1 û 2 ! ζ û
Indeed, we check that the morphism α is unital. First note that we can derive from lemma 1.2.16 the following relation:

i ! i * = i ! i * (∆ -1 1 ) * λ * ∆ * 2 ∆ * = i ! i * (∆ -1 1 ) * λ * ∆ * 2 ∆ * = i ! i * (∆ -1 1 ) * ∆ * 2 β ∆ * (3.2.7)
Hence, we have:

û û α (3.2.7) = û û (∆ -1 1 ) * ∆ * 2 β β -1 ζ ∆ * = û û (∆ -1 1 ) * ζ ∆ * 2 ∆ * = û û
We also have to check that α is associative:

(3.2.8)

û i ! i * i ! i * û α α = û i ! i * i ! i * û α
Note that the natural transformation 2 is a bipullback square of 1 and 2 (remark 1.2.15). Thus, we can introduce the invertible mate γ of 2 * :

(3.2.9) γ =

To simplify the right-hand side, first remark that we have the following relation:

(3.2.11)

û 1 * û 2 * λ * α = û 1 * û 2 * β α = û 1 * û 2 * ζ = ζ
ũ is essentially surjective. We have constructed a fully faithful and essentially surjective functor ũ : F(X) T → bilim Desc op D F i which is thus the wanted equivalence.

3.2.12. Remark. Note that the functor ũ : F(X) T → bilim Desc op D F i fits into the following commutative triangle:

F(Y ) F(X) T bilim Desc op D F i k T
where k T is the canonical comparison functor.

An easy corollary of theorem 3.2.1 is the following characterization of 2-sheaves for specific topologies.

3.2.13. Proposition. Let C be 2-category with finite bipullback and I a class of morphisms stable by bipullback. Let P be a 2-coverage of C, with each covering family formed of a single 1morphism. Hence we can view P as a class of 1-morphisms of C. Moreover assume that P ⊂ I. Let X : C op → Cat be 2-functor with the left BC property with respect to the family I. Then the following assertions are equivalent:

(i) X is a 2-sheaf for the coverage P (definition 2.3.4).

(ii) X is P-monadic (definition 1.1.33).

3.2.14. Remark. The hypothesis that each covering family is formed of a single covering 1morphism may seem restrictive. However, by proposition 2.5.1, as long as we are working with a 2-category C with coproducts, a product-preserving 2-functor is a sheaf if it satisfies the descent condition for such covering 1-morphisms.

Extension of the BC property

In this section we will prove a partial reciprocal result: any 2-sheaf that satisfies the BC property on a covering subsite, satisfies it globally. Proof. We present the proof for the left BC-property; the other cases are analogous. We first show that for any morphism i : c → c , i * = Fi has a left adjoint. Fix i : c → c in I and (f j : d j → c ) j∈J a covering family of c with domain in D. We consider, for each j, the bipullback square: c c

d j = (i|d j ) d j i ij fj f j
Since d is in I, so is i j and d is an object of D. For each j 1 , j 2 , we define a morphism

i j1,j2 = (i j1 |i j2 ) : (f j1 |f j2 ) → (f j1 |f j2 )
and, for each j 1 , j 2 , j 3 , a morphism

i j1,j2,j3 = (i j1 |i j2 |i j3 ) : (f j1 |f j2 |f j3 ) → (f j1 |f j2 )f j3
All these morphisms are obtained as bipullback of morphisms of I, hence are in I. They induce (together with their coherence 2-morphisms) a pseudonatural transformation

ι : D F (f j ) → D F (fj )
such that the composite morphism

ĩ : F(c ) PsNat(1, D F f j ) PsNat(1, D F fj ) F(c) PsNat(1,ι)
is isomorphic to i * . We will construct a left adjoint l to ĩ, which hence will be a left adjoint to i * . For any j ∈ J , we note l j = (i j ) ! , the left adjoint of i * j , which exists, since i j ∈ I. Similarly for any j 1 , j 2 , we note l j1,j2 = (i j1,j2 ) ! and for any j 1 , j 2 , j 3 , l j1,j2,j3 = (i j1,j2,j3 ) ! . These morphisms define the object-wise components of a pseudonatural transformation

λ : D F (fj ) → D F (f j )
We detail how to construct the component of λ at the 1-morphism 1 of Desc; components at other morphisms are similarly defined. For any j 1 , j 2 , there is a bipullback in D:

d j1 d j1 (f j1 |f j2 ) (f j1 |f j2 ) ij 1 ∼ = ij 1 ,j 2 1 1
Since F |D has the left BC-property, it induces an isomorphism:

Fd j1 Fd j1 F(f j1 |f j2 ) F(f j1 |f j2 ) lj 1 1 * ∼ = 1 * lj 1 ,j 2
Hence, letting j 1 , j 2 varies over J , these isomorphisms can be combined into a single isomorphism

λ 1 : λ 1 • D X (dj (1) → D X (d j (1) • λ 0
A straightforward computation shows that λ is a pseudonatural transformation. As before, the pseudonatural transformation λ defines a 1-morphism:

l : F(c) PsNat(1, D F fj ) PsNat(1, D F f j ) F(c ) PsNat(1,λ)
We will now show that we have an adjunction λ ι between pseudonatural transformations. For each j ∈ J , we fix a unit η j : Id → i * j l j and a counit j : l j i * j → Id satisfying the unit-counit laws. They induce, for each j 1 , j 2 , two natural transformations η j1,j2 : Id → i * j1,j2 l j1,j2 and j1,j2 : l j1,j2 i * j1,j2 → Id, which also satisfy the unit-counit laws. Similarly, they induce, for each j 1 , j 2 , j 3 , two natural transformations η j1,j2,j3 : Id → i * j1,j2,j3 l j1,j2,j3 and j1,j2,j3 : l j1,j2,j3 i * j1,j2,j3 → Id, which also satisfy the unit-counit laws. All these natural transformations allow us to define two modifications η : Id → ιλ and : ιλ → Id which satisfy the unit-counit laws, hence are the unit and counit of an adjunction λ ι. This adjunction induces an adjunction l ĩ ∼ = i * .

Note that for all j ∈ J , the unit η : Id → li * and the counit : i * l → Id of the adjunction l i * fit in the following commutative diagrams, where all vertical faces are isomorphisms and the one on the back is the identity:

Fc Fc Fc Fd j Fd j Fd j l η i * lj ηj i * j Fc Fc Fc Fd j Fd j Fd j i * l i * j j lj
We now fix a bipullback in C, with f ∈ I

x z w = (f |g) y f (f |g) g
We want to show that the mate (f |g) ! of (f |g) * is invertible. Fix a family of covering morphisms (c z j : z j → z) j with domain in D. Taking the bipullbacks along f gives a covering family (c x j : x j → x) of x with domain in D.

Taking the bipullbacks of the (c z j ) along g yields a covering family (c y j : y j → y) j of y, but the y j may not be in D. Hence, for each j ∈ J , we consider a covering family (d y jk : y jk → y j ) k of y j with domain in D. The composite family (c y jk = c y j d y jk : y jk → y) j,k is a covering family of y and for any j, k, there is a 2-isomorphism (which may not be a bipullback):

y z y jk z j g ∼ = c y jk c z j
Taking the bipullbacks of the (c y jk ) j,k along (f |g), which is in I, gives a covering family (c w jk : w jk → w) of w with domain in D. Notice that, for each j, k, there is a unique (up to isomorphism) 1-morphism w jk → x j making the following diagram (where all faces are 2-isomorphisms) commutes:

w 

Applications to modular representations of finite groups

A representation of a finite group G is a module over a group algebra kG, for some commutative ring k. The representations of a finite group G naturally form a category Mod(kG). The study of this category and some related ones, such as the stable category of representations stMod(kG) or the derived category D(kG), occupy a large part of the theory of representations. Each of the mappings G → Mod(kG), G → stMod(kG) and G → D(kG) extends to a pseudofunctor gpd op → Add with remarkable properties, abstracted into the notion of Mackey 2-functor.

When k is field of characteristic p, or more broadly, a commutative Z (p) -algebra, the representations are said to be p-modular. The p-modular representation categories, collected to form a Mackey 2-functor, are a p-monadic 2-functor (in the sense of definition 4.1.9). We explain how p-monadic Mackey 2-functors relate to sheaves for an adequate topology.

Mackey 2-functors

General Mackey 2-functors. We recall the notion of Mackey 2-functors introduced by Paul Balmer and Ivo Dell'Ambrogio in [START_REF] Balmer | Mackey 2-Functors and Mackey 2-Motives[END_REF].

4.1.1. Definition. Let G be a (2, 1)-category and J a class of 1-morphisms of G. The pair (G, J ) is admissible if it satisfies the following properties:

• The class J contains all equivalences and is closed by composition. Moreover if f g ∈ J , g ∈ J .

• For any 1-morphism f : x → y in J , f is faithful.

• The 2-category G has all finite bipullbacks and J is closed under bipullbacks (definition 3.1.1). • The 2-category G has all finite coproducts and J is closed under finite coproducts.

Example. We have several examples of admissible pairs (G, J ):

(a) G = gpd, the 2-category of finite groupoids, and J is the class of the faithful functors between them. (b) G = gpd f , the 2-category of finite groupoids, with faithful functors as 1-morphisms, and J is the class of all 1-morphisms of gpd f . (c) For a groupoid G, G = gpd f /G, the slice 2-category over G in gpd f , and J is the class of all the 1-morphisms of gpd f /G. (d) For a prime p, G = p-gpd, the 2-category of finite p-groupoids (that is, finite groupoids in which each connected component is equivalent to a p-group) and J is the class of faithful functors between them. We will generally keep the class J of 1-morphisms implicit. (Mack1) Additivity: For any objects x 1 , x 2 of G, the canonical functor induced by the 1morphisms i k :

x k → x 1 x 2 M(x 1 x 2 ) (i * 1 ,i * 2 ) ----→ M(x 1 ) ⊕ M(x 2 )
is an equivalence. (Mack2) For any morphism j ∈ J , the functor j * has a left adjoint j ! and a right adjoint j * : j ! j * j * (Mack3) Beck-Chevalley: For any morphism f : x → z in J and g : y → z of G, consider the following bipullback square in G:

x z

(f |g) y f λ 1 2 g Then the mates λ ! : 2 ! 1 * → g * f ! and (λ -1 ) * : g * f * → 2 * 1 * are invertible. ( Mack4 
) Ambidexterity: For any morphism j ∈ J , the left adjoint j ! and the right adjoint j * of j * are isomorphic: j ! ∼ = j * 4.1.4. Remark. To more precisely fit within the framework we developed in chapter 3, we should note that a Mackey 2-functor is precisely a 2-functor M : G op → Add which preserves products and has the ambidextrous BC-property (definition 3.1.2).

4.1.5. Definition. Let (G, J ) be an admissible pair. The 2-category Mack(G, I) (or Mack(G)) of Mackey 2-functors is the 2-category with:

• Objects: the Mackey 2-functors M on (G, J ).

• 1-Morphisms M → N: the pseudonatural transformations φ : M → N.

• 2-Morphisms φ → ψ: the modifications m : φ → ψ.

4.1.6. Remark. In this work, a 1-morphism φ : M → N is simply a pseudonatural transformation, without any additionally requirement. In particular, for a morphism j ∈ J , there are no specific compatibilities between the adjoints of M(j) and of N(j). This is a notable difference from the bicategory of Mackey 2-functors defined in [BD20, §6.3]. We will assume in this subsection that the admissible pair (G, I) is composed of a sub-2category of gpd, such as gpd, gpd f or p-gpd, and its class of faithful 1-morphisms.

Definition. A Mackey 2-functor

M : G op → Add is cohomological if, for any injective morphism of groups f : H → G in G, the composite natural transformation Id M(G) ηr -→ f * f * ∼ = f ! f * l -→ Id M(G)
is equal to [G : H]σ, where η r is the unit of the adjunction f * f * , l is the counit of the adjunction f ! f * and σ : Id M(G) → Id M(G) is some (arbitrary) invertible natural transformation.

We consider the set of injective group morphisms of index coprime to p: 

P = {f : H → G | p [G : H]} 4.1.9. Definition. A 2-functor M : G op → Cat is p-monadic if it is P-monadic (definition 1.1.33).
-→ i * i * ∼ = i ! i * l -→ Id Mod(ZG)
is equal to [G : H] Id, which is not invertible.

4.1.25. Remark. Let X : G op → Cat be a 2-functor such that X(∅) = 1 and which is a sheaf for both the p-local topology and the q-local topological, with p = q. Then, it is clear that X is entirely defined by the category X(E), where E is the trivial group, and more precisely X = Cat(-, X(E))

In particular Mackey 2-functors which are p-monadic and q-monadic, for two distinct prime p, q, are of the form X = Cat(-, A)

where A is an additive category.

4.2.4. Remark. The transporter category T S (G) entirely characterizes the group G, since G can be recovered as the group of automorphisms T S (G)(e, e) of the trivial subgroup e. This is not the case for the fusion system associated to G.

The Cartan-Eilenberg formula expresses the mod p cohomology of a finite group G in term of the mod p cohomology of its p-subgroups and the conjugation action of G on these. 4.2.6. Remark. The Cartan-Eilenberg formula can equivalently be stated using the transporter category for indexing H * (G; k) → lim P ∈T S (G) op H * (P ; k) since the comparison functor T S (G) → F S (G) is final. Obviously, it is more interesting to state that the mod p cohomology is an invariant of fusion than an invariant of transport.

The categorification of the transporter category. For an object G of a (2, 1)-category G, we would like to define a 2-category analogous to the transporter category of a group. 4.2.7. Definition. Let G be a (2, 1)-category. Let G be an object of G and (S, i S : S → G) an object of the slice (2, 1)-category G/G. The transporter 2-category Ti S (G) of G (with respect to i S ) is full, 2-full sub-(2, 1)-category of the slice (2, 1)-category G/G whose object (P, i P : P → G) factors through i S . More explicitly Ti S (G) is the (2, 1)-category with:

• Objects: the pairs (P, i P ) consisting of an object P and a 1-morphism i P : P → G of G such that there is a factorization:

G P S ∼ = i P i S
• 1-Morphisms (P, i P ) → (Q, i Q ): the pairs (g, γ) consisting of a 1-morphism g : P → Q in G and a 2-isomorphism γ:

G P Q i P g i Q γ
• 2-Morphisms (g, γ) → (h, η): the 2-morphisms ψ : g → h such that:

G P Q i P g h i Q η ψ = G P Q i P g i Q γ
The 2-category Ti S (G) is canonically endowed with a 2-functor U : Ti S (G) → G obtained as the restriction of the 2-functor G/G → G.

4.2.8. Example. Suppose that G = gpd f , G is a finite group, seen as a one object groupoid, and S is a p-Sylow of G, with i S : S → G denoting the inclusion. Then the 2-category Ti S (G) can be described as follows:

• Objects are essentially coproducts i P i of subgroups P i of S • 1-Morphisms are entirely described by the 1-morphisms between connected components, that is between two subgroups P and Q of S. We can see that these morphisms are precisely elements g of G which induce a group homomorphism c g : P → Q. • 2-Morphisms between two morphisms g, g : P → Q can be identified with the elements q of Q such that g = qg (which is unique, if it exists)

Thus the underlying 1-category of Ti S (G) can be seen as an extension of the transporter category T S (G) with coproducts. Hence, we will generally write TS (G) to denote Ti S (G). Proof. We note C the cone of G under U. We want to show that for any groupoid Z, the functor G(G, Z) → [ Ti (G), G](U, ∆Z) is an equivalence. We note E the trivial group and, for any group K, * K its unique object.

• Faithfulness: Let u, v : G → Z and φ, ψ : u → v such that φC = ψC. In particular: • Essential surjectivity: Let φ : U → ∆Z a pseudonatural transformation. We consider the 1-morphism u : G → Z given by:

φ * G = φ C E ( * E ) = ψ C E ( * E ) =
u : * G → φ E ( * E ) g → (φ (Id E ,g) ) * E
We can check that φ is isomorphic to the cone uC.

We will now relate our extended transporter 2-category to the 2-category of descent Desc (definition 2.2.1). 4.2.10. Proposition. Let G a (2, 1)-category with finite bipullback. Let G an object of G and (S, i S : S → G) an object of the slice (2, 1)-category. Then there is a 2-functor

K :                Desc → Ti S (G) 0 → (S, i S ) 1 → (i S |i S ) 2 → (i S |i S |i S ) x → x x → x
Moreover the 2-functor K is 2-final.

Proof. We use the topological criterion for 2-final 2-functors; proposition 4.2.14, proposition 4.2.15 and proposition 4.2.16 guarantee that our 2-functor satisfy the hypothesis of theorem 1.3.13. 4.2.11. Remark. Keeping the notations of proposition 4.2.10, let X : G → Cat be a 2-functor. Then the following diagram commutes:

Desc

Ti S (G)

Cat K D X i S

XU

We defer the actual proof of proposition 4.2.10 to state a few (now) easy corollaries.

4.2.12. Theorem. Let G a (2, 1)-site with finite bipullback. Let G an object of G and (S, i S : S → G) an object of the slice (2, 1)-category. Assume that the family with only the 1-morphism i S covers G. Then for any sheaf X on G, we have the following categorified Cartan-Eilenberg formula: X(G) bilim Proof. Indeed, since in particular it preserves products, we only have to check that it satisfies the descent condition for injective group homomorphisms g : H → G of index coprime to p. We can apply proposition 2.5.3 since we have the equivalence Cartan-Eilenberg formulas. In practice, the images of a Mackey 2-functor are generally richer than bare (additive) categories. We will present in this section one example exploiting this richer structure and to recover the classical Cartan-Eilenberg formula; the general process should be applicable to many more p-monadic Mackey 2-functors.

We consider the Mackey 2-functors of the derived categories

M = D(k-) : gpd f → Cat
where k is a field of characteristic p. Each D(kkG) is a k-linear category with Z-graded Hom-sets and a distinguished object, the trivial module k. They are the objects of the following 2-category.

4.2.17. Definition. The 2-category kCat gr • of k-linear, graded and pointed categories is the 2-category with:

• Moreover there is a bilimit-preserving 2-functor to the 1-category of k-linear and graded algebras:

H :          kCat gr • → kAlg gr (C, • C ) → C * (• C , • C ) (F, φ) → C * (• C , • C ) F -→ D * (F (• C ), F (• C )) D * (φ -1 ,φ) -------→ D * (• D , • D ) α → Id
Hence applying H to eq. (4.2.18), we recover the classical Cartan-Eilenberg formula:

H * (G; k) = (H • M)(G)

H( bilim TS (G)

op MU) bilim

TS (G)

op H MU lim P ∈T S (G) op H * (P ; k) 4.2.19. Remark. This example relies essentially on two properties:

• The 2-functor W : kCat gr • → Cat reflects bilimits, allowing us to lift the categorified Cartan-Eilenberg formula.

• The 2-functor H : kCat gr • → kAlg gr preserves bilimits These properties precisely outline the limitations of the process:

• It is quite common for Mackey 2-functors to land in categories with a triangulated structure. Unfortunately, the forgetful 2-functor Cat tr → Cat, from the triangulated categories (with a reasonable structure of 2-category) to the categories, does not reflect bilimits. Hence we cannot apply the previous discussion to exploit the triangulated structure. A potential solution would to consider a more well-behaved (but still related) 2-category, such as the 2-category of derivators. • Another common invariant is the Picard group associated to a symmetrical monoidal category. The 2-functor Cat ⊗,sym → Cat, from symmetrical monoidal categories to categories, reflects bilimits, so there is a categorified Cartan-Eilenberg formula in Cat ⊗,sym for p-monadic Mackey 2-functors taking value in symmetrical monoidal categories (Mod(k-), stMod(k-)). However, the Picard 2-functor, which maps a symmetrical monoidal category to the abelian group of its invertible objects modulo isomorphisms, does not preserve bilimits. Still, the 2-Picard 2-functor, mapping a symmetrical monoidal category to the 2-group of its invertible objects (without taking the quotient by the isomorphisms), does preserve bilimits.

  1.1.1. Definition. A 2-category C is a category enriched over (1-)categories, that is the data of • a class of objects Ob C, • for each pair of objects A, B ∈ Ob C, a Hom-category C(A, B), • for each object A ∈ Ob C, a distinguished identity Id A ∈ Ob C(A, A) and • for each objects A, B, C ∈ Ob C, a composition functor • : C(B, C) × C(A, B) → C(A, C)

  1.1.4. Definition. Let C, D be 2-categories. A pseudofunctor F from C and D is the data of • for each object A of C, an object FA of D • for each pair of objects A, B of C, a functor F : C(A, B) → D(FA, FB)• for each object A of C, a natural isomorphism F

  Given two 2-categories C and D, the 2-category [C, D] of pseudofunctors between C and D, with pseudonatural transformations as 1-morphisms and modifications as 2morphisms. 1.1.11. Notation. Let C, D be 2-categories and F, G : C → D be pseudofunctors. We use the notation PsNat(F, G) as a short-hand for the category [C, D](F, G) of pseudonatural transformations between F and G and modifications. 1.1.12. Definition. Let C, D be 2-categories and let F : C → D be a pseudofunctor. The pseudofunctor F is a biequivalence if there exists a pseudofunctor G : D → C and two equivalences FG Id D (in the 2-category [D, D]) and GF Id C (in the 2-category [C, C]).

  1.1.19. Definition. Let R : A → C and S : B → C be two 2-functors both landing in C. The (pseudo) arrow 2-category R ↓ S is the 2-category with:

  category, C an object of C. The (pseudo) slice 2-category C/C over C is the arrow 2-category Id C ↓ ∆C between the identity Id C of C and the constant 2-functor ∆C : 1 → C. • Let C be a 2-category, C an object of C. Conversely, the (pseudo) slice 2-category C/C under C is the arrow 2-category ∆C ↓ Id C . • Let C,D be 2-categories, I : C → D a 1-full, 2-full and faithful 2-functor and D an object of D. By a slight abuse of notation, we denote by D/C the arrow 2-category ∆D ↓ I. • Let C, D be a 2-categories, C an object of C and F : D → C. The (pseudo) slice 2-category C/F of F under C is the arrow 2-category ∆C ↓ F.

•

  1.1.21. Definition. Let C be a 2-category and C, D be two objects of C. An adjunction between C and D is a quadruple ( , r, η, ) of a 1-morphism : C → D, a 1-morphism r : D → C, a 2-morphism η : Id C ⇒ r and a 2-morphism : r ⇒ Id D , such that: (1.1.22) Id = • η (1.1.23) Id r = r • ηr We generally denote an adjunction r, with the 2-morphisms η and omitted. The 2-morphism η is called the unit of the adjunction and the 2-morphism is called the counit of the adjunction. 1.1.24. Definition. Let C be a 2-category and C be an object of C. A monad on C is a monoid object in the monoidal category (C(C, C), •, Id C ) of endomorphisms of C, that is, a triple (T, η, µ) consisting of a 1-morphism T : C → C, a 2-morphism η : Id C → T and a 2-morphism µ : T•T ⇒ T such that the following diagrams commute: T • T • T T 25. Proposition. Let C be a 2-category, C, D be two objects of C and ( : C → D, r : D → C, η, ) be an adjunction r between C and D. Then the triple (r , η, r ) defines a monad on C. 1.1.26. Definition. Let C be a 2-category, C be an object of C and (T, η, µ) be a monad on C. A left module on T, or left T-module, is an object D of C endowed with a 1-morphism v : D → C and a 2-morphism ν : Tv ⇒ v such that the following diagrams commute (1.1.27) 29. Definition. Let C be a 2-category, C be a category and (T, η, µ) be a monad on C. The 2-category of left T-modules is the category with: • Objects: the left T-modules. • 1-morphisms (D, v, ν) → (E, w, ω): the pairs (x, χ) consisting of a 1-morphism x : D → E and a 2-isomorphism χ : v ∼ = ⇒ wx such that: χ • ν = ωx • Tχ • 2-morphisms (x, χ) ⇒ (x , χ ): the 2-morphisms ψ : x ⇒ x such that: 30. Definition. Let C be a 2-category, C be a category and (T, η, µ) be a monad on C. An Eilenberg-Moore object (C T , U, μ) for the monad T is a biterminal object in the 2category of the left T-modules: for any other left T-module (D, v, ν), there is a 1-morphism (k, κ) : (D, v, ν) → (C T , u, μ), unique up to a unique 2-isomorphism. 1.1.31. Remark. Let C be a 2-category, C, D be two objects of C and ( : C → D, r : D → C, η, ) be an adjunction r between C and D. Note (T, µ, ) the associated monad on C, and assume it has an Eilenberg-Moore object (C T , u, μ). The object D endowed with the morphism r and natural transformation r : Tr → r is a left T-module. Hence there is a canonical morphism in C: r : D → C T 1.1.32. Definition. Let C be a 2-category, C, D be two objects of C and ( : C → D, r : D → C, η, ) be an adjunction r between C and D. Denote (T, µ, ) the associated monad on C. The adjunction r is monadic if the monad T has an Eilenberg-Moore object (C T , u, μ) and the canonical morphism k : D → C T is an equivalence. 1.1.33. Definition. Let C, D be 2-categories, M be a class of 1-morphisms of C and F : C → D be a 2-functor. The 2-functor F is M-monadic if for each 1-morphism m ∈ M, its image Fm has a left adjoint m ! and the adjunction m ! Fm is monadic. Any monad in C = Cat has an Eilenberg-Moore object, as follows. 1.1.34. Definition. Let C be a category and T be a monad on C. The Eilenberg-Moore category C T of T is the category with: • Objects: the pairs (c, f ) with C an object of C and f : Tc → c a morphism of C. • Morphisms (c, f ) → (c , f ): the morphisms g : c → c such that the following square commutes: Composition is induced by the composition of C. There is a canonical functor u : f ) → c g → g and a natural transformation μ : Tu ⇒ u with components μ(c,f) = f 1.1.35. Proposition. Let C be a category and T be a monad on C. The Eilenberg-Moore category C T endowed with U and μ (definition 1.1.34) is a left module on T (definition 1.1.26).

  (1.1.22) and eq. (1.1.23)): Pseudo bilimits are the natural adaptations of limits to 2-categories. 1.2.1. Definition. Let I, C be 2-categories and D : I → C a pseudofunctor. A (pseudo) bilimit of D is an object L of C together with a pseudonatural equivalence: Ψ : C(-, L) [I, C](∆-, D) The pseudonatural transformation Ψ L (Id L ) is the standard cone of L. 1.2.2. Remark. We call a pseudonatural transformation ∆X → D a cone over D with vertex X. The category [I, C](∆X, D) of pseudonatural transformations and modifications is the category of cones over D with vertex X. 1.2.3. Remark. Any pseudonatural transformation ∆L → D induces (by applying ∆ and whiskering) a pseudonatural transformation:

1. 2

 2 .4. Remark. Let I, C, D be 2-categories, and D : I → C, F : C → D be pseudofunctors. Let ψ : ∆X → D be a cone over D with vertex X. Then, the 2-functor F induces a cone Fψ : ∆FX ∼ = F∆X → FD over FD with vertex FX. 1.2.5. Definition. Let C, D be 2-categories and F : C → D a pseudofunctor. • The 2-functor F preserves bilimits if for any 2-functor D : I → C which has a bilimit (L, ψ) in C, the pair (FL, Fψ) is a bilimit of the 2-functor FD in D. • The 2-functor F reflects bilimits if, for any 2-functor D : I → C and for any pair (L, ψ) of an object L of C and a cone ψ : ∆L → D such that (FL, Fψ) is a bilimit of FD in D, the pair (L, ψ) is a bilimit of D in C.

fn -→ a n

  Following the usual conventions, left-to-right arrows represents pairs with ε = 1 and right-to-left arrows pairs with ε = -1. The empty path (at an object a) should be represented by a.

  the pseudo bicolimits bicolim B D and bicolim A D • F each exists if and only if the other one exists, and the canonical comparison morphism bicolim A D • F → bicolim B D is an equivalence.

  b and we want to define the component at b ψ b : D(b) → e. Since the slice 2-category b/F is nonempty, we consider the following candidate. 1.3.14. Definition. We fix an object in b/F, that is an object a(b) ∈ A and a morphism α(b) : b → F(a(b)). Define ψ (a(b),α(b)) :

  by a path in b/F. 1.3.20. Definition. Given a morphism u : b → b in B, there is a base change 2-functor:

1. 3

 3 .21. Proposition. The application j maps base change to whiskering: j(u * p) = j(p) • Du We can now use the above properties to construct a cone ψ under D with vertex e. For any b ∈ B, fix an arbitrary object (a(b), α(b)) in b/F. This defines the components ψ b = ψ (a(b),α(b)) , as stated in definition 1.3.14. For a morphism u : b → b , note that ψ (a(b ),α(b )) • Du = ψ u * (a(b ),α(b )) ; hence we can define ψ u as the unique 2-isomorphism j(p) induced by any path p : u * (a(b ), α(b )) (a(b), α(b)). We must check that ψ is indeed a pseudonatural transformation. The compatibility of j with the whiskering and the concatenation of paths implies the required compatibility of ψ with the composition of morphisms. It remains to check the compatibility with 2-morphisms. Let u, u : b → b be two parallel 1-morphisms and δ : u ⇒ u be a 2-morphism in B. By uniqueness of 2-morphisms induced by a path (proposition 1.3.17), it suffices to check that the pasting (1.3.22) induced by a path. Indeed, fix a path p : (u ) * (a(b ), α(b )) (a(b), α(b)

  23. Proposition. Let m : φ → φ be a modification between two cones φ, φ : D • F ⇒ ∆e For any path p : (a, α) (a , α ) in b/F, we have the following equality: For an empty path p, the proposition reduces to the tautology m a = m a . For a path p = (a, α) (u,µ)---→ (a , α ) of length 1, we can decompose the equation as:

DF

  a(b)) • D(α(b)) Hence we can define a 2-morphism ψ,b : ψ b ⇒ ψ b in E by: ψ,b = ψ α(b) When b ranges over all objects of B, these morphisms then form a modification ψ : ψ → ψ. Indeed for any morphism (u, µ) : (a, α) → (a , α ) in b/F, we have: implies a similar formula for any path p : (a , α ) (a, α) in b/F: e This in turn implies that ψ is a modification. Fix a morphism u : b → b and consider a path p : u * (a(b ), α(b )) (a(b), α(b)) (hence we have ψ u = j K(ψ) (p)). We check the modification axiom at u: e e DF(a(b ))

Fix

  ψ : B(b, F-) ⇒ ∆T a pseudonatural transformation. We want to define a functor C T (ψ) : Π 1 (b/F) → T .

  1.3.33. Definition. Let F : A → B be a 2-functor between 2-categories. The 2-functor is said to be 2-initial if, for any 2-diagram D : B → E, each of the bilimits bilim B D and bilim A D • F exists whenever the other one exists, and the canonical comparison 1-morphism bilim B D → bilim A D • F is an equivalence. 1.3.34. Proposition. Let F : A → B be a 2-functor between 2-categories. The 2-functor F is initial if and only if the 2-functor F op : A op → B op is final. 1.3.35. Theorem. Let F : A → B be a 2-functor between 2-categories. The 2-functor F is initial if and only if, for any object b ∈ B, the slice 2-category F/b is nonempty, connected and simply connected. CHAPTER 2

•

  1. Definition. Let C be a 2-category and C an object of C. A 2-sieve on C, or Csieve, is a pair (R, ι) consisting of a 2-functor R : C op → Cat and a fully faithful pseudonatural transformation ι : R → C(-, C). 2.1.2. Remark. It is interesting to spell out the definition of a sieve (R, ι) on C. For each object D of C, the component ι D : RD → C(D, C) is fully faithful, hence each RD should be seen as a full subcategory of C(D, C), which mostly amounts to a subset of the objects of C(D, C). The 29 2. 2-SHEAVES pseudonaturality of ι (essentially) states that theses subsets are closed under precomposition by 1-morphisms of C or, equivalently, that they form a right-ideal of morphisms of C. The 2-sieves over a fixed object C naturally form a 2-category. 2.1.3. Definition. Let C be a 2-category and C an object of C. The 2-category 2Sieve/C is the 2-category with: • Objects: the 2-sieves (R, ι) on C. • 1-Morphisms (R, ι R ) → (S, ι S ): the pairs (µ, m) where µ : R → S is a pseudonatural transformation and m : ι S µ ⇒ ι R is an invertible modification: Morphisms (µ, m) ⇒ (ν, n): the modifications h : µ ⇒ ν such that: Compositions are induced by the compositions of pseudonatural transformations and modifications. 2.1.4. Remark. The 2-category 2Sieve/C is precisely the full, 2-full sub-2-category of the slice 2-category [C op , Cat]/C(-, C) whose objects are the 2-sieves on C. 2.1.5. Remark. In a morphism (µ, m) : (R, ι R ) → (S, ι S ) between 2-sieves, the natural transformation µ : R → S is always fully faithful. 2.1.6. Remark. Two 2-sieves (R, ι R ) and (S, ι S ) are equivalent if and only if for every object D of C, the following essential images are equal: ι R,D (RD) = ι S,D (SD) It is also possible to pull back 2-sieves along 1-morphisms of C. 2.1.7. Lemma. Let C be a 2-category and f : D → C a 1-morphism in C. The 1-morphism f defines a 2-functor f * : 2Sieve/C → 2Sieve/D Proof. Consider the pseudonatural transformation f * : D(-, D) → C(-, C) seen as a 1-morphism in [C op , Cat]. By proposition 1.2.27, it defines a 2-functor:

  2.1.12. Definition. Let C be 2-category. A 2-coverage C on C is the choice, for each object C of C, of a collection C C of families of 1-morphisms (f i : C i → C) i with the same codomain C, called covering families of C. The covering families must satisfy the following axioms: (Cov1) For each object C of C, the collection C C is nonempty. (Cov2) For any covering family F ∈ C C and morphism h : D → C, there exists a covering family G ∈ C D such that, for any morphism g : D → D of G, there is a morphism f : C → C of F and a factorization (up to an isomorphism): 13. Definition. Let C be 2-category. A saturated 2-coverage on C is a 2-coverage C satisfying the following additional axiom.
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 1 .14. Remark. Any coverage C induces a saturated coverage C sat . 2.1.15. Definition. Let C be a 2-category and C an object of C. A family of 1-morphisms F = (f i : C i → C) i with the same codomain C defines a 2-sieve R F on C as follows. For any object D of C, the category R F D is the full subcategory of C(D, C) whose objects are the 1-morphisms g : D → C which factor through some f i ∈ F, up to an isomorphism:

  Then, the collection of the sets (R C C ) C is a Grothendieck coverage R C on C. Proof. The axioms (GC1) and (GC3) are immediately satisfied by construction of R C . We first show that (GC2) is satisfied. Fix an object C of C, a morphism h : D → C and a covering sieve (R, ι) ∈ R C C . By construction, there exists a covering family F ∈ C C and a 1morphism (µ, m) : R F → (R, ι) in 2Sieve/C. Choose a covering family G ∈ C D as in (Cov2), with respect to the morphism h : D → C. For any object E of C, the functor h * : C(E, D) → C(E, C) restricts to a functor h * : R G E → R F E. Indeed, given an object k : E → D of R G E, we can form the following pasting diagram:

  2.2.1. Definition. The descent 2-category Desc is the 2-category generated by the graph

  .2.2. Remark. The 2-category Desc can be pictured as one half of a cube

  2.3.2. Remark. This definition is the same as the one in [Str82]. It guarantees that we are dealing with the same notion of 2-sheaf. 2.3.3. Definition. Let C be a 2-site. The 2-categories Sh(C) of sheaves on C is the full, 2-full sub-2-category of the 2-category of 2-functors [C op , Cat] whose objects are the sheaves on C. 2.3.4. Definition. Let C be a 2-category with finite bipullbacks and let C be a coverage on C.

  2.4.3. Proposition. Let C and D be 2-categories with bipullback, each endowed with a 2coverage C D and C D . Let W : D → C be a 2-functor preserving 2-pullbacks, such that for any covering family F ∈ C D , the image by W W(F) = {W(f ) | f ∈ C} is a covering family of C C . Then for any 2-sheaf X ∈ Sh(C), the 2-functor W * (X) = XW : D op → Cat is a 2-sheaf on D.Proof. Since the functor W preserves bipullbacks, for any covering family F ∈ C D d , there is a pseudonatural equivalence: 4. Definition. Let C be a 2-site whose Grothendieck 2-coverage is generated by a coverage C. A covering subsite of C is a 2-site D and a 2-functor I : D → C which is an equivalence on the Hom-categories and such that:• the Grothendieck coverage on D is the one induced by C• for any object C of C, there is a covering family F ∈ C C such that for each f : c f → c ∈ F, the object c f is in the essential image of I.

  3.3.1. Proposition. Let C be 2-site with finite bipullbacks. Let I be a family of morphisms of C stable by bipullback. Let D be a covering subsite of C (definition 2.4.4) such that for any morphism i : c → c of I and f : d → c of C with domain d in D, the bipullback (i|f ) is in D. Let F : C op → Cat be a 2-sheaf on C such that its restriction F |D to D satisfies the left (respectively right, ambidextrous) BC property with respect to I ∩ D. Then F satisfies the left (respectively right, ambidextrous) BC property with respect to I.

  4.1.3. Definition. Let (G, J ) be an admissible pair. A Mackey 2-functor M on (G, J ) is a 2-functor M : G op → Add satisfying the following axioms:
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 1 .7. Example. Representation theory provides us with a large supply of Mackey 2-functors: (a) For an additive category A, the representable 2-functor Cat(-, A) : gpd op → Add is a Mackey 2-functor. This example includes the linear representations Mod(k-) over some commutative ring k with A = Mod(k), the category of k-modules. (b) For a field k, the stable modules categories stMod(k-) : (gpd f ) op → Add and the derived categories D(k-) : (gpd f ) op → Add form Mackey 2-functors. (c) For a commutative ring k, the permutation modules categories perm k (-) : gpd op → Add form a sub-Mackey 2-functor of mod(k-). (d) For a ring k, the categories of cohomological Mackey 1-functors coMack k (-) : gpd op → Add form a Mackey 2-functor. This is a consequence of [BD20, Proposition 7.3.2] and the characterization of cohomological Mackey 1-functors given by Yoshida theorem [Web00, Theorem 7.1]: coMack k (G) = Fun + (perm k (G) op , Ab)Cohomological Mackey 2-functors. The Mackey 2-functors we are interested in, namely stMod(k-) and D(k-), both present the same additional property. For any injective group homomorphism f : H → G, there is an isomorphism between the adjoint functors f ! and f * such that the composite natural transformationId η -→ f * f * ∼ = f ! f * -→ Idacts by multiplication by the index [G : H]. In [BD21], Mackey 2-functors exhibiting this properties are called cohomological by analogy with the 1-dimensional case. We take a slightly different definition, as we are not willing to introduce the rectification of a Mackey 2-functor. Nevertheless both definitions have the same implication on the monadicity of the cohomological Mackey 2-functors (proposition 4.1.11).

  4.1.10. Definition. We denote by Mack p (G) the full, 2-full sub-2-category of Mack(G) whose objects are the p-monadic Mackey 2-functors. 4.1.11. Proposition. Let M : G op → Add k be a cohomological Mackey 2-functor taking values in the 2-category of k-linear categories, for some commutative Z (p) -algebra k. Assume moreover that, for every group G, the category M(G) is idempotent-complete. Then the 2-functor M is p-monadic. Proof. This is precisely [BD21, Theorem 3.10]. 4.1.12. Example. We can apply proposition 4.1.11 to check that several of our previously defined Mackey 2-functors are actually p-monadic. For a commutative Z (p) -algebra k: (a) The categories of modules Mod(k-) and finitely generated modules mod(k-) over k. (b) The derived categories of modules D(k-) over k.

  4.2.5. Proposition (Cartan-Eilenberg formula). Let G be finite group, p a prime integer and k a commutative Z (p) -algebra. Fix a p-Sylow S of G. Then the comparison morphismH * (G; k) → lim P ∈F S (G) op H * (P ; k) is an isomorphism.

  Moreover, the truncated 1-category of Ti S (G) is precisely the orbit category O S (G) of G, and the canonical projection 2-functor Ti S (G) → O S (G) is a biequivalence. 4.2.9. Proposition. Suppose that G = gpd f . Let H, G be a finite groups and i : H → G an injective homomorphism. Then the canonical 1-morphism bicolim Ti(G) U → G is an equivalence

  ψ * G Hence φ = ψ. • Fullness: Let u, v : G → Z and m : uC → vC a modification. Define a transformation ψ : u → v by ψ * G = m E, * E For any g ∈ G, there is a 1-morphism: (Id, g) : (E, C E ) → (E, C E ) Hence the following square commutes: Then evaluating at * E , we have the commutative square * G * G * G which shows the naturality of ψ. A straightforward check shows that m = ψC.

P

  ∈ Ti S (G) X(P ) 4.2.13. Proposition. Let (G, I) satisfying hypothesis 4.1.13. Then a bilimit-preserving 2functor X : G op → Cat is sheaf on G for the p-local topology.

2

  A path p with π(p) = N m ← -K m -→ N is homotopic to a path p with π(p ) = N Id ← -N .Indeed, write p as:(N, f ) (m,µ1) ←----(K, h) (m,µ2) ----→ (N, g)We can define a 2-morphism ν in S, by pasting: This defines a path p in S/K, homotopic to p: p = (N, f ) (Id,ν) ← ----(N, g).

( 2 )← - 1

 21 Similarly, a path p with π(p) = N m -→ K m ← -N is homotopic to a path p with π(p ) = N id ← -N . (3) A path p with π(p) is a 2-morphism 1 : 1 • 12 ⇒ 1 • 13 in Desc. Write p as: (1, f ) (12,µ) ← ----(2, h) (13,ν) ----→ (1, g)We consider the 2-morphism in S:One can check that we have a 2-morphism in S/K:K1 : (K1, μ) • (K12, µ) ⇒ (K1, ñu) • (K13, ν)Writing h = 1 • h, we deduce a path p in S/K, homotopic to p: By similar arguments, any path p with π(p) and any path p with π(p)

γ

  Objects: The pairs (C, • C ) consisting of a k-linear, Z-graded category C and an object• C of C. • 1-Morphisms (C, • C ) → (D, • D ): the pairs (f, φ) consisting of a k-linear functor Fwhich preserves the graduation and an isomorphism φ :F (• C ) → • D of degree 0. • 2-Morphisms (F, φ) → (G, γ): the natural transformations α : F → G, with each com-ponent of degree 0, such that the following square commutes:F (• C )The 2-category kCat gr • is endowed with a bilimit-reflecting 2-functorW : kCat gr • → Cat Our Mackey 2-functor M = D(k-) actually factors through W: M : gpd f M -→ kCat gr • W -→ CatSince W reflects bilimits, we can lift the categorified Cartan-Eilenberg formula (theorem 4.2.12) to M. For any group G with a p-Sylow S,

  Note that all but the front and back faces are bipullbacks. By the previous discussion we can form the following commutative diagram, pasting the relevant cylinders on the left and on the right:The upper face is precisely the mate (x|y) ! we are interested in. The lower pasted face is the mate associated to a bipullback lying in D; it is thus invertible. All the vertical faces are invertible. Hence the remaining face (c y jk ) * (x|y) ! is invertible. Since this is true for all j, k and (c y jk ) j,k is a covering family of y, this is sufficient to conclude that the 2-morphism (x|y) ! is invertible.
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  satisfies the hypotheses of proposition 2.4.3. Hence restricting a 2-sheaf on gpd f to G-set provides a stack on G-set. Applying this observation to Mod(k-), stMod(k-) and D(k-), we recover the fundamental theorem of[START_REF] Balmer | Stacks of Group Representations[END_REF].is a biequivalence between the 2-category of p-monadic Mackey 2-functors on G and the category of Mackey 2-functors on P.

	4.1.21. Remark. One easily checks that a product-preserving 2-functor
	M : P op → Cat
	is a 2-sheaf for the p-local topology, since, by proposition 2.5.7, we only have to check the descent
	condition for isomorphisms, which holds trivially. Hence by theorem 4.1.18, a Mackey 2-functor
	on P is always p-monadic.
	4.1.22. Theorem. The restriction 2-functor
	Mack p (G) → Mack(P)
	Proof. By proposition 2.4.6, the restriction 2-functor
	Sh(G, p) → Sh(P, p)
	is a biequivalence of 2-categories and by theorem 4.1.18, it induces a biequivalence
	Mack

p (G) → Mack p (P) = Mack(P) as announced. 4.1.23. Remark. Given an arbitrary Mackey 2-functor M ∈ Mack(G), we can consider its restriction M |P ∈ Mack(P) to P, and then the (essentially) unique p-monadic extension (M |P ) ∈ Mack p G. Notice that there is a canonical pseudonatural transformation α : M → (M |P ) (hence a 1-morphism in Mack(G)), defined object-wise by the universal property of the descent bilimit. Moreover ((M |P ) , α) is a biinitial object in M/Sh(G, p), what we call a 2-sheafification of M. 4.1.24. Remark. The Mackey 2-functor Mod(Z-) = Cat(-, Ab) preserves the bilimits, as the inclusion gpd → Cat preserves the bicolimits and the representable 2-functor Cat(-, Ab) : Cat → Cat preserves the bilimits. Hence, by remark 4.1.17, Mod(Z-) is sheaf for the p-local topology, and thus by theorem 4.1.18, it is a p-monadic Mackey 2-functor. Nonetheless, for an injective group homomorphism i : H → G of non-trivial index coprime to p, the composite natural transformation Id Mod(ZG) ηr
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2-SHEAVES AND ADJUNCTIONS

Remerciements

Thus eq. (3.2.10) holds, and so does eq. (3.2.8). Hence the couple (û, α) defines a functor K : 1 → C T which moreover satisfy û = u • K and (by eq. (3.2.11)) ζ = ζK. This implies that

(c) Essential surjectivity. Let (a ij : 1 → X ij ) be a family of functors and (z iji j : 1 * a ij → 2 * a i j ) a family of morphisms such that for any i 1 , i 2 , i 3 I, j 1 ∈ J i1 , j 2 ∈ J i2 , j 3 ∈ J 3 , the following equation holds:

(2.2.18)

1

where g k is a shorthand for g i k j k , etc. . . Fix i ∈ I and j 1 , j 2 , j 3 ∈ J i . We consider the 1-morphisms

given by lemma 1.2.21. Postcomposing eq. (2.2.18) with the induced 1-morphisms (and the structural 2morphisms), yields the equation (2.2. 19) 1

which is precisely the cubical law for the (z ij ) j∈Ji with respect to the (f ij ) j . Hence there is a functor a i : 1 → XX i and natural transformations (κ ij :

1

X2

Fix i, i ∈ I. We want to define a morphism

We first note that the following identity holds:

The natural transformation ζ λ is inversible, with inverse ζ λ -1 :

When k is a field, the stable categories of modules stMod(k-) and finitely generated modules stmod(k-). (d) The categories of cohomological Mackey 1-functors coMack k (-) over k.

Sheaves and p-monadic Mackey 2-functors. We address in this subsection the central point of this thesis: the correspondence between 2-sheaves on finite groupoids gpd, with an adequate topology (definition 4.1.14), and p-monadic Mackey 2-functors (theorem 4.1.18). 4.1.13. Hypothesis. We will assume in this subsection that the admissible pair (G, I) is composed of an extensive sub-2-category of gpd, such as gpd, gpd f or p-gpd, and its class of faithful 1-morphisms. We will note P the full, 2-full sub-2-category of G on p-groupoids. Analogous results hold for slice 2-categories such as G = gpd f /G or P = p-gpd f /G, where G is a fixed finite groupoid.

4.1.14. Definition. The p-local topology on G is the topology generated by the (finite) covering families of the form

where each f i : H i → G i is an injective homomorphism between groups of index coprime to p.

4.1.15. Notation. The category of sheaves on G for the p-local topology is denoted by Sh(G, p).

4.1.16. Remark. By proposition 2.5.7, since G is extensive, a product-preserving 2-functor X : G op → Cat is a 2-sheaf for the p-local topology if and only if it satisfies the descent condition for all the injective group homomorphisms of index coprime to p.

4.1.17. Remark. We will see in proposition 4.2.13 that a bilimit-preserving 2-functor Proof. We prove both implications of the equivalence:

In particular, it is productpreserving. By remark 4.1.16, it is sufficient to check that it satisfies the descent condition for an injective morphism f : H → G of index coprime to p. Since M is p-monadic, we can apply proposition 3.2.13, hence M is a 2-sheaf for the p-local topology on G.

(ii) ⇒ (i): Assume that M is a 2-sheaf for the p-local topology. By proposition 3.3.1, since the restriction of M to P satisfies the ambidextrous BC-property, so does M. Moreover, ∅, the initial groupoid, is a p-groupoid, hence M(∅) = 1 and, by proposition 2.5.8, the 2-functor M preserves products. Hence M is a Mackey 2-functor.

4.1.19. Remark. The Mackey 2-functors listed in example 4.1.12 are p-monadic, hence they are 2-sheaves for the p-local topology. In particular, this includes the Mackey 2-functors Mod(k-), stMod(k-) and D(k-).

4.1.20. Remark. For a group G, the 1-category G-set of finite G-sets is biequivalent to the slice 2-category gpd f /G [Del19, Proposition 5.5]. In [START_REF] Balmer | Stacks of Group Representations[END_REF], the 1-category of finite G-sets is endowed with coverage, inducing the so-called sipp topology. Remark that the 2-functor

Cartan-Eilenberg formulas

In this section, we present the link between the classical theory of fusion in a finite group and descent over the p-local topology. In particular, we show that the descent condition can be reinterpreted as a categorified version of the classical Cartan-Eilenberg stable elements formula. We also present a generic process to decategorify our categorified Cartan-Eilenberg formula and generate variations of the original Cartan-Eilenberg formula.

The classical Cartan-Eilenberg formula. We introduce the fusion system and the transporter category of a finite group, and use them to express the classical Cartan-Eilenberg formula.

Given a finite group G with a subgroup H, any element of g defines a group homomorphism:

This defines an action of G on its subgroups. The fusion system F S (G) of G is a category that agglomerate all the information of the action by conjugation of G on the p-subgroups of a fixed p-Sylow subgroup S of G.

Definition.

Let G be a finite group and p a prime integer. Fix a p-Sylow subgroup S of G. The p-fusion system F S (G) of G is the category with:

• Objects: the subgroups P of S.

• Morphisms P → Q: the conjugation homomorphisms

induced by an element g ∈ G such that gP g -1 ⊂ Q. • Composition is induced by the composition of group homomorphisms.

The p-fusion system of G is naturally endowed with a forgetful functor to the category of finite groups:

U : F S (G) → gp Several auxiliary categories are usually used in conjunction with the fusion system F S (G); we will particularly be interested in the transporter category T S (G).

Definition.

Let G be a finite group and p a prime integer. Fix a p-Sylow subgroup S of G. The p-transporter category T S (G) of G is the category with:

• Objects: the subgroups P of S.

• Morphisms P → Q: the elements g of G such that gP g -1 ⊂ Q.

• Composition is induced by the multiplication in G.

The p-transporter category of G is naturally endowed with a forgetful functor to the category of finite groups U : T S (G) → gp 4.2.3. Remark. We obviously have a factorization:

The functor T S (G) → F S (G) is the identity on objects and full. In particular, it is final.

where the equivalence (1) is precisely proposition 4.2.9 and the equivalence (2) is a consequence of proposition 4.2.10 and of the factorization

where Dg is defined in remark 2.5.2.

We give in the remaining of this subsection the arguments justifying proposition 4.2.10. Recall that a bipullback over an object x in a 2-category C is precisely a biproduct in the slice 2-category C/x. Hence we fix a (2, 1)-category S and we assume that:

• all the binary biproducts exist in S • there is a weakly final object X, that is, for any object S in S, there is a morphism S → X. As above we define a pseudofunctor

4.2.14. Proposition. For any object S of S, the slice (2, 1)-category S/K is nonempty.

Proof. By hypothesis, there is a morphism S → X = K(0) in S. Hence S/K is nonempty.

4.2.15. Proposition. For any object S of S, the slice (2, 1)-category S/K is connected.

Proof. First, fix an object (N, f : S → K(N )) in S/K(N ). There is a morphism m : N → 0 in Desc, hence a morphism (m, Id) : (N, f ) → (0, Fm • f ) in S/K. It is thus sufficient to show that any two objects of the form (0, f : S → K(0)) are connected.

Now fix two such objects (0, f ) and (0, g) in S/F. By the biproduct universal property, they define an essentially unique morphism h : S → X × X fitting in:

This last diagram can be rewritten as a path in S/F:

----→ (0, g) 4.2.16. Proposition. For any object S of S, the slice (2, 1)-category S/K is simply connected.

Proof. We want to show that any two paths p, p in S/K. We will first reduce the problem gradually to paths with simpler shapes, by looking at projected path in Desc.

(5) Any path p with

is homotopic to any path p with same source and target and with

Indeed, write p as:

and p as:

The morphisms f 1 , f 2 and f 3 define an essentially unique morphism f : S → X × X × X in S, with structural 2-isomorphisms, for i = 1, 2, 3:

Both the morphism g 1 and K12 • f satisfy the universal property of K1 = X × X with respect to f 1 and f 2 , thus there is a unique 2-isomorphism κ 1 : g 1 ⇒ K12 • f compatible with the structural 2-morphisms. Similarly, there are 2-isomorphisms κ 2 : g 2 → K23 • f and κ 3 : g 3 → K13 • f , with some compatibilities. One can check that we have the following chain of homotopies: ←----(0, f 3 ) = p Since S/K is connected, to check that it is simply connected, it is sufficient to check that loops at an object (0, f ) are homotopic to the constant path. By the previous reduction, up to homotopy, it suffices to consider a loop p with π(p) = 0 1 ← -1 2 -→ 0. But by the last case, we have p 2 ∼ p, hence p is homotopic to the constant path.