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Abstract  

This thesis focuses on the effects of mechanical punching process on magnetic properties of 

electrical steels and on electrical machine performance. The scalar Sablik model with some 

improvements has been considered to account for the degraded magnetic properties. It allows to 

describe both magneto-elastic and magneto-plastic coupling.  The identification process is carried 

out using measured magnetization curves under different elastic stresses and plastic strains. Since 

the model accounts directly for the plastic strain, a mechanical punching process simulation has 

been performed using the software ABAQUS.  

A finite element simulation of a synchronous machine including the effect of punching process 

shown the degradation of the magnetic flux density at the punching edges and an increase of the 

iron losses by about 38%. Finally, the results obtained from the magneto-mechanical simulation 

have been investigated in terms of the method used to implement the plastic strain distribution in 

the finite element computation. Two examples have been investigated: a steel sheet and a tooth of 

an electrical machine. It has been shown that the degradation profile defined by the average value 

of the strain at each position from the edge does not reflect the real plastic strain distribution. An 

adjustment has been proposed.   

Résumé   

Cette thèse porte sur l’impact du processus de poinçonnage mécanique sur les propriétés 

magnétiques des matériaux qui composent les machines électriques. Le modèle anhystérétique de 

Sablik qui est basé sur une approche scalaire du couplage magnéto-mécanique a été considéré avec 

certaines modifications. Le modèle permet de décrire à la fois le couplage magnéto-élastique et 

magnéto-plastique. Le processus d'identification est réalisé à l'aide de courbes d’aimantations 

mesurées sous différentes contraintes élastiques et déformations plastiques. Le modèle prenant 

directement en compte la déformation plastique, une simulation de processus de poinçonnage 

mécanique a été réalisée à l'aide du logiciel ABAQUS pour définir la distribution de la déformation 

plastique sur le bord de coupe. Une simulation éléments finis d'une machine électrique synchrone 

incluant l'effet du poinçonnage a montré la dégradation de l’induction magnétique au niveau des 

bords de coupe et une augmentation des pertes fer d'environ 38%. Enfin, les résultats obtenus à 

partir de la simulation magnéto-mécanique ont été étudiés en termes de méthodes utilisées pour 

considérer la distribution de la déformation plastique dans le calcul numérique. Deux exemples ont 

été étudiés : une tôle d'acier et une dent d'une machine électrique. Il a été montré que le profil de 

dégradation défini par la valeur moyenne de la déformation en fonction de la distance au bord de 

coupe ne reflète pas la distribution réelle de la déformation plastique. Un ajustement de la méthode 

de calcul a été proposé. 
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Introduction 

1. Background and aims of the thesis 

The most important industrial challenge of nowadays is certainly environmental. In fact, the 

increase of global energy consumption strongly impacts on global warming. It has been reported 

that rotating electrical machines consume more than 40% of the total global electricity consumption 

[1].  

Thus, to reduce the global carbon footprint, the International Electrotechnical Commission 

imposed efficiency standards for electrical motors (IEC:60034-34, 2014).  Consequently, to 

improve the performances of electric machines, while maintaining optimum efficiency, efficient 

numerical models are required for the design process. These models must include accurate 

representation of the physical phenomena underlying the energy conversion process as well as the 

accurate representation of materials that constitute the electrical machines. Also, the design 

process, and consequently the employed models, must take into account the various influencing 

parameters during the operation and manufacture of electrical machines.  

In this context, the work proposed in this thesis deals with the impact of manufacturing processes 

on the properties of the magnetic materials that make up electrical machines. Indeed, the 

ferromagnetic cores of electrical machines undergo different shaping and assembly processes to 

which the properties of the materials are very sensitive, therefore, the performance of machines 

and their energy efficiency. It has been shown that the manufacturing processes may generate 

significant plastic strain as well as thermal stresses that lead to the degradation of the magnetic 

properties of the magnetic cores. For example, it has been measured about 28% increase of iron 

losses in an electrical machine due to the cutting process [2].  

This degradation of magnetic performances must be integrated in the design process of electrical 

machines in order to allow, on one hand to determine the real performances of the machine and on 

the other hand to anticipate and to act upstream on the manufacturing process parameters. Different 

industrials are interested on this problem, especially the automotive supplier, where the effect of 

manufacturing processes occupies an ever more prominent place. Indeed, these aspects become 

crucial in modern electrical machines, such as electrical mobility, for which the design must be 

realized as precisely as possible according to the application requirements. 

The work of this thesis aims to develop a methodology and its associated tools to simulate the 

impact of the mechanical punching process on magnetic properties of electrical steels that compose 

electrical machines. This cutting process represents the most used technique for large series 

production of electrical machines. It is characterized by the concentration of plastic strain near the 

punching edges. Thus, the modeling chain from the mechanical punching process till its effect on 

the magnetic properties requires to estimate the mechanical state of the punched material at the 

cutting edge. In the proposed work, a mechanical simulation of the cutting process has been carried 

out to obtain the plastic strain distribution. Then, based on the literature, the scalar Sablik model 
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with some improvements has been considered to account for the degraded magnetic properties at 

the edges of electrical steels. This model allows to describe phenomenologically the physics of the 

magneto-mechanical coupling at the macroscopic scale. Finally, a numerical tool based on the 

finite element method (FEM) has been developed to interface both physics, magnetic behavior, and 

plastic strain. The effect of the punching process on academic examples as well as on the 

performances of an electrical machine has been investigated.  

2. Scientific contribution 

The main scientific contributions of the thesis can be summarized as follows: 

• In the magneto-elastic regime, the original Sablik model considers only the effect of 

uniaxial stress. Thus, to account for the multiaxial stress an equivalent stress has been 

added. Biaxial measurements have been used for the validation.  

• To describe the anhysteretic behavior, the Sablik model uses the Langevin function. The 

modified Brillouin function has been integrated in the model to have a better representation 

of the magnetostrictive behavior under elastic stress. Furthermore, the identification 

method based only on macroscopic magnetization curves measured under compressive and 

tensile stress was quite simple and gives a good estimation of the magnetostriction. 

• Since the Sablik model accounts directly for the mechanical strain, punching process 

simulations have been performed to estimate the plastic strain distribution near the 

punching edges. Two examples have been simulated: a steel sheet and a tooth of an 

electrical machine. The effect of punching parameters, such as the punch-die clearance and 

sheet thickness, have been investigated.  

• The implementation in FEM of the degraded magnetic properties at the punching edges was 

carried out by considering the “degradation profile”. It approximates the spatial strain 

distribution given by the punching simulation by an exponential function of the distance 

from the punching edge.  

• The identification method of the “degradation profile” has been compared with the full 

strain distribution along the sheet thickness as given by punching simulation. The analysis 

is conducted from the magnetic point of view by comparing the distribution of the magnetic 

flux density and the total magnetic energy for two examples: a steel sheet sample and a 

tooth of an electrical machine.  

• It has been shown that the degradation profile defined by the average value of the strain at 

each position from the edge does not reflect the real plastic strain distribution in the steel 

sheet depth. Indeed, depending on the magnetic flux density magnitude and the dimensions 

of the studied system, the magneto-mechanical behavior varies substantially. A first 

approach has been proposed to adjust its method of calculation.  

3. Outline of the thesis 

This thesis report is divided into four chapters. The current section introduces the research work 

briefly and summarizes the main findings. Chapter I reviews the main theoretical notions of 
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ferromagnetism and fundamentals of magneto-mechanical interactions. Then, the relevant 

experimental and modeling aspects related to magneto-mechanical coupling are reviewed.  Chapter 

II presents the magneto-mechanical model considered to take into account the effect of punching 

process. The proposed modifications to the model and the identification methodology have been 

detailed. Subsequently, chapter III describes the modeling chain from the mechanical punching 

process till its effect on the magnetic properties. The development is illustrated through the analysis 

of academic example: a steel sheet sample. Chapter IV investigates the effect of punching process, 

by considering the degradation profile, for academic examples and for an industrial synchronous 

machine. An analysis of the method used to account for the plastic strain at the punching edge has 

been performed. Finally, a conclusion summarizing the main findings and some perspectives to 

this work have been listed.  
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In this chapter, a review of the literature in fields related to this thesis is presented. First the 

main theoretical notions of ferromagnetism are presented, then the fundamentals of magneto-

mechanical interactions in ferromagnetic materials are explained. Particular attention is given to 

magneto-plastic behavior and dislocations density. Finally, the experimental and modeling aspects 

of magneto-mechanical coupling are reviewed.  

I.1 Magnetism and ferromagnetic materials 

To understand the background of magnetic materials and the physical quantities employed to 

evaluate their magnetic state, some aspects of magnetism are explained in this section [3][4]. 

I.1.1 Magnetic quantities definitions 

According to the scientific discipline where magnetism is involved, the magnetic quantities used 

can be different. In general, physicists and material scientists are more interested in magnetization 

and susceptibility, while engineers are usually more concerned with magnetic flux density and 

permeability. 

❖ Magnetic field  

 The motion of electric charges, which forms an electric current, creates a magnetic field 𝐻  in 

the surrounding environment. The strength and direction of the magnetic field depend on the 

density and direction of the electric current, the shape and dimensions of the conductor through 

which the current flows. The magnetic field 𝐻 is a vector quantity and has the unit of (A.m−1) 

❖ Magnetization  

As illustrated in Fig. I.1, each atom has a magnetic moment which is the contribution of an 

orbital magnetic moment 𝒎𝒐, which results from the rotation of the electrons around the nucleus, 

and the so-called spin magnetic moments 𝒎𝒔 associated to the electrons. Thus, the magnetic 

moment 𝒎 of an atom is the vector sum of these two moments.  

 
Fig. I.1 Magnetic moments  

The magnetization 𝑀 of a material having a volume v is defined as the total magnetic moment per 

unit volume, which is: 

𝑀 = ∑
𝑚𝑖

V𝑖
                                                                (I.1) 

𝑀 has the same unit as 𝐻, (A.m−1) .
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❖ Magnetic flux density  

When a magnetic field is applied to a medium, a magnetic flux 𝜙 is induced within this medium. 

The magnetic flux density defines the amount of magnetic flux per unit of cross-sectional area, it 

is a vector noted 𝐵 and has the unit of (Tesla). 

❖ Permeability  

All media respond to a magnetic field by a magnetic induction which depends on the 

magnetization of the medium and the applied magnetic field: 

𝐵 = 𝜇0(𝐻 +𝑀)                                                             (I.2) 

where 𝜇0 = 4𝜋10−7 𝐻.𝑚−1 is the permeability of vacuum. In a magnetic material, the 

permeability 𝜇 is defined by: 

𝐵 = 𝜇𝐻                                                                   (I.3) 

This permeability reflects the ability of the material to be magnetized with regard to the vacuum, 

this property is defined by the relative permeability 𝜇𝑟 such that: 

𝜇 =  𝜇0𝜇𝑟                                                                (I.4) 

In the vacuum, 𝑀 is equal to zero and 𝜇𝑟 is therefore equal to one, and it is dimensionless. 

❖ Susceptibility  

The magnetization 𝑀 of a material (material’s response) can be written as a function of the 

magnetic field H (excitation field) using the magnetic susceptibility 𝜒 such as 

𝑀 = 𝜒𝐻                                                                 (I.5) 

Then, from the definition of 𝜇𝑟, one finds than 𝑀 can also be related to 𝐻 by  

𝑀 = (𝜇𝑟 − 1)𝐻                                                            (I.6)        

This leads to the following relation between the permeability and the susceptibility.   

𝜇𝑟 = 1 + 𝜒                                                              (I.7) 

Depending on their magnetic susceptibility 𝜒, the magnetic materials are classically divided into 

three groups summarized in Tab. I.1.     

Tab. I.1 Classification of magnetic materials 

Type of Magnetic Material Susceptibility Examples 

Diamagnetic ≈ −10-6 Cu, Au, Si 

Ferromagnetic 50 to 104 Fe, Ni, Co 

Paramagnetic 10-6 to 10-3 Al, Pt 
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For electromagnetic energy conversion, ferromagnetic materials are mostly used thanks to their 

high magnetic susceptibility that allows to obtain high energy densities for the conversion process. 

In the following, physical properties of ferromagnetic materials are described. 

I.1.2 Ferromagnetic materials 

Ferromagnetic materials are characterized by a presence of magnetization at the microscopic 

scale, even in the absence of an external magnetic field. This particularity is due to the electronic 

configuration of their chemical composition as well as the crystalline structure which allows 

magnetic moments to align with each other.  

I.1.2.1 Magnetic domain theory  

At the macroscopic scale, generally no magnetization is observed. To explain the absence of 

magnetization at this scale, the theory of Pierre Weiss [4] states that a ferromagnetic material is 

composed of regions with specific orientations of magnetization. For example, in electrical steels, 

each metallurgical grain is subdivided into several domains, usually called the Weiss domains. 

Within each magnetic domain, the magnetization, called spontaneous magnetization, is uniform 

(Fig.I.2). Each domain is delimited by magnetic domain walls. 

 
Fig. I.2 Domains in a polycrystalline sample 3% Si-Fe [5] 

The magnetic equilibrium and the formation of Weiss domains is explained by the free energy 𝑊𝛼 

which involves the following energy terms: 

▪ 𝑊𝑒𝑐ℎ : exchange energy 

▪ 𝑊𝑎𝑛 : anisotropic energy 

▪ 𝑊𝑚𝑎𝑔 : magneto-static energy 

▪ 𝑊𝜎 : magneto-elastic energy 

𝑊𝛼 = 𝑊𝑒𝑐ℎ +𝑊𝑎𝑛 +𝑊𝑚𝑎𝑔 +𝑊𝜎                                          (I.8) 

❖ Exchange energy 

This energy results from the interaction between two neighboring atoms. The exchange 

interaction leads to an arrangement of magnetic moments parallel to each other. In ferromagnetic 

materials, it is minimal if the magnetic moments of two neighboring atoms point in the same 

direction. 
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❖ Anisotropic energy  

The anisotropic energy tends to align magnetic moments along certain crystallographic axes of 

the material. It is minimum for magnetic moments oriented parallel to a certain crystallographic 

direction named “easy magnetization direction". As shown in Fig. I.3 the magnetization is function 

of the direction cosines 𝛼1, 𝛼2, 𝛼3, in case of Fe-Si alloys the easy directions are 〈100〉.   

 

 
Fig.I.3 Crystallographic axes (x, y, z) and the direction cosines 𝛼1, 𝛼2, 𝛼3 of the saturation magnetization 

𝑀𝑠 of a magnetic domain [6]  

The anisotropic energy is given by the relation: 

𝑊𝑎𝑛 = 𝐾0 +𝐾1(𝛼1
2𝛼2

2 + 𝛼2
2𝛼3

2 + 𝛼3
2𝛼1

2) + 𝐾2(𝛼1
2𝛼2

2𝛼3
2)                       (I.9) 

where 𝐾0, 𝐾1and 𝐾2 are the anisotropy coefficients.  

❖ Magneto-static energy  

This energy results from long distance interactions between magnetic moments. Each magnetic 

moment is subject to a local field created by all other magnetic moments. The magneto-static 

energy is given by equation (I.10) where 𝐻, 𝐻𝐷 and 𝑀 represent, respectively, the applied field, 

the demagnetizing field and the magnetization.  

𝑊𝑚𝑎𝑔 =
1

2
𝜇0(𝐻 + 𝐻𝐷)𝑀

2                                             (I.10) 

In the absence of an external field, the magneto-static energy which will be equal to the 

demagnetizing energy is given by (I.11), 𝑁𝐷 is the demagnetizing factor. 

𝑊𝑚𝑎𝑔 = 𝑊𝐷 =
1

2
𝑁𝐷𝑀𝑠

2                                              (I.11) 

❖ Magneto-elastic Energy  

The magneto-elastic energy allows to understand the magneto-mechanical coupling. Assuming a 

uniform strain within a grain, the magneto-elastic energy 𝑊𝜎 is given by  

 

𝑊𝜎 = −𝝈: 𝜺𝝀                                                        (I.12) 
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where 𝝈 is the mechanical stress tensor and 𝜺𝝀 the magnetostriction strain tensor.  

 

𝜺𝝀 =

[
 
 
 
 𝜆100 (𝛼1

2 −
1

3
) 𝜆111𝛼1𝛼2 𝜆111𝛼1𝛼3

𝜆111𝛼1𝛼2 𝜆100 (𝛼2
2 −

1

3
) 𝜆111𝛼2𝛼3

𝜆111𝛼1𝛼3 𝜆111𝛼2𝛼3 𝜆100 (𝛼3
2 −

1

3
)]
 
 
 
 

                          (I.13) 

 

In (I.13) 𝜆100 and 𝜆111 are the saturation magnetostriction coefficients in the 〈100〉 and 〈111〉 

directions, respectively. The magnetostriction phenomenon will be detailed in section I.3.2.1. 

I.1.2.2 Magnetization mechanism   

The minimization of the free energy mentioned previously leads to a structure described by the 

Weiss magnetic domains. The application of a sufficiently strong external magnetic field will cause 

the disappearance of the domain structure and the material acquires a macroscopic magnetization 

oriented in the direction of the applied magnetic field. Fig. I.4 illustrates the magnetization process 

and the evolution of the domain structure with respect to the applied magnetic field from the 

demagnetized state “a” to the saturation state “d”. 

 
Fig I.4 Mechanism of ferromagnetic material magnetization [6]  

At point “b” (Fig I.4) the external magnetic field causes the movement of the walls of magnetic 

domains of which the spontaneous magnetization direction is close to that of the applied field. This 

phenomenon leads to the expansion of domains favorable to the external magnetic field. As the 

magnetic field increases, all domains tend to its direction (point “c” Fig I.4) and domains walls will 

vanish. Then, the applied energy becomes sufficiently strong to cause the rotation of domains and 

align them with the magnetic field direction (point “d” Fig I.4).  
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The mechanism presented above describes the magnetization process of a material which has 

not been magnetized and the resulting curve is called the first magnetization curve. Under these 

conditions, if we decrease the intensity of the applied field, the curve M(H) will deviate from the 

first magnetization curve. Indeed, within ferromagnetic materials there are many crystalline 

imperfections due to metallurgic processes (carbides, nitrides, cementite, dislocations ...), they 

constitute the pinning sites which oppose the domain wall motion and are associated to energy 

dissipation within the material. The associated macroscopic phenomenon is called the magnetic 

hysteresis. As illustrated in Fig. I.5, when the material is subjected to cyclic excitation, a hysteresis 

loop is obtained.  

 
Fig I.5 Hysteresis loop   

The hysteresis loop has specific points: 

- Saturation magnetization: specific to any material and corresponds to the state where there is no 

longer any domain structure in the material.  

- Coercive field: it corresponds to the excitation field for which the magnetization is canceled.  

- Remanent magnetization: magnetization obtained when the external magnetic field 𝐻 passes 

through zero. 

 
Fig I.6 Construction of a normal curve [7] 

Due to experimental difficulty determination of a first magnetization curve, another curve called 

normal magnetization curve is often measured. The ferromagnetic material is excited by a cyclic 
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magnetic field. The maximum excitation field 𝐻𝑚𝑎𝑥 is varied monotonously in order to obtain a 

set of hysteresis loops as shown in Fig. I.6. Thus, the normal magnetization curve corresponds to 

the B-H curve obtained by connecting the maxima (𝐵𝑚𝑎𝑥 – 𝐻𝑚𝑎𝑥) of each loop. 

Another type of B-H curve is often used to describe the ideal magnetization process is called 

the anhysteretic curve. This latter represents the case where the magnetization process is not 

associated to any energy dissipation. An approximation of the anhysteretic may be obtained by 

averaging the upper and lower envelopes of a major hysteresis loop. 

I.2 Microstructure and mechanical properties  

I.2.1 Crystalline structure and defects  

A crystalline material is influenced by the presence of defects which make it different compared 

to a perfect single crystal. There exist four types of defects: point defects (0D), line defects 

(dislocations) (1D), surface defects (2D) and volume defects (3D).                                                    

 
Fig. I.7 Mechanism of generation and motion of edge dislocation [8] 

As shown in Fig.I.7 the dislocation is defined as a slipping of a part of the crystal along a plane 

of atoms.  It is characterized by its Burgers vector, which is the direction and the size of the lattice 

distortion. Two main distinct dislocation types can be distinguished, known as edge and screw 

dislocations. In an edge dislocation (Fig. I.7), the Burgers vector is normal to the dislocation line. 

In a screw dislocation the Burgers vector is parallel to the dislocation line. Mixed dislocations exist 

as well, consisting of edge and screw parts.                                                                  

Figure I.8 shows the formation of a screw-type dislocation, it consists in the slip of a part of the 

crystal by a Burgers vector 𝒃 along a plane (ABCD).  

 
Fig. I.8 Formation of a screw dislocation [8] 

Dislocation line 

Burgers vector 



Chapter I       Literature review 

20 

 

▪ Dislocation density  

Dislocation is commonly given as a density, which describes the length of line dislocations per 

unit volume. According to this definition the dislocation density in IS units is given in 𝑚−2. Typical 

dislocation densities in metals are 1010 − 1016 m-2 [8].  

I.2.2 Strain stress curve  

The mechanical characterization of solid materials is ensured by standardized tests; they allow 

the prediction of the material’s behavior under different mechanical constraints. The most common 

tests are tensile test, compression test, bending test, creep deformation test, and indentation test 

(hardness measurement). In this section we will focus on the tensile – compression test and the 

indentation test. These are widely used to study the magneto-mechanical behavior in materials 

impacted by manufacturing processes.  

I.2.2.1 Tensile test – conventional curve   

The tensile test is described in standard (ISO 6892-1: 2009 E) [9], it consists in subjecting 

specimens to an increasing uniaxial force 𝐹 applied at a given speed, using an electromechanical 

testing machine. Fig I.9 represents the elongation 𝛥𝑙 of a cylindrical specimen, where 𝑙0 is the 

initial useful length and 𝑠0 its section.  

 
Fig. I.9 Principe of tensile test  

The tensile test leads to the curve represented in figure I.10, it gives the evolution of the applied 

Force 𝐹, or the stress  𝜎 = 𝐹 𝑠0⁄ , as a function of the elongation 𝛥𝑙, or the strain 𝜀 = Δ𝑙 𝑙0⁄ .  

 
Fig. I.10 Tensile test curve 

𝑠0 

𝑙0 + ∆𝑙 

𝐹 𝐹 

𝐹 𝐹 

𝑙0 

𝜎𝑦 0.2% 

O 

A 

S 

R 

𝜎𝑚 

𝜀𝑓 

S
tr

es
s 

(M
P

a)

 

Strain (%)  



Chapter I       Literature review 

21 

 

The analysis of the tensile test curve given in Fig. I.10 allows to define three mechanical zones:     

▪ Elastic zone (OA) where the specimen elongation is reversible below an elastic limit 𝜎𝑦 . 

In practice, it is difficult to determine the elastic stress from which the material behavior becomes 

irreversible. Thus, a conventional elastic limit 𝜎𝑦  is defined at 0.2% of plastic deformation.  

𝜎𝑦 0,2% =
𝐹𝑒 0,2% 
𝑠0

                                                                 (I.14) 

This region is characterized by the Young modulus 𝐸 which corresponds to the elastic curve slope 

as expressed in (I.15).  

𝐸 =
𝑑𝐹

𝑑𝑙

𝑙0
𝑠0
                                                                     (I.15) 

The fundamental relationship between conventional stress 𝜎𝑐 and relative elongation is governed 

by the Hooke's law given in (I.16): 

𝜎𝑐 = 
𝐹

𝑠0
= 𝐸 (

Δ𝑙

𝑙0
) = 𝐸𝜀                                                      (I.16) 

▪ Hardening plastic zone (AS) where the elongation of the specimen Δ𝑙𝑠 = 𝑙𝑠– 𝑙0 is 

irreversible, this zone is characterized by  𝜎𝑚, it defines the maximum hardening stress reached 

during the test. 

𝜎𝑚 =
𝐹𝑚 
𝑠0
                                                                  (I.17) 

▪ Failure zone (SR) where the load is decreasing, the point of failure R for which the ultimate 

specimen elongation is expressed by Δ𝑙𝑟 = 𝑙𝑟– 𝑙0, corresponding to the failure strain 𝜀𝑓. 

When the material is subjected to a high tensile stress, the section 𝑠0 of the tested specimen 

decreases. Thus, the described conventional characteristics can only be used in the elastic range 

and for low deformations. 

I.2.2.2 Rational characteristic  

When the deformation is important, the reduction of the specimen section should be taken into 

account in order to precisely predict the behavior of the materials. We then use the rational 

characteristics. The rational stress or ‘true stress’ 𝜎𝑡 is expressed as a function of the instantaneous 

section 𝑠.  

𝜎𝑡 =
𝐹

𝑠
=
𝐹

𝑠0

𝑙

𝑙0
                                                              (I.18) 

where  𝑠. 𝑙 = 𝑠0. 𝑙0 reflects the volume conservation after plastic deformation and then the true 

stress is finally given by the equation.   

𝜎𝑡 = 𝜎𝑐 [
(𝑙0 + Δ𝑙)

𝑙0
] = 𝜎𝑐 [1 +

Δ𝑙

𝑙0
]                                            (I.19) 
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Similarly, the true strain is expressed as a function of the relative elongation.  

𝜀𝑡 = ∫
𝑑𝑙

𝑙
= 𝑙𝑛 (1 +

Δ𝑙

𝑙0
)                                            (I.20)

𝑙0+Δ𝑙

𝑙0

 

From the relations (I.19) and (I.20) which are determined from the experiment, the mechanical 

behavior can be modeled using the Lüdwick model given by (I.21)   

𝜎𝑡 = 𝜎0 + 𝑘𝜀𝑡
𝑛                                                            (I.21) 

where 𝜀𝑡 is the true plastic strain, 𝑛 is the hardening coefficient, 𝑘 is a constant related to the 

material and 𝜎0 is the yield stress (elastic limit). The Hollomon law can model the mechanical 

hardening behavior, thus 𝜎𝑡 = 𝑘𝜀𝑡
𝑛. The value of the hardening coefficient reflects the inclination 

of the parabolic portion of the stress-strain characteristic corresponding to the hardening capacity 

of the material by plastic deformation. Figure I.11 graphically compares the conventional and 

rational characteristics for a given material.  

 
Fig I.11 Stress-Strain behavior: conventional curve and rational curve 

I.2.3 Indentation measurement 

Indentation testing is a widely used technique for the mechanical characterization of solid 

materials. It consists in measuring the hardness of a material by driving under a load an indenter 

which is harder than the material to be tested. The hardness 𝐻𝑣 given by (I.22) is defined as the 

mechanical resistance that the material opposes to the penetration of the indenter.  

𝐻𝑣 =
𝑃

𝐴𝐶
                                                                  (I.22) 

where 𝑃 is the applied force (N) and 𝐴𝐶  (mm²) is the surface area of the imprint left by the indenter. 

Depending on the characterized material type and the maximum load of the indenter, different 
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techniques are proposed. The geometries of indenters and the characteristics of the most used 

methods are illustrated in Fig. I.12 According to the indenter size, we can distinguish the micro-

indentation and the nano-indentation techniques.    

 

Fig. I.12 Characteristics of mean indentation techniques [10]  

In addition to the hardness measurement, indentation technique allows to calculate several 

mechanical properties. It uses the load-displacement curves recorded during load and unload 

indentation test. In [11] a method which exploits the slope of the unload curve is used to calculate 

the Young modulus. Furthermore, in [12] the indentation test is used to analyze a creep 

deformation.  

I.3 Impact of manufacturing processes   

Ferromagnetic materials used in electromagnetic systems, such as electrical machines and 

transformers, are subjected to various manufacturing processes. Fig. I.13 represents the general 

steps for the manufacturing of an electrical machine, the raw material is presented as a steel sheet 

coil which is first flattened than submitted to the forming process where the appropriate shape and 

size of components are obtained. For this latter step, various cutting techniques such as laser, 

punching, and water jet cutting may be used. Once cut, the sheets are stacked, either by welding, 

gluing, or interlocking. Finally, the housing of the machine is shrink-fitted on the stator core.   

 
Fig I.13 Manufacturing processes of an electrical machine   

Each step of the process is known to degrade the magnetic properties by increasing the iron losses 

and decreasing the magnetic permeability of electrical steels. In the following subsections, the 

effects of manufacturing processes are reviewed. Mechanical cutting-related effects are studied in 

detail. 

Raw material  

      Forming process

- Cutting ( Punching

Blanking...)

Assembly process 
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I.3.1 Cutting process effects

I.3.1.1 Effects of plastic deformation on magnetic properties

Plastic deformation is the consequence of mechanical cutting processes (punching, blanking), 

it leads to the degradation of magnetic properties and increases the iron loss significantly. Fig. 

I.14 gives the anhysteretic 𝐵𝐻 curves of an electrical steel sheet 3%Si-Fe measured under 

different plastic deformations. The impact is significant even at weak plastic strain 0.45%, the 

𝐵𝐻 curve slope is reduced which leads to the decrease of the relative permeability.  Indeed, 

during the magnetization process of ferromagnetic material, pining sites, including dislocations, 

hinder the magnetic domain walls motion, thus permeability and BH curves are locally affected.

 
Fig. I.14 Influence of plastic strain on the anhysteretic BH curves of Fe-Si alloy [13]

Thus, the magnetic domain structure that defines the magnetic behavior of ferromagnetic

material is strongly affected by plastic deformation. Using the Magneto-Optical Kerr Effect 

(MOKE) microscope, which consists in the detection of polarization modification of a light beam 

interacting with the magnetic moments on the surface of the magnetic material, an image of the 

domain wall structure can be built through contrast post-treatment [14]. For example, the image 

given in Fig. I.15 shows that, in a region of a few dozens of μm next to the cut edge, no domain 

contrast is visible when a magnetic field is applied. This indicates that the domain structure did not 

change under the applied field. This observation is supported by micro-indentation measurements 

that give an important amount of plastic strain near the cutting edge. It confirms that the domain 

wall motion is affected by the presence of plastic deformation [16] [17].
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Fig. I.15 Typical MOKE micrograph near a cutting edge [15] 

The amount of degradation depends on various factors, such as chemical composition, material, 

grade, type of cutting technique, settings of the cutting tool, etc…  In the literature, different 

approaches are employed to study the influence of the mechanical cutting. Simple approaches 

consider only the effect on the macroscopic magnetic quantities of interest while other ones try to 

link this effect to various physical parameters such as grain size, punch die clearance and the steel 

sheet thickness.  

A. Saleem et al [18] carried out an experimental work where the cutting effect on the magnetic 

properties of two grades of non-oriented electrical steel materials. As shown in Fig. I.16, the 

degradation is quantified as a function of the cutting length 𝑙𝑐𝑢𝑡. The sample before cutting is 

considered as non-degraded and the shear 1 sample is more degraded than the shear 2 sample.   

 
Fig. I.16 Schematic of the cut samples [18]

It was shown that, for both material grades, due to cutting the magnetic losses increase in the whole 

range of induction from 0.1 to 1.5 T. For the B35AV1900 grade, at 50 Hz and 1.5 T, the relative 

increase in the total losses is about 20% for the less impacted sample (shear 1) and about 40% for 

the most degraded one (shear 2). At the same frequency and induction level, for the 35WW300 

grade the relative loss increase is about 9% for shear 1 and 23% for shear 2. Similar results were

obtained in [19], [20] and [21].
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Fig. I.17 Increase in core loss, for shear 1 sample, as a function of 

frequency, at 1.5 T, for B35AV1900 and 35WW300 electrical steels [19]

Figure I.17 gives the evolution of the relative increase of core losses due to the cutting effect as a 

function of frequency. The increase is higher for B35AV1900 than for 35WW300, and it decreases 

with the increase of frequency for both grades. This can be explained by the fact that at lower 

frequency the hysteresis static loss component is dominant. These results show that the static 

magnetic behavior is strongly sensitive to the cutting effect which impacts directly the hysteresis 

parameter such as coercivity and remanence [22] [23]. At higher frequency, the eddy current loss 

component becomes more dominant and is not significantly affected by cutting [24].

The common cutting process of electrical steel sheet used in the manufacturing of electrical 

machines is schematized in Fig I.18, it represents a punching process with the relevant 

parameters which have an impact on the cutting quality.

 

 
Fig. I.18 Geometry and relevant parameters of the punching process

The effect of non-oriented electrical steel sheet thickness on core loss deterioration by the

punching process has been investigated in [25] and [26]. It was found that thinner sheet exhibits 

less iron loss deterioration. Furthermore [27] and [28] reported that high Si-alloyed grade 

electrical steels with large grain size are more sensitive to the deterioration of magnetic properties 

in the punching process.

Subramonian et al. [29] investigated the mechanical effect of the punching process parameters on 

various steel sheet of 0.25 mm and 0.8 mm thicknesses with experimental tests. The punch-die 

clearance is the most important factor that affects the blanked edge quality. The results showed 

that the rollover and shear edge increase and fractured edge decrease with increasing punch-die
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clearance. In the other hand, Wang et al. [30] analyzed the combined effect of grain size and the 

punch-die clearance, their optimization reduces the magnetic core loss by 5.8 %. 

I.3.1.2 Effect of plastic deformation on dislocation density  

Due to the importance of dislocation in a magneto-plastic coupling, this section is dedicated to 

their evolution during a material rupture process.  Figure I.19 shows the different zones of a stress-

strain curve. In [31], the evolution of dislocation structure has been studied for each zone. First, 

the observations of the material in its initial state (elastic zone Fig I.19) reveal a low dislocations 

density, about 1012 𝑚−2 . Then, at the beginning of a plastic deformation (strain Lüders plateau, 

Fig. I.19) the hardening stress is homogeneous, and the dislocations density increases significantly 

compared to the initial state. This stage is characterized by the formation of the dislocation clusters. 

Finally, At the further plastic deformation (strain hardening zone Fig I.19), the dislocation clusters 

multiply and densify, while the matrix which separates them is proportionally depleted in mobile 

dislocations.  

 
Fig. I.19 Stress strain curve of an electrical steel  

It has been shown that the dislocation density at the cutting edge is more important in the upper 

surface compared to the lower surface (Fig. I.20) [17]. 
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Fig I.20 Evolution of dislocation density near a cutting edge (b) Schematic of punched steel sheet [17] 

I.3.1.3 Plastic deformation at the cutting edge

The determination of the distribution of the plastic strain represents an important step in the 

magneto-mechanical modeling process treated in this thesis. Indeed, cutting process induces plas-

tic strain and residual stress which are concentrated near cutting edges thus delimiting a 

“deformation affected zone” (DAZ). Depending on the material type, the thickness, and other 

material parameters such as grain size the width of the DAZ may extend up to 15 mm away from 

the cut edge [32]. Whereas [33] postulated that the affected area is less than 10 mm wide, [34] 

measures a penetration depth of 0.4 mm.

In the literature the hardness measurement technique presented previously is widely used to 

characterize the plastic state of the DAZ. Although, the principle based on the nano-indentation is 

common to all the proposed methods, the experimental approaches are different. In [35] the 

equivalent plastic strain and its evolution with the distance from the cutting edge is computed on 

the top surface of the punched part. As illustrated in Fig. I.21 The distance between two adjacent 

indents is 𝛿 = 25 μm. Due to sensitivity of the nano-indentation to the surface shape, the first 

indent is located at a distance of 100 μm from the cutting edge.

 

Fig. I.21 illustration of nano-indentation  

Then, to estimate the plastic strain, a finite element inverse analysis of the nano-indentation test is 

performed. The identification technique consists in calibrating the parameters of the yielding stress 
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𝜎𝑦 given in (I.23) in order to approach the simulated load-displacement curve to the curve obtained 

experimentally. The value of the equivalent plastic strain 𝜀 is thus deduced.

𝜎𝑦 = 𝑘(𝜀 + 𝜀0)
𝑛 (I.23)

𝜀0 is the parameter to be calibrated, it represents the initial equivalent plastic strain. The hardening 

exponent 𝑛 and the material parameter k are determined from tensile tests. Figure I.22 gives the 

evolution of the equivalent plastic strain in the vicinity of the cutting edge.

 

Fig. I.22 Equivalent plastic strain evolution in the vicinity of the cut edge [35] 

A method to convert hardness measurements into equivalent plastic strain has been proposed in 

[36] [37]. This method is based on the estimation of the elastic and plastic indentation work using 

the load – displacement curve. In the work presented by Ossart et al [16], a phenomenological 

relationship is established between micro-indentation hardness measurements and equivalent 

plastic strain. The proposed formula (I.24) gives the Vickers hardness 𝐻𝑉 as a function of an 

equivalent plastic stain.   

𝐻𝑉(𝜀) = 𝐻𝑉0 + 𝛼𝜀
𝑚                                                   (I.24) 

where 𝐻𝑉0, 𝛼 and m are material dependent parameters.  

The experimental procedure presented above is insufficient to describe the plastic strain 

distribution at the cutting edges, in fact the hardness is evaluated on the upper surface of the 

punched material where the indentation is applied along a straight line. As for the dislocation 

density, in [17] it was showed that the magnitude of the hardness measured on the upper surface is 

significantly different from the one measured on the lower surface. Therefore, Weiss et al [38] 

proposed to evaluate the spatial distribution of the residual stress in the DAZ using a micro-

indentation hardness test applied in the cross section of the punched material. As shown in the Fig 

I.23 a distance between two adjacent indents is 𝛿𝑥 = 45 μm and 𝛿𝑦 = 40 μm.  
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Fig I.23 Micro-hardness measurement grid on the cross-section perpendicular to the cutting edge

The conversion of hardness measurements into residual stress is performed using a finite element 

simulation of a cutting process calibrated by the load-displacement curves from the micro-

indentation tests.

Elastic stresses contribute also to the degradation of magnetic properties. For instance, the shrink

fitting process induce compressive stresses on the stator core of electrical machine.  Ali et al. [39] 

analysed their effect on non-oriented steel sheet. It was shown that the core loss increases with 

increasing compressive stress up to 80 MPa. Further, Yamazaki and Takeuchi [40] performed a 

combined stress electromagnetic FE analysis and estimated an increase of 20 % in iron losses, a 

decrease of 2 % in torque and a decrease of 1.4 % in efficiency at the maximum speed.

I.3.2 Magneto-elastic coupling

Magneto-elastic coupling phenomena have two main manifestations: the magnetostriction

deformation which is known as Joule deformation [41] and the effect of stresses on the 

magnetization and on the magnetostriction itself.

There is also another deformation that results from the magnetic forces and the magnetization 

gradients [42]. In this section, only the magnetostriction will be considered.

I. 3.2.1 Magnetostriction process

When a ferromagnetic substance is exposed to a magnetic field, its dimensions change. This 

effect, which is intrinsic to the material and depends on its magnetic state, is called 

magnetostriction.  As shown in Fig. I.24, when an iron single crystal is magnetized to saturation in 

a [100] direction, the length of the crystal in this direction is found to increase, thus the 

magnetostriction strain is given as 𝜆 = Δ𝑙/𝑙. This change is related to domain wall motion as 

described in the subsection I.1.2.2.
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Fig. I.24 Magnetostriction of an iron crystal in the [100] direction: (a) A disorder behavior in para-

magnetic regime. (b) Ordered behavior in ferromagnetic regime. (c) ferromagnetic regime with 

completely aligned domains with respect to the magnetic field [4] 

Magnetostriction can be positive, or negative, the deformation occurs at constant volume [43]. 

Fig I.25 shows the evolution of the longitudinal magnetostriction of certain ferromagnetic 

materials. Fe and FeCo present a positive magnetostriction with different amplitudes while Nickel 

(Ni) presents a negative magnetostriction.  

 
Fig I.25 Longitudinal magnetostriction of some ferromagnetic materials versus magnetization [43] 

Along with the magnetization of ferromagnetic materials, the magnetostrictive behavior exhibits 

a strong non-linearity. This latter is associated with the existence of a maximum magnetostrictive 

strain, called magnetostrictive saturation strain 𝜆𝑠. Fig I.26 gives the hysteretic and anhysteretic 

magnetic behavior (a) and the associated magnetostrictive behavior (b) of a non-oriented iron 

silicon electrical steel (3% Si-Fe) [44][45]. 

∆𝑙 

∆𝑙

3
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Fig I.26 (a) Magnetic behavior (b) Magnetostrictive behavior [44] 

 

I.3.2.2 Effect of elastic stress on magnetostriction 

Compressive or tensile stress induce changes in the magnetostriction, an elastic deformation is 

added to the magnetostrictive strain already induced by the magnetization of ferromagnetic 

material. Fig. I.27 shows the peak evolution of the longitudinal magnetostriction measured on a 

non-oriented steel sample cut in the rolling direction and subjected to different uniaxial tensile and 

compressive stresses. 

 
Fig. I.27 Measured and fitted peak magnetostriction 𝜆𝑝𝑘 as a function of applied stress σ [46] 

Figure I.28 shows the measurements and modeling result of magnetostriction as function of 

magnetization for different compressive and tensile stresses, the asymmetrical behavior of the 

𝜆(𝑀, 𝜎) is explained according to the result of Fig I.27 where the magnetostriction peak is a tangent 

hyperbolic function of stress. The maximum magnetostriction is obtained for the compressive 

stress, it decreases for tensile stress and becomes negative for the higher tensile stresses.     
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Fig I.28 Magnetostriction function of magnetization under different applied stresses [46] 

I.3.2.3 Effect of elastic stress on magnetization  

The modification of magnetic material behavior by applying a mechanical stress has long been 

established. Bozorth [47] measured the magnetic behavior of Nickel under uniaxial stress, he 

observed that a compressive stress at -70 MPa doubled the initial permeability and uniaxial tensile 

stress of the same amplitude divided it by 10.  

 
Fig I.29 (a) Hysteresis loops for tensile stress up to 120 MPa (b) and enlarged loops for small stresses 

below 10 MPa [48] 

The behavior of iron is more complex; Fig I.29 shows a measurement of hysteresis loops under 

tension carried out on 3% Si-Fe. The magnetization is improved at low tensile stresses below 10 

MPa and then continuously decreases with further stress increase. This non monotonic change of 

magnetization was confirmed by different authors [49].  
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As for the magnetostrictive behavior, the effect of elastic stress on the magnetization is not 

symmetrical in tensile and compression. In Fig. I.30, when compared to a tensile stress, the 

degradation of the B-H curve due to a compressive stress is stress is significantly higher. The 

measurements are carried out on an iron-silicon alloy (FeSi M330-50) under uniaxial mechanical 

loading. The stress and the magnetic field are applied in the rolling direction of the sheet [50]. 

 
Fig I.30 Influence of a tensile and compressive stress on the hysteresis cycle of Fe-Si alloy [50] 

 

I.3.2.4 Measurement devices under elastic loading  

The measurement of magnetic properties is governed by norms where different standardized 

devices exist, such as the Epstein frame [51] and the Single Sheet Tester (SST) [52]. However, 

there are no standard devices for magnetic characterization under mechanical loading. To carry out 

measurements of magnetic quantities while taking into account the impact of mechanical loading, 

several devices have been presented in the literature. These devices usually combine standard 

magnetic characterization methods, in particular the SST associated to a conventional mechanical 

test device. Depending on the geometry of the sample and the excitation source type, different 

devices have been published in the literature [53] [54]. The device proposed in [55] uses a 3-phase 

excitation system to obtain an arbitrary flux density waveform, especially rotating magnetic field, 

in a hexagonal shaped sample. 

For instance, Fig. I.31 illustrates a magnetic characterization device under uniaxial mechanical 

loading where tensile and compressive stresses can be applied to a Fe-Si steel sheet along the 

rolling direction (RD), the evolution of the BH curve under stress is obtained from a field sensor 

and a search coil [46].  
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Fig. I.31 SST characterization device under uniaxial stress [46] 

In order to characterize the effect multiaxial stress on the magnetic properties, specific 

measuring devices have been developed. As with uniaxial devices, their construction is based on 

the adaptation of the standard SST device with a multiaxial mechanical loading device [56]. Figure 

I.32 illustrates a multiaxial measurement; the hexagonal shape of the setup allows the application 

of a stress in different directions. The stress magnitude is controlled with servomotors and the 

measurement area is located in the center of the device.    

 

 

Fig. I.32 Multiaxial measurement device [56] 

As shown in this section, the manufacturing processes, which characterized by a magneto-

mechanical coupling affect magnetic materials properties and participate to the degradation of 

electrical machines performances. To anticipate this phenomenon a predictive model is needed. 

The modeling consists in establishing a relationship between the mechanical quantities (elastic or 

plastic) and the impacted magnetic quantities (B-H curve, magnetic losses). The next section 

presents the most commonly used models in the literature. 
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I.4 Magneto-mechanical modeling 

This section presents magneto-mechanical modeling approaches. A classification based on the 

type of approach is proposed. There are two categories using energetic considerations, microscopic 

and macroscopic models, and a third category including empirical formulas. 

I.4.1 Multiscale model 

The multiscale modelling initially proposed by Buiron et al [57] [58], is based on an energetic 

approach for the equilibrium state of a magnetic domain. As illustrated in Fig. I.33, the model is 

based on three different scales and their associated transition relationships. The energetic behavior 

at the scale of a magnetic domain is first considered. A change of scale allows to define the behavior 

at the grain scale where multiple domains can be considered. A second transition law is used to 

define the behavior of a polycrystal. 

 

Fig. I.33 Multi-scale approach  

▪ Magnetic domain scale  

The model supposes that the magnetization and the magnetic field in a single magnetic domain is 

uniform and the elastic properties are homogeneous. This uniformity leads to simplifications of 

different energy terms that compose the total free energy (I.8).  

- Since the magnetization in a single domain is unchanged, therefore the exchange energy is equal 

to zero.  

-  The anisotropy energy and the magneto-elastic energy are homogeneous,  

- The uniformity of the magnetization and the magnetic field leads to the uniformity of the 

demagnetizing energy. In a single domain, noted with 𝛼 referring to domain scale, the magneto-

static energy is given by: 

𝑊𝑚𝑎𝑔 = −𝜇0𝑀𝛼𝐻𝛼                                                    (I.25) 

with 𝐻𝛼 the applied field and 𝑀𝛼 = 𝑀𝑠 �⃗�𝛼 the domain magnetization where 𝑀𝑠 is the saturation 

magnetization and  �⃗�𝛼 the direction of the magnetization in the domain.  

Finally, the magnetic domain state description requires only to know the direction of the 

magnetization �⃗�𝛼, which is defined in the crystallographic frame by an angle θ𝛼. The minimization 

of the domain free energy 𝑊𝛼 leads to following equations:  

Magnetic domain 

scale (𝜇𝑚)   

Monocrystal  

Scale (𝑚𝑚)  
Polycrystal  

Scale (𝑚)  
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𝑊𝛼(θ𝛼) = 𝑚𝑖𝑛 (𝑊𝛼)                                                (I.26) 

θ𝛼 ∈ [0, θ𝑚𝑎𝑥]                                                         (I.27) 

θ𝑚𝑎𝑥 = 𝑎𝑐𝑜𝑠 (
�⃗⃗⃗�0
𝛼.�⃗⃗⃗�𝛼

‖�⃗⃗⃗�𝛼‖
)                                                      (I.28)                                              

where �⃗�0
𝛼 is the direction of the initial easy magnetization axis and 𝐻𝛼 is the applied magnetic field. 

▪ Grain scale 

At the grain scale, the assumptions of magnetization uniformity previously stated for a domain 

is no longer valid. In fact, the structure of a grain is made up of magnetic domains separated by 

walls where the magnetization varies quickly.  

The total free energy in the grain 𝑊𝑔𝑟𝑎𝑖𝑛 as given in (I.29) is then the sum of two energy terms, 

one is related to the total magnetic domain volume and the other one is related to the volume 

occupied by the walls.  

𝑊𝑔𝑟𝑎𝑖𝑛 = ∫𝑊𝑑𝑜𝑚𝑎𝑖𝑛

𝑉𝑑

+ ∫𝑊𝑤𝑎𝑙𝑙

𝑉𝑝

                                          (I.29) 

Due to the difficulty to estimate the walls volume and the complexity of their magnetic behavior, 

equation (I.29) is not adequate to express the scale transition from a domain to a grain. Thus, a 

phenomenological transition law based on the association of the grain behavior and scalar 

adjustment variable is used to connect domain scale to grain scale.  

In this approach, magnetic domain families are defined. They correspond to directions of easy 

magnetization which are defined by two parameters: the orientation angle θ𝛼 and the volume 

fraction 𝑓𝛼. 

𝑓𝛼 =
exp (−𝐴𝑠. 𝑊𝛼)

∑ exp (−𝐴𝑠.𝑊𝛼)𝛼
                                                    (I.30) 

 

∑𝑓𝛼
𝛼

= 1                                                                            (I.31) 

where 𝐴𝑠 is an adjustment parameter which allows to take into account the effect of magnetic 

domain walls.  

The mean value of the magnetization  𝑀𝑔𝑟𝑎𝑖𝑛 and the mean value of the magnetostriction strain 

tensor  𝜺𝝀
𝒈𝒓𝒂𝒊𝒏

 at the grain scale are given by (I.32) (I.33) respectively.  

 

𝑀𝑔𝑟𝑎𝑖𝑛 = 〈𝑀𝛼〉 = ∑𝑓𝛼
𝛼

. 𝑀𝛼                                            (I.32) 

𝜺𝝀
𝒈𝒓𝒂𝒊𝒏

= 〈𝜺𝝀
𝜶〉 =∑𝑓𝛼

𝛼

. 𝜺𝝀
𝜶                                                (I.33) 



Chapter I       Literature review 

38 

 

▪ Poly-crystal scale  

At the polycrystal scale, the mechanical stress and mechanical strain are not homogenous as 

considered at the grain scale. Indeed, the difference in crystallographic orientation of adjacent 

grains in the same polycrystal generates mechanical heterogeneity. 

The transition scale from a grain to a polycrystal is expressed as a connection of the applied 

macroscopic quantities (𝝈𝒆𝒙𝒕 and 𝐻𝑒𝑥𝑡) with the local quantities at the grain scale (𝝈𝜶 and 𝐻𝛼) by 

a set of localization laws in terms of magnetic field and mechanical stress. The assumption of a 

homogeneous medium equivalent to the polycrystal where each grain is considered as a spherical 

inclusion gives the following localization laws: 

𝝈𝜶 = 𝒢(𝐻𝑒𝑥𝑡 , 𝝈𝒆𝒙𝒕  )                                                        (I.34) 

𝝈𝜶 = 𝝈𝒆𝒙𝒕 + 𝑪
∗: (𝑬 − 𝜺𝜶

𝝀)                                              (I.35) 

𝒢 is an auto-coherent function, 𝑬 is the total strain, 𝑪∗ is the Hill tensor and 𝜺𝜶
𝝀  is the 

magnetostriction strain tensor at the domain scale. Also, 𝐻𝑑𝛼 is the demagnetizing field at the 

domain scale such as:  

𝐻𝜶 = 𝒢(𝐻𝑒𝑥𝑡 , 𝝈𝒆𝒙𝒕  )                                                        (I.36) 

𝐻𝜶 = 𝐻𝑒𝑥𝑡 + 𝐻𝑑𝛼                                                               (I.37) 

To solve this problem, various modifications and simplifications have been proposed in the 

literature. Instead of minimizing the total free energy, the use of Boltzmann type distribution 

function has been proposed in [58]. Later, Vanoost et al [59] proposed a correction parameter for 

the calculation of the Boltzmann distribution under stress with better accuracy. To consider the 

hysteretic behavior of ferromagnetic material Daniel et al. [60] introduced an irreversible 

contribution. 

Although they have a strong physical basis, the main limit of multiscale modeling approaches 

concerns their efficient integration in the numerical simulations tool of electromagnetic 

phenomena. Indeed, the computational cost is relatively high despite the simplification of the full 

multiscale model published for the anhysteretic behavior [61] and for the hysteretic behavior 

[62][63].  

I.4.2 Macroscopic models 

The macroscopic approach of magneto-mechanical modeling uses macroscopic magnetic and 

mechanical quantities. It is generally based on the modification of models already developed for 

hysteretic and anhysteretic magnetic behavior by introducing a new term to take into account the 

impact of mechanical loadings. 

❖ Modified Preisach model 

The Preisach model is a phenomenological approach of the magnetic hysteresis modeling. In 

this model, the magnetic material is associated to a distribution of elementary hysteresis loops, 
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called hysterons, for which the magnetic state is represented by two possible saturation levels,  

𝑀 =  ± 1. From the description of the pinning and unpinning of a domain walls, the hysterons are 

defined as asymmetric elementary loops associated to asymmetric switching fields, denoted as 𝛼 

and 𝛽 in Fig. I.34. The magnetic material is then described by its statistical distribution 𝜌(𝛼, 𝛽) of 

elementary loops [64] [65]. Finally, the reconstruction of the material hysteresis loop requires 

knowing the statistical distribution of elementary loops given for any 𝐻(𝑡): 

𝑀(𝑡) = ∬𝜌(𝛼, 𝛽)𝜙𝛼𝛽𝐻(𝑡)𝑑𝛼 𝑑𝛽                                              (I.38) 

where 𝜙𝛼𝛽 represents an operator associated with the elementary magnetic cycle and 𝜌(𝛼, 𝛽) 

represents the Preisach distribution function, which is characteristic of the considered material.  

From physical considerations, especially the dissipative property of magnetic hysteresis, the 

domain definition of the Preisach distribution is a triangle with surface S in the Preisach plane 

defined in Fig. I.34-b. In this figure, 𝐿(𝑡) is a variable which divides the domain S, and makes 

possible to define the magnetic state at any time 𝑀(𝑡). 

 
Fig. I.34 Preisach model construction [65]  

In the modified Preisach model for magneto-mechanical modeling, this distribution is expressed 

as a function of stress. Sipeky et al. [66] introduced a stress dependency into the Preisach 

distribution function to model the effect of uniaxial tensile stress on magnetic hysteresis. 

 

𝜌(𝛼, 𝛽, 𝜎) =

{
  
 

  
 
𝑒𝑥𝑝((

(𝛼 − 𝛽 − (𝑐 + 𝑔𝜎))
2

10𝑎+𝑒𝜎
 −  

(𝛼 + 𝛽 − (𝑑 + ℎ𝜎))
2

10𝑏+𝑓𝜎
)) ,   𝛼 + 𝛽 ≤ 0

𝑒𝑥𝑝((
(𝛼 − 𝛽 − (𝑐 + 𝑔𝜎))

2

10𝑎+𝑒𝜎
 −  

(𝛼 + 𝛽 + (𝑑 + ℎ𝜎))
2

10𝑏+𝑓𝜎
)) ,   𝛼 + 𝛽 ≤ 0

 (I.39) 

 

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ are the model’s parameters, they are identifiable using experimental data. 
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The major difficulty in magneto-mechanical modeling, when using the Preisach model, is the 

accurate definition of the distribution function. Indeed, it requires a large amount of experimental 

data for the model identification. 

❖ Jiles-Sablik model  

This model, based on a macroscopic energy approach, was initially developed by Jiles and 

Atherton [67] [68] to model hysteretic behavior of ferromagnetic materials. It has been extended 

to account for mechanical effect in the elastic region by the introduction of a magneto-elastic field 

which is added to the effective magnetic field.  

In the original magnetic hysteresis model, Jiles and Atherton consider the total magnetization 𝑀 as 

a sum of two contributions: reversible and irreversible (equation I.40). The reversible component 

𝑀𝑟𝑒𝑣 represents the reversible motion of the magnetic domain walls and the reversible rotation of 

the magnetic moments. 

𝑀 = (𝑀𝑖𝑟𝑟 +𝑀𝑟𝑒𝑣)                                                           (I.40) 

The irreversible contribution 𝑀𝑖𝑟𝑟 results from the movement of the domain walls which is 

impeded by the presence of pining sites [69]. A local energy dissipation occurs as the domain walls 

pin and unpin during their motion. The increase of energy dissipation during the magnetization 

process is characterized by the energy density 𝐸𝑝𝑖𝑛 given by equation (I.41) where 𝑘 represents a 

microstructural parameter proportional to the density of the pinning sites. 

𝐸𝑝𝑖𝑛(𝑀) = 𝑘∫ 𝑑𝑀
𝑀

0

                                                          (I.41) 

When the material is magnetized, the corresponding energy density is given by the following 

equation:  

∫ 𝑀
𝑀

0

𝑑𝐵𝑒 = ∫ 𝑀𝑎

𝑀

0

𝑑𝐵𝑒 − 𝑘∫ (
𝑑𝑀

𝑑𝐵𝑒
)

𝑀

0

𝑑𝐵𝑒                                         (I.42) 

𝐵𝑒 = 𝜇0𝐻𝑒                                                                        (I.43) 

𝐻𝑒 = 𝐻 + 𝛼𝑀                                                                     (I.44) 

where 𝐵𝑒 represents the effective magnetic flux density and 𝐻𝑒 the effective magnetic field, and  

𝑘 ∫ (
𝑑𝑀

𝑑𝐵𝑒
)

𝑀

0
𝑑𝐵𝑒 represents the energy dissipated during the domain wall motion. 𝛼 represents the 

interdomain coupling parameter.  

The differentiation of (I.42) with respect to 𝐵𝑒 gives the expression of the irreversible 

magnetization (I.45).   

𝑑𝑀𝑖𝑟𝑟

𝑑𝐻
=

𝑀𝑎𝑛 −𝑀𝑖𝑟𝑟

ℓ𝑘
𝜇0
− 𝛼(𝑀𝑎𝑛 −𝑀𝑖𝑟𝑟)

                                                    (I.45) 
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where ℓ is a parameter related to the magnetic field evolution such that: 

▪ ℓ = 1  if  
𝑑𝐻

𝑑𝑡
> 0 

▪ ℓ = −1  if  
𝑑𝐻

𝑑𝑡
< 0 

𝑀𝑎𝑛 is the anhysteretic magnetization, in the original Jiles-Atherton model, the Langevin function 

is used to describe this behavior, where 𝑀𝑠 is the saturation magnetization and 𝔏 the Langevin 

function. 

𝑀𝑎𝑛 = 𝑀𝑠𝔏 (
𝐻𝑒
𝑎
) = 𝑀𝑠 (coth (

𝐻𝑒
𝑎
) −

𝑎

𝐻𝑒
)                                       (I.46) 

The reversible magnetization is associated to the reversible deformation of magnetic wall domain 

when a magnetic field is applied, it is given by (I.47), where 𝑐𝑟 represents the reversibility 

coefficient 𝑐 ∈ [0 1].  

𝑀𝑟𝑒𝑣 = 𝑐𝑟(𝑀𝑎𝑛 −𝑀𝑖𝑟𝑟)                                                  (I.47) 

The differentiation of the total magnetization (I.40) which is the sum of the reversible (I.47) and 

the irreversible magnetization (I.45) with respect to 𝐻 gives the expression (I.48). 

𝑑𝑀

𝑑𝐻
=

(1 − 𝑐𝑟)
𝑑𝑀𝑖𝑟𝑟

𝑑𝐻𝑒
+ 𝑐𝑟

𝑑𝑀𝑎𝑛

𝑑𝐻𝑒

1 − 𝛼𝑐𝑟
𝑑𝑀𝑎𝑛

𝑑𝐻𝑒
− 𝛼(1 − 𝑐𝑟)

𝑑𝑀𝑖𝑟𝑟

𝑑𝐻𝑒

                                         (I.48) 

The expressions of  
𝑑𝑀𝑖𝑟𝑟

𝑑𝐻𝑒
 and 

𝑑𝑀𝑎𝑛

𝑑𝐻𝑒
 are given respectively in (I.49) and (I.50) 

𝑑𝑀𝑖𝑟𝑟

𝑑𝐻𝑒
=
𝑀𝑎𝑛 −𝑀𝑖𝑟𝑟

ℓ𝑘
                                                          (I.49)  

𝑑𝑀𝑎𝑛

𝑑𝐻𝑒
=
𝑀𝑠

𝑎
[1 − coth2 (

𝐻𝑒
𝑎
) + (

𝑎

𝐻𝑒
)]                                             (I.50) 

The Jiles-Atherton model can be also adapted to have 𝑀(𝐵). The total magnetization is 

differentiated with respect to 𝐵 given in (I.51) and we obtain:  

𝑑𝑀

𝑑𝐵
=

(1 − 𝑐𝑟)
𝑑𝑀𝑖𝑟𝑟

𝑑𝐵𝑒
+ 𝑐𝑟

𝑑𝑀𝑎𝑛

𝑑𝐵𝑒

1 + 𝜇0(1 − 𝑐𝑟)(1 − 𝛼)
𝑑𝑀𝑖𝑟𝑟

𝑑𝐵𝑒
+ 𝜇0𝑐𝑟(1 − 𝛼)

𝑑𝑀𝑖𝑟𝑟

𝑑𝐵𝑒

                               (I.51) 

with 
𝑑𝑀𝑖𝑟𝑟

𝑑𝐵𝑒
=
𝑀𝑎𝑛 −𝑀𝑖𝑟𝑟

𝜇0ℓ𝑘
                                                              (I.52) 

The model parameters 𝑀𝑠 , 𝛼, 𝑎, 𝑘 et 𝑐𝑟 are determined from experimental measurements.  
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▪ Magneto-elastic coupling  

To take into account the effect of elastic mechanical loading, Jiles and Sablik added a term to 

the effective magnetic field 𝐻𝑒. Assuming an isotropic material, and a uniaxial stress applied in 

the direction of the magnetic field, its expression is given as follows:  

𝐻𝑒 =
1

𝜇0
(
𝜕𝐴

𝜕𝑀
)
𝑇
                                                                 (I.53) 

with   𝐴 = 𝐺 + 𝜇0𝐻𝑀                                                             (I.54) 

and  𝐺 = 𝑈 − 𝑇𝑆 + (
3

2
)𝜎𝜆                                                      (I.55) 

where 𝐴 the Helmholtz free energy, 𝐺 represents the Gibbs free energy, 𝑈 =
1

2
𝛼𝜇0𝑀

2 represents 

the internal energy due to the magnetization, 𝑆 the entropy, 𝜎 the applied mechanical stress and 𝜆 

the magnetostriction function. The final expression of the effective field is given by (I.56).  

𝐻𝑒 = 𝐻 + 𝛼𝑀 + 𝐻𝜎                                                           (I.56) 

𝐻𝜎 =
3

2

𝜎

𝜇0
(
𝜕𝜆

𝜕𝑀
)
𝑇
                                                            (I.57) 

where 𝐻𝜎 is the magneto-elastic field, it represents the magnetic contribution to the total effective 

magnetic field 𝐻𝑒 due to the application of an external elastic stress 𝜎.  

▪ Magneto-plastic coupling  

To take into account the magneto-plastic coupling Sablik, proposed an extension to the Jiles 

magneto-elastic model [70]. It is based on the consideration that the parameters 𝑎  and 𝑘, which 

are constants in the original Jiles-Atherton model, are now dependent on the dislocation density 𝜉. 

The dislocation density is the main characteristic of plastic deformation, it depends on the applied 

hardening stress 𝜎𝐹  , the shear modulus 𝐺, the Burger vector 𝑏 and the dislocation density prior to 

plastic deformation 𝜉𝑑0 which is related to the material composition. 

𝜉𝑑 = ([
𝜎𝐹
𝛼𝐾𝐺𝑏

] + 𝜉𝑑0)
2

                                                        (I.58) 

This magneto-plastic modeling approach based on the dislocation density will be used in this 

thesis to model the impact of the mechanical cutting process on the magnetic properties of FeSi 

sheets. In the next chapter more details about the improvements made to this model and the used 

identification technique will be presented. 
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❖ Hirsinger’s model  

This model was proposed by Hirsinger et al [71] and, in the same way as in the Jiles-Sablik model, 

it is based on the “effective field” approach. Instead of a Langevin function, this model proposes 

an arc-tangent function to model the anhysteretic magnetization as given by equation (I.59) 

𝑀𝑎𝑛 =
2𝑀𝑠

𝜋
 atan (

𝜋

2
𝜒𝑎(𝜎)

𝐻

𝑀𝑠
)  (I.59)

 𝜒𝑎
−1(𝜎) = 𝜒𝑎0

−1 + 𝐴. 𝜎 (I.60) 

where 𝜒𝑎0, 𝐴 et 𝑀𝑠 are the model parameters.

I.4.3 Magneto-mechanical formulas

This type of modelling approach uses mathematical formulas to represent the effect of

mechanical stress on magnetic properties without any phenomenological or physical basis. Such 

models are usually employed to represent the degradation of magnetic behavior at the cutting edges 

of ferromagnetic materials due to the forming processes. Overall, they express the magnetic flux 

density, magnetization, or permeability as a function of magnetic field and the distance 𝑥 from 

the edge. This section presents some mathematical expressions.

An hyperbolic formula (I.61) has been proposed in [72] where the magnetization  𝑀 is given as 

a function of the cutting edge distance 𝑥. Fig I.35 gives a schematic of steel sheet punched at the 

edge. The magnetization 𝑀 (equation I.61) is function of the parameters 𝑀0, 𝑀1 and 𝐷 that 

themselves depend on the magnetic field 𝐻. The variable 𝑥 is the distance from  𝑥0 associated to 

the half the sample width.

𝑀(𝑥) = 𝑀0 − 𝑀1 cosh (𝐷 
𝑥

𝑥0
)                                                (I.61) 

 
Fig I.35 illustration of a cut steel sheet  

 

Another analytical formula (equation I.62) has been proposed in [73] to express the dependency of 

reluctivity 𝜐 on the uniaxial stress.  

𝜐(𝐵2, 𝜎) = 𝜐(𝐵2, 0) + 𝑎𝜎 exp(
(𝐵2 − (𝑏 − 𝑐𝜎)2)2

𝑑 − 𝑒𝜎
)                          (I.62) 

where 𝑎, 𝑏, 𝑐, 𝑑 and 𝑒 are constants estimated from measured BH curves under different stresses. 

𝐵 is the magnetic flux-density and 𝜎 the mechanical stress applied in the direction parallel to 𝐵.  

cutting edge

distance from cutting edge 
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The main advantage of these formulas is their simple and easy implementation in numerical 

calculation tools, which is inexpensive in terms of calculation time. For example, a modeling of 

the flux density distribution of a stator considering the cutting effect using an empirical formula 

has been used presented in [74-76].

However, these models also lack the ability to predict behavior under magneto-mechanical 

loadings other than those employed for their identification.

 

I.5 Conclusion  

In this chapter we have presented the theoretical background necessary to understand the subject 

of this thesis. The Weiss magnetic domain theory as well as the typical physical quantities of 

interest for the magneto-mechanical coupling have been defined and explained. 

The manufacturing effect on magnetic properties have been reviewed, we focused on the impact 

of mechanical cutting on the magnetic properties of electrical steels. It has been shown that 

magnetic permeability and iron losses are strongly affected, depending on the material 

composition, the grain size, and the cutting process parameters the iron loss increase vary between 

20% and 40%.     

The theoretical study of magneto-mechanical coupling allowed to understand the mechanisms 

by which mechanical loads affect the magnetic properties of materials. A distinction is made 

between magneto-elastic coupling which is related to the phenomenon of magnetostriction and 

magneto-plastic coupling which is characterized by the increase of the dislocation density as the 

plastic deformation increases, which considerably affects the magnetic properties.  

The reviewed magneto-mechanical models were classified into three categories: macroscopic 

models, microscopic models and mathematical approaches. According to the final aim of the 

modeling, each model has advantages and disadvantages. The multi-scale approach is interesting 

for modeling magneto-elastic multiaxial phenomena. The mathematical approaches, which are not 

based on physical considerations, are limited to the materials used for the identification of the 

model. However, because of its easy implementation in a numerical calculation tool, it can be 

interesting as a first approach to illustrate the effect of magnetic properties degradation on industrial 

electromagnetic systems such as rotating electrical machines. 

In this thesis, the Sablik model has been chosen to model the mechanical punching effect on the 

anhysteretic magnetic behavior of electrical steels used for magnetic circuits in electrical machines. 

The model will be integrated into a finite element method calculation code to analyze the overall 

impact on electrical machine performances. 

Compared to the analytical models, the Sablik model presents the advantage to have a physical 

basis which allows its generalization. Also, the use of macroscopic quantities makes its 

identification as well as its implementation and computational cost in numerical tools relatively 

acceptable. Typically, this model does not require complex measurements for its identification and 
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its impact on the numerical computation time is relatively limited. In the context of the present 

thesis, some modifications have been realized in this model; they are presented in the next chapter. 
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In this chapter, the magneto-mechanical model considered to take into account the effect of 

punching process on magnetic properties of ferromagnetic materials is discussed. First the original 

magneto-plastic model proposed by Sablik and its theoretical background is presented. Secondly, 

the proposed modifications to the model are detailed, it concerns the introduction of a new 

modeling method of the anhysteretic and magnetostrictive behaviors, and the introduction of an 

equivalent stress to take into account the multiaxial stress effect. Finally, the identification 

methodology has been presented in detail.  

II.1 Magneto-plastic model – Sablik’s approach  

II.1.1 Sablik model  

As explained in the previous chapter, section I.4.2, to take into account the plastic deformation 

effect in the magnetoelastic Jiles-Atherton model, Sablik rewrites the parameters 𝑎 (equation I.46) 

and 𝑘 (equation I.49) as a function of the dislocation density. 

Since the parameter 𝑘 is related to the pinning sites density, it is proportional to the coercivity and 

hence has the same dependence. Based on the experimental works [77-80] which show that 

coercivity is proportional to the square root of the dislocation density, Sablik in [70][81][82] 

proposes the expression of the wall pinning parameter 𝑘 given by (II.1). 

𝑘 = [𝐺1 +
𝐺2

𝑑
] 𝑘0𝜉𝑑

1
2                                                             (II.1) 

Regarding the scaling parameter 𝑎, this latter is proportional to the domain density in the 

demagnetized state, which is determined by the pinning site density, which is in turn proportional 

to the pinning parameter 𝑘. Thus, Sablik proposes the expression (II.2) of the scaling parameter 

𝑎 where it exhibits the same dependence as 𝑘 on the dislocation density 𝜉𝑑. 

𝑎 = [𝐺3 +
𝐺4

𝑑
] 𝑎0𝜉𝑑

1
2                                                            (II.2) 

with G1, G2, G3 and G4 are constants related to the grain size d, 𝑎0 and 𝑘0 are respectively the wall 

pinning and scaling parameters prior to plastic deformation. The dislocation density 𝜉𝑑 is expressed 

as: 

𝜉𝑑 = ([
𝜎𝐹

0.76 𝐺𝑏
] + 𝜉𝑑0)

2

                                                     (II.3) 

where 𝜉𝑑0 is the initial dislocation density prior to the plastic deformation, 𝐺 is the specimen shear 

modulus as given by (II.4), 𝑏 is the appropriate Burgers vector magnitude for the specimen’s 

dislocations, 𝜐 is the Poisson ratio and 𝑌 is the Young modulus.  

𝐺 =
𝑌

2(1 + 𝜐)
                                                                 (II.4) 
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The plastic deformation 𝜀 which is represented by the hardening stress 𝜎𝐹  is directly related to 

the dislocation density 𝜉𝑑 as expressed in (II.3). The hardening stress as illustrated in Fig.II.1 is 

given by 𝜎𝐹 = 𝜎 − σy where σy represents the yield stress and, 𝜎 the applied stress modeled by the 

Hollomon law such as 𝜎(𝜀) = 𝑘𝐹𝜀𝑛𝐹 , where 𝑘𝐹 is the hardening coefficient and 𝑛𝐹 the exponent.  

 
Fig.II.1 Illustration of the hardening stress  

In the following we will only consider the anhysteretic behavior. Thus, the magneto-mechanical 

model is expressed by equation (I.46) which gives the anhysteretic magnetization 𝑀𝑎𝑛 as a function 

of the scaling parameter 𝑎 (II.2), the effective field 𝐻𝑒 (I.56), and the magneto-mechanical field 

𝐻𝜎 (I.57) which is related to the magnetostriction function λ. Its expression will be discussed in 

more details in this section.  

II.1.2 Anhysteretic functions  

An accurate representation of the magneto-mechanical behavior also relies on the ability of the 

magnetic model, in our case the anhysteretic function, to reproduce the observed experimental 

behavior. In that context, most of the magnetic models exploit the Langevin function for description 

of the anhysteretic magnetic behavior. Although it exhibits interesting advantages, limited number 

of parameter and physical behavior, the Langevin function can lead to accuracy problems, 

especially when employed for hysteresis modeling [83][84]. In this section two anhysteretic 

functions based on the Brillouin function, which were developed to model the anhysteretic 

behavior, are presented and adapted for the magneto-mechanical modeling.   

The Brillouin function expressed in (II.5) was originally developed for the quantum physics, 

with 𝐽 the internal quantum number varying from  𝐽 = 1 2⁄  to  𝐽 ⟶  ∞. It reduces to the Langevin 

function in the limit 𝐽 ⟶  ∞ and for 𝐽 = 1 2⁄  it reduces to the hyperbolic function. 
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𝐵𝐽(𝑥) = (
2𝐽 + 1

2𝐽
) coth (

2𝐽 + 1

2𝐽
𝑥) −

1

2𝐽
coth (

1

2𝐽
𝑥)                                  (II.5) 

Figure II.2 gives Brillouin function for different values of 𝐽 . 

 
Fig II.2 Brillouin function for various values of 𝐽 [3] 

The Brillouin function was originally derived for paramagnet materials, where the magnetic 

moments are assumed oriented in random direction without interaction in the absence of an external 

magnetic field. However, like the Langevin function used in the Sablik model, it can be used for 

ferromagnet by considering the effective field. In [85], the author proposes, based on the Brillouin 

model, an anhysteretic function that is a linear combination of two Langevin functions. Its 

expression is given in (II.6) where, on the one hand, 𝑀𝑠1
and 𝑀𝑠2

 are parameters related to the 

saturation magnetization such as 𝑀𝑠 = 𝑀𝑠1
+ 𝑀𝑠2

 and, on the other hand, 𝑎1 and 𝑎2 are the scaling 

parameters. 

𝑀𝑎𝑛 = 𝑀𝑠1
(coth (

𝐻𝑒

𝑎1
) −

𝑎1

𝐻𝑒
) + 𝑀𝑠1

(coth (
𝐻𝑒

𝑎2
) −

𝑎2

𝐻𝑒
)                             (II.6) 

Another approach to represent the anhysteretic function, called the “modified Brillouin 

function”, has been proposed by Wlodarski [86]. It consists of a double Langevin function with the 

introduction of an additional hyperbolic tangent term, its expression is given in (II.7).  

𝑀𝑎𝑛 = 𝑀𝑠1
(coth (

𝐻𝑒

𝑎1
) −

𝑎1

𝐻𝑒
) + 𝑀𝑠2

tanh (
|𝐻𝑒|

𝑎2
)(coth (

𝐻𝑒

𝑎2
) −

𝑎2

𝐻𝑒
)                 (II.7) 

where 𝑀𝑠1
, 𝑀𝑠2

, 𝑎1, 𝑎2 are the model parameters and have the same definition as in the double 

Langevin function (II.6).  

In their original configuration, 𝐻𝑒 in (II.6) and (II.7) refers to the effective magnetic field, where 

only the magnetic behavior is modeled. In the present work, based on the Sablik model, we propose 

to adapt the anhysteretic function to the magneto-mechanical modeling by introducing the effective 

field 𝐻𝑒 as expressed in (I.56) and write the parameters 𝑎1 and 𝑎2 as a function of the plastic strain.      

𝐽 =  
1

2
 𝐽 =  

3

2
 

𝐽 =  
5

2
 

∞ 
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II.1.3 Magnetostriction model   

In this study, the magnetostriction 𝜆 refers to the magnetostrictive deformation along the 

magnetization direction. As reported in chapter I, it has been observed experimentally that 𝜆 is an 

even function of the magnetization, which means that the deformation due to the magnetization is 

independent of its direction. Furthermore, the magnetostriction has an asymmetrical and nonlinear 

dependency on the tensile and compressive stress [87]. Since the scientific community began to be 

interested in magnetostrictive behavior under mechanical loading, different models have been 

proposed.  

Through their several works on the magnetoelastic behavior modeling, Jiles and Sablik  used 

different magnetostriction functions. In [88], a magnetostriction model, which depends on the 

magnetization and the elastic stress, has been proposed. The function 𝜆 given in (II.8) is expressed 

in term of the saturation magnetostriction 𝜆𝑠 that depends on the elastic stress and the square of 

magnetization 𝑀2.  

𝜆 =
3

2
𝜆𝑠(𝜎) (

𝑀

𝑀𝑠
)
2

                                                        (II.8) 

With  𝜆𝑠 = {
(𝜆𝑠0

− 𝜆𝑠𝑡
) (1 − (𝜎 𝜎𝑡⁄ )

1/2
) + 𝜆𝑠𝑡

            𝜎 ≥ 0

(𝜆𝑠0
− 𝜆𝑠𝑐

) (1 − (𝜎 𝜎𝑐⁄ )
1/2

) + 𝜆𝑠𝑐
          𝜎 ≤ 0

                          (II.9) 

𝜆𝑠0
, 𝜆𝑠𝑡

and 𝜆𝑠𝑐
 are the maximum value of magnetostriction in the unload state, under maximum 

tension 𝜎𝑡 and under maximum compression, respectively. However, the magnetostriction function 

represented in (II.8) and (II.9) does not respect an asymmetrical dependency on the stress. Indeed, 

this model always predicts improvement of the magnetic permeability for the tensile stress and 

degradation for compressive stress. 

Another more elaborated magnetostriction function has been proposed in [89] [90]. It is derived 

from magnetoelastic considerations by considering the mechanical equilibrium state of the 

material. The magnetostriction is function of the mechanical parameters 𝜐 and 𝑌 that are the 

Poisson ratio and Young modulus, respectively. 𝐸𝑚𝑎𝑔 refers to the magnetic energy and 𝐶𝑒 is a 

constant. 

𝜆 = − (
2

3

𝐶𝑒(1 + 𝜐)

𝑌
) [{1 + (

9𝑌

2𝐶𝑒
2(1 + 𝜐)2

)𝐸𝑚𝑎𝑔(𝑀𝑠)}

1
2

− {1 + (
9𝑌

2𝐶𝑒
2(1 + 𝜐)2

) [𝐸𝑚𝑎𝑔(𝑀𝑠) − 𝐸𝑚𝑎𝑔(𝑀)]}

1
2

]                                         (II.10) 

Compared to the function proposed in (II.8), this model is able to reproduce the asymmetrical 

magnetostrictive behavior with respect to the compressive and the tensile stresses. However, its 

identification is not straightforward.  
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Recently, based on experimental observations, a mathematical model of the magnetostriction 

has been proposed by Deepak et al [91]. The proposed model consists in the product of two distinct 

functions as given in (II.11).  

   𝜆 = (∑𝛽𝑗𝑀
2𝑗

𝑝

𝑗=1

)(𝐶1 + tanh (
𝜎 − 𝜎0

𝜏
))𝐶2                                                         (II.11) 

The first function reproduces the evolution of the magnetostriction in terms of the magnetization 

and, as for the models presented above, it considers a 2𝑝 degree polynomial dependency on the 

magnetization. The second function scales the magnetostriction depending on the stress, using the 

hyperbolic tangent which is controlled by the parameters 𝐶1, 𝐶2, 𝜏, 𝜎0.  

The authors showed that the function presents a good agreement with magnetostriction 

measurements under different elastic stresses. The nonlinear dependency on the compressive and 

tensile stresses, which was the weakness of the previous models, is well respected. Within the 

context of this work, this function will be integrated in the original Sablik model.  

II.1.4 Equivalent stress approach  

The main limitation of Sablik model is that the effect of stress on the magnetic behavior is 

restricted to uniaxial stress. Yet, stress is multiaxial in most of industrial applications. To overcome 

this limitation, an equivalent stress is the adaptative solution in the case of the scalar modeling 

approach used in the Sablik model.  In this section, a brief review of the different definitions of 

“equivalent stress” proposed in the literature will be introduced, then the equivalent stress proposed 

by Hubert and Daniel [92] will be presented in more details.    

An equivalent stress 𝜎𝑒𝑞  from the magnetic point of view is a fictive uniaxial stress that would 

change the magnetic behavior in a similar way to the real multiaxial stress tensor  𝝈  given in 

(II.12): 

𝝈 = [

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧

𝜎𝑦𝑥 𝜎𝑦𝑦 𝜎𝑦𝑧

𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧

]                                                           (II.12) 

Based on experimental observations of materials submitted to biaxial stress, Kashiwaya [93] 

proposed the equivalent stress given in (II.13): 

𝜎𝑒𝑞 = 𝐾(𝜎𝑥𝑥 − 𝜎𝑚𝑎𝑥)                                                          (II.13) 

with 𝐾 a constant, 𝜎𝑥𝑥  the stress aligned with the magnetic field direction as illustrated in Fig. II.3 

and 𝜎𝑚𝑎𝑥 the maximal value of the stress tensor 𝝈 . From (II.13), the equivalent stress is always 

negative or null and if the magnetic field is applied along the direction of the maximum stress, the 

equivalent stress is zero, so that a tensile stress or an equi-biaxial tension or compression are 

supposed to have no effect on the magnetic behavior. This approach does not represent the observed 

physical behavior. 
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Fig II.3 Multiaxial stress illustration  

Another approach has been proposed by Schneider and Richardson [94], the equivalent stress is 

expressed by (II.14):  

𝜎𝑒𝑞 = (𝜎𝑥𝑥 − 𝜎𝑦𝑦)                                                              (II.14) 

 

where  𝜎𝑥𝑥 and 𝜎𝑦𝑦 are the stresses in the plane, the magnetic field being aligned in the direction 

of 𝜎𝑥𝑥. The main difference with Kashiwaya’s equivalent stress is that the area of the stress plane 

where 𝜎𝑥𝑥 > 0 and 𝜎𝑦𝑦 < 0 defines a positive equivalent stress. However, an equibiaxial stress is 

still supposed to have no effect on the magnetic behaviour. 

Sablik et al, [95] proposed the following definition of the equivalent stress, based on magneto-

mechanical measurements:  

{
𝜎𝑒𝑞 =

1

3
(2𝜎𝑥𝑥 − 𝜎𝑦𝑦)                                if 𝜎𝑥𝑥 < 0

𝜎𝑒𝑞 =
1

3
(𝜎𝑥𝑥 − 𝜎𝑦𝑦)                                  if 𝜎𝑥𝑥 > 0

                           (II.15)        

where 𝜎𝑥𝑥 is the stress aligned with the magnetic field. This approach presents a significant 

difference with the previous one, tensile and compression biaxial stress do not lead to the same 

result, however this model is discontinuous when 𝜎𝑥𝑥 changes sign. 

II.1.4.1 Daniel and Hubert (D-H) equivalent stress   

All the previous proposals for an equivalent stress are restricted to biaxial stress and the 

magnetic field is necessarily applied along an eigendirection of the stress tensor. Daniel and Hubert 

(D-H) proposed a definition of a more general equivalent stress which is based on an equivalence 

in magnetoelastic energy [92][96][97]. The magnetoelastic energy 𝑊𝜎 over a volume 𝑉 is given in 

(II.16). 

𝑊𝜎 = −𝝈: 𝜺𝝀                                                                    (II.16) 

𝑯 
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𝜺𝝀 =

[
 
 
 
 
𝜆 0 0

0 −
1

2
𝜆 0

0 0 −
1

2
𝜆]
 
 
 
 

                                                          (II.17) 

where 𝝈 and 𝜺𝝀 are the macroscopic stress and magnetostriction strain tensors, respectively. 𝜺𝝀 is 

written for an isotropic material and the magnetostriction is assumed to be isovolumetric which 

means that the volume magnetostriction is neglected, so that the the trace of 𝜺𝝀 is equal to zero. 

The magnetostriction 𝜆  and the magnetic field are measured in the direction 𝑥 . Thus, the 

magnetoelastic energy can be developed as given in (II.18):  

𝑊𝜎 = −𝜆 [𝜎𝑥𝑥 −
1

2
(𝜎𝑦𝑦 + 𝜎𝑧𝑧)] = −𝜆 [

3

2
𝜎𝑥𝑥 −

1

2
tr(𝝈)]                          (II.18) 

The term tr(𝝈) represents the trace of the stress tensor 𝝈. In order to get a definition independent 

from the chosen coordinate system, the stress component in the direction of the magnetic field 𝜎𝑥𝑥 

is given by (II.19):   

𝜎𝑥𝑥 = 𝒉𝒕𝝈 𝒉                                                                   (II.19) 

where 𝒉 denotes the direction of the applied field and 𝒉𝒕 the transpose of 𝒉. Thus, the expression 

for the magnetoelastic energy is finally written, for any stress tensor 𝝈, as expressed in (II.20):  

𝑊𝜎 = −𝜆 [
3

2
𝒉𝒕𝝈 𝒉 −

1

2
tr(𝝈)]                                                   (II.20) 

Now, by considering a uniaxial stress 𝜎𝑢 applied in the direction parallel to the magnetic field, leads 

to the magnetoelastic energy given in (II.22):  

𝝈 = [
𝜎𝑢 0 0
0 0 0
0 0 0

]                                                              (II.21) 

𝑊𝜎 = −𝜆[𝜎𝑢]                                                                    (II.22) 

Assuming that the same magnetoelastic energy leads to the same magnetic behavior, equations 

(II.20) and (II.22) are considered equivalent. The following expression for the equivalent stress 𝜎𝑒𝑞 

is finally obtained: 

𝜎𝑒𝑞 =
3

2
𝒉𝒕𝝈 𝒉 −

1

2
𝑡𝑟(𝝈)                                                      (II.23) 

This definition of the equivalent stress is used to take into account the effect of a multiaxial 

stress on the magnetostriction behavior in the Sablik model. Thus, the uniaxial stress σ in (I.57) 

and (II.11) is replaced by the equivalent stress σeq defined in (II.23).  
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II.1.4.2 Validation of the D-H equivalent stress  

As illustrated in Fig II.4, D-H equivalent stress definition states that a material under multiaxial 

stress (Fig II.3-a) exhibits the same magnetic behavior as a material submitted to this equivalent 

stress aligned with the magnetic field (Fig II.3-b). 

 
Fig. II.4 Illustration of bi-axial and equivalent stress configurations 

The proposed validation is based on the comparison of measured anhysteretic magnetization curves 

under different biaxial and uniaxial stresses. The measurements were performed on a M400-50A 

non-oriented electrical steel sheet by using a custom-made single sheet tester device. The detail of 

the measurement setup and experimental procedure can be found in [56]. The validation process 

follows two steps:  

• First, using equation (II.23) the D-H equivalent stress is calculated for each biaxial stress, with 

the magnetic field aligned along 𝑥 direction. Table II.1 gives the applied stresses [𝜎𝑥𝑥  𝜎𝑦𝑦 𝜎𝑧𝑧] 

and their corresponding D-H equivalent stress. The three colors distinguish between uniaxial 

(blue), equi-biaxial (orange) and shear-biaxial (green) stresses. We note that in the case of a 

uniaxial stress applied in the direction of the magnetic field, the equivalent stress is obviously 

the applied stress. 

Tab. II.1 Calculation of the D-H equivalent stress  

[𝜎𝑥𝑥  𝜎𝑦𝑦 𝜎𝑧𝑧] 

(MPa) 

D-H 𝜎𝑒𝑞 

(MPa) 

[𝜎𝑥𝑥  𝜎𝑦𝑦 𝜎𝑧𝑧] 

(MPa) 

D-H 𝜎𝑒𝑞 

(MPa) 

[𝜎𝑥𝑥  𝜎𝑦𝑦 𝜎𝑧𝑧] 

(MPa) 

D-H 𝜎𝑒𝑞 

(MPa) 

[ -30   0   0] -30 [-30   -30   0] -15 [-30   +30   0] -45 

[ -20   0   0] -20 [-20   -20   0] -10 [-20   +20   0] -30 

[ -10   0   0] -10 [-10   -10   0] -5 [-10   +10   0] -15 

[+10   0   0] +10 [+10   +10   0] +5 [+10   -10   0] +15 

[+20   0   0] +20 [+20   +20   0] +10 [+20   -20   0] +30 

[+30   0   0] +30 [+30   +30   0] +15 [+30   -30   0] +45 

 

𝜎+ 

𝜎+ 

 

𝜎− 

𝜎− 

𝜎− 

𝜎+ 𝜎+ 

𝜎− 
𝑯 

(a): Multiaxial      

stress (real)  
 

𝜎𝑒𝑞 𝜎𝑒𝑞 

𝑯 

(b): D-H equ. 

stress (fictive)  
 

𝜎 𝜎 

𝑯 

(c): Uniaxial      

stress (real)  
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• Second, the magnetization curves measured under biaxial stresses are compared to the ones 

obtained under uniaxial stress for the same magnitudes of the equivalent (from bi-axial) and 

real uni-axial stresses. For example, the magnetization curve measured under the shear-biaxial 

[-20 +20 0] which has a D-H equivalent stress 𝜎𝑒𝑞 = −30MPa is compared to the one 

measured under the uniaxial 𝜎 = −30MPa. 

Figure II.5 gives the comparison of the magnetization curves measured under the fictive uniaxial 

stress given by the D-H equivalent stress and their corresponding real uniaxial stress. It shows that 

the magnetization curves measured under the fictive uniaxial stress exhibits the same magnetization 

curves as those measured under the real uniaxial stress.   

 
Fig. II.5 Magnetization curves measured under (a) equivalent stress (b) real uniaxial stress     

II.1.5 Summary  

In this section, the original Sablik approach for the magneto-plastic modeling has been 

presented. Some modifications are proposed to have a better representation of the experimental 

behavior. The original model uses the Langevin function (I.46) to describe the anhysteretic curve. 

We will investigate the ability of the double Langevin (II.6) and modified Brillouin (II.7) functions 

to better model the anhysteretic behavior. Also, we propose to use a more appropriate 

magnetostriction function which best expresses its dependence on the magnetization and stress. 

Then the D-H equivalent stress, which considers the multiaxial mechanical loading, is introduced 

to account for the magneto-elastic behavior. Finally, the expression of the magneto-elastic field 

given in (I.57) is written as follows: 

𝐻𝜎 =
3

2

𝜎𝑒𝑞

𝜇0
(
𝜕𝜆(𝑀𝑎𝑛, 𝜎𝑒𝑞)

𝜕𝑀𝑎𝑛
)

𝑇

                                                  (II.24) 

[ 20 -20 0]  → 𝜎𝑒𝑞 = +30    

[-20 -20 0]  → 𝜎𝑒𝑞 = −10  

[-20 -20 0]  → 𝜎𝑒𝑞 = −30  

Eq. uniaxial stress 𝜎𝑒𝑞 [MPa]   

Real uniaxial stress [MPa] 

𝜎 = +30    
𝜎 = −10    
𝜎 = −30    

𝜎 =       0    

M
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A
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where 𝜎𝑒𝑞 is the D-H equivalent stress given in (II.23) and 𝜆(𝑀𝑎𝑛, 𝜎𝑒𝑞) is the magnetostriction 

function given in (II.11) and expressed as follows: 

𝜆 = (∑𝛽𝑗𝑀𝑎𝑛
2𝑗

𝑝

𝑗=1

)(𝐶1 + tanh (
𝜎𝑒𝑞 − 𝜎0

𝜏
))𝐶2                                              (II.25) 

There is no modification in the plastic dependent parameters, whatever the considered 

anhysteretic function Langevin, double Langevin or modified Brillouin, the parameters 𝑎, 𝑎1 or 𝑎2 

are expressed in terms of the dislocation density, therefore in terms of the plastic strain 𝜀. 

II.2 Model identification   

The parameters of the anhysteretic Sablik model are identified using magnetization curves 

measured under different elastic stresses and plastic strains. Two groups of measured 

magnetization curves have been used:  

• The first group is performed by M. El Youssef [49] from L2EP laboratory. The NO electrical 

steel sheet (1.3%) Si-Fe M330-35A grade has been investigated, where the magnetization curves 

are measured under different elastic uniaxial stresses, and under different plastics strains. The 

measured data are used to identify the whole Sablik model. 

• The second group carried out by U. Aydin [56] from Aalto University considers a NO electrical 

steel sheet (3%) Si-Fe M400-50A grade. The magnetization curves are measured under different 

elastic biaxial stresses. The measured data have been used previously to validate the D-H 

equivalent stress approach from the magnetic point of view.  

 As presented in section II.1.2, three functions can be used to model the anhysteretic behavior: 

the Langevin, double Langevin and modified Brillouin functions. In this section a comparison in 

terms of fitting accuracy is carried out between the three approaches. There are three distinct steps 

to follow during the identification of the Sablik model parameters. First, without considering the 

stress dependence, the initial parameters of the model are identified. Second, the elastic stress 

dependence is considered and the parameters of the magnetostriction function are identified. 

Finally, the plastic dependency is introduced, and its parameters identified.  

Expressions of the magnetization in (I.46), (II.6) or (II.7) are implicit equations which require 

an iterative resolution. Fig. II.6 gives the flow chart of the Langevin function resolution, the method 

is also valid for the double Langevin and the modified Brillouin functions. To carry out the curve 

fitting in this study, the least square error between the model and the experiment was used as the 

objective function to be minimized.   
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Fig. II.6 Flow chart for the solution method of the magneto-plastic model 

II.2.1 Initial identification  

Without considering the stress dependence in (II.24) (Hσ = 0), the initial parameters of the 

model are identified by fitting the global formula of magnetization curve measured for the grade 

M330-35A. According to the considered anhysteretic function, the model parameters are identified 

separately. For the Langevin function the magnetization model is given in (I.46) and the identified 

parameters are given in Tab. II.2. 

Tab II.2 Initial parameters of the Langevin function for the grade M330-35A   

Parameter Value 

𝑀𝑠(A/m) 1.39×106  

𝑎0(A/m) 120.86 

α  4.10×10-5 

When the double Langevin function (II.6) and the modified Brillouin function (II.7) are used. The 

identified parameters are given in Tab. II.3 

 

No 
Yes 

Initialization,  

𝑀𝑎𝑛
0  , 𝐻 (given)

     
 

Compute iteration ‘𝑖’   

𝐻𝜎
𝑖 =

3

2

𝜎𝑒𝑞

𝜇0
(
𝜕𝜆(𝑀𝑎𝑛

0 , 𝜎𝑒𝑞)

𝜕𝑀𝑎𝑛
) 

𝐻𝑒
𝑖 = 𝐻 + 𝛼𝑀𝑎𝑛

0 + 𝐻𝜎
𝑖  

𝑀𝑎𝑛
𝑖 = 𝑀𝑠 (𝑐𝑜𝑡ℎ (

𝐻𝑒
𝑖

𝑎
) −

𝑎

𝐻𝑒
𝑖
) 

 

Error estimation   

𝐸𝑟𝑟 = 𝑀𝑎𝑛
𝑖 − 𝑀𝑎𝑛

0   

𝐸𝑟𝑟 < 𝑇𝑜𝑙  

𝑀𝑎𝑛
0 = 𝑀𝑎𝑛

𝑖   

Output 

𝑀𝑎𝑛 
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Tab. II.3 Initial parameters of the modified Brillouin function for the grade M330-35A 

Parameter Double Langevin  Modified Brillouin  

𝑀𝑠1
(A/m) 2.74×105  3.07×105  

𝑀𝑠2
(A/m) 1.31×106 1.21×106 

𝑎01
(A/m) 2436.7 1099.6 

𝑎02
(A/m) 97.36 76.24 

𝛼  8.78×10-6 8.78×10-6 

The subscript ‘0’ in 𝑎0, 𝑎01
, 𝑎02

 refers to the ‘initial’ values, i.e. without stress or strain. Figure II.7 

gives the fitted and measured magnetization curves for the three anhysteretic functions.  

 
Fig. II.7 Modeled and measured magnetization curve without considering the stress effect for different 

anhysteretic functions for the grade M330-35A

The best fitting accuracy is obtained with the Brillouin function, as illustrated in Fig III.8, where 

the relative deviation for the different anhysteretic functions is plotted. Although, it shows a 

discrepancy for all at the beginning of the linear zone. The modified Brillion function presents 

the weakest fitting deviation at the linear and the saturation zones of the magnetization curve.

 
Fig II.8 Relative fitting deviation for the different anhysteretic functions
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Even, the double Langevin function presents a weak fitting deviation at the saturation zone, it 

remained relatively high at the linear zone. Thus, for the next identification steps only the Lange-

vin function used in the original Sablik model and the modified Brillouin function will be also 

investigated.

II.2.2 Elastic identification

This identification step keeps fixed the parameters previously determined and identify the

parameters which depends on the elastic stress.

II.2.2.1 Elastic identification under uniaxial stress

The elastic stress dependence is considered in (II.24) where the magneto-mechanical field 

Hσ ≠ 0, and the stress is given by the D-H equivalent stress. To carry out the identification, 

Langevin and modified Brillouin functions are considered. Thus, formulas (II.24) (II.25) and (I.57) 

are combined in (I.46) when Langevin function is considered and combined in (II.7) when the 

modified Brillouin function is considered, then the global expression of magnetization is fitted with 

the measured magnetization curves (grade M330-35A) for both approaches and the parameters of 

the magnetostriction function given in II.25 are identified.

The magnetostriction function 𝜆 is a product of two terms, a polynomial of degree 2p 

∑𝑝 𝛽𝑗𝑀𝑎𝑛
2𝑗

𝑗=1  and a tangent function (𝐶1 + tanh (
𝜎𝑒𝑞−𝜎0

𝜏
)) 𝐶2 depending on the stress. The 

parameters of the magnetostriction model are 𝛽j (j= 1⟶ p), 𝐶1, 𝐶2, 𝜎0 and 𝜏. 

o Langevin function  

When the anhysteretic behavior is expressed using the Langevin function, the global 

magnetization given in (I.46) is fitted with magnetization curves measured under different uniaxial 

tensile and compressive elastic stresses. As seen in the initial identification step the Langevin 

function presents a fit inaccuracy at the beginning of the linear zone and the saturation zone which 

makes the convergence of the iterative process described in Fig II.5 difficult, thus the degree of the 

polynomial function in (II.25) is set to 2 (i.e. p=1).  

The fitting result is given in Fig. II.9, the modeled curves reproduce the global behavior of the 

measured magnetization curves under elastic stress.  

Up to a certain elastic stress value 𝜎 = 16.7 MPa the magnetization exhibits an improvement 

compared to the unloaded case; besides this value the degradation of magnetization curves starts.      
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Fig II.9 Measured and fitted magnetization curves under different stress levels using the Langevin 

function for the grade M330-35A   

The magnetization curve fitting presented in Fig II.9 leads to the magnetostriction model 

parameters given in Tab. II.4.        

Tab. II.4 Fitted magnetostriction parameters using the Langevin function for the grade M330-35A   

Parameter Value Parameter Value 

𝛽1 -1,13×10-18  𝜎0(MPa) 8.29 

𝐶1 -0.94 𝜏(MPa) 24.54 

𝐶2 1.46 - - 

Figure II.10 gives the identified magnetostriction function for different stress levels. Compared to 

measured magnetostriction under elastic stress presented in [91], it shows a good agreement. The 

nonlinear dependence on the compressive and tensile stress is well modeled. However, the 

convergence by setting the degree of the polynomial term 𝑝 = 1 prevent to reach the 

magnetostriction at saturation. 

 

Fig. II.10 Stress dependency of the magnetostriction model - Langevin function for the grade M330-35A    
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o Modified Brillouin function

By considering the modified Brillouin function, the global magnetization is given by (II.14). It

is fitted with measured magnetization curves under different elastic stress levels. In that case, it 

was possible to improve the accuracy of the fitting by setting the degree of the magnetostriction 

polynomial term to 𝑝 = 5 as recommended in [91]. Figure II.11 gives the fitting results. As for the 

Langevin function, the modeled curves reproduce the global behavior of the measured 

magnetization curves under elastic stress, moreover the quality of fitting is better. Fig II.12 gives 

the comparison of relative fitting deviation obtained with both anhysteretic function.

 
Fig. II.11 Measured and fitted magnetization curves under different stress levels using the modified 

Brillouin function for the grade M330-35A

Figure II.12 shows that the modified Brillouin function presents only about 4% fitting devia-

tion in the linear and almost nil at the saturation zone, while the Langevin function reach about 

23% fitting deviation in the linear zone and 4% in the saturation zone.

 
Fig II.12 Comparison between the relative fitting deviation obtained with Langevin function and the 

modified Brillouin function
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The magnetization curve fitting presented in Fig II.11 leads to the identification of the 

magnetostriction model parameters given in Tab. II.5. 

 

Tab. II.5 Fitted magnetostriction parameters using the m. Brillouin function for the grade M330-35A  

Parameter Value Parameter Value 

β1 8.36×10-19  𝐶1 2.43 

β2 2.96×10-31 𝐶2 1.88 

β
3
 -2.50×10-43 𝜎0(MPa) 9.36 

β
4
 1.19×10-55 𝜏(MPa) -22.85 

β
5
 -2.42×10-68 - - 

 

The modeled magnetostriction function for different stress levels is given in Fig. II.13. The use 

of the modified Brillouin function to model the anhysteretic magnetization allowed to obtain better 

results in terms of magnetization curves and consequently a more realistic magnetostrictive 

behavior. The non-uniform dependency on the compressive and the tensile applied stress of λ is 

represented, furthermore the magnetostriction at saturation is reached.  

 
Fig. II.13 Stress dependency of the magnetostriction model using the modified Brillouin function for the 

grade M330-35A  

II.2.2.2 Elastic identification under biaxial stress   

The aim of this identification under biaxial stresses is to validate the D-H equivalent stress 

approach from the magnetostrictive behavior point of view using the measurements carried out on 

the material grade M400-50A. From Tab. II.1, first the measured magnetization curves under 

compressive and tensile equivalent stresses 𝜎𝑒𝑞 = -30 MPa, -20 MPa, -15 MPa, 0 MPa, 30 MPa 
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are selected, which correspond, respectively to the biaxial stresses (in MPa) [𝜎𝑥𝑥 𝜎𝑦𝑦  0] = [-20 +20 

0], [-20 0 0], [-10 +10 0], [0 0 0], [+20 -20 0]. Then, as in the uniaxial case, the parameters of the 

magnetostriction model are identified. The global anhysteretic magnetization is described using the 

Langevin function (I.46) and the modified Brillouin function (II.7). 

The measured magnetization curves used in this subsection are different from those used in the 

initial identification section. Therefore, the initial parameters for both Langevin function and the 

modified Brillouin function are identified again using the magnetization curve measured without 

stress. they are given in Tab. II.6 

Tab II.6 Initial parameters of the Langevin and the modified Brillouin functions for the grade M400-50A 

 Langevin Value m. Brillouin Value 

𝑀𝑠(A/m) 1.12×106  𝑀𝑠1(A/m) 8.46×10
5  

𝑎(A/m) 112.40 𝑀𝑠2(A/m) 1.28×10
5
 

𝛼 2.51×10-4 𝛼 6.76×10-5 

- - 𝑎01
(A/m) 51.06 

- - 𝑎02
(A/m) 11.05 

The fitted parameters of the magnetostriction model are given in Tab. II.7. The degree of the 

polynomial term of the magnetostriction model is set 𝑝 =5 with both anhysteretic functions.  

 

Tab. II.7 Fitted magnetostriction parameters – D-H equivalent stress approach for the grade M400-50A 

Parameter Value Parameter Langevin m. Brillouin  

β1 6.05×10-19  𝐶1 -3.95 -4.81 

β2 2.14×10-31 𝐶2 3.37 4.17 

β
3
 -1.81×10-43 𝜎0(MPa) 39.20 48.56 

β
4
 8.61×10-55 𝜏(MPa) 32.82 -14.41 

β
5
 -1.75×10-68 - -  

 

The modeled magnetization curves using the Langevin and the modified Brillouin functions 

(solid and dashed line respectively) and measured magnetization curves (dotted line) for different 

equivalent stresses are given in Fig. II.14. The modeled curves show the same fit accuracy with 

both anhysteretic functions. Indeed, the used magnetization curves are measured in an interval of 

magnetic flux density [-1,1] T which makes the shape of the magnetization curve suitable for fit 

with both anhysteretic functions. 
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Fig. II.14 Modeled magnetization (solid line: Langevin, doted line: m. Brillouin) and measured 

magnetization (dashed line) under different equivalent stresses. for the grade M400-50A 

Figure II.15 gives the modeled stress dependence of the magnetostriction function by 

considering the D-H equivalent stress approach to define the multiaxial and the Langevin function 

or the modified Brillouin function to model the anhysteretic magnetization. The global behavior 

with respect to the magnetization and elastic stress is respected, the difference in the magnitude of 

saturation magnetostriction is since the magnetization curves used to identify the parameters are 

measured on two different electrical steels with different measurement setups.   

 
Fig. II.15 Stress dependency of the magnetostriction model – D-H equivalent stress approach for the grade 

M400-50A 
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II.2.3 Plastic identification  

In this last step of the identification process, the parameters identified previously for the initial 

(without stress) and elastic configurations are kept fixed. Then, the dependence of the model on 

the plastic strain is introduced and the parameters of the dislocation density are identified. As in 

the previous identification steps, the use of the Langevin function and modified Brillouin function 

to define the anhysteretic magnetization are compared. The magnetization curves used to identify 

the model parameters are those measured for the material grade M330-35A, they have been used 

in the initial and the elastic uniaxial identification. Thus, If the anhysteretic magnetization is 

expressed by the Langevin function, the initial and the elastic parameters of the model are given in 

Tab. II.2 and Tab. II.4, respectively. In the case of an anhysteretic magnetization expressed using 

the modified Brillouin function the initial and elastic parameters are given in Tab. II.3 and Tab. 

II.5, respectively. 

o Conditions of the plastic identification  

To perform the plastic identification, the parameter 𝑎 is now function of the dislocation density 

(II.2), and consequently function of the plastic strain through the relation of the hardening stress 

𝜎𝐹(𝜀) = 𝑘𝐹𝜀𝑛𝐹 − 𝜎𝑦. However, the evolution of the elastic parameters in the presence of the plastic 

strain has not been explicitly defined in the original Sablik model. Indeed, it was shown in [98] that 

the magnetostriction evolves for a small plastic strain (0.01%), therefore during the plastic 

identification the magneto-elastic quantities, 𝐻𝜎 (II.24) and the magnetostriction function 𝜆 (II.25) 

will depend on the plastic applied stress 𝜎 = 𝑘𝐹𝜀𝑛𝐹.  

To estimate the dislocation density 𝜉𝑑, the following measured parameters are considered: The 

Young modulus 𝑌 = 174 GPa, the Poisson ratio 𝜐 = 0.3, the Hollomon law parameters,              

𝑘𝐹 = 701.8 MPa and 𝑛𝐹 = 0.23 [49]. The Burgers vector 𝑏 = 10×10
-10

 m is the typical value given 

in [77][78].  

Table II.7 gives the fitted parameters of the dislocation density 𝜉𝑑0, 𝑑, 𝐺3, 𝐺4 when the 

anhysteretic magnetization is modeled with the Langevin function.  

Tab. II.7 Fitted dislocation density parameters using the Langevin function for the grade M330-35A  

Parameter  Value  

𝜉𝑑0 (m-2) 0.55×1012 

𝐺3(m) 10-6 

𝐺4 (m
-2) 1.07×10-11 

𝑑(m) 30×10-6 

Figure II.16 gives the modeled and measured magnetic flux density curves under different plastic 

strains when the anhysteretic behavior is modeled with the Langevin function.  
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Fig. II.16   Measured (dotted line) and modeled (solid line) magnetic flux density curves for different values of                          

plastic strain – Langevin function for the grade M330-35A  

We know from experimental measurement that the dislocation density, as shown in Fig. II.17-a, is 

proportional to the square of the hardening stress σF
2 and the scaling parameter a as illustrated in 

Fig. II.17-b is expected to be proportional to square root of the plastic strain √𝜀 [77].  

    

Fig. II.17 (a) Evolution of the dislocation density with respect to the hardening stress (b) Evolution of the 

fitted scaling factor with respect to plastic strain for the grade M330-35A  

Since the behavior of the scaling parameter 𝑎 with respect to the plastic strain 𝜀 has been verified 

and confirmed by various works [99][100], we propose the following simple expression: 

𝑎 = 𝑎0𝑎𝑝                                                                         (II.26) 

where 𝑎0 represents the initial scaling parameter (without stress), while 𝑎𝑝 is a factor that depends 

on the plastic strain, its expression is given by the function (II.27). 𝑑1, 𝑑2, 𝑑3 and 𝑟 are the model 

coefficients. 
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𝑎𝑝 = 𝑑1𝜀
𝑟 + 𝑑2𝜀 + 𝑑3                                                             (II.27)  

The proposed expression of the scaling parameter given by (II.26) is now considered in the 

Langevin function. Then, the plastic identification process is performed. First the parameter 𝑎𝑝 is 

identified by fitting the Sablik model with the measured magnetization curves for different plastic 

strains, then its evolution is fitted with the expression (II.27). Tab. II.8 gives the fitted coefficients.  

Tab. II.7 Fitted 𝑎𝑝 coefficients  

Parameter  Value  

𝑑1 1.005 

𝑑2 0.299 

𝑑3 1.00 

𝑟 0.215 

Figure II.18 gives the evolution of the scaling parameter 𝑎 given by the proposed expression (II.26), 

it shows the same behavior as the one shown in Fig. II.17-b obtained by considering the original 

expression of the scaling parameter given by (II.2). Thus, the use of (II.26) allowed to directly 

account for the plastic strain in the Sablik model. Furthermore, it avoids the identification of the 

dislocation density parameters.  

 
Fig. II.18   Evolution of the fitted scaling parameter 𝑎 with respect to plastic strain  

For the modified Brillouin function (II.7), the proposed formula (II.26) is used to express the 

plastic behavior. Thus, the expressions of  𝑎1 and 𝑎2 are givens as follows:  

𝑎1 = 𝑎01
𝑎𝑝1

                                                                    (II.28) 

𝑎2 = 𝑎02
𝑎𝑝2

                                                                    (II.29) 

The same identification procedure as for 𝑎 has been followed to identify 𝑎1 and 𝑎2 .  
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Figure II.19 gives the modeled and measured magnetic flux density curves under different plastic 

strains when the anhysteretic behavior is modeled with the modified Brillouin function.  

 
Fig. II.19   Measured (circle line) and modeled (solid line) magnetic flux density curves for different values of plastic 

strain using the modified Brillouin function for the grade M330-35A   

Tab. II.8 gives the fitted coefficients of the scaling parameters 𝑎𝑝1
and 𝑎𝑝2

 

Tab. II.8 Fitted coefficients of 𝑎𝑝1
and 𝑎𝑝2

  

Parameter  𝑎𝑝1
 𝑎𝑝2

  

𝑑1 -329.5 0.798 

𝑑2 0.3904 0.225 

𝑑3 330.1 1.00 

𝑟 5.622×10-4 0.305 

The evolution of the parameters 𝑎1 and 𝑎2 with respect to the plastic strain are given in Fig. 

II.20-a and Fig. II.20-b, respectively. 𝑎2 exhibits the same behavior as 𝑎 in the Langevin function, 

while 𝑎1 shows a different evolution with respect to the plastic strain. 

 
Fig. II.20   Evolution of the fitted scaling parameters 𝑎1and 𝑎2 with respect to the plastic strain  
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Figure II.21 gives the relative fitting deviation obtained with the Langevin function and modified 

Brillouin function.

 

Fig. II.21   Relative fitting deviation of the magnetization curves (a) Langevin function (b) modified 

Brillouin function

The result shows that the introduction of the modified Brillouin function allowed to improve the 

fitting accuracy at the saturation zone (Fig II.21-b). However, at the linear and knee zones the 

fitting deviation is relatively important than when the Langevin function is used.

Finally, to simulate the effect of mechanical punching process, the considered Sablik model is 

expressed as follows:

• Although the modified Brillouin function improved the magnetostrictive identification in 

the elastic part of the model, compared to the Langevin function, its plastic identification 

did not show an important improvement of fitting accuracy, except at the saturation zone. 

Thus, the Langevin function given by (I.46) will be considered to investigate the magneto-

mechanical coupling in the following chapters. The initial and the magnetostriction 

parameters are given in Tab. II.2 and Tab. II.4, respectively.

• The scaling parameter 𝑎 is given by (II.26), its corresponding coefficients are given in Tab 

II.7. The original relation of 𝑎 could have been used, however (II.26) is more suitable since 

it accounts directly for the plastic strain.

• The mechanical quantities (plastic strain 𝜀 and the stress 𝜎𝑒𝑞) of the Sablik model are scalar 

values.

II.3 Discussions and conclusion

In this chapter an approach based on the Sablik model for the magneto-mechanical modeling

has been presented.

The first modification made to the original Sablik model concerns the introduction of the D-H

equivalent stress. This approach based on an equivalence in the magnetoelastic energy induced by
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the real multiaxial stress and the defined fictive uniaxial stress (𝜎𝑒𝑞)  has been validated. In section 

II.1.4.2 different magnetization curves measured under multiaxial stress and their corresponding 

real uniaxial equivalent stress were compared. The result shows that the magnetization curves 

under real and fictive uniaxial stresses are close. However, it should be noted that they are measured 

under elastic stress which did not exceed +30 MPa in tensile and -30 MPa in compressive stress. 

The second test is carried out with the equivalent stress implemented in the Sablik model and the 

identified magnetostriction model. The result agrees with the expected magnetostrictive behavior.     

The second modification concerns the introduction of the modified Brillouin function to model 

the anhysteretic magnetization instead of the Langevin function used in the original model. In 

section II.2.1, Fig. II.7 the comparison made between the anhysteretic functions in the unload state 

showed that the modified Brillouin function compared to the Langevin and double Langevin 

functions exhibits an accurate fitting for the whole range of the measured magnetization curve 

(linear, knee and saturation regions). This accuracy of the fitting allowed then to have a better 

modeling of the magnetostrictive behavior. However, when the plastic dependence is introduced 

the fitting accuracy of the modified Brillouin function seems less efficient in the linear and knee 

regions magnetization curve. Indeed, compared to the Langevin function, the use of the modified 

Brillouin function improves the accuracy fitting in the saturation zone and exhibits less accuracy 

in the linear and knee zones. This degradation of the accuracy can be explained by the shape of the 

magnetization curves. Under high plastic strains, the slope of the linear zone is strongly decreased, 

consequently the characteristic zones of the magnetization curve are not clearly delimited which 

makes the fitting with modified Brillouin function not as accurate as in the unloaded case.  

Nevertheless, it can also be a fitting problem. Therefore, the least square error used as the objective 

function to carry out the fitting process should be replaced.    

Also, the stress dependent magnetostriction model presented in subsection II.1.3 was able to 

model the magnetostrictive behavior with respect to the magnetization and the asymmetrical 

variation with respect to stress. The identification method based only on macroscopic 

magnetization curves measured under compressive and tensile stress was quite simple and gives a 

good estimation of the magnetostriction. 
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This chapter describes the modeling chain from the mechanical punching process till its effect 

on the magnetic properties. In addition to the description of the numerical models employed to 

simulate the magnetic and mechanical punching, we present the numerical tools that were 

developed to interface both physics through the magneto-mechanical behavior law described by 

the Sablik model that accounts for the plastic strain. The developments are illustrated through the 

analysis of academic example: a steel sheet sample.  

III.1 Numerical tools  

III.1.1 Maxwell equations for magnetostatics and behavior laws  

Maxwell’s equations are fundamental relations for the description of the electromagnetic 

phenomena. James Clerk Maxwell unified the known experimental laws: Gauss law, Faraday law 

and Ampere law. In this chapter, a nonlinear magnetostatic problem is represented in Fig. III.1, 

with different sources of magnetic field, such as a winding supplied by a current 𝑖, a permanent 

magnet modeled by a remanent magnetic flux density 𝑩𝑟 and an imposed magnetic flux 𝜙 flowing 

through boundaries of the domain.  

 
Fig III.1 Domain 𝐷 and boundaries of the considered magnetostatic problem. 

The magnetostatic problem, i.e. the electrical conductivity is neglected, in the domain 𝐷 of 

boundary Γ  is described by the following Maxwell equations.   

𝒄𝒖𝒓𝒍 𝑯 = 𝑵𝑖 𝑖                                                                   (III.1) 

𝑑𝑖𝑣𝑩 = 0                                                                         (III.2) 

with 𝑯 [A/m] the magnetic field vector, 𝑩 [T] the magnetic flux density vector and 𝑵𝑖 𝑖 = 𝑱𝑠 

[A/m2] the source current density associated to the winding, where 𝑵𝑖  is a vector that depends on 

the geometry of the winding, and which is proportional to the electrical current 𝑖. The vector 𝑵𝑖  

verifies:  

𝑑𝑖𝑣 𝑵𝑖 = 0  in 𝐷𝑤                                                                (III.3) 

with 𝐷𝑤 the subdomain corresponding to the winding. The solution of the above equations requires 

adding the magnetic behavior law (III.4), where the scalar function ℱ links the 𝑩 and 𝑯 fields.  

Γ𝑏 
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𝑩 = ℱ(𝑯)                                                                     (III.4) 

In this case, the function ℱ corresponds to the magnetic permeability. Usually, the inverse of ℱ 

might be required depending on the chosen formulation to solve the magnetostatic problem. Then, 

the inverse function ℱ−1 representing the magnetic reluctivity is expressed as given by (III.5).  

𝑯 = ℱ−1(𝑩)                                                                  (III.5)   

III.1.2 Boundary conditions   

The equations system composed of Maxwell’s equations and the magnetic behavior law admit 

an infinity of solutions. Boundary conditions ensure its uniqueness.   

𝑯 ∧ 𝒏|Γℎ1 ,Γℎ2 = 0                                                               (III.6) 

𝑩.𝒏|Γ𝑏 = 0                                                                   (III.7) 

𝜙 = − ∬𝑩 𝑑𝚪

Γℎ1

= ∬𝑩 𝑑𝚪

Γℎ2

                                                    (III.8) 

with ℎ1ℎ2𝑏 =     and   ℎ1ℎ2𝑏 =  0. The magnetic flux 𝜙 is imposed across the 

boundaries ℎ1 and ℎ2. The boundary condition given in (III.6) imposes that the tangential 

component of the magnetic field 𝑯 is equal to zero.  In (III.7), the normal component of the 

magnetic flux density is equal to zero. 

III.1.3 Vector potential formulation  

Solving the above magnetostatic problem is carried out by considering the vector potential 

formulation. Thus, based on (III.2), the magnetic flux density 𝑩 is expressed as a function of the 

vector potential 𝑨 and of the imposed magnetic flux 𝜙 such that [101]: 

𝑩 = 𝒄𝒖𝒓𝒍 𝑨 + 𝑵𝜙𝜙 − 𝑩𝑟        with       𝑨 × 𝒏|Γ𝑏  = 0                            (III.9) 

with  𝑵𝜙 a source field defined in the whole domain 𝐷, 𝑩𝑟 the remanent magnetic flux density 

defined in a subdomain corresponding to the permanent magnets and verifying the following 

conditions: 

𝑑𝑖𝑣 𝑵𝜙 = 0       in 𝐷                                                           (III.10) 

 with                                                                 𝑵𝜙. 𝒏|Γ𝑏  = 0                                                                (III.11) 

and                                                 − ∬ 𝑵𝜙𝑑𝐬

Γℎ1

= − ∬𝑵𝜙𝑑𝐬

Γℎ2

= 1                                               (III.12) 

The magnetic behavior law (III.5) and the expression of 𝑩 (III.9) are combined in the Maxwell 

Ampere equation (III.1). Then, the strong formulation to be solved is:  

𝒄𝒖𝒓𝒍(ℱ−1 (𝒄𝒖𝒓𝒍 𝑨 + 𝑵𝜙𝜙 − 𝑩𝑟)) = 𝑵𝑖 𝑖                                    (III.13) 
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III.1.4 Finite element method  

For complex geometries, the vector potential formulation is solved by a numerical approach. 

The finite element method (FEM) is the most used. It is based on the transformation of partial 

differential equations into a system of algebraic equations. It was originally designed for the 

computation of mechanical structures [102], and then introduced in electromagnetism by Silver 

and Chari [103]. 

III.1.4.1 Finite element formulation  

The strong formulation is not adapted for the finite element method. Indeed, the potential 

formulation must be developed under a weak form. To determine the weak formulation, the 

weighted residuals method is used, it consists in multiplying a residual 𝑅 by a so-called weighting 

function and by integrating over the domain 𝐷 [104][105]. Thus, based on the magnetostatic strong 

formulation given in (III.13), the residual 𝑹(𝑨)  is expressed as follows:  

𝑹(𝑨) = [𝒄𝒖𝒓𝒍(ℱ−1 (𝒄𝒖𝒓𝒍 𝑨 + 𝑵𝜙𝜙 −𝑩𝑟)) − 𝑵𝑖  𝑖]                          (III.14) 

The weak formulation is obtained by multiplying the residual by weighting functions 𝜓 and by 

integrating over the domain 𝐷: 

∭[𝒄𝒖𝒓𝒍(ℱ−1 (𝒄𝒖𝒓𝒍 𝑨 + 𝑵𝜙𝜙 − 𝑩𝑟)) − 𝑵𝑖 𝑖] 𝜓

𝐷

𝑑𝐷 = 0                      (III.15) 

The application of the Green theorem and the divergence theorem [106] and by considering the 

boundary conditions, the magnetostatic vector potential formulation in the integral form is given 

as follows: 

∭(ℱ−1 (𝒄𝒖𝒓𝒍 𝑨 + 𝑵𝜙𝜙 − 𝑩𝑟)) (𝒄𝒖𝒓𝒍 𝜓)

𝐷

𝑑𝐷 −∭(𝑵𝑖 𝑖). 𝜓

𝐷𝑤

𝑑𝐷 = 0           (III.16) 

III.1.4.2 Discretization   

The discretization by the FEM is originally based on the nodal elements, the introduction of the 

Whitney elements, which defines the edges and facets of elements, contributed greatly to the 

development of the method [107][108]. As illustrated in Fig. III.2, the spatial discretization of the 

domain 𝐷 is carried out by elementary volumes 𝐷𝑒 (tetrahedron, prisms or hexahedron in 3D), 

which consists of nodes, edges, facets, and volumes. We denote by 𝑛𝑛, 𝑛𝑒, 𝑛𝑓 and 𝑛𝑣 respectively 

the number of nodes, edges, facets, and volumes of the mesh.  

 
Fig. III.2 Examples of geometrical elements    

edge 

facet  

volume  node 
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III.1.4.3 Interpolation functions  

An interpolation function is associated to each geometric entity: node, edge, facet, and volume.  

o Nodes  

A continuous scalar function 𝑤𝑛
0 is associated to each node 𝑛 of the domain 𝐷.  It is equal to 1 at 

the node 𝑛 and 0 on all the others. The set of functions defines a finite dimensional space denoted 

𝑊0. If 𝑢 is a scalar function defined in 𝑊0, then it can be expressed as a linear combination of 

functions 𝑤𝑛
0, such as:  

𝑢 = 𝑼𝑛
𝑡𝑾𝑛 = ∑𝑢𝑛

𝑛𝑛

𝑛=1

𝑤𝑛
0                                                         (III.17) 

where 𝑾𝑛 is the vector of the interpolation functions 𝑤𝑛
0 and 𝑼𝑛 the vector of the coefficients 𝑢𝑛 

which corresponds to the set of degrees of freedom associated to the nodes.  

o Edges  

The geometric entity “edge” is associated to a vector function 𝑤𝑒
1 defined by: 

𝑤𝑒
1 = 𝑤𝑖

0𝒈𝒓𝒂𝒅 𝑤𝑗
0 − 𝑤𝑗

0𝒈𝒓𝒂𝒅 𝑤𝑖
0                                             (III.18)  

with 𝑤𝑖
0 and 𝑤𝑗

0 the nodal functions associated to nodes 𝑖 and 𝑗 of edge 𝑒. 𝑤𝑒
1 is equal to 1 on the 

edge 𝑒 and 0 on all the others. The function 𝑤𝑒
1 is continuous on each element and its tangential 

component is continuous when passing from one edge to another. The space generated by the 

functions 𝒘𝑒
1 is denoted by 𝑾1, thus if 𝒖 ∈ 𝑾1, we get: 

𝒖 = 𝑼𝑒
𝑡𝑾𝑒 =∑𝑢𝑒

𝑛𝑒

𝑒=1

𝒘𝑒
1                                                        (III.19) 

with 𝑾𝑒 the vector of the interpolation functions 𝒘𝑒
1, 𝑼𝑒 the set of degrees of freedom associated 

to the edges and 𝑢𝑒 the circulation of 𝒖 along the edge 𝑒 defined by: 

𝑢𝑒 = ∫𝒖. 𝑑𝑙

𝑒

                                                                 (III.20) 

o Facets  

The geometric entity “facet” is associated to a vector function 𝑤𝑓
2 defined by:  

𝒘𝑓
2 = 2𝑤𝑖

0(𝒈𝒓𝒂𝒅 𝑤𝑗
0 ∧ 𝒈𝒓𝒂𝒅 𝑤𝑘

0) + 2𝑤𝑘
0(𝒈𝒓𝒂𝒅 𝑤𝑖

0 ∧ 𝒈𝒓𝒂𝒅 𝑤𝑗
0)

+ 2𝑤𝑗
0(𝒈𝒓𝒂𝒅 𝑤𝑘

0 ∧ 𝒈𝒓𝒂𝒅 𝑤𝑖
0)                                                                                (III.21) 

with 𝑤𝑖
0, 𝑤𝑗

0, 𝑤𝑘
0 the nodal functions of the nodes 𝑖, 𝑗 and  𝑘 of the facet 𝑓. 𝑾2 represents the 

facet elements space generated by the set of functions 𝒘𝑓
2. Thus if 𝒖 ∈ 𝑾2, we have: 
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𝒖 = 𝑼𝑓
𝑡𝑾𝑓 =∑𝒖𝑓

𝑛𝑓

𝑓=1

𝒘𝑓
2                                                       (III.22) 

where 𝑾𝑓 is the vector of the interpolation functions and 𝑼𝑓 the set of degrees of freedom 

associated with the facets of the mesh. As the normal component of functions 𝒘𝑓
2 is continuous 

through each facet, therefore the normal component of a function attached to 𝑾2 is also continuous. 

The flux of 𝒘𝑓
2 which across the facet 𝑓 is equal to 1 and 0 on all the others. The flux of the function 

𝒖  across the facet 𝑓′ verifies the relation (III.23) 

∫ 𝒖 𝑑𝒇′

𝑓′
= ∑ 𝑢𝑓

𝑛𝑓

𝑓=1

∫ 𝒘𝑓
2 𝑑𝒇′

𝑓′
= 𝑢

𝑓′
                                              (III.23) 

III.1.4.4 Discretization of the magnetostatic formulation 

Considering the scalar or vector variable 𝑈 such as 𝑈 ∈ 𝑊𝑖 with 𝑖 = (0, 1, 2, 3), its interpolation 

with Whitney’s elements is: 

𝑈 =∑𝑤𝑘𝑢𝑘
𝑘

  with  𝑘 = {𝑛, 𝑒, 𝑓, 𝑣}                                           (III.24) 

The magnetic vector potential 𝑨 is discretized with edge elements, and the vectors 𝑵𝑖 and 𝑵𝜙 are 

discretized with facet elements. The so-called facets and edges tree technique is used to ensure 

𝒅𝒊𝒗𝑵𝑖 = 0 and 𝒅𝒊𝒗 𝑵𝜙 = 0 in a discrete form [109]. 

𝑨 =∑𝑎𝑒

𝑛𝑒

𝑒=1

𝒘𝑒
1     𝑨 ∈ 𝑾𝟏                                                  (III.25) 

𝑵𝑖 =∑𝑛𝑖𝑓

𝑛𝑓

𝑓=1

𝒘𝑓
2     𝑵𝑖 ∈ 𝑾

𝟐                                              (III.26) 

𝑵𝜙 =∑𝑛𝜙𝑓

𝑛𝑓

𝑓=1

𝒘𝑓
2     𝑵𝜙 ∈ 𝑾

𝟐                                           (III.27) 

where 𝑎𝑒 is the circulation of the vector potential 𝑨 on the edge 𝑒 and 𝑛𝑖𝑓 and 𝑛𝜙𝑓 are the fluxes 

across the facets 𝑓 of 𝑵𝑖  and 𝑵𝜙 respectively. 

To solve the vector potential formulation in its weak from, the Ritz-Galerkin’s method is 

considered [110]. It consists in choosing the weighting function 𝜓 as the interpolation function 𝑤, 

which depends on the considered discretization (𝑤𝑛, 𝑤𝑒, 𝑤𝑓 or 𝑤𝑣 ). By combining (III.25), (III.26), 

(III.27) and (III.16), we obtain the system of equations to be solved under the form [𝑀][𝐴] = [𝐹] 

with:  
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M𝑖𝑗 = ∫  ℱ−1(𝑩)𝒄𝒖𝒓𝒍 𝒘𝑖
1𝒄𝒖𝒓𝒍 𝒘𝑗

1𝑑𝑣   

𝐷𝑒

 ∀ (𝑖, 𝑗) = {1, . . 𝑁𝑒}
2                         (III.28) 

𝐹𝑗 = ∫(𝑵𝑖 𝑖)𝒘𝑗
1 𝑑𝑣 − ∫ℱ−1(𝑩)𝑵𝜙𝜙𝒄𝒖𝒓𝒍 𝒘𝑗

1 𝑑𝑣

𝐷𝑒

                                               

𝐷𝑒

 

+ ∫ℱ−1(𝑩)𝑩𝑟𝒄𝒖𝒓𝒍 𝒘𝑗
1 𝑑𝑣                            

𝐷𝑒

∀ 𝑗 = 1, . . 𝑁𝑒                     (III.29) 

𝐴 = [

𝐴1
𝐴2
⋮
𝐴𝑁𝑒

]                                                                       (III.30) 

where 𝑩 is given by (III.9), 𝑣 refers to the volume of the element 𝐷𝑒 and 𝑁𝑒 the number of degrees 

of freedom related to the considered volume.  

The magnetostatic problem studied in this chapter contains a linear permanent magnet and 

ferromagnetic material, part of which is impacted by mechanical punching process. Thus, the 

function ℱ−1 in (III.5) takes the value of 𝜈𝑝𝑚 = 1/𝜇𝑝𝑚 when the linear permanent magnet is 

considered, where 𝜈pm and 𝜇pm represent its magnetic reluctivity and permeability, respectively. 

In the ferromagnetic material, the scalar function  ℱ−1 has a nonlinear behavior, it is given by the 

reluctivity as a function of the magnetic flux density 𝜈(𝐵) in the non-impacted zone, while it is 

given by 𝜈(𝐵, 𝜀) as a function of both magnetic flux density and plastic strain 𝜀 in the impacted 

zone. This last relation expresses the magneto-mechanical coupling due to the punching process; 

it has been modeled by the Sablik model in chapter II, in the following, its explicit expression will 

be developed.  

III.1.4.5 Numerical integration – Gauss method  

The numerical Gauss method is used to estimate the elementary integrals of the discretized 

formulation (III.28) and (III.29). For a given function 𝑓, the Gauss integration over a 3D reference 

element is given in (III.31): 

∫ ∫ ∫ 𝑓(𝜉, 𝜂, 𝜍)𝑑𝜉𝑑𝜂𝑑𝜍 =∑𝑝𝑖 𝑓(𝜉𝑖, 𝜂𝑖 , 𝜍𝑖)

𝑟

𝑖=1

1

−1

1

−1

1

−1

                                 (III.31) 

The integral of the polynomial function 𝑓(𝜉, 𝜂, 𝜍) is replaced by a linear combination of the values 

of 𝑓 at the points 𝜉𝑖, 𝜂𝑖 , 𝜍𝑖 (integration points) and the Gauss weights 𝑝𝑖. The coordinates of the 𝑟 

integration points are calculated to ensure the exact integral of the polynomial  𝑓(𝜉, 𝜂, 𝜍) which 

have at maximum the order 𝑛 ≤ 2𝑟 − 1. 

For example, Figure III.3 gives the location of the Gauss points of hexahedron reference element. 

Their coordinates 𝜉𝑖 , 𝜂𝑖 , 𝜍𝑖 and Gauss weights 𝑝𝑖 are known values and can be found, for example, 

in [102][111].  
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Fig. III.3 Location of the Gauss points in a reference hexahedron element [102] 

III.2 Inverse of Sablik model 

The magnetic behavior law modeled by the Sablik model, allows to express ℱ =  𝜇(𝑯, 𝜀). 

However, the vector potential formulation developed previously needs the inverse of the function 

ℱ, as ℱ−1 =  𝜈(𝑩, 𝜀). Since the Sablik model is based on the Langevin function, its inversion 

cannot be represented in an explicit form and requires an approximation.  

Different approaches have been proposed in the literature to provide an approximation for the 

inverse Langevin function. Kuhn et al proposed a formula based on the Taylor series expansion, it 

uses the first four coefficients [112]. On the other hand, Itskov et al expressed the Taylor series 

with 22 terms [113] and 62 terms [114]. For the present study, to express the inversion of the Sablik 

model, an approximation approach based on the Padé technique has been considered [115]. 

Compared to the Taylor series expansion, its expression is a simple polynomial function.  

The Sablik model given in (I.46), (I.56) and (I.57) derives from the Langevin function:             

 𝑦 = 𝔏(𝑥) = coth(𝑥) − 1 𝑥⁄ , where 𝑥 = 𝐻𝑒 𝑎⁄ . Thus, based on [115] the Padé approximation of 

the inverse of the Langevin function 𝔏−1(𝑦)  is expressed by (III.32) such that: 

𝑥 = 𝔏−1(𝑦) ≈
𝑦2 − 3𝑦 + 3

1 − 𝑦
                                                  (III.32) 

We set  𝑦 =  𝑀𝑎𝑛 𝑀𝑠⁄  then (III.32) is applied to (I.46). It leads to the following expression: 

𝐻𝑒
𝑎
≈
(
𝑀𝑎𝑛

𝑀𝑠
)
2

− 3(
𝑀𝑎𝑛

𝑀𝑠
) + 3

1 − (
𝑀𝑎𝑛

𝑀𝑠
)

                                               (III.33) 

After introducing (I.56), in (III.33), the final expression of the inverse Sablik model is given by 

(III.34). It expresses the magnetic field magnitude  𝐻 as a function of the magnetic flux density 

magnetitude 𝐵 and the plastic strain 𝜀 (the parameter 𝑎(𝜀) is function of the plastic strain: cf. 

section II.1.1). 

𝐻 ≈

{
 
 

 
 

[
 
 
 
 ((

𝐵
𝜇0
− 𝐻)

1
𝑀𝑠
)

2

− 3((
𝐵
𝜇0
− 𝐻)

1
𝑀𝑠
) + 3

1 − ((
𝐵
𝜇0
− 𝐻)

1
𝑀𝑠
)

]
 
 
 
 

𝑎(𝜀)

}
 
 

 
 

− 𝛼 (
𝐵

𝜇0
− 𝐻) − 𝐻𝜎                     (III.34) 

𝜉 

𝜂 

𝜍 
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Figure III.4 gives the 𝐵(𝐻) curve obtained with Sablik model and the comparison between the 

exact 𝐻(𝐵) curve and its approximation obtained with (III.34).  

 

Fig III.4 𝐵(𝐻) curve and the approximation of its inverse 𝐻(𝐵) curve

The result shows a good accuracy of the approximation method. As shown in Fig. III.5 the relative

deviation does not exceed 1.5%.

 
Fig III.5 Relative deviation of the Padé approximation method

Finally, to take into account the magneto-mechanical coupling, the reluctivity 𝜈(𝐵, 𝜀) = 𝐻/𝐵

is considered in the assembly of the matrix 𝑀 (III.28) and the vector 𝐹 (III.29). Nevertheless, the 

spatial distribution of the plastic strain due to the punching process is needed to solve the FE 

problem. The next section proposes its estimation.

III.3 Determination of the plastic strain distribution

As explained previously, the Sablik model requires the knowledge of the distribution of the

plastic strain. Although it can be approximated through micro-hardness measurements [30][38], 

we chose to perform a realistic mechanical simulation of the punching process based on the
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literature. The explicit module of the industrial software ABAQUS which allows to simulate the 

fracture of materials has been used. A steel sheet sample has been simulated.  

III.3.1 Punching process simulation 

III.3.1.1 Principle of the industrial punching process 

The conventional punching process is illustrated in Fig. III.6. It is made up of a holder and a die 

which maintain the sheet fixed. The punching tool is animated with a velocity, it exerts a force on 

the contact surface of the sheet until the fracture of the material. Fig. III.6-b gives the relevant 

parameters of the punching process, where 𝑟𝑑, 𝑟𝑝, 𝜗𝑝 are the punch corner radius, the die corner 

radius, and the velocity of the punch, respectively. The parameter 𝑐 is the punch-die clearance, it 

represents the normal distance between the die and the punch tool and is expressed as a percentage 

of the sheet thickness. 

 

Fig. III.6 Schematic illustration of a conventional punching process  

The physical process leading to a material rupture can be described by the mechanics 

progressive damage, which is decomposed into three stages, corresponding to specific 

microstructural mechanisms [116]. The process is described in Fig. III.7. 

• First, the application of the mechanical loading concentrates the constraints around the 

microstructural defaults included in the matrix, which leads to the germination (or 

nucleation) of the microcavities (Fig. III.6-b).  

• Then, the microcavities grow progressively under the applied stress (Fig. III.7-c). This 

phase includes two combined phenomena. On the one hand, the increase in the number of 

cavities obtained by nucleation and, on the other hand, the increase of their size. 

• Finally, coalescence phase of the cavities (Fig. III.7-d). Cavities close to each other interact 

and precipitate the growth of their volume until they meet and thus lead to the rupture of 

the material (Fig. III.6-e). 

Punch 

Holder 

Die 

Steel sheet 

(a) Punching process  

(b) Relevant Parameters  
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Fig. III.7 Schematic illustration of a conventional punching process [117] 

 

In practice, the surface state of the punched area is an indicator of the quality of the process. 

Fig III.8 gives the different zones of the punching edge [118][119]. 

 
Fig. III.8 Punching edge schema [120] 

The rollover zone is a curved zone that was entrained first during tool penetration. It is due to 

the plastic deformations induced at the beginning of punching process. Then the burnish and 

fracture zones which are characterized by a smooth appearance. Finally, the burr zone, which is a 

slight irregularity appearing at the end of the punching process. From the mechanical point of view, 

quality of the punching process is assessed by a smooth punching edge without rollover and Burr 

zones, which represent an ideal situation and is impossible to reach. The formation of the different 

zones is influenced by material properties, sheet thickness and the punching process parameters.  

III.3.1.2 Material characteristics 

The punching process simulation carried out in this section is based on the data given in the 

literature especially [121] and [35]. The investigated material is a non-oriented steel sheet               

(3%) Si-Fe M800 65A grade. It presents almost the same mechanical characteristics as the material 

used to identify the magneto-mechanical model in Chapter II.  

To define the mechanical behavior of the material, the authors of [121] performed various tensile 

tests in different directions with respect to the rolling direction. The average mechanical properties 

are listed in Tab III.1 where 𝜎𝑦
𝑚𝑎𝑥, 𝜎𝑦

𝑚𝑖𝑛 are the maximum and the minimum yield stresses related 

to the Luders strain plateau, classically encountered in ‘bcc’ (body centered cubic) steels such as 

(a) Initial state (b) Germination  (c) Growth (d) Coalescence    (e) Rupture   

mechanical loading  

defaults 

cavities 

rollover  

burnish 

zone  

fracture 

zone  
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FeSi electrical steels (cf. section I.3.1.2). The values 𝜎𝑚 and  𝜀f  are the ultimate stress and the 

failure plastic strain, respectively. 

 

Tab. III.1 Mechanical characteristics for (3%) Si-Fe obtained by tensile tests along                                     

various directions in the sheet plane [121] 

Parameter RD  45°  TD  Average  

𝜎𝑦
𝑚𝑎𝑥(MPa) 312  322  317  317  

𝜎𝑦
𝑚𝑖𝑛(MPa) 301 311 295 302 

𝜎𝑚(MPa) 422 444 428 433 

𝜀𝑓 (%)  40 40 42 40 

According to the results of the mechanical characterization (Tab III.1), the material behavior is 

assumed to be mechanically isotropic. To account for the strain rate sensitivity, the authors of [121] 

propose the expression of stress given in (III.35): 

𝜎 (𝜀) = 𝑘𝜀𝑛 (
𝜀̇

𝜀0̇
)
𝑚

                                                         (III.35) 

where 𝜀̇ is the strain rate, ε0̇ the initial strain rate. 𝑚, 𝑘 and 𝑛 are the model parameters. Finally, the 

material input data used to perform the punching process simulation are summarized in Tab. III.2.  

Tab. III.2 Input Material parameters 

Elastic/General  Plastic Failure  

𝑌 (GPa) 198 𝑘 (MPa) 720 𝜀𝑓 (%) 40  

Poisson coef. 0.3 𝑛,𝑚  0.245, 0.0085  𝜎𝑚(MPa) 433 

Mass density (Kg/m3) 7850 ε0̇, ε̇ (s-1) 10-5, 5 × 10-3 - - 

The material parameters given in Tab. III.2 which correspond to the different zones of the strain-

stress curve are introduced separately in the software. The elastic zone is characterized by the 

Young modulus and the Poisson coefficient, the hardening zone is described by the equation 

(III.35). To introduce the failure conditions, the simplest shear criterion integrated in Abaqus 

software have been considered which requires the strain failure value, unlike the simulation carried 

out in [121] where a more elaborated failure model have been developed. 

III.3.2 Parametric study of the punching of a steel sheet 

In this section, the influence of the sheet thickness 𝑡 and the punch-die clearance 𝑐 on the 

rollover zone and the size of induced plastic strain area (DAZ: Deformation Affected Zone) is 

analyzed. 

Since the thickness of the investigated steel sheet is small regarding its lateral (in-plane) 

dimensions, the punching process simulation is carried out in 2D. The plane stress hypothesis is 
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used; it considers that the out-of-plane normal stresses are equal to zero. The punching process 

parameters described in Fig. III.6-b are given in Tab. III.3.  

Tab. III.3 Punching process parameters 

Parameter Value  

𝑟𝑑(mm) 0.02  

𝑟𝑝 (mm) 0.02  

𝜗𝑝 (mm/s) 23  

Figure III.9 gives the schematic of the simulated problem. The punch tool, the holder, and the 

die are modeled with analytical rigid surfaces. The mesh of the steel sheet is composed of 760 

linear quadrilateral elements.  

 
Fig. III.9 Schematic of the 2D simulated problem   

First, by setting the punch-die clearance 𝑐 = 8 %, the effect of the sheet thickness 𝑡 is 

investigated. The simulation is conducted for 𝑡 = 0.35 mm, 𝑡 = 0.5 mm and 𝑡 = 0.65 mm. 

The punching simulation result is given in term of equivalent plastic strain 𝜀, it is a scalar value 

estimated at each interaction point. The software Abaqus uses the following relation, where 𝜺𝑖𝑗 is 

the strain tensor and, ‘:’ represents the tensor double dot product.  

𝜀 = √
2

3
𝜺𝑖𝑗: 𝜺𝑖𝑗                                                                (III.36)   

Thus, the Fig. III.10-a represents the equivalent plastic strain map in the useful part of the punched 

steel sheet. In Fig. III.10-b, to define the limits of the DAZ, the map is plotted for a strain less than 

1%.  

The result shows that the DAZ = 0.31 mm when the sheet thickness is 0.35 mm and 0.43 mm when 

the sheet thickness is 0.5 mm, while it reaches 0.6 mm when the sheet thickness is 0.65 mm. This 

behavior has been experimentally verified in [30] where it was shown that the impacted area is 

function of the sheet thickness. 

 

holder 

punching 

tool 

die fracture zone   
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Fig. III.10 Plastic strain distribution – effect of sheet thickness (𝑡 =0.35 mm 𝑡 =0.5 mm and 𝑡 =0.65 mm)  

In a second step, the steel thickness 𝑡 = 0.5 mm is considered and the effect of the variation of 

the punch-die clearance is analyzed. The investigated values are given in Tab. III.4, they are chosen 

among the most studied in the literature [116][30].    

Tab. III.4 Investigated clearances 𝑐 

Clearance (%) Clearance (mm) 

4 0.02 

8 0.04 

15 0.075 

20 0.1 

Figure III.11 gives the distribution of the equivalent plastic strain. The result shows that the 

rollover zone and DAZ are both functions of the punch-die clearance. As expected, the mechanical 

state of the punching edge is better when the clearance is small and becomes degraded as it 

increases.  

Figure III.12 shows the evolution of the rollover height as function of the punch-die clearance, 

and Fig III.12-b gives its relative value with respect to the sheet thickness. The clearance 𝑐 =20% 

presents the most degrading value where the rollover height reaches about 10% of the sheet 

thickness. 

0.43 mm 𝒕 = 0.5 mm  

𝒕 = 0.65 mm  
0.60 mm 

                                       (b) 

0.31 mm                        

(a) 

𝒕 = 0.35 mm  
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Fig. III.11 Distribution of the equivalent plastic strain in the steel sheet with 𝑡 =0.5 mm for different 

punch-die clearance (a) 𝑐 = 4 %, (b) 𝑐 = 8 %, (c) 𝑐 = 15 %, (d) 𝑐 = 20 %  

 
Fig. III.12 (a) Evolution of the rollover height versus punch-die clearance (b) relative rollover height 

As for the study devoted for the effect of the sheet thickness, the equivalent plastic strain is plotted 

for values less than 1% to better define the DAZ. Fig. III.13 gives the evolution of its width for 

different punch-die clearances. It shows proportionality with the punch-die clearance, the widest 

DAZ is obtained for 𝑐 =20%.  
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Fig. III.13 Distribution of the equivalent plastic strain in the steel sheet with 𝑡 =0.5 mm for different 

punch-die clearance (a) 𝑐 = 4 %, (b) 𝑐 = 8 %, (c) 𝑐 = 15 %, (d) 𝑐 = 20 %  

The parametric study carried out in this section showed that the quality of the lamination edge 

depends on the punching parameters. Furthermore, the width of the DAZ is proportional to both 

sheet thickness and punch-die clearance. This behavior is supported by different works published 

in the literature; it was shown that the size of the rollover zone is proportional to the clearance 

punch-die [122], and the smaller rollover and burr zones are obtained with a smaller clearance 

value. However, a small clearance increases the radius of the punch tool which leads to its 

deterioration and consequently leads to the deterioration of the quality of the punching edge [123]. 

Indeed, the definition of an optimal punching parameters is not obvious, although, it has been 

shown that the clearance 5-10 % is recommended [124]. Thus, to carry out the magneto-mechanical 

simulation the plastic strain distribution given with a clearance 𝑐 =8 % will be considered.  

III.4 Finite element implementation  

This section investigates the effect of punching process on the magnetic properties of a 2D steel 

sheet. It combines the FE magnetostatic formulation, the inverse Sablik model and the result of the 

mechanical simulation.   

III.4.1 Exploitation of the punching process simulation result 

The punching process simulation gives the plastic strain distribution near the lamination edge. 

In this context, when one wants to perform a magneto-mechanical simulation using a finite element 

method (FEM), the nonlinear magnetic reluctivity is estimated by the inverse Sablik model in each 

element of the mesh. Thus, the ideal way would be to consider the spatial distribution of the plastic 

strain as given by the punching process simulation. However, in electromagnetic FE simulations, 

especially for electrical machines, the iron core made from laminations is often modeled as a whole 

stack, without accounting for its laminated structure. This assumption is justified when magnetic 

fields remain in the lamination plane (2D approximation) and the magnetic properties are 

0.38 mm 

0.43 mm 

0.48 mm 
(a) 

𝒄 = 4%  

(b) 

𝒄 = 8%  

(c) 

𝒄 = 15%  

0.53 mm 

(d) 

𝒄 = 20%  
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homogeneous along the lamination thickness. In the present case, to account for the cutting edges, 

one would prefer to model each lamination independently to account for the strong inhomogeneity 

of the material properties introduced by the punching process (see Fig. III.10, Fig. III.11 and Fig. 

III.13). But, modeling independently each lamination, with a sufficiently fine mesh to account for 

the stress along its thickness, is not achievable for applications such as electrical machines where 

the iron core is made from hundreds of stacked laminations. Besides, the ratio of dimensions in the 

lamination plane to their thickness often reaches several hundreds (and more) that would require a 

large mesh. Finally, in 2D magnetic approaches, it is intrinsically not possible to account for the 

properties along the thickness. 

Therefore, the implementation in FEM of the degraded magnetic properties at cutting edges is 

often approximated by a “degradation profile”. This profile is usually represented by an exponential 

function of the distance from the punching edge. Figure III.14 illustrates its calculation method. 

 
Fig III.14 Calculation method of the degradation profile 

Depending on the distance from the punching edge 𝑥𝑗, the degradation profile is defined by taking 

the corresponding average 𝜀𝑣𝑗value of the equivalent plastic strain 𝜀𝑖𝑗 along the y-axis, as given in 

equation (III.37) where 𝑛 represents the total number of elements along y-axis.  

𝜀𝑣𝑗 =
1

𝑛
(∑𝜀𝑖𝑗

𝑛

𝑖=1

)                                                             (III.37) 

Figure III.15 gives the degradation profile based on the punching simulation performed with the 

sheet thickness 𝑡 =0.65 mm and clearance 𝑐 = 8%. It is fitted with an exponential function (III.38), 

where 𝛾 and 𝛽 are the parameters of the model and 𝑥 represents the punching edge distance.  

𝜀𝑣 = 𝛾𝑒𝛽𝑥                                                                (III.38) 

The obtained degradation profile is compared with the result of a punching simulation carried out 

in [35] under similar conditions. The comparison shows a reasonable agreement of the qualitative 

behavior. Indeed, the plastic deformation is maximum at the edge and decreases as the distance 𝑥 

increases, this behavior is also supported by micro-hardness measurement [16][35].  

𝑛 

𝜀𝑖𝑗 
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Fig. III.15 Degradation profile calculated with the simulation result obtained for 𝑡 =0.65 mm and 𝑐 =8%     

Figure III.16 gives the degradation profiles calculated under the same punching process conditions 

(𝑐 =8%) for different sheet thicknesses: 𝑡 =0.35 mm, 𝑡 =0.50 mm and 𝑡 =0.65 mm. As expected, 

since the steel sheet with 𝑡 = 0.65 mm has a wider DAZ (cf. Fig. III.10), its degradation profile 

presents a higher magnitude compared to the sheet thicknesses 𝑡 =0.35mm and 𝑡 =0.5mm.  

 

Fig. III.16 Degradation profile calculated for different sheet thickness 𝑡 = 0.35 mm, 𝑡 =0.50 mm                           

and 𝑡 =0.65 mm.     

Table III.5 gives the parameters of the degradation profile model (III.38) fitted with the result of 

the punching process simulations. 

Tab. III.5 Parameters of the degradation profile model 

Parameter 𝑡 = 0.35mm 𝑡 = 0.50mm 𝑡 = 0.65mm 

𝛾 36.27 39.66 39 

𝛽 -16.65 -11.64 -10.48 

 

[35] 
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By considering the degradation profile to define the plastic strain, the reluctivity of each element 

which was function of the magnetic flux density and of the plastic strain, is henceforth function of 

the magnetic flux density and of the distance from the punching edge 𝜈(𝐵, 𝑥).  

The definition of the distance from the punching edge 𝑥 is performed for each integration point 

(Gauss point) of each element of the mesh. When the punched edge is straight, as in the steel sheet 

of Fig III.14, the distance 𝑥 coincides with the x-coordinate of the Gauss point. However, when it 

is a curved line as illustrated in Fig. III.17,  𝑥 is chosen as the shortest distance (the blue dotted line 

in Fig. III.17). To ensure the accuracy of the calculation, the number of the Gauss points of the 

mesh elements corresponding to the DAZ is increased.  

 

Fig. III.17 Estimation of the distance 𝑥 from a curved punching edge.  

III.4.2 Academic test – 2D problem   

The inverse Sablik model is implemented in an academic 2D magnetostatic problem composed 

of a steel sheet sample 3×3 cm² punched at the bottom edge with an imposed magnetic flux 

=0.05 Wb (Fig. III.18) (the derived 2D magnetostatic formulation is given in Appendix A). A 

Matlab® based FE solver have been developed. The degradation profile calculated with sheet 

thickness 𝑡 =0.5 mm (Fig. III.16) has been considered.  

 
Fig. III.18 2D magnetostatic problem – a punched steel sheet  
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For different punching edge distances, Fig. III.19 gives the evolution of the modeled 𝐵(𝐻) curves 

and their corresponding relative permeability (Fig. III.19-b). Away from the punching edge the 

material is not impacted by the plastic strain, and the permeability is maximum, while it is strongly 

degraded at the punching edge.  

 
Fig. III.19 modeled 𝐵𝐻 curves and relative permeability for different punching edge distances.  

Thus, based on the distance from the considered punching edge, a reluctivity is calculated for each 

element of the mesh. The result of the simulation is given in Fig. III.20, it shows that, as expected 

and due to the high degradation of the magnetic properties, the magnetic flux density is lower near 

the punching edge where the plastic strain is concentrated. This behavior is supported by various 

work in the literature [72][73]. 
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Fig. III.20 Distribution of the magnetic flux density in a steel sheet sample 3×3cm² punched at the bottom 

with an imposed magnetic flux =0.05 Wb. 

For a given 𝑥 coordinate of the steel sheet sample, the evolution of the magnitude of the 

magnetic flux density along y-axis is plotted in Fig III.21. At the punching edge the magnitude of 

𝑩 decreases until reaching about 0.1 T. 

l  

Fig. III.21 Magnitude of the magnetic flux density along y-axis 

III.5 Conclusion  

In this chapter, the FE magnetostatic problem considered to simulate the magneto-mechanical 

coupling has been presented. To interface both physics, the Padé approximation has been used to 

inverse the Sabilk that accounts for the plastic strain. Thus, to complete the modeling chain, a 

punching process simulation of a steel sheet has been carried. The effect of the punching parameter 

punch-die clearance and the sheet thickness on the quality of the lamination edge, especially the 

width of the DAZ have been investigated. Finally, the FE magnetostatic problem, the plastic strain 

distribution given by punching process simulation and the inverse Sablik model have been 

associated to simulate the magnetic behavior of an academic example (steel sheet), where a strong 

degradation of the magnetic flux density near the lamination edge has been shown.  
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This chapter investigates the effect of punching process, by considering the degradation profile, 

on the magnetic behavior of an academic application represented by a single-phase inductance and 

of an industrial synchronous machine. Then, we will more closely consider the method used to 

account for the plastic strain at the punching edge, especially by comparing the magnetic behavior 

of punched specimens (steel sheet and tooth of an electrical machine) when the full plastic strain 

field is considered and when the degradation profile is used. 

All magnetic simulation results presented in this chapter have been carried out with the 3D FEA 

software code_Carmel [125] where the required numerical tools (inverse Sablik model, distance 

calculation from the punching edge and degradation profile) have been implemented. Additional, 

developments have been realized to account for the full plastic strain field and will be more detailed 

in the adequate section. 

IV.1 Application of the punching effect simulation  

IV.1.1 Academic application – Single phase inductance  

The academic application illustrated in Fig. IV.1-a, represents a single-phase inductance with 

an air gap. The dimensions and the considered punching edges are given in Fig. IV.1-b. The 

magnetic core is modelled as a whole stack, without accounting for its laminated structure, the 

plastic strain distribution at the punching edges is represented by the degradation profile calculated 

for sheet thickness 𝑡 =0.5mm. The magnetostatic formulation in terms of magnetic vector potential 

is considered.    

 
Fig. IV.1 Mesh and dimensions of the magnetic core 

 Figure IV.2 (a) and (b) give the magnetic flux density distribution in the magnetic core with and without 

considering the punching effect, respectively.   
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Fig. IV.2 Magnetic flux density map with (b) and without (a) considering the punching process effect. 

As expected, due to the degradation of the permeability near the considered punching edges, the 

magnetic flux density is affected. Fig. IV.3 gives the difference of the magnetic flux density with 

and without considering the punching effect for a given value of the current fixed to 8A.                            

We observe that, locally at the punching edges, the variation of magnetic flux density reaches  up 

to 0.9 T. 

 

Fig. IV.3 Difference of magnetic flux density distribution between with and without the punching effect 

To analyze the effect of punching on the magnetic flux distribution in the airgap, the coil is now 

supplied with different current values and the average magnetic flux that cross the air gap is 

analyzed. As illustrated in Fig. IV.4 the considered section is set fix, then the magnetic flux is 

calculated, with and without considering the effect of the punching process.  

(b) (a) 

∆𝐁 (T) 
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Fig. IV.4 Illustration of the magnetic flux crossing the air gap. 

The relative decrease 𝛿𝜙 = (𝛿𝜙0−𝛿𝜙deg
) 𝛿𝜙0

⁄  is calculated for different supply currents in the 

excitation coil, where 𝛿𝜙0
 and 𝛿𝜙deg

 represent, respectively, the average magnetic flux calculated 

without and with considering the punching effect. The evolution of 𝛿𝜙 versus the average magnetic 

flux densities is given in Fig. IV.5 where a decrease of the average magnetic flux crossing the air 

gap is observed. 

 
Fig. IV.5 Relative magnetic flux decrease 𝛿𝜙 vs coil supply current.  

The diminution of the magnetic flux through the air gap is obviously due to the degradation of the 

magnetic properties near the punching edges, which leads to increase virtually the air gap. 

Therefore, the magnetic flux expands outside the magnetic core. Furthermore, 𝛿𝜙 is function of the 

coil supply current, consequently on the magnetic flux density crossing the magnetic core.  
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IV.1.2 Industrial application – Synchronous machine  

As industrial application, a 5-phases permanent-magnet synchronous machine is considered. Its 

mesh and description are given in Fig. IV.6.  

 

 
Fig. IV.6 Description of the simulated synchronous machine 

The dimensions and the power of the synchronous machine are given in Tab.IV.1  

Tab. IV.1 Characteristics of the simulated synchronous machine 

 Quantities Value 

Power (kW) 10 

Outer diameter (mm) 152 

Length (mm) 92 

Tooth width (mm) 7 

Due to the lack of magnetic symmetry, the whole cross section is modeled. A no-load simulation, 

at speed 750 rpm (corresponding to 87.5Hz stator frequency), has been carried out using the 

magnetic vector potential formulation. The punching effect is considered in the numerical model 

by using the calculated degradation profile for the sheet thickness 𝑡 =0.5mm. 

The punching effect is considered on the whole inner perimeter of the stator yoke, including the 

teeth and slot edges.  

Stator  

Rotor  

Magnet 

Winding  
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Fig. IV.7 (a) Magnetic flux density distribution considering punching effect (b) Difference between cases 

with and without the punching effect 

In Fig. IV.7-a, the resulting magnetic flux density is given, and Fig. IV.7-b shows the difference in 

terms of magnetic flux density between simulations with and without consideration of the punching 

effect. The decrease of magnetic flux density at the punching edge can reach about 0.4 T, which is 

significant.  

Figure IV.8 presents the linkage magnetic fluxes associated to the windings with and without 

punching effect. It shows a small decrease when the punching effect is considered.  
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Fig. IV.8 Linkage magnetic fluxes. 

Locally, especially in the teeth as observed in Fig. IV.7 (a), the degraded punching edges will 

lead to a modification of the magnetic flux density distribution and conseqeuntly an impact on the 

iron losses is inevitable. Therefore, the effect of punching process on the iron losses 𝑃 in the 

electrical machine is now alaysed. As a first  approach, to estimate the losses, the Jordan model 

given in (IV.1) is applied.  

𝑃 = 𝑘ℎ(𝜀) 𝑓 𝐵𝛼(𝜀)  +  𝑘𝑐𝑙 𝑓
  2𝐵 2                                                (IV.1) 

As hypothesis, and based on the literature, we consider that mainly static losses are affected by the 

punching. Then, the hysteresis loss parameters 𝑘ℎ and 𝛼 are considered depending on the plastic 

strain. The parameter 𝑘𝑐𝑙 is related to the classical eddy current losses (supposed to be unaffected 

by the cutting) and 𝑓 is the frequency. Fig IV.9 gives steps of iron loss calculation. 

Without punching effect 

With punching effect 

(b) 

(a) 

× 10-3 
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Fig. IV.9 Steps of the iron loss calculation 

The evolutions of static parameters were identified using loss measurement under different 

plastic strains for the electrical steel grade M330-35A. The constant parameter 𝑘𝑐𝑙  is fixed to 

7.90×10
−5

, the relation (IV.2) gives the evolution of 𝑘ℎ with respect to the plastic strain 𝜀.  

𝑘ℎ = 𝑒𝑥𝑝 (𝑎𝑘ℎ
+

𝑏𝑘ℎ

𝜀 + 𝑐𝑘ℎ

)                                                       (IV.2) 

where 𝑎𝑘ℎ
, 𝑏𝑘ℎ

, 𝑐𝑘ℎ
 are the parameters of the model. Their values are given in Tab. IV.2 

Tab. IV.2 𝑘ℎ model parameters 

Parameters  Value 

𝑎𝑘ℎ
 -2.67 

𝑏𝑘ℎ
 7.46×10-3 

𝑐𝑘ℎ
 7.03×10-3 

 

The evolution of the Jordan model parameter 𝛼 with respect to the plastic strain is given by the 

relation (IV.3). where 𝑏𝛼, 𝑎𝛼, 𝑐𝛼, 𝑑𝛼 are the parameters of the model. Their values are given in Tab. 

IV.3. 

𝛼 = 𝑏𝛼 +
(𝑎𝛼 −  𝑏𝛼)

1 + (
𝜀

𝑐𝛼
)

𝑑𝛼
                                                              (IV.3) 

Tab. IV.3 𝛼 model parameters 

Parameters  Value Parameters  Value 

𝑎𝛼 1.99 𝑐𝛼 0.0032 

𝑏𝛼 1.22 𝑑𝛼 0.59 

Input data  

- Result of synchronous machine simulation:  

(𝐵𝑚𝑎𝑥, strain, Gauss point data, volumes of elements)  

- Loss measurement under different strains  

Identification of the Jordan model parameter 

- 𝑘𝑐𝑙  (unaffected by the plastic strain) 

- 𝑘ℎ and 𝛼 (function of the plastic strain) 

Iron loss calculation 

- Specific loss per Gauss point 

- Specific loss per element 

- Iron loss of the whole machine 
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The evolution of the fitted and the identified parameters 𝑘ℎ and 𝛼 with respect to the plastic 

strain are given by Fig. IV. 10.  

 

Fig. IV.10. Evolution of the loss model parameters (a) 𝑘ℎ and (b) 𝛼 with respect to the strain 

As illustration, Fig. IV.11 gives the comparison of the iron loss evolution between the experimental 

data and the identified Jordan model for 0.43 % and 7.63% plastic strains and for 50, 100 and       

150 Hz frequencies. 

 

Fig. IV.11 Evolution of the modeled and measured iron loss for 50, 100 and 150 Hz (a) for plastic strain 

𝜀 = 0.43% (b) for plastic strain 𝜀 = 7.63% 

Finally, Table IV.4 gives the core losses in the stator yoke calculated with and without considering 

the punching process effect, it is shown that it increased by about 38%.  

Tab. IV.4 Simulated iron loss with and without punching effect 

Core loss without punching Core loss with punching 

25.55 W 35.40 W 

IV.1.3 Synthesis  

The applications investigated in this section showed the impact of punching process on the 

magnetic behavior. Besides the degradation of the magnetic flux density at the punching edge, the 

(a) (b) 

𝜀 = 7.63% 𝜀 = 0.43% (b) (a) 
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single-phase inductance example showed that the magnetic flux crossing the air gap is degraded. 

Furthermore, the simulation carried out on the synchronous machine allowed to estimate about 38 

% increase of iron loss.   

The estimation of the plastic strain distribution due to the punching process is a central step of 

the considered magneto-mechanical simulation strategy, which is based on the Sablik model. Thus, 

the method of its implementation in the numerical tool should be carefully considered. The 

following section propose to evaluate the ability of degradation profile to represent the full plastic 

strain from the magnetic point of view. 

IV.2 Comparison of full plastic strain and degradation profile 

The identification of the degradation profile with the average equivalent plastic strain (section 

III.4.1) is now compared with a 2D extruded mechanical simulation based on the full strain 

distribution along the sheet thickness. The analysis is conducted by comparing the distribution of 

the magnetic flux density and the total magnetic energy for two examples: a steel sheet sample and 

a tooth of an electrical machine. The magnetic simulations are carried out using the software 

code_Carmel.  

IV.2.1 Finite element analysis – Steel sheet  

The 2D model of the punched steel sheet is extruded to form a 3D model in order to be in the 

same condition as an electrical machine tooth. To perform this transformation, a function has been 

developed in MATLAB. First, it converts and adapts the files from Abaqus (mesh and plastic strain) 

to a format supported by code_Carmel. Then, from this result a steel sheet punched on two parallel 

sides is generated by mirroring. The width of the created sample can be controlled. The principle 

steps of the transformation operation are given in Fig. IV.12.   

 

Figure IV.12 Principal steps of the mesh transformation operation. 
 

 

*Salome is an open-source software that provides a generic pre- and post-processing platform for numerical simulation.   
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Input:   - Mesh file “.med” ready to use with code_Carmel 

             - Plastic strain file and Sablik model parameters 

Output: - Magnetic field maps 
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The FE analysis is first performed on the steel sheet punched on one side. Fig. IV.13 gives the 

3D transformation. The FE magnetostatic problem, with an imposed magnetic flux along the z-axis 

(parallel to the cutting edges) is solved. The degradation profile calculated for the sheet thickness 

𝑡 =0.50 mm is considered. The sample dimensions are length = 5.4 mm and width = 3 mm. 

 
Fig. IV.13 Transformation of the 2D problem to an extruded 2D problem (3D) 

Figure IV-14 presents the magnetic flux density in the steel sheet when the full plastic strain 

distribution is considered (Fig. IV.14-a) and when a degradation profile is used (Fig. IV.14-b). As 

in the 2D example, the magnetic flux density is lower near the punching edge. It can be noticed 

that the volume and morphology of the impacted areas are different.  

 
Fig. IV.14 Magnetic flux density distribution in the steel sheet considering (a) the full plastic strain 

distribution and (b) the degradation profile. 

The difference in terms of magnetic flux density magnitudes between the two methods is plotted 

in Fig. IV.15 where the difference reaches 0.5 T in some regions.  

 
Fig. IV.15 Difference between magnetic flux density distribution obtained with the full plastic strain 

distribution and the degradation profile. 

To assess this difference from the modelling point of view, the magnetic energy is analyzed. 

The relative increase 𝛿 in the total magnetic energy for different imposed magnetic flux magnitudes 

is calculated as expressed in (IV.4).  

(a) 2D problem  

(b) Extruded 2D problem  
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𝛿 = (𝐸𝑑 − 𝐸0) 𝐸0⁄                                                           (IV.4)  

where 𝐸𝑑 and 𝐸0 represent the magnetic energy with and without considering the punching effect, 

respectively. Quantities δFS and δDP (Fig. IV.16) refer to the increase of the magnetic energy when 

the full strain (FS) distribution is considered, and when the degradation profile (DP) is used, 

respectively. Their evolution is presented with respect to the average magnetic flux density 

(imposed magnetic flux divided by the sample cross section). 

Figure IV.16 gives the evolution of δFS and δDP for different imposed magnetic flux densities. As 

expected, because the magnetic flux is imposed, the magnetic energy increases when the material 

properties are degraded. The behavior of both  δFS and δDP with respect to the magnetic flux density 

is explained by the plastic strain effect that is relatively lower for magnetic flux densities located 

in the linear zone of 𝐵𝐻 curves (cf. chapter II). A maximum is reached at intermediate flux densities 

and becomes negligible in the saturation zone.  

 

Fig. IV.16 Evolution of δFS and δDP for different imposed magnetic flux (b) Difference  δDP − δFS 

Although δFS and  δDP show the same behavior, δDP has higher amplitude. The difference                    

(δDP − δFS) given in Fig. IV.16-b is due to the difference in the magnetic flux density distribution 

(Fig. IV.15) where the volumes of the impacted areas are different for two methods. Thus, δFS and 

δDP, as well as their difference, are function of the magnetic flux density. Furthermore, the 

approximation of the “degradation profile” defined by the average value of the strain at each 

position from the edge does not reflect the real plastic strain distribution in the steel sheet depth. 

Now, the effect of the distance between two parallel punched edges on the evolution of δFS and 

δDP is analyzed. Indeed, in practical applications, the impact of cutting edges on the global behavior 

of a device will be more or less significant depending on the distance between parallel cutting 

edges. Especially, for small electrical machines, the narrow dimensions of teeth and/or stator yokes 

require to assess such impact with accuracy. From the mechanical simulation results, the developed 

Matlab® function allows to generate steel sheets with different widths for the magnetic simulation. 

Fig IV.17 presents the mesh transformation.  

(b) (a) 
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Fig. IV.17 Transformation of the 2D sheet punched on two sides to an extruded 2D problem (3D) 

The degradation profile corresponding to the sheet punched on two sides is given in Fig. IV.18. It 

is also calculated based on the results of the punching simulation for the sheet thickness 𝑡 =0.5mm. 

 

Fig. IV.18 Degradation profile for steel sheet punched on two sides, sheet thickness 𝑡 =0.5mm 

The magnetic flux density when the full plastic strain distribution is considered and when a 

degradation profile is used are given in Fig IV.19. The degradation is near the punching edges and 

the morphologies of the impacted areas are different. 

 
Fig. IV.19 Degradation profile for steel sheet punched on two sides, sheet thickness 𝑡 = 0.5mm 

The average magnetic flux density is kept fixed at around 1.4 T. Then the analysis is carried out 

for different sheet widths. The results given in Fig. IV.20 show that for small widths where the 

impacted area occupies a significant proportion of the total sheet volume, δDP  is significantly 

higher than δFS. As expected, the difference between both methods becomes minor for large widths 

as the impacted region becomes smaller with regard to the sheet volume. 

𝜙 

(a) 2D sheet punched on two sides   
(b) Extruded 2D problem  

1.6 

1.0 

0.4 

B (T) 

(b) 

𝒚 
𝒙 

𝒛 

(a) 



Applications  

105 

 

 

Fig. IV.20 (a) Evolution of the magnetic energy increase due to the punching effect for different sheet 

widths punched on two sides. (b) Difference in increase of magnetic energy   δDP − δFS 

This result shows the importance of the method considered to account for the plastic strain 

distribution in the magneto-mechanical simulations. Indeed, the degradation profile shows a height 

discrepancy compared to the full strain distribution for the small sheet widths. Thus, in the next 

section the analysis will be carried out on a concrete example, a small tooth of an electrical 

machine.   

IV.2.2 Finite element analysis – Tooth of an electrical machine  

To perform the analysis, a punching process simulation of the tooth of a small power electrical 

machine has been carried out. 

➢ Punching simulation of a tooth of an electrical machine 

The punching simulation concerns a typical tooth of a small electrical machine. The dimensions 

correspond to a real industrial machine where the stator yoke thickness is 𝑑𝑦 = 5 mm, the average 

tooth body width is 𝜏 = 2 mm. In order to reduce the computational time, the simulation is 

performed on the half tooth as illustrated in Fig. IV.21, then the complete geometry is generated 

by symmetry.       

 

Fig. IV.21 Geometry of the simulated tooth  
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Unlike the punching simulation of the steel sheet, which was performed in 2D, the tooth of the 

electrical machine has a complex geometry, which contains both straight and curved edges, and 

requires a 3D simulation of the cutting. Fig IV.22 gives the geometry of the simulated mechanical 

problem. 

The material characteristics and the punching process parameters are those used in chapter III 

section III.3.1.2 (Tab. III.2), and section III.3.2 (Tab. III.3). The sheet thickness and the punch-die 

clearance are 𝑡 = 0.35 mm and 𝑐 = 8 %, respectively. The punch tool, the holder and the die are 

designed to cut the shape of a half of the tooth. They are modeled with rigid parts. The punching 

of the straight part of the tooth tip is simulated separately using a straight punch tool.   

 

Fig. IV.22 Geometry of punching process simulation of the tooth 

Fig. IV.23 gives the punching simulation result; it presents the distribution of the equivalent plastic 

strain in the simulated half tooth. We observe that the plastic strain is localized at the cutting edge 

with heterogeneous levels along the cutting edge. 

 

Fig. IV.23 Distribution of the equivalent plastic strain in (a) half tooth, (b) whole tooth 

The magnetostatic problem is considered with the imposition of the magnetic flux between the 

tip (entry) of the tooth and the lateral sides (exit) of the yoke (Fig. IV.24). The imposed average 

magnetic flux density is about B=1.5 T. 

holder 
punching tool 

steel sheet 

die 

(a) 

(b) 
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Fig. IV.24 Illustration of the imposed magnetic flux circulation in the tooth of electrical machine   

Figure IV.25 gives the magnetic flux density distribution considering the full plastic strain 

distribution and the degradation profile. The difference between both distributions is not obvious 

to distinguish from one another. However, the analysis in terms of magnetic energy shows a great 

disparity with δFS = 87%  and δDP = 180 %. This result confirms the behavior investigated in the 

steel sheet and shows that the way the degradation profile is determined should be carefully 

considered to have a realistic representation of the global magnetic behavior.  

 
Fig. IV.25 Magnetic flux density in the tooth considering (a) the full plastic strain distribution (b) the 

Indeed, depending on the magnetic flux density amplitude and the dimensions of the simulated 

problem, the magneto-mechanical behavior varies substantially. However, the use of the full plastic 

strain to simulate an electrical machine would lead to a significant computation time as it requires 

a fine mesh along the punching edges. In that context, a degradation profile is more practical, but 

improvements are still needed in order to be closer to the reference behavior (full plastic strain 

distribution).  

IV.3 Analysis of the degradation profile choice  

Based on the result obtained with the reference example (steel sheet), where it has been shown 

that the magneto-mechanical behavior is function of the magnetic flux density, we propose, as a 

first approach, the adjustment of the degradation profile. Instead of the average strain, the 

degradation profile is estimated by the weighted average strain 𝜀𝜔𝑗
 as follows: the calculation 

method has been explained in section III.4.1 (Fig III.14).  

𝜀𝜔𝑗
=

∑ 𝜔𝑖,𝑗  𝜀𝑖,𝑗
𝑛
𝑖=1

∑ 𝜔𝑖,𝑗
𝑛
𝑖=1

                                                          (IV.5) 
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As a first approach to determine the weighting coefficients, we rely on the experimental 

observation associated to the attenuation of the degradation with increasing plastic strain level. 

Then, we chose to set the weighting coefficient (IV.6) as the relative permeability 𝜇𝑟( 𝜀 , 𝐵𝑖𝑚𝑝𝑜𝑠𝑒𝑑) 

calculated for each strain value for a given magnetic flux density 𝐵𝑖𝑚𝑝𝑜𝑠𝑒𝑑. In equation (IV.6) the 

quantity 𝐻𝑖,𝑗 is the corresponding magnetic field calculated using the Sablik model.   

𝜔𝑖,𝑗 = 𝜇𝑟 =
𝐵𝑖𝑚𝑝𝑜𝑠𝑒𝑑

𝜇0𝐻𝑖,𝑗
                                                       (IV.6) 

Figure IV.26 illustrates the estimation of the weighting coefficients where 𝐵𝑖𝑚𝑝𝑜𝑠𝑒𝑑 corresponds 

to the imposed magnetic flux during the analysis. It is noted that this weighting method considers 

𝐵𝑖𝑚𝑝𝑜𝑠𝑒𝑑 in the linear zone of the 𝐵𝐻 curves.  

 

Fig. IV.26 Calculation method of the weighted degradation 𝜔𝑖,𝑗 

The weighted degradation profile (w.DP) is estimated using the punching simulation result of the 

sheet thickness  𝑡 =0.5mm.  

Figure IV.27 gives a comparison between the average degradation profile calculated using 

(III.36), and the proposed weighted degradation profile calculated with (IV.5). Besides the fact that 

the profiles present different amplitudes, the w.DP cannot be fitted with good accuracy using an 

exponential function as for the average degradation profile. Thus, the equation (IV.7) has been used 

to fit the calculated values.  

𝜀𝑤 = ∑ 𝑎𝑤𝑖
. exp (− (

𝑥 − 𝑏𝑤𝑖

𝑐𝑤𝑖

)

2

)

3

𝑖=1

                                         (IV.7) 

where 𝑎𝑤𝑖
, 𝑏𝑤𝑖

, and 𝑐𝑤𝑖
 are the fitting parameters, with 𝑖 = (1,2,3). 

  

 𝐵𝑖𝑚𝑝𝑜𝑠𝑒𝑑 

relative permeability 

𝜇𝑟( 𝜀 , 𝐵𝑖𝑚𝑝𝑜𝑠𝑒𝑑) 

Plastic strain 𝜀  

Their values are given in
Tab. IV.5.
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Tab. IV.5 Fitted parameters of the weighted degradation profile  

Parameter 𝑖 = 1 𝑖 = 2 𝑖 = 3 

𝑎𝑤𝑖
 2242 -38.33   -2185   

𝑏𝑤𝑖
 3.979×10-5   3.237×10-5 4.282×10-5 

𝑐𝑤𝑖
 0.000143   6.571×10-5   0.0001414   

       

 

Fig. IV.27 Average degradation profile (DP) and weighted degradation profile (w.DP) 

To evaluate the ability of the weighted degradation profile to approach the full plastic strain 

from the modeling point of view, the magnetic energy analysis carried out previously in section 

IV.2.1 is performed again. For different imposed magnetic flux magnitudes located in the linear 

zone of the 𝐵𝐻 curves, the energy increase is calculated using (IV.4). δwDP refers to the increase 

of the magnetic energy when the weighted degradation profile is considered.  

 

Fig. IV.28 (a) Evolution of δFS, δDP and δwDP for different imposed magnetic flux densities (b) 

difference in energy increase:  δDP − δFS and δwDP − δFS 

(b) 
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Figure IV.28 gives the evolution of the magnetic energy increase for different imposed magnetic 

flux densities, the introduction of the weighted degradation profile allowed to better approach the 

full plastic strain behavior. Thus, Fig IV.28-b gives the difference in energy increase δDP − δFS and  

δwDP − δFS. For example, when 𝐵𝑖𝑚𝑝𝑜𝑠𝑒𝑑 = 1 T, the difference in energy increase between the 

degradation profile and the full plastic strain (reference) is 3.08%, while the difference is 2.34% 

when the weighted degradation profile is considered instead of the “classic” degradation profile.  

IV.4 Conclusion  

Using the magneto-mechanical Sablik model and strain-dependent loss parameters, the impact 

of the punching process on the magnetic properties has been investigated. Although the preliminary 

analysis of the synchronous machine was performed with the degradation profile for achieving 

some realistic computational time, it shows a significant increase of iron loss, about 38 %. If we 

consider the result of the analysis carried out in section IV.2, the value of iron loss is certainly 

overestimated. Indeed, it has been shown that the degradation profile defined by the average value 

of the strain at each position from the edge does not reflect the real plastic strain distribution in the 

steel sheet depth. Depending on the magnetic flux density amplitude and the dimensions of the 

simulated problem, the magneto-mechanical behavior varies substantially. However, the use of the 

full plastic strain to simulate an electrical machine would lead to a significant computation time as 

it requires a fine mesh along the punching edges. In that context, a degradation profile is more 

practical, but improvements are still needed in order to be closer to the reference behavior (full 

plastic strain distribution). As first approach, an adjustment of the degradation profile based on the 

experimental observations has been proposed and applied to the steel sheet case. For each plastic 

strain value, a weighting coefficient based on the relative permeability have been introduced. It 

allowed to reduce the difference between the degradation profile and the full strain distribution by 

20%. However, this proposition should be improved since the ponderation coefficients have been 

calculated by considering an imposed magnetic flux density in the linear zone.  
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1. Conclusion  

In this thesis the analysis of the effect of manufacturing processes on magnetic properties of 

materials has been carried out. A particular attention has been given to the effect of the mechanical 

punching process.  

In the first chapter, beside the presentation of theoretical background necessary to understand 

the subject of the thesis, the physical effects on the magnetic properties, due to the manufacturing 

processes, have been reviewed. We focused on the impact of mechanical punching on the magnetic 

behavior and iron losses. A distinction is made between magneto-elastic coupling which is related 

to the phenomenon of magnetostriction and magneto-plastic coupling which is characterized by the 

increase of the dislocation density as the plastic deformation increases, which considerably affects 

the magnetic properties. Different approaches of magneto-mechanical modeling have been 

presented. The Sablik model has been chosen to model the mechanical punching effect on the 

anhysteretic magnetic behavior. It presents the advantage to have a physical basis which allows its 

generalization. Also, the use of macroscopic quantities makes its identification as well as its 

implementation in numerical tools relatively acceptable.  

In the second chapter, the modifications made to the Sablik model and its identification process 

have been presented. There are three distinct steps to follow during the identification of the Sablik 

model parameters. First, without considering the stress dependence, the initial parameters of the 

model are identified. Second, the elastic stress dependence is considered and the parameters of the 

magnetostriction function are identified. Finally, the plastic dependency is introduced, and its 

parameters identified. The D-H equivalent stress introduced to consider the multiaxial stress, has 

been validated. The introduction of the modified Brillouin function to model the anhysteretic 

magnetization instead of the Langevin function is interesting the magnetoelastic coupling. Indeed, 

it improves the accuracy fitting which allowed to have a better modeling of the magnetostrictive 

behavior.  Furthermore, the identification method based only on macroscopic magnetization curves 

measured under compressive and tensile stress was quite simple and gives a good estimation of the 

magnetostriction. However, when the plastic dependence is introduced, the fitting accuracy of the 

modified Brillouin function seems less efficient.  

In the third chapter, the complete simulation chain of the effect of punching process on magnetic 

properties has been performed. First, a FE magnetostatic problem has been presented, then a 

mechanical punching simulation of a steel sheet allowed to define plastic strain distribution near 

the punching edge. Finally, to interface both physics, the Padé approximation has been used to 

inverse the Sabilk model that accounts for the plastic strain. The magnetic behavior of a steel sheet, 

where a strong degradation of the magnetic flux density near the punching edge has been shown.  

In the fourth chapter the impact of punching process on the magnetic properties has been 

investigated. The preliminary analysis of the synchronous machine performed with the degradation 

profile showed a significant increase of iron losses, about 38 %. However, this result is probably 

over-estimated as the analysis of the method used to account for the plastic strain in the magneto-
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mechanical simulation showed that the degradation profile, defined by the average value of the 

strain at each position from the edge, is more detrimental than the consideration of the full plastic 

strain. Indeed, the degradation profile approach does not reflect the real plastic strain distribution 

in the steel sheet depth. We observed that, depending on the magnetic flux density magnitude and 

the dimensions of the studied device, the magneto-mechanical behavior varies substantially. As a 

first approach, an adjustment of the degradation profile based on the results obtained with the steel 

sheet case has been proposed. This approach allowed to reduce the difference between the 

degradation profile and the full strain distribution by about 20%.  

 

2. Suggestion for future works

- The natural perspective of the proposed work concerns the method used to consider the 

plastic strain distribution in the magneto-mechanical simulation. As shown in chapter IV, 

the degradation profile must be adjusted to be closer to the full plastic strain distribution. 

The proposed correction is function of the plastic strain distribution given by the punching 

process and the magnetic flux density. Thus, the degradation profile must be evaluated 

during the FE calculation process.

- Also, the magnetostriction function will be impacted by the plastic strain as already observed 

in the literature. A proper modeling would be to account for the change in the 

magnetostriction function depending on the plastic strain. However, given the much more 

detrimental effect of plastic strain on the magnetic properties, this correction should not 

affect significantly the results.

- Compared to the Langevin function, the modified Brillouin function showed a good fitting 

accuracy in the elastic identification. Its integration in the hole Sablik model including the 

plastic identification should be improved.

- Finally, to complete the investigation of the effect of punching process on the iron loss in 

the synchronous machine, a validation should be carried out.
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The magnetostatic formulation given in (III.16) can be derived for 2D problem, the following 

hypothesis are considered: 

- The problem has a symmetrical plan (xOy).  

- The current density 𝑵𝑖𝑖 is defined along z axis and the remanent magnetic flux density 

𝑩𝑟 and the imposed magnetic flux density 𝑵𝜙𝜙 are defined in the plan (xOy). 

- The studied problem is invariant along z axis.  

This allows to express the magnetic field density, the vector potential, and the source terms as  

𝑩 = (
𝐵𝑥
𝐵𝑦
0

) , 𝑨 = (
0
0
𝐴𝑧

) ,𝑩𝑟 = (
𝐵𝑟𝑥
𝐵𝑟𝑦
0

) ,𝑵𝑖𝑖 = (
0
0
𝑁𝑖𝑧

) 𝑖  and   𝑵𝜙𝜙 = (

𝑁𝜙𝑥
𝑁𝜙𝑦
0

)𝜙           (A.1) 

Then, the potential 𝑨 is discretized by the nodal elements of the 2D mesh as  

𝐴𝑧 = ∑𝑎𝑛𝑤𝑛
0                                       

𝑁𝑛

𝑛=1

                      (A.2) 

and each function 𝑤𝑛
0 is taken as weighting function 𝜓 in (III.16). By considering these 

assumptions, the rotational of 𝑨 can be expressed as in (A.3) 

𝒄𝒖𝒓𝒍 𝑨 =

(

 
 
 
 

𝜕

𝜕𝑥
𝜕

𝜕𝑦
𝜕

𝜕𝑧)

 
 
 
 

∧ (
0
0
𝐴𝑧

) =

(

 
 

𝜕𝐴𝑧
𝜕𝑦

−
𝜕𝐴𝑧
𝜕𝑥
0 )

 
 
                                                   (A.3) 

Then, the rotational operator can be rewritten in 2D as 

𝒄𝒖𝒓𝒍2𝐷𝑈 =

(

 

𝜕𝑈

𝜕𝑦

−
𝜕𝑈

𝜕𝑥)

                                                                  (A.4) 

In these conditions, the terms of the matrix [𝑀] presented in (III.28) can be rewritten such as 

Annex A: 2D magnetostatic formulation 



Annex A                                              2D magnetostatic formulation 

  

114 

  

M𝑖𝑗 = ∫ℱ−1(𝑩)𝒄𝒖𝒓𝒍2𝐷 𝑤𝑖
0 𝒄𝒖𝒓𝒍2𝐷 𝑤𝑗

0 𝑑𝑣   

𝐷𝑒

= ∫ℱ−1(𝑩)𝒈𝒓𝒂𝒅2𝐷 𝑤𝑖
0 𝒈𝒓𝒂𝒅2𝐷 𝑤𝑗

0 𝑑𝑣   

𝐷𝑒

    

 

  ∀ (𝑖, 𝑗) = {1, . . 𝑁𝑛}
2                                                                (A.5) 

with 𝒈𝒓𝒂𝒅2𝐷 the gradient operator defined in the plan (xOy).  

To impose a magnetic flux 𝜙 flowing through boundaries ℎ1 and  ℎ2 of the 2D studied domain, 

the source term 𝑵𝜙 can be derived from a scalar function 𝛼𝜙. This latter is equal to one on a 

boundary 𝑏 connected to ℎ1 and  ℎ2 and to zero elsewhere. Then, we have  

𝑵𝜙 = 𝒄𝒖𝒓𝒍2𝐷𝛼𝜙                                                               (A.6) 

Finally, the terms of the vector [𝐹] presented in (III.29) can be rewritten such as 

F𝑗 = ∫(𝑁𝑖𝑧 𝑖)𝑤𝑗
0 𝑑𝑣 − ∫ℱ−1(𝑩)𝜙 𝒈𝒓𝒂𝒅2𝐷𝛼𝜙𝒈𝒓𝒂𝒅2𝐷 𝑤𝑗

0 𝑑𝑣   

𝐷𝑒𝐷𝑒

+ ∫ℱ−1(𝑩)𝑩𝑟𝒄𝒖𝒓𝒍2𝐷 𝑤𝑗
0 𝑑𝑣   

𝐷𝑒

                  ∀ 𝑗 = 1, . . 𝑁𝑛                                    (A.7) 
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