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Chapter I. The peripheral nervous system

1.1. Overview

The nervous system is the complex organization which enables the interaction of human body with
the external world. It consists in two parts: the central nervous system (CNS) and the peripheral

nervous system (PNS) (Figurel).

Central Nervous System

Brain

Spinal cord

Peripheral Nervous System

Ganglion

Nerve

Figure 1 Human Central and Peripheral Nervous Systems [From: (OpenStax College 2013)].

The central nervous system is composed of the brain and the spinal cord, protected by the cranium
and the vertebral column, respectively. It receives and integrates stimuli coming from the outer and
the inner space and elaborates an appropriated response. The peripheral nervous system is made up
of nerve fibers and ganglia. Anatomically, it is organized in an afferent arm, or sensory division, which

conducts the information from receptors to CNS, and an efferent arm, or motor division, transferring
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the central orders to the effector organs. Afferent neural cell bodies are located in dorsal root ganglia
and afferent nerve fibers enter into spinal cord through dorsal roots. On the contrary ventral roots
consist predominantly of efferent motor fibers, whose cell bodies are located in grey matter of spinal
cord. Dorsal and ventral roots form spinal nerves which carry sensory and motor information
between the spinal cord and the body. In the human body, there are 31 pairs of spinal nerves: eight
cervical, twelve thoracic, five lumbar, five sacral nerves and one coccygeal nerve pair.

Moreover, peripheral nervous system, can be functionally divided in somatic nervous system and
autonomic nervous system (Figure 2).

Somatic nervous system (SNS) represents the voluntary division. It is composed by a motor and a
sensory component. The somatic sensory neurons are involved in mechanoreception, thermoception
and nociception at skin, glands, or internal organs’ level (Manivannan and Suresh 2012). The somatic
motor arm controls skeletal muscles contraction through motor neurons.

Autonomic or vegetative nervous system (ANS or VNS) supplies smooth muscles, cardiac muscle and
glands. It represents the unconscious control of internal organs’ functions like digestion, body
temperature, heart rate or respiratory rate. The ANS is organized in sympathetic, parasympathetic
and enteric nervous system. Sympathetic nervous system usually elaborates “fight or flight”
responses, since it is activated in stressful and emergency conditions. The parasympathetic nervous
system controls the “rest and digest” responses, in ordinary situations when the human body is
relaxed and at rest. These two components of the ANS are complementary in their functions, rather
than opposite. If sympathetic nervous system increases heart rate and force of contraction, blood
pressure, bronchodilatation and pupil dilatation, the parasympathetic nervous system reduces heart
rate and blood pressure, and it stimulates salivation, digestive secretions and peristalsis. The third
ANS division is represented by the enteric nervous system, even if it often considered an
independent section of the nervous system. It consists in a neural network within the gut wall, which
controls intestinal motility, secretory glands and blood flow of the gastrointestinal tract (Furness

2012).
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Figure 2 Schematic representation of Nervous System compartmentalization.

1.2. Development of the nervous system

The embryonic stages which lead to the complete formation of the nervous system, in humans, have
been largely investigated. Nowadays, molecular mechanisms and pathways, as well as their
regulating factors, are fully known. This is fundamental to better understand how human nervous
system works, but also to be able to reproduce development processes, and induce neural

differentiation in in vitro systems.

1.2.1. Formation of the neural tube

The nervous system is one of the earliest systems to form, since its development starts in the third
week of embryogenesis. During the gastrulation, the blastula, a single-layered sphere of cells,
modifies its structure to form the gastrula, which is composed of three different germ layers, called
ectoderm, mesoderm and endoderm. In this phase, some mesenchymal cells move from primitive

node (Hansens’s node) to form the notochordal process. This is the first step of notogenesis, the
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formation of notochord. Subsequently, notochordal process merges with the underneath endoderm
layer, thickens, and originates the neural plate (Ramesh et al. 2017). When the neural plate
invaginates, the neural groove takes shape in the middle, while borders create prominent neural
folds on each side. With cellular growth, neural folds get close, fuse, and turn the neural plate into a

neural tube (Sim&es-Costa and Bronner 2015).

Neural plate
border

| . z Non-neural
{ f ectoderm
[ 4

Notochord

Neural plate

Premigratory
neural crest

< [N ‘ | ?
4

Epidermis

\ | Delaminating
neural crest
/7
Neural
tube ’

Figure 3 Development and evolution of the neural plate, and closure of the neural tube [Adapted
from: (Simées-Costa and Bronner 2015)].

The closure of the neural tube plays a key role in the development of central and peripheral nervous
systems. At this stage, the anterior part of the neural tube begins to expand and form the three
primary brain vesicles: the prosencephalon, the mesencephalon and the rhombencephalon (Stiles
and Jernigan 2010). By the end of the fifth week, these three structures give rice to the five
secondary brain vesicles which will compose the adult central nervous system: the telencephalon,
the diencephalon, the mesencephalon, the metencephalon and the myelencephalon (Stiles and
Jernigan 2010).

Meanwhile, the development of the spinal cord begins with the formation of the neural tube. The
neural tube is an empty channel whose internal wall is composed by the neuroepithelium, a floor of
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rapidly dividing neural stem cells, which proliferate and differentiate into neuroblasts. The
accumulation of neuroblasts originates the Mantle layer, the division which forms the grey matter of
the spinal cord. The Mantle layer will be divided by the sulcuc limitans in an alar plate, predominantly
made up of sensory neurons, and a basal plate, composed by motor neurons. On the other hand, the
nerve fibers, coming from neuroblasts of the Mantle layer, organize in the Marginal layer. The
Marginal layer surrounds the Mantle layer and forms the white matter of the spinal cord, when

myelination of nerve fibers takes place.

A B C

Roof ptate Alar plate
[ (sensory)

Lumen.
Ependyma___

Mantle layer

) | Basal plate
Floor plate (motor) Ventral fissure

Figure 4 Formation of the spinal cord. Representation of the three layers of the neural tube: Lumen,
Ependyma and Mantle layer (A). The Mantle layer will form the grey matter of the spinal cord,
divided, by the sulcus limitans, in alar plate and basal plate; the Marginal layer, which surrounds the
Mantle layer, will constitute the white matter (B and C). [From: (Martin, Radzyner, and Leonard
2012)].

At the same time, after the closure of the neural tube, neural crest cells, a population of cells located
on the neural folds, turn from epithelial to mesenchymal state, and migrate to many localizations,
differentiating into different cell types. Specifically, the trunk neural crest cells form the dorsal root
ganglia, sympathetic neurons and Schwann cells, but also melanocytes and chromaffin cells. The
parasympathetic ganglia originate from the vagal and sacral neural crest, while the cranial neural
crest creates cranial neurons and glia, as well as cartilage, bones and connective tissue (Gilbert 2000)

(Figure 5).
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Figure 5 Neural crest cells migrate and differentiate into neural and non neural cell types [From:
(Acloque et al. 2009)].

1.2.2. Molecular mechanisms of neural differentiation

The closure of neural tube is the most crucial event in the development of nervous system. The
neural tube is a polarized structure, this means that it is organized along a dorsoventral (DV) axis, and
an anteroposterior (AP) (or rostrocaudal (RC)), axis. The expression of specific transcription factors,
involved in the differentiation process, depends on this organization. Consequentially, neural cells of
the neural tube will have different fates of differentiation according to their position on DV and AP

axes (Guillemot 2007).

Dorsoventral differentiation

Multiple factors act in DV differentiation events. They are often secreted by different sections of the
neural tube, like the roof plate (the dorsal section) and the floor plate (the ventral section), or cells
external to the neural tube. Bone morphogenetic protein (BMP) is a group of the transforming
growth factor-B (TGF-B) superfamily, secreted by the roof plate and surrounding tissues. If, in early
development stages, BMP inhibition is necessary to generate neuroectoderm from ectoderm, in this
phase of the DV differentiation, BMP creates a gradient that regulates the expression patterning of
several transcription factors (Bond, Bhalala, and Kessler 2012). BMP-regulated proteins are involved

in generation of different populations of neural progenitors, in the dorsal and intermediate regions
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of the neural tube (Timmer, Wang, and Niswander 2002). More than 20 BMP-ligands can act like
antagonists and inhibit its expression, for example, noggin, chordin, follistatin. Proteins of the
Wingless-type MMTV integration site (Wnt) family have a role similar to BMPs, since they participate
in specification of dorsal interneurons (Muroyama et al. 2002).

The other factor with a key role in the DV differentiation is the Sonic Hedgehog (Shh) protein,
expressed by cells of the ventral floor plate and the notochord (Yatsuzuka et al. 2019). Shh forms a
ventral-to-dorsal gradient which controls the identity of progenitors in the ventral section of the

neural tube (Le Dréau and Marti 2012).

Anteroposterior Differentiation

The earliest actor which acts in the anteroposterior patterning is cyp26 (cytochrome P450 family 26)
gene, expressed in the early anterior neural ectoderm and encoding the enzyme responsible for the
degradation of Retinoic Acid (RA). RA is important in posteriorizing processes. So, in early stages, the
activation of cyp26 inhibits RA, and most of developing events concern only the anterior portion of
the neural tube, which organizes in primary vesicles. When Wnt and Fibroblast Growth Factor (FGF)
pathways are activated, they suppress, independently, cyp26 activity, promoting RA expression. FGF,
Whnt and RA can suppress further anterior markers, while FGF initiates the activation of posterior

markers, in presence of RA pathway (Kudoh, Wilson, and Dawid 2002).

Main factors acting in DV and AP differentiation are reported in Figure 6.
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Figure 6 Factors involved in dorsoventral polarity during the cord differentiation (A-1 and A-2), and
factors involved in anteroposterior differentiation during neurulation (B) [From: (Faye et al. 2020)].

1.3. Peripheral nerve organization

1.3.1. Neurons

The neuron, or nerve cell, is the basic structural and functional unit of the nervous system. Neurons

are excitable cells which communicate with each other or with other cell types by chemical synapses,

in order to receive, elaborate, and transmit information. We can identify three major components in

a neuron’s structure: the cell body, the dedrites, and the axon (Figure 7).
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Figure 7 Schematic representation of a neuron.

1.3.1.1. The cell body

The cell body, or soma, is surrounded by a neural membrane which controls the cellular exchanges
and establishes the electrical potential in the neuron. The cytosol is a potassium-rich solution which
contains all the cellular organelles like the Golgi apparatus, the rough endoplasmic reticulum (RER),
and mitochondria. Mitochondria, the “powerhouse” of the cell, play a key role in the soma since
neurons require a large amount of energy. Moreover, in neuron body, we can find characteristic

aggregates of RER granules, the Nissl bodies, important in the synthesis of proteins.

1.3.1.2. The dendrites

Dendrites are cytoplasmatic extensions of the cell, organized in a tree-like arborization (“dendritic
tree”) which allows to collect information coming from the external space and transmit it to the cell
body. They are usually about 2 um in length, while their number and their density can significantly
vary, according to the neuron’s function. Dentrites can present dendritic spines, small membranous

protrusions that can rapidly change their form after signals’ passage. These structures are
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responsible for the so-called “dendritic plasticity”, the ability of neurons to adapt themselves to
stimuli and change their connections in the neural network (Dharani 2015).

Concerning the dendrites’ composition, we observe the same organelles of the soma (Golgi
apparatus, RER and mitochondria) and a large number of ribosomes, due to the high degree of

protein synthesis.

1.3.1.3. The axon

The axon is a single long projection of the nerve cell that carries the neural information, so the
electrical signal, away from the cell body. Its length can range from few millimeters to more than one
meter. It arises in the axon hillock, a cellular region rich in ribosomes, and it is composed of three
fragments: the initial segment, the shaft and the terminal arbor (or synaptic bouton), where
neurotransmitters are stored in vesicles before being released. The axonal membrane is called the
axolemma, while its cytoplasm is known as axoplasm. The main role of axolemma is to maintain the
membrane potential of the axon thanks to the ion channels located along its surface. The axoplasm
represents the main part of neuron’s cytoplasm. Its composition differs from soma and dendrites
since it contains a reduced number of ribosomes associated to a large amount of elongated
mitochondria and, above all, different cytoskeletal filaments: microtubules, microfilaments and
neurofilaments (Morris and Lasek 1982).

Microfilaments (MFs) are made of globular actin monomers assembled to form a helical structure.
They promote the expansion of axon growth cone during neurites formation process.

Neurofilaments (NFs) are composed of three subunit proteins: NF-L, NF-M, and NF-H. They act by
stabilizing the cellular structure and by controlling the axon radial growth (Chevalier-Larsen and
Holzbaur 2006).

Neural microtubules (MTs) are filaments of a and B tubulin heterodimers, forming a 25-nm-diameter

hollow tube. Even if their structure is the same than MTs in the other body cells, neural MTs present
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different isotypes of tubulin, with specific post-translational modifications, which can vary according
to the localization. Moreover, it seems that, in contrast to dendrites, the polarity of axon MTs is
uniform, considering that their “plus” end is always toward the axon terminal (Hammond 2015). The
main role of MTs in the axon is related to the axonal transport activity. Since the axon lacks of
ribosomes and ribonucleoprotein complexes, all the macromolecules need to be synthesized in the
soma and transported along the axoplasm. Vesicles, mitochondria and other cellular organelles,
require axonal transport, too. We can distinguish a retrograde axonal transport, from the periphery
to the soma, and, vice versa, an anterograde axonal transport, from the soma to the periphery.
Anterograde transport could be fast, up to 400 mm/day, or slow, 0.2 to 5 mm/day. If fast
anterograde transport concerns mitochondria and vesicles containing neurotransmitters and
enzymes, slow anterograde transport involves mostly cytoskeletal proteins, required to preserve
cytoskeleton’s structure integrity. Retrograde axonal transport is fast, 200 to 300 mm/day, and it
carries old proteins and organelles to the soma to be degraded.

Two classes of motor proteins take part to axonal transport: the kinesin superfamily proteins,
essential in the anterograde transport, and dyneins, essential in the retrograde transport (Chevalier-

Larsen and Holzbaur 2006).

1.3.2. Classification of neurons

Neurons can be classified according to their structure or their function.
Basing on the neuron’s structure we can distinguish (Figure 8):
- Multipolar neurons present a single axon and multiple dendrites, allowing interactions with
multiple other neurons. They can be largely found in the CNS, specifically in cortex and spinal

cord, but also in the PNS, in ganglia.
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- Bipolar neurons possess two processes, one axon and one dendrite. They are generally
involved in sensory pathway, that is why we can find them in eye’s retina, in olfactory and
vestibular nerves.

- Unipolar neurons have a single axon extending from the soma to the periphery. They are
mostly present in invertebrates, like insects. In humans, unipolar neurons are generally
“pseudounipolar”. This means that these neurons present a single process, coming out from
cell body, which splits, then, in two different branches. They are located in dorsal root

ganglia, and conduct signals concerning touch, temperature, pain and vibration.
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Figure 8 Structural classification of neurons [From:(Derrickson and Tortora 2017)].

According to their function, neurons can be classified in two main classes: sensory neurons and
motor neurons.

- Sensory neurons, whose cell bodies are located in trigeminal ganglia and dorsal root ganglia,
conduct stimuli from the periphery to the CNS, via afferent nerve fibers. Through their
receptors, they receive three types of information: the proprioception, the sense of self-
movement and body position; the nociception, which concerns the harmful stimuli; the
mechanoreception and thermoception, activated by deformation and temperature
information.
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- Motor neurons (MN) form the efferent nerve fibers that carry information away from the
CNS toward the peripheral effector organs. We can distinguish upper motor neurons, whose
soma lie in the cortex, and lower motor neurons, whose soma reside in the brainstem or in
the spinal cord. Upper motor neurons originate in the primary motor cortex, an area of the
frontal lobe, and terminate within the brainstem and the spinal cord, where they synapse
with lower motor neurons. They use glutamate as neurotransmitter. Lower motor neurons
use acetylcholine as neurotransmitter and they transfer the information from upper motor
neurons to target muscles. Lower motor neurons are classified according to their target:
branchial, visceral and somatic MN.

e Branchial motor neurons innervate branchial arch-derived muscles controlling face,
jaw, larynx and pharynx. Their axons are assembled to form the trigeminal cranial
nerve V, the facial cranial nerve VI, the glossopharyngeal cranial nerve IX, the vagal
cranial nerve X, the spinal accessory cranial nerve Xl (Chandrasekhar 2004).

e Visceral motor neurons belongs to the ANS, and they are involved in the control of
smooth muscles and glands. They are not directly connected to their effector organs
but they allow the information moving from the CNS to the peripheral ganglionic
neurons (Stifani 2014).

e Somatic motor neurons are organized in three different group, on the basis of
muscle fiber they innervate: alpha, beta, and gamma motor neurons. Alpha-motor
neurons (aMN) innervate the extrafusal muscle fibers, the main fibers involved in
muscle contraction. Beta-motor neurons (BMN) participate in contraction, and in
responsiveness process too. They are less abundant than alpha and gamma motor
neurons, and innervate intrafusal and extrafusal muscle fibers. Gamma-motor
neurons (YMN) innervate intrafusal muscle fibers and they modulate the sensitivity
of the muscle spindle to the phasic stretch and the tonic stretch, participating, in this

way, to proprioception of the body.
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1.3.3. Electrophysiological properties of neurons

Neurons are electrically excitable cells which can transfer information via electrical signals. They are
characterized by two main properties: the excitability, the neural ability to respond to a stimulus, and
the conductivity, the ability to conduct an electric message. These proprieties are due to voltage-
gated ion channels, located on the plasmatic membrane of neurons, which allow the flow of different
ions, specifically Na*, K" and Ca*". When the neural cell is not excited, the resting potential is between
-40 mV and -90 mV. This means that, according to the normal distribution of ions (mostly
extracellular Na* and mostly intracellular K*), there is an electric potential difference between the
internal and the external sides of the membrane. Since the internal side is more negative than the
external one, the membrane is defined “polarized”. The cellular resting potential is maintained by
the Na'/K'-pump which transports Na* and K' ions against their concentrations gradients, using
adenosine triphosphate (ATP) hydrolysis as energy source. When the neuron is stimulated, it can
elaborate different kinds of responses and the resting potential is perturbed in different ways:
- The receptor potential is a transient membrane potential activated by external stimuli like
light, pressure, heat. It is typical of sensory neurons.
- The synapse potential is an alteration of membrane potential in a post-synaptic neuron, after
the release of neurotransmitters in a synapse. It could be excitatory or inhibitory, and it is

characterized by small amplitude and slow time course.

The receptor potential and the synapse potential are defined graded potentials, since they depend
on the size of the stimulus and their amplitude is proportional to the strength of the stimulus. They
differ from the action potential.

- The action potential is a rapid rise and subsequent fall of membrane resting potential.

Specifically, it presents an initial rising phase or depolarization (opening of Na* channels),
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followed by a falling phase or repolarization (closure of Na* channels and opening of K*
channels), which brings the cell back to the resting potential, and it ends with an undershoot
phase, or hyperpolarization, which makes the membrane potential more negative than the
resting potential. After an action potential there is always a refractory period, during which it
is not possible to evocate a new action potential. In contrast to graded potentials, actions
potentials are “all-or-none”. This means that they can occur only if the threshold is reached,

or they do not occur at all. Their amplitudes, therefore, do not depend on stimuli intensity.
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Figure 9 Different electrical signals elaborated by neurons [From: (Purves 2004)].
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1.3.4. Glial cells

Other than neurons, the nervous system consists of other cell types, gathered under the name of
Glia, or Glial cells. Glial cells are more abundant than neurons but they do not produce and conduct
electrical signals, even if they can participate indirectly to regulation of synaptic events. Their key
role is to give physical support to nerve cells, control the uptake of nutrients and neurotransmitters,
participate to myelin sheath creation, immune response and repair process. If, in the central nervous
system, we can find oligodendrocytes, astrocytes, ependymal cells, and microglia, the peripheral
nervous system presents only two main glial cells: satellite cells and Schwann cells (SC). Satellite cells
are located in sensory and autonomic ganglia where they surround every neurons’ soma (Gongalves,

Vaegter, and Pallesen 2018). Schwann cells are the principal glial cells of the PNS.

1.3.4.1. Schwann Cells

Schwann cells originate from neural crest cells which migrate and differentiate themselves according
to activation of specific transcription factors (Frob and Wegner 2020). We can distinguish myelinating
and non-myelinating SC. Both of them interact with neurons axons, but, if myelinating SC participate
to myelin sheath creation around the axons, non-myelinating SC surround small-caliber axons just to
isolate them from each other, without forming myelin sheath. Myelinating SC are analogous to
oligodendrocytes in CNS, with the difference that, in PNS, the ratio axon/SC is 1:1, while
oligodendrocytes can wrap multiple axons (Salzer 2008).

SC play also a key role in nerve repair and regeneration. For example, after a crush or cut injury of
the nerve, SC can change their phenotype, produce survival signals for neurons, and, activating the
immune response and macrophages recruitment, they can induce myelin clearance events (Jessen
and Mirsky 2016). Moreover SC interact with proteins of extracellular matrix and basal lamina, and

guide axonal growth during development (Chernousov and Carey 2000).
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1.3.4.2. Myelin sheath

Myelin sheath is a lipid bilayers membrane that wraps multiple times nerve cells axons in the CNS
and in the PNS, via the oligodendrocytes and the SC, respectively. It is organized in compact and non-
compact components, with different structures and functions. Compact myelin is formed by tightly
packed spiraling layers of membrane that lack cytoplasm. Non-compact myelin contains more
cytoplasm and plays a role in signaling and transport of small metabolites (Ryu et al. 2008).

Myelin sheath is mainly composed by a high proportion of lipids (70-85%) and a smaller amount of
proteins (15-30%), compared to other biological membranes. The most characteristic lipid of myelin
is the galactosyl ceramide, but it presents also high levels of cholesterol and phospholipids (Quarles
2007). Concerning the protein composition, compact myelin contains four main proteins: Myelin
Protein Zero (MPZ or PO), Proteolipid protein (PLP), Peripheral Myelin Protein 2 (PMP2 or P2) and
Myelin Basic Protein (MBP). Another important myelin protein, known to be widely involved in
neural physiopathology, is the Peripheral Myelin Protein 22 (PMP22). If PLP is specific of CNS, and
MPZ, PMP2, and PMP22 are mostly expressed in PNS, MBP protein can be found in both of them.
MPZ is the most abundant protein in peripheral myelin sheath (~50%) and it acts like structural
element, stabilizing myelin through homophilic interactions (Quarles 2007). PMP2 seems to
participate to myelin stabilization too, in addition to its role in lipid transport. MBP is important for
the adhesion of the cytosolic surfaces of myelin (Boggs 2006), while PMP22 is involved in myelin
formation, but also in SC proliferation and differentiation (Li, 2013). The main proteins of the non-
compact myelin are Myelin Associated Glycoprotein (MAG), Connexin-32 (Cx32 or GJB1) and E-
cadherin.

Myelin sheath acts like an insulator, helping the electric signals conduction, so enhancing the rapid
propagation of action potentials along the axons. Each axon presents multiple myelinated segments,

separated by short gaps, called nodes of Ranvier, where the axonal membrane is exposed to
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extracellular space. Since voltage-gated sodium channels are located at nodes of Ranvier, when the
axolemme is excited at this level, sodium ions enter in the neuron, leading to the depolarization of
the membrane. This electrical signal, caused by ions diffusion, cannot flow through the high-
resistance myelin sheath, and, consequentially, it reaches the next node of Ranvier, where a new
segment of axolemme is depolarized. The membrane depolarization process, associated to the
potassium channels-dependent repolarization, constitutes the action potential. As result of myelin
sheath organization, the action potential jumps from a node of Ranvier to another along the axon,
and for this reason its propagation is defined saltatory conduction.

In PNS, but not in CNS, the nodes of Ranvier are contacted by numerous microvilli, which are
processes of Schwann cells, probably involved in ion buffering (Salzer 2008; Arancibia- Carcamo and
Attwell 2014). The myelinated segments between two nodes are called internodes, while the nodes-
flanking regions are known as paranodes or paranodal regions. Paranodes are the site of tight
junctions between the axon and the glial myelin, resulting from the action of multiple proteins like
the contactin, the contactin-associated protein (Caspr) and the neurofascin 155 (Lyons and Talbot
2008; Uncini, Susuki, and Yuki 2013). Between internodes and paranodes, we find the juxtaparanodal
regions, where most voltage-gated potassium channels are located (Arancibia- Carcamo and Attwell

2014).
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Figure 10 Organization of main domains in a node of Ranvier [Adapted from: (Salzer 2008)].

1.3.5. Nerve anatomy

The nerve is the main structure of the peripheral nervous system and it consists of a bundle of
neurons’ axons wrapped in the myelin sheath. In a nerve, every axon, with its myelin coating, is
surrounded by the endoneurium, a layer of connective tissue composed of endoneurial cells. The
endoneurium appears as an elastic channel since the collagen | and Il represent its major
components (Ju, Lin, and Chang 2017). It contains the endonerium fluid, with a protective role,
comparable to the cerebrospinal fluid in CNS (Reinhold and Rittner 2017). Moreover, within a nerve,
axons acting on the same anatomical area, are organized in fascicules (fasciculi), surrounded and held
together by the perineurium. The perineurium is a dense sheath of connective tissue formed by
multiple concentric layers of fibroblasts cells associated to type | and type Il collagen fibers. In
addition to its protective function, perineurium is important to regulate the inner pressure of the
fascicule (Ju, Lin, and Chang 2017). Lastly, multiple nerve fascicles are kept together by the outer
connective layer, the epineurium. The epineurium seems to be organized in two different layers: the

external one consists in an areolar connective tissue with a vascular component, while the internal
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one presents, above all, collagen fibers (Stolinski 1995). It acts like buffer barrier, protecting fascicles

from the external space (Ju, Lin, and Chang 2017).

Connective tissue
Epineurium

™ Perineurium

™ Endoneurium

basal lamina
Schwann cell
axon

Figure 11 Nerve architecture. The Schwann cell, in blue, wraps around neuron’s axon, in rose. They
are surrounded by the endoneurium, within the nerve fascicule. Every fascicule is surrounded by the
perineurium, and kept together with other fascicules, by the epineurium [From: (Belin, Zuloaga, and
Poitelon 2017)].

1.4. PNS disorders: the peripheral neuropathies

1.4.1. Overview

A peripheral neuropathy is a pathological condition caused by the damage of a SNP structure (neuron
cell body, axon, myelin sheath). Despite the lack of a large number of epidemiologic studies, it seems
that peripheral neuropathies have a prevalence estimated between 2.4% and 7% (Callaghan, Price,
and Feldman 2015). Their origin can vary considerably, as well as their symptomatology. According to
the number of affected nerves, peripheral neuropathies can be classified in mononeuropathies, if
they affect a single nerve, mononeuritis multiplex (or multiple mononeuropathies), if multiple non-
contiguous nerve trunks are involved in an asymmetric way, and polyneuropathies, when the
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disorder is diffuse and concerns the whole of the nerves. According to the kind of affected neurons,
we can distinguish motor neuropathies and sensory neuropathies. On the other hand, basing on the
type of affected nerves fibers, we can divide small fibers neuropathies, large fibers neuropathies, and
autonomic neuropathies (Magy and Vallat 2009).

The peripheral disorders can involve different components of the PNS. This allows to further
subdivide them in axonopathies, if they touch the axons, and myelinopathies, which concern the
myelin sheath (Barohn and Amato 2013). In axonopathies, the axon degeneration leads to the
aberration of terminal arbors of nerves, with the consequent disconnection of neurons from the
neural network and loss of nerve fibers (Landowski et al. 2016; Burgess 2018). Distal axonopathies
have generally a symmetric length-dependent evolution since symptoms appear in lower legs and
feet. Myelinopathies are caused by myelin sheath damages and they are characterized by impaired
conduction of electrical impulses. They could be length-dependent too.

The duration of symptoms in peripheral neuropathies makes it possible to distinguish acute forms
(<4 weeks), subacute forms (4-12 weeks) and chronic forms (>12 weeks) (Misra, Kalita, and Nair

2008).

1.4.2. Etiology

The complexity of peripheral neuropathies diagnosis is associated to the large number of possible
causes that can induce the onset of the disorder. Primarily, acquired neuropathies could be

differentiated from genetic neuropathies.

1.4.2.1. Acquired neuropathies

We define “acquired”, a neuropathy not present at the beginning of patient’s life, so a

condition resulting from environmental factors or other pathological events. Acquired neuropathies

Federica Miressi | Ph.D. Thesis | University of Limoges | 2020 42



represent the majority of peripheral neuropathies, and they can be further classified according to the
specific associated cause (Lozeron, Trocello, and Kubis 2013).

- Metabolic disorders, alterations of normal metabolic processes in the body, can cause

metabolic neuropathies. Among them, the most common pathologic condition is the diabetic
neuropathy, which can affect up to 50% of adults with type 1 or type 2 diabetes mellitus. Frequent
consequences are sensory loss, motor impairment, foot ulcers, sometimes lower limbs amputation,
with a general worsening of life quality (Hicks and Selvin 2019).

- Vascular disorders can lead to decreased blood flow to upper and lower limbs and reduce

oxygen supplied to nerves, inducing, in this way, nerve damage or death.

- Kidney and liver disorders may cause metabolic dysfunctions and increase the blood amount

of toxic substances, damaging nerve tissue (Chaudhry et al. 1999; Arnold et al. 2016).

- Imbalance of vitamins, like Vitamin B12, B6, B1, or E, can result in axon and myelin

dysfunction in PNS, as well as cognitive problems in CNS (Staff and Windebank 2014). Calcitriol, or
1,25-dihydroxyvitamin D3, seems to help axonogenesis and axon growth, myelination, and recovery
of locomotor functions in trauma models. The calcitriol deficiency is associated to a higher risk of
diabetes and related complications like neuropathies, but also reduction of nerve conduction velocity
(Faye et al. 2019).

- Autoimmune diseases are due the abnormal response of immune system which mistakenly

attacks a body part, such as a PNS structure. This is the case of Guillain-Barré syndrome, caused by
bacterial or viral infections and characterized by a demyelination process mediated by T-cells and
macrophages (Bourque, Chardon, and Massie 2015). Peripheral neuropathies can derive also from
autoimmune diseases that not directly target the nervous system, like Lupus, rheumatoid arthritis,
and Sjoégren’s syndrome.

- Viral and bacterial infections may have effects on the PNS. For example, up to 50% of

patients with infection of human immunodeficiency virus (HIV) present distal polyneuropathy, while

Herpes virus (herpes simplex type 1 and 2 and varicella-zoster virus) reside in ganglia and cause
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manifestations on PNS when reactivate. Flaviviridae, like the West Nile virus or the Hepatitis C virus,
may also affect sensory and motor systems (Brizzi and Lyons 2014). Among the bacteria, Clostridium
tetani, mycobacterium leprae, and Corynebacterium diphteriae, are known to be associated to
peripheral nerve damage (Carod-Artal 2018).

- Cancers seem to affect PNS through different pathophysiological mechanisms. Invasion
processes, metastasis, metabolic imbalance and immune-mediated events can directly or indirectly
induce nerve lesions (Zis and Varrassi 2017).

- Drugs and toxins. Chemotherapy drugs, like Platinum-Based Antineoplastics, Taxanes and

Vinca Alkaloids, cause peripheral neuropathies in 19% to 85% of cases. Symptoms generally involve
the sensory division and include numbness, altered touch and vibration senses, pain, paresthesias,
dysesthesias, especially in hands and feet (Bessaguet et al. 2018; Zajgczkowska et al. 2019). Toxins,
above all heavy metals (plumb, arsenic, thallium, mercury) and industrial agents, are responsible for

neurotoxicity in PNS (Staff and Windebank 2014).

- Trauma as falls, accidents, sport activities, often lead to nerve injuries, compression or
crush, with consequent damage of myelin and/or axons (Menorca, Fussell, and Elfar 2013; Caillaud et
al. 2018). According to several studies, brachial plexus, ulnar nerves, radial nerves and sciatic nerves

are the most frequently involved (Kouyoumdjian 2006; Ciaramitaro et al. 2010).

1.4.2.2. Genetic neuropathies

Genetic or hereditary neuropathies are a heterogeneous group of disorders affecting the
peripheral nervous system caused by genetic mutations, so by alterations of DNA sequence. The
genetic mutations can involve a single nucleotide (point mutations), multiple nucleotides in small
regions (small deletions and duplications), or they can concern large chromosomal regions (large

deletions and duplications, chromosomal translocations and inversions). Pathological mutations can
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be inherited, from parents, or de novo, if they appear in germline of parents or during a post-zygotic
phase of the patient’s embryogenesis. The mode of inheritance could be autosomal, dominant or
recessive, or X-linked, dominant or recessive. Moreover, some cases of peripheral neuropathies,

caused by mutations in mitochondrial DNA (mtDNA), have also been reported (Bouillot et al. 2002).
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Figure 12 Genomic localization of some nuclear and mitochondrial genes (in orange), and their
associated inherited peripheral neuropathies (in blue) [From: (Timmerman, Strickland, and Ziichner
2014)].

Among all the hereditary neuropathies, we distinguish genetic disorders mainly characterized by
peripheral problems, and diseases in which the neuropathy is only an aspect of a more complex
phenotype, like Friedreich ataxia (Rossor, Tomaselli, and Reilly 2016). The most common genetic

peripheral neuropathies are:
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Charcot-Marie-Tooth (CMT) disease, a sensory-motor neuropathy with impairment of both

sensory and motor nerve fibers. It has a prevalence of 1/2,500 and it represents the most common
hereditary neuropathy. More details about CMT disease are reported in Chapter 2.

Hereditary sensory and autonomic neuropathy (HSAN) or hereditary sensory neuropathy (HSN),

which are characterized by a wide degree of sensory and autonomic fibers’ impairment. The most
frequent symptom is the loss of pain and temperature sensations, often followed by chronic
ulcerations. Disturbances start distally in lower limbs, to spread later to upper limbs. Autonomic
symptoms may also occur, like hyper-or-hypohidrosis, apnea, urinary incontinence (Rotthier et al.
2012).

Hereditary motor neuropathy (HMN), often known as distal hereditary motor neuropathy

(dHMN). This is a group of slowly-progressive length-dependent disorders, defined by muscular
atrophy and wasting, weakness, foot deformities (Bansagi et al. 2017). Reflexes are often abolished,
amplitudes are reduced. Sensory disturbances are minor or absent (Rossor et al. 2012).

Small fibers neuropathy (SFN) which concerns small and myelinated A& fibers, and small and

unmyelinated C fibers. Since sensory and autonomic fibers could be affected, main symptoms vary
from case to case, but they often include alteration of thermal and pain sensation, like allodynia and
hyperesthesia, but also paresthesia, numbness, bladder and gastric issues, cardiac alterations (Levine
2018).

Other hereditary pathologies, with a complex clinical manifestations, only partially characterized

by peripheral neuropathy. For example, Hereditary Ataxia is a group of disorders defined by
incoordination of muscles and gait disturbance, which result in altered speech and abnormal
movement of hands and eyes (Bird 1993). It is normally associated to a cerebellar dysfunction and
atrophy, but peripheral nervous system may be also implicated. Sometimes, peripheral, motor and
sensory, signs are predominant in patient’s phenotype, and Ataxia may be mistaken for “pure”

peripheral neuropathy, like Charcot-Marie-Tooth disease (Salomao et al. 2017).
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1.4.3. Clinical symptoms

Patients affected by peripheral neuropathies can show sensory and motor symptoms, both of them
can be classified as positive, when there is a gain of function, or negative, with a loss of function.

e Typical positive sensory symptoms are: paresthesia, characterized by tingling and pricking;
dysesthesia, the unpleasant sensation of touch; numbness; neuropathic pain, like coldness
and burning sensations, electric shocks and «picks and needles» sensations.

e Typical negative sensory symptoms are: hypoesthesia and anesthesia, the reduction and the
total loss of sensation, respectively; ataxia, the lack of coordination and balance functions.

e Typical positive motor symptoms are: cramps, sudden and involuntary contractions of
muscles; muscle twitch (or fasciculations), the involuntary contraction of a group of muscle
fibers.

e Typical negative motor symptoms are: muscular weakness, the decrease of muscle strength,
with associated difficulties in daily activities; muscular atrophy, the decrease of muscle mass

and size.

1.4.4. Medical history

Given the complexity of peripheral neuropathies, the patient medical history (or anamnesis)
represents the first required step in the management of patients. It allows to collect all relevant
information about medical events and problems of the person and the other family members, but
also details about occurrence, evolution and distributions of symptoms. Anamnesis is essential to

investigate the disorder and establish a good diagnosis.
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1.4.5. Clinical examination

For peripheral neuropathies, the physical examination is the first process of patient’s evaluation, and
it is required for all individuals suspected to be affected by the pathology. It consists in the evaluation
of muscular mass and strength, reflexes, sensory functions and possible physical deformities. After
the physical exam, further tests are often necessary.

Electromyography and Nerve Conduction studies are commonly required, too. If electromyography
(EMG), or needle EMG, measures the electrical activity in muscles, the nerve conduction study
evaluates the velocity of nerve fibers in conducting electrical signals. Electrophysiological studies
make it easier to identify the peripheral neuropathy form. More details about these analyses are
reported in Chapter 2.

Sometimes, for deeper investigations, nerve, skin, or muscle biopsies are demanded. These tissues
samples are used for the histopathological study, performed to explore eventually structure
abnormalities induced by the peripheral pathology. For nerve biopsy, sural nerve and superficial
peroneal nerve are often chosen when the disorder is predominant in lower limbs, superficial radial
nerve and ulnar nerve are preferred when upper limbs are more involved (Said 2002). Nerve biopsy is
an invasive procedure for patients, so its indication is restricted to specific cases. Skin biopsy, which is
less invasive, is usually used in SFN examination, since it allows to quantify nerve fibers in epidermis.
Muscle biopsy is performed to verify the functional consequence of nerve degeneration on the
effector organ (muscles), but it seems to have also a key role in diagnosis of peripheral nerve
vasculitis (Bennett et al. 2008).

Blood biochemical test can help in the identification of the disease’s etiology, since it allows to detect
vitamins imbalances, glucose level, kidney and liver disorders, thyroid issues, antibodies directed
against pathogens or involved in autoimmune diseases.

In the event that the medical history, and the neurological and biochemical examinations, suggest a

genetic cause for the peripheral neuropathy, the genetic analysis is generally conducted. It is
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necessary to confirm the inherited origin of the disease, to identify the causing mutation and
establish the inheritance mode of transmission, so to predict the pathological implications for the
patient and the other family members. Moreover, this examination can help in the patient’s follow-
up and in the choice of a potential treatment. The genetic analysis is performed using molecular
biology’s tests. Most involved genes are often tested by Sanger Sequencing. Nevertheless, several
gene panels for peripheral neuropathies have been designed to extend the analysis to a higher
number of genes, using Next Generation Sequencing (NGS) strategies. Whole Exome Sequencing
(WES) and Whole Genome Sequencing (WGS) are, currently, more and more employed, too. NGS

data are then associated to a Bioinformatic analysis to be processed and interpreted.
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Chapter Il. Charcot-Marie-Tooth disease

I1.1. Overview

Charcot-Marie-Tooth (CMT) disease, also called hereditary sensory-motor neuropathy, is the most
common inherited peripheral disorder. Its prevalence has been estimated to be 1/2,500, even if
epidemiological studies can considerably vary, from country to country, in quality and methodology,
complicating the establishment of a correct global frequency (Barreto et al. 2016). Clinically, this
heterogeneous group of peripheral neuropathies is mostly characterized by distal weakness and
atrophy, sensory loss, reduced reflexes, balance troubles, and, sometimes, anatomical deformities,
like pes cavus. First symptoms can appear early, in the first decade, or lately, in the adulthood.

CMT disease was described for the first time in 1886 in France, by Professor Jean-Martin Charcot and
his student, Doctor Pierre Marie, who presented it like “a peroneal muscular atrophy”, characterized
by muscular weakness and wasting. At the same time, in Cambridge, Howard Henry Tooth published
his theses on the same subject. He was the first to realize that the “progressive muscular atrophy”
could cover multiple disorders, characterized by atrophy, but due to different causes and with
myelitic, neuropathic or myopathic origin (From the Archives: (Compston 2019)). Next studies
allowed to discover further clinical cases of CMT disease, and associate additional symptoms and
features to this pathology. First anatomical and histological analysis highlighted morphological
abnormalities in nerve trunks and roots, as well as lesions in the spinal cord and schwannian
hyperplasia (Sturtz, Chazot, and Vandenberghe 1992). In 1968 Dyck and Lambert, through
electrophysiological analysis, showed, for the first time, that only some CMT families presented a
reduced nerve conduction velocity, while it appeared preserved in other ones. Their study was
fundamental for the first classification of CMT disease in demyelinating (CMT1) and axonal (CMT2)

forms (Dyck and Lambert 1968).
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CMT disease is part of genetic peripheral neuropathies, since it is caused by inherited or de novo
mutations which can occur in a large panel of CMT-associated genes. It seems that the proportion of
de novo mutations varies from gene to gene and it is related to severity of the pathological
phenotype (Rudnik-Schoneborn et al. 2016). However, in most cases, CMT disease is inherited, in an
autosomal, dominant or recessive, manner, or in a X-linked, dominant or recessive, manner. The
most common CMT mutation is the duplication of PMP22 gene, encoding the peripheral myelin

protein 22.

11.2. Clinical presentation

As consequence of the wide range of possible causative mutations and associated genes, clinical
manifestations of Charcot-Marie-Tooth disease are very heterogeneous, and they differ significantly
from patient to patient. Age of onset, progression rate, or disease severity, are often difficult to
predict and, sometimes, they can vary within the same family. Early troubles may appear in first
years of childhood with difficulties in walking, stumbling and falls, clumsy movements. First
distinctive symptoms are symmetric distal weakness, starting in feet and progressing in ankles and
hands, and muscular atrophy, the wasting of muscles, in legs and arms (Szigeti and Lupski 2009).
Consequentially, patients have often a feeling of fatigue and tiredness, even in easy efforts. These
clinical signs are generally followed by depression or abolition of tendon reflexes, and, above all,
sensory disorders. Concerning the sensory compound, patients usually experience loss or alteration
of pain, touch and temperature perception, occasionally tingling and burning sensations (Gemignani
et al. 2004). Neuropathic pain can be also present, as result of muscular weakness or skeletal
deformities. The main anatomical deformities in CMT disease are the high-arched feet (or pes cavus),
typically associated with curled toes (hammertoes), and the flat-arched feet (or pes planus). Lower

legs can take the "inverted champagne bottle" appearance, due to the muscular wasting in lower
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limbs. We can observe also deformities in hands, after protracted contraction of fingers, and scoliosis
(Piazza et al. 2010).

With the progression of CMT disease, the persistent nerve damage can make more complicate, or
impossible, daily easy tasks, deteriorating patients’ quality of life. Difficulties in walking can evolve in
severe mobility problems and need of walking aid like crutches and wheelchair.

In the analyses of CMT phenotype we can also include multiple, and sometimes rare, symptoms
associated with specific CMT forms, such as pyramidal signs, mental retardation, cerebellar ataxia

and visual or hearing problems.

11.3. Electrophysiological study

The electrophysiological study is often a required step in the diagnosis of CMT disease. It generally
includes the needle electromyography (EMG) and the nerve conduction study (NCS).

The needle EMG is the analysis of muscular electrical activity, since it allows to record the electrical
signals generated in muscle fibers. During this procedure, the recording needle electrode is inserted
into the muscle and it records the electrical signal at rest and during voluntary contraction. The
clinician skills, in interacting with the patient and handling the needle in the muscle, are important
for the good efficiency of the procedure. The muscle chosen for the needle EMG depends on the
patient’s clinical condition (Rubin 2012).

The nerve conduction study (NCS) allows to measure the nerve conduction velocity (NCV), so the
speed of an electrical signal which moves through a nerve segment. It is conducted on the largest
and fastest myelinated fibers and it reflects the function of motor and sensory fibers. It is suitable,
therefore, for detection and evaluation of peripheral nerve disorders (Moattari et al. 2018). NCS is
generally performed on peroneal, tibial or sural nerves, in lower limbs, and median and ulnar nerves

in upper limbs.
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Specifically, NCS consists in a motor conduction study (MCS) and a sensory conduction study. To
realize the MCS, the recording electrode is placed on the skin, over the nerve, while the stimulating
electrode is placed at a known distance from it. The stimulating electrode provides a brief electrical
shock, so an electrical impulse, which is conducted along the nerve to be detected by the recording
electrode. The result of a MCS is the compound muscle action potential (CMAP) which represents the
summation of all the action potentials of muscle fibers of the same region. A CMAP is characterized

by the amplitude, the latency, the duration and the area (Figure 13).
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Figure 13 Latency, amplitude, duration, area, and latency of the compound muscle action potential
(CMAP) [Adapted from (Moattari et al. 2018)]

The amplitude of the CMAP, measured from baseline to negative peak, depends on number of motor
axons implicated. It is reduced in case of axonal loss, but also in demyelinating events (Mallik 2005;
Tankisi et al. 2012).

CMAP duration is the time period between the onset of deflection and the return to the baseline. It
increases in demyelinating disorders, since the myelin damage increases the temporal dispersion
along the fibers (Isose et al. 2009). This means that in demyelinating neuropathies there is an inverse
linear correlation between amplitude (decreased) and duration (increased), absent in axonal

neuropathies.
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CMAP area is defined by the baseline and the negative peak. It depends on amplitude and duration.
The latency, measured in milliseconds, is the time period between the stimulus and the beginning of
the initial deflection (the response). If in axonal disorders it is usually normal, it increases in
demyelinating disorders.

The latency is a required parameter to calculate the motor nerve conduction velocity (MNCV).

Distance (between the proximal and the distal stimulation)
MNCV =

Proximal latency — Distal latency

The determination of the MNCV allows to distinguish two main classes of CMT disease: the

demyelinating and the axonal forms.

I1.4. CMT classification

1.4.1. CMT classification based on the electrophysiological study

Dyck and Lambert were the first, in 1968, to find out that nerve conduction velocity makes it possible
to distinguish demyelinating peripheral neuropathies from axonal peripheral neuropathies (Dyck and
Lambert 1968). These two clinical groups were better analyzed, in 1980, by Harding and Thomas,
who set the NCV threshold at 38 m/s. Their study identified a more numerous group of patients, the
HMSN type 1, presenting a NCV< 38m/s, and a second group, the HMSN type 2, with a NCV>38 m/s
(Harding and Thomas 1980).

Demyelinating forms derive from a damage or an alteration of the myelin sheath which surrounds
neuronal axons in nerve fibers. Since myelin function is fundamental to ensure the rapid propagation
of electrical signals, its injury leads inevitably to a reduction of NCV (<38 m/s). In axonal forms,

neurons’ axons are directly affected. Consequentially, CMT2 are characterized, at
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electrophysiological level, by normal values of NCV, but reduced amplitudes of the CMAP. Today, the
traditional classification of CMT disease in demyelinating forms (CMT1) and axonal forms (CMT2) is
still conserved, in a general way.

In addition, several studies pointed out the presence of a third group, the so called “Intermediate
CMT”. Intermediate CMT bring together clinical cases lying between axonal and demyelinating forms
and sharing features with one and the other phenotype. The NCV of intermediate CMT are between

25 and 45 m/s (Liu and Zhang 2014; Berciano et al. 2017).

11.4.2. CMT classification based on the mode of inheritance

The mode of inheritance of CMT disease, so the manner of its genetic transmission from a generation
to another, can largely vary among the different CMT forms. The autosomal mode of inheritance is
related to genes located on autosomal chromosomes (any chromosome other than a sex
chromosome), and it can be dominant or recessive. Other CMT forms have a X-linked mode of
inheritance, since they are caused by genes located on the sex-determining X chromosome. As well

as autosomal forms, they could be dominant or recessive.

1.4.3. A complete and complex CMT classification

The classification of all the CMT has been subjected to repeated revisions over the years and, still
today, it remains a challenge. The detection of new CMT-associated genes, thanks to NGS
technologies, and the understanding of related pathophysiological mechanisms, requires a
continuous reworking and update of the existing nomenclature. Nowadays, multiple CMT
classifications exist, but all of them usually consider the electrophysiological aspects of the disease

(like the NCV), and the inheritance pattern (the mode of transmission). In addition, a
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subcategorisation, based on the mutated gene responsible of the occurrence of the pathology, is
often necessary. All these components allow to establish a more complete and complex organization

of all the different CMT forms.

Demyelinating forms are classified in CMT1, which present an autosomal dominant mode of

inheritance, and CMT4, with an autosomal recessive mode of inheritance.

- Axonal forms are generally identified as CMT2. The typical transmission mode is autosomal
dominant (AD-CMT2), but autosomal recessive forms are also described (AR-CMT2).

- Also the intermediate forms can follow an autosomal dominant or recessive mode of
inheritance, so they are indicated, respectively, as DI-CMT and RI-CMT.

- The X-linked CMT (CMTX) are often considered a separate group, composed of dominant and

recessive forms.

Moreover, basing on the observation of additional clinical features, three other CMT forms could
occasionally be reported as CMT3 (or Dejerine-Sottas disease), CMT5 and CMT6.
In Table 1, a first detailed classification of CMT forms is reported. A letter, from A to Z, was attributed
to each CMT form, following the order of discovery of the associated gene (e.g CMT1A for the

duplication of PMP22) (Tazir et al. 2014).
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Table 1 A first classification of Charcot-Marie-Tooth (CMT) diseases [AD = Autosomal Dominant; AR =
Autosomal Recessive; XD = X-linked Dominant; XR = X-linked Recessive] [Adapted from: (Feely et al.
2011; Tazir et al. 2014; Wang and Yin 2016) and Online Mendelian Inheritance in Man (OMIM?®)
database].

Type Subtype Associated Mode of Type Subtype Associated Mode of
gene inheritance gene inheritance
Demyelinating forms Axonal forms
CMT1 CMT2
CMT1A PMP22 AD CMT2A MFN2 AD
CMT1B MPZ AD [CMT2A1 KIF1B] AD
CMTIC LITAF AD CMT2B RAB7 AD
CMT1D EGR2 AD CMT2B1 LMNA AR
CMTI1E PMP22 AD CMT2B2 MED25 AR
CMT1F NEFL AD CMT2B5 NEFL AR
CMT1G PMP2 AD CMT2C TRPV4 AD
CMT2CC NEFH AD
CMT4 CMT2D GARS1 AD
CMT4A GDAP1 AR CMT2E NEFL AD
CMT4B1 MTMR2 AR CMT2F HSPB1 AD
CMT4B2 SBF2 AR CMT2G 12q12-q13.3 AD
CMT4B3 SBF1 AR CMT2H GDAP1 AR
CMT4C SH3TC2 AR CMT2I| MPZ AD
CMT4D NDRG1 AR CMT2) MPZ AD
CMT4E EGR2 AR CMT2K GDAP1 AD
CMTAF PRX AR CMT2L HSPBS8 AD
CMTAG HK1 AR CMT2M DNM2 AD
CMT4H FGD4 AR CMT2N AARS1 AD
CMT4J FIG4 AR CMT20 DYNC1H1 AD
CMT4K SURF1 AR CMT2P LRSAM1 AD/AR
DI-CMT CMT2R TRIM2 AR
DI-CMTA 10q24.1-q25.1 AD CMT2S IGHMBP2 AR
DI-CMTB DNM2 AD CMT2T DNAIJB2 AR
DI-CMTC YARS1 AD MME AR/AD
DI-CMTD MPZ AD CMT2U MARS1 AD
DI-CMTE INF2 AD CMT2W HARS1 AD
DI-CMTF GNB4 AD CMT2X SPG11 AR
CcMT2Z MORC2 AD
RI-CMT
X-linked forms
Additional forms
MPZ CMTX2 Xp22.2 XR
Pij:gzz 5 ig;ﬁg CMTX3 Xq26 XR
PRX AD/AR CMTX4 AIFM1 XR
CMTS MFN2 (?) CMTX5 PRPS1 XR
CMTE MFN2 AD CMTX6 PDK3 XD
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Even if this current classification of CMT diseases is widespread, it could sometimes appear difficult
to use. In fact, the same CMT-gene could have multiple modes of inheritance and induce both
demyalinating and axonal forms, complicating the direct association of clinics and genetics.
Moreover, the letter-based classification may be limited by the discovery of new associated genes,
thanks to NGS strategies.

For all these reasons, a simpler and more “informative” classification has been proposed by Mathis et
al., in 2015. According to their method, the denomination of each CMT subtype should include the
mode of inheritance (AD-, AR-, XL-), the electrophysiological information (de-, ax, in-), and the

involved gene (Mathis et al. 2015). It is reported in Table 2.
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Table 2 The alternative CMT classification proposed by Mathis et al .[From: (Mathis et al. 2015)].

Proposed denomination Gene Chromosome MiM Present denomination
CMTde
AD-CMTde AD-CMTde-PMP22dup PMP22 (duplication) 17p12 118220 CMTIA
AD-CMTde-PMP22 PMP22 17p12 118300 CMTE
AD-CMTde-MPZ MPZIFO 19233 118200 CMTIB
AD-CMTde-LITAF LITAR'SIMPLE 16p13.13 601058 CMTIC
AD-CMTde-EGRZ EGR2KROX20 10g213 607678 CMTID
AD-CMTde-NEFL NEFL Bp21.2 607734 CMTIF
AD-CMTde-FBLNS FBINS 1493212 - -
AD-CMTde-GIB3 GIB3/Conmexin 31 1p3d3 - -
AD-CMTde-ARHGEF1O ARHGEFIO Bp23.3 BG0B236 SNCWICMTI
AR-CMTde AR-CMTde-GDAPT GDAPT Bg21.11 214400 CMTaA
AR-CMTde-MTMAZ MTMR2 11q21 601382 CMT4B1
AR-CMTdeSBFT SEFI/MTMRS 22q1333 615284 CMT4E3
AR-CMTdeSBF2 SBFMMTMRIS 1Mpl154 B0)563 CMTAB2
AR-CMTde-SH3TC2 SHITC2KIAATHES 5q32 601591 CMTaC
AR-CMTde-NDRGT NDRGT Bg24.22 601455 CMTAD
AR-CMTde-EGRZ EGR2KROX20 10q213 605253 CMT4E
AR-CMTde-PRX PRX 199132 614895 CMT4F
AR-CMTde-HKT HET 10g22.1 605285 CMTAG
AR-CMTdeFG DI FGD4 12p1121 609311 CMT4H
AR-CMTde-FIG4 FIGA/KIAADZ7ASACT Bg21 609390 CMTAl
AR-CMTde-CTDPT CTDP1 1823 604168 CCFDN
AR-CMTde-SURFT SURF1 9g34.2 - -
CMTax
AD-CMTax AD-CMTax-MENZ MFN2 1p36.22 609260 CMT2A2
AD-CMTax-RAB7 RAB7 3g21.3 605588 CMTZE
AD-CMTax-TRPVY TRPVA 12g24.11 B0BOT1 CMT2C
AD-CMTax-GARS GARS Tpl43 601472 CMT2D
AD-CMTax-AARS AARS 16g22.1 613287 CMT2ZN
AD-CMTax-MARS MARS 12q133 616280 cMT2U
AD-CMTax-HARS HARS 5q313 - -
AD-CMTax-NEFL NEFL Bp212 607684 CMT2E
AD-CMTax-H5PET HSPB1/HSP27 Tq1123 BOB595 CMT2F
AD-CMTax-HSPES HSPBR/HSP22 12q2423 (20 k] CMT2L
AD-CMTax-GDAPT GDAPT Bg21.11 607831 CMT2K
AD-CMTax-MPZ MPZIFO 19233 BOTETTIG0TTI6 CMT21CMT2)
AD-CMTax-DNMZ DNM2 19p132 BOB482 CMTZM
AD-CMTax-DYNCTHT DYNC1HT 14q32.31 60012 CMT20
AD-CMTax-LRSAMT LRSAM1T 9933.3 614436 CMT2P
AD-CMTax-DHTKDT DHTED1 10p14 615025 M0
AD-CMTax-TRIMZ TRIMZ d4g31.3 615490 CMT2R
AD-CMTax-WCP Ve 9p13.3 - -
AD-CMTax-TFG TRG 3q12.2 B84 HMSNP
AD-CMTax-KIF5A KIF5A 12q133 604187 SPG10
AD-CMTax-mtaATPS mATPG - - -
AD-CMTax-Uirrknowr Uik o 129129132 BOB591 MG
AR-CMTax AR-CMTax- LMNA LMNA 1922 [ CMT2B1
AR-CMTax- MED25 MED25 1991333 605589 CMT2B2
AR-CMTax- GDAPT GDAPT Bg21.11 607731 CMTZH
AR-CMTax- IGHMB P2 IGHMBP2 119133 616155 CMT25
AR-CMTax-C120RF85 C120RF65 12g24.31 615035 5PGSS
AR-CMTax- K511 HsH 2g35 604139 CMT2T
CMTin
AD-CMTin AD-CMTin-DNM2 DNM2 19p132 BOB482 CMTDIE
AD-CMTin-YARS YARS 1p35.1 608323 CMTDIC
AD-CMTin-MPZ MPZ/PO 1923.3 607791 CMTDID
AD-CMTin-INF2 INF2 1493233 614455 CMTDIE
AD-CMTin-GNBS GNBY 3g26.33 615195 CMTDIF
AD-CMTin-NEFL NEL Bp21.2 = =
AD-CMTin-Uriknown Uik moswn 10g24.1-g25.1 BOB483 CMTDIA
AR-CMTin AR-CMTin-GDAPT GDAPT Bg21.1 BOE3A0 CMTRLA
AR-CMTin-KARS KARS 16g23.1 613641 CMTRIB
AR-CMTin-PLEKHGS PLEKHGS 1p363l 615376 CMTRIC
AR-CMTin-COX8AT CONBAT 12q24 616039 CMTRID
XL-CMT XL-CMTin-GIB1 GIB1/Connexin 32 Xqi3.1 302800 CMTX1
XL-CMTde-GIBT GIB1/Connexin 32 Xq13.1 302800 CMTX1
XL-CMTax-GIBT GIB1/Connexin 32 Xq13.1 302800 CMTX1
AL-CMT-AIRMT AlRMT Xg26.1 310490 CMTX4
XL-CMT-PRPST PRPS1 Xg223 311070 CMTXS
AL-CMT-PDKS PDK3 Xp221 300905 CMTXE
XL-CMT-Uink rocanin Unkmaswn Xp223 302801 M2
AD, autosomal dominant; AR, autosomal recessive MPZ myelin protein zero for PO); LMNA, lamin AXC; SPG, spastic paraplegia.
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I1.5. Genetics of CMT

The huge clinical and phenotypic variability of CMT disease reflects the high heterogeneity of its
genetic context. In the last 40 years, more than 1,000 mutations in more than 80 genes have been
identified to cause CMT disease (Bird 2020), and, probably, the discovery phase is not over yet. This
discovery process is also complicated by the fact that the same gene can be involved in different CMT
forms, with different modes of transmission, and, at the same time, mutations in different genes can
result in the same phenotype. Moreover, we cannot exclude that multiple genomic mutations in
different loci may co-occur and collaborate to a common complex clinical manifestation. This
phenomenon is rarely investigated during CMT diagnosis ((Posey et al. 2017); Miressi, 2020 — article
in preparation).

The first CMT locus was detected, in 1982, by Bird and colleagues, located at a distance of 10 cM
from Duffy locus, lately identified as MPZ gene (Bird, Ott, and Giblett 1982; Hayasaka et al. 1993). On
the other hand, PMP22 was the first gene to be clearly associated with CMT disease. The duplication
of 17p locus was linked to CMT1A form in 1989, and the candidate PMP22 gene was confirmed to be
contained in this genomic region in 1992 (Timmerman et al. 1992).

At the onset of the 21" century, these early genetic linkage studies were gradually replaced by the
emergence of NGS technologies which have enabled a rapid and low-cost large-scale genomic
sequencing, accelerating the discovery of new CMT-associated genes. Gene panels, WES and WGS

represent today essential routine tools widely used in clinical and research laboratories.

11.5.1. CMT genes

The more than 80 CMT-genes encode for multiple proteins presenting different roles and different

cellular localizations. This means that some proteins are expressed in mitochondria, endoplasmic
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reticulum, Golgi apparatus, cytoskeleton, whereas other ones are part of myelin sheath, membrane
channels, endosomal and proteaosomal systems.

We report here some of the most common genes associated with CMT disease:

PMP22

PMP22 (peripheral myelin protein 22) gene, located on chromosome 17, position 15,133,095-
15,168,643, is the most frequent gene associated with CMT disease. The 1.5 Mb duplication in the
genomic region 17p12-p11, containing PMP22, is responsible for ~70% of CMT1, and 15% of total
CMT. Specifically, PMP22 complete duplication is responsible for the CMT1A form, also called AD-
CMTde-PMP22dup. Anyway, point mutations in PMP22 have also been described to cause the
demyelinating CMT1E (AD-CMTde-PMP22), always presenting an autosomal dominant mode of

inheritance.

MPZ

MPZ (Myelin protein zero, or PO) gene is located on chromosome 1, position 161,274,525-
161,279,762, in GrCh37 coordinates. It is the second most common gene involved in demyelinating
CMT, with a global frequency of 3.1% (Murphy et al. 2012). Mutations in MPZ cause the
demyelinating autosomal dominant CMT1B disease (AD-CMTde-MPZ), but also Dejerine-Sottas
syndrome (CMT3), intermediate DI-CMTD (AD-CMTin-MPZ), and axonal CMT2l and CMT2) (AD-

CMTax-MPZ).

MFN2

The CMT2A (AD-CMTax-MFN2), the most common axonal form, is caused by mutation in MFN2

(Mitofusin 2) gene, located on chromosome 1, position 12,040,238-12,073,571. MFN2 mutations are
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transmitted with an autosomal dominant mode of inheritance, and present an estimated frequency

of 2.8% (Murphy et al. 2012).

GDAP1

GDAP1 (ganglioside-induced differentiation-associated protein 1) gene is situated in chromosome 8:
75,233,365-75,401,107 position. Mutations in GDAP1 are responsible for multiple Charcot-Marie-
Tooth disease subtypes: CMT4A (AR-CMTde-GDAP1), the most common autosomal recessive
demyelinating form, the axonal CMT2H (AR-CMTax-GDAP1) and CMT2K (AD-CMTax-GDAP1), and the
intermediate RI-CMTA (AR-CMTin-GDAP1). GDAP1 mutations’ frequency seems to be approximately
0.5% (Murphy et al. 2012).

More details about GDAP1 and its protein’s functions are reported in Chapters 3 and 4.

CMT genes encode for different proteins, involved in different cellular processes and functions. For
instance, many of them take part in myelination process (PMP22, MPZ), cellular transport (GJB1,
NEFL), mitochondrial dynamics (MFN2, GDAP1), fundamental cellular events like protein translation

(AARS1, GARS1) and signal transduction (SBF1, PRX).

11.6. Impaired mechanisms in CMT

Even if a large amount of genetic causative mutations has been detected for Charcot-Marie-Tooth
disease, functional studies seem to show that the altered mechanisms, responsible for this disorder,
may be common in different CMT forms. Since several CMT-genes share the same cellular
localization and have related functions, the effects of their mutations may converge on the same

pathway and lead to a similar impairment in cell viability.

Federica Miressi | Ph.D. Thesis | University of Limoges | 2020 62



Given their unique role in the body, neural cells are extremely susceptible to alterations of their
fundamental functions, like axonal transport or energy requirement. Consequently, all the genomic
mutations affecting these pathways, can have an adverse effect on the nerve activity and the proper
functioning of peripheral nervous system. Some of pathophysiological mechanisms of peripheral

neuropathies are reported in Figure 14. We analyze here the main ones.
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Figure 14 Localization and function of some CMT-associated genes [From: (Rossor et al. 2013)].

11.6.1. Axonal transport
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As discussed in Chapter 1, the cytoskeleton in nerve cells is composed by microtubules,
microfilaments and neurofilaments. It assures the characteristic structure of neurons, in the soma,
the axon, and the dendrites, but it has also an active role in the axonal transport. The axonal
transport is necessary to ensure the crosstalk between the cell body and the periphery of the cell,
but also to preserve neural homeostasis and neural activities, like axonal outgrowth, cell repair,
endocytosis and exocytosis events (Beijer et al. 2019). Multiple proteins participate to this complex
organization, and some of them are encoded by genes whose mutations have been associated with
CMT disease. Examples of these genes/proteins are: NEFL (neurofilament protein, light polypeptide)
and LMNA (LAMIN A/C), which are part of cytoskeleton structure, KIF5A (kinesin family member 5a),
involved in the anterograde axonal transport, and DYNC1H1 (dynein, cytoplasmic 1, heavy chain 1),

participating in the retrograde axonal transport.

11.6.2. Endosomal trafficking

A portion of intracellular trafficking along microtubules concerns small vesicles, like endosomes and
lysosomes, necessary to internalize, transport, and degrade, proteins and other macromolecules in
nerve cells. RAB7 (ras-associated protein) and DNM2 (dynamin-2) proteins participate in endosomal

trafficking, and they are known to be mutated in some forms of CMT disease.

11.6.3. Mitochondrial function and dynamics

Mitochondrial dysfunction is known to be implicated in multiple neurodegenerative and
neuromuscular diseases, like Parkinson’s disease and Alzheimer’s disease, other than some forms of
CMT disease. Peripheral nervous system, just like brain and muscles, is a complex organization with a

high-enOergy requirement: a constant ATP production is needed to assure the transport of organelles
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and macromolecules in every cellular compartment, even at long distances. The maintaining of
mitochondrial function is, therefore, fundamental for axonal and myelin formation and preservation.
Classical mitochondrial mechanisms altered in neurodegenerative diseases concern the electron
transport chain (ETC), ATP production, protection from reactive oxidative species (ROS), homeostasis
of Ca%", and mitochondrial dynamics (Palau et al. 2009).

With mitochondrial dynamics we define the whole of mitochondrial fusion and fission processes.
These events are necessary to determine mitochondrial shape, size and number, and they are
regulated by various proteins, such as MFN1 and MFN2, OPA1, GDAP1, MFF, FIS1 (Pareyson et al.
2015). Here we focus on two of these proteins, whose role will be deepened in Chapter 3.

e Mfn2 protein, is located in the outer mitochondrial membrane (OMM) and, in small
amounts, in endoplasmic reticulum (ER). In mitochondria Mfn2 protein plays a key role in
fusion of OMM, in oxidative phosphorylation and in gradient coupling, while, in ER it seems
to be important in defining ER morphology and mitochondria-ER interaction. It participates
also in controlling the release of Ca®* from ER and its uptake in mitochondria (de Brito and
Scorrano 2008). In pathological conditions, mutated Mfn2 would impair mitochondrial
fusion and mtDNA distribution, inducing the formation of mitochondria lacking electron
transport activity (Chen, McCaffery, and Chan 2007). Other models suggest that
mitochondrial morphological abnormalities, due to Mfn2 mutations, could alter
mitochondria axonal transport. The consequence would be the accumulation of
mitochondria in perinuclear area and their lack in distal regions, leading to axonal
degeneration (Cartoni and Martinou 2009).

e GDAP1 protein is expressed on the MOM where it participates in mitochondrial fission and
fusion events, together with regulation of glutathione metabolism and Ca** homeostasis
(Niemann et al. 2005; Noack et al. 2012; Pla-Martin et al. 2013). Mutated forms of GDAP1

appeared to alter mitochondrial network’s morphology and electron transport chain activity
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(Complex 1), and increase oxidative stress (Niemann et al. 2005; Noack et al. 2012; Cassereau

et al. 2020).

11.6.4. Myelination and Schwann cells

Myelin sheath, formed by Schwann cells in peripheral nervous system, is the lipidic membrane that
wraps neurons axons. Its presence is fundamental to allow the rapid propagation of electric signals
along the axon, in a saltatory way. Demylination and dysmyelination, the loss and the abnormal
formation of myelin, respectively, are most often the molecular cause of CMT manifestation. Since
first linkage studies, genes coding for myelin proteins were identified to be associated with a large
number of disease cases. Myelin dysfunction results in the increase of latencies and reduction of
nerve conduction velocities.

e PMP22 protein is a component of myelin sheath, mainly expressed in PNS. Although its
function is not completely understood, several studies suggest that, when wild-type PMP22
is duplicated, PMP22 protein, overexpressed, accumulates in cytoplasmic aggresomes,
perturbing the normal function of SC and leading them to apoptosis (Erdem, Mendell, and
Sahenk 1998; Notterpek et al. 1999; Sancho, Young, and Suter 2001).

e  MPZ (MYPO or PO) protein is the major structural component of myelin, expressed only in the
PNS. It is essential for myelination and compaction processes. The main effect of its mutation
appears to be the accumulation of MPZ unfolded proteins in ER, that activates the unfolded
protein response (UPR) and induces ER stress. These events may, therefore, result in

Schwann cells death (Chang et al. 2019).

11.6.5. RNA Processing
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Aminoacyl-tRNA-synthetases (ARS) are a class of enzymes necessary to catalyze the reaction
between an amino acid and its tRNA. To date, six genes encoding ARS enzymes have been identified
as CMT-causing genes: GARS1 (glycyl-tRNA synthetase), HARS1 (histidyl-tRNA synthetase), AARS1
(alanine-tRNA synthetase), YARS1 (tyrosyl-tRNA synthetase), KARS1 (lysine-tRNA synthetase) and
MARS1 (methionyl-tRNA synthetase). ARS are ubiquitously expressed in human cells, so it is difficult
to explain why the effect of their mutations can be observed only in PNS. There is the evidence of
catalytic function impairment in CMT-ARS variants, which suggests a possible alteration of normal
protein synthesis. Modification in dimerisation and cellular localization of these enzyme have been
also evaluated as possible altered mechanisms (Boczonadi, Jennings, and Horvath 2018).

e GARS1 protein was the first ARS to be associated with axonal forms of CMT. In vitro and in
vivo functional studies have highlighted multiple potential mechanisms linked to GARS
mutations. Main hypotheses concern the alteration of dimer interactions and GARS
conformation, but also the modification of enzyme ability to link glycine to its tRNA.
Furthermore, Drosophila studies reveled a possible GARS role in neurite growth and
arborization, even if supplementary analyses will be required (Motley, Talbot, and Fischbeck
2010).

e Multiple point mutations have been also described in AARS1 gene (Latour et al. 2010;
Bansagi et al. 2015). Even if the dimerization defect was excluded for mutated AARS1, the

pathological mechanisms still rest unclear (Boczonadi, Jennings, and Horvath 2018).

The pathological mechanisms examined here describe only partially the complexity of CMT disorder.
It is now clear that the different pathways are part of a unique intracellular organization and they are
consequently correlated, even if resulting effects vary from mutations to mutations. The
identification of new disease-causing genes and additional in vivo and in vitro analyses will help the
understanding of unknown mechanisms, necessary to propose and develop new targeted therapies
for demyalintaing and axonal Charcot-Marie-Tooth diseases.
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Chapter lll. Mitochondria

l11.1. Overview

Identified for the first time during the 19" century, mitochondria are membranous cellular organelles
located in the cytoplasm of most of eukaryotic organisms. Their origin has been studied for long
time. According to the most corroborated hypothesis, mitochondria derive from the integration of an
endosymbiotic a-proteobacterium into a precursor of the modern eukaryotic cell, around two billion
years ago. These new organelles underwent a gradual evolution, modifying their genome and
adapting their life cycle to that of the host cell (Roger, Mufioz-Gémez, and Kamikawa 2017).
Mitochondria have a really plastic structure and change constantly their shape, which varies from
round to oval, while the diameter size ranges from 0.5 to 1 um (Trushina 2016). The number of
mitochondria in a cell depends on the organism and the tissue, in accordance with its energy
requirement. In human body, for example, mitochondria are absent in red blood cells, but they could
be hundreds or thousands in liver cells (Degli Esposti et al. 2012).

Within the cell, mitochondria are connected and form a complex dynamic network, which changes
continuously its organization, thanks to mitochondrial fusion and fission events (Su et al. 2010).
Moreover, they are strongly associated with cytoskeleton microtubules, that control their orientation
and distribution, as well as their movement in the cell (Ishihara 2004).

The mitochondrion is traditionally considered the powerhouse of the cell, since it constitutes the site
of oxidative phosphorylation and production of energy units, the ATP molecules. It is also involved in
the control of oxidative stress, the production of precursors of macromolecules like lipids and
proteins, the maintenance of ions homeostasis and Ca®* storage, the control of cell cycle and

apoptosis.
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I11.2. Mitochondrial structure

Each mitochondrion presents two lipid membranes, highly specific and different in their composition,
which define two internal compartments in the organelle: an intermembrane space, between them,
and an internal mitochondrial matrix. The internal mitochondrial organization is summarized in

Figure 15.

intermembrane outer membrane
space
boundary | inner membrane
membrane
. cristae
matrix il |

Figure 15 Mitochondrial membranes and compartments [From: (Kiihlbrandt 2015)]

e Outer membrane

The outer mitochondrial membrane (OMM) separates the mitochondrion from the cellular cytoplasm
and its composition is similar to the plasma membrane, in proportion of lipids and proteins. It is fairly
porous and permeable to molecules up to 5,000 Da (Alberts 2002). Multiple transport proteins,
called porins, are stuck in the OMM. Among the porins, the voltage-dependent anion channels
(VDAC) are highly conserved channels, regulated by electrical potential, necessary to mediate the
flow of metabolisms between the cytoplasm and the intermembrane space (Colombini 2012). The
transport of larger molecules is assured by translocases (tranlocases of the outer membrane or

TOM).
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¢ Intermembrane space

The intermembrane space is a 20 nm gap between the outer and the inner mitochondrial
membranes, corresponding to the periplasm of the ancestor bacteria. Given the high permeability of
the OMM, the intermembrane space presents almost the same small molecules, like sugars, of the
cytosol, while its protein composition differs because of the selective transport provided by porins.
Although H" ions are pumped from the matrix to the intermembrane space, its pH is close to 7, as

well as in the cytosol (Alberts 2002).

e Inner membrane

The inner mitochondrial membrane (IMM) is more selective than the OMM. It contains
approximately 15%-20% of cardiolipin (CL), a phospholipid with four acyl chains, exclusively included
in the IMM. Cardiolipin seems to reduce the membrane permeability to ions, but it has also an active
role in mitochondrial functions, through its interaction with mitochondrial carriers and respiratory
complexes (Paradies et al. 2019). The transport process across the IMM is regulated only by specific
transport proteins and translocases of the inner membrane (TIM) (Kiihlbrandt 2015).

The IMM is further subdivided in two structures: the inner boundary membrane and the cristae

membrane. The boundary membrane is smooth and closer to the OMM. A large amount of carrier

proteins is included in the inner boundary membrane. The cristae are invaginations of the IMM
where almost all the complexes of the electron transport chain are located. They are therefore
considered the site of oxidative phosphorylation (Colina-Tenorio et al. 2020). Cristae shape is quite
variable, as well as their organization in accordance to the tissue. This means that cristae are closely
stacked in high-energy required tissues, while they appear more spaced in low-energy demanding
tissues (KUhlbrandt 2015). Crista junctions are membrane structures important to connect cristae

with the inner boundary membrane.
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e Matrix

The matrix, the aqueous compartment of mitochondria surrounded by the IMM, is the equivalent of
cytoplasm in the ancestor bacteria. It contains ribosomes, selected ions, small molecules, and, above
all, enzymes and cofactors involved in oxidative phosphorylation, citric acid cycle, oxidation of

pyruvate and fatty acids. Furthermore, the matrix is the site where mitochondrial DNA (mtDNA) is

located. As well as the nuclear DNA (nDNA), mtDNA is associated with proteins and organized in
nucleoids (Mazunin et al. 2015). It is a circular double-stranded molecule, containing 37 genes, most
of them coding for tRNA (transfer RNA), rRNA (ribosomal RNA), proteins of the electron transport
chain (Chinnery and Hudson 2013). mtDNA is maternally inherited and its mutations may induce

metabolism disorders, neurodegenerative diseases, or cancer (Schon, DiMauro, and Hirano 2012).

111.3. Mitochondrial functions

The main function of a mitochondrion is to be the cellular site of energy production. In a
mitochondrion, sugars, fats and proteins are used as raw material to obtain usable energy in form of
ATP molecules. Energy production is ensured especially through three processes: the Krebs cycle, the
B-oxidation of fats, and the oxidative phosphorilation. On average, a cell of the body uses 10 billion
ATP per day, this means that every adenosine diphosphate (ADP) molecule has to be transformed in
an ATP molecule approximately 1,000 times in a day (Pizzorno 2014). This huge energy demand
explains why mitochondrial machinery needs to work continuously and intensively in the cell, and
why mitochondrial dysfunction often results in metabolic and degenerative diseases.

Aside the bionenergetic supply, four other relevant functions are associated with mitochondria:
generation of reactive oxygen species (ROS), production of metabolic precursors for macromolecules,
regulation of Ca*" homeostasis and signaling, and control of cell cycle and cell apoptosis.

Here, we look in detail the energy production and the mitochondria role in oxidative stress.
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l11.3.1. Energy production

Glycolysis, B-oxidation and Krebs cycle

Glycolysis, the first step in degradation of glucose, and B-oxidation, the catabolic process of fatty
acids, are two metabolic pathways converging on the production of acetyl-CoA, the “feeding
molecule” of the Krebs cycle.

In glycolysis, which takes place in the cytoplasm, one molecule of glucose is converted in two
molecules of pyruvate, with production of two molecules of ATP and two molecules of NADH

(nicotinamide adenine dinucleotide).

Glucose +2 NAD* + 2 ADP + 2Pi —» 2 pyruvate + 2 NADH + 2 ATP + 2 H,0 + 2 H*

Once pyruvate has been formed in cytosol, it needs to be transported in the mitochondrial matrix.
Pyruvate transport across the OMM seems to involve VDAC or porins (McCommis and Finck 2015),
while the pyruvate translocase mediates the pyruvate transport from the intermembrane space to
the mitochondrial matrix. Here, the pyruvate is converted into acetyl-CoA, in an oxidative

decarboxylation reaction catalyzed by pyruvate dehydrogenase (PDH).

pyruvate + NAD* + CoA — SH - acetyl — CoA + CO, + NADH,H*

At the same time, in the cell, fatty acids need to be activated to be degraded, through a two-step
process promoted by the enzyme acyl-CoA synthetase. This reaction occurs in the cytoplasm and
produces acyl-CoA.

fatty acid + ATP + CoA — SH — acylCoA + AMP + 2Pi
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Since the B-oxidation of fatty acids is carried out in the mitochondrial matrix, and given the
impermeability of IMM, acyl-CoA exploits the specialized carnitine carrier system to be transported.
The carnitine acyltransferase | (or carnitine palmitoyltransferase |, or CPT1), located on the OMM,
transfers the acyl group of coenzyme A to carnitine to form acylcarnitine (or palmitoylcarnitine),
which is passively transported in the intermembrane space, then shuttled across the IMM, by the
carnitine acylcarnitine translocase (CACT). Once in mitochondrial matrix, the carnitine acyltransferase
Il (or carnitine palmitoyltransferase Il, or CPT2), located on the IMM, dissociates the acylcarnitine in
acyl-CoA and free carnitine, which passively returns to the cytoplasm to be reused (Longo, Frigeni,

and Pasquali 2016)(Figure 16).
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Figure 16 Transport of acyl-CoA into the mitochondrion through the carnitine carrier system.

In mitochondrial matrix, acyl-CoA molecules undergo the B-oxidation, a multistep-process, that
sequentially removes two-carbons units at the C-terminal of the acyl-CoA, producing a molecule of
acetyl-CoA, and reduced cofactors. This cycle is repeated until all the carbons are converted into

acetyl-CoA (Figure 17).
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Figure 17 Reactions of 8-oxidation [From: (Poian and Castanho 2015)].

Acetyl-CoA can derive, therefore, either from glycolysis and fatty acids B-oxidation, but also from
amino acids produced by protein catabolism (not detailed). Figure 18 summarizes how

carbohydrates’, lipids’, and proteins’ catabolic pathways converge on acetyl-CoA.
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Figure 18 Main pathways involved in energy production. Catabolism of carbohydrates, lipids, and
proteins, produce acetyl-CoA which enters in the Krebs cycle (TCA Cyle). Krebs cycle allows the
reduction of FAD and NAD® to FADH, and NADH, important to release electrons to the electron
transport system (ETS). ETS is responsible for ATP synthesis [From: (Poian and Castanho 2015)].

In mitochondria matrix, acetyl-CoA enters in the Krebs cycle (or citric acid cycle, or tricarboxylic acid
(TCA) cycle), where it first reacts with oxaloacetate, to form citrate. This reaction is followed by eight
other reactions, which regenerate, at the end, a new molecule of oxaloacetate which can restart a
new cycle. Moreover, every cycle originates two molecules of CO,, one molecule of guanosine
triphosphate (GTP, rapidly converted in ATP), three molecules of NADH, and one molecule of FADH,

(flavin adenine dinucleotide).

acetyl — CoA+ 3 NAD* + FAD + GDP + Pi + 2 H,0 -

— 2C0,+ 3NADH,H* + FADH, + GTP + CoA — SH
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NADH and FADH, are reduced cofactors that transfer high-energy electrons from a molecule to
another. Once they are formed, in glycolysis or Krebs cycle for example, they reach the electron

transport chain (ETC), where they are oxidized to provide electrons to chain complexes.

Oxidative phosphorylation

The oxidative phosphorylation (OXPHOS) is the final step of the cellular respiration process. It is a
complex pathway that, in higher plants and animals, supplies most of the ATP required to maintain
all cellular functions and metabolisms. Oxidative phosphorylation consists in two coupled events: the
transfer of electrons in the ETC, driven by substrates oxidation, and the synthesis of ATP, by the ATP
synthase. The electron transport chain is located on mitochondrial cristae, and it made up of four
complexes, embedded in the IMM:

e Complex | or NADH-coenzyme Q oxidoreductase

e Complex Il or Succinate-Q oxidoreductase or Succinate dehydrogenase

e Complex lll or Q-cytochrome c oxidoreductase

e Complex IV or Cytochrome c oxidase

In addition to the four complexes, two mobile electron carriers are involved: the Coenzyme Q (CoQ)
and the cytochrome C. Multiple ETC lie on the IMM of the same mitochondrion.

The electron transport is a series of redox reactions, in which electrons are transferred from an
electron donor to an electron acceptor, more electronegative. These transfers are mediated by
reducing equivalents NADH and FADH,, generated by the Krebs cycle, B-oxidation, and other cellular
processes. Specifically, electrons are transferred from NADH to Complex I, then to CoQ, while
Complex Il receives electrons from succinate and passes them to CoQ. From CoQ electrons are
transferred to Complex lll, so to Cytochrome C and, at the end, to Complex IV, where they are used
to reduce oxygen to water (Figure 19). The energy liberated by the electron flow through the

complexes of the ETC, promotes the transport of protons (H*) across the IMM, from the matrix to the
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intermembrane space. This proton movement, carried out by the proton pumps of Complex |, Ill and
IV, creates an electrochemical gradient (or proton-motive force) across the membrane, constituted
by two components: a H" ion concentration gradient (ApH), and an electrical potential, which
constitutes the mitochondrial membrane potential (AWm) and is due to the separation of charges
across the membrane. The electrochemical proton gradient is the driving force of ATP synthesis by
ATP synthase. The ATP synthase, or Complex V, presents two functional domains, F, (in IMM) and F;
(in matrix). When protons, pumped across the IMM, need to come back to the matrix, they pass the
Fo subunit of ATP synthase, inducing the rotation of the central axle. This leads to a conformational
change in the catalytic subunit of F; which favors the synthesis of ATP from ADP and Pi (Jonckheere,
Smeitink, and Rodenburg 2012). It has been estimated that, from a molecule of glucose, about 30

molecules of ATP can be obtained, 26 of them from oxidative phosphorylation.

Cytoplasm

Mitochondrial
matrix

@ FADH, FAD
Acetyl CoA ﬁ
ADP + P a0y*

NAD*+H* NADH

Figure 19 Representation of oxidative phosphorylation complexes and mechanism [From: (Mastroeni
etal. 2017)]

111.3.1.1. Mitochondrial membrane potential (AWm)
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The mitochondrial membrane potential, indicated as AWm, is a difference in electrical potential
across the inner mitochondrial membrane. The result is a negatively charged inner side and a
positively charged outer side of the IMM. The AWm is generated by the activity of the electron
transport chain, and it participates, together with the proton gradient (ApH), to define the
transmembrane potential of hydrogen ions (AuH®). In particular, these two components, are linked by
the relation:

AuH+ = FAWYm + 2.3RTApH

where F is the Faraday number, R is the gas constant, T is the absolute temperature (Zorova et al. 2018A)

It is difficult to establish a normal value of AWm. We know that it is not always stable and short
depolarization events can occur, induced by oscillations of the mitochondrial permeability transition
(MPT). However, these brief episodes are not necessarily damaging for mitochondrial functions and,
only when they last in time, they can lead to mitochondrion death.

The AWm is strictly connected to ATP generation. It can be regarded as the energy storage which
allows ATP synthase to form ATP molecules. Consequently, we can consider that ATP synthesis
requires expense of AWm, while ATP hydrolysis leads to generation of AWm (Zorova et al. 2018B).
Many other mitochondrial proteins participate in formation and maintaining of mitochondrial
membrane potential, as for instance, the adenine nucleotide transporter (ANT).

In the mitochondrion, the AWm plays a key role in several processes, necessary to conserve
mitochondrial homeostasis. It is the driving force which guides the transport of cations and anions,
but it seems also to be required for TIM-mediated protein transport across the IMM (Kulawiak et al.
2013). Moreover, it has been shown that a correlation exists between AWm and the mitochondrial
production of reactive oxygen species (ROS): at high values of AWm, ROS production by ETC Complex
| increases, while it is reduced when AWm decreases (Suski et al. 2012). However, it is not clear if
AWm directly regulates ROS generation. It has been suggested that AWm could be related to NADH

redox state, which has itself a role in controlling ROS-producing site of Complex | (Starkov and Fiskum
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2003). A chronic augmentation of ROS level (oxidative stress) may cause prolonged damaging effects
on ROS targets and induce cell apoptosis. On the other side, a chronic reduction of AWm and ROS,
results in reductive stress, carrying, in the same way, to other deleterious consequences and cell

death (Zorov, Juhaszova, and Sollott 2014).

111.3.2. Production of ROS and oxidative stress

111.3.2.1. ROS overview

ROS (Reactive Oxygen Species) are radical and non-radical species containing oxygen. Atomical
oxygen has two unpaired electrons in separate orbitals in its outer shell, that’s why it is more

susceptible to radical formation. Reduction of oxygen leads to production of four main types of ROS:

Superoxide or superoxide anion (0,")

Peroxide (0,”) and hydrogen peroxide (H,0,)

Hydroxyl radical (OHe)

Singlet oxygen (*0,)

Superoxide derives from one-electron reduction of oxygen. Its dismutation, by superoxide dismutase
enzymes, originates the hydrogen peroxide, a molecular specie less reactive than free radicals.
Anyway, in presence of Fe** and Cu®, H,0, can be partially reduced to hydroxyl radical, via the Fenton
reaction, or it can be fully reduced to water, by catalase (Turrens 2003). Hydroxyl radical is
considered as the most reactive species of oxygen, since it can attack multiple organic molecules.
Singlet oxygen, also high reactive, is produced, for example, during photosynthesis process in plants.

In addition to these ROS types, other reactive species have been identifies as Reactive Nitrogen

Species or RNS, bearing both oxygen and nitrogen atoms. They include nitric oxide radical (NO or
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NOe), nitrogen dioxide radical (NO®,), nitrite (NO,"), and peroxynitrite (ONOO”) (Krumova and Cosa

2016).

111.3.2.2. Sources of ROS

ROS are generated by internal cell processes and organelles, but they can be also the consequence of
exogenous events.

Mitochondria are the main cellular producers of ROS. Specifically, seven separate sites have
been identified in mitochondria to produce ROS, the most important of them are the complex | and
complex Il of the ETC. It has been observed that a leakage of electrons exists at these levels of the
ETC and it induces the partial reduction of O, to O,". Approximately 0.2% - 2.0% of O, used in the ETC
is converted in superoxide, in physiological conditions. Once formed, O, is released by complex | in
mitochondrial matrix, while complex Ill releases it in both mitochondrial matrix and mitochondrial
intermembrane space (Li et al. 2013). The higher levels of superoxide are generated in sites IF (flavin
mononucleotide (FMN)) and 1Q of complex I, and the centre 1llQo of complex Il (Brand 2010).
Superoxide is rapidly converted in H,0, by superoxide dismutases 1 and 2 (SOD1 and SOD?2),
respectively located in intermembrane space and mitochondrial matrix.

Other endogenous sources of ROS are the peroxisomes, the cytochrome P450, the transmembrane
enzymes of NADPH oxidases (NOX) superfamily, the flavoenzyme ERO1 in the ER, the cyclo-
oxygenase, the xanthine oxidase, the lipooxigenases (Krumova and Cosa 2016).

Multiple exogenous, or environmental, factors have been shown to have an effect on ROS

production. Among them, it is important to mention ionizing and nonionizing radiations, heavy

metals, pollution, but also cigarettes smoke, food, and some drugs (Bhattacharyya et al. 2014).

111.3.2.3. Role of ROS
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Although reactive oxygen species are often associated with oxidative stress, biomolecules damage
and occurrence of pathological conditions, it is now clear that their presence and activity are
fundamental to preserve cellular homeostasis. In living organisms ROS have, therefore, a
physiological role, so a positive involvement in cellular processes, which is counterbalanced by a
negative effect, in case of ROS deregulation and accumulation (Figure 20).

Physiologically, several cellular mechanisms are regulated by ROS. In the immune system, for
example, ROS would be implicated in both innate and acquired responses, since they favor and
participate to the activation of phagocytes and T-lymphocytes, to combat the pathogen (Belikov,
Schraven, and Simeoni 2015). Furthermore, ROS are involved in normal regulation of vessels
diameter, but also in skeletal muscle contraction (Alfadda and Sallam 2012). Other positive ROS
functions are linked to oxygen homeostasis, cell adhesion and migration, and response to stressors
(Hurd, DeGennaro, and Lehmann 2012; You and Chan 2015).

On the other hand, ROS production can result in a harmful condition for the cell, called
oxidative stress. Oxidative stress is defined as the imbalance between the reactive oxygen species
and the antioxidant defenses, with consequent ROS excess, and alteration of redox state. First effects
of oxidative stress can be seen on macromolecules and biological components. Proteins and lipids
are considered the most concerned targets. They are often the substrate of oxidation and
peroxidation reactions by ROS, especially on side-chain and backbone sites, for protein, and on
polyunsaturated fatty acids (PUFA), for lipids (Su et al. 2019). In fact, oxidation of proteins can alter
their chemical properties, their conformation and folding, as well as their interactions. Protein
peroxides can, themselves, damage other targets. Also free amino acids can be attacked by free
radicals (Davies 2016). Peroxidation of lipids can be deleterious for the integrity of membranes and
the function of receptors and enzymes interacting with them. The third class of macromolecules
mostly affected by oxidative stress are nucleic acids, in particular the DNA. Oxidation-caused lesions
occur both in DNA sugars and bases, leading to strand breakage and genomic mutations. More than

100 types of DNA lesions, induced by ROS, have been identified (Cadet and Wagner 2013).
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The increase of ROS levels in the cell may represent a starting signal to activate cell death pathways.
It has been demonstrated that oxidative stress induces cell apoptosis, via the Fas activation pathway
and the caspase cascade, but also necrosis, the uncontrolled cell death, and autophagy, the cellular
self-degradation process (Ghosh et al. 2018). Consequentially, ROS have been shown to be
implicated in the development of multiple pathological conditions, such as several types of cancer,
neurological disorders (Alzheimer, Parkinson, Amyotrophic lateral sclerosis), cardiovascular diseases,

chronic inflammation and autoimmune diseases (Brieger et al. 2012).

111.3.2.4. Antioxidant defenses

Within the cell, ROS level and activity are finely regulated by antioxidant (AO) systems, which control
and reduce their potential damaging effect on macromolecules. These endogenous defenses have
been classified in enzymatic and nonenzymatic systems.

Enzymatic antioxidants are capable to convert oxidative molecules and oxidized products
into non-toxic substances, like water. Examples of these enzymes are the superoxide dismutases
(SOD), the Catalase (CAT), and the glutathione peroxidase (GPx). SODs catalyze the dismutation
reaction of superoxide radicals into hydrogen peroxide and molecular oxygen. In humans, three
forms of SODs have been identified: SOD1, in cytosol and in mitochondrial intermembrane space,
SOD2, in mitochondria, and SOD3, in the extracellular space. The CAT, mostly located in peroxisomes,
but also in mitochondria and cytosol, converts H,0, in water and molecular oxygen (Aguilar, Navarro,
and Pérez 2016). The GPx, needed to reduce hydrogen and organic peroxides into water or alcohol,
presents eight human isoforms, with different intracellular and extracellular localizations (Mbemba
Fundu et al. 2020).

The most important nonenzymatic antioxidants are glutathione (GSH), Coenzyme Q (CoQ),
and multiple metal-binding proteins (MBP), like Albumin, Transferrin, Ferritin (Mironczuk-

Chodakowska, Witkowska, and Zujko 2018). CoQ, localized in the ETC and other internal membranes,
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is important in preventing free radicals’ damage on lipids, as well as on proteins and DNA (Saini
2011). MBPs, as Albumin, are considered to be the major antioxidants systems in plasma (Aguilar,
Navarro, and Pérez 2016).
Glutathione is considered, together with enzymatic systems, the main antioxidant defense.
Glutathione is a tripeptide, also called y-I-glutamyl-I-cysteinyl-glycine, on the basis of its components.
It is exclusively synthesized in cytosol, to be then distributed in other cellular organelles, like
mitochondria and ER (Mari et al. 2009). Glutathione exists in two different forms: the reduced state
(GSH) and the oxidized state (GSSG). In physiological conditions, the reduced state is more abundant
than the oxidized one, with a ratio of 100:1 (Miroriczuk-Chodakowska, Witkowska, and Zujko 2018).
Glutathione molecules scavenge ROS through the oxidation of GSH into GSSG, in a reaction catalyzed
by Gpx enzyme, in different subcellular organelles. Here, for example, we report the reduction
reactions of H,0, and peroxides, mediated by GSH:
HOOH + 2GSH > 2H,0 + GSSG

ROOH + 2GSH - ROH + H,0 + GSSG
Once formed, GSSG is then reduced back to GSH by glutathione reductase (GSR), in presence of
NADPH:

GSSG + NADPH + H" - 2GSH + NADP*
GSR is present in both cytosol and mitochondria (Kelner and Montoya 2000).
Moreover, glutathione protects proteins against oxidative stress in a reversible or irreversible
reaction, defined protein glutathionylation, with specific protein residues (Cooper, Pinto, and Callery
2011).
Since GSSG amount increases, and GHS decreases, in case of oxidative stress, it is clear that the
GHS/GSSG ratio is an indicator of cellular health, and it can be measured to estimate oxidative stress
severity in the cell. For example, it has been demonstrated that this ratio is significantly reduced

during aging and in pathological conditions like neurodegenerative diseases (Parkinson’s disease and
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Alzheimer’s disease), well known to be associate with an pro oxidant state (Owen and Butterfield

2010; Liu et al. 2017; Wojsiat et al. 2018).

Healthy Condition Y

ETC Superoxide dismutase
Peroxisomes Catalase

Cytochrome P450 Glutathione

NADPH oxidases Coenzyme Q
Flavoenzyme ERO1 Metal-binding proteins
Cyclo-oxygenase Bilirubin

Xanthine oxidase Polyphenols
Lipooxigenases efc...

etc...

e X 4 .
Oxidative stress x = [isease ?

Figure 20 Redox balance and imbalance in physiological and pathological conditions.

l1.4. Mitochondrial dynamics

Mitochondria are highly dynamic organelles that continuously change their organization and
interactions, modifying their number, shape and localization in the cell. All these aspects are strictly
connected to mitochondrial functions, like metabolism, signaling pathways, or ATP production. For
example, the deregulation of mitochondrial morphology may alter mitochondria movement and
distribution, impacting their physiological roles in the cell (Campello and Scorrano 2010). Impaired
mechanisms of mitochondrial dynamics have emerged in pathological conditions, often
neurodegenerative diseases, like the Alzheimer’s disease, Parkinson’s disease, Amyotrophic lateral

sclerosis, Huntington's disease (Su et al. 2010).
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We analyze here the main processes and protein actors of mitochondrial dynamics.

l1.4.1. Mitochondria-Cytoskeleton interaction

Inside the cell, mitochondria are rarely organized as isolated discrete organelles, but they always
interact to form a dynamic and ever changing network. Clusters of mitochondria move, change,
divide, thanks to their interaction with the cytoskeleton, the supporting structure of the cell. All the
cytoskeleton components seem to participate to mitochondrial dynamics and transport.
Microtubules (MT), made up of tubulin heterodimers, have been demonstrated to interact
with mitochondria in many cell types (like fibroblasts, kidney cells, muscle cells, macrophages)
(Heggeness, Simon, and Singer 1978). MT are necessary to transport mitochondria and distribute
them where a high amount of energy is required (Puurand et al. 2019). Moreover, recent studies
have focused on the role of unpolymerized tubulins and MT-associate tubulins. Unpolymerized
tubulins, as BlI- and Blll-tubulins, have been shown to regulate the VDAC permeability on the OMM
(Puurand et al. 2019). y-tubulin, which is involved in MTs polymerization, forms in the cell a complex
structure called y-string meshwork. It has been observed that this y-string meshwork interacts with
IMM and mtDNA, and it provides a fundamental structure element to organize and maintain
mitochondrial network (Lindstréom et al. 2018).
In neurons, the proper distribution of mitochondria is extremely important, since the soma, and,
above all, neurites and synapses, demand a continuous ATP supply. We know that the anterograde
transport of mitochondria on MT tracks is mediated by kynesin proteins. The attachment of kynesin
to mitochondria is made by the anchor proteins RhoT, a Mitochondrial Rho GTPase or Miro, and the
motor adaptor TRAK/Milton (van Spronsen et al. 2013). The anchor proteins for dyneins in
retrograde axonal transport are still unknown, but the involvement of Trak2 protein has been

suggested (Mandal and Drerup 2019) (Figure 21).
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Figure 21 Schematic representation of mitochondria-microtubules interactions in anterograde (a) and
retrograde (b) mitochondria transport [Adapted from: (Course and Wang 2016)].

Furthermore, it is important to underline that neural MT are not only responsible for mitochondrial
movement, but they also control the stationary pool of mitochondria. In this stop function, MTs
directly interact with the neuron-specific Syntaphilin (Snph), an anchor protein located on the OMM
(Kang et al. 2008).

Actin microfilaments’ (MF) role in mitochondrial dynamics has been less investigated over
time. Most studies, conducted on simpler organisms like yeast, fungi and plants, confirmed the direct
interaction of mitochondria with actin cytoskeleton and its involvement in mitochondrial transport,
as for instance, during cell division (Fehrenbacher et al. 2004). In nerve cells, MF, organized in a
meshwork structure, collaborate with MTs for mitochondrial movement along the axon. Several
members of myosins family, like Myo19, work like motor proteins that bind mitochondria and guide
them along actin tracks (Quintero et al. 2009). Furthermore, actin cytoskeleton appears involved in
controlling the stationary state of mitochondria in the Nerve Growth Factor (NGF) signaling. This
causes the immobilization and accumulation of the organelles in specific NGF stimulation regions of
the neuron (Chada and Hollenbeck 2004).

Also Intermediate filaments (IF) have been shown to bind mitochondria, anchoring them to
cytoskeleton, and regulate their general distribution in the cell. IF can influence not only
mitochondrial motility, but also their morphology and function, revealing a strong connections
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between them (Schwarz and Leube 2016). Neurofilaments (NF) replace intermediate filaments in
neurons. The NFs-mitochondria interaction is mediated by the NF-H and NF-M sidearms, that

probably recognize porins or other OMM proteins on mitochondria surface (Wagner et al. 2003).

111.4.2. Mitochondrial fusion

Mitochondrial fusion, a high conserved process in eukaryotes, is the merger of two mitochondria into
one. It could occur as end-to-end or end-to-side fusion. It is a two-step process, since it requires the
fusion of the outer and the inner mitochondrial membranes. Multiple proteins take part to these two
events, even if the most involved are the GTP-hydrolyzing enzymes of the dynamin superfamily (Chan
2020).

The fusion of the OMM is managed by mitofusin 1 (Mfn1) and mitofusin 2 (Mfn2) proteins,
members of the dynamin family and coded by MFN1 and MFN2 genes, respectively. These two
proteins share ~80% of similarity in humans, consequently they present a similar structure and
organization in functional domains. Both anchored in the OMM, Mfn1 and Mfn2 have two internal
transmembrane (TM) domains, while the N-terminal and the small C-terminal segments are exposed
in the cytoplasm. Moreover, they contain two hydrophobic heptad repeat domains (HR1 and HR2),
beside the TM domains, and, closer to the N-terminus, a GTPase domain, responsible for mitofusins
GTPase activity (Cartoni and Martinou 2009) (Figure 22). Mfn1 GTPase activity has been shown to be

higher than that of Mfn2 (Ishihara 2004).

[ 1 GTPase [ ] HR1 [ ™™ T™M [ HR2 [
N-term C-term

Figure 22 Schematic representation of Mfnl and Mfn2 domains: one GTPase domain, two heptad
repeat domains (HR1 and HR2), two transmembrane domains (TM).
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Even if the fusion mechanism is still not completely understood, it seems that mitofusins on adjacent
mitochondria form a trans interaction trough their HR2 domains, which dimerize in an antiparallel
coiled-coil structure. Then, the GTPase activity modifies Mfn conformation and increases the contact
surface between the two OMM, leading to their fusion (Tilokani et al. 2018) (Figure 24.1, 24.2, 24.3).
Homozygous Mfn1-KO (Knock-out) and Mfn2-KO mice are unviable. Their cultured cells showed
impaired mitochondrial fusion, and spherical or “fragmented” mitochondria (Chen et al. 2003). More
than 100 mutations in MFN2 gene have been reported to cause the axonal CMT2A. Most of them are
missense mutations, located in all Mfn2 regions, but often within the GTPase domain or the coiled-
coil motifs. Some of MFN2 mutations have been associated with a “gain-of-function” effect, which
causes mitochondria aggregation, while some others appear to compromise mitochondrial fusion, in
a “loss-of-function” effect (Filadi, Pendin, and Pizzo 2018). In contrast to MFN2, disease-inducing
mutations in MFN1 have never been reported. Two main hypothesis have been suggested: MFN1
mutations could be lethal for the embryo, and Mfnl function cannot be compensated by Mfn2
protein; alternatively, Mfnl function can be completely compensated by Mfn2, so its mutation does
not induce any mitochondrial disorder (Li et al. 2019).

The fusion of the IMM is mediated by the Optic Atrophy 1 (Opal) protein, a dynamin-related
GTPase, included in the IMM. Opal protein derives from eight different RNA splice forms which are
translated in eight Opal isoforms. All of them present a GTPase domain, a N-terminal mitochondrial
targeting sequence (MTS), subsequently removed by the matrix processing protease (MPP), a
transmembrane domain (TM), and a proteolysis site (S1), which can be cleaved by the OMA1
protease. Only four isoforms contain an additional S2 proteolysis site , which can be also cleaved by
the Ymell protease (Chan 2020). These different splice forms and different Opal-processing result in

the synthesis of short isoforms (S-Opal) and long isoforms (L-Opal) of Opal protein (Figure 23).
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Figure 23 Opal isoforms and processing. The eight RNA splice forms of OPA1 are translated in eight
isoforms (Sp 1-8), four of them (Sp 4, 6, 7, 8) containing an additional S2 proteolysis site. Constitutive
processing, by OMA1 and YMEIL enzymes, generate long (L-OPA1) and short (S-OPA1) isoforms
[Adapted from: (MacVicar and Langer 2016)].

It seems that the relative abundance of these Opal isoforms may change in the cell types and have
an effect in regulation of mitochondrial dynamics, although both short and long isoforms are always
required. If molecular mechanism of IMM fusion are not entirely clear, recent studies highlighted
that the membranes tethering may be mediated by the interaction between L-Opal and the IMM-
specific cardiolipin. This first step would be followed by the GTP-hydrolysis-dependent fusion of inner
membranes, regulated by S-Opal (Ban et al. 2017) (Figure 24.4 and 24.5).

Mutations in OPA1 gene cause the autosomal dominant optic atrophy (ADOA), a progressive disorder
due to the degeneration of the retinal ganglion cells. This pathology is clinically characterized by loss
of visual acuity, scotomas and optic nerve atrophy. In some more complex cases, ADOA has been
associated with peripheral neuropathy (Spinazzi et al. 2008). Most of disease-inducing mutations lie

in the GTPase domain and in the dynamin central regions of Opal protein. OPA1l-mutated cells show
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alteration of mitochondrial morphology and fragmented mitochondrial network, but also swollen
cristae structure and defects in respiratory chain (Nochez et al. 2009; J. Zhang et al. 2017). Opal is
ubiquitously expressed, but the energetic impairment associated to OPAI1 mutations, seems to
particularly affect the high vulnerable retinal ganglion cells (Amati-Bonneau et al. 2009).

A schematic model of mitochondrial fusion is reported in Figure 24.

(1) oMM Tethering GTPase

HR1 il

Mitochondrion
(2) Mins conformational change

(3) GTP hydrolysis: OMM fusion (4) L-OPA1-CL tethering

(5) GTP hydrolysis: IMM fusion

Figure 24 Representation of main known mechanisms of OMM and IMM fusions. (1) Trans interaction
of Mitofusins HR2 domains on the OMM. (2) Mitofusins conformational change and increase of
contact surface between membranes. (3) GTP hydrolysis and fusion of OMM. (4) IMM tethering
trough the L-Opal/cardiolipin interaction. (5) GTP hydrolysis and fusion of the IMM. [Adapted from:
(Tilokani et al. 2018)].

As discussed here, the fusion of the OMM and the IMM present distinct players and regulatory

mechanisms. However, it has been shown that these two events are strictly linked and closed in
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time, suggesting that a synchronization process operates to coordinate them. In yeast, the most
studied model for mitochondrial dynamics, Ugo1 protein has been identified as adaptor, or scaffold,
to connect the outer and the inner mitochondrial membranes. In particular its N-terminus binds Fzol
protein, the homolog of mammalian mitofusins, while its C-terminus is in contact with Mgm1
protein, the homolog of Opal. In mammals this scaffold molecule has not been detected, but its

existence is expected (Hoppins and Nunnari 2009).

111.4.3. Mitochondrial fission

In mitochondrial fission, one mitochondrion splits in two, often not equally sized, organelles.
Mitochondrial fission, also known as mitochondrial division, was first studied in Caenorhabditis
elegans and yeasts, before being explored in higher eukaryotes (Westermann 2010). It is a multi-step
process, mostly mediated by Drpl (Dynamin-related protein 1), the mammalian homolog of Dnm1.
Drp1l, coded by DNM1L gene, is a GTPase with four domains: the GTPase domain in the N-terminus,
the middle domain, the insert B, and the GTPase effector domain (GED) in the C-terminus (Pagliuso,

Cossart, and Stavru 2018) (Figure 25).

GTPase middle InsB GED

Figure 25 Schematic representation of Drp1 domains: GTPase domain, middle domain, Insert B (Ins B)
and GTPase effector domain (GED) [From: (Pagliuso, Cossart, and Stavru 2018)].

Drp1l protein has a predominant cytosolic localization, but it is recruited on the outer membranes of
mitochondria and peroxisomes, to participate in mitochondrial and peroxisomal fissions. To promote
mitochondrial fission process, small monomers of Drpl self-assemble to form a multimeric spiral on
the OMM. Then, GTP hydrolysis induces a conformational change in Drpl, which causes the

compaction of the contractile ring and reduction of its diameter (Figure 26). Once this constriction
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site is formed, the final physical scission of membrane is operated by Dnm2 (Dynamin 2) protein
(Kraus and Ryan 2017). Other proteins take part to mitochondrial fission, helping Drpl recruitment
from cytosol to the OMM. Among them, it is important to mention the transmembrane receptors
Fis1 (mitochondria, fission protein 1), Mff (mitochondrial fission factor), MiD49 and MiD51
(mitochondrial dynamics proteins of 49 and 51 kDa).

In homozygous KO mice, it has been shown that the complete deletion of Drpl is embryonically
lethal, and, in isolated MEF (mouse embryonic fibroblasts), it leads to impaired mitochondrial
division and elongated peroxisomes, but not defects in energy production (Wakabayashi et al. 2009).
Mutations in DNM1L gene have been reported, in few cases, to cause a complex phenotype,
characterized by neonatal encephalopathy, microcephaly, developmental delay, optic atrophy
(Fahrner et al. 2016).

Another protein that could contribute in regulating fission processes of mitochondrial network is
GDAP1. GDAP1 overexpression, in transfected Cos7 cells, showed to cause mitochondrial
fragmentation, while its knock-down, in N1E-115 cells, favors elongated mitochondria (Niemann et
al. 2005). In any case, few functional studies on GDAP1 activity have been performed and its
associated mechanisms rest to be understood. More details about GDAP1 are presented in Chapter
4.

Besides the active role of the aforementioned mitochondrial proteins in regulate mitochondrial
fission, the involvement of other cellular organelles need to be considered. First of all, sites of
interaction exist between the mitochondrion and the endoplasmic reticulum (ER). It seems that,
where these physical ER-mitochondria contacts occur, the ER wraps around the mitochondrion,
constricts it, and promote its division. It has been suggested that this ER-tag may then induce Drp1 or
Mff recruitment (Friedman et al. 2011). Also the actin cytoskeleton could promote mitochondrial
fission. Specifically, it has been shown that actin polymerization induces Drpl recruitment, in a
mechanism regulated by the inverted formin 2 (INF2), SpirelC protein, and the Cofilinl (Rehklau et

al. 2017).
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Figure 26 Representation of main known mechanisms of mitochondrial fission. (1) First ER-
constriction of the mitochondrion. (2) Drp1 is recruited on the constriction site by fission adaptors. (3)
Conformational change of Drpl induced by GTP hydrolysis. (4) Recruitment of Dnm2 on fission site.
(5) Completed mitochondrial scission [Adapted from: (Kraus and Ryan 2017)].

Mitochondrial fusion and fission occur simultaneously and continuously in the cell, finely regulated
by multiple proteins and mechanisms. They allow the sharing of organelle contents, necessary in case
of damage, and their balance is fundamental to organize mitochondrial structure and morphology.
Moreover fusion and fission events are connected to mitophagy, the selective degradation of

defective mithochondria, and apotosis, the programmed cell death (Scott and Youle 2010).

l11.5. Mitophagy

The term “autophagy” derives from the Greek and it literally means “eating of self”. The autophagy is
a programmed catabolic process, necessary to degrade cellular components, such as mitochondria,
endoplasmic reticulum, peroxisomes, misfolded and aggregated proteins. It has been showed that

two types of autophagy exist, the selective one and the non-selective one. Non-selective autophagy
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occurs in case of privation of nutrients, since cells need to degrade macromolecules, like proteins, to
refill nutrients stocks. On the other hand, the purpose of selective autophagy is to remove specific
organelles in nutrient-rich conditions (Ding and Yin 2012). Mitophagy, the precise degradation of
mitochondria, belongs to selective autophagy processes. It occurs when mitochondria are damaged,
dysfunctional, or in excess. This mechanism has been largely investigated in yeast, and its factors
have appeared to be conserved among the different species. In mammals, two main class of
mitophagy have been identified, the ubiquitin-dependent and —independent pathways (Palikaras,
Lionaki, and Tavernarakis 2018).

In the ubiquitin-independent, or receptor-mediated, pathway, NIX/BNIP3L and BNIP3, localized on
the OMM, act like mitophagy receptors. Through their LIR motifs, they directly bind LC3/GABARAP,
expressed on the autophagosome, a double-membrane vesicle. Once the autophagosome has
incorporated the mitochondrion, it fuses with a lysosome, forming an autolysosome and causing the
degradation of its own content (Glick, Barth, and Macleod 2010).

The ubiquitin-dependent pathway is also known as PINK1 (PTEN-induced putative kinase
1)/Parkin-mediated mitophagy. When the mitochondrion is damaged, the AWm collapses and
induces the accumulation and stabilization of PINK1 protein on the OMM. This is fundamental for the
recruitment and the activation of the E3 ubiquitin ligase Parkin, which ubiquitinates several proteins
of the OMM, enabling the targeting of the damaged mitochondrion by the autophagosome (Kubli

and Gustafsson 2012).
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Figure 27 Autophagosomes biogenesis and maturation in neurons. Autophagosome (yellow ring),
formed in neurites, incorporates damaged or dysfunctional mitochondria, and fuses with the
lysosome (blue circle). With the autphagosome maturation, lysosomal acid proteases activate (red
ring), degrading its contents [Adapted from: (Maday, Wallace, and Holzbaur 2012)]

It seems that mitochondrial mitophagy and dynamics are strictly connected events. In yeast and
mammals, mitophagy is preceded by mitochondrial Drpl-mediated fission, probably in order to
obtain smaller mitochondria, easier to be engulfed by autophagosomes (Youle and Narendra 2011).
Moreover, Mitofusins 1 and 2, the main players of OMM fusion, have been demonstrated to be
targets of Parkin ubiquitination. This interaction causes Mfn1 and Mfn2 degradation, which would be
necessary to prevent the fusion of damaged mitochondria with the healthy ones (Kubli and
Gustafsson 2012).

We know that mitochondria play a key role in neurons and nervous system, and their proper function
is fundamental to ensure neural homeostasis. In neurons, most mitochondria localize in neurites,
but, to be degraded, they need to be transported to cellular soma, which contains the higher amount
of lysosomes. Nevertheless, we cannot exclude that mitophagy events may occur in peripheral axons
too (Ashrafi et al. 2014). Even if mitophagy is a physiological process in neurons, activated to remove
damaged mitochondria, when it is injured, it can be responsible for neurodegenerative diseases. For

example, monogenic forms of Parkinson’s disease have been associated with mutations in PARK2 and
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PARK6 genes, respectively coding Parkin and PINK1 proteins. The dysfunction of
autophagy/mitophagy pathways has been suggested as pathological mechanism also in some cases
of Alzheimer’s disease, Amyotrophic lateral sclerosis, Huntington’s disease (Martinez-Vicente 2017).
Moreover, CMT2A iPS-derived motor neurons have shown that mutated MFNZ2 induces enhanced
levels of mitophagy, which seemed to be responsible of a striking reduction of mitochondria in

affected neurons (Rizzo et al. 2016).
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Chapter IV. The ganglioside-induced differentiation-
associated protein 1 (GDAP1)

Since PNS is a high-energy requiring system, mutations in genes involved in mitochondria dynamics
and activity, can lead to CMT disease. In particular, in this study, we have focused on the ganglioside-
induced differentiation-associated protein 1 (GDAP1) gene, implicated in demyelinating and axonal

CMT.
IV.1. GDAP1 gene and transcripts

GDAP1 gene is located on chromosome 8, position 75,233,365-75,401,107, forward strand, in
GRCh37 coordinates. It contains six exons and five introns, and it encodes for eight different
transcripts, two of them protein coding. Specifically, GDAP1-001 is associated to the longer isoform, a
358-aa protein, while the transcript GDAP1-002 has been predicted to encode a 290-aa shorter
isoform, with a smaller N-terminus (NCBI ID 54332, provided from RefSeq, Feb 2012). GDAP1
expression was reported for the first time in 1999, by a Japanese team which isolated its cDNA from
Neuro2a cells and showed it to be involved in Neuro2a differentiation into neuron-like cells (H. Liu et
al. 2008).

Alignment studies have demonstrated that GDAP1 orthologous genes exist in many other
vertebrates, and sequence similarity has been observed also in few plants and bacteria. This data
suggest that GDAP1 may be occurred in genomes before the fish-tetrapod split, or, perhaps, even
before the plant-animal split (Marco 2003). In humans, GDAP1 has a paralog gene, the so-called
GDAPI1L1 (Ganglioside-induced differentiation-associated protein 1-like 1). More details about

GDAPI1L are reported in paragraph 4.2.5.
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IV.2. GDAP1 protein

GDAP1 is a 358-aa tail-anchored protein, integrated in the outer mitochondrial membrane, with its
N-terminus situated in the cytosol, and the C-terminus in the mitochondrial intermembrane space

(Pedrola et al. 2005; Niemann et al. 2005; Wagner et al. 2009).

IV.2.1. Protein expression

Expression studies have been performed on animal models, or cell cultures and tissues, through RT-
PCR, Western blot, or Inmunocytochemistry.

The first analysis, by Cuesta et al., showed an ubiquitous GDAP1 expression in different human and
murine tissues, particularly important in brain. Moreover, they verified that, in peripheral nerves, its
expression occurs not only in neurons, but also in Schwann cells (Cuesta et al. 2002). These results
were confirmed, in 2005, by Niemann et al., who detected, on mice, a relevant GDAP1 expression in
central neurons, motor and sensory peripheral neurons, and myelinating Schwann cells (Niemann et
al. 2005).

Parallel studies, conducted by other authors on mice and rats, highlighted that GDAP1 is highly
expressed in grey matter and in largest neurons, like neurons of the olfactory bulb, Purkinje neurons,
pyramidal neurons of hippocampus and cortex. Instead, its levels are reduced in peripheral nerve and
skeletal muscle, and absent in white matter and Schwann cells (Pedrola et al. 2005; 2008).

An in vitro study demonstrated that, in primary human skeletal muscle cells, GDAP1 expression is
regulated by the AMP-activated protein kinase (AMPK). Specifically, when AMPK is activated, it

would induce a reduced expression of GDAP1 (Lassiter et al. 2018).
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IV.2.2. Protein structure

In GDAP1 structure, we can distinguish five main domains: the Glutathione-binding domain (G-Site or
GST-N), the a-loop, the hydrophobic substrate-binding domain (H-Site or GST-C), the hydrophobic
domain (HD1) and the transmembrane domain (TM). A schematic representation of GDAP1 protein is

reported in Figure 28 (Cassereau et al. 2011A).
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Figure 28 Predicted structure and domains of GDAP1 protein. G-site: Glutathione-binding domain; H
site: hydrophobic substrate-binding domain; HD1: hydrophobic domain; TM: transmembrane domain.
Numbers above and below the structure refer to amino acidic boundaries of protein domains and
GDAP1 gene exons, respectively [Adapted from:(Cassereau et al. 2011A)].

Recently, thanks to x-ray crystallography, a 3D structural model for cytosolic portion of GDAP1
protein has been suggested. It has been developed on the murine GDAP1 protein, which share 94%
identity with human GDAP1. This model was obtained, in particular, for the GDAP1 core (G- site and
H-site), while the a-loop and the HD1 domains were added from structural bioinformatic predictions

(I-TESSER server) (Googins et al. 2020) (Figure 29).
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Figure 29 3D structural model for cytosolic GDAP1 murine protein: G-site (green), H-site (grey), a-loop
(cyan), and HD1 domain (blue) [Adapted from: (Googins et al. 2020)].

GST domains and GST activity

GDAP1 protein presents two GST domains: the first is the glutathione-binding domain (G-site),
located at the N-terminus, supposed to recognize glutathione molecules; the second, the
hydrophobic substrate-binding domain (H-site), at the C-terminus, which would interact with a
potential biological substrate.

The role of GDAP1 as glutathione transferase (or glutathione S-transferase, or GST) protein, as well as
the activity of its GST domains, have always been matter of debate and the results of functional
studies are controversial. In 2004, Marco et al. classified GDAP1 in a new class of GST-like proteins.
Indeed, although its sequence similarity to other GST, some of its structural regions, as the a-loop
and the TM domain, are absent in canonical GST, which are, usually, cytosolic enzymes (Marco 2003).
The only study supporting the GDAP1 role as GST, was performed in 2016 by Huber et al., who
revealed, in soluble GDAP1 constructs, a theta-class-like GST activity, which would be regulated by
the HD1 domain (Huber et al. 2016). This evidence was in contrast with all previous analysis. First
functional investigations, in fact, tested GST activity of truncated GDAP1 on different substrates, and

demonstrated that this protein had not GST activity (Pedrola et al. 2005; Shield, Murray, and Board
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2006). A more in-depth study has recently examined GDAP1 domains through the expression of
recombinant GDAP1 fragments, combined with crystallography strategy. The analysis confirmed that
the GDAP1 G-site is not able to bind glutathione, since it lost some critical residues of the GST pocket,
which are essential to glutathione-binding (Googins et al. 2020). On the other hand, Googins et al,
demonstrated also that the H-site conserved its typical interactions and can create a robust binding
with a GST substrate, like the ethacrynic acid (Googins et al. 2020).

Even if these results seem to support, in most cases, the absence of GST activity in GDAP1 protein,
we cannot exclude an evolutional process of domains’ structure, and the protein adaptation to

alternative enzymatic and not enzymatic functions.

The a-loop

The a-loop is a large insertion between the G-site and the H-site, composed by one a4 and one a5
helix (Marco 2003). This is the most conserved region of GDAP1 protein, and it is not found in all GST.
Analysis of the a-loop demonstrated its involvement in the substrate binding, since its deletion
abolishes the interaction with the ethacrynic acid. Furthermore, it has been suggested a potential

role of the a-loop in the interaction with the mitochondrial membrane (Googins et al. 2020).

The HD1 domain

In first studies, the GDAP1 hydrophobic domain 1 (HD1) has been shown to take part in
mitochondrial fission events (Wagner et al. 2009; Huber et al. 2013). Later, its role in defining
mitochondrial morphology has been confirmed using truncated GDAP1 variants (Googins et al. 2020).
It seems also to interact with the a-loop and directly, or indirectly, participate in substrate-binding
(Googins et al. 2020).

In the GDAP1 model, proposed by Huber in 2016, the HD1 domain would regulate the GST activity,
promoting the active or the inactive conformations of GDAP1, in an autoinhibitory manner (Huber et

al. 2016).
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The TM domain

GDAP1 protein is integrated in the OMM and it presents, therefore, a transmembrane region (TM or
TMD). The TMD is a single hydrophobic domain, located next to the cytosolic C-terminus, absent in
the other GST (Wagner et al. 2009). It seems to be fundamental for the correct GDAP1 localization on
the OMM. Consequently, truncated forms of the protein, lacking the TMD, were shown to diffuse in

cytoplasm and nucleus (Pedrola et al. 2005).

IV.2.3. Protein dimerization

GST constitute a superfamily of enzymes, necessary for cellular detoxification from endogenous and
exogenous compounds. They are dimeric proteins and their activity is deeply connected to this
monomer-dimer equilibrium (Fabrini et al. 2009). It is for this reason that dimerization ability has
been investigated in GDAP1 protein. In 2006, Shield et al. demonstrated, for the first time, that
GDAP1 forms dimers of identical subunits (Shield, Murray, and Board 2006). The 2016 analysis by
Huber et al. confirmed previous results, revealing that the formation of homodimers does not
depend on TMD and HD1 domains (Huber et al. 2016). In the 3D model predicted for GDAP1, the
dimerization interface would be located close to the a-loop, and it would concern the H-site of the
first subunit and the G-site of the second one (Googins et al. 2020). However, recent analysis,
conducted on truncated constructs, seem to suggest a monomeric stoichiometry of cytosolic portion

of GDAP1 protein (Googins et al. 2020).

IV.2.4. Protein interactions

GDAP1 protein has been demonstrated to interact with three cellular proteins: the B-tubulin, RAB6B,

and caytaxin (Estela et al. 2011; Pla-Martin et al. 2013). B-tubulin, coded by TUBB gene, is a
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fundamental structural component of cytoskeleton microtubules. RAB6B is a member of RAB-
GTPases family, specifically expressed in neuron cell types. It interacts with dynein/dynactin complex
and takes part to retrograde transport in neuronal cells (Wanschers et al. 2007). Caytaxin protein
(ATCAY gene) interacts with kinesin and may be involved in anterograde transport along
microtubules structures (Aoyama et al. 2009). All these interactions with transport proteins, together
with its localization on the OMM, suggest a potential role of GDAP1 in mitochondrial trafficking, not
supported, so far, by additional evidence.

Furthermore, Pla-Martin et al. have observed that GDAP1 is located in MAMs (mitochondrial-
associated membranes), and assumed that it could have a role in the interaction with the ER, via the
RAB6B-binding (Pla-Martin et al. 2013). A proteomic analysis of MAMs composition confirmed the
presence of GDAP1 at this level (Poston, Krishnan, and Bazemore-Walker 2013). Specifically, MAMs
are sites of physical interaction and communication between the mitochondria and the ER,
constituted by fragments of both membranes. These microdomains have been associated to multiple
cellular functions, like the synthesis of lipids, the Ca** homeostasis, the cell survival and apoptosis
(Perrone, 2020). Numerous proteins participate in MAMSs organization and activity. Among them,
Mfnl and Mfn2, have been demonstrated to be necessary in mitochondria-RE tethering and Ca™
uptake (de Brito and Scorrano 2008). GDAP1 role in MAMs has not be completely understood, but its
deficiency reduces the connection between mitochondria and RE, and induces the formation of

enlarged RE cisternae (Pla-Martin et al. 2013).

IV.2.5. GDAP1L1

GDAP1L1 gene, the paralog of GDAPI, is located on chromosome 20, coordinates 20: 42,875,887-
42,909,013, on the forward strand. With six exons and five introns, it conserves the same genomic
structure of GDAPI. Its 367-aa protein share 56% amino acidic identity with GDAP1 protein, and it

maintains the same main functional domains (Shield, Murray, and Board 2006). GDAP1L1 is

Federica Miressi | Ph.D. Thesis | University of Limoges | 2020 103



expressed in the CNS, in cerebellum, cortex, hippocampus and Purkinje cells, but not in the PNS. It is
normally located at cytosolic level. Nevertheless, in vitro functional studies demonstrated that it
could translocate to mitochondria when oxidized glutathione concentrations increase. GDAP1L1
translocation may be mediated by its C-terminal targeting domain (Niemann et al. 2014). Moreover,
it seems that GDAP1L1 could also be implicated in fission events, when GDAP1 expression is

suppressed, compensating, in this way, its absence (Niemann et al. 2014).

IV.3. GDAP1 functions

Functional studies, performed on animal and cellular models, have allowed to identify multiple

GDAP1 roles in the cell, most of them associated with mitochondrial dynamics and functions.

IV.3.1. Mitochondrial fission

Because of its localization on the outer mitochondrial membrane, the first aspect evaluated for
GDAP1 concerned its possible effect on mitochondrial morphology and dynamics. GDAP1 has been
shown to participate in mitochondrial fission events, since its overexpression, in transfected cells,
resulted in an increased fragmentation of mitochondrial network. This means that mitochondria
appeared less tubular and aggregated, modifying their whole architecture in the cell (Niemann et al.
2005). In contrast, GDAP1 knock-down led to increased tubular mitochondria (N1E-115 cells), not
observed, nevertheless, in case of GDAP1 knock-out (SH-SY5Y cells and primary murine neurons)
(Niemann et al. 2005; Pla-Martin et al. 2013; Barneo-Mufioz et al. 2015).

GDAP1-induced fragmentation seems to depend on Drpl expression, the most crucial factor of
mitochondrial fission, and be counterbalanced by Mfnl and Mfn2 proteins, essential for
mitochondrial fusion (Niemann et al. 2005). A structure-focusing analysis has shown that the

integrity of the HD1 domain, as well as the conservation of its amino acidic sequence, are essential to
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preserve GDAP1 mitochondrial fission activity (Wagner et al. 2009). In Huber model, HD1, together
with GST domains, would regulate the switch between the active and the inactive states of GDAP1

fission activity (Huber et al. 2016).

1IV.3.2. Mitochondrial fusion

Implication of GDAP1 in mitochondrial fusion has been investigated in just one study. It has been
reported that, with some specific mutated forms of GDAP1 (p.Argl20Trp and p.Thr157Pro),
mitochondrial fusion is impaired (Cos-7 cells). This would cause a partial alteration of the AWm and a

higher susceptibility to cellular apoptosis (Niemann et al. 2009).

IV.3.3. Peroxisomal fission

In addition to its mitochondrial localization and functions, GDAP1 has been shown to localize and
operate also in peroxisomes. In particular, in Cos-7 cells, it has been observed that GDAP1 is targeted
to peroxisomes through its binding with Pex19, a chaperon and import receptor (Huber et al. 2013).
In peroxisomes, as well as in mitochondria, it appeared to participate in peroxisomal fission and
fragmentation. This ability requires the integrity of its HD1 and TA (tail-anchored) domains. Lack of

GDAP1 induces the apparition of tubular and elongated peroxisomes (Huber et al. 2013).

IV.3.4. Oxidative stress

An interesting GDAP1 role in cellular homeostasis is associated to oxidative stress and protection
from ROS. First evidence of GDAP1 protective action has been reported, in 2011, by Noack et al., who

observed that GDAP1 knock-down induced the increase of oxidative glutamate toxicity, in glutamate-
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sensitive HT22 neuronal cells. On the other hand, they demonstrated that the overexpression of
GDAP1 promoted the glutamate-resistance and increased levels of GSH, a fundamental cellular
antioxidant (Noack et al. 2012). The direct relationship between GDAP1 expression and reduced
glutathione content has been also confirmed in a Drosophila melanogaster model (Lopez Del Amo et
al. 2015). Moreover, GDAP1 seems to have a role in maintaining high levels of AWm, which is reduced
or disrupted in oxidative stress conditions (Noack et al. 2012). Consequently, when GDAP1 is
mutated, it has been observed a significant augmentation of intracellular ROS, responsible for
oxidative stress and damage of cellular components, which can favor cell death (Noack et al. 2012;
Cassereau et al. 2020). All these observations corroborate the hypothesis that GDAP1 plays an

important protective role against oxidative stress.

IV.3.5. Calcium homeostasis

GDAP1 has also been shown to participate in calcium homeostasis. The cell contains internal calcium
stores, most notably the endoplasmic reticulum (ER). In response to specific agents, the ER empties,
inducing the efflux of the Ca®* from the cell. Since Ca** stores need to be refilled, Ca** is picked up
from the external space through membrane channels. This Ca** entry across the plasma membrane is
regulated by ER-Ca** levels, and it is known as “store-operated Ca** entry” or SOCE (Hogan and Rao
2015). It seems that mitochondria participate to SOCE activity and its modulation, even if
mechanisms are still not clear (Malli and Graier 2017). Functional studies have shown that GDAP1 is
implicated in calcium homeostasis and in SOCE regulation. First, it was observed that GDAP1
depletion impaired SOCE activity and reduced mitochondrial Ca** uptake, in cellular models (SH-SY5Y)
(Pla-Martin et al. 2013; Gonzalez-Sanchez et al. 2017). Moreover, further analyses reveled reduced
cytosolic Ca** levels in GDAP1-lacking neurons of mice, maybe as consequence of impaired
storage/release mechanisms (Barneo-Mufioz et al. 2015). It has been hypothesized that, when

mitochondria lose GDAP1 function, their organization and dynamics in the cell are altered. This
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would prevent the correct mitochondrial mobilization to plasma membrane and the SOCE-channels
formation, in response to ER-Ca>* emptying (Pla-Martin et al. 2013). This confirms that GDAP1 could
mediate the interaction and tethering between the ER and the mitochondria, so the MAMs

establishment, which is essential to preserve SOCE activity.

IV.3.6. Metabolic implication

GDAP1 involvement in mitochondrial energy production has been poorly investigated. It has been
described that mutated forms of GDAP1 present, in fibroblasts, a deficiency of ETC Complex | activity,
associated to reduced expression of SIRT1 deacetylase. Furthermore, the ATP production and the
respiration rate appeared decreased, too. The activity of other OXPHOS complexes, as well as Krebs
cycle, were preserved (Cassereau et al. 2009; 2020). Similar OXPHOS observations were reported in a
study conducted on a GDAP1-deficient model of human skeletal muscle cells (Lassiter et al. 2018). In
the same model, as regards the lipid metabolism, GDAP1 silencing has been shown to reduce B-
oxidation levels (Lassiter et al. 2018). These results seem to disagree with the observation, on a
GDAP1 Drosophila model, that both GDAP1 up- and down-regulations increase lipid B-oxidation in
the cell (Lépez del Amo et al. 2017).

Nevertheless, no mechanistic studies were performed to elucidate GDAP1 functions in bioenergetic

regulation.

IV.3.7. Other GDAP1 implications

A recent and different topic of interest concerns the relationship between GDAP1 gene and the
alcohol/smoke additions. First, two studies highlighted that methylation of promoter region of

GDAP1 correlated with the severity of alcohol dependence in lymphocytes of diagnosed patients. In
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particular, in patients with a higher severity of dependence, a GDAP1 DNA hypomethylation was
observed. It has been shown that this methylation status was reversible and it could return to normal
values when patients started a treatment program (Philibert et al. 2014; Briickmann et al. 2016).

Secondly, in 2020, a third work has reported that exposure to cigarette smoke can alter the
expression of GDAP1 in some regions of murine hippocampus, maybe by methylation of its promoter

(Mundorf et al. 2020).

A schematic representation of main GDAP1 functions is reported in Figure 30.
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Figure 30 A suggested model of GDAP1 function and dysfunction: Effect of GDAP1 mutation on ROS
production (arrow “1”), bioenergetic activity (arrow “2”), and mitochondrial dynamics (arrow “3”)
[From:(Cassereau et al. 2011A).]
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IV.4. GDAP1 and Charcot-Marie-Tooth disease

IV.4.1. GDAP1 mutations

As discussed in Chapter 2, mutations in GDAP1 gene are responsible for Charcot-Marie-Tooth
disease. First mutations associated to CMT were simultaneously reported, in 2002, in two parallel
studies (Baxter et al. 2002; Cuesta et al. 2002). To date, more than eighty mutations have been
identified, the large majority of them consisting of single-base substitutions. However, rare cases
reported small deletions or duplications, in GDAP1, to be responsible for CMT disease (Garcia-
Sobrino et al. 2017; Pakhrin et al. 2018).

Considering mutations’ impact on protein structure, it appears that missense mutations constitute
the higher proportion, followed by non-sense and frameshift mutations. Splicing mutations have
been rarely described, both in exonic and intronic regions (Cassereau et al. 2011B; Rzepnikowska and
Kochanski 2018).

At protein level, GDAP1 mutations are mostly located in the a-loop and the GST-C domain, which
reflects the presence of hot spots between the exon 3 and the exon 6 in its DNA sequence
(Cassereau et al. 2011B).

In Figure 31, most of identified amino acidic substitutions are reported (Rzepnikowska and Kochanski

2018).
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GIn99X | Gly327Asp
Pro78Leu Prol11His Val219Gly Leu344Arg
Met116Thr Val219Asp|
Met116Arg Ser194X
Arg120GIn Argl91X
Asn178Ser
GIn163X Leu223X Gly271Arg Arg310GIn
GIn122Lys Arg161His Arg257Xx Arg310Trp
His256Arg
Argl125X Asn227Asp Ala247val
Alal56Thr Pro231leu
Asp129His Prol53Lleu GIn235X Leu239Phe
Ser130Cys Asp149Tyr

Figure 31 Structure and domains of GDAP1 protein (from Pfam database), and associated mutations:
Recessively-inherited mutations are marked in black, if non-sense, and dark grey, if missense.
Dominantly-inherited mutations are marked in light grey. We highlighted, in red, GADP1 mutations
analyzed in our study [Adapted from: (Rzepnikowska and Kochariski 2018)].

GDAP1 mutations are transmitted with in a recessive or dominant mode of inheritance. These CMT

autosomal dominant and recessive forms present clearly distinctive features and clinical aspects.

IV.4.2. GDAP1 and autosomal recessive forms of CMT disease (AR-CMT)

IV.4.2.1. AR mutations

Most of CMT-associated mutations in GDAP1 are recessively-inherited. In the case of AR mutations,
both alleles need to be mutated to induce the emergence of the pathological manifestation. Their
consequence is usually a loss-of-function effect, so to the dysfunction of the resulting protein. As
regards AR-GDAP1 mutations, this is observed for non-sense mutations, which lead to the formation
of truncated proteins, and mutations falling in the C-terminal region, which is essential for the
correct targeting on the OMM. Truncated and not-targeted proteins are often degraded, by

endogenous cellular pathways. When AR-GDAP1 mutations are missense, mechanisms which induce
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loss of protein function could be more complex to investigate (Rzepnikowska and Kochanski 2018).
According to functional studies performed on GDAP1 models, the main impaired mechanisms
induced by AR-mutations, may involve mitochondrial dynamics and interactions. It has been shown
that AR-mutations in GDAPI1, like p.Argl61His and p.Arg310Gln, impair mitochondrial fission,
affecting the dynamic balance which controls mitochondrial morphology and, consequently,
mitochondrial function (Niemann et al. 2005; 2009). Some missense mutations could also modify the
interaction between GDAP1 and the transport proteins, affecting the mitochondrial axonal transport,
a crucial mechanism for neuronal viability (Pla-Martin et al. 2013). Additionally, some AR-mutations,

as p.Arg310GlIn, seem to reduce the protective antioxidant role of GDAP1 protein (Noack et al. 2012).

IV.4.2.2. AR-CMT

Autosomal recessive GDAP1-CMT are generally severe, with an early age of onset, in the first decade
of life, and a rapid progression. Clinically, mild inter- and intra-familial variability has been observed
(Azzedine et al. 2003; Claramunt 2005). Common features are an important motor deficit and distal
deformities, muscle weakness and atrophy, need of wheelchair before the third decade. Sensory
symptoms are frequent, as well as vocal cord paresis and hoarseness of the voice, sometimes
associated with respiratory problems (Sevilla et al. 2008; Sivera et al. 2017).

Considering the electrophysiological aspects, recessively-inherited GDAP1-mutations are responsible
for the demyelinating CMT4A, most frequently, and the intermediate RI-CMTA. The rarer axonal AR-
CMT, linked to GDAP1, is sometimes reported as AR-CMT2C (Kabziriska et al. 2011), elsewhere as AR-
CMT2K (Fu et al. 2017) or CMT2H (N.607731 in OMIM database). In the case of CMT4A, recorded
motor nerve conduction velocity (MNCV) are commonly lower than 25 m/s, even if they rest quite
stable over the years. In contrast, CMAP amplitudes tend to progressively decrease, until reaching
very low values, even smaller than 0.5 mV (Cassereau et al. 2011A). In the AR-intermediate form,

demyelinating events, combined with axon degeneration, generate MNCV values between 25 and 38
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m/s, on average, with reduced CMAP amplitudes (Senderek 2003; Crimella et al. 2010). As normal, in
the GDAP1 AR-axonal CMT, NCV are conserved, while amplitudes are strongly reduced (Kabziriska et
al. 2011).

Histopathological analysis, generally conducted on patients’ sural nerve biopsies, in light and electron
microscopy, have been performed in some CMT4A cases. They show reduced number of large
myelinated fibers and reduced thickness of myelin sheath. Moreover, clusters of regenerations and
onion bulbs formations, surrounded by Schwann cells processes, are occasionally observed (Figure
32) (Nelis et al. 2002; Senderek 2003; Fu et al. 2017). These findings are consistent with an early
myelin loss, which has been followed, with the progression of the disease, by the decay of large

axons, indicating the occurrence of both demyelinating and axonal degeneration.

Figure 32 Transverse semithin section of sural nerve biopsy, from a CMT4A patient (GDAPI
homozygous p.Ser194* mutation). (A) Absence of large myelinating axons and reduced axonal
thickness. (B) Electron micrograph. Clusters of axonal regeneration (thick arrow) and formation of
onion bulbs (thin arrow). Scale bar = 10 um [From: (Nelis et al. 2002)].

In only one study, electron microscopy has reveled that mitochondria are more aggregated, and

acquire a small and round morphology, in the sural nerve section of a CMT4A patient (Figure 33B)
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(Tazir et al. 2014). Similar mitochondrial abnormalities in nerves have already been associated to a
severe and early-onset axonal CMT, caused by different mutations in MFN2 gene (Figure 33C) (Vallat

et al. 2008).

Figure 33 Electron microscopy on sural nerve sections. Mitochondria are indicated by black arrows.
(A) Normal control with elongated mitochondria. Scale bar = 0.5 um [From (Vallat et al. 2008)]. (B)
CMT4A patient (GDAP1 mutation not specified) with small, round, and aggregated mitochondria.
Scale bar = 2 um [from: (Tazir et al. 2014)]. (C) CMT2A patient (MFN2 compound heterozygous
p.Asp214Asn and p.Cys390Arg mutations) with small, round, and aggregated mitochondria. Scale bar
= 0.2 um [From:(Vallat et al. 2008) ].

IV.4.3. GDAP1 and autosomal dominant forms of CMT disease (AD-CMT)

IV.4.3.1. AD-mutations

Autosomal dominant mutations in GDAP1 are less frequently described, and they are, so far, always
missense mutations. In this case, the alteration of a single allele is enough to induce the occurrence
of the pathological phenotype. Dominant mechanisms are not always fully understood, but we can
suppose that the mutated protein modifies some of its functional activities. Specifically, in human
fibroblasts, carrying the AD p.Cys240Tyr mutation, a defect of ETC Complex | activity, as well as the
increase of ROS, have been reported. This would reduce cellular ATP production and favor the
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establishment of a chronic oxidative stress in the affected cells (Cassereau et al. 2009; 2020).
Anyway, any of these alterations have been observed in fibroblasts carrying the AD p.Arg120Trp
mutation, suggesting that mechanisms involved in the physiopathology may depend on mutation’s
localization (Cassereau et al. 2020). In transfected Cos-7 cells, the expression of GDAP1 p.Arg120Trp
and Thr157Pro mutants, did not alter mitochondrial fission, as shown for AR-mutations, but it
impaired mitochondrial fusion and destabilized the AWm, making Cos-7 more susceptible to
apoptosis (Niemann et al. 2009). Lastly, we cannot exclude a gain-of-function effect due to
autosomal dominant GDAP1 mutations. Gonzalez-Sanchez et al. reported that p.His123Arg,
p.Thr157Pro and p.Argl20Trp mutations are associated to an increased activity of SOCE, compared

to wild-type GDAP1 expression (Gonzdlez-Sanchez et al. 2017).

IV.4.3.2. AD-CMT

Autosomal dominant CMT, associated with GDAP1, are normally reported as axonal forms, and they
are known as CMT2K. They seem to be rarer and characterized by a milder phenotype, than
recessively-inherited CMT, with symptoms onset generally during the second or third decade.
However, a high variability has been described in CMT2K patients, as regards the age of onset and
the symptoms’ manifestation (Zimon et al. 2011). Generally, first signs appear as cramps, weakness
and deformities in distal limbs, provoking walking difficulties. The progression of the disease is
slower, and patients requiring wheelchair are often in old age. Respiratory complications and vocal
cord paresis are described in sporadic cases (Sivera et al. 2017).

Although the relevant heterogeneity, the electrophysiological analysis, conducted on CMT2K
patients, usually reveals normal NCV values, higher than 38 m/s. CMAP amplitudes are reduced
(Zimon et al. 2011; Sivera et al. 2017).

Histological examinations have shown the predominant, but not pure, axonal nature of CMT2K. Light

and electron microscopy on nerve biopsies have allowed to observe that the overall density of nerve
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fibers was not significantly reduced in CMT2K patients. Anyway, they typically presented loss of large
myelinated fibers, and presence of onion bulb structures, which revealed a demyelinating aspect of
this autosomal dominant CMT form (Figure 34A and 34B). Another peculiar feature remarked is the

accumulation of neurofilaments in giant unmyelinated axons (Figure 34C) (Fu et al. 2017).

Figure 34 Histological findings in a semithin section of sural nerve biopsy, from a CMT2K patient with
the heterozygous p.Arg120Trp mutation in GDAP1. (A) Loss of large myelinated fibers with
regenerating clusters (black arrow) and abnormal structure of the axon (white arrow). Scale bar = 20
um. (B) Onion bulb formation. Scale bar = 2 um. (C) Neurofilaments’ aggregation in giant axons (black
arrow), compared with normal axons (white arrow). Scale bar = 0.5 um. [From (Fu et al. 2017)].

IV.5. GDAP1 models

Expression studies have revealed that GDAP1 is mainly expressed in neural cell types, like central and
peripheral neurons, and Schwann cells (Niemann et al. 2005; Pedrola et al. 2005). Additionally,
mutations in GDAP1 have been only associated to Charcot-Marie-Tooth disease, a group of
heterogeneous disorders affecting the peripheral nervous system. It is clear, therefore, that human
neurons represent the most suitable model to investigate GDAP1l-associated functions and
implications in CMT physiopathology. They could be also important to evaluate and test potential
therapeutic molecules and strategies. Anyway, peripheral human neurons cannot be easily obtained

from CMT patients. That is why animal and cellular models have been developed to reproduce
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GDAP1 expression and mutations, then to explore molecular mechanisms responsible for CMT

manifestation.

IV.5.1. Animal models

Mice constitute the most employed animal model for GDAP1. Two research teams have generated,
at the same time, GDAP1 knock-out mice (Gdapl-/-), using the Cre-Lox recombination strategy, on
two different sites (Niemann et al. 2014; Barneo-Mufioz et al. 2015).

Niemann et al. observed first signs of peripheral neuropathies when mice were 19-month-old and
characterized by 25% reduced NCV. Histological studies confirmed a hypomyelination status in distal
nerves. Furthermore, the study of axonal mitochondria revealed, in Gdapl-/- mice, increased
mitochondrial size and altered mitochondrial transport, in anterograde and retrograde directions
(Niemann et al. 2014).

The second GDAP1 knock-out murin model was developed by a Spanish team. In this case, first motor
problems appeared at the age of 3 months. In 5-month-old mice, CMAP amplitude was reduced, but
no alteration in axons’ number and organization, as well as in myelin thickness, was detected.
However, motor neurons were demonstrated to be less healthy than control MN, and characterized
by cellular lesions as vacuoles and chromatolysis. Ultrastructure analysis showed the presence of
spheroid and larger mitochondria, with swollen cristae, but also vacuoles and phagolysosomes. A
functional level, Gdapl-/- MN had a reduced cytosolic Ca’* concentration and impaired Ca®*

homeostasis (Barneo-Mufioz et al. 2015).

Another GDAP1 animal model was created using Drosophila, because it presents an orthologous
gene of GDAPI, called CG4623 (or Gdapl, in this study), which could be over-expressed, or silenced
by RNA interference (RNAI). First, in both models, Lépez del Amo et al. confirmed Gdap1 involvement

in regulation of mitochondrial morphology and distribution. Smaller or aggregated mitochondria
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were observed, respectively, when Gdapl was over-expressed or silenced, indicating, thereby, its
role in mitochondrial fission (Lopez Del Amo et al. 2015). Later, they demonstrated that alteration of
Gdap1 expression alters the energy metabolism, in particular at proteins’, carbohydrates’ and lipids’
level. Specifically, it seems that GDAP1 up- or down-regulation would induce the inactivation of the
insulin pathway, and, consequentially, the accumulation of carbohydrates and the use of lipids as

energy source (Lopez del Amo et al. 2017).

A third GDAP1 model type has been proposed on the Saccharomyces cerevisiae yeast, by Estela et al.,
in 2011, and Rzepnikowska et al., in 2020 (Estela et al. 2011; Rzepnikowska et al. 2020).

In Estela’s study, employed yeasts were defective for genes involved in mitochondrial fission and
fusion. Even if GDAP1 expression did not restore normal mitochondrial morphology in defective S.
cerevisiae, the analysis allowed to highlight the interaction between GDAP1 protein and
cytoskeleton’s B-tubulins (Estela et al. 2011).

In a second yeast model, Rzepnikowska et al. expressed wild-type GDAP1, but also eight different
GDAP1 variants, carrying eight AR or AD pathological mutations, already associated with CMT
disease. Some of studied mutations were shown to alter mitochondrial network structure, and/or
increase the rate of mitochondrial DNA escape to the nucleus, which seems to be representative of

mitochondrial abnormalities (Rzepnikowska et al. 2020).

Animal models have a fundamental role to explore a gene/protein expression, and to look for its WT
or mutant effects, on the whole organisms. However, as we have seen here, some differences may
emerge between two models generated in different species, but also between two models of the
same animal species. Moreover, the animal physiology and pathophysiology could, sometimes, be far

from real mechanisms in humans.
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IV.5.2. Cellular models

Cellular models have allowed to detect and describe most of GDAP1 features and functions. They
have been obtained from different cell types: primary cells, directly isolated from tissues or organs of
living organisms; cells lines, immortalized cells which can proliferate for extended periods of time;

human induced-pluripotent stem cells (hiPSC), generated by reprogramming of somatic cells.

IV.5.2.1. Primary cell cultures

Cells directly obtained from human or murine biopsies have been used, in some cases, as models for
GDAP1. For humans, neural cells are not available, that’s why the only studies were performed on
dermal fibroblasts. Fibroblasts can be easily obtained from CMT patients, cultured, amplified, and
employed for functional tests. The main limit of this strategy is that GDAP1 is little, or no, expressed
in fibroblasts, so this cell type could not show all the GDAP1-associated features. Cassereau et al.
have worked on skin fibroblasts, obtained from CMT2K patients, carrying either the heterozygous
p.Cys240Tyr or the heterozygous p.Arg120Trp mutations in GDAP1 (Cassereau et al. 2009; 2020).

Other times, primary neural cell cultures were obtained from animals, in particular hippocampus and
dorsal root ganglia neurons, from mice, and Schwann cells, from rats (Niemann et al. 2005; Pedrola

et al. 2008; Huber et al. 2013).

1V.5.2.2. Cell lines cultures

Cell lines are immortal cells, largely used in research. They are generally easy to culture, amplify, and
modify, providing an unlimited supply of cellular models. Cell lines can be originated from different
tissues, and different organisms. In the studies on GDAP1, sometimes they have been used in their

original state, sometimes they have been transfected to enable GDAP1 expression.
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SH-SY5Y are human neuroblastoma cells, that, given their neural origin, normally express GDAP1.
They have been employed to detect GDAP1 protein localization in the cell, or to investigate the
effects of GDAP1 silencing, or knock-down, in a neural cell (Pedrola et al. 2005; Pla-Martin et al.
2013; Gonzalez-Sanchez et al. 2017). In the same way, N1E-115 cells from mouse neuroblastoma,
endogenously expressing GDAP1, have also been used (Niemann et al. 2005; 2009).

Cos-7 cells are fibroblast-like cells, derived from kidney tissue of monkeys. Normally, they do not
express GDAP1. However, in many works, they have been transfected, with a GDAP1-expressing
construct, in order to analyze which morphological and functional aspects are linked to GDAP1, and
how they can be modified by mutant GDAP1 forms (Pedrola et al. 2005; Niemann et al. 2005; K.
Wagner et al. 2009).

Other analysis have be conducted of different cell lines, like HeLa, HT22, HEK293T (Niemann et al.

2009; Noack et al. 2012; Gonzalez-Sanchez et al. 2017).

1V.5.2.3. hiPSC cultures

hiPSC have the same features of human embryonic stem cells (hESC). The main advantage of hiPSC is
that they can be easily obtained from adult cells, like fibroblasts, trough a “reprogramming”
procedure, and, then, they can be potentially differentiated into any kind of human body’s cell
(Takahashi and Yamanaka 2006; Takahashi et al. 2007). This strategy has been exploited to obtain
hiPSC from dermal fibroblasts of a CMT2K patient, carrying the heterozygous
p.GIn163*/p.Thr288AsnfsX3 GDAP1 mutations (Marti et al. 2017), and from a CMT4 patient with the
heterozygous p.Leu193*/p.Arg341fs GDAP1 mutations (Saporta et al. 2015). The same protocol has
been also applied to generate murine iPSC from mouse embryonic fibroblasts (MEF) of GDAP1-null
mice (Prieto et al. 2016). Anyway, it seems that, in all these cases, studies stopped at the stage of
hiPSC, which were not differentiated in neurons, or other suitable cell types. No further works on iPS

and GDAP1 have been published since.
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iPSC rest a relevant tool to recreate and cultivate human neurons, the most suitable cellular model
for GDAP1. It is for this reason that, in the present study, we developed a cellular model of hiPSC-

derived motor neurons, to investigate GDAP1 functions and its involvement in CMT disease.
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Objectives
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This project entirely focused on Charcot-Marie-Tooth disease and associated peripheral
neuropathies. In particular, it has been conceived with the purpose of better characterize this
complex pathology affecting the peripheral nervous system with a frequency of 1/2500. In order to

explore multiple aspects of CMT, we set two main objectives:

| — First, we wanted to improve the genetic diagnosis of CMT and hereditary peripheral neuropathies,
which has currently a rate of resolution between 30 and 40%. We proposed a bioinformatic tool,
CovCopCan, to promote the detection of Copy Number Variation (CNV) in CMT genes (Article 1). CNV
have been rarely described to be responsible for CMT. Thus, we questioned about CNV occurrence in
CMT, to understand if they could be more frequent than expected (Article 2). This study had also the
objective to investigate the correlation between genotypic set-up and phenotypic manifestation in
complex clinical cases of CMT (Article 3). This examination could be important to highlight never
considered mechanisms behind the disease, which could help the diagnostic process. For all these

Ill

analyses we exploited NGS technologies, “classical” molecular biology strategies, and bioinformatic
tools. This part of the project was achieved thanks to the collaboration of the Biochemistry and

Molecular Genetics Department of University Hospital of Limoges with our research team (EA6309),

at University of Limoges.

Il — The second part was definitely the central core of this project, since it has been developed for
three years, in a continuous way. Its objective was to explore the molecular mechanisms associated
with a specific axonal form of CMT disease, caused by a homozygous mutation in GDAP1 gene. This
part of the project was achieved thanks to the collaboration of the Neuropathies’ Center of
Reference of University Hospital of Limoges with our research team (EA6309), at University of
Limoges. To reach our primary goal, we had to define two sub-objectives. First, we had to create a
suitable cellular model to reproduce the human pathology. To do this, we cultivated dermal

fibroblasts of the CMT patient and two control subjects, and reprogrammed them in human induced-
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pluripotent stem cells (hiPSC). A differentiation protocol was then established to differentiate hiPSC
into motor neurons, the most affected cells in this axonal CMT (Article 4). We also considered the
role of additional factors, like the 1,25-Dihydroxyvitamin D3, or calcitriol, which can be included, in
the future, in our differentiation protocol (Article 5). Secondly, after obtaining this model of MN, we
wanted to discover the pathophysiological mechanisms, induced by GDAPI1 mutation, and
responsible for the neural impairment and degeneration in the peripheral nervous system.
Expression, morphological, and functional studies were so performed on MN of the three subjects

(Article 6).

Overall, the present PhD project has been aimed at the exploration of CMT disease, from its genetic
and clinical aspects, to the more complex functional characterization. Moreover, we developed a
cellular model of MN, with the purpose to employ it in testing future innovative therapeutic

strategies, still limited so far, for peripheral neuropathies.
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Materials and Methods
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I.  Subjects

This study involved four groups of patients, and five control subjects.

Family 1

Family 1 presented two clinical cases: Patient 1-A and his brother, Patient 1-B (Figure 35). Patient 1-A
was a 19-year old man, characterized by peripheral neuropathy and cerebellar ataxia. He showed
abolished sensory reflexes, altered motor velocities, with a MNCV of 38 m/s on the median nerve.
Pes cavus and abolished Achilles reflex were also observed. The 9-year old Patient 1-B presented
peripheral neuropathy and motor disabilities, associated to balance troubles. Achilles reflex was

diminished, too. Their not consanguineous parents, subjects 1-C (father) and 1-D (mother), were

unaffected.
SR
A E
1-A 1-B
Figure 35 Pedigree of Family 1.
Family 2

In Family 2, Patient 2-A (mother) and Patient 2-B (daughter) were diagnosed with Charcot-Marie-
Tooth type 2 disease (Figure 36). For Patient 2-A, a 58-year old woman, first difficulties in walking
appeared at the age of two, to rapidly progress in loss of motor function, when she was 43. Clinical
examination revealed, in lower limbs, abolished sensory responses and reduced motor responses,

while the MNCV was 40 m/s. CMAP amplitudes were asymmetric. Her daughter, the Patient 2-B, was
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born from not consanguineous parents. She was a 25-year old woman, exhibiting her first gait
disturbances when she was 18-months. Moreover, she had learning difficulties and signs of mental
retardation in the childhood. She presented the same asymmetric profile of her mother, with CMAP
amplitudes abolished on the left side, and reduced on the right side. The MNCV, of the median
nerve, was 50 m/s. Muscular atrophy and mild vermian atrophy were also observed.

No clinical signs were reported for the other members of Family 2, like subjects 2-C, 2-D, and 2-E, the
maternal grand-mother and the maternal aunts of patient 2-B, respectively.
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Figure 36 Pedigree of Family 2.
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Family 3

In Family 3, two cases of Charcot-Marie-Tooth type 2 were reported (Figure 37). Patient 3-A was born
in 2012 and showed severe axonal neuropathy associated with a polyvisceral disorder. His complex
clinical condition led him to death when he was three. His brother, 4-year old, was characterized by
motor deficit in lower limbs, distal atrophy, and abolition of deep tendon reflexes. Signs of mental
retardation were also described. Patients 3-A had also an asymptomatic elder brother. His parents,

unaffected, had first-degree of consanguinity.
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Figure 37 Pedigree of Family 3.

Family 4

Patient 4-A was a 23-year old man, experiencing, in the childhood, first motor difficulties, above all in
lower limbs. They were followed by sensory troubles and weakness in the hands. After some years,
progression of motor impairment led to the need of wheelchair. No response was obtained when

muscles were stimulated in EMG analysis. Genealogic tree of Family 4 was not available.

Control subjects

We chose, as controls, five, seemingly healthy, subjects, two men and three women. Four of them

were between 23- and 28-year old, the fifth was 56-year old.

II. Cell culture

I1.1. Culture media

The detailed composition of main culture media is reported here:
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Fibroblasts medium: RPMI 1640 medium (Thermo Fisher SCIENTIFIC), supplemented with 10% Fetal

Bovine Serum (FBS) (Thermo Fisher SCIENTIFIC).

Mouse Embryonic Fibroblasts (MEF) medium: MEMa medium + GlutaMAX (Thermo Fisher

SCIENTIFIC), supplemented with 10% FBS, 1% MEM non-essential amino acids (Thermo Fisher

SCIENTIFIC), 0.1% Gentamycin (Thermo Fisher SCIENTIFIC).

Reprogramming medium: DMEM GlutaMAX medium (Thermo Fisher SCIENTIFIC), supplemented

with 10% FBS, 1% MEM non-essential amino acids, 1% Sodium Pyruvate (Thermo Fisher SCIENTIFIC).

Human induced-Pluripotent Stem Cells (hiPSC) medium: KnockOut medium (Thermo Fisher

SCIENTIFIC), supplemented with 20% KnockOut Serum Replacement (KSR) (Thermo Fisher
SCIENTIFIC), 1% L-Glutamine (Thermo Fisher SCIENTIFIC), 1% MEM non-essential amino acid, 0.1% B-

mercaptoethanol, 0.1% Gentamycin.

Differentiation _medium: DMEM/F12 medium (Thermo Fisher SCIENTIFIC), 2% B27 supplement

without Vitamin A (Thermo Fisher SCIENTIFIC), 5 pug/mL Heparin (Sigma-Aldrich, Merck), 0.1% B-

mercaptoethanol (Thermo Fisher SCIENTIFIC).

Neural medium: 1:1 DMEM/F12 medium and Neurobasal A medium (Thermo Fisher SCIENTIFIC),

supplemented with 2% B27 supplement without Vitamin A, 1% N2 supplement (Thermo Fisher

SCIENTIFIC), and 0.1% B-mercaptoethanol.
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I1.2. Fibroblasts culture

Skin biopsies (1 mm?) were obtained from five control subjects and two CMT patient (patient 3-A and
patient 4-A), carrying respectively the homozygous mutation p.Ser194* and the homozygous
mutation p.GIn163* in GDAP1 gene. They were plated in 6-well plates, and cultured in CHANG
Medium® D (Irvine Scientific) with 10% FBS, at 37°C in a water-saturated atmosphere with 5% CO,.
Medium was changed every two days. Two weeks later, after removing skin biopsies, surrounding
fibroblasts were detached using 0.05% Trypsin EDTA solution (Thermo Fisher SCIENTIFIC), incubated
5 minutes at 37°C. Trypsin was inactivated with the complemented medium, and the cellular
suspension collected and centrifuged 7 minutes at 200 x g. Supernatant was discarded and cells of
the pellet were re-plated in a culture flask, to be amplified. Fibroblasts were first cultured in CHANG
Medium® D 10% FBS, which was diluted, after three days, with RPMI 1640 medium (Thermo Fisher
SCIENTIFIC), and finally replaced, after a week, by Fibroblasts medium. Fibroblasts were negative for

mycoplasma (MycoAlert mycoplasma detection kit, Lonza).

I1.3. Human induced-Pluripotent Stem cells (hiPSC) generation and

culture

For hiPSC generation the iSTEM (INSERM / UEVE UMR 861, AFM-Téléthon, Genopole, Evry, France)
protocol was followed. Fibroblasts were detached with Trypsin-EDTA solution and counted.
Suspension of 600,000 fibroblasts was mixed with the Nucleofection mix solution and the plasmids
mix. Plasmids mix was composed of three non-integrating plasmids, at 1 pug/mL concentration:
Plasmid #27077 pCXLE-hOCT3/4-F shp53 Addgene, Plasmid #27078 pCXLE-hSK Addgene, Plasmid
#27080 pCXLE- Hul Addgene. Nucleofection was performed with the Nucleofector Il device (Amaxa,
Lonza). Transfected cells were transferred in a 6-well plate, coated with Mouse Embryonic
Fibroblasts (MEF) (tebu-bio), at a concentration of 25,000 MEF/cm? Cells were cultured in the
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Reprogramming medium, adding, after the second day, 10 Ul/mL gentamycin (Thermo Fisher
SCIENTIFIC). They were incubated at 37°C, 5% CO,, in a water-saturated atmosphere. At day 4,
medium was replaced by the hiPSC medium, extemporaneously supplemented by 10 ng/mL FGF2
(Fibroblast Growth Factor 2) (Peprotech), 2 uM SB431542 (Tocris Bioscience), 0.5 uM PD0325901
(Miltenyi Biotech) et 500 um Valproate (Sigma-Aldrich, Merck). It was changed every two days. At
day 14 to 21 after nucleofection, 10-15 hiPSC colonies per patient were selected using a 25G needle
and transferred to different MEF-coated culture dishes. Every day, hiPSC were “cleaned”, removing
differentiated cells with a 26G needle, and hiPSC medium was changed, extemporaneously
complemented with 20 ng/mL FGF2. hiPSC colonies were passed once a week, cutting them with a
18G needle, to be amplified. At passage 15 all quality controls were performed: Alkaline Phosphatase
staining, Pluripotence and Differentiation markers’ staining, EB formation, Array-comparative

genomic hybridization (aCGH) (detailed protocols in parts 3 and 4).

1.4 Motor neurons (MN) generation and culture

At day 0 of differentiation, two 60 mm culture dishes of hiPSC were cut in small squares using a 18G
needle, and re-suspended using a pipette. Squares were transferred to a 15 mL tube in order to let
them sediment at the bottom, and discard supernatant containing death cells and residual MEF. They
were then collected with fresh hiPSC medium, without FGF2, and cultivated in 60 mm Ultra-Low
Attachment dishes. At day 3/5, when Embryonic Bodies (EB) were well-formed, the hiPSC medium
was replaced the Differentiation medium, adding, before use, 10 uM SB431542, 5 uM Dorsomorphin
(Sigma-Aldrich, Merck), 100 ng/mL FGF2, and 10 ng/mL Noggin (PeproTech). Once EB have reached
the right size and color, they need to be seeded. For this step a poly-L-ornithine/laminine coating was
prepared. First, 20 ug/mL poly-L-ornithine (Sigma-Aldrich, Merck) solution was prepared in Boric Acid
pH 8.4 buffer, and incubated in 3 mm or 6 mm dishes at 37°C, for, at least, 4 hours. Poly-L-ornithine

solution was discarded, and dishes let dry, opened, under the hood. They were so washed three
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times with Dulbecco's phosphate-buffered saline (DPBS), and let dry again. Laminine (Thermo Fisher
SCIENTIFIC) was diluted, in a DMEM/F12 medium - Neurobasal A medium mix, to a final
concentration of 20 ug/mL. It was added to dried dishes and incubated at 37°C, for, at least, 2 hours.
On day 5/7, EB were plated in poly-L-ornithine/laminine-coated dishes, in Neural medium,
extemporaneously complemented with 10 uM SB431542, 5 uM Dorsomorphin, 10 uM Retinoic Acid
(RA) (Sigma-Aldrich, Merck), and, only when EB were seeded, 5 UM Y-27632 ROCK inhibitor

Ill

(Calbiochem Millipore, Merck). It was changed every two days. At day 10/14, neural “rosettes”,
emerged in seeded EB, were picked up using a 25G needle, and collected in a tube. Once they
sedimented, supernatant was discarded, and 1 mL 0.05% Trypsin-EDTA solution was added to allow
rosettes’ disaggregation. Cellular clusters were incubated at 37°C for 5 minutes to favor enzymatic
activation, then softly dissociated with a mechanic action. In order to stop trypsin’s activity, Neural
medium, complemented with 10% FBS, was added to cellular suspension, which was then
centrifuged at 200 x g for 5 minutes. Cellular pellet was resuspended with Neural medium,
extemporaneously supplemented with 5 pM RA, 100 ng/mL Sonic Hedgehog (Shh) (PeproTech), 10
ng/mL Insulin-like Growth Factor 1 (IGF-1), 10 ng/mL Brain-Derived Neurotrophic Factor (BDNF), 10
ng/mL Glial cell-Derived Neurotrophic Factor (GDNF), and 5 pM Y-27632 ROCK inhibitor. Rosettes-
derived neural progenitors (NP) were seeded at high density (>100,000 cells/cm?), and passed every
3/4 days in poly-L-ornithine/laminine coated dishes. To induce the final differentiation of NP in motor

neurons (MN), they were seeded at low density, between 20,000 and 30,000 cells/cm?, in poly-L-

ornithine/laminine coated dishes, and cultured in Neural medium, as previously described.
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Table 3 Culture conditions of hiPSC differentiation into motor neurons.

o0 20 .-
r— ‘?.F;OO-/ COQC, — 1;##9/ .
Culture Induced Embryonic Embryonic Embryonic Rosettes Neural Motor Neurons
Pluripotent Stem Bodies (EB) Bodies (EB) Bodies (EB) Progenitors (NP) (MN)
cells (iPSc)
Coating Mouse Embryonic i i 20 pg/ml Poly-L- 20 pg/mL Poly-L- 20 pg/mLPoly-1- | 20 pg/mLPoly-L-
Fibroblasts (MEF) ornithine ornithine arnithine arnithine
20 pg/mLlaminine 20 pg/mLlaminine | 3 pg/mlL 3pg/mL
laminine laminine
Medium hiPsc hiPSC Differentiation Neural Neural Neural Neural
medium medium medium medium medium medium medium
Supplementary | 20 nz/mLFGF2 / 10 puM SB431542, 10 pM SB431542, 10 1M SB431542, | SuMRA 5 M RA
factors S uM Dersomorphin | 5 M Dorsomorphin | 5uM Dorsomorphin | 100 ng/mL Shh 100 ng/mLShh
100 ng/mLFGF2 10 pM RA 10 pM RA 10 ng/mLIGF-1 10 ng/mLIGF-1
10ng/mL Noggin 10 ng/mLBDNF 10 ng/mLBDNF
10ng/mLGDNF | 10ng/mlLGDNF

l1l.1. DNA

111.1.1. DNA Extraction

Molecular Biology

DNA was extracted either from blood either from in vitro cultured cells.

111.1.1.1. DNA Extraction from blood

Blood samples were collected in EDTA tubes, after providing informed consent (Families 1 and 2).

Genomic DNA was extracted from white blood cells using the lllustra Nucleon Genomic DNA

Extraction kit (GE Healthcare Life Sciences), following manufactory instructions. DNA extraction was

carried out at Biochemistry and Molecular Genetics Department of University Hospital of Limoges.

111.1.1.2. DNA Extraction from cell culture
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Genomic DNA was extracted from fibroblasts and hiPSC, using the Puregene Tissu kit (©QIAGEN)
(Families 3 and 4, and controls). Cells of the dried pellet were lysed in the Lysis Buffer, incubated at
65°C for 15 minutes, then two minutes at 55°C. After adding the Proteinase K, the sample was again
incubated at 55°C for 15 minutes. Then, RNA was degraded by the RNase A, and proteins were
precipitated with the Protein Precipitation solution. After centrifugation, at 13,000 x g for 3 minutes,
DNA-containing supernatant was transferred to a new tube, while protein pellet was discarded.
Lastly, DNA was precipitated with Isopropanol 100%, isolated by centrifugation, washed once with
ethanol 70%, and resuspended in 1X TE low EDTA buffer.

DNA concentration and purity were assessed using the NanoDrop 2000 spectrophotometer (Thermo

Fisher SCIENTIFIC). Extracted DNA was conserved at -20°C.

111.1.2. Sanger Sequencing

Sanger Sequencing was performed in multiple steps. First, sequence of interest was amplified with a
Polymerase Chain Reaction (PCR). Primers were designed using the Human GHCh37/hg19 genome as

reference genome. Their sequences are reported in Table 4.
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Table 4 MFN2, MORC2, and GDAP1, primers for Sanger Sequencing.

TranseriptID Position Melting Product
in Ensembl inthe gene Sequence (5'->3') Temperature size
Genome Browser
MFEN2 ENST00000235329.5 Ex14 F: GTCAGCCTTCTGGGGTCAL 62°C
277 hp
R: AAAGTCCTGATTTCTTTAGCTTG 62°C
MORC2  ENST00000215862.4 Ex11 F: GTGTCCAGTACTGTGGATCC 62°C
572 bp
R: CAACCTGTCAATAATCAGTCC 60°C
GDAP1  ENST00000220822.7 Ex1 F: CCGGCGAAACTACATTTCC 58°C
328hp
R: TCAGAAGGAGCTGTCCCAGT 62°C
Ex2 F: GTAACACAGGGAAGCCCAGA 62°C
413 hp
R: CCAAACCACCATCATGACAC 60°C
Ex3 F: GCTITIGAGTGTAACAACTCATG 64°C
317 bp
R: GACCATGAGACATGCTAGGTC 64°C
Ex 4 F:TGGTTCCATTTGAAAGGTGAG 60°C
417 bp
R: AAAAGGAGAACATAAGCCAAAGG  64°C
Ex 5 F:TCTCGTTGTCTAAAATAGGCTGA 64°C
393 bp
R: GGGTTTTTCTGGGTGCAATA 58°C
Ex6 F:TCTGAGTGTGGCTGTCAAGAA 62°C
691 bp
R: TGCTACCTGAACCCCTGTGT 62°C

Samples were amplified with a positive and a negative control. Reactions were performed in the
Mastercycler (Eppendorf®), setting standard parameters.

Amplifications products were displayed on a 1.5% agarose gel. Migration of samples and molecular
weight maker (Gene Ruler 100 pb RTU, Fermentas, Thermo Fisher SCIENTIFIC) was run at 100 V for
20-30 minutes. Before performing the Sanger sequencing, PCR products were purified using the
QlAquick gel extraction kit (© QIAGEN). Sequencing reactions were prepared with forward or reverse
primers, and the BigDye® Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher SCIENTIFIC). Lastly,
after products’ purification with the DyeEx 2.0 Spin Kit (© QIAGEN), sequencing was run on the
Applied Biosystems 3130 x|l Genetic Analyzer (Applied Biosystems), and sequences aligned and

analyzed with the Sequencher 4.7 software.

111.1.3. Targeted NGS — CMT Panel
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For the NGS analysis, a panel of 93 genes was used. 44 of them are known to be involved in Charcot-
Marie-Tooth disease, 27 in Hereditary Sensory Neuropathies (HSN) and Hereditary Motor
Neuropathies (HMN), and 22 in neuropathies of differential diagnosis. Their complete list is reported

in Table 5.

Table 5 93-gene custom panel for CMT and hereditary neuropathies [R = recessively-inherited; D =
dominantly-inherited].

GENE CMTID CMT2D CMTIR CMT2R HMND HMNR HSND HSNR Other

_________
| ABHD12 |
_________
| ARHGEF10 |
_________
| ATL3 |
_________
_________
 ccrs |
_________
_________
| bcTv: |
_________
| DvAJB2 |
_________
_
_________
_
_________
| FAM1348 |
_________
| FBX038 |
_________
| FIG4 |
_________
_________
| GB1 |
_________
_________
_
_________
_
_________
| HsPBg |
_________
| 1GHMBP2_|
_________
| INF2___|
_________
_________
| KIFsA___|
_________
_________
_________
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Libraries were prepared using the lon P1 HiQ Template OT2 200 kit (Ampliseq Custom, Life
technologies), and sequenced on the lon Proton sequencer (Life technologies), at Biochemistry and

Molecular Genetics Department of University Hospital of Limoges.

11l.1.4. Whole Exome Sequencing (WES)

For WES, genomic DNA was first fragmented using the Bioruptor® Pico Sonication System

(Diagenode), to obtain fragments of 180-220 bp. Then, libraries’ preparation, capture and
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amplification, were performed with the NimbleGenSeqCapEZ-Library-SR-kits (Roche). Finally, libraries

were sequenced on the NextSeq 500 System (lllumina®).

111.1.5. Real-Time Quantitative PCR (qPCR)

Relative gPCR on DNA was performed in order to confirm the occurrence of Copy Number Variations
(CNV). Primers were designed in target genes, AARS1 and SACS, and in a reference gene, Albumin
(ALB), on Human reference genome GHCh37/hg19. Sequences of forward and reverse primers are

reported in Table 6.

Table 6 ALB, AARS1, and SACS, primers for qPCR.

Transcript ID Position Melting
Gene in Ensembl inthe Sequence (5'->3') Temperature | Productsize
| GenomeBrowser | gene [
ALB ENST00000295897.4 Ex1 F: ACACGCCTTTOGCACAATGA 60°C
90 bp
R: TCTCGACGAAACACACCCCT 62°C
AARS1  ENST00000261772.8 Ex8 F: GTGTTGAGACGGATTCTCCG 62°C
93 bp
R: GACAACATCCACTAACGTAGC  62°C
SACS ENSTO0000382298.3 Ex8 F: GCAGGTGTACTTCTCAGAAC 60°C
117 bp
R: AACAGCAGCATCCACATTCC 60°C
Ex9 F: GATGATTGCTGTTCCTTTCC 58°C
88 bp
R: AGGTGAGGTTTCAAGTTATCC  58°C
Ex10 F: TGTGTGTACAACAACCAGCLC 60°C
112 bp

R:ATCCTATTCCATACTGTCCAG 60°C

Reactions were prepared with the Rotor-Gene SYBR Green PCR Kit (400) (©OQIAGEN), and performed
on the Corbett Rotor-Gene 6000 Machine (© QIAGEN).

Resulting Ct values of target genes were first normalized using Albumin as endogenous control gene.
Then, normalized Ct of patients (V1) were compared to normalized Ct of control subjects (V2),

applying the following formulas:
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2 —(Ct target gene in patient)
V1=

72— (Ctreference gene in patient)

2 —(Ct target gene in control)

72— (Ctreference gene in control)

Vi
V2

All reactions were performed in triplicate.

l1.1.6. Array Comparative Genomic Hybridization (aCGH)

For Array Comparative Genomic Hybridization, DNA samples were denatured and labeled, by random
priming, with fluorescent dyes. Genome to be tested and reference genome were differently tagged
with Cyanine 5 (Cy5, Red) or Cyanine 3 (Cy3, Green), then mixed together. After purification, samples
were hybridized, for 24 hours, on G3 Human CGH microarrays 8x60K (Agilent Technologies) and
analyzed with the Agilent CytoGenomics software (Agilent Technologies). aCGH was carried out at

the Department of Cytogenetics of University Hospital of Limoges.

l11.2. RNA

111.2.1. RNA extraction

Total RNA was extracted from fibroblasts, hiPSC, NP, and MN, using the miRNeasy Mini kit
(©OQIAGEN). After lysing cells with QlAzol, nucleic acids were isolated trough a phenol-chloroform
extraction, then transferred to the RNeasy Mini columns to let them bind the silica gel membrane.

DNA was digested by DNase | solution, while membrane-binding RNA, was washed twice, before
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being eluted in RNase-free water. RNA was dosed with the NanoDrop 2000 spectrophotometer, and

conserved at -80°C.

111.2.2. Evaluation of RNA integrity

The integrity of extracted RNA, given by the RNA Integrity Number (RIN), was tested by the Agilent

2100 Bioanalyzer, through the Agilent RNA 6000 Nano kit (© Agilent Technologies).

111.2.3. Reverse-Transcription PCR (RT-PCR)

For this two-step amplification, the QuantiTect® Reverse Transcription kit (©QIAGEN) was employed.
Firstly, all residual DNA contaminations were eliminated during the 5-minute incubation with the
gDNA Wipeout Buffer, at 42°C. Secondly, RNA was converted to complementary DNA (cDNA) in a
Reverse-Transcription reaction, using a mix of both oligo-dT and random primers, allowing the cDNA

synthesis from all the RNA regions.

111.2.4. Real-Time Quantitative PCR (qPCR)

For each primer pair of qPCR, at least one of forward and reverse primer was designed spanning the
exon/exon boundaries. TBP was chosen as housekeeping gene, GDAP1 was the gene to be tested. In

Table 7, sequences of all primer pairs are reported.

Table 7 TBP and GDAP1 primers for qPCR.

TranscriptID Position

Melting
J_ 1
Gene in Ensembl inthe Sequence (5'->3') Temperature Product size
Genome Browser gene
TBP ENST00000392092.2 Ex7-8 F: ACAGGTGCTAAAGTCAGAGC  60°C
107 bp
R: GAGGCAAGGGTACATGAGAG 62°C
GDAP1  ENST00000220822.7 Ex5-6 F: GCTGCTTGATCATGACAATGT  60°C
116 bp

R:CCTCTTCTGGGGTTTCTTCA 60°C
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As previously described in 2.1.4 Paragraph, samples were prepared with the Rotor-Gene SYBR Green
PCR Kit (400), and reactions performed on the Corbett Rotor-Gene 6000 Machine. In this case, for

each subject, GDAP1 Ct values were normalized using TBP as reference gene.

2—{Ct target gene)

I_.T_

o ?—(Ctreference gene)

l11.3. Bioinformatic Analysis

Variants detected by targeted NGS were annotated using lon reporter. Variants’ pathogenicity was
tested by Alamut Mutation Interpretation Software (Interactive Biosoftware, Rouen, France).
Databases as EXAC Genome browser (http://exac.broadinstitute.org), GnomAD browser
(https://gnomad.broadinstitute.org/), dbSNP135 (National Center for Biotechnology Information
[NCBI], Bethesda, Maryland, USA, http://www.ncbi.nlm.nih.gov/projects/SNP/), ClinVar
(www.ncbi.nlm.nih.gov/clinvar) and HGMD professional (www.hgmd.cf.ac.uk), were also used to
screen variants. The occurrence of Copy Number Variations (CNV) was evaluated with Cov’Cop
software (Derouault et al. 2017) and with CovCopCan software (Derouault et al. 2020). These
software allow to detect genomic duplications and deletions, using the read depth values of

amplicons and comparing them among individuals of the same run.
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IV. Biochemical analyses

IV.1. Imaging

IV.1.1. Immunocytochemistry (ICC)

For Immunocytochemistry, cells were fixed incubating them 10 minutes, at RT, with 4%
paraformaldehyde (PFA) (Sigma-Aldrich, Merck). After washing three times with DPBS, cells were
permeabilized using a 0.1% Triton-X 100 solution, prepared in 3% Bovine Serum Albumin (BSA)
(Sigma-Aldrich, Merck) DPBS. Three 5-minute washes were done, before adding the primary
antibody. Primary antibody solutions were prepared in 3% BSA-DPBS, and incubated with samples

overnight, at 4°C. Antibodies’ species and dilutions are reported in Table 8.
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Table 8 Primary antibodies used for characterization of hiPSC and neural cells.

Antibody Company Cat. Number Species Dilution
Pluripotency markers
Sox2 Biolegend 630802 Rahbit 1:200
Oct3/4 Santa Cruz sc-5779 Mouse 1:50
Biotech
Nanog DSHB PCRP-NANOGP1-2D8-s Mouse 1:5
Germinal Layers markers
a-SMA DAKO M0851 Mouse 1:500
Sox17 R&D AF1924 Goat 1:100
MAP2 Merck M-4403 Mouse 1:500
Pax6 Covance PRB-278P Rabbit 1:100
Neural markers
PGP9.5 Ahcam abh108986 Rabbit 1:100
Tujl R&D MAB1195 Mouse 1:1000
HB9 = MNR2 DSHB 81.5C10 Chicken 1:100
Isletl DSHB 40.2D6-c IMouse 1:25
Isletl/2 DSHB 39.4D5-c Mouse 1:25
Chat Chemicon AB144P Goat 1:50
Other
GDAP1 Proteintech 13152-1-AP Rabbit 1:100
P4HB OriGene AF0910-1 Mouse 1:100
Ki-67 Leica NCL-L-Kie7-MM1 Mouse 1:100

The next day, cells were washed three times, then labeled with the secondary antibody, conjugated
with the Alexa Fluor™ 488 or the Alexa Fluor™ 594 (Molecular Probes, Thermo-Fisher SCIENTIFIC).
Secondary antibodies were incubated 1 hour at RT. Nuclei were stained with 4',6-diamidino-2-
phenylindole (DAPI) (Sigma-Aldrich, Merck), incubated 10 minutes at RT. ICC images were acquired
using the Leica DM IRB microscope, and the confocal laser Zeiss LSM 510 Meta microscope. They
were analyzed and treated with the NIS Element BR software, the Zen lite software, and the Image J

software.

IV.1.2. 3,3'-Diaminobenzidine (DAB) staining

The DAB staining was performed with the VECTASTAIN® Elite ABC kit (Vector Laboratories). As well as

in ICC, cells were fixed, permeabilized, and incubated with the primary antibody overnight, at 4°C.
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After washing them, they were incubated with the biotinylated secondary antibody for 30 minutes,
at RT. Cells were washed once again, for 5 minutes, and incubated for 30 minutes with the
VECTASTAIN Elite ABC Reagent, composed of the Avidin DH and the biotinylated Horseradish
Peroxidase H. After a 5-minute wash, the DAB+ chromogen, i.e. the peroxidase substrate solution,
was added, and incubated until the staining appeared. Images were acquired using a Nikon

microscope and a digital camera Nikon D90®.

IV.1.3. Electron microscopy

Cells were fixed in 2.5% glutaraldehyde for 30 minutes at RT, then in 2% osmium tetroxide (OsO.,)
(Euromedex) for 30 minutes at RT. Fixation was followed by a water-wash, and the dehydration
phase in a series of ethanol dilutions (30%, 50%, 70%, 95%, 100%). After a 30-minute incubation in a
100% ethanol/epon mix, cells were embedded in epoxy resin overnight, at 4°C. Next day, they were
polymerized 48 h at 60 °C, and ultrathin sections (80/100 nm) were prepared to be stained with
uranyl acetate and lead citrate. Images were acquired with the TEM JEM-1011 (JEOL), at Anatomy

Pathology Department of University Hospital of Limoges.

IV.2. Functional tests

IV.2.1. Alkaline phosphatase test

HiPSC were tested for alkaline phosphatase, highly expressed and active in pluripotent stem cells.
Test was performed using the SIGMAFAST™ BCIP®/NBT, or BCIP®/NBT Alkaline Phosphatase
Substrate (Sigma-Aldrich, Merck), which is converted, by the AP, in a blue-purple product. hiPSC were
first fixed with 95% ethanol, incubated 10 minutes, at RT. They were then washed three times with

DPBS 1X, and incubated 8 minutes, at 37°C, with the SIGMAFAST™ BCIP®/NBT Alkaline Substrate,
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extemporaneously dissolved in Ultra Pure Water. When blue/purple staining appeared, solution was

discarded, and cells were washed three times with DPBS.

IV.2.2. Adenosine Triphosphate (ATP) quantification

Cells (fibroblasts, MN) were plated in 96-wells plates, preparing 6 wells for each subject. After 3 to 7
days, ATP was dosed using CellTiter-Glo® Luminescent Cell Viability Assay kit (Promega), following
manufacturer’s instructions. The employed kit was based on the conversation of Luciferin, in
presence of ATP molecules, in Oxyluciferin and light (Figure 38). Luminescent signal was then
recorded by the Fluoroskan Ascent®FL (Thermo Fisher), and normalized to number of cells, measured

with DAPI staining. The experiment was reproduced three times, for each cell type.

Ultra-Glo™ Recombinant
COOH Luciferase - o—

HO S N]/ S; :N]/
—_— .
NHS +ATP+0, M 2 N S | +AMP+F’Pi+CO2+nght
- g
Beetle Luciferin Oxyluciferin

Figure 38 Luciferase reaction’s method in the CellTiter-Glo® Luminescent Cell Viability Assay kit.
Luciferin, in presence of ATP, molecular oxygen, and Mg2+, is converted, by Luciferase, in Oxyluciferin
and light. Recorded light is proportional to ATP content [From: CellTiter-Glo® Luminescent Cell
Viability Assay kit User’s Guide, Promegal].

IV.2.3. Succinate dehydrogenase (Complex Il) activity

Cells (Fibroblasts, MN) were plated in 96-wells plates, preparing three wells for each condition.
Succinate dehydrogenase activity was measured using the Cell Proliferation Kit | (Roche), based on
the conversion of the yellow 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) salt
into purple formazan crystals, by the succinate dehydrogenase enzyme (Figure 39). Cells were first
incubated with the MTT to favor formations of formazan crystals. After 2 to 4 hours, according to the

cell type, the solubilization solution was added, to dissolve crystals, and let act overnight, at 37°C.
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Next day, absorbance values, at 595 nm, were recorded with the Multiskan™ FC Microplate
Photometer (Thermo Fisher), and normalized to number of cells, measured with DAPI staining. The

experiment has been reproduced three times, for each cell type.

\\ \2\
_{/\JT Succinate ¢ JNL
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N "\ - dehydrogenase HN —N
e > \
N .
/’{‘}\ . =n \_ / N —n
- 9
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (E.Z)-5-(4,5-dimethylthiazol-2-yl)-1,3-diphenyiformazan
(MTT) (Formazan)

Figure 39 The succinate dehydrogenase enzyme catalyzes the conversion of yellow MTT in purple
formazan crystals.

IV.2.4. Superoxide anion analysis

Cells (Fibroblasts, MN) were plated in 48-well plates, 6 wells for each subject. Half of the wells were
treated, 2 hours at 37°C, with 1mM H,0,, prepared in culture medium. Then, medium was removed
from all the wells, and 5 uM MitoSOX™ Red mitochondrial superoxide indicator (Molecular Probes,
Thermo-Fisher SCIENTIFIC), prepared in DPBS, was added and incubated 10 minutes at 37°C,
protected from the light. After removing MitoSOX solution, cells were washed once, fixed with 4%
PFA, and nuclei were stained with DAPI. Images were acquired using the Leica DM IRB microscope,
and analyzed with Imagel software. Fluorescent signal was normalized by the number of cells. The

experiment was reproduced three times, for each cell type.

IV.2.5. Total (GSH) and oxidized (GSSG) glutathione quantification

Cells (Fibroblasts, NP, MN) were plated in 35-mm dishes or in 12-well plates, three times for each cell
type. The Glutathione Assay Kit (Cayman Chemical) was used for the quantification of total and

oxidized glutathione, according to manufacturer’s instructions. Briefly, cells were collected in 1X 2-
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(N-morpholino)ethanesulphonic acid (MES) with a cell scraper, then sonicated using the VibraCell
75186 sonicator (Sonics and Materials, Inc.). Lysates were deproteinated in an equal volume of
metaphosphoric acid (MPA) (Sigma-Aldrich, Merck), centrifuged, and the supernatant mixed with the
triethanolamine (TEAM) Reagent. For GSSG measurement, GSH was derivatized adding 2-
vinylpyridine solution, in deproteinated samples and in the standards, which were then incubated 1
hour at RT. All samples and standards were added to the 96-well plate, followed by the Assay
Cocktail, containing enzymes, cofactors, and 5,5-dithio-bis-(2-nitrobenzoic acid) (DNTB), in the
suitable buffer, to induce the reaction reported in Figure 40. Absorbance values, at 405 nm, were
recorded by Multiskan® EX (Thermo Fisher) and concentrations, of GSH and GSSG, were calculated

from the standard curve.

Glutathione Reductase

GSSG » 2 GSH

TNB »_ » GSH \/ DTNB

%

Glutathlonc| Reductase

\. GsTNE \‘ TNB

Figure 40 GSH recycling method for quantification of GSH. GSH reacts with DTNB to form the yellow
colored 5-thio-2-nitrobenzoic acid (TNB), and the GSTNB, which is reconverted to GHS and TNB.
Absorbance at 405 nm of TNB is proportional to TNB amount and GSH concentration in the sample
[From: Glutathione Assay Kit User’s Guide (Cayman Chemical)].

IV.2.6. Mitochondrial membrane potential measurement

The mitochondrial membrane potential (AWm) was assessed with the 5,5',6,6'-Tetrachloro-1,1',3,3'-
tetraethylbenzimidazolocarbocyanine iodide (JC-1) dye (Sigma-Aldrich, Merck). JC-1 monomers, with
a fluorescence emission at ~530 nm, enter in the cell, then in mitochondria, where they are
converted, by the AWm, in JC-1 aggregates, with an emission of ~590 nm. In apoptotic cells, the AWm

is perturbed and JC-1 monomers accumulate in cytoplasm.
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For the JC-1 analysis, cells (Fibroblasts, MN) were cultured in 60 mm dishes. They were detached
trough trypsinazation, centrifuged and resuspended in DPBS/5% FBS solution. containing 1 pg/mL JC-
1 dye. After 30-minute incubation at 37°C, the excess of JC-1 was discarded by centrifugation and
cells collected in FACS tubes with DPBS. 1 uM TO-PRO-3 (Thermo-Fisher SCIENTIFIC) was added for
nuclear counterstaining. Analysis of 590 and 530 nm emissions for JC-1, and 661 nm emission for TO-
PRO-3, was performed with the FACSCalibur (BD biosciences), and the CellQuest software (BD

biosciences).

V. Statistical analyses

All statistical analyses were performed using the Graphpad Prism 5 software (GraphPad Software,
Inc.). Data were expressed as mean + SEM (Standard Error of the Mean). They were compared using

the nonparametric Mann—Whitney U test.
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Results
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Results - Part |
Genetic analysis of hereditary peripheral neuropathies
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Article 1 - CovCopCan: An efficient tool to detect Copy Number
Variation from amplicon sequencing data in inherited diseases and

cancer
Published in PLOS Computational Biology (12 February 2020)

The molecular investigation is a fundamental step in the analysis of inherited and somatic diseases.
The identification of genetic mutations responsible for the pathological condition may help, not only
the diagnostic process, but also the choice of the more appropriate therapeutic strategy. NGS
technology, and, in particular, amplicon sequencing, is widely employed for the detection and
discovery of single-nucleotide mutations or short indels, while Copy Number Variations (CNV) are
less often explored, since analysis software are limited. In this work we presented CovCopCan, the
more advanced version of the bioinformatic tool Cov'Cop. CovCopCan allows to detect CNV, as large
deletions or duplications, using data of amplicon sequencing. Specifically, it analyses and compares
read-depth values of amplicons of one patient, to read-depth of amplicons of the other patients
examined in the same run. The main advantage of CovCopCan is that is can be used in inherited
pathologies, like hereditary peripheral neuropathies, but also in somatic diseases, like cancers. In this
case, it is capable of detect CNV, even if the ratio of mutated cells to healthy cells is low. Moreover,
in this paper, we presented all CovCopCan implementations, as regards the statistical approach and

the software visualization and interface, proposing a more efficient and user-friendly tool.

For this work, all the software conception and implementation took place at University Hospital of
Limoges, while its validation was supported by the EA6309 research team, at University of Limoges.
Specifically, | collaborated to the confirmation, by Real-time gPCR, of multiple CNV detected by

CovCopCan, a necessary step to test CovCopCan sensitivity and further optimize its performance.
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Abstract

Molecular diagnosis is an essential step of patient care. An increasing number of Copy
Number Variations (CNVs) have been identified that are involved in inherited and somatic
diseases. However, there are few existing tools to identify them among amplicon sequenc-
ing data generated by Next Generation Sequencing (NGS). We present here a new tool,
CovCopCan, that allows the rapid and easy detection of CNVs ininherited diseases, as well
as somatic data of patients with cancer, even with a low ratio of cancer cells to healthy cells.
This tool could be very useful for molecular geneticists to rapidly identify CNVs in an interac-
tive and user-friendly way.

This is a PLOS Computational Biology Software paper.

Introduction

Identifying mutations responsible for inherited or somatic diseases can be essential to define
the appropriate therapy for the efficient treatment of patients. For example, this is true for
patients presenting an amyloid neuropathy due to Transthyretin (TTR) point mutations, who
can benefit from new treatments, such as Tafamidis [1]. This is also true for cancer, for which
it is important to rapidly detect certain Copy Number Variations (CNVs), such as the 17p dele-
tion, a recurrent abnormality in Chronic Lymphocytic Leukemia (CLL), with major therapeu-
tic implications. Because this acquired chromosomal abnormality directly impairs the TP53
gene [2, 3], it is now recommended to test this CNV before each treatment for CLL [4]. Indeed,
TP53 alterations in CLL are responsible for primary resistance to fludarabine and survival of
such patients is clearly improved by new-targeted therapies, such as ibrutinib [5, 6].
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High-throughput sequencing techniques allow partial or total sequencing of a patient’s
genome. Amplicon sequencing is one of the techniques that enables the sequencing of several
thousand exons ata very low cost. Although this method is robust for the discovery of small
genetic mutations, such as single-nucleotide polymorphisms or short indels, only a few tools
are available for the detection of larger variations, such as deletions or duplications in ampli-
con sequencing data. Some of these tools require control samples to establish a reference set of
data (ONCOCNYV [7]). For others (ExomeDepth [8], IonCopy [9], DeviCNV [10], Cov'Cop
[11]), control samples are not necessary. Indeed, if the CNV is rare, the other patient samples
tested in the same run can serve as controls. In this strategy, multiple patients are tested at the
same time, potentially shortening the time to diagnosis.

Most available tools based on the read depth method to detect CN'Vs include robust statisti-
cal methods. ExomeCopy [12] proposes a hidden Markov model to detect CNVs from raw
read count data. CONVector [13] was built on a machine-learning algorithm to associate
PCR-efficiency correlations for subsets of amplicons. Here, we propose a new tool, CovCop-
Can, based on the initial read-depth method developed in Cov’Cop, with additional statistical
methods and features that allow the rapid and easily detection of CNVs in inherited diseases,
as well as somatic data of patients with cancer, even with a low ratio of cancer cells to healthy
cells (data sets described in S1 File). CovCopCan includes heuristic methods to compare the
value of each amplicon of a patient to those of other patients sequenced in the same run. Cov-
CopCan focuses on data manipulation and results exploration for the interpretation of CNV's,
Users have access to an overview of the results for each patient through an interactive visuali-
zation, allowing, for example, the exclusion of low-quality amplification from the analysis and
quickly restarting CNV detection. In addition, several statistics methods (Loess regression,
Cumulative summary) can help in the interpretation of the results.

Design and implementation
CNV-detection algorithm

Z-score-based CNV detection: “Z-detection”. From the raw read count of each ampli-
con, CovCopCan applies the same corrections and normalization as the Cov'Cop tool [11],
resulting in a normalized read count value (NRC) for each amplicon (see S1 File). Starting
from this point, we developed a new CNV-detection algorithm, based on the z-score. The z-
score is calculated for each amplicon in each patient, according to the following formula:
NRC,, — 1,

Ty

z —score, ; =

NRCPJ is the normalized read count of the amplicon i in the patient p, Hp the NRC average of
the patient p, and ¢ corresponds to the standard deviation of the patient p. The z-score follows a
standard normal distribution N(0;1). We fixed a threshold corresponding to a significance level of
0.01 for both deletion and duplication events by a one-tailed test. Thus, a negative z-score with a
p-value < 0.01 indicates a deleted amplicon, whereas a positive z-score with a p-value < 0.01 indi-
cates a duplicated amplicon. This algorithm automatically determines the best deletion and dupli-
cation thresholds based on the variability of a patient’s data. The users are free to determine the
minimum number of concurrent amplicons required to call a CNV. No minimum distance
between amplicons is required, but they have to be on the same chromosome. By default, a mini-
mum of three successive amplicons on the same chromosome was used for all data in this paper.

Two-stage ratio to optimize CNV detection. The last normalization step of CovCopCan
results in a ratio of standardized patient values that gives a theoretical value of 1 for a gene
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present in two copies, 0.5 for a deletion event, and 1.5 for a duplication. In this last step, each
amplicon value is divided by the median of the same amplicon from the other samples. Once
this first ratio is calculated and the first round of CNV detection is performed, a second ratio is
calculated excluding all amplicons located inside the initially detected CN'Vs from each sam-
ple, and final CNV detection is achieved. This approach is used to improve standardization in
regions in which the same CNV event is present in many patients.

Merging CNVs. We provide a “merge” option to reduce the impact of false-negative
amplicons on CNV detection. If two CNV areas located on the same chromosome are dis-
jointed by only one amplicon with a z-score duplicated or deleted at a significance level of 0.05,
CovCopCan will then merge the two CNV areas to easily highlight this global CN'V. In addition,
the user can also define the maximum distance value between two CNVs to be merged.

Reference amplicon selection or exclusion. For the normalization step, CovCopCan
selects a set of amplicons, consisting of those that are the most stable among the patients of a
run. These amplicons are then used to normalize the values of the other amplicons. The user
can indicate specific amplicons to use for this normalization step (see S1 File). Inversely, our
tool also provides the possibility to manually exclude some amplicon data for the last ratio step
of normalizations (see S1 File).

Control samples. Although CovCopCan works without control samples, it is possible to
exploit the presence of controls if they are available. In such a case, the median of the last stan-
dardization step is no longer calculated using all the samples but only the controls. Then for
each patient, the amplicon values are divided by the median calculated for the controls,
according to the following formula:

. NRCEM
Ratio_,; = W

-

NRC!.M is the normalized read count of the amplicon i in the patient j.
Md(NRC,

ot
CovCopCan can be run with only one control sample but more control samples will

is the median of the normalized read count of the control samples.

improve the result.

2D interactive visualization

An interactive 2D visualization is available for each patient (Fig 1). The amplicons are repre-
sented by dots over their chromosomal positions on the x-axis and their normalized values on
the y-axis. Users can interactively zoom in on specific regions and navigate between data in an
intuitive and interactive way, allowing simple navigation. Several types of information
described below have also been added to the graphical representation.

Local regression curve. We introduced the possibility to display regression curves on the
presented chart to optimize visual CNV detection. We chose to implement the Loess local
regression algorithm [14] to easily visualize a sudden change. The Loess regression is calcu-
lated for each chromosome. By default, the bandwidth parameter is fixed to 0.25, but it is pos-
sible to interactively fine tune it to more or less smoothen the curve. The Loess regression is
represented by a green curve on the chart (see S1 File).

CUSUM charts. For data generated from cancer or mosaic samples, a sample may simulta-
neously contain “normal” and deleted/duplicated cells. The deletion/duplication detection accu-
racy depends on the proportion of deleted/duplicated cells relative to that of the normal cells
and the normalized values can be close to 1. CNVs will then be very difficult to detect. Conse-
quently, we added a visual method called CUmulative SUMmary control chart (CUSUM; [15])
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Fig 1. Visualization of CovCopCan. A. General view. Each dot corresponds to anamplicon. The amplicons are distributed on the x-axis
according to their genomic position. The y-axis corresponds to the normalized values. Grey dots indicate a “normal” value, whereas red or
orange dots indicate duplicated and deleted amplicons, respectively. The names of the gene and chromosome number are located at the
bottom of the figure. The green curve shows the Loess regression. The thick green ribbon is a noise heatmap in which green indicates a stable
amplicon in all samples (see S1 File). The red rectangle highlights a CNV region. B. Zoom on the duplicated region covered by 10 amplicons
(PMP22).

https://doi.org/10.1371/journal.pchi 1007503.0001

to be able to observe a slight increase or decrease in values. For each chromosome, this algo-
rithm calculates the cumulative sum of the positive deviations (values > patient’s average) for
deletions and negative deviations (values < patient’s average) for duplications. It can be useful
for detecting a slight deviation of the values due to cancer data or mosaicism, as well as small
CNVs in inherited diseases.

S, =max(0, S, +x, — (X +0))

[

S, =min(0, S,_ +x, — (X —0))

n=1

Here, x,, corresponds to the value of one amplicon, x is the mean value of all the patient’s
amplicons, and ¢ is the standard deviation. In the visualization of CovCopCan, a blue shape
indicates a possible deletion, whereas a pink shape indicates a potential duplication. Although
this method makes it possible to highlight potential CNVs, it does not allow precise definition
of their breakpoints (see S1 File).

Results
Two-stage ratio

We visualized the result of the two-stage ratio using sequencing data from panel 2 (see S1 File for
details). This gene panel, designed by Ion AmpliSeq designer software, includes 1,206 amplicons
on 70 genes. The run presented here was performed on an Ion Proton device and included seven
patients. A deletion on chromosome 13 was shared by three of the seven patients (verified by
karyotyping). Examples of the visualization obtained for two of the patients (patient 1 normal
and patient 2 “deleted”) are presented in Fig 2. Without the two-stage ratio, the region in non-
deleted patients was disturbed and a false positive duplication event was detected by CovCopCan
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Fig 2. Comparison of single-stage and two-stage ratio results. A, Without the two-stage ratio, a disturbed region
showed a false-positive duplication on chromosome 13 covered by three amplicons. B. The two-stage ratio improved
the stability of the region and the false duplication was no longer detected. C. Without the two-stage ratio, six
amplicons (grey dots in Chr13 area) were not detected as deleted throughout chromosome 13 (39 amplicons) and
three separated CNVs were detected. D. With the two-stage ratio, only three false-negative amplicons (grey dots in
chr13 area) were present among the 39 amplicons of chromosome 13 and only one amplicon split the total deletion of
the chromosome (partial screenshots from CovCopCan).

hitps://doi.org/10.1371/journal.pchi.1007503.g002

in both (highlighted by a vertical red rectangle, as for patient 1, Fig 2A). The two-stage ratio
improved the stability of the values so that no false duplication event was detected by CovCop-
Can, thus increasing the specificity (Fig 2, compare A and B). This method also improved the
detection of deletions (highlighted by a vertical orange rectangle) in the true deleted patients,
decreasing the number of false-negative amplicons (Fig 2C and 2D).

Merging CNVs

To reduce the effect of individual false negative amplicons, CovCopCan relaxes the signifi-
cance threshold when a single non-significant amplicon is flanked on both sides by significant
amplicons. For this specific amplicon, the threshold will be automatically switched to 0.05. If
this amplicon becomes significantly duplicated, it will be merged with the initial duplicated
detected areas. The grey dot in the graph will stay grey, indicating that it is a merged area.
Deletions are treated the same way. Here, we show the results of this merging option on a com-
plete chromosome X duplication. A single duplication covering the entire gene is detected by
CovCopCan, whereas six successive duplications would have been found without this merging

option (Fig 3).

Control samples

We tested this method with the Panel 2 data (Fig 4). Seven samples were simultaneously
sequenced on an lon Proton sequencer (three controls and four patients). The four patients
share the same region q deletion on chromosome 13. Without defining controls, CovCopCan
detected a correct deletion (highlighted by the vertical orange rectangle) for one of the four
patients and only a partial deletion for another. In addition, two false-positive duplications
(highlighted by the vertical red rectangle) were detected in two controls. When the control sam-
ples were defined (here three controls without the chromosome 13q deletion), CovCopCan

PLOS Computational Biology | hitps://doi.org/10.1371/journal .pchi. 1007503 February 12, 2020
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##fileformat=VCFvd.1

#fileDate=20190826

#H#INFO=<ID=SVLEN,Number=. ,Type=Integer,Description="Difference in length between REF and ALT
alleles"»

#HINFO=<ID=SVTYPE,Number=1, Type=5String,Description="Type of structural variant™>
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Fig 3. Example of CNV merging on a chromosome X duplication. A, Entire duplication of chromosome X.
CovCopCan detects six CNV areas without the merging CNV algorithm. B. By using the merging CNV algorithm, the
duplication detected includes all of chromosome X, although some amplicons appear as neutral (grey dots). C. The
exported CNV in the VCF format contains only one line corresponding to the duplication of chromosome X (partial
screenshots from CovCopCan).

https://doi.org/10.1371/journal.pcbi.1007503.9003

efficiently detected two total q deletions on chromosome 13 and two partial deletions for the
two other positive patients. In addition, no false-positive duplications were detected in the three
controls.

Performance on germline data

Amplicon sensitivity and specificity. We first tested our algorithm on germline data. We
used several coverage files obtained after Proton sequencing of our “CMT-89” Ampliseq
library (see S1 File, panel 1).

We calculated the sensitivity of CovCopCan, by amplicon, using 22 positive controls con-
firmed by karyotype, real-time PCR, or Multiplex Ligation-dependent Probe Amplification
(MLPA). The detected CNVs were present in 22 patients, sequenced in 11 runs (Table 1). Of
the 22 CNVs, 15 are covered by more than 10 amplicons. We used a range of CNV sizes from
4 (TEG) to 98 amplicons (chromosome X duplication). CovCopCan was used with the default
settings, with all options active. Raw read values of less than 20 were deleted.

The 22 CNV's are covered by a total of 461 amplicons. CovCopCan correctly detected 403 of
461 deleted/duplicated amplicons, giving an amplicon sensitivity of 0.87. If considering CNV
detection, CovCopCan was able to detect 22 of the 22 CNVs tested, leading to a sensitivity of 1.

In addition, we analyzed the PMP22 gene to calculate the specificity of CovCopCan by
amplicon. Indeed, the PMP22 duplication is the most frequent known mutation responsible
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Fig 4. Visualization of chromosome 13 in seven samples. Each dot corresponds to an amplicon. Orange and red rectangles
correspond to deletions and duplications, respectively. The green curve shows the Loess regression. Patients 1 to 4 share a g arm
deletion. Samples 5 to 7 do not present this deletion. Without defining samples 5 to 7 as controls, only one deletion was correctly
detected in patient 4. A partial deletion was detected in patient 1. False-positive deletions were detected in two of the three controls. By
defining samples 5 to 7 as controls, two deletions were correctly detected in patients 1 and 4. Twao partial deletions were found in both
patients 3 and 4. No duplication was found in the controls (partial screenshots from CovCopCan).

hitps://doi.org/10.1371/journal.pebi.1007503.9004

Table 1. Details of the 22 positive-control CNVs used for germline analysis, with chromosomal locations of the CNVs. a: Number of amplicons covering the CNV's.
b: Number of amplicons correctly detected as duplicated or deleted by CovCovCan.

Sample Gene Chrom. Start End Length (pb) Amps* Positives Amps® Type
R1_S3 PMP22 chr17 14593353 15167670 574318 10 8 Gain
R1_S8 KIF1A chr2 241656712 241709233 52522 58 43 Gain
R1_S9 - chrX 24483480 129299679 104816200 98 94 Gain
R2_S2 AARS chr16 70286552 70316749 30198 25 2 Gain
R2_S15 DHTKDI chr10 12110948 12162941 51994 25 25 Loss
R3_S3 KIF1A chr2 241656712 241709233 52522 58 45 Gain
R4_S4 TFG chr3 100432328 100439067 6740 4 4 Gain
R4_S12 KIF1A chr2 241656712 241709233 52522 58 45 Gain
R5_S3 AARS chr1s 70286552 70316749 30198 25 23 Gain
R5_§15 PMP22 chr17 14593353 15167670 574318 10 10 Gain
R5_516 PMP22 chr17 14593353 15167670 574318 10 10 Loss
R6_S2 PMP22 chr17 14593353 15167670 574318 10 10 Gain
R6_59 TFG chr3 100432328 100439067 6740 4 4 Gain
R7_S2 TFG chr3 100432328 100439067 6740 4 4 Gain
R7_S6 PMP22 chr17 14593353 15167670 574318 10 8 Gain
R8_S8 PMP22 chr17 14593353 15167670 574318 10 10 Loss
R9_S6 PMP22 chr17 14593353 15167670 574318 10 10 Loss
R10_S10 REEPI chr2 86444070 86509447 65378 7 7 Gain
R10_S16 TFG chr3 100432328 100439067 6740 4 4 Gain
R11_S8 PMP22 chr17 14593353 15167670 574318 10 10 Gain
RI1_S14 TFG chr3 100432328 100439067 6740 4 3 Gain
R11_§15 REEPI chr2 86444070 86509447 65378 7 6 Gain

https://doi.org/10.1371/journal.pcbi.1007503.t001
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for CMT disease and all patients were initially screened by MLPA to detect this gene duplica-
tion. The PMP22 region was covered by 10 amplicons and the entire design contains 2,394
amplicons. We used 456 patients who had no CNV on PMP22 to estimate the specificity of the
CovCopCan algorithm. Of the 4,560 PMP22 amplicons tested, 4,375 were indeed tagged as
“normal” and only 185 were false positives, leading to a specificity of 0.96.

Comparison with other tools. We compared CovCopCan with three other tools: IonCopy,
DeviCNV, and ExomeDepth. IonCopy and DeviCNV are designed to analyze amplicon
sequencing data without a control set. ExomeDepth uses a robust model for the read count
data and to build an optimized reference set.

We used the shiny version of the software ITonCopy (v. 2.1.1), with the gene-wise analysis
mode and default parameters. DeviCNV (v. 1.5.1) was launched with the recommended
parameters, detailed in the manual. ExomeDepth (v.0.1) was also launched with the default
parameters. We tested these tools on the same dataset, already described, containing the 22
CNVs. We only considered CNVs supported by at least three amplicons for all the tools. The
results are presented in Table 2 as the number of CNVs detected.

CovCopCan, IonCopy, DeviCNV, and ExomeDepth each detected 22, 20, 18, and 19
CNVs, respectively (Table 2). Only CovCopCan detected all CN'V's for a sensitivity of 1. Ion-
Copy, DeviCNV, and ExomeDepth showed sensitivity 0f0.91, 0.82, and 0.86, respectively. It
was impossible to verify all the other CNV's found by the various tools. Thus, we could not cal-
culate specificity based on these data. However, a small number of CNV's would be expected,
since the data correspond to germline samples. Thus, with only seven CNVs detected in addi-
tion to the 22 controls, CovCopCan must have had the best specificity for this dataset.

Performance on cancer data

Low cell fraction. CovCopCan can also process cancer data. The main difference between
germline and somatic data is that a cancer tissue sample may simultaneously contain both
healthy cells and cancer cells. A low proportion of cancer cells may interfere with the detection
of CNVs. We estimated the minimum proportion of cancer cells required for CNV detection
by simulating the complete deletion of a gene covered by 80 amplicons using panel 1 (2,394
amplicons). We used a coverage matrix containing the data of 16 patients sequenced by an Ion
Proton Sequencer. The deletion of the entire gene was simulated following this method:

SRC, = RRC; x (1 — CancerCellProportion) + **“i/, x CancerCellProportion

SRC; is the simulated value of the amplicon i, RRC; the Raw Read Count of the amplicon i,
and CancerCellProportion the proportion of cancer cells (0 < values < 1). We simulated a pro-
portion of cancer cells ranging from 0 to 1, in steps of 0.05. The first CNV was detected by the
cumulative summary chart for 15% of cancer cells and clearly identifiable for 20%. Using only
“Z-detection”, the CNV was detected when 40% of the cells contained the deletion, whereas

Table 2. Comparison of the performance of CovCopCan and other CNV callers for 22 positive-control CNV's
from 22 samples.

True positives (total = 22) Other CNVs Total
CovCopCan 22 7 29
TonCopy 20 3914 3934
DeviCNV 18 117 135
ExomeDepth 19 218 237

hitps://doi.org/10.1371/journal.pcbi. 10075031002
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Fig 5. Gene deletion simulation (gene visualized in red), with various proportions of cells containing this deletion.
The cumulative summary chart (blue shading) first detected the deletion with 15 to 20% of the cells containing the
deletion (partial screenshots from CovCopCan).

https://doi.org/10.1371/journal.pcbi.1007503.9005

almost the entire gene (67/80 amplicons) was detected by “Z-detection” as deleted for 60% of
cancer cells (Fig 5).

We confirmed the results obtained from these simulated data using real data. We sequenced
five patient samples harboring various amounts of positive cancer cells carrying the same
ATM gene deletion and previously explored with conventional cytogenetics (karyotype and
FISH). The data were obtained using panel 2 without control samples. The cumulative algo-
rithm first detected the deletion from 19.5% cancer cells (Fig 6). These results show that Cov-
CopCan can detect CNV's within a heterogeneous sample if the cancer cells make up at least 15

to 20%.
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Fig 6. Detection of the entire ATM gene deletion in patients DNA, in which the percentage of cancer cells was
estimated based on 200 FISH metaphases per patient. The Cumulative summary detected the deletion starting from
19.5% estimated cancer cells (partial screenshots from CovCopCan).

https://doi.org/10.1371/journal.pebi.1007503.9006
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Table 3. Detection of a CNV according to the proportion of cancer cells. “No” indicates no detection of the CNV, whereas “Yes” indicates correct detection of the

CNV.

Cancer cell fraction CovCopCan IonCopy DeviCNV ONCOCNV
0% No No No No

19.5% Yes Yes No Yes

27.5% Yes Yes No Yes

82% Yes Yes Yes Yes

100% Yes Yes No Yes

https://doi.org/10.1371/journal.pcbi. 10075031003

Comparison with other tools. We compared the performance of CovCopCan against
IonCopy, DeviCNV, and ONCOCNV. First, we used these three tools on the deletion of the
ATM gene described above. Like CovCopCan, both IonCopy, and ONCOCNYV correctly
detected the CN'V with 19.5% of cancer cells, but not DeviCNV (Table 3).

In addition, we used another dataset obtained using panel 2. We sequenced the DNA of 54
patients in eight runs. Eighteen patients had a partial deletion of a chromosome arm, whereas
two had a complete deletion of this same chromosome arm. The partial deletion was covered
by 21 amplicons, whereas the entire deletion involved 39. In this study, we did not consider
the percentage of cells presenting the CNV's. CovCopCan was used with the default settings,
with all options active. Raw read values of less than 20 were deleted. IonCopy was used in the
gene-wise mode with the default parameters. DeviCN'V was used with the recommended set-
tings. ONCOCNYV (v 6.9) was used with the default settings. As with the germline data, we set
the minimum number of amplicons to detect CNV's to three for each tool. DeviCNV failed to
analyze a run due to a low number of samples (5) and detected four CNVs from the other
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patients. IonCopy detected nine CNVs. ONCOCNYV correctly detected the 20 CNV's but
required at least three controls in a run to call them. CovCopCan was able to detect CNVs,
with or without controls. Without defining control samples, CovCopCan automatically
detected 13 of 20 CNVs. When defining controls, the number of correct CNVs increased to 15
and using the interactive visualization option, such as the CUSUM chart, CovCopCan clearly
indicated the presence of a deletion in at least four of the five additional samples (Fig 7).

Availability and future directions

CovCopCan sources are available on GitHub: https://git.unilim fr/merilp02/CovCopCan/tree/
master. Pre-complied binaries can be downloaded from this page of the GitHub repository:
https://git.unilim.fr/merilp02/CovCopCan/tree/master.

CovCopCan offers a wide range of features to interpret data from amplicon sequencing to
detect CNVs. This tool works on data generated from Ion Designer (Life Technologies, CA,
USA) as well as that from Illumina DesignStudio (Illumina Inc., San Diego, CA, USA). The
user-friendly interface associated with our 2D visualization facilitates data exploration and
manipulation allowing complex analyses such as those from cancer data. CovCopCan also
offers the possibility to export the results in VCF format [16] or graphical output for publica-
tions. It can also be used in command-line mode to be integrated into various pipelines (see S1
File).

Future development of CovCopCan will involve the possibility to exploit the variant allele
fraction (VAF) to improve the statistical detection of CNVs.

We will also improve memory consumption and parallelism to ensure that CovCopCan can

work on a minimal configuration.

Supporting information

$1 File. Supplementary information of this article. The supplementary document provides
information on the panels used in this article, a guideline to create an optimized panel to call
CNVs, the workflow of CovCopCan algorithm, information on the possibility to define manu-
ally reference amplicons, details on graphical visualization elements and command line inter-
face data.

(DOCX)
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Conclusion

CovCopCan software has been designed and created with the purpose of increasing information
achievable from NGS, since it allows to detect CNV, often underestimated. It cannot detect, however,
different Structural Variants (SV), as translocations and inversions, where the number of genomic
copies is not modified. In a general way, we think that CovCopCan could be an important tool to
increase the rate of positive diagnosis, which rests pretty low for some hereditary pathologies, like,
for instance, peripheral neuropathies. Furthermore, it can be necessary not only in the identification
of already described CNV, but, above all, in discovery of new duplications and deletions, elucidating
unknown mechanisms associated with the diseases. It is for this reason, that CovCopCan arose from
the interaction between the diagnostic field, at Biochemistry and Molecular Genetics Department of

University Hospital of Limoges, and the research field, at University of Limoges.
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As previously discussed, molecular analyses of hereditary diseases, by NGS, generally focuses on
single-nucleotide polymorphisms. Consequentially, SV, like CNV, are often neglected, also for the lack
of valid analysis tools. In Charcot-Marie-Tooth disease, 15% of cases are associated with the
duplication of PMP22 gene (CMT1A). Anyway, evaluation of SV in other 80 and more CMT-genes is
rarer. The paper reported here is the genetic investigation of the patient 1-A (described in Materials
and Methods, Chapter |), presenting peripheral neuropathy and cerebellar ataxia. The targeted NGS
analysis, conducted with a 93-genes custom panel for CMT and associated neuropathies, had
revealed the homozygous c.5744 5745delAT in exon 10 of SACS gene, inducing a frameshift and the
production of a truncated protein. Since mutations in SACS were consistent with the observed
phenotype, we could suppose to have identified the correct genetic cause. Nevertheless, Sanger
sequencing detected the same mutation, in homozygous state, in the affected brother (patient 1-B),
in heterozygous state, in his father (patient 1-C), but not in his mother (patient 1-D). Only looking for
CNV in NGS data, by CovCopCan analysis, we detected, in patient 1-A, a heterogygous deletion in
exon 10 of SACS, never described before. It was then confirmed, in heterozygous state, also in the
affected brother and the unaffected mother. Patient 1-A, as well as his brother, was, therefore, a
compound heterozygous for SACS, since he carried two different SACS mutations (c.5744_5745delAT
and deletion) on its two alleles.

This study highlighted the importance of exploring both point mutations, small indels, and large SV,
during the diagnostic procedure. The validation of results with multiple technical approaches, and an
in-depth analysis of the genotype-phenotype correlation, could help, as in the present case, the

detection of the genetic cause inducing the pathological condition.
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Also this work, started at the Biochemistry and Molecular Genetics Department of University Hospital
of Limoges, was developed thanks to the collaboration with the EA6309 research team, for the

investigation of CNV.

Federica Miressi | Ph.D. Thesis | University of Limoges | 2020 166



Con

al and Structu

ral Biotechnology Journal 18 (2020) 2095-2099

o e COMPUTATIONAL

on : mooflin ANDSTRUCTURAL

wofpocfpoodl: BIOTECHNOLOGY -

s toc e, J O URNAL
ELSEVIER journal homepage: www.elsevier.com/locate/csbj
Communications
A mutation can hide another one: Think Structural Variants! ]
=

Federica Miressi °, Pierre-Antoine Faye 20 Joanna Pyromali®, Sylvie Bourthoumieux *,

Paco Derouault ‘, Marie Husson ©, Frédéric Favreau ™", Franck Sturtz ", Corinne Magdelaine """,

Anne-Sophie Lia*"*

*Univ. Limoges, MMNP, EA 6309, F-87000 Limoges, France

b CHU Limoges, Service de Biochimie et Génétique Moléculaire, F-87000 Limoges, France
€CHU Limoges, Service de Cytogénétique, F-87000 Limoages, France

9 CHU Limoges, Service de Bioinformatique, F-87000 Limoges, France

®CHU Bordeaux, Service de Neurologie, F-33076 Bordeaux, France

ARTICLE INFO ABSTRACT

Article history:

Received 29 February 2020

Received in revised form 29 June 2020
Accepted 25 July 2020

Available online 2 August 2020

Next Generation Sequencing (NGS) using capture or amplicons strategies allows the detection of a large
number of mutations increasing the rate of positive diagnosis for the patients. However, most of the
detected mutations are Single Nucleotide Variants (SNVs) or small indels. Structural Variants (SVs) are often
underdiagnosed in inherited genetic diseases, probably because few user-friendly tools are available for
biologists or geneticists to identify them easily, We present here the diagnosis of two brothers presenting
a demyelinating motor-sensitive neuropathy: a presumed homozygous ¢.5744_5745delAT in exon 10 of

I;ffuv:f:fjl Variants SACS gene wasinitially detected, while actually these patients were heterozygous for this mutationand har-
Diagnosis bored a large deletion of SACS exon 10 in the other allele. This hidden mutation has been detected thanks to
Charcot-Marie-Tooth the user-friendly CovCopCan software. We recommend to systematically use such a software to screen NGS
NGS data in order to detect SVs, such as Copy Number Variations, to improve diagnosis of the patients.

CovCopCan © 2020 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-

technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org |

licenses/by-nc-nd/4.0/).

1. Introduction

Inherited genetic diseases are due to germline mutations. Thanks
to Next Generation Sequencing (NGS), an increasing number of
these mutations are detected every day improving patients’ diagno-
sis. Therefore, molecular diagnosis may influence patients' care
through the choice of adapted treatments, for instance in neurolog-
ical diseases and particularly in genetic epilepsies [1]. However, to
date, the majority of the reported mutations are Single Nucleotide
Variants (SNVs) and Structural Variants (SVs) have rarely been
described, probably due to the analytic methods used to analyze
INGS data, comparing patients' sequences to a reference one.

In Charcot-Marie-Tooth disease (CMT), the most common hered-
itary neuropathy characterized by damages of both motor and sen-
sory peripheral nerves, the most frequent mutation involved in this
disease is the PMP22 duplication, explaining around 15% of CMT
patients. It has been identified by Southern-Blot in 1992 [2]. Since
this date, more than other 90 genes have been identified to be
involved in this disease and in associated peripheral neuropathies

# Corresponding author at: 2 rue du Docteur Raymond Marcland, 87000 Limoges,
France,
E-mail address: anne-sophielia@ur

fr (A.-S. Lia).

https:{{doi.org/10.1016/j.csk 07.021

[3]. Most of the detected mutations are SNVs or small indels [4,5],
and Structural Variants (SVs) have rarely been described [6].

NGS techniques allow partial or total sequencing of a patient's
genome, Sequenced libraries can be prepared by capture or by
amplicons. Both methods are efficient for the detection of single-
nucleotide variants or short indels, however only a few tools are
available for the detection of large deletions or duplications, espe-
cially with amplicon sequencing data, such as Cov'Cop and Cov-
CopCan [7,8]. Molecular diagnosis being an essential step of
patient care, we believe it is crucial to improve the detection of
SVs to increase the rate of positive diagnosis by using several bioin-
formatics approaches to analyze NGS data.

By presenting the diagnosis of a specific patient harboring a periph-
eral neuropathy, we show here how it is important to look for all kind
of variants to provide an accurate diagnosis to the patients. Indeed one
mutation could hide another one, such as Structural Variant.

2, Material and methods
2.1. Patients

Our current study focused on a family with two cases of periph-
eral neuropathy: Patients A (propositus) and B (affected brother),

2001-0370{@ 2020 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
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both with learning disabilities. Patient A is a 19 year-old man, pre-
senting peripheral neuropathy (EMG: abolished sensitive potential
and altered motor velocities, with elongated distal latencies and
altered F-waves - Median nerve conduction velocity: 38 m/s). He
also has pes cavus, progressive cerebellar ataxia and abolished
Achilles reflex. His brother, Patient B, is a 9 year-old boy, present-
ing peripheral neuropathy, exhibiting progressive walking difficul-
ties, fine motor skill disabilities, balance disorder with intermittent
falls and Achilles reflex decrease. We accessed to the DNA of the
four members of this family: Patients A (propositus) and B (af-
fected brother), and patients C and D, the unaffected father and
mother respectively.

2.2. DNA extraction

Blood samples were collected in EDTA tubes after providing
informed consent. The protocol was in accordance with the French
ethics legislation and the Declaration of Helsinki. Genomic DNA
was extracted by standard methods (Illustra DNA Extraction kit
BACC3, GEHC).

2.3. Sequencing

NGS strategy was performed on patient A using a 93-genes-
custom panel designed for CMT and associated neuropathies diag-
nosis (Supplementary Table 1). The amplified library was prepared
with lon P1 HiQ Template OT2 200 kit (Ampliseq Custom, Life tech-
nologies), sequenced on Proton sequencer (Life technologies), and
mapped to the human reference sequence hgl19/GHCh37. Muta-
tions of interest were verified by Sanger sequencing using forward
and reverse primer pairs.

2.4. Bioinformatics analyses

Variants detected by targeted NGS were annotated using lon
reporter software. They were evaluated with Alamut Mutation
Interpretation Software (Interactive Biosoftware, Rouen, France).
Databases such as EXAC Genome browser (http://exac.broadinsti-
tute.org), dbSNP135 (National Center for Biotechnology Informa-
tion [NCBI], Bethesda, Maryland, USA, http://www.ncbinlm.
nih.gov/projects/SNP/), ClinVar (www.ncbi.nlm.nih.gov/clinvar)
and HGMD professional {www.hgmd.cf.ac.uk) were also screened.
Cov'Cop and CovCopCan, interactive powerful software, were used
to detect Copy Number Variations (CNV) [7,8]. Briefly, using the
read depth value of each amplicon, these software simultaneously
analyze all the patients of the run. The algorithm is based on the
concept that in common cases, both alleles have to be similarly
amplified within each amplicon. Several normalization steps,
guided by carefully chosen references amplicons, permit to com-
pute a score for each amplicon. Theoretical score of 1 is the normal
case while low (<0.5) or high (>1.5) values respectively reveal dele-
tions or duplications. Cov’Cop and CovCopCan were used with the
default settings, with all options active and we defined a minimum
threshold of three successive amplicons on the same chromosome
to highlight a CNV. For the tested patient, mean read depth value of
the 93 tested genes was 1624 X and the mean value for the 78
amplicons covering SACS was 660 X (minimum: 64 X and maxi-
mum: 2603 X). The coverage of SACS was 100%.

2.5. Quantitative real-time Q-PCR
Primers were designed in exon 9 and 10 of SACS gene and in
exon 1 of Albumin gene, chosen as reference gene. Rotor-Gene

SYBR Green PCR Kit (400) (©QIAGEN) was used following the stan-
dard protocol. Reactions were performed on the Corbett Rotor-
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Fig. 1. Family tree associated with Sanger sequencing of SACS exon 10.
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Fig. 2. Visualization of CovCopCan results. Each dot corresponds to an amplicon. The amplicons are distributed on the x-axis according to their genomic position, The y-axis
corresponds to the normalized values. Grey dots indicate a *normal” value, whereas red or orange dots indicate duplicated and deleted amplicons, respectively. A) Patient A
analysis in which one can see a partial deletion of SACS gene, highlighted in orange; B) A control sample analysis in which no deletion or duplication can be detected. {For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Gene 6000 Machine (© QIAGEN). The Ct values of each Real-Time
reaction were normalized, using Albumin as endogenous control
gene, and then compared to the normalized Ct values of three con-
trol samples.

3. Results
3.1. Detection of presumed homozygous mutation in SACS gene

Targeted NGS of Patient A DNA, revealed the presence of muta-
tion ¢.5744_5745delAT in exon 10 of SACS gene. This mutation
results in a frameshift, leading to truncated protein p.
His1915Argfs*19. This mutation is very rare (1/125568 in ExAc)
and is predicted as pathogenic in ClinVar. The normal allele has
not been sequenced suggesting the presence of mutation
€.5744_5745delAT at homozygous state, confirmed by Sanger
sequencing (Fig. 1-A). No other rare Single Nucleotide Variant or
short InDels has been detected in this patient. Mutations in SACS
have already been reported to be responsible of spastic ataxia of
Charlevoix-Saguenay, an early-onset neurodegenerative disease.
The transmission follows an autosomal recessive manner and
two mutations are expected in a patient.

3.2. Problematic familial segregation

Sanger Sequencing surrounding the mutation was then per-
formed on the affected brother B and on father C and mother D,
both asymptomatic. As expected, only the c.5744_5745delAT
mutation was detected in patient B (Fig. 1-B), heterozygous muta-
tion was detected in the father (Fig. 1-C), but no mutation was
detected in the mother (Fig. 1-D), showing that only the normal
allele could be sequenced in this case and suggesting the potential
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presence of a deletion of this area, that had to be defined more
precisely.

3.3. Detection of Structural Variant using CovCopCan

We then used the new CovCopCan software, a user-friendly
tool, based on the read-depth analysis of NGS data, that allows
the rapid and easily detection of Structural Variants (SVs) in inher-
ited diseases but also in Cancer [8]. Using CovCopCan, we identified
easily the presence of a heterozygous deletion in SACS gene
(Fig. 2A) in comparison to a control (Fig. 2B). We could also define,
thanks to CovCopCan, the boundaries of the deletion. Indeed, we
could see that amplicons on exon 9 were not deleted (value around
1 in CovCopCan) and that amplicons on exon 10 were deleted
(value around 0.5) (Fig. 3A and 3B). This new SV has never been
described (SV-GnomAD) and it could lead to the production of a
truncated protein.

3.4. Confirmation of Structural Variant and correct segregation

We confirmed the presence of exon 10 deletion in Patient A by
Real-Time qPCR. We investigated the other individuals of the fam-
ily: as expected, the affected brother and the mother presented the
exon 10 deletion, but not the father. Normal value has been
obtained for exon 9 in all the family members confirming that
the deletion does not overlap the first exons of SACS gene.

4, Discussion

We showed here the importance of complete bioinformatics
analysis of NGS data to perform an accurate diagnosis. In this fam-
ily, the presumed homozygous mutation ¢.5744_5745delAT has
been detected in SACS gene by classical variants detection software
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such as lon Reporter in Patient A. This conclusion was actually not
accurate. Indeed, Patient A presents in fact one allele with
€.5744_5745delAT mutation and one allele with a Structural Vari-
ation: a large deletion of SACS exon 10. This SV has been detected
thanks to CovCopCan Software, a new user-friendly tool allowing
the detection of Copy Number Variations (CNVs) in NGS data gen-
erated from amplicons sequencing.

Few user-friendly tools are easily usable for biologists and
geneticists to detect SVs, such as CNVs, in amplicons sequencing
data. In addition to CovCopCan, ExomeDepth [9], lonCopy [10],
DeviCNV [11], Cov'Cop [7], are also available and have to be tested
by the users to define their preferred tools to detect these SVs. We
believe tools detecting SVs, such as CNVs, have to be used system-
atically on NGS data analysis in addition to the classical variants
detection tools highlighting only Single Nucleotide Variants and
small indels.

However, it is important to notice that these tools using the
read-depth to detect CNVs, will not be able to detect easily SVs
such as inversion or translocation. To date, we do not know the
percent of CNVs responsible for inherited diseases in comparison
to others SVs, such as inversion or translocation, because all of
them were poorly detected until now. In addition, we do not know
the percent of pathogenic CNVs in comparison to SNVs or some
indels.

Nevertheless, we estimated in our cohort of 695 CMT patients
analysed by NGS using an amplicon targeted sequencing panel of
93 genes of Charcot-Marie-Tooth disease and associated neu-
ropathies, that CNVs were present in 107 patients (15.4% of the
patients), showing a large amount of CNVs in our cohort.
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Twenty-eight were small deletions (3-6 amplicons), 10 were large
deletions, 49 were small duplications and 20 were large duplica-
tions. We now investigate the pathogenicity of these new SVs
and we presented one of them in this article: a large deletion of
SACS exon 10, which appeared to be pathogenic.

Currently, in the diagnosis of peripheral neuropathy, we reach
between around 40% of positive diagnosis using only classical vari-
ants detection software highlighting SNVs or some indels. By using,
in addition, tools such as CovCopCan, allowing the detection of SVs,
such as CNVs, we hope to increase the rate of positive diagnosis for
our patients. Indeed, to date, a patient with a homozygous SV was
not diagnosed positively using the classical tools, this was also the
case for male patients harboring, for example, a deletion on X chro-
mosome gene, while these kind of SVs could be pathogenic muta-
tions. Thanks to CovCopCan, or equivalent tools, all these patients
will be diagnosed positively. Of course, CovCopCan can detect
CNVs on all the inherited diseases. This tool works on data gener-
ated from [on Designer (Life Technologies, CA, USA) as well as that
from lllumina DesignStudio (Illumina Inc., San Diego, CA, USA). The
user-friendly interface associated with our 2D visualization facili-
tates data exploration.

5. Conclusion

Structural Variants are probably underdiagnosed and should be
more looked for to improve inherited diseases diagnosis. It is cru-
cial for physicians to be aware that a potential homozygous varia-
tion can hide a Structural Variant. In addition, if no pathogenic SNV
was found by NGS sequencing, SVs should be systematically inves-
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tigated. Detection of such variants would then help to better
understand the physiopathology involved in inherited diseases,
in order to develop, in fine, therapeutic approaches.
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Conclusion

We reported here a family case of peripheral neuropathy, whose diagnosis was complicated by the
unexpected genetic set-up. If we had limited our analysis to single-nucleotide mutations and small
indels, obtained from NGS data, we would definitely identify the ¢.5744 _5745delAT mutation, in
SACS, as the only cause of the pathology. With this example, we wanted to show how, sometimes, a
restricted molecular analysis, can lead to a partial, or incorrect, diagnosis. We think that this is a
widespread phenomenon, partially responsible for several undiagnosed clinical cases of peripheral
neuropathies (Mortreux et al. 2020). The routine employment of bioinformatics tools, as Cov’Cop

and CovCopCan, could significantly help to overcome the diagnostic challenge.
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Article 3 - One Multilocus Genomic Variation is responsible for a
severe Charcot-Marie-Tooth axonal form: a singular case report

Article under review in Brain Sciences

The occurrence of multiple mutations, in different genomic loci, is rarely described in peripheral
neuropathies. In CMT, two disease-inducing mutations, at most, have been occasionally reported for
the same patient. In this work, we presented one case of peripheral neuropathy associated with
three mutations in three different CMT-genes. In this family (described as Family 2, in Materials and
Methods, Chapter 1), the daughter (patient 2-B) had a more severe CMT2 form, with signs of mental
retardation and learning problems. Her mother (patient 2-A) presented classical motor and sensory
deficit. Three different strategies were combined to assess the correct molecular diagnosis. First,
targeted NGS revealed, only in the daughter, the heterozygous p.Arg468His mutation in MFN2, not
explaining, however, the mother’s phenotype. Cov’'Cop analysis detected the complete heterozygous
duplication of AARS1 gene, in the two affected subjects, but also in the unaffected sisters of patient
2-A (subjects 2-D and 2-E). Lastly, WES analysis allowed the identification, exclusively in patients 2-A
and 2-B, of the heterozygous missense mutation ¢.754C>T (p.Arg252Trp) in MORC2.

Three different mutations (MORC2, MFN2, AARS1) were, therefore, present in patient 2-B, the more
affected subject, two mutations (MORC2, AARS1) in patient 2-A, only one mutation (AARS1) in two
unaffected family members. We can consider that the MORC2 mutation is, presumably, the main
cause of CMT in the Family 2, while the MFN2 mutation may participate in aggravate the 2-B
pathological state, as already described in previous works. The role of AARS1 duplication rests
unclear.

In this clinical case, the inconsistency between the genetic findings and the clinical manifestation led
us to test different approaches during the molecular diagnosis. Unfortunately, the molecular
exploration does not often take into account the “multilocus” possibility, overlooking further
genomic alterations which could participate in establishing the whole patient’s phenotype.
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One Multilocus Genomic Variation is responsible for

a severe Charcot-Marie-Tooth axonal form.
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Abstract: Charcot-Marie-Tooth (CMT) disease is a heterogeneous group of inherited disorders
affecting the peripheral nervous system, with a prevalence of 1/2500. So far, mutations in more than
80 genes have been identified causing either demyelinating forms (CMT1) or axonal forms (CMT2).
Consequentially, the genotype-phenotype correlation is not always easy to assess. Diagnosis could
require multiple analysis before the correct causative mutation is detected. Moreover, it seems that
approximately 5% of overall diagnosis for genetic diseases involves multiple genomic lodi,
although they are often underestimated or underreported. In particular, the combination of
multiple variants is rarely described in CMT pathology and often neglected during the diagnostic
process. Here, we present the complex genetic analysis of a family including two CMT cases with
various severities. Interestingly, Next Generation Sequencing (NGS) associated with Cov'Cop
analysis, allowing Structural Variants (SV) detection, highlighted variations in MORC2
(microrchidia family CW-type zinc-finger 2) and AARSI (alanyl-tRNA-synthetase) genes for one
patient and an additional mutation in MFN2 (Mitofusin 2) in the more affected patient.

Keywords: Multilocus disease; Charcot-Marie-Tooth; Diagnosis; CNV; NGS

1. Introduction

Charcot-Marie-Tooth (CMT) disease, the most common peripheral neuropathy, is a hereditary
disorder associated to numerous genomic mutations, which can occur in different genes and in
different loci of the same gene. Even if Next Generation Sequencing (NGS) strategies, like Whole
Exome Sequencing (WES) and Whole Genome Sequencing (WGS), are now largely used to
investigate human variations, CMT molecular diagnosis still remains difficult. Furthermore, Posey et
al., showed, on a wild range of genetic pathologies, that phenotypical manifestations are the result of
the combination of multiple genomic mutations in 4.9% of cases [1].

We describe here the genetic analysis of a family with two CMT2 cases: Patient A (mother),
characterized by axonal impairment, and patient B (daughter), with a more severe clinical condition.
NGS analyses associated with Cov'Cop analysis, allowing to detect Structural Variants (SV) [2],
showed that both of them present a known pathological mutation in MORC2 (microrchidia family
CW-type zinc-finger 2) and a never described AARSI (alanyl-tRNA-synthetase) duplication. In
addition, the more affected daughter had a third variation in MFN2 (Mitofusin 2).

Brain Sei. 2020, 10, x; doi: FOR PEER REVIEW www.mdpi.com/journal/brainsci
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With this clinical case report, we want to highlight how CMT disease may belong to multilocus
genetic pathologies. It could be relevant to take into account the possibility of a combined effect of
multiple genomic mutations in order to explain the high heterogeneity of this complex clinical
condition. Until now, this aspect has been poorly explored in CMT, often inducing uncompleted
diagnosis and complicating the understanding of correlation between the genomic modifications
and the phenotypic manifestations.

2. Case presentation

This study focused on a large family with two cases of CMT2 (Figure 1). Ethics approval was
obtained from the ethic committee of Limoges University Hospital: N 386-2020-42, as well as the
informed consent of all participants. This study was performed in accordance with the Declaration
of Helsinki. We accessed to the DNA of five members of this family who were clinically examined by
a neurologist. Patients A (mother) and B (daughter) exhibited neuropathic disease phenotypes, but
not individuals C, D, and E, the maternal grand-mother and the maternal aunts of patient B,
respectively. Patient A is a 58-year-old woman of French origin an atypical asymmetric proximal
and distal neuropathy. Her symptoms started at the age of two with gait disturbances, which
progressed to a complete loss of ambulation at 43 years old. Clinically, the deficit affected the
proximal and distal regions and the upper and lower limbs equally but very asymmetrically. The
nerve conduction study revealed an axonal asymmetric sensory and motor neuropathy (Table 1).
Median motor nerve conduction velocity (MNCV) was 40 m/s. The clinical history of patient B is
slightly different from those of her mother. Patient B, a 25-year-old woman, experienced her first
difficulties in walking at the age of 18 months, followed by learning problems and signs of mental
deficiency in the childhood. Medical examination revealed an asymmetric distal predominant
sensory and motor deficit of upper and of lower limbs, prevalent on the left side. Mild muscular
atrophy was observed in both hands in association with a dystonic disorder in the finger. The
examination confirmed the presence of cerebellar ataxia, with a nystagmus. There were no
pyramidal signs, no diaphragmatic paralysis, no thoracic deformity or vocal cords involvement. The
asymmetry of the axonal sensory and motor neuropathy observed for patient A was confirmed in
the daughter (Table 1). Encephalic MRI showed mild vermian atrophy, without cerebellar defects.
Nystagmus was also present. No clinical signs have been observed in the other family members (C,
D, and E).

| O

5 6606

Figure 1. Family pedigree: the affected members are marked with black symbols.
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Table 1. Neurophysiological recordings of patient A and patient B (Amp: amplitude; CMAP:
compound motor action potential; CV: conduction velocity; NR: no response; SNAP: sensory nerve
action potential).

Subjects Peroneal Sural Median Ulnar
Right Left Right Left Right Left Right Left
CMAP CMAP SNAP SNAP CMAP cv SNAP CMAP cv SNAP CMAP SNAP CMAP SNAP
Amp(mV) | Amp(mV) | Amp (V) | AmpV) | Amp(mv) (m/s) Amp (V) | Amp(mv) | (m/s) Amp (V) | Amp(mV) [ Amp V) | Amp(mV) | Amp(uv)
Patient A 05 05 NR NR 09 50 15 21 45 25 23 23 13 NR
Patinet B 27 NR NR NR 47 50 32 32 45 28 41 12 57 10

3. Materials and Methods

3.1. DNA extraction

Blood samples were collected in EDTA tubes. Genomic DNA was extracted by standard
methods (Illustra DNA Extraction kit BACC3, GEHC).

3.2. Sequencing

First, NGS strategy was performed on patients A and B using a 92-genes-custom panel
designed for CMT and associated neuropathies diagnosis (Supplementary data). The amplified
library was prepared with Ion P1 HiQ Template OT2 200 kit (Ampliseq Custom, Life technologies),
sequenced on Proton sequencer (Life technologies), and mapped to the human reference sequence
hg19/GHCh37. Secondly, for WES, performed for patients A, B and E, libraries were prepared with
NimbleGenSeqCapEZ-Library-SR-kits (Roche) and sequenced on a NextSeq-500-System
(Ilumina®). Mutations of interest were verified by Sanger sequencing using forward and reverse
primer pairs.

3.3. Bioinformatics analysis

Variants detected by targeted NGS and by WES were annotated using Ion reporter and
Annovar software respectively. They were evaluated with Alamut Mutation Interpretation Software
(Interactive Biosoftware, Rouen, France). Databases such as ExAC Genome browser
(http://exac.broadinstitute.org), dbSNP135 (National Center for Biotechnology Information [NCBI],
Bethesda, Maryland, USA, http://www .ncbinlm.nih.gov/projects/SNFP/), ClinVar
(www.ncbi.nlm.nih.gov/clinvar) and HGMD professional (www.hgmd.cf.ac.uk) were also screened.
Cov’Cop and CovCopCan, two interactive powerful software, were used to detect Copy Number
Variations (CNV) [2] [3].

3.4. Array-comparative genomic hybridization (aCGH)

Array Comparative Genomic Hybridization (aCGH) was performed using G3 Human CGH
microarrays 8x60K (Agilent Technologies) following the manufacturer’s instructions. Agilent
CytoGenomics software (Agilent Technologies) was used to visualize, detect and analyze copy
number changes.

3.5. Quantitative real-time PCR (Q-PCR)

q-PCR reactions were carried out on genomic DNA extracted from blood samples. Primers were designed in
exon 8 of AARSI gene and in exon 1 of Albumin gene, chosen as reference gene. Rotor-Gene SYBR-Green PCR
Kit (400) (©QIAGEN) was used following the standard protocol. Reactions were performed on the Corbett
Rotor-Gene 6000 Machine (© QIAGEN). The Ct values of each Real-Time reaction were normalized, using

Albumin as endogenous control gene, and then compared to the normalized Ct values of three control samples.
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The experiment was performed in triplicate. The normalized raw data of samples was analyzed by Student’s

t-test, comparing them with the normalized raw data of the controls. All results were statistically significant.

4, Results

Targeted NGS strategy revealed, only on patient B, a heterozygous c.1403G>A mutation in
MFN2 gene (NM_014874.3), resulting in the amino acidic substitution p.Arg468His. No other
potentially pathological mutation has been detected for patient B by targeted NGS. Sanger
sequencing confirmed the presence of MFN2 ¢.1403G>A mutation in patient B, and excluded it in the
other family members (Figure 2A). Given the unclear role of MNF2 p.Arg468His in CMT
pathophysiology and its absence in the affected subject A, we expanded our study looking for CNV
with the bioinformatics tools Cov'Cop and CovCopCan [2][3]. We detected, among the 92 sequenced
genes investigated, a complete duplication of AARSI gene (NM_001605.2) in both patients [ClinVar
accession number: SCV001167105]. AARSI duplication was confirmed by aCGH which allowed to
identify a 231 kb duplication, whose start and stop coordinates were identified in positions
chr16:70185757 and chr16:70416579, respectively. Other genes were included in the detected
duplication and they are listed in Supplementary Table 2. Although no neuropathic clinical cases
caused by AARSI duplication have already been reported, we investigated the unaffected
individuals of the same family by Real-Time qPCR. There was no AARS1 duplication in subject C,
but it was present in unaffected subjects D and E, suggesting that AARST duplication by itself is not
the major cause of CMT disease of patients A and B (Figure 2B).
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Figure 2 — Molecular analysis of patients A to E. A) Sanger Sequencing of MFN2 gene regarding the
variation ¢.1403G>A, p.Arg468His. B) Real-Time qPCR results for AARS1 duplication. The expected
ratio is approximately 1.5 in case of duplication (three copies versus two copies) or 1 if there are no
copy number variations. Plot report ratios’ means and standard deviations for each subject. C)
Sanger sequencing analysis of MORC2 gene regarding the variation ¢.568C>T, p.Arg190Trp.

To elucidate the genetic cause of the disease, we performed WES of three different members of
the family: subjects A, B, and E, who is the mother of six unaffected children, reinforcing the
hypothesis that she does not carry a pathological mutation responsible for CMT disease in this
family. Interestingly, WES data showed a heterozygous missense mutation ¢.568C>T (p.Argl90Trp)
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in MORC2 gene (NM_014941), which was detected in the affected individuals (A and B) but not in
the healthy one (E). ¢.568C>T is a known MORC2 mutation, already described in literature [4].
Sanger sequencing confirmed the presence of the MORC2 mutation in subjects A and B, and its
absence in subjects C, D and E. Sanger sequencing results are reported in Figure 2C. The results of
the three genetic variants are summarized in Figure 3.

.« omoC

wt //wt
AARST  wt /[ wt
MORC2 ¢.754C>T [/ wt
wt //wt

AARS1 dup [ wt

Y YslcYolclocone

MORC2 ¢.754C>T /[ wt
[lwt

AARS1 dup //wt

0 07O

MORC2 wt /[ wt MORC2 wt /[ wt
wt //wt wt //wt
AARS1 dup /f wt AARS1 dup [/ wt

Figure 3: Family pedigree and summary of genetic results. The affected members are marked with
black (more severe condition) or grey (less severe condition) symbols. Patients tested are indicated
by letters A to E and their genotypes specified below (wt: wildtype; dup: duplication).

5. Discussion

The role of the three genetic variations (AARS1 duplication, MORC2 and MFN2 mutations) in
the clinical manifestation of CMT disease in our patients appears to be complex, but does not seem
so rare according to Posey et al. who found that 4.9% of their diagnosed patients with genetic
pathologies presented two or more disease loci [1].

MORC2 belongs to a family of transcriptional regulators conserved in eukaryotes and,
interacting with the Human Silencing Hub (HUSH) complex, it participates in heterochromatin
regulation [5,6]. Li et al. described that, when radiation-induced double-strand breaks occur, MORC2
protein interacts with DNA repair processes to induce chromatin relaxation [7]. Concerning its
pathogenic involvements, it seems that altered MORC2 expression or function could promote tumor
growth, invasion, and metastasis in several cancers [8,9]. However, MORC2 mutations are usually
associated with axonal Charcot-Marie-Tooth disease type 2Z. [4,10]. Classically, this
MORC2-dependent form of CMT has an early age of onset and it is characterized by distal weakness
of the lower limbs, muscular hypotonia and atrophy, foot deformities, such as pes cavus, sensory
impairment, and areflexia. These clinical signs result in difficulty in walking and the need of canes or
wheelchair. The MORC2 heterozygous mutation c.568C>T (p.Argl90Trp), is, sometimes, also
reported as ¢.754C>T (p.Arg252Trp), based on the isoform encoded by the NM_001303256 MORC2
transcript. It has been described for the first time in 2016 [4], and it appears as a hot spot, located
within the GHL-ATPase domain of the MORC2 protein [4,10]. It seems to hyperactivate
HUSH-mediated silencing, whereas its effect on ATPase activity remains unclear [5,11]. Moreover,
in patients-derived fibroblasts, p.Arg190Trp alters the transcriptional regulation of more than 800
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target genes, like ZNFs, homeobox genes, helicases and metallothionein genes [11]. According to our
findings and previous results, the heterozygous MORC2 mutation ¢.568 C>T is likely the main cause
of the axonal neuropathy of patient A.

However, patient B was characterized by a more severe phenotype than patient A. This
phenotypic difference may be related to the MFN2 missense mutation c.1403G>A (p.Arg468His),
which was found only in the more affected daughter (B). MFN2 gene encodes a mitochondrial
membrane protein which plays a crucial role in mitochondrial fission and mitochondrial pathway’s
organization. The amino acidic substitution p.Arg468His is located between the transmembrane
domain and the C-terminal coiled coil region of the MFN2 protein [12]. It has already been described
as the causative mutation of the axonal CMT2A, but its pathogenicity rests unclear and in ClinVar
database its interpretation is mentioned as conflicting. Engelfried et al. reported it in two patients,
the first with muscular atrophy and sensory loss, the second with Parkinson and distal neuropathy,
but also in an asymptomatic individual [12]. This MFN2 variation was also found in two members of
a Spanish family with mild CMT phenotype and discrete symptoms of neuropathy [13]. Given the
highly variability of the associated phenotype and its uncertain pathogenicity, functional studies
were conducted on human fibroblasts carrying the p.Arg468His substitution, demonstrating a
mitochondrial coupling defect and a reduced ATP production [13]. In 2011, p.Arg468His was
reported to be a disease-causing mutation in association with GDAPI nonsense mutation p.GIn163*
[14]. The clinical condition of the patient was more complex than that of her brother, who bore only
the MFN2 mutation. As well as MFN2 and GDAPI, the simultaneous occurrence of two
disease-causing mutations in CMT pathology (digenic inheritance) has been described for other
combinations of genes, sometimes associated with intrafamilial variability [15-17]. This corroborates
the idea that, even if the MFN2 p.Arg468His mutation is not the primary genetic cause, it may
impact the symptomatology’s severity of patient B, in our clinical case. The role of MFN2
p-Arg468His mutation as modifier allele, in CMT, has already been suggested in a previous
publication [18].

Moreover, in our family, we detected a third variation, the complete duplication of AARSI
gene, a SV never described before and not recorded in GnomAD database. AARSI encodes the
alanyl-tRNA-synthetase, the enzyme that catalyzes proper attachment of Alanine to its tRNA. In
2010, Latour et al. showed for the first time that an AARST missense mutation was responsible for
axonal Charcot-Marie-Tooth disease in a French family [19]. Further AARST pathological mutations
were then reported to be associated to CMT disease [20,21]. As well as AARSI, several other
tRINA-synthases were shown to be involved in peripheral neuropathies. In these cases, dominant
mutations resulted in pathological mutant proteins, and toxic gain-of-function effects, or in protein’s
loss of function [22]. However, overexpression of wildtype tRNAs has never been described to cause
CMT disease and overexpression of wildtype GARS1 in mice showed no pathological effect [23]. In
our case, the presence of AARSI duplication also in two unaffected family members, suggests that
the overproduction of AARS1 enzyme would not alter the translation process and is not enough by
itself to induce CMT. However, we cannot exclude that AARSI duplication, just like MFN2
mutation, may modulate the phenotypic manifestation of this CMT axonal form, acting as “modifier
allele”. In recent years, the role of modifier alleles has been reported and analyzed in some cases of
CMT disease [24,25].

6. Conclusions

In summary, in our study, the MORC2 mutation (p.Argl90Trp) alone is likely responsible for
axonal CMT disease (patient A). When the MFN2 mutation (p.Arg468His) is associated with it, their
effects are probably combined in a synergistic way, resulting in a more severe phenotype with
additional symptoms (patient B). Lastly, an additional pathogenic role of the newly described
AARS] duplication cannot be excluded. This genomic analysis shows how it could be complex to
investigate a family clinical case if diagnosis is not complete and genetic variations are only partially
detected. We believe that, for heterogeneous diseases like Charcot-Marie-Tooth, a more accurate
investigation supported by Next Generation Sequencing technologies, would promote the discovery
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of new genes-associations, so the understanding of further molecular interactions and impaired
mechanisms in this pathology.

Supplementary Materials: The following are available online at [www.mdpi.com/xxx/s1]. Supplementary
Table 1: 92-gene panel used for NGS. It includes the 44 known CMT genes, 27 genes involved in HSN
(Hereditary Sensitive Neuropathy) and HMN (Hereditary Motor Neuropathy) and 21 other genes of interest
involved in neuropathies of differential diagnosis [R = recessively-inherited; D = dominantly-inherited].
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Supplementary Table 1: 92-gene panel used for NGS. It includes the 44 known CMT genes, 27 genes
involved in HSN (Hereditary Sensitive Neuropathy) and HMN (Hereditary Motor Neuropathy) and

21 other genes of interest involved in neuropathies of differential diagnosis [R =

recessively-inherited; D = dominantly-inherited].
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NGF

PDK3
PLEKHGS
PMP22
POLG
PRPS1
PRX
RAB7A
REEP1
SBF1
SBF2
SCNSA
SCN10A
SCN11A

SH3TC2
SLC12A6
SLC5A7
SMAD3
50X10
SPTLCI

SPTLC2
SURF1

TRIM2
TRPV4
LLL
TUBB3
UBQLN2

Supplementary Table 2: All genes included in the detected chromosome 16 duplication (from

chr16:70185757 to chr16:70416579) (bp: base pair).

12 of 12

X

_*_______
*________
——_*—__——
_*_______
““*““““““
_______*_
______*__
____*____
________*
__—_—_—_*
______*__
TFG ___?_____
________*
———_*__—_
________*
**_______

Gene stable ID Gen:;:::: . ‘Gene name Gene start (bp) Gene end (bp) Gene description

pyruvate dehydrogenase phosphatase
ENSG00000090857 |ENSG00000090857.9 PDPR 70147529 70195203 y subunit

(C-type lectin domain family 18,
ENSG00000157335 |ENSG00000157335.15 CLEC18C 70207225 70221264 |member C
ENSG00000223496 |ENSG00000223496.1 EXOSC6 70284134 70285833 ¢ component 6
ENSG00000090861 |ENSG00000090861.11 AARS1 70286198 70323446 |alanyl-IRNA synthetase

DEAD (Asp-Glu-Ala-Asp) box
ENSG00000157349 |ENSG00000157349.11 DDX19B 70323566 70369186 |polypeptide 19B

DEAD (Asp-Glu-Ala-Asp) box
ENSG00000168872 |ENSG00000168872.11 DDX19A 70380732 70407286 |polypeptide 19A

ST3 beta-galactoside alpha-2,3-
ENSG00000157350 |ENSG00000157350.8 ST3GAL2 70413338 70473140 |sialyltransferase 2
ENSG00000157353 |ENSG00000157353.12 FUK 70488324 70514177 |fucokinase

‘component of oligomeric golgi complex
ENSG00000103051 |ENSG00000103051.14 COG4 70514471 705574684
ENSG00000189091 |ENSG00000189091.8 SF3B3 70557691 70608820 |splicing factor 3b, subunit 3, 130kDa
ENSG00000157368 |ENSG00000157368.6 L34 70613798 70694585 |interleukin 34
ENSG00000132613 |ENSG00000132613.10 MTSS1L 70695107 70719969 |metastasis suppressor 1-like
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Conclusion

In this study, we demonstrated that multiple genomic mutations may be simultaneously involved in
inducing CMT disease. The phenotypic heterogeneity observed in Family 2 is probably related to a
different gene-association in different family members, even if molecular mechanism are still
unknown. As shown for other genetic diseases (Posey et al. 2017; Karaca et al. 2018), we think that
multilocus genomic mutations may be more common than expected, also in CMT pathology, and
their occurrence must be more frequently considered during the molecular diagnosis. Given the huge
number of data we can obtained from NGS analysis, and the increasing number of bioinformatic

tools, this phenomenon will be more and more explored in next future.
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Cells from Induced Pluripotent Stem Cells from
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Once examined the genetic aspects of peripheral neuropathies, molecular mechanisms associated
with genomic mutations need to be explored, using cellular models. In particular, we created a
cellular model of motor neurons (MN) for an axonal form of CMT disease (CMT2H), caused by
homozygous codon-stop mutations in GDAP1 gene. In the study reported here, we present the
protocol we have developed to generate MN from human induced-pluripotent stem cells (hiPSC), for
five unaffected control subjects, and two CMT-patients, one (patient 3-A) carrying the nonsense
€.581C>G (p.Ser194*) mutation in GDAPI1, the other (patient 4-A) carrying the nonsense c.487C>T
(p.GIn163*) mutation, always in GDAP1 gene. First, we obtained dermal fibroblasts from skin
biopsies of the seven subjects, and we cultivated and reprogrammed them into hiPSC, employing the
strategy elaborated by Pr Yamanaka, in 2006 (Takahashi and Yamanaka 2006). hiPSC were then
selected, amplified, and checked for all quality controls, before being differentiated in MN. The
differentiation protocol is presented in detail in this article. It has been established looking at
molecular pathways involved in embryonic development, with the aim to choose the main MN-
inducing factors, to mimic, in vitro, the same differentiation events. This protocol has allowed to
obtain, from hiPSC, 100% cells expressing neuronal markers and 80% spinal MN markers. It requires

20 to 30 days, and it is easy to reproduce.
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Abstract: Modelling rare neurogenetic diseases to develop new therapeutic strategies is highly
challenging. The use of human-induced pluripotent stem cells (hiPSCs) is a powerful approach
to obtain specialized cells from patients. For hereditary peripheral neuropathies, such as
Charcot-Marie-Tooth disease (CMT) Type II, spinal motor neurons (MNs) are impaired but are very
difficult to study. Although several protocols are available to differentiate hiPSCs into neurons,
their efficiency is still poor for CMT patients. Thus, our goal was to develop a robust, easy, and
reproducible protocol to obtain MNs from CMT patient hiPSCs. The presented protocol generates MNs
within 20 days, with a success rate of 80%, using specifically chosen molecules, such as Sonic Hedgehog
or retinoic acid. The timing and concentrations of the factors used to induce differentiation are
crucial and are given hereby. We then assessed the MNs by optic microscopy, immunocytochemistry
(Islet1/2, HB9, Tujl, and PGP9.5), and electrophysiological recordings. This method of generating
MNs from CMT patients in vitro shows promise for the further development of assays to understand
the pathological mechanisms of CMT and for drug screening.

Keywords: induced pluripotent stem cells; hiPSC; spinal motor neurons; cellular models; peripheral
nervous system; Charcot-Marie-Tooth; CMT; peripheral neuropathy

1. Introduction

Peripheral nerves are critical for the functioning of the nervous system, as they forward information
to the spinal cord and encephalon and provide the periphery (muscles, organs, skin, blood vessels)
with adapted signals. As such, peripheral nerve illnesses constitute an important source of medical
problems and a large group of neurological diseases of various origins. Among them, hereditary
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peripheral neuropathies, such as Charcot-Marie-Tooth disease (CMT) disease, have a prevalence
of 1:2500 and often affect patients during their entire lives. The use of next-generation sequencing
has tremendously improved the molecular diagnosis of these diseases in recent years by efficiently
determining the mutations involved. However, even when a gene mutation is identified, the molecular
and cellular pathways involved in the pathophysiology remain difficult to decipher. Because of the
numerous mutations and various genes involved, animal models are of limited utility and are highly
difficult to study, aside from the potential ethical problems. As an alternative, in vitro cellular models
appear to be a promising path for the expeditious development of therapeutic strategies.

In this context, human-induced pluripotent stem cells (hiPSCs) generated from patients, associated
with their ability to differentiate toward the cell type of interest, appear to be a potentially powerful tool,
asitis very difficult, if not impossible, to study live peripheral nerve cells. The work of Yamanaka et al.
on iPSCs opened the way to creating dedifferentiated cells and, later, to observing the behavior of
previously unattainable cells [1,2]. They showed that the reprogrammation of dermal fibroblasts using
non-integrative plasmids that included the Oct4, Sox2, KIf4, and I-Myc genes induces hiPSCs that can
be subsequently differentiated into many cells types [3]. The differentiation of hiPSCs into neuronal
cells is an essential step.

Several protocols have been developed to differentiate human embryonic stem cells (hESCs) [4,5]
or hiPSCs [6-10] into spinal motor neurons (MNs). In the peripheral neuropathy field and, in particular,
in CMT diseases, several groups have attempted to obtained spinal MNs [11] and more recently
differentiate hiPSCs into Schwann cells [12,13]. However, cells from patients are not always easily
reprogrammed and differentiated. Based on an extensive review of the literature and results obtained
in our laboratory, we developed a robust and reproducible protocol to improve MNs differentiation of
hiPSCs obtained from CMT patients.

2. Materials and Methods

2.1. Cell Culture Media

iPSC medium: KO-DMEM (Life Technologies, Carlsbad, CA, USA), supplemented with
20% KnockOut Serum Replacement (Life Technologies), 1X MEM non-essential amino acids
(Life Technologies), 2 mM Glutamine (Life Technologies), 50 uM -mercaptoethanol (Life Technologies),
and 10 Ul/mL gentamycin (Life Technologies).

Differentiated medium: DMEM/F12 (Life Technologies), 2% B27 without vitamin A (Life Technologies),
5 pug/mL heparin (Sigma-Aldrich, Saint-Quentin Fallavier, France), and 100 uM (-mercaptoethanol
(Life Technologies).

Neural induction medium: 1:1 DMEM/F12 (Life Technologies) and Neurobasal A (Life Technologies),
1% N2 supplement (Life Technologies), 2% B27 without vitamin A (Life Technologies), and 100 uM
-mercaptoethanol (Life Technologies).

2.2, Experimental Design

2.2.1. Generation of hiPSCs

HiPSCs were obtained as previously described [14]. Briefly, human dermal fibroblasts, negative
for HVB, HVC, and HIV virus (Hospital virology department, Limoges, France) and mycoplasma
(MycoAlert mycoplasma detection kit, Lonza) were used to generate hiPSCs. Three plasmids (Plasmid
#6: pCXLE-hOCT3/4 shp53-F Addgene (Watertown, Massachusetts, USA), Plasmid #7: pCXLE-hSK
Addgene, and Plasmid #8: pCXLE-hUL Addgene) at 1 ug/mL were used to reprogram fibroblasts
into hiPSCs using a Nucleofector II device (Amaxa, Lonza AAD-10015, (Béle, Switzerland). Directly
after nucleofection, 100,000 cells were seeded on mitomycin mouse embryonic fibroblasts with culture
medium consisiting of DMEM GlutaMAX (Life Technologies) supplemented with 10% fetal bovine
serum (FBS) (Life Technologies) and 1X MEM non-essential amino acids (Life Technologies) and
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incubated at 37 °C in a water-saturated atmosphere with 5% CO;. At day 1, the medium was replaced
by the same culture medium supplemented with 10 Ul/mL gentamycin (Life Technologies). At day 4,
the culture medium was replaced with hiPSC medium and this medium changed every day up to day 10.
Then, hiPSC colonies were picked 2-4 weeks post-nucleofection. Fifteen days after nucleofection,
the morphology of the fibroblasts changed to form colonies with a typical morphology (Figure S1).
Approximately 40 colonies per patient or control were isolated for further expansion. HiPSC colonies
were cultivated on mitomycin mouse embryonic fibroblasts (CF 1 MEF 4M Mito C, TebuBio) seeded on
0.1% gelatin (G1393-100ML, Sigma-Aldrich, Merck). Every day, hiPSC colonies were cleaned to remove
the differentiated cells using a needle (26G, Dutscher, Brumath, France) and the culture medium was
changed with complete fresh hiPSC medium supplemented with 20 ng/mL FGF2 (fibroblast growth
factors). The hiPSCs were characterized at passage 15 (Figure S2, Appendix A).

The CMT?2 patients included in this study were two men of three and 23 years of age. The younger
patient carried a homozygous nonsense mutation in GDAPI (p.Ser194*, c. 581C>G). He developed a
severe form of CMT2 with multiorgan failure, leading to an early death at three years of age. The older
patient has a different homozygous nonsense mutation in GDAPI (p.GIn163%, c. 487C>T) and is
currently using a wheelchair. The first signs of the disease appeared during his childhood, with motor
problems observed more in the lower than upper limbs, followed by sensitive troubles. No response
was obtained when muscles were stimulated during an electromyogram. The healthy controls consisted
of three women and two men (ranging from 24 to 56 years of age) without peripheral neuropathy nor
any mutation in GDAPI, investigated by sequencing (data not shown).

2.2.2. Generation of Motor Neurons

The protocol is summarized in the scheme in Figure 1. At day 0, hiPSC colonies were
cut into homogenous squares using a StemPro® EZPassage™ (Life Technologies; Figure 2A).
Colonies were collected and suspended in 60-mm ultralow-attachment dishes (Corning Incorporated,
New York, NY, USA) in 5 mL hiPSC medium without FGF2. At day 1, the medium was changed
by sedimentation: dead cells were discarded with the supernatant, whereas sedimented cells were
transferred to a new 60-mm ultralow-attachment dish using 5 mL fresh iPSC medium. At day 3,
when embryoid bodies (EBs) are fully formed, differentiation medium was applied, extemporaneously
supplemented with 10 uM SB431542 (Tocris Bioscience, Minneapolis, MN, USA), 5 uM Dorsomorphin
(Sigma-Aldrich, Merck), 100 ng/mL FGF2 (PeproTech Inc., Rocky Hill, NJ, USA), and 10 ng/mL Noggin
(PeproTech Inc.). The culture medium was renewed daily up to day 5 and detached cells in the
supernatant were isolated by sedimentation and plated in a new dish as already described (Figure 2B).
From day 5, the cells required a specific coated-plate. Thus, the plate was incubated with 20 pg/mL
poly-L-ornithine (Sigma-Aldrich, Merck) for 4 h at 37 °C. Excess poly-L-ornithine in the dish was
discarded and the plate dried for 30 min at room temperature. After washing three times with sterile
water or saline buffer, the dish was dried at room temperature (opened under the hood). For the upper
coating, laminin (Invitrogen, Thermo Fisher Scientific) was diluted with fresh neural induction medium
(without supplement) to a final concentration of 20 ug/mL. The solution was added to cover the entire
dish surface and incubated overnight at 37 °C. On days 5-7, EBs were sequentially seeded on the 60-mm
coated dishes in 5 mL neural induction medium supplemented with 10 uM SB431542 (Tocris Bioscience),
5 uM Dorsomorphin (Sigma-Aldrich), and 10 uM retinoic acid (RA) (Sigma-Aldrich). Prior to treatment,
EBs needed to be of the same size, circular, smooth, and brownish, without black spots, to maximize the
efficiency of the protocol. Every two days, fresh supplemented neural induction medium was added to
the dish until “rosette” formation. Mature “rosettes” were observed on day 10 (Figure 2C).

“Rosettes” were isolated from the other cells using a simple needle to make the smallest squares
possible and collected in a tube containing a small volume of Dulbecco’s phosphate-buffered saline
(DPBS) to wash them. Trypsin solution (Gibco, Thermo Fisher) was added to facilitate cell dissociation.
After 5 min of incubation at 37 °C in a water-saturated atmosphere and 5% CO», "rosettes” were gently
mechanically dissociated under the microscope until a homogeneous cell suspension was obtained.

Federica Miressi | Ph.D. Thesis | University of Limoges | 2020 191



Brain Sci. 2020, 10, 407 4of 14

Then, fresh neural induction medium containing 10% FBS was added to the suspension to stop enzyme
activity. After centrifugation at 200x g for 5 min, the supernatant was discarded and the cells plated at
100,000 cells per cm? in a 96- or 48-well plate coated with 20 pg/mL poly-L-ornithine and 3 ug/mL laminin
(Figure 2D). The neural induction medium was supplemented with 100 ng/mL Sonic Hedgehog (Shh)
(PeproTech Inc.), 5 uM RA, 10 uM Y-27632 ROCK inhibitor (Calbiochem, Billerica, MA, USA), 10 ng/mL
BDNF (brain-derived neurotrophic factor), 10 ng/mL GDNF (glial cell line-derived neurotrophic factor),
and 10 ng/mL IGF-1 (insulin-like growth factor-1) (PeproTech Inc.) to generate neuronal precursors.
This supplemented culture medium was renewed every two days, except for the Y-27632 ROCK inhibitor,
which was added only after passing the cells. The neural progenitors needed to be passed every
3—4 days using the trypsin method, as already described. Neuronal precursors were plated at a density
of 20,000 to 40,000 cells/cm? in the same supplemented medium to generate completely differentiated
MNs. First, neurites were observed 24 h after plating (Figure 2E,F). Neural precursors may also be
stored by freezing at this stage. Briefly, they were collected as described, centrifuged for 5 min at 200 g
and cryopreserved in CryoStor CS10 (Stemcell Technologies, Grenoble, France) added to the cell pellet.
The frozen vials were then stored long-term in standard liquid nitrogen storage containers.

WIPSC Medium
KO-DMEM
KSR 20%
Gentamyein 0.1 % 10 M SBI31542
VEM 1% oy Domsamarphin 1M SBa3152 +5 M Retinoic Acid -+ 10 ngiml, BDNF
Smercaproéianal i,1% 100 ngim. FGE, +5 4M Dorsomorphin +100ngmLSHIT ¢ 10 1gmLICF1
Glutamax 1% 10 bual, N + 16 pM Retinaic Acid + 10 pM ¥-27632 + 10 ngmL GDNF .
Differcatinted Medinm ) s B N X
MEMAI2 hiPSC Medium Differentiated Nevial Mediam sl
327 without vit A 2% without FGF, Medium
Heparin § peml S "
i poliiR a0 a3 Js diz Muotor neurons
P ™
Neural Medium - -O‘f %&r ) E’%ﬁ, %f&g/ 230
DMEMFI2 : Neurobasal E« stz a — ; = (T e
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Figure 1. Schematic representation of motor neuron induction with all media and factors.

Figure 2. Induction of spinal motor neurons. HiPSc colonies (A) were cut into large squares to generate

EBs (embryoid bodies) (B) and grown in classical medium for three days. EBs evolved in differentiated
medium for two days and were seeded on a poly-L-ornithin/laminin plate in neural induction medium
up to the apparition of rosettes (C, red arrows). Rosettes were gently manually removed and dissociated.
Single cells were seeded on poly-L-ornithin/laminin dishes at 100,000 cells/cm? to generate neuronal
precursors (D). Neuronal precursors were then dissociated and seeded at 20,000 to 40,000 cells/em?
(E) to generate motor neurons. The proportion of motor neurons increased from 10% to 80% following
maturation from day 15 to day 20 ((F) 4’ ,6’-diamidino-2-phénylindole dihydrochloride (DAPI) in blue,
PGP9.5 in green, and Islet cocktail in red). Scale bar = 50 um.
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2.3. Immunostaining

Staining was performed to characterize hiPSCs and effective neuronal differentiation. Cells were
fixed in 4% paraformaldehyde (Sigma-Aldrich, Saint-Quentin Fallavier, France) for 10 min at room
temperature and rinsed three times with 1X DPBS for 5 min. The cells were permeabilized with
0.2% Triton X-100 (Sigma-Aldrich, Saint-Quentin Fallavier, France) and 3% bovine serum albumin
(BSA) in 1X DPBS for 1 h at room temperature. Cells were washed and incubated with primary
antibodies in 3% BSA overnight at 4 °C (Table 1). Cells were subsequently labeled with the appropriate
fluorescently-tagged secondary antibodies, Alexa fluor 488 (green fluorescence) and Alexa fluor
594 (red fluorescence) (Molecular Probes, Eugene, OR, USA). Cells were then counterstained with
1 mg/mL 4’,6’-diamidino-2-phénylindole dihydrochloride (DAPI, Sigma-Aldrich) to stain the nuclei.
Cells were observed with a fluorescence microscope (Leica DM IRB, Nanterre, France) and a confocal
microscope LSM 880 (Zeiss, Germany). Images were obtained using NIS Element BR and Zen software
and treated with image ] software (NIH, Bethesda, MD, USA).

Table 1. Primary antibodies used for human-induced pluripotent stem cell (hiPSC), neuron, and motor
neuron characterization.

Antibody Company Cat Num Species/Type Dilution
Pluripotency
Nanog Abcam 130095632 Rabbit poly IgG 1:100
Oct3/4 Santa Cruz Biotech 5¢-5279 Mouse Mono [gG2B 1:100
Sox2 Chemicon AB5603 Rabbit poly IgG 1:100
Spontaneous Differentiation in Three Germinal Layers
Pax6 Covance PRB-278P Rabbit poly IgG 1:100
«SMA DAKO M0851 Mouse I[gG2A 1:500
Sox17 R&D AF1924 Goat IgG 1:100
Neuronal and Motor Neuronal
Tujl R&D MAB1195 Mouse Mono IgG 1:500
PGP9.5 Ultraclone Ra95101 Rabbit poly IgG 1:500
HB = MNR2 DSHB 81.5C10 Chicken 1:100
Isletl DSHB 40.2D6-c Mouse Mono IgG 1:25
Isletl/2 DSHB 39.4D5-c Mouse Mono IgG 1:25
ChAT Chemicon AB144P Goat IgG 1:20
Other
Ki-67 Leica NCL-L-Ki67-MM1 Mouse Mono IgG 1:200

2.4. Electrophysiology

Cells were covered with an approximately 1.5-mm-thick fluid layer (Saline solution, Live Cell
Imaging Solution, Life Technologies) and placed under an inverted microscope (IX70, Olympus,
Shinjuku, Tokyo, Japan). Cells were illuminated with an upright microscope condenser and a 4x
objective was used to distinguish the neuronal shapes. For electrophysiological recordings, patch
electrodes were generated by pulling borosilicate capillary glass (1.5/0.75 mm OD/ID, 1B150F-4,
WPI, Sarasota, FL, USA) associated with a microelectrode filled with an intracellular solution with
a resistance between 3 MOhm and 4 MOhm. The solution composition was: 140 mM K-gluconate,
10 mM HEPES, 2 mM Mg-ATP, and 1.1 EGTA, with the pH adjusted to 7.3 with KOH; the sodium
channel recording solution composition was: 135 mM Cs-gluconate, 5 mM CsF, 10 mM HEPES, 2 mM
Mg-ATP, and 1.1 EGTA, with pH adjusted to 7.3 with CsOH. All electrophysiological recordings were
performed using a microelectrode amplitier (PC-ONE Patch/Whole Cell Clamp, CORNERSTONE
Series, Dagan, USA) in the voltage-clamp mode, with a holding potential of —70 mV in the whole-cell
configuration. Acquired transmembrane current alterations were digitized online at 20 kHz after
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passing through a low-pass Bessel filter with the setting at 10 kHz using data acquisition hardware
(DigiData 1440A; Molecular Devices) and software (Whole Cell Electrophysiology Analysis Program
V4.8.2, (c) John Dempster, University of Strathclyde 1996-2014). Leak current and stray capacitance
were instrumentally pre-compensated and residual capacitance and related artifacts were subtracted
using the P/N method. Electrophysiological recordings were performed using the Stimulus Protocol
mode and processed offline using data analysis software (Whole Cell Electrophysiology Analysis
Program V4.8.2, (c) John Dempster, University of Strathclyde 1996-2014, and OriginPro 8). Whole-cell
currents were measured in response to the voltage ramp command protocol from —80 mV to 50 mV
(with a rate of voltage augmentation of 0.65 mV/msec) (1 = 4).

3. Results

3.1. Obtaining iPSCs from Patients

We launched this study to define a robust protocol to obtain and differentiate cells obtained
from CMT patients into MNs. The hiPSCs from five healthy controls and two CMT2 patients were
generated and characterized according to a procedure developed by iStem (INSERM/UEVE UMR
861, AFM, Genopole, Evry, France) (Figures 51 and S2 and Appendix A). At this step, there were
no observable morphological differences between hiPSCs from the healthy controls and patients
(data not shown). However, it was more difficult to obtain the hiPSCs from the CMT2 patients than the
controls, perhaps due to the mutation (one patient carrying a GDAP1 homozygous nonsense mutation
p-GIn163*, c. 487C > T and the other a GDAPT homozygous nonsense mutation p.Ser194*, c. 581C > G).
Nevertheless, it was possible to obtain hiPSCs from both.

3.2. Definition of the Factors and the Timeframes for MN Differentiation

We first tested various published protocols to generate MNs from our iPSCs but with limited
success. This led us to test several conditions and factors. We first investigated the factors involved in
embryonic development towards the neuronal lineage. According to the literature [7,11,15,16], Shh and
RA are key factors. However, the MN differentiation rate was still too low (20%) when we tested these
factors. To increase the MIN differentiation rate, we tried other factors, in addition to RA and Shh,
such as Noggin, dorsomorphine, BDNF, IGF-1, GDNF, SB431542, and Y-27632, with the aim to activate
different pathways involved in differentiation, as described in Figure 3. After numerous attempts
(up to six months), we defined an optimized protocol that enables the generation of MNs in 20 days
with a MN differentiation rate of approximately 80%. The factors, concentrations, and timepoints are
given in the Materials and Methods section and summarized in Figure 1.
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Figure 3. A schematic representation of the trophic factor pathwaysused for motor neuron differentiation

in this study. Sonic Hedgehog (Shh) pathway in green [17]; Wnt pathway in clear blue [18];
BMP (morphogens bone morphogenetic proteins) pathway in dark blue [19]; transforming growth
factor-p (TGF-pB) pathway [20]; BDNF (brain-derived neurotrophic factor), IGF-1 (insulin-like growth
factor-1), and GDNF (glial cell line-derived neurotrophic factor) pathways in yellow [21-23]; Rock
inhibitor pathway in purple [24]; FGF2 (fibroblast growth factors) pathway in pink [25]; retinoic acid
pathway in red [26]. Red circles indicate the trophic factors used in this study.

3.3. Differentiation into Motor Neurons

MNs were generated by dissociating and seeding neuronal precursors at 20,000 cells/cm? to
40,000 cells/cm? in supplemented differentiation medium (Figure 2E). After five days, spinal cells
were characterized by immunochemistry (Figure 4A-D,I-L). All cells expressed PGP9.5 and 10% were
Islet positive, which are specific markers of neuronal cells and MNs, respectively. Five days later, the
proportion of MNs increased to up to 80% due to a maturation process (Figure 4E-H,M-Q)) and 80% of
the cells were HB9 positive, which is a specific nuclear label of MNs, thus confirming their ventral spinal
cord phenotype (Figure 5A-F). The expression of Islet at d20 was not significantly different between
the control and patient groups (Student t test). Moreover, ChAT immunostaining was performed at
d15 on neuronal progenitors from a healthy control. The neuronal progenitors already expressed
ChAT (approximately 31%), suggesting that our MNs may be cholinergic (Figure S3). Based on
the immunocytochemistry results (Figure 4D,H,L,P) and visual observation by optic microscopy
(Figure 2E,F), the morphology appeared to be typical of MNs, with long processes, a small soma, and a
process network. Thus, Ki-67 immunostaining was performed on the neuronal progenitors from a
healthy control. Only 32% of the cells were Ki-67 positive versus 87% at the iPSC stage, in support of a
weak ratio of progenitors undergoing cell proliferation (Figure S4).
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Figure 4. hiPSC differentiation into motor neurons at d15 and d20 from healthy control (A-H) and
CMT2 patient (I-P). Inmunocytochemistry was performed at d15 and d20. Nuclei were stained with
DAPI (blue A EI,M), neurons with PGP9.5 (green C,G K,0), and motor neurons with an Islet cocktail
(red B,FJ N). At day 15, all cells were differentiated into neurons (100% PGP9.5) and 10% were Islet
positive (A-D I-L). Five days later (day 20), the proportion of motor neurons increased to up to 80% due
to a maturation process (E-H,M-P). Scale bar = 50 pm. Histograms showed the progressive maturation
of cells to the motor neuron (MN) phenotype between d15 and d20 for healthy control and patient
(Q) (Student T Test, n = 4 to 7, ** p < 0.001).
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Healty control

CMT2 patient

Figure 5. hiPSC differentiation into motor neurons at d20. Nuclei were stained with DAPI (blue A, D)
and motor neurons with HB9 (green B,E). A-C show immunocytochemistry for healthy control cells
and D-F for CMT2 patient cells. Scale bar = 50 pm.

We performed electrophysiological recordings to estimate alterations in transmembrane currents
in both control and patient MNs (Figure 6). The typical electrophysiological characteristics of MNs were
compared between groups and are supported by previous studies [11,27]. In particular, CMT2-patient
derived MNs showed stronger inward currents, in the range of 40-30 mV, and weaker outward
currents than the control group. Both differences are consistent with previously reported intrinsic
hyperexcitability for CMT MNs [11].
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Figure 6. Healthy control (A1 and A2) and CMT2 patient (B1-B2) motor neuron electrophysiology
(n=4). (A1,B1) Averaged traces with SE shadow, showing a persistent inward current and strong
outward current. (A2-B2) Individual traces obtained with high a Cs* inside solution, showing a fast

transient inward current.
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4. Discussion

We aimed to create a robust protocol to obtain hiPSCs differentiated into MNs from CMT patients.
We also aimed to use only a limited number of factors that mimic embryonic development to stimulate
the various pathways (summarized in Figure 3) within a defined timeframe. This protocol allowed us
to obtain 100% cells expressing neuronal markers and 80% spinal MNs in only 20 days. MNs could be
used up to d30 without any sign of degeneration.

We returned to embryology to handpick efficient differentiating factors. Indeed, the balance
between activation and inhibitory pathways during embryonic development must be understood
to choose MN-inducing factors (Figure 3) [28-30]. Neural tube development follows two axes
(Figure S5A1). Dorso-ventral differentiation is controlled by opposite gradients of the morphogens
bone morphogenetic proteins (BMP) and Shh. Approximately 30 types of BMPs (family members of
transforming growth factor- (TGF-f)) are expressed during embryonic development [31,32] and their
activities are inhibited by three molecules from the chord: noggin, chordin, and follistatin, promoting
neural-tube formation [31,33]. Shh is synthesized by the notochord and neural-tube floor, promoting
interneurons and MN differentiation (Figure S5A1,A2). Specific transcription factors, such as Pax6,
Olig2, Nkx6.2, and Nkx6.1 are stimulated by these gradients [34,35]. Antero-posterior differentiation is
based on morphogen signals through RA, FGF, or Wnt production by the axial and paraxial mesoderma
and endoderma [36]. The gradient is distributed from the caudal to cranial section and is involved in
modification of the hindbrain or, in the anterior section, the spinal cord [35,37] (Figure S5B). We applied
this knowledge to define the best factors.

Few protocols have been proposed for MNs differentiation, all showing various rates.
Wichterle et al. reported the differentiation of mouse ESCs into MNs using RA and Shh agonists [15],
with a rate of differentiation of 20% to 40%. Their protocol was modified by Miles et al.
and the proportion increased to 60% to 80% using N2 supplement in the culture medium [16].
During differentiation, human rosettes appear later than those of mice and a specific cocktail containing
BDNF [21,38], IGF-1 [22,39-41], and GDNF [23,42] was found to be essential for the survival and
growth of neural progenitors. However, the proportion of MNs obtained by Singh Roy et al. was
approximatly only 10% after 28 days and 50% after 35 days [5]. Dimos et al. generated MNs using
Shh and RA for amyotrophic lateral sclerosis [7]. They reported that 20% of the cells expressed HB9,
a cholinergic neuronal marker, of which more than 90% expressed Islet1/2 [7]. Based on a study of
Watanabe et al., we chose to add a ROCK inhibitor (Y-27632) to protect cells from apoptosis and
promote neuronal differentiation [24]. Hu et al. obtained MNs in 35 days and functionally mature
MNs were generated in 56-70 days, with a final proportion of approximately 50%. Interestingly, at the
MN generation step, the cells required limited concentrations of Shh and RA to prevent inhibition
of MN differentiation [9]. After 14 days, Chambers et al. obtained 30% Islet-positive cells and 60%
were HB9 positive [6]. Kim et al. reported that SB431542 and dorsomorphin (used in our protocol),
inhibitors of both the activin/nodal and BMP pathways, improved the neural differentiation of hESCs
and hiPSCs by more than 90% [10]. This led us to supplement the medium with the following factors:
RA, Shh, Noggin, dorsomorphine, BDNF, IGF-1, GDNE SB431542, and Y-27632.

Only a limited number of groups have worked on MNs derived from hiPSCs in CMT disease,
despite the fact that more than 90 genes are involved [43,44]. In the realm of axonal CMT, Saporta et al.
and Juneja et al. studied the NEFL, MFN2, HSPB8, and HSPB1 mutations [11,45]; Ohara et al. studied
those of MFN2 [46]; and Kim et al. studied those of HSPB1 [47], whereas nobody has studied mutations
of GDAP1, according to our knowledge. In their protocol, Saporta et al. used SMAD signaling inhibition,
Shh, and RA [11], obtaining mature spinal MNs in 35 days, as in the protocol of Ohara et al. [46].
Kim et al. [47] obtained mature spinal MNs in 21 to 28 days. We obtained mature spinal MNs in
20 days using our protocol. The ratio of spinal MNs was not mentioned in these publications and this
has presented problems in deciphering the mechanisms involved in this disease and in performing
drug screening, as not all the cells were MNs.
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In the future, it may be worth testing the use of a Wnt pathway activator, as demonstrated,
to further increase the rate of MIN differentiation [18]. It may aso be worth would testing calcitriol,
as it has a synergic effect with Wnt, Shh, or Klotho, and binds to the vitamin D receptor, which is
associated with the nuclear receptor of RA [48]. In addition, calcitriol is involved in various processes,
such as neural stem cell differentiation, axon genesis, and the growth of MNs [48]. Furthermore,
the high purity of the cells obtained with this protocol could be further improved by sedimentation
field flow fractionation (SdFFF), which makes it possible to obtain neural and endothelial precursors
after spontaneous differentiation in basic medium, with no added factors [49].

Finally, we defined the cells we obtained as spinal MNs by morphological observation,
immunostaining for seveal markers, and electrophysiological recordings. This characterization
is already convincing. However, it would be informative to co-culture these MNs with myotubes or
Schwann cells to verify that they function properly.

We applied this efficient protocol to three controls (two women and one man, ranging from 24
to 56 years of age) and two patients (two males, three and 23 years of age) to generate mature MNs,
supporting this robust method. We believe that this protocol could also be applied to various types
of patient cells (various ages and different sex) and used to obtain hiPSCs from CMT patients with
different gene variations (MFN2, PMP22, etc.).

The optimized method that we have developed to generate MNs provides a true opportunity to
discover new therapeutics. With this in vitro model, the screening of potential therapeutic molecules
is possible, directing efficient molecules towards animal models and clinical trials. This model
is also relevant for generating MNs or neural progenitors harboring various mutations from the
fibroblasts of patients for an injection of their corrected cells by the promising CRISPR Cas9 technique.
This method could be applied not only to CMT patients but also those with other genetic peripheral
neuropathy diseases.

5. Conclusions

This protocol should aid researchers to easily and rapidly differentiate hiPSCs into MNs
(only 20 days for the first MNs) using a limited number of growth factors, with a high success
rate (approximately 80% vs 10% to 60% for other protocols). This technique to derive MNs from hiPSCs
is a critical step to mimic neurological diseases of genetic origin, such as CMT, in vitro. These models
will allow investigation of the molecular pathways involved in the disease and, hopefully, help in the
development of new therapeutic strategies, particularly as a tool for drug screening,.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3425/10/7/407/s1,
Figure S1. Schematic representation of hiPSC induction. Dermal fibroblasts were reprogrammed with Yamanaka’s
cocktail (Oct4, Sox2, KIf4, c-Myc) into induced pluripotent stem cells. HiPSC clones were generated in 18 days
and then amplified to passage 15; Figure S2. hiPSC generated from a healthy control (A1-P1) and a CMT2
patient (A2-P2). HiPSC colonies have a typical morphology (Al, A2), with a nucleus/cytoplasma ratio of
1:1. Embryoid bodies (B1, B2) could be differentiated into cell types from the three embryonic germ layers
following spontaneous differentiation (C1, C2) and labelling with «a-SMA ((E1, E2) mesoderma), PAX6 ((F1, F2)
ectoderma), and Sox17 ((G1,G2) endoderma). HiPSCs expressed pluripotency markers, including Nanog, Oct3/4,
and Sox2 (I1-P1, 12, P2), were positive for alkaline phosphatase (D1, D2), and had normal karyotypes (H1, H2);
Figure S3. ChAT immunostaining performed at d15 on neuronal progenitors from a healthy control; Figure S4.
Ki-67 immunostaining performed at d0 (iPSC stage A-B, E) and d15 (neuronal progenitor C-D, E) from a healthy
control. (E) Histograms showed the KI-67 positives cells betwenn hiPSCs (d0) and neuronal progenitor (d15) from
a healthy control (Student T Test, n =4 to 7, *** p < 0.001); Figure S5. Factors involved in dorsal-ventral polarity
during cord differentiation (A), factors involved in antero-posterior differentiation during neurulation (B), and MN
markers during differentiation (C) adapted from Casarosa et al., 2013 and Davis-Dusenbery et al., 2014 [35,37].
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Appendix A. HiPSC Characterization

a. Morphology

The HiPSC colonies, EBs, and spontaneous differentiation were observed by light microscopy.
The images were captured with a Nikon D90® digital camera.

b. The alkaline phosphatase

Alkaline phosphatase was determined according to the manufacturer’s guidelines (Sigma, Fast
BCIP/NBT SIGMA B5655).

c. Karyotyping

Metaphase cells were obtained after cell-cycle arrest in mitosis by the addition of demecolcine
solution (10mg/mL, Sigma) to the cultures for 2 h after the end of exposure. Mitotic arrest was followed
by treatment with a hypotonic solution (diluted fetal calf serum) to increase the cell volume and
disrupt cell membranes. The cells were then fixed in 3:1 methanol:acetic acid before being spread onto
microscope slides. Chromosomes were stained by the R-banding method, which produces a pattern of
bands on chromosomes. R-banding was obtained by heating slides at 88 °C in Earle’s buffer followed
by Giemsa staining. Metaphase cells were observed under the microscope (Zeiss Axioplan 2 imaging)
and karyotyped using the CytoVysion image analysis system (Applied Imaging).
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Conclusion

In our study, we presented an efficient protocol to generate MN from hiPSC, in 20-30 days. It is based
on specific and accurately balanced differentiation factors, and it does not require any particular
cellular manipulation, like virus transduction (Wang et al. 2017). Moreover, as shown by neural
markers staining, it allows to obtain a quite pure culture of MN, with a higher efficiency rate than
that reported in previous protocols (Chambers et al. 2009; Hu and Zhang 2009).

hiPSC are widely employed to recreate suitable cellular models. Our protocol could provide a new
strategy in modeling of peripheral neuropathies, like CMT disease, which is fundamental in the

exploration of their impaired molecular mechanisms.
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Article 5 - Focus on 1,25-Dihydroxyvitamin D3 in the Peripheral

Nervous System
Published in Frontiers in Neuroscience (12 April 2019)

The 1,25-dihydroxyvitamin D3, or calcitriol, is the active form of the vitamin D or calciferol. It has long
been associated with the phosphocalcium metabolism, but more recent studies highlighted its
involvement also in tissue proliferation, cell differentiation, and apoptosis. In this review, we focused
on calcitriol role in nervous system, and, in particular, in PNS. In CNS, vitamin D participates in several
processes, like calcium trafficking, and regulation of neural proteins’, neurotrophic factors’, and
neurotransmitters’ synthesis. Its deficiency, therefore, seems to promote neurodegenerative
diseases, like Parkinson’s disease, Alzheimer’s disease, multiple sclerosis. In the PNS, vitamin D has
been shown to favor axonal formation and regeneration, but also myelin production and
remyelination events. On the contrary, its levels appeared reduced in some cases of peripheral
neuropathies, such as chemotherapy-induced peripheral neuropathy and diabetic neuropathy. At
molecular level, it has demonstrated that vitamin D could participate in different pathways, as Wnt,
Sonic hedgehog, and Klotho pathways, which are essential in nervous system development. Lastly, on
the basis of all previous findings, we suggested that it could be interesting to investigate, with in vitro
and in vivo studies, whether and how supplementation of calcitriol can contribute to peripheral

nervous system maintenance and function.
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In this review, we draw attention to the roles of calcitriol (1,25-dihydroxyvitamin D3)
in the trophicity of the peripheral nervous system. Calcitriol has long been known to
be crucial in phosphocalcium homeostasis. However, recent discoveries concerning its
involvement in the immune system, anti-cancer defenses, and central nervous system
development suggest a more pleiotropic role than previously thought. Several studies
have highlighted the impact of calcitriol deficiency as a promoting factor of various
central neurological diseases, such as multiple sclerosis, amyotrophic lateral sclerosis,
Parkinson’s disease, and Alzheimer's disease. Based on these findings and recent
publications, a greater role for calcitriol may be envisioned in the peripheral nervous
system. Indeed, calcitriol is involved in myelination, axonal homogeneity of peripheral
nerves, and neuronal-cell differentiation. This may have useful clinical consequences,
as calcitriol supplementation may be a simple means to avoid the onset and/or
development of peripheral nervous-system disorders.

Keywords: calcitriol, peripheral nervous system, neuronal-cell differentiation, synergistic effects, myelin process

EPIDEMIOLOGICAL DATA AND THE GENERAL FUNCTION OF
VITAMIN D3

For decades, the role of calcitriol was thought to be limited to phosphocalcium metabolism.
Recent results have highlighted the role of this hormone in other functions (Garabédian, 2000;
Christakos et al., 2016), which include the regulation of tissue proliferation, cell differentiation,
and apoptosis, as well as regulation of the cardiovascular and immune systems. Indeed, the active
form of vitamin D3 has been shown to regulate inflammation by regulating the synthesis of several
cytokines and lymphocyte migration, with anti-cancer activities (Baeke et al, 2010). Based on
cellular and animal models, Kalueff and Tuohimaa (2007) suggest that calcitriol has a major role
in the genesis, development, and maintenance of central nervous system in adulthood. As shownin
animal experiments, calcitriol may regulate rat brain development. Rats born to a mother that was
vitamin D3-depleted during pregnancy were shown to have brain malformations, such as cortical
atrophy associated with ventricular dilation (Eyles et al., 2005). Another study has reported the
synthesis of calcitriol within the central nervous system, thus regulating its functioning and exerting
neuroprotective effects (Eyles et al., 2003). Marini et al. (2010) observed that in vitro calcitriol delays
cell proliferation and induces cell differentiation in HN9.10 embryonic hippocampal cells, with the
formation of axons and dendrites. Overall, these findings suggest that vitamin D3 has activities
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similar to other neuroactive steroids in the central nervous
system (Emmanuel et al., 2002; Melcangi and Panzica, 2009).
However, the exact role of calcitriol in the peripheral nervous
system is still unclear. The aim of this review was to gather
available data concerning the role of calcitriol in the peripheral
nervous system during its development and maintenance.

Although all the calcitriol functions may not yet be known,
the chemical characteristics have been extensively investigated.
The precursor of calcitriol is vitamin D or calciferol, which
is synthesized in the skin or ingested with food. This
precursor is biologically inactive and subjected to double
hydroxylation, first in the liver and then in the kidney, to
produce the biologically active compound, 1,25-(OH),-vitamin
D3 or calcitriol (Figure 1). It is well known to regulate
the expression of numerous target genes through the nuclear
vitamin D receptor (VDR), which belongs to a common family
of steroid receptors that also includes steroid, glucocorticoid,
and retinoic acid receptors (Kaluefl and Tuohimaa, 2007).
Vitamin D deficiency is widely found worldwide (Holick, 2006).
For example, the prevalence of vitamin D insufficiency was
77% in the United States population in 2004 (Ginde et al,
2009). However, reference values vary widely between countries.
According to Rosen (2011) only 25-OH-vitamin D3 prohormone
blood levels can accurately estimate vitamin D3 input from
cutaneous synthesis and dietary intake, in contrast to 1,25-
(OH);-vitamin D3. The measurement of 1,25-(OH);-vitamin
D3 is mainly reserved for patients with kidney insufficiency.
Several countries consider that serum levels of 25-OH-vitamin
D3 below 10 ng/ml indicate vitamin D deficiency. Vitamin D
“insufficiency” is characterized by serum levels between 10 and
30 ng/ml, an “appropriate” level between 30 and 100 ng/ml, and a
“toxic” level by values above 100 ng/ml (Rosen, 2011). However,
in the United States, the Endocrine Society has established
different threshold levels. Vitamin D deficiency is diagnosed in
patients with serum levels of 25-OH-vitamin D3 below 20 ng/ml,
“sufficiency” between 30 and 40 ng/ml, and toxicity above
50 ng/ml (Ross et al,, 2011). In addition, these different thresholds
are those used to measure phosphocalcium homeostasis. These
thresholds could be different for other functions of the nervous
system and, if so, they are yet to be determined.

MECHANISTIC AND MOLECULAR
INTERACTIONS OF VITAMIN D3

Systemic action of Vitamin D3 requires a metabolization and an
activation. Vitamin D3 metabolism is a multiple-step multiple-
organ process which will be recalled thereafter. Once activated
vitamin D3 will act upon several genes at a transcriptional
level, in cooperation with other factors such as fat-soluble
vitamin derivatives.

Vitamin D3 Metabolism

Calcitriol levels are precisely regulated by the mitochondrial
hydroxylases, cytochrome  P450Cla  (CYP27B1)  and
P450C24 (CYP24), which catalyze the bioactivation and
degradation of vitamin D3 metabolites in most target cells
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(Hii and Ferrante, 2016). The blood level of calcitriol is auto-
regulated through the stimulation of the CYP24 enzyme
(VanAmerongen et al, 2004). In addition, calcitriol also
inhibits CYP1 (renal 1 o hydroxylase involved in the second
hydroxylation of vitamin D3) activity, thus forming a negative
feedback loop to maintain normal levels (Issa et al., 1998). Finally,
most calcitriol is excreted as calcitroic acid. The serum half-life
of 1,25-(0H);-vitamin D3 is approximately 4-6 h, whereas
the serum half-life of 25-OH-vitamin D3 is approximately
10-21 days (Kumar, 1986). These different serum half-lives
explain why 25-OH-vitamin D3 is the classical form used in
serum-level measurements in humans to evaluate the body level
of vitamin D3. In addition, standard protocols in the clinical lab
appear to be poorly adapted to measure calcitriol levels. Indeed,
liquid chromatography coupled to tandem mass spectrometry
(LC-MS/MS) appears to be the most appropriate, but it is
expensive and not used by most laboratories (Spanaus and von
Eckardstein, 2017). This sensitive technique is used for calcitriol
measurement because absolute levels of 25-OH-vitamin D3 and
1,25-(OH);-vitamin D3 differ by a factor of 1000. The renal
1-alpha hydroxylation of 25-OH-vitamin D3 to 1,25-(0OH);-
vitamin D3 is highly regulated by the serum concentration of
parathyroid hormone, calcium, and phosphate. It is well known
that a wide variety of extra-renal cells can produce calcitriol
from 25-OH-vitamin D3 by the enzyme 1 o hydroxylase in vitro,
including activated macrophages, keratinocytes, and cells of the
central nervous system, such as neurons and microglial cells.
However, the regulation of hydroxylation in these cells has not
been fully explored and such production of calcitriol appears
to not be finely regulated by renal production (VanAmerongen
et al, 2004). Most circulating vitamin D metabolites in blood
under normal physiological conditions are bound to vitamin
D-binding protein or albumin and transported to a large number
of target organs (VanAmerongen el al., 2004).

Vitamin D3 and the Vitamin D
Receptor (VDR)

Vitamin D is converted into its hydroxylated derivative, 1,25-
(OH);-vitamin D3, by two successive hydroxylations, one in the
liver and one in the kidneys. Its liposolubility allows calcitriol
to pass through cell membranes without a transporter. Within
the cell, the vitamin D receptor (VDR), a member of the
nuclear-receptor superfamily, mediates the biological activity of
1,25-(OH);-vitamin D3 by regulating gene expression, similarly
to other steroid hormone receptors (Figure 2). Following a
conformational change, the VDR regulates gene transcription
by binding to hexameric core-binding motifs in the promoter
regions of target genes (Issa et al, 1998). The vitamin D-VDR
endocrine system has been identified in nearly all nucleated cells.
Microscopic autoradiography of the VDR has identified the target
organs for vitamin D, especially the brain and spinal cord, for
which there is a high binding rate (Stumpl, 2012). Although not
fully understood, VDR could be involved in the development of a
variety of neurological illnesses.

‘When entering a target cell, calcitriol dissociates from vitamin
D-binding protein (the transporter of vitamin D in blood),
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diffuses across the plasma membrane, binds to the VDR, and
the formed complex migrates to the nucleus. The activated
VDR dimerizes with another nuclear receptor, the retinoic acid
receptor (RXR). This RXR/VDR/calcitriol heterodimer binds to
the vitamin D responsive element (VDRE), a specific sequence in
the promoter region of target genes. Upon binding to the VDRE,
the heterodimer activates or suppresses gene transcription. VDRs
can also form homodimers but their functional significance is
not known (VanAmerongen et al., 2004). In addition, efficient
transcription requires co-activator or co-repressor proteins, such
as Smad3, an effector of the TGF beta pathway (VanAmerongen
et al,, 2004). In the calcitriol pathway, Smad 3 acts as a coactivator
and Smad 7 abrogates the Smad3-mediated VDR response.
Cells of the central nervous system (microglia, neurons, and
astrocytes) express VDR and can respond directly to calcitriol
(Emmanuel et al., 2002),

Calcitriol has also been reported to modulate rapid non-
genomic actions mediated through various mechanisms, such as
the activation of G-protein coupled receptors and downstream
protein kinase C (PKC), mitogen-activated protein kinase
(MAPK) pathways, phospholipases A2 and C, and the opening of
Ca?t and CI™ channels (Buitrago et al,, 2013; Hii and Ferrante,
2016). However, these various effects have yet to be reported in
cells of the nervous system.

Vitamin D3 and Synergistic Effects With
Other Vitamins

The synergistic interactions between fat-soluble vitamins have
been suggested since several decades and particularly between
vitamin A and vitamin E in the field of lipid peroxidation
(Tesoriere et al., 1996). However, the interaction of vitamin D3
with other fat-soluble vitamins is also suggested through different
mechanisms and based on different responses induced by vitamin
D3 in vitro or in vive. Indeed, vitamin D3 has been shown to
regulate the growth and differentiation of a number of various
cell types in vitro, including bone, immune and hematopoietic
cells, and keratinocytes, as well as cancer cells. However, in vivo,
these responses are achieved at toxic doses that cause severe
hypercalcemia (Issa et al., 1998). These observations suggest that
the effects of calcitriol underline synergistic effects between other
hormones or molecules at lower concentrations.

Firstly, vitamin D3 appears to have synergistic effects with
other fat-soluble vitamins, such as vitamin K, particularly for
bone and cardiovascular health (van Ballegooijen et al., 2017b).
Regarding bone homeostasis, in an experimental study, Kerner
et al. (1989) described that osteoblast-specific expression of
osteocalcin, a vitamin K-dependent protein, is controlled at
the transcriptional level by the calcitriol within the promoter
of the osteocalcin gene. These results were supported by
Sergeev et al. (1987), in a rat model, showing that VDR can
undergo gamma-carboxylation in the presence of vitamin K,
which putatively interferes with its nuclear functions through
VDREs. In an experimental study investigating osteoporosis in
ovariectomized rats, Matsunaga et al. (1999) reported that the
combined treatment with vitamin D3 and K is more effective
to prevent osteoporosis. In observational studies in humans,
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these interactions were also pointed out. In 387 hemodialyzed
patients, vitamin D3 analog users present higher concentrations
of bone Gla protein (BGD) indicating the role of vitamin D3 to
stimulate this vitamin K-depend proteins (Fusaro etal,, 2016). In
the NOREPOS study among 1318 older adults, results underlined
that a combination of vitamin D3 and K supplementations
at low concentrations was linked with a greater hip fracture
risk compared to supplementations at high concentrations or
to the group supplemented with just one vitamin at low
concentrations (Finnes et al, 2016). Several clinical trials support
this synergetic interaction and particularly in postmenocpausal
osteoporosis (van Ballegooijen et al, 2017b). For instance, in
an interventional, randomized and placebo-controlled study led
in 172 Japanese post-menopausal women with osteopenia and
osteoporosis, results showed that only vitamin K plus vitamin D3
increased bone mineral density (Ushiroyama et al,, 2002). In 78
Korean post-menopausal women over 60 years of age, vitamin
K treatment associated to vitamin D and calcium increased
bone mineral density (Je et al., 2011). Regarding cardiovascular
health, the synergy between vitamin D3 and K was also reported.
Similarly, this synergy could be linked to vitamin D3-induced
stimulation of vitamin K-dependent proteins, such as matrix Gla
protein (MGP), which needs gamma-glutamate carboxylation to
inhibit the vascular calcification (Mavyer et al, 2017). Indeed,
in a rodent model, vitamin K deficiency caused by warfarin
treatment, promotes arterial calcifications and this occurs earlier
when high doses of vitamin D are associated (Price et al., 2000).
A prospective study indicates that the combined treatment of low
dose of vitamin D and a low status of vitamin K promoted systolic
and diastolic blood pressures increase and hypertension after
6 years of follow up (van Ballegooijen et al., 2017a). These results
were supported by another study showing that this association
induces a significantly higher aortic pulse wave than in subjects
with isolated vitamin D3 or vitamin K deficiency, reflecting
a higher aortic resistance (Mayer et al., 2017). In addition, a
randomized and double-blind trial on 42 non-dialyzed patients
with chronic kidney disease showed that vitamin D3 associated
with vitamin K has an additive or a synergistic effect on the
decrease of intima-media thickness (Kurnatowska et al., 2015).
However, synergistic effect between vitamin D3 and K may only
exist at optimal concentrations. Indeed, an observational single-
center cohort study showed that vitamin D3 supplementation on
renal-transplanted patients with vitamin K deficiency induced
increased mortality and graft failures (van Ballegooijen et al.,
2019). Many more trials are currently being led as one can see
on web sites for registered trials'-*.

Similarly, interactions between calcitriol and vitamin E were
observed and particularly to mediate cellular antiproliferative
effects. The association of low doses of calcitriol and vitamin
E succinate has been reported to have additive effects on the
inhibition of human prostatic cancer cells LNCaP proliferation
through the stimulation of VDR expression, without adverse
effect on calcemia (Yin et al., 2009). An another study led on a rat
model showed that vitamin D and E deficiencies have synergistic

'www.clinicaltrials.gov
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effects on rickets development (Sergeev et al., 1987). However,
the additive or synergistic mechanism of this association is still
unclear and requires further study.

In addition, a synergistic effect of vitamin D3 and A, which
is a retinoic acid precursor, has been reported in various
cellular models (breast, prostate, colon, and leukemia) but
also in mycobacteria (Guilland, 2011; Greenstein et al., 2012).
These effects could be linked to the dimerization between the
VDR and RXR, which creates an interconnection between the
calcitriol and retinoic acid cellular pathways. Indeed, retinoic
acid could modulate the vitamin D3 effects. Several studies
pointed out an antagonism or additive/synergetic effects between
both vitamins. For instance, Kane et al. (1996) showed an
inhibition by retinoic acid of the antiproliferative effect of
calcitriol on colon cancer cells. However, several studies reported
a synergistic effect. In vitro, on human prostatic cancer cells
LNCaP, Blutt et al. (1997) suggested that calcitriol and retinoic
acid act synergistically to inhibit the growth of cancer cells
and cause accumulation of cells in G1. Carlberg et al. (1993)
showed that in drosophila SL-3 cells transfected with mouse
VDR or RXR genes, the VDRE was synergistically activated
by RXR and VDR, but only in the presence of both factors.
Regarding the nervous system, the RXR has been shown to be
involved in the differentiation of oligodendrocyte progenitors
into mature oligodendrocytes (de la Fuente et al., 2015), and
also in neuronal differentiation (Mounier et al, 2015). It
is well known that retinoic acid plays a major role during
the embryological development of the central nervous system,
leading the neuroectoderm to caudalize itself. On the other hand,
calcitriol also plays a role in neuro-embryogenesis (Shirazi et al.,
2015). Thus, it is conceivable that a synergistic interconnection
between retinoic acid and calcitriol exists during nervous
system development. All of the interactions between vitamin
D and other fat-soluble vitamins presented above show that
this field is quite large and matter for further explorations in
the nervous system.

Cardiovascular Effects and Systemic
Interactions of Vitamin D3

Vitamin D3 has been suspected to play a role in cardioprotection.
Indeed, VDR-deficient mice showed adverse cardiac remodeling
and hypertension (Meems et al, 2011). However, in an
observational, prospective and population-based cohort study,
calcitriol or calcidiol plasmatic levels have failed in predicting
higher risk of heart failure (Meems et al, 2016). Thus,
further studies are required to investigate strong evidence-based
relationship between Vitamin D3 and heart failure. On the other
hand, 1,25-(OH),-vitamin D3 may also induce adverse effects
in humans. Another observational, prospective and population-
based cohort study demonstrated that plasma calcitriol levels are
associated with an elevated risk of hypertension (van Ballegooijen
et al, 2015). Intriguingly and unexpectedly, cholecalciferol
plasma levels are inversely associated with hypertension.
However, calcitriol supplementation was shown to cause renal
calcification in an experimental laboratory study led on a suckling
rat model (Dostal et al., 1984), which is confirmed by the fact
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that, in humans, cholecalciferol supplementation is associated
with kidney-stone formation, linked to increased hypercalciuria
(Letavernier and Daudon, 2018).

ROLES OF VITAMIN D3 IN THE
NERVOUS SYSTEM

As reported above and in Table 1, data suggest that calcitriol
has a role in the nervous system and that vitamin D3 acts as
a neurosteroid (Emmanuel et al, 2002; Melcangi and Panzica,
2009). However, the role, if any, of the calcitriol in the peripheral
nervous system needs to be more precisely defined.

Vitamin D3 and Cell Differentiation

We further investigate the role of calcitriol in nervous
system development, particularly neuronal cell differentiation, by
focusing on the various actors known to be regulated by calcitriol,
such as the Wnt signaling pathway, Sonic hedgehog (Shh), and
Klotho, as well as on the putative role of progesterone to stimulate
the effect of calcitriol in differentiation.

Wnt Proteins

Wnt proteins are cysteine-rich glycosylated proteins that
control multiple processes involving neuronal development,
angiogenesis, immunity, tumorigenesis, fibrosis, and stem-cell
proliferation (Maiese, 2015). Wnt is also involved in nervous
system development, particularly as a positive regulator of the
myelination process, by promoting myelin gene expression.
Tawk et al. (2011) demonstrated that the inactivation of Wnt
components in vitro in mouse Schwann cells leads to severe
dysmyelination and the inhibition of myelin gene expression.
Calcitriol has been shown to disrupt Wnt/p-catenin signaling
through multiple mechanisms. Hlaing et al. (2014) reported
that vitamin D promotes cardiac differentiation through the
negative modulation of the canonical Wnt signaling pathway
and upregulation of the expression of Wntl1, in vitro culture
of H9c2 rat embryonic myocardium cells. Lim et al. (2014)
found that decreased expression of the VDR is associated with
decreased expression of Wnt/f-catenin signals in follicle dermal
papilla cells, inhibiting the proliferation, and differentiation of
hair follicles and epidermal cells.

The Shh Pathway

Sonic hedgehog signaling is involved in the induction of neuronal
populations in the central and peripheral nervous systems and
neural stem-cell proliferation (Choudhry etal., 2014). In a recent
study in an embryonic carcinoma mice cell line (P19EC), Vuong
et al. (2017) clearly showed that Shh signaling regulates neuronal
differentiation and neurite growth. In an experimental study
using VDR-deficient mice, Teichert et al. (2011) reported that
VDR-null animals overexpress Shh in keratinocytes and that
such overexpression is downregulated by 1,25-(OH).-vitamin
D3. These results were supported by Dormoy et al. (2012)
who showed that vitamin D decreases cell proliferation and
increases cell death by inhibiting the Shh pathway in human renal
carcinoma cells. Although the Wnt/B-catenin pathway and Shh
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signaling are well known to regulate the progression of spinal-
cord progenitors and promote neurogenesis, particularly spinal
motor-neuron development, the role of vitamin D in motor-
neuron cell differentiation needs to be investigated. Further
studies are necessary to clearly elucidate the role of vitamin D
in neuronal cell differentiation through this pathway (Appel and
Eisen, 2003; Andersson et al., 2013).

The Klotho Pathway

Several studies have reported a complex interaction between
calcitriol activity and the Klotho gene. The Klotho gene was
discovered in 1997 when mice in which this gene was silenced
developed pre-mature aging syndrome (Kuro-o et al, 1997).
It is highly expressed in the brain and, to a lesser extent, in
other organs (Kuro-o et al, 1997). The choroid plexus is a site
of abundant Klotho expression. It is well known that several
factors, including phosphate and vitamin D, can regulate the
production of Klotho, as well as fibroblast growth factor 23
(FGF23). Kaluefl and Tuchimaa (2007) suggested that Klotho
expression is upregulated by calcitriol in a murine model.
FGF23 was identified as a phosphaturic hormone which is
produced in the bone and controls mineral homeostasis by the
regulation of calcitriol (White et al., 2000). FGF23 is known
to suppress vitamin D hormone production in the kidney
by downregulating renal la hydroxylase expression, thereby
suppressing the production of calcitriol (Erben, 2016). However,
little is known about the functional role of Klotho and FGF23
in the central nervous system. Although Anour et al. (2012)
reported that Klotho/VDR complex mutant mice do not show
obvious behavioral abnormalities, mice with a non-functioning
vitamin D receptor fully restored the premature aging phenotype
in Klotho deficient mice. These mice produce excessive amounts
of calcitriol due to the lack of the suppressive effect of
FGF23 on la hydroxylase expression. Thus, the premature
aging phenotype in Klotho deficient mice could be caused by
intoxication with the vitamin D hormone, leading to severe
hypercalcemia and hyperphosphatemia and subsequent organ
damage (Erben, 2016). Anamizu et al. (2005) reported that
Klotho insufficiency causes atrophy and dysfunction of spinal
large anterior horn cells in a mouse model deficient for Klotho,
suggesting its putative role in neuronal-cell differentiation,
potentially promoted by vitamin D.

Progesterone

Marini et al. (2010) reported that vitamin D delays cell
proliferation and induces cell differentiation, with modification
of soma lengthening and the formation of axons and dendrites in
astudy using embryonic hippocampal cells. Various observations
have also shown that progesterone treatment may be beneficial in
several brain-injury models (Sayeed and Stein, 2009). Although
progesterone treatment of animals submitted to traumatic brain
injury was shown ineffective, treatment with this steroid was
effective if calcitriol was simultaneously given (Cekic et al,
2009). In addition, results show that progesterone combined with
vitamin D promotes better neuroprotection against excitotoxicity
than progesterone alone in an E18 rat primary cortical neurons
pretreated with various concentrations of progesterone and
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vitamin D separately or in combination for 24 h (Atifetal., 2009).
Moreover, given the role of progesterone in myelin formation in
the peripheral nervous system, it could be informative to further
study whether calcitriol can synergize with progesterone activity
in the myelination process in the peripheral nervous system
(Zarate et al,, 2017). Finally, calcitriol has been shown to increase
local estrogen production in glial cells through the upregulation
of the aromatase enzyme (Caccamo et al, 2018). Given the role of
estrogens on neuroprotection and neuronal DNA repair enzymes
in rodents (Zdrate et al,, 2017), we suggest that calcitriol can exert
a neuroprotective effect through the estrogen pathway.

Neuronal Cell Differentiation

Calcitriol could be wused to potentiate neuronal-cell
differentiation in progenitor cell lines. Indeed, Agholme
el al. (2010) reported that in vitro pre-treatment of SH-SY5Y
cells, human neuroblastoma cells, with retinoic acid, followed
by culturing on an extracellular matrix in combination
with a cocktail of neurotrophic factors associated with
vitamin D3 treatment, generated sustainable cells with an
unambiguous resemblance to adult neurons. Preliminary
experiments conducted in our lab on neuronal cells with
various concentrations of calcitriol suggest that calcitriol can
induce motor-neuron differentiation but without any effect on
proliferation. Confirmatory studies are under way.

Axonal Homogeneity

As mentioned, vitamin D3 and its metabolites also play a role
in neurites integrity. The VDR KO mouse model described by
Sakai et al. (2015) underlined the involvement of calcitriol and
the VDR in axonal homogeneity, integrity, and maintenance
of neuromuscular junctions. Indeed, the analysis of transversal
sections of sciatic nerves from VDR-deficient mice showed
heterogeneity of the axonal diameters and axonal repartitioning
among the nerves (Sakai et al,, 2015). In addition, they showed in
a rat primary Schwann cells model, that calcitriol upregulates the
expression of IGF-1, a myelin basic protein which is a myotrophic
and neurotrophic factor. Gao et al. (1999) showed that
IGF-I deficient mice exhibit reduced peripheral nerve conduction
velocities and smaller axonal diameters. They also demonstrated
that IGF-1 plays a key role in the growth and development of
the peripheral nervous system and that systemic IGF-1 treatment
can enhance nerve function in these adults deficient mice
(Gao et al., 1999),

Anti-oxidative Activity

Anti-oxidative stress activity has been reported for calcitriol in
the central nervous system (Garcion et al., 1998). Injections of
lipopolysaccharide were performed in vivo in rat hippocampus
to induce the synthesis of induced nitric oxide synthase (iNOS),
which is partially involved in oxidative stress in the brain
and vasodilation through nitrogen monoxide (NO) generation.
This study showed significant inhibition of INOS synthesis
in the group with calcitriol treatment, suggesting a putative
role of calcitriol against oxidative stress and vasodilation in
the brain. Furthermore, the authors also showed that vitamin
D increased the intracellular levels of glutathione, the major
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intracellular redox buffer, in primary cultures of newborn-rat
astrocytes (Garcion et al, 1999). Although oxidative stress and
inflammatory processes appear to promote calcium dysregulation
with age, several endogenous steroid hormones, including
vitamin D, estrogen, and insulin may counteract, atleast partially,
these effects (Frazier et al., 2017).

Renin-Angiotensin System and Vitamin D
Several studies have shown an interaction between the renin-
angiotensin system (RAS) and calcitriol regulation. Rammos
et al. (2008) showed that vitamin D downregulates renin and
vitamin D deficiency upregulates the RAS in a murine model.
These results have been supported by several studies showing
that renin expression and plasma angiotensin II production
are elevated in VDR-null mice, leading to hypertension and
cardiac hypertrophy, whereas 1,25-(OH)z-vitamin D3 treatment
suppresses renin expression (Li el al., 2002; Yang et al., 2018).
In addition, 1,25-(OH);-vitamin D3 administration corrects
hypertension induced by activation of the RAS in a model of
1-alpha-hydroxylase-deficient mice (Zhang et al., 2015). These
renal abnormalities were also observed in a rat model of diabetes
in which calcitriol blocks RAS activation (Deng el al., 2016).
These interactions have also been observed in humans. In a
large cohort, Tomaschitz et al. (2010) reported that serum 1,25-
(OH);-vitamin D3 concentrations were inversely correlated with
plasma renin activity and angiotensin II levels. Calcitriol can
also regulate the RAS in organs other than the kidney and
perhaps in peripheral nerves, where angiotensin receptors have
already been described. Indeed, Bessaguel el al. (2017) in a
recent study showed that candesartan, a blocker of AT1 and
AT2 receptors, prevents this type of neuropathy by acting on
the RAS, in mice exhibiting sensory small fiber injury induced
by resiniferatoxin treatment. They concluded that the AT2R
may have neuroprotective effects (Bessaguet et al., 2017). Given
the previous observation in kidney, the role of vitamin D in
this pathway needs to be investigated to clarify its role in the
regulation of the RAS, particularly its interaction with oxidative
stress, well known to interact with the RAS (Luo et al., 2015). RAS
hyperactivity associated with progression to renal damage and the
modulation of calcitriol production is found in chronic kidney
diseases (Santos et al., 2012).

Relationships between Vitamin D3, both cholecalciferol and
calcitriol, and renal function have been extensively studied.
First, renal injuries induce a decline in the glomerular filtration
rate (eGFR), often associated with a reduction of l-alpha-
hydroxylase enzyme activity in kidney, inducing a decrease of
plasma 1,25-(OH);-vitamin D3 levels. Such low levels in the
blood result in several downstream effects, such as secondary
hyperparathyroidism and the modification of bone homeostasis,
requiring treatment with 1,25-(OH);-vitamin D3 or one of its
analogs in human patients with chronic kidney diseases (Bhan,
2014). As shown by a cross-sectional study integrating results of
5 cohort studies and clinical trials, it seems that low eGFR is also
associated with important decrease in Vitamin D3 catabolism (de
Boer et al, 2014). Second, Vitamin D deficiency impacts in a
different manner the general population and renal transplanted
patients. Indeed, as shown by a prospective population-based
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cohort study, it seems that low calcitriol and low cholecalciferol
plasma levels are not associated with decreased eGFR in the
general population (Keyzer et al., 2015a). On the contrary, a
prospective observational single-center cohort study in stable
renal transplanted patients, showed that low 25-OH-vitamin D3
(<12 ng/mL) is associated with a rapid decline in eGFR (Keyzer
et al,, 2015b). Interestingly, it seems that vitamin D3 might be not
“useful” to normal persons but might have an important positive
effect in kidney transplanted persons. This might also be the case
for people with peripheral neuropathies.

VITAMIN D3 IN NEUROLOGICAL
DISORDERS

It is commonly accepted that alarge proportion of the population
in developed countries exhibit insufficient 25-OH-vitamin D3
concentrations in the blood (Singh and Bonham, 2014). Low
levels of 25-OH-vitamin D3 are associated with an increased risk
of all-cause mortality (Grober et al., 2015). Although the major
sites of action of calcitriol in calcium homeostasis are the bones,
kidneys, intestine, and parathyroid gland (Issa et al., 1998), the
nervous system may also be involved, particularly in myelinating
areas. Various associations have been reported between vitamin
D status and brain diseases, such as epilepsy. 25-OH-vitamin D3
supplementation results in improved seizure control in patients
with pharmaco-resistant epilepsy (Hollé et al,, 2012; Miratashi
et al, 2017). In 2013, Zhao et al. reported a correlation between
25-OH-vitamin D3 deficiency and the prevalence of Alzheimer’s
and Parkinson’s diseases (Oudshoorn et al, 2008; Zhao et al,
2013). In addition, a study in the United States reported a higher
prevalence of dementia among participants with 25-OH-vitamin
D3 deficiency (Buell et al., 2010). Kalueff and Tuohimaa (2007)
reported the importance of vitamin D/VDR bioactivation in
brain neurons, glial cells, brain macrophages, the spinal cord,
and the peripheral nervous system, with putative autocrine or
paracrine activity.

Brain and Central Nervous-System

Disorders

In the nervous system, vitamin D is involved in calcium
trafficking, the redox status, and induction of the synthesis of
synaptic structural proteins, neurotrophic factors, and deficient
neurotransmitters (Mpandzou et al, 2016). Several results
underline the impact of 25-OH-vitamin D3 deficiency as a
promoting factor in various neurodegenerative diseases, such as
amyotrophic lateral sclerosis and Parkinson’s and Alzheimer’s
diseases (Evatt, 2010; Knekt et al., 2010; Mpandzou et al., 2016).
The role of calcium in neurodegenerative disorders has been
further studied over the last several years (Frazier et al., 2017).
In humans, vitamin D deficiency has long been known to
be accompanied by irritability, anxiety, depression, psychoses,
and defects in mental development (Kalueff and Tuohimaa,
2007). Calcitriol deficiency is also associated with poor cognitive
function in human adults, as well as in children, and could also
affect brain development (Wilkins et al., 2006; Lee et al., 2009
Llewellyn et al, 2011). Eyles et al. (2003) demonstrated that rats
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born to vitamin D3-deficient mothers had profound alterations of
the brain at birth. Changes in brain structure and a reduction in
brain content of nerve-growth factor (NGF) and glial cell-derived
neurotrophic factor (GDNF) suggest that low maternal vitamin
D3 levels affect the developing brain (Eyles et al., 2003). These
results were supported by an experimental study in a rat model
with a combined prenatal and postnatal vitamin D3-deficiency
(Al-harbi et al,, 2017). Al-harbi et al. (2017) reported that this
deficiency promoted a decrease in the number of synapses in the
molecular layer of the hippocampus, associated with a reduction
of cortical thickness.

Astrocytes, VDR expressing cells, are
important immune cells and contribute to inflammation
during neurological disorders. Jiao et al. (2017) reported
that  lipopolysaccharide-stimulated neuroinflammation  in
astrocytes could enhance the expression of the VDR and
Cyp27B1. In contrast, vitamin D suppressed the expression of
proinflammatory cytokines, such as tumor necrosis factor-a,
interleukin-1p, and TLR4 in vive. These results support a
function of reactive astrocytes in stimulating the inflammatory
response in neurodegeneration and brain injury and a putative
role of vitamin D (Jiao et al., 2017).

Mascarenhas et al. reported an association between severe
hypovitaminosis D and persistent, non-specific musculoskeletal
pain in humans (Plotnikoff and Quigley, 2003; Mascarenhas
and Mobarhan, 2004). Serum vitamin D levels have been
inversely correlated with painful manifestations and associated
with neuromuscular disorders, which can lead to increased pain
sensitivity. Thus, vitamin D3 may also be involved in nociceptive
sensitivity (de Oliveira et al,, 2017). 1,25-(OH)2-vitamin D3 may
also upregulate the expression of neurotrophic factors, such as
GDNF in C6 glioma cells (Naveilhan et al,, 1996), NT-3, or NT-
4 in rat astrocytes (Neveu et al,, 1994), TGEf in neuroblastoma
cells (Veenstra et al,, 1997), and NGF in the central (Brown et al.,
2003; Gezen-Ak et al, 2011) and peripheral nervous systems
(Cornet et al., 1998).

Interventional studies of vitamin D3 supplementation
for wvarious central nervous system (CNS) diseases have
shown promising results. In a randomized double-blind
placebo-controlled trial in patients with Parkinson Fokl CT
and TT genotypes, 12 months of 1,200 Ul/day vitamin D3
supplementation resulted in stabilization of the severity (Suzulki
et al, 2013). Another randomized double-blind controlled
study that assessed 4 months of vitamin D3 supplementation
(10.000 Ul/day) also showed improvements in balance only
in 52- to 66-year-old patients with Parkinson’s disease
(Hiller et al, 2018). In a single-center trial in patients with
Alzheimer’s disease, co-administration of memantine with
vitamin D3 (400-1000 Ul/day or 100,000-200,000 UI/month)
for 6 months resulted in a significant and synergistic
effect on global cognitive performance (Annweiler et al,
2012). A similar protocol with memantine and vitamin
D3 (100,000 Ul/month) for 6 months is currently being
tested in a single-center double-blind randomized placebo-
controlled superiority trial to study its impact on the
cognitive performance of patients with Alzheimer’s disease
and similar disorders (Annweiler et al, 2011). Finally, in an
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observational retrospective study, 2,000 Ul/day vitamin D3
supplementation for @ months showed no significant adverse
events and appeared to have beneficial effects for patients
with amyotrophic lateral sclerosis. However, given the low
number of patients included (37), further studies are necessary
(Karam et al., 2013).

Demyelinating Diseases

In multiple sclerosis, a demyelinating disease of the central
nervous system, environmental factors may contribute to the
onset of the disease, in addition to a genetic component.
Poor exposure to sun light, resulting in reduced production
of vitamin D3 in the skin, is thought to be a risk factor
for multiple sclerosis. An association of vitamin D levels
with multiple sclerosis was determined in a case control
study, which showed an inverse relationship between serum
25-OH-vitamin D3 levels and the prevalence of multiple
sclerosis (Pandit et al., 2013). Moreover, low 25-OH-vitamin D3
levels at birth could increase the risk of developing multiple
sclerosis, as shown in a recent case-control study (Munger
et al, 2016). In addition, vitamin D3 supplementation is
increasingly recommended to patients with multiple sclerosis
(Nystad et al, 2014). Interventional studies have also been
conducted on patients with multiple sclerosis to study the
impact of vitamin D3 supplementation. In an interventional
single group trial, high doses of vitamin D3 (20,000 Ul/day)
given to patients with relapsing remitting multiple sclerosis for
12 weeks showed a shift from a pro-inflammatory to an anti-
inflammatory profile (higher proportion of IL-107 CD4* and
fewer TH1/TH2 cells) without hypercalcemia or hypercalciuria
(Smolders et al, 2010). A phase I/II dose-escalation trial
studying the safety of high-dose vitamin D3 supplementation
(40,000 Ul/day for 28 weeks, then 10,000 Ul/day for 12 weeks
and no supplementation for 12 weeks), associated with calcium
supplementation (1,200 mg/day for 42 weeks), confirmed
no significant adverse events (Burton el al, 2010). Other
interventional studies for vitamin D3 supplementation in
patients with multiple sclerosis are currently ongoing (Smolders
etal, 2011; Dorr et al., 2012; Bhargava et al., 2014).

In a rodent model of experimental

encephalomyelitis (EAE), animals immunized against central
nervous system proteins, such as myelin-basic protein, develop
a paralytic disease that mimics multiple sclerosis. High doses
of calcitriol have been shown to prolong survival and improve
demyelination scores in the central nervous system relative
to those of untreated rodents (Issa et al., 1998; Shirazi et al,
2017). Sakai et al. (2015) showed that calcitriol is essential
for the synthesis of myelin basic protein, which is a main
component of myelin. Indeed, rat primary Schwann cells
treated with calcitriol showed increased production of myelin
basic protein, suggesting calcitriol involvement in protein
remyelination. Moreover, the effect of high doses of calcitriol
on remyelination was investigated in C57B1/6 mice, previously
treated with cuprizone, which induces oligodendrocyte apoptosis
and subsequent myelin disruption. Calcitriol was able to
promote the regenerative process by stimulating oligodendrocyte
maturation and astrocyte activation, with a significant increase in

autoimmune
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myelination (Nystad etal., 2014). Both studies suggest an active
role of calcitriol in myelination in the central and peripheral
nervous systems.

Peripheral Neuropathies

Calcitriol coordinates the biosynthesis of neurotransmitters
in the central nervous system, which regulate cardiovascular
autonomic function and may explain its putative role in the
development of cardiovascular autonomic neuropathy (Dimova
et al., 2017). In addition, Chabas et al. (2008) showed that vitamin
D2 (ergocalciferol: a compound produced by yeast with effects
similar to those of vitamin D3) has positive effects in vive at a
dose of 100 IU/kg/day in a rat model of peripheral nerve trauma.
At the end of treatment, they observed a significant increase
in axonogenesis and axon diameter, improving the response of
sensory neurons (Chabas et al., 2008). In 2013, the same authors
showed that vitamin D3 is beneficial at a dose of 500 [U/kg/day
in a rat model of peripheral nerve trauma, inducing significant
locomotor and electrophysiological recovery. The authors also
demonstrated that 25-OH-vitamin D3 increases the number of
preserved or newly formed axons in the proximal end, the
mean axon diameter in the distal end, and neurite myelination
in both the distal and proximal ends (Chabas et al., 2013).
In an observational prospective open case-control study with
70 patients undergoing paclitaxel chemotherapy, Grim et al.
(2017) reported that estimated vitamin D levels in the group
without chemotherapy-induced peripheral neuropathy (CIPN)
were 38.2 (24.95, 47.63) nmol/L, whereas it was 25.6 (19.7, 32.55)
nmol/L in the group with CIPN. Numerous reports have linked
vitamin D deficiency to an increased risk of diabetes mellitus and
complications, such as neuropathy (Putz et al, 2013). Indeed,
in a prospective clinical cohort study of 69 diabetic patients,

Celikbilel et al. (2015) reported, that serum vitamin D levels
were significantly lower in patients with diabetic peripheral
neuropathy than in those without. These results were supported
by an observational study showing that 25-OH-vitamin D3
levels were significantly lower in the neuropathy patient group
of a 96-patient cohort with type 1 diabetes (Ozuguz et al,
2016). In addition, in a case-control study, Alamdari et al
(2015) reported that lower levels of circulating 25-OH-vitamin
D3 may contribute to the risk of large-fiber neuropathy in
type 2 diabetic subjects, even after adjustment for demographic
variables, comorbidities, and diabetes treatment. They suggested
that each 1 ng/mL increase in the concentration of seric 25-
OH-vitamin D3 correlates with a 2.2 and 3.4% decrease in
the presence and severity of nerve conduction velocity (NCV)
impairment, respectively (Alamdari etal, 2015). Putzet al. (2014)
suggested that vitamin D supplementation could have beneficial
effects on neuropathic pain and may block the progression of
neuronal degeneration. These authors also suggested that vitamin
D deficiency could promote diabetic plantar ulcers (Putz et al,,
2014). In a prospective placebo-controlled trial that included
112 type 2 diabetic patients with diabetic peripheral neuropathy
and vitamin D deficiency, Shehab et al. (2015) showed that
short-term oral vitamin D supplementation (50,000 Ul/week for
8 weeks) improved hyperesthesia and the burning sensation,
assessed by the neuropathy symptom score (NSS). However, this
supplementation had no effect on the neuropathy disability score
(NDS) nor nerve conduction study (NCS) (Shehab et al, 2015).
Diabetic neuropathy is associated with decreased NGF
expression in human diabetic nerves (Anand et al,, 1996) and
vitamin D3 is also known to induce NGF synthesis in human
cell lines (Fukuoka et al., 2001; Shehab et al., 2015). Thus, the
observed improvement in diabetic neuropathy may be mediated
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through the upregulation of NGF. Recently, in an experimental
randomized clinical trial on 81 women suffering from diabetic
neuropathy, Nadi et al. (2017) showed that exercise combined
with vitamin D supplementation decreases the complications of
diabetic neuropathy. In addition, a case-report study with one
Type-1 patient suffering from diabetic neuropathy, mentioned
an improvement after correction of his vitamin D3 deficiency
following supplementation of 50,000 Ul/week for 4 weeks (Bell,
2012). On the other hand, an interventional randomized double-
blind placebo-controlled trial in non-vitamin D-deficient patients
with Type 2 diabetes, showed that vitamin D3 supplementation
of 50,000 Ul/week for 6 months provided no improvement of
diabetic neuropathy (Westra et al., 2016). Placebo-controlled
multi-centric studies are required to assess the role of vitamin
D3 supplementation on diabetic neuropathies (Valensi et al,
2005). As previously reported, the number of studies that
have investigated the role of vitamin D in the treatment of
neuropathies is still limited, mostly to diabetic neuropathy.

Charcot-Marie-Tooth Disease
Charcot-Marie-Tooth (CMT) disease is the most common form
of hereditary motor and sensory neuropathy. Caused by either
axonal or demyelinating alterations. More than 90 mutated genes
are involved in the development of this neuropathic disease. The
observed phenotype is variable but often consists of a progressive
distal motor deficiency, foot deformities, or muscular atrophy
(Vallat et al., 2007).

Mutations of the ganglioside-induced differentiation-
associated protein 1 (GDAPI) gene cause autosomal dominant
and autosomal recessive CMT diseases, with more than 40
different pathogenic mutations. Pepaj et al. (2015) used a
proteomic approach to show that 1,25-dihydroxyvitamin D3
treatment induces overexpression of GDAPI in a rat pancreatic
beta-1 cell line. Thus, 1,25-vitamin D3 could potentially play
a role in CMT, through the up-regulation of the GDAPI gene.
Further studies are required to assess the impact of 1,25-
dihydroxyvitamin D3 supplementation on the expression of the
GDAPI gene in CMT patients and its clinical impact.

Moreover, another form of CMT disease, type 2A, is caused
by mutations in the mitofusin-2 (MFN2) gene, which is
physiologically involved in the fusion/fission of mitochondria.
Preclinical studies conducted on neurons from a CMT2A
mouse model showed that an MFN2 agonist could normalize
mitochondrial trafficking and mobility along axons (Gezen-
Al et al, 2011). Furthermore, Gong et al. (2015) showed
that treatment of human melanocytes with 0.05% H>O, and
calcipotriol (which is a structural analog of calcitriol) at doses
varying from 20 to 80 nM upregulated the expression of MFN2.
Thus, calcitriol could be an promising candidate in further
studies on CMT2A disease.

Calcitriol has been reported to exhibit gene-dependent
synergistic or antagonistic effects when co-administered with
inhibitors of histone deacetylase (HDAC) (Malinen et al., 2008;
Seuter et al, 2013). Interestingly, HDAC6 inhibition has been
reported to restore nerve conduction and motor capacity in
glycyl-tRNA synthetase (GARS)-mutated murine neuroblastoma
cells, a model for CMT Type 2D (Benoy et al., 2018). Thus,
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if HDAC inhibitors succeed in showing a therapeutic effect in
CMT2D, itwould be interesting to further study if calcitriol could
potentialize therapeutic effects of HDAC inhibitors in CMT2D
diseases. To our knowledge, no study has been conducted
yet on the impact of vitamin D3 on the progression of
CMT disease. This could represent a new field of therapeutic
research in CMT disease.

A New Field of Research

Several questions should be raised to clearly assess the role of
calcitriol in the peripheral nervous system. Does calcitriol have
an impact on neuronal differentiation (and on axonal trophicity),
or does calcitriol act more on Schwann cells myelination, or does
calcitriol improve cellular communications between axons and
Schwann cells thus improving myelination and nerve conduction
velocities? This would imply a cellular, an animal and a human
level of experiments.

For instance, at cellular level, neuronal differentiation
comparing standard to calcitriol-supplemented cell cultures,
may help assess if calcitriol induces or speeds-up neuronal
differentiation. This could be performed on cell lines such
as SH-SY5Y or on induced pluripotent stem cells (iPSc).
Several techniques such as qRT-PCR, Western-blot and
immunostaining on PGP9.5, islet, tujl, HB9 expression,
which are markers of neuronal differentiation, could assess
an additive or a synergistic effect of vitamin D3 and other
fat-soluble vitamins. Moreover, as micro-glial cells can synthetize
calcitriol, 3D-cell culture including neuronal and glial cells
could be relevant to study micro-environmental regulation of
calcitriol synthesis.

At animal level, experiments could also be led on mice
or rats with sciatic nerves injuries, physically or chemically
induced, to determine if calcitriol has a positive impact on
recovery. Numerous animal models exist for both acquired
(toxic, diabetic, crush) and hereditary neuropathies (Sereda et al.,
1996). Calcitriol would be administered orally or by a local
long term delivery mean as done for curcumin for instance
(Caillaud et al., 2018). Effects of calcitriol supplementation could
be assessed by functional (skillful walking, grip strength, rotarod),
histological (g-ratio) and electrophysiological (NCVs) tests. In
these conditions, it would be important to check if calcitriol plays
arole in the remyelination process and has synergistic effects with
another factor as previously reported.

At a human level, as vitamin D3 is frequently given to
elders, a prospective interventional study should be planned to
monitor the incidence of peripheral neuropathies. Alternatively,
as patients receiving a chemotherapy frequently develop
neuropathies, a prospective interventional study could be
envisioned to prevent those to occur, provided positive results to
investigate in animal models.

CONCLUSION

Basic science data suggest that current knowledge of calcitriol
may still be incomplete and that it may play a more important role
in peripheral nerve trophicity than previously thought (Figure 3).
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Several preliminary clinical studies tend to show that calcitriol,
indeed, plays such a role. Future molecular and cellular studies
may show calcitriol supplementation to be a beneficial means
to positively influence peripheral nervous system homeostasis
by regulating several processes, such as myelin genesis and
axonal maintenance.
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Conclusion

As shown in this review, calcitriol seems to actively participate in nervous system development and
neural cells differentiation. The aim of this study was, therefore, to elucidate calcitriol role in PNS,
but also to evaluate if its supplementation could be applied to improve neural cell culture. Indeed,
positive results have already been observed in SH-SY5Y cells’ morphology and features, after
treatment with vitamin D3 and other neurotrophic factors (Agholme et al. 2010). In the case of our
cellular model, it could be interesting to test calcitriol in our differentiation protocol to generate MN
from hiPSC. In particular, we have envisaged to supplement cells with calcitriol from induction of
rosettes formation, until MN generation. We would like to evaluate if its supplementation could have
a synergistic action with the already employed differentiation factors, in increasing neural cells
viability and MN proportion, and in promoting neurites’ formation and maintenance. Given the

promising role of calcitriol, we hope to start these tests in the next future.
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Article 6 - GDAP1 defect promotes mitochondrial dysfunction and
oxidative stress in a Charcot-Marie-Tooth model of hiPSC-derived
motor neurons

Article in preparation

The previously described method, to generate MN from hiPSC, has been thus used to obtain and
analyze a cellular model of GDAP1-associated CMT disease. Specifically, in this study, we focused on
molecular mechanisms related to the GDAP1 nonsense ¢.581C>G (p.Ser194*) mutation, to elucidate
GDAP1 role in physiological and pathological conditions. This is the first GDAP1 functional analysis on
a human model of MN.

First, dermal fibroblasts were obtained from a CMT2H patient (patient 3-A), with the homozygous
GDAP1 p.Ser194*mutation, and two unaffected controls. After amplification, fibroblasts were
reprogrammed in hiPSC, which were then differentiated in neural progenitors (NP), and, at the end,
in MN. Once we get the four cellular types (fibroblasts, hiPSC, NP and MN) for each subject, we could
perform expression, morphological, and functional studies, on all, or some, of them. To begin, we
evaluated GDAP1 mRNA and protein expression in the four models, revealing its predominant neural
expression, but also its absence in patient 3-A cells. Secondly, with ultrastructural analysis, we
detected cytoplasmic vacuoles (maybe lipid droplets) accumulation, and mitochondrial morphology’s
abnormalities in patient’s MN. Lastly, in these cells, we observed also increased death rate and
oxidative stress.

In our study, we assessed a human cellular model to better investigate molecular mechanisms
impaired in this axonal form of CMT disease. Basing on our preliminary findings, we could suppose
that metabolism alterations and oxidative stress may play a key role in determine the cellular

dysfunction and death in patient’s MN, where GDAP1 protein is very weakly expressed.
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Abstract

Mutations in the ganglioside-induced differentiation associated protein 1 (GDAPI) gene
have been associated with demyelinating and axonal forms of Charcot-Marie-Tooth disease
(CMT), the most frequent hereditary peripheral neuropathy in humans. Previous studies
reported the prevalent GDAPI expression in neural tissues and cells, from animal models.
Here, we described the first GDAP1 functional study on human induced-pluripotent stem
cells (hiPSC)-derived motor neurons, obtained from normal subjects and from a CMT2H
patient, carrying the GDAPI homozygous p.S194* mutation. At mRNA level, we observed
that, in normal subjects, GDAPI is mainly expressed in motor neurons, while it is drastical-
ly decreased in patient’s cells containing a premature termination codon (PTC), probably
degraded by the nonsense-mediated mRNA decay (NMD) system. Morphological and
functional investigations revealed, in CMT patient’s motor neurons, a decrease of cell via-
bility associated to lipid metabolism dysfunction and oxidative stress development. Mito-
chondrion is a key organelle in oxidative stress generation but it is also mainly involved in
energetic metabolism. Thus, in CMT patient’s motor neurons, mitochondrial cristae defects
were observed, even if no deficit in ATP production emerged. This cellular model of
hiPSC-derived motor neurons underlines the role of mitochondrion and oxidative stress in

CMT disease and paves the way for new treatment evaluation.

cavus, sometimes sensory loss and balance issues
(Bird 2020). Traditionally, basing on
electrophysiological studies, demyelinating forms,

1 Introduction

Charcot-Marie-Tooth  (CMT) disease is a
heterogeneous group of sensory-motor disorders,
belonging to the larger class of genetic neuropathies.
With an estimated prevalence of 1/2,500, it is
considered as the most frequent inherited pathology
of the peripheral nervous system. It indifferently
affects both sexes, of any geographical origin and
age, and it is clinically defined by muscular
weakness and atrophy, foot deformities, like pes

Federica Miressi | Ph.D. Thesis | University of Limoges | 2020

characterized by reduced nerve conduction velocity
(NCV), can be distinguished from axonal CMT
forms, with preserved NCV values. More recently, a
third group, identified as intermediate CMT, has
been described, ranking between demyelinating and
axonal forms in its clinical aspects. According to the
associated mode of inheritance of the disease, CMT
is further classified in autosomal, dominant or
recessive forms, and X-linked, dominant or recessive
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forms. More than 80 genes have been identified to be
mutated in these different CMT subgroups (Bird
2020), although the complete duplication of PMP22
gene, responsible of the so-called CMT1A, remains
the main genetic cause of this pathology.

Mutations in  GDAPI (ganglioside-induced
differentiation protein 1) gene have been reported for
the first time in 2001 (Baxter et al. 2002; Cuesta et
al. 2002), and are well known to induce multiple
types of Charcot-Marie-Tooth disease. Autosomal
recessive mode of inheritance has been observed in
demyelinating (CMT4A or AR-CMTde-GDAP1),
intermediate (RI-CMTA or AR-CMTin-GDAPI)
and axonal (CMT2H or AR-CMTax-GDAPI) forms,
while autosomal dominant mutations seem to lead
exclusively to axonal CMT (CMT2K or AD-
CMTax-GDAPI) (Mathis et al. 2015; Sivera et al.
2017). GDAPI, located on chromosome 8 of the
human genome, encodes a 358 aa protein, expressed
on the outer mitochondrial membrane of neurons
and, at lower levels, of myelinating Schwann cells
(Niemann et al. 2005; Pedrola et al. 2005; 2008).
Even if GDAPI CMT-inducing mutations have been
largely described in their clinical aspects and
associated phenotypes, fewer studies have deeply
investigated the molecular mechanisms altered in
motor neurons and responsible of the neural
degeneration.

Three main animal models have been developed to
elucidate GDAP1 role in cellular physiology,
through its up- or down- regulation, in Drosophila
malanogaster (Lopez Del Amo et al. 2015; Lopez del
Amo et al. 2017) its depletion, in mice (Niemann et
al. 2014; Barneo-Muiioz et al. 2015), or its mutation,
in yeasts (Rzepnikowska et al. 2020). Concerning the
cellular models, given the inaccessibility of human
neurons, all functional studies employed a large
amount of alternative strategies, such as primary
cultures of murine neurons (Pedrola et al. 2008;
Huber et al. 2013), rat Schwann cells (Niemann et al.
2005), and human fibroblasts (Cassereau et al. 2009;
2020), but also transfected, or non-transfected, cell
lines, like Cos7, HeLa, SH-SY5Y, N1E-115, HT22
(Niemann et al. 2005; Pedrola et al. 2005; 2008;
Niemann et al. 2009; Wagner et al. 2009; Kabzinska
et al. 2011; Noack et al. 2012; Huber et al. 2013;
Pla-Martin et al. 2013; Gonzalez-Sanchez et al.
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functions.

2017). These existing models have
highlighting some GDAPI
GDAPIlinvolvement in mitochondria fission and
fusion events has been observed in N1E-115 cells
and in a model of transfected Cos7 cells (Niemann et
al. 2005; 2009; Wagner et al. 2009; Huber et al.
2013), while HT22 cells and human fibroblasts have
been fundamental to reveal GDAPI implication in
protection from oxidative stress (Noack et al. 2012,
Cassereau et al. 2020). In addition, it seems that
GDAPI takes part, also, in regulating Ca™
homeostasis, as shown in SH-SY5Y and transfected
HeLa cells (Pla-Martin et al. 2013; Gonzalez-
Sanchez et al. 2017). However, the lack of motor
neurons of human origin failed to demonstrate the
potential extrapolation of these investigations in
CMT patients.

Human induced-pluripotent stem cells (hiPSC),
created for the first time in 2006 (Takahashi e
Yamanaka 2006), have become a powerful tool in
the exploration of neurological and neuromuscular
diseases. The main advantage of hiPSC is that they
can be obtained from an easy-to-take cell type, like
fibroblasts, and they can be potentially differentiated
in any kind of cell of human body, like neurons or
glial cells. Moreover, it has been shown that they can
be generated from unaffected individuals, but also
from affected patients (Faye et al. 2020). In the case
of Charcot-Marie-Tooth disease, models of hiPSC-
derived motor neurons have been established for
different forms associated to different genes, like
NELF, MFNZ2 (Saporta et al. 2015), HSPBI (Kim et
al. 2016), but also hiPSC-derived Schwann cells
presenting the PMP22 duplication (Shi et al. 2018).
hiPSC for GDAPI are reported in three studies
(Saporta et al. 2015; Marti et al. 2017; Faye et al
2020), and only once they were finally differentiated
into motor neurons (Faye et al. 2020).

Here, we report the first functional study on human
hiPSC-derived motor neurons from CMT patient,
carrying the homozygous p.S194* mutation in
GDAPI, underlining the role of mitochondrion and
oxidative stress in this human GDAPIl-defect of
CMT disease.
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2 Materials and Methods

Subjects

All subjects gave their informed consent for
inclusion before participating in the study. The study
was conducted in accordance with the Declaration of
Helsinki. The family of the CMT-patient presented
two cases (Figure 1). The propositus, here reported
as “patient”, presented early his first symptoms. This
young boy was characterized by a severe axonal
neuropathy, with subacute progression and
polyvisceral disorders leading to an early death at the
age of three. His younger brother developed motor
impairment in feet, distal atrophy and abolished deep
tendon reflexes associated to mental retardation.
Parents, with a first degree of consanguinity, were
asymptomatic, as well as the elder brother. Genetic
analyses detected, in GDAPI gene, the ¢.581C>G
(p.Ser194*) mutation, homozygous in the patient and
his affected brother, and heterozygous in the other
family members. Two control subjects, without any
clinical neurological signs, were enrolled in this
study: Ctrl-1, a 24 year-old man, and Ctrl-2, a 30-
year old woman.

[HO

=

Figure 1 Pedigree of patient’s family. Affected members
are marked with black symbols.

Skin biopsies and fibroblasts cell culture

Skin biopsies were obtained from patient, Ctrl-1, and
Ctrl-2, and incubated in CHANG Medium® D
(Irvine Scientific), with 10% Fetal Bovine Serum
(FBS) (Gibco, Thermo Fisher SCIENTIFIC). After
two weeks, once fibroblasts have migrated from the
skin fragment and grew in the culture dish, they were
isolated using trypsin. In the first 3 days, fibroblasts
were cultivated combining the Chang Medium® D
(25%) with the RPMI 1640 medium (75%) (Gibco,
Thermo Fisher SCIENTIFIC), supplemented with
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10% FBS. Then, Chang medium D was completely
replaced by RPMI medium and FBS.

hiPSC generation and characterization

hiPSC were generated following the iStem
(INSERM/UEVE UMRS61, AFM, Genopole, Evry,
France) protocol. First day, CF-1 Mouse Embryonic
Fibroblasts (MEF), Mitomycin-C treated (TebuBio),
were seeded on gelatin coating (Sigma-Aldrich,
Merck), at 25,000 cells/cm2 density. The second
day, 600,000 fibroblasts, from patient and controls,
were reprogrammed with three plasmids (Plasmid #6
pCXLE-hOCT3/4 shp53-F Addgene, Plasmid #7
pCXLE-hSK Addgene, Plasmid #8 pCXLE-hUL
Addgene), through the Nucleofector II device
(Amaxa, Lonza). Reprogrammed cells were cultured
in DMEM+GlutaMAX medium (Gibco, Thermo
Fisher SCIENTIFIC), supplemented with 10% FBS,
1% MEM non-essential amino acids (Thermo Fisher
SCIENTIFIC), 1% Sodium Pyruvate (Thermo Fisher
SCIENTIFIC), and, at day 1, with 0.1% gentamycin
(Thermo Fisher SCIENTIFIC). Culture medium was
replaced every day. After 14-21 days, colonies were
selected, using a needle, and transferred in new
gelatin/MEF coated dishes. HiPSC colonies grew in
a KO-DMEM medium (Gibco, Thermo Fisher
SCIENTIFIC), with 20% KnockOut Serum
Replacement (Gibco, Thermo Fisher SCIENTIFIC),
1% MEM non-essential amino acids, 1% Glutamine
(Gibco, Thermo Fisher SCIENTIFIC), 0.1% B-
mercaptoethanol (Gibco, Thermo Fisher
SCIENTIFIC), and 0.1% gentamycin. It was
replaced every day, extemporaneously supplemented
with 20 ng/mL Fibroblast Growth Factor (FGF2)
(PeproTech). After hiPSC amplification, all quality
controls were performed (Supplementary Data and
Figures).

Motor neurons generation and culture

Differentiation protocol was applied as previously
described by Faye et al (Faye, 2020). After neural
progenitors (NP) were obtained, they were seeded on
poly-L-omithine/laminine-coated dishes, and
cultured in neural media, adding 100 ng/ml Sonic
Hedgehog (Shh) (PeproTech), 5 uM RA (Sigma-
Aldrich, Merck), 10 ng/mL BDNF (brain-derived
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neurotrophic factor) (PeproTech Inc.), 10 ng/mL
GDNF (glial cell line-derived neurotrophic factor)
(PeproTech Inc.), and 10 ng/mL IGF-1 (insulin-like
growth factor-1) (PeproTech Inc.). Then, they were
passed every 3 to 4 days, maintaining at high
density. In order to generate completely
differentiated motor neurons (MN), NP were seeded
at a density of 20,000 to 30,000 cells/cm2, using the
same coating and the same culture medium.

RNA analysis

Total RNA was extracted from fibroblasts, hiPSC,
NP and MN, of Ctrl-1 and patient, using the
miRNeasy Mini kit (QIAGEN®). After verifying
RNA integrity with the Bioanalyzer 2100 system
(Agilent Technologies), it was converted in cDNA
with the QuantiTect® Reverse Transcription kit
(QIAGEN ®). For the quantitative PCR (qPCR, or
Real-Time PCR), primers were designed between the
5th and the 6th exons of GDAPI, and between the
5th and the 6th exons of 7BP (TATA-Box Binding
Protein), chosen as reference gene. The reaction was
performed on the Corbett Rotor-Gene 6000 Machine
(© QIAGEN), prepared with the Rotor-Gene SYBR-
Green PCR Kit (400) (OQIAGEN).

Immunocytochemistry

Cells were fixed in 4% paraformaldehyde (PFA)
(Sigma-Aldrich, Merck) for 10 minutes and
permeabilized with 0.1% Triton X-100 (Sigma-
Aldrich, Merck) for 1 hour. They were incubated
overnight at 4°C with the primary antibody, prepared
in 3% BSA, and, the next day, with the secondary
antibody for 1 hour at room temperature. All
antibodies’ dilutions and references are reported in
Supplementary Table 1. Nuclei were stained with 2
pg/mL 4°,6’-diamidino-2-phénylindole
dihydrochloride (DAPI) (Sigma-Aldrich, Merck).
Images captures were performed using a
fluorescence microscope (Leica Microsystems) or a
confocal microscope (Zeiss), while their processing
and analysis were made with NIS Element BR
software, Zen Black and Zen Bleu software, and
Image J software. For the 3.,3’-Diaminobenzidine
(DAB) staining, MN were fixed, permeabilized and
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incubated with the GDAP! primary antibody
overnight. Next day, the VECTASTAIN® Elite
ABC kit (Vector Laboratories) was used for the
avidin-biotin/peroxidase  detection. The DAB+
chromogen, i.e. the peroxidase substrate solution,
was added to induce the formation of the brown
precipitate, visualized with a light microscope.

Electron microscopy

All manipulations for the electron microscopy were
performed in Neurology and Anatomic Pathology
departments at University Hospital of Limoges. Cells
were fixed in 2.5% glutaraldehyde, then incubated
30 minutes, at RT, in 2% OsO, (Euromedex). After
washing them with distilled water, they were
dehydrated 10 minutes in a series of ethanol
dilutions (30%, 50%, 70%, 95%) and three times in
100% ethanol. At the end, they were embedded
overnight in Epon 812. Thin blocks were selected
and stained with uranyl acetate and lead citrate, and
examine using a Jeol 1011 electron microscope.

Adenosine Triphosphate (ATP) quantification

ATP was dosed using CellTiter-Glo® Luminescent
Cell Vaibility Assay kit (Promega), and the
luminescent signal was recorded with the Fluoroskan
Ascent®FL  (Thermo  Fisher  SCIENTIFIC,)
following manufacturer instructions. DAPT staining
was used to normalize luminescence’s values to the
number of cells.

Succinate dehydrogenase (Complex IT) activity
Succinate dehydrogenase activity was measured
using the Cell Proliferation Kit I (Roche), following
manufacturer conditions. Absorbance of formazan
crystals, at 595 nm, was recorded with the
Multiskan™ FC Microplate Photometer (Thermo
Fisher SCIENTIFIC), and normalized to the number
of cells, measured with DAPT staining.

Mitochondrial Superoxide quantification

Fibroblasts and MN were analyzed in basal
conditions as well as in stressed conditions. Stressed
wells were treated 2 hours with ImM H202,
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prepared in culture medium. After the treatment, 5
uM MitoSOX™ Red mitochondrial superoxide
marker  (Molecular Probes, Thermo Fisher
SCIENTIFIC) was added to the whole of plate,
incubated for 10 minutes at 37°C, Fluorescent signal
was detected using the Leica DM IRB microscope,
and normalized to the number of cells, measured
with DAPI staining.

Statistical analysis

All statistical analyses were performed using the
Graphpad Prism 5 software (GraphPad Software,
Inc.). Data were expressed as mean + SEM
(Standard Error of the Mean). They were compared
using the nonparametric Mann-Whitney U test. P<
0.05 was considered significant.

3 Results

GDAPI sequencing

We obtained and cultured fibroblasts of two
unaffected controls (Ctrl-1 and Ctrl-2), and the
CMT-patient, for which NGS analysis had revealed
the GDAPI homozygous mutation p.S194* No
difference between the three subjects was observed
in fibroblast’s culture. Genomic DNA was extracted
from fibroblasts and Sanger sequencing was
performed for all GDAPI exons (Figure 2). It
confirmed, in patient’s DNA, the presence of the
homozygous c¢.581C>G mutation in exon 5 of
GDAPI, responsible for the amino acidic
substitution of the Serine 194 (TCA) with a stop
codon (TGA), in GDAPI1 protein. No GDAPI
mutation was detected in Ctrl-1 and Ctrl-2.
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Figure 2 Sanger Sequencing confirmed the GDAPI homo-
zygous ¢.581C>G mutation in patient’s fibroblasts, not
observed in controls

MN characterization

MN’s characterization was carried out five days after
plating NP at 30,000 cells/cm2 density. PGP9.5, the
ubiquitin  carboxyl-terminal  hydrolase  highly
expressed in nerves, and Tuj-1, the neural-specific p-
tubulin III, were chosen as neural markers and
examined by ICC. All cells were PGP9.5-positive
(red) and Tuj-positive (green), as shown in Figure
3A.  Cells expressed also the cholyne
acetyltransferase =~ (ChAT)  enzyme  (green),
confirming the cholinergic function of these hiPSC-
derived motor neurons (Figure 3B).
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Figure 3 Characterization of hiPSC-derived motor neurons for Ctrl-1, Ctrl-2 and patient. (A): DAPI (blue) for nuclei stain-
ing, PGP9.5 (red), and B-tubulin TIT (Tujl) (green); (B): DAPI (blue) for nuclei staining , choline acetyltransferase
(ChAT) (green), and B-tubulin III (Tujl) (red).
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GDAP1 mRNA expression

In order to investigate GDAPI functions and
GDAPI-associated mechanisms, we evaluated the
expression of GDAP! mRNA and protein, from
fibroblasts to hiPSC, NP, and MN, of patient and
Ctrl-1 subject. After checking RNA integrity and
gDNA contamination (data not shown), gPCR on
mRNA was performed, revealing, for Ctrl-1, that
GDAPI is differently expressed in the four cell types
(Figure 4A). It was evident that GDAPI is weakly
expressed in fibroblasts and in hiPSC. In contrast,
GDAP] mRNA levels significantly increased in
neural cell types, associated with the progression of
neural differentiation. GDAPI expression was
around 33-fold higher in NP, and 56-fold higher in
MN, compared to fibroblast levels. In patient’s cells,
even if the same expression trend was observed in
the four cell types (FB, hiPSC, NP, and MN), the
global amount of GDAPI mRNA was significantly
reduced. Indeed, GDAP] mRNA was nearly absent
in patient’s fibroblasts and hiPSC, and remained
weak in NP and MN (Figure 4B).

GDAPI protein expression

To complete mRNA analysis, we evaluated GDAP1
protein expression on MN, the cellular type known
to express GDAPI, in contrast to fibroblasts, where
GDAP1 seemed lacking (Figure 5).

Fibroblasts were stained with GDAPI antibody
(red), and Prolyl 4-hydroxylase subunit-f antibody
(P4HB) (green), chosen as fibroblasts” marker. As
expected, no GDAPI signal was observed, both in
controls” and patient’s fibroblasts (Figure 5A).

In MN, GDAPI staining (red) was associated to Tuj-
1 staining (green), specific of neural cells. As shown
in Figure 5B, GDAPI1 protein was detected in MN of
Ctrl-1 and Ctrl-2, located in neurons’ cell body. In
contrast, no fluorescent red signal was observed in
patient’s MN, suggesting the absence, or weak
expression of GDAP1 protein (Figure 5B). These
results were supported by the DAB staining showing
a high expression of GDAPl in MN of Ctrl-1
compared to patient (Figure 6).
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Figure 4 Normalized GDAPI expression in fibroblasts (FB), induced-pluripotent stem cells (hiPSC), neural progenitors
(NP), and motor neurons (MN), from Ctrl-1 subject (A) or CMT patient (B). Compared to Ctrl-1, medians from patient
results were significantly different in hiPSC, NP and MN (p< 0.05, Mann-Whitney test). TBP was chosen as reference

gene.
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A
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Figure 5 GDAT1 protein expression in fibroblasts (A) and MN (B). (A) DAPI (blue) for nuclei staining, GDAP1 (red), and
Prolyl 4-hydroxylase subunit-p antibody (P4HB) (green), as fibroblast marker; (B): DAPI (blue) for nuclei staining,
GDAP1 (red), and p-tubulin III (green), as neural marker. As expected, GDAP1 signal was not observed in fibroblasts of
both controls and patient, and in patient’s MN.
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Patient

Figure 6 DAB staining for GDAP1, in motor neurons from Ctrl-1 and patient. Control’s cells presented a strong brown
staining, above all cells in soma region, compared to the background noise detected in patient’s cells.

Proliferation and viability of neural cells

Neural progenitors are known to rapidly proliferate.
However, this proliferation decreases throughout
their final differentiation into motor neurons. Among
all existing markers, we analyzed proliferation rate
of NP with the Ki-67 staining. It was evaluated at
day 1, right after NP seeding, and at day 4, when
neurons have started their differentiation process. As
shown in Figure 7A, at d1, about 70% of NP of Ctrl-
1 and Ctrl-2 were Ki-67-positive, whereas only 60%
of patient’s NP expressed Ki-67.

At d4, proliferating cells were reduced to 60% in
controls, and considerably reduced to 40% in
patient’s cells (Figure 7B). These results were
supported by motor neurons viability. Throughout
the NP differentiation, we observed, for patient, a
high number of dead cells, and, at day 7, we
performed a DAPI staining to evaluate the number of
survived cells. A significant 60% reduction of
patient’s MN viability was revealed, compared to
Ctrl-1 or Ctrl-2 (p < 0.0001) (Figure 8).
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Ki-67 NP
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Figure 7 Percentage of Ki-67 expressing-NP of Ctrl-1, Ctrl-2, and patient, at day 1 (A) and day 4 (B) after the beginning of
the differentiation process. Lower growth rate in patient’s neural cells carrying the p.Ser]194* mutation in GDAPI, was
observed. ** p <0.01 Ctrl-1 vs Patient; ## p <0.01 Ctl-2 vs Patient; * p <0.05 Ctrl-1 vs Patient; # p <0.05 Ctrl-2 vs Pa-

fient
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Figure 8 DAPI staining on MN from Ctrl-1, Ctrl-2, and patient, at day 7 after the beginning of the differentiation. *** p

<0.001 Cirl-1 vs Patient; ### p <0.001 Ctrl-2 vs Palient.

Ultrastructure _of _motor __neurons _and __its
mitochondrial morphology

HiPSC-derived motor neurons of controls and
patient were analyzed by electron microscopy.
Surprisingly, in cytoplasm of multiple patient’s MN,
we observed the emergence of several round
structures, of various sizes, suspected to be lipid
droplets (Figure 9). These vacuoles appeared as
electron-dense structures with a homogeneous
content, surrounded by a more electron-dense line.
They were not observed in control’s MN, and in
fibroblasts of the three subjects.

Given the mitochondrial localization of GDAPI
protein, we investigated mitochondrial morphology

and structure.

Looking at MN’s ultrastructure, any difference in
mitochondrial size and shape was remarked between
controls and patient. Moreover, MN of both subjects
presented elongated and fragmented mitochondria.
However, focusing on mitochondrial cristae, we
observed that their organization was altered in
mitochondria of patient’s MN. In particular, cristae’s
regular distribution and thickness were perturbed,
preventing to discriminate their structure in
mitochondrial compartment. Swollen cristae were
also observed. This disorganization of mitochondrial
cristae was not present in Ctrl-1 and Ctr-2 MN, as
well as in fibroblasts of the three subjects (Figure
10).

Patient’s MN

Figure 5 Ultrastructure analysis, by EM, on patient’s MN. Suggested lipid droplets (LD) are indicated by yellow arrows and

only observed in patient cells.
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Ctrl-1

Fibroblasts

MN

Patient

Figure 6 Ultrastructure analysis, by EM on ultrathin sections, of mitochondria in Ctrl-1, Ctrl-2, and patient’s fibroblasts and
motor neurons. As indicated by yellow arrows, mitochondrial cristae was altered in patient’s MN exhibiting a perturbation of

cristae distribution and thickness.

Mitochondrial functions and  oxidative  stress
measurement
The alteration of cristae organization in

mitochondria of patient’s MN, led us to investigate
the oxidative phosphorylation through the activity of
electron transport chain (ETC) complexes and ATP
production. Given the limited availability of hiPSC-
derived MN, we performed the MTT test to evaluate
the activity of the succinate dehydrogenase (complex
II). In both fibroblasts and MN, Succinate
dehydrogenase activity seemed to be slightly
increased in patient’s cells, compared to Ctrl-1 and
Ctrl-2, and it reached significant difference (p =
0.0106) in fibroblasts (Figure 11). In contrast, ATP
levels were not significantly different between
patient’s and controls’ fibroblasts and motor neurons
(Figure 12).
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Mitochondrion is also the main producer of reactive
oxygen species, such as superoxide anion, inducing
oxidative stress. A perturbation of mitochondrial
cristae could promote redox imbalance. As expected,
and shown in Figure 13, in patient’s MN, Superoxide
anion levels were significantly higher (p = 0.04) than
in Ctrl-1. This significant difference was even
observed with fibroblasts (p = 0.0188). The same
trend emerged in the comparison with Ctrl-2 cells,
but significant difference was not reached.
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Figure 7 Succinate dehydrogenase activity evaluated in fibroblasts (A) and MN (B) of Ctrl-1, Ctrl-2, and patient. # p <0.05
Ctrl-2 vs Patient.
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Figure 8 ATP production evaluated in fibroblasts (A) and MN (B) of Ctrl-1, Ctrl-2, and patient.
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Figure 9 Superoxide anion quantification in fibroblasts (A) and MN (B) of Ctrl-1, Ctrl-2, and patient, using the
MitoSOX™ Red mitochondrial superoxide indicator. Cells treated with 1 mM H,0,, 2h at 37°C (fibroblasts and MN)

were used as positive controls.* p <0.05 Ctrl-1 vs Patient.

4 Discussion

More than 80 mutations in GDAPI gene have been
already reported to be responsible for demyelinating,
axonal, and intermediate forms of Charcot-Marie-
Tooth disease, and associated to heterogeneous
phenotypic  manifestations  (Rzepnikowska e
Kochanski 2018). However, GDAP1 role in cellular
functions and processes has not been clearly
elucidated whereas several well construct studies
have been performed (Niemann et al. 2005;
Cassereau et al. 2009; Noack et al. 2012; Barneo-
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Mufioz et al. 2015). Thus, the pathological role of
GDAPI in this disease development remains to
understand. Cellular and animal models expressing
GDAP1 mutations surely represent the most
accessible and easier models to mimic GDAPI1-
induced pathophysiology. Murine and human
GDAPI proteins share 94% of amino acid homology
supporting the relevance of this rodent model from
expression and localization studies (Niemann et al.
2005; Pedrola et al. 2008), to structural studies
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(Googins et al. 2020), upgraded by two existing
GDAPI knock-out animal models (Niemann et al.
2014; Barneo-Muiloz et al. 2015). Further analyses
were conducted using Drosophila, and its GDAPI-
ortholog gene (CG4623) (Lopez Del Amo et al.
2015; Lopez del Amo et al. 2017), or yeast models,
transfected with the human GDAP! (Estela et al.
2011; Rzepnikowska et al. 2020). Anyway, the high
intra-species and inter-species variability, together
with the complexity of GDAPl1 molecular
mechanisms involved in Charcot-Marie-Tooth
disease, may limit the animal models’ reliability.
Conceming the cellular models developed for
GDAPI1, most of them have animal origin (mice,
rats) (Niemann et al. 2005, 20; Pedrola et al. 2008;
Huber et al. 2013), or are immortalized cell lines,
naturally expressing GDAP! (SH-SYSY, NI1E-115,
HT22) (Niemann et al. 2005; Pedrola et al. 2005;
Noack et al. 2012; Gonzalez-Sanchez et al. 2017), or
by transftection (HeLa, Cos7) (Pedrola et al. 2008;
Wagner et al. 2009; Kabzinska et al. 2011; Huber et
al. 2013). Indeed, a limited number of cell types
express GDAPI, notably neurons and Schwann cells.
These cell types cannot be obtained from humans,
and used, in vitro, as cellular models. Given the
inability to culture human neural cells, the only
model available in these conditions was represented
by human fibroblasts (Cassereau et al. 2009; Noack
et al. 2012; Cassereau et al. 2020), which,
unfortunately, poorly express GDAPI (Noack et al.
2012). The aim of this study was to go beyond limits
imposed by existing animal and cellular models,
developing a new solid model of human motor
neurons carrying the homozygous p.Serl94*
mutation in GDAPI to investigate GDAP1 functions
and extrapolate data from previous studies.

In animal models, like mice and rats, GDAPI has
been shown to be largely expressed in neurons. In
particular, the higher expression was detected in
cerebellum, cerebral cortex, hippocampus, olfactory
bulb, spinal nerve, but also in sciatic nerve, and
motor and sensory neurons (Niemann et al. 2005;
Pedrola et al. 2005; 2008). GDAPI expression in
Schwann cells was controversial, whereas, in non-
neural tissues, it was poorly explored (Niemann et al.
2005; Pedrola et al. 2005; 2008). Here, we
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compared, for the first time, GDAPI mRNA and
protein expression in four cell types of the same
control subject (Ctrl-1): fibroblasts, hiPSC, NP, and
MN. mRNA expression revealed, on Ctrl-1 cells,
that GDAPI is weakly expressed in fibroblasts and
hiPSC, while its expression was significantly higher
in NP, and, above all, in MN. It is interesting to note
that GDAPI mRNA in fibroblasts represented only
3% of NP-GDAPI mRNA, and 1.8% of MN-GDAP/
mRNA. This is in agreement with Noack et al. work,
who showed that control human fibroblasts
expressed only 2.6% of GDAPI mRNA compared to
embryonic stem cells-derived motor neurons (Noack
et al. 2012). Interestingly, in patient’s cells,
presenting the homozygous codon-stop mutation
¢.581C>G in exon 5, GDAPI mRNA was only 10-
20% of mRNA estimated in each cell types of Ctrl-1,
reaching 6- and 8-fold smaller than those assessed in
Ctrl-1 NP and Ctrl-1 MN. Our data seem to suggest
that GDAPI mRNA is degraded in patient’s cells.
Since mutated GDAP] mRNA contains a premature
termination codon (PTC), the Nonsense-mediated
mRNA decay (NMD) system could be activated and
induce its degradation, preventing the synthesis of a
truncated, and maybe non-functional, protein (Auer-
Grumbach et al. 2008). In any case, the NMD system
is not always 100% efficient and some PTC-mRNA
can escape NMD, and be detected by qPCR, as
shown here. Real time qPCR results were also
supported by GDAP1 protein expression. Indeed,
GDAPI1 was not express in fibroblasts, both in
controls and patient, while the GDAP]1 staining was
present in Ctrl’s MN, and, as expected, lacked in
patient’s MN. Given the high GDAPI neural
expression, we chose MN and NP, as cellular models
to investigate its functions, and evaluate its role in
Charcot-Marie-Tooth disease development.
However, the weak GDAP1 expression detected in
fibroblasts do not exclude a GDAPI role in this cell
type, and the possibility of conducting functional
studies of them (Cassereau et al. 2009; 2020). Based
on our results, GDAP] seems also to be weakly
expressed in hiPSC. We think that the higher
spontaneous  differentiation, and the reduced
maintenance of stemness, observed in patient’s
hiPSC, may be the consequence of GDAP1 lacking.
Indeed, as demonstrated by Prieto et al., GDAPI
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knock-out impairs cell reprogramming, and it alters
cell cycle progression, in murine hiPSC (Prieto et al.
2016).

Morphological and functional analyses, conducted
on human MN, allowed highlighting two main
mechanisms, the energetic metabolism dysfunction
and the oxidative stress, as key components in CMT
disease progression. First, we investigated the
mitochondrial morphology and oxidative
phosphorylation. Electron microscopy revealed,
exclusively in  patient’s MN, a general
disorganization of mitochondrial cristae, which
could affect the inner mitochondrial space and
subsequent metabolism. The disruption of cristae
structure has already been associated to other
diseases characterized by a mutation or a lack of
proteins involved in mitochondrial functions, such as
Optic atrophy 1 (OPA1) protein (Perkins, Bossy-
Wetzel, e Ellisman 2009), or Mitofusin 2 (Min2)
protein (Vallat et al. 2008). Cristae abnormalities
were also reported in nerves” axonal mitochondria of
a CMT2 patient, carrying the
c.174 176delGCCinsTGTG mutation in GDAPI
(Benedetti et al. 2010). We investigated, therefore, if
mitochondria morphological alterations resulted in
an electron transport chain’s (ETC) impairment.
However, only a slight increase in succinate
dehydrogenase activity was observed, but not
reached significant levels, and ATP production was
preserved in patient’s fibroblasts and MN. However,
the markers used to evaluate oxidative
phosphorylation could not be pertinent, thus the
measurement of each complex activity, by
oxygraphy, could be useful to investigate ETC
function. Based on these preliminary results and
previous studies, GDAP1 can play a key role in
controlling mitochondrial morphology and dynamics
(Niemann et al. 2005; 2009; Huber et al. 2013).
Anyway, the morphological disturbance, induced by
the GDAP1 p.Ser194* mutation in our conditions
seems to not impact the ETC activity and the cellular
respiration process.

Moreover, in cytoplasm of patient MN, vacuoles,
suspected to be lipid droplets (LD), were observed
and could be considered as an accumulation of
energetic substrate, such as triglycerides, linked to a
defect of mitochondrial beta oxidation or a hallmark
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of cellular stress, previously observed in nutrient
imbalance, inflammation and oxidative stress (Jarc e
Petan 2019). Moreover, several studies have
demonstrated that their accumulation is one of
earliest events following the induction of cellular
apoptosis (Boren e Brindle 2012). Thus, the
accumulation of LD could be also considered as an
early signal of apoptotic pathways’ activation,
explaining the significant reduction of patient’s MN
observed in last steps of neural differentiation. The
synthesis of lipid droplets, in neurons, has been
observed in pathogenesis of several
neurodegenerative diseases, like amyotrophic lateral
sclerosis (ALS), Huntington’s disease, Alzheimer’s
disease, Parkinson’s disease and Hereditary spastic
paraplegia (Farmer et al. 2020). LD were also
described in the ultrastructural analysis of motor
neurons obtained from GDAPI knock-out mice
(Barneo-Mufoz et al. 2015) in accordance with our
results and supporting this relevant cellular model. In
stress conditions, a cytoprotective role against
reactive oxygen species (ROS) is also given to LD
since they sequester fatty acids, a potential target of
ROS, which save other vital cell targets of ROS to
detrimental injury, such as membrane lipids, amino
acids, and nucleic acids. This phenomenon is
probably responsible for the LD formation in our
cellular model of CMT-motor neurons carrying the
GDAPI Ser194* mutation. In fact, GDAP1 has been
also suggested to have an antioxidant role in cellular
homeostasis (Noack et al. 2012; Lopez Del Amo et
al. 2015). Consequently, in patient’s MN, the lack of
GDAPI1 protein increases the amount of generated
ROS, supported, in our study, by the MitoSOX™
Red mitochondrial superoxide indicator analysis.
However, in our study, a significant increase of ROS
has also been detected in patient’s fibroblasts, where
GDAPI1 is weakly expressed and lipid droplets
lacking. The overproduction of superoxide anion, in
GDAPI-mutated fibroblasts, has also been reported
in a recent work (Cassereau et al. 2020). These data
could support that, even if at lower levels, GDAPI
protein could be also present in cell types other than
neural cells. In this case, nevertheless, other
molecular mechanisms and proteins would take part
to the cellular antioxidant defense, counterbalancing
the GDAPI deficiency.
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In conclusion, the role of GDAP] impairment in
Charcot-Marie-Tooth ~ pathophysiology  through
mitochondrial dysfunction and oxidative stress
development was underlined in an original human
model of motor neuron from patient’s fibroblasts,
carrying the homozygous codon-stop c¢.581C>G
mutation. The results underlined that GDAPI is
mostly expressed in neural cell types such as MN
and PN, but also, at lower levels, in fibroblasts and
hiPSC cells. In patient’s cells, 80-90% of GDAP/
mRNA would be degraded by the NMD system,
leading to the considerable reduction of GDAPI
protein. Taken together, these results demonstrated
that hiPSC cells can be a powerful tool to recreate
any suitable cellular model from patients carrying
mutations, essential in  understanding the
pathophysiological role of the altered protein, but
also necessary to develop new therapeutic strategies.
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Supplementary data

Supplementary materials:

DNA extraction

DNA was extracted from fibroblasts and hiPSC of
Ctrl-1, Ctrl-2, and patient, using the Puregene Tissu
kit (OQIAGEN), and following manufacturer’s in-
structions.

Sanger Sequencing

Primers, for each GDAPI exon, were designed on
the Human GHCh37/hgl9 genome (Supplementary
data). Extracted DNA was amplified, and sequenced
on the Applied Biosystems 3130 x1 Genetic Analyzer
(Applied Biosystems). Sequences were aligned using
the Sequencher 4.7 software.

Supplementary tables:

Supplementary table 1 Primary antibodies used for charac-
terization of MPSC and neural cells.

Antibody Company Cat. Number Species Dilution
Pluripotency markers
Sox2 Biolegend 630802 Rabbit 1:200
Oct3/4 Santa Cruz sc-5779 Mouse 1:50
Biotech
MNanog DSHB PCRP-NANOGP1-2D8-s Mouse 1.5
Germinal Layers markers
a-5MA DAKO MO851 Mouse 1:500
Sox17 R&D AF1924 Goat 1:100
MAP2 Merck M-4403 Mouse 1:500
Neural markers
PGP9.5 Abcam abl08986 Rabbit 1:100
Tuji R&D MAB1195 Mouse 1:1000
Chat Chemicon AB144p Goat 1:50
Other
GDAP1 Proteintech 13152-1-AP Rabbit 1:100
P4HB OriGene AF0910-1 Mouse 1:100
Ki-67 Leica NCL-L-Ki67-MM1 Mouse 1:100
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Supplementary results:

hiPSC generation, mainiaining and validation
Following the iStem (INSERM/UEVE UMRS6I,
AFM, Genopole, Evry, France) procedure, hiPSC
cells were generated from fibroblasts of Ctrl-1 (A),
Ctrl-2 (B), and the CMT-patient (C). Two weeks
after fibroblasts” nucleofection, hiPSC colonies were
selected for each subject. One clone for each subject
was amplified and, at passage 15, validated with all
quality controls. Colonies” morphology was checked.
Pluripotency was established by the alkaline phos-
phatase test, the EB formation, the spontaneous dif-
ferentiation in the three germ layers, and immunocy-
tochemistry analysis for pluripotency markers (Sup-
plementary figure 1). We verified also, by array
Comparative Genomic Hybridization (aCGH), the
lack of large genomic copy number variations
(CNV) in hiPSC genome. Thus, for Ctrl-1, Ctr-2,
and the patient, aCGH allowed comparing the ge-
nome of hiPSC with the genome of own fibroblasts.
It demonstrated the absence of novel Copy Number
Variations (CNV), as large deletions or duplications,
supporting that hiPSCc and fibroblasts have the same
genetic background (data not shown).

Motor neurons generation and validation

For each subject, hiPSC were led to neural differen-
tiation, following the protocol described by Faye et
al (Faye et al. 2020) (Supplementari figure 2). Brief-
ly, hiPSC colonies were cut to obtain EB, which
were first cultured in suspension, and secondly seed-
ed to generate rosettes. The selection of rosettes al-
lowed isolating neural progenitors (NP), which were
amplified and, after 5-6 passages, seeded at low den-
sity, to generate motor neurons (MN). The same
protocol was successfully performed for Ctrl-1, Ctrl-
2 and the CMT-patient.
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Patient

Supplementary figure | HiPSC quality controls for Ctrl-1 (A), Ctrl-2 (B), and patient (C). hiPSC colonies had a
typical morphology, expressed alkaline phosphatase, could originate EB and spontaneous differentiate in the
three embrvonic germ layers [Sox17 (green): endoderm, a-SMA(red): mesoderm, MAP2 (red): ectoderm].
hiPSC expressed also pluripotency markers: Oct3/4 (green), Sox2 (red), Nanog (green).

Do D1 D 1?—14 D 14-30 D 30-90
Time | |

iPSc EB Rosettes NP MN

Ctrl-1

Patient

Supplementary figure 2 hiPSC differentiation into motor neurons, for Ctrl-1, Ctrl-2 and patient from DO to D30-40.
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Article 6: Complementary results

Additional functional studies, on fibroblasts and hiPSC-derived PN and MN, were performed, on
patient 3-A and controls, to investigate other important aspects potentially connected to GDAPI.
Specifically, we evaluated cellular levels of total glutathione (GSH) and oxidized glutathione (GSSG),
and the mitochondrial membrane potential. Given technical issues encountered, and difficulties in

results’ interpretation, we present them here, in a separate section.

e Glutathione quantification

Cellular levels of total GSH were estimated in fibroblasts, PN, and MN, of the two control subjects,
and the CMT-patient presenting the homozygous GDAP1 p.Ser194* mutation.

In fibroblasts, it seemed that total GSH was higher in patient’s cells, compared to Ctrl-1 and Ctrl-2.
Anyway, in both cases, difference was not significant (Complementary Figure 1A).

In NP, we did not observe any difference between controls and patient (Complementary Figure 1B).
In MN, total GSH was apparently reduced in patient’s cells, compared to controls, even if difference
was not statistically significant (Complementary Figure 1C). In this case, GSH quantification was
performed at day 7 of NP final differentiation into MN. As shown in the Article 6, at d7, the number
of patient’'s MN was significantly lower than controls’ MN. Since the GHS test does not take into
account this cells death rate, we cannot directly compare raw values. We can only consider that
patient’s MN were ~41% of Ctrl-1 MN, and their GSH concentration was ~33% of GSH concentration
in Ctrl-1 MN. Compared to Ctrl-2 MN, patients’” MN were ~46%, and their GSH concentration was
36% of theirs. Calculating the ratios, we can suppose that GSH could be slightly lower in patient’s MN
than in controls’ MN, but with current results, we cannot draw conclusions from this analysis.

On the other hand, given the limited availability of cells, GSSG levels were not detectable. We were

not, thus, able to quantify oxidized glutathione.
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Overall, this test was not suitable for total and oxidized glutathione quantification in our cellular

models. Alternative tests, which allow also cell counting, could be more appropriate for this type of

analysis.

4]
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GSH (Fibroblasts)

Subjects

=

[GSH] (M)

GSH (NP)

20
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10

2

e &
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& & Qe\"&
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Complementary Figure 1: Measurement of GSH in fibroblasts, NP, and MN, of patient, Ctrl-1 and Ctrl-

2.

Mitochondrial membrane potential (AW) measurement

Mitochondrial membrane potential was evaluated, on MN of patient and controls, with the JC-1

probe, analyzed by flow cytometry. Anyway, technical problems occurred in MN labeling, and

obtained results were not conclusive. Preliminary tests would be necessary before this analysis can

be performed again.
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Conclusion

Two models of hiPSC for GDAP1 have already been proposed (Saporta et al. 2015; Marti et al. 2017).
However, no work has reported the creation of hiPSC-derived MN for GDAP1, and, to date, functional
studies on human MN have never been described. In the present study, thanks to hiPSC strategy, we
could obtain a cellular model of human MN, to investigate pathological mechanisms associated with
a codon-stop mutation in GDAP1. In CMT-patients’ MN, we could detect new features and
abnormalities, like altered mitochondrial structure and vacuoles (LD?) accumulation, but also confirm
already suggested GDAPI1 functions, in protection from ROS. Further in-depth analyses, on this
cellular model, will be needed to clarify GDAP1 implication in cellular respiration and metabolism, as
well as in mitochondrial dynamics. Specifically, oxygraphy, lipidomics analysis, and mitochondrial
tracking, have been already envisaged, even if limited, so far, by the restricted number of cells.
Glutathione and mitochondrial membrane potential will be also revaluated, after modification of

current protocols.
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Discussion and Perspectives
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This project entirely focused on hereditary peripheral neuropathies, considering two main aspects of
this group of diseases: their genetics and molecular analysis, and their functional analysis, through a
specific cellular model. Here, we argue about our new findings and emerged results, discussing
whether and how they can actually be relevant for existing, and future, procedures and research. At
the same time, we evaluate the main practical limits of our study, and the possible improvements to
introduce, with the purpose of better exploring and characterizing hereditary peripheral

neuropathies.

Part | - Genetic analysis of hereditary peripheral neuropathies

In last years, the introduction of NGS technology, in routine analyses of hereditary peripheral
neuropathies, has surely improved and simplified the diagnosis procedure. Targeted NGS is widely
used to directly screen the more than 90 genes involved in Charcot-Marie-Tooth disease and sensory
and motor neuropathies. At Biochemistry and Molecular Genetics Department of University Hospital
of Limoges, a 93-gene panel is currently employed, whose libraries are prepared with an amplicon-
based strategy, and sequenced on lon Proton sequencer. Previously, data derived from target NGS
were exclusively exploited to search for point mutations and small indels, given the lack of
bioinformatic tools for CNV detection. Cov'Cop and CovCopCan software were conceived and

designed, at University Hospital of Limoges, to extend the potential of NGS analysis to CNV.

CMT and CNV

The lack of a systematic exploration of CNV, in all CMT- and peripheral neuropathies-genes, is due to
the poor and insufficient knowledge about the role of these large (>1 kb) deletions and duplications
in the pathology. If we exclude PMP22 duplication, which is the genetic cause of ~15% of all CMT
diagnosed cases, CNV in other genes have been occasionally described. In 2010, a first study was

conducted in a cohort of 97 CMT-patients, to evaluate CNV in 34 CMT genes, by comparative
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genomic hybridization (CGH) microarrays. They detected CNV in three CMT-genes (ARHGEF10,
MTMR2, SPTLC1), but none of them were considered disease-causing, suggesting the rare implication
of CNV in CMT pathology (Huang et al. 2010). After few months, another work described, for the first
time, two different large deletions which entirely eliminated GJB1 coding sequence, in CMT1X
patients (Gonzaga-Jauregui et al. 2010). Then, CNV occurrence in CMT was also reported in MPZ
gene, first described as simple duplication (Hgyer et al. 2011), then as multiplication and increased
gene dosage, with the identification of five MPZ copies (Maeda et al. 2012). Further analyses
highlighted CNV in seven genes already associated with CMT disease (NDRG1, PRX, FGD4, INF2, GAN,
GDAP1, LRSAM1) (Okamoto et al. 2014; Dohrn et al. 2017; Mortreux et al. 2020). Most of CNV
reported for CMT were deletions, less often duplications.

Since, in last years, few studies have explored and identified occurrence of CNV to be responsible for
CMT pathology, favoring the investigation of point mutations and small indels, this phenomenon is
still considered rare. In previous studies, CNV frequency in CMT has been estimated between 1% and
2.5% (Hgyer et al. 2011; Pehlivan et al. 2016; Mortreux et al. 2020). In Limoges, the analysis of target
NGS data, by Cov’'Cop and CovCopCan software, has allowed us to detect CNV in 15.4% of CMT
patients (Miressi et al. 2020) — Article 3), even if their pathogenicity is still under investigation. In any
case, our findings seem to suggest that CNV could be more frequent than reported in literature. For
instance, in the two clinical cases (Article 2 and Article 3) presented in this study, we described two
novel CNV, one deletion, and one duplication, in SACS and AARS1.

Since 2018, at Biochemistry and Molecular Genetics Department of University Hospital of Limoges,
the CNV systematic analysis, by bioinformatic approach, has been included in the routine diagnostic
procedure. Given the emerging role of CNV in CMT disease, the current molecular examination is
now regularly combined with investigation of genomic deletions and duplications, in CMT-panel
genes. In some cases, detected CNV are, then, more thoroughly explored by the EA6309 research
team, at University of Limoges. Other CNV are currently under analysis and several articles are in

preparation.
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Between diagnosis and research

Bioinformatic software, as Cov’'Cop and CovCopCan, have been conceived with a dual function. First,
they are essential in detecting CNV, already described and already linked to CMT. On the other way,
their main role is surely connected with the research field. Since few CNV have been reported for
CMT and associated peripheral neuropathies, we can suppose, on the basis of our preliminary
results, that a huge number of CNV rests to be discovered. The high frequency of PMP22 duplication
in some CMT1 forms, and the simultaneous subsistence of PMP22 point mutations in other CMT
forms, reinforces the idea that CNV may occur in genes for which pathological single nucleotide
mutations have already been confirmed. The detection of new disease-causing CNV could also be
important in revealing unknown molecular mechanisms, caused by the genomic imbalance (gain or
loss), and responsible for specific pathological manifestations.

We think that a solid cooperation between diagnosis and research could help to reduce, at least in

part, the present high rate of undiagnosed cases of peripheral neuropathies.

Is CMT a multilocus genetic pathology?

In inherited diseases, we tend to consider the unique correlation “one patient : one mutation”,
assuming that, in most of cases, only one genomic alteration is responsible for the observed disorder.
The simultaneous presence of multiple point mutations or SV is generally reported in more complex
pathologies, like cancers, characterized by high genomic instability (Whitworth et al. 2016). In 2016,
an extensive analysis, on more than 7,000 patients requiring a molecular diagnosis, showed how 5%
of diagnosed cases included two or more genomic loci (Posey et al. 2017). Furthermore, a more
recent study has focused, in particular, on phenotypic expansions, i.e. on clinical cases characterized
by a set of phenotypic features wider than those already described for the associated genomic locus.
It revealed that ~32% of families with phenotypic expansions presented multilocus variations, a much

higher proportion than that reported for the unselected cohort of patients (Karaca et al. 2018). All
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these findings seem to suggest that complex and blended clinical manifestations could be, in most
cases, the result of multiple genomic alterations, and, thus, reflect the combination of multiple
impaired mechanisms. CMT pathology is known to be characterized by a high clinical and genetic
heterogeneity, since various involved genes present different associated phenotypic features, and
different modes of transmission (Morena, Gupta, and Hoyle 2019). In addition, in some cases, a
moderate or striking intrafamilial variability has also been described (Bo et al. 2008; Kostera-
Pruszczyk et al. 2014; Gogou et al. 2020). In CMT disease, various cases of digenic inheritance, which
is the simultaneous occurrence of two disease-causing variations in two distinct genes, have been
reported, for different associations of genes, as for example: EGR2 and GJB1 (Chung et al. 2005),
PMP22 (duplication) and GJB1 (Hodapp et al. 2006), GDAP1 and MFN2 (Cassereau et al. 2011C; Vital
et al. 2012), LRSAM1 and MARS, MFN2 and PMP22 (point mutation) (Yoshimura et al. 2019). In some
of these cases, within the same family, patients carrying both mutations showed a more severe
phenotype, comparing to other family members carrying one single mutated gene (Chung et al. 2005;
Hodapp et al. 2006; Cassereau et al. 2011C; Vital et al. 2012). We remarked this variable disease’s
severity in the case of Family 2 of our study. The daughter, who was more affected and with
additional clinical signs (learning problems, mental retardation), presented the combination of three
different CMT-mutated genes (MORC2, MFN2, AARS1), compared to her mother (MORC2, AARS1),
who was less affected. Moreover, our findings are supported by the emerging role of modifier genes
(or modifier alleles) in CMT pathogenesis, particularly investigated in recent years. Indeed, evidence
from genetic studies suggest that the effect of one allele could be modified by a second allele, the so-
called modifier gene (Kousi and Katsanis 2015). The primary mutated gene would be sufficient, by
itself, to induce the phenotypic manifestation, while the second one would impact, for example, the
disease severity or progression (Bis-Brewer, Fazal, and Ziichner 2020). In the case of our Family 2, we
cannot exclude that MFN2 mutation and AARS1 duplication can actually act like modifier alleles in
the daughter, whereas the main CMT manifestation is due to the MORC2 mutation (in mother and

daughter).
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Even if this is the first case of CMT disease reporting three variations in three different genes, we
believe that the multilocus inheritance and the contribution of modifier genes are considerably
underestimated in peripheral neuropathies, whose molecular diagnosis is often closed after the
detection of one, or sometimes two, genomic mutations. The detailed assessment of the clinical
history, as well as the accurate examination of the genotype/phenotype correlation, in all family
members, are first crucial steps for a correct genetic analysis. The possibility of multiple genomic loci
and a wilder genetic analysis should be envisaged in families with heterogenous phenotypes, as well

as in sporadic complex cases.

Perspectives for diagnosis and research

As previously discussed, the molecular analysis at Biochemistry and Molecular Genetics Department
of University Hospital of Limoges allows the routine diagnosis for CMT and associated peripheral
neuropathies. On the other hand, in research, at University of Limoges, it is employed in discovery of
novel mutations and mechanisms. This research purpose can be supported by more extensive NGS
strategies, like WES, which has been tested for the complex genetic analysis reported in Article 3.
WES could allow to go beyond the 93 genes of CMT-panel and reveal further pathogenic mutations in
other exonic regions. The next step would then involve the examination of intronic regions, but also
intergenic regions, through the WGS. Rare disease-causing intronic mutations have been detected in
CMT genes, like MPZ or GDAPI, responsible for modifying splicing process (Sabet et al. 2006;
Masingue et al. 2018). Furthermore, in some pathological conditions, more complex mechanisms can
be induced by intronic alterations. For example, this is the case of the neurological disorder CANVAS
(cerebellar ataxia, neuropathy, vestibular areflexia syndrome), which has been associated to the
biallelic repeat expansion in an intronic region of RFC1 gene (Cortese et al. 2019).

In diagnosis, the future systematic combination of the 93-genes panel with WES and WGS strategies
will surely increase the chances of detecting multilocus genetic mutations in CMT disease. Currently,

the main limit of these analyses is due to the high cost and the high number of data to interpret.
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Part Il - A cellular model for hereditary peripheral neuropathies

The genetic characterization is just the first step in the understanding of peripheral neuropathies.
Even in case the genetic mutation has been well defined, it is necessary to evaluate its direct, or
indirect, effects on cellular physiology. Cellular models are an essential tool to recreate pathological
cellular contexts and explore impaired mechanisms induced by genomic mutations. For GDAP1 gene,
and, in particular, its axonal form of CMT2, we successfully developed a cellular model of human

motor neurons, derived from human induced-pluripotent stem cells (hiPSC).

From hiPSC to motor neurons

Our cellular model of hiPSC-derived MN arose from the need to analyze pathophysiology of a specific
CMT form, reproducing the same involved cellular type (MN), of the same affected species (humans).
A considerable advantage of our strategy is the possibility to generate MN from dermal fibroblasts,
an easy-to-obtain cell type. Skin biopsies were obtained thanks to the collaboration with the
Neuropathies’ Center of Reference of University Hospital of Limoges. Fibroblasts were
reprogrammed in hiPSC applying the protocol proposed in 2006, by Pr Yamanaka, transfecting them
with three plasmids expressing Oct4, Sox2, KIf4 et |I-Myc genes (Takahashi and Yamanaka 2006).
Despite the low reprogramming efficiency of plasmids, we opted for this strategy to avoid random
integration and insertional mutagenesis events, occasionally occurring in virus transduction. We
cultured reprogrammed hiPSC on feeder cells (MEF), with traditional culture media. With our
protocol, we did not observe any technical problem, our hiPSC passed all quality controls, and they
could easily generate embryonic bodies (EB) to be differentiated. We succeeded in created hiPSC for
two CMT-patients carrying two different codon-stop mutations in GDAP1 (p.Ser194* and p.GIn163*),

and five unaffected subjects (three women, two men).
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However, some aspects of our protocol can still be improved. Indeed, hiPSC culture on feeders has
some drawbacks, since media preparation, MEF preparation, hiPSC cleaning and passage, are labor-
intensive and very time-consuming, but also with a significant related cost. Additionally, culture on
feeders uses animal-derived cells, which limits its use for eventual clinical application (Sasaki, Suzuki,
and Takahashi 2015). We have, therefore, envisaged to approach the feeder-free (FF) culture. In
order to organize this technical transition, a member of our research team has recently followed a
technical training on FF hiPSC culture, in Regenerative Medicine and Skeleton (RMeS) INSERM U1229
of University of Nantes. This culture strategy could replace culture on feeders, as already shown in
previous studies (Nakagawa et al. 2015; Colombier et al. 2020). We have already successfully
cultured FF-hiPSC for two of the five controls, and for the p.Ser194* patient. The differentiation

protocol from FF-hiPSC has to be tested in the next future.

In our study, after hiPSC amplification and validation, we could differentiate them into MN. In our
laboratory team, we developed a new protocol to obtain MN from hiPSC in about 30 days. In last ten
years, various differentiation protocols have been proposed. In most of them, stem cells were first
detached to favor formation of EB, which were cultured in suspension, before being sedimented to
obtain neural rosettes (Hu and Zhang 2009; Corti et al. 2012). Neural rosettes can be then easily
selected to isolate neural progenitors, which can completely differentiate in MN (Lee et al. 2007;
Lukovic et al. 2017). This procedure was followed in establishing our protocol. Then, we had to
choose the most suitable differentiating factors, responsible for activation or inhibition of specific
cellular pathways. Testing already described protocols, we obtained poor results. That is why we
decided to focus on main mechanisms of embryonic development, and select main factors involved
in MN-differentiation. With our new protocol, we obtained 100% cells expressing neuronal markers
and 80% cells expressing spinal MN markers. MN were also ChAT-positive, and their electrical
proprieties could be evaluated by patch clamp. The efficiency rate of our differentiation protocol was

much higher compared to previous works (Dimos et al. 2008; Chambers et al. 2009; Hu and Zhang
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2009), while the culture period (20-30 days) was on average of the others. More recently, some
protocols reduced the differentiation time, and improved hiPSC-derived neurons’ purity, through the
stable expression of a transcription factor involved in neuronal differentiation (Ngn2) (Zhang et al.
2013; Wang et al. 2017). The hiPSC engineering has been obtained infecting them with lentivirus
(zhang et al. 2013) or adeno-associated virus (Wang et al. 2017), which implies all drawbacks of virus
manipulation, already discussed above. Although our strategy takes, surely, more culture time, it
does not require further manipulation on cells genome, and it rests a safer and fairly easy-to-achieve
procedure.

Recently, we have considered additional factors which could improve our differentiation protocol. In
a recent review, we explored the role of 1,25-Dihydroxyvitamin D3, or calcitriol, in the peripheral
nervous system (Article 5). In pathological conditions, like nerve trauma, vitamin D3 administration
seems to favor axonogenesis (Chabas et al. 2008; Chabas et al. 2013). On the other hand, its
deficiency has been associated with diabetic peripheral neuropathy (Shehab et al. 2015; Alamdari et
al. 2015). Calcitriol involvement in axon maintenance and regeneration rests to be investigated.
Anyway, it could be interesting to evaluate if its supplementation, in hiPSC differentiation into MN,
may have a synergistic effect with other differentiation factors, to favor the activation of neuronal
pathways. In our differentiation protocol, Calcitriol could be supplemented after EB seeding, to

promote rosettes formation, and maintained during all following steps, to help NP and MN growth.

A model for GDAP1 study

For the investigation of GDAP1 functions, many studies have already been conducted on animal and
cellular models. Animal models (mice, Drosophila melanogaster, Saccharomyces cerevisiae) have
been fundamental to evaluate the effects of GDAPI1 suppression/mutation/over- and under-
expression, on the whole organism, so to reproduce, on them, a pathological condition comparable

to the human CMT disease (Niemann et al. 2014; Barneo-Mufioz et al. 2015; Lopez Del Amo et al.
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2015; Lépez del Amo et al. 2017; Estela et al. 2011; Rzepnikowska et al. 2020). Mice are definitely
the animal model closer to humans, and their GDAP1 protein share 94% of amino acidic identity with
the human GDAP1 (Googins et al. 2020). However, the two GDAPI-knockout murine models,
proposed by two different research teams, presented some differences, in the age of onset of first
symptoms (19 months vs 3 months), and, at histological level, in nerve structure and myelin aspect
(hypomyelination vs normal myelin thickness) (Niemann et al. 2014; Barneo-Mufioz et al. 2015).
These findings suggest that many parameters can vary, also in the same model, so it can be hard to
evaluate if its features can be really compared to human condition. On the other hand, human
cellular models are limited, since neurons and Schwann cells, which are the CMT-affected, and
GDAP1-more expressing, cells, cannot be obtained from patients, and cultured in vitro. Also cellular
models created by transfection of immortalized cell lines, turned out to be interesting in revealing
unknown mechanisms associated to GDAP1. Anyway, we have to consider that the cellular context
can mostly depend on the cell type. This means that, even if we induce GDAP1 expression in a cell,
we cannot be sure that all protein interactions, and all GDAP1-involving pathways, are conserved and
activated in the same way as in neurons. The choice of cellular type could, thus, impact the observed
results.

After evaluating all positive and negative aspects of existing GDAP1 models, we decided to develop a
human cellular model of MN for GDAP1, exploiting the hiPSC technology. Our strategy presents
multiple advantages. First, it is a human model, so there are not species-related inconveniences.
Then, we recreated a model of MN, the cells directly involved in the CMT disease. Moreover, cells
derive from dermal fibroblasts of CMT-patients. This means that all patient’s genomic features are
conserved, and GDAP1 mutations are already present, and do not need to be introduced. MN,
obtained with our differentiation protocol, can usually be cultured for 7-10 days after the final
differentiation, enabling to perform all suitable studies, in this time period.

Our model of hiPSC-derived MN has allowed to obtain interesting results. However, it is not defect-

free, and, in our study, two major drawbacks emerged: the time required for complete
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differentiation (previously analyzed), and, above all, the number of cells. In fact, we had to face the
limited availability of MN, mostly due to the high susceptibility of neural cell type. We noticed that,
although NP are very proliferating cells, they could degenerate when cell passage is too elevated
(>10), losing their ability to differentiate into MN. Therefore, some analyses, requiring a very high
number of cells, have been excluded from the study. Specific functional tests will be discussed in the

next section.

GDAP1 functional analyses

We successfully obtained MN from the five control subjects, and for the two CMT-patients, carrying
two GDAP1 homozygous mutations (p.GIn163*, p.Ser194*). Anyway, expression, morphological and
functional studies were exclusively performed on cells belonging to patient 3-A, with the
homozygous GDAP1 p.Ser194* mutation, and cells of two controls (Ctrl-1 and Ctrl-2). First interesting
results derived from expression studies. This was the first analysis that compared GDAP1 mRNA
expression in different cell types (fibroblasts, hiPSC, NP, MN), which were all human, and all derived
from the same subject. The expression study has been also fundamental to validate our models,
since our results, in each cell type, were in agreement with previous expression studies, conducted
on animal cells and tissues, and human fibroblasts (Niemann et al. 2005; Pedrola et al. 2005; 2008;
Noack et al. 2012). The confirmation of the higher GDAP1 expression in neural cells supported the
choice of MN as the more suitable cellular model to investigate GDAP1 functions and its involvement
in CMT disease. In patient MN, in addition, we demonstrated that GDAP1 mRNA was degraded, and
its protein quite absent.

Morphological examination, by EM, concerned the global structure of cells, to focus, then, on
mitochondria morphology and internal organization, since GDAP1 protein is known to be located in
the OMM (Niemann et al. 2005). For functional analyses, we selected preliminary tests that, a priori,

did not require a too high number of cells. In particular, we decided to evaluate two main cellular
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processes: the energy production (Succinate dehydrogenase activity and ATP quantification), and the
oxidative stress (MitoSOX and Glutathione quantification).

First, in patient’s MN we observed a general disorganization of mitochondrial inner space, and
alteration of mitochondrial cristae structure. This could support the hypothesis that GDAP1 protein
plays a role in regulating mitochondrial morphology and dynamics. GDAP1 involvement in
mitochondrial fission and, maybe, fusion events had already been reported in previous works
(Niemann et al. 2005; 2009; Wagner et al. 2009). However, the structural impairment, observed in
inner mitochondrial space, seemed to not disturb Succinate dehydrogenase activity and ATP
production, suggesting that GDAP1 could not be involved in energetic metabolism. Our findings
appeared in contrast with analyses conducted by Cassereau et al., in 2008 and 2019. In these cases,
in CMT-patient’s fibroblasts, carrying specific GDAP1 mutations, they detected a deficiency of ETC
Complex | activity, decreased respiration rate, and decreased ATP production (Cassereau et al. 2009;
2020). Given the low GDAP1 expression level in fibroblasts, they may not be the most appropriate
cellular model to detect GDAP1-induced impairment. Anyway, if the metabolic alteration has been
detected in this cell type, it could be also present, and maybe in more significant way, in MN. That is
why, a more deepened functional analysis of all ETC complexes, by oxygraphy, has been envisaged
for future studies, thanks to the collaboration with the MitoLab, UMR CNRS 6015-INSERM 1083 of
University of Angers. It might be necessary to perform oxygraphy on NP cells, more available than
MN.

Secondly, we detected, in patient’s MN, increased levels of oxidative stress, and, in particular, of
mitochondrial superoxide anion. GDAP1 role in protection from ROS had been suggested in multiple
studies, on different cellular and animal models (Noack et al. 2012; Lépez Del Amo et al. 2015;
Cassereau et al. 2020), and we confirmed it with the MitoSOX analysis.

In cytoplasm of the same cells, ultrastructural analysis revealed accumulation of spherical structures,
that we supposed to be lipid droplets. This phenomenon has been described in some pathological

conditions of the CNS, like Amyotrophic Lateral Sclerosis, Huntington’s disease, Parkinson’s disease,
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even if their role is not completely known (Farmer et al. 2020). In CMT disease, only one recent work
has described the formation of LD in human cells (Giudetti et al. 2020). This study was conducted on
CMT2B fibroblasts carrying the p.Vall62Met mutation in RAB7 gene. In this case, the alteration of
lipid metabolism and the LD accumulation have been associated with RAB7 role in controlling lipid
signaling and lipophagy (Giudetti et al. 2020). In animal models, LD have been observed in embryonic
motor neurons obtained from GDAP1 knock-out mice (Barneo-Mufioz et al. 2015). In our MN model,
we suggested that LD formation could be associated with increased oxidative stress state, as shown
in other cellular and animal models (Bailey et al. 2015; Jin et al. 2018). LD would act as a cellular
defense system, to sequester and protect lipids from ROS action, when GDAP1 is suppressed.
Another hypothesis could be that lipids accumulation is the consequence of a dysregulated lipid
metabolism in MN, as a defect in the carnitine carrier system, which would induce accumulation of
lipids in cytoplasm, or in the mitochondrial B-oxidation, responsible for lipids catabolism. In fact, in a
cellular model of primary human muscle cells, it has been observed that GDAP1 silencing reduced
lipid oxidation, without affecting glucose metabolism (Lassiter et al. 2018).

A lipidomic analysis could be interesting in establishing the complete lipid profile, for patient’s and
controls’ MN (or NP), and evaluate which lipid class is more perturbed by GDAP1 mutation. This
would also help us to identify the origin of LD. The collaboration with the University of Angers will be

essential for our purpose.

The measurement of total and oxidized glutathione could provide an additional proof about GDAP1
participation in antioxidant cellular defenses, as shown in previous studies (Lopez Del Amo et al.
2015). Anyway, as reported in “Complementary results” section, total glutathione quantification, in
NP and MN, cannot be compared between patient’s and controls’ cells, since number of cells was too
much variable and not quantifiable. Furthermore, levels of oxidized glutathione were too low to be
detected. Another Glutathione quantification test has to be evaluated, to make the experiment

suitable for all cell types.
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Taken together, functional analyses allowed to discover some altered mechanisms induced, in MN,
by the homozygous p.Ser194* mutation in GDAP1. Our preliminary results will be deepened through
additional analyses, to better characterized the pathological state. This study confirmed how it can
be important to chose the good cellular model in this kind of investigation, and how hiPSC could be a

fundamental tool to obtain it.

Our project has focused on a GDAP1 mutation, p.Ser194*, associated with a recessive axonal form of
CMT disease (CMT2H). The same protocol can also be employed for alternative pathological CMT
axonal forms. Given the remarkable clinical difference observed between GDAP1-autosomal
dominant and GDAP1-autosomal recessive forms, functional analyses on human MN, obtained from
AD- and AR-patients, could reveal independent impaired mechanisms in these two different
conditions. Moreover, GDAP1 mutations have also be described in demyelinating CMT. In fact,
previous studies revealed that GDAP1 is not only expressed in neuronal cells, but also in Schwann
cells (Cuesta et al. 2002; Niemann et al. 2005). This strategy, therefore, can reveal impaired
mechanisms in both cell types. Exactly as for MN, SC can be generated from hiPSC, for patients and
controls, and some differentiation protocols have already been proposed (Shi et al. 2018; Muller et
al. 2018). Moreover, it could be interesting to evaluate if the interaction of these two cell types can
further impact the pathogenic process. To recreate, in vitro, a cellular model that reflects, as much as
possible, the in vivo condition, we can envisage to establish a MN/SC co-culture. In this way, we
could first consider if some molecular mechanisms are impaired when cells are separately cultured,

then, we could analyze if MN/SC co-culture alters the observed features.

CMT treatment and further applications for our hiPSC-derived motor neurons
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The prevalence of Charcot-Marie-Tooth disease is estimated to be 1/2500. Many mutations in many
genes have been detected, and functional analyses, on animal and cellular models, have revealed
multiple molecular mechanisms, differentially impaired in CMT forms. In any case, despite the
current wide knowledge about this pathology and its causes, a treatment for CMT diseases is not yet
available. A recent study identified three main obstacles in the discovery of a valid CMT treatment:
the genetic and clinical heterogeneity of Charcot-Marie-Tooth disease, which is often considered as a
motley group of motor-sensory neuropathies; a relatively small number of patients for each CMT
form, which can limit the interest of pharmaceutical companies; the mismatch between results
observed in preclinical studies, on animal and cellular models, and the clinical trials, on human
subjects (Juneja et al. 2019). Most of existing clinical trials have been proposed for CMT1A, the most
frequent form. A first interesting study concerned a treatment with ascorbic acid (vitamin C) and
progesterone antagonists (Wayne State University), but, although promising results on mice, it failed
in clinical trials (Passage et al. 2004; Pareyson et al. 2011; Lewis 2013). Another advanced study is
based on PXT3003 (Pharnext), a low-dose combination of baclofen, naltrexone, and sorbitol. Positive
preclinical outcomes in rodent models (mice and rats), led PXT3003 to be accepted for an
exploratory, randomised, double-blind and placebo-controlled phase Il study (Chumakov et al. 2014;
Attarian et al. 2014; 2016). Since, in phase I, clinical effectiveness was demonstrated, PXT3003 is
currently undergoing a multicenter, randomised, placebo controlled phase Il study (Prukop et al.
2020). More recently, a new targeted strategy has been proposed. It is based on use of antisense
oligonucleotides (ASO) (lonis Pharmaceuticals Inc.), to suppress PMP22 mRNA, and, in preclinical
studies, it showed first promising results on rodent models (Zhao et al. 2017). Alternative therapeutic
approaches were also proposed for CMT subtypes, other than CMT1A. For example, IFB-088
(InFlectis BioScience) has been successfully tested on mice models of CMT1B (mutated MPZ gene)
(Guédat and Miniou 2016), while MFN2 agonists (Washington University) have been shown to
restore mitochondrial defects in CMT2A murine neurons (Rocha et al. 2018). IFB-088 recently

completed the phase | of clinical trial.
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In the complex context of CMT disease, most of proposed therapeutic strategies seem to target
specific gene-related mechanisms. Given the high number of involved genes, we can suppose that a
considerable number of potential therapeutic molecules will need to be tested on specific models. As
already discussed, even if it is a mandatory step of preclinical trials, the employment of animal
models presents limitations and drawbacks, often related to physiological differences between
animals and humans. Moreover, their exploitation must always take into account ethical rules and
restrictions. The advantage of iPSC technology is that it allows to recreate any required human cell
type, like, in the case of peripheral neuropathies, motor neurons and Schwann cells. In addition,
patients’ samples, as blood and skin biopsies, are more and more frequently collected by clinicians,
providing the “raw matter” to establishing new hiPSC lines (Juneja et al. 2019). hiPSC role is,
therefore, important, not only in investigation of pathological mechanisms, but also in providing
diversified cellular models, adaptable to the candidate therapeutic strategy. Since they are not
primary cultures, hiPSC-derived MN and SC can be generated whenever necessary, from hiPSC,
favoring, in this way, a large-scale drug screen. Definitely, hiPSC will not replace, for now, animal
models, but they can constitute a valid tool for preliminary analysis.

As discussed above, treatments are often designed on the basis of pathological mechanisms
responsible for the specific CMT form. For GDAP1, no preclinical and clinical studies were reported,
maybe because its functions rest partially unclear, and cellular and animal models are limited. Our
hiPSC-derived MN, carrying nonsense mutations in GDAP1, may be employed as cellular tool to test
new therapeutic molecules. Our analysis has revealed that, in MN of patient with the homozygous
p.Ser194* mutation, GDAP1 mRNA was ~8 fold lower than in Ctrl-1 MN. We supposed that its mRNA,
presenting a premature termination codon (PTC), is probably degraded by the cellular quality-control
mechanism known as nonsense-mediated mRNA decay (NMD). Consequentially, a good proportion
of GDAP1 protein is not formed, as we have shown by ICC. We can, therefore, consider to inactivate
the NMD system, and enable the translation of GDAP1 mRNA in a truncated protein, using NMD

inhibitors. Their action can be combined to that of read-through molecules. In basal translational
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read-through, the ribosome goes past the stop-codon and continues the mRNA translation in the
UTR region (Li and Zhang 2019). This is a rare natural mechanism of the cell, but, in pathological
conditions, it can be induced by pharmaceutical compounds (Dabrowski, Bukowy-Bieryllo, and
Zietkiewicz 2018). Examples of read-through molecules are the aminoglycosides, which can be
associated with nephrotoxicity and ototoxicity, and the Ataluren or PTC124 (Translarna™), safer and
suitable for administration (Hirawat et al. 2007). Ataluren has been approved for the treatment of
nonsense mutation Duchenne muscular dystrophy (hnmDMD) (Landfeldt, Sejersen, and Tulinius 2019).
An example of NMD inhibitors is the Amlexanox, a non-toxic molecule which also acts as read-
through compound (Gonzalez-Hilarion et al. 2012). Furthermore, it has been shown that some fungi
extracts, like the so-called H7, present the same dual function of Amlexanox (NMD-inhibition and
read-through) (Benhabiles et al. 2017). We thought that it could be interesting to test this kind of
molecules on our cellular model of CMT hiPSC-MN, to evaluate if the restoration of GDAP1 protein
can prevent the occurrence of the pathological condition. It is for this reason that, in our team,
thanks to the collaboration with the UMR9020 CNRS - UMR-S1277 Inserm of Lille, a new project has
been initiated to start the exploration of alterative therapeutic strategies for CMT disease. Indeed,
positive results from these preliminary studies, on GDAP1-CMT MN, could pave the way, for read-

through molecules, to other CMT forms, or other neuropathies, induced by codon-stop mutations.

Lastly, to validate and improve our analysis on peripheral neuropathies and GDAP1, but also to test
potential therapeutic strategies, an animal model seems to be necessary. That is why, a collaboration
with The Jackson Laboratory of Bar Harbor (USA) has been created, with the aim of obtaining a

murine model for GDAP1.
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Conclusion
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The complete understanding of hereditary peripheral neuropathies, and Charcot-Marie-Tooth
disease, still remains a challenge, at genetic and mechanistic level. Moreover, a valid therapy for CMT
forms has not been found yet. The first aim of this study was to highlight genetic aspects which are
often underestimated in diagnostic procedure. We showed that multiple genes can collaborate, in
some cases, to induce CMT pathology, but we also highlighted the importance of looking for CNV.
This would be important, not only to reduce the rate of undiagnosed cases for hereditary peripheral
neuropathies, but also to discover unknown CMT pathological mechanisms. Secondly, to help the
examination of these pathological mechanisms, we presented a differentiation protocol to generate
motor neurons (the affected cells in CMT), from hiPSC. Once obtained MN, these cells were used to
compared functional data, between cells of unaffected control subjects, and cells of a CMT2H-
patient, carrying, in particular, a homozygous codon-stop mutation in GDAP1 gene. Our analysis
revealed that oxidative stress and mitochondrial impairment can be responsible for the pathological
condition in this CMT form.

Our study, therefore, ranged from molecular to functional analysis. Further investigations will be
conducted on our MN cellular model to clarify the involvement of some pathological mechanisms.
Moreover, we hope to use it, in the near future, to test new potential therapeutic strategies for CMT

disease, before proceeding on animal models.
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Neuropathies Périphériques Héréditaires: de la Génétique Moléculaire au modéle
cellulaire de motoneurones dérivé d'hiPSC

La maladie de Charcot-Marie-Tooth (CMT) est la neuropathie périphérique héréditaire la plus fréquente.
Actuellement plus de 80 génes ont été identifiées comme étant a I'origine des CMT, mais le diagnostic
génétique est posé seulement dans 30 a 40% des cas. Cette étude avait deux objectifs principaux: dans un
premier temps, nous nous sommes intéressés aux CMT et neuropathies périphériques associées via une
approche moléculaire et bioinformatique, pour optimiser leur caractérisation génétique; dans un second
temps, nous avons étudié les mécanismes altérés dans une forme axonale de CMT, par la création d’'un
modele cellulaire humain de cellules souches humaines induites a la pluripotence (hiPSc) et leur
différenciation en motoneurones (MN). Dans la premiére partie du projet, nous présentons un nouvel outil
bioinformatique, CovCopCan, développé au sein de I'équipe pour détecter les Variations du Nombre de
Copies (CNV), a partir des données de NGS. Grace a CovCopCan, deux nouveaux CNV ont été identifiés
et nous discutons leur implication dans deux cas complexes de neuropathie périphérique. Nos travaux ont
également permis de mettre en évidence trois variations génétiques chez un patient CMT, soulignant que la
CMT peut étre une pathologie génétique multilocus. Dans la deuxieme partie de ce travail, un modéle
cellulaire de MN a été créé pour étudier le géne GDAP1T et son implication dans le CMT2H. Nous avons
reprogrammé des fibroblastes dermiques de cing sujets contrdles et de deux patients CMT, portant deux
mutations codon-stop homozygotes sur le géene GDAPT, en cellules souches pluripotentes induites
humaines (hiPSC). Nous avons ensuite mis au point un protocole de différenciation pour générer des MN a
partir d’hiPSC. Les MN avec la mutation p.Ser194* sur GDAP1 ont été analysés par des tests fonctionnels,
morphologiques et d’expression. Nous avons confirmé I'expression neuronale de GDAP1, et nous avons
mis en évidence que le stress oxydant et la dysfonction mitochondriale étaient a I'origine de la pathologie
dans les MN CMT2H. Nos résultats ont montré que les analyses génétique et fonctionnelle sont
essentielles pour la caractérisation compléete de la maladie de CMT.
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Hereditary Peripheral Neuropathies: from Molecular Genetics to a cellular model of
hiPSC-derived motor neurons.

Charcot-Marie-Tooth (CMT) disease is the most common hereditary peripheral neuropathy. To date, more
than 80 genes have been identified to be involved in CMT, but genetic diagnosis is achieved only in 30-40%
of cases. This study presented two main objectives: first, we focused on CMT and associated peripheral
neuropathies using molecular and bioinformatic approaches to optimize their genetic characterization;
secondly, we investigated impaired mechanisms in an axonal CMT form, by creating a human cellular
model of human induced pluripotency stem cells (hiPSC) and their differentiation into motor neurons (MN).
In the first part of the project, we developed a new bioinformatic tool, CovCopCan, to detect Copy Number
Variations (CNV), starting from NGS data. Thanks to CovCopCan, two new CNV have been identified and
we discuss their involvement in two complex cases of peripheral neuropathy. We also identified three
genetic variations in a CMT patient highlighting that CMT can be a multilocus genetic pathology. In the
second part of the project, we successfully generated a cellular model of MN for the study of GDAP1 gene
and its associated CMT2H form. We reprogrammed dermal fibroblasts of five control subjects and two CMT
patients, carrying two different homozygous codon-stop mutations in GDAP1, into human induced-
pluripotent stem cells (hiPSC). Then, we established a differentiation protocol to generate MN from hiPSC.
MN with the GDAP1 p.Ser194* mutation were analyzed by expression, morphological, and functional tests.
We confirmed the neural expression of GDAP1, and we suggested that oxidative stress and mitochondrial
impairment could be responsible for the pathological condition in CMT2H MN. Taken together, our results
highlighted that both genetic and functional analyses are essential in the complete characterization of CMT
disease.
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