
HAL Id: tel-03476413
https://theses.hal.science/tel-03476413

Submitted on 12 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient decentralized collaborative perception for
autonomous vehicles

Maxime Chaveroche

To cite this version:
Maxime Chaveroche. Efficient decentralized collaborative perception for autonomous vehicles. Other
[cs.OH]. Université de Technologie de Compiègne, 2021. English. �NNT : 2021COMP2633�. �tel-
03476413�

https://theses.hal.science/tel-03476413
https://hal.archives-ouvertes.fr

 Par Maxime CHAVEROCHE

Thèse présentée
pour l’obtention du grade
de Docteur de l’UTC

Efficient decentralized collaborative perception
for autonomous vehicles

Soutenue le 29 septembre 2021
Spécialité : Sciences et Technologies de l’Information et des
Systèmes : Unité de recherche Heudyasic (UMR-7253)
 D2633

Ecole doctorale n°71

Sciences pour l’ingénieur

 Préparée à Heudiasyc, UMR CNRS 7253

THESE DE DOCTORAT
de l’Université de

technologie de Compiègne

Spécialité

Efficient decentralized collaborative
perception for autonomous vehicles

Sciences et technologies

de l’information et des

systèmes

Soutenue par

Maxime CHAVEROCHE

le 29 septembre 2021

 Jérémie MARY
Maître de conférence – HDR, 27ème section CNU,

Université de Lille, Criteo AI Lab.

 Frédéric PICHON
Professeur, 61ème section CNU,

Université d’Artois

 Thierry DENOEUX
Professeur, 61ème section CNU,

Université de technologie de Compiègne

 Stéphane CANU
Professeur, 61ème section CNU,

INSA Rouen

 Véronique CHERFAOUI
Professeure, 61ème section CNU,

Université de technologie de Compiègne

 Franck DAVOINE
Chargé de recherche – HDR, section 07 CNRS,

Université de technologie de Compiègne

Rapporteur

Rapporteur

Examinateur

Examinateur

Directrice de thèse

Directeur de thèse

 Composition du jury

Perception collaborative décentralisée
et efficace pour le véhicule autonome

Maxime Chaveroche

Soutenue le 29 septembre 2021

Abstract

Recently, we have been witnesses of accidents involving autonomous vehicles and their lack
of sufficient information at the right time. One way to tackle this issue is to benefit from
the perception of different view points, namely collaborative perception. We propose here a
decentralized collaboration, i.e. peer-to-peer, in which the agents are active in their quest for
full perception by asking for specific areas in their surroundings on which they would like to
know more. Ultimately, we want to optimize a trade-off between the maximization of knowledge
about moving objects and the minimization of the total information received from others, to
limit communication costs and message processing time.

To this end, we chose to use Dempster-Shafer Theory (DST) in order to identify different types
of uncertainties. In particular, DST allows us to distinguish what has never been perceived (out
of range or occluded area) — which is mainly what collaborative perception tries to reduce
— from what is debated among different sources (conflict arising from fusion of sensors or
other vehicles perceptions). More generally, DST takes into account the specificity of evidence,
meaning that it provides information about the reliability of an agent’s belief, which is crucial
for safety. DST also features the advantage of easily dealing with data incest with its Cautious
fusion rule, which is a problem inherent to the decentralized approach. However, DST comes
with high spatial and computational complexities, especially for dealing with data incest in
fusion, which limits its usage to random experiments with few possible outcomes. Thus, we first
proposed an efficient exact method to compute the decompositions needed for this Cautious
fusion, exploiting what we called focal points. Then, we generalized this method to any Möbius
transform in any partially ordered set (including all transformations in DST), we found ways
to efficiently compute these focal points and we proposed a generalization of the decomposition
required by the Cautious fusion. This generalized decomposition allows one to use this Cautious
fusion in more cases, in particular cases where an agent has gathered very specific evidence. This
enhances both accuracy and computational stability in consecutive fusions. However, algorithms
naively based on our formulas would have a higher worst-case complexity than the complexity
of the optimal general algorithms commonly employed in DST — which is already more than
exponential. Therefore, we later proposed algorithms with complexities always better than the
state of the art, and more general, leveraging properties of distributive lattices.

After this work on the fusion process itself, we tackled the issue of redundancy and irrelevance
in decentralized collaborative perception. For this, we proposed a way to learn a communication
policy that reverses the usual communication paradigm by only requesting from other vehicles
what is unknown to the ego-vehicle, instead of filtering on the sender side. We tested three
different models to be taken as base for a Deep Reinforcement Learning (DRL) algorithm and
compared them to a broadcasting policy and a random policy. More precisely, we slightly
modified a state-of-the-art generative model named Temporal Difference VAE (TD-VAE) to
make it sequential. We named this variant Sequential TD-VAE (STD-VAE). We also proposed
Locally Predictable VAE (LP-VAE), inspired by STD-VAE, designed to enhance its prediction
capabilities. We showed that LP-VAE produced better belief states for prediction than STD-
VAE, both as a standalone model and in the context of DRL. The last model we tested was
a simple state-less model (Convolutional VAE). Experiments were conducted in the driving
simulator CARLA, with vehicles exchanging parts of semantic grid maps. Policies learned based
on LP-VAE featured the best trade-off, as long as future rewards were taken into account. Our
best models reached on average about 25% of the maximum information gain while requesting
only about 5% of the space around the ego-vehicle to others. We also provided interpretable
hyperparameters controlling the reward function, which makes this trade-off adjustable (e.g.
allowing greater communication costs).

Résumé

Récemment, nous avons été témoins d’accidents impliquant des véhicules autonomes et leur
manque momentané d’information pertinente. Une manière d’adresser ce problème est d’avoir
recours à la perception collaborative, c’est-à-dire de bénéficier de la perception d’une même
scène sous différents points de vue. Nous proposons ici une collaboration décentralisée, i.e.
pair-à-pair, dans laquelle les agents sont actifs dans leur quête pour la perception complète en
demandant des zones spécifiques dans leur voisinage sur lesquelles ils voudraient en savoir plus.
In fine, nous voulons optimiser un compromis entre la maximisation du savoir à propos des
usagers de la route et la minimisation du volume total d’information reçu des autres, dans le
but de limiter les coûts en communications et le temps de traitement des messages.

Dans cette optique, nous avons choisi d’utiliser la Théorie de Dempster-Shafer (DST) afin
d’identifier différents types d’incertitude. En particulier, la DST distingue ce qui n’a jamais
été perçu (zone hors de vue ou occultée) — ce qui est principalement ce que la perception
collaborative essaie de réduire — de ce qui est débattu parmi des sources différentes (conflit
provenant de la fusion de capteurs ou de perceptions d’autres véhicules). Plus généralement, la
DST prend en compte la spécificité des observations, c’est-à-dire qu’elle fournit des informations
sur la fiabilité des croyances d’un agent, ce qui est crucial pour la sécurité routière. La DST a
aussi pour avantage, avec sa règle de fusion Cautious, d’éviter facilement la consanguinité des
données, un problème inhérent à l’approche décentralisée. Toutefois, la DST vient avec de fortes
complexités en temps et en espace, particulièrement dans le calcul de la fusion Cautious, ce qui
limite son usage à des expériences aléatoires comportant peu d’événements atomiques. Ainsi,
notre première contribution fut de proposer une méthode exacte et efficace pour le calcul des
décompositions nécessaires à cette fusion Cautious, en exploitant ce que nous avons appelé points
focaux. Nous avons ensuite généralisé cette méthode à toute transformée de Möbius dans tout
ensemble partiellement ordonné (incluant toutes les transformations en DST), nous avons trouvé
des moyens de calculer efficacement ces points focaux et nous avons proposé une généralisation
de la décomposition requise par la fusion Cautious. Cette décomposition généralisée permet
d’employer cette fusion Cautious dans plus de cas, en particulier ceux où un agent a reporté
des observations très spécifiques. Nous montrons que ceci améliore à la fois la précision et la
stabilité calculatoire de fusions successives. Cependant, des algorithmes basés näıvement sur
nos formules auraient une plus haute complexité de pire cas que celle des algorithmes généraux
optimaux communément utilisés en DST — qui est déjà plus qu’exponentielle. De fait, nous
avons proposé plus tard des algorithmes ayant des complexités toujours meilleures que celles de
l’état de l’art, et étant plus généraux, tirant partie des propriétés des treillis distributifs.

Après ce travail sur le processus de fusion en lui-même, nous nous sommes attaqués aux
problèmes de redondance et de non-pertinence dans la perception collaborative décentralisée.
Pour cela, nous avons proposé un moyen d’apprendre une politique de communication qui ren-
verse le paradigme usuel de communication en ne demandant des autres véhicules que ce qui est
inconnu de l’ego-véhicule, au lieu de filtrer du côté émetteur. Nous avons testé trois modèles
différents pour servir de base à un algorithme d’apprentissage profond par renforcement (DRL)
et les avons comparés à une politique de broadcast et à une politique aléatoire. Plus précisément,
nous avons légèrement modifié un modèle génératif de l’état-de-l’art nommé Temporal Differ-
ence VAE (TD-VAE) pour le rendre séquentiel. Nous avons nommé cette variante Sequential
TD-VAE (STD-VAE). Nous avons aussi proposé Locally Predictable VAE (LP-VAE), inspiré de
STD-VAE, conçu pour améliorer ses capacités de prédiction. Nous avons montré que LP-VAE
produisait de meilleurs belief states pour la prédiction que STD-VAE, à la fois en tant que
modèle seul et dans le contexte du DRL. Le dernier modèle testé fut un simple modèle statique
(Convolutional VAE). Nos expériences ont été faites dans le simulateur de conduite CARLA,
avec des véhicules échangeant des parties de grilles sémantiques. Les politiques apprises sur LP-

1

VAE ont produit le meilleur compromis, tant que les récompenses futures étaient considérées.
Nos meilleurs modèles ont atteint en moyenne environ 25% du gain maximum en information,
tout en ne demandant qu’environ 5% de l’espace autour de l’ego-véhicule aux autres. Nous
avons aussi fourni des hyperparamètres interprétables contrôlant la fonction de récompense, ce
qui rend ce compromis ajustable (e.g. en autorisant de plus grands coûts en communication).

2

Contents

Symbol table 7

Introduction 8

1 Efficient computation of the Cautious and Bold fusion rules 12
1.1 Motivations . 12

1.1.1 Communication content and knowledge representation 12
1.1.2 Data incest . 12
1.1.3 Blocking point . 13

1.2 Introduction to Dempster-Shafer Theory . 13
1.2.1 Information fusion . 14
1.2.2 Information fusion of unreliable sources 16

1.3 Link between Dempster-Shafer Theory and the Möbius inversion formula 17
1.3.1 Zeta transform (“Discrete integral”) . 17
1.3.2 Möbius transform (“Discrete derivative”) 17
1.3.3 Multiplicative Möbius inversion theorem 18

1.4 Two fusion rules avoiding data incest in Dempster-Shafer Theory 18
1.4.1 The Cautious fusion rule . 18
1.4.2 The Bold fusion rule . 21
1.4.3 Limitations . 24

1.5 Efficiently computing the conjunctive and disjunctive decompositions 24
1.5.1 Introduction . 24
1.5.2 Preliminary definitions . 25
1.5.3 Evidence based computation of the conjunctive decomposition 28
1.5.4 Transposition to the computation of the disjunctive decomposition 31
1.5.5 Conclusion and perspectives . 33

1.6 Conclusion . 33

2 Focal points and their implications for Möbius Transforms and Dempster-
Shafer Theory 35
2.1 Introduction . 35
2.2 Background of our method . 37

2.2.1 Support of a function in P . 37
2.2.2 Order theory . 37

2.3 Focal points and our Efficient Möbius inversion formula 38
2.3.1 Problem statement and intuition . 39
2.3.2 Simplifying the Möbius inversion formula 39
2.3.3 Focal points and their implications . 41
2.3.4 Ways to compute focal points . 44

3

2.3.5 Focal points for both additive and multiplicative Möbius transforms . . . 45
2.3.6 Discussions . 47
2.3.7 From theory to practice . 47

2.4 Implications for Dempster-Shafer Theory . 49
2.4.1 Efficient representations in Dempster-Shafer Theory 49
2.4.2 Generalized decompositions of evidence 50
2.4.3 Better understanding the conjunctive and disjunctive decompositions . . . 53

2.5 Conclusions and Perspectives . 55

3 The Efficient Möbius Transformations 56
3.1 Introduction . 58
3.2 Background of our method . 59

3.2.1 Zeta transform . 59
3.2.2 Möbius transform . 60
3.2.3 Sequence of graphs and computation of the zeta transform 61
3.2.4 Sequence of graphs and computation of the Möbius transform 64
3.2.5 Order theory . 65
3.2.6 Support elements and focal points . 66

3.3 Our Efficient Möbius Transformations . 67
3.3.1 Preliminary results . 67
3.3.2 Main results . 69

3.4 Discussions . 74
3.4.1 General usage . 74
3.4.2 Dempster-Shafer Theory . 76

3.5 Conclusion . 77

4 Learning to value the unknown 78
4.1 Introduction . 78
4.2 Related Works . 79
4.3 Problem formulation . 80

4.3.1 State space . 80
4.3.2 Action space . 82
4.3.3 Transition function . 82
4.3.4 Rewards . 82

4.4 Quick introduction to policy gradient-based reinforcement learning and our choice
for PPO . 85
4.4.1 Value functions . 86
4.4.2 The policy gradient approach . 87

4.5 Models . 90
4.5.1 Action-independent modeling . 90
4.5.2 TD-VAE model . 92
4.5.3 Our Sequential variant STD-VAE of the TD-VAE model 94
4.5.4 Our Locally Predictable VAE (LP-VAE) model 96
4.5.5 LP-VAE with actions . 99

4.6 Implementation as neural networks . 102
4.6.1 Belief state computation . 102
4.6.2 Inference of Gaussian parameters . 102
4.6.3 Decoding . 103

4.7 Experiments . 104
4.7.1 Data acquisition & RL Environment . 104
4.7.2 Models . 105

4

4.7.3 Policy learning . 107
4.8 Conclusions . 109

5 Conclusions and perspectives 111

Appendices 113

A Proofs about focal points and Möbius transforms 114
A.1 Lemma 2.3.2.1 . 114
A.2 Lemma 2.3.2.2 . 114
A.3 Theorem 2.3.4.1 . 115
A.4 Corollary 2.3.5.1 . 116
A.5 Theorem 2.3.5.1 . 116
A.6 Corollary 2.4.2.1 . 117
A.7 Proposition 2.4.3.1 . 118

B Proofs about the Efficient Möbius Transformations 119
B.1 Proposition 3.3.1.1 . 119
B.2 Theorem 3.3.2.1 . 120
B.3 Theorem 3.3.2.2 . 121

C Implementation of the Efficient Möbius Transformations (EMT) 123
C.1 Data structure . 123

C.1.1 Overview . 123
C.1.2 Frame of discernment . 124
C.1.3 Powerset function . 125

C.2 Procedures . 127
C.2.1 Computation of focal points . 127
C.2.2 Computation of iota elements . 129
C.2.3 Computation of the lattice support . 129
C.2.4 Computation of DST transformations in the consonant case 129
C.2.5 Computation of DST transformations in a semilattice 130
C.2.6 Computation of DST transformations in a lattice 131
C.2.7 Computation of DST transformations independently from Ω 131

D LP-VAE loss 144
D.1 Minimization of DKL (Qt(θ, ϕ) || Pt(θ)) . 144
D.2 Maximization of pX,Y (x, y; θ) . 145

5

6

Symbol table

∧ Infimum operator. Also known as the meet operator.
For two elements x and y in a partially ordered set P ,
the meet x ∧ y represents the greatest element in P
that is less than both x and y. If x ≤ y, then x ∧ y = x.

∨ Supremum operator. Also known as the join operator.
For two elements x and y in a partially ordered set P ,
the join x ∨ y represents the least element in P
that is greater than both x and y. If x ≤ y, then x ∨ y = y.

≤ less than or equal to.
̸≤ Not less than nor equal to.
< strictly less than (not equal to).
≥ greater than or equal to.
̸≥ Not greater than nor equal to.
> strictly greater than (not equal to).
(P,≤) Partially ordered set, i.e. the elements of P are partially ordered by the operator ≤.

For any elements x, y ∈ P , if x ≤ y, then ≤ orders x and y.
If x ̸≤ y and x ̸≥ y, then ≤ does not order x and y.

|Ω| Cardinality of a set Ω. If Ω = {a, b, c}, then |Ω| = 3.
⊆ Set inclusion operator. A ⊆ B means that the set A is contained in the set B.
⊂ Strict set inclusion operator. A ⊂ B means that the set A is contained in the set B,

but A ̸= B.
⊇ Dual set inclusion operator. A ⊇ B means that the set A contains the set B.
⊂ Dual strict set inclusion operator. A ⊃ B means that the set A contains the set B,

but A ̸= B.
2Ω Powerset of a set Ω, i.e. set containing all subsets of Ω. There are 2|Ω| of them.
∩ Set intersection operator. It is the meet operator of (2Ω,⊆).
∪ Set union operator. It is the join operator of (2Ω,⊆).
A\B Set exclusion operation. For two sets A and B,

A\B is the set containing the elements of A that are not in B.
↑ x Upper closure of x, i.e. the subset of P containing all elements greater than x.

It is also known as an upset.
When x is itself a set, ↑ x is the set containing all elements greater than
at least one element of x.

↓ x Lower closure of x, i.e. the subset of P containing all elements less than x.
It is also known as an down set.
When x is itself a set, ↓ x is the set containing all elements less than
at least one element of x.

x↑S or S
↑x Upper closure of x in S, i.e. (↑ x) ∩ S, if S ⊆ P .

x↓S or ↓
Sx Lower closure of x in S, i.e. (↓ x) ∩ S, if S ⊆ P .

∧S meet-closure of a set S, i.e. {
∧

A / ∅ ⊂ A ⊆ S}.
∨S join-closure of a set S, i.e. {

∨
A / ∅ ⊂ A ⊆ S}.

7

Introduction

The concept of an automated car dates back to 1921, when the first public demonstration
of a remote-controlled car took place in the USA [1]. At the time, this phantom auto was
steered by a human in another vehicle behind it, via radio. Some started to fantasize about its
potential for the future. In 1930 already, the writer Werner Illing was publishing Utopolis, an
utopia in which vehicles were safely controlled by traffic lights. Five years later, in The Living
Machine by writer David H. Keller, the self-steering car was credited with a sharp decline in
the number of road accidents, allowing parents to safely send their children to school as well as
enabling old and blind people to be transported across the continent. In the leading fifty years,
technology, including microelectronics, rose to the point that some advanced driver-assistance
systems such as Cruise control and Anti-lock Braking System (ABS) emerged. Then, in 1994
in France, the PROMETHEUS european project demonstrated the results of their work on
autonomous vehicles. Their two vehicles autonomously drove more than 1000 km up to 130
km/h on three-lane highways around Paris, in the middle of heavy traffic. It was the first
system based only on vision, while control by road infrastructure was privileged until then. One
of the reasons of this change was the absence of infrastructure cost [2]. Since then, autonomous
vehicles have increasingly become a serious topic of academic research, and the industry started
issuing partially automated vehicles. Progress had been made, but as of 2020, almost 100 years
since the introduction of the concept, there was still no self-driving car. Indeed, the Society of
Automotive Engineers (SAE) established, in 2014, 6 levels of automation, 0 being fully manual
to 5 being fully autonomous [3]. At the exception of the first vehicle officially recognized as
a SAE level 3 system by the Japanese government1, launched by Honda in 2021, the most
advanced technologies such as Tesla’s Autopilot are in fact only SAE level 2, i.e. technologies
that require the constant attention of the driver who must be prepared to intervene at any time.
That fact, dimmed by marketing campaigns, was reminded to us through the loss of human
lives [4].

In January 2016 in China, a Tesla vehicle with Autopilot activated on highway did not avoid
an unexpected obstacle in the form of a truck partially parked on its lane. It was following a
leading vehicle, which changed lane to avoid the truck. The Tesla did not, probably due to a late
detection caused by the occluding presence of the leading vehicle in its perceptive field. In May
2016 in the USA, another Tesla in Autopilot crashed into an 18-wheel tractor-trailer. As the
tractor-trailer was crossing an intersection in front of the vehicle, the latter did not apply the
brakes, rushing at 119 km/h under the trailer. It appeared that the vehicle did not distinguish
the white trailer from the brightly lit sky. In March 2017 also in the USA, the first pedestrian
was killed by an Uber vehicle in autopilot mode. Elaine Herzberg was crossing outside of a
crosswalk, when the self-driving car arrived, detecting her first as an unknown object, then as a
vehicle, and finally as a bicycle, each of which having different predicted paths. It was too late to
begin emergency collision avoidance maneuvers once the pedestrian had been detected as such.

1https://asia.nikkei.com/Business/Automobiles/Honda-launches-world-s-first-level-3-self-driving-car

8

In March 2018 still in the USA, a Tesla with Autopilot enabled crashed into a concrete barrier
separating an exit lane from highway, likely due to a misdetection of road surface marking. The
list is not exhaustive, but already we see a pattern emerge: misdetections.

It is not surprising, then, that the academic community started to put an emphasis on the need
to enhance the perception of these vehicles, beyond multi-sensor fusion. While different kinds
of sensors (e.g. camera + LIDAR) catch different features and may already avoid to confuse the
sky with a truck trailer, for example, there are cases where this is not enough. For instance, road
markings cannot be easily sensed otherwise than with a camera. Also, a pedestrian partially
hiding in bushes cannot be better detected with lasers, nor can be an obstacle in front of a
leading vehicle. In these cases, it might be necessary to get the perception of the same scene
from another viewpoint entirely. Of course, this cannot be achieved by the vehicle alone. It
requires other agents, whether they are integrated as part of the road infrastructure or other
vehicles. The safety benefits of implementing this cooperative perception have been demonstrated
in [5] on public road and in the driving simulator CARLA [6].

It is now a hot topic. In November 2020, SAE International announced2 the formation of the
Cooperative Automation Driving System (CADS) committee, focusing on developing standards
improving communications between autonomous vehicles and their surroundings. In parallel,
the European Union, through its Horizon Europe and H2020 programs, issued calls for projects
about Connected, Cooperative and Automated Mobility (CCAM)3.

Some works focus on communication protocols for this cooperation between autonomous vehi-
cles [7]. For example, [8] proposes CarSpeak, a content-centric communication system in which
a vehicle can request pieces of information localized in space, instead of requesting a partic-
ular peer. But, we are more interested by works on cooperative systems themselves. Some,
remaining true to the original vision of autonomous vehicles, consider cooperations centralized
and controlled by some piece of road infrastructure. In [9], a centralized cooperative system is
proposed, relying on communications to the road infrastructure, in order to control vehicles at
an intersection without traffic lights. In [10], another centralized cooperative system relying on
communications to the road infrastructure is presented, this time to control vehicles at inter-
changes. Even cooperations for the control of pieces of road infrastructure are considered. For
instance, in [11], they used Cooperative Deep Reinforcement Learning (CDRL) to simultane-
ously coordinate traffic lights at multiple intersections, given the state of nearby vehicles. More
precisely, they used a variation of Deep Q-Learning (DQN). More generally, all cooperation with
road infrastructures is described as a Vehicle-to-Infrastructure (V2I) cooperation. F-Cooper [12]
is another example of V2I system. It is an improvement over Cooper [13], compressing 3D point
clouds into lightweight features learned by a Convolutional Neural Network (CNN). While this
alleviates the burden on wireless transmissions, it increases the computational load, which might
be too much for individual vehicles. For this reason, their method is intended to be employed
by vehicles on-edge, i.e. vehicles communicating with computing servers, as a V2I system. An-
other V2I system is described in [14], helping autonomous vehicles in estimating their own state
(position and velocity). It is designed to work even in case of temporary infrastructure failure.

When vehicles cooperate directly with each other, in a decentralized way, it is a Vehicle-to-
Vehicle (V2V) cooperation. Sometimes, Vehicle-to-Pedestrian are considered, where pedestrians
hold wireless devices. A hybrid system that would work under any of these modes is classified
as a Vehicle-to-everything (V2X) system [15]. In [16], a V2V system is proposed, in which
vehicles predict the probable trajectory of all other nearby vehicles and issue warnings to vehicles
that are likely to collide. In [17], the authors propose a V2V cooperative perception system

2https://www.sae.org/news/press-room/2020/11/sae-international-announces-the-formation-of-the-
cooperative-automation-driving-system-committee

3https://nextmove.fr/appels/mobilite-autonome-et-connectee-les-appels-ccam-dhorizon-europe/

9

for two vehicles using perception grid maps. They introduce a novel method in the spirit of
genetic algorithms to match and merge two grid maps. By doing so, they indirectly solve
a relative pose estimation problem. Combined with a local Simultaneous Localization And
Mapping (SLAM) algorithm to estimate the pose of each vehicle, it enables them to perform
multivehicle perception association. This system allows a vehicle to see through a leading vehicle,
but not much more. It requires proximity and overlap between the two vehicles perceptions.
In [18], they presented a similar V2V cooperative perception system, providing see-through
views to vehicles following other vehicles. They employed Correlative Scan Matching (CSM) to
merge overlapping perception maps and derive from this fused perception several functionalities
to assist the driver. In a follow-up article [19], they demonstrated the positive impact of the
aforementioned cooperative perception system on autonomous driving. In [20], the authors
exploited V2V cooperative perception to anticipate driving behaviors of other vehicles. Inspired
by mirror neurons, they implemented intention awareness. Cooperative perception allowed them
to get a see-through perception, seeing through a leading vehicle, so that emergency maneuvers
could be predicted if an object suddenly appears in front of the leading vehicle. The cooperative
perception system Cooper, proposed in [13], is a V2V system that shares raw sensor outputs.
These outputs are 3D point clouds obtained through laser scans (LIDAR). This method avoids
the accumulation of individual recognition errors and data incest (by not sharing fused data),
but is heavy on the means of communication and processing. Also, not sharing fused data limits
the reach of this system, unless all neighbors of nearby vehicles also send their data, which would
be redundant and computationally heavy. A few works explicitly address the phenomenon of
data incest. The authors of [21] propose a V2V cooperative perception system in which vehicles
perform multi-object tracking, with Gaussian Mixture Probability Hypothesis Density (GM-
PHD) filters, and share their hypotheses together. The fusion process is aware of data incest
and uses a General Covariance Intersection (GCI) algorithm in consequence. In [22], the authors
propose a V2V system which takes into account data incest, avoiding it by using the Cautious
fusion rule [23] from Dempster-Shafer Theory (DST) [24]. There are also works that treat
security issues. For instance, in [25], they propose to integrate trust concerns in cooperative
perception. To evaluate trust between two vehicles, they try to match objects detections in the
shared areas of their respective perceptive fields. In [26], they present a system for detecting
sybil attacks in V2V cooperative perception. It is based on the exhange of opinions about other
agents in the network and direct signal strength measures to be compared to the announced
positions. It also takes into account data incest and avoids it with the Cautious fusion rule from
DST.

In this thesis, we focus on the proposition of a V2V cooperative perception system. Indeed,
while setting a multitude of sensors in the road infrastructure can be imagined for V2I systems,
this implies an infrastructure cost and the impossibility to share information with other agents
when there is no server available nearby. Moreover, even if the whole world is covered by these
servers, this system would still not be robust, as it would locally display a single point of failure.
A failing server means that an area of the world cannot benefit from V2I cooperative perception.
It also makes the agents broadcast their entire perception, which can be heavy on the means
of communication and computation, giving rise to delays. In contrast, the decentralized V2V
setting means that agents directly exchange pieces of information between them, without the
need of any available infrastructure in their vicinity. Nevertheless, it also comes with new
problems such as data incest, which appears when agents can unknowingly retrieve their own
piece of information from another vehicle. This phenomenon is often neglected in the literature
of V2V cooperative perception. Furthermore, autonomous vehicles do not have the computing
power of dedicated servers nor do they have a lot of time to process, which often leads to the
choice of V2I interactions when such supplementary task is taken into account. For instance,
in [25], they propose to evaluate trust between two vehicles, but they argue that doing these

10

computations on a server (V2I) would be better as vehicles are only in proximity for short periods
of time. Notice that in Dempster-Shafer Theory (DST) [24], using the disjunctive fusion rule [27]
makes malicious sources less important without needing supplementary computations, as these
sources can only add misplaced uncertainty, instead of misplaced certainty. Moreover, the
Cautious and Bold fusion rules [23] from DST ensures that there is no data incest in the vehicular
network, as demonstrated in [22]. This is what motivates the work presented in chapters 1, 2 and
3. Each chapter corresponds to a published article. The first chapter proposes an efficient exact
method to compute the decompositions needed by DST fusion operators, chosen for dealing with
data incest. The second chapter generalizes the ideas of Chapter 1 to any Möbius transform in
any partially ordered set, which in particular transformed our approach into a general framework
for more efficient algorithms computing most transformations in DST. This also enabled us to
propose a generalization of the decomposition required by the fusion operators we chose. This
generalization allows one to use these fusion operators in more cases, notably in cases where an
agent has gathered specific evidence with absolute certainty. This enhances both accuracy and
computational stability in consecutive fusions. The third chapter proposes a complementary
method for these same computations that guarantees better worst-case complexities, for any
Möbius transform in any distributive lattice, including most transformations exploited in DST.
The last chapter of this thesis, chapter 4, tackles another great problem of V2V cooperative
perception systems, which is redundancy, coupled with irrelevance. Since there is no server to
centralize all information, the same piece of information may travel several times in the vehicular
network, which may burden the means of communication, even if this piece of information is
completely useless for the receiving vehicles. A receiver may receive information about an
object that it already directly perceives or that has no impact on its path planning. While
there are works that consider this problem, they do not consider the possibility of filtering on
the receiver side, i.e. valuing missing pieces of information and requesting the most valued ones
from the vehicular network. In this chapter, we leveraged generative models and model-free
Deep Reinforcement Learning (DRL) to learn a communication policy that requests specific
areas around the ego-vehicle to the vehicular network. More precisely, we proposed generative
models for temporal sequences, derived from the Variational AutoEncoder (VAE) [28]. This
reduces the state space, while keeping the essential, easing the convergence of the RL algorithm.
On top, we chose the now classic actor-critic DRL algorithm Proximal Policy Optimization
(PPO) [29]. The work presented in this last chapter corresponds to an article in preparation.

The work contained in this thesis has been done in the context of Heudiasyc, in the team SyRI
(Robotic Systems in Interaction), which concentrates on improving perception and localization
in autonomous vehicles. It was financed by the Hauts-de-France region and the Laboratory of
Excellence on Systems-of-Systems (Labex MS2T).

11

Chapter 1

Efficient computation of the
Cautious and Bold fusion rules

1.1 Motivations

1.1.1 Communication content and knowledge representation

We want to characterize the space around the ego-vehicle, based on its own local sensors and
external ones. But, rather than exchanging raw measurements, which would be heavy on the
means of communication and computation, we want to share high level information. For this,
we chose to represent the ego-vehicle’s perception as a discretization of its surroundings in which
each cell is a probability distribution on the class of its content, i.e. a local semantic grid map.
The choice of semantic grids over e.g. object lists is explained by the fact that grids represent the
whole space around the ego-vehicle, with what is known and what is not. Doing so, grid maps
allow us to project the ego-vehicle perception in space and to deduce from it where external
information is needed the most. Grid maps are also more flexible to represent arbitrary object
shapes and avoid to explicitly perform a computationally heavy data association.

In addition, we chose to use Dempster-Shafer Theory (DST) [24, 30] in order to identify
different types of uncertainties at the cell level. In particular, DST allows us to distinguish what
has never been perceived (out of range or occluded area), which is mainly what collaborative
perception tries to reduce, from what is debated among different sources (conflict arising from
fusion of sensors or other vehicles perceptions). More generally, DST takes into account the
specificity of evidence, meaning that it provides information about the reliability of an agent’s
belief, which is crucial for safety.

1.1.2 Data incest

Data incest is a situation in which the same evidence is taken into account more than once in
information fusion. For instance, a vehicle might send its perception to another vehicle that
would fuse it with its own perception and broadcast the result. Then, the first vehicle would
receive the resulting information and fuse it with its current perception, as did the second
vehicle. Doing so, the information contained in the perception of the first vehicle would have
been taken twice by it, making the first vehicle overconfident in the information brought by its
sensors. Repeating this process several times would make the whole vehicular network diverge,
which may lead to accidents.

12

This is not a new topic and several works have already addressed this issue, but with limita-
tions on the communication network topology. Unfortunately, vehicular networks have arbitrary
and ever changing topologies [31], which makes works such as [32,33] impracticable. Moreover,
we are interested in sharing probability distributions over a classification, i.e. over a qualitative
random variable with nominal values. This means that all methods based on Kalman filters
or continuous random models in general, such as [31, 34], are not applicable. On the other
hand, Dempster-Shafer Theory offers a way to avoid data incest in the fusion of probability
distributions over a qualitative random variable with nominal values, independently from the
network topology. Indeed, its Cautious fusion rule [23] introduces an operator that prevents the
reinforcement of an hypothesis by design, in the same spirit as the Covariance Intersection Fil-
ter [35]. This provides a guaranteed consistency in the vehicular network, though sub-optimally.
This use of the Cautious rule for distributed data fusion has been successfully implemented
in [22,36,37].

1.1.3 Blocking point

It seems DST would be useful for both data incest management and efficient collaborative
perception. Its Cautious fusion rule addresses the former, while its inherent distinction be-
tween different levels of specificity allows the agent to give its information needs some hierarchy.
However, DST comes with high spatial and computational complexities, especially in the com-
putation of the Cautious fusion, which limits the number of classes that can be considered. This
is all the more limiting since autonomous vehicles have less computational power than a server
in a centralized setting. In addition, the Cautious fusion operator cannot be applied to dogmatic
belief distributions. This means that there always must be some mass assigned to all possible
outcomes, which prevents consecutive fusions from truly filtering hypotheses. As a consequence,
the number of sets of outcomes to consider can only grow and make subsequent fusions more
difficult.

1.2 Introduction to Dempster-Shafer Theory

Let Ω be the set containing all the possible outcomes of a random experiment. Let us recall
that a discrete Bayesian probability distribution p : Ω→ [0, 1] is defined in a probability space
(Ω, 2Ω,P) such that for all A ∈ 2Ω,

P(A) =
∑
ω∈A

p(ω),

where 2Ω is the power set of Ω, i.e. the set of all the subsets of Ω. In addition, we have P(Ω) = 1.

A belief assignment in Dempster-Shafer Theory (DST) [24, 30] is a mass function m : 2Ω →
[0, 1], defined in a probability space (2Ω, 22

Ω

,P) such that for all A ⊆ 2Ω,

P(A) =
∑
B∈A

m(B)

In addition, we have P(2Ω) = 1. As we can see, this mass function assigns probabilities to
sets of outcomes, instead of direct outcomes. The probability mass m(B), for B ∈ 2Ω, can be
interpreted as the probability that the observer has no evidence specific enough to determine
which of the outcomes in B is actually occurring, while having enough to eliminate all other
outcomes, i.e. the elements of B. So, when no observation has yet been made, i.e. in case of
total ignorance about a phenomenon, an observer would describe its knowledge as m(Ω) = 1.
Conversely, when an observer has gathered enough evidence E to eliminate with total certainty

13

all possible outcomes but one, one would describe its knowledge as m({ω}|E) = 1, for some
ω ∈ Ω. In particular, when P({{ω} / ω ∈ Ω}) = 1, only direct observations are possible, which
means that m represents probabilities of occurrence for the outcomes of Ω. Thus, m degenerates
to the Bayesian probability distribution p in this case. This is why DST can be viewed as a
generalization of Bayesian probability theory. This special case is referred to as a Bayesian belief
assignment.

Example 1.2.0.1. For instance, think of the classic fair coin toss experiment, but with a
slight modification. Say Ω = {heads, tails, side} and say we have a perfect laser sensor placed
horizontally on a table that is only able to detect objects at a height that is just superior to
the thickness of a coin. If we toss a coin so that it lands on this table, the sensor would only
be able to tell us if it detects something or not, i.e. if the coin is on its side or not. Thus,
assuming that we can only observe the result of this experiment through this sensor, we have
m({heads, tails}|detection) = 1 and m({side}|detection) = 1. This means that we have strong
evidence that the coin is on its side if the sensor detects something, but weaker evidence of
heads and tails if there is no detection. In Bayesian probability theory, the same conditions give
us p(heads|detection) = 0.5, p(tails|detection) = 0.5 and p(side|detection) = 1. In other words,
Bayesian probabilities describe the likelihood of an outcome, while belief assignments describe
the likelihood that the observer is in some configuration of discernment regarding the outcome.

Example 1.2.0.2. Now, let us say that this sensor is not perfect. Let the probability that this
sensor does not detect the coin on its side be p(side| detection) = 0.2, the rest being equally
distributed on heads and tails as before, i.e. p(heads| detection) = 0.4, p(tails| detection) =
0.4. Also, let the probability that this sensor does correctly detect the coin on its side be
p(side| detection) = 0.9, the rest being equally distributed on heads and tails as before, i.e.
p(heads| detection) = 0.05, p(tails| detection) = 0.05. This is translated in DST in terms of
probabilities that the evidence we gathered does not help in discerning any outcome:
m(Ω| detection) = 0.2, m({heads, tails}| detection) = 0.8 and m({side}| detection) = 0.9,
m(Ω| detection) = 0.1.

1.2.1 Information fusion

The upset ↑ C = {B ∈ 2Ω / B ⊇ C} contains all sets that contain C, for some C ∈ 2Ω. Thus,
P(↑ C) is the probability that the observer has no evidence specific enough to determine which
of the outcomes in C is actually occurring, no matter what can be said of the other outcomes.
This probability is known as a commonality in DST. The function q : 2Ω → [0, 1] is known as
the commonality function, defined for any set C ∈ 2Ω as:

q(C) = P(↑ C) =
∑
B⊇C

m(B) (1.1)

Dempster’s fusion rule [30] combines two belief assignments into one by operating a Bayesian
fusion on commonalities. This means that the resulting belief assignment reflects the posterior
specificity of evidence when both sources accurately report the truth, i.e. without them incor-
rectly evaluating their observations and uncertainties. Directly applying a Bayesian fusion on
the mass function m would only give us the resulting probability of each piece of evidence, which
is useless and has little meaning. Indeed, a belief assignment represents the discernment of an
observer. Doing so, m1 represents the discernment of source 1, while m2 represents the discern-
ment of source 2. We do not want to know which common configurations of discernment are
the most probable between these two sources. We want instead to create a third observer that
would observe sources 1 and 2, combining their pieces of evidence to eventually eliminate some
possible outcomes and so deducing the actual resulting probable configurations of discernment.

14

So, for two sources 1 and 2, Dempster’s rule can be defined as:

P12(↑ C) ∝ P1(↑ C).P2(↑ C)

∝ q1(C).q2(C)

∝
∑
A⊇C

m1(A).
∑
B⊇C

m2(B)

∝
∑

A∩B⊇C

m1(A).m2(B)

The commonality function is reversible. As we will see in the next chapter, it is actually the
zeta transform of m in (2Ω,⊇). We have:

m12(C) ∝
∑

A∩B=C

m1(A).m2(B)

When ∝ is replaced by =, i.e. when no normalization is done, we get the conjunctive fusion
rule [38]. In Dempster’s fusion rule however, we consider that we cannot assign any mass to the
elimination of all possible outcomes, i.e. no mass on ∅. So, provided m12(∅) < 1, Dempster’s
fusion rule is:

m12(C) =

∑
A∩B=C

m1(A).m2(B)

1−m12(∅)
(1.2)

In particular, since all singletons are always mutually exclusive, it is easy to see that when
P({{ω} / ω ∈ Ω}) = 1, i.e. for two Bayesian belief assignments, the only sets A and B verifying
A ∩ B = C are both equal to C itself. Thus, for two Bayesian belief assignments, Dempster’s
fusion rule is a pointwise multiplication, followed by a renormalization, i.e. a classic Bayesian
fusion. Therefore, Dempster’s fusion can be viewed as a generalization of Bayesian fusion.

Example 1.2.1.1. For example, let us say instead that Ω = {heads, tails} and that we have
two independent sensors observing this coin laying flat on the table. Let both these sensors
have a probability of 0.7 of correctly detecting a particular face. Let sensor 1 detect heads,
while sensor 2 detects tails. In Bayesian probabilities, we would have p(heads|S1 = heads) = 0.7,
p(tails|S1 = heads) = 0.3 and p(heads|S2 = tails) = 0.3, p(tails|S2 = tails) = 0.7, where Si

indicates the evidence gathered by sensor i. Notice that in this case, probabilities are more
specific since they are not equiprobable. Yet, fusing these two measurements would give us
p(heads|S1 = heads, S2 = tails) = 0.5 and p(tails|S1 = heads, S2 = tails) = 0.5, which makes
sense but is indistinguishable from the probabilities we had when no observation regarding heads
or tails was made, i.e. p(heads) and p(tails).

On the other hand, in DST, we would have m({heads}|S1 = heads) = 0.7, m(Ω|S1 = heads) =
0.3 and m({tails}|S2 = tails) = 0.7, m(Ω|S2 = tails) = 0.3. The conjunctive fusion of these
mass functions in DST gives us m(Ω|S1 = heads, S2 = tails) = 0.09, m({heads}|S1 = heads, S2 =
tails) = 0.12, m({tails}|S1 = heads, S2 = tails) = 0.12 and m(∅|S1 = heads, S2 = tails) = 0.67.
This last mass is the probability that the observer has enough evidence to eliminate all possible
outcomes of Ω. It is interpreted as a measure of conflict among sources and an indicator that
some sources tend to rule out more possible outcomes than they should (overconfidence). It
may also be a sign that Ω does not contain all possible outcomes. Normalizing this resulting
mass function to ignore this conflict as in Dempster’s rule, we would nonetheless get m(Ω|S1 =
heads, S2 = tails) = 0.272, m({heads}|S1 = heads, S2 = tails) = 0.364 and m({tails}|S1 =
heads, S2 = tails) = 0.364, which still accounts for the fact that we gathered direct evidence of
heads and tails. This information may be used in subsequent information fusions and is useful in

15

itself for decision making. For example, in our collaborative perception setting, it is important
to know if we are uncertain about the outcome because we have conflicting pieces of evidence
or because we do not have any evidence at all. Indeed, having at least an idea of the outcome
is better than nothing, meaning that it is more urgent / valuable to acquire information about
unobserved areas than to refine uncertainties on observed ones. This is all the more true that
the ego-vehicle will probably itself observe these conflicting areas later in time, without needing
external help.

1.2.2 Information fusion of unreliable sources

The down set ↓ C = {B ∈ 2Ω / B ⊆ C} contains all sets that C contains, for some C ∈ 2Ω.
Thus, P(↓ C) is the probability that the observer has no evidence supporting other outcomes
than the ones in C. This probability is known as an implicability in DST (See [39]). The function
b : 2Ω → [0, 1] is known as the implicability function, defined for any set C ∈ 2Ω as:

b(C) = P(↓ C) =
∑
B⊆C

m(B) (1.3)

The disjunctive fusion rule [27] combines two belief assignments into one by operating a Bayesian
fusion on implicabilities. This means that the resulting belief assignment reflects the maximum
specificity of evidence on which both sources agree. Therefore, it provides a way to fuse two
belief assignments that may not be entirely accurate, i.e. belief assignments that might eliminate
more possible outcomes than the corresponding observations actually allow to. Indeed, in this
case, we want to be careful with pieces of evidence that eliminate some possible outcomes. We
do not want to set any possible outcome aside unless both sources agree on it. Formally, for two
sources 1 and 2, the disjunctive fusion rule is defined as:

P12(↓ C) = P1(↓ C).P2(↓ C)

= b1(C).b2(C)

=
∑
A⊆C

m1(A).
∑
B⊆C

m2(B)

=
∑

A∪B⊆C

m1(A).m2(B)

The implicability function is reversible. As we will see in the next chapter, it is actually the
zeta transform of m in (2Ω,⊆). We have:

m12(C) =
∑

A∪B=C

m1(A).m2(B)

While the conjunctive fusion corresponds to the intersection of the statements made by each
source, this disjunctive fusion corresponds to the union of the statements made by each source.

Example 1.2.2.1. Taking back Example 1.2.1.1, where Ω = {heads, tails} and where we have
two independent sensors observing a coin laying flat on a table. Both these sensors have a
probability of 0.7 of correctly detecting a particular face. Sensor 1 detects heads, while sensor
2 detects tails. In Bayesian probabilities, we have p(heads|S1 = heads) = 0.7, p(tails|S1 =
heads) = 0.3 and p(heads|S2 = tails) = 0.3, p(tails|S2 = tails) = 0.7, where Si indicates the
evidence gathered by sensor i. Fusing these two measurements gives us p(heads|S1 = heads, S2 =
tails) = 0.5 and p(tails|S1 = heads, S2 = tails) = 0.5.

On the other hand, in DST, we have m({heads}|S1 = heads) = 0.7, m(Ω|S1 = heads) = 0.3
and m({tails}|S2 = tails) = 0.7, m(Ω|S2 = tails) = 0.3. The disjunctive fusion of these mass
functions in DST gives us m(Ω|S1 = heads, S2 = tails) = 1.

16

1.3 Link between Dempster-Shafer Theory and the Möbius
inversion formula

Let (P,≤) be a finite set P partially ordered by some binary operator noted ≤.

Example 1.3.0.1. The partially ordered set (2Ω,⊆) is the set containing all subsets of a set Ω
ordered by inclusion. Let Ω = {a, b, c}. We have, for instance, ∅ ⊆ {a} ⊆ {a, b} ⊆ Ω. However,
we have {a} ̸⊆ {b} and {b} ̸⊆ {a}. The operator ⊆ does not apply to the pairs ({a}, {b}) and
({b}, {a}). There is no such order between these two elements of 2Ω.

Example 1.3.0.2. The partially ordered set (N∗, |) is the set containing all positive integers
ordered by divisibility. For instance, as 3 divides 6, we have 3|6. However, as 3 does not divide
5, the operator | does not apply to the pair (3, 5).

Example 1.3.0.3. The partially ordered set (Z,≤) is the set containing all integers ordered
by magnitude. In this trivial case, all pairs of elements of Z are ordered by ≤. It is said that
(Z,≤) is a totally ordered set. Totally ordered sets are also called chains.

1.3.1 Zeta transform (“Discrete integral”)

The zeta transform g : P → R of a function f : P → R is defined as follows:

∀y ∈ P, g(y) =
∑
x≤y

f(x) (1.4)

It is analogous to integration in a discrete domain. Its name comes from incidence algebra
[40], in which it corresponds to the multiplication of f : P 2 → R with the zeta function ζ :
P 2 → {0, 1}, such that ζ(x, y) = 1 if x ≤ y, i.e.

∀a, b ∈ P, (f ∗ ζ)(a, b) =
∑

a≤x≤b

f(a, x).ζ(x, b) =
∑

a≤x≤b

f(a, x) = g(a, b)

Example 1.3.1.1. In DST, the implicability function b is defined as the zeta transform of the

mass function m in (2Ω,⊆), i.e. ∀y ∈ 2Ω, b(y) =
∑
x⊆y

m(x).

Example 1.3.1.2. In DST, the commonality function q is defined as the zeta transform of the

mass function m in (2Ω,⊇), i.e. ∀y ∈ 2Ω, q(y) =
∑
x⊇y

m(x).

1.3.2 Möbius transform (“Discrete derivative”)

The Möbius transform must not be confused with the Möbius transformations that exist in the
field of Geometry. Here, we work in the context of Order theory. The Möbius transform of g
is f . It is analogous to differentiation in a discrete domain and is defined by the Möbius
inversion formula:

∀y ∈ P, f(y) =
∑
x≤y

g(x).µP,≤(x, y) (1.5)

where µP,≤ is the Möbius function of (P,≤), defined in its general form in [40] as follows:

∀x, y ∈ P,
∑

x≤z≤y

µP,≤(x, z) =
∑

x≤z≤y

µP,≤(z, y) = 0, (1.6)

17

with µP,≤(x, x) = 1. This can be rewritten in the following recursive form:

∀x, y ∈ P, µP,≤(x, y) =

1 if x = y

−
∑

x<z≤y

µP,≤(z, y) otherwise (1.7)

In an incidence algebra, the Möbius transform of g corresponds to the multiplication of g : P 2 →
R with the Möbius function µ, i.e.

∀a, b ∈ P, (g ∗ µP,≤)(a, b) =
∑

a≤x≤b

g(a, x).µP,≤(x, b) = f(a, b)

Example 1.3.2.1. Taking back the functions m and b from Example 1.3.1.1, m is the Möbius

transform of b in (2Ω,⊆), i.e. ∀y ∈ 2Ω, m(y) =
∑
x⊆y

b(x) . (−1)|y|−|x|.

Example 1.3.2.2. Taking back the functions m and q from Example 1.3.1.2, m is the Möbius

transform of q in (2Ω,⊇), i.e. ∀y ∈ 2Ω, m(y) =
∑
x⊇y

q(x) . (−1)|y|−|x|.

1.3.3 Multiplicative Möbius inversion theorem

There is also a multiplicative version of the zeta and Möbius transforms, with the same proper-
ties, in which the sum is replaced by a product:

∀y ∈ P, g(y) =
∏
x≤y

f(x) ⇔ f(y) =
∏
x≤y

g(x)µP,≤(x,y)

Example 1.3.3.1. In DST, the disjunctive weight function v (introduced thereafter in section
1.4.2) is defined as the inverse of the multiplicative Möbius transform of b from Example 1.3.1.1

in (2Ω,⊆), i.e. ∀y ∈ 2Ω, v(y) =
∏
x⊆y

b(x)−(−1)|y|−|x|
.

Example 1.3.3.2. In DST, the conjunctive weight function w (introduced thereafter in section
1.4.1) is defined as the inverse of the multiplicative Möbius transform of q from Example 1.3.1.2

in (2Ω,⊇), i.e. ∀y ∈ 2Ω, w(y) =
∏
x⊇y

q(x)−(−1)|y|−|x|
.

1.4 Two fusion rules avoiding data incest in Dempster-
Shafer Theory

1.4.1 The Cautious fusion rule

The Cautious fusion rule [23] is a heuristic for combining two belief assignments in a conjunctive
way when these assignments may not be independent from each other. It is reminiscent of the
Covariance Intersection filter [35] in that they both avoid data incest in a sub-optimal but
guaranteed way, ignoring the actual dependency existing between two sources. It relies on
a decomposition of belief assignments into atomic belief assignments (one for each piece of
evidence) called simple belief assignments, introduced in its general form in [41].

18

The conjunctive decomposition of evidence

Let us say that we want to decompose m into the conjunctive fusion of 2|Ω| − 1 observers that
each accounts for a single piece of evidence A ⊂ Ω, i.e. a single configuration of discernment
regarding the outcome that eliminates at least one possible outcome. This means that we would
have:

P(↑ B) =
∏
A⊂Ω

PA(↑ B) = q(B) =
∏
A⊂Ω

qA(B)

In particular, this means that for B = Ω, we get:

q(Ω) =
∏
A⊂Ω

qA(Ω) =
∏
A⊂Ω

mA(Ω)

Since we may have q(Ω) > 0, this means that for any A ⊂ Ω, we may have mA(Ω) > 0. This
makes sense in this decomposition of evidence since the observer may not be certain to even
have a piece of evidence A, as seen in Example 1.2.0.2. Thus, each belief assignment mA is
defined for any B ∈ 2Ω as:

mA(B) =


w(A) if B = Ω

1− w(A) if B = A

0 otherwise

where w : 2Ω → R+, with w(A) ∈ [0, 1] for all A ⊂ Ω, represents the level of uncertainty each
observer has regarding its piece of evidence A. The function w is called the conjunctive weight
function. Consequently, we have:

PA(↑ B) = qA(B) =

{
w(A) if B ̸⊆ A

1 if B ⊆ A

which means that for any B ∈ 2Ω:

q(B) =
∏
A⊂Ω

qA(B)

=
∏
A ̸⊇B

w(A)

=
∏
A⊂Ω

w(A).
∏
A⊂Ω
A⊇B

w(A)−1

=
∏
A⊂Ω

mA(Ω).
∏
A⊂Ω
A⊇B

w(A)−1

= q(Ω).
∏
A⊂Ω
A⊇B

w(A)−1

Let us assume that q(Ω) > 0 and set w(Ω) = q(Ω)−1, we finally get:

q(B) =
∏
A⊇B

w(A)−1 (1.8)

As we have seen in the previous subsection about information fusion, the commonality function
q is the zeta transform of m in (2Ω,⊇). In fact, there is a very similar transform that uses

19

the multiplication operator instead of the addition operator, namely the multiplicative zeta
transform. The multiplicative zeta transform is a reversible transformation in the same way
that q is relatively to m. Thus, there exists a function u : 2Ω → R+ such that for any set
B ∈ 2Ω,

q(B) =
∏
A⊇B

u(A)

Therefore, when q(Ω) > 0, the commonality function q is the inverse multiplicative zeta trans-
form of w in (2Ω,⊇). This means that w is unique and so does this decomposition of evidence.
When w(A) > 1 for some A ⊂ Ω, the function mA is no longer a belief assignment if we still
consider that PA(↑ B) is fused with the rest of the decomposition, for any B ∈ 2Ω. However, if
we consider that PA(↑ B) is “un-fused”, i.e. that it divides the rest of the decomposition, then
mA is defined by w(A)−1. Since w(A) > 1, its inverse is in [0, 1], which means that mA is a
belief assignment. Then, this belief assignment represents counter-evidence for A and is called
an inverse belief assignment [41]. Thus, the general form of this decomposition of evidence ac-
tually corresponds to a sequence of conjunctive combinations and de-combinations. The Möbius
inversion theorem [40] gives us for all B ∈ 2Ω:

w(B) =
∏
A⊇B

q(A)(−1)|A|−|B|+1

(1.9)

Fusion of two conjunctive decompositions

As presented in an earlier subsection, the conjunctive fusion of two belief assignments m1 and
m2 is defined by:

P12(↑ B) ∝ P1(↑ B).P2(↑ B)

∝ q1(B).q2(B)

∝
∏
A⊇B

w1(A)−1.
∏
A⊇B

w2(A)−1

∝
∏
A⊇B

[w1(A).w2(A)]
−1

Thus, both the conjunctive fusion and Dempster’s fusion are defined in the conjunctive weight
space by a simple pointwise product, as in the commonality space.

The Cautious rule

The idea behind this heuristic fusion rule is quite simple: acknowledge the probable existence
of pieces of evidence but do not give them more probability of occurrence than your most
affirmative source does. For this, the conjunctive decomposition is key. Indeed, it gives a
level of uncertainty w(A) for each probable piece of evidence A ⊂ Ω associated with a belief
assignment. Thus, when cautiously fusing two belief assignments m1 and m2, all we have to do
is to compute their weight functions w1 and w2 with Eq. (1.9), to take the pointwise minimum
and finally to reverse the transformation with Eq. (1.8). Formally, for two weight functions w1

and w2, the cautious fusion rule yields a weight function w12 as follows, for any set B ∈ 2Ω:

w12(B) = w1(B) ∧ w2(B) (1.10)

where ∧ is the infimum operator, i.e. the minimum in R. As we can see, if source 1 is more
certain about some piece of evidence than source 2, then their fusion will be more certain about

20

this piece of evidence than source 2 but no more than source 1. Doing so, if we try to fuse source
1 with itself, we get the exact same belief assignment. This yields the same result, however, if
we fuse source 1 with another independent source than has the exact same belief assignment,
though it should instead yield of a more certain belief assignment. It ignores actual dependencies
by always considering them maximal. This is why it is sub-optimal, but guarantees consistency.

It is obvious that w12 is a valid weight function corresponding to a belief assignment m12 when
both w1 and w2 range in [0, 1]. It has the intuitive meaning given so far. Yet, this interpretation
collapses when w1 or w2 range in (1,+∞]. When one ranges in [0, 1] but not the other, the
cautious rule favorites positive evidence over counter evidence and yields a weight that is less
than the one yielded by the usual conjunctive fusion. In this case, it is conservative as it does not
let probable counter evidence increase the level of uncertainty on a probable piece of evidence.
When both range in (1,+∞], the cautious rule takes the greatest level of uncertainty on counter
evidence.

Overall, this behavior guarantees that w12 corresponds to a belief assignment m12. Indeed,
let us rewrite Eq. (1.10) as follows:

w12(B) = w1(B).
w1(B) ∧ w2(B)

w1(B)

We have w1(B) ∧ w2(B) ≤ w1(B) for any B ∈ 2Ω. This means that w1(B)∧w2(B)
w1(B) ∈ [0, 1],

which implies that w12 represents the conjunctive fusion of w1 with the sequence of conjunctive
combinations defined by the weight function w1∧w2

w1
. As this necessarily yields a weight function

that corresponds to a valid belief assignment, we have that the cautious rule is always valid,
even with weights greater than 1.

1.4.2 The Bold fusion rule

The Bold fusion rule [23] is a heuristic for combining two belief assignments in a disjunctive way
when these assignments may not be independent from each other. It is the dual of the Cautious
fusion rule, sub-optimally guaranteeing consistency with the disjunctive fusion rule instead of
the conjunctive fusion rule. It relies on the dual of the conjunctive decomposition of evidence,
introduced in [23].

The disjunctive decomposition of evidence

Let us say that we want to decompose m into the disjunctive fusion of 2|Ω| − 1 unreliable
observers that each accounts for a single piece of evidence A ⊃ ∅, i.e. a single configuration of
discernment that supports at least one possible outcome. This means that we would have:

P(↓ B) =
∏
A⊃∅

PA(↓ B) = b(B) =
∏
A⊃∅

bA(B)

In particular, this means that for B = ∅, we get:

b(∅) =
∏
A⊃∅

bA(∅) =
∏
A⊃∅

mA(∅)

Since we may have b(∅) > 0, this means that for any A ⊃ ∅, we may have mA(∅) > 0. This
makes sense in this decomposition of evidence since the observer may not be confident enough
to commit to any possible configuration of discernment. Thus, each belief assignment mA is

21

defined for any B ∈ 2Ω as:

mA(B) =


v(A) if B = ∅
1− v(A) if B = A

0 otherwise

where v : 2Ω → R+, with v(A) ∈ [0, 1] for all A ⊃ ∅, represents the level of uncertainty each
observer has regarding its own capacity to correctly evaluating the specificity of its observations
as the piece of evidence A. Here each observer is uncertain about itself, about its mapping be-
tween observations and belief assignment. This is different from the conjunctive decomposition,
in which each observer is uncertain about the reliability of the observations it receives (e.g. risk
of false detection). The function v is called the disjunctive weight function. Consequently, we
have:

PA(↓ B) = bA(B) =

{
v(A) if B ̸⊇ A

1 if B ⊇ A

which means that for any B ∈ 2Ω:

b(B) =
∏
A⊃∅

bA(B)

=
∏
A ̸⊆B

v(A)

=
∏
A⊃∅

v(A).
∏
A⊃∅
A⊆B

v(A)−1

=
∏
A⊃∅

mA(∅).
∏
A⊃∅
A⊆B

v(A)−1

= b(∅).
∏
A⊃∅
A⊆B

v(A)−1

Let us assume that b(∅) > 0 and set v(∅) = b(∅)−1, we finally get:

b(B) =
∏
A⊆B

v(A)−1 (1.11)

There exists a function u : 2Ω → R+ such that for any set B ∈ 2Ω,

b(B) =
∏
A⊆B

u(A)

Therefore, when b(∅) > 0, the implicability function b is the inverse multiplicative zeta transform
of v in (2Ω,⊆). This means that v is unique and so does this decomposition of evidence. When
v(A) > 1 for some A ⊃ ∅, the function mA is no longer a belief assignment if we still consider
that PA(↓ B) is fused with the rest of the decomposition, for any B ∈ 2Ω. Thus, the general form
of this decomposition of evidence actually corresponds to a sequence of disjunctive combinations
and de-combinations. The Möbius inversion theorem [40] gives us for all B ∈ 2Ω:

v(B) =
∏
A⊆B

b(A)(−1)|A|−|B|+1

(1.12)

22

Fusion of two disjunctive decompositions

As presented in an earlier subsection, the disjunctive fusion of two belief assignments m1 and
m2 is defined by:

P12(↓ B) = P1(↓ B).P2(↓ B)

= b1(B).b2(B)

=
∏
A⊆B

v1(A)−1.
∏
A⊆B

v2(A)−1

=
∏
A⊆B

[v1(A).v2(A)]
−1

Thus, the disjunctive fusion is defined in the disjunctive weight space by a simple pointwise
product, as in the implicability space.

The Bold rule

The idea behind this heuristic fusion rule is very similar to the Cautious rule: acknowledge the
probable existence of common eliminations of some outcomes but do not give these configurations
more probability of occurrence than your most confident source does. For this, the disjunctive
decomposition is key. Indeed, for each probable piece of evidence A ⊃ ∅ associated with a
belief assignment, it gives a level of uncertainty v(A) that the observation indeed eliminates the
outcomes in A. Thus, when fusing two belief assignments m1 and m2 with the Bold rule, all we
have to do is to compute their weight functions v1 and v2 with Eq. (1.12), to take the pointwise
minimum and finally to reverse the transformation with Eq. (1.11). Formally, for two weight
functions v1 and v2, the Bold fusion rule yields a weight function v12 as follows, for any set
B ∈ 2Ω:

v12(B) = v1(B) ∧ v2(B) (1.13)

where ∧ is the infimum operator, i.e. the minimum in R. As we can see, if source 1 is more
confident about some piece of evidence than source 2, then their fusion will be more confident
about this piece of evidence than source 2 but no more than source 1. Doing so, if we try to
fuse source 1 with itself, we get the exact same belief assignment. This yields the same result,
however, if we fuse source 1 with another independent source than has the exact same belief
assignment, though it should instead yield of a more confident belief assignment. It ignores
actual dependencies by always considering them maximal. This is why it is sub-optimal, but
guarantees consistency, as the Cautious rule does.

Treating uncertainties in the same way, the same behavior as the Cautious rule is displayed
by the Bold rule regarding counter-evidence. Consequently, rewriting Eq. (1.13), we get the
same property:

v12(B) = v1(B).
v1(B) ∧ v2(B)

v1(B)

We have v1(B) ∧ v2(B) ≤ v1(B) for any B ∈ 2Ω. This means that v1(B)∧v2(B)
v1(B) ∈ [0, 1], which

implies that v12 represents the disjunctive fusion of v1 with the sequence of disjunctive combi-
nations defined by the weight function v1∧v2

v1
. As this necessarily yields a weight function that

corresponds to a valid belief assignment, we have that the bold rule is always valid, even with
weights greater than 1.

23

1.4.3 Limitations

The Cautious and Bold fusion rules feature interesting properties. However, it should be noted
that they only apply to respectively conjunctive and disjunctive weight functions. To obtain
these weight functions from belief assignments, one has to pass by Eq. (1.1) or (1.3) and Eq.
(1.9) or (1.12), which all have exponential complexities in time. While there are ways to alleviate
this burden for Eq. (1.1) and (1.3), there was none to alleviate the ones on Eq. (1.9) and (1.12)
in general. Furthermore, if all outcomes of Ω may actually occur, it was impossible to compute
the conjunctive weight function of a belief assignment m that would not place belief on Ω,
i.e. m(Ω) = 0. Conversely, it was impossible to compute the disjunctive weight function of
a belief assignment m that would not place belief on ∅, i.e. m(∅) = 0. Therefore, unless an
approximation of these belief assignments was done to make m(Ω) > 0 or m(∅) > 0, fusing
them with another belief assignment with the Cautious or Bold rule was not possible. This
approximation, aside the small bias it adds, worsens the situation with computations in Eq.
(1.1) and (1.9). Indeed, to alleviate the computational burden on these equations, one has to
rely on focal sets, i.e. sets B verifying m(B) > 0. The issue is that the conjunctive fusion of
belief assignments m1 and m2 generates new focal sets A∩B, where m1(A) > 0 and m2(B) > 0.
While other focal sets may disappear if there is no superset to support them in the other belief
assignment, this is impossible if both m1 and m2 have Ω as focal set, since Ω is of course a
superset for all of its subsets. Doing so, fusing in a conjunctive manner, as does the Cautious
rule, can only create more and more focal sets to consider in Eq. (1.1) and (1.9) if Ω is a focal
set for all belief assignments. The same phenomenon occurs with the Bold fusion rule when
m(∅) > 0, since ∅ is obviously contained in all sets.

1.5 Efficiently computing the conjunctive and disjunctive
decompositions

This section contains the translation (and augmentation) of our first publication [42]. It concerns
the computation of Eq. (1.9) and (1.12) in the general case.

1.5.1 Introduction

Dempster-Shafer Theory (DST) [24] is an elegant formalism that generalizes Bayesian proba-
bility theory. It is more expressive than the latter because it allows an observer to represent
its beliefs in the state of a variable of interest not only by assigning credit directly to a specific
state (strong evidence) but also by assigning credit to any set of possible states (weaker evi-
dence). More precisely, for Ω the set of all possible outcomes, belief may be assigned to any set
of 2Ω in DST. This belief assignment is called a mass function and provides meta-information
quantifying the level of uncertainty of the observer itself, which is crucial for decision making.

Nevertheless, this information comes with a cost: considering 2|Ω| potential values may lead
to temporally and spatially heavy algorithms. They can become difficult to use for more than
a dozen possible states (e.g. 20 states in Ω generates about a million subsets), though one
may need to consider more possible states (e.g. in classification or identification tasks). This
complexity is even more limiting for real time applications. To tackle this issue, a lot of work has
been done to reduce the complexity of computations used in information fusion with Dempster’s
rule [30]. We distinguish two main approaches that we refer to as powerset based and evidence
based.

The powerset based approach encompasses all algorithm based on the structure of the lattice
2Ω. They have a complexity dependent on |Ω|. In the general case, the family of optimal

24

algorithms of this kind is based on the Fast Möbius Transform (FMT) [43]. Their complexity
is O(|Ω|.2|Ω|) in time and O(2|Ω|) in space.

The evidence based approach encompasses all algorithm that seeks to reduce computations to
sets that carry information, namely focal sets, which are in general far less numerous than 2|Ω|.
This approach is often more efficient than the powerset based one since it only depends on the
information contained in sources with a quadratic complexity at most. Doing so, it enables one
to exploit the full potential of DST by letting one choose any set of outcomes Ω, no matter its
size.

Furthermore, even if it is possible that this approach leads to situations in which the FMT is
more efficient [44], these situations become less and less likely to occur as |Ω| grows. In addi-
tion, the evidence based approach directly benefits from the use of information approximation
methods, some of which being very efficient [45]. Thus, this approach seems superior to the
FMT in most cases, above all when |Ω| is large, where a method with exponential complexity
like the FMT is simply intractable.

The conjunctive decomposition, also known as canonical decomposition [41], is an important
belief representation in DST. In particular, it allowed for the definition of the Cautious fusion
rule [23] and its generalizations [46]. This rule consistently combines belief assignments that
may not be independent, which is often the case in real applications such as information sharing
in a vehicular network [22]. Its dual, the disjunctive decomposition, has been proposed in [23]
where it has been used to define the Bold fusion rule. This latter rule is useful when sources
may not be independent and are not entirely reliable. More generally, the conjunctive and
disjunctive decompositions are used to define infinite families of t-norm and uninorm based
fusion rules [47]. They are also exploited in conflict analysis [48], clustering [49] and belief
reinforcement/weakening [50].

Yet, few options are available regarding the computation of the conjunctive decomposition.
[23] proposed linear evidence based methods that only works in two particular cases, namely
the consonant and quasi-Bayesian cases. However, in the general case, the conjunctive and
disjunctive decompositions cannot be simplified into mathematical expressions that would only
feature focal sets. To the best of our knowledge, the only algorithms to have been proposed
for this general computation are the FMT and matrix calculus [51], as suggested in [23,41], the
latter being less efficient both in time and space than the former. Thus, until now, all method
based on these decompositions in the general case had to use the FMT, and so had a complexity
at least exponential in time and space.

Here, we provide an evidence based method for the computation of the conjunctive and
disjunctive decompositions in the general case. This paper is organized as follows : Section
1.5.2 introduces elements of DST on which we build our proposition. Section 1.5.3 presents our
method for the conjunctive decomposition and mathematically demonstrates why its complexity
scales with information instead of |Ω|. Section 1.5.4 transposes this method to the computation
of the disjunctive decomposition. We then conclude in section 1.5.5.

1.5.2 Preliminary definitions

Before diving into the details of our method, it is necessary to recall some notions around the
conjunctive decomposition of evidence. The disjunctive decomposition simply being its dual,
what is said here for the conjunctive decomposition can easily be transposed to the former. We
assume the reader is already familiar with the notions of frame of discernment (i.e. Ω) and mass
function.

Definition 1.5.2.1 (Focal element). For any mass function m, a focal element (a.k.a focal set)

25

is a set A such that m(A) ̸= 0. Sets that are not focal sets do not carry any information about
m. In the following, we note F the set containing all focal sets of a mass function m.

Representations for a conjunctive fusion

Definition 1.5.2.2 (Commonality function). For any mass function m, a commonality function
q is defined as follows:

∀A ⊆ Ω, q(A) =
∑
B⊇A

m(B) =
∑
B⊇A
B∈F

m(B) (1.14)

It is important to notice that all subset of Ω may be associated with a commonality in [0, 1],
whether it is a focal set or not.

Remark. A procedure directly based on this formula would have a complexity between O(|F|)
and O(|F|2). Then, the mass function m can simply be retrieved from q with the same complex-
ity by reversing the computation of (1.14) on focal sets only. However, this reverse computation
assumes that focal sets are known, either because no modification has been done to q or because
of the use of well known operators like Dempster’s fusion operator

⊕
that is known to only

create focal sets at the intersection of the focal sets of the two previous mass functions. This
also assumes that m is always kept in memory or re-computed from q to compute new values of
q on-the-fly. Otherwise, the reverse operation has to be performed by a general algorithm such
as the FMT.

Definition 1.5.2.3 (Conjunctive fusion rule). To fuse the information brought by two different
sources 1 et 2, it is necessary to define a combination rule. The conjunctive fusion rule has been
introduced by Smets in the Transferable Belief Model (TBM) [39], through the binary operator
∩ . It is designed to fuse two sources when both are considered reliable. The result is a
conjunction of their statements. In commonality space, the conjunctive fusion rule is defined as
follows:

∀A ⊆ Ω, (q1 ∩ q2)(A) = q1(A) . q2(A)

Definition 1.5.2.4 (Conjunctive decomposition). The conjunctive decomposition has been in-
troduced in its general form by Smets [41]. It decomposes any non-dogmatic mass function, i.e.
any mass function such that Ω ∈ F , into the conjunctive fusion of simple mass functions noted
Aw, where A ⊂ Ω and w is the conjunctive weight function defined thereafter.

In commonality space, we have:

∀A ⊂ Ω, Aw
q :

{
q(B) = 1 ∀B ⊆ A

q(B) = w(A) ∀B ̸⊆ A

The conjunctive decomposition of q is:

q = ∩ A⊂ΩA
w
q

We get:

∀B ⊆ Ω, q(B) =
∏
A ̸⊇B

w(A) = q(Ω).
∏
A⊂Ω
A⊇B

w(A)−1 (1.15)

26

In consequence, according to the Möbius inversion theorem recalled in [43], we have that for
any mass function on 2Ω, if Ω is a focal element (enables in particular to pose w(Ω)−1 = q(Ω)),
then its conjunctive decomposition is defined by the following weight function w:

∀B ⊆ Ω, w(B) =
∏
A⊇B

q(A)(−1)|A|−|B|+1

(1.16)

We see that this weight function w is not directly based on m but on q, which does not
possess any neutral value for non-focal elements. Moreover, replacing these commonalities by
their equivalent sum of masses does not simply well in the general case.

Remark. All in all, three points prevent an evidence based computation:

• the product on all supersets of A in Eq. (1.15), for all B ∈ 2Ω,
• same problem in Eq. (1.16),
• the ignorance about focal sets in m if we modify w or q (e.g. through any combination

rule other than Dempster’s) to reverse Eq. (1.14).

If we could find a link between the focal elements of m and the ones of w− 1, we would be able
to reduce the complexity of these transformations.

Representations for a disjunctive fusion (same remarks)

Definition 1.5.2.5 (Implicability function). For any mass function m, an implicability function
b is defined as follows:

∀A ⊆ Ω, b(A) =
∑
B⊆A

m(B) =
∑
B⊆A
B∈F

m(B) (1.17)

It is important to notice that all subset of Ω may be associated with an implicability in [0, 1],
whether it is a focal set or not.

Definition 1.5.2.6 (Disjunctive fusion rule). The disjunctive fusion rule [27] in an alternative
fusion rule that is specific to DST. It exploits the existence of sets of different cardinalities in
order to reflect a lack of trust in the sources to be fused. It corresponds to the disjunction
of their statements, e.g. if one indicates an outcome {ω1}, while the other points to another
outcome {ω2}, the resulting statement will be {ω1, ω2} instead of the conjunctive result ∅. In
implicability space, the disjunctive fusion rule is defined as follows:

∀A ⊆ Ω, (b1 ∪ b2)(A) = b1(A) . b2(A)

Definition 1.5.2.7 (Disjunctive decomposition). The disjunctive decomposition has been in-
troduced in [23]. It decomposes any subnormal mass function, i.e. any mass function such that
∅ ∈ F , into the disjunctive fusion of simple mass functions noted Av, where A ⊃ ∅ and v is the
disjunctive weight function defined thereafter.

In implicability space, we have:

∀A ⊃ ∅, Ab
v :

{
b(B) = 1 ∀B ⊇ A

b(B) = v(A) ∀B ̸⊇ A

The disjunctive decomposition of b is:

b = ∪ A⊃∅A
b
v

27

We get:

∀B ⊆ Ω, b(B) =
∏
A̸⊆B

v(A) = b(∅).
∏
A⊃∅
A⊆B

v(A)−1 (1.18)

In consequence, according to the Möbius inversion theorem, we have that for any mass function
on 2Ω, if ∅ is a focal element (enables in particular to pose v(∅)−1 = b(∅)), then its disjunctive
decomposition is defined by the following weight function v:

∀B ⊆ Ω, v(B) =
∏
A⊆B

b(A)(−1)|A|−|B|+1

(1.19)

1.5.3 Evidence based computation of the conjunctive decomposition

In this section, we detail our evidence based method for the computation of the conjunctive
decomposition. It exploits on the notion of focal point that we introduce here, a notion derived
from the one of focal set and that contains it. The dual of our method computing the disjunctive
decomposition is deduced in Section 1.5.4 from the one for the conjunctive one, since the lattice
2Ω is symmetrical for any set Ω.

More specifically, we provide a proof for what we call the proxy theorem 1.5.3.2 and for its
corollary 1.5.3.1, which enable us to conclude that focal points are sufficient to the definition of
the weight function w. As a consequence, we propose a recursive formula using focal points that
allows us to efficiently compute the conjunctive decomposition by reusing previously computed
weights.

Definition 1.5.3.1 (Focal point). We define a focal point as the set among all sets associated
with a same commonality expression (i.e. a selection of focal supersets) that contains all the
others. Formally, noting F̊ the set containing all focal points, they are defined by:

∀A ∈ F̊ , ∀B ⊆ Ω, F⊇A = F⊇B ⇒ A ⊇ B

with the intuitive notation F⊇A = {F ∈ F / F ⊇ A}.

Thus, a focal point is the biggest set contained by all the sets in a selection of focal sets. In
other words, it is the intersection of all these sets. So, any focal point A is defined by:

∃E ⊆ F , E ̸= ∅, A =
⋂
F∈E

F

Property 1.5.3.1 (Inclusion of focal sets). We have F ⊆ F̊ since for all focal set A ∈ F , there
is a selection of focal sets E ⊆ F such that |E| = 1 and A =

⋂
F∈E F .

Property 1.5.3.2 (Decomposition into bigger focal points). The intersection of two focal points
is also a focal point. It is equal to the union of their respective selections of focal sets:

∀A,B ∈ F̊ , A ∩B =

 ⋂
F∈F⊇A

F

 ∩
 ⋂

F∈F⊇B

F

 =
⋂

F∈F⊇A∪F⊇B

F

Remark. Note that this means any focal point can be described as either F , where F ∈ F , or
F̊ ∩F , where F̊ ∈ F̊ . Doing so, we can find all focal points of a belief assignment in O

(
|F̊ |.|F|

)
.

28

Lemma 1.5.3.1 (Exponent equilibrium). Following the binomial theorem, we have ∀C ⊆ Ω,
∀A ⊂ C:

∑
B⊇A
B⊆C

(−1)|B|−|A|+1
= −

|C|−|A|∑
k=0

(
|C| − |A|

k

)
(−1)k. 1|C|−|A|−k = −(1− 1)|C|−|A| = 0

Theorem 1.5.3.1 (Focal point formula). For any A ⊆ Ω, the weight w(A) can be decomposed
into a product of commonalities on focal points supersets of A only. Formally, we have:

w(A) = q(A)−1.
∏

F∈F̊⊃A

q(F)eA,F (1.20)

with the intuitive notation F̊⊃A = {F ∈ F̊ / F ⊃ A}, and

∀F ∈ F̊⊃A, eA,F = 1−
∑

B∈F̊⊃A

B⊂F

eA,B .

Proof. First, let us note eA,B the sum of all exponents associated with a same commonality
expression, defined by F⊇B , among sets containing A, excepted A itself. More clearly, we pose
eA,B as:

eA,B =
∑
X⊃A

F⊇X=F⊇B

(−1)|X|−|A|+1

Using Definition 1.5.3.1, we know that for any focal point F ∈ F̊⊃A, we have:

eA,F =
∑
X⊃A
X⊆F

F⊇X=F⊇F

(−1)|X|−|A|+1

Moreover, note that for any couple of focal points B,F ∈ F̊ , if B ̸= F , then F⊇B ̸= F⊇F . So,

for any set A ⊆ Ω and for any focal point F ∈ F̊ , we can introduce the following decomposition:

∏
X⊇A
X⊆F

q(X)(−1)|X|−|A|+1

= q(A)−1.

 ∏
B∈F̊⊃A

B⊂F

q(B)eA,B

 . q(F)eA,F

This translates in terms of exponents as:

∑
X⊇A
X⊆F

(−1)|X|−|A|+1 = −1 +

 ∑
B∈F̊⊃A

B⊂F

eA,B

+ eA,F ,

which is equal to 0, in virtue of Lemma 1.5.3.1. This finally gives us:

eA,F = 1−
∑

B∈F̊⊃A

B⊂F

eA,B

■

29

Example 1.5.3.1 (Quasi-Bayesian case). Let us consider the case of a quasi-Bayesian mass
function m, i.e. a mass function such that Ω ∈ F and all pairs of focal sets (Fi, Fj), where Ω
is neither of them, verify Fi ∩ Fj = ∅. In this case, the only set that can be generated by the

intersection of any number of focal points is ∅. Thus, we have F̊ = F ∪ {∅}. Theorem 1.5.3.1
gives us for all set A in 2Ω:

∀A ⊆ Ω, w(A) =



q(Ω)−1 if A = Ω

q(A)−1. q(Ω) if A ∈ F\{Ω}
q(A)−1. q(Ω)1−|F\{Ω}|.

∏
F∈F\{Ω}

q(F) if A = ∅

1 otherwise

, (1.21)

where q(∅) =
∑

B∈2Ω m(B) = 1. This particular case was already known by [23] (Proposition
1).

Theorem 1.5.3.2 (Proxy theorem). For any set A ⊆ Ω, if there is a smallest focal point
superset, i.e. if there exists a focal point P ∈ F̊⊃A such that for all focal points F ∈ F̊⊃A, we
have P ⊆ F , then:

w(A) = q(A)−1. q(P).

Proof. According to Theorem 1.5.3.1, for any set A ⊆ Ω, if there exists a focal point P ∈ F̊⊃A

such that for all focal point F ∈ F̊⊃A, we have P ⊆ F , then eA,P = 1. Thus, for all focal point

F ∈ F̊⊃P such that there is no focal point in the open interval (P, F), we have:

eA,F = 1− eA,P = 0.

Similarly, for all focal point F ∈ F̊⊃P such that, for all focal point B in the open interval (P, F),
there is a no focal point in the open interval (P,B), we have:

eA,F = 1− (eA,P +
∑

B∈F̊⊃P

B⊂F

eA,B) = 1− (1 +
∑

B∈F̊⊃P

B⊂F

0) = 0.

It is easy to see that by recursion, for all focal point F ∈ F̊⊃P , we obtain: eA,F = 0. So, still
according to Theorem 1.5.3.1, we get:

w(A) = q(A)−1. q(P)1 .
∏

F∈F̊⊃P

q(F)0 = q(A)−1. q(P)

■

Corollary 1.5.3.1 (Sufficiency of F̊ to define w). For all set A that is not a focal point, there
is a proxy focal point P ∈ F̊⊃A such that q(A) = q(P) and for all focal point F ∈ F̊⊃A, we
have P ⊆ F . Thus, according to Theorem 1.5.3.2, we have:

∀A ̸∈ F̊ , w(A) = 1.

Proof. By Definition 1.5.3.1 of a focal point, for any set A ⊆ Ω, there is a focal point
P ∈ F̊⊇A such that F⊇P = F⊇A ⇒ P ⊇ A. This means that q(A) = q(P). Also, if A is not a

focal point, then P ∈ F̊⊃A (since Ω ∈ F̊). In addition, if A is not a focal point, Property 1.5.3.2
tells us that ⋂

F̊⊃A =
⋂ ⋃

F∈F̊⊃A

F⊇F

 =
⋂
F⊃A = P.

By definition of the operator ∩, we get that ∀F ∈ F̊⊃A, F ⊇ P . ■

30

Example 1.5.3.2 (Consonant case). Let us now examine the case of a consonant mass function,
i.e. a mass function such that all its n focal sets Fi verify F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ Ω. In this
case, the proxy theorem 1.5.3.2 applies to all set A in 2Ω\{Ω}. Furthermore, as the intersection
of any number of these focal sets is necessarily one of them, we have F̊ = F . We obtain:

∀A ⊆ Ω, w(A) =


q(Ω)−1 if A = Ω

q(Fi)
−1. q(Fi+1) if ∃i ∈ J1, nK / A = Fi

1 otherwise

(1.22)

This particular case was already known by [23] (Proposition 2).

Theorem 1.5.3.3 (Recursive focal point formula). Thanks to Corollary 1.5.3.1 and taking back
Eq. (1.15), we obtain that for any set A ⊆ Ω, the weight w(A) can be decomposed into a product
of weights associated with focal points supersets of A as follows:

∀A ⊆ Ω, w(A) =

{
q(A)−1.

∏
F∈F̊⊃A

w(F)−1 if A ∈ F̊
1 otherwise

(1.23)

Remark. A procedure directly based on this formula would have a complexity between O(|F̊ |)
and O(|F̊ |2). Its inverse (1.15) only on focal points leads to the same complexity.

Thus, our method varies from O(|F̊ |) to O(|F̊ |2), where |F̊ | ∈ [|F|, 2|Ω|], depending on the
structure of F , as seen in the two notable particular cases presented in Examples 1.5.3.1 and
1.5.3.2. In general, the more there are big focal sets that are not nested in others, the more
|F̊ | has chances to be great. Nevertheless, the most natural and interpretable structures are
the ones close to either Example 1.5.3.1 or 1.5.3.2, which tend to have a number of focal points
close to their number of focal sets. Moreover, our approach directly benefits from methods that
approximate F , which should maintain |F̊ | close to |F|. These approximation methods do not
limit the expressiveness of belief assignments.

1.5.4 Transposition to the computation of the disjunctive decomposi-
tion

In this section, with simply provide the dual of the theorems and corollaries of section 1.5.3 that
come from the symmetry of 2Ω.

Definition 1.5.4.1 (Dual focal point). We define a dual focal point as the set among all sets
associated with a same implicability expression (i.e. a selection of focal subsets) that is contained

in all the others. Formally, noting F̊ the set containing all dual focal points, they are defined
by:

∀A ∈ F̊ , ∀B ⊆ Ω, F⊆A = F⊆B ⇒ A ⊆ B

with the intuitive notation F⊆A = {F ∈ F / F ⊆ A}.

Thus, a dual focal point is the smallest set containing all the sets in a selection of focal sets.
In other words, it is the union of all these sets. So, any dual focal point A is defined by:

∃E ⊆ F , E ̸= ∅, A =
⋃
F∈E

F

Property 1.5.4.1 (Inclusion of focal sets). As for focal points, we have F ⊆ F̊ since for all
focal set A ∈ F , there is a selection of focal sets E ⊆ F such that |E| = 1 and A =

⋃
F∈E F .

31

Property 1.5.4.2 (Decomposition into smaller focal points). The union of two dual focal points
is also a dual focal point. It is equal to the union of their respective selections of focal sets:

∀A,B ∈ F̊ , A ∪B =

 ⋃
F∈F⊇A

F

 ∪
 ⋃

F∈F⊇B

F

 =
⋃

F∈F⊇A∪F⊇B

F

Remark. Note that this means any dual focal point can be described as either F , where F ∈ F ,
or F̊ ∪ F , where F̊ ∈ F̊ . Doing so, we can find all dual focal points of a belief assignment in

O
(
|F̊ |.|F|

)
.

Corollary 1.5.4.1 (Dual focal point formula). For any A ⊆ Ω, the weight v(A) can be decom-
posed into a product of implicabilities on focal points subsets of A only. Formally, we have:

v(A) = b(A)−1.
∏

F∈F̊⊂A

b(F)eA,F (1.24)

with the intuitive notation F̊⊂A = {F ∈ F̊ / F ⊂ A}, and

∀F ∈ F̊⊂A, eA,F = 1−
∑

B∈F̊⊂A

B⊃F

eA,B .

Example 1.5.4.1 (Quasi-Bayesian dual case). Let us consider the dual of the quasi-Bayesian
case of Example 1.5.3.1. This means that we have a mass function m such that ∅ ∈ F and all
pairs of focal sets (Fi, Fj), where ∅ is neither of them, verify Fi ∪ Fj = Ω. In this case, the only
set that can be generated by the union of any number of dual focal points is Ω. Thus, we have

F̊ = F ∪ {Ω}. Theorem 1.5.4.1 gives us for all set A in 2Ω:

∀A ⊆ Ω, v(A) =



b(∅)−1 if A = ∅
b(A)−1. b(∅) if A ∈ F\{∅}
b(A)−1. b(∅)1−|F\{∅}|.

∏
F∈F\{∅}

b(F) if A = Ω

1 otherwise

, (1.25)

where b(Ω) =
∑

B∈2Ω m(B) = 1. Notice however that the quasi-Bayesian case of Example 1.5.3.1
is actually the worst case for the complexity tied to the computation of v. More precisely, the
worst case is the one corresponding to F containing all singletons of 2Ω. In the same way, this
dual quasi-Bayesian case is the worst case complexity for the computation of w. More precisely,
the worst for w is attained when the complement to Ω of each singleton is a focal set.

Theorem 1.5.4.1 (Proxy theorem). For any set A ⊆ Ω, if there is a biggest focal point subset,

i.e. if there exists a dual focal point P ∈ F̊⊂A such that for all dual focal points F ∈ F̊⊂A, we
have P ⊇ F , then:

v(A) = b(A)−1. b(P).

Corollary 1.5.4.2 (Sufficiency of F̊ to define v). For all set A that is not a dual focal point,

there is a proxy dual focal point P ∈ F̊⊂A such that b(A) = b(P) and for all dual focal point

F ∈ F̊⊂A, we have P ⊇ F . Thus, according to Theorem 1.5.4.1, we have:

∀A ̸∈ F̊ , v(A) = 1.

32

Corollary 1.5.4.3 (Recursive dual focal point formula). Thanks to Corollary 1.5.4.2 and taking
back Eq. (1.18), we obtain that for any set A ⊆ Ω, the weight v(A) can be decomposed into a
product of weights associated with dual focal points subsets of A as follows:

∀A ⊆ Ω, v(A) =

{
b(A)−1.

∏
F∈F̊⊂A

v(F)−1 if A ∈ F̊
1 otherwise

(1.26)

Remark. A procedure directly based on this formula would have a complexity between O(|F̊ |)
and O(|F̊ |2). Its inverse (1.15) only on focal points leads to the same complexity.

1.5.5 Conclusion and perspectives

We have presented here the difficulties tied to the design of evidence based algorithms for the
transformation of a belief assignment into its conjunctive or disjunctive decomposition and its
inverse. For this, we proposed a novel mathematical notion that we called focal point, derived
from the notion of focal set. With these focal points, we exploit the properties of the function
to be transformed in 2Ω, while the state-of-the-art optimal general algorithms, based on the
Fast Möbius Transform (FMT), ignore it. Doing so, we can now design new general algorithms
with complexities inferior to the exponential one of these optimal algorithms. Outside the scope
of this article, the notion of focal point can be used in DST for information analysis without
having to compute the conjunctive (or disjunctive) decomposition beforehand. More generally,
any method exploiting the conjunctive or disjunctive decomposition at some point, like the
Cautious fusion rule or the Bold fusion rule, can benefit from a reduction in their complexity.

However, the computation of these focal points has a complexity in O(|F̊ | . |F|), where F̊ is
the set containing these focal points and F is the set containing the focal sets of some belief
assignment. Depending on F , the set F̊ might be as big as 2Ω, which means that O(|F̊ | . |F|)
might be far greater than O(|Ω| . 2|Ω|), i.e. the complexity of the FMT, in some cases. Thus, we
plan to provide complementary methods guaranteeing better complexities than the FMT. Fur-
thermore, the question of how to compute back the mass function from either the commonality
or implicability function in the general case without the FMT remains. Ideally, we would like
to exploit these already computed focal points once again, after modification of the conjunctive
or disjunctive decomposition. This requires a broader view on our approach.

1.6 Conclusion

In this chapter, we set the scene in which this thesis plays its role. We motivated our choice
for a distributed collaborative perception system and highlighted the challenges that have to
be overcome for its practical implementation. We identified two main axes on which we chose
to focus: data incest management and communication efficiency. For the latter, we opted
for the use of semantic grid maps in order to know both what is perceived and what is not.
This emphasizes the need for a distinction between several types of uncertainties, taking the
imperfection of the observer into account. It appears that this distinction is also useful for data
incest management in the fusion of probability distributions over a qualitative random variable
in an unpredictable communication network topology. To make this distinction, we decided to
employ Dempster-Shafer Theory (DST). In DST, the Cautious and Bold fusion rules are simple
and guaranteed ways to avoid data incest. The issue is computational efficiency, on which
directly depends the practicability of our system. Exponential time and space complexities
are quite common in DST, and while there are ways to limit computations to informative
components in some instances, there were no such method to compute the Cautious and Bold

33

fusion rules. The Fast Möbius Transform (FMT) corresponds to the family of algorithms to
compute most DST transformations that is optimal for a given sample space. Given that this
sample space grows exponentially with the number of outcomes to consider, this complexity is
more than exponential in the number of outcomes. This was the most efficient way to compute
the conjunctive and disjunctive decompositions of evidence on which the Cautious and Bold
fusion rules rely. Thus, we tried and created a method exploiting informative components that
we called focal points. This method allows us to design new general algorithms that exploit the
structure of the informative components of a function, instead of the structure of the sample
space alone. Doing so, less than exponential complexities can be obtained for the Cautious and
Bold fusion rules in the general case.

The exponential complexity of the FMT being already prohibitive for more than a dozen
possible outcomes to consider in a random experiment, we consider it as an absolute worst case
complexity that must not be exceeded. Yet, the method we just proposed, while having a far
lighter complexity in many cases, might feature a far worse complexity in other situations that
are difficult to predict. Therefore, we need another, more stable, method that can guarantee
a complexity always inferior to the one of the FMT. This is the objective of Chapter 3. Fur-
thermore, the notion of focal point and our approach in general seems generalizable to other
transformations in DST. This would be useful in particular for the computation of the mass
function from the commonality function after application of the Cautious or Bold fusion rule.
Studying our approach in this broader perspective might also enable us to alleviate the limita-
tion on the applicability of the Cautious fusion rule and the Bold fusion rule. We might be able
to use these rules on respectively dogmatic and normal belief assignments. Our approach even
seems generalizable outside DST, to other spaces than the powerset of a set. All of this is the
subject of the next chapter 2.

34

Chapter 2

Focal points and their
implications for Möbius
Transforms and Dempster-Shafer
Theory

This chapter contains the adaptation of our fourth paper published in the international journal
Information Sciences [52]. Though published in conferences before this one, our second [42] and
third [53] papers correspond to Chapter 3. This is due to the fact that they require a proper
generalization of the notion of focal point we introduced in the previous chapter, which is the
purpose of the present chapter.

2.1 Introduction

Dempster-Shafer Theory (DST) [24] is an elegant formalism that generalizes Bayesian proba-
bility theory by considering the specificity of evidence. This means that it enables a source
(e.g. some sensor model) to represent its belief in the state of a variable by assigning credit not
only directly to a possible state, as in Bayesian probability theory, but also to groups of states,
reflecting some model uncertainty or randomness. This assignment of belief is called a mass
function. It generalizes the notion of probability distribution by providing meta-information
that quantifies the level of uncertainty about one’s believes considering the way one established
them, which is critical for decision making.

Nevertheless, this information comes with a cost: let Ω be the set containing all possible
states. This set Ω has 2|Ω| subsets. Thus, in DST, we consider 2|Ω| potential values instead of
only |Ω| in Bayesian probability theory, which can lead to computationally and spatially very
expensive algorithms. Computations can become difficult to perform for more than a dozen
possible states (e.g. 20 states in Ω generate more than a million subsets), although we may
need to consider much more of them (e.g. for classification or identification). This imposes a
choice in DST between expressiveness of the model (i.e. |Ω|) and fast computations (especially
considering limited resources such as in embedded systems). To tackle this issue, a lot of work
has been done to reduce the complexity of transformations used to combine belief sources with
Dempster’s rule [30]. We distinguish between two approaches that we call powerset-based and

35

evidence-based.

The powerset-based approach concerns all algorithms based on the structure of the powerset
2Ω. They have a complexity dependent on |Ω|. Early works [54–57] proposed optimizations by
restricting the structure of evidence to only singletons and their negation, which greatly restrains
the expressiveness of DST. Later, a family of optimal algorithms working in the general case,
that is, those based on the Fast Möbius Transform (FMT) [43], was discovered. Their complexity
is O(|Ω|.2|Ω|) in time and O(2|Ω|) in space. The FMT has become the de facto standard for the
computation of every transformation in DST. Consequently, efforts were made to reduce the
size of Ω to benefit from the optimal algorithms of the FMT. More specifically, [44] refers to the
process of conditioning by the combined core (intersection of the unions of all sets of nonnull
mass of each belief source) and lossless coarsening (partitioning of Ω into super-elements that
each represents a group of elements always appearing together in all sets of nonnull mass). There
are also approximation methods such as Monte Carlo methods [44], which depend on a number
of trials that must be large and grows with |Ω|, and lossy coarsening [58], but we focus here on
exact methods. More recently, DST has been generalized to any lattice (not just 2Ω) in [59],
which has been used to propose a method [60] limiting its expressiveness to only intervals in Ω
in order to keep DST transformations tractable. If there is no order between the elements of Ω,
this method comes down again to restricting the assignment of credit to only singletons.

The evidence-based approach concerns all algorithms that aim to restrict computations (not
expressiveness) to the only subsets that have a nonnull mass, i.e. that contain information (ev-
idence). These are called focal sets and are usually far less numerous than 2|Ω|. This approach,
also referred as the obvious one, implicitly originates from the seminal work of Shafer [24] and is
often more efficient than the powerset-based one since it only depends on information contained
in sources in a quadratic way. Doing so, it allows for the exploitation of the full potential of DST
by enabling one to choose any frame of discernment, without concern about its size. Moreover,
the evidence-based approach benefits directly from the use of approximation methods, some
of which are very efficient [45]. Therefore, this approach seems superior to the FMT in most
use cases, above all when |Ω| is large, where an algorithm with exponential complexity is just
intractable.

But, unfortunately, focal sets are not sufficient to define the zeta and Möbius transforms. In
particular, if one wishes to compute the multiplicative Möbius transform of an additive zeta
transform (e.g. computing the conjunctive or disjunctive weight function from the commonality
or implicability function), focal sets are not enough in the general case. For this, we already
proposed in [42]1 the notion of focal point, which is sufficient to completely define the conjunctive
and disjunctive decompositions.

One other argument against the evidence-based approach is the lack of knowledge about the
structure of the set of focal sets due to its inconstancy. Indeed, the FMT draws its power from
the knowledge of the structure of Boolean lattices. Doing so, all algorithm using only focal sets is
forced to have a quadratic complexity in the number of these focal sets, which can be worse than
the complexity of FMT algorithms when this number approaches the size of the powerset 2Ω.
Yet, focal points do have a specific structure that has been successfully exploited in [53], where
we proposed methods with complexities that are variable but always inferior to the complexity
of the FMT, its trimmed version [61] and more generally the Fast Zeta Transform [62, 63], and
may be even lower than O(|Ω|.F) in some cases, where F is the number of focal sets.

This present chapter extends our previous works [42] and [53] (presented in the next chapter),
focusing on the study of these focal points to provide their generalization to any partially ordered
set and the reformulation of the Möbius inversion theorem based on them, which were missing.

1This short reference is written in french, but does not need to be read to follow this article.

36

This new contribution also applies to the multiplication of any function by the zeta or Möbius
function in any incidence algebra [40]. The second part of this article proposes applications in
DST exploiting these focal points. We limit this second part to the classical DST, for the sake
of clarity, although our results are applicable to its generalization to any lattice [59].

This paper is organized as follows: Section 2.2 presents the elements on which our notions
are built. Section 2.3 presents our contributions to the zeta and Möbius transforms. Section 2.4
discusses multiple applications to DST. Finally, we conclude this article in section 2.5.

2.2 Background of our method

Let (P,≤) be a semifinite (lower semifinite for ≤, upper semifinite for ≥) set partially ordered
by some binary operator noted ≤, e.g. the powerset (2Ω,⊆) or (2Ω,⊇) containing all subsets of
a set Ω ordered by inclusion, the set (N∗, |) of all positive integers ordered by divisibility, the
set (N,≤) of all nonnegative integers ordered by ≤, etc.

2.2.1 Support of a function in P

The support supp(f) of a function f : P → R is defined as supp(f) = {x ∈ P / f(x) ̸= 0}. For
example, in DST, the set of focal elements of a mass function m is supp(m).

With this notion, it is obvious that Eq. 1.4 can be reduced to:

∀y ∈ P, g(y) =
∑

x∈supp(f)
x≤y

f(x) (2.1)

2.2.2 Order theory

Minimal/Maximal elements Minimal elements of a set S are its elements such that there
is no element in S that is less than them. The set containing them is noted min(S). If there is
only one minimal element in S, it is its minimum. For example, in a totally ordered set (i.e. a
chain), there can only be one minimal element, i.e. its minimum. Dually, the same principle
holds for maximal elements of a set S, noted max(S), and its maximum.

Supremum/Infimum The supremum (also known as join) of a set S of elements of P is its
least upper bound, i.e. the least element in P that is greater than or equal to every element of
S. It is noted

∨
S, but only exists if the set of the upper bounds of S has only one minimal

element. In particular, if S has a maximum, then it is
∨

S. Dually, the infimum (also known
as meet) of a set S of elements of P is its greatest lower bound, i.e. the greatest element in P
that is less than or equal to every element of S. It is noted

∧
S.

Lattice and semilattice An upper semilattice S is a set such that every of its nonempty
subsets has its supremum in S. A lower semilattice S is a set such that every of its nonempty
subsets has its infimum in S. A lattice is both an upper and a lower semilattice. In particular,
all element of a finite lattice L can be described as either

∧
L or the supremum (join) of a

nonempty subset of its join-irreducible elements.

37

2.3 Focal points and our Efficient Möbius inversion for-
mula

The purpose of this section is to present our work on what we call the Efficient Möbius inversion
formula and its developments. Section 2.3.1 gives an overview of the approach. Section 2.3.2
tries to simplify the Möbius inversion formula of Eq. 1.5, highlighting the emergence of our
focal points. Section 2.3.3 properly defines these focal points and exposes the simplifications
they allow on the Möbius inversion formula. Section 2.3.4 proposes ways to compute them.
Finally, section 2.3.5 exploits one of these ways to uncover links between the additive and
multiplicative Möbius transforms of a same function. In addition, section 2.3.6 discusses some
aspects of our approach and section 2.3.7 bridges the gap between our theoretical results and
their usage.

Let us note (P,≤) the set P partially ordered by some binary operator noted ≤, and let g
and f be the functions of Eq. 1.4. For the sake of simplicity, we will consider in this section
that P is finite. If P is semifinite or infinite, see section 2.3.6. We assume that f is defined in
a compact way, simply through supp(f). We also assume that g is defined in a compact way,
through a partition of P , noted G, into parts X such that all elements of P greater than at least
one element of min(X) and less than at least one element of max(X) is in X and has the same
image through g as any other element of X. Multiple partitions may fulfill these conditions. For
instance, we could force these parts to be intervals (i.e. to force |min(X)| = |max(X)| = 1 for
all part X) or not. This is of no importance for what follows, but the fewer parts there are, the
fewer computations will be needed. An example of such an image partition is illustrated in Fig.
2.1. The image through g of all elements in P is thus determined by only minimal and maximal
elements of parts. Also, note that all of our following results can be applied to any incidence
algebra, simply considering g(a, ·) and the support supp(f(a, ·)) = {x ∈ P / f(a, x) ̸= 0} for
some a ∈ P instead of supp(f), since functions are then defined on intervals instead of single
elements.

P

: minimal element of a part

Figure 2.1: Example of image partition G of P corresponding to some function g. The (discretized)
area of the diamond represents P , which has a minimum in this example. Each point of it corresponds
to one of its elements. The arrow on the left represents the order ≤. Two points are ordered only if the
upward vector aligning them makes an angle between −45◦ and 45◦ with the big arrow vector on the
left. If so, then, of the two points, the one that is lower in the figure is lower in P . Each color represents
an image through g. Each part X of this partition G contains elements of same image through g and can
be described as all elements between min(X) and max(X). In this example, each color also represents
a part. We see that g can be defined in a compact way as a list or tree of parts, each described by its
minimal and maximal elements.

38

2.3.1 Problem statement and intuition

Let us start by translating the problems stated in introduction of this article into formal terms.
As showed in Eq. 2.1, g can be computed from supp(f) only. However, g cannot be completely
defined in the general case from g(supp(f)) alone. Furthermore, it is not possible to determine
supp(f) from the definition of g before computing f . These two issues prevent us from limiting
computations so that it scales linearly with the quantity of information in these transforms, i.e.
|supp(f)|. Nevertheless, it is possible to determine the smallest set containing both supp(f) and
all the defining elements of P for g, either from f or from g.

Giving some reduced common superset for these has been done in the past: For conjunctive
fusion in DST, one can find in [44] that computations can be limited to the powerset of supp(f1)∩
supp(f2), where f1 and f2 are two mass functions to combine. In [61], a method was proposed
to limit computations of the zeta transform to the elements of the powerset that are greater
than an element of min(supp(f)). In contrast, here we propose the smallest common superset
for f and g in any semilattice. To the best of our knowledge, our approach is also the first
one to propose a reduced common superset based on g alone for the computation of its Möbius
transform (i.e. f). The elements of this smallest common superset are what we call the focal
points of f and g.

The idea is simple: track the influence of f on g by looking at elements from P that are greater
than the same elements from supp(f), since they are necessarily associated with the same image
through g, and select one representative for each of these configurations. Computing the zeta
transform of f on these representatives only will yield the complete definition of g. Then, use
the Möbius function associated with the partially ordered set made of these representatives to
compute the Möbius transform of g and get the complete definition of f .

These representatives are our focal points. By definition, their image through g contains all
possible images through g, excepted 0 under some conditions. The same can be stated with f .
However, several questions arise: How to get the images of all other elements of P? Is there a
best representative and how to select it for each of these subsets of supp(f)? See section 2.3.3.
How to find them efficiently and how to find them without knowing supp(f)? See section 2.3.4.
Is the Möbius transform for these representatives really the same in this reduced set as in P?
See section 2.3.2.

2.3.2 Simplifying the Möbius inversion formula

Let us start by showing that these focal points are unique and arise naturally in the expression
of the Möbius transform defined in P . In the following, we will mainly focus on the additive
Möbius inversion formula since it displays the same properties as the multiplicative form (think
of the multiplicative form as the exponential of the additive form). In the end, our study exploits
the neutrality of some values in the sum or product. For the addition, the neutral element is
0, hence our use of the support supp(f). To transpose our findings to the multiplicative form,
consider instead supp(f − 1), as the neutral element for the multiplication is 1.

39

•

• •

P

s2

s1 s3

×
y

• : element of S

(a) Level partition

•

• •

P

s2

s1 s3

×
y

• : element of S

: element of ∨S

(b) Join-closure of S

Figure 2.2: Same format as in Fig 2.1. (a) Illustration of the concept of level partition. Each color
represents a part of the partition P/(S,≤), where S = {s1, s2, s3}. In a level partition, every part X is
made of elements of same lower closure in S, i.e. (↓ X)∩ S. The part delimited by a dashed contour is
the lower closure of some element y in P , i.e. ↓ y. We see that all elements of S are in the lower closure
of y. So, the lower closure in S of y is S. (b) Projection of all the elements of the join-closure ∨S onto
the level partition of (a), assuming each part X of P/(S,≤) where X ⊆ ↑ S (i.e. all parts except the gray
one) has a minimum (no assumption on min(P) is made).

Definition 2.3.2.1 (Level partition). For any subset S ⊆ P , let us refer to the elements of S
less than some element x ∈ P as the lower closure (↓ x) ∩ S of x in S, i.e. (↓ x) ∩ S = {s ∈
S / s ≤ x}. In accordance with convention, let us also use the notation (↓ X) ∩ S = {s ∈
S / ∃x ∈ X, s ≤ x}, where X ⊆ P .

For conciseness, we will use the aliases ↓
Sx = (↓ x) ∩ S and S

↑x = (↑ x) ∩ S in the following,
where x can be a subset of P or one of its elements.

We define a level partition, noted P/(S,≤) and read as P divided according to S and the order

≤, as the partition of P such that for any distinct parts X,Y ∈ P/(S,≤), we have ↓
SX ̸=

↓
SY and

such that for any part X ∈ P/(S,≤), any element x ∈ X satisfies ↓
Sx = ↓

SX. We say that all
elements in X are at the same level regarding the elements of S and the order ≤. We would
have used the upper closure for the dual order ≥. This concept is illustrated in Fig. 2.2a. To
summarize, we have:

P/(S,≤) =
{
X ⊆ P / X ̸= ∅, ∀y ∈ P,

(
∀x ∈ X, ↓

Sx = ↓
Sy
)
⇔ y ∈ X

}
In particular, one may notice that P/(supp(f),≤) is also an image partition of P with respect

to g.

Definition 2.3.2.2 (Möbius function aggregate). For any element y ∈ P , for any nonempty set
of elements S ⊆ P and for any part X of the partition P/(S,≤), we define our Möbius function
aggregate η as follows:

ηS,≤,P (X, y) =
∑
z∈X
z≤y

µP,≤(z, y)

Notice that if y ∈ min(X), then ηS,≤,P (X, y) = µP,≤(y, y) = 1, according to Eq. 1.7. The

notation ηS,≤,P is similar to P/(S,≤) and is read as η given S and the elements of P above it,
where the term above depends on the order ≤.

40

Thanks to Definition 2.3.2.1 and Definition 2.3.2.2, we can propose a compact reformulation
of the Möbius transform of Eq. 1.5 in the form of Lemma 2.3.2.1.

Lemma 2.3.2.1 (Compact reformulation of the Möbius inversion formula). For any set S ⊇
supp(f), we have ∀y ∈ P :

f(y) =
∑

X∈P/(S,≤)

y∈↑X
X⊆↑S

g(X) . ηS,≤,P (X, y) (2.2)

where g(X) = g(x) for any x ∈ X.

Proof. See Appendix A.1. ■

However, this reformulation is not a simplification and is thus of little use if our Möbius func-
tion aggregate η must be computed from the original Möbius function µ as in Definition 2.3.2.2.
Fortunately, it is possible to compute η recursively, independently from µ, as shown in the
following Lemma 2.3.2.2.

Lemma 2.3.2.2 (Recursive aggregation of Möbius function images). For any nonempty set of

elements S ⊆ P and for any part X ∈ P/(S,≤), if every part Z ∈ P/(S,≤) verifying ↓
SX ⊆

↓
SZ

has a minimum, i.e. |min(Z)| = 1, then we have for any y ∈ P where
∧

X < y:

ηS,≤,P (X, y) = −
∑

Z∈P/(S,≤)∧
X<

∧
Z≤y

ηS,≤,P (Z, y), (2.3)

and ηS,≤,P (X, y) = 1 if y =
∧
X.

Proof. See Appendix A.2. ■

In other words, for any part X with a minimum m, if every part containing elements greater
than m has a minimum, then η can be written in a recursive form that only depends on itself. In
fact, it is easy to see that η is an extension of the Möbius function µ of Eq. 1.7 associated with
the partially ordered set made of every minimum of part that is in the upper closure of S (See
Definition 2.3.3.2). So, the minimum of each of these parts constitutes one of the representatives
we were looking for in section 2.3.1, i.e. our focal points. The following section 2.3.3 will focus
on them.

Notice that we specifically target the parts that are in the upper closure of S in order to
avoid any unnecessary constraint on min(P). Indeed, the lowest parts contain minimal elements
of P and may not have a minimum if P does not have one. However, if they are not in the
upper closure of S, then their image through both f and g is 0, which means that they have no
influence in Equations 2.1 and 2.2 and so do not contribute to the definition of f nor g. They
are not used in Eq. 2.3 either since this recursion goes upward in P . On the other hand, if
they are in the upper closure of S, then each of them necessarily has an element s of S as its
minimum since there is no other part below it to contain s and since s is the least element of P
that is greater than or equal to s. Thus, we simply ignore the parts that are outside the upper
closure of S.

2.3.3 Focal points and their implications

The purpose of Definition 2.3.3.1 is to introduce the join-closure operator that will be used to
formalize the notion of focal point. Then, Property 2.3.3.1 will give the image through f and g
of all non focal points. Finally, Definition 2.3.3.2 will define the Möbius function extension to
use in Theorem 2.3.3.1, which contains what we called the Efficient Möbius inversion formula.

41

Definition 2.3.3.1 (Join-closure). For any nonempty set of elements S ⊆ P , we note ∨S the
smallest join-closed subset of P containing S, i.e.:

∨S =
{∨

F / ∅ ⊂ F ⊆ S
}

The operator ∨· : 2P → 2P is thus a closure operator, i.e. for any sets S, S′ ⊆ P , we have:
S ⊆ ∨S, S ⊆ S′ ⇒ ∨S ⊆ ∨S′ and ∨(∨S) = ∨S. This notion is illustrated in Fig. 2.2b.

By definition of the supremum, i.e. the least upper bound, each element of ∨S is the minimum
of a part X ∈ P/(S,≤) verifying ↓

SX ̸= ∅. Reciprocally, if a part X ∈ P/(S,≤) verifying ↓
SX ̸= ∅

has a minimum, then it is in ∨S. Therefore, ∨S is the set made of the minimum of each part
from P/(S,≤) in the upper closure of S. In particular, we have S ⊆ ∨S. Yet, parts that do
not contain any element of S may not have a minimum. Thus, it may be necessary to check
the existence of all these minima before anything. It is equivalent to checking that ∨S is an
upper subsemilattice of P , i.e. a subset of P for which the supremum (as defined in P) of every
nonempty subset exists in it. For instance, if P is itself an upper semilattice, then all these
minima exist.

The elements of ∨supp(f) are what we call focal points2.

Example 2.3.3.1. Let (P,≤) = (2Ω,⊆), where Ω = {a, b, c}. In this partially ordered set, the
supremum operator ∨ is the union operator ∪. Let m be a mass function such that m(Ω) = 0.1,
m({a, b}) = 0.1, m({b, c}) = 0.2 and m({a}) = 0.6. We have supp(m) = {Ω, {a, b}, {b, c}, {a}}.
It is easy to see that the union of any selection of support elements gives another support
element. Therefore, we have ∨supp(m) = supp(m).

It may help, for one that is familiar with DST, to notice that ∨supp(m) = supp(m′), where
m′ = ⃝∪

s∈supp(m)
m and ⃝∪ is the disjunctive fusion operator.

Example 2.3.3.2. Taking back Example 2.3.3.1, but looking at the dual closure operator
∧·, we get in particular

⋂
{{a, b}, {b, c}} = {b} and

⋂
{{b}, {a}} = ∅. We have ∧supp(m) =

{Ω, {a, b}, {b, c}, {a}, {b}, ∅} = supp(m) ∪ {{b}, ∅}. This meet-closed subset of P contains the
focal points of m in (2Ω,⊇).

It may help, for one that is familiar with DST, to notice that ∧supp(m) = supp(m′), where
m′ = ⃝∩

s∈supp(m)
m and ⃝∩ is the conjunctive fusion operator.

By definition of a level partition (Definition 2.3.2.1), we get Property 2.3.3.1, which determines
the image through f and g of all elements of P that are not focal points.

Property 2.3.3.1 (Images of non focal points). For any upper subsemilattice ∨S of P such
that ∨S ⊇ supp(f), and for any element y ̸∈ ∨S, we have f(y) = 0. Also, if y ∈ ↑ ∨S, then
g(y) = g(s), where y covers s in ∨S, i.e. s is the maximum among the elements of ∨S lower
than y. Otherwise, g(y) = 0.

Example 2.3.3.3. Taking back m from Example 2.3.3.1 and the implicability function b from
Example 1.3.1.1, we see that the elements from 2Ω that are not focal points are {a, c}, {c},
{b} and ∅. So, we have m({a, c}) = m({c}) = m({b}) = m(∅) = 0, b({a, c}) = b({a}) and
b({c}) = b({b}) = b(∅) = 0.

Example 2.3.3.4. Taking back m from Example 2.3.3.2 and the commonality function q from
Example 1.3.1.2, we must look this time at the minimum among the elements of ∧supp(m)

2This name stands for an analogy in the field of optics: a focal point is the point of the spatial domain (P)
where an image is formed by the intersection of rays coming from a distant source (supp(f)) passing through a
lense (subset of supp(f)).

42

greater than some non focal point. We see that the elements from 2Ω that are not focal points
are {a, c} and {c}. So, we have m({a, c}) = m({c}) = 0, q({a, c}) = q(Ω) and q({c}) = q({b, c}).

Furthermore, thanks to Lemma 2.3.2.2 and Definition 2.3.3.1, we can now define (Defini-
tion 2.3.3.2) the extension of the Möbius function to be applied in our compact reformulation
of the Möbius transform.

Definition 2.3.3.2 (Möbius function extension). For any nonempty set of elements S ⊆ P

such that ∨S is an upper subsemilattice of P , we define the extension ηS,≤,P : ∨S × P → Z of

the Möbius function µ∨S,≤ : ∨S × ∨S → Z as follows:

For any part X ∈ P/(S,≤) such that X ⊆ ↑ S and for any y ∈ P where
∧

X < y,

ηS,≤,P

(∧
X, y

)
= ηS,≤,P (X, y) = −

∑
Z∈P/(S,≤)∧
X<

∧
Z≤y

ηS,≤,P

(∧
Z, y

)
,

which is equivalent to stating that for any (s, y) ∈ ∨S × P where s < y,

ηS,≤,P (s, y) = −
∑
p∈∨S
s<p≤y

ηS,≤,P (p, y), (2.4)

with ηS,≤,P (s, s) = 1.

The final part of this section consists in proposing our so-called Efficient Möbius inver-
sion formula in the form of Theorem 2.3.3.1, which exploits the compact reformulation of
Lemma 2.3.2.1, the focal points of Definition 2.3.3.1 and the extended Möbius function defined
in Definition 2.3.3.2.

Theorem 2.3.3.1 (Efficient Möbius inversion formula). For any upper subsemilattice ∨S of P
such that ∨S ⊇ supp(f), we have ∀y ∈ P ,

f(y) =
∑
s∈∨S
s≤y

g(s) . ηS,≤,P (s, y) (2.5)

Proof. Eq. 2.5 is a simple reformulation of Eq. 2.2 from Lemma 2.3.2.1 with the focal
points of Definition 2.3.3.1 and the extended Möbius function η of Definition 2.3.3.2 (given
Lemma 2.3.2.2), combined with the fact that ∨(∨S) = ∨S, which also means that P/(∨S,≤) =
P/(S,≤). ■

Notice that S in fact need not contain supp(f), as long as ∨S does. So, for example, ∨S can
be a sublattice of P verifying ∨S ⊇ supp(f), with S = I ∪ {

∧
I}, where I is the set containing

the join-irreducible elements of ∨S, as is the case with the lattice support from [53], where S
may not contain supp(f). Also, note that P/(∨S,≤) = P/(S,≤) since ∨(∨S) = ∨S, which means
that all computations can be made only based on the upper semillatice ∨S, without actually
having to determine any set S.

Example 2.3.3.5. Taking back Example 1.3.2.1, we get that for any focal point s ∈ ∨supp(m),
the Möbius transform m of b in (2Ω,⊆) is the Möbius transform of b in (∨supp(m),⊆), i.e.
noting S = supp(m), we have

∀y ∈ ∨S, m(y) =
∑
s∈∨S
s⊆y

b(s) . µ∨S,⊆(s, y)

43

P

s1 s2

s3
s4

s5

s6

•

• •
•

•

•

• : element of supp(f)

: element of ∨(G\{
∧
P})

(focal point)

: element of G

Figure 2.3: Example of image partition G from Fig. 2.1. Each color represents an image through g.
Suppose that g is the zeta transform of f in (P,≤) and that the image through g of the gray part is
0. Then, this partition is the consequence of the support of f displayed in the figure with the following
conditions: f(s2) = f(s1), f(s4) = −f(s1) and f(s3) = f(s5). In this case, the image through g of
the elements in the green part is f(s1), the one in the orange part is f(s1) + f(s3), the one in the
violet part is f(s1) + f(s3) + f(s6) and the one in the white part is f(s1) + 2.f(s3) + f(s6). Notice
that not all elements from supp(f) are minimal elements of a part. However, they are all contained
in the join-closure of G\{

∧
P}, noted ∨(G\{

∧
P}), where G =

⋃
X∈G min(X). In fact, we even have

∨(G\{
∧

P}) = ∨supp(f).

Example 2.3.3.6. Similarly, taking back Example 1.3.2.2, we get that for any focal point s ∈
∧supp(m), the Möbius transformm of q in (2Ω,⊇) is the Möbius transform of q in (∧supp(m),⊇),
i.e. noting S = supp(m), we have

∀y ∈ ∧S, m(y) =
∑
s∈∧S
s⊇y

q(s) . µ∧S,⊇(s, y)

2.3.4 Ways to compute focal points

This section focuses on methods allowing one to compute focal points in an efficient way. Prop-
erty 2.3.4.1 describes a direct scheme for computing the join-closure ∨S of any set S ⊆ P , while
Theorem 2.3.4.1 indicates how to find ∨supp(f) based on G alone.

Property 2.3.4.1 (Computing the join-closure of S directly). Every element in ∨S can be
described as either y, where y ∈ S, or s ∨ y, where s ∈ ∨S. Doing so, all focal points can be
found through a double loop: the outer one iterating through S and the inner one dynamically
iterating through already found focal points (starting with S). Therefore, all elements of ∨S can
be found in O(|∨S|.|S|). It is even possible to further optimize since for any x, y ∈ P , if x ≤ y
or x ≥ y, then x∨ y = y or x∨ y = x, which means in our case that it is useless to compute the
supremum of two elements if there exists an order between them.

This Property 2.3.4.1 can be used to compute focal points directly from supp(f), but supp(f)
is not always known beforehand. One may want to find all focal points from g alone. The
problem is that for any two elements x, y ∈ P , g(x) ̸= g(y)⇒ ↓

Sx ̸=
↓
Sy, but the converse is not

true. Therefore, some elements from ∨supp(f) may not be directly apparent in the compact
definition of g through its image partition G. See Fig. 2.3. The following Theorem 2.3.4.1
explains how focal points can be found from G alone, in spite of this fact.

Theorem 2.3.4.1 (Finding ∨supp(f) from G). Let Y be the set made of every supremum
x ∨ a, where x ∈ G\M and a ∈ M , where M = min(P) ∩ supp(g) and G =

⋃
X∈G min(X).

44

If ∨G is an upper subsemilattice of P (e.g. if P is itself an upper semilattice), then we have
∨supp(f) ⊆ ∨(Y ∪G\M) ⊆ ∨G.

Proof. See Appendix A.3. ■

Consequently, one can find all focal points of f and g, from either supp(f) or the minimal
elements of G, either using a variation of the procedure described in Property 2.3.4.1 or by
building a sublattice L of P as done in Proposition 2 of [53]. This latter method, of complex-
ity O(n.|L|), potentially generates more elements but features a better worst-case complexity
O(n.|P |), where n is the number of join-irreducible elements of L. In addition, this lattice L
contains both ∨supp(f) and ∧supp(f).

It is also worth noting that we do not even have to compute the join-closure of G if f is
nonnegative, since there can be no compensation of images through f . This means that the
image through g of a focal point cannot be equal to the one of an element it covers (See Appendix
A.3). Hence Property 2.3.4.2.

Property 2.3.4.2 (Finding ∨supp(f) from G when f is nonnegative). If ∨supp(f) is an upper
subsemilattice of P (e.g. if P is itself an upper semilattice) and if f is nonnegative, then we
have ∨supp(f) ⊆ G\M , where M = min(P) ∩ supp(g) and G =

⋃
X∈G min(X).

Example 2.3.4.1. The mass function m is required to be nonnegative. Therefore, no matter
the partition defining the implicability function b and the commonality function q, the partition
for b always contains its focal points among the minimal elements of its parts, and the partition
for q (the dual of b) always contains its focal points among the maximal elements of its parts
(provided that q and b indeed correspond to mass functions). However, the disjunctive weight
function v from Example 1.3.3.1 and the conjunctive weight function w from Example 1.3.3.2,
which are multiplicative Möbius transforms in DST, are allowed to have values below 1. Thus,
they do not satisfy the multiplicative equivalent of Property 2.3.4.2.

2.3.5 Focal points for both additive and multiplicative Möbius trans-
forms

In this section, we will see which place takes the focal points of two functions f : P → R and
h : P → R∗ when they are linked by the following equation:

∀y ∈ P, g(y) =
∑
x≤y

f(x) =
∏
x≤y

h(x) (2.6)

We will not consider the case where h is allowed to have null images since they make impossible
the inversion of products. Indeed, any element of P that is greater than an element associated
with a null value through h is guaranteed to get a null image through the zeta transform g,
no matter what image it has through h. Therefore, retrieving their image through h from g
becomes impossible. The following Property 2.3.5.1 reflects this constraint.

Property 2.3.5.1. For any minimal element y ∈ min(P), Eq. 2.6 gives us g(y) = f(y) = h(y).
In particular, if y ̸∈ supp(f), then g(y) = f(y) = h(y) = 0, which we forbid. Thus, we have
min(P) ⊆ supp(f).

Example 2.3.5.1. Taking back the implicability function b from Example 1.3.1.1 and the
disjunctive weight function v from Example 1.3.3.1, we have:

∀y ∈ 2Ω, b(y) =
∑
x⊆y

m(x) =
∏
x⊆y

v(x)−1,

which implies thatm(∅) = v(∅)−1 and som(∅) ̸= 0, which is in accordance with Property 2.3.5.1.

45

Example 2.3.5.2. Taking back the commonality function q from Example 1.3.1.2 and the
conjunctive weight function w from Example 1.3.3.2, we have:

∀y ∈ 2Ω, q(y) =
∑
x⊇y

m(x) =
∏
x⊇y

w(x)−1,

which implies that m(Ω) = w(Ω)−1 and so m(Ω) ̸= 0, which is in accordance with Prop-
erty 2.3.5.1.

From this Property 2.3.5.1 and Theorem 2.3.4.1, we can link the focal points of f and h, and
thus their respective support elements, in Corollary 2.3.5.1.

Corollary 2.3.5.1 (Link between ∨supp(f) and ∨supp(h− 1)). If either
∨(supp(h− 1) ∪min(P)) or ∨supp(f) is an upper subsemilattice of P , then we have

∨supp(f) = ∨(supp(h− 1) ∪min(P))

Proof. See Appendix A.4. ■

In particular, ∨supp(f) = {
∧
P} ∪ ∨supp(h− 1), if P has a minimum.

Example 2.3.5.3. Taking back the mass function m, the disjunctive weight function v and the
conjunctive weight function w from Example 2.3.5.1 and Example 2.3.5.2, we get ∨supp(m) =
{∅} ∪ ∨supp(v − 1) and ∧supp(m) = {Ω} ∪ ∧supp(w − 1).

Finally, Theorem 2.3.5.1 proposes formulas to track the information flow from h to g and f ,
i.e. the effects of changing one element in supp(h− 1) on f and g. This will be used in the
application of section 2.4.3. The reversed flow, from f to h, is not displayed here as it does not
simplify well.

Theorem 2.3.5.1 (Information flow from h to g and f). Let h′ be equal to h everywhere, except
for the image of some x ∈ P . Also, let f ′ and g′ be the functions corresponding to h′ so that
they satisfy Eq. 2.6 in place of respectively f and g. Then we have:

∀y ∈ P, g′(y) =

{
g(y) . h′(x)

h(x) if x ≤ y

g(y) otherwise
(2.7)

and for any upper subsemilattice ∨S of P such that ∨S ⊇ supp(f) ∪ {x},

∀y ∈ P, f ′(y) =


0 if y ̸∈ ∨S

f(y) +
[
h′(x)
h(x) − 1

]
.f↑x(y) if x ≤ y

f(y) otherwise

where f↑x : ↑ x→ R is the Möbius transform of g in (↑ x,≤), i.e. ∀y ∈ ↑ x,

f↑x(y) =
∑
s∈↑x
s≤y

g(s) . µ↑x,≤(s, y)

Proof. See Appendix A.5. ■

In particular, notice that if x ∈ ∨supp(f), then ∨supp(f) ⊇ supp(f) ∪ {x}.

46

2.3.6 Discussions

Several remarks can be made regarding g as input. Firstly, we only consider a compact definition
of g in this article because the point is that it is possible to compute its Möbius transform even
in a tremendously vast partially ordered set by avoiding to consider all elements of P . If g
is defined by its image on every element of P , then the usual Möbius transform should be
employed, as the search for focal points would require to check all elements of P at least once.
This is all the more relevant since there are some algorithms like the FMT [43] that operate in
O(n.|P |), where P is here a lattice and n is the number of its join-irreducible elements, where
we usually have n≪ |P |.

Secondly, if P is downward infinite, then there may be parts in G that do not have any minimal
element. Since our method may need these minimal elements in order to find some potentially
hidden support elements if f can have negative values, one might have to add a surrogate element
for each downward infinite horizon in P . For example, if P contains an element that is greater
than two infinite chains, then one should add two surrogate elements symbolizing downward
infinity, one for each chain. Of course, this can only be possible if there is a finite number of
downward infinite horizons. Finally, |supp(f)| must be finite and G must have a finite number
of parts. Otherwise, focal points cannot be determined.

2.3.7 From theory to practice

In practice, one could wonder how these formulas can be exploited. Actually, even though it
is possible to do so, the Möbius function µ (or our extension η) is usually not evaluated when
computing the Möbius transform of a function. It mostly serves a theoretical purpose. Instead,
it is enough to consider the zeta transform g of a function f and to simply rewrite it in a
recursive way to express f in terms of g and f :

∀y ∈ P, g(y) =
∑
x∈S
x≤y

f(x) ⇔ f(y) = g(y)−
∑
x∈S
x<y

f(x) (2.8)

where S ⊇ supp(f). Then, there are two main ways to use these formulas: (i) naively, summing
all terms for each element y, or (ii) efficiently, reusing partial sums common to multiple elements
y. With (i), values of g can be computed independently, while (ii) requires the computation of
the image through g of all elements of P . But, if one needs the value of g on every element y (i.e.
the complete definition of g), whether it is because |supp(f)| is close to |P | or otherwise, then
(ii) is much more efficient. The optimal method achieving (ii) for P = 2Ω is the Fast Möbius
Transform (FMT) [43], which has a time complexity in O(N.2N), where N is the size of the
frame of discernment resulting from the best lossless coarsening3 of Ω regarding supp(f).

Our contribution to this is the proof that we do not necessarily need the value of g on all
elements of P to define g and to define f from g (without knowledge about supp(f)). Our
focal points constitute a subset of P that can be substantially smaller and is necessary and
sufficient to define all zeta and Möbius transforms. As seen in Theorem 2.3.3.1, for any element
of ∨S the Möbius transform of g in (P,≤) is the Möbius transform of g in (∨S,≤). This means
that we can work in the domain of our focal points instead of P and obtain the exact same
results. This finding is mostly useful for (ii) as it exploits the structure of the domain. For
this, we proposed variants of the FMT, called Efficient Möbius Transformations (EMT) [53],
which work in any distributive lattice L and exploit the structure of its subsemilattices. Taking

3A lossless coarsened frame of discernment Ω′ is a partition of the original set Ω, subject to this coarsening,

such that every support element of the considered mass function defined on 2Ω can be mapped into 2Ω
′
. The

best lossless coarsening results in the smallest Ω′ possible (see [44]).

47

L = 2Ω, the complexity of the EMT is always lower than O(N.2N) and can be even lower than
O(N2), e.g. if supp(f) is a chain.

When using (i), only support elements are necessary in computations, but g is only completely
defined when its image on all focal points is given (See Example 2.3.7.1), which is obvious
considering its image partition G. In addition, it is important to mention that changing even
only one image through g of an element from supp(f) may add or remove elements from supp(f),
but they will always be in ∨supp(f). Thus, manipulating g only on the elements of supp(f) is
highly unreliable. On the contrary, focal points can serve as data structure to completely define
g and can be directly found from any compact definition of g, such as one by intervals.

Furthermore, supp(f) may not be known before actually computing f from g. In this case, it
is impossible to compute f with only elements from supp(f). However, it is always possible to
find the focal points of f from g.

See Example 2.3.7.2.

Example 2.3.7.1 (Computing q from m). Let us take back Example 2.3.3.2, i.e. Ω = {a, b, c}
and m is a mass function such that m(Ω) = 0.1, m({a, b}) = 0.1, m({b, c}) = 0.2 and m({a}) =
0.6. We have supp(m) = {Ω, {a, b}, {b, c}, {a}} and ∧supp(m) = supp(m) ∪ {{b}, ∅}. From m,
we get its commonality function q based on Eq. 2.1 with supp(m) on its focal poins ∧supp(m):

• q(Ω) = m(Ω) = 0.1
• q({a, b}) = m({a, b}) +m(Ω) = 0.2
• q({b, c}) = m({b, c}) +m(Ω) = 0.3
• q({a}) = m({a}) +m({a, b}) +m(Ω) = 0.8
• q({b}) = m({a, b}) +m({b, c}) +m(Ω) = 0.4
• q(∅) = m({a}) +m({a, b}) +m({b, c}) +m(Ω) = 1

As already shown in Example 2.3.3.4, the rest of 2Ω, which does not contain any focal point,
is defined by Property 2.3.3.1: q({a, c}) = q(Ω) and q({c}) = q({b, c}).

Example 2.3.7.2 (Computing w from m). Now, from Example 2.3.7.1, suppose that we want
to compute w. From Corollary 2.3.5.1, we know that {Ω} ∪ ∧supp(w − 1) = ∧supp(m). In
addition, we have m(Ω) = w(Ω)−1 = 0.1 ̸= 1, which means that Ω ∈ supp(w − 1) and so
∧supp(w − 1) = ∧supp(m). Then, adapting Eq. 2.8 to the multiplicative form, we get:

∀y ∈ 2Ω, w(y) =


1 if y ̸∈ ∧supp(m)

q(y)−1.
∏

s∈∧supp(m)
s⊃y

w(s)−1 otherwise

This result and its dual for the disjunctive weight function v were already the conclusion of one
of our previous papers [42]. So, from this, we get the conjunctive weight function w:

• w(Ω) = q(Ω)−1 = 10
• w({a, b}) = [q({a, b}) . w(Ω)]−1 = 0.5
• w({b, c}) = [q({b, c}) . w(Ω)]−1 = 1

3

• w({a}) = [q({a}) . w(Ω) . w({a, b})]−1 = 0.25
• w({b}) = [q({b}) . w(Ω) . w({a, b}) . w({b, c})]−1 = 1.5
• w(∅) = [q(∅) . w(Ω) . w({a, b}) . w({b, c}) . w({a}) . w({b})]−1 = 1.6

Since all these images are different from 1, we get here4 that ∧supp(m) = supp(w − 1).

4From experience, all focal points of m are most of the time also elements of the support of w − 1 or v − 1,
to the point where we in fact never witnessed a case in which this was not true.

48

2.4 Implications for Dempster-Shafer Theory

In DST, we work with P = 2Ω, which is a lattice, i.e. a set of which every nonempty subset has
both a supremum and an infimum. Doing so, all focal points always exist for both the relations
⊆ and ⊇. We will see in section 2.4.1 how our Efficient Möbius inversion formula impacts almost
all representations of DST and how to fuse belief sources using focal points. In section 2.4.2,
we will propose a generalization of the conjunctive decomposition of evidence to benefit from
fusion rules such as the Cautious one [23], even when the considered mass function is dogmatic.
Finally, section 2.4.3 will provide formulas to study the impact of each decomposition weight on
the corresponding mass function.

2.4.1 Efficient representations in Dempster-Shafer Theory

In DST, the mass function m is central. It is considered as a generalization of the discrete
Bayesian probability distribution. It is defined within the bounds of two constraints [39]: one
is that m is nonnegative, and the other is∑

y∈2Ω

m(y) = 1. (2.9)

However, other representations are often used to analyze or fuse mass functions. With the
exception of the pignistic probability representation, all of them are linked to the zeta and Möbius
transforms. We already introduced them in our examples throughout this article:

the implicability5 function b from Example 1.3.1.1, the commonality function q from Exam-
ple 1.3.1.2, the disjunctive weight function v from Example 1.3.3.1 and the conjunctive weight
function w from Example 1.3.3.2.

In addition, Example 2.4.1.1 displays a classic use case demonstrating how the fusion of two
functions of same type in DST can be performed with focal points.

Example 2.4.1.1 (Efficient combination with Dempster’s fusion rule). Dempster’s combination
rule ⃝+ is defined as the normalized conjunctive rule ⃝∩ , i.e. ∀y ∈ 2Ω / y ̸= ∅:

(m1⃝+ m2)(y) =
1

K
(m1⃝∩ m2)(y)

=
1

K

∑
s1∩s2=y

s1∈supp(m1)
s2∈supp(m2)

m1(s1) . m2(s2) (2.10)

=
1

K

∑
x⊇y

q1(x).q2(x).µ2Ω,⊇(x, y) (2.11)

where K = 1 − (m1 ⃝∩ m2)(∅). Eq. 2.10 can be used by an evidence-based algorithm in
O(|supp(m1)| . |supp(m2)|), observing that each support element in supp(m12) of the combined
mass function m12 is defined as the intersection s1 ∩ s2 of a pair of support elements, where
s1 ∈ supp(m1) and s2 ∈ supp(m2). Alternatively, Eq. 2.11 can be used by powerset-based
algorithms such as the FMT (this application has been tackled in [43]) in O(N.2N), where N
is here the size of the frame of discernment resulting from the best lossless coarsening of Ω

5This representation alone is linked to two other ones: the belief function Bel, which is equal to b when setting
m(∅) = 0, and the plausibility function Pl(y) = 1− b(y), ∀y ∈ 2Ω.

49

regarding supp(m1) ∪ supp(m2). It consists in separately computing q1 and q2 with the FMT
and then multiplying them element-wise to get q12, before using again the FMT to compute
m12 from q12. This second approach is useful when almost all images of m12 are required, e.g.
when |supp(m1)| . |supp(m2)| is of significantly higher magnitude than N.2N .

We can also reformulate Eq. 2.11 with focal points in the light of Theorem 2.3.3.1 and obtain
a hybrid approach:

(m1⃝+ m2)(y) =


1

K

∑
s∈∧S
s⊇y

q1(s).q2(s).µ∧S,⊇(s, y) if y ∈ ∧S

0 otherwise

(2.12)

where ∧S ⊇ supp(m12) and P = 2Ω. Eq. 2.12 can be exploited in less than O(N.2N) with the
EMT using the fact that ∧(supp(m1) ∪ supp(m2)) ⊇ supp(m12). If support elements are not
known, one can use the fact that ∧(supp(m1) ∪ supp(m2)) =

∧(∧supp(m1) ∪ ∧supp(m2)).

2.4.2 Generalized decompositions of evidence

Some useful fusion rules for belief sources apply only to the conjunctive decomposition of ev-
idence [23]. Such is the case for the Cautious conjunctive rule [23], which is used when these
sources are not independent. Yet, this decomposition can only be computed for mass functions
m such that Ω ∈ supp(m). Here, we propose a generalization of this decomposition that works
for any mass function m such that

⋃
supp(m) ∈ supp(m). This generalization is given by

Definition 2.4.2.1. A similar definition can be given for its dual, namely the disjunctive decom-
position, for any mass function such that

⋂
supp(m) ∈ supp(m).

Generalization

For any mass function m such that Ω ∈ supp(m), the conjunctive decomposition is defined as

m = ⃝∩
A⊂Ω

Aw (2.13)

where each Aw is a generalized simple mass function6, defined as

∀A ⊂ Ω, ∀B ⊆ Ω, Aw(B) =


1− w(A) if B = A

w(A) if B = Ω

0 otherwise

and w is the conjunctive weight function, i.e. the inverse of the multiplicative Möbius trans-

form of q in (2Ω,⊇), i.e. w(A) =
∏
B⊆Ω
B⊇A

q(B)(−1)|B|−|A|+1

, where q is the commonality function

associated with m, i.e. the zeta transform of m in (2Ω,⊇).

In parallel, the Möbius inversion theorem linking q and w gives us

∀y ∈ 2Ω, q(y) =
∑
x⊇y

m(y) =
∏
x⊇y

w(y)−1, (2.14)

which implies that w(Ω) = q(Ω)−1 = m(Ω)−1, hence m(Ω) ̸= 0. Even if we take the multiplica-
tive Möbius transform of q instead of its inverse, we must have m(Ω) ̸= 0 so that the Möbius

6We use abusively the term mass function in this article for the sake of simplicity. Actually, Aw is a generalized
simple basic belief assignment (GSBBA) (See [41] for a more accurate terminology).

50

inversion theorem can apply, as explained in section 2.3.5. Thus, in order to apply combination
rules that are only defined on the conjunctive decomposition, such as the Cautious conjunctive
rule, it was argued [41] that one should only use mass functions m satisfying m(Ω) ̸= 0. In
practice, this is often done artificially, by discounting, i.e. multiplying all masses by some factor
α ∈ (0, 1) and assigning the complement to 1 to m(Ω).

Nevertheless, assigning a mass to Ω is not ideal: when fusing by conjunction two mass func-
tions that have different focal elements but Ω among them, it appears that no hypothesis (i.e.
no focal element) is discarded in the resulting mass function. It contains the focal elements
of the two original mass functions, as well as their pair-wise intersections. This means that
hypotheses can only accumulate, making the number of focal elements (and so the number of
focal points) explode in vast domains when many fusions of belief sources occur. Therefore, it
is preferable to only assign masses to actual tangible hypotheses, instead of always considering
that all hypotheses are possible even if unlikely. It is more stable, more accurate and allows for
more use cases.

It turns out that it is possible to avoid the constraint m(Ω) ̸= 0 simply by using as weight
function w the inverse of the multiplicative Möbius transform of q in (↓ supp(m),⊇) instead of
(2Ω,⊇) (See section 2.3.5). But, how to reflect this in the conjunctive decomposition? Notice
that Eq. 2.13 is in fact equivalent to:

∀y ⊆ C, q(y) =


∏
x ̸=C

w(x) if y = C

q(C).
∏
x ̸=C
x⊇y

w(x)−1 otherwise , (2.15)

where C = Ω, which means that all images of q are determined by Eq. 2.14, except for the one
on C which exploits the fact that the product of all weights is normalized to 1, due to Eq. 2.14
and Eq. 2.9. Now, C can be something else, as long as the conjunctive combination of simple
mass functions as in Eq. 2.13 leads to this form, which implies that C both is less than or equal
to the element replacing Ω in each simple mass function, while not being less than A (to satisfy
the first line in Eq. 2.15), and is a maximal element of the domain on which w is defined (to
satisfy q(C) = w(C)−1, imposed by Eq. 2.14). In addition, since the second line of this equation
is only valid when y is less than C, we get that C must be above all elements of supp(m) for
the conjunctive decomposition to account for all non-zero q images defining m. Combining this
with the fact that w must be computed in (↓ supp(m),⊇), we get that C =

⋃
supp(m) and

C ∈ supp(m), which is in accordance with the other aforementioned conditions. This leads us
to Definition 2.4.2.1.

Definition 2.4.2.1. For any mass function m such that
⋃
supp(m) ∈ supp(m), we define our

generalized conjunctive decomposition as

m(B) =


(
⃝∩

A⊂C
Aw

C

)
(B) if B ⊆ C

0 otherwise

where C =
⋃
supp(m) and

∀A ⊂ C, ∀B ⊆ C, Aw
C(B) =


1− wC(A) if B = A

wC(A) if B = C

0 otherwise

and wC(A) =
∏
B⊆C
B⊇A

q(B)(−1)|B|−|A|+1

.

51

If Ω ∈ supp(m), then Definition 2.4.2.1 yields the classic conjunctive decomposition. This
generalized decomposition is unique, as the classic one, due to the fact that wC is tied to q by
the Möbius inversion theorem.

When supp(m) has no maximum

Similar to what was proposed in the past, it is possible to discount m and assign the complement
to 1 to any element between

⋃
supp(m) and Ω, if

⋃
supp(m) is not already in supp(m). We

argue that
⋃
supp(m) should be chosen since it is the superset that supports the least hypotheses

outside supp(m) and so the one that biases m the least.

Furthermore, thanks to Theorem 2.3.3.1 and Corollary 2.3.5.1, we can even state the following
Corollary 2.4.2.1 about the resulting decomposition weights of such a discounting procedure.

Corollary 2.4.2.1. For any mass function m such that
⋃
supp(m) ̸∈ supp(m), discounting it

and assigning the complement to Ω gives the same decomposition weights as discounting it and
assigning the complement to

⋃
supp(m).

Proof. See Appendix A.6. ■

Fusion of generalized decompositions

Given Corollary 2.4.2.1, for two mass functions m1 and m2 such that neither supp(m1) nor
supp(m2) has a maximum and

⋃
supp(m1) =

⋃
supp(m2), discounting them and assigning

the complement to Ω gives the same decomposition weights as discounting them and assigning
the complement to

⋃
supp(m1). Consequently, any fusion operator defined on decomposition

weights produces the same results in our generalized decomposition as in the classic decompo-
sition, except that the mass normally added to Ω is added to

⋃
supp(m1) instead, which does

not give credit to more hypotheses than needed and is more stable. In addition, this allows for
new interesting cases when

⋃
supp(m1) ̸=

⋃
supp(m2).

In this case, before applying any fusion operator, it is necessary to define a common domain
for the resulting conjunctive decomposition. For combination rules based on the conjunction
of two belief sources (i.e. both sources are considered reliable), such as Dempster’s rule, the
Cautious conjunctive rule, etc, domains must be intersected and evidence projected on this
intersection. This common domain is simply 2C , where C =

⋃
supp(m1) ∩

⋃
supp(m2). Then,

concerning the projection of evidence on 2C , this consists in adding masses defined outside 2C to
their intersection with this domain. Fortunately, this is already what the commonality function
q does. Indeed, the projection of any mass function m onto 2C is obtained by transferring, i.e.
adding, the mass on all elements B ⊆ Ω to the mass of B ∩ C. This projection, noted m↓C , is
itself a mass function since, by construction, it is as nonnegative as m and the sum of its images
remains unchanged. Notice that the zeta transform of m↓C in (2C ,⊇) is equal to q on 2C since
B ⊇ A is equivalent to B∩A = A and since for any element A ⊆ C, we have A∩(B∩C) = A∩B.
Thus, we can use the commonality functions q1 and q2, which are respectively the zeta transforms
of m1 in (2T1 ,⊇) and m2 in (2T2 ,⊇), where T1 ⊇

⋃
supp(m1) and T2 ⊇

⋃
supp(m2). Then,

it only remains to check that q1(C) ̸= 0 and q2(C) ̸= 0, which is equivalent to verifying that
C ∈ ↓ supp(m1) and C ∈ ↓ supp(m2). The aforementioned discounting must be employed7 on
any commonality function that does not verify this condition. Now, we can finally fuse m1 and
m2 by applying any conjunctive fusion operator to the weight functions wC

1 and wC
2 associated

with respectively q1 and q2 in (2C ,⊇). If Theorem 2.3.3.1 is used to compute wC
1 and wC

2 , notice
that the focal points of wC

1 are the pair-wise intersections C ∩ s1, where s1 ∈ ∧supp(m1), and
the ones of wC

2 are the pair-wise intersections C ∩ s2, where s2 ∈ ∧supp(m2).

7Small but necessary approximation in order to apply the fusion operator.

52

The weight functions wC
1 and wC

2 correspond to m1↓C and m2↓C , which are mass functions.
Therefore, any fusion operator defined in the classic conjunctive decomposition, such as the
Cautious conjunctive rule, is valid in this generalization, as if we had Ω = C, and so can be
applied to the weights of wC

1 and wC
2 (except the ones on C, in the same way that it is not

applied to the weights on Ω in the classic decomposition).

Example 2.4.2.1. Consider Ω = {a, b, c, d} and let m1 be a mass function such that
m1({a, b}) = 0.2, m1({b, c}) = 0.2 and m1({a}) = 0.6. We have

⋃
supp(m1) = {a, b, c} and

∧supp(m1) = supp(m1) ∪ {{b}, ∅}. Also, let m2 be a mass function such that m2({b, c}) = 0.3,
m2({c, d}) = 0.1 and m2({c}) = 0.6. We have

⋃
supp(m2) = {b, c, d} and ∧supp(m2) =

supp(m2). Suppose we want to fuse m1 and m2 with the Cautious conjunctive rule. We pose
C =

⋃
supp(m1)∩

⋃
supp(m2) = {b, c}. We already have C ∈ ↓ supp(m1) and C ∈ ↓ supp(m2),

so no discounting needed. We even have C ∈ supp(m1) and C ∈ supp(m2), which means
that the focal points of wC

1 are 2C ∩ ∧supp(m1) = {{b, c}, {b}, ∅} and that the ones of wC
2 are

2C∩∧supp(m2) = {{b, c}, {c}}. Moreover, we have q1({b, c}) = 0.2, q1({b}) = 0.4 and q1(∅) = 1,
where q1 is the commonality function associated with m1, and q2({b, c}) = 0.3 and q2({c}) = 1,
where q2 is the commonality function associated with m2. We get:

wC
1 ({b, c}) = q1({b, c})−1 = 5, wC

1 ({b}) =
[
q1({b}) . wC

1 ({b, c})
]−1

= 0.5, wC
1 (∅) =[

q1(∅) . wC
1 ({b, c}) . wC

1 ({b})
]−1

= 0.4 and wC
2 ({b, c}) = q2({b, c})−1 = 1

0.3
, wC

2 ({c}) =[
q2({c}) . wC

2 ({b, c})
]−1

= 0.3.

Then, using the minimum operator8 ∧ of the Cautious conjunctive rule, we obtain:

• wC
12({b}) = wC

1 ({b}) ∧ wC
2 ({b}) = 0.5 ∧ 1 = 0.5

• wC
12({c}) = wC

1 ({c}) ∧ wC
2 ({c}) = 1 ∧ 0.3 = 0.3

• wC
12(∅) = wC

1 (∅) ∧ wC
2 (∅) = 0.4 ∧ 1 = 0.4

which means that wC
12({b, c}) =

[
wC

12({b}).wC
12({c}).wC

12(∅)
]−1

= 1
0.06 . Then, let us compute

the associated commonality function q12: q12({b, c}) = wC
12({b, c})−1 = 0.06, q12({b}) =[

wC
12({b}).wC

12({b, c})
]−1

= 0.12, q12({c}) =
[
wC

12({c}).wC
12({b, c})

]−1
= 0.2 and q12(∅) =[

wC
12(∅).wC

12({b}).wC
12({c}).wC

12({b, c})
]−1

= 1.

Finally, the associated mass function m12 is: m12({b, c}) = q12({b, c}) = 0.06, m12({b}) =
q12({b})−m12({b, c}) = 0.06, m12({c}) = q12({c})−m12({b, c}) = 0.14 and m12(∅) = q12(∅)−
m12({b}) − m12({c}) − m12({b, c}) = 0.74, where m12(x) = 0 for all x ̸∈ 2{b,c}. Since these
results are here the same as if we had employed the conjunctive fusion rule, it is easy to see
that they are correct. Indeed, computing the conjunctive fusion of m1 and m2 directly in 2Ω

produces the same resulting mass function m12.

2.4.3 Better understanding the conjunctive and disjunctive decompo-
sitions

A better understanding of the conjunctive or disjunctive decomposition of evidence can be
exploited to propose e.g. new fusion rules using Definition 2.4.2.1 or new approximation methods
based on supp(w − 1) instead of supp(m), where m is a mass function and w is the weight
function associated with it. For this, it is interesting to study how each piece of evidence in the
conjunctive or disjunctive decomposition impacts the mass function. Until now, the only exact
way to do this computation in the general case was using the FMT, which is O(N.2N), and this
provided no insight on the internal workings of these modifications. Here, given Theorem 2.3.5.1,

8In fact, as all couples of numbers involve 1 and another number less than 1, the conjunctive rule would have
given the same result here.

53

we propose new formulas (Proposition 2.4.3.1) describing the propagation of these updates. We
will focus on the conjunctive decomposition, but a similar method exists for its dual, namely
the disjunctive decomposition. Once focal points have been computed for the original weight
function w, the complexity of our method ranges from O(1) to O(N . |∧supp(w − 1)|) for each
image of focal point modified in w, depending on its relation with respect to other focal points.

Proposition 2.4.3.1. Let w′ be equal to w everywhere on 2Ω\{Ω}, except for the image of
some x ∈ ∧supp(w − 1)\{Ω}. Also, let m′ and q′ be the functions corresponding to w′ so that
they satisfy Eq. 2.6 in place of respectively m and q. Then, we have:

∀y ∈ 2Ω, q′(y) =

{
q(y) if x ⊇ y
w′(x)
w(x) .q(y) otherwise

(2.16)

and

m′(y) =


0 if y ̸∈ ∧S
w′(x)
w(x) .m(y) +

[
1− w′(x)

w(x)

]
.m↓x(y) if x ⊇ y

w′(x)
w(x) .m(y) otherwise

(2.17)

where ∧S ⊇ supp(w − 1) ∪ {Ω} and m↓x : 2x → [0, 1] is the mass function resulting from the
projection of m onto ↓ x, i.e. the Möbius transform of q in (2x,⊇).

Proof. See Appendix A.7. ■

Example 2.4.3.1. Let us take back Example 2.3.7.2, i.e. Ω = {a, b, c} and m is a mass
function such that m(Ω) = 0.1, m({a, b}) = 0.1, m({b, c}) = 0.2 and m({a}) = 0.6. We
have supp(m) = {Ω, {a, b}, {b, c}, {a}} and ∧supp(m) = supp(m) ∪ {{b}, ∅}. We also have its
commonality function q such that q(Ω) = 0.1, q({a, b}) = 0.2, q({b, c}) = 0.3, q({a}) = 0.8,
q({b}) = 0.4 and q(∅) = 1. Finally, its conjunctive weight function w is defined by w(Ω) = 10,
w({a, b}) = 0.5, w({b, c}) = 1

3 , w({a}) = 0.25, w({b}) = 1.5 and w(∅) = 1.6.

Now, suppose that we would like to see how changing w({b}) from 1.5 to 1, i.e. removing {b}
from supp(w − 1), affects m. Then, Eq. 2.17 tells us that only m({b}) and m(∅) are impacted by
more than just a renormalization factor. Let us start by computing m↓{b}, where ↓ {b} = 2{b}:
m↓{b}({b}) = q({b}) = 0.4 and m↓{b}(∅) = q(∅)−m↓{b}({b}) = 0.6. Now, we can update m to
provide m′:

• m′({b}) = w′({b})
w({b}) .m({b}) +

[
1− w′({b})

w({b})

]
.m↓{b}({b}) = 0 +

[
1− 1

1.5

]
∗ 0.4 = 2

15

• m′(∅) = w′({b})
w({b}) .m(∅) +

[
1− w′({b})

w({b})

]
.m↓{b}(∅) = 0 +

[
1− 1

1.5

]
∗ 0.6 = 3

15

All other focal points p simply have their image through m′ renormalized:

m′(p) =
w′({b})
w({b})

.m(p) =
1

1.5
.m(p)

which gives m′(Ω) = m′({a, b}) = 1
15

, m′({b, c}) = 2
15

and m′({a}) = 6
15

. Note that the sum of
the images of m′ is indeed equal to 1.

Example 2.4.3.2. Still using m, q and w from Example 2.3.7.2, suppose now that we would
like to see how changing w({a, b}) from 0.5 to 1, i.e. removing {a, b} from supp(w − 1), affects
m. Then, Eq. 2.17 tells us that only m({a, b}), m({a}), m({b}) and m(∅) are impacted by more
than just a renormalization factor. Let us start by computing m↓{a,b}, where ↓ {a, b} = 2{a,b}:

• m↓{a,b}({a, b}) = q({a, b}) = 0.2
• m↓{a,b}({a}) = q({a})−m↓{a,b}({a, b}) = 0.6

54

• m↓{a,b}({b}) = q({b})−m↓{a,b}({a, b}) = 0.2
• m↓{a,b}(∅) = q(∅)−m↓{a,b}({a, b})−m↓{a,b}({a})−m↓{a,b}({b}) = 0

Now, we can update m to provide m′:

• m′({a, b}) = w′({a,b})
w({a,b}) .m({a, b}) +

[
1− w′({a,b})

w({a,b})

]
.m↓{a,b}({a, b}) = 1

0.5
∗ 0.1 +

[
1− 1

0.5

]
∗ 0.2 = 0

• m′({a}) = w′({a,b})
w({a,b}) .m({a}) +

[
1− w′({a,b})

w({a,b})

]
.m↓{a,b}({a}) = 1

0.5
∗ 0.6 +

[
1− 1

0.5

]
∗ 0.6 = 0.6

• m′({b}) = w′({a,b})
w({a,b}) .m({b}) +

[
1− w′({a,b})

w({a,b})

]
.m↓{a,b}({b}) = 0 +

[
1− 1

0.5

]
∗ 0.2 = −0.2

• m′(∅) = w′({a,b})
w({a,b}) .m(∅) +

[
1− w′({a,b})

w({a,b})

]
.m↓{a,b}(∅) = 0 +

[
1− 1

0.5

]
∗ 0 = 0

All other focal points p simply have their image through m′ renormalized:

m′(p) =
w′({b})
w({b})

.m(p) =
1

0.5
.m(p)

which gives m′(Ω) = 0.2 and m′({b, c}) = 0.4. Notice that the sum of the images of m′

is indeed equal to 1, but we have a negative mass m′({b}). This is expected as it is known
(see [41]) that the conjunctive decomposition is composed of what are called Simple Support
Functions (SSF) (corresponding to elements of supp(w − 1) with an image in (0, 1)) and Inverse
Simple Support Functions (ISSF) (corresponding to elements of supp(w − 1) with an image
in (1,+∞)). Fusing all SSFs and ISSFs of one decomposition with the conjunctive rule gives
the original mass function. SSFs correspond to mass functions, while ISSFs correspond to the
decombination of mass functions, i.e. they are equivalent to mass functions with some negative
value (if mass functions were allowed to have negative values). We had on {b} a balance between
positive mass values corresponding to w({a, b}) and w({b, c}) and a negative one corresponding
to w({b}), which we shifted towards the negatives by removing the positive mass corresponding
to w({a, b}). So, it just appears that changing SSFs from a decomposition that contains ISSFs
is not always permitted in DST.

2.5 Conclusions and Perspectives

In this paper, we proposed an exact simplification of the zeta and Möbius transforms, for any
function in any incidence algebra or on any partially ordered set. From this, we introduced the
notion of focal point and discovered interesting properties when applied to the zeta and Möbius
transforms. Then, we applied our theorems to DST in order to allow for both exactitude and
computational efficiency in vast domain for most transformations between representations of
belief and for their fusion. We also proposed a generalization of the conjunctive decomposition
of evidence and provided formulas uncovering the influence of each decomposition weight on
the corresponding mass function. These last two applications demonstrate the potential of our
approach for the proof of new theoretical results and may themselves be exploited to propose
new discounting methods and fusion operators in DST.

To go further in practice, we need to present algorithms, data structures and experimental
setups comparing execution times and memory usage between the EMT, the FMT and naive
approaches using focal points. Hence, we plan to issue a practical follow-up article in the near
future, alongside a complete open-source implementation for DST.

In a more general way, our theoretical results can be both useful as a way to significantly
reduce the complexity of any algorithm involving the zeta and Möbius transforms (e.g. with our
EMT [53], which is defined in any distributive lattice) and as tools to better understand them.

55

Chapter 3

The Efficient Möbius
Transformations

This chapter contains the adaptation and clarification of our third paper published at the in-
ternational conference on Scalable Uncertainty Management (SUM) [53]. Our second paper,
published at the french conference Logique Floue et ses Applications (LFA) [64], is not pre-
sented here because our third paper is a generalization of it.

56

Abstract

Dempster-Shafer Theory (DST) generalizes Bayesian probability theory, offering
useful additional information, but suffers from a high computational burden. A lot
of work has been done to reduce the complexity of computations used in information
fusion with Dempster’s rule. The main approaches exploit either the structure of
Boolean lattices or the information contained in belief sources. Each has its mer-
its depending on the situation. In this chapter, we propose sequences of graphs
for the computation of the zeta and Möbius transformations that optimally exploit
both the structure of distributive lattices and the information contained in belief
sources. We call them the Efficient Möbius Transformations (EMT). We show that
the complexity of the EMT is always inferior to the complexity of algorithms that
consider the whole lattice, such as the Fast Möbius Transform (FMT) for all DST
transformations. We then explain how to use them to fuse two belief sources. More
generally, our EMTs apply to any function in any finite distributive lattice, focusing
on a meet-closed or join-closed subset.

57

3.1 Introduction

Dempster-Shafer Theory (DST) [24] is an elegant formalism that generalizes Bayesian probabil-
ity theory. It is more expressive by giving the possibility for a source to represent its belief in
the state of a variable not only by assigning credit directly to a possible state (strong evidence)
but also by assigning credit to any subset (weaker evidence) of the set Ω of all possible states.
This assignment of credit is called a mass function and provides meta-information to quantify
the level of uncertainty about one’s believes considering the way one established them, which is
critical for decision making.

Nevertheless, this information comes with a cost: considering 2|Ω| potential values instead
of only |Ω| can lead to computationally and spatially expensive algorithms. They can become
difficult to use for more than a dozen possible states (e.g. 20 states in Ω generate more than
a million subsets), although we may need to consider large frames of discernment (e.g. for
classification or identification tasks). Moreover, these algorithms not being tractable anymore
beyond a few dozen states means their performances greatly degrade before that, which further
limits their application to real-time applications. To tackle this issue, a lot of work has been
done to reduce the complexity of transformations used to combine belief sources with Dempster’s
rule [30]. We distinguish between two approaches that we call powerset-based and evidence-based.

The powerset-based approach concerns all algorithms based on the structure of the powerset
2Ω of the frame of discernment Ω. They have a complexity dependent on |Ω|. Early works
[54–57] proposed optimizations by restricting the structure of evidence to only singletons and
their negation, which greatly restrains the expressiveness of DST. Later, a family of optimal
algorithms working in the general case, i.e. the ones based on the Fast Möbius Transform
(FMT) [43], was discovered. Their complexity is O(|Ω|.2|Ω|) in time and O(2|Ω|) in space. It has
become the de facto standard for the computation of every transformation in DST. Consequently,
efforts were made to reduce the size of Ω to benefit from the optimal algorithms of the FMT.
More specifically, [44] refers to the process of conditioning by the combined core (intersection of
the unions of all focal sets of each belief source) and lossless coarsening (merging of elements
of Ω which always appear together in focal sets). Also, Monte Carlo methods [44] have been
proposed but depend on a number of trials that must be large and grows with |Ω|, in addition
to not being exact.

The evidence-based approach concerns all algorithms that aim to reduce the computations to
the only subsets that contain information (evidence), called focal sets, which are usually far less
numerous than 2|Ω|. This approach, also referred to as the obvious one, implicitly originates
from the seminal work of Shafer [24] and is often more efficient than the powerset-based one
since it only depends on information contained in sources in a quadratic way. Doing so, it
allows for the exploitation of the full potential of DST by enabling us to choose any frame of
discernment, without concern about its size. Moreover, the evidence-based approach benefits
directly from the use of approximation methods, some of which are very efficient [45]. Therefore,
this approach seems superior to the FMT in most use cases, above all when |Ω| is large, where
an algorithm with exponential complexity is just intractable.

It is also possible to easily find evidence-based algorithms computing all DST transformation,
except for the conjunctive and disjunctive decompositions for which we recently proposed a
method [42].

However, since these algorithms rely only on the information contained in sources, they do
not exploit the structure of the powerset to reduce the complexity, leading to situations in which
the FMT can be more efficient if almost every subset contains information, i.e. if the number
of focal sets tends towards 2|Ω| [44], all the most when no approximation method is employed.

58

In this paper, we fuse these two approaches into one, proposing new sequences of graphs, in
the same fashion as the FMT, that are always more efficient than the FMT and can in addition
benefit from evidence-based optimizations. We call them the Efficient Möbius Transformations
(EMT). More generally, our approach applies to any function defined on a finite distributive
lattice.

Outside the scope of DST, [61] is related to our approach in the sense that we both try to
remove redundancy in the computation of the zeta and Möbius transforms on the subset lattice
2Ω. However, they only consider the redundancy of computing the image of a subset that is
known to be null beforehand. To do so, they only visit sets that are accessible from the focal
sets of lowest rank by successive unions with each element of Ω. Here, we demonstrate that it
is possible to avoid far more computations by reducing them to specific sets so that each image
is only computed once. These sets are the focal points described in [42]. The study of their
properties will be carried out in depth in an upcoming article [52]. Besides, our method is more
general since it applies to any finite distributive lattice.

Furthermore, an important result of our work resides in the optimal computation of the zeta
and Möbius transforms in any intersection-closed family F of sets from 2Ω, i.e. with a complexity
O(|Ω|.|F |). Indeed, in the work of [62] on the optimal computation of these transforms in any
finite lattice L, they embedded L into the Boolean lattice 2Ω, obtaining an intersection-closed
family F as its equivalent, and found a meta-procedure building a circuit of size O(|Ω|.|F |)
computing the zeta and Möbius transforms. However, they did not managed to build this
circuit in less than O(|Ω|.2|Ω|). Given F , our Theorem 3.3.2.2 in this paper directly computes
this circuit with a complexity that can be as low as O(|Ω|.|F |) in some instances, while being
much simpler.

This paper is organized as follows: Section 3.2 will present the elements on which our method
is built. Section 3.3 will present our EMT. Section 3.4 will discuss their complexity and their
usage both in general and in the case of DST. Finally, we will conclude this article with section
3.5.

3.2 Background of our method

Let (P,≤) be a finite1 set partially ordered by ≤.

3.2.1 Zeta transform

The zeta transform g : P → R of a function f : P → R is defined as follows:

∀y ∈ P, g(y) =
∑
x≤y

f(x) (3.1)

This can be extended to the multiplication as the multiplicative zeta transform:

∀y ∈ P, g(y) =
∏
x≤y

f(x)

1The following definitions hold for lower semifinite partially ordered sets as well, i.e. partially ordered sets
such that the number of elements of P lower in the sense of ≤ than another element of P is finite. But for the
sake of simplicity, we will only talk of finite partially ordered sets.

59

Example 3.2.1.1. In DST, the implicability function b is defined as the zeta transform of the
mass function m in (2Ω,⊆), i.e.:

∀B ∈ 2Ω, b(B) =
∑
A⊆B

m(A)

Example 3.2.1.2. In DST, the implicability function b is also the inverse of the multiplicative
zeta transform of the disjunctive weight function v in (2Ω,⊆), i.e.:

∀B ∈ 2Ω, b(B) =
∏
A⊆B

v(A)−1

Example 3.2.1.3. In DST, the commonality function q is defined as the zeta transform of the
mass function m in (2Ω,⊇), i.e.:

∀B ∈ 2Ω, q(B) =
∑
A⊇B

m(A)

Example 3.2.1.4. In DST, the commonality function q is also the inverse of the multiplicative
zeta transform of the conjunctive weight function w in (2Ω,⊇), i.e.:

∀B ∈ 2Ω, q(B) =
∏
A⊇B

w(A)−1

3.2.2 Möbius transform

The Möbius transform of g is f . It is defined as follows:

∀y ∈ P, f(y) =
∑
x≤y

g(x).µP,≤(x, y) (3.2)

where µP,≤ is the Möbius function of (P,≤) (See [40]). There is also a multiplicative version
with the same properties that can be seen as the exponential of the Möbius transform of log ◦ g:

∀y ∈ P, f(y) =
∏
x≤y

g(x)µP,≤(x,y)

Example 3.2.2.1. In DST, the mass function m is the Möbius transform of the implicability
function b in (2Ω,⊆), i.e.:

∀B ∈ 2Ω, m(B) =
∑
A⊆B

b(A).µ2Ω,⊆(A,B)

where for any A,B ∈ 2Ω, the Möbius function evaluates to µ2Ω,⊆(A,B) = (−1)|B|−|A|, as
recalled in [43].

Example 3.2.2.2. In DST, the disjunctive weight function v is the inverse of the multiplicative
Möbius transform of the implicability function b in (2Ω,⊆), i.e.:

∀B ∈ 2Ω, v(B) =
∏
A⊆B

b(A)−µ2Ω,⊆(A,B)

60

Example 3.2.2.3. In DST, the mass function m is the Möbius transform of the commonality
function q in (2Ω,⊇), i.e.:

∀B ∈ 2Ω, m(B) =
∑
A⊇B

q(A).µ2Ω,⊇(A,B)

where for any A,B ∈ 2Ω, the Möbius function also evaluates to µ2Ω,⊇(A,B) = (−1)|B|−|A|.

Example 3.2.2.4. In DST, the conjunctive weight function w is the inverse of the multiplicative
Möbius transform of the commonality function q in (2Ω,⊆), i.e.:

∀B ∈ 2Ω, w(B) =
∏
A⊇B

q(A)−µ2Ω,⊇(A,B)

3.2.3 Sequence of graphs and computation of the zeta transform

To yield g(y) for some y ∈ P , we must sum all values f(x) such that x ≤ y. Our objective is
to do it in the minimum number of operations, i.e. to minimize the number of terms to sum. If
we only compute g(y) alone, we have to pick every element in {x ∈ P / x ≤ y} and sum their
associated values through f . However, if we compute g(y) for all elements y ∈ P at once, we can
organize and mix these computations so that partial sums are reused for more than one value
through g. Indeed, for any element y ∈ P , if there is an element z ∈ P such that y ≤ z, we have
g(z) = g(y) +

∑
x≤z
x ̸≤y

f(x). So, we want to recursively build partial sums so that we can get the

full sum on each g(y) by only summing the values on some elements from {x ∈ P / x ≤ y}. In
other words, we would like to define an ordered sequence of transformations computing g from
f .

Let us adopt the formalism of graph theory. Let G≤ be a directed acyclic graph in which the
set of its nodes matches P and each arrow is directed by ≤. Let E≤ be the set of its arrows. We
have E≤ = {(x, y) ∈ P 2 / x ≤ y} and G≤ = (P,E≤). Thus, computing g(y) alone is equivalent
to visiting the node y from all nodes x of G≤ such that there is an arrow (x, y) ∈ E≤. Each
“visit” to node y from a node x corresponds to the computation of the operation f(x)+ ·, where
· represents the current state of the sum associated with y. Thus, G≤, combined with the binary
operator f(·) + ·, describes the transformation of 0 into g. More concisely, we will equivalently
initialize our algorithm with values through f instead of 0 and exploit the combination of G<

and +. We will say that the transformation (G<, f,+) computes the zeta transform of f in
(P,≤). In the end, we want to minimize the number of “visits” to be made to all y, i.e. we
want to minimize the total number of arrows to follow to compute every g(y). Therefore, the
question is: Is there an ordered sequence of graphs that can compute g from f with less arrows
in total than (G<, f,+) ?

Let IP be the set containing all identity arrows of G≤, i.e. IP = { (x, y) ∈ P 2 / x = y}.
Consider that all elements y ∈ P are initialized with f(y). We are interested in finding a
sequence of graphs that is equivalent to the arrows of G<. Let (Hi)i∈J1,nK be a sequence of
n directed acyclic graphs Hi = (P,Ei). We will note ((Hi)i∈J1,nK, f,+) the computation that
transforms f into h1 through the arrows of E1, then transforms h1 into h2 through the arrows
of E2, and so on until the transformation of hn−1 into hn through the arrows of En. We ignore
all identity arrows in these computations. So, this sequence of graphs requires us to consider
|E1|+ |E2|+ · · ·+ |En| arrows, but transforms f into hn in |E1\IP |+ |E2\IP |+ · · ·+ |En\IP |
operations.

Proposition 3.2.3.1. Let Ω = {ω1, ω2, . . . , ωn}. One particular sequence of interest is
(Hi)i∈J1,nK, where Hi = (2Ω, Ei) and:

Ei = {(X,Y) ∈ 2Ω × 2Ω/ Y = X ∪ {ωi}}.

61

∅ {a} {b} {a, b} {c} {a, c} {b, c} Ω

• • • • • • • •
1 : Y = X ∪ {a}

• • • • • • • •
2 : Y = X ∪ {b}

• • • • • • • •
3 : Y = X ∪ {c}

• • • • • • • •

Figure 3.1: Illustration representing the paths generated by the arrows contained in the sequence
(Hi)i∈J1,3K, where Hi = (2Ω, Ei) and Ei = {(X,Y) ∈ 2Ω × 2Ω/ Y = X ∪ {ωi}} and Ω = {a, b, c}.
This sequence computes the same zeta transformations as G⊂ = (2Ω, E⊂), where E⊂ = {(X,Y) ∈
2Ω × 2Ω / X ⊂ Y }. A dot represents the node of its column. Its row i corresponds to both the tail of a
potential arrow in Hi and the head of a potential arrow in Hi−1. The last row corresponds to the heads
of all potential arrows that could be in H3. The arrows represents the actual arrows in each graph Hi.
Identity arrows are ignored in computations and not displayed here for the sake of clarity. If they were,
there would be vertical arrows in every column, linking each dot in row i to the next dot of same node
in row i+ 1. This representation is derived from the one used in [43].

This sequence computes the same zeta transformations as G⊂ = (2Ω, E⊂), where E⊂ =
{(X,Y) ∈ 2Ω × 2Ω / X ⊂ Y }.

Example 3.2.3.1. Let us say that Ω = {a, b, c}. Crossing ignored arrows (i.e. identity arrows),
we have:

• E1 = {(X,Y) ∈ 2Ω × 2Ω/ Y = X ∪ {a}} = {

(∅, {a}), �����XXXXX({a}, {a}) , ({b}, {a, b}), (((((((hhhhhhh({a, b}, {a, b}) ,
({c}, {a, c}), (((((((hhhhhhh({a, c}), {a, c}) , ({b, c},Ω), ���XXX(Ω,Ω)

}

• E2 = {(X,Y) ∈ 2Ω × 2Ω/ Y = X ∪ {b}} = {

(∅, {b}), ({a}, {a, b}), �����XXXXX({b}, {b}) , (((((((hhhhhhh({a, b}, {a, b}) ,
({c}, {b, c}), ({a, c}),Ω), (((((((hhhhhhh({b, c}, {b, c}) , ���XXX(Ω,Ω)

}

• E3 = {(X,Y) ∈ 2Ω × 2Ω/ Y = X ∪ {c}} = {

(∅, {c}), ({a}, {a, c}), ({b}, {b, c}), ({a, b},Ω),

�����XXXXX({c}, {c}) , (((((((hhhhhhh({a, c}), {a, c}) , (((((((hhhhhhh({b, c}, {b, c}) , ���XXX(Ω,Ω)

}

Fig. 3.1 illustrates this sequence. Check that, after execution of ((Hi)i∈J1,nK, f,+), each element
y of 2Ω is associated with the sum

∑
x⊆y f(x). For instance, let us take a look at Ω. Initially,

each element of 2Ω is associated with its value through f . Then, at step 1, we can see that the
value on Ω is summed with f({b, c}). At step 2, it is summed with h1({a, c}), which is equal to
f({c})+f({a, c}), following step 1. Finally, at step 3, it is summed with h2({a, b}), which is equal
to h1({a})+h1({a, b}) following step 2, which is itself equal to f(∅)+f({a})+f({b})+f({a, b}),
following step 1. Gathering all these terms, we get that h3(Ω) = f(Ω) + f({b, c}) + f({c}) +
f({a, c}) + f(∅) + f({a}) + f({b}) + f({a, b}).

62

∅ {a} {b} {a, b} {c} {a, c} {b, c} Ω

• • • • • • • •
1 : X = Y ∪ {a}

• • • • • • • •
2 : X = Y ∪ {b}

• • • • • • • •
3 : X = Y ∪ {c}

• • • • • • • •

Figure 3.2: Illustration representing the paths generated by the arrows contained in the sequence
(Hi)i∈J1,3K, where Hi = (2Ω, Ei) and Ei = {(X,Y) ∈ 2Ω × 2Ω/ X = Y ∪ {ωi}} and Ω = {a, b, c}.
This sequence computes the same zeta transformations as G⊃ = (2Ω, E⊃), where E⊃ = {(X,Y) ∈
2Ω × 2Ω / X ⊃ Y }.

Proposition 3.2.3.2. The dual of this particular sequence in (2Ω,⊇) is (Hi)i∈J1,nK, where
Hi = (2Ω, Ei) and:

Ei = {(X,Y) ∈ 2Ω × 2Ω/ X = Y ∪ {ωi}}.

This sequence computes the same zeta transformations as G⊃ = (2Ω, E⊃), where E⊃ =
{(X,Y) ∈ 2Ω × 2Ω / X ⊃ Y }.

Example 3.2.3.2. Fig. 3.2 illustrates the dual sequence for zeta transforms in (2Ω,⊇) and
Ω = {a, b, c}.

Remark. These two sequences of graphs are the foundation of the Fast Möbius Transform
(FMT) algorithms. Their execution is O(n.2n) in time and O(2n) in space. As we can see, the
FMT presented here proposes two transformations ((Hi)i∈J1,nK, f,+) that computes the same
transformation as respectively (G⊂, f,+) and (G⊃, f,+) for any function f : 2Ω → R. The
authors proved them to be the optimal transformations for any set Ω, i.e. the one that uses
the fewest arrows, independently of the function f to be considered. This means that they do
not take into account the neutral values of f for the operator +, i.e. where f evaluates to 0,
contrary to our approach. This is why our method is able to feature a lower complexity than
this optimal FMT.

More generally, Theorem 3 of [43] defines a necessary and sufficient condition to verify that a
transformation ((Hi)i∈J1,nK, f,+) computes (ignoring identity arrows) the same transformation
as (G<, f,+). It is stated in our terms as follows:

Theorem 3.2.3.1. Let (Hi)i∈J1,nK be a sequence of directed acyclic graphs Hi = (P,Ei). Let us
pose Ai = Ei ∪ IP . The transformation ((Hi)i∈J1,nK, f,+) computes (ignoring identity arrows)
the same transformation as (G<, f,+) if and only if each set of arrows satisfies Ei ⊆ E≤ and
every arrow e ∈ E≤ can be decomposed as a unique path (e1, e2, . . . , en) ∈ A1 × A2 × · · · × An,
where the tail of e1 is the tail of e and the head of en is the head of e. Recall that a path is a
sequence of arrows in which ∀i ∈ J1, n− 1K, the head of ei is the tail of ei+1.

Example 3.2.3.3. Let us prove Proposition 3.2.3.1. We had Ω = {ω1, ω2, . . . , ωn}. The
sequence of graphs (Hi)i∈J1,nK computes the same zeta transformations as G⊂ = (2Ω, E⊂),
where E⊂ = {(X,Y) ∈ 2Ω × 2Ω / X ⊂ Y } if:

Ei = {(X,Y) ∈ 2Ω × 2Ω/ Y = X ∪ {ωi}},

where i ∈ {1, . . . , n} and Hi = (2Ω, Ei).

Proof. Obviously, for any i ∈ J1, nK, we have Ei ⊆ E⊆. In addition, each set X ⊆ Ω is
composed by definition of at most n elements from Ω. Thus, it is possible to reach in at most
n steps from X any set Y ⊆ Ω such that X ⊆ Y with identity arrows and arrows where the

63

head is just the tail with exactly one other element from Ω, i.e. with identity arrows or arrows
of (Hi)i∈J1,nK. Moreover, since each step corresponds to a distinct element from Ω, there is
exactly one path from X to Y : at each step corresponding to the elements in Y \X, follow the
arrow that adds an element to the set reached in the previous step. Only identity arrows can
be followed in the steps corresponding to the elements in X ∩ Y . Otherwise, there would be
an element missing or in excess relatively to Y at the end of step n, which means that Y could
not be reached. Therefore, according to Theorem 3.2.3.1, the transformation ((Hi)i∈J1,nK, f,+)
computes the same transformation as (G⊂, f,+) for any function f : 2Ω → R. ■

In addition, for a sequence of graphs computing zeta transforms in (P,≤), reversing its paths
yields a sequence of graphs computing zeta transforms in (P,≥). Hence Proposition 3.2.3.2.

3.2.4 Sequence of graphs and computation of the Möbius transform

Now, consider that we want to find a sequence of graphs that undoes the previous computation.
We want to transform g into f , i.e. the Möbius transform of g in (P,≤). For this, notice that
for any step i in the transformation ((Hi)i∈J1,nK, f,+), we have for each node y ∈ P ,

hi(y) = hi−1(y) +
∑

(x,y)∈Ei\IP

hi−1(x) ⇔ hi−1(y) = hi(y)−
∑

(x,y)∈Ei\IP

hi−1(x).

So, as long as we know all hi−1(x) for all arrows (x, y) ∈ Ei\IP at each step i and for all y ∈ P ,
we can simply reverse the order of the sequence (Hi)i∈J1,nK and use the operator - instead of +. If
this is verified, then ((Hn−i+1)i∈J1,nK, g,−) computes the Möbius transform of g in (P,≤). This
condition can be translated as follows: for every arrow (x, y) ∈ Ei\IP , we have hi(x) = hi−1(x).
This condition is equivalent to stating that for every arrow (x, y) ∈ Ei\IP , there is no arrow
(w, x) in Ei\IP .

Theorem 3.2.4.1. Let (Hi)i∈J1,nK be a sequence of directed acyclic graphs Hi = (P,Ei). Let hn

be the function resulting from the transformation ((Hi)i∈J1,nK, f,+), ignoring identity arrows. If
for every arrow (x, y) ∈ Ei\IP , there is no arrow (w, x) in Ei\IP , then ((Hn−i+1)i∈J1,nK, hn,−)
yields the initial function f .

Thus, if ((Hi)i∈J1,nK, f,+) computes the zeta transform g of f in (P,≤) and Theorem 3.2.4.1
is satisfied, then ((Hn−i+1)i∈J1,nK, g,−) computes the Möbius transform f of g in (P,≤).

Application to the powerset lattice 2Ω (FMT) Consider again the sequence (Hi)i∈J1,nK,
from the application of section 3.2.3.1, that computes the zeta transform of f in (2Ω,⊆). If
there is an arrow (X,Y) ∈ Ei\I2Ω , then ωi ̸∈ X. This means that there is no set W in 2Ω

such that W ∪ {ωi} = X, and so no arrow (W,X) in Ei\I2Ω . Thus, according to Theorem
3.2.4.1, ((Hn−i+1)i∈J1,nK, hn,−) computes the Möbius transformation of ((Hi)i∈J1,nK, f,+), i.e.
the function f . Furthermore, given that Ω is a set and that each graph Hi concerns an element
ωi, independently from the others, any indexing (order) in the sequence (Hi)i∈J1,nK computes
the zeta transformation. This implies that any order in ((Hn−i+1)i∈J1,nK, hn,−) computes the
Möbius transformation of ((Hi)i∈J1,nK, f,+). In particular, ((Hi)i∈J1,nK, hn,−) computes the
same transformation as ((Hn−i+1)i∈J1,nK, hn,−).

Example 3.2.4.1. Let us say that Ω = {a, b, c}. We want to compute the Möbius transform
f of g in (2Ω,⊆). Each arrow set Ei has already been computed in Example 3.2.3.1. Fig. 3.1
illustrates any transformation based on (Hi)i∈J1,nK, including ((Hi)i∈J1,nK, hn,−). Check that,
after execution of ((Hi)i∈J1,nK, hn,−), each element y of 2Ω is associated with f(y). For instance,
let us take a look again at Ω. Initially, each element of 2Ω is associated with its value through
g. Then, at step 1, we can see that to the value on Ω is subtracted g({b, c}). At step 2, to h1(Ω)

64

is subtracted h1({a, c}), which is equal to g({a, c})− g({c}), following step 1. Finally, at step 3,
to h2(Ω) is subtracted h2({a, b}), which is equal to h1({a, b})− h1({a}) following step 2, which
is itself equal to g({a, b})− g({b})− (g({a})− g(∅)), following step 1. Gathering all these terms,
we get that

h3(Ω) = g(Ω)− g({b, c})− [g({a, c})− g({c})]− [g({a, b})− g({b})− [g({a})− g(∅)]]
= g(Ω)− g({b, c})− g({a, c}) + g({c})− g({a, b}) + g({b}) + g({a})− g(∅)

=
∑
X⊆Ω

g(x).(−1)|Ω|−|X|.

As recalled in [43], the function that associates to each couple (X,Y) ∈ 2Ω × 2Ω the value
(−1)|Y |−|X| is the Möbius function µ in (2Ω,⊆). So, according to Eq. 3.2, we have h3(Ω) = f(Ω).

3.2.5 Order theory

Let (P,≤) be a set partially ordered by the relation ≤.

Meet / join Let S be a subset of P . If it is unique, the greatest element of P that is less
than all the elements of S is called the meet (or infimum) of S. It is noted

∧
S. If S = {x, y},

we may also note it with the binary operator ∧ such that x∧y. If it is unique, the least element
of P that is greater than all the elements of S is called the join (or supremum) of S. It is noted∨
S. If S = {x, y}, we may also note it with the binary operator ∨ such that x ∨ y.

Example 3.2.5.1. In (2Ω,⊆), the meet operator ∧ is the intersection operator ∩, while the
join operator ∨ is the union operator ∪.

Lattice / semi-lattice If any non-empty subset of P has a join, we say that P is an upper
semilattice. If any non-empty subset of P has a meet, we say that P is a lower semilattice.
When P is both, we say that P is a lattice.

Example 3.2.5.2. In (2Ω,⊆), any non-empty subset S has an intersection and a union in 2Ω.
They respectively represent the common elements of the sets in S and the cumulative elements
of all the sets in S. Thus, 2Ω is a lattice.

Irreducible elements In any partially ordered set, there are bottom elements such that they
cannot be described as the join of two lesser elements. Such irreducible elements are called the
join-irreducible elements of P if they are not equal to the global minimum of P . We will note
∨I(P) the set of all join-irreducible elements of P . Since none of them is

∧
P , this means that

the join of any two join-irreducible elements yields a non-join-irreducible element of P . In fact,
if P is an upper semilattice (or a lattice), it is known that the join of all possible non-empty
subset of ∨I(P) yields all elements of P , except

∧
P . Formally, we write that all join-irreducible

element i verifies i ̸=
∧
P and for all elements x, y ∈ P , if x < i and y < i, then x ∨ y < i.

Dually, in any partially ordered set, there are top elements such that they cannot be described
as the meet of two greater elements. Such irreducible elements are called the meet-irreducible
elements of P if they are not equal to the global maximum of P . We will note ∧I(P) the set
of all meet-irreducible elements of P . Since none of them is

∨
P , this means that the meet of

any two meet-irreducible elements yields a non-meet-irreducible element of P . In fact, if P is
a lower semilattice (or a lattice), it is known that the meet of all possible non-empty subset of
∧I(P) yields all elements of P , except

∨
P . Formally, we write that all meet-irreducible element

i verifies i ̸=
∨
P and for all elements x, y ∈ P , if x > i and y > i, then x ∧ y > i.

65

Example 3.2.5.3. In (2Ω,⊆), the join-irreducible elements are the singletons {ω}, where ω ∈ Ω.
The meet-irreducible elements are their complement {ω} = Ω\{ω}, where ω ∈ Ω.

Distributive lattice A distributive lattice L is a lattice that satisfies the distributive law:

∀x, y, z ∈ L, (x ∧ y) ∨ (x ∧ z) = x ∧ (y ∨ z) (3.3)

Since (x ∧ z) ∨ z = z, this condition is equivalent to:

∀x, y, z ∈ L, (z ∨ y) ∧ (z ∨ x) = z ∨ (y ∧ x) (3.4)

Example 3.2.5.4. In the powerset lattice 2Ω, it holds for any sets A,B,C ∈ 2Ω that (A∩B)∪
(A ∩ C) = A ∩ (B ∪ C). Thus, the lattice 2Ω is a distributive lattice.

Sublattice A sublattice S is simply a subset of a lattice L that is itself a lattice, with the
same meet and join operations as L. This means that for any two elements x, y ∈ S, we have
both x ∨ y ∈ S and x ∧ y ∈ S, where ∨ and ∧ are the join and meet operators of L.

Upset / down set An upset (or upward closed set) S is a subset of P such that all elements in
P greater than at least one element of S is in S. The upper closure of an element x ∈ P is noted
↑ x or x↑P (when the encompassing set has to be specified). It is equal to {y ∈ P / x ≤ y }.

Dually, a down set (or downward closed set) S is a subset of P such that all elements in P
less than at least one element of S is in S. The lower closure of an element x ∈ P is noted ↓ x
or x↓P (when the encompassing set has to be specified). It is equal to {y ∈ P / x ≥ y }.

3.2.6 Support elements and focal points

Let f : P → R.

Support of a function in P

The support supp(f) of a function f : P → R is defined as supp(f) = {x ∈ P / f(x) ̸= 0}.

Example 3.2.6.1. In DST, the set containing the focal sets of a mass function m is supp(m).

Focal points

We note ∨supp(f) the smallest join-closed subset of P containing supp(f), i.e.:

∨supp(f) =
{∨

S / S ⊆ supp(f), S ̸= ∅
}

We note ∧supp(f) the smallest meet-closed subset of P containing supp(f), i.e.:

∧supp(f) =
{∧

S / S ⊆ supp(f), S ̸= ∅
}

The set containing the focal points F̊ of a mass function m from [42] for the conjunctive weight
function is ∧supp(m). For the disjunctive weight function, we use their dual focal points, defined
by ∨supp(m).

It has been proven in [42] that the image of 2Ω through the conjunctive weight function can be
computed without redundancies by only considering the focal points ∧supp(m) in the definition
of the multiplicative Möbius transform of the commonality function. The image of all set in

66

2Ω\∧supp(m) through the conjunctive weight function is 1. In the same way, the image of any
set in 2Ω\∧supp(m) through the commonality function is only a duplicate of the image of a
focal point in ∧supp(m). Its image can be recovered by searching for its smallest focal point
superset in ∧supp(m). The same can be stated for the disjunctive weight function regarding the
implicability function and ∨supp(m).

In fact, as generalized in [52], for any function f : P → R, its focal points ∧supp(f) are
sufficient to define its zeta and Möbius transforms in (P,≥), and ∨supp(f) is sufficient to define
its zeta and Möbius transforms in (P,≤).

However, considering the case where P is a finite lattice, naive algorithms that only consider
osupp(f), where o ∈ {∨,∧} have upper bound complexities in O(|osupp(f)|2), which may be
worse than the optimal complexity O(|∨I(P)|.|P |) of a procedure that considers the whole lattice
P . In this paper, we propose computing schemes for g(S), where osupp(f) ⊆ S ⊆ P and g is the
zeta transform of f in (P,≤), with complexities always less than O(|∨I(P)|.|P |), provided that
P is a finite distributive lattice. We also provide schemes for computing the Möbius transform
f(S) of g in (P,≤).

3.3 Our Efficient Möbius Transformations

In this section, we consider a function f : P → R where P is a finite distributive lattice
(e.g. the powerset lattice 2Ω). We present here the sequences of graphs that can be exploited
to compute our so-called Efficient Möbius Transformations. Theorem 3.3.2.1 describes a way
of computing the zeta and Möbius transforms of a function based on the smallest sublattice
Lsupp(f) of P containing both ∧supp(f) and ∨supp(f), which is defined in Proposition 3.3.1.3.
Theorem 3.3.2.2 goes beyond this optimization by computing these transforms based only on
osupp(f), where o ∈ {∨,∧}. Nevertheless, this second approach requires the direct computation
of osupp(f), which has an upper bound complexity of O(|supp(f)|.|osupp(f)|), which may be
more than O(|∨I(P)|.|P |) if |supp(f)| ≫ |∨I(P)|.

3.3.1 Preliminary results

In this subsection, we provide some propositions that are useful for proving our main results
(presented in the next subsection).

Lemma 3.3.1.1 (Safe join). Let us consider a finite distributive lattice L. For all join-
irreducible element i ∈ ∨I(L) and for all elements x, y ∈ L that are not greater than or equal to
i, i.e. i ̸≤ x and i ̸≤ y, we have that their join is not greater or equal to i either, i.e. i ̸≤ x ∨ y.

Proof. By definition of a join-irreducible element, we know that ∀i ∈ ∨I(L) and for all
a, b ∈ L, if a < i and b < i, then a ∨ b < i. Moreover, for all x, y ∈ L such that i ̸≤ x and i ̸≤ y,
we have equivalently i ∧ x < i and i ∧ y < i. Thus, we get that (i ∧ x) ∨ (i ∧ y) < i. Since L
satisfies the distributive law Eq. (3.3), this implies that (i∧ x)∨ (i∧ y) = i∧ (x∨ y) < i, which
means that i ̸≤ x ∨ y. ■

Lemma 3.3.1.2 (Safe meet). Let us consider a finite distributive lattice L. For all meet-
irreducible element i ∈ ∧I(L) and for all elements x, y ∈ L that are not less than or equal to i,
i.e. i ̸≥ x and i ̸≥ y, we have that their meet is not less or equal to i either, i.e. i ̸≥ x ∧ y.

Proof. By definition of a meet-irreducible element, we know that ∀i ∈ ∧I(L) and for all
a, b ∈ L, if a > i and b > i, then a ∧ b > i. Moreover, for all x, y ∈ L such that i ̸≥ x and i ̸≥ y,
we have equivalently i ∨ x > i and i ∨ y > i. Thus, we get that (i ∨ x) ∧ (i ∨ y) > i. Since L
satisfies the distributive law Eq. (3.4), this implies that (i∨ x)∧ (i∨ y) = i∨ (x∧ y) < i, which
means that i ̸≥ x ∨ y. ■

67

Proposition 3.3.1.1 (Iota elements of a subset of P). For any subset S ⊆ P , we note ι(S)
the set containing the join-irreducible elements of the smallest sublattice LS of P containing S,
i.e. ι(S) = ∨I(LS). These so-called iota elements of S can be obtained through the following
equality:

ι(S) =
{∧

i↑S / i ∈ ∨I(P), i↑S ̸= ∅
}
,

where i↑S is the upper closure of i in S, i.e. {s ∈ S / i ≤ s}.

Proof. See Appendix B.1. ■

Proposition 3.3.1.2 (Dual iota elements of a subset of P). Similarly, for any subset S ⊆ P ,
we note ι(S) the set containing the meet-irreducible elements of the smallest sublattice LS of
P containing S, i.e. ι(S) = ∧I(LS). These so-called dual iota elements of S can be obtained
through the following equality:

ι(S) =
{∨

i↓S / i ∈ ∧I(P), i↓S ̸= ∅
}
,

where i↓S is the lower closure of i in S, i.e. {s ∈ S / i ≥ s}.

Proof. Analog to the proof of Proposition 3.3.1.1, exploiting the dual definition of the
distributive law in a lattice, i.e. Eq. (3.4). ■

Proposition 3.3.1.3 (Lattice support). The smallest sublattice of P containing both ∧supp(f)
and ∨supp(f), noted Lsupp(f), can be defined as:

Lsupp(f) =
{∨

X / X ⊆ ι(supp(f)), X ̸= ∅
}
∪
{∧

supp(f)
}

=
{∧

X / X ⊆ ι(supp(f)), X ̸= ∅
}
∪
{∨

supp(f)
}
.

More specifically, ∨supp(f) is contained in the upper closure supp(f)
↑Lsupp(f)

of supp(f) in
Lsupp(f):

supp(f)
↑Lsupp(f)

= {x ∈ Lsupp(f) / ∃s ∈ supp(f), s ≤ x},

and ∧supp(f) is contained in the lower closure supp(f)
↓Lsupp(f)

of supp(f) in Lsupp(f):

supp(f)
↓Lsupp(f)

= {x ∈ Lsupp(f) / ∃s ∈ supp(f), s ≥ x}.

These sets can be computed in less than respectively O(|ι(supp(f))|.|supp(f)↑
Lsupp(f)|) and

O(|ι(supp(f))|.|supp(f)↓
Lsupp(f)|), which is at most O(|∨I(P)|.|P |).

Proof. The proof is immediate here, considering Proposition 3.3.1.1 and its proof, as well as
Proposition 3.3.1.2. In addition, since ∧supp(f) only contains the meet of elements of supp(f),
all element of ∧supp(f) is less than at least one element of supp(f). Similarly, since ∨supp(f)
only contains the join of elements of supp(f), all element of ∨supp(f) is greater than at least

one element of supp(f). Hence supp(f)
↑Lsupp(f)

and supp(f)
↓Lsupp(f)

. ■

As pointed out in [63], a special ordering of the join-irreducible elements of a lattice when
using the Fast Zeta Transform [62] leads to the optimal computation of its zeta and Möbius
transforms. Here, we use this ordering to build our EMT for finite distributive lattices in a way
similar to [63] but without the need to check the equality of the decompositions into the first j
join-irreducible elements at each step.

68

Corollary 3.3.1.1 (Join-irreducible ordering). Let us consider a finite distributive lattice (L,≤)
and let its join-irreducible elements ∨I(L) be ordered such that ∀ik, il ∈ ∨I(L), k < l⇒ ik ̸≥ il.
If L is a graded lattice (i.e. a lattice equipped with a rank function ρ : L → N), then ρ(i1) ≤
ρ(i2) ≤ · · · ≤ ρ(i|∨I(L)|) implies this ordering. We note ∨I(L)k = {i1, . . . , ik−1, ik}.

For all element ik ∈ ∨I(L), we have ik ̸≤
∨ ∨I(L)k−1.

Proof. Since the join-irreducible elements are ordered such that ∀ik, il ∈ ∨I(L), k < l ⇒
ik ̸≥ il, it is trivial to see that for any il ∈ ∨I(L) and ik ∈ ∨I(L)l−1, we have ik ̸≥ il. Then,
using Lemma 3.3.1.1 by recurrence, it is easy to get that il ̸≤

∨ ∨I(L)l−1. ■

Example 3.3.1.1. For example, in DST we work with P = 2Ω, in which the rank function is
the cardinality, i.e. for all A ∈ P , ρ(A) = |A|. So, with (L,⊆) a subset lattice of (2Ω,⊆), the
ordering required in Corollary 3.3.1.1 simply translates to sorting the join-irreducible elements
of L from the smallest set to the largest set. Thus, sorting ∨I(L) = {i1, i2, · · · , in} such that
|i1| ≤ |i2| ≤ · · · ≤ |in|, Corollary 3.3.1.1 tells us that for any k ∈ J2, nK, we have ik ̸⊆

⋃ ∨I(L)k−1,
where ∨I(L)k = {i1, . . . , ik−1, ik}.

Corollary 3.3.1.2 (Meet-irreducible ordering). Let us consider a finite distributive lattice (L,≤)
and let its meet-irreducible elements ∧I(L) be ordered such that ∀ik, il ∈ ∨I(L), k < l⇒ ik ̸≤ il.
If L is a graded lattice (i.e. a lattice equipped with a rank function ρ : L → N), then ρ(i1) ≥
ρ(i2) ≥ · · · ≥ ρ(i|∧I(L)|) implies this ordering. We note ∧I(L)k = {i1, . . . , ik−1, ik}.

For all element ik ∈ ∧I(L), we have ik ̸≥
∧ ∧I(L)k−1.

Proof. Since the meet-irreducible elements are ordered such that ∀ik, il ∈ ∧I(L), k < l ⇒
ik ̸≤ il, it is trivial to see that for any il ∈ ∧I(L) and ik ∈ ∧I(L)l−1, we have ik ̸≤ il. Then,
using Lemma 3.3.1.2 by recurrence, it is easy to get that il ̸≥

∧ ∧I(L)l−1. ■

Example 3.3.1.2. Taking back Example 3.3.1.1, the ordering required in this Corollary 3.3.1.2
simply translates to sorting the meet-irreducible elements of L from the largest set to the smallest
set. Thus, sorting ∧I(L) = {i1, i2, · · · , in} such that |i1| ≥ |i2| ≥ · · · ≥ |in|, Corollary 3.3.1.2
tells us that for any k ∈ J2, nK, we have ik ̸⊇

⋂ ∧I(L)k−1, where
∧I(L)k = {i1, . . . , ik−1, ik}.

3.3.2 Main results

In this subsection, we present our two types of transformations computing the zeta and Möbius
transforms of a function f : P → R. The first one corresponds to Theorem 3.3.2.1 and its
corollaries and is based on a sublattice L ⊆ P , where L contains the lattice support of f , i.e.
Lsupp(f) ⊆ L. The second one corresponds to Theorem 3.3.2.2 and its corollary and is based
on any lower subsemilattice of P containing ∧supp(f). Its dual is presented in Corollary 3.3.2.7
and its corollary and is based on any upper subsemilattice of P containing ∨supp(f).

Theorem 3.3.2.1 (Efficient Möbius Transformation in a distributive lattice). Let us consider
a finite distributive lattice L (such as Lsupp(f)) and let its join-irreducible elements ∨I(L) =
{i1, i2, · · · , in} be ordered such that ∀ik, il ∈ ∨I(L), k < l⇒ ik ̸≥ il.

Consider the sequence (Hk)k∈J1,nK, where Hk = (L,Ek) and:

Ek =
{
(x, y) ∈ L2 / y = x ∨ in+1−k

}
.

This sequence computes the same zeta transformations as G< = (L,E<), where E< = {(X,Y) ∈
L2 / X < Y }. This sequence is illustrated in Fig. 3.3. The execution of any transformation
based on this sequence is O(n.|L|) in time and O(|L|) in space.

Proof. See Appendix B.2. ■

69

∅ {a} {d} {a,d} {c,d,f} {a,c,d,f} Ω

• • • • • • •
1 : Y = X ∪ Ω

• • • • • • •
2 : Y = X ∪ {c, d, f}

• • • • • • •
3 : Y = X ∪ {d}

• • • • • • •
4 : Y = X ∪ {a}

• • • • • • •

Figure 3.3: Illustration representing the paths generated by the arrows contained in the se-
quence (Hk)k∈J1,4K, where Hk = (L,Ek) and Ek = {(X,Y) ∈ L2 / Y = X ∪ i5−k}
and L = {∅, {a}, {d}, {a, d}, {c, d, f}, {a, c, d, f},Ω} and Ω = {a, b, c, d, e, f} and (ik)k∈J1,4K =
({a}, {d}, {c, d, f},Ω). This sequence computes the same zeta transformations as G⊂ = (L,E⊂), where
E⊂ = {(X,Y) ∈ L2 / X ⊂ Y }.

∅ {a} {d} {a,d} {c,d,f} {a,c,d,f} Ω

• • • • • • •

1 : Y = X ∪ {a}

• • • • • • •

2 : Y = X ∪ {d}

• • • • • • •

3 : Y = X ∪ {c, d, f}

• • • • • • •

4 : Y = X ∪ Ω

• • • • • • •

-1 -1 -1

-1 -1

-1 -1-1 -1

-1 -1 -1 -1 -1 -1

Figure 3.4: Illustration representing the paths generated by the arrows contained in the se-
quence (Hk)k∈J1,4K, where Hk = (L,Ek) and Ek = {(X,Y) ∈ L2 / Y = X ∪ ik}
and L = {∅, {a}, {d}, {a, d}, {c, d, f}, {a, c, d, f},Ω} and Ω = {a, b, c, d, e, f} and (ik)k∈J1,4K =
({a}, {d}, {c, d, f},Ω). This sequence computes the same Möbius transformations as G⊂ = (L,E⊂),
where E⊂ = {(X,Y) ∈ L2 / X ⊂ Y }. The “-1” labels emphasize the intended use of the operator −
with this sequence.

Corollary 3.3.2.1. It can be shown similarly that the sequence (Hk)k∈J1,nK computes the same
zeta transforms as the sequence of Theorem 3.3.2.1, where Hk = (L,Ek) and:

Ek =
{
(x, y) ∈ L2 / x = y ∧ ik

}
.

with the meet-irreducible elements ∧I(L) = {i1, i2, · · · , in} ordered such that ∀ik, il ∈ ∧I(L),
k < l ⇒ ik ̸≤ il, i.e. in reverse order compared to the join-irreducible elements of Theorem
3.3.2.1.

Corollary 3.3.2.2. Consider the sequence (Hk)k∈J1,nK, where Hk = (L,Ek) and:

Ek =
{
(x, y) ∈ L2 / y = x ∨ ik

}
.

This sequence computes the same Möbius transformations as G< = (L,E<), where E< =
{(X,Y) ∈ L2 / X < Y }. This sequence is illustrated in Fig. 3.4 and leads to the same
complexities as the one presented in Theorem 3.3.2.1.

Proof. For every arrow (x, y) ∈ Ek, if ik ̸≤ x, then there is an arrow such that y = x∨ ik ̸= x.
However, there can be no arrow (w, x) ∈ Ek since x cannot be equal to w ∨ ik. Otherwise, if

70

∅ {a} {d} {a,d} {c,d,f} {a,c,d,f} Ω

• • • • • • •
1 : X = Y ∪ {a}

• • • • • • •
2 : X = Y ∪ {d}

• • • • • • •
3 : X = Y ∪ {c, d, f}

• • • • • • •
4 : X = Y ∪ Ω

• • • • • • •

Figure 3.5: Illustration representing the paths generated by the arrows contained in the se-
quence (Hk)k∈J1,4K, where Hk = (L,Ek) and Ek = {(X,Y) ∈ L2 / X = Y ∪ ik}
and L = {∅, {a}, {d}, {a, d}, {c, d, f}, {a, c, d, f},Ω} and Ω = {a, b, c, d, e, f} and (ik)k∈J1,4K =
({a}, {d}, {c, d, f},Ω). This sequence computes the same zeta transformations as G⊃ = (L,E⊃), where
E⊃ = {(X,Y) ∈ L2 / X ⊃ Y }.

ik ≤ x, then y = x∨ik = x, i.e. (x, y) is an identity arrow. Thus, for every arrow (x, y) ∈ Ek\IP ,
there is no arrow (w, x) in Ek\IP , meaning that Theorem 3.2.4.1 is satisfied. The sequence
(Hn−k+1)k∈J1,nK computes the same Möbius transformations as G<. ■

Corollary 3.3.2.3. Again, it can be shown similarly that the sequence (Hk)k∈J1,nK computes
the same Möbius transforms as the sequence of Corollary 3.3.2.2, where Hk = (L,Ek) and:

Ek =
{
(x, y) ∈ L2 / x = y ∧ in+1−k

}
.

with the meet-irreducible elements ∧I(L) = {i1, i2, · · · , in} ordered such that ∀ik, il ∈ ∧I(L),
k < l ⇒ ik ̸≤ il, i.e. in reverse order compared to the join-irreducible elements of Corollary
3.3.2.2.

Corollary 3.3.2.4. Dually, consider the sequence (Hk)k∈J1,nK, where Hk = (L,Ek) and:

Ek =
{
(x, y) ∈ L2 / x = y ∨ ik

}
.

This sequence computes the same zeta transformations as G> = (L,E>), where E> = {(X,Y) ∈
L2 / X > Y }. This sequence is illustrated in Fig. 3.5 and leads to the same complexities as its
dual.

Corollary 3.3.2.5. Consider the sequence (Hk)k∈J1,nK, where Hk = (L,Ek) and:

Ek =
{
(x, y) ∈ L2 / x = y ∨ in+1−k

}
.

This sequence computes the same Möbius transformations as G> = (L,E>), where E> =
{(X,Y) ∈ L2 / X > Y }. This sequence is illustrated in Fig. 3.6 and leads to the same
complexities as the one presented in Theorem 3.3.2.1.

The procedures exploiting the sequences of graphs described in Theorem 3.3.2.1 and its corol-
laries to compute the zeta and Möbius transforms of a function f on P is always less than
O(|∨I(P)|.|P |). Their upper bound complexity for the distributive lattice L = Lsupp(f) is
O(|∨I(L)|.|L|), which is actually the optimal one for a lattice.

Yet, we can reduce this complexity even further if we have ∧supp(f) or ∨supp(f). This is
the motivation behind the sequence proposed in the following Theorem 3.3.2.2. As a matter
of fact, [62] proposed a meta-procedure producing an algorithm that computes the zeta and
Möbius transforms in an arbitrary intersection-closed family F of sets of 2Ω with a circuit of
size O(|Ω|.|F |). However, this meta-procedure is O(|Ω|.2|Ω|). Here, Theorem 3.3.2.2 provides a

71

∅ {a} {d} {a,d} {c,d,f} {a,c,d,f} Ω

• • • • • • •

1 : X = Y ∪ Ω

• • • • • • •

2 : X = Y ∪ {c, d, f}

• • • • • • •

3 : X = Y ∪ {d}

• • • • • • •

4 : X = Y ∪ {a}

• • • • • • •

-1 -1 -1

-1 -1

-1 -1-1 -1

-1 -1 -1 -1 -1 -1

Figure 3.6: Illustration representing the paths generated by the arrows contained in the se-
quence (Hk)k∈J1,4K, where Hk = (L,Ek) and Ek = {(X,Y) ∈ L2 / X = Y ∪ i5−k}
and L = {∅, {a}, {d}, {a, d}, {c, d, f}, {a, c, d, f},Ω} and Ω = {a, b, c, d, e, f} and (ik)k∈J1,4K =
({a}, {d}, {c, d, f},Ω). This sequence computes the same Möbius transformations as G⊃ = (L,E⊃),
where E⊃ = {(X,Y) ∈ L2 / X ⊃ Y }. The “-1” labels emphasize the intended use of the operator −
with this sequence.

sequence of graphs that leads to procedures that directly compute the zeta and Möbius trans-
forms in O(|Ω|.|F |.ϵ), where ϵ can be as low as 1. Besides, our method is far more general since
it applies to any meet-closed or join-closed subset of a finite distributive lattice. The intuition
behind it is that we can do the same computations as in Theorem 3.3.2.1, even in a subsemilat-
tice, simply by bridging gaps, from the smallest gap to the biggest to make sure that all nodes
are visited.

Theorem 3.3.2.2 (Efficient Möbius Transformation in a join-closed or meet-closed subset of
P). Let us consider a meet-closed subset M of P (such as ∧supp(f)). Also, let the iota elements
ι(M) = {i1, i2, · · · , in} be ordered such that ∀ik, il ∈ ι(M), k < l⇒ ik ̸≥ il.

Consider the sequence (Hk)k∈J1,nK, where Hk = (M,Ek) and:

Ek =
{
(x, y) ∈M2 / x =

∧
(y ∨ ik)

↑M and x ≤ y ∨
∨

ι(M)k

}
,

where ι(M)k = {i1, i2, . . . , ik}. This sequence computes the same zeta transformations as G> =
(M,E>), where E> = {(X,Y) ∈ M2 / X > Y }. This sequence is illustrated in Fig. 3.7. The
execution of any transformation based on this sequence is at most O(|ι(M)|.|M |) in space and
O(|ι(M)|.|M |.ϵ) in time, where ϵ represents the average number of operations required to “bridge
a gap”, i.e. to find the minimum of (y ∨ ik)

↑M .

Proof. See Appendix B.3 ■

Remark. This number ϵ is hard to evaluate beforehand since it depends on both the number
of “gaps to bridge” and the average number of elements that can be greater than some element.
If there is no gap, or if there is only one greater element, this ϵ can be as low as 1. Moreover,
the choice of data structures may greatly reduce this ϵ. For instance, if P = 2Ω, then dynamic
binary trees may be employed to avoid the consideration of elements that cannot be less than
some already found element in (y ∪ ik)

↑M , by cutting some branches.

Corollary 3.3.2.6. Consider the sequence (Hk)k∈J1,nK, where Hk = (M,Ek) and:

Ek =
{
(x, y) ∈M2 / x =

∧
(y ∨ in+1−k)

↑M and x ≤ y ∨
∨

ι(M)n+1−k

}
.

This sequence computes the same Möbius transformations as G> = (M,E>), where E> =

72

∅ {a} {b} {a,b} {c} {d} {b,c,d} Ω

• • • • • • • •

1 : X =
⋂
(Y ∪ {a})↑M and X ⊆ Y ∪ {a}

• • • • • • • •

2 : X =
⋂
(Y ∪ {b})↑M and X ⊆ Y ∪ {a, b}

• • • • • • • •

3 : X =
⋂
(Y ∪ {c})↑M and X ⊆ Y ∪ {a, b, c}

• • • • • • • •

4 : X =
⋂
(Y ∪ {d})↑M and X ⊆ Y ∪ {a, b, c, d}

• • • • • • • •

5 : X =
⋂
(Y ∪ Ω)↑M and X ⊆ Y ∪ Ω

• • • • • • • •

Figure 3.7: Illustration representing the paths generated by the arrows contained in the sequence
(Hk)k∈J1,5K, whereHk = (M,Ek) and Ek =

{
(X,Y) ∈ M2 / X =

⋂
(Y ∪ ik)

↑M and X ⊆ Y ∪
⋃

ι(M)k
}

and ι(M)k = {i1, i2, . . . , ik} and M = {∅, {a}, {b}, {a, b}, {c}, {d}, {b, c, d},Ω} and Ω = {a, b, c, d, e, f}
and (ik)k∈J1,5K = ({a}, {b}, {c}, {d},Ω). This sequence computes the same zeta transformations as
G⊃ = (M,E⊃), where E⊃ = {(X,Y) ∈ M2 / X ⊃ Y }. Actually, since there is no order between any
two iota elements of ι(M)\{Ω} in this example, the order chosen here is arbitrary. Any order would
compute the same zeta transformations as G⊃, as long as Ω is the last iota element to consider.

{(X,Y) ∈ M2 / X > Y }. This sequence is illustrated in Fig. 3.8 and leads to the same
complexities as the one presented in Theorem 3.3.2.2.

Proof. Analog to the proof of Corollary 3.3.2.2. ■

Corollary 3.3.2.7. Dually, let us consider a join-closed subset J of P (such as ∨supp(f)).
Also, let the dual iota elements ι(J) = {i1, i2, · · · , in} be ordered such that ∀ik, il ∈ ι(J), k <
l⇒ ik ̸≤ il, i.e. in reverse order compared to the iota elements of Theorem 3.3.2.2.

In the direct line of Corollary 3.3.2.1, consider the sequence (Hk)k∈J1,nK, where Hk = (J,Ek)
and:

Ek =

{
(x, y) ∈ J2 / x =

∨
(y ∧ ik)

↓J and x ≥ y ∧
∧

ι(J)k

}
,

where ι(J)k = {i1, i2, . . . , ik}. This sequence computes the same zeta transformations as G< =
(J,E<), where E< = {(X,Y) ∈ J2 / X < Y }. This sequence is illustrated in Fig. 3.9. The
execution of any transformation based on this sequence is at most O(|ι(J)|.|J |) in space and
O(|ι(J)|.|J |.ϵ) in time, where ϵ represents the average number of operations required to “bridge
a gap”, i.e. to find the maximum of (y ∧ ik)

↓M .

Corollary 3.3.2.8. Finally, in the direct line of Corollary 3.3.2.3, consider the sequence
(Hk)k∈J1,nK, where Hk = (J,Ek) and:

Ek =

{
(x, y) ∈ J2 / x =

∨
(y ∧ in+1−k)

↓J and x ≥ y ∧
∧

ι(J)n+1−k

}
.

This sequence computes the same Möbius transformations as G< = (J,E<), where E< =
{(X,Y) ∈ J2 / X < Y }. This sequence is illustrated in Fig. 3.10 and leads to the same
complexities as the one presented in Corollary 3.3.2.7.

73

∅ {a} {b} {a,b} {c} {d} {b,c,d} Ω

• • • • • • • •

1 : X =
⋂
(Y ∪ Ω)↑M and X ⊆ Y ∪ Ω

• • • • • • • •

2 : X =
⋂
(Y ∪ {d})↑M and X ⊆ Y ∪ {a, b, c, d}

• • • • • • • •

3 : X =
⋂
(Y ∪ {c})↑M and X ⊆ Y ∪ {a, b, c}

• • • • • • • •

4 : X =
⋂
(Y ∪ {b})↑M and X ⊆ Y ∪ {a, b}

• • • • • • • •

5 : X =
⋂
(Y ∪ {a})↑M and X ⊆ Y ∪ {a}

• • • • • • • •

-1 -1

-1 -1

-1 -1

-1 -1 -1

-1 -1 -1 -1-1 -1 -1

Figure 3.8: Illustration representing the paths generated by the arrows
contained in the sequence (Hk)k∈J1,5K, where Hk = (M,Ek) and Ek ={
(X,Y) ∈ M2 / X =

⋂
(Y ∪ i6−k)

↑M and X ⊆ Y ∪
⋃

ι(M)6−k

}
and ι(M)k = {i1, i2, . . . , ik}

and M = {∅, {a}, {b}, {a, b}, {c}, {d}, {b, c, d},Ω} and Ω = {a, b, c, d, e, f} and (ik)k∈J1,5K =
({a}, {b}, {c}, {d},Ω). This sequence computes the same Möbius transformations as G⊃ = (M,E⊃),
where E⊃ = {(X,Y) ∈ M2 / X ⊃ Y }. The “-1” labels emphasize the intended use of the operator −
with this sequence. Actually, since there is no order between any two iota elements of ι(M)\{Ω} in
this example, the order chosen in Fig. 3.7 is arbitrary. Thus, any order here would compute the same
Möbius transformations as G⊃, as long as Ω is the first iota element to consider.

3.4 Discussions

3.4.1 General usage

If |supp(f)| is of same order of magnitude as |∨I(P)| or lower, then we can directly compute
the focal points ∧supp(f) or ∨supp(f). Next, with ∧supp(f), we can compute Efficient Möbius
Transformations based on Theorem 3.3.2.2 to get the zeta or Möbius transform of any function
f in (P,≥).

Let us take the sequence (Hk)k∈J1,nK from Theorem 3.3.2.2, where Hk = (∧supp(f), Ek) and:

Ek =
{
(x, y) ∈ ∧supp(f)

2
/ x =

∧
(y ∨ ik)

↑∧supp(f) and x ≤ y ∨
∨

ι(∧supp(f))k

}
,

where ι(∧supp(f))k = {i1, i2, . . . , ik} such that ∀ik, il ∈ ι(∧supp(f)), k < l⇒ ik ̸≥ il.

Example 3.4.1.1. Consider the mass functionm and the commonality function q from Example
3.2.1.3. The transformation ((Hk)k∈J1,nK,m,+), where ∧supp(f) = ∧supp(m), computes the
commonality function q.

Example 3.4.1.2. Consider the mass functionm and the commonality function q from Example
3.2.2.3. The transformation ((Hn+1−k)k∈J1,nK, q,−), where ∧supp(f) = ∧supp(m), computes the
mass function m.

Example 3.4.1.3. Consider the conjunctive weight function w and the commonality func-
tion q from Example 3.2.1.4. The transformation ((Hk)k∈J1,nK, w

−1,×), where ∧supp(f) =
∧supp(w − 1), computes the commonality function q.

Example 3.4.1.4. Consider the conjunctive weight function w and the commonality func-
tion q from Example 3.2.2.4. The transformation ((Hn+1−k)k∈J1,nK, w

−1, /), where ∧supp(f) =
∧supp(w − 1), computes the conjunctive weight function w.

74

∅ {a,e,f} {c,d,e,f}{a,c,d,e,f}{a,b,c,e,f}{a,b,d,e,f}{b,c,d,e,f} Ω

• • • • • • • •

1 : X =
⋃
(Y ∩ {b, c, d, e, f})↓J and X ⊇ Y ∩ {b, c, d, e, f}

• • • • • • • •

2 : X =
⋃
(Y ∩ {a, c, d, e, f})↓J and X ⊇ Y ∩ {c, d, e, f}

• • • • • • • •

3 : X =
⋃
(Y ∩ {a, b, d, e, f})↓J and X ⊇ Y ∩ {d, e, f}

• • • • • • • •

4 : X =
⋃
(Y ∩ {a, b, c, e, f})↓J and X ⊇ Y ∩ {e, f}

• • • • • • • •

5 : X =
⋃
(Y ∩ ∅)↓J and X ⊇ Y ∩ ∅

• • • • • • • •

Figure 3.9: Illustration representing the paths generated by the arrows
contained in the sequence (Hk)k∈J1,5K, where Hk = (J,Ek) and Ek ={
(X,Y) ∈ J2 / X =

⋃
(Y ∩ ik)

↓J and X ⊇ Y ∩
⋂

ι(J)k
}

and ι(J)k = {i1, i2, . . . , ik} and J =
{∅, {a, e, f}, {c, d, e, f}, {a, c, d, e, f}, {a, b, c, e, f}, {a, b, d, e, f}, {b, c, d, e, f},Ω} and Ω = {a, b, c, d, e, f}
and (ik)k∈J1,5K = ({b, c, d, e, f}, {a, c, d, e, f}, {a, b, d, e, f}, {a, b, c, e, f}, ∅). This sequence computes the
same zeta transformations as G⊂ = (J,E⊂), where E⊂ = {(X,Y) ∈ J2 / X ⊂ Y }. Actually, since
there is no order between any two dual iota elements of ι(J)\{∅} in this example, the order chosen here
is arbitrary. Any order would compute the same zeta transformations as G⊂, as long as ∅ is the last
dual iota element to consider.

Let us now take the sequence (Hk)k∈J1,nK from Corollary 3.3.2.7, where Hk = (∨supp(f), Ek)
and:

Ek =
{
(x, y) ∈ ∨supp(f)

2
/ x =

∨
(y ∧ ik)

↓∨supp(f) and x ≥ y ∧
∧

ι(∨supp(f))k

}
,

where ι(∨supp(f))k = {i1, i2, . . . , ik} and such that ∀ik, il ∈ ι(∨supp(f)), k < l⇒ ik ̸≤ il.

Example 3.4.1.5. Consider the mass functionm and the implicability function b from Example
3.2.1.1. The transformation ((Hk)k∈J1,nK,m,+), where ∨supp(f) = ∨supp(m), computes the
implicability function b.

Example 3.4.1.6. Consider the mass functionm and the implicability function b from Example
3.2.2.1. The transformation ((Hn+1−k)k∈J1,nK, b,−), where ∨supp(f) = ∨supp(m), computes the
mass function m.

Example 3.4.1.7. Consider the disjunctive weight function v and the implicability func-
tion b from Example 3.2.1.2. The transformation ((Hk)k∈J1,nK, v

−1,×), where ∨supp(f) =
∨supp(v − 1), computes the implicability function b.

Example 3.4.1.8. Consider the disjunctive weight function v and the implicability function
b from Example 3.2.2.2. The transformation ((Hn+1−k)k∈J1,nK, v

−1, /), where ∨supp(f) =
∨supp(v − 1), computes the disjunctive weight function v.

These transformations can be computed in at most O(|∨I(P)|.|supp(f)| +
|I(supp(f))|.|osupp(f)|) operations, where I ∈ {ι, ι} and o ∈ {∧,∨}, which is at most
O(|∨I(P)|.|P |).

Otherwise, if |supp(f)| ≫ |∨I(P)|, then we can compute supp(f)
↑Lsupp(f)

or supp(f)
↓Lsupp(f)

from the lattice support of Proposition 3.3.1.3, and then compute Efficient Möbius Transfor-
mations based on Theorem 3.3.2.1. Doing so, computing the same transforms can be done in

75

∅ {a,e,f} {c,d,e,f}{a,c,d,e,f}{a,b,c,e,f}{a,b,d,e,f}{b,c,d,e,f} Ω

• • • • • • • •

1 : X =
⋃
(Y ∩ ∅)↓J and X ⊇ Y ∩ ∅

• • • • • • • •

2 : X =
⋃
(Y ∩ {a, b, c, e, f})↓J and X ⊇ Y ∩ {e, f}

• • • • • • • •

3 : X =
⋃
(Y ∩ {a, b, d, e, f})↓J and X ⊇ Y ∩ {d, e, f}

• • • • • • • •

4 : X =
⋃
(Y ∩ {a, c, d, e, f})↓J and X ⊇ Y ∩ {c, d, e, f}

• • • • • • • •

5 : X =
⋃
(Y ∩ {b, c, d, e, f})↓J and X ⊇ Y ∩ {b, c, d, e, f}

• • • • • • • •

-1 -1

-1-1

-1-1

-1-1 -1

-1-1 -1 -1-1 -1 -1

Figure 3.10: Illustration representing the paths generated by the ar-
rows contained in the sequence (Hk)k∈J1,5K, where Hk = (J,Ek) and Ek ={
(X,Y) ∈ J2 / X =

⋃
(Y ∩ i6−k)

↓J and X ⊇ Y ∩
⋂

ι(J)6−k

}
and ι(J)k = {i1, i2, . . . , ik} and J =

{∅, {a, e, f}, {c, d, e, f}, {a, c, d, e, f}, {a, b, c, e, f}, {a, b, d, e, f}, {b, c, d, e, f},Ω} and Ω = {a, b, c, d, e, f}
and (ik)k∈J1,5K = ({b, c, d, e, f}, {a, c, d, e, f}, {a, b, d, e, f}, {a, b, c, e, f}, ∅). This sequence computes
the same Möbius transformations as G⊂ = (J,E⊂), where E⊂ = {(X,Y) ∈ J2 / X ⊂ Y }. The “-1”
labels emphasize the intended use of the operator − with this sequence. Actually, since there is no
order between any two dual iota elements of ι(J)\{∅} in this example, the order chosen in Fig. 3.9 is
arbitrary. Thus, any order would compute the same Möbius transformations as G⊂, as long as ∅ is the
first dual iota element to consider.

at most O(|∨I(P)|.|supp(f)|+ |I(supp(f))|.|supp(f)A
Lsupp(f)|) operations, where I ∈ {ι, ι} and

A ∈ {↑, ↓}, which is at most O(|∨I(P)|.|P |).

Either way, it is always possible to compute zeta and Möbius transforms in a distributive
lattice in less than O(|∨I(P)|.|P |) in time and space.

3.4.2 Dempster-Shafer Theory

So, we can always compute most DST transformations (See Examples 3.4.1.1 to 3.4.1.8), wher-
ever the FMT applies, in less than O(|Ω|.2|Ω|) operations in the general case. The EMT are
always more efficient than the FMT.

Moreover, supp(f)
↓Lsupp(f)

can be optimized if Ω ∈ supp(f). Indeed, in this case, we have

supp(f)
↓Lsupp(f)

= Lsupp(f), while there may be a lot less elements in (supp(f)\{Ω})↓Lsupp(f).

If so, one can equivalently compute the down set (supp(f)\{Ω})↓Lsupp(f), execute an EMT with

Theorem 3.3.2.1, and then add the value on Ω to the value on all sets of (supp(f)\{Ω})↓Lsupp(f).

The same can be done with (supp(f)\{∅})↑Lsupp(f). This trick can be particularly useful in
the case of the conjunctive and disjunctive weight function, which require that supp(f) contains
respectively Ω and ∅.

Also, optimizations built for the FMT, such as the reduction of Ω to the core C or its optimal
coarsened version Ω′, are already encoded in the use of the function ι (see Example 3.4.2.1). On
the other hand, optimizations built for the evidence-based approach, such as approximations by
reduction of the number of focal sets, i.e. reducing the size of supp(f), can still greatly enhance
the EMT.

Finally, it was proposed in [43] to fuse two mass functions m1 and m2 using Demp-

76

ster’s rule by computing the corresponding commonality functions q1 and q2 in O(|Ω|.2|Ω|),
then computing q12 = q1.q2 in O(2|Ω|) and finally computing back the fused mass func-
tion m12 from q12 in O(|Ω|.2|Ω|). Here, we propose to compute the same detour but

only on the elements of supp(m12) ⊆ (supp(m1) ∪ supp(m2))
↓Lsupp(f). Indeed, no-

tice that supp(m12) ⊆ ∧(supp(m1) ∪ supp(m2)), which implies that supp(m12)
↓Lsupp(f) ⊆

(supp(m1) ∪ supp(m2))
↓Lsupp(f)

. Thus, noting L = (supp(m1) ∪ supp(m2))
↓Lsupp(f)

, we com-
pute the corresponding commonality functions q1 and q2 in O(|ι(L)|.|L|), then compute q12 =
q1.q2 in O(|L|) and finally compute back the fused mass function m12 from q12 in O(|ι(L)|.|L|),
where ι(L) = ι(supp(m1) ∪ supp(m2)).

Example 3.4.2.1 (Coarsening in the consonant case). Let supp(f) = {F1, F2, . . . , FK} such
that F1 ⊂ F2 ⊂ · · · ⊂ FK . A coarsening Ω′ of Ω is a mapping from disjoint groups of elements
of Ω to elements of Ω′. The set Ω′ can be seen as a partition of Ω. The goal of this coarsening
of Ω is to provide a reduced powerset 2Ω

′
. The best coarsening in this example would create as

much elements in Ω′ as there are elements in supp(f). Thus, the best coarsening would give us
a powerset of size 2|supp(f)|.

On the other hand, our iota elements ι(supp(f)) are the join-irreducible elements of the
smallest sublattice of 2Ω containing supp(f). This lattice is what we called the lattice support
of f and noted Lsupp(f). By definition, we necessarily have |Lsupp(f)| ≤ 2|supp(f)|. More
precisely here, all elements of supp(f) are both focal points and join-irreducible elements of
Lsupp(f), i.e. ι(supp(f)) = supp(f) = ∨supp(f) = ∧supp(f), if ∅ ̸∈ supp(f) (Otherwise, we
have ι(supp(f)) = supp(f)\{∅}). In fact, since our iota elements are not mapped elements of
a reduced set Ω′ but instead raw sets from 2Ω, combinations of joins lead to a vastly different
lattice. In this example, we have Lsupp(f) = supp(f), instead of the 2supp(f) given by coarsening.

3.5 Conclusion

In this chapter, we proposed the Efficient Möbius Transformations (EMT), which are general
procedures to compute the zeta and Möbius transforms of any function defined on any finite
distributive lattice with optimal complexity. They are based on our reformulation of the Möbius
inversion theorem with focal points only, featured in the previous chapter corresponding to our
journal paper [52]. The EMT optimally exploit the information contained in both the support
of this function and the structure of distributive lattices. Doing so, the EMT always perform
better than the optimal complexity for an algorithm considering the whole lattice, such as the
FMT. Following these findings, it remains to propose explicit algorithms and implementation
guidelines. We provide this for the powerset lattice, for DST, in Appendix C.

This closes the presentation of our contributions around the efficient computation of DST
transformations and their fusion. The next and last chapter of this thesis will propose a solution
tackling communication issues such as redundancy in a distributed collaboration and the general
lack of conciseness in vehicular networks.

77

Chapter 4

Learning to value the unknown

4.1 Introduction

Recently, we have been witnesses of accidents involving autonomous vehicles and their lack of
sufficient information at the right time. One way to tackle this issue is to benefit from the
perception of different viewpoints, namely collaborative perception. While setting a multitude
of sensors in the road infrastructure could be imagined, this would require a lot of investments
and limit its usage to some areas in the world. Instead, we focus on the exchange of information
between vehicles about their common environment, where they are the only sources available.

These communications can simply be centralized by a server that would gather all information
from all vehicles to process it and re-distribute it to all, as suggested in [12]. However, this still
consists of Vehicle-to-Infrastructure (V2I) communications, which implies (1) an infrastructure
cost and the impossibility to share information with other agents when there is no server avail-
able nearby. It also features the disadvantage of (2) making the agents broadcast their entire
perception, which can be heavy on the means of communication and computation and give rise
to delays.

In contrast, the decentralized Vehicle-to-Vehicle (V2V) approach [16–18, 21, 22] does not re-
quire any extra infrastructure to work, i.e. does not implies (1). In this setting, agents directly
exchange pieces of information between them. It also comes with new problems such as data
incest and lower computation capabilities. We will ignore them here as we already tackled the
issue of avoiding data incest using Dempster-Shafer Theory (DST) [24] in spite of low com-
putation capabilities with two conference papers [42, 53] and a journal paper [52]. But V2V
communications bring a potentially heavier communication burden as well, due to redundan-
cies. In fact, (2) is worse in this setting than in the centralized one if agents are passive, meaning
if they simply broadcast their perception for the others to know, without filtering it beforehand.
Nevertheless, this decentralized approach offers the possibility to make the agents active in their
quest for full perception, i.e. making the agents ask for specific areas in their surroundings on
which they would like to know more, instead of always broadcasting everything. This is impos-
sible in the centralized setting, as the server decides and thus needs to gather all perceptions
beforehand.

Here, we propose such a system, where each agent builds its own local top-down semantic
grid and sends specific requests to others in the form of bounding boxes described in the global
reference frame. We choose local grid maps for their ability to map an agent’s knowledge and
to deduce its uncertainties in space.

78

4.2 Related Works

Since not all uncertain areas are relevant, Active Exploration [65, 66] is not enough; a truly
efficient collaboration policy requires some understanding of the scenery [67], extracted from
the spatial arrangement of grid cells and their classes. What could lie in the shadows and how
to best discover it? If a pedestrian is heading towards an occluded area, we expect the agent
to request for this area, as a tracking system. If the agent has no idea of what could be in the
unknown, maybe it could ask for some key points to understand the layout of the environment.
If an area on the road is near a crowd of people or in the continuity of a pedestrian crossing, ask
for it as some unseen-before pedestrians could be crossing, etc. More generally, we would like
the agent to know as much as possible about moving objects in its vicinity, while avoiding to
request too much information from others. This represents a complex bounding box selection
policy to be learned from pixels.

Given the long-lasting successes of Deep Learning in such ordeals, it seems natural to con-
sider neural networks for our problem. But, while it is theoretically possible (but practically
challenging) to learn our policy in an end-to-end fashion with model-free Deep Reinforcement
Learning (DRL), we choose to first learn a deep generative model to pre-process our inputs.
Indeed, training deep neural networks is easier, faster and more stable when the loss on the
output is in the form of a well-justified derivable function, which is hard to achieve with reward
signals from a RL environment. Building this generative model also allows for more control and
insights on what is learned, and reduces the size of the neural networks that are supposed to be
trained through model-free DRL. As demonstrated in World Models [68], learning a policy on
top of a model can even be achieved with simple heuristics such as Evolution Strategies (ES),
with performances equivalent to RL algorithms.

Our model needs to be generative, for inference in unknown areas. In addition, we want it to
be predictive, in order to make it understand latent dynamics, anticipating disappearances or
inferring hidden road users from the behavior of visible ones. Doing so, it could even eventually
compensate for communication latencies. Such a model would be useful in itself for other tasks
as well, e.g. autonomous driving.

Several existing works [69–73] employed generative models with convolutional networks in a
U-Net architecture in order to augment instantaneous individual grid maps. Some used deter-
ministic networks such as Generative Adversarial Networks (GAN). Others tried to incorporate
stochasticity with Monte Carlo Dropout or simply using a Variational Auto-Encoder (VAE).
Most used occupancy grids as input, but some chose semantic grid maps or DOGMa (occupancy
grid with velocities). These inputs were either expressed in a static global reference frame or
given to a system that had no prediction capability. Doing so, it appears that none of these
approaches really modeled the long-term dynamics of the environment that would be necessary
to learn our desired policy. On the other hand, a kind of recurrent generative model inspired
by the VAE, namely Temporal Difference VAE (TD-VAE) [74], was designed with the specific
intent of being taken as base for a reinforcement learning algorithm. It puts an emphasis on the
learning of belief states for long-term predictions, which are important for the development of
complex strategies. It has been proven in [75] that explicitly predicting future states enhances
data-efficiency in a number of RL tasks, though they train their model jointly with the policy
and do not use the loss defined in [74]. Appealed by the theoretical justifications of TD-VAE,
its decoupling regarding specific RL tasks (which simplifies the search for good RL hyperparam-
eters) and its demonstrated ability to predict plausible sequences of images in a 3D world at
different time horizons and from a variable number of observations, we have implemented and
adapted this TD-VAE to our problem. However, correcting some of its weaknesses regarding its
actual prediction capability, we finally proposed our own model, called Locally Predictable VAE
(LP-VAE). To learn our communication policy based on this model, we chose the widely used

79

Proximal Policy Optimization (PPO) algorithm [29], which is a fairly stable and simple policy
gradient-based DRL algorithm with few hyperparameters.

Closely related to our goal, other works try to address the problem of efficiently commu-
nicating between autonomous vehicles. In [76], they used a joint Perception and Prediction
(P&P) model that transforms sensor data into learned features to broadcast to other vehicles.
This model also fuses received features with local ones and tries to predict the trajectory of
nearby communicating vehicles. This information compression is also present in our work in
the form of a Convolutional VAE preprocessing each observation grid. We go one step further
in communication efficiency as our system does not broadcast every piece of information, but
chooses instead which one it wishes to receive. Sending learned features also forces them to
make another neural network learn to spatially and temporally transform all pieces of infor-
mation received from the vehicular network. Even the fusion operation is done by making a
neural network learn how to fuse two learned features, without any guarantee on the result.
Instead, here we rely on top-down semantic grids, which are simple discretizations of the space
around the ego-vehicle. Doing so, we can transform the content of our transmissions using
linear transformations. Furthermore, our system keeps its integrity by only fusing probability
distributions.

In [77], they used Deep Reinforcement Learning to select only a portion of the perceptive field
of an autonomous vehicle to send to others. However, this information filtering is done on the
sender side, contrary to our approach that filters on the receiver side. Doing so, their approach
still consists in broadcasting pieces of information, regardless of the actual needs of others.

The same can be stated for [78], where they describe a V2V cooperative perception system in
which vehicles exchange object detections. They try to reduce redundancies by estimating the
value of a piece of information for a potential receiver. The value here is the novelty, i.e. the
probability that the potential receiver is not aware of some object of interest.

Section 4.3 formally introduces our communication problem, justifying the use of a prepro-
cessing generative model. Section 4.4 provides some background on PPO and explains why we
chose this RL algorithm to learn our communication policy. Section 4.5 formalizes the afore-
mentioned generative model, introducing TD-VAE and LP-VAE. Section 4.6 presents our deep
networks implementing these models. Then, section 4.7 evaluates and compares the performance
of different versions of our models and policy learnings. Finally, we conclude this chapter with
section 4.8.

4.3 Problem formulation

We formulate our communication problem as a Markov Decision Process (MDP). Fig. 4.1 gives
an overview of it, working with the driving simulator CARLA [6] for our experiments.

4.3.1 State space

We assume the existence of a driving policy from which we only know the actions taken at each
time step: ego-vehicle controls (acceleration and steering angle, each ranging in [−1, 1]) and
global direction (average of the next 10 equally-spaced points the planner set to visit in meters
relative to the ego-vehicle’s reference). This driving policy influences the road environment in
which the ego-vehicle is moving. This is not the case with the communication environment
that we consider in this MDP. Each observation is a tuple (Gt, Ct, Vt), where Gt is an ego-
centered semantic grid, Ct represents the actions taken by the driving policy at a given instant
t (which influence Gt+1) and Vt is the motion of the ego-vehicle between t − 1 and t. Each

80

Figure 4.1: Illustration of our application. CARLA provides a semantic segmentation corre-
sponding to a camera attached to the ego-vehicle hood, as well as its corresponding depth
(images taken from [6]). This gives us enough information to create a semantic 3D point cloud,
i.e. to scatter all pixels in space according to their depth and image coordinates (and the camera
deformation). From it, we project these pixels back into a 2D plane (i.e. a grid), but from a
top-down point of view (and without camera deformations). In parallel, we get the ego-vehicle
motion since the previous time step in order to update a perception memory containing 2D
points from previous time steps. We add the current semantic grid to this memory and give the
resulting augmented grid to our learned world model (STD-VAE or LP-VAE), along with the
ego-motion and driving policy commands. In turn, this model tries to guess what is hidden in
occluded areas and provides a belief state about latent dynamics. These outputs are then given
to a DRL algorithm that chooses a grid area to request to the world. This area is extracted
at the next time step from a grid generated by a camera above the ego-vehicle. Finally, this
information is fused at the next time step with the ego-vehicle perception.

semantic grid Gt is a top-down 6-channels pseudo-Bayesian mass grid corresponding to the
five classes of the frame of discernment Ω = {pedestrian, car, road lines, road, other}. The class
car actually contains any type of vehicle, even bikes. The class road lines contains any road
marking: road lines, arrows, painted stop signs, etc. The class other contains the rest of the
static objects perceivable by the agent, such as vegetation, sidewalks, buildings, etc. The last
channel represents ignorance, i.e. the mass put on Ω. This means that Gt ≥ 0 and, for any cell
index i of Gt, we have

∑6
k=1 Gt[i][k] = 1. These cells are distributed as a matrix (grid) of 80

rows and 120 columns, i.e. Gt is analog to a 80× 120× 6 image of values in [0, 1]. See Fig. 4.2
for a visualization of this semantic grid.

These observations constitute a very large and complex space which would be hard to trans-
form into exploitable neural network features without a derivable loss function. Thus, we will
first build a generative model of the driving environment (implicitly including the agent’s driving
policy). Besides, learning this model beforehand will give us more control on the information

81

Figure 4.2: Left: Illustration of an instance of top-down semantic grid Gt corresponding to a
partial observation xt in our model. Red is for pedestrians, blue is for cars, yellow is for road
lines, purple is for road, white is for other and black is for ignorance. The displayed class is
the one with the greatest mass. The intensity of its color depends on its mass: the closer to
0, the darker. Notice all the occlusions due to walls or other road users, in addition to the
limited distance of perception of the ego-vehicle. Right: Instance of top-down semantic grid
corresponding to a complete observation yt in our model. Actually, this view is obtained with
a facing ground camera above the ego-vehicle. Doing so, it contains itself some occlusions due
to trees, poles, buildings, etc. Thus, it is rather a hint about the true yt. This view can also
be obtained by the fusion of multiple view points, from autonomous vehicles or infrastructure
sensors.

flow that should be considered by the communication policy. Therefore, the state space of our
MDP is made of learned features from this generative model. Several versions of this generative
model are proposed in Section 4.5.

4.3.2 Action space

Our MDP has 4 continuous actions that each ranges in [0, 1], defining a bounding box in the
local grid Gt of the ego-vehicle at time t: width, height, column and row. This bounding box is
supposed to represent an area in the ego-vehicle’s future surroundings.

4.3.3 Transition function

Transitions from a state-action pair to a new state depend also on the driving environment,
i.e. CARLA. First, this environment generates a new partial grid Gt+1 and other observations
already described. The bounding box described by the action given at time t is then translated
into an area of Gt+1 filled with complete information. Fig. 4.3 illustrates this process.

In addition, a visual memory mechanism, specific to our MDP, makes perceptions persist for
a few time steps, discounted a little more every time. This implements short-term memory, so
that we only consider as unknown what has not been perceived in a long time (or never). This
also has the effect of giving consequences to past actions, since bounding boxes in the same area
will have close to no potential information gain for a few time steps.

4.3.4 Rewards

Finally, let us define a reward function for our MDP. Let rt be a reward density, defined for
each cell i of Gt+1 as:

rt(i) = −η.rmin + S[i].

5∑
k=1

robj[k]. max(0, Gt+1[i][k]− G̃t+1[i][k])
w, (4.1)

82

Figure 4.3: Illustration of our decision process: 1) Based on what is known at time t, select a
bounding box where there is high uncertainty and high probability to discover road users. 2)
Send this request in global coordinates to the vehicular network (which may consists of both
infrastructure sensors and other autonomous vehicles). 3) At time t+1, we expect some vehicles
to transmit their perception of this area. In our implementation, complete perceptions are simply
obtained by a camera above the ego-vehicle since we focus on the selection of bounding boxes,
i.e. 1). 4) The transmitted partial perception is fused with the one of the ego-vehicle at time
t+ 1.

where w ∈ R+∗, η ∈ [0, 1] and G̃t+1 is the grid before fusion with the grid GM
t+1 corresponding

to Mt+1. The quantity robj is a nonnegative reward per object pixel (only null for the static
class other, i.e. robj[5] = 0) such that robj[k] ≥ robj[k + 1]. Indeed, pedestrian are the smallest
identifiable objects among our classes and so must have the highest reward per pixel. The
quantity rmin is equal to the least positive reward per pixel, i.e. rmin = robj[4]. It is used to
discourage the selection of uninteresting cells. The coefficient η that multiplies it represents
the minimum informational gain that is needed to consider this cell worth to be requested.
For some value of η, this minimum gain applies to the class with the least reward, while it
becomes virtually more and more forgiving as the class has a greater reward per cell. Moreover,
notice that max(0, Gt+1[i][k] − G̃t+1[i][k]) ∈ [0, 1], which implies that max(0, Gt+1[i][k] −
G̃t+1[i][k])

w ∈ [0, 1]. This means that w only alters the significance of some gain in mass: for

w ∈ (0, 1), max(0, Gt+1[i][k]− G̃t+1[i][k]) will be greater than for w = 1, while for w ∈ (1,+∞),

max(0, Gt+1[i][k] − G̃t+1[i][k]) will be less. In other words, if w ∈ (1,+∞), then the gain will
have to be more important to have an impact on rt(i). Finally, S represents a spatial filter to
account for the fact that we are not equally interested everywhere in discovering road users. For
example, a road user very far ahead is not as valuable an information as a road user just around
the corner. We defined a forward filter SF and a lateral filter SL, such that S = SF .SL. We set

SF [i] = 1−
[

βF

1− α
.max

(
0,

F (i)

max(F)
− α

)]
where α ∈ [0, 1) and βF ∈ [0, 1]. The quantity F (i) is the forward distance (number of rows
from the row in which the center of the ego-vehicle is) corresponding to cell i. The greater the
parameter βF , the less the farest cells are valued. The greater the parameter α, the farer from
the ego-vehicle the decrease in value starts.

83

Figure 4.4: Heatmap illustrating our spatial filter S for α = 0.5, βF = 0.8, βL = 1 and ζ = 0.01.
Deep blue is 0, while deep red is 1, which means that the reward in a cell located in a blue
region will be 0, no matter what is inside. The center of the ego-vehicle is in the middle of the
first row starting from bottom.

The second filter is defined as

SL[i] = 1− βL

ζ
.max (0, ζ − |cos (arctan2 (L(i), F (i)))|)

where ζ ∈ (0, 1]. The quantity L(i) is the lateral distance (number of columns from the column
in which the center of the ego-vehicle is) corresponding to cell i. This filter describes a cone in
front of the ego-vehicle (and symmetrically at the back of it) in which the cells are the most
valued. The greater the parameter ζ, the narrower this cone. The greater the parameter βL

is, the less the cells outside the cone (i.e. on the sides of the ego-vehicle) are valued. Fig. 4.4
provides a visualization of S.

The reward associated with some action at is defined as

Rt(at) = −K.(1− η).rmin+
∑

i∈I(at)

rt(i), (4.2)

where K is the minimum number of interesting cells that must be entirely discovered in order
to make the request worthwhile, I(a) = [v(a), v(a) + h(a)]× [u(a), u(a) + w(a)] and u(a), v(a),
w(a), h(a) are respectively the column index, row index, width and height indicated by some
action a.

Grid fusion

In order to produce Gt from G̃t and the grid GM
t corresponding to Mt in Eq. (4.1), we need to

define a fusion procedure. As each cell i in both G̃t and GM
t is a mass function, we know that:

Gt[i][6] = G̃t[i][6] . G
M
t [i][6],

where 6 is the channel corresponding to the mass on Ω. Furthermore, we can get the contour
functions of these pseudo-Bayesian mass functions simply by adding the mass on Ω to the mass
on each of our 5 classes. Then, a simple pointwise multiplication of these two contour functions
produces the contour function corresponding to Gt. This also implies a mass on ∅, which
is caused by conflicting pieces of evidence between the two mass functions. Since we are not
interested in this level of conflict, we choose to renormalize masses as in Dempster’s combination
rule. Unlike Dempster’s rule however, we only distribute this conflict on singletons Gt[i][1 : 5]
and keep the true value Gt[i][6], as the distinction between ignorance and conflict is crucial to
our communication policy. Algorithm 1 details this procedure.

84

Algorithm 1: Fusion procedure for two pseudo-Bayesian mass functions m1 and m2.

Input: Two pseudo-Bayesian mass functions m1, m2

Output: The fused mass function m12

N ← len(m1);
m12[N]← m1[N] . m2[N];
m12[1 : N − 1]← (m1[1 : N − 1] +m1[N]) . (m2[1 : N − 1] +m2[N])−m12[N];
s← sum(m12[1 : N − 1]);
if s > 0 then

m12[1 : N − 1]← (1−m12[N]) . m12[1:N−1]
s ;

Return m12;

4.4 Quick introduction to policy gradient-based reinforce-
ment learning and our choice for PPO

When we want to alter the behavior of an agent without having to discuss, it is possible to
associate actions with particular feedbacks. You can think of the training of a dog with food
(positive feedback) and gentle slaps (negative feedback), or marketing campaigns/propaganda
with more subtle techniques inducing positive or negative feelings when some keywords and
ideas are presented. This is the paradigm of Reinforcement Learning (RL) [79]. In RL, an
agent interacts with its environment through actions. Based on the state of the agent in its
environment and the action it has chosen, the environment gives back a particular reward to the
agent, which can be positive or negative. This environment is typically formulated as a Markov
Decision Process (MDP):

• a state space S,
• an action space A,
• a transition function (determining the next state of the agent, based on its current state

and the chosen action),
• a reward function r (determining the reward obtained by the agent, based on its current

state, the chosen action and its next state).

The function associating a state with an action is called the policy, noted π. It represents the
agent’s behavior. It can be a mapping, if the policy is deterministic, or a probability distribution
over the action space A, if the policy is stochastic. A RL algorithm is an iterative algorithm,
gathering all rewards rt obtained by the agent in an episode, under the current policy, before
updating the policy and repeating the same process with the new policy. We will mostly ignore
the distinction between on-policy and off-policy algorithms in this short introduction. The goal
of the algorithm is to find the optimal policy maximizing the expected value of the discounted
rewards sum Rt, where Rt =

∑T
k=0 γ

k.rt+k and γ ∈ [0, 1]. The time horizon T represents the
number of future rewards that are taken into account as being potentially influenced by the
choice of action at time t. It can be infinite. The parameter γ brings additional nuances. If
γ = 1, then all future rewards matter as much as the immediate reward rt. If γ = 0, then only
immediate rewards matter. In other words, γ determines if the policy is more or less short-term
or long-term.

85

4.4.1 Value functions

The value function V π is the expected value of the discounted rewards sum Rt under the policy
π for a given starting state, i.e.:

V π(s) = Eπ [Rt |st = s]

= Eπ

[
T∑

k=0

γk.rt+k

∣∣∣∣st = s

]
(4.3)

It represents the rewards that can be expected from a state s if all future actions, including at,
are chosen according to the policy π.

The Q-value function Qπ is the expected value of the discounted rewards sum Rt under the
policy π for a given starting state and a given first action, i.e.:

Qπ(s, a) = Eπ [Rt |st = s, at = a]

= Eπ

[
T∑

k=0

γk.rt+k

∣∣∣∣st = s, at = a

]
(4.4)

It represents the rewards that can be expected from a state s if all future actions, excluding
at which is given as a, are chosen according to the policy π.

Consequently, we have the following equalities:

V π(s) =
∑
a∈A

π(a|s).Qπ(s, a)

and

Qπ(s, a) =
∑
s′∈S

P (s′|s, a). [r(s, a, s′) + γ.V π(s′)]

where P (s′|s, a) is the probability to be in state s′ after choosing action a in state s, and r is
here the reward function associating a reward to the tuple consisting of a state, an action and
a next state.

The optimal policy π∗ can be found through Bellman’s optimality equations:

V π∗
(s) = max

a∈A

∑
s′∈S

P (s′|s, a).
[
r(s, a, s′) + γ.V π∗

(s′)
]

Qπ∗
(s, a) =

∑
s′∈S

P (s′|s, a).
[
r(s, a, s′) + γ.max

a′∈A
Qπ∗

(s′, a′)

]

Now, consider the update rule of the Value iteration algorithm, which is directly derived from
Bellman’s optimality equations:

∀s ∈ S, Vk+1(s) = max
a∈A

∑
s′∈S

P (s′|s, a). [r(s, a, s′) + γ.Vk(s
′)]

86

where V0 is arbitrary. It is proved that limk→∞ Vk = V π∗
. Consequently, the optimal policy π∗

can simply be found after convergence of this value iteration:

∀s ∈ S, π∗(s) = argmax
a∈A

[
r(s, a) + γ.

∑
s′∈S

P (s′|s, a).V π∗
(s′)

]
(4.5)

However, when transition probabilities are unknown or when the state and action spaces are
too large, this algorithm is impossible to compute. In this case, Monte Carlo methods must be
employed, either to directly estimate V π or Qπ from respectively Eq. (4.3) and (4.4), or more
efficiently to implicitly estimate P (s′|s, a) with the update rule for some fixed policy π:

∀s ∈ S, V π
k+1(s) = (1− α).V π

k (s) + α. [r(s, π(s), s′) + γ.V π
k (s′)]

where α = 1
n in theory, with n being the number of interactions the agent had with its envi-

ronment in state s with policy π for this update step k + 1. In practice however, n = 1 and α
is fixed to some constant (learning rate), acting as a moving average. It is proved to converge
towards Vπ, i.e. limk→∞ V π

k = V π. This is the basis of Temporal-Difference (TD) Learning.

To derive the optimal policy π∗ though, we will need to use the equivalent of this update rule
for Q instead, since Eq. (4.5) requires to know transition probabilities. There are several ways
to proceed, but a notable example is the off-policy update rule of the Q-Learning algorithm [80]:

∀(s, a) ∈ S ×A, Qπ∗

k+1(s, a) = (1− α).Qπ∗

k (s, a) + α.

[
r(s, a, s′) + γ.max

a′∈A
Qπ∗

k (s′, a′)

]
where Qπ∗

0 is arbitrary and the rewards r(s, a, s′) are obtained beforehand with a policy that is
more or less random, to explore the environment. Then, the optimal policy π∗ can simply be
found with:

∀s ∈ S, π∗(s) = argmax
a∈A

Qπ∗(s, a) (4.6)

Instead of Monte Carlo methods, it is possible to learn to approximate the optimal function
Qπ∗

with function approximators such as Neural Networks, hence the emergence of Deep RL
(DRL).

4.4.2 The policy gradient approach

Let us consider that we have a set of parameters θ (such as ones of a neural network) determining
a probabilistic policy, noted πθ. Note that here πθ is a probability distribution over the action
space A, where it was a deterministic function until now. In this case, finding the optimal policy
π∗
θ consists in finding the set of parameters θ∗ such that:

θ∗ = argmax
θ∈Θ

Eπθ
[Rt]

= argmax
θ∈Θ

Eπθ

[
T∑

k=0

γk.rt+k

]
where Θ is the set of all possible parameter sets. Let us note τ ∼ πθ some trajectory τ
consisting of all state-action pairs (st, at) sampled from the policy πθ in an episode. We will

note τ = (s0, a0, s1, a1, . . . , sT , aT) and R(τ) =
∑T

t=0 γ
t.r(st, at). In addition, we note J(θ) the

quantity Eτ∼πθ
[R(τ)]. We have:

θ∗ = argmax
θ∈Θ

Eτ∼πθ
[R(τ)]

= argmax
θ∈Θ

J(θ)

87

and

J(θ) =

∫
πθ(τ).R(τ) dτ

where πθ(τ) is the probability of the trajectory τ under the policy πθ.

Therefore, the objective of policy gradient-based RL algorithms is to find the parameters θ∗

that maximize J through gradient ascent. For this, notice that:

∂J(θ)

∂θ
=

∫
∂πθ(τ)

∂θ
.R(τ) dτ

=

∫
πθ(τ).

∂πθ(τ)

∂θ
.

1

πθ(τ)
.R(τ) dτ

= Eτ∼πθ

[
∂ log πθ(τ)

∂θ
.R(τ)

]
And, since πθ(τ) = πθ(s0, a0, s1, a1, . . . , sT , aT) = P (s0).

∏T
t=0 πθ(at|st).P (st+1|st, at), we have

that

∂ log πθ(τ)

∂θ
=

T∑
t=0

∂ log πθ(at|st)
∂θ

.

This leads to the following equality:

∂J(θ)

∂θ
= Eτ∼πθ

[
T∑

t=0

∂ log πθ(at|st)
∂θ

.

T∑
t=0

γt.r(st, at)

]

So, the optimal policy π∗
θ can be found by iteratively approximating ∂J(θ)

∂θ through Monte
Carlo samples of trajectories under the current policy πθ and updating the parameters θ with

θ+α.∂J(θ)∂θ , where α is the learning rate. This procedure represents the REINFORCE algorithm
[81]. A particular advantage of this approach is that finding the optimal policy does not depend
on searching for the action giving the maximum over the action space as in Q-Learning, which
must then be discrete. Here, the action space can be continuous (or at least very large). This
will prove useful in our case where the action space consists of all possible configurations of
bounding box in a grid.

Variance reduction

Nevertheless, it is easy to see that this policy gradient-based algorithm can be very unstable, due
to the fact that these gradients often have a high variance (which makes Monte Carlo estimates
very noisy). There are several techniques that can be employed to reduce this variance. Two
common ways are to limit the number of samples to be obtained and to reduce the variance in
each state of the sampled trajectories. For the first one, it can be shown that

∂J(θ)

∂θ
= Eτ∼πθ

[
T∑

t=0

∂ log πθ(at|st)
∂θ

.

T∑
t′=t

γt′ .r(st′ , at′)

]
For the second one, it can be shown that adding or subtracting terms that only depends on
particular states does not introduce any bias since it is independent from the sampled trajectory.
It is known that choosing the value function V πθ for these terms reduces the variance of the
aforementioned gradients. Thus, we have:

∂J(θ)

∂θ
= Eτ∼πθ

[
T∑

t=0

∂ log πθ(at|st)
∂θ

.

[(
T∑

t′=t

γt′ .r(st′ , at′)

)
− V πθ (st)

]]

88

In fact, it can also be shown that these gradients can be written in terms of Q values:

∂J(θ)

∂θ
= Eτ∼πθ

[
T∑

t=0

∂ log πθ(at|st)
∂θ

. [Qπθ (st, at)− V πθ (st)]

]

= Eτ∼πθ

[
T∑

t=0

∂ log πθ(at|st)
∂θ

.Aπθ (st, at)

]

The function Aπθ is called the Advantage function. It represents the advantage of choosing an
action over the others, in a certain state, if all future actions are taken in accordance with the
policy πθ.

Actor-Critic architecture

This latter form of gradient is exploited by Actor-Critic RL algorithms. As V πθ usually cannot
be known in practice, Actor-Critic architectures rely on an estimator V̂ πθ . The estimation of
the value function V̂ πθ is called the Critic. The Actor is the parameterized policy πθ that is
learned.

Actor-Critic DRL architectures

In Actor-Critic DRL algorithms, both the policy πθ and the value function estimator V̂πθ
are

parameterized by Deep neural networks of parameters θ. Learning the value function, instead
of estimating it directly through sampling, is more robust. Indeed, while the target of this
value network is the estimation of the value function through sampling, progressively updating
through gradient descent smooths out estimation errors. It also avoids to keep in memory
potentially very large (even infinite) tables, in accordance with the size of the state space.

Their gradient estimator is of the form:

∂J(θ)

∂θ
≈ Eτ∼πθ

[
T∑

t=0

∂ log πθ(at|st)
∂θ

.Ât

]

To obtain this gradient through automatic differentiation in the back-propagation phase,
Actor-Critic DRL algorithms use the objective function:

LPG(θ) = Eτ∼πθ

[
T∑

t=0

log πθ(at|st).Ât

]

Proximal Policy Optimization (PPO) [29] and Trust Region Policy Optimization (TRPO) [82]
(on which PPO is built) are two special Actor-Critic DRL algorithms. The idea behind PPO and
TRPO is to further stabilize gradient updates by replacing this LPG by a surrogate objective

that forces the new policy to be close to the previous one. Let rt(θ) = πθ(at|st)
πθold

(at|st) denote the

probability ratio of the new policy over the previous one. We have rt(θold) = 1. In TRPO, the
surrogate objective to maximize is defined as:

LCPI(θ) = Eτ∼πθ

[
T∑

t=0

rt(θ).Ât

]

The issue with LCPI is that it leads to excessively large policy updates when the advantage is
positive and the ratio is more than 1 or when the advantage is negative and the ratio is less

89

than 1. To remedy this problem, PPO proposes a clipped version, limiting updates that would
make the new policy continue to diverge from πθold . Their surrogate objective to maximize is
defined as:

LCLIP(θ) = Eτ∼πθ

[
T∑

t=0

min
(
rt(θ).Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) .Ât

)]

where ϵ is a hyper-parameter in [0, 1]. The minimum between the objective of LCPI and its
clipped version behaves as follows:

When Ât < 0, the action should be discouraged. If the ratio is more than 1, this means that
in the previous update, we mistakenly made this action more probable. So, we want the new
policy to return towards the old one, as fast as possible. If the ratio is less than 1, this means
that in the previous update, we already made this action less probable. So, we want the new
policy to cautiously continue to move away from the old policy, i.e. not too much as it may be
an estimation error and risks to introduce instability.

Conversely, when Ât > 0, the action should be encouraged. If the ratio is less than 1, this
means that in the previous update, we mistakenly made this action less probable. So, we want
the new policy to return towards the old one, as fast as possible. If the ratio is more than 1, this
means that in the previous update, we already made this action more probable. So, we want
the new policy to cautiously continue to move away from the old policy, i.e. not too much as it
may be an estimation error and risks to introduce instability.

This results in PPO being one of the most efficient and stable state-of-the-art DRL algorithms,
in addition to having few hyper-parameters to adjust. Hence our choice.

In addition, PPO introduces two other hyper-parameters to adjust the importance of two ad-
ditional losses to minimize simultaneously. One is for minimizing a Mean Squared Error (MSE)

between the value V̂ πθ estimated by the network and the value estimated by sampling. The
other is for minimizing an entropy loss, which simply tries to minimize all action probabilities
to make them tend towards equiprobability. The role of this entropy loss is to act as a regu-
larization slowing the convergence towards local minima by forcing the policy to explore more
(hence the emphasis on its randomness).

4.5 Models

In this section, we will present several versions of the generative model mentioned in section
4.3.1, namely STD-VAE and LP-VAE. In the end, this generative model will provide us with
learned features describing the state of the environment related to the MDP presented in section
4.3, in order to reduce the size of the network optimized through DRL and to control what is
kept in the information flow. We will start by formalizing in section 4.5.1 a draft of this model
that ignores the actions the agent takes at each time step. Then, we will briefly introduce in
section 4.5.2 the original TD-VAE [74]. Following that, we will propose in section 4.5.3 our
sequential variant of TD-VAE, i.e. STD-VAE. Inspired by this model, we will then propose
LP-VAE in section 4.5.4. Finally, section 4.5.5 will demonstrate with LP-VAE how to modify
this generative model to incorporate the actions chosen by the agent.

4.5.1 Action-independent modeling

As a vehicle clearly cannot access the complete state of its surroundings through its sole per-
ception, we can model our problem as a Partially Observable Discrete-Time Markov Chain

90

(PO-DTMC), where Xt and Zt denote random variables representing respectively a partial ob-
servation and a latent state at time t. However, we consider that Zt and Xt are in different
spaces, the latent space describing the whole environment and containing information about
object dynamics and trajectories allowing for predictions. More precisely, Xt corresponds to the
sole perception of the ego-vehicle at time t, without memory of the past. We also introduce a
third random variable Yt which represents the spatially complete observation corresponding to
Zt in the space of Xt. In other words, Xt is a partial observation of Yt which is itself a partial
observation of Zt.

So, let θ be a set containing the parameters of a generative model that projects a latent
state Zt onto the observation space as (Xt, Yt). We choose to implement this generative model
as a deep neural network and we set the following Gaussian distributions as constraints, for
numerical stability and simplicity:

• Zi ∼ N (0, Id)
• pZi+1|Zi

(·|zt; θ) = N (µz(zt; θ), σ2
z(zt; θ).Id)

• pYi|Zi
(·|zt; θ) = N (µy(zt; θ), αy.I|Xt|)

• pXi|Yi,Zi
(·|yt, zt; θ) = N (µx(yt, zt; θ), αx.I|Xt|)

where µz, σz, µx and µy are all deep neural networks taking their parameters in θ, where d is an
arbitrary number of dimensions for Zt, where zt is a realization of Zt for some t ∈ [1, T] and where
α· ∈

[
1
2π ,+∞

)
. This last constraint implies that the generative model recreates independently

each dimension of Xt from a latent state zt with the same fixed precision. Moreover, the PO-
DTMC formulation implies that each pair of observations (Xt, Yt) is only dependent on Zt,
i.e.

pX,Y |Z (x, y | z; θ) =
T∏

t=1

pXi,Yi|Zi
(xt, yt | zt; θ),

and that the Markovian property holds in latent space, i.e.

pZ(z; θ) = pZi
(z1).

T∏
t=2

pZi+1|Zi
(zt | zt−1; θ).

Fig. 4.5 provides the Bayesian network corresponding to our model.

N

θ Y1 Y2 YT−1 YT

X1 X2 XT−1 XT

Z1 ZT−1...Z2 ZT

Figure 4.5: Bayesian network of our generative model of parameters in θ. We have N replications of
this model, corresponding to the N sequences of length T in our dataset. The parameter set θ influences
the inference of all variables in the model for the N sequences we have.

Thus, based on a dataset of N independent sequences of partial and complete observations
D = (x1:T , y1:T)1:N , we want to optimize the parameters θ so that the probability that the

91

model generates the sequences of D is maximal under its constraints. In other words, we want
to find the parameters θ that maximize p(X,Y)(1),...,(X,Y)(N)(D; θ), which is the same as finding
θ maximizing log p(X,Y)(1),...,(X,Y)(N)(D; θ). We have:

log p(X,Y)(1),...,(X,Y)(N)(D; θ) =
∑

(x,y)∈D

log pX,Y (x, y; θ)

where

pX,Y (x, y; θ) =

∫
pX,Y |Z(x, y | z; θ) . pZ(z; θ) dz

=

∫
· · ·
∫

pZi
(z1).

T∏
t=1

pXi,Yi|Zi
(xt, yt | zt; θ) .

T∏
t=2

pZi+1|Zi
(zt | zt−1; θ)

T∏
t=1

dzt

which is intractable, due to the fact that µz, σz, µx and µy are multi-layers neural networks
with nonlinearities. This intractability is amplified by the fact that we work with sequences of
T non-independent continuous latent states, which implies a multiple integral over RT×d. This
means that we cannot evaluate or differentiate the marginal likelihood pX,Y (x, y; θ). For the
same reasons, the posterior distribution

pZ|X,Y (·| x, y; θ) =
pX,Y |Z(x, y| · ; θ).pZ(· ; θ)

pX,Y (x, y; θ)
,

is intractable, which implies that methods based on the posterior distribution such as the
Expectation-Maximization (EM) algorithm cannot be employed either. So, let us adopt the
Variational Bayesian (VB) approach by introducing a variational distribution dependent on a
parameter set ϕ to approximate pZ|X,Y (·| x, y; θ). But, more than just a mathematical trick, we
want this variational distribution to actually be a recognition model such that it is able to infer
latent states only given past partial observations, in order to infer y and to be able to generate
plausible next observations.

4.5.2 TD-VAE model

TD-VAE [74] is a variant of the original VAE [28] for temporal sequences which features the
particularity to separate belief states from latent states. A belief state bt is a statistics describing
x1:t such that pZt|X1:t

(·|x1:t; θ) ≈ pZt|Bt
(·|bt; θ). The end goal motivating this distinction, aside

theoretical accuracy, is to learn a model able to deterministically aggregate observations by
updating a statistics bt that contains enough information to infer some latent state zt, avoiding
the accumulation of estimation errors on z1:t−1. Since zt alone allows for predictions of next
latent states, bt constitutes a belief on plausible latent dynamics that is simply updated with
each new observation. This feature is important for model-based RL.

In [74], they chose additionally to make their model provide jumpy predictions, i.e. directly
predicting a latent state zt+δ from some zt where δ is not precisely known, in order to abstract
latent dynamics for the benefit of computational efficiency. Formally, they seek to optimize θ
so that it maximizes the expression

E
δ∼U[δi,δs]

[
E

t∼U[1,T−δ]

[
log pXt+δ|Bt

(xt+δ|bt; θ)
]]

, (4.7)

where U[a,b] is the uniform distribution on the interval [a, b] and Bt = RNN(Xt, Bt−1;ϕ). This
cannot be optimized directly, as showed in the previous section. However, we can maximize a
lower bound of this expression by introducing a variational distribution.

92

Let Qt,δ(ϕ) = qZt,Zt+δ|Bt,Bt+δ
(·|bt, bt+δ;ϕ) be this variational distribution, dependent on a

parameter set ϕ, such that

qZt,Zt+δ|Bt,Bt+δ
(·|bt, bt+δ;ϕ) ≈ pZt,Zt+δ|Bt,Xt+δ

(·|bt, xt+δ; θ)

where it is important to notice that

pZt,Zt+δ|Bt,Xt+δ
(·|bt, xt+δ; θ) =

pXt+δ,Zt,Zt+δ|Bt
(xt+δ, ·|bt; θ)

pXt+δ|Bt
(xt+δ|bt; θ)

=
Pt,δ(θ)

pXt+δ|Bt
(xt+δ|bt; θ)

.

To find the optimal parameters ϕ that minimize its approximation error, we can optimize ϕ so
that it minimizes through gradient descent the following average Kullback-Leibler (KL) diver-
gence:

E
δ∼U[δi,δs]

[
E

t∼U[1,T−δ]

[
DKL

(
Qt,δ(ϕ)

∣∣∣∣∣∣∣∣ Pt,δ(θ)

pXi+δ|Bi
(xt+δ|bt; θ)

)]]
,

This cannot be optimized directly either. Yet, it can be shown that we can equivalently minimize
this divergence, while also maximizing a lower bound of (4.7), by minimizing the following loss
w.r.t. ϕ and θ:

LTD-VAE(x; θ, ϕ) = E
δ∼U[δi,δs]

[
E

t∼U[1,T−δ]

[DKL (Qt,δ(ϕ) || Pt,δ(θ))]

]
where

DKL (Qt,δ(ϕ) || Pt,δ(θ))

= E
Zt,Zt+δ∼Qt,δ(ϕ)

[
log qZi|Bi

(zt+δ|bt+δ;ϕ)

+ log qZt|Bt,Bt+δ,Zt+δ
(zt|bt, bt+δ, zt+δ;ϕ)

− log pZi|Bi
(Zt|bt; θ)− log pZ+δ|Z (Zt+δ|Zt; θ)

− log pXi|Zi
(xt+δ|Zt+δ; θ)

]
.

In complement, the authors of [74] had to make the strong assumption that pZi|Bi
(·|bt; θ) =

qZi|Bi
(·|bt;ϕ) for any θ, ϕ. They also set pZ+δ|Z (·|zt; θ) as a multivariate normal distribution

with diagonal covariance matrix, corresponding to the distribution of latent states at any instants
in [t+δi, t+δs]. This is in contradiction with our sequential latent model pZi+1|Zi

(·|zt; θ), which
is itself a multivariate normal distribution with diagonal covariance matrix. In this regard,
pZ+δ|Z (·|zt; θ) can be seen as a rough approximation.

This abstraction of latent dynamics may be useful in some cases where precision is not needed
and the variability of observations xt:t+δ gathered in a moment can be summarized in latent
space by smooth transitions between states corresponding to dataset samples. However, we
argue that models of complex environments, in which the observation space is combinatorially
extremely large and in which multiple agents interact with each other, require precise learning
signals to understand latent dynamics and so to generalize well outside the training set. More
importantly, TD-VAE cannot consider the actions taken by the observing agent between t and
t+ δ. Yet, learning the link between actions and observations is central in RL.

93

N

B1 B2
... BT−1 BT

X1 X2 XT−1 XT

Z1 ZT−1...Z2 ZT

Figure 4.6: Bayesian networks corresponding to STD-VAE. Solid lines represent the Bayesian network
of our generative model (without Yt) of parameters in θ. Dashed lines represent the Bayesian network
of the recognition model of parameters in ϕ proposed by TD-VAE. Parameter dependencies are not
represented for the sake of clarity. Only Bt is not directly influenced by θ, while only variables at the
end of a dashed arrow are influenced by ϕ. We have N replications of this model, corresponding to the
N sequences of length T in our dataset.

4.5.3 Our Sequential variant STD-VAE of the TD-VAE model

The authors of [74] also proposed a sequential version of their model. Its corresponding Bayesian
network is given in Fig. 4.6. They chose to train its parameters as a particular case of the jumpy
one, simply taking δ = 1. Yet, this would only maximize a lower bound of the probability to
observe xt+1 after bt, i.e. E

t∼U[1,T−1]

[
log pXt+1|Bt

(xt+1|bt; θ)
]
, instead of the whole future sequence

xt+1:T after bt, i.e. E
t∼U[1,T−1]

[
log pXt+1:T |Bt

(xt+1:T |bt; θ)
]
.

From a practical point of view, this would prove to be computationally heavy if done multiple
times per sequence and would not learn from the accumulation of prediction errors: particularly
in a stochastic network such as TD-VAE and with a time step small enough, the network will
tend to optimize weights such that the predicted next state looks almost identical to the initial
state. It is only by chaining these predictions that their errors become significant. Thus, we
choose a slightly different variational distribution. Let Qt(ϕ) = qZt:T |Bt:T

(·|bt:T ;ϕ) be this
variational distribution, dependent on a parameter set ϕ, such that

qZt:T |Bt:T
(·|bt:T ;ϕ) ≈ pZt:T |Bt,Xt+1:T

(·|bt, xt+1:T ; θ)

where it is important to notice that

pZt:T |Bt,Xt+1:T
(·|bt, xt+1:T ; θ)

=
pXt+1:T ,Zt:T |Bt

(xt+1:T , ·|bt; θ)
pXt+1:T |Bt

(xt+1:T |bt; θ)

=
Pt(θ)

pXt+1:T |Bt
(xt+1:T |bt; θ)

.

To find the optimal parameters ϕ that minimize its approximation error, we can optimize ϕ so
that it minimizes through gradient descent the following average Kullback-Leibler (KL) diver-
gence:

E
t∼U[1,T−1]

[
DKL

(
Qt(ϕ)

∣∣∣∣∣∣∣∣ Pt(θ)

pXt+1:T |Bt
(xt+1:T |bt; θ)

)]
,

94

It can be shown that we can equivalently minimize this divergence, while also maximizing a
lower bound of

E
t∼U[1,T−1]

[
log pXt+1:T |Bt

(xt+1:T |bt; θ)
]
,

by minimizing the following loss w.r.t. ϕ and θ:

LSTD-VAE(x; θ, ϕ) = E
t∼U[1,T−1]

[DKL (Qt(ϕ) || Pt(θ))]

where

DKL (Qt(ϕ) || Pt(θ))

= E
Zt:T∼Qt(ϕ)

[
log qZi|Bi

(ZT |bT ;ϕ)

+

T−1∑
k=t

log qZi|Bi,Zi+1
(Zk|bk, Zk+1;ϕ)

− log pZi|Bi
(Zt|bt; θ)−

T∑
k=t+1

log pZi+1|Zi
(Zk|Zk−1; θ)

−
T∑

k=t

log pXi|Zi
(xk|Zk; θ)

]
(4.8)

Fig. 4.7 visually explains the process of evaluating (4.8), which is very similar to the original
TD-VAE. The belief network aggregates observations such that each belief bt is assumed to be
a sufficient statistics for x1:t. The smoothing network, knowing what the final latent state zT
is, given observations x1:T , infers what should have been latent states zt:T−1. This gives us two
different distributions for the inference of zt: one given only observations x1:t, and the other
given all observations x1:T . In the learning phase, we measure the divergence between these
two distributions as a loss to prompt correct dynamics recognition and consistency in the belief
network. Then, the Markovian transition model infers the next state from the current one. We
infer the Gaussian parameters of the next state for each latent state inferred by the smoothing
network and measure as loss the divergence between the distribution inferred by the smoothing
network and the one inferred by the transition model. Finally, for each latent state zk sampled
from the smoothing network, we infer the Gaussian parameters describing the observation xk

with the decoding network and compute the negative log-likelihood of xk given these parameters
as loss.

However, our preliminary experiments on this model with a dataset acquired in CARLA [6] re-
vealed very poor prediction quality when zt is sampled from qZt|Bt

(·|bt;ϕ), while providing very
good predictions when zt is sampled from qZt|B(·|bt:T ;ϕ), i.e. from the smoothing network. In
fact, this seems obvious considering that the prediction part of this model is trained with the la-
tent states sampled from the variational distribution qZt:T |Bt:T

(·|bt:T ;ϕ) and not qZt:T |Bt
(·|bt;ϕ).

This is what motivates the introduction in the next section of a local predictability constraint,
allowing us to train our model on samples from qZt:T |Bt

(·|bt;ϕ). This will also allow us to keep
the idea of predicting distant latent states from current observations while avoiding the strong
assumption that pZ|B (·|bt; θ) = qZ|B (·|bt;ϕ).

95

bt bt+1 ... bT−1 bT

xt xt+1 xT−1 xT

zt zTzT−1...zt+1

Zt ZTZT−1...Zt+1

Xt+1 XT−1 XT
...

bt−1

Figure 4.7: Illustration of the forward computations allowing for the evaluation of the STD-VAE loss
(4.8). A diamond indicates a deterministically inferred variable. A rectangle indicates the deterministic
inference of distribution parameters. A circle indicates the deterministic inference of distribution pa-
rameters and a sample from this distribution. The blue network is the belief network. The red network
is the smoothing network. The black network is the Markovian transition model. The brown network
is the decoding network.

4.5.4 Our Locally Predictable VAE (LP-VAE) model

First, we put a local predictability constraint for the model to be able to predict multiple time
steps into the future:

pZ|X1:t
(·| x1:t; θ) ≈ pZ|X,Y (·| x, y; θ) (4.9)

for any instant t ≥ tmin. This means that there must be some instant tmin such that the partial
observations x1:tmin are sufficient to recognize the latent dynamics of the whole sequence, i.e.
such that all observations y1:T and all subsequent partial observations xtmin+1:T bring negligible
additional information in the recognition of these latent dynamics. Notice that

pZ|X,Y (·| x, y; θ) =
pX,Y,Z(x, y, · ; θ)
pX,Y (x, y; θ)

=
P (θ)

pX,Y (x, y; θ)
,

and let us note Pt(θ) = pZ|X1:t
(·| x1:t; θ). To enforce Eq. (4.9), we want to minimize the average

KL divergence

E
t∼ U[tmin, T−1]

[
DKL

(
Pt(θ)

∣∣∣∣∣∣∣∣ P (θ)

pX,Y (x, y; θ)

)]
= log pX,Y (x, y; θ) + E

t∼ U[tmin, T−1]

[DKL (Pt(θ) || P (θ))] ,

96

which we cannot minimize directly, due to the intractability of pX,Y (x, y; θ) and pZ|X1:t
(·| x1:t; θ).

However, we have:

E
t∼ U[tmin, T−1]

[DKL (Pt(θ) || P (θ))]

= − log pX,Y (x, y; θ)

+ E
t∼ U[tmin, T−1]

[
DKL

(
Pt(θ)

∣∣∣∣∣∣∣∣ P (θ)

pX,Y (x, y; θ)

)]
≥ − log pX,Y (x, y; θ), (4.10)

since the KL divergence is always nonnegative for two probability distributions. So, by op-
timizing θ to minimize E

t∼ U[tmin, T−1]

[DKL (Pt(θ) || P (θ))], we maximize a lower bound of

pX,Y (x, y; θ), which is our primary goal. Thus, we can simply introduce a variational distribu-
tion to approximate pZ|X1:t

(·| x1:t; θ) as long as we simultaneously minimize the aforementioned
KL divergence. Such a variational distribution corresponds to a recognition model that tries
to predict the next latent states in addition to recognizing the current and past ones, which is
more useful than one that would directly approximate pZ|X,Y (·| x, y; θ).

Notice that:

pZ|X1:t
(z| x1:t; θ)

= pZ|X(zt| x1:t; θ) . pZ|Z,X(z1:t−1|zt, x1:t; θ) . pZ|Z,X(zt+1:T |z1:t, x1:t; θ)

= pZ|X(zt| x1:t; θ) .

t−1∏
k=1

pZ|Z,X(zk|zk+1, x1:k; θ) .

T∏
k=t+1

pZ|Z(zk|zk−1; θ), (4.11)

omitting variable indices in distribution indices for the sake of clarity. Based on this de-
composition, let us introduce two variational distributions Q1

t (ϕ) = qZt|X1:t
(·|x1:t;ϕ) and

Q2
t (ϕ) = qZt|X1:t,Zt+1

(·|x1:t, zt+1;ϕ) taking their parameters in the parameter set ϕ such that:

qZt|X1:t
(·|x1:t;ϕ) ≈ pZt|X1:t

(·|x1:t; θ)

qZt|X1:t,Zt+1
(·|x1:t, zt+1;ϕ) ≈ pZt|X1:t,Zt+1

(·|x1:t, zt+1; θ).

We assume that both pZt|X1:t
(·|x1:t; θ) and pZt|X1:t,Zt+1

(·|x1:t, zt+1; θ) have an approximate
Gaussian form with an approximately diagonal covariance matrix, i.e.

Q1
t (ϕ) = N (µb(x1:t;ϕ), σb(x1:t;ϕ).Id)

Q2
t (ϕ) = N (µs(x1:t, zt+1;ϕ), σs(x1:t, zt+1;ϕ).Id),

where µb, σb, µs and σs are deep neural networks taking their parameters in the parameter set
ϕ. Taking back Eq. (4.11), we get:

pZ|X1:t
(z| x1:t; θ)

≈ qZ|X(zt| x1:t;ϕ) .

t−1∏
k=1

qZ|Z,X(zk|zk+1, x1:k;ϕ) .

T∏
k=t+1

pZ|Z(zk|zk−1; θ)

= qZ|X(z1:t|x1:t;ϕ) . pZ|Z(zt+1:T | zt; θ)
= qZ|X1:t

(z| x1:t; θ, ϕ) = Qt(θ, ϕ),

which means that posing our two variational distributions Q1
t (ϕ) and Q2

t (ϕ) is equivalent to
posing the variational distribution Qt(θ, ϕ) ≈ pZ|X1:t

(·| x1:t; θ).

97

Therefore, we want to optimize ϕ and θ to minimize

E
t∼ U[tmin, T−1]

[
DKL

(
Qt(θ, ϕ)

∣∣∣∣∣∣∣∣ P (θ)

pX,Y (x, y; θ)

)]
while optimizing ϕ to minimize

E
t∼ U[tmin, T−1]

[DKL (Qt(θ, ϕ) || Pt(θ))] .

Actually, to achieve both these objectives, we only need to minimize

LLP-VAE(x, y; θ, ϕ) = E
t∼ U[tmin, T−1]

[DKL (Qt(θ, ϕ) || P (θ))] (4.12)

w.r.t. both ϕ and θ. See Appendix D for more details. Developing the KL divergence of Eq.
(4.12) to make our recurrent distributions appear, we finally obtain:

DKL (Qt(θ, ϕ) || P (θ))

= E
Z∼Qt(θ,ϕ)

[
log qZ1:t|B1:t

(Z1:t|b1:t;ϕ)

+ log pZt+1:T |Zt
(Zt+1:T | Zt; θ)

]
− E

Z∼Qt(θ,ϕ)
[log pZ1:t

(Z1:t ; θ)

+ log pZt+1:T |Zt
(Zt+1:T |Zt ; θ)

+ log pX,Y |Z(x, y|Z ; θ)
]

= DKL

(
qZ1:t|B1:t

(·|b1:t;ϕ) || pZ1:t
(· ; θ)

)
− E

Z∼Qt(θ,ϕ)

[
log pX,Y |Z(x, y|Z; θ)

]
(4.13)

which leads to

DKL (Qt(θ, ϕ) || P (θ))

= E
Z∼Qt(θ,ϕ)

[
log qZi|Bi

(Zt|bt;ϕ)

+

t−1∑
k=1

log qZi|Bi,Zi+1
(Zk|bk, Zk+1;ϕ)

− log pZi (Z1; θ)−
t∑

k=2

log pZi+1|Zi
(Zk|Zk−1; θ)

−
T∑

k=1

log pXi,Yi|Zi
(xk, yk|Zk; θ)

]
(4.14)

Fig. 4.8 illustrates the process of evaluating (4.14). We can easily give an interpretation to
this loss: we can identify two global objectives in Eq. (4.13) that are reminiscent of the original
VAE [28] in terms of interpretation: the DKL term is an encoder loss for the recognition model
of parameters ϕ, while the second term is a decoder loss for the generative model of parameters
θ. It can be viewed as a precision loss (second term) optimized against a regularization (first
term) to prevent from overfitting.

We can even go deeper in interpretation to highlight what differs from the original VAE.
Contrary to the original VAE, our model generates a sequence of observations instead of an

98

b1 b2 ... bt−1 bt

x1 x2 xt−1 xt

z1 zt−1...z2 zt zTzT−1...zt+1

Z2 Zt−1... Zt

XY1 XY2 XYt−1 XYt XYt+1 XYT−1 XYT
......

Figure 4.8: Illustration of the forward computations allowing for the evaluation of the LP-VAE loss. A
diamond indicates a deterministically inferred variable. A rectangle indicates the deterministic inference
of distribution parameters. A circle indicates the deterministic inference of distribution parameters and
a sample from this distribution. The blue network is the belief network. The red network is the
smoothing network. The black network is the Markovian transition model. The brown network is the
decoding network.

isolated one. Doing so, we have a Markovian transition model that predicts a latent state from
the previous one with its own set of parameters separated from the decoder ones. Therefore, it
seems natural to have a third loss term for prediction. We can make it appear by splitting the
second term of Eq. (4.13), i.e.:

DKL (Qt(θ, ϕ) || P (θ))

= DKL

(
qZ1:t|B1:t

(·|b1:t;ϕ) || pZ1:t
(· ; θ)

)
− E

Z∼Qt(θ,ϕ)

[
log p(X,Y)1:t|Z1:t

((x, y)1:t|Z1:t; θ)

]
− E

Z∼Qt(θ,ϕ)

[
log p(X,Y)t+1:T |Zt+1:T

((x, y)t+1:T |Zt+1:T ; θ)

]
The first term is an encoder loss. The second term is a decoder loss. The third term is a pre-
diction loss. This prediction loss can also be viewed as a loss optimized against a regularization
since the DKL term affects the inference of Zt by the recognition model from which the next
latent states are predicted.

4.5.5 LP-VAE with actions

The models we described up to this point represents the environment evolving around the ob-
serving agent. However, our agent also acts on this environment and influences the observations
gathered to train our model. Thus, we need to modify it in order to integrate this subtlety.

Let At be the action applied at time t on perceptions. This action describes a mask on the
information contained in Yt. This partial information is then transmitted to the observing agent,
influencing Xt. It has no influence on the environment evolving around the agent, only on its
perception of it. This means that Yt and Zt are not affected by At. Moreover, we will now con-
sider that the random variable Xt is the ego-vehicle perception at time t, eventually augmented

99

N

θ

Y1 Y2 YT−1 YT

A2 AT−1 AT

X1 X2
... XT−1 XT

Z1 ZT−1...Z2 ZT

Figure 4.9: Bayesian network of our generative model of parameters in θ. We have N replications of
this model, corresponding to the N sequences of length T in our dataset. The parameter set θ influences
the inference of all variables in the model for the N sequences we have.

with information from Yt, in accordance with At, and combined with the discounted memory of
the previous partial observations X1:t−1. Fig. 4.9 provides the corresponding Bayesian network.

We set the following constraints:

• Zi ∼ N (0, Id)
• pZi+1|Zi

(·|zt; θ) = N (µz(zt; θ), σ2
z(zt; θ).Id)

• pYi|Zi
(·|zt; θ) = N (µy(zt; θ), αy.I|Xt|)

• pXi|Xi−1,Yt,Zt,At
(·|xt−1, yt, zt, at; θ) = N (µx(xt−1, yt, zt, at; θ), αx.I|Xt|)

where all parameters µ· and σ· are deep neural networks taking their parameters in θ, and
α· ∈

[
1
2π ,+∞

)
.

Our dataset D is composed of N independent sequences of partial and complete observations
with a randomly chosen bounding box At, i.e. D = (x1:T , y1:T , a2:T)1:N . Fortunately, Eq.
(4.11) still holds in this new model. Moreover, we know that the environment does not depend
on the actions A2:T taken on its perception of it and that the actions only mask regions of Yt

while not altering the remaining. Finally, since Xt contains the information transmitted from
Yt in accordance with At, the actions A2:t do not bring any information for the inference of
the latent states Z1:t. Given the Bayesian network in Fig. 4.9, the actions A without knowing
Xt+1:T do not bring any information for the inference of the latent states Zt+1:T either. We
have:

pZ|X1:t,A(·| x1:t, a; θ) = pZ|X1:t
(·| x1:t; θ)

Thus, we keep the LP-VAE variational distributions

Q1
t (ϕ) = qZt|X1:t

(·|x1:t;ϕ),

Q2
t (ϕ) = qZt|X1:t,Zt+1

(·|x1:t, zt+1;ϕ),

Qt(θ, ϕ) ≈ pZ|X1:t
(·| x1:t; θ).

Then, for our local predictability constraint (See Eq. (4.9)), we consider pZ|X,Y,A(·| x, y, a; θ)

100

instead of pZ|X,Y (·| x, y; θ). Notice that

pZ|X,Y,A(·| x, y, a; θ) =
pX,Y,Z|A(x, y, · |a; θ)
pX,Y |A(x, y |a; θ)

=
P (θ)

pX,Y |A(x, y |a; θ)

We take as loss function LLP-VAE(x, y |a; θ, ϕ) instead of LLP-VAE(x, y; θ, ϕ), where

LLP-VAE(x, y |a; θ, ϕ) = E
t∼ U[tmin, T−1]

[DKL (Qt(θ, ϕ) || P (θ))] (4.15)

This loss maximizes a lower bound of

pX,Y |A(x, y |a; θ).

Developing the KL divergence of Eq. (4.15) in accordance with our new model, we get:

DKL (Qt(θ, ϕ) || P (θ))

= E
Z∼Qt(θ,ϕ)

[
log qZ1:t|B1:t

(Z1:t|b1:t;ϕ)

+ log pZt+1:T |Zt
(Zt+1:T |zt; θ)− log pZ1:t

(Z1:t; θ)

− log pZt+1:T |Zt
(Zt+1:T |zt; θ)− log pY |Z (y |Z; θ)

− log pX|Y,Z,A (x |y, Z, a; θ)
]

= E
Z∼Qt(θ,ϕ)

[
log qZ1:t|B1:t

(Z1:t|b1:t;ϕ)

− log pZ1:t
(Z1:t; θ)− log pY |Z (y |Z; θ)

− log pX|Y,Z,A (x |y, Z, a; θ)
]

which leads to

DKL (Qt(θ, ϕ) || P (θ))

= E
Z∼Qt(θ,ϕ)

[
log qZi|Bi

(Zt|bt;ϕ)− log pZi
(Z1; θ)

+

t−1∑
k=1

log qZi|Bi,Zi+1
(Zk|bk, Zk+1;ϕ)

−
t∑

k=2

log pZi+1|Zi
(Zk|Zk−1; θ)−

T∑
k=1

log pYi|Zi
(yk|Zk; θ)

−
T∑

k=2

log pXi|Xi−1,Yi,Zi,Ai
(xk|xk−1, yk, Zk, ak; θ)

− log pX1|Y1,Z1
(x1|y1, Z1; θ)

]
(4.16)

In practice however, we will neglect the term − log pX1|Y1,Z1
(x1|y1, Z1; θ) for several reasons.

First, it avoids to optimize parameters that would only be used in the learning phase, while not
corresponding to an important component (the complete observation y1 being already considered
and containing x1). But maybe more importantly, since Xt keeps a memory of past observations

101

in this formulation of the LP-VAE, x1 may also contain information on actions preceding a2:T
that should be given as well if x1 is actually not the start of an episode of interactions in
the environment. Not generating x1 allows us to start the inference of latent states at any
point of the episode, independently from the previous actions and observations that produced
x1. This means that we can re-use different subsequences of the same training sequence in the
learning phase, without having to make sure that x1 do not contain information related to past
observations and actions.

4.6 Implementation as neural networks

4.6.1 Belief state computation

The grids Gt introduced in section 4.3.1 are not directly taken as input of our LP-VAE. Before-
hand, we train a Convolutional VAE (CVAE) to learn a compressed, essentialized representation
of these observations in which spatial features have been extracted. This CVAE is itself sep-
arated into 4 independent parts in order to preserve the semantics of these features: a CVAE
for the pedestrian channel, another for the car channel, another for static elements (road lines,
road, other) and a last one for the ignorance. The projection of Gt into the latent space of this
Convolutional VAE is the Xt taken by our LP-VAE. Then, we feed Xt, Xt−1 and the ego-motion
Vt to a Multilayer perceptron (MLP) in order to extract features about the motion of road users
around the ego-vehicle. The output of this MLP serves as input to a Recurrent Neural Network
(RNN) composed of Long Short-Term Memory (LSTM) cells to form and update a belief over
the dynamics of other road users. The concatenation of the hidden state of this RNN with Xt

and the driving controls Ct represents the belief state Bt at time t. Fig. 4.10 visually sums up
this procedure.

4.6.2 Inference of Gaussian parameters

In [74], they proposed to use what they called D maps1 to infer the Gaussian parameters of
any of the distributions over the latent state zt. It is a part of a LSTM cell (new features
multiplied by the input gate), as indicated in Fig. 4.11, where the output is passed to two fully
connected (FC) layers in parallel without activation function, one to determine µzt and the other
to determine log(σzt). Yet, in our sequential setting, this D map becomes a truly recurrent unit,
chaining itself multiple times from t1 to 1 in the smoothing network and from t1 to t2 in the
prediction network. As for any recurrent network, this poses the issue of vanishing gradients.
Furthermore, it lacks the semantics of a transition model: some components could disappear
from the frame (forget gate) and some other could become visible or simply move from their
initial state (input gate, followed by an addition to the initial components). These are exactly
the transformations applied to the cell state of a LSTM cell. Thus, using the cell state of a
LSTM cell as latent state mean µzt as in Fig. 4.11, where h = zt+1 and input = bt, solves both
the vanishing gradient issue and the lack of model semantics. Giving h as both hidden and
cell states also has the effect of implementing peephole connections [83], giving the cell state
some control over the input, forget and output gates (the three sigmöıd layers), which better
captures sporadic events. In addition, uncertainty should be encoded within the latent state
to be self-sufficient for a transition model. This encourages the computation of the standard
deviation σzt from µzt with some filtering gate (output gate), which is exactly what a LSTM
cell does to output a quantity based on its cell state. Similarly, we use this LSTM cell in the

1In [74], they used a 16-layer model where the information transits from layer to layer through the states of
a LSTM, possibly in place of this D map, in their DeepMind Lab experiment. Note however that it is recurrent
through layers, not time. This is different from what is proposed here.

102

CNN

CNN

CNN

CNN

[pedestrian, car, road line, road, other, Ω]
6-channels mass grid at t

[pedestrian]

[car]

[roal line, road, other]

[Ω]

xt

xt−1

xt

vt

MLP

ht−1

LSTM

ht

ct

bt

ht

Belief state computation

Figure 4.10: Illustration of the process of computing the observation Xt and the belief state Bt from Gt,
Xt−1, Vt and Ct. Four independent Convolutional VAEs are trained to learn a sufficient representation
of pedestrian, car, {road lines, road, other} and ignorance. These encodings form Xt. A Multilayer
perceptron (MLP) tries to learn features about the motion of road users around the ego-vehicle. The
output of this MLP serves as input to a Recurrent Neural Network (RNN) composed of Long Short-
Term Memory (LSTM) cells to form and update a belief over the dynamics of other road users. The
concatenation of the hidden state of this RNN with Xt and the driving controls Ct represents the belief
state Bt at time t.

prediction network for pZi+1|Zi
(·|zt; θ), where h = zt and input = ∅. For the belief network, we

keep this D map as there is no propagation in time.

4.6.3 Decoding

So far, we determined the networks outputting distribution parameters describing the latent
states Z used in the evaluation of LLP-VAE, both for the generative model and the recognition
model. It remains to propose the decoding network that is part of the generative model and
producesX and Y . Given the conditional distributions appearing in LLP-VAE, we need a decoder
inferring Yt from Zt and another one inferring Xt from Xt−1, Yt, At and Zt.

However, since Xt and Yt are not given in the original space but in a learned compressed
one, extracting features from Yt according to the bounding box At is not directly possible. One
has to decode Yt, extract features according to At, decode Xt and then fuse it with the leaked
features from Yt. For the sake of efficiency, we will learn to directly extract these features that
we denote by the random variable Mt in the learned compressed space and to fuse them with
Xt. Thus, in parallel to LLP-VAE, we minimize an extra loss term

−
T∑

k=2

log pMi|Ai,Yi
(mk|ak, yk; θ) ,

where mt corresponds to yt masked in accordance with at and compressed by the same CVAE
as for yt. Note that our dataset becomes D = (x1:T , y1:T ,m2:T , a2:T)1:N .

103

LSTM cell

D map

h

input

× +

σ

FC

σ

FC

×

tanh

tanh

×

FC

σ

FC

FC

µzt

log(σzt)

Figure 4.11: Proposed replacement for D maps. The FC rectangles indicate a single Fully Connected
layer. Circles indicate point-wise operations, where σ is the sigmöıd activation function.

We choose to infer Yt from Zt through a D map as introduced in section 4.6.2. All other
inferences are done through an updating module that is inspired by the updating of a LSTM
cell state. The masking of Yt is orchestrated by At, producing Mt by filtering. Finally, Xt−1 is
updated in two steps. The first update is assumed to change its reference frame and to determine
which parts of Yt are visible to the ego-vehicle. This implicitly produces the Xt corresponding to
the null action, i.e. the action that consists in doing nothing. We consider this transformation
deterministic, given yt and zt. The second update transmits the excerpt Mt from Yt to this
prior perception, producing the actual Xt influenced by At. Fig. 4.12 depicts these networks.
In addition, Fig. 4.13 illustrates the decoding of Xt by the decoder of the Convolutional VAE.

4.7 Experiments

4.7.1 Data acquisition & RL Environment

To conduct our experiments, we chose to work with the open-source driving simulator CARLA
[6]. Our semantic grids Gt are computed online from a frontal 320 × 480 depth camera with
FOV of 135◦ and its corresponding pixel-wise semantic classification. These simulated sensors
are attached to a simulated vehicle autonomously wandering in a city with other vehicles, bikes
and pedestrians (see Fig. 4.2). More precisely, Gt is obtained by counting the number of
occurrences of each class in each possible configuration of 4 × 4 consecutive pixels. All classes
corresponding to static objects are merged into the class other. Then, in each cell of the resulting
80× 120× 5 grid, these numbers are divided by 16 and we add a channel representing ignorance
(i.e. Ω) to store the quantity needed to make the sum on all channels equal to 1. We also
discount the resulting mass functions by a factor of 0.01 to simulate noise, i.e. all masses are
multiplied by 0.99 and 0.01 is added to the mass on ignorance. Finally, thanks to the depth
and information about the camera, we create a 3D point cloud of this frontal perception. Thus,
to get the 2D grid Gt, we ignore points higher than 2.5 meters and we take the highest of the
remaining ones (if more than one point at the same ground coordinates). For this reason, it
sometimes happens that the ground under a vehicle is perceived, but not its top, leading to road
cells surrounded by car cells, as can be observed in Fig. 4.2 Left. An important road elevation
may also conflict with the threshold of 2.5 meters. This view can be obtained by a LIDAR and
a 3D semantic classifier [84] as well.

Our top-down semantic grids corresponding to complete observations yt in our model are
obtained with a facing ground camera above the ego-vehicle. Doing so, it contains itself some
occlusions due to trees, poles, buildings, etc. Thus, it is rather a hint about the true yt. This

104

zt xt−1

σ ×

+tanh

σ

×tanh

σ

×

yt

at

σ×

+ tanh

σ

×

mt

σ ×

+tanh

σ

×

xt

Decoder

Figure 4.12: Illustration of our decoding architecture. The decoder block infers xt the partial obser-
vation, yt the spatially complete observation and mt the masked yt (as dictated by the bounding box
at). It takes as inputs a latent state zt, a previous partial observation xt−1 and a bounding box at.
A rectangle indicates a fully connected layer, while the symbol at its center indicates the activation
function applied to its output (σ for sigmoid, tanh for hyperbolic tangent and nothing for the identity
function). Each updating network is composed of a forget gate (first σ) and a D map, i.e. input features
(tanh), an input gate (last σ) and a fully connected layer.

grid can also be obtained by the fusion of multiple view points, from a fleet of autonomous
vehicles or infrastructure sensors, which can be acquired in the real world. A drone may be able
to acquire this information as well. In any case, this ground truth grid is in fact itself uncertain
and so is computed as Gt with an ignorance channel.

We created a dataset composed of 1560 sequences of 50 timesteps (5 seconds) each, where
each perception is 80 × 120 × 6. There are 30 runs in each of four cities available in CARLA,
including small towns, big towns and fast lanes. Each run is 35 seconds long and a sequence
is recorded every 2.5 seconds, leading to 13 sequences per run, hence the size of our dataset.
This dataset provides the grids corresponding to Xt and Yt in the action-independent model of
section 4.5.1.

To provide the grids corresponding to Xt as defined in the full model of section 4.5.5, we
created a second dataset from the first one by choosing random regions of Yt to be given to Xt.
We also added a visual memory that keeps a buffer of grid cells, transforms their coordinates
according to the given motion of the ego-vehicle, discounts their mass functions to account for
information aging and fuses them with the current perception grid, resulting in this Xt. In fact,
the first dataset combined with our visual memory and our fusion procedure of Algorithm 1 for
G̃t and GM

t constitutes the environment in which our agent will learn a communication policy.

4.7.2 Models

During training, we give between 8 and 10 timesteps of observations (i.e. between 0.8 and 1
second) and it is asked to predict between 5 and 10 timesteps ahead, i.e. between 0.5 and 1
second. We use the Mean Squared Error (MSE) loss function to compute the Gaussian negative
log likelihoods of observing the grids corresponding to xt and mt given latent states. Indeed,
this is analog to taking α = 1

2 and ignoring the constant term log
(√

2πα
)
. For the negative log

likelihoods on the grid corresponding to yt, we binarize it by taking the class with maximum
mass and use a cross-entropy loss. To account for the fact that the instances of Yt in our dataset

105

CNN

CNN

CNN

CNN

[pedestrian, car, road line, road, other, Ω]
6-channels mass grid at t

[pedestrian]

[car]

[roal line, road, other]

[Ω]

xt or yt or mt

Grid decoder

Figure 4.13: Illustration of the decoding of Xt or Yt or Mt by the decoder of the CVAE that gave Xt

to get back into the observation space. The CNN blocks are Transposed CNNs.

are not perfect, we simply do a pointwise multiplication between this loss and the complement
to 1 of its ignorance channel (last channel). That way, if yt does not have any information about
a cell, no loss on yt is actually back-propagated. Furthermore, we weight this cross-entropy loss
differently from one channel to another to account for class imbalance. We used the weight
vector [100, 10, 1, 0.2, 0.1, 1]. Indeed, on average, there are far less cells containing pedestrians
than cells containing the road or any other static class. Doing so, without weights, the network
would consider pedestrian as noise and neglect them.

In the following, we compare STD-VAE and LP-VAE for complete grid inference and predic-
tion.

Grid completion

In this experiment, we use the decoder network described in Fig. 4.12 on the current latent
state Zt inferred from Bt to retrieve Yt. Then, we use the network described in Fig. 4.13 to
transform Yt into the complete mass grid GY . To compare STD-VAE and LP-VAE, we employed
two metrics: binary classification accuracy per class and a mass score. Our Mass score metric

is computed as the mean of GY
t . ĜY

t over all cells in the grid, where GY
t is the true binary

complete grid classification and ĜY
t is a mass grid inferred by some model. Since GY

t is binary,
it acts as an indicator function for the correct class and the mass score represents the mean

mass given to the right class by the model generating ĜY
t. Results are showed in Table 4.1.

Prediction

In this experiment, we compare prediction accuracy between LP-VAE and STD-VAE. For this,
we study mass variations on the super-class {road, road line}, i.e. the sum of the road and
road line grid channels. Indeed, this super-class represents the road layout. Its absence in a
cell indicates either road users or the other class. Thus, its mass variations accounts for the
dynamics of the whole scene, independently of classification accuracy.

In practice, for each model, we infer a prediction sequence of 10 complete grids ŷ1:10 (i.e. 1

106

Binary classification per class Mass
P C RL R O Ω score

LP-VAE 20.5% 68.5% 28.7% 84.3% 77.8% 49.5% 68.3%
STD-VAE 33.7% 72.7% 30.7% 85.9% 80.6% 46.2% 68.8%

Table 4.1: Mass score and binary classification accuracy per class. P indicates the pedestrian
channel, C the car channel, RL the road lines channel, R the road channel, O the other channel
and Ω the complete out-of-sight channel. It is clear that STD-VAE outperforms LP-VAE for
simple grid completion, though the total mass score is not so different.

True y′ No blur Gaussian blur 5x5 Gaussian blur 11x11
+ - + - + -

LP-VAE ŷ′ 6.81% 6.94% 14.41% 14.61% 23.81% 24.36%
STD-VAE ŷ′ 2.10% 2.37% 4.89% 5.41% 8.66% 9.52%

Table 4.2: Prediction accurracies between STD-VAE and LP-VAE. As expected, LP-VAE sig-
nificantly outperforms STD-VAE on predictions.

second in the future), based on 10 observations (i.e. the past second). From it, we compute
the corresponding sequence of 9 grid variations ŷ′t = ŷt+1 − ŷt. We execute the same process
with the true complete grids, which produces grids y′1:9 of values ranging in {−1, 0, 1}. We test
separately the accuracy on positive and negative changes. For the former, we do a pointwise
multiplication between the true complete positive grids max(0, y′1:9) and the inferred positive
ones max(0, ŷ′1:9). For the latter, we do a pointwise multiplication between the true complete
negative grids max(0,−y′1:9) and the inferred negative ones max(0,−ŷ′1:9). We then sum all cells
of each grid in the sequence, over 4992 sequences, i.e. 49 920 inferred grids and compare it to
the separate sums of positive and negative true changes. Results are displayed in the first two
columns of Table 4.2.

However, note that this binary mask can be quite hard to match, as both the exact lo-
cation of these changes and their amplitude must be correct. To alleviate this constraint,
we repeat this test with blurring filters applied to each grid of y′1:9. The resulting grids,
noted ỹ′1:9, are then renormalized so that

∑
max(0, y′1:9).max(0, ỹ′1:9) =

∑
max(0, y′1:9) and∑

max(0,−y′1:9).max(0,−ỹ′1:9) =
∑

max(0,−y′1:9). This allows for slight misplacements of cells
in predicted grids. We repeated this test twice with Gaussian filters, with kernels 5x5 and 11x11.
These experiments correspond to the last 4 columns of Table 4.2. Our LP-VAE outperforms
STD-VAE in every of these tests, no matter how hard the constraint on change location is. This
means that the predicted changes of LP-VAE are not just better located, but also better shaped
than the ones of STD-VAE, as expected by design. Fig. 4.14 illustrates this experiment.

4.7.3 Policy learning

Here, we finally compare different policies learned with PPO, with and without model to test
the benefits of using belief states in our case. Each policy is the best found among iterations of
training with 3000 transitions amounting to 500 000 time steps in total. We used a batch size
of 60, with 10 epochs on each transition dataset, with a learning rate of 0.0003 and an entropy
coefficient of 0.01. We also made the time horizon vary, i.e. we made the hyperparameter γ
vary from 0 to 0.7, in order to see if a medium/long term strategy performs better.

The network learned with PPO has two parts: one for inferring the Value of a state, repre-
senting the mean of all potential future rewards, and one for inferring the best action from this

107

(a) (b)

Figure 4.14: (a) Left column: partial grid Gt corresponding to Xt. Right column: complete grid
GY

t corresponding to Yt. Top row: true classification grids. Bottom row: classification grids
predicted by LP-VAE from X alone, 4 time steps in the future. (b) Prediction dynamics. Black
represents the absence of variation, white some mass change in the cells of the road and road
line channels of the grid in (a). Left column corresponds to the true variations, blurred by a
11x11 Gaussian filter. The central column corresponds to the prediction dynamics of STD-VAE,
multiplied by the ones of the first column. Same for the right column but for LP-VAE. The first
row represents positive changes, while the second row represents negative ones.

same state, representing the policy. Each of these networks is composed of two fully connected
hidden layers of 128 and 64 neurons.

Different communication behaviors can be obtained by adjusting reward parameters. In par-
ticular, increasing K in Eq. 4.2 will make requests bigger, increasing w in Eq. 4.1 will make
requests more focused on completely unknown areas, increasing η will make requests more fo-
cused on pedestrians and cars, less rewarding in general and so less frequent. We chose the
following values: η = 0.3, K = 36 and w = 2. We also added a penalty of -15 for no coop-
eration at all (i.e. choice of a bounding box with no pixel in it, which means no transmission
cost either) to force the agent to play the game. Moreover, approximating the top-down di-
mensions of cars and pedestrians, we took the following reward densities per squared meter:
rmobj = [540/(0.7∗1.6), 540/(3∗1.8), 20, 20, 0]. Then, we converted them into rewards per squared
cell by multiplying them by our grid resolution. More precisely, we set our cameras in CARLA
so that the height corresponds to 40 meters. Thus, our reward densities per squared cell are
robj = (4080)

2.rmobj. Our final rewards are obtained by normalizing robj to [0, 1] by dividing it by
its maximum. For the spatial filter, we used the parameters of Fig. 4.4, i.e. α = 0.5, βF = 0.8,
βL = 1 and ζ = 0.01.

In order to evaluate and compare the performance of different policy learning schemes, we
take as metrics the mean request size and the mean informational gain over all time steps of a
test set with same size and characteristics as the training set described Section 4.7.1. We applied
these metrics to 3 class groups: pedestrians (P), cars (C) and {road lines, road} (R). In these
conditions, we compared 3 schemes: PPO on top of the LP-VAE belief state Bt, PPO on top
of the STD-VAE belief state Bt and PPO on top of Xt alone (i.e. only the features extracted
from the current mass grid Gt by a Convolutional VAE). Each of them has been trained with
γ = 0 (i.e. only immediate rewards matter), γ = 0.35 and γ = 0.7, to see if we could benefit
from medium/long term strategies. We also compare these policies with a simple random policy
that has a 50% chance of making a request and chooses uniformly random size and position
of bounding box when it does. Table 4.3 presents our results, in percentage relatively to the

108

Information gain Request
P C R size

Random 26.2% 22% 22.9% 13%
LP-VAE Bt 22% 27.6% 26.5% 6%

γ = 0 STD-VAE Bt 19.9% 26.5% 24.4% 5%
Xt alone 21.7% 29.2% 27.6% 6%
LP-VAE Bt 20.6% 25.7% 24.8% 6%

γ = 0.35 STD-VAE Bt 18.2% 22.8% 23.3% 5%
Xt alone 17.8% 23.4% 22.3% 5%
LP-VAE Bt 15.7% 18.2% 19.5% 5%

γ = 0.7 STD-VAE Bt 13.6% 16.3% 17.2% 4%
Xt alone 14.3% 17.8% 18.6% 4%

Table 4.3: Learned communication policy performances relatively to a broadcasting policy. The
information gain is a mean percentage representing the mass actually gained after request, over
the total mass that can be gained, at each time step.

maximal information gain and request size possible inherent to a broadcasting policy.

All of our learned policies only ask for about 5% of the space around the ego-vehicle, while
receiving about 25% of the relevant information the agent lacks. Requiring about 2.5 times
more information from the vehicular network for about the same relevant information gain or
lower, the random policy is vastly less efficient. It only outperforms the others for pedestrians,
which is consistent with the highly random behavior of pedestrians in CARLA. However, PPO
+ Xt alone and γ = 0 (i.e. greedy policy) is the policy that performs best overall. Surprisingly
enough, taking into account future rewards actually harms performance in our case. A lower
discounting factor in the memory module (i.e. observations that are kept longer in memory)
would probably make policies perform best with γ > 0. Furthermore, note that LP-VAE always
performs better than the other learned policies when γ > 0. This is consistent with the fact
that LP-VAE has better prediction capabilities and thus provides useful information in its belief
state for predicting future rewards.

4.8 Conclusions

In this chapter, we tried to elaborate an efficient peer-to-peer communication policy for col-
laborative perception. For this, we made agents learn what could be hidden in their blind
spots through a generative sequence model that we proposed, named Locally Predictable VAE
(LP-VAE). We compared its performance with another generative sequence model for RL ap-
plications called TD-VAE that we slightly adapted to our problem by making it both jumpy
and sequential, referring to it as STD-VAE. We demonstrated that LP-VAE produces better
predictions than STD-VAE, which translated into better performance for policies learned on top
of its belief state. However, we discovered in the end that our best communication policy was
a greedy one, i.e. one that does not need prediction capabilities. Combined with the fact that
we augmented each observation with the discounted memories of past observations, it followed
that only a state-less Convolutional VAE was needed for this greedy policy. Overall, our best
learned policies only require about 5% of the space around the ego-vehicle, while gaining about
25% of the relevant information the agent lacks. Thus, we proved that learning to value the
unknown is much more efficient than employing a broadcasting policy. It is also more efficient
than blindly asking for random areas around the ego-vehicle since it requires about 13% of the
total information, while gaining less than 25% of the relevant information the agent lacks. In

109

addition, we defined interpretable hyperparameters shaping the reward function corresponding
to our problem. This makes it possible to obtain various communication policies, with different
trade-offs between request size and information gain, as well as different class valuations, spatial
priorities and valuation of ignorance (i.e. more or less emphasis on total ignorance). For future
works, it would be interesting to compare LP-VAE and STD-VAE in RL tasks where future
rewards are more important. Also, we would like to test our communication policies in a truly
multi-agent context, where the agent would need to take into account the availability of nearby
communicating vehicles, and with real sensor data.

110

Chapter 5

Conclusions and perspectives

In this thesis, we focused on learning the importance of a missing piece of information, depending
on context, using predictive generative models and a policy determining the spatial request to
make to the vehicular network based on predictions. Consequently, a vehicle can make a specific,
lightweight request (or even none) to near vehicles based only on its situation. This allows for a
sustainable decentralized collaborative perception system, in which communications are sparser,
lighter and more relevant, freeing both communication bandwidth and computing time for the
receiver. Furthermore, our new generative model Locally Predictable VAE (LP-VAE) can be
exploited in other contexts. It is as theoretically as empirically well-justified and is able to learn
sequential models from observations and to provide consistent predictions. Moreover, its learned
belief states can be used by Reinforcement Learning algorithms, as Temporal Difference VAE
(TD-VAE). And, because it provides better predictions, the belief states of LP-VAE contain
more relevant information than the ones of TD-VAE. It would be interesting to evaluate this
LP-VAE in various RL tasks in the future, comparing it to TD-VAE and to end-to-end RL
baselines.

But, redundancy is not the only challenge posed by decentralization. Indeed, data incest
is another one. In addition, directly taking into account the perception of a peer brings the
question of trust, i.e. what is the level of self-confidence a peer has and are its observations
precise? This means that special care must be taken with the content of these communications
and the way two perceptions are fused together.

This led us to Dempster-Shafer Theory (DST) [24], which is a powerful generalization of
Bayesian probability theory that explicitly models ignorance and uncertainty in information
sources. It also offers easy ways to fuse information sources. In particular, when sources are
not independent (data incest), one can use the Cautious rule [23]. This rule only applies to the
conjunctive decomposition of evidence [41], i.e. to the conjunctive weight function. However,
as we want to keep the complexity of the content of our messages reasonable and as we do not
want to limit either the number of possible hypotheses, approximation methods [45] to compress
perceptual information (i.e. limiting the number of focal sets of the considered mass function)
need to be employed, which only apply to the mass function. The state-of-the-art family of al-
gorithms computing the transformation between the mass function and the conjunctive weight
function is the Fast Möbius Transform (FMT) [43] family. These algorithms are always expo-
nential in the number of possible states of a perceptual component, which put a constrain on
its expressiveness.

To avoid limiting the expressiveness of our perceptual components while also avoiding the

111

exponential burden of the FMT, we created a method to compute the transformation between the
mass function and the conjunctive decomposition of DST only based on the actual information
contained in sources. This method is exact and relies on a new mathematical notion that we
call focal point. A focal point is an element of the smallest intersection-closed or union-closed
family of sets from 2Ω containing all focal sets of a mass function. The related paper [42]
has been accepted to GRETSI 2019. Far from being ad hoc, our algorithms can be used to
compute the conjunctive and disjunctive decompositions of evidence wherever they are useful.
For example, these decompositions can be used to define the infinite families of t-norm-based
and uninorm-based fusion rules [47], as well as in conflict analysis [48], clustering [49] and
reinforcement/discounting [50] of believes. Our reformulation of the conjunctive and disjunctive
weight functions in terms of focal points even acts as a generalization as it is still defined when
the mass function is dogmatic or normal. Unfortunately, even if their likelihood may be lowered
by approximation methods, there exists cases in which our algorithms may feature a worst
complexity than the FMT.

Besides, the FMT is far more general and applies to all Möbius transform and its inversion in
the Boolean lattice 2Ω, where Ω is the set containing all possible states of a variable of interest.
Doing so, it remained the de facto standard to compute DST transformations in the general
case, proven to be optimal in 2Ω.

This is why we pushed our approach a little further to propose the Efficient Möbius inversion
theorem [52]. We mainly studied its properties in semilattices with a generalization of the notion
of focal point and a generalization of our findings to the Möbius transform itself. Consequently,
we were able to propose sequences of graphs in the same fashion as the FMT for the computation
of Möbius transforms and their inversion in any distributive lattice (which is even more general
than Boolean lattices), in a paper published in the proceedings of SUM 2019. We named
these sequences of graphs the Efficient Möbius Transformations (EMT) [53]. These sequences
are always more efficient than the FMT and can have a complexity as low as linear in the
number of informative components. In fact, they draw their computational efficiency from both
the structure of subsemilattices of some distributive lattice L such as 2Ω and the information
contained in sources. They are optimal as a combination of the two, relying in L = 2Ω on
the smallest intersection-closed or union-closed family of sets of 2Ω containing the informative
components of a source, i.e. our focal points.

Doing so, all our algorithms perform better than the FMT for all DST transformations and
the combination of belief sources with Dempster’s rule [30]. In addition, we demonstrated
in [52] the theoretical interest arising from these focal points with the introduction of a new
generalization of the conjunctive decomposition of evidence, as well as formulas uncovering how
each decomposition weight is tied to the corresponding mass function.

Finally, we developed a complete open-source C++ framework containing these algorithms
that can be used in place of FMT implementations. We plan to develop an equivalent Python
package in order to further ease their usage.

112

Appendices

113

Appendix A

Proofs about focal points and
Möbius transforms

A.1 Lemma 2.3.2.1

Proof. For any set S ⊇ supp(f), given the fact that P/(S,≤) partitions P according to S so
that all elements of each part have the same lower closure in S, we have that all elements x of

a part X in P/(S,≤) share the same image gS(x) =
∑
s∈S
s≤x

f(s) =
∑

s∈supp(f)
s≤x

f(s) +
∑

s∈S\supp(f)
s≤x

f(s) =

g(x) + 0 = g(X). Therefore, it is possible to group the terms of the Möbius inversion formula
(Eq. 1.5) by parts of the level partition of any set S ⊇ supp(f), i.e. for any y ∈ P :

f(y) =
∑
x≤y

g(x) . µP,≤(x, y) =
∑

X∈P/(S,≤)

y∈↑X

∑
z∈X
z≤y

g(z) . µP,≤(z, y)

=
∑

X∈P/(S,≤)

y∈↑X

g(X) .
∑
z∈X
z≤y

µP,≤(z, y) =
∑

X∈P/(S,≤)

y∈↑X

g(X) . ηS,≤,P (X, y)

Moreover, if there is a part Z ∈ P/(S,≤) such that ↓
SZ = ∅, i.e. such that for all z ∈ Z there is

no element s ∈ supp(f) verifying s ≤ z, then the image g(Z) of this part is necessarily 0. Hence
Eq. 2.2. ■

A.2 Lemma 2.3.2.2

Proof. For all y ∈ P , let us consider some m ∈ min (X) such that m < y. We can rewrite

ηS,≤,P (X, y) in the following form:

ηS,≤,P (X, y) =
∑
z∈X
z≤y

µP,≤(z, y) =
∑
z∈X
z≤y
z ̸∈↑m

µP,≤(z, y) +
∑
z∈X

m≤z≤y

µP,≤(z, y)

=
∑
z∈X
z≤y
z ̸∈↑m

µP,≤(z, y) +
∑

m≤z≤y

µP,≤(z, y)−
∑
z ̸∈X

m≤z≤y

µP,≤(z, y)

114

which reduces to:

ηS,≤,P (X, y) = ϵm(X, y)−
∑
z ̸∈X

m≤z≤y

µP,≤(z, y) (A.1)

where ϵm(X, y) =
∑
z∈X
z≤y
z ̸∈↑m

µP,≤(z, y), since Eq. 1.6 gives us
∑

m≤z≤y

µP,≤(z, y) = 0. Now, let us

determine from which parts the elements of {z ̸∈ X / m ≤ z ≤ y} are. First, any of these
elements belongs to a part Z from P/(S,≤)\{X}. Then, any element z of these Z parts satisfies

m ≤ z. So, we have ↓ m ⊆ ↓ z, which implies that ↓
SX ⊆

↓
SZ by definition of a level partition.

More precisely, we get ↓
SX ⊂

↓
SZ, since Z ̸= X. Thus, the only parts Z ∈ P/(S,≤) that need to

be considered in the sum of Eq. A.1 satisfy ↓
SX ⊂

↓
SZ.

From this, without any hypothesis on the level partition, we can show that η can be written
in a recursive form, but not without ϵ, which can only be computed from µ. However, if
we consider that every part Z ∈ P/(S,≤) satisfying ↓

SX ⊆
↓
SZ has a minimum, then we can

get rid of ϵ. Indeed, if X has a minimum, then every element of X is greater than m, i.e.
ϵm,≤(X, y) =

∑
z∈X
z≤y
z ̸∈↑m

µP,≤(z, y) = 0. The same goes for the rest of the recursion, hence the need

for the parts ↓
SX ⊂

↓
SZ to each have a minimum too.

Moreover, these conditions mean that their respective lower closures in S all have a supremum,
since the supremum is by definition the least upper bound. Thus, we get that the only parts
Z ∈ P/(S,≤) that need to be considered in the sum of Eq. A.1 satisfy

∨ ↓
SX <

∨ ↓
SZ, where∨ ↓

SX = m =
∧
X and

∨ ↓
SZ =

∧
Z. So, we have:

ηS,≤,P (X, y) = −
∑
z ̸∈X

m≤z≤y

µP,≤(z, y) = −
∑

Z∈P/(S,≤)

m<
∧

Z≤y

∑
z∈Z

m≤z≤y

µP,≤(z, y)

= −
∑

Z∈P/(S,≤)∧
X<

∧
Z≤y

∑
z∈Z
z≤y

µP,≤(z, y) = −
∑

Z∈P/(S,≤)∧
X<

∧
Z≤y

ηS,≤,P (Z, y)

In addition, we know from Definition 2.3.2.2 that if y ∈ min (X), i.e. y =
∧

X if X has a

minimum, then we have ηS,≤,P (X, y) = 1. ■

A.3 Theorem 2.3.4.1

Proof. For the sake of clarity, we will use the alias S = supp(f) in the following. Let
G be the set made of the minimal elements of each part of the partition G defining g, i.e.
G =

⋃
X∈G min(X). We will assume that ∨G is an upper subsemilattice of P . Let us now find

the elements of supp(f) with G.

(i) It is obvious that min(P) ⊆ G. (ii) For any elements y ∈ P and s ∈ supp(f) such that

y < s and |↓Ss\
↓
Sy| = 1, we have g(s) = g(x) + f(s) ̸= g(x), for any element x ∈ P where

y ≤ x < s. Therefore, there exists a part X ∈ G such that s ∈ min(X), i.e. s ∈ G. (iii) For any

elements y ∈ G and s ∈ supp(f) such that y < s and |↓Ss\
↓
Sy| = n, where n ≥ 2, there exists an

element s′ ∈ supp(f) such that s′ < s and s′ ̸≤ y. Thus, there is an element y′ = y ∨ s′ where

y′ ≤ s and |↓Ss\
↓
Sy

′| ≤ n− 1. If y′ ̸= s and |↓Ss\
↓
Sy

′| ≥ 2, then there is an element s′′ ∈ supp(f)
such that s′′ < s and s′′ ̸≤ y′, which means that there is an element y′′ = y′ ∨ s′′ verifying both

115

|↓Ss\
↓
Sy

′′| ≤ n − 2 and y′′ ≤ s. This upward recursion will ultimately end either because the
number of elements in the difference of lower closures in S reaches 1 (which means that s ∈ G,
given (ii)) or because it has generated s with the supremum of two lower elements.

Furthermore, from what we demonstrated up to this point, either the aforementionned element
s′ ∈ supp(f) is in G (by (i) or (ii)) or there exists an element x ∈ G such that x < s′ verifying

|↓Ss′\
↓
Sx| ≥ 2, which means that there exists an element s̃ ∈ supp(f) such that s̃ < s′ and

s̃ ̸≤ x. And again, either s̃ ∈ G or there exists an element x′ ∈ G such that x′ < s̃ verifying
|↓S s̃\

↓
Sx

′| ≥ 2. Noticing that |↓S s̃| < |
↓
Ss

′| < |↓Ss|, we know that this downward recursion will
ultimately end with an element ṡ ∈ supp(f) that is in G since the lower closure in S decreases
and will eventually contain only one element of S. Therefore, either s′ is in G or it can be
found by computing successive suprema as in (iii), starting with the supremum between ṡ and
another element of G. The same goes for s′′ and any other elements eventually encountered
in the upward recursion of (iii). Hence, all these elements can be used with y to find s again
through successive suprema. So, we get that all elements of supp(f) are in the join-closure of
G, i.e. ∨G.

We can be even more precise than this by noticing that the supremum of two minimal elements
of P associated with 0 through g cannot be an element of supp(f) that is not already in G.
Indeed, for any element m ∈ min(P), we have g(m) = f(m). So, if g(m) = 0, then f(m) = 0,
i.e. m ̸∈ supp(f). Yet, each supremum in (iii) involves at least one element of supp(f), i.e. one
element that is not both a minimal element and an element with null image through g. This
means that the supremum of two elements of M , where M = min(P)∩supp(g), if not already in
G, is either not in supp(f) or the supremum of another set of elements, where at least one is in
G\M . Thus, we would like to avoid computing any supremum of the form

∨
A, where A ⊆M ,

in our join-closure. Let Y be the set made of every supremum x∨a, where x ∈ G\M and a ∈M .
Notice that the elements of ∨(Y ∪G\M) are of the form

∨
(X ∪A), where ∅ ⊂ X ⊆ G\M and

A ⊆ M . Therefore, ∨(Y ∪G\M) contains all the elements of ∨G, except the ones that are
exclusively of the form

∨
A, where A ⊆ M . Consequently, we have supp(f) ⊆ ∨(Y ∪G\M),

which means, by definition of a closure operator, that ∨supp(f) ⊆ ∨(Y ∪G\M) ⊆ ∨G. ■

A.4 Corollary 2.3.5.1

Proof. Let G∗ be the partition of P w.r.t. the images of g such that G∗ = P/(supp(f),≤),
and let G∗ =

⋃
X∈G∗ min(X). We have G∗ = ∨supp(f) ∪ min(P), since min(P) contains

the minimal elements of the only part of P/(supp(f),≤) that is not in ↑ supp(f), if it even
exists. Adapting Theorem 2.3.4.1 to the multiplicative Möbius transform, we also have
∨supp(h− 1) ⊆ ∨G∗ = ∨(supp(f) ∪min(P)), which means that ∨(supp(h− 1) ∪min(P)) ⊆
∨(supp(f) ∪min(P)). The same reasoning can be applied to the partition G∗h = P/(supp(h − 1),≤),
leading to ∨(supp(f) ∪min(P)) ⊆ ∨(supp(h− 1) ∪min(P)). Therefore, combining all inequali-
ties, we get that ∨(supp(f) ∪min(P)) = ∨(supp(h− 1) ∪min(P)). Finally, by Property 2.3.5.1,
we have ∨supp(f) = ∨(supp(h− 1) ∪min(P)). ■

A.5 Theorem 2.3.5.1

Proof. In formal terms, the condition on h′ translates for any y ∈ P to:

h′(y) =

{
h′(y) if y = x

h(y) otherwise

116

By Eq. 2.6, we have that for any y ∈ P , g′(y) =
∏
z≤y

h′(z). We observe that h′(x) appears

in the product of g′(y) only if x ≤ y. Since all other images of h′ are equal to the ones of
h, we get Eq. 2.7. Then, Corollary 2.3.5.1 gives us ∨supp(f) = ∨(supp(h− 1) ∪min(P)) and
∨supp(f ′) = ∨(supp(h′ − 1) ∪min(P)). Moreover, notice that supp(h′ − 1) ⊆ supp(h− 1) ∪
{x}. We get ∨(supp(h′ − 1) ∪min(P)) ⊆ ∨(supp(h− 1) ∪min(P) ∪ {x}), which implies that
∨supp(f ′) ⊆ ∨(supp(f) ∪ {x}). Consequently, we know that any upper subsemilattice ∨S of P
such that ∨S ⊇ supp(f)∪ {x} can be used in Eq. 2.5 of Theorem 2.3.3.1 for both f and f ′. So,
we get for any y ∈ P :

f ′(y) =
∑
s∈∨S
s≤y

g′(s) . ηS,≤,P (s, y)

=
∑
s∈∨S
x≤s≤y

g(s) .
h′(x)

h(x)
. ηS,≤,P (s, y) +

∑
s∈∨S
s≤y
s ̸∈↑x

g(s) . ηS,≤,P (s, y)

=
h′(x)

h(x)
.
∑
s∈∨S
x≤s≤y

g(s) . ηS,≤,P (s, y) + f(y)−
∑
s∈∨S
x≤s≤y

g(s) . ηS,≤,P (s, y)

= f(y) +

[
h′(x)

h(x)
− 1

]
.
∑
s∈∨S
x≤s≤y

g(s) . ηS,≤,P (s, y)

Besides, for any s, y ∈ P where x ≤ s < y, we have {p / s < p} = {p / x ≤ s < p} and so:

ηS,≤,P (s, y) = −
∑
p∈∨S
s<p≤y

ηS,≤,P (p, y) = −
∑
p∈↑x
p∈∨S
s<p≤y

ηS,≤,P (p, y) = ηS,≤,↑x(s, y),

where ↑ x is the upper closure of x in P . Therefore, the expression
∑
s∈∨S
x≤s≤y

g(s) . ηS,≤,P (s, y) is

in fact the Möbius transform of g in (↑ x,≤). ■

A.6 Corollary 2.4.2.1

Proof. For any mass function m such that C ∈ supp(m), where C =
⋃

supp(m), Corol-
lary 2.3.5.1 implies that ∧supp(m)\{C} = ∧supp(wC − 1)\{C}, where wC is the inverse of the
multiplicative Möbius transform of q in (↓ C,⊇) and q is the zeta transform of m in (↓ T ,⊇),
where T ⊇ C. In particular, suppose C ̸= Ω and let w′ be the inverse of the multiplicative
Möbius transform of q′ in (2Ω,⊇), where q′ corresponds to m′ and m′ is equal to m everywhere,
except that m′(C) = 0 and m′(Ω) = m(C). We have ∧supp(w′ − 1)\{Ω} = ∧supp(m′)\{Ω} =
∧supp(m)\{C} = ∧supp(wC − 1)\{C}.

Furthermore, q′(Ω) = q(C) and for any element y ⊆ C, we have q′(y) = q(y), which implies
that for any element s ∈ ∧supp(wC − 1)\{C}, we have q′(y) = q(y). This means that wC(C) =
q(C)−1 = w′(Ω) and that by Theorem 2.3.3.1, for any element y ⊂ C, we have wC(y) =∏
s∈∧S
s⊇y

q(s)−η
S,⊇,↓a(s,y) =

∏
s∈∧S′

s⊇y

q′(s)
−η

S′,⊇,P
(s,y)

= w′(y), where S = supp(wC − 1) and S′ =

117

S\{C} ∪ {Ω} and ηS,⊇,↓C(C, y) = ηS′,⊇,P (Ω, y), since C and Ω have the same relations with

respect to the elements in ∧supp(wC − 1)\{C} and so the same role in the recursion giving η in
Eq. 2.4. ■

A.7 Proposition 2.4.3.1

Proof. Let w′ be equal to w everywhere on 2Ω, except for the image of some x ∈
∧supp(w − 1)\{Ω}. Also, let m′ and q′ be the functions corresponding to w′ so that they
satisfy Eq. 2.6 in place of respectively m and q. For any element y ∈ 2Ω, Theorem 2.3.5.1 gives
us:

q′(y) =

{
w(x)
w′(x) .q(y) if x ⊇ y

q(y) otherwise

and

m′(y) =


0 if y ̸∈ ∧S

m(y) +
[

w(x)
w′(x) − 1

]
.m↓x(y) if x ⊇ y

m(y) otherwise

, (A.2)

where ∧S ⊇ supp(m) and m↓x : ↓ x → R is the Möbius transform of q in (↓ x,⊇). However,
in DST, we have to respect a normalization constraint on m′ and w′ that is imposed by Eq.
2.9 and Eq. 2.14. Obviously, looking at the normalized product, we see that the only way to
normalize w′ without changing any other image of 2Ω\{Ω} through w is by changing the one

on Ω. More precisely, the normalized equivalent w′ of w′ must satisfy w′(Ω) = w(x)
w′(x) .w(Ω). So,

taking back Eq. A.2, but this time updating m′ to get its normalized equivalent m′ with x = Ω,
which implies that ↓ x = ↓ Ω = 2Ω, we have for any y ∈ 2Ω:

m′(y) = m′(y) +

[
w′(Ω)

w′(Ω)
− 1

]
.m′(y) =

w′(Ω)

w′(Ω)
.m′(y) =

w′(x)

w(x)
. m′(y)

Discarding m′ as it is not a mass function (does not satisfy Eq. 2.9), we consider directly m′

as the result of the modification of one image in the conjunctive decomposition. Hence Eq.
2.16 and Eq. 2.17 with ∧S ⊇ supp(m). In addition, since 2Ω has a maximum Ω, we have
∧supp(m) = ∧supp(w − 1) ∪ {Ω} by Corollary 2.3.5.1.

Finally, remark that m↓x is a mass function, since it is the Möbius transform, in a reduced
subset, of q, which corresponds to the mass function m. It is the same projection process as the
one producing m↓C in section 2.4.2. ■

118

Appendix B

Proofs about the Efficient Möbius
Transformations

B.1 Proposition 3.3.1.1

Proof. Let us define LS as the set containing the join of all combinations of iota elements of
S, in addition to

∧
. Formally, we have:

LS =
{∨

X / X ⊆ ι(S), X ̸= ∅
}
∪
{∧

S
}
.

By construction, we already know that the join of any number (except 0) of elements from LS

is also in LS . So, LS is an upper-subsemilattice of P . In the following, we will prove that it is
also a lower-subsemilattice of P .

But, before anything, notice that
∧
·↑S : P → P is a closure operator, i.e. for any elements

x, y ∈ P , we have:

x ≤
∧

x↑S (B.1)

x ≤ y ⇒
∧

x↑S ≤
∧

y↑S (B.2)∧(∧
x↑S
)↑S

=
∧

x↑S (B.3)

Now, consider the meet of two iota elements ι1 ∧ ι2, where ι1, ι2 ∈ ι(S). By definition, there
are two join-irreducible elements x, y ∈ ∨I(P) such that ι1∧ ι2 =

∧
x↑S ∧

∧
y↑S =

∧
(x↑S ∪y↑S).

Let us note δ =
∧
(x↑S ∪ y↑S). Since S ⊇ x↑S ∪ y↑S , we know that

∧
S ≤ δ. If δ =

∧
S, then

δ ∈ LS . Otherwise, given that P is a lattice, we know that δ is equal to the join of all the
join-irreducible elements of P that are less than δ, i.e.

∨
δ↓

∨I(P) = δ.

For all join-irreducible elements i ∈ δ↓
∨I(P), we have i ≤ δ. By Eq. (B.2), we also have∧

i↑S ≤
∧
δ↑S . Moreover, we know that δ↑S ⊇ x↑S ∪ y↑S because δ =

∧
(x↑S ∪ y↑S). This

implies that we have
∧
δ↑S ≤ δ, and so

∧
i↑S ≤ δ.

In addition, by Eq. (B.1), we get that i ≤
∧

i↑S , which means that, for all join-irreducible
elements i ∈ δ↓

∨I(P), we have i ≤
∧
i↑S ≤ δ. Therefore, combined with the fact that

∨
δ↓

∨I(P) =
δ, we finally obtain that

∨
δ↓ι(S) = δ. In plain English, this means that δ is equal to the join

119

of all the iota elements of S that are less than δ. So, by definition of LS , we get that δ ∈ LS .
Thus, the meet of two iota elements ι1 ∧ ι2, where ι1, ι2 ∈ ι(S), is in LS .

It only remains to consider the meet of two arbitrary elements of LS , i.e. x ∧ y, where
x, y ∈ LS . Notice that if x =

∧
S or y =

∧
S, then x ∧ y =

∧
S ∈ LS . Otherwise, it can be

decomposed as follows:

x ∧ y =
(∨

x↓ι(S)
)
∧
(∨

y↓ι(S)
)

Since P follows the distributive law Eq. (3.3), we can rewrite this equation as:

x ∧ y =
∨

ι1∈x↓ι(S)

∨
ι2∈y↓ι(S)

(ι1 ∧ ι2)

The meet of two iota elements of S being in LS , we get that x∧y is equal to the join of elements
that are all in LS . As we already established that LS is an upper-subsemilattice of P , we get
that the meet of two arbitrary elements of LS is also in LS . Thus, LS is a lower-subsemilattice
of P as well and therefore a sublattice of P .

In addition, notice that for all element s ∈ S and for all i ∈ s↓
∨I(P), we have by construction

i ≤
∧
i↑S ≤ s. Therefore, P being a lattice, we have s =

∨
s↓

∨I(P) =
∨
s↓ι(S), i.e. s ∈ LS .

Besides, if
∧
P ∈ S, then it is equal to

∧
S, which is also in LS by construction. So, S ⊆ LS .

It follows that the meet or join of every nonempty subset of S is in LS , i.e. MS ⊆ LS and
JS ⊆ LS , where MS is the smallest meet-closed subset of P containing S and JS is the smallest
join-closed subset of P containing S. Furthermore, iota elements are defined as the meet of a set
of elements of S, which implies that they are necessarily all contained in MS , i.e. ι(S) ⊆ MS .
This means that we cannot build a smaller sublattice of P containing S. Therefore, LS is the
smallest sublattice of P containing S.

Finally, let us verify that all iota elements are join-irreducible elements of LS . For any join-
irreducible element i ∈ ∨I(P), assume there are two distinct elements x, y ∈ LS such that
x <

∧
i↑S and y <

∧
i↑S . This implies by Eq. (B.2) and (B.3) that

∧
x↑S ≤

∧
i↑S and∧

y↑S ≤
∧
i↑S . Moreover, if i ≤ x and i ≤ y, then by Eq. (B.2), we get that

∧
i↑S ≤

∧
x↑S and∧

i↑S ≤
∧
y↑S , which means that x = y =

∧
i↑S . This contradicts the fact that x ̸= y. Thus,

we get that i ̸≤ x and i ̸≤ y. By Lemma 3.3.1.1, this implies that i ̸≤ x ∨ y. Since i ≤
∧
i↑S ,

we have necessarily x ∨ y ̸=
∧
i↑S and so x ∨ y <

∧
i↑S . Therefore,

∧
i↑S is a join-irreducible

element of LS , i.e. ι(S) is the set containing only the join-irreducible elements of LS . ■

B.2 Theorem 3.3.2.1

Proof. Consider the sequence (Hk)k∈J1,nK, where Hk = (L,Ek) and:

Ek =
{
(x, y) ∈ L2 / y = x ∨ in+1−k

}
.

By definition, for all k ∈ J1, nK and ∀(x, y) ∈ Ek, we have x, y ∈ L and x ≤ y, i.e. (x, y) ∈ E≤.
Reciprocally, every arrow e ∈ E≤ can be decomposed as a unique path (e1, e2, . . . , en) ∈ A1 ×
A2 × · · · ×An, where Ak = Ek ∪ IP :

Similarly to the FMT, this sequence builds unique paths simply by generating the whole
lattice L step by step with each join-irreducible element of L. However, unlike the FMT, the
join-irreducible elements of L are not necessarily atoms. Doing so, pairs of join-irreducible
elements may be ordered, causing the sequence to skip or double some elements. And even if
all the join-irreducible elements of L are atoms, since L is not necessarily a Boolean lattice, the
join of two atoms may be greater than a third atom (e.g. if L is the diamond lattice), leading

120

to the same issue. Indeed, it is easy to build a path between two elements x, y of L such that
x ≤ y: At step 1, we take the arrow (x, x ∨ in) if in ≤ y (we take the identity arrow (x, x)
otherwise). At step 2, we take the arrow (p, p ∨ in−1) if in−1 ≤ y, where p = x ∨ in or p = x
depending on whether or not in ≤ y, and so on until we get to y. Obviously, we cannot get to
y if we take an arrow (p, p ∨ i) where i ̸≤ y. So, any path from x to y only consists of arrows
obtained with join-irreducible elements that are less than y. But, are they all necessary to reach
y from x? Let ik be a join-irreducible element such that ik ≤ y. This join-irreducible element is
only considered in En+1−k. Suppose we do not take the arrow at step n+ 1− k, i.e. we replace
it by an identity arrow (p, p), where p was reached through a path from x with arrows at steps
1 to n− k. Since L is a distributive lattice, and since its join-irreducible elements are ordered
such that ∀ij , il ∈ ∨I(L), j < l ⇒ ij ̸≥ il, we have by Corollary 3.3.1.1 that for any k ∈ J1, nK,
ik ̸≤

∨ ∨I(L)k−1. So, if ik ̸≤ p, then by Lemma 3.3.1.1, we also have ik ̸≤ p ∨
∨ ∨I(L)k−1.

Since ∨I(L)k−1 contains all join-irreducible elements considered after step n+1−k, this implies
that there is no path from p to an element greater than ik. Yet, ik ≤ y. Thus, if ik ̸≤ p, then
y can only be reached from p through a path containing the arrow (p, p ∨ ik). Otherwise, if
ik ≤ p, then p = p∨ ik, which means that only an identity arrow can be taken at step n+1− k
anyway. Either way, there is only one arrow that can be taken at step n+1− k to build a path
between p and y. All join-irreducible elements less than y must be used to build a path from
x to y. Thereby, this path is unique, meaning that Theorem 3.2.3.1 is satisfied. The sequence
(Hk)k∈J1,nK computes the same zeta transformations as G<. ■

B.3 Theorem 3.3.2.2

Proof. Consider the sequence (Hk)k∈J1,nK, where Hk = (M,Ek) and:

Ek =
{
(x, y) ∈M2 / x =

∧
(y ∨ ik)

↑M and x ≤ y ∨
∨

ι(M)k

}
,

where ι(M)k = {i1, i2, . . . , ik}.

By definition, for all k ∈ J1, nK and ∀(x, y) ∈ Ek, we have x, y ∈M and x ≥ y, i.e. (x, y) ∈ E≥.
Reciprocally, every arrow e ∈ E≥ can be decomposed as a unique path (e1, e2, . . . , en) ∈ A1 ×
A2 × · · · ×An, where Ak = Ek ∪ IP :

Recall the procedure, described in Theorem 3.3.2.1, that builds unique paths simply by gener-
ating all elements of a finite distributive lattice L ⊇M , based on the join of its join-irreducible
elements, step by step. Here, the idea is to do the same, except that we remove all elements
that are not in M . Doing so, the only difference is that the join y ∨ ik of an element y ∈ M
with a join-irreducible element ik ∈ ι(M) of this hypothetical lattice L may not be in M . How-
ever, thanks to the meet-closure of M , we can “jump the gap” between two elements y and p
of M , should they be separated by elements of L\M . Indeed, for all join-irreducible element
ik ∈ ι(M), if x ≥ y ∨ ik, then since M is meet-closed and x ∈ M , there is a unique element
p ∈M that we call proxy such that p =

∧
(y ∨ ik)

↑M . In complement, the synchronizing condi-
tion p ≤ y ∨

∨
ι(M)k ensures the unicity of this jump, and so the unicity of the path between

any two elements x and y of M .

Finding a path from x to y is easy: take all iota elements less than x, and simply compute
successive joins with them, starting from y. At step n, we take the arrow (

∧
(y ∨ in)

↑M , y) if
in ≤ x, and (y, y) otherwise. At step n − 1, we take the arrow (

∧
(p ∨ in−1)

↑M , p) if in−1 ≤ x,
where p =

∧
(y ∨ in)

↑M or p = y, depending on whether or not in ≤ x. Proceeding as such
until x is reached guarantees the existence of a path, since the synchronizing condition is always
satisfied. Then, the question is: Are there other paths?

121

Obviously, for some p ∈ M such that x ≥ p, no path from x to y can contain arrows
(
∧
(p∨ i)↑M , p) if i ̸≤ x. Thus, it contains only arrows corresponding to joins with iota elements

that are less than x. Next, let us consider some element p ∈ M . If ik−1 ≤ p, then p =∧
(p ∨ ik−1)

↑M , which means that only an identity arrow (p, p) can be taken at step k − 1.
Otherwise, if ik−1 ̸≤ p, then the arrow (

∧
(p ∨ ik−1)

↑M , p) can only exist in the sequence if∧
(p∨ik−1)

↑M ≤ p∨
∨
ι(M)k−1. We know by Corollary 3.3.1.1 that ik ̸≤

∨
ι(M)k−1. By Lemma

3.3.1.1, this implies that if ik ̸≤ p, then ik ̸≤ p∨
∨
ι(M)k−1, which means that ik ̸≤

∧
(p∨ik−1)

↑M .

Through the same reasoning, this means that ik ̸≤
∧(∧

(p ∨ ik−1)
↑M ∨ ik−2

)↑M
. In fact, by

recurrence, we have ik ̸≤
∧(
· · ·
∧(∧

(p ∨ ik−1)
↑M ∨ ik−2

)↑M · · · ∨ i1

)↑M
. Thus, if ik ̸≤ p, then

no element greater than ik can be at the tail of a path leading to p through arrows of the
sequence. This means that on a path from x to y, if ik ≤ x, then at step k, either ik ≤ p
(i.e. we can only take the identity arrow (p, p)) or ik ̸≤ p, which implies that we must take
the arrow (

∧
(p ∨ ik)

↑M , p). This implies that all iota elements less than x must be used in the
joins corresponding to the arrows of the path from x to y. Therefore, the path described above
is unique, which satisfies Theorem 3.2.3.1. The sequence (Hk)k∈J1,nK computes the same zeta
transformations as G>. ■

122

Appendix C

Implementation of the Efficient
Möbius Transformations (EMT)

We present in this section evidence-based algorithms for the computation of DST transfor-
mations such as the commonality function q and the implicability function b, as well as their
inversions, namely the mass function m and the conjunctive and disjunctive weight functions w
and v. All these algorithms have better complexities than the FMT, i.e. less than O(|Ω|.2|Ω|).

We implemented these algorithms as a general-purpose C++ evidence-based framework along
with combination rules from DST. We plan to transpose this implementation as a Python
package in the near future to ease its usage. Code and implementation details can be found
at [85].

C.1 Data structure

C.1.1 Overview

The core of our implementation uses the class bitset (a contiguous sequence of bits) from the
standard library, along with a special dynamic binary tree of our design presented in section
C.1.3. This tree allows us to search for supersets or subsets without having to consider all sets.
For simple look-ups, i.e. just to get the value associated with a set, we use Hashmaps, since
they feature constant time complexities for look-up and insertion.

Each representation of evidence (mass function, commonality function, implicability function,
conjunctive weight function, disjunctive weight functions, etc) has its own class. A mass function
is an object containing a tree of values different from 0, i.e. corresponding to focal sets. It
inherits the abstract class mobius transform which simply defines the behavior of storing values
such as focal sets. An object inheriting this abstract class can be created either directly, by
providing a key-value object such as an Hashmap or a tree, or indirectly, through inversion
of a given zeta transform and a given order relation (⊆ or ⊇). It also features methods to
remove negligeable values and renormalize. The conjunctive and disjunctive weight functions
also inherit this abstract class. For these last classes, all set that is not present in their tree is
associated with 1.

Other representations inherit the abstract class zeta transform. This abstract class defines
the behavior of computing focal points from focal sets, given some order relation, and storing

123

∅

{a}

{b} {a, b}

{c} {a, c}{b, c} {a, b, c}

0 1

0 1 0 1

a

b

c

2{a}

2{a,b}

2{a,b,c}

singletons sub-FODs

Figure C.1: Illustration depicting our data structure for powerset functions on the frame of
discernment Ω = {a, b, c}. It is a binary tree with values on nodes and leaves. For the sake
of clarity, the structure is shown as if it was static, where all elements from 2Ω are considered
special elements. We see clearly that it reproduces the natural generation of the powerset
lattice, encapsulating the powerset of every {ω1, . . . , ωn} in the powerset of {ω1, . . . , ωn+1}. As a
consequence, the search for all singletons and all these sub-FODs can be restrained respectiveley
to the left and right chain of nodes.

{a}

{c} {b, c} {a, b, c}

0

1

0 1

a

b

c

Figure C.2: Illustration depicting our data structure for powerset functions on the frame of
discernment Ω = {a, b, c}. Here, special sets are {a}, {c}, {b, c} and {a, b, c}. The blank node is
a disjunction node.

their values. It also keeps its mobius transform object in memory for eventual additional pro-
jections, i.e. to get the value associated with other sets than focal points. An object inheriting
this abstract class can be created either directly, by providing another zeta transform object,
or indirectly, by providing an object inheriting the mobius transform abstract class, an order
relation (⊆ or ⊇) and an operation (+ or ×). For the latter, you may also provide a specific
computation scheme (without structure, as a semilattice or as a lattice). This class also features
methods to find the value associated with a non-focal point. The commonality, implicability
and plausibility functions inherit this abstract class.

C.1.2 Frame of discernment

A frame of discernment (FOD), noted Ω, is represented as an object containing an array of
labels and a Hashmap that enables one to find the index associated with a particular label.

124

∅ {a}{b} {a, b}{c} {a, c}{b, c} {a, b, c}

0 1

0 1 0 1

0 1 0 1 0 1 0 1

a

b

c

2{c}

2{b,c}

2{a,b,c}

Figure C.3: Same example as in Fig. C.1 with an analogous data structure proposed by Wilson
[44]. It is a binary tree in which values are only assigned to terminal leaves, not intermediate
nodes. As in Fig. C.1, for the sake of clarity, the structure is shown as if it was static, where
all elements from 2Ω are considered special elements.

C.1.3 Powerset function

Our data structure for powerset functions (i.e. functions that assign values to elements of 2Ω) is
based on the representation of sets as binary strings, as in [44] and [86], and on the binary tree
depicted in Fig. C.1. It is a dynamic powerset binary tree, only storing nodes corresponding to
special sets. All other set not present in the tree is assumed to be associated with a fixed value
(i.e. 0 for a mass function, 1 for a weight function). Thus, special sets include focal sets but
may not all be focal sets, as is the case with the lattice support. Each node in the tree contains
a boolean value to indicate whether it has been set to a value or not, an eventual value, pointers
to parent and children, its depth index and a bitset representing an element from 2Ω.

The creation of this tree is incremental, starting with the singleton {ω1}, where Ω =
[ω1, . . . , ωn], as root, whether it is a special set or not. The next special set is inserted to
its right or left given that it contains ω1 or not. In fact, for a pair (A, value), where A is a
special set, this procedure will assign value to a node of depth equal to the greatest index in
J1, nK corresponding to an element of A. This node is found following the binary code that
represents A to navigate the tree until the last element index is encountered in A, i.e. until we
reach the last bit set to 1 in A. So, for some other special set B, if B contains all elements of
A, in addition to other ones including one of greater maximum index, then B is inserted at the
right of A. If B has all elements of A, in addition to other ones not including one greater than
the maximum index of A, then B is not on the same branch as A and will be assigned to a node
of same depth as A. All supersets of A have a depth equal to or greater than its. Of course,
this also means that all subsets of A have a depth equal to or less than its. Moreover, sets that
are at the left of A are not contained in A and do not contain A, since they have all elements
of A but the one of greatest index, in addition to others of greater index than the maximum
index of A. Furthermore, if B diverges with A before its depth, it may be necessary to create a
disjunction. A disjunction node (i.e. a node that does not hold any value) is inserted to split
the branch in two at the depth equal to the first element index not common to both A and B.
The one that does not contain it will be placed at the left of this disjunction node, and the one
that does will be placed at its right. This behavior is illustrated in Fig. C.2.

125

Algorithm 2: Computation of the focal points associated with (S,≤), where ≤ ∈ {⊆
,⊇}.
Input: S, ≤
Output: F , FMap

F ← S;
FMap ← Hashmap<bitset, float>;
for i = 1 to |S| do

FMap[S[i]]← 0;

if ≤ = ⊆ then
// | is the bitwise OR operator

· ← |;
else

// & is the bitwise AND operator

· ← &;

for i = 1 to |S| do
for ii = i+ 1 to |F | do

A← F [ii] · S[i];
if A ̸∈ FMap.keys() then

append A to F ;
FMap[A]← 0;

A similar binary tree for powerset functions has been proposed in [44]. It is illustrated in
Fig. C.3. While both our binary tree and theirs are dynamic, theirs does not exploit depths
and requires to store 2F − 1 elements, where F is the number of special elements to store. Ours
needs to store at most F + F

2 elements, and only F if every disjunction node between two special
sets is also a special set (or if there is simply no disjunction between special sets, e.g. in the
consonant case). Furthermore, it features interesting properties like the fact that the search for
all singletons and some sub-FODs can be restrained respectiveley to the left and right chains of
nodes. As mentioned above, having depths allows us to exploit the fact that subsets can only
be of lower depth, while supersets can only be of greater depth. This form of powerset binary
tree also speeds up the search for any value since we have to check at most n booleans to find
a value, where n ∈ [1, |Ω|], while the version of [44] always have to check n booleans.

Recently, another similar structure to ours has been proposed in [87,88]. However, their data
structure is not dynamic, i.e. it stores all subsets instead of only special sets. Doing so, they
do not have to store a binary string in each node, but they always have an overall exponential
spatial complexity (and of course, a time complexity at least exponential accordingly).

In the case of an infinite FOD, the idea is to represent it as an ever changing FOD containing
a special element ω∞ as first element that symbolizes the rest of the FOD. As we know that
ω∞ will always be an element of this FOD, having {ω∞} as the root node of its powerset binary
tree reduces the number of operations of reorganization after addition or removal of any FOD
element.

126

C.2 Procedures

C.2.1 Computation of focal points

In this section, we present algorithms computing all focal points, given focal sets.

General procedure

Here, we apply Property 2.3.4.1 to the case where P = 2Ω, leading to Algorithm 2. For a set
S ⊆ 2Ω, e.g. supp(f), this algorithm computes its focal points oS, where o ∈ {∧,∨} with a
complexity less than O(|S| . |oS|) in time and O(|oS|) in space.

Linear analysis

There are some cases in which a linear pre-analysis of complexity O(|S|) both in time and space
is sufficient to find all focal points. This analysis focuses on the progressive union of all focal sets
in a linear run. Formally, let S\{Ω} = {A1, A2, . . . , AK} and S\{Ω}k = {A1, A2, . . . , Ak}. This
analysis focuses on Ii = Ui−1 ∩ Ai such that i ∈ J2,KK, and Ui−1 =

⋃
S\{Ω}i−1 and I1 = A1.

More precisely, we have

Ii = Ui−1 ∩Ai

= (
⋃

S\{Ω}i−1) ∩Ai

=
⋃

F∈{A1,...,Ai−1} (F ∩Ai) .

In other words, these intersections Ii contain all focal points based on pairs of focal sets.

In most cases, without testing each pair of focal sets, we cannot know which focal points are
generated based solely on Ii since several combinations of sets in 2Ii can lead to Ii as union.
For example, if Ω = {a, b, c, d} and S\{Ω} = {{a, b}, {a, c}, {b, c, d}}, then U2 = {a, b, c} and
I3 = {a, b, c} ∩ {b, c, d} = {b, c}. Yet, {b, c} is not a focal point. It is the result of the union of
the focal points {a, b} ∩ {b, c, d} = {b} and {a, c} ∩ {b, c, d} = {c}.

However, there are two special cases in which we know that Ii is a focal point: (a) if |Ii| = 0,
then 2Ii = {Ii}, and (b) if |Ii| = 1, then 2Ii = {Ii, ∅}.

So, if ∀i ∈ J2,KK, |Ii| = 0, then ∀F1, F2 ∈ S\{Ω}, F1 ∩ F2 = ∅. This is the quasi-Bayesian
case that has already been treated in Proposition 1 of [23]. By definition of this case, we have
∀F ∈ S\{∅,Ω}, F ↑∧S = {Ω} and the only possible focal point other than the focal sets is ∅,
i.e. ∧S\{∅} = S\{∅}. This means that for any powerset function f such that supp(f) ⊆ S,
the computation of its zeta and Möbius transforms in (2Ω,⊇) is always O(|supp(f)|), where
|supp(f)| ≤ |Ω|+ 2.

In addition, this analysis points to a slightly more general case that contains the quasi-
Bayesian one in which ∀i ∈ J2,KK, |Ii| ≤ 1. Indeed, when |Ii| = 1, we have 2Ii = {Ii, ∅}, which
means that all focal points composing Ii are in {Ii, ∅} and at least one of them is the singleton
Ii, since ∅ is the neutral element for the union of sets. Also, the only new focal point that could
be generated based on the intersection of the singleton Ii with another focal point is ∅.

Algorithm 3 sums up this procedure for ∧S. This linear analysis can be performed for the
dual order ⊆ as well, focusing on S\{∅} = {A1, A2, . . . , AK}, with Ii = Ui−1 ∪ Ai such that
i ∈ J2,KK, and Ui−1 =

⋂
S\{∅}i−1 and I1 = A1. This dual procedure is provided by Algorithm

4.

127

Algorithm 3: Linear computation of ∧S based on S.

Input: S\{Ω} = {A1, A2, . . . , AK}
Output: ∧S, is almost bayesian
∧S ← S;
U ← A1;
is almost bayesian← True;
for i = 2 to K do

I ← U ∩Ai;
if |I| > 1 then

is almost bayesian← False;
break;

else if |I| = 1 then
if I ̸∈ ∧S then

append I to ∧S;

if ∅ ̸∈ ∧S then
append ∅ to ∧S;

U ← U ∪Ai;

Algorithm 4: Linear computation of ∨S based on S.

Input: S\{∅} = {A1, A2, . . . , AK}
Output: ∨S, is almost bayesian
∨S ← S;
U ← A1;
is almost bayesian← True;
for i = 2 to K do

I ← U ∪Ai;
if |I| < |Ω| − 1 then

is almost bayesian← False;
break;

else if |I| = |Ω| − 1 then
if I ̸∈ ∨S then

append I to ∨S;

if Ω ̸∈ ∨S then
append Ω to ∨S;

U ← U ∩Ai;

128

C.2.2 Computation of iota elements

Computation of the iota elements (See Proposition 3.3.1.1) and dual iota elements (See Propo-
sition 3.3.1.2) of S are presented respectively in Algorithms 5 and 6.

Algorithm 5: Computation of ι(S).

Input: S
Output: I
foreach ω ∈ Ω do

i← Ω;
foreach F ∈ S, such that F ⊇ {ω} do

included← True;
i← i ∩ F ;
if i = {ω} then

break;

if included then
append i to I;

Algorithm 6: Computation of ι(S).

Input: S
Output: I
foreach ω ∈ Ω do

i← ∅;
foreach F ∈ S, such that F ⊆ Ω\{ω} do

included← True;
i← i ∪ F ;
if i = Ω\{ω} then

break;

if included then
append i to I;

C.2.3 Computation of the lattice support

Computation of the upper and lower closure in the lattice support of S (See Proposition 3.3.1.3)
are presented respectively in Algorithms 7 and 8.

C.2.4 Computation of DST transformations in the consonant case

The consonant case has already been treated in Proposition 2 of [23]. A consonant structure of
evidence is a nested structure where each focal set is contained in every focal set of greater or
equal cardinality. Formally, ∀Fi, Fj ∈ F , if |Fi| ≤ |Fj | then Fi ⊆ Fj . By definition, there can be
only one focal set of each cardinality in J0, |Ω|K, each of them being a subset of every focal set of
greater cardinality. This means that there can be no focal point other than focal sets and that
each focal point has a proxy focal point. Let us note |F1| < |F2| < · · · < |FK | the focal elements
in S. To check if this structure is consonant, we simply have to check that ∀i ∈ J1,K − 1K,
Fi ⊂ Fi+1. This analysis is performed by Algorithm 9.

129

Algorithm 7: Computation of S↑LS based on ι(S) and S.

Input: ι(S), S
Output: L
L← S;
foreach i ∈ ι(S) do

foreach A ∈ L do
B ← A ∪ i;
if B ̸∈ L then

append B to L;

Algorithm 8: Computation of S↓LS based on ι(S) and S.

Input: ι(S), S
Output: L
L← S;
foreach i ∈ ι(S) do

foreach A ∈ L do
B ← A ∩ i;
if B ̸∈ L then

append B to L;

Algorithms 10 to 17 present procedures in the consonant case to compute the following trans-
formations:

• m to b,
• b to m,

• m to q,
• q to m,

• b to v,
• v to b,

• q to w,
• w to q.

Their complexity in time is min [O(|Ω|), O (|S|. log (|S|))] (which corresponds to the complexity
of the sorting algorithm used on S). Their space complexity is O(|S|).

Algorithm 9: Consonance check.

Input: S
Output: is consonant
sort S such that S = {F1, F2, . . . , FK}, where |F1| ≤ |F2| ≤ · · · ≤ |FK |;
is consonant← True;
for i ∈ J1,K − 1K do

if Fi ̸⊆ Fi+1 then
is consonant← False;
break;

C.2.5 Computation of DST transformations in a semilattice

Algorithms 18 to 25 present procedures using ∧S or ∨S to compute the following transformations:

130

• m to b,
• b to m,

• m to q,
• q to m,

• b to v,
• v to b,

• q to w,
• w to q.

They all use the sequences of graphs of Theorem 3.3.2.2 and Corollary 3.3.2.7. Their com-
plexity in time is O(I(S).|oS|.ϵ), where I ∈ {ι, ι} and o ∈ {∧,∨} and where ϵ represents the
average number of operations required to “bridge a gap” (See Theorem 3.3.2.2). This is always
less than O(|Ω|.2Ω). Their space complexity is O(|oS|).

C.2.6 Computation of DST transformations in a lattice

The general procedure to compute oS is less than O(|S|.|oS|). But, if one wishes to be certain
that our algorithms are at least as efficient as the FMT, i.e. at most O(|Ω|.2|Ω|), then one has
to look at |S|. Indeed, if O(|S|) ≤ O(|Ω|) (e.g. |S| < 10.|Ω|), then O(|S|.|oS|) ≤ O(|Ω|.2|Ω|).
Otherwise, one can rely on the lattice support LS, since ι(S) can be computed in less than
O(|Ω|.|S|) with Algorithm 5 and is then used to compute oS in O(ι(S).|LS|) in Algorithms 7
and 8, where |ι(S)| ≤ |Ω|.

Algorithms 26 to 33 present procedures using LS (more precisely, the upper and lower closures

S↑LS and S↓LS) to compute the following transformations:

• m to b,
• b to m,

• m to q,
• q to m,

• b to v,
• v to b,

• q to w,
• w to q.

They all use the sequences of graphs of Theorem 3.3.2.1 and its corollaries. Their complexity
in time is less than O(I(S).|LS|), where I ∈ {ι, ι} and o ∈ {∧,∨}, which is always less than
O(|Ω|.2|Ω|). Their space complexity is less than O(|LS|).

C.2.7 Computation of DST transformations independently from Ω

If supp(f) is almost Bayesian or if |Ω| happens to be considerable to the point that one would
like to compute the previous DST transformations independently from |Ω|, Algorithms 34 to
41 present procedures of time complexities in [O(|oS|), O(|oS|2)]. Their complexity in space is
O(|oS|). They present procedures for the following transformations:

• m to b,
• b to m,

• m to q,
• q to m,

• b to v,
• v to b,

• q to w,
• w to q.

Fig. C.4 offers a decision tree to help the reader in choosing the right algorithm for their
case. Of course, this decision tree can be implemented as an algorithm in order to create a
unique general procedure automatically choosing the type of algorithm to use, no matter the
DST transformation.

131

Linear analysis
(section C.2.1)

is almost bayesian

is consonant

Use Alg. from
section C.2.4

O(S) ≤ O(|Ω|)
(e.g. S < 10.|Ω|)

Compute oS
(section C.2.1)

O(|oS|) ≤ O(|Ω|)
(e.g. |oS| < 10.|Ω|)

Use Alg. from
section C.2.7

Use oS and I(S)
(section C.2.5)

Use LS and I(S)
(section C.2.6)

O(|I(S).|LS|)

min [O(|Ω|), O (|S|. log (|S|))]

∈
[
O(S), O(|oS|2)

]
O(|I(S)|.|oS|.ϵ)

no yes

no

no

yes

yes

yes

no

Figure C.4: Decision tree for the choice of which algorithms of section C to use. Of course, this
decision tree can be implemented as an algorithm in order to create a unique general proce-
dure automatically choosing the type of algorithm to use, no matter the DST transformation.
Diamond nodes represent Boolean tests. Rectangle nodes represent the chosen action. Finally,
terminal nodes (leaves) indicate the final time complexity of the whole procedure, including the
computation of any DST transformation, where o ∈ {∧,∨} and I ∈ {ι, ι}. In particular, when
is almost Bayesian is true, the complexity of the whole procedure is O(S). Notice that all these
complexities are less than O(|Ω|.2|Ω|).

132

Algorithm 10: Computation of {b(B) / B ∈ S } based on {m(B) / B ∈ S } in the
consonant case.
Input: {m(B) / B ∈ S }, is consonant, S = {F1, F2, . . . , FK}, where

|F1| ≤ |F2| ≤ · · · ≤ |FK |
Output: {b(B) / B ∈ S }
if is consonant then

b(F1)← m(F1);
for i = 2 to K do

b(Fi)← m(Fi) + b(Fi−1);

Algorithm 11: Computation of {m(B) / B ∈ S } based on {b(B) / B ∈ S } in the
consonant case.
Input: {b(B) / B ∈ S }, is consonant, S = {F1, F2, . . . , FK}, where

|F1| ≤ |F2| ≤ · · · ≤ |FK |
Output: {m(B) / B ∈ S }
if is consonant then

m(F1)← b(F1);
for i = 2 to K do

m(Fi)← b(Fi)− b(Fi−1);

Algorithm 12: Computation of {q(B) / B ∈ S } based on {m(B) / B ∈ S } in the
consonant case.
Input: {m(B) / B ∈ S }, is consonant, S = {F1, F2, . . . , FK}, where

|F1| ≤ |F2| ≤ · · · ≤ |FK |
Output: {q(B) / B ∈ S }
if is consonant then

q(FK)← m(FK);
for i = K − 1 to 1 do

q(Fi)← m(Fi) + q(Fi+1);

Algorithm 13: Computation of {m(B) / B ∈ S } based on {q(B) / B ∈ S } in the
consonant case.
Input: {q(B) / B ∈ S }, is consonant, S = {F1, F2, . . . , FK}, where

|F1| ≤ |F2| ≤ · · · ≤ |FK |
Output: {m(B) / B ∈ S }
if is consonant then

m(FK)← q(FK);
for i = K − 1 to 1 do

m(Fi)← q(Fi)− q(Fi+1);

133

Algorithm 14: Computation of {v(B) / B ∈ S } based on {b(B) / B ∈ S } in the
consonant case.
Input: {b(B) / B ∈ S }, is consonant, S = {F1, F2, . . . , FK}, where

|F1| ≤ |F2| ≤ · · · ≤ |FK |
Output: {v(B) / B ∈ S }
if is consonant then

v(F1)← b(F1)
−1;

for i = 2 to K do
v(Fi)← b(Fi)

−1. b(Fi−1);

Algorithm 15: Computation of {b(B) / B ∈ S } based on {v(B) / B ∈ S } in the
consonant case.
Input: {v(B) / B ∈ S }, is consonant, S = {F1, F2, . . . , FK}, where

|F1| ≤ |F2| ≤ · · · ≤ |FK |
Output: {b(B) / B ∈ S }
if is consonant then

b(F1)← v(F1)
−1;

for i = 2 to K do
b(Fi)← v(Fi)

−1. b(Fi−1);

Algorithm 16: Computation of {w(B) / B ∈ S } based on {q(B) / B ∈ S } in the
consonant case.
Input: {q(B) / B ∈ S }, is consonant, S = {F1, F2, . . . , FK}, where

|F1| ≤ |F2| ≤ · · · ≤ |FK |
Output: {w(B) / B ∈ S }
if is consonant then

w(FK)← q(FK)−1;
for i = K − 1 to 1 do

w(Fi)← q(Fi)
−1. q(Fi+1);

Algorithm 17: Computation of {q(B) / B ∈ S } based on {w(B) / B ∈ S } in the
consonant case.
Input: {w(B) / B ∈ S }, is consonant, S = {F1, F2, . . . , FK}, where

|F1| ≤ |F2| ≤ · · · ≤ |FK |
Output: {q(B) / B ∈ S }
if is consonant then

q(FK)← w(FK)−1;
for i = K − 1 to 1 do

q(Fi)← w(Fi)
−1. q(Fi+1);

134

Algorithm 18: Computation of {b(B) / B ∈ ∨S } based on {m(B) / B ∈ ∨S }.
Input: {m(B) / B ∈ ∨S }, ∨S, ι(S)
Output: {b(B) / B ∈ ∨S }
sort ι(S) such that ι(S) = {i1, i2, . . . , iK}, where |i1| ≤ |i2| ≤ · · · ≤ |iK |;
foreach A ∈ ∨S do

b(A)← m(A);

Ωcum ← Ω;
for k = K to 1 do

Ωcum ← Ωcum ∩ ik;
foreach A ∈ ∨S do

B ← A ∩ ik;
if B ̸= A then

X ← argmax
C∈B↓∨S

(|C|);

if X ̸= NULL and X ⊇ A ∩ Ωcum then
b(A)← b(A) + b(X);

Algorithm 19: Computation of {m(B) / B ∈ ∨S } based on {b(B) / B ∈ ∨S }.
Input: {b(B) / B ∈ ∨S }, ∨S, ι(S)
Output: {m(B) / B ∈ ∨S }
sort ι(S) such that ι(S) = {i1, i2, . . . , iK}, where |i1| ≤ |i2| ≤ · · · ≤ |iK |;
foreach A ∈ ∨S do

m(A)← b(A);

Ωcum ← Ω;
for k = 1 to K do

Ωcum ← Ωcum ∩ ik;
foreach A ∈ ∨S do

B ← A ∩ ik;
if B ̸= A then

X ← argmax
C∈B↓∨S

(|C|);

if X ̸= NULL and X ⊇ A ∩ Ωcum then
m(A)← m(A)−m(X);

135

Algorithm 20: Computation of {q(B) / B ∈ ∧S } based on {m(B) / B ∈ ∧S }.
Input: {m(B) / B ∈ ∧S }, ∧S, ι(S)
Output: {q(B) / B ∈ ∧S }
sort ι(S) such that ι(S) = {i1, i2, . . . , iK}, where |i1| ≤ |i2| ≤ · · · ≤ |iK |;
foreach A ∈ ∧S do

q(A)← m(A);

Ωcum ← ∅;
for k = 1 to K do

Ωcum ← Ωcum ∪ ik;
foreach A ∈ ∧S do

B ← A ∪ ik;
if B ̸= A then

X ← argmin
C∈B↑∧S

(|C|);

if X ̸= NULL and X ⊆ A ∪ Ωcum then
q(A)← q(A) + q(X);

Algorithm 21: Computation of {m(B) / B ∈ ∧S } based on {q(B) / B ∈ ∧S }.
Input: {q(B) / B ∈ ∧S }, ∧S, ι(S)
Output: {m(B) / B ∈ ∧S }
sort ι(S) such that ι(S) = {i1, i2, . . . , iK}, where |i1| ≤ |i2| ≤ · · · ≤ |iK |;
foreach A ∈ ∧S do

m(A)← q(A);

Ωcum ← ∅;
for k = K to 1 do

Ωcum ← Ωcum ∪ ik;
foreach A ∈ ∧S do

B ← A ∪ ik;
if B ̸= A then

X ← argmin
C∈B↑∧S

(|C|);

if X ̸= NULL and X ⊆ A ∪ Ωcum then
m(A)← m(A)−m(X);

136

Algorithm 22: Computation of {v(B) / B ∈ ∨S } based on {b(B) / B ∈ ∨S }.
Input: {b(B) / B ∈ ∨S }, ∨S, ι(S)
Output: {v(B) / B ∈ ∨S }
sort ι(S) such that ι(S) = {i1, i2, . . . , iK}, where |i1| ≤ |i2| ≤ · · · ≤ |iK |;
foreach A ∈ ∨S do

v(A)← b(A)−1;

Ωcum ← Ω;
for k = 1 to K do

Ωcum ← Ωcum ∩ ik;
foreach A ∈ ∨S do

B ← A ∩ ik;
if B ̸= A then

X ← argmax
C∈B↓∨S

(|C|);

if X ̸= NULL and X ⊇ A ∩ Ωcum then
v(A)← v(A)/v(X);

Algorithm 23: Computation of {b(B) / B ∈ ∨S } based on {v(B) / B ∈ ∨S }.
Input: {v(B) / B ∈ ∨S }, ∨S, ι(S)
Output: {b(B) / B ∈ ∨S }
sort ι(S) such that ι(S) = {i1, i2, . . . , iK}, where |i1| ≤ |i2| ≤ · · · ≤ |iK |;
foreach A ∈ ∨S do

b(A)← v(A)−1;

Ωcum ← Ω;
for k = K to 1 do

Ωcum ← Ωcum ∩ ik;
foreach A ∈ ∨S do

B ← A ∩ ik;
if B ̸= A then

X ← argmax
C∈B↓∨S

(|C|);

if X ̸= NULL and X ⊇ A ∩ Ωcum then
b(A)← b(A).b(X);

137

Algorithm 24: Computation of {w(B) / B ∈ ∧S } based on {q(B) / B ∈ ∧S }.
Input: {q(B) / B ∈ ∧S }, ∧S, ι(S)
Output: {w(B) / B ∈ ∧S }
sort ι(S) such that ι(S) = {i1, i2, . . . , iK}, where |i1| ≤ |i2| ≤ · · · ≤ |iK |;
foreach A ∈ ∧S do

w(A)← q(A)−1;

Ωcum ← ∅;
for k = K to 1 do

Ωcum ← Ωcum ∪ ik;
foreach A ∈ ∧S do

B ← A ∪ ik;
if B ̸= A then

X ← argmin
C∈B↑∧S

(|C|);

if X ̸= NULL and X ⊆ A ∪ Ωcum then
w(A)← w(A)/w(X);

Algorithm 25: Computation of {q(B) / B ∈ ∧S } based on {w(B) / B ∈ ∧S }.
Input: {w(B) / B ∈ ∧S }, ∧S, ι(S)
Output: {q(B) / B ∈ ∧S }
sort ι(S) such that ι(S) = {i1, i2, . . . , iK}, where |i1| ≤ |i2| ≤ · · · ≤ |iK |;
foreach A ∈ ∧S do

q(A)← w(A)−1;

Ωcum ← ∅;
for k = 1 to K do

Ωcum ← Ωcum ∪ ik;
foreach A ∈ ∧S do

B ← A ∪ ik;
if B ̸= A then

X ← argmin
C∈B↑∧S

(|C|);

if X ̸= NULL and X ⊆ A ∪ Ωcum then
q(A)← q(A).q(X);

138

Algorithm 26: Computation of {b(B) / B ∈ S↓LS } based on {m(B) / B ∈ S↓LS }.

Input: {m(B) / B ∈ S↓LS }, S↓LS , ι(S)

Output: {b(B) / B ∈ S↓LS }
sort ι(S) such that ι(S) = {i1, i2, . . . , iK}, where |i1| ≤ |i2| ≤ · · · ≤ |iK |;
foreach A ∈ S↓LS do

b(A)← m(A);

for k = K to 1 do

foreach A ∈ S↓LS do
B ← A ∩ ik;
if B ̸= A then

b(A)← b(A) + b(B);

Algorithm 27: Computation of {m(B) / B ∈ S↓LS } based on {b(B) / B ∈ S↓LS }.

Input: {b(B) / B ∈ S↓LS }, S↓LS , ι(S)

Output: {m(B) / B ∈ S↓LS }
sort ι(S) such that ι(S) = {i1, i2, . . . , iK}, where |i1| ≤ |i2| ≤ · · · ≤ |iK |;
foreach A ∈ S↓LS do

m(A)← b(A);

for k = 1 to K do

foreach A ∈ S↓LS do
B ← A ∩ ik;
if B ̸= A then

m(A)← m(A)−m(B);

Algorithm 28: Computation of {q(B) / B ∈ S↑LS } based on {m(B) / B ∈ S↑LS }.

Input: {m(B) / B ∈ S↑LS }, S↑LS , ι(S)

Output: {q(B) / B ∈ S↑LS }
sort ι(S) such that ι(S) = {i1, i2, . . . , iK}, where |i1| ≤ |i2| ≤ · · · ≤ |iK |;
foreach A ∈ S↑LS do

q(A)← m(A);

for k = 1 to K do

foreach A ∈ S↑LS do
B ← A ∪ ik;
if B ̸= A then

q(A)← q(A) + q(B);

139

Algorithm 29: Computation of {m(B) / B ∈ S↑LS } based on {q(B) / B ∈ S↑LS }.

Input: {q(B) / B ∈ S↑LS }, S↑LS , ι(S)

Output: {m(B) / B ∈ S↑LS }
sort ι(S) such that ι(S) = {i1, i2, . . . , iK}, where |i1| ≤ |i2| ≤ · · · ≤ |iK |;
foreach A ∈ S↑LS do

m(A)← q(A);

for k = K to 1 do

foreach A ∈ S↑LS do
B ← A ∪ ik;
if B ̸= A then

m(A)← m(A)−m(B);

Algorithm 30: Computation of {v(B) / B ∈ S↓LS } based on {b(B) / B ∈ S↓LS }.

Input: {b(B) / B ∈ S↓LS }, S↓LS , ι(S)

Output: {v(B) / B ∈ S↓LS }
sort ι(S) such that ι(S) = {i1, i2, . . . , iK}, where |i1| ≤ |i2| ≤ · · · ≤ |iK |;
foreach A ∈ S↓LS do

v(A)← b(A)−1;

for k = 1 to K do

foreach A ∈ S↓LS do
B ← A ∩ ik;
if B ̸= A then

v(A)← v(A)/v(B);

Algorithm 31: Computation of {b(B) / B ∈ S↓LS } based on {v(B) / B ∈ S↓LS }.

Input: {v(B) / B ∈ S↓LS }, S↓LS , ι(S)

Output: {b(B) / B ∈ S↓LS }
sort ι(S) such that ι(S) = {i1, i2, . . . , iK}, where |i1| ≤ |i2| ≤ · · · ≤ |iK |;
foreach A ∈ S↓LS do

b(A)← v(A)−1;

for k = K to 1 do

foreach A ∈ S↓LS do
B ← A ∩ ik;
if B ̸= A then

b(A)← b(A).b(B);

140

Algorithm 32: Computation of {w(B) / B ∈ S↑LS } based on {q(B) / B ∈ S↑LS }.

Input: {q(B) / B ∈ S↑LS }, S↑LS , ι(S)

Output: {w(B) / B ∈ S↑LS }
sort ι(S) such that ι(S) = {i1, i2, . . . , iK}, where |i1| ≤ |i2| ≤ · · · ≤ |iK |;
foreach A ∈ S↑LS do

w(A)← q(A)−1;

for k = K to 1 do

foreach A ∈ S↑LS do
B ← A ∪ ik;
if B ̸= A then

w(A)← w(A)/w(B);

Algorithm 33: Computation of {q(B) / B ∈ S↑LS } based on {w(B) / B ∈ S↑LS }.

Input: {w(B) / B ∈ S↑LS }, S↑LS , ι(S)

Output: {q(B) / B ∈ S↑LS }
sort ι(S) such that ι(S) = {i1, i2, . . . , iK}, where |i1| ≤ |i2| ≤ · · · ≤ |iK |;
foreach A ∈ S↑LS do

q(A)← w(A)−1;

for k = 1 to K do

foreach A ∈ S↑LS do
B ← A ∪ ik;
if B ̸= A then

q(A)← q(A).q(B);

Algorithm 34: Computation of {b(B) / B ∈ ∨S } based on {m(B) / B ∈ S }
independently from |Ω|.
Input: {m(F) / F ∈ S }
Output: {b(B) / B ∈ ∨S }
foreach B ∈ ∨S do

b(B)← m(B);
foreach F ∈ S / F ⊂ B do

b(B)← b(B) +m(F);

141

Algorithm 35: Computation of {m(B) / B ∈ ∨S} based on {b(B) / B ∈ ∨S }
independently from |Ω|.
Input: {b(B) / B ∈ ∨S }
Output: {m(B) / B ∈ ∨S }
sort ∨S such that ∨S = {A1, A2, . . . , AK}, where |A1| ≤ |A2| ≤ · · · ≤ |AK |;
for i = 1 to K do

m(Ai)← b(Ai);
foreach B ∈ ∨S / B ⊂ Ai do

m(Ai)← m(Ai)−m(B);

Algorithm 36: Computation of {q(B) / B ∈ ∧S } based on {m(B) / B ∈ S }
independently from |Ω|.
Input: {m(F) / F ∈ S }
Output: {q(B) / B ∈ ∧S }
foreach B ∈ ∧S do

q(B)← m(B);
foreach F ∈ S / F ⊃ B do

q(B)← q(B) +m(F);

Algorithm 37: Computation of {m(B) / B ∈ ∧S} based on {q(B) / B ∈ ∧S }
independently from |Ω|.
Input: {q(B) / B ∈ ∧S }
Output: {m(B) / B ∈ ∧S }
sort ∧S such that ∧S = {A1, A2, . . . , AK}, where |A1| ≤ |A2| ≤ · · · ≤ |AK |;
for i = K to 1 do

m(Ai)← q(Ai);
foreach B ∈ ∧S / B ⊃ Ai do

m(Ai)← m(Ai)−m(B);

Algorithm 38: Computation of {v(B) / B ∈ ∨S } based on {b(B) / B ∈ ∨S }
independently from |Ω|.
Input: {b(B) / B ∈ ∨S }, ∨S
Output: {w(B) / B ∈ ∨S }
sort ∨S such that ∨S = {A1, A2, . . . , AK}, where |A1| ≤ |A2| ≤ · · · ≤ |AK |;
for i = 1 to K do

v(Ai)← b(Ai)
−1;

foreach B ∈ ∨S / B ⊂ Ai do
v(Ai)← v(Ai)/v(B);

142

Algorithm 39: Computation of {b(B) / B ∈ ∨S } based on {v(B) / B ∈ ∨S }
independently from |Ω|.
Input: {v(B) / B ∈ ∨S }, ∨S
Output: {b(B) / B ∈ ∨S }
foreach B ∈ ∨S do

b(B)← v(B)−1;
foreach A ∈ ∨S / A ⊂ B do

b(B)← b(B)/v(A);

Algorithm 40: Computation of {w(B) / B ∈ ∧S } based on {q(B) / B ∈ ∧S }
independently from |Ω|.
Input: {q(B) / B ∈ ∧S }, ∧S
Output: {w(B) / B ∈ ∧S }
sort ∧S such that ∧S = {A1, A2, . . . , AK}, where |A1| ≤ |A2| ≤ · · · ≤ |AK |;
for i = K to 1 do

w(Ai)← q(Ai)
−1;

foreach B ∈ ∧S / B ⊃ Ai do
w(Ai)← w(Ai)/w(B);

Algorithm 41: Computation of {q(B) / B ∈ ∧S } based on {w(B) / B ∈ ∧S }
independently from |Ω|.
Input: {w(B) / B ∈ ∧S }, ∧S
Output: {q(B) / B ∈ ∧S }
foreach B ∈ ∧S do

q(B)← w(B)−1;
foreach A ∈ ∧S / A ⊃ B do

q(B)← q(B)/w(A);

143

Appendix D

LP-VAE loss

D.1 Minimization of DKL (Qt(θ, ϕ) || Pt(θ))

Proof. Indeed, we have, for some instant t:

DKL (Qt(θ, ϕ) || P (θ))

= E
Z∼Qt(θ,ϕ)

[
log qZ1:t|X1:t

(·|x1:t;ϕ) + log pZt+1:T |Zt
(·|· ; θ)

− log pZ1:t(Z1:t; θ)− log pZt+1:T |Zt
(Zt+1:T |Zt; θ)

− log pX,Y |Z(x, y|Z; θ)
]

= E
Z∼Qt(θ,ϕ)

[
log qZ1:t|X1:t

(·|x1:t;ϕ)

− log pZ1:t
(Z1:t; θ)

− log pX|Z(x|Z; θ)− log pY |X,Z(y|x, Z; θ)
]

= E
Z∼Qt(θ,ϕ)

[
log qZ1:t|X1:t

(·|x1:t;ϕ)

− log pZ1:t
(Z1:t; θ)− log pX1:t|Z1:t

(x1:t|Z1:t; θ)

− log pXt+1:T |Zt+1:T
(xt+1:T |Zt+1:T ; θ)− log pY |X,Z(y|x, Z; θ)

]
= E

Z∼Qt(θ,ϕ)

[
log qZ1:t|X1:t

(·|x1:t;ϕ)

− log pX1:t,Z1:t
(X1:t, Z1:t; θ)

− log pXt+1:T |Zt+1:T
(xt+1:T |Zt+1:T ; θ)− log pY |X,Z(y|x, Z; θ)

]
Suppose that both pXt+1:T |Zt+1:T

(xt+1:T |Zt+1:T ; θ) and
pY |X,Z(y|x, Z; θ) range in [0, 1]. This can be easily verified if they can be written as a factor-
ization of probability density functions that each ranges in [0, 1], e.g. Gaussian distributions
with diagonal covariance matrices where each term of the diagonal is in

[
1
2π ,+∞

)
. Then, both

− log pXt+1:T |Zt+1:T
(xt+1:T |Zt+1:T ; θ) and

− log pY |X,Z(y|x, Z; θ) are nonnegative, i.e.

DKL (Qt(θ, ϕ) || P (θ))

≥ DKL

(
qZ1:t|X1:t

(·|x1:t;ϕ) || pX1:t,Z1:t
(x1:t, · ; θ)

)
.

Thus, by minimizing DKL (Qt(θ, ϕ) || P (θ)), we minimize an upper bound of
DKL

(
qZ1:t|X1:t

(·|x1:t;ϕ) || pX1:t,Z1:t
(x1:t, · ; θ)

)
.

144

Furthermore, since we have

DKL

(
qZ1:t|X1:t

(·|x1:t;ϕ) || pX1:t,Z1:t(x1:t, · ; θ)
)

= DKL

(
qZ1:t|X1:t

(·| x1:t;ϕ) || pZ1:t|X1:t
(·| x1:t; θ)

)
− log pX1:t(x1:t; θ)

= DKL (Qt(θ, ϕ) || Pt(θ))− log pX1:t(x1:t; θ),

we know that by optimizing ϕ to minimize DKL

(
qZ1:t|X1:t

(·|x1:t;ϕ) || pX1:t,Z1:t
(x1:t, · ; θ)

)
, we

minimize DKL (Qt(θ, ϕ) || Pt(θ)). To sum up, minimizing DKL (Qt(θ, ϕ) || P (θ)) w.r.t. ϕ min-
imizes an upper bound of DKL (Qt(θ, ϕ) || Pt(θ)). ■

D.2 Maximization of pX,Y (x, y; θ)

Proof. Finally, replacing Pt(θ) by Qt(θ, ϕ) in Eq. (4.10), we get:

E
t∼ U[tmin, T−1]

[DKL (Qt(θ, ϕ) || P (θ))]

= − log pX,Y (x, y; θ) + E
t∼ U[tmin, T−1]

[
DKL

(
Qt(θ, ϕ)

∣∣∣∣∣∣∣∣ P (θ)

pX,Y (x, y; θ)

)]
≥ − log pX,Y (x, y; θ)

Therefore, by optimizing ϕ to minimize E
t∼ U[tmin, T−1]

[DKL (Qt(θ, ϕ) || P (θ))], we min-

imize E
t∼ U[tmin, T−1]

[
DKL

(
Qt(θ, ϕ)

∣∣∣∣∣∣∣∣ P (θ)
pX,Y (x,y;θ)

)]
, and by optimizing θ to minimize

E
t∼ U[tmin, T−1]

[DKL (Qt(θ, ϕ) || P (θ))], we maximize a lower bound of pX,Y (x, y; θ). ■

145

Bibliography

[1] F. Kröger, “Automated driving in its social, historical and cultural contexts,” in Au-
tonomous Driving. Springer, 2016, pp. 41–68.

[2] E. Dickmanns, “Computer vision in road vehicles–chances and problems,” in ICTS Sympo-
sium on Human Factors Technology for Next-Generation Transportation Vehicles, Amalfi,
Italy, 1986.

[3] “SAE J3016. Taxonomy and Definitions for Terms Related to Driving Automation
Systems for On-Road Motor Vehicles,” April 2021. [Online]. Available: https:
//www.sae.org/standards/content/j3016 202104/

[4] F. M. Favarò, N. Nader, S. O. Eurich, M. Tripp, and N. Varadaraju, “Examining accident
reports involving autonomous vehicles in California,” PLOS ONE, vol. 12, no. 9, pp. 1–20,
09 2017. [Online]. Available: https://doi.org/10.1371/journal.pone.0184952

[5] M. Shan, K. Narula, Y. F. Wong, S. Worrall, M. Khan, P. Alexander, and E. Nebot,
“Demonstrations of cooperative perception: safety and robustness in connected and auto-
mated vehicle operations,” Sensors, vol. 21, no. 1, 2021.

[6] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An open urban
driving simulator,” in Conference on robot learning (CoRL). PMLR, 2017, pp. 1–16.

[7] C. Fang, H. Yao, Z. Wang, W. Wu, X. Jin, and F. R. Yu, “A survey of mobile information-
centric networking: Research issues and challenges,” IEEE Communications Surveys &
Tutorials, vol. 20, no. 3, pp. 2353–2371, 2018.

[8] S. Kumar, L. Shi, N. Ahmed, S. Gil, D. Katabi, and D. Rus, “Carspeak: a content-centric
network for autonomous driving,” in Proc. of ACM SIGCOMM. ACM, 2012, pp. 259–270.

[9] J. Ding, H. Xu, J. Hu, and Y. Zhang, “Centralized cooperative intersection control under
automated vehicle environment,” in 2017 IEEE Intelligent Vehicles Symposium (IV), 2017,
pp. 972–977.

[10] M. Algomaiah and Z. Li, “Next-generation interchange control based on centralized man-
agement of connected and autonomous vehicles,” IEEE Access, vol. 7, pp. 82 939–82 955,
2019.

[11] D. Kim and O. Jeong, “Cooperative traffic signal control with traffic flow prediction in
multi-intersection,” Sensors, vol. 20, no. 1, p. 137, 2020.

[12] Q. Chen, X. Ma, S. Tang, J. Guo, Q. Yang, and S. Fu, “F-cooper: Feature based coopera-
tive perception for autonomous vehicle edge computing system using 3D point clouds,” in
Proceedings of the 4th ACM/IEEE Symposium on Edge Computing, 2019, pp. 88–100.

146

https://www.sae.org/standards/content/j3016_202104/
https://www.sae.org/standards/content/j3016_202104/
https://doi.org/10.1371/journal.pone.0184952

[13] Q. Chen, S. Tang, Q. Yang, and S. Fu, “Cooper: Cooperative perception for connected
autonomous vehicles based on 3d point clouds,” in IEEE 39th International Conference on
Distributed Computing Systems (ICDCS), 2019, pp. 514–524.

[14] Y. Mo, P. Zhang, Z. Chen, and B. Ran, “A method of vehicle-infrastructure cooperative
perception based vehicle state information fusion using improved kalman filter,” Multimedia
Tools and Applications, pp. 1–18, 2021.

[15] A. Rauch, F. Klanner, R. Rasshofer, and K. Dietmayer, “Car2X-based perception in a
high-level fusion architecture for cooperative perception systems,” in 2012 IEEE Intelligent
Vehicles Symposium, June 2012, pp. 270–275.

[16] F. Seeliger, G. Weidl, D. Petrich, F. Naujoks, G. Breuel, A. Neukum, and K. Dietmayer,
“Advisory warnings based on cooperative perception,” in 2014 IEEE Intelligent Vehicles
Symposium Proceedings, June 2014, pp. 246–252.

[17] H. Li, M. Tsukada, F. Nashashibi, and M. Parent, “Multivehicle Cooperative Local Map-
ping: A Methodology Based on Occupancy Grid Map Merging,” IEEE Transactions on
Intelligent Transportation Systems, vol. 15, no. 5, pp. 2089–2100, Oct 2014.

[18] S. W. Kim, B. Qin, Z. J. Chong, X. Shen, W. Liu, M. H. Ang, E. Frazzoli, and D. Rus,
“Multivehicle Cooperative Driving Using Cooperative Perception: Design and Experimen-
tal Validation,” IEEE Transactions on Intelligent Transportation Systems, vol. 16, no. 2,
pp. 663–680, April 2015.

[19] S.-W. Kim, W. Liu, M. H. Ang, E. Frazzoli, and D. Rus, “The impact of cooperative
perception on decision making and planning of autonomous vehicles,” IEEE Intelligent
Transportation Systems Magazine, vol. 7, no. 3, pp. 39–50, 2015.

[20] S. W. Kim and W. Liu, “Cooperative Autonomous Driving: A Mirror Neuron Inspired In-
tention Awareness and Cooperative Perception Approach,” IEEE Intelligent Transportation
Systems Magazine, vol. 8, no. 3, pp. 23–32, Fall 2016.

[21] M. Vasic, D. Mansolino, and A. Martinoli, “A system implementation and evaluation of
a cooperative fusion and tracking algorithm based on a Gaussian mixture PHD filter,” in
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016,
pp. 4172–4179.

[22] N. El Zoghby, V. Cherfaoui, and T. Denoeux, “Evidential distributed dynamic map for
cooperative perception in vanets,” in IEEE Intelligent Vehicles Symposium Proceedings,
2014, pp. 1421–1426.

[23] T. Denoeux, “Conjunctive and disjunctive combination of belief functions induced by
nondistinct bodies of evidence,” Artificial Intelligence, vol. 172, no. 2, pp. 234 – 264, 2008.

[24] G. Shafer, A Mathematical Theory of Evidence. Princeton University Press, Princeton,
1976.

[25] B. Hurl, R. Cohen, K. Czarnecki, and S. Waslander, “TruPercept: Trust modelling for
autonomous vehicle cooperative perception from synthetic data,” in 2020 IEEE Intelligent
Vehicles Symposium (IV), 2020, pp. 341–347.

[26] N. El Zoghby, V. Cherfaoui, B. Ducourthial, and T. Denoeux, “Distributed Data fusion
for detecting Sybil attacks in VANETs,” in Belief Functions: Theory and Applications.
Springer, 2012, pp. 351–358.

[27] P. Smets, “Belief functions: The disjunctive rule of combination and the generalized
Bayesian theorem,” IJAR, vol. 9, no. 1, 1993.

147

[28] D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” arXiv preprint
arXiv:1312.6114, 2014.

[29] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Policy Opti-
mization Algorithms,” 2017.

[30] A. Dempster, “A Generalization of Bayesian Inference,” Journal of the Royal Statistical
Society. Series B (Methodological), vol. 30, 1968.

[31] J. Čurn, D. Marinescu, N. O’Hara, and V. Cahill, “Data incest in cooperative localisa-
tion with the Common Past-Invariant Ensemble Kalman filter,” in Proceedings of the 16th
International Conference on Information Fusion, 2013, pp. 68–76.

[32] S. McLaughlin, V. Krishnamurthy, and S. Challa, “Managing data incest in a distributed
sensor network,” in 2003 IEEE International Conference on Acoustics, Speech, and Signal
Processing, 2003. Proceedings. (ICASSP ’03)., vol. 5, 2003, pp. V–269.

[33] T. Brehard and V. Krishnamurthy, “Optimal Data Incest Removal in Bayesian Decen-
tralized Estimation Over a Sensor Network,” in 2007 IEEE International Conference on
Acoustics, Speech and Signal Processing - ICASSP ’07, vol. 3, 2007, pp. III–173–III–176.

[34] H. Li and F. Nashashibi, “Cooperative Multi-Vehicle Localization Using Split Covariance
Intersection Filter,” IEEE Intelligent Transportation Systems Magazine, vol. 5, no. 2, pp.
33–44, 2013.

[35] S. Julier and J. Uhlmann, “A non-divergent estimation algorithm in the presence of
unknown correlations,” in Proceedings of the 1997 American Control Conference (Cat.
No.97CH36041), vol. 4, 1997, pp. 2369–2373 vol.4.

[36] B. Ducourthial, V. Cherfaoui, and T. Denoeux, “Self-stabilizing distributed data fusion,”
in Symposium on Self-Stabilizing Systems. Springer, 2012, pp. 148–162.

[37] R. Guyard and V. Cherfaoui, “Study of distributed data fusion using dempster’s rule and
cautious operator,” in Belief Functions: Theory and Applications, S. Destercke, T. De-
noeux, F. Cuzzolin, and A. Martin, Eds. Cham: Springer International Publishing, 2018,
pp. 95–102.

[38] P. Smets, “The Combination of Evidence in the Transferable Belief Model,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 12, no. 5, pp. 447–458, 1990.

[39] ——, “The Transferable Belief Model,” Artificial Intelligence, vol. 66, no. 2, pp. 191–234,
1994.

[40] G.-C. Rota, “On the foundations of combinatorial theory I. Theory of Möbius functions,”
Probability theory and related fields, vol. 2, no. 4, pp. 340–368, 1964.

[41] P. Smets, “The Canonical Decomposition of a Weighted Belief,” Proc. of IJCAI, pp. 1896–
1901, 1995.

[42] M. Chaveroche, F. Davoine, and V. Cherfaoui, “Calcul exact de faible complexité des
décompositions conjonctive et disjonctive pour la fusion d’information,” in Proceedings of
XXVIIth Francophone Symposium on signal and image processing (GRETSI), 2019.

[43] R. Kennes, “Computational aspects of the Mobius transformation of graphs,” IEEE Trans-
actions on Systems, Man, and Cybernetics, vol. 22, no. 2, pp. 201–223, 1992.

[44] N. Wilson, “Algorithms for Dempster-Shafer Theory,” in Handbook of Defeasible Reasoning
and Uncertainty Management Systems: Algorithms for Uncertainty and Defeasible Reason-
ing. Springer Netherlands, 2000, pp. 421–475.

148

[45] A. Sarabi-Jamab and B. N. Araabi, “Information-Based Evaluation of Approximation
Methods in Dempster-Shafer Theory,” IJUFKS, vol. 24, no. 04, pp. 503–535, 2016.

[46] A. Kallel and S. Le Hégarat-Mascle, “Combination of partially non-distinct beliefs: The
cautious-adaptive rule,” IJAR, vol. 50, no. 7, pp. 1000–1021, 2009.

[47] F. Pichon and T. Denoeux, “T-norm and uninorm-based combination of belief functions,”
Proc. of NAFIPS, 2008.

[48] A. Roquel, S. L. Hégarat-Mascle, I. Bloch, and B. Vincke, “Decomposition of conflict as a
distribution on hypotheses in the framework on belief functions,” IJAR, vol. 55, no. 5, pp.
1129 – 1146, 2014.

[49] J. Schubert, “Clustering decomposed belief functions using generalized weights of conflict,”
IJAR, vol. 48, no. 2, pp. 466–480, 2008.

[50] D. Mercier, F. Pichon, and É. Lefèvre, “Corrigendum to “Belief functions contextual dis-
counting and canonical decomposition”[IJAR 53 (2012) 146–158],” IJAR, vol. 70, pp. 137–
139, 2016.

[51] P. Smets, “The application of the matrix calculus to belief functions,” IJAR, vol. 31, no. 1,
2002.

[52] M. Chaveroche, F. Davoine, and V. Cherfaoui, “Focal points and their implications for
möbius transforms and dempster-shafer theory,” Information Sciences, vol. 555, pp. 215 –
235, 2021.

[53] ——, “Efficient Möbius transformations and their applications to DS theory,” in Interna-
tional Conference on Scalable Uncertainty Management. Springer, 2019, pp. 390–403.

[54] J. A. Barnett, “Computational Methods for a Mathematical Theory of Evidence,” Proc. of
IJCAI, vol. 81, pp. 868–875, 1981.

[55] J. Gordon and E. H. Shortliffe, “A method for managing evidential reasoning in a hierar-
chical hypothesis space,” Artificial intelligence, vol. 26, no. 3, pp. 323–357, 1985.

[56] P. P. Shenoy and G. Shafer, “Propagating Belief Functions with Local Computations,”
IEEE Expert, vol. 1, no. 3, pp. 43–52, 1986.

[57] G. Shafer and R. Logan, “Implementing Dempster’s rule for hierarchical evidence,” Artifi-
cial Intelligence, vol. 33, no. 3, pp. 271–298, 1987.

[58] T. Denœux and A. B. Yaghlane, “Approximating the combination of belief functions using
the fast moebius transform in a coarsened frame,” International Journal of Approximate
Reasoning (IJAR), vol. 31, no. 1-2, pp. 77–101, 2002.

[59] M. Grabisch, “Belief functions on lattices,” International Journal of Intelligent Systems,
vol. 24, no. 1, pp. 76–95, 2009.

[60] T. Denœux and M.-H. Masson, “Dempster-Shafer reasoning in large partially ordered sets:
Applications in Machine Learning,” in Integrated Uncertainty Management and Applica-
tions. Springer, 2010, pp. 39–54.

[61] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto, “Trimmed Moebius inversion and
graphs of bounded degree,” Theory of Computing Systems, vol. 47, no. 3, pp. 637–654,
2010.

[62] A. Björklund, T. Husfeldt, P. Kaski, M. Koivisto, J. Nederlof, and P. Parviainen, “Fast
zeta transforms for lattices with few irreducibles,” ACM TALG, vol. 12, no. 1, p. 4, 2016.

149

[63] P. Kaski, J. Kohonen, and T. Westerbäck, “Fast Möbius inversion in semimodular lattices
and U-labelable posets,” arXiv preprint arXiv:1603.03889, 2016.

[64] M. Chaveroche, F. Davoine, and V. Cherfaoui, “Efficient Möbius transformations and their
applications to Dempster-Shafer theory,” in LFA 2019 - Rencontres francophones sur la
Logique Floue et ses Applications, 2019.

[65] C. Stachniss, G. Grisetti, and W. Burgard, “Information gain-based exploration using rao-
blackwellized particle filters.” in Robotics: Science and Systems, vol. 2, 2005, pp. 65–72.

[66] J. Clemens, T. Reineking, and T. Kluth, “An evidential approach to SLAM, path planning,
and active exploration,” International Journal of Approximate Reasoning, vol. 73, pp. 1–26,
2016.

[67] C. Wang, J. Cheng, W. Chi, T. Yan, and M. Q.-H. Meng, “Semantic-Aware Informative
Path Planning for Efficient Object Search Using Mobile Robot,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, 2019.

[68] D. Ha and J. Schmidhuber, “Recurrent world models facilitate policy evolution,” in Ad-
vances in Neural Information Processing Systems, 2018, pp. 2450–2462.

[69] S. Wirges, C. Stiller, and F. Hartenbach, “Evidential occupancy grid map augmentation
using deep learning,” in IEEE intelligent vehicles symposium (IV), 2018, pp. 668–673.

[70] T. Sugiura and T. Watanabe, “Probable Multi-hypothesis Blind Spot Estimation for Driv-
ing Risk Prediction,” in IEEE Intelligent Transportation Systems Conference (ITSC), 2019,
pp. 4295–4302.

[71] S. Hoermann, M. Bach, and K. Dietmayer, “Dynamic occupancy grid prediction for urban
autonomous driving: A deep learning approach with fully automatic labeling,” in IEEE
International Conference on Robotics and Automation (ICRA), 2018, pp. 2056–2063.

[72] M. Everett, J. Miller, and J. P. How, “Planning Beyond The Sensing Horizon Using a
Learned Context,” arXiv preprint arXiv:1908.09171, 2019.

[73] R. Shrestha, F.-P. Tian, W. Feng, P. Tan, and R. Vaughan, “Learned map prediction for en-
hanced mobile robot exploration,” in International Conference on Robotics and Automation
(ICRA), 2019, pp. 1197–1204.

[74] K. Gregor, G. Papamakarios, F. Besse, L. Buesing, and T. Weber, “Temporal difference
variational auto-encoder,” arXiv preprint arXiv:1806.03107, 2018.

[75] K. Gregor, D. Jimenez Rezende, F. Besse, Y. Wu, H. Merzic, and A. van den Oord, “Shaping
Belief States with Generative Environment Models for RL,” in Advances in Neural Infor-
mation Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates, Inc., 2019.

[76] T.-H. Wang, S. Manivasagam, M. Liang, B. Yang, W. Zeng, and R. Urtasun, “V2vnet:
Vehicle-to-vehicle communication for joint perception and prediction,” in Computer Vi-
sion – ECCV 2020, A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Eds. Springer
International Publishing, 2020, pp. 605–621.

[77] S. Aoki, T. Higuchi, and O. Altintas, “Cooperative perception with deep reinforcement
learning for connected vehicles,” in IEEE Intelligent Vehicles Symposium (IV), 2020, pp.
328–334.

150

[78] T. Higuchi, M. Giordani, A. Zanella, M. Zorzi, and O. Altintas, “Value-anticipating V2V
communications for cooperative perception,” in IEEE Intelligent Vehicles Symposium (IV),
2019, pp. 1947–1952.

[79] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.

[80] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp. 279–292,
1992.

[81] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning,” Machine learning, vol. 8, no. 3, pp. 229–256, 1992.

[82] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy opti-
mization,” in International conference on machine learning. PMLR, 2015, pp. 1889–1897.

[83] F. A. Gers and J. Schmidhuber, “Recurrent nets that time and count,” in Proceedings of the
IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neu-
ral Computing: New Challenges and Perspectives for the New Millennium, vol. 3. IEEE,
2000, pp. 189–194.

[84] Y. Li, L. Ma, Z. Zhong, F. Liu, M. A. Chapman, D. Cao, and J. Li, “Deep learning
for LiDAR point clouds in autonomous driving: a review,” IEEE Transactions on Neural
Networks and Learning Systems, 2020.

[85] M. Chaveroche, “evidence-based-DST,” https://github.com/mchaveroche/
evidence-based-DST, 2019.

[86] R. Haenni and N. Lehmann, “Implementing belief function computations,” International
Journal of Intelligent Systems, vol. 18, no. 1, pp. 31–49, 2003.

[87] L. G. Polpitiya, K. Premaratne, M. N. Murthi, and D. Sarkar, “A Framework for efficient
computation of belief theoretic operations,” Proc. of FUSION, pp. 1570–1577, 2016.

[88] ——, “Efficient Computation of Belief Theoretic Conditionals,” Proc. of ISIPTA, pp. 265–
276, 2017.

151

https://github.com/mchaveroche/evidence-based-DST
https://github.com/mchaveroche/evidence-based-DST

	PDT CHAVEROCHE Maxime
	Soutenue le 29 septembre 2021

	Thèse STAR CHAVEROCHE
	Symbol table
	Introduction
	Efficient computation of the Cautious and Bold fusion rules
	Motivations
	Communication content and knowledge representation
	Data incest
	Blocking point

	Introduction to Dempster-Shafer Theory
	Information fusion
	Information fusion of unreliable sources

	Link between Dempster-Shafer Theory and the Möbius inversion formula
	Zeta transform (``Discrete integral'')
	Möbius transform (``Discrete derivative'')
	Multiplicative Möbius inversion theorem

	Two fusion rules avoiding data incest in Dempster-Shafer Theory
	The Cautious fusion rule
	The Bold fusion rule
	Limitations

	Efficiently computing the conjunctive and disjunctive decompositions
	Introduction
	Preliminary definitions
	Evidence based computation of the conjunctive decomposition
	Transposition to the computation of the disjunctive decomposition
	Conclusion and perspectives

	Conclusion

	Focal points and their implications for Möbius Transforms and Dempster-Shafer Theory
	Introduction
	Background of our method
	Support of a function in P
	Order theory

	Focal points and our Efficient Möbius inversion formula
	Problem statement and intuition
	Simplifying the Möbius inversion formula
	Focal points and their implications
	Ways to compute focal points
	Focal points for both additive and multiplicative Möbius transforms
	Discussions
	From theory to practice

	Implications for Dempster-Shafer Theory
	Efficient representations in Dempster-Shafer Theory
	Generalized decompositions of evidence
	Better understanding the conjunctive and disjunctive decompositions

	Conclusions and Perspectives

	The Efficient Möbius Transformations
	Introduction
	Background of our method
	Zeta transform
	Möbius transform
	Sequence of graphs and computation of the zeta transform
	Sequence of graphs and computation of the Möbius transform
	Order theory
	Support elements and focal points

	Our Efficient Möbius Transformations
	Preliminary results
	Main results

	Discussions
	General usage
	Dempster-Shafer Theory

	Conclusion

	Learning to value the unknown
	Introduction
	Related Works
	Problem formulation
	State space
	Action space
	Transition function
	Rewards

	Quick introduction to policy gradient-based reinforcement learning and our choice for PPO
	Value functions
	The policy gradient approach

	Models
	Action-independent modeling
	TD-VAE model
	Our Sequential variant STD-VAE of the TD-VAE model
	Our Locally Predictable VAE (LP-VAE) model
	LP-VAE with actions

	Implementation as neural networks
	Belief state computation
	Inference of Gaussian parameters
	Decoding

	Experiments
	Data acquisition & RL Environment
	Models
	Policy learning

	Conclusions

	Conclusions and perspectives
	Appendices
	Proofs about focal points and Möbius transforms
	Lemma 2.3.2.1
	Lemma 2.3.2.2
	Theorem 2.3.4.1
	Corollary 2.3.5.1
	Theorem 2.3.5.1
	Corollary 2.4.2.1
	Proposition 2.4.3.1

	Proofs about the Efficient Möbius Transformations
	Proposition 3.3.1.1
	Theorem 3.3.2.1
	Theorem 3.3.2.2

	Implementation of the Efficient Möbius Transformations (EMT)
	Data structure
	Overview
	Frame of discernment
	Powerset function

	Procedures
	Computation of focal points
	Computation of iota elements
	Computation of the lattice support
	Computation of DST transformations in the consonant case
	Computation of DST transformations in a semilattice
	Computation of DST transformations in a lattice
	Computation of DST transformations independently from

	LP-VAE loss
	Minimization of DKL(Qt(,) || Pt())
	Maximization of pX,Y(x, y;)

