Keywords: Advance surgery scheduling, two-phase optimization model, Markov decision process, stochastic programming, approximate dynamic programming, column-generation-based heuristics

This thesis deals with the advance scheduling of elective surgeries in an operating theatre that is composed of operating rooms and downstream recovery units. The arrivals of new patients in each week, the duration of each surgery, and the lengthof-stay of each patient in the downstream recovery unit are subject to uncertainty. In each week, the surgery planner should determine the surgical blocks to open and assign some of the surgeries in the waiting list to the open surgical blocks. The objective is to minimize the patient-related costs incurred by performing and postponing surgeries as well as the hospital-related costs caused by the utilization of surgical resources. Considering that the pure mathematical programming models commonly used in literature do not optimize the long-term performance of the surgery schedules, we propose a novel two-phase optimization model that combines Markov decision process (MDP) and stochastic programming to overcome this drawback.

The MDP model in the first phase determines the surgeries to be performed in each week and minimizes the expected total costs over an infinite horizon, then the stochastic programming model in the second phase optimizes the assignments of the selected surgeries to surgical blocks. In order to cope with the huge complexity of realistically sized problems, we develop a reinforcementlearning-based approximate dynamic programming algorithm and several column-generation-based heuristic algorithms as the solution approaches. We conduct numerical experiments to evaluate the model and algorithms proposed in this thesis. The experimental results indicate that the proposed algorithms are considerably more efficient than the traditional ones, and that the resulting schedules of the two-phase optimization model significantly outperform those of a conventional stochastic programming model in terms of the patients' waiting times and the total costs on the long run.

Titre : Advance Surgery Scheduling with Consideration of Downstream Capacity Constraints and Multiple Sources of Uncertainty

Mots-cl és : Gestion optimis ée des blocs op ératoires; mod èle d'optimisation à deux phases; processus de d écision Markovien; programmation stochastique; programmation dynamique approximative; heuristique bas ée sur la g én ération de colonnes R ésum é : Les travaux de ce m émoire portent sur une gestion optimis ée des blocs op ératoires dans un service chirurgical.

Les arriv ées des patients chaque semaine, la dur ée des op érations et les temps de s éjour des patients sont consid ér és comme des param ètres assujettis à des incertitudes. Chaque semaine, le gestionnaire hospitalier doit d éterminer les blocs chirurgicaux à mettre en service et leur affecter certaines op érations figurant sur la liste d'attente. L'objectif est la minimisation d'une part des co ûts li és à la r éalisation et au report des op érations, et d'autre part des co ûts hospitaliers li és aux ressources chirurgicaux. Lorsque nous consid érons que les mod èles de programmations math ématiques couramment utilis és dans la litt érature n'optimisent pas la performance à long terme des programmes chirurgicaux, nous proposons un nouveau mod èle d'optimisation à deux phases combinant le processus de d écision Markovien (MDP) et la programmation stochastique. Le MDP de la premi ère phase d étermine les op érations à effectuer chaque semaine et minimise les co ûts totaux sur un horizon infini. La programmation stochastique de la deuxi ème phase optimise les affectations des op érations s électionn ées dans les blocs chirurgicaux. Afin de r ésoudre la complexit é des probl èmes de grande taille, nous d éveloppons un algorithme de programmation dynamique approximatif bas é sur l'apprentissage par renforcement et plusieurs autres heuristiques bas és sur la g én ération de colonnes. Nous d éveloppons des applications num ériques afin d' évaluer le mod èle et les algorithmes propos és. Les r ésultats exp érimentaux indiquent que ces algorithmes sont consid érablement plus efficaces que les algorithmes traditionnels. Les programmes chirurgicaux du mod èle d'optimisation à deux phases sont plus performants de mani ère significative que ceux d'un mod èle de programmation stochastique classique en termes de temps d'attente des patients et de co ûts totaux sur le long terme.

GENERAL INTRODUCTION

Globally, the aging population and a rising quality of life are driving the demand for health services to increase rapidly, leading to shortages of medical resources and imposing a heavy financial burden on national governments. In the United States, the healthcare expenditure has been increasing continually, reaching $3.5 trillion in 2017 and accounting for 17.9% of the gross domestic product (Centers for Medicare & Medicaid Services, 2018). The same figures for Australia in 2015-2016 were $170 billion and 10.3%, respectively, while health expenditure increased (by 50%) much faster than the population growth (17%) (Australian Institute of Health and Welfare, 2018). During the period from 2010 to 2017, China increased its government spending on health and the number of medical personnel employed by 163% and 43%, respectively. However, its health expenditure per capita was still much lower than that of developed countries and the increase in its health service capacity was not enough to cope with the rising demands on the service [START_REF] Xiao | Stochastic programming analysis and solutions to schedule overcrowded operating rooms in china[END_REF]National Bureau of Statistics of China, 2019). The same challenges have also been faced by European countries. For example, Portugal's surgical demand grew by 43.7% from 2006 to 2014, while the median waiting time for surgery reached 3.0 months and 12% of patients waited longer than their clinically recommended maximum waiting time [START_REF] Marques | Different stakeholders' perspectives for a surgical case assignment problem: Deterministic and robust approaches[END_REF].

In order to satisfy a growing demand for health services and to slow down the increase in health expenditure, hospital managers should improve the efficiency and quality of healthcare activities while reducing the hospitals' expenditures as much as possible. In a hospital, the operating theatre (OT, consisting of operating rooms (ORs) and downstream facilities) is generally considered to be both the main revenue center as well as the most expensive department, since providing surgical services consumes more than 40% of the hospital's budget and contributes a similarly large proportion to the hospital's total revenues [START_REF] Denton | Optimization of surgery sequencing and scheduling decisions under uncertainty[END_REF]. Therefore, the management of OT and the scheduling of surgeries have drawn much attention from both researchers and practitioners.

The complexity of the surgery scheduling problems results from various factors. First of all, planning the OR capacity independently does not yield high-quality surgery schedules, because the unavailability of downstream recovery bed might block the postoperative patients in ORs and deteriorate the schedule [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF][START_REF] Jebali | A stochastic model for operating room planning under capacity constraints[END_REF]. In the hospital studied by [START_REF] Jonnalagadda | Evaluation of the reasons for cancellations and delays of surgical procedures in a developing country[END_REF], 15% of the surgery cancellations are caused by the lack of recovery beds. Similarly, [START_REF] Sobolev | Priority waiting lists: Is there a clinically ordered queue?[END_REF] reveal that patients' length-of-stay (LOS) and the bed availability significantly affect the surgery 1 schedule. Therefore, the downstream facilities in an OT, such as the surgical intensive care units (SICU), should be jointly planned with the ORs. On the other hand, incorporating the complex structured downstream capacity constraints into the mathematical model significantly increases the computational complexity. Secondly, the number and type of new surgical demands in each week are unknown, and each surgery is associated with an uncertain surgery duration and an uncertain LOS in downstream facilities. These uncertainties are difficult to predict and strongly affect the availability and utilization of surgical resources [START_REF] Batun | Operating room pooling and parallel surgery processing under uncertainty[END_REF][START_REF] Molina-Pariente | A stochastic approach for solving the operating room scheduling problem[END_REF]. Taking uncertainties into consideration helps to improve the quality of schedule, but brings stochastic parameters into the mathematical model and requires additional efforts to compute the surgery schedule. Last but not least, surgery planners should trade off the conflicting interests of different stakeholders. For example, the policy that schedules as many surgeries as possible results in short waiting time and high satisfaction of patients, but may lead to severe over-utilization of surgical facilities and increase the hospital's expense. An optimal surgery schedule should balance the interests and satisfactions of both the hospital and the patients.

The aforementioned difficulties show the necessity of developing operations research methodologies to solve surgery scheduling problems. In this thesis, we focus on the scheduling of elective surgeries in an OT with multiple ORs and multiple downstream recovery beds in SICU. Emergent patients are not considered since they are assumed to be treated in dedicated facilities (refer to the dedicated policy described in [START_REF] Van Riet | Trade-offs in operating room planning for electives and emergencies: A review[END_REF]). Uncertainties in patient arrivals, surgery durations, and LOSs are taken into account. At the beginning of each week, we need to select the patients to be treated from a waiting list, determine the surgical blocks (i.e., combinations of an OR and a date/time slot) to open, and assign the selected patients to open surgical blocks. Our objective is to minimize the total cost incurred by performing and postponing surgeries, opening and overusing surgical blocks, as well as exceeding the regular SICU capacity. According to the classification of surgery scheduling problems presented in [START_REF] Guerriero | Operational research in the management of the operating theatre: A survey[END_REF] and [START_REF] Zhu | Operating room planning and surgical case scheduling: a review of literature[END_REF], the problem studied in this thesis can be referred to as an advance surgery scheduling problem at the operational level.

In the relevant works, the same or similar surgery scheduling problems are usually optimized via pure mathematical programming approaches, such as stochastic programming (e.g., [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF][START_REF] Jebali | A stochastic model for operating room planning under capacity constraints[END_REF][START_REF] Pang | Surgery scheduling under case cancellation and surgery duration uncertainty[END_REF], chance-constrained programming (e.g., [START_REF] Wang | A column-generation-based heuristic algorithm for solving operating theater planning problem under stochastic demand and surgery cancellation risk[END_REF][START_REF] Jebali | A chance-constrained operating room planning with elective and emergency cases under downstream capacity constraints[END_REF], and robust optimization (e.g., [START_REF] Marques | Different stakeholders' perspectives for a surgical case assignment problem: Deterministic and robust approaches[END_REF][START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF]. These models mainly optimize the cost of one single planning period (e.g., one week) without considering the outcomes of following periods. However, two consecutive planning periods are always correlated since the postponed surgeries of the present period will continue to incur waiting cost or surgery cost in the next period. Hence optimizing the cost of one period cannot guarantee the global optimality. In this thesis, we propose a two-phase optimization model that combines Markov decision process (MDP) and stochastic programming. In the first phase, we use an MDP model to properly select the patients to be treated in each week and to minimize the total estimated cost over the infinite horizon. In the second phase, we employ a stochastic programming model to optimize the detailed surgery schedule within each week based on the first-phase decisions. Besides, we also propose a benchmark stochastic programming formulation for the studied problem, so that the advantages of the proposed two-phase optimization model can be illustrated in comparison with the benchmark model in the numerical experiments.

In practice, the size of a realistic problem often makes the conventional solution approaches computationally intractable. In this thesis, we improve the computational efficiency in solving the proposed models through multiple ways. For the MDP model, we perform an in-depth structural analysis to accelerate the solution procedure of the conventional algorithms based on dynamic programming (DP), and develop an approximate dynamic programming (ADP) algorithm on the basis of the recursive least-squares temporal difference (RLS-TD(λ)) learning theory to further reduce the computation time. As for the stochastic programming models, a sample average approximation (SAA) procedure is always necessary to replace the uncertain parameters with randomly generated samples, then we develop a series of efficient column-generation-based heuristic algorithms to solve the resulting deterministic model.

Finally, we carry out intensive numerical experiments to validate the high performances of the proposed model and algorithms. Experimental results of small-sized test problems show that the proposed ADP and CGBH algorithms consume much less CPU time than the conventional ones (DP and branch-and-bound), while do not cause any significant deterioration of the solution quality. Furthermore, we employ the ADP algorithm as well as the combined algorithm of SAA and CGBH to solve realistically sized surgery scheduling problems. The results illustrate that the proposed two-phase optimization model outperforms the benchmark stochastic programming model by leading to significantly lower total cost and shorter waiting time of patients.

PLAN OF THE THESIS

This thesis consists of six chapters which are organized as follows:

• Chapter 1 systematically reviews the recent research into advance surgery scheduling and introduces the state of the art of the mathematical models employed in this thesis (MDP and stochastic programming), then summarizes the main objectives of this thesis.

• Chapter 2 presents the mathematical models for the studied problem. First, we introduce the advance surgery scheduling problem under downstream capacity constraints and uncertainties in detail. Then, we propose the two-phase optimization model which combines MDP with stochastic programming. Next, we formulate the studied problem as a pure stochastic programming model, which is widely employed in literature and serves as the benchmark of the proposed two-phase optimization model. Finally, we compare the two models and analyze the potential advantages of the proposed model over the benchmark model.

• Chapter 3 introduces the solution approaches that we employ in this thesis to solve the MDP model. In this chapter, we investigate the structural properties of the MDP model to accelerate the convergence speed of two conventional DP-based algorithms: value iteration and real-time dynamic programming. Furthermore, we develop an efficient RLS-TD(λ)-based ADP algorithm in order to solve large-sized MDP models with acceptable CPU time.

• Chapter 4 presents the solution approaches for the stochastic programming models.

We describe the SAA procedure that translates the stochastic programming models into solvable integer programming (IP) models, then propose several CGBH algorithms combining different column generation strategies and heuristic rules to solve the IP models.

• Chapter 5 provides the results of numerical experiments. First, we solve several small-sized test problems to compare the computational performances of the proposed algorithms and the conventional ones. Then, we solve a series of large-sized realistic surgery scheduling problems to validate the advantage of the two-phase optimization model over the pure stochastic programming model.

LITERATURE REVIEW

In this chapter, we first briefly overview the recent literature on surgery scheduling and operating theatre (OT) planning, then focus on the relevant works in which the studied problems are the same as or similar to the one of this thesis (advance surgery scheduling). Next, we introduce the two mathematical models that we employ in this thesis: Markov decision process (MDP) and stochastic programming. Finally we summarize the state of the art of the studied topic and present the main objectives of this thesis.

1.1/ OVERVIEW OF SURGERY SCHEDULING AND OPERATING THEATRE PLANNING

In response to the rapidly growing surgical demand, researchers and practitioners have paid considerable attention to the studies of surgery scheduling and OT planning. Several comprehensive reviews on this topic are provided by [START_REF] Cardoen | Operating room planning and scheduling: A literature review[END_REF], [START_REF] Guerriero | Operational research in the management of the operating theatre: A survey[END_REF], [START_REF] Van Riet | Trade-offs in operating room planning for electives and emergencies: A review[END_REF], [START_REF] Samudra | Scheduling operating rooms: Achievements, challenges and pitfalls[END_REF], and [START_REF] Zhu | Operating room planning and surgical case scheduling: a review of literature[END_REF]. The surgery scheduling and OT planning problems can be roughly classified into three hierarchical decision levels: strategic level, tactical level, and operational level [START_REF] Guerriero | Operational research in the management of the operating theatre: A survey[END_REF][START_REF] Zhu | Operating room planning and surgical case scheduling: a review of literature[END_REF]. The strategic level mainly addresses the allocation of surgical resources on a long-term basis, while the tactical level involves the development of a master surgery schedule (MSS) for one or several months, and the operational level concerns the assignment of a definite date for each surgery (advance scheduling) as well as the intra-day sequencing of elective cases (allocation scheduling). These three levels are interrelated as each level depends on the decisions made at the previous level [START_REF] Koppka | Optimal distribution of operating hours over operating rooms using probabilities[END_REF], and the boundaries between these levels may vary for different problem settings [START_REF] Samudra | Scheduling operating rooms: Achievements, challenges and pitfalls[END_REF].

1.1.1/ STRATEGIC LEVEL

The central issue of the strategic-level decision-making is the case mix planning problem [START_REF] Guerriero | Operational research in the management of the operating theatre: A survey[END_REF][START_REF] Hof | Case mix planning in hospitals: a review and future agenda[END_REF]. In such a problem, the decision maker allocates limited amount of surgical resources, especially the operating room (OR) time blocks, among multiple specialties or surgical groups, with the objectives of minimizing the total cost, improving the utilization of surgical resources, reducing the waiting time of patients, etc. The horizon of a case mix planning problem varies from several months to several years, and the decisions are usually made according to historical data and/or forecasts [START_REF] Guerriero | Operational research in the management of the operating theatre: A survey[END_REF][START_REF] Zhu | Operating room planning and surgical case scheduling: a review of literature[END_REF]. Specifically, [START_REF] Choi | On capacity allocation for operating rooms[END_REF] address an OR capacity planning problem in which multiple surgical specialties are assigned to different OR-days. Their decisions are applied to long time horizons of 6-12 months, and the goals are to accommodate as many patients as possible and to reduce the idleness and overuse of ORs. [START_REF] Vanberkel | Optimizing the strategic patient mix combining queueing theory and dynamic programming[END_REF] deal with a strategic patient mix planning problem where the patients are divided into several diagnosis-related groups (DRG). Given a set of capacity constraints, the authors compute the optimal DRG case mix for each month to maximize a reward function that captures the weighted sum of completed treatments. Besides, an in-depth review of the literature related to case mix planning problems is provided by [START_REF] Hof | Case mix planning in hospitals: a review and future agenda[END_REF].

Due to the interdependence among the three hierarchical levels, the strategic level is modelled and optimized together with the other decision levels for in some studies. [START_REF] Testi | A three-phase approach for operating theatre schedules[END_REF] and [START_REF] Ma | A multilevel integrative approach to hospital case mix and capacity planning[END_REF] employ three-phase approaches to tackle the strategic-level case mix planning, the tactical-level master surgery scheduling, and the operational-level performance evaluation successively, whereas [START_REF] Castro | Operating room scheduling with generalized disjunctive programming[END_REF], [START_REF] Guido | A hybrid genetic approach for solving an integrated multi-objective operating room planning and scheduling problem[END_REF], and [START_REF] Freeman | An iterative approach for case mix planning under uncertainty[END_REF] integrate the optimizations of all the three decision levels into unified mathematical models.

1.1.2/ TACTICAL LEVEL

The tactical level addresses the development of a cyclic schedule that assigns specific OR blocks (i.e., the combinations of an OR and a time block) to different specialties or surgical groups on a weekly basis. Such a schedule is referred to as a master surgery schedule (MSS) in literature. An MSS should be designed based on the long-term allocation of surgical resources determined at the strategic level, and provides constraints to the operational-level surgery scheduling. Since most of the elective surgeries do not change too much over several weeks, an MSS is usually cyclically applied to a medium-term period from 1-3 months to one year [START_REF] Guerriero | Operational research in the management of the operating theatre: A survey[END_REF]. [START_REF] Van Oostrum | Suitability and managerial implications of a master surgical scheduling approach[END_REF] illustrate the significant advantages brought by implementing MSSs, such as high medical autonomy of surgeons, high efficiency and robustness of surgical plans, clarity and predictability of work processes, and minimized week-to-week variation in OR utilization.

Much research into the OR planning at the tactical level can be found in literature. [START_REF] Adan | Patient mix optimisation and stochastic resource requirements: A case study in cardiothoracic surgery planning[END_REF] address the master surgery scheduling in a department of cardiothoracic surgery where the patients are distinguished by the usage of surgical resources. The authors determine the number and type of patients to be treated on each day within a planning horizon of four weeks, with the goals of meeting a target patient throughput and improving the utilization of surgical resources. [START_REF] Beliën | A decision support system for cyclic master surgery scheduling with multiple objectives[END_REF] build MSS for a medium-sized hospital in which the surgical resources are allocated among several surgical groups. Their objectives are to level the bed occupancy and to minimize the changes in the MSS from week to week. [START_REF] Fügener | Master surgery scheduling with consideration of multiple downstream units[END_REF] also deal with an MSS design problem in a hospital, while the surgical resources are distributed among multiple specialties. In addition to the OR blocks, the authors incorporate the capacity of downstream recovery units into the optimization of MSS, which is proved to bring in significant cost savings and quality improvements. To facilitate the design of MSSs in medium-sized hospitals, [START_REF] Penn | Multiple criteria mixed-integer programming for incorporating multiple factors into the development of master operating theatre timetables[END_REF] propose a comprehensive mixed integer programming (MIP) model while incorporating multiple novel features, such as the smoothing of bed usage, the soft constraints of surgeons' preferences, the availability of surgical equipment, and the matching between different types of ORs and surgeries. The computational results

show that the proposed model can be efficiently solved by standard MIP solvers. Besides, more recent studies on the tactical MSS optimization are presented by [START_REF] Anjomshoa | An exact approach for tactical planning and patient selection for elective surgeries[END_REF], [START_REF] Koppka | Optimal distribution of operating hours over operating rooms using probabilities[END_REF], [START_REF] Kumar | A sequential stochastic mixed integer programming model for tactical master surgery scheduling[END_REF], M'Hallah and Visintin (2019), etc.

Although most researchers apply deterministic MSSs to all the weeks within a mediumterm period, some researchers pay attention to the variations in surgical demand from week to week and investigate the benefits of adopting dynamic MSSs. [START_REF] Agnetis | Long term evaluation of operating theater planning policies[END_REF] propose an MSS change policy that allows the MSS to dynamically adapt to the actual waiting list. By introducing a limited amount of flexibility into the MSS, the proposed policy significantly reduces the average waiting time of patients and improves the due date performance. Similarly, [START_REF] Holte | The implementor/adversary algorithm for the cyclic and robust scheduling problem in health-care[END_REF] propose an adjustable-robust model which is successfully employed in the design of dynamic MSSs for a large hospital.

The tactical-level decisions can also be jointly optimized with those of the other decision levels. Besides of the research combining the strategic level with the tactical level (see the last paragraph of Section 1.1.1), [START_REF] Testi | Tactical and operational decisions for operating room planning: Efficiency and welfare implications[END_REF], [START_REF] Tànfani | A pre-assignment heuristic algorithm for the master surgical schedule problem (mssp)[END_REF], [START_REF] Adan | Improving operational effectiveness of tactical master plans for emergency and elective patients under stochastic demand and capacitated resources[END_REF], [START_REF] Agnetis | A decomposition approach for the combined master surgical schedule and surgical case assignment problems[END_REF], [START_REF] Marques | Bicriteria elective surgery scheduling using an evolutionary algorithm[END_REF], and [START_REF] Aringhieri | A two level metaheuristic for the operating room scheduling and assignment problem[END_REF] address the optimizations of both the tactical level and the operational level. Moreover, [START_REF] Guerriero | Operational research in the management of the operating theatre: A survey[END_REF] indicate that the tactical level tends to be considered together with the other levels when an open-scheduling strategy is adopted, since the boundaries between decision levels in such a strategy is less clear than in a blockscheduling strategy. A detailed introduction of scheduling strategies can be seen in Section 1.2.2.

1.1.3/ OPERATIONAL LEVEL

In the area of surgery scheduling and OT planning, the operational level has drawn more attention from the research community than the other decision levels [START_REF] Zhu | Operating room planning and surgical case scheduling: a review of literature[END_REF].

According to the types of decisions to be made, the problems at the operational level can be further divided into advance scheduling and allocation scheduling.

Under an open-block scheduling strategy or based on an MSS provided by the tactical level, advance scheduling assigns the patients from a waiting list to specific ORs and determines the patients' surgery dates. For instance, Jebali andDiabat (2015, 2017) optimize the assignments of elective patients to definite OR-days under an open scheduling strategy. They assume all the ORs to be versatile and do not distinguish the patients by specialties, hence any patient can be assigned to any OR-day within the planning horizon and the OT. By contrast, [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF] and [START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF] deal with the advance scheduling of elective patients under the restriction of a given MSS, which specifies the allocation of OR blocks to specialties, thus each patient must be treated in one of the blocks occupied by his/her specialty. Since advance scheduling is the theme of this thesis, we provide an in-depth review of the recent research on this topic in Section 1.2.

As the second step of the operational-level optimization, allocation scheduling sequences the surgeries to be performed within a day and determines the exact start time of each surgery. Specifically, [START_REF] Kroer | Planning and scheduling operating rooms for elective and emergency surgeries with uncertain duration[END_REF] deal with a typical allocation scheduling problem in which the intra-day sequencing of elective surgeries in a large hospital is optimized and the random arrivals of emergent patients as well as the uncertain surgery durations are considered. They take a set of clinical guidelines as constraints and seek for the tradeoff between minimizing the overtime work and maximizing the utilization rate of the OR capacity. [START_REF] Schmid | Examination and operating room scheduling including optimization of intrahospital routing[END_REF] provides a novel research that incorporates the intra-hospital routing into allocation scheduling. They not only optimize the start time of each appointment, but also plan the transportation of patients between different service units in the hospital. Moreover, [START_REF] Latorre-Núñez | Scheduling operating rooms with consideration of all resources, post anesthesia beds and emergency surgeries[END_REF] propose a constraint programming model that incorporates all the human and material resources as well as the post-anaesthesia beds into an allocation scheduling problem. Besides, more recent works on allocation scheduling can be found in Cardoen et al. (2009a,b), [START_REF] Augusto | Operating theatre scheduling with patient recovery in both operating rooms and recovery beds[END_REF], [START_REF] Batun | Operating room pooling and parallel surgery processing under uncertainty[END_REF], [START_REF] Meskens | Multi-objective operating room scheduling considering desiderata of the surgical team[END_REF], [START_REF] Lee | Reducing patient-flow delays in surgical suites through determining start-times of surgical cases[END_REF], [START_REF] Zhang | Dynamic surgery assignment of multiple operating rooms with planned surgeon arrival times[END_REF], [START_REF] Zhao | Scheduling elective surgeries with sequence-dependent setup times to multiple operating rooms using constraint programming[END_REF], [START_REF] Saadouli | A stochastic optimization and simulation approach for scheduling operating rooms and recovery beds in an orthopedic surgery department[END_REF], and [START_REF] Xiao | Stochastic programming analysis and solutions to schedule overcrowded operating rooms in china[END_REF].

The two steps of the operational-level surgery scheduling are considered together in many works. Some of them integrate the advance and allocation scheduling in a unified mathematical model or approach (e.g., [START_REF] Liu | A new heuristic algorithm for the operating room scheduling problem[END_REF][START_REF] Marques | An integer programming approach to elective surgery scheduling[END_REF][START_REF] Roland | Scheduling an operating theatre under human resource constraints[END_REF][START_REF] Herring | The single-day surgery scheduling problem: sequential decision-making and threshold-based heuristics[END_REF][START_REF] Vijayakumar | A dual bin-packing approach to scheduling surgical cases at a publicly-funded hospital[END_REF][START_REF] Marques | Scheduling elective surgeries in a portuguese hospital using a genetic heuristic[END_REF][START_REF] Van Huele | Analysis of the integration of the physician rostering problem and the surgery scheduling problem[END_REF][START_REF] Vancroonenburg | A two-phase heuristic approach to multi-day surgical case scheduling considering generalized resource constraints[END_REF][START_REF] Xiang | An ant colony optimization approach for solving an operating room surgery scheduling problem[END_REF][START_REF] Hashemi Doulabi | A constraintprogramming-based branch-and-price-and-cut approach for operating room planning and scheduling[END_REF][START_REF] Riise | Modelling and solving generalised operational surgery scheduling problems[END_REF][START_REF] Moosavi | Scheduling of elective patients considering upstream and downstream units and emergency demand using robust optimization[END_REF][START_REF] Eun | Scheduling elective surgery patients considering time-dependent health urgency: Modeling and solution approaches[END_REF], whereas the others optimize the two steps separately and successively (e.g., [START_REF] Fei | A planning and scheduling problem for an operating theatre using an open scheduling strategy[END_REF][START_REF] Landa | A hybrid optimization algorithm for surgeries scheduling[END_REF][START_REF] Durán | Solving the operating room scheduling problem with prioritized lists of patients[END_REF]Roshanaei et al., 2017b;[START_REF] Pang | Surgery scheduling under case cancellation and surgery duration uncertainty[END_REF][START_REF] Jung | Scheduling elective surgeries with emergency patients at shared operating rooms[END_REF]. Comparing the two types of research methods, [START_REF] Riise | Local search for the surgery admission planning problem[END_REF] and Molina-Pariente et al. (2015a) point out that decomposing the operational level reduces the computational complexity, but does not lead to high-quality solutions since the interdependence between the two steps are neglected. Hence, integrating the advance and allocation scheduling in the same mathematical model leads to better surgery schedules.

1.2/ ADVANCE SURGERY SCHEDULING AT THE OPERATIONAL LEVEL

The problem studied in this thesis is the advance scheduling of elective surgeries, i.e., the optimal assignment of elective patients to specific surgery dates and ORs. In this section, we review the recent research on this topic based on the following aspects:

• Patient classifications (Section 1.2.1): discussing the commonly used methods to categorize patients according to their characteristics.

• Scheduling strategies (Section 1.2.2): providing information on the scheduling strategies adopted in literature, such as open scheduling and block scheduling.

• Uncertainties (Section 1.2.3): indicating the uncertainties involved in advance surgery scheduling problems.

• Surgical resources (Section 1.2.4): covering the material and human resources incorporated in relevant research.

• Objective functions (Section 1.2.5): focusing on the costs or revenues that are incorporated and optimized in the objective functions.

• Operations research methodologies (Section 1.2.6): reviewing the mathematical models and the solution approaches employed by researchers.

In each of the following subsections, we analyze and compare the existing works on advance surgery scheduling published in the last 10 years from one of the six aspects mentioned above. Moreover, a summary of these relevant works is provided in Table 1.1 at the end of this section.

1.2.1/ PATIENT CLASSIFICATIONS

In the literature on surgery scheduling, patients are generally classified into two groups: elective patients and non-elective patients [START_REF] Cardoen | Operating room planning and scheduling: A literature review[END_REF][START_REF] Samudra | Scheduling operating rooms: Achievements, challenges and pitfalls[END_REF].

The former group is usually added onto a waiting list before being treated; these patients' surgeries can be postponed for some period of time. In comparison, the latter group is made up of emergent patients (emergencies) that should be treated as soon as possible.

Though non-elective surgeries can be planned in a simple first-come-first-served (FCFS) way [START_REF] Ferrand | Comparing two operating-roomallocation policies for elective and emergency surgeries[END_REF][START_REF] Van Essen | Minimizing the waiting time for emergency surgery[END_REF], the scheduling of elective patients is more complicated since the surgery dates of these patients should be properly determined to trade off their waiting times and the overuse of surgical resources. Therefore, elective surgery scheduling have received considerable attention from the research community [START_REF] Cardoen | Operating room planning and scheduling: A literature review[END_REF][START_REF] Samudra | Scheduling operating rooms: Achievements, challenges and pitfalls[END_REF].

To guarantee that all the patients are treated equally and efficiently, it is important to take emergencies into consideration when determining the elective surgery schedule. Among the relevant works on advance surgery scheduling, two policies are employed to deal with emergencies. The first one is a dedicated policy under which all the emergent patients are channelled to dedicated surgical facilities, so that the scheduled elective surgeries are not interrupted. When this policy is employed, the surgery planner focuses on the planning of elective surgeries using the non-dedicated resources, while emergent patients are usually neglected since they are treated in the dedicated facilities on the FCFS basis (e.g., Fei et al., 2009a;[START_REF] Denton | Optimal allocation of surgery blocks to operating rooms under uncertainty[END_REF][START_REF] Jebali | A stochastic model for operating room planning under capacity constraints[END_REF][START_REF] Addis | Operating room scheduling and rescheduling: a rolling horizon approach[END_REF][START_REF] Marques | Different stakeholders' perspectives for a surgical case assignment problem: Deterministic and robust approaches[END_REF][START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF]Roshanaei et al., 2017a[START_REF] Roshanaei | Reformulation, linearization, and decomposition techniques for balanced distributed operating room scheduling[END_REF]Zhang et al., 2019). The second policy is more flexible; it allows the emergency surgeries to be performed in any unoccupied OR. Scheduling surgeries under the flexible policy is more complex than doing so under the dedicated policy since emergencies introduce more uncertainty into the problem. Among the research in which the flexible policy is employed, the authors usually assume the emergency demand to be a stochastic parameter, and determine the surgical resources (e.g., OR capacity and recovery beds) reserved for emergencies in a way that balances the satisfaction of elective patients and the quick access to care of non-elective ones.(e.g., [START_REF] Wang | A column-generation-based heuristic algorithm for solving operating theater planning problem under stochastic demand and surgery cancellation risk[END_REF][START_REF] Rachuba | A fuzzy multi-criteria approach for robust operating room schedules[END_REF].

In addition to the two policies discussed above, some papers plan the elective and nonelective surgeries using a hybrid policy that maintains both dedicated and versatile surgical facilities (e.g., [START_REF] Tancrez | Assessing the impact of stochasticity for operating theater sizing[END_REF][START_REF] Hosseini | Evaluation of optimal scheduling policy for accommodating elective and non-elective surgery via simulation[END_REF][START_REF] Ferrand | Partially flexible operating rooms for elective and emergency surgeries[END_REF]. These papers mainly focus on the intra-day allocation scheduling and hence are not within the scope of our review.

To the best of our knowledge, no research on advance scheduling has made a comparison between the dedicated policy and the flexible policy. Nonetheless, some papers addressing allocation scheduling have compared the performances of the two policies from different aspects. Specifically, [START_REF] Ferrand | Comparing two operating-roomallocation policies for elective and emergency surgeries[END_REF] present a study of a two-OR planning problem; they conclude that adopting the dedicated policy reduces the elective patients' waiting time and the overtime of ORs, but that it leads to longer waiting times for emergent patients. [START_REF] Duma | The management of non-elective patients: shared vs. dedicated policies[END_REF] provide a detailed comparison that reveals that the dedicated policy results in fewer elective surgery cancellations, high resource utilization rates, and shorter waiting lists, and that the flexible policy brings about a better trade off between the performance of the elective and non-elective patients. Moreover, they establish that further improvement can be achieved through a mixture of the two policies (i.e., hybrid policies). The authors also claim that the performances of different policies depend on the scenario and the operative conditions, hence, any policy could be the best one under a specific problem setting.

In some research, elective patients and non-elective ones are further divided into several subgroups [START_REF] Cardoen | Operating room planning and scheduling: A literature review[END_REF][START_REF] Guerriero | Operational research in the management of the operating theatre: A survey[END_REF][START_REF] Zhu | Operating room planning and surgical case scheduling: a review of literature[END_REF]. Elective patients can be distinguished between inpatients and outpatients: the former stay overnight in the hospital, while the latter enter and leave the hospital on the same day; non-elective patients can be classified into emergent patients that should be treated immediately and urgent patients that can wait for a short period. From the perspective of advance surgery scheduling, outpatients are equivalent to the elective patients that do not require intensive care and urgent patients can be regarded as elective ones with high urgency levels. Hence, classifying patients into these subgroups has little impact on advance surgery scheduling and is not considered in this thesis.

1.2.2/ SCHEDULING STRATEGIES

Block scheduling and open scheduling are two commonly adopted strategies in OT planning and surgery scheduling [START_REF] Denton | Optimal allocation of surgery blocks to operating rooms under uncertainty[END_REF][START_REF] Hashemi Doulabi | A constraintprogramming-based branch-and-price-and-cut approach for operating room planning and scheduling[END_REF]. Under the block scheduling strategy, there is an MSS specifying the preallocation of surgical blocks (i.e., combinations of an OR and a date/time slot) among multiple specialties or surgical groups [START_REF] Guerriero | Operational research in the management of the operating theatre: A survey[END_REF]. This strategy reduces the complexity of advance scheduling in that every patient can only be assigned to one of the surgical blocks occupied by the specialty to which he/she belongs [START_REF] Zhu | Operating room planning and surgical case scheduling: a review of literature[END_REF]. For example, [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF] and [START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF] adopt the block scheduling strategy to optimize the weekly elective surgery schedules in an OT consisting of 10 ORs, where each OR-day can be regarded as a surgical block. They determine the patient-to-block assignments based on a given MSS that preallocates 32 surgical blocks (64% block fill rate) among 9 specialties. [START_REF] Marques | Different stakeholders' perspectives for a surgical case assignment problem: Deterministic and robust approaches[END_REF] also use the block scheduling strategy to address an advance scheduling problem, in which each OR can accommodate two working shifts (a morning shift and an afternoon shift) of different surgical groups on the same workday. Given that the studied OT is composed of 10 ORs for performing elective surgeries, there can be at most 100 surgical blocks during a week. The elective surgery schedules are optimized under the restrictions of several given MSSs determining the assignments of different numbers of surgical blocks to 11 surgical groups.

Compared to block scheduling, open scheduling is a more flexible strategy that does not restrict the specialty-to-block or patient-to-block assignments with an MSS [START_REF] Samudra | Scheduling operating rooms: Achievements, challenges and pitfalls[END_REF]. Under this strategy, an elective patient can be assigned to any available surgical block, and surgeries from different specialties can be scheduled in the same block [START_REF] Agnetis | A decomposition approach for the combined master surgical schedule and surgical case assignment problems[END_REF]. Fei et al. (2009a) point out that block scheduling is a special case of open scheduling, and that the solutions of the former are always feasible for the latter.

They also find that open scheduling tends to find better surgery assignments than block scheduling. Moreover, [START_REF] Denton | Optimal allocation of surgery blocks to operating rooms under uncertainty[END_REF] report that open scheduling strategy is very commonly used in destination medical centers where various types of patients have travelled long distances before arrival and should be treated with a short delay. However, [START_REF] Zhu | Operating room planning and surgical case scheduling: a review of literature[END_REF] argue that open scheduling strategy brings inconvenience to the surgical staff and leads to low utilization rate of surgical resources and long waiting time of patients, hence block scheduling strategy is much more adopted in practice. [START_REF] Guerriero | Operational research in the management of the operating theatre: A survey[END_REF] also report that open scheduling strategy is rarely used in health care in spite of its flexibility.

Besides of the two aforementioned scheduling strategies, some researchers adopt an intermediate strategy which is referred to as modified block scheduling in literature [START_REF] Guerriero | Operational research in the management of the operating theatre: A survey[END_REF][START_REF] Zhu | Operating room planning and surgical case scheduling: a review of literature[END_REF]. Such a strategy modifies the block scheduling strategy by releasing the unused OR capacity for performing other surgeries or by reserving some ORs while keeping the others open [START_REF] Augusto | Operating theatre scheduling with patient recovery in both operating rooms and recovery beds[END_REF][START_REF] Roland | Scheduling an operating theatre under human resource constraints[END_REF][START_REF] Vancroonenburg | A two-phase heuristic approach to multi-day surgical case scheduling considering generalized resource constraints[END_REF]. For example, Molina-Pariente et al. (2015b) introduce a modified block scheduling strategy used in the plastic surgery and major burns specialty of a Spanish hospital. Considering the high complexity and priority of burn surgeries and microsurgeries, each of the two surgery types has two reserved OR-days per week, while the other surgeries are performed in any unoccupied OR by any available surgeon. However, their experimental results illustrate that replacing the modified block scheduling strategy with an open scheduling strategy improves the surgery plan significantly.

1.2.3/ UNCERTAINTIES

Surgical activities are subject to various sources of uncertainty, which strongly affect the total cost and the robustness of a surgery plan, and lead to deviations between the planned schedule and the actual execution [START_REF] Guerriero | Operational research in the management of the operating theatre: A survey[END_REF][START_REF] Sperandio | An intelligent decision support system for the operating theater: A case study[END_REF][START_REF] Rachuba | A fuzzy multi-criteria approach for robust operating room schedules[END_REF][START_REF] Pang | Surgery scheduling under case cancellation and surgery duration uncertainty[END_REF]. Specifically, [START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF] point out that the uncertainties in surgery durations, LOSs, and emergency arrivals may cause over-utilizations of surgical resources, cancellations of scheduled surgeries, and disruptions of the ongoing surgery plan, respectively. In literature, though some relevant works neglect uncertainties and employ deterministic mathematical models to avoid computational challenges (e.g., Fei et al., 2009a;[START_REF] Molina-Pariente | New heuristics for planning operating rooms[END_REF]Roshanaei et al., 2017a[START_REF] Roshanaei | Reformulation, linearization, and decomposition techniques for balanced distributed operating room scheduling[END_REF], most of the works on advance scheduling emphasize that uncertainties should be explicitly taken into account to guarantee the robustness of surgery schedules (e.g., [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF][START_REF] Wang | A column-generation-based heuristic algorithm for solving operating theater planning problem under stochastic demand and surgery cancellation risk[END_REF][START_REF] Jebali | A stochastic model for operating room planning under capacity constraints[END_REF].

Duration uncertainty is a well addressed issue in the relevant works. Uncertain surgery durations are considered in almost all the works using stochastic models (see Table 1.1), and patients' uncertain length of stay (LOS) in intensive care units (ICU) or wards is another type of duration uncertainty, which is usually incorporated in downstream-constrained surgery scheduling problems (e.g., [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF]Jebali andDiabat, 2015, 2017;[START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF]. These duration uncertainties are frequently addressed in literature since they have important impacts on surgery schedules. Overestimating these durations can lead to low utilization rate of surgical resources and unnecessary waiting of patients, while underestimating them may cause overtime of ORs, early discharge of postoperative patients, and surgery cancellations. In stochastic programming models, surgery durations and LOSs are mostly assumed to be lognormally distributed, because lognormal distribution results in the best fit for hospital data [START_REF] Strum | Estimating times of surgeries with two component procedures: Comparison of the lognormal and normal models[END_REF][START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF][START_REF] Van Riet | Trade-offs in operating room planning for electives and emergencies: A review[END_REF][START_REF] Xiao | Stochastic programming analysis and solutions to schedule overcrowded operating rooms in china[END_REF][START_REF] Marques | Different stakeholders' perspectives for a surgical case assignment problem: Deterministic and robust approaches[END_REF]. Moreover, the distribution parameters of duration uncertainties depend on patients' age, health condition, surgery type, etc. [START_REF] Olivares | Structural estimation of the newsvendor model: an application to reserving operating room time[END_REF][START_REF] Riise | Modelling and solving generalised operational surgery scheduling problems[END_REF], and the patients from the same urgency group or specialty are usually assumed to have the same probability distributions for uncertainties (Jebali andDiabat, 2015, 2017;[START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF].

Another frequently addressed surgery-related stochasticity is arrival uncertainty. Random arrivals of emergency patients are commonly seen in the relevant research in which the flexible policy is adopted (see Table 1.1). [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF] and [START_REF] Rachuba | A fuzzy multi-criteria approach for robust operating room schedules[END_REF] address the emergency arrivals implicitly by assuming the OR capacity left for elective surgeries to be a uniformly distributed value, while [START_REF] Wang | A column-generation-based heuristic algorithm for solving operating theater planning problem under stochastic demand and surgery cancellation risk[END_REF] introduce a stochastic parameter following an exponential distribution to capture the OR capacity occupied by emergency surgeries. Furthermore, [START_REF] Jebali | A chance-constrained operating room planning with elective and emergency cases under downstream capacity constraints[END_REF] propose a more explicit way to address the emergency demand in ORs and ICU. They use a Poisson distribution to estimate the arrival of emergency patients, and assume all the surgery durations and LOSs to be subject to lognormal distributions, thus the OR capacity and the number of ICU beds occupied by emergency patients in different scenarios can be calculated. On the other hand, the arrivals of elective patients are considered as deterministic information in the majority of the literature on advance surgery scheduling [START_REF] Samudra | Scheduling operating rooms: Achievements, challenges and pitfalls[END_REF], except that some researchers use Poisson distributions to describe the uncertain elective arrivals in patient admission control problems, which can be regarded as subproblems of advance scheduling (e.g., Min andYih, 2010a, 2014;[START_REF] Truong | Optimal advance scheduling[END_REF].

1.2.4/ SURGICAL RESOURCES

From the perspective of patients, all the surgeries should be performed as soon as possible to prevent any possible deterioration of health. However, surgery planning is restricted by multiple resource constraints, and scheduling too many surgeries in a short period may violate some resource constraints, leading to overuse of surgical resources, dissatisfaction of surgical staff, high total cost, surgery cancellations, etc. In order to balance the conflicting interests of hospital and patients, surgery planners should consider both the patients' health and the surgical resources' availability.

Among the various types of surgical resources, ORs are the most important ones as they are the specialized facilities where the surgeries are performed. All the studies on advance scheduling optimize the utilization of ORs because of their importance and expensiveness (see Table 1.1). Molina-Pariente et al. (2015b), [START_REF] Addis | Operating room scheduling and rescheduling: a rolling horizon approach[END_REF], [START_REF] Marques | Different stakeholders' perspectives for a surgical case assignment problem: Deterministic and robust approaches[END_REF]), and Roshanaei et al. (2017a, 2019) address the capacity of ORs using hard constraints that do not allow any violation, whereas the other relevant studies allow the ORs to be overused and incorporate overtime costs into the objective functions. In addition, Fei et al. (2009a), [START_REF] Wang | A column-generation-based heuristic algorithm for solving operating theater planning problem under stochastic demand and surgery cancellation risk[END_REF], [START_REF] Jebali | A stochastic model for operating room planning under capacity constraints[END_REF], and [START_REF] Rachuba | A fuzzy multi-criteria approach for robust operating room schedules[END_REF] speculate the maximum allowed overtime capacity to avoid severe overutilizations. In order to improve the utilization rates of ORs, Fei et al. (2009a) and Jebali andDiabat (2015, 2017) also minimize the costs caused by under-utilization (i.e., idle time) of ORs, while [START_REF] Denton | Optimal allocation of surgery blocks to operating rooms under uncertainty[END_REF], [START_REF] Wang | A column-generation-based heuristic algorithm for solving operating theater planning problem under stochastic demand and surgery cancellation risk[END_REF]), and Roshanaei et al. (2017a, 2019) assume that opening an OR block incurs a cost so that some ORs can be closed when the surgical demand is low to eliminate unnecessary OR utilization.

Although ORs are the kernel of all the surgical resources, planning the capacity of ORs independently does not yield high-quality schedules, since the unavailability of downstream resources, such as surgical intensive care units (SICU) and post-anaesthesia care units (PACU), may block the postoperative patients in ORs and deteriorate the surgery schedule [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF][START_REF] Jebali | A stochastic model for operating room planning under capacity constraints[END_REF]. Specifically, [START_REF] Jonnalagadda | Evaluation of the reasons for cancellations and delays of surgical procedures in a developing country[END_REF] report that the unavailability of recovery room is the cause of 15% of surgery cancellations in the hospital they study, and [START_REF] Utzolino | Unplanned discharges from a surgical intensive care unit: readmissions and mortality[END_REF] show that the readmission rate to SICU of the patients that are discharged due to the lack of recovery beds is almost 3 times that of the patients discharged electively. Therefore, many researchers optimize the utilizations of ORs and downstream resources jointly (see Table 1.1). While most of these works consider only one type of downstream resource, [START_REF] Jebali | A stochastic model for operating room planning under capacity constraints[END_REF] take both ICU and regular wards into account. Since the patients' LOSs in ICU and wards are stochastic, violations of downstream capacity constraints are inevitable in some scenarios. Regarding this issue, [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF] employ hard constraints to restrict the utilization of SICU, thus violations of these constraints result in surgery cancellations. In contrast, [START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF] point out that when the downstream capacity is in-sufficient to accommodate all the patients needing intensive care, the extra patients can be transferred to lower-level recovery units or additional beds can be moved into SICU, and penalties are incurred under such circumstance. Similar assumptions are also employed in Jebali andDiabat (2015, 2017).

Apart from the material resources discussed above, Roshanaei et al. (2017a[START_REF] Roshanaei | Reformulation, linearization, and decomposition techniques for balanced distributed operating room scheduling[END_REF] [START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF] in which a set of constraints are introduced to limit the workload of every surgeon.

1.2.5/ OBJECTIVE FUNCTIONS

The objective function of a mathematical programming model specifies the costs or revenues to be optimized and strongly affects the performance of the resulting solution, since every term of the objective function, which can also be referred to as a performance measure, determines the weight of a cost or revenue and favors the interests of some stakeholders over the others [START_REF] Samudra | Scheduling operating rooms: Achievements, challenges and pitfalls[END_REF].

Most studies on advance surgery scheduling minimize a cost function that captures the patient-related costs and/or the hospital-related costs. Two types of patient-related costs are commonly considered: scheduling cost and waiting cost. The former results from assigning patients to surgical blocks, and the latter is the penalty for not scheduling patients during the current planning period. In order to treat as many patients as possible under the given resource constraints, the scheduling cost of a patient should always be lower than his/her waiting cost. Moreover, many researchers use a prioritization system to define the patient-related costs, and the priority score of a patient is used as a multiplier of his/her scheduling cost and waiting cost. [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF] obtain the priority scores of patients by randomly generating values from a uniform distribution, while most researchers use linear functions to calculate patients' priority scores, which are linearly or piecewise-linearly increasing in one or several of the following factors: urgency level or health status [START_REF] Marques | Different stakeholders' perspectives for a surgical case assignment problem: Deterministic and robust approaches[END_REF][START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF]Roshanaei et al., 2017a[START_REF] Roshanaei | Reformulation, linearization, and decomposition techniques for balanced distributed operating room scheduling[END_REF], waiting time (Jebali andDiabat, 2015, 2017;[START_REF] Addis | Operating room scheduling and rescheduling: a rolling horizon approach[END_REF][START_REF] Marques | Different stakeholders' perspectives for a surgical case assignment problem: Deterministic and robust approaches[END_REF][START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF][START_REF] Rachuba | A fuzzy multi-criteria approach for robust operating room schedules[END_REF], number of days to the due date [START_REF] Marques | Different stakeholders' perspectives for a surgical case assignment problem: Deterministic and robust approaches[END_REF]Roshanaei et al., 2017a[START_REF] Roshanaei | Reformulation, linearization, and decomposition techniques for balanced distributed operating room scheduling[END_REF], and relative importance of surgical specialty [START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF].

Hospital-related costs are mainly incurred by utilizations of surgical resources. In most of the relevant research, the over-and under-utilization cost of ORs and the penalty for shortage of downstream recovery units are proportionate to the actual overtime, undertime, and excess of downstream capacity, respectively (Fei et al., 2009a;[START_REF] Denton | Optimal allocation of surgery blocks to operating rooms under uncertainty[END_REF][START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF][START_REF] Wang | A column-generation-based heuristic algorithm for solving operating theater planning problem under stochastic demand and surgery cancellation risk[END_REF][START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF][START_REF] Rachuba | A fuzzy multi-criteria approach for robust operating room schedules[END_REF]Zhang et al., 2019). One exception is that Jebali andDiabat (2015, 2017) employ a piecewise linear function to address the over-utilization cost of ORs: the penalty per minute of violating the maximum permitted opening time of ORs is higher than the cost per minute of keeping an OR open longer than the regular time length. In addition, some researchers speculate that opening an OR during a time slot incurs a fixed cost, so that some surgical blocks can be closed according to the actual demand to save the hospital's expense [START_REF] Denton | Optimal allocation of surgery blocks to operating rooms under uncertainty[END_REF][START_REF] Wang | A column-generation-based heuristic algorithm for solving operating theater planning problem under stochastic demand and surgery cancellation risk[END_REF]. Furthermore, Roshanaei et al. (2017a[START_REF] Roshanaei | Reformulation, linearization, and decomposition techniques for balanced distributed operating room scheduling[END_REF] deal with a special advance scheduling problem in which the elective patients are scheduled among several partner hospitals, hence they consider the opening costs of both ORs and surgical suites (i.e., OTs) in hospitals. The objective function of [START_REF] Roshanaei | Reformulation, linearization, and decomposition techniques for balanced distributed operating room scheduling[END_REF] also incorporates the macro imbalance of OR occupation among the considered hospitals and the micro imbalance of workload among the ORs within a surgical suite. Compared to the costs of material resources, those of human resources are scarcely incorporated into objective functions. Among the research on advance surgery scheduling, we only find that [START_REF] Marques | Different stakeholders' perspectives for a surgical case assignment problem: Deterministic and robust approaches[END_REF] optimize the interests of surgeons by minimizing their "lack of memory". When an incentive surgery plan is obtained, they improve this plan by scheduling the patients in the inverse order as they arrive on the waiting list, because surgeons remember the best the last admitted patients.

As can be seen in Table 1.1, not all the relevant papers address both the patient-related costs and the hospital-related costs. We find that the papers only incorporating the patientrelated costs use hard constraints to limit the utilization of surgical resources and do not permit over-utilization of ORs or excess of downstream capacity, thus the hospital-related cost is always zero [START_REF] Addis | Operating room scheduling and rescheduling: a rolling horizon approach[END_REF]. On the other hand, the papers that only address the hospital-related costs do not permit postponement of surgeries, which means that every elective patient on the waiting list must be assigned to a surgical block within the currently considered planning period, hence the patients have no waiting cost (Fei et al., 2009a;[START_REF] Denton | Optimal allocation of surgery blocks to operating rooms under uncertainty[END_REF][START_REF] Wang | A column-generation-based heuristic algorithm for solving operating theater planning problem under stochastic demand and surgery cancellation risk[END_REF]Zhang et al., 2019). In the other works that take both types of costs into consideration, surgeries are allowed to be postponed to the following planning periods and surgical resources can be overused to different extents [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF]Jebali andDiabat, 2015, 2017;[START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF][START_REF] Rachuba | A fuzzy multi-criteria approach for robust operating room schedules[END_REF]Roshanaei et al., 2017a[START_REF] Roshanaei | Reformulation, linearization, and decomposition techniques for balanced distributed operating room scheduling[END_REF].

Different from the above discussed works that minimize cost functions, [START_REF] Molina-Pariente | New heuristics for planning operating rooms[END_REF] maximize the total service level of all the scheduled patients in their objective function. The service level of a patient is given by the quotient between his/her clinical weight and surgery date, where the clinical weight determines the priority of a patient and depends on the patient's urgency level and waiting time. The authors allow the patients on the waiting list to be scheduled in the following periods and use hard constraints to limit the occupations of ORs and surgeons, hence only the patients' interests are maximized in their objective function.

1.2.6/ OPERATIONS RESEARCH METHODOLOGIES

The mathematical programming models used in advance surgery scheduling can be classified into two categories: deterministic models that do not incorporate any uncertainty and stochastic models that contain uncertain parameters.

In deterministic models, the authors use the expected values to address patients' arrivals, surgery durations, LOSs, etc., or assume these parameters to be known in advance. Since no stochasticity is involved, deterministic models are less complex and easier to solve than stochastic ones. Specifically, Fei et al. (2009a) Given the significance of incorporating uncertainties into surgery scheduling, as discussed in Section 1.2.3, stochastic models are more widely adopted than deterministic ones in the recent literature (see Table 1.1). [START_REF] Denton | Optimal allocation of surgery blocks to operating rooms under uncertainty[END_REF], [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF], [START_REF] Jebali | A stochastic model for operating room planning under capacity constraints[END_REF], and Zhang et al. (2019) formulate advance surgery scheduling problems as stochastic programming models. These models cannot be directly solved since uncertain parameters are explicitly incorporated in the objective functions and the constraints. The authors employ the sample average approximation (SAA) method to convert the stochastic models to their deterministic counterparts, which are then solved in different ways: [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF] and [START_REF] Jebali | A stochastic model for operating room planning under capacity constraints[END_REF] solve the deterministic models obtained from SAA by CPLEX (a commercial optimization solver) with the default branch-andcut algorithm, while [START_REF] Denton | Optimal allocation of surgery blocks to operating rooms under uncertainty[END_REF] and Zhang et al. (2019) develop an exact integer L-shaped algorithm and an exact hill-climbing algorithm, respectively, as the final solution approaches.

Chance-constrained programming is another commonly used stochastic model in advance surgery scheduling [START_REF] Wang | A column-generation-based heuristic algorithm for solving operating theater planning problem under stochastic demand and surgery cancellation risk[END_REF][START_REF] Jebali | A chance-constrained operating room planning with elective and emergency cases under downstream capacity constraints[END_REF]. Different from most of the other mathematical programming models in which all the constraints must be respected, chance-constrained programming incorporates chance constraints that can be violated with an upper-bounded probability. Specifically, [START_REF] Wang | A column-generation-based heuristic algorithm for solving operating theater planning problem under stochastic demand and surgery cancellation risk[END_REF] and [START_REF] Jebali | A chance-constrained operating room planning with elective and emergency cases under downstream capacity constraints[END_REF] use chance constraints to deal with the OR capacity and the ICU capacity, respectively. The upper bounds for the violation risks of these chance constraints are equivalent to the maximum allowed cancellation rate of surgeries. The authors employ adapted SAA methods to translate the chance-constrained programming models into deterministic ones, then [START_REF] Wang | A column-generation-based heuristic algorithm for solving operating theater planning problem under stochastic demand and surgery cancellation risk[END_REF] propose an approximate and efficient CGBH algorithm as the solution approach, while [START_REF] Jebali | A chance-constrained operating room planning with elective and emergency cases under downstream capacity constraints[END_REF] solve the deterministic model directly with CPLEX.

The aforementioned stochastic models require the probabilistic distributions of uncertain parameters to be known or estimated from statistical data, but many health care providers do no have sufficient data to estimate these distributions [START_REF] Denton | Optimal allocation of surgery blocks to operating rooms under uncertainty[END_REF]. Robust optimization is a relatively new model for tackling stochastic optimization problems and does not rely on distributional information [START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF]. It assumes that the uncertain parameters reside in some uncertainty sets, and provides solutions that are feasible for any realization of the uncertain parameters within these uncertainty sets. In other words, robust optimization optimizes the objective function under the worst-case realization of uncertainties [START_REF] Gorissen | A practical guide to robust optimization[END_REF]. Moreover, the conservatism of robust optimization can be adjusted by altering the uncertainty sets, i.e., larger uncertainty sets result in more conservative solutions. Regarding advance surgery scheduling, [START_REF] Denton | Optimal allocation of surgery blocks to operating rooms under uncertainty[END_REF] propose a robust optimization model in which the values of surgery durations vary within an uncertainty set. In order to balance the performance under the worstcase cost and the expected cost, the authors develop a heuristic to determine the scale of the uncertainty set. Numerical experiments show that the proposed robust optimization model can be solved faster than the stochastic programming model for the same problem. [START_REF] Addis | Operating room scheduling and rescheduling: a rolling horizon approach[END_REF] and [START_REF] Marques | Different stakeholders' perspectives for a surgical case assignment problem: Deterministic and robust approaches[END_REF] also adopt robust optimization to deal with advance scheduling considering uncertain surgery durations, and they solve the proposed models with CPLEX and a decomposition algorithm, respectively. Furthermore, [START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF] propose a two-stage robust optimization model to address the uncertain surgery durations and LOSs. Similar to the two-stage stochastic programming models applied in the relevant research, the proposed model keeps the patient-to-block assignment variables at the first stage, and tackles the costs related to the uncertain parameters at the second stage. Such a frame allows the authors to develop an exact column-and-constraint-generation algorithm which is capable of solving large-sized problems efficiently. Besides of the above discussed mathematical models, [START_REF] Rachuba | A fuzzy multi-criteria approach for robust operating room schedules[END_REF] propose a fuzzy robust multi-criteria optimization model, which is similar to robust optimization in that all the possible values of surgery durations and emergency demands are contained in two closed intervals. The authors formulate three objective functions from the perspectives of patients, staff, and management, then they aggregate these objective functions together using a fuzzy set approach and solve the proposed model with FICO Xpress (a commercial optimization solver).

1.3/ MATHEMATICAL MODELS ADOPTED IN THIS THESIS

As mentioned in General Introduction, we propose a two-phase optimization model combining MDP and stochastic programming in this thesis, to overcome the short-sightedness of the commonly used pure mathematical programming models. In this section, we introduce the state of the art of MDP and stochastic programming, and review the relevant works that apply them in the field of advance surgery scheduling.

1.3.1/ MARKOV DECISION PROCESS

MDP is a discrete mathematical model used to facilitate sequential decision-making in the presence of uncertainty [START_REF] White | Markov decision processes[END_REF]. In an MDP model, the status of the system under consideration is described by the states from a set named state space; the possible actions that can be taken are included in another set named action space. At every discrete time point (i.e., decision epoch), the agent observes the state of the system and selects an action from the action space. The current state and the selected action determine the instant cost (or revenue) of the system and the probability distribution of the subsequent state to which the system transfers at the next decision epoch [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF]. The objective of solving an MDP model is to find the optimal policy that specifies a mapping from the state space to the action space and optimizes the value function (i.e., minimizes the expected total cost or maximizes the expected total revenue of all the decision epochs) [START_REF] Mausam | Planning with Markov decision processes: An AI perspective[END_REF].

Most algorithms used to solve MDP models are based on dynamic programming (DP), such as policy iteration (PI), value iteration (VI), real-time dynamic programming (RTDP) and its variants. VI and PI evaluate the entire state space iteratively, updating the value function until the improvement is lower than a given threshold. These algorithms employ brute-force search strategies and the computational resources (memory and time) they need are exponential to the problem size. As a result, solving realistically sized MDP models using VI or PI is usually intractable. In order to improve the computational efficiency, [START_REF] Barto | Learning to act using real-time dynamic programming[END_REF] propose a RTDP algorithm that only evaluates a subset of the state space. At every decision epoch, RTDP explores the state space along several sampled trajectories that are rooted at the state that describes the problem's current status (i.e., the initial state). Specifically, at each visited state (including the initial state), RTDP updates the value function and policy then randomly samples the next state to visit according to the probability distribution determined by the current state and the corresponding action under the current policy. When a certain number of states are evaluated, RTDP returns to the initial state and repeats the above procedure. Since RTDP only visits those states that are reachable from the initial state, it outperforms PI and VI in terms of computational efficiency. However, the original version of RTDP lacks a mechanism for convergence detection and a proper criterion for terminating the computation; as such, it may waste computational resources on those states where the value function is already converged, or terminate so early that the value function is still far from converged. To overcome these drawbacks, several extensions of RTDP have been developed in the literature. [START_REF] Bonet | Labeled RTDP: Improving the convergence of realtime dynamic programming[END_REF] propose labelled-RTDP (LRTDP), which incorporates a labelling scheme into the original RTDP. They label the states where the value function no longer improves; in this way, the computational resources can be concentrated on the non-labelled states where the value function is not converged. [START_REF] Mcmahan | Bounded real-time dynamic programming: RTDP with monotone upper bounds and performance guarantees[END_REF] and [START_REF] Smith | Focused real-time dynamic programming for MDPs: Squeezing more out of a heuristic[END_REF] propose bounded-RTDP (BRTDP) and focused-RTDP (FRTDP), respectively. These extended RTDP algorithms compute both an upper bound and a lower bound on the optimal value function; the gap between the two bounds can then be used to judge whether the value function is converged and the exploration of the state space can be guided towards the poorly understood states (i.e., the states where the gap between the two bounds is large). Further to this, [START_REF] Sanner | Bayesian real-time dynamic programming[END_REF] improve BRTDP by introducing a value of perfect information (VPI) analysis to detect whether the policy at a state is converged. The VPI-RTDP algorithm they propose saves computational resources by not visiting the states where the value function may not be converged but the policy is already converged.

Though the performance of DP-based algorithms are improved in different ways, their computational efficiency is highly dependent on the problem scale, i.e., the CPU time and memory consumed by DP-based algorithms are rapidly increasing in the size of MDP model. Therefore, more advanced algorithms should be developed to solve realistically sized problems efficiently. In short, the challenges faced by DP-based algorithms are the so-called three curses of dimensionality: state space, action space, and outcome space (containing all the possible subsequent states of a state-action pair) [START_REF] Powell | Approximate Dynamic Programming: Solving the curses of dimensionality[END_REF]. Regarding the large action spaces, many researchers perform structural analyses for their MDP models to reduce the number of actions that should be evaluated (e.g., Min andYih, 2010a, 2014;[START_REF] Truong | Optimal advance scheduling[END_REF]. Moreover, approximate dynamic programming (ADP) provides a set of powerful algorithms that are able to cope with large state spaces and outcome spaces: firstly and the most importantly, since the dimension of the value function depends on the cardinality of the state space, the computational complexity caused by a large state space can be reduced by estimating the high-dimensional value function with a low-dimensional approximator; secondly, similar to RTDP and its extensions, the enumeration of a large outcome space can be avoided by randomly sampling a subsequent state to evaluate. For example, [START_REF] Yin | Recursive least-squares temporal difference learning for adaptive traffic signal control at intersection[END_REF] propose a novel ADP algorithm to solve a real-time traffic signal control problem. They use a linear function to approximate the optimal value function, and adopt an online learning strategy to partially explore the state space and the outcome space. Experimental results show that the proposed ADP algorithm provides high-quality policies and consumes much less CPU time than DP-based algorithms.

In the field of advance surgery scheduling, MDP models are mainly applied to solve patient admission control or waiting list management problems. In such a problem, the surgery planner manages a dynamic waiting list of elective patients and makes sequential decisions at the beginning of each week, day or time period to determine every patient's surgery time. Since patient-to-OR assignments are not considered, patient admission control can be regarded as a subproblem of advance surgery scheduling. Specifically, [START_REF] Gerchak | Reservation planning for elective surgery under uncertain demand for emergency surgery[END_REF] address a patient admission control problem in which the decisions are made at the beginning of each day to determine the optimal number of patients to be treated on that day. They analyze the mathematical properties of the optimal policy, then solve the problem with a successive approximation method. Min and Yih (2010a) extend the model developed by [START_REF] Gerchak | Reservation planning for elective surgery under uncertain demand for emergency surgery[END_REF] to apply to a multi-priority case and evaluate the impacts of patient priorities and cost settings on the resulting surgery schedules.

They perform a structural analysis to exploit the model's properties, which are then used to accelerate the solution procedure of value iteration. Based on Min and Yih (2010a), [START_REF] Min | Managing a patient waiting list with time-dependent priority and adverse events[END_REF] go one step further and consider dynamic patient priorities: each patient is initially assigned a fixed urgency level when being added to the waiting list, then his/her priority dynamically increases over time because it is determined by the product of urgency level and actual waiting time. In order to cope with the significantly increased computational complexity, the authors develop a scheduling procedure based on the structural properties of the optimal policy and a sampling-based finite-horizon approximation approach. Moreover, [START_REF] Astaraky | A simulation based approximate dynamic programming approach to multi-class, multi-resource surgical scheduling[END_REF] incorporate multiple priority classes, multiple resources (ORs and recovery beds), and quantified actual waiting time of elective patients into a patient admission control problem. They introduce a booking horizon that consists of a number of future days, so that at each decision epoch, the patients currently on the waiting list can be assigned to any day within the booking horizon. As for the solution approach, the authors develop an ADP algorithm based on least-squares approximate policy iteration to solve realistically sized problems. Besides of the aforementioned research, [START_REF] Green | Managing patient service in a diagnostic medical facility[END_REF], [START_REF] Patrick | Dynamic multipriority patient scheduling for a diagnostic resource[END_REF], [START_REF] Liu | Dynamic scheduling of outpatient appointments under patient no-shows and cancellations[END_REF][START_REF] Truong | Optimal advance scheduling[END_REF] employ MDP models to address diagnostic resource planning and outpatient appointment scheduling problems, which are highly similar to the above discussed patient admission control problems.

1.3.2/ STOCHASTIC PROGRAMMING

Stochastic programming is the most commonly used stochastic model among the existing works on advance surgery scheduling (see Table 1.1). It incorporates the uncertainties explicitly and searches for the optimal solution that leads to the lowest expected cost. A stochastic programming model is usually formulated in a two-stage structure to describe an advance surgery scheduling problem. The first stage minimizes the total cost and contains the main decision variables that determine the OR opening decisions, surgery-toblock assignments, etc. The uncertain issues are not explicitly addressed at the first stage, but the costs dependent on uncertainties are incorporated into the first-stage objective function by the expected objective value of a recourse problem which is solved at the second stage. The objective function of the recourse problem captures the costs under the impact of uncertainties, such as over-and under-utilization costs, penalties for excess of downstream capacity, etc. At the second stage, the uncertain parameters are realized and the values of the first-stage decision variables are regarded as deterministic parameters, then the objective value of the recourse problem can be computed.

Stochastic programming models usually cannot be directly solved due to the existence of stochastic parameters, the complex structure of the recourse problem, and the enormous number of scenarios (a scenario refers to a possible combination of the values of all the stochastic parameters). To overcome these difficulties, an SAA procedure is generally employed to replace the stochastic parameters with a set of randomly generated samples, then the resulting deterministic model can be solved by existing algorithms such as simplex method (for linear programming) and branch-and-bound (for integer linear programming). The high efficiency of SAA in tackling stochastic programming models has been proven by [START_REF] Kleywegt | The sample average approximation method for stochastic discrete optimization[END_REF], in which the authors shown that as the sample size increases, the gap between the optimal solution of the deterministic model given by SAA and that of the true problem decreases exponentially.

The applications of stochastic programming in advance surgery scheduling vary with the problem settings and the final solution approaches. [START_REF] Denton | Optimal allocation of surgery blocks to operating rooms under uncertainty[END_REF] propose a twostage stochastic programming model in which the surgery durations are uncertain parameters. In their model, all the decision variables at the first stage are binary and the second stage is a continuous simple recourse problem. Based on these model properties, the authors employ an integer L-shaped method to solve the deterministic SAA problem. The integer L-shaped method uses the first-stage solution as the parameter of the second stage, and solves the second stage to derive cutting planes to be added to the first stage and to refine the feasible set. It solves the two stages alternately and iteratively until no more valid cuts can be generated, then the optimal solution is obtained [START_REF] Laporte | The integer l-shaped method for stochastic integer programs with complete recourse[END_REF]. Moreover, [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF] and [START_REF] Jebali | A stochastic model for operating room planning under capacity constraints[END_REF] tackle advance surgery scheduling problems in which both the surgery durations and the LOSs are uncertain parameters. They employ SAA to translate the stochastic programming models into deterministic mixed integer programming models, then use CPLEX with the default branch-and-cut algorithm to solve the deterministic models. Their experimental results illustrate that the objective value computed by SAA+CPLEX converges fast as the sample size increases, and that the test problems can be solved with a reasonable CPU time.

Besides, Zhang et al. (2019) use a stochastic programming model to deal with an advance surgery scheduling problem with uncertain surgery durations. Instead of minimizing the expected overtime of ORs, their model maximizes the risk aversion level by considering a novel decision criterion addressing both the probability of overtime and its magnitude.

Based on the analysis of the model properties, the authors propose an exact hill-climbing algorithm as the solution approach. They conduct numerical experiments to show that the proposed algorithm is competitive with the SAA-based solution approaches.

1.4/ OBJECTIVES OF THE THESIS

From the literature review provided in the previous sections, we can find two major limitations of the existing research. Firstly, most researchers employ pure mathematical programming models to address advance surgery scheduling. These models optimize the surgery plan within one single planning period, usually one week, without considering the impacts of the surgery plan for the current period on those for the subsequent periods. However, as the unscheduled patients of the current period will continue to occupy surgical resources and generate costs during the following periods, neglecting the correlations between consecutive planning periods does not guarantee the high performance of the scheduling policy on the long run. Secondly, solving MDP and stochastic programming models for realistically sized surgery scheduling problems requires more efficient solution approaches to be developed. For example, to formulate a patient admission control problem in which the patients are distinguished by specialty, urgency level, and actual waiting time, the MDP model will be much larger than those solved by [START_REF] Min | Managing a patient waiting list with time-dependent priority and adverse events[END_REF] and [START_REF] Astaraky | A simulation based approximate dynamic programming approach to multi-class, multi-resource surgical scheduling[END_REF]. As for the deterministic models translated from stochastic programming models by SAA, Min and Yih (2010a) and [START_REF] Jebali | A stochastic model for operating room planning under capacity constraints[END_REF] solve them with commercial optimization solvers without trying to develop more efficient solution approaches. Though Zhang et al. (2019) propose a novel algorithm to replace the solution approach of SAA and commercial solvers, their model is simpler than those of Min and Yih (2010a) and [START_REF] Jebali | A stochastic model for operating room planning under capacity constraints[END_REF] since the capacity constraints and the uncertainties related to downstream facilities are not incorporated.

Considering the above discussed issues that are not well addressed in literature, we set the main objectives of this thesis as follows:

• We deal with the advance scheduling of elective patients in an OT shared by multiple specialties, while taking into account the uncertainties in surgery durations, LOSs, and patient arrivals. A dedicated policy is employed so that the emergency patients are treated in dedicated facilities and are not considered in this thesis. To prioritize the elective patients on the waiting list, we assign each of them a priority score which is increasing in the relative importance of the corresponding specialty, the clinical urgency level, and the actual waiting time. At the beginning of each week, we select the patients to be treated during the present week from the waiting list and assign them to specific surgical blocks. Since a block scheduling strategy is adopted, the available surgical blocks within each week are already specified by an MSS from the tactical level, and some blocks can be closed when the surgical demand is low to save unnecessary expenses. Our objective is to minimize the patients' scheduling costs and waiting costs, which are proportionate to their priority scores, as well as the opening costs of surgical blocks, the over-utilization costs of ORs, and the penalties for exceeding the downstream capacity. Compared to the relevant research summarized in Table 1.1, this thesis is the first work that incorporates all the above mentioned factors at the same time.

• For the studied advance surgery scheduling problem, we propose a two-phase optimization model to overcome the short-sightedness of the conventional pure mathematical programming models. In the first phase, we use an MDP model to manage the waiting list and to select the patients to be treated within the present week; in the second phase, we adopt a stochastic programming model to determine the surgical blocks to open and to assign the patients selected by the first phase to open surgical blocks. By properly determining the selection of patients to be scheduled, the first-phase MDP model minimizes the estimated total costs over the infinite horizon, hence the long-term performance of the surgery schedules can be improved. Nonetheless, the MDP model is not capable of dealing with the patient-to-block assignments, hence we adopt stochastic programming in the second phase to address the intra-week scheduling decisions.

• In order to cope with realistically sized problems, we develop two novel solution approaches for the two-phase optimization model. Regarding the MDP model in the first phase, we propose an ADP algorithm based on the recursive least-squares temporal difference learning (RLS-TD(λ)) theory. The RLS-TD(λ)-based ADP algorithm approximates the huge-dimensional value function with a low-dimensional linear function, and adopts an on-policy learning strategy that explores the state space along randomly sampled trajectories, hence the curses of dimensionality in terms of the state space and the outcome space are well solved. In addition, we perform a structural analysis for the MDP model to narrow down the action space and accelerate the solution procedures. As for the stochastic programming model in the second phase, we reformulate it in a column-oriented way, then develop several CGBH algorithms based on different column generation (CG) strategies and heuristic rules to compute near-optimal solutions efficiently.

• We perform intensive numerical experiments to evaluate the performance of the proposed models and algorithms. We employ the RLS-TD(λ)-based ADP algorithm and several conventional DP-based algorithms to solve the same test problems, then compare the computational efficiency and accuracy of these algorithms. Similar comparisons are also made among the proposed CGBH algorithms and commercial optimization solvers. Moreover, we conduct simulations for realistically sized advance surgery scheduling problems to validate the improvement of long-term performance brought by the two-phase optimization model in comparison with a benchmark pure stochastic programming model.

This chapter provides a detailed description for the advance surgery scheduling problem studied in this thesis. A novel two-phase optimization model and a benchmark stochastic programming model are proposed in this chapter to formulate the studied problem, then the advantages of the former over the latter are discussed. The notations used in this chapter for describing and modelling the studied problem are summarized in Table 2.1 and 2.2.

2.1/ PROBLEM DESCRIPTION AND GENERAL ASSUMPTIONS

We deal with the advance scheduling of elective surgeries in an operating theatre (OT) shared by several specialties. The OT is composed of multiple operating rooms (ORs) and a surgical intensive care unit (SICU) with a certain number of recovery beds. At the beginning of each week, we make the following decisions to determine the surgery plan of the present week: (1) select the patients to be treated in the present week from the waiting list;

(2) determine the surgical blocks to open during the present week (a surgical block is a combination of an OR and a date); (3) assign the selected patients to open surgical blocks.

The main settings of the studied problem are depicted by the following assumptions:

Assumption 2.1. -A dedicated policy is adopted, hence the emergency patients are treated with dedicated surgical resources and are not considered in the studied problem.

Assumption 2.2. -A block scheduling strategy is adopted, and a master surgery schedule (MSS) specifying the assignments of surgical blocks to specialties has been determined by the tactical-level planning.

Assumption 2.3. -All the patients to be included in a surgery plan must be selected from the waiting list. Direct admission for surgery is not allowed. The waiting list is Assumption 2.5. -Surgery durations and LOSs are assumed to be lognormally distributed, while the patient arrivals are assumed to follow Poisson distributions. Further, we assume that the means and variances of surgery durations and LOSs are specialtydependent, and that the rates of Poisson distributions depend on both the specialty and the urgency level. Similar assumptions can be seen in the relevant research (refer to Section 1.2.3).

We use J to denote the set of specialties that share the OT, and assign each specialty j ∈ J a factor v j to indicate its relative importance. Then, we define I as the set of patients on the waiting list. Specifically, each patient i ∈ I belongs to exactly one specialty j i ∈ J, and is assigned a parameter u i = 1, 2, ..., U j i indicating his/her urgency level. The value of u i does not change over time, and is determined by the surgical stuff when patient i is added to the waiting list. As a result, the patients of specialty j are divided into U j urgency groups. For the patients from urgency group u of specialty j, we define a maximum allowed waiting time W ju to avoid severe deterioration of health due to long waiting time. Furthermore, we use w i to capture the actual waiting time (in weeks) of patient i, then the priority of patient i can be determined by p i = v j i u i w i .

The surgery schedules are determined on a weekly basis, hence we use T = {1, 2, ..., 7} to denote the set of days within a planning horizon. All the surgeries should be performed on workdays, while the SICU is open throughout the week to serve the postoperative patients that are in need of intensive care during the weekend. Under the block scheduling strategy, the set B of available surgical blocks is given by an MSS, and each surgical block b ∈ B is preallocated to a specialty j b ∈ J and a workday t b ∈ {1, 2, ..., 5} ⊂ T . Since no surgery can be performed in a surgical block which is not preallocated to the corresponding specialty, we use parameter e ib to indicate whether patient i is allowed to be assigned to surgical block b: e ib = 1 if j i = j b , otherwise e ib = 0.

As mentioned in Assumption 2.5, each patient i ∈ I is associated with an uncertain surgery duration di as well as an uncertain LOS li , and for these uncertain parameters, the parameters of the lognormal distributions are assumed to be dependent on the specialty j i . We use L b and D t to denote the regular time length of surgical block b and the regular number of available SICU beds on day t, respectively. If the surgeries assigned to a surgical block are not completed within the regular time length, this block can be overused but an overtime cost is incurred. In addition, a penalty should be paid when the regular SICU capacity is insufficient for the actual demand, since some patients in need of intensive care have to be transferred to lower-level recovery units or extra beds should be added into SICU.

In the studied problem, we minimize a cost function that captures both the patient-related costs and the hospital-related costs. The patient-related costs can be incurred by scheduling and postponing surgeries, while the hospital-related costs result from opening and overusing surgical blocks as well as transferring postoperative patients to low-level recovery units. Let c s and c w be the unit costs of scheduling and postponing a surgery, respectively, and we define c s < c w so that the patient-related costs are minimized when all the patients are scheduled. Then, the actual costs of scheduling and postponing the surgery of patient i are defined as p i c s and p i c w , respectively. The priority p i is used as a multiplier of the patient-related costs, thus it is preferable to schedule high-priority patients before low-priority ones. As for the hospital-related costs, we use c o to denote the per-hour overtime cost of a surgical block, and we define c r as the unit penalty caused by the shortage of SICU beds for one patient and one day. We also consider the fixed cost c b incurred by opening a surgical block, hence some surgical blocks can be closed to save the hospital's expense when the actual surgical demand is low.

This thesis focuses on the long-term performance of the advance surgery scheduling policy, hence the inter-week correlations should be considered. A major correlation between two consecutive weeks lies on the waiting list (i.e., the patient set I). In a week denoted by τ, we use n τ juw to represent the number of type-{ juw} patients (i.e., the patients from specialty j with urgency level u and waiting time w) on the waiting list, and use m τ juw to represent the number of scheduled type-{ juw} patients. As the waiting time of any patient is 0 before he/she joins the waiting list, we denote the number of newly arrived type-{ ju, 0} patients in week τ with ñju , then the waiting list is updated at the end of week τ by the following formula:

       n τ+1 ju,1 = ñτ ju ∀ j, u n τ+1
ju,w+1 = n τ juwm τ juw ∀ j, u, and w = 1, 2, ..., W ju -1

(2.1)
As mentioned in Assumption 2.5, the stochastic parameters ñju are subject to Poisson distributions with mean arrival rates nju . Another issue that is correlated among multiple weeks is the SICU capacity: although the regular SICU capacity is constant, the number of available recovery beds during each week may vary since some patients who have been treated in the previous weeks may not be discharged. The two correlations imply that the surgery plan of the current week strongly impacts that of the subsequent week, hence optimizing the surgery plan of each week separately does not guarantee the best performance on the long run.

2.2/ THE TWO-PHASE OPTIMIZATION MODEL

In this section, we propose a novel two-phase optimization model to formulate the previously described problem. In the first phase, we model the waiting list management subproblem as an infinite-horizon Markov decision process (MDP), and the objective is to minimize the expected total cost on a long-term basis; in the second phase, we formulate a stochastic programming problem based on the decisions of the first phase to optimize the intra-week surgery schedules.

2.2.1/ PHASE 1: MANAGING THE PATIENT WAITING LIST USING MARKOV DE- CISION PROCESS
An infinite-horizon MDP is a discrete mathematical model in which an agent makes sequential decisions to impact the state and cost of a system. At each decision epoch, the agent observes the current state of the system and takes a proper action accordingly. The current state and the executed action incur an instant cost and determine the probabilistic distribution for the next state of the system. The goal of the agent is to minimize the total expected cost over the infinite horizon. The mathematical definition of the infinite-horizon MDP model is presented as follows.

Definition 2.1. -An infinite-horizon Markov decision process is a five-element tuple < S , A, P, C, γ >, where • S is the state space, i.e. the set of states s;

• A is the action space, i.e. the set of actions a;

• P → S ×A×S → [0, 1] is the stationary transition function specifying the probability P(s, a, s) of transition from state s to state s if action a is executed;) is the stationary cost function specifying the instant cost C(s, a) of executing action a at state s; • γ ∈ [0, 1) is the discount factor.

• C → S × A → [0, +∞
To formulate the waiting list management subproblem as an infinite-horizon MDP model, we regard each week τ as a decision epoch, and define state s and action a as vectors of n juw and m juw , respectively. In some cases, we can drop the superscript/subscript τ for simplicity because the infinite-horizon MDP model defined by Definition 2.1 is stationary, i.e., the transition probability function P(s, a, s) and the cost function C(s, a) are independent of the decision epoch τ. It should be noted that the feasible actions that can be taken at state s should satisfy the following conditions:

       0 m juw n juw , if w < W ju m juw = n juw , if w = W ju (2.2)
hence we use A(s) ⊆ A to denote the set of feasible actions for state s. Then, the transition probability function can be derived from (2.1) as follows:

P(s τ , a τ , s τ+1) = j∈J U j u=1 W ju -1 w=1 p(n τ juw -m τ juw = n τ+1 ju,w+1) × j∈J U j u=1 p(ñ τ ju = n τ+1 ju,1) (2.
3)

The MDP model minimizes the expected total cost by properly selecting the patients to be treated in each week. However, the patient-to-block assignment decisions and the block opening decisions are not incorporated into the MDP model since they drastically increase the computational complexity. As a results, the exact hospital-related costs cannot be calculated in the first phase. To tackle this issue, we define the cost function of the firstphase MDP model as follows to estimate the instant cost for a given state and a given selection of patients:

C(s τ , a τ) = j∈J U j u=1 W ju w=1 v j uw[c s m τ juw + c w (n τ juw -m τ juw)] + c o j∈J          U j u=1 W ju w=1 m τ juw dj - b∈B j L b          + + c r         j∈J U j u=1 W ju w=1 m τ juw lj - t∈T D t         + (2.4) where (• • •) + = max{• • •, 0}; B j ⊂ B
is the set of surgical blocks that are preallocated to specialty j; dj and lj are the means of surgery duration and LOS for the patients of specialty j. The first term of (2.4) computes the exact patient-related costs of week τ, while the second term estimates the overtime cost of each specialty by regarding the total surgery durations of the selected patients as well as the total available OR capacity as a whole. To limit the complexity, we also assume that all the surgical blocks are open, thus the block opening costs are not addressed in the first phase. In the third term of (2.4), the penalty for exceeding the regular SICU capacity is estimated according to the sum of LOSs of all the selected patients and the total available bed-days in SICU.

Solving the infinite-horizon MDP model is to find the optimal policy that leads to the lowest expected total costs over the infinite horizon, where a policy is a mapping π : S → A that specifies the action π(s) to be executed for any state s ∈ S . Since the infinitehorizon MDP model is stationary, all the policies involved in this thesis are stationary Markovian policies under which the selection of an action only depends on the current state and does not depend on the decision epoch [START_REF] Mausam | Planning with Markov decision processes: An AI perspective[END_REF]. Under a stationary Markovian policy, we can use value function to capture the expected total costs over the infinite horizon starting from any given state s ∈ S . Specifically, the value function of policy π is a mapping V π : S → R and is given by

V π (s τ) = E        +∞ k=0 γ k C[s τ+k , π(s τ+k)]        = +∞ k=0 γ k E {C[s τ+k , π(s τ+k)]} (2.5)
A discount factor γ ∈ [0, 1) is typically incorporated into an infinite-horizon MDP model to avoid any policy leading to infinite value functions [START_REF] White | Markov decision processes[END_REF]. The value of γ also reflects the agent's degree of attention to the costs incurred in the future: the agent becomes more short-sighted as γ decreases, and vice versa.

The value function can also be written in the following recursive form [START_REF] Mausam | Planning with Markov decision processes: An AI perspective[END_REF]:

V π (s) = C[s, π(s)] + γ s ∈S P(s, a, s)V π (s) (2.6)
Then the optimal policy π * can be computed by:

π * (s) = arg min a∈A(s) Q π * (s, a) = arg min a∈A(s)        C(s, a) + γ s ∈S P(s, a, s)V π * (s)        (2.7)
where Q π (s, a) is the Q-value of state-action pair {s, a} under policy π.

2.2.2/ PHASE 2: OPTIMIZING THE BLOCK-OPENING DECISIONS AND WITH THE PATIENT-TO-BLOCK ASSIGNMENTS STOCHASTIC PROGRAMMING

Based on the selection of patients determined in the first phase, the second phase addresses the block opening decisions and the patient-to-block assignments. The decision variables in this phase are thereby defined as follows:

x ib = 1 if patient i is assigned to surgical block b, otherwise x ib = 0; y b = 1 if surgical block b is open, otherwise y b = 0.
Concerning the randomness of the second-phase problem, we use a scenario ω to denote a vector of the stochastic parameters, thus the surgery duration di and LOS li of patient i in scenario ω can be written as d ω i and l ω i , respectively. Referring to [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF], the surgery durations are usually discretized as integer time intervals (e.g., 30 minutes) in practice, hence we consider discrete surgery durations in the second phase so that the scenario set Ω is finite. Let f (ω) be the probability of scenario ω, then ω∈Ω f (ω) = 1.

To capture the over-utilization of surgical blocks and the insufficiency of SICU beds, we define three additional variables as follows: o ω b denotes the overtime of surgical block b in scenario ω; z ω it = 1 if patient i requires an SICU bed on day t in scenario ω, otherwise z ω it = 0; r ω t denotes the number of postoperative patients that cannot be served with the regular SICU beds on day t in scenario ω.

Let I ⊆ I be the selection of patients determined in the first phase, then the second-phase subproblem is formulated as the following two-stage stochastic programming model with recourse (SP):

(SP) min (2.8)

s.t. b∈B x ib = 1, ∀ i ∈ I (2.9)
x ib e ib y b ,

∀ i ∈ I , b ∈ B (2.10) x ib , y b ∈ {0, 1}, ∀ i ∈ I , b ∈ B (2.11)
where E Q(x x x, y y y, d d d, l l l) represents the objective value of the following recourse problem:

(SP-R) min ω∈Ω f (ω) b∈B c o o ω b + t∈T c r r ω t
(2.12)

s.t. o ω b i∈I d ω i x ib -L b , ∀ b ∈ B, ω ∈ Ω (2.13) z ω it x ib , ∀ i ∈ I , b ∈ B, t ∈ T ω ib , ω ∈ Ω (2.14) r ω t i∈I z ω it -D t , ∀ t ∈ T, ω ∈ Ω (2.15) z ω it ∈ {0, 1}, ∀ i ∈ I , t ∈ T, ω ∈ Ω (2.16) 0 o ω b , r ω t ∈ Z, ∀ b ∈ B, ω ∈ Ω (2.17)
The value of the patient-related costs is a constant for a given selection of patients I , hence only the hospital-related costs are minimized in the objective function (2.8). Specifically, the first term of (2.8) computes the opening costs of all the surgery blocks, and the second term is the expected objective value of a recourse problem capturing the other hospitalrelated costs that are under the impact of uncertainties. Constraints (2.9) guarantee that each selected patient is assigned to exactly one surgical block, and constraints (2.10) require each surgery to be performed in an open surgical block which is preallocated to its corresponding specialty. The main decision variables x ib and y b are declared as binary decision variables in constraints (2.11).

The objective function (2.12) of the recourse problem optimizes the expected hospitalrelated costs in all the scenarios excluding the block opening costs. Constraints (2.13) compute the overtime of each surgical block in each scenario based on the patient-toblock assignments and surgery durations. Constraints (2.14) specify that each patient i needs an SICU bed from the surgery date t b for l ω i consecutive days, where set T ω ib ⊆ T contains the days from t b to min{t b + l ω i -1, |T |}. Then, constraints (2.15) calculate the shortage of SICU capacity in each scenario. Finally, constraints (2.16) define z ω it as binary variables, and constraints (2.17) define o ω b and r ω t as non-negative integer variables.

2.3/ A BENCHMARK STOCHASTIC PROGRAMMING MODEL

Pure mathematical programming models are widely used in the literature on advance surgery scheduling (see Table 1.1 and Section 1.2.6). In this section, we formulate another two-stage stochastic programming model with recourse (SP) as the benchmark of the two-phase optimization model (SP).

(SP) min i∈I b∈B

(c s -c w)p i x ib + b∈B c b y b + E Q (x x x, y y y, d d d, l l l) (2.18) s.t. b∈B x ib 1, ∀ i ∈ I with w i < W j i u i (2.19) b∈B x ib = 1, ∀ i ∈ I with w i = W j i u i (2.20)
x ib e ib y b ,

∀ i ∈ I, b ∈ B (2.21) x ib , y b ∈ {0, 1}, ∀ i ∈ I, b ∈ B (2.22)
where E Q (x x x, y y y, d d d, l l l) represents the objective value of the following recourse problem:

(SP -R) min ω∈Ω f (ω) b∈B c o o ω b + t∈T c r r ω t (2.23) s.t. o ω b i∈I d ω i x ib -L b , ∀ b ∈ B, ω ∈ Ω (2.24) z ω it x ib , ∀ i ∈ I, b ∈ B, t ∈ T ω ib , ω ∈ Ω (2.25) r ω t i∈I z ω it -D t , ∀ t ∈ T, ω ∈ Ω (2.26) z ω it ∈ {0, 1}, ∀ i ∈ I, t ∈ T, ω ∈ Ω (2.27) 0 o ω b , r ω t ∈ Z, ∀ b ∈ B, ω ∈ Ω (2.28)
This formulation is very similar to the SP model in the second phase of the two-phase optimization model (refer to Section 2.2.2). Different from SP that only determines the surgical block to open and the patient-to-block assignments, SP addresses all the decisions including the selection of patients. Therefore, there are three differences between the formulations of SP and SP : the objective function (2.18) of SP incorporates both the patient-related costs (the first term) and the hospital-related costs (the second and the third terms), while the objective function (2.8) of SP only captures the latter; set I (selection of patients determined by the first phase) in SP is replaced by set I (including all the patients on the waiting list) in SP ; constraints (2.9) of SP specify that each selected patient in I should be assigned to a surgical block, whereas in SP , constraints (2.19) and (2.20) only require the patients reaching the maximum allowed waiting time (w i = W j i u i) to be scheduled in the present week.

2.4/ DISCUSSION

The advance surgery scheduling problem introduced in Section 2.1 shares many similarities with the problems studied by [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF] and [START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF], but none of the two studies takes into account the block opening decisions or the stochastic arrivals of elective patients. To the best of our knowledge, this thesis is the first research on advance surgery scheduling that simultaneously addresses downstream capacity constraints, block opening decisions, dynamic patient priorities, as well as uncertainties in surgery durations, LOSs, and patient arrivals.

In Section 2.2, we propose a novel two-phase optimization model for the studied problem.

Considering that pure mathematical programming formulations are commonly adopted in the relevant research, we formulate a stochastic programming model (SP) in Section 2.3 to be the benchmark of the two-phase optimization model. The SP model addresses all the decisions at the same time and optimizes the surgery plan within one single week.

The optimal solution of SP usually does not schedule all the patients on the waiting list, since scheduling more patients causes more utilization of surgical resources, then the hospital-related costs and the total costs of the present week may increase. However, the SP model does not consider that the costs of the following weeks can be reduced by performing more surgeries in the present week, and when the regular surgical resources are insufficient to meet the actual surgery demands, the solutions of SP may lead to accumulations of patients on the waiting list. Therefore, the surgery plans provided by the SP model cannot guarantee the global optimality for multiple weeks.

The two-phase optimization model overcomes the short-sightedness of the SP model by splitting the advance surgery scheduling problem into two phases and tackling the subproblems with MDP and stochastic programming. The first-phase MDP model manages the waiting list and determines the patients to be treated in each week. In the first phase, the patient-related costs can be computed exactly, while the hospital-related costs are estimated in cost function (2.4), since their exact values depend on the intra-week surgery schedules which are determined in the second phase. The MDP model copes with the uncertain arrivals of elective patients in each week and schedules more patients than the SP model in general, so that the waiting list size is smoothed and the expected total costs over the infinite horizon are minimized. In the second phase, we formulate a stochastic programming model (SP) to determine the surgical blocks to open in the present week, and to assign the patients selected in the first phase to open surgical blocks. The secondphase SP model differs from the benchmark SP model in that the former only optimizes the hospital-related costs and must schedule all the considered patients (i.e., subset I determined by the first-phase MDP model) in the present week, while the latter considers the entire waiting list I and allows some patients in I to be treated in the following weeks.

Solving the mathematical models proposed in this chapter for realistically sized advance surgery scheduling problems requires efficient solution approaches, as the computational complexity grows rapidly as the problem scale increases. The algorithms that we employ to solve MDP and stochastic programming models are presented in Section 3 and 4, respectively.

In this chapter, we present the solution approaches for solving the Markov decision process (MDP) in the first-phase of the two-phase optimization model. First, we perform an in-depth analysis for the structural properties of the MDP model to reduce the computational complexity and to accelerate the solution procedure. Then, we introduce two conventional algorithms based on dynamic programming (DP): value iteration (VI) and real-time dynamic programming (RTDP). Finally, considering that the performance of the DP-based algorithms deteriorates fast as the problem size increases, we develop a novel approximate dynamic programming (ADP) algorithm based on the recursive leastsquares temporal difference learning (RLS-TD(λ)) method.

3.1/ STRUCTURAL ANALYSIS OF THE MARKOV DECISION PRO-CESS

The huge size of action space is one of the three curses of dimensionality that arise in realistically sized MDP models [START_REF] Powell | Approximate Dynamic Programming: Solving the curses of dimensionality[END_REF]. Considering the MDP model introduced in Section 2.2.1, the number of feasible actions for a state s ∈ S is

|A(s)| = j∈J U j u=1 W ju w=1 (n juw + 1) (3.1)
It can be seen that the size of A(s) is increasing in many factors including the numbers of patients n juw in the waiting list, the size of specialty set J, the numbers of urgency levels U j , and the maximum allowed waiting times W ju . In order to cope with the curse of dimensionality caused by large A(s), we investigate the structural properties of the MDP model introduced in Section 2.2.1. These insights will help us to avoid enumerations for A(s) and to improve the computational efficiency in evaluating the action space.

To facilitate the analysis, we first create a vector ∆ j u w = {δ juw } ∈ S ∪ A (S denotes the state space and A denotes the action space) in which δ j u w = 1 and the other elements are 0. Then, two partial orders on S ∪ A are defined as follows: (iii) Otherwise, P(X) and P(Y) are incomparable.

Next, we propose Lemma 1 that will be used in the proofs of structural properties.

Lemma 1. -For functions f, g :

D → R with D ⊆ R : min f (x) -min g(x) min[f (x) - g(x)].
Proof. Let x 1 = arg min f (x) and x 2 = arg min g(x), then g(x 1) g(x 2), hence

min f (x) -min g(x) = f (x 1) -g(x 2) f (x 1) -g(x 1) min[f (x) -g(x)] (3.2)
thus the lemma is proved.

We define C 0 (s) = min a∈A(s) C(s, a) as the optimal single-week cost, and define a 0 (s) = arg min a∈A(s) C(s, a) as the optimal single-week action. In addition, we use C p (s, a) to denote the patient-related costs, i.e., the first term of the cost function (2.4), and use C h (a) to denote the hospital-related costs, i.e., the sum of the second term and the third term of (2.4). Then, with Definition 3.1, 3.2 and Lemma 1, the following statements can be proved to be true: Otherwise, a 0 (s + ∆ j u w) ∈ A(s + ∆ j u w) \ A(s). Let s = {n juw }, a 0 (s) = {m 0 juw } and a 0 (s + ∆ j u w) = {m juw }, then we have m j u w = n j u w + 1 and a 0 (s + ∆ j u w) -∆ j u w ∈ A(s). Since a 0 (s) minimizes C(s, a), then

Proposition 3.1. -(i) C 0 (s) is increasing in s.
C 0 (s)-C[s, a 0 (s+∆ j u w)-∆ j u w] =C 0 (s)-C p [s, a 0 (s+∆ j u w)]+(c s -c w)v j u w -C h [a 0 (s+∆ j u w)-∆ j u w] 0 (3.4) As a result, C p [s, a 0 (s+∆ j u w)]-C 0 (s) (c s -c w)v j u w -C h [a 0 (s+∆ j u w)-∆ j u w]
(3.5)

Given that C h [a 0 (s + ∆ j u w)] C h [a 0 (s + ∆ j u w) -∆ j u w],
we have

C 0 (s + ∆ j u w) -C 0 (s) =C p [s + ∆ j u w , a 0 (s + ∆ j u w)] + C h [a 0 (s + ∆ j u w)] -C 0 (s) =C p [s, a 0 (s + ∆ j u w)] + c w v j u w + C h [a 0 (s + ∆ j u w)] -C 0 (s) c s v j u w + C h [a 0 (s + ∆ j u w)] -C h [a 0 (s + ∆ j u w) -∆ j u w] > 0 (3.6)
As C 0 (s + ∆ j u w) -C 0 (s) > 0 holds in all the possible cases, C 0 (s) is increasing in s.

(ii) By Definition 3.2, if a = {m juw } and a = {m juw } are comparable, then (iii) Let σ = s-∆ j u w = s -∆ j u w and u w < u w , then P(s) < P(s). Let σ = {σ juw }, a 0 (s) = {m s juw } and a 0 (s) = {m s juw }, then we discuss all the possible cases: If a 0 (s) ∈ A(s) \ A(σ), then m s j u w = σ j u w + 1 and m s j u w

σ j u w , thus a = a 0 (s) -∆ j u w + ∆ j u w ∈ A(s). Since C h (a) = C h [a 0 (s)] by (ii) and C 0 (s) = min a∈A(s) C(s, a), then C 0 (s) -C 0 (s) = C p [s , a 0 (s)] + C h [a 0 (s)] -C 0 (s) =C p (s, a) + c s v j (u w -u w) + C h (a) -C 0 (s) > C(s, a) -C 0 (s) 0 (3.7)
Otherwise, a 0 (s) ∈ A(σ). We suppose that a 0 (s) ∈ A(s) \ A(σ), then m s j u w = σ j u w + 1 and m s j u w σ j u w , thus a = a 0 (s) -∆ j u w + ∆ j u w ∈ A(s). Since C 0 (s) = min a∈A(s) C(s , a), and C h (a) = C h [a 0 (s)] by (i), then

C[s, a 0 (s)] -C[s, a 0 (s)] = C(s , a) + (c s -c w)v j (u w -u w) -C[s , a 0 (s)] > C(s , a) -C 0 (s) 0 (3.8)
As C[s, a 0 (s)] -C[s, a 0 (s)] > 0 contradicts the fact that a 0 (s) minimizes C(s, a), a 0 (s) ∈ A(s) \ A(σ) does not hold, hence a 0 (s) ∈ A(σ) holds when a 0 (s) ∈ A(σ).

Then by Lemma 1, we have

C 0 (s) -C 0 (s) min a∈A(σ) [C(s , a) -C(s, a)] = c w v j (u w -u w) > 0 (3.9)
To summarize, since C 0 (s) -C 0 (s) > 0 holds in all the possible cases, then C 0 (s) is increasing in P(s).

With Proposition 3.1, we can further analyze the value function V π * under the optimal policy π * . Since our MDP model is stationary, the value function of a state is independent of the decision epoch. Hence, (2.5) can be rewritten as

V π * (s) = E        +∞ τ=1 γ τ-1 C[s τ , π * (s τ)]        = +∞ τ=1 γ τ-1 E{C[s τ , π * (s τ)]} (3.10)
where s 1 = s. Since C[s τ , π * (s τ)] is finite and γ < 1, then γ τ-1 E{C[s τ , π * (s τ)]} → 0 as τ goes to infinity. We can thereby assume γ τ-1 E{C[s τ , π * (s τ)]} = 0 for any τ > T 0, then,

V π * τ (s) =            C[s, π * (s)] + γ s ∈S p[s, π * (s), s]V π * τ+1 (s) if τ = 1, 2, ..., T 0 if τ = T + 1, T + 2, ... (3.11)
where V π * 1 (s) = V π * (s), and we move the subscript τ from s to V for the sake of simplicity. Further, referring to (2.7), the Q-value of state-action pair {s, a} under policy π * is

Q π * (s, a) = C(s, a) + γ s ∈S p(s, a, s)V π * (s) (3.12) Q π * (s, a)
can also be written as the following recursive formula:

Q π * τ (s, a) = C(s, a) + γ s ∈S p(s, a, s)V π * τ+1 (s) (3.13)
where

Q π * 1 (s, a) = Q π * (s, a), V π * τ+1 (s) = min a∈A(s) Q π * τ+1 (s , a)
, and superscript τ is moved from s and a to Q to simplify the notations.

Before exploring the properties of V π * (s), we present the following notations and analyses that will be useful to prove our propositions. Let vector G s a with elements g juw be the post-action state of {s, a}:

       g ju,1 = 0, ∀u = 1, 2, ..., U j g ju,w+1 = n juw -m juw , ∀u = 1, 2, ..., U j , w = 1, 2, ..., W ju -1 (3.14)
and vector Ψ with elements ψ juw be the set of newly arrived patients:

       ψ ju,1 = ñju , ∀u = 1, 2, ..., U j ψ ju,w+1 = 0, ∀u = 1, 2, ..., U j , w = 1, 2, ..., W ju -1 (3.15)
then the subsequent state of state-action pair {s, a} can be written as s = G s a + Ψ. To keep the notations simple, we introduce P Ψ as follows:

p(s, a, s) =                U j u=1 p(ñ ju = ψ ju,1) = P Ψ , if s = G s a + Ψ 0, if s G s a + Ψ (3.16)
Then we have

s ∈S p(s, a, s)V π * (s) = +∞ Ψ=0 0 0 P Ψ V π * (G s a + Ψ) (3.17)
With these notations and analyses, we propose the following properties of V π * (s):

Proposition 3.2. -(i) V π * (s) is increasing in s.
(ii) V π * (s) is increasing in P(s).

Proof. (i) Since V π * 1 (s) = V π * (s), we first prove that V π * τ (s) is increasing in s for τ = 1, 2, ..., T. The proof is given by backward mathematical induction: For τ = T, since V π * T+1 (s) = 0 holds for any s ∈ S , then V π * T (s) = min a∈A(s) C(s, a) = C 0 (s). C 0 (s) is increasing in s by (i) of Proposition 3.1, so is V π * T (s). For τ = k < T, suppose that V π * k+1 (s) is increasing in s, then we distinguish the following cases:

If π * (s + ∆ j u w) ∈ A(s), then by Lemma 1, V π * k (s + ∆ j u w) -V π * k (s) min a∈A(s) [Q π * k (s + ∆ j u w , a) -Q π * k (s, a)] = min a∈A(s)        c w v j u w +γ +∞ Ψ=0 0 0 P Ψ [V π * k+1 (G s+∆ j u w a +Ψ)-V π * k+1 (G s a +Ψ)]        > 0 (3.18)
Otherwise, π * (s + ∆ j u w) ∈ A(s + ∆ j u w) \ A(s). Let s = {n juw }, π * (s) = {m * juw } and π * (s + ∆ j u w) = {m + juw }, then we have m + j u w = n j u w + 1 and π -= π * (s + ∆ j u w) -∆ j u w ∈ A(s), thus

V π * k (s + ∆ j u w) -V π * k (s) =C[s + ∆ j u w , π -+ ∆ j u w] + γ +∞ Ψ=0 0 0 P Ψ V π * k+1 (G s+∆ j u w π -+∆ j u w + Ψ) -V π * k (s) (3.19) =C[s, π -] + c s v j u w + C h (π -+ ∆ j u w) -C h (π -) + γ +∞ Ψ=0 0 0 P Ψ V π * k+1 (G s π -+ Ψ) -V π * k (s) >C[s, π -] + γ +∞ Ψ=0 0 0 P Ψ V π * k+1 (G s π -+ Ψ) -V π * k (s) = Q π * k (s, π -) -V π * k (s) 0 As V π * k (s + ∆ j u w) > V π * k (
s) holds in all the two possible cases, the induction hypothesis is satisfied, thus V π * τ (s) is increasing in s for τ = 1, 2, ..., T. Therefore,

V π * (s) = V π * 1 (s) is increasing in s. (ii)
We employ backward mathematical induction to prove that V π * τ (s) is increasing in P(s) for τ = 1, 2, ..., T:

For τ = T, since ∀s ∈ S : V π * T+1 (s) = 0, then V π * T (s) = min a∈A(s) C(s, a) = C 0 (s). C 0 (s) is increasing in P(s) by (iii) of Proposition 3.1, so is V π * T (s). For τ = k < T, suppose that V π * k+1 (
s) is increasing in P(s). Let σ = s -∆ j u w = s -∆ j u w and u w < u w , then P(s) < P(s). Similar to the proof of (iii) of Proposition 3.1, the following cases are considered:

If π * (s) ∈ A(s) \ A(σ), then a = π * (s) -∆ j u w + ∆ j u w ∈ A(s), and C h (a) = C h [π * (s)] by (ii) of Proposition 3.1, hence V π * k (s) -V π * k (s) = C[s , π * (s)] + γ +∞ Ψ=0 0 0 P Ψ V π * k+1 (G s π * (s) + Ψ) -V π * k (s) =C(s, a) + c s v j (u w -u w) + γ +∞ Ψ=0 0 0 P Ψ V π * k+1 (G s a + Ψ) -V π * k (s) >Q π * k (s, a) -V π * k (s) 0 (3.20) Otherwise, π * (s) ∈ A(σ). Suppose that π * (s) ∈ A(s)\A(σ), then a = π * (s)-∆ j u w + ∆ j u w ∈ A(s). Because P(G s π * (s) + Ψ) < P(G s π * (s) + Ψ), then V π * k+1 (G s π * (s) + Ψ) < V π * k+1 (G s π * (s) + Ψ). Given that C h [π * (s)] = C h (a) by (ii) of Proposition 3.1, we have V π * k (s) -Q π * k [s, π * (s)] =C[s, π * (s)] -C[s, π * (s)] + γ +∞ Ψ=0 0 0 P Ψ [V π * k+1 (G s π * (s) + Ψ) -V π * k+1 (G s π * (s) + Ψ)] >C(s , a) -C[s , π * (s)] + (c s -c w)v j (u w -u w) (3.21) + γ +∞ Ψ=0 0 0 P Ψ [V π * k+1 (G s a + Ψ) -V π * k+1 (G s π * (s) + Ψ)] >Q π * k (s , a) -V π * k (s) 0 As V π * k (s) -Q π * k [s, π * (s)] > 0 contradicts the fact that π * (s) minimizes Q π * k (s, a), π * (s) ∈ A(s) \ A(σ) does not hold, hence π * (s) ∈ A(σ). Then by Lemma 1, V π * k (s) -V π * k (s) min a∈A(σ) [Q π * k (s , a) -Q π * k (s, a)] = min a∈A(σ)        c w v j (u w -u w)+γ +∞ Ψ=0 0 0 P Ψ [V π * k+1 (G s a +Ψ)-V π * k+1 (G s a +Ψ)]        > 0 (3.22) Since V π * k (s) -V π * k (s) > 0 holds in all the possible cases, the induction hypothesis is satisfied, thus V π * τ (s) is increasing in P(s) for τ = 1, 2, ..., T, hence V π * (s) = V π * 1 (s) is increasing in P(s).
Considering that V π * (s) is monotonically increasing in s and P(s), we can prove the following properties of π * (s) and Q π * (s, a) that enable us to simplify the exploration of the action space.

Proposition 3.3. -For any patient type juw, if (c wc s)v j uw > c o dj + c r lj holds, then all the type-juw patients are scheduled by π * (s). Proof. Let a = a + ∆ j u w -∆ j u w and u w < u w , then P(a) < P(a) and

Proof. Let s = {n juw }, π * (s) = {m * juw } and (c w -c s)v j u w > c o dj + c r lj . Suppose that n j u w -m * j u w = x > 0, then a = π * (s) + x∆ j u w ∈ A(s). By (2.4), we know that C h (a) -C h [π * (s)] (c o dj + c r lj)x, then C[s, π * (s)] -C(s, a) =(c w -c s)v j u w x + C h [π * (s)] -C h (a) [(c w -c s)v j u w -c o dj -c r lj]x > 0 (3.23) Besides, since G s π * (s) + Ψ > G s a + Ψ, and V π * (s) is increasing in s by (i) of Proposition 3.2, then V π * (G s π * (s) + Ψ) -V π * (G s a + Ψ) > 0. Therefore, Q π * [s, π * (s)]-Q π * (s, a) = C[s, π * (s)]-C(s, a)+γ +∞ Ψ=0 0 0 P Ψ [V π * (G s π * (s) +Ψ)-V π * (G s a +Ψ)] > 0 (3.24) Since Q π * [s, π * (s)] -Q π * (s, a) > 0 contradicts the fact that π * (s) minimizes Q π * (s,
P(G s a + Ψ) > P(G s a + Ψ), thus V π * (G s a + Ψ) > V π * (G s a + Ψ) holds by (ii) of Proposition 3.2, hence Q π * (s, a)-Q π * (s, a) = (c s -c w)v j (u w -u w)+γ +∞ Ψ=0 0 0 P Ψ [V π * (G s a +Ψ)-V π * (G s a +Ψ)] > 0 (3.25) As Q π * (s, a) -Q π * (
s, a) > 0 holds for P(a) < P(a), the proposition is proved. Based on Proposition 3.3, the procedure of searching for the greedy action can be simplified by excluding the actions in which the patients satisfying (c wc s)v j uw > c o dj + c r lj or w = W ju are not all scheduled. Moreover, as Proposition 3.4 suggests that Q-value is decreasing in P(a), the action set can be further narrowed down as follows: for any a ∈ A(s), if ∃a ∈ A(s) s.t. P(a) > P(a), then Q π * (s, a) > Q π * (s, a) holds by Proposition 3.4, hence a cannot be the best action and does not need to be evaluated. Let A * (s) ⊆ A(s) be the set of actions to be evaluated, then the procedure of determining A * (s) is provided in Algorithm 3.1.

3.2/ DYNAMIC PROGRAMMING ALGORITHMS

The MDP model introduced in Section 2.2.1 does not limit the values of n juw (the number of type-{ juw} patients in the waiting list) and ñju (the newly arrived specialtyj patients at urgency level u), hence the state space S and the outcome space O are infinite. In order to solve the MDP model with conventional DP-based algorithms, we must truncate the Poisson distributions for ñju . Specifically, we assume that each ñju is upper bounded, then ∀ j ∈ J, u = 1, 2, ..., U j : ñju max ñju and n juw max ñju , thus the state space and the outcome space are both finite, and their sizes are

|S | = j∈J U j u=1 W ju w=1 (max ñju + 1) (3.26) |O| = j∈J U j u=1 (max ñ ju + 1) (3.27)
To guarantee the accuracy of the MDP model, the values of max ñju should be large enough to satisfy the following condition:

F(max ñju) > 1 -α (3.28)
where F(x) is the cumulative distribution function of ñju and α ∈ (0, 1) is a user-defined threshold close to 0.

Next, we present two DP-based algorithms, i.e., VI and RTDP, which can be employed to solve the MDP model with truncated Poisson distributions.

3.2.1/ VALUE ITERATION

VI is a fundamental DP algorithm for solving infinite-horizon MDP models and is the basis of many advanced algorithms [START_REF] Mausam | Planning with Markov decision processes: An AI perspective[END_REF]. It starts with an arbitrarily determined initial value function V 0 , then iteratively evaluates the entire state space and updates the value function V n at each state s ∈ S by computing the following Bellman equation:

V n (s) = min a∈A(s)        C(s, a) + γ s ∈S P(s, a, s)V n-1 (s)        (3.29)
where n = 1, 2, ... is the index of iteration. When V n (s) -V n-1 (s) < is satisfied, where > 0 is some small positive number, the current value function V n is close enough to the optimal value function V π * , then the computation terminates and the optimal policy can be obtained by

π * (s) = arg min a∈A(s)        C(s, a) + γ s ∈S P(s, a, s)V n        (3.30)
The procedure of the VI algorithm is presented in Algorithm 3.2. When computing the greedy action, the original VI algorithm evaluates all the feasible actions a ∈ A(s) for every state s ∈ S , while for our MDP model, we can apply Algorithm 3.1 to narrow down the action set from A(s) to A * (s) and accelerate the VI algorithm.

end until V n (s) -V n-1 (s) < ;
Output: optimal policy π * : S → A

3.2.2/ REAL-TIME DYNAMIC PROGRAMMING

The VI algorithm iterates over all the states s ∈ S and computes the optimal complete policy π * : S → A specifying the action to be taken for each s ∈ S . Consequently, the memory and the CPU time required by VI are proportionate to the size of the state space S , rendering VI impractical for many large-sized problems. To overcome this drawback, [START_REF] Barto | Learning to act using real-time dynamic programming[END_REF] propose an on-line heuristic-search algorithm named RTDP, which aims to provide an optimal partial policy π * p which only covers the states that are reach-able from the current state s 0 of the system. RTDP only explores a subset of the state space S , hence it can often deliver the optimal action π * p (s 0) for the current state s 0 while consuming much less CPU time and memory than VI. The procedure of the RTDP algorithm is presented in Algorithm 3.3. In Algorithm 3.3, V l is the lower bound of the optimal value function V π * and is initialized as V l (s) = 0, ∀s ∈ S before computing the first action to be executed. π p is a partial policy of the MDP model and is continually updated to approximate the optimal partial policy π * p . RTDP is an online algorithm that improves the lower bound V l as well as the partial policy π * p at each decision epoch, and provides the best action π p (s 0) for the current state s 0 . By contrast, VI computes the optimal actions π * (s) for all the states s ∈ S before executing any action in the system. That is, VI carries out no computation between decision epochs and is an offline algorithm. More specifically, at each decision epoch, RTDP explores the state space S along N randomly generated trajectories rooted at the current state s 0 , and every state included in the trajectories are sampled according to the transition distribution P[s, π p (s), s] through Monte-Carlo simulation method. Each trajectory terminates when the user-defined maximum depth is reached, then the agent returns to the current state s 0 to begin a new trajectory or terminates the computation for the current decision epoch. The convergence of the RTDP algorithm is guaranteed if V l is a monotonic lower bound, i.e., the values of V l (s) for all s ∈ S can only increase as the result of a Bellman update (line 10 in Algorithm 3.3). In our MDP model, the cost function C(s, a) is non-negative for all s ∈ S and a ∈ A(s), hence if we initialize V l (s) as 0 for all s ∈ S , V l converges monotonically to V π * . From Algorithm 3.3, we can see that RTDP does not evaluate the entire state space S and scatters the computation to every decision epoch, hence it is suitable for the applications where the agent faces time pressure. However, RTDP does not detect the convergence of V l → V π * or π p → π * p , and lacks a proper criterion to terminate the computation. Therefore, RTDP may waste computational resources on the states where V l and π p have converged to V π * and π * p , respectively, or it may terminate so early that V l and π p can still be improved.

To improve the computational performance, researchers have extended the original RTDP presented in Algorithm 3.3 in different ways. [START_REF] Bonet | Labeled RTDP: Improving the convergence of realtime dynamic programming[END_REF] propose labelled RTDP (LRTDP) that incorporates a labelling mechanism into the original RTDP. Let s be a descendant state of state-action pair {s, π p (s)}, where π p is the current partial policy. If the improvement of V l for s and any possible s is below a small positive number , LRTDP marks s as solved and does not evaluate it any more. The labelling mechanism improves the convergence speed, but LRTDP provides few quality guarantees and can still be further improved [START_REF] Mausam | Planning with Markov decision processes: An AI perspective[END_REF]. To be specific, when choosing the next state s to be visited, RTDP and LRTDP randomly sample it from the successors of state-action pair {s, π p (s)} according to the transition probability function p[s, π p (s), s]. However, the convergence can be faster and more uniform if the less converged states are more likely to be selected and visited.

Considering the weakness of RTDP and LRTDP, [START_REF] Mcmahan | Bounded real-time dynamic programming: RTDP with monotone upper bounds and performance guarantees[END_REF] and [START_REF] Smith | Focused real-time dynamic programming for MDPs: Squeezing more out of a heuristic[END_REF] propose bounded RTDP (BRTDP) and focused RTDP (FRTDP), respectively, in which a lower bound V l and an upper bound V u on the optimal value function V π * are computed. Similar to the definition of V l , V u should be a monotonic upper bound such that the values of V u (s) for all s ∈ S can only decrease during the computation. Since V π * (s) ∈ [V l (s), V u (s)], the gap between the two bounds V u (s) -V l (s) indicates the extent of convergence: the smaller this gap is, the better state s is understood. Then V u (s 0) -V l (s 0) < (is some small positive number) can be used as the criterion to terminate the computation. Moreover, for state s with the current best action π p (s), BRTDP and FRTDP sample the next state s with the probability proportionate to p[s, π * (s), s][V u (s) -V l (s)]. Therefore, maintaining two bounds on the optimal value function provides a good guarantee of performance, and allows the agent to focus on the states which are both reachable from s 0 and poorly understood.

Based on the two-bound structure of BRTDP and FRTDP, [START_REF] Sanner | Bayesian real-time dynamic programming[END_REF] propose a value of perfect information (VPI) analysis to further improve the computational efficiency, and the RTDP algorithm combined with such an analysis is referred to as VPI-RTDP. The VPI analysis guides the agent to visit the states where the partial policy π p can be improved, and terminates the computation once the policy at s 0 is converged. By contrast, BRTDP and FRTDP may waste computational resources on evaluating the states where the policy is already converged while value function is not.

The aforementioned variants of RTDP are adopted by Zhang et al. (2019a) to solve an MDP model for managing waiting list of patients. The experimental results show that VPI-RTDP outperforms the other RTDP algorithms in terms of efficiency and accuracy. Therefore, VPI-RTDP is the most suitable DP-based algorithm for solving the MDP model formulated in 2.2.1. In order to apply VPI-RTDP in this thesis, we elaborate the procedure of VPI analysis as follows [START_REF] Sanner | Bayesian real-time dynamic programming[END_REF].

Considering that the optimal value function V π * is unknown before the bounds are converged, and ∀s ∈ S :

V π * (s) ∈ [V l (s), V u (s)], it can be assumed that V π * (s) is uniformly distributed in the interval [V l (s), V u (s)], then the probability density function of V π * (s) for any s ∈ S is f [V π * (s)|V u , V l] = 1 V u (s) -V l (s) (3.31)
Then, the expected Q-value of state-action pair {s, a} under the optimal policy π * can be written as

E[Q π * (s, a)|V u , V l] = E        C(s, a) + s ∈S P(s, a, s)[V π * (s)]        = C(s, a) + s ∈S P(s, a, s) V l (s) + V u (s) 2 (3.32)
For a certain state s ∈ S , we need to know the extent to which updating V l (s) and V u (s) improves the policy. Assume that the value of V π * (s) is known, then substitute V π * (s) for [V l (s) + V u (s)]/2 in (3.32), we have

E[Q π * (s, a)|V u , V l , V π * (s)] =C(s, a) + P(s, a, s)V π * (s) + s s P(s, a, s) V l (s) + V u (s) 2 (3.33)
Let a * be the current optimal action for state s, then if a * is replaced by another action a and we know the exact value of V π * (s), the possible reduction of Q-value can be calculated by:

∆Q π * [V π * (s)|s, a, a * , s] = max{0, E[Q π * (s, a *)|V u , V l , V π * (s)] -E[Q π * (s, a)|V u , V l , V π * (s)]} (3.34)
Although V π * (s) is unknown in reality, we can estimate the expected value of

∆Q π * [V π * (s)|s, a, a * , s] with the assumption V π * (s) ∼ U[V l (s), V u (s)], then the VPI value of the state s is V PI(s |s, a *) = max a a * +∞ -∞ f [V π * (s)|V u , V l]∆Q π * [V π * (s)|s, a, a * , s]dV π * (s) = 1 V u (s) -V l (s) max a a * V u (s) V l (s) ∆Q π * [V π * (s)|s, a, a * , s]dV π * (s) (3.35)
Sanner et al. (2009) point out that V PI(s |s, a *) can be computed efficiently with the same computational complexity as the Bellman update at a single state.

With the VPI analysis elaborated above, we can present the procedure of VPI-RTDP in Algorithm 3.4. α, β, and are user-defined small positive numbers, and r is a random number sampled from uniform distribution U(0, 1). VPI-RTDP can be regarded as an extension of BRTDP. When some successors of {s, a * } are still far from being converged (B = max s P(s, a * , s)[V u (s)-V l (s)] > β), s is selected in the way of BRTDP. Otherwise, the VPI value of every successor is calculated: if the largest VPI value exceeds , s is sampled with the probability proportional to the VPI values; if not, the policy at all the successors of {s, a * } is converged, hence VPI-RTDP terminates the current searching trajectory (if r α) or turns back to the same way of selecting s as BRTDP to further improve the value function (if r < α).

3.3/ APPROXIMATE DYNAMIC PROGRAMMING BASED ON RLS-TD(λ)

In the previous sections, we analyze the model properties to facilitate the exploration of the action space A, and present several DP-based algorithms that can be employed to solve our MDP model. Nonetheless, these DP-based algorithms cannot efficiently solve the curses of dimensionality of the state space S and the outcome space O. Moreover, as there can be numerous newly arrived patients with different patient types in each week, the sizes of S and O are tremendously large. Therefore, solving realistically sized MDP models with the traditional DP-based algorithms is usually computationally intractable.

To improve the computational efficiency, we propose an ADP algorithm based on RLS-TD(λ) learning in this section.

RLS-TD(λ) learning is an efficient reinforcement learning method proposed by [START_REF] Xu | Efficient reinforcement learning using recursive least-squares methods[END_REF]. It estimates the value function of a Markov chain, and can be employed to solve MDP models for real-time optimal control problems. The basic idea of the RLS-TD(λ)based ADP algorithm is to approximate the optimal value function V π * (s) with a linear approximator V(s, Θ):

V(s, Θ) = Φ T (s)Θ = H h=1 φ h (s)θ h ≈ V π * (s) (3.36)
In (3.36): Φ(s) = [φ 1 (s), ..., φ h (s), ..., φ H (s)] T is the feature vector of state s, and there is a one-to-one correspondence between φ h (s) and n juw ; Θ = [θ 1 , ..., θ h , ..., θ H] T is the parameter vector; H = J j=1 U j u=1 W ju is the dimension of Φ(s) and Θ. The objective of RLS-TD(λ) learning is to find the optimal Θ * that minimizes the gap between V π * (s) and V(s, Θ).

Θ * = arg min V π * (S) -V(S , Θ) (3.37)
where • is the Euclidean norm, V π * (S) is a vector with elements V π * (s) (∀s ∈ S), and V(S , Θ) is a vector with elements V(s, Θ) (∀s ∈ S).

Θ * can be approached by iteratively updating Θ, thus the computational complexity is reduced by calculating the low-dimensional Θ instead of traversing the high-dimensional state space S . The formulas for computing Θ with RLS-TD(λ) learning method are deduced as follows.

Assume that an agent takes actions according to an arbitrary policy π, then the MDP model reduces to a Markov chain. In order to evaluate and improve policy π, we need to estimate the value function V π of this Markov chain with linear approximator V(s, Θ). Based on simulation implementation with random information Ψ n , we can obtain the following sequence of states: s 0 , a 0 , Ψ 0 , s 1 , a 1 , Ψ 1 , ..., s N , a N , Ψ N , where all the actions are determined by policy π (i.e., ∀n = 0, 1, ..., N: a n = π(s n)). The temporal difference (or TD error) of step n is thereby defined as

e n = C(s n , a n) + γ V(s n+1 , Θ n-1) -V(s n , Θ n-1) = C(s n , a n) -[Φ(s n) -γΦ(s n+1)] T Θ n-1 (3.38)
TD error e n indicates the gap between two successive estimations. In the TD(λ) algorithm introduced by Tsitsiklis and Van Roy (1997), the parameter vector Θ is updated by the following formula:

Θ n+1 = Θ n + η n e n n k=1 (γλ) n-k ∇ V(s k , Θ n) (3.39)
where Θ 0 is initialized arbitrarily, η n is a sequence of scalar step sizes, λ ∈ [0, 1] is a parameter, and gradient ∇ V(s k , Θ n) is the vector of partial derivatives with respect to the elements of Θ n . If λ = 0, the multi-step TD(λ) algorithm turns into the single-step TD algorithm. Since the approximator V(s n , Θ n) is a linear function (3.36), we have ∇ V(s k , Θ n) = Φ(s k), then the representation of the TD(λ) algorithm with linear approxi-mator can be simplified by defining the following eligibility trace:

ζ n = n k=1 (γλ) n-k ∇ V(s k , Θ n) = n k=1 (γλ) n-k Φ(s k) (3.40)
ζ n can be updated recursively by

ζ n = Φ(s n) + γλζ n-1 (3.41)
where ζ 0 is usually initialized as 0 0 0. With ζ n , formula (3.39) can be rewritten as

Θ n+1 = Θ n + η n e n ζ n (3.42)
The convergence with probability one of the TD(λ) algorithm has been proved by [START_REF] Tsitsiklis | An analysis of temporal-difference learning with function approximation[END_REF]. However, the step-size sequence η n must be carefully designed to guarantee the good performance of the TD(λ) algorithm. In order to improve the efficiency and the applicability of the TD learning algorithms, [START_REF] Bradtke | Linear least-squares algorithms for temporal difference learning[END_REF] propose the least-squares TD (LS-TD) algorithm. The objective of LS-TD at step n is to minimize the following residual of the least-squares approximation to Θ * :

R(Θ n) = 1 n n k=1 C(s k , a k) -[Φ(s k) -γΦ(s k+1)] T Θ n 2 (3.43)
Formula (3.43) is a quadratic function of Θ n with positive coefficient of the second-degree term, hence the residual R(Θ n) is minimized when its partial derivative with respect to Θ n equals 0. That is,

∇R(Θ n) =        - 2 n n k=1 [Φ(s k) -γΦ(s k+1)] T        • n k=1 C(s k , a k) -[Φ(s k) -γΦ(s k+1)] T Θ n = 0 (3.44)
Solving (3.44), the estimation of Θ * at step n is

Θ n =        n k=1 [Φ(s k) -γΦ(s k+1)] T        -1        n k=1 C(s k , a k)        =        n k=1 Φ(s k)[Φ(s k) -γΦ(s k+1)] T        -1        n k=1 C(s k , a k)Φ(s k)        = A -1 n b n (3.45)
where Φ(s k) is an instrumental variable to avoid the asymptotic bias [START_REF] Ljung | Theory and practice of recursive identification[END_REF][START_REF] Bradtke | Linear least-squares algorithms for temporal difference learning[END_REF]. It can be seen from (3.45) that LS-TD does not involve the step-size sequence η n , but computes a matrix inverse at each step, which means that LS-TD has a computational complexity of O(H 3). Based on LS-TD, [START_REF] Bradtke | Linear least-squares algorithms for temporal difference learning[END_REF] propose the recursive LS-TD (RLS-TD) algorithm to reduce the computational complexity to O(H 2). Let P n = A -1 n be the variance matrix, then

P n = A -1 n = A n-1 + Φ(s n)[Φ(s n) -γΦ(s n+1)] T -1 (3.46)
By Lemma 2.1 of [START_REF] Ljung | Theory and practice of recursive identification[END_REF], we have

P n = A -1 n-1 -A -1 n-1 Φ(s n) [Φ(s n) -γΦ(s n+1)] T A -1 n-1 Φ(s n) + 1 -1 [Φ(s n) -γΦ(s n+1)] T A -1 n-1 = P n-1 -P n-1 Φ(s n) [Φ(s n) -γΦ(s n+1)] T P n-1 Φ(s n) + 1 -1 [Φ(s n) -γΦ(s n+1)] T P n-1 (3.47)
Further, the formula (3.45) of LS-TD can be rewritten as

Θ n = A -1 n b n = P n [b n-1 + C(s n , a n)Φ(s n)] = P n [A n-1 A -1 n-1 b n-1 + C(s n , a n)Φ(s n)] = P n A n -Φ(s n)[Φ(s n) -γΦ(s n+1)] T Θ n-1 + P n C(s n , a n)Φ(s n) (3.48) = Θ n-1 -P n Φ(s n)[Φ(s n) -γΦ(s n+1)] T Θ n-1 + P n C(s n , a n)Φ(s n) = Θ n-1 + P n Φ(s n) C(s n , a n) -[Φ(s n) + γΦ(s n+1)] T Θ n-1 = Θ n-1 + P n e n Φ(s n)
Combining (3.47) and (3.48), we have

Θ n = Θ n-1 + P n e n Φ(s n) = Θ n-1 + e n P n-1 Φ(s n) - P n-1 Φ(s n)[Φ(s n) -γΦ(s n+1)] T P n-1 Φ(s n) 1 + [Φ(s n) -γΦ(s n+1)] T P n-1 Φ(s n) = Θ n-1 + P n-1 e n Φ(s n) 1 + [Φ(s n) -γΦ(s n+1)] T P n-1 Φ(s n) (3.49)
To summarize, the formulas for updating Θ n with the RLS-TD algorithm are [START_REF] Bradtke | Linear least-squares algorithms for temporal difference learning[END_REF])

                       e n = C(s n , a n) -[Φ(s n) -γΦ(s n+1)] T Θ n-1 P n = P n-1 - P n-1 Φ(s n)[Φ(s n) -γΦ(s n+1)] T P n-1 1 + [Φ(s n) -γΦ(s n+1)] T P n-1 Φ(s n) Θ n = Θ n-1 + P n-1 e n Φ(s n) 1 + [Φ(s n) -γΦ(s n+1)] T P n-1 Φ(s n) (3.50)
Based on TD(λ) and RLS-TD, [START_REF] Xu | Efficient reinforcement learning using recursive least-squares methods[END_REF] propose a multi-step learning algorithm named RLS-TD(λ). In the RLS-TD(λ) algorithm, matrix A n and vector b n are redefined as

A n = n k=1 ζ k [Φ(s k) -γΦ(s k+1)] T (3.51) b n = n k=1 C(s k , a k)ζ k (3.52)
Then, similar to the deduction of RLS-TD, the formulas for updating Θ n with the RLS-TD(λ) algorithm can be obtained as follows [START_REF] Xu | Efficient reinforcement learning using recursive least-squares methods[END_REF])

                       e n = C(s n , a n) -[Φ(s n) -γΦ(s n+1)] T Θ n-1 P n = P n-1 - P n-1 ζ n [Φ(s n) -γΦ(s n+1)] T P n-1 1 + [Φ(s n) -γΦ(s n+1)] T P n-1 ζ n Θ n = Θ n-1 + P n-1 e n ζ n 1 + [Φ(s n) -γΦ(s n+1)] T P n-1 ζ n (3.53)
where parameter vector Θ n and variance matrix P n are initialized as Θ 0 = 0 0 0 and P 0 = δI (δ is some positive real number and I is the identity matrix of size H), respectively, and λ ∈ [0, 1]. By (3.41), we know that when λ = 0, ζ n = Φ(s n) and (3.53) is equivalent to (3.50), hence RLS-TD can be regarded as a special case of RLS-TD(λ) with λ = 0.

In order to develop an ADP algorithm on the basis of RLS-TD(λ), we adopt the onpolicy learning strategy which is also employed in RTDP: we use the action determined by the current policy to select the next state to be visited, meanwhile update the parameter vector Θ and improve the policy. The RLS-TD(λ)-based ADP algorithm is presented in Algorithm 3.5. For each state s τ of week τ, a number of trials are carried out until the relative improvement of Θ is lower than the preset threshold . In each trial, the state space is explored with a fixed searching depth N. The Q-value of each state-action pair is estimated by its approximator Q(s n , a, Θ n-1), and the descendent state s a n+1 is randomly sampled with the probability proportionate to P(s n , a, s a n+1). Algorithm 3.5 finally provides the approximate optimal action π(s τ) as well as the updated parameters P τ , Θ τ and z τ that will be used for the computation of π(s τ+1).

3.4/ SUMMARY

This chapter addresses the solution approaches for the MDP model formulated in Section 2.2.1. We first perform a structural analysis in Section 3.1 to investigate the properties of the optimal policy of the MDP model. Based on this properties, we propose Algorithm 3.1 to accelerate the procedures of searching for greedy actions. For a given state, Algorithm 3.1 only evaluates a subset A * (s) of the feasible action set A(s), thus the efficiency of exploring the action space can be significantly improved. Then, in Section 3.2, we present several conventional DP-based algorithms including VI (Algorithm 3.2), RTDP curse of dimensionality with respect to the outcome space can be effectively solved. In the numerical experiments (Chapter 5), we employ the algorithms proposed in this chapter to solve the same MDP models and compare their computational performances.

In this chapter, we introduce the solution approaches for the stochastic programming models SP and SP presented in Section 2.2.2 and Section 2.3, respectively. These models cannot be directly solved due to the existence of random parameters, hence we first employ the sample average approximation (SAA) approach to translate SP and SP into deterministic models. Then, we develop several column-generation-based heuristic (CGBH) algorithms to solve these deterministic models. The CGBH algorithms compute near-optimal solutions for SP and SP , but they are significantly more efficient than commercial optimization solvers and are capable of solving realistically sized problems with large sample sizes.

4.1/ SAMPLE AVERAGE APPROXIMATION

For a stochastic programming model, it is usually too difficult or even impossible to enumerate all the possible scenarios ω ∈ Ω. In order to overcome this computational challenge, [START_REF] Kleywegt | The sample average approximation method for stochastic discrete optimization[END_REF] propose the SAA approach which solves stochastic programming models without enumerating all the possible scenarios or computing the probability density function f (ω). SAA replaces the complete scenario set Ω with a relatively small scenario set K, in which the scenarios are randomly sampled using the Monte-Carlo simulation method. Then, the average objective value under the |K| scenarios provides an approximation for the exact objective value. It is proved that SAA produces an optimal solution to the true stochastic programming problem with probability approaching one exponentially fast as the sample size |K| increases [START_REF] Kleywegt | The sample average approximation method for stochastic discrete optimization[END_REF].

Using the SAA approach, we can translate the stochastic programming model SP presented in Section 2.2.2 into the following deterministic integer programming model (SP-

s.t. b∈B x ib = 1, ∀ i ∈ I (4.2)
x ib e ib y b ,

∀ i ∈ I , b ∈ B (4.3) o k b i∈I d k i x ib -L b , ∀ b ∈ B, k ∈ K (4.4) z k it x ib , ∀ i ∈ I , b ∈ B, t ∈ T k ib , k ∈ K (4.5) r k t i∈I z k it -D t , ∀ t ∈ T, k ∈ K (4.6) x ib , y b , z k it ∈ {0, 1}, ∀ i ∈ I , b ∈ B, t ∈ T, k ∈ K (4.7) 0 o k b , r k t ∈ Z, ∀ b ∈ B, t ∈ T, k ∈ K (4.8)
where k is the index of the sampled scenarios in K. Similarly, the SP model presented in Section 2.3 can be converted to the following SP -SAA model:

(SP -SAA) min i∈I b∈B (c s -c w)p i x ib + b∈B c b y b + 1 |K| b∈B c o o k b + t∈T c r r k t (4.9) s.t. b∈B x ib 1, ∀ i ∈ I with w i < W j i u i (4.10) b∈B x ib = 1, ∀ i ∈ I with w i = W j i u i (4.11)
x ib e ib y b ,

∀ i ∈ I, b ∈ B (4.12) o k b i∈I d k i x ib -L b , ∀ b ∈ B, k ∈ K (4.13) z k it x ib , ∀ i ∈ I, b ∈ B, t ∈ T k ib , k ∈ K (4.14) r k t i∈I z k it -D t , ∀ t ∈ T, k ∈ K (4.15) x ib , y b , z k it ∈ {0, 1}, ∀ i ∈ I, b ∈ B, t ∈ T, k ∈ K (4.16) 0 o k b , r k t ∈ Z, ∀ b ∈ B, t ∈ T, k ∈ K (4.17)
Considering that the computational complexity of solving SP-SAA/SP -SAA increases faster than linearly in the sample size |K|, it is beneficial to replicate the solution procedures of SP-SAA/SP -SAA with a relatively small sample size [START_REF] Kleywegt | The sample average approximation method for stochastic discrete optimization[END_REF]. In this thesis, we solve the SP-SAA/SP -SAA model M times with M independently generated scenario sets. The mean vM K of the M resulting objective values vm K provides a lower bound (LB) on the optimal objective value of SP/SP :

vM K = 1 M M m=1 vm K (4.18)
The variance of vM K can be computed by

σ 2 vM K = 1 M(M -1) (v M K -vm K) 2 (4.19)
For each of the M solutions { Xm K , Ŷm K }, we compute its upper bound (UB) ĝK (Xm K , Ŷm K) by evaluating the objective function (4.1)/(4.9) with a large scenario set K (|K | |K|), in which the scenarios are also randomly sampled by Monte-Carlo simulations. The variance of UB is then computed by the following formula:

σ 2 ĝK (Xm K , Ŷm K) = 1 |K |(|K | -1) k∈K ĝk (Xm K , Ŷm K) -ĝK (Xm K , Ŷm K) 2 (4.20)
Finally, we select the solution m * with the lowest optimality gap as the optimal solution:

m * = arg min m ĝK (Xm K , Ŷm K) -vM K + Φ -1 (1 -α) σ 2 ĝK (Xm K , Ŷm K) + σ 2 vM K (4.21)
In (4.21), Φ(x) is the cumulative distribution function of the standard normal distribution and α ∈ (0, 1) is the tolerance probability. Then, the complete SAA approach employed in this thesis is derived from the general SAA procedure proposed in [START_REF] Kleywegt | The sample average approximation method for stochastic discrete optimization[END_REF] and is presented in Algorithm 4.1.

4.2/ COLUMN-GENERATION-BASED HEURISTICS

In Line 4 of Algorithm 4.1, the SP-SAA/SP -SAA model can be directly solved by commercial optimization solvers with branch-and-bound or branch-and-cut algorithms. However, the computational resources consumed by these conventional algorithms increase sharply as the problem size or the sample size grows. In order to solve large-sized problems efficiently, we develop a series of CGBH algorithms to be employed in Line 4 of Algorithm 4.1. Combining multiple column generation (CG) strategies and heuristic rules, the proposed CGBH algorithms compute near-optimal solutions and tight lower bounds for SP-SAA/SP -SAA, while requiring much fewer computational resources than the conventional solution approaches.

4.2.1/ COLUMN-ORIENTED REFORMULATIONS

A CGBH algorithm is composed of two main steps: first, a CG procedure is employed to solve the linear relaxation of the reformulated SP-SAA/SP -SAA model, yielding a column set and a lower bound; next, a heuristic rule is adopted to derive a feasible solution. In order to take advantage of the CG procedure's high efficiency in solving linear programs with large number of variables, the SP-SAA/SP -SAA model should be reformulated as a column-oriented model (i.e., a set-partitioning model). Referring to the relevant works that employ CGBH algorithms to solve advance surgery scheduling problems, each column of the column-oriented model usually represents the surgical plan for one OR on one day (e.g., [START_REF] Lamiri | Column generation approach to operating theater planning with elective and emergency patients[END_REF]Fei et al., 2009aFei et al., ,b, 2010;;[START_REF] Wang | A column-generation-based heuristic algorithm for solving operating theater planning problem under stochastic demand and surgery cancellation risk[END_REF]. However, the SP-SAA/SP -SAA model cannot be directly reformulated in this way since the downstream capacity constraints are incorporated. Specifically, the term t∈T c r r k t /|K| in the objective function (4.1)/(4.9) cannot be represented as a linear combination of all the selected surgery plans. To tackle this issue, we convert the decision variables r k t capturing the excess of SICU capacity to fixed parameters rk t and change the downstream capacity constraints (4.6) and (4.15) to the following strict constraints

i∈I z k it D t + rk t , ∀ t ∈ T, k ∈ K (4.22) and i∈I z k it D t + rk t , ∀ t ∈ T, k ∈ K (4.23)
respectively. Thus, the term t∈T c r r k t /|K| in the objective function (4.1)/(4.9) can be dropped since it becomes a constant t∈T c r rk t /|K|. The modified SP-SAA/SP -SAA model in which constraints (4.6)/(4.15) are replaced by (4.22)/(4.23) can easily be reformulated as a column-oriented model.

For the modified SP-SAA/SP -SAA model, the values of parameters rk t should be properly determined to ensure the solution quality. In the original stochastic programming models SP and SP , we introduce the decision variable r ω t to guarantee that SP-R and SP -R are complete recourse problems (i.e., any solution satisfying all the first-stage constraints is feasible at the second stage). In fact, exceeding the regular SICU capacity brings great inconvenience to the implementation of the surgery schedule and is more undesirable than overusing the ORs. Accordingly, the unit penalty for exceeding the regular SICU capacity is usually defined as a large number to ensure that the downstream capacity constraints are respected in most cases (e.g., Jebali andDiabat, 2015, 2017;[START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF]. Therefore, rk t can be given the lowest values guaranteeing the feasibility of the models (refer to Section 4.2.2) and changing the downstream capacity constraints (4.6)/(4.15) to strict constraints (4.22)/(4.23) poses few impact on the resulting policy. Similar strict downstream capacity constraints are also adopted with incomplete recourse problems in some relevant research (e.g., [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF].

With the strict downstream capacity constraints (4.22)/(4.23), SP-SAA/SP -SAA can be reformulated as a column-oriented model consisting of two parts: the master problem and the pricing problem. The former is a binary set-partitioning problem in which each column represents a feasible surgical plan for a specific surgical block (i.e., combination of an OR and a workday), while the latter is a pure integer programming problem that searches for feasible surgical plans with negative reduced costs to improve the solution of the master problem. The notations used in the column-oriented models are summarized in Table 4.1 (previously introduced notations are not included). We first consider the column-oriented reformulation for SP-SAA. Its master problem (MP) is presented as follows:

(MP) min

ξ∈Ξ υ ξ C ξ (4.24) s.t. ξ∈Ξ α iξ υ ξ = 1, ∀ i ∈ I (4.25) ξ∈Ξ β bξ υ ξ 1, ∀ b ∈ B (4.26) ξ∈Ξ γ k tξ υ ξ D t + rk t , ∀ t ∈ T, k ∈ K (4.27) υ ξ ∈ {0, 1}, ∀ ξ ∈ Ξ (4.28)
The objective function (4.24) of MP is equivalent to the objective function (4.1) of SP-SAA and minimizes the total cost of all the accepted surgical plans. In MP, the cost C ξ of each surgical plan ξ includes the fixed cost c b of opening a surgical block as well as the cost incurred by overtime:

C ξ = c b + 1 |K| k∈K c o o k ξ (4.29)
Constraints (4.25) are equivalent to constraints (4.2) of SP-SAA, indicating that all the patients selected into I by the first phase should be treated in the present week. Constraints (4.26) require each surgical block to be occupied by at most one accepted surgical plan. Constraints (4.27) correspond to constraints (4.22), ensuring that the number of postoperative patients in SICU does not exceed the sum of the regular SICU capacity D t and the estimated excess rk t . The last constraints (4.28) define υ ξ as binary variables, thus MP is a 0-1 programming problem.

As the set Ξ of all the feasible surgical plans can be extremely large, MP contains a huge number of columns and cannot be solved explicitly. Nevertheless, the linear master problem (LMP) in which the integrality constraints (4.28) of MP are relaxed as 0 υ ξ 1 can be efficiently solved by a CG procedure. In order to solve LMP, we need to replace set Ξ with its subset Ξ * ⊆ Ξ, thus LMP is converted to restricted LMP (RLMP). Then, referring to the simplex theory for solving linear programming problems, the elements of Ξ * should be generated by solving a pricing problem that seeks for the feasible surgical plan with the minimum reduced cost σ ξ [START_REF] Desaulniers | Column generation[END_REF]. The CG procedure solves RLMP and the pricing problem alternatively and iteratively while updating the restricted column set Ξ * . When no more feasible surgical plan with negative reduced cost can be found, the CG procedure terminates and the optimal solution of RLMP is also the one of LMP. For the column-oriented reformulation of SP-SAA, the pricing problem (PP) is formulated as follows:

(PP) min σ ξ = C ξ - i∈I π i α iξ - b∈B π b β bξ - k∈K t∈T π k t γ k tξ (4.30) s.t. α iξ e ib β bξ , ∀ i ∈ I , b ∈ B (4.31) b∈B β bξ = 1, (4.32) o k ξ i∈I d k i α iξ - b∈B β bξ L b , ∀ k ∈ K (4.33) z k it α iξ β bξ , ∀ i ∈ I , b ∈ B, t ∈ T k ib , k ∈ K (4.34) γ k tξ = i∈I z k it D t + rk t , ∀ t ∈ T, k ∈ K (4.35) α iξ , β bξ , z k it ∈ {0, 1}, ∀ i ∈ I , b ∈ B, t ∈ T, k ∈ K (4.36) 0 o k ξ , γ k tξ ∈ Z, ∀ t ∈ T, k ∈ K (4.37)
The objective function (4.30) of PP minimizes the reduced cost σ ξ of surgical plan ξ that is to be added to Ξ * , where π i , π b , and π k t are the optimal dual values of constraints (4.25), (4.26), and (4.27) of MP, respectively. Constraints (4.31) correspond to constraints (4.3) in SP-SAA, requiring that every patient and the surgical block to which he/she is assigned should belong to the same specialty. Constraint (4.32) guarantees that surgical plan ξ occupies exactly one surgical block. Constraints (4.33) are equivalent to constraints (4.4) and compute the overtime of surgical block caused by surgical plan ξ. Constraints (4.34) and (4.35) are equivalent to constraints (4.5) and (4.22), respectively. They determine the SICU beds occupied by the patients scheduled by surgical plan ξ and prevent the demand for intensive care from exceeding D t + rk t . Finally, the parameters α iξ , β bξ , γ k tξ , and o k ξ describing surgical plans in MP are defined as binary or integer decision variables in constraints (4.36) and (4.37).

From the above formulation, we can observe that the pricing problem PP includes |I |×|B|× |T k ib | × |K| quadratic constraints (4.34), hence it is a large integer quadratic programming problem that is too difficult to be solved. In order to reduce the computational complexity, we can decompose PP into |B| subproblems, each of which corresponds to exactly one surgical block. Specifically, in the subproblem for surgical block b, we have β bξ = 1 and β b ξ = 0 for any b ∈ B \ {b}, then the quadratic constraints (4.34) turn into linear constraints. We can also replace the patient set I with its subset I b which only contains the patients that can be assigned to block b (i.e., e ib = 1). In addition, the domain of t can be restricted to T b = {t|t t b , t ∈ T }, and variables γ k tξ can be dropped since they are equivalent to i∈I z k it . Thus, the decomposed subproblems are much simpler and smaller than the original pricing problem PP. The formulation of subproblem PP b for surgical block b is presented as follows:

(PP b) min σ ξ = c b + 1 |K| k∈K c o o k ξ - i∈I b π i α iξ -π b - k∈K i∈I b t∈T b π k t z k it (4.38) s.t. o k ξ i∈I b d k i α iξ -L b , ∀ k ∈ K (4.39) z k it α iξ , ∀ i ∈ I b , t ∈ T k ib , k ∈ K (4.40) i∈I b z k it D t + rk t , ∀ t ∈ T b , k ∈ K (4.41) α iξ , z k it ∈ {0, 1}, ∀ i ∈ I b , t ∈ T b , k ∈ K (4.42) 0 o k ξ ∈ Z, ∀ k ∈ K (4.43)
Further, the following additional SICU capacity constraints can be added to PP b to tighten the formulation:

z k it 1 -α iξ , ∀ i ∈ I b , t ∈ T b \T k ib , k ∈ K (4.44) z k it α iξ , ∀ i ∈ I b , t ∈ T b , k ∈ K (4.45)
Constraints (4.44) specify that no patient stays in SICU before the surgery date t b or after the end of LOS t b + l k i -1, and constraints (4.45) imply that unscheduled patients do not need SICU beds. These constraints are not incorporated into our original formulations SP and SP-SAA, because they significantly increase the problem size and the computational complexity. Nevertheless, in the column-oriented reformulation, constraints (4.44) and (4.45) help to accurately calculate the SICU occupation of each surgical plan, so that the CG procedure can converge faster.

4.2.1.2/ COLUMN-ORIENTED REFORMULATION OF SP -SAA

Similar to the reformulation of SP-SAA presented in Section 4.2.1.1, the column-oriented model of SP -SAA can be formulated as master problem MP and decomposed pricing problems PP b . The formulation of MP is firstly presented as follows:

(MP) min ξ∈Ξ υ ξ C ξ (4.46) s.t. ξ∈Ξ α iξ υ ξ 1, ∀ i ∈ I with w i < W j i u i (4.47) ξ∈Ξ α iξ υ ξ = 1, ∀ i ∈ I with w i = W j i u i (4.48) ξ∈Ξ β bξ υ ξ 1, ∀ b ∈ B (4.49) ξ∈Ξ γ k tξ υ ξ D t + rk t , ∀ t ∈ T, k ∈ K (4.50) υ ξ ∈ {0, 1}, ∀ ξ ∈ Ξ (4.51)
where the cost of surgical plan ξ is defined as

C ξ = i∈I (c s -c w)p i α iξ + c b + 1 |K| k∈K c o o k ξ (4.52)
The linear relaxation and of MP is then referred to as LMP , and the restricted LMP is abbreviated to RLMP . Next, the decomposed pricing problem PP b is formulated as follows:

(PP b) min σ ξ = i∈I b (c s -c w)p i α iξ + c b + 1 |K| k∈K c o o k ξ - i∈I b π i α iξ -π b - k∈K i∈I b t∈T b π k t z k it (4.53) s.t. o k ξ i∈I b d k i α iξ -L b , ∀ k ∈ K (4.54) z k it α iξ , ∀ i ∈ I b , t ∈ T k ib , k ∈ K (4.55) z k it 1 -α iξ , ∀ i ∈ I b , t ∈ T b \T k ib , k ∈ K (4.56) z k it α iξ , ∀ i ∈ I b , t ∈ T b , k ∈ K (4.57) i∈I b z k it D t + rk t , ∀ t ∈ T b , k ∈ K (4.58) α iξ , z k it ∈ {0, 1}, ∀ i ∈ I b , t ∈ T b , k ∈ K (4.59) 0 o k ξ ∈ Z, , ∀ k ∈ K (4.60)
where I b is a subset of I and exclusively contains the patients that can be assigned to surgical block b.

4.2.2/ COLUMN GENERATION STRATEGICS AND PROCEDURE

The column-oriented model of SP-SAA may be infeasible since constraints (4.25) require all the patients in I to be treated, while constraints (4.27) limit the downstream capacity to D t + rk t . Therefore, before applying the CG procedure, the initial columns in set Ξ * should be properly generated to ensure the feasibility of RLMP. At the beginning of the CG procedure for solving LMP, we solve the following integer programming problem IP-R, which is derived from SP-SAA, to generate the initial columns and to determine the values of rk t :

(IP-R) min

k∈K t∈T rk t (4.61) s.t. b∈B x ib = 1, ∀ i ∈ I (4.62)
x ib e ib y b ,

∀ i ∈ I , b ∈ B (4.63) z k it x ib , ∀ i ∈ I , b ∈ B, t ∈ T k ib , k ∈ K (4.64) rk t i∈I z k it -D t , ∀ t ∈ T, k ∈ K (4.65) x ib , y b , z k it ∈ {0, 1}, ∀ i ∈ I , b ∈ B, t ∈ T, k ∈ K (4.66) 0 rk t ∈ Z, ∀ t ∈ T, k ∈ K (4.67)
In IP-R, the objective function (4.1) of SP-SAA is simplified as the sum of rk t , since we only need the minimum excess of SICU capacity to guarantee the feasibility of RLMP. Moreover, constraints (4.4) of SP-SAA are dropped in IP-R since they can always be satisfied. IP-R is much simpler than SP-SAA and can be efficiently solved by commercial optimization solvers. With the values of rk t determined, we add all the surgery plans extracted from the optimal solution of IP-R to Ξ * before RLMP is solved for the first time in the CG procedure; as such, constraints (4.25) and (4.27) can both be satisfied and there always exists at least one feasible solution for RLMP.

The column-oriented model of SP -SAA can also be infeasible since constraints (4.48) require all the patients reaching the maximum allowed waiting time to be scheduled in the present week, while constraints (4.50) do not allow the occupation of SICU beds to exceed D t + rk t . Similar to IP-R, the integer programming problem IP -R to be solved at the beginning of the CG procedure for LMP is defined as follows:

(IP -R) min k∈K t∈T rk t (4.68) s.t. b∈B x ib 1, ∀ i ∈ I with w i < W j i u i (4.69) b∈B x ib = 1, ∀ i ∈ I with w i = W j i u i (4.70)
x ib e ib y b ,

∀ i ∈ I, b ∈ B (4.71) z k it x ib , ∀ i ∈ I, b ∈ B, t ∈ T k ib , k ∈ K (4.72) rk t i∈I z k it -D t , ∀ t ∈ T, k ∈ K (4.73) x ib , y b , z k it ∈ {0, 1}, ∀ i ∈ I, b ∈ B, t ∈ T, k ∈ K (4.74) 0 rk t ∈ Z, ∀ t ∈ T, k ∈ K (4.75)
The integer programming problems presented above determine the initial columns in Ξ * , while during the CG procedure, the new columns to be added to Ξ * are obtained by solving the decomposed pricing problems PP b /PP b . Specifically, three different CG strategies can be employed in the CG procedure: all-negative strategy and best-negative strategy both solve PP b /PP b for all b ∈ B in each iteration, but the former adds all the columns with negative reduced cost σ ξ or σ ξ to Ξ * , while the latter only adds the column with the lowest value of σ ξ or σ ξ to Ξ * ; besides, first-negative strategy adds the first encountered column with negative σ ξ or σ ξ to Ξ * and does not solve the rest of the pricing problems. Employing one of the three CG strategies, we can solve LMP/LMP through the CG procedure presented in Algorithm 4.2.

Algorithm 4.2: The column generation (CG) procedure for solving LMP/LMP Initialize Ξ * = ∅ and π i , π b , π k t = 0 for all i ∈ I, b ∈ B, t ∈ T , and k ∈ K; Solve IP-R /IP -R and obtain the values of rk t ; Add the surgery plans in the resulting solution into Ξ * ; while ture do Solve RLMP/RLMP , then obtain the optimal solution, the optimal objective value, and the optimal dual values π i , π b , and π k t ;

Solve PP b /PP b with the latest π i , π b , and π k t , then add new column(s) to Ξ * using one of the three CG strategies; if no new column can be added to Ξ * in the previous step then Break;

end end

The latest solution of RLMP/RLMP is the optimal solution for LMP/LMP , and the latest optimal objective value of RLMP/RLMP is the lower bound of MP/MP .

In Algorithm 4.2, the CG procedure terminates when no more column (surgical plan) with negative reduced cost can be found, hence the resulting solution is optimal for both RLMP/RLMP and LMP/LMP .

4.2.3/ HEURISTIC RULES AND CGBH APPROACHES

The optimal solution for LMP/LMP provided by the CG procedure (Algorithm 4.2) is not guaranteed to satisfy all the integrality constraints, hence heuristic rules are needed to compute feasible solutions for MP/MP . In this section, we develop three CGBH algorithms using different heuristic rules. These CGBH algorithms compute a near-optimal solution Υ = [υ 1 , υ 2 , ..., υ |Ξ * |] T for MP/MP , then the final solution {X, Y} for SP-SAA/SP -SAA, where X is a |I| × |B| matrix of x ib and Y is a |B| × 1 vector of y b , can be computed by the following formulas: Progressive reassignment (PR) is an alternative heuristic rule for deriving feasible solutions. It is proposed by [START_REF] Lamiri | Column generation approach to operating theater planning with elective and emergency patients[END_REF] to solve a surgery scheduling problem, in which the authors assume deterministic surgery durations and do not consider the opening of surgical blocks or the constraints of downstream resources. In this thesis, we develop an adapted version of the PR heuristic to fit our problem. Combining the adapted PR heuristic with the CG procedure (Algorithm 4.2) yields the CGBH-PR algorithm, which is presented in Algorithm 4.4.

             x ib = ξ∈Ξ * υ ξ α iξ β bξ , ∀ i ∈ I, b ∈ B y b = max i∈I {x ib } ∀ b ∈ B (4.76)
In CGBH-PR, if the optimal solution {X, Y} of LMP/LMP does not respect all the integrality constraints, we select the patient i such that one of its assignment variables x i b is the most fractional. We then keep x ib unchanged for all the other patients i i , and find the surgical block b to which assigning patient i yields a feasible solution (integrality constraints are not considered) and the lowest objective value. Matrix X is thereby updated by setting x i b = 1 and x i b = 0 for any b b . When the assignment of patient i is determined, we find other patients with fractional assignment variables and repeat the aforementioned process. The PR heuristic terminates when all the elements in X are 0 or 1. In this case, all the elements of Y are also binary numbers, thus {X, Y} is the initial feasible solution for MP/MP .

In the last step of CGBH-PR, we improve the initial solution {X, Y} using local optimization (LO) and pairwise exchange (PE) methods [START_REF] Lamiri | Column generation approach to operating theater planning with elective and emergency patients[END_REF]. For our problem, the procedures of LO and PE are adapted as follows. For each patient i ∈ I or i ∈ I, LO LMP/LMP is updated by removing the scheduled patients as well as the occupied surgical blocks and SICU beds. The RA heuristic terminates when no more feasible surgical plan can be generated, then all the accepted surgical plans form the final solution for MP/MP . The procedure of the CGBH-RA algorithm is described in Algorithm 4.5. In line 10 of Algorithm 4.5, if multiple surgical plans in Ξ * have equal υ ξ , priority is given to the one with the lowest C ξ . Moreover, in line 8 and 10, if multiple surgical plans have equal υ ξ and C ξ , the one requiring the least SICU beds is added to Ξ.

4.3/ SUMMARY

In this chapter, we present the solution approaches for solving the stochastic programming models SP (second phase of the two-phase optimization model) and SP (benchmark model) formulated in Chapter 2. In Section 4.1, we firstly use sampled values of surgery durations and LOSs generated by Monte-Carlo simulations to translate SP and SP into deterministic integer programming models SP-SAA and SP -SAA, respectively. The gap between the optimal solutions of SP/SP and SP-SAA/SP -SAA is decreasing exponentially in the sample size, while the computational complexity of solving SP-SAA/SP -SAA is increasing faster than linearly in the sample size. In order to balance the efficiency and the accuracy, we then introduce the SAA approach (Algorithm 4.1), in which SP-SAA/SP -SAA is solved repeatedly with relatively small samples.

SP-SAA/SP -SAA can be directly solved by commercial optimization solvers (e.g., CPLEX and GUROBI), but the computational resources consumed by the default algorithms (e.g., branch-and-cut and branch-and-bound) of these solvers increase significantly as the problem size and the sample size increase. In Section 4.

NUMERICAL EXPERIMENTS

In this chapter, we conduct intensive numerical experiments on multiple test problems with different sizes and parameter settings. First, in Section 5.1 and 5.2, we compare the computational performances of the novel algorithms proposed in Chapter 3 and 4 to those of the conventional solution approaches. Then, in Section 5.3, we solve realistically sized advance surgery scheduling problems and compare the resulting policies of the two-phase optimization model (MDP+SP) and the benchmark model (SP). In all the numerical experiments, GUROBI 7.5.2 is employed as the optimization solver of mathematical programming problems, meanwhile the programs are coded in C++ and are carried out on a PC with an Intel(R) Core(TM) i7-3770 CPU @3.40 GHz and a RAM of 8 GB. The notations used in this chapter are summarized in Table 5.1 (excluding the notations introduced in the previous sections).

5.1/ EXPERIMENTS OF SOLVING MDP MODELS

In this section, we solve two patient admission control problems formulated as MDPs using the solution approaches presented in Chapter 3. In Section 5.1.1, the novel algorithms that we propose (Algorithm 3.1 and 3.5) as well as two exact methodologies (Algorithm 3.2 and 3.4) are employed to solve a small-sized test problem. We compare the computational performances of these solution approaches before examining the sensitivity of the resulting policy and the CPU time to the problem parameters. In Section 5.1.2, we solve a large-sized single-specialty test problem and perform sensitivity analyses for the key parameters of the RLS-TD(λ)-based ADP algorithm.

5.1.1/ ALGORITHM COMPARISONS AND SENSITIVITY ANALYSES OF PROBLEM

PARAMETERS

In this subsection, we conduct numerical experiments for an arbitrarily generated test problem. The RLS-TD(λ)-based ADP algorithm (Algorithm 3.5) is compared to two

s = j∈J U j u=1 W ju
w=1 n juw number of all the patients in the waiting list a = j∈J U j u=1 W ju w=1 m juw number of all the scheduled patients in a week DP-based algorithms: VI (Algorithm 3.2) and VPI-RTDP (Algorithm 3.4). For each algorithm employed, we search for the greedy actions in two different ways: by evaluating the action sets A * (s) determined by Algorithm 3.1 and by enumerating the entire action sets A(s). We use a superscript * to distinguish the algorithms that search for the greedy action in the former way from the others. For example, VI* searches for the greedy actions in the action sets A * (s) determined by Algorithm 3.1, while VI evaluates all the feasible actions in A(s). Due to the low computational efficiency of the DP-based algorithms, the test problem solved in this subsection is much smaller than the realistically sized ones. Using the Monte-Carlo simulation method, we randomly sample arrival information over 1000 weeks, as well as sampling the surgery durations and LOSs of all the arrived patients. Using these samples, we carry out a numerical simulation for each solution approach for 1000 consecutive weeks. The parameters of the ADP algorithm are arbitrarily set as λ = 0, δ = 1, N = 5000 and = 0.0001 throughout this subsection, meanwhile the discount factor of the MDP is γ = 0.99. The computational results are presented in Table 5.2. It should be mentioned that when evaluating the solution approaches for MDP, the overtime of ORs, the excess of SICU capacity, and the hospital-related costs are estimated by cost function (2.4) of MDP without solving the second-phase problem.

From Table 5.2, it can be observed that the RLS-TD(λ)-based ADP algorithm is the most efficient solution approach. The CPU time consumed by ADP is only 0.02% and 0.25% of that consumed by VI and VPI-RTDP, respectively. Moreover, applying Algorithm 3.1 drastically improves the computational efficiency of all the employed solution approaches, and does not lead to any policy deterioration. To be specific, when applied to VI, VPI-RTDP, and ADP, Algorithm 3.1 reduces CPU time by 92.00%, 73.33%, and 14.28%, respectively. Table 5.2 also indicates that the resulting policies of the algorithms employed are similar. The relative gap between the total costs of ADP/ADP* and those of the DPbased algorithms is below 3.16%. Among the DP-based algorithms, we can observe that the total costs of VI/VI* are slightly higher than those of VPI-RTDP/VPI-RTDP*, implying that the policies of VI/VI* are less converged than those of VPI-RTDP/VPI-RTDP*. Obviously, the former can be further improved by modifying the user-defined stopping criterion, but requires even more CPU time. In summary, the RLS-TD(λ)-based ADP algorithm provides a high-quality, near-optimal policy for the problem under study, and Algorithm 3.1 is capable of accelerating the employed algorithms without any deterioration of the policy.

Next, we perform sensitivity analyses to evaluate the effects of the problem parameters on the resulting policy and the computational complexity. We use an exact algorithm (VPI-RTDP*) and the proposed ADP* algorithm to solve the small-sized two-specialty test problem with different values for the problem parameters c w , c o , c r , LB 1 , LB 2 , and D. The results of the sensitivity analyses are demonstrated in Figures 5.1 to 5.6. It can be seen from these figures that the ADP* policy is very close to that of VPI-RTDP* in most cases, despite variations in the problem parameters; again, this validates the accuracy of the ADP* algorithm. Specifically, Figure 5.1 shows that changing the unit waiting cost c w (or the ratio of c w to c s) only leads to slight changes in the resulting policy. In contrast, Figure 5.2 and 5.3 illustrate that the hospital-related cost c h and the total cost c .413 4.200 11199.416 13729.502 94.664 198.483 4.194 are increasing in both the unit OR overtime cost c o and the unit SICU excess cost c r , while Figures 5.4,5.5,and 5.6 show that c h and c are decreasing in the OR capacity LB 1 , LB 2 , and the SICU capacity D. From Figure 5.1 to 5.6, we can also observe that the patientrelated cost c p remains relatively stable as the problem parameters change, which implies that the resulting policy is not very sensitive to the problem parameters.

5.1.2/ SENSITIVITY ANALYSES OF THE ADP ALGORITHM PARAMETERS

The experimental results of the previous subsection reveal that the proposed RLS-TD(λ)based ADP algorithm is distinctly more efficient than the conventional DP-based algo-rithms; at the same time, the gaps between the resulting costs of these algorithms are insignificant. To further evaluate the capability of the proposed algorithms to cope with large cases, we employ the ADP* algorithm (i.e., the RLS-TD(λ)-based ADP algorithm in combination with the greedy action searching method presented by Algorithm 3.1) to solve a realistically sized single-specialty patient admission control problem, and perform sensitivity analyses for the key parameters λ and δ of the ADP/ADP* algorithm.

The problem to be solved in this subsection is admission control for coronary artery bypass grafting (CABG) surgeries, which has previously been studied by Min and Yih (2010a). Our work differs from Min and Yih (2010a), however, as it incorporates patient waiting times, dynamic patient priorities and due dates into the MDP model. The problem settings are based on the configurations of Min and Yih (2010a) and the real-life data provided by [START_REF] Sobolev | Analysis of waiting-time data in health services research[END_REF] Simulations for 1000 consecutive weeks are performed to address the CABG surgery admission control problem. As a result of the increasing problem scale, DP-based algorithms are no longer capable of computing the optimal policy within an acceptable CPU time. Therefore, current practice is to compute a myopic policy in which each action only minimizes the cost of the present week. This policy serves as the benchmark for the resulting ADP* policy and can easily be obtained by solving the MDP model with discount factor γ = 0. Since the action spaces of realistic problems are considerably large, we employ Algorithm 3.1 to reduce the number of actions to be evaluated. The simulation results for the myopic policy, as well as the resulting ADP* policies with N = 1000 and = 0.001, are listed in Table 5.3.

From the data presented in Table 5.3, we can see that all the simulations can be finished within a reasonable CPU time, and that computing the myopic policy (γ = 0.00) is much easier than computing the ADP* policy (γ = 0.99); that is, the CPU time consumed by the former (t = 0.11s) is much less than that of the latter (t ∈ (62, 135)s). However, the ADP* policy significantly outperforms the myopic policy in terms of reducing the total cost and the patients' waiting times. In comparison to the ADP* policy, which minimizes the expected total cost over an infinite horizon, the myopic policy optimizes the cost of each week separately, without considering the inter-week correlations. As such, it generally schedules fewer patients than does the ADP* policy and thereby leads to longer waiting times. To be specific, the average waiting times of patients at urgency levels 1, 2 and 6 under the ADP* policy are lower than those under the myopic policy by 31.4 ± 21.4%, 33.1 ± 21.7% and 11.9 ± 4.0%, respectively. As the ADP* policy tends to schedule more patients than does the myopic policy, it increases the over-utilizations of the ORs and SICU by 0.79 ± 0.51 hours per week and 0.29 ± 0.27 patient-days per week, respectively. However, the total cost of the ADP* policy is 26.8 ± 14.6% lower than that of the myopic policy. Table 5.3 also illustrates the effects of the values of λ and δ on the resulting policy. It can be observed that the patients' waiting times and the total cost are decreasing in λ and δ; however, the over-utilizations of surgical resources are increasing in these parameters.

We record the sizes of A(s) and A * (s) for each visited state in the simulations for the CABG surgery admission control problem. We find that the sizes of A(s) of some states can be as large as 1.59 × 10 11 , while the sizes of A * (s) determined by Algorithm 3.1 are no larger than 75. Table 5.3 also shows that the ratio of |A * (s)| to |A(s)| in each simulation is lower than 5‰, which is significantly lower than the values of |A * (s)|/|A(s)| for the smallsized test problem solved in Section 5.1.1. This fact implies that Algorithm 3.1 leads to greater improvements in computational efficiency for larger problems.

To further explore how the scheduling policy can be influenced by the key parameters of the ADP* algorithm, we analyze the sensitivity of several performance measures to the variances of λ and δ. Figure 5.7 demonstrates the experimental results for the CABG problem; it indicates that λ varies from 0.0 to 1.0 and δ varies from 10 -5 to 10 5 . It can be observed that, when λ exceeds 0.8, the patients' waiting times and the total cost sharply decrease, regardless of the value of δ; meanwhile, the over-utilizations of the ORs and SICU increase significantly. When λ 0.8, the larger value of δ results in lower cost and shorter waiting times for patients; however, it also leads to greater overuse of the ORs and SICU. More importantly, no matter how the values of λ and δ vary, the average cost per week c of the ADP* policy is always significantly lower than that of the myopic policy (refer to Table 5.3).

Figure 5.8 compares the evolutions of the parameter vector Θ during the simulations, using different values for λ and δ. The length of vector Θ for the CABG problem is H = 20; we arbitrarily select the values of θ 1 and θ 11 to be demonstrated in Figure 5.8. The first row of Figure 5.8 shows that the smaller value of δ leads to a lower convergence rate, and that the values of θ 1 and θ 11 converge especially slowly when δ = 10 -5 . The second row of Figure 5.8 reveals that the converged values of θ ξ are increasing in line with the value of λ, which explains why different values of λ result in different policies (refer to Table 5.3 and Figure 5.7). In terms of computational efficiency, Figure 5.9a shows that the CPU time goes up as λ increases from 0.0 to 0.8, which implies that larger values of λ require more CPU time before the convergence of Θ occurs. When 0.8 λ 1.0, the resulting policy tends to schedule more patients in each decision; we can see in Figure 5.7 that patients' waiting times are obviously shorter, hence there are fewer patients in the waiting list and the action spaces of the involved states are relatively small. Consequently, the CPU time significantly drops when λ is larger than 0.8. In addition, Figure 5.9b shows the influence of δ on computational efficiency. As illustrated in Figure 5.7, the resulting policies for 10 -5 δ < 1 and 1 δ 10 5 are significantly different. Accordingly, the tendencies of t in the two intervals are also different: t is increasing in δ for δ < 1 and decreasing in δ for δ 1.

5.2/ EXPERIMENTS OF SOLVING STOCHASTIC PROGRAMMING MODELS

In this section, we conduct numerical experiments to examine the algorithms presented in Chapter 4 for solving stochastic programming models. The computational results of the CGBH algorithms are firstly compared to those of GUROBI, and the performances of different CG strategies and heuristic rules are evaluated. Then, we employ the SAA-CGBH algorithm (combination of SAA and CGBH) to solve stochastic programming models and validate its advantage in terms of computational efficiency over the conventional SAA approach.

5.2.1/ TEST PROBLEMS

The test problems to be solved in this section are based on the real cases studied by [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF] and [START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF]. In the OT under consideration, there are 10 versatile ORs and a number of SICU beds shared by 9 specialties: ENT (ear, nose, and throat), OBGYN (obstetrics and gynecology), ORTHO (orthopedics), NEURO (neurosurgery), GEN (general surgeries), OPHTH (ophthalmology), VASCULAR, CAR-DIAC, and UROLOGY. The length of each planning horizon is one week, i.e., |T | = 7. Every surgical block is allocated to a specific workday, while the SICU is open throughout the week. An MSS containing 32 available surgical blocks per week has been fixed and is shown in Table 5.4 [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF]. The time length of each surgical block is L b = 8 hours. Based on the statistics provided by [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF] and [START_REF] Neyshabouri | Two-stage robust optimization approach to elective surgery and downstream capacity planning[END_REF], for each specialty j, we can obtain its relative importance v j , percentage of surgeries, mean surgery duration dj , standard deviation of surgery duration σ(d j), mean LOS lj , and standard deviation of LOS σ(l j). Further, we arbitrarily determine the urgency groups and maximum allowed waiting times W ju for every specialty, while taking into account the fact that patients with the higher priority should be given the shorter maximum allowed waiting time. Then, the detailed problem settings are presented in Table 5.5. The percentages of surgeries provided in Table 5.5 are used to generate experimental cases via Monte-Carlo simulations. When generating a case with |I| surgeries in the waiting list, the expected number of surgeries from a certain specialty is the product of |I| and the corresponding percentage. Moreover, we assume that the surgeries with waiting time t are expected to be two times more than those with waiting time t + 1. Besides, when generating the duration or LOS for a surgery, a continuous value is firstly sampled using the statistical data in Table 5.5 as the parameters of the lognormal distribution, then this sampled value is rounded as an integer.

Referring to [START_REF] Min | Scheduling elective surgery under uncertainty and downstream capacity constraints[END_REF], the length of a time interval is determined as 30 minutes, and the overtime cost of a surgical block is c o = 780 per time interval (i.e., 1560 per hour). The other costs are estimated as follows: the fixed cost for opening a surgical block is c b = 1560, the unit cost of exceeding the regular SICU capacity is c r = 1560 per patient-day, and the unit costs of performing and postponing a surgery are c s = 400 and c w = 600, respectively.

5.2.2/ COMPARISON OF DIFFERENT CG STRATEGIES AND HEURISTIC RULES

To examine the proposed CGBH algorithms (Algorithm 4.3 to 4.5), we employ them to solve the column-oriented model MP . In addition, we use GUROBI to directly solve the SP -SAA model (i.e., the SP -SAA model with the downstream capacity constraints (4.15) replaced by (4.23), refer to Section 4.1), which is completely equivalent to MP , and the resulting solutions serve as the benchmarks of those computed by the CGBH algorithms. The patient information, surgery durations, and LOSs are randomly generated through Monte-Carlo simulations according to the statistics presented in Table 5.5.

We first evaluate the performances of the three CG strategies presented in Section 4.2.2, while the RMP heuristic rule introduced in Section 4.2.3.1 is employed to compute feasible solutions. From the experimental results presented in Table 5.6, we notice that the computational complexity of SP -SAA depends on the problem size, and that the efficiency of GUROBI in solving SP -SAA drastically decreases as the size of I and K increase. For large cases with |I| 50 and |K| 50, GUROBI cannot even provide the optimal solutions within the preset maximum computation time (one hour). By contrast, the CGBH algorithms can efficiently solve all the cases and provide near-optimal solutions of high quality. In some large cases, e.g., 75-15-100 and 75-20-100, the CGBH solutions are even better than those of GUROBI-SP -SAA .

Comparing the computational results of the three CG strategies in Table 5.6, it can be seen that the all-negative strategy outperforms the other two strategies in terms of robustness and efficiency. Specifically, the gaps between the exact solutions of GUROBI-SP -SAA and the near-optimal solutions of CGBH-RMP-All-Negative are below 4%. Moreover, for the large cases that cannot be directly solved by GUROBI, the CGBH-RMP-All-Negative algorithm consumes no more than one minute of CPU time to compute a high-quality near-optimal solution. Table 5.6 also illustrates that the optimal value of the relaxed column-oriented model provides a much tighter lower bound for SP -SAA than the optimal value of the linear relaxation of SP -SAA .

In the next group of numerical experiments, we employ the all-negative strategy to evaluate the performances of the three heuristic rules introduced in Section 4.2.3. The computational results are presented in Table 5.7. Similar to the results of Table 5.6, Table 5.7 also shows that the CGBH algorithms are much more efficient in solving large-sized cases than GUROBI. Among the three heuristic rules, the RMP heuristic consumes the least CPU time and provides the best solutions. In comparison with the RMP heuristic, the PR heuristic leads to significantly larger errors in some cases, and the RA heuristic needs much more CPU time to finish the computation. Finally, based on the experimental results presented in Table 5.6 and 5.7, we can conclude that the combination of the all-negative CG strategy and the RMP heuristic rule results in the best computational performance. Based on the previously presented experimental results, the all-negative strategy and the RMP heuristic are adopted in the rest of the numerical experiments (CGBH-RMP-All-Negative is hereinafter referred to as CGBH for simplicity). In this subsection, we embed the CGBH algorithm into line 4 of the SAA approach (Algorithm 4.1), and compare the computational performances of the SAA-CGBH algorithm and the conventional SAA approach in which SP-SAA/SP -SAA is solved by GUROBI directly. In the numerical experiments, we also evaluate the impacts of changing the downstream capacity constraints (4.6)/(4.15) to (4.22)/(4.23) on the resulting solutions.

First, we employ the two solution approaches to solve several randomly generated SP problems. The number of replications and the size of the large samples for evaluating UBs are arbitrarily determined as M = 10 and |K | = 50000, respectively. From the experimental results presented in Table 5.8, it can be seen that the resulting solutions of both the two solution approaches improve significantly as the sample size |K| increases. Specifically, when |K| 100, the optimality gaps in almost all the cases are no larger than 3%. In addition, for the cases in which the SICU capacity is relatively insufficient (|I | = 30 and D = 6 or 9), the larger value of |K| results in lower violation risk of the downstream capacity constraints. Regarding the computational efficiency, Table 5.8 reveals that the CPU time consumed by the conventional SAA approach is increasing faster than linearly in the sample size |K|. By contrast, the computation time of the SAA-CGBH algorithm grows much slower as |K| increases. Moreover, for the cases with large patient set I and large sample set K, the SAA-CGBH algorithm consumes much less CPU time than the conventional SAA approach.

From Table 5.8, we can also observe that the gaps between the UBs of the two solution approaches are below 1% in all the cases, which indicates that the accuracies of the two solution approaches in solving SP are at the same level. In addition, the risks of exceeding the regular SICU capacity under the schedules computed by the two approaches are very close in most cases, hence we can conclude that the modification of the downstream capacity constraints from (4.6) to (4.22) poses few impacts on the resulting solution for SP.

Next, we employ the SAA-CGBH algorithm and the conventional SAA approach to compute surgery schedules for the benchmark model SP . The experimental results with M = 10 and |K | = 50000 are shown in Table 5.9. Similar to the results presented in Table 5.8, we can see from Table 5.9 that the optimality gap and the violation risk are decreasing in the sample size |K|, and that the SAA-CGBH algorithm is more efficient in solving large cases than the conventional SAA approach. For the cases with |I| = 50, D = 15, and |K| 50, GUROBI usually reaches the maximum computation time (1 LB-lower bound of SAA; std.LB-standard deviation of LB; UB-upper bound of SAA; std.UB-standard deviation of UB; Gap-relative gap between LB and UB (unit: %); Risk-average violation risk of downstream capacity constraints of the M solutions (unit: %); Opt.-number of optimal LBs obtained (LBs are not optimal in some cases because the preset maximum computation time, one hour, is reached); CPU-computation time (unit: s); hour) without providing the optimal solution, whereas SAA-CGBH consumes less than 6 minutes to compute a near-optimal solution.

Comparing the UBs of the two solution approaches, we can observe that the solution quality of SAA-CGBH degrades when the SICU capacity is insufficient to meet the actual demand. For the cases with |I| = 30 and D = 6, the optimal schedules computed by the conventional SAA approach allow the regular SICU capacity to be exceeded, so that more patients can be scheduled and the patient-related costs are reduced. By contrast, the SAA-CGBH algorithm minimizes the excess of SICU capacity by solving IP -R before optimizing the total cost, and the modified downstream capacity constraints (4.23) limit the SICU occupation to a fixed level D t + rk t . As a result, the solutions computed by SAA-CGBH reduce the hospital-related costs, but schedule fewer patients and lead to high patient-related costs and total costs. In most of the other cases, the gaps between the UBs of the two solution approaches are below 2%.

According to the experimental results presented in this subsection, we can conclude that the SAA-CGBH algorithm is significantly more efficient than the conventional SAA approach in solving large-sized problems and that the solutions of SAA-CGBH are as good as those of the conventional SAA approach in most cases. However, when the SICU capacity is relatively insufficient, the exact optimal solutions computed by the conventional SAA approach are obviously better than the near-optimal solutions of the SAA-CGBH algorithm.

5.3/ EVALUATION OF THE TWO-PHASE OPTIMIZATION MODEL

The previously presented numerical experiments validate the advantages of the proposed novel algorithms over the conventional solution approaches. In this section, we solve the two-phase optimization models (MDP+SP) and the benchmark stochastic programming models (SP) for the same test problems and compare the resulting solutions. We solve the two-phase optimization models with the RLS-TD(λ)-based ADP algorithm and the SAA-CGBH algorithm to guarantee the computational efficiency. Considering that the solutions computed by SAA-CGBH for the benchmark stochastic programming model deteriorate when the SICU capacity is relatively insufficient (refer to Table 5.9), the benchmark models for the cases with [|I|, D] = [30, 5] and [|I|, D] = [50, 10] (|I| denotes the average number of patient arrivals per week) are solved by the conventional SAA approach (in which the SP -SAA problem is solved by GUROBI directly), while the other benchmark models are solved by SAA-CGBH. To ensure that all the computations can be finished with an acceptable CPU time, we limit the maximum computation time of GUROBI in the conventional SAA approach to 1000 seconds. Moreover, based on the experimental results of the previous sections, the parameters of ADP and SAA are determined as λ = 0, δ = 1, N = 5000, = 0.0001, |K| = 100, |K | = 50000, and M = 10 to balance the accuracy and the efficiency.

The computational results are presented in Table 5. 10,5.11 and Figure 5.10 to 5.15, where the overtime of ORs, the excess of SICU capacity, and the hospital-related costs of each schedule are approximated by computing the objective function (4.1)/(4.9) with a large sample K (similar to the way of computing UB in the SAA approach). Table 5.10 provides a detailed comparison of the patients' waiting times and the overuse of surgical blocks under the resulting policies of the two models. Compared to the benchmark model, the two-phase optimization model tends to schedule more patients in each week, since its resulting policies lead to shorter waiting times for most patient groups. It can be seen that the reduction of waiting time is more obvious in specialties ENT, GEN, and OPHTH, where the patients require fewer surgical resources (i.e., with lower values of dj , lj , and pct., see Table 5.5) and the preallocated surgical blocks are relatively sufficient to meet the average surgical demand. Specifically, the two-phase optimization model reduces the waiting times of the patients in these specialties by 1.05±0.46 weeks. However, scheduling more surgeries results in more overuse of surgical blocks in many specialties. The most significant increase in the overuse of surgical blocks, 1.13±0.75 hours per week, is observed in specialty ORTHO, where the surgical demand is the heaviest (see Table 5.5) and the mean surgery duration and LOS are considerably longer than those in specialties ENT, GEN, and OPHTH. Table 5.11 compares the overall performances of the resulting policies of the two models. It is clear that the two-phase optimization model favors more the patients' interests than the benchmark model: the patient-related costs in the former are averagely 62.20% lower than those in the latter. The large gaps in the patient-related costs can be explained by the fact that the patients spend less time in the waiting list under the policies of the twophase optimization model, as shown in Table 5.10. Table 5.11 also illustrates that the two-phase optimization model brings about more excess of the regular OR and SICU capacities as well as higher occupation rates of surgical blocks. Accordingly, the hospitalrelated costs under the policies of the two-phase optimization model are higher than those under the policies of the benchmark model, and the relative gaps are 33.71% on average. Despite of this drawback, the two-phase optimization model significantly outperforms the benchmark model, since we can see from Table 5.11 that the former reduces the total costs by 47.00% on average. Regarding the computational efficiency, Table 5.11 shows that solving the two-phase optimization model consumes considerably less CPU time than solving the benchmark model, and that the average relative gap of CPU time is 64.43%.

The advantages of the two-phase optimization model can also be observed in Figure 5.10 to 5.15, in which the costs, the waiting list sizes, and the number of surgeries performed in each week under the policies of the two models are compared. The reductions of total costs c and patient-related costs c p brought by the two-phase optimization model 130 9,847 64,380 13,418 107,510 20,704 16.300 1.735 6,583 59,550 66,133 SP 3.997 1.218 0.434 0.264 26,490 4,624 189,430 34,469 215,920 38,780 9,959 65,400 16,211 104,180 25,501 14.450 hence the resulting patient-related costs are considerably lower. Moreover, we can observe that there are fewer fluctuations in the number a of surgeries performed in each week under the policies of the two-phase optimization model, which can also be an advantage in terms of the surgical staff's satisfaction since the workload does not vary too much from week to week.

5.4/ SUMMARY

In this chapter, the performances of the novel mathematical model and solution approaches proposed in this thesis are evaluated through numerical experiments. Firstly, in Section 5.1, we employ the RLS-TD(λ)-based ADP algorithm and two conventional DP-based algorithms to solve MDP models of patient admission control problems. The computational results show that the ADP algorithm consumes considerably less CPU time than the conventional ones, and that the gaps between the near-optimal policies computed by ADP and the exact optimal policies are within 4%. Moreover, our sensitivity analyses reveal that the computational performance of the RLS-TD(λ)-based ADP algorithm does not deteriorate as the problem parameters vary, and that the near-optimal policy computed by ADP outperforms the myopic policy, regardless of the changes in algorithm parameters.

Then, in Section 5.2, we perform intensive numerical experiments to examine the solution approaches for the stochastic programming models. The experimental results show that the all-negative CG strategy and the RMP heuristic rule lead to the best performance of the CGBH algorithm. Moreover, the SP model in the second-phase of the two-phase optimization model can be more efficiently solved by the combined algorithm of CGBH and SAA (SAA-CGBH) than by the conventional SAA approach, meanwhile the relative gaps between the solutions of the two approaches are within 1%. For the benchmark stochastic programming model SP , the SAA-CGBH algorithm computes high-quality solutions efficiently in most cases, but the solution quality of SAA-CGBH deteriorates when the SICU capacity is relatively insufficient to satisfy the actual demand.

Finally, we solve the two-phase optimization model and the benchmark stochastic programming model of the same advance surgery scheduling problems. The former is solved by the SAA-CGBH algorithm, while the latter is solved by the SAA-CGBH algorithm or the conventional SAA approach, depending on the sufficiency of SICU capacity. Comparing the computational results of the two models, we can clearly see that the two-phase optimization model leads to significantly lower total costs and shorter waiting times of patients. The results also show that solving the two-phase optimization model consumes considerably less CPU time than solving the benchmark model. To summarize, the advantages of the two-phase optimization model in terms of solution quality and computational efficiency are validated through the numerical experiments.

CONCLUSIONS AND PERSPECTIVES

6.1/ CONCLUSIONS

In this thesis, we address the advance scheduling of elective surgeries while considering downstream capacity constraints, uncertainties of patient arrivals, surgery durations, and LOSs, time-dependent dynamic patient priorities, as well as multiple specialties with different patient characteristics. To the best of our knowledge, this thesis is the first work that simultaneously incorporates all these factors into advance surgery scheduling. Under the restrictions of a dedicated policy (emergency surgery demands are treated with dedicated surgical resources) and a block-scheduling strategy (the preallocation of surgical blocks among specialties is specified by an MSS), we make decisions at the beginning of each week to determine the numbers and types of surgeries to perform, the surgical blocks to open, and the assignments of surgeries to surgical blocks. Our objective is to minimize a cost function that is composed of the patient-related costs incurred by performing and postponing surgeries as well as the hospital-related costs caused by opening surgical blocks and exceeding the regular OR and downstream capacity.

In literature, the advance surgery scheduling problems are usually formulated as pure mathematical programming models, which optimize the surgery plan of each week (or planning period) separately without considering the correlations among the surgery schedules of consecutive weeks. These models may schedule few surgeries during the current week to reduce the hospital-related costs and the total costs; as a result, the size of waiting list and the patient-related costs of the following weeks will drastically increase. To overcome the myopia of the pure mathematical programming models, we propose in this thesis a novel two-phase optimization model. Specifically, we decompose the studied problem into two phases and formulate the two phases as an MDP model and a stochastic programming model. The first-phase MDP model minimizes the expected total costs over an infinite horizon by properly selecting the surgeries to be performed in each week from a waiting list. When the selection of surgeries is determined in the first phase, the stochastic programming model in the second phase optimizes the block-opening decisions and the 103 surgery-to-block assignments. We also formulate the studied advance surgery scheduling problem as a pure stochastic programming model, which is commonly used in the relevant literature and serves as the benchmark of the proposed model.

In order to solve the two-phase optimization model and the benchmark model for realistically sized problems efficiently, we develop several novel solution approaches. For the MDP model, we propose a novel ADP algorithm based on RLS-TD(λ) learning. This ADP algorithm approximates the huge-dimensional value function with a lowdimensional parameter vector, and adopts an on-policy learning strategy that updates the optimal policy and generates the trajectory of states to be visited simultaneously; as such, the curses of dimensionality of the state space and the outcome space are effectively solved. In addition, we perform an in-depth structural analysis for the MDP model and propose an efficient greedy action searching algorithm to improve the speed of exploring the action space and to accelerate the ADP algorithm and the other solution approaches for MDP.

The stochastic programming models are solved by the combination of SAA approach and CGBH algorithms (i.e., SAA-CGBH). We first convert the stochastic programming models to their deterministic counterparts by replacing the stochastic parameters with randomly generated samples, then develop several CGBH algorithms combining different CG strategies and heuristic rules to solve these deterministic models. In each CGBH algorithm, a CG procedure is first employed to solve the linear relaxation of the columnoriented reformulation of the deterministic model, then a heuristic rule is applied to derive a feasible solution satisfying all the integrality constraints. Finally, the SAA-CGBH algorithm replicates the solution procedure of CGBH, as is usually done in the conventional SAA approach, to compute near-optimal solutions for the stochastic programming models.

In the numerical experiments, the novel ADP and SAA-CGBH algorithms proposed in this thesis are proved to outperform the traditional solution approaches such as the DPbased algorithms and the conventional SAA approach. The proposed algorithms consume considerably less CPU time than the traditional ones do, while the near-optimal solutions computed by the proposed algorithms are very close to the exact optimal solutions. Moreover, the computational results of solving the proposed two-phase optimization model and solving the benchmark model are compared in detail. We discover that the resulting policies of solving the two-phase optimization model are more stationary on the long-run and do not lead to significant increase in the size of the patient waiting list. In most weeks, the patients' waiting times, the patient-related costs, and the total costs under the policies of the two-phase optimization model are considerably lower than those under the policies of the benchmark model. Therefore, we can conclude that the two-phase optimization model proposed in this thesis provides significantly better surgery schedules on the longrun than the commonly used pure stochastic programming models do. The experimental results also show that solving the two-phase optimization model requires less CPU time than solving the benchmark stochastic programming model does, which enhances the feasibility of implementing the two-phase optimization model in practice.

6.2/ PERSPECTIVES

In the future, the two following aspects of this thesis can be extended for further research. Firstly, the problem studied in this thesis can be extended by incorporating more surgeryrelated issues, such as availability of surgeons and rescheduling of cancelled surgeries. Moreover, the allocation scheduling decisions, including intra-block sequencing and determination of starting times for the scheduled surgeries, can be integrated into the second phase of the two-phase optimization model, thus the operational-level decisions are optimized in a unified way. Secondly, an exact branch-and-price algorithm for solving the stochastic programming models could be developed based on the CGBH algorithms proposed in this thesis. The experimental results presented in Table 5.6 and 5.7 reveal that the linear relaxations of the column-oriented formulations provide tight lower bounds on the optimal objective values, hence the CGBH algorithms could be integrated into a branchand-price algorithm to compute upper bounds. An efficient branching strategy improving the lower bounds should be proposed in the future to guarantee the computational efficiency of the branch-and-price algorithm.

 b∈B c b y b + E Q(x x x, y y y, d d d, l l l)

 Let X = {x juw } ∈ S ∪ A and Y = {y juw } ∈ S ∪ A. Then, (i) If ∀ j, u, w: x juw y juw and ∃ j , u , w s.t. x j u w < y j u w , then X < Y.(ii) If ∀ j, u, w: x juw = y juw , then X = Y. (iii) Otherwise, X and Y are incomparable. Definition 3.2. -Let X = {x juw } ∈ S ∪ A and Y = {y juw } ∈ S ∪ A. P(X) and P(Y) are defined as the overall patient priorities of X and Y, respectively. Then, (i) If X = Y + ∆ j u w -∆ j u w and u w < u w , then P(X) < P(Y).(ii) If X = Y, then P(X) = P(Y).

(

 ii) If P(a) and P(a) are comparable, then C h (a) = C h (a) holds. (iii) C 0 (s) is increasing in P(s). Proof. (i) If a 0 (s + ∆ j u w) ∈ A(s), then by Lemma 1, C 0 (s + ∆ j u w) -C 0 (s) = min a∈A(s) C(s + ∆ j u w , a)min a∈A(s) C(s, a) min a∈A(s) [C(s + ∆ j u w , a) -C(s, a)] = c w v j u w > 0 (3.3)

 holds for any specialty j. Further, according to Assumption 2.5, patients from the same specialty have the same expectations of surgery duration and LOS. Hence by the cost function (2.4), C h (a) = C h (a).

 a), then n j u wm * j u w = x > 0 does not hold, proving the proposition. Proposition 3.4. -∀s ∈ S : Q π * (s, a) is decreasing in P(a).

Algorithm 3. 1 :A

 1 Procedure of determining A * (s) Input: state s = {n juw } Initialize a = {m juw } = 0 0 0; for j = 1, 2, ..., |J| do for u = 1, 2, ..., U j do for w = 1, 2, ..., W ju do 5 if ((c wc s)v j uw > c o d j + c r l j) ∨ (w = W u) then m juw = n juw ; juwm juw); //number of patients with (c wc s)v j uw c o d j + c r l j M j = 0; //number of scheduled patients with (c wc s)v j uw c o d j + c r l j end Let A * (s) = {a }; //exhaust all the possible combinations of M j while j∈J M j j∈J N j do for j = 1, 2, ..., |J| do if M j < N j then 16 M j = M j + 1; 17 foreach k = 1, 2, ..., j -1 do M k = 0; {m juw } = a ; //for each combination of M j , find the action with the maximum value of P(a) for j = 1, 2, ..., |J| do {u , w } = arg max ((c w -c s)v j uw c o d j +c r l j)∧(w W u) v j uw; x = M j ; } = arg max (uw u w)∧(w W u)∧((u u)∨(w w)) v j uw; * (s) = A * (s) ∪ {a}; end Output: action set A * (s)

Algorithm 3. 3 :

 3 Real-time dynamic programming (RTDP)Input: s 0 n = 0; while (n < N) do s = s 0 ; n = n + 1; depth = 0; while (depth < max depth) do depth = depth + 1; Determine A * (s) by Algorithm 3.1; //this step is skipped in the original RTDP V l (s) = min a∈A(s) [C(s, a) + s ∈S P(s, a, s)V l (s)]; //A(s) is replaced with A * (s) if line 9 is not skipped π p (s) = arg min a∈A(s) V l (s); //A(s) is replaced with A * (s) if line 9 is not skippedSample the next state s from the transition distribution P[s, π p (s), s];

ξ

 Table 4.1: Notations defining the column-oriented models Notation Definition Sets Ξ Set of feasible surgical plans (columns) Ξ * ⊆ Ξ Restricted set of feasible surgical plans (columns) I b ⊆ I, I b ⊆ I Set of patients that can be assigned to surgical block b T b ⊆ T Set of days from t b to |T | Index ξ Index of surgical plans in Ξ or Ξ * Parameters α iξ 1, if patient i is assigned to plan ξ; 0, otherwise β bξ 1, if surgical block b is assigned to plan ξ; 0, otherwise γ k tξ Number of SICU beds required by plan ξ on day t in scenario k o k Overtime of surgical block incurred by plan ξ in scenario k C ξ , C ξ Cost of plan ξ σ ξ , σ ξ Reduced cost of plan ξ π i , π b , π k t Optimal dual values of the constraints of LMP/LMP rk t Estimated shortage of SICU capacity on day t in scenario k Decision variable υ ξ 1, if plan ξ is accepted; 0, otherwise 4.2.1.1/ COLUMN-ORIENTED REFORMULATION OF SP-SAA

Algorithm 4. 5 :

 5 CGBH algorithm based on the recursive assignment (RA) heuristic (CGBH-RA) Let Ξ = ∅ be the list of accepted surgical plans; while true do Let Ξ * = ∅; Solve LMP/LMP with the CG procedure (Algorithm 4.2), then obtain the optimal solution Υ and the restricted column set Ξ * ; if Ξ * = ∅ then Break; else if ∃ξ ∈ Ξ * s.t. υ ξ = 1 then Among the surgical plans with υ ξ = 1 in Ξ * , the one with the minimum cost C ξ is added to Ξ; else The plan with the largest value of υ ξ in Ξ * is added to Ξ; end Update LMP/LMP by removing the patients, surgical blocks, and SICU beds that are scheduled or used by the last plan added to Ξ; end Let Υ be a vector of length | Ξ| with all the elements equal to 1 and Ξ = Ξ, then compute the final solution {X, Y} for MP/MP by (4.76);

 The small-sized test problem is a two-specialty patient admission control problem. The relative importance of the two specialtiesj = 1, 2 are [v 1 , v 2] = [1, 2].Patients of the two specialties are divided into two urgency groups u = 1, 2, and their maximum allowed waiting times are [W 11 , W 12 , W 21 , W 21] = [4, 2, 3, 2] weeks. New patient arrivals are assumed to follow Poisson distributions, with the parameters [n 11 , n12 , n21 , n22] = [1.0, 0.5, 0.25, 0.25]. Considering that the DP-based algorithms are unable to tackle infinite state spaces, we truncate the Poisson distributions by omitting the values whose probabilities are lower than 0.005; thus ñ11 < 5, ñ12 < 4, ñ21 < 3, and ñ22 < 3. The size of the state space of this problem can thereby be calculated as |S | = 5 4 ×4 2 ×3 3 ×3 2 = 2.43×10 6 . Surgery durations and LOSs follow lognormal distributions, with [d1 , d2] = [2, 4] hours and [l1 , l2] = [4, 2] days, and the standard deviations of surgery durations and the LOS for each specialty are assumed to be equal to their means. The unit costs of the small-sized test problem are determined as [c s , c w] = [50, 100], c o = 400 per hour and c r = 1000 per patient-day. The regular OR capacities for the two specialties are [LB 1 , LB 2] = [3, 2] hours, and the available downstream capacity is D = 7 bed-days per week.

Figure 5

 5 Figure 5.1: Sensitivity analysis for the unit waiting cost c w

Figure 5 . 4 :

 54 Figure 5.4: Sensitivity analysis for the OR capacity LB 1 of specialty 1

 . Patients from the same specialty (j = 1) are divided into three urgency groups, with u = 1, 2, 6, [W 11 , W 12 , W 16] = [12, 6, 2], [n 11 , n12 , n16] = [3, 5, 1], ñ11 9, ñ12 13 and ñ16 5. The size of the state space is as large as |S | = 10 12 × 14 6 × 6 2 ≈ 2.71 × 10 20 . Parameters of lognormal distributions for surgery durations and LOSs are [d1 , σ(d 1) = [4, 1.72] hours and [l1 , σ(l 1)] = [2, 2] days, respectively. Costs and available surgical resources are determined as [c s , c w , c o , c r] = [100, 150, 1500, 1500], LB 1 = 36 hours, and D = 18 bed-days.

 Figure 5.7: Experimental results for the CABG test problem with variations in λ and δ

Figure 5

 5 Figure 5.8: Comparison of evolutions of Θ when solving the CABG problem with different values of λ and δ

Figure 5 .

 5 Figure 5.10: Comparison of the resulting policies of the two models with |I| = 30 and D = 5

Figure 5 .

 5 Figure 5.13: Comparison of the resulting policies of the two models with |I| = 50 and D =

Table 1

 1

		Operations research	methodologies	Integer programming and CGBH	Stochastic programming,	robust optimization, heuristics	and integer L-shaped method	Stochastic programming	and SAA	Chance-constrained programming	and CGBH	Stochastic programming	and SAA	Integer linear programming	and heuristics	Robust optimization	Chance-constrained programming	and SAA	Robust optimization and	a decomposition solution approacch	Robust optimization and	column-and-constraint generation	Robust multi-criteria optimization	based on fuzzy sets	Integer programming	and LBBD	Mixed integer nonlinear	programming and LBBD	Stochastic programming, SAA, and	exact hill-climbing algorithm
	.1: Summary of relevant research on advance surgery scheduling	Reference Patient groups Policy Strategy Uncertainties Resources Objective function	Fei et al. (2009a) Elective Dedicated Open scheduling -ORs OR overtime and undertime cost	Denton et al. (2010) Elective Dedicated Open scheduling Surgery durations ORs OR opening and overtime cost	Min and Yih (2010b) Elective and emergency Flexible Block scheduling Surgery durations, LOSs in SICU, and emergency demand ORs and SICU Scheduling cost, waiting cost, and OR overtime cost	Wang et al. (2014) Elective and emergency Flexible Open scheduling Surgery durations and emergency demand ORs OR opening cost and OR overtime cost	Jebali and Diabat (2015) Elective Dedicated Open scheduling Surgery durations and LOSs in SICU and ward ORs, SICU and wards Scheduling cost, waiting cost, OR overtime and undertime cost, and SICU and ward capacity excess cost	Molina-Pariente et al. (2015b) Elective Dedicated Modified block scheduling -ORs and surgeons Service level (sum of clinical weights of performed surgeries)	Addis et al. (2016) Elective Dedicated Block scheduling Surgery durations and patient arrivals ORs Scheduling cost and waiting cost	Jebali and Diabat (2017) Elective and emergency Flexible Open scheduling Surgery durations, LOSs in SICU, and emergency demand ORs and SICU Scheduling cost, waiting cost, OR overtime and undertime cost, and SICU capacity excess cost	Marques and Captivo (2017) Elective Dedicated Block scheduling Surgery durations ORs and surgeons Waiting cost and surgeons' memory	Neyshabouri and Berg (2017) Elective Dedicated Block scheduling Surgery durations and LOSs ORs and SICU Scheduling cost, waiting cost, OR overtime cost, and SICU capacity excess cost	Rachuba and Werners (2017) Elective and emergency Flexible Block scheduling Surgery durations and emergency demand ORs Scheduling cost, waiting cost, and OR overtime cost	Roshanaei et al. (2017a) Elective Dedicated Block scheduling -ORs and surgical suites in multiple hospitals Scheduling cost, waiting cost, OR opening cost, and surgical suite opening cost	Roshanaei et al. (2019) Elective Dedicated Block scheduling -ORs and surgical suites in multiple hospitals Scheduling cost, waiting cost, OR opening cost, surgical suite opening cost, macro and micro imbalance	Zhang et al. (2019) Elective Dedicated Open scheduling Surgery durations ORs OR overtime cost

Table 2 .

 2 1: Summary of notations used in Chapter 2 (part 1)

		Notation	Definition
	Sets	I	Set of patients on the waiting list
		B	Set of surgical blocks in the MSS
		T	Set of days within a planning period (a week)
		J	Set of specialties sharing the OT
		Ω	Set of scenarios
		I ⊆ I	Set of patients to be scheduled in the present week
		B j ⊆ B	Set of surgical blocks that are preallocated to specialty j
		T ω ib ⊆ T	Set of days from t b to min(|T |, t b + l ω i -1)
		S	State space of the MDP model
		A	Action space of the MDP model
		A(s) ⊆ A Set of feasible actions for state s
	Indices, subscripts, i ∈ I	Patient index
	and superscripts	b ∈ B	Surgical block index
		t ∈ T	Day index
		j ∈ J	Specialty index
		ω ∈ Ω	Scenario index
		τ	Week index
	Vectors	s ∈ S	State of the MDP model with elements n juw
		s f (ω)	Probability density function of scenario ω
	Decision variables x ib	1, if surgery i is assigned to surgical block b; 0, otherwise
		y b	1, if surgical block b is open; 0, otherwise
		z ω it	1, if surgery i requires an SICU bed on day t in scenario ω; 0, otherwise
		o ω b	Non-negative integer variable capturing the overtime of surgical block b in scenario ω
		r ω t	Non-negative integer variable capturing the number of patients that are denied admission to SICU on day t in scenario ω
		m τ juw	Number of scheduled type-{ juw} patients in week τ
		m	

τ ∈ S State of the MDP model at decision epoch τ with elements n τ juw a ∈ A Action of the MDP model with elements m juw a τ ∈ A Action of the MDP model at decision epoch τ with elements m τ juw Functions and P(s, a, s) Probability of transition from state s to state s when action a is executed mappings C(s, a) Instant cost of state-action pair {s, a} π Policy of the MDP model π(s) Action that should be selected when the state of the MDP model is s π * Optimal policy V π (s) Value function of state s under policy π Q π (s, a) Q-value of state-action pair {s, a} under policy π juw Number of scheduled type-{ juw} patients in some week

Table 2 .

 2 2: Summary of notations used in Chapter 2 (part 2)

	Notation Definition
	Parameters u	Urgency group or urgency level
	w	Actual waiting time (in weeks)
	U j	Maximum urgency level of specialty-j patients
	W ju	Maximum allowed waiting time (in weeks) of patients from urgency group u of specialty j
	p i	Priority of patient i
	v j	Relative importance of specialty j
	u i	Urgency level of patient i
	w i	Actual waiting time of patient i (in weeks)
	W i	Maximum allowed waiting time (in weeks) of patient i
	c s	Unit cost of scheduling a surgery
	c w	Unit cost of postponing a surgery
	c b	Fixed cost of opening a surgical block
	c o	Unit overtime cost of surgical blocks
	c r	Unit penalty for exceeding the regular SICU capacity
	t b ∈ T	Day of surgical block b
	j i ∈ J	Specialty of patient i
	j b ∈ J	Specialty to which surgical block b is preallocated
	L b	Regular time length of surgical block b
	D t	Regular number of available SICU beds on day t
	e ib	1, if patient i can be assigned to block b; 0, otherwise
	di	Uncertain surgery duration of patient i
	li	Uncertain LOS of patient i
	d ω i	Surgery duration of patient i in scenario ω
	l ω i	LOS of patient i in scenario ω
	d j	Average surgery duration of specialty-j patients
	l j	Average LOS of specialty-j patients
	γ ∈ [0, 1) Discount factor of the MDP model
	n τ juw	Number of type-{ juw} patients waiting for surgery in week τ
	n juw	Number of type-{ juw} patients waiting for surgery in some week
	ñτ ju	Uncertain number of newly arrived type-{ ju, 0} patients in week τ
	n ju	Average number of newly arrived type-{ ju, 0} patients during a week
	updated at the end of each week by adding the newly arrived patients and removing the
	scheduled ones.	

Assumption 2.4. -Each postoperative patient may be required to stay in SICU for a number of consecutive days or be discharged directly. When the regular capacity of SICU is insufficient to accommodate all the patients in need of intensive care, some patients are transferred to the other recovery units with lower level of care, or extra recovery beds are added into SICU. Consequently, a penalty for exceeding the regular SICU capacity is incurred.

 2, we propose several CGBH algorithms to solve SP-SAA/SP -SAA efficiently. First, we reformulate SP-SAA/SP -SAA as a column-oriented model MP/MP , whose linear relaxation LMP/LMP can be efficiently solved by a CG procedure (Algorithm 4.2) with different CG strategies. Next, we propose several heuristic rules (RMP, PR, and RA) to compute feasible near-optimal solutions for MP/MP . The CGBH algorithms (Algorithm 4.3 to 4.5) are then formulated by combining these heuristic rules with the CG procedure. In the numerical experiments presented in Chapter 5, the computational performances of different CG strategies and heuristic rules are compared, and SP/SP is finally solved by the SAA-CGBH algorithm which is obtained by embedding the proposed CGBH algorithms into the SAA approach.

Table 5 .

 5 1: Definitions of variables used in Chapter 5

	Variable	Definition
	T	total CPU time (s)
	t	CPU time consumed in one week (ms)
	w ju	waiting time of patients at urgency level u of specialty j (week)
	o j	over-utilization of ORs in specialty j during one week (h)
	o = j∈J o j	over-utilization of ORs in all specialties during one week (h)
	r	shortage of SICU recovery beds during one week (bed-day)
	c p	patient-related cost of one week
	c h	hospital-related cost of one week
	c = c p + c h	total cost of one week
	b o	number of open surgical blocks during one week
	x	mean of variable x
	σ(x)	standard deviation of variable x
	|A|	total number of feasible actions for all the visited states
	|A * |	total number of actually evaluated actions
	D = t∈T D t	regular SICU capacity in total during one week (bed-day)
	LB j = b∈B j L b	regular OR capacity of specialty j during one week (h)

Table 5 .

 5 2: Experimental results of the small-sized patient admission control problemAlgorithms with superscript * evaluate the action set A * (s) determined by Algorithm 3.1, the others enumerate the entire action space A * (s) = A(s).

	ADP* on-line 2.521 1.092 1.432 0.495 1.096 0.294 1.000 0.000 0.998 2.166 1.186 3.026 2.371 5.384 3,820 5,802 12 0.901	ADP on-line 2.521 1.090 1.432 0.495 1.099 0.299 1.000 0.000 0.997 2.168 1.186 3.037 2.373 5.383 3,821 5,808 14 1.000	VPI-RTDP* on-line 2.277 0.925 1.316 0.465 1.452 0.604 1.046 0.210 0.957 2.101 1.161 2.973 2.336 5.226 3,704 5,701 1,450 0.216	VPI-RTDP on-line 2.277 0.925 1.316 0.465 1.452 0.604 1.046 0.210 0.957 2.101 1.161 2.973 2.336 5.226 3,704 5,701 5,437 1.000	VI* off-line 2.280 0.922 1.304 0.460 1.474 0.606 1.051 0.219 0.961 2.099 1.160 2.971 2.340 5.234 3,711 5,706 6,835 0.063	VI off-line 2.293 0.938 1.293 0.455 1.463 0.599 1.051 0.219 0.965 2.081 1.162 2.970 2.341 5.222 3,716 5,669 85,492 1.000	Algorithm Type w11 σ(w 11) w12 σ(w 12) w21 σ(w 21) w22 σ(w 22) ō1 σ(o 1) ō2 σ(o 2) r σ(r) c σ(c) T |A * | |A|

Table 5 .

 5 3: Experimental results of the CABG surgery admission control problem

	10 3 2.052 0.879 1.003 0.053 1.000 0.000 3.151 5.561 2	3.705 1 2.031 0.841 1.000 0.000 1.000 0.000 2.965 5.522 2.241 3.666 10662.381 13079.923 134.539 186.913	1.753 1.0 10 -3 2.035 0.857 1.001 0.011 1.000 0.000 3.195 5.697 2.258 3.775 11032.188 13271.551 95.347 293.532	1.577 10 3 3.206 1.571 1.585 0.832 1.000 0.000 2.295 4.122 1.952 3.063 12468.135 12605.458 78.136 165.882	1.299 1 4.150 1.881 2.089 0.840 1.000 0.000 2.140 4.147 1.844 3.164 15957.466 13294.614 79.743 219.785	0.002 0.5 10 -3 4.773 2.323 2.456 1.147 1.150 0.357 1.620 2.647 1.461 2.532 18184.687 12753.914 68.964 157.676	4.936 10 3 3.160 1.314 1.565 0.496 1.000 0.000 2.417 4.744 1.889 3.265 12381.536 12176.535 55.780 349.204	0.929 1 4.197 1.927 2.111 0.862 1.008 0.089 2.183 3.916 1.947 3.249 16415.939 12813.457 76.698 349.497	0.012 0.99 0.0 10 -3 4.387 2.048 2.203 0.942 1.030 0.171 2.028 3.565 1.877 2.996 17007.954 12138.284 62.762 152.343	0.00 --4.855 2.362 2.493 1.168 1.159 0.366 1.658 2.583 1.697 2.808 19008.242 12651.372 0.011 0.104 <0.001	γ λ δ w11 σ(w 11) w12 σ(w 12) w16 σ(w 16) ō σ(o) r σ(r) c σ(c) t σ(t) |A * | |A| (‰)

Table 5

 5

			.4: Master surgery schedule
	No. of OR	Monday	Tuesday Wednesday Thursday	Friday
	1	ENT	ENT	ENT	
	2			ENT	ENT	ENT
	3	OBGYN		OBGYN		OBGYN
	4	ORTHO	ORTHO		ORTHO	ORTHO
	5		ORTHO		NEURO
	6	GEN	GEN	GEN	GEN
	7		GEN	GEN	GEN	GEN
	8	OPHTH	OPHTH		OPHTH	OPHTH
	9	VASCULAR		CARDIAC		VASCULAR
	10	UROLOGY		ORTHO	

Table 5

 5

					.5: Detailed problem settings
	Specialty	j	d j	1	σ(d j) 1	l j	2	σ(l j) 2 v j u W ju pct.(%) 3
	ENT	1 1.23	0.38	0.10	0.10	1 1	20	21.34
	OBGYN	2 1.43	0.44	2.00	2.00	2 1	15	6.17
									3	6	3.09
	ORTHO	3 1.78	0.54	1.50	1.50	2 1	15	15.51
									3	6	7.75
	NEURO	4 2.67	1.65	2.00	2.00	5 1	8	5.04
	GEN	5 1.55	0.67	0.05	0.05	1 1	20	14.75
									2	15	7.37
	OPHTH	6 0.63	0.10	0.05	0.05	2 1	15	2.98
	VASCULAR 7 2.00	1.03	3.50	3.50	4 1	10	2.73
									2	5	4.10
									4	2	1.37
	CARDIAC	8 4.00	2.95	2.00	2.00	5 1	8	0.81
									2	3	1.22
									6	1	0.41
	UROLOGY 9 1.07	0.75	0.80	0.80	3 1	12	3.57
									2	6	1.79
	1 unit: hours; 2 unit: days. 3 pct.-percentage

Table 5

 5

		|I|-D-|K|		
	Opt.			
	Rlx. Gap	GUROBI-SP -SAA	
	CPU			
	Val.			
	Err. LMP Gap Col. CPU Val. Err. LMP Gap Col. CPU	All-Negative Best-Negative	CGBH-RMP	.6: Comparison of the three CG strategies
	Val.			
	Err. LMP Gap Col. CPU	First-Negative		

Table 5

 5

				CPU
			RA	Err. Gap Col.
				Val.
	.7: Comparison of the three heuristic rules	CGBH-All-Negative	RMP PR	Val. Err. Gap Col. CPU Val. Err. Gap Col. CPU
			LMP
				CPU
		GUROBI-SP -SAA	Rlx. Gap
				Opt.
			|I|-D-|K|	

Table 5 .

 5 8: Comparison of the conventional SAA approach and the SAA-CGBH algorithm while solving SP (M

	= 50000)
	= 10, |K |

Table 5 .

 5 9: Comparison of the conventional SAA approach and the SAA-CGBH algorithm while solving SP (M = 10, |K | = 50000)

	|I|-D-|K|
	Conventional SAA

Table 5 .

 5 11: Comparison of the solution quality of the two models: excess of regular OR and SICU capacity, costs and CPU time

 .245 0.000 0.00026,238 4,973 172,840 27,726 199,078 31,764 12.500 2.398 --are clearly shown in these figures, meanwhile the increases of hospital-related costs are relatively insignificant.

	SP	50-20 MDP+SP	SP	
	4.319 1	65,000 14,936 102,444 23,327 14.100 1.670 9.902 5.478 0.000 0.001 37,444 9,839	4.256 1.351 0.010 0.016 26,076 4,608 177,910 30,531 203,986 34,177 12.450 2.037	1.883
		7,600	--	9,240
		41,462 49,062	--115,738	51,659 60,899

ACKNOWLEDGEMENTS

Special thanks to the China Scholarship Council (CSC) for the financial support provided during my PhD study (Grant Number: 201604490106). The CSC-UT/INSA program has given many Chinese students the opportunities to pursue their doctoral degrees in France.

Initialize s 1 = s τ , z 0 = z τ-1 , P 0 = P τ-1 , and Θ 0 = Θ

Compute z n by (3.41);

Compute P n and Θ n by (3.53);

Let s 1 = s τ , z 0 = z n , P 0 = P n , and Θ 0 = Θ n ;

//trial ends here end Determine A * (s τ) by Algorithm 3.1; //This step can be skipped. foreach a ∈ A(s τ) do

Output: π(s τ), z τ , P τ , and Θ τ (Algorithm 3.3), and VPI-RTDP (Algorithm 3.4). These algorithms are exact solution approaches, but they can only be employed with the assumption of truncated Poisson distribution for the patient arrivals, and cannot solve realistically sized MDP models with large state space and outcome space. To overcome these drawbacks, we propose a novel ADP algorithm based on RLS-TD(λ) in Section 3.3. The proposed ADP algorithm (Algorithm 3.5) adopts a linear function to approximate the optimal value function, thus the computation of the huge-dimensional value function V π * (S) = {V π * (s)|∀s ∈ S } is replaced by updating a low-dimensional parameter vector Θ = [θ 1 , θ 2 , ..., θ H] T . In addition, Algorithm 3.5 does not evaluate the entire outcome space for any state-action pair, hence the tries every possible modification of its assignment while keeping the other patients' assignments unchanged. If a new assignment does not violate any constraint and leads to a reduction in the objective value, X is updated accordingly. Then, for each pair of patients i, i ∈ I or i, i ∈ I, PE tries to exchange their assignments and does no modify the other elements in X. An exchange is accepted if it does not cause any violation of constraint and reduces the objective value. Each time X is modified, Y and the objective value are both updated accordingly. When LO and PE are finished, the current {X, Y} is the final solution for MP/MP .

4.2.3.3/ RECURSIVE ASSIGNMENT (RA)

The third heuristic rule that we employ in this thesis, named recursive assignment (RA), is derived from the CGBH algorithm proposed by [START_REF] Fei | Solving surgical cases assignment problem by a branch-and-price approach[END_REF], in which a surgery scheduling problem is solved without consideration of uncertainty, downstream facility, or the opening of surgical blocks. The RA heuristic recursively calls the CG procedure presented in Algorithm 4.2 to solve LMP/LMP . At the end of each iteration, only the best surgical plan (i.e., the one with υ ξ = 1 and the lowest cost C ξ) in Ξ * is accepted, and

1.039 1.049 1.000 1.039 1.000 1.063 1.012 1.000 1.308 1.000 1.000 1.000 1.500 1.000 1.000 1.067 1.000