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French summary

Les protéines et autres macromolécules jouent un rôle central dans une multitude de processus biologiques chez tous les êtres vivants. Leurs fonctions sont très diverses ;

elles peuvent par exemple agir dans la défense immunitaire, jouer des rôles de messagers ou contribuer à la structuration de la cellule, ou orchestrer le transport et le stockage d'autres macromolécules ou leur dégradation. Les protéines agissent rarement seules ; de ce fait, l'étude de leurs interactions est primordiale pour mieux comprendre les mécanismes biologiques de la cellule. La structure tridimensionnelle de deux protéines en interaction peut nous donner une information précieuse sur leur façon de communiquer. Comme la détermination expérimentale de ces structures n'est pas toujours possible ou facile à mettre en oeuvre, leur prédiction via des méthodes purement numériques/bioinformatiques, telles que l'amarrage moléculaire (plus connu sous le nom anglais de "free docking"), peut fournir une alternative utile dans l'étude de comment deux protéines (ou plus) interagissent.

Dans le free docking, nous générons de nombreux modèles d'interface possibles (étape d'échantillonnage) puis nous leur attribuons des scores afin de choisir les plus vraisemblables. Les critères de tri peuvent être basés sur des lois physiques, sur des règles statistiques ou sur l'information de (co-)conservation de certaines caractéristiques à l'interface. En effet, les protéines et leurs surfaces d'interaction sont souvent conservés dans différentes espèces car elles doivent maintenir leur(s) fonction(s) pour assurer la viabilité de la cellule. Les modes d'interaction (structures 3D du complexe protéique) sont également conservés et les surfaces moléculaires impliquées dans l'interaction présentent des traces de coévolution, c'est-à-dire de mutations corrélées permettant de maintenir le mode d'interaction. Cette information de conservation ou de coévolution peut donc s'avérer être très utile dans le choix de la (ou des) meilleure(s) prédiction(s).
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Mon projet de thèse s'articule autour du développement et de l'amélioration de ces outils de prédiction, en particulier grâce à l'exploitation de l'information évolutive, une des thématiques phares de l'équipe. L'état de l'art en matière de méthodes prédictives et d'analyse s'appuyant sur l'information de conservation et de coévolution a été récemment résumé dans un article dont je suis co-auteur [START_REF] Andreani | Structural prediction of protein interactions and docking using conservation and coevolution[END_REF].

Dans le cadre de mon projet de thèse, j'ai participé à des développements majeurs de notre serveur de docking, InterEvDock2 (https://bioserv.rpbs.univ-paris-diderot.fr/services/InterEvDock2/). A partir des protéines fournies par l'utilisateur, InterEvDock2 propose 10 modèles d'interface les plus plausibles, sélectionnés en combinant des scores basés sur la physique, des potentiels statistiques et l'information co-évolutive. InterEv-Dock2 accepte aussi en entrée des structures oligomériques ou des séquences protéiques, pour lesquelles il peut automatiquement modéliser la structure monomère pour le docking. L'utilisateur peut également intégrer des connaissances a priori sur l'interaction sous la forme de contraintes sur les résidus ou paires de résidus afin d'éliminer toute solution non-pertinente. Le pipeline complet peut être exécuté de façon automatique ou plus contrôlée en utilisant des points d'arrêt stratégiques et/ou par ajustement de paramètres. J'ai validé les performances d'InterEvDock2 sur un large ensemble de 812 cas de docking hétérodimériques, pour lesquels les structures des complexes sont connues expérimentalement et les structures non-liées sont modélisées par homologie. InterEvDock2 a été capable de trouver une structure de complexe correcte dans 32 % de ces cas, ce qui représente une très bonne performance pour un pipeline automatique dans le domaine difficile de la prédiction structurale des complexes protéiques. La haute performance de ce serveur en matière de prédiction des résidus d'interface est très intéressante pour les biologistes souhaitant valider expérimentalement le mode d'assemblage prédit par des mutations, avec une probabilité de 75 % d'avoir au moins une prédiction correcte sur deux résidus prédits (un sur chaque partenaire). Ce travail a fait l'objet d'une publication dans l'édition serveur de Nucleic Acids Research [START_REF] Quignot | InterEvDock2: an expanded server for protein docking using evolutionary and biological information from homology models and multimeric inputs[END_REF].

XIV J'ai ensuite recherché un moyen plus explicite d'intégrer dans les fonctions de score l'information évolutive contenue dans les alignements de séquences. J'ai rendu cette information compatible avec l'utilisation de scores atomiques par la modélisation tridimensionnelle des interfaces homologues. En combinant cette approche avec le pipeline d'InterEvDock2, j'ai pu améliorer la performance prédictive de 32 à 40% sur notre large ensemble de cas tests. Ce travail a fait l'objet d'un pré-print dans BioRxiv et HAL [START_REF] Quignot | Atomic-level evolutionary information improves protein-protein interface scoring[END_REF]) et est en cours de publication. Les données et scripts ont été mis à disposition de la communauté (http://biodev.cea.fr/interevol/interevdata/).

De plus, durant ma thèse, j'ai pu participer à 14 défis de docking via le concours international de prédiction, CAPRI (Critical Assessment of Predicted Interactions), dont 4 cibles en Novembre 2020 impliquant des interactions entre les protéines humaines et celles du coronavirus SARS-Cov-2. Dans CAPRI, les équipes développant des méthodes de docking peuvent les tester à l'aveugle en prédisant les structures d'interactions protéine-protéine nouvellement résolues et pas encore publiées au moment de l'épreuve.

La résolution de ces cibles très diverses et souvent difficiles, s'est faite par un important travail d'équipe. Les stratégies qui ont permis à notre équipe d'être classée première sur la période 2016-2019 ont été résumées dans une publication récente dans Proteins dont je suis co-auteur [START_REF] Nadaradjane | Docking Proteins and Peptides Under Evolutionary Constraints in CAPRI rounds 38-45[END_REF].

Le travail effectué durant ma thèse vise à améliorer la prédiction structurale des interactions protéine-protéine dans leur ensemble afin d'aider les biologistes à étudier leurs protéines ou leurs voies biologiques d'intérêt. Dans un avenir proche, nous aimerions valoriser le travail sur l'intégration atomique de l'information évolutive et la forte augmentation associée des performances prédictives à travers une troisième version de notre serveur InterEvDock. Le travail de ma thèse constitue une étape vers l'objectif final de la prédiction des interactomes. L'intérêt croissant pour les techniques d'apprentissage automatique en biologie structurale et leur efficacité dans la prédiction de la structure des protéines laissent penser que des améliorations majeures pourraient

CHAPTER 1 Introduction

In this chapter, I will introduce basic concepts related to my PhD project. That is, I will give a brief introduction on proteins and their interactions, protein structure and ways to predict these structures using computational structural biology. I will put a particular emphasis on the use of evolutionary information in this task. This chapter is partly based on a review I coauthored published in May 2020, which focuses on the integration of evolutionary information in protein structure prediction in a user-orientated perspective [START_REF] Andreani | Structural prediction of protein interactions and docking using conservation and coevolution[END_REF]. Parts of this chapter that are adapted from the review material include most protein and protein interaction evolution aspects in sections 1.2.1 and 1.2.2 as well as most evolution-guided prediction explanations and examples in sections 1. 3.1.1, 1.3.2 and 1.3.3 Proteins and other macromolecules are central players in the myriad of cellular functions in all living organisms. Their functions are very diverse; they carry out important roles in the immune system, act as messengers or important structural components in the cell, or carry out transport and storage of other macromolecules or their degradation. Proteins mainly carry out their functions in networks, making the study of their interactions fundamentally important to probe and understand the mechanisms behind all the biological processes in the cell. The structure of interacting proteins can give us significant information on how they communicate and coordinate with each other. As the experimental determination of 3D complex structures is not always possible and can be too labour intensive, time consuming and/or costly, computational predictions of these interfaces with docking tools can provide a very helpful alternative or a complementary viewpoint to study how two (or more) proteins interact.

Protein complex structural prediction is a difficult problem to solve in most cases especially due to the inherent flexibility of proteins and the limited amount of experimental data to learn from. Protein-protein interactions (PPI) and the way they bind together are often conserved in many different species owing to functional constraints and share a common evolutionary history that may provide us with one or several structures (templates) to copy from, if these were previously resolved experimentally. Template-based docking is a computational method that makes use of this information to come up with reliable predictions. Unfortunately, as mentioned above, templates do not always exist and when they do, they are sometimes hard to identify and align with the interface we want to predict. An alternative computational method is free docking, which first involves a systematic search of the best complex structures. This usually generates a very large amount of possible solutions that have to be ranked and filtered efficiently according to one or several criteria, for example, the rules of physics, statistics, conservation information of individual protein interface features or co-evolution of these features.

The aim of my PhD project was to develop and improve docking tools, particularly by making use of co-evolution information, as it is one of the main focuses of our lab. I participated in the recent update of our free and automated molecular docking server InterEvDock2 to a more complete and user-friendly version and validated its performance on a large set of test cases (Chapter 2). More recently, I have been working on improving the ranking step in docking by exploring a better and richer integration of co-evolution information (Chapter 3). Throughout my thesis, I have been able to participate and challenge myself in several blind testing rounds organised by the CAPRI community where labs such as ours can test the performance of their PPI prediction tools in real-case blind-test scenarios (Chapter 4).

Hereafter will follow a brief introduction to the concepts that I will use throughout this manuscript revolving around the importance of proteins and their interactions (section 1.1), their evolution and conservation within various species (section 1.2) and the benefit of knowing their structure and how it can be experimentally or computationally acquired (section 1.3).

In a final section, I will outline the main points of my manuscript (section 1.4).

PROTEIN STRUCTURE AND PROTEIN INTERACTIONS

This section is dedicated to a brief introduction on protein composition and structure, the importance of studying their interactions and how they can be studied, ending with a brief overview of protein interaction networks.

Protein composition

Proteins are polypeptides made up of one or several chains of covalently linked amino acids (residues). Twenty different canonical amino acid types exist, unique by the composition of their side-chains, which also confers them specific physical chemical properties. Many possible classifications of amino acids exist, e.g. they can be grouped into four categories: apolar Amino acids covalently link together with peptide bonds to form a chain of residues (Primary structure). This chain can fold into organised secondary structures such as alpha helices, beta-sheets or turns and loops through hydrogen bonds (H-bonds) between their backbone atoms. A more compact and stable structure arises when interactions between the side-chains of residues occur (Tertiary structure). Finally, proteins can form a quaternary structure when several chains are involved and interact together. This figure was adapted from Google Images.

Hierarchical levels in protein structure

The linear sequence of amino acids is called the protein's primary sequence (Figure 1-1)

and is always listed from the N-terminus to the C-terminus (N-ter and C-ter; named after the amino and carboxyl groups of the first and last translated amino acid of the chain). Proteins fold into 3-dimensional (3D) objects while they are translated and the resulting shape is very much dependant on its amino acid composition. There are several levels to protein folding. Proteins can fold into regular secondary structures (Figure 1-1), namely -helices, -sheets or turns/loops in the 3-state classification system [START_REF] Pauling | The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain[END_REF], guided by hydrogen bonding (H-bonds) between backbone amino and carbonyl functional groups of two different residues. The 3-state classification is a good enough approximation in visual structural exploration but a more sophisticated and detailed classification is often required in the computational world for more accurate results. DSSP [START_REF] Kabsch | Dictionary of protein secondary structure: pattern recognition of hydrogenbonded and geometrical features[END_REF]) is an 8-state classification (three types of -helices, two types of -sheets and three types of turns/loops) and is considered a gold-standard in structural biology, and is used in programmes such as the hh-suite package [START_REF] Steinegger | HH-suite3 for fast remote homology detection and deep protein annotation[END_REF] where DSSP assignments and/or predictions are used to better match protein sequence alignments or in SOAP-Loop to identify loops from protein structures [START_REF] Dong | Optimized atomic statistical potentials: assessment of protein interfaces and loops[END_REF].

More stable and compact tertiary structures occur when residue side-chains get involved with each other through H-bonds, salt bridges, disulphide bonds, hydrophobic effects and/or van der Waals interactions (Figure 1-1). Proteins can be composed of several wellpacked globular domains linked by loosely structured or completely unstructured regions, called intrinsically disordered regions (IDR). In the cytosol, hydrophobic and van der Waals effects will tend to drive hydrophobic (apolar) residues towards the centre of the protein whereas hydrophilic (polar) or charged residues tend to be found on the surface where they can interact with the solvent. Unlike with secondary structures, domains of tertiary structure are more difficult to classify due to the large number of combinations that exist but can be regrouped by general similarity of their secondary structure arrangements and/or following evolutionary relationships. SCOP (Structural Classification Of Proteins) [START_REF] Andreeva | The SCOP database in 2020: expanded classification of representative family and superfamily domains of known protein structures[END_REF]) and CATH (Class, Architecture, Topology and Homologous superfamily) [START_REF] Sillitoe | CATH: expanding the horizons of structure-based functional annotations for genome sequences[END_REF] and PFAM (Protein FAMilies) [START_REF] El-Gebali | The Pfam protein families database in 2019[END_REF]) are all examples of databases which perform domain classification and which will be described in more detail later on (section 1.1.3). The division of protein structures into domains is useful for an easier and more accurate structural and functional characterisation of proteins. The automatic identification of these domains remains a field of research in itself. Some algorithms predict domains from protein structure directly using "top-down" and/or "bottom-up" strategies [START_REF] Guo | Improving the performance of DomainParser for structural domain partition using neural network[END_REF][START_REF] Zhou | DDOMAIN: Dividing structures into domains using a normalized domaindomain interaction profile[END_REF]), of which SWORD provides an interesting multi-partitioning approach [START_REF] Postic | An ambiguity principle for assigning protein structural domains[END_REF]. Other methods only use features deduced from the primary sequences, such as sequence profiles or secondary structure and accessibility predictions [START_REF] Hong | ConDo: protein domain boundary prediction using coevolutionary information[END_REF][START_REF] Shi | DNN-Dom: predicting protein domain boundary from sequence alone by deep neural network[END_REF]. Within these methods and in light of recent advances in the contact prediction field, FUpred uses an innovative strategy identifying domains based on contact map predictions [START_REF] Zheng | FUpred: detecting protein domains through deep-learning-based contact map prediction[END_REF].

The last structural level (quaternary structure) is formed when several chains of residues interact to form a multi-subunit structure, also known as protein assembly or protein complex. Depending on what proteins are implicated and how they cooperate in the cell, protein complexes can be given several labels. When two or more identical proteins interact, they form a homo-oligomeric complex; otherwise, they are classified as hetero-oligomers. According to interaction kinetics, complexes with a very short half-life (seconds or less) are labelled as transient whereas complexes that last minutes to hours are said to be permanent.

By their short-lasting nature, transient complexes are harder to identify with certain experimental detection methods (section 1.1.5, page 16) but they are nevertheless very important in cells whenever a high turn-over is required (e.g. they might carry out post-translational modifications or participate in numerous cascades of reactions). Another existing terminology relies on the structural integrity of the subunits composing the complex: complexes are said to be obligate if the individual components of the complex cannot exist freely and functional in solution, and non-obligate otherwise.

Despite this rigid description of protein structure, it is important to note that proteins, just like other macromolecules, remain dynamic objects within the cell. Small changes constantly occur such as bond vibration and side-chain rotation and large conformational changes might come about when two proteins interact [START_REF] Marsh | Probing the diverse landscape of protein flexibility and binding[END_REF]) (see section 1.1.5.1, page 16). [START_REF] Tripathi | Molecular Docking: From Lock and Key to Combination Lock[END_REF] 

Acquiring protein structures

Structure and function are often correlated features in proteins. In most cases, proteins have to adopt their final structure (or lack thereof) in order to be able to carry out their cellular functions properly, often implying interactions with other proteins. For this reason, studying the structure of a protein or protein complex might give important insight as to what its function might be or might help elucidate why it does not perform as it should in certain pathologies, e.g. associated to mutations in the amino acid sequence. It might also help in the design of new drugs by discovering potential targets, their binding sites and how best to improve binding affinity.

In the following two subsections, I will detail three main experimental methods that can be used to decipher high-resolution structures of protein and protein complexes, namely Xray crystallography, protein NMR (Nuclear Magnetic Resonance) and cryo-EM (cryogenic Electron Microscopy). I will also present methods that provide complementary structural information, especially for protein complexes, such as small-angle X-ray scattering (SAXS), cross-link -mass spectrometry (XL-MS) or deep mutational scanning (DMS). These approaches do not directly provide the structure of a protein or protein complex but provide enough information to model the protein structure when coupled with in silico techniques.

High-resolution techniques

X-ray crystallography is currently the most widely used technique, accounting for 90% of all structures in the Protein Data Bank (PDB (wwPDBconsortium 2019), Figure 1-2), whereas protein NMR and cryo-EM only occupy 7% and 2% respectively out of ~152,000 structures in total. In X-ray crystallography, data is collected by measuring the diffraction of an X-ray beam, with a wavelength close to interatomic distances, on an ordered and regular sample.

This results in a unique diffraction pattern from which we can deduce an electron density map and, finally, reconstruct the 3D structure and atomic detail of the sample by matching sample composition with map density. This challenging step can be simplified by basing the attribution on another similar structure when available (molecular replacement) -several workarounds exist when this is not the case. The quality of the end result is also highly dependent on the sample quality. Thus, another challenge lies within the preparation of the sample, which has to be properly crystallised into a regular and repetitive arrangement in order to create a clean diffraction pattern. Each protein has its own ideal and initially unknown crystallisation conditions that have to be optimised with a combinatorial approach.

Nonetheless, the workload can nowadays be alleviated with the assistance of automated robotic systems. A non-negligible disadvantage in crystal structures is the risk of getting non-biological complexes formed between proteins that are, in reality, crystallisation artefacts. Although X-ray crystallography provides high-resolution structures, it also has the downside of presenting an out-of-context and rigid view of protein structure. In contrast, solution NMR allows proteins to stay in their physiological environment and can capture their dynamics. As in MRI (Magnetic resonance imaging), molecules are subjected to a powerful magnetic field in the face of which atoms behave differently according to their type and their neighbourhood. In protein NMR, this information can be used to deduce interactions and distances between atoms, which in turn can be used as constraints to fold 3D models that best fit the data. Protein NMR is an ideal contender for proteins that are difficult to crystallise such as intrinsically disordered proteins (IDP). Even though recent advances are pushing the upper molecular mass boundary, protein NMR remains best suited to relatively small proteins [START_REF] Jiang | NMR Studies of Large Proteins[END_REF]. NMR can also be used to scan the interaction surface of a protein through the differential analysis of the chemical shifts between its bound and unbound states.

Cryo-EM has lately experienced a "resolution revolution" (Shoemaker and Ando 2018) and the yearly contribution of cryo-EM-resolved structures in the PDB has been increasing exponentially these last few years (Figure 1-2). This phenomenal jump in precision was possible thanks to recent technological advances (i.e. direct-electron detectors for less blurry images for instance) but also thanks to more powerful reconstruction algorithms (e.g. single-particle analysis with a Bayesian approach for parameter determination) [START_REF] Bai | How cryo-EM is revolutionizing structural biology[END_REF][START_REF] Nakane | Database resources of the National Center for Biotechnology 161 Information[END_REF][START_REF] Yip | Lessons from (co-)evolution in the docking of proteins and peptides for CAPRI Rounds 28-35[END_REF]. In fact, cryo-EM recently managed to overtake the number of NMR depositions when looking at contributions on a yearly basis, a fact that is hidden when studying cumulative contributions. Cryo-EM is a type of transmission electron microscopy where the sample is frozen in solution and shone through by a beam of electrons. As for when a torch shines over an object, the proteins in the sample cast out a vast array of 2-dimentional (2D) "shadows" corresponding to a number of different orientations and from which algorithms can then deduce the 3D shape of the protein. Cryo-EM is especially popular for large and potentially more disordered molecular assemblies and is gradually closing the gap with X-ray crystallography in terms of structural resolution. For example, the best-resolved structure in the PDB using cryo-EM at the time of this manuscript is the human apoferritin at 1.15 Å resolution deposited in August 2020 (7A6A) [START_REF] Yip | Lessons from (co-)evolution in the docking of proteins and peptides for CAPRI Rounds 28-35[END_REF]. Cryo-EM is also less sensitive to sample purity and does not require as large an amount of proteins as the two traditional methods.

Each of these techniques have their own advantages and disadvantages. X-ray crystallography is the most commonly used and outputs structures with the best resolution but presents a very rigid view of protein structure. Solution NMR resolves proteins in their physiological environment but is often limited in protein size. Cryo-EM is getting increasing attention in the field thanks to recent advances in experimental and post-processing techniques.

It enables the structural resolution of very large complexes with resolutions that are starting to compete with X-ray crystallography.

1.1.3.2 Complementary "low-resolution" techniques SAXS provides a dynamic and low-resolution view of protein or protein complex size and shape and is compatible with a broad range of experimental conditions. After projecting an X-ray beam onto a sample, analysis of the resulting scattering pattern can help deduce the general shape of the macromolecules within it. In addition, combined with computational approaches, SAXS can provide structural models of protein-protein complexes at large scale [START_REF] Xia | Accounting for observed small angle X-ray scattering profile in the proteinprotein docking server ClusPro[END_REF][START_REF] Jimenez-Garcia | Structural Characterization of Protein-Protein Interactions with pyDockSAXS[END_REF].

In XL-MS, crosslinking reagents of constant size covalently bridge protein partners together making them more stable and thus easier to isolate and characterise. This approach can be performed in vivo as well in vitro and can be particularly interesting for short-lasting transient or weakly interacting protein complexes. Mass spectrometry analysis of the cross-linked peptides helps to identify the location of cross-linking sites on the proteins and as such, also the location of protein regions that are in close spacial proximity. As for SAXS, XL-MS data can be combined with computational tools to reconstruct the possible 3D structure of the protein complex [START_REF] Orban-Nemeth | Structural prediction of protein models using distance restraints derived from cross-linking mass spectrometry data[END_REF].

Traditionally, protein interfaces are validated using one or several mutants, which are expensive to produce. With a deep mutational scanning (DMS) approach, mutagenesis can be performed more systematically. DMS is a recent method in which high-throughput assays linking genotype to a measurable phenotypic property are coupled to next-generation sequencing in order to systematically quantify the effect of large numbers of mutations on biological systems [START_REF] Fowler | Deep mutational scanning: a new style of protein science[END_REF]. Even though challenging to decipher, DMS data can give valuable insights into protein structure and function. For example, important regions in proteins such as the hydrophobic core or the interface are expected to be more sensitive to mutations. In addition, co-varying positions might reflect spatial proximity in the 3D structure of a protein or protein complex and can be used to guide modelling approaches (Rollins, Brock et al. 2019, Schmiedel and[START_REF] Schmiedel | Determining protein structures using deep mutagenesis[END_REF].

These "low resolution" techniques provide important information for modelling the structures of proteins and protein complexes. I will later discuss in section 1.3.3 how this type of information can be used as constraints e.g. in molecular docking.

Protein databases

Large-scale protein analysis is becoming increasingly popular thanks to new technologies and advances in protein science (e.g. whole genome projects, novel sequencing technologies, high-throughput assays). As such, impressive amounts of data are regularly generated, revolving around protein sequences, protein structures and their associated function. Various types of databases play an important role in centralising comprehensive resources of protein information. In this section, I will describe the two databases most commonly used for structural bioinformatics, UniProt and the PDB, which provide comprehensive data for protein sequences and structures respectively. I will also detail other databases, such as the NCBI Protein database for protein sequences and SCOP, CATH and PFAM for structures and their classification. Both UniProt and NCBI provide useful tools for protein manipulation and visualisation such as a BLAST homolog sequence search engines.

Structure-related databases

Protein structures are stored in databases for common use in the scientific community. Their classification can be especially useful for deducing protein function based on related experimental protein annotations. One of the most used international resources in structural biology is the Protein Data Bank (PDB, already discussed in section 1.1.3), which will celebrate its 50 th anniversary in 2021 and is managed by the Worldwide PDB (wwPDB) consortium (wwPDBconsortium 2019). The PDB stores not only 3D atomic protein coordinates but also those of nucleic acids and complexes with metals and small molecules as well as associated experimental data and metadata information(wwPDBconsortium 2019). As of September 2020, there are over 160,000 structures released in the PDB.

The Structural Classification of Proteins (SCOP) [START_REF] Andreeva | The SCOP database in 2020: expanded classification of representative family and superfamily domains of known protein structures[END_REF] and CATH [START_REF] Sillitoe | CATH: expanding the horizons of structure-based functional annotations for genome sequences[END_REF]) databases both provide a useful and reliable classification of proteins based on their structure and evolutionary relationships. Both are automatically as well as manually updated in order to minimise classification error. SCOP classification is hierarchical and based on protein domains. Domains are organised into classes, then folds, according to their tertiary structure similarities, then superfamilies and families according to their evolutionary history. One of the purposes of SCOP is to provide useful structural information to biologists that may be extrapolated to their own proteins of interest. Its classification is also widely used across computational biology tools and databases. In CATH, protein domains are clustered into Homologous superfamilies by evolutionary similarity and are given a Class, Architecture and Topology label according to their structural similarity. This is a non-exhaustive presentation of existing protein-related databases. A large amount of other protein-related databases exist [START_REF] Xu | Protein databases on the internet[END_REF], focusing on other aspects of proteins such as protein-protein interactions (detailed in section 1.1.6), protein structure modelling, specific diseases or organisms, etc.

Protein interactions and experimental detection methods

When studying a protein, it is often important to find out its interacting partners in the cell.

The term protein-protein interaction (PPI) can have several interpretations, from a loose definition of protein association without necessary physical contact (functional association) to a more stringent definition, where proteins have to be in direct physical contact. I will use the latter throughout this manuscript, as direct physical contact is especially important within our structural modelling goal. In this section, I will start with a brief overview of protein interface characteristics and then follow on with a description of a few main experimental methods to detect and study protein interactions.

Characteristics of protein interfaces

Biochemical analysis as well as the study of structural data from the PDB database provide essential information to identify the specific characteristics that define a protein-protein interface. Protein interfaces cover on average 1,200 to 5,000 Ų of the protein surface and contain on average 230 atomic contacts (about 61 residue-residue contacts) with an average of 2 salt-bridges, 9 hydrogen bonds involving side-chain atoms, and 35 apolar contacts according to a study on over 1,000 different interface structures [START_REF] Andreani | Versatility and invariance in the evolution of homologous heteromeric interfaces[END_REF].

Similar studies have also shown that interface stability can be attributed to only a few key interface residues at the interface, called hotspots, with a clear bias in composition towards tryptophan (21%) and arginine (13.3%) [START_REF] Morrow | Computational prediction of protein hot spot residues[END_REF]. Interfaces can be divided into zones according to residue burial [START_REF] Levy | A simple definition of structural regions in proteins and its use in analyzing interface evolution[END_REF] or contact count variation upon binding [START_REF] Eames | Structural mapping of protein interactions reveals differences in evolutionary pressures correlated to mRNA level and protein abundance[END_REF]. These zones also tend to have preferences in terms of composition, with mostly apolar residues in the core of the interface, providing the "stickiness" of the PPI, and polar and charged residues mostly on the rim, generally involved in interaction specificity.

Interface composition, together with interface size, is an important factor in protein binding affinity. Protein binding affinities vary a lot from one complex to another. They are usually expressed by the dissociation constant KD (often in the nM to mM range with lower values reflecting a higher affinity) or by the Gibbs free energy dissociation (ΔG). The prediction of these properties is an ongoing challenge in the bioinformatics world [START_REF] Geng | Finding the ΔΔG spot: Are predictors of binding affinity changes upon mutations in protein-protein interactions ready for it?[END_REF], partly due to complex phenomena such as structural rearrangements upon binding.

Not all proteins abide by a simple "lock and key" binding system, where the unbound states of both proteins are already complementary in shape and chemical composition. A large number of proteins bind with small to large conformational changes, following what is called the induced fit or conformational selection model [START_REF] Csermely | Induced fit, conformational selection and independent dynamic segments: an extended view of binding events[END_REF]). These are often terms that come up when studying enzyme-inhibitor complexes, which tend to coevolve towards an interface with a high degree of surface complementarity [START_REF] Tripathi | Molecular Docking: From Lock and Key to Combination Lock[END_REF]. As can be deduced from the name, in the induced fit model, the ligand protein is thought to induce a conformational change in the receptor protein upon binding.

In these processes, specific anchor residues at the interface might play an important role in stabilising the intermediate bound state in a similar way to boat anchors. An alternate and more popular model is the conformational selection model, in which the receptor is assumed to already exist as several conformations on its own and the ligand only tilts the balance towards the conformation that is best suited to its binding. Indeed, NMR studies show that conformations similar to the bound state already exist in the absence of the ligand.

Because of the crowded cellular context, true functional PPIs are in constant competition with non-relevant surfaces on other macromolecules. This leads to the question of specificity in PPIs. The interactions that govern interfaces are mostly carried out by direct interactions between residues of both partners but might also be bridged through water molecules (about 30% of an interface's contacts) [START_REF] Rodier | Hydration of protein-protein interfaces[END_REF]. Specific interfaces tend to be "dry" interfaces, where these water molecules form a ring around the interface core.

Non-specific interactions, including those that arise from crystal packing, tend to have water molecules that permeate their interfaces and are thus called "wet" interfaces. And although most interfaces are driven by hotspot residues, a study in the context of protein docking concluded that the whole interface should be taken into account in order to better distinguish true interfaces rather than just the core elements [START_REF] Nadalin | Protein-protein interaction specificity is captured by contact preferences and interface composition[END_REF].

Experimental detection of protein interfaces

Several experimental techniques exist to detect and study PPIs, some are classified as highthroughput as they help identify a large amount of potential protein partners at once and, thus, are often used as a first step in protein-protein interaction analysis. Commonly used approaches include yeast-two-hybrid (Y2H) and affinity purification/capture -mass spectrometry (AP-MS or AC-MS) screening. On the other hand, low-throughput methods enable the analysis of a protein or a complex of interest directly and as such are considered more reliable. Among these methods, Y2H, co-immunoprecipitation (co-IP) and isothermal titration calorimetry (ITC) are widely used. In this section, I will provide a brief description the principle behind each of these techniques.

Y2H was originally introduced to detect binary interactions in yeast. It makes use of the activation of downstream reporter genes, such as Gal4 in yeast, through binding of a transcription factor onto an upstream activating sequence in living yeast cells (Figure 1-3). This transcription factor is split into two separate parts, one binds the DNA (binding domain, BD)

and the other activates the transcription (activation domain, AD). The transcription factor is fully functional only when both parts are close together. In Y2H, proteins are either called "bait" if fused with BD or "prey" if fused with AD. The idea is that when bait and prey physically interact, AD and BD are brought together leading to the transcription of the chosen reporter gene. The method has been adapted to an automated high-throughput screening strategy where several preys taken from a library of protein fragments or whole protein sequences are tested in individual cells. Identification of physical interacting partners can then be performed by PCR amplification and sequencing for example. Y2H has the advantage of being able to detect physiological (as in vivo) and weak PPIs and, above all, presents a strong indication of direct physical interaction. However, it can lead to a significant amount of false positives as it might detect non-specific interactions and, in the case of screening, interactions between proteins that might not usually coexist in time and/or in space [START_REF] Bruckner | Yeast two-hybrid, a powerful tool for systems biology[END_REF]. It also involves synthetic fusion of the bait and prey proteins which might affect the structural and functional integrity of the proteins. AP-MS screening is another popular high-throughput approach in which cellular extracts containing tagged bait proteins are prepared then purified in order to retrieve all bait-interacting partner complexes. The purification is usually performed in two steps (tandem affinity purification, TAP) for cleaner results. Complex constituents are then characterised with mass spectrometry. The properties of this technique imply that indirect interacting partners (i.e partners that do not physically interact with the bait) are also eluted in the purification step.

Similar to affinity purification, co-IP relies on isolating a bait protein with a specific antibody and extracting with it all its potential direct or indirect interacting partners. These can then be identified through Western Blot.

Finally, ITC is a technique that relies on heat exchange measurements upon binding. As in a titration, increasing quantities of a protein A is added to a solution of protein B, all the while measuring the temperature of the solution. ITC not only confirms protein-protein interactions but can also be used to deduce binding affinity, stoichiometry and other thermodynamic properties of the interaction without immobilisation or labelling of the proteins.

Protein interaction databases

As we just saw, large amounts of experimental information about protein interactions other than protein structure are regularly produced by a multitude of different techniques. Collecting and analysing this information constitutes a key step in constructing whole protein interaction networks. For an easier use of this data by the scientific community, it is important to centralise it in an intelligible and accessible fashion. Unlike for sequence and structural information, where UniProt and the PDB centralise the vast majority of the data for protein sequences and structures respectively, molecular interaction data curation is still mainly performed by numerous small-to-medium independent projects with different data-acquisition policies. Primary databases collect the data directly from peer-reviewed publications, metadatabases try to regroup information from several primary databases and predictive databases combine experimental information from primary databases with predictions of molecular interactions. Examples of common PPI databases, which I will describe in this section, include Biological General Repository for Interaction Datasets (BioGRID) [START_REF] Oughtred | The BioGRID interaction database: 2019 update[END_REF], IntAct [START_REF] Orchard | The MIntAct project--IntAct as a common curation platform for 11 molecular interaction databases[END_REF] and Search Tool for the Retrieval of Interacting Genes/Proteins (STRINGdb) [START_REF] Szklarczyk | The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible[END_REF]. data as well as interactions between proteins or genes and small molecules. For each entry, both databases provide details on the experimental evidence supporting said data, references to corresponding publications, cross-references as well as tools for easier exploration of the identified PPIs. Experimental evidence for physical interactions include high-and lowthroughput methods (e.g. affinity purifications followed by different types of identification methods as well as Y2H, co-IP or co-crystallisation explained above).

BioGRID and

The predictive database STRINGdb regroups known and predicted physical and functional PPI data for over 5,000 organisms as long as they are specific and biologically meaningful [START_REF] Szklarczyk | The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible[END_REF]. Known interactions are collected and reassessed from highthroughput experimental PPI data, text-mining and various other curated databases. Predictions are highly-controlled and based on co-expression, genomic context and knowledge transfer between organisms. Thanks to these efficient methods, STRINGdb lists more than 2 billion protein-protein interactions. STRINGdb is known for its user-friendly interface and easy traceability with detailed explanation of evidence and associated quality estimate.

A systematic comparison of PPI databases can be found in [START_REF] Bajpai | Systematic comparison of the protein-protein interaction databases from a user's perspective[END_REF]. A multitude of more disease-or organism-specific databases also exists. For instance, the Online Mendelian Inheritance in Man (OMIM) database is a popular database that lists a number of human genes and genetic disorders and traits (McKusick-Nathans Institute of Genetic Medicine). The Human Protein Atlas also provides many sub-databases of proteins specific to certain human cells, tissues or organs as well as a Pathology Atlas regrouping human cancer-related mRNA and protein expression data [START_REF] Thul | A subcellular map of the human proteome[END_REF][START_REF] Uhlen | A pathology atlas of the human cancer transcriptome[END_REF]. The Human Protein Reference Database (HPRD) (Keshava [START_REF] Prasad | Human Protein Reference Database--2009 update[END_REF]) lists most human proteins as well as their known PPIs, is manually curated and entries related to diseases are annotated and linked to OMIM. Host-pathogen interactions are a special type of interaction for which coevolution might be present through co-adaptation mechanisms between the two species [START_REF] Woolhouse | Biological and biomedical implications of the co-evolution of pathogens and their hosts[END_REF] HIV-1-human is an example of database hosted by NCBI regrouping virus-host PPIs (Ako-Adjei, Fu et al.

2015)

. Many more databases and web services exist to provide information about proteinprotein interactions, from large, comprehensive databases [START_REF] Miryala | Discerning molecular interactions: A comprehensive review on biomolecular interaction databases and network analysis tools[END_REF] down to smaller databases focusing on specific interaction characteristics such as the structural details and energetics of protein interfaces [START_REF] Gromiha | Protein-protein interactions: scoring schemes and binding affinity[END_REF][START_REF] Barradas-Bautista | Structural Prediction of Protein-Protein Interactions by Docking: Application to Biomedical Problems[END_REF]. It is important to note that since experimentally-acquired data only partially covers all existing proteins and PPIs, PPI databases present an incomplete view of PPI networks.

Protein networks

As mentioned earlier, proteins usually perform their function in groups, thereby forming an entire network of interactions. The whole set of these interactions in a particular context (e.g. in an organism or in a cell) constitutes a protein interactome. The richness and accessibility of PPI data accumulated over the years, for example through high-throughput assays such as Y2H or AP-MS described above (section 16, page 16), gene ontology or gene expression, enables the mapping of PPI networks. These networks can be particularly useful to predict the biological function of an uncharacterised protein by assuming that it has the same function as the proteins it clusters with ("guilt by association"). Protein networks follow the network modularity principle suggesting that highly connected groups of proteins constitute the building blocks of the network. These blocks indicate functional modules or protein complexes. Functional modules are made of proteins that participate in a same biological pathway but that might interact at different moments and places (e.g. transcriptosome, signalling cascades, cell-cycle regulation). Protein complexes, however, consist of proteins interacting at the same time and place thereby forming a single multimolecular machine (e.g. splicing machinery, transcription factors). PPI networks provide a draft map bringing together all the details centred on biological pathways of interest which might help elucidate the complex mechanisms that are behind them.

PPI networks can be analysed thanks to tools borrowed from mathematical network theory.

A PPI network can be assimilated to a graph in which proteins are nodes and physical contacts are represented by edges between the nodes [START_REF] Yamada | Evolution of biomolecular networks: lessons from metabolic and protein interactions[END_REF]. Contacts are specific and serve a precise function. PPI networks have several properties. They follow the small-world effect meaning that the maximum number of connections separating any two proteins in the network is relatively small. A recent study on 12 different protein networks (7 eukaryotes and 5 prokaryotes), reconstructed through an extensive mining of the major PPI databases, showed that the average number of steps tended to be between 3.8 and 4.8, with

A. thaliana having an exceptionally high average path length of 8.5 [START_REF] Xu | Path lengths in protein-protein interaction networks and biological complexity[END_REF]).

This high connectivity enables an efficient and rapid flow of signals within the system. PPI networks are also scale-free networks, meaning that most proteins only have a few partners (~5-6, a value termed the node degree in graph theory) whereas a very small number of proteins, called hubs, have over 100 connections. Party hubs are connected to many proteins at the same time and space whereas date hubs connect with their many partners at different times and spaces. The scale-free architecture of PPI networks enables individual paths to be switched on and off more easily and makes the network generally more stable to perturbations of single proteins. Indeed, when a random protein is disrupted, there is a higher chance of it affecting a protein with fewer connections than a hub due to their relevant frequencies, thereby limiting network disruption. Even when hubs are affected, other hubs are sometimes able to compensate for the lost connectivity. Hubs are important components of a protein network as they connect together groups of proteins that would otherwise be isolated from the rest of the interactome. Many cancer-related proteins are hub proteins, the tumour suppressor protein P53 being a famous example [START_REF] Collavin | p53-family proteins and their regulators: hubs and spokes in tumor suppression[END_REF].

Many tools exist to make the study of networks more accessible to users. Cytoscape [START_REF] Shannon | Cytoscape: a software environment for integrated models of biomolecular interaction networks[END_REF]) is a popular tool for network analysis for which there are several apps specific to PPI network analysis. It is important to note that the view that we have of protein interactomes today is usually incomplete, noisy and quite often biased -noisy, because of a large fraction of identified false positive and false negative complexes linked to the data-acquisition techniques used, and biased, simply because some proteins or pathways are preferentially studied. There is additionally a bias linked to the data-acquisition method as different approaches detect a largely complementary set of interactions. This highlights the importance of putting together data resulting from different experimental assays. An additional difficulty in studying PPI networks lies within their dynamic property as connections between proteins vary at any moment in time and are highly dependent on the cellular context.

PROTEIN EVOLUTION AND CO-EVOLUTION CON-CEPTS

The evolution of proteins is linked to the evolution of the genome and as such, also to the evolution of the species. In this section, I will first introduce protein evolution at the level of individual proteins, then describe the evolution of protein interfaces and finally give an overview of PPI network evolution.

Protein evolution

Proteins evolved overtime by a series of successive changes affecting protein-encoding genes explaining their huge diversity and complexity observed today. Gene evolution includes four main evolutionary events, namely speciation, where new species are created followed by independent divergence of each species' genes; duplication of a gene within a same species also followed by independent divergence; gene loss; and horizontal gene transfer between species, a common process in prokaryotes [START_REF] Kolodny | On the universe of protein folds[END_REF]. Gene modifications imply mutations of nucleic acids. However, although there are potentially many to be made, only those providing a selective advantage (i.e. contributing to a better global fitness) or neutral mutations are kept overtime. A large part of these mutations is detrimental to cell survival (e.g. impaired gene transcription or loss of function or structure of the resulting protein).

Mutations and epistasis

As proteins evolve over long timescales and under constraints to maintain essential roles for the purpose of survival, complex phenomena arise such as epistasis, that is, the context dependency of the functional effect of mutations. Epistasis was first defined at the genetic level but also has strong molecular implications, since the structural organisation of proteins largely determines how mutations might interfere with one another [START_REF] Starr | Epistasis in protein evolution[END_REF]. A mutation that appears neutral at a certain time may have consequences on the subsequent mutations that can be tolerated by the protein, and as such, molecular epistasis can either constrain the evolution of proteins by barring subsequent mutations or make new evolutionary paths accessible through permissive mutations. Ancestral protein reconstruction enables to study the relationship between sequence, structure, dynamics and function of proteins [START_REF] Johansson | Structural heterogeneity and dynamics in protein evolution and design[END_REF]. In particular, it brings insights into the epistatic process and its capacity to drive changes in ligand binding specificity, but also to becloud the mechanisms by which proteins evolved [START_REF] Siddiq | Evolution of protein specificity: insights from ancestral protein reconstruction[END_REF]).

Homology relationships

Through their common ancestry, proteins share homology relationships with each other.

Two homologs within the same species are described as paralogs (from gene duplication) whereas homologs derived from a single ancestral gene in the last common ancestor of two different species are termed orthologs (from speciation or horizontal transfer) [START_REF] Koonin | Orthologs, paralogs, and evolutionary genomics[END_REF]. Up to a certain point, homology relationships can be detected at the protein sequence level, the probability that two sequences share a high sequence identity only by chance being very slim. Very distant homologs are more difficult to identify as sequences are usually too diverged to detect similarity. Efficient algorithms relying on profile-profile sequence search exist to reliably detect homology [START_REF] Steinegger | HH-suite3 for fast remote homology detection and deep protein annotation[END_REF] have to be correlated over time in order to maintain the same fold, so that if a mutation occurs, it can be compensated by complementary mutation(s) at different position(s) in the sequence. This phenomenon is referred to as co-evolution (Figure 1-4). In order to conserve the interaction between green and red residues, when one of them mutates, the other has to follow suit. This behaviour can be directly observed in the MSA. Thus, correlating or co-varying positions in the MSA point towards possible contacts in the 3D structure. Picture taken from GREMLIN's FAQ page (http://gremlin.bakerlab.org/gremlin_faq.php).

The idea of detecting covariation to predict structural proximity between pairs of amino acid positions emerged thirty years ago and was successfully used at the time for RNA. Mutual information was long used as the primary method, but it suffers from large amounts of statistical and phylogenetic noise. Only within the last decade did significant breakthroughs occur following seminal work [START_REF] Weigt | Identification of direct residue contacts in protein-protein interaction by message passing[END_REF][START_REF] Marks | Protein 3D structure computed from evolutionary sequence variation[END_REF][START_REF] Morcos | Direct-coupling analysis of residue coevolution captures native contacts across many protein families[END_REF], thanks to methods derived from statistical physics as reviewed in (de [START_REF] De Juan | Emerging methods in protein co-evolution[END_REF][START_REF] Cocco | Inverse statistical physics of protein sequences: a key issues review[END_REF]). Among the first successful methods, statistical coupling analysis (SCA) detects functionally related networks of residues, using principal component analysis to identify eigenvectors of the covariance matrix reweighted by site-specific conservation factors [START_REF] Socolich | Evolutionary information for specifying a protein fold[END_REF]. Direct coupling analysis (DCA) generally designates a class of methods in which direct couplings between pairs of positions are disentangled from transitive correlations by global statistical analysis of an MSA. Many variants exist, based for example on sparse inversion of the covariance matrix (as in the PSICOV method [START_REF] Jones | PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments[END_REF])) or inference using maximum likelihood estimation [START_REF] Stein | Inferring Pairwise Interactions from Biological Data Using Maximum-Entropy Probability Models[END_REF]. DCA methods generally work best for large MSAs containing rich statistics about protein families. Covariation-based methods have applications ranging from protein and RNA structure prediction to the prediction of protein-protein interaction partners and the computational design of novel proteins [START_REF] Simkovic | Applications of contact predictions to structural biology[END_REF][START_REF] Cocco | Inverse statistical physics of protein sequences: a key issues review[END_REF]. Most recently, meta predictors and integration of DCA-based predictions into deep learning pipelines gave the best results, leading to dramatic improvements in ab initio protein structure modelling [START_REF] Kryshtafovych | Critical assessment of methods of protein structure prediction (CASP)-Round XIII[END_REF]) (section 1.3.1.2, page 43).

Interface evolution

A crucial question is how proteins maintain specific interactions in the crowded environment of the cell and along evolutionary pathways. Protein interfaces are more conserved on average than the remainder of the protein surface, due to the pressure to maintain functional interactions (Teichmann 2002, Mintseris and[START_REF] Mintseris | Structure, function, and evolution of transient and obligate protein-protein interactions[END_REF]. This naturally leads to the question of how good sequence identity is as a proxy for the conservation of interface structure and function [START_REF] Andreani | Evolution of protein interactions: from interactomes to interfaces[END_REF]. A first hierarchy can be outlined depending on interface stability: stable assemblies and core complexes are relatively robust to sequence perturbations, while transient interfaces and peripheral interactions may be more sensitive. Interactions mediated by short linear motifs (SLiMs), often weaker and more transient than interactions between globular domains, can be rapidly rewired in the context of regulatory interactions. On the scale of the human interactome, domain-domain interactions form strongly connected modules, while interactions between domains and linear motifs are more likely to connect modules with different biological functions [START_REF] Kim | Linear motif-mediated interactions have contributed to the evolution of modularity in complex protein interaction networks[END_REF]. Interface conservation thus depends not only on stability but also on structural and functional classes of protein interactions. To study the evolution of protein interfaces and their structure, we need tools to compare them in order to identify what is conserved in their global architecture, as well as more locally in their amino acid composition. Beyond conservation, we also aim to understand how interfaces have diversified. I will now present these different aspects.

1.2.2.1 Tools to assess and score interface similarity

The 3D structures of protein-protein interfaces need to be compared frequently, either to find out about their evolutionary properties or in the context of structural predictions. Interface structural comparison tools may typically provide three levels of information: the structural alignment between two protein interfaces; a similarity score, most often based on inter-protein distance comparison; and various properties that can be inferred from such comparisons, for example the prediction of protein-protein interactions based on similar known complexes.

Many programs exist for the structural alignment of interfaces. Among them, MM-Align [START_REF] Mukherjee | MM-align: a quick algorithm for aligning multiple-chain protein complex structures using iterative dynamic programming[END_REF] and iAlign (Gao and Skolnick 2010) use dynamic programming to iteratively align interfaces based on inter-residue distance comparisons. iAlign can be used for more specific detection of homology relationships or to cluster interfaces based on interface geometry. iAlign also provides a useful interface similarity score called IS-score, which combines inter-protein geometric distance comparison with the evaluation of interface contact overlap (Gao and Skolnick 2010). Interface contact comparison is also used by the FCC (fraction of common contacts) method, which accelerates clustering of interface structures by circumventing the need for structural alignment [START_REF] Rodrigues | Clustering biomolecular complexes by residue contacts similarity[END_REF].

FCC also facilitates clustering of multi-protein assemblies by accounting for symmetries, which are frequent in structures of homo-multimers. This method is especially useful for clustering many structures from molecular dynamics trajectories, simulations or protein-protein docking.

MM-Align is one of only a few methods that can process multi-protein assemblies with an arbitrary number of subunits. Subsequent multi-subunit comparison methods include Top-Match, which can compare large oligomers and molecular aggregates [START_REF] Sippl | Detection of spatial correlations in protein structures and molecular complexes[END_REF], and QSalign, which focuses on identifying evolutionarily conserved quaternary structure states as the most biologically relevant [START_REF] Dey | PDB-wide identification of biological assemblies from conserved quaternary structure geometry[END_REF]. QSalign builds upon the fast protein structure alignment method Kpax, which performs fragment comparison followed by dynamic programming to build a global alignment providing structural superimposition [START_REF] Ritchie | Fast protein structure alignment using Gaussian overlap scoring of backbone peptide fragment similarity[END_REF]. The resulting QSbio database provides annotations of biological assemblies as well as predictions with an associated confidence measure. Most structural comparison approaches are very computationally intensive. To provide frequent updates, the VAST+ service built on top of the MMDB database extends the simple heuristic strategy of the VAST protein structure comparison method to provide structural neighbourhood information on the level of biological assemblies [START_REF] Madej | MMDB and VAST+: tracking structural similarities between macromolecular complexes[END_REF].

Some databases were designed to explore structural and evolutionary properties of interfaces. ProtCID contains clusters of similar interfaces between interacting PFAM domains found in different crystal forms [START_REF] Xu | The protein common interface database (ProtCID)--a comprehensive database of interactions of homologous proteins in multiple crystal forms[END_REF]. The InterEvol database was designed to jointly explore and compare the 3D structure and evolutionary properties of protein complexes in order to reveal the molecular details of interface coevolution [START_REF] Faure | InterEvol database: exploring the structure and evolution of protein complex interfaces[END_REF]. In particular, InterEvol contains information about over a thousand pairs of structural interologs, that is, homologous complexes of known 3D structure sharing similar interfaces that can be used to probe how protein interfaces coevolve.

Evolution of different interface regions

It has been known for many years that not all mutated positions have comparable effects on the stability and affinity of protein interactions [START_REF] Kastritis | On the binding affinity of macromolecular interactions: daring to ask why proteins interact[END_REF]. The structural organisation of interfaces is strongly connected to their evolutionary properties. The amount of accessible surface area buried by an interface residue upon binding is traditionally the main descriptor related to both changes in affinity and rates of evolution [START_REF] Chen | Protein-protein interactions: general trends in the relationship between binding affinity and interfacial buried surface area[END_REF] and support and core interface regions can be defined that are more conserved compared to the peripheral rim of the interface [START_REF] Levy | A simple definition of structural regions in proteins and its use in analyzing interface evolution[END_REF]. However, the non-interacting surface of proteins also plays a role in fine-tuning the binding affinity, mostly through charged and polar chemical properties that are conserved between orthologous complexes [START_REF] Kastritis | Proteins feel more than they see: fine-tuning of binding affinity by properties of the non-interacting surface[END_REF]. Regions outside the interface can also be determining for binding specificity, for instance in the small heat-shock protein family where paralogs avoid hetero-oligomerisation through conformational flexibility at non-interfacial regions [START_REF] Hochberg | Structural principles that enable oligomeric small heat-shock protein paralogs to evolve distinct functions[END_REF]. Special positions at the interface such as hotspots and anchor residues, which significantly contribute to the binding free energy, are also more evolutionarily conserved [START_REF] Walker | Evolutionary conservation and somatic mutation hotspot maps of p53: correlation with p53 protein structural and functional features[END_REF]. Recent studies of human disease mutations show that although interfaces are robust to common sequence variations, a single missense mutation can have large functional impact, either by affecting protein folding or stability or by inducing local structural changes that disrupt interactions; perhaps unexpectedly, the latter mechanism was observed most frequently [START_REF] Sahni | Widespread macromolecular interaction perturbations in human genetic disorders[END_REF][START_REF] Fragoza | Extensive disruption of protein interactions by genetic variants across the allele frequency spectrum in human populations[END_REF]. These studies also conclude that a large fraction of disease mutations leading to interactome perturbation do so in an "edgetic" manner, that is, they only affect some specific interactions with a generally small subset of the protein's partners.

Compensatory mutations in protein interfaces

Similarly to covariation described earlier in protein monomers (see section 1.2.1, page 25

and Figure 1-4, page 27), protein interfaces must also adapt to mutations by coevolving, but not to maintain protein fold but rather to conserve protein function (i.e. the interaction). That is, when a mutation in one protein partner destabilises an interface, a compensatory mutation in the other partner can occur in order to maintain the interaction. As in conservation, the structural interface hierarchy plays an important role in coevolution. By analysing selection pressures in a large dataset of 896 protein complex structures, a recent study found that interface core positions show higher conservation and coevolution than those in the rim and that both conservation and coevolution increase when residues are involved in increasing numbers of interactions, as these interactions jointly exert stronger selection pressures [START_REF] Teppa | Protein-protein interactions leave evolutionary footprints: High molecular coevolution at the core of interfaces[END_REF]. Systematic comparison of interface contacts in over a thousand pairs of homologous complex structures from the InterEvol database highlighted surprising plasticity, especially in polar contacts, while apolar patches and anchor residues display higher contact conservation, even in transient interfaces [START_REF] Andreani | Versatility and invariance in the evolution of homologous heteromeric interfaces[END_REF]).

Insertions and deletions in protein interfaces

Such detailed investigations about the mechanisms by which protein interactions evolve are crucial to understand how protein interactions can acquire the functionally required specificity. Binding selectivity is especially puzzling since the number of binding mode geometries seems to be limited: when interface regions were directly aligned using iAlign on the basis of backbone geometry and interface contact patterns, only around 1,000 distinct interface architectures could be identified (Gao and Skolnick 2010). As a step towards explaining this apparent dilemma, a 2010 study identified relatively small insertions and deletions (mostly up to 8 residues) that differentiate between monomers and homodimers, can modulate oligomerisation and most likely determine interface specificity [START_REF] Hashimoto | Mechanisms of protein oligomerization, the critical role of insertions and deletions in maintaining different oligomeric states[END_REF]. More recently, a similar conclusion was drawn for heteromeric complexes, which can achieve evolutionary diversification and functional specificity and avoid promiscuous interactions thanks to interface "add-ons", typically 10-20 residues containing a high proportion of interface hotspots [START_REF] Plach | Evolutionary diversification of protein-protein interactions by interface add-ons[END_REF]. Most likely, insertion/deletion of these add-ons entail evolutionary routes going through promiscuous intermediates. Strikingly, systematic protein-protein interaction profiling for a large number of human alternatively spliced transcripts showed that alternative splicing is another major source of interactome expansion through the insertion/deletion of regions containing either globular domains or SLiMs able to mediate interactions [START_REF] Yang | Widespread Expansion of Protein Interaction Capabilities by Alternative Splicing[END_REF]. Protein isoforms can thus display widely different interaction profiles. In the scope of modelling protein assemblies, being aware of the potential existence of these structural add-ons in interface evolution may help interpret the existence of partly conserved inserted regions in the alignments.

Probing evolutionary paths of interface structures

Complementary to large-scale statistical investigations of how the structural organisation of interfaces relates to evolution, a number of detailed case studies have experimentally probed the mechanisms by which sequence variations can be accommodated at the interface of protein assemblies.

DMS of protein complexes

The use and analysis of DMS of protein complexes is one way to disentangle the complexity of interface coevolution events. DMS provides a systematic way of quantifying the effects of mutations through high-throughput assays coupled with next-generation sequencing (see section 1.1.3.2, page 12). Studies of DMS on interfaces can give insights into their robustness to mutagenesis and the evolutionary pathways used to rewire and expand specificity. They also highlight the mechanisms of interface coevolution, as over time mutations most likely occur one at a time and therefore intermediate states must be considered in which interface complementarity or specificity might not be optimal. Combined with structural biology, the DMS approach may provide a powerful means to understand the molecular bases underlying epistatic phenomena at complex interfaces. For example, one of the first deep mutational scans on interfaces was performed on a PDZ domain model system [START_REF] Medicine | The spatial architecture of protein function and adaptation[END_REF]. Single and exhaustive mutagenesis of every position in PDZ distinguished positions tolerant to mutations from those functionally sensitive to substitutions, located around the ligand binding site [START_REF] Medicine | The spatial architecture of protein function and adaptation[END_REF]. DMS studies coupled with impressive structural characterisation of PDZ variants enabled to identify a class-bridging but "conditionally neutral" mutation that was found to trigger epistasis by enabling conformational plasticity through a local structural change at the binding site.

1.2.2.5.2 Interface assembly pathways and symmetry With the rise of protein complex structure determination, especially through recent developments in cryo-EM (section 1.1.3.1, page 9), the amount of information about multi-protein assemblies is increasing [START_REF] Marsh | Structure, dynamics, assembly, and evolution of protein complexes[END_REF]. A growing number of studies investigate the dynamics of such multi-protein assemblies and their assembly pathways. Recently, a study proposed a classification of protein complexes by number of subunit types and number of repeats and confirmed previous findings that many protein complexes assemble through ordered pathways, often evolutionarily conserved and reflecting evolutionary pathways [START_REF] Ahnert | Principles of assembly reveal a periodic table of protein complexes[END_REF]. Symmetry has also a special role in protein assemblies [START_REF] Marsh | Structure, dynamics, assembly, and evolution of protein complexes[END_REF] as most homomeric complexes and many heter- This highlights that evolutionary conservation can be used as a guide for structural prediction of protein assemblies but should not be strictly enforced, since variations that make one interface weaker can be counterbalanced by variations in interfaces between other pairs of subunits.

PPI network evolution

On a larger scale, protein-protein interactions form networks called interactomes (see section 1.1.7, page 22), which also change in the course of evolution. Many edges (interactions) are rewired, that is, some are gained and others are lost [START_REF] Ghadie | Interactome evolution: insights from genome-wide analyses of protein-protein interactions[END_REF]. This can happen either through modification of the interface or through gene loss or gene gain as a result of horizontal transfer, de novo emergence or duplication events followed by divergence leading to the expansion of the protein repertoire [START_REF] Kolodny | On the universe of protein folds[END_REF]) (see section 1.2.1, page 25). Protein interaction and protein function usually go hand in hand. This implies that PPIs undergo evolutionary constraints in order to conserve function. As mentioned in section 1.1.7 (page 20), our current view of protein interactomes is incomplete and biased. On the other hand, protein homology inferring methods that enable the mapping of orthologs and paralogs inter-and intra-species are not perfectly accurate leading to false homology assumptions. These technical details make the study between and within interactomes extremely challenging [START_REF] Ratmann | From evidence to inference: probing the evolution of protein interaction networks[END_REF]).

The retention or not of new protein copies and/or new interactions after gene duplication, may be more or less strongly influenced by selective pressure. Proteins that are born through duplication necessarily inherit at least part of their parent's interactions. These proteins have several fates as illustrated in Figure 1-6, the most common one being pseudogenisation (i.e. loss of the copy through too many detrimental mutations causing it to become a silent pseudo-gene). When the duplicate is kept, it might keep the same functions as the original copy, it might acquire a new function or both copies could grow dependent on each other to ensure the ancestral function. Studies have shown that the evolutionary rates of duplicated genes are accelerated in the period following duplication in yeast and was coupled with an apparent decrease in shared PPIs between the new paralogs [START_REF] Ratmann | From evidence to inference: probing the evolution of protein interaction networks[END_REF]. Another interesting and controversial topic is the link between network topology and network evolution, and more specifically, the relationship between evolutionary rate and protein centrality in the network. The conclusions seem to vary according to the data and methods used in various studies. Some studies showed that protein degree is negatively correlated to evolutionary rate; others argue that the observed correlation is an artefact of protein abundance differences. Based on the analysis of PPI structures involving hubs in yeast, [START_REF] Kim | Relating three-dimensional structures to protein networks provides evolutionary insights[END_REF]) defined party hubs as having many interfaces, enabling to bind many partners at once, and date hubs as having only few interfaces, where PPIs would be able to and would have to share the same interaction surfaces. Independent from gene expression level, they found that party hubs had slower evolutionary rates than date hubs.

Intuitively, because hub proteins interact with more partners, they should proportionally have more surface dedicated to binding than less connected proteins, thus one could assume that they are subjected to higher evolutionary pressure. In that sense, we also have to make the distinction between date and party hubs characterising PPIs that are neutral to disruption in a PPI network. Based on homology-based three-dimensional structural models for PPIs in the human interactome and computational and experimental determination of mutation effects on these structures, they estimate that up to ~20% of the overall human interactome is completely dispensable [START_REF] Ghadie | Estimating dispensable content in the human interactome[END_REF]. More information on PPI network topology evolution can be found in [START_REF] Ratmann | From evidence to inference: probing the evolution of protein interaction networks[END_REF] or [START_REF] Ghadie | Interactome evolution: insights from genome-wide analyses of protein-protein interactions[END_REF].

In this section, I discussed a number of situations illustrating why evolutionary signals may be tricky to recognise in the context of protein assemblies and to exploit for their structural prediction. Depending on a variety of factors such as the local structural framework, the number of paralogs or the number of partners in an assembly, the consistency of a structural model with the evolutionary history of the interface may be difficult to establish. Next, I will present a state-of-the-art report of the successful methods for the prediction of individual protein structures and for the modelling of their assemblies. We will see in the following sections that combining different computational approaches can help in getting the best from conservation and coevolutionary information.

COMPUTATIONAL STRUCTURAL PREDICTION

When a direct physical interaction exists between two proteins, more detailed knowledge of the specific interface structure is extremely valuable in order to modulate this interaction and understand its functional role, for example by suggesting positions on each partner that can be mutated to specifically disrupt and restore the interaction. If the complex structure has not been experimentally determined, modelling techniques can be used to obtain predictions for the assembly. Computational techniques for modelling protein complex struc- and4, 6 and7). Here, I will first present the main principle and examples of tools for monomeric structure prediction. I will then describe briefly binding surface prediction. Finally, I will introduce in greater detail the issue of protein complex prediction central to my thesis, as well as its specific existing evaluation metrics. Flowchart of the protocols and tools described in the review to carry out structural modelling of protein interactions taking into account evolutionary information. When starting from the sequences of interacting proteins, structural modelling of their assembly can follow two strategies, both relying on evolutionary relationships. The first one (1), generally more accurate but restricted to a limited number of cases, uses homology relationships and templatebased docking methods to generate structures of assemblies, which are reviewed in two subsections of this review for globular and disordered regions, respectively. The second strategy (2) relies on a combination of approaches involving structural modelling of the partners when possible, evolutionary analysis of the disordered regions and use of evolutionary information to identify binding patches at the surface of globular domains (3, 6). Combined with coevolution analyses, free docking methods can incorporate all these levels of information to produce models of assemblies (4, 5, and 7). These methods are reviewed for both globular and disordered systems.

Structural prediction of monomers

As mentioned earlier, the monomeric structures of interacting proteins have to be known in order to proceed with docking. thanks to effective homolog search algorithms. However, when more remote templates are available, larger perturbations are needed to make good models as modelling relies on a less reliable alignment due to low sequence identities, which might also contain more insertions and deletions. Template search can be performed efficiently and accurately using the profile-profile alignment toolkit hh-suite [START_REF] Steinegger | HH-suite3 for fast remote homology detection and deep protein annotation[END_REF]) against the PDB for example.

The main homology modelling pipeline used in my PhD project was RosettaCM [START_REF] Song | High-resolution comparative modeling with RosettaCM[END_REF] Alternative examples of homology modelling tools include SWISS-MODEL [START_REF] Waterhouse | SWISS-MODEL: homology modelling of protein structures and complexes[END_REF], MODELLER [START_REF] Webb | Comparative Protein Structure Modeling Using MODELLER[END_REF] or I-TASSER [START_REF] Yang | The I-TASSER Suite: protein structure and function prediction[END_REF]. [START_REF] Waterhouse | SWISS-MODEL: homology modelling of protein structures and complexes[END_REF]) is a widely-used and user-friendly homology modelling pipeline with various degrees of user intervention according to the chosen modelling mode. Templates are searched for using BLAST and HHblits and selected based on an estimated quality measurement. Models are then generated using an in-built modelling engine and are given a quality score (QMEAN) reflecting how they compare to experimental structures of the same size, in other words, how realistic the models are.

SWISS-MODEL

MODELLER [START_REF] Webb | Comparative Protein Structure Modeling Using MODELLER[END_REF] uses its own alignment builders. Its modelling is performed iteratively and is guided by spatial restraints deduced empirically based on the identified or given template structure(s) and CHARMM force field terms. MODELLER is often used in other programmes for when modelling of monomeric structures is needed (Mirabello andWallner 2017, Zimmermann, Stephens et al. 2018). I-TASSER is within the top-performing template-based servers in recent CASP evaluations. I-TASSER searches for suitable templates using a profile-profile sequence search, and then generates its models through template threading and free modelling of non-matching regions followed by a reassembling step with Monte Carlo sampling.

Recent advances in the field observed since the beginning of CASP are linked to the development of more accurate sequence-template alignment generation methods, the use of multiple templates, better modelling of non-template-covered regions, better final model refinement and better quality estimation to select the final output models [START_REF] Kryshtafovych | Critical assessment of methods of protein structure prediction (CASP)-Round XIII[END_REF]).

However, homology modelling is not always possible as it relies on having available suitable templates. Indeed, Interactome3D [START_REF] Mosca | Interactome3D: adding structural details to protein networks[END_REF]) lists more than 62,000 proteins involved in interactions, of which about 44% have no experimental monomeric structure and no readily identifiable template structure. Fortunately, for these cases, we can still resort to ab initio modelling of individual subunits.

Ab initio modelling of individual structures

Ab initio modelling, i.e. predicting a protein structure from its sequence only, is much more challenging. Decades of effort have been dedicated to methods trying to achieve protein structural prediction from physical principles. Molecular Dynamics (MD), a computer simulation technique widely used to study protein dynamics and conformational changes, could theoretically be used to fold proteins (Lindorff-Larsen, Piana et al. 2011), although its computational cost and imperfect force fields currently limit this application [START_REF] Geng | Applications of Molecular Dynamics Simulation in Structure Prediction of Peptides and Proteins[END_REF]. Threading [START_REF] Xu | Protein structure prediction using threading[END_REF]) and fragment-based methods, although not strictly ab initio, draw on the knowledge of protein structures and the limited number of folds that proteins seem to adopt [START_REF] Zhang | The protein structure prediction problem could be solved using the current PDB library[END_REF].

Recent advances enabled the generation of high-accuracy models by drawing on (co-)evolutionary information. A first performance boost was observed thanks to the introduction of predicted contacts in the modelling pipeline. The second boost came about by implementing deep neural network methods coupled with the prediction of inter-residue distance and backbone torsion angle distributions and is the secret behind the incredible success of RaptorX [START_REF] Xu | Analysis of distance-based protein structure prediction by deep learning in CASP13[END_REF] and AlphaFold [START_REF] Senior | Improved protein structure prediction using potentials from deep learning[END_REF]) in recent CASP rounds (details about CASP are given in section 1.3.1.3 below). In response to AlphaFold's success in CASP13, trRosetta [START_REF] Yang | Improved protein structure prediction using predicted interresidue orientations[END_REF]) recently made its appearance, implemented in an AlphaFold-inspired fashion but additionally integrating inter-residue orientation predictions (i.e. dihedral angle predictions between non-covalently bound atoms).

Although they did not participate in CASP13, a posteriori results on the CASP13 dataset and on CAMEO show that this extra feature additionally increases the success of structural prediction.

RaptorX, AlphaFold and trRosetta are able to completely bypass template structures thanks to a deep and convolutional residual neural network architecture (ResNet) and through integration of evolutionary information taken from MSAs. They all predict distance distributions (baptised "distograms" in AlphaFold for distance histograms) as well as backbone torsion angle distributions. RaptorX additionally predicts secondary structures and trRosetta additionally predicts torsion angles between residues ("anglegrams"). Distograms and all angle predictions can then be used for 3D model reconstruction after translating them into structural constraints. Both AlphaFold and trRosetta convert their predicted contact information into smoothed restraints that are used in gradient descent and Rosetta protocols, respectively, and RaptorX uses Crystallography and NMR System (CNS) to predict protein folds.

The input and output of these contact prediction methods might be similar to the DCA approach but they use different workflows. Thanks to convolution layers, the networks used in AlphaFold, RaptorX and trRosetta are able to take in the global context of the contact map and go beyond classical pairwise relationships that are mainly detected in DCA, thus enabling them to capture possible structural motifs. Additionally, ResNets provide a highly non-linear model as opposed to DCA methods, which are mainly linear and they also need less sequences in the MSAs to detect useable information. However, ResNets suffer from the "black box" effect, like any neural network, meaning that prediction performances might generally be improved using these methods but our understanding of how proteins are successfully folded and what information is used and learnt by these algorithms remains partial.

Evaluation of structure prediction methods for individual proteins

CASP is an international blind-test challenge for protein fold and protein contact map prediction that occurs every two years since its creation in 1994 and that assesses the state-ofthe-art methods in that field [START_REF] Kryshtafovych | Critical assessment of methods of protein structure prediction (CASP)-Round XIII[END_REF]. In CASP, groups are able to test their methods on targets that have not yet been published at the time of the challenge. Over the years, CASP has accumulated a large set of targets with their associated predictions proposed by various participating groups, which has now become invaluable for method developments and assessments. Targets are separated into several categories according to the availability of templates or biological data (e.g. X-link, NMR or SAXS). Participants can predict contacts or suggest structural models or can restrict themselves to estimating the quality of models generated by other groups.

Unlike CASP, CAMEO [START_REF] Haas | Continuous Automated Model EvaluatiOn (CAMEO) complementing the critical assessment of structure prediction in CASP12[END_REF]) provides a continuous and fully automated assessment dataset based on weekly pre-releases of sequences in the PDB, meaning that structures are not available at the moment of the prediction. CAMEO offers a maximum of 20 targets per week that are cautiously selected in order to remove any proteins that are too close in sequence to already existing structures in the PDB. As participants can only compare performances if they happen to be predicting CAMEO targets simultaneously, CAMEO also continuously runs base-line prediction and assessment tools that can be seen as "null models" for easier comparison between sessions.

Benchmarking datasets such as CulledPDB [START_REF] Wang | PISCES: recent improvements to a PDB sequence culling server[END_REF] or ProteinNet (AlQuraishi 2019) complete the assessment landscape. CulledPDB is based on the PDB whereas ProteinNet draws on CASP. ProteinNet was designed with a special focus on emerging machine learning techniques. It provides an additional effective validation set distinct from the official CASP sets along with evolutionary profile information as well as file formats directly compatible with machine learning approaches.

Assessment measurements for protein models usually include the GDT-TS (Global Distance Test -Total Score) which measures the similarity between the model and the experimental structure upon superposition of both. GDT-TS can be assimilated to RMSD but is less sensitive to outliers (e.g. poorly modelled loops). GDT-TS calculates the largest set of C atoms falling within a defined distance threshold with the reference structure, thus, the higher the score, the better the performance. In CASP, the regularly used metric is an average over GDT-TS results for 1, 2, 4 and 8 Å distance cut-offs [START_REF] Kryshtafovych | Critical assessment of methods of protein structure prediction (CASP)-Round XIII[END_REF]).

Another metric is the local distance difference test (lDDT), a superposition-independent score based on inter-atomic distance deviations in the model compared to the reference structure. In CAMEO, an average lDDT is used over four different deviation thresholds (0.5, 1, 2 and 4 Å) and higher scores represent better agreement with the reference model [START_REF] Haas | Continuous Automated Model EvaluatiOn (CAMEO) complementing the critical assessment of structure prediction in CASP12[END_REF].

Binding surface prediction

A first step towards studying PPIs or predicting their structure might lie in the prediction of their respective binding regions. This information can be used directly by biologists to feed more specific assays or can be integrated into docking methods in order to guide the prediction of protein complex structures as illustrated in Figure 1-7, steps 3 and 4 on page 41.

The vast majority of binding surface predictors include evolutionary information taken from MSAs or homologous structures. Indeed, due to the evolutionary pressures mentioned above, conservation of amino-acid positions in MSAs provides key guidelines to identify functionally important residues.

A large number of available predictors were extensively described and compared in recent 

Conservation-based predictors

One of the most sensitive tools for spotting out evolutionary constraints is the Rate4Site algorithm [START_REF] Pupko | Rate4Site: an algorithmic tool for the identification of functional regions in proteins by surface mapping of evolutionary determinants within their homologues[END_REF][START_REF] Mayrose | Comparison of site-specific rate-inference methods for protein sequences: empirical Bayesian methods are superior[END_REF]), which can be run from the ConSurf web server [START_REF] Ashkenazy | ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules[END_REF]. The relative evolutionary rates at each site are estimated using a probabilistic evolutionary model, which takes into account the stochastic process underlying sequence evolution within protein families and the phylogenetic tree of the proteins in the family. As illustrated in panel A of Figure 1-8, most of the interaction regions on the RBBP5 subunit in the multi-protein MLL1 complex associated with the nucleosome are characterised by slower evolutionary rates as measured by Rate4Site.

Other conserved regions may correspond to alternative interactions or functional constraints. Interface residue predictions are displayed on the surface of RBBP5 and colourcoded from white (predicted as non-interface) to yellow to red (highest predicted probability to be involved in an interface). The RBBP5 subunit is involved in interfaces with six different partners (five proteins and one DNA) in the MLL1 complex associated with the nucleosome (interfaces 1, 2, 3, 4 and 6 in reference PDB structure: 6KIU) and in one intra-molecular interaction (interface 5 in reference PDB structure: 6KM7). These interfaces are mediated either by its globular beta-propeller domain (interfaces 1, 4, 5 and 6) or by its N-terminal intrinsically disordered region (interfaces 1, 2 and 3). ISPRED4 prediction exhibits remarkable sensitivity in the detection of interface residues in RBBP5 for all seven interfaces with almost no false positives. As in Figure 1B, WDR5 subunit is coloured purple (1), ASH2L is orange (2), MLL1 is dark green (3), histones octamer is cyan (4), RBBP5 is yellow and lime (5), ubiquitin is pink (6) and DNA is black. 

Coevolution-based predictors

Beyond conservation features, coevolution scores are also increasingly used either within a single sequence or considering two binding partners. In the ISPRED4 method [START_REF] Savojardo | ISPRED4: interaction sites PREDiction in protein structures with a refining grammar model[END_REF], conservation and coevolution features of each individual protein partner were integrated among other sequence and structure-based descriptors. The rationale behind using coevolution of positions within a single sequence to account for residues in interaction is that neighbouring residues at the surface may co-vary more strongly due to the presence of a bound partner. The increase in performance obtained with the covariation score was actually of similar magnitude to the contribution of the conservation term. Overall, the performance of ISPRED4 was found significantly higher than all other methods tested on a standard benchmark and on a blind test set from the CAPRI experiment. The example of the RBBP5 subunit in the MLL1 complex (Figure 1-8) illustrates the quality of predictions that can be obtained. For all six binding interfaces in which RBBP5 is involved, residues involved in the interface were correctly spotted out by ISPRED4 without too many false positives.

Coevolution-based scores are also increasingly integrated in interface residue predictors by considering not only single proteins as for ISPRED4, but also pairs of binding partners. Such 

Homology-based predictors

In the preceding paragraphs, I mainly described integration of evolutionary properties from protein sequences, but homology information can also be extracted from comparison of structures. In that respect, the PredUS server [START_REF] Zhang | Protein interface conservation across structure space[END_REF][START_REF] Hwang | A hybrid method for protein-protein interface prediction[END_REF]) provides a complementary view of how homology can help predict interface residues by identifying structural neighbours of a query protein and mapping the frequency of contacts made by binding partners of these structural neighbours. A related method is PS-HomPPI, which predicts interface residues between two query proteins based on their frequency at the interface of homologous complexes with known 3D structures [START_REF] Xue | HomPPI: a class of sequence homology based protein-protein interface prediction methods[END_REF]. Such tools integrating structural homology as features for interface prediction were recently reviewed [START_REF] Xue | Computational prediction of protein interfaces: A review of data driven methods[END_REF]. Their success rate is high provided numerous structures exist for a given structural family. These homology-based predictors are different from template-based docking strategies, discussed in the next section, in that most do not account for binding partner specificity to predict binding site location.

For practical applications, using a selection or a combination of the different available predictors should be envisioned, following the concept used in consensus approaches such as CPORT (de Vries and Bonvin 2011). The choice of tools and parameters also depends on the type of application considered. To increase the chances of success when selecting a small number of residues that will be experimentally mutated in order to perturb an interface, the precision metric should rather be favoured. In contrast, if interface prediction is used with the aim of generating constraints for subsequent docking (as described in the section 1.3.3.2.1, page 57), a higher recall would be advisable to ensure that none of the potential regions of interaction are omitted in targeted sampling, since further scoring and clustering of the candidate interfaces will be used to refine solutions.

Predicting binding modes in disordered regions using evolution

An important class of protein-protein interactions, only briefly mentioned so far, are those mediated by IDPs and by exposed flexible loops within folded domains. Their binding generally involves short stretches of adjacent amino acids forming compact clusters known as SLiMs or molecular recognition features (MoRFs) (Van Roey, [START_REF] Uyar | Proteome-wide analysis of human disease mutations in short linear motifs: neglected players in cancer?[END_REF]). These sequence motifs play fundamental roles in cell functions such as signalling, transport or protein turnover and are involved in many human diseases [START_REF] Uyar | Proteome-wide analysis of human disease mutations in short linear motifs: neglected players in cancer?[END_REF][START_REF] Via | How pathogens use linear motifs to perturb host cell networks[END_REF]. They trigger transient and reversible interactions between partners and are often regulated by post-translational modifications. In vivo, these interactions often act in the context of complex multiprotein assemblies as illustrated in Figure 1-8 between RBBP5 and partners 1, 2 and 3. Moderate binding stability of these motifs together with the complexity of the biological context in which they act may hinder evolutionary traces used to spot them out. As noted earlier, the low complexity of linear binding motifs can give rise to complicated compensatory mechanisms in evolution difficult to decrypt from sequence analyses. Here, I will provide a few guidelines and tools that can help predict binding sites in disordered regions and in their folded partners, illustrated as steps 5 and 6 in Figure 1-7, page 41. Docking methods suitable for incorporating these features for modelling purposes will be discussed in section 1.3.3, page 53.

Prediction of binding motifs in disordered regions

If the conditions for closely related template-based modelling are not met, a first challenge can be the identification of binding regions in disordered stretches (Figure 1-7, label 6). As a first approach, well-annotated binding motifs can be recognised using databases such as the Eukaryotic Linear Motif resource (ELM) [START_REF] Kumar | ELM-the eukaryotic linear motif resource in 2020[END_REF], a repository of manually curated and experimentally validated motifs. In cases where no known binding motifs can be found, more general approaches can be used to search for stretches with a tendency to fold upon binding. For instance, the IUPred2A server predicts disordered regions in proteins [START_REF] Meszaros | IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding[END_REF]) and uses ANCHOR2 to predict binding stretches within these regions. ANCHOR2 uses a biophysics-based model but it does not incorporate any evolutionary constraints [START_REF] Meszaros | Prediction of protein binding regions in disordered proteins[END_REF]). In fact, using evolutionary information for the recognition of binding motifs in disordered regions requires to pay particular attention to the quality of the generated multiple sequence alignment [START_REF] Gibson | Experimental detection of short regulatory motifs in eukaryotic proteins: tips for good practice as well as for bad[END_REF]. Rather than automatic tools, it is advisable to use more interactive approaches allowing to tune sequence divergence and prune those with low quality, in order to increase the contrast between the most conserved positions and the highly variable sequence tracts in which they are generally encompassed. Interactive manipulation can be performed, for example, with the Jalview sequence analysis workbench [START_REF] Waterhouse | Jalview Version 2--a multiple sequence alignment editor and analysis workbench[END_REF], or with the ProViz visualisation server to investigate evolutionary features in protein sequences [START_REF] Jehl | ProViz-a web-based visualization tool to investigate the functional and evolutionary features of protein sequences[END_REF] On the side of the folded domains involved in the recognition of short binding motifs, identification of binding sites can be performed using tools previously mentioned for interface predictions, which generally include evolutionary information. Interaction sites can also be predicted using the PEP-SiteFinder server [START_REF] Saladin | PEP-SiteFinder: a tool for the blind identification of peptide binding sites on protein surfaces[END_REF] tein-peptide interactions. Target T66 from CAPRI 6th edition is illustrative of such potential pitfalls (Yu, Andreani et al. 2017). It involved the disordered C-terminal tail of B. subtilis SSB protein in complex with a primase. Even though the interaction is conserved from B. subtilis to E. coli, large MSAs sampling homologs around these two distant species did not allow the detection of a conserved evolutionary trace at the surface of the primase. Probably due to a spatial switch in the location of the binding site over long evolutionary times, only alignments restricted to closely related Firmicutes species could help identify the binding site using evolutionary information.

Structural prediction of protein assemblies

Once the monomeric structures of our proteins are available (whether experimentally or through prediction as described in section 1.3.1, page 41), one can proceed with protein assembly prediction (Figure 1-10, page 55 and Figure 1-11, page 57). Similarly to monomeric structures, complex structures can be deduced by homology if a suitable template is available or by free-docking otherwise. Figure 1-9 provides a graphical summary of a selection of user-friendly methods that can be used in order to determine the structure of a protein interaction. page 167 in the appendix for links and references). Methods for predicting interactions between globular domains are presented on the left in oval shapes, methods for predicting protein-peptide interactions mediated by short motifs are presented on the right in rectangles and methods suitable for both are in the middle in rounded rectangles. The background colour code denotes how structural modelling makes use of evolutionary information: through sequence conservation (light orange), sequence coevolution (dark orange) or structural homology (blue), or indirectly through information provided by upstream methods that predict binding sites, motifs or contacts (green). Template-based modelling, which relies on homologous complexes of known structure, bypasses the use of upstream methods compared to docking-based predictions.

Template-based docking

Template-based modelling makes use of homologous structures and is driven by the knowledge that proteins similar in sequence or structure, especially in the interface region, bind in a similar way [START_REF] Andreani | Versatility and invariance in the evolution of homologous heteromeric interfaces[END_REF]. Similarly to template-based modelling of monomeric structures (see section 1.3.1.1, page 42), protein complexes can be modelled using homolog complex structures and results in predictions that are often more accurate than free-docking (Figure 1-10) [START_REF] Lensink | Modeling protein-protein, protein-peptide and protein-oligosaccharide complexes: CAPRI 7(th) edition[END_REF]). The higher the sequence identity between the template and the protein complex to be modelled, the more accurate the model. The common cut-off in sequence identity lies within 30% in both partners, a threshold below which we cannot be sure that the homologous proteins interact in the same way as the proteins to be modelled [START_REF] Aloy | The relationship between sequence and interaction divergence in proteins[END_REF], Faure, Andreani et al. 2012).

Additional difficulty lies within the search of suitable for templates. The same procedure can be performed to identify homologous complexes as in monomer template-based modelling but it requires an additional step where the individual homologs of each protein partner have to be matched (i.e. intersection of homolog lists and removal of homologs that are not in direct contact). Alternatively, several databases exist that map homologous complexes with experimentally determined 3D structure to infer properties about other protein-protein interactions. The PRISM web server provides a repository for the prediction and structural modelling of protein interactions using evolutionary conservation of hotspot residues and multi-protein structural alignments to measure interface similarity [START_REF] Baspinar | PRISM: a web server and repository for prediction of protein-protein interactions and modeling their 3D complexes[END_REF]). The 3D-interologs database infers protein interactions across species by mapping domains to interface structures [START_REF] Lo | 3D-interologs: an evolution database of physical protein-protein interactions across multiple genomes[END_REF]. The IBIS database uses the VAST structure comparison method to predict interaction partners and protein binding surfaces by analysing homologous complexes of known structure [START_REF] Shoemaker | IBIS (Inferred Biomolecular Interaction Server) reports, predicts and integrates multiple types of conserved interactions for proteins[END_REF].

More recently, the PPI3D web server was built to search structural data using as query a single sequence or a pair of sequences in order to retrieve 3D structures of protein-protein and domain-domain complexes containing subunits homologous to the query sequence(s) [START_REF] Dapkunas | The PPI3D web server for searching, analyzing and modeling proteinprotein interactions in the context of 3D structures[END_REF]. PPI3D is especially useful for template-based interface modelling and we regularly rely on it in CAPRI docking challenges (see Chapter 4, page 125). As for comparative modelling of monomeric structures, the user-friendly server SWISS-MODEL can be used for template-based docking as well as the RosettaCM package (see section 1.3.1.1, page 42). Another template-based docking and fully automated server is

InterPred [START_REF] Mirabello | InterPred: A pipeline to identify and model protein-protein interactions[END_REF], which combines several tools to predict the final complex. First, monomeric structures are modelled using MODELLER if not given and templates are found using a structural alignment algorithm. Monomeric models are then superimposed onto the selected template to give a first set of coarse-grained models. The most likely coarse-grained models are selected using a random forest classifier based on sequence and structural features (e.g. interface size, interface overlap, structural alignment quality and sequence identity with the template). InterPred's final selection consists of the models that changed the least after a last refinement step. ClusPro, one of the best performing servers in recent blind-tests [START_REF] Lensink | Modeling protein-protein, protein-peptide and protein-oligosaccharide complexes: CAPRI 7(th) edition[END_REF]), lately integrated template-based docking into its pipeline to expand its ability to make high accuracy interface models [START_REF] Porter | Template-based modeling by ClusPro in CASP13 and the potential for using co-evolutionary information in docking[END_REF]). The HDOCK server, which also performed well in these blind-tests, implements a hybrid strategy involving template-based and template-free docking [START_REF] Yan | HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy[END_REF]) (template-free docking will be described in the next section).

For the structural modelling of protein-peptide interactions, comparative modelling also remains the most suitable method in cases where closely related structural templates exist.

The GalaxyPepDock web server [START_REF] Lee | GalaxyPepDock: a protein-peptide docking tool based on interaction similarity and energy optimization[END_REF] provides for that purpose a full pipeline to search for templates and model these categories of complexes in an automated manner. The InterPep2 software uses templates from both protein-peptide complexes and protein-protein interactions [START_REF] Johansson-Akhe | InterPep2: Global Peptide-Protein Docking using Interaction Surface Templates[END_REF].

Template-based methods are efficient but cannot always be used, as reliable homologous complex structures are not always available. Interactome3D [START_REF] Mosca | Interactome3D: adding structural details to protein networks[END_REF]) lists more than 270,000 interactions identified in 18 model species, for which around 88% have no experimental structure and no readily identifiable template structure. They can also lead to wrong assumptions when predicting interfaces in cases where homologs display different binding modes to the query complex, especially for homologs under 30% sequence identity [START_REF] Faure | InterEvol database: exploring the structure and evolution of protein complex interfaces[END_REF]. For these cases, we can resort to template-free protein-protein docking.

Template-free docking

Template-free docking performs an exhaustive search of the conformational space, starting from two unbound protein structures or models. It is traditionally divided into two steps, illustrated in Figure 1-11. First, several thousands of interface conformations, called decoys, are generated during a sampling step. Sampling is then followed by or coupled with scoring, during which these decoys are ranked based on their interface properties [START_REF] Huang | Search strategies and evaluation in protein-protein docking: principles, advances and challenges[END_REF][START_REF] Huang | Exploring the potential of global protein-protein docking: an overview and critical assessment of current programs for automatic ab initio docking[END_REF]. In an ideal situation, the score should directly reflect how close the decoy is to the true complex (denoted the native complex or bound structure). Many template-free docking programs and pipelines exist, each having their own specialty. Their performance is usually increased when they are included in integrative modelling pipelines, where docking is guided by additional experimental data, evolutionary information (i.e. conservation or coevolution) or predictions of binding areas [START_REF] Koukos | Inherent limitations in protein-protein docking procedures[END_REF]. This data can be integrated in the scoring step or as constraints during or immediately after the sampling step. Finally, a high-resolution but costly scoring step can be performed on a small selection of promising complex candidates, followed by a final refinement step can help to optimise the structures and remove the remaining imperfections. 

Sampling

There are many different template-free docking tools based on various different criteria.

Docking tools perform an extensive or guided search of the structural space for possible solutions and often score these decoys during that step with a simple and fast scoring function (e.g. to remove those that are too unrealistic because they are too clashing). By performing this search, we hope that sampling tools will be able to propose at least one solution that is close to the real complex (denoted near-native complex) and which can later be identified by one or several scoring functions. Traditionally, the bigger of the two proteins is called the receptor and stays put, whilst the smaller one of the two, the ligand, moves in space and orientation around the receptor. The complex shape of proteins makes it very difficult to exhaustively explore all possible binding conformations, thus bioinformatics tools had to use tricks to minimise the system's enormous number of degrees of freedom. A way to deal with this is to consider both proteins as rigid units (i.e. "rigid-body" docking), thereby reducing the complexity to a 6-dimensional search space: typically three translational degrees and three rotational degrees representing the x, y and z axes and the θ, φ and ψ angles in a Cartesian space. This considerably accelerates the conformational search.

Some also integrate the concept of protein flexibility during sampling in the form of small conformational readjustments.

Sampling strategies include Fourier-based sampling, local shape matching and other global search methods, with Fourier-based sampling the most commonly used. An objective assessment was made in 2015 of 14 global docking tools on Weng benchmark 4 (Huang 2015) (section 0, page 68) of which some are listed in Table 1-1 along with a few of the topperforming servers in CAPRI 7 th edition [START_REF] Lensink | Modeling protein-protein, protein-peptide and protein-oligosaccharide complexes: CAPRI 7(th) edition[END_REF]. 

Fast-Fourier transform-based sampling (FFT)

In the traditional Fourier correlation approach, protein topology is reduced to a simple Cartesian grid model, which naturally favours close contacts and penalises steric clashes. Cubes in the grids (typically 1-1.5 Å in size) are labelled according to their position in the protein (inside, outside or on the surface). The grids are then efficiently matched through successive translational increments and Fast-Fourier transform-based calculations (FFT) which can be applied to calculate correlating surface shapes but also other properties such as compatible hydrophobicity or electrostatic and van der Waals force fields [START_REF] Ritchie | Protein docking using spherical polar Fourier correlations[END_REF]. ZDOCK [START_REF] Pierce | ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers[END_REF] or GRAMM-X [START_REF] Tovchigrechko | GRAMM-X public web server for protein-protein docking[END_REF] (see section 1.3.3.4.4, page 72 for more details on evaluation metrics). The MDockPP server is a GPU-adapted reimplementation of ZDOCK3.02 and was ranked within the best-performing servers in CAPRI 7 th edition [START_REF] Lensink | Modeling protein-protein, protein-peptide and protein-oligosaccharide complexes: CAPRI 7(th) edition[END_REF][START_REF] Duan | Performance of human and server prediction in CAPRI rounds 38-45[END_REF].

Spherical-Fourier transform-based sampling (SFT)

As a new FFT must be calculated for each rotational increment, calculations can be extremely slowed down when docking large molecules, especially when a small grid size is used. In Table 1-1). FRODOCK2.1 (Fast ROtational DOCKing) ranks its decoys with a linear combination of four different terms: van der Waals, electrostatic and desolvation potentials as well as a knowledge-based term, Tobi [START_REF] Dong | Optimized atomic statistical potentials: assessment of protein interfaces and loops[END_REF]. FRODOCK typically includes an additional clustering step after sampling to remove redundancy between decoys. Other global search strategies include HADDOCK, LZERD or MDOCKPP, which were found in the top-ranking docking servers in the latest CAPRI round [START_REF] Lensink | Modeling protein-protein, protein-peptide and protein-oligosaccharide complexes: CAPRI 7(th) edition[END_REF].

Other sampling strategies

Local

LZERD [START_REF] Christoffer | Performance and enhancement of the LZerD protein assembly pipeline in CAPRI 38-46[END_REF]) is a geometric shape-based docking programme that uses rotation-independent 3D Zernike descriptors to represent protein surfaces and can handle a certain degree of protein flexibility by adjusting the resolution of its descriptors. 

ATTRACT (de

Data-driven docking

In most free docking programs and web servers designed to predict interactions between globular domains, restraints can be used to enrich docking solutions by filtering out decoy interfaces that do not involve some residues or residue pairs. For instance, most docking servers include a field where the user can input interface restraints. Examples include ClusPro [START_REF] Kozakov | The ClusPro web server for protein-protein docking[END_REF], GRAMM-X [START_REF] Tovchigrechko | GRAMM-X public web server for protein-protein docking[END_REF] The user-friendly HADDOCK server (van Zundert, [START_REF] Van Zundert | The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes[END_REF]) has the additional and interesting ability to set ambiguous constraints. HADDOCK distinguishes between residues that can be confidently assigned as involved in the interaction ("active" residues) and their solvent-accessible neighbours ("passive" residues). HADDOCK was typically designed to integrate experimental data but when no such data is available, interface predictions from software such as CPORT (de Vries and Bonvin 2011) can be used to guide the docking process. HADDOCK consists of three main steps, starting with rigid-body energy minimisation followed by simulated annealing and refinement in explicit solvent. Decoys are scored with a linear combination of physical potentials and experimental data distance constraints.

Decoy clustering

Other than removing possible redundancies to alleviate possible scoring steps that follow (e.g. FRODOCK), an additional clustering step after the initial sampling can help to better select near-native configurations. This is based on the assumption that the free energy landscape exhibits a broader and deeper well around the native structure than around non-native structures. One can therefore assume that within the sampling population, near-native regions should be more enriched in decoys.

ClusPro [START_REF] Kozakov | The ClusPro web server for protein-protein docking[END_REF]), a top-performer in the CAPRI challenge, selects the top 1,000 FFT-generated decoys by PIPER and clusters them based on RMSD. Since near-native structures are more likely to cluster together into big low-energy groups, ClusPro uses cluster size as a selection criterion to return its most probable solutions.

Scoring functions

According to physical chemistry, the structure that is closest to the native structure should be the one with the lowest binding free energy. However, predicting binding free energy is a difficult task as it involves the calculation of entropic contributions and solvent effects.

Additionally, accurate selection of near-native poses within predictions relies on a complete sampling of the conformational space. Good proxies are scoring functions, which implies, however, the loss of the quantitative aspect of scoring as we are reduced to relative decoy ranking. Scoring functions can be based on different properties such as physics-based (electrostatic or van der Waals interactions, hydrogen bonding, desolvation) or knowledgebased. Shape-complementarity is the most basic one and is integrated into sampling. Sophisticated scoring functions are often used in a rescoring step after sampling.

We particularly use SOAP-PP, InterEvScore and Rosetta's score in our team, thus I will describe all three in more detail below. This enables it to better differentiate wrong models from near-native ones on three different decoy sets and two different benchmarks [START_REF] Dong | Optimized atomic statistical potentials: assessment of protein interfaces and loops[END_REF][START_REF] Quignot | InterEvDock2: an expanded server for protein docking using evolutionary and biological information from homology models and multimeric inputs[END_REF].

SOAP

Another scoring function that I used during my PhD was the Rosetta interface score (ISC) [START_REF] Gray | Protein-Protein Docking with Simultaneous Optimization of Rigid-body Displacement and Side-chain Conformations[END_REF][START_REF] Chaudhury | Benchmarking and analysis of protein docking performance in Rosetta v3.2[END_REF]. ISC is made of a linear combination of non-bonded atom-pair interaction energies and empirical and statistical potentials among other terms and is calculated by subtracting the total energy of both monomeric structures from the total energy of the complex structure.

InterEvScore [START_REF] Andreani | InterEvScore: a novel coarse-grained interface scoring function using a multi-body statistical potential coupled to evolution[END_REF]) is a scoring function, which couples a coarsegrained two-and three-body statistical potential with coevolutionary information extracted from coMSAs built jointly for the two protein partners. InterEvScore goes beyond conservation and makes use of coevolving pairs (or groups) of positions across the interface. The goal is thus to favour decoys containing contacts that are compatible with the coevolutionary history of the interaction. In InterEvScore, interface contacts are computed for each docking decoy and scored for each species in the coMSAs. InterEvScore can make use of coevolutionary information from coMSAs containing as few as 10 sequences. It was integrated in the recently updated free docking server InterEvDock2 [START_REF] Quignot | InterEvDock2: an expanded server for protein docking using evolutionary and biological information from homology models and multimeric inputs[END_REF], which I will describe in more detail in the following chapter (Chapter 2, page 77).

Similarly to constraints in the docking, predicted interface residues may also be used in the scoring step. This is the case, for instance, in DockRank [START_REF] Xue | DockRank: ranking docked conformations using partner-specific sequence homology-based protein interface prediction[END_REF], where interface residues are predicted based on the 3D structures of interologs and decoys are scored according to how many predicted residues belong to their interface. DockRank gives good results compared to scoring functions of the reference docking programme ZDOCK [START_REF] Vreven | Integrating atom-based and residue-based scoring functions for protein-protein docking[END_REF], partly owing to the partner-specific trait of their interface residue predictor. Another scoring function driven by conservation is GraphRank, integrated in iScore [START_REF] Geng | iScore: A novel graph kernel-based function for scoring protein-protein docking models[END_REF]. In GraphRank, interfaces are not represented as a set of individual contacts but as labelled graphs in which the nodes represent interface residues, each annotated with its PSSM, and edges encode residue contacts. GraphRank classifies interfaces as native or non-native by comparing them with a reference set of positive and negative examples. The complex graph comparison problem is solved using random graph walking. The resulting similarities with the reference set are given as input to an SVM classifier to estimate how close each decoy is to a native structure. Combined with intermolecular energetic terms in iScore, GraphRank manages to outperform HADDOCK [START_REF] Dominguez | HADDOCK: a protein-protein docking approach based on biochemical or biophysical information[END_REF]) and state-of-the-art docking programme ZDOCK.

High-resolution scoring and structural refinement

In order to compensate for the imprecision enforced by rigid-body sampling, one can perform re-sampling around already generated and carefully selected docking poses or integrate small minimisations and optimisations in the hope of reaching higher quality models.

Additionally, a last minimisation step can be performed in order to return models of improved quality by taking steric clashes, proper repacking or correct H-binding into account for example (see Figure 1-11, page 57). We commonly use the Rosetta package to do so (Lyskov andGray 2008, Fleishman, Leaver-Fay et al. 2011).

Docking methods for structural modelling of protein-peptide complexes

From the prediction of binding motifs and of binding sites in the folded domain partner, it is possible to generate structural models using docking tools that were developed and benchmarked for the specific purpose of docking flexible peptides onto folded receptors (Figure 1-7, labels 4 and 7, page 41). These docking methods were recently reviewed [START_REF] Ciemny | Protein-peptide docking: opportunities and challenges[END_REF]) and a number of methods have been described in a collection of protocols (Schueler-Furman and London 2017). Based on some interaction details obtained from evolutionary constraints, the sampling complexity can be restricted either by driving local docking around specific anchor residues or by post-filtering docking poses after global docking. Among available strategies, a recently developed protein-peptide docking protocol [START_REF] Alam | High-resolution global peptide-protein docking using fragments-based PIPER-FlexPepDock[END_REF]) reached remarkable accuracy using a combination of PIPER [START_REF] Kozakov | How good is automated protein docking?[END_REF] for exhaustive fragment-receptor rigid-body docking and Rosetta FlexPepDock [START_REF] Raveh | Sub-angstrom modeling of complexes between flexible peptides and globular proteins[END_REF] for flexible full-atom refinement of the best rigid-body poses. The method also generated top performing models in CAPRI 7 th edition (see section 1.3.3.4.2, page 70 and Chapter 4, page 125 for more details on CAPRI and its targets) on challenging targets such as T134-T135 and T121 [START_REF] Khramushin | Modeling beta-sheet peptide-protein interactions: Rosetta FlexPepDock in CAPRI rounds 38-45[END_REF]. Interestingly, combining PIPER-FlexPepDock with the InterPep2 template-based method improves prediction performance over the use of each individual method on a test dataset of 27 non-redundant protein-peptide complexes for which the unbound structure of the protein is also available [START_REF] Johansson-Akhe | InterPep2: Global Peptide-Protein Docking using Interaction Surface Templates[END_REF].

Exhaustive sampling of the peptide conformations can also be obtained using CABS-Dock [START_REF] Kurcinski | CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site[END_REF] which randomly docks a peptide with restrictions on a binding region and subsequently refines conformations using replica exchange Monte Carlo dynamics [START_REF] Kurcinski | Flexible docking of peptides to proteins using CABS-dock[END_REF]. Other methods such as HADDOCK [START_REF] Trellet | A unified conformational selection and induced fit approach to protein-peptide docking[END_REF] Bacterial two-component signalling (TCS) systems involve specific interactions between proteins from large families of paralogs. The two protein partners most often belong to the same operon and their proximity within genomes facilitates the construction of large coupled MSAs associating specifically interacting protein pairs. This makes the TCS system ideally suited for statistical covariation analysis and as such, TCS was the object of the first studies showing that DCA was predictive of residue pairs in contact across the interface [START_REF] Weigt | Identification of direct residue contacts in protein-protein interaction by message passing[END_REF]. Coupling these predictions with molecular dynamics simulations enabled the high-resolution modelling of a TCS pair interface [START_REF] Schug | High-resolution protein complexes from integrating genomic information with molecular simulation[END_REF]).

The idea of sequence matching using genomic proximity and operon structures was extended from the TCS system to several dozens of bacterial complexes in two 2014 studies, where predicted DCA contacts were used as distance restraints in molecular docking for interface modelling with either PatchDock coupled with Rosetta or HADDOCK [START_REF] Hopf | Sequence co-evolution gives 3D contacts and structures of protein complexes[END_REF][START_REF] Ovchinnikov | Robust and accurate prediction of residue-residue interactions across protein interfaces using evolutionary information[END_REF]). The EVcomplex web server provides an interface for users to predict interacting residues in a complex of interest from two input protein sequences [START_REF] Hopf | Sequence co-evolution gives 3D contacts and structures of protein complexes[END_REF]. Alignments can be built either by using the original genomic proximity method or by pairing best hits, that is, sequences with highest sequence identity to the query, in each genome.

Recently, HADDOCK was also used to predict homodimeric complex structures using DCA restraints in a large-scale study of almost 2,000 protein families [START_REF] Uguzzoni | Large-scale identification of coevolution signals across homooligomeric protein interfaces by direct coupling analysis[END_REF]. This is a special case for the use of DCA-derived restraints since the homodimeric interaction signal is entangled with intra-protein couplings in predictions based on homologous sequences of a single protein that homodimerises (dos Santos, [START_REF] Dos Santos | Dimeric interactions and complex formation using direct coevolutionary couplings[END_REF].

As an alternative to docking or molecular dynamics simulations with restraints, Monte Carlo simulations based on a coarse-grained potential energy specifically validated on low-affinity protein complexes were used to exploit DCA predictions for the molecular modelling of the eukaryotic Hsp70/Hsp40 and homologous bacterial DnaK/DnaJ interfaces [START_REF] Malinverni | Modeling Hsp70/Hsp40 interaction by multi-scale molecular simulations and coevolutionary sequence analysis[END_REF]. Due to the lack of operon organisation in this system, the authors Recent large-scale and blind assessments showed that DCA-type predictions were most efficient for single protein structure prediction when integrated into deep learning pipelines (see section 1.3.1.2, page 43). This idea was generalised to inter-protein contact prediction in the ComplexContact web server [START_REF] Zeng | ComplexContact: a web server for inter-protein contact prediction using deep learning[END_REF]. ComplexContact first builds two concatenated MSAs for pairs of proteins: one using a genomic context method as discussed above and another relying on a matching method based on phylogenetic species tree ordering. Then, a deep learning model trained on single chain proteins predicts interprotein contacts from these two MSAs. Inter-protein contact prediction results suggest that deep learning greatly enhances DCA performance. Most recently, large-scale interface modelling was performed using protein-protein docking guided by distance constraints between residue pairs that were predicted as coevolving by algorithms of the DCA family, with the goal of predicting protein interaction networks in two bacterial species [START_REF] Cong | Protein interaction networks revealed by proteome coevolution[END_REF]. In apparent contrast to the results obtained with ComplexContact, the authors found that a deep learning method successfully developed for single protein contact prediction [START_REF] Jones | High precision in protein contact prediction using fully convolutional neural networks and minimal sequence features[END_REF] did not improve interface model discrimination. This may be because in ComplexContact, only sequences are used and the deep learning layer increases accuracy because it strengthens contacts compatible with the implicitly predicted 3D structures of unbound subunits. In the protein docking study [START_REF] Cong | Protein interaction networks revealed by proteome coevolution[END_REF], the set of DCA constraints satisfied by a docking model has to be consistent with the explicit monomeric 3D structures of the binding partners, which may explain why deep learning did not bring additional discrimination. Further progress might be obtained by coupling molecular docking to deep learning contact prediction methods specifically trained on protein-protein interfaces.

Evaluation

Protein-protein docking approaches can be assessed using datasets with known unbound and complex structures or during blind tests through CAPRI (Critical Assessment of PRediction of Interactions), a challenge similar to CASP for protein folding. Decoy quality assessment and general performance metrics are also summarised below. Unfortunately, one of the biggest limitations of experimental benchmarks is that their size is highly dependent on the availability of experimental bound and their corresponding unbound structures in the PDB. A way to overcome this limitation is to enrich the benchmark with complexes for which at least one of the unbound structures is unavailable by modelling the unbound state. Both DOCKGROUND and PPI4DOCK (Yu and Guerois 2016) followed that logic.

DOCKGROUND currently contains subsets of complexes for which at least one unbound structure was simulated using Langevin Dynamics simulations in CHARMM (1918 complexes) or modelled using I-TASSER (165 complexes, see section 1.3.1.1, page 42) or Phyre2 (963+171 complexes). In either of these subsets, the "unbound quality" of the generated models was assessed according to their RMSD with the bound complex (in theory, the more different to the native complex, the more reliably unbound). 100 well-selected GRAMMgenerated decoys are available on their website for the 165 I-TASSER-modelled complexes.

PPI4DOCK [START_REF] Yu | PPI4DOCK: large scale assessment of the use of homology models in free docking over more than 1000 realistic targets[END_REF]) is a large benchmark developed in our team made of 1417 binary docking targets where unbound structures were modelled by homology and of which the "unbound quality" is guaranteed by the use of unbound-assured templates. PPI4DOCK

was constructed starting from an initial batch of 3157 non-redundant, high-resolution heterodimers from InterEvol [START_REF] Faure | InterEvol database: exploring the structure and evolution of protein complex interfaces[END_REF]. Homologs were searched for each partner individually using the HH-suite package [START_REF] Steinegger | HH-suite3 for fast remote homology detection and deep protein annotation[END_REF]) and filtered out to only have good quality homologs that were not co-crystallised with any homolog of the opposite partner (i.e. unbound templates). Unbound models were then generated with these identified templates and the homology modelling RosettaCM protocol [START_REF] Song | High-resolution comparative modeling with RosettaCM[END_REF]. PPI4DOCK has been used to benchmark two different sampling programmes and four different scoring functions with comparable performances to when using the Weng Benchmark 4 (see Chapter 2). Thus, in the case of PPI4DOCK, using modelled unbound struc-tures only seems to mildly affect the docking with a decreasing impact for increasing sequence identity with the chosen template. PPI4DOCK is split into five difficulty categories going from "very easy" to "super hard" depending on the divergence between bound and unbound states and how many clashes are generated when superimposing the unbound models onto the native complex. The whole PPI4DOCK benchmark can be downloaded from http://biodev.cea.fr/interevol/ppi4dock/ and contains pre-generated co-MSAs for each case. In today's machine learning era, it is becoming increasingly important to have a continuous evaluation metric rather than a discrete one for model fitting and to avoid threshold effects.

More recently, a continuous metric was published, DockQ [START_REF] Basu | DockQ: A Quality Measure for Protein-Protein Docking Models[END_REF], that closely reproduces the CAPRI criteria on a test set of 15,328 CAPRI-submitted decoys (Figure 1-14). DockQ is effectively the average value between the three previously mentioned metrics, Fnat, L-RMSD and I-RMSD, in which both RMSDs are first subjected to inverse square scaling in order to bring them, similarly to the Fnat, in the [0, 1] range (the scaled L-RMSD and I-RMSD being equal to 0.5 for 8.5 Å and 1.5 Å respectively). The inverse square method also has the benefit of giving less weight to high RMSD values since above a certain threshold, decoys are wrong, no matter how high the RMSD goes. The interest in DockQ can be expected to increase in the following years and its use was discussed in the most recent CAPRI meeting. However, performances are mainly measured using the original CAPRI criteria throughout this work in order to better compare our methods with others in the literature.

Docking performance measurements

The general performance of various docking and/or scoring methods on a set of cases can be evaluated using several different metrics. The top N success rate (SR) is the most common performance measurement and consists of the fraction of cases in a benchmark that have at least one near-native decoy in the top N ranked decoys. N is usually equal to 10, but starting with recent CAPRI challenge round 47, only the top 5 submissions are evaluated. The top N hit rate (HR), also called hit count in [START_REF] Chen | A novel shape complementarity scoring function for protein-protein docking[END_REF], corresponds to the overall proportion of hits within the top N ranked decoys and gives a better view of how enriched the top N ranking decoys are in near-natives.

As DockQ only recently appeared in the field, the community is still establishing the best way to integrate this continuous score into a general evaluation metric. Bonvin's team recently used the discounted cumulative gain (DCG) [START_REF] Geng | iScore: A novel graph kernel-based function for scoring protein-protein docking models[END_REF]. The DCG for each case can roughly be assimilated to a weighted average and is calculated as follows:

𝐷𝐶𝐺 = ∑ 2 (𝐷𝑜𝑐𝑘𝑄 𝑟𝑎𝑛𝑘 ) -1 𝑟𝑎𝑛𝑘 𝑁 𝑟𝑎𝑛𝑘=1
where rank is the rank of the decoy, DockQrank is the DockQ score of the decoy with that rank and N is the top N decoys that are taken into account for this measurement. The 1/rank factor gives more importance to the quality of the top scoring decoys. In order to better compare cases with different numbers of decoys, the DCG is normalised by an ideal DCG (iDCG), which is calculated by reordering all decoys by decreasing DockQ score. The final normalised value (nDCG) for each case can be extrapolated into a single value by calculating the average nDCG over all cases in the benchmark.

OVERVIEW OF THIS MANUSCRIPT

Proteins are of fundamental importance in cells and knowledge of their 3D structure can help study their function in the cellular context with possible applications in therapeutic field (e.g. inhibitor of PPIs, drug design etc.). Proteins evolve under the constraint of maintaining functional interactions. This constraint is reflected in the evolutionary history of protein partners shown in coupled MSAs. As a consequence, these alignments provide valuable information for the purpose of interface computational prediction. The use of this information in docking is the central theme of this PhD project.

Apart from the introduction and the conclusions and perspectives chapters (Chapter 1 and Chapter 5), this manuscript is split into three other chapters. Chapter 2 and Chapter 4 correspond to already published articles and Chapter 3 to a paper in the process of being submitted.

In Chapter 2, I present our team's molecular docking server, InterEvDock2. I participated in major developments during my first year of PhD to make it more automated and userfriendly. InterEvDock2 predicts 10 most probable complex models from a pair of input sequences or oligomeric or monomeric structures using the FRODOCK sampling programme and a unique consensus scoring approach between three highly complementary scoring functions: the physics-based FRODOCK score, atomic-statistical potentials from SOAP-PP and the evolutionary-guided InterEvScore. Thanks to a completely automated modelling pipeline using the RosettaCM protocol, users are able to dock their proteins, even if the monomeric structures are unknown. Using strategic breakpoints throughout the pipeline, the user also has a say in the template's choice if wanted. Of particular interest to biologists, constraints can be added in order to filter out any irrelevant docking poses. Finally, I validated InterEvDock2's performance on a large set of 812 cases from our PPI4DOCK dataset.

In order to further develop our discrimination capacity between wrong and correct predictions, I decided to pursue the integration of evolutionary information at a much finer level of detail into scoring in Chapter 3. In the evolutionary-based InterEvScore, evolutionary information is given at the residue level in coMSAs and thus can only be easily mixed with a residue-scale potential. The high complementarity between InterEvScore and the atomic statistical potentials from SOAP-PP encouraged us to derive evolutionary information at the atomic level using homology modelling. Coupled with a more efficient scoring implementation, average scores over a query protein pair and its homologs can be easily calculated for each decoy. This methodology showed promising results on several scores and we are currently preparing its integration in our InterEvDock2 server.

Finally, I present in Chapter 4, our key strategies and latest performances in the famous CAPRI challenge (Critical Assessment of PRediction of Interactions). CAPRI is an international blind-test challenge, where groups are invited to test their complex structural prediction pipelines on regularly dispatched targets over two years. The structures of these targets are only publically available once the challenge is over, thereby providing real-life test scenarios to defy and improve our docking methods. Throughout my PhD project, I have had the chance of participating in 10 of the challenges in CAPRI 7 th edition as well as three prediction rounds from CAPRI 8 th edition that is currently underway. I was also able to attend the CAPRI 7 th evaluation meeting in April 2019, gathering all participating groups. As official results for the recent prediction rounds are not yet released, I will only focus on the targets in CAPRI

CHAPTER 2 InterEvDock2

Acquiring the 3D structure of protein interfaces is of high use for structural biologists to study their protein of interest and understand its functions in the cellular context. As experimental techniques are sometimes too time consuming, expensive or impossible, there is a high demand for structural prediction tools of protein complexes. Computational biologists are therefore encouraged to provide easy access to their general prediction pipelines and to make them as user-friendly and automated as possible to suite the majority of the scientific community. In light of this, our team developed the molecular docking server, InterEvDock.

I participated in the implementation of major developments into the server (now InterEv-Dock2) during my first year of PhD and will present them in the following chapter. Three main features were added including the possibility of specifying constraints and the automated monomer homology pipeline in which I took part. I also took over the majority of the benchmarking. This chapter is based on our published paper [START_REF] Quignot | InterEvDock2: an expanded server for protein docking using evolutionary and biological information from homology models and multimeric inputs[END_REF]).

As introduced above, computational modelling of protein assemblies provides crucial insights for the functional characterisation of macromolecular interactions occurring in the crowded cellular environment. Predictions of protein-protein interfaces can be used to design experiments to investigate the role of important interactions and possibly interfere with them, typically using mutagenesis. Models of macromolecular complexes are also useful to complement integrative structural biology [START_REF] Ward | Biochemistry. Integrative structural biology[END_REF]) and to deepen our understanding of disease-associated mutations [START_REF] Gress | Spatial distribution of disease-associated variants in threedimensional structures of protein complexes[END_REF]) and protein interaction networks [START_REF] Vakser | Protein-protein docking: from interaction to interactome[END_REF].

A number of servers have been developed for protein-protein docking, which can be separated into template-based modelling servers, which aim to identify suitable structural templates for the protein complex, and template-free docking servers. Recent resources to find templates for interface modelling starting from the sequences of two protein partners include KBDOCK [START_REF] Ghoorah | Classification and Exploration of 3D Protein Domain Interactions Using Kbdock[END_REF] Several servers enable the prediction of inter-molecular contacts such as EVcomplex [START_REF] Hopf | Sequence co-evolution gives 3D contacts and structures of protein complexes[END_REF], GREMLIN [START_REF] Ovchinnikov | Robust and accurate prediction of residue-residue interactions across protein interfaces using evolutionary information[END_REF]) and I-COMS [START_REF] Iserte | I-COMS: Interprotein-COrrelated Mutations Server[END_REF]; however, such methods still have limited applicability due to the difficulty in building large enough joint multiple sequence alignments (MSAs) for the two protein partners. We developed the InterEvScore scoring function incorporating co-evolutionary information into the docking process, which improves predictions for as few as 10 sequences in the joint MSAs [START_REF] Andreani | InterEvScore: a novel coarse-grained interface scoring function using a multi-body statistical potential coupled to evolution[END_REF]). We integrated this scoring function into the InterEvDock pipeline (Yu, Vavrusa et al. 2016). InterEvDock is based on rigid-body sampling by FRODOCK [START_REF] Garzon | FRODOCK: a new approach for fast rotational protein-protein docking[END_REF]) followed by re-scoring using the SOAP-PP atomic statistical potential [START_REF] Dong | Optimized atomic statistical potentials: assessment of protein interfaces and loops[END_REF]) and InterEvScore [START_REF] Andreani | InterEvScore: a novel coarse-grained interface scoring function using a multi-body statistical potential coupled to evolution[END_REF]) and consensus model selection. To date, the InterEvDock web server is the only free docking server allowing to directly predict the structure of protein-protein interactions using co-evolutionary information. We successfully used the InterEvDock strategy to guide our predictions in recent Critical Assessment of Predicted Interactions (CAPRI) rounds: for CAPRI rounds 28-35, our group ranked first by making correct predictions for 10 out of 18 targets (Yu, Andreani et al. 2017).

Very often, the individual structures of the exact proteins involved in a complex of biological interest are not known. On the other hand, structural models can be obtained for a large fraction of proteins in interaction networks thanks to homology modelling [START_REF] Mosca | Interactome3D: adding structural details to protein networks[END_REF], making them amenable to protein-protein docking. To date, most free docking servers, except the HDOCK server, allow users to provide only input structures but no input sequences for the protein partners.

Based on the user-oriented considerations mentioned above, here we introduce the InterEv-Dock2 server which represents a major evolution over the original InterEvDock. Protein sequences can now be provided as input, and not only 3D structures. To handle sequence inputs, we have added a module that performs comparative modelling prior to docking based on an automatic template search protocol. In case the user has biological input such as a position that is known to be involved in the interface between the two protein partners or a pair of residues known to be in contact, restraints with a tunable distance threshold can be specified for use in the docking procedure. This is crucial to ensure that all available biologically relevant information is used for InterEvDock2 predictions. In addition, InterEvDock2

implements the possibility to submit structures of oligomers as input to the pairwise free docking. Such an option is generally complicated in co-evolution analyses since the joint MSAs have to be generated for every chain of an oligomer. This process is now fully automated in InterEvDock2, allowing users to submit inputs such as homodimers or more complex structures as that of the nucleosome made of ten subunits. InterEvDock2 also benefits from improved accuracy by integrating the most recent FRODOCK 2.1 algorithm for rigid- structures or sequences, users may define constraints that will be used to filter docking solutions; these constraints can be a single interface residue or a pair of residues in contact.

Users can optionally specify the distance that will be used for each constraint (Figure 2-2C).

An InterEvDock2 session identifier can also be provided in order to re-use docking results from a previous run and test different constraints (Figure 2-2D). As in InterEvDock, users may input the joint MSAs used for co-evolution-based scoring; otherwise the joint MSAs will be built by the server through an automated procedure. In case an oligomeric structure is submitted as one of the two docking partners, the joint MSAs will also be automatically calculated and processed by the server for every chain of the oligomer. A demonstration case using sequences as input to the docking (and optionally a constraint) is available from the InterEvDock2 submission page. of the other two scores (down to a minimum of two similar decoys). In case of a tie, priority is given to InterEvScore top 10 models, then SOAP-PP, then FRODOCK. If necessary, the consensus list is then filled up to 10 models by selecting the best models from each score (4 from InterEvScore, 3 from SOAP-PP and 3 from FRODOCK). When building the consensus, models that are structurally redundant (i.e. ligand RMSD ≤ 10 Å) with previously selected models are excluded, so that the final list contains 10 structurally non-redundant models.

Molecular docking procedure

Docking from input sequences

If the user provides only an input sequence for one or both partners, steps (i) to (iii) can be applied. (i) If the user does not provide a template, the profile-profile comparison tool

HHsearch is used to search for templates [START_REF] Soding | Protein homology detection by HMM-HMM comparison[END_REF][START_REF] Remmert | HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment[END_REF]); only templates with HHsearch probability higher than 95% are selected. The web server returns a list of up to 20 templates selected according to HHsearch probability, query-template sequence identity and structural resolution (see details in section A. ). By setting the breakpoint after template search, the user can choose to start modelling from any of these templates by copy-pasting the query-template alignment to the server submission form; otherwise the best template found by the automatic procedure is used. If no suitable template is identified, no modelling is performed. (ii) If the user provides a template but no query-template alignment, the query sequence is aligned with the template sequence using MAFFT [START_REF] Katoh | MAFFT multiple sequence alignment software version 7: improvements in performance and usability[END_REF]. (iii) Once a template and a query-template alignment are available for each protein with no user-provided structure, comparative modelling using a RosettaScripts [START_REF] Fleishman | RosettaScripts: a scripting language interface to the Rosetta macromolecular modeling suite[END_REF]) protocol based on RosettaCM [START_REF] Song | High-resolution comparative modeling with RosettaCM[END_REF] is performed to build a 3D model for (at least part of) the input sequence. Due to runtime considerations, compared to the procedure used to build the PPI4DOCK database (Yu, Vavrusa et al. 2016), the comparative modelling protocol implemented in the InterEvDock2 web server involves fewer optimisation cycles (see protocol details in the Supplementary Methods, Appendix B. page 170). This protocol is quite robust for templates with relatively high homology but it can lead to loss of precision for more remote templates (typically when both templates have less than 50% sequence identity with the query proteins). By default, to avoid spending time reconstructing regions that are not present in the template, only loops (insertions) shorter than 14 residues are rebuilt during the modelling and N-terminal and Cterminal extensions are not modelled, but maximal lengths for modelling of loops, N-terminal and C-terminal extensions can be tuned by the user.

User-defined constraints

Step (v) applies if the user provides information on residues (or pairs of residues) involved in the interface: restraints are applied to filter sampled solutions. The distance used to enforce restraints can be modulated which offers the possibility to integrate data from various sources. The default distance was set to 8 Å for constraints on single positions and 11 Å for pair constraints (see section d. for a detailed justification of these thresholds). When constraints are provided by the user, the output returned by the server will provide information about whether or not each constraint was used during docking (e.g. constraints on residues not exposed on the surface of the protein are excluded).

RESULTS

Benchmarking on PPI4DOCK

To assess the predictive power of the InterEvDock2 server on 3D models, we have set up the most extensive benchmark to date, using unbound models as input of the docking simulations. The PPI4DOCK database [START_REF] Yu | PPI4DOCK: large scale assessment of the use of homology models in free docking over more than 1000 realistic targets[END_REF] [START_REF] Hwang | Protein-protein docking benchmark version 4.0[END_REF]. For each of the 812 targets, PPI4DOCK provides unbound homology models of the two protein partners as well as the joint MSAs used for docking and scoring in the InterEvDock2 pipeline. As on the web server, the predictions for each case consist in the top 10 consensus interface models and the top 10 interface residues, which are used to assess the InterEvDock2 performance. A solution is defined as acceptable or better according to the criteria defined by the CAPRI consortium [START_REF] Mendez | Assessment of blind predictions of protein-protein interactions: current status of docking methods[END_REF].

The prediction performance of InterEvDock2 is reported in Table 2-1. Among the 812 targets, 29% ( 239) have at least one model of acceptable or better quality in the top 10 consensus obtained from the InterEvDock2 pipeline, which represents a significant improvement over the top 10 success rates of the three individual scores used to build the consensus (see Figure 2-3). The 812 complexes belong to four difficulty levels (PPI4DOCK categories) based on the quality of the superimposed interface model (two unbound models superimposed on the bound structure): "very easy" (174 complexes), "easy" (498 complexes), "hard" (118 complexes) and "very hard" (22 complexes). Other "very hard" and all "super hard" PPI4DOCK targets do not satisfy the condition that FRODOCK 2.1 was able to generate at least one acceptable or better decoy among the top 50,000 decoys, since they may require flexibility in the docking process [START_REF] Yu | PPI4DOCK: large scale assessment of the use of homology models in free docking over more than 1000 realistic targets[END_REF], and are therefore not included in the present benchmark. As expected, the InterEvDock2 top 10 consensus success rate decreases with increasing difficulty of the test cases, from 43% for the "very easy" PPI4DOCK category to 30% for the "easy" category, 11% for the "hard" category and 5% for the "very hard" category.

Analysis of InterEvDock2 performance depending on the minimum sequence identity be- Direct comparisons with previous benchmarks are difficult because the benchmark dataset used here is much larger than others datasets typically used to assess docking and scoring performance. Comparison with previously reported success rates on the Weng benchmark [START_REF] Hwang | Protein-protein docking benchmark version 4.0[END_REF], Yu, Vavrusa et al. 2016) are details in the Supplementary materials (see Appendix B. page 177 and Table B-3 andTable B-4). An interesting feature of the Weng benchmark compared to PPI4DOCK is that it contains targets where one partner is multimeric. Out of the 85 cases from the Weng benchmark that can be used for InterEvDock2 benchmarking, 16 contain a multimeric partner. The InterEvDock2 top 10 consensus contains an acceptable or better solution for 7 out of these 16 cases (44%). This success rate is comparable to the overall success rate of InterEvDock2 on the much larger PPI4DOCK benchmark (29%) and on the 85 cases of the Weng benchmark (32%). Additionally, docking using multimeric partners has the advantage that potentially "sticky" interface regions involved in multimeric interactions of one partner are buried in the multimeric interface and therefore masked for the docking process.
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In Table 2-1, the InterEvDock2 performance is also compared to the performance of the widely-used rigid-body docking programme Zdock3.0.2, assessed on the same 812 complexes from the PPI4DOCK benchmark. For each case, 54,000 decoys are generated and ranked by Zdock3.0.2. In 126 out of 812 cases (15%), an acceptable or better solution is found among the top 10 decoys. Altogether, these benchmarking results highlight the added value of the InterEvDock2 processing pipeline, in particular the clustering and consensus scoring steps.

Of key interest for experimental biologists, the InterEvDock2 output offers a list of 10 residues most likely involved in the complex interface (5 predicted residues on each partner) that can be targeted for mutagenesis. For these residue predictions, we reach 91% success rate, with 735 of the 812 benchmark cases having at least one of the 10 predicted residues involved in the actual interface (Table 2-1). As was found for the 85 cases from the Weng benchmark used to assess the original InterEvDock performance (Yu, Vavrusa et al. 2016), this success rate is remarkably stable with increasing difficulty: from 92% for very easy cases to 90% for easy cases to 87% for hard cases. Predictions of the InterEvDock2 server can also be used as a prior to constrain more thorough docking simulations including flexibility. In that perspective, in 51% of the cases, at least one correct residue is predicted on both sides of the interface (59% for very easy targets, 53% for easy targets and 33% for hard targets).

Results are also presented in 

Predictions of CAPRI targets

The InterEvDock2 pipeline was challenged through our participation in all CAPRI rounds since 2013. Focusing on heteromeric targets evaluated at the sixth CAPRI evaluation meeting (rounds 28-35), our group ranked first with 10 correctly predicted targets out of 18. Among those 10 targets, our best prediction among ten submitted models was of high quality in 1 case, medium quality in 7 cases and acceptable quality in 2 cases (Yu, Andreani et al. 2017).

In 15 of the total 18 targets, evolutionary information was available in the form of either coevolution or conservation, providing key constraints to guide docking towards the correct solution. Although the InterEvDock2 pipeline was not specifically designed to handle homooligomeric docking, we were also among the highest ranking groups in the two joint CASP-CAPRI experiments involving mostly predictions of homodimers [START_REF] Lensink | Prediction of homoprotein and heteroprotein complexes by protein docking and template-based modeling: A CASP-CAPRI experiment[END_REF][START_REF] Lensink | The challenge of modeling protein assemblies: The CASP12-CAPRI experiment[END_REF]. Of note, for most CAPRI targets since 2013, only sequence information was provided to the participants. 

Description of docking case studies from input sequences and using constraints

To illustrate the biological relevance of InterEvDock2 predictions, we consider two docking case studies derived from the PPI4DOCK benchmark (Figure 2345). The first case is a complex between the Rho-family GTPase Cdc42 and the conserved, catalytic domains of exchange factor intersectin. Details of this interaction (PDB identifier: 1ki1) and structure-based mutagenesis revealed key features of the activation of Cdc42 by intersectin [START_REF] Snyder | Structural basis for the selective activation of Rho GTPases by Dbl exchange factors[END_REF]. This case was tested on the InterEvDock2 server by providing input sequences of the interacting regions in the two partners. Unbound templates were imposed for both proteins as in the PPI4DOCK benchmark; otherwise the automatic template search might The second case illustrates the interest of docking with user-defined restraints. We consider a complex between the RING domain of E3 ubiquitin protein ligase IDOL and ubiquitinconjugating enzyme E2 UBE2D (PDB identifier: 2yho) [START_REF] Zhang | The IDOL-UBE2D complex mediates sterol-dependent degradation of the LDL receptor[END_REF]. This interaction is involved in the regulation of cholesterol uptake. Nuclear magnetic resonance (NMR) chemical shift mapping was used to confirm the interacting region prior to crystallographic studies. This NMR analysis showed four residues (M388, V389, C390, and C391) in the RING domain of IDOL to have particularly high chemical shift variation upon binding of UBE2D.

The PPI4DOCK models of the interacting regions of IDOL and UBE2D (built by homology modelling using unbound templates for the two proteins, respectively 2yhnA and 3bzhA

with sequence identities of 100% and 61%) were submitted to InterEvDock2. Two runs were performed, one without constraints and one using the four residues identified by NMR as interface constraints. Among the top 10 consensus models returned by InterEvDock2, the highest-ranked acceptable solution (medium quality according to the CAPRI criteria) was ranked number 6 in the run without constraints. When using the constraints derived from experimental NMR data, there were two acceptable or better solutions in the InterEvDock2 top 10 consensus: one was ranked first (Figure 2-5B) and the second ranked number 6.

CONCLUDING REMARKS

InterEvDock2 represents a major, user-oriented evolution of InterEvDock. InterEvDock2 is still the only free docking server taking into account co-evolutionary information, relying on a combination of complementary scoring functions to identify the most likely interface models. The previous InterEvDock version was limited by its requirement of only dealing with monomeric inputs. InterEvDock2 greatly expands the range of applications to homo-and hetero-oligomers by handling multimeric chains in the two input proteins used for pairwise docking and the automated processing of their joint MSAs. Benchmarking results on PPI4DOCK emphasize the usefulness of InterEvDock2 in generating interface models of good quality in the scope of integrative structural biology. The InterEvDock2 server returns docking results within typical runtimes of 30 minutes (for proteins of around 100 residues) to 2 hours (for proteins of around 500 residues) even when starting from input sequences, while performing well on our benchmark of 812 cases docked from unbound homology models.

The server also benefits from a user-friendly submission and visualisation interface, including breakpoints after template search and homology modelling, and options for offline in-depth analysis with PyMOL. InterEvDock2 is thus designed as a useful tool for biologists who can very easily submit docking runs starting from simple input sequences and specify constraints to make use of any previously acquired experimental knowledge. InterEvDock2 results can assist biologists in designing hypotheses about molecular interaction mechanisms and interface mutations to investigate the functional role of an interaction.

As described in the previous chapter, evolutionary information can be especially useful to guide molecular docking [START_REF] Geng | iScore: A novel graph kernel-based function for scoring protein-protein docking models[END_REF]. The benchmarking of InterEvDock2

showed us that InterEvScore presents a high complementarity with SOAP-PP [START_REF] Quignot | InterEvDock2: an expanded server for protein docking using evolutionary and biological information from homology models and multimeric inputs[END_REF]. As both scores are based on statistical potentials but SOAP-PP has an atomic level of detail, we hypothesised that a score integrating evolutionary information at an atomic scale might pick up on finer properties to better distinguish near-natives from the rest of the decoys.

In InterEvScore, evolutionary information is given implicitly at residue-level through coMSAs and combined with a coarse-grained statistical potential. A major challenge in deriving evolutionary information to an atomic level of detail is finding a suitable way of representing residue-scale information from coMSAs at an atomic level. Here, we present a novel strategy to couple evolutionary information with atomic scores in order to improve decoy discrimination. We reconstruct an equivalent and hypothetical interfacial atomic contact network for each interface decoy and for each pair of homologs present in the coMSAs, by using a threading-like strategy to generate explicit backbone and side-chain coordinates.

These models can, in turn, be scored with non-evolutionary atomic-resolution scoring functions such as SOAP-PP [START_REF] Dong | Optimized atomic statistical potentials: assessment of protein interfaces and loops[END_REF] or Rosetta interface score (ISC) [START_REF] Gray | Protein-Protein Docking with Simultaneous Optimization of Rigid-body Displacement and Side-chain Conformations[END_REF][START_REF] Chaudhury | Benchmarking and analysis of protein docking performance in Rosetta v3.2[END_REF].

Here, we show that including explicit evolutionary information improves the top 10 success rate of SOAP-PP and ISC by 6 and 13 percentage points respectively, on a large benchmark of 752 docking cases for which evolutionary information can be used [START_REF] Yu | PPI4DOCK: large scale assessment of the use of homology models in free docking over more than 1000 realistic targets[END_REF].

It also improves the top 10 success rate of the residue-level statistical potential from InterEvScore by 6.5 percentage points. We then use a consensus approach to take advantage of the complementarity between different scores. The top 10 success rate of a consensus integrating FRODOCK2.1 with InterEvScore and SOAP-PP increases from 32% to 36% when including the homology-enriched score variants. A more time-consuming consensus combining all scores with an explicit homolog representation reaches 40% top 10 success rate.

METHODS

Docking benchmark

As for InterEvDock2, we performed evaluation of docking methods on cases from the large docking benchmark our team developed to ensure unbiased evaluation, PPI4DOCK [START_REF] Yu | PPI4DOCK: large scale assessment of the use of homology models in free docking over more than 1000 realistic targets[END_REF]. Each case in PPI4DOCK is associated to a coMSA, i.e. a pair of joint MSAs for the two docking partners. We excluded antigen-antibody interactions and cases with less than 10 sequences in their coMSAs, in order to focus on cases with enough co-evolutionary information. Sampling was performed using FRODOCK2.1 (see detailed parameters in supplementary methods appendix C. A. page 180) and only the top 10,000 decoys ranked by FRODOCK2.1 were kept. Near-native decoys were defined as being of Acceptable or better quality in accordance with the CAPRI criteria [START_REF] Mendez | Assessment of blind predictions of protein-protein interactions: current status of docking methods[END_REF]. To focus the study on scoring performance, cases that did not have a near-native within the top 10,000 FRO-DOCK2.1 decoys were excluded from the benchmark. This resulted in a final benchmark of

cases (supplementary Table C-).

Performance was measured by top N success rate. We especially focus on the top 10 success rate traditionally used as a docking metric, and the top 50 success rate since consensus computation typically involves the top 50 decoys of each score (see section 3.1.2.1). Additional metrics are available in the supplementary information (supplementary methods appendix C. page 180).

Scoring functions

In addition to FRODOCK2.1's integrated score (Ramírez-Aportela, López-Blanco et al. 2016),

we rescored decoys and their threaded homologs with InterEvScore, SOAP-PP, and Rosetta interface score (ISC).

InterEvScore [START_REF] Andreani | InterEvScore: a novel coarse-grained interface scoring function using a multi-body statistical potential coupled to evolution[END_REF]) was re-implemented with the great help of master's student Pierre Granger to accelerate the scoring step (see supplementary methods appendix C. page 180). We also use a faster implementation of SOAP-PP [START_REF] Dong | Optimized atomic statistical potentials: assessment of protein interfaces and loops[END_REF] developed in collaboration with Pablo Chacón (see supplementary methods appendix C. page 180).

Rosetta interface score (ISC) includes a linear combination of non-bonded atom-pair interaction energies and empirical and statistical potentials among other terms [START_REF] Gray | Protein-Protein Docking with Simultaneous Optimization of Rigid-body Displacement and Side-chain Conformations[END_REF][START_REF] Chaudhury | Benchmarking and analysis of protein docking performance in Rosetta v3.2[END_REF]). This score is calculated by subtracting the total energy of both monomeric structures from the total energy of the complex structure. Since Rosetta ISC is sensitive to small variations and clashes at the interface, we included highresolution interface side-chain optimisation as a scoring option (see supplementary methods appendix C. page 180). Decoys for which Rosetta scoring did not converge after 10 iterations were assigned the worst score for that case. As Rosetta ISC scoring can take up to a couple of minutes per structure, we scored only the top 1,000 FRODOCK2.1 decoys (noted later 1k) per case rather than 10,000 (noted 10k).

Consensus scores

Consensus calculations were performed similarly to InterEvDock2 (see Chapter 2) to obtain a set of 10 most likely decoys depending on the agreement between several scoring functions. Here, we apply consensus scoring to combinations of 3 to 5 different scoring functions.

For a given set of scoring functions, ordered according to their individual performances from best to worst performing, the top 10 decoys of each scoring function receive a convergence count based on the number of similar decoys (defined as L-RMSD ≤ 10 Å) that are found in the top 50 decoys of each other scoring function. The final 10 consensus decoys are selected iteratively by decreasing convergence count (if > 1). In the case of a tie, decoys are selected according to the ranking order of their respective scoring functions. Note that decoys are added to the top 10 consensus only if they are not structurally redundant with the already selected ones (L-RMSD > 10 Å). If necessary, the consensus list is completed up to 10 decoys by selecting the top 4, 3, 3 decoys for a consensus between three scoring functions (or the top 3, 3, 2, 2 or top 2, 2, 2, 2, 2 decoys for a consensus between four or five scoring functions, respectively).

Homology-enriched docking pipeline

For a pair of query proteins A and B for which we are trying to predict the 3D structure of the complex, the homology-enriched docking pipeline consists of four steps outlined in Fig-

ure 3-1. We dock proteins A and B using FRODOCK2.1 (Ramírez-Aportela, López-Blanco et al. 2016), thereby sampling a maximum of 10,000 decoys that can be reconstructed from the input query proteins using rotation and translation coordinates (Figure 3-1A). In parallel, we construct coMSAs and subsample them to a subset of M pairs of homologs (proteins A1 and B1, A2 and B2, ..., AM and BM, homologs of query proteins A and B respectively) (see section 3.1.3.1, page 109). We model the unbound structures of this subset of M pairs of homologs, using the threading function from RosettaCM's pipeline [START_REF] Song | High-resolution comparative modeling with RosettaCM[END_REF]) and the unbound query protein structures as templates (see Figure 3-1B and section 3.1.3.2, page 110). We then generate homolog equivalents to each query decoy by applying the translation and rotation coordinates generated during the query docking to each pair of homologs.

Figure 3-1C illustrates this reconstruction for the first pair of homologs (proteins A1 and B1).

To obtain the final score of each decoy, we average scores over the query decoy itself and its equivalent homolog decoys (Figure 3-1D). Note that for one case, we have to compute (M+1) x N scores to obtain the final ranking of N decoys. The scoring functions we used are described in section 3.1.2, page 106. All steps of the pipeline are easily parallelisable to reduce end-user runtime, whether through MPI (sampling step) or by splitting over decoys (scoring steps). 

Subsampling homologs in the coMSAs

Homologous sequences used in scoring were taken from the coMSAs provided with the PPI4DOCK benchmark, reduced to maximum M=40 and then to M=10 sequences (plus the query sequence) to limit computational time. Indeed, it was already seen with InterEvScore that co-evolutionary information can be extracted from alignments with as few as 10 sequences [START_REF] Andreani | InterEvScore: a novel coarse-grained interface scoring function using a multi-body statistical potential coupled to evolution[END_REF]. The sequences in the coMSAs are ordered by decreasing average sequence identity with the query sequences. This is taken into account when sub-selecting sequences in order to keep a representative subset of sequences in both re-duced coMSAs. Sequence selection was performed in three steps. First, the number of sequences was cut at 100, as in the InterEvDock2 pipeline. Then the alignment was filtered with hhfilter 3.0.3 [START_REF] Remmert | HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment[END_REF]) from the hh-suite package. hhfilter was applied with the "-diff X" option on the concatenated coMSAs and the value of X was adjusted for each case in order to return a reduced alignment with no more than 41 sequences (i.e. the query + 40 homologs). At this stage, we obtain a first set of reduced coMSAs with maximum 40 sequences, which we call coMSA 40 , and that are representative of the full diversity of the initial coMSAs. Finally, 11 equally distributed sequences (i.e. the query + 10 homologs) were uniformly selected within coMSA 40 in order to preserve sequence diversity compared to the initial coMSAs (see supplementary methods appendix C. page 181). The final set of reduced coMSAs is called coMSA 10 .

Threading models

Pairwise alignments between the template structure and the homolog sequence to be modelled were directly extracted from the reduced coMSAs. The templates used for threading were the unbound template structures provided in the PPI4DOCK benchmark (Yu and Guerois 2016) (see supplementary methods appendix C. page 181).

Rosetta's threading programme, the first step in the RosettaCM pipeline [START_REF] Song | High-resolution comparative modeling with RosettaCM[END_REF], was used to thread the homologous sequences onto the template structure. We used 

RESULTS

Consensus approach with implicit homology scoring

In previous work (see Chapter 2), we integrated evolutionary information implicitly at the coarse-grained level by scoring decoys with residue-based InterEvScore (noted IES) [START_REF] Andreani | InterEvScore: a novel coarse-grained interface scoring function using a multi-body statistical potential coupled to evolution[END_REF]. In IES, for each decoy, we enumerate all residue-level interface contacts. We then use a residue-level statistical potential to score decoys by considering all sequences in a coMSA and assuming the same contacts were conserved in all homologous interfaces.

We also combined InterEvScore with complementary scores FRODOCK2.1 and SOAP-PP This complementarity between the examined scores, in particular SOAP-PP and InterEvScore, (supplementary Figure C-2A) prompted us to attempt a more explicit integration of evolutionary information into the various scores. An initial attempt at deriving InterEvScore to the atomic level will be described first in section 3.2.2. Then, following the pipeline described in methods section 3.1.3, page 108 (Figure 3-1, page 109), in the following sections, we include evolutionary information into individual scores InterEvScore and SOAP-PP through explicit atomic-level models of homologous decoys.

First steps towards an atomic version of InterEvScore

The first natural step towards an evolutionary score at atomic scale was to try to derive our own score, InterEvScore, to this scale. InterEvScore makes use of coarse-grained statistical potentials for each residue contact type. It has different scoring components depending on the use of 2-and/or 3-way contacts (i.e. "2-body" or "2/3-body"), on the restriction to only the best contact per interface residue (i.e. "best") or all contact contributions and on the use or not of evolutionary information (i.e. "evol"). Co-evolutionary information is deduced from the coMSAs by assuming that contacts observed in the decoy are maintained in the homologs of both proteins. The interface propensity of these assumed contacts contribute to the final score if they are a part of an apolar patch in the decoy. The term that works best in InterEvScore is the 2/3-body best-evol (2/3𝐵 𝑒𝑣𝑜𝑙 𝑏𝑒𝑠𝑡 ) which is composed of the best score of each interface residue within its 2-and 3-body contacts and their equivalent contacts in the various species of the coMSAs. Figure 3-3 illustrates the contribution and calculation of the 2Bevol term for one contact in the protein complex.

For the atomic version of InterEvScore (IES at ), atomic potentials were calculated similarly to the original residue-level InterEvScore for 158 different atom types (the same types as in SOAP-PP [START_REF] Dong | Optimized atomic statistical potentials: assessment of protein interfaces and loops[END_REF])) instead of 20 residue types, on a set of 1,050 structurally non-redundant and non-obligate interfaces from the InterEvol database (Faure, Andreani et al. 2012). Because of the high number of different atom types compared to residue types, we limited ourselves to 2-body potentials only, bearing in mind from previous studies that this moderately affected the performance at residue-scale [START_REF] Andreani | InterEvScore: a novel coarse-grained interface scoring function using a multi-body statistical potential coupled to evolution[END_REF]).

Atomic scoring without co-evolution

Scoring the query complex with a basic IES at excluding coevolutionary information is straightforward since atomic contacts are directly defined in the decoy structure. This version of IES at worked best when summing the propensities of all "best" 2-body atomic contacts per residue contact at the interface of the query structure. Performances in terms of top 10 success rates on 54,000 ZDOCK3.0.2 decoys [START_REF] Pierce | Accelerating protein docking in ZDOCK using an advanced 3D convolution library[END_REF] for 54 cases from the Weng benchmark v4 of both the residue-scale InterEvScore and IES at without co-evolution are illustrated in Figure 3-3 as green and yellow striped bars respectively. For comparison purposes, the "best" equivalent 2-body version of the original residue-level InterEvScore was used here. The performances show the additional value of considering atomic contacts (28%) rather than a coarse-grained representation of the interface (22%) and are consistent with our initial observations in InterEvDock2 stating that a finer potential might capture more properties that are unique to near-native decoys than a coarse-grained one. EvScore (in green) and the best atomic-scale InterEvScore, IES at , (in gold) with and without taking evolution into account (i.e. with or without using the MSAs, respectively; full colour and stripy motif respectively). Here, the residue-level InterEvScore (illustrated in the green box) consisted in summing over the potentials of the best 2-body residue contact (depicted with red dotted lines) per interface residue (blue, red, yellow and green elements). The best performing IES at (gold box) consisted in summing over the potentials of the best atomic contact per residue pair at the interface. In both versions, co-evolutionary information is taken into account implicitly by assuming that homolog contacts remain as in the query proteins.

Adding co-evolution to the atomic InterEvScore

As co-evolutionary information is only given at a residue level in the coMSAs, implementations of IES at with co-evolution relied on various approximations. When including homology information, we would ideally need to derive equivalent atomic contacts if different residue types are involved in the coMSAs, which cannot be easily inferred from coMSAs alone. In the best-performing IES at including coevolutionary information, I approximated this by taking the atomic pair with the highest propensity for each equivalent residue contact in the homologs, as well as summing over all 2-body contacts in the query structure. Performances for these two versions are also illustrated in Figure 3-3 as green and yellow fully-coloured bars. Unfortunately, as opposed to what was expected, the benefit of adding evolutionary information seen in the residue-level InterEvScore (33% against 22% top 10 success rate) was not observed for the atomic version (26% against 28%, Figure 3-3).

This is probably still due to the assumptions made in IES at where residue contacts are just carried across in the homologs and are represented by their best-scoring atomic contact.

We thus need a more detailed and explicit representation of the side-chains of the various homologs in order to score the corresponding atomic contacts. In the rest of this chapter, we therefore drop the atomic version of InterEvScore (IES at ) and come back to residue-level IES, but we introduce atomic-level information through explicit modelling of the coMSA homologs.

InterEvScore with explicitly modelled homologs

For efficiency, we represent homologs at atomic resolution by threading their sequences onto the query structure (section 3.1.3.2, page 110). As a first step to validate this new representation of evolutionary information, we test the performance of InterEvScore on these threaded models and compare it with the original InterEvScore. With the threaded models, contacts are re-defined in each homolog at an explicit level, rather than implicitly deduced from the coMSAs as in the original InterEvScore. In practice, we calculate the threaded homolog version of InterEvScore (denoted IES-h) by scoring query decoys and their threaded homolog equivalents with the InterEvScore residue-level statistical potentials (section 3.1.2).

The final score of each query decoy corresponds to the average score over the query decoy itself and its homologs. The difference in performance between IES 40 /10k and IES-h 40 /10k can be explained by the fact that, in IES-h 40 , contacts are not extrapolated from the query interface network anymore but are redefined in each homolog based on their modelled interface structure.

Homology-enriched SOAP-PP

Having explicit structures at atomic resolution corresponding to each homolog enables us to score them directly using an atomic potential such as SOAP-PP [START_REF] Dong | Optimized atomic statistical potentials: assessment of protein interfaces and loops[END_REF]), which might be able to better exploit the atomic detail of homologs for the final ranking of query decoys. As for the threaded version of InterEvScore, homology-enriched SOAP-PP (SPP-h 40 ) consists in the average SOAP-PP score over all homologs including the query decoy itself.

SPP-h 40 performs better than SOAP-PP on the query decoys alone (Table 3-3 and Figure 3-2A). Using threaded homology models in this way gives a large performance boost to SOAP-PP (+6 percentage points on the top 10 success rate). SPP-h 40 also outperforms InterEvScore and IES-h 40 (section 0) as well as the FRODOCK2.1 score (section 3.2.1). 

Homology-enriched Rosetta interface score (ISC)

Since we build atomic-level homolog models of decoys, we can score them explicitly using a physics-based score such as Rosetta ISC. As Rosetta scoring is much more computationally expensive (about 750 times slower) than SOAP-PP and InterEvScore, to compute homologyenriched ISC, the number of decoys was reduced to 1,000 (as ranked by FRODOCK2.1) and the number of homologs to 10 (coMSAs 10 , section 3.1.3.1, page 109).

As above, homology-enriched ISC consisted in the average score of the query and its homologous decoys (ISC-h 10 ). For easier comparison, homology-enriched InterEvScore and SOAP-PP were evaluated in the same conditions (i.e. 1,000 decoys and coMSAs 10 ) (Table 3- Note that for scores calculated on the top 1,000 FRODOCK2.1 decoys, success rates are technically capped to 77.1%, as only 580 cases out of the 752 in our benchmark have a near-native within this subset of decoys. In light of this, the ISC-h 10 /1k performance is all the more remarkable.

Table 3-4: Scoring performance of Rosetta homology-enriched ISC. Scoring performance of ISC on query decoys only and using the threaded homology models (ISC-h 10 ) on top 1,000 FRODOCK2.1 decoys (1k) and coMSA 10 as well as the performance of SPP-h 10 and IES-h 10 on 1,000 FRODOCK2.1 decoys with coMSAs 10 for easier comparison. Performances were measured as the top 10 ant top 50 success rates on 752 benchmark cases. -8). One way to alleviate the total scoring time is to score only a pre-selected amount of decoys using Rosetta ISC as a second step in the scoring pipeline.

In Cons 3 , we pre-selected the top 50 decoys of FRODOCK2.1, InterEvScore and SOAP-PP.

Similarly, here we use the top 50 decoys of the top-performing homology-enriched score variants tested above, namely SPP-h 40 /10k and IES-h 40 /10k, as well as FRODOCK2.1. These scores have a high complementarity in terms of top 10 success rate with only 67 cases found in common between all three (supplementary Figure C-2C). Using this subset of 150 preselected decoys for ISC scoring (referred to with /150h) reduced scoring times approximately by a factor 7. We enrich near-natives in this set of 150 decoys since they were pre-selected by three already well-performing scores, but only 476 out of 752 cases in our benchmark possess a near-native in this subset.

In terms of top 10 success rate, both ISC-h 10 and ISC perform better on 150 than 1,000 decoys with 36.0% and 29.0% top 10 success rate instead of 34.4% and 20.9%, respectively (Table 3-5 and Figure 3-2B). Here again, the addition of evolutionary information to ISC through the threaded homolog models remarkably increases its performance. ISC-h 10 /150h has the best performance of all tested scores so far, for a much lower computational cost than ISC-h 10 /1k. 

Homology-enriched consensus scoring

As a first step, we calculate Cons 3 -h, the homology-enriched variant of the Cons3 base consensus score presented in section 3.2.1. Calculating a three-way consensus using higherperforming homology-enriched variants (Cons 3 -h) instead of their original counterparts (Cons 3 ) increases the top 10 success rate from 32% to 36% (Table 3-6 and Figure 3-2A).

Consensus Cons 3 -h performs as well as ISC-h 10 /150h, while calculated on the same top 150 decoys, and computation is about 20 times faster for Cons 3 -h than for ISC-h 10 /150h.

Out of the 271 successful cases for Cons 3 -h and ISC-h 10 /150h, only 199 cases are common. We tested two four-way consensuses that integrate ISC without homology on 1,000 or 150 decoys (Cons 4 -h/1k and Cons 4 -h/150h respectively) and two five-way consensuses that integrate ISC both with and without homology on 1,000 or 150 decoys (Cons 5 -h/1k and Cons 5h/150h respectively). Performances are reported in Figure 3-2B and Table 3-6, together with time estimates when parallelising the whole pipeline on 4 CPUs. 

Moreover, ISC and ISC

DISCUSSION

In InterEvScore [START_REF] Andreani | InterEvScore: a novel coarse-grained interface scoring function using a multi-body statistical potential coupled to evolution[END_REF], evolutionary information improved proteinprotein scoring performance when given implicitly through coMSAs and coupled with a coarse-grained, residue-level statistical potential. Combining InterEvScore with complementary scoring functions FRODOCK2.1 and SOAP-PP by computing a consensus (see Chapter

2) improved over the individual scores, reaching 32% top 10 success rate (see Table 3-1).

However, this strategy did not take full advantage of the three scores' complementarity and we thus decided to combine directly evolutionary information from coMSAs with atomic scores such as SOAP-PP. To this aim, we threaded coMSA homologs of docked query proteins and scored homologous decoys together with each query decoy.

With this new explicit implementation of evolutionary information, we tested a variant of InterEvScore where we scored decoys and their modelled homologs with a residue-level statistical potential. This modified version (named IES-h) had a slightly improved success rate compared to the implicit homology version (see Table 3-2). The explicit representation of homologous decoys enabled us to build homology-enriched versions of atomic scores SOAP-PP (SPP-h) and Rosetta ISC (ISC-h). For both, adding homology drastically improved top 10 success rates (see Table 3-3 andTable 3-4) even when coMSAs were down-sampled to a maximum of 10 homologous sequences. The Rosetta homology-enriched version, ISCh 10 , had outstanding performances, but it also was the most time-consuming score, about 750 times slower than SOAP-PP or InterEvScore. A first compromise between computation time and performance was to run ISC-h 10 on a pre-selection of 150 decoys defined by the top 50 decoys of SPP-h 40 /10k, IES-h 40 /10k and FRODOCK2.1 (see Table 345). This score had the same top 10 success rate (36%) as a much faster consensus score involving the same top 150 decoys. Taking further advantage of this complementarity, different four-and five-way consensus calculations managed top 10 success rates from 36.7% to 40.4% at runtimes ranging from 45 minutes to 34.5 hours on four CPUs ( We further tried to understand the origin of the large performance improvements obtained through homology enrichment. Scoring performance improves when near-natives are recognised better (positive selection) or when wrong decoys are down-ranked (negative selection). In the homology-enriched scores described in this work, correct decoys could be upweighted by conserved interfaces in the homologous decoys and, at the same time, incorrect decoys could be discredited by statistically incompatible, clashing, or incomplete homologous decoys (since insertions in reference to the query structures were not modelled). We decided to first explore the simplest explanations, namely, deletions and/or clashes at the interface of homologs that would pull down the average score of the incorrect decoys. However, this does not seem to be the main driving force of ISC-h 10 's success over ISC, as the number of gaps or the number of clashes (defined as heteroatom contacts under 1.5 Å) at the interface of homologous decoys do not strongly correlate with the given scores. Additionally, ranking using only the repulsive van der Waals component of the Rosetta score (fa_rep) performs very poorly in comparison to other scoring schemes with at most 34 out of 752 cases with correctly identified near-natives in the top 10 (supplementary Table C-10).

Finally, IES-h, SPP-h or ISC-h variants where only the worst homologous decoys are taken into account when scoring each query decoy showed systematically worse performance than using the full range of homologous decoys for each query decoy (supplementary Table C -10). This means that the performance of the homology-enriched scores is positively driven by recognition of correct decoys rather than exclusion of incorrect decoys through the presence of clashes or gaps.
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Improvement of the SOAP-PP and Rosetta ISC scoring functions by homology enrichment is significant (supplementary Figure C-3) and consistent over difficulty categories . When splitting results over PPI4DOCK difficulty categories, we observe that the strongest relative gain for the SPP-h and ISC-h homology-enriched scores compared to their versions without homology occurs on "very_easy" cases, followed by "easy" cases (supplementary Table C -11). A few cases are gained in the "hard" category, but the "very_hard" category remains largely inaccessible to the tested scores, even though our benchmark is limited to cases where at least one near-native decoy was sampled in the top 10,000 FRO-DOCK2.1 decoys (there are only 16 such "very_hard" cases). Consensus scoring also consistently improves results over the "very_easy", "easy" and "hard" categories, in order of decreasing improvement. We hypothesise that correct ranking of very_easy and easy decoys is mainly dependent on the ability to score positively native-like models while more difficult categories would also require integration of flexibility, an ongoing challenge of protein docking [START_REF] Torchala | SwarmDock: a server for flexible protein-protein docking[END_REF][START_REF] Desta | Performance and Its Limits in Rigid Body Protein-Protein Docking[END_REF].

In this work, we developed a strategy to enrich scoring functions with evolutionary information by including atomic-level models for as few as ten homologs. This strategy improves performance of several scores with different properties: InterEvScore (supplementary Table C-14), SOAP-PP and Rosetta ISC. This means that homology enrichment can in principle be applied to any scoring function with at most a ten-fold increase in runtime. This enrichment works with a very small number of sequences compared e.g. to the large MSAs needed by covariation methods to pick up coevolutionary signal, highlighting complementarity between the two approaches, which may be exploited by using additional DCA-derived constraints, e.g. in intermediate cases with a few hundred homologous sequences [START_REF] Simkovic | Applications of contact predictions to structural biology[END_REF][START_REF] Cong | Protein interaction networks revealed by proteome coevolution[END_REF]. The increase in docking success rate also opens interesting perspectives regarding the large-scale application of structural prediction to interaction networks. Finally, with the rise of machine learning techniques in computational biology, one can expect interesting future developments using these approaches to further enhance the extraction of (co)evolutionary signal from coMSAs

CHAPTER 4 The CAPRI challenge

CAPRI consists in the ultimate blind-test scenario, where docking teams can put their methods to the test by predicting the structures of newly resolved and yet unpublished proteinprotein interactions. Throughout my PhD, I was able to participate in 10 such docking challenges. Each case brought on its own difficulties, meaning that we had to always adapt our proceedings to the target at hand. However, there were still general guidelines that we followed to tackle these cases.

Resolving CAPRI challenges was always a team effort with regular discussions, adapted strategies and consensus ranking of the models, enriching my knowledge on how to solve a structure from A to Z. This chapter summarises our proceedings in resolving targets T131 to T136 from the 7 th edition of CAPRI and is partly based on our published article [START_REF] Nadaradjane | Docking Proteins and Peptides Under Evolutionary Constraints in CAPRI rounds 38-45[END_REF]. I had the luck of taking part in the concluding international CAPRI meeting in April 2019 that takes place every three years. Three new target prediction rounds have been launched since, and a fourth is ongoing in autumn 2020 dedicated to the current coronavirus situation. Since the official results are not yet available, I will not describe these new rounds in this chapter.

The CAPRI experiment [START_REF] Janin | CAPRI: a Critical Assessment of PRedicted Interactions[END_REF][START_REF] Lensink | Docking and scoring protein complexes: CAPRI 3rd Edition[END_REF]) is a unique opportunity for methods developers to assess their computational tools and strategies in a wide range of applications, often away from benchmark cases used for methods development and assessment. In CAPRI rounds 38 to 45, a wide variety of targets and challenges was proposed from 2016 to 2018, including diverse classes of conserved prokaryotic assemblies, metazoan cytokine-receptor complexes or host-pathogen interactions. The originality of the challenges also arose from cases of complexes involving polysaccharides and a redesigned interface. In this chapter, I will especially focus on CAPRI rounds 42 to 45, in which I was able to actively participate from 2017 to 2018, and for which official evaluation results are available.

When considering CAPRI targets, a distinction should be made as to whether a homologous template for the complex can be detected or not. The success of CAPRI participants (including our group) for these two categories is quite reflective of the difference in difficulty represented by the two classes of challenges. On average, in the case when a homologous interface template exists, about 20 groups manage to propose successful models among the top 5 models while usually fewer than 10 groups get correct models when no such template is available. In case a template is not available, reaching an Acceptable solution is already a significant challenge, which generally assesses whether the relative orientation between binding partners has been correctly predicted. When a template assembly can be used, the challenge moves toward the quality of the detailed modelling and refinement strategy rather than the docking protocol itself. In the 7th CAPRI edition, most challenges could be addressed using some constraints from a comparative modelling strategy (Table 4-1) and only 4 targets were tackled relying on free docking protocols.  Information provided by CAPRI organisers in addition to the identity and sequence of the target partners and the stoichiometry (which were systematically provided when relevant)

Over the past 10 years, our group focused on the integration of evolutionary information in the rigid-body docking toolbox (Andreani andGuerois 2014, Quignot, Rey et al. 2018). From an extensive survey of protein complex structures and sequences conserved in evolution contained in the InterEvol database [START_REF] Faure | InterEvol database: exploring the structure and evolution of protein complex interfaces[END_REF], we extracted rules and methods to recognise models of interfaces that have most likely co-evolved with the development of InterEvScore [START_REF] Andreani | Versatility and invariance in the evolution of homologous heteromeric interfaces[END_REF][START_REF] Andreani | InterEvScore: a novel coarse-grained interface scoring function using a multi-body statistical potential coupled to evolution[END_REF]. More recently, we combined this evolutionary information with the FRODOCK rigid-body programme (Ramírez-Aportela, [START_REF] Ramírez-Aportela | FRODOCK 2.0: Fast Protein-Protein docking server[END_REF]) and with alternative scoring approaches such as SOAP-PP [START_REF] Dong | Optimized atomic statistical potentials: assessment of protein interfaces and loops[END_REF] to release the InterEvDock2 web service ADDIN EN.CITE (. Consistent with many challenges proposed in CAPRI, inputs can be submitted as multi-subunit structures but also as sequences since a module for structural modelling of individual partners by homology has been incorporated based on RosettaCM protocols [START_REF] Song | High-resolution comparative modeling with RosettaCM[END_REF]. With this framework, we previously participated in several rounds of CAPRI with a significant number of correct predictions which allowed us to rank among the top performing groups [START_REF] Lensink | Prediction of homoprotein and heteroprotein complexes by protein docking and template-based modeling: A CASP-CAPRI experiment[END_REF], Yu, Andreani et al. 2017).

In parallel to the development of InterEvScore, the importance of covariation analysis in the field of structural biology has been emphasized by the successful implementation of direct evolutionary coupling analyses methods such as DCA [START_REF] Morcos | Direct-coupling analysis of residue coevolution captures native contacts across many protein families[END_REF], EVFOLD [START_REF] Marks | Protein 3D structure computed from evolutionary sequence variation[END_REF], PSICOV [START_REF] Jones | PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments[END_REF] or CCMpred [START_REF] Seemayer | CCMpred--fast and precise prediction of protein residue-residue contacts from correlated mutations[END_REF] which have fostered structure prediction of monomeric proteins [START_REF] Xu | Distance-based protein folding powered by deep learning[END_REF]) and enabled large scale prediction of structural assemblies [START_REF] Cong | Protein interaction networks revealed by proteome coevolution[END_REF] for proteins with sufficiently large numbers of homologs in sequence databases. In contrast, InterEvScore can run with a limited set of sequences, ranging from 10 to 100, and thus provides a complementary way to integrate evolutionary information.

In CAPRI rounds 42 to 45, we explored for each target the extent to which evolutionary information could be used. First, we systematically assessed whether a template-based modelling approach could be used, looking for close and remote homology relationships with complexes of known structures. In case only remotely related homologs were detected, we not only considered global homology relationships but also focused on anchoring clusters of residues conserved in evolution. We found that for one group of targets, such a strategy, focusing on recurrent anchoring patterns conserved in evolution, provided key constraints to improve the quality of our models. A third way of exploiting evolutionary information was in the generation of subunit structures prior to docking. There was eventually no target involving rigid-body docking between partners conserved in evolution for which we could use InterEvScore itself and this CAPRI session rather opened onto alternative strategies that could be used to exploit evolutionary information for docking applications. Altogether, the strategy adopted was rarely exactly the same from one target to the next, reflecting the wide variety of macromolecular assembly modes, either through folding upon binding processes, rigid-body interface sampling followed by clustering and consensus rescoring using three scores: the SOAP-PP atomic-level statistical potential [START_REF] Dong | Optimized atomic statistical potentials: assessment of protein interfaces and loops[END_REF], our Inter-EvScore residue-level statistical potential including coevolutionary information [START_REF] Andreani | InterEvScore: a novel coarse-grained interface scoring function using a multi-body statistical potential coupled to evolution[END_REF]) and the FRODOCK scoring function [START_REF] Ramírez-Aportela | FRODOCK 2.0: Fast Protein-Protein docking server[END_REF]. In these CAPRI rounds 42-45, the free docking targets involved host-pathogen complexes (T131-T132) for which no co-alignment could be built with joint sequences in multiple species for the two partners, therefore our usual InterEvScore-based strategy was not applied. We derived T132 models from T131 free docking models by a template-based strategy rather than ab initio docking, and then re-ranked them after refinement and interface analysis.

We performed final refinement of all docked interfaces using Rosetta-based protocols. For targets T131-T132, T133, T136, docking perturbations using RosettaDock were performed, with symmetry constraints for T136. For all targets, we used RosettaRelax protocols [START_REF] Tyka | Alternate states of proteins revealed by detailed energy landscape mapping[END_REF][START_REF] Nivon | A Pareto-optimal refinement method for protein design scaffolds[END_REF]) for final refinement (under symmetry constraints for T136). For target T136, which involved a multi-domain homodimer, Rosetta kinematic loop modelling [START_REF] Mandell | Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling[END_REF]) was used to rebuild domain linkers after perturbations and refinement.

Protein-peptide docking challenge (T134-135)

For target T134, a first step was to scan the long fragment of the MAG protein in order to identify the most likely 12-residue binding stretch. The strategy for this step is further described in the results section. For targets T134-T135, the corresponding binding motif was anchored using homologous interfaces containing the canonical TQT binding motif as templates, then the interface was refined by extending the motif at the N-and/or C-terminal tail with the Rosetta FloppyTail protocol [START_REF] Kleiger | Rapid E2-E3 assembly and disassembly enable processive ubiquitylation of cullin-RING ubiquitin ligase substrates[END_REF]) and finally by using Rosetta-Relax [START_REF] Tyka | Alternate states of proteins revealed by detailed energy landscape mapping[END_REF][START_REF] Nivon | A Pareto-optimal refinement method for protein design scaffolds[END_REF] to relieve the strong clashes induced by the template-target superimposition.

RESULTS

Prediction results for all CAPRI targets from rounds 42-45 (Table 4-2 and Table 4-3) are discussed below. We split targets into three categories according to our docking strategy: ab initio free docking, straightforward template-based docking, and finally targets for which available structures of homologous or similar interfaces were used together with evolutionary information to identify recurrent conserved interaction motifs and to guide interface modelling accordingly. This category included two host-pathogen protein complexes, T131 and T132 (round 42). Target 133 is an interesting target to test refinement strategies. It consists of a redesigned orthogonal version of the wild-type Colicin E2 DNase-Im2 complex (PDB code: 3U43) which shares 80% sequence identity with the wild-type. At this level of sequence identity, our survey of complex interologs [START_REF] Faure | InterEvol database: exploring the structure and evolution of protein complex interfaces[END_REF] revealed that changes in rigid-body orientations are very unlikely. However, CAPRI organisers mentioned that the complex displayed a different binding mode (including rigid body orientation) with respect to the wildtype complex, which prompted us to combine not only loop and side-chain refinement strategies but also rigid-body docking perturbations. A posteriori, the released structure (PDB code: 6ERE) only had a L-RMSD of 0.7 Å with respect to the original (Figure 4-2A) indicating that no rigid-body motions were required to reach a High quality model. Because we had to consider simultaneously the three degrees of freedom listed above, we did not resample deeply enough the conformations in the mutated regions. In the end, our submitted model #2 was a Medium quality model that corresponded to the least rigid-body perturbed model.

As all CAPRI participants, we did not manage to optimise the interface so as to reach a High quality model although it could have been expected given the high level of identity with the template. This target confirmed that at high sequence identity, assemblies usually do not dramatically change their relative orientation and that it is more efficient to optimise the structure locally rather than to include rigid-body perturbations.

4.2.2.2 Target 136: Combining multi-domain and multi-subunit templatebased modelling in a symmetric homomultimer.

Target 136 was the lysine decarboxylase LdcA from Pseudomonas aeruginosa, a challenging large complex assembling as a homodecamer of subunits themselves composed of three domains. Two templates were available sharing overall 40% identity with the target sequence (PDB codes: 2VYC and 3N75). However, the N-terminal domain exhibited more divergence, sharing 28% sequence identity with 2VYC and only 20% with 3N75. The domains move slightly with respect to each other in the two template structures and alter the interfaces. For that reason, we explored two strategies for this target, following either a conservative template-based modelling protocol (see Methods) or a modelling protocol involving rigid-body perturbations between domains, maintaining the D5 symmetry and rebuilding the domain linkers after refinement. This complex combinatorial strategy was implemented as a Roset-taScripts protocol [START_REF] Fleishman | RosettaScripts: a scripting language interface to the Rosetta macromolecular modeling suite[END_REF]) (see supplementary materials, appendix D. page 192). The best overall model we generated (model #7) was assessed as Medium for all three interfaces and was derived from 2VYC, the template that shared the highest sequence identity in the N-terminal domain (Figure 4-2B), with a L-RMSD of 2.33 Å with the now-revealed cryo-EM structure (PDB code: 6Q6I). Somewhat disappointingly, none of the resampling protocols using rigid-body perturbations of the domains improved the quality of the models significantly, suggesting once again that above 30% sequence identity, no major change in orientation might be expected while they might be much more pronounced at lower identity.

Evolutionarily conserved and recurrent structural motifs as guide for docking (targets T134-T135).

This category included protein-peptide targets T134-T135 (round 44).

When a homologous complex is available to perform template-based docking, it is often possible to reach an Acceptable solution even at low sequence identities without extensive conformational sampling or resampling. Reaching Medium quality models is often more challenging and may require extensive refinement comprising simultaneous conformational resampling of loops and small rigid-body perturbations. As discussed in the previous section, it is difficult to decipher which region should be resampled and whether some regions may be considered rather invariant or pivotal in the evolution of interfaces. CAPRI 7 th targets provided several examples in which, beyond global homology relationships, we could rely on local recurrent structural motifs that can be seen as rather invariant features in the evo-lution of interfaces and useful to guide docking. When spotted out, these conserved recurrent motifs may be used as useful constraints to drive the resampling around an initial template-based model and reach higher quality models.

4.2.3.1 Targets 134 & 135: Evolution-driven recognition of Small Linear interaction Motifs in non-trivial cases.

For targets 134 and 135, we had to predict the structure of a complex of Dynein Light Chain subunit 8, DLC8 (a dimer), with a peptide of myelin associated glycoprotein, MAG. The challenge consisted in a two-step prediction process in which we were first asked to identify and model the small 12-residue interaction motif out of a longer 50 amino-acid segment. Then, in a second step, the prediction had to be repeated with the knowledge of the exact 12residue ligand sequence. The first step was not trivial because none of the reported sequence motifs known to bind DLC8 could be identified (Figure 4-3). In particular, a glutamine observed as a central DLC8-binding residue in many structures of ligand peptides bound to DLC8 could not be identified in the MAG segment . This challenge of identifying a motif in a long disordered stretch of a protein provided an original and interesting test case, closely matching issues we often encounter during collaborations with experimental biologists. To address this challenge, we first gathered all the structures and ligands available for DLC8 and its homologs and created multiple sequence alignments for all known binding partners. Concatenation of these alignments centred in the region of the binding motif led to the definition of an enriched sequence profile (Figure 4-3B) that was applied as a sliding window to score the likelihood of a motif over the sequence of the MAG protein segment.

We further enriched the motif taking advantage of a publication proposing a similar strategy for dynein binders [START_REF] Erdos | Novel linear motif filtering protocol reveals the role of the LC8 dynein light chain in the Hippo pathway[END_REF]. Figure 4-3C illustrates that a single short motif in the sequence led to a positive score. Our model #1 derived from that analysis reached a High quality assessment score for target T134. The moves that we further incorporated in subsequent optimisations of the N-terminal and C-terminal tails of T135 peptide degraded the assessment for model #1 to a Medium quality model but T135 model #2 was rated High. Generalisation of recurrent structural anchoring motifs using known experimental structures expanded by evolutionary information from divergent homologs can be used as a powerful means to increase the sensitivity of Small Linear Motif (SLiM) recognition.

SLiMs can be organised as relatively independent multivalent anchoring points, some able to provide strong affinity gains as the conserved glutamine in DLC8 ligands, others providing more moderate and diffuse affinity gains. The T134-T135 example highlights that combining moderate anchors can compensate for the absence of a strong anchoring point, providing guidelines for the identification of binding motifs when analysing complex interactomes. 

DISCUSSION

Rounds 42-45 of the 7 th session of CAPRI contained a total of six targets introducing several types of challenges for docking, such as challenging multimeric complexes (T136), a redesigned interface (T133) and a target where predictors were prompted to identify a short binding motif in a longer protein segment (T134).

None of the targets in this edition of CAPRI were relevant for the use of our InterEvScorebased free docking protocol, which requires building a joint multiple sequence alignment for two protein partners that reflects how the interface coevolves. However, we still made use of evolutionary information in one form or another for all targets (except for T131, which was entirely based on free docking from known structures of the interacting monomers).

Most often this was done through the use of homologous interfaces for template-based docking or to derive recurrent interface features, and these strategies helped us to successfully model interfaces for targets T133, T136. In T134, we identified the correct MAG binding motif based on enriched sequence profiles combining structural and evolutionary information.

Altogether, we were able to generate Acceptable or better models in the top 5 for four out of six targets, including two with Medium models and two with High quality models. We missed T131-T132 where we downgraded Medium and Acceptable models below the top 5 due to misleading biological information from the literature, while our InterEvDock2 server can generate a top 1 Medium quality model for T131. For T133, even though we submitted a correct model in the top 5, we think we may have reached higher quality models by following a slightly different strategy. No group submitted a High quality model even though this might have been expected given the presence of a template at 80% sequence identity (the wild-type complex) that was already Medium with respect to the redesigned interface.

In our case, we did not resample deeply enough the fine details of the mutated regions because we explored larger moves, while we should have trusted that the redesigned interface would maintain the same global binding mode as the wild-type complex and differ only (but significantly) in the local arrangement of interface features.

CHAPTER 5 Conclusions and perspectives

My thesis focused on improving the general prediction power of docking and scoring methods, in particular by drawing on co-evolutionary information. Apart from improving their performance, part of our mission as structural predictors is also to make our work accessible to the scientific community. In light of this, I participated in major developments of our docking server, InterEvDock2, described in Chapter 2. Based on input proteins, InterEvDock2

suggests 10 most plausible interface models selected by combining physics-based scoring terms, statistical potentials and co-evolutionary information. InterEvDock2 now also accepts oligomeric structure inputs or sequence inputs, for which it can automatically model monomer structures for docking. The user can also integrate previous knowledge about the interaction if available in the form of single or pairwise constraints between residues to filter out any non-relevant solutions. The complete pipeline can be run fully automatically or in a more user-controlled manner, using strategic breakpoints throughout the process and/or selftuned parameters. I validated the performance of InterEvDock2 on a large benchmark of 812 heterodimeric docking cases with homology modelled unbound structures. InterEvDock2

was capable of finding a correct complex structure in as much as 32 % of these cases (Table 2-1, page 93). Of particular value to biologists is also its high performance in predicting interface residues with a 75% probability of having at least one correct prediction out of two predicted residues (one on each partner, Table 2-1, page 93).

My work then focused on finding a more efficient and higher-resolution way of integrating evolutionary information to discriminate near-native structures from wrong complexes in scoring (Chapter 3, page 102). I managed to derive the implicit evolutionary information present in the sequence alignments to an atomic level of detail, using modelled homologous interfaces. This explicit representation is directly compatible with atomic-scale scoring and yields a significant increase from 32% to 40% success in predictive performance on a large benchmark (Table 3-6, page 119) by applying the same consensus approach between scores as in InterEvDock2. This strategy of atomic integration of evolutionary information is directly compatible with our InterEvDock2 pipeline as it relies on efficient scoring and will be integrated in the server during its next update. DMS is also a promising direction for future research, providing a more systematic way of quantifying the effects of mutations through high-throughput assays coupled with nextgeneration sequencing (section 1.1.3.2, page 12 and section 1.2.2.5.1, page 33). In close relation to how covariation-based methods make use of natural sequences to infer 3D contacts, DMS was very recently used as a source of synthetic sequence information to predict the 3D structure of a few protein domains of limited size (up to 56 amino acids), of one ribozyme RNA and one protein-protein interface composed of two interacting helices in leucine-zipper domains of a transcription factor complex as well as the structural prediction of RNA [START_REF] Rollins | Inferring protein 3D structure from deep mutation scans[END_REF][START_REF] Schmiedel | Determining protein structures using deep mutagenesis[END_REF][START_REF] Zhang | Accurate inference of the full base-pairing structure of RNA by deep mutational scanning and covariation-induced deviation of activity[END_REF].

Remaining technological and computational challenges explain the limited amount of DMS data so far usable for such applications. In particular, applying this deep mutagenesis technique to larger single proteins and interactions between standard-size proteins remains an issue that may be alleviated by future developments of DNA synthesis and sequencing technologies. In addition to protein-protein interface structural modelling and the prediction of interacting protein pairs, coevolutionary constraints, especially those derived from DCA-like methods, can be used to study interface dynamics and interaction specificity, to shed light on protein-ligand and protein-nucleic acid interactions and to help in designing new interacting proteins [START_REF] Morcos | The role of coevolutionary signatures in protein interaction dynamics, complex inference, molecular recognition, and mutational landscapes[END_REF]. The development of binding affinity predictors is also closely related to that of docking scoring functions [START_REF] Gromiha | Protein-protein interactions: scoring schemes and binding affinity[END_REF][START_REF] Geng | Finding the ΔΔG spot: Are predictors of binding affinity changes upon mutations in protein-protein interactions ready for it?[END_REF]. Recent work has shown that binding affinity prediction for interactions between peptide-binding domains and disordered motifs benefits from transfer between binding domain families and from the design of custom machine learning algorithms [START_REF] Cunningham | Biophysical prediction of protein-peptide interactions and signaling networks using machine learning[END_REF]. Future advances in binding affinity prediction for globular and disordered systems should also take advantage of a more systematic use of evolutionary information, whether it be conservation, coevolution, or more innovative DMS data.

Integrating flexibility into docking is still an ongoing challenge. In the traditional docking protocol, flexibility is taken into account during a second step after rigid-body sampling on a small number of carefully selected models (e.g. HADDOCK (van Zundert, [START_REF] Van Zundert | The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes[END_REF], RosettaDock [START_REF] Lyskov | The RosettaDock server for local protein-protein docking[END_REF], FiberDock [START_REF] Mashiach | FiberDock: a web server for flexible induced-fit backbone refinement in molecular docking[END_REF], Fire-Dock [START_REF] Mashiach | FireDock: a web server for fast interaction refinement in molecular docking[END_REF]). For many proteins, however, poses that are close to the native complex might already be overlooked during sampling, even with a powerful scoring function, when backbone and side chain conformations are too drastic.

Other ways around this problem is the integration of flexibility before the sampling stage on the unbound monomers, followed by rigid-body cross-docking of structural ensembles, as demonstrated by [START_REF] Krol | Implicit flexibility in protein docking: cross-docking and local refinement[END_REF]). This method, however, extremely increases the number of outputted conformations to be scored. Programmes integrating elastic network model simplified representations of proteins coupled with a normal mode-based flexibility description might be better suited to a more modulated sampling and was implemented in the coarse-grained ATTRACT docking programme to approximately account for global conformational changes during the first stages of sampling (de Vries, [START_REF] De Vries | A web interface for easy flexible protein-protein docking with ATTRACT[END_REF]. The RMSD calculation algorithm RapidRMSD also uses normal modes as well as linear collective motions to efficiently calculate structural changes between flexible docking poses [START_REF] Neveu | RapidRMSD: rapid determination of RMSDs corresponding to motions of flexible molecules[END_REF]). In the end, even though flexibility integration is more of a sampling issue, scoring functions can also contribute in a rigid-docking context by better identifying the near-native pose. Integration of flexibility also tremendously increases the number of models to score, thus, it is important to develop efficient and discriminative scoring functions.

Of high interest in biology would be to be able to reconstruct a complete structural protein interactome. This would help understand cellular dynamics, especially in the therapeutics field. For instance, structural insights in a protein interaction network would allow easier development of target-specific drugs that would only minimally disrupt the rest of the interactome. The structural prediction of the whole network, not just the structure of protein pairs that were confirmed to interact beforehand, is an ongoing challenge, especially because of noisy data or even lack thereof. Cross-docking studies constitute a step towards that goal by trying to predict what two proteins interact within a set of proteins [START_REF] Lopes | Protein-protein interactions in a crowded environment: an analysis via cross-docking simulations and evolutionary information[END_REF]. Experimentally acquired data centralised in protein interaction databases could also be used in a similar fashion to Ghadie and Xia (2019) (Ghadie and Xia pling an incorrect decoy but only a few to generate near-native decoys without being redundant. In that sense, the generation of homology models of decoys, similar to the strategy that was applied in Chapter 3 but for a larger number of homologs, might be a way around that problem. We could also consider the use of transfer learning from protein fold prediction models. I will finish on protein interface design, a hot topic in light of the current Covid-19 situation to design suitable artificial antibodies against the virus. Protein interface design is a field very much related to assembly prediction and also relies on the understanding of the key factors that are important for the interaction between macromolecules. In that sense, protein design can learn from docking and vice versa and both can benefit from methods integrating complementary information taken from evolutionary analysis or DMS for example, particularly in understanding the importance of anchor residues that govern interfaces and how they coordinate to result in a stable interface. Protein design usually involves many cycles of computational prediction and experimental selection. The more traditional approach consists in tweaking an already existing structure to engineer new ones that will bind a particular target. As natural proteins are sometimes difficult to modify without disrupting their overall structure, some structural biologists turn towards de novo approaches, in which proteins are created from scratch [START_REF] Netzer | PROTEIN DESIGN. Inspired by nature[END_REF]. A difficulty in this field is not only to be able to predict protein shape from the sequence alone but also to make sure that they carry out their assumed function (e.g. binding). A fragment-based method was recently successfully applied to develop antibodies against the respiratory syncytial virus fusion protein (RSVF). The author's method, TopoBuilder, shapes a new stable protein by assembling fragments around an already-existing continuous or discontinuous epitope [START_REF] Sesterhenn | De novo protein design enables the precise induction of RSV-neutralizing antibodies[END_REF]. Recent developments in SARS-CoV-2 research include the design of miniproteins to inhibit binding of the virus' spike protein to the human angiotensin-converting enzyme 2 (ACE2) receptor [START_REF] Cao | De novo design of picomolar SARS-CoV-2 miniprotein inhibitors[END_REF]). The study used two approaches, one similar to TopoBuilder based on fragment reconstruction around the binding domain of ACE2, and another more systematic approach to find new binding sites with the virus. Results are promising with affinities beyond the nanomolar range and cryo-EM structures confirming the computational models.

Binding site prediction using evolution

If the user provided a template but no query-template alignment, the query sequence is (re)aligned with the template sequence using MAFFT [START_REF] Katoh | MAFFT multiple sequence alignment software version 7: improvements in performance and usability[END_REF] with the E-INS-i algorithm.

Note: if the user did not provide an input sequence nor a template but provided a querytemplate alignment (following a template search breakpoint) where the template header starts with ">PDBID_chain:AUTOPDB" (e.g. ">1ki1_D:AUTOPDB") the template PDB coordinates and the input sequence will be automatically retrieved following the information in the alignment.

Step (iii) Modelling:

Once a template and a query-template alignment are available for each partner with no userprovided structure, comparative modelling is performed using a RosettaScripts [START_REF] Fleishman | RosettaScripts: a scripting language interface to the Rosetta macromolecular modeling suite[END_REF]) protocol based on RosettaCM [START_REF] Song | High-resolution comparative modeling with RosettaCM[END_REF] to build a 3D model for (at least part of) the input sequence. By default, N-terminal and C-terminal regions of the query protein that are not aligned with the template sequence are not modelled and insertions (loops) longer than 14 residues are not rebuilt. This can be adjusted by the user through 3 tunable parameters: the maximum length of loops to be rebuilt, the maximum length of the N-terminal extension and the maximum length of the C-terminal extension to model.

The RosettaScripts protocol consists in a single "hybridize" mover step where the first 2 (centroid) stages are sped-up by setting options stage1_increase_cycles and stage2_increase_cycles to 0.1 (instead of default value 1.0). This speed-up was specifically introduced for InterEvDock2 and was not present in the protocol for building models in the PPI4DOCK database. It is robust for relatively high homology levels but can lead to loss of precision in the docking results for models built from more remote templates (typically when both templates are below 50% sequence identity with the query).

Once a 3D structure or a structural model is available for each partner, the molecular docking steps are performed:

The consensus calculation returns a list of 10 models accounting for the fact that decoys well ranked by at least two different scoring methods have higher chances of being correct. The 3*top 10 models for each score (FRODOCK2.1, InterEvScore, SOAP-PP) are re-ranked according to the number of similar decoys (defined as ligand RMSD ≤ 10 Å) within the top 50 models of the other two scores (down to a minimum of two similar decoys). In case of a tie, priority is given to InterEvScore top 10 models, then SOAP-PP, then FRODOCK. If necessary, the consensus list is then filled up to ten models by selecting the best models from each score (4 from InterEvScore, 3 from SOAP-PP and 3 from FRODOCK). When building the consensus, models that are structurally redundant (i.e. minimum ligand RMSD of 10 Å) with previously selected models are excluded, so that the final list contains 10 structurally nonredundant models.

The top 5 residues for each partner (ranked starting with the residue most likely to be at the interface) are chosen as the five most frequently occurring residues at the interface of the top 10 models of each score (FRODOCK2.1, InterEvScore, SOAP-PP). In case of a tie, priority is given to residues with a higher frequency in the top 10 models of only InterEvScore, then SOAP-PP, then FRODOCK. A residue is considered at the interface if any of its non-hydrogen atoms is within a 5 Å radius of any non-hydrogen atom on the opposite partner protein, as defined in CAPRI [START_REF] Mendez | Assessment of blind predictions of protein-protein interactions: current status of docking methods[END_REF].

b. PPI4DOCK benchmark (Yu and Guerois 2016)

The list of the 812 complexes used for benchmarking, as well as results of the InterEvDock2 pipeline, is provided in http://bioserv.rpbs.univ-paris-diderot.fr/services/InterEvDock2/table.html. The full benchmark data (including for each target models for the two unbound partners, co-alignments for both protein partners and the reference protein complex for evaluation) can be downloaded from http://biodev.cea.fr/interevol/ppi4dock/PPI4DOCK.zip.

of the two protein partners have at least one correct residue in the top 1, 2 and 5 of each partner (i.e. at least one correct residue in the top 2, 4 and 10 total predicted residues). In other words, (A) corresponds to the predictions marked as "≥1 correct in top x receptor OR top x ligand" (x = 1, 2, 5) in Table 2-1 and the (B) corresponds to the predictions marked as "≥1 correct in top x receptor AND top x ligand" (x = 1, 2, 5). As seen in Table 2-1, InterEvDock2 has a slightly higher number of correctly predicted residues than ZDOCK3.0.2 and both scores are clearly above the random reference, especially when looking at only the top 1 predicted residue per partner (top 2 predicted residues in total).

d. Default constraint thresholds

The default distance thresholds for single constraints and constraint pairs were set to 8 Å and 11 Å respectively. In order to determine the ideal default distance for a single constraint, the interface residues in the native interface (residues containing a non-hydrogen atom at a distance of less than 5 Å from any non-hydrogen atom of the opposite chain) of 812 cases used to benchmark InterEvDock2 were identified. We then calculated the minimum distance of these residues to the opposite chain in all decoys of acceptable or better quality and in an equivalent number of incorrect decoys (considering separately incorrect decoys with a fraction of native interface residues above or below 10%) within the top 10,000 decoys ranked by FRODOCK2.1 after the FRODOCK2.1 clustering step. The default distance of 8 Å was chosen so as to recover at least 80% of the acceptable or better decoys with at least 80% of the native interface residues having a minimum distance to the opposite chain under this threshold. As a comparison, we found that only 45% and 8% of the incorrect decoys with a fraction of native interface residues above or below 10% respectively were retained under these same conditions (55% and 92%, respectively, were filtered out).

The optimal default distance of 11 Å for constraint pairs was determined using the same reasoning except that we used the minimum distance between the residue pairs present at the real interface (two residues on opposite chains are considered a pair when any nonhydrogen atom of the first residue is within 5 Å of any non-hydrogen atom of the second residue) and observed their distribution in the three different types of decoys. The default distance of 11 Å was chosen so that at least 80% of the acceptable or better decoys had at least 80% of the native interface residue pairs within this distance threshold. As a comparison, we found that only 23% and 1% of the incorrect decoys with a fraction of native interface residues above or below 10% respectively were retained under these same conditions (77% and 99%, respectively, were filtered out). summarising the prediction performance of the 3 scoring components of InterEvDock2 (Inter-EvScore, SOAP-PP and FRODOCK 2.1) and the InterEvDock2 consensus itself (this work) on 47 cases that are in common between the PPI4DOCK and the Weng benchmark [START_REF] Hwang | Protein-protein docking benchmark version 4.0[END_REF]. Note that the reference complexes are not exactly the same since a different representative might be chosen in PPI4DOCK compared to the Weng benchmark cases. PPI4DOCK also uses homology models for docking while the Weng benchmark uses X-ray structures. Those are however cases where homologs with a known unbound structure exist with very high sequence identity to the query sequences. The highest success rates for each category are highlighted in bold. (B) 95% confidence intervals were calculated for results in (A) with a bootstrap analysis over 10,000 iterations where the performance was repeatedly calculated on a random set of 47 cases chosen from the original list of 47 (drawing with replacement). All performance values were ordered from smallest to largest and the 250th and the 9750th values correspond to the lowest and highest values of the 95% confidence intervals. This analysis shows that results in table (A) are variable due to the small number of cases.

e. Performance according to sequence identity with PPI4DOCK template

A

as a counterpart, in PPI4DOCK the unbound structures used for docking are themselves homology models.

In a docking context where we know the structures of the unbound partners, we would build homology models for all sequences in the coMSA by using the two query structures as modelling templates. However, since in PPI4DOCK the unbound query structures are themselves homology models, this would mean building a model by using a homology model as a template, and we felt this succession of modelling steps would lead to a loss in model precision. Therefore, the templates used for threading coMSA sequences were the unbound templates used to build the PPI4DOCK unbound models.

Template protein sequences were directly extracted from their structures and aligned onto the coMSAs using MAFFT (sequence-profile alignment) [START_REF] Katoh | MAFFT multiple sequence alignment software version 7: improvements in performance and usability[END_REF] from which the pairwise homolog-template alignments were directly extracted. coMSAs were stripped down to positions that were covered by the query sequence. In order to ensure that the template structure exactly matched the template sequences in the stripped pairwise alignments, both template sequences were re-aligned using clustalw [START_REF] Larkin | Clustal W and Clustal X version 2.0[END_REF]) and identified irrelevant residues in the template structure were removed.

Threading implies that the side-chains of our homologs are mapped very conservatively onto the query template structure. 

b. Supplementary results

Supplementary tables

Supplementary figures

A B

name="setup_symm"/> <!--Adding constraints to create hydrogen bonds or other type of interactions such as salt bridges..etc, so that we can avoid buried polar residues or unsatisfied polar residues --> <AddConstraints name="add_csts_relax"> <FileConstraintGenerator filename="constraints_relax_fa.cst" name="cst_final_relax"/> </AddConstraints> <FastRelax bondangle="false" bondlength="false" cartesian="false" min_type="dfpmin_armijo_nonmonotone" name="rlx_symm" ramp_down_constraints="false" repeats="1" scorefxn="ref15sfxn_symm" task_operations="ifcl,rtr,keep_curr"/> </MOVERS> <APPLY_TO_POSE/> <PROTOCOLS> <!--Load a complex of 6 subunits each composed of two domains (Nter / Cter without linker) which were initially used to define symmetry --> <!--Remove 5 subunits, keep only subunit 1 composed of two domains chain A and chain P --> <Add mover="del_symm"/> <!--Define a set of spatial restraints and a fold-tree to generate restricted and efficient sampling of the Nter domain with respect to Cter--> <Add mover="add_D1D2_cst"/> <Add mover="add_D1D3_cst"/> <Add mover="add_D1D4_cst"/> <Add mover="def_foldtree"/> <!--Run the rigid body sampling of Nter orientation --> <Add mover="combine_docklow"/> <!--Remove the constraints used for sampling --> <Add mover="def_foldtree_ini"/> <Add mover="rm_D1D2_cst"/> <Add mover="rm_D1D3_cst"/> <Add mover="rm_D1D4_cst"/> <!--Remove a segment of subunit 2 which was kept to restrict the Nter domain moves so that it does not clash subsequently with subunit 2--> <Add mover="del_frag2del"/> <!--Recover the subunit 2 coordinates from the original file. The Nter domain of subunit 1 packs against this subunit 2 Presence of subunit 2 will prevent that the linker to be created between Nter-Cter clashes with neighbouring subunits --> <Add mover="addDsubunit"/> <!--Dump the pose for checking --> <Add mover="writepose_preloop"/> <!--Extend the loop between Nter and Cter domain, only backbone trace and do not close it (keep two chains)--> <Add mover="add_csts_hel"/> <Add mover="l1"/> <Add mover="switch_repr"/> <!--subunit 2 used to restrict loop conformation can be removed --> <Add mover="del_chainD"/> <!--Cter was chain A while Nter was chain P, they have to be switched before bridging the loop --> <Add mover="switch_chain"/> <Add mover="bridge"/> <!--Alter the sequence of the linker to retrieve the correct sidechains --> <Add mover="mutate_linker"/> <!--Dump the pose for checking --> <Add mover="writepose_postlinker"/> <!--Regenerate the symmetric subunits and relax --> <Add mover="setup_symm"/> <Add mover="add_csts_relax"/> <Add mover="rlx_symm"/> </PROTOCOLS> <OUTPUT/> </ROSETTASCRIPTS> ECOLE DOCTORALE N°569 Innovation thérapeutique : du fondamental à l'appliqué (ITFA) Titre : Exploration et modélisation structurale d'interactions protéiques guidées par l'information évolutive Mots clés : Interactions protéine-protéine, modélisation structurale, bioinformatique, information de coévolution, amarrage protéine-protéine Résumé : Les protéines sont des acteurs centraux du vivant et agissent rarement seules. La structure 3D de leurs interactions aide à mieux comprendre les mécanismes des processus biologiques dans lesquels elles sont impliquées. L'objectif de cette thèse était d'améliorer la performance des méthodes de prédiction structurale, notamment en utilisant l'information de (co-)évolution. J'ai participé à des évolutions majeures de notre serveur de docking, InterEvDock2, qui, à partir de deux protéines, propose 10 modèles d'interface en croisant des scores aux propriétés différentes. Le serveur accepte désormais aussi en entrée des structures oligomériques ou des séquences protéiques, pour lesquelles il modélise la structure monomérique, ainsi que des contraintes connues a priori sur l'interaction. Sur un large ensemble de 812 cas test, InterEvDock2 prédit une structure de complexe correcte dans 32 % des cas. J'ai ensuite recherché un moyen plus explicite d'intégrer dans les fonctions de score l'information évolutive contenue dans les alignements de séquences. J'ai rendu cette information compatible avec l'utilisation de scores atomiques par la modélisation 3D des interfaces homologues. Ceci améliore la performance prédictive de 32 à 40% sur une large base de test. De plus, durant ma thèse, j'ai pu participer à 10 tests de docking à l'aveugle via CAPRI (Critical Assessment of Predicted Interactions). Les stratégies qui ont permis à notre équipe d'être classée première sur la période 2016-2019 sont décrites dans le dernier chapitre de ce manuscrit. Ce travail vise à aider les biologistes à étudier les protéines ou voies biologiques d'intérêt en utilisant des méthodes de prédiction performantes et constitue un pas en avant dans l'objectif final de la prédiction des interactomes.

Title : Exploration and structural modelling of protein interactions using evolutionary information Keywords : Protein-protein interactions, structural modelling, bioinformatics, co-evolutionary information, protein-protein docking Abstract: Protein complexes are of fundamental importance in most biological processes and mainly carry out their function in networks. The structure of their interface can give us crucial information to understand the mechanisms behind these processes. This thesis focuses on the improvement of the performance of structural prediction methods, in particular by exploiting co-evolutionary information. As part of my PhD project, I participated in major developments in our docking server, InterEvDock2, which suggests 10 interface models for a pair of input proteins using a mix of different scoring properties. InterEvDock2 now also accepts oligomeric structure inputs or sequence inputs, for which it can model monomeric structures, as well as user constraints taken from prior knowledge of the interaction. I validated the performance of InterEvDock2 on a large benchmark of 812 docking cases and found that InterEvDock2 was capable of finding a correct complex structure in as much as 32 % of these cases. My work then focused on finding a more efficient and explicit way of integrating implicitly defined evolutionary information into scoring. I made this information directly compatible with atomic-scale scoring thanks to homologous interface modelling. This strongly increases predictive power, from 32% to 40% on a large benchmark. Moreover, throughout my PhD, I was able to participate in 10 blind-test docking challenges through CAPRI (Critical Assessment of Predicted Interactions). The strategies applied by our team, which enabled us to rank first in the latest CAPRI round for 2016-2019, are described in the last chapter of this manuscript. This work aims at helping biologists study their proteins or biological pathways of interest using well performing prediction methods. It constitutes a step towards the final goal of interactome prediction.
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  Glycine, Alanine, Valine, Leucine, Isoleucine, Methionine, Phenylalanine, Tryptophan and Tyrosine), polar uncharged (Serine, Threonine, Cysteine, Proline, Asparagine and Glutamine), negatively charged (Aspartate and Glutamate) and positively charged (Arginine, Histidine and Lysine). Cysteine, Glycine and Proline are sometimes classified into a separate fifth group because of their special side-chain configuration (Cysteines are capable of forming covalent disulphide bonds whereas Glycine and Proline can both disrupt regular protein structure motifs).
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 11 Figure1-1: Protein structure -from primary to quaternary. Protein structure has four hierarchical levels. Amino acids covalently link together with peptide bonds to form a chain of residues (Primary structure). This chain can fold into organised secondary structures such as alpha helices, beta-sheets or turns and loops
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 12 Figure 1-2: Yearly cumulative release of structures in the PDB for X-ray, NMR and cryo-EM methods. Illustration of the cumulative number of structures released in the PDB every year since 1976 up to 2019 for the three main experimental methods of structural acquirement, namely X-ray crystallography (green), protein NMR (blue) and cryo-EM (yellow) with a zoomed-in version for a better visualisation of protein NMR and cryo-EM progress over the years.

Figure 1

 1 Figure1-3: Yeast-two-hybrid explained. Yeast-two-hybrid (Y2H) makes use of a reporter gene that is activated only if the DNA-binding domain (BD) and the activation domain (AD) of a transcription factor (in blue) are close together. The original complete transcription factor enables transcription of the reporter gene (A) by binding to the upstream activation sequence (UAS) on one end and recruiting the transcription machinery on the other. In Y2H, a bait protein (green) is fused to the BD and a prey protein (purple) to the AD. The interaction between bait and prey is confirmed only if the reporter gene is transcribed because bait and prey manage to bridge the gap between both parts of the transcription factor. (B) illustrates an example where there is no interaction and (C) where bait and prey do interact.
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 14 Figure 1-4: Schematic representation of protein sequence covariation. Purple and green loops on the left represent a same protein fragment structure in two different homologous proteins, both present in the MSA on the left. The various shapes represent residues with different physical-chemical properties.In order to conserve the interaction between green and red residues, when one of them mutates, the other has to follow suit. This behaviour can be directly observed in the MSA. Thus, correlating or co-varying positions in the MSA point towards possible contacts in the 3D structure. Picture taken from GREMLIN's FAQ page (http://gremlin.bakerlab.org/gremlin_faq.php).

  omeric complexes exhibit symmetry. A remarkable evolutionary feature in symmetric homomeric interfaces is the multiplicative effect of a single mutation through symmetry. Although often highlighted as an evolutionary advantage, it can also trigger uncontrolled selfassembly by amplifying the tendency of protein surfaces to interact by chance (Garcia-Seisdedos,[START_REF] Garcia-Seisdedos | Proteins evolve on the edge of supramolecular selfassembly[END_REF], thereby creating a new interface only through a single mutation. The corresponding change in sequence might be conserved in only a few related species and the evolutionary trace might thus be difficult to recognise.1.2.2.5.3 Multi-valence in large assembliesAlthough multi-protein complexes involving multiple interfaces between different subunits are often conserved in evolution, the binding affinity of individual interfaces may vary largely between different species or different paralogous complexes in the same species.Multi-valence may globally buffer the loss or weakening of an elementary interface in a complex assembly. Such tolerance of interfaces to mutations may vary from one species to another, leading to altered evolutionary rates. Two examples of such evolutionarily-resilient but dynamic, regulatory complexes are the mismatch-repair related MutLβ complex between yMLH1 and yMLH2 with conserved meiotic helicase, yMER3[START_REF] Duroc | Concerted action of the MutLβ heterodimer and Mer3 helicase regulates the global extent of meiotic gene conversion[END_REF]) (Figure 1-5A) and the mixed lineage leukaemia (MLL) family of histone methyltransferases interacting with four conserved factors (WDR5, RBBP5, ASH2L and DPY30)[START_REF] Li | Structural basis for activity regulation of MLL family methyltransferases[END_REF] (Figure1-5B). In the first example, the interaction between various components of these complexes have compensating strengths in mouse and in yeast. In the second example, paralogs of MLL show very different binding affinities although there are only two significant sequence substitutions between the two.
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 15 Figure 1-5: Examples of binding compensations through multivalence. Schematic representation of the interaction networks between the yMLH1-yMLH2 heterodimer and yMER3 in yeast S. cerevisiae and between their mouse orthologs, the mMLH1-mPMS1 heterodimer and mHFM1. yMER3 and mHFM1 are composed of five globular domains represented by squares surrounded by disordered N-terminal and C-terminal extensions (indicated by "N" and "C" labels). The width of the links between each pair of proteins is indicative of the experimentally observed relative interaction strength. (B) Compared architecture of the MLL complexes involving either MLL1 (left, reference PDB structure: 6KIU) or MLL3 (right, reference PDB structure: 6KIW). WDR5subunit is coloured purple, ASH2L is orange, MLL1 and MLL3 are two different shades of dark green, histone octamer is cyan, RBBP5 is yellow, ubiquitin is pink and DNA is black. Top views of the two complexes (with the nucleosome at the bottom) are provided where the nucleosomes and the RBBP5 subunits are exactly in the same orientation. Due to differences between MLL1 and MLL3, the relative positions of WDR5 and even more ASH2L are quite different between the two complexes even though the same overall architecture is maintained, providing a likely explanation for the large difference in binding affinity for RBBP5-ASH2L between MLL1 and MLL3. These differences in the details of the assembly reflect a different functional role for MLL1 compared to MLL3 and other MLLs.
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 16 Figure 1-6: Evolutionary fates of a duplicated gene pair in a protein interaction network. The duplicated gene might be lost through pseudogenisation (a) (the most common fate), or kept. In this case, if both copies are conserved, double-dosage might present a selective advantage (b).If both copies evolved individually and accumulated complementary deleterious mutations affecting different sub-functions, expression of both might be necessary to ensure ancestral function in a collaborative manner (c). Finally, less evolutionary pressure over each copy because of initial redundancy might be beneficial for the exploration and acquisition of a new function in one of the copies (d). Illustration adapted from[START_REF] Ratmann | From evidence to inference: probing the evolution of protein interaction networks[END_REF]).

  tures are traditionally divided into template-based interface modelling and template-free docking methods[START_REF] Soni | Computational modeling of protein assemblies[END_REF] Madhusudhan 2017, Porter, Desta et al. 2019). Template-based approaches are the more accurate of the two but are only possible when a sufficiently close homologous structure exists (Figure1-7, label 1). In many cases, a homologous complex structure cannot be identified, then one can resort to template-free docking. Docking requires the individual monomeric structures or models of these structures. Fortunately, experimentally resolved monomeric structures are more abundant than experimental structures of complexes and individual protein structures can often be modelled from structures of individual protein homologs if not available (i.e. by homology or comparative modelling, Figure 1-7, label 2). When monomeric template structures are not available, ab initio modelling can be performed (also Figure 1-7, label 2). Either of the methods mentioned above can be guided by additional data such as biochemical data, conservation or predicted binding zones (see Figure 1-7, label 3
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 17 Figure1-7: Structure modelling flowchart when using evolutionary information. Flowchart of the protocols and tools described in the review to carry out structural modelling of protein interactions taking into account evolutionary information. When starting from the sequences of interacting proteins, structural modelling of their assembly can follow two strategies, both relying on evolutionary relationships. The first one (1), generally more accurate but restricted to a limited number of cases, uses homology relationships and templatebased docking methods to generate structures of assemblies, which are reviewed in two subsections of this review for globular and disordered regions, respectively. The second strategy (2) relies on a combination of approaches involving structural modelling of the partners when possible, evolutionary analysis of the disordered regions and use of evolutionary information to identify binding patches at the surface of globular domains(3, 6). Combined with coevolution analyses, free docking methods can incorporate all these levels of information to produce models of assemblies (4, 5, and 7). These methods are reviewed for both globular and disordered systems.

  which, given one or more templates and the corresponding querytemplate pairwise alignments, hands out one or more possible models. The full RosettaCM protocol is carried out in three main steps, an initial threading step where amino acids are simply replaced in the template structures by the corresponding query residues, a second step where missing regions and loops are completed, and a third side-chain and backbone optimisation step using a fast relax protocol. RosettaCM is also used by the RaptorX-TBM server[START_REF] Xu | Analysis of distance-based protein structure prediction by deep learning in CASP13[END_REF], one of the top-performing servers in recent CASP sessions, after an initial template search and alignment generation step using their DeepThreader algorithm.
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 18 Figure 1-8: Interface residue prediction of the RBBP5 protein using different programs. (A) Rate4Site, (B) SPPIDER and (C) ISPRED4.Interface residue predictions are displayed on the surface of RBBP5 and colourcoded from white (predicted as non-interface) to yellow to red (highest predicted probability to be involved in an interface). The RBBP5 subunit is involved in interfaces with six different partners (five proteins and one DNA) in the MLL1 complex associated with the nucleosome (interfaces 1, 2, 3, 4 and 6 in reference PDB structure: 6KIU) and in one intra-molecular interaction (interface 5 in reference PDB structure: 6KM7). These interfaces are mediated either by its globular beta-propeller domain (interfaces 1, 4, 5 and 6) or by its N-terminal intrinsically disordered region (interfaces 1, 2 and 3). ISPRED4 prediction exhibits remarkable sensitivity in the detection of interface residues in RBBP5 for all seven interfaces with almost no false positives. As in Figure1B, WDR5 subunit is coloured purple (1), ASH2L is orange (2), MLL1 is dark green (3), histones octamer is cyan (4), RBBP5 is yellow and lime (5), ubiquitin is pink (6) and DNA is black.

  a strategy can potentially increase the specificity of predictions as originally shown by the development of the i-Patch predictor[START_REF] Hamer | i-Patch: interprotein contact prediction using local network information[END_REF]. The ECLAIR method[START_REF] Meyer | Interactome INSIDER: a structural interactome browser for genomic studies[END_REF]) was designed to predict interfaces at a genomic scale to feed the Interactome INSIDER browser using different features including conservation and coevolution between specific partners. Interestingly, by using DCA and SCA scores as descriptors to account for correlations between interacting positions, the authors observed that the performance of the classifier was increased even when the MSA contained less than 200 sequences. So far, other methods taking into account pairs of interacting proteins rather than single ones, such as BIPSPI[START_REF] Sanchez-Garcia | BIPSPI: a method for the prediction of partner-specific protein-protein interfaces[END_REF] or PAIRpred[START_REF] Minhas | PAIRpred: partner-specific prediction of interacting residues from sequence and structure[END_REF], rather used pairs of PSSMs in their descriptors. Future progress in the field will probably come from further integration of these coevolution signals with machine learning algorithms.

  which generates 3D de novo conformations of peptides based on their sequence and performs a fast blind rigid docking of these conformations on the complete protein surface to map the most favourable binding sites. A more homology-based strategy is also proposed in the InterPep pipeline (Johansson-Akhe, Mirabello et al. 2019) which uses distant protein complex structures as structural templates for the identification of residues likely involved in binding flexible peptides. InterPep includes a conservation score among other features and was shown to outperform alternative approaches on a 502-target benchmark, based only on the Rate4Site conservation score. As when predicting binding motifs in disordered regions, care should be taken in the generation of sequence alignments for folded domains when dealing with pro-
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 1 Figure 1-9: Graphical summary of a selection of user-friendly methods used in structural protein interaction prediction. Those methods are available as web servers, except InterPep and InterPep2 (seeTable A-1
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 1 Figure 1-10: Illustration of template-based docking. When an interologous structure exists for a given protein pair (e.g. in mouse), this interolog can be used as a template in order to deduce a model of the bound structure of our proteins of interest (e.g. in human).
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 1 Figure1-11: Template-free docking pipeline. The general pipeline for template-free protein-protein docking relies on having the structures of two individual proteins (proteins A and B in blue and green). From top to bottom, a large amount of docking poses are generated, then filtered or ranked according to low-resolution scoring functions resulting in a set of approximately 10 decoys. An additional clustering step can be implemented whether before or after scoring. High-resolution scoring and model refinement can be performed on a small number of decoys in order to generate a model with the highest quality possible.

  answer to this, Spherical-Fourier transforms (SFT) have emerged using spherical harmonic functions to represent protein surface shapes in which the 6 degrees of freedom in the docking problem become 5 Euler rotation angles and an intermolecular distance (Figure1-12). Docking programmes such as FRODOCK (Ramírez-Aportela, López-Blanco et al.2016), which we routinely use, or HEX[START_REF] Macindoe | HexServer: an FFT-based protein docking server powered by graphics processors[END_REF]) are based on that principle (see
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 1 Figure 1-12: Schematic representation of FFT and SFT. The top path represents FFT sampling in Cartesian space implying three translational and three rotational degrees of freedom around the receptor.The lower path describes SFT sampling in rotational space implying five rotational (two per protein and one defining the angle between the two) and only one translational degree of freedom (vector between the centres of mass of both proteins). This property considerably accelerates the sampling. This picture was taken from[START_REF] Padhorny | Protein-protein docking by fast generalized Fourier transforms on 5D rotational manifolds[END_REF]).

  shape matching, as in PatchDock[START_REF] Schneidman-Duhovny | PatchDock and SymmDock: servers for rigid and symmetric docking[END_REF], reduces the sampling space by directly focusing on regions with possible complementary between the two proteins. In this case, regions of interest are usually protein surface areas with specific and distinct geometric features such as cavities or local knobs and holes. Possible ligand orientations are then rapidly explored through local shape complementarity by reducing receptor and ligand proteins to negative and positive images.

  [START_REF] De Vries | A web interface for easy flexible protein-protein docking with ATTRACT[END_REF]) has a random search strategy which is combined with physics-based scoring terms. ATTRACT performs efficient minimisation of individual docking poses by reducing protein residues to a group of three pseudo-atoms. It also integrates a minimal side-chain rotamer sampling during minimisation.

  , PatchDock[START_REF] Schneidman-Duhovny | PatchDock and SymmDock: servers for rigid and symmetric docking[END_REF], SwarmDock[START_REF] Torchala | SwarmDock: a server for flexible protein-protein docking[END_REF], pyDock-WEB[START_REF] Jimenez-Garcia | pyDockWEB: a web server for rigid-body proteinprotein docking using electrostatics and desolvation scoring[END_REF], GalaxyTongDock[START_REF] Park | GalaxyTongDock: Symmetric and asymmetric ab initio protein-protein docking web server with improved energy parameters[END_REF], HDOCK[START_REF] Yan | HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy[END_REF]) and InterEvDock2[START_REF] Quignot | InterEvDock2: an expanded server for protein docking using evolutionary and biological information from homology models and multimeric inputs[END_REF]). This feature is especially useful in cases where experimental data are available such as X-link or NMR data[START_REF] Xue | Computational prediction of protein interfaces: A review of data driven methods[END_REF]. Interface residue predictions, especially those mentioned above that use conservation or coevolution (Figure1-7, label 3, page 41), can also be used as restraints in the docking process (Figure1-7, label 4, page 41).

  -PP is an example of knowledge-based scoring function and stands for Statistically Optimised Atomic Potential[START_REF] Dong | Optimized atomic statistical potentials: assessment of protein interfaces and loops[END_REF]. It is an atomic statistical-based score integrating distance-dependent potentials learnt on a set of real complex structures and normalised on a set of incorrect PatchDock decoys generated from the Weng benchmark.

  or pepATTRACT[START_REF] De Vries | The pepATTRACT web server for blind, large-scale peptide-protein docking[END_REF]) use three conformations for the input peptide (extended, helix and polyproline). In HADDOCK, the search can be targeted by defining explicit spatial constraints as specific or ambiguous distance restraints, while in pepATTRACT restriction to a region of interest should be done after global prediction.1.3.3.3 Covariation-based interface structure predictionCoevolutionary constraints can be integrated in scoring functions for template-free protein docking or derived from covariation-based methods to guide molecular simulations in order to provide more likely interface models (Figure1-7, label 5).

  used random paralog matching to build concatenated MSAs of Hsp40 and Hsp70 family proteins. This is close in spirit to recent work on paralog matching algorithms, which try to predict simultaneously and iteratively pairs of specifically interacting proteins and inter-protein contacts[START_REF] Bitbol | Inferring interaction partners from protein sequences[END_REF][START_REF] Gueudre | Simultaneous identification of specifically interacting paralogs and interprotein contacts by direct coupling analysis[END_REF][START_REF] Marmier | Phylogenetic correlations can suffice to infer protein partners from sequences[END_REF]. So far, that work focused on pairs of proteins for which homologous sequences can be found within operons and further generalisation to any pair of interacting proteins should provide interesting insights into other bacterial and eukaryotic biological processes. Extension to eukaryotic complexes should also benefit from the recent finding that inter-protein contacts identified by DCA-like methods in bacterial complexes are well conserved in homologous eukaryotic protein complex structures[START_REF] Rodriguez-Rivas | Conservation of coevolving protein interfaces bridges prokaryoteeukaryote homologies in the twilight zone[END_REF]).

  1.3.3.4.1 Benchmarking -Testing performance on known casesPrediction quality of protein interfaces can be assessed using a benchmark of protein pairs with known experimental bound and their corresponding unbound structures. Using unbound structures is essential in benchmarking in order to avoid any shape complementarity bias in the prediction and reproduce a scenario as close as possible to real cases. Weng's Benchmark is widely used in the docking community[START_REF] Hwang | Protein-protein docking benchmark version 4.0[END_REF]). The latest version 5[START_REF] Vreven | Updates to the Integrated Protein-Protein Interaction Benchmarks: Docking Benchmark Version 5 and Affinity Benchmark Version 2[END_REF] contains 230 complexes, 190 of which are non-antigenantibody complexes. Complexes are classified into three difficulty categories depending on how much the structures change between bound and unbound states -the RMSD between the native and its superimposed unbound proteins being the indicator of this change.DOCKGROUND Docking X-ray Unbound Benchmark 4[START_REF] Kundrotas | Dockground: A comprehensive data resource for modeling of protein complexes[END_REF]) is another benchmark containing 396 unbound/bound crystal structures of which 39 are not shared with Weng Benchmark 5 (TM-score < 0.6 and sequence identity < 23% with all of Weng's complexes).

1. 3

 3 .3.4.2 The CAPRI initiative -Testing performance in real-case scenarios CAPRI is a community-wide experiment for the comparative evaluation of structural protein assembly prediction methods[START_REF] Janin | CAPRI: a Critical Assessment of PRedicted Interactions[END_REF] and was initially created as a satellite of CASP (section 1.3.1.3, page 45). Regular rounds of blind prediction and scoring provide challenging, unpublished protein complex targets for all method developers to test and improve their docking programs and pipelines. The CAPRI targets are therefore complementary to more traditional docking benchmarks. In most cases, only the sequences of the interacting macromolecules are provided to predictors, who must submit an ordered list of interface models within a few weeks. Predicted models are then assessed by comparing them to the experimental structure. A CAPRI evaluation meeting, held every three years, gives a fantastic opportunity for state-of-the-art assessment and discussion of the best methods and the remaining challenges. The most recent CAPRI meeting (7th edition) featured prediction rounds held between 2016 and 2019, in which more than 50 research groups participated to predict challenging and diverse targets involving protein-protein, protein-peptide and protein-oligosaccharide complexes (see Chapter 4). Analysis of these latest results by the CAPRI assessors showed overall progress due to slightly improved methods and better integration of template-based interface modelling techniques with docking, rescoring and refinement[START_REF] Lensink | Modeling protein-protein, protein-peptide and protein-oligosaccharide complexes: CAPRI 7(th) edition[END_REF].1.3.3.4.3 Assessing decoy quality -CAPRI and DockQ criteriaDecoy quality can be assessed using different criteria. Previous studies, such as[START_REF] Chen | A novel shape complementarity scoring function for protein-protein docking[END_REF], used to base themselves on the interface RMSD (I-RMSD) between C atoms of the decoy and the experimental native structure -a decoy being considered as a near-native (i.e. correct) if its value was under a certain threshold (e.g. 2.5 Å). However, this gives an incomplete picture of decoy quality. The nowadays commonly accepted evaluation is based on the rules established by the CAPRI community[START_REF] Mendez | Assessment of blind predictions of protein-protein interactions: current status of docking methods[END_REF] in which decoys are classified in three near-native categories: High, Medium or Acceptable in decreasing order of quality according to their closeness to the native complex, and are Incorrect otherwise. This quality is defined using three different measurements, namely the fraction of native contacts (Fnat), the ligand backbone RMSD (L-RMSD, backbone being C, N, O and C atoms) and the backbone I-RMSD with the native complex. The thresholds for these measurements are illustrated in Figure1-13. Contacts are defined by a distance of 5 Å or less between heavy atoms from two different residues on opposite chains. The decoy needs to satisfy the Fnat threshold and at least one of the two RMSD metric thresholds of the same category in order to be labelled as such.
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 1 Figure 1-13: CAPRI thresholds. Left: Illustration of all three CAPRI thresholds defining each of the three decoy quality categories Acceptable, Medium and High. The Fnat metric and at least one of the other two metrics has to be satisfied in order to give a decoy the corresponding label e.g. a decoy with Fnat > 0.5 and L-RMSD < 1 Å and/or I-RMSD < 1 Å would be classified as High. Right: Illustration of all three CAPRI categories on a proteinpeptide complex (reference structure in grey, decoy of various quality in colour).
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 1 Figure 1-14: Scatter plot of the novel DockQ decoy evaluation criteria against IS-Score. This figure was adapted from (Basu and Wallner 2016) and illustrates how well the DockQ score reflects the commonly-accepted CAPRI criteria for decoy quality evaluation on a CAPRI-set of 15,328 decoys. Models are coloured according to CAPRI classification as Incorrect (yellow), Acceptable (blue), Medium (green) or High (red). DockQ thresholds that best reproduce the CAPRI categories are 0.23, 0.49 and 0.8 i.e. decoys with a score bellow 0.23, between 0.23 and 0.49, between 0.49 and 0.8 or above 0.8, could relatively safely (±0.02) be classified as Incorrect, Acceptable, Medium or High, respectively.

  body docking and scoring (Ramírez-Aportela,[START_REF] Ramírez-Aportela | FRODOCK 2.0: Fast Protein-Protein docking server[END_REF] and implementing an improved consensus selection and from a speed-up in the generation of joint MSAs for the two protein partners. The InterEvDock2 pipeline was benchmarked on 812 complexes from the PPI4DOCK database(Yu, Vavrusa et al. 2016) designed to ensure unbiased evaluation of the performance of free docking from unbound homology models. 29% of those 812 cases have an acceptable or better solution among the top 10 consensus models returned by InterEvDock2. As InterEvDock, InterEvDock2 also outputs a list of the 10 residues most likely involved in the interface and at least one residue was correctly predicted in 91% of Users are expected to provide for each protein partner either an input sequence or an input structure (Figure2-1). Input structures can be uploaded or retrieved automatically from the Protein Data Bank (PDB) by typing in the PDB code and optionally one or more chain identifier(s). More options are available through the "advanced options" menu (see Figure2-2).Optional breakpoints can be selected, either after template search to choose among up to 20 suggested templates prior to modelling (Figure2-2A), or after modelling for interactive visualisation of the models prior to docking (Figure2-2B). When input sequences are provided, users can specify which template to use for homology modelling; as for structure inputs, the template can be uploaded or directly retrieved from the PDB. If providing a template, users can also optionally enforce the query-template alignment for modelling. It is also possible to provide only a query-template alignment obtained from a previous server run in which a template search was performed (without modifying the identifiers), in which case the input sequence and the template PDB will be automatically retrieved based on the alignment. Several options are offered to tune the modelling: by default only loops (insertions) shorter than 14 residues are rebuilt during the modelling and N-terminal and C-terminal extensions are not modelled, but maximal lengths for modelling of loops, N-terminal and C-terminal extensions can be defined by the user (Figure2-2E). Additionally, for input
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 21 Figure 2-1: InterEvDock2 pipeline.Eight steps can be performed in InterEvDock2 depending on the user input, out of which three mandatory steps (iv), (vii) and (viii) are always performed as they were in the original InterEvDock pipeline(Yu, Vavrusa et al. 2016), except that the FRODOCK algorithm was updated to version 2.1 (Ramírez-Aportela,[START_REF] Ramírez-Aportela | FRODOCK 2.0: Fast Protein-Protein docking server[END_REF]) and the consensus calculation was slightly modified to save time and improve results. New features are available allowing the user to provide only an input sequence for one or both partners: (i) if the user does not provide a template, search for a suitable template using HHsearch[START_REF] Soding | Protein homology detection by HMM-HMM comparison[END_REF][START_REF] Remmert | HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment[END_REF]); (ii) if the user provides a template but no query-template alignment, alignment of query sequence with template sequence using MAFFT (Katoh and Standley 2013); (iii) once a template and a query-template alignment are available for each partner with no user-provided structure, comparative modelling using a RosettaScripts[START_REF] Fleishman | RosettaScripts: a scripting language interface to the Rosetta macromolecular modeling suite[END_REF]) protocol based on RosettaCM[START_REF] Song | High-resolution comparative modeling with RosettaCM[END_REF] to build a 3D model for (at least part of) the input sequence. Once a 3D structure or a structural model is available for each partner: (iv) exhaustive sampling using the rigid-body method FRO-DOCK 2.1; (v) (new feature) if the user provides information on residues (or pairs of residues) involved in the interface, applying constraints to filter sampled solutions; (vi) if the user does not provide a joint MSA for the two protein partners, co-MSA generation; (vii) clustering and scoring by three scores, FRODOCK 2.1, SOAP-PP[START_REF] Dong | Optimized atomic statistical potentials: assessment of protein interfaces and loops[END_REF] and InterEvScore[START_REF] Andreani | InterEvScore: a novel coarse-grained interface scoring function using a multi-body statistical potential coupled to evolution[END_REF] (viii) clustering and selection of the InterEvDock2 consensus top 10 decoys. Green text indicates user input. Red text indicates possible breakpoints and hot restart. Italics indicate the optional steps in the pipeline, depending on the input provided by the user. Details for each step are provided in the Supplementary Methods (Appendix B. page 170).
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 2 Figure2-1 presents the InterEvDock2 pipeline which consists of eight steps (for more details about each step, see section A. ). The three core docking steps -sampling with FRODOCK2.1 (iv), clustering with FRODOCK2.1 and scoring with InterEvScore and SOAP-PP (vii) and consensus calculation (viii) -are always performed. Step (vi) consists in automatically generating the joint MSAs used by InterEvScore to account for co-evolution in the scoring process, unless the joint MSAs are provided by the user. Steps (iv), (vi) and (vii) are unchanged compared to the original InterEvDock pipeline(Yu, Vavrusa et al. 2016), except that the FRODOCK algorithm was updated to version 2.1 (Ramírez-Aportela,[START_REF] Ramírez-Aportela | FRODOCK 2.0: Fast Protein-Protein docking server[END_REF]). In the final step (viii) a consensus list of 10 most likely models is calculated. Since decoys well ranked by at least two different scoring methods (out of the three methods used in InterEvDock2) have higher chances of being correct, the 3*top 10 models for each score are re-ranked according to the number of similar decoys (defined as ligand RMSD ≤ 10 Å) within the top 50 models
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 23 Figure 2-3: Venn diagram of prediction performances for the three scoring components in InterEv-Dock2. Out of the 812 cases in the PPI4DOCK set used to benchmark InterEvDock2, 171, 194 and 164 cases have at least one decoy of acceptable or better quality in the top 10 decoys scored by InterEvScore, SOAP-PPand FRODOCK2.1 respectively. However, as illustrated in the Venn diagram below, the three scores are quite complementary, as 57, 49 and 59 cases were detected by InterEvScore, SOAP-PP or FRODOCK2.1 alone respectively, thereby highlighting the interest of using a consensus between the three scores.

  Figure 2-4 illustrates an InterEvDock2 run for CAPRI target T95 (round 31) involving docking between the nucleosome (a decameric structure) and the PRC1 ubiquitin ligase (a trimeric structure).
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 24 Figure2-4: Successful CAPRI target T95 prediction with InterEvDock2. Successful example of docking from multimeric inputs in a CAPRI target. Prediction for CAPRI target T95 involving docking between two multimeric inputs: the nucleosome and the PRC1 ubiquitin ligase. These multimeric inputs were directly used as inputs in the InterEvDock2 server (PDB identifiers 3afa for the nucleosome and 3rpg for the ubiquitin ligase). A constraint is additionally used between a residue close to the ubiquitinated lysine K119 and the active site of the ubiquitin ligase (constraint between residues 117C and 85A at distance 11 Å). The first acceptable solution (ranked #4 in the Top 10 InterEvDock2 consensus) is superimposed on the reference crystal structure (PDB: 4r8p).

  have found the bound partners belonging to PDB 1ki1 or other bound templates. The unbound templates (4f38A and 3odoA) have sequence identities of 54% and 25% with the modelled regions of Cdc42 and intersectin, respectively. Among the top 10 consensus models returned by InterEvDock2, one acceptable solution is found as top 2 (Figure2-5A).
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 25 Figure 2-5: Successful prediction of a case in PPI4DOCK using InterEvDock2. Successful examples from the PPI4DOCK database. (A) Top 2 consensus model found by InterEvDock2for docking between unbound homology models of Cdc42 (green, modeled using an unbound template at 54% sequence identity) and the conserved, catalytic domains of intersectin (cyan, modeled using an unbound template at 25% sequence identity). The model is superimposed on the reference crystal structure (PDB identifier: 1ki1) (gray). It is acceptable with interface RMSD 4.03 Å. (B) Best model found in the InterEvDock2 top 10 consensus for docking between PPI4DOCK unbound homology models of the RING domain of IDOL (green) and UBE2D (cyan) when four residues experimentally known to be important for the interaction are used as constraints (with default distance 8 Å). The model is superimposed on the reference crystal structure (PDB identifier: 2yho) (gray). The model is acceptable with interface RMSD 2.29 Å and is ranked first of the top 10 consensus. The four residues used as constraints from chemical shift mapping are shown as green spheres (M388, V389, C390 and C391).
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 31 Figure 3-1: Docking pipeline with explicit modelling of decoy homologs. A. Upon docking of query unbound structures (proteins A and B in green and blue), FRODOCK2.1 outputs a rotation and translation matrix to reconstruct the corresponding decoys. B. In order to generate their homologous counterparts, the unbound structures of each homolog (proteins A1 and B1, A2 and B2, ..., AM and BM, in various shades of orange and magenta) are threaded based on the query unbound structures (proteins A and B) and the homologous sequence alignments in the coMSAs of the query proteins. C. For each homolog pair (such as homolog 1 illustrated here), decoys can be reconstructed using the same rotation and translation matrix as for the query. D. The final score of each decoy (left column) corresponds to the average score over itself and its M homolog equivalents for a given scoring function.

  Rosetta 3.8 (version 2017.08.59291). No insertion, N-or C-terminus were modelled. This resulted in gapped and mainly structurally conserved threaded models of the homologs, where backbone coordinates remained unchanged and side-chain rotamers were different from the template's side-chains only if the residue type changed between the template and the homologous sequence (Figure3-1B).

(

  supplementary Figure C-2A) in a three-way consensus score, denoted Cons 3 , which preferentially selects decoys supported by several scores (section 3.1.2.1). Compared to individual scores, we observed a notable boost of about 8 points in top 10 success rate using Cons 3 , which captures a near-native in the top 10 decoys in 32% of the cases (Table 3-1 and Figure 3-2A).
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 32 Figure 3-2: Success rate as a function of the number of selected decoys for individual and consensus scores. Illustration of the success rate on an increasing number of top N decoys with N going from 1 to 100.(A) FRODOCK2.1 (FD2.1), SOAP-PP (SPP) and InterEvScore (IES) individual and consensus scores (dashed lines) and their homology-enriched variants on coMSA 40 and 10,000 decoys (10k) (solid lines). (B) Rosetta ISC scores (dashed lines) together with homology-enriched variants of individual scores on coMSA 10 and 1,000 decoys (1k) and selected homology-enriched consensus scores (solid lines). Performances were measured on 752 benchmark cases. Note that consensus scores produce only a selection of 10 decoys, hence they stop at N=10.
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 33 Figure3-3: Performance of an atomic InterEvScore. Performances were measured in terms of top 10 success rate on ZDOCK decoys of 54 cases from the Weng benchmark. They are shown for the residue-level Inter-EvScore (in green) and the best atomic-scale InterEvScore, IES at , (in gold) with and without taking evolution into account (i.e. with or without using the MSAs, respectively; full colour and stripy motif respectively). Here, the residue-level InterEvScore (illustrated in the green box) consisted in summing over the potentials of the best 2-body residue contact (depicted with red dotted lines) per interface residue (blue, red, yellow and green elements). The best performing IES at (gold box) consisted in summing over the potentials of the best atomic contact per residue pair at the interface. In both versions, co-evolutionary information is taken into account implicitly by assuming that homolog contacts remain as in the query proteins.

4 and

 4 Figure 3-2B). Their success rates are very similar to those with 10,000 decoys and coMSAs 40 (supplementary Table C-7). Even though ISC on query decoys performs worse than SPP-h and IES-h, ISC-h 10 largely outperforms the best-performing individual score, SPP-h 10 , with 34.4% top 10 success rate (259 cases) compared to 30.2% (227). With only 165 successful cases in common, SPP-h 10 and ISC-h 10 remain very complementary (supplementary Figure C-2B).

  -h 10 remain complementary to SPP-h 40 /10k, IES-h 40 /10k and FRO-DOCK2.1 (supplementary Figure C-2D and Figure C-2E). This led us to test four-and fiveway consensus approaches to combine ISC optimally with other homology-enriched scores.
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 41 Figure 4-1: Representation of models predicted by free docking.Comparisons between the structure of the target complexes (coloured as light and dark grey cartoons for the receptor and ligand, respectively) and the best predicted model (coloured as green cartoon) with the index of the model indicated after the hash symbol for (A) HopQI-CEACAM1 (T131), (B) HopQII-CEACAM1 (T132). The hairpin coloured in red was previously published as involved in the interaction although this turned out to be incorrect. It biased the ranking of our models, although for T131, the InterEvDock2 server ranked as best model a Medium quality prediction.

  This category included protein-protein targets T133 (round 43) and T136 (round 45).
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 42 Figure 4-2: Template-based prediction of CAPRI targets T133 and T136. Representation of the best model (coloured as green cartoon) compared to the experimental structure (grey cartoon and surface for the ligand and receptor subunits, respectively) and the template (light red cartoon) which could be used for templatebased modelling (TBM). (A) Structures for target T133 (redesigned Edes3 / Imdes3 interface). (B) Structures for target T136 (homodecamer LdcA) for the two main interfaces out of the three created through oligomerisation. Our model #7 was of Medium quality for all three interfaces.

Figure 4 - 3 :

 43 Figure 4-3: Examples of recurrent anchoring patterns used to constrain docking models between the dynein light chain and its binding partner MAG (CAPRI target T134). (A) Most available structural templates (dynein in grey, binding partners in green) emphasize the importance of the T-Q-T motif in the binding; a profile (or Position-Specific Scoring Matrix, PSSM) based on templates is shown with the central Q highlighted by a red star. (B) Using external information from homologs of all dynein binding partners, the definition of the motif could be enlarged and translated into an enriched profile. (C) By scanning the profile along the MAG sequence, we identified the region most likely bound by dynein. The red star highlights the single position for which a positive score was obtained and the central L which plays the role of the Q in other dynein-bound ligands.

(

  [START_REF] Postic | Probing Protein Interaction Networks by Combining MS-Based Proteomics and Structural Data Integration[END_REF]. Together with the integration of our atomic-derived evolutionary information and an extra clash removal step at the end of the pipeline, InterEvDock3 will be equipped for participation in the next server rounds of CAPRI. Some of the most promising recent developments in the structural prediction of protein interactions rely on coevolution to provide specific constraints for assembly modelling. The DCA class of methods was recently showcased as a breakthrough for individual protein structure prediction, especially when integrated into deep learning pipelines[START_REF] Xu | Analysis of distance-based protein structure prediction by deep learning in CASP13[END_REF][START_REF] Senior | Improved protein structure prediction using potentials from deep learning[END_REF][START_REF] Yang | Improved protein structure prediction using predicted interresidue orientations[END_REF]) (section 1.3.1.2, page 43). DCA-like approaches were also applied to interface structural modelling with some success, but challenges remain, especially to obtain enough statistical information by building large coupled MSA pairing up interacting homologs. Further integration of DCA-like methods and other coevolution-based methods with machine learning and deep learning algorithms will likely prompt future progress and expand the range of applications.

  Other than the datasets, thought also has to be given to what model is best suited as well as what information (features) should be inputted to the model and the best way of encoding it. Inspiration can be found in well-established protein fold quality assessors, such as Ornate[START_REF] Pages | Protein model quality assessment using 3D oriented convolutional neural networks[END_REF], KORP (Lopez-Blanco and Chacon 2019) or GraphQA[START_REF] Baldassarre | GraphQA: Protein Model Quality Assessment using Graph Convolutional Networks[END_REF], fold predictor trRosetta[START_REF] Yang | Improved protein structure prediction using predicted interresidue orientations[END_REF] or antibody-antigen interface predictor, PECAN (Pittala and Bailey-Kellogg 2020) for example. In Ornate, proteins are encoded as 3D grids of fixed size and centred on each residue in the protein to exclude orientation-dependency. Each cube in the grid has a smoothed atomoccupation probability and could be given a set of additional features. One could also consider a simpler representation of residues, as is the case in KORP, where they are represented by only three backbone atoms each to avoid side-chain orientation-dependency. One could also consider representing interfaces as multi-level distance and angle maps as outputted by the trRosetta framework. Another intuitive way of representing proteins are graphs, as in the message-passing algorithm GraphQA or in the graph convolution network PECAN. In the graph, nodes (residues) and edges (contacts) can both be given specific features, such as residue type, conservation and co-evolution profiles, surface accessibility or secondary structure for nodes, and distance distributions for edges. In an interface prediction context, one could additionally add the chain number as a feature or encode receptor and ligand as two separate but communicating graphs as in PECAN. Finally, although deep learning methods are difficult to interpret, efforts are being made to better understand what is effectively learnt by these methods. For instance, (Pittala and Bailey-Kellogg 2020) used attention layers in the context of epitope and paratope prediction to visualise the regions in antigens and antibodies that are given the most attention in the network.

Figure C- 2 :

 2 Figure C-2: Venn diagrams between scores. Top 10 success rate intersections between scores on 752 cases. FD: FRODOCK2.1, IES: InterEvScore on complete coMSAs, SPP: SOAP-PP and ISC: Rosetta's interface score. /10k and /1k denote that 10,000 and 1,000 decoys were scored. -h10 and -h40 denote homology-enriched scores with 10 or 40 homolog models (coMSA 10 or coMSA 40 ).

  

  

  

  

  

Table C -

 C 15: Performances as reported in the InterEvDock2 paper. ..................................

Table C -

 C 16: Performances of InterEvScore with 2-body and 2/3-body potentials. .....

	Dictionary of Acronyms
	AP-MS (AC-MS)	Affinity Purification (Capture) -Mass Spectrometry
	BioGRID	BIOlogical General Repository of Interaction Database
	CAPRI	Critical Assessment of Prediction of Interactions
	CASP	Critical Assessment of protein Structure Prediction
	CATH	Class, Architecture, Topology and Homologous family
	co-IP	co-Immunoprecipitation
	cryo-EM	Cryogenic Electron Microscopy
	DCA	Direct Coupling Analysis
	DCG	Discounted Cumulative Gain
	DMS	Deep Mutational Scanning
	FCC	Fraction of Common Contacts
	Fnat	Fraction of NATive contacts
	HMM	Hidden Markov Model
	IDR/IDP	Intrinsically Disordered Regions/Proteins
	IED2	InterEvDock2
	IES	InterEvScore
	ISC	Rosetta's Interface Score
	ITC	Isothermal Titration Calorimetry
	MSA	Multiple Sequence Alignment
	NMR	Nuclear Magnetic Resonance
	PDB	Protein Data Bank
	PFAM	Protein FAMilies
	PPI	Protein-Protein Interaction
	PSSM	Position-Specific Scoring Matrix
	RMSD	Root Mean Squared Deviation
	SAXS	Small-Angle X-ray Scattering
	SCA	Statistical Coupling Analysis
	SCOP	Structural Classification Of Proteins
	SPP	SOAP-PP
	TAP	Tandem Affinity Purification
	TBM	Template-Based Modelling
	UniProt	UNIversal PROTein resource
	XL-MS	Cross-link -mass spectrometry
	Y2H	Yeast-two-hybrid
		XI XII

  Each protein in UniProt is given a unique accession number which is becoming a gold standard in structural biology. UniProt is divided into four sections.

	UniProt Knowledgebase (UniProtKB) is the centrepiece of UniProt. UniProt Archive (UniParc)
	regroups all non-redundant protein sequences available with links to all underlying sources
	and versions of these sequences. UniProt Reference Clusters (UniRef) clusters sequences au-
	tomatically across species according to different sequence identity thresholds and enables
	faster sequence search. Finally, UniProt Metagenomic and Environmental Sequences
	(UniMES) was specifically created to store metagenomic and environmental data directly
	recovered from environmental samples. UniProtKB is composed of two sub-sections called
	1.1.4.1 Sequence-related databases

One of the most widely used databases for protein sequence and functional information is the Universal Protein Resource (UniProt) database (UniProtConsortium 2019) providing comprehensive non-redundant sequence data and regrouping human input with information from other databases.

UniProt/Swiss-Prot and UniProt/TrEMBL (Translated EMBL Nucleotide Sequence Data Library) for manually annotated and reviewed data and automatically annotated data respectively, both listing over 563,000 and 195,000,000 proteins as of September 2020. UniProtKB provides data on protein sequence, name, taxonomy, structure, classifications, citations and cross-references by reliably fusing information taken from various databases.

The National Centre for Biotechnology Information (NCBI) Protein database (Ncbi Resource Coordinators 2018) is also famous but contains mainly raw data. This makes it noisier because of redundancy or contradictory or incorrect information but also possibly more enriched in information. Just like UniProt, NCBI protein records are stored with additional data (e.g. UniProt identifier, gene information, biological pathways and structure).

  . A study by Alvarez-Ponce et al. on high quality and close-to-complete human PPI networks concluded that network centrality had a significant effect on protein evolutionary rate, with a contribution comparable to that of gene expression[START_REF] Alvarez-Ponce | Position Matters: Network Centrality Considerably Impacts Rates of Protein Evolution in the Human Protein-Protein Interaction Network[END_REF]. They found, however, that closeness (i.e. one over the average distance between a protein and all other proteins in the network)

was one of the highest contributors and that node degree had low or nearly no correlation with evolutionary rate after correcting for confounding factors. Thus, they hypothesise that evolutionary rates are affected by the global position of proteins in PPI networks rather than by surface constraints imposed by PPIs (Alvarez-Ponce, Feyertag et al. 2017). An interesting concept is what Ghadie et al. call the "dispensable part of the interactome",

  reviews[START_REF] Aumentado-Armstrong | Algorithmic approaches to protein-protein interaction site prediction[END_REF][START_REF] Maheshwari | Predicting protein interface residues using easily accessible on-line resources[END_REF][START_REF] Esmaielbeiki | Progress and challenges in predicting protein interfaces[END_REF]. A global ranking of available tools remains difficult due to the variety of training and test datasets and to the metrics used to compare each other.Overall, most recent approaches tend to perform as well or slightly better than standard methods such as the SVM-based SPPIDER tool[START_REF] Porollo | Prediction-based fingerprints of protein-protein interactions[END_REF] (using version II with 3D structure) by measures of precision, recall, true positive and false positive rates.

Table 1 -1: List of popular docking tools and their properties.

 1 This list was adapted from[START_REF] Huang | Exploring the potential of global protein-protein docking: an overview and critical assessment of current programs for automatic ab initio docking[END_REF] and additionally contains the top-ranking servers in CAPRI 7 th edition.

	Program	Scoring function	Assembly	
			search	
	ZDOCK 3.0.2	Shape complementarity, electrostatics and knowledge-	FFT-based	(Pierce, Wiehe
		based pair potentials		et al. 2014)
	MDockPP	Shape complementarity, electrostatics and knowledge-	FFT-based	(Duan, Qiu et
		based pair potentials		al. 2020)
	HDOCK	Shape complementarity and knowledge-based pair po-	FFT-based	(Yan, Zhang et
		tentials		al. 2017)
	PIPER	Shape complementarity, electrostatic interactions and	FFT-based	(Kozakov,
		knowledge-based pair potentials		Brenke et al.
				2006)
	ClusPro	Shape complementarity, electrostatic interactions,	FFT-based	(Kozakov, Hall
		knowledge-based pair potentials, cluster size		et al. 2017)
	GRAMM-X	Shape complementarity, hydrophobic match	FFT-based	(Tovchigrechko
				and Vakser
				2006)
	MolFit	Geometric complementarity, hydrophobic complementa-	FFT-based	(Kowalsman
		rity and electrostatic interactions		and Eisenstein
				2007)
	SDOCK	van der Waals attractive potential, geometric collision,	FFT-based	(Zhang and Lai
		electrostatic potential and desolvation energy		2011)

  are examples of FFT-based methods (see Table1-1). At the time of Huang's review, ZDOCK version 3.02 outperformed all other evaluated docking programmes with a 30.7% success rate[START_REF] Huang | Exploring the potential of global protein-protein docking: an overview and critical assessment of current programs for automatic ab initio docking[END_REF] 

  tween the target and template shows a moderate drop in success rate for models built with remote templates (< 30% sequence identity) and an increased success rate for models built with very close templates (>=95% sequence identity), compared to the overall InterEvDock2 success rate (see Supplementary Materials, Appendix 177 TableB-2).

Table 2 -

 2 In the lower part of the table, the number (and percentage) of cases for which at least one residue out of the top 10 or top 2 residues was correctly predicted as present in the complex interface is assessed for InterEvDock2 and Zdock3.0.2 (see calculation details in Supplementary Materials, Appendix B. page 174). The best results for each category are highlighted in bold.

1: InterEvDock2 performance on PPI4DOCK. Prediction performance of the InterEvDock2 server on 812 complexes of the PPI4DOCK benchmark, split into four levels of difficulty: very easy, easy, hard and very hard. The benchmark is made of the 812 targets of the PPI4DOCK benchmark (1417 cases)

[START_REF] Yu | PPI4DOCK: large scale assessment of the use of homology models in free docking over more than 1000 realistic targets[END_REF] 

for which pairs of co-evolved MSAs with more than 10 sequences could be obtained and FRODOCK 2.1 (Ramírez-Aportela, López-Blanco et al. 2016) was able to generate at least one acceptable or better decoy

[START_REF] Mendez | Assessment of blind predictions of protein-protein interactions: current status of docking methods[END_REF] 

among the top 50,000 decoys. In the upper part of the table, top 10 success rates are reported as the number of cases (and percentage between brackets) for which at least one model out of 10 is an acceptable or better solution. Assessed methods are InterEvScore

[START_REF] Andreani | InterEvScore: a novel coarse-grained interface scoring function using a multi-body statistical potential coupled to evolution[END_REF]

, SOAP-PP

[START_REF] Dong | Optimized atomic statistical potentials: assessment of protein interfaces and loops[END_REF]), FRODOCK 2.1 (Ramírez-Aportela, López-Blanco et al. 2016), InterEvDock2 consensus (this work and (Yu, Vavrusa et al. 2016

)) and Zdock3.0.2

[START_REF] Pierce | Accelerating protein docking in ZDOCK using an advanced 3D convolution library[END_REF]

).

Table 2

 2 

-1 and Supplementary Materials Figure B-1 for only the top 2 predicted residues (one on each partner): at least one of the two predicted residues is correct in 75% of the cases and both are correct in 34% of the cases, highlighting the practical value of InterEvDock2 residue prediction. All those results are significantly higher than a reference interval given by random selection of residues on the surface of the protein (for calculation details see Appendix B. page 174 and Figure B-1.

Table 3 -1: Performance of consensus scores including InterEvScore implicit homology scoring.

 3 Scores used in three-way consensus score Cons 3 were SOAP-PP on the top 10,000 FRODOCK2.1 decoys (SPP/10k), InterEvScore on full coMSAs and on the top 10,000 FRODOCK2.1 decoys (IES/10k) and FRODOCK2.1 (FD2.1). Performances of individual scores used in the consensus are reported in terms of top 10 and top 50 success rates, since consensus calculation relies on the top 50 decoys ranked by each component score.

	Score	Top 10 success rate	Top 50 success rate
	FD2.1	164 (21.8%)	292 (38.8%)
	IES/10k	182 (24.2%)	287 (38.2%)
	SPP/10k	183 (24.3%)	328 (43.6%)
	Cons 3	241 (32.0%)	/

Table 3 -

 3 2 and Figure 3-2A show the performance of IES-h 40 , i.e. IES-h computed using threaded homologs from the set of reduced coMSAs with maximum 40 sequences (coMSA 40 , see section 3.1.3.1, page 109). Results for the original InterEvScore with complete coMSAs (IES) and coMSAs 40 (IES 40 ) are also shown for comparison. Reducing the number of sequences to maximum 40 does not strongly affect performance in terms of top 10 and top 50 success rates. However, the top 10 success rate increases from 23.8% to 27.0% when using explicit threaded models (IES-h 40 ) instead of only implicit coMSA information (IES 40 ). Of note, a variant of InterEvScore without evolutionary information, where only the query decoy gets scored by the statistical potential has a much lower top 10 success rate of 20.5% (supplementary Table C-6).

Table 3 -2: Performance of InterEvScore using coMSAs without or with threaded models.

 3 Top 10 and top 50 success rates of InterEvScore on complete coMSAs (IES, reported in section 3.2.1 and Table3-1) and coMSA 40 (IES 40 ) compared to InterEvScore using explicit threaded models of homologs in coMSA 40 (IES-h 40 ) on 10,000 decoys (/10k). Performances were measured on 752 benchmark cases.

		Top 10 success rate	Top 50 success rate
	IES/10k	182 (24.2%)	287 (38.2%)
	IES 40 /10k	179 (23.8%)	284 (37.8%)
	IES-h 40 /10k	203 (27.0%)	335 (44.5%)

Table 3 -3: Performance of SOAP-PP against SPP-h 40 .

 3 Top 10 and top 50 success rates of SOAP-PP (SPP) compared to its homology-enriched version SPP-h 40 over sequences in coMSA 40 on 10,000 decoys (/10k). Performances were measured on 752 benchmark cases.

		Top 10 success rate	Top 50 success rate
	SPP/10k	183 (24.3%)	328 (43.6%)
	SPP-h 40 /10k	228 (30.3%)	365 (48.5%)

Table 3 -5: Performance of ISC and ISC-h 10 on 150 pre-selected decoys.

 3 Below are summarised the top 10 success rates of ISC and ISC-h 10 . Top 10 success rates of ISC/150h and ISC-h 10 /150h were calculated after a pre-selection of maximum 150 decoys taken from the 3 x top 50 decoys of IES-h 40 /10k, SPP-h 40 /10k, and FRO-DOCK2.1. Scoring was performed on all 752 benchmark cases.

	Score	Top 10 success rate	Top 50 success rate
	ISC/150h	218 (29.0%)	394 (52.4%)
	ISC-h 10 /150h	271 (36.0%)	411 (54.7%)

Table 3 -6: Performance of homology-enriched consensus scores.

 3 Performance of three-, four-and fiveway consensus scores in terms of top 10 success rates on 752 benchmark cases and approximate timescales for the whole pipeline (including sampling with FRODOCK2.1, homology model generation, scoring steps and consensus calculation). Scores used in Cons

3 

were SOAP-PP/10k, InterEvScore/10k and FRODOCK2.1. Scores used in all homology-based consensuses (Cons X -h) were FRODOCK2.1, SPP-h 40 /10k, IES-h 40 /10k, ISC and ISC-

  Table 3-6). Our homology enriched scoring scheme is robust to change in the definition of near-natives (supplementary Table C-12) and in evaluation metrics (supplementary Table C-13). Using a more stringent definition of near-natives (as being of at least Medium quality according to CAPRI criteria) still allows homology enrichment to boost predictive performance of scoring functions. However, consensus scores become less efficient than the best individual scoring functions, probably because when grouping decoys with a relatively loose similarity criterion

	(see methods section 3.1.2.1, page 107), we do not manage to selectively uprank Medium
	quality decoys (supplementary Table C-12).

Table 4 -1: Summary of CAPRI targets in rounds 42-45.

 4 The table also summarises our group's strategy for addressing each target.

	Rou	Tar-	Short	Category Target	Pro-	Our strategy	Ref complex
	nd	get	partner		specific-	vided		PDB code
			ids		ity	info	
	42	T131 HopQI /	protein -	pathogen		Free docking + bio-	6GBG (Moonens,
			CEACAM1	protein	/ host		logical information	Hamway et al.
								2018), 6AW2
								(Bonsor, Zhao et
								al. 2018)
		T132 HopQII /	protein -	pathogen		Template-based	6GBH (Moonens,
			CEACAM1	protein	/ host		docking based on	Hamway et al.
							T131 solutions	2018)
	43	T133 E des3 / Im-	protein -	rede-	wild-	Docking perturba-	6ERE (Netzer,
			des3	protein	signed in-	type	tions including	Listov et al. 2018)
					terface	PDB	rigid-body moves,
						code,	loops and side-
						affinities	chain refinement
	44	T134 DLC8 /	protein -	binding	DLC8	Evolution-driven	6GZJ (Myllykoski,
			MAG(57-	peptide	segment	PDB	motif recognition +	Eichel et al. 2018)
			aa)		prediction	code	template-based
							docking + con-
							strained refinement
		T135 DLC8 /	protein -		DLC8	Template-based	6GZL (Myllykoski,
			MAG(12-	peptide		PDB	docking + con-	Eichel et al. 2018)
			aa)			code +	strained refinement
						12-aa	
						peptide	
	45	T136 LdcA	protein -	ho-	clues	Template-based	6Q6I
			decamer	protein	modecam	about	docking + rigid-
					er	homol-	body perturbations
						ogous	
						struc-	
						tures	

Table 4 -2: Results for CAPRI targets in rounds 42-45.

 4 Results are provided for the top 5 and top 20 models submitted by our group vs. all other groups by indicating the quality of the best model in this range: -for incorrect, * for Acceptable, ** for Medium and *** for High.

	Rou	Tar-	Short part-	Cate-	Top 5 our	Top 5 other	Top 20 our	Top 20
	nd	get	ner ids	gory	group	groups	group	other
								groups
	42	T131 HopQI / CEA-	protein -	-	**	**	**
			CAM1	protein				
		T132 HopQII /	protein -	-	**	*	**
			CEACAM1	protein				
	43	T133 E des3 / Im des3	protein -	**	**	**	**
				protein				
	44	T134 DLC8 /	protein -	***	***	***	***
			MAG(57-aa)	peptide				
		T135 DLC8 /	protein -	***	***	***	***
			MAG(12-aa)	peptide				
	45	T136 LdcA	protein -	** / ** / *	** / ** / **	** / ** / **	** / ** / **
			decamer	protein				
	 For T136, multiple interfaces were assessed that are denoted by multiple results separated by a / sign.

Table 4 -3: Assessment summary for our best submitted CAPRI targets.

 4 This table includes the following assessment metrics (as provided by the CAPRI assessment team on the CAPRI website https://www.ebi.ac.uk/msd-srv/capri/): fraction of native contacts (fnat), ligand RMSD (L_rmsd), interface RMSD on backbone atoms (I_rmsdbb), and individual RMSDs of the two partners (M_rmsd_1 and M_rmsd_2). For each target (and each interface whenever relevant), this information is provided for our best submitted model among the top 5. If that model is incorrect and if we submitted a better model (in terms of I_rmsdbb) within the top 20, the metrics are additionally provided for that model (in yellow in the table below).

	Model id	capriround_tar-	fnat	L_rms	I_rmsd	M_rmsd	M_rmsd	classifica-
		get(.interface)		d (Å)	bb (Å)	_1 (Å)	_2 (Å)	tion
	T131_P07.M03	capri42_T131	0.055 44.163 11.364 0.686	1.907	incorrect
	T131_P07.M12	capri42_T131	0.52	3.247	1.7	0.53	1.22	medium
	T132_P07.M03	capri42_T132	0.06	45.543 9.156	0.787	2.973	incorrect
	T132_P07.M14	capri42_T132	0.209 11.578 3.905	0.611	2.555	acceptable
	T133_P05.M02	capri43_T133	0.66	3.433	1.577	1.694	0.749	medium
	T134_P19.M01	capri44_T134	0.895 1.21	0.356	1.098	0.364	high
	T135_P19.M04	capri44_T135	0.895 1.812	0.459	1.513	0.366	high
	T136_P03.M04	capri45_T136.1	0.687 2.813	1.709	2.002	2.001	medium
	4.2.							

1 Protein-protein docking using ab initio free docking strat- egy (targets T131-T132)

  

  Finally, CAPRI consists in the ultimate blind-test scenario, where docking teams can put their methods to the test by predicting the structures of newly resolved and yet unpublished protein-protein interactions. Chapter 4 describes the strategies applied by our team, which enabled us to rank first in number and precision of correct predictions in the latest CAPRI round (2016-2019, Table4-2 shows our performance for the rounds in which I participated). I was able to participate in 10 such docking challenges throughout my PhD. Resolving these challenges required a lot of team work and organisation as each target called for a different search strategy. According to the latest CAPRI results, template-based approaches generally tend to be the most accurate, when good templates can be found. Use of evolutionary information in addition to complementary scoring functions also enabled more efficient selection of near-native models. Currently, InterEvDock2 is not well-suited to CAPRI's server round since it does not integrate template-based docking. I am currently working on a third update of InterEvDock in collaboration with Pierre Tufféry's team at RPBS, which will make use of the already optimised and automated multimeric template search in Proteo3Dnet

Table B -2: InterEvDock2 performance according to target-template sequence identity in PPI4DOCK.

 B This table summarises the prediction performance of the InterEvDock2 consensus on the 812 PPI4DOCK cases, split by sequence identity between the target and the template used to model the unbound structures in the benchmark (the smaller of the target-template identities for the two protein partners is used). It shows only a moderate drop in success rate for models built with remote templates (< 30% sequence identity) and an increase in success rate for models built with very close templates (>=95% sequence identity).All cases from the Weng benchmark presented in TableB-3 and Table B-4 were benchmarked using input structures and co-alignments as in the original InterEvDock paper(Yu, Vavrusa et al. 2016). All input files are provided in http://bioserv.rpbs.univ-paris-diderot.fr/services/InterEvDock2/table-weng.html.

		All cases	0-30% id	30-60% id	60-95% id	95-100% id
	Number of	812	227	239	154	192
	cases					
	Top 10 suc-	239 (29%)	57 (25.1%)	70 (29.3%)	47 (30.5%)	65 (33.9%)
	cess rate					

f. Performance comparison with the Weng benchmark

Table B -3: InterEvDock2 performance on 47 cases in common between PPI4DOCK and Weng bench- marks

 B 

. (A) Table

Table C -5: List of the 752 docking cases used as a benchmark set in this study.

 C This subset of the 1417 cases in PPI4DOCK contains all cases with at least 10 sequences in the coMSAs and at least one acceptable decoy in the top 10,000 FRODOCK2.1 decoys.

	1iar_AB 4ij3_AB	1qo3_CB 4jgh_CD	1yc0_AB 4krp_AD	2goo_DF 4lnu_CB	2r0l_CB 4mng_CB	3bp6_AB 4nqa_AB	3hh2_AB 4qtt_AB	3q3j_DH 4u5y_AB	4ccg_BA 4xh9_AB
	1ib1_BD 4ij3_AC	1qop_BD 4jhp_AB	1ycs_AB 4ksk_AB	2gtp_AB 4lry_AC	2r25_AB 4ms4_AB	3bp8_AC 4ocm_CB	3hhs_AB 4qxf_AB	3q66_BA 4u65_AC	4cdk_AB 4xl1_AB
	1ikn_AB 4ilh_AB	1r0r_AB 4jqw_AB	1yvb_AB 4kt0_CE	2gwf_AB 4lw4_AC	2r40_AB 4msv_CF	3bpl_AC 4oic_AB	3icq_AC 4rca_AB	3q9n_AB 4u65_BC	4crw_AB 4y8d_AB
	1ikn_CB 4ilw_AB	1r8s_AB 4jx1_AB	1z3e_AB 4kt1_AB	2gzd_AC 4lx0_AB	2rex_AB 4n0g_AB	3bs5_AB 4p1b_FD	3ifw_AB 4rku_NG	3qb4_AB 4ui0_AC	4ct4_AB 4ydy_AB
	1iod_CB 4imi_AB	1rbl_AH 4k1r_AB	1z5x_AB 4kvg_AB	2h62_AD 4lxr_AB	2sic_BD 4n3y_AC	3bt2_BE 4p2a_AB	3ima_AB 4rr2_AB	3qb7_AB 4ut7_AB	4cxa_AB 4yfc_AB
	1ixs_AB 4iop_AB	1rjc_AB 4k5a_AB	1z5y_AB 4l0p_AB	2h62_BC 4m4r_AB	2uyz_AB 4n6e_BD	3buk_AC 4p5o_BD	3imz_CD 4rsu_IJ	3qht_AB 4ut9_CB	4cym_AD 4yii_AB
	1j05_AB 4iso_AB	1rv6_BC 4k71_AB	1z7k_AB 4l41_AB	2hle_AB 4m69_AB	2v1y_AB 4n6o_AB	3bwu_AB 4p78_AD	3jv4_AB 4tu3_AB	3qn1_AB 4v3l_AD	4cym_BD 4yn0_AB
	1j2j_AB 4iyp_AB	1s1q_AB 4k81_AB	1z7m_BG 4l41_CB	2hrk_AB 4mcx_AC	2v3b_AB 4naw_AB	3bx1_AB 4pbv_AB	3jv6_AB 4tvs_AB	3qq8_AB 4v3l_DB	4czx_BD 4ypg_CA
	1j7d_AB 4j4l_AB	1sg1_AC 4kax_AB	1z7x_AB 4lcd_AC	2htm_AC 4mdk_AB	2v4z_AB 4ni2_AB	3bx7_BD 4per_AB	3jw0_AB 4tx3_AB	3qt2_AC 4wlr_AC	4d0k_AB 5aie_AB
	1jb0_AE 4jd2_FH	1sg1_BC 4kgq_HJ	1zc3_AB 4ldt_AB	2hue_AB 4mjs_AB	2v5q_AB 4nif_AB	3by4_AB 4pky_AB	3jw0_CB 4txo_AB	3qvg_AB 4wqo_CD	4d0l_AB
	1jb0_CE 4jd2_GH	1shw_AB 4kml_AB	1ze3_AB 4ldt_CA	2hy5_BC 4mmz_CB	2v7q_BE 4nik_AB	3c5w_CB 4qci_AC	3k1i_AB 4txv_AB	3qwq_AB 4ww7_AB	4d0n_AB
	1jk0_AB 4je4_AB	1shy_AB 4kng_AC	1zhh_AB 4lhu_AC	2hy5_FC 4mn4_DC	2v8s_AB 4nkg_AB	3cbj_AB 4qt8_AB	3k2m_AB 4u30_AB	3qwr_AC 4x0l_AC	4dcn_AB
	1jql_AB 4jeg_AB	1spg_BC 4kng_EC	1zjd_AB 4lld_AB	2ibg_AB 4mn8_AC	2vje_BD 4nl9_AB	3cji_CB 4qts_AB	3k51_BF 4u32_AB	3r07_AB 4x0l_CB	4dfc_AB
	1jr3_CD	1spp_AB	1zr0_AB	2ie4_AB	2vol_BD	3cki_AB	3k9m_AB	3r1g_AB	4dhi_AB
	1jtd_AB	1sq0_AB	2a19_AB	2ih3_DL	2vrw_AB	3cph_AB	3k9o_AB	3r2c_AB	4djd_BF
	1jwy_AB	1stf_AB	2a1j_AB	2ihb_AB	2vso_AB	3cpj_AB	3kb3_AB	3rpf_BD	4doh_AB
	1jzd_BC	1sv0_AB	2a40_AB	2inc_BF	2vut_AB	3cx8_AB	3kbt_AB	3t62_AB	4doh_AC
	1k5d_AC	1t0p_AB	2a5d_AB	2io0_AB	2vxs_FA	3d1k_BD	3kdj_AB	3tg1_AB	4doh_CB
	1k9o_AB	1t8o_AB	2a9m_AB	2io5_AB	2w19_DH	3d2f_AB	3kfd_AF	3tjz_AB	4dri_AB
	1ka9_AB	1ta3_AB	2ast_CB	2iy0_AC	2w83_DB	3d2u_CB	3kld_AB	3tmp_AB	4ds8_AB
	1kb5_AB	1taw_BD	2atp_AC	2iy1_AB	2wbl_AC	3d3b_AB	3kmu_AB	3tx7_AB	4dss_BC
	1kcg_AC	1tco_AC	2aw2_AB	2j0s_AB	2wdt_AB	3d65_AB	3knb_AB	3u7u_AB	4dxe_BD
	1kgy_AC	1tdq_AB	2b4s_CD	2j0t_AB	2wiu_AB	3d7t_AB	3ks0_AC	3uai_AB	4e4d_CE
	1ki1_AB	1te1_AB	2b5i_AC	2j3t_AC	2wnv_AB	3daw_AB	3kse_AB	3udw_AB	4eb5_AD
	1ksh_AB	1tfx_AB	2ba0_CH	2j59_AB	2wnv_AC	3dbh_CB	3kud_AB	3uir_AB	4ekd_AB
	1ktz_BD	1tgs_AB	2bcg_AB	2jb0_DH	2wnv_BC	3dge_BC	3kyc_CB	3ulq_AB	4emj_AB
	1kxq_AB	1tgz_AB	2bcj_AD	2jdi_AD	2wo2_AB	3dlq_AB	3kyj_AB	3ulr_AB	4es4_BD
	1kz7_AB	1to2_AB	2bcn_AB	2jdi_GH	2wo3_AB	3dur_AB	3l1z_AB	3uou_AB	4etw_AB
	1l0o_AC	1tue_AB	2bex_AB	2jgz_AB	2wp8_AC	3dwg_AC	3lb8_AB	3v2a_BC	4ext_AC
	1l9b_BD	1tx4_AB	2bkk_AB	2ngr_AB	2wqa_DE	3e1z_AB	3lbx_AB	3v2a_BD	4ezm_BD
	1lb1_AB	1u0s_AB	2bkr_AB	2nps_AB	2ws9_32	3ejb_AB	3ldq_AB	3v64_AC	4ffb_CB
	1m2o_CD	1u2g_BC	2bky_AC	2npt_AB	2wus_AB	3eno_AB	3lpe_AB	3vmf_AB	4ffy_BC
	1m2t_AB	1u75_AB	2blf_AB	2nqd_AB	2x5i_CB	3er9_AB	3lqc_AB	3von_AC	4fjv_AB
	1m2v_AB	1u7f_AB	2bo9_AB	2nxx_AB	2xac_BC	3evs_BC	3ltf_CD	3vpb_AF	4fou_AB
	1ma9_AB	1uac_AB	2bto_BH	2nz8_AB	2xbb_AB	3f1p_AB	3lvj_BD	3vr4_CB	4fq0_AB
	1mbx_AB	1uad_AB	2btq_BD	2o25_AB	2xko_BD	3f1s_AB	3lvl_BD	3vti_BD	4fqx_AC
	1mfa_AB	1uea_AB	2c2v_AE	2o26_BD	2xqr_AB	3f5c_AB	3m0a_CD	3vyt_BD	4ged_AB
	1mox_BD	1uex_CB	2c5l_AB	2o2v_AB	2xwu_AB	3f5c_AC	3m0d_DC	3wxw_CB	4gh7_AB
	1mqk_AB	1us7_AB	2cch_AB	2o8v_BD	2yc2_AB	3f7p_AB	3m18_AB	3ygs_AB	4gmj_AB
	1n4x_AB	1usu_AB	2cg5_AB	2ocf_BD	2yho_AB	3f9k_BC	3m7f_AB	3zdm_EF	4goj_AB
	1nb5_AC	1uw4_AB	2cjs_BC	2ode_AB	2ynm_DF	3fap_AB	3m7q_AB	3zhp_AB	4gok_AB
	1nbf_AB	1uzx_AB	2ckh_AB	2oi9_CB	2yvj_AB	3fc6_AB	3mca_AB	3zl7_AB	4grw_DB
	1npe_AB	1v4x_AD	2czv_BD	2omz_AB	2z0d_AB	3ff7_BD	3mdy_AB	3zo0_AC	4grw_EA
	1nql_AB	1v7p_AC	2d5r_AB	2otu_AB	2z35_AB	3ff8_AC	3mhv_BD	3zu7_AB	4gs7_AC
	1nvv_AC	1vg0_AB	2d7t_AB	2oul_AB	2z3q_AB	3fga_AB	3mi9_AB	43c9_AB	4gs7_AD
	1nvv_BC	1w98_AB	2de6_AD	2oxg_AB	2z5c_AC	3fmo_AB	3mkb_CB	4a49_AB	4gsl_AD
	1oaq_AB	1wdw_AB	2dsq_CB	2oxq_BD	2z7f_AB	3fn1_AB	3msx_AB	4a63_AB	4h2w_AD
	1oc0_AB	1wmh_AB	2dzn_AB	2oz4_AB	2za4_AB	3fpn_AB	3n1f_AB	4a8x_AC	4h3k_AB
	1oey_AB	1wmu_BC	2e27_AB	2ozb_CB	3a33_BC	3g33_CD	3n3a_BD	4ag1_AB	4h5s_AB
	1of5_AB	1wpx_AB	2e2d_AB	2p45_AB	3a4u_AB	3g3a_AB	3n3k_AB	4auq_FE	4hdo_AB
	1ofu_AB	1wq1_AB	2e3x_AB	2pbd_AB	3a6p_AC	3g9v_AB	3n5b_CD	4b8a_AB	4hgm_BA
	1oph_AB	1wqj_AB	2efe_AB	2pop_CD	3a7a_AB	3gjx_BC	3n9y_AB	4bfi_AB	4hr6_CB
	1out_BC	1wr6_AB	2ejf_AB	2ptt_AB	3a8k_AB	3gni_AB	3nig_AC	4bgd_AB	4hr7_AB
	1p2j_AB	1wrd_AB	2eke_AB	2pu9_AC	3a8y_AB	3gpr_AC	3nmv_AB	4bi8_AB	4hrl_AB
	1p4l_BH	1wt5_BD	2ey4_AB	2puk_AB	3ab0_CB	3gqb_AB	3ny7_AB	4bmo_BD	4hrn_DC
	1p4l_CG	1x75_BD	2f5z_BC	2pvg_AC	3agj_AB	3gqi_AB	3o2p_AB	4bnr_AB	4i18_AC
	1a2y_AB 1p8v_AF	1azs_FD 1x86_AB	1c1y_AB 2f8x_CD	1dkf_AB 2q5w_BD	1em8_AB 3aji_AB	1flt_BC 3gym_AB	1g3n_AB 3of6_BD	1gl4_AB 4bos_AC	1hx1_AB 4i2l_CD
	1a4y_CD 1pk1_AB	1b4u_AD 1x9f_EF	1c4z_AD 2fd6_AD	1dl7_AB 2qe7_AD	1euv_AB 3alq_BF	1fm0_AB 3h11_AB	1g3n_AC 3oky_BD	1gla_DH 4bos_AD	1hyr_BC 4i2l_CF
	1a9n_CB 1ppf_AB	1b6c_AB 1xcg_AB	1cg5_BC 2fep_BD	1dlf_AB 2qho_AB	1ewy_AB 3amj_AD	1fo0_ED 3h2u_AB	1g8k_AB 3or1_CE	1got_AB 4bsr_AD	1i1q_BD 4i5l_AB
	1agr_AB 1pvh_AB	1blx_AB 1xd3_AB	1cgi_AB 2fju_AB	1dvf_BD 2qi9_AE	1ezv_TS 3bbp_AD	1fq1_AB 3h9r_AB	1gaq_AB 3p5t_AD	1gpw_AB 4bv4_AC	1i2m_AB 4i6l_AB
	1aro_AB 1q5q_GN	1bqh_AE 1xg2_AB	1cmx_AB 2fnj_CB	1e50_AB 2qi9_BE	1f45_AB 3bdw_AB	1fqj_AB 3hax_DC	1gcq_AC 3p71_AB	1gxd_AB 4bvx_AB	1i4d_AC 4i6m_AB
	1ava_AB 1qa9_AB	1bqq_AB 1xqs_AB	1co7_AB 2fu5_AB	1e96_AB 2qkl_AB	1f6f_AB 3bh7_AB	1fr2_AB 3hct_AB	1gcq_BC 3pb1_AB	1h1v_AB 4c4k_BA	1i85_BD 4i6n_AB
	1awc_CD 1qdl_BD	1buh_AB 1y8x_AB	1d4v_BF 2g45_AB	1eaw_AB 2qwo_AB	1f6m_AC 3bik_AB	1fvu_CB 3hei_AB	1gcv_CB 3pv6_AB	1hcf_BC 4c9r_CD	1i8k_AB 4ii2_AB
	1axi_BD	1bzx_AB	1de4_AC	1ebd_BC	1fle_AB	1fx0_CD	1ggp_AB	1he8_AB	1i8l_AB
									183 184

Table C -6: InterEvScore statistical potential

 C . The IES query score represents only the statistical potential part of InterEvScore (2B best ) without any evolutionary information, used to re-rank either the top 10,000 (10k) or the top 1,000 (1k) FRODOCK2.1 decoys. These results are shown for comparison with the homology-enriched IESh variants described in the main results.

		Top 10 success rate	Top 50 success rate
	IES query /10k	154 (20.5%)	284 (37.8%)
	IES query /1k	165 (21.9%)	297 (39.5%)
	IES-h 40 /10k	203 (27.0%)	335 (44.5%)
	IES-h 10 /1k	200 (26.6%)	338 (44.9%)

Table C -7: Scoring performance of homology-enriched SCORES

 C . Scoring performance of ISC on query decoys only and using the threaded homology models (ISC-h 10 ) on top 1,000 FRODOCK2.1 decoys (1k) and coMSA 10 as well as the performance of SPP-h 40 and IES-h 40 on top 10,000 (10k) with coMSAs 40 and the performance of SPP-h 10 and IES-h 10 on 1,000 FRODOCK2.1 decoys with coMSAs 10 for easier comparison. Performances were measured as the top 10 success rate on 752 benchmark cases. This table is the same as Table3-4 except that it includes coMSA 40 /10k success rates for comparison purposes.

		Top 10 success rate		Top 50 success rate	
		coMSA 40 /10k	coMSA 10 /1k	coMSA 40 /10k	coMSA 10 /1k
	IES-h	203 (27.0%)	200 (26.6%)	335 (44.5%)	338 (44.9%)
	SPP-h	228 (30.3%)	227 (30.2%)	365 (48.5%)	362 (48.1%)
	ISC	/	157 (20.9%)	/	301 (40.0%)
	ISC-h	/	259 (34.4%)	/	361 (48.0%)

Table C -8: Numbers and timescales (on one CPU) of various elements and programmes.

 C Times and numbers correspond to measurements on our 752-case PPI4DOCK benchmark. Decoys and docking mentioned below all refer to FRODOCK2.1 docking. The number of decoys generated per case changes according to the size of the complex, it averages at 9,651 with a maximum threshold of 10,000. Docking and decoy generation times are size-dependent but an average value is shown below.

	Number

of cases in our benchmark 752 Average number of sequences in our coMSAs 134 Average number of residues per case (receptor + ligand) 389 Maximum number of decoys generated in docking 10,000 Average number of decoys per case

  

		9,651
	Docking time with FRODOCK2.1	45 min -1 h
	Structure generation time for 1,000 decoys with	1 min
	FRODOCK2.1	
	Threading time with Rosetta per structure	1-2 min
	SOAP-PP scoring time for 1,000 decoys	1 min
	Original SOAP-PP scoring time for 1,000 decoys	15 min
	InterEvScore scoring time for 1,000 decoys	1 min
	Rosetta's ISC scoring time for 1,000 decoys	12 h 30
	Consensus calculation time per case	20 s (3 scores) -
		20 min (5 scores)

Table C -9: Top 1 and top 5 compared to top 10 success rates for consensus scores. Top 1 success rate Top 5 success rate Top 10 success rate

 C 

	Cons3	95 (12.6%)	190 (25.3%)	241 (32.0%)
	Cons3-h	113 (15.0%)	228 (30.3%)	271 (36.0%)
	Cons4-h/150h	104 (13.8%)	223 (29.7%)	276 (36.7%)
	Cons4-h/1k	111 (14.8%)	230 (30.6%)	282 (37.5%)
	Cons5-h/150h	109 (14.5%)	230 (30.6%)	289 (38.4%)
	Cons5-h/1k	113 (15.0%)	247 (32.8%)	304 (40.4%)

Table C -10: Performance of the repulsive term in Rosetta's score and ISC-h 10 /1k on the worst third or worst homologs

 C Top 10 success rate of the fa_rep van der Waals repulsive terme in Rosetta's scoring without (fa_rep /1k) and with homology through threaded homologs (fa_rep-h 10 /1k) as well as ISC-h 10 /1k using only the worst scoring third of homologs selected for each decoy individually (ISC-h 10/w3 /1k) or the worst scoring homolog for each decoy (ISC-h 10/w1 /1k) over 752 cases.

		Top	10
		success rate
	fa_rep/1k	9 (1.2%)
	fa_rep-h 10 /1k	34 (4.5%)
	ISC/1k	157 (20.9%)
	ISC-h 10 /1k	259 (34.4%)
	ISC-h 10/w3 /1k	227 (30.2%)
	ISC-h 10/w1 /1k	200 (26.6%)
	SPP/10k	183 (24.3%)
	SPP-h 40 /10k	228 (30.3%)
	SPP-h 40/w3 /10k 207 (27.5%)
	SPP-h 40/w1 /10k 188 (25.0%)

Table C -11: Performance over PPI4DOCK difficulty categories. Top

 C 10 success rates separated over the four difficulty categories in our benchmark for FRODOCK2.1, InterEvScore and its threaded-homology variants, SOAP-PP and ISC and their evolutionary variants and the six consensus scores presented in section 3.2.6. Performances were measured on 752 benchmark cases.

			total	very_easy easy	hard	very_hard
			752	169	473	94	16
		FD2.1	164 (21.8%) 55 (32.5%) 102 (21.6%) 5 (5.3%)	2 (12.5%)
		IES / 10k	182 (24.2%) 55 (32.5%) 118 (24.9%) 8 (8.5%)	1 (6.2%)
		IES 40 / 10k	179 (23.8%) 52 (30.8%) 118 (24.9%) 8 (8.5%)	1 (6.2%)
	scores	IES-h 40 / 10k IES-h 10 / 1k	203 (27.0%) 52 (30.8%) 141 (29.8%) 10 (10.6%) 0 (0.0%) 200 (26.6%) 56 (33.1%) 133 (28.1%) 10 (10.6%) 1 (6.2%)
	Individual	SPP / 10k SPP-h 40 / 10k 228 (30.3%) 65 (38.5%) 146 (30.9%) 15 (16.0%) 2 (12.5%) 183 (24.3%) 52 (30.8%) 120 (25.4%) 11 (11.7%) 0 (0.0%) SPP-h 10 / 1k 227 (30.2%) 65 (38.5%) 146 (30.9%) 16 (17.0%) 0 (0.0%)
		ISC / 1k	157 (20.9%) 52 (30.8%) 99 (20.9%) 6 (6.4%)	0 (0.0%)
		ISC-h 10 / 1k	259 (34.4%) 86 (50.9%) 158 (33.4%) 14 (14.9%) 1 (6.2%)
		ISC / 150h	218 (29.0%) 71 (42.0%) 139 (29.4%) 8 (8.5%)	0 (0.0%)

Table C -14: Performance of consensus scores including InterEvScore implicit homology scoring.

 C Performance of three-and four-way consensus scores in terms of top 10 success rates on 752 benchmark cases. Scores used in Cons 3 were SOAP-PP on the top 10,000 or top 1,000 FRODOCK2.1 decoys (SPP/10k or SPP/1k), InterEvScore on the top 10,000 or top 1,000 FRODOCK2.1 decoys (IES/10k or IES/1k) and FRODOCK2.1 (FD2.1). Scores used in Cons 4 were SPP/10k, IES/10k, FRODOCK2.1 and Rosetta's interface score on the top 1,000 FRODOCK2.1 decoys (ISC/1k). Performances of individual scores used in the consensuses are reported in terms of top 10 and top 50 success rates, since consensus calculation relies on the top 50 decoys ranked by each component score.We try to improve the baseline consensus performance by incorporating Rosetta's physicsbased Interface Score (ISC) (section 3.1.2). As Rosetta scoring is more computationally expensive than the other two scores (about 750 times slower than SOAP-PP and InterEvScore calculations), we score only the top 1,000 decoys (as ranked by FRODOCK2.1) with ISC. This score is denoted ISC/1k as opposed to IES/10k and SPP/10k. As such, ISC is individually less well performing than the other scores in terms of top 10 success rate, even when InterEvScore and SOAP-PP are computed only on the top 1,000 FRODOCK2.1 decoys (supplementary TableC-14). However, the top 50 success rate is higher for ISC/1k than for any other individual score, except for SOAP-PP calculated on 10,000 decoys (supplementary Table C-14). In spite of this, integrating the top 50 decoys ranked by ISC/1k with the top 50 of the other three scores into a four-way consensus, denoted Cons 4 , slightly degrades performance compared to Cons 3 (supplementary Table C-14) while strongly increasing computation time.

	Score	Top 10 success rate	Top 50 success rate
	FD2.1	164 (21.8%)	292 (38.8%)
	IES/10k	182 (24.2%)	287 (38.2%)
	IES/1k	196 (26.1%)	295 (39.2%)
	SPP/10k	183 (24.3%)	328 (43.6%)
	SPP/1k	187 (24.9%)	295 (39.2%)
	Cons 3	241 (32.0%)	/
	ISC/1k	157 (20.9%)	301 (40.0%)
	Cons 4	235 (31.2%)	/

Table C -15: Performances as reported in the InterEvDock2 paper.

 C Top 10 success rates of original scores in InterEvDock2 with percentages calculated over the same 752 cases compared with equivalent scores in this article. Original InterEvScore was run on the original PPI4DOCK coMSA and on the realigned coMSAs used throughout the present study (see section 3. ). Original SOAP-PP was run using the much slower Python implementation from the original publication.

		Top 10 success rate of original	Top 10 success rate of
		scores in InterEvDock2	new scores
	FRODOCK2.1	164 (21.8%)	164 (21.8%)
	InterEvScore	171 (22.7%) (original coMSAs)	182 (24.2%)
		177 (23.5%) (realigned coMSAs)	
	SOAP-PP	194 (25.8%)	183 (24.3%)
	3-way consensus	239 (31.8%)	241 (32.0%)

Table C -16: Performances of InterEvScore with 2-body and 2/3-body potentials

 C . Top 10 success rates of InterEvScore with complete coMSAs (IES) on 10,000 decoys, InterEvScore using homology models (IES-h) on coMSA 40 and 10,000 decoys and on coMSA 10 and 1,000 decoys using only 2-body potentials or 2-and 3-body potentials.

		𝟐/𝟑𝐁 𝐛𝐞𝐬𝐭	𝟐𝐁 𝐛𝐞𝐬𝐭
	IES/10k	182 (24.2%)	164 (21.8%)
	IES/1k	196 (26.1%)	192 (25.5%)
	IES query /10k	147 (19.5%)	154 (20.5%)
	IES query /1k	172 (22.9%)	165 (21.9%)
	IES-h 40 /10k	161 (21.4%)	203 (27.0%)
	IES-h 10 /1k	182 (24.2%)	200 (26.6%)

Å). The model is superimposed on the reference crystal structure (PDB identifier: 2yho) (gray). The model is acceptable with interface RMSD 2.29 Å and is ranked first of the top 10 consensus. The four residues used as constraints from chemical shift mapping are shown as green spheres (M388, V389, C390 and C391).

Overall, this CAPRI session revealed interesting ways to include evolutionary information beyond our usual docking pipeline. This includes of course classical template-based docking, for which the CAPRI targets in rounds 42-45 further reinforced previous observations that models derived from templates above 30% sequence identity should be optimised only locally, while templates below 30% sequence identity should always be considered but should be perturbed more extensively, including rigid-body moves. Finally, two targets in CAPRI rounds 42-45 highlighted structural interface motifs recurrently found among similar and homologous interfaces and conserved in evolution, confirming the importance of such anchors and stressing the need for improved ways to identify and encode them.

(de Vries, Rey et al. 2017) InterPep2 software http://wallnerlab.org/InterPep2 (Johansson-Akhe, Mirabello et al. 2020)
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A B MM-Align software https://zhanglab.ccmb.med.umich.edu/MMalign/ (Mukherjee and Zhang 2009) iAlign software http://pwp.gatech.edu/cssb/ialign/ (Gao and Skolnick 2010) FCC software https://github.com/haddocking/fcc (Rodrigues, Trellet et al. 2012) TopMatch server https://topmatch.services.came.sbg.ac.at/ (Sippl and Wiederstein 2012) QSalign software https://github.com/elevywis/QSalign (Dey, Ritchie et al. 2018) VAST+ server https://www.ncbi.nlm.nih.gov/Structure/vastplus/vastplus.cgi (Madej, Lanczycki et al. 2014) Interface structure and evolution databases QSbio database http://www.qsbio.org/ (Dey, Ritchie et al. 2018) PRISM database http://cosbi.ku.edu.tr/prism/ (Baspinar, Cukuroglu et al. 2014) 3D-interologs database http://3d-interologs.life.nctu.edu.tw/ (Lo, Chen et al. 2010) IBIS database https://www.ncbi.nlm.nih.gov/Structure/ibis/ibis.cgi (Shoemaker, Zhang et al. 2012) ProtCID database http://dunbrack2.fccc.edu/ProtCiD/ (Xu and Dunbrack 2011) InterEvol database http://biodev.cea.fr/interevol/ (Faure, Andreani et al. 2012) Periodic table of protein complexes database http://www.periodicproteincomplexes.org/ (Ahnert, Marsh et al. 2015) Interactome INSIDER database http://interactomeinsider.yulab.org/ (Meyer, Beltran et al. 2018) Interac-tome3D database https://interactome3d.irbbarcelona.org/ (Mosca, Céol et al. 2013) Protein evolution tools Jalview software https://www.jalview.org/ (Waterhouse, Procter et al. 2009) ProViz server http://slim.icr.ac.uk/proviz/ (Jehl, Manguy et al. 2016) ConSurf server https://consurf.tau.ac.il/ (Ashkenazy, Abadi et al. 2016) Rate4Site software https://www.tau.ac.il/~itaymay/cp/rate4site.html (Mayrose, Graur et al. 2004) SPPIDER server http://sppider.cchmc.org/ (Porollo and Meller 2007) IntPred server & software http://www.bioinf.org.uk/intpred/ (Northey, Barešic et al. 2017) EL-SMURF software http://github.com/QUST-AIBBDRC/EL-SMURF/ (Wang, Yu et al. 2019) DynJet2 software http://www.lcqb.upmc.fr/dynJET2/ (Dequeker, Laine et al. 2019) ISPRED4 server https://ispred4.biocomp.unibo.it/ (Savojardo, Fariselli et al. 2017) PredUS server http://honig.c2b2.columbia.edu/predus (Hwang, Petrey et al. 2016) PS-HomPPI server http://ailab-projects2.ist.psu.edu/PSHOMP-PIv2 (Xue, Dobbs et al. 2011) CPORT server http://milou.science.uu.nl/services/CPORT/ (de Vries and Bonvin 2011) Templatebased proteinprotein docking PPI3D server http://bioinformatics.ibt.lt/ppi3d/ (Dapkunas, Timinskas et al. 2017) SWISS-MODEL server https://swissmodel.expasy.org/ (Waterhouse, Bertoni et al. 2018) InterPred server http://bioinfo.ifm.liu.se/inter/interpred/ (Mirabello and Wallner 2017) HDOCK server http://hdock.phys.hust.edu.cn/ (Yan, Zhang et al. 2017) Free and guided docking servers ClusPro server https://cluspro.bu.edu/ (Kozakov, Hall et al. 2017) GRAMM-X server http://vakser.compbio.ku.edu/resources/gramm/grammx/ (Tovchigrechko and Vakser 2006) PatchDock server https://bioinfo3d.cs.tau.ac.il/PatchDock/ (Schneidman-Duhovny, Inbar et al. 2005) SwarmDock server https://bmm.crick.ac.uk/~svc-bmmswarmdock/ (Torchala, Moal et al. 2013) InterEvDock2 server https://bioserv.rpbs.univ-paris-diderot.fr/services/InterEvDock2/ (Quignot, Rey et al. 2018) GalaxyTong-Dock server & software http://galaxy.seoklab.org/tongdock (Park, Baek et al. 2019) pyDock server & software https://life.bsc.es/pid/pydock/ (Jimenez-Garcia, Pons et al. 2013) 169 HADDOCK server & software https://haddock.science.uu.nl/ (van Zundert, Rodrigues et al. 2016) Docking scoring functions including evolutionary information InterEvScore software http://biodev.cea.fr/interevol/interevscore/ (Andreani, Faure et al. 2013) DockRank software http://ailab-projects2.ist.psu.edu/Dock-Rank/ (Xue, Jordan et al. 2014) iScore software https://github.com/DeepRank/iScore (Geng, Jung et al. 2019) Covariationbased prediction of interface contacts EVcomplex server https://evcouplings.org/complex (Hopf, Scharfe et al. 2014) ComplexContact server http://raptorx2.uchicago.edu/ComplexContact/ (Zeng, Wang et al. 2018) Binding motif databases and prediction tools Eukaryotic Linear Motif resource database http://elm.eu.org/ (Kumar, Gouw et al. 2019) IUPred2A server https://iupred2a.elte.hu/ (Meszaros, Erdos et al. 2018) PSSMsearch server http://slim.icr.ac.uk/pssmsearch/ (Krystkowiak, Manguy et al. 2018) Peptide binding site prediction PEP-Site-Finder server https://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-SiteFinder/ (Saladin, Rey et al. 2014) InterPep software http://wallnerlab.org/InterPep/ (Johansson-Akhe, Mirabello et al. 2019) Proteinpeptide docking servers Galaxy-PepDock server http://galaxy.seoklab.org/pepdock (Lee, Heo et al. 2015) PIPER-Flex-PepDock server http://piperfpd.furmanlab.cs.huji.ac.il/ (Alam, Goldstein et al. 2017) CABS-Dock server http://biocomp.chem.uw.edu.pl/CABSdock (Kurcinski, Jamroz et al. 2015) pepATTRACT server https://bioserv.rpbs.univ-paris-diderot.fr/services/pepATTRACT/

Structural information is one of the many types of information about PPI that can be integrated into networks and serve PPI prediction. Structural modelling of whole PPI networks is only a long-term goal of computational structural biology. The web page resulting from an InterEvDock2 submission contains information about the best-ranked decoys, which can be explored interactively thanks to the PV WebGL applet (M.

Biasini, https://dx.doi.org/10.5281/zenodo.12620). Detailed results are available in a downloadable archive, also containing a script for easy loading and offline visualisation of the best docking solutions with PyMOL (The PyMOL Molecular Graphics System, Schrödinger, LLC).

The InterEvDock2 server benefits from parallelised implementation in the dedicated infrastructure built at RPBS and from data privacy ensured in the Mobyle framework.

Runtime

The core docking steps (iv), (vii) and (viii) take altogether around 30 min for proteins of size 200 residues and 1 hour for proteins of size 400-500 residues. Template search and querytemplate alignment steps (i) and (ii) take only a few minutes, whatever the size of the proteins. The comparative modelling step (iii) was optimised for speed as reported above and typically takes 5 to 20 minutes depending on the size of the proteins and the query-template sequence identities. Compared to InterEvDock, InterEvDock2 benefits from a large speedup in step (vi) for the generation of joint MSAs for two protein partners which was a key bottleneck. This step now typically lasts ~3 min for proteins of 200 residues and ~15 min for proteins of 400-500 residues. 

CHAPTER 3 Reconciling evolutionary information and atomic detail in scoring

In computational structural biology, we are constantly trying to improve the performance of our prediction methods. As we have seen previously, there is a lot to learn from a protein's evolutionary history. Proteins evolve under the constraint of maintaining functional interactions and this constraint is reflected in coupled MSAs. As a consequence, these alignments provide valuable information for the purpose of interface computational prediction. This chapter is dedicated to the exploratory concept of extrapolating evolutionary information to the atomic level of detail. Its use in scoring interface predictions combined with atomicresolution scoring functions has shown promising results. The results of this work are in the process of being submitted for publication (pre-print deposited in HAL: and BioRxiv [START_REF] Quignot | Atomic-level evolutionary information improves protein-protein interface scoring[END_REF])) and we are currently implementing this methodology in another update of our docking server InterEvDock2.

h 10 . The three-way consensus included the first three scores, four-way consensuses included all scores up to ISC and five-way consensuses included all of them. Cons X -h/150h included ISC scores over 150 decoys only and Cons X -h/1k included ISC scores over 1k decoys. through multivalent contact points emerging from symmetric arrangements or relying on subtle loop conformation to ensure specific and tight recognition. In this report, we attempt to account for that variety providing hints that might be used depending on the nature of the targets. We also discuss how these observations echo with our large experience in modelling protein complexes.

METHODS

In this section, we present the pipeline used to prepare all targets and the general strategies followed for the two types of challenges: protein-protein and protein-peptide docking.

Target preparation

All CAPRI targets in rounds 42-45 were provided as sequences, sometimes with additional information about stoichiometry and possible templates. HHsearch [START_REF] Soding | Protein homology detection by HMM-HMM comparison[END_REF] was systematically used to search for homologous structures in the Protein Data Bank (PDB). When a suitable template was available for individual partners, we generally used homology modelling with a RosettaCM-based protocol [START_REF] Song | High-resolution comparative modeling with RosettaCM[END_REF]) relying on the HHsearch alignment. We evaluated evolutionary conservation for individual protein partners using the Rate4Site algorithm [START_REF] Pupko | Rate4Site: an algorithmic tool for the identification of functional regions in proteins by surface mapping of evolutionary determinants within their homologues[END_REF] or the Consurf web server [START_REF] Ashkenazy | ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules[END_REF].

For all protein-protein and protein-peptide targets (since the peptides in targets T134-T135

were actually protein fragments), the PPI3D [START_REF] Dapkunas | The PPI3D web server for searching, analyzing and modeling proteinprotein interactions in the context of 3D structures[END_REF]) and HHpred [START_REF] Zimmermann | A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core[END_REF] web servers were queried to search for available structures of homologous complexes.

Protein-protein docking challenge (T131-T132, T133, T136)

When structures of homologous complexes were available (T133, T136), our protein-protein docking strategy always started with comparative interface modelling using a RosettaCMbased protocol [START_REF] Song | High-resolution comparative modeling with RosettaCM[END_REF]. The available interface templates were close in sequence identity for T133 (wild-type complex at 80% sequence identity with redesigned interface) and more remote for T136 (2 templates with 40% overall sequence identity but only 28% and 20% N-terminal domain sequence identity).

When no homologous complex structure was available (T131-T132), free docking was used instead. Our standard docking pipeline [START_REF] Quignot | InterEvDock2: an expanded server for protein docking using evolutionary and biological information from homology models and multimeric inputs[END_REF] 

Supplementary materials for Chapter 1

Table A-1: Links to web resources to explore the evolution of interface structures, predict binding sites and model protein-protein and protein-peptide complex structures using evolutionary information.

Category Name Type Link to web service Ref.

Interface evolution comparison tools

Supplementary materials for Chapter 2 a. InterEvDock2 pipeline

If the user provided only an input sequence or a query-template alignment for one or both partners, preparatory steps are performed:

Step (i) Template search:

If the user did not provide a template, a profile is built for the query sequence using HHblits [START_REF] Remmert | HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment[END_REF]) against the Uniprot20 database and used by HHsearch [START_REF] Soding | Protein homology detection by HMM-HMM comparison[END_REF] to query the PDB70 database to find a suitable template. If no template with HHsearch probability over 95% is found, then the run is stopped.

HHsearch templates are re-ordered with the following rules: all templates with HHsearch probability equal to the maximum probability are re-ordered by decreasing sequence identity; in case of equal HHsearch probability and sequence identity, HHsearch E-value and template PDB resolution are used as sorting criteria. In case there is an HHsearch match with sequence identity ≥ 70% with the query and which covers at least 50 residues, which is not among the highest HHsearch probability hits due to profile divergence, this match is extracted and set as the first hit among the re-ranked HHsearch matches. All templates with resolution worse than 7 Å are excluded. Only template regions with a DSSP [START_REF] Kabsch | Dictionary of protein secondary structure: pattern recognition of hydrogenbonded and geometrical features[END_REF] assignment are kept for modelling.

The top 20 templates for each query sequence are provided to the user once the run is over.

The run is stopped after this step if the user selected a breakpoint after template selection;

the user can then choose a template and use the corresponding query-template alignment to restart the run at the modelling step (iii). Otherwise, the first template hit is used for modelling.

Step (ii) Query-template alignment:

Step (iv) Sampling:

Exhaustive rigid-body sampling with FRODOCK 2.1 (frodock) (Ramírez-Aportela, López-Blanco et al. 2016).

Step (v) Constraints:

This is an optional step performed only if the user provided information on residues (or pairs of residues) involved in the interface: after checking the user-provided constraints to remove any constraints involving residues not present or buried in the structure/model, apply constraints with FRODOCK 2.1 (frodockonstraints) to filter sampled solutions.

Step (vi) Joint multiple sequence alignments:

If the user did not provide a joint MSA for the two protein partners, a joint MSA is generated automatically by the server. Each query sequence is used as input to a single blastp search against the Uniprot-KB database, with threshold sequence identity > 30%, coverage > 75% and E-value < 10-4. Only one sequence per species is kept (the sequence with the highest sequence identity, and highest coverage if sequence identities are identical). Pairs of sequences belonging to the same species are collected. Redundant paired sequences with sequence identity higher than 90% are removed. The sequences are re-aligned by MAFFT. In the end, a set of two MSAs containing exactly the same number of sequences in the same species order. When fewer than 10 sequences are retrieved, a warning message in the server progress log indicates that models selected by InterEvScore may be less reliable. In case more refinement is needed in the construction of the joint MSAs, users may use the InterEvo-lAlign server [START_REF] Faure | InterEvol database: exploring the structure and evolution of protein complex interfaces[END_REF].

Step (vii) Clustering and scoring:

All decoys (or only decoys remaining after filtering if constraints were provided) are clustered by FRODOCK 2.1 (frodockcluster) at ligandRMSD 4.0 Å. The best 10 000 FRODOCK2 cluster representatives are rescored using InterEvScore [START_REF] Andreani | InterEvScore: a novel coarse-grained interface scoring function using a multi-body statistical potential coupled to evolution[END_REF]) and SOAP-PP [START_REF] Dong | Optimized atomic statistical potentials: assessment of protein interfaces and loops[END_REF].

Step (viii) Consensus calculation:

c. Success rates for interface residue predictions

The number and percentage of cases for which at least one residue out of 10 could be predicted correctly as present in the complex interface is assessed. Contacts are defined as in CAPRI [START_REF] Mendez | Assessment of blind predictions of protein-protein interactions: current status of docking methods[END_REF], i.e. two residues are assumed to be in contact if any nonhydrogen atom in the first residue is within 5 Å of any atom in the second residue.

For Zdock3.0.2 [START_REF] Pierce | Accelerating protein docking in ZDOCK using an advanced 3D convolution library[END_REF]) interface predictions, we take the 5 residues on each partner (10 predicted residues in total) that occur most often in the interfaces of the top 10 Zdock3.0.2 models. In case of a tie, we draw at random among residues having the same frequency of occurrence. For instance, if 2 receptor residues occur in all 10 interfaces, those are selected to be among the top 5 predicted residues; if the following 6 residues occur in 9 out of 10 interfaces, we draw 3 at random among those 6 to obtain a total of 5 predicted residues. This type of ties occurs relatively frequently for Zdock3.0.2 predictions (contrary to InterEvDock2 predictions, where residues are discriminated better thanks to the consensus approach and the fact that InterEvScore predictions are prioritised over SOAP_PP and FRODOCK predictions). Therefore, for Zdock3.0.2 predictions, we repeat the procedure 1000 times and report the average success rate, which provides a robust way to evaluate those predictions.

We also calculate a random reference for interface residue predictions. For this purpose, we randomly draw residues from the surface of each partner and assess whether these residues are located at the complex interface. Surface residues are defined as residues with at least 5% relative accessible solvent area as in [START_REF] Pierce | ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers[END_REF]). This procedure is repeated 10,000 times when drawing 1, 2 or 5 residues per partner (i.e. 2, 4 or 10 residues in total). 99.9% confidence intervals (shown as red bars in Supplementary materials for Chapter 3 a. Supplementary methods

Docking parameters

In the docking pipeline based on FRODOCK2.1, all parameters were set to default except for the following. Docking with the frodock executable used the "-O" option for "other" complexes (not enzyme and not antibody-antigen). Clustering with frodockcluster was run with the -d 4 option, i.e. setting a LRMSD threshold of 4 Å for clustering.

Scoring functions

We employed an in house implementation of SOAP-PP that enables much more efficient scoring since decoy coordinates do not need to be explicitly generated. Note that only a slight reduction in performance on the 752 benchmark cases compared to the original SOAP-PP implementation has been observed (supplementary Table C -15).

We also re-implemented InterEvScore for efficiency reasons. We introduced two variations compared to the best original InterEvScore [START_REF] Andreani | InterEvScore: a novel coarse-grained interface scoring function using a multi-body statistical potential coupled to evolution[END_REF]): we defined interface contacts through distance thresholds, instead of tessellation ("distance mode") and we took evolutionary information into account for all interface residues instead of apolar patches only (so-called "standard mode" in the original implementation). InterEvScore outputs several scoring variants; here, we used the 2/3B evol best and the 2B best [START_REF] Andreani | InterEvScore: a novel coarse-grained interface scoring function using a multi-body statistical potential coupled to evolution[END_REF]. In 2/3B evol best , each interface residue contributes to the final score through the potential of its best 2-or 3-body contact and the potential of its equivalents in the homolog sequences. 2/3B evol best was found to perform best when scoring with homolog sequences (InterEvScore with implicit homology) [START_REF] Andreani | InterEvScore: a novel coarse-grained interface scoring function using a multi-body statistical potential coupled to evolution[END_REF]) and thus was used in this context. 2B best was used when scoring explicitly modelled side-chain models of our homologs (InterEvScore with explicit homology, IES-h). Indeed, we found that 3-body potentials are less discriminative than 2-body potentials in the context of explicitly modelled decoys (supplementary Table C-16).

We use Rosetta 3.8 (version 2017.08.59291) and the beta_nov15 Rosetta score. Before scoring with Rosetta ISC, we perform high-resolution interface side-chain optimisation by using 'use_input_sc' and 'docking_local_refine' options of Rosetta's docking_protocol executable. We also tried adding the 'dock_min' option (for even more conservative modelling and shorter scoring runtimes) but scoring results were degraded.

Details on coMSA calculation

Compared to the original PPI4DOCK database [START_REF] Yu | PPI4DOCK: large scale assessment of the use of homology models in free docking over more than 1000 realistic targets[END_REF], coMSAs were slightly adjusted by realigning the first sequence (query) with all other sequences (considered as a block) using MAFFT [START_REF] Katoh | MAFFT multiple sequence alignment software version 7: improvements in performance and usability[END_REF].

When building reduced coMSA 40 from the readjusted PPI4DOCK coMSAs, coMSAs that already had under 40 sequences before the hhfilter step were not filtered.

The 10 sequences in coMSA 10 were selected from coMSA 40 as follows: Euclidian division was performed of the number of sequences in the coMSAs 40 (including the query) over 10 with q and r, the quotient and remainder of this division. Starting from the first sequence, the next sequence is selected every q+1 for the first r steps, then every q until the end, including the last sequence resulting in 11 sequences with the first being the query and other 10, the homolog sequences.

Threading models

The PPI4DOCK benchmark contains docking targets based on unbound homology models of pairs of binding partners for which an experimental complex structure is available. The use of homology modelling for unbound partners enables to expand the benchmark, by alleviating the need to identify complexes for which experimental structures of the interface and the exact two binding partners have been solved. This makes the benchmark larger, but RosettaScript protocol adapted for the round CAPRI45 to combine sampling of domain orientations, loop remodeling under symmetry constrains.

<ROSETTASCRIPTS> <SCOREFXNS> <ScoreFunction name="scorefxn_loopcen" patch="score4L" weights="cen_std.wts"> <Reweight scoretype="atom_pair_constraint" weight="1.0"/> </ScoreFunction> <ScoreFunction name="scorefxn_loopfa" weights="talaris2013.wts"/> <ScoreFunction name="score_docking_low_cst" symmetric="0" weights="interchain_cen"> <Reweight scoretype="atom_pair_constraint" weight="1.0"/> </ScoreFunction> <ScoreFunction name="ref15sfxn" symmetric="0" weights="beta_nov15.wts"/> <ScoreFunction name="ref15sfxn_symm" symmetric="1" weights="beta_nov15.wts"> <Reweight scoretype="atom_pair_constraint" weight="2.0"/> </ScoreFunction> </SCOREFXNS> <RESIDUE_SELECTORS> <Or name="chain_symm"> <!--Used for the selection of 5 out of 6 subunits loaded each made of two chains (Nter and Cter domain without linker) --> <!--(i) These subunits are used to define the symmetry file, (ii) Then, deleted before sampling the orientations of Nter domain vs Cter, (iii) They are rebuilt by symmetry in the end --> <Chain chains="B"/> <Chain chains="C"/> <Chain chains="D"/> <Chain chains="E"/> <Chain chains="F"/> <Chain chains="G"/> <Chain chains="H"/> <Chain chains="I"/> <Chain chains="J"/> <Chain chains="K"/> </Or> <Or name="chainD"> <Chain chains="D"/> </Or> <Index name="D1Cter" resnums="807P"/> <Index name="D1tyr" resnums="784P"/> <Index name="D2Nter" resnums="1A"/> <Index name="D3pro" resnums="651A"/> <Index name="D4lys" resnums="619A"/> <Index name="frag2del" resnums="603-661"/> <Index name="r146" resnums="146A"/> <Index name="r147" resnums="147A"/> <Index name="r148" resnums="148A"/> <Index name="r149" resnums="149A"/> <Docking conserve_foldtree="0" design="0" fullatom="0" ignore_default_docking_task="0" jumps="1" local_refine="0" name="dock_low" optimize_fold_tree="0" score_high="ref15sfxn" score_low="score_docking_low_cst" task_operations="ifcl"/> <LoopOver drift="false" filter_name="CNthresh" iterations="50" mover_name="dock_low" ms_whenfail="FAIL_DO_NOT_RETRY" name="repeat_docklow"/> <ParsedProtocol name="combine_docklow"> <Add mover_name="repeat_docklow"/> </ParsedProtocol> <!--Defining the connectivity between residues ==> Getting back initial configuration in terms of foldtree --> <!--File contents: FOLD_TREE EDGE 1 661 -1 EDGE 1 662 1 EDGE 662 807 -1 --> <AtomTree fold_tree_file="constraint_foldtree2ini.cst" name="def_foldtree_ini"/> <RemoveConstraints constraint_generators="D1D2_cst" name="rm_D1D2_cst"/> <RemoveConstraints constraint_generators="D1D3_cst" name="rm_D1D3_cst"/> <RemoveConstraints constraint_generators="D1D4_cst" name="rm_D1D4_cst"/> <DeleteRegionMover name="del_frag2del" residue_selector="frag2del"/> <AddChain file_name="input_chainD.pdb" name="addDsubunit" new_chain="1" scorefxn="talaris2013"/> <DumpPdb fname="dump_preloop.pdb" name="writepose_preloop" scorefxn="talaris2013" tag_time="0"/> <AddConstraints name="add_csts_hel"> <!--Adding constraints to obtain a helix structure --> <FileConstraintGenerator filename="constraints_helix_centroid.cst" name="loop_hel"/> </AddConstraints> <LoopModeler config="kic" fast="0" name="l1" scorefxn_cen="scorefxn_loopcen" scorefxn_fa="scorefxn_loopfa"> <Loop cut="710" skip_rate="0.0" start="702" stop="721"/> <Build skip="0"/> <Centroid skip="0"/> <Fullatom skip="1"/> </LoopModeler> <SwitchResidueTypeSetMover name="switch_repr" set="fa_standard"/> <DeleteRegionMover name="del_chainD" residue_selector="chainD"/> <SwitchChainOrder chain_order="21" name="switch_chain"/> <BridgeChains chain1="1" chain2="2" motif="2HA-3LX" name="bridge" overlap="2" scorefxn="scorefxn_loopcen"/> <MutateResidue name="mutres146" new_res="GLY" residue_selector="r146"/> <MutateResidue name="mutres147" new_res="LEU" residue_selector="r147"/> <MutateResidue name="mutres148" new_res="LEU" residue_selector="r148"/> <MutateResidue name="mutres149" new_res="PRO" residue_selector="r149"/> <MutateResidue name="mutres150" new_res="PRO" residue_selector="r150"/> <ParsedProtocol name="mutate_linker"> <Add mover_name="mutres146"/> <Add mover_name="mutres147"/> <Add mover_name="mutres148"/> <Add mover_name="mutres149"/> <Add mover_name="mutres150"/> </ParsedProtocol> <DumpPdb fname="dump_postlinker.pdb" name="writepose_postlinker" scorefxn="talaris2013" tag_time="0"/> <SetupForSymmetry definition="input_symm_def.symm"