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French summary 
Les protéines et autres macromolécules jouent un rôle central dans une multitude de 

processus biologiques chez tous les êtres vivants. Leurs fonctions sont très diverses ; 

elles peuvent par exemple agir dans la défense immunitaire, jouer des rôles de messa-

gers ou contribuer à la structuration de la cellule, ou orchestrer le transport et le stock-

age d’autres macromolécules ou leur dégradation. Les protéines agissent rarement 

seules ; de ce fait, l’étude de leurs interactions est primordiale pour mieux comprendre 

les mécanismes biologiques de la cellule. La structure tridimensionnelle de deux pro-

téines en interaction peut nous donner une information précieuse sur leur façon de 

communiquer. Comme la détermination expérimentale de ces structures n’est pas tou-

jours possible ou facile à mettre en œuvre, leur prédiction via des méthodes purement 

numériques/bioinformatiques, telles que l’amarrage moléculaire (plus connu sous le 

nom anglais de “free docking”), peut fournir une alternative utile dans l’étude de com-

ment deux protéines (ou plus) interagissent.  

Dans le free docking, nous générons de nombreux modèles d'interface possibles (étape 

d’échantillonnage) puis nous leur attribuons des scores afin de choisir les plus vraisem-

blables. Les critères de tri peuvent être basés sur des lois physiques, sur des règles 

statistiques ou sur l’information de (co-)conservation de certaines caractéristiques à 

l’interface. En effet, les protéines et leurs surfaces d’interaction sont souvent conservés 

dans différentes espèces car elles doivent maintenir leur(s) fonction(s) pour assurer la 

viabilité de la cellule. Les modes d’interaction (structures 3D du complexe protéique) 

sont également conservés et les surfaces moléculaires impliquées dans l’interaction 

présentent des traces de coévolution, c’est-à-dire de mutations corrélées permettant 

de maintenir le mode d’interaction. Cette information de conservation ou de coévolu-

tion peut donc s’avérer être très utile dans le choix de la (ou des) meilleure(s) prédic-

tion(s).  
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Mon projet de thèse s’articule autour du développement et de l’amélioration de ces 

outils de prédiction, en particulier grâce à l’exploitation de l’information évolutive, une 

des thématiques phares de l’équipe. L’état de l’art en matière de méthodes prédictives 

et d’analyse s’appuyant sur l’information de conservation et de coévolution a été ré-

cemment résumé dans un article dont je suis co-auteur (Andreani, Quignot et al. 2020).  

Dans le cadre de mon projet de thèse, j'ai participé à des développements majeurs de 

notre serveur de docking, InterEvDock2 (https://bioserv.rpbs.univ-paris-diderot.fr/ser-

vices/InterEvDock2/). A partir des protéines fournies par l’utilisateur, InterEvDock2 pro-

pose 10 modèles d'interface les plus plausibles, sélectionnés en combinant des scores 

basés sur la physique, des potentiels statistiques et l’information co-évolutive. InterEv-

Dock2 accepte aussi en entrée des structures oligomériques ou des séquences pro-

téiques, pour lesquelles il peut automatiquement modéliser la structure monomère 

pour le docking. L'utilisateur peut également intégrer des connaissances a priori sur 

l'interaction sous la forme de contraintes sur les résidus ou paires de résidus afin d’éli-

miner toute solution non-pertinente. Le pipeline complet peut être exécuté de façon 

automatique ou plus contrôlée en utilisant des points d'arrêt stratégiques et/ou par 

ajustement de paramètres. J'ai validé les performances d'InterEvDock2 sur un large en-

semble de 812 cas de docking hétérodimériques, pour lesquels les structures des com-

plexes sont connues expérimentalement et les structures non-liées sont modélisées par 

homologie. InterEvDock2 a été capable de trouver une structure de complexe correcte 

dans 32 % de ces cas, ce qui représente une très bonne performance pour un pipeline 

automatique dans le domaine difficile de la prédiction structurale des complexes pro-

téiques. La haute performance de ce serveur en matière de prédiction des résidus 

d'interface est très intéressante pour les biologistes souhaitant valider expérimentale-

ment le mode d’assemblage prédit par des mutations, avec une probabilité de 75 % 

d'avoir au moins une prédiction correcte sur deux résidus prédits (un sur chaque par-

tenaire). Ce travail a fait l’objet d’une publication dans l’édition serveur de Nucleic Acids 

Research (Quignot, Rey et al. 2018). 

https://bioserv.rpbs.univ-paris-diderot.fr/services/InterEvDock2/
https://bioserv.rpbs.univ-paris-diderot.fr/services/InterEvDock2/
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J’ai ensuite recherché un moyen plus explicite d'intégrer dans les fonctions de score 

l’information évolutive contenue dans les alignements de séquences. J’ai rendu cette 

information compatible avec l’utilisation de scores atomiques par la modélisation tri-

dimensionnelle des interfaces homologues. En combinant cette approche avec le pi-

peline d’InterEvDock2, j’ai pu améliorer la performance prédictive de 32 à 40% sur notre 

large ensemble de cas tests. Ce travail a fait l’objet d’un pré-print dans BioRxiv et HAL 

(Quignot, Granger et al. 2020) et est en cours de publication. Les données et scripts ont 

été mis à disposition de la communauté (http://biodev.cea.fr/interevol/interevdata/). 

De plus, durant ma thèse, j'ai pu participer à 14 défis de docking via le concours inter-

national de prédiction, CAPRI (Critical Assessment of Predicted Interactions), dont 4 

cibles en Novembre 2020 impliquant des interactions entre les protéines humaines et 

celles du coronavirus SARS-Cov-2. Dans CAPRI, les équipes développant des méthodes 

de docking peuvent les tester à l’aveugle en prédisant les structures d'interactions pro-

téine-protéine nouvellement résolues et pas encore publiées au moment de l’épreuve. 

La résolution de ces cibles très diverses et souvent difficiles, s’est faite par un important 

travail d’équipe. Les stratégies qui ont permis à notre équipe d’être classée première 

sur la période 2016-2019 ont été résumées dans une publication récente dans Proteins 

dont je suis co-auteur (Nadaradjane, Quignot et al. 2019). 

Le travail effectué durant ma thèse vise à améliorer la prédiction structurale des inte-

ractions protéine-protéine dans leur ensemble afin d'aider les biologistes à étudier 

leurs protéines ou leurs voies biologiques d'intérêt. Dans un avenir proche, nous aime-

rions valoriser le travail sur l’intégration atomique de l’information évolutive et la forte 

augmentation associée des performances prédictives à travers une troisième version 

de notre serveur InterEvDock. Le travail de ma thèse constitue une étape vers l'objectif 

final de la prédiction des interactomes. L'intérêt croissant pour les techniques d'ap-

prentissage automatique en biologie structurale et leur efficacité dans la prédiction de 

la structure des protéines laissent penser que des améliorations majeures pourraient 

http://biodev.cea.fr/interevol/interevdata/
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également être apportées à l'avenir en appliquant ces techniques au docking des pro-

téines. 

 



 

 

CHAPTER 1  

Introduction 





 

 

In this chapter, I will introduce basic concepts related to my PhD project. That is, I will give a 

brief introduction on proteins and their interactions, protein structure and ways to predict 

these structures using computational structural biology. I will put a particular emphasis on 

the use of evolutionary information in this task. This chapter is partly based on a review I co-

authored published in May 2020, which focuses on the integration of evolutionary infor-

mation in protein structure prediction in a user-orientated perspective (Andreani, Quignot 

et al. 2020). Parts of this chapter that are adapted from the review material include most 

protein and protein interaction evolution aspects in sections 1.2.1 and 1.2.2 as well as most 

evolution-guided prediction explanations and examples in sections 1.3.1.1, 1.3.2 and 1.3.3 
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Proteins and other macromolecules are central players in the myriad of cellular functions in 

all living organisms. Their functions are very diverse; they carry out important roles in the 

immune system, act as messengers or important structural components in the cell, or carry 

out transport and storage of other macromolecules or their degradation. Proteins mainly 

carry out their functions in networks, making the study of their interactions fundamentally 

important to probe and understand the mechanisms behind all the biological processes in 

the cell. The structure of interacting proteins can give us significant information on how they 

communicate and coordinate with each other. As the experimental determination of 3D 

complex structures is not always possible and can be too labour intensive, time consuming 

and/or costly, computational predictions of these interfaces with docking tools can provide 

a very helpful alternative or a complementary viewpoint to study how two (or more) proteins 

interact.  

Protein complex structural prediction is a difficult problem to solve in most cases especially 

due to the inherent flexibility of proteins and the limited amount of experimental data to 

learn from. Protein-protein interactions (PPI) and the way they bind together are often con-

served in many different species owing to functional constraints and share a common evo-

lutionary history that may provide us with one or several structures (templates) to copy from, 

if these were previously resolved experimentally. Template-based docking is a computa-

tional method that makes use of this information to come up with reliable predictions. Un-

fortunately, as mentioned above, templates do not always exist and when they do, they are 

sometimes hard to identify and align with the interface we want to predict. An alternative 

computational method is free docking, which first involves a systematic search of the best 

complex structures. This usually generates a very large amount of possible solutions that 

have to be ranked and filtered efficiently according to one or several criteria, for example, 

the rules of physics, statistics, conservation information of individual protein interface fea-

tures or co-evolution of these features.  

The aim of my PhD project was to develop and improve docking tools, particularly by making 

use of co-evolution information, as it is one of the main focuses of our lab. I participated in 

the recent update of our free and automated molecular docking server InterEvDock2 to a 
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more complete and user-friendly version and validated its performance on a large set of test 

cases (Chapter 2). More recently, I have been working on improving the ranking step in 

docking by exploring a better and richer integration of co-evolution information (Chapter 

3). Throughout my thesis, I have been able to participate and challenge myself in several 

blind testing rounds organised by the CAPRI community where labs such as ours can test 

the performance of their PPI prediction tools in real-case blind-test scenarios (Chapter 4). 

Hereafter will follow a brief introduction to the concepts that I will use throughout this man-

uscript revolving around the importance of proteins and their interactions (section 1.1), their 

evolution and conservation within various species (section 1.2) and the benefit of knowing 

their structure and how it can be experimentally or computationally acquired (section 1.3). 

In a final section, I will outline the main points of my manuscript (section 1.4). 
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1.1 PROTEIN STRUCTURE AND PROTEIN INTERACTIONS 

This section is dedicated to a brief introduction on protein composition and structure, the 

importance of studying their interactions and how they can be studied, ending with a brief 

overview of protein interaction networks. 

1.1.1 Protein composition 

Proteins are polypeptides made up of one or several chains of covalently linked amino acids 

(residues). Twenty different canonical amino acid types exist, unique by the composition of 

their side-chains, which also confers them specific physical chemical properties. Many pos-

sible classifications of amino acids exist, e.g. they can be grouped into four categories: apolar 

(Glycine, Alanine, Valine, Leucine, Isoleucine, Methionine, Phenylalanine, Tryptophan and Ty-

rosine), polar uncharged (Serine, Threonine, Cysteine, Proline, Asparagine and Glutamine), 

negatively charged (Aspartate and Glutamate) and positively charged (Arginine, Histidine 

and Lysine). Cysteine, Glycine and Proline are sometimes classified into a separate fifth group 

because of their special side-chain configuration (Cysteines are capable of forming covalent 

disulphide bonds whereas Glycine and Proline can both disrupt regular protein structure 

motifs).  

 

Figure 1-1: Protein structure – from primary to quaternary. Protein structure has four hierarchical levels. 

Amino acids covalently link together with peptide bonds to form a chain of residues (Primary structure). This 

chain can fold into organised secondary structures such as alpha helices, beta-sheets or turns and loops 
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through hydrogen bonds (H-bonds) between their backbone atoms. A more compact and stable structure 

arises when interactions between the side-chains of residues occur (Tertiary structure). Finally, proteins can 

form a quaternary structure when several chains are involved and interact together. This figure was adapted 

from Google Images. 

1.1.2 Hierarchical levels in protein structure 

The linear sequence of amino acids is called the protein’s primary sequence (Figure 1-1) 

and is always listed from the N-terminus to the C-terminus (N-ter and C-ter; named after 

the amino and carboxyl groups of the first and last translated amino acid of the chain). Pro-

teins fold into 3-dimensional (3D) objects while they are translated and the resulting shape 

is very much dependant on its amino acid composition. There are several levels to protein 

folding. Proteins can fold into regular secondary structures (Figure 1-1), namely -helices, 

-sheets or turns/loops in the 3-state classification system (Pauling, Corey et al. 1951), 

guided by hydrogen bonding (H-bonds) between backbone amino and carbonyl functional 

groups of two different residues. The 3-state classification is a good enough approximation 

in visual structural exploration but a more sophisticated and detailed classification is often 

required in the computational world for more accurate results. DSSP (Kabsch and Sander 

1983) is an 8-state classification (three types of -helices, two types of -sheets and three 

types of turns/loops) and is considered a gold-standard in structural biology, and is used in 

programmes such as the hh-suite package (Steinegger, Meier et al. 2019) where DSSP as-

signments and/or predictions are used to better match protein sequence alignments or in 

SOAP-Loop to identify loops from protein structures (Dong, Fan et al. 2013). 

More stable and compact tertiary structures occur when residue side-chains get involved 

with each other through H-bonds, salt bridges, disulphide bonds, hydrophobic effects 

and/or van der Waals interactions (Figure 1-1). Proteins can be composed of several well-

packed globular domains linked by loosely structured or completely unstructured regions, 

called intrinsically disordered regions (IDR). In the cytosol, hydrophobic and van der Waals 

effects will tend to drive hydrophobic (apolar) residues towards the centre of the protein 

whereas hydrophilic (polar) or charged residues tend to be found on the surface where they 

can interact with the solvent. Unlike with secondary structures, domains of tertiary structure 

are more difficult to classify due to the large number of combinations that exist but can be 
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regrouped by general similarity of their secondary structure arrangements and/or following 

evolutionary relationships. SCOP (Structural Classification Of Proteins) (Andreeva, Kulesha et 

al. 2020) and CATH (Class, Architecture, Topology and Homologous superfamily) (Sillitoe, 

Dawson et al. 2019) and PFAM (Protein FAMilies) (El-Gebali, Mistry et al. 2019) are all exam-

ples of databases which perform domain classification and which will be described in more 

detail later on (section 1.1.3). The division of protein structures into domains is useful for an 

easier and more accurate structural and functional characterisation of proteins. The auto-

matic identification of these domains remains a field of research in itself. Some algorithms 

predict domains from protein structure directly using “top-down” and/or “bottom-up” strat-

egies (Guo, Xu et al. 2003, Zhou, Xue et al. 2007), of which SWORD provides an interesting 

multi-partitioning approach (Postic, Ghouzam et al. 2017). Other methods only use features 

deduced from the primary sequences, such as sequence profiles or secondary structure and 

accessibility predictions (Hong, Joo et al. 2019, Shi, Chen et al. 2019). Within these methods 

and in light of recent advances in the contact prediction field, FUpred uses an innovative 

strategy identifying domains based on contact map predictions (Zheng, Zhou et al. 2020). 

The last structural level (quaternary structure) is formed when several chains of residues 

interact to form a multi-subunit structure, also known as protein assembly or protein com-

plex. Depending on what proteins are implicated and how they cooperate in the cell, protein 

complexes can be given several labels. When two or more identical proteins interact, they 

form a homo-oligomeric complex; otherwise, they are classified as hetero-oligomers. Ac-

cording to interaction kinetics, complexes with a very short half-life (seconds or less) are 

labelled as transient whereas complexes that last minutes to hours are said to be permanent. 

By their short-lasting nature, transient complexes are harder to identify with certain experi-

mental detection methods (section 1.1.5, page 16) but they are nevertheless very important 

in cells whenever a high turn-over is required (e.g. they might carry out post-translational 

modifications or participate in numerous cascades of reactions). Another existing terminol-

ogy relies on the structural integrity of the subunits composing the complex: complexes are 

said to be obligate if the individual components of the complex cannot exist freely and func-

tional in solution, and non-obligate otherwise.  
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Despite this rigid description of protein structure, it is important to note that proteins, just 

like other macromolecules, remain dynamic objects within the cell. Small changes con-

stantly occur such as bond vibration and side-chain rotation and large conformational 

changes might come about when two proteins interact (Marsh, Teichmann et al. 2012) (see 

section 1.1.5.1, page 16). (Tripathi and Bankaitis 2017) 

1.1.3 Acquiring protein structures 

Structure and function are often correlated features in proteins. In most cases, proteins have 

to adopt their final structure (or lack thereof) in order to be able to carry out their cellular 

functions properly, often implying interactions with other proteins. For this reason, studying 

the structure of a protein or protein complex might give important insight as to what its 

function might be or might help elucidate why it does not perform as it should in certain 

pathologies, e.g. associated to mutations in the amino acid sequence. It might also help in 

the design of new drugs by discovering potential targets, their binding sites and how best 

to improve binding affinity. 

In the following two subsections, I will detail three main experimental methods that can be 

used to decipher high-resolution structures of protein and protein complexes, namely X-

ray crystallography, protein NMR (Nuclear Magnetic Resonance) and cryo-EM (cryogenic 

Electron Microscopy). I will also present methods that provide complementary structural 

information, especially for protein complexes, such as small-angle X-ray scattering (SAXS), 

cross-link - mass spectrometry (XL-MS) or deep mutational scanning (DMS). These ap-

proaches do not directly provide the structure of a protein or protein complex but provide 

enough information to model the protein structure when coupled with in silico techniques. 

1.1.3.1 High-resolution techniques 

X-ray crystallography is currently the most widely used technique, accounting for 90% of 

all structures in the Protein Data Bank (PDB (wwPDBconsortium 2019), Figure 1-2), whereas 

protein NMR and cryo-EM only occupy 7% and 2% respectively out of ~152,000 structures 

in total. In X-ray crystallography, data is collected by measuring the diffraction of an X-ray 
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beam, with a wavelength close to interatomic distances, on an ordered and regular sample. 

This results in a unique diffraction pattern from which we can deduce an electron density 

map and, finally, reconstruct the 3D structure and atomic detail of the sample by matching 

sample composition with map density. This challenging step can be simplified by basing the 

attribution on another similar structure when available (molecular replacement) – several 

workarounds exist when this is not the case. The quality of the end result is also highly de-

pendent on the sample quality. Thus, another challenge lies within the preparation of the 

sample, which has to be properly crystallised into a regular and repetitive arrangement in 

order to create a clean diffraction pattern. Each protein has its own ideal and initially un-

known crystallisation conditions that have to be optimised with a combinatorial approach. 

Nonetheless, the workload can nowadays be alleviated with the assistance of automated 

robotic systems. A non-negligible disadvantage in crystal structures is the risk of getting 

non-biological complexes formed between proteins that are, in reality, crystallisation arte-

facts.  

 

Figure 1-2: Yearly cumulative release of structures in the PDB for X-ray, NMR and cryo-EM methods.  

Illustration of the cumulative number of structures released in the PDB every year since 1976 up to 2019 for 

the three main experimental methods of structural acquirement, namely X-ray crystallography (green), protein 

NMR (blue) and cryo-EM (yellow) with a zoomed-in version for a better visualisation of protein NMR and cryo-

EM progress over the years. 
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Although X-ray crystallography provides high-resolution structures, it also has the downside 

of presenting an out-of-context and rigid view of protein structure. In contrast, solution 

NMR allows proteins to stay in their physiological environment and can capture their dy-

namics. As in MRI (Magnetic resonance imaging), molecules are subjected to a powerful 

magnetic field in the face of which atoms behave differently according to their type and their 

neighbourhood. In protein NMR, this information can be used to deduce interactions and 

distances between atoms, which in turn can be used as constraints to fold 3D models that 

best fit the data. Protein NMR is an ideal contender for proteins that are difficult to crystallise 

such as intrinsically disordered proteins (IDP). Even though recent advances are pushing the 

upper molecular mass boundary, protein NMR remains best suited to relatively small pro-

teins (Jiang and Kalodimos 2017). NMR can also be used to scan the interaction surface of a 

protein through the differential analysis of the chemical shifts between its bound and un-

bound states. 

Cryo-EM has lately experienced a “resolution revolution” (Shoemaker and Ando 2018) and 

the yearly contribution of cryo-EM-resolved structures in the PDB has been increasing ex-

ponentially these last few years (Figure 1-2). This phenomenal jump in precision was possible 

thanks to recent technological advances (i.e. direct-electron detectors for less blurry images 

for instance) but also thanks to more powerful reconstruction algorithms (e.g. single-particle 

analysis with a Bayesian approach for parameter determination) (Bai, McMullan et al. 2015, 

Nakane, Kotecha et al. 2020, Yip, Fischer et al. 2020). In fact, cryo-EM recently managed to 

overtake the number of NMR depositions when looking at contributions on a yearly basis, a 

fact that is hidden when studying cumulative contributions. Cryo-EM is a type of transmis-

sion electron microscopy where the sample is frozen in solution and shone through by a 

beam of electrons. As for when a torch shines over an object, the proteins in the sample cast 

out a vast array of 2-dimentional (2D) “shadows” corresponding to a number of different 

orientations and from which algorithms can then deduce the 3D shape of the protein. Cryo-

EM is especially popular for large and potentially more disordered molecular assemblies and 

is gradually closing the gap with X-ray crystallography in terms of structural resolution. For 

example, the best-resolved structure in the PDB using cryo-EM at the time of this manuscript 
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is the human apoferritin at 1.15 Å resolution deposited in August 2020 (7A6A) (Yip, Fischer 

et al. 2020). Cryo-EM is also less sensitive to sample purity and does not require as large an 

amount of proteins as the two traditional methods. 

Each of these techniques have their own advantages and disadvantages. X-ray crystallog-

raphy is the most commonly used and outputs structures with the best resolution but pre-

sents a very rigid view of protein structure. Solution NMR resolves proteins in their physio-

logical environment but is often limited in protein size. Cryo-EM is getting increasing atten-

tion in the field thanks to recent advances in experimental and post-processing techniques. 

It enables the structural resolution of very large complexes with resolutions that are starting 

to compete with X-ray crystallography. 

1.1.3.2 Complementary “low-resolution” techniques 

SAXS provides a dynamic and low-resolution view of protein or protein complex size and 

shape and is compatible with a broad range of experimental conditions. After projecting an 

X-ray beam onto a sample, analysis of the resulting scattering pattern can help deduce the 

general shape of the macromolecules within it. In addition, combined with computational 

approaches, SAXS can provide structural models of protein-protein complexes at large scale 

(Xia, Mamonov et al. 2015, Jimenez-Garcia, Bernado et al. 2020).  

In XL-MS, crosslinking reagents of constant size covalently bridge protein partners together 

making them more stable and thus easier to isolate and characterise. This approach can be 

performed in vivo as well in vitro and can be particularly interesting for short-lasting transi-

ent or weakly interacting protein complexes. Mass spectrometry analysis of the cross-linked 

peptides helps to identify the location of cross-linking sites on the proteins and as such, also 

the location of protein regions that are in close spacial proximity. As for SAXS, XL-MS data 

can be combined with computational tools to reconstruct the possible 3D structure of the 

protein complex (Orban-Nemeth, Beveridge et al. 2018).  

Traditionally, protein interfaces are validated using one or several mutants, which are expen-

sive to produce. With a deep mutational scanning (DMS) approach, mutagenesis can be 
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performed more systematically. DMS is a recent method in which high-throughput assays 

linking genotype to a measurable phenotypic property are coupled to next-generation se-

quencing in order to systematically quantify the effect of large numbers of mutations on 

biological systems (Fowler and Fields 2014). Even though challenging to decipher, DMS data 

can give valuable insights into protein structure and function. For example, important re-

gions in proteins such as the hydrophobic core or the interface are expected to be more 

sensitive to mutations. In addition, co-varying positions might reflect spatial proximity in the 

3D structure of a protein or protein complex and can be used to guide modelling approaches 

(Rollins, Brock et al. 2019, Schmiedel and Lehner 2019). 

These “low resolution” techniques provide important information for modelling the struc-

tures of proteins and protein complexes. I will later discuss in section 1.3.3 how this type of 

information can be used as constraints e.g. in molecular docking. 

1.1.4 Protein databases 

Large-scale protein analysis is becoming increasingly popular thanks to new technologies 

and advances in protein science (e.g. whole genome projects, novel sequencing technolo-

gies, high-throughput assays). As such, impressive amounts of data are regularly generated, 

revolving around protein sequences, protein structures and their associated function. Vari-

ous types of databases play an important role in centralising comprehensive resources of 

protein information. In this section, I will describe the two databases most commonly used 

for structural bioinformatics, UniProt and the PDB, which provide comprehensive data for 

protein sequences and structures respectively. I will also detail other databases, such as the 

NCBI Protein database for protein sequences and SCOP, CATH and PFAM for structures and 

their classification. 

1.1.4.1 Sequence-related databases 

One of the most widely used databases for protein sequence and functional information is 

the Universal Protein Resource (UniProt) database (UniProtConsortium 2019) providing 
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comprehensive non-redundant sequence data and regrouping human input with infor-

mation from other databases. Each protein in UniProt is given a unique accession number 

which is becoming a gold standard in structural biology. UniProt is divided into four sections. 

UniProt Knowledgebase (UniProtKB) is the centrepiece of UniProt. UniProt Archive (UniParc) 

regroups all non-redundant protein sequences available with links to all underlying sources 

and versions of these sequences. UniProt Reference Clusters (UniRef) clusters sequences au-

tomatically across species according to different sequence identity thresholds and enables 

faster sequence search. Finally, UniProt Metagenomic and Environmental Sequences 

(UniMES) was specifically created to store metagenomic and environmental data directly 

recovered from environmental samples. UniProtKB is composed of two sub-sections called 

UniProt/Swiss-Prot and UniProt/TrEMBL (Translated EMBL Nucleotide Sequence Data Li-

brary) for manually annotated and reviewed data and automatically annotated data respec-

tively, both listing over 563,000 and 195,000,000 proteins as of September 2020. UniProtKB 

provides data on protein sequence, name, taxonomy, structure, classifications, citations and 

cross-references by reliably fusing information taken from various databases.  

The National Centre for Biotechnology Information (NCBI) Protein database (Ncbi 

Resource Coordinators 2018) is also famous but contains mainly raw data. This makes it 

noisier because of redundancy or contradictory or incorrect information but also possibly 

more enriched in information. Just like UniProt, NCBI protein records are stored with addi-

tional data (e.g. UniProt identifier, gene information, biological pathways and structure). 

Both UniProt and NCBI provide useful tools for protein manipulation and visualisation such 

as a BLAST homolog sequence search engines. 

1.1.4.2 Structure-related databases 

Protein structures are stored in databases for common use in the scientific community. Their 

classification can be especially useful for deducing protein function based on related exper-

imental protein annotations. One of the most used international resources in structural bi-

ology is the Protein Data Bank (PDB, already discussed in section 1.1.3), which will celebrate 

its 50th anniversary in 2021 and is managed by the Worldwide PDB (wwPDB) consortium 
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(wwPDBconsortium 2019). The PDB stores not only 3D atomic protein coordinates but also 

those of nucleic acids and complexes with metals and small molecules as well as associated 

experimental data and metadata information(wwPDBconsortium 2019). As of September 

2020, there are over 160,000 structures released in the PDB.  

The Structural Classification of Proteins (SCOP) (Andreeva, Kulesha et al. 2020) and CATH 

(Sillitoe, Dawson et al. 2019) databases both provide a useful and reliable classification of 

proteins based on their structure and evolutionary relationships. Both are automatically as 

well as manually updated in order to minimise classification error. SCOP classification is hi-

erarchical and based on protein domains. Domains are organised into classes, then folds, 

according to their tertiary structure similarities, then superfamilies and families according to 

their evolutionary history. One of the purposes of SCOP is to provide useful structural infor-

mation to biologists that may be extrapolated to their own proteins of interest. Its classifi-

cation is also widely used across computational biology tools and databases. In CATH, pro-

tein domains are clustered into Homologous superfamilies by evolutionary similarity and are 

given a Class, Architecture and Topology label according to their structural similarity. 

The Protein FAMily (PFAM) database (El-Gebali, Mistry et al. 2019) heavily depends on 

multiple sequence alignments (MSAs) in order to classify protein domains and consequently 

provides a reliable MSA for each protein domain. MSAs are generated using hidden Markov 

models in a profile-sequence manner, meaning that a sequence profile, generated from an 

initial highly-reliable but small ‘seed’ alignment, is used to search for more remote homologs 

in order to build a more complete but trustworthy MSA. Related PFAM entries are grouped 

into clans. Together with structural information, entries are further tagged as domain, coiled-

coil, disordered, motif or repeat and family if no clear subdivision can be made according to 

protein structure.  

This is a non-exhaustive presentation of existing protein-related databases. A large amount 

of other protein-related databases exist (Xu 2012), focusing on other aspects of proteins 

such as protein-protein interactions (detailed in section 1.1.6), protein structure modelling, 

specific diseases or organisms, etc.  
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1.1.5 Protein interactions and experimental detection methods  

When studying a protein, it is often important to find out its interacting partners in the cell. 

The term protein-protein interaction (PPI) can have several interpretations, from a loose 

definition of protein association without necessary physical contact (functional association) 

to a more stringent definition, where proteins have to be in direct physical contact. I will 

use the latter throughout this manuscript, as direct physical contact is especially important 

within our structural modelling goal. In this section, I will start with a brief overview of protein 

interface characteristics and then follow on with a description of a few main experimental 

methods to detect and study protein interactions. 

1.1.5.1 Characteristics of protein interfaces 

Biochemical analysis as well as the study of structural data from the PDB database provide 

essential information to identify the specific characteristics that define a protein-protein in-

terface. Protein interfaces cover on average 1,200 to 5,000 Å² of the protein surface and 

contain on average 230 atomic contacts (about 61 residue-residue contacts) with an average 

of 2 salt-bridges, 9 hydrogen bonds involving side-chain atoms, and 35 apolar contacts ac-

cording to a study on over 1,000 different interface structures (Andreani, Faure et al. 2012). 

Similar studies have also shown that interface stability can be attributed to only a few key 

interface residues at the interface, called hotspots, with a clear bias in composition towards 

tryptophan (21%) and arginine (13.3%) (Morrow and Zhang 2012). Interfaces can be divided 

into zones according to residue burial (Levy 2010) or contact count variation upon binding 

(Eames and Kortemme 2007). These zones also tend to have preferences in terms of com-

position, with mostly apolar residues in the core of the interface, providing the “stickiness” 

of the PPI, and polar and charged residues mostly on the rim, generally involved in interac-

tion specificity.  

Interface composition, together with interface size, is an important factor in protein binding 

affinity. Protein binding affinities vary a lot from one complex to another. They are usually 

expressed by the dissociation constant KD (often in the nM to mM range with lower values 
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reflecting a higher affinity) or by the Gibbs free energy dissociation (ΔG). The prediction of 

these properties is an ongoing challenge in the bioinformatics world (Geng, Xue et al. 2019), 

partly due to complex phenomena such as structural rearrangements upon binding.  

Not all proteins abide by a simple “lock and key” binding system, where the unbound states 

of both proteins are already complementary in shape and chemical composition. A large 

number of proteins bind with small to large conformational changes, following what is 

called the induced fit or conformational selection model (Csermely, Palotai et al. 2010). These 

are often terms that come up when studying enzyme-inhibitor complexes, which tend to co-

evolve towards an interface with a high degree of surface complementarity (Tripathi and 

Bankaitis 2017). As can be deduced from the name, in the induced fit model, the ligand 

protein is thought to induce a conformational change in the receptor protein upon binding. 

In these processes, specific anchor residues at the interface might play an important role in 

stabilising the intermediate bound state in a similar way to boat anchors. An alternate and 

more popular model is the conformational selection model, in which the receptor is assumed 

to already exist as several conformations on its own and the ligand only tilts the balance 

towards the conformation that is best suited to its binding. Indeed, NMR studies show that 

conformations similar to the bound state already exist in the absence of the ligand. 

Because of the crowded cellular context, true functional PPIs are in constant competition 

with non-relevant surfaces on other macromolecules. This leads to the question of specific-

ity in PPIs. The interactions that govern interfaces are mostly carried out by direct interac-

tions between residues of both partners but might also be bridged through water molecules 

(about 30% of an interface’s contacts) (Rodier, Bahadur et al. 2005). Specific interfaces tend 

to be “dry” interfaces, where these water molecules form a ring around the interface core. 

Non-specific interactions, including those that arise from crystal packing, tend to have water 

molecules that permeate their interfaces and are thus called “wet” interfaces. And although 

most interfaces are driven by hotspot residues, a study in the context of protein docking 

concluded that the whole interface should be taken into account in order to better distin-

guish true interfaces rather than just the core elements (Nadalin and Carbone 2018). 
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1.1.5.2 Experimental detection of protein interfaces 

Several experimental techniques exist to detect and study PPIs, some are classified as high-

throughput as they help identify a large amount of potential protein partners at once and, 

thus, are often used as a first step in protein-protein interaction analysis. Commonly used 

approaches include yeast-two-hybrid (Y2H) and affinity purification/capture - mass spec-

trometry (AP-MS or AC-MS) screening. On the other hand, low-throughput methods ena-

ble the analysis of a protein or a complex of interest directly and as such are considered 

more reliable. Among these methods, Y2H, co-immunoprecipitation (co-IP) and isothermal 

titration calorimetry (ITC) are widely used. In this section, I will provide a brief description 

the principle behind each of these techniques. 

Y2H was originally introduced to detect binary interactions in yeast. It makes use of the 

activation of downstream reporter genes, such as Gal4 in yeast, through binding of a tran-

scription factor onto an upstream activating sequence in living yeast cells (Figure 1-3). This 

transcription factor is split into two separate parts, one binds the DNA (binding domain, BD) 

and the other activates the transcription (activation domain, AD). The transcription factor is 

fully functional only when both parts are close together. In Y2H, proteins are either called 

“bait” if fused with BD or “prey” if fused with AD. The idea is that when bait and prey physi-

cally interact, AD and BD are brought together leading to the transcription of the chosen 

reporter gene. The method has been adapted to an automated high-throughput screening 

strategy where several preys taken from a library of protein fragments or whole protein se-

quences are tested in individual cells. Identification of physical interacting partners can then 

be performed by PCR amplification and sequencing for example. Y2H has the advantage of 

being able to detect physiological (as in vivo) and weak PPIs and, above all, presents a strong 

indication of direct physical interaction. However, it can lead to a significant amount of false 

positives as it might detect non-specific interactions and, in the case of screening, interac-

tions between proteins that might not usually coexist in time and/or in space (Bruckner, 

Polge et al. 2009). It also involves synthetic fusion of the bait and prey proteins which might 

affect the structural and functional integrity of the proteins. 
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Figure 1-3: Yeast-two-hybrid explained. Yeast-two-hybrid (Y2H) makes use of a reporter gene that is acti-

vated only if the DNA-binding domain (BD) and the activation domain (AD) of a transcription factor (in blue) 

are close together. The original complete transcription factor enables transcription of the reporter gene (A) by 

binding to the upstream activation sequence (UAS) on one end and recruiting the transcription machinery on 

the other. In Y2H, a bait protein (green) is fused to the BD and a prey protein (purple) to the AD. The interaction 

between bait and prey is confirmed only if the reporter gene is transcribed because bait and prey manage to 

bridge the gap between both parts of the transcription factor. (B) illustrates an example where there is no 

interaction and (C) where bait and prey do interact. 

AP-MS screening is another popular high-throughput approach in which cellular extracts 

containing tagged bait proteins are prepared then purified in order to retrieve all bait-inter-

acting partner complexes. The purification is usually performed in two steps (tandem affinity 

purification, TAP) for cleaner results. Complex constituents are then characterised with mass 

spectrometry. The properties of this technique imply that indirect interacting partners (i.e 

partners that do not physically interact with the bait) are also eluted in the purification step.  

Similar to affinity purification, co-IP relies on isolating a bait protein with a specific antibody 

and extracting with it all its potential direct or indirect interacting partners. These can then 

be identified through Western Blot.  

Finally, ITC is a technique that relies on heat exchange measurements upon binding. As in a 

titration, increasing quantities of a protein A is added to a solution of protein B, all the while 
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measuring the temperature of the solution. ITC not only confirms protein-protein interac-

tions but can also be used to deduce binding affinity, stoichiometry and other thermody-

namic properties of the interaction without immobilisation or labelling of the proteins. 

1.1.6 Protein interaction databases 

As we just saw, large amounts of experimental information about protein interactions other 

than protein structure are regularly produced by a multitude of different techniques. Col-

lecting and analysing this information constitutes a key step in constructing whole protein 

interaction networks. For an easier use of this data by the scientific community, it is important 

to centralise it in an intelligible and accessible fashion. Unlike for sequence and structural 

information, where UniProt and the PDB centralise the vast majority of the data for protein 

sequences and structures respectively, molecular interaction data curation is still mainly per-

formed by numerous small-to-medium independent projects with different data-acquisition 

policies. Primary databases collect the data directly from peer-reviewed publications, meta-

databases try to regroup information from several primary databases and predictive data-

bases combine experimental information from primary databases with predictions of mo-

lecular interactions. Examples of common PPI databases, which I will describe in this section, 

include Biological General Repository for Interaction Datasets (BioGRID) (Oughtred, Stark et 

al. 2019), IntAct (Orchard, Ammari et al. 2014) and Search Tool for the Retrieval of Interacting 

Genes/Proteins (STRINGdb) (Szklarczyk, Morris et al. 2017).  

BioGRID and IntAct are both primary databases. BioGRID centralises nearly 1.6 million pro-

tein and genetic interactions taken from scientific literature through controlled experimental 

vocabularies and text mining methods and from high-throughput datasets. In the same 

spirit, IntAct lists over a million binary PPIs collected from automatic deep literature curation 

or controlled and direct user submissions. Entries mainly focus on human or other main 

model organisms. BioGRID additionally includes post-translational modifications (PTMs) 

data as well as interactions between proteins or genes and small molecules. For each entry, 

both databases provide details on the experimental evidence supporting said data, refer-

ences to corresponding publications, cross-references as well as tools for easier exploration 
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of the identified PPIs. Experimental evidence for physical interactions include high- and low-

throughput methods (e.g. affinity purifications followed by different types of identification 

methods as well as Y2H, co-IP or co-crystallisation explained above).  

The predictive database STRINGdb regroups known and predicted physical and functional 

PPI data for over 5,000 organisms as long as they are specific and biologically meaningful 

(Szklarczyk, Morris et al. 2017). Known interactions are collected and reassessed from high-

throughput experimental PPI data, text-mining and various other curated databases. Predic-

tions are highly-controlled and based on co-expression, genomic context and knowledge 

transfer between organisms. Thanks to these efficient methods, STRINGdb lists more than 2 

billion protein-protein interactions. STRINGdb is known for its user-friendly interface and 

easy traceability with detailed explanation of evidence and associated quality estimate. 

A systematic comparison of PPI databases can be found in (Bajpai, Davuluri et al. 2020). A 

multitude of more disease- or organism-specific databases also exists. For instance, the 

Online Mendelian Inheritance in Man (OMIM) database is a popular database that lists a 

number of human genes and genetic disorders and traits (McKusick-Nathans Institute of 

Genetic Medicine). The Human Protein Atlas also provides many sub-databases of proteins 

specific to certain human cells, tissues or organs as well as a Pathology Atlas regrouping 

human cancer-related mRNA and protein expression data (Thul, Akesson et al. 2017, Uhlen, 

Zhang et al. 2017). The Human Protein Reference Database (HPRD) (Keshava Prasad, Goel et 

al. 2009) lists most human proteins as well as their known PPIs, is manually curated and 

entries related to diseases are annotated and linked to OMIM. Host-pathogen interactions 

are a special type of interaction for which coevolution might be present through co-adap-

tation mechanisms between the two species (Woolhouse, Webster et al. 2002) HIV-1-human 

is an example of database hosted by NCBI regrouping virus-host PPIs (Ako-Adjei, Fu et al. 

2015). Many more databases and web services exist to provide information about protein-

protein interactions, from large, comprehensive databases (Miryala, Anbarasu et al. 2018) 

down to smaller databases focusing on specific interaction characteristics such as the struc-

tural details and energetics of protein interfaces (Gromiha, Yugandhar et al. 2017, Barradas-

Bautista, Rosell et al. 2018). It is important to note that since experimentally-acquired data 
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only partially covers all existing proteins and PPIs, PPI databases present an incomplete view 

of PPI networks. 

1.1.7 Protein networks 

As mentioned earlier, proteins usually perform their function in groups, thereby forming an 

entire network of interactions. The whole set of these interactions in a particular context 

(e.g. in an organism or in a cell) constitutes a protein interactome. The richness and acces-

sibility of PPI data accumulated over the years, for example through high-throughput assays 

such as Y2H or AP-MS described above (section 16, page 16), gene ontology or gene ex-

pression, enables the mapping of PPI networks. These networks can be particularly useful to 

predict the biological function of an uncharacterised protein by assuming that it has the 

same function as the proteins it clusters with (“guilt by association”). Protein networks follow 

the network modularity principle suggesting that highly connected groups of proteins con-

stitute the building blocks of the network. These blocks indicate functional modules or pro-

tein complexes. Functional modules are made of proteins that participate in a same biolog-

ical pathway but that might interact at different moments and places (e.g. transcriptosome, 

signalling cascades, cell-cycle regulation). Protein complexes, however, consist of proteins 

interacting at the same time and place thereby forming a single multimolecular machine 

(e.g. splicing machinery, transcription factors). PPI networks provide a draft map bringing 

together all the details centred on biological pathways of interest which might help elucidate 

the complex mechanisms that are behind them.  

PPI networks can be analysed thanks to tools borrowed from mathematical network theory. 

A PPI network can be assimilated to a graph in which proteins are nodes and physical con-

tacts are represented by edges between the nodes (Yamada and Bork 2009). Contacts are 

specific and serve a precise function. PPI networks have several properties. They follow the 

small-world effect meaning that the maximum number of connections separating any two 

proteins in the network is relatively small. A recent study on 12 different protein networks (7 

eukaryotes and 5 prokaryotes), reconstructed through an extensive mining of the major PPI 

databases, showed that the average number of steps tended to be between 3.8 and 4.8, with 
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A. thaliana having an exceptionally high average path length of 8.5 (Xu, Bezakova et al. 2011). 

This high connectivity enables an efficient and rapid flow of signals within the system. PPI 

networks are also scale-free networks, meaning that most proteins only have a few partners 

(~5-6, a value termed the node degree in graph theory) whereas a very small number of 

proteins, called hubs, have over 100 connections. Party hubs are connected to many proteins 

at the same time and space whereas date hubs connect with their many partners at different 

times and spaces. The scale-free architecture of PPI networks enables individual paths to be 

switched on and off more easily and makes the network generally more stable to pertur-

bations of single proteins. Indeed, when a random protein is disrupted, there is a higher 

chance of it affecting a protein with fewer connections than a hub due to their relevant 

frequencies, thereby limiting network disruption. Even when hubs are affected, other hubs 

are sometimes able to compensate for the lost connectivity. Hubs are important components 

of a protein network as they connect together groups of proteins that would otherwise be 

isolated from the rest of the interactome. Many cancer-related proteins are hub proteins, 

the tumour suppressor protein P53 being a famous example (Collavin, Lunardi et al. 2010). 

Many tools exist to make the study of networks more accessible to users. Cytoscape 

(Shannon, Markiel et al. 2003) is a popular tool for network analysis for which there are sev-

eral apps specific to PPI network analysis. It is important to note that the view that we have 

of protein interactomes today is usually incomplete, noisy and quite often biased – noisy, 

because of a large fraction of identified false positive and false negative complexes linked 

to the data-acquisition techniques used, and biased, simply because some proteins or path-

ways are preferentially studied. There is additionally a bias linked to the data-acquisition 

method as different approaches detect a largely complementary set of interactions. This 

highlights the importance of putting together data resulting from different experimental 

assays. An additional difficulty in studying PPI networks lies within their dynamic property as 

connections between proteins vary at any moment in time and are highly dependent on the 

cellular context.  
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Structural information is one of the many types of information about PPI that can be inte-

grated into networks and serve PPI prediction. Structural modelling of whole PPI networks 

is only a long-term goal of computational structural biology. 
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1.2 PROTEIN EVOLUTION AND CO-EVOLUTION CON-

CEPTS 

The evolution of proteins is linked to the evolution of the genome and as such, also to the 

evolution of the species. In this section, I will first introduce protein evolution at the level of 

individual proteins, then describe the evolution of protein interfaces and finally give an over-

view of PPI network evolution. 

1.2.1 Protein evolution 

Proteins evolved overtime by a series of successive changes affecting protein-encoding 

genes explaining their huge diversity and complexity observed today. Gene evolution in-

cludes four main evolutionary events, namely speciation, where new species are created fol-

lowed by independent divergence of each species’ genes; duplication of a gene within a 

same species also followed by independent divergence; gene loss; and horizontal gene 

transfer between species, a common process in prokaryotes (Kolodny, Pereyaslavets et al. 

2013). Gene modifications imply mutations of nucleic acids. However, although there are 

potentially many to be made, only those providing a selective advantage (i.e. contributing 

to a better global fitness) or neutral mutations are kept overtime. A large part of these mu-

tations is detrimental to cell survival (e.g. impaired gene transcription or loss of function or 

structure of the resulting protein).  

1.2.1.1 Mutations and epistasis 

As proteins evolve over long timescales and under constraints to maintain essential roles for 

the purpose of survival, complex phenomena arise such as epistasis, that is, the context 

dependency of the functional effect of mutations. Epistasis was first defined at the genetic 

level but also has strong molecular implications, since the structural organisation of proteins 

largely determines how mutations might interfere with one another (Starr and Thornton 

2016). A mutation that appears neutral at a certain time may have consequences on the 

subsequent mutations that can be tolerated by the protein, and as such, molecular epistasis 
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can either constrain the evolution of proteins by barring subsequent mutations or make new 

evolutionary paths accessible through permissive mutations. Ancestral protein reconstruc-

tion enables to study the relationship between sequence, structure, dynamics and function 

of proteins (Johansson and Lindorff-Larsen 2018). In particular, it brings insights into the 

epistatic process and its capacity to drive changes in ligand binding specificity, but also to 

becloud the mechanisms by which proteins evolved (Siddiq, Hochberg et al. 2017).  

1.2.1.2 Homology relationships 

Through their common ancestry, proteins share homology relationships with each other. 

Two homologs within the same species are described as paralogs (from gene duplication) 

whereas homologs derived from a single ancestral gene in the last common ancestor of two 

different species are termed orthologs (from speciation or horizontal transfer) (Koonin 

2005). Up to a certain point, homology relationships can be detected at the protein sequence 

level, the probability that two sequences share a high sequence identity only by chance be-

ing very slim. Very distant homologs are more difficult to identify as sequences are usually 

too diverged to detect similarity. Efficient algorithms relying on profile-profile sequence 

search exist to reliably detect homology (Steinegger, Meier et al. 2019) and can come in 

handy to identify suitable templates for 3D structural prediction (see section 1.3.1.1, page 42 

and section 1.3.3.1, page 54). In that sense, when sequence identity is low (typically under 

50%), orthologs are considered more reliable than paralogs since they are more likely to 

have a similar biological function – in fact, an initial definition of orthology was linked to 

function conservation and fitness (Koonin 2005) – and similar binding patterns in the case 

of complexes (Faure, Andreani et al. 2012). In contrast, paralogs are believed to often differ 

in function because they result from duplicated genes that both evolved independently 

with less evolutionary pressure to conserve function (as there are two copies). Paralogs might 

show different binding modes in the case of complexes and are commonly used to study 

function innovation.  

IDPs or IDRs have less constraints on protein fold conservation than globular proteins or 

domains and as such, are less amenable to homology search, but they display conserved 
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molecular features such as length (e.g. when linking two globular domains), complexity (in 

terms of sequence motifs and repetition), amino acid composition or net charge. They might 

also present conserved key functional residues, important for posttranslational modifications 

or interactions with other proteins (Zarin, Strome et al. 2019).  

1.2.1.3 Introduction to co-evolution 

Protein function is dependent on protein structure, which in turn depends on protein se-

quence. In light of this, as protein function contributes to fitness, conservation of function 

implies structural constraints, which are directly observable at the protein sequence level 

through conserved or co-changing residues across homologs. Variations in amino acid types 

have to be correlated over time in order to maintain the same fold, so that if a mutation 

occurs, it can be compensated by complementary mutation(s) at different position(s) in the 

sequence. This phenomenon is referred to as co-evolution (Figure 1-4).  

 

Figure 1-4: Schematic representation of protein sequence covariation. Purple and green loops on the left 

represent a same protein fragment structure in two different homologous proteins, both present in the MSA 

on the left. The various shapes represent residues with different physical-chemical properties. In order to con-

serve the interaction between green and red residues, when one of them mutates, the other has to follow suit. 

This behaviour can be directly observed in the MSA. Thus, correlating or co-varying positions in the MSA point 

towards possible contacts in the 3D structure. Picture taken from GREMLIN’s FAQ page (http://grem-

lin.bakerlab.org/gremlin_faq.php).  

The idea of detecting covariation to predict structural proximity between pairs of amino acid 

positions emerged thirty years ago and was successfully used at the time for RNA. Mutual 

information was long used as the primary method, but it suffers from large amounts of sta-

tistical and phylogenetic noise. Only within the last decade did significant breakthroughs 

occur following seminal work (Weigt, White et al. 2009, Marks, Colwell et al. 2011, Morcos, 

http://gremlin.bakerlab.org/gremlin_faq.php
http://gremlin.bakerlab.org/gremlin_faq.php
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Pagnani et al. 2011), thanks to methods derived from statistical physics as reviewed in (de 

Juan, Pazos et al. 2013, Cocco, Feinauer et al. 2018). Among the first successful methods, 

statistical coupling analysis (SCA) detects functionally related networks of residues, using 

principal component analysis to identify eigenvectors of the covariance matrix reweighted 

by site-specific conservation factors (Socolich, Lockless et al. 2005). Direct coupling analysis 

(DCA) generally designates a class of methods in which direct couplings between pairs of 

positions are disentangled from transitive correlations by global statistical analysis of an 

MSA. Many variants exist, based for example on sparse inversion of the covariance matrix 

(as in the PSICOV method (Jones, Buchan et al. 2012)) or inference using maximum likelihood 

estimation (Stein, Marks et al. 2015). DCA methods generally work best for large MSAs con-

taining rich statistics about protein families. Covariation-based methods have applications 

ranging from protein and RNA structure prediction to the prediction of protein-protein in-

teraction partners and the computational design of novel proteins (Simkovic, Ovchinnikov 

et al. 2017, Cocco, Feinauer et al. 2018). Most recently, meta predictors and integration of 

DCA-based predictions into deep learning pipelines gave the best results, leading to dra-

matic improvements in ab initio protein structure modelling (Kryshtafovych, Schwede et al. 

2019) (section 1.3.1.2, page 43).  

1.2.2 Interface evolution 

A crucial question is how proteins maintain specific interactions in the crowded environment 

of the cell and along evolutionary pathways. Protein interfaces are more conserved on av-

erage than the remainder of the protein surface, due to the pressure to maintain functional 

interactions (Teichmann 2002, Mintseris and Weng 2005). This naturally leads to the question 

of how good sequence identity is as a proxy for the conservation of interface structure and 

function (Andreani and Guerois 2014). A first hierarchy can be outlined depending on inter-

face stability: stable assemblies and core complexes are relatively robust to sequence per-

turbations, while transient interfaces and peripheral interactions may be more sensitive. In-

teractions mediated by short linear motifs (SLiMs), often weaker and more transient than 

interactions between globular domains, can be rapidly rewired in the context of regulatory 



29 

 

interactions. On the scale of the human interactome, domain-domain interactions form 

strongly connected modules, while interactions between domains and linear motifs are more 

likely to connect modules with different biological functions (Kim, Lee et al. 2014). Interface 

conservation thus depends not only on stability but also on structural and functional 

classes of protein interactions. To study the evolution of protein interfaces and their struc-

ture, we need tools to compare them in order to identify what is conserved in their global 

architecture, as well as more locally in their amino acid composition. Beyond conservation, 

we also aim to understand how interfaces have diversified. I will now present these different 

aspects. 

1.2.2.1 Tools to assess and score interface similarity 

The 3D structures of protein-protein interfaces need to be compared frequently, either to 

find out about their evolutionary properties or in the context of structural predictions. Inter-

face structural comparison tools may typically provide three levels of information: the struc-

tural alignment between two protein interfaces; a similarity score, most often based on 

inter-protein distance comparison; and various properties that can be inferred from such 

comparisons, for example the prediction of protein-protein interactions based on similar 

known complexes. 

Many programs exist for the structural alignment of interfaces. Among them, MM-Align 

(Mukherjee and Zhang 2009) and iAlign (Gao and Skolnick 2010) use dynamic programming 

to iteratively align interfaces based on inter-residue distance comparisons. iAlign can be 

used for more specific detection of homology relationships or to cluster interfaces based on 

interface geometry. iAlign also provides a useful interface similarity score called IS-score, 

which combines inter-protein geometric distance comparison with the evaluation of inter-

face contact overlap (Gao and Skolnick 2010). Interface contact comparison is also used by 

the FCC (fraction of common contacts) method, which accelerates clustering of interface 

structures by circumventing the need for structural alignment (Rodrigues, Trellet et al. 2012). 

FCC also facilitates clustering of multi-protein assemblies by accounting for symmetries, 

which are frequent in structures of homo-multimers. This method is especially useful for 
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clustering many structures from molecular dynamics trajectories, simulations or protein-pro-

tein docking. 

MM-Align is one of only a few methods that can process multi-protein assemblies with an 

arbitrary number of subunits. Subsequent multi-subunit comparison methods include Top-

Match, which can compare large oligomers and molecular aggregates (Sippl and 

Wiederstein 2012), and QSalign, which focuses on identifying evolutionarily conserved qua-

ternary structure states as the most biologically relevant (Dey, Ritchie et al. 2018). QSalign 

builds upon the fast protein structure alignment method Kpax, which performs fragment 

comparison followed by dynamic programming to build a global alignment providing struc-

tural superimposition (Ritchie, Ghoorah et al. 2012). The resulting QSbio database provides 

annotations of biological assemblies as well as predictions with an associated confidence 

measure. Most structural comparison approaches are very computationally intensive. To 

provide frequent updates, the VAST+ service built on top of the MMDB database extends 

the simple heuristic strategy of the VAST protein structure comparison method to provide 

structural neighbourhood information on the level of biological assemblies (Madej, 

Lanczycki et al. 2014). 

Some databases were designed to explore structural and evolutionary properties of inter-

faces. ProtCID contains clusters of similar interfaces between interacting PFAM domains 

found in different crystal forms (Xu and Dunbrack 2011). The InterEvol database was de-

signed to jointly explore and compare the 3D structure and evolutionary properties of pro-

tein complexes in order to reveal the molecular details of interface coevolution (Faure, 

Andreani et al. 2012). In particular, InterEvol contains information about over a thousand 

pairs of structural interologs, that is, homologous complexes of known 3D structure sharing 

similar interfaces that can be used to probe how protein interfaces coevolve. 

1.2.2.2 Evolution of different interface regions 

It has been known for many years that not all mutated positions have comparable effects on 

the stability and affinity of protein interactions (Kastritis and Bonvin 2013). The structural 

organisation of interfaces is strongly connected to their evolutionary properties. The amount 
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of accessible surface area buried by an interface residue upon binding is traditionally the 

main descriptor related to both changes in affinity and rates of evolution (Chen, Sawyer et 

al. 2013) and support and core interface regions can be defined that are more conserved 

compared to the peripheral rim of the interface (Levy 2010). However, the non-interacting 

surface of proteins also plays a role in fine-tuning the binding affinity, mostly through 

charged and polar chemical properties that are conserved between orthologous complexes 

(Kastritis, Rodrigues et al. 2014). Regions outside the interface can also be determining for 

binding specificity, for instance in the small heat-shock protein family where paralogs avoid 

hetero-oligomerisation through conformational flexibility at non-interfacial regions 

(Hochberg, Shepherd et al. 2018). Special positions at the interface such as hotspots and 

anchor residues, which significantly contribute to the binding free energy, are also more 

evolutionarily conserved (Walker, Bond et al. 1999). Recent studies of human disease muta-

tions show that although interfaces are robust to common sequence variations, a single mis-

sense mutation can have large functional impact, either by affecting protein folding or sta-

bility or by inducing local structural changes that disrupt interactions; perhaps unexpectedly, 

the latter mechanism was observed most frequently (Sahni, Yi et al. 2015, Fragoza, Das et al. 

2019). These studies also conclude that a large fraction of disease mutations leading to in-

teractome perturbation do so in an “edgetic” manner, that is, they only affect some specific 

interactions with a generally small subset of the protein’s partners. 

1.2.2.3 Compensatory mutations in protein interfaces 

Similarly to covariation described earlier in protein monomers (see section 1.2.1, page 25 

and Figure 1-4, page 27), protein interfaces must also adapt to mutations by coevolving, but 

not to maintain protein fold but rather to conserve protein function (i.e. the interaction). That 

is, when a mutation in one protein partner destabilises an interface, a compensatory mu-

tation in the other partner can occur in order to maintain the interaction. As in conserva-

tion, the structural interface hierarchy plays an important role in coevolution. By analysing 

selection pressures in a large dataset of 896 protein complex structures, a recent study found 

that interface core positions show higher conservation and coevolution than those in the 
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rim and that both conservation and coevolution increase when residues are involved in in-

creasing numbers of interactions, as these interactions jointly exert stronger selection 

pressures (Teppa, Zea et al. 2017). Systematic comparison of interface contacts in over a 

thousand pairs of homologous complex structures from the InterEvol database highlighted 

surprising plasticity, especially in polar contacts, while apolar patches and anchor residues 

display higher contact conservation, even in transient interfaces (Andreani, Faure et al. 2012).  

1.2.2.4 Insertions and deletions in protein interfaces 

Such detailed investigations about the mechanisms by which protein interactions evolve are 

crucial to understand how protein interactions can acquire the functionally required speci-

ficity. Binding selectivity is especially puzzling since the number of binding mode geometries 

seems to be limited: when interface regions were directly aligned using iAlign on the basis 

of backbone geometry and interface contact patterns, only around 1,000 distinct interface 

architectures could be identified (Gao and Skolnick 2010). As a step towards explaining this 

apparent dilemma, a 2010 study identified relatively small insertions and deletions (mostly 

up to 8 residues) that differentiate between monomers and homodimers, can modulate 

oligomerisation and most likely determine interface specificity (Hashimoto and 

Panchenko 2010). More recently, a similar conclusion was drawn for heteromeric complexes, 

which can achieve evolutionary diversification and functional specificity and avoid pro-

miscuous interactions thanks to interface “add-ons”, typically 10-20 residues containing a 

high proportion of interface hotspots (Plach, Semmelmann et al. 2017). Most likely, inser-

tion/deletion of these add-ons entail evolutionary routes going through promiscuous inter-

mediates. Strikingly, systematic protein-protein interaction profiling for a large number of 

human alternatively spliced transcripts showed that alternative splicing is another major 

source of interactome expansion through the insertion/deletion of regions containing either 

globular domains or SLiMs able to mediate interactions (Yang, Coulombe-Huntington et al. 

2016). Protein isoforms can thus display widely different interaction profiles. In the scope of 

modelling protein assemblies, being aware of the potential existence of these structural add-
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ons in interface evolution may help interpret the existence of partly conserved inserted re-

gions in the alignments. 

1.2.2.5 Probing evolutionary paths of interface structures 

Complementary to large-scale statistical investigations of how the structural organisation of 

interfaces relates to evolution, a number of detailed case studies have experimentally 

probed the mechanisms by which sequence variations can be accommodated at the inter-

face of protein assemblies.  

1.2.2.5.1 DMS of protein complexes 

The use and analysis of DMS of protein complexes is one way to disentangle the complexity 

of interface coevolution events. DMS provides a systematic way of quantifying the effects 

of mutations through high-throughput assays coupled with next-generation sequencing 

(see section 1.1.3.2, page 12). Studies of DMS on interfaces can give insights into their ro-

bustness to mutagenesis and the evolutionary pathways used to rewire and expand speci-

ficity. They also highlight the mechanisms of interface coevolution, as over time mutations 

most likely occur one at a time and therefore intermediate states must be considered in 

which interface complementarity or specificity might not be optimal. Combined with struc-

tural biology, the DMS approach may provide a powerful means to understand the molec-

ular bases underlying epistatic phenomena at complex interfaces. For example, one of the 

first deep mutational scans on interfaces was performed on a PDZ domain model system 

(McLaughlin, Poelwijk et al. 2012). Single and exhaustive mutagenesis of every position in 

PDZ distinguished positions tolerant to mutations from those functionally sensitive to sub-

stitutions, located around the ligand binding site (McLaughlin, Poelwijk et al. 2012). DMS 

studies coupled with impressive structural characterisation of PDZ variants enabled to iden-

tify a class-bridging but “conditionally neutral” mutation that was found to trigger epistasis 

by enabling conformational plasticity through a local structural change at the binding site.  
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1.2.2.5.2 Interface assembly pathways and symmetry 

With the rise of protein complex structure determination, especially through recent devel-

opments in cryo-EM (section 1.1.3.1, page 9), the amount of information about multi-protein 

assemblies is increasing (Marsh and Teichmann 2015). A growing number of studies inves-

tigate the dynamics of such multi-protein assemblies and their assembly pathways. Re-

cently, a study proposed a classification of protein complexes by number of subunit types 

and number of repeats and confirmed previous findings that many protein complexes as-

semble through ordered pathways, often evolutionarily conserved and reflecting evolu-

tionary pathways (Ahnert, Marsh et al. 2015). Symmetry has also a special role in protein 

assemblies (Marsh and Teichmann 2015) as most homomeric complexes and many heter-

omeric complexes exhibit symmetry. A remarkable evolutionary feature in symmetric ho-

momeric interfaces is the multiplicative effect of a single mutation through symmetry. Alt-

hough often highlighted as an evolutionary advantage, it can also trigger uncontrolled self-

assembly by amplifying the tendency of protein surfaces to interact by chance (Garcia-

Seisdedos, Empereur-Mot et al. 2017), thereby creating a new interface only through a single 

mutation. The corresponding change in sequence might be conserved in only a few related 

species and the evolutionary trace might thus be difficult to recognise. 

1.2.2.5.3 Multi-valence in large assemblies 

Although multi-protein complexes involving multiple interfaces between different subunits 

are often conserved in evolution, the binding affinity of individual interfaces may vary 

largely between different species or different paralogous complexes in the same species. 

Multi-valence may globally buffer the loss or weakening of an elementary interface in a 

complex assembly. Such tolerance of interfaces to mutations may vary from one species to 

another, leading to altered evolutionary rates. Two examples of such evolutionarily-resilient 

but dynamic, regulatory complexes are the mismatch-repair related MutLβ complex between 

yMLH1 and yMLH2 with conserved meiotic helicase, yMER3 (Duroc, Kumar et al. 2017) (Fig-

ure 1-5A) and the mixed lineage leukaemia (MLL) family of histone methyltransferases inter-

acting with four conserved factors (WDR5, RBBP5, ASH2L and DPY30) (Li, Han et al. 2016) 



35 

 

(Figure 1-5B). In the first example, the interaction between various components of these 

complexes have compensating strengths in mouse and in yeast. In the second example, pa-

ralogs of MLL show very different binding affinities although there are only two significant 

sequence substitutions between the two. 

 

Figure 1-5: Examples of binding compensations through multivalence. Schematic representation of the 

interaction networks between the yMLH1-yMLH2 heterodimer and yMER3 in yeast S. cerevisiae and between 

their mouse orthologs, the mMLH1-mPMS1 heterodimer and mHFM1. yMER3 and mHFM1 are composed of 

five globular domains represented by squares surrounded by disordered N-terminal and C-terminal extensions 

(indicated by “N” and “C” labels). The width of the links between each pair of proteins is indicative of the 

experimentally observed relative interaction strength. (B) Compared architecture of the MLL complexes involv-

ing either MLL1 (left, reference PDB structure: 6KIU) or MLL3 (right, reference PDB structure: 6KIW). WDR5 

subunit is coloured purple, ASH2L is orange, MLL1 and MLL3 are two different shades of dark green, histone 

octamer is cyan, RBBP5 is yellow, ubiquitin is pink and DNA is black. Top views of the two complexes (with the 

nucleosome at the bottom) are provided where the nucleosomes and the RBBP5 subunits are exactly in the 

same orientation. Due to differences between MLL1 and MLL3, the relative positions of WDR5 and even more 

ASH2L are quite different between the two complexes even though the same overall architecture is maintained, 

providing a likely explanation for the large difference in binding affinity for RBBP5-ASH2L between MLL1 and 

MLL3. These differences in the details of the assembly reflect a different functional role for MLL1 compared to 

MLL3 and other MLLs. 

This highlights that evolutionary conservation can be used as a guide for structural pre-

diction of protein assemblies but should not be strictly enforced, since variations that make 

one interface weaker can be counterbalanced by variations in interfaces between other pairs 

of subunits.  

1.2.3 PPI network evolution 

On a larger scale, protein-protein interactions form networks called interactomes (see sec-

tion 1.1.7, page 22), which also change in the course of evolution. Many edges (interactions) 

are rewired, that is, some are gained and others are lost (Ghadie, Coulombe-Huntington et 
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al. 2018). This can happen either through modification of the interface or through gene loss 

or gene gain as a result of horizontal transfer, de novo emergence or duplication events 

followed by divergence leading to the expansion of the protein repertoire (Kolodny, 

Pereyaslavets et al. 2013) (see section 1.2.1, page 25). Protein interaction and protein func-

tion usually go hand in hand. This implies that PPIs undergo evolutionary constraints in order 

to conserve function. As mentioned in section 1.1.7 (page 20), our current view of protein 

interactomes is incomplete and biased. On the other hand, protein homology inferring 

methods that enable the mapping of orthologs and paralogs inter- and intra-species are not 

perfectly accurate leading to false homology assumptions. These technical details make the 

study between and within interactomes extremely challenging (Ratmann, Wiuf et al. 2009). 

The retention or not of new protein copies and/or new interactions after gene duplication, 

may be more or less strongly influenced by selective pressure. Proteins that are born through 

duplication necessarily inherit at least part of their parent’s interactions. These proteins have 

several fates as illustrated in Figure 1-6, the most common one being pseudogenisation 

(i.e. loss of the copy through too many detrimental mutations causing it to become a silent 

pseudo-gene). When the duplicate is kept, it might keep the same functions as the original 

copy, it might acquire a new function or both copies could grow dependent on each other 

to ensure the ancestral function. Studies have shown that the evolutionary rates of dupli-

cated genes are accelerated in the period following duplication in yeast and was coupled 

with an apparent decrease in shared PPIs between the new paralogs (Ratmann, Wiuf et al. 

2009).   
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Figure 1-6: Evolutionary fates of a duplicated gene pair in a protein interaction network. The duplicated 

gene might be lost through pseudogenisation (a) (the most common fate), or kept. In this case, if both copies 

are conserved, double-dosage might present a selective advantage (b). If both copies evolved individually and 

accumulated complementary deleterious mutations affecting different sub-functions, expression of both might 

be necessary to ensure ancestral function in a collaborative manner (c). Finally, less evolutionary pressure over 

each copy because of initial redundancy might be beneficial for the exploration and acquisition of a new func-

tion in one of the copies (d). Illustration adapted from (Ratmann, Wiuf et al. 2009). 

Another interesting and controversial topic is the link between network topology and net-

work evolution, and more specifically, the relationship between evolutionary rate and pro-

tein centrality in the network. The conclusions seem to vary according to the data and 

methods used in various studies. Some studies showed that protein degree is negatively 

correlated to evolutionary rate; others argue that the observed correlation is an artefact 

of protein abundance differences. Based on the analysis of PPI structures involving hubs in 

yeast, (Kim, Lu et al. 2006) defined party hubs as having many interfaces, enabling to bind 

many partners at once, and date hubs as having only few interfaces, where PPIs would be 
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able to and would have to share the same interaction surfaces. Independent from gene ex-

pression level, they found that party hubs had slower evolutionary rates than date hubs. 

Intuitively, because hub proteins interact with more partners, they should proportionally 

have more surface dedicated to binding than less connected proteins, thus one could as-

sume that they are subjected to higher evolutionary pressure. In that sense, we also have to 

make the distinction between date and party hubs. A study by Alvarez-Ponce et al. on high 

quality and close-to-complete human PPI networks concluded that network centrality had a 

significant effect on protein evolutionary rate, with a contribution comparable to that of 

gene expression (Alvarez-Ponce, Feyertag et al. 2017). They found, however, that closeness 

(i.e. one over the average distance between a protein and all other proteins in the network) 

was one of the highest contributors and that node degree had low or nearly no correlation 

with evolutionary rate after correcting for confounding factors. Thus, they hypothesise that 

evolutionary rates are affected by the global position of proteins in PPI networks rather 

than by surface constraints imposed by PPIs (Alvarez-Ponce, Feyertag et al. 2017). 

An interesting concept is what Ghadie et al. call the “dispensable part of the interactome”, 

characterising PPIs that are neutral to disruption in a PPI network. Based on homology-based 

three-dimensional structural models for PPIs in the human interactome and computational 

and experimental determination of mutation effects on these structures, they estimate that 

up to ~20% of the overall human interactome is completely dispensable (Ghadie and Xia 

2019). More information on PPI network topology evolution can be found in (Ratmann, Wiuf 

et al. 2009) or (Ghadie, Coulombe-Huntington et al. 2018).  

In this section, I discussed a number of situations illustrating why evolutionary signals may 

be tricky to recognise in the context of protein assemblies and to exploit for their structural 

prediction. Depending on a variety of factors such as the local structural framework, the 

number of paralogs or the number of partners in an assembly, the consistency of a structural 

model with the evolutionary history of the interface may be difficult to establish. Next, I will 

present a state-of-the-art report of the successful methods for the prediction of individual 

protein structures and for the modelling of their assemblies. We will see in the following 
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sections that combining different computational approaches can help in getting the best 

from conservation and coevolutionary information. 
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1.3 COMPUTATIONAL STRUCTURAL PREDICTION  

When a direct physical interaction exists between two proteins, more detailed knowledge of 

the specific interface structure is extremely valuable in order to modulate this interaction 

and understand its functional role, for example by suggesting positions on each partner that 

can be mutated to specifically disrupt and restore the interaction. If the complex structure 

has not been experimentally determined, modelling techniques can be used to obtain pre-

dictions for the assembly. Computational techniques for modelling protein complex struc-

tures are traditionally divided into template-based interface modelling and template-free 

docking methods (Soni and Madhusudhan 2017, Porter, Desta et al. 2019). Template-based 

approaches are the more accurate of the two but are only possible when a sufficiently close 

homologous structure exists (Figure 1-7, label 1). In many cases, a homologous complex 

structure cannot be identified, then one can resort to template-free docking. Docking re-

quires the individual monomeric structures or models of these structures. Fortunately, ex-

perimentally resolved monomeric structures are more abundant than experimental struc-

tures of complexes and individual protein structures can often be modelled from structures 

of individual protein homologs if not available (i.e. by homology or comparative model-

ling, Figure 1-7, label 2). When monomeric template structures are not available, ab initio 

modelling can be performed (also Figure 1-7, label 2). Either of the methods mentioned 

above can be guided by additional data such as biochemical data, conservation or pre-

dicted binding zones (see Figure 1-7, label 3 and 4, 6 and 7). Here, I will first present the 

main principle and examples of tools for monomeric structure prediction. I will then describe 

briefly binding surface prediction. Finally, I will introduce in greater detail the issue of protein 

complex prediction central to my thesis, as well as its specific existing evaluation metrics. 
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Figure 1-7: Structure modelling flowchart when using evolutionary information. Flowchart of the proto-

cols and tools described in the review to carry out structural modelling of protein interactions taking into 

account evolutionary information. When starting from the sequences of interacting proteins, structural mod-

elling of their assembly can follow two strategies, both relying on evolutionary relationships. The first one (1), 

generally more accurate but restricted to a limited number of cases, uses homology relationships and template-

based docking methods to generate structures of assemblies, which are reviewed in two subsections of this 

review for globular and disordered regions, respectively. The second strategy (2) relies on a combination of 

approaches involving structural modelling of the partners when possible, evolutionary analysis of the disor-

dered regions and use of evolutionary information to identify binding patches at the surface of globular do-

mains (3, 6). Combined with coevolution analyses, free docking methods can incorporate all these levels of 

information to produce models of assemblies (4, 5, and 7). These methods are reviewed for both globular and 

disordered systems. 

1.3.1 Structural prediction of monomers 

As mentioned earlier, the monomeric structures of interacting proteins have to be known in 

order to proceed with docking. When experimental structures are not available, one can 

resort to monomeric structure prediction, whether through template-based approaches 

when homologous structures are available or by ab initio methods. These methods are con-

stantly evaluated in blind-test scenarios such as regular Critical Assessment of protein Struc-

ture Prediction (CASP) sessions or through Continuous Automated Model EvaluatiOn 

(CAMEO) (see section 1.3.1.3 below).  
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1.3.1.1 Homology modelling of individual protein structures 

Homology modelling is usually the most accurate modelling method. It makes use of evo-

lutionary structure conservation and performs especially well when reliable templates are 

available. Templates should have good structural resolution and sequence identity typically 

above 30% with the query structure(s), in which case only local adjustments should be ap-

plied. The sequence identity threshold can sometimes be pushed down to as far as 15% 

thanks to effective homolog search algorithms. However, when more remote templates are 

available, larger perturbations are needed to make good models as modelling relies on a 

less reliable alignment due to low sequence identities, which might also contain more inser-

tions and deletions. Template search can be performed efficiently and accurately using the 

profile-profile alignment toolkit hh-suite (Steinegger, Meier et al. 2019) against the PDB for 

example. 

The main homology modelling pipeline used in my PhD project was RosettaCM (Song, 

DiMaio et al. 2013) which, given one or more templates and the corresponding query-

template pairwise alignments, hands out one or more possible models. The full RosettaCM 

protocol is carried out in three main steps, an initial threading step where amino acids are 

simply replaced in the template structures by the corresponding query residues, a second 

step where missing regions and loops are completed, and a third side-chain and backbone 

optimisation step using a fast relax protocol. RosettaCM is also used by the RaptorX-TBM 

server (Xu and Wang 2019), one of the top-performing servers in recent CASP sessions, after 

an initial template search and alignment generation step using their DeepThreader 

algorithm.  

Alternative examples of homology modelling tools include SWISS-MODEL (Waterhouse, 

Bertoni et al. 2018), MODELLER (Webb and Sali 2016) or I-TASSER (Yang, Yan et al. 2015). 

SWISS-MODEL (Waterhouse, Bertoni et al. 2018) is a widely-used and user-friendly 

homology modelling pipeline with various degrees of user intervention according to the 

chosen modelling mode. Templates are searched for using BLAST and HHblits and selected 

based on an estimated quality measurement. Models are then generated using an in-built 
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modelling engine and are given a quality score (QMEAN) reflecting how they compare to 

experimental structures of the same size, in other words, how realistic the models are. 

MODELLER (Webb and Sali 2016) uses its own alignment builders. Its modelling is 

performed iteratively and is guided by spatial restraints deduced empirically based on the 

identified or given template structure(s) and CHARMM force field terms. MODELLER is often 

used in other programmes for when modelling of monomeric structures is needed 

(Mirabello and Wallner 2017, Zimmermann, Stephens et al. 2018). I-TASSER is within the 

top-performing template-based servers in recent CASP evaluations. I-TASSER searches for 

suitable templates using a profile-profile sequence search, and then generates its models 

through template threading and free modelling of non-matching regions followed by a 

reassembling step with Monte Carlo sampling. 

Recent advances in the field observed since the beginning of CASP are linked to the 

development of more accurate sequence-template alignment generation methods, the use 

of multiple templates, better modelling of non-template-covered regions, better final model 

refinement and better quality estimation to select the final output models (Kryshtafovych, 

Schwede et al. 2019).  

However, homology modelling is not always possible as it relies on having available suitable 

templates. Indeed, Interactome3D (Mosca, Céol et al. 2013) lists more than 62,000 proteins 

involved in interactions, of which about 44% have no experimental monomeric structure and 

no readily identifiable template structure. Fortunately, for these cases, we can still resort to 

ab initio modelling of individual subunits. 

1.3.1.2 Ab initio modelling of individual structures 

Ab initio modelling, i.e. predicting a protein structure from its sequence only, is much more 

challenging. Decades of effort have been dedicated to methods trying to achieve protein 

structural prediction from physical principles. Molecular Dynamics (MD), a computer simu-

lation technique widely used to study protein dynamics and conformational changes, could 

theoretically be used to fold proteins (Lindorff-Larsen, Piana et al. 2011), although its com-

putational cost and imperfect force fields currently limit this application (Geng, Chen et al. 
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2019). Threading (Xu, Jiao et al. 2008) and fragment-based methods, although not strictly ab 

initio, draw on the knowledge of protein structures and the limited number of folds that 

proteins seem to adopt (Zhang and Skolnick 2005). 

Recent advances enabled the generation of high-accuracy models by drawing on (co-)evo-

lutionary information. A first performance boost was observed thanks to the introduction of 

predicted contacts in the modelling pipeline. The second boost came about by implement-

ing deep neural network methods coupled with the prediction of inter-residue distance 

and backbone torsion angle distributions and is the secret behind the incredible success 

of RaptorX (Xu and Wang 2019) and AlphaFold (Senior, Evans et al. 2020) in recent CASP 

rounds (details about CASP are given in section 1.3.1.3 below). In response to AlphaFold’s 

success in CASP13, trRosetta (Yang, Anishchenko et al. 2020) recently made its appearance, 

implemented in an AlphaFold-inspired fashion but additionally integrating inter-residue ori-

entation predictions (i.e. dihedral angle predictions between non-covalently bound atoms). 

Although they did not participate in CASP13, a posteriori results on the CASP13 dataset and 

on CAMEO show that this extra feature additionally increases the success of structural pre-

diction. 

RaptorX, AlphaFold and trRosetta are able to completely bypass template structures 

thanks to a deep and convolutional residual neural network architecture (ResNet) and 

through integration of evolutionary information taken from MSAs. They all predict dis-

tance distributions (baptised “distograms” in AlphaFold for distance histograms) as well as 

backbone torsion angle distributions. RaptorX additionally predicts secondary structures and 

trRosetta additionally predicts torsion angles between residues (“anglegrams”). Distograms 

and all angle predictions can then be used for 3D model reconstruction after translating 

them into structural constraints. Both AlphaFold and trRosetta convert their predicted con-

tact information into smoothed restraints that are used in gradient descent and Rosetta pro-

tocols, respectively, and RaptorX uses Crystallography and NMR System (CNS) to predict 

protein folds. 
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The input and output of these contact prediction methods might be similar to the DCA ap-

proach but they use different workflows. Thanks to convolution layers, the networks used in 

AlphaFold, RaptorX and trRosetta are able to take in the global context of the contact map 

and go beyond classical pairwise relationships that are mainly detected in DCA, thus ena-

bling them to capture possible structural motifs. Additionally, ResNets provide a highly 

non-linear model as opposed to DCA methods, which are mainly linear and they also need 

less sequences in the MSAs to detect useable information. However, ResNets suffer from 

the “black box” effect, like any neural network, meaning that prediction performances 

might generally be improved using these methods but our understanding of how proteins 

are successfully folded and what information is used and learnt by these algorithms remains 

partial. 

1.3.1.3 Evaluation of structure prediction methods for individual proteins 

CASP is an international blind-test challenge for protein fold and protein contact map pre-

diction that occurs every two years since its creation in 1994 and that assesses the state-of-

the-art methods in that field (Kryshtafovych, Schwede et al. 2019). In CASP, groups are able 

to test their methods on targets that have not yet been published at the time of the chal-

lenge. Over the years, CASP has accumulated a large set of targets with their associated 

predictions proposed by various participating groups, which has now become invaluable for 

method developments and assessments. Targets are separated into several categories ac-

cording to the availability of templates or biological data (e.g. X-link, NMR or SAXS). Partic-

ipants can predict contacts or suggest structural models or can restrict themselves to esti-

mating the quality of models generated by other groups. 

Unlike CASP, CAMEO (Haas, Barbato et al. 2018) provides a continuous and fully automated 

assessment dataset based on weekly pre-releases of sequences in the PDB, meaning that 

structures are not available at the moment of the prediction. CAMEO offers a maximum of 

20 targets per week that are cautiously selected in order to remove any proteins that are too 

close in sequence to already existing structures in the PDB. As participants can only compare 

performances if they happen to be predicting CAMEO targets simultaneously, CAMEO also 
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continuously runs base-line prediction and assessment tools that can be seen as “null mod-

els” for easier comparison between sessions. 

Benchmarking datasets such as CulledPDB (Wang and Dunbrack 2005) or ProteinNet 

(AlQuraishi 2019) complete the assessment landscape. CulledPDB is based on the PDB 

whereas ProteinNet draws on CASP. ProteinNet was designed with a special focus on emerg-

ing machine learning techniques. It provides an additional effective validation set distinct 

from the official CASP sets along with evolutionary profile information as well as file formats 

directly compatible with machine learning approaches.   

Assessment measurements for protein models usually include the GDT-TS (Global Dis-

tance Test – Total Score) which measures the similarity between the model and the experi-

mental structure upon superposition of both. GDT-TS can be assimilated to RMSD but is less 

sensitive to outliers (e.g. poorly modelled loops). GDT-TS calculates the largest set of C 

atoms falling within a defined distance threshold with the reference structure, thus, the 

higher the score, the better the performance. In CASP, the regularly used metric is an average 

over GDT-TS results for 1, 2, 4 and 8 Å distance cut-offs (Kryshtafovych, Schwede et al. 2019). 

Another metric is the local distance difference test (lDDT), a superposition-independent 

score based on inter-atomic distance deviations in the model compared to the reference 

structure. In CAMEO, an average lDDT is used over four different deviation thresholds (0.5, 

1, 2 and 4 Å) and higher scores represent better agreement with the reference model (Haas, 

Barbato et al. 2018).  

1.3.2 Binding surface prediction 

A first step towards studying PPIs or predicting their structure might lie in the prediction of 

their respective binding regions. This information can be used directly by biologists to feed 

more specific assays or can be integrated into docking methods in order to guide the pre-

diction of protein complex structures as illustrated in Figure 1-7, steps 3 and 4 on page 41. 

The vast majority of binding surface predictors include evolutionary information taken 

from MSAs or homologous structures. Indeed, due to the evolutionary pressures mentioned 
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above, conservation of amino-acid positions in MSAs provides key guidelines to identify 

functionally important residues.  

A large number of available predictors were extensively described and compared in recent 

reviews (Aumentado-Armstrong, Istrate et al. 2015, Maheshwari and Brylinski 2015, 

Esmaielbeiki, Krawczyk et al. 2016). A global ranking of available tools remains difficult due 

to the variety of training and test datasets and to the metrics used to compare each other. 

Overall, most recent approaches tend to perform as well or slightly better than standard 

methods such as the SVM-based SPPIDER tool (Porollo and Meller 2007) (using version II 

with 3D structure) by measures of precision, recall, true positive and false positive rates.  

1.3.2.1 Conservation-based predictors 

One of the most sensitive tools for spotting out evolutionary constraints is the Rate4Site 

algorithm (Pupko, Bell et al. 2002, Mayrose, Graur et al. 2004), which can be run from the 

ConSurf web server (Ashkenazy, Abadi et al. 2016). The relative evolutionary rates at each 

site are estimated using a probabilistic evolutionary model, which takes into account the 

stochastic process underlying sequence evolution within protein families and the phyloge-

netic tree of the proteins in the family. As illustrated in panel A of Figure 1-8, most of the 

interaction regions on the RBBP5 subunit in the multi-protein MLL1 complex associated with 

the nucleosome are characterised by slower evolutionary rates as measured by Rate4Site. 

Other conserved regions may correspond to alternative interactions or functional con-

straints.  
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Figure 1-8: Interface residue prediction of the RBBP5 protein using different programs. (A) Rate4Site, (B) 

SPPIDER and (C) ISPRED4. Interface residue predictions are displayed on the surface of RBBP5 and colour-

coded from white (predicted as non-interface) to yellow to red (highest predicted probability to be involved in 

an interface). The RBBP5 subunit is involved in interfaces with six different partners (five proteins and one DNA) 

in the MLL1 complex associated with the nucleosome (interfaces 1, 2, 3, 4 and 6 in reference PDB structure: 

6KIU) and in one intra-molecular interaction (interface 5 in reference PDB structure: 6KM7). These interfaces 

are mediated either by its globular beta-propeller domain (interfaces 1, 4, 5 and 6) or by its N-terminal intrin-

sically disordered region (interfaces 1, 2 and 3). ISPRED4 prediction exhibits remarkable sensitivity in the de-

tection of interface residues in RBBP5 for all seven interfaces with almost no false positives. As in Figure 1B, 

WDR5 subunit is coloured purple (1), ASH2L is orange (2), MLL1 is dark green (3), histones octamer is cyan (4), 

RBBP5 is yellow and lime (5), ubiquitin is pink (6) and DNA is black.  

Most recently developed protein interface prediction methods take conservation into ac-

count (Pei and Grishin 2001, Hou, De Geest et al. 2017, Northey, Barešic et al. 2017, 

Savojardo, Fariselli et al. 2017, Meyer, Beltran et al. 2018, Dequeker, Laine et al. 2019, 

Sanchez-Garcia, Sorzano et al. 2019, Wang, Yu et al. 2019).  

1.3.2.2 Coevolution-based predictors 

Beyond conservation features, coevolution scores are also increasingly used either within a 

single sequence or considering two binding partners. In the ISPRED4 method (Savojardo, 



49 

 

Fariselli et al. 2017), conservation and coevolution features of each individual protein partner 

were integrated among other sequence and structure-based descriptors. The rationale be-

hind using coevolution of positions within a single sequence to account for residues in in-

teraction is that neighbouring residues at the surface may co-vary more strongly due to the 

presence of a bound partner. The increase in performance obtained with the covariation 

score was actually of similar magnitude to the contribution of the conservation term. Over-

all, the performance of ISPRED4 was found significantly higher than all other methods tested 

on a standard benchmark and on a blind test set from the CAPRI experiment. The example 

of the RBBP5 subunit in the MLL1 complex (Figure 1-8) illustrates the quality of predictions 

that can be obtained. For all six binding interfaces in which RBBP5 is involved, residues in-

volved in the interface were correctly spotted out by ISPRED4 without too many false posi-

tives. 

Coevolution-based scores are also increasingly integrated in interface residue predictors by 

considering not only single proteins as for ISPRED4, but also pairs of binding partners. Such 

a strategy can potentially increase the specificity of predictions as originally shown by the 

development of the i-Patch predictor (Hamer, Luo et al. 2010). The ECLAIR method (Meyer, 

Beltran et al. 2018) was designed to predict interfaces at a genomic scale to feed the Interac-

tome INSIDER browser using different features including conservation and coevolution be-

tween specific partners. Interestingly, by using DCA and SCA scores as descriptors to account 

for correlations between interacting positions, the authors observed that the performance 

of the classifier was increased even when the MSA contained less than 200 sequences. So 

far, other methods taking into account pairs of interacting proteins rather than single ones, 

such as BIPSPI (Sanchez-Garcia, Sorzano et al. 2019) or PAIRpred (Minhas, Geiss et al. 2014), 

rather used pairs of PSSMs in their descriptors. Future progress in the field will probably 

come from further integration of these coevolution signals with machine learning algo-

rithms. 
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1.3.2.3 Homology-based predictors 

In the preceding paragraphs, I mainly described integration of evolutionary properties from 

protein sequences, but homology information can also be extracted from comparison of 

structures. In that respect, the PredUS server (Zhang, Petrey et al. 2010, Hwang, Petrey et al. 

2016) provides a complementary view of how homology can help predict interface residues 

by identifying structural neighbours of a query protein and mapping the frequency of con-

tacts made by binding partners of these structural neighbours. A related method is PS-

HomPPI, which predicts interface residues between two query proteins based on their fre-

quency at the interface of homologous complexes with known 3D structures (Xue, Dobbs et 

al. 2011). Such tools integrating structural homology as features for interface prediction were 

recently reviewed (Xue, Dobbs et al. 2015). Their success rate is high provided numerous 

structures exist for a given structural family. These homology-based predictors are different 

from template-based docking strategies, discussed in the next section, in that most do not 

account for binding partner specificity to predict binding site location. 

For practical applications, using a selection or a combination of the different available pre-

dictors should be envisioned, following the concept used in consensus approaches such as 

CPORT (de Vries and Bonvin 2011). The choice of tools and parameters also depends on the 

type of application considered. To increase the chances of success when selecting a small 

number of residues that will be experimentally mutated in order to perturb an interface, the 

precision metric should rather be favoured. In contrast, if interface prediction is used with 

the aim of generating constraints for subsequent docking (as described in the section 

1.3.3.2.1, page 57), a higher recall would be advisable to ensure that none of the potential 

regions of interaction are omitted in targeted sampling, since further scoring and clustering 

of the candidate interfaces will be used to refine solutions. 

1.3.2.4 Predicting binding modes in disordered regions using evolution 

An important class of protein-protein interactions, only briefly mentioned so far, are those 

mediated by IDPs and by exposed flexible loops within folded domains. Their binding gen-

erally involves short stretches of adjacent amino acids forming compact clusters known as 
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SLiMs or molecular recognition features (MoRFs) (Van Roey, Uyar et al. 2014). These se-

quence motifs play fundamental roles in cell functions such as signalling, transport or protein 

turnover and are involved in many human diseases (Uyar, Weatheritt et al. 2014, Via, Uyar et 

al. 2015). They trigger transient and reversible interactions between partners and are often 

regulated by post-translational modifications. In vivo, these interactions often act in the con-

text of complex multiprotein assemblies as illustrated in Figure 1-8 between RBBP5 and part-

ners 1, 2 and 3. Moderate binding stability of these motifs together with the complexity of 

the biological context in which they act may hinder evolutionary traces used to spot them 

out. As noted earlier, the low complexity of linear binding motifs can give rise to complicated 

compensatory mechanisms in evolution difficult to decrypt from sequence analyses. Here, I 

will provide a few guidelines and tools that can help predict binding sites in disordered re-

gions and in their folded partners, illustrated as steps 5 and 6 in Figure 1-7, page 41. Docking 

methods suitable for incorporating these features for modelling purposes will be discussed 

in section 1.3.3, page 53.  

1.3.2.4.1 Prediction of binding motifs in disordered regions 

If the conditions for closely related template-based modelling are not met, a first challenge 

can be the identification of binding regions in disordered stretches (Figure 1-7, label 6). As 

a first approach, well-annotated binding motifs can be recognised using databases such as 

the Eukaryotic Linear Motif resource (ELM) (Kumar, Gouw et al. 2019), a repository of man-

ually curated and experimentally validated motifs. In cases where no known binding motifs 

can be found, more general approaches can be used to search for stretches with a tendency 

to fold upon binding. For instance, the IUPred2A server predicts disordered regions in pro-

teins (Meszaros, Erdos et al. 2018) and uses ANCHOR2 to predict binding stretches within 

these regions. ANCHOR2 uses a biophysics-based model but it does not incorporate any 

evolutionary constraints (Meszaros, Simon et al. 2009). In fact, using evolutionary infor-

mation for the recognition of binding motifs in disordered regions requires to pay particular 

attention to the quality of the generated multiple sequence alignment (Gibson, Dinkel et al. 
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2015). Rather than automatic tools, it is advisable to use more interactive approaches allow-

ing to tune sequence divergence and prune those with low quality, in order to increase the 

contrast between the most conserved positions and the highly variable sequence tracts in 

which they are generally encompassed. Interactive manipulation can be performed, for ex-

ample, with the Jalview sequence analysis workbench (Waterhouse, Procter et al. 2009), or 

with the ProViz visualisation server to investigate evolutionary features in protein sequences 

(Jehl, Manguy et al. 2016), which maps pre-calculated MSAs across different clades to useful 

information sources such as ANCHOR2 and secondary structure predictions. Recent target 

T134 from the CAPRI 7th edition (Lensink, Nadzirin et al. 2019) typically addressed the ques-

tion of recognising a local motif inside a large disordered sequence stretch capable of bind-

ing the dynein domain (see Chapter 4, page 125).  

1.3.2.4.2 Prediction of sites in folded domains binding disordered motifs 

On the side of the folded domains involved in the recognition of short binding motifs, iden-

tification of binding sites can be performed using tools previously mentioned for interface 

predictions, which generally include evolutionary information. Interaction sites can also be 

predicted using the PEP-SiteFinder server (Saladin, Rey et al. 2014) which generates 3D de 

novo conformations of peptides based on their sequence and performs a fast blind rigid 

docking of these conformations on the complete protein surface to map the most favourable 

binding sites. A more homology-based strategy is also proposed in the InterPep pipeline 

(Johansson-Akhe, Mirabello et al. 2019) which uses distant protein complex structures as 

structural templates for the identification of residues likely involved in binding flexible pep-

tides. InterPep includes a conservation score among other features and was shown to out-

perform alternative approaches on a 502-target benchmark, based only on the Rate4Site 

conservation score. As when predicting binding motifs in disordered regions, care should be 

taken in the generation of sequence alignments for folded domains when dealing with pro-

tein-peptide interactions. Target T66 from CAPRI 6th edition is illustrative of such potential 

pitfalls (Yu, Andreani et al. 2017). It involved the disordered C-terminal tail of B. subtilis SSB 

protein in complex with a primase. Even though the interaction is conserved from B. subtilis 
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to E. coli, large MSAs sampling homologs around these two distant species did not allow the 

detection of a conserved evolutionary trace at the surface of the primase. Probably due to a 

spatial switch in the location of the binding site over long evolutionary times, only align-

ments restricted to closely related Firmicutes species could help identify the binding site 

using evolutionary information.   

1.3.3 Structural prediction of protein assemblies 

Once the monomeric structures of our proteins are available (whether experimentally or 

through prediction as described in section 1.3.1, page 41), one can proceed with protein 

assembly prediction (Figure 1-10, page 55 and Figure 1-11, page 57). Similarly to monomeric 

structures, complex structures can be deduced by homology if a suitable template is availa-

ble or by free-docking otherwise. Figure 1-9 provides a graphical summary of a selection of 

user-friendly methods that can be used in order to determine the structure of a protein 

interaction. 

 

Figure 1-9: Graphical summary of a selection of user-friendly methods used in structural protein inter-

action prediction. Those methods are available as web servers, except InterPep and InterPep2 (see Table A-1 
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page 167 in the appendix for links and references). Methods for predicting interactions between globular do-

mains are presented on the left in oval shapes, methods for predicting protein-peptide interactions mediated 

by short motifs are presented on the right in rectangles and methods suitable for both are in the middle in 

rounded rectangles. The background colour code denotes how structural modelling makes use of evolutionary 

information: through sequence conservation (light orange), sequence coevolution (dark orange) or structural 

homology (blue), or indirectly through information provided by upstream methods that predict binding sites, 

motifs or contacts (green). Template-based modelling, which relies on homologous complexes of known struc-

ture, bypasses the use of upstream methods compared to docking-based predictions. 

1.3.3.1 Template-based docking 

Template-based modelling makes use of homologous structures and is driven by the 

knowledge that proteins similar in sequence or structure, especially in the interface region, 

bind in a similar way (Andreani, Faure et al. 2012). Similarly to template-based modelling 

of monomeric structures (see section 1.3.1.1, page 42), protein complexes can be modelled 

using homolog complex structures and results in predictions that are often more accurate 

than free-docking (Figure 1-10) (Lensink, Nadzirin et al. 2019). The higher the sequence iden-

tity between the template and the protein complex to be modelled, the more accurate the 

model. The common cut-off in sequence identity lies within 30% in both partners, a thresh-

old below which we cannot be sure that the homologous proteins interact in the same way 

as the proteins to be modelled (Aloy, Ceulemans et al. 2003, Faure, Andreani et al. 2012). 

Additional difficulty lies within the search of suitable for templates. The same procedure can 

be performed to identify homologous complexes as in monomer template-based modelling 

but it requires an additional step where the individual homologs of each protein partner 

have to be matched (i.e. intersection of homolog lists and removal of homologs that are not 

in direct contact). Alternatively, several databases exist that map homologous complexes 

with experimentally determined 3D structure to infer properties about other protein-protein 

interactions. The PRISM web server provides a repository for the prediction and structural 

modelling of protein interactions using evolutionary conservation of hotspot residues and 

multi-protein structural alignments to measure interface similarity (Baspinar, Cukuroglu et 

al. 2014). The 3D-interologs database infers protein interactions across species by mapping 

domains to interface structures (Lo, Chen et al. 2010). The IBIS database uses the VAST 

structure comparison method to predict interaction partners and protein binding surfaces 

by analysing homologous complexes of known structure (Shoemaker, Zhang et al. 2012). 
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More recently, the PPI3D web server was built to search structural data using as query a 

single sequence or a pair of sequences in order to retrieve 3D structures of protein-protein 

and domain-domain complexes containing subunits homologous to the query sequence(s) 

(Dapkunas, Timinskas et al. 2017). PPI3D is especially useful for template-based interface 

modelling and we regularly rely on it in CAPRI docking challenges (see Chapter 4, page 125). 

 

Figure 1-10: Illustration of template-based docking. When an interologous structure exists for a given pro-

tein pair (e.g. in mouse), this interolog can be used as a template in order to deduce a model of the bound 

structure of our proteins of interest (e.g. in human). 

As for comparative modelling of monomeric structures, the user-friendly server SWISS-

MODEL can be used for template-based docking as well as the RosettaCM package (see 

section 1.3.1.1, page 42). Another template-based docking and fully automated server is 

InterPred (Mirabello and Wallner 2017), which combines several tools to predict the final 

complex. First, monomeric structures are modelled using MODELLER if not given and 

templates are found using a structural alignment algorithm. Monomeric models are then 

superimposed onto the selected template to give a first set of coarse-grained models. The 

most likely coarse-grained models are selected using a random forest classifier based on 

sequence and structural features (e.g. interface size, interface overlap, structural alignment 

quality and sequence identity with the template). InterPred’s final selection consists of the 

models that changed the least after a last refinement step. ClusPro, one of the best 

performing servers in recent blind-tests (Lensink, Nadzirin et al. 2019), lately integrated 

template-based docking into its pipeline to expand its ability to make high accuracy interface 

models (Porter, Padhorny et al. 2019). The HDOCK server, which also performed well in these 
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blind-tests, implements a hybrid strategy involving template-based and template-free 

docking (Yan, Zhang et al. 2017) (template-free docking will be described in the next section). 

For the structural modelling of protein-peptide interactions, comparative modelling also 

remains the most suitable method in cases where closely related structural templates exist. 

The GalaxyPepDock web server (Lee, Heo et al. 2015) provides for that purpose a full pipe-

line to search for templates and model these categories of complexes in an automated man-

ner. The InterPep2 software uses templates from both protein-peptide complexes and pro-

tein-protein interactions (Johansson-Akhe, Mirabello et al. 2020). 

Template-based methods are efficient but cannot always be used, as reliable homologous 

complex structures are not always available. Interactome3D (Mosca, Céol et al. 2013) lists 

more than 270,000 interactions identified in 18 model species, for which around 88% have 

no experimental structure and no readily identifiable template structure. They can also lead 

to wrong assumptions when predicting interfaces in cases where homologs display different 

binding modes to the query complex, especially for homologs under 30% sequence identity 

(Faure, Andreani et al. 2012). For these cases, we can resort to template-free protein-protein 

docking. 

1.3.3.2 Template-free docking 

Template-free docking performs an exhaustive search of the conformational space, starting 

from two unbound protein structures or models. It is traditionally divided into two steps, 

illustrated in Figure 1-11. First, several thousands of interface conformations, called decoys, 

are generated during a sampling step. Sampling is then followed by or coupled with scor-

ing, during which these decoys are ranked based on their interface properties (Huang 2014, 

Huang 2015). In an ideal situation, the score should directly reflect how close the decoy is to 

the true complex (denoted the native complex or bound structure). Many template-free 

docking programs and pipelines exist, each having their own specialty. Their performance 

is usually increased when they are included in integrative modelling pipelines, where dock-

ing is guided by additional experimental data, evolutionary information (i.e. conservation or 

coevolution) or predictions of binding areas (Koukos and Bonvin 2019). This data can be 
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integrated in the scoring step or as constraints during or immediately after the sampling 

step. Finally, a high-resolution but costly scoring step can be performed on a small selection 

of promising complex candidates, followed by a final refinement step can help to optimise 

the structures and remove the remaining imperfections. 

 

Figure 1-11: Template-free docking pipeline. The general pipeline for template-free protein-protein docking 

relies on having the structures of two individual proteins (proteins A and B in blue and green). From top to 

bottom, a large amount of docking poses are generated, then filtered or ranked according to low-resolution 

scoring functions resulting in a set of approximately 10 decoys. An additional clustering step can be imple-

mented whether before or after scoring. High-resolution scoring and model refinement can be performed on 

a small number of decoys in order to generate a model with the highest quality possible. 

1.3.3.2.1 Sampling 

There are many different template-free docking tools based on various different criteria. 

Docking tools perform an extensive or guided search of the structural space for possible 

solutions and often score these decoys during that step with a simple and fast scoring func-

tion (e.g. to remove those that are too unrealistic because they are too clashing). By per-

forming this search, we hope that sampling tools will be able to propose at least one solution 

that is close to the real complex (denoted near-native complex) and which can later be iden-

tified by one or several scoring functions. Traditionally, the bigger of the two proteins is 
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called the receptor and stays put, whilst the smaller one of the two, the ligand, moves in 

space and orientation around the receptor. The complex shape of proteins makes it very 

difficult to exhaustively explore all possible binding conformations, thus bioinformatics tools 

had to use tricks to minimise the system’s enormous number of degrees of freedom. A way 

to deal with this is to consider both proteins as rigid units (i.e. “rigid-body” docking), 

thereby reducing the complexity to a 6-dimensional search space: typically three transla-

tional degrees and three rotational degrees representing the x, y and z axes and the θ, φ 

and ψ angles in a Cartesian space. This considerably accelerates the conformational search. 

Some also integrate the concept of protein flexibility during sampling in the form of small 

conformational readjustments. 

Sampling strategies include Fourier-based sampling, local shape matching and other 

global search methods, with Fourier-based sampling the most commonly used. An objec-

tive assessment was made in 2015 of 14 global docking tools on Weng benchmark 4 (Huang 

2015) (section 0, page 68) of which some are listed in Table 1-1 along with a few of the top-

performing servers in CAPRI 7th edition (Lensink, Nadzirin et al. 2019). 

Table 1-1: List of popular docking tools and their properties. This list was adapted from (Huang 2015) and 

additionally contains the top-ranking servers in CAPRI 7th edition. 

Program Scoring function Assembly 

search 

 

ZDOCK 3.0.2 Shape complementarity, electrostatics and knowledge-

based pair potentials 

FFT-based (Pierce, Wiehe 

et al. 2014) 

MDockPP Shape complementarity, electrostatics and knowledge-

based pair potentials 

FFT-based (Duan, Qiu et 

al. 2020) 

HDOCK Shape complementarity and knowledge-based pair po-

tentials 

FFT-based (Yan, Zhang et 

al. 2017) 

PIPER Shape complementarity, electrostatic interactions and 

knowledge-based pair potentials 

FFT-based (Kozakov, 

Brenke et al. 

2006) 

ClusPro Shape complementarity, electrostatic interactions, 

knowledge-based pair potentials, cluster size 

FFT-based (Kozakov, Hall 

et al. 2017) 

GRAMM-X Shape complementarity, hydrophobic match FFT-based (Tovchigrechko 

and Vakser 

2006) 

MolFit Geometric complementarity, hydrophobic complementa-

rity and electrostatic interactions 

FFT-based (Kowalsman 

and Eisenstein 

2007) 

SDOCK van der Waals attractive potential, geometric collision, 

electrostatic potential and desolvation energy 

FFT-based (Zhang and Lai 

2011) 
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FRODOCK 3.12 Van der Waals, electrostatics, desolvation and 

knowledge-based pair potentials 

SFT-based (Ramírez-

Aportela, 

López-Blanco 

et al. 2016) 

HEX Surface complementarity and electrostatics interactions SFT-based (Macindoe, 

Mavridis et al. 

2010) 

PatchDock Geometric shape complementarity Local shape 

matching 

(Schneidman-

Duhovny, Inbar 

et al. 2005) 

ATTRACT  Lennard-Jones type effective potentials and electrostat-

ics interactions 

Global 

search 

(de Vries, 

Schindler et al. 

2015) 

HADDOCK Physical potentials and experimental or computational 

constraints 

Global 

search 

(van Zundert, 

Rodrigues et 

al. 2016) 

LZERD Shape complementarity and clash penalty Global 

search 

(Christoffer, 

Terashi et al. 

2020) 

 

Fast-Fourier transform-based sampling (FFT) 

In the traditional Fourier correlation approach, protein topology is reduced to a simple Car-

tesian grid model, which naturally favours close contacts and penalises steric clashes. Cubes 

in the grids (typically 1-1.5 Å in size) are labelled according to their position in the protein 

(inside, outside or on the surface). The grids are then efficiently matched through successive 

translational increments and Fast-Fourier transform-based calculations (FFT) which can 

be applied to calculate correlating surface shapes but also other properties such as compat-

ible hydrophobicity or electrostatic and van der Waals force fields (Ritchie 2000). ZDOCK 

(Pierce, Wiehe et al. 2014) or GRAMM-X (Tovchigrechko and Vakser 2006) are examples of 

FFT-based methods (see Table 1-1). At the time of Huang’s review, ZDOCK version 3.02 out-

performed all other evaluated docking programmes with a 30.7% success rate (Huang 2015) 

(see section 1.3.3.4.4, page 72 for more details on evaluation metrics). The MDockPP server 

is a GPU-adapted reimplementation of ZDOCK3.02 and was ranked within the best-perform-

ing servers in CAPRI 7th edition (Lensink, Nadzirin et al. 2019, Duan, Qiu et al. 2020). 

Spherical-Fourier transform-based sampling (SFT) 

As a new FFT must be calculated for each rotational increment, calculations can be extremely 

slowed down when docking large molecules, especially when a small grid size is used. In 
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answer to this, Spherical-Fourier transforms (SFT) have emerged using spherical harmonic 

functions to represent protein surface shapes in which the 6 degrees of freedom in the 

docking problem become 5 Euler rotation angles and an intermolecular distance (Figure 

1-12). Docking programmes such as FRODOCK (Ramírez-Aportela, López-Blanco et al. 

2016), which we routinely use, or HEX (Macindoe, Mavridis et al. 2010) are based on that 

principle (see Table 1-1).  

 

Figure 1-12: Schematic representation of FFT and SFT. The top path represents FFT sampling in Cartesian 

space implying three translational and three rotational degrees of freedom around the receptor. The lower 

path describes SFT sampling in rotational space implying five rotational (two per protein and one defining the 

angle between the two) and only one translational degree of freedom (vector between the centres of mass of 

both proteins). This property considerably accelerates the sampling. This picture was taken from (Padhorny, 

Kazennov et al. 2016). 

FRODOCK2.1 (Fast ROtational DOCKing) ranks its decoys with a linear combination of four 

different terms: van der Waals, electrostatic and desolvation potentials as well as a 

knowledge-based term, Tobi (Dong, Fan et al. 2013). FRODOCK typically includes an addi-

tional clustering step after sampling to remove redundancy between decoys. 

Other sampling strategies 

Local shape matching, as in PatchDock (Schneidman-Duhovny, Inbar et al. 2005), reduces 

the sampling space by directly focusing on regions with possible complementary between 
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the two proteins. In this case, regions of interest are usually protein surface areas with spe-

cific and distinct geometric features such as cavities or local knobs and holes. Possible ligand 

orientations are then rapidly explored through local shape complementarity by reducing 

receptor and ligand proteins to negative and positive images. 

Other global search strategies include HADDOCK, LZERD or MDOCKPP, which were found 

in the top-ranking docking servers in the latest CAPRI round (Lensink, Nadzirin et al. 2019). 

LZERD (Christoffer, Terashi et al. 2020) is a geometric shape-based docking programme that 

uses rotation-independent 3D Zernike descriptors to represent protein surfaces and can 

handle a certain degree of protein flexibility by adjusting the resolution of its descriptors. 

ATTRACT (de Vries, Schindler et al. 2015) has a random search strategy which is combined 

with physics-based scoring terms. ATTRACT performs efficient minimisation of individual 

docking poses by reducing protein residues to a group of three pseudo-atoms. It also inte-

grates a minimal side-chain rotamer sampling during minimisation. 

Data-driven docking 

In most free docking programs and web servers designed to predict interactions between 

globular domains, restraints can be used to enrich docking solutions by filtering out decoy 

interfaces that do not involve some residues or residue pairs. For instance, most docking 

servers include a field where the user can input interface restraints. Examples include ClusPro 

(Kozakov, Hall et al. 2017), GRAMM-X (Tovchigrechko and Vakser 2006), PatchDock 

(Schneidman-Duhovny, Inbar et al. 2005), SwarmDock (Torchala, Moal et al. 2013), pyDock-

WEB (Jimenez-Garcia, Pons et al. 2013), GalaxyTongDock (Park, Baek et al. 2019), HDOCK 

(Yan, Zhang et al. 2017) and InterEvDock2 (Quignot, Rey et al. 2018). This feature is espe-

cially useful in cases where experimental data are available such as X-link or NMR data (Xue, 

Dobbs et al. 2015). Interface residue predictions, especially those mentioned above that use 

conservation or coevolution (Figure 1-7, label 3, page 41), can also be used as restraints in 

the docking process (Figure 1-7, label 4, page 41). 
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The user-friendly HADDOCK server (van Zundert, Rodrigues et al. 2016) has the additional 

and interesting ability to set ambiguous constraints. HADDOCK distinguishes between resi-

dues that can be confidently assigned as involved in the interaction (“active” residues) and 

their solvent-accessible neighbours (“passive” residues). HADDOCK was typically designed 

to integrate experimental data but when no such data is available, interface predictions from 

software such as CPORT (de Vries and Bonvin 2011) can be used to guide the docking pro-

cess. HADDOCK consists of three main steps, starting with rigid-body energy minimisation 

followed by simulated annealing and refinement in explicit solvent. Decoys are scored with 

a linear combination of physical potentials and experimental data distance constraints.  

Decoy clustering 

Other than removing possible redundancies to alleviate possible scoring steps that follow 

(e.g. FRODOCK), an additional clustering step after the initial sampling can help to better 

select near-native configurations. This is based on the assumption that the free energy land-

scape exhibits a broader and deeper well around the native structure than around non-native 

structures. One can therefore assume that within the sampling population, near-native re-

gions should be more enriched in decoys.  

ClusPro (Kozakov, Hall et al. 2017), a top-performer in the CAPRI challenge, selects the top 

1,000 FFT-generated decoys by PIPER and clusters them based on RMSD. Since near-native 

structures are more likely to cluster together into big low-energy groups, ClusPro uses clus-

ter size as a selection criterion to return its most probable solutions. 

1.3.3.2.2 Scoring functions 

According to physical chemistry, the structure that is closest to the native structure should 

be the one with the lowest binding free energy. However, predicting binding free energy 

is a difficult task as it involves the calculation of entropic contributions and solvent effects. 

Additionally, accurate selection of near-native poses within predictions relies on a complete 

sampling of the conformational space. Good proxies are scoring functions, which implies, 

however, the loss of the quantitative aspect of scoring as we are reduced to relative decoy 
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ranking. Scoring functions can be based on different properties such as physics-based (elec-

trostatic or van der Waals interactions, hydrogen bonding, desolvation) or knowledge-

based. Shape-complementarity is the most basic one and is integrated into sampling. So-

phisticated scoring functions are often used in a rescoring step after sampling. 

We particularly use SOAP-PP, InterEvScore and Rosetta’s score in our team, thus I will de-

scribe all three in more detail below. 

SOAP-PP is an example of knowledge-based scoring function and stands for Statistically 

Optimised Atomic Potential (Dong, Fan et al. 2013). It is an atomic statistical-based score 

integrating distance-dependent potentials learnt on a set of real complex structures and 

normalised on a set of incorrect PatchDock decoys generated from the Weng benchmark. 

This enables it to better differentiate wrong models from near-native ones on three different 

decoy sets and two different benchmarks (Dong, Fan et al. 2013, Quignot, Rey et al. 2018). 

Another scoring function that I used during my PhD was the Rosetta interface score (ISC) 

(Gray, Moughon et al. 2003, Chaudhury, Berrondo et al. 2011). ISC is made of a linear com-

bination of non-bonded atom-pair interaction energies and empirical and statistical poten-

tials among other terms and is calculated by subtracting the total energy of both monomeric 

structures from the total energy of the complex structure. 

InterEvScore (Andreani, Faure et al. 2013) is a scoring function, which couples a coarse-

grained two- and three-body statistical potential with coevolutionary information extracted 

from coMSAs built jointly for the two protein partners. InterEvScore goes beyond conserva-

tion and makes use of coevolving pairs (or groups) of positions across the interface. The goal 

is thus to favour decoys containing contacts that are compatible with the coevolutionary 

history of the interaction. In InterEvScore, interface contacts are computed for each docking 

decoy and scored for each species in the coMSAs. InterEvScore can make use of coevolu-

tionary information from coMSAs containing as few as 10 sequences. It was integrated in 

the recently updated free docking server InterEvDock2 (Quignot, Rey et al. 2018), which I will 

describe in more detail in the following chapter (Chapter 2, page 77). 
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Similarly to constraints in the docking, predicted interface residues may also be used in the 

scoring step. This is the case, for instance, in DockRank (Xue, Jordan et al. 2014), where 

interface residues are predicted based on the 3D structures of interologs and decoys are 

scored according to how many predicted residues belong to their interface. DockRank gives 

good results compared to scoring functions of the reference docking programme ZDOCK 

(Vreven, Hwang et al. 2011), partly owing to the partner-specific trait of their interface resi-

due predictor. Another scoring function driven by conservation is GraphRank, integrated in 

iScore (Geng, Jung et al. 2019). In GraphRank, interfaces are not represented as a set of 

individual contacts but as labelled graphs in which the nodes represent interface residues, 

each annotated with its PSSM, and edges encode residue contacts. GraphRank classifies in-

terfaces as native or non-native by comparing them with a reference set of positive and 

negative examples. The complex graph comparison problem is solved using random graph 

walking. The resulting similarities with the reference set are given as input to an SVM classi-

fier to estimate how close each decoy is to a native structure. Combined with intermolecular 

energetic terms in iScore, GraphRank manages to outperform HADDOCK (Dominguez, 

Boelens et al. 2003) and state-of-the-art docking programme ZDOCK.  

1.3.3.2.3 High-resolution scoring and structural refinement 

In order to compensate for the imprecision enforced by rigid-body sampling, one can per-

form re-sampling around already generated and carefully selected docking poses or inte-

grate small minimisations and optimisations in the hope of reaching higher quality models. 

Additionally, a last minimisation step can be performed in order to return models of im-

proved quality by taking steric clashes, proper repacking or correct H-binding into account 

for example (see Figure 1-11, page 57). We commonly use the Rosetta package to do so 

(Lyskov and Gray 2008, Fleishman, Leaver-Fay et al. 2011). 

1.3.3.2.4 Docking methods for structural modelling of protein-peptide complexes 

From the prediction of binding motifs and of binding sites in the folded domain partner, it 

is possible to generate structural models using docking tools that were developed and 

benchmarked for the specific purpose of docking flexible peptides onto folded receptors 
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(Figure 1-7, labels 4 and 7, page 41). These docking methods were recently reviewed 

(Ciemny, Kurcinski et al. 2018) and a number of methods have been described in a collection 

of protocols (Schueler-Furman and London 2017). Based on some interaction details ob-

tained from evolutionary constraints, the sampling complexity can be restricted either by 

driving local docking around specific anchor residues or by post-filtering docking poses 

after global docking. Among available strategies, a recently developed protein-peptide 

docking protocol (Alam, Goldstein et al. 2017) reached remarkable accuracy using a combi-

nation of PIPER (Kozakov, Beglov et al. 2013) for exhaustive fragment-receptor rigid-body 

docking and Rosetta FlexPepDock (Raveh, London et al. 2010) for flexible full-atom refine-

ment of the best rigid-body poses. The method also generated top performing models in 

CAPRI 7th edition (see section 1.3.3.4.2, page 70 and Chapter 4, page 125 for more details on 

CAPRI and its targets) on challenging targets such as T134-T135 and T121 (Khramushin, 

Marcu et al. 2019). Interestingly, combining PIPER-FlexPepDock with the InterPep2 tem-

plate-based method improves prediction performance over the use of each individual 

method on a test dataset of 27 non-redundant protein-peptide complexes for which the 

unbound structure of the protein is also available (Johansson-Akhe, Mirabello et al. 2020). 

Exhaustive sampling of the peptide conformations can also be obtained using CABS-Dock 

(Kurcinski, Jamroz et al. 2015) which randomly docks a peptide with restrictions on a binding 

region and subsequently refines conformations using replica exchange Monte Carlo dynam-

ics (Kurcinski, Badaczewska-Dawid et al. 2020). Other methods such as HADDOCK (Trellet, 

Melquiond et al. 2013) or pepATTRACT (de Vries, Rey et al. 2017) use three conformations 

for the input peptide (extended, helix and polyproline). In HADDOCK, the search can be 

targeted by defining explicit spatial constraints as specific or ambiguous distance restraints, 

while in pepATTRACT restriction to a region of interest should be done after global predic-

tion. 
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1.3.3.3 Covariation-based interface structure prediction 

Coevolutionary constraints can be integrated in scoring functions for template-free protein 

docking or derived from covariation-based methods to guide molecular simulations in order 

to provide more likely interface models (Figure 1-7, label 5). 

Bacterial two-component signalling (TCS) systems involve specific interactions between pro-

teins from large families of paralogs. The two protein partners most often belong to the 

same operon and their proximity within genomes facilitates the construction of large cou-

pled MSAs associating specifically interacting protein pairs. This makes the TCS system ide-

ally suited for statistical covariation analysis and as such, TCS was the object of the first 

studies showing that DCA was predictive of residue pairs in contact across the interface 

(Weigt, White et al. 2009). Coupling these predictions with molecular dynamics simulations 

enabled the high-resolution modelling of a TCS pair interface (Schug, Weigt et al. 2009).  

The idea of sequence matching using genomic proximity and operon structures was ex-

tended from the TCS system to several dozens of bacterial complexes in two 2014 studies, 

where predicted DCA contacts were used as distance restraints in molecular docking for 

interface modelling with either PatchDock coupled with Rosetta or HADDOCK (Hopf, Scharfe 

et al. 2014, Ovchinnikov, Kamisetty et al. 2014). The EVcomplex web server provides an in-

terface for users to predict interacting residues in a complex of interest from two input pro-

tein sequences (Hopf, Scharfe et al. 2014). Alignments can be built either by using the orig-

inal genomic proximity method or by pairing best hits, that is, sequences with highest se-

quence identity to the query, in each genome. 

Recently, HADDOCK was also used to predict homodimeric complex structures using DCA 

restraints in a large-scale study of almost 2,000 protein families (Uguzzoni, John Lovis et al. 

2017). This is a special case for the use of DCA-derived restraints since the homodimeric 

interaction signal is entangled with intra-protein couplings in predictions based on homol-

ogous sequences of a single protein that homodimerises (dos Santos, Morcos et al. 2015). 



67 

 

As an alternative to docking or molecular dynamics simulations with restraints, Monte Carlo 

simulations based on a coarse-grained potential energy specifically validated on low-affin-

ity protein complexes were used to exploit DCA predictions for the molecular modelling 

of the eukaryotic Hsp70/Hsp40 and homologous bacterial DnaK/DnaJ interfaces (Malinverni, 

Jost Lopez et al. 2017). Due to the lack of operon organisation in this system, the authors 

used random paralog matching to build concatenated MSAs of Hsp40 and Hsp70 family 

proteins. This is close in spirit to recent work on paralog matching algorithms, which try to 

predict simultaneously and iteratively pairs of specifically interacting proteins and inter-pro-

tein contacts (Bitbol, Dwyer et al. 2016, Gueudre, Baldassi et al. 2016, Marmier, Weigt et al. 

2019). So far, that work focused on pairs of proteins for which homologous sequences can 

be found within operons and further generalisation to any pair of interacting proteins should 

provide interesting insights into other bacterial and eukaryotic biological processes. Exten-

sion to eukaryotic complexes should also benefit from the recent finding that inter-protein 

contacts identified by DCA-like methods in bacterial complexes are well conserved in ho-

mologous eukaryotic protein complex structures (Rodriguez-Rivas, Marsili et al. 2016). 

Recent large-scale and blind assessments showed that DCA-type predictions were most ef-

ficient for single protein structure prediction when integrated into deep learning pipelines 

(see section 1.3.1.2, page 43). This idea was generalised to inter-protein contact prediction 

in the ComplexContact web server (Zeng, Wang et al. 2018). ComplexContact first builds 

two concatenated MSAs for pairs of proteins: one using a genomic context method as dis-

cussed above and another relying on a matching method based on phylogenetic species 

tree ordering. Then, a deep learning model trained on single chain proteins predicts inter-

protein contacts from these two MSAs. Inter-protein contact prediction results suggest that 

deep learning greatly enhances DCA performance. Most recently, large-scale interface mod-

elling was performed using protein-protein docking guided by distance constraints between 

residue pairs that were predicted as coevolving by algorithms of the DCA family, with the 

goal of predicting protein interaction networks in two bacterial species (Cong, Anishchenko 

et al. 2019). In apparent contrast to the results obtained with ComplexContact, the authors 
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found that a deep learning method successfully developed for single protein contact pre-

diction (Jones and Kandathil 2018) did not improve interface model discrimination. This may 

be because in ComplexContact, only sequences are used and the deep learning layer in-

creases accuracy because it strengthens contacts compatible with the implicitly predicted 

3D structures of unbound subunits. In the protein docking study (Cong, Anishchenko et al. 

2019), the set of DCA constraints satisfied by a docking model has to be consistent with the 

explicit monomeric 3D structures of the binding partners, which may explain why deep learn-

ing did not bring additional discrimination. Further progress might be obtained by coupling 

molecular docking to deep learning contact prediction methods specifically trained on pro-

tein-protein interfaces. 

1.3.3.4 Evaluation 

Protein-protein docking approaches can be assessed using datasets with known unbound 

and complex structures or during blind tests through CAPRI (Critical Assessment of PRedic-

tion of Interactions), a challenge similar to CASP for protein folding. Decoy quality assess-

ment and general performance metrics are also summarised below. 

1.3.3.4.1 Benchmarking - Testing performance on known cases 

Prediction quality of protein interfaces can be assessed using a benchmark of protein pairs 

with known experimental bound and their corresponding unbound structures. Using un-

bound structures is essential in benchmarking in order to avoid any shape complementarity 

bias in the prediction and reproduce a scenario as close as possible to real cases. Weng’s 

Benchmark is widely used in the docking community (Hwang, Vreven et al. 2010). The latest 

version 5 (Vreven, Moal et al. 2015) contains 230 complexes, 190 of which are non-antigen-

antibody complexes. Complexes are classified into three difficulty categories depending on 

how much the structures change between bound and unbound states – the RMSD between 

the native and its superimposed unbound proteins being the indicator of this change. 

DOCKGROUND Docking X-ray Unbound Benchmark 4 (Kundrotas, Anishchenko et al. 

2018) is another benchmark containing 396 unbound/bound crystal structures of which 39 
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are not shared with Weng Benchmark 5 (TM-score < 0.6 and sequence identity < 23% with 

all of Weng’s complexes).  

Unfortunately, one of the biggest limitations of experimental benchmarks is that their size is 

highly dependent on the availability of experimental bound and their corresponding un-

bound structures in the PDB. A way to overcome this limitation is to enrich the benchmark 

with complexes for which at least one of the unbound structures is unavailable by modelling 

the unbound state. Both DOCKGROUND and PPI4DOCK (Yu and Guerois 2016) followed that 

logic.  

DOCKGROUND currently contains subsets of complexes for which at least one unbound 

structure was simulated using Langevin Dynamics simulations in CHARMM (1918 complexes) 

or modelled using I-TASSER (165 complexes, see section 1.3.1.1, page 42) or Phyre2 

(963+171 complexes). In either of these subsets, the “unbound quality” of the generated 

models was assessed according to their RMSD with the bound complex (in theory, the more 

different to the native complex, the more reliably unbound). 100 well-selected GRAMM-

generated decoys are available on their website for the 165 I-TASSER-modelled complexes.  

PPI4DOCK (Yu and Guerois 2016) is a large benchmark developed in our team made of 1417 

binary docking targets where unbound structures were modelled by homology and of which 

the “unbound quality” is guaranteed by the use of unbound-assured templates. PPI4DOCK 

was constructed starting from an initial batch of 3157 non-redundant, high-resolution het-

erodimers from InterEvol (Faure, Andreani et al. 2012). Homologs were searched for each 

partner individually using the HH-suite package (Steinegger, Meier et al. 2019) and filtered 

out to only have good quality homologs that were not co-crystallised with any homolog of 

the opposite partner (i.e. unbound templates). Unbound models were then generated with 

these identified templates and the homology modelling RosettaCM protocol (Song, DiMaio 

et al. 2013). PPI4DOCK has been used to benchmark two different sampling programmes 

and four different scoring functions with comparable performances to when using the Weng 

Benchmark 4 (see Chapter 2). Thus, in the case of PPI4DOCK, using modelled unbound struc-
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tures only seems to mildly affect the docking with a decreasing impact for increasing se-

quence identity with the chosen template. PPI4DOCK is split into five difficulty categories 

going from “very easy” to “super hard” depending on the divergence between bound and 

unbound states and how many clashes are generated when superimposing the unbound 

models onto the native complex. The whole PPI4DOCK benchmark can be downloaded from 

http://biodev.cea.fr/interevol/ppi4dock/ and contains pre-generated co-MSAs for each case. 

1.3.3.4.2 The CAPRI initiative - Testing performance in real-case scenarios 

CAPRI is a community-wide experiment for the comparative evaluation of structural protein 

assembly prediction methods (Janin, Henrick et al. 2003) and was initially created as a satel-

lite of CASP (section 1.3.1.3, page 45). Regular rounds of blind prediction and scoring pro-

vide challenging, unpublished protein complex targets for all method developers to test and 

improve their docking programs and pipelines. The CAPRI targets are therefore complemen-

tary to more traditional docking benchmarks. In most cases, only the sequences of the in-

teracting macromolecules are provided to predictors, who must submit an ordered list of 

interface models within a few weeks. Predicted models are then assessed by comparing them 

to the experimental structure. A CAPRI evaluation meeting, held every three years, gives a 

fantastic opportunity for state-of-the-art assessment and discussion of the best methods 

and the remaining challenges. The most recent CAPRI meeting (7th edition) featured pre-

diction rounds held between 2016 and 2019, in which more than 50 research groups partic-

ipated to predict challenging and diverse targets involving protein-protein, protein-peptide 

and protein-oligosaccharide complexes (see Chapter 4). Analysis of these latest results by 

the CAPRI assessors showed overall progress due to slightly improved methods and better 

integration of template‐based interface modelling techniques with docking, rescoring and 

refinement (Lensink, Nadzirin et al. 2019). 

1.3.3.4.3 Assessing decoy quality - CAPRI and DockQ criteria 

Decoy quality can be assessed using different criteria. Previous studies, such as (Chen and 

Weng 2003), used to base themselves on the interface RMSD (I-RMSD) between C atoms 

of the decoy and the experimental native structure – a decoy being considered as a near-

http://biodev.cea.fr/interevol/ppi4dock/
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native (i.e. correct) if its value was under a certain threshold (e.g. 2.5 Å). However, this gives 

an incomplete picture of decoy quality. The nowadays commonly accepted evaluation is 

based on the rules established by the CAPRI community (Mendez, Leplae et al. 2003) in which 

decoys are classified in three near-native categories: High, Medium or Acceptable in de-

creasing order of quality according to their closeness to the native complex, and are Incor-

rect otherwise. This quality is defined using three different measurements, namely the frac-

tion of native contacts (Fnat), the ligand backbone RMSD (L-RMSD, backbone being C, N, 

O and C atoms) and the backbone I-RMSD with the native complex. The thresholds for 

these measurements are illustrated in Figure 1-13. Contacts are defined by a distance of 5 Å 

or less between heavy atoms from two different residues on opposite chains. The decoy 

needs to satisfy the Fnat threshold and at least one of the two RMSD metric thresholds of 

the same category in order to be labelled as such.  

 

  

Figure 1-13: CAPRI thresholds. Left: Illustration of all three CAPRI thresholds defining each of the three decoy 

quality categories Acceptable, Medium and High. The Fnat metric and at least one of the other two metrics has 

to be satisfied in order to give a decoy the corresponding label e.g. a decoy with Fnat > 0.5 and L-RMSD < 1 

Å and/or I-RMSD < 1 Å would be classified as High. Right: Illustration of all three CAPRI categories on a protein-

peptide complex (reference structure in grey, decoy of various quality in colour). 

In today’s machine learning era, it is becoming increasingly important to have a continuous 

evaluation metric rather than a discrete one for model fitting and to avoid threshold effects. 

More recently, a continuous metric was published, DockQ (Basu and Wallner 2016), that 

closely reproduces the CAPRI criteria on a test set of 15,328 CAPRI-submitted decoys (Figure 
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1-14). DockQ is effectively the average value between the three previously mentioned met-

rics, Fnat, L-RMSD and I-RMSD, in which both RMSDs are first subjected to inverse square 

scaling in order to bring them, similarly to the Fnat, in the [0, 1] range (the scaled L-RMSD 

and I-RMSD being equal to 0.5 for 8.5 Å and 1.5 Å respectively). The inverse square method 

also has the benefit of giving less weight to high RMSD values since above a certain thresh-

old, decoys are wrong, no matter how high the RMSD goes. 

 

Figure 1-14: Scatter plot of the novel DockQ decoy evaluation criteria against IS-Score. This figure was 

adapted from (Basu and Wallner 2016) and illustrates how well the DockQ score reflects the commonly-ac-

cepted CAPRI criteria for decoy quality evaluation on a CAPRI-set of 15,328 decoys. Models are coloured ac-

cording to CAPRI classification as Incorrect (yellow), Acceptable (blue), Medium (green) or High (red). DockQ 

thresholds that best reproduce the CAPRI categories are 0.23, 0.49 and 0.8 i.e. decoys with a score bellow 0.23, 

between 0.23 and 0.49, between 0.49 and 0.8 or above 0.8, could relatively safely (±0.02) be classified as Incor-

rect, Acceptable, Medium or High, respectively. 

The interest in DockQ can be expected to increase in the following years and its use was 

discussed in the most recent CAPRI meeting. However, performances are mainly measured 

using the original CAPRI criteria throughout this work in order to better compare our meth-

ods with others in the literature.  

1.3.3.4.4 Docking performance measurements 

The general performance of various docking and/or scoring methods on a set of cases can 

be evaluated using several different metrics. The top N success rate (SR) is the most 
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common performance measurement and consists of the fraction of cases in a benchmark 

that have at least one near-native decoy in the top N ranked decoys. N is usually equal to 

10, but starting with recent CAPRI challenge round 47, only the top 5 submissions are 

evaluated. The top N hit rate (HR), also called hit count in (Chen and Weng 2003), 

corresponds to the overall proportion of hits within the top N ranked decoys and gives a 

better view of how enriched the top N ranking decoys are in near-natives.  

As DockQ only recently appeared in the field, the community is still establishing the best 

way to integrate this continuous score into a general evaluation metric. Bonvin’s team 

recently used the discounted cumulative gain (DCG) (Geng, Jung et al. 2019). The DCG for 

each case can roughly be assimilated to a weighted average and is calculated as follows: 

𝐷𝐶𝐺 =  ∑
2(𝐷𝑜𝑐𝑘𝑄𝑟𝑎𝑛𝑘) − 1

𝑟𝑎𝑛𝑘

𝑁

𝑟𝑎𝑛𝑘=1
 

where rank is the rank of the decoy, DockQrank
 is the DockQ score of the decoy with that rank 

and N is the top N decoys that are taken into account for this measurement. The 1/rank 

factor gives more importance to the quality of the top scoring decoys. In order to better 

compare cases with different numbers of decoys, the DCG is normalised by an ideal DCG 

(iDCG), which is calculated by reordering all decoys by decreasing DockQ score. The final 

normalised value (nDCG) for each case can be extrapolated into a single value by calculating 

the average nDCG over all cases in the benchmark. 
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1.4 OVERVIEW OF THIS MANUSCRIPT 

Proteins are of fundamental importance in cells and knowledge of their 3D structure can 

help study their function in the cellular context with possible applications in therapeutic field 

(e.g. inhibitor of PPIs, drug design etc.). Proteins evolve under the constraint of maintaining 

functional interactions. This constraint is reflected in the evolutionary history of protein part-

ners shown in coupled MSAs. As a consequence, these alignments provide valuable infor-

mation for the purpose of interface computational prediction. The use of this information in 

docking is the central theme of this PhD project. 

Apart from the introduction and the conclusions and perspectives chapters (Chapter 1 and 

Chapter 5), this manuscript is split into three other chapters. Chapter 2 and Chapter 4 corre-

spond to already published articles and Chapter 3 to a paper in the process of being sub-

mitted.  

In Chapter 2, I present our team’s molecular docking server, InterEvDock2. I participated in 

major developments during my first year of PhD to make it more automated and user-

friendly. InterEvDock2 predicts 10 most probable complex models from a pair of input se-

quences or oligomeric or monomeric structures using the FRODOCK sampling programme 

and a unique consensus scoring approach between three highly complementary scoring 

functions: the physics-based FRODOCK score, atomic-statistical potentials from SOAP-PP 

and the evolutionary-guided InterEvScore. Thanks to a completely automated modelling 

pipeline using the RosettaCM protocol, users are able to dock their proteins, even if the 

monomeric structures are unknown. Using strategic breakpoints throughout the pipeline, 

the user also has a say in the template’s choice if wanted. Of particular interest to biologists, 

constraints can be added in order to filter out any irrelevant docking poses. Finally, I vali-

dated InterEvDock2’s performance on a large set of 812 cases from our PPI4DOCK dataset. 

In order to further develop our discrimination capacity between wrong and correct predic-

tions, I decided to pursue the integration of evolutionary information at a much finer level 

of detail into scoring in Chapter 3. In the evolutionary-based InterEvScore, evolutionary in-

formation is given at the residue level in coMSAs and thus can only be easily mixed with a 
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residue-scale potential. The high complementarity between InterEvScore and the atomic sta-

tistical potentials from SOAP-PP encouraged us to derive evolutionary information at the 

atomic level using homology modelling. Coupled with a more efficient scoring implementa-

tion, average scores over a query protein pair and its homologs can be easily calculated for 

each decoy. This methodology showed promising results on several scores and we are cur-

rently preparing its integration in our InterEvDock2 server. 

Finally, I present in Chapter 4, our key strategies and latest performances in the famous 

CAPRI challenge (Critical Assessment of PRediction of Interactions). CAPRI is an international 

blind-test challenge, where groups are invited to test their complex structural prediction 

pipelines on regularly dispatched targets over two years. The structures of these targets are 

only publically available once the challenge is over, thereby providing real-life test scenarios 

to defy and improve our docking methods. Throughout my PhD project, I have had the 

chance of participating in 10 of the challenges in CAPRI 7th edition as well as three prediction 

rounds from CAPRI 8th edition that is currently underway. I was also able to attend the CAPRI 

7th evaluation meeting in April 2019, gathering all participating groups. As official results for 

the recent prediction rounds are not yet released, I will only focus on the targets in CAPRI 

7th in this final chapter. 

  





 

 

CHAPTER 2  

InterEvDock2 





 

 

Acquiring the 3D structure of protein interfaces is of high use for structural biologists to 

study their protein of interest and understand its functions in the cellular context. As exper-

imental techniques are sometimes too time consuming, expensive or impossible, there is a 

high demand for structural prediction tools of protein complexes. Computational biologists 

are therefore encouraged to provide easy access to their general prediction pipelines and to 

make them as user-friendly and automated as possible to suite the majority of the scientific 

community. In light of this, our team developed the molecular docking server, InterEvDock. 

I participated in the implementation of major developments into the server (now InterEv-

Dock2) during my first year of PhD and will present them in the following chapter. Three 

main features were added including the possibility of specifying constraints and the auto-

mated monomer homology pipeline in which I took part. I also took over the majority of the 

benchmarking. This chapter is based on our published paper (Quignot, Rey et al. 2018). 
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As introduced above, computational modelling of protein assemblies provides crucial in-

sights for the functional characterisation of macromolecular interactions occurring in the 

crowded cellular environment. Predictions of protein-protein interfaces can be used to de-

sign experiments to investigate the role of important interactions and possibly interfere with 

them, typically using mutagenesis. Models of macromolecular complexes are also useful to 

complement integrative structural biology (Ward, Sali et al. 2013) and to deepen our under-

standing of disease-associated mutations (Gress, Ramensky et al. 2017) and protein interac-

tion networks (Vakser 2014). 

A number of servers have been developed for protein-protein docking, which can be sepa-

rated into template-based modelling servers, which aim to identify suitable structural tem-

plates for the protein complex, and template-free docking servers. Recent resources to find 

templates for interface modelling starting from the sequences of two protein partners in-

clude KBDOCK (Ghoorah, Devignes et al. 2016), focused on domain-domain interactions, 

and PPI3D (Dapkunas, Timinskas et al. 2017). Recently released servers taking protein se-

quences as input for homology-based interface modelling include SnapDock (Estrin and 

Wolfson 2017), HOMCOS (Kawabata 2016) and SWISS-MODEL Quaternary Structure Predic-

tion (Bertoni, Kiefer et al. 2017). Many template-free docking servers implement a rigid-body 

docking approach, sometimes followed by rescoring: PatchDock (Schneidman-Duhovny, 

Inbar et al. 2005), FireDock (Mashiach, Schneidman-Duhovny et al. 2008), HexServer 

(Macindoe, Mavridis et al. 2010), ZDOCK (Pierce, Wiehe et al. 2014), FRODOCK 2.0 (Ramírez-

Aportela, López-Blanco et al. 2016), pyDockWEB (Jimenez-Garcia, Pons et al. 2013), ClusPro 

(Kozakov, Hall et al. 2017), GRAMM-X (Tovchigrechko and Vakser 2006), InterEvDock (Yu, 

Vavrusa et al. 2016). A hybrid approach combining template-based and template-free dock-

ing was recently proposed in the HDOCK server (Yan, Zhang et al. 2017). Some free docking 

servers include specific features such as symmetric docking (SymmDock (Schneidman-

Duhovny, Inbar et al. 2005), ZDOCK); local docking around an initial guess (RosettaDock 

(Lyskov and Gray 2008), recently moved to the ROSIE server (Moretti, Lyskov et al. 2018)); 

docking with more than two proteins (ClusPro, GRAMM-X); and docking including degrees 
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of flexibility (SwarmDock (Torchala, Moal et al. 2013), ATTRACT (de Vries, Schindler et al. 

2015), HADDOCK (de Vries, van Dijk et al. 2010)). 

Attempts to address the limitations of computational docking have led to placing increasing 

focus on data-driven docking (Rodrigues and Bonvin 2014) and many servers now allow the 

user to specify interface residues and/or distance restraints, including ZDOCK, FRODOCK 2.0 

(for refinement), pyDockWEB, ClusPro, GRAMM-X, SwarmDock, HADDOCK and ATTRACT. 

Some servers such as ClusPro and pyDockSAXS (Jimenez-Garcia, Bernado et al. 2020) can 

specifically use experimental SAXS data.  

One of the main features differentiating existing docking servers is the nature of the scoring 

function used to discriminate correct from incorrect docking models. Most scoring strategies 

use either physics-based or statistical potentials. Understanding how binding partners co-

evolved can provide essential clues to improve the structural prediction of protein interfaces. 

Several servers enable the prediction of inter-molecular contacts such as EVcomplex (Hopf, 

Scharfe et al. 2014), GREMLIN (Ovchinnikov, Kamisetty et al. 2014) and I-COMS (Iserte, 

Simonetti et al. 2015); however, such methods still have limited applicability due to the dif-

ficulty in building large enough joint multiple sequence alignments (MSAs) for the two pro-

tein partners. We developed the InterEvScore scoring function incorporating co-evolutionary 

information into the docking process, which improves predictions for as few as 10 sequences 

in the joint MSAs (Andreani, Faure et al. 2013). We integrated this scoring function into the 

InterEvDock pipeline (Yu, Vavrusa et al. 2016). InterEvDock is based on rigid-body sampling 

by FRODOCK (Garzon, Lopez-Blanco et al. 2009) followed by re-scoring using the SOAP-PP 

atomic statistical potential (Dong, Fan et al. 2013) and InterEvScore (Andreani, Faure et al. 

2013) and consensus model selection. To date, the InterEvDock web server is the only free 

docking server allowing to directly predict the structure of protein-protein interactions using 

co-evolutionary information. We successfully used the InterEvDock strategy to guide our 

predictions in recent Critical Assessment of Predicted Interactions (CAPRI) rounds: for CAPRI 

rounds 28–35, our group ranked first by making correct predictions for 10 out of 18 targets 

(Yu, Andreani et al. 2017).  
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Very often, the individual structures of the exact proteins involved in a complex of biological 

interest are not known. On the other hand, structural models can be obtained for a large 

fraction of proteins in interaction networks thanks to homology modelling (Mosca, Céol et 

al. 2013), making them amenable to protein-protein docking. To date, most free docking 

servers, except the HDOCK server, allow users to provide only input structures but no input 

sequences for the protein partners. 

Based on the user-oriented considerations mentioned above, here we introduce the InterEv-

Dock2 server which represents a major evolution over the original InterEvDock. Protein se-

quences can now be provided as input, and not only 3D structures. To handle sequence 

inputs, we have added a module that performs comparative modelling prior to docking 

based on an automatic template search protocol. In case the user has biological input such 

as a position that is known to be involved in the interface between the two protein partners 

or a pair of residues known to be in contact, restraints with a tunable distance threshold can 

be specified for use in the docking procedure. This is crucial to ensure that all available bio-

logically relevant information is used for InterEvDock2 predictions. In addition, InterEvDock2 

implements the possibility to submit structures of oligomers as input to the pairwise free 

docking. Such an option is generally complicated in co-evolution analyses since the joint 

MSAs have to be generated for every chain of an oligomer. This process is now fully auto-

mated in InterEvDock2, allowing users to submit inputs such as homodimers or more com-

plex structures as that of the nucleosome made of ten subunits. InterEvDock2 also benefits 

from improved accuracy by integrating the most recent FRODOCK 2.1 algorithm for rigid-

body docking and scoring (Ramírez-Aportela, López-Blanco et al. 2016) and implementing 

an improved consensus selection and from a speed-up in the generation of joint MSAs for 

the two protein partners. The InterEvDock2 pipeline was benchmarked on 812 complexes 

from the PPI4DOCK database (Yu, Vavrusa et al. 2016) designed to ensure unbiased evalua-

tion of the performance of free docking from unbound homology models. 29% of those 812 

cases have an acceptable or better solution among the top 10 consensus models returned 

by InterEvDock2. As InterEvDock, InterEvDock2 also outputs a list of the 10 residues most 
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likely involved in the interface and at least one residue was correctly predicted in 91% of the 

812 benchmark cases. 
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2.1 THE INTEREVDOCK2 SERVER 

2.1.1 Web interface 

Users are expected to provide for each protein partner either an input sequence or an input 

structure (Figure 2-1). Input structures can be uploaded or retrieved automatically from the 

Protein Data Bank (PDB) by typing in the PDB code and optionally one or more chain iden-

tifier(s). More options are available through the “advanced options” menu (see Figure 2-2). 

Optional breakpoints can be selected, either after template search to choose among up to 

20 suggested templates prior to modelling (Figure 2-2A), or after modelling for interactive 

visualisation of the models prior to docking (Figure 2-2B). When input sequences are pro-

vided, users can specify which template to use for homology modelling; as for structure 

inputs, the template can be uploaded or directly retrieved from the PDB. If providing a tem-

plate, users can also optionally enforce the query-template alignment for modelling. It is 

also possible to provide only a query-template alignment obtained from a previous server 

run in which a template search was performed (without modifying the identifiers), in which 

case the input sequence and the template PDB will be automatically retrieved based on the 

alignment. Several options are offered to tune the modelling: by default only loops (inser-

tions) shorter than 14 residues are rebuilt during the modelling and N-terminal and C-ter-

minal extensions are not modelled, but maximal lengths for modelling of loops, N-terminal 

and C-terminal extensions can be defined by the user (Figure 2-2E). Additionally, for input 

structures or sequences, users may define constraints that will be used to filter docking so-

lutions; these constraints can be a single interface residue or a pair of residues in contact. 

Users can optionally specify the distance that will be used for each constraint (Figure 2-2C). 

An InterEvDock2 session identifier can also be provided in order to re-use docking results 

from a previous run and test different constraints (Figure 2-2D). As in InterEvDock, users may 

input the joint MSAs used for co-evolution-based scoring; otherwise the joint MSAs will be 

built by the server through an automated procedure. In case an oligomeric structure is sub-

mitted as one of the two docking partners, the joint MSAs will also be automatically calcu-

lated and processed by the server for every chain of the oligomer. A demonstration case 
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using sequences as input to the docking (and optionally a constraint) is available from the 

InterEvDock2 submission page.  

 

Figure 2-1: InterEvDock2 pipeline. Eight steps can be performed in InterEvDock2 depending on the user 

input, out of which three mandatory steps (iv), (vii) and (viii) are always performed as they were in the original 

InterEvDock pipeline (Yu, Vavrusa et al. 2016), except that the FRODOCK algorithm was updated to version 2.1 

(Ramírez-Aportela, López-Blanco et al. 2016) and the consensus calculation was slightly modified to save time 

and improve results. New features are available allowing the user to provide only an input sequence for one 

or both partners: (i) if the user does not provide a template, search for a suitable template using HHsearch 

(Soding 2005, Remmert, Biegert et al. 2011); (ii) if the user provides a template but no query-template align-

ment, alignment of query sequence with template sequence using MAFFT (Katoh and Standley 2013); (iii) once 

a template and a query-template alignment are available for each partner with no user-provided structure, 

comparative modelling using a RosettaScripts (Fleishman, Leaver-Fay et al. 2011) protocol based on RosettaCM 

(Song, DiMaio et al. 2013) to build a 3D model for (at least part of) the input sequence. Once a 3D structure or 

a structural model is available for each partner: (iv) exhaustive sampling using the rigid-body method FRO-

DOCK 2.1; (v) (new feature) if the user provides information on residues (or pairs of residues) involved in the 

interface, applying constraints to filter sampled solutions; (vi) if the user does not provide a joint MSA for the 

two protein partners, co-MSA generation; (vii) clustering and scoring by three scores, FRODOCK 2.1, SOAP-PP 

(Dong, Fan et al. 2013) and InterEvScore (Andreani, Faure et al. 2013); (viii) clustering and selection of the 

InterEvDock2 consensus top 10 decoys. Green text indicates user input. Red text indicates possible breakpoints 

and hot restart. Italics indicate the optional steps in the pipeline, depending on the input provided by the user. 

Details for each step are provided in the Supplementary Methods (Appendix B. page 170).  
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Figure 2-2: Explanation of InterEvDock2 advanced options. (A) Interruption of runs (breakpoint) for users 

to select templates for modelling instead of automatic selection. (B) Interruption of runs (breakpoint) for users 

to inspect their structural input prior to docking. (C) Imposing distance constraints to include biological infor-

mation. (D) Re-running scoring only with different constraints without having to re-run the docking part. (E) 

Controlling the size of loops and extensions to model. 

 

The web page resulting from an InterEvDock2 submission contains information about the 

best-ranked decoys, which can be explored interactively thanks to the PV WebGL applet (M. 

Biasini, https://dx.doi.org/10.5281/zenodo.12620). Detailed results are available in a down-

loadable archive, also containing a script for easy loading and offline visualisation of the best 

docking solutions with PyMOL (The PyMOL Molecular Graphics System, Schrödinger, LLC). 

The InterEvDock2 server benefits from parallelised implementation in the dedicated infra-

structure built at RPBS and from data privacy ensured in the Mobyle framework. 

https://dx.doi.org/10.5281/zenodo.12620
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2.1.2 Molecular docking procedure 

Figure 2-1 presents the InterEvDock2 pipeline which consists of eight steps (for more details 

about each step, see section A. ). The three core docking steps – sampling with FRODOCK2.1 

(iv), clustering with FRODOCK2.1 and scoring with InterEvScore and SOAP-PP (vii) and con-

sensus calculation (viii) – are always performed. Step (vi) consists in automatically generating 

the joint MSAs used by InterEvScore to account for co-evolution in the scoring process, un-

less the joint MSAs are provided by the user. Steps (iv), (vi) and (vii) are unchanged compared 

to the original InterEvDock pipeline (Yu, Vavrusa et al. 2016), except that the FRODOCK al-

gorithm was updated to version 2.1 (Ramírez-Aportela, López-Blanco et al. 2016). In the final 

step (viii) a consensus list of 10 most likely models is calculated. Since decoys well ranked by 

at least two different scoring methods (out of the three methods used in InterEvDock2) have 

higher chances of being correct, the 3*top 10 models for each score are re-ranked according 

to the number of similar decoys (defined as ligand RMSD ≤ 10 Å) within the top 50 models 

of the other two scores (down to a minimum of two similar decoys). In case of a tie, priority 

is given to InterEvScore top 10 models, then SOAP-PP, then FRODOCK. If necessary, the 

consensus list is then filled up to 10 models by selecting the best models from each score (4 

from InterEvScore, 3 from SOAP-PP and 3 from FRODOCK). When building the consensus, 

models that are structurally redundant (i.e. ligand RMSD ≤ 10 Å) with previously selected 

models are excluded, so that the final list contains 10 structurally non-redundant models. 

2.1.3 Docking from input sequences 

If the user provides only an input sequence for one or both partners, steps (i) to (iii) can be 

applied. (i) If the user does not provide a template, the profile-profile comparison tool 

HHsearch is used to search for templates (Soding 2005, Remmert, Biegert et al. 2011); only 

templates with HHsearch probability higher than 95% are selected. The web server returns a 

list of up to 20 templates selected according to HHsearch probability, query-template se-

quence identity and structural resolution (see details in section A. ). By setting the breakpoint 

after template search, the user can choose to start modelling from any of these templates 

by copy-pasting the query-template alignment to the server submission form; otherwise the 
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best template found by the automatic procedure is used. If no suitable template is identified, 

no modelling is performed. (ii) If the user provides a template but no query-template align-

ment, the query sequence is aligned with the template sequence using MAFFT (Katoh and 

Standley 2013). (iii) Once a template and a query-template alignment are available for each 

protein with no user-provided structure, comparative modelling using a RosettaScripts 

(Fleishman, Leaver-Fay et al. 2011) protocol based on RosettaCM (Song, DiMaio et al. 2013) 

is performed to build a 3D model for (at least part of) the input sequence. Due to runtime 

considerations, compared to the procedure used to build the PPI4DOCK database (Yu, 

Vavrusa et al. 2016), the comparative modelling protocol implemented in the InterEvDock2 

web server involves fewer optimisation cycles (see protocol details in the Supplementary 

Methods, Appendix B. page 170). This protocol is quite robust for templates with relatively 

high homology but it can lead to loss of precision for more remote templates (typically when 

both templates have less than 50% sequence identity with the query proteins). By default, to 

avoid spending time reconstructing regions that are not present in the template, only loops 

(insertions) shorter than 14 residues are rebuilt during the modelling and N-terminal and C-

terminal extensions are not modelled, but maximal lengths for modelling of loops, N-termi-

nal and C-terminal extensions can be tuned by the user. 

2.1.4 User-defined constraints 

Step (v) applies if the user provides information on residues (or pairs of residues) involved 

in the interface: restraints are applied to filter sampled solutions. The distance used to en-

force restraints can be modulated which offers the possibility to integrate data from various 

sources. The default distance was set to 8 Å for constraints on single positions and 11 Å for 

pair constraints (see section d.  for a detailed justification of these thresholds). When con-

straints are provided by the user, the output returned by the server will provide information 

about whether or not each constraint was used during docking (e.g. constraints on residues 

not exposed on the surface of the protein are excluded). 



91 

 

2.1.5 Runtime 

The core docking steps (iv), (vii) and (viii) take altogether around 30 min for proteins of size 

200 residues and 1 hour for proteins of size 400-500 residues. Template search and query-

template alignment steps (i) and (ii) take only a few minutes, whatever the size of the pro-

teins. The comparative modelling step (iii) was optimised for speed as reported above and 

typically takes 5 to 20 minutes depending on the size of the proteins and the query-template 

sequence identities. Compared to InterEvDock, InterEvDock2 benefits from a large speed-

up in step (vi) for the generation of joint MSAs for two protein partners which was a key 

bottleneck. This step now typically lasts ~3 min for proteins of 200 residues and ~15 min for 

proteins of 400-500 residues. 
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2.2 RESULTS 

2.2.1 Benchmarking on PPI4DOCK 

To assess the predictive power of the InterEvDock2 server on 3D models, we have set up the 

most extensive benchmark to date, using unbound models as input of the docking simula-

tions. The PPI4DOCK database (Yu and Guerois 2016) was designed to ensure unbiased eval-

uation of free docking performance and contains 1417 non-redundant heterodimeric dock-

ing targets based on unbound homology models. The InterEvDock2 pipeline was tested on 

the subset of 812 protein complexes from PPI4DOCK for which pairs of joint MSAs with more 

than 10 sequences could be obtained (excluding any antibody complex) and FRODOCK 2.1 

(Ramírez-Aportela, López-Blanco et al. 2016) was able to generate at least one acceptable 

or better decoy among the top 10,000 decoys. The list of the 812 complexes used for bench-

marking and detailed results are provided in https://bioserv.rpbs.univ-paris-diderot.fr/ser-

vices/InterEvDock2/table.html. This benchmark dataset is roughly an order of magnitude 

larger than other typical docking benchmarks, among which the widely used Weng bench-

mark (Hwang, Vreven et al. 2010). For each of the 812 targets, PPI4DOCK provides unbound 

homology models of the two protein partners as well as the joint MSAs used for docking 

and scoring in the InterEvDock2 pipeline. As on the web server, the predictions for each case 

consist in the top 10 consensus interface models and the top 10 interface residues, which 

are used to assess the InterEvDock2 performance. A solution is defined as acceptable or 

better according to the criteria defined by the CAPRI consortium (Mendez, Leplae et al. 

2003).  

The prediction performance of InterEvDock2 is reported in Table 2-1. Among the 812 targets, 

29% (239) have at least one model of acceptable or better quality in the top 10 consensus 

obtained from the InterEvDock2 pipeline, which represents a significant improvement over 

the top 10 success rates of the three individual scores used to build the consensus (see 

Figure 2-3). The 812 complexes belong to four difficulty levels (PPI4DOCK categories) based 

on the quality of the superimposed interface model (two unbound models superimposed 

https://bioserv.rpbs.univ-paris-diderot.fr/services/InterEvDock2/table.html
https://bioserv.rpbs.univ-paris-diderot.fr/services/InterEvDock2/table.html
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on the bound structure): “very easy” (174 complexes), “easy” (498 complexes), “hard” (118 

complexes) and “very hard” (22 complexes). Other “very hard” and all “super hard” PPI4DOCK 

targets do not satisfy the condition that FRODOCK 2.1 was able to generate at least one 

acceptable or better decoy among the top 50,000 decoys, since they may require flexibility 

in the docking process (Yu and Guerois 2016), and are therefore not included in the present 

benchmark. As expected, the InterEvDock2 top 10 consensus success rate decreases with 

increasing difficulty of the test cases, from 43% for the “very easy” PPI4DOCK category to 

30% for the “easy” category, 11% for the “hard” category and 5% for the “very hard” category. 

Analysis of InterEvDock2 performance depending on the minimum sequence identity be-

tween the target and template shows a moderate drop in success rate for models built with 

remote templates (< 30% sequence identity) and an increased success rate for models built 

with very close templates (>=95% sequence identity), compared to the overall InterEvDock2 

success rate (see Supplementary Materials, Appendix 177 Table B-2). 

Table 2-1: InterEvDock2 performance on PPI4DOCK. Prediction performance of the InterEvDock2 server on 

812 complexes of the PPI4DOCK benchmark, split into four levels of difficulty: very easy, easy, hard and very 

hard. The benchmark is made of the 812 targets of the PPI4DOCK benchmark (1417 cases) (Yu and Guerois 

2016) for which pairs of co-evolved MSAs with more than 10 sequences could be obtained and FRODOCK 2.1 

(Ramírez-Aportela, López-Blanco et al. 2016) was able to generate at least one acceptable or better decoy 

(Mendez, Leplae et al. 2003) among the top 50,000 decoys. In the upper part of the table, top 10 success rates 

are reported as the number of cases (and percentage between brackets) for which at least one model out of 

10 is an acceptable or better solution. Assessed methods are InterEvScore (Andreani, Faure et al. 2013), SOAP-

PP (Dong, Fan et al. 2013), FRODOCK 2.1 (Ramírez-Aportela, López-Blanco et al. 2016), InterEvDock2 consensus 

(this work and (Yu, Vavrusa et al. 2016)) and Zdock3.0.2 (Pierce, Hourai et al. 2011). In the lower part of the 

table, the number (and percentage) of cases for which at least one residue out of the top 10 or top 2 residues 

was correctly predicted as present in the complex interface is assessed for InterEvDock2 and Zdock3.0.2 (see 
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calculation details in Supplementary Materials, Appendix B. page 174). The best results for each category are 

highlighted in bold. 

  All Very easy Easy Hard Very hard 

Number of cases 812 174 498 118 22 

Top 10 success 

rate 

InterEvScore 171 (21%) 44 (25%) 115 (23%) 11 (9%) 1 (5%) 

SOAP_PP 194 (24%) 55 (32%) 126 (25%) 12 (10%) 1 (5%) 

FRODOCK 2.1 164 (20%) 55 (32%) 102 (20%) 5 (4%) 2 (9%) 

InterEvDock2 

consensus 

239 (29%) 75 (43%) 150 (30%) 13 (11%) 1 (5%) 

Zdock 3.0.2 126 (15%) 33 (19%) 83 (17%) 9 (8%) 1 (5%) 

Residue 

interface pre-

diction 

(≥1 correct in 

top 5 receptor 

OR top 5 lig-

and) 

InterEvDock2 735 (91%) 160 (92%) 450 (90%) 103 (87%) 22 (100%) 

Zdock3.0.2 680 (84%) 145 (83%) 427 (86%) 91 (77%) 17 (79%) 

Residue 

interface pre-

diction (≥1 cor-

rect in top 5 re-

ceptor AND 

top 5 ligand) 

InterEvDock2 414 (51%) 103 (59%) 263 (53%) 39 (33%) 9 (41%) 

Zdock3.0.2 345 (43%) 76 (44%) 228 (46%) 33 (28%) 8 (34%) 

Residue 

interface pre-

diction 

(≥1 correct in 

top 1 receptor 

OR top 1 lig-

and) 

InterEvDock2 613 (75%) 140 (80%) 385 (77%) 71 (60%) 17 (77%) 

Zdock3.0.2 532 (66%) 111 (64%) 344 (69%) 64 (54%) 13 (58%) 

Residue 

interface pre-

diction (≥1 cor-

rect in top 1 re-

ceptor AND 

top 1 ligand) 

InterEvDock2 278 (34%) 75 (43%) 184 (37%) 17 (14%) 2 (9%) 

Zdock3.0.2 195 (24%) 44 (25%) 133 (27%) 15 (12%) 3 (14%) 
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Figure 2-3: Venn diagram of prediction performances for the three scoring components in InterEv-

Dock2. Out of the 812 cases in the PPI4DOCK set used to benchmark InterEvDock2, 171, 194 and 164 cases 

have at least one decoy of acceptable or better quality in the top 10 decoys scored by InterEvScore, SOAP-PP 

and FRODOCK2.1 respectively. However, as illustrated in the Venn diagram below, the three scores are quite 

complementary, as 57, 49 and 59 cases were detected by InterEvScore, SOAP-PP or FRODOCK2.1 alone respec-

tively, thereby highlighting the interest of using a consensus between the three scores. 

 

Direct comparisons with previous benchmarks are difficult because the benchmark dataset 

used here is much larger than others datasets typically used to assess docking and scoring 

performance. Comparison with previously reported success rates on the Weng benchmark 

(Hwang, Vreven et al. 2010, Yu, Vavrusa et al. 2016) are details in the Supplementary mate-

rials (see Appendix B. page 177 and Table B-3 and Table B-4). An interesting feature of the 

Weng benchmark compared to PPI4DOCK is that it contains targets where one partner is 

multimeric. Out of the 85 cases from the Weng benchmark that can be used for InterEvDock2 

benchmarking, 16 contain a multimeric partner. The InterEvDock2 top 10 consensus contains 

an acceptable or better solution for 7 out of these 16 cases (44%). This success rate is com-

parable to the overall success rate of InterEvDock2 on the much larger PPI4DOCK benchmark 

(29%) and on the 85 cases of the Weng benchmark (32%). Additionally, docking using mul-

timeric partners has the advantage that potentially “sticky” interface regions involved in mul-

timeric interactions of one partner are buried in the multimeric interface and therefore 

masked for the docking process. 
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In Table 2-1, the InterEvDock2 performance is also compared to the performance of the 

widely-used rigid-body docking programme Zdock3.0.2, assessed on the same 812 com-

plexes from the PPI4DOCK benchmark. For each case, 54,000 decoys are generated and 

ranked by Zdock3.0.2. In 126 out of 812 cases (15%), an acceptable or better solution is 

found among the top 10 decoys. Altogether, these benchmarking results highlight the added 

value of the InterEvDock2 processing pipeline, in particular the clustering and consensus 

scoring steps. 

Of key interest for experimental biologists, the InterEvDock2 output offers a list of 10 resi-

dues most likely involved in the complex interface (5 predicted residues on each partner) 

that can be targeted for mutagenesis. For these residue predictions, we reach 91% success 

rate, with 735 of the 812 benchmark cases having at least one of the 10 predicted residues 

involved in the actual interface (Table 2-1). As was found for the 85 cases from the Weng 

benchmark used to assess the original InterEvDock performance (Yu, Vavrusa et al. 2016), 

this success rate is remarkably stable with increasing difficulty: from 92% for very easy cases 

to 90% for easy cases to 87% for hard cases. Predictions of the InterEvDock2 server can also 

be used as a prior to constrain more thorough docking simulations including flexibility. In 

that perspective, in 51% of the cases, at least one correct residue is predicted on both sides 

of the interface (59% for very easy targets, 53% for easy targets and 33% for hard targets). 

Results are also presented in Table 2-1 and Supplementary Materials Figure B-1 for only the 

top 2 predicted residues (one on each partner): at least one of the two predicted residues is 

correct in 75% of the cases and both are correct in 34% of the cases, highlighting the prac-

tical value of InterEvDock2 residue prediction. All those results are significantly higher than 

a reference interval given by random selection of residues on the surface of the protein (for 

calculation details see Appendix B. page 174 and Figure B-1. 

2.2.2 Predictions of CAPRI targets 

The InterEvDock2 pipeline was challenged through our participation in all CAPRI rounds 

since 2013. Focusing on heteromeric targets evaluated at the sixth CAPRI evaluation meeting 

(rounds 28-35), our group ranked first with 10 correctly predicted targets out of 18. Among 
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those 10 targets, our best prediction among ten submitted models was of high quality in 1 

case, medium quality in 7 cases and acceptable quality in 2 cases (Yu, Andreani et al. 2017). 

In 15 of the total 18 targets, evolutionary information was available in the form of either co-

evolution or conservation, providing key constraints to guide docking towards the correct 

solution. Although the InterEvDock2 pipeline was not specifically designed to handle homo-

oligomeric docking, we were also among the highest ranking groups in the two joint CASP-

CAPRI experiments involving mostly predictions of homodimers (Lensink, Velankar et al. 

2016, Lensink, Velankar et al. 2017). Of note, for most CAPRI targets since 2013, only se-

quence information was provided to the participants. Figure 2-4 illustrates an InterEvDock2 

run for CAPRI target T95 (round 31) involving docking between the nucleosome (a decameric 

structure) and the PRC1 ubiquitin ligase (a trimeric structure). 

 

Figure 2-4: Successful CAPRI target T95 prediction with InterEvDock2. Successful example of docking from 

multimeric inputs in a CAPRI target. Prediction for CAPRI target T95 involving docking between two multimeric 

inputs: the nucleosome and the PRC1 ubiquitin ligase. These multimeric inputs were directly used as inputs in 

the InterEvDock2 server (PDB identifiers 3afa for the nucleosome and 3rpg for the ubiquitin ligase). A constraint 

is additionally used between a residue close to the ubiquitinated lysine K119 and the active site of the ubiquitin 

ligase (constraint between residues 117C and 85A at distance 11 Å). The first acceptable solution (ranked #4 in 

the Top 10 InterEvDock2 consensus) is superimposed on the reference crystal structure (PDB: 4r8p). 
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2.2.3 Description of docking case studies from input sequences 

and using constraints 

To illustrate the biological relevance of InterEvDock2 predictions, we consider two docking 

case studies derived from the PPI4DOCK benchmark (Figure 2-5). The first case is a complex 

between the Rho-family GTPase Cdc42 and the conserved, catalytic domains of exchange 

factor intersectin. Details of this interaction (PDB identifier: 1ki1) and structure-based muta-

genesis revealed key features of the activation of Cdc42 by intersectin (Snyder, Worthylake 

et al. 2002). This case was tested on the InterEvDock2 server by providing input sequences 

of the interacting regions in the two partners. Unbound templates were imposed for both 

proteins as in the PPI4DOCK benchmark; otherwise the automatic template search might 

have found the bound partners belonging to PDB 1ki1 or other bound templates. The un-

bound templates (4f38A and 3odoA) have sequence identities of 54% and 25% with the 

modelled regions of Cdc42 and intersectin, respectively. Among the top 10 consensus mod-

els returned by InterEvDock2, one acceptable solution is found as top 2 (Figure 2-5A).  

 

Figure 2-5: Successful prediction of a case in PPI4DOCK using InterEvDock2. Successful examples from 

the PPI4DOCK database. (A) Top 2 consensus model found by InterEvDock2 for docking between unbound 

homology models of Cdc42 (green, modeled using an unbound template at 54% sequence identity) and the 

conserved, catalytic domains of intersectin (cyan, modeled using an unbound template at 25% sequence iden-

tity). The model is superimposed on the reference crystal structure (PDB identifier: 1ki1) (gray). It is acceptable 

with interface RMSD 4.03 Å. (B) Best model found in the InterEvDock2 top 10 consensus for docking between 

PPI4DOCK unbound homology models of the RING domain of IDOL (green) and UBE2D (cyan) when four res-

idues experimentally known to be important for the interaction are used as constraints (with default distance 

8 Å). The model is superimposed on the reference crystal structure (PDB identifier: 2yho) (gray). The model is 

acceptable with interface RMSD 2.29 Å and is ranked first of the top 10 consensus. The four residues used as 

constraints from chemical shift mapping are shown as green spheres (M388, V389, C390 and C391). 
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The second case illustrates the interest of docking with user-defined restraints. We consider 

a complex between the RING domain of E3 ubiquitin protein ligase IDOL and ubiquitin-

conjugating enzyme E2 UBE2D (PDB identifier: 2yho) (Zhang, Fairall et al. 2011). This inter-

action is involved in the regulation of cholesterol uptake. Nuclear magnetic resonance (NMR) 

chemical shift mapping was used to confirm the interacting region prior to crystallographic 

studies. This NMR analysis showed four residues (M388, V389, C390, and C391) in the RING 

domain of IDOL to have particularly high chemical shift variation upon binding of UBE2D. 

The PPI4DOCK models of the interacting regions of IDOL and UBE2D (built by homology 

modelling using unbound templates for the two proteins, respectively 2yhnA and 3bzhA 

with sequence identities of 100% and 61%) were submitted to InterEvDock2. Two runs were 

performed, one without constraints and one using the four residues identified by NMR as 

interface constraints. Among the top 10 consensus models returned by InterEvDock2, the 

highest-ranked acceptable solution (medium quality according to the CAPRI criteria) was 

ranked number 6 in the run without constraints. When using the constraints derived from 

experimental NMR data, there were two acceptable or better solutions in the InterEvDock2 

top 10 consensus: one was ranked first (Figure 2-5B) and the second ranked number 6. 
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2.3 CONCLUDING REMARKS 

InterEvDock2 represents a major, user-oriented evolution of InterEvDock. InterEvDock2 is 

still the only free docking server taking into account co-evolutionary information, relying on 

a combination of complementary scoring functions to identify the most likely interface mod-

els. The previous InterEvDock version was limited by its requirement of only dealing with 

monomeric inputs. InterEvDock2 greatly expands the range of applications to homo- and 

hetero-oligomers by handling multimeric chains in the two input proteins used for pairwise 

docking and the automated processing of their joint MSAs. Benchmarking results on 

PPI4DOCK emphasize the usefulness of InterEvDock2 in generating interface models of good 

quality in the scope of integrative structural biology. The InterEvDock2 server returns dock-

ing results within typical runtimes of 30 minutes (for proteins of around 100 residues) to 2 

hours (for proteins of around 500 residues) even when starting from input sequences, while 

performing well on our benchmark of 812 cases docked from unbound homology models. 

The server also benefits from a user-friendly submission and visualisation interface, including 

breakpoints after template search and homology modelling, and options for offline in-depth 

analysis with PyMOL. InterEvDock2 is thus designed as a useful tool for biologists who can 

very easily submit docking runs starting from simple input sequences and specify constraints 

to make use of any previously acquired experimental knowledge. InterEvDock2 results can 

assist biologists in designing hypotheses about molecular interaction mechanisms and in-

terface mutations to investigate the functional role of an interaction.



 

 

 



 

 

CHAPTER 3  

Reconciling evolutionary in-

formation and atomic detail 

in scoring 



 

 

In computational structural biology, we are constantly trying to improve the performance of 

our prediction methods. As we have seen previously, there is a lot to learn from a protein’s 

evolutionary history. Proteins evolve under the constraint of maintaining functional interac-

tions and this constraint is reflected in coupled MSAs. As a consequence, these alignments 

provide valuable information for the purpose of interface computational prediction. This 

chapter is dedicated to the exploratory concept of extrapolating evolutionary information to 

the atomic level of detail. Its use in scoring interface predictions combined with atomic-

resolution scoring functions has shown promising results. The results of this work are in the 

process of being submitted for publication (pre-print deposited in HAL: and BioRxiv 

(Quignot, Granger et al. 2020)) and we are currently implementing this methodology in an-

other update of our docking server InterEvDock2.
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As described in the previous chapter, evolutionary information can be especially useful to 

guide molecular docking (Geng, Jung et al. 2019). The benchmarking of InterEvDock2 

showed us that InterEvScore presents a high complementarity with SOAP-PP (Quignot, Rey 

et al. 2018). As both scores are based on statistical potentials but SOAP-PP has an atomic 

level of detail, we hypothesised that a score integrating evolutionary information at an 

atomic scale might pick up on finer properties to better distinguish near-natives from the 

rest of the decoys.  

In InterEvScore, evolutionary information is given implicitly at residue-level through coMSAs 

and combined with a coarse-grained statistical potential. A major challenge in deriving 

evolutionary information to an atomic level of detail is finding a suitable way of representing 

residue-scale information from coMSAs at an atomic level. Here, we present a novel strategy 

to couple evolutionary information with atomic scores in order to improve decoy 

discrimination. We reconstruct an equivalent and hypothetical interfacial atomic contact 

network for each interface decoy and for each pair of homologs present in the coMSAs, by 

using a threading-like strategy to generate explicit backbone and side-chain coordinates. 

These models can, in turn, be scored with non-evolutionary atomic-resolution scoring 

functions such as SOAP-PP (Dong, Fan et al. 2013) or Rosetta interface score (ISC) (Gray, 

Moughon et al. 2003, Chaudhury, Berrondo et al. 2011).  

Here, we show that including explicit evolutionary information improves the top 10 success 

rate of SOAP-PP and ISC by 6 and 13 percentage points respectively, on a large benchmark 

of 752 docking cases for which evolutionary information can be used (Yu and Guerois 2016). 

It also improves the top 10 success rate of the residue-level statistical potential from 

InterEvScore by 6.5 percentage points. We then use a consensus approach to take advantage 

of the complementarity between different scores. The top 10 success rate of a consensus 

integrating FRODOCK2.1 with InterEvScore and SOAP-PP increases from 32% to 36% when 

including the homology-enriched score variants. A more time-consuming consensus 

combining all scores with an explicit homolog representation reaches 40% top 10 success 

rate.  
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3.1 METHODS 

3.1.1 Docking benchmark 

As for InterEvDock2, we performed evaluation of docking methods on cases from the large 

docking benchmark our team developed to ensure unbiased evaluation, PPI4DOCK (Yu and 

Guerois 2016). Each case in PPI4DOCK is associated to a coMSA, i.e. a pair of joint MSAs for 

the two docking partners. We excluded antigen-antibody interactions and cases with less 

than 10 sequences in their coMSAs, in order to focus on cases with enough co-evolutionary 

information. Sampling was performed using FRODOCK2.1 (see detailed parameters in sup-

plementary methods appendix C. A. page 180) and only the top 10,000 decoys ranked by 

FRODOCK2.1 were kept. Near-native decoys were defined as being of Acceptable or better 

quality in accordance with the CAPRI criteria  (Mendez, Leplae et al. 2003). To focus the study 

on scoring performance, cases that did not have a near-native within the top 10,000 FRO-

DOCK2.1 decoys were excluded from the benchmark. This resulted in a final benchmark of 

752 cases (supplementary Table C-). 

Performance was measured by top N success rate. We especially focus on the top 10 success 

rate traditionally used as a docking metric, and the top 50 success rate since consensus 

computation typically involves the top 50 decoys of each score (see section 3.1.2.1). Addi-

tional metrics are available in the supplementary information (supplementary methods ap-

pendix C. page 180). 

3.1.2 Scoring functions  

In addition to FRODOCK2.1’s integrated score (Ramírez-Aportela, López-Blanco et al. 2016), 

we rescored decoys and their threaded homologs with InterEvScore, SOAP-PP, and Rosetta 

interface score (ISC). 

InterEvScore (Andreani, Faure et al. 2013) was re-implemented with the great help of mas-

ter’s student Pierre Granger to accelerate the scoring step (see supplementary methods ap-

pendix C. page 180). We also use a faster implementation of SOAP-PP (Dong, Fan et al. 2013) 
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developed in collaboration with Pablo Chacón (see supplementary methods appendix C. 

page 180).  

Rosetta interface score (ISC) includes a linear combination of non-bonded atom-pair inter-

action energies and empirical and statistical potentials among other terms (Gray, Moughon 

et al. 2003, Chaudhury, Berrondo et al. 2011). This score is calculated by subtracting the total 

energy of both monomeric structures from the total energy of the complex structure. Since 

Rosetta ISC is sensitive to small variations and clashes at the interface, we included high-

resolution interface side-chain optimisation as a scoring option (see supplementary methods 

appendix C. page 180). Decoys for which Rosetta scoring did not converge after 10 iterations 

were assigned the worst score for that case. As Rosetta ISC scoring can take up to a couple 

of minutes per structure, we scored only the top 1,000 FRODOCK2.1 decoys (noted later 1k) 

per case rather than 10,000 (noted 10k).   

3.1.2.1 Consensus scores 

Consensus calculations were performed similarly to InterEvDock2 (see Chapter 2) to obtain 

a set of 10 most likely decoys depending on the agreement between several scoring func-

tions. Here, we apply consensus scoring to combinations of 3 to 5 different scoring functions. 

For a given set of scoring functions, ordered according to their individual performances from 

best to worst performing, the top 10 decoys of each scoring function receive a convergence 

count based on the number of similar decoys (defined as L-RMSD ≤ 10 Å) that are found in 

the top 50 decoys of each other scoring function. The final 10 consensus decoys are selected 

iteratively by decreasing convergence count (if > 1). In the case of a tie, decoys are selected 

according to the ranking order of their respective scoring functions. Note that decoys are 

added to the top 10 consensus only if they are not structurally redundant with the already 

selected ones (L-RMSD > 10 Å). If necessary, the consensus list is completed up to 10 decoys 

by selecting the top 4, 3, 3 decoys for a consensus between three scoring functions (or the 

top 3, 3, 2, 2 or top 2, 2, 2, 2, 2 decoys for a consensus between four or five scoring functions, 

respectively). 
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3.1.3 Homology-enriched docking pipeline 

For a pair of query proteins A and B for which we are trying to predict the 3D structure of 

the complex, the homology-enriched docking pipeline consists of four steps outlined in Fig-

ure 3-1. We dock proteins A and B using FRODOCK2.1 (Ramírez-Aportela, López-Blanco et 

al. 2016), thereby sampling a maximum of 10,000 decoys that can be reconstructed from the 

input query proteins using rotation and translation coordinates (Figure 3-1A). In parallel, we 

construct coMSAs and subsample them to a subset of M pairs of homologs (proteins A1 and 

B1, A2 and B2, ..., AM and BM, homologs of query proteins A and B respectively) (see section 

3.1.3.1, page 109). We model the unbound structures of this subset of M pairs of homologs, 

using the threading function from RosettaCM’s pipeline (Song, DiMaio et al. 2013) and the 

unbound query protein structures as templates (see Figure 3-1B and section 3.1.3.2, page 

110). We then generate homolog equivalents to each query decoy by applying the transla-

tion and rotation coordinates generated during the query docking to each pair of homologs. 

Figure 3-1C illustrates this reconstruction for the first pair of homologs (proteins A1 and B1). 

To obtain the final score of each decoy, we average scores over the query decoy itself and 

its equivalent homolog decoys (Figure 3-1D). Note that for one case, we have to compute 

(M+1) x N scores to obtain the final ranking of N decoys. The scoring functions we used are 

described in section 3.1.2, page 106. All steps of the pipeline are easily parallelisable to re-

duce end-user runtime, whether through MPI (sampling step) or by splitting over decoys 

(scoring steps).  
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Figure 3-1: Docking pipeline with explicit modelling of decoy homologs. A. Upon docking of query un-

bound structures (proteins A and B in green and blue), FRODOCK2.1 outputs a rotation and translation matrix 

to reconstruct the corresponding decoys.  B. In order to generate their homologous counterparts, the unbound 

structures of each homolog (proteins A1 and B1, A2 and B2, ..., AM and BM, in various shades of orange and 

magenta) are threaded based on the query unbound structures (proteins A and B) and the homologous se-

quence alignments in the coMSAs of the query proteins. C. For each homolog pair (such as homolog 1 illus-

trated here), decoys can be reconstructed using the same rotation and translation matrix as for the query. D. 

The final score of each decoy (left column) corresponds to the average score over itself and its M homolog 

equivalents for a given scoring function. 

3.1.3.1 Subsampling homologs in the coMSAs 

Homologous sequences used in scoring were taken from the coMSAs provided with the 

PPI4DOCK benchmark, reduced to maximum M=40 and then to M=10 sequences (plus the 

query sequence) to limit computational time. Indeed, it was already seen with InterEvScore 

that co-evolutionary information can be extracted from alignments with as few as 10 se-

quences (Andreani, Faure et al. 2013). The sequences in the coMSAs are ordered by decreas-

ing average sequence identity with the query sequences. This is taken into account when 

sub-selecting sequences in order to keep a representative subset of sequences in both re-
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duced coMSAs. Sequence selection was performed in three steps. First, the number of se-

quences was cut at 100, as in the InterEvDock2 pipeline. Then the alignment was filtered with 

hhfilter 3.0.3 (Remmert, Biegert et al. 2011) from the hh-suite package. hhfilter was applied 

with the “-diff X” option on the concatenated coMSAs and the value of X was adjusted for 

each case in order to return a reduced alignment with no more than 41 sequences (i.e. the 

query + 40 homologs). At this stage, we obtain a first set of reduced coMSAs with maximum 

40 sequences, which we call coMSA40, and that are representative of the full diversity of the 

initial coMSAs. Finally, 11 equally distributed sequences (i.e. the query + 10 homologs) were 

uniformly selected within coMSA40 in order to preserve sequence diversity compared to the 

initial coMSAs (see supplementary methods appendix C. page 181). The final set of reduced 

coMSAs is called coMSA10. 

3.1.3.2 Threading models 

Pairwise alignments between the template structure and the homolog sequence to be mod-

elled were directly extracted from the reduced coMSAs. The templates used for threading 

were the unbound template structures provided in the PPI4DOCK benchmark (Yu and 

Guerois 2016) (see supplementary methods appendix C. page 181). 

Rosetta’s threading programme, the first step in the RosettaCM pipeline (Song, DiMaio et al. 

2013), was used to thread the homologous sequences onto the template structure. We used 

Rosetta 3.8 (version 2017.08.59291). No insertion, N- or C-terminus were modelled. This re-

sulted in gapped and mainly structurally conserved threaded models of the homologs, where 

backbone coordinates remained unchanged and side-chain rotamers were different from 

the template’s side-chains only if the residue type changed between the template and the 

homologous sequence (Figure 3-1B).  
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3.2 RESULTS 

3.2.1 Consensus approach with implicit homology scoring 

In previous work (see Chapter 2), we integrated evolutionary information implicitly at the 

coarse-grained level by scoring decoys with residue-based InterEvScore (noted IES) 

(Andreani, Faure et al. 2013). In IES, for each decoy, we enumerate all residue-level interface 

contacts. We then use a residue-level statistical potential to score decoys by considering all 

sequences in a coMSA and assuming the same contacts were conserved in all homologous 

interfaces. 

We also combined InterEvScore with complementary scores FRODOCK2.1 and SOAP-PP 

(supplementary Figure C-2A) in a three-way consensus score, denoted Cons3, which prefer-

entially selects decoys supported by several scores (section 3.1.2.1). Compared to individual 

scores, we observed a notable boost of about 8 points in top 10 success rate using Cons3, 

which captures a near-native in the top 10 decoys in 32% of the cases (Table 3-1 and Figure 

3-2A). 

Table 3-1: Performance of consensus scores including InterEvScore implicit homology scoring. Scores 

used in three-way consensus score Cons3 were SOAP-PP on the top 10,000 FRODOCK2.1 decoys (SPP/10k), 

InterEvScore on full coMSAs and on the top 10,000 FRODOCK2.1 decoys (IES/10k) and FRODOCK2.1 (FD2.1). 

Performances of individual scores used in the consensus are reported in terms of top 10 and top 50 success 

rates, since consensus calculation relies on the top 50 decoys ranked by each component score. 

Score Top 10 success rate Top 50 success rate 

FD2.1 164 (21.8%) 292 (38.8%) 

IES/10k 182 (24.2%) 287 (38.2%) 

SPP/10k 183 (24.3%) 328 (43.6%) 

Cons3 241 (32.0%) / 
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Figure 3-2: Success rate as a function of the number of selected decoys for individual and consensus 

scores. Illustration of the success rate on an increasing number of top N decoys with N going from 1 to 100. 

(A) FRODOCK2.1 (FD2.1), SOAP-PP (SPP) and InterEvScore (IES) individual and consensus scores (dashed lines) 

and their homology-enriched variants on coMSA40 and 10,000 decoys (10k) (solid lines). (B) Rosetta ISC scores 

(dashed lines) together with homology-enriched variants of individual scores on coMSA10 and 1,000 decoys 

(1k) and selected homology-enriched consensus scores (solid lines). Performances were measured on 752 

benchmark cases. Note that consensus scores produce only a selection of 10 decoys, hence they stop at N=10. 

 

This complementarity between the examined scores, in particular SOAP-PP and InterEvScore, 

(supplementary Figure C-2A) prompted us to attempt a more explicit integration of evolu-

tionary information into the various scores. An initial attempt at deriving InterEvScore to the 

atomic level will be described first in section 3.2.2. Then, following the pipeline described in 

methods section 3.1.3, page 108 (Figure 3-1, page 109), in the following sections, we include 
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evolutionary information into individual scores InterEvScore and SOAP-PP through explicit 

atomic-level models of homologous decoys. 

3.2.2 First steps towards an atomic version of InterEvScore 

The first natural step towards an evolutionary score at atomic scale was to try to derive our 

own score, InterEvScore, to this scale. InterEvScore makes use of coarse-grained statistical 

potentials for each residue contact type. It has different scoring components depending on 

the use of 2- and/or 3-way contacts (i.e. “2-body” or “2/3-body”), on the restriction to only 

the best contact per interface residue (i.e. “best”) or all contact contributions and on the use 

or not of evolutionary information (i.e. “evol”). Co-evolutionary information is deduced from 

the coMSAs by assuming that contacts observed in the decoy are maintained in the homo-

logs of both proteins. The interface propensity of these assumed contacts contribute to the 

final score if they are a part of an apolar patch in the decoy. The term that works best in 

InterEvScore is the 2/3-body best-evol (2/3𝐵𝑒𝑣𝑜𝑙
𝑏𝑒𝑠𝑡) which is composed of the best score of 

each interface residue within its 2- and 3-body contacts and their equivalent contacts in the 

various species of the coMSAs. Figure 3-3 illustrates the contribution and calculation of the 

2Bevol term for one contact in the protein complex. 

For the atomic version of InterEvScore (IESat), atomic potentials were calculated similarly to 

the original residue-level InterEvScore for 158 different atom types (the same types as in 

SOAP-PP (Dong, Fan et al. 2013)) instead of 20 residue types, on a set of 1,050 structurally 

non-redundant and non-obligate interfaces from the InterEvol database (Faure, Andreani et 

al. 2012). Because of the high number of different atom types compared to residue types, 

we limited ourselves to 2-body potentials only, bearing in mind from previous studies that 

this moderately affected the performance at residue-scale (Andreani, Faure et al. 2013). 

3.2.2.1 Atomic scoring without co-evolution  

Scoring the query complex with a basic IESat excluding coevolutionary information is 

straightforward since atomic contacts are directly defined in the decoy structure. This version 

of IESat worked best when summing the propensities of all “best” 2-body atomic contacts 
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per residue contact at the interface of the query structure. Performances in terms of top 10 

success rates on 54,000 ZDOCK3.0.2 decoys (Pierce, Hourai et al. 2011) for 54 cases from the 

Weng benchmark v4 of both the residue-scale InterEvScore and IESat without co-evolution 

are illustrated in Figure 3-3 as green and yellow striped bars respectively. For comparison 

purposes, the “best” equivalent 2-body version of the original residue-level InterEvScore was 

used here. The performances show the additional value of considering atomic contacts (28%) 

rather than a coarse-grained representation of the interface (22%) and are consistent with 

our initial observations in InterEvDock2 stating that a finer potential might capture more 

properties that are unique to near-native decoys than a coarse-grained one.  

 

Figure 3-3: Performance of an atomic InterEvScore. Performances were measured in terms of top 10 success 

rate on ZDOCK decoys of 54 cases from the Weng benchmark. They are shown for the residue-level Inter-

EvScore (in green) and the best atomic-scale InterEvScore, IESat, (in gold) with and without taking evolution 

into account (i.e. with or without using the MSAs, respectively; full colour and stripy motif respectively). Here, 

the residue-level InterEvScore (illustrated in the green box) consisted in summing over the potentials of the 

best 2-body residue contact (depicted with red dotted lines) per interface residue (blue, red, yellow and green 

elements). The best performing IESat (gold box) consisted in summing over the potentials of the best atomic 

contact per residue pair at the interface. In both versions, co-evolutionary information is taken into account 

implicitly by assuming that homolog contacts remain as in the query proteins. 

3.2.2.2 Adding co-evolution to the atomic InterEvScore 

As co-evolutionary information is only given at a residue level in the coMSAs, 

implementations of IESat with co-evolution relied on various approximations. When 
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including homology information, we would ideally need to derive equivalent atomic contacts 

if different residue types are involved in the coMSAs, which cannot be easily inferred from 

coMSAs alone. In the best-performing IESat including coevolutionary information, I 

approximated this by taking the atomic pair with the highest propensity for each equivalent 

residue contact in the homologs, as well as summing over all 2-body contacts in the query 

structure. Performances for these two versions are also illustrated in Figure 3-3 as green and 

yellow fully-coloured bars. Unfortunately, as opposed to what was expected, the benefit of 

adding evolutionary information seen in the residue-level InterEvScore (33% against 22% 

top 10 success rate) was not observed for the atomic version (26% against 28%, Figure 3-3). 

This is probably still due to the assumptions made in IESat where residue contacts are just 

carried across in the homologs and are represented by their best-scoring atomic contact. 

We thus need a more detailed and explicit representation of the side-chains of the various 

homologs in order to score the corresponding atomic contacts. In the rest of this chapter, 

we therefore drop the atomic version of InterEvScore (IESat) and come back to residue-level 

IES, but we introduce atomic-level information through explicit modelling of the coMSA 

homologs. 

3.2.3 InterEvScore with explicitly modelled homologs 

For efficiency, we represent homologs at atomic resolution by threading their sequences 

onto the query structure (section 3.1.3.2, page 110). As a first step to validate this new rep-

resentation of evolutionary information, we test the performance of InterEvScore on these 

threaded models and compare it with the original InterEvScore. With the threaded models, 

contacts are re-defined in each homolog at an explicit level, rather than implicitly deduced 

from the coMSAs as in the original InterEvScore. In practice, we calculate the threaded hom-

olog version of InterEvScore (denoted IES-h) by scoring query decoys and their threaded 

homolog equivalents with the InterEvScore residue-level statistical potentials (section 3.1.2). 

The final score of each query decoy corresponds to the average score over the query decoy 

itself and its homologs. 
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Table 3-2 and Figure 3-2A show the performance of IES-h40, i.e. IES-h computed using 

threaded homologs from the set of reduced coMSAs with maximum 40 sequences (coMSA40, 

see section 3.1.3.1, page 109). Results for the original InterEvScore with complete coMSAs 

(IES) and coMSAs40 (IES40) are also shown for comparison. Reducing the number of se-

quences to maximum 40 does not strongly affect performance in terms of top 10 and top 

50 success rates. However, the top 10 success rate increases from 23.8% to 27.0% when using 

explicit threaded models (IES-h40) instead of only implicit coMSA information (IES40). Of note, 

a variant of InterEvScore without evolutionary information, where only the query decoy gets 

scored by the statistical potential has a much lower top 10 success rate of 20.5% (supple-

mentary Table C-6). 

Table 3-2: Performance of InterEvScore using coMSAs without or with threaded models. Top 10 and top 

50 success rates of InterEvScore on complete coMSAs (IES, reported in section 3.2.1 and Table 3-1) and coMSA40 

(IES40) compared to InterEvScore using explicit threaded models of homologs in coMSA40 (IES-h40) on 10,000 

decoys (/10k). Performances were measured on 752 benchmark cases. 

 Top 10 success rate Top 50 success rate 

IES/10k 182 (24.2%) 287 (38.2%) 

IES40/10k 179 (23.8%) 284 (37.8%) 

IES-h40/10k 203 (27.0%) 335 (44.5%) 

 

The difference in performance between IES40/10k and IES-h40/10k can be explained by the 

fact that, in IES-h40, contacts are not extrapolated from the query interface network anymore 

but are redefined in each homolog based on their modelled interface structure. 

3.2.4 Homology-enriched SOAP-PP  

Having explicit structures at atomic resolution corresponding to each homolog enables us 

to score them directly using an atomic potential such as SOAP-PP (Dong, Fan et al. 2013), 

which might be able to better exploit the atomic detail of homologs for the final ranking of 

query decoys. As for the threaded version of InterEvScore, homology-enriched SOAP-PP 

(SPP-h40) consists in the average SOAP-PP score over all homologs including the query de-

coy itself. 
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SPP-h40 performs better than SOAP-PP on the query decoys alone (Table 3-3 and Figure 

3-2A). Using threaded homology models in this way gives a large performance boost to 

SOAP-PP (+6 percentage points on the top 10 success rate). SPP-h40 also outperforms 

InterEvScore and IES-h40 (section 0) as well as the FRODOCK2.1 score (section 3.2.1).  

Table 3-3: Performance of SOAP-PP against SPP-h40. Top 10 and top 50 success rates of SOAP-PP (SPP) 

compared to its homology-enriched version SPP-h40 over sequences in coMSA40 on 10,000 decoys (/10k). Per-

formances were measured on 752 benchmark cases. 

 Top 10 success rate Top 50 success rate 

SPP/10k 183 (24.3%) 328 (43.6%) 
SPP-h40/10k 228 (30.3%) 365 (48.5%) 

 

3.2.5 Homology-enriched Rosetta interface score (ISC) 

Since we build atomic-level homolog models of decoys, we can score them explicitly using 

a physics-based score such as Rosetta ISC. As Rosetta scoring is much more computationally 

expensive (about 750 times slower) than SOAP-PP and InterEvScore, to compute homology-

enriched ISC, the number of decoys was reduced to 1,000 (as ranked by FRODOCK2.1) and 

the number of homologs to 10 (coMSAs10, section 3.1.3.1, page 109). 

As above, homology-enriched ISC consisted in the average score of the query and its ho-

mologous decoys (ISC-h10). For easier comparison, homology-enriched InterEvScore and 

SOAP-PP were evaluated in the same conditions (i.e. 1,000 decoys and coMSAs10) (Table 3-4 

and Figure 3-2B). Their success rates are very similar to those with 10,000 decoys and 

coMSAs40 (supplementary Table C-7). Even though ISC on query decoys performs worse than 

SPP-h and IES-h, ISC-h10 largely outperforms the best-performing individual score, SPP-h10, 

with 34.4% top 10 success rate (259 cases) compared to 30.2% (227). With only 165 success-

ful cases in common, SPP-h10 and ISC-h10 remain very complementary (supplementary Fig-

ure C-2B). 

Note that for scores calculated on the top 1,000 FRODOCK2.1 decoys, success rates are tech-

nically capped to 77.1%, as only 580 cases out of the 752 in our benchmark have a near-
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native within this subset of decoys. In light of this, the ISC-h10/1k performance is all the more 

remarkable.  

Table 3-4: Scoring performance of Rosetta homology-enriched ISC. Scoring performance of ISC on query 

decoys only and using the threaded homology models (ISC-h10) on top 1,000 FRODOCK2.1 decoys (1k) and 

coMSA10 as well as the performance of SPP-h10 and IES-h10 on 1,000 FRODOCK2.1 decoys with coMSAs10 for 

easier comparison. Performances were measured as the top 10 ant top 50 success rates on 752 benchmark 

cases. 

 Top 10 success rate Top 50 success rate 

IES-h10/1k 200 (26.6%) 338 (44.9%) 

SPP-h10/1k 227 (30.2%) 362 (48.1%) 

ISC/1k 157 (20.9%) 301 (40.0%) 

ISC-h10/1k 259 (34.4%) 361 (48.0%) 

 

3.2.5.1 Using ISC to re-score homology-enriched decoys 

ISC-h10 showed the highest top 10 success rate from all scores tested above, but scoring 

1,000 x 11 decoys with Rosetta ISC is too time consuming in a generalised docking context 

as it takes approximatively 137 CPU hours per case (supplementary Table C-8). One way to 

alleviate the total scoring time is to score only a pre-selected amount of decoys using Ro-

setta ISC as a second step in the scoring pipeline.  

In Cons3, we pre-selected the top 50 decoys of FRODOCK2.1, InterEvScore and SOAP-PP. 

Similarly, here we use the top 50 decoys of the top-performing homology-enriched score 

variants tested above, namely SPP-h40/10k and IES-h40/10k, as well as FRODOCK2.1. These 

scores have a high complementarity in terms of top 10 success rate with only 67 cases found 

in common between all three (supplementary Figure C-2C). Using this subset of 150 pre-

selected decoys for ISC scoring (referred to with /150h) reduced scoring times approximately 

by a factor 7. We enrich near-natives in this set of 150 decoys since they were pre-selected 

by three already well-performing scores, but only 476 out of 752 cases in our benchmark 

possess a near-native in this subset.  

In terms of top 10 success rate, both ISC-h10 and ISC perform better on 150 than 1,000 

decoys with 36.0% and 29.0% top 10 success rate instead of 34.4% and 20.9%, respectively 

(Table 3-5 and Figure 3-2B). Here again, the addition of evolutionary information to ISC 
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through the threaded homolog models remarkably increases its performance. ISC-h10/150h 

has the best performance of all tested scores so far, for a much lower computational cost 

than ISC-h10/1k. 

Table 3-5: Performance of ISC and ISC-h10 on 150 pre-selected decoys. Below are summarised the top 10 

success rates of ISC and ISC-h10. Top 10 success rates of ISC/150h and ISC-h10/150h were calculated after a 

pre-selection of maximum 150 decoys taken from the 3 x top 50 decoys of IES-h40/10k, SPP-h40/10k, and FRO-

DOCK2.1. Scoring was performed on all 752 benchmark cases. 

Score Top 10 success rate Top 50 success rate 

ISC/150h 218 (29.0%) 394 (52.4%) 

ISC-h10/150h 271 (36.0%) 411 (54.7%) 

 

3.2.6 Homology-enriched consensus scoring 

As a first step, we calculate Cons3-h, the homology-enriched variant of the Cons3 base con-

sensus score presented in section 3.2.1. Calculating a three-way consensus using higher-

performing homology-enriched variants (Cons3-h) instead of their original counterparts 

(Cons3) increases the top 10 success rate from 32% to 36% (Table 3-6 and Figure 3-2A). 

Consensus Cons3-h performs as well as ISC-h10/150h, while calculated on the same top 150 

decoys, and computation is about 20 times faster for Cons3-h than for ISC-h10/150h.  

Out of the 271 successful cases for Cons3-h and ISC-h10/150h, only 199 cases are common. 

Moreover, ISC and ISC-h10 remain complementary to SPP-h40/10k, IES-h40/10k and FRO-

DOCK2.1 (supplementary Figure C-2D and Figure C-2E). This led us to test four- and five-

way consensus approaches to combine ISC optimally with other homology-enriched scores. 

We tested two four-way consensuses that integrate ISC without homology on 1,000 or 150 

decoys (Cons4-h/1k and Cons4-h/150h respectively) and two five-way consensuses that in-

tegrate ISC both with and without homology on 1,000 or 150 decoys (Cons5-h/1k and Cons5-

h/150h respectively). Performances are reported in Figure 3-2B and Table 3-6, together with 

time estimates when parallelising the whole pipeline on 4 CPUs.  

Table 3-6: Performance of homology-enriched consensus scores. Performance of three-, four- and five-

way consensus scores in terms of top 10 success rates on 752 benchmark cases and approximate timescales 

for the whole pipeline (including sampling with FRODOCK2.1, homology model generation, scoring steps and 

consensus calculation). Scores used in Cons3 were SOAP-PP/10k, InterEvScore/10k and FRODOCK2.1. Scores 

used in all homology-based consensuses (ConsX-h) were FRODOCK2.1, SPP-h40/10k, IES-h40/10k, ISC and ISC-
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h10. The three-way consensus included the first three scores, four-way consensuses included all scores up to 

ISC and five-way consensuses included all of them. ConsX-h/150h included ISC scores over 150 decoys only 

and ConsX-h/1k included ISC scores over 1k decoys.  

Consensus Top 10 success 

rate 

Whole pipeline time 

estimates on 4 CPU* 

Cons3 241 (32.0%) 15 min 

Cons3-h 271 (36.0%) 15 min 

Cons4-h/150h 276 (36.7%) 45 min 

Cons4-h/1k 282 (37.5%) 3 h 15 

Cons5-h/150h 289 (38.4%) 5 h 30 

Cons5-h/1k 304 (40.4%) 34 h 30 

* all steps are parallelisable using MPI (sampling) or over the decoys (scoring) 

 

With five-way consensus Cons5-h/1k, top 10 success rate rises to 304 cases (40.4%). Unfor-

tunately, computation time strongly increases, since we have to compute ISC-h10 on 1,000 

decoys. The most time-effective consensus, Cons3-h, has 36.0% top 10 success rate and the 

same top 1 success rate as Cons5-h/1k (Figure 3-2B and supplementary Table C-9). 
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3.3 DISCUSSION 

In InterEvScore (Andreani, Faure et al. 2013), evolutionary information improved protein-

protein scoring performance when given implicitly through coMSAs and coupled with a 

coarse-grained, residue-level statistical potential. Combining InterEvScore with complemen-

tary scoring functions FRODOCK2.1 and SOAP-PP by computing a consensus (see Chapter 

2) improved over the individual scores, reaching 32% top 10 success rate (see Table 3-1). 

However, this strategy did not take full advantage of the three scores’ complementarity and 

we thus decided to combine directly evolutionary information from coMSAs with atomic 

scores such as SOAP-PP. To this aim, we threaded coMSA homologs of docked query pro-

teins and scored homologous decoys together with each query decoy.   

With this new explicit implementation of evolutionary information, we tested a variant of 

InterEvScore where we scored decoys and their modelled homologs with a residue-level 

statistical potential. This modified version (named IES-h) had a slightly improved success rate 

compared to the implicit homology version (see Table 3-2). The explicit representation of 

homologous decoys enabled us to build homology-enriched versions of atomic scores 

SOAP-PP (SPP-h) and Rosetta ISC (ISC-h). For both, adding homology drastically improved 

top 10 success rates (see Table 3-3 and Table 3-4) even when coMSAs were down-sampled 

to a maximum of 10 homologous sequences. The Rosetta homology-enriched version, ISC-

h10, had outstanding performances, but it also was the most time-consuming score, about 

750 times slower than SOAP-PP or InterEvScore. A first compromise between computation 

time and performance was to run ISC-h10 on a pre-selection of 150 decoys defined by the 

top 50 decoys of SPP-h40/10k, IES-h40/10k and FRODOCK2.1 (see Table 3-5). This score had 

the same top 10 success rate (36%) as a much faster consensus score involving the same top 

150 decoys. Taking further advantage of this complementarity, different four- and five-way 

consensus calculations managed top 10 success rates from 36.7% to 40.4% at runtimes rang-

ing from 45 minutes to 34.5 hours on four CPUs (Table 3-6). 

Our homology enriched scoring scheme is robust to change in the definition of near-natives 

(supplementary Table C-12) and in evaluation metrics (supplementary Table C-13). Using a 
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more stringent definition of near-natives (as being of at least Medium quality according to 

CAPRI criteria) still allows homology enrichment to boost predictive performance of scoring 

functions. However, consensus scores become less efficient than the best individual scoring 

functions, probably because when grouping decoys with a relatively loose similarity criterion 

(see methods section 3.1.2.1, page 107), we do not manage to selectively uprank Medium 

quality decoys (supplementary Table C-12). 

We further tried to understand the origin of the large performance improvements obtained 

through homology enrichment. Scoring performance improves when near-natives are rec-

ognised better (positive selection) or when wrong decoys are down-ranked (negative selec-

tion). In the homology-enriched scores described in this work, correct decoys could be up-

weighted by conserved interfaces in the homologous decoys and, at the same time, incorrect 

decoys could be discredited by statistically incompatible, clashing, or incomplete homolo-

gous decoys (since insertions in reference to the query structures were not modelled). We 

decided to first explore the simplest explanations, namely, deletions and/or clashes at the 

interface of homologs that would pull down the average score of the incorrect decoys. How-

ever, this does not seem to be the main driving force of ISC-h10’s success over ISC, as the 

number of gaps or the number of clashes (defined as heteroatom contacts under 1.5 Å) at 

the interface of homologous decoys do not strongly correlate with the given scores. Addi-

tionally, ranking using only the repulsive van der Waals component of the Rosetta score 

(fa_rep) performs very poorly in comparison to other scoring schemes with at most 34 out 

of 752 cases with correctly identified near-natives in the top 10 (supplementary Table C-10). 

Finally, IES-h, SPP-h or ISC-h variants where only the worst homologous decoys are taken 

into account when scoring each query decoy showed systematically worse performance than 

using the full range of homologous decoys for each query decoy (supplementary Table 

C-10). This means that the performance of the homology-enriched scores is positively driven 

by recognition of correct decoys rather than exclusion of incorrect decoys through the pres-

ence of clashes or gaps.  
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Improvement of the SOAP-PP and Rosetta ISC scoring functions by homology enrichment is 

significant (supplementary Figure C-3) and consistent over difficulty categories (supplemen-

tary Table C-11). When splitting results over PPI4DOCK difficulty categories, we observe that 

the strongest relative gain for the SPP-h and ISC-h homology-enriched scores compared to 

their versions without homology occurs on “very_easy” cases, followed by “easy” cases (sup-

plementary Table C-11). A few cases are gained in the “hard” category, but the “very_hard” 

category remains largely inaccessible to the tested scores, even though our benchmark is 

limited to cases where at least one near-native decoy was sampled in the top 10,000 FRO-

DOCK2.1 decoys (there are only 16 such “very_hard” cases). Consensus scoring also consist-

ently improves results over the “very_easy”, “easy” and “hard” categories, in order of de-

creasing improvement. We hypothesise that correct ranking of very_easy and easy decoys is 

mainly dependent on the ability to score positively native-like models while more difficult 

categories would also require integration of flexibility, an ongoing challenge of protein dock-

ing (Torchala, Moal et al. 2013, Desta, Porter et al. 2020).  

In this work, we developed a strategy to enrich scoring functions with evolutionary infor-

mation by including atomic-level models for as few as ten homologs. This strategy improves 

performance of several scores with different properties: InterEvScore (supplementary Table 

C-14), SOAP-PP and Rosetta ISC. This means that homology enrichment can in principle be 

applied to any scoring function with at most a ten-fold increase in runtime. This enrichment 

works with a very small number of sequences compared e.g. to the large MSAs needed by 

covariation methods to pick up coevolutionary signal, highlighting complementarity be-

tween the two approaches, which may be exploited by using additional DCA-derived con-

straints, e.g. in intermediate cases with a few hundred homologous sequences (Simkovic, 

Ovchinnikov et al. 2017, Cong, Anishchenko et al. 2019). The increase in docking success rate 

also opens interesting perspectives regarding the large-scale application of structural pre-

diction to interaction networks. Finally, with the rise of machine learning techniques in com-

putational biology, one can expect interesting future developments using these approaches 

to further enhance the extraction of (co)evolutionary signal from coMSAs 

 





 

 

CHAPTER 4  

The CAPRI challenge 

 





 

 

CAPRI consists in the ultimate blind-test scenario, where docking teams can put their meth-

ods to the test by predicting the structures of newly resolved and yet unpublished protein-

protein interactions. Throughout my PhD, I was able to participate in 10 such docking chal-

lenges. Each case brought on its own difficulties, meaning that we had to always adapt our 

proceedings to the target at hand. However, there were still general guidelines that we fol-

lowed to tackle these cases. 

Resolving CAPRI challenges was always a team effort with regular discussions, adapted strat-

egies and consensus ranking of the models, enriching my knowledge on how to solve a 

structure from A to Z. This chapter summarises our proceedings in resolving targets T131 to 

T136 from the 7th edition of CAPRI and is partly based on our published article (Nadaradjane, 

Quignot et al. 2019). I had the luck of taking part in the concluding international CAPRI 

meeting in April 2019 that takes place every three years. Three new target prediction rounds 

have been launched since, and a fourth is ongoing in autumn 2020 dedicated to the current 

coronavirus situation. Since the official results are not yet available, I will not describe these 

new rounds in this chapter. 
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The CAPRI  experiment (Janin, Henrick et al. 2003, Lensink, Mendez et al. 2007) is a unique 

opportunity for methods developers to assess their computational tools and strategies in a 

wide range of applications, often away from benchmark cases used for methods develop-

ment and assessment. In CAPRI rounds 38 to 45, a wide variety of targets and challenges 

was proposed from 2016 to 2018, including diverse classes of conserved prokaryotic assem-

blies, metazoan cytokine-receptor complexes or host-pathogen interactions. The originality 

of the challenges also arose from cases of complexes involving polysaccharides and a rede-

signed interface. In this chapter, I will especially focus on CAPRI rounds 42 to 45, in which I 

was able to actively participate from 2017 to 2018, and for which official evaluation results 

are available. 

When considering CAPRI targets, a distinction should be made as to whether a homologous 

template for the complex can be detected or not. The success of CAPRI participants (includ-

ing our group) for these two categories is quite reflective of the difference in difficulty rep-

resented by the two classes of challenges. On average, in the case when a homologous in-

terface template exists, about 20 groups manage to propose successful models among the 

top 5 models while usually fewer than 10 groups get correct models when no such template 

is available. In case a template is not available, reaching an Acceptable solution is already a 

significant challenge, which generally assesses whether the relative orientation between 

binding partners has been correctly predicted. When a template assembly can be used, the 

challenge moves toward the quality of the detailed modelling and refinement strategy rather 

than the docking protocol itself. In the 7th CAPRI edition, most challenges could be ad-

dressed using some constraints from a comparative modelling strategy (Table 4-1) and only 

4 targets were tackled relying on free docking protocols. 

Table 4-1: Summary of CAPRI targets in rounds 42-45. The table also summarises our group’s strategy for 

addressing each target. 
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Rou

nd 

Tar-

get 

Short 

partner 

ids 

Category Target 

specific-

ity 

Pro-

vided 

info 

Our strategy Ref complex 

PDB code 

42 T131 HopQI / 

CEACAM1 

protein - 

protein 

pathogen 

/ host 

 Free docking + bio-

logical information 

6GBG (Moonens, 

Hamway et al. 

2018), 6AW2 

(Bonsor, Zhao et 

al. 2018) 

 T132 HopQII / 

CEACAM1 

protein - 

protein 

pathogen 

/ host 

 Template-based 

docking based on 

T131 solutions 

6GBH (Moonens, 

Hamway et al. 

2018) 

43 T133 Edes3 / Im-
des3 

protein - 

protein 

rede-

signed in-

terface 

wild-

type 

PDB 

code, 

affinities 

Docking perturba-

tions including 

rigid-body moves, 

loops and side-

chain refinement 

6ERE (Netzer, 

Listov et al. 2018) 

44 T134 DLC8 / 

MAG(57-

aa) 

protein - 

peptide 

binding 

segment 

prediction 

DLC8 

PDB 

code 

Evolution-driven 

motif recognition + 

template-based 

docking + con-

strained refinement 

6GZJ (Myllykoski, 

Eichel et al. 2018) 

 T135 DLC8 / 

MAG(12-

aa) 

protein - 

peptide 

 DLC8 

PDB 

code + 

12-aa 

peptide 

Template-based 

docking + con-

strained refinement 

6GZL (Myllykoski, 

Eichel et al. 2018) 

45 T136 LdcA 

decamer 

protein - 

protein 

ho-

modecam

er 

clues 

about 

homol-

ogous 

struc-

tures 

Template-based 

docking + rigid-

body perturbations 

6Q6I 

 Information provided by CAPRI organisers in addition to the identity and sequence of the target partners 

and the stoichiometry (which were systematically provided when relevant) 

 

Over the past 10 years, our group focused on the integration of evolutionary information in 

the rigid-body docking toolbox (Andreani and Guerois 2014, Quignot, Rey et al. 2018). From 

an extensive survey of protein complex structures and sequences conserved in evolution 

contained in the InterEvol database (Faure, Andreani et al. 2012), we extracted rules and 

methods to recognise models of interfaces that have most likely co-evolved with the devel-

opment of InterEvScore (Andreani, Faure et al. 2012, Andreani, Faure et al. 2013). More re-

cently, we combined this evolutionary information with the FRODOCK rigid-body pro-

gramme (Ramírez-Aportela, López-Blanco et al. 2016) and with alternative scoring ap-

proaches such as SOAP-PP (Dong, Fan et al. 2013) to release the InterEvDock2 web service  
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ADDIN EN.CITE (. Consistent with many challenges proposed in CAPRI, inputs can be sub-

mitted as multi-subunit structures but also as sequences since a module for structural mod-

elling of individual partners by homology has been incorporated based on RosettaCM pro-

tocols (Song, DiMaio et al. 2013). With this framework, we previously participated in several 

rounds of CAPRI with a significant number of correct predictions which allowed us to rank 

among the top performing groups (Lensink, Velankar et al. 2016, Yu, Andreani et al. 2017). 

In parallel to the development of InterEvScore, the importance of covariation analysis in the 

field of structural biology has been emphasized by the successful implementation of direct 

evolutionary coupling analyses methods such as DCA (Morcos, Pagnani et al. 2011), EVFOLD 

(Marks, Colwell et al. 2011), PSICOV (Jones, Buchan et al. 2012) or CCMpred (Seemayer, 

Gruber et al. 2014) which have fostered structure prediction of monomeric proteins (Xu 

2019) and enabled large scale prediction of structural assemblies (Cong, Anishchenko et al. 

2019) for proteins with sufficiently large numbers of homologs in sequence databases. In 

contrast, InterEvScore can run with a limited set of sequences, ranging from 10 to 100, and 

thus provides a complementary way to integrate evolutionary information.  

In CAPRI rounds 42 to 45, we explored for each target the extent to which evolutionary 

information could be used. First, we systematically assessed whether a template-based mod-

elling approach could be used, looking for close and remote homology relationships with 

complexes of known structures. In case only remotely related homologs were detected, we 

not only considered global homology relationships but also focused on anchoring clusters 

of residues conserved in evolution. We found that for one group of targets, such a strategy, 

focusing on recurrent anchoring patterns conserved in evolution, provided key constraints 

to improve the quality of our models. A third way of exploiting evolutionary information was 

in the generation of subunit structures prior to docking. There was eventually no target in-

volving rigid-body docking between partners conserved in evolution for which we could use 

InterEvScore itself and this CAPRI session rather opened onto alternative strategies that 

could be used to exploit evolutionary information for docking applications. Altogether, the 

strategy adopted was rarely exactly the same from one target to the next, reflecting the wide 

variety of macromolecular assembly modes, either through folding upon binding processes, 
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through multivalent contact points emerging from symmetric arrangements or relying on 

subtle loop conformation to ensure specific and tight recognition. In this report, we attempt 

to account for that variety providing hints that might be used depending on the nature of 

the targets. We also discuss how these observations echo with our large experience in mod-

elling protein complexes.  
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4.1 METHODS 

In this section, we present the pipeline used to prepare all targets and the general strategies 

followed for the two types of challenges: protein-protein and protein-peptide docking.  

4.1.1 Target preparation 

All CAPRI targets in rounds 42-45 were provided as sequences, sometimes with additional 

information about stoichiometry and possible templates. HHsearch (Soding 2005) was sys-

tematically used to search for homologous structures in the Protein Data Bank (PDB). When 

a suitable template was available for individual partners, we generally used homology mod-

elling with a RosettaCM-based protocol (Song, DiMaio et al. 2013) relying on the HHsearch 

alignment. We evaluated evolutionary conservation for individual protein partners using the 

Rate4Site algorithm (Pupko, Bell et al. 2002) or the Consurf web server (Ashkenazy, Abadi et 

al. 2016). 

For all protein-protein and protein-peptide targets (since the peptides in targets T134-T135 

were actually protein fragments), the PPI3D (Dapkunas, Timinskas et al. 2017) and HHpred 

(Zimmermann, Stephens et al. 2018) web servers were queried to search for available struc-

tures of homologous complexes. 

4.1.2 Protein-protein docking challenge (T131-T132, T133, 

T136) 

When structures of homologous complexes were available (T133, T136), our protein-protein 

docking strategy always started with comparative interface modelling using a RosettaCM-

based protocol (Song, DiMaio et al. 2013). The available interface templates were close in 

sequence identity for T133 (wild-type complex at 80% sequence identity with redesigned 

interface) and more remote for T136 (2 templates with 40% overall sequence identity but 

only 28% and 20% N-terminal domain sequence identity).  

When no homologous complex structure was available (T131-T132), free docking was used 

instead. Our standard docking pipeline (Quignot, Rey et al. 2018) at that time was based on 
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rigid-body interface sampling followed by clustering and consensus rescoring using three 

scores: the SOAP-PP atomic-level statistical potential (Dong, Fan et al. 2013), our Inter-

EvScore residue-level statistical potential including coevolutionary information (Andreani, 

Faure et al. 2013) and the FRODOCK scoring function (Ramírez-Aportela, López-Blanco et al. 

2016). In these CAPRI rounds 42-45, the free docking targets involved  host-pathogen com-

plexes (T131-T132) for which no co-alignment could be built with joint sequences in multiple 

species for the two partners, therefore our usual InterEvScore-based strategy was not ap-

plied. We derived T132 models from T131 free docking models by a template-based strategy 

rather than ab initio docking, and then re-ranked them after refinement and interface anal-

ysis.  

We performed final refinement of all docked interfaces using Rosetta-based protocols. For 

targets T131-T132, T133, T136, docking perturbations using RosettaDock were performed, 

with symmetry constraints for T136. For all targets, we used RosettaRelax protocols (Tyka, 

Keedy et al. 2011, Nivon, Moretti et al. 2013) for final refinement (under symmetry constraints 

for T136). For target T136, which involved a multi-domain homodimer, Rosetta kinematic 

loop modelling (Mandell, Coutsias et al. 2009) was used to rebuild domain linkers after per-

turbations and refinement. 

4.1.3 Protein-peptide docking challenge (T134-135) 

For target T134, a first step was to scan the long fragment of the MAG protein in order to 

identify the most likely 12-residue binding stretch. The strategy for this step is further de-

scribed in the results section. For targets T134-T135, the corresponding binding motif was 

anchored using homologous interfaces containing the canonical TQT binding motif as tem-

plates, then the interface was refined by extending the motif at the N- and/or C-terminal tail 

with the Rosetta FloppyTail protocol (Kleiger, Saha et al. 2009) and finally by using Rosetta-

Relax (Tyka, Keedy et al. 2011, Nivon, Moretti et al. 2013) to relieve the strong clashes in-

duced by the template-target superimposition. 
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4.2 RESULTS 

Prediction results for all CAPRI targets from rounds 42-45 (Table 4-2 and Table 4-3) are dis-

cussed below. We split targets into three categories according to our docking strategy: ab 

initio free docking, straightforward template-based docking, and finally targets for which 

available structures of homologous or similar interfaces were used together with evolution-

ary information to identify recurrent conserved interaction motifs and to guide interface 

modelling accordingly. 

Table 4-2: Results for CAPRI targets in rounds 42-45. Results are provided for the top 5 and top 20 models 

submitted by our group vs. all other groups by indicating the quality of the best model in this range: - for 

incorrect, * for Acceptable, ** for Medium and *** for High. 

Rou

nd 

Tar-

get 

Short part-

ner ids 

Cate-

gory 

Top 5 our 

group 

Top 5 other 

groups 

Top 20 our 

group 

Top 20 

other 

groups 

42 T131 HopQI / CEA-

CAM1 

protein - 

protein 

- ** ** ** 

 T132 HopQII / 

CEACAM1 

protein - 

protein 

- ** * ** 

43 T133 Edes3 / Imdes3 protein - 

protein 

** ** ** ** 

44 T134 DLC8 / 

MAG(57-aa) 

protein - 

peptide 

*** *** *** *** 

 T135 DLC8 / 

MAG(12-aa) 

protein - 

peptide 

*** *** *** *** 

45 T136 LdcA 

decamer 

protein - 

protein 

** / ** / * ** / ** / ** ** / ** / ** ** / ** / ** 

 For T136, multiple interfaces were assessed that are denoted by multiple results separated by a / sign. 

 

Table 4-3: Assessment summary for our best submitted CAPRI targets. This table includes the following 

assessment metrics (as provided by the CAPRI assessment team on the CAPRI website 

https://www.ebi.ac.uk/msd-srv/capri/): fraction of native contacts (fnat), ligand RMSD (L_rmsd), interface RMSD 

on backbone atoms (I_rmsdbb), and individual RMSDs of the two partners (M_rmsd_1 and M_rmsd_2). For each 

target (and each interface whenever relevant), this information is provided for our best submitted model 

https://www.ebi.ac.uk/msd-srv/capri/
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among the top 5. If that model is incorrect and if we submitted a better model (in terms of I_rmsdbb) within 

the top 20, the metrics are additionally provided for that model (in yellow in the table below). 

Model id  capriround_tar-

get(.interface) 

fnat L_rms

d (Å) 

I_rmsd

bb (Å) 

M_rmsd

_1 (Å) 

M_rmsd

_2 (Å) 

classifica-

tion 

T131_P07.M03 capri42_T131 0.055 44.163 11.364 0.686 1.907 incorrect 

T131_P07.M12 capri42_T131 0.52 3.247 1.7 0.53 1.22 medium 

T132_P07.M03 capri42_T132 0.06 45.543 9.156 0.787 2.973 incorrect 

T132_P07.M14 capri42_T132 0.209 11.578 3.905 0.611 2.555 acceptable 

T133_P05.M02 capri43_T133 0.66 3.433 1.577 1.694 0.749 medium 

T134_P19.M01 capri44_T134 0.895 1.21 0.356 1.098 0.364 high 

T135_P19.M04 capri44_T135 0.895 1.812 0.459 1.513 0.366 high 

T136_P03.M04 capri45_T136.1 0.687 2.813 1.709 2.002 2.001 medium 

 

4.2.1 Protein-protein docking using ab initio free docking strat-

egy (targets T131-T132) 

This category included two host-pathogen protein complexes, T131 and T132 (round 42). 

 

Figure 4-1: Representation of models predicted by free docking. Comparisons between the structure of 

the target complexes (coloured as light and dark grey cartoons for the receptor and ligand, respectively) and 

the best predicted model (coloured as green cartoon) with the index of the model indicated after the hash 

symbol for (A) HopQI-CEACAM1 (T131), (B) HopQII-CEACAM1 (T132). The hairpin coloured in red was previ-

ously published as involved in the interaction although this turned out to be incorrect. It biased the ranking of 

our models, although for T131, the InterEvDock2 server ranked as best model a Medium quality prediction. 
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4.2.1.1 Targets 131 & 132: Success of the InterEvDock server undermined by 

misleading biological information. 

T131 and T132 involved host-pathogen protein complexes of the N-terminal domain of hu-

man cell adhesion protein CEACAM1 with, respectively, the cell adhesion proteins HopQ type 

I and HopQ type II from Helicobacter pylori. Both CEACAM1 and HopQ type I structures were 

solved experimentally (PDB codes: 4WHD for CEACAM1 and 5LP2 for HopQ type I) while the 

structure of HopQ type II could be obtained by comparative modelling (see Methods) using 

the structure of type I as a template (sequence identity 56%). This target was well suited for 

free docking and we used the InterEvDock2 web server to generate a set of most likely so-

lutions. After docking HopQ type I with the CEACAM1 N-terminal domain, model #1 re-

turned by the server is of Medium quality compared to the released structures of the com-

plex (I-RMSD 1.45 Å with respect to PDB code 6AW2 and 2.94 Å with respect to PDB code 

6GBG) (Figure 4-1B). However, it was suggested in previously published literature (Javaheri, 

Kruse et al. 2016) that a specific region of HopQ, called the insertion domain, was important 

for binding CEACAM1, as its deletion reduced the affinity of HopQ to CEACAM1 and a pep-

tide derived from the HopQ insertion domain could inhibit the infectious phenotype trig-

gered by H. pylori. For that reason, upon model submission we downgraded the free docking 

models that did not involve the insertion domain shown in red on Figure 4-1A. In the end, 

our submitted models #12 for HopQ type I (T131) and #14 for HopQ type II (T132) (Figure 

4-1B) were assessed of Medium and Acceptable quality, respectively. Without this erroneous 

information we would not have downgraded them beyond the top 10 threshold; the pub-

lished structures (PDB codes: 6AW2, 6GBG, 6GBH) eventually showed that CEACAM1 does 

not interact with the HopQ insertion domain. Nevertheless, this example highlights the per-

formance of the InterEvDock2 server for free docking applications even when no coevolu-

tionary information can be used. 
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4.2.2 Taking evolution into account in template-based docking 

strategies (targets T133, T136) 

This category included protein-protein targets T133 (round 43) and T136 (round 45). 

 

Figure 4-2: Template-based prediction of CAPRI targets T133 and T136. Representation of the best model 

(coloured as green cartoon) compared to the experimental structure (grey cartoon and surface for the ligand 

and receptor subunits, respectively) and the template (light red cartoon) which could be used for template-

based modelling (TBM). (A) Structures for target T133 (redesigned Edes3 / Imdes3 interface). (B) Structures for 

target T136 (homodecamer LdcA) for the two main interfaces out of the three created through oligomerisation. 

Our model #7 was of Medium quality for all three interfaces. 

A 

B 
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4.2.2.1 Target 133: Optimisation of an interface locally but drastically remod-

elled by design.  

Target 133 is an interesting target to test refinement strategies. It consists of a redesigned 

orthogonal version of the wild-type Colicin E2 DNase-Im2 complex (PDB code: 3U43) which 

shares 80% sequence identity with the wild-type. At this level of sequence identity, our sur-

vey of complex interologs (Faure, Andreani et al. 2012) revealed that changes in rigid-body 

orientations are very unlikely. However, CAPRI organisers mentioned that the complex dis-

played a different binding mode (including rigid body orientation) with respect to the wild-

type complex, which prompted us to combine not only loop and side-chain refinement strat-

egies but also rigid-body docking perturbations. A posteriori, the released structure (PDB 

code: 6ERE) only had a L-RMSD of 0.7 Å with respect to the original (Figure 4-2A) indicating 

that no rigid-body motions were required to reach a High quality model. Because we had to 

consider simultaneously the three degrees of freedom listed above, we did not resample 

deeply enough the conformations in the mutated regions. In the end, our submitted model 

#2 was a Medium quality model that corresponded to the least rigid-body perturbed model. 

As all CAPRI participants, we did not manage to optimise the interface so as to reach a High 

quality model although it could have been expected given the high level of identity with the 

template. This target confirmed that at high sequence identity, assemblies usually do not 

dramatically change their relative orientation and that it is more efficient to optimise the 

structure locally rather than to include rigid-body perturbations. 

4.2.2.2 Target 136: Combining multi-domain and multi-subunit template-

based modelling in a symmetric homomultimer.  

Target 136 was the lysine decarboxylase LdcA from Pseudomonas aeruginosa, a challenging 

large complex assembling as a homodecamer of subunits themselves composed of three 

domains. Two templates were available sharing overall 40% identity with the target sequence 

(PDB codes: 2VYC and 3N75). However, the N-terminal domain exhibited more divergence, 

sharing 28% sequence identity with 2VYC and only 20% with 3N75. The domains move 
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slightly with respect to each other in the two template structures and alter the interfaces. For 

that reason, we explored two strategies for this target, following either a conservative tem-

plate-based modelling protocol (see Methods) or a modelling protocol involving rigid-body 

perturbations between domains, maintaining the D5 symmetry and rebuilding the domain 

linkers after refinement. This complex combinatorial strategy was implemented as a Roset-

taScripts protocol (Fleishman, Leaver-Fay et al. 2011) (see supplementary materials, appen-

dix D. page 192). The best overall model we generated (model #7) was assessed as Medium 

for all three interfaces and was derived from 2VYC, the template that shared the highest 

sequence identity in the N-terminal domain (Figure 4-2B), with a L-RMSD of 2.33 Å with the 

now-revealed cryo-EM structure (PDB code: 6Q6I). Somewhat disappointingly, none of the 

resampling protocols using rigid-body perturbations of the domains improved the quality 

of the models significantly, suggesting once again that above 30% sequence identity, no 

major change in orientation might be expected while they might be much more pronounced 

at lower identity.  

4.2.3 Evolutionarily conserved and recurrent structural motifs 

as guide for docking (targets T134-T135).  

This category included protein-peptide targets T134-T135 (round 44). 

When a homologous complex is available to perform template-based docking, it is often 

possible to reach an Acceptable solution even at low sequence identities without extensive 

conformational sampling or resampling. Reaching Medium quality models is often more 

challenging and may require extensive refinement comprising simultaneous conformational 

resampling of loops and small rigid-body perturbations. As discussed in the previous section, 

it is difficult to decipher which region should be resampled and whether some regions may 

be considered rather invariant or pivotal in the evolution of interfaces. CAPRI 7th targets 

provided several examples in which, beyond global homology relationships, we could rely 

on local recurrent structural motifs that can be seen as rather invariant features in the evo-
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lution of interfaces and useful to guide docking. When spotted out, these conserved recur-

rent motifs may be used as useful constraints to drive the resampling around an initial tem-

plate-based model and reach higher quality models. 

4.2.3.1 Targets 134 & 135: Evolution-driven recognition of Small Linear inter-

action Motifs in non-trivial cases.  

For targets 134 and 135, we had to predict the structure of a complex of Dynein Light Chain 

subunit 8, DLC8 (a dimer), with a peptide of myelin associated glycoprotein, MAG. The chal-

lenge consisted in a two-step prediction process in which we were first asked to identify and 

model the small 12-residue interaction motif out of a longer 50 amino-acid segment. Then, 

in a second step, the prediction had to be repeated with the knowledge of the exact 12-

residue ligand sequence. The first step was not trivial because none of the reported sequence 

motifs known to bind DLC8 could be identified (Figure 4-3). In particular, a glutamine ob-

served as a central DLC8-binding residue in many structures of ligand peptides bound to 

DLC8 could not be identified in the MAG segment (Figure 4-3A). This challenge of identifying 

a motif in a long disordered stretch of a protein provided an original and interesting test 

case, closely matching issues we often encounter during collaborations with experimental 

biologists. To address this challenge, we first gathered all the structures and ligands available 

for DLC8 and its homologs and created multiple sequence alignments for all known binding 

partners. Concatenation of these alignments centred in the region of the binding motif led 

to the definition of an enriched sequence profile (Figure 4-3B) that was applied as a sliding 

window to score the likelihood of a motif over the sequence of the MAG protein segment. 

We further enriched the motif taking advantage of a publication proposing a similar strategy 

for dynein binders (Erdos, Szaniszlo et al. 2017). Figure 4-3C illustrates that a single short 

motif in the sequence led to a positive score. Our model #1 derived from that analysis 

reached a High quality assessment score for target T134. The moves that we further incor-

porated in subsequent optimisations of the N-terminal and C-terminal tails of T135 peptide 

degraded the assessment for model #1 to a Medium quality model but T135 model #2 was 
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rated High. Generalisation of recurrent structural anchoring motifs using known experi-

mental structures expanded by evolutionary information from divergent homologs can be 

used as a powerful means to increase the sensitivity of Small Linear Motif (SLiM) recognition. 

SLiMs can be organised as relatively independent multivalent anchoring points, some able 

to provide strong affinity gains as the conserved glutamine in DLC8 ligands, others providing 

more moderate and diffuse affinity gains. The T134-T135 example highlights that combining 

moderate anchors can compensate for the absence of a strong anchoring point, providing 

guidelines for the identification of binding motifs when analysing complex interactomes.  

 

Figure 4-3: Examples of recurrent anchoring patterns used to constrain docking models between the 

dynein light chain and its binding partner MAG (CAPRI target T134). (A) Most available structural tem-

plates  (dynein in grey, binding partners in green) emphasize the importance of the T-Q-T motif in the binding; 

a profile (or Position-Specific Scoring Matrix, PSSM) based on templates is shown with the central Q highlighted 

by a red star. (B) Using external information from homologs of all dynein binding partners, the definition of the 

motif could be enlarged and translated into an enriched profile. (C) By scanning the profile along the MAG 

sequence, we identified the region most likely bound by dynein. The red star highlights the single position for 

which a positive score was obtained and the central L which plays the role of the Q in other dynein-bound 

ligands. 
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4.3 DISCUSSION 

Rounds 42-45 of the 7th session of CAPRI contained a total of six targets introducing several 

types of challenges for docking, such as challenging multimeric complexes (T136), a rede-

signed interface (T133) and a target where predictors were prompted to identify a short 

binding motif in a longer protein segment (T134).  

None of the targets in this edition of CAPRI were relevant for the use of our InterEvScore-

based free docking protocol, which requires building a joint multiple sequence alignment 

for two protein partners that reflects how the interface coevolves. However, we still made 

use of evolutionary information in one form or another for all targets (except for T131, which 

was entirely based on free docking from known structures of the interacting monomers). 

Most often this was done through the use of homologous interfaces for template-based 

docking or to derive recurrent interface features, and these strategies helped us to success-

fully model interfaces for targets T133, T136. In T134, we identified the correct MAG binding 

motif based on enriched sequence profiles combining structural and evolutionary infor-

mation. 

Altogether, we were able to generate Acceptable or better models in the top 5 for four out 

of six targets, including two with Medium models and two with High quality models. We 

missed T131-T132 where we downgraded Medium and Acceptable models below the top 5 

due to misleading biological information from the literature, while our InterEvDock2 server 

can generate a top 1 Medium quality model for T131. For T133, even though we submitted 

a correct model in the top 5, we think we may have reached higher quality models by fol-

lowing a slightly different strategy. No group submitted a High quality model even though 

this might have been expected given the presence of a template at 80% sequence identity 

(the wild-type complex) that was already Medium with respect to the redesigned interface. 

In our case, we did not resample deeply enough the fine details of the mutated regions 

because we explored larger moves, while we should have trusted that the redesigned inter-

face would maintain the same global binding mode as the wild-type complex and differ only 

(but significantly) in the local arrangement of interface features. 
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Overall, this CAPRI session revealed interesting ways to include evolutionary information 

beyond our usual docking pipeline. This includes of course classical template-based docking, 

for which the CAPRI targets in rounds 42-45 further reinforced previous observations that 

models derived from templates above 30% sequence identity should be optimised only lo-

cally, while templates below 30% sequence identity should always be considered but should 

be perturbed more extensively, including rigid-body moves. Finally, two targets in CAPRI 

rounds 42-45 highlighted structural interface motifs recurrently found among similar and 

homologous interfaces and conserved in evolution, confirming the importance of such an-

chors and stressing the need for improved ways to identify and encode them. 



 

 

CHAPTER 5  

Conclusions and  

perspectives 
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My thesis focused on improving the general prediction power of docking and scoring meth-

ods, in particular by drawing on co-evolutionary information. Apart from improving their 

performance, part of our mission as structural predictors is also to make our work accessible 

to the scientific community. In light of this, I participated in major developments of our 

docking server, InterEvDock2, described in Chapter 2. Based on input proteins, InterEvDock2 

suggests 10 most plausible interface models selected by combining physics-based scoring 

terms, statistical potentials and co-evolutionary information. InterEvDock2 now also accepts 

oligomeric structure inputs or sequence inputs, for which it can automatically model mono-

mer structures for docking. The user can also integrate previous knowledge about the inter-

action if available in the form of single or pairwise constraints between residues to filter out 

any non-relevant solutions. The complete pipeline can be run fully automatically or in a more 

user-controlled manner, using strategic breakpoints throughout the process and/or self-

tuned parameters. I validated the performance of InterEvDock2 on a large benchmark of 812 

heterodimeric docking cases with homology modelled unbound structures. InterEvDock2 

was capable of finding a correct complex structure in as much as 32 % of these cases (Table 

2-1, page 93). Of particular value to biologists is also its high performance in predicting 

interface residues with a 75% probability of having at least one correct prediction out of two 

predicted residues (one on each partner, Table 2-1, page 93).  

My work then focused on finding a more efficient and higher-resolution way of integrating 

evolutionary information to discriminate near-native structures from wrong complexes in 

scoring (Chapter 3, page 102). I managed to derive the implicit evolutionary information 

present in the sequence alignments to an atomic level of detail, using modelled homologous 

interfaces. This explicit representation is directly compatible with atomic-scale scoring and 

yields a significant increase from 32% to 40% success in predictive performance on a large 

benchmark (Table 3-6, page 119) by applying the same consensus approach between scores 

as in InterEvDock2. This strategy of atomic integration of evolutionary information is directly 

compatible with our InterEvDock2 pipeline as it relies on efficient scoring and will be inte-

grated in the server during its next update.  
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Finally, CAPRI consists in the ultimate blind-test scenario, where docking teams can put their 

methods to the test by predicting the structures of newly resolved and yet unpublished pro-

tein-protein interactions. Chapter 4 describes the strategies applied by our team, which en-

abled us to rank first in number and precision of correct predictions in the latest CAPRI round 

(2016-2019, Table 4-2 shows our performance for the rounds in which I participated). I was 

able to participate in 10 such docking challenges throughout my PhD. Resolving these chal-

lenges required a lot of team work and organisation as each target called for a different 

search strategy. According to the latest CAPRI results, template-based approaches generally 

tend to be the most accurate, when good templates can be found. Use of evolutionary in-

formation in addition to complementary scoring functions also enabled more efficient se-

lection of near-native models. Currently, InterEvDock2 is not well-suited to CAPRI’s server 

round since it does not integrate template-based docking. I am currently working on a third 

update of InterEvDock in collaboration with Pierre Tufféry’s team at RPBS, which will make 

use of the already optimised and automated multimeric template search in Proteo3Dnet 

(Postic, Marcoux et al. 2020). Together with the integration of our atomic-derived evolution-

ary information and an extra clash removal step at the end of the pipeline, InterEvDock3 will 

be equipped for participation in the next server rounds of CAPRI.  

Some of the most promising recent developments in the structural prediction of protein 

interactions rely on coevolution to provide specific constraints for assembly modelling. The 

DCA class of methods was recently showcased as a breakthrough for individual protein struc-

ture prediction, especially when integrated into deep learning pipelines (Xu and Wang 2019, 

Senior, Evans et al. 2020, Yang, Anishchenko et al. 2020) (section 1.3.1.2, page 43). DCA-like 

approaches were also applied to interface structural modelling with some success, but chal-

lenges remain, especially to obtain enough statistical information by building large coupled 

MSA pairing up interacting homologs. Further integration of DCA-like methods and other 

coevolution-based methods with machine learning and deep learning algorithms will likely 

prompt future progress and expand the range of applications. 
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DMS is also a promising direction for future research, providing a more systematic way of 

quantifying the effects of mutations through high-throughput assays coupled with next-

generation sequencing (section 1.1.3.2, page 12 and section 1.2.2.5.1, page 33). In close re-

lation to how covariation-based methods make use of natural sequences to infer 3D con-

tacts, DMS was very recently used as a source of synthetic sequence information to predict 

the 3D structure of a few protein domains of limited size (up to 56 amino acids), of one 

ribozyme RNA and one protein-protein interface composed of two interacting helices in 

leucine-zipper domains of a transcription factor complex as well as the structural prediction 

of RNA (Rollins, Brock et al. 2019, Schmiedel and Lehner 2019, Zhang, Xiong et al. 2020). 

Remaining technological and computational challenges explain the limited amount of DMS 

data so far usable for such applications. In particular, applying this deep mutagenesis tech-

nique to larger single proteins and interactions between standard-size proteins remains an 

issue that may be alleviated by future developments of DNA synthesis and sequencing tech-

nologies. In addition to protein-protein interface structural modelling and the prediction of 

interacting protein pairs, coevolutionary constraints, especially those derived from DCA-like 

methods, can be used to study interface dynamics and interaction specificity, to shed light 

on protein-ligand and protein-nucleic acid interactions and to help in designing new inter-

acting proteins (Morcos and Onuchic 2019). The development of binding affinity predictors 

is also closely related to that of docking scoring functions (Gromiha, Yugandhar et al. 2017, 

Geng, Xue et al. 2019). Recent work has shown that binding affinity prediction for interac-

tions between peptide-binding domains and disordered motifs benefits from transfer be-

tween binding domain families and from the design of custom machine learning algorithms 

(Cunningham, Koytiger et al. 2020). Future advances in binding affinity prediction for glob-

ular and disordered systems should also take advantage of a more systematic use of evolu-

tionary information, whether it be conservation, coevolution, or more innovative DMS data. 

Integrating flexibility into docking is still an ongoing challenge. In the traditional docking 

protocol, flexibility is taken into account during a second step after rigid-body sampling on 

a small number of carefully selected models (e.g. HADDOCK (van Zundert, Rodrigues et al. 
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2016), RosettaDock (Lyskov and Gray 2008), FiberDock (Mashiach, Nussinov et al. 2010), Fire-

Dock (Mashiach, Schneidman-Duhovny et al. 2008)). For many proteins, however, poses that 

are close to the native complex might already be overlooked during sampling, even with a 

powerful scoring function, when backbone and side chain conformations are too drastic. 

Other ways around this problem is the integration of flexibility before the sampling stage on 

the unbound monomers, followed by rigid-body cross-docking of structural ensembles, as 

demonstrated by (Krol, Chaleil et al. 2007). This method, however, extremely increases the 

number of outputted conformations to be scored. Programmes integrating elastic network 

model simplified representations of proteins coupled with a normal mode-based flexibility 

description might be better suited to a more modulated sampling and was implemented in 

the coarse-grained ATTRACT docking programme to approximately account for global con-

formational changes during the first stages of sampling (de Vries, Schindler et al. 2015). The 

RMSD calculation algorithm RapidRMSD also uses normal modes as well as linear collective 

motions to efficiently calculate structural changes between flexible docking poses (Neveu, 

Popov et al. 2018). In the end, even though flexibility integration is more of a sampling issue, 

scoring functions can also contribute in a rigid-docking context by better identifying the 

near-native pose. Integration of flexibility also tremendously increases the number of models 

to score, thus, it is important to develop efficient and discriminative scoring functions. 

Of high interest in biology would be to be able to reconstruct a complete structural protein 

interactome. This would help understand cellular dynamics, especially in the therapeutics 

field. For instance, structural insights in a protein interaction network would allow easier 

development of target-specific drugs that would only minimally disrupt the rest of the in-

teractome. The structural prediction of the whole network, not just the structure of protein 

pairs that were confirmed to interact beforehand, is an ongoing challenge, especially be-

cause of noisy data or even lack thereof. Cross-docking studies constitute a step towards 

that goal by trying to predict what two proteins interact within a set of proteins (Lopes, 

Sacquin-Mora et al. 2013). Experimentally acquired data centralised in protein interaction 

databases could also be used in a similar fashion to Ghadie and Xia (2019) (Ghadie and Xia 
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2019). In their study, the authors predict the effect of key disease-associated mutations 

based on the structural reconstruction of the human interactome by combining different 

levels of PPI information found in databases and reconstructing the structures through ho-

mology modelling (Ghadie and Xia 2019). 

Machine learning techniques are getting increasing attention in the field of structural biol-

ogy. The use of deep learning techniques in particular enabled major advances in protein 

fold prediction, as can be seen in the results on recent CASP targets (Xu and Wang 2019, 

Senior, Evans et al. 2020, Yang, Anishchenko et al. 2020) (section 1.3.1.2, page 43). Coupled 

with the use of co-evolutionary information and the innovative idea of predicting distance 

distributions rather than binary contacts, these latest techniques were able to predict accu-

rate enough distance maps to predict close-to-correct models. One could imagine that pro-

tein-protein docking might benefit from these recent advances in order to improve perfor-

mance and precision. For instance, machine learning could be used to predict protein inter-

face regions by returning a local score for each residue and/or by attributing a general score 

for a given structure (in that case, the recent and continuous DockQ score is quite conven-

ient), such as applied in (Pittala and Bailey-Kellogg 2020), or by predicting if continuous 

surface patches are at the interface, as in (Gainza, Sverrisson et al. 2020). One of the major 

challenges in machine learning techniques, however, lies within the careful preparation of 

the training, validation and test sets; this goes in hand with the problem of data availability 

for such practices. Although there are large enough amounts of non-redundant protein 

structures to train and test protein folding models, structures of protein complexes are less 

abundant. Coupled with redundancy filtering, there would be very few complexes left to 

avoid overfitting the model. Similarly to knowledge-based scoring functions, machine learn-

ing models can be trained on experimental structures and/or on decoys. For optimal training, 

datasets should cover the whole range of different structure qualities in a balanced fashion, 

meaning that negative (false interfaces) as well as positive (correct interfaces) inputs should 

be equally well represented. Therein lies another challenge as there are many ways of sam-
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pling an incorrect decoy but only a few to generate near-native decoys without being re-

dundant. In that sense, the generation of homology models of decoys, similar to the strategy 

that was applied in Chapter 3 but for a larger number of homologs, might be a way around 

that problem. We could also consider the use of transfer learning from protein fold predic-

tion models. 

Other than the datasets, thought also has to be given to what model is best suited as well 

as what information (features) should be inputted to the model and the best way of encod-

ing it. Inspiration can be found in well-established protein fold quality assessors, such as 

Ornate (Pages, Charmettant et al. 2019), KORP (Lopez-Blanco and Chacon 2019) or GraphQA 

(Baldassarre, Hurtado et al. 2020), fold predictor trRosetta (Yang, Anishchenko et al. 2020) 

or antibody-antigen interface predictor, PECAN (Pittala and Bailey-Kellogg 2020) for exam-

ple. In Ornate, proteins are encoded as 3D grids of fixed size and centred on each residue in 

the protein to exclude orientation-dependency. Each cube in the grid has a smoothed atom-

occupation probability and could be given a set of additional features. One could also con-

sider a simpler representation of residues, as is the case in KORP, where they are represented 

by only three backbone atoms each to avoid side-chain orientation-dependency. One could 

also consider representing interfaces as multi-level distance and angle maps as outputted 

by the trRosetta framework. Another intuitive way of representing proteins are graphs, as in 

the message-passing algorithm GraphQA or in the graph convolution network PECAN. In 

the graph, nodes (residues) and edges (contacts) can both be given specific features, such 

as residue type, conservation and co-evolution profiles, surface accessibility or secondary 

structure for nodes, and distance distributions for edges. In an interface prediction context, 

one could additionally add the chain number as a feature or encode receptor and ligand as 

two separate but communicating graphs as in PECAN. 

Finally, although deep learning methods are difficult to interpret, efforts are being made to 

better understand what is effectively learnt by these methods. For instance, (Pittala and 

Bailey-Kellogg 2020) used attention layers in the context of epitope and paratope prediction 



152 

 

to visualise the regions in antigens and antibodies that are given the most attention in the 

network. 

I will finish on protein interface design, a hot topic in light of the current Covid-19 situation 

to design suitable artificial antibodies against the virus. Protein interface design is a field 

very much related to assembly prediction and also relies on the understanding of the key 

factors that are important for the interaction between macromolecules. In that sense, protein 

design can learn from docking and vice versa and both can benefit from methods integrating 

complementary information taken from evolutionary analysis or DMS for example, particu-

larly in understanding the importance of anchor residues that govern interfaces and how 

they coordinate to result in a stable interface. Protein design usually involves many cycles of 

computational prediction and experimental selection. The more traditional approach con-

sists in tweaking an already existing structure to engineer new ones that will bind a particular 

target. As natural proteins are sometimes difficult to modify without disrupting their overall 

structure, some structural biologists turn towards de novo approaches, in which proteins are 

created from scratch (Netzer and Fleishman 2016). A difficulty in this field is not only to be 

able to predict protein shape from the sequence alone but also to make sure that they carry 

out their assumed function (e.g. binding). A fragment-based method was recently success-

fully applied to develop antibodies against the respiratory syncytial virus fusion protein 

(RSVF). The author’s method, TopoBuilder, shapes a new stable protein by assembling frag-

ments around an already-existing continuous or discontinuous epitope (Sesterhenn, Yang 

et al. 2020). Recent developments in SARS-CoV-2 research include the design of minipro-

teins to inhibit binding of the virus’ spike protein to the human angiotensin-converting en-

zyme 2 (ACE2) receptor (Cao, Goreshnik et al. 2020). The study used two approaches, one 

similar to TopoBuilder based on fragment reconstruction around the binding domain of 

ACE2, and another more systematic approach to find new binding sites with the virus. Results 

are promising with affinities beyond the nanomolar range and cryo-EM structures confirm-

ing the computational models.
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 Supplementary materials for Chapter 1 

Table A-1: Links to web resources to explore the evolution of interface structures, predict binding sites and 

model protein-protein and protein-peptide complex structures using evolutionary information. 

Category Name Type Link to web service Ref. 

Interface 

evolution 

compari-

son tools 

MM-Align software https://zhanglab.ccmb.med.umich.edu/MM-

align/  

(Mukherjee and 

Zhang 2009) 
iAlign software http://pwp.gatech.edu/cssb/ialign/  (Gao and 

Skolnick 2010) 
FCC software https://github.com/haddocking/fcc  (Rodrigues, 

Trellet et al. 

2012) 
TopMatch server https://topmatch.services.came.sbg.ac.at/  (Sippl and 

Wiederstein 

2012) 
QSalign software https://github.com/elevywis/QSalign  (Dey, Ritchie et 

al. 2018) 

VAST+ server https://www.ncbi.nlm.nih.gov/Struc-

ture/vastplus/vastplus.cgi  

(Madej, 

Lanczycki et al. 

2014) 

Interface 

structure 

and evo-

lution 

data-

bases 

QSbio database http://www.qsbio.org/  (Dey, Ritchie et 

al. 2018) 

PRISM database http://cosbi.ku.edu.tr/prism/ (Baspinar, 

Cukuroglu et al. 

2014) 
3D-intero-

logs 
database http://3d-interologs.life.nctu.edu.tw/  (Lo, Chen et al. 

2010) 
IBIS database https://www.ncbi.nlm.nih.gov/Struc-

ture/ibis/ibis.cgi  

(Shoemaker, 

Zhang et al. 

2012) 
ProtCID database http://dunbrack2.fccc.edu/ProtCiD/  (Xu and 

Dunbrack 2011) 
InterEvol database http://biodev.cea.fr/interevol/  (Faure, Andreani 

et al. 2012) 
Periodic table 

of protein 

complexes 

database http://www.periodicproteincomplexes.org/  (Ahnert, Marsh 

et al. 2015) 

Interactome 

INSIDER 
database http://interactomeinsider.yulab.org/  (Meyer, Beltran 

et al. 2018) 
Interac-

tome3D 
database https://interactome3d.irbbarcelona.org/  (Mosca, Céol et 

al. 2013) 

Protein 

evolution 

tools 

Jalview software https://www.jalview.org/  (Waterhouse, 

Procter et al. 

2009) 
ProViz server http://slim.icr.ac.uk/proviz/  (Jehl, Manguy et 

al. 2016) 

https://zhanglab.ccmb.med.umich.edu/MM-align/
https://zhanglab.ccmb.med.umich.edu/MM-align/
http://pwp.gatech.edu/cssb/ialign/
https://github.com/haddocking/fcc
https://topmatch.services.came.sbg.ac.at/
https://github.com/elevywis/QSalign
https://www.ncbi.nlm.nih.gov/Structure/vastplus/vastplus.cgi
https://www.ncbi.nlm.nih.gov/Structure/vastplus/vastplus.cgi
http://www.qsbio.org/
http://cosbi.ku.edu.tr/prism/
http://3d-interologs.life.nctu.edu.tw/
https://www.ncbi.nlm.nih.gov/Structure/ibis/ibis.cgi
https://www.ncbi.nlm.nih.gov/Structure/ibis/ibis.cgi
http://dunbrack2.fccc.edu/ProtCiD/
http://biodev.cea.fr/interevol/
http://www.periodicproteincomplexes.org/
http://interactomeinsider.yulab.org/
https://interactome3d.irbbarcelona.org/
https://www.jalview.org/
http://slim.icr.ac.uk/proviz/
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Binding 

site pre-

diction 

using 

evolution 

ConSurf server https://consurf.tau.ac.il/  (Ashkenazy, 

Abadi et al. 

2016) 
Rate4Site software https://www.tau.ac.il/~itay-

may/cp/rate4site.html  

(Mayrose, Graur 

et al. 2004) 
SPPIDER server http://sppider.cchmc.org/  (Porollo and 

Meller 2007) 
IntPred server & 

software 
http://www.bioinf.org.uk/intpred/  (Northey, 

Barešic et al. 

2017) 
EL-SMURF software http://github.com/QUST-AIBBDRC/EL-

SMURF/ 

(Wang, Yu et al. 

2019) 

DynJet2 software http://www.lcqb.upmc.fr/dynJET2/ (Dequeker, Laine 

et al. 2019) 
ISPRED4 server https://ispred4.biocomp.unibo.it/  (Savojardo, 

Fariselli et al. 

2017) 
PredUS server http://honig.c2b2.columbia.edu/predus  (Hwang, Petrey 

et al. 2016) 
PS-HomPPI server http://ailab-projects2.ist.psu.edu/PSHOMP-

PIv2  

(Xue, Dobbs et 

al. 2011) 
CPORT server http://milou.science.uu.nl/services/CPORT/  (de Vries and 

Bonvin 2011) 

Tem-

plate-

based 

protein-

protein 

docking 

PPI3D server http://bioinformatics.ibt.lt/ppi3d/  (Dapkunas, 

Timinskas et al. 

2017) 
SWISS-

MODEL 
server https://swissmodel.expasy.org/  (Waterhouse, 

Bertoni et al. 

2018) 
InterPred server http://bioinfo.ifm.liu.se/inter/interpred/  (Mirabello and 

Wallner 2017) 
HDOCK server http://hdock.phys.hust.edu.cn/  (Yan, Zhang et 

al. 2017) 

Free and 

guided 

docking 

servers 

ClusPro server https://cluspro.bu.edu/  (Kozakov, Hall et 

al. 2017) 

GRAMM-X server http://vakser.compbio.ku.edu/re-

sources/gramm/grammx/  

(Tovchigrechko 

and Vakser 

2006) 
PatchDock server https://bioinfo3d.cs.tau.ac.il/PatchDock/  (Schneidman-

Duhovny, Inbar 

et al. 2005) 

SwarmDock server https://bmm.crick.ac.uk/~svc-bmm-

swarmdock/  

(Torchala, Moal 

et al. 2013) 
InterEvDock2 server https://bioserv.rpbs.univ-paris-dide-

rot.fr/services/InterEvDock2/  

(Quignot, Rey et 

al. 2018) 
GalaxyTong-

Dock 
server & 

software 
http://galaxy.seoklab.org/tongdock  (Park, Baek et al. 

2019) 
pyDock server & 

software 

https://life.bsc.es/pid/pydock/  (Jimenez-Garcia, 

Pons et al. 2013) 

https://consurf.tau.ac.il/
https://www.tau.ac.il/~itaymay/cp/rate4site.html
https://www.tau.ac.il/~itaymay/cp/rate4site.html
http://sppider.cchmc.org/
http://www.bioinf.org.uk/intpred/
http://github.com/QUST-AIBBDRC/EL-SMURF/
http://github.com/QUST-AIBBDRC/EL-SMURF/
http://www.lcqb.upmc.fr/dynJET2/
https://ispred4.biocomp.unibo.it/
http://honig.c2b2.columbia.edu/predus
http://ailab-projects2.ist.psu.edu/PSHOMPPIv2
http://ailab-projects2.ist.psu.edu/PSHOMPPIv2
http://milou.science.uu.nl/services/CPORT/
http://bioinformatics.ibt.lt/ppi3d/
https://swissmodel.expasy.org/
http://bioinfo.ifm.liu.se/inter/interpred/
http://hdock.phys.hust.edu.cn/
https://cluspro.bu.edu/
http://vakser.compbio.ku.edu/resources/gramm/grammx/
http://vakser.compbio.ku.edu/resources/gramm/grammx/
https://bioinfo3d.cs.tau.ac.il/PatchDock/
https://bmm.crick.ac.uk/~svc-bmm-swarmdock/
https://bmm.crick.ac.uk/~svc-bmm-swarmdock/
https://bioserv.rpbs.univ-paris-diderot.fr/services/InterEvDock2/
https://bioserv.rpbs.univ-paris-diderot.fr/services/InterEvDock2/
http://galaxy.seoklab.org/tongdock
https://life.bsc.es/pid/pydock/
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HADDOCK server & 

software 
https://haddock.science.uu.nl/  (van Zundert, 

Rodrigues et al. 

2016) 
Docking 

scoring 

functions 

including 

evolu-

tionary 

infor-

mation 

InterEvScore software http://biodev.cea.fr/interevol/interevscore/  (Andreani, Faure 

et al. 2013) 

DockRank software http://ailab-projects2.ist.psu.edu/Dock-

Rank/  

(Xue, Jordan et 

al. 2014) 
iScore software https://github.com/DeepRank/iScore  (Geng, Jung et 

al. 2019) 

Covaria-

tion-

based 

predic-

tion of 

interface 

contacts 

EVcomplex server https://evcouplings.org/complex  (Hopf, Scharfe et 

al. 2014) 
ComplexCon-

tact 

server http://raptorx2.uchicago.edu/ComplexCon-

tact/  

(Zeng, Wang et 

al. 2018) 

Binding 

motif da-

tabases 

and pre-

diction 

tools 

Eukaryotic 

Linear Motif 

resource  

database http://elm.eu.org/  (Kumar, Gouw et 

al. 2019) 

IUPred2A server https://iupred2a.elte.hu/  (Meszaros, Erdos 

et al. 2018) 
PSSMsearch server http://slim.icr.ac.uk/pssmsearch/  (Krystkowiak, 

Manguy et al. 

2018) 

Peptide 

binding 

site pre-

diction 

PEP-Site-

Finder  
server https://bioserv.rpbs.univ-paris-dide-

rot.fr/services/PEP-SiteFinder/  

(Saladin, Rey et 

al. 2014) 
InterPep  software http://wallnerlab.org/InterPep/  (Johansson-

Akhe, Mirabello 

et al. 2019) 

Protein-

peptide 

docking 

servers 

Galaxy-

PepDock 
server http://galaxy.seoklab.org/pepdock  (Lee, Heo et al. 

2015) 
PIPER-Flex-

PepDock  
server http://piperfpd.furmanlab.cs.huji.ac.il/  (Alam, Goldstein 

et al. 2017) 

CABS-Dock server http://biocomp.chem.uw.edu.pl/CABSdock  (Kurcinski, 

Jamroz et al. 

2015) 
pepATTRACT server https://bioserv.rpbs.univ-paris-dide-

rot.fr/services/pepATTRACT/  

(de Vries, Rey et 

al. 2017)  
InterPep2 software http://wallnerlab.org/InterPep2  (Johansson-

Akhe, Mirabello 

et al. 2020) 

 

  

https://haddock.science.uu.nl/
http://biodev.cea.fr/interevol/interevscore/
http://ailab-projects2.ist.psu.edu/DockRank/
http://ailab-projects2.ist.psu.edu/DockRank/
https://github.com/DeepRank/iScore
https://evcouplings.org/complex
http://raptorx2.uchicago.edu/ComplexContact/
http://raptorx2.uchicago.edu/ComplexContact/
http://elm.eu.org/
https://iupred2a.elte.hu/
http://slim.icr.ac.uk/pssmsearch/
https://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-SiteFinder/
https://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-SiteFinder/
http://wallnerlab.org/InterPep/
http://galaxy.seoklab.org/pepdock
http://piperfpd.furmanlab.cs.huji.ac.il/
http://biocomp.chem.uw.edu.pl/CABSdock
https://bioserv.rpbs.univ-paris-diderot.fr/services/pepATTRACT/
https://bioserv.rpbs.univ-paris-diderot.fr/services/pepATTRACT/
http://wallnerlab.org/InterPep2
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 Supplementary materials for Chapter 2 

a.  InterEvDock2 pipeline 

If the user provided only an input sequence or a query-template alignment for one or both 

partners, preparatory steps are performed: 

Step (i) Template search: 

If the user did not provide a template, a profile is built for the query sequence using HHblits 

(Remmert, Biegert et al. 2011) against the Uniprot20 database and used by HHsearch 

(Soding 2005) to query the PDB70 database to find a suitable template. If no template with 

HHsearch probability over 95% is found, then the run is stopped. 

HHsearch templates are re-ordered with the following rules: all templates with HHsearch 

probability equal to the maximum probability are re-ordered by decreasing sequence iden-

tity; in case of equal HHsearch probability and sequence identity, HHsearch E-value and 

template PDB resolution are used as sorting criteria. In case there is an HHsearch match with 

sequence identity ≥ 70% with the query and which covers at least 50 residues, which is not 

among the highest HHsearch probability hits due to profile divergence, this match is ex-

tracted and set as the first hit among the re-ranked HHsearch matches. All templates with 

resolution worse than 7 Å are excluded. Only template regions with a DSSP (Kabsch and 

Sander 1983) assignment are kept for modelling. 

The top 20 templates for each query sequence are provided to the user once the run is over. 

The run is stopped after this step if the user selected a breakpoint after template selection; 

the user can then choose a template and use the corresponding query-template alignment 

to restart the run at the modelling step (iii). Otherwise, the first template hit is used for 

modelling.  

Step (ii) Query-template alignment: 
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If the user provided a template but no query-template alignment, the query sequence is 

(re)aligned with the template sequence using MAFFT (Katoh and Standley 2013) with the E-

INS-i algorithm. 

Note: if the user did not provide an input sequence nor a template but provided a query-

template alignment (following a template search breakpoint) where the template header 

starts with “>PDBID_chain:AUTOPDB”  (e.g. “>1ki1_D:AUTOPDB”) the template PDB coordi-

nates and the input sequence will be automatically retrieved following the information in 

the alignment.    

Step (iii) Modelling: 

Once a template and a query-template alignment are available for each partner with no user-

provided structure, comparative modelling is performed using a RosettaScripts (Fleishman, 

Leaver-Fay et al. 2011) protocol based on RosettaCM (Song, DiMaio et al. 2013) to build a 

3D model for (at least part of) the input sequence. By default, N-terminal and C-terminal 

regions of the query protein that are not aligned with the template sequence are not mod-

elled and insertions (loops) longer than 14 residues are not rebuilt. This can be adjusted by 

the user through 3 tunable parameters: the maximum length of loops to be rebuilt, the max-

imum length of the N-terminal extension and the maximum length of the C-terminal exten-

sion to model. 

The RosettaScripts protocol consists in a single “hybridize” mover step where the first 2 (cen-

troid) stages are sped-up by setting options stage1_increase_cycles and stage2_increase_cy-

cles to 0.1 (instead of default value 1.0). This speed-up was specifically introduced for 

InterEvDock2 and was not present in the protocol for building models in the PPI4DOCK da-

tabase. It is robust for relatively high homology levels but can lead to loss of precision in the 

docking results for models built from more remote templates (typically when both templates 

are below 50% sequence identity with the query). 

Once a 3D structure or a structural model is available for each partner, the molecular docking 

steps are performed: 
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Step (iv) Sampling: 

Exhaustive rigid-body sampling with FRODOCK 2.1 (frodock) (Ramírez-Aportela, López-

Blanco et al. 2016). 

Step (v) Constraints: 

This is an optional step performed only if the user provided information on residues (or pairs 

of residues) involved in the interface: after checking the user-provided constraints to remove 

any constraints involving residues not present or buried in the structure/model, apply con-

straints with FRODOCK 2.1 (frodockonstraints) to filter sampled solutions. 

Step (vi) Joint multiple sequence alignments: 

If the user did not provide a joint MSA for the two protein partners, a joint MSA is generated 

automatically by the server. Each query sequence is used as input to a single blastp search 

against the Uniprot-KB database, with threshold sequence identity > 30%, coverage > 75% 

and E-value < 10–4. Only one sequence per species is kept (the sequence with the highest 

sequence identity, and highest coverage if sequence identities are identical). Pairs of se-

quences belonging to the same species are collected. Redundant paired sequences with se-

quence identity higher than 90% are removed. The sequences are re-aligned by MAFFT. In 

the end, a set of two MSAs containing exactly the same number of sequences in the same 

species order. When fewer than 10 sequences are retrieved, a warning message in the server 

progress log indicates that models selected by InterEvScore may be less reliable. In case 

more refinement is needed in the construction of the joint MSAs, users may use the InterEvo-

lAlign server (Faure, Andreani et al. 2012). 

Step (vii) Clustering and scoring: 

All decoys (or only decoys remaining after filtering if constraints were provided) are clustered 

by FRODOCK 2.1 (frodockcluster) at ligandRMSD 4.0 Å. The best 10 000 FRODOCK2 cluster 

representatives are rescored using InterEvScore (Andreani, Faure et al. 2013) and SOAP-PP 

(Dong, Fan et al. 2013).  

Step (viii) Consensus calculation: 
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The consensus calculation returns a list of 10 models accounting for the fact that decoys well 

ranked by at least two different scoring methods have higher chances of being correct. The 

3*top 10 models for each score (FRODOCK2.1, InterEvScore, SOAP-PP) are re-ranked accord-

ing to the number of similar decoys (defined as ligand RMSD ≤ 10 Å) within the top 50 

models of the other two scores (down to a minimum of two similar decoys). In case of a tie, 

priority is given to InterEvScore top 10 models, then SOAP-PP, then FRODOCK. If necessary, 

the consensus list is then filled up to ten models by selecting the best models from each 

score (4 from InterEvScore, 3 from SOAP-PP and 3 from FRODOCK). When building the con-

sensus, models that are structurally redundant (i.e. minimum ligand RMSD of 10 Å) with 

previously selected models are excluded, so that the final list contains 10 structurally non-

redundant models. 

The top 5 residues for each partner (ranked starting with the residue most likely to be at the 

interface) are chosen as the five most frequently occurring residues at the interface of the 

top 10 models of each score (FRODOCK2.1, InterEvScore, SOAP-PP). In case of a tie, priority 

is given to residues with a higher frequency in the top 10 models of only InterEvScore, then 

SOAP-PP, then FRODOCK. A residue is considered at the interface if any of its non-hydrogen 

atoms is within a 5 Å radius of any non-hydrogen atom on the opposite partner protein, as 

defined in CAPRI (Mendez, Leplae et al. 2003). 

b.  PPI4DOCK benchmark (Yu and Guerois 2016) 

The list of the 812 complexes used for benchmarking, as well as results of the InterEvDock2 

pipeline, is provided in http://bioserv.rpbs.univ-paris-diderot.fr/services/InterEvDock2/ta-

ble.html. The full benchmark data (including for each target models for the two unbound 

partners, co-alignments for both protein partners and the reference protein complex for 

evaluation) can be downloaded from http://biodev.cea.fr/interevol/ppi4dock/PPI4DOCK.zip. 

http://bioserv.rpbs.univ-paris-diderot.fr/services/InterEvDock2/table.html
http://bioserv.rpbs.univ-paris-diderot.fr/services/InterEvDock2/table.html
http://biodev.cea.fr/interevol/ppi4dock/PPI4DOCK.zip
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c.  Success rates for interface residue predictions 

The number and percentage of cases for which at least one residue out of 10 could be pre-

dicted correctly as present in the complex interface is assessed. Contacts are defined as in 

CAPRI (Mendez, Leplae et al. 2003), i.e. two residues are assumed to be in contact if any non-

hydrogen atom in the first residue is within 5 Å of any atom in the second residue. 

For Zdock3.0.2 (Pierce, Hourai et al. 2011) interface predictions, we take the 5 residues on 

each partner (10 predicted residues in total) that occur most often in the interfaces of the 

top 10 Zdock3.0.2 models. In case of a tie, we draw at random among residues having the 

same frequency of occurrence. For instance, if 2 receptor residues occur in all 10 interfaces, 

those are selected to be among the top 5 predicted residues; if the following 6 residues 

occur in 9 out of 10 interfaces, we draw 3 at random among those 6 to obtain a total of 5 

predicted residues. This type of ties occurs relatively frequently for Zdock3.0.2 predictions 

(contrary to InterEvDock2 predictions, where residues are discriminated better thanks to the 

consensus approach and the fact that InterEvScore predictions are prioritised over SOAP_PP 

and FRODOCK predictions). Therefore, for Zdock3.0.2 predictions, we repeat the procedure 

1000 times and report the average success rate, which provides a robust way to evaluate 

those predictions. 

We also calculate a random reference for interface residue predictions. For this purpose, we 

randomly draw residues from the surface of each partner and assess whether these residues 

are located at the complex interface.  Surface residues are defined as residues with at least 

5% relative accessible solvent area as in (Pierce, Wiehe et al. 2014). This procedure is re-

peated 10,000 times when drawing 1, 2 or 5 residues per partner (i.e. 2, 4 or 10 residues in 

total). 99.9% confidence intervals (shown as red bars in Figure B-1) are extracted from the 

sorted list of success rates as the 5th and 9995th values. 
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A 

 

B 

 

Figure B-1: Illustration of the residue prediction success rate of InterEvDock2, ZDOCK3.0.2 and a random 

reference. Success rate (expressed as a percentage) for the interface residue prediction when taking 1, 2 or 5 

predicted residues in each partner (top 2, top 4 or top 10 predicted residues in total) for InterEvDock2 and 

ZDOCK3.0.2 compared to a random reference. The plots show the results for when at least one (A) or both (B) 
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of the two protein partners have at least one correct residue in the top 1, 2 and 5 of each partner (i.e. at least 

one correct residue in the top 2, 4 and 10 total predicted residues). In other words, (A) corresponds to the 

predictions marked as “≥1 correct in top x receptor OR top x ligand” (x = 1, 2, 5) in Table 2-1 and the (B) 

corresponds to the predictions marked as “≥1 correct in top x receptor AND top x ligand” (x = 1, 2, 5). As seen 

in Table 2-1, InterEvDock2 has a slightly higher number of correctly predicted residues than ZDOCK3.0.2 and 

both scores are clearly above the random reference, especially when looking at only the top 1 predicted residue 

per partner (top 2 predicted residues in total). 

d.  Default constraint thresholds 

The default distance thresholds for single constraints and constraint pairs were set to 8 Å 

and 11 Å respectively. In order to determine the ideal default distance for a single constraint, 

the interface residues in the native interface (residues containing a non-hydrogen atom at a 

distance of less than 5 Å from any non-hydrogen atom of the opposite chain) of 812 cases 

used to benchmark InterEvDock2 were identified. We then calculated the minimum distance 

of these residues to the opposite chain in all decoys of acceptable or better quality and in 

an equivalent number of incorrect decoys (considering separately incorrect decoys with a 

fraction of native interface residues above or below 10%) within the top 10,000 decoys 

ranked by FRODOCK2.1 after the FRODOCK2.1 clustering step. The default distance of 8 Å 

was chosen so as to recover at least 80% of the acceptable or better decoys with at least 

80% of the native interface residues having a minimum distance to the opposite chain under 

this threshold. As a comparison, we found that only 45% and 8% of the incorrect decoys with 

a fraction of native interface residues above or below 10% respectively were retained under 

these same conditions (55% and 92%, respectively, were filtered out). 

The optimal default distance of 11 Å for constraint pairs was determined using the same 

reasoning except that we used the minimum distance between the residue pairs present at 

the real interface (two residues on opposite chains are considered a pair when any non-

hydrogen atom of the first residue is within 5 Å of any non-hydrogen atom of the second 

residue) and observed their distribution in the three different types of decoys. The default 

distance of 11 Å was chosen so that at least 80% of the acceptable or better decoys had at 

least 80% of the native interface residue pairs within this distance threshold. As a compari-

son, we found that only 23% and 1% of the incorrect decoys with a fraction of native interface 
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residues above or below 10% respectively were retained under these same conditions (77% 

and 99%, respectively, were filtered out). 

e.  Performance according to sequence identity with 

PPI4DOCK template 

Table B-2: InterEvDock2 performance according to target-template sequence identity in PPI4DOCK. This 

table summarises the prediction performance of the InterEvDock2 consensus on the 812 PPI4DOCK cases, split 

by sequence identity between the target and the template used to model the unbound structures in the bench-

mark (the smaller of the target-template identities for the two protein partners is used). It shows only a mod-

erate drop in success rate for models built with remote templates (< 30% sequence identity) and an increase 

in success rate for models built with very close templates (>=95% sequence identity). 

 All cases 0-30% id 30-60% id 60-95% id 95-100% id 

Number of 

cases 
812 227 239 154 192 

Top 10 suc-

cess rate 

239 (29%) 57 (25.1%) 70 (29.3%) 47 (30.5%) 65 (33.9%) 

 

f.  Performance comparison with the Weng benchmark 

All cases from the Weng benchmark presented in Table B-3 and Table B-4 were bench-

marked using input structures and co-alignments as in the original InterEvDock paper (Yu, 

Vavrusa et al. 2016). All input files are provided in http://bioserv.rpbs.univ-paris-dide-

rot.fr/services/InterEvDock2/table-weng.html. 

Table B-3: InterEvDock2 performance on 47 cases in common between PPI4DOCK and Weng bench-

marks. (A) Table summarising the prediction performance of the 3 scoring components of InterEvDock2 (Inter-

EvScore, SOAP-PP and FRODOCK 2.1) and the InterEvDock2 consensus itself (this work) on 47 cases that are in 

common between the PPI4DOCK and the Weng benchmark (Hwang, Vreven et al. 2010). Note that the refer-

ence complexes are not exactly the same since a different representative might be chosen in PPI4DOCK com-

pared to the Weng benchmark cases. PPI4DOCK also uses homology models for docking while the Weng 

benchmark uses X-ray structures. Those are however cases where homologs with a known unbound structure 

exist with very high sequence identity to the query sequences. The highest success rates for each category are 

highlighted in bold. (B) 95% confidence intervals were calculated for results in (A) with a bootstrap analysis 

over 10,000 iterations where the performance was repeatedly calculated on a random set of 47 cases chosen 

from the original list of 47 (drawing with replacement). All performance values were ordered from smallest to 

largest and the 250th and the 9750th values correspond to the lowest and highest values of the 95% confidence 

intervals. This analysis shows that results in table (A) are variable due to the small number of cases. 

A 

http://bioserv.rpbs.univ-paris-diderot.fr/services/InterEvDock2/table-weng.html
http://bioserv.rpbs.univ-paris-diderot.fr/services/InterEvDock2/table-weng.html
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   PPI4DOCK category Weng benchmark diffi-

culty   
All Very-

easy 

Easy Hard Very-

hard 

Rigid-

body 

Me-

dium 

Diffi-

cult 

Number of 

cases 

 47 11 35 0 1 27 12 8 

Top 10 suc-

cess rate 

(PPI4DOCK) 

InterEvScore 14 4 10 0 0 10 2 2 

SOAP-PP 11 2 9 0 0 7 4 0 

Frodock v2.1 8 1 7 0 0 4 3 1 

InterEvDock2 

Consensus 

19 4 15 0 0 12 5 2 

Top 10 suc-

cess rate on 

the Weng 

benchmark 

InterEvScore 11 4 7 0 0 9 2 0 

SOAP-PP 15 6 9 0 0 12 3 0 

Frodock v2.1 7 2 5 0 0 6 1 0 

InterEvDock2 

Consensus 

13 4 9 0 0 10 3 0 

B 

   PPI4DOCK category Weng benchmark dif-

ficulty 

 
 

All Very-

easy 

Easy Hard Very-

hard 

Rigid-

body 

Me-

dium 

Diffi-

cult 

Number of 

cases 

 
47 11 35 0 1 27 12 8 

Top 10 suc-

cess rate 

(PPI4DOCK) 

InterEvScore [8, 20] [1, 8] [5, 16] [0, 0] [0, 0] [5, 16] [0, 5] [0, 5] 

SOAP-PP [5, 17] [0, 5] [4, 14] [0, 0] [0, 0] [3, 12] [1, 8] [0, 0] 

Frodock v2.1 [3, 13] [0, 3] [3, 12] [0, 0] [0, 0] [1, 8] [0, 7] [0, 3] 

InterEvDock2 

Consensus 
[13, 26] [1, 8] [9, 21] [0, 0] [0, 0] [6, 18] [1, 10] [0, 5] 

Top 10 suc-

cess rate on 

previous 

paper’s 

benchmark 

(Weng) 

InterEvScore [6, 17] [1, 8] [3, 12] [0, 0] [0, 0] [4, 14] [0, 5] [0, 0] 

SOAP-PP [9, 21] [2, 11] [4, 15] [0, 0] [0, 0] [6, 18] [0, 7] [0, 0] 

Frodock v2.1 [3, 12] [0, 5] [1, 9] [0, 0] [0, 0] [2, 11] [0, 3] [0, 0] 

InterEvDock2 

Consensus 
[7, 19] [1, 8] [4, 15] [0, 0] [0, 0] [5, 16] [0, 7] [0, 0] 

 

Table B-4: InterEvDock2 performance on 85 cases from the Weng benchmark. For comparison purposes, 

the prediction performance using the new pipeline on the same 85 cases from the Weng benchmark as the 

previous InterEvDock paper (Yu, Vavrusa et al. 2016) are reported below for individual scoring components of 

InterEvDock2 (InterEvScore, SOAP-PP and FRODOCK 2.1) and the InterEvDock2 consensus (this work) as well 
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as performances from SwarmDock and Zdock3.0.2 taken as is from the previous InterEvDock paper (Yu, Vavrusa 

et al. 2016). 

 
All Rigid-body Medium Difficult  
85 43 23 19 

InterEvScore 20 (24%) 14 (33%) 4 (17%) 2 (11%) 

SOAP-PP 22 (26%) 17 (40%) 4 (17%) 1 (5%) 

Frodock v2.1 20 (24%) 14 (33%) 5 (22%) 1 (5%) 

InterEvDock2 Consensus 27 (32%) 19 (44%) 7 (30%) 1 (5%) 

SwarmDock server 2013 25 (29%) 18 (42%) 6 (26%) 1 (5%) 

Zdock 3.0.2 17 (20%) 12 (28%) 3 (13%) 2 (11%) 
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 Supplementary materials for Chapter 3 

a.  Supplementary methods 

1. Docking parameters 

In the docking pipeline based on FRODOCK2.1, all parameters were set to default except for 

the following. Docking with the frodock executable used the “-O” option for “other” com-

plexes (not enzyme and not antibody-antigen). Clustering with frodockcluster was run with 

the –d 4 option, i.e. setting a LRMSD threshold of 4 Å for clustering. 

2. Scoring functions 

We employed an in house implementation of SOAP-PP that enables much more efficient 

scoring since decoy coordinates do not need to be explicitly generated. Note that only a 

slight reduction in performance on the 752 benchmark cases compared to the original 

SOAP-PP implementation has been observed (supplementary Table C-15).  

We also re-implemented InterEvScore for efficiency reasons. We introduced two variations 

compared to the best original InterEvScore (Andreani, Faure et al. 2013): we defined interface 

contacts through distance thresholds, instead of tessellation (“distance mode”) and we took 

evolutionary information into account for all interface residues instead of apolar patches 

only (so-called “standard mode” in the original implementation). InterEvScore outputs 

several scoring variants; here, we used the 2/3B 
evol
best and the 2B 

 
best (Andreani, Faure et al. 

2013). In 2/3B 
evol
best, each interface residue contributes to the final score through the 

potential of its best 2- or 3-body contact and the potential of its equivalents in the homolog 

sequences. 2/3B 
evol
best was found to perform best when scoring with homolog sequences 

(InterEvScore with implicit homology) (Andreani, Faure et al. 2013) and thus was used in this 

context. 2B 
 
best was used when scoring explicitly modelled side-chain models of our 

homologs (InterEvScore with explicit homology, IES-h). Indeed, we found that 3-body 
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potentials are less discriminative than 2-body potentials in the context of explicitly modelled 

decoys (supplementary Table C-16). 

We use Rosetta 3.8 (version 2017.08.59291) and the beta_nov15 Rosetta score. Before 

scoring with Rosetta ISC, we perform high-resolution interface side-chain optimisation by 

using ‘use_input_sc’ and ‘docking_local_refine’ options of Rosetta’s docking_protocol 

executable. We also tried adding the ‘dock_min’ option (for even more conservative 

modelling and shorter scoring runtimes) but scoring results were degraded. 

3. Details on coMSA calculation 

Compared to the original PPI4DOCK database (Yu and Guerois 2016), coMSAs were slightly 

adjusted by realigning the first sequence (query) with all other sequences (considered as a 

block) using MAFFT (Katoh and Standley 2013). 

When building reduced coMSA40 from the readjusted PPI4DOCK coMSAs, coMSAs that 

already had under 40 sequences before the hhfilter step were not filtered. 

The 10 sequences in coMSA10 were selected from coMSA40 as follows: Euclidian division was 

performed of the number of sequences in the coMSAs40 (including the query) over 10 with 

q and r, the quotient and remainder of this division. Starting from the first sequence, the 

next sequence is selected every q+1 for the first r steps, then every q until the end, including 

the last sequence resulting in 11 sequences with the first being the query and other 10, the 

homolog sequences. 

4. Threading models 

The PPI4DOCK benchmark contains docking targets based on unbound homology models 

of pairs of binding partners for which an experimental complex structure is available. The 

use of homology modelling for unbound partners enables to expand the benchmark, by 

alleviating the need to identify complexes for which experimental structures of the interface 

and the exact two binding partners have been solved. This makes the benchmark larger, but 
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as a counterpart, in PPI4DOCK the unbound structures used for docking are themselves 

homology models. 

In a docking context where we know the structures of the unbound partners, we would build 

homology models for all sequences in the coMSA by using the two query structures as 

modelling templates. However, since in PPI4DOCK the unbound query structures are 

themselves homology models, this would mean building a model by using a homology 

model as a template, and we felt this succession of modelling steps would lead to a loss in 

model precision. Therefore, the templates used for threading coMSA sequences were the 

unbound templates used to build the PPI4DOCK unbound models.  

Template protein sequences were directly extracted from their structures and aligned onto 

the coMSAs using MAFFT (sequence-profile alignment) (Katoh and Standley 2013) from 

which the pairwise homolog-template alignments were directly extracted. coMSAs were 

stripped down to positions that were covered by the query sequence. In order to ensure that 

the template structure exactly matched the template sequences in the stripped pairwise 

alignments, both template sequences were re-aligned using clustalw (Larkin, Blackshields et 

al. 2007) and identified irrelevant residues in the template structure were removed. 

Threading implies that the side-chains of our homologs are mapped very conservatively 

onto the query template structure. 

b.  Supplementary results 

1. Supplementary tables 

Table C-5: List of the 752 docking cases used as a benchmark set in this study. This subset of the 1417 

cases in PPI4DOCK contains all cases with at least 10 sequences in the coMSAs and at least one acceptable 

decoy in the top 10,000 FRODOCK2.1 decoys. 

1a2y_AB 

1a4y_CD 

1a9n_CB 

1agr_AB 

1aro_AB 

1ava_AB 

1awc_CD 

1axi_BD 

1azs_FD 

1b4u_AD 

1b6c_AB 

1blx_AB 

1bqh_AE 

1bqq_AB 

1buh_AB 

1bzx_AB 

1c1y_AB 

1c4z_AD 

1cg5_BC 

1cgi_AB 

1cmx_AB 

1co7_AB 

1d4v_BF 

1de4_AC 

1dkf_AB 

1dl7_AB 

1dlf_AB 

1dvf_BD 

1e50_AB 

1e96_AB 

1eaw_AB 

1ebd_BC 

1em8_AB 

1euv_AB 

1ewy_AB 

1ezv_TS 

1f45_AB 

1f6f_AB 

1f6m_AC 

1fle_AB 

1flt_BC 

1fm0_AB 

1fo0_ED 

1fq1_AB 

1fqj_AB 

1fr2_AB 

1fvu_CB 

1fx0_CD 

1g3n_AB 

1g3n_AC 

1g8k_AB 

1gaq_AB 

1gcq_AC 

1gcq_BC 

1gcv_CB 

1ggp_AB 

1gl4_AB 

1gla_DH 

1got_AB 

1gpw_AB 

1gxd_AB 

1h1v_AB 

1hcf_BC 

1he8_AB 

1hx1_AB 

1hyr_BC 

1i1q_BD 

1i2m_AB 

1i4d_AC 

1i85_BD 

1i8k_AB 

1i8l_AB 
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1iar_AB 

1ib1_BD 

1ikn_AB 

1ikn_CB 

1iod_CB 

1ixs_AB 

1j05_AB 

1j2j_AB 

1j7d_AB 

1jb0_AE 

1jb0_CE 

1jk0_AB 

1jql_AB 

1jr3_CD 

1jtd_AB 

1jwy_AB 

1jzd_BC 

1k5d_AC 

1k9o_AB 

1ka9_AB 

1kb5_AB 

1kcg_AC 

1kgy_AC 

1ki1_AB 

1ksh_AB 

1ktz_BD 

1kxq_AB 

1kz7_AB 

1l0o_AC 

1l9b_BD 

1lb1_AB 

1m2o_CD 

1m2t_AB 

1m2v_AB 

1ma9_AB 

1mbx_AB 

1mfa_AB 

1mox_BD 

1mqk_AB 

1n4x_AB 

1nb5_AC 

1nbf_AB 

1npe_AB 

1nql_AB 

1nvv_AC 

1nvv_BC 

1oaq_AB 

1oc0_AB 

1oey_AB 

1of5_AB 

1ofu_AB 

1oph_AB 

1out_BC 

1p2j_AB 

1p4l_BH 

1p4l_CG 

1p8v_AF 

1pk1_AB 

1ppf_AB 

1pvh_AB 

1q5q_GN 

1qa9_AB 

1qdl_BD 

1qo3_CB 

1qop_BD 

1r0r_AB 

1r8s_AB 

1rbl_AH 

1rjc_AB 

1rv6_BC 

1s1q_AB 

1sg1_AC 

1sg1_BC 

1shw_AB 

1shy_AB 

1spg_BC 

1spp_AB 

1sq0_AB 

1stf_AB 

1sv0_AB 

1t0p_AB 

1t8o_AB 

1ta3_AB 

1taw_BD 

1tco_AC 

1tdq_AB 

1te1_AB 

1tfx_AB 

1tgs_AB 

1tgz_AB 

1to2_AB 

1tue_AB 

1tx4_AB 

1u0s_AB 

1u2g_BC 

1u75_AB 

1u7f_AB 

1uac_AB 

1uad_AB 

1uea_AB 

1uex_CB 

1us7_AB 

1usu_AB 

1uw4_AB 

1uzx_AB 

1v4x_AD 

1v7p_AC 

1vg0_AB 

1w98_AB 

1wdw_AB 

1wmh_AB 

1wmu_BC 

1wpx_AB 

1wq1_AB 

1wqj_AB 

1wr6_AB 

1wrd_AB 

1wt5_BD 

1x75_BD 

1x86_AB 

1x9f_EF 

1xcg_AB 

1xd3_AB 

1xg2_AB 

1xqs_AB 

1y8x_AB 

1yc0_AB 

1ycs_AB 

1yvb_AB 

1z3e_AB 

1z5x_AB 

1z5y_AB 

1z7k_AB 

1z7m_BG 

1z7x_AB 

1zc3_AB 

1ze3_AB 

1zhh_AB 

1zjd_AB 

1zr0_AB 

2a19_AB 

2a1j_AB 

2a40_AB 

2a5d_AB 

2a9m_AB 

2ast_CB 

2atp_AC 

2aw2_AB 

2b4s_CD 

2b5i_AC 

2ba0_CH 

2bcg_AB 

2bcj_AD 

2bcn_AB 

2bex_AB 

2bkk_AB 

2bkr_AB 

2bky_AC 

2blf_AB 

2bo9_AB 

2bto_BH 

2btq_BD 

2c2v_AE 

2c5l_AB 

2cch_AB 

2cg5_AB 

2cjs_BC 

2ckh_AB 

2czv_BD 

2d5r_AB 

2d7t_AB 

2de6_AD 

2dsq_CB 

2dzn_AB 

2e27_AB 

2e2d_AB 

2e3x_AB 

2efe_AB 

2ejf_AB 

2eke_AB 

2ey4_AB 

2f5z_BC 

2f8x_CD 

2fd6_AD 

2fep_BD 

2fju_AB 

2fnj_CB 

2fu5_AB 

2g45_AB 

2goo_DF 

2gtp_AB 

2gwf_AB 

2gzd_AC 

2h62_AD 

2h62_BC 

2hle_AB 

2hrk_AB 

2htm_AC 

2hue_AB 

2hy5_BC 

2hy5_FC 

2ibg_AB 

2ie4_AB 

2ih3_DL 

2ihb_AB 

2inc_BF 

2io0_AB 

2io5_AB 

2iy0_AC 

2iy1_AB 

2j0s_AB 

2j0t_AB 

2j3t_AC 

2j59_AB 

2jb0_DH 

2jdi_AD 

2jdi_GH 

2jgz_AB 

2ngr_AB 

2nps_AB 

2npt_AB 

2nqd_AB 

2nxx_AB 

2nz8_AB 

2o25_AB 

2o26_BD 

2o2v_AB 

2o8v_BD 

2ocf_BD 

2ode_AB 

2oi9_CB 

2omz_AB 

2otu_AB 

2oul_AB 

2oxg_AB 

2oxq_BD 

2oz4_AB 

2ozb_CB 

2p45_AB 

2pbd_AB 

2pop_CD 

2ptt_AB 

2pu9_AC 

2puk_AB 

2pvg_AC 

2q5w_BD 

2qe7_AD 

2qho_AB 

2qi9_AE 

2qi9_BE 

2qkl_AB 

2qwo_AB 

2r0l_CB 

2r25_AB 

2r40_AB 

2rex_AB 

2sic_BD 

2uyz_AB 

2v1y_AB 

2v3b_AB 

2v4z_AB 

2v5q_AB 

2v7q_BE 

2v8s_AB 

2vje_BD 

2vol_BD 

2vrw_AB 

2vso_AB 

2vut_AB 

2vxs_FA 

2w19_DH 

2w83_DB 

2wbl_AC 

2wdt_AB 

2wiu_AB 

2wnv_AB 

2wnv_AC 

2wnv_BC 

2wo2_AB 

2wo3_AB 

2wp8_AC 

2wqa_DE 

2ws9_32 

2wus_AB 

2x5i_CB 

2xac_BC 

2xbb_AB 

2xko_BD 

2xqr_AB 

2xwu_AB 

2yc2_AB 

2yho_AB 

2ynm_DF 

2yvj_AB 

2z0d_AB 

2z35_AB 

2z3q_AB 

2z5c_AC 

2z7f_AB 

2za4_AB 

3a33_BC 

3a4u_AB 

3a6p_AC 

3a7a_AB 

3a8k_AB 

3a8y_AB 

3ab0_CB 

3agj_AB 

3aji_AB 

3alq_BF 

3amj_AD 

3bbp_AD 

3bdw_AB 

3bh7_AB 

3bik_AB 

3bp6_AB 

3bp8_AC 

3bpl_AC 

3bs5_AB 

3bt2_BE 

3buk_AC 

3bwu_AB 

3bx1_AB 

3bx7_BD 

3by4_AB 

3c5w_CB 

3cbj_AB 

3cji_CB 

3cki_AB 

3cph_AB 

3cpj_AB 

3cx8_AB 

3d1k_BD 

3d2f_AB 

3d2u_CB 

3d3b_AB 

3d65_AB 

3d7t_AB 

3daw_AB 

3dbh_CB 

3dge_BC 

3dlq_AB 

3dur_AB 

3dwg_AC 

3e1z_AB 

3ejb_AB 

3eno_AB 

3er9_AB 

3evs_BC 

3f1p_AB 

3f1s_AB 

3f5c_AB 

3f5c_AC 

3f7p_AB 

3f9k_BC 

3fap_AB 

3fc6_AB 

3ff7_BD 

3ff8_AC 

3fga_AB 

3fmo_AB 

3fn1_AB 

3fpn_AB 

3g33_CD 

3g3a_AB 

3g9v_AB 

3gjx_BC 

3gni_AB 

3gpr_AC 

3gqb_AB 

3gqi_AB 

3gym_AB 

3h11_AB 

3h2u_AB 

3h9r_AB 

3hax_DC 

3hct_AB 

3hei_AB 

3hh2_AB 

3hhs_AB 

3icq_AC 

3ifw_AB 

3ima_AB 

3imz_CD 

3jv4_AB 

3jv6_AB 

3jw0_AB 

3jw0_CB 

3k1i_AB 

3k2m_AB 

3k51_BF 

3k9m_AB 

3k9o_AB 

3kb3_AB 

3kbt_AB 

3kdj_AB 

3kfd_AF 

3kld_AB 

3kmu_AB 

3knb_AB 

3ks0_AC 

3kse_AB 

3kud_AB 

3kyc_CB 

3kyj_AB 

3l1z_AB 

3lb8_AB 

3lbx_AB 

3ldq_AB 

3lpe_AB 

3lqc_AB 

3ltf_CD 

3lvj_BD 

3lvl_BD 

3m0a_CD 

3m0d_DC 

3m18_AB 

3m7f_AB 

3m7q_AB 

3mca_AB 

3mdy_AB 

3mhv_BD 

3mi9_AB 

3mkb_CB 

3msx_AB 

3n1f_AB 

3n3a_BD 

3n3k_AB 

3n5b_CD 

3n9y_AB 

3nig_AC 

3nmv_AB 

3ny7_AB 

3o2p_AB 

3of6_BD 

3oky_BD 

3or1_CE 

3p5t_AD 

3p71_AB 

3pb1_AB 

3pv6_AB 

3q3j_DH 

3q66_BA 

3q9n_AB 

3qb4_AB 

3qb7_AB 

3qht_AB 

3qn1_AB 

3qq8_AB 

3qt2_AC 

3qvg_AB 

3qwq_AB 

3qwr_AC 

3r07_AB 

3r1g_AB 

3r2c_AB 

3rpf_BD 

3t62_AB 

3tg1_AB 

3tjz_AB 

3tmp_AB 

3tx7_AB 

3u7u_AB 

3uai_AB 

3udw_AB 

3uir_AB 

3ulq_AB 

3ulr_AB 

3uou_AB 

3v2a_BC 

3v2a_BD 

3v64_AC 

3vmf_AB 

3von_AC 

3vpb_AF 

3vr4_CB 

3vti_BD 

3vyt_BD 

3wxw_CB 

3ygs_AB 

3zdm_EF 

3zhp_AB 

3zl7_AB 

3zo0_AC 

3zu7_AB 

43c9_AB 

4a49_AB 

4a63_AB 

4a8x_AC 

4ag1_AB 

4auq_FE 

4b8a_AB 

4bfi_AB 

4bgd_AB 

4bi8_AB 

4bmo_BD 

4bnr_AB 

4bos_AC 

4bos_AD 

4bsr_AD 

4bv4_AC 

4bvx_AB 

4c4k_BA 

4c9r_CD 

4ccg_BA 

4cdk_AB 

4crw_AB 

4ct4_AB 

4cxa_AB 

4cym_AD 

4cym_BD 

4czx_BD 

4d0k_AB 

4d0l_AB 

4d0n_AB 

4dcn_AB 

4dfc_AB 

4dhi_AB 

4djd_BF 

4doh_AB 

4doh_AC 

4doh_CB 

4dri_AB 

4ds8_AB 

4dss_BC 

4dxe_BD 

4e4d_CE 

4eb5_AD 

4ekd_AB 

4emj_AB 

4es4_BD 

4etw_AB 

4ext_AC 

4ezm_BD 

4ffb_CB 

4ffy_BC 

4fjv_AB 

4fou_AB 

4fq0_AB 

4fqx_AC 

4ged_AB 

4gh7_AB 

4gmj_AB 

4goj_AB 

4gok_AB 

4grw_DB 

4grw_EA 

4gs7_AC 

4gs7_AD 

4gsl_AD 

4h2w_AD 

4h3k_AB 

4h5s_AB 

4hdo_AB 

4hgm_BA 

4hr6_CB 

4hr7_AB 

4hrl_AB 

4hrn_DC 

4i18_AC 

4i2l_CD 

4i2l_CF 

4i5l_AB 

4i6l_AB 

4i6m_AB 

4i6n_AB 

4ii2_AB 
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4ij3_AB 

4ij3_AC 

4ilh_AB 

4ilw_AB 

4imi_AB 

4iop_AB 

4iso_AB 

4iyp_AB 

4j4l_AB 

4jd2_FH 

4jd2_GH 

4je4_AB 

4jeg_AB 

4jgh_CD 

4jhp_AB 

4jqw_AB 

4jx1_AB 

4k1r_AB 

4k5a_AB 

4k71_AB 

4k81_AB 

4kax_AB 

4kgq_HJ 

4kml_AB 

4kng_AC 

4kng_EC 

4krp_AD 

4ksk_AB 

4kt0_CE 

4kt1_AB 

4kvg_AB 

4l0p_AB 

4l41_AB 

4l41_CB 

4lcd_AC 

4ldt_AB 

4ldt_CA 

4lhu_AC 

4lld_AB 

4lnu_CB 

4lry_AC 

4lw4_AC 

4lx0_AB 

4lxr_AB 

4m4r_AB 

4m69_AB 

4mcx_AC 

4mdk_AB 

4mjs_AB 

4mmz_CB 

4mn4_DC 

4mn8_AC 

4mng_CB 

4ms4_AB 

4msv_CF 

4n0g_AB 

4n3y_AC 

4n6e_BD 

4n6o_AB 

4naw_AB 

4ni2_AB 

4nif_AB 

4nik_AB 

4nkg_AB 

4nl9_AB 

4nqa_AB 

4ocm_CB 

4oic_AB 

4p1b_FD 

4p2a_AB 

4p5o_BD 

4p78_AD 

4pbv_AB 

4per_AB 

4pky_AB 

4qci_AC 

4qt8_AB 

4qts_AB 

4qtt_AB 

4qxf_AB 

4rca_AB 

4rku_NG 

4rr2_AB 

4rsu_IJ 

4tu3_AB 

4tvs_AB 

4tx3_AB 

4txo_AB 

4txv_AB 

4u30_AB 

4u32_AB 

4u5y_AB 

4u65_AC 

4u65_BC 

4ui0_AC 

4ut7_AB 

4ut9_CB 

4v3l_AD 

4v3l_DB 

4wlr_AC 

4wqo_CD 

4ww7_AB 

4x0l_AC 

4x0l_CB 

4xh9_AB 

4xl1_AB 

4y8d_AB 

4ydy_AB 

4yfc_AB 

4yii_AB 

4yn0_AB 

4ypg_CA 

5aie_AB 



 

 

 

Table C-6: InterEvScore statistical potential. The IESquery score represents only the statistical potential part 

of InterEvScore (2Bbest) without any evolutionary information, used to re-rank either the top 10,000 (10k) or the 

top 1,000 (1k) FRODOCK2.1 decoys. These results are shown for comparison with the homology-enriched IES-

h variants described in the main results. 

 Top 10 success rate Top 50 success rate 

IESquery/10k 154 (20.5%) 284 (37.8%) 

IESquery/1k 165 (21.9%) 297 (39.5%) 

IES-h40/10k 203 (27.0%) 335 (44.5%) 

IES-h10/1k 200 (26.6%) 338 (44.9%) 

 

Table C-7: Scoring performance of homology-enriched SCORES. Scoring performance of ISC on query 

decoys only and using the threaded homology models (ISC-h10) on top 1,000 FRODOCK2.1 decoys (1k) and 

coMSA10 as well as the performance of SPP-h40 and IES-h40 on top 10,000 (10k) with coMSAs40 and the 

performance of SPP-h10 and IES-h10 on 1,000 FRODOCK2.1 decoys with coMSAs10 for easier comparison. 

Performances were measured as the top 10 success rate on 752 benchmark cases. This table is the same as 

Table 3-4 except that it includes coMSA40/10k success rates for comparison purposes. 

 Top 10 success rate Top 50 success rate 

 coMSA40/10k coMSA10/1k coMSA40/10k coMSA10/1k 

IES-h 203 (27.0%) 200 (26.6%) 335 (44.5%) 338 (44.9%) 

SPP-h 228 (30.3%) 227 (30.2%) 365 (48.5%) 362 (48.1%) 

ISC / 157 (20.9%) / 301 (40.0%) 

ISC-h / 259 (34.4%) / 361 (48.0%) 

 

Table C-8: Numbers and timescales (on one CPU) of various elements and programmes. Times and 

numbers correspond to measurements on our 752-case PPI4DOCK benchmark. Decoys and docking 

mentioned below all refer to FRODOCK2.1 docking. The number of decoys generated per case changes 

according to the size of the complex, it averages at 9,651 with a maximum threshold of 10,000. Docking and 

decoy generation times are size-dependent but an average value is shown below. 

Number of cases in our benchmark 752 

Average number of sequences in our coMSAs 134 

Average number of residues per case (receptor + ligand) 389 

Maximum number of decoys generated in docking 10,000 

Average number of decoys per case  9,651 

Docking time with FRODOCK2.1 45 min - 1 h 

Structure generation time for 1,000 decoys with 

FRODOCK2.1 
1 min 

Threading time with Rosetta per structure 1-2 min 

SOAP-PP scoring time for 1,000 decoys 1 min 

Original SOAP-PP scoring time for 1,000 decoys 15 min 

InterEvScore scoring time for 1,000 decoys 1 min 

Rosetta’s ISC scoring time for 1,000 decoys 12 h 30 

Consensus calculation time per case 20 s (3 scores) –  

20 min (5 scores) 
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Table C-9: Top 1 and top 5 compared to top 10 success rates for consensus scores. 

 
Top 1 success rate Top 5 success rate Top 10 success rate 

Cons3 95 (12.6%) 190 (25.3%) 241 (32.0%) 
Cons3-h 113 (15.0%) 228 (30.3%) 271 (36.0%) 
Cons4-h/150h 104 (13.8%) 223 (29.7%) 276 (36.7%) 
Cons4-h/1k 111 (14.8%) 230 (30.6%) 282 (37.5%) 
Cons5-h/150h 109 (14.5%) 230 (30.6%) 289 (38.4%) 
Cons5-h/1k 113 (15.0%) 247 (32.8%) 304 (40.4%) 

 

Table C-10: Performance of the repulsive term in Rosetta’s score and ISC-h10/1k on the worst third or 

worst homologs Top 10 success rate of the fa_rep van der Waals repulsive terme in Rosetta’s scoring without 

(fa_rep /1k) and with homology through threaded homologs (fa_rep-h10/1k) as well as ISC-h10/1k using only 

the worst scoring third of homologs selected for each decoy individually (ISC-h10/w3/1k) or the worst scoring 

homolog for each decoy (ISC-h10/w1/1k) over 752 cases. 

 
Top 10 

success rate 

fa_rep/1k 9 (1.2%) 

fa_rep-h10/1k 34 (4.5%) 

ISC/1k 157 (20.9%) 

ISC-h10/1k 259 (34.4%) 

ISC-h10/w3/1k 227 (30.2%) 

ISC-h10/w1/1k 200 (26.6%) 

SPP/10k 183 (24.3%) 

SPP-h40/10k 228 (30.3%) 

SPP-h40/w3/10k 207 (27.5%) 

SPP-h40/w1/10k 188 (25.0%) 

 

Table C-11: Performance over PPI4DOCK difficulty categories. Top 10 success rates separated over the 

four difficulty categories in our benchmark for FRODOCK2.1, InterEvScore and its threaded-homology variants, 

SOAP-PP and ISC and their evolutionary variants and the six consensus scores presented in section 3.2.6. 

Performances were measured on 752 benchmark cases. 

    total very_easy easy hard very_hard 

    752 169 473 94 16 

In
d

iv
id

u
a
l 

sc
o

re
s 

FD2.1 164 (21.8%) 55 (32.5%) 102 (21.6%) 5 (5.3%) 2 (12.5%) 

IES / 10k 182 (24.2%) 55 (32.5%) 118 (24.9%) 8 (8.5%) 1 (6.2%) 

IES40 / 10k 179 (23.8%) 52 (30.8%) 118 (24.9%) 8 (8.5%) 1 (6.2%) 

IES-h40 / 10k 203 (27.0%) 52 (30.8%) 141 (29.8%) 10 (10.6%) 0 (0.0%) 

IES-h10 / 1k 200 (26.6%) 56 (33.1%) 133 (28.1%) 10 (10.6%) 1 (6.2%) 

SPP / 10k 183 (24.3%) 52 (30.8%) 120 (25.4%) 11 (11.7%) 0 (0.0%) 

SPP-h40 / 10k 228 (30.3%) 65 (38.5%) 146 (30.9%) 15 (16.0%) 2 (12.5%) 

SPP-h10 / 1k 227 (30.2%) 65 (38.5%) 146 (30.9%) 16 (17.0%) 0 (0.0%) 

ISC / 1k 157 (20.9%) 52 (30.8%) 99 (20.9%) 6 (6.4%) 0 (0.0%) 

ISC-h10 / 1k 259 (34.4%) 86 (50.9%) 158 (33.4%) 14 (14.9%) 1 (6.2%) 

ISC / 150h 218 (29.0%) 71 (42.0%) 139 (29.4%) 8 (8.5%) 0 (0.0%) 
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ISC-h10 / 150h 271 (36.0%) 83 (49.1%) 173 (36.6%) 13 (13.8%) 2 (12.5%) 

C
o

n
se

n
su

se
s 

Cons3
  241 (32.0%) 75 (44.4%) 152 (32.1%) 13 (13.8%) 1 (6.2%) 

Cons3-h 271 (36.0%) 82 (48.5%) 174 (36.8%) 13 (13.8%) 2 (12.5%) 

Cons4-h/150h 276 (36.7%) 84 (49.7%) 180 (38.1%) 11 (11.7%) 1 (6.2%) 

Cons4-h/1k 282 (37.5%) 82 (48.5%) 184 (38.9%) 16 (17.0%) 0 (0.0%) 

Cons5-h/150h 289 (38.4%) 93 (55.0%) 181 (38.3%) 14 (14.9%) 1 (6.2%) 

Cons5-h/1k 304 (40.4%) 94 (55.6%) 191 (40.4%) 18 (19.1%) 1 (6.2%) 

 

Table C-12: Performance with a more stringent near-native definition. Top 10 success rate with near-

natives defined as being of at least Medium quality according to CAPRI criteria. 

 Top 10 success rate Top 50 success rate 

FD 61 (8.1%) 103 (13.7%) 

IES/10k 49 (6.5%) 84 (11.2%) 

IES40/10k 50 (6.6%) 87 (11.6%) 

IES-h40/10k 60 (8.0%) 112 (14.9%) 

IES-h10/1k 66 (8.8%) 107 (14.2%) 

SPP/10k 60 (8.0%) 101 (13.4%) 

SPP-h40/10k 87 (11.6%) 145 (19.3%) 

SPP-h10/1k 85 (11.3%) 136 (18.1%) 

ISC/1k 50 (6.6%) 93 (12.4%) 

ISC/150h 70 (9.3%) 138 (18.4%) 

ISC-h10/1k 94 (12.5%) 130 (17.3%) 

ISC-h10/150h 99 (13.2%) 159 (21.1%) 

Cons3 62 (8.2%) / 

Cons3-h 76 (10.1%) / 

Cons4-h/150h 77 (10.2%) / 

Cons4-h/1k 84 (11.2%) / 

Cons5-h/150h 84 (11.2%) / 

Cons5-h/1k 86 (11.4%) / 

 

Table C-13: Performance in terms of top 150 nDCG. Average nDCG were calculated and normalised over 

the top 150 decoys for each individual scores over 752 cases (see section 1.3.3.4.4). 

 
Top 150 success rate nDCG /150 nDCG /150 

(excluding cases 

with nDCG = 0) 

FD 387 0.118 0.147 

IES/10k 377 0.135 0.180 

IES40/10k 371 0.134 0.180 

IES-h40/10k 417 0.157 0.195 

IES-h10/1k 431 0.165 0.201 

SPP/10k 444 0.138 0.157 

SPP-h40/10k 455 0.180 0.207 

SPP-h10/1k 458 0.186 0.213 

ISC/1k 437 0.115 0.137 

ISC/150h 476 0.149 0.169 

ISC-h10/1k 451 0.182 0.213 

ISC-h10/150h 476 0.208 0.236 
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Table C-14: Performance of consensus scores including InterEvScore implicit homology scoring. 

Performance of three- and four-way consensus scores in terms of top 10 success rates on 752 benchmark 

cases. Scores used in Cons3 were SOAP-PP on the top 10,000 or top 1,000 FRODOCK2.1 decoys (SPP/10k or 

SPP/1k), InterEvScore on the top 10,000 or top 1,000 FRODOCK2.1 decoys (IES/10k or IES/1k) and FRODOCK2.1 

(FD2.1). Scores used in Cons4 were SPP/10k, IES/10k, FRODOCK2.1 and Rosetta’s interface score on the top 

1,000 FRODOCK2.1 decoys (ISC/1k). Performances of individual scores used in the consensuses are reported in 

terms of top 10 and top 50 success rates, since consensus calculation relies on the top 50 decoys ranked by 

each component score.  

Score Top 10 success rate Top 50 success rate 

FD2.1 164 (21.8%) 292 (38.8%) 

IES/10k 182 (24.2%) 287 (38.2%) 

IES/1k 196 (26.1%) 295 (39.2%) 

SPP/10k 183 (24.3%) 328 (43.6%) 

SPP/1k 187 (24.9%) 295 (39.2%) 

Cons3 241 (32.0%) / 

ISC/1k 157 (20.9%) 301 (40.0%) 

Cons4 235 (31.2%) / 

 

We try to improve the baseline consensus performance by incorporating Rosetta’s physics-

based Interface Score (ISC) (section 3.1.2). As Rosetta scoring is more computationally 

expensive than the other two scores (about 750 times slower than SOAP-PP and InterEvScore 

calculations), we score only the top 1,000 decoys (as ranked by FRODOCK2.1) with ISC. This 

score is denoted ISC/1k as opposed to IES/10k and SPP/10k. As such, ISC is individually less 

well performing than the other scores in terms of top 10 success rate, even when 

InterEvScore and SOAP-PP are computed only on the top 1,000 FRODOCK2.1 decoys 

(supplementary Table C-14). However, the top 50 success rate is higher for ISC/1k than for 

any other individual score, except for SOAP-PP calculated on 10,000 decoys (supplementary 

Table C-14). In spite of this, integrating the top 50 decoys ranked by ISC/1k with the top 50 

of the other three scores into a four-way consensus, denoted Cons4, slightly degrades 

performance compared to Cons3 (supplementary Table C-14) while strongly increasing 

computation time. 

 

Table C-15: Performances as reported in the InterEvDock2 paper.  Top 10 success rates of original scores 

in InterEvDock2 with percentages calculated over the same 752 cases compared with equivalent scores in this 

article. Original InterEvScore was run on the original PPI4DOCK coMSA and on the realigned coMSAs used 
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throughout the present study (see section 3. ). Original SOAP-PP was run using the much slower Python 

implementation from the original publication. 

 Top 10 success rate of original 

scores in InterEvDock2 

Top 10 success rate of 

new scores 

FRODOCK2.1 164 (21.8%) 164 (21.8%) 

InterEvScore 171 (22.7%) (original coMSAs) 

177 (23.5%) (realigned coMSAs) 

182 (24.2%) 

SOAP-PP 194 (25.8%) 183 (24.3%) 

3-way consensus 239 (31.8%) 241 (32.0%) 

 

Table C-16: Performances of InterEvScore with 2-body and 2/3-body potentials. Top 10 success rates of 

InterEvScore with complete coMSAs (IES) on 10,000 decoys, InterEvScore using homology models (IES-h) on 

coMSA40 and 10,000 decoys and on coMSA10 and 1,000 decoys using only 2-body potentials or 2- and 3-body 

potentials. 

 𝟐/𝟑𝐁 
 𝐛𝐞𝐬𝐭 𝟐𝐁 

 𝐛𝐞𝐬𝐭 

IES/10k 182 (24.2%) 164 (21.8%) 

IES/1k 196 (26.1%) 192 (25.5%) 

IESquery/10k 147 (19.5%) 154 (20.5%) 

IESquery/1k 172 (22.9%) 165 (21.9%) 

IES-h40/10k 161 (21.4%) 203 (27.0%) 

IES-h10/1k 182 (24.2%) 200 (26.6%) 

 

2. Supplementary figures 

Figure C-2: Venn diagrams between scores. Top 10 success rate intersections between scores on 752 cases. 

FD: FRODOCK2.1, IES: InterEvScore on complete coMSAs, SPP: SOAP-PP and ISC: Rosetta’s interface score. /10k 

and /1k denote that 10,000 and 1,000 decoys were scored. –h10 and –h40 denote homology-enriched scores 

with 10 or 40 homolog models (coMSA10 or coMSA40). 
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Figure C-3: Bootstrap performance distributions. Bootstrap top 10 success rate distributions for 10,000 

iterations over the 752 cases in our benchmark (blue). Measured top 10 success rates are marked in red and 

average success rates over all bootstrap iterations are marked as yellow crosses. Black bars indicate 25th and 

75th percentiles of the bootstrap distribution. A two-sample t-test with unequal variances (Welch’s t-test) on 
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all score pairs in this plot systematically outputs p-values < 10-10 except for Cons3-h against ISC-h10/150h, thus 

all distribution means are statistically different relative to each other except for these two scores. 
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 Supplementary materials for Chapter 4 

 

a.  RosettaScript protocol for round CAPRI45 

RosettaScript protocol adapted for the round CAPRI45 to combine sampling of domain ori-

entations, loop remodeling under symmetry constrains. 

<ROSETTASCRIPTS> 

 <SCOREFXNS> 

  <ScoreFunction name="scorefxn_loopcen" patch="score4L" 

weights="cen_std.wts"> 

   <Reweight scoretype="atom_pair_constraint" weight="1.0"/> 

  </ScoreFunction> 

  <ScoreFunction name="scorefxn_loopfa" weights="talaris2013.wts"/> 

  <ScoreFunction name="score_docking_low_cst" symmetric="0" 

weights="interchain_cen"> 

   <Reweight scoretype="atom_pair_constraint" weight="1.0"/> 

  </ScoreFunction> 

  <ScoreFunction name="ref15sfxn" symmetric="0" 

weights="beta_nov15.wts"/> 

  <ScoreFunction name="ref15sfxn_symm" symmetric="1" 

weights="beta_nov15.wts"> 

   <Reweight scoretype="atom_pair_constraint" weight="2.0"/> 

  </ScoreFunction> 

 </SCOREFXNS> 

 <RESIDUE_SELECTORS> 

  <Or name="chain_symm"> 

   <!-- Used for the selection of 5 out of 6 subunits loaded each 

made of two chains (Nter and Cter domain without linker) --> 

   <!--  (i) These subunits are used to define the symmetry file,  

    (ii) Then, deleted before sampling the orientations of 

Nter domain vs Cter,  

    (iii) They are rebuilt by symmetry in the end --> 

   <Chain chains="B"/> 

   <Chain chains="C"/> 

   <Chain chains="D"/> 

   <Chain chains="E"/> 

   <Chain chains="F"/> 

   <Chain chains="G"/> 

   <Chain chains="H"/> 

   <Chain chains="I"/> 

   <Chain chains="J"/> 

   <Chain chains="K"/> 

  </Or> 

  <Or name="chainD"> 

   <Chain chains="D"/> 

  </Or> 

  <Index name="D1Cter" resnums="807P"/> 

  <Index name="D1tyr" resnums="784P"/> 

  <Index name="D2Nter" resnums="1A"/> 

  <Index name="D3pro" resnums="651A"/> 

  <Index name="D4lys" resnums="619A"/> 

  <Index name="frag2del" resnums="603-661"/> 

  <Index name="r146" resnums="146A"/> 

  <Index name="r147" resnums="147A"/> 

  <Index name="r148" resnums="148A"/> 

  <Index name="r149" resnums="149A"/> 
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  <Index name="r150" resnums="150A"/> 

 </RESIDUE_SELECTORS> 

 <TASKOPERATIONS> 

  <InitializeFromCommandline name="ifcl"/> 

  <RestrictToRepacking name="rtr"/> 

  <IncludeCurrent name="keep_curr"/> 

 </TASKOPERATIONS> 

 <FILTERS> 

  <!-- Filters are used to restrict the sampling of the Nter so that 

the Nter and Cter can be tethered after sampling -->  

  <AtomicDistance atomname1="CA" atomname2="CA" distance="8.0" 

name="CNmin" residue1="807P" residue2="1A"/> 

  <AtomicDistance atomname1="CA" atomname2="CA" distance="11.0" 

name="CNmax" residue1="807P" residue2="1A"/> 

  <AtomicDistance atomname1="CA" atomname2="CA" distance="10.0" 

name="Cst1min" residue1="807P" residue2="632A"/> 

  <AtomicDistance atomname1="CA" atomname2="CA" distance="30.0" 

name="Cst1max" residue1="807P" residue2="632A"/> 

  <AtomicDistance atomname1="CA" atomname2="CA" distance="5.0" 

name="Cst2min" residue1="784P" residue2="619A"/> 

  <AtomicDistance atomname1="CA" atomname2="CA" distance="16.0" 

name="Cst2max" residue1="784P" residue2="619A"/> 

  <AtomicDistance atomname1="CA" atomname2="CA" distance="10.5" 

name="Cst3min" residue1="807P" residue2="651A"/> 

  <AtomicDistance atomname1="CA" atomname2="CA" distance="12.0" 

name="Cst3max" residue1="807P" residue2="651A"/> 

  <CompoundStatement invert="false" name="CNthresh"> 

   <AND filter_name="CNmax"/> 

   <ANDNOT filter_name="CNmin"/> 

   <AND filter_name="Cst2max"/> 

   <ANDNOT filter_name="Cst2min"/> 

   <AND filter_name="Cst1max"/> 

   <ANDNOT filter_name="Cst1min"/> 

   <AND filter_name="Cst3max"/> 

   <ANDNOT filter_name="Cst3min"/> 

  </CompoundStatement> 

 </FILTERS> 

 <MOVERS> 

  <DeleteRegionMover name="del_symm" residue_selector="chain_symm"/> 

  <AddConstraints name="add_D1D2_cst"> 

   <DistanceConstraintGenerator atom_name1="CA" atom_name2="CA" 

function="BOUNDED 7.0 12.0 0.5 0.5 TAG" name="D1D2_cst" 

residue_selector1="D1Cter" residue_selector2="D2Nter"/> 

  </AddConstraints> 

  <AddConstraints name="add_D1D3_cst"> 

   <DistanceConstraintGenerator atom_name1="CA" atom_name2="CA" 

function="BOUNDED 7.0 12.0 0.5 0.5 TAG" name="D1D3_cst" 

residue_selector1="D1Cter" residue_selector2="D3pro"/> 

  </AddConstraints> 

  <AddConstraints name="add_D1D4_cst"> 

   <DistanceConstraintGenerator atom_name1="CA" atom_name2="CA" 

function="BOUNDED 5.0 16.0 0.5 0.5 TAG" name="D1D4_cst" 

residue_selector1="D1tyr" residue_selector2="D4lys"/> 

  </AddConstraints> 

  <!-- Defining the connectivity between residues --> 

  <!-- File contents: FOLD_TREE  EDGE 1 248 -1  EDGE 248 661 -1  EDGE 

248 715 1  EDGE 715 662 -1  EDGE 715 807 -1 --> 

  <AtomTree fold_tree_file="constraint_foldtree.cst" 

name="def_foldtree"/> 

   

  <!-- Parsed protocol for sampling at low resolution the orientation 

of the Nter domain --> 

  <!-- CNthresh distance filter is used to constrain the extremities 

of the domain, so they can be subsequently tethered by a linker -->  
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  <Docking conserve_foldtree="0" design="0" fullatom="0" 

ignore_default_docking_task="0" jumps="1" local_refine="0" name="dock_low" 

optimize_fold_tree="0" score_high="ref15sfxn" score_low="score_docking_low_cst" 

task_operations="ifcl"/> 

  <LoopOver drift="false" filter_name="CNthresh" iterations="50" 

mover_name="dock_low" ms_whenfail="FAIL_DO_NOT_RETRY" name="repeat_docklow"/> 

  <ParsedProtocol name="combine_docklow"> 

   <Add mover_name="repeat_docklow"/> 

  </ParsedProtocol> 

   

  <!-- Defining the connectivity between residues ==> Getting back 

initial configuration in terms of foldtree --> 

  <!-- File contents: FOLD_TREE  EDGE 1 661 -1  EDGE 1 662 1  EDGE 662 

807 -1 --> 

  <AtomTree fold_tree_file="constraint_foldtree2ini.cst" 

name="def_foldtree_ini"/> 

  <RemoveConstraints constraint_generators="D1D2_cst" 

name="rm_D1D2_cst"/> 

  <RemoveConstraints constraint_generators="D1D3_cst" 

name="rm_D1D3_cst"/> 

  <RemoveConstraints constraint_generators="D1D4_cst" 

name="rm_D1D4_cst"/> 

  <DeleteRegionMover name="del_frag2del" residue_selector="frag2del"/> 

  <AddChain file_name="input_chainD.pdb" name="addDsubunit" 

new_chain="1" scorefxn="talaris2013"/> 

  <DumpPdb fname="dump_preloop.pdb" name="writepose_preloop" 

scorefxn="talaris2013" tag_time="0"/> 

  <AddConstraints name="add_csts_hel"> 

   <!-- Adding constraints to obtain a helix structure --> 

   <FileConstraintGenerator 

filename="constraints_helix_centroid.cst" name="loop_hel"/> 

  </AddConstraints> 

  <LoopModeler config="kic" fast="0" name="l1" 

scorefxn_cen="scorefxn_loopcen" scorefxn_fa="scorefxn_loopfa"> 

   <Loop cut="710" skip_rate="0.0" start="702" stop="721"/> 

   <Build skip="0"/> 

   <Centroid skip="0"/> 

   <Fullatom skip="1"/> 

  </LoopModeler> 

  <SwitchResidueTypeSetMover name="switch_repr" set="fa_standard"/> 

  <DeleteRegionMover name="del_chainD" residue_selector="chainD"/> 

  <SwitchChainOrder chain_order="21" name="switch_chain"/> 

  <BridgeChains chain1="1" chain2="2" motif="2HA-3LX" name="bridge" 

overlap="2" scorefxn="scorefxn_loopcen"/> 

  <MutateResidue name="mutres146" new_res="GLY" 

residue_selector="r146"/> 

  <MutateResidue name="mutres147" new_res="LEU" 

residue_selector="r147"/> 

  <MutateResidue name="mutres148" new_res="LEU" 

residue_selector="r148"/> 

  <MutateResidue name="mutres149" new_res="PRO" 

residue_selector="r149"/> 

  <MutateResidue name="mutres150" new_res="PRO" 

residue_selector="r150"/> 

  <ParsedProtocol name="mutate_linker"> 

   <Add mover_name="mutres146"/> 

   <Add mover_name="mutres147"/> 

   <Add mover_name="mutres148"/> 

   <Add mover_name="mutres149"/> 

   <Add mover_name="mutres150"/> 

  </ParsedProtocol> 

  <DumpPdb fname="dump_postlinker.pdb" name="writepose_postlinker" 

scorefxn="talaris2013" tag_time="0"/> 

  <SetupForSymmetry definition="input_symm_def.symm" 
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name="setup_symm"/> 

  <!-- Adding constraints to create hydrogen bonds or other type of 

interactions such as salt bridges..etc,  

    so that we can avoid buried polar residues or unsatisfied 

polar residues --> 

  <AddConstraints name="add_csts_relax"> 

   <FileConstraintGenerator filename="constraints_relax_fa.cst" 

name="cst_final_relax"/> 

  </AddConstraints> 

  <FastRelax bondangle="false" bondlength="false" cartesian="false" 

min_type="dfpmin_armijo_nonmonotone" name="rlx_symm" 

ramp_down_constraints="false" repeats="1" scorefxn="ref15sfxn_symm" 

task_operations="ifcl,rtr,keep_curr"/> 

 </MOVERS> 

 <APPLY_TO_POSE/> 

 <PROTOCOLS> 

  <!-- Load a complex of 6 subunits each composed of two domains (Nter 

/ Cter without linker) which were initially used to define symmetry --> 

  <!-- Remove 5 subunits, keep only subunit 1 composed of two domains 

chain A and chain P --> 

  <Add mover="del_symm"/> 

   

  <!-- Define a set of spatial restraints and a fold-tree to generate 

restricted and efficient sampling of the Nter domain with respect to Cter--> 

  <Add mover="add_D1D2_cst"/> 

  <Add mover="add_D1D3_cst"/> 

  <Add mover="add_D1D4_cst"/> 

  <Add mover="def_foldtree"/> 

   

  <!-- Run the rigid body sampling of Nter orientation --> 

  <Add mover="combine_docklow"/> 

   

  <!-- Remove the constraints used for sampling --> 

  <Add mover="def_foldtree_ini"/> 

  <Add mover="rm_D1D2_cst"/> 

  <Add mover="rm_D1D3_cst"/> 

  <Add mover="rm_D1D4_cst"/> 

  <!-- Remove a segment of subunit 2 which was kept to restrict the 

Nter domain moves so that it does not clash subsequently with subunit 2--> 

  <Add mover="del_frag2del"/> 

   

  <!-- Recover the subunit 2 coordinates from the original file.  

    The Nter domain of subunit 1 packs against this subunit 

2  

    Presence of subunit 2 will prevent that the linker to be 

created between Nter-Cter clashes with neighbouring subunits --> 

  <Add mover="addDsubunit"/> 

   

  <!-- Dump the pose for checking --> 

  <Add mover="writepose_preloop"/> 

   

  <!-- Extend the loop between Nter and Cter domain, only backbone 

trace and do not close it (keep two chains)--> 

  <Add mover="add_csts_hel"/> 

  <Add mover="l1"/> 

  <Add mover="switch_repr"/> 

   

  <!-- subunit 2 used to restrict loop conformation can be removed --> 

  <Add mover="del_chainD"/> 

  <!-- Cter was chain A while Nter was chain P, they have to be 

switched before bridging the loop --> 

  <Add mover="switch_chain"/> 

  <Add mover="bridge"/> 
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  <!-- Alter the sequence of the linker to retrieve the correct side-

chains -->  

  <Add mover="mutate_linker"/> 

   

  <!-- Dump the pose for checking --> 

  <Add mover="writepose_postlinker"/> 

   

  <!-- Regenerate the symmetric subunits and relax --> 

  <Add mover="setup_symm"/> 

  <Add mover="add_csts_relax"/> 

  <Add mover="rlx_symm"/> 

 </PROTOCOLS> 

 <OUTPUT/> 

</ROSETTASCRIPTS> 
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