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Abstract

Ce travail concerne les conditions de cohérence des données et leurs applications dans l’auto-calibrage géométrique
des systèmes de tomographie. En imagerie médicale radiologique, un objet est projeté à travers un système
mécanique et les projections correspondantes doivent satisfaire certaines conditions si le système est cohérent. Ces
conditions sont appelées conditions de cohérence des données (DCC pour “data consistency conditions”). Dans la
situation où l’objet est supposé inconnu, les DCC jouent un rôle important pour calibrer les paramètres géométriques
du système uniquement à partir des données de projection. Notre travail consiste, d’une part, à dériver de nouvelles
DCC dans différents contextes géométriques et, d’autre part, à essayer de les appliquer de manière appropriée à cer-
tains problèmes de calibrage géométrique correspondants. Nous étudions trois contextes géométriques : géométrie
parallèle 3D, géométrie à faisceau conique avec trajectoire linéaire de la source et géométrie à faisceau conique
générale. Dans le cas de la géométrie parallèle 3D, nous présentons des DCC par paires. Nous obtenons alors une
formule analytique pour calibrer la direction de la projection dans le cas général, et une technique de conversion du
problème de calibrage 3D en de nombreux problèmes de calibrage 2D différents dans un cas particulier dégénéré.
Dans la géométrie conique avec une trajectoire linéaire de la source, nous réutilisons la technique ci-dessus et
obtenons une méthode pour calibrer la position de la source de la projection correspondante, basée sur la condition
de cohérence de la géométrie de faisceau en éventail. Pour la dernière contribution dans le contexte de la géométrie
générale du faisceau conique, nous dérivons de nouvelles DCC avec une trajectoire de source générale et nous les
appliquons à un problème de calibrage du faisceau conique avec une trajectoire circulaire de la source, où la position
de la source sur la trajectoire circulaire est le paramètre à calibrer.

Mots clés : conditions de cohérence des données, conditions sur l’image des opérateurs, calibration géométrique,
géométrie conique, tomographie

This work concerns the data consistency conditions and their applications in geometric self-calibration. In Medical
Imaging, an object is projected through a mechanical system and the corresponding projections must satisfy certain
conditions if the system is consistent. These conditions are called data consistency conditions (DCC). In the situa-
tion that the object is assumed to be unknown, DCC play an important role to calibrate the geometric parameters
of the system only from the projection data. Our work on one hand is to derive new DCC in different geometry
contexts, and on the other hand is to try to appropriately apply them into some corresponding geometric calibration
problems. We investigate three geometry contexts: 3D parallel geometry, cone-beam geometry with linear sources
and general cone-beam geometry. With 3D parallel geometry, we present a pair-wise DCC leading to an analytic for-
mula to calibrate the projection’s viewing direction in general case, and a technique of converting the 3D calibration
problem into many different 2D calibration problems in a particular degenerate case. In the cone-beam geometry
with linear sources, we reuse the above technique and give a method to calibrate the corresponding source position
of the projection based on fan-beam consistency condition. For the last contribution with general cone-beam ge-
ometry, we derive new DCC with general source trajectory and apply them into a cone-beam calibration problem
with circular source trajectory, where the source position on the circular trajectory is the parameter being calibrated.

Keywords: data consistency conditions, range conditions, geometric calibration, cone-beam geometry, tomog-
raphy
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Chapter 1

Introduction

French introduction

Nous commençons par un modèle classique en imagerie médicale. Une source radiologique émet des faisceaux de
rayons X qui traversent un objet 3D. L’intensité des faisceaux de rayons X avant et après le passage de l’objet 3D
est différente. En fait, selon le livre [Natterer, 2001], à la page 1, l’intensité des rayons X a été atténuée après avoir
traversé l’objet, selon l’équation suivante (nous copions l’équation du livre de Natterer avec un petit changement
dans les notations):

I1
I0

= exp

(
−
∫

L

F (x⃗) dx⃗

)
, x⃗ = (x1, x2, x3) ∈ R3.

Ici, I0 désigne l’intensité initiale des faisceaux de rayons X et I1 désigne l’intensité des faisceaux de rayons X après
avoir traversé l’objet 3D; F (x⃗) est la représentation mathématique de l’objet 3D, et

∫
L
F (x⃗) dx⃗ désigne l’intégrale

de F le long de la droite L. En pratique, l’intensité initiale des faisceaux de rayons X I0 est connue, l’intensité des
faisceaux de rayons X après avoir traversé l’objet 3D I1 peut être mesurée, grâce à un système de radiologie. On
obtient ainsi les données de l’intégrale de droite. Ces données peuvent être collectées sur un détecteur, qui se trouve
de l’autre côté de l’objet 3D, par rapport à la position de la source de rayons X. Les données sur le détecteur peuvent
être considérées comme une image 2D, ou plus exactement comme la projection de l’objet 3D. Prenons quelques
exemples simples: la radiographie du poumon, le scanner du cerveau, etc. Ce qui est collecté sur le système de
mesure est une image ou une succession d’images (projections en 3D) ou une courbe ou une succession de courbes
(projections en 2D) d’un certain objet en 3D, alors que l’objet est composé de parties internes du corps humain qui
ne peuvent être vus à l’œil nu. En général, on suppose que l’objet 3D est totalement inconnu. L’objectif principal
de l’imagerie médicale est de reconstruire l’objet 3D inconnu à partir des données des projections 2D. Ce travail est
appelé “reconstruction d’image”.

Outre la reconstruction d’image, de nombreux autres aspects et problèmes doivent être pris en compte en imagerie
médicale. Par exemple, dans le problème de la région d’intérêt (ROI), pour une raison quelconque, nous aimerions
reconstruire seulement une certaine région à l’intérieur de l’objet, l’article [Noo et al., 2004] donne une méthode pour
traiter ce problème, qui peut même fonctionner avec des projections tronquées; ou parfois nous devons synthétiser la
projection inconnue à partir des données de projection déjà données, voir [Patch, 2002a, Patch, 2002b, Patch, 2004,
Levine et al., 2010, Carlsson et al., 1994]. Dans notre situation, nous étudions les conditions de cohérence des
données. Dans le modèle direct, où l’objet 3D est connu, si les projections sont bien définies dans un modèle
géométrique et si le système est cohérent, les données de projection doivent satisfaire certaines conditions, appelées
conditions de cohérence des données (CCD ou DCC Data Consistency Conditions), même s’il existe des erreurs
ou des bruits dans le processus de mesure. Les DCC peuvent être des équations, des relations ou des propriétés
spéciales sur les données de projection. Dans le problème sur lequel nous travaillons, qui est un modèle inverse ou un
problème inverse, où l’objet 3D est inconnu, les DCC jouent un rôle crucial, car à partir de ces DCC sur les données
de projection, nous pouvons calibrer les paramètres géométriques correspondants du système d’acquisition. Il s’agit
d’une étape importante car nous devons savoir comment les projections que nous avons acquises sont disposées les
unes par rapport aux autres ou comment elles s’alignent, avant d’effectuer l’étape de reconstruction de l’image.
Selon le contexte géométrique considéré, nous disposons de différents ensembles de paramètres qui doivent être
calibrés.

Le travail de notre thèse est d’étudier chaque contexte géométrique particulier pour dériver de nouvelles DCC, et
ensuite essayer de les appliquer pour calibrer les paramètres géométriques correspondants. Plutôt que des méthodes
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4 CHAPTER 1. INTRODUCTION

d’optimisation, notre but est de donner des méthodes analytiques ou des formules, pour estimer les paramètres de
calibration géométrique rapidement et correctement. Le manuscrit présente les connaissances en imagerie médicale
du point de vue des DCC, ce qui signifie qu’il montre les DCC et les résultats associés dans chaque contexte
géométrique, du plus basique, la géométrie parallèle 2D, au plus intéressant aujourd’hui, la géométrie à faisceau
conique 3D.

Le chapitre 1 se contente d’introduire le matériel de base (définitions, propriétés connues) pour rappel au lecteur;
les résultats sont énumérés sans preuves, car ils peuvent être trouvés dans d’autres sources. Les chapitres 2, 3 et 4
présentent nos contributions en détail. Le chapitre 2 présente les DCC pour les projections parallèles 3D et leurs
applications dans la calibration de la géométrie parallèle 3D. Le chapitre 3 présente les DCC pour les projections
en éventail, puis les applique à l’étalonnage par faisceau conique avec des sources linéaires. Enfin, le chapitre 4
présente plusieurs nouvelles DCC pour la géométrie conique dans deux contextes géométriques principaux. Enfin,
les dernières DCC sont dérivées pour traiter le problème de calibration dans la géométrie conique avec trajectoire
circulaire.

English introduction

We start with a classical model in Medical Imaging. There exists an x-ray source, which emits x-ray beams passing
through some 3D object. The intensity of the x-ray beams before and after passing through the 3D object are
different. In fact, according to the book [Natterer, 2001] on page 1, the intensity of the x-ray beams have been
reduced after passing through the object, following the below equation (we are copying the equation from the book
of Natterer with a tiny change in the notations):

I1 (L)

I0 (L)
= exp

(
−
∫

L

F (x⃗) dx⃗

)
, x⃗ = (x1, x2, x3) ∈ R3.

Here I0 (L) denotes the initial intensity of the x-ray beam L and I1 denotes its intensity, which has been reduced,
after passing through the 3D object. The notation F (x⃗) is the attenuation coefficient of the 3D object at x⃗, the
information of F (x⃗) gives us the illustration of the 3D object. And

∫
L
F (x⃗) dx⃗ means the line integral of F along

the beam L. In practice, the initial intensity of the x-ray beams is known, the intensity of the x-ray beams after
passing through the 3D object can be measured, thus from the mechanical system after the measuring process, we
obtain the line-integral data. These data is recorded and collected on a detector, which is on the other side of the
3D object, in comparison to the x-ray source position. The data on the detector can be considered as a 2D image,
or we properly call it the projection of the 3D object. We can take a few simple examples: in the X-ray scan of the
lung, the CT scan of the brain, etc, what we receive is a 2D image or projection of a certain 3D object, while the
objects are the inner parts of our bodies and cannot be seen with the naked eye. Usually, the 3D object is assumed
to be completely unknown. And the main objective in Medical Imaging is to reconstruct the unknown 3D object
based on the 2D projection data. This work is called Image Reconstruction.

Besides Image Reconstruction, there are also many other aspects and problems need to be considered in Medical
Imaging. For instance, in the problem of region-of-interest (ROI), for some reason we would like to only reconstruct
a certain region inside the object, the paper [Noo et al., 2004] gives a method to deal with it, that can even work
with truncated projections; or sometimes we need to synthesize the unknown projection from the already given
projection data, see [Patch, 2002a, Patch, 2002b, Patch, 2004, Levine et al., 2010, Carlsson et al., 1994]. In our
situation, we study the Data Consistency Conditions. In the forward model, where the 3D object is known, if
the projections are well-defined in a geometry model, and the system is consistent, then the projection data must
satisfy certain conditions, which are called Data Consistency Conditions (DCCs). DCCs can be equations, relations
or special properties on the projection data. In the problem we are working on, which is a backward model or
an inverse problem, where the 3D object is unknown, DCCs play a crucial role, since from these DCCs on the
projection data, we can calibrate the corresponding geometric parameters of the system. This is an important step
because we need to know how the projections we are having relate to each other or how they align, in prior to
perform the image reconstruction step. Depending on the considering geometry context, we have different set of
parameters that need to be calibrated.

The work of our thesis is to study each particular geometry context to derive new DCCs, and then try to apply
them to calibrate the corresponding geometric parameters. Instead of the optimization methods, our aim is to give
analytic methods or formulae, to calibrate the parameters fast and correctly. The manuscript presents the Medical
Imaging knowledge in the DCC point of view, which means it shows the DCCs and related results in every geometry
context, from the most basic one: 2D parallel geometry, to the most interested nowadays: cone-beam geometry.
Because of the length of the manuscript, chapter 1 just shows the basic materials to remind the viewers, in the
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spirit that the results are listed with no proofs, because they might be found in some other sources. Chapter 2,
3 and 4 will show our contributions in details. Chapter 2 shows the DCCs for 3D parallel projections and their
applications in 3D parallel calibration. Chapter 3 shows the DCCs for fan-beam projections, then applying them
into cone-beam calibration with linear sources. Finally, chapter 4 shows several new DCCs for cone-beam geometry
in two main geometry contexts, then a final DCC is derived to deal with the calibration problem in circular cone-
beam geometry. At the end, we also have an Appendix section, where our three proceedings papers are provided.
The proceedings paper [Clackdoyle et al., 2018] in the 2018 IEEE Nuclear Science Symposium and Medical Imaging
Conference is given in appendix A. Appendix B provides the proceedings paper [Nguyen et al., 2020a] in the SPIE
Medical Imaging 2020 conference, which is the basis of chapter 2. Similarly, appendix C provides the proceed-
ings paper [Nguyen et al., 2020b] in the 6th International Conference on Image Formation in X-Ray Computed
Tomography, which is the basis of chapter 3.

Small convention on the notations

• Throughout the manuscript, we use the single integral notation, without any further mention about the
bounds, to refer to the integral over the whole real line R. And the same thing respectively apply on the double
or triple integral over R2 and R3:

∫
f (x) dx means

∫
R f (x) dx,

∫∫
f (x) dx means

∫∫
R2 f (x) dx,

∫∫∫
f (x) dx

means
∫∫∫

R3 f (x) dx.

• Also, we use the notation R2 and R3 to mention the 2D and 3D Radon transform, respectively.

1.1 2D parallel geometry

In this section, we describe the 2D parallel geometry and show the definition of the 2D parallel projections (sec-
tion 1.1.1); we also show the Helgason-Ludwig consistency conditions (section 1.1.2) and some related results
(section 1.1.3).

1.1.1 2D Radon transform and 2D parallel projections

We start with the 2D plane, where (x1, x2) is the standard coordinate system. On this plane, we are having a
2D object f , which is assumed to be a real-valued function with compact support. A set of many x-ray sources
emit many parallel beams passing through the 2D object f . The detector line is on the other side of the object,
in comparison to the x-ray sources. It is perpendicular to the direction of the x-ray beams. Figure 1.1 gives us an
illustration. Here we are using the 2D unit vector α⃗ϕ to show the positive direction of the detector line, where ϕ

is the angle between the direction of the detector line and the x1-axis. β⃗ϕ is another 2D unit vector, which can

be obtained by rotating α⃗ϕ 90◦ counter-clockwise. By the construction of the geometry, β⃗ϕ is then showing the
directions of the parallel beams. For each value of the angle ϕ, we obtain a parallel projection, which records the
line integral data of the 2D object f along the x-ray beams in the β⃗ϕ direction. It is a single-variable function
of s, where |s| is the distance from the origin to the considering x-ray beam, over whom we are computing the
corresponding line integral. The 2D parallel projections are defined through the 2D Radon transform R2, which
maps the 2D function f to the set of its line integrals:

R2f (ϕ, s) =

∫
f
(
sα⃗ϕ + tβ⃗ϕ

)
dt, ∀ϕ ∈ [0, 2π) ,∀s ∈ R, (1.1)

where:

α⃗ϕ =

[
cosϕ
sinϕ

]
and β⃗ϕ =

[
− sinϕ
cosϕ

]
(1.2)

The 2D parallel projection computed at angle ϕ is then defined as:

pϕ (s) = p (ϕ, s) = R2f (ϕ, s) ∀s ∈ R. (1.3)
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x1

x2

~βφ

2D object

φ

~αφ

s

s-axis
b

|s|

Figure 1.1: 2D parallel geometry: for each value of ϕ, the 2D parallel projection is a single-variable function of s,
where |s| being the distance from the origin to a certain line in the parallel beam emitted from the x-ray sources;
the value being measured and recorded by the projection is the integral over the considering line.

1.1.2 Helgason-Ludwig consistency conditions (HLCC)

If p is in the range of R2: p = R2f for some compactly supported function f , then the moment of order n
defined as follows:

M2D, parallel
n (ϕ) =

∫
pϕ (s) s

nds, (1.4)

becomes a homogeneous polynomial in cosϕ and sinϕ of degree (at most) n (n is a non-negative integer).

We can see this result in the book [Helgason, 1980]. We can also prove it by simply use the above definition of the
moment, the definition of the 2D parallel projections and a change of variables. This is our most inspired condition,
since it significantly affects to our ideas of deriving new DCCs. It can be seen in our contributions that almost
every new DCC is the polynomial-type condition.

1.1.3 Fourier slice theorem and Filtered Backprojection (FBP) method

With the 2D parallel projections defined in equation (1.3), we have the following relationship:

p̂ϕ (σ) = f̂ (σ cosϕ, σ sinϕ) , (1.5)

where p̂ϕ and f̂ are the 1D and 2D Fourier transforms of pϕ and f , respectively:

p̂ϕ (σ) =

∫
pϕ (s) e

−2iπσsds, (1.6)

f̂ (X1, X2) =

∫∫
f (x1, x2) e

−2iπ(X1x1+X2x2)dx1dx2. (1.7)
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This result can also be proved by using the definitions and the technique of changing variables. It connects the
Radon transform and the Fourier transform. Moreover, it is the main tool to construct one of the basic reconstruct
method: the Filtered Backprojection (FBP):

If p is in the range of R2: p = R2f for some compactly supported function f , then:

f (x1, x2) =

∫ π

0

∫
|σ| p̂ϕ (σ) e2iπ[x1(σ cosϕ)+x2(σ sinϕ)]dσdϕ. (1.8)

This theorem can be proved by applying the Fourier slice theorem, the definition of the inverse Fourier transform,
with a suitable change of variables.

1.2 3D parallel geometry

As a preparation for chapter 3, we study the 3D parallel geometry. This model is the 3D version of the 2D parallel
geometry. We are working in the 3D space, with (x1, x2, x3) as our standard coordinate system. The considered
3D object f is assumed to have compact support. The x-ray sources emit parallel beams going through the 3D
object. We recall that in 2D parallel geometry, in order to defined the 2D parallel projections, we need the 2D
radon transform R2. We also need to set up two variables: the angular variable ϕ which characterizes the direction
of the parallel beam (or the integrating direction), and the linear variable s which defines the certain line in the
parallel beam that being considered for integration. In 3D parallel geometry, everything is similar. We need the
3D Radon transform R3, and also two variables: a 3D unit vector ξ⃗ to characterize the integrating direction, and
a linear variable s. Now the 3D Radon transform R3 is an operator maps the 3D function f to the set of its plane
integrals; which precisely help us compute the integral over the plane being perpendicular to ξ⃗ and at distance |s|
away from the origin (0, 0, 0):

R3f
(
ξ⃗, s
)
=

∫

ξ⃗⊥
f
(
sξ⃗ + z⃗

)
dz⃗, ∀ξ⃗ ∈ S2,∀s ∈ R. (1.9)

Here the integral
∫
ξ⃗⊥ dz⃗ means that we are integrating over the plane which is perpendicular to ξ⃗. For a certain

3D unit vector ξ⃗, the 3D parallel projections is a single variable function, which is defined through the 3D Radon
transform R3:

pξ⃗ (s) = p
(
ξ⃗, s
)
= R3f

(
ξ⃗, s
)
, ∀s ∈ R. (1.10)

1.3 Divergent geometry

In the divergent geometry in Rn, we take more care of the two particular cases: n = 2 (fan-beam geometry) and
n = 3 (cone-beam geometry). Anyway, in both cases, the divergent projections can be simply defined from a vector
s⃗ ∈ Rn showing the source position and a unit vector γ⃗ ∈ Sn−1 showing the integrating direction. There is an object
f , which has compact support. The x-ray source emits the divergent beam passing through the object. Then for
an arbitrary source position s⃗, the divergent projection of f computed along the direction γ⃗ is the following:

gs⃗ (γ⃗) = g (s⃗, γ⃗) = Df (s⃗, γ⃗) =

∫ ∞

0

f (s⃗+ tγ⃗) dt, ∀γ⃗ ∈ Sn−1. (1.11)

For n = 2, 3, the above definition respectively becomes the definitions of the so-called conventional fan-beam and
cone-beam projections. Depending on each considering geometry context, many DCCs can be suitably constructed
for the divergent projections.

We are just stopping right here without giving any DCCs for the 3D parallel geometry and the divergent geometry
for two reasons. The first one is that we would like to save them for the presentations of the following chapters.
In each chapter of the contributions, we discuss in details the corresponding DCCs in each geometry context and
their applications in the suitable geometric self-calibration problems. The other obvious reason is the length of the
manuscript.
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x1
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x3

~ξ

~ξ⊥-plane

3D object

Figure 1.2: 3D parallel geometry: for each 3D unit vector ξ⃗, the 3D parallel projection is a single-variable function
of s; it records the integral over the plane, which is perpendicular to ξ⃗ and at distance |s| from the origin (0, 0, 0).

b b
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3D object

x-ray
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x-ray
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Figure 1.3: Divergent geometry: fan-beam geometry (left) and cone-beam geometry (right); in both cases, the x-ray
source emits a divergent beam going through the object; the unit vector going from the x-ray source (in 2D and 3D
respectively) characterizes the integrating direction, leading to the corresponding conventional divergent projection.
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Thus as mentioned, we are now going to visit each particular geometry context, the corresponding DCCs will
be presented in details, and we also try to apply them into some geometric calibration problems, to find analytic
methods, which can estimate the geometric parameters fast and correctly.
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Chapter 2

DCCs for 3D parallel projections and
applications

French summary of the content

Dans ce chapitre, nous étudions les DCC en géométrie parallèle 3D, c’est à dire de la transformée en rayon-X qui
modélise la projection radiographique parallèle d’un objet f . Notre objectif principal est d’appliquer ces DCC à
l’auto-calibration géométrique de l’acquisition d’une succession de projections radiographiques parallèles.

En 2D, Basu et Bresler [Basu and Bresler, 2000a] ont montré, que pour presque tout objet mesuré, à partir de
9 projections parallèles (transformée de Radon), les angles des projections peuvent être identifiés à partir des DCC
d’ordre 0, 1, 2. L’identification est bien sûr à une classe d’équivalence près incluant des transformations de l’objet
initial (et de manière équivalente du système de mesure) par rotation, symétrie et translation (par exemple, l’angle
de projection est nécessairement relatif à l’objet et a priori, on ne connâıt pas l’orientation de l’objet. Autrement
dit, si l’objet tourne d’un angle ϕ et que le système de mesure tourne aussi du même angle ϕ, les projections seront
identiques).

En 3D, les travaux de [Van Heel, 1987] et [Van Heel et al., 1997] poursuivis dans [Shkolnisky and Singer, 2012],
[Singer and Shkolnisky, 2011], utilisent le “Fourier Slice Theorem” ou “théorème de coupe-projection”, pour l’auto
détermination des directions de projection. Soit la projection dans la direction γ⃗ d’un objet f , définie à l’équation (2.1),
la transformée de Fourier 2D du plan de projection est la coupe perpendiculaire à γ⃗ de la transformée de Fourier de
f (c’est le “théorème de coupe projection” donné ici par l’équation (2.2e)). Ainsi, si on dispose de deux projections
du même objet, respectivement dans les directions γ⃗1 et γ⃗, les deux plans respectivement perpendiculaires à γ⃗1
et γ⃗ de la transformée de Fourier de f , issus du théorème de coupe-projection, ont à leur intersection une droite
commune, dans la direction η⃗1 perpendiculaire à γ⃗1 et γ⃗. Si on dispose d’une projection dans la direction γ⃗2 alors
on pourra construire de la même manière une direction η⃗2 perpendiculaire à γ⃗2 et γ⃗. On peut ainsi, dans les cas
non dégénérés, déterminer la direction γ⃗ comme le produit vectoriel des vecteurs η⃗1 et η⃗2, donc d’une troisième
direction de projection à partir de trois projections dont deux directions sont connues.

Notre approche est similaire à celle de van Heel. Nous supposons que deux directions indépendantes sont connues
et nous déterminons une troisième direction de projection à partir des projections associées à ces trois directions.
Pour cela, nous appliquons la transformée de Radon 2D et trouvons les paires de lignes qui sont égales dans chacune
des deux paires de la transformée de Radon 2D.

Dans la section 2.2, nous introduisons les projections 3D parallèles. Nous définissons la transformée en rayons-X
3D, équation (2.4). Dans la section 2.3, nous établissons un lien avec la transformée de Radon 3D, équation (2.7) et
dans 2.4 nous construisons les résultats théoriques (équation (2.13)) basés sur des DCCs afin de résoudre le problème
de calibration géométrique. Dans la section 2.5 nous développons une stratégie pour identifier les paramètres de
calibration géométrique : dans 2.5.1 et 2.5.2 nous identifions la direction de projection γ⃗ à partir des données
de projection pγ⃗ et des projections du même objet suivant e⃗2 et e⃗3. Dans la section 2.6 nous présentons notre
algorithme de correspondance de lignes “row-matching algorithm” qui est une étape nécessaire à notre méthode de
calibration géométrique. Dans la section 2.7 and 2.8 nous présentons des expérimentations numériques. Dans la
section 2.9 nous traitons les cas ”dégénérés”. Dans section section 2.10 nous proposons quelques commentaires, en
particulier l’identification des translations de détecteurs (“shifts”) grâce à la propriété bien connue : la projection
parallèle du centre de masse de l’objet est le centre de masse de la projection parallèle de l’objet. Et enfin, la
section 2.11 regroupe toutes les images issues des simulations numériques.

11
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2.1 Introduction

Most of the content of this chapter is a presentation of our proceedings paper [Nguyen et al., 2020a] in the SPIE
Medical Imaging 2020 conference. There are some new results added after the proceedings were published, which
were obtained at a later stage of the thesis.

In this chapter, we are working in 3D parallel geometry. Our aim is to find some data consistency conditions
(DCCs) on the parallel projections and to apply them to solve the corresponding geometric calibration problem. It is
the problem to estimate the geometric parameters of each projection, where the projection data is given in advance
and the 3D object is assumed to be unknown. In general, the final objective in Medical Imaging is to reconstruct
the unknown 3D object from given 2D projections. However, it is necessary to align all the projections together
first, and this step requires the geometric parameters of the projections to be known. In 3D parallel geometry, the
crucial parameters in each projection are the viewing direction, the unknown shift and the in-plane angle. More
precisely, in our context, there is an unknown 3D object, we know some of its 2D parallel projections and we want
to estimate the corresponding viewing directions, unknown shifts and in-plane angles of these projections.

The 2D version of this calibration problem was considered by Basu and Bresler in [Basu and Bresler, 2000b]
and [Basu and Bresler, 2000a]. We identify the most important result in their work, which can be re-stated as: In
2D, if we have a sufficient number of parallel projections, then the viewing angle of each projection can be uniquely
determined (in 2D, the viewing direction is characterized only by the viewing angle), for almost any 2D object. The
uniqueness mentioned here has to be understood in the sense of equivalent classes. In fact, we can never obtain the
unique solution of the viewing directions (or viewing angles in 2D) of the projections if we know nothing about the
initial orientation of the object. For instance, in 2D, let S be our object, which is at somewhere near the world origin.
We compute the parallel projections of S (by taking the 2D Radon transform) at angles ϕ = 30◦, 40◦, 90◦, 120◦

and obtain our first set of four parallel projections. Now if we rotate the object S 70◦ counter-clockwise, and take
the parallel projections of this rotated object at angles ϕ = 100◦, 110◦, 160◦, 190◦, we will obtain a second set of
four projections, which is exactly the same as the first one. Or even if we take the original S and reflect it over
the x2-axis, and take the parallel projections of this reflected object at angles ϕ = 150◦, 140◦, 90◦, 60◦, we once
again obtain a third set of four projections which perfectly match the first set. We use this example to show that
the same set of projections of the object can be obtained from many different sets of viewing angles if the initial
orientation of the object is changed. Thus, in our inverse problem, with only the projection data and without
knowing anything about the object (which means we do not know its initial orientation either), we can point out
such many sets of suitable corresponding viewing angles that these projections have probably been taken at, since
we ourselves do not know the initial orientation of the object. However, all these sets of viewing-angle solutions link
together, and they are clearly defined to be in the same equivalent class in the paper [Basu and Bresler, 2000b].
That is the reason why we only obtain the uniqueness of the solutions of the viewing directions (or viewing angles)
in the sense of equivalent classes. The significant thing is that Basu and Bresler prove for almost any 2D objects,
the viewing directions (in the sense of equivalent classes) can be uniquely and stably resolved, directly and only
from the projection data using the moment conditions (or the DCCs) of order 0, 1, 2, 3, if we have sufficient parallel
projections, through constructing a lot of theoretical results, with the main cornerstone being the Bezout’s theorem.

Before the work of Basu and Bresler, the 3D version of this geometric calibration problem was of interest in
the field of Electron Microscopy. With the similar final goal to reconstruct the 3D structure from many given
2D parallel projections, the step of calibrating the geometric parameters of each projection is necessary. In order
to obtain this information, van Heel introduced the angular reconstitution method in his papers [Van Heel, 1987]
and [Van Heel et al., 1997]. In his work, van Heel claimed that at least three projections are required as the data,
we are now calling them projections 1, 2 and 3. One similar detail to what we have just seen above is the fact that
we cannot exactly obtain the unique solution to the direction of each projection, if we only have the projection
data, without any knowledge about the initial orientation of the 3D object. Thus, in order to determine the viewing
directions of the parallel projections, van Heel assumed that the direction of projection 1 is ± (1, 0, 0) (the unit vector
being parallel to the x1-axis); and the direction of projection 2 is in the plane x3 = 0. Under these assumptions, he
can clearly determine the directions of projections 2 and 3. We can see that van Heel’s assumptions did affect the
initial orientation of the 3D object (it is now not arbitrary or naively and completely unknown). In other words, from
the knowledge of Basu and Bresler’s articles, the way van Heel did is equivalent to choosing an initial orientation
of the 3D object, and the result he obtained thus can be understood as a member of the equivalent class of the
solutions to the viewing directions of the projections. Concerning the details of the angular reconstitution method,
from the data of three parallel projections, van Heel applied the 2D Radon transform to obtain the corresponding
sinograms. He compared the sinograms pair-wise to find which row in one sinogram matched some row in the other
sinogram. Each of these matching rows related to the common line of two slices through the 3D Fourier transform
of the 3D object (we will explain about these common lines in the next paragraph, but the crucial information of
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the common lines is that it is enough to compute the viewing directions of the projections). Although with this
construction, van Heel could not immediately find the common lines after the step of finding the matching rows,
he was still able to determine the angles between the common lines. With those angles and the assumptions on
the directions of the first and second projections, he could determine the three corresponding common lines. From
that, the three directions of three parallel projections can be computed by taking the suitable cross products of the
directions of the common lines, with the meaning that the obtained set of solutions is one member of the class.

The key in van Heel’s construction is the Fourier-slice theorem. Singer and Shkolnisky also used this idea to
build their own method to deal with the same 3D geometric calibration problem, see [Shkolnisky and Singer, 2012],
[Singer and Shkolnisky, 2011]. We recall the Fourier-slice theorem to understand about the mentioned common lines.

Let
(
α⃗, β⃗, γ⃗

)
be a set of three pair-wise perpendicular unit vectors in 3D, and let the 3D object be represented by

f , which is a real-valued function with compact support. The 2D parallel projection of f taken in the direction γ⃗
can be defined as:

pγ⃗ (u, v) =

∫
f
(
uα⃗+ vβ⃗ + tγ⃗

)
dt. (2.1)

Then the 2D Fourier transform of an arbitrary parallel projection can be computed as follows:

Pγ⃗ (U, V ) =

∫∫
pγ⃗ (u, v) e

−2iπ(Uu+V v)dudv (2.2a)

=

∫∫∫
f
(
uα⃗+ vβ⃗ + tγ⃗

)
e−2iπ(Uu+V v)dtdudv (2.2b)

=

∫∫∫
f (x⃗) e−2iπ[U(x⃗·α⃗)+V (x⃗·β⃗)]dx⃗ (2.2c)

=

∫∫∫
f (x⃗) e−2iπ[x⃗·(Uα⃗+V β⃗)]dx⃗ (2.2d)

= F
(
Uα⃗+ V β⃗

)
, (2.2e)

here we use the capital letters P and F to denote the corresponding functions after applying the Fourier transform

of the 2D projection p and to the 3D object function f . We can see that
(
Uα⃗+ V β⃗

)
is the plane going through

the world origin (0, 0, 0) and perpendicular to γ⃗, so F
(
Uα⃗+ V β⃗

)
is the slice of this plane through the 3D Fourier

transform of the object. In short, we can state the Fourier-slice theorem as follows: the 2D Fourier transform of an
arbitrary parallel projection is the slice through the 3D Fourier transform of the object, caused by the plane going
through the world origin and being perpendicular to the viewing direction of the considered projection. Thus if we
have two distinct parallel projections, their 2D Fourier transforms will correspond to two planes, each of which slices
through the 3D Fourier transform of the same object. These two planes have one point in common, which is the
world origin (0, 0, 0), so there must exist a line of intersection of the two planes. That line of intersection is called the
common line. As shown in the Fourier-slice theorem above, the corresponding plane is perpendicular to the direction
of the considered parallel projection. This leads to the fact that the common line, which is on both corresponding
planes, will thus be perpendicular to both directions of the two considering projections. So, if we have three distinct
parallel projections 1, 2 and 3, the common line built from projections 1 and 2 and the common line built from
projections 1 and 3, both will be perpendicular to the direction of projection 1. The same thing happens to the
directions of projections 2 and 3. Hence, knowing the common lines leads to the determination of the directions
of the projections, by simply taking the cross product of the directions of the corresponding common lines. While
van Heel found the angles between the common lines, and made the assumptions on the directions of projections
1 and 2, in order to completely determine the directions of the three projections, Singer and Shkolnisky rewrote
the definition of parallel projections matrix form, used the Fourier-slice theorem, then converted the calibration
problem into an optimization problem, see [Singer and Shkolnisky, 2011], or used the algebraic tools to deal with
the problem, see [Shkolnisky and Singer, 2012]. In the paper [Singer et al., 2010], Singer et al present a voting
algorithm to determine the common lines, to handle the extremely small and noisy projection images in Cryo-
electron Microscopy.

Our approach is quite similar to that of van Heel. We assume that we have three parallel projections, and we
know the viewing directions of two of them, so the result of the unknown direction we obtain is perfectly unique (but
the whole set of viewing directions of three projections is just one member of the equivalent class of the solutions,
if there is no direction known in advance). Our method is to directly apply the 2D Radon transform to the given
parallel projections and to then find the matching rows in those sinograms. By doing this, we obtain a pair-wise
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DCC on the parallel projections. We build the common unit vectors from the information of these matching rows.
These common unit vectors are perpendicular to the corresponding directions of the projections, which means they
geometrically have the same directions as the common lines in the papers of van Heel, Singer and Shkolnisky.
Therefore, as van Heel did, we simply take the suitable cross product of the common unit vectors to obtain the
result of the unknown viewing direction. So by a different approach rather than using the Fourier-slice theorem, our
method can produce an analytic formula of the unique solution to the unknown viewing direction, and the formula
is rapid to compute. The unknown shifts and the in-plane angles are also be handled. Additionally, we provide a
method to work with the particular degenerate case of the problem. Our method can also work if we have more
than three parallel projections. As long as we know the directions of two projections, we can calibrate all of the
remaining unknown directions, one at a time, repeating the same procedure dealing with a triplet of projections
(two known directions and one unknown).

The structure of this chapter is as the following: section 2.2 formally defines the 3D parallel projections,
section 2.3 and 2.4 build the main theory and the DCC to solve the calibration problem, section 2.5 gives the
problem statement and the solving strategy, section 2.6 presents our row-matching algorithm, section 2.7 and 2.8
present the numerical experiments, section 2.9 gives us the method to deal with the particular degenerate case of
the problem, section 2.10 gives some discussions and comments, and finally all of the simulation images are shown
in section 2.11.

2.2 3D coordinate system and 3D parallel projections

Our aim in this section is to define 3D parallel projections more specifically. We work in the 3D parallel geometry,
with (x1, x2, x3) as our standard coordinate system. Given a 3D unit vector γ = (γ1, γ2, γ3), we firstly define two
other 3D unit vectors αγ and βγ , depending on γ, as follows:

• If γ3 ̸= 0 and |γ3| ≠ 1 (so γ21 + γ22 ̸= 0), then we define:





αγ =
sgn (γ3)√
γ21 + γ22

(−γ2, γ1, 0) ,

βγ =
1√

γ21 + γ22

(
−γ1γ3,−γ2γ3, γ21 + γ22

)
.

(2.3)

• If γ3 = 0 and γ2 ̸= 0, then γ = (γ1, γ2, 0) and we define: αγ = sgn (γ2) (−γ2, γ1, 0) and βγ = (0, 0, 1).

• If γ3 = 0 and γ2 = 0, then γ = ± (1, 0, 0) and we define: αγ = (0, 1, 0) and βγ = (1, 0, 0).

• If |γ3| = 1 (so γ1 = γ2 = 0), this means γ = ± (0, 0, 1), then we define: αγ = (−1, 0, 0) and βγ = (0,−1, 0).

Under these definitions, it can easily be verified that
(
αγ , βγ , γ

)
form a set of three pair-wise perpendicular vectors.

We assume that there exists a 3D object, which is mathematically a real function f with compact support, being
somewhere near the world origin (0, 0, 0). The x-ray source emits a parallel beam going through the 3D object and
hitting a flat detector. The direction of this parallel beam is γ and the detector is a perpendicular plane to γ. On
this 2D detector, the origin is the parallel projection of the world origin and the two standard coordinate axes are
the u and v axes, which have the same directions as αγ and βγ respectively. Figure 2.1 gives an illustration. From

this construction of
(
αγ , βγ , γ

)
, we can define the parallel projection computed in the direction γ, which is denoted

as pγ , by the 3D X-ray transform.
Given a 3D compactly-supported real-valued function f , the parallel projection pγ = X 3

γ f is defined as follows:

pγ (u, v) = X 3
γ f (u, v) =

∫
f
(
uαγ + vβγ + tγ

)
dt, (2.4)

where X 3
γ is the 3D X-ray transform.

Comments

• We can note from this construction of
(
αγ , βγ , γ

)
, that αγ is always on the plane x3 = 0. The unit vector αγ

can be visualized by projecting γ onto the plane x3 = 0 and then rotating it a 900 angle counter-clockwise or
clockwise, depending on the direction of γ.
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Figure 2.1: The model of 3D parallel geometry

• Our detailed definitions of
(
αγ , βγ , γ

)
are motivated by the fact that for a certain coordinate (u, v) on the 2D

detector, the parallel projection computed along directions γ and −γ have to be exactly the same. Mathe-
matically, we need:

pγ (u, v) = p−γ (u, v) , ∀ (u, v) ∈ R2. (2.5)

And here, the definition of
(
αγ , βγ , γ

)
leaves αγ and βγ unchanged when γ changes to −γ (we can easily

check this fact by just replacing (γ1, γ2, γ3) by (−γ1,−γ2,−γ3) in the definitions of αγ and βγ). Besides, by
a simple change of variables, we can see that:

p−γ (u, v) =

∫
f
(
uα−γ + vβ−γ + t (−γ)

)
dt =

∫
f
(
uαγ + vβγ − tγ

)
dt =

∫
f
(
uαγ + vβγ + tγ

)
dt = pγ (u, v) ,

(2.6a)

and this property is what we expect in the definition of parallel projections. The mathematical requirement
of equation (2.4) forces the

(
αγ , βγ , γ

)
system to sometimes be right-handed, and sometimes left-handed,

depending on the direction of γ.

2.3 Relation between 3D X-ray transform and 3D Radon transform

In this section, we seek the relationship between the 3D X-ray transform and the 3D Radon transform, because it
is the main material to build the pair-wise DCCs applying on two arbitrary 3D parallel projections.

Given a 3D object f , which has compact support, and given any γ ∈ S2; if pγ = X 3
γ f , then for any angle

θ ∈ [0, 2π), we have:

R2
θpγ (s) = R3

ζ
f (s) , ∀s ∈ R, (2.7)

where ζ = cos θαγ + sin θβγ .

Mathematically, we can quickly prove this result by using the definition (2.4), in conjunction with the definitions
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β
γ

Figure 2.2: Illustration of the vectors system, the corresponding result shows that for all real values s, R2
θpγ (s)

and R3
ζ
f (s) coincide, because they both compute the same integral of the object f over the light-violet plane.

of the 2D and 3D Radon transform. For all s ∈ R, we can see that:

R2
θpγ (s) =

∫
pγ (s cos θ − t′ sin θ, s sin θ + t′ cos θ) dt′ (2.8a)

=

∫∫
f
(
(s cos θ − t′ sin θ)αγ + (s sin θ + t′ cos θ)βγ + tγ

)
dtdt′ (2.8b)

=

∫∫
f
(
s
(
cos θαγ + sin θβγ

)
+ t′

(
− sin θαγ + cos θβγ

)
+ tγ

)
dtdt′ (2.8c)

=

∫∫
f
(
sζ + t′ζ

⊥
+ tγ

)
dtdt′. (2.8d)

Here we set ζ = cos θαγ + sin θβγ and ζ
⊥

= − sin θαγ + cos θβγ . The two vectors
(
ζ, ζ

⊥)
are both in the plane

spanned by αγ and βγ and can be obtained by rotating
(
αγ , βγ

)
counter-clockwise by angle θ. The three vectors(

γ, ζ, ζ
⊥)

are pair-wise perpendicular, so the above integral
∫∫

f
(
sζ + t′ζ

⊥
+ tγ

)
dtdt′ equals R3

ζ
f (s). Hence, we

obtain the result.

We can also understand this result geometrically by considering figure (2.2). For a certain value of s, the 3D
Radon transform R3

ζ
f (s) computes the integral of f over the plane, which is at distance s from the origin and

perpendicular to ζ direction: the light-violet plane in the diagram. Two unit vectors that are parallel to this plane

and perpendicular to each other are γ and ζ
⊥
, because of the above construction of

(
γ, ζ, ζ

⊥)
. So another way to

obtain this plane-integration value, is to integrate the 2D slice of the 3D object f on the light-violet plane, firstly

along the γ direction (red direction) and then along the ζ
⊥

direction (purple direction). Equivalently, we can take
the X-ray transform along γ direction, to obtain a 2D parallel projection on the detector, which is perpendicular to γ
direction or parallel to the

(
αγ , βγ

)
plane (light-yellow plane). Then we continue by taking the 2D Radon transform

of the obtained parallel projection along the line that is at distance s from the detector’s origin, and is parallel

direction to the ζ
⊥

direction. This geometrical description coincides with equation (2.8d) and thus illustrates the
result, equation (2.7).
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2.4 Pair-wise DCCs of the 2D parallel projections

From the crucial result (2.7) in the previous section on the relationship between the parallel projection and the
corresponding 3D Radon transform, we can build a pair-wise DCC, which is applied to two parallel projections.
Given two arbitrary unit directions γ, γ′ ∈ S2 and two angles θ and θ′ in [0, 2π), then according to the result (2.7):

{
R2

θpγ (s) = R3
ζ
f (s) , ∀s ∈ R2

R2
θ′pγ′ (s) = R3

ζ
′f (s) , ∀s ∈ R2

, (2.9)

where

{
ζ = cos θ αγ + sin θ βγ

ζ
′
= cos θ′αγ′ + sin θ′βγ′

, (2.10)

and where
(
αγ , βγ

)
,
(
αγ′ , βγ′

)
are computed based on γ, γ′ respectively. If we can find two suitable angles θ and

θ′ such that:

cos θαγ + sin θβγ = cos θ′αγ′ + sin θ′βγ′ , (2.11)

then ζ = ζ
′
, and this leads R2

θpγ (s) and R2
θ′pγ′ (s) to coincide each other. From this, we can state the pair-wise

DCC as the following:

Given two parallel projections taken along two arbitrary directions γ, γ′ ∈ S2, if we can find a pair of suitable
angles (θ, θ′) ∈ [0, 2π)

2
such that:

cos θαγ + sin θβγ = cos θ′αγ′ + sin θ′βγ′ , (2.12)

then for all s ∈ R:

R2
θpγ (s) = R2

θ′pγ′ (s) . (2.13)

Comment

We can see that for any two given unit directions γ and γ′, there always exist two angles θ and θ′ ∈ [0, 2π) satisfying
the conditions (2.12) and (2.13). The reason is as follows:

• If γ = γ′, then
(
αγ , βγ

)
coincides with

(
αγ′ , βγ′

)
, pγ coincides with pγ′ , then we can freely choose θ = θ′ = θ0;

for any choices of θ0 in [0, 2π), the conditions (2.12) and (2.13) always hold.

• If γ = −γ′, then:




αγ = α−γ′ = αγ′

βγ = β−γ′ = βγ′

pγ (u, v) = p−γ′ (u, v) = pγ′ (u, v) ,∀ (u, v) ∈ R2

, (2.14)

because the definitions of αγ′ , βγ′ and pγ′ remain the same as α−γ′ , β−γ′ and p−γ′ , when −γ′ becomes γ′, as
explained in section 2.2. Thus this case is exactly the same as the above case.

• If γ ̸= ±γ′, meaning γ and γ′ are not collinear, then even though θ and θ′ are unknown, if they exist and
satisfy the condition (2.12), then ζ = cos θαγ + sin θβγ = cos θ′αγ′ + sin θ′βγ′ is the vector that is on the line

of intersection of two planes
(
αγ , βγ

)
and

(
αγ′ , βγ′

)
, and thus is perpendicular to both γ and γ′. Conversely,

for any two given directions γ and γ′, we can choose:

ψ =
γ × γ′

∥γ × γ′∥ , (2.15)
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Figure 2.3: Examples of some 3D objects that do not satisfy the theoretical assumption: a ball (left), a vertical
cylinder (middle) and an L-shape (right) with uniform density and the centers-of-mass at the origin; the L-shape
has two cuboid branches of equal length.

which is a unit vector perpendicular to γ and γ′. The vector ψ always exists, because ∥γ × γ′∥ ̸= 0, when γ
and γ′ are not collinear. Now θ and θ′ can be found by the following formulae:

{
cos θ = ψ · αγ

sin θ = ψ · βγ

,

{
cos θ′ = ψ · αγ′

sin θ′ = ψ · βγ′
. (2.16)

This pair of angles (θ, θ′) will satisfy the condition (2.12):

cos θαγ + sin θβγ =
(
ψ · αγ

)
αγ +

(
ψ · βγ

)
βγ = ψ =

(
ψ · αγ′

)
αγ′ +

(
ψ · βγ′

)
βγ′ = cos θ′αγ′ + sin θ′βγ′ .

(2.17)

The two angles θ and θ′ ∈ [0, 2π) will always exist, because of the existence of ψ.

2.5 Geometric calibration problem and solving strategy

In this section, we define the geometric calibration problem in 3D parallel geometry, in section 2.5.1 and apply the
pair-wise DCC to solve it, in section 2.5.2.

2.5.1 Geometric calibration problem in 3D parallel geometry

We will start with the simplest context, so let’s say we have an unknown 3D object f with compact support, and
we are given three 2D parallel projections. Two of them are computed along the directions e2 = (0, 1, 0) and
e3 = (0, 0, 1), and the other is computed along an unknown direction γ. We assume that there is no in-plane angle
or in-plane shift in each of these three projections, which means all projections have been center-corrected by the
center-of-mass result (see section 2.10); now each projection has its own center-of-mass located at the corresponding
detector’s origin. The crucial condition on the 3D object is that, for any two distinct unit directions γ and γ′ ∈ S2,
there has to exist at least a value s0 ∈ R such that:

R3
γf (s0) ̸= R3

γ′f (s0) . (2.18)

We will explain the role of this assumption later in section 2.5.2. The form of the assumption (2.18) is not natural
and a bit too theoretical. It still needs to be improved and studied more. Here we stop at this point with no further
clues yet. But we can show some examples of those objects which violate the above assumption, in figure 2.3.

• For the object f being a ball with uniform density and center at the origin, we can take any two distinct unit
directions γ and γ′, then R3

γf (s) = R3
γ′f (s) ,∀s ∈ R, which fails the condition (2.18).

• For the object f being a vertical cylinder with uniform density and center-of-mass at the origin, we can take
any two unit directions such that γ = −γ′, then we can also have R3

γf (s) = R3
γ′f (s) ,∀s ∈ R violating the

condition (2.18).
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• For the object f being an L-shape, which has two cuboid branches of equal length, with uniform density and
center-of-mass at the origin, as in figure 2.3, we can consider γ = (0,−1, 0) and γ′ = (0, 0,−1), then we always
have R3

γf (s) = R3
γ′f (s) ,∀s ∈ R, violating the condition (2.18).

For simplicity, we have said that the object needs to be completely general, meaning it has no symmetry, in our
paper [Nguyen et al., 2020a], but this description is a little bit weak, and does not describe the whole idea of the
condition (2.18). In the next section, we will firstly explain the solving strategy of the above geometric calibration
problem, then from that, we will see why the condition (2.18) is crucial.

2.5.2 Solving strategy

Now we are having in hands three projections pγ , pe2 , pe3 , with e2 and e3 are known. We will apply the pair-wise
DCC to deal with the geometric calibration problem. Due to the fact that pγ (u, v) = p−γ (u, v) ,∀ (u, v) ∈ R2, if γ0
is a solution to this geometric calibration problem, then (−γ0) is also a solution. Thus we will accept if the obtained
solution is a pair of two opposite unit directions. Now we describe the solving strategy, following the below steps:

1. We start with pγ and pe2 . From these two distinct parallel projections, we apply the 2D Radon transform to
obtain the corresponding sinograms. According to the comment in section 2.4, there always exist two angles
θ2, ϕ2 ∈ [0, 2π) such that the pair-wise DCC (2.13) holds:

R2
θ2pγ (s) = R2

ϕ2
pe2 (s) ,∀s ∈ R. (2.19)

The two angles θ2, ϕ2 ∈ [0, 2π) can be found by a row-matching procedure, which we will demonstrate more
precisely in the next section 2.6. For now, we assume that we have already found the two above angles θ2, ϕ2.

2. From γ and e2, we can also compute two corresponding sets of unit vectors
(
αγ , βγ , γ

)
and

(
αe2 , βe2 , e2

)

respectively from equation (2.3) in section 2.2. Now under the object condition (2.18), we claim that the two
angles θ2, ϕ2 ∈ [0, 2π), satisfying the pair-wise DCC (2.13), will also satisfy the condition (2.12):

cos θ2αγ + sin θ2βγ = cosϕ2αe2 + sinϕ2βe2 . (2.20)

We can prove this by contradiction. Assuming that there exist two angles θ0, ϕ0 ∈ [0, 2π) such that:

R2
θ0pγ (s) = R2

ϕ0
pe2 (s) ,∀s ∈ R, (2.21)

but cos θ0αγ + sin θ0βγ ̸= cosϕ0αe2 + sinϕ0βe2 . For simplicity, we rename these vectors as the following:

{
ηγ = cos θ0αγ + sin θ0βγ

ηe2 = cosϕ0αe2 + sinϕ0βe2

, (2.22)

then by the result (2.7), we can say that:

{
R2

θ0pγ (s) = R3
ηγ
f (s)

R2
ϕ0
pe2 (s) = R3

ηe2
f (s)

. (2.23)

And the above assumption can be rewritten as: there exist two angles θ0, ϕ0 ∈ [0, 2π) such that R3
ηγ
f (s) =

R3
ηe2
f (s) ,∀s ∈ R, but ηγ ̸= ηe2 . This contradicts the object condition (2.18)! Then the initial assumption of

the contradiction is false. And thus, if we can find the two suitable angles θ2, ϕ2 ∈ [0, 2π) satisfying the pair-
wise DCC (2.13), they also satisfy the condition (2.12). Here we realize the role of the object condition (2.18).
Thus we can find two angles θ2 and ϕ2 ∈ [0, 2π) simultaneously satisfying the following conditions:

{
R2

θ2pγ (s) = R2
ϕ2
pe2 (s)

cos θ2αγ + sin θ2βγ = cosϕ2αe2 + sinϕ2βe2

. (2.24)

Now we set ψ2 = cosϕ2αe2 + sinϕ2βe2 , ψ2 is clearly computed because
(
αe2 , βe2

)
can be calculated from

e2 = (0, 1, 0) and ϕ2 has just been found from the above row-matching procedure. By the result (2.24), we
also know that ψ2 = cosϕ2αe2 + sinϕ2βe2 = cos θ2αγ + sin θ2βγ , and this leads to the fact that ψ2 is on the(
αγ , βγ

)
plane, and thus is perpendicular to γ.
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3. Completely similar to the previous steps, we can also find θ3, ϕ3 ∈ [0, 2π) such that

{
R2

θ3pγ (s) = R2
ϕ3
pe3 (s)

cos θ3αγ + sin θ3βγ = cosϕ3αe3 + sinϕ3βe3

. (2.25)

Then we can precisely compute ψ3 = cosϕ3αe3 + sinϕ3βe3 , and know that ψ3 is perpendicular to γ.

4. From the second and the third step, we obtain γ as the unit vector, which is perpendicular to both ψ2 and
ψ3, thus γ can be computed by the following formula:

γ = ± ψ2 × ψ3∥∥ψ2 × ψ3

∥∥ (2.26)

We thus obtain a pair of two acceptable opposite solutions.

5. However, from the formula (2.26) of solution to γ, we can see that this method will fail if
∥∥ψ2 × ψ3

∥∥ = 0, and

this happens when ψ2 and ψ3 are collinear. In this case, we will only know that γ is on the plane, which is
perpendicular to the line containing both ψ2 and ψ3. Moreover, this plane has to contain e2 and e3 respectively,
because by the construction, ψ2 =

(
cosϕ2αe2 + sinϕ2βe2

)
⊥ e2 and ψ3 =

(
cosϕ3αe3 + sinϕ3βe3

)
⊥ e3. Then

we can say that the above method fails if γ is on the (e2, e3) plane.

In conclusion, if γ is not on the (e2, e3) plane, then γ is found by the analytic formula (2.26); and if γ is on (e2, e3)
plane, then we need another strategy to deal with this case, which we call the degenerate case of the problem,
presented in section 2.9.
Particularly, in the case where e2 = (0, 1, 0) and e3 = (0, 0, 1), let us compute everything precisely to see the detailed
formula of the solution to γ. Firstly,

{
αe2 = (−1, 0, 0)

βe2 = (0, 0, 1)
,

{
αe3 = (−1, 0, 0)

βe3 = (0,−1, 0)
. (2.27)

Then we can compute ψ2 and ψ3 respectively:

{
ψ2 = cosϕ2αe2 + sinϕ2βe2 = cosϕ2 (−1, 0, 0) + sinϕ2 (0, 0, 1) = (− cosϕ2, 0, sinϕ2)

ψ3 = cosϕ3αe3 + sinϕ3βe3 = cosϕ3 (−1, 0, 0) + sinϕ3 (0,−1, 0) = (− cosϕ3,− sinϕ3, 0)
. (2.28)

We can continue to compute:

ψ2 × ψ3 = (sinϕ2 sinϕ3,− sinϕ2 cosϕ3, cosϕ2 sinϕ3) , (2.29a)

∥∥ψ2 × ψ3

∥∥ =

√
sin2 ϕ2 sin

2 ϕ3 + sin2 ϕ2 cos2 ϕ3 + cos2 ϕ2 sin
2 ϕ3 (2.29b)

=

√
sin2 ϕ2 + cos2 ϕ2 sin

2 ϕ3 (2.29c)

=
√
1− cos2 ϕ2 + cos2 ϕ2 (1− cos2 ϕ3) (2.29d)

=
√
1− cos2 ϕ2 cos2 ϕ3. (2.29e)

Finally, the analytic formula of the solution to γ is the following:

γ =
ψ2 × ψ3∥∥ψ2 × ψ3

∥∥ =
(sinϕ2 sinϕ3,− sinϕ2 cosϕ3, cosϕ2 sinϕ3)√

1− cos2 ϕ2 cos2 ϕ3
. (2.30)

And the above formula will fail if:

√
1− cos2 ϕ2 cos2 ϕ3 = 0 ⇐⇒

{
cosϕ2 = ±1

cosϕ3 = ±1
and

{
sinϕ2 = 0

sinϕ3 = 0
. (2.31)

From the system (2.28), this means ψ2 = ± (1, 0, 0) and ψ3 = ± (1, 0, 0), and γ is perpendicular to both of these
vectors, leading to the fact that γ is in the plane of (e2, e3), where e2 = (0, 1, 0) and e3 = (0, 0, 1).
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2.6 Row-matching algorithm

As mentioned in the previous section 2.5.2, the aim of this algorithm is from two sinograms of two given parallel
projections, let’s say pγ and pγ′ , to find two suitable angles Φ0,Φ0

′ ∈ [0, 2π) such that:

R2
Φ0
pγ (s) = R2

Φ0
′pγ′ (s) ,∀s ∈ R. (2.32)

A sinogram is a function of two variables ϕ and s, here we consider it as an image with the horizontal axis is for
s and the vertical axis is for ϕ. In numerical analysis, this sinogram image is in fact a matrix with the columns
are the discretization of s, and the rows are the discretization of ϕ from 0 to 2π (the row 2π is not included).
Precisely, the two sinograms of pγ and pγ′ are two matrices of the same size, let’s call them S and S′ of the same
dimensions Nϕ×Ns. Finding two angles Φ0 and Φ0

′ satisfying equation (2.32) means finding two rows, one in each
sinogram, that perfectly match each other. This leads us to find two rows in the two matrices, one in S and one in
S′, such that all values on the row in S respectively match all values on the row in S′ (that’s why we name it the
row-matching algorithm). As explained in the previous sections, these two rows have to exist. We find these two
rows (of two matrices) by the following algorithm:

Row-matching algorithm:

1. We take the first row of S′ and duplicate it (Nϕ − 1) times to make a new matrix S′′ of dimension
Nϕ ×Ns, where all the rows are copied from the first row of S′.

2. We compute H = S − S′′, and take the Euclidean norm of every row of H, then we obtain a column
vector (Nϕ × 1) and we save this column as the first column of the norm-of-difference (NoD) matrix.

3. Similarly, we take the second row of S′, repeat the two above steps and obtain the second column of the
NoD matrix. Then we continue to repeat the procedure of step 1 and 2 until we finish taking all the
rows of S′. We thus obtain the NoD matrix of dimension Nϕ ×Nϕ.

4. In theory, there have to be 0-values in the NoD matrix, where the specific rows in S and S′ match
together. We know that there always exist two 0-values in the NoD matrix, and either of these two
corresponds to the matching rows, which lead to the true solution of the unknown viewing direction (we
explain in the remarks section below). In practice, we might not have the perfect 0-values, thus the idea
is to find the smallest value among all values in the NoD matrix and its corresponding position in the
NoD matrix. The row and the column of the smallest value link to the rows of S and S′ respectively,
that match together. Firstly from the theory, there must exist two elements in the NoD matrix share
the same smallest value and either of these two leads to the true solution of the unknown viewing
direction. In the case that the NoD matrix happens to have more elements (than two) which hold that
same smallest value, we cannot choose which element among those to be the suitable one, thus more
works need to be done with this last step of the algorithm.

After the above final step, we will know which row of S matching which row of S′. Below are some remarks.

Remarks

• From the definition of the 2D Radon transform, we know that, for all Φ ∈ [0, 2π) and for all s ∈ R:

R2
Φ+πpγ (s) =

∫
pγ (s cos (Φ + π)− t sin (Φ + π) , s sin (Φ + π) + t cos (Φ + π)) dt (2.33)

=

∫
pγ (−s cosϕ0 + t sinϕ0,−s sinϕ0 − t cosϕ0) dt (2.34)

=

∫
pγ (−s cosϕ0 − t′ sinϕ0,−s sinϕ0 + t′ cosϕ0) dt

′ (2.35)

= R2
Φpγ (−s) . (2.36)

This means if Φ0 and Φ0
′ are two suitable angles satisfying R2

Φ0
pγ (s) = R2

Φ0
′pγ′ (s) ,∀s ∈ R, then:

R2
Φ0+πpγ (s) = R2

Φ0
pγ (−s) = R2

Φ0
′pγ (−s) = R2

Φ0
′+πpγ′ (s) ,∀s ∈ R. (2.37)

In other words, we can claim in a more proper way as follows:
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+ If Φ0 and Φ0
′ are the pair of angles satisfying equation (2.32), and Φ0,Φ0

′ ∈ [0, π), then (Φ0 + π) and(
Φ0

′ + π
)
are also.

+ If Φ0 and Φ0
′ are the pair of angles satisfying equation (2.32), and Φ0,Φ0

′ ∈ [π, 2π), then (Φ0 − π) and(
Φ0

′ − π
)
are also.

+ If Φ0 and Φ0
′ are the pair of angles satisfying equation (2.32), and Φ0 ∈ [0, π), Φ0

′ ∈ [π, 2π), then
(Φ0 + π) and

(
Φ0

′ − π
)
are also.

+ If Φ0 and Φ0
′ are the pair of angles satisfying equation (2.32), and Φ0 ∈ [π, 2π), Φ0

′ ∈ [0, π), then
(Φ0 − π) and

(
Φ0

′ + π
)
are also.

For simpliticy, we can say that in any two given sinograms, we can find at least two pairs of matching rows
(because if γ = ±γ′ then pγ (u, v) = pγ′ (u, v) ,∀ (u, v) ∈ R2, so we will definitely have more than just two
pairs of matching rows in the two sinograms).

• In theory and in general, if the two parallel projections are computed along two directions which are not
collinear and if the data is consistent, then after performing the row-matching algorithm, we should receive
only two suitable pairs of angles

(
Φ1,Φ1

′) and
(
Φ2,Φ2

′) characterizing two pairs of matching rows, where:

{
Φ2 = Φ1 + π, or Φ2 = Φ1 − π

Φ2
′ = Φ1

′ + π, or Φ2
′ = Φ1

′ − π
. (2.38)

Or we can say that:

{
cosΦ2 = − cosΦ1

sinΦ2 = − sinΦ1

, and

{
cosΦ2

′ = − cosΦ1
′

sinΦ2
′ = − sinΦ1

′ . (2.39)

Now coming back with our solving strategy 2.5.2, the aim of the first step is to use the row-matching algorithm
to find two suitable angles θ2, ϕ2 ∈ [0, 2π) such that the pair-wise DCC (2.13) holds. However, as we have just
explained, the row-matching algorithm gives us two pairs of suitable angles (θ2,1, ϕ2,1) and (θ2,2, ϕ2,2), where:

{
cos θ2,2 = − cos θ2,1

sin θ2,2 = − sin θ2,1
, and

{
cosϕ2,2 = − cosϕ2,1

sinϕ2,2 = − sinϕ2,1
. (2.40)

After that, at the final of the second step in the solving strategy 2.5.2, we will compute ψ2 = cosϕ2αe2 +
sinϕ2βe2 . Here with two different values of ϕ2: ϕ2,1 and ϕ2,2, we will obtain two different vectors: ψ2,1 and

ψ2,2, but we also know that:

ψ2,2 = cosϕ2,2αe2 + sinϕ2,2βe2 = − cosϕ2,1αe2 − sinϕ2,1βe2 = −ψ2,1. (2.41)

Similarly, when applying the row-matching algorithm to pγ and pe3 , we will also obtain two different vectors
such that ψ3,2 = −ψ3,1. And by step 4 of the solving strategy 2.5.2, we know that the solution of γ is produced

from one of the following four pairs of vectors
{
ψ2,1, ψ3,1

}
,
{
ψ2,1, ψ3,2

}
,
{
ψ2,2, ψ3,1

}
and

{
ψ2,2, ψ3,2

}
. We

can also notice that:

ψ2,1 × ψ3,1∥∥ψ2,1 × ψ3,1

∥∥ = − ψ2,1 × ψ3,2∥∥ψ2,1 × ψ3,2

∥∥ = − ψ2,2 × ψ3,1∥∥ψ2,2 × ψ3,1

∥∥ =
ψ2,2 × ψ3,2∥∥ψ2,2 × ψ3,2

∥∥ . (2.42)

This means we are safe, because the solution that we finally receive is only γ or −γ, regardless the chosen
pairs of matching rows after performing two times of the row-matching procedure

2.7 Numerical simulations

We consider a slightly simplified version of the MRI 3D Shepp-Logan phantom as our object (the details of the
MRI 3D Shepp-Logan phantom can be found in [Gach et al., 2008]), to test the method. This object consists of
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Table 2.1: Details of 15 ellipsoids of the considering 3D object

Ellisoid Centers
(
×102

)
Semi-axes

(
×102

)
Gray level (×10)

i c1 (i)× 102 c2 (i)× 102 c3 (i)× 102 r1 (i)× 102 r2 (i)× 102 r3 (i)× 102 v (i)× 10
1 00.00 00.00 00.00 72.00 95.00 93.00 08.00
2 00.00 00.00 00.00 69.00 92.00 90.00 -06.80
3 00.00 -01.84 00.00 66.24 87.40 88.00 08.60
4 00.00 -01.84 00.00 65.24 86.40 87.00 -02.35
5 -22.00 00.00 -25.00 16.00 41.00 21.00 02.35
6 22.00 00.00 -25.00 11.00 31.00 22.00 02.35
7 00.00 35.00 -25.00 21.00 25.00 35.00 -01.28
8 00.00 10.00 -25.00 04.60 04.60 04.60 02.05
9 -08.00 -60.50 -25.00 04.60 02.30 02.00 02.05
10 06.00 -60.50 -25.00 02.30 04.60 02.00 02.05
11 00.00 -10.00 -25.00 04.60 04.60 04.60 02.05
12 00.00 -60.50 -25.00 02.30 02.30 02.30 02.05
13 06.00 -10.50 06.25 04.00 05.60 10.00 01.85
14 00.00 10.00 62.50 05.60 05.60 10.00 02.35
15 47.00 -40.00 -25.00 03.00 20.00 10.00 01.05

15 ellipsoids, and none of them is tilted. Mathematically, our object is the following three-variable real function:
f =

∑15
i=1 fi, where:

fi (x1, x2, x3) =




v (i) , if

(
x1 − c1 (i)

r1 (i)

)2

+

(
x2 − c2 (i)

r2 (i)

)2

+

(
x3 − c3 (i)

r3 (i)

)2

≤ 1

0, otherwise

, (2.43)

with c (i) = (c1 (i) , c2 (i) , c3 (i)), r (i) = (r1 (i) , r2 (i) , r3 (i)) and v (i) are the center coordinate, the semi-axes and
the gray level of the i-th ellipsoid, respectively. The details of c (i), r (i) and v (i) are shown in table 2.1. We
have developed three programs, called projection-simulator, sinogram-generator and solver. Projection-simulator
received the information of the 3D object, the three given directions γ, e2, e3 and simulated the corresponding 2D
parallel projections: pγ , pe2 , pe3 . Then sinogram-generator received the three simulated projections and generated
the corresponding sinograms. Finally, γ was supposed to be the unknown direction, solver took the information
of the three generated sinograms, with the information of e2 and e3, performed the row-matching procedures and
then estimated the solutions to γ. Here we are going to show the results of three tests.

Test 1

In this test, we choose γ =

(
1

3
,−2

3
,
2

3

)
, Γ =

(
1

2
,
1

2
,
1√
2

)
, e2 = (0, 1, 0), e3 = (0, 0, 1). We treat e2 and e3 as

our known directions and γ and Γ as the unknowns that need to be estimated. After following the method, we
respectively obtain the following estimated solutions to γ and Γ:

γest ≈ ± (0.3260,−0.6685, 0.6685) , (2.44)

Γest ≈ ± (0.4975, 0.4975, 0.7106) . (2.45)

Figure 2.4 shows us the images of the projections pe2 , pe3 , and figure 2.5 shows the images of pγ , pΓ. Here the
intervals [−1, 1] on the two standard axes u and v of each projection image have been discretized as 1001-equidistant
samples, which makes each projection be an image at 1001× 1001 pixels. Figure 2.6 shows the four corresponding
sinograms of pe2 , pe3 , pγ and pΓ. In each sinogram image, the considered angles are from 0◦ to 359◦ with the
sampling step 1◦ (we use this notation to describe the angles: ϕ = 0◦ : 1◦ : 359◦), and s is a 1001-equidistant
sample of [−2, 2]. Figure 2.7 shows the projections computed along two estimated directions: pγest

and pΓest
. For

convenience of reading the text, we will separate the simulation images and present them all at once in section 2.11.
Here we have repeated our method two times to estimate respectively γest and Γest. We perform this test and show
the results of γest and Γest at the same time to say that: we only need to know the projection data and two unit
vectors in advance, all of the unknown unit vectors can be calibrated independently of each other, repeating the
same process.
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Test 2

We choose e2 =

(
1

2
,
1

3
,−

√
23

6

)
, e3 =

(
−2

3
,−1

4
,−

√
71

12

)
to be the two known directions and γ =

(
−1

4
,
1

4
,

√
14

4

)

to be the unknown. After following the method presented in section 2.5.2, from three 2D parallel projections and
two known directions e2 and e3, we obtain the estimated solution to γ as the following:

γest ≈ ± (−0.2427, 0.2550, 0.9360) . (2.46)

Figure 2.8 shows us the projections and their corresponding sinograms, and figure 2.9 shows the projection at the
estimated direction. We can notice that in test 1, e2 = (0, 1, 0) and e3 = (0, 0, 1), which are perpendicular to each
other. The aim of this test is to show an example that our method also works if the two known directions are
not perpendicular to each other. In short, we can conclude again that, the two known directions can be any two
unit vectors that are not collinear to each other. The estimated solution γest can be analytically computed by the
formula (2.26). In the particular case that the two known directions are e2 = (0, 1, 0) and e3 = (0, 0, 1), we can
even more quickly compute γest by the formula (2.30).

2.8 ϕ-sample refinement

After performing the above experiments, we obtain the estimated solutions γest approximating Γest.

• In the first test:

+ γest ≈ ± (0.3260,−0.6685, 0.6685) approximates γ =

(
1

3
,−2

3
,
2

3

)
≈ (0.3333,−0.6667, 0.6667),

+ Γest ≈ ± (0.4975, 0.4975, 0.7106) approximates Γ =

(
1

2
,
1

2
,
1√
2

)
≈ (0.5, 0.5, 0.7071).

• And in the second test:

+ γest ≈ ± (−0.2427, 0.2550, 0.9360) approximates γ =

(
−1

4
,
1

4
,

√
14

4

)
≈ (−0.25, 0.25, 0.9354).

In fact, looking into these results, the approximations are not good, comparing to the fact that all the data we are
working on is the simulated data, not the real data. Now we are going to explain about the errors and then improve

the approximations. We consider the first example of the first test: calibrating γ =

(
1

3
,−2

3
,
2

3

)
. The two other

examples are similar.

In the first example, e2 = (0, 1, 0), e3 = (0, 0, 1) and γ =

(
1

3
,−2

3
,
2

3

)
. From the formula (2.26), the estimated

solution is computed from ψ2 and ψ3. Theoretically, in the third statement in the comment in section 2.4, if γ is
supposed to be known in advance, then ψ2 is computed as follows:

ψ2 = ± γ × e2
∥γ × e2∥

= ±

(
1

3
,−2

3
,
2

3

)
× (0, 1, 0)

∥∥∥∥
(
1

3
,−2

3
,
2

3

)
× (0, 1, 0)

∥∥∥∥
= ±

(
−2

3
, 0,

1

3

)

∥∥∥∥
(
−2

3
, 0,

1

3

)∥∥∥∥
= ±

(
− 2√

5
, 0,

1√
5

)
. (2.47)

Then also following the idea in the comment, if θ2 and ϕ2 ∈ [0, 2π) are the two suitable angles characterizing two
matching rows (one in each sinogram), then theoretically, they satisfy:

{
cos θ2 = ψ2 · αγ

sin θ2 = ψ2 · βγ

,

{
cosϕ2 = ψ2 · αe2

sinϕ2 = ψ2 · βe2

. (2.48)

From this, θ2 and ϕ2 satisfy the following equations:





cos θ2 = −4

5

sin θ2 =
3

5

and





cosϕ2 =
2√
5

sinϕ2 =
1√
5

, or





cos θ2 =
4

5

sin θ2 = −3

5

and





cosϕ2 = − 2√
5

sinϕ2 = − 1√
5

. (2.49)
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Thus in theory, the two suitable pairs of angles are (θ2,theory, ϕ2,theory) ≈ (143.13◦, 26.57◦) or (θ2,theory, ϕ2,theory) ≈
(323.13◦, 206.57◦). Similarly, the two suitable pairs of angles when we compare the corresponding sinograms of pγ
and pe3 should be (θ3,theory, ϕ3,theory) ≈ (180◦, 26.57◦) or (θ3,theory, ϕ3,theory) ≈ (0◦, 206.57◦). In our program, the ϕ-
variable in each sinogram has been discretized as the sample: 0◦ : 1◦ : 359◦, which gives us the result ϕ2 = ϕ3 = 26◦.
Comparing to the suitable angles in theory, which should be 26.57◦, and because of the effect of the discretization,
these ϕ2 and ϕ3 are reasonable. Moreover, due to this reason, we can conclude that: in order to obtain a better
approximation for the estimated solution, we decided to perform a refinement step on ϕ. In fact, the work is to
zoom in the two considering sinograms with two corresponding finer discretization of ϕ. For instance, now instead
of comparing respectively the sinograms of pγ with pe2 , and pγ with pe3 , where ϕ = 0◦ : 1◦ : 359◦ in both sinograms,
we consider:

• pγ with ϕ = 143◦ : 0.01◦ : 144◦ and pe2 with ϕ = 26◦ : 0.01◦ : 27◦ in the first comparison,

• pγ with ϕ = 179.5◦ : 0.01◦ : 180.5◦ and pe3 with ϕ = 26◦ : 0.01◦ : 27◦ in the second comparison.

This leads exactly to the result ϕ2 = ϕ3 = 26.57◦ and the refined-estimated solution to γ:

γest, refined = ± (0.3334,−0.6667, 0.6667) . (2.50)

Similarly, we also apply this refinement step to the second example of test 1 and test 2.

• Second example of test 1: the suitable pairs of angles in theory are (θ2,theory, ϕ2,theory) ≈ (54.74◦, 35.26◦)
or (θ2,theory, ϕ2,theory) ≈ (234.74◦, 215.26◦); and (θ3,theory, ϕ3,theory) = (180◦, 135◦) or (θ3,theory, ϕ3,theory) =
(0◦, 315◦). Before the refinement step, we have ϕ2 = 215◦ and ϕ3 = 315◦. After the refinement step, we have
ϕ2 = 215.27◦ and ϕ3 = 315◦. And this gives us the refined-estimated solution:

Γest, refined = ± (0.5001, 0.5001, 0.7070) , approximating Γ =

(
1

2
,
1

2
,
1√
2

)
≈ (0.5, 0.5, 0.7071) . (2.51)

• Test 2: the suitable pairs of angles should be (θ2,theory, ϕ2,theory) ≈ (106.30◦, 34.38◦) or (θ2,theory, ϕ2,theory) ≈
(286.30◦, 214.38◦); and (θ3,theory, ϕ3,theory) = (51.06◦, 157.28◦) or (θ3,theory, ϕ3,theory) = (231.06◦, 337.28◦).
Before the refinement step, we have ϕ2 = 214◦ and ϕ3 = 157◦. After the refinement step, we have ϕ2 = 214.35◦

and ϕ3 = 157.31◦. And this gives us the refined-estimated solution:

γest, refined = ± (−0.2499, 0.2496, 0.9356) , approximating γ =

(
−1

4
,
1

4
,

√
14

4

)
≈ (−0.25, 0.25, 0.9354) .

(2.52)

Figure 2.10 shows all the corresponding projections computed at the refined-estimated directions.

2.9 Particular degenerate case

As shown at the final of section 2.5.2, the method of using the row-matching procedure will fail if the unknown
direction is on the same plane as the two known directions; and we call this the degenerate case. However, so far
we are only able to solve the particular degenerate case, where the two known directions are e2 = (0, 1, 0) and
e3 = (0, 0, 1). The work is to define the so-called in-plane moments and derive a new in-plane DCC, which are
presented in section 2.9.1 and 2.9.2.

2.9.1 In-plane moments

The unit vector γ is in the (e2, e3) plane, where e2 = (0, 1, 0) and e3 = (0, 0, 1). This means γ is in the plane x1 = 0,
then γ has the form γ = (0, γ2, γ3). With the assuption that any two of the three vectors are not collinear, then
γ ̸= ±e2 and γ ̸= ±e3, thus γ2, γ3 ̸= 0 satisfying γ22 + γ23 = 1 (because γ is a unit vector). By the definition in
section 2.2, we have:

αγ =
sgn (γ3)√

γ22
(−γ2, 0, 0) = − sgn (γ3) γ2

|γ2|
(1, 0, 0) = − γ2γ3

|γ2γ3|
(1, 0, 0) , (2.53a)

βγ =
1√
γ22

(
0,−γ2γ3, γ22

)
=

1

|γ2|
(
0,−γ2γ3, γ22

)
=

(
0,−γ2γ3|γ2|

, |γ2|
)
. (2.53b)
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With this coordinate system
(
αγ , βγ , γ

)
, we defined the same 2D parallel projection as in equation (2.4). The

in-plane moment of the parallel projection computed along γ direction will then be defined as follows:

Pn
γ (u) =

∫
pγ (u, v) v

ndv. (2.54)

2.9.2 In-plane DCC

From the above definition of the in-plane moment, we will construct our in-plane DCC, with the technique of the
changing variables. Using the definition (2.4) and the definition of the above coordinate system

(
αγ , βγ , γ

)
, we can

see that:

Pn
γ (u) =

∫
pγ (u, v) v

ndv (2.55a)

=

∫∫
f
(
uαγ + vβγ + tγ

)
vndtdv (2.55b)

=

∫∫
f

(
− γ2γ3
|γ2γ3|

u (1, 0, 0) + v

(
0,−γ2γ3|γ2|

, |γ2|
)
+ t (0, γ2, γ3)

)
vndtdv (2.55c)

=

∫∫
f

(
− γ2γ3
|γ2γ3|

u,−γ2γ3|γ2|
v + γ2t, |γ2| v + γ3t

)
vndtdv. (2.55d)

We change the variables: y = −γ2γ3|γ2|
v+ γ2t and z = |γ2| v+ γ3t, then we can quickly compute the Jacobian matrix

as the followings:

J =




∂y

∂v

∂y

∂t

∂z

∂v

∂z

∂t


 =



−γ2γ3|γ2|

γ2

|γ2| γ3


 , (2.56a)

det J = −γ2γ
2
3

|γ2|
− γ2 |γ2| = −γ2γ

2
3

|γ2|
− γ2γ

2
2

|γ2|
= − γ2

|γ2|
(
γ22 + γ23

)
= − γ2

|γ2|
, (2.56b)

|det J | = 1. (2.56c)

This leads dydz = dtdv. Moreover, we can also compute:

−γ2γ3|γ2|
y + |γ2| z = −γ2γ3|γ2|

(
−γ2γ3|γ2|

v + γ2t

)
+ |γ2| (|γ2| v + γ3t) (2.57a)

= γ23v − |γ2| γ3t+ γ22v + |γ2| γ3t (2.57b)

=
(
γ22 + γ23

)
v (2.57c)

= v. (2.57d)

Then after changing the variables, the above integral becomes:

Pn
γ (u) =

∫∫
f

(
− γ2γ3
|γ2γ3|

u,−γ2γ3|γ2|
v + γ2t, |γ2| v + γ3t

)
vndtdv (2.58)

=

∫∫
f

(
− γ2γ3
|γ2γ3|

u, y, z

)(
−γ2γ3|γ2|

y + |γ2| z
)n

dydz. (2.59)

With n = 1, the above result can be rewritten as:

P 1
γ (u) =

∫∫
f

(
− γ2γ3
|γ2γ3|

u, y, z

)(
−γ2γ3|γ2|

y + |γ2| z
)
dydz. (2.60)

Our next aim is from the above equality to make Pe2 and Pe3 appear on the right-hand-side, to obtain a link
between different first-order in-plane moments. Using the definition of the in-plane moments, changing the order
of integrating, and changing the variables, we thus obtain the following first-order in-plane DCC in moment form:
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The relationship between three different first-order in-plane moments:

P 1
γ (u) =

γ2γ3
|γ2|

P 1
e3

(
γ2γ3
|γ2γ3|

u

)
+ |γ2|P 1

e2

(
γ2γ3
|γ2γ3|

u

)
,∀u ∈ R. (2.61)

2.9.3 Solving algorithm in the particular degenerate case

We will use this first-order in-plane DCC to calibrate γ in this particular degenerate case. In the above equa-
tion (2.61), we can notice that: if (γ̂2, γ̂3) is a solution, then (−γ̂2,−γ̂3) is also. Then without loss of generality, we
assume that γ2 > 0, and then solve for (γ2, γ3). If we obtain the solution (γ̂2, γ̂3) with γ̂2 > 0, then we will also
take (−γ̂2,−γ̂3) as our solution. With this assumption, equation (2.61) can be rewritten as:

P 1
γ (u) = γ3P

1
e3

(
γ3
|γ3|

u

)
+ γ2P

1
e2

(
γ3
|γ3|

u

)
,∀u ∈ R. (2.62)

And the above equation is equivalent to the following system:

{
P 1
γ (u) = γ3P

1
e3 (u) + γ2P

1
e2 (u) , ∀u ∈ R if γ3 > 0,

P 1
γ (u) = γ3P

1
e3 (−u) + γ2P

1
e2 (−u) ,∀u ∈ R if γ3 < 0.

(2.63)

2.9.3.1 Case 1: γ2, γ3 > 0

With γ2, γ3 > 0, we combine the first equation of the system (2.63) with the fact that γ is a unit vector to obtain
a system of equations in γ2 and γ3. For each value u0 ∈ R, we have:

{
γ3P

1
e3 (u0) + γ2P

1
e2 (u0) = P 1

γ (u0)

γ22 + γ23 = 1
. (2.64)

This system (2.64) leads to the second-order equations as follows:

(
P 1
γ (u0)− P 1

e3 (u0) γ3
)2

+
(
P 1
e2 (u0) γ3

)2
=
(
P 1
e2 (u0)

)2
, (2.65)

or it can be rewritten as:
[(
P 1
e2 (u0)

)2
+
(
P 1
e3 (u0)

)2]
γ23 − 2P 1

γ (u0)P
1
e3 (u0) γ3 +

[(
P 1
γ (u0)

)2 −
(
P 1
e2 (u0)

)2]
= 0. (2.66)

This second-order equation gives us at most two solutions:

γ3 (u0) =
P 1
γ (u0)Pe3 (u0)± |Pe2 (u0)|

√(
P 1
e2
(u0)

)2
+
(
P 1
e3
(u0)

)2 −
(
P 1
γ (u0)

)2

(
P 1
e2
(u0)

)2
+
(
P 1
e3
(u0)

)2 . (2.67)

We can see that we have a similar system of equations as the system (2.64) for each value of u ∈ R. In fact, solving
each of these systems is equivalent to considering a plane x1 = u, which intersects the 3D object and solving the
2D calibration problem on that plane containing the 2D slice of the object. From this point of view, we have many
parallel planes slicing through the 3D object and solving each 2D calibration problem gives us at most two solutions
on each plane. Here we neither claim that there always exists solution nor confirm the number of solutions on each
plane. But if (0, γ̃2, γ̃3) is the true solution to γ, then yes, there must always exists solution on every plane, and
among the solutions on each plane, there must exist one solution, which equals to γ̃3. We mention this fact because
it is the crucial trick that we used to solve this particular degenerate case. Moreover, this technique of considering
a 3D calibration problem as a series of many 2D calibration problems, solving each 2D problem and choosing the
common solution among them is also used in chapter 3, to solve the calibration problem in 3D cone-beam geometry
with linear sources. We now leave it here to finish the details for case 2 first, and will come back to demonstrate
the solution-determining step. After obtaining the solution to γ3, we can compute γ2 by using the first equation of
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the system (2.63):

γ2 =
P 1
γ (u)− γ3P

1
e3
(u)

P 1
e2
(u)

(2.68a)

=

∣∣P 1
e2
(u)
∣∣

P 1
e2
(u)

P 1
γ (u)

∣∣P 1
e2
(u)
∣∣∓ P 1

e3
(u)

√(
P 1
e2
(u)
)2

+
(
P 1
e3
(u)
)2 −

(
P 1
γ (u)

)2

(
P 1
e2
(u)
)2

+
(
P 1
e3
(u)
)2 , ∀u ∈ R. (2.68b)

2.9.3.2 Case 2: γ2 > 0 and γ3 < 0

In this case, we look for the solution (0, γ2, γ3) with γ2 > 0 and γ3 < 0. Completely similar to case 1, for each value
u0 ∈ R, we need to solve the following system of equations:

{
γ3P

1
e3 (−u0) + γ2P

1
e2 (−u0) = P 1

γ (u0)

γ22 + γ23 = 1
, (2.69)

to obtain the solutions to γ3 for each value of u0 (on each parallel plane):

γ3 (u0) =
P 1
γ (u0)Pe3 (−u0)± |Pe2 (−u0)|

√(
P 1
e2
(−u0)

)2
+
(
P 1
e3
(−u0)

)2 −
(
P 1
γ (u0)

)2

(
P 1
e2
(−u0)

)2
+
(
P 1
e3
(−u0)

)2 . (2.70)

As mentioned in case 1, after deciding the solution to γ3, we continue using the second equation of system (2.63)
to solve for γ2 as follows:

γ2 =

∣∣P 1
e2
(−u)

∣∣
P 1
e2
(−u)

P 1
γ (u)

∣∣P 1
e2
(−u)

∣∣∓ P 1
e3
(−u)

√(
P 1
e2
(−u)

)2
+
(
P 1
e3
(−u)

)2 −
(
P 1
γ (u)

)2

(
P 1
e2
(−u)

)2
+
(
P 1
e3
(−u)

)2 , ∀u ∈ R. (2.71)

2.9.3.3 Remarks on the solution-determining step

As presented in the previous section, in both cases, in order to solve for γ3, we need to solve many second-order
equations (each equation is obtained on one parallel plane), to obtain many (pairs of) solutions of γ3. We make
two following necessary remarks:

• In theory, the true solution can only appear in one of the two cases, because the two cases are indepen-
dent of each other. More precisely, our two cases are: (γ2 > 0, γ3 > 0) and (γ2 > 0, γ3 < 0), which are not
(γ2 > 0, γ3 > 0) and (γ2 < 0, γ3 < 0), or (γ2 < 0, γ3 > 0) and (γ2 > 0, γ3 < 0), they do not link to each other,
there has to be no possibility that the true solution appear in both cases under the form of γ and −γ.

• In order to determine the good approximation of the true solution of γ3, we suggest plotting all the obtained
solutions in case 1 in a figure, and all solutions in case 2 in another figure. Since the solution of γ3 we obtained
are the functions of u in both cases, the horizontal axes in both figures are for u and the vertical axes are
showing the potential values of the solutions. Now if γ̃3 is the true solution and if γ̃3 > 0, then in the figure of
case 1, there must appear a horizontal line, which is made up of many collinear solution-points. This comes
from the fact that the solutions exist for all values of u and for each value of u, there has to exist one solution
which equals to the constant value γ̃3. The same thing happens with the figure of case 2 if γ̃3 < 0. And from
the above remark, this horizontal line will appear in only one of the two figures. Visually, we can determine
the approximation of the true solution of γ3. And using the corresponding formula (2.68) or (2.71), we can
find the approximation of γ2.

• We will use this last remark to explain the idea of the method of determining a good approximation of γ3.
It will not be precisely presented here, because it would be better to be shown in details in chapter 3, where
it plays such an important and central role of solving the calibration problem in 3D cone-beam geometry
with linear sources. Now the idea of the method is after plotting all the solutions in the two corresponding
figures, the horizontal line of collinear solutions will appear in one of the two figures. We will focus on this
figure. Because of the existence of the (true) solutions, we can see that for every value of u, we will plot two
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corresponding points of solutions. Now we find the biggest solution γmax
3 among all and its corresponding u1

value, then we find the smallest solution γmin
3 among the solutions that correspond to other values u ̸= u1

and we also find the value u2 which links to γmin
3 . We can see that γmax

3 (corresponding to u1) and γmin
3

(corresponding to u2) will be significantly different from each other. However, because of the existence of the
true solution, there must exist two solutions respectively corresponding to u1 and u2, being approximately the
same. We can easily find these two solutions and compute the average value of them γaverage3 . Then, for each
value of u, we will find the solution that approximates γaverage3 . Finally, we again compute the average value
over the just-found solutions, which gives us the good approximation of γ3. Here, we choose u1 and u2, which
respectively correspond to γmax

3 and γmin
3 , rather than two arbitrary values of u, because it will be easier for

the next task to detect the two solutions which corresponds to u1 and u2 and are approximately the same.

2.9.4 Numerical simulations of the particular degenerate case

We perform one more test with γ is on the same plane as e2 = (0, 1, 0) and e3 = (0, 0, 1), which is the particular
degenerate case. Here we continue to use the same object as section 2.7 - the modified 3D Shepp-Logan phantom.

In this test, we choose γ =

(
0,

1

2
,−

√
3

2

)
and Γ =

(
0,−2

√
2

3
,
1

3

)
. We will see once again that the unknown

directions can be calibrated independently of each other repeating the same process. We do not show again the
images of the two projections pe2 and pe3 (they are already there in figure 2.4).

• For γ =

(
0,

1

2
,−

√
3

2

)
, after performing the method presented in the previous section, we obtain the potential

solutions of γ3 as in figure 2.11. By the solution-determining step, we obtain the approximate solution of γ3:
γ3,approx = −0.8663. From this we can compute γ2,approx = 0.4996, which leads to the approximate solution
of γ as follows:

γapprox = (0, 0.4996,−0.8663) approximates γ =

(
0,

1

2
,−

√
3

2

)
≈ (0, 0.5,−0.8660) . (2.72)

• For Γ =

(
0,−2

√
2

3
,
1

3

)
, we repeat the whole process and obtain all the potential solutions of γ3 shown in

figure 2.13. Here we want to explain why the true solution of γ3 should be
1

3
, while we can visually see that

the horizontal line of collinear solutions is pointing to some negative value (in figure 2.13 on the right). The
reason is that the true solution γ that we expect has γ2 < 0, while the algorithm given in the theory assumes
γ2 > 0 and only solves for this case, thus in this situation, the result of the algorithm will be an approximation

of −Γ =

(
0,

2
√
2

3
,−1

3

)
. And yes, after finish all the steps, the result of Γapprox turns out to be:

Γapprox = (0, 0.942814,−0.333319) approximates − Γ =

(
0,

2
√
2

3
,−1

3

)
≈ (0, 0.942809,−0.333333) .

(2.73)

In this example, we use six digits after the decimal points, since four digits show no differences when comparing
the approximate solution to the true solution.

After that, we confirm the final estimated solutions by also taking the corresponding opposite directions of the
approximate solutions that we just obtain:

γest = ± (0, 0.4996,−0.8663) and Γest = ± (0, 0.942814,−0.333319) . (2.74)

Figure 2.12 and 2.14 respectively show the images of the projections taken at the two final estimated directions.

2.10 Global comments

• Our method was designed for a 3D object, which is fixed at a certain position. In reality, the object may
have some small movements during the measuring or scanning process to obtain the projection images. For
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instance, when a person needs to take a CT scan, he or she will be asked to stay still in a period of time. But
in fact the person may have some small movements during the scanning process. Let’s say these movements
are made up only from some translations (not rotations), then that leads to the existence of the unknown and
random shift amount in every 2D parallel projection. Thus we will need to correct these random shifts in the
parallel projections, prior to performing our method of calibrating. We base on the well-known center-of-mass
result: “the center-of-mass (COM) of a 2D parallel projection is the projection of the center-of-mass of the
3D object”, which means all of the COMs of the parallel projections link together because they are all the
projections of the COM of the 3D object along different directions. Now for each raw parallel projection, we
shift to make its own COM locate at the origin of the detector. After all the COMs of the projections locate
at their own detectors’ origins, then because each detector’s origin is in fact the projection of the world origin
along the corresponding direction, it is equivalent to say that the object is now fixed at the position that the
COM of the object locates at the world origin (the origin of the 3D coordinate system). Then we are ready
to perform the calibration process.

• We also allow each projection image to have an unknown in-plane angle, which may be caused by an unexpected
random in-plane rotation of the detector during the measuring process. By using the same row-matching
method, we can even calibrate these in-plane angles. We use the word “measurements” to refer to the
projections which contain the unknown in-plane angles, and to distinguish them from the projections that we
have considered so far. Mathematically, each measurement mγ,λ (u, v) (λ ∈ [0, 2π)) is defined as:

mγ,λ (u, v) =

∫
f
(
uαλ

γ + vβ
λ

γ + tγ
)
dt, (2.75)

where
(
αλ
γ , β

λ

γ

)
is obtained by rotating

(
αγ , βγ

)
an angle λ counter-clockwise:

αλ
γ = cosλαγ + sinλβγ , β

λ

γ = − sinλαγ + cosλβγ . (2.76)

The definition of mγ,λ is in fact the 2D parallel projection taken along the same direction γ as pγ , except

the fact that the detector’s coordinate system
(
αγ , βγ

)
is rotated to be

(
αλ
γ , β

λ

γ

)
; this is what we have just

explained above about the unexpected in-plane rotation of the detector. Now the problem is that: assuming
we have three (shift-corrected) measurements mγ,λ, me2,λ2 , me3,λ3 and we know e2, e3, we claim that by the
same method of using the row-matching procedure, we can calibrate three unknown in-plane angles, and the
unknown direction γ. By the definition of the measurement and the projection, we can see the relation:

mγ,λ (u, v) =

∫
f
(
uαλ

γ + vβ
λ

γ + tγ
)
dt (2.77a)

=

∫
f
(
u
(
cosλαγ + sinλβγ

)
+ v

(
− sinλαγ + cosλβγ

)
+ tγ

)
dt (2.77b)

=

∫
f
(
(u cosλ− v sinλ)αγ + (u sinλ+ v cosλ)βγ + tγ

)
dt (2.77c)

= pγ (u cosλ− v sinλ, u sinλ+ v cosλ) . (2.77d)

Then for any θ ∈ [0, 2π) and for all s ∈ R, using this relation and applying the 2D Radon transform, we
continue to obtain the following relation:

R2
θmγ,λ (s) (2.78a)

=

∫
mγ,λ (s cos θ − t′ sin θ, s sin θ + t′ cos θ) dt′ (2.78b)

=

∫
pγ ((s cos θ − t′ sin θ) cosλ− (s sin θ + t′ cos θ) sinλ, (s cos θ − t′ sin θ) sinλ+ (s sin θ + t′ cos θ) cosλ) dt′

(2.78c)

=

∫
pγ (s (cos θ cosλ− sin θ sinλ)− t′ (sin θ cosλ+ cos θ sinλ) ,

s (cos θ sinλ+ sin θ cosλ) + t′ (cos θ cosλ− sin θ sinλ)) dt′ (2.78d)

=

∫
pγ (s cos (θ + λ)− t′ sin (θ + λ) , s sin (θ + λ) + t′ cos (θ + λ)) dt′ (2.78e)

= R2
θ+λpγ (s) . (2.78f)
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By the result (2.7), we know that:

R2
θmγ,λ (s) = R2

θ+λpγ (s) = R3
Ψ
(s) ,∀s ∈ R, (2.79)

where Ψ = cos (θ + λ)αγ + sin (θ + λ)βγ . This is the general version of the relation (2.7), and from it, we
derive the general pair-wise DCC for two arbitrary measurements.

Given two measurements taken along two arbitrary directions γ, γ′ ∈ S2 with λ and λ′ are two corre-
sponding in-plane angles, if we can find a pair of suitable angles (θ, θ′) ∈ [0, 2π)

2
such that:

cos (θ + λ)αγ + sin (θ + λ)βγ = cos (θ′ + λ′)αγ′ + sin (θ′ + λ′)βγ′ , (2.80)

then for all s ∈ R:

R2
θmγ,λ (s) = R2

θ′mγ′,λ′ (s) . (2.81)

With this general pair-wise DCC (2.81), we (quite) similarly follow the steps in section 2.5.2.

1. Finding two in-plane angles λ2 and λ3: We compare two sinograms of me2,λ2
and me3,λ3

, then perform
the row-matching procedure to obtain two suitable angles ω2, ω3 ∈ [0, 2π) such that:

R2
ω2
me2,λ2

(s) = R2
ω3
me3,λ3

(s) ,∀s ∈ R. (2.82)

Then, under the condition (2.18) on the object, we also know that:

cos (ω2 + λ2)αe2 + sin (ω2 + λ2)βe2 = cos (ω3 + λ3)αe3 + sin (ω3 + λ3)βe3 . (2.83)

We claim that from this equation, we can calculate the in-plane angles λ2 and λ3. Instead of using the
trigonometry knowledge (which may be complicated in this case), we repeat the same trick has been
used in the comment of section 2.4. Let’s say both sides of the above equation equal to a vector ξ, then
ξ will be a unit vector, which is perpendicular to both e2 and e3:

cos (ω2 + λ2)αe2 + sin (ω2 + λ2)βe2 = cos (ω3 + λ3)αe3 + sin (ω3 + λ3)βe3 = ξ. (2.84)

Under the initial assumption that e2 ̸= ±e3, we know that there are only two possible solutions of ξ:

ξ = ± e2 × e3
∥e2 × e3∥

. (2.85)

With ξ =
e2 × e3
∥e2 × e3∥

, from equation (2.84), the set of solutions
(
λ̂2, λ̂3

)
of the in-plane angles satisfying:





cos
(
ω2 + λ̂2

)
=

(e2 × e3) · αe2

∥e2 × e3∥

sin
(
ω2 + λ̂2

)
=

(e2 × e3) · βe2

∥e2 × e3∥

and





cos
(
ω3 + λ̂3

)
=

(e2 × e3) · αe3

∥e2 × e3∥

sin
(
ω3 + λ̂3

)
=

(e2 × e3) · βe3

∥e2 × e3∥

. (2.86)

Since ω2 and ω3 have just been found, the solutions
(
λ̂2, λ̂3

)
of the in-plane angles are clearly defined

by the above systems of equations. Similarly, with ξ = − e2 × e3
∥e2 × e3∥

, we obtain another set of solutions
(
λ̃2, λ̃3

)
of the in-plane angles satisfying:





cos
(
ω2 + λ̃2

)
= − (e2 × e3) · αe2

∥e2 × e3∥

sin
(
ω2 + λ̃2

)
= − (e2 × e3) · βe2

∥e2 × e3∥

and





cos
(
ω3 + λ̃3

)
= − (e2 × e3) · αe3

∥e2 × e3∥

sin
(
ω3 + λ̃3

)
= − (e2 × e3) · βe3

∥e2 × e3∥

. (2.87)

From the above system of equations, we can also see that these two sets of solutions link to each other:
∣∣∣λ̂2 − λ̃2

∣∣∣ = π, (2.88a)
∣∣∣λ̂3 − λ̃3

∣∣∣ = π. (2.88b)
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2. Finding the unknown direction γ: After the two in-plane angles λ2 and λ3 being found, we continue to
apply the row-matching procedure to the sinograms of mγ,λ and me2,λ2 , then we can find two suitable
angles µ2, ν2 ∈ [0, 2π) such that:

{
R2

µ2
mγ,λ (s) = R2

ν2
me2,λ2 (s) ,∀s ∈ R

cos (µ2 + λ)αγ + sin (µ2 + λ)βγ = cos (ν2 + λ2)αe2 + sin (ν2 + λ2)βe2

. (2.89)

Similarly, comparing the sinograms of mγ,λ and me3,λ3
, we can also obtain two suitable angles µ3, ν3 ∈

[0, 2π) such that:
{

R2
µ3
mγ,λ (s) = R2

ν3
me3,λ3

(s) ,∀s ∈ R

cos (µ3 + λ)αγ + sin (µ3 + λ)βγ = cos (ν3 + λ3)αe3 + sin (ν3 + λ3)βe3

. (2.90)

Since ν2, λ2, ν3, λ3 and αe2 , βe2 , αe3 , βe3 are all known, we can set the two following vectors which are
already known:

{
Ψ2 = cos (ν2 + λ2)αe2 + sin (ν2 + λ2)βe2

Ψ3 = cos (ν3 + λ3)αe3 + sin (ν3 + λ3)βe3

, (2.91)

then the estimated solution to γ can be obtained as in equation (2.26):

γ = ± Ψ2 ×Ψ3∥∥Ψ2 ×Ψ3

∥∥ . (2.92)

Since the two sets
(
λ̂2, λ̂3

)
and

(
λ̃2, λ̃3

)
are π-different from each other, thus they do not affect to the

solution of γ.

3. Find the final in-plane angle: From the second equation in system (2.89), since the angles µ2, ν2, λ2 and

the unit vectors αγ , βγ , αe2 , βe2 are already known, we can calculate λ using the same trick as presented

in step 1. We will also obtain two possible solutions λ̂ and λ̃, which respectively correspond
(
λ̂2, λ̂3

)

and
(
λ̃2, λ̃3

)
(substituting λ̂2 or λ̃2 into to the equation respectively leads to the solution λ̂ or λ̃).

In conclusion, by the same method as in section 2.5.2 with some extra works, we can calibrate the unknown
direction and the three correponding in-plane angles. Here we obtain two possible sets of solutions of the

in-plane angles:
(
λ̂, λ̂2, λ̂3

)
and

(
λ̃, λ̃2, λ̃3

)
, which are π-different from each other, with no further clues, some

more studies need to be done.

• Again, we repeat that the degenerate case that has been done here is just a particular case, when the two
known directions are (0, 1, 0) and (0, 0, 1). Further studies need to be done to completely solve the general
degenerate case. One hidden but important thing that we need to mention here is that the solution of the
particular degenerate case depends on solving many 2D calibration problems on the parallel planes and it
can only be solved if there are at least two parallel planes giving different information about the slices of the
3D object. Otherwise, if all parallel planes give the same information about the slices, in general we end up
obtaining a pair of solutions repeating multiple times and we will not know which of them is the true solution
that needs to be chosen. Thus the structure of the 3D object has to be general enough, and once again the
object condition (2.18) contributes a crucial part even in this degenerate case.

• In order to obtain a fully automatic calibration method to this problem, we need to get rid of the assumption of
knowing the viewing directions of two projections in advance. Following the idea of Basu and Bresler of defining
the equivalent classes is a possible path to start (see [Basu and Bresler, 2000b, Basu and Bresler, 2000a]).

• We keep repeating this, but the trick of consider a 3D calibration problem as a series of many 2D calibration
problems, and related topics are the main and central part of chapter 3. So they will be shown and explained
in details in the next chapter.

2.11 Simulation images

As mentioned before, this section contains all of the simulation images in the order that they appear in the text.
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Figure 2.4: Projection images pe2 (u, v) (left) and pe3 (u, v) (right), where e2 = (0, 1, 0) and e3 = (0, 0, 1)

Figure 2.5: Projection images pγ (u, v) (left) and pΓ (u, v) (right), where γ =

(
1

3
,−2

3
,
2

3

)
and Γ =

(
1

2
,
1

2
,
1√
2

)
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Figure 2.6: Sinograms which correspond to pe2 (top-left), pe3 (top-right), pγ (bottom-left) and pΓ (bottom-right)

Figure 2.7: Projection images along two respective estimated directions of γ and Γ: pγest
and pΓest

, where γest ≈
(0.3260,−0.6685, 0.6685) and Γest ≈ (0.4975, 0.4975, 0.7106)
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Figure 2.8: Projection images (left column) and their corresponding sinograms (right column) of pe2 (u, v) (top

row), pe3 (u, v) (middle row) and pγ (u, v) (bottom row), where e2 =

(
1

2
,
1

3
,−

√
23

6

)
, e3 =

(
−2

3
,−1

4
,−

√
71

12

)
, and

γ =

(
−1

4
,
1

4
,

√
14

4

)



36 CHAPTER 2. DCCS FOR 3D PARALLEL PROJECTIONS AND APPLICATIONS

Figure 2.9: Projection images along the unknown direction pγ (u, v) and its estimated direction pγest
(u, v), where

γ =

(
−1

4
,
1

4
,

√
14

4

)
and γest ≈ (−0.2427, 0.2550, 0.9360)

Figure 2.10: Top row: projections along refined estimated directions γest, refined = (0.3334,−0.6667, 0.6667) and

Γest, refined = (0.5001, 0.5001, 0.7070) (test 1), bottom row: projection along refined estimated direction γest =
(−0.2499, 0.2496, 0.9356) (test 2)
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Figure 2.11: Potential solutions of γ3 in case 1: γ2, γ3 > 0 (left) and case 2: γ2 > 0, γ3 < 0 (right)

Figure 2.12: Projections along the unknown direction γ =

(
0,

1

2
,−

√
3

2

)
(left) and the approximate direction

γapprox = (0, 0.4996,−0.8663)
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Figure 2.13: Potential solutions of γ3 in case 1: γ2, γ3 > 0 (left) and case 2: γ2 > 0, γ3 < 0 (right)

Figure 2.14: Projections along the unknown direction Γ =

(
0,−2

√
2

3
,
1

3

)
(left) and the approximate direction

Γest = (0, 0.942814,−0.333319)



Chapter 3

DCCs for fan-beam projections and
applications

French summary of the content

Dans ce chapitre, nous travaillons avec la géométrie divergente, et nous étudions les conditions de cohérence des
données pour les projections en éventail, ou Fan-beam consistency conditions (FBCC). Ce chapitre reprend notre
intervention [Nguyen et al., 2020b] dans la conférence CT Meeting 2020. Les résultats numériques ont été améliorés
après la publication de l’article, ce qui montre quelques différences par rapport à l’article original.

Une approche principale pour créer les FBCC, qui a suscité de l’intérêt pendant un certain temps, consiste à
trouver la relation entre les projections parallèles 2D et les projections en éventail, afin de convertir les conditions
de cohérence Helgason-Ludwig (HLCC) de la géométrie parallèle vers la géométrie en éventail, c’est à dire des
variables parallèles vers les variables en éventail, voir [Hengyong Yu et al., 2006] et [Yu and Wang, 2007]. Dans
ces articles, la version fan-beam des HLCC est obtenue pour les projections conventionnelles en géométrie fan-
beam (ce qui signifie que les projections fan-beam sont les intégrales linéaires calculées en termes de vecteurs
unitaires montrant la direction d’intégration), avec la source de rayons X se déplaçant le long d’un cercle. Les
HLCC sont directement converties de la géométrie parallèle 2D standard vers la géométrie fan-beam en trajectoire
circulaire de la source. Dans les articles [Clackdoyle, 2013, Clackdoyle et al., 2014, Clackdoyle, 2018], Clackdoyle et
al. considèrent la géométrie du faisceau en éventail avec la source de rayons X se déplaçant le long d’une droite. Il
existe deux FBCC de type polynomial. Une condition fonctionne avec les projections conventionnelles en éventail,
qui sont des fonctions à variable angulaire. Le moment d’ordre n dans cette situation intègre les projections fan-
beam classiques multipliées par le terme tann(ϕ)/cosϕ, où ϕ est la variable angulaire. L’autre condition est établie
pour les projections fan-beam collectés sur un détecteur plat qui se situe sur une ligne parallèle à la trajectoire
de la source. Elle fonctionne avec des projections pondérées par des fonctions de la variable réelle u modélisant le
détecteur. Le moment d’ordre n est l’intégration des projections pondérées en éventail multipliées par le terme un.
Bien que les formules de moment soient différentes, ces deux FBCC s’impliquent mutuellement, ce qui signifie que
nous pouvons obtenir une condition à partir de l’autre en changeant les variables de manière appropriée. En outre,
l’article [Clackdoyle, 2018] nous montre également quelques DCC pour les projections parallèles 3D et les projections
à faisceau conique, avec la source de rayons X se déplaçant sur un plan. L’article [Clackdoyle and Desbat, 2015]
présente une FBCC s’appliquant sur les projections conventionnelles en éventail avec la source se déplaçant le long
d’un cercle. L’article nous apprend que cette FBCC est construite sur la base du résultat suivant en géométrie
parallèle 2D : étant donnée une fonction f à valeurs réelles 2D à support compact, si p est définie comme la projection
parallèle modélisée par la transformée de Radon 2D :

p (ϕ, s) =

∫
f

(
s

[
cosϕ
sinϕ

]
+ t

[
− sinϕ
cosϕ

])
dt, ∀ϕ ∈ [0, 2π) ,∀s ∈ R,

alors Bn(x) défini par :

Bn (x) =

∫ π/2

−π/2

p (ϕ, x cosϕ+ y0 sinϕ)
tann ϕ

cosϕ
dϕ,

deviendra un polynôme en x de degré au plus n, où y0 est une valeur appropriée telle que y = y0 est une ligne hori-
zontale qui n’intersecte jamais l’enveloppe convexe du support de f . Le FBCC dans [Clackdoyle and Desbat, 2015]

39
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est la version du résultat ci-dessus en géométrie parallèle 2D convertie en géométrie fan-beam avec une trajectoire
circulaire de la source. De plus, dans l’article [Clackdoyle et al., 2015], Clackdoyle et al. nous montrent la FBCC
s’appliquant sur les projections classiques en éventail, avec la source se déplaçant le long d’un petit arc de cer-
cle. L’idée pour créer cette FBCC est de considérer la corde reliant deux extrémités de l’arc, puis de “rebinner”
(réorganiser) les données en recherchant la relation entre les projections réelles de faisceaux en éventail avec les
sources sur l’arc considéré, et les projections virtuelles de faisceaux en éventail avec les sources sur la corde cor-
respondante. Comme la trajectoire de la source des projections virtuelles en éventail est un segment de droite, il
existe déjà la FBCC à variable angulaire pour ces projections virtuelles en éventail, voir [Clackdoyle, 2013], puis les
auteurs obtiennent une nouvelle forme de cette FBCC à appliquer sur les projections en éventail avec des sources
sur un arc de cercle. La formule sous cette forme est similaire à la FBCC de l’article [Clackdoyle and Desbat, 2015].
Il existe une autre approche consistant à utiliser le résultat de Levine, basé sur l’équation de John, pour obtenir
une FBCC pour les projections pondérées en éventail avec des sources sur une ligne, voir [Levine et al., 2010]. Le
résultat de Levine est lié à la FBCC d’ordre 0 à variable linéaire dans [Clackdoyle, 2013]. Ce fait a également été
mentionné et utilisé dans [Lesaint et al., 2017].

En plus des résultats de DCC, nous apprenons également de l’article [Desbat and Clackdoyle, 2019] les résultats
sur les liens entre le centre de masse (center of mass - COM) de l’objet et le COM d’une telle projection considérée, en
géométrie parallèle ainsi qu’en géométrie fan-beam avec des sources sur une ligne. Dans notre travail, nous voulons
présenter à nouveau la FBCC pour les projections pondérées en éventail et le résultat du COM en géométrie en
éventail avec des sources linéaires, et les utiliser pour aborder un problème de calibrage géométrique 3D en faisceau
conique. Dans ce problème, nous travaillons dans l’espace 3D, avec (x1, x2, x3) comme système de coordonnées
standard. Le modèle avec lequel nous allons travailler comprend une source de rayons X se déplaçant le long de
l’axe x1, et un détecteur plat en 2D, qui est perpendiculaire à l’axe x2 et à une distance T > 0 de l’origine du
référentiel de travail. Nous disposons d’une collection de projections par faisceau conique d’un objet inconnu 3D
à support compact, qui ont été acquise sur un détecteur plan. Supposons que nous connaissions à l’avance trois
positions de la source, pour lesquelles respectivement trois projections par faisceau conique ont été acquises. Nous
pouvons alors calibrer les positions des sources de toutes les autres projections à faisceau conique, une par une et
indépendamment les unes des autres. D’un point de vue physique, nous pouvons comprendre le modèle comme
suit : un objet 3D se trouve sur un tapis roulant horizontal, placé entre une source de rayons X et un détecteur
suffisamment grand. La source de rayons X est fixe, tandis que la bande transporteuse et le détecteur se déplacent
ensemble horizontalement dans la même direction mais à des vitesses différentes, en suivant la règle selon laquelle
la projection du faisceau conique de l’objet reste toujours entièrement à l’intérieur du détecteur, de sorte qu’il n’y
a pas de troncature dans toutes les projections du faisceau conique, voir figure 3.1. Ce mouvement équivaut au fait
que l’objet 3D est fixé à une certaine position, que le détecteur se déplace dans la même direction horizontale que
ci-dessus, tandis que la source de rayons X se déplace maintenant le long d’une ligne dans la direction opposée, par
rapport au détecteur, voir figure 3.2. Supposons que, pour une raison quelconque, lors de la procédure de mesure et
de prise des projections de l’objet, après les trois premières projections, le système commence à perdre sa trace. Les
projections sont toujours correctes, mais nous ne pouvons connâıtre aucune autre position de source à laquelle les
projections ont été prises, à l’exception des trois premières projections. Nous cherchons donc à calibrer les positions
des sources de toutes les autres projections en faisceau conique, en nous basant sur les trois positions connues des
sources, leurs projections en faisceau conique et les projections correspondantes des positions inconnues des sources.

Les chapitres 2 et 3 peuvent également être considérés comme un duo de chapitres liés, puisque le chapitre 3 a
le même esprit que le cas dégénéré du chapitre 2. Le chapitre 2 traite de la géométrie parallèle 3D, et la technique
utilisée dans le cas dégénéré peut être comprise comme la construction de nombreux plans parallèles, qui passent
par l’objet 3D, et la résolution des problèmes de calibration 2D sur chaque plan au lieu de résoudre le problème de
calibration 3D, puis de choisir la solution commune à tous. Le chapitre 3 traite de la géométrie du faisceau conique
3D. Nous verrons que nous effectuons un travail similaire en construisant de nombreux plans obliques coupant l’objet
3D, et en considérant le problème de calibrage du faisceau conique 3D comme une série de nombreux problèmes de
calibrage du faisceau en éventail 2D sur les plans obliques, pour les résoudre et choisir la solution commune à tous.

Ce chapitre est organisé comme suit : la section 3.2 présente les définitions des projections du faisceau en éventail,
les définitions de leurs moments correspondants, la FBCC, le résultat du COM et une petite simulation pour illustrer
la FBCC ; la section 3.3 montre la méthode de calibrage de la position de la source dans le problème de calibrage du
faisceau en éventail 2D, avec une simulation numérique pour tester la méthode. De même, la section 3.4 présente les
définitions des projections du faisceau conique. La section 3.5 donne la méthode de construction des plans obliques
et de calibrage des positions de source inconnues. Un algorithme permettant de choisir la solution finale estimée
pour la position de la source inconnue, ainsi que deux expériences numériques sont également présentés dans cette
section.
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3.1 Introduction

This chapter presents our proceedings paper [Nguyen et al., 2020b] in the conference CT Meeting 2020. The numer-
ical results are improved after the paper being published, which shows some differences in comparison to the original
published proceeding.

In this chapter, we work with the divergent geometry, and study the Data consistency conditions for the fan-beam
projections, or Fan-beam consistency conditions (FBCCs). One main approach to create the FBCCs, which has
been of interests for a period of time, is to find the relationship between the 2D parallel projections and the fan-beam
projections, in order to convert the well-known Helgason-Ludwig consistency conditions (HLCCs) into fan-beam
geometry, with fan-beam variables, see [Hengyong Yu et al., 2006] and [Yu and Wang, 2007]. In those papers,
the fan-beam version of the HLCC is applied for the conventional fan-beam projections (meaning the fan-beam
projections are the line integrals computed in terms of unit vectors showing the integration direction), with the x-ray
source moving along a circle, since it is directly converted from the standard 2D parallel geometry, which deals with
circular source trajectory. In the papers [Clackdoyle, 2013, Clackdoyle et al., 2014, Clackdoyle, 2018], Clackdoyle
et. al. considers the fan-beam geometry with the x-ray source moving along a line. There are two polynomial-type
FBCCs: one condition works with the conventional fan-beam projections, which are angular-variable functions.
The moment of order n in this situation integrates the conventional fan-beam projections multiplied by the term
tann (ϕ) / cosϕ, where ϕ is the angular variable. The other condition works with the weighted fan-beam projections,
which are linear-variable functions. They are assumed to be collected on a flat detector, which locates on a line
being parallel and at a distance to the line of source trajectory. The moment of order n is the integration of the
weighted fan-beam projections multiplied by the term un, where u is the linear variable. Although the moment
formulae are different, these two FBCCs imply each other, meaning we can obtain one condition from the other
one by changing the variables appropriately. Additionally, the paper [Clackdoyle, 2018] also shows us some DCCs
for the 3D parallel projections and the cone-beam projections, with the x-ray source moving on a plane. The
paper [Clackdoyle and Desbat, 2015] presents a FBCC applying on the conventional fan-beam projections with the
source moving along a circle. We learn from the paper that this FBCC is constructed basing on the following result
in 2D parallel geometry: given a 2D real-valued function f , with compact support, if p is defined as the parallel
projection thanks to the 2D Radon transform:

p (ϕ, s) =

∫
f

(
s

[
cosϕ
sinϕ

]
+ t

[
− sinϕ
cosϕ

])
dt, ∀ϕ ∈ [0, 2π) ,∀s ∈ R, (3.1)

then Bn (x) defined as the following:

Bn (x) =

∫ π/2

−π/2

p (ϕ, x cosϕ+ y0 sinϕ)
tann ϕ

cosϕ
dϕ, (3.2)

will become a polynomial in x of degree at most n, where y0 is a suitable value such that y = y0 is a horizontal
line that never intersects the convex hull of the support of f . The FBCC in [Clackdoyle and Desbat, 2015] is
the converted version of the above result (in 2D parallel geometry) into fan-beam geometry with circular source
trajectory. Moreover, in the paper [Clackdoyle et al., 2015], Clackdoyle et. al. shows us the FBCC applying on the
conventional fan-beam projections, with the source moving along a small arc of a circle. The idea to create this
FBCC is to consider the chord connecting two endpoints of the arc, then rebin the data by seeking the relationship
between the real fan-beam projections with sources on the considering arc, and the virtual fan-beam projections with
sources on the corresponding chord. Since the source trajectory of the virtual fan-beam projections is a line segment,
there already exists the angular-variable FBCC for these virtual fan-beam projections as in [Clackdoyle, 2013], then
the authors obtain a new form of this FBCC to apply on the fan-beam projections with sources on an arc of a
circle. The formula in this form is similar to the FBCC in the paper [Clackdoyle and Desbat, 2015]. There is
one more approach of using Levine’s result, based on John’s equation, to obtain a FBCC for the weighted fan-
beam projections with sources on a line, see [Levine et al., 2010]. Levine’s result links to the linear-variable FBCC
in [Clackdoyle, 2013] of order 0, this fact has also be mentioned and used in [Lesaint et al., 2017].

In addition to the DCC results, we learn also from the paper [Desbat and Clackdoyle, 2019] the results on the
links between the center-of-mass (COM) of the object and the COM of such a considering projection, in parallel
as well as fan-beam geometry with sources on a line. In our work, we want to describe again the FBCC for the
weighted fan-beam projections and the COM result in fan-beam geometry with linear sources, and make use of
them to approach a 3D cone-beam geometric calibration “toy” problem. In this problem, we are working in the 3D
space, with (x1, x2, x3) as our standard coordinate system. The model we are going to work with include an x-ray
source moving along the x1-axis, and a 2D flat detector, which is perperdicular to the x2-axis and at distance T > 0
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Figure 3.1: Top view of the physical model: the x-ray source is fixed, while the 3D object sitting on the conveyor
belt and the detector are moving respectively together in the same direction. The speeds of the detector and the
conveyor belt are unknown, and different from each other, but the cone-beam projection of the object always stay
inside the detector, meaning there is no truncation in the cone-beam projections.

away from the world origin. We are having a collection of cone-beam projections of an unknown 3D object with
compact support, that were taken on the flat detector. Assuming that we know in advance three source positions,
that three corresponding cone-beam projections were taken at. Then we can calibrate the source positions of every
other cone-beam projection, one at a time and independently of each other. Physically, we can understand the
model as follows: there is a 3D object sitting on a horizontal conveyor belt, which is placed in between an x-ray
source and a sufficiently large detector. The x-ray source is fixed at its own position, while the conveyor belt and
the detector are moving together horizontally in the same direction but at different speeds, following the rule that
the cone-beam projection of the object always remains entirely inside the detector, so there is no truncation in
all the cone-beam projections, see figure 3.1. This motion is equivalent to the 3D object being fixed at a certain
position, the detector is moving in the same horizontal direction as above, while the x-ray source is now moving
along a line in the opposite direction, comparing to the detector. And they are moving corresponding to each other,
see figure 3.2. Assuming that for some reason, in the procedure of measuring and taking the projections of the
object, after the first three projections, the system start losing its track. The projections are still correct, but we
cannot know any other source positions that the projections were taken at, except the first three projections. So we
aim to calibrate the source positions of all other cone-beam projections, based on the three known source positions,
their cone-beam projections, and the corresponding projections of the unknown source positions.

Chapter 2 and chapter 3 can also be considered as a duo of linked chapters, since this chapter has the same
spirit as the degenerate case in chapter 2. Chapter 2 deals with the 3D parallel geometry, and the technique used in
the degenerate case can be understood as constructing many parallel planes, which pass through the 3D object, and
solving the 2D calibration problems on each plane instead of solving the 3D calibration problem, then choosing the
common solution among all. Chapter 3 works with the 3D cone-beam geometry, we will see below that we are doing
a similar job of constructing many oblique planes slicing through the 3D object, and considering the 3D cone-beam
calibration problem as a series of many 2D fan-beam calibration problems on the oblique planes, to solve them and
to choose the common solution among all of them.

This chapter is organized as follows: section 3.2 presents the definitions of the fan-beam projections, the defini-
tions of their corresponding moments, the FBCC, the COM result, and a small simulation to illustrate the FBCC;
section 3.3 shows the method to calibrate the source position in the 2D fan-beam calibration problem, with a numer-
ical experiment testing the method. Similarly, section 3.4 shows the definitions of the cone-beam projections. And
section 3.5 gives the method of constructing the oblique planes and calibrating the unknown source positions. An
algorithm to choose the final estimated solution for the unknown source position, and two numerical experiments
have also been presented in this section.



3.2. FAN-BEAM CONSISTENCY CONDITION (FBCC) 43

Figure 3.2: Top view of the equivelant model: the 3D object is fixed, while the x-ray source and the detector are
moving respectively to each other in opposite directions.

3.2 Fan-beam consistency condition (FBCC)

We present the related materials to the FBCC. Section 3.2.1 gives the definition of the fan-beam projections,
section 3.2.2 gives the definitions of the moment of the weighted fan-beam projections and presents the FBCC,
section 3.2.3 shows the COM result, and section 3.2.4 shows a small numerical simulation to illustrate the FBCC.

3.2.1 Fan-beam projections

We start with the conventional fan-beam projection definition. Given a 2D compactly supported function f , for an
arbitrary source location on the 2D plane x⃗ = (x1, x2), the conventional fan-beam projection computed at x⃗ and
the integration direction γ⃗ is defined as follows:

p̂x⃗ (γ⃗) =

∫ ∞

0

f (x⃗+ t′γ⃗) dt′, ∀γ ∈ S1. (3.3)

Throughout this section, we use the notation x⃗ (x with the arrow above) to mention the 2D vector x⃗ = (x1, x2);
and x (only) to imply a real number. More precisely, we use (x, 0) to mention the source location on the x1-axis.
We continue to consider the following model, as shown in figure 3.3, where the x-ray source is moving along x1-axis.
We assume the detector line is x2 = D, where D is a positive constant. We call the detector line the u-axis, with
the origin of the detector is at (0, D) and u-axis has the same direction as x1-axis. With f being the 2D object -
the 2D compactly supported function, lying in between the x1-axis and u-axis, the weighted fan-beam projection
on the detector line x2 = D (with the source moving along the x1-axis) is defined as:

p(x,0),D (u) =

∫ ∞

0

f ((x, 0) + t [(u,D)− (x, 0)]) dt =

∫ ∞

0

f ((x, 0) + t (u− x,D)) dt =

∫ ∞

0

f (x+ t (u− x) , Dt) dt.

(3.4)

We call it the weighted fan-beam projection, since it can be computed from the conventional fan-beam projection
by applying an appropriate weight. From the definition of the weighted and conventional fan-beam projections, we
can see that:

p(x,0),D (u) =

∫ ∞

0

f ((x, 0) + t (u− x,D)) dt (3.5a)

=

∫ ∞

0

f


(x, 0) + t

√
(u− x)

2
+D2

(u− x,D)√
(u− x)

2
+D2


 dt (3.5b)

=

∫ ∞

0

f ((x, 0) + t′γ⃗x,u) dt
′ 1√

(u− x)
2
+D2

(3.5c)

= p̂(x,0) (γ⃗x,u)
1√

(u− x)
2
+D2

, (3.5d)
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Figure 3.3: 2D model: the x-ray source is moving along the x1-axis, and the detector line is x2 = D. The detector’s
origin is at location (0, D) and standard axis is u-axis, which has the same direction as x1-axis.

where:

γ⃗x,u =
(u− x,D)√
(u− x)

2
+D2

∈ S2. (3.6)

Here we have changed the variables t′ = t

√
(u− x)

2
+D2, then dt′ =

√
(u− x)

2
+D2 dt. Thus the weighted

fan-beam projection relates to the conventional one by the weight
1√

(u− x)
2
+D2

.

3.2.2 Moment of the weighted fan-beam projections and the 2D FBCC

The aim of this section is to restate the result of the FBCC, which can already be seen in the works [Clackdoyle, 2013,
Clackdoyle, 2018, Lesaint, 2018]. Below is the definition of the moment of the weighted fan-beam projections:

Mn (x) =

∫
p(x,0),D (u)undu. (3.7)

From this definition (3.7) and the definition of the weighted fan-beam projection (3.4), we obtain:

Mn (x) =

∫ [∫ ∞

0

f (x+ t (u− x) , Dt) dt

]
undu (3.8a)

=

∫ ∫ ∞

0

f (x+ t (u− x) , Dt)undtdu. (3.8b)

We continue to change the variables:
{
y1 = x+ t (u− x)

y2 = Dt
. (3.9)

Then the Jacobian matrix can be simply computed as follows:

J =




∂y1
∂t

∂y1
∂u

∂y2
∂t

∂y2
∂u


 =

[
u− x t
D 0

]
, (3.10a)

det J = Dt. (3.10b)
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From this, we obtain: dy1dy2 = |det J | dtdu = D |t| dtdu = Dtdtdu (since t > 0). Conversely, we can also compute
t and u in terms of y1 and y2:

t =
y2
D
, (3.11a)

u = x+
y1 − x

t
= x+

D (y1 − x)

y2
= x+

D (y1 − x)

y2
=

(
1− D

y2

)
x+

Dy1
y2

. (3.11b)

This leads to the computation of dtdu in terms of dy1dy2:

dtdu =
1

D

D

y2
dy1dy2 =

1

y2
dy1dy2. (3.12)

From these materials, we can rewrite the moment formula as:

Mn (x) =

∫ ∫ ∞

0

f (x+ t (u− x) , Dt)undtdu (3.13a)

=

∫∫
f (y1, y2)

[(
1− D

y2

)
x+

Dy1
y2

]n
1

y2
dy1dy2 (3.13b)

=

∫∫
f (y1, y2)

[
n∑

k=0

(
n

k

)(
Dy1
y2

)n−k (
1− D

y2

)k

xk

]
1

y2
dy1dy2 (3.13c)

=

n∑

k=0

[
Dn−k

(
n

k

)∫∫
f (y1, y2)

yn−k
1 (y2 −D)

k

yn+1
2

dy1dy2

]
xk (3.13d)

=

n∑

k=0

Ck,nx
k, (3.13e)

where Ck,n are the coefficients:

Ck,n = Dn−k

(
n

k

)∫∫
f (y1, y2)

yn−k
1 (y2 −D)

k

yn+1
2

dy1dy2. (3.14)

These calculations are similar to those found in [Clackdoyle, 2013]. Here the double integral

∫ ∫ ∞

0

dtdu can be

changed to the double integral

∫∫
dy1dy2 because of the compact support of the 2D object, and because of the

position of the object, which is strictly between the x1-axis (the source line) and the u-axis (the detector line). We
then obtain the FBCC, which is a simple rewording of the corresponding condition found in [Clackdoyle, 2013] (the
two geometry contexts are almost the same), which can be stated as follows:

Given a real-valued function f , which has compact support, p(x,0),D (u) (defined in equation (3.4)) is the
weighted fan-beam projection of f on the detector line x2 = D with the source moving along the x1-axis,
then the moment of order n (defined in equation (3.7)) becomes a polynomial in x of degree n, for all
non-negative integer n:

Mn (x) =

n∑

k=0

Ck,nx
k, (3.15)

where:

Ck,n = Dn−k

(
n

k

)∫∫
f (y1, y2)

yn−k
1 (y2 −D)

k

yn+1
2

dy1dy2. (3.16)

3.2.3 Center-of-mass (COM) result

In this section, we show a brief application of the above moment condition (FBCC): the COM result. Although
this result is not new, but we can directly and quickly obtain it after constructing the moment condition, by using
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the moments of orders 0 and 1 (defined in equation (3.7)). The result can be roughly stated that: “The COM of
a weighted fan-beam projection (on a detector line) is the fan-beam projection of the COM of a weighted version of
the object.”
Now, for a certain source position (x, 0) on the x1-axis, we have one weighted fan-bean projection. Let’s call the
position of the COM of this weighted fan-beam projection on the detector line (x2 = D): (ux, D), where:

ux =

∫
p(x,0),D (u)udu

∫
p(x,0),D (u) du

. (3.17)

By the definition of the moment of the weighted fan-beam projections (see equation (3.7)), the above numerator
and denominator can be rewritten as: ux = M1 (x) /M0 (x). From the FBCC (3.15), we can see that M0 (x) is a
constant, and M1 (x) is a first-degree polynomial in x:

ux =
C1,1x+ C0,1

C0,0
=
C1,1

C0,0
x+

C0,1

C0,0
, (3.18)

where the coefficients can be computed by equation (3.16):

C1,1 =

∫∫
f (y1, y2)

y2 −D

y22
dy1dy2, (3.19a)

=

∫∫
f (y1, y2)

(
1

y2
− D

y22

)
dy1dy2, (3.19b)

=

∫∫
f (y1, y2)

1

y2
dy1dy2 −D

∫∫
f (y1, y2)

1

y22
dy1dy2, (3.19c)

C0,1 = D

∫∫
f (y1, y2)

y1
y22
dy1dy2, (3.19d)

C0,0 =

∫∫
f (y1, y2)

1

y2
dy1dy2. (3.19e)

Then ux can be explicitly rewritten as:

ux =

∫∫
f (y1, y2)

1

y2
dy1dy2 −D

∫∫
f (y1, y2)

1

y22
dy1dy2

∫∫
f (y1, y2)

1

y2
dy1dy2

x+

D

∫∫
f (y1, y2)

y1
y22
dy1dy2

∫∫
f (y1, y2)

1

y2
dy1dy2

. (3.20)

Now we consider fW as the weighted version of the 2D object f , where:

fW (y1, y2) =
1

y22
f (y1, y2) . (3.21)

Then, the formula of ux becomes:

ux =

∫∫
fW (y1, y2) y2dy1dy2 −D

∫∫
fW (y1, y2) dy1dy2

∫∫
fW (y1, y2) y2dy1dy2

x+

D

∫∫
fW (y1, y2) y1dy1dy2

∫∫
fW (y1, y2) y2dy1dy2

. (3.22)

We divide all the numerators and denomiators by

∫∫
fW (y1, y2) dy1dy2, and set:

c1 =

∫∫
fW (y1, y2) y1dy1dy2

∫∫
fW (y1, y2) dy1dy2

and c2 =

∫∫
fW (y1, y2) y2dy1dy2

∫∫
fW (y1, y2) dy1dy2

, (3.23)
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Figure 3.4: COM result: the COM of the weighted fan-beam projection is the fan-beam projection of the COM of
a weighted version of the 2D object: the three points (x, 0), (c1, c2) and (ux, D) are collinear.

then:

ux =
c2 −D

c2
x+D

c1
c2

=

(
1− D

c2

)
x+D

c1
c2

= x+
D

c2
(c1 − x) . (3.24)

And this leads to the fact that:

ux − x =
D

c2
(c1 − x) . (3.25)

By the definition of c1 and c2, we know that (c1, c2) is the coordinate of the COM of the weighted object fW .
Moreover, the vector connecting the x-ray source (x, 0) to this COM of the weighted object (c1, c2) is (c1 − x, c2).
And the vector connecting the x-ray source (x, 0) to the COM of the weighted fan-beam projection (ux, D) is
(ux − x,D). Thus from equation (3.25), we can conclude that the three points (x, 0), (c1, c2) and (ux, D) are
collinear, which shows that the COM of the weighted fan-beam projection (ux, D) is the fan-beam projection of
the COM (c1, c2) of the weighted object fW . Figure 3.4 gives us an illustration. We can also geometrically see how
equation (3.25) works through Thalès theorem or the property of the congruent triangles.

3.2.4 Numerical simulations of the FBCC

We are showing a small simulation to illustrate the result of the FBCC. In this simulation, our 2D object consists of
15 disks, which have centers and radii randomly chosen under the uniform distribution. More precisely, the centers
are taken in [−0.4, 0.4]× [0.4, 0.6] and the radii are taken in the interval [0.05, 0.19]. The gray level are also taken
randomly in the interval [0.1, 1.1]. The mathematical formula of the 2D object can be written as:

f (x1, x2) =

15∑

i=1

fi (x1, x2) , (3.26)

where

fi (x1, x2) =

{
gr (i) , if (x1 − c1 (i))

2
+ (x2 − c2 (i))

2 ≤ r2 (i)

0, otherwise
. (3.27)

The details of c1 (i), c2 (i), r (i) and gr (i) are given in the table 3.1. Figure 3.5 gives us the image of the tested
2D object. In this test, the source is moving from (−1, 0) to (1, 0) on the x1-axis. We have performed the test for
500−equidistant source locations. Each weighted fan-beam projection is simulated on 1000−equidistant samples
of u in [−8, 8]. Figure 3.6 shows the weighted fan-beam projections, which were taken at several source locations:
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Table 3.1: Details of the centers, radii, and gray level of 15 considering disks

Disk index Disk centers Disk radii Gray level
i c1 (i) c2 (i) r (i) gr (i)
01 0.0872 0.4370 0.0885 0.1330
02 0.3968 0.4920 0.1258 0.6730
03 -0.2752 0.5502 0.1897 0.3800
04 0.1352 0.4686 0.1013 0.8330
05 -0.2960 0.4336 0.0675 0.7920
06 0.3240 0.5712 0.0565 0.3760
07 0.2840 0.4420 0.1385 0.2110
08 0.0192 0.5906 0.1712 0.8620
09 -0.3784 0.4442 0.1550 0.9910
10 0.2864 0.4820 0.1805 0.4320
11 0.0560 0.4478 0.1460 0.4530
12 0.2328 0.4308 0.0633 0.3950
13 0.3760 0.4590 0.1024 0.9430
14 -0.2104 0.5510 0.0521 0.2900
15 0.1616 0.4038 0.0821 0.9510

x = −1, −0.6, −0.2, 0.2, 0.6, 1. Based on definition (3.7), we can compute the numerical moments from these
numerical weighted fan-beam projections. Figure 3.7 shows us the graphs of the moments of order 0, 1, 2, 3.
In each image, we can see that the moment data approximates a suitable polynomial of the same order, where
each polynomial is in x (the source location). We can compute explicitly these approximate polynomials (will be
explained in chapter 4). They respectively are the following:

M0 (x) ≈ 0.8888, (3.28a)

M1 (x) ≈ −1.0549x + 0.0388, (3.28b)

M2 (x) ≈ 1.4071x2 − 0.0568x + 0.3808, (3.28c)

M3 (x) ≈ −2.0632x3 − 0.0133x2 − 1.5891x− 0.0395. (3.28d)

3.3 2D fan-beam geometric calibration

In this section, we present a way to get the information of the unknown source position in the fan-beam calibration
problem using FBCC. We also show a numerical experiment to test our method. Our result states that if we know
three distinct source positions and their corresponding weighted fan-beam projections, then for any other weighted
fan-beam projection (which is not the same as any of the three known ones), we can obtain at most two potential
solutions of the source position that this projection were taken at. We do not aim to completely solve this fan-beam

Figure 3.5: Tested 2D object is the superposition of a set of 15 random disks
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Figure 3.6: Weighted fan-beam projections taken at several source locations (x, 0, 0) on the x1-axis, where x =
−1, −0.6, −0.2, 0.2, 0.6, 1 (respectively top-left, top-right, mid-left, mid-right, bottom-left, bottom-right)
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Figure 3.7: Moments of the weighted fan-beam projections of order 0 (top-left), 1 (top-right), 2 (bottom-left), 3
(bottom-right)



3.3. 2D FAN-BEAM GEOMETRIC CALIBRATION 51

geometric calibration problem, but we want to use this potential information of the estimated source position to
approach the 3D cone-beam calibration problem with linear sources. Mathematically, we assume xa, xb, xc are
the three distinct known source positions and p(xa,0),D (u), p(xb,0),D (u), p(xc,0),D (u) are the three corresponding
weighted fan-beam projections. Let’s call xd an arbitrary unknown source position, and p(xd,0),D (u) is the weigted
fan-beam projection computed at source location xd. If p(xd,0),D (u) is known, then we can calibrate xd. The main
tool being used is the second-order FBCC. From the theory of the FBCC (when the source moves along x1-axis),
the second-order moment will be a polynomial of second degree in the source location:

M2 (x) = C0 + C1x+ C2x
2. (3.29)

We apply this equation (3.29) for x = xa, xb, xc and obtain:





C0 + C1xa + C2x
2
a =M2 (xa)

C0 + C1xb + C2x
2
b =M2 (xb)

C0 + C1xc + C2x
2
c =M2 (xc)

. (3.30)

Since the three positions xa, xb, xc are known and the three corresponding weighted fan-beam projections p(xa,0),D (u),
p(xb,0),D (u), p(xc,0),D (u) are also known, then the three corresponding moments M2 (xa), M2 (xb), M2 (xc) can be
computed by the definition (3.7). Thus we can compute the three coefficients C0, C1, C2 by solving the above linear
system of equations. We firstly consider the matrix:

V =



1 xa x2a
1 xb x2b
1 xc x2c


 . (3.31)

Then we can simply compute the determinant of V :

detV = (xb − xa) (xc − xb) (xc − xa) . (3.32)

From this we can see that detV ̸= 0 since the three known source positions xa, xb, xc are two-by-two different.
Thus we can compute the three coefficients C0, C1, C2. Precisely, we continue considering these following matrices:

V0 =



M2 (xa) xa x2a
M2 (xb) xb x2b
M2 (xc) xc x2c


 , V1 =



1 M2 (xa) x2a
1 M2 (xb) x2b
1 M2 (xc) x2c


 , V2 =



1 xa M2 (xa)
1 xb M2 (xb)
1 xc M2 (xc)


 . (3.33)

Then the three coefficients are computed as follows:

C0 =
detV0
detV

, C1 =
detV1
detV

, C2 =
detV2
detV

. (3.34)

We can see that the key condition is the fact that the three known source positions have to be two-by-two different,
in order to make detV ̸= 0.
Additionally, the matrix V is the transpose of a Vandermonde matrix. We can find the definition of a Vandermonde
matrix in the book of L.M. Milne-Thomson, see [Milne-Thomson, 2000] on page 9. The Vandermonde matrix is
defined as follows:

V =




1 1 1 . . . 1

a1 a2 a3 . . . aN

a21 a22 a23 . . . a2N
...

...
...

. . .
...

aN−1
1 aN−1

2 aN−1
3 . . . aN−1

N



, (3.35)

and its determinant is:

detV =
∏

1≤i<j≤N

(aj − ai) . (3.36)

If we apply this result with N = 3 and the property of the determinant of a transpose matrix, we can obtain
absolutely the same result as detV .
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Figure 3.8: Illustration of the raw measurement, the corrected measurent and the corresponding projection in terms
of u coordinate system

Coming back to our calibration problem, after computing the three coefficients C0, C1, C2, we continue to apply
the second-order FBCC for x = xd:

M2 (xd) = C0 + C1xd + C2x
2
d. (3.37)

Now the weighted fan-beam projection p(xd,0),D (u) is known, then M2 (xd) is also known. Thus computing xd is in
fact solving the following second-order equation:

C2x
2
d + C1xd + (C0 −M2 (xd)) = 0. (3.38)

In general, we obtain two possible solutions of xd:

xd =
−C1 ±

√
C2

1 − 4C2 (C0 −M2 (xd))

2C2
. (3.39)

Comments

The method provided above assumes that the projections we have are of the form p(x,0),D (u) (p(xa,0),D (u) for
instance). These are one-variable functions in terms of u coordinate system. However in reality, instead of having
these projections, we may have the one-variable functions, which are in terms of some unknown coordinate systems,
that we do not know how they relate to the u coordinate system. We can see in figure 3.8, for an arbitrary
projection on the detector line, the one-variable function we have may be in terms of the red coordinate system,
which is unknown in the sense that we do not know how it relates to the u-axis. We call this one-variable function
the raw measurement. The only difference between the raw measurement and the corresponding projection is the
considering coordinate system. Now we assume that we only have the raw measurements instead of the projections
in terms of u coordinate system, we still can construct the second-order FBCC using the COM result. For each
raw measurement, the first step is to find its own COM, and then correct the raw measurement by translating it
horizontally, such that its COM now locates at the origin. We obtain a function called the corrected measurement.
And again, the graph of the raw measurement, the corrected measurement, and the corresponding projection are the
same; the only difference between them is the coordinate system being considered. For illustration, the corrected
measurement is the one-variable function in terms of the blue coordinate system in figure 3.8. We denote the
corrected measurement as m(x,0),D (u), and we can simply see the relationship between the corrected measurement
and the corresponding projection is the following:

m(x,0),D (u) = p(x,0),D (u+ ux) , (3.40)
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where ux is the position of the COM of the projection on the u-axis. From this, the second-order moment of the
corrected measurements can be computed as:

M2 (x) =

∫
m(x,0),D (u)u2du =

∫
p(x,0),D (u+ ux)u

2du. (3.41)

Then by changing the variables: u′ = u+ ux, we know that du′ = du and the above integral becomes:

M2 (x) =

∫
p(x,0),D (u′) (u′ − ux)

2
du′ (3.42a)

=

∫
p(x,0),D (u′)

(
u′2 − 2uxu

′ + u2x
)
du′ (3.42b)

=

∫
p(x,0),D (u′)u′2du′ − 2ux

∫
p(x,0),D (u′)u′du′ + u2x

∫
p(x,0),D (u′) du′ (3.42c)

=M2 (x)− 2uxM1 (x) + u2xM0 (x) , (3.42d)

where M0 (x), M1 (x), M2 (x) respectively are the moments of the projections p(x,0),D (u) of order 0, 1, 2, see
definition (3.7). By the FBCC (3.15), we know that M0 (x), M1 (x), M2 (x) are the polynomial in x of degree 0,
1, 2, respectively. And by the COM result (3.25), we know that ux = x + (D/c2) (c1 − x) (where (c1, c2) is the
coordinate of the COM of the weighted object), which also means ux is a first-degree polynoial in x. Thus, M2 (x)
becomes a second-degree polynomial in x. This can be considered as a FBCC for the corrected measurements.
And from this fact, following the same spirit as the above method of calibration, we are still able to solve the 2D
fan-beam calibration problem using the second-order FBCC for the corrected measurements, although we are given
the raw measurements instead of the projections.

Numerical experiment in 2D

We continue the above small simulation in order to illustrate the above method. The 2D object remains the same
as in the experiment in section 3.2.4. Now we assume the three known source positions are:

xa = −0.182, xb = −0.736, xc = −0.066, (3.43)

and the unknown source position we aim to calibrate is xd = −0.958.
We have developed two separate programs, called simulator and solver. Simulator received all four source lo-
cations and simulated four respective weighted fan-beam projections. All the projections were simulated on
1000−equidistant samples on the detector line. After that, solver received the simulated weighted fan-beam pro-
jections and only three known source positions xa, xb, xc. Then from the information of four weighted fan-beam
projections, solver computed the respective moments M2 (xa), M2 (xb), M2 (xc), M2 (xd). From the information of
xa, xb, xc,M2 (xa),M2 (xb),M2 (xc), it computed the three coefficients C0, C1, C2 characterizing the second-degree
polynomial of the FBCC. Finally, from the information ofM2 (xd) and the three coefficients C0, C1, C2, it computed
and gave us the possible estimated solutions of xd.
After performing this algorithm, we obtain the two estimated solutions as the following:

xest1d = 0.998015, and xest2d = −0.958009. (3.44)

We can see that the xest2d = −0.958009 approximating the true solution xd = −0.958 that we want to obtain.

3.4 Cone-beam projections

In this section, we are working in the 3D space with the standard coordinate system (x1, x2, x3). The 3D object

being considered is a 3D real-valued function F with compact support. Then, for an arbitrary 3D unit vector Γ⃗,
the conventional cone-beam projection of F computed at source location X⃗ = (x1, x2, x3) and along the direction

Γ⃗, is defined as follows:

P̂X⃗

(
Γ⃗
)
=

∫ ∞

0

F
(
X⃗ + t′Γ⃗

)
dt′, ∀Γ⃗ ∈ S2. (3.45)

Similar to section 3.2, we use the notation X⃗ (capital X with the arrow above) to mention the 3D vector X⃗ =
(x1, x2, x3); and x only to imply a real number. In this situation, we assume the source to move along the x1-axis,
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Figure 3.9: 3d model: the x-ray source is moving along the x1-axis, the detector plane is x2 = T . The detector’s
origin is at location (0, T, 0); and two stardard axes: u and v-axes, have the same directions as x1 and x3-axes.

so we use the notation (x, 0, 0) to show the source location.
More precisely, we are now considering the model as shown in figure 3.9. The source is moving along x1-axis, the
detector is perpendicular to x2-axis, and at distance T > 0 away from the world origin (0, 0, 0). The detector plane’s
equation is: x2 = T . The detector has its own origin and coordinate system (u, v). Its origin is at location (0, T, 0)
in 3D space; the u and v-axes respectively have the same directions as the x1 and x3-axes. The 3D object F is in
between the x1-axis (the source line) and the plane x2 = T (the detector plane). Then the weighted cone-beam
projection of F on the detector plane with the source moving along x1-axis is defined as follows:

P(x,0,0),T (u, v) =

∫ ∞

0

F ((x, 0, 0) + t [(u, T, v)− (x, 0, 0)]) dt (3.46a)

=

∫ ∞

0

F (x+ t (u− x) , tT, tv) dt. (3.46b)

Again, by the technique of changing variables, we can find the relationship between the weighted and conventional
cone-beam projections:

P(x,0,0),T (u, v) =

∫ ∞

0

F ((x, 0, 0) + t (u− x, T, v)) dt (3.47a)

=

∫ ∞

0

F


(x, 0, 0) + t

√
(u− x)

2
+ v2 + T 2

(u− x, T, v)√
(u− x)

2
+ v2 + T 2


 dt (3.47b)

=

∫ ∞

0

F
(
(x, 0, 0) + t′Γ⃗x,u,v

)
dt′

1√
(u− x)

2
+ v2 + T 2

(3.47c)

= P̂(x,0,0)

(
Γ⃗x,u,v

) 1√
(u− x)

2
+ v2 + T 2

, (3.47d)

where:

Γ⃗x,u,v =
(u− x, T, v)√

(u− x)
2
+ v2 + T 2

. (3.48)

Here we set t′ = t

√
(u− x)

2
+ v2 + T 2, which implies dt′ =

√
(u− x)

2
+ v2 + T 2dt. So the above weighted cone-

beam projection can be obtained from the conventional one by applying the weight:
1√

(u− x)
2
+ v2 + T 2

.
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Figure 3.10: Construction of the oblique plane

3.5 3D cone-beam geometric calibration with linear sources

We state the 3D cone-beam geometric calibration problem and show a method to solve it in section 3.5.1, and we
give some numerical experiments in section 3.5.2.

3.5.1 Method of calibration

Our aim in this section is to make use of the FBCC to solve the 3D cone-beam geometric calibration problem.
This problem is the 3D version of the problem we have seen in section 3.3. We are given three two-by-two distinct
source locations on the x1-axis and their respective weighted cone-beam projections on the detector. Now for an
arbitrary weighted cone-beam projection, which is not the same as any of the three above, we can calibrate the
source location on the x1-axis that this projection was taken at. Firstly, on the detector, we consider a line which is
parallel to the x1-axis. So on the detector, this line’s equation is: v = v0. And in the 3D space, it can be rewritten
as the following:





x1 ∈ R
x2 = T

x3 = v0

. (3.49)

Since this line on the detector is parallel to the x1-axis, then there is a plane generated from it and the x1-axis, and
we call this plane the oblique plane. We have the illustration in figure 3.10. By simple calculation, we can find the
equation of this oblique plane. It contains at least two vectors: (1, 0, 0) and (0, T, v0), so it must be perpendicular
to the vector:

(1, 0, 0)× (0, T, v0) = (0,−v0, T ) . (3.50)

Additionally, this oblique plane goes through the world origin (0, 0, 0), so its equation in the 3D space is:

0 (x1 − 0)− v0 (x2 − 0) + T (x3 − 0) = 0 ⇐⇒ −v0x2 + Tx3 = 0 ⇐⇒ x3 =
v0
T
x2. (3.51)

According to this equation, one arbitrary point in the 3D space (x1, x2, x3) needs to satisfy x3 =
v0
T
x2 to be on

the oblique plane. In other words, each point on the oblique plane will have the representation
(
x1, x2,

v0
T
x2

)

in the 3D space. The oblique plane also has its own origin and coordinate system. For simplicity, we choose its
origin to be at the world origin (0, 0, 0). And its two standard axes include the x1-axis, and the other axis having

the same direction as the vector (0, T, v0). Thus one such point
(
x1, x2,

v0
T
x2

)
in the 3D space will have another
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Figure 3.11: Front view of the 3D model: the oblique plane becomes a line, and its two standard axes include:
x1-axis (now becomes a point pinned at the world origin (0, 0, 0)) and the other axis having the same direction as

the line that the oblique plane becomes. So the coordinate
(
x2,

v0
T
x2

)
will define a diagonal segment (on the line of

the oblique plane) of the length

√
x22 +

(v0
T
x2

)2
=

√
1 +

(v0
T

)2
x2. Thus the point

(
x1, x2,

v0
T
x2

)
in the 3D space

will have the representation

(
x1,

√
1 +

(v0
T

)2
x2

)
on the oblique plane.

representation on the oblique plane. By a simple calculation, we can see that the point
(
x1, x2,

v0
T
x2

)
in the 3D

space will have the representation

(
x1,

√
1 +

(v0
T

)2
x2

)
on the oblique plane. Figure 3.11 will give us a better

understanding.
The oblique plane slices through the 3D object, and then creates a slice of the object on the plane, which is a 2D
real-valued function with compact support. We call this 2D function f . The relationship between the 3D object F
and its 2D slice f on the oblique plane is the following:

F
(
x1, x2,

v0
T
x2

)
= f

(
x1,

√
1 +

(v0
T

)2
x2

)
. (3.52)

This relationship comes from the fact that for the same point on the oblique plane, there are two different rep-

resentations:
(
x1, x2,

v0
T
x2

)
in the 3D space and

(
x1,

√
1 +

(v0
T

)2
x2

)
in the coordinate system of the oblique

plane. From this relationship (3.52) and the definitions (3.4) and (3.46b) of the weighted fan-beam and cone-beam
projections (with the source moving along the x1-axis), we can see that:

P(x,0,0),T (u, v0) =

∫ ∞

0

F (x+ t (u− x) , tT, tv0) dt =

∫ ∞

0

F
(
x+ t (u− x) , tT,

(v0
T

)
tT
)
dt (3.53a)

=

∫ ∞

0

f

(
x+ t (u− x) ,

√
1 +

(v0
T

)2
tT

)
dt =

∫ ∞

0

f

(
x+ t (u− x) ,

√
T 2 + v20t

)
dt (3.53b)

=

∫ ∞

0

f (x+ t (u− x) , Dt) dt

∣∣∣∣
D=

√
T 2+v2

0

= p
(x,0),

√
T 2+v2

0

(u) . (3.53c)

This means: if we collect the weighted cone-beam projections of the 3D object F on the line v = v0 on the detector

plane, we obtain the same as the weighted fan-beam projections of the 2D slice f (on the oblique plane x3 =
v0
T
x2)
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Figure 3.12: The 3D cone-beam calibration problem is broken down into many 2D fan-beam calibration problems.
Solving each of these 2D fan-beam calibration problems (following the method in section 3.3) and choosing the
common solution among all potential pairs of solutions leads to the result of the estimated solution to the unknown
source position.

on the corresponding detector line. And the fan-beam calibration problem on this oblique plane is exactly the same
as the 2D fan-beam calibration problem shown in section 3.3. Thus, instead of solving a 3D cone-beam calibration
problem, we break it down into a series of many 2D fan-beam calibration problems (each on one different oblique
plane), and solve all of them, once at a time, using the method presented in section 3.3. Figure 3.12 shows us
this idea. More precisely, we consider many lines of the form v = v0 on the detector plane (v0 varies), and obtain
many oblique planes, which go through the 3D object and create many corresponding 2D slices of the object. By
section 3.3, for each 2D fan-beam calibration problem on each oblique plane, in which we are given three known
distinct source positions and are asked to find the unknown source position (and these four values remain the same
for all oblique planes), we will obtain at most two potential solutions to the unknown source position. So, if we have
K oblique planes, then there will be at most K pairs of potential solutions. However, since the true value of the
unknown source position must uniquely exist, then these K pairs of solutions must have one solution in common,
which is the true solution. So in order to determine this estimated solution among those all potential solutions, after
solving every considered 2D fan-beam calibration problem, we plot all the potential solutions in a figure. In this
figure, we take the horizontal axis to stand for v0 values, which is the only varied parameter to generate the oblique
plane, and the vertical axis to stand for the potential solution values. In general, for each value of v0 or for each
oblique plane, we have a corresponding pair of potential solutions. After plotting all the pair of potential solutions,
there must appear a horizontal line created by the collinear points, since all the pairs of solutions have one value in
common. And the crucial value of those collinear solutions give us the estimated solution of the unknown source
location. The important requirement we need is that the 3D object must be general and varies along the vertical
direction, because the oblique plane is parameterized only by the value of v0 on the v-axis (the vertical axis on the
detector plane, see figure 3.12), so if the 3D object does not satisfy the above requirement, then we cannot have
new information on the 2D slices, when jumping from this oblique plane to another one. We may continue to end
up with two potential solutions, without any clues to decide which solution can approximate the true solution, as
what we have obtained in the end of section 3.3.

Comment

Following the idea in the comments in section 3.3, we allow the flat detector to have an unknown horizontal shift
(an unknown shift along horizontal direction) at every source position. Because this makes the 2D fan-beam
projections of the 2D slices on the oblique planes become raw measurements (in the sense that has been mentiond
in the comments in section 3.3), which can be handled by a correction step, a second-order moment computation,
and by the FBCC for the corrected measurements. Thus with a similar method, we still can solve the 3D cone-beam
calibration problem, as long as the unknown horizontal shifts of the detector do not cause any truncation in the
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Table 3.2: Details of the centers, radii, and gray level of 15 considering balls

Ball index Ball centers Ball radii Gray level
i C1 (i) C2 (i) C3 (i) R (i) Gr (i)
01 0.1648 0.7212 0.1160 0.0912 0.8610
02 0.1672 0.5176 0.0604 0.0281 0.8650
03 -0.0924 0.7556 -0.0216 0.0757 0.9970
04 0.1416 0.7596 0.1288 0.1059 0.4800
05 0.0848 0.5724 0.0012 0.0402 0.5610
06 -0.0932 0.4732 -0.1088 0.0178 0.1850
07 -0.0536 0.4396 0.1480 0.0231 0.4680
08 -0.0044 0.6768 0.1240 0.0872 0.9520
09 0.1032 0.5912 -0.1664 0.0744 0.7110
10 0.1804 0.4744 -0.0336 0.1430 0.2830
11 0.0288 0.5368 -0.0472 0.0774 0.9890
12 0.1760 0.4332 0.1440 0.1189 1.0600
13 -0.0336 0.6480 0.0016 0.0199 0.6970
14 -0.1420 0.4752 -0.0564 0.0632 0.3400
15 -0.0660 0.7924 -0.0392 0.0936 0.8450

projections on the detector.

3.5.2 Numerical experiments in 3D

We have performed two different experiments to illustrate our method. In the first experiment, we tested our
method with a 3D object, which is chosen randomly. The main aim of this experiment is to show the phenomenon
that a horizontal line of collinear points will appear in the figure of all potential estimated solutions, as described
in the previous section. We also give an algorithm to quickly compute the final estimated solution of the unknown
source location from the potential ones. The second experiment takes into account 100 randomly chosen objects,
which means the second experiment repeats the procedure of the first experiment for 100 times, each time with one
new random 3D object. Our aim is to check how good the final estimated solution is, when we repeat the same
experiment for 100 times.

3.5.2.1 Experiment 1

In this experiment, the 3D object being considered is the superposition of a set of 15 balls, where the centers are
randomly taken in [−0.2, 0.2] × [0.4, 0.8] × [−0.2, 0.2] and the radii are randomly taken in the interval [0.01, 0.15],
under the uniform distribution. Even the gray level of each ball are also randomly taken in [0.1, 1.1]. Mathematically,
the 3D object formula can be written as the following:

F (x1, x2, x3) =

15∑

i=1

Fi (x1, x2, x3) , (3.54)

where

Fi (x1, x2, x3) =

{
Gr (i) , if (x1 − C1 (i))

2
+ (x2 − C2 (i))

2
+ (x3 − C3 (i))

2 ≤ R2 (i)

0, otherwise
. (3.55)

The details of C1 (i), C2 (i), C3 (i), R (i) and Gr (i) can be found in table 3.2. We perform our method by take v0
varied from −0.3 to 0.3. More precisely, v0 is treated as a 600-equidistant sample of [−0.3, 0.3]. In other words,
we consider 600 oblique planes, since each value of v0 is in charge of one oblique plane. Figure 3.13 shows several
slices on the corresponding oblique planes. In this experiment, we consider the three known source position on the
x1-axis to be:

xa = 0.192, xb = −0.014, xc = −0.628, (3.56)

and the unknown source position to be calibrated is xd = 0.281. We re-use the method presented in section 3.3 to
solve each 2D calibration problem on each oblique plane. As explained in the previous section 3.5, we obtain, in
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Figure 3.13: The 2D slices of the 3D object on several oblique planes: x3 = −0.3x2 (top-left), x3 = −0.18x2 (top-
right), x3 = −0.06x2 (mid-left), x3 = 0.06x2 (mid-right), x3 = 0.18x2 (bottom-left), x3 = 0.3x2 (bottom-right).
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Figure 3.14: Image of all potential solutions: the horizontal axis is for v0 values, each v0 value parameterizes one
oblique plane, and corresponds (at most) to a pair of potential solutions: bigger solution (red dot) and smaller
solution (blue dot)

general, two potential solutions for each oblique plane (each v0 value). After plotting all of the potential solutions
on a same figure, we obtain the result as in figure 3.14. In this figure, we can obviously see the horizontal line of
collinear points, which we expect. And the values of these collinear solutions give us the estimated value of the
unknown source location xd. Although we still can visually “see” that the collinear solutions approximating the
true solution xd = 0.281. However, we will give an algorithm to analytically find this crucial value from the collinear
potential solutions.
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Algorithm: finding final estimated solution algorithm from the potential solutions

1. From the set of all potential solutions, we find the highest potential solution xmax
d (highest red value

in figure 3.14), and the value v1 that corresponds to xmax
d .

2. We ignore the value v1 and find the lowest potential solution xmin
d among the other v0 values. Then

we also find the value v2 that corresponds to xmin
d

3. In general, for v0 = v1, we have two potential solutions: xmax
d and xv1d . And for v0 = v2, we have

two potential solutions: xmin
d and xv2d . By theory, among these two pairs of solutions: (xmax

d , xv1d ) and(
xmin
d , xv2d

)
, there must be two solutions, one in each pair, that approximates each other. However, by

the construction, we can see that xmax
d and xmin

d will be significantly different from each other, so we
will only compute these following differences:

H1 =
∣∣xv1d − xmin

d

∣∣ , H2 = |xv2d − xmax
d | , H3 = |xv1d − xv2d | . (3.57)

Then we find the smallest value of H = min {H1, H2, H3}. This value of H will show us which the two
solutions, that approximating each other, are.

• If H = H1, then var =
1

2

(
xv1d + xmin

d

)
.

• If H = H2, then var =
1

2
(xv2d + xmax

d ).

• If H = H3, then var =
1

2
(xv1d + xv2d ).

We use this var as a temporary variable to store the value, that we expect to approximate the true
solution of the unknown source location.

4. We run a for loop over v0. For each value of v0, we have (in general) two potential solutions, then
we find and choose the potential solution among them that approximates the var value better. After
finishing that for loop, we obtain an array (which has the same length as the sample v0) containing
all the potential solutions that approximate the var value. Then we compute the mean value of this
array to obtain the final estimated solution to the unknown source location.

Back to our experiment, after performing the above algorithm, we obtain the final estimated solution xestd = 0.281030
approximating the true solution xd = 0.281.

3.5.2.2 Experiment 2

In this experiment, the three known source positions xa = 0.192, xb = −0.014, xc = −0.628 and the unknown
source position xd = 0.281 that we would like to calibrate, remain the same as experiment 1. We repeat the same
procedure of experiment 1 for 100 times, each time with a different object, following the same rule: each object is a
superposition of a set of 15 random balls. We perform absolutely the same method and algorithm as explained in the
previous sections, and we obtain the final estimated solution for each time, which are shown in details in table 3.3
The mean value of 100 final estimated solutions to the true solution xd = 0.281 in 100 tests is xavgd = 0.281122. We
also store the 100 final estimated solutions in an array, and subtract this array by the true solution xd to obtain
the so-called Err-array (which stores the error values). The max value of Err is:

∥Err∥l∞ = max
i=1,2,...,100

|Err (i)| = 0.008222, (3.58)

and the mean value of Err is:

1

100
∥Err∥l1 =

1

100

100∑

i=1

|Err (i)| = 0.000133. (3.59)
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Table 3.3: Final estimated solutions to the unknown source location in 100 tests

Test
Solutions

Test
Solutions

Test
Solutions

Test
Solutions

Test
Solutions

index index index index index
001 0.28098 021 0.28101 041 0.28101 061 0.28100 081 0.28100
002 0.28103 022 0.28095 042 0.28100 062 0.28100 082 0.28101
003 0.28099 023 0.28100 043 0.28102 063 0.28099 083 0.28099
004 0.28100 024 0.28101 044 0.28100 064 0.28100 084 0.28100
005 0.28098 025 0.28111 045 0.28100 065 0.28100 085 0.28259
006 0.28315 026 0.28100 046 0.28101 066 0.28103 086 0.28098
007 0.28098 027 0.28100 047 0.28100 067 0.28102 087 0.28096
008 0.28099 028 0.28114 048 0.28099 068 0.28100 088 0.28103
009 0.28100 029 0.28098 049 0.28101 069 0.28101 089 0.28101
010 0.28104 030 0.28100 050 0.28100 070 0.28099 090 0.28100
011 0.28101 031 0.28100 051 0.28099 071 0.28105 091 0.28099
012 0.28101 032 0.28922 052 0.28104 072 0.28097 092 0.28100
013 0.28100 033 0.28099 053 0.28100 073 0.28100 093 0.28101
014 0.28102 034 0.28099 054 0.28101 074 0.28100 094 0.28100
015 0.28099 035 0.28100 055 0.28102 075 0.28106 095 0.28098
016 0.28099 036 0.28095 056 0.28100 076 0.28100 096 0.28099
017 0.28100 037 0.28100 057 0.28100 077 0.28100 097 0.28098
018 0.28099 038 0.28101 058 0.28100 078 0.28094 098 0.28100
019 0.28100 039 0.28100 059 0.28101 079 0.28104 099 0.28102
020 0.28101 040 0.28099 060 0.28101 080 0.28099 100 0.28099



Chapter 4

Cone-beam Consistency Conditions

French summary of the content

Les conditions de cohérence des données (DCC) peuvent être des équations qui représentent les relations de
dépendance entre les projections ou, plus généralement, des propriétés ou des règles que les données des projections
doivent respecter pour être considérées comme vraies. Ce chapitre couvre le sujet des conditions de cohérence du
faisceau conique (CBCC). Nous pouvons constater dans la littérature que, jusqu’à présent, il existe trois approches
principales pour créer les CBCC : partir de l’équation de John, considérer les projections par paires ou créer les
CBCC de type polynomial (comme les conditions bien connues de Helgason-Ludwig).

Nous pouvons trouver la première approche dans le travail de Patch, voir [Patch, 2002b] et [Patch, 2002a]. Elle a
dérivé quelques conditions de cohérence des données en géométrie Cone Beam (Cone Beam Consistency Conditions
(CBCC)) de l’équation de John pour deux contextes géométriques différents. Dans l’article [Patch, 2002b], la
source de rayons X se déplace le long d’un cercle et le détecteur est parallèle au plan de la trajectoire, tandis
que dans [Patch, 2002a], la source de rayons X et le détecteur sont considérés comme se déplaçant de manière
correspondante sur deux trajectoires hélicöıdales, l’objet 3D étant fixe. C’est en fait le modèle du scanner car ce
mouvement est équivalent à la source et au détecteur se déplaçant sur des trajectoires circulaires tandis que le lit
du patient se déplace en translation vers le cercle de la trajectoire de la source (le détecteur dans ce cas est supposé
être perpendiculaire au plan de la trajectoire). Son objectif final était d’établir une relation entre les projections
conduisant à la prédiction de projections non mesurées à partir des données mesurées. Dans [Levine et al., 2010],
Levine et al. ont suivi presque le même chemin que Patch dans [Patch, 2002b]. Ils ont obtenu une CBCC dans
la géométrie où la source de rayons X se déplace le long d’une ligne et le détecteur est parallèle au plan de la
trajectoire. Plus précisément, la CBCC dans cet article peut être comprise comme suit : si la source de rayons X
se déplace le long d’une ligne et que le détecteur est parallèle au plan de trajectoire, nous considérons une ligne
sur le détecteur, qui est parallèle à la ligne de trajectoire de la source, alors l’intégrale de la projection pondérée
de l’objet 3D sur cette ligne est indépendante de l’emplacement de la source. En fait, cette condition est liée à
la condition de cohérence du faisceau en éventail (FBCC - Fan Beam Consistency Condition) d’ordre 0, qui a été
montrée au chapitre 3. Dans leur article [Ma et al., 2017], Ma et. al. ont également suivi une voie similaire à celle
de Patch dans [Patch, 2002a] pour dériver des CBCC dans la géométrie où la source et le détecteur se déplacent sur
des trajectoires circulaires tandis que l’objet 3D est fixé. Ainsi, ils peuvent restaurer des données de projection, qui
ont été perdues dans le processus d’imagerie pour certaines raisons, à partir des données mesurées restantes. En
2005, Sidky et al. ont également développé une CBCC pour les projections pondérées de faisceaux coniques définies
par la source et les points de détection correspondants, lorsqu’ils sont censés se trouver sur la même surface en 3D,
voir [Sidky et al., 2005]. Cette CBCC a une forme similaire à l’équation de John.

La géométrie avec une trajectoire de source circulaire et un détecteur perpendiculaire au plan de la trajectoire
a toujours suscité de l’intérêt. Une technique qui a été utilisée pour travailler avec cette géométrie est de considérer
deux emplacements de source arbitraires, aux intersectionx de la droite qui les joint et du cercle de la trajectoire
de la source. Ainsi, bien que les deux emplacements sont manifestement sur le cercle, nous pouvons toujours les
considérer comme deux positions d’une source de rayons X sur une droite, ce qui nous permet d’appliquer certaines
CBCC appropriées construites pour les projections de faisceaux coniques dont les positions de source sont sur une
droite. Cette idée permet de créer les CBCC par paires. Dans [Lesaint et al., 2017], Lesaint et al. ont utilisé cette
technique et ont construit la condition basée sur la FBCC (qui est également liée au résultat de [Levine et al., 2010]).
Plus précisément, ils ont considéré un détecteur dit virtuel, qui est parallèle à la ligne reliant deux emplacements de
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source considérés, et ont généré un plan oblique à partir de cette ligne et d’une ligne parallèle sur le détecteur virtuel,
puis la condition a été construite sur ce plan oblique en changeant la FBCC à la forme de variables angulaires,
pour se débarrasser de la considération des variables de coordonnées des détecteurs. Une autre façon d’utiliser la
technique ci-dessus est basée sur le résultat de Grangeat, qui peut être trouvé dans [Grangeat, 1991].

Dans [Lesaint et al., 2018], Lesaint et al. ont travaillé avec la source linéaire de rayons X et le détecteur parallèle
à la droite, trajectoire de la source. Ils ont présenté la CBCC basée sur Grangeat, et montré la relation entre cette
dernière et la FBCC. Ainsi, cet article est également lié aux articles [Lesaint et al., 2017] et [Levine et al., 2010]. Le
modèle de Grangeat qui traitait du contexte géométrique avec une trajectoire de source circulaire et un détecteur
perpendiculaire à la trajectoire de la source peut être trouvé dans [Abdurahman et al., 2018] et [Luo et al., 2020].

Une autre approche pour construire de nouvelles CBCC consiste à créer les CBCC de type polynomiales.
Clackdoyle et Desbat dans l’article [Clackdoyle and Desbat, 2013] ont construit la CBCC complète dans la géométrie
de la source de rayons X se déplaçant sur un plan et le détecteur étant parallèle à ce plan de trajectoire. Il s’agit
de conditions complètes, ce qui signifie qu’elles sont à la fois des conditions nécessaires et suffisantes. De plus,
ces conditions sont si générales que de nombreuses DCC dans des contextes géométriques différents peuvent en
être extraites. Par exemple, la FBCC, qui est liée aux conditions de [Levine et al., 2010] et [Lesaint et al., 2017],
en est un cas particulier. En 2016, Clackdoyle et al. ont également développé des CBCC de type polynomiales
dans la géométrie bien connue d’une trajectoire circulaire de la source, le détecteur étant perpendiculaire au plan
de la trajectoire. Lesaint et al. dans l’article [Lesaint et al., 2016] ont défini un type de moment similaire à celui
de [Clackdoyle et al., 2016], qui prend en compte le filtre de rampe et le filtre dérivé. Il ont obtenu deux CBCC liées :
la condition construite à partir de la fonction du filtre de rampe était la CBCC dans [Clackdoyle et al., 2016] d’ordre
0. Tous les résultats mentionnés de Lesaint peuvent être trouvés dans sa thèse de doctorat [Lesaint et al., 2018].

Comme nous venons de le voir, les CBCC existantes sont toutes connectées. Nous présentons dans l’introduction
de ce chapitre un diagramme qui montre les liens et illustre de ce que nous venons d’expliquer ci-dessus.

Dans ce chapitre, afin de créer de nouvelles CBCC de type polynomial, nous étudions en profondeur les CBCC
de [Clackdoyle and Desbat, 2013] et [Clackdoyle et al., 2016]. Dans [Clackdoyle and Desbat, 2013], nous appelons
les CBCC CBCC13 qui correspondent à la trajectoire planaire de la source de rayons X, le détecteur étant parallèle au
plan de la trajectoire et les CBCC dans l’article [Clackdoyle et al., 2016] CBCC16 qui correspondent à la trajectoire
circulaire de la source, le détecteur étant perpendiculaire au plan de la trajectoire.

En regardant rapidement l’expression des deux moments correspondants aux deux CBCC est différente. CBCC13
et CBCC16 ne semblent pas tellement liées l’une à l’autre. Cependant, nous découvrons leurs relations, et à partir
de ces relations, nous pouvons dériver de nouvelles CBCC. Nous obtenons des CBCC générales et complètes dans le
cas de la géométrie où la source décrit une trajectoire planaire non spécifique et le détecteur est perpendiculaire à ce
plan. Nous obtenons également un résultat très préliminaire de l’application ces CBCC au problème de calibration
géométrique dans une géométrie 3D à faisceau conique. Afin de produire de nouvelles CBCC, notre toute première
idée est de trouver la connexion entre CBCC16 et CBCC13. En changeant la position du détecteur, nous obtenons
la nouvelle forme de ces CBCC dans les autres contextes géométriques, que nous appelons ci-dessous les “CBCC
converties”. Ce sont de nouvelles CBCC, et leurs relations avec CBCC13 et CBCC16 nous aident également à
obtenir de nombreux autres résultats intéressants.

Chaque CBCC et la géométrie correspondante seront expliquées en détail dans les sections 4.2 et 4.3. Nous
informerons le contenu de chaque section à un niveau de détail plus élevé au début de chaque section.

La section 4.2 donne de brefs résumés de CBCC16, CBCC13, montre les relations entre les deux contextes
géométriques, et dérive de nouvelles CBCC appelées CBCC16Converted sur la base de ces relations. Elles sont
appliquées dans la géométrie avec la trajectoire circulaire de la source, le détecteur étant parallèle au plan de la
trajectoire. Les relations entre ces nouvelles CBCC, CBCC16Converted et CBCC13, sont également prises en compte
et développées. Nous montrons également les détails de CBCC13 dans plusieurs cas particuliers. Nous pouvons
obtenir de nouvelles DCC en considérant CBCC13 dans certains contextes géométriques. Toutes les simulations
numériques correspondantes se trouvent également dans cette section.

La section 4.3 explore la direction opposée par rapport à la section 4.2. Nous prenons les CBCC13 comme
base, changeons la position du détecteur, et obtenons de nouvelles CBCC (CBCC13Converted) avec la source
générale planaire et le détecteur perpendiculaire au plan de la trajectoire. Nous suivons également la technique
de l’article [Clackdoyle et al., 2016] et [Lesaint et al., 2016] pour définir le moment correspondant en utilisant le
filtre de rampe pour étendre les nouvelles CBCC à une version généralisée complète de CBCC16. Les relations
et les CBCC concernant les projections conventionnelles par faisceau conique sont également présentées. Enfin,
nous essayons de définir et de résoudre le problème de calibration dans la géométrie avec trajectoire circulaire avec
détecteur perpendiculaire au plan de la trajectoire, en utilisant ces nouvelles CBCC.
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4.1 Introduction

Data consistency conditions (DCCs) can be equations that represent the relationships between the projections, or
more generally, DCCs give us some properties or rules that the projection data must follow to be considered as true
and consistent. This chapter covers the topic of Cone-beam Consistency Conditions (CBCC). We can find in the
literature that so far, there are three main approaches to create CBCCs: going from John’s equation, considering
the projections by pairs, or creating the polynomial-type CBCCs (like the well-known Helgason-Ludwig conditions).

We can find the first approach in the work of Patch, see [Patch, 2002b] and [Patch, 2002a]. She derived some
CBCCs from John’s equation for two different geometry contexts: the paper [Patch, 2002b] dealt with the x-ray
source moving along a circle and the detector being parallel to the trajectory plane; while in [Patch, 2002a], the
x-ray source and the detector were considered to correspondingly move on two helical trajectories with the 3D object
being fixed. This is in fact the model of the CT scan because this motion is equivalent to the source and detector
moving along circular trajectories while the bed of patient moving towards through the circle of source trajectory
(the detector in this case is supposed to be perpendicular to the trajectory plane). Her final goal was to establish
a relationship between the projections leading to computation of the unmeasured projections from the measured
data. In [Levine et al., 2010], Levine et al. went almost the same way as Patch in [Patch, 2002b], they obtained
a CBCC in the geometry that the x-ray source moved along a line and the detector was parallel to the trajectory
plane. More precisely, the CBCC in this paper can be understood as: if the x-ray source moves along a line and the
detector is parallel to the trajectory plane, we consider a line on the detector, which is parallel to the line of source
trajectory, then the integral of the weighted projection of the 3D object over this line is independent of the source
location. In fact, this condition links to the fan-beam consistency condition (FBCC) of order 0, which has been
shown in chapter 3. Ma et al. in the paper [Ma et al., 2017] also followed the similar way as Patch in [Patch, 2002a]
to derive the CBCCs in the geometry that both source and detector moved on circular trajectories while the 3D
object is fixed, to restore the projection data, which had been lost in the imaging process for some reasons, from
the measured data. In 2005, Sidky et al. also developed a CBCC for weighted cone-beam projections defined by
the source and the corresponding detection points, where they were supposed to be on the same surface in 3D,
see [Sidky et al., 2005]. This CBCC has a similar form as John’s equation.

The geometry with circular source trajectory and the detector being perpendicular to the trajectory plane
has always been of interests. One technique that has been used to work with this geometry is to consider two
arbitrary source locations, which must be the intersections of some line with the circle of source trajectory. Then
although the two locations are obviously on the circle, we can still consider they as two positions of an x-ray source
moving along a line, so we are able to apply some pre-built suitable CBCCs for the cone-beam projections taken at
these two locations of the source. Following this idea helps create the pair-wise CBCCs. In [Lesaint et al., 2017],
Lesaint et al. used this technique and build the condition based on the FBCC (which also links to the result
in [Levine et al., 2010]). More precisely, in order to construct from the FBCC, they considered a so-called virtual
detector, which is parallel to the line connecting two considering source locations, and generated an oblique plane
from this line and a parallel line on the virtual detector, then the condition was built on this oblique plane by
changing FBCC to the form of angular variables, to get rid of considering the detectors’ coordinate variables.
Another way to use the above technique is based on Grangeat’s result, which can be found in [Grangeat, 1991].
In [Lesaint et al., 2018], Lesaint et al. worked with the linear x-ray source and the detector being parallel to the
line of source trajectory. They presented the Grangeat-based CBCC, and shown the relationship between it and
FBCC. Thus this paper also links to the papers [Lesaint et al., 2017] and [Levine et al., 2010]. The Grangeat-based
which dealt with the geometry context with circular source trajectory and the detector being perpendicular to the
source trajectory can be found in [Abdurahman et al., 2018] and [Luo et al., 2020].

Another approach to construct new CBCCs is to create the polynomial-type CBCCs. Clackdoyle and Desbat in
the paper [Clackdoyle and Desbat, 2013] constructed the full CBCC in the geometry that the x-ray source moving
on a plane and the detector being parallel to that trajectory plane. It is a full condition, which means it is both
necessary and sufficient condition. Additionally, this condition is such general that many DCCs in different geometry
contexts can be extracted from it. For instance, the FBCC, which links to the conditions in [Levine et al., 2010]
and [Lesaint et al., 2017], is a special case of it. In 2016, Clackdoyle et al. also developed a polynomial-type CBCC
in the well-known geometry with circular source trajectory and the detector being perpendicular to the trajectory
plane. Lesaint et al. in the paper [Lesaint et al., 2016] defined a similar moment type as in [Clackdoyle et al., 2016],
which took the ramp filter and the derivative filter into account. He obtained two corresponding CBCCs and and
the condition built from the ramp filter function was the CBCC in [Clackdoyle et al., 2016] of order 0. All the
mentioned results of Lesaint can be found in his Ph. D. thesis [Lesaint, 2018]. As we have just seen, the existed
CBCCs are all connected, and we attach the below diagram as an illustration of what we just explained above.
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CONE-BEAM
CONSISTENCY
CONDITIONS

(CBCC)

John’s-equation-based
Consistency
Conditions

Polynomial-type
Consistency
Conditions

Pair-wise
Consistency
Conditions

Patch’s aim (2002): derive consistency conditions
from John’s equation to compute the

unmeasured projections from the measured ones

Patch (2002b): circular source trajectory
& parallel detector

Patch (2002a): source & detector move together 
on 2 corresponding helical trajectories;

Equivalent motion: CT scan: source & perpendicular detector
move together on circular trajectories while the bed of patient

moving towards through the circles.

Ma et. al. (2017): same path as Patch (2002-2), but different geometry:
circular source trajectory & perpendicular detector

while the 3D object is fixed (same as DCC16)

Levine et. al. (2010): same path as Patch (2002-1),
obtain CBCC with linear source trajectory & parallel detector:
Consider a line on detector parallel to linear source trajectory,

integral of the weighted projection over this line
is independent of the source location.

Lesaint (2017): Fan-beam-based consistency conditions:
consider 2 arbitrary source locations, the line connecting them,

a parallel line on the detector & the plane generated from these 2 lines
CBCC applied on conventional projections is constructed from fan-beam DCC

on the oblique plane by changing to angular variables

Circular source trajectory & perpendicular detector (same geometry as DCC16)
Technique: consider 2 arbitrary source locations, they must be
2 intersections of some line with the circular trajectory, so DCC

for linear source trajectory can be applied on this pair of projections

Clackdoyle & Desbat (2013) - DCC13: planar source
with no specific trajectory & parallel detector

Clackdoyle et. al. (2016) - DCC16: circular
source trajectory & perpendicular detector

Fan-beam consistency condition: special case
of DCC13, related to Levine (2010) & Lesaint (2017)

Lesaint et. al. (2016): 2 CBCCs, one of them
is constructed with the ramp filter, this is

the DCC16 of order 0, the other is construced
with the derivative filter

Grangeat-based consistency conditions

Lesaint et. al. (2018): Grangeat-based consistency condition (GCC),
Fan-beam consistency condition (FBCC), linear source trajectory

& detector being parallel to line of source trajectory,
Relationship: FBCC implies GCC, FBCC is equivalent to GCC

if all projections are not truncated.
Link to Lesaint et. al. (2017)

Abdurahman et. al. (2018) Luo et. al. (2019)

Note:
Parallel detector: the detector being parallel to the trajectory plane

Perpendicular detector: the detector being perpendicular to the trajectory plane

Sidky (2005): obtain a CBCC having
the similar form as John’s equation,
x-ray source and detection point are

considered to be on the same surface in 3D.

In this chapter, we investigate the CBCCs in [Clackdoyle and Desbat, 2013] and [Clackdoyle et al., 2016] deeply,
to understand them and to create new polynomial-type CBCCs. We call the CBCC in [Clackdoyle and Desbat, 2013]
CBCC13 which is applied with the planar x-ray source and the detector being parallel to the trajectory plane; and
the CBCC in the paper [Clackdoyle et al., 2016] CBCC16, which is applied when the source is moving along a
circle and the detector is perpendicular to the trajectory plane. By a quick look, the form of two corresponding
moments of two CBCCs are different and not so related to each other. However, we find out their relationships,
and from these relationships, we can derive new CBCCs. The final one we obtain is the general and full CBCC
which can be applied in the geometry that the source is on a plane with no specific trajectory and the detector
is perpendicular to that plane. We also obtain a very preliminary result of the application of this CBCC in the
corresponding calibration problem in 3D cone-beam geometry. In order to produce new CBCCs, our very first idea
is to find the connection between CBCC16 and CBCC13. By changing the position of the detector, we obtain the
new form of those CBCCs in the other geometry contexts, which we call the converted CBCCs below. They are
new CBCCs, and their relations to CBCC13 and CBCC16 also help us find many other interesting results. Each
CBCC and corresponding geometry will be explained in details in the respective following sections. Section 4.2
gives the brief summaries of CBCC16, CBCC13, shows the relationships between the two geometry contexts, and
derives new CBCCs called CBCC16Converted based on these relationships, which is applied in the geometry with
the circular source trajectory and the detector being parallel to the trajectory plane. The relation between this
new CBCC16Converted and CBCC13 is also taken into account. We also show the details of CBCC13 in several
particular cases, that we can earn more DCCs by considering CBCC13 in certain geometry contexts. All the
corresponding numerical simulations can be found in this section also. We will inform the content of each section
at a higher level of details at the beginning of each section.

Section 4.3 performs the work which is in the opposite direction in comparison to section 4.2. We take CBCC13 as
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Figure 4.1: CBCC16 geometry

our base, change the position of the detector, and obtain a new CBCC with the general planar source and the detector
being perpendicular to the trajectory plane. We also follow the technique in the papers [Clackdoyle et al., 2016]
and [Lesaint et al., 2016] to define the corresponding moment using the ramp filter to extend the new CBCC to a
complete generalized version of CBCC16. The relationships and CBCCs concerning the conventional cone-beam
projections have also been presented. Finally, we try to define and solve the calibration problem in the geometry
with circular trajectory and perpendicular detector, using this new CBCC.

4.2 CBCC16Converted

In this section, we build the new CBCC16Converted step by step. Section 4.2.1 recalls CBCC16 - the CBCC
in [Clackdoyle et al., 2016]. Section 4.2.2 introduce the geometry with circular source trajectory and the detector
being parallel to the trajectory plane, and define the weighted cone-beam projection on that detector. Section 4.2.3
shows the relation between the two definitions of the weighted cone-beam projection when we change the posi-
tion of the detector. Section 4.2.4 constructs the new form the moment of the weighted cone-beam projections
from the moment defined in [Clackdoyle et al., 2016] by changing the variables, and introduces the new consis-
tency condition CBCC16Converted. Section 4.2.5 gives a direct proof of CBCC16Converted, instead of walking
all the path from CBCC16. Section 4.2.6 performs the numerical simulations to illustrate the result of six and
CBCC16Converted, we can also see the relation between them. Section 4.2.7 briefly summarize the main result
in the paper [Clackdoyle and Desbat, 2013]. Section 4.2.8 shows the relationship between CBCC16Converted and
CBCC13. We then realize that CBCC16Converted is a special case of CBCC13, thus we can obtain another new
CBCC in section 4.2.9, whose results are the nonhomogeneous polynomial in cos and sin. Section 4.2.10 deeply
dives into CBCC13 and shows some new CBCCs in particular geometry contexts.

4.2.1 Summary of CBCC16

We firstly recall the crucial definitions and results of CBCC16 [Clackdoyle et al., 2016], since they are our important
bricks to build new DCCs. Now we are working in 3D with O (0, 0, 0) as the world origin and (x1, x2, x3) as the
standard coordinate system. As mentioned above, the geometry of CBCC16 contains an x-ray source moving along
a circle and a vertical detector. We assume that this circle is on the trajectory plane x3 = 0, whose center is at the
origin and radius is R. Also, the vertical detector is supposed to be always at distance D away from the source. And
the projections are assumed to have no truncation. Figure 4.1 shows us the considered geometry. In this geometry,
the source location is parameterized by radius R > 0 and angle λ ∈ [0, 2π) (the angle between x1-axis and the ray

connecting the origin to the source location), α⃗λ is the unit vector pointing towards the source, β⃗λ is obtained by
rotating α⃗λ 90◦ counter-clockwise in the (x1, x2) plane. More precisely, in the coordinate system (x1, x2, x3):

α⃗λ = (cosλ, sinλ, 0) , β⃗λ = (− sinλ, cosλ, 0) , e⃗3 = (0, 0, 1) , s⃗λ = Rα⃗λ = (R cosλ,R sinλ, 0) . (4.1)

The origin of the vertical detector is at location (R−D) α⃗λ. The u and v axes on the vertical detector have the

same directions as β⃗λ and e⃗3 respectively. We assume our 3D object is the three-variable real function f , which has
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compact support. Let PV be the projection operator applying on the object f to produce the weighted cone-beam
projection on the vertical detector pV = PVf , where the x-ray source is moving along a circle with the center at
the origin and the radius being R, then the projection data on the detector is:

pVλ (u, v) = pV (λ, u, v) = PVf (λ, u, v) =
∫ ∞

0

f
(
s⃗λ + t

(
uβ⃗λ + ve⃗3 −Dα⃗λ

))
dt. (4.2)

We use the notation pVλ to emphasize that this is the weighted cone-beam projection on the vertical detector (V here
stands for vertical) with the weight

(
1/
√
u2 + v2 +D2

)
in comparison to the conventional cone-beam projection.

This relation will be explained explicitly in section 4.3.6.1. For now, to explain the weight, we can understand
that the conventional cone-beam projection is defined in terms of unit vector in S2. And the weighted cone-beam

projection defined by equation (4.2) is computed from the vector
(
uβ⃗λ + ve⃗3 −Dα⃗λ

)
connecting the source to

the detection point, which is not unit. In order to make it be unit vector, we need to divide this vector by its
length

√
u2 + v2 +D2 and change the variables of integration, which leads to the above weight. The moment of

the weighted projections is the following:

MV
n (λ) =

∫∫
pVλ (u, v)

un

vn+2
dudv. (4.3)

CBCC16 tells us that:

If pV is in the range of PV : pV = PVf for some f (which is a compactly supported real function) then
MV

n (λ) is a homogeneous polynomial in cosλ and sinλ of degree n for all non-negative integer n.

We can see a singularity in the definition of the moment MV
n (λ) when v = 0. In [Clackdoyle et al., 2016], this

singularity has been perfectly handled by replacing the term 1/vn+2 by the generalized function hn (v), which is
the inverse Fourier transform of

Hn (ν) =
(−2iπ)

n+2

2 (n+ 1)!
|ν| νn. (4.4)

This means in CBCC16, the support of the object is allowed to intersect the trajectory plane x3 = 0. For now, we
will temporarily ignore this fact and assume that the object is strictly above the plane x3 = 0 and strictly inside the
circular source trajectory. We change the geometry by flipping the vertical detector to obtain a horizontal detector.
This leads to a new form of CBCC16, which can link to CBCC13.

4.2.2 Geometry of CBCC16Converted and the weighted cone-beam projection on
the horizontal detector

Now we have the horizontal detector at distance T from the trajectory plane, instead of the vertical detector. More
precisely, the horizontal detector is on the plane x3 = T , where T is a positive constant. The origin of the horizontal
detector is at location (0, 0, T ), and its coordinate axes u, w have the same directions as β⃗λ and α⃗λ. Here we use the
same notation u as the previous section because the direction of this axis remains the same as the u-axis in CBCC16
geometry. The 3D object is strictly above the trajectory plane, and the source is still moving along the same circle.
Figure 4.2 shows us the geometry. One point (u,w) on the horizontal detector can be written as uβ⃗λ +wα⃗λ + T e⃗3
in 3D. The weighted cone-beam projection pHλ on the horizontal detector is then defined as follows: let PH be
the projection operator applying on the object f to produce the weighted cone-beam projection on the horizontal
detector pH = PHf , where the x-ray source is moving along a circle with the center at the origin and the radius
being R, then the projection data is:

pHλ (u,w) = pH (λ, u, w) = PHf (λ, u, w) =
∫ ∞

0

f
(
s⃗λ + t

(
uβ⃗λ + wα⃗λ + T e⃗3 − s⃗λ

))
dt (4.5a)

=

∫ ∞

0

f
(
s⃗λ + t

(
uβ⃗λ + (w −R) α⃗λ + T e⃗3

))
dt. (4.5b)

4.2.3 Relationship between the weighted cone-beam projections on the vertical and
horizontal detectors (CBCC16 and CBCC16Converted geometry contexts)

If we consider both detectors at the same time, then one point (u, v) on the vertical detector will link to a point on
the horizontal detector, by taking the intersection of the horizontal detector and the line connecting the source and
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Figure 4.2: CBCC16Converted geometry

the point on the vertical detector. More precisely, this line passes through (R cosλ,R sinλ, 0) and has the same

direction as uβ⃗λ + ve⃗3 −Dα⃗λ. Its equation is the following:

x1 −R cosλ

−u sinλ−D cosλ
=

x2 −R sinλ

u cosλ−D sinλ
=
x3
v
. (4.6)

And since the horizontal detector is on the plane x3 = T then the intersection is (x̂1, x̂2, x̂3) where

x̂1 = R cosλ− T

v
(u sinλ+D cosλ) , (4.7a)

x̂2 = R sinλ+
T

v
(u cosλ−D sinλ) , (4.7b)

x̂3 = T. (4.7c)

Moreover, one such point (u,w) on the horizontal detector has the representation uβ⃗λ +wα⃗λ +T e⃗3 in 3D, then the
intersection (in 3D)

(x̂1, x̂2, x̂3) =

(
R cosλ− T

v
(u sinλ+D cosλ) , R sinλ+

T

v
(u cosλ−D sinλ) , T

)
(4.8a)

=

(
Tu

v
(− sinλ) +

(
R− DT

v

)
cosλ,

Tu

v
cosλ+

(
R− DT

v

)
sinλ, T

)
(4.8b)

=
Tu

v
β⃗λ +

(
R− DT

v

)
α⃗λ + T e⃗3, (4.8c)

will be the point

(
Tu

v
,R− DT

v

)
on the horizontal detector. Thus the point (u, v) on the vertical detector links

to the point

(
Tu

v
,R− DT

v

)
on the horizontal detector. The link is in the sense that the respective weighted

cone-beam projections on the vertical and horizontal detectors relate to each other, since they are both computed
on the same direction from the source (the source and those two points are collinear).

This means there has to exist a formula connecting pVλ (u, v) and pHλ

(
Tu

v
,R− DT

v

)
. Using the definitions (4.5b)

and (4.2), we obtain the following relationship between the two weighted cone-beam projections on the horizontal



70 CHAPTER 4. CONE-BEAM CONSISTENCY CONDITIONS

and vertical detectors:

pHλ

(
Tu

v
,R− DT

v

)
=

∫ ∞

0

f

(
s⃗λ + t

(
Tu

v
β⃗λ +

(
R− DT

v
−R

)
α⃗λ + T e⃗3

))
dt (4.9a)

=

∫ ∞

0

f

(
s⃗λ + t

(
Tu

v
β⃗λ − DT

v
α⃗λ + T e⃗3

))
dt (4.9b)

=

∫ ∞

0

f

(
s⃗λ + t

T

v

(
uβ⃗λ + ve⃗3 −Dα⃗λ

))
dt (4.9c)

=

∫ ∞

0

f
(
s⃗λ + t′

(
uβ⃗λ + ve⃗3 −Dα⃗λ

))
dt′

v

T
(4.9d)

= pVλ (u, v)
v

T
, (4.9e)

here we have changed the variable t (T/v) = t′, then dt′ = (T/v) dt.

4.2.4 Moment of the weighted cone-beam projections on the horizontal detector and
DCC16Converted

From the relationship (4.9e) and the definition (4.3), the moment of projections obtained on the vertical detector
will become:

MV
n (λ) =

∫∫
pVλ (u, v)

un

vn+2
dudv (4.10a)

=

∫ ∞

ϵ

∫
pVλ (u, v)

un

vn+2
dudv (4.10b)

=

∫ ∞

ϵ

∫
pHλ

(
Tu

v
,R− DT

v

)
T

v

un

vn+2
dudv (4.10c)

= T

∫ ∞

ϵ

∫
pHλ

(
Tu

v
,R− DT

v

)
un

vn+3
dudv. (4.10d)

Thanks to the assumption that the support of the 3D object is strictly above the trajectory plane, then there exists
ϵ > 0, such that pVλ (u, v) = 0 if v ≤ ϵ, then the integral

∫∫
dudv can be changed to

∫∞
ϵ

∫
dudv, and there is

also no confusion about the singularity when v is on the denominator. We change the variables: y = Tu/v and
z = R− (DT/v). Since u ∈ R and v ∈ [ϵ,∞) (ϵ > 0), then y ∈ R and z ∈ [R− (DT/ϵ) , R). We can also compute:

v =
DT

R− z
, u =

yv

T
=

Dy

R− z
. (4.11)

Also, we have the Jacobian matrix:

J =




∂y

∂u

∂y

∂v
∂z

∂u

∂z

∂v


 =




T

v
−Tu
v2

0
DT

v2


 , det (J) =

DT 2

v3
, (4.12)

then dydz =
DT 2

v3
dudv, or:

dudv =
1

DT 2

(DT )
3

(R− z)
3 dydz =

D2T

(R− z)
3 dydz. (4.13)

Thus the above integral becomes:

MV
n (λ) = T

∫ R

R−(DT/ϵ)

∫
pHλ (y, z)

(Dy)
n

(R− z)
n
(R− z)

n+3

(DT )
n+3

D2T

(R− z)
3 dydz =

1

DTn+1

∫ R

R−(DT/ϵ)

∫
pHλ (y, z) yndydz.

(4.14)

• Once again, thanks to the assumption that the support of the 3D object is compact and strictly inside the
circular source trajectory, then there exists ι < R such that:

pHλ (y, z) = 0 if z ≥ ι; (4.15)
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• Additionally, thanks to the fact that there exists ϵ > 0 such that pVλ (u, v) = 0 if v ≤ ϵ, then:

pHλ (y, z) = 0 if z ≤ R− DT

ϵ
. (4.16)

Thus the integral
∫ R

R−(DT/ϵ)

∫
dydz can be changed to

∫∫
dydz. From this, we define the moment of the projections

obtained on the horizontal detector as:

MH
n (λ) =

∫∫
pHλ (u,w)undudw, (4.17)

then we have the relationship between the two types of moments:

MH
n (λ) = DTn+1MV

n (λ) , (4.18)

where D and T are respectively the distances from the source to the vertical and horizontal detectors. However, by
CBCC16, MV (λ) is a homogeneous polynomial in cosλ and sinλ of degree n, then so is MH (λ). We thus obtain
our CBCC16Converted:

If pH is in the range of PH: pH = PHf for some f (which is a compactly supported real function) then
MH (λ) is a homogeneous polynomial in cosλ and sinλ of degree n for all non-negative integer n.

4.2.5 Direct proof of CBCC16Converted without using CBCC16

We can also prove CBCC16Converted directly without knowing CBCC16 by simply using the technique of changing
variables, however sacrificing the knowledge about CBCC16 means paying back with a lot more computations. By
definitions (4.17) and (4.5b), we can see that:

MH
n (λ) =

∫∫
pHλ (u,w)undudw (4.19a)

=

∫∫ ∫ ∞

0

f
(
s⃗λ + t

(
uβ⃗λ + (w −R) α⃗λ + T e⃗3

))
undtdudw. (4.19b)

More precisely, as defined before, in 3D coordinate system:

s⃗λ + t
(
uβ⃗λ + (w −R) α⃗λ + T e⃗3

)
=



R cosλ
R sinλ

0


+ t



−u sinλ+ (w −R) cosλ
u cosλ+ (w −R) sinλ

T


 (4.20a)

=



R cosλ− tu sinλ+ t (w −R) cosλ
R sinλ+ tu cosλ+ t (w −R) sinλ

tT


 . (4.20b)

(Here we write the vectors in the column form to save spaces and to make it visually easier for reading.) Now we

change the variables: s⃗λ + t
(
uβ⃗λ + (w −R) α⃗λ + T e⃗3

)
= x⃗, this means:

x1 = R cosλ− tu sinλ+ t (w −R) cosλ, (4.21a)

x2 = R sinλ+ tu cosλ+ t (w −R) sinλ, (4.21b)

x3 = tT. (4.21c)

Then conversely, we also have:

t =
x3
T
, (4.22a)

−u sinλ+ (w −R) cosλ =
1

t
(x1 −R cosλ) =

T

x3
(x1 −R cosλ) , (4.22b)

u cosλ+ (w −R) sinλ =
1

t
(x2 −R sinλ) =

T

x3
(x2 −R sinλ) , (4.22c)
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Thus u can also be computed in terms of (x1, x2, x3) as follows:

u =
T

x3
(−x1 sinλ+R cosλ sinλ) +

T

x3
(x2 cosλ−R cosλ sinλ) =

T

x3
(−x1 sinλ+ x2 cosλ) . (4.23)

Moreover, we have the Jacobian matrix as follows:

J =




∂x1
∂t

∂x1
∂u

∂x1
∂w

∂x2
∂t

∂x2
∂u

∂x2
∂w

∂x3
∂t

∂x3
∂u

∂x3
∂w



=



−u sinλ+ (w −R) cosλ −t sinλ t cosλ
u cosλ+ (w −R) sinλ t cosλ t sinλ

T 0 0


 , (4.24a)

det (J) = −Tt2 sin2 λ− Tt2 cos2 λ = −Tt2. (4.24b)

Then dx⃗ = dx1dx2dx3 = Tt2dtdudw, or dtdudw =
1

T

T 2

x23
dx⃗ =

T

x23
dx⃗. And the above integral becomes:

MH
n (λ) =

∫∫∫
f (x⃗)

(
T

x3

)n

(−x1 sinλ+ x2 cosλ)
n T

x23
dx⃗ (4.25a)

= Tn+1

∫∫∫
f (x⃗) (−x1 sinλ+ x2 cosλ)

n dx⃗

xn+2
3

(4.25b)

= Tn+1

∫∫∫
f (x⃗)

[
n∑

k=0

(
n

k

)
(−x1)n−k

xk2 (sinλ)
n−k

(cosλ)
k

]
dx⃗

xn+2
3

(4.25c)

=

n∑

k=0

[(
n

k

)
Tn+1

∫∫∫
f (x⃗)

(−x1)n−k
xk2

xn+2
3

dx⃗

]
(sinλ)

n−k
(cosλ)

k
(4.25d)

=

n∑

k=0

ak (sinλ)
n−k

(cosλ)
k
, (4.25e)

where

ak =

(
n

k

)
Tn+1

∫∫∫
f (x⃗)

(−x1)n−k
xk2

xn+2
3

dx⃗, (4.26)

depend only on f . The coefficients obtained from the homogeneous polynomial in [Clackdoyle et al., 2016] are:

Ak =

(
n

k

)
1

D

∫∫∫
f (x⃗)

(−x1)n−k
xk2

xn+2
3

dx⃗. (4.27)

The only difference between them are the weights: ak = DTn+1Ak for all non-negative integer k, which once
again show the relationship: MH

n (λ) = DTn+1MV
n (λ) (in the paper [Clackdoyle et al., 2016], we do not see the

extra term 1/D in the coefficients; the reason is that the weighted cone-beam projection defined in that paper is
D/

√
u2 + v2 +D2 weighted from the conventional projection, while in this work, by our definition, the weighted

projection is obtained from the conventional one with the weight 1/
√
u2 + v2 +D2). Therefore MH (λ) is a homo-

geneous polynomial in cosλ and sinλ of degree n. In fact, the integral
∫∫ ∫∞

0
dtdudw is equal to the triple integral∫∫∫

dx⃗ over the whole R3 because the support of the 3D object f is compact, and its convex hull is strictly inside
the source trajectory.

4.2.6 Numerical simulations of CBCC16 and CBCC16Converted

In this section, we perform numerical experiments to illustrate the results of CBCC16 and CBCC16Converted, as
well as the relation between the corresponding moments. Section 4.2.6.1 introduce the details of the 3D object and
the information of the detectors and the source trajectory. Section 4.2.6.2 shows the numerical simulation results.
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4.2.6.1 The 3D object, the x-ray source and the detectors

We perform some experiments to test our above results. The considered 3D object is a slightly modified version of
the 3D Shepp-Logan phantom. The detail of the 3D Shepp-Logan phantom can be found in [Kak and Slaney, 1988]
[Noo, 1998]. Here we refer to [Noo, 1998], our 3D object also contains twelve 3D ellipsoids, with one exception that
none of them has the tilted angle. More precisely, our object is f =

∑
i=1,2,...,12 fi, where:

fi =




v (i) , if

(
x1 − c1 (i)

r1 (i)

)2

+

(
x2 − c2 (i)

r2 (i)

)2

+

(
x3 − c3 (i)

r3 (i)

)2

≤ 1

0, otherwise

, (4.28)

where c (i) = (c1 (i) , c2 (i) , c3 (i)), r (i) = (r1 (i) , r2 (i) , r3 (i)), v (i) are respectively the center coordinate, the
semi-axes, and the gray level of the ith ellipsoid. The information of each ellipsoid is shown in the following table:

Ellipsoid index Centers
(
×102

)
Semi-axes

(
×102

)
Gray level

(
×10−2

)

i c1 (i) c2 (i) c3 (i) r1 (i) r2 (i) r3 (i) v (i)
1 00.00 00.00 00.00 69.00 90.00 92.00 02.00
2 00.00 00.00 -01.84 66.24 88.00 87.40 -00.98
3 -22.00 -25.00 00.00 21.00 41.00 16.00 -00.02
4 22.00 -25.00 00.00 22.00 31.00 11.00 -00.02
5 00.00 -25.00 35.00 21.00 35.00 25.00 00.01
6 00.00 -25.00 10.00 04.60 04.60 04.60 00.01
7 -08.00 -25.00 -60.50 04.60 02.00 02.30 00.01
8 06.00 -25.00 -60.50 04.60 02.00 02.30 00.01
9 06.00 06.25 -10.50 05.60 10.00 04.00 00.02
10 00.00 62.50 10.00 05.60 10.00 05.60 -00.02
11 00.00 25.00 10.00 04.60 04.60 04.60 00.01
12 00.00 -25.00 -60.50 02.30 02.30 02.30 00.01

Now, we translate this object along the vector (0.1, 0, 2). This means we move the object upwards to make it strictly
above the trajectory plane x3 = 0, then we move it a little bit along x1-axis towards the positive direction, so it
is not perfectly at the origin. We will use this object for simulations throughout this chapter. The purpose is to
perform many experiments with such an object, then we have a chance to see the relationships between the CBCCs.
Regarding the x-ray source and the detectors:

• The source is assumed to move along the circle x21 + x22 = (5/2)
2
on the trajectory plane x3 = 0.

• The vertical detector is always at distance D = 4.5 away from the source.

• The horizontal detector is on the plane x3 = T = 3.5.

Throughout this chapter, the detectors in all experiments have 500× 500 pixels and there are 360 source positions
in those experiments concerning the circular and elliptic source trajectories, and 300 source positions in the cases
with the linear or parabollic source trajectories. It has also been tested that the more number of pixels, the less
error we obtain, meaning the data tends to be in shape of the polynomial if we increase the number of pixels. The
projections are always computed by measuring the length between two intersections of the integration lines with
the ellipsoids, with the corresponding densities being taken into account.

4.2.6.2 Numerical simulations

Below are the figures of the moment MV
n (λ) of orders n = 0, 1, 2, 3, which are the moments of projections on the

vertical detector, see figure 4.3. They are supposed to be homogeneous polynomials in cosλ and sinλ of degrees
n = 0, 1, 2, 3, by CBCC16. The red lines are the graphs of homogeneous polynomials in cosλ and sinλ, which fit
the data of the moments. They respectively are:

PV
0 (λ) = 17.1281, (4.29a)

PV
1 (λ) = 0.0009 cosλ− 0.9919 sinλ, (4.29b)

PV
2 (λ) = 0.8727 cos2 λ+ 0.0001 cosλ sinλ+ 0.5868 sin2 λ, (4.29c)

PV
3 (λ) = 0.0000 cos3 λ− 0.1562 cos2 λ sinλ+ 0.0001 cosλ sin2 λ− 0.0980 cos3 λ. (4.29d)
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We are going to quickly present how we obtain the above polynomials. In theory, from CBCC16, if the projection
data is in the range of the projection operator, then the moment MV

n (λ) must be a homogeneous polynomial in
cosλ and sinλ of degree n:

MV
n (λ) =

n∑

k=0

Bk,n (cosλ)
k
(sinλ)

n−k
. (4.30)

Now, our job is to figure out the polynomials PV
n (λ) =

∑n
k=0Bk,n (cosλ)

k
(sinλ)

n−k
, and in order to do that, we

need to compute the coefficients Bk,n for each n, and for 0 ≤ k ≤ n. For each n, the number of coefficients Bk,n that
we have to compute is (n+ 1): B0,n, B1,n, . . ., Bn,n. Therefore a system of (n+ 1) linear equations should be taken
into account to solve for the coefficients Bk,n, for each value of n. Here we would like to find PV

n (λ) for n = 0, 1, 2, 3
(which means n is at most 3), thus we just need to choose four specific values λj , j = 1, 2, 3, 4, then we compute{
MV

0 (λ1)
}
,
{
MV

1 (λ1) ,M
V
1 (λ2)

}
,
{
MV

2 (λ1) ,M
V
2 (λ2) ,M

V
2 (λ3)

}
,
{
MV

3 (λ1) ,M
V
3 (λ2) ,M

V
3 (λ3) ,M

V
3 (λ4)

}
(we

only mean that we will compute the moment data, but we put them into respective curly brackets to make it
easier for the readers to look at). So from these information, subtituting back into equation (4.30), we obtain all
coefficients of the four homogeneous polynomials in cosλ and sinλ of degree n = 0, 1, 2, 3 as shown above. We then
plot their graphs on the same corresponding figures of the moment data. All of the below similar process of finding
the homogeneous polynomials, which fit the moment data, has also been done this way. Additionally, we use the
term “nearest” homogeneous polynomials to mean that the polynomials are computed theoretically as shown in the
above process, without any approximation approach.
Next, we check the results of CBCC16Converted. Figure 4.4 shows us the moments of the projections on the hori-

Figure 4.3: Moments MV (λ) of orders 0 (top-left), 1 (top-right), 2 (bottom-left), 3 (bottom-right) of the weighted

cone-beam projections on the vertical detector, where the source is moving along the circle: x21 + x22 = (5/2)
2
on

the trajectory plane x3 = 0. The graph of the 3rd-order moment has this shape is because of the coefficients of the
corresponding polynomial, there are still two bumps on the intervals [1, 2] and [4, 5] of λ although they look almost
flat.
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Figure 4.4: Moments MH (λ) of orders 0 (top-left), 1 (top-right), 2 (bottom-left), 3 (bottom-right) of the weighted

cone-beam projections on the horizontal detector, where the source is moving along the circle: x21 + x22 = (5/2)
2
on

the trajectory plane x3 = 0.

zontal detector MH
n (λ) of orders n = 0, 1, 2, 3. By CBCC16Converted, they are also presumed to be homogeneous

polynomials in cosλ and sinλ of degree n = 0, 1, 2, 3. We obtain the following homogeneous polynomials in cosλ
and sinλ, which fit the data of the moments:

PH
0 (λ) = 269.7684, (4.31a)

PH
1 (λ) = 0.0480 cosλ− 54.6831 sinλ, (4.31b)

PH
2 (λ) = 168.3633 cos2 λ− 0.0043 cosλ sinλ+ 113.2235 sin2 λ, (4.31c)

PH
3 (λ) = 0.0233 cos3 λ− 105.4782 cos2 λ sinλ+ 0.0356 cosλ sin2 λ− 66.2001 cos3 λ. (4.31d)

Moreover, we stated before that there is a relationship between the two types of moments: MH
n (λ) = DTn+1MV

n (λ),
see equation (4.18). Since PH

n (λ) and PV
n (λ) are the nearest homogeneous polynomials fitting the data of MH

n (λ)
and MV

n (λ) respectively, and since D = 4.5 and T = 3.5, from the above numerical results, we hope that:

PH
0 (λ) ≈ 15.75PV

0 (λ) , (4.32a)

PH
1 (λ) ≈ 55.125PV

1 (λ) , (4.32b)

PH
2 (λ) ≈ 192.9375PV

2 (λ) , (4.32c)

PH
3 (λ) ≈ 675.28125PV

3 (λ) . (4.32d)
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Figure 4.5: CBCC13 geometry (left) and CBCC16Converted geometry (right)

For an easy comparison, from (4.29), we compute:

15.75PV
0 (λ) = 269.7676, (4.33a)

55.125PV
1 (λ) = 0.0481 cosλ− 54.6761 sinλ, (4.33b)

192.9375PV
2 (λ) = 168.3731 cos2 λ+ 0.0152 cosλ sinλ+ 113.2152 sin2 λ, (4.33c)

675.28125PV
3 (λ) = 0.0230 cos3 λ− 105.4978 cos2 λ sinλ+ 0.0371 cosλ sin2 λ− 66.1897 sin3 λ. (4.33d)

Comparing (4.31) and (4.33), we can see that (4.18) makes sense.

4.2.7 Recalling CBCC13

In the geometry of CBCC13, we also have the horizontal detector. But the only constraint of the source is that
it just needs to be on the trajectory plane x3 = 0, it does not need to be on any specific trajectory. One more
difference when we compare this geometry to CBCC16Converted geometry is that the two standard axes u and w
on the horizontal detector in CBCC16Converted geometry are computed depending on λ. This shows the fact that
the horizontal detector in CBCC16Converted geometry is rotating around the vertical axis correspondingly to the
source location (parameterized by λ if the radius R is considered as a constant), although it is not translating or
tilting. In CBCC13 geometry, the horizontal detector is completely fixed, not moving, tilting, or rotating. Figure 4.5
shows us the geometry. The two standard axes on this fixed horizontal detector have the same directions as x1
and x2, so we keep the notations x1, x2 when working with this horizontal detector of CBCC13 geometry (then
we do not get lost because of too many notations). We again follow the paper [Clackdoyle and Desbat, 2013]: let
GH be the projection operator applying on the object f to produce the weighted cone-beam projection on the fixed
horizontal detector (x3 = T ): gH = GHf , where the x-ray source is moving on the plane (x3 = 0) without any
specific trajectory, then the projection data is:

gH (s1, s2, x1, x2) = GHf (s1, s2, x1, x2) =
∫ ∞

0

f (s⃗+ t ((x1, x2, T )− (s1, s2, 0))) dt (4.34a)

=

∫ ∞

0

f (s⃗+ t (x1 − s1, x2 − s2, T )) dt. (4.34b)

Here the source does not move along a circle, so it cannot be parameterized by an angle λ and a radius R as the
previous sections, thus we use the notation s⃗ = (s1, s2, 0) instead of s⃗λ. The moment of the weighted projections
gH (s1, s2, x1, x2) is also defined as follows:

JH
n (s1, s2, Y1, Y2) =

∫∫
gH (s1, s2, x1, x2) (x1Y1 + x2Y2)

n
dx1dx2. (4.35)
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Then CBCC13 states that:

gH is in the range of GH: gH = GHf for some f (which is a compactly supported real function), if and only
if for all (s1, s2) ∈ R2, gH (s1, s2, ·, ·) has compact support in R2 and:

JH
n (s1, s2, Y1, Y2) = KH

n (Y1, Y2,−s1Y1 − s2Y2) , ∀n = 0, 1, 2, . . . , (4.36)

where KH
n (Y1, Y2, Y3) =

∑
i+j+k=n C

H
i,j,kY

i
1Y

j
2 Y

k
3 is a homogeneous polynomial in three variables Y1, Y2, Y3

of degree n.

This means gH (s1, s2, x1, x2) is the weighted cone-beam projection on the fixed horizontal detector, if and only
if the moment JH

n (s1, s2, Y1, Y2) is the intersection when slicing the plane Y3 = −s1Y1 − s2Y2 through the 3D
homogeneous polynomial KH

n (Y1, Y2, Y3). In the notations of gH and JH
n , the first two variables provides the

source information, the last two varibles are the main variables of the functions.

4.2.8 Relationship between CBCC16Converted and CBCC13

We can see that the projections defined in CBCC13 and CBCC16Converted geometries link to each other if we
consider the source to move along a circle, since they both are the weighted cone-beam projections on the horizontal
detector, the only difference is the reference frames: the fixed (x1, x2) and the rotating (u,w). Comparing the
definitions (4.34b) and (4.5b), we obtain the relationship:

pHλ (u,w) =

∫ ∞

0

f
(
s⃗λ + t

(
uβ⃗λ + wα⃗λ + T e⃗3 − s⃗λ

))
dt (4.37a)

=

∫ ∞

0

f (s⃗λ + t ((−u sinλ+ w cosλ, u cosλ+ w sinλ, T )− (R cosλ,R sinλ, 0))) dt (4.37b)

= gH (R cosλ,R sinλ,−u sinλ+ w cosλ, u cosλ+ w sinλ) . (4.37c)

From this, we can also obtain a link between the moments MH
n (λ) and JH

n (R cosλ,R sinλ, Y1, Y2). Precisely, by
the definition (4.17), we have:

MH
n (λ) =

∫∫
pHλ (u,w)undudw (4.38a)

=

∫∫
gH (R cosλ,R sinλ,−u sinλ+ w cosλ, u cosλ+ w sinλ)undudw. (4.38b)

We change the variables −u sinλ+ w cosλ = x1 and u cosλ+ w sinλ = x2, then conversely:

u = −x1 sinλ+ x2 cosλ, (4.39a)

w = x1 cosλ+ x2 sinλ, (4.39b)

and we can also simply obtain dudw = dx1dx2. Then the above integral becomes:

MH
n (λ) =

∫∫
gH (R cosλ,R sinλ, x1, x2) (−x1 sinλ+ x2 cosλ)

n
dx1dx2 (4.40a)

= JH
n (R cosλ,R sinλ,− sinλ, cosλ) . (4.40b)
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This follows the definition (4.35). Using CBCC13 (4.36), the above moment becomes:

MH
n (λ) = JH

n (R cosλ,R sinλ,− sinλ, cosλ) (4.41a)

= KH
n (− sinλ, cosλ,−R cosλ (− sinλ)−R sinλ cosλ) (4.41b)

= KH
n (− sinλ, cosλ, 0) (4.41c)

=
∑

i+j+k=n

CH
i,j,k (− sinλ)

i
(cosλ)

j
0k (4.41d)

=
∑

k=0
i+j+k=n

CH
i,j,k (− sinλ)

i
(cosλ)

j
0k +

∑

k>0
i+j+k=n

CH
i,j,k (− sinλ)

i
(cosλ)

j
0k (4.41e)

=
∑

i+j=n

CH
i,j,0 (− sinλ)

i
(cosλ)

j
. (4.41f)

And this is a homogeneous polynomial in cosλ and sinλ of degree n. Thus we see that using CBCC13 with
Y1 = − sinλ and Y2 = cosλ leads exactly to CBCC16Converted. From this, we have the feeling that CBCC13 is
such a general CBCC, in the sense that substituting suitable values of Y1 and Y2 in CBCC13 will give us many
more new DCCs.

4.2.9 Nonhomogeneous-polynomial CBCC

In the previous sections, we see that the moment in the form
∫∫

pVλ (u, v)
(
un/vn+2

)
dudv in CBCC16 geometry has

been converted to the moment in the form
∫∫

pHλ (u,w)undudw in CBCC16Converted geometry. Both CBCCs lead
to the homogeneous polynomials in cosλ and sinλ of degrees n. After obtaining CBCC16Converted with the moment

form
∫∫

pHλ (u,w)undudw, we are tempted to also check the moment in the formM
H

n (λ) =
∫∫

pHλ (u,w)wndudw to
see if there exists some interesting DCCs. Section 4.2.8 shows us a way to get the full version of CBCC16Converted
by linking the moment MH

n (λ) to the moment JH
n (s1, s2, Y1, Y2), and then using CBCC13 with Y1 = − sinλ and

Y2 = cosλ. Now we are going to redo the same process:

M
H

n (λ) =

∫∫
pHλ (u,w)wndudw (4.42a)

=

∫∫
gH (R cosλ,R sinλ,−u sinλ+ w cosλ, u cosλ+ w sinλ)wndudw (4.42b)

=

∫∫
gH (R cosλ,R sinλ, x1, x2) (x1 cosλ+ x2 sinλ)

n
dudw (4.42c)

= JH
n (R cosλ,R sinλ, cosλ, sinλ) . (4.42d)

Here we have used again the relationship (4.37c), the definition (4.35) and changed the variables (exactly the same
as section 4.2.8): x1 = −u sinλ + w cosλ and x2 = u cosλ + w sinλ. Now using CBCC13 with Y1 = cosλ and
Y2 = sinλ, we obtain:

M
H

n (λ) = JH
n (R cosλ,R sinλ, cosλ, sinλ) (4.43a)

= KH
n (cosλ, sinλ,−R cosλ (cosλ)−R sinλ (sinλ)) (4.43b)

= KH
n (cosλ, sinλ,−R) (4.43c)

=
∑

i+j+k=n

CH
i,j,k (cosλ)

i
(sinλ)

j
(−R)k (4.43d)

=

n∑

k=0


(−R)k

∑

i+j=n−k

CH
i,j,k (cosλ)

i
(sinλ)

j


 (4.43e)

=

n∑

k=0

(−R)k Tn−k (λ) , (4.43f)

where Tl (λ) is a homogeneous polynomial in cosλ and sinλ of degree l. We obtain the nonhomogeneous-polynomial
CBCC as follows:
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Figure 4.6: Moments M
H

n (λ) of orders 0 (top-left), 1 (top-right), 2 (bottom-left), 3 (bottom-right) of the weighted

cone-beam projections on the horizontal detector, where the source is moving along the circle: x21 + x22 = (5/2)
2

on the trajectory plane x3 = 0. These moments were supposed to be the nonhomogeneous polynomial in cosλ and
sinλ of degree n.

If pH is in the range of PH: pH = PHf for some f (which is a compactly supported real function) then

M
H

n (λ) is a nonhomogeneous polynomial in cosλ and sinλ of degree n for all non-negative integer n:

M
H

n (λ) =

n∑

k=0

(−R)k Tn−k (λ) , (4.44)

where Tl (λ) is a homogeneous polynomial in cosλ and sinλ of degree l.

Numerical simulations of the nonhomogeneous-polynomial CBCC

For this simulation, the information of the 3D object, the source and the horizontal detector remains the same as

in section 4.2.6. Figure 4.6 shows us the moments M
H

n (λ) of orders n = 0, 1, 2, 3. The nearest nonhomogeneous
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polynomials fitting the data of the moments are:

P
H

0 (λ) = 269.7684, (4.45a)

P
H

1 (λ) = −692.1892 + 54.6833 cosλ+ 0.0392 sinλ, (4.45b)

P
H

2 (λ) = −310.1064 cosλ− 0.2054 sinλ

+ 2258.2044 cos2 λ+ 0.0166 cosλ sinλ+ 2313.3841 sin2 λ, (4.45c)

P
H

3 (λ) = 1656.7767 cosλ+ 0.7250 sinλ

− 8498.6068 cos2 λ− 0.0478 cosλ sinλ− 8935.6487 sin2 λ

− 39.4232 cos3 λ− 0.0745 sin3 λ. (4.45d)

Here we give a very brief explanation about the form of P
H

2 (λ) and P
H

3 (λ). Formally, P
H

2 (λ) should be:

P
H

2 (λ) = A + B cosλ+ C sinλ+ D cos2 λ+ E cosλ sinλ+ F sin2 λ. (4.46)

However, let’s take a look at the following example:

A = 5+ 1 cos2 λ+ 2 sin2 λ =
[
4+

(
1 cos2 λ+ 1 sin2 λ

)]
+ 1 cos2 λ+ 2 sin2 λ = 4+ 2 cos2 λ+ 3 sin2 λ (4.47a)

= 3+ 3 cos2 λ+ 4 sin2 λ (4.47b)

= −2+ 8 cos2 λ+ 9 sin2 λ (4.47c)

=
1

3
+

17

3
cos2 λ+

20

3
sin2 λ (4.47d)

= . . . (4.47e)

For the same quantity A = A +D cos2 λ+F sin2 λ, there are infinitely many triplets (A ,D ,F ) which give exactly
the same result. This comes from the fact that the coefficients D and F are not completely independent, they do
depend on the constant A , because of the trigonometric property cos2 λ+sin2 λ = 1. So now coming back with the

formal P
H

2 (λ). We redo the mentioned process in section 4.2.6.2 to compute the six coefficients, to obtain result

of the polynomial P
H

2 (λ). But when it comes to solving the system of linear equations, we can never solve for A ,
D and F with the explained reason above. Instead, A can be chosen freely, D and F will be suitably chosen
depending on A . The other three coefficients B, C , E can be solved easily, Thus, to reduce the computation work,

we decide that A = 0 at the beginning, and consider P
H

2 (λ) only in the form:

P
H

2 (λ) = B cosλ+ C sinλ+ D cos2 λ+ E cosλ sinλ+ F sin2 λ. (4.48)

The reason is that the less coefficients to compute, the less linear equations in the system to look at, which leads
to the less computation work.

The same thing happens with P
H

3 (λ), it formally is:

P
H

3 (λ) = A + B cosλ+ C sinλ+ D cos2 λ+ E cosλ sinλ+ F sin2 λ (4.49)

+ G cos3 λ+ H cos2 λ sinλ+ I cosλ sin2 λ+ J sin3 λ. (4.50)

(We are sorry to use the same notations of the coefficients as in the formula of P
H

2 (λ), but it should not cause any
problem of confusion.) However, with the same idea as above, we can reduce this form and rewritten it as:

P
H

3 (λ) = A + B cosλ+ C sinλ+ D cos2 λ+ E cosλ sinλ+ F sin2 λ (4.51)

+ G cos3 λ+ H cos2 λ sinλ+ I cosλ sin2 λ+ J sin3 λ (4.52)

= A
(
cos2 λ+ sin2 λ

)
+ B cosλ+ C sinλ+ D cos2 λ+ E cosλ sinλ+ F sin2 λ (4.53)

+ G cos3 λ+ H
(
1− sin2 λ

)
sinλ+ I cosλ

(
1− cos2 λ

)
+ J sin3 λ (4.54)

= (B + I ) cosλ+ (C + H ) sinλ+ (A + D) cos2 λ+ E cosλ sinλ+ (A + F ) sin2 λ (4.55)

+ (G − I ) cos3 λ+ (J − H ) sin3 λ. (4.56)

And this explains why we obtain this form in the result of P
H

3 (λ), because we did choose to use this form right at
the beginning to reduce the computation work.
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4.2.10 Playing with CBCC13

The feeling about CBCC13 at the end of section 4.2.8 keeps motivating us to seek for other DCCs in different
particular geometry contexts, which are special cases of CBCC13 geometry. The work is to use the definitions
(4.34b), (4.35) and to apply CBCC13 (4.36) in each geometry context to see if there exists some interesting DCCs.
It sounds quite ambiguous, so let’s dive directly into some precise cases. Sections 4.2.10.1, 4.2.10.2 and 4.2.10.3
respectively shows the DCCs extracted from CBCC13 in the geometry contexts with elliptic, linear, parabolic source
trajectories and horizontal detector.

4.2.10.1 Elliptic source trajectory

In this geometry, the source is assumed to move along an ellipse (x1/R1)
2
+ (x2/R2)

2
= 1 on the trajectory plane

x3 = 0, which can be parameterized as s̃λ = (R1 cosλ,R2 sinλ, 0) with R1, R2 > 0 and λ ∈ [0, 2π). The horizontal
detector is still at distance T from the trajectory plane, but now the two standard axes u and w on the detector
respectively have the same directions as:

β̃λ =
1

δ (λ)
(−R2 sinλ,R1 cosλ, 0) and α̃λ =

1

δ (λ)
(R1 cosλ,R2 sinλ, 0) , (4.57)

where δ (λ) =
√
R2

1 cos
2 λ+R2

2 sin
2 λ. We define the weighted cone-beam projection of function f on the horizontal

detector with the source moving along an ellipse as the following:

pH, ellipse
λ (u,w)

=

∫ ∞

0

f
(
s̃λ + t

(
uβ̃λ + wα̃λ + T e⃗3 − s̃λ

))
dt (4.58a)

=

∫ ∞

0

f

(
s̃λ + t

((−R2u sinλ+R1w cosλ

δ (λ)
,
R1u cosλ+R2w sinλ

δ (λ)
, T

)
− (R1 cosλ,R2 sinλ, 0)

))
dt. (4.58b)

Comparing this to the definition (4.34b) of the general projection on the horizontal detector in CBCC13 geometry,
we can see that:

pH, ellipse
λ (u,w) = gH

(
R1 cosλ,R2 sinλ,

−R2u sinλ+R1w cosλ

δ (λ)
,
R1u cosλ+R2w sinλ

δ (λ)

)
. (4.59)

So if we define the moment in the form MH, ellipse
n (λ) =

∫∫
pH, ellipse
λ (u,w)undudw, then by the definition (4.35):

MH, ellipse
n (λ) =

∫∫
gH
(
R1 cosλ,R2 sinλ,

−R2u sinλ+R1w cosλ

δ (λ)
,
R1u cosλ+R2w sinλ

δ (λ)

)
undudw (4.60a)

=

∫∫
gH (R1 cosλ,R2 sinλ, x1, x2)

(−R2x1 sinλ+R1x2 cosλ

δ (λ)

)n

dx1dx2 (4.60b)

=

∫∫
gH (R1 cosλ,R2 sinλ, x1, x2)

(
x1

(−R2 sinλ

δ (λ)

)
+ x2

(
R1 cosλ

δ (λ)

))n

dx1dx2 (4.60c)

= JH
n

(
R1 cosλ,R2 sinλ,

−R2 sinλ

δ (λ)
,
R1 cosλ

δ (λ)

)
. (4.60d)

Here we have changed the variables:

x1 =
−R2u sinλ+R1w cosλ

δ (λ)
, x2 =

R1u cosλ+R2w sinλ

δ (λ)
, (4.61)

then conversely:

u =
−R2x1 sinλ+R1x2 cosλ

δ (λ)
, w =

R1x1 cosλ+R2x2 sinλ

δ (λ)
, (4.62)
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and dudw = dx1dx2. Next, using CBCC13 (4.36) and the same technique as section 4.2.8, we obtain:

MH, ellipse
n (λ) = JH

n

(
R1 cosλ,R2 sinλ,

−R2 sinλ

δ (λ)
,
R1 cosλ

δ (λ)

)
(4.63a)

= KH
n

(−R2 sinλ

δ (λ)
,
R1 cosλ

δ (λ)
,−R1 cosλ

(−R2 sinλ

δ (λ)

)
−R2 sinλ

(
R1 cosλ

δ (λ)

))
(4.63b)

= KH
n

(−R2 sinλ

δ (λ)
,
R1 cosλ

δ (λ)
, 0

)
(4.63c)

=
∑

i+j+k=n

CH
i,j,k

(−R2 sinλ

δ (λ)

)i(
R1 cosλ

δ (λ)

)j

0k (4.63d)

=
∑

k=0
i+j=n

CH
i,j,0

(−R2 sinλ

δ (λ)

)i(
R1 cosλ

δ (λ)

)j

(4.63e)

=
1

δn (λ)

∑

i+j=n

CH
i,j,0R

i
2R

j
1 (− sinλ)

i
(cosλ)

j
. (4.63f)

This means if we define the adjusted moment

M̃H
n (λ) = δn (λ)MH, ellipse

n (λ) =

√
R2

1 cos
2 λ+R2

2 sin
2 λ

n

MH, ellipse
n (λ) , (4.64)

then M̃H
n (λ) is a homogeneous polynomial in cosλ and sinλ of degree n. Now the DCC in this geometry can be

stated as:

If pH, ellipse
λ (u,w) is the weighted cone-beam projection of some real-valued function f (whose support is

compact) on the horizontal detector with the source moving along an ellipse (x1/R1)
2
+(x2/R2)

2
= 1 on the

plane x3 = 0, for all λ ∈ [0, 2π), then the adjusted moment:

M̃H
n (λ) =

√
R2

1 cos
2 λ+R2

2 sin
2 λ

n ∫∫
pH, ellipse
λ (u,w)undudw, (4.65)

is a homogeneous polynomial in cosλ and sinλ of degree n for all non-negative integer n.

Numerical simulations The information of the object and the horizontal detector is the same as section 4.2.6,
but now the source is moving along the ellipse: (x1/2)

2
+x22 = 1 on the trajectory plane x3 = 0. Figure 4.7 shows us

the raw moments MH, ellipse
n (λ) and figure 4.8 shows us the adjusted moment M̃H

n (λ). The nearest homogeneous

polynomial fitting the data of the adjusted moments M̃H
n (λ) are:

QH, ellipse
0 (λ) = 269.769253, (4.66a)

QH, ellipse
1 (λ) = 0.096025 cosλ− 54.687581 sinλ, (4.66b)

QH, ellipse
2 (λ) = 673.400521 cos2 λ+ 0.034210 cosλ sinλ+ 113.233219 sin2 λ, (4.66c)

QH, ellipse
3 (λ) = 0.185858 cos3 λ− 421.744008 cos2 λ sinλ+ 0.100347 cosλ sin2 λ− 66.215520 sin3 λ. (4.66d)

4.2.10.2 Linear source trajectory

Now we assume that the source is moving along a line x2 = E1x1 + E0 on the trajectory plane x3 = 0. The x-ray
source location is parameterized as s̃λ = (λ,E1λ+ E0, 0). In this geometry, we fix the detector, meaning it is not
allowed to rotate, or the two standard axes of the horizontal detector are x1 and x2. This also means we are staying
exactly in the world of CBCC13 geometry. The weighted cone-beam projection of function f on the horizontal
detector is now defined as:

pH, line
λ (x1, x2) = gH (λ,E1λ+ E0, x1, x2) =

∫ ∞

0

f (̃sλ + t ((x1, x2, T )− (λ,E1λ+ E0, 0))) dt. (4.67)
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Figure 4.7: Raw moments MH, ellipse
n (λ) of orders 0 (top-left), 1 (top-right), 2 (bottom-left), 3 (bottom-right)

of the weighted cone-beam projections on the horizontal detector, where the source is moving along an ellipse
(x1/2)

2
+ x22 = 1 on the trajectory plane x3 = 0.

Then by the definition (4.35), we can define the moment as:

MH, line
n,A,B (λ) = JH

n (λ,E1λ+ E0, A,B) (4.68a)

=

∫∫
gH (λ,E1λ+ E0, x1, x2) (Ax1 +Bx2)

n
dx1dx2 (4.68b)

=

∫∫
pH, line
λ (x1, x2) (Ax1 +Bx2)

n
dx1dx2, (4.68c)

where A and B are two arbitrary real numbers. Using CBCC13 (4.36), we can see that:

MH, line
n,A,B (λ) = JH

n (λ,E1λ+ E0, A,B) (4.69a)

= KH
n (A,B,−Aλ−B (E1λ+ E0)) (4.69b)

= KH
n (A,B,− (A+BE1)λ−BE0) (4.69c)

=
∑

i+j+k=n

CH
i,j,kA

iBj (−1)
k
[(A+BE1)λ+BE0]

k
, (4.69d)

which is a polynomial in λ of degree n, if A+BE1 ̸= 0. Thus we obtain a DCC in this case:
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Figure 4.8: Adjusted moments M̃H
n (λ) (computed by formula (4.65)) of orders 0 (top-left), 1 (top-right), 2 (bottom-

left), 3 (bottom-right) of the weighted cone-beam projections on the horizontal detector, where the source is moving

along an ellipse (x1/2)
2
+ x22 = 1 on the trajectory plane x3 = 0.

If pH, line
λ (x1, x2) is the weighted cone-beam projection of some real-valued function f (whose support is

compact) on the horizontal detector with the source moving along a line x2 = E1x1 + E0 on the trajectory
plane x3 = 0, for all λ ∈ R, then the moment:

MH, line
n,A,B (λ) =

∫∫
pH, line
λ (x1, x2) (Ax1 +Bx2)

n
dx1dx2, with A+BE1 ̸= 0, (4.70)

is a polynomial in λ of degree n for all non-negative integer n.

Numerical simulations Now the source is moving along the line x2 = (3/2)x1 + 3 on the trajectory plane
x3 = 0; the object and the horizontal detector remains the same as section 4.2.6. We obtain the following results
of the moments MH, line

n,A,B (λ) with n = 0, 1, 2, 3, A = 1 and B = 3/5, see figure 4.9. The nearest polynomials in λ
fitting the moment data are shown below:

QH, line
0 (λ) = 269.7682, (4.71a)

QH, line
1 (λ) = −526.0980λ− 443.6710, (4.71b)

QH, line
2 (λ) = 1239.0359λ2 + 2111.8163λ+ 1062.4493, (4.71c)

QH, line
3 (λ) = −3322.2266λ3 − 8539.1657λ2 − 8325.6712λ− 2944.3829. (4.71d)

Comment Instead of a general line on the trajectory plane, if we consider the source moving along x1-axis,
meaning its location is parameterized as s̃λ = (λ, 0, 0), or E1 = E0 = 0, then the definition of the weighted
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projection can be rewritten as:

pH,x1−axis
λ (x1, x2) = gH (λ, 0, x1, x2) =

∫ ∞

0

f (̃sλ + t ((x1, x2, T )− (λ, 0, 0))) dt. (4.72)

And the above DCC will become:

If pH,x1−axis
λ (x1, x2) is the weighted cone-beam projection of some real-valued function f (whose support is

compact) on the horizontal detector with the source moving along x1-axis, for all λ ∈ R, then the moment:

MH,x1−axis
n,A,B (λ) =

∫∫
pH,x1−axis
λ (x1, x2) (Ax1 +Bx2)

n
dx1dx2, with A ̸= 0, (4.73)

is a polynomial in λ of degree n for all non-negative integer n.

In fact, when the source moves along x1-axis, our considering geometry is similar to the geometry described in
chapter 3. If we rename (x1, x2, x3) in the considering geometry by (x1, x3, x2), then the two geometry contexts
exactly coincide. In chapter 3, we have dealt with the 3D cone-beam calibration problem with the source moving
along x1-axis, by considering it as a series of many 2D fan-beam calibration problems, then solving each 2D problem
and choosing the common solution to obtain the true solution of the 3D problem. We are not discussing again the
details of the 3D cone-beam calibration problem, but just to recall, the main tool we used to solve each 2D problem
is the moment condition, where the moment had this formula:

∫
px1

(u)undu. We just rewrite the same notation
as chapter 3. But now in CBCC13 geometry context, x1 is in fact λ, because its role is the source-location variable;
and u is in fact x1, because it is the horizontal axis on the detector. Changing the notation, the moment condition

Figure 4.9: Moments MH, line
n,A,B (λ) (with A = 1, B = 3/5) of orders 0 (top-left), 1 (top-right), 2 (bottom-left), 3

(bottom-right) of the weighted cone-beam projections on the horizontal detector, where the source is moving along
the line x2 = (3/2)x1 + 3 on the trajectory plane x3 = 0.
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Figure 4.10: Moments MH,x1−axis
n,A,B (λ) (with A = 1, B = 4/3) of orders 0 (top-left), 1 (top-right), 2 (bottom-left), 3

(bottom-right) of the weighted cone-beam projections on the horizontal detector, where the source is moving along
x1-axis.

in chapter 3 confirmed that
∫
pλ (x1)x

n
1dx1 is a homogeneous polynomial in λ of degree n, which help solve the

2D fan-beam calibration problem. Then we can see that the above DCC is a more general version of this moment
condition. Precisely, if we consider MH,x1−axis

n,A,B (λ) with A = 1 and B = 0, then the above DCC is the 3D version of
the moment condition in chapter 3, which can deal directly with the 3D cone-beam projection, while the moment
condition in chapter 3 works with the slice of the cone-beam projection.
We can see a small simulation in the case where the source is moving along x1-axis. Figure 4.10 shows us the
moments MH,x1−axis

n,A,B (λ) with A = 1 and B = 4/3, since A and B can be chosen arbitrarily under the only
constraint that A ̸= 0. The nearest polynomials in λ fitting the data of the moments are:

QH, axis
0 (λ) = 269.7682, (4.74a)

QH, axis
1 (λ) = −276.8502λ+ 54.7416, (4.74b)

QH, axis
2 (λ) = 343.2204λ2 − 124.1715λ+ 412.5029, (4.74c)

QH, axis
3 (λ) = −483.8850λ3 + 248.3903λ2 − 1351.2619λ+ 253.7662. (4.74d)

4.2.10.3 Parabolic source trajectory

This case is quite similar to the case of linear source trajectory. Let’s say we have the same object and the same
fixed (not rotated) horizontal detector, but now the source is moving along the parabola x2 = E2x

2
1 + E1x1 + E0

on the trajectory plane x3 = 0. The source location is parameterized as s̃λ =
(
λ,E2λ

2 + E1λ+ E0, 0
)
. Similar to
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the previous section, the weighted cone-beam projection of function f is defined as:

pH, parabola
λ (x1, x2) = gH

(
λ,E2λ

2 + E1λ+ E0, x1, x2
)
=

∫ ∞

0

f
(
s̃λ + t

(
(x1, x2, T )−

(
λ,E2λ

2 + E1λ+ E0, 0
)))

dt.

(4.75a)

By this definition, if we define the moment as:

MH, parabola
n (λ) =

∫∫
pH, parabola
λ (x1, x2)x

n
1dx1dx2, (4.76)

then applying the definition (4.35) and CBCC13 (4.36), we can see that:

MH, parabola
n (λ) =

∫∫
gH
(
λ,E2λ

2 + E1λ+ E0, x1, x2
)
(x1 (1) + x2 (0))

n
dx1dx2 (4.77a)

= JH
n

(
λ,E2λ

2 + E1λ+ E0, 1, 0
)

= KH
n (1, 0,−λ) (4.77b)

=
∑

i+j+k=n

CH
i,j,k1

i0j (−λ)k =
∑

j=0

i+k=n

CH
i,j,k1

i0j (−λ)k (4.77c)

=
∑

i+k=n

CH
i,0,k (−λ)k , (4.77d)

which is a polynomial in λ of degree n (here we have used CBCC13 (4.36) with Y1 = 1 and Y2 = 0). The DCC in
this geometry can be stated as:

If pH, parabola
λ (x1, x2) is the weighted cone-beam projection of some real-valued function f (whose support is

compact) on the horizontal detector with the source moving along the parabola x2 = E2x
2
1 + E1x1 + E0 on

the trajectory plane x3 = 0, for all λ ∈ R, then the moment:

MH, parabola
n (λ) =

∫∫
pH, parabola
λ (x1, x2)x

n
1dx1dx2, (4.78)

is a polynomial in λ of degree n for all non-negative integer n.

Numerical simulations In this simulation, the source is moving along the parabola: x2 = 2x21 − 3 on the
trajectory plane x3 = 0, other information of the object and the horizontal detector remains the same. Figure 4.11
shows us the moments MH, parabola

n (λ) of orders 0, 1, 2, 3. The nearest polynomials in λ fitting the moments are:

QH, parabol
0 (λ) = 269.7677, (4.79a)

QH, parabol
1 (λ) = −276.8787λ+ 54.6910, (4.79b)

QH, parabol
2 (λ) = 343.1776λ2 − 124.0396λ+ 113.2253, (4.79c)

QH, parabol
3 (λ) = −483.9194λ3 + 248.1499λ2 − 374.6056λ+ 66.2218. (4.79d)

Comment After this case, we can see that: using CBCC13 with Y1 = 1 and Y2 = 0 can handle more than just
the parabolic source trajectory case. Let’s say the source is moving along a general trajectory, which can be written
as x2 = τ (x1) on the plane x3 = 0, where τ (t) is a single-variable real function. This means the source location is
parameterized as s̃λ = (λ, τ (λ) , 0). If we work with the fixed horizontal detector (CBCC13 geometry), the weighted
cone-beam projection is defined as:

pH,τ
λ (x1, x2) = gH (λ, τ (λ) , x1, x2) ; (4.80)

then we will define the moment as:

MH,τ
n (λ) =

∫∫
pH,τ
λ (x1, x2)x

n
1dx1dx2. (4.81)
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Figure 4.11: Moments MH, parabola
n (λ) of orders 0 (top-left), 1 (top-right), 2 (bottom-left), 3 (bottom-right) of the

weighted cone-beam projections on the horizontal detector, where the source is moving along a parabol x2 = 2x21−3
on the trajectory plane x3 = 0.

Similar to the previous case, by the definition (4.35) and CBCC13 (4.36), this moment can definitely be rewritten:

MH,τ
n (λ) =

∫∫
gH (λ, τ (λ) , x1, x2) (x1 (1) + x2 (0))

n
dx1dx2 (4.82a)

= JH
n (λ, τ (λ) , 1, 0) (4.82b)

= KH
n (1, 0,−λ) (4.82c)

=
∑

i+k=n

CH
i,0,k (−λ)k , (4.82d)

which is a polynomial in λ of degree n.
So in conclusion, in CBCC13 geometry, we allow the source to move on a very general trajectory, as long as it is on
the plane x3 = 0. If the source trajectory can be represented by x2 = τ (x1), where τ (t) is an arbitrary single-varible

real function, with the weighted projection on the fixed horizontal detector pH,τ
λ (x1, x2) = gH (λ, τ (λ) , x1, x2), we

define the moment as MH,τ
n (λ) =

∫∫
pH,τ
λ (x1, x2)x

n
1dx1dx2, then there always exists the DCC:

If pH,τ
λ (x1, x2) is the weighted cone-beam projection of some real-valued function f (whose support is compact)

on a fixed horizontal detector with the source moving along the curve x2 = τ (x1) on the plane x3 = 0, for
all λ ∈ R, then the moment MH,τ

n (λ) is a polynomial in λ of degree n for all non-negative integer n.
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Figure 4.12: CBCC13Converted geometry

4.3 CBCC13Converted

CBCC13, as shown in the previous sections, is a general CBCC, which can generate many DCCs in many special
geometry contexts, by choosing a suitable pair of values of Y1 and Y2. In this section, we are going to convert
CBCC13 to obtain its form in the geometry containing the vertical detector. The idea is to obtain a general cone-
beam CBCC of the weighted projections in this geometry. A general CBCC can help in geometric calibration, in
the sense of obtaining the analytic solutions of the geometric parameters. Sections 4.3.1, 4.3.2 and 4.3.3 show us the
whole way to build CBCC13Converted from CBCC13. Because of being built from CBCC13, CBCC13Converted is
also a full CBCC (necessary and sufficient conditions). Section 4.3.4 gives a direct proof of the necessary condition of
CBCC13Converted without using the knowledge of CBCC13. In section 4.3.5, CBCC13Converted is applied in two
special geometry contexts with the circular and elliptic source trajectories. Section 4.3.6 concerns the conventional
cone-beam projections and the CBCC of these conventional projections constructed from CBCC13Converted. In
section 4.3.7, we discuss about the suitable position of the object in both cases of geometry contexts with the
horizontal and vertical detectors. Section 4.3.8 shows us a way to develop CBCC13Converted to a real generalization
of CBCC16. And the last section 4.3.9 gives a preliminary result in automatic calibration in CBCC16 geometry
context, dealing with the vertical detector and the circular source trajectory, using CBCC13Converted.

4.3.1 CBCC13Converted geometric context and the weighted cone-beam projection
on the vertical detector

CBCC13Converted geometry context is in fact a generalized version of CBCC16 geometry. In this geometry, the
source is assumed to move on the trajectory plane x3 = 0, but no specific trajectory is required. The vertical
detector is at distance D away from the source. We assume that D is sufficiently big, such that the source and the
vertical detector are always on different sides comparing to the world origin. Moreover, the source location, the
world origin and the origin of the detector are also always collinear. The source is now denoted as: s⃗ = (s1, s2, 0).
We define:

α⃗s =
1

∥s⃗∥ (s1, s2, 0) , β⃗s =
1

∥s⃗∥ (−s2, s1, 0) e⃗3 = (0, 0, 1) , (4.83)

where α⃗s is the unit vector pointing towards the source location and β⃗s is obtained by rotating α⃗s 90 degree
counter-clockwise. The two standard axes on the vertical detector are z1 and z2 axes having the same directions
as the unit vectors β⃗s and e⃗3. For now we continue to assume that the 3D object is strictly above the trajectory
plane x3 = 0. Figure 4.12 shows us the geometry. Let GV be the projection operator applying on the object f to
produce the weighted cone-beam projection on a vertical detector, which is at distance D away from the source
position: gV = GVf , where the x-ray source is moving on the plane (x3 = 0) without any specific trajectory, then
the projection data is:

gV (s1, s2, z1, z2) = GVf (s1, s2, z1, z2) =
∫ ∞

0

f
(
s⃗+ t

(
z1β⃗s + z2e⃗3 −Dα⃗s

))
dt. (4.84)
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4.3.2 Relationship between the weighted cone-beam projections on the horizontal
and vertical detectors (CBCC13 and CBCC13Converted geometry contexts)

The idea is very similar to section 4.2.3. We consider the line connecting the x-ray source and the point (z1, z2)
on the vertical detector. This line intersects the horizontal detector x3 = T at one point. Since these three points
are collinear, the weighted cone-beam projections on the two detectors relate to each other, because they are both
computed at the same direction from the source. Here, the line goes through the source s⃗ = (s1, s2, 0) and parallel
to the following vector

z1β⃗s + z2e⃗3 −Dα⃗s = z1
1

∥s⃗∥



−s2
s1
0


+ z2



0
0
1


−D

1

∥s⃗∥



s1
s2
0


 =

1

∥s⃗∥



−z1s2 −Ds1
z1s1 −Ds2
z2 ∥s⃗∥


 , (4.85)

so it has the following equation:

x1 − s1
−z1s2 −Ds1

=
x2 − s2

z1s1 −Ds2
=

x3
z2 ∥s⃗∥

. (4.86)

The intersection of the above line and the horizontal detector plane x3 = T is (x̂1, x̂2, x̂3) where:

x̂1 = s1 −
T

z2 ∥s⃗∥
(z1s2 +Ds1) , (4.87a)

x̂2 = s2 +
T

z2 ∥s⃗∥
(z1s1 −Ds2) , (4.87b)

x̂3 = T. (4.87c)

Since the two coordinate axes on the horizontal detector x3 = T (in CBCC13 geometry) are in fact the same as the
two axes x1 and x2 in the standard 3D coordinate system (x1, x2, x3) (this is why we kept the same notations x1
and x2), then the intersection (x̂1, x̂2, x̂3) in 3D will be the point (x1, x2) on the horizontal detector, where x1 = x̂1
and x2 = x̂2. In other words, (z1, z2) on the vertical detector, (x1, x2) on the horizontal detector and the source
location are collinear. Then there exists a relationship between gV (s1, s2, z1, z2) and gH (s1, s2, x1, x2). We seek
out this relationship. By the definitions (4.34b) and (4.84), we can see that:

gH (s1, s2, x1, x2)

= gH
(
s1, s2, s1 −

T

z2 ∥s⃗∥
(z1s2 +Ds1) , s2 +

T

z2 ∥s⃗∥
(z1s1 −Ds2)

)
(4.88a)

=

∫ ∞

0

f

(
s⃗+ t

(
− T

z2 ∥s⃗∥
(z1s2 +Ds1) ,

T

z2 ∥s⃗∥
(z1s1 −Ds2) , T

))
dt (4.88b)

=

∫ ∞

0

f

(
s⃗+ t

T

z2

(
z1

−s2
∥s⃗∥ −D

s1
∥s⃗∥ , z1

s1
∥s⃗∥ −D

s2
∥s⃗∥ , z2

))
dt (4.88c)

=

∫ ∞

0

f


s⃗+ t

T

z2


z1

1

∥s⃗∥



−s2
s1
0


+ z2



0
0
1


−D

1

∥s⃗∥



s1
s2
0






 dt (4.88d)

=

∫ ∞

0

f

(
s⃗+ t

T

z2

(
z1β⃗s + z2e⃗3 −Dα⃗s

))
dt (4.88e)

=

∫ ∞

0

f
(
s⃗+ t′

(
z1β⃗s + z2e⃗3 −Dα⃗s

))
dt′
z2
T

(4.88f)

= gV (s1, s2, z1, z2)
z2
T
. (4.88g)

Here we have changed the variables t′ = t
T

z2
then dt′ =

T

z2
dt. The relationship we obtain is:

gH
(
s1, s2, s1 −

T

z2 ∥s⃗∥
(z1s2 +Ds1) , s2 +

T

z2 ∥s⃗∥
(z1s1 −Ds2)

)
=
z2
T
gV (s1, s2, z1, z2) . (4.89)
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Now conversely, if we change the variables:

x1 = s1 −
T

z2 ∥s⃗∥
(z1s2 +Ds1) , (4.90a)

x2 = s2 +
T

z2 ∥s⃗∥
(z1s1 −Ds2) . (4.90b)

These equations imply:

z1s2 +Ds1 = −z2 ∥s⃗∥
T

(x1 − s1) , (4.91a)

z1s1 −Ds2 =
z2 ∥s⃗∥
T

(x2 − s2) . (4.91b)

Then by some simple calculations, we can compute (z1, z2) in terms of (x1, x2):

z1 =
D (−x1s2 + x2s1)

∥s⃗∥2 − x1s1 − x2s2
, (4.92a)

z2 =
DT ∥s⃗∥

∥s⃗∥2 − x1s1 − x2s2
. (4.92b)

Thus, the relationship (4.89) can also be rewritten as:

gH (s1, s2, x1, x2) =
D ∥s⃗∥

∥s⃗∥2 − x1s1 − x2s2
gV

(
s1, s2,

D (−x1s2 + x2s1)

∥s⃗∥2 − x1s1 − x2s2
,

DT ∥s⃗∥
∥s⃗∥2 − x1s1 − x2s2

)
. (4.93)

4.3.3 Moment of the weighted cone-beam projections on the vertical detector and
CBCC13Converted

The moment of the weighted cone-beam projections on the horizontal detector in CBCC13 geometry was defined
as:

JH
n (s1, s2, Y1, Y2) =

∫∫
gH (s1, s2, x1, x2) (x1Y1 + x2Y2)

n
dx1dx2, (4.94)

see (4.35). Using the relationship (4.93), we explore how the moment JH
n (s1, s2, Y1, Y2) become in CBCC13Converted

geometry with the vertical detector:

JH
n (s1, s2, Y1, Y2)

=

∫∫
D ∥s⃗∥

∥s⃗∥2 − x1s1 − x2s2
gV

(
s1, s2,

D (−x1s2 + x2s1)

∥s⃗∥2 − x1s1 − x2s2
,

DT ∥s⃗∥
∥s⃗∥2 − x1s1 − x2s2

)
(x1Y1 + x2Y2)

n
dx1dx2. (4.95)

The next natural step is to change the variables:

z1 =
D (−x1s2 + x2s1)

∥s⃗∥2 − x1s1 − x2s2
, and z2 =

DT ∥s⃗∥
∥s⃗∥2 − x1s1 − x2s2

. (4.96)

However, in the previous section, we have just obtained these results by changing the variables from (z1, z2) to
(x1, x2) and computing (z1, z2) in terms of (x1, x2). So this change of variables from (x1, x2) to (z1, z2) is nothing
but just the inverse direction comparing to what we have done in the previous section. Therefore, we already have
the formulae of x1 and x2 in terms of z1 and z2 in equations (4.90a) and (4.90b). From this, we can compute the
Jacobian matrix as follows:

J =




∂x1
∂z1

∂x1
∂z2

∂x2
∂z1

∂x2
∂z2


 =




−Ts2
z2 ∥s⃗∥

T (z1s2 +Ds1)

z22 ∥s⃗∥
Ts1
z2 ∥s⃗∥

−T (z1s1 −Ds2)

z22 ∥s⃗∥


 , (4.97a)

det J =
T 2
(
z1s1s2 −Ds22

)

z32 ∥s⃗∥2
− T 2

(
z1s1s2 +Ds21

)

z32 ∥s⃗∥2
=

−DT 2
(
s21 + s22

)

z32 ∥s⃗∥2
=

−DT 2 ∥s⃗∥2

z32 ∥s⃗∥2
=

−DT 2

z32
. (4.97b)
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Thus we obtain: dx1dx2 =
DT 2

z32
dz1dz2. Then the above integral becomes:

JH
n (s1, s2, Y1, Y2)

=

∫∫
z2
T
gV (s1, s2, z1, z2)

[(
s1 −

T

z2 ∥s⃗∥
(z1s2 +Ds1)

)
Y1 +

(
s2 +

T

z2 ∥s⃗∥
(z1s1 −Ds2)

)
Y2

]n
DT 2

z32
dz1dz2

(4.98a)

= DT

∫∫
gV (s1, s2, z1, z2)

[(
s1 −

T

z2 ∥s⃗∥
(z1s2 +Ds1)

)
Y1 +

(
s2 +

T

z2 ∥s⃗∥
(z1s1 −Ds2)

)
Y2

]n
dz1dz2
z22

(4.98b)

= DT

∫∫
gV (s1, s2, z1, z2)

[
(s1Y1 + s2Y2) +

(
− T

z2 ∥s⃗∥
(z1s2 +Ds1)

)
Y1 +

(
T

z2 ∥s⃗∥
(z1s1 −Ds2)

)
Y2

]n
dz1dz2
z22

(4.98c)

= DT

∫∫
gV (s1, s2, z1, z2)

[
(s1Y1 + s2Y2) +

(
Tz1
z2

−s2
∥s⃗∥ − DT

z2

s1
∥s⃗∥

)
Y1 +

(
Tz1
z2

s1
∥s⃗∥ − DT

z2

s2
∥s⃗∥

)
Y2

]n
dz1dz2
z22
(4.98d)

= DT

∫∫
gV (s1, s2, z1, z2)

[
(s1Y1 + s2Y2) +

(
Tz1
z2

β⃗s −
DT

z2
α⃗s

)
· (Y1, Y2, 0)

]n
dz1dz2
z22

. (4.98e)

The last equality is obtained by substituting the definitions of α⃗s and β⃗s. We continue to use the binomial theorem:

[
(s1Y1 + s2Y2) +

(
Tz1
z2

β⃗s −
DT

z2
α⃗s

)
· (Y1, Y2, 0)

]n
=

n∑

l=0

(
n

l

)
(s1Y1 + s2Y2)

n−l

[(
Tz1
z2

β⃗s −
DT

z2
α⃗s

)
· (Y1, Y2, 0)

]l
.

(4.99)

Then the above integral becomes:

JH
n (s1, s2, Y1, Y2)

= DT

∫∫
gV (s1, s2, z1, z2)

[
n∑

l=0

(
n

l

)
(s1Y1 + s2Y2)

n−l

[(
Tz1
z2

β⃗s −
DT

z2
α⃗s

)
· (Y1, Y2, 0)

]l]
dz1dz2
z22

(4.100a)

= DT

n∑

l=0

(
n

l

)
(s1Y1 + s2Y2)

n−l
∫∫

gV (s1, s2, z1, z2)

[(
Tz1
z2

β⃗s −
DT

z2
α⃗s

)
· (Y1, Y2, 0)

]l
dz1dz2
z22

(4.100b)

= DT

n∑

l=0

(
n

l

)
(−1)

n−l
(−s1Y1 − s2Y2)

n−l
∫∫

gV (s1, s2, z1, z2)

[
T

z2

(
z1β⃗s −Dα⃗s

)
· (Y1, Y2, 0)

]l
dz1dz2
z22

(4.100c)

= DT

n∑

l=0

(
n

l

)
T l (−1)

n−l
(−s1Y1 − s2Y2)

n−l
∫∫

gV (s1, s2, z1, z2)
[(
z1β⃗s −Dα⃗s

)
· (Y1, Y2, 0)

]l dz1dz2
zl+2
2

(4.100d)

= DT

n∑

l=0

(
n

l

)
T l (−1)

n−l
(−s1Y1 − s2Y2)

n−l
Il, (4.100e)

where

Il =

∫∫
gV (s1, s2, z1, z2)

[(
z1β⃗s −Dα⃗s

)
· (Y1, Y2, 0)

]l dz1dz2
zl+2
2

. (4.101)

At this stage, we re-perform one special technique, which has been used in the paper [Clackdoyle and Desbat, 2013].
From the knowledge of CBCC13, we know that:

JH
n (s1, s2, Y1, Y2) = KH

n (Y1, Y2,−s1Y1 − s2Y2) =
∑

i+j+k=n

CH
i,j,kY

i
1Y

j
2 (−s1Y1 − s2Y2)

k
. (4.102)

JH
n (s1, s2, Y1, Y2) is a homogeneous polynomial in Y1, Y2 and −s1Y1 − s2Y2 of degree n, meaning each term of
JH
n (s1, s2, Y1, Y2) has degree n in total. Now from (4.100e), for each value of l, there has already existed the term

(−s1Y1 − s2Y2) of degree n− l. Thus in order to make every term of JH
n (s1, s2, Y1, Y2) have degree n in total, the
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integral Il must be a homogeneous polynomial in Y1, Y2 and (−s1Y1 − s2Y2) of degree l, for every value of l. If we
rename the double integral Il, and define the moment of the weighted cone-beam projection on the vertical detector
(with no specific source trajectory) as:

JV
n (s1, s2, Y1, Y2) =

∫∫
gV (s1, s2, z1, z2)

[(
z1β⃗s −Dα⃗s

)
· (Y1, Y2, 0)

]n dz1dz2
zn+2
2

, (4.103)

then the above statement confirm that:

JV
n (s1, s2, Y1, Y2) = KV

n (Y1, Y2,−s1Y1 − s2Y2) , (4.104)

where KV
n (Y1, Y2, Y3) =

∑
i+j+k=n C

V
i,j,kY

i
1Y

j
2 Y

k
3 is a three-variable homogeneous polynomial. Hence we finally

obtain our CBCC13Converted as follows:

gV is in the range of GV : gV = GVf for some f (which is a compactly supported real function, whose support
is strictly above the plane x3 = 0), if and only if for all (s1, s2) ∈ R2, gV (s1, s2, ·, ·) has compact support in
R× R+ and:

JV
n (s1, s2, Y1, Y2) = KV

n (Y1, Y2,−s1Y1 − s2Y2) , ∀n = 0, 1, 2, . . . , (4.105)

where KV
n (Y1, Y2, Y3) =

∑
i+j+k=n C

V
i,j,kY

i
1Y

j
2 Y

k
3 is a homogeneous polynomial in three variables Y1, Y2, Y3

of degree n.

Comments

CBCC13Converted is created from CBCC13 or it is in fact the form of CBCC13 in the geometry with the vertical
detector, so it has some properties as CBCC13:

• CBCC13Converted is a full CBCC: both necessary and sufficient condition.

• CBCC13Converted is general: substituting suitable pair of values of Y1 and Y2 will generate many new DCCs
in different geometry contexts.

4.3.4 Direct proof of the necessary direction of CBCC13Converted

At some point, there may be a chance that we only need the necessary direction of CBCC13Converted. This di-
rection of the condition can also be proven directly from the definitions, without using CBCC13. This can be a
shortcut, in comparison to walking all the paths to construct CBCC13Converted from CBCC13, in the case we do
not really need the whole full CBCC. And again, sacrificing the background knowledge means paying back by a lot
of computations.
Assuming we have the definitions of the projection (4.84) and the moment (4.103), we are going to prove that
JV
n (s1, s2, Y1, Y2) is the intersection when slicing the plane Y3 = −s1Y1 − s2Y2 through the three-variable homoge-

neous polynomial KV
n (Y1, Y2, Y3). By the definitions, we can see that:

JV
n (s1, s2, Y1, Y2) =

∫∫
gV (s1, s2, z1, z2)

[(
z1β⃗s −Dα⃗s

)
· (Y1, Y2, 0)

]n dz1dz2
zn+2
2

(4.106a)

=

∫∫ ∫ ∞

0

f
(
s⃗+ t

(
z1β⃗s + z2e⃗3 −Dα⃗s

)) [(
z1β⃗s −Dα⃗s

)
· (Y1, Y2, 0)

]n dtdz1dz2
zn+2
2

. (4.106b)

As usual, we change the variables: x⃗ = s⃗+ t
(
z1β⃗s + z2e⃗3 −Dα⃗s

)
, or more precisely:

x1 = s1 + t
−z1s2 −Ds1

∥s⃗∥ , (4.107a)

x2 = s2 + t
z1s1 −Ds2

∥s⃗∥ , (4.107b)

x3 = tz2. (4.107c)
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Conversely, we can compute (t, z1, z2) in terms of (x1, x2, x3):

t =
x3
z2
, (4.108a)

−z1s2 −Ds1 =
∥s⃗∥ (x1 − s1)

t
, (4.108b)

z1s1 −Ds2 =
∥s⃗∥ (x2 − s2)

t
. (4.108c)

Since t = x3/z2, the two last equations become:

−z1s2 −Ds1 =
∥s⃗∥ z2 (x1 − s1)

x3
, (4.109a)

z1s1 −Ds2 =
∥s⃗∥ z2 (x2 − s2)

x3
. (4.109b)

By the familiar technique of multiplying the suitable values on each equation and summing together, we obtain:

z1
(
s21 + s22

)
=

∥s⃗∥ z2 (−x1s2 + s1s2)

x3
+

∥s⃗∥ z2 (x2s1 − s1s2)

x3
=

∥s⃗∥ z2 (−x1s2 + x2s1)

x3
, (4.110a)

D
(
s21 + s22

)
=

∥s⃗∥ z2
(
−x1s1 + s21

)

x3
+

∥s⃗∥ z2
(
−x2s2 + s22

)

x3
=

∥s⃗∥ z2
(
−x1s1 − x2s2 + s21 + s22

)

x3
. (4.110b)

From (4.110b), we can compute:

z2 =
D
(
s21 + s22

)
x3

∥s⃗∥ (−x1s1 − x2s2 + s21 + s22)
=

D ∥s⃗∥2 x3
∥s⃗∥

(
−x1s1 − x2s2 + ∥s⃗∥2

) =
D ∥s⃗∥x3

∥s⃗∥2 − x1s1 − x2s2
(4.111)

Then from (4.110a):

z1 =
∥s⃗∥ z2 (−x1s2 + x2s1)

x3 (s21 + s22)
=

∥s⃗∥ (−x1s2 + x2s1)

x3 ∥s⃗∥2
D ∥s⃗∥x3

∥s⃗∥2 − x1s1 − x2s2
=

D (−x1s2 + x2s1)

∥s⃗∥2 − x1s1 − x2s2
. (4.112)

And from (4.108a):

t =
x3
z2

= x3
∥s⃗∥2 − x1s1 − x2s2

D ∥s⃗∥x3
=

∥s⃗∥2 − x1s1 − x2s2
D ∥s⃗∥ . (4.113)

Moreover, from (4.107), we can also compute the Jacobian matrix as follows:

J =




∂x1
∂t

∂x1
∂z1

∂x1
∂z2

∂x2
∂t

∂x2
∂z1

∂x2
∂z2

∂x3
∂t

∂x3
∂z1

∂x3
∂z2



=




−z1s2 −Ds1
∥s⃗∥

−ts2
∥s⃗∥ 0

z1s1 −Ds2
∥s⃗∥

ts1
∥s⃗∥ 0

z2 0 t



, (4.114a)

det J =
−z1s2 −Ds1

∥s⃗∥
t2s1
∥s⃗∥ +

z1s1 −Ds2
∥s⃗∥

t2s2
∥s⃗∥ (4.114b)

=
t2

∥s⃗∥2
(
−z1s1s2 −Ds21 + z1s1s2 −Ds22

)
(4.114c)

=
−Dt2
∥s⃗∥2

(
s21 + s22

)
(4.114d)

= −Dt2. (4.114e)

This means dx⃗ = dx1dx2dx3 = Dt2dtdz1dz2. Or conversely, using the above formula of t in terms of (x1, x2, x3):

dtdz1dz2 =
1

D

D2 ∥s⃗∥2
(
∥s⃗∥2 − x1s1 − x2s2

)2 dx⃗ =
D ∥s⃗∥2

(
∥s⃗∥2 − x1s1 − x2s2

)2 dx⃗. (4.115)
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From all of these materials and the condition that the support of the object is compact, we are ready to change the
variables of the triple integral in the formula of the moment JV

n (s1, s2, Y1, Y2) as follows:

JV
n (s1, s2, Y1, Y2)

=

∫∫ ∫ ∞

0

f
(
s⃗+ t

(
z1β⃗s + z2e⃗3 −Dα⃗s

)) [(
z1β⃗s −Dα⃗s

)
· (Y1, Y2, 0)

]n dtdz1dz2
zn+2
2

(4.116a)

=

∫∫∫
f (x⃗)

[(
D (−x1s2 + x2s1)

∥s⃗∥2 − x1s1 − x2s2
β⃗s −Dα⃗s

)
· (Y1, Y2, 0)

]n (∥s⃗∥2 − x1s1 − x2s2

)n+2

Dn+2 ∥s⃗∥n+2
xn+2
3

D ∥s⃗∥2
(
∥s⃗∥2 − x1s1 − x2s2

)2 dx⃗

(4.116b)

=

∫∫∫
f (x⃗)

[(
D (−x1s2 + x2s1)

∥s⃗∥2 − x1s1 − x2s2
β⃗s −Dα⃗s

)
· (Y1, Y2, 0)

]n (∥s⃗∥2 − x1s1 − x2s2

)n

Dn+1 ∥s⃗∥n xn+2
3

dx⃗. (4.116c)

For simplicity, we will compute the terms in the square brackets first (in this step, we write the vectors in column
form to make it easier to read):

(
D (−x1s2 + x2s1)

∥s⃗∥2 − x1s1 − x2s2
β⃗s −Dα⃗s

)
·



Y1
Y2
0




=
D

∥s⃗∥2 − x1s1 − x2s2

[
(−x1s2 + x2s1) β⃗s −

(
∥s⃗∥2 − x1s1 − x2s2

)
α⃗s

]
·



Y1
Y2
0


 (4.117a)

=
D

∥s⃗∥2 − x1s1 − x2s2


(−x1s2 + x2s1)

1

∥s⃗∥



−s2
s1
0


−

(
∥s⃗∥2 − x1s1 − x2s2

) 1

∥s⃗∥



s1
s2
0




 ·



Y1
Y2
0


 (4.117b)

=
D

∥s⃗∥
(
∥s⃗∥2 − x1s1 − x2s2

)


(−x1s2 + x2s1)



−s2
s1
0


−

(
∥s⃗∥2 − x1s1 − x2s2

)


s1
s2
0




 ·



Y1
Y2
0


 . (4.117c)

Here we have substituted the definitions of α⃗s and β⃗s. By simple computations, we can see that:

(
D (−x1s2 + x2s1)

∥s⃗∥2 − x1s1 − x2s2
β⃗s −Dα⃗s

)
·



Y1
Y2
0




=
D

∥s⃗∥
(
∥s⃗∥2 − x1s1 − x2s2

)




x1s
2
2 − x2s1s2 − ∥s⃗∥2 s1 + x1s

2
1 + x2s1s2

−x1s1s2 + x2s
2
1 − ∥s⃗∥2 s2 + x1s1s2 + x2s

2
2

0


 ·



Y1
Y2
0


 (4.118a)

=
D

∥s⃗∥
(
∥s⃗∥2 − x1s1 − x2s2

)




x1
(
s21 + s22

)
− ∥s⃗∥2 s1

x2
(
s21 + s22

)
− ∥s⃗∥2 s2

0


 ·



Y1
Y2
0


 (4.118b)

=
D ∥s⃗∥2

∥s⃗∥
(
∥s⃗∥2 − x1s1 − x2s2

)



x1 − s1
x2 − s2

0


 ·



Y1
Y2
0


 (4.118c)

=
D ∥s⃗∥

∥s⃗∥2 − x1s1 − x2s2
[(x1 − s1)Y1 + (x2 − s2)Y2] (4.118d)

=
D ∥s⃗∥

∥s⃗∥2 − x1s1 − x2s2
[x1Y1 + x2Y2 + (−s1Y1 − s2Y2)] . (4.118e)
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Coming back with the triple integral, by the multinomial theorem, we obtain:

JV
n (s1, s2, Y1, Y2) =

∫∫∫
f (x⃗)

Dn ∥s⃗∥n(
∥s⃗∥2 − x1s1 − x2s2

)n [x1Y1 + x2Y2 + (−s1Y1 − s2Y2)]
n

(
∥s⃗∥2 − x1s1 − x2s2

)n

Dn+1 ∥s⃗∥n xn+2
3

dx⃗

(4.119a)

=

∫∫∫
f (x⃗) [x1Y1 + x2Y2 + (−s1Y1 − s2Y2)]

n 1

Dxn+2
3

dx⃗ (4.119b)

=

∫∫∫
f (x⃗)


 ∑

i+j+k=n

(
n

i, j, k

)
(x1Y1)

i
(x2Y2)

j
(−s1Y1 − s2Y2)

k


 1

Dxn+2
3

dx⃗ (4.119c)

=
∑

i+j+k=n

[
1

D

(
n

i, j, k

)∫∫∫
f (x⃗)xi1x

j
2

dx⃗

xn+2
3

]
Y i
1Y

j
2 (−s1Y1 − s2Y2)

k
(4.119d)

=
∑

i+j+k=n

CV
i,j,kY

i
1Y

j
2 (−s1Y1 − s2Y2)

k
. (4.119e)

This shows JV
n (s1, s2, Y1, Y2) becomes a homogeneous polynomial in three variables Y1, Y2 and −s1Y1−s2Y2, where

the coefficients CV
i,j,k depends only on f , here

(
n

i,j,k

)
= (n!) / (i! j! k!). And it completes the necessary direction of

CBCC13Converted.

Comments

• In the previous section constructing CBCC13Converted from CBCC13, we only know that the moment of the
weighted projections JV

n (s1, s2, Y1, Y2) happens to be a slice of an already existed three-variable homogeneous
polynomial KV

n (Y1, Y2, Y3), with the coefficients depending only on f . But until this section, the direct proof
gives us the explicit form of this homogeneous polynomial:

KV
n (Y1, Y2, Y3) =

∑

i+j+k=n

CV
i,j,kY

i
1Y

j
2 Y

k
3 =

∑

i+j+k=n

[
1

D

(
n

i, j, k

)∫∫∫
f (x⃗)xi1x

j
2

dx⃗

xn+2
3

]
Y i
1Y

j
2 Y

k
3 . (4.120)

The coefficients are clearly shown. Moreover, the three-variable homogeneous polynomial KH
n (Y1, Y2, Y3) in

CBCC13 geometry has also been shown in the paper [Clackdoyle and Desbat, 2013]. With those explicit
homogeneous polynomials, one can also find the relationship between their coefficients to see if they link
together, which has not been done in this work.

• The coefficients of KV
n (Y1, Y2, Y3) depend only on f , which means given some 3D object f , there has already

existed the three-variable homogeneous polynomial KV
n (Y1, Y2, Y3), regardless of the source locations or the

projections. On the other hand, if we take the source locations into account, then the projections can be
computed from the 3D object f and the moments can be computed from the projections, correspondingly to
the source locations. And those moments have to follow the homogeneous polynomial (which existed even
before them) by the rule of the CBCC. In this case, one moment is such a slice of the plane Y3 = −s1Y1−s2Y2
through the three-variable homogeneous polynomial KV

n (Y1, Y2, Y3).

• All the DCCs from the beginning of this chapter until now are the projection-form DCCs, because they are
the conditions on the moments, which are directly constructed from the projections. In other words, this
type of DCCs link together the projections obtained from many source locations. Projection-form DCCs
can be useful in geometric calibration. Because in the situation that we know all the projections, but the
corresponding geometric parameters are unknown, e.g. the corresponding source locations, then computing
the moments directly from the projections and applying these DCCs can generate a lot of crucial information,
and help us calibrate the unknown geometric parameters, with the aim of obtaining the analytic estimations
of the unknown parameters.

4.3.5 CBCC13Converted in some special cases

In this section, we applied CBCC13Converted in two special geometry contexts: the circular and elliptic source tra-
jectory. Section 4.3.5.1 is for the circular source trajectory, and it also shows us the link between CBCC13Converted
and CBCC16. Section 4.3.5.2 is for the elliptic source trajectory and we can also find a new DCC for the weighted
projections in this geometry context.
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4.3.5.1 Circular source trajectory

We know that CBCC16 geometry is a special case of CBCC13Converted geometry. Precisely, in CBCC13Converted
geometry, if we consider the x-ray source to move along a circle on the trajectory plane x3 = 0, whose center is at
the world origin and radius is R, then the source location can be parameterized as s⃗ = s⃗λ = (R cosλ,R sinλ, 0). As

a consequence, from the definitions of α⃗s and β⃗s in CBCC13Converted geometry, we also have:

α⃗s = (cosλ, sinλ, 0) = α⃗λ, β⃗s = (− sinλ, cosλ, 0) = β⃗λ, (4.121)

and we can get back CBCC16 geometry. Moreover, the definition (4.84) of the weighted projection in CBCC13Converted
geometry can be rewritten as:

gV (s1, s2, z1, z2) = gV (R cosλ,R sinλ, z1, z2) =

∫ ∞

0

f
(
s⃗λ + t

(
z1β⃗λ + z2e⃗3 −Dα⃗λ

))
dt = pVλ (z1, z2) . (4.122)

Here we just check again with the definition (4.2) of the weighted projection in CBCC16 geometry, and see that the
both definitions coincide. Moreover, by the definition (4.103) of the moment JV

n (s1, s2, Y1, Y2), we can see that:

JV
n (s1, s2, Y1, Y2) = JV

n (R cosλ,R sinλ, Y1, Y2) (4.123a)

=

∫∫
gV (R cosλ,R sinλ, z1, z2)

[(
z1β⃗λ −Dα⃗λ

)
· (Y1, Y2, 0)

]n dz1dz2
zn+2
2

(4.123b)

=

∫∫
pVλ (z1, z2)

[(
z1β⃗λ −Dα⃗λ

)
· (Y1, Y2, 0)

]n dz1dz2
zn+2
2

. (4.123c)

Then if we choose Y1 = − sinλ and Y2 = cosλ, which means (Y1, Y2, 0) = (− sinλ, cosλ, 0) = β⃗λ, the above integral
will become:

JV
n (R cosλ,R sinλ,− sinλ, cosλ) =

∫∫
pVλ (z1, z2)

[(
z1β⃗λ −Dα⃗λ

)
· β⃗λ

]n dz1dz2
zn+2
2

(4.124a)

=

∫∫
pVλ (z1, z2)

zn1
zn+2
2

dz1dz2 (4.124b)

=MV
n (λ) , (4.124c)

because of the definition (4.3) of the moment defined in CBCC16 geometry. On the other hand, CBCC13Converted
also says that:

JV
n (R cosλ,R sinλ,− sinλ, cosλ) = KV

n (− sinλ, cosλ,−R cosλ (− sinλ)−R sinλ cosλ) (4.125a)

= KV
n (− sinλ, cosλ, 0) (4.125b)

=
∑

i+j+k=n

CV
i,j,k (− sinλ)

i
(cosλ)

j
0k (4.125c)

=
∑

k=0
i+j=n

CV
i,j,0 (− sinλ)

i
(cosλ)

j
. (4.125d)

Then we obtain the fact that:

MV
n (λ) = JV

n (R cosλ,R sinλ,− sinλ, cosλ) =
∑

i+j=n

CV
i,j,0 (− sinλ)

i
(cosλ)

j
, (4.126)

which is a homogeneous polynomial in cosλ and sinλ of degree n. This is CBCC16. So we clearly see that, using
CBCC13Converted with Y1 = − sinλ and Y2 = cosλ generates CBCC16, which happens the same in the case of
CBCC13 and CBCC16Converted geometry contexts.

Numerical simulations Now for the numerical simulations, the modified 3D Shepp-Logan phantom is still
considered as our object. The source is moving along the circle x21 + x22 = (5/2)

2
on the trajectory plane x3 = 0,

the vertical detector is at distance D = 4.5 away from the source (such that the source, the world origin and the
origin of the detector are always collinear). We can see that this is exactly the same situation as the experiment in
CBCC16 geometry, which has been shown before, see 4.2.6. Thus we hope a similar result to what we have obtained.
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Figure 4.13: Moments MV (λ) of orders 0 (top-left), 1 (top-right), 2 (bottom-left), 3 (bottom-right) of the weighted

cone-beam projections on the vertical detector, where the source is moving along the circle x21 +x22 = (5/2)
2
on the

trajectory plane x3 = 0.

Figure 4.13 shows us the moments JV
n (s1, s2, Y1, Y2) (with s1 = R cosλ, s2 = R sinλ, Y1 = − sinλ, Y2 = cosλ) of

order 0, 1, 2, 3. The nearest homogeneous polynomials in cosλ and sinλ fitting the data are the followings:

QV, circle
0 (λ) = 17.1281, (4.127a)

QV, circle
1 (λ) = 0.0009 cosλ− 0.9919 sinλ, (4.127b)

QV, circle
2 (λ) = 0.8727 cos2 λ+ 0.0001 cosλ sinλ+ 0.5868 sin2 λ, (4.127c)

QV, circle
3 (λ) = 0.0000 cos3 λ− 0.1562 cos2 λ sinλ+ 0.0001 cosλ sin2 λ− 0.0980 sin3 λ. (4.127d)

The homogeneous polynomials QV, circle
n (λ) in (4.127) respectively match PV

n (λ) in (4.29) for n = 0, 1, 2, 3.

4.3.5.2 Elliptic source trajectory

Now the source is assumed to move along an ellipse (x1/R1)
2
+ (x2/R2)

2
= 1 on the trajectory plane x3 = 0, then

its location can be parameterized as s⃗ = s̃λ = (R1 cosλ,R2 sinλ, 0). From this, we can construct the unit vectors
as follows:

α⃗s = α̃λ =
1

δ (λ)
(R1 cosλ,R2 sinλ, 0) , β⃗s = β̃λ =

1

δ (λ)
(−R2 sinλ,R1 cosλ, 0) , (4.128)
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where δ (λ) =
√
R2

1 cos
2 λ+R2

2 sin
2 λ. Then by the definitions of the projections in CBCC13Converted geometry

(4.84) and the corresponding moments (4.103), we can see that:

gV (s1, s2, z1, z2) = gV (R1 cosλ,R2 sinλ, z1, z2) (4.129a)

=

∫ ∞

0

f
(
s̃λ + t

(
z1β̃λ + z2e⃗3 −Dα̃λ

))
dt, (4.129b)

JV
n (s1, s2, Y1, Y2) = JV

n (R1 cosλ,R2 sinλ, Y1, Y2) (4.129c)

=

∫∫
gV (R1 cosλ,R2 sinλ, z1, z2)

[(
z1β̃λ −Dα̃λ

)
· (Y1, Y2, 0)

]n dz1dz2
zn+2
2

. (4.129d)

In this case, we choose Y1 = −R2 sinλ and Y2 = R1 cosλ, then (Y1, Y2, 0) = (−R2 sinλ,R1 cosλ, 0) = δ (λ) β̃λ, thus
the above moment becomes:

JV
n (R1 cosλ,R2 sinλ,−R2 sinλ,R1 cosλ) =

∫∫
gV (R1 cosλ,R2 sinλ, z1, z2)

[(
z1β̃λ −Dα̃λ

)
·
(
δ (λ) β̃λ

)]n dz1dz2
zn+2
2

(4.130a)

= δn (λ)

∫∫
gV (R1 cosλ,R2 sinλ, z1, z2)

[(
z1β̃λ −Dα̃λ

)
· β̃λ

]n dz1dz2
zn+2
2

(4.130b)

= δn (λ)

∫∫
gV (R1 cosλ,R2 sinλ, z1, z2)

zn1
zn+2
2

dz1dz2. (4.130c)

And on the other hand, using CBCC13Converted:

JV
n (R1 cosλ,R2 sinλ,−R2 sinλ,R1 cosλ)

= KV
n (−R2 sinλ,R1 cosλ,−R1 cosλ (−R2 sinλ)−R2 sinλR1 cosλ) (4.131a)

= KV
n (−R2 sinλ,R1 cosλ, 0) (4.131b)

=
∑

i+j+k=n

CV
i,j,k (−R2 sinλ)

i
(R1 cosλ)

j
0k (4.131c)

=
∑

i+j+k=n

CV
i,j,k (−R2)

i
(R1)

j
(sinλ)

i
(cosλ)

j
0k (4.131d)

=
∑

k=0
i+j=n

CV
i,j,0 (−R2)

i
(R1)

j
(sinλ)

i
(cosλ)

j
, (4.131e)

which is a homogeneous polynomial in cosλ and sinλ of degree n.
From these computations, if we define the weighted cone-beam projection of some compactly supported function f
on the vertical detector with the source moving along the ellipse (x1/R1)

2
+ (x2/R2)

2
= 1 on the trajectory plane

x3 = 0 as:

pV, ellipseλ (u, v) = gV (R1 cosλ,R2 sinλ, u, v) =

∫ ∞

0

f
(
s̃λ + t

(
uβ̃λ + ve⃗3 −Dα̃λ

))
dt, (4.132)

and the moments as:

MV, ellipse
n (λ) =

∫∫
pV, ellipseλ (u, v)

un

vn+2
dudv (4.133a)

=

∫∫
gV (R1 cosλ,R2 sinλ, u, v)

un

vn+2
dudv (4.133b)

=
JV
n (R1 cosλ,R2 sinλ,−R2 sinλ,R1 cosλ)

δn (λ)
, (4.133c)

then the adjusted moment

M̃V
n (λ) = δn (λ)MV, ellipse

n (λ) = JV
n (R1 cosλ,R2 sinλ,−R2 sinλ,R1 cosλ) (4.134)
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is a homogeneous polynomial in cosλ and sinλ of degree n. We can see that CBCC13Converted has just generated
a new DCC in this geometry with the elliptic source trajectory:

If pV, ellipse
λ (u, v) is the weighted cone-beam projection of some compactly supported function f on the vertical

detector with the source moving along an ellipse (x1/R1)
2
+ (x2/R2)

2
= 1 on the plane x3 = 0, for all

λ ∈ [0, 2π), then the adjusted moment:

M̃V
n (λ) =

√
R2

1 cos
2 λ+R2

2 sin
2 λ

n ∫∫
pV, ellipse
λ (u, v)

un

vn+2
dudv, (4.135)

is a homogeneous polynomial in cosλ and sinλ of degree n.

Figure 4.14: Raw moments MV (λ) of orders 0 (top-left), 1 (top-right), 2 (bottom-left), 3 (bottom-right) of the

weighted cone-beam projections on the vertical detector, where the source is moving along an ellipse (x1/3)
2
+

(x2/2)
2
= 1 on the trajectory plane x3 = 0.

Numerical simulations In this case, the source is moving on the ellipse (x1/3)
2
+(x2/2)

2
= 1 on the trajectory

plane x3 = 0, the object and the vertical detector remain the same. Figure 4.14 shows us the momentsMV, ellipse
n (λ)

of degree n = 0, 1, 2, 3 and figure 4.15 shows the adjusted moments M̃V
n (λ), which become the homogeneous
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Figure 4.15: Adjusted moments MV (λ) (computed by formula (4.135)) of orders 0 (top-left), 1 (top-right), 2
(bottom-left), 3 (bottom-right) of the weighted cone-beam projections on the vertical detector, where the source is

moving along an ellipse (x1/3)
2
+ (x2/2)

2
= 1 on the trajectory plane x3 = 0.

polynomials. More precisely, the approximate homogeneous polynomials in cosλ and sinλ fitting the data are:

QV, ellipse
0 (λ) = 17.1281, (4.136a)

QV, ellipse
1 (λ) = 0.0026 cosλ− 1.9839 sinλ, (4.136b)

QV, ellipse
2 (λ) = 7.8539 cos2 λ+ 0.0001 cosλ sinλ+ 2.3473 sin2 λ, (4.136c)

QV, ellipse
3 (λ) = 0.0009 cos3 λ− 2.8105 cos2 λ sinλ+ 0.0003 cosλ sin2 λ− 0.7842 sin3 λ. (4.136d)

4.3.6 The conventional cone-beam projections and their CBCC

From the beginning of this chapter until now, we work with two main geometry contexts, one deals with the vertical
detector and one deals with the horizontal detector. We have seen several CBCCs and the links between them.
However, without the detector, the cone-beam projection can still be defined theoretically, by the conventional
cone-beam projection. Since the discussed weighted projections require certain flat detectors to be defined, the
main variables of those functions are the 2D coordinates of the projections on the detectors: (u, v) in CBCC16
geometry, (u,w) in CBCC16Converted geometry, (x1, x2) in CBCC13 geometry and (z1, z2) in CBCC13Converted
geometry. The integration directions are just the vectors connecting the source to those 2D coordinates on the
detectors. And these vectors are not unit. On the other hand, the conventional projection can be defined re-
gardless of the detectors, its main variable is the unit vector showing the integration direction. The weighted
projections relate to the conventional projection, by normalizing the vector showing the integration directions in
the definitions of the weighted projections. In application, the projection we are given is the conventional one.
Thus in order to use the CBCCs developed in the previous sections, which are conditions for the weighted pro-
jections, we need to know the relationships between the conventional and the weighted projections. Another idea,
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which is also tempted, is to find the CBCC for even the conventional projections. In fact, this CBCC has been
published in the paper [Clackdoyle and Desbat, 2013], which means the CBCC for the conventional projections is
constructed from CBCC13. As a counterpart, we will also construct the CBCC for the conventional projections from
CBCC13Converted. We presume that the result will turn out similar to the result in [Clackdoyle and Desbat, 2013].
Section 4.3.6.1 will show us the relations between the conventional cone-beam projection and several weighted pro-
jections we consider so far, and section 4.3.6.2 will show us the CBCC of the conventional projections built from
CBCC13Converted.

4.3.6.1 Relationships of the conventional and the weighted cone-beam projections

Given a 3D funtion f , which has compact support, the conventional cone-beam projection gconv = Gconvf , computed
at the source location s⃗ and the integration direction ξ⃗ is defined as folows:

gconv
(
s⃗, ξ⃗
)
=

∫ ∞

0

f
(
s⃗+ tξ⃗

)
dt, ∀ξ⃗ ∈ S2. (4.137)

As mentioned above, we can obtain the relationship of the conventional and the weighted projections by normalizing
the vector showing the integration direction in the definition of the weighted projections. Precisely, now we are

finding the relationship between gconv
(
s⃗, ξ⃗
)
and pHλ (λ), which is the weighted projection in CBCC16 geometry. In

the definition (4.2), we can see that the vector showing the integration direction is
(
uβ⃗λ + ve⃗3 −Dα⃗λ

)
and:

∥∥∥uβ⃗λ + ve⃗3 −Dα⃗λ

∥∥∥
2

=
(
uβ⃗λ + ve⃗3 −Dα⃗λ

)
·
(
uβ⃗λ + ve⃗3 −Dα⃗λ

)
= u2 + v2 +D2, (4.138)

since β⃗λ, e⃗3, α⃗λ are two-by-two perpendicular. The normalized version of this vector is the following unit vector:

ξ⃗ (u, v) =
uβ⃗λ + ve⃗3 −Dα⃗λ∥∥∥uβ⃗λ + ve⃗3 −Dα⃗λ

∥∥∥
=
uβ⃗λ + ve⃗3 −Dα⃗λ√

u2 + v2 +D2
. (4.139)

Then by the definitions (4.2) and (4.137), we know that:

pVλ (u, v) =

∫ ∞

0

f
(
s⃗λ + t

(
uβ⃗λ + ve⃗3 −Dα⃗λ

))
dt (4.140a)

=

∫ ∞

0

f

(
s⃗λ + t

√
u2 + v2 +D2

uβ⃗λ + ve⃗3 −Dα⃗λ√
u2 + v2 +D2

)
dt (4.140b)

=

∫ ∞

0

f

(
s⃗λ + t′

uβ⃗λ + ve⃗3 −Dα⃗λ√
u2 + v2 +D2

)
dt′√

u2 + v2 +D2
(4.140c)

=

∫ ∞

0

f
(
s⃗λ + t′ξ⃗ (u, v)

)
dt′

1√
u2 + v2 +D2

(4.140d)

= gconv
(
s⃗λ, ξ⃗ (u, v)

) 1√
u2 + v2 +D2

. (4.140e)

Here we have changed the variable t
√
u2 + v2 +D2 = t′, then dt = dt′/

√
u2 + v2 +D2. Equation (4.140e) is

the relationship between the conventional and weighted cone-beam projections, computed in CBCC16 geometry.
Completely similarly, we can also obtain the relationship between the conventional projection and:

• the weighted projection computed in CBCC16Converted geometry (see definition (4.5b)):

pHλ (u,w) =

∫ ∞

0

f
(
s⃗λ + t

(
uβ⃗λ + (w −R) α⃗λ + T e⃗3

))
dt (4.141a)

= gconv
(
s⃗λ, ζ⃗ (u,w)

) 1√
u2 + (w −R)

2
+ T 2

, (4.141b)

ζ⃗ (u,w) =
uβ⃗λ + (w −R) α⃗λ + T e⃗3∥∥∥uβ⃗λ + (w −R) α⃗λ + T e⃗3

∥∥∥
=
uβ⃗λ + (w −R) α⃗λ + T e⃗3√

u2 + (w −R)
2
+ T 2

∈ S2. (4.141c)
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• the weighted projection computed in CBCC13 geometry (see definition (4.34b)):

gH (s1, s2, x1, x2) =

∫ ∞

0

f (s⃗+ t (x1 − s1, x2 − s2, T )) dt (4.142a)

= gconv (s⃗, γ⃗ (s1, s2, x1, x2))
1√

(x1 − s1)
2
+ (x2 − s2)

2
+ T 2

, (4.142b)

γ⃗ (s1, s2, x1, x2) =
(x1 − s1, x2 − s2, T )

∥(x1 − s1, x2 − s2, T )∥
=

(x1 − s1, x2 − s2, T )√
(x1 − s1)

2
+ (x2 − s2)

2
+ T 2

∈ S2. (4.142c)

• the weighted projection computed in CBCC13Converted geometry (see definition (4.84)):

gV (s1, s2, z1, z2) =

∫ ∞

0

f
(
s⃗+ t

(
z1β⃗s + z2e⃗3 −Dα⃗s

))
dt (4.143a)

= gconv (s⃗, η⃗ (s1, s2, z1, z2))
1√

z21 + z22 +D2
, (4.143b)

η⃗ (s1, s2, z1, z2) =
z1β⃗s + z2e⃗3 −Dα⃗s∥∥∥z1β⃗s + z2e⃗3 −Dα⃗s

∥∥∥
=
z1β⃗s + z2e⃗3 −Dα⃗s√

z21 + z22 +D2
∈ S2. (4.143c)

Moreover, from the above relationships, we can recheck the relationships between the weighted cone-beam projec-
tions in different geometry contexts, which have been done so far.

• In section 4.2.3, we have already seen the relationship between the weighted projections in CBCC16Converted
and CBCC16 geometry contexts:

pHλ

(
Tu

v
,R− DT

v

)
=
v

T
pVλ (u, v) , (4.144)

see equation (4.9e). Now using the relationships with the conventional projections in (4.141) and (4.140e), we
can see that:

ζ⃗

(
Tu

v
,R− DT

v

)
=

Tu

v
β⃗λ − DT

v
α⃗λ + T e⃗3

√(
Tu

v

)2

+

(
−DT

v

)2

+ T 2

=

T

v

(
uβ⃗λ + ve⃗3 −Dα⃗λ

)

T

v

√
u2 + v2 +D2

= ξ⃗ (u, v) , (4.145a)

pHλ

(
Tu

v
,R− DT

v

)
= gconv

(
s⃗λ, ζ⃗

(
Tu

v
,R− DT

v

))
1√(

Tu

v

)2

+

(
−DT

v

)2

+ T 2

(4.145b)

= gconv
(
s⃗λ, ξ⃗ (u, v)

) 1
T

v

√
u2 + v2 +D2

(4.145c)

=
v

T
gconv

(
s⃗λ, ξ⃗ (u, v)

) 1√
u2 + v2 +D2

(4.145d)

=
v

T
pVλ (u, v) . (4.145e)

• Similarly, in section 4.2.8, we saw the relationship between the weighted projections in CBCC16Converted
and CBCC13 geometry contexts, in equation (4.37c):

pHλ (u,w) = gH (R cosλ,R sinλ,−u sinλ+ w cosλ, u cosλ+ w sinλ) . (4.146)

From (4.142), we have:

γ⃗ (R cosλ,R sinλ,−u sinλ+ w cosλ, u cosλ+ w sinλ)

=
(−u sinλ+ (w −R) cosλ, u cosλ+ (w −R) sinλ, T )√

(−u sinλ+ (w −R) cosλ)
2
+ (u cosλ+ (w −R) sinλ)

2
+ T 2

=
uβ⃗λ + (w −R) α⃗λ + T e⃗3√

u2 + (w −R)
2
+ T 2

= ζ⃗ (u,w) .

(4.147)
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Then using the relationships in (4.142) and (4.141) gives us:

gH (R cosλ,R sinλ,−u sinλ+ w cosλ, u cosλ,+w sinλ)

= gconv (s⃗λ, γ⃗ (R cosλ,R sinλ,−u sinλ+ w cosλ, u cosλ+ w sinλ))×

× 1√
(−u sinλ+ (w −R) cosλ)

2
+ (u cosλ+ (w −R) sinλ)

2
+ T 2

(4.148a)

= gconv
(
s⃗λ, ζ⃗ (u,w)

) 1√
u2 + (w −R)

2
+ T 2

(4.148b)

= pHλ (u,w) . (4.148c)

• In section 4.3.2, the relationship between the weighted projections in CBCC13 and CBCC13Converted has
been stated as:

gH (s1, s2, x1, x2) = gV (s1, s2, z1, z2)
z2
T
, (4.149)

where:

x1 = s1 −
T

z2 ∥s⃗∥
(z1s2 +Ds1) , (4.150a)

x2 = s2 +
T

z2 ∥s⃗∥
(z1s1 −Ds2) . (4.150b)

Now from (4.142), we have:

γ⃗ (s1, s2, x1, x2) =

(
− T

z2 ∥s⃗∥
(z1s2 +Ds1) ,

T

z2 ∥s⃗∥
(z1s1 −Ds2) , T

)

√(
− T

z2 ∥s⃗∥
(z1s2 +Ds1)

)2

+

(
T

z2 ∥s⃗∥
(z1s1 −Ds2)

)2

+ T 2

(4.151a)

=

T

z2

(
z1

−s2
∥s⃗∥ −D

s1
∥s⃗∥ , z1

s1
∥s⃗∥ −D

s2
∥s⃗∥ , z2

)

T

z2

√(
z1

s2
∥s⃗∥ +D

s1
∥s⃗∥

)2

+

(
z1

s1
∥s⃗∥ −D

s2
∥s⃗∥

)2

+ z22

(4.151b)

=

T

z2

(
z1β⃗s + z2e⃗3 −Dα⃗s

)

T

z2

√
z21 + z22 +D2

(4.151c)

= η⃗ (s1, s2, z1, z2) , (4.151d)

with the notice that s21 + s22 = ∥s⃗∥2. Using the relationships with the conventional projection in (4.142) and
(4.143), we obtain:

gH (s1, s2, x1, x2)

= gconv (s⃗, γ⃗ (s1, s2, x1, x2))
1√(

− T

z2 ∥s⃗∥
(z1s2 +Ds1)

)2

+

(
T

z2 ∥s⃗∥
(z1s1 −Ds2)

)2

+ T 2

(4.152a)

= gconv (s⃗, η⃗ (s1, s2, z1, z2))
1

T

z2

√
z21 + z22 +D2

(4.152b)

=
z2
T
gconv (s⃗, η⃗ (s1, s2, z1, z2))

1√
z21 + z22 +D2

(4.152c)

=
z2
T
gV (s1, s2, z1, z2) . (4.152d)
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Figure 4.16: Every 3D unit vector can be parameterized by two angular variables (ϕ, θ); the position of the object
implies that (ϕ, θ) ∈ [0, 2π]× [0, π/2].

In conclusion, by considering the conventional cone-beam projection as an intermediate function, and using the
relationships between it and the weighted cone-beam projections (in many different geometry contexts), we can see
how the weighted projections link to each other.

4.3.6.2 CBCC of the conventional cone-beam projections constructed from CBCC13Converted

Our aim is to start with CBCC13Converted, then to convert the weighted projection in CBCC13Converted geometry
to the conventional projection, to obtain a new CBCC form, working with the conventional cone-beam projections.
Just to remind, the weighted projection and the moment in CBCC13Converted geometry context were defined in
equations (4.84), (4.103):

gV (s1, s2, z1, z2) =

∫ ∞

0

f
(
s⃗+ t

(
z1β⃗s + z2e⃗3 −Dα⃗s

))
dt, (4.153a)

JV
n (s1, s2, Y1, Y2) =

∫∫
gV (s1, s2, z1, z2)

[(
z1β⃗s −Dα⃗s

)
· (Y1, Y2, 0)

]n dz1dz2
zn+2
2

. (4.153b)

One forward step to get closer to the conventional projection is to use the relationship we just obtained in the
previous section:

gV (s1, s2, z1, z2) = gconv (s⃗, η⃗ (s1, s2, z1, z2))
1√

z21 + z22 +D2
. (4.154)

Here η⃗ (s1, s2, z1, z2) is the unit vector parallel to the vector connecting the source (s1, s2, 0) on the trajectory
plane and the point (z1, z2) on the vertical detector. We have already known that every 3D unit vector can be
parameterized by two angular variables ϕ and θ, where ϕ is the angle between x1-axis and the projection of this
unit vector on the trajectory plane x3 = 0, and θ is the angle between x3-axis and the unit vector. Figure 4.16
gives us an illustration. More precisely, the 3D coordinate of the unit vector in terms of (ϕ, θ) is:

η̃ (ϕ, θ) = (cosϕ sin θ, sinϕ sin θ, cos θ) . (4.155)

Now we change the variables (z1, z2) in the formula of the moment JV
n (s1, s2, Y1, Y2) to the angular variables (ϕ, θ).

In order to do that, we notice in the previous section η⃗ (s1, s2, z1, z2) is:

η⃗ (s1, s2, z1, z2) =
z1β⃗s + z2e⃗3 −Dα⃗s√

z21 + z22 +D2
=

1

∥s⃗∥
√
z21 + z22 +D2



−z1s2 −Ds1
z1s1 −Ds2
z2 ∥s⃗∥


 . (4.156)
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Since η⃗ (s1, s2, z1, z2) and η̃ (ϕ, θ) are the two different representations of the same unit vector in two different system
of variables, thus changing the variables from (z1, z2) to (ϕ, θ) means setting as follows:

1

∥s⃗∥
√
z21 + z22 +D2



−z1s2 −Ds1
z1s1 −Ds2
z2 ∥s⃗∥


 =



cosϕ sin θ
sinϕ sin θ

cos θ


 . (4.157)

Then we obtain the following system of equations:

−z1s2 −Ds1 = ∥s⃗∥
√
z21 + z22 +D2 cosϕ sin θ, (4.158a)

z1s1 −Ds2 = ∥s⃗∥
√
z21 + z22 +D2 sinϕ sin θ, (4.158b)

z2 =
√
z21 + z22 +D2 cos θ. (4.158c)

From the first two equations, using the using technique of multiplying the suitable values to each equation and
summing together, we obtain:

z1
(
s21 + s22

)
= ∥s⃗∥

√
z21 + z22 +D2 sin θ (−s2 cosϕ+ s1 sinϕ) , (4.159a)

D
(
s21 + s22

)
= ∥s⃗∥

√
z21 + z22 +D2 sin θ (−s1 cosϕ− s2 sinϕ) . (4.159b)

Then we can see that:

√
z21 + z22 +D2 =

D
(
s21 + s22

)

∥s⃗∥ sin θ (−s1 cosϕ− s2 sinϕ)
=

D ∥s⃗∥2
∥s⃗∥ sin θ (−s1 cosϕ− s2 sinϕ)

=
D ∥s⃗∥

− sin θ (s1 cosϕ+ s2 sinϕ)
.

(4.160)

Thus from these materials, we obtain:

z2 =
√
z21 + z22 +D2 cos θ =

D ∥s⃗∥
− sin θ (s1 cosϕ+ s2 sinϕ)

cos θ =
−D ∥s⃗∥

tan θ (s1 cosϕ+ s2 sinϕ)
, (4.161a)

z1 =
∥s⃗∥

√
z21 + z22 +D2 sin θ (−s2 cosϕ+ s1 sinϕ)

s21 + s22
(4.161b)

=
∥s⃗∥ sin θ (−s2 cosϕ+ s1 sinϕ)

∥s⃗∥2
D ∥s⃗∥

− sin θ (s1 cosϕ+ s2 sinϕ)
(4.161c)

=
D (−s1 sinϕ+ s2 cosϕ)

s1 cosϕ+ s2 sinϕ
. (4.161d)

We have completely computed (z1, z2) in terms of (ϕ, θ).
Now by (4.160), the relationship between the weighted projection in CBCC13Converted geometry and the conven-
tional projection can be rewritten as:

gV (s1, s2, z1, z2) = gconv (s⃗, η⃗ (s1, s2, z1, z2))
1√

z21 + z22 +D2
= gconv (s⃗, η̃ (ϕ, θ))

− sin θ (s1 cosϕ+ s2 sinϕ)

D ∥s⃗∥
(4.162)
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Moveover, we can also compute:

∂z1
∂ϕ

=
D (−s1 cosϕ− s2 sinϕ) (s1 cosϕ+ s2 sinϕ)−D (−s1 sinϕ+ s2 cosϕ) (−s1 sinϕ+ s2 cosϕ)

(s1 cosϕ+ s2 sinϕ)
2 , (4.163a)

=
−D (s1 cosϕ+ s2 sinϕ)

2 −D (−s1 sinϕ+ s2 cosϕ)
2

(s1 cosϕ+ s2 sinϕ)
2 (4.163b)

=
−D

(
s21 + s22

)

(s1 cosϕ+ s2 sinϕ)
2 (4.163c)

=
−D ∥s⃗∥2

(s1 cosϕ+ s2 sinϕ)
2 , (4.163d)

∂z1
∂θ

= 0, (4.163e)

∂z2
∂θ

=
−D ∥s⃗∥

s1 cosϕ+ s2 sinϕ

−1

tan2 θ

1

cos2 θ
(4.163f)

=
D ∥s⃗∥

sin2 θ (s1 cosϕ+ s2 sinϕ)
. (4.163g)

Then the determinant of the Jacobian matrix J =




∂z1
∂ϕ

∂z1
∂θ

∂z2
∂ϕ

∂z2
∂θ


 is the following:

det J =
∂z1
∂ϕ

∂z2
∂θ

− ∂z1
∂θ

∂z2
∂ϕ

(4.164a)

=
−D ∥s⃗∥2

(s1 cosϕ+ s2 sinϕ)
2

D ∥s⃗∥
sin2 θ (s1 cosϕ+ s2 sinϕ)

(4.164b)

=
−D2 ∥s⃗∥3

sin2 θ (s1 cosϕ+ s2 sinϕ)
3 . (4.164c)

Here (∂z1/∂θ) = 0, so it is not necessary to compute (∂z2/∂ϕ). Then this implies:

dz1dz2 =
D2 ∥s⃗∥3

sin2 θ (s1 cosϕ+ s2 sinϕ)
3 dϕdθ. (4.165)

We are now ready to change the variables from (z1, z2) to (ϕ, θ) in the formula of the moment JV
n (s1, s2, Y1, Y2):

JV
n (s1, s2, Y1, Y2)

=

∫∫
gV (s1, s2, z1, z2)

[(
z1β⃗s −Dα⃗s

)
· (Y1, Y2, 0)

]n dz1dz2
zn+2
2

(4.166a)

=

∫ π/2

0

∫ 2π

0

gconv (s⃗, η̃ (ϕ, θ))
− sin θ (s1 cosϕ+ s2 sinϕ)

D ∥s⃗∥

[(
D (−s1 sinϕ+ s2 cosϕ)

s1 cosϕ+ s2 sinϕ
β⃗s −Dα⃗s

)
· (Y1, Y2, 0)

]n
×

× tann+2 θ (s1 cosϕ+ s2 sinϕ)
n+2

(−1)
n+2

Dn+2 ∥s⃗∥n+2

D2 ∥s⃗∥3

sin2 θ (s1 cosϕ+ s2 sinϕ)
3 dϕdθ. (4.166b)
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The term in the square brackets can be written as:
(
D (−s1 sinϕ+ s2 cosϕ)

s1 cosϕ+ s2 sinϕ
β⃗s −Dα⃗s

)
· (Y1, Y2, 0)

=
D

s1 cosϕ+ s2 sinϕ

(
(−s1 sinϕ+ s2 cosϕ) β⃗s − (s1 cosϕ+ s2 sinϕ) α⃗s

)
· (Y1, Y2, 0) (4.167a)

=
D

s1 cosϕ+ s2 sinϕ


(−s1 sinϕ+ s2 cosϕ)

1

∥s⃗∥



−s2
s1
0


− (s1 cosϕ+ s2 sinϕ)

1

∥s⃗∥



s1
s2
0




 ·



Y1
Y2
0


 (4.167b)

=
D

∥s⃗∥ (s1 cosϕ+ s2 sinϕ)



s1s2 sinϕ− s22 cosϕ− s21 cosϕ− s1s2 sinϕ
−s21 sinϕ+ s1s2 cosϕ− s1s2 cosϕ− s22 sinϕ

0


 ·



Y1
Y2
0


 (4.167c)

=
D

∥s⃗∥ (s1 cosϕ+ s2 sinϕ)



−
(
s21 + s22

)
cosϕ

−
(
s21 + s22

)
sinϕ

0


 ·



Y1
Y2
0


 (4.167d)

=
−D ∥s⃗∥2

∥s⃗∥ (s1 cosϕ+ s2 sinϕ)



cosϕ
sinϕ
0


 ·



Y1
Y2
0


 (4.167e)

=
−D ∥s⃗∥

s1 cosϕ+ s2 sinϕ
(Y1 cosϕ+ Y2 sinϕ) . (4.167f)

Then the above integral becomes:

JV
n (s1, s2, Y1, Y2)

=

∫ π/2

0

∫ 2π

0

gconv (s⃗, η̃ (ϕ, θ))
− sin θ (s1 cosϕ+ s2 sinϕ)

D ∥s⃗∥

[(
D (−s1 sinϕ+ s2 cosϕ)

s1 cosϕ+ s2 sinϕ
β⃗s −Dα⃗s

)
· (Y1, Y2, 0)

]n
×

× tann+2 θ (s1 cosϕ+ s2 sinϕ)
n+2

(−1)
n+2

Dn+2 ∥s⃗∥n+2

D2 ∥s⃗∥3

sin2 θ (s1 cosϕ+ s2 sinϕ)
3 dϕdθ (4.168a)

=

∫ π/2

0

∫ 2π

0

gconv (s⃗, η̃ (ϕ, θ))
− sin θ (s1 cosϕ+ s2 sinϕ)

D ∥s⃗∥
(−1)

n
Dn ∥s⃗∥n

(s1 cosϕ+ s2 sinϕ)
n (Y1 cosϕ+ Y2 sinϕ)

n ×

× tann+2 θ (s1 cosϕ+ s2 sinϕ)
n+2

(−1)
n+2

Dn+2 ∥s⃗∥n+2

D2 ∥s⃗∥3

sin2 θ (s1 cosϕ+ s2 sinϕ)
3 dϕdθ (4.168b)

=
−1

D

∫ π/2

0

∫ 2π

0

gconv (s⃗, η̃ (ϕ, θ)) (Y1 cosϕ+ Y2 sinϕ)
n
tann+2 θ

1

sin θ
dϕdθ (4.168c)

=
−1

D

∫ π/2

0

∫ 2π

0

gconv (s⃗, η̃ (ϕ, θ)) (Y1 cosϕ+ Y2 sinϕ)
n
tann+2 θ

1

cos θ tan θ
dϕdθ (4.168d)

=
−1

D

∫ π/2

0

∫ 2π

0

gconv (s⃗, η̃ (ϕ, θ)) (Y1 cosϕ+ Y2 sinϕ)
n tann+1 θ

cos θ
dϕdθ. (4.168e)

On the other hand, CBCC13Converted confirms that:

JV
n (s1, s2, Y1, Y2) = KV

n (Y1, Y2,−s1Y1 − s2Y2) , (4.169)

where KV
n (Y1, Y2, Y3) =

∑
i+j+k=n C

V
i,j,kY

i
1Y

j
2 Y

k
3 is a homogeneous polynomial in three variable of degree n. This

leads to the following result:
∫ π/2

0

∫ 2π

0

gconv (s⃗, η̃ (ϕ, θ)) (Y1 cosϕ+ Y2 sinϕ)
n tann+1 θ

cos θ
dϕdθ = −DJV

n (s1, s2, Y1, Y2) (4.170a)

= −DKV
n (Y1, Y2,−s1Y1 − s2Y2) . (4.170b)

Thus if we define:

Jconv
n (s⃗, Y1, Y2) =

∫ π/2

0

∫ 2π

0

gconv (s⃗, η̃ (ϕ, θ)) (Y1 cosϕ+ Y2 sinϕ)
n tann+1 θ

cos θ
dϕdθ, (4.171a)

Kconv
n (Y1, Y2, Y3) = −DKV

n (Y1, Y2, Y3) , (4.171b)
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Figure 4.17: The object intersects the trajectory plane and this plane is parallel to the horizontal detector. There
are rays connecting the source to the object being parallel to the detector (type (a)), or going away from the detector
(type (b)). In both cases, these rays cannot hit the detector, which causes the truncation in the projections.

then we obtain the CBCC of the conventional projections as follows:

gconv is in the range of Gconvf : gconv = Gconvf for some f (which is compactly supported real function,
whose support is strictly above the plane x3 = 0), if and only if for all (s1, s2) ∈ R2, gconv (s⃗, ·) has compact
support in the upper unit hemisphere and:

Jconv
n (s⃗, Y1, Y2) = Kconv

n (Y1, Y2,−s1Y1 − s2Y2) , ∀n = 0, 1, 2, . . . , (4.172)

where Kconv
n (Y1, Y2, Y3) is a homogeneous polynomial in three variables Y1, Y2, Y3 of degree n.

We can see that the above CBCC is the same as the CBCC for the conventional projections built in the CBCC13
geometry, see theorem 5 in the paper [Clackdoyle and Desbat, 2013]. The reason is that: in that article, the CBCC
for the conventional projections is built from the CBCC13. Now in our context, the CBCC we just obtained is built
from CBCC13Converted, however CBCC13Converted is also based on CBCC13. Thus they are all connected. In

fact, the double integral
∫∫

dz1dz2 cannot be changed directly to the integral
∫ π/2

0

∫ 2π

0
dϕdθ without any arguments.

But we decide to keep and show it clearly in the following section.

4.3.7 Comments on the position of the 3D object

From the beginning of this chapter, the object always needs to be strictly above the trajectory plane x3 = 0. The
reason is quite obvious in the geometry with the horizontal detector x3 = T > 0 (CBCC16Converted and CBCC13
geometry contexts). If the object intersects the trajectory plane, and this plane is parallel to the detector (that is
what horizontal detector means), then the projections on the detector will be truncated, since the projection values
are in fact the integration along the rays starting from the source locations and going towards the detector (here
is the ray integral, not the line integral because the integrals in the projection definitions are

∫∞
0
dt on [0,∞), not

over the whole R); but in this situation, even all the rays connecting the source to the (finite) detector cannot
sufficiently cover the whole object. There are rays, which connect the source to the object, being parallel to the
detector or going away from the detector. These rays are not able to hit the detector and the non-zero integration
values on these rays will be missed, which causes the truncation in the projections, see figure 4.17.

In the geometry with the vertical detector (CBCC16 and CBCC13Converted geometry contexts), meaning the
detector is perpendicular to the trajectory plane, the formulae of the moments (MV

n (λ) in CBCC16 geometry,
and JV

n (s1, s2, Y1, Y2) in CBCC13Converted geometry) contain the term 1/
(
vn+2

)
or 1/

(
zn+2
2

)
, which cause the

singularity v = 0 or z2 = 0. As mentioned in section 4.2.1, this singularity has been handled in CBCC16 geometry
by the paper [Clackdoyle et al., 2016]. But for CBCC13Converted, we have done nothing with it yet. That is
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the reason why we always keep the assumption that the object is strictly above the trajectory plane until now.
Moreover, all of the constructions so far are based on the conversion between the geometry contexts. Then it is easy
and helpful to keep the object at such a position, that makes all the geometry contexts work. It turns out the object
should be strictly above the trajectory plane x3 = 0. In addition to be strictly above the trajectory plane, there
is one more hidden assumption on the object, which applies only in the geometry with the vertical detector, that
we did not clearly mention yet. For simplicity, let’s first assume that we are working with the elliptical-like source
trajectory surrounding the world origin (i.e. the circular source trajectory is also counted as a special case); by
“surrounding the world origin” we mean the world origin is inside the area of the trajectory. As the above statement,
the object needs to be at a position that both geometry contexts (with the vertical and horizontal detectors) work.
More precisely, the projections must be available and not truncated on both detectors. In the case with the vertical
detector, with the same mechanism as the geometry with the horizontal detector, any rays connecting the source
to the object should not be parallel to the vertical detector and must go towards to hit the detector, for all source
locations on the trajectory. This means the orthogonal projection of the convex hull (OPCH for short) of the
object onto the trajectory plane has to be inside the area of the trajectory. For illustration, figure 4.18 shows us
two different positions of the object.

• In the top diagram, the OPCH of the object on the trajectory plane is strictly inside the area of the trajectory.
So for all the source locations on the trajectory, the rays connecting them to the object go towards hitting
the vertical detector. Thus the projections are available and there is no truncation for any source locations.

• On the other hand, in the bottom diagram, the OPCH of the object intersects the trajectory. Then we can
see that, there are locations on the source trajectory, at which, there exist rays connecting them to the object,
being parallel to the detector (type (a)), or going away from the detector (type (b)). These rays will not hit
the vertical detector. So as in the geometry with the horizontal detector, the integration values on these rays
will be missed, leading to the truncation in the projections. Similarly, if the OPCH of the object is strictly
outside of the trajectory, then there will be source locations, such that all rays connecting them to the object
are always in type (b), which go away from the detector. And this leads to the “non-sense” zero-projections,
which are the projections with all values are 0 (“non-sense” here means we have no information extracted
from these projections).

Thus the additional assumption on the object in the geometry with the vertical detector and an elliptical-like source
trajectory surrounding the world origin, is that the orthogonal projection of its convex hull onto the trajectory plane
has to be inside the area of the source trajectory.

So until now, with the geometry containing the vertical detector, two crucial conditions on the object to be satisfied
are: the “strictly above” and “strictly inside” conditions. As mentioned above, this pair of conditions help determine
the suitable position of the object, that makes the system work, but in the case when we have the elliptical-like
source trajectory surrounding the world origin. To be more than that, let’s consider a general closed convex source
trajectory surrounding the world origin, by “closed” we mean that there is no starting-point or end-point on the
trajectory. Then the above pair of conditions is still enough to guarantee that the projections and moments are
well-defined. More precisely, if we consider the source to move along a general closed convex trajectory surrounding
the world origin, if the support of the object is compact and does not intersect the trajectory plane, if the OPCH
of the object on the trajectory plane is strictly inside the area of the trajectory and if the distance from the source
to the vertical detector is sufficiently large such that the source and the detector are on different side comparing
to the world origin for all source locations, then there is no truncation in all projections and no singularity in all
moments, and the corresponding CBCC can work properly.

However, if our closed source trajectory is not convex, then the pair of conditions on the object is now not sufficient
to determine a suitable position of the object. Figure 4.19 gives us an illustration. Those are the top views of two
models, where the objects are initially assumed to be strictly above the trajectory planes, and their OPCHs on the
trajectory planes are strictly inside the areas of the trajectories. But in both cases, there exist source locations
such that the rays connecting them to the objects cannot hit the vertical detectors, because of the concavity of
the trajectories. We show two different situations in figure 4.19 to mention that: the failure is not because of the
OPCH of the object being inside a narrow branch of the concave-shape area (as in the top diagram). In the bottom
diagram of figure 4.19, although it is not inside any narrow branches, the failure still happens. So it seems that
depending on the source trajectory, being or not being inside a narrow branch of the concave-shape trajectory area
will cause the failure. However, there is a same point in both models, that is: the OPCH of the object is not
sufficiently near the world origin, so the object cannot be in between the source and the detector for all source
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Figure 4.18: Two situations that the object being at two different positions, will or will not cause the truncation in
the projections.

locations. Because as known in CBCC13Converted geometry, with sufficiently large D (D is the distance from the
source to the vertical detector), the source and the vertical detector are always on different sides, comparing to the
world origin, then sticking to the world origin and staying strictly inside the trajectory area would help the object
be in between the source and the detector for any source locations. Thus for a general closed source trajectory
surrounding the world origin, we suggest taking a disk on trajectory plane with the center at the world origin, which
is strictly inside or at most tangent (from inside) the source trajectory, then considering the vertical cylinder, which
has that disk as its lower base. The area strictly inside this cylinder and strictly above the trajectory plane will be
the “safe zone” of the 3D object, because if the object is inside this zone, then it is always in between the source
and the vertical detector for all source locations on the trajectory, and its support never intersects the trajectory
plane, meaning there is no zero-projection, no truncation in the projections and no singularity in the moments.
Figure 4.20 shows us the top view of a model with a general closed source trajectory surrounding the world origin
and the orthogonal projection of the corresponding safe zone of the 3D object. There may be other safe positions of
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Figure 4.19: Two examples show the fact that the object’s position and the source trajectory being not suitable for
each other will cause the failure.

the 3D object depending on each particular situation, but our suggestion can probably work for any general closed
source trajectory surrounding the world origin. In CBCC13Converted geometry, we do not yet develop on the
source trajectory as much as in CBCC13 geometry. We currently stop at the general closed trajectory surrounding
the world origin, while in section 4.2.10, CBCC13 has even been applied on several open trajectories, e.g. linear,
parabolic trajectories, in order to obtain new DCCs or to see the relations between CBCC13 and some old DCCs.

This knowledge on the positions of the object in the geometry with the horizontal and vertical detectors have
to be applied respectively in CBCC16Converted, CBCC13 geometry contexts and CBCC16, CBCC13Converted
geometry contexts. Those conditions cannot be absent and are necessary for the process of changing variables in
the corresponding geometry contexts. The role of these conditions is also essential during constructing the CBCC of
the conventional projections. Let’s first consider the condition built from CBCC13Converted. We can see that the
main idea of the proof is to change the variables from (z1, z2) to (ϕ, θ), where ϕ and θ are defined in section 4.3.6.2,
see figure 4.16. Normally, in the geometry context with the vertical detector, the integral

∫∫
dz1dz2 over the whole

R2 will be changed to
∫ π

0

∫ ϕ0+π

ϕ0
dϕdθ, meaning (ϕ, θ) ∈ [ϕ0, ϕ0 + π]× [0, π] (we will show the explicit the value of ϕ0

later). Because as shown in figure 4.21, in order to have z2 moving from −∞ to ∞, θ has to move from 0 to π, the
red semi-circle in the figure shows us the range of θ. Similarly, in order to have z1 moving from −∞ to ∞, we need
ϕ to move in a π-range angle, here we say that ϕ is from ϕ0 to ϕ0 + π, the semi-circle built from the blue arrows
on the trajectory plane shows us the range of ϕ. Thus after the mathematical developments in section 4.3.6.2, the
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Figure 4.20: Illustration of an ideal position of the object when we have a general source trajectory
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Figure 4.21: Illustration of the range of ϕ and θ when both z1 and z2 vary from −∞ to ∞

moment JV
n (s1, s2, Y1, Y2) in fact becomes:

JV
n (s1, s2, Y1, Y2) =

∫∫
gV (s1, s2, z1, z2)

[(
z1β⃗s −Dα⃗s

)
· (Y1, Y2, 0)

]n dz1dz2
zn+2
2

(4.173a)

= − 1

D

∫ π

0

∫ ϕ0+π

ϕ0

gconv (s⃗, η̃ (ϕ, θ)) (Y1 cosϕ+ Y2 sinϕ)
n tann+1 θ

cos θ
dϕdθ. (4.173b)

Now we are going to explain that using the conditions on the object leads the intergral
∫ π

0

∫ ϕ0+π

ϕ0
dϕdθ to the integral

∫ π/2

0

∫ 2π

0
dϕdθ, as in the final result we obtain in section 4.3.6.2.

• About θ: We know that the object is strictly above the trajectory plane, so from the figure 4.21, if θ ∈ (π/2, π]
then gconv (s⃗, η̃ (ϕ, θ)) = 0, which means there is no contribution in the above integral if θ ∈ (π/2, π], so it can
be rewritten as:

JV
n (s1, s2, Y1, Y2) = − 1

D

∫ π/2

0

∫ ϕ0+π

ϕ0

gconv (s⃗, η̃ (ϕ, θ)) (Y1 cosϕ+ Y2 sinϕ)
n tann+1 θ

cos θ
dϕdθ (4.174a)

= − 1

D

∫ π/2

0

[∫ ϕ0+π

ϕ0

gconv (s⃗, η̃ (ϕ, θ)) (Y1 cosϕ+ Y2 sinϕ)
n
dϕ

]
tann+1 θ

cos θ
dθ (4.174b)

= − 1

D

∫ π/2

0

L (s⃗, Y1, Y2, θ)
tann+1 θ

cos θ
dθ, (4.174c)
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where

L (s⃗, Y1, Y2, θ) =

∫ ϕ0+π

ϕ0

gconv (s⃗, η̃ (ϕ, θ)) (Y1 cosϕ+ Y2 sinϕ)
n
dϕ. (4.175)

We are considering L (s⃗, Y1, Y2, θ) as a temporary function for convenience. Here we can see that there is a
singularity cos θ = 0, occurring when θ = π/2. There is also another singularity sin θ = 0, occurring when
θ = 0, because in the process of the proof in section 4.3.6.2, sin θ is on the denominator for a few times.
However, thanks to the conditions on the object, these singularities are handled. The support of the object
is compact, it does not intersect the trajectory plane, and the object is strictly inside the “safe cylinder”
(explained in the previous comments), which means for any source locations, any rays starting from the
source and staying in the trajectory plane or being parallel to the corresponding vertical detector, cannot
touch the object. Moreover, the conditions on the support of the object lead to the fact that: there exist θ1
and θ2 such that: 0 < θ1 < θ2 < π/2 and:

gconv (s⃗, η̃ (ϕ, θ)) = 0, ∀θ ∈ [0, θ1) ∪ (θ2, π/2] . (4.176)

Then the above integral again can be rewritten as:

−DJV
n (s1, s2, Y1, Y2) (4.177a)

=

∫ π/2

0

L (s⃗, Y1, Y2, θ)
tann+1 θ

cos θ
dθ (4.177b)

=

∫ θ1

0

L (s⃗, Y1, Y2, θ)
tann+1 θ

cos θ
dθ +

∫ θ2

θ1

L (s⃗, Y1, Y2, θ)
tann+1 θ

cos θ
dθ +

∫ π/2

θ2

L (s⃗, Y1, Y2, θ)
tann+1 θ

cos θ
dθ

(4.177c)

=

[
lim
ϵ1→0

∫ θ1

ϵ1

L (s⃗, Y1, Y2, θ)
tann+1 θ

cos θ
dθ

]
+

∫ θ2

θ1

L (s⃗, Y1, Y2, θ)
tann+1 θ

cos θ
dθ (4.177d)

+

[
lim

ϵ2→π/2

∫ ϵ2

θ2

L (s⃗, Y1, Y2, θ)
tann+1 θ

cos θ
dθ

]
. (4.177e)

Here we change to the limitations because of the singularities when θ = 0 or θ = π/2. Using condition (4.176),
we can see that L (s⃗, Y1, Y2, θ) = 0 for any θ ∈ [0, θ1) ∪ (θ2, π/2] and this implies the two limitations in fact
equal 0 and:

−DJV
n (s1, s2, Y1, Y2) =

∫ θ2

θ1

L (s⃗, Y1, Y2, θ)
tann+1 θ

cos θ
dθ, (4.178)

or:

JV
n (s1, s2, Y1, Y2) = − 1

D

∫ π/2

0

∫ ϕ0+π

ϕ0

gconv (s⃗, η̃ (ϕ, θ)) (Y1 cosϕ+ Y2 sinϕ)
n tann+1 θ

cos θ
dϕdθ (4.179a)

= − 1

D

∫ θ2

θ1

∫ ϕ0+π

ϕ0

gconv (s⃗, η̃ (ϕ, θ)) (Y1 cosϕ+ Y2 sinϕ)
n tann+1 θ

cos θ
dϕdθ, (4.179b)

where 0 < θ1 < θ2 < π/2, and this integral does not have any singularities with respect to θ. To summarize

this step concerning θ, we have shown that the original integral
∫ π

0
dθ can be rewritten as

∫ π/2

0
dθ because

the support of the object is compact and strictly above the trajectory plane, then we have proven that this

integral
∫ π/2

0
dθ valids without any singularities because it just equals to

∫ θ2
θ1
dθ with 0 < θ1 < θ2 < π/2, again

thanks to the conditions on the object.

• About ϕ: As shown in figure 4.21, ϕ needs to move in a π-range angle, where the two bounding rays of the
angle together make a parallel line (on the trajectory plane) to the vertical detector. Figure 4.22 is showing
us the top view of the model. For any source location on the trajectory, we call ψs ∈ [0, 2π) the angle between
x1-axis and the ray connecting the world origin to the source. This angle ψs depends on s⃗ and is defined by
the following formulae:

cosψs =
s1√
s21 + s22

, and sinψs =
s2√
s21 + s22

. (4.180)
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Figure 4.22: Top view of the model showing an illustration of the range of ϕ

Then ϕ will move from (ϕ0 = ψs + π/2) to (ϕ0 + π = ψs + 3π/2), since the line built from two bounding rays
(of the π-range angle of moving of ϕ) is parallel to the vertical detector, and then is perpendicular to the
line connecting the world origin to the source, see figure 4.22. Since the support of the object is compact
and strictly inside the “safe cylinder”, then it does not intersect the plane, which goes through the source
location and parallel to the vertical detector. So all the rays starting from the source and staying in this
plane cannot touch the object, and we know that these rays have the directions constructed by θ ∈ [0, π]
and ϕ = ϕ0 or ϕ = ϕ0 + π. This means gconv (s⃗, η̃ (ϕ, θ)) = 0 if ϕ = ϕ0 or ϕ = ϕ0 + π, or we can say that
ϕ = ϕ0 and ϕ = ϕ0 + π do not contribute in the integral in the formula of the moment JV

n (s1, s2, Y1, Y2). In
fact, ϕ ̸= ϕ0 and ϕ ̸= ϕ0 + π are helpful for the proof in section 4.3.6.2. In that proof, there are a few times
the term (s1 cosϕ+ s2 sinϕ) being on the denominator, leading to a singularity s1 cosϕ + s2 sinϕ = 0. This
term can be understood as a scalar product of (s1, s2) and (cosϕ, sinϕ) on the trajectory plane, so it equals
0 when the two vectors (s1, s2) and (cosϕ, sinϕ) are perpendicular to each other and this only happens when
ϕ = ϕ0 = ψs + π/2 or ϕ = ϕ0 + π = ψs + 3π/2, see figure 4.22. Also thanks to the conditions on the support
of the object, we can claim that there exist ϕ1 and ϕ2 such that: ϕ0 < ϕ1 < ϕ2 < ϕ0 + π and:

gconv (s⃗, η̃ (ϕ, θ)) = 0, ∀ϕ ∈ [ϕ0, ϕ1) ∪ (ϕ2, ϕ0 + π] . (4.181)

Then using this condition and the same technique of changing the bounds of the integral with respect to ϕ:∫ ϕ0+π

ϕ0
dϕ =

∫ ϕ1

ϕ0
dϕ+

∫ ϕ2

ϕ1
dϕ+

∫ ϕ0+π

ϕ2
dϕ, then passing to the limitations as the above comment concerning θ,

we can prove that:

−DJV
n (s1, s2, Y1, Y2) =

∫ π/2

0

∫ ϕ0+π

ϕ0

gconv (s⃗, η̃ (ϕ, θ)) (Y1 cosϕ+ Y2 sinϕ)
n tann+1 θ

cos θ
dϕdθ (4.182a)

=

∫ π/2

0

∫ ϕ2

ϕ1

gconv (s⃗, η̃ (ϕ, θ)) (Y1 cosϕ+ Y2 sinϕ)
n tann+1 θ

cos θ
dϕdθ., (4.182b)

and the integral in equation (4.182b) is well-defined with no singularity. This means we can keep the formula

of the integral with respect to ϕ as
∫ ϕ0+π

ϕ0
dϕ without worrying about the singularity, because the value of

this integral in fact coincides with the value of the integral
∫ ϕ2

ϕ1
dϕ, thanks to the support of the object being

compact and strictly inside the “safe cylinder”. More than that, also due to these conditions on the support
of the object, we can once again extend the bounds of ϕ to [ϕ0, ϕ0 + 2π), since [ϕ0 + π, ϕ0 + 2π) does not
contribute in the integral: gconv (s⃗, η̃ (ϕ, θ)) = 0 if ϕ ∈ [ϕ0 + π, ϕ0 + 2π). Thus the integral in equation (4.182a)
can be rewritten as:

−DJV
n (s1, s2, Y1, Y2) =

∫ π/2

0

∫ ϕ0+2π

ϕ0

gconv (s⃗, η̃ (ϕ, θ)) (Y1 cosϕ+ Y2 sinϕ)
n tann+1 θ

cos θ
dϕdθ. (4.183)

and its value coincides with the integral in equation (4.182b) with no singularity. Now we will prove that the

integral with respect to ϕ can also be written as
∫ 2π

0
dϕ. We change the order of integration and set:

L (s⃗, Y1, Y2, ϕ) =

∫ π/2

0

gconv (s⃗, η̃ (ϕ, θ)) (Y1 cosϕ+ Y2 sinϕ)
n tann+1 θ

cos θ
dθ, (4.184)
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Then the term −DJV
n (s1, s2, Y1, Y2) will become:

−DJV
n (s1, s2, Y1, Y2) (4.185a)

=

∫ ϕ0+2π

ϕ0

L (s⃗, Y1, Y2, ϕ) dϕ (4.185b)

=

∫ 0

ϕ0

L (s⃗, Y1, Y2, ϕ) dϕ+

∫ 2π

0

L (s⃗, Y1, Y2, ϕ) dϕ+

∫ ϕ0+2π

2π

L (s⃗, Y1, Y2, ϕ) dϕ (4.185c)

=

∫ 2π

ϕ0+2π

L (s⃗, Y1, Y2, ϕ
′ − 2π) dϕ′ +

∫ 2π

0

L (s⃗, Y1, Y2, ϕ) dϕ+

∫ ϕ0+2π

2π

L (s⃗, Y1, Y2, ϕ) dϕ, (4.185d)

here we have changed the variable ϕ′ = ϕ + 2π in the first integral, then dϕ′ = dϕ and ϕ′ is from (ϕ0 + 2π)
to 2π. Moreover we can see that L (s⃗, Y1, Y2, ϕ) is in fact a periodic function with respect to ϕ of period 2π,
since all the ϕ-dependent terms in the formula of L (s⃗, Y1, Y2, ϕ) are built from cosϕ and sinϕ:

η̃ (ϕ+ j2π, θ) =



cos (ϕ+ j2π) sin θ
sin (ϕ+ j2π) sin θ

cos θ


 =



cosϕ sin θ
sinϕ sin θ

cos θ


 = η̃ (ϕ, θ), (4.186a)

cos (ϕ+ k2π) = cosϕ, (4.186b)

sin (ϕ+ l2π) = sinϕ, (4.186c)

for any integers j, k, l. Thus we can continue the above calculations as follows:

−DJV
n (s1, s2, Y1, Y2) (4.187a)

=

∫ 2π

ϕ0+2π

L (s⃗, Y1, Y2, ϕ
′ − 2π) dϕ′ +

∫ 2π

0

L (s⃗, Y1, Y2, ϕ) dϕ+

∫ ϕ0+2π

2π

L (s⃗, Y1, Y2, ϕ) dϕ (4.187b)

=

∫ 2π

ϕ0+2π

L (s⃗, Y1, Y2, ϕ
′) dϕ′ +

∫ 2π

0

L (s⃗, Y1, Y2, ϕ) dϕ+

∫ ϕ0+2π

2π

L (s⃗, Y1, Y2, ϕ) dϕ (4.187c)

=

∫ 2π

0

L (s⃗, Y1, Y2, ϕ) dϕ (4.187d)

=

∫ 2π

0

∫ π/2

0

gconv (s⃗, η̃ (ϕ, θ)) (Y1 cosϕ+ Y2 sinϕ)
n tann+1 θ

cos θ
dθdϕ. (4.187e)

Then we obtain the result as in section 4.3.6.2:

JV
n (s1, s2, Y1, Y2) = − 1

D

∫ π/2

0

∫ 2π

0

gconv (s⃗, η̃ (ϕ, θ)) (Y1 cosϕ+ Y2 sinϕ)
n tann+1 θ

cos θ
dϕdθ. (4.188)

The two final comments we want to make here are the followings:

• The moment of the conventional projections built from CBCC13 shares the same formula with the one built
from CBCC13Converted, and has the same singularity cos θ = 0. In the geometry with the horizontal detector,
this singularity is handled by the condition that the support of the object is compact and strictly above the
trajectory plane. The way to do this is completely similar to what we have done above in CBCC13Converted
geometry. In the detailed proof changing CBCC13 to the CBCC of the conventional projections, there is no
additional singularity, unlike the proof changing CBCC13Converted to the CBCC of the conventional pro-
jections (there are a few additional singularities that we need to take care). Anyway, the conditions on the
support of the object as we mentioned in the corresponding geometry with the horizontal and vertical detec-
tors are sufficient to build the CBCC of the conventional projections from CBCC13 and CBCC13Converted
respectively.

• Since the CBCC of the conventional projections we obtain in section 4.3.6.2 is built from CBCC13Converted,
and because of the settings CBCC13Converted geometry, this CBCC can only be applied on the object having
compact support, which is strictly above the trajectory plane and strictly inside the safe cylinder that we have
mentioned above; while the CBCC of the conventional projections built from CBCC13 just require the support
of the object to be compact and strictly above the trajectory plane. Thus although the moments in both
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cases coincide and the two CBCCs share the same statement, the CBCC of the conventional projections built
from CBCC13Converted seems to be a special case of the one built from CBCC13. Anyway, those CBCCs are
not the final form of the CBCC for the conventional projections. The CBCC for the conventional projections
should not have any requirements on the position of the object. The only requirement on the object is that
its support is compact. Because all of the mentioned conditions on the position of the object come from the
fact that: the CBCCs of the conventional projections obtained so far are built from some original geometry
contexts (CBCC13 and CBCC13Converted geometry contexts) and these corresponding original geometry
contexts have detectors, and those detectors are flat. The flat detectors require suitable positions of the
object to make the corresponding weighted projections be non-truncated. However, when we really work with
the conventional projections, there is no detector. Theoretically, the conventional projections always exist and
are non-truncated if the object has compact support. Another “weird” example to also explain why we mention
“flat detectors” is that if we still consider the source to move on a finite plane along a general trajectory, and
we have a “sphere” detector, which is big enough to contain the finite trajectory plane strictly inside, then the
compactly supported object can be anywhere inside that sphere, the weighted projections collected on this
sphere detector always exist and are non-truncated. Then building the CBCC of the conventional projections
from this geometry context maybe one step towards to obtain the final form of the CBCC for the conventional
projections. Here we have no further result than what have been shown, but there are still interesting and
considerable things concerning the CBCC for the conventional projections to investigate.

4.3.8 Generalization of CBCC16

In this section, we will develop CBCC13Converted to a general version of CBCC16. As mentioned in the previous
section, until now, we still have the singularity z2 = 0 caused by the term

(
1/zn+2

2

)
in the moment JV

n (s1, s2, Y1, Y2)
in CBCC13Converted geometry, which keeps us having to assume that the support of the object must be strictly
above the trajectory plane, while it was handled perfectly in CBCC16 geometry. In [Clackdoyle et al., 2016], in
order to prove the moment MV

n (λ) is a homogeneous polynomial in cosλ and sinλ of degree n allowing the
support of the object to intersect the trajectory plane, the authors have defined an intermediate integration of
the conventional projection, which can be quickly proven to be a homogeneous polynomial, then this intermediate
integration is proven to also equal the original moment. Now, in CBCC13Converted geometry, let us redefine again
the weighted projections and moments with a different set of notations, to emphasize that: the following projections
and moments are computed from the 3D object, which is allowed to intersect the trajectory plane. Precisely, the
weighted projections on the vertical detector and the moments are respectively defined as follows:

ĝ (s1, s2, z1, z2) =

∫ ∞

0

f
(
s⃗+ t

(
z1β⃗s + z2e⃗3 −Dα⃗s

))
dt, where f (·, ·, x3) ∈ C n+1 (R) , (4.189a)

Ĵn (s1, s2, Y1, Y2) =

∫∫
ĝ (s1, s2, z1, z2)

[(
z1β⃗s −Dα⃗s

)
· (Y1, Y2, 0)

]n
hn (z2) dz1dz2, (4.189b)

where hn (v) is the inverse Fourier transform of Hn (ν), hn (v) =
∫
Hn (ν) e

2iπνvdν and:

Hn (ν) =
(−2iπ)

n+2

2 (n+ 1)!
|ν| νn. (4.190)

For any σ ∈ R and σ ̸= 0, we can see that:

Hn

(ν
σ

)
=

(−2iπ)
n+2

2 (n+ 1)!

∣∣∣ν
σ

∣∣∣
(ν
σ

)n
=

1

|σ|σn

(−2iπ)
n+2

2 (n+ 1)!
|ν| νn =

1

|σ|σn
Hn (ν) . (4.191)

From this, by a simple change of variables, we can compute:

hn (σv) =

∫
Hn (ν) e

2iπν(σv)dν =

∫
Hn (ν) e

2iπ(σν)vdν (4.192a)

=

∫
Hn

(
ν′

σ

)
e2iπν

′v dν
′

|σ| =

∫
1

|σ|σn
Hn (ν

′) e2iπν
′v dν

′

|σ| (4.192b)

=
1

σn+2

∫
Hn (ν

′) e2iπν
′vdν′ =

hn (v)

σn+2
, (4.192c)

hn (v) = σn+2hn (σv) . (4.192d)
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We obtain these properties for any non-zero real number σ.
Now the generalized CBCC in the geometry with the vertical detector can be stated as:

If ĝ (s1, s2, z1, z2) is the weighted cone-beam projection of some compactly supported function f , allowing this
support to intersect the trajectory plane, for all (s1, s2) ∈ R2, where f (·, ·, x3) ∈ C n+1 (R) as defined in
equation (4.189a), then:

Ĵn (s1, s2, Y1, Y2) = K̂n (Y1, Y2,−s1Y1 − s2Y2) , (4.193)

where Ĵn (s1, s2, Y1, Y2) is the moment defined in equation (4.189b) and K̂n (Y1, Y2, Y3) is a three-variable
homogeneous polynomial of degree n.

From the mathematical building blocks in previous sections, we now have in hand two approaches to prove this
result: either attacking directly the result (see section 4.3.8.1), or following the beautiful technique presented in the
paper [Clackdoyle et al., 2016] (see section 4.3.8.2).

4.3.8.1 Approach 1: attacking directly the result

The idea of this approach is just to reuse the materials in section 4.3.4. Since the moments JV
n (s1, s2, Y1, Y2) and

Ĵn (s1, s2, Y1, Y2) are only different because of replacing the term
(
1/zn+2

1

)
by hn (z2), this approach is in fact almost

the same as the proof in section 4.3.4. From the definitions (4.189a) and (4.189b), we can see that:

Ĵn (s1, s2, Y1, Y2) =

∫∫
ĝ (s1, s2, z1, z2)

[(
z1β⃗s −Dα⃗s

)
· (Y1, Y2, 0)

]n
hn (z2) dz1dz2 (4.194a)

=

∫∫ ∫ ∞

0

f
(
s⃗+ t

(
z1β⃗s + z2e⃗3 −Dα⃗s

)) [(
z1β⃗s −Dα⃗s

)
· (Y1, Y2, 0)

]n
hn (z2) dtdz1dz2.

(4.194b)

We change the variable: x⃗ = s⃗+ t
(
z1β⃗s + z2e⃗3 −Dα⃗s

)
, then from section 4.3.4, the following results have already

been obtained:

z1 =
D (−x1s2 + x2s1)

∥s⃗∥2 − x1s1 − x2s2
, z2 =

D ∥s⃗∥x3
∥s⃗∥2 − x1s1 − x2s2

, dtdz1dz2 =
D ∥s⃗∥2

(
∥s⃗∥2 − x1s1 − x2s2

)2 dx⃗, (4.195a)

(
z1β⃗s −Dα⃗s

)
· (Y1, Y2, 0) =

D ∥s⃗∥
∥s⃗∥2 − x1s1 − x2s2

[x1Y1 + x2Y2 + (−s1Y1 − s2Y2)] . (4.195b)

Then the above integral can be rewritten as:

Ĵn (s1, s2, Y1, Y2) (4.196a)

=

∫∫ ∫ ∞

0

f
(
s⃗+ t

(
z1β⃗s + z2e⃗3 −Dα⃗s

)) [(
z1β⃗s −Dα⃗s

)
· (Y1, Y2, 0)

]n
hn (z2) dtdz1dz2 (4.196b)

=

∫∫∫
f (x⃗)

[
D ∥s⃗∥

∥s⃗∥2 − x1s1 − x2s2
[x1Y1 + x2Y2 + (−s1Y1 − s2Y2)]

]n
×

× hn

(
D ∥s⃗∥x3

∥s⃗∥2 − x1s1 − x2s2

)
D ∥s⃗∥2

(
∥s⃗∥2 − x1s1 − x2s2

)2 dx⃗ (4.196c)

=

∫∫∫
f (x⃗)

Dn ∥s⃗∥n(
∥s⃗∥2 − x1s1 − x2s2

)n [x1Y1 + x2Y2 + (−s1Y1 − s2Y2)]
n ×

×

(
∥s⃗∥2 − x1s1 − x2s2

)n+2

Dn+2 ∥s⃗∥n+2 hn (x3)
D ∥s⃗∥2

(
∥s⃗∥2 − x1s1 − x2s2

)2 dx⃗. (4.196d)
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By simple calculations, we can see that:

Ĵn (s1, s2, Y1, Y2) =
1

D

∫∫∫
f (x⃗) [x1Y1 + x2Y2 + (−s1Y1 − s2Y2)]

n
hn (x3) dx⃗ (4.197a)

=
1

D

∫∫∫
f (x⃗)


 ∑

i+j+k=n

n!

i! j! k!
(x1Y1)

i
(x2Y2)

j
(−s1Y1 − s2Y2)

k


hn (x3) dx⃗ (4.197b)

=
∑

i+j+k=n

[
1

D

n!

i! j! k!

∫∫∫
f (x⃗)xi1x

j
2hn (x3) dx⃗

]
Y i
1Y

j
2 (−s1Y1 − s2Y2)

k
(4.197c)

= K̂n (Y1, Y2,−s1Y1 − s2Y2) , (4.197d)

where

K̂n (Y1, Y2, Y3) =
∑

i+j+k=n

[
1

D

n!

i! j! k!

∫∫∫
f (x⃗)xi1x

j
2hn (x3) dx⃗

]
Y i
1Y

j
2 Y

k
3 , (4.198)

is a three-variable homogeneous polynomial of degree n.

4.3.8.2 Approach 2: following the technique in [Clackdoyle et al., 2016]

The idea of the following proof comes directly from the paper [Clackdoyle et al., 2016], although the presentation
can be different, it is the same as the proof in [Clackdoyle et al., 2016], with some notation changes to fit the
geometry context. We will follow the technique in [Clackdoyle et al., 2016] to define an intermediate integration of
the conventional cone-beam projections. In this case, it is:

J̃n (s⃗, Y1, Y2) =

∫∫

S2
ĝconv (s⃗, η̂) [η̂ · (Y1, Y2, 0)]n hn (η̂ · e⃗3) dη̂. (4.199)

Step 1: Proving Ĵn (s1, s2, Y1, Y2) = (1/D) J̃n (s⃗, Y1, Y2): We first change the weighted projection in the formula

of Ĵn (s1, s2, Y1, Y2) to the conventional projection, using the relationship (4.143):

ĝ (s1, s2, Y1, Y2) = ĝconv (s⃗, η⃗ (s1, s2, z1, z2))
1√

z21 + z22 +D2
, (4.200)

where

η⃗ (s1, s2, z1, z2) =
z1β⃗s + z2e⃗3 −Dα⃗s√

z21 + z22 +D2
=

1

∥s⃗∥
√
z21 + z22 +D2



−z1s2 −Ds1
z1s1 −Ds2
z2 ∥s⃗∥


 . (4.201)

From this, we also see that:

z1β⃗s + z2e⃗3 −Dα⃗s =
√
z21 + z22 +D2 η⃗ (s1, s2, z1, z2) , (4.202a)

z2√
z21 + z22 +D2

= η⃗ (s1, s2, z1, z2) · e⃗3. (4.202b)
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Then, also using the property (4.192), we can rewrite the original moment Ĵn (s1, s2, Y1, Y2) as:

Ĵn (s1, s2, Y1, Y2)

=

∫∫
ĝ (s1, s2, z1, z2)

[(
z1β⃗s −Dα⃗s

)
· (Y1, Y2, 0)

]n
hn (z2) dz1dz2 (4.203a)

=

∫∫
ĝ (s1, s2, z1, z2)

[(
z1β⃗s + z2e⃗3 −Dα⃗s

)
· (Y1, Y2, 0)

]n
hn

(√
z21 + z22 +D2

z2√
z21 + z22 +D2

)
dz1dz2 (4.203b)

=

∫∫
ĝ (s1, s2, z1, z2)×

×
[√

z21 + z22 +D2 η⃗ (s1, s2, z1, z2) · (Y1, Y2, 0)
]n
hn

(√
z21 + z22 +D2 η⃗ (s1, s2, z1, z2) · e⃗3

)
dz1dz2 (4.203c)

=

∫∫
ĝconv (s⃗, η⃗ (s1, s2, z1, z2))√

z21 + z22 +D2
×

×
√
z21 + z22 +D2

n

[η⃗ (s1, s2, z1, z2) · (Y1, Y2, 0)]n
1

√
z21 + z22 +D2

n+2hn (η⃗ (s1, s2, z1, z2) · e⃗3) dz1dz2 (4.203d)

=

∫∫
ĝconv (s⃗, η⃗ (s1, s2, z1, z2)) [η⃗ (s1, s2, z1, z2) · (Y1, Y2, 0)]n hn (η⃗ (s1, s2, z1, z2) · e⃗3)

dz1dz2√
z21 + z22 +D2

3 . (4.203e)

Now we change η⃗ (s1, s2, z1, z2) to a unit vector η̂ ∈ S2:

η̂ = η⃗ (s1, s2, z1, z2) = =
1

∥s⃗∥
√
z21 + z22 +D2



−z1s2 −Ds1
z1s1 −Ds2
z2 ∥s⃗∥


 =



−∥s⃗∥−1 (

z21 + z22 +D2
)−1/2

(z1s2 +Ds1)

∥s⃗∥−1 (
z21 + z22 +D2

)−1/2
(z1s1 −Ds2)

z2
(
z21 + z22 +D2

)−1/2


 .

(4.204)

Then we also need to change dz1dz2 to dη̂, and dη̂ can be computed in terms of dz1dz2 by the formula:

dη̂ =

∥∥∥∥
∂η̂

∂z1
× ∂η̂

∂z2

∥∥∥∥ . (4.205)

With the above explicit formula of η̂, we can compute the partial derivative of η̂ with respect to z1:

∂η̂

∂z1
=




−∥s⃗∥−1

[
−1

2

(
z21 + z22 +D2

)−3/2
2z1 (z1s2 +Ds1) +

(
z21 + z22 +D2

)−1/2
s2

]

∥s⃗∥−1

[
−1

2

(
z21 + z22 +D2

)−3/2
2z1 (z1s1 −Ds2) +

(
z21 + z22 +D2

)−1/2
s1

]

z2

(
−1

2

)(
z21 + z22 +D2

)−3/2
2z1




(4.206a)

= ∥s⃗∥−1 (
z21 + z22 +D2

)−3/2




z1 (z1s2 +Ds1)−
(
z21 + z22 +D2

)
s2

−z1 (z1s1 −Ds2) +
(
z21 + z22 +D2

)
s1

−z1z2 ∥s⃗∥


 . (4.206b)

And the partial derivative of η̂ with respect to z2:

∂η̂

∂z2
=




−∥s⃗∥−1
(z1s2 +Ds1)

(
−1

2

)(
z21 + z22 +D2

)−3/2
2z2

∥s⃗∥−1
(z1s1 −Ds2)

(
−1

2

)(
z21 + z22 +D2

)−3/2
2z2

(
z21 + z22 +D2

)−1/2
+ z2

(
−1

2

)(
z21 + z22 +D2

)−3/2
2z2




= ∥s⃗∥−1 (
z21 + z22 +D2

)−3/2




z2 (z1s2 +Ds1)

−z2 (z1s1 −Ds2)

∥s⃗∥
(
z21 +D2

)



.

(4.207a)
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In order to compute

∥∥∥∥
∂η̂

∂z1
× ∂η̂

∂z2

∥∥∥∥, we can first compute the cross product of two vectors (the terms on the same

row with the same non-black color match together and are ready to be factorized):




z1 (z1s2 +Ds1)−
(
z21 + z22 +D2

)
s2

−z1 (z1s1 −Ds2) +
(
z21 + z22 +D2

)
s1

−z1z2 ∥s⃗∥


×




z2 (z1s2 +Ds1)

−z2 (z1s1 −Ds2)

∥s⃗∥
(
z21 +D2

)


 (4.208a)

=




−∥s⃗∥ z1
(
z21 +D2

)
(z1s1 −Ds2) + ∥s⃗∥ s1

(
z21 +D2

) (
z21 + z22 +D2

)
−∥s⃗∥ z1z22(z1s1 −Ds2)

−∥s⃗∥ z1
(
z21 +D2

)
(z1s2 +Ds1) + ∥s⃗∥ s2

(
z21 +D2

) (
z21 + z22 +D2

)
−∥s⃗∥ z1z22(z1s2 +Ds1)

z2s2
(
z21 + z22 +D2

)
(z1s1 −Ds2)− z2s1

(
z21 + z22 +D2

)
(z1s2 +Ds1)


 , (4.208b)

=




−∥s⃗∥z1 (z1s1 −Ds2)
(
z21 + z22 +D2

)
+ ∥s⃗∥s1

(
z21 +D2

) (
z21 + z22 +D2

)

−∥s⃗∥z1 (z1s2 +Ds1)
(
z21 + z22 +D2

)
+ ∥s⃗∥s2

(
z21 +D2

) (
z21 + z22 +D2

)

−Dz2
(
z21 + z22 +D2

) (
s21 + s22

)


 , (4.208c)

=




D ∥s⃗∥
(
z21 + z22 +D2

)
(z1s2 +Ds1)

D ∥s⃗∥
(
z21 + z22 +D2

)
(−z1s1 +Ds2)

−D ∥s⃗∥2 z2
(
z21 + z22 +D2

)


 (4.208d)

= D ∥s⃗∥
(
z21 + z22 +D2

)




z1s2 +Ds1

−z1s1 +Ds2

−∥s⃗∥ z2


 (4.208e)

From these materials, we can compute:

∥∥∥∥
∂η̂

∂z1
× ∂η̂

∂z2

∥∥∥∥

=

∥∥∥∥∥∥∥∥∥
∥s⃗∥−2 (

z21 + z22 +D2
)−3




z1 (z1s2 +Ds1)−
(
z21 + z22 +D2

)
s2

−z1 (z1s1 −Ds2) +
(
z21 + z22 +D2

)
s1

−z1z2 ∥s⃗∥


×




z2 (z1s2 +Ds1)

−z2 (z1s1 −Ds2)

∥s⃗∥
(
z21 +D2

)




∥∥∥∥∥∥∥∥∥
(4.209a)

=

∥∥∥∥∥∥∥∥∥
∥s⃗∥−2 (

z21 + z22 +D2
)−3

D ∥s⃗∥
(
z21 + z22 +D2

)




z1s2 +Ds1

−z1s1 +Ds2

−∥s⃗∥ z2




∥∥∥∥∥∥∥∥∥
(4.209b)

= D ∥s⃗∥−1 (
z21 + z22 +D2

)−2

∥∥∥∥∥∥∥∥∥




z1s2 +Ds1

−z1s1 +Ds2

−∥s⃗∥ z2




∥∥∥∥∥∥∥∥∥
(4.209c)

= D ∥s⃗∥−1 (
z21 + z22 +D2

)−2
[
(z1s2 +Ds1)

2
+ (−z1s1 +Ds2)

2
+ ∥s⃗∥2 z22

]1/2
(4.209d)

= D ∥s⃗∥−1 (
z21 + z22 +D2

)−2
(
∥s⃗∥2 z21 + ∥s⃗∥2D2 + ∥s⃗∥2 z22

)1/2
(4.209e)

= D ∥s⃗∥−1 (
z21 + z22 +D2

)−2
[
∥s⃗∥2

(
z21 + z22 +D2

)]1/2
(4.209f)

= D
(
z21 + z22 +D2

)−3/2
. (4.209g)
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Then dη̂ can be written in terms of dz1dz2 as:

dη̂ =

∥∥∥∥
∂η̂

∂z1
× ∂η̂

∂z2

∥∥∥∥ dz1dz2 = D
(
z21 + z22 +D2

)−3/2
dz1dz2 =

D
√
z21 + z22 +D2

3 dz1dz2. (4.210)

Thus, the original moment Ĵn (s1, s2, Y1, Y2) now becomes:

Ĵn (s1, s2, Y1, Y2) (4.211a)

=
1

D

∫∫
ĝconv (s⃗, η⃗ (s1, s2, z1, z2)) [η⃗ (s1, s2, z1, z2) · (Y1, Y2, 0)]n hn (η⃗ (s1, s2, z1, z2) · e⃗3)

D
√
z21 + z22 +D2

3 dz1dz2

(4.211b)

=
1

D

∫∫

S2
ĝconv (s⃗, η̂) [η̂ · (Y1, Y2, 0)]n hn (η̂ · e⃗3) dη̂ (4.211c)

=
1

D
J̃n (s⃗, Y1, Y2) . (4.211d)

Step 2: Proving J̃n (s⃗, Y1, Y2) = K̂n (Y1, Y2,−s1Y1 − s2Y2) (here K̂n (Y1, Y2, Y3) is a three-variable homogeneous
polynomial and we hope its formula coincides with what we obtain in the first approach.)
By the definition (4.199) of the intermediate moment, the definition of the conventional cone-beam projection and
the property (4.192) of hn (v), we can see that:

J̃n (s⃗, Y1, Y2) =

∫∫

S2
ĝconv (s⃗, η̂) [η̂ · (Y1, Y2, 0)]n hn (η̂ · e⃗3) dη̂ (4.212a)

=

∫∫

S2

∫
f (s⃗+ tη̂) [η̂ · (Y1, Y2, 0)]n hn (η̂ · e⃗3) dtdη̂ (4.212b)

=

∫∫

S2

∫
f (s⃗+ tη̂) [tη̂ · (Y1, Y2, 0)]n t−nhn (tη̂ · e⃗3) tn+2dtdη̂ (4.212c)

=

∫∫

S2

∫
f (s⃗+ tη̂) [tη̂ · (Y1, Y2, 0)]n hn (tη̂ · e⃗3) t2dtdη̂. (4.212d)

The obvious next step is to change the variables: x̃ = s⃗ + tη̂. Here we use a familiar result (which is completely
independent of what we are doing, we just use the same notations for simplicity): for any η̂ ∈ S2, s⃗ ∈ R3 and
t ∈ R, if x̃ = s⃗+ tη̂, then dx̃ = t2dtdη̂. We can prove this familiar result: any η̂ ∈ S2 can be parameterized by two
angular variables ϕ ∈ [0, 2π) and θ ∈ [0, π], where ϕ and θ are defined as same as in figure 4.16. Now η̂ and x̃ can
be rewritten in terms of ϕ and θ as:

η̂ =



cosϕ sin θ
sinϕ sin θ

cos θ


 and x̃ =



s1 + t cosϕ sin θ
s2 + t sinϕ sin θ
s3 + t cos θ


 (4.213)

Then by the formula mentioned in approach 1:

dη̂ =

∥∥∥∥
∂η̂

∂ϕ
× ∂η̂

∂θ

∥∥∥∥ dϕdθ (4.214a)

=

∥∥∥∥∥∥



− sinϕ sin θ
cosϕ sin θ

0


×



cosϕ cos θ
sinϕ cos θ
− sin θ



∥∥∥∥∥∥
dϕdθ (4.214b)

=

∥∥∥∥∥∥




− cosϕ sin2 θ
− sinϕ sin2 θ

− sin2 ϕ cos θ sin θ − cos2 ϕ cos θ sin θ



∥∥∥∥∥∥
dϕdθ (4.214c)

=

∥∥∥∥∥∥



− cosϕ sin2 θ
− sinϕ sin2 θ
− cos θ sin θ



∥∥∥∥∥∥
dϕdθ (4.214d)

=
(
cos2 ϕ sin4 θ + sin2 ϕ sin4 θ + cos2 θ sin2 θ

)1/2
dϕdθ (4.214e)

=
(
sin4 θ + cos2 θ sin2 θ

)1/2
dϕdθ (4.214f)

= sin θdϕdθ. (4.214g)
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And from the formula of x̃, we can compute the Jacobian matrix:

J =




∂x1
∂t

∂x1
∂ϕ

∂x1
∂θ

∂x2
∂t

∂x2
∂ϕ

∂x2
∂θ

∂x3
∂t

∂x3
∂ϕ

∂x3
∂θ



=



cosϕ sin θ −t sinϕ sin θ t cosϕ cos θ
sinϕ sin θ t cosϕ sin θ t sinϕ cos θ

cos θ 0 −t sin θ


 , (4.215a)

det J = −t2 cos2 ϕ sin3 θ−t2 sin2 ϕ cos2 θ sin θ−t2 cos2 ϕ cos2 θ sin θ−t2 sin2 ϕ sin3 θ (4.215b)

= −t2 sin3 θ − t2 cos2 θ sin θ (4.215c)

= −t2 sin θ. (4.215d)

Then we obtain:

dx̃ = t2 sin θdϕdθ = t2dη̂. (4.216)

Coming back with our problem, changing the variable x̃ = s⃗ + tη̂ leads to dx̃ = t2dtdη̂. Then the intermediate
integration can be rewritten as:

J̃n (s⃗, Y1, Y2) =

∫∫

S2

∫
f (s⃗+ tη̂) [tη̂ · (Y1, Y2, 0)]n hn (tη̂ · e⃗3) t2dtdη̂ (4.217a)

=

∫∫∫
f (x̃) [(x̃− s⃗) · (Y1, Y2, 0)]n hn ((x̃− s⃗) · e⃗3) dx̃ (4.217b)

=

∫∫∫
f (x̃) [x1Y1 + x2Y2 + (−s1Y1 − s2Y2)]

n
hn (x̃ · e⃗3) dx̃ (4.217c)

=

∫∫∫
f (x̃)

[
n∑

k=0

n!

i! j! k!
(x1Y1)

i
(x2Y2)

j
(−s1Y1 − s2Y2)

k

]
hn (x3) dx̃ (4.217d)

=

n∑

k=0

[
n!

i! j! k!

∫∫∫
f (x̃)xi1x

j
2hn (x3) dx̃

]
Y i
1Y

j
2 (−s1Y1 − s2Y2)

k
, (4.217e)

here s⃗ · e⃗3 = 0 since s⃗ = (s1, s2, 0) and e⃗3 = (0, 0, 1).
Thus from equations (4.211d) and (4.217e), we obtain:

Ĵn (s1, s2, Y1, Y2) =
1

D
J̃n (s⃗, Y1, Y2) (4.218a)

=
n∑

k=0

[
1

D

n!

i! j! k!

∫∫∫
f (x̃)xi1x

j
2hn (x3) dx̃

]
Y i
1Y

j
2 (−s1Y1 − s2Y2)

k
(4.218b)

= K̂n (Y1, Y2,−s1Y1 − s2Y2) , (4.218c)

where K̂n (Y1, Y2, Y3) is a three-variable homogeneous polynomial, which has the same formula as what we obtain
in approach 1. And this completes the proof.

4.3.9 Calibration in 3D cone-beam geometry with circular source trajectory

From the built CBCCs in the previous sections, we obtain the following preliminary geometry calibration result in
CBCC16 geometry:
Let the x-ray source move along a circle, whose center is at the world origin and radius is R; let the vertical detector
(the detector perpendicular to the trajectory plane) be not shifted or tilted or rotated, and always be at distance D
from the source for all source locations on the trajectory. Assuming that R and D are known, where D is sufficiently
large that the source and the detector are always on different side comparing to the world origin. The 3D object
is supposed to be strictly above the trajectory plane with its OPCH being inside the circular trajectory area, and
the projections are assumed to have no truncation. With all of these materials, our only aim is to calibrate the
corresponding source location of each given projection directly from the projections.
The result we obtain so far is that: if we know exactly two corresponding source locations of two known projections,



124 CHAPTER 4. CONE-BEAM CONSISTENCY CONDITIONS

which are on the circular trajectory and not symmetrical through the world origin, then we can calibrate the source
location of any other given projection. The method is to use CBCC13Converted to derive two different types of
CBCCs, and to end up solving a system of linear equations. Our desire is to obtain an analytic method or analytic
solutions of the source locations. The result is not completely done, but we still obtain some considerable clues to
get further.
Mathematically, the source locations on a circular trajectory are parameterized by the radius R > 0 and the view
angles λ ∈ [0, 2π). Since R is assumed to be known, then calibrating the source locations means solving for λ. As
mentioned in section 4.3.5.1, the weighted projection gV (s1, s2, z1, z2) on the vertical detector in CBCC13Converted
geometry definitely coincide with the weighted projection pVλ (z1, z2) in CBCC16 geometry (see definitions (4.2) and
(4.84)), if we consider the source to move along a circle, since s⃗ = (s1, s2, 0) = (R cosλ,R sinλ, 0) = s⃗λ and α⃗s = α⃗λ,

β⃗s = β⃗λ.

gV (s1, s2, z1, z2) =

∫ ∞

0

f
(
s⃗+ t

(
z1β⃗s + z2e⃗3 −Dα⃗s

))
dt =

∫ ∞

0

f
(
s⃗λ + t

(
z1β⃗λ + z2e⃗3 −Dα⃗λ

))
dt = pVλ (z1, z2)

(4.219)

In CBCC16 geometry, we already had a set of CBCC, which concerns the momentMV
n (λ) =

∫∫
pVλ (z1, z2)

zn1
zn+2
2

dz1dz2,

see definition (4.3). In fact, as shown in section 4.3.5.1, this moment can be extracted from the CBCC13Converted

geometry, by substituting (Y1, Y2, 0) = (− sinλ, cosλ, 0) = β⃗λ in the definition (4.103) of JV (s1, s2, Y1, Y2) with
s1 = R cosλ and s2 = R sinλ:

JV
n (R cosλ,R sinλ,− sinλ, cosλ) =

∫∫
gV (R cosλ,R sinλ, z1, z2)

[(
z1β⃗λ −Dα⃗λ

)
· β⃗λ

]n dz1dz2
zn+2
2

(4.220a)

=

∫∫
pVλ (z1, z2)

zn1
zn+2
2

dz1dz2 (4.220b)

=MV
n (λ) . (4.220c)

Moreover, using CBCC13Converted of order 1 with Y1 = − sinλ and Y2 = cosλ, we can see that:

MV
1 (λ) = JV

1 (R cosλ,R sinλ,− sinλ, cosλ) (4.221a)

= KV
1 (− sinλ, cosλ,−R cosλ (− sinλ)−R sinλ cosλ) (4.221b)

= KV
1 (− sinλ, cosλ, 0) (4.221c)

=
∑

i+j+k=n

CV
i,j,k (− sinλ)

i
(cosλ)

j
0k (4.221d)

=
∑

k=0
i+j=n

CV
i,j,0 (− sinλ)

i
(cosλ)

j
(4.221e)

= −CV
1,0,0 sinλ+ CV

0,1,0 cosλ. (4.221f)

Then we get a first-order equation of cosλ and sinλ.

−CV
1,0,0 sinλ+ CV

0,1,0 cosλ =MV
1 (λ) . (4.222)

Now we will find another first-order equation of cosλ and sinλ, by deriving a new CBCC in CBCC16 geometry
from CBCC13Converted. Using again the definition (4.103) of the moment JV

n (s1, s2, Y1, Y2) with s1 = R cosλ,
s2 = R sinλ, and (Y1, Y2, 0) = (cosλ, sinλ, 0) = α⃗λ, we obtain:

JV
n (R cosλ,R sinλ, cosλ, sinλ) =

∫∫
gV (R cosλ,R sinλ, z1, z2)

[(
z1β⃗λ −Dα⃗λ

)
· α⃗λ

]n dz1dz2
zn+2
2

(4.223a)

= (−D)
n
∫∫

pVλ (z1, z2)
1

zn+2
2

dz1dz2. (4.223b)

We then define a new type of moments in CBCC16 geometry:

M
V

n (λ) =

∫∫
pVλ (z1, z2)

1

zn+2
2

dz1dz2. (4.224)
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After that, using CBCC13Converted of order 1 with Y1 = cosλ and Y2 = sinλ, we can obtain:

−DMV

1 (λ) = JV
1 (R cosλ,R sinλ, cosλ, sinλ) (4.225a)

= KV
1 (cosλ, sinλ,−R cosλ cosλ−R sinλ sinλ) (4.225b)

= KV
1

(
cosλ, sinλ,−R

(
cos2 λ+ sin2 λ

))
(4.225c)

= KV
1 (cosλ, sinλ,−R) (4.225d)

=
∑

i+j+k=n

CV
i,j,k (cosλ)

i
(sinλ)

j
(−R)k (4.225e)

= CV
1,0,0 cosλ+ CV

0,1,0 sinλ−RCV
0,0,1 (4.225f)

And we rewrite this as another first-order equation of cosλ and sinλ.

CV
1,0,0 cosλ+ CV

0,1,0 sinλ = RCV
0,0,1 −DM

V

1 (λ) . (4.226)

From equations (4.222) and (4.226), we get the following system of equations for all λ ∈ [0, 2π):




−CV

1,0,0 sinλ+ CV
0,1,0 cosλ =MV

1 (λ) ,

CV
0,1,0 sinλ+ CV

1,0,0 cosλ = RCV
0,0,1 −DM

V

1 (λ) .

(4.227a)

(4.227b)

In this system of equations, the moments MV
1 (λ) and M

V

1 (λ) can be computed directly from the projections, then
in order to solve λ, we need to find the coefficients CV

1,0,0, C
V
0,1,0 and CV

0,0,1. As in the assumptions, let’s say we know
exactly two source locations and their corresponding weighted projections, and these two source locations are not
symmetrical through the world origin on the circular trajectory, this means we know two view angles λ1, λ2 ∈ [0, 2π),
such that: {

λ1 ̸= λ2,

|λ1 − λ2| ≠ π.

(4.228a)

(4.228b)

Substituting λ by λ1 and λ2 respectively in equation (4.227a), we obtain the following system of equations:

{
−CV

1,0,0 sinλ1 + CV
0,1,0 cosλ1 =MV

1 (λ1) ,

−CV
1,0,0 sinλ2 + CV

0,1,0 cosλ2 =MV
1 (λ2) .

(4.229a)

(4.229b)

Since we are finding CV
1,0,0 and C

V
0,1,0, knowing λ1 and λ2, so in this system of equations the coefficients are (− sinλ1),

cosλ1, (− sinλ2), cosλ2 and the unknowns are CV
1,0,0 and CV

0,1,0. We can see that:

det

[
− sinλ1 cosλ1
− sinλ2 cosλ2

]
= − sinλ1 cosλ2 + sinλ2 cosλ1 = sin (λ2 − λ1) ̸= 0. (4.230)

sin (λ2 − λ1) ̸= 0 is because of the fact that λ1, λ2 ∈ [0, 2π) satisfying the condition (4.228). Since λ1, λ2 ∈ [0, 2π)
means −2π < λ2 − λ1 < 2π, and λ2 − λ1 ̸∈ {−π, 0, π} due to the condition (4.228), then sin (λ2 − λ1) ̸= 0. Then
from this, we can solve for CV

1,0,0 and CV
0,1,0 in the system (4.229).

CV
1,0,0 =

det

[
MV

1 (λ1) cosλ1
MV

1 (λ2) cosλ2

]

det

[
− sinλ1 cosλ1
− sinλ2 cosλ2

] =
MV

1 (λ1) cosλ2 −MV
1 (λ2) cosλ1

sin (λ2 − λ1)
, (4.231a)

CV
0,1,0 =

det

[
− sinλ1 MV

1 (λ1)
− sinλ2 MV

1 (λ2)

]

det

[
− sinλ1 cosλ1
− sinλ2 cosλ2

] =
−MV

1 (λ2) sinλ1 +MV
1 (λ1) sinλ2

sin (λ2 − λ1)
. (4.231b)

With these values of CV
1,0,0 and CV

0,1,0, from equation (4.227b), we can also compute CV
0,0,1 by replacing λ by λ1:

CV
0,0,1 =

1

R

(
CV

0,1,0 sinλ1 + CV
1,0,0 cosλ1 +DM

V

1 (λ1)
)
. (4.232)
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Coming back with the system of equations (4.227), all of the coefficients CV
1,0,0, C

V
0,1,0 and CV

0,0,1 are computed from
λ1 and λ2, the unknowns now are sinλ and cosλ, we can see that if:

det

[
−CV

1,0,0 CV
0,1,0

CV
0,1,0 CV

1,0,0

]
= −

(
CV

1,0,0

)2 −
(
CV

0,1,0

)2 ̸= 0, (4.233)

then we obtain unique solution of (sinλ, cosλ) as follows:

sinλ =

det

[
MV

1 (λ) CV
0,1,0

RCV
0,0,1 −DM

V

1 (λ) CV
1,0,0

]

det

[
−CV

1,0,0 CV
0,1,0

CV
0,1,0 CV

1,0,0

] =
CV

0,1,0

(
RCV

0,0,1 −DM
V

1 (λ)
)
− CV

1,0,0M
V
1 (λ)

(
CV

1,0,0

)2
+
(
CV

0,1,0

)2 , (4.234a)

cosλ =

det

[−CV
1,0,0 MV

1 (λ)

CV
0,1,0 RCV

0,0,1 −DM
V

1 (λ)

]

det

[
−CV

1,0,0 CV
0,1,0

CV
0,1,0 CV

1,0,0

] =
CV

1,0,0

(
RCV

0,0,1 −DM
V

1 (λ)
)
+ CV

0,1,0M
V
1 (λ)

(
CV

1,0,0

)2
+
(
CV

0,1,0

)2 . (4.234b)

Thus in conclusion, if the data is consistent, if λ1 and λ2 follow the assumptions (4.228) and the crucial condi-

tion (4.233):
(
CV

1,0,0

)2
+
(
CV

0,1,0

)2 ̸= 0 is satisfied, then the solution of λ is unique and defined by equations (4.234),
(4.231) and (4.232).

Comments

• The most crucial condition in this method is the condition (4.233), we are just stopping here with no further
clues so far. One may check in which situation, the condition holds or in which situation, both coefficients
CV

1,0,0 and CV
0,1,0 equal 0 at the same time. Anyway, with the current result, we are still able to state that if

the solution exists, then it is unique and its analytic formula has been explicitly shown.

• One can also find many other DCCs, e.g. going to higher-order moments, to gain new information. The aim
is to get rid of the assumption of (must) knowing exactly two source locations to calibrate the others. We
want to obtain the geometric parameters completely and only from the projections to make the method truly
be automatic calibration.
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French version

Tout au long de cette thèse, nous avons eu la chance d’étudier des connaissances en imagerie médicale et de
travailler principalement sur les DCC et la calibration géométrique. Nos contributions sont présentées dans trois
chapitres: 2, 3 et 4. Comme mentionné au tout début, notre objectif était de dériver de nouvelles DCC et d’essayer
de les appliquer à des problèmes de calibration appropriés.

• Dans le chapitre 2, nous avons travaillé avec la géométrie parallèle 3D. Dans le cas général, nous avons dérivé
les DCC par paires s’appliquant à deux projections parallèles arbitraires. En fait, cette condition n’était
pas nouvelle, mais nous avons obtenu une méthode et une formule analytique pour calibrer explicitement
et rapidement la direction de projection inconnue (qui est un vecteur unitaire 3D), si on nous donne trois
projections parallèles, dans lesquelles deux directions de projection sont également données à l’avance. Pour
le cas dégénéré du problème, nous résolvons un cas particulier, où les deux directions de vue connues sont
supposées être perpendiculaires l’une à l’autre. Sur la base de cette hypothèse, nous pouvons dériver une
autre DCC dans le plan pour traiter ce cas dégénéré. En fait, la construction de la DCC dans le plan et la
méthode présentée dans le cas dégénéré étaient équivalentes à la résolution du problème d’étalonnage 3D en
le divisant en de nombreux problèmes d’étalonnage 2D, en résolvant tous les problèmes 2D et en choisissant la
solution commune à tous comme solution estimée de la direction de projection inconnue. Dans ce cas, chaque
problème d’étalonnage 2D prend en compte une tranche 2D de l’objet 3D et se situe dans un certain plan
parmi un groupe de plusieurs plans parallèles.

• C’était la toute première fois que nous avions cette idée. Dans le chapitre 3, nous l’avons recyclée et réutilisée
pour traiter la géométrie du faisceau conique avec la trajectoire linéaire de la source. Notre travail a consisté
à construire géométriquement de nombreux plans obliques coupant l’objet 3D pour créer des coupes 2D
correspondantes sur les plans obliques. Nous avons ensuite converti le problème d’étalonnage du faisceau
conique en un ensemble de problèmes d’étalonnage du faisceau en éventail, un sur chaque plan oblique. Nous
avons résolu le problème dans lequel nous disposons de quatre projections en éventail et nous connaissons
trois positions de la source parmi celles-ci. Nous sommes alors en mesure d’étalonner la position de la source
inconnue en utilisant la condition de cohérence du faisceau en éventail d’ordre 2. Pour ce problème, nous
avons également donné un modèle physique d’un objet 3D posé sur un tapis roulant, que l’on peut imaginer
comme un bagage posé sur un tapis roulant passant par un système de scanner radiologique d’aéroport. Les
chapitres 2 et 3 doivent être considérés comme une paire. Dans les deux cas, les méthodes fonctionnent à
condition que l’objet 3D satisfassent certaines conditions (très généralement satisfaites). Bien qu’elles soient
différentes pour chaque chapitre dans les détails, l’idée principale était que l’objet 3D doit être suffisamment
général pour donner de nouvelles informations sur chaque plan (plan parallèle pour le chapitre 2 et plan
oblique pour le chapitre 3) contenant le problème de calibration 2D, de sorte que nous obtenions de nouvelles
informations sur les solutions, ce qui nous a aidé à obtenir la solution estimée unique pour le problème de
calibration 3D correspondant.

• Nous avons étudié en profondeur deux articles : [Clackdoyle and Desbat, 2013] et [Clackdoyle et al., 2016]
dans le chapitre 4. Nous avons d’abord essayé de trouver la relation entre les DCC dans ces deux articles, et
avons essayé de convertir les DCC de l’un dans le contexte géométrique de l’autre. Nous avons appris que les
DCC de [Clackdoyle and Desbat, 2013] peuvent générer de nombreuses DCC dans de nombreuses géométries
particulières, même avec une trajectoire de la source très générale. Nous avons obtenu de nouvelles DCC dans
plusieurs situations, mais le plus important était les DCC pour les projections pondérées de faisceaux coniques
collectées sur un détecteur perpendiculaire au plan contenant la trajectoire de la source (détecteur vertical
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si le plan de la trajectoire est horizontal), avec une trajectoire générale de la source. Nous avons finalement
appliqué ces DCC au problème de calibration de faisceau conique avec une trajectoire de source circulaire,
pour estimerer la position de la source sur le cercle. La méthode de calibration n’a pas encore été étudiée dans
tous ses détails, mais elle pourrait potentiellement donner une solution unique au problème d’estimation de
la position la source avec une formule analytique (par exemple si on on connait trois projections, dont deux
avec des positions de source connues et qu’on cherche à identifier la possition de la troisième).

En général, nos résultats sont théoriques. Cependant, certains d’entre eux peuvent constituer un potentiel pour des
développements plus directs afin d’être utiles dans des applications réelles.

English version

Throughout the thesis, we have the chance to study Medical Imaging knowledge and mainly work on the DCC and
geometric calibration. Our contributions are presented in three chapters: 2, 3 and 4. As mentioned at the very
beginning, we aim to derive new DCC and try to apply them into suitable calibration problems.

• In chapter 2, we worked with the 3D parallel geometry. In general case, we derived the pair-wise DCC
applying on two arbitrary parallel projections. In fact, this condition was not new, but from this, we obtained
a method and an analytic formula to explicitly and quickly calibrate the unknown viewing direction (which is
a 3D unit vector), if we were given three parallel projections, in which two viewing directions were also given
in advance. For the degenerate case of the problem, we just solved a particular case, where the two known
viewing directions were assumed to be perpendicular to each other. Based on this assumption, we can derive
another in-plane DCC to deal with this degenerate case. In fact, the construction of the in-plane DCC and the
method presented in the degenerate case were equivalent to solving the 3D calibration problem by splitting
it into many 2D calibration problems, solving all the 2D problems, and choosing the common solution among
all to be the estimated solution of the unknown viewing direction. Here each 2D calibration problem took a
2D slice of the 3D object into account, and was set in one certain plane in a group of many parallel planes.

• That was the very first time we had this idea. In chapter 3, we recycled and reused it to deal with the
cone-beam geometry with the linear source trajectory. Our work was to geometrically construct the group of
many oblique planes slicing through the 3D object to create the corresponding 2D slices on the oblique planes.
We then converted the cone-beam calibration problem into a set of many fan-beam calibration problems, one
on each oblique plane, in which we were given four fan-beam projections and we knew three source positions
among them, then we were able to calibrate the unknown source position using the fan-beam consistency
condition of order 2. We also gave a physical model of some 3D object sitting on the conveyor belt for this
problem, which could be imagined as a luggage sitting on a conveyor belt running through a scan system at the
airport. Chapter 2 and chapter 3 should be considered as a pair. The most crucial things made the methods
in both of them work were the requirements on the 3D object. Although they were different for each chapter
in details, the main idea was that the 3D object must be general enough to give new information on each
plane (parallel plane for chapter 2 and oblique plane for chapter 3) containing the 2D calibration problem, so
that we earned new information on the solutions, which helped us get the unique estimated solution for the
corresponding 3D calibration problem.

• In chapter 4, we dug deeply into two articles: [Clackdoyle and Desbat, 2013] and [Clackdoyle et al., 2016].
We first tried to find the relationship between the DCCs in those two papers, and tried to convert this DCC
into the other’s geometry context. We learned that the DCC in [Clackdoyle and Desbat, 2013] can generate
many DCCs in many particular geometry contexts, even with very general source trajectory. We obtained
some new DCCs in several situations, but the most significant one was the DCC for weighted cone-beam
projections collected on a detector, which was perpendicular to the plane containing the source trajectory
(vertical detector if the trajectory plane is horizontal), with general source trajectory. We finally applied it
into the cone-beam calibration problem with circular source trajectory, to calibrate the source position on the
circle. The method of calibration was not completely studied in every details yet, but it might be potential
enough to give unique solution of the source position, with analytic formula, if we were given in advance three
projections, and we knew two source positions among them.

In general, our results are theoretical. However, some of them can be potential for more straight-forward develop-
ments to be useful in real applications.



Appendix A

Proceedings paper in 2018 NSS/MIC

In this appendix, our proceedings paper [Clackdoyle et al., 2018] in the 2018 IEEE Nuclear Science Symposium and
Medical Imaging Conference is provided. This is an early work at the beginning of the thesis, and it is not too
relevant to the other contributions of the thesis. It can be considered as a chance for the author to practice creating
new DCC, with the main idea is to apply the knowledge in 2D parallel geometry, to work with a new model, where
the integrals are taken over concentric circles (instead of lines).

In this paper, we show that the radar operator R is the dual operator of the operator in the image reconstruction
problem in the scatter imaging model. Thus, in order to study the nullspace of this operator, we need to know
about the range of R, which leads to the work of deriving range conditions or DCCs on the 2D radar projections.
Section A.1 describes the geometry and defines the 2D radar projections. Section A.2 presents one of the DCCs
being applied on the 2D radar projections.

A.1 2D radar geometry and 2D radar projections

In this model, we work with the 2D plane and the standard coordinate system (x1, x2). There is a 2D object f ,
with compact support, which is assumed to never intersect the x1-axis. Now the x-ray source is considered to be on
the x1-axis. We use the notation (x, 0) to refer to the position of this x-ray source. It emits radar waves, which are
concentric circles (with the common center is the x-ray source’s position), passing through the 2D object. For each

x1

x2

2D object

b

source

r

r-axis
x

b

r

Figure A.1: 2D radar geometry: for each source position (x, 0), the 2D radar projection is a single-variable function,
with the variable r being the radius of a certain circle in the radar wave; the data being measured and recorded is
the integral over the corresponding circle.
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position (x, 0) of the x-ray source on the x1-axis, we have a projection, which is a single-variable function. This
projection records the integral of the 2D object over the concentric circles. The real variable r shows the radius of
the considering circle, on which we are computing the corresponding integral. We use the notation R to define the
radar operator that maps the 2D function f to the set of the integrals over the concentric circles:

Rf (x, r) =

∫ 2π

0

f (x+ r cos θ, r sin θ) dθ, ∀x ∈ R,∀r ∈ [0,∞) . (A.1)

Then the 2D radar projection, which corresponds to the source position (x, 0), is defined as follows:

px (r) = p (x, r) = Rf (x, r) , ∀r ∈ [0,∞) . (A.2)

A.2 DCCs for the 2D radar projections

If p is in the range of R: p = Rf for some compactly supported function f , then the moment of order 2n
defined as follows:

M2D, radar
2n (x) =

∫ ∞

0

px (r) r
2n+1dr, (A.3)

becomes a polynomial in x of degree (at most) 2n (n is a non-negative integer).

As a result, following the idea from the paper [Patch, 2004], we introduce the extension on the projection data:

px (r) = −px (−r) , for r < 0. (A.4)

We continue to use the above DCC on the 2D radar projections, and the knowledge about Hermite polynomials
(see the book [Abramowitz et al., 1972], pages 773-775 and 785) and the properties of the orthogonal basis (see the
book [Szegö, 1939], pages 23-28), we derive the following result:

If p is in the range of R: p = Rf for some compactly supported function f , then the projection data p can
be written as a series with polynomials as the building blocks:

p (x, r) = e−r2
∞∑

j=0

C2j+1 (x)H2j+1 (r) , (A.5)

where C2j+1 (x) is a polynomial in x of degree 2j, and H2j+1 (r) is the normalized Hermite polynomial in r
of degree 2j + 1 (with j is a non-negative integer).



Scatter Imaging and Radar:
Dual Image Reconstruction Problems

Rolf Clackdoyle, Hung Nguyen, Valérie Perrier, Laurent Desbat

Abstract—We are investigating a particular reconstruction
problem in the context of coherent scatter imaging. We show
the links between this problem and a well-known reconstruction
problem in synthetic aperture radar (SAR). Mathematically, the
problems are dual to each other. We explore the range conditions
of the SAR operator, S, because these conditions are related
to the nullspace of the scatter imaging operator S∗. Here we
present our preliminary results, and we include simulations and
reconstructions for a simple version of the problem.

I. INTRODUCTION

Imaging of coherently scattered photons in the x-ray energy
range has been of potential medical interest for some time,
due to the improved contrast of bodily tissues compared
to conventional primary-photon imaging [1]. Professor Johns
and co-workers at Carleton University in Canada have been
developing projection imaging with scattered photons (rather
than CT) [2][3]. Figure 1 illustrates the basic concept. When
x-rays pass through a small sample, the primary beam is
attenuated due to photoelectric effects, to Compton scattered
photons, and to coherently scattered photons. The coherent
scatter is strongly forward peaked, so it can be readily detected
as a pattern of rings centered at the target of the primary beam.
The radius of each ring corresponds to a fixed scattering angle,
and, ideally, the signal is constant along each ring. This 2D
function is called a radial function since it depends only on the
radius of the ring (in this simplified description). The radial
functions are of interest because their patterns are related to
the material of the sample and provide much stronger contrast
differences for several biological materials than direct x-ray
imaging does.

There are other groups actively studying the coherent scat-
ter imaging problem [4][5][6][7], but their approaches differ
considerably from the geometry described here. In their latest
developments, Johns et al measure an extended object by
simultaneously applying several parallel monochromatic x-ray
beams through the object. In this case, the radial functions are
superimposed on the detector and must be ‘disentangled’ to
separate the individual radial functions corresponding to each
x-ray pencil beam. This work is described in [8] where five
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Fig. 1. Measuring coherent scatter. A pencil beam of x-rays interacts with
the sample and the scattered rays form rings on the detector, with each ring
corresponding to a certain scattering angle at the sample. The pattern of rings
depends on the physical characteristics of the sample.

parallel pencil beams were arranged in a horizontal plane, in
the manner illustrated in Figure 2.

Here we consider the mathematical situation where a par-
allel pencil beam of x-rays occurs for each point along the
x-axis. The problem is to extract (reconstruct) the individual
radial functions from the 2D image of superimposed radial
functions.

Fig. 2. Parallel data collection. Here, five pencil beams of x-rays are
simultaneously passed through the extended sample to generate five radial
functions. The radial functions are superimposed on the detector and need to
be separated into individual radial functions using a reconstruction method.

The coherent scatter imaging problem is related to a re-
construction problem in synthetic aperture radar (SAR). In a
highly simplified description of SAR, an airplane flies in a
straight line at a constant altitude, as illustrated in Figure 3.
Radar signals emitted from the airplane are bounced back from
the ground, and captured according to arrival times. Each time
point corresponds to a signal integrated over a circle on the
ground centered directly underneath the airplane.

The SAR image reconstruction problem resembles that of
classical tomography. The projections consist of integrals over
circles instead of along straight lines. A projection can be
considered a collection of such integrals for circles with a

European978-1-5386-8494-8/18/$31.00 ©2018 Union



Fig. 3. The radar imaging problem. The ground features are probed by the
radar pulses from the airplane. Circular projections of the “reflectivity” are
measured.

common centre. A single projection measurement is therefore
a radial function, because it only depends on the radius of the
circle. Note that radial functions are the measurements in
the SAR problem, whereas for coherent scatter imaging,
the radial functions are the unknown, sought quantity.
Image reconstruction for SAR has been understood for some
time (see, e.g. [9]), and has the familiar features of (i) a
slice theorem, (ii) filtered-backprojection (FBP) reconstruc-
tion, (iii) backprojection-filtering reconstruction.

II. MATHEMATICAL DESCRIPTIONS

A. Coherent scatter imaging model

For the coherent scatter imaging problem, we let b(x, y)
represent the “scatter image”, which is the intensity of the
measurements on the detector. The vertical axis is y and we
assume that the centers of the circles lie along the x-axis.
We use g for the radial functions and let g(x′, r) be the
intensity of the ring of radius r whose center is at location
(x′, r). We assume and infinite number of pencil beams, one
for each point on the x-axis. The measurements consist of the
superposition of these radial functions and we use the operator
S∗ to represent this superposition. So b = S∗g where

S∗g (x, y) =

∫ ∞

−∞
g(x′, r)|

r=
√

(x−x′)2+y2
dx′. (1)

The objective is to reconstruct g from measurements b.

B. SAR model

For the SAR image reconstruction problem we let f(x, y)
represent the terrain which is scanned by radar by the airplane
flying directly above the x-axis. We assume the measured radar
signal at an instant of time is the integrated value of f for
all points at equal distance to the airplane, thus a circle of
radius r centered at (x′, 0), so the measurements are radial
functions. We use S to represent this measurement process,
hence g = Sf where

Sf (x′, r) =

∫ 2π

0

f(x′ + r cosφ, r sinφ) dφ. (2)

The objective is to reconstruct f from SAR data g = Sf .
Note that if f is odd in y (i.e. f(x,−y) = −f(x, y)) then

it is invisible in the sense that Sf = 0. It is therefore assumed
that f is even in y, or, equivalently, that only the even part of
f can be reconstructed.

C. SAR image reconstruction

The backprojection of g performs the usual “smearing” of
the radial functions into the original domain and can be written
as

b(x, y) =

∫ ∞

−∞
g(x′, r)|

r=
√

(x−x′)2+y2
dx′ (3)

which is identical to (1), so we can safely use the symbol S∗

to represent the backprojection operator in the SAR context.
The SAR slice theorem is

f̂(kx, ky) = g̃
(
kx,
√
k2x + k2y

) |ky|
2
. (4)

As will be evident below, the “slices” are vertical lines in the
2D Fourier space. Here, f̂ is the usual 2D Fourier transform
of f , f̂(kx, ky) =

∫ ∫
f(x, y) exp(−2πi(kxx + kyy)) dx dy,

and g̃ is the Fourier-Hankel transform of g (Fourier of the first
variable, Hankel of the second variable):

g̃(kx, ρ) =

∫ ∞

−∞

∫ ∞

0

g(x, r) e−2πikxx J(rρ) r dr dx (5)

where J(t) =
∫ 2π

0
e2πit sinφ dφ is (a scalar multiple of) the

Bessel function of order zero.
Re-expressed, the slice theorem is

g̃(kx, ρ) =
2√

ρ2 − k2x

{
f̂(kx,

√
ρ2 − k2x) if ρ > |kx|

0 otherwise
(6)

and we more clearly see that there is a relationship in the
Fourier domain between vertical slices f̂(kx, ·) of the sought
quantity f , and vertical slices g̃(kx, ·) of the Fourier-Hankel
transform of the measurements g.

A filtered-backprojection (FBP) reconstruction algorithm
for fFBP can be formulated as the backprojection, (1), of
“filtered” projections g F:

fFBP(x, y) = S∗g F(x, y) =

∫ ∞

−∞
g F(x′,

√
(x− x′)2 + y2) dx

(7)

g̃ F(kx, ρ) = g̃(kx, ρ)

√
ρ2 − k2x

2
(8)

where
√
ρ2 − k2x is understood to be zero for |kx| < ρ.

Reconstruction by filtering after backprojection is also pos-
sible, via

f̂(kx, ky) = b̂(kx, ky)
|ky|
2

(9)

All of these results (in section II.C) have been known for
some time. Furthermore, they have all been put on a rigorous
mathematical foundation [9].

III. IMAGE RECONSTRUCTION FOR COHERENT SCATTER

We report here on our preliminary investigations to invert
S∗ in order to perform reconstruction for the coherent scatter
problem, i.e. to find g from b = S∗g.



A. Duality

For the scatter imaging problem, b = S∗g, we anticipate for
physical reasons, that the backprojection process, symbolized
by (S∗)∗ would consist of creating and superimposing radial
functions from the scatter image b(x, y):

(S∗)∗b (x′, r) =

∫ 2π

0

b(x′ + r cosφ, r sinφ) dφ (10)

To verify this formula mathematically, we consider the usual
definition of backprojection, the adjoint of the forward opera-
tor. Here the forward operator is S∗ so we define the adjoint,
(S∗)∗, by 〈S∗g , b〉1 = 〈g , (S∗)∗b〉2. The inner products are
defined, as expected, by

〈b1 , b2〉1 =

∫ ∞

−∞

∫ ∞

−∞
b1(x, y) b2(x, y) dx dy

〈g1 , g2〉2 =

∫ ∫ ∞

0

g1(x′, r) g2(x′, r) r dr dx′. (11)

Using these inner products, and the definition of S∗, we obtain

〈S∗g , b〉1 =

∫ ∫
S∗g(x, y) b(x, y) dx, dy

=

∫ ∫ ∫
g(x′,

√
(x− x′)2 + y2) b(x, y) dx′ dx dy

=

∫ ∫ ∫
g(x′,

√
x̄2 + y2) b(x̄+ x′, y) dx̄ dy dx′

=

∫ ∫ ∞

0

∫ 2π

0

g(x′, r) b(r cosφ+ x′, r sinφ) dφ r dr dx′

=

∫ ∫ ∞

0

g(x′, r)
[ ∫ 2π

0

b(r cosφ+ x′, r sinφ) dφ
]
r dr dx′

=

∫ ∫ ∞

0

g(x′, r)
[
(S∗)∗b (x′, r)

]
r dr dx′

= 〈g , (S∗)∗b〉2 (12)

by which we see that (S∗)∗b is indeed given by equation (10).
(Note: in (12) and elsewhere, all integrals are evaluated from
−∞ to +∞ unless otherwise indicated.)

We have already noted that S∗, the forward model for the
coherent scatter problem, is the same as the backprojection
operator for the SAR problem. We have now also shown that
(S∗)∗, the backprojection operator for the coherent scatter
problem is the same as the forward model, S for the SAR
problem. In other words, (S∗)∗ = S and the duality between
the two problems is complete: the forward model of one
problem corresponds to the backprojection of the other.

Inversion of S∗ (to reconstruct g, the coherent scatter radial
function) now looks easy, since we know from SAR formulas
how to invert S. In short, we expect (S∗)−1 = (S−1)∗.
However, the naive procedure to take measurements b, then
obtain f using SAR reconstruction (see equation (10) for
example), and subsequently calculate g = Sf as a method
to reconstruct g will fail, in general. The difficulty is that the
unknown radial functions g might not be of the form Sf for
some f , i.e. the correct g might not be in the range of S. The
problem is that the operator S is not onto (not surjective), and
is subject to range conditions, also known as “data consistency
conditions” as will be discussed in more detail in Section III.B

below. The original coherent scatter radial functions g are
under no such constraints.

On the other hand, Section II.C gives explicit reconstruc-
tion formulas, demonstrating that S is one-to-one (injective).
Strictly speaking, S does not have a true inverse; it only
has a left inverse, say SL. [ASIDE: The Radon transform
has this same characteristic: the Radon inversion formula is
a left inverse.] Now letting the identity operator be I , we have
I = SLS and I = I∗ = (SLS)∗ = S∗(SL)∗ which shows
that S∗ has a right inverse, namely (S∗)R = (SL)∗. Therefore
the coherent scatter operator S∗ is onto, but not one-to-one.
We conclude that unique solutions of b = S∗g for g are not
possible.

The nullspace of the operator S∗ exactly characterizes the
non-uniqueness of the coherent scatter reconstruction problem,
so it is essential to obtain a complete description of it. This
nullspace is closely linked to the range conditions on S: if
q(x′, r) is in the nullspace of S∗ then S∗q = 0, and for all
function b(x, y), we have 0 = 〈b , S∗q〉1 = 〈(S∗)∗b , q〉2 =
〈Sb , q〉2 so q is a range condition on the operator S, and
conversely. (In finite dimensions, the statement is just that the
nullspace of a matrix is orthogonal to the column space of its
transpose.) We therefore search for a suitable description of
the range of S.

B. Range conditions for SAR; nullspace for coherent scatter

We have pursued three approaches to describing the range
conditions of S. One approach involves moment conditions
and polynomial expressions; another approach considers links
to wave equations; and the third approach appeals directly to
the slice theorem.

Moment conditions are used in the Helgason-Ludwig con-
ditions for the Radon transform and take the form of certain
polynomial expressions. Following this approach [10] we
consider gx′(r) = g(x′, r) as a projection with index x′ and
take the 2nth moment which we call Hn(x′). If g = Sf for
some f , then

Hn(x′) =

∫ ∞

0

gx′(r) r2n+1 dr

=

∫ ∞

0

∫ 2π

0

f(x′ + r cosφ, r sinφ) r2n dφ r dr

=

∫ ∫
f(x′ + x, y) (x2 + y2)n dx dy

=

∫ ∫
f(x, y)((x− x′)2 + y2)n dx dy (13)

which is a polynomial of degree (at most) 2n in x′.
We have taken this approach further and have shown that

if g = Sf for some f , then g can be written in terms of
polynomials:

g(x′, r) = e−r
2
∞∑

j=0

C2j+1(x′)h2j+1(r) (14)

where h2j+1(r) is the normalized Hermite polynomial of
degree 2j+1, and where C2j+1(x′) is a polynomial of degree
at most 2j. Therefore, functions of the form qk,j(x

′, r) =



e−r
2

(x′)k h2j+1(r) with k > 2j are in the orthogonal com-
plement of the range of S, and are therefore in the nullspace
of S∗.

In our second approach to examining the range conditions
for S, we followed the work of Narayanan and Rakesh [11].
Here a link between the operator S was made with a certain
partial differential equation. A necessary and sufficient condi-
tion for a function g(x′, r) to be in the range of S was given in
terms of the following formula. For all x ∈ R and all non-zero
y ∈ R,
∫ ∫ ∞

0

H(r2 + y2 − (x′)2)√
r2 + y2 − (x′)2)

r
( 1

2r

∂

∂r

)F (x+ x′, r)
r

dr dx′

= 0 (15)

where H is the Heaviside function and F is the function of
interest. The function F is related to the solution of the wave
equation and satisfies the above equation if and only if it is in
the range of the operator U defined by

Uf (x′, r) =
1

π
r
( 1

2r

∂

∂r

)
×

∫ ∫
H(r2 − (x′ − x)2 − y2)√

r2 − (x′ − x)2 − y2
f(x, y) dx dy

(16)

We have not yet clarified the links to the range of S, but
these equations seem to be quite different from the other two
approaches.

The third approach to examining range conditions for S
appealed directly to the slice theorem, equation (6). There we
see that if g = Sf for some f , then g̃ has the property that
g̃(kx, ρ) = 0 for ρ < |kx|. These zero values each represent
a consistency condition (range condition) for S, and therefore
a nullspace element for S∗. To clarify, for any 0 < a < |b|,
define qa,b(x′, r) = J(ar) exp(−2πibx′). Then, for all f , and
letting g = Sf ,

〈f , S∗qa,b〉1 = 〈Sf , qa,b〉2
=

∫ ∫ ∞

0

Sf(x′, r) qa,b(x
′, r) r dr dx′

=

∫ ∫ ∞

0

g(x′, r) J(ar) e−2πibx
′
r dr dx′

= g̃(b, a)

= 0 (because a < |b|) (17)

Since 〈f , S∗qa,b〉1 = 0 for all f , we must have S∗qa,b = 0
so qa,b is in the nullspace of S∗.

For each pair (a, b) (with 0 < a < |b|) we thus obtain lin-
early independent elements of the nullspace. This is the most
explicit nullspace description for S∗ that we have obtained so
far.

At this stage of our investigations, we have not studied the
relationships between the nullspace elements found using the
three approaches.

C. A tomographic model for coherent scatter

In this section, we present the scatter problem as a true
tomography problem, in the sense that the measurements

represent integrals over some kind of lines. We can then appeal
to known results in tomography theory to extract information
about the coherent scatter operator S∗.

We begin by recalling the familiar situation of the 2D Radon
transform.

p(φ, s) = Rf (φ, s) =

∫
f(s cosφ−t sinφ, s sinφ+t cosφ) dt

(18)
Here, the integration is over straight lines, and a projection
p(φ, ·) consists of integrations over parallel lines.

For the 2D Radon transform, the backprojection is given by

R∗p (x, y) =

∫ π

0

p(φ, s)|s=x cosφ+y sinφ dφ (19)

The set of points in the (φ, s) domain that correspond to the
set of lines passing through a fixed (x, y), is a sinusoid. The
(φ, s) domain is known as a sinogram. See figure 4 for an
illustration of these concepts.

Fig. 4. The Radon transform R maps integrals over parallel straight lines
into the (φ, s) domain. The (φ, s) domain is called a sinogram because
backprojection R∗p (x, y) at the single point (x, y) corresponds to summing
over a sinusoid in (φ, s).

Turning now to the SAR transform S, and observing the
analogy with the 2D Radon transform, if g(x′, r) = Sf (x′, r)
(equation (2)) the integrations now take place of circles. Here,
a projection, g(x′, ·) is a collection of concentric circles. Now,
recalling the SAR backprojection from equation (3),

S∗g (x, y) =

∫ ∞

−∞
g(x′, r)|

r=
√

(x−x′)2+y2
dx′ (20)

and we observe that the set of points in the (x′, r) domain that
correspond to the set of circles (with centers on the x axis)
passing through a fixed (x, y) is an hyperbola. The equation
of the hyperbola is r2 = (x − x′)2 + y2; note that (x, y) is
fixed and the hyperbola variables are x′ and r. We could call
the (x′, r) domain a hyperbologram. See figure 5.

Finally, we consider S∗ as the forward operator for the
coherent scatter problem. In this case, the sought functions are
radial functions, in the (x′, r) domain. A single point b(x, y)
in the measurement domain corresponds to contributions from
circles that intersect the point (x, y). Thus (repeating equa-
tion (1)),

S∗g (x, y) =

∫ ∞

−∞
g(x′,

√
(x− x′)2 + y2) dx′ (21)



Fig. 5. The SAR transform S maps integrals over concentric circles into the
(x′, r) domain. The (x′, r) domain could be called a hyperbologram because
backprojection S∗g (x, y) at the single point (x, y) corresponds to summing
over a hyperbola in (x′, r).

can be seen as integrating along hyperbolas in the (x′, r)
domain. Projections b(x, ·) are now indexed by the x variable,
and each projection specifies a collection of hyperbolas with
a common center at x′ = x.

Now, backprojection in this context can be regarded con-
ventionally, as superimposing successive backprojections of
individual projections. To see this, we reformulate the back-
projection formula, equation (10). We would like to see the
integral taken over the projection index x. To this end, we
perform a change of integration variables from φ to x by
x = x′ + r cosφ. (Also, we shorten (S∗)∗ to S∗∗.)

S∗∗b (x′, r) =

∫ 2π

0

b(x′ + r cosφ, r sinφ) dφ

= 2

∫ x′+r

x′−r
b(x, y)|

y=
√
r2−(x−x′)2

J dx (22)

We observe that y =
√
r2 − (x− x′)2 is indeed the equation

of the (semi-) circle in the measurement domain (x, y). We
recall that b(x, y) = b(x,−y) so the factor of 2 arises from the
reflection in y; the integral adds the upper semi-circle twice,
which is equivalent to integrating once over the whole circle.
The Jacobian term J = 1/

√
r2 − (x− x′)2 is present to

ensure uniform integration over the circle when parametrizing
by x. The measurement domain could (perhaps at a stretch)
be called a circlogram.

Figure 6 illustrates the representation of the coherent scatter
model as a tomography problem.

Viewing S∗ as a tomographic operator brings new insights.
The integration lines in the (x′, r) domain (of radial functions)
are hyperbolas of the form {(x′, r) | r2−y2 = (x′−x)2, r ≥
0} where x and y are parameters. These hyperbolas are all
aysmptotic to the lines r = |x′ − x| and therefore no part of
these integration lines are steeper than 45 degrees (the absolute
slope |m| never exceeds one).

Using such hyperbolas to probe a function g(x′, r) is
reminiscent of conventional limited-angle (2D, parallel) to-
mography with integration lines never within 45 degrees of
the vertical. It is well-known that a large wedge-shape missing
region in the 2D Fourier domain arises, and that reconstruction
artifacts are inevitable. We can anticipate this same behavior
for the coherent scatter operator S∗ which is not providing

Fig. 6. The coherent scatter transform S∗ maps integrals over hyperbolas
into the (x, y) domain. The upper right insert is a reminder of the physical
system showing superimposed circles. Each point b(x, y) in the scatter image
is the result of an integration over a hyperbola in the domain of the radial
functions. Here, the (x, y) domain could be referred to as a circlogram
because backprojection S∗∗b (x′, r) at the single location (x′, r) corresponds
to integrating over a circle in (x, y).

any more information than the limited-angle parallel-beam
case. This analysis also suggests that the nullspace of the S∗

operator is substantial.
Limited-angle tomography usually implies that there are

directions of very poor resolution, and only very low sampling
in these directions are required. Fortunately, for the coherent
scatter problem, the direction of poor resolution is in x′ and
the high resolution direction is r. The x′ direction is under
user control, because the spacing of the x-ray pencil beams
can be adjusted to match the reconstruction capability of the
system.

IV. COMPUTER SIMULATIONS

We have conducted some preliminary numerical experi-
ments. For an artificially simple radial function g true, we sim-
ulated (ideal) data b data = S∗g true. From b data we performed
numerical reconstructions to estimate g true, using both an ML-
EM algorithm, and a conjugate gradient method. Figure 7
illustrates the results. Both algorithms implicitly enforced
compactness of the iterates gk. Note that seven pencil beams
were simulated. After 100 iterations, both algorithms had
performed reasonable reconstructions, of roughly comparable
visual quality. An ML-EM method was reported in [12], for
five pencil beams of real data.

V. DISCUSSION AND CONCLUSIONS

We have described a novel image reconstruction problem
arising in the context of coherent scatter imaging. We iden-
tified that this problem is mathematically dual to the SAR
problem of reconstructing a function from its integrals over
circles.

In examining the coherent scatter operator S∗, we appeal
heavily to known results on the SAR operator S. We concen-
trated on obtaining characterizations of the range conditions
(consistency conditions) on S because these conditions lead
directly to descriptions of the nullspace of S∗. The nullspace
tells us what is possible and not possible in principle when
reconstructing radial functions in the coherent scatter context.



Fig. 7. Top: image of the simulated data b(x, y) from ideal radial functions.
Only y ≥ 0 is shown because b(x, y) is even in y. Bottom left: an image
of g true(x′, r) which was defined as piecewise constant in r for 7 discrete
values of x′. Bottom middle: 100 iterations of conjugate gradient showing
reasonable reconstruction from b data of most of the features of g true. Bottom
right: 100 iterations of ML-EM showing different reconstructed features from
the conjugate gradient reconstruction.

We obtained descriptions of the nullspace of S∗ but in
all cases, the descriptions were in terms of functions with
unbounded support in x′. In the case of scatter imaging, a
bounded extent of the parallel x-ray beams is ensured, so we
need to find subspaces of the nullspace for which the support
in the x′ component is bounded. At this time, we have not
pursued this lead.

A consequence of the fact that S is one-to-one (injective)
is that S∗ must be onto (surjective). In terms of the coherent
scatter problem, this means that any scatter image b(x, y) is
possible, by selecting an appropriate set of radial functions
g(x′, r). The application of a right inverse (S∗)R to the desired
scatter image b yields g = (S∗)Rb and, taking S∗ of both sides
of this equation shows that this g indeed produces the required
b (i.e. b = S∗g). As a small technicality, we have not enforced
the physical non-negativity of the radial functions g or the
scatter image b, so (without further exploration) there is no
assurance that non-negative radial functions g could be found
that generate a given non-negative b. These matters concerning
the surjectivity of S∗ are interesting but probably do not
provide useful information on solving the system b = S∗g; the
non-trivial nullspace of S∗ means that different right inverses
will give different radial functions g, all of which produce the
same scatter image b.

The points made in the previous paragraphs do not take into
account the situation of restricting g(x′, r) to radial functions
which are compact in x′. In particular, it might turn out that the
nullspace is trivial under this compactness assumption, which
would then imply a left-inverse for S∗ that would necessarily
match the right inverse to form a true, unique inverse (S∗)−1.
The model for compact radial functions needs to be studied.

Using the tomographic model of S∗, we observed that the

problem appears to correspond to a substantial limited-angle
system with only half of the Fourier domain frequencies being
measured. Fortunately, the direction of poor resolution is in x′

which can be controlled directly by the user by spacing the x-
ray pencil beams. It would be useful to use some knowledge of
the radial functions (required resolution in r and assumptions
on the extent of r) to select some best-possible spacing of the
x-ray pencil beams. This approach also remains to be explored.

In summary, we have described a new reconstruction prob-
lem in coherent scatter imaging and performed preliminary
mathematical investigations. We have identified that there is
likely to be nullspace, possibly also in the situation where the
domain of the operator S∗ is restricted to functions g(x′, r)
with compact support in x′. Several interesting directions for
research in this area have been identified.
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Appendix B

Proceedings paper in SPIE Medical
Imaging 2020

This is our proceedings paper [Nguyen et al., 2020a] in the SPIE Medical Imaging 2020 conference. Chapter 2
presents this work with a few further developments added.
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Automatic geometric calibration in 3D parallel geometry

Hung Nguyena, Rolf Clackdoylea, and Laurent Desbata

aUniv. Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, 38000 Grenoble, France

ABSTRACT

This work concerns automatic geometric calibration in 3D parallel geometry. The aim is to develop analytical
formulas to identify the view direction and the in-plane angle only from projections of the object. We consider
that two view directions are known and treat all others once at a time, repeating the same three-projection
procedure. We identify the unknown view direction of the third projection image and the in-plane angles of the
three projections.

Keywords: 3D X-ray transform, geometric calibration, data consistency conditions, moments

1. INTRODUCTION

In Medical Imaging and other fields, geometric scanner calibration is vital for accurate image reconstruction.
For example, in 3D parallel imaging, each 2D projection image may contain an unknown shift amount and
an unknown in-plane rotation. Estimating the view direction, the unknown shift and rotation amount of each
projection image is called geometric calibration and is a crucial step before we can reconstruct the 3D object
from its projections.

One of the early methods, called the “angular reconstitution”, was given by van Heel1,2 in order to identify
the view direction and the unknown rotation, which we call the in-plane angle, of each projection image. His
main idea was to use the Fourier-slice theorem. The theorem states that the 2D Fourier transform of a projection
image matches a slice through the origin of the 3D Fourier transform of the 3D object. Thus two projection
images give us two corresponding slices, and these two slices must have at least one line in common. The
“angular reconstitution” method suggested a way to find that common line, and used this information to obtain
the relative orientations of the projections.

Singer and Shkolnisky in3,4 continued the idea of using the Fourier-slice theorem. Using linear algebra
techniques, they developed several ways to find the common lines and obtain the geometric parameters of each
projection image. Moreover, in5 Singer et al also suggested a voting algorithm to find the common line, with
high accuracy, even though their projection images were very noisy.

Using the Fourier-slice theorem and searching for a common line in order to relate two projection images
is an application of data consistency conditions (DCCs). In our work, we have created a pairwise DCC. The
difference is that instead of using the Fourier transform, we apply the 2D Radon transform to the projections. The
“sinogram row-matching procedure” described in the next section allows us to estimate the geometric parameters
with direct analytic formulas.

In 2D, the problem of identifying the geometric parameters from parallel projection measurements has been
presented in the early work of Basu and Bresler.6,7 They gave a series of theoretical results, which show
that estimates of the view directions and detector shifts can be obtained uniquely from a sufficient number of
projection images, from almost any general 2D object. However, analytical formulas for the geometric parameter
estimation were not provided. In 3D, there are degenerate geometric configurations where the problem collapses
to contiguous 2D problems for which the work of Basu and Bresler is fully relevant.

In this work, we address the problem of geometric self-calibration in the 3D parallel geometry. Our problem:
given a collection of 3D parallel projections of some general object, identify the view direction, in-plane angle,
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and detector shift for each projection. To provide an anchor, we assume two projections to be known. Then
we estimate the calibration parameters of all other projections. For simplicity, we present this work for known
projections in the e2 and e3 directions (the y and z view directions). Each subsequent projection is handled
independently of the rest.

2. THEORY AND METHODS

2.1 In-plane shift

The shifts are assumed to be corrected already, using standard center of mass techniques obtained from the first
order and zero order moments of the projections. For each projection, detector coordinates are shifted so that
the origin is the center of mass of the projection.

2.2 The 3D coordinate system and the X-ray transform

We will use the unit vector γ = (γ1, γ2, γ3) to identify the view direction. Perpendicular to and defined in terms
of γ are two unit vectors α and β in the detector plane. Mathematically, we want α and β to remain unchanged
if the view direction γ changes to −γ. Given a unit vector γ = (γ1, γ2, γ3) ∈ S2, we define

α =
sgn (γ3)√
γ2

1 + γ2
2

(−γ2, γ1, 0) ,

β =
1√

γ2
1 + γ2

2

(
−γ1γ3,−γ2γ3, γ

2
1 + γ2

2

)
.

(1)

• If γ3 = 0, we define α = sgn (γ2) (−γ2, γ1, 0) and β = (0, 0, 1).

• If γ2 = γ3 = 0, then γ = ± (1, 0, 0), we define α = (0, 1, 0) and β = (0, 0, 1) for both cases.

• Finally, if γ1 = γ2 = 0, then γ = ± (0, 0, 1), we define α = (−1, 0, 0) and β = (0,−1, 0).

From here, our 3D coordinate system is fully defined. With this coordinate system, we define the 3D X-ray
transform8 as follows

pγ (u, v) = Xγf (u, v) =

∫
f
(
uα+ vβ + tγ

)
dt, (2)

where f ∈ Cc
(
R3
)
, meaning f is a real-valued continuous function in R3 with compact support. Note that

pγ (u, v) = p−γ (u, v).

2.3 Problem statement

In general, we do not know the projection functions pγ (u, v), because in the above definitions, for each direction
γ, we fix a certain pair of

(
α, β

)
. However, in reality, we do not know how each corresponding detector has

been rotated, which means we do not know the 2D coordinate system of the detector. Therefore, besides the
view direction of each projection image being unknown, there is also an unknown in-plane angle. Let φ be the
in-plane angle on the detector. We define the 2D coordinate system on the detector:{

αγ,φ = cosφα+ sinφβ,

βγ,φ = − sinφα+ cosφβ.
(3)

where φ is the angle between α and αγ,φ. Note that the signs of αγ,φ and βγ,φ are reversed when φ is increased
by π.

From this, let’s say for each direction γ, we just know the corresponding measurement on the detector, which
is perpendicular to γ

mγ,φ (u, v) =

∫
f
(
uαγ,φ + vβγ,φ + tγ

)
dt. (4)

For simplicity, the problem we are now dealing with is: Assuming we know mγ,φ, me2,φ2
, me3,φ3

, where
e2 = (0, 1, 0), e3 = (0, 0, 1). How can we identify γ and φ, φ2, φ3?

We know that α and β are unchanged if γ becomes −γ, and similarly for αγ,φ and βγ,φ. We expect the
mathematics to generate two solutions γ and −γ of opposite sign, because mγ,φ = m−γ,φ.
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2.4 Pairwise Data Consistency Conditions (DCC)

The main strategy is to use a pairwise DCC. The idea of this DCC is based on the relation of the 3D X-ray
transform and the 3D Radon transform.

Step 1: Combining definitions of the 3D X-ray transform (2) and the 2D Radon transform, we can see that
for any f ∈ Cc

(
R3
)
, γ ∈ S2, for an arbitrary angle θ ∈ [0, 2π)

R2
θpγ(s) =

∫
pγ (s cos θ − t′ sin θ, s sin θ + t′ cos θ) dt′

=

∫∫
f
(
(s cos θ − t′ sin θ)α+ (s sin θ + t′ cos θ)β + tγ

)
dtdt′

=

∫∫
f
(
s
(
cos θα+ sin θβ

)
+ t′

(
− sin θα+ cos θβ

)
+ tγ

)
dtdt′

=

∫∫
f
(
sψ + t′ψ

⊥
+ tγ

)
dtdt′

= R3
ψ
f(s),

since the three unit vectors
(
ψ,ψ

⊥
, γ
)

are perpendicular to each other, where ψ = cos θα + sin θβ and ψ
⊥

=

− sin θα+ cos θβ. R2 and R3 stand for the 2D and 3D Radon transform.

Step 2: From the definition of the measurement (4), the detector 2D coordinate system (3) and the 3D
X-ray transform (2), we know that

mγ,φ (u, v) =

∫
f
(
u
(
cosφα+ sinφβ

)
+ v

(
− sinφα+ cosφβ

)
+ tγ

)
dt

=

∫
f
(
(u cosφ− v sinφ)α+ (u sinφ+ v cosφ)β + tγ

)
dt

= pγ (u cosφ− v sinφ, u sinφ+ v cosφ) .

Step 3: We apply the 2D Radon transform to the above results. We obtain for all s ∈ R:

R2
θmγ,φ(s)

=

∫
mγ,φ (s cos θ − t′ sin θ, s sin θ + t′ cos θ) dt′,

=

∫
pγ ((s cos θ − t′ sin θ) cosφ− (s sin θ + t′ cos θ) sinφ, (s cos θ − t′ sin θ) sinφ+ (s sin θ + t′ cos θ) cosφ) dt′

=

∫
pγ (s (cos θ cosφ− sin θ sinφ)− t′ (sin θ cosφ+ cos θ sinφ) ,

s (sin θ cosφ+ cos θ sinφ) + t′ (cos θ cosφ− sin θ sinφ)) dt′

=

∫
pγ (s cos (θ + φ)− t′ sin (θ + φ) , s sin (θ + φ) + t′ cos (θ + φ)) dt′

= R2
θ+φpγ (s) .

Step 4: Finally, combining the results of step 1 and step 3, we obtain for any f ∈ Cc
(
R3
)
, γ ∈ S2, for an

arbitrary angle θ ∈ [0, 2π):
R2
θmγ,φ(s) = R2

θ+φpγ(s) = R3
Ψ
f(s),∀s ∈ R, (5)

where Ψ = cos (θ + φ)α+ sin (θ + φ)β ∈ S2.

Then we can create the Pairwise DCC as follows:
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For two unit directions γ and γ′, if we can find a suitable pair of angles (θ, θ′) ∈ [0, 2π)
2

such that

cos (θ + φ)α+ sin (θ + φ)β = cos (θ′ + φ′)α′ + sin (θ′ + φ′)β
′ (

= Ψ
)
, (6)

then from (5), we obtain
R2
θmγ,φ (s) = R2

θ′mγ′,φ′ (s)
(
= R3

Ψ
f (s)

)
,∀s ∈ R.

We immediately make two important observations.

• By the construction of the pairwise DCC, we can see that Ψ here is perpendicular to both γ and γ′.

• A pair of (θ, θ′) satisfying (6) always exists for any given view directions (γ, γ′) and in-plane angles (φ, φ′).
We just need to take Ψ as the normalized cross product of γ and γ′, then θ can be defined by cos (θ + φ) =
Ψ · α and sin (θ + φ) = Ψ · β, and similarly for θ′.

Now we are going to use this DCC in the context where γ is the unknown direction to be identified and γ′ is
the known direction, here in our problem: e2 or e3.

2.5 Method

We now have three projection measurements me2,φ2
, me3,φ3

and mγ,φ. We note that:

• e2 = (0, 1, 0) yields α2 = (−1, 0, 0) and β2 = (0, 0, 1).

• e3 = (0, 0, 1) yields α3 = (−1, 0, 0) and β3 = (0,−1, 0).

The first step is to find a suitable pair of (θ1,2, θ2) such that

cos (θ1,2 + φ)α+ sin (θ1,2 + φ)β = cos (θ2 + φ2)α2 + sin (θ2 + φ2)β2

(
= Ψ2

)
, (7)

and R2
θ1,2

mγ,φ (s) = R2
θ2
me2,φ2 (s) ,∀s ∈ R. More precisely,

Ψ2 = cos (θ2 + φ2) (−1, 0, 0) + sin (θ2 + φ2) (0, 0, 1)

= (− cos (θ2 + φ2) , 0, sin (θ2 + φ2)) .

We call this step the sinograms row-matching procedure, since from two measurements mγ,φ and me2,φ2
, we

compute their 2D Radon transforms, which are the sinograms (let’s say the horizontal axis of the sinogram is
for s and the vertical axis is for θ). Then we will look for a row in the first sinogram and another row in the
second sinogram, which perfectly match each other (at least theoretically). These lead to the values of θ1,2 and
θ2 that we are looking for. This procedure will be discussed more precisely in the next section 2.6. Assuming we
have done this step and have found θ1,2 and θ2, then by construction, we know that the unknown direction γ is
perpendicular to Ψ2 = (− cos (θ2 + φ2) , 0, sin (θ2 + φ2)).

Repeating this process, we obtain that γ is also perpendicular to Ψ3 = (− cos (θ3 + φ3) ,− sin (θ3 + φ3) , 0),
where θ3 is also obtained after performing the sinograms maching row procedure to find a pair (θ1,3, θ3). Thus
γ can be computed as follows

γ = ± Ψ2 ×Ψ3∥∥Ψ2 ×Ψ3

∥∥
= ± (sin (θ2 + φ2) sin (θ3 + φ3) ,− sin (θ2 + φ2) cos (θ3 + φ3) , cos (θ2 + φ2) sin (θ3 + φ3))√

1− cos2 (θ2 + φ2) cos2 (θ3 + φ3)
.

We can see that the explicit solutions of γ can be found if we know φ2 and φ3. Additionally, the in-plane angle
φ could also be computed using (7) if φ2 is known.
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Therefore the second crucial step is to find φ2 and φ3. We perform again the sinogram row-matching procedure
between me2,φ2 and me3,φ3 and obtain θ2,3 and θ3,2 such that

(− cos (θ2,3 + φ2) , 0, sin (θ2,3 + φ2)) = (− cos (θ3,2 + φ3) ,− sin (θ3,2 + φ3) , 0) ,

and R2
θ2,3

me2,φ2
(s) = R2

θ3,2
me3,φ3

(s). This implies
cos (θ2,3 + φ2) = cos (θ3,2 + φ3)

sin (θ2,3 + φ2) = 0

sin (θ3,2 + φ3) = 0

.

From this, we obtain (φ2, φ3) = (−θ2,3,−θ3,2) or (φ2, φ3) = (π − θ2,3, π − θ3,2). Although we obtain two solutions
for (φ2, φ3), they lead to the same solutions of γ (two acceptable opposite solutions) and two solutions of the
in-plane angle φ, which are π-different from each other.

In conclusion, we have successfully identified the view direction γ. And for the in-plane angles (φ, φ2, φ3), we
obtain two solutions, which are π-different from each other.

2.6 The sinograms row-matching procedure

The sinograms row-matching procedure is performed by computer. We consider two given sinograms as two
matrices, with each row representing one value of θ and each column representing one value of s. From the first
row of the first matrix, we subtract all rows of the second matrix, then we take the Euclidean norm of each
row and obtain a column vector. We save this column vector data in a new matrix, which we call the Norm of
Difference matrix (NoD). For the second column of the NoD, we take the second row of the first matrix and
repeat this process, and so on. The NoD constructed this way is a square matrix, which has size Nθ×Nθ, where
Nθ is the number of rows of the first or second matrix. We search for the minimum value of the NoD matrix
and note its position. This result will show us which row of the first sinogram matches which row of the second
sinogram.

The idea of searching for the matching row has appeared in Van Heel’s papers.1,2 Van Heel built a so-called
sinogram cross-correlation function, in which he computed the correlation coefficient of two corresponding rows
in two sinograms, and then searched for the global maximum value of the function. We compute norm differences
instead of cross-correlations because our projections have already been aligned. One can also see reference5 for
a voting algorithm to search for the common line.

2.7 Degenerate case of the problem

The method given in section 2.5 fails if
∥∥Ψ2 ×Ψ3

∥∥ = 0, meaning Ψ2 and Ψ3 are collinear and γ is thus in the
plane (e2, e3), i.e. γ = (0, γ2, γ3). Solving this case is equivalent to solving multiple contiguous 2D problems.
For this case, we have considered the simple version where the in-plane angles are assumed to be zero in each
projection. We define the so-called in-plane moments of order k

P kγ (u) =

∫
vkpγ (u, v) dv. (8)

Since γ = (0, γ2, γ3), applying definition (1), we have
α =

sgn (γ3)

|γ2|
(−γ2, 0, 0) =

(
− γ2γ3

|γ2γ3|
, 0, 0

)
β =

1

|γ2|
(
0,−γ2γ3, γ

2
2

)
=

(
0,−γ2γ3

|γ2|
, |γ2|

) . (9)

We remind that (see definition (1))

• If γ ≡ e2 = (0, 1, 0) then α2 = (−1, 0, 0) and β2 = (0, 0, 1).
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• If γ ≡ e3 = (0, 0, 1) then α3 = (−1, 0, 0) and β3 = (0,−1, 0).

Then by the definition of the 3D X-ray transform (2), we know that
pe2 (u, v) =

∫
f (u (−1, 0, 0) + v (0, 0, 1) + t (0, 1, 0)) dt =

∫
f (−u, t, v) dt

pe3 (u, v) =

∫
f (u (−1, 0, 0) + v (0,−1, 0) + t (0, 0, 1)) dt =

∫
f (−u,−v, t) dt

. (10)

Combining (9) and (2), we can see that

P kγ (u) =

∫∫
vkf

(
uα+ vβ + tγ

)
dtdv

=

∫∫
vkf

(
u

(
− γ2γ3

|γ2γ3|
, 0, 0

)
+ v

(
0,−γ2γ3

|γ2|
, |γ2|

)
+ t (0, γ2, γ3)

)
dtdv

=

∫∫
vkf

(
−uγ2γ3

|γ2γ3|
,−vγ2γ3

|γ2|
+ tγ2, v |γ2|+ tγ3

)
dtdv. (11)

Let y = −vγ2γ3

|γ2|
+ tγ2 and z = v |γ2|+ tγ3, we can compute

−γ2γ3

|γ2|
y + |γ2| z = −γ2γ3

|γ2|

(
−vγ2γ3

|γ2|
+ tγ2

)
+ |γ2| (v |γ2|+ tγ3)

= vγ2
3 − t |γ2| γ3 + vγ2

2 + t |γ2| γ3

= v
(
γ2

2 + γ2
3

)
= v,

since γ ∈ S2, and also we have the Jacobian matrix

J =


∂y

∂v

∂y

∂t
∂z

∂v

∂z

∂t

 =

−γ2γ3

|γ2|
γ2

|γ2| γ3

 ,
which implies

|det(J)| =
∣∣∣∣−γ2γ

2
3

|γ2|
− γ2 |γ2|

∣∣∣∣ =

∣∣∣∣− γ2

|γ2|
(
γ2

3 + γ2
2

)∣∣∣∣ = 1,

thus we have dy dz = dt dv. All these materials make the integral in (11) become

P kγ (u) =

∫∫ (
−γ2γ3

|γ2|
y + |γ2| z

)k
f

(
−uγ2γ3

|γ2γ3|
, y, z

)
dydz.

Then for k = 1 we obtain

P 1
γ (u) =

∫∫ (
−γ2γ3

|γ2|
y + |γ2| z

)
f

(
−uγ2γ3

|γ2γ3|
, y, z

)
dydz

= −γ2γ3

|γ2|

∫
y

[∫
f

(
−uγ2γ3

|γ2γ3|
, y, z

)
dz

]
dy + |γ2|

∫
z

[∫
f

(
−uγ2γ3

|γ2γ3|
, y, z

)
dy

]
dz.

Applying (10) we have

P 1
γ (u) = −γ2γ3

|γ2|

∫
ype3

(
uγ2γ3

|γ2γ3|
,−y

)
dy + |γ2|

∫
zpe2

(
uγ2γ3

|γ2γ3|
, z

)
dz

=
γ2γ3

|γ2|

∫
ype3

(
uγ2γ3

|γ2γ3|
, y

)
dy + |γ2|

∫
zpe2

(
uγ2γ3

|γ2γ3|
, z

)
dz
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Figure 1. Two perpendicular slices through the phantom: y = −0.125, z = −0.25; and table of centers, axis lengths of
the ellipsoids

According to the definition of the in-plane moment (8), we thus obtain the in-plane DCC:

P 1
γ (u) =

γ2γ3

|γ2|
P 1
e3

(
uγ2γ3

|γ2γ3|

)
+ |γ2|P 1

e2

(
uγ2γ3

|γ2γ3|

)
,∀u ∈ R. (12)

In fact, for each real value u, this in-plane DCC (12) is a linear relation of γ2 and γ3. From (12) and the fact
that γ = (0, γ2, γ3) is a unit vector, meaning γ2

2 + γ2
3 = 1; γ is then obtained by solving several second-degree

equations (with each equation is yielded from one value of u), and then choosing the common solution from
many (pairs of) solutions of these second-degree equations.
If the 3D object is completely general, we obtain a unique solution for γ (as well as −γ). In other situations,
such as a perfect cylinder or a cuboid, we obtain at most two solutions for γ, with each solution is a pair of
acceptable opposite solutions. Further study is needed for this case of the problem.

3. NUMERICAL SIMULATIONS AND RESULTS

For our computer simulation study, our object was a slightly simplified version of the high-contrast MRI 3D
Shepp-Logan phantom.9 We followed the descriptions in9 and10 but removed the inclintion angle of the two
oblique ellipsoids. Fig. 1 shows two perpendicular slices through the phantom and a table of centers and half-
axis lengths for the 15 component ellipsoids. The respective densities of the ellipsoids were: 0.8, -0.68, 0.86,
-0.235, 0.235, 0.235, -0.128, 0.205, 0.205, 0.205, 0.205, 0.205, 0.185, 0.235, 0.105.

For this preliminary numerical experiment, we simulated projections with in-plane rotation angles of zero
(assumed known). Using simple numerical integration of the 15 ellipsoid functions, three projections pe2 , pe3 , pγ
were simulated of size 513x513 pixels each. We used γ = (1/3,−2/3, 2/3) as our unknown view direction for the
third projection. These three projections are illustrated in fig. 2.

From these three projections as input data, we performed the analytic calibration method. Sinograms of size
360x1025 were generated for each of the three projections (see fig. 3). Sinograms row-matching was performed
as described in section 2.6 for projections pe2 and pγ to provide the 3D vector Ψ2, and similarly for pe3 and
pγ to yield Ψ3. The estimate view direction γEst1 was calculated by normalizing Ψ2 × Ψ3, to give γEst1 =
± (0.32603,−0.66847, 0.66847). The polar and azimuthal angles of γ are 48.19o and −63.43o; and for γEst1 they
are 48.05o and −64.00o.
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Figure 2. Projection images pe2 (left), pe3 (middle) and pγ (right)

Figure 3. Associated sinograms of pe2 (left), pe3 (middle) and pγ (right)

These small errors in the estimated view angle are due to accumulated discretization effects. The angular
spacing in the sinograms was ∆θ = 1o, and the row-matching procedure provided θ2 = 206o and θ3 = 26o

compared to the true values of θ2 = π + arctan(1/2) ≈ 206.565o and θ3 = arctan(1/2) ≈ 26.565o. When
subsequently applying a refined sinogram sampling in the neighborhood of 206o for θ2 and 26o for θ3, the new
row match was at θ2 = 206.53o and θ3 = 26.56o, which yielded γEst2 = ± (0.33307,−0.66629, 0.66717) for
polar and azimuthal angles of 48.15o and −63.44o. Fig. 4 shows the calculated projections of the Shepp-Logan
phantom for γ, γEst1 and γEst2. This experimental result suggests that just one refinement step in the sinograms
row-matching is necessary.

4. DISCUSSIONS AND CONCLUSIONS

For 3D parallel projections, the essential calibration information is the view direction (the normal to the detector
plane), the in-plane detector shift, and the in-plane rotation angle. We have described how all these calibration
parameters can be obtained directly from the measured projecion of a “production” scan, in an automated way.
The principles of the method use data consistency conditions, and assumes two special projections are available
whose view directions are known. The method involves a sinogram row-matching step between the unknown
projection and the two special projections. The procedure is robust if the image object is general, without special
symmetries. We have not completed our analysis of how object symmetries affect uniqueness of the calibration
parameter estimates.

The various components of our approach seem to be scattered in the existing literature. Our approach
provides a single, comprehensive, mathmatically rigorous proposition. Computer implementation is underway,
with preliminary sucessful simulation using the Shepp-Logan and other 3D phantoms.
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Figure 4. Projections taken at γ = (1/3,−2/3, 2/3) (left) and two estimate directions γEst1 = (0.32603,−0.66847, 0.66847)
(middle), γEst2 = (0.33307,−0.66629, 0.66717) (right)
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Appendix C

Proceedings paper in CT Meeting 2020

This is our proceedings paper [Nguyen et al., 2020b] in the 6th International Conference on Image Formation in
X-Ray Computed Tomography. Chapter 3 describes this work with some improvements on the numerical results
added.
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Automatic geometric calibration in 3D cone-beam
geometry with sources on a line

Hung Nguyen, Laurent Desbat and Rolf Clackdoyle.

Abstract—In this paper, we consider the geometric calibration
problem in 3D cone-beam geometry with sources on a line, as a
series of many 2D calibration problems in fan-beam geometry. We
give a method to identify the unknown source positions, directly
from the projection data, knowing exactly three source positions,
even though the detector positions each have unknown offsets.
This method works with general objects, meaning they do not
have symmetries. We recall two key results for our method: firstly,
data consistency conditions for fan-beam geometry with sources
on a line and secondly, the link between the center of mass (COM)
of the projections and the projections of the COM of a weighted
version of the object. We present numerical experiments based
on random unit-density balls. These preliminary experiments
show that the proposed method solves the source-position self-
calibration problem in 3D cone-beam tomography with sources
on a line, if three source positions are known.

I. INTRODUCTION

Geometric calibration has always been of interest in medical
imaging, because it is necessary to align the projection images
before performing image reconstruction. One idea is to align
all projection images according to their centers of mass. In
parallel geometry, a well-known result can be stated that:
the center of mass of a projection is the projection of the
center of mass of the object. We can prove this result by
simply considering projection moments or Helgason-Ludwig
data consistency consitions (DCCs) of order 0 and 1, see [1],
[2], [3]. In [4], Desbat and Clackdoyle produced a very similar
result in fan-beam geometry: the center of mass of a fan-beam
projection is now the fan-beam projection of the center of mass
of a weighted version of the object. Moreover, in fan-beam
geometry, if we define the moments of the projections, we can
also obtain polynomial-type DCCs. With the same techniques,
using the DCCs of order 0 and 1, we can prove the above
result of the center of mass.

Projection moments (yielding the Helgason-Ludwig DCCs)
have been used by Basu and Bresler for geometric self-
calibration in 2D parallel tomography, see [5], [6]. Recent
works proposed optimisation methods for geometric self-
calibration in 3D cone-beam tomography also by using DCCs,
see [7], [8]. In our work, we want to provide analytic formulae
based on DCCs for the source positions in cone-beam with
sources on a line. The moments and polynomial-type DCCs
for fan-beam and cone-beam projections (with the sources on
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a line or a plane) have been summarized and presented in the
context of 2D and 3D geometry in [9]. Furthermore, DCCs
for fan-beam projections with the sources on a line have also
been carefully studied by Clackdoyle in [10]. He gave two
main DCCs for projections, when he considered one fan-beam
projection in two different forms: either as an angular ray
variable function or as a linear ray variable function. In our
paper, we would like to make use of the DCCs for linear ray
variable fan-beam projections to deal with the 3D cone-beam
geometric calibration problem with the sources on a line. Our
aim is to develop an analytic approach to identify the unknown
source positions.

Physically, we are considering a horizontal conveyor belt
containing our 3D object. It is placed between an x-ray source
and a detector. The conveyor belt and the detector are moving
together in a certain horizontal direction but at different speeds,
to ensure that the projected object remains fairly central on the
detector, while the x-ray source is fixed at its own position,
see fig. 1. We assume that the detector is sufficiently large,
so that none of the projections are truncated. This motion is
equivalent to the 3D object being fixed, while the detector
and the x-ray source are moving correspondingly to each
other in two opposite directions, see fig. 2 (with the motion
direction of the detector remaining unchanged compared to
the previous model). The x-ray source emits the cone-beam
through the 3D object and data are recorded on the detector
as the projections. We assume that for some reason, after the
first three projections, the system starts losing its track and
this leads to the fact that among all of the projections, we
only know exactly three relative positions of the x-ray source
compared to the 3D object. Thus, we investigate an analytic
approach to calibrate all of the others relative positions of the
x-ray source.

Our mathematical model considers the 3D object being fixed
at a certain location and that an x-ray source is moving along
a line, producing a collection of many cone-beam projections
of the 3D object, which have been taken on a detector plane
parallel to the source line. If we know three source positions
corresponding to three acquired projections, then our results
claim that we can identify all of the others source positions
indepentdently, provided the 3D object is general (with no
particular symmetries).

II. 2D MODEL AND BASIC MATERIALS

A. 2D model and definitions

In this section, we recall the classic 2D fan-beam problem
with sources on a line. We have the standard 2D coordinate
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Fig. 1: Top view of the physical model: the x-ray source is
fixed, the 3D object and the detector are moving respectively
together in the same direction. The detector and conveyor
movements are irregular and unknown, and different from each
other. But the center of the object projects roughly to the
center of the detector at all times, to avoid truncation of the
projections.

Fig. 2: Top view of the equivalent mathematical model: the 3D
object is fixed, the x-ray source and the detector are moving
respectively together in opposite directions.

system (x, y). The source is on the x-axis and the detector line
is y = D (with D is a positive constant). We call this detector
line: the u-axis, which has the origin located at (0, D), see
Fig. 3. Our 2D object f (x, y) is between the source line y = 0
and the detector line y = D.

For each u on detector line, the fan-beam projection with
source at (x, 0) is defined as:

px(u) =

∫
f ((x, 0) + t [(u,D)− (x, 0)]) dt

=

∫
f (x+ tu− tx, tD) dt. (1)

We also define the moment: for the source position x ∈ R,
the moment of projection px is: Mn (px, x) =

∫
px(u)undu.

B. Moment conditions (DCCs)

Using the definitions and a simple change of variables, it
can be proven (see [10]) that

Mn (px, x) =

∫∫
f (y1, y2)

yn+1
2

[Dy1 + (y2 −D)x]
n
dy1dy2.

Thus Mn is a polynomial of degree n in x, where x stands for
the source position.

x

u

y

c1

c2

source
(x, 0)

COM of
the weighted object

COM of projection
(ux, D)

D

Fig. 3: The COM result can also be proven geometrically by
using basic properties of congruent triangles.

C. Center of mass result

We call ux the position of the center of mass (COM) of the
projection associated to source position x. As mentioned in
the introduction, using the above moment conditions of order
0 and 1, we can prove that:

ux = x+
D (c1 − x)

c2
, (2)

with c1 = C1,0/C0,0 and c2 = C0,1/C0,0 where

C0,0 =

∫∫
f (x1, x2)

x22
dx1dx2,

C1,0 =

∫∫
f (x1, x2)x1

x22
dx1dx2,

C0,1 =

∫∫
f (x1, x2)x2

x22
dx1dx2.

From the definitions above, (c1, c2) is the COM of the weighted
object g (x, y) = f (x, y) /y2. Eq. (2) implies that the source
(x, 0), the COM of the weighted object (c1, c2) and the COM
of the projection (ux, D) are collinear, meaning the COM of
the projection is the fan-beam projection of the COM of the
weighted object. Fig. 3 provides an illustration.

III. FAN-BEAM CALIBRATION PROBLEM AND ALGORITHM

We assume that there exist unknown offsets in the detector
positions, and the given data is the raw measurement functions.
Our first step is to compute the COM of each raw function;
then we shift these functions, so that the COM of each raw
function is shifted to the origin of the detector. After this step,
we obtain the COM-corrected measurement functions mx(u).
Since mx(u) is also the corresponding projection to source
position x, but has the COM of projection located at the origin
of the detector, mx(u) is related to the theoretical projection
px(u) (defined at Eq. (1)) by the following formula:

mx(u) = px (u+ ux) , (3)

where ux is position of the COM of projection and is unknown.
With the measurements mxi(u), i = 1, 2, 3, 4 and three known
source positions x1, x2, x3, we are going to calibrate the
unknown position x4. All other unknown source positions are
calibrated the same way.
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Solving algorithm

From the four COM-corrected measurements, we compute
their moments of order 2:

M2 (mx, x) =

∫
mx(u)u2du =

∫
px(u) (u− ux)

2
du.

Applying the COM result (2), we can show that M2 (mx, x)
is also a second-degree polynomial in x

M2 (mx, x) = Ax2 +Bx+ C. (4)

Thus if x1, x2, x3 are known and two-by-two different, then
we have sufficient information to find the three coefficients A,
B, C. Since the unknown source position x4 must satisfy (4),
we end up a second-order equation to solve:

Ax24 +Bx4 + C = M2 (mx4 , x4) .

In conclusion, we obtain at most two possible solutions of the
unknown source position for each fan-beam problem.

IV. CONE-BEAM CALIBRATION PROBLEM

We now have a standard 3D coordinate system (x, y, z) and
a 3D object F lies between the two planes y = 0 and y = 1.
The x-ray source is moving along the x-axis and the detector
plane is y = 1. The detector plane has its own origin located
at position (0, 1, 0). There are also two standard axes u and v
on this plane, which respectively have the same directions as
x and z-axis. Then for each point on the detector plane, the
cone-beam projection is defined as:

Px (u, v) =

∫
F ((x, 0, 0) + t [(u, 1, v)− (x, 0, 0)]) dt

=

∫
F (x+ tu− tx, t, tv) dt.

Fig. 4 illustrates the 3D model being considered.
Given four cone-beam projection images, with three different

corresponding source positions known, we will find the other
source position.

Solving algorithm

On detector plane, we consider the line v = v0. Since it is
parallel to the x-axis there is a plane containing them, which we
called the oblique plane (Πv0) : z = v0y. The origin of (Πv0)
has the same location as the origin of 3D space. The point
(x, y, v0y) in 3D space will have coordinates

(
x, y
√

1 + v20

)

on (Πv0). Assuming (Πv0) slices through the 3D object, the
2D slice on (Πv0) is defined as:

fv0

(
x, y
√

1 + v20

)
= F (x, y, v0y) .

Combining this and the cone-beam projection definition, we
can see that for each point on the line v = v0 on the detector

Px,v0
(u) = Px (u, v0) =

∫
F (x+ tu− tx, t, v0t) dt

=

∫
fv0

(
x+ tu− tx, t

√
1 + v20

)
dt

= px(u)|
D=
√

1+v2
0 ,f=fv0

,

Fig. 4: 3D model in cone-beam geometry

see section II-A. In other words, on (Πv0), we have exactly
the 2D fan-beam calibration problem, where the 2D object fv0

is located between x-axis and the line y =
√

1 + v20 .
Therefore, according to section III, each oblique plane (Πv0)

yields at most two possible solutions for the unknown source
position. Then N oblique planes being considered will give us
roughly N pairs of solutions. If the data are consistent, then
these N pairs must have one solution in common, and that
common solution is the true solution for the unknown source
position. This is our approach to solve a geometric calibration
problem in cone-beam with sources on a line; by repeating the
same procedure to solve a series of many fan-beam calibration
problems and finding the common solution of them.

V. NUMERICAL SIMULATIONS

A. Experiment 1: Testing one random object

The 3D object we considered is the superposition of a set
of fifteen unit-density balls, where the centers and radii were
selected randomly with a uniform distribution. The centers
were in the cube [−0.2, 0.2] × [0.4, 0.8] × [−0.2, 0.2] and the
radii were in the interval [0.01, 0.15]. We define

Gi =

{
1, if (x− cx(i))

2
+ (y − cy(i))

2
+ (z − cz(i))

2 ≤ r2(i)

0, otherwise

with i = 1, 2, . . . , 15, where (cx(i), cy(i), cz(i)) and r(i) are
the center coordinates and radius of the ith ball. Then the 3D
object is F =

∑15
i=1Gi. Fig. 5 shows 2D slices obtained from

four oblique slice planes through the object.
We have developed two main programs, called simulator

and solver. For each oblique plane (Πv0), simulator receives
four numbers: the first three numbers are the known source
positions, here x1 = −0.228, x2 = −0.475, x3 = 0.069 and
the last one x4 = 0.312 is the unknown source position that
we need to calibrate. Then it simulates the projections px(u)
on 1000 equidistant samples of u in [−2, 2] (see Eq. (1)),
and shifts them to their COMs to produce the COM-corrected
measurements mx(u) (see Eq. (3)). After that, solver receives
these measurements and the three known source positions,
then estimates the unknown source position. This procedure is
repeated for all the oblique planes. We have taken 200 oblique
planes of the form z = v0y, with v0 from −0.3 to 0.3. After
running the whole program, we plot all these pairs of solutions



4

Fig. 5: Four slices of the random object taken from four oblique
planes: z = −0.3y (top-left), z = −0.1y (top-right), z = 0.1y
(bottom-left) and z = 0.3y (bottom-right)

Fig. 6: Solutions on all oblique planes z = v0y; each value of
v0 (each oblique plane) contain at most two solutions

on a same figure. We presume that there will be a horizontal
set of collinear points, where each point is one of each pair
of solutions. Fig. 6 shows the result we obtained. Although
we can visually identify the correct solution from Fig. 6, we
provide the following algorithm to automatically extract the
estimated source location.

Computing estimated solution algorithm: a
Step 1: We find the minimum solution xmin (the lowest blue

point in Fig. 6). We also find the value v1, where (Πv1) is the
oblique plane containing xmin.

Step 2: We find the maximum solution xmax over the other
oblique planes: (Πv0), with v0 6= v1. We find v2 knowing the
oblique plane (Πv2

) contains xmax.
Step 3: We now have two distinct planes (Πv1) and

(Πv2). The plane (Πv1
) contains at most two solutions:

xmin and xv1other. The other plane (Πv2) contains xmax and
xv2other. The points xmin and xmax are different from each
other. But there must be two solutions, one on each plane,
which are equal or near to each other, because of the
fact of the common solution. Thus we compute H1 =
|xmax − xv1other| , H2 = |xmin − xv2other| , H3 = |xv1other − xv2other|
and H = min {H1, H2, H3}.

Step 4:

• If H = H1, then xest = (xmax + xv1other) /2.
• If H = H2, then xest = (xmin + xv2other) /2.
• If H = H3, then xest = (xv1other + xv2other) /2.

After performing the above algorithm, we obtain the estimated
solution xest ≈ 0.3114, comparing to the true solution xtrue =
0.312, with the error ≈ 5.8× 10−4.

B. Experiment 2: Testing 100 random objects
We repeated this test for 100 random objects, where each of

them is as the description in experiment 1. We have computed
the error vector Err, such that Err(i) = xest(i) − xtrue, i =
1, 2, . . . , 100; and mean (Err) = 1/100

∑100
i=1 Err(i) = −3.5×

10−5, is close to 0. We have: 1/100
∑100

i=1 |Err(i)| = 3.8 ×
10−3,

√
1/100

∑100
i=1 |Err(i)|2 = 6.5 × 10−3, maxi |Err(i)| =

2.6× 10−2.

VI. DISCUSSIONS AND CONCLUSIONS

We have presented a geometric self-calibration method for
cone-beam projections with sources on a line. Assuming three
source positions are given, we provide the source position
for any new cone-beam projection from the projection data
only. The method is based on 2D fan-beam data consistency
conditions, more precisely on moments of order 0, 1 and 2. The
idea is to consider cone-beam projections with sources on a line
as a set of independent fan-beam projections in oblique planes
(containing the source line). In this geometry, the moments of
order 2 of the fan-beam projections, each centered on its center
of mass, is a polynomial of order 2 in the source position
variable. Thus the source position is a root of a polynomial
of order 2. Thanks to many independent fan-beam projection
sets (each contained in an oblique slice) of the cone-beam
projections with sources on a line, we can easily identify the
common root and thus the source position. We have presented
preliminary numerical experiments, including statistics based
on 100 phantoms of 15 random ball indicators. They show that
this approach solves easily and precisely the source position
self-calibration problem in cone-beam projections with sources
on a line, provided three source positions are known.
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