
HAL Id: tel-03477086
https://theses.hal.science/tel-03477086

Submitted on 13 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design of optimization algorithms for large scale
continuous problems : application on deep learning

Léo Souquet

To cite this version:
Léo Souquet. Design of optimization algorithms for large scale continuous problems : application on
deep learning. Machine Learning [cs.LG]. Université Paris-Est, 2019. English. �NNT : 2019PESC0089�.
�tel-03477086�

https://theses.hal.science/tel-03477086
https://hal.archives-ouvertes.fr

Université Paris Est

Thèse de doctorat

En informatique

par

Léo Souquet

École doctorale de Mathématiques et STIC (MSTIC, E.D. 532)

Laboratoire Images, Signaux et Systèmes Intelligents (LISSI, EA-3956)

Design of optimization algorithms for
large scale continuous problems:
Application on Deep Learning

Soutenue le 19 décembre 2019 à Data ScienceTech Institute

devant le jury composé de:

Kalyanmoy, DEB Professor Michigan State University Rapporteur
Swagatam, DAS Associate Professor Indian Statistical Institute Rapporteur
El-Ghazali, TALBI Professeur des Universités Université Lille 1 Examinateur
Hugues, TALBOT Professeur des Universités CentraleSupelec Examinateur
Nadiya, SHVAI Scientist VINCI Examinateur
Amir, NAKIB Mâıtre de Conférences HDR Université Paris-Est Créteil Directeur

December 2019

Acknowledgements

I would like to thank all members of the Laboratoire Images, Signaux et Systèmes Intel-

ligents and its director, Prof. Yacine Amirat.

I would like to thank everyone close to me who have supported me for the last three

years. My Mother and my Father for their unconditional love and support. My Dear

Blandine (and her family) for always making me smile and taking care of me. My friends

for allowing me to take a step back when I could not see how to progress further.

A special thank you for those who have allowed me to pursue my work. Adel who

brought me halfway across the world when I needed it. Sebastien who always pushed

me through my studies and who has been a mentor and a friend. Jennifer for taking

care of me every time I was in Nice. To Franck, Laurie and their beautiful family for

feeding me every time I came to visit. Cédric for the countless exchanges on work and

technology. Nadiya for her kind advice, support and for doing her magic. Benedicte for

her trust, guidance and also for being here in difficult times.

I would also like to thank the DSTI family. Vincent who has been here from the be-

ginning and helped me countless times. To Sarah for her support and positive energy.

To Katia for her kind words. To Laurence for proof-reading part of this document. To

Johnny who always makes me laugh. To Alain Bravo for his inspiration and his sup-

port. To José Massol for allowing me to start my thesis, for all his advice and most

importantly for believing in me at the beginning of our project. And of course, to all

my students for challenging me during my classes.

To everyone I met during workshops and conferences for sharing their own experience,

helping me see through my situation.

Finally and most importantly I would like to thank my director Amir Nakib who has

first accepted me as his student, guided me for three years and has always been patient

with me. He has been a mentor and an incredible advisor all those years. He kept me

motivated and allowed me to achieve this important step in my life. He trusted me

when possible and set me straight when needed. I will always remember his advice in

the difficult times and can only hope that the work we achieved together has made him

proud.

PS: I would like to sincerely thank everyone who reads, even partially, this manuscript

and I hope you enjoyed reading it as much as I enjoyed writing it.

i

Abstract

This last decade the complexity of the problems increased with the increase of the

CPUs’ power and the decrease of memory costs. The appearance of clouds infrastruc-

tures provide the possibility to solve large scale problems. However, most of the exact

and stochastic optimization algorithms see their performances go down with the increase

of the dimension of the problems. Evolutionary approaches and other bio-inspired ap-

proaches were widely used to solve large scale problems without lot of success. Indeed,

the complexity of large scale problems non convex functions comes from the fact that

local minima (and maxima) are rare.

In this thesis, we propose to tackle large scale problems by designing a new approach

based on fractal decomposition of the search space using hyperspheres. This geometrical

decomposition allows the algorithm to be intrinsically parallel for solving large scale

problems. The proposed algorithm called Fractal Decomposition Algorithm (FDA). It

is a deterministic algorithm with low complexity and easy to implement. FDA has

been tested on several functions, compared with competing metaheuristics and showed

good results on problems with dimensions from 50 to 1000. Its structure allows it to

be naturally parallelized, which resulted in developing two new versions: PFDA for

multi-threaded environments and MA-FDA for multi-nodes environments. Then, the

proposed algorithm was adapted to solve multi-objective problems. Two algorithms

were proposed: the first one is based on scalarization and has been distributed on multi-

node architecture virtual environments known as containers. While the second approach

is based on sorting of non-dominated solutions.

Moreover, we applied FDA to the optimization of the hyperparameters of deep learning

architectures with a focus on Convolutional Neural Networks. We present an approach

using bi-level optimization separating the architecture search composed of discrete pa-

rameters from hyperparameter optimization with the continuous parameters. This is

motivated by the fact that automating the construction of deep neural architecture has

been an important focus over recent years as doing it manually is very time consuming

and prone to error.

ii

Keywords: continuous optimization, metaheuristic, multi-objective, deep learning,

fractals, large-scale optimization bi-level otpimization.

Résumé

Cette dernière décennie, la complexité des problèmes s’est accrue avec l’augmentation

de la puissance des processeurs et la diminution des coûts de mémoire. L’apparition

d’infrastructures cloud offre la possibilité de résoudre des problèmes en grandes di-

mensions. Cependant, la plupart des algorithmes d’optimisation exacts et stochas-

tiques voient leurs performances diminuer avec l’augmentation de la dimension des

problèmes. Les approches évolutionnaires et autres approches bio-inspirées ont été large-

ment utilisées pour résoudre des problèmes à grande échelle sans grand succès. En effet,

la complexité de ces problèmes aux fonctions non convexes vient du fait que les minima

(et maxima) locaux sont rares.

Dans cette thèse, nous proposons d’aborder des problèmes à grande échelle en conce-

vant une nouvelle approche basée sur la décomposition fractale de l’espace de recherche

par hypersphères. Cette décomposition géométrique permet à l’algorithme d’être in-

trinsèquement parallélisable. L’algorithme proposé est appelé Fracal Decomposition Al-

gorithm (FDA). Il est déterministe, de faible complexité et facile à implémenter. FDA a

été testé sur plusieurs fonctions, comparé aux métaheuristiques concurrentes et a montré

de bons résultats sur des problèmes de dimensions allant de 50 à 1000. Sa structure lui

permet d’être naturellement parallélisée, ce qui a permis de développer deux nouvelles

versions : PFDA pour les environnements multi-threaded et MA-FDA pour les envi-

ronnements multi-nœuds. Ensuite, l’algorithme proposé a été adapté pour résoudre des

problèmes multi-objectifs. Deux algorithmes ont été proposés : le premier est basé sur la

scalarisation et a été distribué sur une architecture multi-nœuds grâce à des conteneurs.

La seconde approche est basée sur le tri de solutions non dominées.

De plus, nous avons appliqué FDA à l’optimisation des hyperparamètres des architec-

tures d’apprentissage profond en mettant l’accent sur les réseaux neuronaux convolu-

tionnels. Nous présentons une approche utilisant l’optimisation à deux niveaux séparant

la recherche d’architecture composée de paramètres discrets de l’optimisation des hyper-

paramètres avec les paramètres continus. Ceci est motivé par le fait que l’automatisation

de la construction de l’architecture neuronale profonde a été une priorité importante ces

dernières années, car le travail manuel prend beaucoup de temps et est sujet aux erreurs.

iv

Mots Clés : optimisation continue, métaheuristique, multi-objectifs, deep learning,

fractals, optimisation en grandes dimensions, optimisation bi-niveaux.

Contents

Acknowledgements i

Abstract ii

Résumé iv

Contents vi

General Introduction 1

1 State-of-the Art on metaheuristics 5

1.1 Introduction . 5

1.2 Single-Solution metaheuristics . 7

1.2.1 Local Search . 8

1.2.2 Simulated Annealing . 9

1.2.3 Tabu Search . 10

1.3 Population-Based metaheuristics . 11

1.3.1 Evolutionary algorithms . 12

1.3.2 Evolution Strategies . 13

1.3.3 Differential Evolution . 13

1.4 Performance assessments . 14

1.4.1 Quality of solution . 14

1.4.2 Computational effort . 15

1.4.3 Robustness . 15

1.5 Decomposition-Based metaheuristics . 15

1.5.1 Continuous Branch and Bound . 16

1.5.1.1 Bounding methods . 17

1.5.1.2 Subregions selection methods 18

1.5.2 FRACTOP . 18

1.5.3 Multiple Optima Sierpinski Searcher 19

1.5.4 DIRECT Algorithm . 19

1.5.4.1 Other versions of DIRECT 20

1.6 Parallel metaheuristics . 21

1.6.1 Parallel Evolutionary Algorithms 22

1.6.2 Parallel Ant Colony Algorithm . 23

1.6.3 Parallelized Decomposition methods 23

1.7 Multi-Objective Optimization . 24

vi

Contents vii

1.7.1 Dominance-based algorithms . 25

1.7.1.1 Particle Swarm Optimization for multi-objective Opti-
mization . 25

1.7.1.2 Non-dominated Sorting Genetic Algorithm (NSGA-II) . . 26

1.7.2 Scalarization in Multi-objective optimization 26

1.7.2.1 Scalarization techniques 27

1.7.2.2 Scalarization-Based Algorithms 28

1.7.3 Performance evaluation in MOP 30

1.7.3.1 The Hypervolume . 31

1.7.3.2 The Generational Distance and Inverted Generational
Distance . 32

1.7.3.3 The Spread . 32

1.8 Conclusion . 33

2 Design of Fractal Decomposition based Algorithm 34

2.1 Introduction . 34

2.2 Geometric Fractal Decomposition . 35

2.3 Coverage of the search space via the Fractal Decomposition 36

2.3.1 Relaxation at the first level . 37

2.3.2 Lower bound estimation of α . 40

2.4 Proposed Fractal Decomposition based Algorithm 43

2.4.1 Promising hypersphere selection (Exploration strategy) 44

2.4.2 Multilevel search strategy . 47

2.4.3 Intensive Local Search (ILS) . 48

2.5 Results and discussions . 48

2.5.1 Benchmark Functions . 48

2.5.2 Parameters Settings . 49

2.5.3 Sensitivity analysis of FDA . 50

2.5.4 Complexity Analysis . 50

2.5.5 FDA Results . 51

2.5.6 Analysis of FDA’s behavior . 51

2.5.7 Comparison with competing algorithms 52

2.5.7.1 Comparison with DIviding RECTangles (DIRECT) . . . 53

2.5.7.2 FDA comparison with SOCO 2011 Participants 54

2.5.7.3 Comparison with recent metaheuristics 57

2.6 Conclusion . 58

3 Parallel fractal decomposition based algorithm for large scale continu-
ous optimization problems 63

3.1 Introduction . 63

3.2 Analysis of the mono-thread implementation of FDA 64

3.2.1 Proposed Multi-threaded Implementation Strategy 65

3.2.2 Results and Discussions of PFDA 68

3.2.2.1 Performances evaluation 69

3.2.2.2 Exploring higher dimension 71

3.2.3 Proposed Multi-Nodes Implementation - MA-FDA 73

3.2.4 Results and discussions of MA-FDA 75

Contents viii

3.2.4.1 MA-FDA-S1 . 76

3.2.4.2 MA-FDA-S2 . 76

3.3 Conclusion . 78

4 Design of Fractal Decomposition based algorithm for multi-objective
optimization 79

4.1 Introduction . 79

4.2 Mo-FDA Scalarization: Mo-FDA-S . 80

4.2.1 Weighted Sum . 80

4.2.2 Tcheybycheff Approach . 81

4.2.3 Proposed Approach and Parallelized Architecture 81

4.2.3.1 Proposed architecture . 81

4.3 Mo-FDA Dominance . 84

4.3.1 Multi-objective Promising hypersphere selection (Exploration strat-
egy) . 84

4.3.2 Multi-objective Intensive Local Search (ILS) 86

4.4 Results and Discussions . 87

4.4.1 Benchmark Functions . 87

4.4.2 Sensitivity analysis of the multi-objective algorithms 88

4.4.2.1 Parameters sensitivity of Mo-FDA-S 88

4.4.2.2 Parameters sensitivity of Mo-FDA-D 89

4.4.3 Parameter Settings . 93

4.4.3.1 Settings for Mo-FDA-S 94

4.4.3.2 Settings for Mo-FDA-D 95

4.4.4 Comparison with competing algorithms 96

4.4.4.1 2-Objective functions . 97

4.4.4.2 3-objective functions . 99

4.5 Conclusion . 99

5 Optimal Convolution neural networks architecture search based on
FDA 102

5.1 Introduction . 102

5.2 Architecture Search and fine-tuning the hyperparameters 103

5.2.1 Convolution Neural Network . 103

5.2.2 Related Work . 105

5.2.3 Problem formulation . 106

5.3 Decision Variables Encoding . 107

5.3.1 Encoding of the Upper-level problem 108

5.3.2 Encoding of the Lower-level problem 109

5.4 Results and Discussion . 110

5.4.1 Optimal Architecture Search . 110

5.4.2 Hyperparameter Optimization . 111

5.4.2.1 Sensitivity analysis . 112

5.4.2.2 Choice of the backpropagation algorithm 112

5.4.2.3 Parameter Settings . 113

5.4.2.4 Results . 114

5.5 Conclusion . 115

Contents ix

General Conclusion and future work 117

A Tables of chapter 2 - FDA 124

B Tables of chapter 3 - PFDA 132

C Tables of chapter 4 - Mo-FDA 136

D Results on CIFAR-100 144

Bibliography 147

General Introduction

In the last decade, the complexity of the problems being handled could be increased due

to the increase of the CPUs’ power and the decrease of memory costs. Indeed, the clouds

and other supercomputers provide the possibility to solve large scale problems. How-

ever, most of the exact and stochastic optimization algorithms see their performances go

down with the increase of the dimension of the problems. Complexity in an optimiza-

tion problem can be due to the non-linearities, multi-modality, computational time to

evaluate the cost function or even uncertainties in parameters. In this thesis, we decided

to address the dimensional complexity.

This thesis addresses those optimization problems. Different techniques have been devel-

oped in the literature, among them heuristics and metaheuristics. Indeed, metaheuristics

address the complexity and variety of problems by being designed to solve hard opti-

mization problems, without any knowledge about the considered problem. However,

their stochastic nature is a limiting factor, in some applications, when it comes to safety

critical applications where repeatability is important. Typically in these cases, meta-

heuristics can be used to improve the parameter settings of deterministic algorithms.

Moreover, when the metaheuristics are efficient, some of them are difficult to imple-

ment. Beside, the justification of an obtained solution can also be difficult because the

method used is based on a complex stochastic search rather than on a deterministic

approach.

Furthermore, the complexity of large scale problems comes from the fact that local

minima (and maxima) are rare compared to saddle points. Indeed, some points around

a saddle point have greater fitness (value of the objective function) than the saddle point,

while others have a lower fitness value. This phenomena can be explained by the fact

that at a saddle point, the Hessian matrix has both positive and negative eigenvalues.

Then, points lying along eigenvectors associated with positive eigenvalues have greater

fitness than the saddle point, while points lying along negative eigenvalues have a lower

value. Consequently, a saddle point can be considered as a local minimum along one

cross-section of the fitness function and a local maximum along another cross-section

1

General Introduction 2

[Nakib et al., 2017]. For instance, let f : Rn → R be a function of this type, the

expected ratio of the number of saddle points to local optima grows exponentially with

n. To understand the perception following this behavior, one can see that the Hessian

matrix at a local minimum has only positive eigenvalues, but the Hessian matrix at

a saddle point has both positive and negative eigenvalues. Assume that the sign of

each eigenvalue is generated by flipping a coin, then, in one dimension, it is easy to

obtain a local minimum by flipping a coin and getting heads once. In n-dimension case,

it is exponentially unlikely that all n coins tossed will have heads outcome. To solve

large-scale problems, evolution algorithms, evolution strategy, and differential evolution

algorithms have been extensively modified and adapted for different problems. Those

modifications do increase the performances but also increase significantly the complexity

of implementation.

The goal of this work is to design an efficient optimization algorithm to deal with large

scale optimization problems. The idea is to propose a low complex approach and easy

to implement. Then, the proposed algorithm is called, “Fractal Decomposition based

Algorithm” (FDA). It is based on a fractal geometrical decomposition of the search

space. The main principle of the approach consists of dividing the feasible search space

into sub-regions with the same geometrical pattern. Indeed, decomposing the search

space allows the algorithm to create a tree composed of sub-regions. This principle

makes it naturally parallelizable. The idea is to benefit from modern infrastructure and

allow FDA to run on multi-threaded and muti-node environments.

This thesis has been funded by Data ScienceTech Institute and prepared within the

University Paris-Est Créteil (UPEC), in the Laboratoire Images, Signaux et Systèmes

Intelligents (LiSSi, E.A. 3956) under the direction of the Amir Nakib (PhD) within the

group SIMO (Signal, Image and Optimization).

The main contribution of this thesis are:

• The design of a new deterministic metaheuristics, called FDA, based on a frac-

tal geometrical decomposition of the search space using hyperspheres, capable of

solving large-scale black-box problems.

• The adaptation of our algorithm to benefit from modern distributed architectures.

• Two new approaches for solving Multi-Objective problems. The first one, Mo-

FDA-S uses scalarization and the other, Mo-FDA-D leverages non-dominated sort-

ing.

General Introduction 3

• The application of FDA to design and optimize Convolutional Neural Networks

(CNN) using bi-level optimization and the distinction between discrete and con-

tinuous parameters.

This manuscript is organized as follow:

The first chapter introduce the state-of-the art on metaheuristics, followed by the liter-

ature on parallel metaheuristics and multi-objective approaches.

The second chapter presents the proposed algorithm called “Fractal Decomposition

based Algorithm” (FDA). The use of hyperspheres as an elementary geometric form

is considered. This choice was motivated by its low complexity and flexibility to cover

a part of the search space. Indeed, it is easy to go from one center of a hypersphere

to another analytically without storing them. A performance analysis is conducted on

large-scale global optimization test functions with dimensions going from 50 to 1000.

The obtained results and the comparison with other metaheuristics designed to solve

the same types of problems, show the efficiency and the competitiveness of the proposed

algorithm to solve large scale optimization problems.

In its original version, FDA was running on a mono-threaded environment and therefore

its computational time increases significantly when the problems’ dimension increases.

In this chapter we tackle this problem by proposing two different solutions. Reducing

the execution time while maintaining the original precisions. The first approach benefits

from multi-threaded environments while the other from multi-node environments. Both

approaches are designed to leverage current available Information Technology resources

such as new cloud infrastructures. The multi-threaded FDA is called, “Parallel Fractal

Decomposition based Algorithm” (PFDA) [Nakib et al., 2018] and the multi-node is

called “Multi-Agents Fractal decomposition based algorithm” (MA-FDA).

The fourth chapter presents the adaptation to tackle multi-objective problems. In multi-

objective optimization problems (MOP) the goal is to optimize at least two objective

functions simultaneously. In this chapter, two new approaches have been developed.

Mo-FDA-S based on the scalarization approach using the Tchebycheff technique to de-

compose the objective space. This approach has also been developed to benefit from

a multi-node environment to improve the computational time. This architecture takes

profit from containers, lightweight virtual machines that are designed to run a specific

task only. The second approach, Mo-FDA-D uses the principle of non-dominated sorting.

The fifth chapter presents an application of FDA to the optimization of the hyperpa-

rameters of deep neural network architectures. We present an approach using bi-level

optimization separating the architecture search composed of discrete parameters from

General Introduction 4

hyperparameters optimization with continuous parameters. This is motivated by the

fact that automating the construction of deep neural architecture has been an impor-

tant focus over recent years as doing manually is very time consuming and prone to

error and that the experts doing that are expensive in the industry.

Finally, a general conclusion summarizes our results and contributions as well as pre-

senting the potential future work.

Chapter 1

State-of-the Art on

metaheuristics

1.1 Introduction

Optimization is at the crossroad of mathematics and computer science. It is the study

of problems in which we wish to find the best solution among a set of feasible ones.

Problems can be divided into three categories. The first one is discrete optimization

which refers to problems with discrete variables. The second, continuous optimization

refers to continuous variables as well as a continuous function being optimized. The

third, called ”Mixed-interger programming” methods, are common in practice, and are

used when the set of decision variables contains integers and real values. In this thesis,

we focus on dimensional complexity.

The term black-box refers to the fact that the algorithm has no information on the

function being optimized and does not (usually) assume any analytical form. Mathe-

matically, an unconstrained optimization problem with box constraints is represented as

follows:

minimize f(x)

subject to x ∈ X ,X =
{
x ∈ RD : l ≤ x ≤ u

} (1.1)

where f(x) is the function to optimize and is called the objective function or cost func-

tion. X is the set of feasible solutions in the search space, bounded by the lower bound

l and upper bound u and D refers to the dimension of the problem, i.e. the number of

decision variables. Optimization aims to find the extremum (minimum or maximum).

The global optimum, x0, in case of minimization is defined as:

5

State-of-the Art on metaheuristic for continuous optimization 6

Figure 1.1: Illustration of the different extremum of function.

x0 ∈ X is a global minimum point of function f : X→ R if (∀x ∈ X)f (x0) ≤ f(x)

(1.2)

By convention, in optimization, the standard form defines a minimization problem. A

maximization problem can be treated by negating the objective function.

Global optimality and local optimality are two important notions in the field of opti-

mization. The former is defined in Equation 1.2 and the intuition is that it is the best

solution(s) that can be found for a given problem. However, one of the issue when op-

timizing a function is a local optimum. In X, xlocal is a local optimum if there exists

some ε > 0 such that f(xlocal) ≤ f(x) for all x ∈ X where ||x−xlocal|| ≤ ε. The intuition

here is that xlocal is the best solution in its neighbourhood and can be confused with

the global optimum. Figure 1.1 illustrates the different extremum.

To address those optimization problems, different techniques have been developed, among

them heuristics and metaheuristic are popular. According to the authors in [Clautiaux

et al., 2004], heuristics returns good results in short computation time, whereas the

metaheuristic aims to returns the best results known, i.e. the global optimum of the

problems. However, other elements found in the literature can be added. Heuristics

tend to be problem-dependent designed or modified to solve one problem in particu-

lar whereas metaheuristics are problem agnostic and are designed to solve any given

problems without knowing the analytical form of the function being solved. The terms

State-of-the Art on metaheuristic for continuous optimization 7

metaheuristic also refers to approaches being able to transcend local optimality using

different strategies [Glover, 1986].

When talking about metaheuristic, two notions must be taken into account. Diversi-

fication and Intensification are two main mechanisms that every solution in trying to

balance. The former designates the fact that the algorithm will look for promising re-

gions within the search space while it will try to find a better solution within those

“good” regions during the intensification phase.

The focus here will be on metaheuristics as the work presented in this thesis concerns

the development of a new metaheuristic. Many categories can be found in the literature

such as single-solution based algorithms, population-based approaches, metaheuristics

for multi-objective optimization, hybrid or even parallel algorithms [Talbi, 2009]. The

Figure 1.2 shows a classification of the main optimization methods. In red are highlighted

the main categories presented in this thesis.

Optimization methods

Exact methods

Branch and X

Branch and bound

Dynamic programming

Approximate methods

Heuristics

Metaheuristics

Single-solution based

Constraint programming Approximation algorithms

Problem-specific heuristics

Population-based

Branch and cut Branch and price

Figure 1.2: Classification of optimization methods [Talbi, 2009]

This chapter will first present the well-known single-solution based metaheuristics in

Section 1.2. We will then cover Population-Based approaches in Section 1.3 followed

by the performance assessment of metaheuristics in Section 1.4. Decomposition-based

approaches are detailed in Section 1.5. Parallel algorithms will be covered in Section 1.6

as well as Multi-Objective optimization techniques in Section 1.7. This chapter will be

concluded in Section 1.8.

1.2 Single-Solution metaheuristics

This category is dedicated to algorithms using one solution when solving a given problem.

They focus on iteratively improving one candidate solution that “walks” through a search

trajectory or neighbourhoods within the search space. The notion of neighbourhoods

State-of-the Art on metaheuristic for continuous optimization 8

is crucial in single optimization as it defines the feasible solutions around the main

one being improved. Metaheuristics will implement different technics to select the next

solution within the neighbourhood (or not in certain cases). This might lead algorithms

to remain in a local area and miss the global optimum. To avoid local optimality,

metaheuristics have implemented different strategies.

1.2.1 Local Search

Local search is probably the oldest and simplest method [Talbi, 2009] and has been

designed to solve hard optimization problems in a reasonable time. The aim is not to

find the global optimum but to provide a good local optimum. The principle of a local

search is to navigates iteratively through a neighbourhood. Then at each step, a solution

within the surrounding candidates that improves the current solution is selected. The

algorithm will stop when the stopping criterion has been reached (computation time or

when no candidates around in the neighbour provide an improvement of the objective

function). It is important to mention that this search is not done using any gradient

methods as it may seem. The search is done by generating a set of candidates around the

current solution and selecting the one that improves an objective function. A template of

a local search can be seen at the figure Algorithm 1. When selecting the best candidates

solutions different strategies can be used. Within a neighborhood, either the solution

that improves the best the function evaluation or the first solution encountered that

improves it.

Algorithm 1: Generic template of a local search (in case of minimization)

Generate an initial solution s0

Generate a current solution s and assign it s0: s = s0

Initialize the best current solution bestSol = f(s)
while Stopping criterion is not reached do

Generate a set X of k candidate solutions around s
if f(si) < f(s) for si ∈ X then

bestSol = f(si)
s = si for s ∈ X

end
else

Stop the local search
end

end
Output: bestSol

Local searches can be efficient methods but the main issue is that remain stuck within

local optimum. This is why more advanced method to avoid this local optimality have

been developed in the literature.

State-of-the Art on metaheuristic for continuous optimization 9

1.2.2 Simulated Annealing

This metaheuristic was developed by Kirkpatrick et al. [1983]. Authors illustrated that

the work done in the later to approximate numerical simulation of the behavior of a

many-body system at finite temperature is suitable to be adapted as an optimization

algorithm. In other words, it is inspired by the work done in metallurgy where a material

is heated at an important temperature and then slowly cooled by a controlled technique

aiming to obtain a strong crystalline structure. The strength obtained by the cooling

system depends on the initial temperature and the rate of cooling. If the temperature

is not high enough or the cooling too fast, the structure obtained will not be optimal

because strong crystals are grown controlled slow cooling. This physic principle is taken

from the work done in Metropolis et al. [1953].

The algorithm starts from an initial solution with a high-temperature T. At each iter-

ation, a random solution is generated. Candidates are always accepted if it improves

the cost function. If not, the candidates are still accepted with a certain probability

that depends on the current temperature and the difference in value between the two

solutions (current and candidate). As the algorithm progress, similar to the cooling

system, the temperature decreases, hence decreasing the probability to accept the worst

candidates. The probability follows the Boltzmann distribution as per Equation 1.4.

P = exp

(
−∆E

T

)
(1.3)

with∆E = f(s
′
)− f(s) (1.4)

where s is the current solution, s
′

the candidate solution and ∆E the difference between

them. If ∆E ≤ 0, then s
′

is always accepted, however if ∆E > 0, s
′

is accepted with

probability P . At the beginning of the algorithm, T is high, therefore, non-improving

solutions are likely to be accepted. However, as the algorithm progress, T is reduced

and so is the P . Simulated Annealing (SA) has been originally designed to solve discrete

optimization problems however in the literature it has been modified to solve continuous

problems [Siarry et al., 1997]. SA has been modified in different studies to address

large-scale optimization problems. In Hasançebi et al. [2010] authors mentioned that

SA fails to produce acceptable solutions to high dimensional problems due to its poor

convergence characteristics. Their solution did enhance SA performances but added two

more parameters which increase its complexity.

In addition to the issues common to all metaheuristics, the specific issues with Simulated

Annealing are both the acceptance probability being the main element in the algorithm

State-of-the Art on metaheuristic for continuous optimization 10

and the cooling schedule, i.e. at which step is the Temperature T decreased and by

how much. In his paper, F. Glover [Glover, 1986] argued about the random selection

implemented in simulated annealing and proposed a controlled selection in his algorithm

called “Tabu Search”.

1.2.3 Tabu Search

Tabu search is a metaheuristic that has been developed by F. Glover in his famous

paper Future paths for integer programming and links to artificial intelligence [Glover,

1986]. He pointed out the stochastic behavior of Simulated Annealing and proposed a

deterministic algorithm. Tabu searched was designed under the supposition that there

is no value in choosing a non-improving candidate except if it is to avoid taking a path

already examined. Tabu Search can be seen as a local search. Iteratively, the algorithm

will move from one solution to another, choosing the best neighbour at each iteration.

To avoid local optimality, if no candidates solutions improve the current one, the best

among them will be chosen. However, the significant improvement brought by this

algorithm lies in the construction of a memory list while exploring the search space. A

list of the m most recent moves are recorded in the order in which they have been made

and added at the end of the list. This list contains the “tabu” solutions that have been

visited already and ensures that the algorithm does not visit the same path twice. The

balance between diversification and intensification is done by tuning the size of the list

m. It is an important parameter. The larger it is, the more diversified the algorithm

is, visiting a larger part of the search space as many moves will be restricted. However,

if m is short, the Tabu Search behaves as having a “goldfish memory” and will forget

previous moves and will tend to intensify more.

The issues of the original Tabu Search lies in the used of only one list which can be

restrictive and in the fine-tuning of m. However, many modifications have been made

in the literature to improve the algorithm. In [Glover, 1997], F. Glover integrates the

notion of adaptative memory. In [Chelouah & Siarry, 1999], the authors have enhanced

Tabu Search for the global optimization of multi-minima functions. The algorithm has

been modified to solve multimodal functions with continuous variables in [Hajji et al.,

2004].

To solve high dimensional problems, Tabu Search has been modified to explore the

neighborhood of the current solution gradually through smaller number of variables

[Hedar & Fouad, 2012]. Indeed, authors showed that on high dimensions, exploring the

neighborhood of all variables at the same time can negatively affect the progress of the

search. This version shows promising results comparing to other Scatter Search methods

State-of-the Art on metaheuristic for continuous optimization 11

Algorithm 2: Generic template of the Tabu Search search (in case of minimization)

Generate an initial solution s0

Generate a current solution s and assign it s0: s = s0

Initialise the best current solution bestSol = f(s)
Create an empty tabuSearch list and push s at the end
while Stopping criterion is not reached do

Generate a set X of k candidate solutions around s
Find the best candidate sbest ∈ X
if f(sbest) < f(s) and sbest /∈ tabuSearch then

bestSol = f(sbest)
s = sbest

end
else if f(sbest) ≥ f(s) then

bestSol = f(sbest)
s = sbest
Push sbest in tabuSearch at the end of the list

end
if Size of tabuSearch > m then

Remove first element of tabuSearch
end

end
Output: bestSol

and less computational expensive but is outperforms by more advanced methods such

as Differential Evolution.

As mentioned, metaheuristics continuously balance the trade-off between diversification

and intensification. While single-solution metaheuristics have implemented different

strategies to maintain diversification. Another category of metaheuristic, population-

based approaches, benefit from a population of solutions (as indicated in the name of

the category) which helps to maintain the diversity.

1.3 Population-Based metaheuristics

This section covers the main well-known population-based metaheuristics. This cate-

gory of algorithms maintains and improve iteratively multiple candidate solutions (a

population). Many of those metaheuristics are nature-inspired algorithms. This means

that the structure has been inspired by natures’ behavior [Ser et al., 2019].

Population-based metaheuristics share certain common behaviour. They all start from

an initial population of solutions and iteratively generate new populations. A selection

phase is carried out to keep a subset of the population and these two phases are repeated

until a stopping criterion is reached.

State-of-the Art on metaheuristic for continuous optimization 12

1.3.1 Evolutionary algorithms

Jean-Baptiste Lamarck (1744–1829) was the first to theorise the transmutation of species

in [Lamarck, 1830] and believed life forms were created continuously by spontaneous gen-

eration. It is in 1859 that Charles Darwin publishes his famous book On the Origin of

Species [Darwin, 1859] about his theories of evolution and natural selection. In a nut-

shell, it is the principle that mutation occurs from a generation to another and the

beneficial ones are preserved because they aid survival. In the mid-1960s, computer

scientists have seen in the theory of evolution a way to apply to optimization. His-

torically two main different schools can be identified. Genetic Programming in [Fogel

et al., 1966] and Genetic Algorithm (GA) in [Holland, 1975], all part of Evolutionary

Algorithm (EA). However other models of evolutionary algorithms have been proposed

in the literature such as Differential Evolution. They are all stochastic population-based

metaheuristics and iterate over many populations simulating the evolution of species.

The initial population is generated randomly and at each iteration, a new one is gener-

ated. Each individual is evaluated against the cost function which indicates its relevance

to the problem. The best individual is selected for “reproduction” and becomes parents.

Through different strategies, new individuals are generated (children). The higher the

fitness is for an individual the higher the probability it will be selected. This process is

repeated iteratively until the stopping criterion is reached such as the number of function

evaluations or generation. Template of an EA algorithm is shown in Algorithm 3.

Algorithm 3: Generic template of an EA algorithm (in case of minimization)

Generate an initial population P0 randomly of n individuals
t = 0
while Stopping criterion is not reached do

Evaluate each individual of population Pt
P
′
t = Select the k best individuals in Pt
Pchildren = Generate new individuals from P

′
t

Pt+1 = best individuals among Pchildren and P
′
t

t = t+ 1

end
Output: bestSol individual or best population

Genetic algorithms were developed by J. Holland (University of Michigan, USA) in [Hol-

land, 1975] to understand the adaptative process of evolution of a population. They are

a very popular type of EA algorithm and have been widely applied to real optimiza-

tion problems as well as machine learning. Originally developed for discrete optimization

they have been modified to all types of optimization problems [Chelouah & Siarry, 2000].

The particularity of GA is that the generation of a new individual from a population is

done using two strategies. The crossover, combines multiple parents to generate a new

State-of-the Art on metaheuristic for continuous optimization 13

one and the mutation, i.e. changing slightly one parent to create a new solution. After

those two phases, we reevaluate all individuals and create a new generation. Both oc-

curs with a probability Pc ∈ [0, 1]. Moreover, the offspring population always replace the

parent population using different selection strategies such as proportionate, tournament

or ranking [M.A. AL-Salami, 2009]. In the literature, many different operators can be

used for the selection, crossover or mutation phases [Bäck et al., 2000].

1.3.2 Evolution Strategies

Evolution Strategies (ES) is another branch of Evolutionary Algorithm first proposed

by Ingo Rencherberg in [Rechenberg, 1965]. This type of algorithms has been mostly

applied to continuous optimization and emphasise on using normally distributed mu-

tation. Where in GA the size of the parents and offsprings populations are similar,

in Evolution Strategies, their size can be different from one iteration to another. The

approach called CMA-ES (Covariance Matrix Adaptation Evolution Strategy) is prob-

ably the most famous ES algorithm [Hansen & Ostermeier, 2001]. It is stochastic and

derivate-free, considered as one of the most powerful stochastic optimizers but the orig-

inal formulation does not scale well on large optimization problems. It has been the

subject of many studies and modifications in the literature [Varelas et al., 2018].

1.3.3 Differential Evolution

One of the most popular and most performant EA for solving continuous optimization

problems is called Differential Evolution algorithm (DE) [Storn & Price, 1995]. Unlike

the other families of EAs presented above, DE perturbs the current-generation popula-

tion members with the scaled differences of randomly selected and distinct population

members. Therefore, no separate probability distribution has to be used for generat-

ing the offspring. Different variants of DE have been suggested by Price et al. [2005]

and are conventionally named DE/x/y/z, where x represents a string that denotes the

base vector, i.e. the vector being perturbed, whether it is “rand” (a randomly selected

population vector) or best (the best vector in the population with respect to fitness

value), y is the number of difference vectors considered for perturbation of the base vec-

tor x and z denotes the crossover scheme, which may be binomial or exponential. The

DE/rand/1/bi n-variant is also known as the classical version of DE. Recently, it has

gained much popularity in different kinds of applications, because of its simplicity and

robustness in comparison with other evolutionary algorithms [Vesterstrom & Thomsen,

2004]. DE has very few parameters to adjust, making it particularly easy to implement

for a diverse set of optimization problems [A.Bastürk & E.Günay, 2009; Chang, 2006;

State-of-the Art on metaheuristic for continuous optimization 14

Yang et al., 2007]. DE has also been adapted to solve large-scale problems. A ver-

sion called Self-adaptive Differential Evolution (SaDE) [Qin & Suganthan, 2005] uses a

learning procedure to generate trial vectors strategies with their associated parameters.

Another self-adaptative version called jDElscop [Brest & Maučec, 2011] has proven more

efficient than others due to a reduced population size and a mechanism for changing the

sign of the F control parameter. A survey on Differential Evolution and future research

issues are presented on [Das et al., 2016].

1.4 Performance assessments

In this section, we briefly review the different methods to measure the performance

of metaheuristics. As they do not guarantee to find the optimum, metrics have been

defined to evaluate the quality of the solutions found, the computational time required

to solve a problem as well as the robustness of an algorithm.

1.4.1 Quality of solution

The quality of the solution refers to its cost, also called fitness, obtained when evaluating

the objective function. It corresponds to a numerical value quality which indicates the

extent to which the solution obtained is satisfactory.

Concerning problems when the global optimum is known, the quality is defined as the

distance between a solution found and the known global optimum. The smaller this

distance, the better the quality. The most common expression to defined the quality is

as follows:

|f(s)− f (s∗)| (1.5)

where s is a solution found by the metaheuristic and s∗ is the global optimum.

However, when the global optimum is not known, different methods can be used to

define the quality of a solution. The best solution found by the algorithm can be used

as a reference point and will be updated if a better solution is found. Others approaches

define the quality according to a lower bound computed using relaxation techniques.

State-of-the Art on metaheuristic for continuous optimization 15

1.4.2 Computational effort

For any optimization algorithm, the computational analysis can be done both theoret-

ically and empirically. The first one refers to the study of the worst-case complexity

of the algorithm. Two types of complexity exist: asymptotic and average-case. In

general, asymptotic complexity is not sufficient to define metaheuristic performance.

The average-case complexity may, therefore, be more representative in cases where the

distribution of input instances is known a priori.

Empirical performance evaluation can be done using different measures related to the

computational time. Either the time of the CPU (central process unit) can be used, the

GPU time or the internal clock of a computer. The main issue is that those metrics

are dependant on characteristics of the physical machine running the algorithm such as

CPU model, amount of RAM (random access memory), the operating system itself and

also the programming language chosen to implement the algorithm.

To overcome this issue the number of function evaluation used to solve the problem

can be used and is independent of the physical machine. However, this metric has its

limitations when it comes to problems with a small number of evaluations or when they

are not constant in time. Several stopping criteria can be employed such as the number

of iterations or the time required to obtain a given solution

1.4.3 Robustness

To assess the robustness of a metaheuristic, one should study the variation of its results

with respect to its parameters. The less the results change when the parameters change,

the more robust the algorithm is. Also, applying a metaheuristic to different problems

such as separable or non-separable. All of the results obtained are considered to define

the robustness of the algorithm.

1.5 Decomposition-Based metaheuristics

So far the most commonly known metaheuristics have been proposed based on different

strategies, inspired by physics, natures, swarm behaviours. In the section, we present

another class of algorithms called “Decomposition-Based metaheuristic”. These meth-

ods are based on the strategy that consists in dividing the search space by carrying

out a hierarchical partitioning. They are often referred to as “divide-and-conquer” ap-

proaches. They generate iteratively a tree composed of nodes representing subregions of

the decision space with the root corresponding to the entire search space. This creates

State-of-the Art on metaheuristic for continuous optimization 16

a set of partitions over multiplied scales (nodes of a given depth corresponds to a parti-

tion of a specific scale). This family of the algorithm has been studied in the literature

and are also referred as Multi-Scale Optimization (MSO) algorithms [Al-Dujaili et al.,

2016b]. In our work, we were focused on this optimization approach.

1.5.1 Continuous Branch and Bound

Branch and bound is not a metaheuristic but belong to the class of exact methods. It

is important to briefly mention this approach as it is a decomposition-based algorithm

that has inspired different decomposition methods. Branch and bound (B&B) was first

proposed by Land & Doig [1960] to solve discrete optimization problems.

In addition, many deterministic optimization algorithms use a continuous branch and

bound paradigm [Tuy & Horst, 1996] and many metaheuristics hybridized with branch

and bound can be found in the literature [Blum et al., 2008]. A template of a branch

and bound algorithm is shown in Algorithm 4. Here each node is associated with a set,

characterized as a n-dimensional interval referred to as a box. The method starts at the

root node with a set that contains all feasible solutions and explores the search space

while dynamically building a tree of subregions. Interactively the algorithm visits nodes

and bounds the optimal solution current visited node. If the lower bound is greater

than the current best solution, the node is discarded. Otherwise, the algorithm looks

for a better solution within the node. If found the solution is store and the node is

further decomposed into two new subregions. A new global lower bound is set, i.e. the

minimum lower bound of all remaining boxes. The search terminates when there is no

part of the solution space to explore, and the optimal solution is the best solution found

during the search. Branch and bound algorithm rely on two main mechanisms. The

node selection which decides how to navigate in the generated tree and the partition

mechanism which decompose regions which are not discarded. More strategies can be

found in Tuy & Horst [1996]

Branch and bound algorithm does not scale well on high dimensional problems. This is

due to the fact that this method has a worst-case running time as high as an exhaustive

search of all potential nodes which is exponential. In short adding one decision variable

could double the time required to optimize a problem. Domain reduction methods could

be used to address this scaling issue.

State-of-the Art on metaheuristic for continuous optimization 17

Algorithm 4: Template of a Branch and bound algorithm

Lower Bound, LB = −∞;
f∗ = +∞
k=1
N = {X0}
while NotConverged(LB, f∗) and |A| > 0 do

Xk = SubRegionSelection(A);
A = A\{Xk}
LB(Xk) = ComputeLowerBound(Xk)
if LB(Xk) < f∗ then

Upper Bound, (UBk, xk) = FindFeasibleSolution(Xk)
if UBk < f∗ then

f∗ = UBk
x∗ = xk
A = {X ∈ A : NotConverged(LB(X), f∗)}

end
(X ′, X ′′) = SubregionDecomposition(Xk)
LB(X’) = LB(Xk)
LB(X”) = LB(Xk)
A = A ∪ {X ′, X ′′}

end
LB = minX∈ALB(X)
k = k+1

end
Output: (f∗, x∗)

1.5.1.1 Bounding methods

Being able to obtain information about a subregion is a key element in a determinis-

tic decomposition algorithm. Three elements are essentials for an effective bounding

method. 1) initial estimation of a subregion by the method; 2) rate of the resulting

conversation bound and 3) efficiency in terms of computational time is a concern to any

numerical method.

Two approaches can be used to bound a subregion. The first and most popular way

is to directly compute a lower bound on the range of a given function. This range

of methods belong to the family of interval analysis [Alefeld & Mayer, 2000; Moore &

Bierbaum, 1979; Neumaier, 1991]. The arithmetic principle of the interval in the real

number system can be extended and can be used to estimate conservatively an interval

within the optimization problem referred to as the subregion of the function. Popular

methods include natural interval extensions and centred forms.

Another approach is to set up a convex optimization that is guaranteed to return a lower

bound of a given subregion. It considers the problem differently by relaxing in Equation

1.1, the feasible set and/or replacing the cost function with one that takes a smaller

State-of-the Art on metaheuristic for continuous optimization 18

value for each point in its space. This relaxation can be a linear or a convex program

allowing the algorithm to solve the problem optimally [Bertsekas, 1995; Bertsimas &

Tsitsiklis, 1998; Boyd & Vandenberghe, 2004].

1.5.1.2 Subregions selection methods

Subregions selection methods reduce the size of the considered subregion using the in-

formation about the current best fitness found. They aim to select the subregions to be

discarded during the exploration of the search space. Either the discarded subregions

contains no feasible solutions or no solution within it can represent an improvement. It

has been shown that Branch and bound algorithms converge without it but their signif-

icantly reduce the run time. In [Ratz & Csendes, 1995], authors studied the influence of

different interval subdivision selection methods on the convergence of branch and bound

algorithms. They conclude that using the selection rule adapted to the problem be-

ing optimized, a significant amount of computation time can be saved. Other methods

can be found in the literature such as duality-based [Tawarmalani & Sahinidis, 2004],

feasibility-based [Hansen et al., 1991] or optimality-based [Ryoo & Sahinidis, 1995].

Authors in [Araya & Reyes, 2015] detailed the principle of interval branch and bound

algorithms to solve global optimization problems. Two methods are presented. First,

Newton-based for constrained problems and small regions to decompose. Then Relaxation-

based methods are not restricted to constraints problems however, linear relaxation

might lead to information loss of the original cost function.

Outside branch and bound methods, other algorithms have been developed to decompose

the search space. For instance, the algorithm proposed in [Demirhan & Özdamar, 2003]

partitioned the domain space into non-overlapping subregions. Their method called

Fuzzy Adaptative Partitioning Algorithm (FAPA) uses a fuzzy assessment measure us-

ing information from randomly selected points. FAPA shows interesting results in test

functions up to 10 variables but has not been tested on large scale problems.

Their algorithms use a geometrical form to decompose the search space. For instance,

FRACTOP Demirhan et al. [1999], MOSS [Ashlock & Schonfeld, 2007] or DIRECT

[Jones et al., 1993] for the most popular one are next presented as they are closely

related to the work presented in this thesis.

1.5.2 FRACTOP

In 1999, Demirhan introduced a metaheuristic for global optimization based on geo-

metric partitioning of the search space called FRACTOP Demirhan et al. [1999]. As a

State-of-the Art on metaheuristic for continuous optimization 19

decomposition-based algorithm, a tree of subregions is generated by bisecting the lower

and upper bounds of every variable constituting the surface faced at the first level of

the search tree. The geometrical form used in the proposed method is the hypercube.

Indeed, the closure of the feasible region is divided into 2n subregions with n correspond-

ing to the problem dimension. Then, several solutions are collected randomly from each

subregion or using a metaheuristic such as simulated annealing [Kirkpatrick, 1984] or

genetic algorithm [Goldberg, 1989]. After that, a guidance system is set through fuzzy

measures to lead the search to the promising subregions simultaneously and discard

the other regions from partitioning. The belief property that a subregion contains the

global optimum is estimated using the belief measure of the previous level and the evi-

dence of the sample of solutions collected from each subregion of the current level. The

main advantage of the decomposition procedure used in FRACTOP is that there is no

overlap, avoiding to visit the same local area more than once. Thus, that makes the

proposed approach efficient for low dimensions. However, the decomposition procedure

generates 2n subregions. Hence, when n is higher, the complexity of the partitioning

method increases exponentially. For instance, this algorithm must visit 250 subregions

when solving a problem of dimension 50.

1.5.3 Multiple Optima Sierpinski Searcher

In the literature, an algorithm using a representation based on the fractal geometry

for evolutionary algorithms called Multiple Optima Sierpinski Searcher was proposed in

[Ashlock & Schonfeld, 2007]. Herein, the fractal geometrical form chosen for this method

is the Sierpinski triangle (Figure 1.3) generated using the chaos game which consists of

moving a point repeatedly from a vertex to another selected randomly. Besides, to

reduce the computational cost, the located optima are stored and manipulated using

strings of characters that specify them. The author proposed to face this limit to select

n + 1 generators instead of 2n generator samples. Authors mentioned that the chosen

geometric form does not allow to cover the full search space. This was only a primary

work and was never extended because of the complexity of this approach.

1.5.4 DIRECT Algorithm

The algorithm called DIviding RECTangles (DIRECT) is probably the most popular

decomposition-based method in the literature. First introduced in [Jones et al., 1993]

the algorithm has received great success for solving optimal design problems. It was

motivated by a modification of the Lipschitzian optimization. The idea of DIRECT was

to use the Lipschitzian optimization without the Lipschitzian constant. It was inspired

State-of-the Art on metaheuristic for continuous optimization 20

Figure 1.3: The Sierpinski triangle generated by a 3-cornered chaos game.

by this mathematical property but DIRECT does not require any analytical knowledge

of the function f being optimized. The original approach uses hyper-rectangles to de-

compose the search space. It partitions the feasible search space into a growing number

of hyper-intervals. Then, at each iteration, the most promising ones are selected for

further partitioning. An illustration of the principle of DIRECT is shown on Figure 1.4.

Figure 1.4: An illustration of the first three iterations of the DIRECT algorithm
(Figure taken from Lang et al. [2007]).

As mentioned, DIRECT uses hyper-rectangles as a geometrical form to decompose the

search space, moreover to select potentially optimal subregions, the distance from the

center of the hyper-interval to its vertices is computed. Then, the number of vertices in-

creases exponentially as the problem dimension increases. Consequently, the algorithm’s

performances to decrease drastically, in terms of computation time and quality of the

final solution.

1.5.4.1 Other versions of DIRECT

As mentioned DIRECT is a popular algorithm and therefore has been the subject of

many studies and improvement to overcome the main issues of the original version.

State-of-the Art on metaheuristic for continuous optimization 21

For instance, in [Gablonsky & Kelley, 2001], the authors proposed a modified version of

DIRECT that is strongly biased toward local search. Instead of L2 − norm to compute

the global score, they used a L∞ − norm, hence reducing the variations in the global

score. Even with interesting numerical results, this approach is only designed for low-

dimensional problems with only a few local minima.

In [Finkel & Kelley, 2006], the authors show that the convergence behavior of (DIRECT)

is sensitive to additive scaling of the cost. They illustrate this issue and proposed a new

version to deal with the sensitivity. To do so they have updated the way the algorithm

evaluates potential optimal hyper-rectangles. After each iteration, the solutions found

are scaled by subtracting the median of the collected solutions found so far.

Another modification of DIRECT was proposed in [Liu & Cheng, 2014] to overcome the

issue mentioned by Jones D. R. in [Jones et al., 1993]: while the algorithm quickly can get

close to the subregion containing the global optimum, high degree of accuracy requires a

high computational time. A bilevel strategy is introduced to overcome this issue. At each

iteration, the modified version RDIRECT-b creates two levels of search spaces, one is

the fine level search space, another is the coarse level search space. The former contains

the whole set of hyperrectangles while the second smaller hyper-rectangles defined from

an earlier interaction.

In [Paulavičius et al., 2014], the authors introduced a two-phase approach. During the

first phase, the algorithm tries to explore better the subregion around the current best

point. The phase ends when the improvement of the cost function is less than a user-

defined coefficient. The second phase then starts and aims to subdivide mainly large

simplices, located as far as possible from the current best point. This is performed until

the improvement of the cost function is less than 1% of the current best solution found.

Then the algorithm switches back to phase one. This is repeated until the stopping

criterion is reached.

Other enhancements of DIRECT algorithm can be found in the literature such as [Liu

et al., 2015, 2017] but due to the structure of the algorithm, no modification so far have

been able to solve large scale problems with a dimension greater than 500.

1.6 Parallel metaheuristics

The parallelization of metaheuristics has been popular over the last three decades in the

field of optimization. Indeed, several works have mainly focus on adapting existing algo-

rithms to allow them to take profit from multithreaded or multi-nodes environments. In

this section, we present the different adaptation of the algorithms presented earlier. The

State-of-the Art on metaheuristic for continuous optimization 22

increase in dimension and complexity of real-world applications are the main motivations

for the increasing development of parallel metaheuristics.

1.6.1 Parallel Evolutionary Algorithms

In [Gorges-Schleuter, 1989], the authors focused on parallelizing the well-known meta-

heuristic called Genetic Algorithm (GA). They developed a parallelized version, called

Parallel Genetic Algorithm (PGA). The main idea behind this algorithm is to distribute

the selection scheme by making each individual looking for a good solution, but only

among its neighbours. This approach obtained satisfactory results on the Travel Sales-

man problem. More recently, in [Liu & Wang, 2015], a parallel version of the Genetic

Algorithm (PGA) is proposed and modified to solve the Generalized Assignment Prob-

lem. The main challenge faced by PGA parallel environment is the costly synchronisation

at each iteration which increases as more processor are involved. They also observed

that the amount of computation required to solve a problem does not dependent only on

the problem size. To overcome those challenges, the author proposed an asynchronous

migration strategy to enable efficient interactions between sub-populations, and improve

the overlapping of computation and communication. Their approach was significantly

improved by using a buffer-based communication and non-blocking message. The algo-

rithm is implemented using MPI for communication between nodes.

In, [Gong et al., 2015] a process was proposed to parallelize any EA algorithm. Four

components were identified. The first one is the algorithm itself and can represent other

population-based algorithms, such as ACO or PSO as they share common features with

EAs. The second component refers to the model chosen for the distribution architec-

ture. In addition to the Master-Slave model being the most common one, other models

are available such as hierarchical, Cellular/Fined grained or multi-agents. The choice of

model has an influences on the programming environment which is the third component.

Among them, OpenMP for multi-threads environments, MPI for multi-node clusters or

MapReduce and its implementation, i.e. Hadoop for the more recent one. Finally, the

underlying IT infrastructure is the fourth and final component of the proposed frame-

work. Indeed, this choice as a huge influence weather the distributed algorithm will run

on the cloud, on GPUs or full grids environments. In line with this last component,

in recent work, a Genetic Algorithm has been specifically designed to run on a cloud

computing-based environment using Hadoop [Kečo et al., 2016]. Authors reported an

unlimited scalability thanks to the MapReduce framework used and a reduced compu-

tation time. In this case, GA was used in conjunction with other modern techniques,

i.e. Artificial Neural Networks and Support Vector Machines. They applied it to gene

selection in cancer classification and justified the use of the Hadoop framework due to

State-of-the Art on metaheuristic for continuous optimization 23

the important size of the data set. A GPU adaptation [Luo et al., 2019] has been pro-

posed as it significantly reduces the computation time. Authors mentioned that their

parallel version is highly consistent with the hierarchy of threads and memory of the

GPU framework used known as CUDA.

1.6.2 Parallel Ant Colony Algorithm

The Ant Colony Optimization (ACO) algorithm has been the subject of many works

[Baocheng et al., 2012; Liu & He, 2012; Delisle et al., 2009; Situ et al., 2017]. In their work

[Baocheng et al., 2012], the authors run iteratively different sequential ACO [Liu & He,

2012], the parallelization is made at the colony or ant level, searching independently and

sending back their results synchronously or asynchronously, depending on the parallel

model. The latter has parallelized the algorithm on a multi-core processor environment

using OpenMP. They concluded that the execution time can be greatly reduced without

losing quality of the final solution. In [Situ et al., 2017], authors studied a parallelized

version of the ACO algorithm applied to the Taxi-Passenger Matching. The idea was

to divide the city being optimized into several regions to reduce the dimension of the

problem. Hence, making the approach similar to a D&C strategy. They explore regions

in parallel allowing the algorithm to find a good solution faster.

1.6.3 Parallelized Decomposition methods

As the main approach presented in this thesis is a Divide-and-Conquer based algorithm,

the literature on Branch-and-Bound algorithms is also taken into account. In [Herrera

et al., 2017], the authors mentioned different strategies to parallelized B&B algorithms:

1. Parallelizing the nodes’ evaluation; 2. Parallelizing the construction of the search tree;

3. A combination of the two previous strategies. They studied these three strategies on

a multi-thread environment, reaching a linear tendency of the SpeedUp.

Only a few algorithms that use the geometric decomposition of the search space were pro-

posed in the literature. However, when dividing the search domain, both DIRECT and

FRACTOP suffer from the exponential growth of subregions, making those algorithms

computationally expensive on large-scale problems not applicable for big optimization.

In the case of Multiple Optima Sierpinski Searcher, the authors stated that the cho-

sen geometric forms will not allow the algorithm to cover the entire search domain.

As DIRECT does not perform well on high dimensions problems, in [He et al., 2004],

authors proposed a parallelized version of the algorithm to tackle this issue. To do

so, a multi-start strategy was used via evaluating multiple starting points on different

processors. The evaluations of the objective function were also distributed among the

State-of-the Art on metaheuristic for continuous optimization 24

different CPUs. This algorithm was implemented using both OpenMP for the multi-

threading part and MPI for passing messages over multiple processors. It is known that

DIRECT divides the search space into hypercubes, the number of vertices to evaluate

grows exponentially, when the dimension of the problem increases making the algorithm

computationally expensive on large-scale problems: seventeen (17) hours were neces-

sary to reach 238397 function evaluations using 141 processors. It shows that even

parallelized, DIRECT is not suited for large scale problems.

1.7 Multi-Objective Optimization

In this section, we cover a different branch of optimization related to multi-objective

optimization. This refers to the type of problems where multiple cost functions are op-

timized simultaneously and usually contradict each other. Many real-world applications

belong are multi-objective problems and some are detailed in [Stewart et al., 2008].

A Multi-Objective Optimization Problem (MOP) can be formulated as follow:

minimize F (x) = (f1(x), ..., fk(x))T (1.6)

subject to x ∈ X

where X is the decision variable space, F : X → Rk is composed of k real-valued

objective functions and Rk is the objective space.

In single-objective optimization, it is possible to compare two given solutions and de-

termine the best one. The results of an algorithm solving this type of problems is a

single value aiming to be the global optimum of the given function. However, in multi-

objective optimization, there does not exist a straightforward technique to determine

the best solution between two given candidates. The method most commonly used to

compare solutions in the context of MOP is called “Pareto dominance relation”. In-

stead of a single optimal solution, this leads to a set of different trade-offs among the

multiple objectives. The equivalent of the global optimum, in MOP, is called the true

Pareto Front (PF). It is the optimum set of values for the different objective functions.

Pareto Dominance can be defined as follow. If we consider, z1, z2 ∈ Rk, z1 is said to

Pareto-Dominate z2, denoted z1 ≺pareto z2, if and only if both Equations 1.7 and 1.8

are satisfied.

∀i : z1
i ≥ z2

i , i ∈ 1, ..., k (1.7)

State-of-the Art on metaheuristic for continuous optimization 25

∃j : z1
j > z2

j , j ∈ 1, ..., k (1.8)

A point x∗ ∈ X is Pareto Optimal if there is no point x ∈ X such that f(x) ≺pareto f(x∗).

The set of Pareto Optimal solutions PS∗ and its image in the objective space called

Pareto Front PF ∗ are defined respectively in Equation 1.9 and 1.10.

PS∗ = {x ∈ X | @y ∈ X : f(y) � f(x)} (1.9)

PF∗ = {f(x) = (f1(x), . . . , fk(x)) | x ∈ P∗} (1.10)

Many of the well-known metaheuristics have been adapted to solve multi-objective prob-

lems such as Genetic Algorithms (GA) or Particle Swarm Optimization (PSO). Two

main methodologies exist to develop or adapt algorithms to solve MOPs: Dominance

and Scalarization.

1.7.1 Dominance-based algorithms

Dominance-based algorithms use the principle of Pareto-Dominance, defined earlier in

Equations 1.7 and 1.8, to sort dominate solutions from non-dominated ones.

1.7.1.1 Particle Swarm Optimization for multi-objective Optimization

In [Sierra & Coello Coello, 2005], the authors proposed a Multi-Objective Particle Swarm

Optimizer based on Pareto Dominance and the use of the crowding distance. They com-

pared their approach to other PSO-based algorithms for MOP. Both crowding distance

and non-domination sorting are used to select the set of new leaders. A more recent

adaptation was proposed in [Helbig, 2016]. To increase the diversity of the Pareto Fronts

generated, they used an ε-dominance method. It allowed solutions with small degrada-

tion to be selected as good candidats. In this approach, the global swarm is divided into

sub-swarms, each optimizing one objective function. The knowledge is shared among

each sub-swarm and the dominance is used to select a particle’s new position. From the

literature, different studies [Sierra & Coello Coello, 2005; Helbig, 2016], show that PSO-

based multi-objective algorithms are sensitive to the adjustment of their attractiveness

parameter to avoid early convergence.

State-of-the Art on metaheuristic for continuous optimization 26

1.7.1.2 Non-dominated Sorting Genetic Algorithm (NSGA-II)

The most popular dominance-based algorithm is undoubtedly NSGA-II developed by

Deb et al. [2002b]. It is a Genetic Algorithm developed specifically to solve multi-

objective problems. It follows the first version NSGA [Srinivas & Deb, 1994] which was

one of the first Evolution Algorithm developed to solve MOPs. NSGA-II was developed

to overcome the first edition’s problems, i.e. its high computational complexity of non-

dominated sorting; lack of elitism and the need for specifying a sharing parameter.

To do so, the second version uses three main mechanisms to find the Pareto Front.

It emphasizes the non-dominated solutions to pre-sort individuals in each generation.

Then the selection procedure chosen is based on the elitist-preserving principle thereby

assuring preservation of previously found good solutions to generate the next generations.

Studies have shown that elitist mechanism helps the convergence of Multi-Objective

Evolutionary Algorithms (MEOAD) [Zitzler, 1999]. Finally, it ensures diversity among

the resulting solutions using a density-estimation metric called the Crowding-Distance.

This metric estimates the density of solutions surrounding a particular solution in the

population. The overall crowding distance is computed as the sum of each individual’s

distance corresponding to each normalized objective functions.

This algorithm has shown great results compare to existing MOEAs on two-objective

functions and shows decreasing results when the number of objective increases. [Deb

& Jain, 2014] is an extension of NSGA-II adapted to solve many-objective problems,

i.e. more than three objectives. It works with a set of supplied or predefined reference

points aiming to maintain the diversity among population members.

NSGA-II has attracted the attention of the multi-objective community and has been

the subject of many studies and application in the literature. For instance in [Lakshmi

et al., 2011], authors have modified the algorithm and applied it to the economic and

emission dispatch problem. In [Deb et al., 2007], NSGA-II is applied to the hydro-

thermal power scheduling problem. Other work showed NSGA-II applied to a reactive

power compensation problem in [Pires et al., 2012].

1.7.2 Scalarization in Multi-objective optimization

The main idea behind scalarization is to transform a multi-objective problem into a

mono-objective one by aggregating the different objective functions. Here, each objective

function has a weight coefficient and the objective is to minimize the sum of all weighted

objective functions (in case of minimisation). Several scalarization methods can be found

in the literature [López Jaimes & Zapotecas-Mart́ınez, 2011].

State-of-the Art on metaheuristic for continuous optimization 27

1.7.2.1 Scalarization techniques

Weighted Sum

This approach consists of using a weight vector ω = (ω1, ..., ωk), to combine the k

objective functions as follow:

minimize
k∑
i=1

ωifi(x) (1.11)

subject to x ∈ X

with ωi ≥ 0 for i = 1, ..., k and
∑k

i=1 ωi = 1. The set of non-dominated solutions can

be generated by using different weight vectors ω in using the weighted sum approach.

In the case where the Pareto Front is convex (or concave in case of maximization),

this technique works well [Zhang & Li, 2007]. However, it is not always the case when

optimizing multi-objective problems.

Tcheybycheff method

This technique [Miettinen et al., 2008] has the particularity to introduce the notion of

ideal point or reference point z∗i is as follow:

Minimize max
i=1,...,k

[ωi(fi(x)− z∗i)]

Subject to x ∈ X
(1.12)

with k the number of objective functions to optimise, z∗ = (z∗1 , ..., z
∗
k) the reference point

with z∗i the optimum of function fi and as in the previous method, the weight vector

ω = (ω1, ..., ωk) with ωi ≥ 0 for i = 1, ..., k and
∑k

i=1 ωi = 1. The major problem with

this technique is that the aggregation obtained with the vector ω is not smooth for a

continuous problem [Zhang & Li, 2007].

Augmented weighted Tchebycheff

In [Steuer & Choo, 1983], the authors proposed a modified version of the Tchebycheff

as shown on the Equation 1.13:

State-of-the Art on metaheuristic for continuous optimization 28

Minimize maxi=1,...,k {wi |fi(x)− z?i |}+ ρ
∑k

i=1 |fi(x)− z?i |
subject to x ∈ X

(1.13)

with ρ being a small positive scalar. However, this technique first integrates another

parameter and, the authors in [López Jaimes & Zapotecas-Mart́ınez, 2011] indicate that

using that approach some Pareto optimal solutions cannot be found.

ε-Constraint Method

In this approach the different objectives are not aggregated, however when one objective

is minimized, the other is used as constrained bound by some acceptance level ε.

Minimize fl(x)

subject to fi(x) ≤ εi ∀i = 1, . . . , k i 6= l

x ∈ X
(1.14)

To find the Pareto Front, the problem as formulated in 1.14 needs to be solved using

multiple different values for εi. The range of the reference objective and increment for

the constraints imposed by ε need to be both provided by the user. This increment

determines the number of Pareto optimal solutions generated. To build the final Pareto

Front, k single objective problems need to be solved.

1.7.2.2 Scalarization-Based Algorithms

Multi-objective Evolutionary Algorithm referred in the literature as MOEA has been

popular in solving MOPs. Where NSGA-II is a dominance-based approach, other EA

algorithms have used scalarization techniques to solve MOP and are called decomposition

methods. They differ from algorithms presented in Section 1.5 because they decompose

the objective space and not the search space.

One of the well-known frameworks for EA using decomposition is called MOEOA/D

and is proposed in [Zhang & Li, 2007]. It uses scalarization to decompose the MOP into

multiple scalar optimization subproblems and solve optimizes them simultaneously by

evolving a population of candidate solutions. Subproblems are solved using information

from the neighbouring subproblems making this approach less computationally expensive

than MOGLS [Jaszkiewicz, 2002] (an older EA to solve the 0/1 knapsack problem) and

NSGA-II. The authors argued that domination does not define a complete ordering

State-of-the Art on metaheuristic for continuous optimization 29

among the candidate solutions in the objective space. As the purpose is to find a well-

diversified Pareto Front, conventional selection operators designed originally for scalar

optimization cannot be used in the dominance-based algorithm. Using scalarization,

individuals can be assigned a fitness value to help the selection process and therefore,

operators designed for single-objective problems, which have been extensively tested

in the literature can be used. Different scalarization techniques can be used but the

authors in [Zhang & Li, 2007] chose the Tcheybycheff method functions as it shows

better results than other methods. In this technique, the diversity of solutions can be

done using properly distributed weights vectors in the scalarization methods. Where

generating weights vector in 2-objective functions is straightforward, techniques have

been developed in the literature to deal with functions having more than 3 objectives.

MOEA/D uses uniformly distributed weight vectors and use the Euclidean distance to

measure the closeness between two vectors.

This approach shows competitive results compared to NSGA-II on both discrete and

continuous problems. However, MOEA/D is sensitive to its control parameter T being

the number of weight vectors in the neighbourhood considered around of each weight

vector and results show that the approach does not work well when T is too small.

The size of the population is also an important parameter in any EA that impacts

significantly the performance of MOEA/D.

This work has inspired many other algorithms in the literature to use scalarization tech-

niques combines with Evolutionary Algorithms to solve multi-objective problems. For

instance, [Saborido Infantes et al., 2017] presents GWASFGA which stands for “Global

Weighting Achievement Scalarizing Function Genetic Algorithm”. This algorithm is also

based on the scalarization method and uses achievement scalarizing function which based

on the Tcheybycheff method but includes the use of the utopian and the nadir points.

GWASFGA generates the weight vectors so that they define an evenly distributed set of

projection in the objective space. A more recent work, CDG [Cai et al., 2018] is also a

decomposition-based MOEA. Instead of using a traditional scalarization method such as

Tcheybycheff, CDG-MOEA uses a constrained decomposition with grids. One objective

function is selected to be optimized while the other objective functions are converted

into constraints by setting up the upper and lower bounds.

One can remark that Evolutionary Algorithms have been the main focus in MOP using

scalarization methods. However, some other works have attempted to adapt traditional

metaheuristics such as PSO or Simulated Annealing. SA have been adapted to use the

weighted sum in [Loukil et al., 2007] for solving the production scheduling problem. In

[Vazan & Cervenanska, 2018], authors applied different scalarization techniques to SA

but results showed that the approach could only solve partially the studied problems.

State-of-the Art on metaheuristic for continuous optimization 30

Finally, Particle Swarm Optimization combined with scalarization has also been studied.

A Weighted approach was used in [Lee et al., 2014]. This solution showed interesting

results compared to NSGA-II but only the hypervolume metric was used to compare

the approaches. Comparing to algorithms in the context of MOP involves many metrics

and multiple ones should be used to properly conduct a comparison analysis.

1.7.3 Performance evaluation in MOP

In mono-objective problems, comparing algorithms is straightforward. The lower the

solution outcome is (in minimization), the better the algorithm is (provided that the

stopping criterion is set up to be the same among compared algorithms). In the context

of multi-objective, this task is not trivial as the outcome is composed of multiple Pareto

Optimal solutions, therefore one has to find a metric allowing to compare Pareto Fronts.

In the literature different metrics have been developed to measure the quality of the

solution sets obtained by different algorithms. In [Riquelme-Granada et al., 2015], the

authors have referenced 54 different metrics found in the literature. Each metric mea-

sures different characteristics of a Pareto Front. Those characteristics can be classified

into three main categories [Okabe et al., 2003]:

• Convergence (or accuracy), i.e. the closeness from the theoretical Pareto Front;

• cardinality, i.e. the number of points in the front;

• diversity, i.e. the distribution of the front. The points in a Pareto Front should

be well spread and not concentrated around one area of the objective space.

As mentioned, to measure those different aspects, multiple metrics exists in the litera-

ture. We have chosen to focus on the four most commonly used as combined, they allow

measuring all aspects of a Pareto Front:

• The Hypervolume, being the most used and the only one measuring the three

focused aspects, it is a must have. As a recall, it measures the size of the portion

of the objective space that is dominated by an approximation set (Figure 1.5).

• The Generational Distance metric (GD), computes the average distance from a

set of solutions obtained by an algorithm to the true Pareto-Front.

• The Inverted Generational Distance (IGD), measures both convergence and diver-

sity by computing the distance from each point known in the true Pareto-Front to

each point of a set of solutions found by an algorithm.

State-of-the Art on metaheuristic for continuous optimization 31

f1(x)

f2(x)

Hypervolume

Non-Dominated Solutions

Reference point

Figure 1.5: An illustration of the hypervolume with regards to the nadir point.

• The Spread, this metric measures the extent of the spread achieved among the

obtained solutions. It measures how well spread the non-dominated solutions are

over the objective space.

Aiming to find a good Pareto Front, it is important to mention that both while the

Hypervolume aims to be maximized, the other metrics aim to be minimized.

1.7.3.1 The Hypervolume

The hypervolume was originally used in [Zitzler & Thiele, 1999] and [Zitzler & Thiele,

1998] to quantify the Pareto Front generated by different MOEAs. Originally it was

referred to as “Size fo the space covered”. The original denotation illustrates perfectly

what it measures, i.e. the space covered by the Pareto Front in the objective space.

Figure 1.5 illustrates the hypervolume in the case of a two-objective problem. In the

case of minimization, the aim is to maximize the hypervolume (blue area). This is

because the higher the hypervolume, the further solutions are from the znad, hence the

better they are. Hypervolume is known to be the most used performance metrics in

MOP [Riquelme-Granada et al., 2015] and the only one measuring accuracy (closeness

to the true PF), diversity (the spread of solutions) and cardinality (number of solutions).

The hypervolume does not require any prior knowledge to be computed. However, this

metric is computationally expensive. Its worst case complexity of the hypervolume is

exponential with regards to the number of objective functions.

State-of-the Art on metaheuristic for continuous optimization 32

1.7.3.2 The Generational Distance and Inverted Generational Distance

The Generational Distance (GD) is the second most used metrics [Riquelme-Granada

et al., 2015] and measures the accuracy of an approximated Pareto Set A with regards

to the true Pareto Front PF ∗. In other words, it measures “how far” A is from PF ∗.

GD measures the average (using Euclidean distance) between the solutions of A and the

nearest member of PF ∗. The GD is defined as in Equation 1.15:

GD (A,P ∗) =

√∑
v∈A d(v, PF ∗)

|S|
(1.15)

with d(v, PF ∗), the Euclidean distance between v ∈ A and the closest member in PF ∗.

Where the GD measures the distance of A from PF ∗, its inverted variation, the Inverted

Generational Distance, measures the distance from PF ∗ to A. It uses the minimum

Euclidean distance instead of the average one. The IGD is defined in Equation 1.16.

IGD (P ∗, A) =

∑
v∈P ∗ d(v,A)

|P ∗|
(1.16)

with d(v,A), the minimum Euclidean distance between a member in PF ∗ and the closest

member v ∈ A. GD only measures the accuracy of A, however, IGD measures both

diversity and convergence. If IGD (P ∗, A) is low, this means that A must be both close

to PF ∗ and cover it enough not to miss any part of the true Pareto Front. Both GD and

IDG metrics have a low computational cost (particularly compared to the hypervolume).

However, they require the true Pareto Front.

A more recent version of this metric called IGD+, has been proposed in [Ishibuchi et al.,

2015]. The main advantage of this metric is that it is weakly Pareto compliant. The

Pareto dominance is taken into account when the Euclidean distance between a solution

point and a reference point is calculated.

1.7.3.3 The Spread

The Spread, also referred as the ∆ − metric measures the diversity of the Pareto Set

generated by an algorithm. It has been shown in [Deb et al., 2002b] and is defined in

Equation 1.17:

∆(A) =
df + dl +

∑N−1
i=1

∣∣di − d∣∣
df + dl + (N − 1)d

(1.17)

State-of-the Art on metaheuristic for continuous optimization 33

with A being the Pareto Front found by the algorithm, df and dl being the Euclidean

distance between the extreme solutions of the true Pareto Front PF ∗ and the boundaries

solutions in A. d is the average distance between di, i = 1, 2...., (N−1), provided they are

N solutions in A. As an indication, a good spread of solutions would make all distances

di = d and df = dl = 0.

As this metric originally only works for 2-Objective problems, Aimin Zhou et al. [2006]

have developed a Generalized version for 3-Objectives and more as in Equation 1.18.

∆ (A,PF ∗) =
∑m

i=1 d(ei,A)+
∑

X∈A∗ |d(X,A)−d|∑m
i=1 d(ei,A)+|PF ∗|d

where {e1, . . . , em} are m extreme solutions in PF∗ and

d(X,A) = minY ∈A,Y 6=X ‖F (X)− F (Y)‖2

d = 1
|PF ∗|

∑
X∈PF ∗ d(X,A)

(1.18)

In the rest of this document both the Spread and its Generalized version will be referred

“Spread”. This metric has a low computational cost and does not required any prio

knowledge to be computed.

1.8 Conclusion

In this chapter, we have presented a brief overview of the field of optimization followed

by a focus on MSO optimization and metaheuristics. The main algorithms in each family

were detailed such as Simulated Annealing for Single-Solution Optimization, Evolution-

ary Algorithm as population-based algorithms and finally the metaheuristics such as

DIRECT which decomposes the search space aiming to find the global optimum.

In our work, we are interested in the design of a decomposition-based metaheuristic

with a geometrical form that would both fully cover the search space and is suitable for

scaling up, allowing to solve large scale optimization problems. This new approach will

be presented in the next chapter.

With the increase of problems’ complexity and the potential provided with modern

IT architectures, we proposed a new approach to benefit from both multi-thread and

multi-node environments aiming to improve speed and accuracy as well as keeping the

implementation as simple as possible. This work will be presented on Chapter 3.

The proposed decomposition approach was adapted to MOP using both dominance and

scalarization in Chapter 4. To evaluate performances we have decided to select multiple

metrics as the literature shows that each one measure different characteristics of the

resulting Pareto Front.

Chapter 2

Design of Fractal Decomposition

based Algorithm

2.1 Introduction

In this chapter, we present the new metaheuristic called “Fractal Decomposition based

Algorithm” (FDA). FDA [Nakib et al., 2017] is based on a fractal geometrical decom-

position of the search space. Indeed, the main principle of the approach consists of

dividing the feasible search space into subregions with the same geometrical pattern.

Hyperspheres were chosen as geometrical form as it has the benefit of scaling well as

the dimension of the problem increase. As pointed out before, the current methods in

the literature do not scale well when the problems’ dimension increases. At each itera-

tion, the most promising subregions are selected and further decomposed by FDA. This

approach tends to provide a dense set of samples and has interesting theoretical conver-

gence properties. This work aims to propose a new algorithm based on this approach

with low complexity and which performs well in case of large-scale problems. To do so,

a low complex method, that profits from fractals properties is proposed.

In addition, the following motivations were taken into account when developing FDA:

• FDA has been designed to be easily implemented.

• FDA does not need any analytical information on the functions being optimized.

• FDA is a deterministic algorithm.

A performance analysis is conducted on large-scale global optimization test functions

with dimensions going from 50 to 1000. The obtained results, and the comparison with

34

Chapter 1. Design of FDA 35

other metaheuristics designed to solve the same types of problems, show the efficiency

and the competitiveness of the proposed algorithm to solve large scale optimization

problems. It should be noted that the proposed algorithm is a single solution-based

metaheuristic while other competing algorithms are population-based metaheuristic.

The rest of this chapter is organized as follows. Section 2.2 presents the principle of

the geometric fractal decomposition, while, the coverage of the search space is discussed

in Section 2.3. The proposed algorithm is detailed in Section 2.4, obtained results are

pointed out and discussed in Section 2.5.

2.2 Geometric Fractal Decomposition

In this work, a geometrical fractal decomposition based on hypersphere as an elementary

geometric form is considered. This choice was motivated by its low complexity and

flexibility to cover a part of the search space. Indeed, it is easy to go from one center of

a hypersphere to another analytically without storing them.

An example of a geometric fractal decomposition is presented in Figure 2.1, where an

example of a fractal dimension of four is illustrated for four levels of decomposition.

Indeed, there are many schemes to divide an N -dimension search space. Several methods

were tested as the Descartes theorem but the complexity at the generalization to the N -

dimensional increases exponentially. As the goal is to find a scalable method that allows

the whole search space to be decomposed, we propose to use overlapped hyperspheres.

Then, a geometric decomposition without central hyperspheres was considered. Indeed,

such a recursive division of the search space with a fixed number of hyperspheres at

each level is called a fractal decomposition and, the number of hyperspheres inside a

hypersphere can be seen as the fractal dimension.

The advantages of this decomposition are summarized in the following propositions:

Proposition 1. When 2×D equal hyperspheres are inscribed within a bigger hypersphere

in an D-dimensional space, then the ratio (δ) between their radii does not depend on D

and is equal to δ = (1 +
√

2).

The proof of this proposition can be easily done using geometric properties of hyper-

spheres.

Proposition 2. The hyperspheres fractal decomposition allows the centers and radius of

the hyperspheres to be found analytically.

Chapter 1. Design of FDA 36

Proof. To decompose the search space, the biggest hypersphere within the search domain

is used with a center ~C(1) and its radius r obtained using expressions (2.1) and (2.2),

respectively.

~C
(1)
j = L+ (U − L)/2, for j = 1, 2, . . . , N (2.1)

where ~C(1) is the coordinate of the center of the biggest hypersphere within the search

space, and r is its radius.

r = (U − L)/2 (2.2)

where U is the upper bound, L is the lower bound of the whole search space, and D is

the dimension of the space.

So, in case of dividing the search space into 2 ×D equal hyperspheres, the position of

centers ~C
(i)
j , and their radii r′ are given by :

~C
(i)
j = ~C

(i)
j + (−1)i×

(
(r − r′)× ~ej

)
(2.3)

where ~ej is the unit vector at the dimension j, and i is the index of the hypersphere

i = 1, . . . 2 D, and r′ = r/δ.

2.3 Coverage of the search space via the Fractal Decom-

position

As it can be seen on Figure 2.1, the geometric fractal decomposition does not cover

all the space. Thus, to overcome this problem, an increase of the radius (inflation)

of each hypersphere of the following level must be performed. This increase produces

overlaps between hyperspheres and, thus, allows all the space to be covered as shown on

Figure 2.2. So, the ratio between the inflated and the original radii of the hyperspheres,

called relaxation coefficient, is named α.

In the following, the expression giving the value of the lower bound of this coefficient α

is presented.

Chapter 1. Design of FDA 37

(a) 1st level (b) 2nd level (c) 3rd level

(d) 4th level

Figure 2.1: Illustration of the fractal decomposition of the search space : the depth
of the decomposition equal to 4.

(a) Geometric decomposition at level 1 (b) Geometric decomposition at level 2

Figure 2.2: Illustration of the decomposition procedure in the case of a 2D search
space, where A is the biggest hypersphere inside the search space (B), C1, C2, C3, and

C4 are centers of hyperspheres at the first level.

2.3.1 Relaxation at the first level

In this section the value of the relaxation coefficient (α) at the first level is calculated.

Denote the radius of parent hypersphere r, and the radius of child hyperspheres r′.

Chapter 1. Design of FDA 38

Let us consider the centers of small hyperspheres are located in points:

O±i = (0, . . . , 0,±d, 0, . . . , 0) (2.4)

where the only non-zero entry ±d is in i-th position, and d = r − r′ = r(1− 1
1+
√

2
).

The minimal required relaxation coefficient value αn s.t. any arbitrary point from inside

of parent-hypersphere is covered by one of the inflated (relaxed) child-hyperspheres with

radius r′′ = αnr
′. To do this, we first estimate the inflated radius rA for an arbitrary

fixed point A, and then r′′ will be defined as r′′ = max
A

rA. Let a point A(x1, . . . , xD) lie

inside the parent-hypersphere, i.e. x2
1 +x2

2 + . . .+x2
D ≤ r2. The minimal required value

of the radius rA to cover A is defined by:

r2
A = min

i,±
‖O±i A‖

2 (2.5)

= min
i,±

∑
j 6=i

x2
j + (|xi| ± d)2

 .

As |xi| ≥ 0, and d > 0, then (|xi|−d)2 < (|xi|+d)2. Hence, r2
A = min

i

(∑
i 6=j

x2
j + (|xi| − d)2

)
(we denote a2 = ‖OA‖2 =

n∑
i=1

x2
i), then:

r2
A = min

i

∑
i 6=j

x2
j + (|xi| − d)2

 (2.6)

= a2 − d(2 max
i
|xi| − d).

As A was considered as an arbitrary fixed point, to cover all points inside the hyper-

sphere, we need to maximize the relaxation of the radius rA over A. Thus:

r′′2 = max
‖OA‖2≤r2

r2
A (2.7)

= max
0≤a≤r

max
‖OA‖=a

(a2 − d(2 max
i
|xi| − d))

Now, we show that the point A cannot be a maximum point unless all of its coordinates

are equal up to the sign. Without loss of generality, we assume that xi ≥ 0 for all 1 ≤ i ≤
D (indeed, the sign of xi does not influence the value of the considered function under

max operator). Moreover, assume that there exists an index s such that xs 6= max
k

xk.

Let i1, i2, . . . , im be the indices of the highest coordinates of A, and j be the entry of

Chapter 1. Design of FDA 39

the second highest coordinates:

xi1 = xi2 = . . . = xim = max
k

xk (2.8)

xj = max
k 6=i1,i2,...,im

xk

Under this assumption it is possible to shift the point A along the sphere ‖OA‖ = a

such as the maximized function is increasing, and thus the point A cannot be a point of

maximum.

We Consider another point, A′, with coordinates (x′1, . . . , x
′
D), where:

x′k = xk, k 6= i1, i2, . . . , im, j, (2.9)

x′i = xi − δ−, i = i1, i2, . . . , im, (2.10)

x′j = xj + δ+, (2.11)

and 0 < δ−, δ+ < 1
2(xi1 − xj) are such that ‖OA′‖2 = ‖OA‖2 = a2. Then:

x′i = xi − δ− > xj + δ+ = x′j , i = i1, i2, . . . , (2.12)

x′j = xj + δ+ > xj ≥ xk = x′k, k 6= i1, i2, . . . , im, j. (2.13)

Hence, x′i1 = x′i2 = . . . x′im = max
k

x′k. Denote f(A) = (a2 − d(2 max
k
|xk| − d)), where as

before a2 = ‖OA‖2. Then:

f(A′) = (a2 − d(2x′i1 − d)) (2.14)

= (a2 − d(2xi1 − 2δ− − d))

= (a2 − d(2xi1 − d)) + 2δ−d

> f(A).

In other terms:

arg max
‖OA‖=a

(a2 − d(2 max
i
|xi| − d)) 6= A. (2.15)

One can also remark that the maximum exists. Indeed, function f(A) is continuous, and

can be considered as a function on a compact of lower dimension, defined by equality

‖OA‖ = a. Hence, by extreme value theorem, it reaches its maximum, and based on the

inequality above, we infer that the point of maximum has to have equal coordinates (up

to the sign). In particular, the maximum is reached at the point A∗ having coordinates

Chapter 1. Design of FDA 40

(a√
D
, . . . , a√

D
). Back to the expression for the relaxation radius r′′, we get:

r′′2 = max
0≤a≤r

max
‖OA‖=a

(a2 − d(2 max
i
|xi| − d)) (2.16)

= max
0≤a≤r

(
a2 − 2ad√

D
+ d2

)
.

The quadratic function of a under the max operator reaches its maximum on one of

interval ends. Denote g(a) = a2 − 2ad√
D

+ d2. Then:

g(0) = d2 = λ2r2, (2.17)

g(r) = r2 − 2rd√
D

+ d2 = r2 − 2λr2

√
D

+ λ2r2, (2.18)

where λ = 1− 1
1+
√

2
=

√
2

1+
√

2
≈ 0.59. From this, it is obvious to see that for D ≥ 2

2λ√
D
< 1

, and so g(r) > g(0). Finally:

r′′2 = max
0≤a≤r

(
a2 − 2ad√

D
+ d2

)
(2.19)

= g(r)

= r2 − 2λr2

√
D

+ λ2r2

= r2

(
1− 2λ√

D
+ λ2

)
,

and, thus:

=

√
5 + 2

√
2− 2

√
2(1 +

√
2)√

D
. (2.20)

If one would like to set the unified relaxation coefficient, it would have to be:

α(1) = sup
D≥1

αD = sup
D≥1

√
5 + 2

√
2− 2

√
2(1 +

√
2)√

D
=

√
5 + 2

√
2 ≈ 2.80. (2.21)

2.3.2 Lower bound estimation of α

In the previous paragraph, we pointed out the 1st-level. During the proof we established

that the most distant point of initial hypersphere to the centers of 1st-level hyperspheres

is the point M (r√
n
, r√

D
, . . . , r√

D
), given here up to the sign of indices (because the

Chapter 1. Design of FDA 41

symmetry does not influence the distance from the given point to the set of hyperspheres

centers). We will now assume that this point is the most distant point for higher levels

of decomposition as well. Even if it is not the case, we will obtain the lower bound for

the relaxation coefficient, as point the M still needs to be covered.

Let us find, among a k-level decomposition hyperspheres centers’, the closest one to

the point M . Consider the process of recursive fractal division where at each level, we

consider only one of the obtained hyperspheres as a process of approaching the point M .

This procedure has a finite number of steps, which are allowed to be made only along one

of the axes. The most effective strategy would be then to move along the axis by which

the current position and the target point have the biggest difference. Indeed, without

loss of generality, we assume that our goal is to approach the point Q (x1, x2, . . . , xn)

from point O (0, 0, . . . , 0) with a step of length s. Assume that after this step, we moved

to the point O±i , where OO±i = ±sei. Then:

d2(O±i , Q)− d2(O,Q) = (xi − (±s))2 − x2
i (2.22)

= s2 − 2(±s)xi.

In the previous expression (2.22) the first element does not depend on i, while, the

second one is the smallest and yields the smallest value (i.e. biggest absolute value)

when |xi| is the largest possible and sign±s = sign±xi (i.e. the step was made in the

direction of xi, not the opposite one).

Denote the radius of the parent-hypersphere r = r0 and the radius of child-hyperspheres

of l-level decomposition as rl. The step on level l is then equal to sl = rl−1 − rl. Then,

rl = βrl−1, (2.23)

where

β =
1

1 +
√

2
. (2.24)

Thus:

sl = rl−1 − rl = βl−1r − βlr. (2.25)

and

Chapter 1. Design of FDA 42

Consider the case n ≥ l according the approaching strategy given above, one of the

points close, (Ol) to the point M will have the following coordinates:

(s1, s2, . . . , sl, 0, . . . , 0) = (r − βr, βr − β2r, . . . , βl−1r − βlr, 0, . . . , 0). (2.26)

Then, the squared distance between the points Ol and M, i.e. the distance we need to

cover with the inflated hypersphere, is equal to:

d2(Ok,M) = (r − βr − r√
n

)2 + (βr − β2r − r√
n

)2 + . . . (2.27)

+ (βl−1r − βlr − r√
n

)2 + (n− l)r
2

n

Then, the relaxation coefficient α
(l)
n is thus equal to:

α(l)
n =

d(Ol,M)

rl
=
d(Ol,M)

βlr
(2.28)

=

√
√

2
(

(1 +
√

2)2l − 1
)

+ 1−
2(1 +

√
2)l
(
(1 +

√
2)l − 1

)
√
n

Now consider the case n < l. Then, one of the closest points to the point M is the point

Ol with coordinates:

(s1, s2, . . . , sn + . . . sl) = (r − βr, βr − β2r, . . . , βn−1r − βlr). (2.29)

Similarly to the previous case:

d2(Ol,M) = (r − βr − r√
n

)2 + (βr − β2r − r√
n

)2 + . . .+ (βn−1r − βlr − r√
n

)2

(2.30)

Then, the relaxation coefficient α
(l)
n is equal to:

α(l)
n =

d(Ol,M)

rl
(2.31)

=

√
√

2((δ2l + c2l−2n+1) + 1− 2δl−n+1 − 2√
n
δl(δl − 1)

Chapter 1. Design of FDA 43

where δ = (1 +
√

2) defined in property 1.

Consequently, combining both cases, we obtain the following formula:

α(l)
n >

eq(2.28), n ≥ l,

eq(2.31), otherwise

(2.32)

2.4 Proposed Fractal Decomposition based Algorithm

In this section, the proposed algorithm called FDA, that profits from the fractal decom-

position, is presented. To find the global optimal solution (if it is known), the obvious

way is to explore exhaustively all inflated last level child-hyperspheres, however, it is too

time-consuming. To overcome this problem, two heuristics were proposed: the first one,

called promising hypersphere selection heuristic: it allows selecting the most promising

hypersphere for further decomposition. This heuristic is used during the exploration

phase. The second heuristic is performed at the last level, called intensification local

search heuristic (ILS): its aim is finding the best solution inside a reduced subregion.

This second heuristic is used for the intensification phase.

Moreover, as of the proposed fractal decomposition, there is no need to save all in-

formation about visited hyperspheres by FDA: all decomposition can be reconstructed

analytically. Then, only the best positions met are saved. Indeed, the expression (2.3)

is used to compute centers’ positions without any past position.

An overview of the proposed algorithm is presented in Algorithm 5. As pointed out

before, it uses the hypersphere H as a geometrical form to represent the search space

which is repetitively divided into 2 × dimension child-hyperspheres CHsi where i =

1, . . . , 2D. This decomposition choice is explained in the Proposition 1. Then, the

quality qli of each child-hypersphere CHsi is evaluated using the procedure described

in Section 2.4.1. Afterwards, the child-hyperspheres are sorted and, that with the best

quality is chosen to be the next hypersphere to be visited (decomposed). This procedure

allows the algorithm to guide the search to the most promising region and lead the

optimization to start at the best position.

The subregion of the search space limited by a child-hypersphere CHsi is defined by:

CHsi = {x ∈ <D : x− r(i) ≤ x ≤ x+ r(i)} (2.33)

Chapter 1. Design of FDA 44

with i ∈ Lm, where r(i) is the radius of the child-hypersphere i, and Lm is the set of

indices that constitute the hypersphere at level m, respectively. At each iteration, the

most promising child-hypersphere is selected for further decomposition.

Once the last level, called the fractal depth (k), is reached, the intensive local search

procedure (ILS) is applied to the sorted CHsi.

When all of the hyperspheres of the last level are visited, the search is raised up, using a

moving-up procedure (Algorithm 7), to another region via the previous depth (level), by

replacing the current hypersphere (H) with the following child-hypersphere CHsi from

the sorted list. The process is repeated until one of the stopping criterion is reached or

the child-hyperspheres from all the levels were visited.

As it can be noticed, the proposed approach can be compared to the depth-first branch

and bound technique (B&B) often used in combinatorial optimization. The main dif-

ference is that in our case each branch represents a part of the search space rather than

a singular part of the whole solution. Compared to the B&B, some areas are split and,

areas that do not seem to be hopeless are further investigated while the most promising

one is searched more intensively.

2.4.1 Promising hypersphere selection (Exploration strategy)

This procedure aims to select the most promising region that might contain the best so-

lution or the global optimum. To do so, each hypersphere i created by the decomposition

procedure is evaluated.

It is important to mention that each time a solution is evaluated during the exploration

phase, a track of the best solution (BestSol) and its coordinates (bestPosition) is saved.

The first step, to evaluate the hypersphere quality, is to generate two points ~s1 and ~s2

following the expression (2.36) and (2.37). Then, for positions ~s1, ~s2 and the center of

the current hypersphere ~C l, their fitnesses f1, f2 and fc, respectively, are calculated as

well as their corresponding distances to the best position found so far (BSF) via the

Euclidean distance. The last step consists of computing the slope at the three positions

(~s1, ~s2 and ~C l), referred as g1, g2 and gc. This is performed by taking the ratio between

the fitness (f1, f2 and fc) and their corresponding distances. Then, the quality for

the current hypersphere will be represented by the highest ratio among g1, g2 and gc,

denoted by q:

q = max {g1, g2, gc } (2.34)

Chapter 1. Design of FDA 45

Algorithm 5: FDA Algorithm

Input: Deep of the fractal decomposition: k = 5 and the tolerance threshold: ωmin =
10−20

Input: Coefficient step-size: λ = 0.5, inflation coefficient: α = 1.75 and dimension of
the problem: D

Initialization of the current hypersphere H and the number of function evaluations
NBEval = 0

Initialize the center ~C at the center of the search space.

Evaluate the objective function of the center ~C, initialize the best solution BestSol
with the resulting value and the best position bestPosition with ~C;

NBEval = NBEval + 1

Calculate the radius r using eq. 2.2; Initialize the level variable: l = 1

while Stopping criteria are not reached do
Decompose the current hypersphere H using the Fractal procedure using
expression (2.3)

for 2×D l-level hypersphere do
Apply the promissing hypersphere selection procedure described in Section
2.4.1

end

Sort the 2×D hyperspheres at the current l-level

Replace the current hypersphere H by the first of the sorted hyperspheres at the
current level

if l == k then
for Each 2×D of kth-level hypersphers do

Apply the ILS heuristics described in Section 2.4.3

end

if stopping criterion is not reached then
Apply the move-up Procedure (Algorithm 7)

end

else
Go to next level: l = l + 1

end

end

Result: the best solution BestSol and its coordinates bestPosition

Chapter 1. Design of FDA 46

Algorithm 6: Detailed FDA Algorithm

Input: Deep of the fractal decomposition: k = 5 and the tolerance threshold: ωmin = 10−20

Input: Coefficient step-size: λ = 0.5, inflation coefficient: α = 1.75 and dimension of the problem: D

Initialization of the current hypersphere H and the number of function evaluations NBEval = 0

Initialize the center ~C at the center of the search space.

Evaluate the objective function of the center ~C, initialize the best solution BestSol with the resulting value and
the best position bestPosition with ~C; NBEval = NBEval + 1

Calculate the radius r using eq. 2.2; Initialize the level variable: l = 1

while Stopping criteria are not reached do
Decompose the current hypersphere H using the Fractal procedure using expression (2.3)

foreach 2×D l-level hypersphere do
Compute g1, g2 and gc using the expression (2.35) and evaluate the quality of the HyperSphere q,

using the expression (2.34)

NBEval = NBEval + 3

end

Sort the 2×D hyperspheres at the current l-level

Replace the current hypersphere H by the first of the sorted hyperspheres at the current level

if l == k then
for Each 2×D of kth-level hypersphers do

Set the solution ~xC to the center ~C of the current hypersphere H

Evaluate the objective function of the solution ~xC

NBEval = NBEval + 1

Set the step size ω, to the radius of the current hypersphere H

while ω ≥ ωmin do
for Each dimension i = 1, . . . , D do

~xL = ~xC − ω × ~ei
~xR = ~xC + ω × ~ei
Evaluate the fitness of ~xL and ~xR

NBEval = NBEval + 2

Update ~xC by the best solution among {~xC , ~xL, ~xR}.
end

if No improvement of the fitness ~xC then
Decrease the step size ω: ω = ω × λ.

end

end

if The fitness of ~xC is less than BestSol then
Update the best solution BestSol with the fitness of ~xC and bestPosition with ~xC

end

end

if stopping criterion is not reached then
Set l Current level, N number of explored hypershperes at level l − 1 and D dimension of the

problem

while N == 2×D do
l = l − 1

Update N to number of explored Hyperspheres at level l

end

if l == 1 then
All hyperspheres have been explored

Stopping criterion satisfied

else
Update the position of the current hypersphere by the next unexplored hypersphere at the

current level l

end

end

else
Go to next level: l = l + 1

end

end

Result: The best solution BestSol and its coordinates bestPosition

Chapter 1. Design of FDA 47

with:

g1 =
f(~s1)

‖~s1 −BSF ‖
, g2 =

f(~s2)

‖~s2 −BSF ‖
and gc =

f(~C l)∥∥∥~C l −BSF∥∥∥ (2.35)

where:

~s1 = ~C l + α
rl√
D
× ~ed, for d = 1, 2, ..., D (2.36)

~s2 = ~C l − α rl√
D
× ~ed, for d = 1, 2, ..., D (2.37)

2.4.2 Multilevel search strategy

At each level, hyperspheres that have not yet been decomposed are stored in a list,

sorted by their quality score, evaluated during the exploration strategy detailed in the

Section 2.4.1.

In the case where all the spheres at a level have been explored without reaching the

stopping criterion, the next hypersphere in the upper level’s (l − 1) list, is then chosen

to be decomposed. If all the hyperspheres in the upper level have been explored, then,

a move to l − 2 is performed and so on, until exploring the whole search space or the

stopping criterion is satisfied as detailed in the Algorithm 7.

Algorithm 7: The move-up procedure

Input: l Current level

Input: N number of explored hypershperes at level l − 1

Input: D dimension of the problem

while N == 2×D do
l = l − 1

Update N to number of explored Hyperspheres at level l

end

if l == 1 then
All hyperspheres have been explored

Stopping criterion satisfied

else
Update the position of the current hypersphere by the next unexplored
hypersphere at the current level l

end

Chapter 1. Design of FDA 48

2.4.3 Intensive Local Search (ILS)

Different local searches or even metaheuristics can be used at this level. As in this work,

our goal is to design a deterministic, simple and efficient metaheuristic adapted to the

large scale problems, a simple local search was considered.

In this local search, two candidate solutions are evaluated per dimension of the search

space, denoted by ~xs1 and ~xs2 . They stand in opposite directions from the current

solution ~xs along an axis of the search space at equal distance α, also called step size:

~xs1 = ~xs + ω × ~ei (2.38)

~xs2 = ~xs − ω × ~ei (2.39)

where ~ei is the unit vector which the ith element is set to 1 and the other elements to 0.

The step size ω is set to the radius of the current hypersphere being exploited.

Then, the best solution among ~xs, ~xs1 and ~xs2 is selected to be the next current solution

~xs. The adaptation of the step size ω is performed through the procedure described in

Algorithm 8. Depending on the situation, the step size is adapted using the following

rules:

• if there is any better candidate solution found in the neighborhood of ~xs, then, ω

is halved,

• the step size is decreased until a given value as the tolerance or the precision need.

This heuristic is similar to the well-known Hooke-Jeeves Pattern Search method [Hooke

& Jeeves, 1961].

2.5 Results and discussions

In this section, the proposed algorithm (FDA) is analyzed and its performance is exposed

in the following problems.

2.5.1 Benchmark Functions

The experimental tests were performed on 19 functions (F1-F19) for large-scale con-

tinuous optimization taken from the special issue of soft computing on scalability of

evolutionary algorithms (SOCO 2011). The first six functions F1-F6 are described in

Chapter 1. Design of FDA 49

Algorithm 8: ILS procedure

Input: ωmin = 10−20. //precision or tolerance error

Input: Coefficient step-size: λ = 0.5

Input: D // the dimension of the problem

Input: Number of fonction evaluations NBEval

Input: The current best solution BestSol and its coordinates bestPosition

Set the solution ~xC to the center ~C of the current hypersphere H

Evaluate the objective function of the solution ~xC

NBEval = NBEval + 1

Set the step size to the radius of the current hypersphere H

while ω ≥ ωmin do
for Each dimension i = 1, . . . , D do

~xL = ~xC − ω × ~ei
~xR = ~xC + ω × ~ei
Evaluate the fitness of ~xL and ~xR

NBEval = NBEval + 2

Update ~xC by the best solution among {~xC , ~xL, ~xR}.
end

if No improvement of the fitness ~xC then
Decrease the step size ω: ω = ω × λ.

end

end

if The fitness of ~xC is less than BestSol then
Update the best solution BestSol with the fitness of ~xC and bestPosition with ~xC

end

Output: ~xC

[Tang et al., 2007], whereas the function F9 is detailed in [Whitley et al., 1995]. While

functions F12-F19 are obtained by hybridizing a non-separable function Fns with other

functions from the benchmark. This hybridization consists of splitting via the parameter

mns that defines the ratio of variables that are evaluated by Fns. All these functions

are exposed in Table A.1 and their properties are detailed in Tables A.2-A.3. Tests were

done for the set of dimensions D = 50, 100, 200, 500 and 1000 and the stopping crite-

rion was defined by the maximum number of function evaluations (FEs) set to 5000×D.

For the comparison, the stochastic based algorithms were run 25 times for each function

of the benchmark.

2.5.2 Parameters Settings

Parameters of FDA are summarized bellow and were fitted empirically:

Chapter 1. Design of FDA 50

• The fractal depth (k) is set to 5. This parameter corresponds to the number of

decomposition levels to reach.

• The stopping criterion for the ILS is related to a tolerance threshold (ωmin) set

to 1× e−20. This chosen value is problem dependent. For these experimentations,

this value is equal to precision of the shift values in the shifted functions F1-F6.

• The decrease coefficient of the step-size λ, is set to the standard value 0.5.

• The inflation coefficient α, was set to 1.75.

2.5.3 Sensitivity analysis of FDA

In this subsection, the sensitivity analysis of FDA against its parameters is presented.

The fractal depth k is the parameter that has an impact on the performance of FDA.

The rest of the parameters can be set to values presented in Section 2.5.2.

In these experimentations, the parameter k was varied, while, other parameters were

set at their suited values. Table A.4 summarizes results on only some functions, be-

cause FDA reaches the global optimum for the rest. As it can be seen from obtained

results, this parameter is important and the performance of FDA varies against its value.

However, for the considered set of functions, the value 5 seems to be the most suited.

2.5.4 Complexity Analysis

The proposed approach includes three distinct parts: the first is the fractal decomposi-

tion process; the second consists of the quality’s evaluation of the hypersphere, while,

the third is the application of ILS.

Their asymptotic complexities are presented in Table A.5, respectively, where D repre-

sents the problem dimension, r the radius of the current hypersphere and ωmin the ILS

tolerance threshold.

Using Table A.5, the complexity of the FDA is given by (2.40). Hence, the asymptotic

complexity shows that FDA has a logarithmic complexity depending on the fractal depth

parameter: OFDA(logk(D)):

O(logk(D) + 1 + log2(r/ωmin)) = O(logk(D)) (2.40)

Besides, the FDA memory complexity is Θ(D).

Chapter 1. Design of FDA 51

2.5.5 FDA Results

The reported results of the Fractal Decomposition based Algorithm are the error values

f(x)− f(x∗) obtained for dimensions D = 50, 100, 200, 500 and 1000. These results are

presented in Tables A.6-A.8 through statistical measures. In our case, the mean and

the standard deviation are sufficient to describe the behavior of the FDA for each test

function knowing that all the obtained standard deviations are equal to 0. Besides, all

average errors below 10−14 are considered equal to 0 as suggested in [Lozano et al., 2011]

where the benchmark is detailed.

As it was expected, the proposed approach seems to have difficulties in solving the

Shifted Rosenbrock’s function F3, and the hybrid composition functions involving F3,

F13 and F17 because our choice of ILS is more suited for separable and weakly separable

problems. One can use another heuristic or metaheuristic rather than ILS. However, the

FDA was able to reach the global optimum for 14 out of the 19 tested functions and

that, for all the dimensions presented.

On the other hand, the fact that the standard deviations are always equal to 0 denotes

that the algorithm reaches always the same optimum.

2.5.6 Analysis of FDA’s behavior

This section focuses on illustrating the way in which FDA behaves in terms of the num-

ber of spheres visited, fitness convergence and function evaluation consumption. The

aim is to understand the behaviour of our proposed algorithm on the three main func-

tions types: 1) Separable function, 2) Weakly separable function and 3) Non-Separable

functions.

To illustrate its behavior, three functions (one of each type) taken from the benchmark

SOCO 2011 were considered. The Shifted Rosenbrock’s Function (F3) and the Shifted

Rastrigin’s Function (F4) are defined in the Table A.1. For the weakly separable function,

the composite function F16 has been selected (defined in Table A.3). For each function,

FDA’s behaviour is presented for dimensions D = 50 and D = 1000 (being the smaller

and the bigger on the benchmark).

Table A.9 and Figure 2.3 show the number of evaluation consumed to find the best

solution possible for both mentioned dimensions. For the separable function (F3) all

the function evaluations allowed are consumed without reaching the global optimum in

both dimensions D = 50 and D = 1000. As pointed out, this is due to the intrinsic

nature of the ILS. However, for the two other functions, weakly non-separable and

Chapter 1. Design of FDA 52

separable functions, the global optimum is reached. For F3, in dimension D = 50, the

optimum is reached in 7803 evaluations over 25000 allowed, representing around 31%

of the stopping criteria. In D = 1000, the optimum is reached in 160002 over 500000

allowed, representing around 32% of the allowed function evaluations. This highlights

the performance stability and scalability of FDA. In the case of the weakly separable

function, F16, FDA reached the optimum after 12802 function evaluations, in dimension

D = 50, (over the 25000 allowed), representing 51% of the permitted evaluation and

268002 evaluations over 500000 in D = 1000, around 54%. This confirms the stability

and scalability of FDA.

Furthermore, the total number of hyperspheres visited, meaning all hyperspheres focused

by FDA at all l levels, in both exploration and intensification phases is given in Table

A.10 and illustrated in Figure 2.4. In each function, the number of visited spheres is the

same for both dimensions (D = 50 and D = 1000) showing the stability and scalability

of the algorithm and our proposed decomposition approach regardless the dimension.

Finally, to illustrate FDA’s behaviour, the fitness convergence is shown in Figure 2.5

illustrating the fitness over the number of function evaluations. A log function has been

applied on both axis. Once again, for each function, the behaviour is similar across

dimensions. In addition, in this figure we can observe that the slope drops suddenly and

significantly to reach the moment when the best solution is found, being the optimum for

F3 and F4. This sudden change corresponds to the moment when ILS is triggered and

as explained, in the case of non-separable function (F3 in our case) the curve stabilised

without improving significantly until stopping criteria is reached.

In summary, FDA has a stable and scalable behaviour across all dimensions in the

case of separable and weakly separable functions, keeping the number of visited spheres

constant and the percentage of allowed function evaluations constant as well.

2.5.7 Comparison with competing algorithms

In this section, a comparison of our proposed FDA algorithm is conducted with other

optimization algorithms from the literature. In first, a comparison with the related

algorithm: DIRECT is performed. Then, FDA is compared with other competing

metaheuristics from the literature, theirs results on SOCO 2011 were taken from the

corresponding papers.

Chapter 1. Design of FDA 53

(a)

(b)

Figure 2.3: Illustration number of evaluations to find the best solution for F3, F4 and
F16. (a) D = 50, (b) D = 1000.

2.5.7.1 Comparison with DIviding RECTangles (DIRECT)

As pointed out in the literature, DIviding RECTangles (DIRECT) is an algorithm that

decomposes the search domain to find the global optimum. Being one of the most popular

in the Multi-Scale Optimization (MSO) category [Al-Dujaili et al., 2016a], we have

decided to compare its results with FDA. However, as its number of expansions grows

quadratically with regards to the problem dimension N , we restricted the comparison

to functions F1 to F6 (Table A.1), and to the dimensions D = 50 and D = 100.

As mentioned in the literature, DIRECT does not perform well in dimension D > 10.

This is confirmed by the results shown in Table A.11 as FDA outperforms DIRECT on

Chapter 1. Design of FDA 54

Figure 2.4: Illustration the number of hyperspheres visited for F3, F4 and F16 for
dimensions D = 50 and D = 1000.

both dimensions and on all functions.

2.5.7.2 FDA comparison with SOCO 2011 Participants

As mentioned the first seven metaheuristics considered are presented. However, algo-

rithms based on the hybridization of multiple metaheuristics were excluded because we

consider them as a separate class of metaheuristics. Then, the considered algorithms

are:

• Differential Evolution Algorithm [Storn & Price, 1995] which uses the exponential

crossover (DE/rand/1/exp).

• Real-coded Genetic Algorithm (CHC) [Eshelman & Schaffer, 1992].

• MA-SSW-Chains: Memetic algorithm based on local search chains for large-scale

continuous Optimization Problems [Molina et al., 2011]. In addition to classical

memetic algorithm, this version consists of applying a local search, to the last used

configuration.

• The first local search method issued from the Multiple Trajectory Search for large-

scale optimization [Tseng & Chen, 2008] presented as MTS-LS1 as in [LaTorre

et al., 2011]. The algorithm was fitted using the suited values suggested by authors

of the original paper [Tseng & Chen, 2008].

Chapter 1. Design of FDA 55

(a) (b)

(c) (d)

(e) (f)

Figure 2.5: Diagrams illustrating the log of the fitness over the log of number of
function evaluations. (a) F3 and D = 50, (b) F3 and D = 1000 (c) F4 and D = 50 (d)

F4 and D = 1000 (e) F16 and D = 50, (f) F16 and D = 1000.

• Self-adaptive Differential Evolution (SaDE) [Qin & Suganthan, 2005] that uses a

learning procedure to generate trial vectors strategies with their associated param-

eters.

• Multi-population Differential Evolution with balanced ensemble of mutation strate-

gies for large-scale optimization (mDE-bES) [Ali et al., 2015]. This algorithm con-

sists of dividing the population into independent subpopulations using different

mutation operators for each one and updating the strategies during the search.

• Self-adaptive differential evolution algorithm using population size reduction and

three strategies (jDElscop) [Brest & Maučec, 2011]. jDElscop employs three dif-

ferential evolution (DE) strategies, a newly proposed population size reduction

Chapter 1. Design of FDA 56

mechanism, and a mechanism for changing the sign of F control parameter.

Table A.19-A.23 illustrates the average error obtained by FDA on each algorithm pre-

sented above. Table A.16 indicates the number of times each algorithm reaches the

global optimum for all the benchmark’s dimensions, respectively D = 50, D = 100,

D = 200, D = 500 and D = 1000. To perform the performance comparison, the eight

algorithms are ranked using the Friedman ranking sum test presented in Tables A.13

and illustrated on Figure 2.6. In other terms, the average relative rank is computed

for each algorithm according to its mean performance for each function and the average

ranking computed through all the functions is then reported. It can be observed that

our algorithm is ranked first for all dimensions. It is also illustrated in Figures 2.8-2.12

which show the boxplots for the distribution of the average ranks for each algorithm on

all functions. In those plots, the circle highlights the outliers, meaning the functions

where the algorithm performs surprisingly good or bad. In our case FDA performs sur-

prisingly bad on the function F13 on dimension D = 50. It is however clear that our

work shows better and stable performance among all dimensions on all functions.

To confirm this performance, we have conducted a Wilcoxon pairwise test to FDA and

each algorithm presented. The p-values given by the Wilcoxon test have been adjusted

using the Holm procedure [LaTorre et al., 2014] to control the familywise error rate.

Table A.13 presents the Friedman Rank Sum score for each algorithm and shows that

FDA is ranked first in all dimensions. Table A.14 and Table A.15 show the resulting

p-values (raw and adjusted) of the Wilcoxon test. Thus, algorithms with a p-value

<0.05 are statistically outperformed by our proposed work. Looking at the p-values,

FDA statistically outperformed MA-SSW-Chains, CHC, DE, MTS-LS1 and SaDE in all

dimensions. Finally, to support our work performance, as shown in Table A.16, FDA

solved, on average, 14 problems out of 19, and is ranked 1st where both mdE-bES and

jDElscop solve, in rounded-average, 9 problems and are respectively ranked 2nd and

3rd. We can conclude that FDA performs well for the considered benchmark problems

scalability-wise and is stable among all dimensions.

Regarding the complexity, Table A.12 summarizes different complexities of algorithms.

It can be noticed that FDA has the lowest complexity. Moreover, the rest of the al-

gorithms in Table A.12 have polynomial complexities, while, FDA has a logarithmic

complexity. Hence, the theoretical analysis of the proposed approach in addition to the

obtained experimental results shows that the FDA can be an efficient alternative to solve

large-scale problems.

Chapter 1. Design of FDA 57

2.5.7.3 Comparison with recent metaheuristics

In addition to the study conducted in the previous section, a similar experimentation

has been performed to compare the performance of FDA with recent metaheuristics.

These algorithms were inspired by a comprehensive comparison of large scale global

optimizers [LaTorre et al., 2014] and other algorithms taken from the literature and

are described in the following. While in the previous section, hybrid algorithms using

multiple metaheuristics were excluded as part of a different class, we have included some

examples in that section as they are state-of-the-art approaches.

• Multiple Offspring Sampling (MSO) based dynamic memetic differential evolution

algorithm for continuous optimization referred to as MSO-SOCO2011. A hybrid

version of MSO combining a differential evolution (DE) algorithm and the first

one of the local searches of the MTS algorithm [LaTorre et al., 2011].

• Multiple Offspring Sampling in Large Scale Global Optimization (MSO-CEC2012).

Another hybrid MSO-based metaheuristic combining the first one of the local

searches of the MTS [LaTorre et al., 2011] (also used in MSO-SOCO2011) and the

Solis and Wets heuristic [Solis & Wets, 1981]. Originally applied to the CEC 2005

and CEC 2012, the results for the SOCO-2011 have been found in the literature

[LaTorre et al., 2014].

• Large Scale Global Optimization: experimental results with MOS-based hybrid

algorithms [LaTorre et al., 2013] (MOS-CEC2013). Yet another MSO-based ap-

proach. This version also combines the power of the MTS [LaTorre et al., 2011]

with the Solis Wets’ algorithm [Solis & Wets, 1981] but innovates in integrating a

population-based search Genetic Algorithm (GA).

• Two-stage based ensemble optimization for Large-Scale Global Optimization re-

ferred as 2S − Ensemble in [LaTorre et al., 2011] and presented in the original

paper [Wang et al., 2013]. The search procedure is divided into two phases: 1) the

global shrinking focusing on finding a promising area as fast as possible using an

EDA based-on mixed Gaussian and Cauchy models (MUEDA) [Wang & Li, 2009]

and 2) exploring the selected area using a co-evolution-based algorithm.

• IACOR-Hybrid is a hybridisation method for the exploration phase, based on an

Incremental Ant Colony Framework [Liao et al., 2011] (IACOR) and combining the

Multi-Trajectory Local Search (Mtsls1) algorithm and Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm [Nocedal & Wright, 2006].

Chapter 1. Design of FDA 58

The same experimentations, as in the previous section, were performed to compare

FDA with these metaheuristics, Table A.24 shows the average errors obtained by each

algorithm based on 19 functions of the SOCO 2011 benchmark with a focus on the

dimension D = 50 as results were available in the original papers and in the literature

for all algorithms.

Table A.17 shows the ranks using the Friedman sum test where FDA is ranked second.

This is also illustrated in the Figure 2.7. The Figure 2.13 illustrates as a boxplot, the

distribution of the ranks of all algorithms. As mentioned in the previous section, circles

represent the outliers. In that case, FDA performs surprisingly bad in 3 functions, the

first, third and sixth causing the rank to drop second. Overall FDA performance is

stable on all other 16 functions.

Table A.18 presents the p-values, adjusted using the Holm procedure, resulting from

a Wilcoxon pairwise test to FDA and allows us to highlight the fact that FDA is sta-

tistically more efficient than MOS-CEC2013, MOS-CEC2012 and 2S-Ensemble. While

MOS-SOCO2011 and IACOR-Hybrid appear to achieve better performance than our

work by obtaining respectively similar and better ranks, the adjusted p-values from the

Wilcoxon test lead us to ensure that no statistical differences can be found to confirm

that impression. In addition, Table A.25 shows that FDA solved the same number of

problems as the other two most performant algorithms.

Finally, it is crucial to emphasize the fact that, as mentioned earlier, FDA uses a deter-

ministic approach with a single solution, hence and benefit from neither a population

solution nor a stochastic approach, unlike the other state-of-the-art algorithms. Failing

to find significant differences with FDA highlights the power of FDA and its potential

margin for improvement and, as detailed in the future work section, the FDA approach

will lead to great results by incorporating elements which can be found in state-of-the-art

algorithms.

2.6 Conclusion

In conclusion, a new deterministic metaheuristic to solve large-scale optimization prob-

lems has been proposed. The approach includes a divide and conquer mechanism to

explore the search space. Indeed, the geometric fractal decomposition uses the hyper-

sphere as a geometrical form to represent the search space and its subregions to be

visited. Then, a heuristic with a minimum cost in terms of complexity is applied to lead

the search to a smaller promising region allowing the ILS to intensify the search to find

the best solution in a reduced area at the last level. The Fractal Decomposition based

Chapter 1. Design of FDA 59

Figure 2.6: Illustration of the ranking of the algorithms at dimensions D = 50,
D = 100, D = 200, D = 500 and D = 1000.

Algorithm was tested on a set of test functions issued from the benchmark provided

for the soft computing special issue on the scalability of evolutionary algorithms and

other metaheuristics for large scale continuous optimization problems. The obtained

results show the efficiency of the proposed approach and the comparisons with other

state-of-the-art algorithms taken from the literature prove that its performance is very

competitive for all considered dimensions.

As it was pointed out, the procedure used in ILS does not allow solving of problems

that are fully non-separable structure. In near future, our work consists of proposing

new heuristics at ILS level to deal with these problems. In the next chapter, we intro-

duce PFDA a parallelized implementation of FDA on multi-threaded environments and

MA-FDA a parallelized implementation on multi-nodes environments.

Chapter 1. Design of FDA 60

Figure 2.7: Illustration of the ranking of the other metaheuristics algorithms at di-
mension D = 50.

Figure 2.8: Boxplots for the distribution of the average ranks for each algorithm on
D = 50. Circles represent outliers as defined earlier.

Chapter 1. Design of FDA 61

Figure 2.9: Boxplots for the distribution of the average ranks for each algorithm on
D = 100. Circles represent outliers as defined earlier.

Figure 2.10: Boxplots for the distribution of the average ranks for each algorithm on
D = 200. Circles represent outliers as defined earlier.

Figure 2.11: Boxplots for the distribution of the average ranks for each algorithm on
D = 500. Circles represent outliers as defined earlier.

Chapter 1. Design of FDA 62

Figure 2.12: Boxplots for the distribution of the average ranks for each algorithm on
D = 1000. Circles represent outliers as defined earlier.

Figure 2.13: Boxplots for the distribution of the average ranks for each algorithm at
dimensions D = 50. Circles represent the outliers as explained earlier.

Chapter 3

Parallel fractal decomposition

based algorithm for large scale

continuous optimization problems

3.1 Introduction

FDA would easily benefit from multi-threaded and multi-node environments. Indeed, re-

cent architectures are composed of important machines containing many threads and/or

cluster of smaller machines.

In this chapter, we present two different modification of our algorithms. One benefits

from multi-threaded environments while the other from multi-node environments. Both

approaches are designed to leverage current available IT resources such as the ones

provided by new cloud infrastructures. The multi-threaded approach is called, “Parallel

fractal decomposition based algorithm” (PFDA) [Nakib et al., 2018] and the multi-node

is called “Multi-Agents Fractal decomposition based algorithm” (MA-FDA).

In its original version, FDA was running on a mono-threaded environment and therefore

its computational time increases significantly when the problems’ dimension increases.

The motivation of the current work was to address this issue. Reducing the execution

time, solving big optimization problems (problems with dimensions higher than 1000),

and maintaining the original precisions. In this chapter, a parallelized version of FDA,

called PFDA, running on a multi-threaded environment using the framework OpenMP1

and following the Fork/Join model is proposed. This approach is motivated by the fact

1OpenMP 4.5 is used in this thesis

63

Chapter 2. Parallel fractal decomposition based algorithm for large scale continuous
optimization problems 64

that each thread can explore and exploit hyperspheres simultaneously. The aim is to

significantly improve its running time with a focus on large scale optimization problems.

While PFDA has been developed to leverage large machines with many threads available,

modern IT infrastructures may involve clusters of machines with a limited number of

threads. To benefit from distributed multi-node environments FDA has been adapted

accordingly. This Chapter also presents MA-FDA, the adapted version of FDA for

multi-node environments.

The rest of this paper is organized as follow: In Section 3.2 an analysis of the mono-

threaded FDA is presented. Section 3.2.1 details our modified approach PFDA. Section

3.2.2 illustrates and discusses the results obtained by the multi-threaded implementation

of the FDA algorithm. Section 3.2.3 presents MA-FDA, the multi-node implementation

of FDA and its results are discussed in Section 3.2.4. Finally, a conclusion in Section

3.3 ends this chapter.

3.2 Analysis of the mono-thread implementation of FDA

To understand the motivation behind the implementation of PFDA it is important to

understand the life cycle of FDA algorithm. Figure 3.1 shows the main life cycle using

Unified Modeling Language (UML).

The Figure 3.2 illustrates the four main phases of FDA. In Figure 3.2 (a) represents the

first hypersphere (in red) being decomposed into 2 ×D child-hyperspheres (CHi). For

more clarity, in this example the dimension is set to D = 2. It can be seen on Figure 3.2

(b) that child-hyperspheres are evaluated sequentially. Once the child-hypersphere with

the best quality is found (CH2 colored in red in this case), then, it is also decomposed

into 2 ×D child-hyperspheres (in Figure 3.2 (c)). When the depth k is reached (k set

to two in our example), ILS is triggered on all created child-hyperspheres. In Figure 3.2

(d) one hypersphere is exploited at a time by the heuristic. When all child-hyperspheres

of the level k have been exploited, FDA either terminates if the stopping criterion has

been reached or backtracks in the search tree and continues.

It is important to highlight the fact that both the exploration (Section 2.4.1) and ex-

ploitation (Section 2.4.3) phases handle hyperspheres sequentially and therefore create

bottlenecks.

Chapter 2. Parallel fractal decomposition based algorithm for large scale continuous
optimization problems 65

Figure 3.1: Illustration of life-cycle of the mono-threaded version of FDA.

3.2.1 Proposed Multi-threaded Implementation Strategy

Finding a good solution (if the optimum is not known) and within a reasonable time

are the two main aspects to be taken into account when designing a metaheuristic. The

increase in the complexity of the problem will naturally increase the computation time

required for the algorithm to find the desired solution.

This section describes the proposed Parallel FDA, called PFDA, with OpenMP. When

parallelizing, one should aim for achieving a trade-off between improving performance,

while minimizing the overhead of the parallelized mechanisms which includes communi-

cation, synchronization between threads, memory sharing and simplicity of implemen-

tation.

Chapter 2. Parallel fractal decomposition based algorithm for large scale continuous
optimization problems 66

(a) First Decomposition

(b) Evaluation of spheres (Exploration)

(c) Decomposition

(d) Exploitation phase

Figure 3.2: Illustration of Exploration phase (a) and (b) and the Exploitation phase
(c) and (d) of a 2×D problem with fractal depth 2 on a single threaded environment.
The sphere in red having the highest quality at level 1 (a) and being decomposed (c)

for exploitation phase (d).

The idea behind parallelizing FDA was to remove the bottlenecks mentioned earlier,

i.e. the exploration and exploitation phases. They are also the steps when function

evaluations are consumed. Hence, these two phases need to be parallelized.

Using UML, the full life cycle of PFDA is illustrated in Figure 3.3.

The Figure 3.4 illustrates the used strategy based on the previous example. Figures 3.4

(b) and (d) represent respectively the parallelized version of the exploration and ex-

ploitation phases, handling hyperspheres simultaneously.

The initialization phase remains on a single thread, the hypersphere is being decomposed

and only at this point the exploration phase starts. Instead of evaluating hyperspheres

one at a time, from one to N hyperspheres with N = 2×D, PFDA is able to evaluate

Chapter 2. Parallel fractal decomposition based algorithm for large scale continuous
optimization problems 67

Figure 3.3: Illustration of life cycle of PFDA.

hyperspheres in parallel. The algorithm returns to a mono-threaded state and sort all

hyperspheres, selecting the best one to be decomposed. This is being repeated until the

last level k is reached. At this point, the most promising region is decomposed triggering

different instances of ILS. Then, 2×D generated hyperspheres are exploited in parallel.

Once all hyperspheres have been exploited, PFDA terminates if stopping criterion is

reached or backtracks in the search tree otherwise.

In other terms, PFDA alternates between mono-threaded and multi-threaded phases

which corresponds to the well known Fork/Join model. It is important to notice that

the algorithm was designed to be easy to implement.

Regarding the programming environment for implementation, the final choice was OpenMP.

Indeed this framework, compatible with the original implementation of our algorithm in

C++, is commonly used in the literature for multi-threaded environments and stands

Chapter 2. Parallel fractal decomposition based algorithm for large scale continuous
optimization problems 68

(a) First decomposition (b) Evaluation of spheres (Exploration)

(c) Decomposition (d) Exploitation phase

Figure 3.4: Illustration of the proposed strategy. Illustration of Exploration phase
(a) and (b) and the Exploitation phase (c) and (d) of a 2D problem with fractal depth
2 on a multi-threaded environment. The child-hypersphere in red having the highest
quality at level 1 (a) is being decomposed (c) for exploitation phase (d) which is also

ran on a multi-threaded environment.

out in terms of popularity, performance and simplicity of implementation Akhmetova

et al. [2017]; Arnautovic et al. [2013]; Di Domenico et al. [2017].

3.2.2 Results and Discussions of PFDA

In this section, the obtained results are presented and analyzed. When adapting an

existing metaheuristic it is important to be able to measure the benefits of the improve-

ment. In this case, the main concern is the computational time of the algorithm, this

study will focus on the SpeedUp criteria [Alba & Luque, 2006]. This metric is defined

by:

S =
T1

Tn
(3.1)

Chapter 2. Parallel fractal decomposition based algorithm for large scale continuous
optimization problems 69

where S represents the SpeedUp, T1 the execution time of the algorithm on a single

thread and Tn, the execution time on n threads.

As shown in Alba & Luque [2006] this is not a valid comparison for non-deterministic

algorithms. Originally FDA is deterministic, however, parallelizing the exploration phase

adds a stochastic effect. Therefore, the SpeedUp remains suited for evaluating our

approach.

3.2.2.1 Performances evaluation

To evaluate the performance of the proposed algorithm on the large-scale continuous

optimization benchmark of the Special Issue of Soft Computing on Scalability of Evo-

lutionary Algorithms (SOCO 2011) was considered. This benchmark is composed of

six functions from the CEC’2008 special session and competition on large-scale global

optimization (Tang et al. [2007]), and other problems generated by hybridizing these

functions.

The comparison was performed between the computation time taken by PFDA and that

of FDA to solve the benchmark. For the sake of the comparison, the stopping criterion

of the benchmark was conserved: the number of functions evaluations set to 5000×D, D

being the dimension of the problem. In addition, only the dimensions D = 50, D = 100

and D = 1000 have been studied.

The machine used for experimentations has the following characteristics: a processor

Intel Xeon E5-2686 v4 with 256GB of RAM with the technology Intel Turbo Boost

Technology. The SpeedUp has been computed on the following number of threads: 4,

8, 16, 32, 64.

In Figure 3.5 variations of the SpeedUp over the number of threads are presented. One

can see that the increase in the number of threads allows reducing significantly the

running time to reach the stopping criterion. It can also be noticed that for small

dimensions, the increase in the number of threads does not automatically decrease the

running time. However, for large problems, it is clear that the increase in the number of

threads significantly decreases the execution time. The Figure 3.5 illustrates this remark

in case of the dimension D = 1000, where the SpeedUp is equal to 24.22 with 32 threads.

To analyze the performances regarding different kind of problems, a focus was made

on first six functions F1-F6 Tang et al. [2007], on the dimension D = 1000. These six

functions represent the different types of problems: separable and non-separable. The

best SpeedUp obtained is equal to 27.73 in case of a non-separable problem (Rosenbrock

F3 function). The different SpeedUps obtained for the previous considered problems are

Chapter 2. Parallel fractal decomposition based algorithm for large scale continuous
optimization problems 70

(a)

(b)

(c)

Figure 3.5: SpeedUp versus the number of threads for solving the 19 functions (com-
bined). (a) D = 50, (b) D = 100, (c) D = 1000.

presented in Figure 3.6. It can be noticed that in all cases a linear tendency of the

increase of the SpeedUp can be observed. This confirms the results illustrated in Figure

3.5.

Regarding the quality of the final solution obtained by the algorithm, the results of both

versions (FDA and PFDA) are summarized in Table B.1. It can be noticed from these

results that when FDA found the optimum, PFDA also found it. However, the functions

where FDA did not find the optimum, results of PFDA are far from the optimum. The

quality of the solution, in this case, decreases with the increase of the number of threads.

This is due to the stopping criterion being based on the number of function evaluations.

Chapter 2. Parallel fractal decomposition based algorithm for large scale continuous
optimization problems 71

Figure 3.6: SpeedUp versus the number of threads concerning the six first functions
of the SOCO 2011 benchmark.

Indeed, as n = 64, n hyperspheres are being explored at the same time, meaning that

functions evaluations are performed in parallel. Hence, PFDA cannot exploit as deep

the first hypersphere (supposed to be the most promising one) as FDA, which exploits

them one at a time and can, therefore, go deeper in the first hypersphere. For instance,

all functions evaluations are consumed in the first hypersphere generated on the last

level k in case of the optimization of Rosenbrock problem via FDA.

Hence, FDA intensifies the search in the first hyperspheres more than PFDA can do.

Indeed, PFDA exploits n hyperspheres at once.

It is obvious that the parallelized version needs more evaluations of the objective function

to reach results similar to those of the single-threaded version. In Figure 3.7, one can

see the different SpeedUps obtained by FDA on single thread and PFDA on 64 threads.

To analyze the performance in terms of SpeedUp when a target value of the objective

function is considered as a stopping criterion. The Figure 3.8 presents obtained results.

As it was expected, PFDA reaches similar results in a shorter computational time.

3.2.2.2 Exploring higher dimension

In these experimentations, the goal is to solve big optimization problems via PFDA.

The considered problems are the first six functions of SOCO 2011 benchmark, where

the dimension is D = 5000. The number of thread considered was 64. For the purpose

of this study, the stopping criterion will remain at 5000×D.

Chapter 2. Parallel fractal decomposition based algorithm for large scale continuous
optimization problems 72

Figure 3.7: Obtained SpeedUps on a 64-thread environment with stopping criterion
at 20000×D for both FDA and PFDA.

Figure 3.8: Obtained SpeedUps of single threaded FDA and 64-thread PDFA when
a target value of the objective function is used as a stopping criterion.

Originally, the benchmark SOCO 2011 sets the maximum dimension at D = 1000. To

increase the dimension, instead of shifting the functions as provided by the benchmark,

we shifted them randomly between the interval [L10 ,
U
10], where L is the lower-bound and

U is the upper-bound.

The Figure 3.9 shows the obtained SpeedUps. Overall SpeedUps are higher than in the

case of the dimension D = 1000 (Figure 3.6), except for the function F1 Shifted Sphere.

This can be explained by the nature of this problem (separable without local optima),

both algorithms converge quickly to the optimum (it is known here). Therefore ILS

Chapter 2. Parallel fractal decomposition based algorithm for large scale continuous
optimization problems 73

Figure 3.9: SpeedUp at dimension D = 5000 for the first six functions of the bench-
mark SOCO 2011 with number of threads n = 64.

is lost in trying to explore intensively, hyperspheres where an optimal or near-optimal

solution was already found. It is important to mention that this happens only if the

stopping criterion is based on evaluation numbers. If PFDA is configured to stop when

a target solution is found, then, the SpeedUp would be significantly higher.

3.2.3 Proposed Multi-Nodes Implementation - MA-FDA

To understand the motivation behind developing a multi-node version of FDA it is

important to recall the structure of the approach. At each level FDA evaluates all

hyperspheres and select only the best one to be further decomposed. Once the maximum

depth, k is reached, ILS is triggered to exploit each hypersphere. However, once all k-th

level hyperspheres have been exploited, if the stopping criterion has not been reached,

FDA has a backtracking procedure (Section 2.4.2) to move up the tree and explore

other parts of the search space. As a recall, Figure 3.1 shows the main life cycle using

UML. In both the sequential version and PFDA, diversity is maintained by evaluating

all hyperspheres at each level and backtracking in the search tree.

Maintaining diversity in the search space is a challenge that every metaheuristic faces

while looking for the global optimum. In our case, while exploring the search space

FDA builds a tree of hyperspheres and as mentioned, select only certain branches to be

evaluated and further exploited.

While removing the bottlenecks to increase the FDA’s speed was the main focus when

developing PFDA, improving its diversity was the primary concern when designing the

multi-node version called “Multi-Agent Fractal Decomposition Algorithm” or MA-FDA.

Theoretically, if no stopping criterion was set, FDA would explore the entire tree of

hyperspheres built. In practice, all algorithms have a stopping criterion weather it is

Chapter 2. Parallel fractal decomposition based algorithm for large scale continuous
optimization problems 74

time or number of function evaluations, leaving in our case a whole part of the tree

unexplored.

The main idea behind MA-FDA was to allow each computer node in the cluster to

explore a different branch in the tree. In our algorithm each node would select, at a

given level, a different hypersphere to be decomposed further.

The initialization phase and evaluation of all the hyperspheres remain the same until

a given level l is reached (lesser than the maximum depth k). At this level, after the

evaluation and sorting of all hyperspheres, each node would select the hypersphere cor-

responding to their order number in the cluster. For instance, if l = 1, at the first level

each node, from 1 to N, would select the sorted corresponding hypersphere. The first

node would take the first hypersphere, the second node would select the second hyper-

sphere and so on until the last computer node available select its assigned hypersphere.

This is motivated by the fact that hyperspheres are sorted according to their potential

as per 2.4.1. It was only logical to let the nodes select them in order of quality. If the

number of computer nodes is lesser than the number of hyperspheres, 2×D in our case,

then the remaining will be stored and explored further using the backtracking procedure.

Once the stopping criterion is reached on each instance, the master node will collect all

best solutions found by each node and give the best one as the final result.

Given N number of computer nodes, MA-FDA will be able to explore N different

branches from the given level k. This would have the effect to improve significantly

the diversity of FDA from the given level l. The study of the effect of the level choice l is

given in the Section 3.2.4 related to experimentations. The main principle of MA-FDA

is illustrated in Figure 3.10.

Given this procedure, we have decided to explore two different variations:

• MA-FDA-S1: Each node benefit from the same amount of function evaluations.

In our experimentations, we have chosen to compare MA-FDA with its original

version where the stopping criterion was set to 5000×D.

• MA-FDA-S2: Each node only benefits from a fraction of the function evaluations,

hence 5000×D
N . At maximum depth k, ILS performs only one iteration, meaning

it exploits each dimension only once. After this iteration, all nodes report back

to the master node and only the best instance is given the remaining function

evaluation to pursue the exploitation phase where the others are terminated.

From a technical point of view, the framework OpenMPI2 was our final choice for the

implementation of the multi-node of FDA. Compatible with the original implementation

2Open MPI 3.0 is used in this thesis

Chapter 2. Parallel fractal decomposition based algorithm for large scale continuous
optimization problems 75

Node 4

ILS

ILS ILS

ILS

ILS ILS

ILS

ILS ILS

ILS ILS

ILS

ILS

ILS ILS

ILS

Master Node

Node 1 Node 2 Node 3

Master Node

Final Result

Best
Solution
Found

Best
Solution
Found

Best
Solution
Found

Best
Solution
Found

Node 4

ILS

ILS ILS

ILS

ILS ILS

ILS

ILS
ILS

ILS ILS

ILS

ILS

ILS ILS

ILS

Master Node

Node 1 Node 2 Node 3

Master Node

Final Result

Best
Solution
Found

Best
Solution
Found

Best
Solution
Found

Best
Solution
Found

(a) MA-FDA Parallelized from l = 2 (b) MA-FDA Parallelized from l = 3

Figure 3.10: The main life cycle for MA-FDA with N = 4, D = 2 and (a) l = 2 and
(b) l = 3.

of our algorithm in C++, it is commonly used in the literature for multi-node environ-

ment [Cung et al., 2001] as well as popular distributed frameworks such as ParadisEO

[Cahon et al., 2004].

3.2.4 Results and discussions of MA-FDA

To assess the performance of MA-FDA we have compared it with the original results

of FDA presented in Section 2.5.5. As a recall, tests were performed on 19 functions

(F1-F19) for large-scale continuous optimization taken from the special issue of Soft

Computing on Scalability of Evolutionary Algorithms (SOCO 2011). MA-FDA will be

assessed both on the precision and speed.

As mentioned, both variations are evaluated MA-FDA-S1 and MA-FDA-S2. The cluster

available was composed of machines with the following characteristics: one 3.1 GHz Intel

Xeon R© Platinum 817 processor with 16GB of RAM.

Chapter 2. Parallel fractal decomposition based algorithm for large scale continuous
optimization problems 76

3.2.4.1 MA-FDA-S1

MA-FDA-S1 is the first MA-FDA’s variation evaluated. In this version, all N nodes

have the same number of functions evaluations as stopping criterion i.e. 5000 ×D. In

this case the original stopping criterion is not respected and is indeed multiplied by the

number of computer nodes used for the experimentation. In our case we have tested

MA-FDA-S1 with N = 2, N = 5, N = 25 and N = 50 for dimension D = 50.

As the stopping criterion has changed we have run the original FDA with an extended

number of functions evaluation as stopping criterion equal to N × 5000 × D. The

experimental results obtained by MA-FDA-S1 are shown in Table B.3 for N = 2 in

Table B.4 for N = 5, in Table B.5 for N = 25 and in Table B.6 for N = 50. To compare

the different approaches we have used the Friedman Rank Sum score. The ranks are

shown in Table B.7.

MA-FDA integrates a new parameter which is the level at which the computer nodes

takes their independence and explore a different branch of the search tree. It is important

to study the sensitivity with respect to the parameter l. Among the different levels shown

in Tables from B.3 to B.6, the level l = 3 is undoubtedly the choice for the parameter.

Indeed, MA-FDA-S1 with level l = 3 finds the best solution for the function F3 - Shifted

Rosenbrock, one of the main challenge for FDA. In addition, the rank of the level l = 3

is confirmed using the Friedman Rank sum score in Table B.7.

From a precision point of view, it is clear that the original version FDA shows the worst

performance as its number of function evaluation is limited compared to MA-FDA-S1.

To compare with the same stopping criterion, the original version with an extended

number of function evaluation has been tested and shows that it outperforms MA-FDA-

S1. This shows that the original version navigates well into the search tree to find the

best solution possible. However, the time needed by FDA with an extended number of

function evaluation grows linearly with N where the computing time for MA-FDA-S1

as N grows remains stable as shown on Table B.2 and on Figure 3.11 (times have been

averaged over 20 independent runs). It is interesting to highlight the fact that on one of

the composed functions F9 - CompF9 F3 025, MA-FDA-S1 obtains better results than

FDA.

3.2.4.2 MA-FDA-S2

As mentioned, MA-FDA-S2 differs from the first version in that all nodes share a “com-

mon pot” of function evaluations. The motivation behind this version was to compare

Chapter 2. Parallel fractal decomposition based algorithm for large scale continuous
optimization problems 77

Figure 3.11: Computation time required to solve the 19 functions of the benchmark
used. Times are in seconds.

MA-FDA with its original version using the same stopping criterion i.e. 5000 × D

function evaluations. Each node has then 5000×D
N function evaluations.

Similar to MA-FDA-S1, computer nodes select a different hypersphere at the given level

l and pursue the exploration of their respective branches. Once the maximum depth k

is reached, ILS is triggered in the first hypersphere and will perform one iteration on

each node N and go over each dimension only once. All nodes will report back to the

master node their results after this iteration and only the one with the best results will

be allowed to continue and consume all remaining functions evaluations to reach the

global stopping criterion.

The approach’s sensitivity to its parameter level l have been tested with N = 2, N = 5,

N = 25 on D = 50. Experimentals results are given in Table B.8 for N = 2 in Table

B.9 for N = 5 and in Table B.10 for N = 25. To compare the different approaches we

have again used the Friedman Rank Sum score. The ranks are shown in table B.11. As

per the Rank Sum score, the sensitivity of MA-FDA-S2 with regards to the parameter l

is the same as MA-FDA-S1 and Table B.11 highlights that l = 3 is the best choice for

this parameter.

From the experimental results, MA-FDA-S2 outperforms FDA when the number of

computer nodes is small. Indeed, as N increases, the number of functions evaluations

consumed by different nodes grows as well, hence it limits the exploitation of the hy-

perspheres by the best node after the first ILS iteration. Time-wise, MA-FDA-S2 has a

similar execution time as FDA. The only time overhead comes from synchronising the

different nodes which can be neglected here as the number of communication is limited.

The original version of FDA takes (averaged over 20 runs) 30 seconds to solve the 19

Chapter 2. Parallel fractal decomposition based algorithm for large scale continuous
optimization problems 78

functions on dimension D = 50 and MA-FDA-S2 takes also 30 seconds (averaged over

20 runs).

3.3 Conclusion

In this work, two different approaches have been studied. First, a parallel version of

the FDA algorithm, called PFDA, was proposed. The algorithm has been extensively

tested on the SOCO 2011 Benchmark on large scale problems, going from 50 to 5000.

Based on the SpeedUp criterion, it is easy to see that parallelizing FDA has improved

significantly its performances on large-scale problems. However, during the exploration

phase, PFDA consumes a lot of functions evaluations. When the stopping criterion is a

target value of the objective function a high SpeedUp was obtained. It can be concluded

that this new approach enforces the original strengths as it converges significantly faster.

However, PFDA remains less efficient in the case of highly non-separable problems. This

is due to the heuristic used to explore hyperspheres, ILS.

Following PFDA, our approach of FDA was modified to run on distributed IT infras-

tructure. This new approach called “Multi-Agent Fractal Decomposition Algorithm”

(MA-FDA) was introduced. Two different variants were studied. Both were compared

to the original version, FDA, on the same functions 19 functions taken from the SOCO

Benchmark. The first version, MA-FDA-S1 benefits from an extended number of func-

tion evaluations. Performance-wise, with an increased stopping criterion, the original

version has better performance. However, the time required to solve grows linearly with

N (the number of nodes). This is when MA-FDA-S1 shines, having a stable comput-

ing time regardless of the number of nodes and therefore performing better if time is

set as a stopping criterion. The second version, MA-FDA-S2 is designed with function

evaluations as the main concern. It’s running time is equivalent to the original version

but offers a better diversity and some improvement can be found when the number of

nodes is not too large. From experimentations, it can be concluded that MA-FDA ben-

efits from multi-node environments regardless of the size and improves significantly the

diversity of the original version FDA.

Chapter 4

Design of Fractal Decomposition

based algorithm for

multi-objective optimization

4.1 Introduction

In Multi-objective Optimization Problems (MOP) the goal is to optimize at least two

objective functions simultaneously. In this chapter, we are interested in using FDA to

deal with MOPs because in the literature decomposition-based algorithms have been

successfully applied to solve these problems.

We propose to extend FDA to solve MOP problems using two different approaches:

• Mo-FDA-S: Scalarization approach

• Mo-FDA-D: Dominance and Indication

Mo-FDA-S adapts FDA using a scalarization technique. This approach has also been

developed to benefit from a multi-node environment to improve the computational time

taken to solve MOPs problems. This chosen architecture benefits from containers,

lightweight virtual machines that are designed to run a specific task only.

The second approach, Mo-FDA-D uses the principle of non-dominated sorting to find

the best Pareto Front possible. Mo-FDA-D has changed at its core the principle of FDA

and proposes both a new hypersphere evaluation technique based on the evaluation of

the hypervolume and a new local search algorithm ILS.

79

Chapter 3. Design of FDA for multi-objective optimization 80

The chapter is organized as follows. The next Section 4.2 presents the first approach

Mo-FDA-S, the chosen scalarization method and multi-node architecture. Section 4.3

presents the second algorithm Mo-FDA-D. In Section 4.4 the experimental settings and

results against competing methods are detailed. Finally, Section 4.4 concludes this

chapter.

4.2 Mo-FDA Scalarization: Mo-FDA-S

As mentioned, in a multi-objective problem, multiple objective functions are being op-

timized at the same time. However, FDA has originally been designed to solve mono-

objective problems. Thankfully, in the MOP literature, scalarization methods can be

found to transform a multi-objective problem into a single objective problem. The main

idea behind scalarization is to associate each objective function with a weighting coef-

ficient and minimize the sum of all weighted objective functions. Several methods can

be found [López Jaimes & Zapotecas-Mart́ınez, 2011] and we introduce two of the most

popular approaches that we used in our experimental studies.

4.2.1 Weighted Sum

This approach consists of using a weight vector ω = (ω1, ..., ωk), to combine the k

objective functions, solving as follows:

minimize
k∑
i=1

ωifi(x) (4.1)

subject to x ∈ X

with ωi ≥ 0 for i = 1, ..., k and
∑k

i=1 ωi = 1. The set of non-dominated solutions can

be generated by using different weight vectors ω in using the weighted sum approach.

In the case where the Pareto Front is convex (or concave in case of maximization),

this technique works well [Zhang & Li, 2007]. However, it is not always the case when

optimizing multi-objective problems. This is why we have chosen to study another

scalarization technique, know as the Tcheybycheff approach [Miettinen et al., 2008]

which allows overcoming this issue.

Chapter 3. Design of FDA for multi-objective optimization 81

4.2.2 Tcheybycheff Approach

This technique as the particularity to introduce the notion of ideal point or reference

point z∗i as follows:

Minimize max
i=1,...,k

[ωi(fi(x)− z∗i)]

Subject to x ∈ X
(4.2)

with k the number of objective functions to optimise, z∗ = (z∗1 , ..., z
∗
k) the reference point

with z∗i the optimum of function fi and as in the previous method, ωi ≥ 0 for i = 1, ..., k

and
∑k

i=1 ωi = 1. One weakness in this technique is that the aggregation obtained with

the vector ω is not smooth for a continuous problem [Zhang & Li, 2007]. However, this

is not an issue as our algorithm does not need to compute the derivate of the aggregation

function.

4.2.3 Proposed Approach and Parallelized Architecture

The first approach proposed to solve multi-objective problems is called “Multi-Objective

Fractal Decomposition Algorithm Scalarization” or Mo-FDA-S. It uses the Tcheybycheff

function to transform a MOP into a mono-objective problem. By using N different

weight vectors ω, Mo-FDA-S solves N different problems, each generating one point

composing the final Pareto Front (PF). The algorithm used to solve each problem is the

same as presented in Chapter 2 and described in Algorithm 5.

One of the downsides of using scalarization methods is that the number of points com-

posing the PF found by the algorithm will be, at most, the same as the number of

different weight vectors N. In certain cases, if two or more weight vectors are too close,

the algorithm might find the same local optimum for the different weight vectors ω.

This is in opposition to other MOP algorithms which are based on other techniques

such as non-dominated sorting, for instance, NSGA-II [Deb et al., 2002b]. One of the

consequences is that, if the stopping criterion is based on a maximum of function eval-

uations Maxfe, each instance of the algorithm will only benefit from
Maxfe
N function

evaluations. This will have the effect of limiting the potential for each instance to find

the global optimum for each weight vector ω.

4.2.3.1 Proposed architecture

As mentioned, scalarization has been used to adapt the original version to solve multi-

objective problems. Using this technique, to obtain N points in the Pareto Front, the

Chapter 3. Design of FDA for multi-objective optimization 82

algorithm will be launched N times with N variation of the weight vector ω as showed

in Equation 4.2. If we consider that the number of Function Evaluations (FE) is used as

a stopping criterion, even though, each instance only has
Maxfe
N FE, the computational

time can increase significantly. To overcome this, a multi-node architecture has been

developed for Mo-FDA-S. The idea is to have each node finding one point corresponding

to one combination of the weights ω and combine all their results to build the full final

Pareto Front. This idea is inspired by the work presented in MA-FDA-S1 in Section

3.2.4.1. The challenge behind this architecture is that the computing resources needed

increase with the size of the Pareto Front. For instance, if one were to setN = 100 points,

it means that 100 nodes would be required, hence 100 different computers (or virtual

machines), which can be seen as an oversized architecture. To tackle this important issue

we have decided to develop the approach using containers and specifically the powerful

combination of docker as the container technology with kubernetes as the orchestrater as

shown on Figure 4.2. Containers are significantly lighter than virtual machines as they

all share the same operating system kernel. This way, a single machine can host a lot

more containers than virtual machines. This architecture is significantly lighter than a

traditional one and allows to benefit from multi-node approaches while developing it on

a limited number of hosts. In addition, containers can be deployed on multiple different

physical (or virtual) machines seamlessly, without having to change the structure of our

algorithm. Kubernetes is the leading open-source solution for container-orchestration

and takes care, in our case, of the creation and deployment of all the containers on the

different hosts without changing anything in the algorithm implementation.

An example of computation time is shown in Table C.1 and on Figure 4.1. This example

considers the time to solve a function in dimension D = 30 with 100 different points (i.e.

100 different weights vectors ω) on N different virtual hosts with N = 2; N = 10; N = 25

and N = 50. It is important to indicate that even on two hosts (N = 2), a computation

gain can be observed, however not as important as when the number of hosts increases.

This is because each host has to handle, in this case, 50 different containers. Moreover,

when N increases significantly, here N = 25 and N = 50 the gain in time is significant

compared to the sequential version but at some point, the increase in compute nodes

does not decrease the computational time. This is due to the communication overhead

required to synchronise all nodes and gather all points compositing the PF. All tests

have been done on a cluster with machines with the following characteristics: one 3.1

GHz Intel Xeon R© Platinum 817 processor with 16GB of RAM. Moreover, Mo-FDA-S

has been developed in Python and similar to MA-FDA-S1 uses the library MPI for the

multi-node implementation.

Chapter 3. Design of FDA for multi-objective optimization 83

Figure 4.1: An example of computation time required to solve a function with Mo-
FDA-S with the different number of physical nodes N for 100 instances of FDA, hence

100 points in the Pareto Front. Times are in seconds.

....FDA FDA FDA FDA

Mo-FDA-S

node_1 node_n

Figure 4.2: The architecture of Mo-FDA-S using containers on N different nodes.

Chapter 3. Design of FDA for multi-objective optimization 84

4.3 Mo-FDA Dominance

In line with our objective to adapt FDA to solve multi-objective problems, Mo-FDA-S

has been developed using scalarization methods. In this section, we present another

approach we have developed to solve MOP problems but inspired by non-dominated

sorting approaches such as the well known NSGA-II [Deb et al., 2002b]. This new ap-

proach is called “Multi-Objective Fractal Decomposition Algorithm Dominance Based”

or Mo-FDA-D.

The idea behind Mo-FDA-D is to keep the structure of the framework provided by the

original version [Nakib et al., 2017], i.e. the geometric fractal decomposition (detailed

in Section 2.2) as well as the geometric form and the different phases composing FDA.

The initialisation phase (described in Section 2.2) remains the same. The order of the

other main phases is also respected, i.e. the hypersphere evaluation (Section 2.4.1), local

search ILS (Section 2.4.3) and the backtracking (Section 2.4.2). However, the procedure

to evaluate hyperspheres and the heuristic to conduct the local search at the fractal

depth have been adapted to multi-objective problems.

4.3.1 Multi-objective Promising hypersphere selection (Exploration

strategy)

As per the original approach, this procedure aims to select the most promising region

that might contains the best solution. In the context of multi-objective problems, a

single solution does not exist and a set of solutions composing the Pareto Front (PF)

corresponding to the set of Pareto optimal solutions is the final solution of a MOP

problem.

In this new version, the aim is to find both the most promising region to be further

decomposed but also to find potential non-dominated points composing the final Pareto

Front (PF). To do so, we evaluated multiple points along each dimension as per the

following equations:

~s = ~Cl ±
rl
γ
× ~ei for i = 1, 2, ..., D (4.3)

where ~C(l) is the coordinates of the center of hypersphere being evaluated, r is its radius,

γ ∈ [1, 3] and ~ei is the unit vector at the dimension i.

This is illustrated on Figure 4.3 with a two-dimensional example in two different scenarii:

Chapter 3. Design of FDA for multi-objective optimization 85

(a) (b)

Figure 4.3: Evaluating (a) 2 × D points plus the center with γ = 1 and (b) 6 × D
points plus the center with γ = {1, 2, 3}.

• (a) 2 × D points plus the center are evaluated with γ = 1, meaning that the points

are on the sphere.

• (b) 6 × D points plus the center are evaluated with γ = {1, 2, 3}. Points are on

and within the hypersphere.

All evaluated points are stored in a temporary list to be sorted. The sorting is based

on the Pareto Dominance and only non-dominated points are kept, producing a local

Pareto Front of locally non-dominated solutions within the hypersphere. The sorting

algorithm used to sort evaluated points and generate the local PF is called Simple Cull

and is described in [Geilen & Basten, 2007].

Once the local PF obtained, all points are compared to the nadir point of the objective

space and all points above are excluded from the PF. As a recall the nadir point is

defined as znadi = max{fi(x)|x ∈ PF}. In other words, znad defines the upper bound of

the Pareto Front. This is why all the points above are discarded.

Where in the original FDA, the quality score of the hypersphere is defined as the maxi-

mum slope as defined in Equation 2.34, in this case, we had to define a new quality score.

We have decided to chose the hypervolume as quality metrics. To do so, we compute

the hypervolume of the local PF with regards to the general nadir point, znad. Details

of the algorithm used to compute the hypervolume can be found in [Nowak et al., 2014].

As mentioned, the higher the hypervolume the better the Pareto Front is (in case of

minimization), therefore the hypersphere with the highest value is considered better

than the other hyperspheres of the same level and will, therefore, be selected to be

further decomposed. The intuition behind the use of the hypervolume is that some of

Chapter 3. Design of FDA for multi-objective optimization 86

the locally non-dominated solutions found within the hypersphere are more likely to be

part of the final PF.

Once all the hyperspheres of a given level have been evaluated, all the locally non-

dominated sets are concatenated and sorted again to find once global PF of non-

dominated solutions.

4.3.2 Multi-objective Intensive Local Search (ILS)

Once the fractal depth k is reached, the local search is triggered. In this context, it is

important to notice that different local searches or metaheuristic could be used at this

step. We have chosen to adapt our existing ILS to MOP.

In this adapted version instead of searching locally within hyperspheres of the last level,

ILS iterates around each non-dominated solutions found so far during the exploration

phase of evaluating hyperspheres. Therefore, the entry point of one ILS instance is one

point of the current global Pareto Set.

ILS starts by creating two empty lists, one for the Pareto Set listNewPS (decision

space) and one for their solutions in the Pareto Front denoted listNewPD (objective

space) and place in the first one the point given as input parameter.

Then for each dimension and each point in listNewPS, ILS will produce two addi-

tional points denoted ~xL and ~xR. They stand in opposite directions from the current

point being exploited, ~xC at equal distance ω, also called step size as per the following

equations:

~xL = ~xC + ω × ~ei (4.4)

~xR = ~xC − ω × ~ei (4.5)

where ~ei is the unit vector which the ith element is set to 1 and the other elements to 0,

~xC , ~xL and ~xR are then evaluated and placed in listNewPS and their solutions in the

objective space, respectively F (~xC), F (~xL) and F (~xR) are added to the list of solutions

(listNewPF).

Once all the points in listNewPS have been exploited for the current dimension, the

same sorting algorithm used in Section 4.3.1 is applied to the list of all potential solu-

tions (listNewPF) and this will generate a new local Pareto Front of non-dominated

solutions. Therefore, listNewPF now only contains a set of non-dominated solutions

and listNewPS only contains their equivalent in the search space.

Chapter 3. Design of FDA for multi-objective optimization 87

At the end of each iteration, once all dimensions have been searched, ω is multiplied by

a coefficient defined as a hyperparameter of Mo-FDA-D.

This is repeated until either:

• The stopping criterion is reached and Mo-FDA-D is done;

• or ω has reached its minimum value ωmin and therefore ILS moves on to the next

point in the Pareto Set found during exploration.

Once ILS has finished searching around each point of the PS, all points found during

ILS research are sorted and only the non-dominated points will remain and will compose

the new global Pareto Set. In this case, either the stopping criterion is reached and Mo-

FDA-D has finished or the backtracking procedure describe in Section 2.4.2, is applied

and a new sphere from the level k - 1 is selected to be decomposed. The whole procedure

is illustrated in Algorithm 9.

4.4 Results and Discussions

In this section, the two proposed algorithms to solve MOP, Mo-FDA-S and Mo-FDA-D

are analyzed and their performance is exposed using different functions taken from well

know benchmarks. First, only the different approaches are compared using a simple

function followed by a comparison with competing algorithms found in the literature is

conducted.

4.4.1 Benchmark Functions

The first function used to compare our two approaches was the well known “Fon-

seca–Fleming” problem [Fonseca & Fleming, 1995]. Its Pareto Front is shown on Figure

4.4 and the function is defined in Equation 4.6.

FON :

Minimize f1(X) = 1− exp

[
−
∑n

i=1

(
xi − 1√

n

)2
]

Minimize f2(X) = 1− exp
[
−
∑n

i=1

(
xi + 1√

n

)2
]

Domain −4 ≤ xi ≤ 4 , i = 1, 2, · · · , n

(4.6)

We then used the ZDT [Zitzler et al., 2000] and DTLZ [Deb et al., 2002a] functions to

compare our approaches with competing algorithms.

Chapter 3. Design of FDA for multi-objective optimization 88

Algorithm 9: ILS procedure

Input: ωmin = 10−5. //precision or tolerance error

Input: Coefficient step-size: λ

Input: D // the dimension of the problem

Input: Number of function evaluations NBEval

Input: The first point to search as starting point startingPoint

Set the step size ω to the radius of a kth level hypersphere H

Set an empty list for Non-dominated Points Coordinates listNewPS

Add startingPoint to listNewPS

Set an empty for Non-dominated Points Solutions listNewPF

while ω ≥ ωmin do
for Each dimension i = 1, . . . , D do

foreach currentPoint ∈ listNewPS do
set ~xC = currentPoint

~xL = ~xC − ω × ~ei
~xR = ~xC + ω × ~ei
Evaluate the fitness of ~xC , ~xL and ~xR

NBEval = NBEval + 3

Add F (~xC) , F (~xL) and F (~xR) to listNewPF

end

Sort listNewPF to leave only the non-dominated solutions

Modify listNewPS so it contains only the coordinates of the non-dominated
solutions

end

Decrease the step size ω: ω = ω × λ.

end

Output: listNewPS and listNewPF

4.4.2 Sensitivity analysis of the multi-objective algorithms

In this subsection, we aim to analyse the sensitivity of our algorithms against its pa-

rameters.

4.4.2.1 Parameters sensitivity of Mo-FDA-S

As Mo-FDA-S is based on the original version, the analysis has been done in Section

2.5.3. However, as mentioned in Section 4.2, two scalarization methods can be used,

the Weighted Sum or the Tcheybycheff. We have conducted a comparison to test both

techniques. To conduct this analysis, we have chosen to use the “Fonseca–Fleming”

problem [Fonseca & Fleming, 1995] as per Equation 4.6 for dimensions D = 2;D =

Chapter 3. Design of FDA for multi-objective optimization 89

0.0 0.2 0.4 0.6 0.8 1.0

f1 (x)

0.0

0.2

0.4

0.6

0.8

1.0

f 2
(x

)

Pareto front

Figure 4.4: Pareto Front for the Fonseca–Fleming problem.

5;D = 10 and D = 30. The stopping criterion has been set up to 5000×D and 10−5 as

precision tolerance ωmin. The hypervolume has been chosen to be the metric to compare

performances (Figure 1.5).

From the results shown in Figure 4.8 and the Hypervolumes in Table C.4, it is obvious

that the Tcheybycheff method is the most performant one. Besides, it is interesting

to note that Mo-FDA-S works well at low dimensions and high dimensions but is less

performant on intermediate dimensions.

4.4.2.2 Parameters sensitivity of Mo-FDA-D

As Mo-FDA-D has been modified at its core, this subsection aims to analyze with regards

to three parameters:

• The number of points evaluated in the hypespheres as defined in Section 4.3.1.

• The fractal depth k.

• The step size λ by which ω is multiplied in ILS as detailed in Section 4.3.2.

Besides, as per our research, we have also analysed the need for the local search, ILS,

in Mo-FDA-D. To conduct this analysis, we have chosen to use the “Fonseca–Fleming”

problem [Fonseca & Fleming, 1995] as per Equation 4.6 and the hypervolume as metrics

to compare the performances (Figure 1.5)

Chapter 3. Design of FDA for multi-objective optimization 90

(a) (b)

(c) (d)

(e)

Figure 4.5: The true fronts for the ZDT functions used in our study. (a) ZDT1, (b)
ZDT2, (c) ZDT3, (d) ZDT4, (e) ZDT6.

It is important to highlight the fact that in the different cases, the common criteria were

the number of function evaluations set up to 5000 × D as stopping criterion and 10−5

as precision tolerance ωmin.

We have started the following scenarii for dimension D = 2:

• Case 1: 2 points evaluation for hypersphere (γ = 1); k = 5; Without ILS.

• Case 2: 2 points evaluation for hypersphere (γ = 1); k = 5; With ILS.

• Case 3: 6 points evaluation for hypersphere (γ = {1, 2, 3}); k = 5; Without ILS.

Chapter 3. Design of FDA for multi-objective optimization 91

(a) (b)

(c) (d)

Figure 4.6: The true fronts for the DTLZ functions with 2 Objectives used in our
study. (a) DTLZ1, (b) DTLZ2, (c) DTLZ3, (d) DTLZ4.

X-axis

0.0
0.1

0.2
0.3

0.4
0.5

Y-axis

0.0
0.1

0.2
0.3

0.4
0.5

Z-
ax

is

0.0

0.1

0.2

0.3

0.4

0.5

X-axis

0.0
0.2

0.4
0.6

0.8
1.0

Y-axis

0.0
0.2

0.4
0.6

0.8
1.0

Z-
ax

is

0.0

0.2

0.4

0.6

0.8

1.0

(a) (b)

X-axis

0.0 0.2 0.4 0.6 0.8 1.0
Y-axis

0.0
0.2

0.4
0.6

0.8
1.0

Z-
ax

is

0.0

0.2

0.4

0.6

0.8

1.0

X-axis

0.0
0.2

0.4
0.6

0.8
1.0

Y-axis

0.0
0.2

0.4
0.6

0.8
1.0

Z-
ax

is

0.0

0.2

0.4

0.6

0.8

1.0

(c) (d)

Figure 4.7: The true fronts for the DTLZ functions with 3 Objectives used in our
study. (a) DTLZ1, (b) DTLZ2, (c) DTLZ3, (d) DTLZ4.

Chapter 3. Design of FDA for multi-objective optimization 92

Tcheybycheff Sum

(a) (b) (c) (d)
Weighted Sum

(e) (f) (g) (h)

Figure 4.8: Pareto Fronts for the two studied scalarization methods on 4 different
dimensions. Using Tcheybycheff Sum (a) D=2, (b) D=5, (c) D=10, (d) D=30. Using

Weighted Sum (e) D=2, (f) D=5, (g) D=10, (h) D=30.

• Case 4: 6 points evaluation for hypersphere (γ = {1, 2, 3}); k = 5; With ILS.

• Case 5: 6 points evaluation for hypersphere (γ = {1, 2, 3}); k = 8; Without ILS.

• Case 6: 6 points evaluation for hypersphere (γ = {1, 2, 3}); k = 8; With ILS.

• Case 7: 6 points evaluation for hypersphere (γ = {1, 2, 3}); k = 16; Without ILS.

• Case 8: 6 points evaluation for hypersphere (γ = {1, 2, 3}); k = 16; With ILS.

All those scenarii are illustrated on the Figure 4.9 and Results are show in Table C.5.

ILS tends to concentrate the Pareto Front around one area and therefore penalise the

diversification of the Pareto Front. Going too deep i.e. k = 16 decreases the perfor-

mances of the algorithm, whether ILS is used or not. However, not using ILS increases

significantly the computing time. Tuning the parameters impact both hypervolume and

computation time. Parameters maximizing the hypervolume lead to an increased run-

ning time and vice versa. However, in our study were only interested in the hypervolume.

Consequently, from that set of scenarii we can conclude that Case 5 is the best set of

parameters.

Those results seem promising but have only been made for the dimension D = 2. The

chosen benchmark (ZDT and DTLZ) are scaled for dimension D = 30. Therefore we

have decided to set the parameters as set in Case 5 but with higher dimensions. The

following scenarii have been studied:

Chapter 3. Design of FDA for multi-objective optimization 93

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.9: Pareto Front for the studied Case 1 to 8. (a) Case 1, (b) Case 2, (c) Case
3, (d) Case 4, (e) Case 5, (f) Case 6, (g) Case 7, (h) Case 8.

• Case 9: D = 5; Without ILS

• Case 10: D = 5; With ILS

• Case 11: D = 10; Without ILS

• Case 12: D = 10; With ILS

• Case 13: D = 30; Without ILS

• Case 14: D = 30; With ILS

As mentioned, the other parameters have been set similarly to the Case 5, i.e. 6 points

evaluation for hypersphere (γ = {1, 2, 3}) and k = 8. The Pareto Sets of the different

cases are shown in Figure 4.10 and the quantitative results are shown in Table C.6.

Those results highlight the important fact that even though not using ILS works well

on low dimensions, it becomes essential to use it as the dimension increases.

4.4.3 Parameter Settings

Following the observations made in the previous section while studying the sensitivity,

the approaches with regards to their parameters, we have found empirically that the

following parameters work best for the chosen benchmarks, ZDT and DTLZ. For all

functions and all solutions, the stopping criterion has been set to 3 × 105 Function

evaluations.

Chapter 3. Design of FDA for multi-objective optimization 94

(i) (j) (k)

(l) (m) (n)

Figure 4.10: Pareto Front for the studied Case 9 to 14. (i) Case 9, (j) Case 10, (k)
Case 11, (l) Case 12, (m) Case 13, (n) Case 14.

4.4.3.1 Settings for Mo-FDA-S

. For Mo-FDA-S the following parameters were chosen empirically:

For the ZDT benchmark:

• Tcheybycheff as scalarization method

• The fractal deph k = 2

• Coefficient step-size λ = 0.89

• ωmin = 10−5

• Even though the search domain is defined as x ∈ [0, 1] we have chosen to relax the

domain space to x ∈ [−2, 2] and penalise solutions that are not in the original space.

This is due to the fact that as the first hypersphere is initialised in the center of the

search space, the initial solution would have been set to xiniti = 0.5 for i = 1, ..., D.

The number of function evaluations per instance would be too small to converge

to potential solutions. By relaxing the search space and center it around 0, the

initial solution is set to xiniti = 0 for i = 1, ..., D and therefore each instance of

Mo-FDA-S converges faster.

For the DTLZ 1-3 functions:

Chapter 3. Design of FDA for multi-objective optimization 95

• Tcheybycheff as scalarization method.

• The fractal deph k = 2.

• Coefficient step-size λ = 0.5.

• ωmin = 10−5.

For DTLZ 4 function:

• Tcheybycheff as scalarization method.

• The fractal deph k = 3.

• Coefficient step-size λ = 0.2.

• ωmin = 10−5.

4.4.3.2 Settings for Mo-FDA-D

For Mo-FDA-D, the following parameters were chosen empirically:

For the ZDT benchmark:

• The fractal deph k = 5.

• Coefficient step-size λ = 0.5.

• ωmin = 10−5.

• 6 points evaluation for hypersphere (γ = {1, 2, 3}).

• With ILS.

For the DTLZ benchmark:

• The fractal deph k = 5.

• Coefficient step-size λ = 0.2.

• ωmin = 10−5.

• 6 points evaluation for hypersphere (γ = {1, 2, 3}).

• With ILS.

Chapter 3. Design of FDA for multi-objective optimization 96

4.4.4 Comparison with competing algorithms

In this subsection, a comparison of our proposed algorithms is conducted with other

well known MOP algorithms from the literature. We have considered the following

algorithms:

• NSGA-II [Deb et al., 2002b] is a computationally fast and elitist Multi-Objective

Evolutionary Algorithms (MOEA) based on a non-dominated sorting approach.

• NSGA-III [Deb & Jain, 2014] is an extension of NSGA-II adapted to solve many-

objective problems, i.e. more than 3 objectives. It works with a set of supplied

or predefined reference points aiming to maintain the diversity among population

members.

• MOEA/D-DE [Li & Zhang, 2009]. This algorithm is also an MOEA but based

on decomposition. Similarly to Mo-FDA-S, it uses scalarization to transform the

MOP into a single-objective problem. The different scalar optimization subprob-

lems are here optimized simultaneously. The Tcheybycheff method is used for

2-objective functions.

• GWASFGA [Saborido Infantes et al., 2017] stands for “Global Weighting Achieve-

ment Scalarizing Function Genetic Algorithm”. This algorithm is also based on a

scalarization method and uses an achievement scalarizing function which is based

on the Tcheybycheff method but includes the use of the utopian and the nadir

points. GWASFGA generates the weight vectors so that they define an evenly

distributed set of projection in the objective space.

• CDG [Cai et al., 2018], also a decomposition-based MOEA. Instead of using a tradi-

tional scalarization method such as Tcheybycheff, CDG-MOEA uses a constrained

decomposition with grids. One objective function is selected to be optimized while

the other objective functions are converted into constraints by setting up the upper

and lower bounds.

All experimentations on the competing algorithms have been done using the framework

jMetal 5.0 [Durillo & Nebro, 2011], [Nebro et al., 2015]. This framework is developed

in Java and is well known and widely used in the literature. Settings for the algorithms

have been set according to [Jiang et al., 2014] as well as default values in jMetal [Durillo

& Nebro, 2011]. Population size has been set to N = 100 and the stopping criterion

MaxFES = 300000. As the competing algorithms are stochastic, their results have

been averaged over 20 independent runs. As a recall, both Mo-FDA-S and Mo-FDA-D

are deterministic algorithms and their results have been obtained after a single run.

Chapter 3. Design of FDA for multi-objective optimization 97

As mentioned earlier, we have decided to use a set of 8 functions, 5 from the ZDT family

problems and 3 from the DTLZ. The dimension set is D = 30 for both benchmarks.

Moreover, four metrics have been chosen to fully asses the performance of each algorithm.

The Hypervolume (HV), the Generational Distance (GD); the Inverted Generational

Distance (IGD) and the Spread. It is important to notice that the objective of the

hypervolume is to be maximized while the others need to be minimized. Moreover, to

compare the results obtained by the different algorithms, we used the Friedman Rank

sum method to rank the approach based on their performance on each metric and each

function.

4.4.4.1 2-Objective functions

In this first section, we focus on both the ZDT and DTLZ benchmark on 2-objective

functions. Results from the competing algorithms are shown on Tables C.7 to C.15.

On each table the values in bold highlight the best algorithm for the given function

and the given metric. In addition, Tables from C.16 to C.24 show the rank for each

function and each metric. From these ranks, the importance of using multiple metrics

can be seen. For instance, Mo-FDA-D is regularly ranked first on the first three metrics

but last on the fourth metrics. This means that Mo-FDA-D finds good Pareto Fronts,

close to the true Pareto Front but the solutions are less spread that the PS of the other

algorithms. Concerning the other approach, Mo-FDA-S shows more stability over all

the other metrics.

Final ranks are shown on Figure 4.11. Table C.26 shows the final rank based on the

values found in Table C.25. This is also illustrated in the Figure 4.11. This data shows

that Mo-FDA-D is the best algorithm on three metrics, i.e. the Hypervolume, the GD

and IGD. However, it performs the worst on the Spread metric. This shows a lack of

diversity in the Pareto Front compared to other algorithms. However, Mo-FDA-S is

complementary to Mo-FDA-D where it performs well on the Hypervolume and GD and

outperforms the other methods on the Spread. This means that scalarization allows

finding a well Pareto Front with good diversity.

An interesting conclusion that can also be seen from Table C.26 is that, on average,

Mo-FDA-S and Mo-FDA-D obtained the same rank value, i.e. 2.25 which ties them for

first place. As mentioned, this is since Mo-FDA-D does not perform well on the Spread

metric. Those conclusions can be seen in Figure 4.12 representing the Pareto Sets of our

algorithms on 4 selected functions.

Chapter 3. Design of FDA for multi-objective optimization 98

Figure 4.11: Illustration of the final ranking of the algorithms for 2-Objective func-
tions for each metric.

MO-FDA-D

(a) (b) (c) (d)
MO-FDA-S

(e) (f) (g) (h)

Figure 4.12: Pareto Fronts for four selected functions for our two approaches. With
MO-FDA-D (a) ZDT1, (b) ZDT3, (c) DTLZ2, (d) DTLZ4. With MO-FDA-S (e) ZDT1,

(f) ZDT3, (g) DTLZ2, (h) DTLZ4.

Chapter 3. Design of FDA for multi-objective optimization 99

4.4.4.2 3-objective functions

To continue the comparison of our algorithm, we have tested Mo-FDA-D on the first

four functions of the DTLZ benchmark on 3 Objectives. Indeed, ZDT is only defined

for two objectives. In this context, Mo-FDA-S is not yet fit to solve 3-Objective func-

tions. Indeed, a technique to generate well-distributed weight vectors would need to be

implemented.

Results from the competing algorithms are shown in Tables C.27 to C.30. On each table

the values in bold highlight the best algorithm for the given function and the given

metric. In addition Tables from C.31 to C.34 show the rank for each function and each

metric. Relative to the others, Mo-FDA-SD does not perform as well on 3-Objective

functions. However, on each function, it outperforms the other algorithm on at least

one metric.

Final ranks are shown on Figure 4.13. Table C.36 shows the final rank based on the

values found in Table C.35. This is also illustrated in the Figure 4.13. This data shows

that Mo-FDA-D is the best algorithm for the General Distance metric. This means

that the points found by Mo-FDA-D are closer to the true Pareto Front than the other

algorithm. It is ranked second on the IGD and similarly to the 2-Objective function,

struggle to perform on the Spread.

The best algorithm overall is NSGA-III as it has been adapted to many-objective prob-

lems i.e. problems with 3 or more objective functions. This explains why it does not

perform well on 2-Objective function as seen in the previous section.

Our algorithm, Mo-FDA-D is, overall, ranked second in the studied metrics, which shows

promising results. Those conclusions can be seen in Figure 4.14 representing the Pareto

Sets of our algorithms on four DTLZ functions with 3 objectives.

4.5 Conclusion

In this chapter, we have shown two new approaches to solve multi-objective problems.

Both based on geometrical fractal decomposition using hyperspheres. The first one,

Mo-FDA-S takes on the original FDA and leverages the right scalarization methods

to solve MOP problems. We have combined it with a multi-node environment based

on containers to allow speed increase but also architecture flexibility. The second new

approach, Mo-FDA-D, has been modified at its core to use the non-dominated sorting

technique during both exploration and exploitation. This is combined with an indicator

based exploration using the hypervolume metric.

Chapter 3. Design of FDA for multi-objective optimization 100

Figure 4.13: Illustration of the final ranking of the algorithms for 3-Objective func-
tions for each metric.

(a) (b)

(c) (d)

Figure 4.14: Pareto Fronts for the 3-Objective functions found by Mo-FDA-D. (a)
DTLZ1, (b) DTLZ2, (c) DTLZ3, (d) DTLZ4.

Chapter 3. Design of FDA for multi-objective optimization 101

Our algorithms have been compared to 5 other well regarded and state-of-the-art meta-

heuristics. We have decided to use the four most-used metrics in the field to compare the

different algorithms. It is important to note that the use of different metrics is crucial

when comparing MOP methods. Indeed, each algorithm has its strengths and weak-

nesses and performs well on some given metrics. The use of multiple ones allows having

a better overview of each algorithm. Where Mo-FDA-S performs overall well on the four

metrics, Mo-FDA-D excels in finding good Pareto Front, maximizing the hypervolume

covered and close to the true PF. However, it fails to find well-spread solutions.

The use of scalarization for Mo-FDA-S only works on 2-Objective functions for the

moment. The other algorithm shows promising results on 3-Objective functions but,

similarly to NSGA-III, could be optimized for many-objective problems.

Chapter 5

Optimal Convolution neural

networks architecture search

based on FDA

5.1 Introduction

Deep Learning methods [LeCun et al., 2015] have been very successful in solving difficult

problems such as speech recognition, language translation or computer vision. They have

been applied to any field imaginable from healthcare [Esteva et al., 2019] to computer

vision for pedestrian tracking [Brunetti et al., 2018] or cybersecurity [Apruzzese et al.,

2018].

This success can be attributed to the capacity of deep learning algorithms to automati-

cally extract features from data format such as audio, image or text (known commonly

as unstructured data). These technics allow shifting from manual feature engineering

where engineers spend time manipulating data sets and building meaningful new fea-

tures to spending time on building deep neural network architectures and optimizing

their hyperparameters.

Unfortunately, training and tuning their parameters are not easy. Architectures could

be composed of several layers and millions of parameters where each one needs to be

optimized. In practice, neural networks are trained using simple heuristics based on

gradient descent such as Stochastic Gradient Descent (SGD) [Nesterov, 1983], RMSProp

[Hinton, 2012] or Adam [Kingma & Ba, 2014]. However, it might first be considered as

overkill to try to find the optimum parameters and the computation time required to

do so might be too important. Second, a neural network optimally optimized might

102

Optimal CNN architecture search based on FDA 103

limit its flexibility and lead to important overfitting. Indeed, local optimum found

with gradient descent would normally generalize better. Many studies have applied

popular metaheuristics such as Simulated Annealing or Evolutionary Algorithms to the

training of neural network architectures. However, while the accuracy increases with

metaheuristics, the computation time required to train an architecture also increases

[Fong et al., 2018].

Before optimizing a deep neural architectures, the task of building it has been an impor-

tant focus over recent years. The complexity of the imageNet benchmark [Deng et al.,

2009] has motivated engineers and scientists to push the possibilities of Deep Learning

and have built deeper and more complex architectures from AlexNet [Krizhevsky et al.,

2012], VGG-16 [Simonyan & Zisserman, 2014] or GoogleNet [Szegedy et al., 2015]. Build-

ing neural network architectures do result in a significant gain in performance. However,

the search is very time consuming and prone to error. Metaheuristics can also be used

for architectures search and fine tuning of hyperparameters. Evolutionary Algorithms

have sucessfully been applied with interesting results [Real et al., 2017; Suganuma et al.,

2017; Real et al., 2017; Xie & Yuille, 2017]. In this context initial architectures are

defined as initial solutions and selected to create new architectures. Mutation and re-

combination refer to operations that lead to novel architectures in the search space. A

survey on swarm and evolutionary computing applied to Deep Learning is presented in

[Darwish et al., 2019].

In this chapter, we present our work in applying our approach, FDA, to the optimiza-

tion of the hyperparameters of deep neural network architectures. We first present the

formulated problem in Section 5.2.3. A quick review of some related work found in

the literature is presented in Section 5.2.2. Our approach is then detailed in Section 5.3

followed by a discussion on our results in Section 5.4. Section 5.5 concludes this chapter.

5.2 Architecture Search and fine-tuning the hyperparam-

eters

5.2.1 Convolution Neural Network

The basic architectural ideas of a Convolution Neural Network (CNN) [Lecun et al.,

1998] consist of the local receptive fields via the convolution operation and the spatial

sub-sampling via the pooling operation. The Convolution operation can be formally

written as:

Optimal CNN architecture search based on FDA 104

fC,lx,y,k = wl
k
T
fOp,l−1
x,y + blk (5.1)

where wl
k and blk are the weights and bias of the kth feature map, fOp,l−1 and fC,lx,y,k

are the input and output feature maps, l denotes the layer and (x, y) is the spatial

image coordinate. The superscript C denotes convolution and Op represents various

operations, e.g., input (when l = 1), convolution, pooling, activation, etc.

Pooling applies local operations, e.g., computing the maximum within a local neighbor-

hood has the following form:

fPmax,l
x,y,k = max(m,n)∈Nx,y

(fOp,l−1
m,n,k) (5.2)

where, Nx,y denotes the local spatial neighborhood and Pmax denotes the max pooling.

Often a spatial resolution reduction is applied after the max-pooling operation. Besides

the two above-mentioned operations, there are several strategies applied within the CNN

models, such as non-linear activation (e.g., the Rectified Linear Unit (ReLU) [He et al.,

2015]), dropout [Srivastava et al., 2014] and batch normalization [Ioffe & Szegedy, 2015].

A layer with full connections, called Fully Connected (FC) layer, often appears at the

end of the concatenated layers. It takes all points (neurons) from the feature maps of the

previous layer as input and connects it to every points (neurons) of the output feature

map.

In our case, on the last dense layer of the CNN model (referred to as the prediction

layer) we used the popular Softmax activation function defined as follow:

Softmax =
exp (zj)∑K
k=1 exp (zk)

(5.3)

where K denotes the number of training samples.

Finaly, to optimize the parameters w.r.t a loss function, we used the Categorical cross-

entropy loss function defined as follow:

LCategoricalcross−entropy = − 1

N

N∑
i=1

K∑
k=1

1yi∈Kk
log pmodel [yi ∈ Kk] (5.4)

withK the number of categories andN the number of observations. The term pmodel[yi ∈
Kk] is the probability predicted by the model for the ith observation to belong to the

kth category.

Optimal CNN architecture search based on FDA 105

5.2.2 Related Work

Several surveys are available in the literature on Neural Architecture Search (NAS). In

[Elsken et al., 2018], the authors have defined NAS in three dimensions: search space,

search strategy and performance estimation strategy.

In [Wistuba et al., 2019], the authors presented two methods to define the search space of

the entire neural architecture, referred to as the global search space. This allows a large

degree of freedom regarding the arrangement of operations within the network. It can

be seen as a “template architecture”. Its simplest example is the chain-structure search

space and consists of an architecture represented by an arbitrary sequence of ordered

nodes. [Baker et al., 2017] studied this representation of the search space by considering a

fixed set of operations such as convolution, max pooling, activation and other parameters

such as kernels size, stride and pooling size. They also integrated constrains when

building architecture to avoid non-feasible, patently poor or computationally expensive

scenarii. Another method to represent the search space is Cell-Based, based on the

assumption that an architecture is a combination of different cells which are repeated

to build the complete network. This approach has been presented in [Zoph et al., 2018],

however, it requires an important computation power and the cell-based architectures

are significantly more complex than the chain-structure ones.

Many strategies have been studied in the literature to explore the search space: Focused

Grid search, was studied in [Pontes et al., 2016] to optimize quantitative factors of ANN

design. However, both [Baker et al., 2017; Zoph et al., 2018] focused on optimizing

the architecture itself and used well-known hyperparameters to run their best resulting

architectures.

Lu et al. [2019] proposed the use of multi-objective optimization algorithm for cell-based

architecture search. Real et al. [2017] used evolutionary algorithms to build large net-

works for image classification. Genetic Algorithms have been used in [Suganuma et al.,

2017] and consider a wider range of operations in comparison to Real et al. [2017] and

encoded their architecture as a sequence of blocks seen as the genotype of the network.

In Xie & Yuille [2017], authors used an encoding method to represent CNN architec-

ture in a fixed-length binary string and applied GA with standard genetic operations,

i.e. selection to eliminate low performing individuals, crossover and mutation to gener-

ate new architectures. Overall EAs are performing well in the context of architecture

search. However, their computational time required is very expensive as all individuals

in a population representing architectures were trained. To address this issue, [Camero

et al., 2019] developed a method, using the mean absolute error random sampling, to

compare multiple-hidden-layer architectures. They infer the numerical accuracy of a

Optimal CNN architecture search based on FDA 106

network without actually training it. This allows to quickly compare multiple architec-

tures generated. However, this approach has only been applied to small architectures

composed of only three hidden layers.

Less computational expensive methods were used with Surrogate Model-Based Opti-

mization as in [Domhan et al., 2015] where the authors used Bayesian optimization.

Indeed, training neural network requires expensive computation time on GPUs and

other distributed environments. For instance, [Real et al., 2018b] reported running their

architecture search using 450 GPUs. Some studies decided to train on smaller training

size [Klein et al., 2016] or on small data set. For instance, in [Zoph et al., 2018], authors

searched for the best cells on a smaller data set, took the best architecture found and

increased the number of cells to solve a larger benchmark. Another simple technique

consists of early stopping training when the training curve or the loss function does not

reach a certain level after a given number of epochs [Baker et al., 2017].

Authors in Wistuba et al. [2019] concluded that a simple random search, outperforms

many of the previously described methods in the search for cell-based architectures. In

both [Sciuto et al., 2019] and [Li & Talwalkar, 2019], authors showed empirical results

where a random search generated architectures performed at least as well as the ones

obtained from established optimizers for CNNs.

5.2.3 Problem formulation

As mentioned, in the literature both architecture search and hyperparameters optimiza-

tion can be found. In some studies, the search space includes both such as in [Domhan

et al., 2015] and in others, only the architecture is optimized with hyperparameters

fixed with values taken from the literature as in [Baker et al., 2017]. In other words,

the architecture search represents the proper modelisation of the problems whereas the

hyperparameters optimization is how the weights change to solve the problem. In our

study, we have decided to consider both architecture search and hyperparameters opti-

mization. Therefore, two different sets of parameters can be identified. One one hand

discrete parameters related to architecture such as number of layers, number of kernel

or kernel size. On the other hand, continuous parameters, related to the optimization

of the neural network itself such as learning rate, weights decay. While this formulation

can be applied to generate any Neural Network architecture, we decided to apply it on

architecture search for Convolutional Neural Networks (CNN) for solving images classi-

fication problem. Inspired by [Sinha et al., 2014], we decided to formulate the problem

as a bi-level optimization problem.

Optimal CNN architecture search based on FDA 107

As a recall, a general formulation of bi-level optimization can be written as in Equation

5.5.

max
~x

F (~x, ~y)

s.t.

G(~x, ~y) 6 0

max
~y

f(~x, ~y)

s.t.

g(~x, ~y) 6 0

(5.5)

with ~x ∈ Rn1
and ~y ∈ Rn2

are the decision variables respectively of the upper-level F

with dimension n1 and lower-level functions f with dimension n2. Objective functions

F and f : Rn → R, n = n1 + n2.

Both objective functions F and f aim to maximize the validation accuracy defined as

follow:

Validation Accuracy =
NCorrectPredictions

NTotal
(5.6)

With NCorrectPredictions the number of correct predictions made by the model on the

validation set and NTotal the total number of elements in the validation set.

In our study we consider the upper-level function F , to focus on the architecture search

with discrete parameters ~x, a vector of dimension n1, presented later in Table 5.1. The

lower-level problem f optimize the continuous learning parameters ~y, vector of dimension

n2 presented later in Table 5.3.

G(~x, ~y) and g(~x, ~y) are inequality constraints but in our problem, we do not have any

constraints G(~x, ~y) nor g(~x, ~y).

5.3 Decision Variables Encoding

Herein, we propose to apply our algorithm FDA to solve the lower-level optimization

problem where the decision variables are the hyperparameters of the model. Concerning

the upper-level problem, we decided to use the random walker algorithm.

Optimal CNN architecture search based on FDA 108

Table 5.1: Values range of the discrete parameters for architecture search.

Parameters Value Range

Number of Blocks n {2, 3, 4}
Number of Conv. Layers, k {2, 3, 4}
Filter size, j {2, 3, 4, 5}

Table 5.2: Fixed values for the architecture search.

Parameters Values

Learning Rate 0.01
Weight Decay 10−4

Learning Rate Decay 10−6

Momentum 0.9
Batch Size 64

np Drop-out rates lth
2×np

Number of filters, i 256
Number of units in the dense layers m 4000
Finale drop rate 0.2

5.3.1 Encoding of the Upper-level problem

Concerning the architecture search, we have decided to consider a chain-structure search

space composed of n different blocks with each block composed of k convolution layers.

Each convolution layers are composed of i number of filters, all with a L2 regularization,

a stride of 1, a [j×j] filter size, a batch normalization (as in [Ioffe & Szegedy, 2015]) and

the relu activation function. At the end of each block, a max-pooling layer [2× 2] and a

dropout layer are added. Finally, the network ends with another batch normalization, a

final dropout and a dense layer. The search space of each parameter is shown in Table

5.1 and the Algorithm 10 shows how to generate an architecture.

It is important to notice that for the number of filters i and the number of units m

in the final dense layer, we considered respectively the ranges, [32,512] and [10,4000].

Those ranges are large enough for the parameters to be considered as continuous and

the explicit forms of those continuous representations are indicated in the next section.

However, for the purpose of the architecture search, we froze the two values to 256

filters per convolution layer and 4000 hidden units. The other continuous parameters

were fixed as followed: the dropout values within each block were set as the nth dropout

layer, out of a total np dropout layers, had a dropout probability of lth
2×np

[Baker et al.,

2017]. The dropout for the last layer is set to 20%. The Weight Decay is set to 10−4.

We used a Stochastic Gradient Descent (SGD) with a learning rate of 0.01, a learning

rate decay of 10−6 and a Nesterov momentum of 0.9 with a batch size of 64. These

values are summarized in Table 5.2.

Optimal CNN architecture search based on FDA 109

With those parameters, we generated around 500 different architectures using a random

search. Then, we took the best three to be optimized using FDA.

Algorithm 10: Architecture Generation

Select randomly the number of blocks n

for Each blok n do
Select randomly the number of 2D convolution layer, k

for Each convolution layer k do
Set the number of filters to 256

Select randomly a filter size of [j × j]
Set the stride to 1

Add a L2 filter regularization with a weight decay

Add a batch normalization

Set the RELU as activation function

end

Add a [2× 2] MaxPooling layer

Add a Dropout layer with a probability of n
2×np

end

Add a Drop out of 20%

Add a batch normalization

Add a dense layer with 4000 units

Add output layer with a softmax function

5.3.2 Encoding of the Lower-level problem

Once the best architectures are selected, the second phase aims to optimize the continu-

ous parameters which are summarized in Table 5.3. They are the learning rate, weights

decay, learning rate decay and momentum. We also included all dropout probabilities,

i.e. the nd dropout rates corresponding to the n blocks from the architecture and the

final dropout. Then, four additional parameters were optimized. The first one corre-

sponds to the amount by which the learning rate should be reduced if the validation loss

was not improved after one epoch. We refer to this as learning rate reduction on plateau.

The three others are the batch size, the number of filters i per convolutional layers and

the number m of units in the final dense layer. We considered the range [32,512] for the

two first parameters and [10,4000] for the number of units.

Optimal CNN architecture search based on FDA 110

Table 5.3: Values range of the discrete parameters for the architecture search.

Parameters Value Range

Learning Rate [0, 1]
Weight Decay [0, 0.1]
Learning Rate Decay [0, 0.1]
Momentum [0, 1]
Batch Size [32, 512]
Learning Rate Reduction on Plateau [0, 1]
np Drop-out rates [0, 1]
Number of filters, i [32, 512]
Number of units in the dense layers m [10,4000]
Final droprate [0, 1]

5.4 Results and Discussion

In this section, we present the results of our approach for the architecture search using

a random walker and the hyperparameters optimization using FDA of a Convolutional

Neural Network. To test our approach we used the benchmark CIFAR-10 detailed below.

The implementation was done using python as programming language and the framework

Keras with Tensorflow [Abadi et al., 2016] as backend. This framework was used for its

simplicity in building the neural network architecture. The experimentations were done

using only three NVIDIA V100 GPUs with 16GB of RAM.

CIFAR-10

This benchmark is composed of 60000 32 × 32 colour images divided into ten different

classes. The training set is composed of 50000 images and the test set of 10000. The

classes are airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck. The test

set contains 5000 images of each class and the test set, 1000 images of each class. Classes

are mutually exclusive no overlap exists between trucks and automobiles. “Automobile”

only includes cars and assimilated. “Truck” includes only big trucks. Neither includes

pickup trucks.

5.4.1 Optimal Architecture Search

The search was done using a random search referred to as random walker and 500 random

architectures were generated. Both the chosen structure and the parameters are detailed

in Section 5.3.1.

Optimal CNN architecture search based on FDA 111

Figure 5.1: Examples of images in CIFAR-10 with their class labels.

As mentioned earlier, training multiple neural networks can be very expensive, this is

why, to speed up the architecture search, we simplified the problem by decreasing the

data set from 50000 to 20000. We used 16000 as training set and 4000 as a validation

set. This allowed us to generate more architectures and still have a good estimation

on the performance of each one. As the number of images was reduced, we decided to

train the same architecture three times, changing the validation set each time. The final

validation accuracy for one architecture was the average of the three runs. No early

stopping strategy was implemented during the architecture search. The overall average

performance of all architectures was 69.72% validation accuracy with a standard devi-

ation of 10.25%. The best performing architecture reached 83.33% validation accuracy

and is shown in Figure 5.2.

32x32x3 32x32x256 32x32x256
16x16x256 16x16x256 16x16x256 8x8x256 8x8x256 8x8x256 8x8x256 4x4x256 4x4x256 4x4x256 2x2x256

1024

4000

10

conv2x2, 256
stride (1, 1)

conv5x5, 256
stride (1, 1)

maxpool2x2
stride (2, 2)

conv5x5, 256
stride (1, 1)

conv4x4, 256
stride (1, 1)

maxpool2x2
stride (2, 2)

conv2x2, 256
stride (1, 1)

conv2x2, 256
stride (1, 1)

conv4x4, 256
stride (1, 1)

maxpool2x2
stride (2, 2)

conv3x3, 256
stride (1, 1)

conv2x2, 256
stride (1, 1)

maxpool2x2
stride (2, 2)

flatten

dense dense

Figure 5.2: Best architecture found during the search.

5.4.2 Hyperparameter Optimization

As mentioned earlier, the 3 best architectures were selected to be optimized using FDA.

To address the performance evolution mentioned in Section 5.2.2, during each training,

we first decrease the learning rate if the validation loss (Equation 5.4) has not improved

Optimal CNN architecture search based on FDA 112

after one epoch. Then, as an early stopping strategy, the training is stopped if the

validation loss has not improved after two consecutive epochs.

5.4.2.1 Sensitivity analysis

We showed previously that FDA is sensitive to its fractal depth k. In this section, we

conducted a sensitivity analysis of this parameter. We took the best architecture and

optimized it without data augmentation to speed up the training and set k to three

different values, k = 2, k = 5 and k = 8. Figure 5.3 shows the validation accuracy

as a function of the function evaluations (trainings). The vertical ligne indicates the

exploration and exploitation phases, i.e. the moment when ILS starts. We can see

that if the fractal is deep, with k = 8, the accuracy is not enhanced and the ILS does

not improve at all the accuracies. However, both k = 2 and k = 5 converges towards

high accuracy. In the case of k = 2, FDA triggers ILS earlier and converges faster. In

addition, the best validation accuracy reached for each value of k were 89.39% for k = 2,

88.12% for k = 5 and 49.14% for k = 8. Both in terms of validation accuracy and speed

of convergence, the choice of k = 2 is the best.

Explora�on phase

Exploita�on phase (ILS)

Va
lid

a�
on

 A
cc

ur
ac

y

Func�on Evalua�ons

Start of ILS

Figure 5.3: Validation accuracy as a function of function evaluation for each value of
the parameter k.

5.4.2.2 Choice of the backpropagation algorithm

When training a neural network the choice of the backpropagation algorithm has a

crucial role in the outcome. We considered adding this choice as a parameter in the

architecture search but to keep consistent results, each generated architecture should

be trained with all different optimizers. We decided to optimize, using FDA, the hy-

perparameters of the best architecture found during the search and train it with three

Optimal CNN architecture search based on FDA 113

different optimizers i.e., SGD with the Nesterov momentum [Nesterov, 1983], RMSprop

and Adam. Obtained results on the 10000 images validation set were respectively 90.6%

90% and 89.5% accuracy. Besides, convergence curves are shown in Figure 5.4. As it can

be seen, SGD outperforms slightly the two others. However, this is not the main reason

why SGD is the best choice for hyperparameter optimizations. As in Figure 5.4, Adam

and RMSprop reach quickly high accuracies during the exploration phase but results are

significantly less consistent in the exploitation phase. We can empirically conclude that

Adam and RMSprop do not seem to be as sensitive to optimization as SGD.

Start of ILSExplora�on phase

Exploita�on phase (ILS)

Va
lid

a�
on

 A
cc

ur
ac

y

Func�on Evalua�ons

Figure 5.4: Comparison of three optimizers used for training our most efficient archi-
tecture.

5.4.2.3 Parameter Settings

Following the observations made while studying the sensitivity, we have found empir-

ically that the following parameters work best: The fractal depth is set to k = 2 as

Section 5.4.2.1. We choose the SGD for the backpropagation with the Nesterov momen-

tum. The other FDA parameters are set as follow: The coefficient step-size λ = 0.5 and

ωmin = 10−3.

The different parameters optimized have different search spaces. To facilitate the op-

timization of all parameters we have decided to use a normalized search space so that

X ∈ [0, 1] where X represents the set of all optimized parameters.

For the hyperparameters optimization, we used the 50000 images in the original data,

40000 were used for training and 10000 for validation with a data augmentation1 with

1Data augmentation is a strategy to increase the diversity of data available for training models. It al-
lows to generate more data without actually collecting new samples. Data augmentation transformations
are applied to the original data set.

Optimal CNN architecture search based on FDA 114

horizontal flip only, a width and height shift of 5 pixels maximum and a channel shit of

0.1. The number of epochs is set to 30.

5.4.2.4 Results

In this section, we present the results obtained for the three best architectures found

during the architecture search. The best one is illustrated, before optimization, on

Figure 5.2.

The challenge when optimizing an architecture was to avoid overfitting2. To do so we set

up the following protocol. First, we optimized the parameters using only 40000 images

for training and 10000 for validation. Once the best parameters are found, we run one

more independent run with the same proportion but changing the validation set. This

run aims to record the learning rate schedule. Then, we started ten independent runs

on the 50000 images of the original training set without validation set, evaluate on the

10000 images composing the original test set and record the validation accuracy for each

run. The average and standard deviation for each architecture are then reported in this

section.

The best architecture described in Table 5.4 and shown on Figure (a)5.7 is composed of

4 blocks and 9 Convolution layers for 6,533,823 parameters, has an average performance

on CIFAR-10 of 90.5% and a standard deviation of 0.15%. All parameters included,

that represents a problem with dimension D = 21.

The second best architecture described in Table 5.5 and shown on Figure (b)5.7 is

composed of 4 blocks with 10 Convolution Layers for 5,154,538 parameters. It has an

average performance of 92.07% and a standard deviation of 0.15%. The dimension of

that problem is D = 22.

The last optimized architecture is described in Table 5.5 and shown on Figure (c)5.7 is

also composed of 4 blocks with 10 Convolution Layers and has 5,800,647 parameters. It

has an average performance of 91.33% and a standard deviation of 0.22%. The dimension

of that problem is D = 22.

The convergence graph of the 3 best architectures is shown in Figure 5.5. The second is

slower to reach its plateau but ends up with better performances. The first one triggers

later the exploration phase, converges fast but reaches the worst performances out of

the 3 architectures studied. The three architectures had the same stopping criterion:

2Overfitting is defined as the production of a model that corresponds too closely to a particular
training data set and hence, fail to fit additional data or predict future observations reliably

Optimal CNN architecture search based on FDA 115

the maximum number of function evaluations, Figure 5.6 shows the second architecture

which provides the best results.

When using FDA to optimize a given architecture, the best set of parameters are found.

The accuracy can be seen as the upper bound value for a given architecture. This be-

havior can be seen on Figure 5.6. When tuning a neural network, it is difficult to know

if improving the accuracy will be achieved by tuning its parameters or the architecture.

Using our approach, it is clear that if one wants to improve the accuracy of an architec-

ture, after being optimized with FDA, one should change the architecture itself or use

more data augmentation.

It is interesting to the see how the optimization plateaus when reaching the best results

possible. One can argue that looking at this behaviour, FDA could be used to find the

upper bound of a given architecture. Indeed, FDA finds the best parameters for a given

architecture. When tuning a neural network, it is difficult to know which parameter

will improve the final accuracy. Using our approach, it is clear that if one wants to

improve the final results, one should change the architecture itself or use more data

augmentation.

To confirm the performance of our approach, we have to train our best architecture

with other optimizers, RMSprop and Adam, following the same protocol. To do so

we used state-of-the-art parameters taken from the literature [Nesterov, 1983; Hinton,

2012; Kingma & Ba, 2014]. Indeed, those parameters are often used in the literature

as they have been tuned for a decade by researchers. Using RMSprop the architecture

reaches 88.2% validation accuracy and 87.96% with Adam. That highlights the efficiency

of our approach, indeed, without any particular knowledge, FDA finds the best set of

parameters for a given problem than the one used in the literature. Those parameters

can be found in the well-known and widely used, deep learning framework Keras. We

show an improvement of around 4% to 5%.

Finally, to understand the behaviour of our best architecture and parameters, Figure

5.8 shows the learning rate as a function of the number of epochs using our reduction

on plateau strategy.

5.5 Conclusion

In this chapter, we have applied FDA to the optimization of hyperparameters of Con-

volutional Neural Networks. We defined the problem as a bi-level optimization where

the upper-level function represents the generation of the architecture itself. To solve

this problem, we used a random walker and defined the architecture search space as

Optimal CNN architecture search based on FDA 116

Explora�on phase

Exploita�on phase (ILS)

Start of ILS

Va
lid

a�
on

 A
cc

ur
ac

y

Func�on Evalua�ons

Figure 5.5: Comparison of the 3 best architectures convergence graph.

Explora�on phase

Exploita�on phase (ILS)

Start of ILS

Va
lid

a�
on

 A
cc

ur
ac

y

Func�on Evalua�ons

Figure 5.6: The second best architecture giving the best results after optimization.
The vertical line highlights the beginning of ILS.

chain-structure. For the lower-level problem, we used FDA to optimize the hyperpa-

rameters of the best 3 architectures found during the random search. We defined a

procedure to avoid overfitting with our parameters. The resulting architecture once op-

timized reached 92% validation accuracy on the 10000 images composing the test set.

We compared our results against the state-of-the-art parameters used in the literature.

Competitive approaches include [Baker et al., 2017] which used reinforcement learning

(RL) for architecture search and reached 93.08% accuracy with 11.18 million parame-

ters in the final neural network architecture. [Lu et al., 2019] reached 97.98% accuracy

with 4 million parameters using multi-objective optimization and the well-known NSGA

algorithm. Table 5.7 summarize the results FDA and other state-of-the-art methods.

However, our approach differs from the others listed in Table 5.7 because it separates

the architecture search from the hyperparameters optimization where the others focus

on the architecture search and fine tune the hyperparameters after the search. In this

study, we proved that for a given architecture FDA is capable to find better parameters

and show a gain of 4 to 5%. Proportionally to the size of our neural network in terms

of parameters and the data augmentation, we can argue that our results are among the

Optimal CNN architecture search based on FDA 117

Table 5.4: Description of the Top 1 architecture and results on CIFAR-10.

Architecture structure

B 1 [C(136,2,1), C(356,5,1), MaxPool(2,2), Dropout(0.237)] ;
B 2 [C(304,5,1), C(171,4,1), MaxPool(2,2), Dropout(0.237)] ;
B 3 [C(136,2,1), C(34,2,1), C(34,4,1), MaxPool(2,2), Dropout(0.237)] ;
B 4 [C(413,3,1), C(136,2,1), MaxPool(2,2),Dropout(0.237)] ;
Dropout(0.371), Dense(2329)

Parameters

Learning Rate 0.0057
Weight Decay 0.0894
Learning Rate Decay 0.0106
Momentum 0.8941
Batch Size 178
Learning Rate Reduction on Plateau 0.6313

Results on CIFAR-10

Average validation accuracy Std. Nb of Parameters
90.5% 0.15% 6,533,823

Table 5.5: Description of the Top 2 architecture and results on CIFAR-10.

Architecture structure

B 1 [C(212,3,1), C(304,2,1), MaxPool(2,2),Dropout(0.237)]] ;
B 2 [C(136,4,1), C(212,3,1), C(413,5,1),MaxPool(2,2),Dropout(0.237)] ;
B 3 [C(77,5,1), C(136,5,1),MaxPool(2,2),Dropout(0.106)]] ;
B 4 [C212,2,1], C(77,2,1), C(77,2,1),MaxPool(2,2),Dropout(0.237)] ;
Dropout(0.237), Dense(1597)

Parameters

Learning Rate 0.0057
Weight Decay 0.0894
Learning Rate Decay 0.0106
Momentum 0.8941
Batch Size 209
Learning Rate Reduction on Plateau 0.5

Results on CIFAR-10

Average validation accuracy Std Nb Param
92.07% 0.15% 5,154,538

state-of-the-art.

Optimal CNN architecture search based on FDA 118

Table 5.6: Description of the Top 3 architecture and results on CIFAR-10.

Architecture structure

B 1 [C(304,2,1), C(304,3,1), MaxPool(2,2), Dropout(0.237)] ;
B 2 [C(136,4,1), C(34,3,1,), C(304,4,1), C(212,2,1), MaxPool(2,2),Dropout(0.237)]
B 3 [C(304,2,1), C(304,5,1), MaxPool(2,2), Dropout(0.237)];
B 4 [C(136,2,1), C(304,5,1), MaxPool(2,2), Dropout(0.237)];
Dropout(0.237), Dense(45)

Parameters

Learning Rate 0.0057
Weight Decay 0.0894
Learning Rate Decay 0.0106
Momentum 0.8941
Batch Size 146
Learning Rate Reduction on Plateau 0.24

Results on CIFAR-10

Average validation accuracy Std Nb Param
91.33% 0.22% 5,800,647

Table 5.7: Performance of FDA and other state-of-the-art models on CIFAR-10.

Name of Architecture Nb of Params (M) Test Error (%) Search Method

FDA 5.15 7.93 Random + FDA
MetaQNN [Baker et al., 2017] 11.18 6.92 RL
NSGA-NET [Lu et al., 2019] 4 2.02 evolution
AmoebaNet-A [Real et al., 2018a] 3.2 3.34 evolution
NAS [Zoph & Le, 2016] 7.1 4.47 RL
NAS + more filters [Zoph & Le, 2016] 37.4 4.47 RL

Optimal CNN architecture search based on FDA 119

32
x3

2x
3

32
x3

2x
13

6
32

x3
2x

35
6

16
x1

6x
35

6
16

x1
6x

30
4

16
x1

6x
17

1
8x

8x
17

1
8x

8x
13

6
8x

8x
34

8x
8x

34
4x

4x
34

4x
4x

41
3

4x
4x

13
6

2x
2x

13
6

54
4

23
29

10

co
nv

2x
2,

 1
36

st
rid

e
(1

, 1
)

co
nv

5x
5,

 3
56

st
rid

e
(1

, 1
)

m
ax

po
o

l2
x2

st
rid

e
(2

, 2
)

co
nv

5x
5,

 3
04

st
rid

e
(1

, 1
)

co
nv

4x
4,

 1
71

st
rid

e
(1

, 1
)

m
ax

po
o

l2
x2

st
rid

e
(2

, 2
)

co
nv

2x
2,

 1
36

st
rid

e
(1

, 1
)

co
nv

2x
2,

 3
4

st
rid

e
(1

, 1
)

co
nv

4x
4,

 3
4

st
rid

e
(1

, 1
)

m
ax

po
o

l2
x2

st
rid

e
(2

,2
)

co
nv

3x
3,

 4
13

st
rid

e
(1

, 1
)

co
nv

2x
2,

 1
36

st
rid

e
(1

, 1
)

m
ax

po
o

l2
x2

st
rid

e
(2

, 2
)

fla
tte

n

de
ns

e
de

ns
e

(a
)

32
x3

2x
3

32
x3

2x
21

2
32

x3
2x

30
4

16
x1

6x
30

4
16

x1
6x

13
6

16
x1

6x
21

2
16

x1
6x

41
3

8x
8x

41
3

8x
8x

77
8x

8x
13

6
4x

4x
13

6
4x

4x
21

2
4x

4x
77

4x
4x

77
2x

2x
77

30
8

15
97

10

co
nv

3x
3,

 2
12

st
rid

e
(1

, 1
)

co
nv

2x
2,

 3
04

st
rid

e
(1

, 1
)

m
ax

po
o

l2
x2

st
rid

e
(2

, 2
)

co
nv

4x
4,

 1
36

st
rid

e
(1

, 1
)

co
nv

3x
3,

 2
12

st
rid

e
(1

, 1
)

co
nv

5x
5,

 4
13

st
rid

e
(1

, 1
)

m
ax

po
o

l2
x2

st
rid

e
(2

, 2
)

co
nv

5x
5,

 7
7

st
rid

e
(1

, 1
)

co
nv

5x
5,

 1
36

st
rid

e
(1

, 1
)

m
ax

po
o

l2
x2

st
rid

e
(2

, 2
)

co
nv

2x
2,

 2
12

st
rid

e
(1

, 1
)

co
nv

2x
2,

 7
7

st
rid

e
(1

, 1
)

co
nv

2x
2,

 7
7

st
rid

e
(1

, 1
)

m
ax

po
o

l2
x2

st
rid

e
(2

, 2
)

fla
tte

n

de
ns

e
de

ns
e

(b
)

32
x3

2x
3

32
x3

2x
30

4
32

x3
2x

30
4

16
x1

6x
30

4
16

x1
6x

13
6

16
x1

6x
34

16
x1

6x
30

4
16

x1
6x

21
2

8x
8x

21
2

8x
8x

30
4

8x
8x

30
4

4x
4x

30
4

4x
4x

13
6

4x
4x

30
4

2x
2x

30
4

12
16

45
10

co
nv

2x
2,

 3
04

st
rid

e
(1

, 1
)

co
nv

3x
3,

 3
04

st
rid

e
(1

, 1
)

m
ax

po
o

l2
x2

st
rid

e
(2

, 2
)

co
nv

4x
4,

 1
36

st
rid

e
(1

, 1
)

co
nv

3x
3,

 3
4

st
rid

e
(1

, 1
)

co
nv

4x
4,

 3
04

st
rid

e
(1

, 1
)

co
nv

2x
2,

 2
12

st
rid

e
(1

, 1
)

m
ax

po
o

l2
x2

st
rid

e
(2

, 2
)

co
nv

2x
2,

 3
04

st
rid

e
(1

, 1
)

co
nv

5x
5,

 3
04

st
rid

e
(1

, 1
)

m
ax

po
o

l2
x2

st
rid

e
(2

, 2
)

co
nv

2x
2,

 1
36

st
rid

e
(1

, 1
)

co
nv

5x
5,

 3
04

st
rid

e
(1

, 1
)

m
ax

po
o

l2
x2

st
rid

e
(2

, 2
)

fla
tte

n
de

ns
e

de
ns

e

(c
)

F
ig

u
r
e

5
.7

:
T

op
3

A
rc

h
it

ec
tu

re
s

af
te

r
th

e
h
y
p

er
p

ar
am

et
er

s
o
p

ti
m

iz
a
ti

o
n

.
(a

)
T

o
p

1
w

it
h

6
,5

3
3
,8

2
3

p
a
ra

m
et

er
s;

(b
)

T
o
p

2
w

it
h

5
,1

5
4
,5

3
8

p
a
ra

m
et

er
s;

(c
)

T
o
p

3
w

it
h

5
,8

0
0
,6

4
7

p
a
ra

m
et

er
s.

Optimal CNN architecture search based on FDA 120

Figure 5.8: Learning rate as a function of the epochs for our best resulting architec-
ture.

Conclusion and future work

In this thesis after a review of the literature, we have introduced our new metaheuris-

tics called “Fractal Decomposition Algorithm”. The approach aims to decompose the

search space using hyperspheres as fractal geometrical form and can be seen as a Divide

and conquer approach. Once the exploration phase is done a heuristic with a minimum

complexity is applied to search sub-regions defined as promising to find the best solution

possible. This heuristic called Intensive Local Search (ILS) is used during the intensifi-

cation phase. Our new approach was tested on different large-scale black-box continuous

functions and compared to other continuous optimization algorithms. Results showed

the competitiveness in terms of accuracy and scalability of our approach.

As FDA was originally developed to run on a single thread on a single host, we studied its

parallelization. Two different approaches came out of our study. One called PFDA which

is designed to run on multi-threaded environments. The approach has been extensively

tested on the SOCO 2011 Benchmark on large scale problems, with dimension from

50 to 5000. Using the SpeedUp as a performance metric, it is clear that PFDA is

significantly faster than FDA. As PFDA needs a lot of functions evaluations (due to the

parallelization) the accuracy can decrease if the stopping criterion is based on the number

of function evaluations. However, if the stopping criterion is based on target precision,

accuracy is maintained and high SpeedUp is obtained. It can be concluded that this

new approach enforces the original strengths as it converges significantly faster. The

second parallelized version, developed to run on distributed IT infrastructure is called

“Multi-Agent Fractal Decomposition Algorithm” (MA-FDA). Two versions of MA-FDA

has been developed and compared to the original version. The first, referred to as

MA-FDA-S1, benefits from an extended number of function evaluations. Performance-

wise, if we increase the number of function evaluation by N (equivalent to running

MA-FDA-1 on N nodes), the original version is more performant but the time required

increases linearly with N . This is when MA-FDA-S1 shines, having a stable computing

time regardless of the number of nodes and therefore performing better if time is set

as a stopping criterion. The second version, MA-FDA-S2 is designed with function

evaluations as the main focus. Its running time is equivalent to the original version

121

General conclusion and future work 122

but offers a better diversity and some improvement can be found when the number of

nodes is not too large. From experimentations, it can be concluded that in general, both

versions of MA-FDA benefit from multi-node environments

In addition to solving continuous mono-objective problems, we have shown two new

approaches to solve multi-objective ones. The first one, Mo-FDA-S takes on the original

FDA and leverage the Tchebycheff scalarization method. We have combined it with a

multi-node environment based on containers to allow speed increase but also architec-

ture flexibility. The second new approach, Mo-FDA-D, modifies FDA at its core to use

the non-dominated sorting technique during both exploration and exploitation. This

is combined with an indicator based exploration using the hypervolume metric. Our

two algorithms have been compared to 5 others well regarded and state-of-the-art meta-

heuristics. Also, we show the interest in using the four most-used metrics to compare

the different algorithms. Indeed, each algorithm has its strengths, weaknesses and per-

forms well on some given metrics. The use of multiple metrics allows having a better

overview of each algorithm. Where Mo-FDA-S performs overall well on the four metrics,

Mo-FDA-D allows to find good Pareto Front maximizing the hypervolume covered and

close to the true PF. However, it fails to find well-spread solutions.

We finally applied FDA to the optimization of hyperparameters of Convolutional Neural

Networks for image classification problems. We defined the problem as a bi-level opti-

mization where the upper-level function represents the generation of the neural network

architecture. A random walker was used to find a good chain-structure architecture. For

the lower-level function, we used FDA to optimize the hyperparameters of the best 3

architecture found during the random search. Indeed, fine-tuning manually a neural net-

work architecture is a very time-consuming task. One challenge we faced was avoiding

overfitting when optimizing the parameters. To test the performance of our approach we

used a popular benchmark, the CIFAR-10. It is composed of 50000 images as training

set and 10000 images as test set. Our approach FDA found hyperparameters which, af-

ter 10 independent runs, reached 92% validation accuracy on the test set. In this study,

we proved that for a given architecture FDA is capable of finding better parameters and

show a gain of 4 to 5% which is an important gain in this field. Proportionally to the

size of our neural network in terms of parameters and the data augmentation, we can

argue that our results are among the state-of-the-art. This was done with only three

Nvidia V100 GPUs wherein many other studies on architecture search, infrastructure

with hundreds of GPUs are used.

While FDA has shown its potential on multiple functions, the heuristics used during

the intensification phase referred to as ILS has some limitations. As a recall, ILS moves

along each dimension one by one. This process can increase the difficulty of solving

General conclusion and future work 123

non-separable problems. Various techniques could be used to address this issue. One

solution could be to hybridize FDA with another metaheuristic. For instance, the well-

known CMA-ES could be used instead of ILS. In small-scale problem, this could improve

the accuracy on problems with small dimensions. Any heuristics or metaheuristics could

be used instead of ILS and could be chosen according to the dimension of the problem.

Another solution would be to adapt ILS itself. For instance, integrating a clustering al-

gorithm to group decision variables that behave similarly. Therefore instead of changing

one dimension at a time, ILS move along each cluster.

Another improvement concerning FDA would be to explore other strategies to evaluate

hyperspheres. For instance, points evenly (or normally) distributed on the hypersphere

could be selected. Hypersphere selection strategies are an interesting lead to investigate

in order to improve FDA.

Regarding the parallelized versions, FDA, MA-FDA-1 and MA-FDA-2, all suffer from

the same problem in solving non-separable functions. To improve FDA, it will be impor-

tant to take into account parallelization possibilities and constraints. However, on the

distributed approaches, parallelization could go even further in running the exploration

and exploitation phases on Graphics Processing Units (GPU).

About the multi-objective versions of FDA, Mo-FDA-S only works now on 2-Objective.

This is due to the way the weights are calculated. The literature shows different tech-

niques to compute weights vectors for 3 and more objective functions. The dominance-

based version of Mo-FDA shows interesting results on both 2-Objective and 3-Objective

problems. However, a solution to improve the spread of solutions found could be stud-

ied. For instance, Mo-FDA-D uses the hypervolume as a selection indicator for the

hyperspheres. The Spread metric could also be used to select the best solutions to

search around using ILS. After improving the spread of solutions, the algorithm should

be tested on many-objective benchmarks.

Finally, different leads could be followed to continue our application on optimizing hy-

perparameters in a convolutional neural network. Rethinking the architecture search

and include additional features that are known to improve performance such as skip

connection or other types of operations. A cell-based search space could also be studied

instead of the chain-structure that we used. Deeper architectures could also be studied

with more parameters. Other leads to study could be to apply FDA to other types of

Neural Networks such as LSTM or RNN for other tasks such as text translation or voice

recognition.

Appendix A

Tables of chapter 2 - FDA

This appendix contains all tables regarding the Chapter 2

Table A.1: Functions F1-F11

Function Name Definition

F1 Shifted Sphere Function
∑D

i=1 z
2
i + f bias, z = x− o

F2 Shifted Schwefel Problem 2.21 max {|zi|, 1 ≤ i ≤ D}+ f bias, z = x− o
F3 Shifted Rosenbrock’s Function

∑D−1
i=1 (100(z2

i − zi+1)2 + (zi − 12)) + f bias, z = x− o
F4 Shifted Rastrigin’s Function

∑D
i=1(z2

i − 10 cos (2πzi) + 10) + f bias, z = x− o
F5 Shifted Griewank’s Function

∑D
i=1

z2i
4000 −

∏D
i=1 cos (zi√

i
) + 1 + f bias, z = x− o

F6 Shifted Ackley’s Function −20 exp (−0.2
√

1
D

∑D
i=1 z

2
i)− exp (1

D

∑D
i=1 cos (2πzi)) + 20 + e+ f bias, z = x− o

F7 Schwefel’s Problem 2.22
∑D

i=1 |xi|+
D∏
i=1
|xi|

F8 Schwefel’s Problem 1.2
D∑
i=1

(
∑D

j=1 xj)
2

F9 Extended f10
D−1∑
i=1

f10(xi, xi+1)) + f10(xD, x1)

f10(x, y) = (x2 + y2)0.25(sin2(50(x2 + y2)0.1) + 1)

F10 Bohachevsky
∑D−1

i=1 (x2
i + 2x2

i+1 − 0.3 cos (3πxi)− 0.4 cos (4πxi+1) + 0.7)
F11 Schaffer (x2

i + x2
i+1)0.25(sin2(50(x2

i + x2
i+1)0.1) + 1)

Table A.2: Properties of functions F1-F11

Function Range Optimum U/M Shifted Separable Can be optimized dimension by dimension

F1 [−100, 100]D −450 U X X X
F2 [−100, 100]D −450 U X
F3 [−100, 100]D 390 M X X
F4 [−5, 5]D −330 M X X X
F5 [−600, 600]D −180 M X
F6 [−32, 32]D −140 M X X X
F7 [−10, 10]D 0 U X X
F8 [−65.536, 65.536]D 0 U
F9 [−100, 100]D 0 U X
F10 [−15, 15]D 0 U
F11 [−100, 100]D 0 U

124

Appendix A. Tables of chapter 2 - FDA 125

Table A.3: Properties of functions F12-F19

Function Fns F ′ mns Range f(x∗)

F12 NS − F9 F1 0.25 [−100, 100]D 0
F13 NS − F9 F3 0.25 [−100, 100]D 0
F14 NS − F9 F4 0.25 [−5, 5]D 0
F15 NS − F10 NS − F7 0.25 [−10, 10]D 0
F16 NS − F9 F1 0.75 [−100, 100]D 0
F17 NS − F9 F3 0.75 [−100, 100]D 0
F18 NS − F9 F4 0.75 [−5, 5]D 0
F19 NS − F10 NS − F7 0.75 [−10, 10]D 0

Table A.4: Sensitivity analysis with respect to the fractal depth (k). The average
error is computed for D = 200, D = 500 and D = 1000.

D = 200 D = 500 D = 1000
k 3 4 5 6 3 4 5 6 3 4 5 6
F2 5.39E-11 6.44E-11 1.23E-10 1.31E-10 1.43E-04 1.85E-04 4.30E-04 1.23E-03 1.28E-01 1.56E-01 3.11E-01 9.28E-01
F3 1.75E+03 7.58E+02 2.51E+02 8.34E+03 8.55E+02 5.33E+02 5.82E+02 5.30E+02 1.14E+03 9.37E+02 1.13E+03 1.15E+03
F4 1.30E+02 7.49E+02 0.00E+00 1.50E+03 3.50E+02 2.02E+03 0.00E+00 3.55E+03 7.12E+02 4.28E+03 0.00E+00 7.02E+03
F5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F6 3.06E-13 3.27E-13 2.52E-13 1.90E+01 9.20E-13 7.85E-13 8.74E-13 1.90E+01 1.78E-12 1.71E-12 1.91E-12 1.92E+01
F13 1.63E+02 1.18E+02 7.07E+01 2.19E+02 4.07E+02 8.30E+02 3.74E+02 4.11E+02 2.07E+04 6.99E+02 7.69E+02 8.53E+02
F14 9.85E+01 5.49E+02 0.00E+00 1.20E+03 2.65E+02 1.43E+03 0.00E+00 2.65E+03 5.32E+02 3.13E+03 0.00E+00 5.16E+03
F17 6.06E+01 4.26E+03 9.31E+01 8.13E+01 1.46E+02 5.46E+03 3.96E+02 1.55E+02 2.33E+03 2.74E+02 1.95E+02 2.81E+02
F18 2.79E+01 1.97E+02 0.00E+00 4.71E+02 8.16E+01 4.70E+02 0.00E+00 1.00E+03 1.67E+02 9.35E+02 0.00E+00 1.81E+03

Table A.5: Complexity of methods of the FDA.

Step Asymptotic complexity

Fractal decomposition logk(D)

Quality evaluation of a hypersphere 1

ILS log2(r/αmin)

Table A.6: Experimental results obtained by FDA on functions F1 − F7

Dimension F1 F2 F3 F4 F5 F6 F7

50D 0.0000E+00 2.71E − 12 9.32E + 01 0.00E + 00 0.00E + 00 6.75E − 14 0.00E + 00
100D 0.0000E+00 8.48E − 12 5.09E + 01 0.00E + 00 0.00E + 00 1.35E − 13 0.00E + 00
200D 0.0000E+00 1.23E − 10 2.51E + 02 0.00E + 00 0.00E + 00 2.52E − 13 0.00E + 00
500D 0.0000E+00 4.30E − 04 5.82E + 02 0.00E + 00 0.00E + 00 8.74E − 13 0.00E + 00
1000D 0.0000E+00 3.11E − 01 1.13E + 03 0.00E + 00 0.00E + 00 1.91E − 12 0.00E + 00

Table A.7: Experimental results obtained by FDA on functions F8 − F14

Dimension F8 F9 F10 F11 F12 F13 F14

50D 0.0000E+00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 5.50E + 01 0.00E + 00

100D 0.0000E+00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 1.68E + 02 0.00E + 00

200D 0.0000E+00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 7.07E + 01 0.00E + 00

500D 0.0000E+00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 3.74E + 02 0.00E + 00

1000D 0.0000E+00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 7.69E + 02 0.00E + 00

Appendix A. Tables of chapter 2 - FDA 126

Table A.8: Experimental results obtained by FDA on functions F15 − F19

Dimension F15 F16 F17 F18 F19

50D 0.00E + 00 0.00E + 00 6.09E − 04 0.00E + 00 0.00E + 00

100D 0.00E + 00 0.00E + 00 6.22E + 00 0.00E + 00 0.00E + 00

200D 0.00E + 00 0.00E + 00 9.31E + 01 0.00E + 00 0.00E + 00

500D 0.00E + 00 0.00E + 00 3.96E + 02 0.00E + 00 0.00E + 00

1000D 0.00E + 00 0.00E + 00 1.95E + 02 0.00E + 00 0.00E + 00

Table A.9: Number of evaluations to find the best solution for F3, F4 and F16 for
dimensions D = 50 and D = 1000

D = 50 D = 1000

F3 250000 5000000

F4 7802 160002

F16 12802 268002

Table A.10: Number of spheres visisted for F3, F4 and F16 for dimensions D = 50
and D = 1000

D = 50 D = 1000

F3 5 5

F4 29 29

F16 23 23

Table A.11: Comparison of FDA and DIRECT algorithms for dimensions D = 50
and D = 100

Dimensions D = 50 D = 100
DIRECT FDA DIRECT FDA

F1 5.53E+01 0.00E+00 1.06E+04 0.00E+00
F2 5.53E+01 2.71E-12 7.45E+01 8.48E-12
F3 1.79E+04 9.32E+01 9.84E+07 5.09E+01
F4 1.26E+02 0.00E+00 6.64E+02 0.00E+00
F5 1.06E+00 0.00E+00 5.06E+01 0.00E+00
F6 1.59E-01 6.75E-14 1.87E-01 1.35E-13

Values in bold represent the best value found between DIRECT and FDA

Appendix A. Tables of chapter 2 - FDA 127

Table A.12: The complexity of algorithms being used in the comparison

Algorithm Complexity

DE O(D2)
CHC O(D2)
MTS-LS1 Less than or equal to O(D2)
SaDE Less than or equal to O(D3)
mDE-bES Less than or equal to O(D2)
jDElscop Less than or equal to O(D2)
MA-SSW-Chains Greater than or equal to O(D3)
FDA Less than or equal to O(logk(D))

Table A.13: Ranking using Friedman Rank sum of all algorithms at dimensions
D = 50, D = 100, D = 200, D = 500 and D = 1000.

(Values in parenthesis represent the algorithm’s rank for the given dimension relative
to the others)

Ranks for dimensions: D = 50 D = 100 D = 200 D = 500 D = 1000

MA-SSW-Chains 3.92 (4) 3.74 (4) 3.97 (4) 4.68 (4) 4.84 (5)
jDElscop 3.00 (2) 2.82 (2) 2.79 (3) 2.61 (3) 2.55 (2)
CHC 6.84 (7) 7.05 (8) 7.24 (8) 7.53 (8) 7.47 (8)
mDE-bES 3.32 (3) 3.03 (3) 2.55 (2) 2.47 (2) 2.58 (3)
DE 4.63 (6) 4.82 (5) 5.50 (6) 5.58 (6) 5.97 (6)
MTS-LS1 4.58 (5) 5.29 (6) 5.13 (5) 4.87 (5) 4.39 (4)
SaDE 6.89 (8) 6.89 (7) 6.45 (7) 6.00 (7) 6.08 (7)
FDA 2.82 (1) 2.37 (1) 2.37 (1) 2.26 (1) 2.11 (1)

Table A.14: Raw and adjusted (using the Holm procedure) p-values from Wilcoxon
test. a p-value >0.05, failing to show statistical difference with significan level α =

0.05.

FDA vs. D = 50 D = 100 D = 200
Raw Adjusted Raw Adjusted Raw Adjusted

MA.SSW.Chains 1.62E-02 4.87E-02 2.63E-03 7.90E-03 8.19E-04 2.46E-03
jDElscop 6.03E-01a 6.03E-01a 1.07E-01a 2.14E-01a 1.23E-01a 2.46E-01a

CHC 4.10E-07 2.87E-06 1.25E-07 8.72E-07 1.26E-07 8.82E-07
mDE.bES 2.56E-01a 5.12E-01a 2.16E-01a 2.16E-01a 5.64E-01a 5.64E-01a

DE 4.45E-03 2.22E-02 6.70E-06 3.35E-05 7.48E-06 3.74E-05
MTS.LS1 7.02E-03 2.81E-02 3.18E-05 1.27E-04 5.27E-05 2.11E-04
SaDE 4.62E-07 2.87E-06 1.64E-07 9.81E-07 3.17E-07 1.90E-06
a p-value >0.05, failing to show statistical difference with significan level α = 0.05.

Appendix A. Tables of chapter 2 - FDA 128

Table A.15: Raw and adjusted (using the Holm procedure) p-values from Wilcoxon
test

FDA vs. D = 500 D = 1000
Raw Adjusted Raw Adjusted

MA.SSW.Chains 4.88E-05 1.95E-04 1.23E-06 4.90E-06
jDElscop 1.22E-01a 2.44E-01a 8.18E-02a 1.64E-01a

CHC 7.98E-08 5.58E-07 8.54E-08 5.98E-07
mDE.bES 4.93E-01a 4.93E-01a 2.48E-01a 2.48E-01a

DE 3.59E-06 1.79E-05 3.30E-07 1.65E-06
MTS.LS1 3.90E-04 1.17E-03 4.97E-04 1.49E-03
SaDE 4.23E-07 2.54E-06 1.68E-07 1.01E-06
a p-value >0.05, failing to show statistical difference with significan level α = 0.05.

Table A.16: Number of times global optimum is reached.
(Values in parenthesis represent the algorithm’s rank relative to the others among all

dimensions)

Dimensions D = 50 D = 100 D = 200 D = 500 D = 1000 Average Rank
MA-SSW-Chains 9 8 6 3 2 5.6 (4)
jDElscop 12 10 9 8 7 9.2 (3)
CHC 0 0 0 0 0 0 (8)
mDE-bES 9 9 11 9 9 9.4 (2)
DE 7 4 2 1 1 3 (6)
MTS-LS1 7 4 4 2 4 4.2 (5)
SaDE 1 1 1 1 1 1 (7)
FDA 14 14 14 14 14 14 (1)

Table A.17: Ranking using Friedman Rank sum with other algorithms at dimension
D = 50.

Values in parenthesis represent the algorithm’s rank for the given dimension relative to
the others

FDA vs. D=50 Rank

MOS-SOCO2011 2.578947368 (3)
MOS-CEC2013 4.421052632 (5)
MOS-CEC2012 5.236842105 (6)
IACOR-Hybrid 2.236842105 (1)
2S-Ensemble 4.157894737 (4)
FDA 2.368421053 (2)

Table A.18: Raw and adjusted (using the Holm procedure) p-values from Wilcoxon
test with other metheuristics

a p-value >0.05, failing to show statistical difference with significan level α = 0.05.

FDA vs. D = 50
Raw Adjusted

MOS-SOCO2011 2.54E-01a 5.09E-01a

MOS-CEC2013 2.12E-05 8.46E-05
MOS-CEC2012 4.58E-07 2.29E-06
IACOR-Hybrid 9.16E-01a 9.16E-01a

2S-Ensemble 5.14E-05 1.54E-04

Appendix A. Tables of chapter 2 - FDA 129

Table A.19: Average error on 50D functions.

MA-SSW-Chains jDElscop CHC mDE-bES DE MTS-LS1 SaDE FDA

F1 0.00E + 00 0.00E + 00 1.67E − 11 0.00E + 00 0.00E + 00 0.00E + 00 2.68E + 01 0.00E + 00
F2 7.61E − 02 3.15E − 02 6.19E + 01 1.52E + 01 8.84E − 11 8.84E − 14 1.21E + 02 2.71E − 12
F3 4.79E + 01 2.28E + 01 1.25E + 06 4.76E − 05 1.63E + 02 1.63E + 02 7.46E + 04 9.32E + 01
F4 1.19E − 01 0.00E + 00 7.43E + 01 1.77E + 01 0.00E + 00 0.00E + 00 1.07E + 01 0.00E + 00
F5 0.00E + 00 0.00E + 00 1.67E − 03 0.00E + 00 7.68E − 03 7.68E − 03 1.87E − 01 0.00E + 00
F6 4.89E − 14 9.55E − 14 6.15E − 07 3.97E − 14 0.00E + 00 0.00E + 00 4.63E − 02 6.75E − 14
F7 0.00E + 00 0.00E + 00 2.66E − 09 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
F8 3.06E − 01 9.97E − 03 2.24E + 02 1.64E − 09 9.56E − 12 9.65E − 12 6.92E + 05 0.00E + 00
F9 2.94E + 02 0.00E + 00 3.10E + 02 0.00E + 00 1.03E + 02 1.03E + 02 3.00E − 02 0.00E + 00
F10 0.00E + 00 0.00E + 00 7.30E + 00 0.00E + 00 0.00E + 00 0.00E + 00 2.94E − 02 0.00E + 00
F11 4.49E − 03 0.00E + 00 2.16E + 00 1.15E − 08 1.04E + 02 1.04E + 02 8.35E − 02 0.00E + 00
F12 0.00E + 00 0.00E + 00 9.57E − 01 0.00E + 00 1.34E + 01 1.34E + 01 4.80E + 01 0.00E + 00
F13 3.02E + 01 1.36E + 01 2.08E + 06 2.50E − 01 2.94E + 01 2.94E + 01 3.42E + 09 5.50E + 01
F14 0.00E + 00 0.00E + 00 6.17E + 01 9.60E + 00 5.52E + 01 5.52E + 01 4.22E + 03 0.00E + 00
F15 0.00E + 00 0.00E + 00 3.98E − 01 0.00E + 00 0.00E + 00 0.00E + 00 8.50E − 03 0.00E + 00
F16 4.06E − 03 0.00E + 00 2.95E − 09 0.00E + 00 4.06E + 01 4.06E + 01 1.36E + 01 0.00E + 00
F17 2.60E + 01 7.43E − 03 2.26E + 04 2.42E − 01 2.17E + 02 2.17E + 02 2.36E + 05 6.09E − 04
F18 0.00E + 00 2.41E − 14 1.58E + 01 5.65E − 05 5.65E + 01 5.65E + 01 2.72E + 01 0.00E + 00
F19 0.00E + 00 0.00E + 00 3.59E + 02 0.00E + 00 0.00E + 00 0.00E + 00 1.15E − 01 0.00E + 00

Table A.20: Average error on 100D functions.

MA-SSW-Chains jDElscop CHC mDE-bES DE MTS-LS1 SaDE FDA

F1 0.00E + 00 0.00E + 00 3.56E − 11 0.00E + 00 3.79E + 00 1.09E − 12 3.13E + 01 0.00E + 00
F2 7.01E + 00 1.21E + 00 8.58E + 01 4.00E + 01 7.58E + 01 4.66E − 10 1.26E + 02 8.48E − 12
F3 1.38E + 02 6.13E + 01 4.19E + 06 4.90E − 01 1.27E + 02 2.32E + 02 1.11E + 05 5.09E + 01
F4 1.19E − 01 0.00E + 00 2.19E + 02 1.87E + 01 2.85E + 00 1.05E − 12 1.58E + 01 0.00E + 00
F5 0.00E + 00 0.00E + 00 3.83E − 03 0.00E + 00 3.05E − 01 6.70E − 03 3.53E − 01 0.00E + 00
F6 6.03E − 14 2.00E − 13 4.10E − 07 1.44E − 13 4.34E − 01 1.20E − 12 8.32E − 02 1.35E − 13
F7 0.00E + 00 0.00E + 00 1.40E − 02 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
F8 3.48E + 01 5.57E + 00 1.69E + 03 2.32E − 03 4.74E + 02 1.43E − 03 2.83E + 05 0.00E + 00
F9 5.63E + 02 7.18E − 09 5.86E + 02 0.00E + 00 3.71E − 03 2.20E + 02 3.00E − 02 0.00E + 00
F10 0.00E + 00 0.00E + 00 3.30E + 01 0.00E + 00 0.00E + 00 0.00E + 00 4.73E − 02 0.00E + 00
F11 1.09E − 01 8.17E − 09 7.32E + 01 0.00E + 00 8.58E − 04 2.10E + 02 3.05E − 01 0.00E + 00
F12 3.28E − 03 0.00E + 00 1.03E + 01 5.36E − 04 2.71E + 00 3.91E + 01 3.79E + 01 0.00E + 00
F13 8.35E + 01 5.11E + 01 2.70E + 06 8.50E + 00 5.87E + 01 1.75E + 02 3.42E + 09 1.68E + 02
F14 0.00E + 00 0.00E + 00 1.66E + 02 1.16E + 01 2.21E + 00 2.04E + 02 3.92E + 03 0.00E + 00
F15 0.00E + 00 0.00E + 00 8.13E + 00 0.00E + 00 0.00E + 00 0.00E + 00 3.99E − 02 0.00E + 00
F16 1.61E − 02 0.00E + 00 2.23E + 01 0.00E + 00 3.52E + 00 1.04E + 02 1.96E + 01 0.00E + 00
F17 9.92E + 01 3.21E − 01 1.47E + 05 6.65E − 03 1.58E + 01 4.17E + 02 2.34E + 05 6.22E + 00
F18 0.00E + 00 6.33E − 14 7.00E + 01 4.46E − 01 8.76E − 01 1.22E + 02 3.05E + 01 0.00E + 00
F19 0.00E + 00 0.00E + 00 5.45E + 02 0.00E + 00 0.00E + 00 0.00E + 00 2.71E − 01 0.00E + 00

Appendix A. Tables of chapter 2 - FDA 130

Table A.21: Average error on 200D functions.

MA-SSW-Chains jDElscop CHC mDE-bES DE MTS-LS1 SaDE FDA

F1 0.00E + 00 0.00E + 00 8.34E − 01 0.00E + 00 8.55E + 00 2.29E + 00 2.03E + 01 0.00E + 00
F2 3.36E + 01 7.54E + 00 1.03E + 02 4.15E + 01 1.05E + 02 4.54E − 09 1.03E + 02 1.23E − 10
F3 2.50E + 02 1.40E + 02 2.01E + 07 1.35E + 02 3.32E + 05 1.69E + 02 4.82E + 04 2.51E + 02
F4 4.43E + 00 0.00E + 00 5.40E + 02 9.27E − 13 6.98E + 00 2.34E − 12 6.25E + 00 0.00E + 00
F5 0.00E + 00 0.00E + 00 8.76E − 03 0.00E + 00 4.05E − 01 5.42E − 03 6.43E − 02 0.00E + 00
F6 1.19E − 13 4.52E − 13 1.23E + 00 0.00E + 00 7.14E − 01 2.38E − 12 2.73E − 02 2.52E − 13
F7 0.00E + 00 0.00E + 00 2.59E − 01 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
F8 7.23E + 02 2.52E + 02 9.38E + 03 8.71E − 01 5.76E + 03 1.42E + 01 4.47E + 05 0.00E + 00
F9 1.17E + 03 4.30E − 08 1.19E + 03 0.00E + 00 8.79E − 03 4.27E + 02 3.00E − 02 0.00E + 00
F10 0.00E + 00 0.00E + 00 7.13E + 01 0.00E + 00 4.19E − 02 0.00E + 00 1.59E − 02 0.00E + 00
F11 3.50E − 01 9.58E − 09 3.85E + 02 0.00E + 00 5.07E − 03 4.28E + 02 4.89E − 03 0.00E + 00
F12 1.75E − 02 0.00E + 00 7.44E + 01 0.00E + 00 3.61E + 00 8.42E + 01 4.63E + 01 0.00E + 00
F13 1.68E + 02 1.10E + 02 5.75E + 06 9.45E + 01 1.49E + 02 2.53E + 02 3.16E + 09 7.07E + 01
F14 9.76E − 01 4.11E − 16 4.29E + 02 1.20E + 01 4.75E + 00 3.98E + 02 4.09E + 03 0.00E + 00
F15 0.00E + 00 0.00E + 00 2.14E + 01 0.00E + 00 0.00E + 00 0.00E + 00 5.38E − 03 0.00E + 00
F16 6.02E − 02 0.00E + 00 1.60E + 02 0.00E + 00 3.70E + 00 1.97E + 02 9.49E + 00 0.00E + 00
F17 7.55E + 01 2.39E + 01 1.75E + 05 8.39E − 02 2.23E + 01 6.07E + 02 2.36E + 05 9.31E + 01
F18 4.29E − 04 2.04E − 13 2.12E + 02 8.93E − 11 2.37E + 00 2.34E + 02 1.69E + 01 0.00E + 00
F19 0.00E + 00 0.00E + 00 2.06E + 03 0.00E + 00 4.19E − 02 0.00E + 00 1.00E − 01 0.00E + 00

Table A.22: Average error on 500D functions.

MA-SSW-Chains jDElscop CHC mDE-bES DE MTS-LS1 SaDE FDA

F1 0.00E + 00 0.00E + 00 2.84E − 12 3.92E − 13 2.46E + 01 5.77E − 12 1.34E + 01 0.00E + 00
F2 7.86E + 01 3.06E + 01 1.29E + 02 4.56E + 01 1.44E + 02 5.34E − 06 9.23E + 01 4.30E − 04
F3 6.07E + 02 4.06E + 02 1.14E + 06 4.16E + 02 1.12E + 05 2.20E + 02 2.62E + 04 5.82E + 02
F4 1.78E + 02 1.59E − 01 1.91E + 03 1.91E − 11 1.63E + 01 5.62E − 12 1.31E + 00 0.00E + 00
F5 0.00E + 00 0.00E + 00 6.98E − 03 1.83E − 13 4.73E − 01 4.24E − 03 7.48E − 03 0.00E + 00
F6 2.63E − 13 1.18E − 12 5.16E + 00 3.56E − 14 1.06E + 00 6.18E − 12 4.63E − 01 8.74E − 13
F7 4.69E − 14 0.00E + 00 1.27E − 01 0.00E + 00 0.00E + 00 1.46E − 12 0.00E + 00 0.00E + 00
F8 1.32E + 04 5.66E + 03 7.22E + 04 5.48E + 02 6.70E + 04 6.16E + 03 3.21E + 05 0.00E + 00
F9 2.53E + 03 6.10E − 08 3.00E + 03 0.00E + 00 1.12E − 02 1.00E + 03 3.00E − 02 0.00E + 00
F10 2.80E − 01 0.00E + 00 1.86E + 02 0.00E + 00 2.93E − 01 0.00E + 00 8.41E − 03 0.00E + 00
F11 4.21E + 01 4.40E − 08 1.81E + 03 0.00E + 00 2.43E − 01 1.00E + 03 2.22E − 03 0.00E + 00
F12 2.55E + 01 0.00E + 00 4.48E + 02 0.00E + 00 1.16E + 01 2.47E + 02 4.61E + 01 0.00E + 00
F13 4.00E + 02 3.14E + 02 3.22E + 07 3.23E + 02 4.02E + 02 5.05E + 02 2.97E + 09 3.74E + 02
F14 5.65E + 01 8.00E − 02 1.46E + 03 1.68E + 01 1.16E + 01 1.10E + 03 3.91E + 03 0.00E + 00
F15 5.53E + 00 0.00E + 00 6.01E + 01 0.00E + 00 4.19E − 02 1.08E − 12 2.84E − 03 0.00E + 00
F16 1.08E − 01 0.00E + 00 9.55E + 02 0.00E + 00 1.32E + 01 4.99E + 02 5.82E + 00 0.00E + 00
F17 1.38E + 02 7.65E + 01 8.40E + 05 6.65E + 01 6.94E + 01 7.98E + 02 2.38E + 05 3.96E + 02
F18 2.41E − 03 1.11E − 12 7.32E + 02 0.00E + 00 3.87E + 00 5.95E + 02 9.43E + 00 0.00E + 00
F19 0.00E + 00 0.00E + 00 1.76E + 03 0.00E + 00 8.39E − 02 0.00E + 00 1.00E − 01 0.00E + 00

Appendix A. Tables of chapter 2 - FDA 131

Table A.23: Average error on 1000D functions.

MA-SSW-Chains jDElscop CHC mDE-bES DE MTS-LS1 SaDE FDA

F1 0.00E + 00 0.00E + 00 1.36E − 11 8.24E − 13 3.71E + 01 1.15E − 11 3.49E + 01 0.00E + 00
F2 1.39E + 02 6.14E + 01 1.44E + 02 5.97E + 01 1.63E + 02 2.25E − 02 1.43E + 02 3.11E − 01
F3 1.22E + 03 8.48E + 02 8.75E + 03 9.00E + 02 1.59E + 05 2.10E + 02 1.62E + 05 1.13E + 03
F4 1.58E + 03 1.99E − 01 4.76E + 03 4.03E + 01 3.47E + 01 1.15E − 11 3.21E + 01 0.00E + 00
F5 5.92E − 04 0.00E + 00 7.02E − 03 0.00E + 00 7.36E − 01 3.55E − 03 6.33E − 01 0.00E + 00
F6 1.46E − 09 2.67E − 12 1.38E + 01 1.28E − 12 8.70E − 01 1.24E − 11 4.28E − 01 1.91E − 12
F7 6.23E − 13 0.00E + 00 3.52E − 01 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
F8 7.49E + 04 3.21E + 04 3.11E + 05 7.98E + 03 3.15E + 05 1.23E + 05 3.08E + 05 0.00E + 00
F9 5.99E + 03 4.40E − 03 6.11E + 03 0.00E + 00 6.26E − 02 1.99E + 03 3.00E − 02 0.00E + 00
F10 2.09E − 05 0.00E + 00 3.83E + 02 0.00E + 00 1.67E − 01 0.00E + 00 1.47E − 01 0.00E + 00
F11 5.27E + 01 8.58E − 04 4.82E + 03 0.00E + 00 4.42E − 02 1.99E + 03 4.56E − 01 0.00E + 00
F12 9.48E − 02 0.00E + 00 1.05E + 03 0.00E + 00 2.58E + 01 5.02E + 02 3.43E + 01 0.00E + 00
F13 1.02E + 03 6.57E + 02 6.66E + 07 6.34E + 02 8.24E + 04 8.87E + 02 3.27E + 09 7.69E + 02
F14 7.33E + 02 3.98E − 02 3.62E + 03 2.45E + 01 2.39E + 01 2.23E + 03 3.71E + 03 0.00E + 00
F15 1.16E − 13 0.00E + 00 8.37E + 01 0.00E + 00 2.11E − 01 0.00E + 00 1.11E − 01 0.00E + 00
F16 2.19E + 00 8.04E − 01 2.32E + 03 0.00E + 00 1.83E + 01 1.00E + 03 2.37E + 01 0.00E + 00
F17 3.26E + 02 1.72E + 02 2.04E + 07 1.88E + 02 1.76E + 05 1.56E + 03 1.62E + 05 1.95E + 02
F18 2.58E + 01 1.65E − 01 1.72E + 03 2.49E − 01 7.55E + 00 1.21E + 03 3.54E + 01 0.00E + 00
F19 0.00E + 00 0.00E + 00 4.20E + 03 0.00E + 00 2.51E − 01 0.00E + 00 9.32E + 02 0.00E + 00

Table A.24: Average error on 50D functions for other methaeuristics

MOS-SOCO2011 MOS-CEC2013 MOS-CEC2012 IACOR-Hybrid 2S-Ensemble FDA

F1 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
F2 5.88E − 01 1.10E + 02 1.03E + 02 0.00E + 00 4.31E + 01 2.71E − 12
F3 7.09E + 01 7.39E + 00 9.38E + 02 0.00E + 00 1.34E + 03 9.32E + 01
F4 0.00E + 00 0.00E + 00 1.90E + 02 0.00E + 00 8.58E − 01 0.00E + 00
F5 0.00E + 00 0.00E + 00 1.18E − 03 0.00E + 00 3.00E − 03 0.00E + 00
F6 0.00E + 00 0.00E + 00 1.03E + 00 0.00E + 00 0.00E + 00 6.75E − 14
F7 0.00E + 00 2.56E − 12 1.03E − 13 0.00E + 00 Inf. 0.00E + 00
F8 1.66E + 05 5.98E + 03 1.09E + 03 0.00E + 00 1.93E + 05 0.00E + 00
F9 0.00E + 00 2.51E + 03 5.95E + 03 0.00E + 00 2.68E + 00 0.00E + 00
F10 0.00E + 00 1.58E + 00 1.79E + 02 0.00E + 00 0.00E + 00 0.00E + 00
F11 0.00E + 00 2.54E + 03 5.88E + 03 0.00E + 00 3.23E + 00 0.00E + 00
F12 0.00E + 00 9.99E + 02 1.12E + 03 0.00E + 00 0.00E + 00 0.00E + 00
F13 1.69E + 02 1.23E + 03 2.03E + 03 8.77E − 01 1.25E + 03 5.50E + 01
F14 0.00E + 00 3.37E + 03 4.32E + 03 2.90E − 02 4.40E − 02 0.00E + 00
F15 0.00E + 00 1.93E − 12 2.04E + 01 0.00E + 00 Inf. 0.00E + 00
F16 0.00E + 00 8.02E + 03 2.33E + 03 1.12E − 03 0.00E + 00 0.00E + 00
F17 6.71E + 01 3.55E + 11 3.71E + 03 1.84E − 06 3.39E + 01 6.09E − 04
F18 0.00E + 00 2.03E + 03 2.29E + 03 9.20E − 01 5.51E − 01 0.00E + 00
F19 0.00E + 00 2.05E + 03 5.25E + 01 0.00E + 00 7.99E − 17 0.00E + 00

Table A.25: Number of times global optimum is reached for other metaheuristics.
Values in parenthesis represent the algorithm’s rank relative to the others among all

dimensions

Dimensions D = 50 Rank

MOS-SOCO2011 14 (1)
MOS-CEC2013 4 (5)
MOS-CEC2012 1 (6)
IACOR-Hybrid 14 (1)
2S-Ensemble 5 (4)
FDA 14 (1)

Appendix B

Tables of chapter 3 - PFDA

This appendix contains all tables regarding the Chapter 3

Table B.1: Results error of the 19 functions of SOCO 2011 for FDA and PFDA.

Function Original FDA NB Thread 4 NB Thread 8 NB Thread 16 NB Thread 32 NB Thread 64

F1 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
F2 3.11E − 01 3.67E + 01 5.43E + 01 6.43E + 01 7.19E + 01 8.51E + 01
F3 1.13E + 03 1.41E + 03 2.41E + 03 3.24E + 03 4.46E + 03 4.63E + 03
F4 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
F5 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
F6 1.91E − 12 1.92E − 12 1.92E − 12 1.89E − 12 1.92E − 12 1.89E − 12
F7 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
F8 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
F9 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
F10 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
F11 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
F12 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 1.45E − 14
F13 7.69E + 02 9.78E + 02 1.05E + 03 1.08E + 03 1.18E + 03 1.55E + 03
F14 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 1.45E − 07
F15 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00
F16 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 1.26E − 07
F17 1.95E + 02 3.76E + 02 3.92E + 02 4.30E + 02 4.52E + 02 6.88E + 02
F18 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 5.89E − 08
F19 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 00 0.00E + 0

Table B.2: Computation time required to solve the 19 functions of the benchmark
used. Times are in seconds

Time in (s) Original Extanded MA-FDA-S1; l=3

N = 2 60 30
N = 5 160 30
N = 25 740 31
N = 50 1520 31

132

Appendix B. Tables of chapter 3 - PFDA 133

Table B.3: Experimental results obtained by the Original FDA, the extended FDA
and MA-FDA-S1 for each level l from 1 to 5 and N = 2

N = 2 Original Original Extanded MA-FDA-S1; l=1 MA-FDA-S1; l=2 MA-FDA-S1; l=3 MA-FDA-S1; l=4

50 Shifted Sphere 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Schwefel Problem 2.71E-12 2.71E-12 2.71E-12 2.71E-12 2.71E-12 2.71E-12
50 Shifted Rosenbrock 9.32E+01 1.19E-02 9.32E+01 9.32E+01 8.47E+01 9.32E+01
50 Shifted Rastrigin 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Shifted Griewank 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Shifted Ackley 6.75E-14 6.39E-14 6.75E-14 6.75E-14 6.75E-14 6.75E-14
50 Schwefel Problem 2 22 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Schwefel Problem 1 2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 ExtendedF10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Bohachevsky 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Schaffer 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF9 F1 025 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF9 F3 025 5.50E+01 5.43E+01 5.50E+01 5.50E+01 5.50E+01 5.50E+01
50 compF9 F4 025 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF10 F7 025 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF9 F1 075 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF9 F3 075 6.09E-04 2.10E-06 5.94E-04 5.69E-04 6.09E-04 6.09E-04
50 compF9 F4 075 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF10 F7 075 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Table B.4: Experimental results obtained by the Original FDA, the extended FDA
and MA-FDA-S1 for each level l from 1 to 5 and N = 5

N = 5 Original Original Extanded MA-FDA-S1; l=1 MA-FDA-S1; l=2 MA-FDA-S1; l=3 MA-FDA-S1; l=4

50 Shifted Sphere 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Schwefel Problem 2.71E-12 2.71E-12 2.71E-12 2.71E-12 2.71E-12 2.71E-12
50 Shifted Rosenbrock 9.32E+01 4.03E-10 9.32E+01 8.94E+01 8.41E+01 8.93E+01
50 Shifted Rastrigin 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Shifted Griewank 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Shifted Ackley 6.75E-14 6.39E-14 6.75E-14 6.75E-14 6.75E-14 6.75E-14
50 Schwefel Problem 2 22 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Schwefel Problem 1 2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 ExtendedF10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Bohachevsky 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Schaffer 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF9 F1 025 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF9 F3 025 5.50E+01 5.22E+01 5.50E+01 5.50E+01 5.50E+01 5.50E+01
50 compF9 F4 025 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF10 F7 025 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF9 F1 075 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF9 F3 075 6.09E-04 4.42E-14 5.94E-04 5.69E-04 5.76E-04 6.09E-04
50 compF9 F4 075 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF10 F7 075 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Table B.5: Experimental results obtained by the Original FDA, the extended FDA
and MA-FDA-S1 for each level l from 1 to 5 and N = 25

N = 25 Original Original Extanded MA-FDA-S1; l=1 MA-FDA-S1; l=2 MA-FDA-S1; l=3 MA-FDA-S1; l=4

50 Shifted Sphere 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Schwefel Problem 2.71E-12 1.09E-12 2.71E-12 2.71E-12 2.71E-12 2.71E-12
50 Shifted Rosenbrock 9.32E+01 0.00E+00 3.94E+01 3.93E+01 3.92E+01 3.93E+01
50 Shifted Rastrigin 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Shifted Griewank 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Shifted Ackley 6.75E-14 6.39E-14 6.75E-14 6.75E-14 6.75E-14 6.75E-14
50 Schwefel Problem 2 22 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Schwefel Problem 1 2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 ExtendedF10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Bohachevsky 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Schaffer 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF9 F1 025 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF9 F3 025 5.50E+01 3.83E+01 3.80E+00 2.39E+01 1.59E+00 2.53E+01
50 compF9 F4 025 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF10 F7 025 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF9 F1 075 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF9 F3 075 6.09E-04 1.85E-23 5.70E-04 5.69E-04 3.01E-05 6.09E-04
50 compF9 F4 075 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF10 F7 075 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Appendix B. Tables of chapter 3 - PFDA 134

Table B.6: Experimental results obtained by the Original FDA, the extended FDA
and MA-FDA-S1 for each level l from 1 to 5 and N = 50

N = 50 Original Original Extanded MA-FDA-S1; l=1 MA-FDA-S1; l=2 MA-FDA-S1; l=3 MA-FDA-S1; l=4

50 Shifted Sphere 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Schwefel Problem 2.71E-12 1.09E-12 1.09E-12 1.09E-12 1.09E-12 1.09E-12
50 Shifted Rosenbrock 9.32E+01 0.00E+00 3.91E+01 3.93E+01 2.54E-01 1.53E-01
50 Shifted Rastrigin 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Shifted Griewank 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Shifted Ackley 6.75E-14 6.39E-14 6.39E-14 6.39E-14 6.39E-14 6.39E-14
50 Schwefel Problem 2 22 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Schwefel Problem 1 2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 ExtendedF10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Bohachevsky 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Schaffer 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF9 F1 025 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF9 F3 025 5.50E+01 2.12E+01 3.80E+00 2.39E+01 1.59E+00 2.53E+01
50 compF9 F4 025 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF10 F7 025 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF9 F1 075 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF9 F3 075 6.09E-04 0.00E+00 5.70E-04 5.28E-04 3.26E-08 6.09E-04
50 compF9 F4 075 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF10 F7 075 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Table B.7: MA-FDA-S1: Ranking using Friedman Rank sum of all variations at level
l = 1, l = 2, l = 3, l = 4 and D = 50. (Values in parenthesis represent the algorithm’s

rank relative to the others)

Original Original Extanded MA-FDA-S1; l=1 MA-FDA-S1; l=2 MA-FDA-S1; l=3 MA-FDA-S1; l=4

N = 2 1.5 (6) 1 (1) 1.47 (5) 1.37 (3) 1.32 (2) 1.42 (4)

N = 5 1.74 (6) 1 (1) 1.53 (4) 1.47 (3) 1.26 (2) 1.53 (4)

N = 25 1.84 (6) 1.21 (1) 1.53 (4) 1.47 (3) 1.21 (1) 1.58 (5)

N = 50 2.26 (6) 1.11 (1) 1.37 (3) 1.47 (4) 1.16 (2) 1.47 (4)

Table B.8: Experimental results obtained by the Original FDA and MA-FDA-S2 for
each level l from 1 to 5 and N = 2

Original MA-FDA-S2; l=1 MA-FDA-S2; l=2 MA-FDA-S2; l=3 MA-FDA-S2; l=4

50 Shifted Sphere 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Schwefel Problem 2.71E-12 1.42E-11 2.71E-12 2.71E-12 2.71E-12
50 Shifted Rosenbrock 9.32E+01 9.84E+01 9.74E+01 8.93E+01 9.79E+01
50 Shifted Rastrigin 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Shifted Griewank 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Shifted Ackley 6.75E-14 6.75E-14 6.75E-14 6.75E-14 6.75E-14
50 Schwefel Problem 2 22 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Schwefel Problem 1 2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 ExtendedF10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Bohachevsky 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Schaffer 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF9 F1 025 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF9 F3 025 5.50E+01 5.50E+01 5.50E+01 5.50E+01 5.50E+01
50 compF9 F4 025 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF10 F7 025 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF9 F1 075 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF9 F3 075 6.09E-04 6.12E-04 5.86E-04 6.45E-04 3.99E+00
50 compF9 F4 075 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF10 F7 075 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Appendix B. Tables of chapter 3 - PFDA 135

Table B.9: Experimental results obtained by the Original FDA and MA-FDA-S2 for
each level l from 1 to 5 and N = 5

Original MA-FDA-S2; l=1 MA-FDA-S2; l=2 MA-FDA-S2; l=3 MA-FDA-S2; l=4

50 Shifted Sphere 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Schwefel Problem 2.71E-12 2.71E-12 2.71E-12 2.71E-12 2.71E-12
50 Shifted Rosenbrock 9.32E+01 1.38E+02 1.32E+02 1.22E+02 1.31E+02
50 Shifted Rastrigin 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Shifted Griewank 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Shifted Ackley 6.75E-14 6.75E-14 6.75E-14 6.75E-14 6.75E-14
50 Schwefel Problem 2 22 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Schwefel Problem 1 2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 ExtendedF10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Bohachevsky 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Schaffer 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF9 F1 025 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF9 F3 025 5.50E+01 5.50E+01 5.51E+01 5.50E+01 5.50E+01
50 compF9 F4 025 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF10 F7 025 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF9 F1 075 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF9 F3 075 6.09E-04 7.91E-04 6.61E-04 8.57E-04 3.99E+00
50 compF9 F4 075 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF10 F7 075 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Table B.10: Experimental results obtained by the Original FDA and MA-FDA-S2 for
each level l from 1 to 5 and N = 25

Original MA-FDA-S2; l=1 MA-FDA-S2; l=2 MA-FDA-S2; l=3 MA-FDA-S2; l=4

50 Shifted Sphere 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Schwefel Problem 2.71E-12 2.71E-12 2.71E-12 2.71E-12 2.71E-12
50 Shifted Rosenbrock 9.32E+01 2.62E+02 2.52E+02 2.57E+02 2.66E+02
50 Shifted Rastrigin 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Shifted Griewank 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Shifted Ackley 6.75E-14 6.75E-14 6.75E-14 6.75E-14 7.46E-14
50 Schwefel Problem 2 22 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Schwefel Problem 1 2 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 ExtendedF10 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Bohachevsky 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 Schaffer 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF9 F1 025 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF9 F3 025 5.50E+01 5.51E+01 5.51E+01 5.51E+01 5.51E+01
50 compF9 F4 025 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF10 F7 025 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF9 F1 075 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF9 F3 075 6.09E-04 9.76E+00 1.24E-02 1.32E-02 4.00E+00
50 compF9 F4 075 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
50 compF10 F7 075 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Table B.11: MA-FDA-S2: Ranking using Friedman Rank sum of all variations at
level l = 1, l = 2, l = 3, l = 4 and D = 50.

(Values in parenthesis represent the algorithm’s rank relative to the others

Original MA-FDA-S2; l = 1 MA-FDA-S2; l = 2 MA-FDA-S2; l = 3 MA-FDA-S2; l = 4

N = 2 1.21 (2) 1.74 (5) 1.26 (3) 1.16 (1) 1.42 (4)

N = 5 1.11 (1) 1.47 (5) 1.42 (4) 1.21 (2) 1.37 (3)

N = 25 1 (1) 1.47 (4) 1.26 (2) 1.26 (2) 1.79 (5)

Appendix C

Tables of chapter 4 - Mo-FDA

This appendix contains all tables regarding the Chapter 4

Table C.1: An example of computation time required to solve a function with Mo-
FDA-S with different number of physical nodes N for 100 instances of FDA, hence 100

points in the Pareto Front. Times are in seconds

Number of Nodes Time (in seconds)

Sequential Version 9.5
N = 2 8
N = 10 2
N = 25 0.8
N = 50 0.6

Table C.2: Definitions of the functions used from the ZDT Benchmark

ZDT1 ZDT2
g (x) = 1 + 9 (

∑n
i=2 xi) / (n− 1)

F1 (x) = x1

F2 (x) = g(x)
[
1−

√
x1/g(x)

]
Subject : to : x ∈ [0, 1] .

g (x) = 1 + 9 (
∑n

i=2 xi) / (n− 1)
F1 (x) = x1

F2 (x) = g(x)
[
1− (x1/g(x))2

]
Subject : to : x ∈ [0, 1] .

ZDT3 ZDT4

g (x) = 1 + 9 (
∑n

i=2 xi) / (n− 1)
F1 (x) = x1

F2 (x) = g(x)
[
1−

√
x1/g(x)− x1/g(x) sin(10πx1)

]
Subject : to : x ∈ [0, 1] .

g (x) = 91 +
∑n

i=2

[
x2
i − 10 cos (4πxi)

]
F1 (x) = x1

F2 (x) = g(x)
[
1−

√
x1/g(x)

]
Subject : to : x1 ∈ [0, 1],
xi ∈ [−5, 5] i = 2, · · · , 10.

ZDT6

g (x) = 1 + 9 [(
∑n

i=2 xi) / (n− 1)]0.25

F1 (x) = 1− exp(−4x1) sin6(6π x1)
F2 (x) = g(x)

[
1− (f1(x)/g(x))2

]
x ∈ [0, 1] .

136

Appendix C. Tables of chapter 4 - Mo-FDA 137

Table C.3: Definitions of the functions used from the FTLZ Benchmark

DTLZ1 DTLZ2

f1(~x) = 1
2x1(1 + g(~x))

f2(~x) = 1
2 (1− x1) (1 + g(~x))

g(~x) = 100
[
|~x|+

∑
xi∈~x (x1 − 0.5)2 − cos (20 · π (xi − 0.5))

]
0 ≤ xi ≤ 1, i = 1, . . . , n

f1(~x) = (1 + g(~x)) cos
(
x1
π

2

)
f2(~x) = (1 + g(~x)) sin

(
x1
π

2

)
g(~x) =

∑
xi∈~x

(xi − 0.5)2

0 ≤ xi ≤ 1, i = 1, . . . , n

DTLZ3 DLTZ4

f1(~x) = (1 + g(~x)) cos
(
x1

π
2

)
f2(~x) = (1 + g(~x)) sin

(
x1

π
2

)
g(~x) = 100 ·

[
|~x|+

∑
xi∈~x (xi − 0.5)2 − cos (20π (xi − 0.5))

]
0 ≤ xi ≤ 1, i = 1, . . . , n

f1(~x) = (1 + g(~x)) cos
(
xα1

π
2

)
f2(~x) = (1 + g(~x)) sin

(
xα1

π
2

)
g(~x) =

∑
xi∈~x (xi − 0.5)2

α = 100
0 ≤ xi ≤ 1, i = 1, . . . , n

Table C.4: Hypervolumes of the two studied scalarization methods on 4 different
dimensions

Weighted Sum Tcheybycheff

D = 2 0.195509455 0.33616884
D = 5 0.042554689 0.31657224
D = 10 0.0425543400451 0.29477198
D = 30 0.136252213 0.31514439

Table C.5: Hypervolumes, ranks and computing time for the different studied Case
from 1 to 9.

Hypervolume Rank Computing Time (in s)

Case 1 0.308078317 8 0.58
Case 2 0.321532937 6 1.24
Case 3 0.326594895 5 1.06
Case 4 0.321305318 7 1.81
Case 5 0.337433922 1 4.95
Case 6 0.332881847 2 1.63
Case 7 0.329591937 3 13.89
Case 8 0.329558587 4 1.82

Table C.6: Hypervolumes, ranks and computing time for the different studied Cases
from 9 to 14.

Hypervolume Computing Time (in s)

Case 9 0.285520947 0.84
Case 10 0.31573835 9.47
Case 11 0.208325898 1.34
Case 12 0.3289566 22.68
Case 13 0.155887101 6.46
Case 14 0.326810135011 15.13

Appendix C. Tables of chapter 4 - Mo-FDA 138

Table C.7: Results for the different metrics for the function ZDT1. Values in bold
represent the best value for each metric

Mo-FDA-S Mo-FDA-D NSGA2 NSGA3 MOEAD GWASGFA CDG

HV 6.62E-01 6.63E-01 6.60E-01 6.24E-01 6.61E-01 6.58E-01 6.60E-01
GD 4.28E-05 1.86E-05 1.99E-04 2.20E-04 9.73E-05 2.24E-04 2.18E-03
IGD 1.98E-04 1.19E-04 1.86E-04 1.21E-03 1.60E-04 2.72E-04 2.05E-04
S 2.75E-01 1.15E+00 3.79E-01 4.23E-01 2.82E-01 8.77E-01 7.28E-01

Table C.8: Results for the different metrics for the function ZDT2. Values in bold
represent the best value for each metric

Mo-FDA-S Mo-FDA-D NSGA2 NSGA3 MOEAD GWASGFA CDG

HV 3.29E-01 3.30E-01 3.27E-01 2.95E-01 3.28E-01 3.24E-01 3.27E-01
GD 4.87E-05 1.91E-05 1.17E-04 1.11E-04 4.50E-05 5.77E-05 1.87E-03
IGD 1.40E-04 1.39E-04 1.95E-04 1.14E-03 1.41E-04 2.90E-04 4.62E-04
S 1.39E-01 1.10E+00 3.87E-01 3.94E-01 1.35E-01 2.61E-01 7.56E-01

Table C.9: Results for the different metrics for the function ZDT3. Values in bold
represent the best value for each metric

Mo-FDA-S Mo-FDA-D NSGA2 NSGA3 MOEAD GWASGFA CDG

HV 7.94E-01 7.97E-01 7.96E-01 7.77E-01 7.94E-01 7.92E-01 7.95E-01
GD 2.72E-03 9.36E-05 1.94E-04 6.43E-04 1.54E-04 1.73E-04 7.98E-03
IGD 9.16E-03 2.78E-04 2.11E-04 1.94E-03 4.70E-04 6.76E-04 4.77E-04
S 8.61E-01 1.11E+00 5.57E-01 6.35E-01 8.74E-01 1.13E+00 1.21E+00

Table C.10: Results for the different metrics for the function ZDT4. Values in bold
represent the best value for each metric

Mo-FDA-S Mo-FDA-D NSGA2 NSGA3 MOEAD GWASGFA CDG

HV 7.94E-01 7.97E-01 7.96E-01 7.77E-01 7.94E-01 7.92E-01 7.95E-01
GD 2.72E-03 9.36E-05 1.94E-04 6.43E-04 1.54E-04 1.73E-04 7.98E-03
IGD 9.16E-03 2.78E-04 2.11E-04 1.94E-03 4.70E-04 6.76E-04 4.77E-04
S 8.61E-01 1.11E+00 5.57E-01 6.35E-01 8.74E-01 1.13E+00 1.21E+00

Table C.11: Results for the different metrics for the function ZDT6. Values in bold
represent the best value for each metric

Mo-FDA-S Mo-FDA-D NSGA2 NSGA3 MOEAD GWASGFA CDG

HV 3.19E-01 3.18E-01 3.20E-01 2.98E-01 3.22E-01 3.19E-01 3.20E-01
GD 3.46E-05 1.46E-05 5.72E-05 1.45E-04 8.01E-05 6.00E-05 3.56E-05
IGD 3.24E-04 3.72E-04 1.84E-04 9.36E-04 1.17E-04 2.24E-04 1.95E-04
S 3.01E-01 1.46E+00 6.44E-01 4.80E-01 1.34E-01 9.49E-01 4.82E-01

Table C.12: Results for the different metrics for the function DTLZ1 with 2 Objectives
function. Values in bold represent the best value for each metric

Mo-FDA-S Mo-FDA-D NSGA2 NSGA3 MOEAD GWASGFA CDG

HV 8.71E-01 8.71E-01 8.72E-01 0.00E+00 8.72E-01 8.71E-01 0.00E+00
GD 2.06E-05 7.41E-06 1.97E-04 5.61E-01 2.76E-04 2.08E-04 9.27E+00
IGD 6.57E-05 5.28E-05 1.13E-04 5.91E-02 1.08E-04 1.38E-04 2.52E+00
S 1.07E-02 1.11E+00 4.49E-01 8.32E-01 1.57E-02 6.77E-02 8.96E-01

Appendix C. Tables of chapter 4 - Mo-FDA 139

Table C.13: Results for the different metrics for the function DTLZ2 with 2 Objectives
function. Values in bold represent the best value for each metric

Mo-FDA-S Mo-FDA-D NSGA2 NSGA3 MOEAD GWASGFA CDG

HV 2.10E-01 2.13E-01 2.09E-01 1.81E-01 2.10E-01 2.06E-01 2.08E-01
GD 3.46E-04 4.23E-05 2.64E-04 4.95E-04 3.50E-04 2.59E-04 9.36E-05
IGD 1.72E-04 8.53E-05 1.92E-04 1.42E-03 1.73E-04 3.30E-04 3.33E-04
S 1.84E-01 1.11E+00 3.87E-01 4.08E-01 1.81E-01 2.74E-01 6.88E-01

Table C.14: Results for the different metrics for the function DTLZ3 with 2 Objectives
function. Values in bold represent the best value for each metric

Mo-FDA-S Mo-FDA-D NSGA2 NSGA3 MOEAD GWASGFA CDG

HV 2.10E-01 2.13E-01 2.05E-01 0.00E+00 2.01E-01 2.02E-01 0.00E+00
GD 2.44E-04 3.18E-05 3.55E-04 1.06E+00 6.70E-04 4.07E-04 1.25E+01
IGD 1.55E-04 1.93E-04 2.24E-04 1.33E-01 2.51E-04 3.39E-04 3.95E+00
S 1.84E-01 1.11E+00 4.08E-01 8.81E-01 1.93E-01 2.16E-01 8.71E-01

Table C.15: Results for the different metrics for the function DTLZ4 with 2 Objectives
function. Values in bold represent the best value for each metric

Mo-FDA-S Mo-FDA-D NSGA2 NSGA3 MOEAD GWASGFA CDG

HV 2.10E-01 1.70E-01 2.09E-01 9.14E-03 2.10E-01 2.08E-01 2.06E-01
GD 2.44E-04 2.26E-04 1.83E-04 1.45E-05 2.35E-04 1.11E-04 1.71E-04
IGD 1.56E-04 2.51E-03 2.05E-04 3.01E-02 1.56E-04 7.62E-04 3.16E-04
S 1.83E-01 1.56E+00 4.12E-01 9.69E-01 1.84E-01 6.77E-01 3.38E-01

Table C.16: Ranks for each metric and each algorithm the function ZDT1.

Mo-FDA-S Mo-FDA-D NSGA2 NSGA3 MOEAD GWASGFA CDG

HV 2 1 4 7 3 6 5
GD 2 1 4 5 3 6 7
IGD 4 1 3 7 2 6 5
S 1 7 3 4 2 6 5

Table C.17: Ranks for each metric and each algorithm the function ZDT2.

Mo-FDA-S Mo-FDA-D NSGA2 NSGA3 MOEAD GWASGFA CDG

HV 2 1 4 7 3 6 5
GD 3 1 6 5 2 4 7
IGD 2 1 4 7 3 5 6
S 2 7 4 5 1 3 6

Table C.18: Ranks for each metric and each algorithm the function ZDT3.

Mo-FDA-S Mo-FDA-D NSGA2 NSGA3 MOEAD GWASGFA CDG

HV 4 1 2 7 5 6 3
GD 6 1 4 5 2 3 7
IGD 7 2 1 6 3 5 4
S 3 5 1 2 4 6 7

Appendix C. Tables of chapter 4 - Mo-FDA 140

Table C.19: Ranks for each metric and each algorithm the function ZDT4.

Mo-FDA-S Mo-FDA-D NSGA2 NSGA3 MOEAD GWASGFA CDG

HV 2 1 3 6 5 4 7
GD 2 1 3 6 5 4 7
IGD 4 1 2 6 3 5 7
S 1 7 3 4 2 5 6

Table C.20: Ranks for each metric and each algorithm the function ZDT6.

Mo-FDA-S Mo-FDA-D NSGA2 NSGA3 MOEAD GWASGFA CDG

HV 4 6 2 7 1 5 3
GD 2 1 4 7 6 5 3
IGD 5 6 2 7 1 4 3
S 2 7 5 3 1 6 4

Table C.21: Ranks for each metric and each algorithm the function DTLZ1 for 2
Objectives.

Mo-FDA-S Mo-FDA-D NSGA2 NSGA3 MOEAD GWASGFA CDG

HV 5 4 1 6 2 3 6
GD 2 1 3 6 5 4 7
IGD 2 1 4 6 3 5 7
S 1 7 4 5 2 3 6

Table C.22: Ranks for each metric and each algorithm the function DTLZ2 for 2
Objectives.

Mo-FDA-S Mo-FDA-D NSGA2 NSGA3 MOEAD GWASGFA CDG

HV 2 1 4 7 3 6 5
GD 5 1 4 7 6 3 2
IGD 2 1 4 7 3 5 6
S 2 7 4 5 1 3 6

Table C.23: Ranks for each metric and each algorithm the function DTLZ3 for 2
Objectives.

Mo-FDA-S Mo-FDA-D NSGA2 NSGA3 MOEAD GWASGFA CDG

HV 2 1 3 6 5 4 6
GD 2 1 3 6 5 4 7
IGD 1 2 3 6 4 5 7
S 1 7 4 6 2 3 5

Table C.24: Ranks for each metric and each algorithm the function DTLZ4 for 2
Objectives.

Mo-FDA-S Mo-FDA-D NSGA2 NSGA3 MOEAD GWASGFA CDG

HV 1 6 3 7 2 4 5
GD 7 5 4 1 6 2 3
IGD 1 6 3 7 2 5 4
S 1 7 4 6 2 5 3

Appendix C. Tables of chapter 4 - Mo-FDA 141

Table C.25: Average ranks for each metric and each algorithm over the 9 functions
used using the Friendman Rank Rum.

Mo-FDA-S Mo-FDA-D NSGA2 NSGA3 MOEAD GWASGFA CDG

HV 2.67 2.44 2.89 6.67 3.22 4.89 5.00
GD 3.44 1.44 3.89 5.33 4.44 3.89 5.56
IGD 3.11 2.33 2.89 6.56 2.67 5.00 5.44
S 1.56 6.78 3.56 4.44 1.89 4.44 5.33

Table C.26: Final ranks based on the Friendman Rank Sum values for the 9 used
functions.

Mo-FDA-S Mo-FDA-D NSGA2 NSGA3 MOEAD GWASGFA CDG

HV 2 1 3 7 4 5 6
GD 2 1 3 6 5 3 7
IGD 4 1 3 7 2 5 6
S 1 6 3 4 2 4 6

Final Average Rank: 2.25 2.25 3 6 3.25 4.25 6.25

Table C.27: Results for the different metrics for the function DTLZ1 with 3 Objec-
tives. Values in bold represent the best value for each metric

Mo-FDA-D NSGA2 NSGA3 GWASGFA CDG

HV 9.46E-01 9.47E-01 9.72E-01 9.67E-01 5.75E-01
GD 6.16E-05 4.55E-03 7.18E-04 6.47E-04 2.66E+01
IGD 2.48E-04 5.94E-04 2.39E-04 4.00E-04 2.49E-03
S 1.20E+00 8.44E-01 5.94E-01 7.86E-01 6.48E-01

Table C.28: Results for the different metrics for the function DTLZ2 with 3 Objec-
tives. Values in bold represent the best value for each metric

Mo-FDA-D NSGA2 NSGA3 GWASGFA CDG

HV 3.97E-01 3.74E-01 4.14E-01 3.78E-01 3.77E-01
GD 1.54E-04 1.39E-03 7.62E-04 1.04E-03 3.79E-02
IGD 6.52E-04 7.77E-04 5.95E-04 1.04E-03 5.95E-04
S 1.28E+00 6.94E-01 5.95E-01 7.47E-01 6.33E-01

Table C.29: Results for the different metrics for the function DTLZ3 with 3 Objec-
tives. Values in bold represent the best value for each metric.

Mo-FDA-D NSGA2 NSGA3 GWASGFA CDG

HV 3.97E-01 3.59E-01 3.92E-01 3.54E-01 0.00E+00
GD 2.93E-04 1.93E-03 1.84E-03 1.66E-03 6.71E+01
IGD 1.07E-03 1.30E-03 9.94E-04 1.71E-03 3.20E+00
S 1.29E+00 7.31E-01 5.89E-01 8.29E-01 4.92E-01

Appendix C. Tables of chapter 4 - Mo-FDA 142

Table C.30: Results for the different metrics for the function DTLZ4 with 3 Objec-
tives. Values in bold represent the best value for each metric

Mo-FDA-D NSGA2 NSGA3 GWASGFA CDG

HV 2.08E-01 3.60E-01 2.56E-01 3.61E-01 3.20E-01
GD 2.04E-04 4.82E-03 4.28E-03 8.14E-03 5.10E-02
IGD 2.91E-03 1.66E-03 4.34E-03 1.93E-03 1.92E-03
S 1.71E+00 6.94E-01 8.12E-01 7.65E-01 6.42E-01

Table C.31: Ranks for each metric and each algorithm the function DTLZ1 for 3
Objectives.

Mo-FDA-D NSGA2 NSGA3 GWASGFA CDG

HV 4 3 1 2 5
GD 1 4 3 2 5
IGD 2 4 1 3 5
S 5 4 1 3 2

Table C.32: Ranks for each metric and each algorithm the function DTLZ2 for 3
Objectives.

Mo-FDA-D NSGA2 NSGA3 GWASGFA CDG

HV 2 5 1 3 4
GD 1 4 2 3 5
IGD 3 4 1 5 2
S 5 3 1 4 2

Table C.33: Ranks for each metric and each algorithm the function DTLZ3 for 3
Objectives.

Mo-FDA-D NSGA2 NSGA3 GWASGFA CDG

HV 1 3 2 4 5
GD 1 4 3 2 5
IGD 2 3 1 4 5
S 5 3 2 4 1

Table C.34: Ranks for each metric and each algorithm the function DTLZ4 for 3
Objectives.

Mo-FDA-D NSGA2 NSGA3 GWASGFA CDG

HV 5 2 4 1 3
GD 1 3 2 4 5
IGD 4 1 5 3 2
S 5 2 4 3 1

Table C.35: Average ranks for each metric and each algorithm over the 4 DTLZ
3-Objective functions used using the Friendman Rank Rum.

Mo-FDA-D NSGA2 NSGA3 GWASGFA CDG

HV 3 3.25 2 2.5 4.25
GD 1 3.75 2.5 2.75 5
IGD 2.75 3 2 3.75 3.5
S 5 3 2 3.5 1.5

Appendix C. Tables of chapter 4 - Mo-FDA 143

Table C.36: Final ranks based on the Friendman Rank Sum values over the 4 DTLZ
3-Objective functions.

Mo-FDA-D NSGA2 NSGA3 GWASGFA CDG

HV 3 4 1 2 5
GD 1 4 2 3 5
IGD 2 3 1 5 4
S 5 3 2 4 1
Final Average Rank: 2.75 3.5 1.5 3.5 3.75

Appendix D

Results on CIFAR-100

CIFAR-100

As a final performance test, we decided to apply our best results found to the similar but

significantly more complex benchmark, CIFAR-100. It is built similarly to CIFAR-10

with a training set of 50000 images and a test set of 10000 images. However, those

images are classified into 100 different classes in opposition to the 10 classes of CIFAR-

10. Classes are grouped into 20 superclasses. Each image has a ”fine” label (the class

to which it belongs) and a ”coarse” label (the superclass to which it belongs). Table

D.1 shows the superclasses and classes and Figure D.1 illustrates images with both their

Superclass and class (the format shown is Superclass-class).

On this data set, using our best architecture and parameters, we reached a validation

accuracy of 67.65% which is, proportionally to the size of the architecture, close to some

state-of-the-art neural networks.

144

Appendix D. Results on CIFAR-100 145

Table D.1: Labels for CIFAR-100 benchmark divided into Superclasses and Classes

Superclass Classes

aquatic mammals beaver, dolphin, otter, seal, whale
fish aquarium fish, flatfish, ray, shark, trout
flowers orchids, poppies, roses, sunflowers, tulips
food containers bottles, bowls, cans, cups, plates
fruit and vegetables apples, mushrooms, oranges, pears, sweet peppers
household electrical devices clock, computer keyboard, lamp, telephone, television
household furniture bed, chair, couch, table, wardrobe
insects bee, beetle, butterfly, caterpillar, cockroach
large carnivores bear, leopard, lion, tiger, wolf
large man-made outdoor things bridge, castle, house, road, skyscraper
large natural outdoor scenes cloud, forest, mountain, plain, sea
large omnivores and herbivores camel, cattle, chimpanzee, elephant, kangaroo
medium-sized mammals fox, porcupine, possum, raccoon, skunk
non-insect invertebrates crab, lobster, snail, spider, worm
people baby, boy, girl, man, woman
reptiles crocodile, dinosaur, lizard, snake, turtle
small mammals hamster, mouse, rabbit, shrew, squirrel
trees maple, oak, palm, pine, willow
vehicles 1 bicycle, bus, motorcycle, pickup truck, train
vehicles 2 lawn-mower, rocket, streetcar, tank, tractor

Appendix D. Results on CIFAR-100 146

Figure D.1: Examples of images in CIFAR-100 with their Superclass-Class

Bibliography

[Abadi et al., 2016] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,

Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Lev-

enberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit

Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin

Wicke, Yuan Yu, & Xiaoqiang Zheng. Tensorflow: A system for

large-scale machine learning. In 12th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 16), pp.

265–283, 2016. URL https://www.usenix.org/system/files/

conference/osdi16/osdi16-abadi.pdf.

[A.Bastürk & E.Günay,

2009]
A.Bastürk & E.Günay. Efficient edge detection in digital im-

ages using a cellular neural network optimized by differential evo-

lution algorithm. Expert System with Applications, 36(2): 2645–

2650, 2009.

[Aimin Zhou et al.,

2006]
Aimin Zhou, Yaochu Jin, Qingfu Zhang, B. Sendhoff, &

E. Tsang. Combining model-based and genetics-based offspring

generation for multi-objective optimization using a convergence

criterion. In 2006 IEEE International Conference on Evolution-

ary Computation, pp. 892–899, July 2006. doi: 10.1109/CEC.

2006.1688406.

[Akhmetova et al.,

2017]
Dana Akhmetova, Roman Iakymchuk, Orjan Ekeberg, & Er-

win Laure. Performance study of multithreaded mpi and openmp

tasking in a large scientific code. In 2017 IEEE Interna-

tional Parallel and Distributed Processing Symposium Workshops

(IPDPSW), pp. 756–765, May 2017.

147

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf

Bibliography 148

[Al-Dujaili et al.,

2016a]
Abdullah Al-Dujaili, S. Suresh, & N. Sundararajan. Mso: A

framework for bound-constrained black-box global optimization

algorithms. J. of Global Optimization, 66(4): 811–845, Dec 2016.

[Al-Dujaili et al.,

2016b]
Abdullah Al-Dujaili, Sundaram Suresh, & Narasimhan Sun-

dararajan. MSO: a framework for bound-constrained black-box

global optimization algorithms. Journal of Global Optimization,

66(4): 811–845, December 2016. doi: 10.1007/s10898-016-0441-5.

[Alba & Luque, 2006] Enrique Alba & Gabriel Luque. Evaluation of parallel meta-

heuristics. 2006.

[Alefeld & Mayer, 2000]Götz Alefeld & Günter Mayer. Interval analysis: theory and

applications. Journal of Computational and Applied Mathemat-

ics, 121(1): 421 – 464, 2000. ISSN 0377-0427. doi: https:

//doi.org/10.1016/S0377-0427(00)00342-3.

[Ali et al., 2015] Mostafa Z Ali, Noor H Awad, & Ponnuthurai N Suganthan.

Multi-population differential evolution with balanced ensemble

of mutation strategies for large-scale global optimization. Applied

Soft Computing, 33: 304–327, 2015.

[Apruzzese et al., 2018] Giovanni Apruzzese, Michele Colajanni, Luca Ferretti,

Alessandro Guido, & Mirco Marchetti. On the effectiveness of

machine and deep learning for cyber security. In 2018 10th In-

ternational Conference on Cyber Conflict (CyCon), pp. 371–390,

May 2018. doi: 10.23919/CYCON.2018.8405026.

[Araya & Reyes, 2015] Ignacio Araya & Victor Reyes. Interval branch-and-bound al-

gorithms for optimization and constraint satisfaction: a survey

and prospects. Journal of Global Optimization, 65, 12 2015. doi:

10.1007/s10898-015-0390-4.

[Arnautovic et al.,

2013]
Maida Arnautovic, Maida Curic, Emina Dolamic, & Novica

Nosovic. Parallelization of the ant colony optimization for

the shortest path problem using openmp and cuda. In 2013

36th International Convention on Information and Communica-

tion Technology, Electronics and Microelectronics (MIPRO), pp.

1273–1277, May 2013.

Bibliography 149

[Ashlock & Schonfeld,

2007]
Daniel Ashlock & Justin Schonfeld. A fractal representation

for real optimization. In 2007 IEEE Congress on Evolutionary

Computation, pp. 87–94, sep 2007.

[Baker et al., 2017] Bowen Baker, Otkrist Gupta, Nikhil Naik, & Ramesh Raskar.

Designing neural network architectures using reinforcement

learning. In 5th International Conference on Learning Repre-

sentations, ICLR 2017, pp. 1–9, April 2017.

[Baocheng et al., 2012] Wan Baocheng, Wang Tiane, & Wang Zenghui. The imple-

mentation of parallel ant colony optimization algorithm based on

matlab. In 2012 Third Global Congress on Intelligent Systems,

pp. 27–29, Nov 2012.

[Bertsekas, 1995] Dimitri Bertsekas. Nonlinear programming. Athena Scientific,

48, 01 1995. doi: 10.1057/palgrave.jors.2600425.

[Bertsimas & Tsitsiklis,

1998]
Dimitris Bertsimas & John Tsitsiklis. Introduction to Linear

Optimization. 01 1998.

[Blum et al., 2008] Christian Blum, Carlos Cotta, Antonio J. Fernández, José E.

Gallardo, & Monaldo Mastrolilli. Hybridizations of Metaheuris-

tics With Branch & Bound Derivates, pp. 85–116. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-3-540-78295-7.

doi: 10.1007/978-3-540-78295-7 4. URL https://doi.org/10.

1007/978-3-540-78295-7_4.

[Boyd & Vandenberghe,

2004]
Stephen Boyd & Lieven Vandenberghe. Convex Optimization.

Cambridge University Press, New York, NY, USA, 2004. ISBN

0521833787.

[Brest & Maučec, 2011] Janez Brest & Mirjam Sepesy Maučec. Self-adaptive differ-

ential evolution algorithm using population size reduction and

three strategies. Soft Computing, 15(11): 2157–2174, nov 2011.

[Brunetti et al., 2018] Antonio Brunetti, Domenico Buongiorno, Gianpaolo Francesco

Trotta, & Vitoantonio Bevilacqua. Computer vision and

deep learning techniques for pedestrian detection and track-

ing: A survey. Neurocomputing, 300: 17 – 33, 2018. ISSN

0925-2312. doi: https://doi.org/10.1016/j.neucom.2018.01.092.

URL http://www.sciencedirect.com/science/article/pii/

S092523121830290X.

https://doi.org/10.1007/978-3-540-78295-7_4
https://doi.org/10.1007/978-3-540-78295-7_4
http://www.sciencedirect.com/science/article/pii/S092523121830290X
http://www.sciencedirect.com/science/article/pii/S092523121830290X

Bibliography 150

[Bäck et al., 2000] Thomas Bäck, T. Fogel, & D. Michalewicz. Evolutionary Com-

putation 1: Basic Algorithms and Operators. Institute of Physics

Publishing, Bristol, 2000.

[Cahon et al., 2004] S. Cahon, El-Ghazali Talbi, & Nouredine Melab. Paradiseo:

A framework for the reusable design of parallel and distributed

metaheuristics. Journal of Heuristics, 10(3): 357–380, May 2004.

ISSN 1572-9397. doi: 10.1023/B:HEUR.0000026900.92269.ec.

URL https://doi.org/10.1023/B:HEUR.0000026900.92269.

ec.

[Cai et al., 2018] Xinye Cai, Zhiwei Mei, Zhun Fan, & Qingfu Zhang. A con-

strained decomposition approach with grids for evolutionary mul-

tiobjective optimization. IEEE Transactions on Evolutionary

Computation, 22(4): 564–577, Aug 2018.

[Camero et al., 2019] Andrés Camero, Jamal Toutouh, & Enrique Alba. A spe-

cialized evolutionary strategy using mean absolute error random

sampling to design recurrent neural networks, 2019.

[Chang, 2006] Wei-Der Chang. Parameter identification of rosslerś chaotic

system by an evolutionary algorithm. Chaos, Solitons and Frac-

tals, 29(5): 1047–1053, 2006.

[Chelouah & Siarry,

1999]
Rachid Chelouah & Patrick Siarry. Enhanced Continuous Tabu

Search: An Algorithm for Optimizing Multiminima Functions,

pp. 49–61. Springer US, Boston, MA, 1999. ISBN 978-1-4615-

5775-3. doi: 10.1007/978-1-4615-5775-3 4. URL https://doi.

org/10.1007/978-1-4615-5775-3_4.

[Chelouah & Siarry,

2000]
Rachid Chelouah & Patrick Siarry. A continuous genetic algo-

rithm designed for the global optimization of multimodal func-

tions. Journal of Heuristics, 6(2): 191–213, Jun 2000. ISSN

1572-9397. doi: 10.1023/A:1009626110229. URL https://doi.

org/10.1023/A:1009626110229.

[Clautiaux et al., 2004] François Clautiaux, Aziz Moukrim, Stéphane Nègre, & Jacques

Carlier. Heuristic and metaheuristic methods for computing

graph treewidth. RAIRO - Operations Research, 38(1): 13–26,

2004. doi: 10.1051/ro:2004011.

https://doi.org/10.1023/B:HEUR.0000026900.92269.ec
https://doi.org/10.1023/B:HEUR.0000026900.92269.ec
https://doi.org/10.1007/978-1-4615-5775-3_4
https://doi.org/10.1007/978-1-4615-5775-3_4
https://doi.org/10.1023/A:1009626110229
https://doi.org/10.1023/A:1009626110229

Bibliography 151

[Cung et al., 2001] Van-Dat Cung, Simone Martins, Caio Ribeiro, & Catherine

Roucairol. Strategies for the parallel implementation of meta-

heuristics. 01 2001. doi: 10.1007/978-1-4615-1507-4 13.

[Darwin, 1859] Charles Darwin. On the Origin of Species by Means of Natural

Selection. Murray, London, 1859. or the Preservation of Favored

Races in the Struggle for Life.

[Darwish et al., 2019] Ashraf Darwish, Aboul Ella Hassanien, & Swagatam Das. A

survey of swarm and evolutionary computing approaches for deep

learning. Artificial Intelligence Review, Jun 2019.

[Das et al., 2016] Swagatam Das, Sankha Subhra Mullick, & P.N. Suganthan.

Recent advances in differential evolution – an updated survey.

Swarm and Evolutionary Computation, 27: 1 – 30, 2016. ISSN

2210-6502. doi: https://doi.org/10.1016/j.swevo.2016.01.004.

[Deb et al., 2002a] Kalyan Deb, L. Thiele, Marco Laumanns, & Eckart Zit-

zler. Scalable Multi-Objective Optimization Test Problems. In

Congress on Evolutionary Computation (CEC 2002), pp. 825–

830. IEEE Press, 2002.

[Deb & Jain, 2014] Kalyanmoy Deb & Himanshu Jain. An evolutionary many-

objective optimization algorithm using reference-point-based

nondominated sorting approach, part i: Solving problems with

box constraints. IEEE Transactions on Evolutionary Com-

putation, 18(4): 577–601, Aug 2014. ISSN 1089-778X. doi:

10.1109/TEVC.2013.2281535.

[Deb et al., 2002b] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, & T. Meyari-

van. A fast and elitist multiobjective genetic algorithm: Nsga-ii.

IEEE Transactions on Evolutionary Computation, 6(2): 182–197,

April 2002.

[Deb et al., 2007] Kalyanmoy Deb, Udaya Bhaskara Rao N., & S. Karthik. Dy-

namic multi-objective optimization and decision-making using

modified nsga-ii: A case study on hydro-thermal power schedul-

ing. In Shigeru Obayashi, Kalyanmoy Deb, Carlo Poloni, To-

moyuki Hiroyasu, & Tadahiko Murata, editors, Evolutionary

Multi-Criterion Optimization, pp. 803–817, Berlin, Heidelberg,

2007. Springer Berlin Heidelberg. ISBN 978-3-540-70928-2.

Bibliography 152

[Delisle et al., 2009] Pierre Delisle, Marc Gravel, & Michael Krajecki. Multi-colony

parallel ant colony optimization on smp and multi-core comput-

ers. In 2009 World Congress on Nature Biologically Inspired

Computing (NaBIC), pp. 318–323, Dec 2009.

[Demirhan et al., 1999] Melek Demirhan, Linet Özdamar, Levent Helvacğlu, &

Şevket Ilker Birbil. Fractop: A geometric partitioning meta-

heuristic for global optimization. J. of Global Optimization, 14

(4): 415–436, June 1999.

[Demirhan & Özdamar,

2003]
Melek Basak Demirhan & Linet Özdamar. A Fuzzy Adaptive

Partitioning Algorithm (FAPA) for Global Optimization, pp. 37–

47. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003. ISBN

978-3-540-36461-0. doi: 10.1007/978-3-540-36461-0 3. URL

https://doi.org/10.1007/978-3-540-36461-0_3.

[Deng et al., 2009] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, &

Fei Fei Li. Imagenet: A large-scale hierarchical image database.

In 2009 IEEE Conference on Computer Vision and Pattern

Recognition, pp. 248–255, June 2009. doi: 10.1109/CVPR.2009.

5206848.

[Di Domenico et al.,

2017]
Daniel Di Domenico, Joao Lima, & Andrea Charao. Openmp

with parallel loops or asynchronous tasks: a performance eval-

uation focusing the nqueens benchmark. IEEE Latin America

Transactions, 15(9): 1793–1800, 2017.

[Domhan et al., 2015] Tobias Domhan, Jost Tobias Springenberg, & Frank Hutter.

Speeding up automatic hyperparameter optimization of deep

neural networks by extrapolation of learning curves. In Pro-

ceedings of the 24th International Conference on Artificial In-

telligence, IJCAI’15, pp. 3460–3468. AAAI Press, 2015. ISBN

978-1-57735-738-4. URL http://dl.acm.org/citation.cfm?

id=2832581.2832731.

[Durillo & Nebro, 2011]Juan J. Durillo & Antonio J. Nebro. jmetal: A java frame-

work for multi-objective optimization. Advances in Engineering

Software, 42(10): 760 – 771, 2011. ISSN 0965-9978.

[Elsken et al., 2018] Thomas Elsken, Jan Hendrik Metzen, & Frank Hutter. Neural

architecture search: A survey. J. Mach. Learn. Res., 20: 55:1–

55:21, 2018.

https://doi.org/10.1007/978-3-540-36461-0_3
http://dl.acm.org/citation.cfm?id=2832581.2832731
http://dl.acm.org/citation.cfm?id=2832581.2832731

Bibliography 153

[Eshelman & Schaffer,

1992]
Larry J Eshelman & J David Schaffer. Real-Coded Genetic

Algorithms and Interval-Schemata. In L Darrell Whitley, editor,

FOGA, pp. 187–202. Morgan Kaufmann, 1992. ISBN 1-55860-

263-1.

[Esteva et al., 2019] Andre Esteva, Alexandre Robicquet, Bharath Ramsundar,

Volodymyr Kuleshov, Mark DePristo, Katherine Chou, Claire

Cui, Greg Corrado, Sebastian Thrun, & Jeff Dean. A guide to

deep learning in healthcare. Nature Medicine, 25, 01 2019. doi:

10.1038/s41591-018-0316-z.

[Finkel & Kelley, 2006] Daniel Finkel & Carl Kelley. Additive scaling and the direct

algorithm. Journal of Global Optimization, 36(4): 597–608, Dec

2006. ISSN 1573-2916. doi: 10.1007/s10898-006-9029-9. URL

https://doi.org/10.1007/s10898-006-9029-9.

[Fogel et al., 1966] Lawrence Fogel, Alvin Owens, & Michael Walsh. Artificial

Intelligence through Simulated Evolution. John Wiley, 1966.

[Fong et al., 2018] Simon Fong, Suash Deb, & Xin-She Yang. How Meta-heuristic

Algorithms Contribute to Deep Learning in the Hype of Big Data

Analytics, pp. 3–25. 01 2018. ISBN 978-981-10-3372-8. doi:

10.1007/978-981-10-3373-5 1.

[Fonseca & Fleming,

1995]
Carlos M. Fonseca & Peter J. Fleming. An overview of evolu-

tionary algorithms in multiobjective optimization. Evolutionary

Computation, 3(1): 1–16, 1995.

[Gablonsky & Kelley,

2001]
Joerg Gablonsky & Carl Kelley. A locally-biased form of the

direct algorithm. Journal of Global Optimization, 21: 27–37, 01

2001. doi: 10.1023/A:1017930332101.

[Geilen & Basten, 2007]Marc Geilen & Twan Basten. A calculator for pareto points. In

2007 Design, Automation Test in Europe Conference Exhibition,

pp. 1–6, April 2007.

[Glover, 1986] Fred Glover. Future paths for integer programming and links

to artificial intelligence. Computers and Operations Research, 13

(5): 533 – 549, 1986. ISSN 0305-0548. doi: https://doi.org/10.

1016/0305-0548(86)90048-1. URL http://www.sciencedirect.

com/science/article/pii/0305054886900481. Applications of

Integer Programming.

https://doi.org/10.1007/s10898-006-9029-9
http://www.sciencedirect.com/science/article/pii/0305054886900481
http://www.sciencedirect.com/science/article/pii/0305054886900481

Bibliography 154

[Glover, 1997] Fred Glover. Tabu Search and Adaptive Memory Programming

— Advances, Applications and Challenges, pp. 1–75. Springer

US, Boston, MA, 1997. ISBN 978-1-4615-4102-8. doi: 10.

1007/978-1-4615-4102-8 1. URL https://doi.org/10.1007/

978-1-4615-4102-8_1.

[Goldberg, 1989] David E Goldberg. Genetic Algorithms in Search, Optimiza-

tion and Machine Learning. Addison-Wesley Longman Publish-

ing Co., Inc., 1st edition, 1989.

[Gong et al., 2015] Yue-Jiao Gong, Wei-Neng Chen, Zhi-Hui Zhan, Jun Zhang,

Yun Li, Qingfu Zhang, & Jing-Jing Li. Distributed evolu-

tionary algorithms and their models: A survey of the state-

of-the-art. Applied Soft Computing, 34: 286 – 300, 2015.

ISSN 1568-4946. doi: https://doi.org/10.1016/j.asoc.2015.04.

061. URL http://www.sciencedirect.com/science/article/

pii/S1568494615002987.

[Gorges-Schleuter,

1989]
Martina Gorges-Schleuter. Asparagos an asynchronous parallel

genetic optimization strategy. In Proceedings of the Third Inter-

national Conference on Genetic Algorithms, pp. 422–427, San

Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc.

ISBN 1-55860-006-3.

[Hajji et al., 2004] Oussama Hajji, S. Brisset, & Pascal Brochet. A new tabu

search method for optimization with continuous parameters.

IEEE Transactions on Magnetics, 40(2): 1184–1187, March 2004.

ISSN 0018-9464. doi: 10.1109/TMAG.2004.824909.

[Hansen & Ostermeier,

2001]
Nikolaus Hansen & Andreas Ostermeier. Completely deran-

domized self-adaptation in evolution strategies. Evol. Com-

put., 9(2): 159–195, June 2001. ISSN 1063-6560. doi: 10.

1162/106365601750190398. URL http://dx.doi.org/10.1162/

106365601750190398.

[Hansen et al., 1991] Pierre Hansen, Brigitte Jaumard, & Shi-Hui Lu. An analytical

approach to global optimization. Math. Program., 52(1-3): 227–

254, May 1991. ISSN 0025-5610. doi: 10.1007/BF01582889. URL

https://doi.org/10.1007/BF01582889.

https://doi.org/10.1007/978-1-4615-4102-8_1
https://doi.org/10.1007/978-1-4615-4102-8_1
http://www.sciencedirect.com/science/article/pii/S1568494615002987
http://www.sciencedirect.com/science/article/pii/S1568494615002987
http://dx.doi.org/10.1162/106365601750190398
http://dx.doi.org/10.1162/106365601750190398
https://doi.org/10.1007/BF01582889

Bibliography 155

[Hasançebi et al., 2010] Oguzhan Hasançebi, Serdar Carbas, & Mehmet Saka. Improv-

ing the performance of simulated annealing in large-scale struc-

tural optimization. Structural and Multidisciplinary Optimiza-

tion, 41: 189–203, 03 2010. doi: 10.1007/s00158-009-0418-9.

[He et al., 2004] J He, M. Sosonkina, Clifford Shaffer, J Tyson, L.T. Watson, &

Jason Zwolak. Hierarchical parallel scheme for global parameter

estimation in systems biology. In 18th International Parallel and

Distributed Processing Symposium, 2004. Proceedings., pp. 42–,

April 2004.

[He et al., 2015] Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun.

Delving deep into rectifiers: Surpassing human-level perfor-

mance on imagenet classification. IEEE International Confer-

ence on Computer Vision (ICCV 2015), 1502, 02 2015. doi:

10.1109/ICCV.2015.123.

[Hedar & Fouad, 2012] Abdel-Rahman Hedar & Ahmed Fouad. Tabu search with

multi-level neighborhood structures for high dimensional prob-

lems. Applied Intelligence, 37, 09 2012. doi: 10.1007/

s10489-011-0321-0.

[Helbig, 2016] Mardé Helbig. Updating the global best and archive solu-

tions of the dynamic vector-evaluated pso algorithm using ε-

dominance. In Nelishia Pillay, Andries P. Engelbrecht, Ajith

Abraham, Mathys C. du Plessis, Václav Snášel, & Azah Kami-

lah Muda, editors, Advances in Nature and Biologically Inspired

Computing, pp. 393–403, Cham, 2016. Springer International

Publishing. ISBN 978-3-319-27400-3.

[Herrera et al., 2017] Juan F. R. Herrera, José M. G. Salmerón, Eligius M. T. Hen-

drix, Rafael Asenjo, & Leocadio G. Casado. On parallel branch

and bound frameworks for global optimization. Journal of Global

Optimization, Mar 2017.

[Hinton, 2012] Geoffrey Hinton. Lecture 6a - overview of mini-batch gradient

descent, 2012.

[Holland, 1975] John H. Holland. Adaptation in Natural and Artificial Systems.

University of Michigan Press, Ann Arbor, MI, 1975. second edi-

tion, 1992.

Bibliography 156

[Hooke & Jeeves, 1961] Robert Hooke & T. A. Jeeves. ”direct search” solution of nu-

merical and statistical problems. J. ACM, 8(2): 212–229, April

1961. ISSN 0004-5411.

[Ioffe & Szegedy, 2015] Sergey Ioffe & Christian Szegedy. Batch normalization: Ac-

celerating deep network training by reducing internal covari-

ate shift. In Proceedings of the 32Nd International Confer-

ence on International Conference on Machine Learning - Vol-

ume 37, ICML’15, pp. 448–456. JMLR.org, 2015. URL http:

//dl.acm.org/citation.cfm?id=3045118.3045167.

[Ishibuchi et al., 2015] Hisao Ishibuchi, Hiroyuki Masuda, & Yusuke Nojima. A study

on performance evaluation ability of a modified inverted gener-

ational distance indicator. In Proceedings of the 2015 Annual

Conference on Genetic and Evolutionary Computation, GECCO

’15, pp. 695–702, New York, NY, USA, 2015. ACM. ISBN

978-1-4503-3472-3. doi: 10.1145/2739480.2754792. URL http:

//doi.acm.org/10.1145/2739480.2754792.

[Jaszkiewicz, 2002] Andrzej Jaszkiewicz. On the performance of multiple-objective

genetic local search on the 0/1 knapsack problem - a comparative

experiment. IEEE Transactions on Evolutionary Computation,

6(4): 402–412, Aug 2002. ISSN 1089-778X. doi: 10.1109/TEVC.

2002.802873.

[Jiang et al., 2014] Siwei Jiang, Jie Zhang, & Yew Ong. Multiobjective opti-

mization based on reputation. Information Sciences, 286: 125

– 146, 2014. ISSN 0020-0255. doi: https://doi.org/10.1016/j.ins.

2014.07.020. URL http://www.sciencedirect.com/science/

article/pii/S0020025514007208.

[Jones et al., 1993] D R Jones, C D Perttunan, & B E Stuckman. Lipshitzian

optimization without the Lipshitz coefficient. Journal of Opti-

mization Theory Applications, 79(1): 157–181, 1993.

[Kečo et al., 2016] Dino Kečo, Abdulhamit Subasi, & Jasmin Kevric. Cloud

computing-based parallel genetic algorithm for gene selection in

cancer classification. Neural Computing and Applications, 12

2016. doi: 10.1007/s00521-016-2780-z.

[Kingma & Ba, 2014] Diederik Kingma & Jimmy Ba. Adam: A method for stochastic

optimization. International Conference on Learning Representa-

tions, 12 2014.

http://dl.acm.org/citation.cfm?id=3045118.3045167
http://dl.acm.org/citation.cfm?id=3045118.3045167
http://doi.acm.org/10.1145/2739480.2754792
http://doi.acm.org/10.1145/2739480.2754792
http://www.sciencedirect.com/science/article/pii/S0020025514007208
http://www.sciencedirect.com/science/article/pii/S0020025514007208

Bibliography 157

[Kirkpatrick, 1984] Scott Kirkpatrick. Optimization by simulated annealing:

Quantitative studies. Journal of statistical physics, 34: 975–986,

1984.

[Kirkpatrick et al.,

1983]
Scott Kirkpatrick, Charles Daniel Gelatt, & Mario P. Vecchi.

Optimization by simulated annealing. Science, 220 4598: 671–80,

1983.

[Klein et al., 2016] Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig,

& Frank Hutter. Fast bayesian optimization of machine learning

hyperparameters on large datasets. 05 2016.

[Krizhevsky et al.,

2012]
Alex Krizhevsky, Ilya Sutskever, & Geoffrey E. Hinton. Im-

agenet classification with deep convolutional neural networks.

Neural Information Processing Systems, 25, 01 2012. doi: 10.

1145/3065386.

[Lakshmi et al., 2011] Dhana Lakshmi, Kannan Subramanian, K. Mahadevan, &

Baskar Subramanian. Application of modified nsga-ii algorithm

to combined economic and emission dispatch problem. Inter-

national Journal of Electrical Power & Energy Systems, 33(4):

992 – 1002, 2011. ISSN 0142-0615. doi: https://doi.org/10.

1016/j.ijepes.2011.01.014. URL http://www.sciencedirect.

com/science/article/pii/S0142061511000421.

[Lamarck, 1830] Jean Baptiste Pierre Antoine de Monet de 1744-1829 Lamarck.

Philosophie zoologique, ou Exposition des considérations relatives

à l’histoire naturelle des animaux ... Nouvelle édition. Paris : J.

B. Baillière; Londres : Même Maison; Bruxelles : Au Dépôt de la

Librairie Médical Française, 1830., 1830. URL https://search.

library.wisc.edu/catalog/999596463002121.

[Land & Doig, 1960] Ailsa Land & Alison Doig. An automatic method of solving

discrete programming problems. Econometrica, 28(3): 497–520,

1960. ISSN 00129682, 14680262. URL http://www.jstor.org/

stable/1910129.

[Lang et al., 2007] Haitao Lang, Liren Liu, & Qingguo Yang. A novel method

to design flexible uras. Journal of Optics A: Pure and Applied

Optics, 9: 502, 04 2007. doi: 10.1088/1464-4258/9/5/014.

[LaTorre et al., 2011] Antonio LaTorre, Santiago Muelas, & José-Mar\’\ia Peña. A

MOS-based dynamic memetic differential evolution algorithm for

http://www.sciencedirect.com/science/article/pii/S0142061511000421
http://www.sciencedirect.com/science/article/pii/S0142061511000421
https://search.library.wisc.edu/catalog/999596463002121
https://search.library.wisc.edu/catalog/999596463002121
http://www.jstor.org/stable/1910129
http://www.jstor.org/stable/1910129

Bibliography 158

continuous optimization: a scalability test. Soft Computing, 15

(11): 2187–2199, 2011.

[LaTorre et al., 2013] Antonio LaTorre, Santiago Muelas, & Jose-Maria Pena. Large

scale global optimization: Experimental results with MOS-based

hybrid algorithms. In 2013 IEEE Congress on Evolutionary Com-

putation, pp. 2742–2749, June 2013.

[LaTorre et al., 2014] Antonio LaTorre, Santiago Muelas, & José-Maŕıa Peña. A

comprehensive comparison of large scale global optimizers. In-

formation Sciences, 316(0): 517––549, 2014.

[Lecun et al., 1998] Yann Lecun, Leon Bottou, Y. Bengio, & Patrick Haffner.

Gradient-based learning applied to document recognition. Pro-

ceedings of the IEEE, 86(11): 2278–2324, Nov 1998. doi: 10.1109/

5.726791.

[LeCun et al., 2015] Yann LeCun, Y Bengio, & Geoffrey Hinton. Deep learning.

Nature, 521: 436–44, 05 2015. doi: 10.1038/nature14539.

[Lee et al., 2014] Loo Hay Lee, Ek Peng Chew, Yu Qian, Haobin Li, & Yue

Liu. A study on multi-objective particle swarm optimization

with weighted scalarizing functions. In Proceedings of the Win-

ter Simulation Conference 2014, pp. 3718–3729, Dec 2014. doi:

10.1109/WSC.2014.7020200.

[Li & Zhang, 2009] Hui Li & Qingfu Zhang. Multiobjective optimization problems

with complicated pareto sets, moea/d and nsga-ii. IEEE Transac-

tions on Evolutionary Computation, 13(2): 284–302, April 2009.

ISSN 1089-778X. doi: 10.1109/TEVC.2008.925798.

[Li & Talwalkar, 2019] Liam Li & Ameet Talwalkar. Random search and reproducibil-

ity for neural architecture search, 02 2019.

[Liao et al., 2011] Tianjun Liao, Marco A. Montes de Oca, Dogan Aydin, Thomas

Stützle, & Marco Dorigo. An incremental ant colony algorithm

with local search for continuous optimization. In Proceedings of

the 13th Annual Conference on Genetic and Evolutionary Com-

putation, GECCO ’11, pp. 125–132. ACM, 2011.

[Liu & He, 2012] Huibin Liu & Zhenfeng He. Parallel ant colony optimization

algorithms for time series segmentation on a multi-core proces-

sor. In 2012 4th International Conference on Intelligent Human-

Machine Systems and Cybernetics, vol. 1, pp. 340–343, Aug 2012.

Bibliography 159

[Liu & Cheng, 2014] Qunfeng Liu & Wanyou Cheng. A modified direct algorithm

with bilevel partition. Journal of Global Optimization, 60: 483–

499, 11 2014. doi: 10.1007/s10898-013-0119-1.

[Liu et al., 2015] Qunfeng Liu, Jinping Zeng, & Gang Yang. Mrdirect: a

multilevel robust direct algorithm for global optimization prob-

lems. Journal of Global Optimization, 62(2): 205–227, Jun

2015. ISSN 1573-2916. doi: 10.1007/s10898-014-0241-8. URL

https://doi.org/10.1007/s10898-014-0241-8.

[Liu et al., 2017] Qunfeng Liu, Guang Yang, Zhongzhi Zhang, & Jinping Zeng.

Improving the convergence rate of the direct global optimization

algorithm. Journal of Global Optimization, 67(4): 851–872, Apr

2017. ISSN 1573-2916. doi: 10.1007/s10898-016-0447-z. URL

https://doi.org/10.1007/s10898-016-0447-z.

[Liu & Wang, 2015] Yan Y. Liu & Shaowen Wang. A scalable parallel genetic algo-

rithm for the generalized assignment problem. Parallel Comput-

ing, 46: 98 – 119, 2015. ISSN 0167-8191. doi: https://doi.org/10.

1016/j.parco.2014.04.008. URL http://www.sciencedirect.

com/science/article/pii/S0167819114000519.

[Loukil et al., 2007] Täıcir Loukil, Jacques Teghem, & Philippe Fortemps. A multi-

objective production scheduling case study solved by simulated

annealing. European Journal of Operational Research, 179(3): 709

– 722, 2007. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.

2005.03.073. URL http://www.sciencedirect.com/science/

article/pii/S0377221705007319.

[Lozano et al., 2011] Manuel Lozano, Daniel Molina, & Francisco Herrera. Editorial

scalability of evolutionary algorithms and other metaheuristics

for large-scale continuous optimization problems. Soft Comput-

ing, 15(11): 2085–2087, nov 2011.

[Lu et al., 2019] Zhichao Lu, Ian Whalen, Vishnu Boddeti, Yashesh Dhebar,

Kalyanmoy Deb, Erik Goodman, & Wolfgang Banzhaf. Nsga-

net: Neural architecture search using multi-objective genetic

algorithm. In Proceedings of the Genetic and Evolutionary

Computation Conference, GECCO ’19, pp. 419–427, New York,

NY, USA, 2019. ACM. ISBN 978-1-4503-6111-8. doi: 10.

1145/3321707.3321729. URL http://doi.acm.org/10.1145/

3321707.3321729.

https://doi.org/10.1007/s10898-014-0241-8
https://doi.org/10.1007/s10898-016-0447-z
http://www.sciencedirect.com/science/article/pii/S0167819114000519
http://www.sciencedirect.com/science/article/pii/S0167819114000519
http://www.sciencedirect.com/science/article/pii/S0377221705007319
http://www.sciencedirect.com/science/article/pii/S0377221705007319
http://doi.acm.org/10.1145/3321707.3321729
http://doi.acm.org/10.1145/3321707.3321729

Bibliography 160

[Luo et al., 2019] Jia Luo, Shigeru Fujimura, Didier El Baz, & Bastien Plazolles.

Gpu based parallel genetic algorithm for solving an energy ef-

ficient dynamic flexible flow shop scheduling problem. Journal

of Parallel and Distributed Computing, 133: 244 – 257, 2019.

ISSN 0743-7315. doi: https://doi.org/10.1016/j.jpdc.2018.07.

022. URL http://www.sciencedirect.com/science/article/

pii/S0743731518305628.

[López Jaimes &

Zapotecas-Mart́ınez,

2011]

Antonio López Jaimes & Saúl Zapotecas-Mart́ınez. An intro-

duction to multiobjective optimization techniques. Optimization

in Polymer Processing, pp. 29–58, 01 2011.

[M.A. AL-Salami, 2009]Nada M.A. AL-Salami. Evolutionary algorithm definition.

American Journal of Engineering and Applied Sciences, 2, 04

2009. doi: 10.3844/ajeassp.2009.789.795.

[Metropolis et al., 1953]Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N.

Rosenbluth, Augusta H. Teller, & Edward Teller. Equation of

state calculations by fast computing machines. The Journal

of Chemical Physics, 21(6): 1087–1092, 1953. doi: 10.1063/1.

1699114. URL https://doi.org/10.1063/1.1699114.

[Miettinen et al., 2008] Kaisa Miettinen, Francisco Ruiz, & Andrzej Wierzbicki. Intro-

duction to Multiobjective Optimization: Interactive Approaches,

pp. 27–57. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[Molina et al., 2011] Daniel Molina, Manuel Lozano, Ana M Sánchez, & Francisco

Herrera. Memetic algorithms based on local search chains for

large scale continuous optimisation problems: MA-SSW-Chains.

Soft Computing, 15(11): 2201–2220, 2011.

[Moore & Bierbaum,

1979]
Ramon E. Moore & Fritz Bierbaum. Methods and Applications

of Interval Analysis (SIAM Studies in Applied and Numerical

Mathematics) (Siam Studies in Applied Mathematics, 2.). Soc

for Industrial & Applied Math, 1979. ISBN 0898711614.

[Nakib et al., 2017] Amir Nakib, Salma Ouchraa, Nadyia. Shvai, Léo Souquet, &

El-Ghazali Talbi. Deterministic metaheuristic based on fractal

decomposition for large-scale optimization. Applied Soft Com-

puting, 61(Supplement C): 468 – 485, 2017. ISSN 1568-4946.

http://www.sciencedirect.com/science/article/pii/S0743731518305628
http://www.sciencedirect.com/science/article/pii/S0743731518305628
https://doi.org/10.1063/1.1699114

Bibliography 161

[Nakib et al., 2018] Amir Nakib, L. Souquet, & El-Ghazali Talbi. Parallel frac-

tal decomposition based algorithm for big continuous optimiza-

tion problems. Journal of Parallel and Distributed Computing,

2018. ISSN 0743-7315. doi: https://doi.org/10.1016/j.jpdc.2018.

06.002.

[Nebro et al., 2015] Antonio Nebro, Juan Durillo, & Matthieu Vergne. Redesigning

the jmetal multi-objective optimization framework. In Proceed-

ings of the Companion Publication of the 2015 Annual Confer-

ence on Genetic and Evolutionary Computation, GECCO Com-

panion ’15, pp. 1093–1100, New York, NY, USA, 2015. ACM.

ISBN 978-1-4503-3488-4. doi: 10.1145/2739482.2768462. URL

http://doi.acm.org/10.1145/2739482.2768462.

[Nesterov, 1983] Yu. E. Nesterov. A method for solving the convex programming

problem with convergence rate o(1/k2). 1983.

[Neumaier, 1991] Arnold Neumaier. Interval Methods for Systems of Equations.

Encyclopedia of Mathematics and its Applications. Cambridge

University Press, 1991. doi: 10.1017/CBO9780511526473.

[Nocedal & Wright,

2006]
Jorge. Nocedal & Stephen J. Wright. Numerical optimization.

Springer, 2006.

[Nowak et al., 2014] Krzysztof Nowak, Marcus Märtens, & Dario Izzo. Empirical

performance of the approximation of the least hypervolume con-

tributor. vol. 8672, 09 2014.

[Okabe et al., 2003] Tatsuya Okabe, Yaochu Jin, & Bernhard Sendhoff. A critical

survey of performance indices for multi-objective optimisation.

In The 2003 Congress on Evolutionary Computation, 2003. CEC

’03., vol. 2, pp. 878–885 Vol.2, Dec 2003. doi: 10.1109/CEC.

2003.1299759.

[Paulavičius et al.,

2014]
Remigijus Paulavičius, Yaroslav D. Sergeyev, Dmitri E.

Kvasov, & Julius Žilinskas. Globally-biased disimpl algorithm

for expensive global optimization. Journal of Global Opti-

mization, 59(2): 545–567, Jul 2014. ISSN 1573-2916. doi:

10.1007/s10898-014-0180-4. URL https://doi.org/10.1007/

s10898-014-0180-4.

[Pires et al., 2012] Dulce Fernão Pires, Carlos Henggeler Antunes, &

António Gomes Martins. Nsga-ii with local search for

http://doi.acm.org/10.1145/2739482.2768462
https://doi.org/10.1007/s10898-014-0180-4
https://doi.org/10.1007/s10898-014-0180-4

Bibliography 162

a multi-objective reactive power compensation prob-

lem. International Journal of Electrical Power & En-

ergy Systems, 43(1): 313 – 324, 2012. ISSN 0142-0615.

doi: https://doi.org/10.1016/j.ijepes.2012.05.024. URL

http://www.sciencedirect.com/science/article/pii/

S0142061512002141.

[Pontes et al., 2016] Fabricio Pontes, Gabriela Amorim, Pedro Balestrassi, An-

derson Paiva, & João Ferreira. Design of experiments

and focused grid search for neural network parameter op-

timization. Neurocomputing, 186: 22 – 34, 2016. ISSN

0925-2312. doi: https://doi.org/10.1016/j.neucom.2015.12.061.

URL http://www.sciencedirect.com/science/article/pii/

S0925231215020184.

[Price et al., 2005] Kenneth. Price, Rainer Storn, & Jouni Lampinen. Differen-

tial evolution - a practical approach to global optimization. In

Springer, 2005.

[Qin & Suganthan,

2005]
A K Qin & P N Suganthan. Self-adaptive differential evolution

algorithm for numerical optimization. In 2005 IEEE Congress on

Evolutionary Computation, vol. 2, pp. 1785–1791 Vol. 2, sep 2005.

[Ratz & Csendes, 1995] Dietmar Ratz & Tibor Csendes. On the selection of subdivi-

sion directions in interval branch-and-bound methods for global

optimization. Journal of Global Optimization, 7(2): 183–207,

Sep 1995. ISSN 1573-2916. doi: 10.1007/BF01097060. URL

https://doi.org/10.1007/BF01097060.

[Real et al., 2017] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena,

Yutaka Leon Suematsu, Jie Tan, Quoc V. Le, & Alexey Kurakin.

Large-scale evolution of image classifiers. In Proceedings of the

34th International Conference on Machine Learning - Volume

70, ICML’17, pp. 2902–2911. JMLR.org, 2017. URL http://

dl.acm.org/citation.cfm?id=3305890.3305981.

[Real et al., 2018a] Esteban Real, Alok Aggarwal, Yanping Huang, & Quoc V.

Le. Regularized evolution for image classifier architecture search.

2018. URL https://arxiv.org/pdf/1802.01548.pdf.

[Real et al., 2018b] Esteban Real, Alok Aggarwal, Yanping Huang, & Quoc V.

Le. Regularized evolution for image classifier architecture search.

2018. URL https://arxiv.org/pdf/1802.01548.pdf.

http://www.sciencedirect.com/science/article/pii/S0142061512002141
http://www.sciencedirect.com/science/article/pii/S0142061512002141
http://www.sciencedirect.com/science/article/pii/S0925231215020184
http://www.sciencedirect.com/science/article/pii/S0925231215020184
https://doi.org/10.1007/BF01097060
http://dl.acm.org/citation.cfm?id=3305890.3305981
http://dl.acm.org/citation.cfm?id=3305890.3305981
https://arxiv.org/pdf/1802.01548.pdf
https://arxiv.org/pdf/1802.01548.pdf

Bibliography 163

[Rechenberg, 1965] Ingo Rechenberg. Cybernetic solution path of an experimental

problem. 1965.

[Riquelme-Granada

et al., 2015]
Nery Riquelme-Granada, Christian Von Lücken, & Benjamin

Baran. Performance metrics in multi-objective optimization. In

2015 Latin American Computing Conference (CLEI), pp. 1–11,

Oct 2015. doi: 10.1109/CLEI.2015.7360024.

[Ryoo & Sahinidis,

1995]
Hong Seo Ryoo & Nick Sahinidis. Global optimization of non-

convex nlps and minlps with applications in process design. Com-

puters and Chemical Engineering, 19(5): 551 – 566, 1995. ISSN

0098-1354. doi: https://doi.org/10.1016/0098-1354(94)00097-2.

URL http://www.sciencedirect.com/science/article/pii/

0098135494000972.

[Saborido Infantes

et al., 2017]
Rubén Saborido Infantes, Ana Belen Ruiz, & Mariano Luque.

Global WASF-GA: An evolutionary algorithm in multiobjective

optimization to approximate the whole pareto optimal front. Evo-

lutionary Computation, 25(2): 309–349, 2017.

[Sciuto et al., 2019] Christian Sciuto, Kaicheng Yu, Martin Jaggi, Claudiu Musat,

& Mathieu Salzmann. Evaluating the search phase of neural

architecture search. 02 2019.

[Ser et al., 2019] Javier Del Ser, Eneko Osaba, Daniel Molina, Xin-She Yang,

Sancho Salcedo-Sanz, David Camacho, Swagatam Das, Pon-

nuthurai N. Suganthan, Carlos A. Coello Coello, & Francisco

Herrera. Bio-inspired computation: Where we stand and what’s

next. Swarm and Evolutionary Computation, 48: 220 – 250, 2019.

ISSN 2210-6502. doi: https://doi.org/10.1016/j.swevo.2019.04.

008. URL http://www.sciencedirect.com/science/article/

pii/S2210650218310277.

[Siarry et al., 1997] Patrick Siarry, Gerard Berthiau, François Durbin, & Jacques

Haussy. Enhanced simulated annealing for globally minimiz-

ing functions of many-continuous variables. ACM Trans. Math.

Softw., 23: 209–228, 06 1997. doi: 10.1145/264029.264043.

[Sierra & Coello Coello,

2005]
Margarita Reyes Sierra & Carlos A. Coello Coello. Im-

proving pso-based multi-objective optimization using crowding,

mutation and ε-dominance. In Carlos A. Coello Coello, Ar-

turo Hernández Aguirre, & Eckart Zitzler, editors, Evolutionary

http://www.sciencedirect.com/science/article/pii/0098135494000972
http://www.sciencedirect.com/science/article/pii/0098135494000972
http://www.sciencedirect.com/science/article/pii/S2210650218310277
http://www.sciencedirect.com/science/article/pii/S2210650218310277

Bibliography 164

Multi-Criterion Optimization, pp. 505–519, Berlin, Heidelberg,

2005. Springer Berlin Heidelberg. ISBN 978-3-540-31880-4.

[Simonyan &

Zisserman, 2014]
Karen Simonyan & Andrew Zisserman. Very deep con-

volutional networks for large-scale image recognition. arXiv

1409.1556, 09 2014.

[Sinha et al., 2014] Ankur Sinha, Pekka Malo, Peng Xu, & Kalyan Deb. A bilevel

optimization approach to automated parameter tuning. GECCO

2014 - Proceedings of the 2014 Genetic and Evolutionary Com-

putation Conference, 07 2014. doi: 10.1145/2576768.2598221.

[Situ et al., 2017] Xin Situ, W. N. Chen, Y. J. Gong, Ying Lin, Wei-Jie Yu,

Zhiwen Yu, & J. Zhang. A parallel ant colony system based

on region decomposition for taxi-passenger matching. In 2017

IEEE Congress on Evolutionary Computation (CEC), pp. 960–

967, June 2017.

[Solis & Wets, 1981] Francisco J. Solis & Roger J.-B. Wets. Minimization by Ran-

dom Search Techniques. Mathematics of Operations Research, 6

(1): 19–30, February 1981.

[Srinivas & Deb, 1994] N. Srinivas & Kalyanmoy Deb. Muiltiobjective optimization

using nondominated sorting in genetic algorithms. Evol. Com-

put., 2(3): 221–248, September 1994. ISSN 1063-6560. doi:

10.1162/evco.1994.2.3.221. URL http://dx.doi.org/10.1162/

evco.1994.2.3.221.

[Srivastava et al., 2014] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya

Sutskever, & Ruslan Salakhutdinov. Dropout: A simple way

to prevent neural networks from overfitting. Journal of Machine

Learning Research, 15: 1929–1958, 06 2014.

[Steuer & Choo, 1983] Ralph E. Steuer & Eng-Ung Choo. An interactive weighted

tchebycheff procedure for multiple objective programming. Math-

ematical Programming, 26(3): 326–344, Oct 1983. ISSN 1436-

4646. doi: 10.1007/BF02591870. URL https://doi.org/10.

1007/BF02591870.

[Stewart et al., 2008] Theodor Stewart, Oliver Bandte, Heinrich Braun, Nirupam

Chakraborti, Matthias Ehrgott, Mathias Göbelt, Yaochu Jin,

Hirotaka Nakayama, Silvia Poles, & Danilo Di Stefano. Real-

World Applications of Multiobjective Optimization, pp. 285–327.

http://dx.doi.org/10.1162/evco.1994.2.3.221
http://dx.doi.org/10.1162/evco.1994.2.3.221
https://doi.org/10.1007/BF02591870
https://doi.org/10.1007/BF02591870

Bibliography 165

Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. ISBN

978-3-540-88908-3. doi: 10.1007/978-3-540-88908-3 11. URL

https://doi.org/10.1007/978-3-540-88908-3_11.

[Storn & Price, 1995] Rainer Storn & Kenneth Price. Differential evolution-a simple

and efficient adaptive scheme for global optimization over con-

tinuous spaces, vol. 3. ICSI Berkeley, 1995.

[Suganuma et al., 2017] Masanori Suganuma, Shinichi Shirakawa, & Tomoharu Nagao.

A genetic programming approach to designing convolutional neu-

ral network architectures. In Proceedings of the Genetic and

Evolutionary Computation Conference, GECCO ’17, pp. 497–

504, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4920-8.

doi: 10.1145/3071178.3071229. URL http://doi.acm.org/10.

1145/3071178.3071229.

[Szegedy et al., 2015] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Van-

houcke, & Andrew Rabinovich. Going deeper with convolu-

tions. In 2015 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 1–9, June 2015. doi: 10.1109/CVPR.

2015.7298594.

[Talbi, 2009] El-Ghazali Talbi. Metaheuristics: from design to implementa-

tion, vol. 74. John Wiley & Sons, 2009.

[Tang et al., 2007] Ke Tang, X\in Yáo, Ponnuthurai Nagaratnam Suganthan,

Cara MacNish, Ying-Ping Chen, Chih-Ming Chen, & Zhenyu

Yang. Benchmark functions for the CEC’2008 special session

and competition on large scale global optimization. Nature In-

spired Computation and Applications Laboratory, USTC, China,

pp. 153–177, 2007.

[Tawarmalani &

Sahinidis, 2004]
Mohit Tawarmalani & Nikolaos Sahinidis. Global optimization

of mixed-integer nonlinear programs: A theoretical and com-

putational study. Math. Program., 99: 563–591, 04 2004. doi:

10.1007/s10107-003-0467-6.

[Tseng & Chen, 2008] Lin-Yu Tseng & Chun Chen. Multiple trajectory search for

Large Scale Global Optimization. In 2008 IEEE Congress on

Evolutionary Computation, pp. 3052–3059, June 2008.

https://doi.org/10.1007/978-3-540-88908-3_11
http://doi.acm.org/10.1145/3071178.3071229
http://doi.acm.org/10.1145/3071178.3071229

Bibliography 166

[Tuy & Horst, 1996] Hoang Tuy & Reiner Horst. Global Optimization: Determinis-

tic Approaches. Springer, 1996.

[Varelas et al., 2018] Konstantinos Varelas, Anne Auger, Dimo Brockhoff, Nikolaus

Hansen, Ouassim Ait Elhara, Yann Semet, Rami Kassab, & Fred-

eric Barbaresco. A Comparative Study of Large-Scale Variants

of CMA-ES: 15th International Conference, Coimbra, Portugal,

September 8–12, 2018, Proceedings, Part I, pp. 3–15. 01 2018.

ISBN 978-3-319-99252-5. doi: 10.1007/978-3-319-99253-2 1.

[Vazan & Cervenanska,

2018]
Pavel Vazan & Zuzana Cervenanska. Comparison of the scalar-

ization approaches in many-objective simulation-based optimiza-

tion in production system control. In 2018 IEEE 13th Interna-

tional Scientific and Technical Conference on Computer Sciences

and Information Technologies (CSIT), vol. 1, pp. 56–59, Sep.

2018. doi: 10.1109/STC-CSIT.2018.8526670.

[Vesterstrom &

Thomsen, 2004]
Jakob Vesterstrom & René Thomsen. A comparative study

of differential evolution, particle swarm optimization and evo-

lutionary algorithms on numerical benchmark problems. In In

In Proc. of IEEE Congress on Evolutionary Computation 2004

(CEC’2004), pp. 1980–1987, Portland, Oregon, USA, June 20-23

2004.

[Wang & Li, 2009] Yu Wang & Bin Li. A self-adaptive mixed distribution based

uni-variate estimation of distribution algorithm for large scale

global optimization. In Raymond Chiong, editor, Nature-Inspired

Algorithms for Optimisation, pp. 171–198. Springer Berlin Hei-

delberg, Berlin, Heidelberg, 2009.

[Wang et al., 2013] Yu Wang, Jin Huang, Wei Shan Dong, Jun Chi Yan, Chun Hua

Tian, Min Li, & Wen Ting Mo. Two-stage based ensemble opti-

mization framework for large-scale global optimization. European

Journal of Operational Research, 228(2): 308–320, 2013.

[Whitley et al., 1995] Darrell Whitley, Ross Beveridge, Christopher Graves, & Keith

Mathias. Test driving three 1995 genetic algorithms: New test

functions and geometric matching. Journal of Heuristics, 1(1):

77–104, 1995. ISSN 1572-9397.

Bibliography 167

[Wistuba et al., 2019] Martin Wistuba, Ambrish Rawat, & Tejaswini Pedapati. A

survey on neural architecture search. ArXiv, abs/1905.01392,

2019.

[Xie & Yuille, 2017] Lingxi Xie & Alan Yuille. Genetic cnn. In 2017 IEEE Interna-

tional Conference on Computer Vision (ICCV), pp. 1388–1397,

Oct 2017. doi: 10.1109/ICCV.2017.154.

[Yang et al., 2007] Guo-Ping Yang, San-Yang Liu, Jianke Zhang, & Quan-Xi Feng.

Control and synchronization of chaotic systems by differential

evolution algorithm. Chaos, Solitons and Fractals, 34(2): 412–

419, 2007.

[Zhang & Li, 2007] Qingfu Zhang & Hui Li. Moea/d: A multiobjective evolution-

ary algorithm based on decomposition. IEEE Transactions on

Evolutionary Computation, 11(6): 712–731, Dec 2007.

[Zitzler, 1999] Eckart Zitzler. Evolutionary algorithms for multiobjective op-

timization: Methods and applications, 1999.

[Zitzler & Thiele, 1998] Eckart Zitzler & Lothar Thiele. Multiobjective optimization

using evolutionary algorithms — a comparative case study. In

Agoston E. Eiben, Thomas Bäck, Marc Schoenauer, & Hans-

Paul Schwefel, editors, Parallel Problem Solving from Nature —

PPSN V, pp. 292–301, Berlin, Heidelberg, 1998. Springer Berlin

Heidelberg.

[Zitzler & Thiele, 1999] Eckart Zitzler & Lothar Thiele. Multiobjective evolutionary

algorithms: a comparative case study and the strength pareto

approach. IEEE Transactions on Evolutionary Computation, 3

(4): 257–271, Nov 1999. ISSN 1089-778X. doi: 10.1109/4235.

797969.

[Zitzler et al., 2000] Eckart Zitzler, Kalyanmoy Deb, & Lothar Thiele. Compar-

ison of multiobjective evolutionary algorithms: Empirical re-

sults. Evolutionary Computation, 8(2): 173–195, 2000. doi:

10.1162/106365600568202.

[Zoph & Le, 2016] Barret Zoph & Quoc Le. Neural architecture search with rein-

forcement learning. 11 2016.

[Zoph et al., 2018] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, & Quoc

V. Le. Learning transferable architectures for scalable image

Bibliography 168

recognition. In 2018 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pp. 8697–8710, 06 2018. doi:

10.1109/CVPR.2018.00907.

	Acknowledgements
	Abstract
	Résumé
	Contents
	General Introduction
	1 State-of-the Art on metaheuristics
	1.1 Introduction
	1.2 Single-Solution metaheuristics
	1.2.1 Local Search
	1.2.2 Simulated Annealing
	1.2.3 Tabu Search

	1.3 Population-Based metaheuristics
	1.3.1 Evolutionary algorithms
	1.3.2 Evolution Strategies
	1.3.3 Differential Evolution

	1.4 Performance assessments
	1.4.1 Quality of solution
	1.4.2 Computational effort
	1.4.3 Robustness

	1.5 Decomposition-Based metaheuristics
	1.5.1 Continuous Branch and Bound
	1.5.1.1 Bounding methods
	1.5.1.2 Subregions selection methods

	1.5.2 FRACTOP
	1.5.3 Multiple Optima Sierpinski Searcher
	1.5.4 DIRECT Algorithm
	1.5.4.1 Other versions of DIRECT

	1.6 Parallel metaheuristics
	1.6.1 Parallel Evolutionary Algorithms
	1.6.2 Parallel Ant Colony Algorithm
	1.6.3 Parallelized Decomposition methods

	1.7 Multi-Objective Optimization
	1.7.1 Dominance-based algorithms
	1.7.1.1 Particle Swarm Optimization for multi-objective Optimization
	1.7.1.2 Non-dominated Sorting Genetic Algorithm (NSGA-II)

	1.7.2 Scalarization in Multi-objective optimization
	1.7.2.1 Scalarization techniques
	1.7.2.2 Scalarization-Based Algorithms

	1.7.3 Performance evaluation in MOP
	1.7.3.1 The Hypervolume
	1.7.3.2 The Generational Distance and Inverted Generational Distance
	1.7.3.3 The Spread

	1.8 Conclusion

	2 Design of Fractal Decomposition based Algorithm
	2.1 Introduction
	2.2 Geometric Fractal Decomposition
	2.3 Coverage of the search space via the Fractal Decomposition
	2.3.1 Relaxation at the first level
	2.3.2 Lower bound estimation of

	2.4 Proposed Fractal Decomposition based Algorithm
	2.4.1 Promising hypersphere selection (Exploration strategy)
	2.4.2 Multilevel search strategy
	2.4.3 Intensive Local Search (ILS)

	2.5 Results and discussions
	2.5.1 Benchmark Functions
	2.5.2 Parameters Settings
	2.5.3 Sensitivity analysis of FDA
	2.5.4 Complexity Analysis
	2.5.5 FDA Results
	2.5.6 Analysis of FDA's behavior
	2.5.7 Comparison with competing algorithms
	2.5.7.1 Comparison with DIviding RECTangles (DIRECT)
	2.5.7.2 FDA comparison with SOCO 2011 Participants
	2.5.7.3 Comparison with recent metaheuristics

	2.6 Conclusion

	3 Parallel fractal decomposition based algorithm for large scale continuous optimization problems
	3.1 Introduction
	3.2 Analysis of the mono-thread implementation of FDA
	3.2.1 Proposed Multi-threaded Implementation Strategy
	3.2.2 Results and Discussions of PFDA
	3.2.2.1 Performances evaluation
	3.2.2.2 Exploring higher dimension

	3.2.3 Proposed Multi-Nodes Implementation - MA-FDA
	3.2.4 Results and discussions of MA-FDA
	3.2.4.1 MA-FDA-S1
	3.2.4.2 MA-FDA-S2

	3.3 Conclusion

	4 Design of Fractal Decomposition based algorithm for multi-objective optimization
	4.1 Introduction
	4.2 Mo-FDA Scalarization: Mo-FDA-S
	4.2.1 Weighted Sum
	4.2.2 Tcheybycheff Approach
	4.2.3 Proposed Approach and Parallelized Architecture
	4.2.3.1 Proposed architecture

	4.3 Mo-FDA Dominance
	4.3.1 Multi-objective Promising hypersphere selection (Exploration strategy)
	4.3.2 Multi-objective Intensive Local Search (ILS)

	4.4 Results and Discussions
	4.4.1 Benchmark Functions
	4.4.2 Sensitivity analysis of the multi-objective algorithms
	4.4.2.1 Parameters sensitivity of Mo-FDA-S
	4.4.2.2 Parameters sensitivity of Mo-FDA-D

	4.4.3 Parameter Settings
	4.4.3.1 Settings for Mo-FDA-S
	4.4.3.2 Settings for Mo-FDA-D

	4.4.4 Comparison with competing algorithms
	4.4.4.1 2-Objective functions
	4.4.4.2 3-objective functions

	4.5 Conclusion

	5 Optimal Convolution neural networks architecture search based on FDA
	5.1 Introduction
	5.2 Architecture Search and fine-tuning the hyperparameters
	5.2.1 Convolution Neural Network
	5.2.2 Related Work
	5.2.3 Problem formulation

	5.3 Decision Variables Encoding
	5.3.1 Encoding of the Upper-level problem
	5.3.2 Encoding of the Lower-level problem

	5.4 Results and Discussion
	5.4.1 Optimal Architecture Search
	5.4.2 Hyperparameter Optimization
	5.4.2.1 Sensitivity analysis
	5.4.2.2 Choice of the backpropagation algorithm
	5.4.2.3 Parameter Settings
	5.4.2.4 Results

	5.5 Conclusion

	General Conclusion and future work
	A Tables of chapter 2 - FDA
	B Tables of chapter 3 - PFDA
	C Tables of chapter 4 - Mo-FDA
	D Results on CIFAR-100
	Bibliography

