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Abstract

This thesis deals with the interpretability of learning algorithms in an industrial context.
Manufacturing production and the design of industrial systems are two examples where
interpretability of learning methods enables to grasp how the inputs and outputs of a system
are connected, and therefore to improve the system efficiency. Although there is no consen-
sus on a precise definition of interpretability, it is possible to identify several requirements:
“simplicity, stability, and accuracy”, rarely all satisfied by existing interpretable methods.
The structure and stability of random forests make them good candidates to improve
the performance of interpretable algorithms. The first part of this thesis is dedicated to
post-hoc methods, in particular variable importance measures for random forests. The
first convergence result of Breiman’s MDA is established, and shows that this measure
is strongly biased using a sensitivity analysis perspective. The Sobol-MDA algorithm is
introduced to fix the MDA flaws, replacing permutations by projections. An extension
to Shapley effects, an efficient importance measure when input variables are dependent,
is then proposed with the SHAFF algorithm. The second part of this thesis focuses on
rule learning models, which are simple and highly predictive algorithms, but are also very
often unstable with respect to small data perturbations. SIRUS algorithm is designed as the
extraction of a compact rule ensemble from a random forest, and considerably improves
stability over state-of-the-art competitors, while preserving simplicity and accuracy.

Keywords: interpretability, random forests, variable importance, rule learning, stabil-
ity, sensitivity analysis.

Résumé

Cette thèse traite de l’interprétabilité des algorithmes d’apprentissage dans un contexte
industriel. La production manufacturière et la conception de systèmes industriels sont
deux exemples d’application où l’interprétabilité des méthodes d’apprentissage permet de
comprendre comment les variables d’entrées influent sur la sortie d’un système et donc



iv

d’optimiser son efficacité. Malgré l’absence de consensus sur une définition précise de
l’interprétabilité, il est possible d’identifier un certain nombre de notions fondamentales:
“simplicité, stabilité, précision”, rarement vérifiées simultanément par les méthodes inter-
prétables existantes. La structure et la stabilité des forêts aléatoires en font une approche
particulièrement efficace pour améliorer les performances des algorithmes d’apprentissage
interprétables. La première partie de cette thèse est consacrée aux méthodes post-hoc, et en
particulier aux mesures d’importance de variables dans les forêts aléatoires. Le premier ré-
sultat de convergence du MDA de Breiman est établi, et met en évidence un biais important
en s’appuyant sur l’analyse de sensibilité. L’algorithme Sobol-MDA est ensuite introduit
pour remédier aux défauts du MDA d’origine, en remplaçant le mécanisme de permutation
par des projections. Une extension aux indices de Shapley, une mesure d’importance
efficace dans le cas d’entrées dépendantes, est proposée avec l’algorithme SHAFF. La
deuxième partie de cette thèse est dédiée aux modèles de règles, des algorithmes simples
et fortement prédictifs, très souvent instables vis-à-vis de petites perturbations des données
d’apprentissage. L’algorithme SIRUS proposé est construit à partir de l’extraction d’un
ensemble de règles d’une forêt aléatoire. SIRUS améliore considérablement la stabilité de
la liste de règle par rapport aux méthodes concurrentes de l’état de l’art, tout en préservant
leur simplicité et leur prédictivité.

Mots-clés: interprétabilité, forêts aléatoires, importance de variables, modèles de
règles, stabilité, analyse de sensibilité.
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Introduction

1 Contexte

Contexte industriel. L’industrie aéronautique fabrique de nombreuses pièces par des
procédés métallurgiques de forge, de fonderie, ou encore d’usinage, qui mettent en jeu des
processus physico-chimiques lourds et complexes pour transformer les matériaux. C’est
le cas en particulier pour le groupe Safran, qui produit des équipements et des systèmes
de propulsion pour l’aéronautique et le domaine spatial. La mise au point et le contrôle
des processus de fabrication est d’une importance critique pour les propriétés mécaniques
finales des pièces produites. Nous pouvons schématiser une chaîne de production comme
une série d’opérations de transformation d’une pièce, contrôlée par un grand nombre
de variables d’entrée qui définissent le procédé industriel : des températures, pressions,
durées, masses... A la fin de la chaîne de production, différents tests sont réalisés sur les
pièces pour vérifier leur conformité et donc qu’elles sont aptes à être embarquées dans
un système aéronautique : leurs dimensions et l’absence de fissures sont, par exemple,
contrôlées. L’objectif des ingénieurs est de déterminer les conditions de production
qui génèrent des problèmes de conformité, pour les éviter en affinant le réglage des
variables d’entrée, et ainsi améliorer l’efficacité du processus. La complexité de ces
procédés est telle qu’ils comportent souvent des centaines de variables. Une approche
automatique à partir des données collectées sur la chaîne de production est donc nécessaire.
Les algorithmes d’apprentissage peuvent ainsi être utilisés pour établir le lien entre les
variables du procédé en entrée et la qualité des pièces produites en sortie. En effet, ces
algorithmes d’apprentissage supervisé utilisent des observations pour construire un modèle
permettant d’estimer la sortie associée à une nouvelle entrée. Cependant, les données
contiennent de l’aléa (erreurs de collecte, imprécisions des mesures, bruit intrinsèque au
problème...), et donc les prédictions de ces algorithmes stochastiques ne peuvent pas être
exploitées aveuglément dans un tel contexte industriel, où chaque décision peut être lourde
de conséquences. Le but est d’utiliser l’algorithme d’apprentissage pour de l’aide à la
décision, c’est-à-dire déterminer comment les variables d’entrée influent sur la qualité de
la production pour mieux régler le procédé. C’est pourquoi les algorithmes d’apprentissage
doivent être interprétables et expliciter la relation entre les entrées et la sortie. Dans un
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second temps, les tendances détectées par l’algorithme sont approfondies par les experts
métier afin de comprendre les phénomènes physiques sous-jacents, et d’en déduire les
modifications à apporter aux réglages de la production.

L’interprétabilité des algorithmes d’apprentissage est également utile dans la conception
de systèmes industriels. En amont de la production, la conception est une étape majeure
qui vise à optimiser la forme des pièces et le choix des matériaux pour garantir les
performances désirées. Cette phase de conception s’appuie très largement sur la simulation
numérique des phénomènes physiques mis en oeuvre dans le fonctionnement réel des
systèmes aéronautiques. En effet, les ingénieurs cherchent à optimiser certaines quantités
d’intérêt, comme la résistance mécanique ou la durée de vie par exemple, en faisant varier
la forme de la pièce dans un espace paramétrique. Les codes numériques utilisés sont
particulièrement coûteux en temps de calcul, pouvant atteindre plusieurs heures pour
une seule simulation. Une approche standard consiste à effectuer un nombre limité de
calculs, puis à utiliser un algorithme d’apprentissage pour généraliser le lien entre la
forme des pièces et les performances associées. La compréhension de l’influence des
variables d’entrée sur les sorties est essentielle pour réaliser une conception efficace. Ainsi,
l’interprétabilité des algorithmes d’apprentissage a aussi un rôle clé dans le processus de
conception des pièces.

Interprétabilité. Outre le domaine aéronautique, nous pouvons citer un deuxième champ
d’application où l’interprétabilité est d’importance majeure : le domaine de la santé
(Letham et al., 2015). En effet, un médecin doit nécessairement comprendre la recom-
mandation d’un algorithme d’appliquer un certain traitement avant de le prescrire à un
patient, aussi bien pour des raisons d’efficacité pratique que d’éthique. Contrairement au
cas de la production industrielle, la prédiction est ici primordiale, même s’il ne s’agit pas
de remplacer le médecin par un algorithme, mais de l’assister dans la prise de décision.
L’interprétabilité permet de comprendre et de valider le traitement prédit pour l’appliquer
ensuite. Ces différents exemples illustrent en quoi l’interprétabilité est critique dans de
nombreuses applications. De façon générale, les algorithmes d’apprentissage à l’état de
l’art sont réputés pour leur excellente performance prédictive. Cependant, cette préci-
sion élevée a un inconvénient majeur : un grand nombre d’opérations est effectué par
l’algorithme pour calculer une prédiction, typiquement de l’ordre de dix mille pour une
forêt aléatoire par exemple. Cette complexité empêche de comprendre comment les entrées
sont combinées pour générer les prédictions. Ainsi, les algorithmes d’apprentissage sont
souvent qualifiés de “boîtes noires”, à cause de l’opacité de leur mécanisme de prédiction
(Breiman, 2001b). L’interprétabilité est donc une propriété à la fois essentielle et difficile à
satisfaire. Nous commençons par tenter de mieux caractériser ce concept d’interprétabilité.

Il n’y a pas de consensus sur une définition rigoureuse de l’interprétabilité des algo-
rithmes d’apprentissage dans les domaines des statistiques et de l’apprentissage automa-



2 Méthodes Interprétables 3

tique. Ce désaccord est fréquemment constaté dans la littérature, par exemple dans Rüping
(2006), Lipton (2016), Doshi-Velez and Kim (2017), ou encore Murdoch et al. (2019).
Cette absence de consensus se comprend assez bien : derrière le terme d’interprétabilité
se cache une multitude de concepts et d’applications diverses, conduisant à l’emploi de
méthodes variées aux propriétés différentes. En conséquence, il est très difficile de définir
l’interprétabilité de façon générale, détachée d’une application spécifique. Les exemples
donnés plus haut illustrent bien cette variété d’applications. Dans le cas médical, on
cherche à interpréter une prédiction précise pour pouvoir justifier son application. Dans
le cadre de nos travaux et des applications industrielles associées, nous nous intéressons
à une finalité très différente de l’interprétabilité : nous cherchons à mieux comprendre
comment les entrées d’un système sont liées à la sortie, afin d’agir sur ces entrées pour
influer sur les valeurs de sortie.

Malgré le manque de définition précise de l’interprétabilité, il est toutefois possible de
définir un certain nombre de propriétés que doit posséder une méthode interprétable. Nous
proposons ainsi le triptyque suivant : simplicité, stabilité, et précision, inspiré du cadre
introduit par Yu and Kumbier (2019). En effet, même si la notion de simplicité demeure
floue, elle est évoquée dès qu’il est question d’interprétabilité (Rüping, 2006; Freitas,
2014; Letham, 2015; Ribeiro et al., 2016) : la relation entrée-sortie doit être synthétique
pour être compréhensible par l’humain. Yu (2013) définit la stabilité comme un principe
fondamental de l’interprétabilité : les conclusions de l’analyse doivent être robustes aux
petites perturbations de données pour être significatives. En effet, l’instabilité des résultats
est le symptôme d’une modélisation partielle et arbitraire, et est difficile à exploiter. Pour
revenir à notre cas d’application d’une chaîne de production, l’ajout de quelques pièces
dans les données peut changer drastiquement les conclusions d’un algorithme instable. Ce
comportement chaotique signifie que le modèle n’exhibe qu’une partie des tendances dans
les données, et bascule entre elles de façon quelque peu arbitraire. De plus, ces instabilités
génèrent la défiance des experts métier et conduisent à ne plus utiliser les algorithmes
sur le terrain. Finalement, une performance prédictive faible est le signe que la méthode
employée ne détecte pas certaines tendances importantes dans les données, et peut donc
induire en erreur (Breiman, 2001b). Par exemple, un modèle qui prédit systématiquement
la moyenne de la sortie est simple et stable, mais n’apporte que peu d’informations et
masque la variabilité de la sortie.

2 Méthodes Interprétables

Dans cette section, nous présentons les principes fondamentaux pour appréhender les méth-
odes interprétables. Ensuite, nous définirons plus précisément les objets mathématiques
associés dans le Chapitre 1. Le caractère interprétable est obtenu soit par un post-traitement
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d’un modèle boîte noire (Breiman, 2001b), en utilisant par exemple l’importance de vari-
able ou des approximations locales, soit en contraignant initialement l’algorithme à avoir
une structure suffisamment simple pour que le lien entre les entrées et la sortie apparaisse
clairement (Guidotti et al., 2018; Murdoch et al., 2019). Pour cette seconde catégorie,
dénommée ci-après modèles interprétables, nous pouvons mentionner principalement les
modèles additifs (Hastie and Tibshirani, 1987; Yee and Wild, 1996; Agarwal et al., 2020;
Chang et al., 2020), les arbres de décision (Breiman et al., 1984; Quinlan, 1986), ou
encore les modèles de règles (Fürnkranz and Widmer, 1994; Cohen and Singer, 1999;
Friedman et al., 2008). Parmi les trois pré-requis à l’interpretabilité—simplicité, stabilité,
et précision, nous verrons que la précision est le critère le plus difficile à satisfaire pour
les méthodes post-hoc. En effet, la dépendance entre les variables d’entrée génère des
biais dans l’estimation des mesures d’importance de variable. La stabilité peut aussi être
remise en cause dans les méthodes post-hoc, mais moins fortement que pour les modèles
interprétables, qui souffrent très souvent d’importants problèmes de stabilité, à cause de
la forte contrainte sur la forme des modèles. Nous reviendrons en profondeur sur ces
considérations au cours des différents chapitres de la thèse, mais donnons d’abord quelques
clefs de lecture dans cette introduction.

2.1 Interprétabilité Post-hoc

L’approche la plus naturelle pour interpréter un algorithme boîte noire est d’utiliser une
méthode de post-traitement pour détricoter le mécanisme de prédiction a posteriori. Nous
pouvons distinguer deux grands types d’approches : les méthodes globales et les méthodes
locales. Les méthodes globales analysent le comportement de l’algorithme dans l’ensemble
de l’espace d’entrée, alors que les méthodes locales se focalisent sur une prédiction donnée.

2.1.1 Interprétabilité globale

Lorsque l’on s’intéresse à l’interprétabilité post-hoc globale dans l’ensemble de l’espace
d’entrée, il existe essentiellement trois familles de méthodes : les visualisations (Friedman
et al., 2001), l’importance de variables (Breiman, 2001a), et enfin l’analyse de sensibilité
(Sobol, 1993; Iooss and Lemaître, 2015).

Visualisations. Une première approche consiste à utiliser des outils de visualisations
pour comprendre les relations entre variables d’entrée et de sortie. Il n’est pas possible de
visualiser toutes les variables simultanément lorsqu’il y a plus de deux entrées. Dans ce
cas, les Partial Dependence Plots (PDP) (Friedman, 2001) proposent de visualiser la sortie
par rapport à une seule entrée en abscisse : pour chaque valeur de l’entrée considérée,
la moyenne de la sortie est calculée pour toutes les valeurs possibles des autres entrées.



2 Méthodes Interprétables 5

Fig. 1 Partial Dependence Plot pour le jeu de données UCI “Habitations à Boston” : le
coût estimé versus la variable d’entrée “lstat” (% de la population adulte n’ayant pas fait
d’études supérieures) (Greenwell, 2017).

Les PDP ignorent la dépendance entre les variables, ce qui permet une estimation rapide
du graphe, mais reste une approximation forte. Nous illustrons les PDP avec le package
pdp (Greenwell, 2017) et les données d’habitations de Boston, où le prix au mètre carré
d’un appartement est estimé à partir de différentes informations comme le nombre de
pièces ou l’age. La Figure 1 montre l’impact décroissant de la variable “lstat” (% de la
population adulte n’ayant pas fait d’études supérieures) sur le prix des appartement. Les
Accumulated Local Effects (ALE) (Apley and Zhu, 2020) étendent les PDP en prenant en
compte la dépendance entre les entrées. En effet, contrairement aux PDP qui intègre l’effet
des variables sur la sortie en utilisant les lois marginales, les ALE sont calculées à partir
des lois conditionnelles.

Importance de variables. L’importance de variables globale consiste à hiérarchiser
l’ensemble des variables d’entrée en fonction de leur influence dans le mécanisme de
prédiction de l’algorithme à partir d’une mesure d’importance intégrée sur l’ensemble
de l’espace d’entrée. Par exemple pour les modèles linéaires, une mesure d’importance
est donnée pour chaque variable par le carré de son coefficient mutliplié par le ratio de
la variance de l’entrée considérée et la variance de la sortie. Des mesures d’importances
spécifiques aux forêts aléatoires ont été développées avec le MDA (Breiman, 2001a) et le
MDI (Breiman, 2003), qui sont très largement utilisées. Le MDI est aussi défini pour les
ensembles d’arbres boostés. Il existe des mesures d’importance agnostiques au modèle
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étudié, c’est-à-dire pouvant être estimées à partir de n’importe quel algorithme boîte noire.
Les mesures par permutation en sont un exemple. Une deuxième approche consiste à
rajouter des variables indépendantes de la sortie conditionnellement aux autres entrées
pour déterminer à partir de quel seuil une mesure d’importance est significative (Candes
et al., 2016).

Analyse de sensibilité globale. L’analyse de sensibilité étudie l’impact des incertitudes
des variables d’entrée d’un système sur sa sortie. En particulier, un des principaux objec-
tifs est d’attribuer la variabilité de la sortie aux différentes entrées (Iooss and Lemaître,
2015; Ghanem et al., 2017). Ce type d’analyse permet d’identifier les variables qui
ont un impact important sur la sortie, et celles qui n’ont pas d’influence. L’analyse de
sensibilité est une approche similaire aux mesures d’importance de variables pour les
algorithmes d’apprentissage. Cependant, contrairement à ces dernières qui ont générale-
ment une définition algorithmique, l’analyse de sensibilité définit d’abord formellement
des mesures d’importance à partir des distributions théoriques des variables du prob-
lème. Ce n’est que dans un second temps qu’on s’intéresse à l’estimation de ces mesures
d’importance, généralement à l’aide de modèles et de méthodes de Monte-Carlo. Les
mesures d’importance les plus répandues en analyse de sensibilité sont les indices de
Sobol (Sobol, 1993; Saltelli, 2002), qui sont définis à partir de la variance de l’espérance
conditionnelle de la sortie par rapport à un sous-ensemble des variables d’entrée. Ces
indices ont une interprétation très claire dans le cas où les entrées sont indépendantes, mais
ce n’est plus vrai dans le cas dépendant. On leur préférera alors les indices de Shapley
(Owen, 2014; Song et al., 2016; Iooss and Prieur, 2017), qui attribuent les contributions à
la variance de la sortie dues à la dépendance et aux interactions de façon équitable entre
les entrées.

2.1.2 Interprétabilité locale

Il existe principalement deux approches pour l’interprétabilité post-hoc locale : l’importance
de variable locale et l’approximation locale de modèles boîtes noires.

Importance de variables locale. Il est possible d’adapter les mesures d’importance
localement, c’est-à-dire décomposer la prédiction du modèle boîte noire en un point donné
entre les différentes variables d’entrée. La somme des contributions de chaque variable
donne la prédiction. Cette décomposition permet de voir quelles variables tendent à
augmenter la prédiction, lesquelles tendent à la baisser, et dans quelles proportions. Les
SHAP values (Lundberg and Lee, 2017) sont une adaptation locale des indices de Shapley
pour expliquer une prédiction. La Figure 2 propose une illustration des SHAP values pour
le jeu de données UCI d’habitations à Boston. Le point d’entrée considéré est affiché
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Fig. 2 SHAP values pour le jeu de données UCI “Habitations à Boston” (Lundberg and
Lee, 2017).

sur l’axe des ordonnées, et les contributions en rouges signifie que la variable augmente
la valeur de la prédiction, tandis que les contributions en bleu indiquent une diminution
de la prédiction. Shrikumar et al. (2017, DeepLIFT) et Simonyan et al. (2013, Saliency
Maps) sont d’autres exemples de mesures locales, spécifiques pour les réseaux de neurones.
Vaswani et al. (2017) introduisent aussi les méthodes d’attention pour les réseaux de
neurones, qui consistent à apprendre une fonction d’attention pouvant attribuer un score
d’importance à chaque entrée du réseau. Par exemple en reconnaissance d’images, on peut
déterminer l’influence de chaque zone d’une image sur la prédiction.

Approximation locale de modèles. Une autre approche consiste à faire une approxi-
mation locale du modèle boîte noire avec un modèle linéaire, valable dans un voisinage
du point considéré. Cette méthode est formalisée par LIME (Ribeiro et al., 2016), en
particulier utilisée pour des données d’image ou de texte, et permet d’indiquer quels mots
ou superpixels sont particulièrement importants pour une prédiction donnée. La Figure 3
donne un exemple de LIME pour expliquer quelles zones d’une image sont associées à la
prédiction d’une classe.
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Fig. 3 Exemple de LIME pour la classification d’image (Ribeiro et al., 2016).

2.2 Modèles Interprétables

La seconde grande façon d’obtenir des algorithmes d’apprentissage interprétables est de
contraindre initialement le modèle à avoir une structure suffisamment simple pour que le
lien entre les variables d’entrée et la sortie soit apparent. Nous pouvons citer principalement
quatre classes de modèles avec une structure simple : les modèles paramétriques, les
modèles additifs, les arbres de décision, ainsi que les modèles de règles. Dans le contexte
qui nous intéresse, les tendances dans les données sont potentiellement fortement non-
linéaires et présentent souvent des interactions. En conséquence, les modèles additifs et
les modèles paramétriques ne sont pas adaptés à nos problèmes car les systèmes étudiés
sont trop complexes, et l’on manque d’information pour les modéliser sous une forme
paramétrique. Ainsi, nous détaillerons seulement les deux dernières classes d’algorithmes.

Arbres de décision. Les arbres de décision sont des algorithmes d’apprentissage super-
visé qui partitionnent l’espace d’entrée de façon récursive, et génèrent des prédictions
constantes dans chaque cellule de la partition finale—voir la Figure 4. Les deux algo-
rithmes d’arbre de décision les plus couramment utilisés sont CART (Breiman et al., 1984)
et C5.0 (Quinlan, 1992). Les arbres sont capables de modéliser des tendances fortement
non-linéaires, tout en conservant une structure simple si leur profondeur est limitée. Le
défaut principal des arbres est leur forte instabilité : lorsque les données d’apprentissage
sont légèrement perturbées, le classement à un noeud des différentes coupures par le critère
CART peut changer, et conduire à une structure de l’arbre totalement différente. Comme
précisé par Breiman (2001b), modifier seulement 2-3% des données d’apprentissage peut
modifier la structure de l’arbre. Cette instabilité est une limitation opérationnelle forte,
comme détaillé plus haut.

Modèle de règles. Un autre type d’algorithmes supervisés capables de modéliser des
tendances non-linéaires en conservant une structure simple sont les modèles de règles. Une
règle est définie par une conjonction de contraintes sur les variables d’entrée, qui prend la
forme d’un hyperrectangle où la prédiction est constante en moyennant la sortie des points
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Fig. 4 Exemple d’un arbre de décision en dimension 2 (Friedman et al., 2001).

Fig. 5 Exemple d’un modèle de règles pour les données Titanic (Letham et al., 2015, BRL)
(intervalle de confiance de la prédiction entre parenthèses).

d’apprentissage vérifiant la règle. Si X = (X (1),X (2)) est le vecteur d’entrée, et Ŷ la sortie
estimée, une règle prend typiquement la forme suivante : “si X(1) < 1.2 et X(2) > 4.3,
alors Ŷ = 8.1”. Les modèles de règles combinent une liste de règles élémentaires pour
former un modèle ensembliste : la Figure 5 donne un exemple pour les données Titanic.
Malgré leur simplicité et leur excellente capacité prédictive, les modèles de règles sont
instables, tout comme les arbres de décision. Le développement des modèles de règles
remonte à 1969 avec l’AQ System de Michalski (1969), et fut particulièrement intense
dans les années 1980 et 1990. Nous pouvons citer notamment Decision List (Rivest, 1987),
IREP (Fürnkranz and Widmer, 1994), RIPPER (Cohen, 1995), ou encore SLIPPER (Cohen
and Singer, 1999). Ces méthodes sont basées sur des heuristiques simples, et sont donc
rapides à calculer, mais ont une précision limitée et souffrent de problèmes de stabilité.
Plus récemment, une résurgence des algorithmes de règles extraits d’ensembles d’arbres
a donné lieu au développement d’algorithmes très performants pour la prédiction avec
quelques dizaines de règles, notamment RuleFit (Friedman et al., 2008) et Node harvest
(Meinshausen, 2010). Cependant, ces méthodes restent aussi très instables.



10 Contents

3 Forêts Aléatoires

Les ensembles d’arbres ont montré une efficacité remarquable sur des problèmes très variés
(Díaz-Uriarte and De Andres, 2006; Cutler et al., 2007; Strobl et al., 2008). Les travaux
de cette thèse sont motivés par des applications dans l’industrie aéronautique que nous
avons détaillées précédemment, notamment l’optimisation des processus de production et
l’exploration des simulations numériques. Ces applications relèvent typiquement des cas
où les ensembles d’arbres sont très performants, et c’est pourquoi nous nous concentrons
sur ce type de modèle. En effet, les réseaux de neurones ont montré leur supériorité sur les
problèmes où les données d’apprentissage possèdent une structure spatiale, en particulier
la reconnaissance d’images (Ciregan et al., 2012) ou le traitement du langage naturel
(Sutskever et al., 2014), qui ne nous intéressent pas dans ces travaux. Parmi la famille
des ensembles d’arbres, nous nous focalisons sur les forêts aléatoires car leurs propriétés
nous permettront de développer des algorithmes améliorant considérablement le manque
de précision des méthodes post-hoc, ainsi que les problèmes de stabilité inhérents aux
modèles interprétables. Premièrement, les résultats de convergence des forêts aléatoires
(Scornet et al., 2015; Wager and Athey, 2018) nous permettront de mener une analyse
mathématique fine des mesures d’importance, la principale approche post-hoc, et de pro-
poser des mesures corrigées. Deuxièmement, les algorithmes de règles issus d’ensembles
d’arbres sont les modèles interprétables les plus prédictifs en présence d’interactions
et de tendances non-linéaires. En revanche, ils sont particulièrement instables lorsque
les données d’apprentissage sont légèrement perturbées, ce qui constitue une limitation
opérationnelle forte à leur interprétabilité. La structure d’ensemble d’arbres indépendants
et la stabilité des forêts aléatoires nous permettra de construire des modèles de règles
stables sans détériorer leur prédictivité élevée, comme nous le verrons au cours de la
thèse. Nous commençons par dresser un portrait rapide des forêts aléatoires et de leurs
principales propriétés. Ensuite, nous présentons les résultats théoriques sur la convergence
de l’algorithme, et introduirons les mesures d’importances de variables spécifiques aux
forêts.

Construction. Les forêts aléatoires (Breiman, 2001a) sont un algorithme d’apprentissage
statistique supervisé basé sur le principe du bagging (Breiman, 1996) : une forêt agrège
un grand nombre d’arbres de décision aléatoires pour effectuer des tâches de régression
ou de classification. Ce principe est dérivé des travaux de Amit and Geman (1997), Ho
(1998), et Dietterich (2000). Plus précisément, un arbre de décision (Breiman et al., 1984)
partitionne l’espace d’entrée de façon récursive par des succession de coupures à chaque
noeud de l’arbre de la forme X < z, où X est une variable d’entrée numérique et z un seuil.
Chaque coupure est optimisée pour choisir la variable et le seuil les plus efficaces pour
partitionner les données en deux, de sorte que la variance de la sortie soit réduite le plus
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possible dans les deux noeuds fils. Plus précisément, la qualité de chaque coupure possible
est évaluée à partir du critère de coupure CART dans le cas de la régression, et de l’indice
de Gini pour la classification. Un des principes clés des forêts aléatoires est l’introduction
d’un double aléa dans la construction de chaque arbre. Premièrement, les données sont
rééchantillionnées par bootstrap (Efron, 1979) pour entraîner l’arbre. Deuxièmement,
l’optimisation de chaque coupure n’est pas faite par rapport à toutes les variables d’entrée,
mais seulement sur un sous-ensemble de variables tiré aléatoirement à chaque noeud. Ces
deux aléas permettent de diminuer la dépendance entre les arbres de la forêt, au prix d’une
légère augmentation du biais de chaque arbre. Au total, l’erreur quadratique de la forêt
est considérablement réduite par rapport à un arbre seul. Dans le cas de la régression, les
prédictions des arbres sont moyennées, alors que pour la classification, la forêt prédit la
classe la plus fréquente parmi les prédictions des arbres. En outre, CART peut aussi gérer
les variables d’entrées catégorielles, avec des coupures de la forme X ∈ {a,b}, où a et b
sont des valeurs catégorielles possibles pour X .

Propriétés empiriques. Le succès des forêts aléatoires repose sur un certain nombre de
leurs propriétés. Contrairement à la grande majorité des algorithmes d’apprentissage, il
n’est pas nécessaire de régler les paramètres de la forêt pour atteindre de très bonnes perfor-
mances prédictives (Díaz-Uriarte and De Andres, 2006; Genuer et al., 2010; Scornet, 2017).
De plus, il n’y a qu’un petit nombre de paramètres influents : essentiellement le nombre de
variables tirées aléatoirement à chaque noeud mtry, le nombre d’arbres M, la profondeur
maximale des arbres tree_depth, et le nombre minimal d’observations dans chaque
feuille terminale min_node_size. Le principe du bagging d’agréger un grand nombre
d’arbres aléatoires rend les forêts particulièrement stables, résistantes au sur-apprentissage,
et efficaces en grande dimension. Comme chaque arbre est construit indépendemment, la
construction d’une forêt peut être calculée en parallèle très simplement.

Propriétés théoriques. La partition de chaque arbre est construite de façon adaptative
aux données d’apprentissage, ce qui rend l’analyse théorique des forêts aléatoires parti-
culièrement délicate. Les analyses théoriques des forêts sont généralement limitées au
cas de la régression et des variables continues. Des premiers résultats de consistance
des forêts sont obtenus par Breiman (2004) et Biau (2012) en simplifiant l’algorithme
pour que les partitions des arbres soient construites indépendemment des données. La
vitesse de convergence de ce type de forêts est récemment améliorée par Klusowski (2021).
Scornet et al. (2015) démontrent la consistance des forêts de Breiman pour les modèles
additifs. La démonstration se base sur les travaux de Györfi et al. (2006), en contrôlant
l’erreur d’approximation d’une part et l’erreur d’estimation d’autre part. Cette deuxième
erreur ne pose pas de difficultés particulières en utilisant des arguments standards de
Györfi et al. (2006) et en limitant le nombre de feuilles terminales des arbres par rapport
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à la taille de l’échantillon. En revanche, l’erreur d’approximation se révèle difficile à
gérer. Pour ce faire, Scornet et al. (2015) montrent qu’il suffit que les variations de la
fonction de régression dans une cellule d’un arbre tendent vers zéro en probabilité, ce qui
est toujours vérifié dans le cas des modèles additifs. En revanche, ce n’est plus garanti
lorsque la fonction de régression possède des interactions, car le critère de coupure CART
considère les variables une par une. Un peu plus tard, Wager and Athey (2018) montrent la
consistance des forêts aléatoires d’une toute autre façon, en se basant sur les projections de
Hayek. Cette approche englobe des fonctions de régression plus générales, mais cependant,
requiert des hypothèses beaucoup plus fortes sur le comportement des forêts. Finalement,
Mentch and Hooker (2016) montrent la normalité asymptotique des forêts aléatoires à
partir d’une analogie avec les U-statistiques. Wager and Athey (2018) obtiennent aussi ce
résultat en utilisant les projections de Hayek.

Importance de variables. Un des grands avantages des forêts aléatoires est la possibilité
de calculer très rapidement des mesures d’importance de variables indiquant quelles entrées
influent le plus sur les prédictions. Cette caractéristique nous intéresse tout particulièrement
dans cette thèse, car c’est l’approche la plus répandue pour interpréter les forêts aléatoires.
Il existe principalement deux mesures d’importance spécifiques aux forêts : le MDA
(Breiman, 2001a) et le MDI (Breiman, 2003). Le principe du MDA est de permuter
aléatoirement les valeurs d’une variable d’entrée et de calculer la décroissance de la
variance expliquée par la forêt. La permutation permet de rompre le lien entre l’entrée et
la sortie : plus la perte de predictivité est importante et plus la variable influe fortement sur
les prédictions. Le principe du MDI est de sommer la décroissance de variance à chaque
noeud qui implique une variable donnée dans un arbre, et de moyenner sur tous les arbres
de la forêt. Ces deux mesures d’importance ont une définition empirique, et leur propriétés
théoriques sont mal connues. Récemment, Scornet (2020) a mené une étude asymptotique
du MDI, qui montre que cette mesure n’est en fait bien définie que dans le cas où les entrées
sont indépendantes et la fonction de régression est additive. Hormis ce cas particulier, le
MDI est formellement mal défini. Cependant, Louppe (2014) parvient à exprimer le MDI à
partir de l’information mutuelle dans un cas particulier de forêts aléatoires, où les coupures
sont choisies aléatoirement, les données sont catégorielles, et la qualité d’une coupure est
évaluée avec l’entropie. Plus récemment, Li et al. (2019) établissent une borne théorique à
échantillon fini pour le MDI des variables non-influentes, et proposent ensuite de débiaiser
le MDI en le calculant avec un échantillon indépendant des données d’apprentissage. Des
approches similaires sont proposées par Zhou and Hooker (2019) et Loecher (2020). D’un
autre côté, il existe deux résultats théoriques sur le MDA (Ishwaran, 2007; Zhu et al.,
2015), obtenus au prix de simplifications fortes sur l’algorithme d’origine. Il n’existe
pas d’interprétation claire sur le sens du MDA, ce qui constitue une limitation forte pour
interpréter les forêts aléatoires. Cet aspect sera étudié en détail dans le Chapitre 2.
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4 Contributions

Cette thèse se décompose en cinq chapitres. Le Chapitre 1 propose une étude plus ap-
profondie de l’état de l’art sur l’interprétabilité des algorithmes d’apprentissage. Les
Chapitres 2 et 3 traitent de l’importance de variables pour les forêts aléatoires, la principale
approche d’interprétabilité post-hoc. Les Chapitres 4 et 5 développent des modèles de rè-
gles directement interprétables, basés sur les forêts et considérablement plus stables que les
algorithmes de règles existants. Chacun des chapitres est accompagné d’implémentations
des algorithmes proposés, basées sur le package ranger, écrit en C++ et R par Wright and
Ziegler (2017). Les travaux correspondant ont donné lieu à quatre publications :

• Chapitre 2 : Bénard et al. (2021d), en révision majeure au journal Biometrika,
package sobolMDA.

• Chapitre 3 : Bénard et al. (2021b), soumis à la conférence AISTATS 2022, package
shaff.

• Chapitre 4 : Bénard et al. (2021c), publié dans Electronic Journal of Statistics,
package sirus.

• Chapitre 5 : Bénard et al. (2021a), publié dans le Proceedings of AISTATS 2021,
package sirus.

4.1 Chapitre 2 : “MDA pour les forêts aléatoires : inconsistance et
une solution pratique via le Sobol-MDA”

Ce chapitre établit le premier résultat de convergence du MDA de Breiman (Breiman,
2001a), la principale mesure d’importance de variables spécifique aux forêts aléatoires.
L’analyse de sensibilité, habituellement peu utilisée en apprentissage automatique, met
en lumière que la quantité théorique estimée par le MDA n’est pas réellement pertinente
pour mesurer l’importance des variables. Nous proposons ensuite de modifier le MDA en
remplaçant les permutations par des projections, ce qui permet de retrouver une quantité
théorique adaptée.

Analyse théorique du MDA. La première partie du Chapitre 2 porte sur l’analyse
asymptotique du MDA. Nous proposons le premier résultat de convergence pour le MDA
de Breiman, les résultats existants supposant des simplifications fortes du MDA (Ishwaran,
2007; Zhu et al., 2015). L’étude des implémentations existantes des forêts montre qu’il
existe plusieurs définitions du MDA. Ces versions ne convergent pas vers la même quantité
théorique, et sont donc des mesures d’importance différentes. Nous démontrons aussi que
ces limites des différents MDA peuvent se décomposer comme la somme d’indices de
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Sobol et d’un troisième terme inconnu. Ce dernier terme ne correspond pas à une mesure
d’importance de variables, et biaise fortement le MDA lorsque les variables d’entrée
sont dépendantes. Cette analyse théorique permet d’expliquer le biais du MDA observé
expérimentalement.

Sobol-MDA. La deuxième partie du Chapitre 2 introduit le Sobol-MDA, une nouvelle
mesure d’importance pour les forêts aléatoires. Le principe général est de projeter les
partitions des arbres suivant la variable dont on cherche à mesurer l’importance, pour
l’éliminer du mécanisme de prédiction. Nous montrons que ce principe permet de définir
le Sobol-MDA de façon consistante par rapport à l’indice de Sobol total, qui donne la
proportion de variance perdue lorsque l’on retire la variable considérée du modèle. Cette
mesure d’importance est en particulier très efficace pour la sélection de variables. Une
implémentation dans le package SobolMDA écrit en R/C++ est disponible en ligne.

4.2 Chapitre 3 : “SHAFF : estimateur rapide et consistant des in-
dices de Shapley via les forêts aléatoires”

Le Chapitre 3 introduit l’algorithme SHAFF, un estimateur des indices de Shapley, basé sur
les forêts aléatoires. Les indices de Shapley répartissent les contributions dues aux interac-
tions et à la dépendance de façon équitable entre les entrées, et sont très largement utilisés
depuis quelques années pour interpréter les algorithmes d’apprentissage. L’estimation
des indices de Shapley pose deux difficultés majeures : d’une part la complexité algo-
rithmique est exponentielle par rapport à la dimension du problème. D’autre part, il est
nécessaire de pouvoir estimer efficacement l’espérance de la sortie conditionnellement à
un sous-ensemble de variables d’entrée. A cause de ces deux difficultés, les algorithmes
existants pour l’estimation des indices de Shapley sont soit lourds en calcul, soit biaisés
lorsque les variables d’entrée sont dépendantes. SHAFF résout ces problèmes en utilisant
le tirage d’importance et les forêts aléatoires projetées. Premièrement, SHAFF s’appuie
sur les forêts pour quantifier l’influence de chaque sous-ensemble de variables, en fonction
de sa fréquence d’occurrence dans les chemins des arbres de la forêts. Ensuite, SHAFF
réalise un tirage d’importance de ces ensembles à partir des fréquences d’occurrence,
permettant ainsi de se concentrer sur les sous-ensembles de variables les plus influentes.
Le gain en temps de calcul est considérable, notamment dans le contexte de données
parcimonieuses. Deuxièmement, SHAFF généralise le principe du Sobol-MDA et introduit
la forêt projetée : les partitions de chaque arbre sont projetées sur le sous-espace engendré
par le sous-ensemble de variables considéré. Cette approche permet une estimation précise
et rapide des espérances conditionnelles, et donc d’améliorer significativement la précision
de l’estimation des indices de Shapley. Une implémentation dans le package shaff écrit
en R/C++ est disponible en ligne.
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4.3 Chapitre 4 : “SIRUS : ensemble de règles stable et interprétable
pour la classification”

Le Chapitre 4 décrit l’algorithme SIRUS (Stable and Interpretable RUle Set), c’est-à-dire
un ensemble de règles stable et interprétable, dans le cadre de la classification binaire. Le
principe général est d’extraire un ensemble de règles d’une forêt aléatoire. Chaque noeud
d’un arbre est construit par une séquence de coupures, et définit donc un hyperrectangle
dans l’espace d’entrée, c’est-à-dire une règle. Malgré les perturbations dans la construction
des arbres, il existe une certaine redondance des coupures dans les arbres de la forêt,
et donc les règles apparaissent avec une certaine fréquence. Plus cette fréquence est
élevée, et plus la règle représente une tendance forte et robuste dans les données. Un petit
ensemble de règle est donc extrait d’une forêt aléatoire avec un seuil sur la probabilité
estimée d’occurrence de chaque règle dans un arbre aléatoire. Ce principe clé permet de
stabiliser l’extraction de l’ensemble de règles, ce que nous démontrons théoriquement
et empiriquement. Finalement, les règles sont simplement moyennées pour générer les
prédictions du modèle. Une implémentation dans le package sirus écrit en R/C++ est
disponible sur le CRAN. Nous pouvons illustrer SIRUS sur le jeu de données Titanic en
prédisant la probabilité de survie ps d’un passager à partir d’informations comme le sexe,
l’âge, la classe de la cabine, le prix du ticket, et le nombre de proches à bord. SIRUS
produit alors le modèle suivant :

Average survival rate ps = 39%.

if sex is male then ps = 19% else ps = 74%

if 1st or 2nd class then ps = 56% else ps = 24%

if 1st or 2nd class
& sex is female

then ps = 95% else ps = 25%

if fare < 10.5£ then ps = 20% else ps = 50%

if no parents or
children aboard then ps = 35% else ps = 51%

if 2st or 3nd class
& sex is male

then ps = 14% else ps = 64%

if sex is male
& age ≥ 15

then ps = 16% else ps = 72%

Ainsi, le modèle produit par SIRUS prend la forme simple d’une liste de six règles qui
quantifie les facteurs favorisant la survie au naufrage du Titanic : les femmes, les enfants,
les familles, et les personnes riches ont été sauvés en priorité.
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4.4 Chapitre 5 : “Forêts aléatoires interprétables par extraction de
règles”

Le Chapitre 5 propose une extension de SIRUS au cas de la régression, aussi disponible
dans le package sirus. La difficulté majeure est de combiner les règles avec des poids pour
l’estimation plus fine d’une sortie continue, sans compromettre les bonnes propriétés de
stabilité de SIRUS, ni compliquer l’interprétation du modèle. Cette extension est possible
grâce à une combinaison linéaire des règles avec une pénalisation “ridge”, qui permet de
stabiliser l’estimation des coefficients. La conservation de la stabilité de SIRUS dans le cas
de la régression est montrée empiriquement via des expériences sur des jeux de données
réelles. Au plan théorique, il est possible de montrer la stabilité asymptotique de SIRUS
grâce à la convexité de la fonction de coût pénalisée utilisée.



Chapter 1

State of the art of interpretable learning
algorithms and random forests

Abstract
A literature review of interpretable learning algorithms is conducted in the context of industrial
applications. The first conclusion is that there is no consensus about the definition of interpretability
in the statistic and machine learning communities. However, we argue that minimum requirements
for interpretable methods can be defined with the following triptych: simplicity, stability, and
accuracy. Secondly, we break down interpretable learning algorithms in two categories: post-hoc
methods that post-treat black-box models, and interpretable models which have a simple enough
structure to directly grasp how inputs and outputs are related. All algorithms have flaws, especially
the accuracy for post-hoc methods and the stability for interpretable models. Throughout this thesis,
we will leverage random forests to improve interpretable learning algorithms both computationally
and theoretically. Therefore, we present the random forest algorithm along with the existing
mathematical theory.
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1.1 Introduction

Industrial context. The aeronautics industry manufactures aircraft parts using metallur-
gical processes of forging, casting, or machining, involving complex physical and chemical
phenomena to transform materials. In particular, this is the case for Safran Group, which
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designs propulsion systems and devices for aeronautics and aerospace. The control and
efficiency of these production processes are of critical importance for the final mechanical
properties of the produced parts. A manufacturing line can be summarized as a sequence
of transforming operations, controlled by a high number of input variables which define
the industrial process: temperatures, pressures, times, weights... At the end of the line,
quality tests are performed to check that each part is safe to be mounted on an aeronautic
system: the dimensions and cracks are controlled for example. The engineer objective is
to find the production conditions generating defects, in order to avoid them thanks to a
better setting of the input variables, and thus to improve the efficiency of the production
process. Because of the complexity of these processes, they can involve hundreds of
variables. Therefore, an approach based on algorithms fed with the data collected along
the manufacturing line, has a critical impact in practice. Indeed, the retrieved information
enables to infer a link between the manufacturing conditions and the resulting quality at
the end of the line, and to ultimately improve the process efficiency. However, any decision
impacting the production process has long-term and heavy consequences, and therefore
cannot simply rely on a blind stochastic modeling. As a matter of fact, a deep physical
understanding of the forces in action is required, and this makes black-box algorithms
inappropriate. In a word, models have to be interpretable, i.e., provide an understanding
of the internal mechanisms that build a relation between inputs and outputs, to provide
insights to guide the physical analysis. They are mainly two ways to obtain interpretable
learning algorithms: post-treat a black-box model, for example using variable importance,
or initially constrain the algorithm to have a simple structure, such that the relation between
inputs and outputs is clear (Guidotti et al., 2018; Murdoch et al., 2019). Then, the detected
patterns are deepened by experts to understand the underlying physical phenomena, and
deduce the modifications to improve the production process.

Interpretability of learning algorithms is also useful for the design of complex industrial
systems. Prior to the production, the design phase is a major step, which aims at optimiz-
ing the aeronautic part shapes and the selected materials in order to reach the targeted
performances. The design phase is intensively based on numerical simulations of the phys-
ical phenomena involved in real aeronautic systems. Indeed, the engineer objective is to
optimize outputs of interest, such as mechanical resistance or lifetime, when the part shape
varies in a parametric space. The numerical codes involved are especially computationally
costly, and a single simulation can take several hours. A standard approach is to perform a
limited number of computations, and then fit a statistical learning algorithm to generalize
the relation between the part shapes and the output performance. The understanding of the
influence of the inputs on the output is critical to achieve an efficient design. Therefore,
interpretability of learning algorithms is also essential for the design of aeronautic systems.
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Interpretability. Besides the aeronautics industry, let us mention healthcare, another
domain where interpretability is essential (Letham et al., 2015). Indeed, a doctor has
to understand why an algorithm recommends a given treatment before he can actually
prescribe it, for both practical efficiency and ethical reasons. As opposed to the case of
industrial manufacturing, the prediction is of primary importance here. Interpretability
enables to validate and trust the treatment, which is necessary to apply it in practice.
These examples highlight how interpretability is critical for many applications. More
generally, state-of-the-art learning algorithms, typically tree ensembles or neural networks,
are well-known for their remarkable predictive performance. However, this high accuracy
comes at the price of complex prediction mechanisms: a large number of operations are
computed for a given prediction. Because of this complexity, learning algorithms are often
considered as black boxes. Therefore, interpretability is a property which is both essential
and difficult to fulfill. In the following paragraph, we first provide a better characterization
of this concept of interpretability.

As stated in Rüping (2006), Lipton (2016), Doshi-Velez and Kim (2017), or Murdoch
et al. (2019), to date, there is no agreement in statistics and machine learning communities
about a rigorous definition of interpretability. There are multiple concepts behind it, many
different types of methods, and a strong dependence on the area of application and the
audience. Therefore, it is very difficult to provide a generic definition of interpretability
valid for all kinds of domains. The examples above show the diversity of applications
where interpretability is required. In the healthcare example, we seek to interpret a
given prediction prior to its application. In the manufacturing example, the final goal of
interpretability is very different: we want to understand how inputs are related to a system
output, in order to change the input settings to influence the output values.

Despite the lack of definition of interpretability, we argue that it is possible to define
minimum requirements for interpretability through the triptych “simplicity, stability, and
accuracy”, in line with the framework recently proposed by Yu and Kumbier (2019).
Indeed, in order to grasp how inputs influence the output, their relation has to be simple.
The notion of simplicity is implied whenever interpretability is invoked (e.g., Rüping,
2006; Freitas, 2014; Letham, 2015; Letham et al., 2015; Lipton, 2016; Ribeiro et al., 2016;
Murdoch et al., 2019) and essentially refers to the number of operations performed in
the prediction mechanism of an interpretable model, or the complexity of the output of
a post-processing method. Murdoch et al. (2019) defines several properties to discuss
simplicity more precisely in the case of interpretable models: sparsity, simulatability,
and modularity. A sparse model is based only on a small fraction of the input variables.
A model is simulatable if a human can reproduce the entire prediction mechanism by
hand. This is a strong restriction on the model shape, and simulatable models achieve a
good predictivity only if the relation in the data is quite simple, which is not the case for
image recognition for example. A model is modular if a portion of it can be interpreted
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independently. Modularity is a weaker constraint on the model form than sparsity or
simulatability, but modular models are not as easy to understand. Secondly, in the statistical
learning theory, stability of supervised algorithms refers to the stability of predictions
(Vapnik, 1998). In particular, Rogers and Wagner (1978), Devroye and Wagner (1979),
and Bousquet and Elisseeff (2002) show that stability and predictive accuracy are closely
connected. When discussing interpretability, stability has a broader sense according
to Yu (2013) and is another fundamental requirement for interpretability: conclusions
of a statistical analysis have to be robust to small data perturbations to be meaningful.
Indeed, a specific analysis is likely to be run multiple times, eventually adding a small
new batch of data, and an interpretable algorithm should be insensitive to such minor
modifications. Otherwise, unstable methods provide us with a partial and arbitrary analysis
of the underlying phenomena, and arouse distrust of the domain experts. Finally, if the
predictive accuracy of an interpretable model is significantly lower than the one of a
state-of-the-art black-box algorithm, or if a post-processing method gives bias results,
we clearly miss strong patterns in the data and will obtain misleading conclusions, as
explained in Breiman (2001b). For example, the trivial model that outputs the empirical
mean of the observations for any input is simple, stable, but brings in most cases no useful
information. Thus, we add a good accuracy as an essential requirement for interpretability.

Outline. There are two main approaches to obtain interpretable algorithms, as stated
above: post-treat a black-box model to understand its prediction mechanism, or initially
constrain the algorithm to have a simple structure relating inputs to the output in a clear
fashion (Guidotti et al., 2018; Murdoch et al., 2019). In the following sections, we review
the state-of-the-art interpretable algorithms. Firstly, Section 1.2 is dedicated to post-hoc
interpretable methods, typically variable importance measures or local approximations.
Secondly, we present intrinsically interpretable models in Section 1.3, essentially addi-
tive models, decision trees, and rule learning. Both post-hoc methods and interpretable
models have flaws with respect to the interpretability requirements: simplicity, stability,
and accuracy. Indeed, post-hoc methods are often inaccurate when input variables are
dependent, while interpretable models are often unstable because of the strong constraints
on the model shape. All in all, we will see that the structure and stability of random
forests can be leveraged to improve interpretable methods. Therefore, we present the
random forest algorithm, as well as the associated theory in Section 1.4. Finally, Section
1.5 provides a summary of the contributions of each chapter of the thesis. Throughout
this chapter, we use the standard supervised learning framework, with a real input vector
X = (X (1),X (2), . . . ,X (p)) ∈Rp of dimension p, and an output Y , which is real and contin-
uous in the regression case, and categorical for classification problems. Additionally, we
have access to a dataset Dn = {(X1,Y1), . . . ,(Xn,Yn)} of n independent pairs of random
variables, distributed as (X,Y ), used to train the learning algorithm of interest. For the sake
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of clarity, we restrict the mathematical formulation of the following methods to the case
of numerical variables, but most of the presented algorithms can also handle categorical
inputs.

1.2 Post-hoc Interpretability

Algorithms for post-hoc interpretability proceed in two steps: a black-box model is first
fit with the available data, and then a post-processing method is used to understand the
prediction mechanism. We can break down these methods in two categories: global and
local interpretations. Global interpretations analyze the learning algorithm over the full
input space, whereas local interpretations focus on a given prediction. Global approaches
are presented in the following three subsections: visualizations are detailed in Subsection
1.2.1, variable importance in Subsection 1.2.2, and global sensitivity analysis in Subsection
1.2.3. Finally, local methods are presented in Subsection 1.2.4.

1.2.1 Visualization Methods

It is obviously not possible to visualize the relation learned by a black-box algorithm
between the output and more than two inputs. However, we can compute the output
mean for a fixed value x( j) ∈R of a single input X ( j) when other inputs vary. Then, this
can be repeated for many values x( j) of the fixed input to give a dependence plot, which
captures the mean dependence between the output and the considered input variable X ( j).
Initially, Friedman (2001) introduced Partial Dependence Plots (PDP), which compute
the output means with marginal distributions. The estimation is quite easy with such
approach, but also involves a strong approximation since variable dependence is ignored.
An efficient implementation pdp from Greenwell (2017) is available online on CRAN. More
recently, Accumulated Local Effects (ALE) (Apley and Zhu, 2020) improve over PDP
using conditional distributions, and an implementation is also available in the R package
ALEPlot.

Partial Dependence Plots. Partial dependence plots estimate the output mean with
respect to the marginal distributions, that is

E[m(X(− j),x( j))],

where X(− j) is the vector X without the j-th component. This output mean is displayed
in the plot versus x( j) to define the PDP of variable X ( j). The quantity above defines the
population version of the PDP. In practice, we use a black-box model to estimate m(X) over
the full input space, and generate predictions that are averaged to compute the integrated
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values involved in the PDP. The simplification of using marginal distribution facilitates the
output mean estimation. However, this univariate function does not take into consideration
input variable dependence, which is often a strong approximation.

Accumulated Local Effects. When the regression function m is differentiable, ALE for
the j-th input variable first compute the mean local effect ∂m(X)

∂X ( j) of X ( j) on the regression
function. Then, ALE accumulate this effect across all values of X ( j) up to the point of
interest z, that is

ALE( j)(z) =
∫ z

z( j)
min

E
[∂m(X)

∂X ( j)
|X ( j) = x( j)]dx( j),

where z( j)
min is the lower bound of the support of X ( j). When m is not differentiable, the ALE

definition can be extended using a discretization of the input space. In practice, a black-box
model is fit to estimate ALE. Notice that it is also possible to define second order ALE to
measure variable interactions (Apley and Zhu, 2020). This approach properly takes into
account the dependence between input features, since expectations are taken with respect
to the conditional distributions. The drawback of ALE is that the conditional expectations
can be difficult to estimate, even in moderate dimension. Figure 1.1 compares PDP and
ALE for the Bike-Sharing dataset, where the hourly count of bike rental in Washington
D.C. is recorded with weather and seasonal information. We observe that the bike rental
peaks around 26 degree Celsius according to the ALE, whereas the maximum is reached
for more than 40 degree Celsius in the PDP. Common sense clearly invalidates the PDP
interpretation in this case. This strong bias comes from the integration over the marginal
distributions. Indeed, since weather and seasonal information are strongly correlated, PDP
integrate over regions of the input space with almost no data, where the black-box model
arbitrarily extrapolates.

1.2.2 Variable Importance

Variable importance analysis is the most widely used post-hoc approach to interpret
statistical learning algorithms. The goal is to rank all input variables by decreasing order
of influence in the prediction process of the black-box model. As highlighted by Genuer
et al. (2010), there are essentially two final objectives of a variable importance analysis.
A first goal is to reduce the problem dimension by the selection of a small number of
input variables with a maximized predictive accuracy. A second objective is to detect and
rank all influential variables to focus on for further exploration with domain experts. We
illustrate the difference between these two goals by considering the case of two highly
correlated and influential variables. Since these two variables contain the same information,
one should be removed for the first objective, whereas both should be kept for the second
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Fig. 1.1 Comparison of ALE and PDP for the Bike-Sharing dataset (Apley and Zhu, 2020).

objective as they may represent distinct quantities associated to different interpretations
for domain experts. Many supervised learning methods have specific global variable
importance measures, typically linear models, tree ensembles, or neural networks. Some
other importance measures are model agnostic since they can be applied to any black-
box predictor—permutation measures for example. Also notice that variable importance
measures often have an empirical definition, as opposed to most other post-hoc methods,
which first define the theoretical targeted quantities and build estimates in a second step.

Tree ensembles. There are essentially two measures of variable importance for tree
ensembles. The first one is the Mean Decrease Accuracy (MDA), defined by Breiman
(2001a) for random forests: the values of a given variable are permuted, then predictions
are computed for these perturbed data points with the corresponding accuracy. The
difference between this degraded accuracy and the original one gives the importance of the
variable. A second approach is the Mean Decrease Impurity, based on the total decrease
in node impurity from splitting on a given variable in a single tree. The MDI is defined
for all kind of tree ensembles: the tree impurity decrease is averaged over all trees for
random forests (Breiman, 2003), whereas it is sum across all boosting iterations for boosted
ensembles (Friedman, 2001; Chen and Guestrin, 2016). We will elaborate more about these
importance measure definitions and properties in the case of random forests in Section 1.4.
We simply mention that these two measures behave poorly when the correlation within
input variables is high (Strobl et al., 2007; Archer and Kimes, 2008). Gregorutti et al.
(2017) alleviate this issue by combining random forests and the MDA with the Recursive
Feature Elimination (RFE) algorithm to perform backward variable selection.
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Secondly, several algorithms tackle the problem of detecting high-order interactions
in tree ensembles, initially Random Intersection Trees (Shah and Meinshausen, 2014,
RIT), and more recently iterative random forests (Basu et al., 2018, iRF) that combines
ideas from RIT and RFE. Signed iterative Random Forests (Kumbier et al., 2018) enriches
high-order feature interactions with a thresholding behavior for each variable, to indicate
if rather low or high values are of interest.

Finally, since variable importance measures are quite strongly biased when input
variables are correlated, several approaches were recently developed to improve importance
measures in such a setting (Mentch and Hooker, 2016; Candes et al., 2016). The main
principle is to retrain the learning algorithm by removing variables from the training data,
and compare if predictions differ from the original model with all input variables. Mentch
and Hooker (2016) tackle the specific case of random forests. Proving the asymptotic
normality of forest predictions, they design statistical tests to detect if predictions are
significantly modified by the removal of given input variables. On the other hand, the
approach of Candes et al. (2016) is model agnostic. The idea is to add noisy variables that
are independent of the output conditional on the other inputs to detect if the importance
measures of the original input variables are significant.

Neural networks. Global variable importance has received less attention for neural
networks than for tree ensembles, as opposed to local importance measures as we will see
in the following subsection. This fact has a straightforward explanation. Indeed, neural
networks are mainly applied to data with spatial structures, typically images, where the
global importance of a fixed pixel over the full training data is not really meaningful.
For example, to predict the presence of a given object in an image, the importance of a
fixed pixel completely relies on the object position. On the other hand, a local importance
measure identifies the image areas responsible for the prediction, and is clearly a more
relevant approach than global measures. However, we can mention a few global importance
measures for neural networks, with the approach from Erhan et al. (2009), which identifies
inputs maximizing the activation of each layer of the neural network. More recently,
Ish-Horowicz et al. (2019) extend RATE (Crawford et al., 2019, RelATive cEntrality) to
the Bayesian deep learning setting. The main idea is to compute the projection of the
function learned by the network onto the input observation matrix, where such a projection
is called the effect size analog β̃ . If β̃ (− j) is the vector β̃ without the j-th component,
RATE is defined as the Kullback-Leibler divergence of the distribution of β̃ (− j) and the
distribution of β̃ (− j) conditional on β̃ ( j), which provides a global importance measure for
X ( j). Finally, Kim et al. (2018) design an interesting approach for global interpretations
of neural networks with Concept Activation Vectors (CAV). Instead of estimating an
importance measure for each input, the goal is to identify the images associated to a given
concept. Figure 1.2 provides an example of CAV, where the left panel displays images of
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Fig. 1.2 The most and least similar pictures of stripes using “CEO” concept (left), and
neckties using “model women” concept (right) (Kim et al., 2018).

stripes which are the most and the least related to the “CEO” concept. The most similar
images are pinstripes, typically related to the suit or shirt of a CEO.

1.2.3 Global Sensitivity Analysis

Global sensitivity analysis (GSA) is the study of uncertainties in a system. In particular, the
main goal of GSA is to determine how the uncertainty in the model output is apportioned
to the uncertainty of the different inputs. Such analyses enable us to identify variables that
strongly influence the output, and those with no influence. For detailed reviews of GSA,
we refer to Iooss and Lemaître (2015) and Ghanem et al. (2017). Thus, sensitivity analysis
is close to variable importance for learning algorithms. However, this last type of methods
usually have an algorithmic definition, as opposed to sensitivity analysis, where importance
measures are first formally defined based on the data distribution. Then, in a second step,
the theoretical quantities are estimated, usually using models and Monte-Carlo methods.
One of the main importance measures is Sobol indices based on variance decomposition
(Sobol, 1993; Saltelli, 2002), and variances of the output expectation conditional on subsets
of input variables. It enables us to quantify the importance of each input variable as well as
their interactions for any black-box model when inputs are independent. However, in the
dependent case, the interpretation of Sobol indices becomes difficult. Instead, we rather
use Shapley effects in such settings, which equitably allocate the output variance due to
dependence and interactions across all input variables (Owen, 2014; Song et al., 2016;
Iooss and Prieur, 2017).

Sobol Indices. Multiple Sobol indices exist to measure the main effect or the total effect
of a given variable, as well as the interaction between two variables (Sobol, 1993; Saltelli,
2002). We first consider the case where X (1), . . . ,X (p) are independent, which enables a
clear interpretation of Sobol indices. For j ∈ {1, . . . , p}, the first order Sobol index S( j)
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measures the impact on the output of a given variable X ( j) alone, and is formally defined as

S( j) =
V[E[Y |X ( j)]]

V(Y )
.

Next, the Sobol index measures the total contribution of X ( j) to the output variance,
including the interactions of X ( j) with all other variables, that is

ST ( j) =
E[V[m(X)|X(− j)]]

V(Y )
,

where X(− j) is the random vector X without the j-th component. We also define second
order Sobol indices S( j,k) for k ∈ {1, . . . , p} as

S( j,k) =
V[E[Y |X ( j),X (k)]]

V(Y )
−S( j)−S(k),

which measure the contribution of the interaction of X ( j) and X (k) to the output variance.
It is obviously possible to extend such definition to higher-order Sobol indices. From the
ANOVA decomposition (Sobol, 1993; Chastaing et al., 2012), we have

p

∑
j=1

S( j)+∑
j,k

S( j,k)+ ∑
j,k,ℓ

S( j,k,ℓ)+ . . .= ∑
U⊂{1,...,p}

S(U) = 1, (1.2.1)

and

ST ( j) = S( j)+
p

∑
k=1

S( j,k)+∑
k,ℓ

S( j,k,ℓ)+ . . .= ∑
U⊂{1,...,p}\{ j}

S(U∪{ j}).

When input variables are dependent, the ANOVA decomposition does not hold anymore
in general, and we therefore loose the properties of equation (1.2.1) which states that the
sum of Sobol indices of all orders is 1. It is also not possible to separate contributions
due to interactions from dependence, and higher-order Sobol indices become meaningless.
However, total Sobol indices preserve a useful interpretation in the dependent setting.
Indeed, the total Sobol index of variable X ( j) gives the proportion of output variance lost
when X ( j) is removed from the model. Mara et al. (2015) also introduce the full total Sobol
index of variable X ( j), which includes contributions due to the dependence and interactions
of X ( j) with other inputs. For example, let us consider the case where X ( j) is not directly
involved in the regression function m, but is strongly correlated to another input, which has
a strong influence on m. In such a setting, ST ( j) = 0 because no information on m is lost
by removing X ( j) from the data. However, we have ST ( j)

f ull > 0, because of the correlation
of X ( j) with another influential variable.
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Shapley effects. In the case where inputs are dependent, Shapley effects are rather
used instead of Sobol indices, as they equitably allocate the mutual contributions due to
dependence and interactions to each individual input (Owen, 2014; Song et al., 2016; Iooss
and Prieur, 2017). Shapley values were originally defined in economics and game theory
(Shapley, 1953) to solve the problem of attributing the value produced by a joint team
to its individual members. The main idea is to measure the difference of produced value
between a subset of the team and the same subteam with an additional member. For a given
member, this difference is averaged over all possible subteams and gives his Shapley value.
Recently, Owen (2014) adapted Shapley values to the problem of variable importance in
statistical learning, where an input variable plays the role of a member of the team, and the
produced value is the explained output variance. In this context, Shapley values are now
called Shapley effects, and are extensively used to interpret both tree ensembles and neural
networks. To formalize Shapley effects, we denote by X(U) the subvector with only the
components in U ⊂ {1, . . . , p}. Then, the Shapley effect of the j-th variable is defined by

Sh( j) = ∑
U⊂{1,...,p}\{ j}

1
p

(
p−1
|U |

)−1V[E[Y |X(U∪{ j})]]−V[E[Y |X(U)]]

V[Y ]
.

In other words, the Shapley effect of X ( j) is the additional output explained variance when
j is added to a subset U ⊂ {1, . . . , p}, averaged over all possible subsets. The variance
difference is averaged for a given size of U through the combinatorial weight, and then
the average is taken over all U sizes through the term 1/p. Observe that the sum has 2p−1

terms, and each of them requires to estimate V[E[Y |X(U)]], which is computationally costly
and difficult to estimate accurately.

In the literature, efficient strategies have been developed to handle these two issues.
They all have drawbacks: they are either fast but with a limited accuracy, or accurate but
computationally costly. The computational issue of Shapley algorithm is solved using
Monte-Carlo methods in general (Song et al., 2016; Covert et al., 2020; Williamson
and Feng, 2020). For the second issue of conditional expectation estimates, two main
approaches exist: train one model for each selected subset of variables (accurate but
computationally costly) (Williamson and Feng, 2020), or train a single model once with
all input variables and use greedy heuristics to derive the conditional expectations (fast
but limited accuracy). In the latter case, existing algorithms estimate the conditional
expectations with a quite strong bias when input variables are dependent. More precisely,
Covert et al. (2020, SAGE) simply replace the conditional expectations by the marginal
distributions, and Broto et al. (2020) leverage k-nearest neighbors to approximate sampling
from the conditional distributions. Besides, efficient algorithms exist in the specific setting
where it is possible to draw samples from the conditional distributions of the inputs (Song
et al., 2016; Aas et al., 2019; Broto et al., 2020).
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Fig. 1.3 SHAP values for the UCI dataset “Boston Housing” (Lundberg and Lee, 2017).

1.2.4 Local Interpretability

Local interpretations focus on the explanation of a single prediction. A first approach is to
adapt variable importance measures locally to give the contribution of each input variable
to a given prediction. Secondly, it is also possible to derive simple local approximations of
a black-box model around a given input point.

Local variable importance. Shapley effects are naturally adapted by Lundberg and Lee
(2017) to local importance measures, called SHAP values, by replacing the value function
as follows:

SHAP( j)(x) = ∑
U⊂{1,...,p}\{ j}

1
p

(
p−1
|U |

)−1(
E[Y |X(U∪{ j}) = x(U∪{ j})]−E[Y |X(U) = x(U)]

)
,

which establishes how the prediction at the input point x is shifted by variable X ( j) towards
higher or lower values. This is illustrated in Figure 1.3, where the considered input point
is displayed on the vertical axis along variables, and blue contributions indicates that the
variable reduces the prediction value, whereas red contributions indicate an increase of
the prediction. Several algorithms were developed to estimate SHAP values. Initially,
Lundberg and Lee (2017, KernelSHAP) introduce an efficient trick to estimate SHAP
values by solving a least-square regression problem. Indeed, if I(U) is the binary vector of
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dimension p where the j-th component takes the value 1 if j ∈U and 0 otherwise, SHAP
values are the minimum in β of the following cost function:

ℓ(β ,x) = ∑
U⊂{1,...,p}

w(U)(E[Y |X(U) = x(U)]−β
T I(U))2,

where the weights w(U) are given by

w(U) =
p−1( p

|U |
)
|U |(p−|U |)

,

and the coefficient vector β is constrained to have its components sum to E[Y |X = x].
Additionally, to circumvent the exponential computational complexity with p, KernelSHAP
adapts the Monte-Carlo sampling of the variable subsets U ⊂ {1, . . . , p} from Song et al.
(2016) to estimate the above cost function. The value function is estimated simply using
the marginal distribution of the inputs, which is a quite strong approximation when
input variables are dependent. Next, Covert and Lee (2020) improve KernelSHAP by
mitigating the bias and introducing a variance reduction technique with paired sampling:
when a given subset U is sampled, the complementary set {1, . . . , p}\U is also selected.
Finally, Lundberg et al. (2018) introduce a fast algorithm to compute SHAP values for tree
ensembles. The principle is to modify the tree predictions to estimate E[Y |X(U)] instead of
E[Y |X = x], leaving the initial trees untouched. More precisely, the recursive algorithm
from Lundberg et al. (2018) works as follows: the query point x is dropped down each tree,
but when a split on a variable outside of U is hit, x is sent to both the left and right children
nodes. Therefore, x falls in multiple terminal cells of each tree. The final tree prediction is
the weighted average of the cell outputs, where the weight associated to a terminal leaf A
is given by an estimate of P(X ∈ A|X(U) = x(U)), defined as the product of the empirical
probabilities to choose the side that leads to A at each split on a variable outside of U
in the path of the original tree. Notice that these weights are properly estimated by such
procedure only if the components of X are independent. Therefore, the algorithm from
Lundberg et al. (2018) gives biased predictions in a correlated setting, as noticed in Aas
et al. (2019).

Several local variable importance measures were specifically developed for neural
networks. DeepLIFT (Shrikumar et al., 2017) is a method that decomposes the output
prediction of a neural network to every input variable by comparing for each neuron the
actual activation to a reference activation. Saliency maps (Simonyan et al., 2013) are a
method to explain the classification of an image. The class output gradient is computed
at a given input image to highlight the areas of the image that are discriminative for the
class prediction, as shown in Figure 1.4. Finally, Vaswani et al. (2017) introduce attention
methods for neural networks. The main principle is to learn an attention function, which
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Fig. 1.4 Exemple of Saliency maps (Simonyan et al., 2013).

can provide an attention score for each input of the network. For example in image
recognition, the influence of each image area on the prediction can be computed.

Local model approximation. LIME (Ribeiro et al., 2016) is a popular algorithm to
interpret black-box algorithms with local approximations. Indeed, LIME learns a local
linear model around a given point in the input space, for any black-box classifier and
any type of data, especially text or image data. An interpretable representation for text
classification indicates the absence or presence of a word, and the local linear model assigns
weights to the present words to explain the prediction. Similarly for image classification,
an interpretable representation indicates the presence or absence of a continuous patch
of pixels, a super-pixel, that alone makes sense in the image. Figure 1.5 provides an
example of such application of LIME. The picture on the left has a positive probability
to be classified as an electric guitar, acoustic guitar, or a Labrador, and LIME indicates
which areas of the picture contribute to each class prediction. Recently, Mardaoui and
Garreau (2021) conducted a theoretical analysis of LIME for text data, and prove that
LIME converges towards meaningful explanations. However, Alvarez-Melis and Jaakkola
(2018) show that LIME explanations vary considerably for some neighboring inputs in
practice, and then violates the stability principle. They also show that other post-hoc local
interpretability algorithms suffer from this lack of stability, Saliency maps (Simonyan et al.,
2013) for example.

1.3 Interpretable Models

Another approach for interpretable machine learning is to choose a model belonging to a
class of functions with a simple structure that makes it intrinsically interpretable in the first
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Fig. 1.5 Example of LIME for image classification (Ribeiro et al., 2016).

place. We recall that interpretability does not have a precise definition, and we propose
the following triptych as minimum requirements for interpretability: simplicity, stability,
and accuracy. In the case of interpretable models, simplicity is satisfied by construction,
and does not prevent to reach a good accuracy for a wide range of applications. On the
other hand, stability is usually the main flaw of interpretable models because of their
simple structure. This phenomenon is characterized as the “Rashomon effect” by Breiman
(2001b): within a class of simple models, there are many equally good models, and one is
arbitrarily picked by the algorithm heuristic. When data is perturbed, the returned model
changes, which explains the unstable behavior of interpretable models.

Overall, there are mainly four types of intrinsically interpretable algorithms: parametric
models, additive models, decision trees, and rule models. In our applications, systems are
too complex to use parametric models and we mainly focus on the three other model types.
In this section, we consider simple model classes, and focus on the estimation problem
to produce stable and predictive models. Finally, let us also briefly mention distillation
methods, an approach to improve the accuracy of interpretable models. Indeed, the goal
is to use a black-box model to train a simple model constrained to behave as closely as
possible to the black-box teacher, which can simulate many new observations to facilitate
the construction of the interpretable model (Tan et al., 2018a,b).

1.3.1 Additive Models

Additive models assume that input variables do not have interactions. In other words, the
regression function can be expressed as a sum of univariate functions of a single input
variable. The most popular additive model is obviously linear regression, presented in the
following paragraph. Next, we introduce generalized additive models, initially formalized
by Stone (1985) and Hastie and Tibshirani (1986).

Linear models. In small dimension, a linear model is considered interpretable since the
output is a linear combination of the inputs. Indeed, the output estimate mn(x) at the new
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query point x is given by

mn(x) =
p

∑
j=1

β̂ jx( j),

where the basic approach is to compute the coefficient β̂ j by minimizing the square-
loss. However, when inputs are highly correlated, the estimate can be unstable, which
undermines the model interpretability. In high dimension, it is possible to recover a simple
structure using sparse models such as the Lasso (Tibshirani, 1996). The objective function
is penalized to shrink many coefficients to zero, excluding some variables from the model.
The objective function ℓ(β ) of the Lasso is defined by

ℓ(β ) = ||Y −Xβ ||22 +λ ||β ||1,

where the parameter λ controls the strength of the penalty, and is tuned by cross-validation.
Importantly, sparse models can be unstable since a small perturbation in the input data
can lead to a quite different variable selection when inputs are correlated (Meinshausen
and Bühlmann, 2010; Hebiri and Lederer, 2012). The natural way to stabilize the Lasso is
to replace the L1-regularization by L2-regularization, known as ridge regression (Hoerl
and Kennard, 1970). However, such type of penalty does not produce sparse models, and
simplicity is lost in high dimension. Instead, Bach (2008) introduced BoLasso to stabilize
the Lasso using bootstrap aggregation: the lasso is fitted many times on bootstrapped
samples of the training data, and only the variables selected with a high frequency are kept
in the final model. This stability selection principle was later generalized by Meinshausen
and Bühlmann (2010). Recently, Lim and Yu (2016) also proposed to stabilize the Lasso
with a new criterion to tune the penalization, which leads to a more severe shrinkage than
the original version of Tibshirani (1996). All in all, several algorithms enable to build
simple and stable linear models. However, by construction, such an approach is accurate
only in the restrictive case of a linear relation between input variables and the output, which
is not the case in general, and in particular in the applications of interest in this thesis.

Generalized additive models (GAM). GAM were initially formalized by Stone (1985)
and Hastie and Tibshirani (1986) as models of the form

Y = α +
p

∑
j=1

m j(X ( j))+ ε,

where α is the intercept, m j are real-valued univariate functions, and ε is an independent
noise. Each of the functions m j can be plotted alone to study the impact of a given input
on the output. Because of this modularity property, GAM are considered interpretable.
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Although additivity is a quite restrictive assumption on the data distribution, GAM exhibit
good practical performance on a wide range of problems (Caruana et al., 2015), especially
in high-dimensional settings. We refer to Hastie (2017) for a review of generalized additive
models. In this thesis, we choose to focus on tree-based models and rule learning, but
not to explore additive models deeper. Indeed, linear models are not suited for non-linear
patterns by definition. Besides, GAM are more complex than rule models to interpret, and
are therefore less appropriate for our industrial applications.

A first approach to fit GAM is to use cubic splines (Wahba, 1990) to minimize a cost
function of the form

ℓ(α, f1, . . . , f j) =
1
n
||Y −α −

p

∑
j=1

f j(X ( j))||22 +
p

∑
j=1

λ j

∫
f ′′j (t)

2dt,

where f j are the spline estimates of the m j (Wood, 2003). In order to have a unique
solution, the intercept is defined as the empirical mean of Y . Then, the f j are fit using the
backfitting algorithm: the f j are repeatedly optimized one by one in turn until convergence.
The penalty is usually tuned using cross-validation.

In a setting with a large number of predictors, the previous method is likely to perform
poorly. Therefore, we rather use algorithms leading to sparse solutions, for example the
COSSO procedure (Lin et al., 2006, COmponent Selection and Smoothing Operator),
where the objective function becomes

ℓ(α, f1, . . . , f j) =
1
n
||Y −α −

p

∑
j=1

f j(X ( j))||22 +λ

p

∑
j=1

|| f j||H ,

and the norm ||.||H is defined as

|| f j||2H =
(∫

f j(t)dt
)2

+
(∫

f ′j(t)dt
)2

+
∫

f ′′2j (t)dt.

Storlie et al. (2011) develop the ACOSSO extension (Adaptive COSSO) with a distinct pe-
nalization weight for each model component j. Also notice that these spline algorithms can
be extended with higher-order interaction terms of the form m j,k(X ( j),X (k)) for example.

More recently, other learning algorithms were used to fit GAM, especially boosted tree
ensembles, which often outperform splines according to Lou et al. (2012) and Chang et al.
(2020). This latter work also mention that the learned patterns can differ quite strongly
across the different methods used to fit GAM, which is problematic with respect to the
stability requirement for interpretability. Besides, neural networks can also be used for
GAM, as explored in Agarwal et al. (2020), but without showing a substantial gain of
predictive accuracy.
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X (2) < 1.2 X (2) ≥ 1.2

X (1) < 6.2
X (1) ≥ 6.2

X (5) < 0.3
X (5) ≥ 0.3

Fig. 1.6 Example of a decision tree of depth 2 for p = 5.

1.3.2 Decision Trees

Decision trees are supervised learning algorithms, which follow the structure of a binary
tree to partition the input space. Because of this specific structure, the tree predictive
process is especially easy to compute by hand, and trees are therefore good candidates
when interpretability is required. Trees were made popular by Breiman et al. (1984) with
CART for both regression and classification problems, and Quinlan (1986) with ID3 for
classification. These two algorithms differ in terms of splitting and stopping criteria, as
ID3 is based on entropy. Here, we focus on CART, and first present the regression case.

The main principle of decision trees is to recursively partition the input space with splits
of the form X (1) < z, where z is a real threshold—see Figure 1.6, using the training data Dn.
The observations of a given tree node are separated in two children nodes with a split of
the above form, and this is recursively repeated down the tree. The tree growing is stopped
such that all terminal leaves contain at least a number min_node_size of observations, an
hyperparameter of the algorithm. A fully grown tree is likely to strongly overfit the data,
and a pruning procedure (Esposito et al., 1997) is usually applied after the tree growing to
removed non-significant splits, identified by cross-validation. To compute a prediction for
a new query point x ∈R, we first drop x down the tree until it reaches a terminal leaf. Then,
the tree estimate mn(x) is the average of the Yi for the training observations belonging to
the same terminal leaf, that is

mn(x) =
∑

n
i=1Yi1Xi∈An(x)

∑
n
i=11Xi∈An(x)

,

where An(x) is the terminal leaf of the tree where x falls. Overall, a decision tree forms
a piecewise constant estimate, as shown in Figure 1.7. Also notice that CART natively
handles categorical variables with splits of the form X (1) ∈ {a,b}, if a and b are categorical
values that X (1) can take.
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The tree is constructed node by node in a greedy fashion using Dn. Each split selects a
variable and a threshold to maximize the CART splitting criterion, which measures the
decrease of output variance between the parent node and the children nodes. The formal
definition for a node A ⊂Rp, a variable X ( j), and a threshold z ∈R, is given by

Ln(A, j,z) def
=

1
Nn(A)

n

∑
i=1

(Yi −Y A)
21Xi∈A

− 1
Nn(A)

n

∑
i=1

(
Yi −Y AL1X ( j)

i <z
−Y AR1X ( j)

i ≥z

)2
1Xi∈A,

(1.3.1)

where Y A is the average of the Yi’s such that Xi ∈ A, Nn(A) is the number of data points Xi

falling into A, AL the left child node, and AR the right child node, i.e.,

AL
def
= {x ∈ A : x( j) < z}, AR

def
= {x ∈ A : x( j) ≥ z}.

Thus, the selected split ( jA,zA) at the node A of the tree is defined as

( jA,zA) = argmax
j,z

Ln(A, j,z).

CART also handles classification problems, where the output Y takes categorical values.
In this case, the prediction process and the splitting criterion are adapted. The prediction
for a new query point x is the most represented class among the training points which fall
in the same terminal leaf as x. Instead of the CART splitting criterion, the Gini index is
used. We let K be the number of possible values taken by Y , and denote by p̂n,k(A) the
empirical probability that a point belonging to node A is of class k. Then, the Gini index is
defined as

LGini,n(A, j,z) =−
K

∑
k=1

p̂n,k(A)2 +
Nn(AL)

Nn(A)

K

∑
k=1

p̂n,k(AL)
2 +

Nn(AR)

Nn(A)

K

∑
k=1

p̂n,k(AR)
2.

Breiman (2001b, page 206) observes that decision trees are unstable: “if the training
set is perturbed only slightly, say by removing a random 2–3% of the data, I can get a tree
quite different from the original”. He claims that stabilizing the structure of interpretable
models is impossible because of what he called the “Rashomon effect”: within a class
of models, there is a high number of equally good ones. Therefore one cannot expect
uniqueness. In particular, there exist many different trees with comparable predictive
power for a given dataset. CART is a greedy heuristic, generating an arbitrary good model,
unstable by construction.



36 State of the art of interpretable learning algorithms and random forests

Fig. 1.7 Example of a decision tree and the associated estimated function for p = 2
(Friedman et al., 2001).

1.3.3 Rule Models

Definitions and origins. Rule learning can be traced back to 1969 with Michalski’s AQ
system (Michalski, 1969), and was a very active research area in the 1980s and 1990s.
A rule learning algorithm takes the form of a collection of rules. Each rule is an if-then
statement: if a hard condition on the input variables is satisfied, it implies a given value
for the output. A rule can also be seen as a hypercube in the input parameter space with a
constant output, and typically takes the following form:

If

{
X (1) < 1.12

& X (3) ≥ 0.7
then Ŷ = 0.18 .

Originally, rule learning algorithms were mostly limited to classification problems, and
were extended to regression in the 1990s. At the end of this decade, the research activity in
rule learning declined, and the machine learning community focused more on improving
black-box models. In the past fifteen years, there has been a renewed interest in rule
learning models and their strong interpretability properties. There are three ways of
combining a collection of rules to form a rule model: disjunctive normal form (DNF),
decision list, and weighted rule ensemble. Firstly, DNF only deals with binary classification
problems, and is based on the “separate-and-conquer” principle. One class is selected, and
each rule covers a portion of the observations of the selected class with no overlap between
rules. If a new data point satisfies a rule, the associated class is predicted, otherwise
the default class is returned. Secondly, decision lists have a hierarchical structure and
rules are ordered. Thus, a prediction is made by the first rule of the list satisfied by a
new query point. Thirdly, a weighted rule ensemble assigns a weight to each rule of the
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Fig. 1.8 Illustration of the separate-and-conquer principle in rule learning (Molnar, 2020).

collection, and can handle regression problems. A prediction is made by adding the weight
of all rules satisfied by a a new query point. A high number of variants of rule learning
algorithms were developed, and an exhaustive survey of DNF and decision lists based
on the separate-and-conquer principle was conducted by (Fürnkranz, 1999). Main DNF,
decision list, and weigthed rule ensemble algorithms are presented below.

Key DNF algorithms are AQ system from Michalski (1969), IREP from Fürnkranz
and Widmer (1994) and RIPPER from Cohen (1995). IREP builds rules sequentially
following the separate-and-conquer principle—see Figure 1.8, i.e., covered data points
are removed from the data before learning the next rule. Each rule is fitted with a greedy
heuristic: elementary constraints are added one by one to maximize a given loss function
on a training set. Then, the rule is pruned back to maximize its accuracy on a testing set by
removing constraints one by one. RIPPER improves IREP by adding a post-treatment step
to optimize the rule list: the final IREP rule list is perturbed iteratively and the best list is
picked step by step.

Decision lists were initially developed by Rivest (1987) as an extension of DNF, and are
more expressive than DNF since they are a more flexible class of learning algorithms. The
learning procedure is also greedy and based on the separate-and-conquer principle. Each
rule is built to classify all training examples perfectly. CN2 is a decision list developed
by Clark and Niblett (1989), where rules are selected to maximize predictive accuracy,
based on the mechanisms of ID3 and AQ algorithms. Figure 1.9 provides an example of a
decision list using a recent algorithm applied to the Titanic dataset.
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Fig. 1.9 Decision List example for the Titanic dataset (confidence intervals in brackets)
(Letham et al., 2015, BRL).

Naturally bagging (Breiman, 1996) and boosting (Freund and Schapire, 1996) were
applied to rule learning and led to many improvements in the late 1990s. Following the
separate-and-conquer principle, covered data points are removed step by step in a DNF
construction. Instead of removing covered data points, their weights were alleviated as
boosting suggests, generating weighted rule lists with improved predictive performances.
Cohen and Singer (1999) applied boosting to IREP to developed SLIPPER, a weighted rule
list which overperforms RIPPER. Weiss and Indurkhya (2000) used boosting to develop
LRI, a DNF which handles multiple class classification. LRI produces a DNF with an
equal number of rules for each class. Unlike most of the previous rule learning algorithms,
LRI does not use pruning but limit the complexity of each rule in the learning process,
with a direct reference to the work of Friedman on boosting (Friedman, 2001) where tree
depth is limited.

Tree-based rule learning. In 1987, Quinlan (1987) proposes to extract rules from a
decision tree to form an ensemble model, and thus building a connection between rule
learning and decision trees. The main idea is that each tree node is defined as a conjunction
of splits which forms a hyperrectangle in the input space, and can therefore define an
elementary rule. In 1992, Quinlan (1992) developed C4.5rules, a weighted rule list. Rules
are extracted from a decision tree and then pruned, both individually and globally. The
computational efficiency was later improved with C5.0 in 1997.

The resurgence of rule learning was essentially initiated by Friedman et al. (2008)
who developed RuleFit: the post-processing of a tree ensemble method—importance
sampling learning ensemble (Friedman et al., 2003, ISLE)—by the Lasso (Tibshirani,
1996), enables the selection of a quite small subset of rules while preserving the predictive
accuracy of state-of-the-art tree ensembles. Therefore, RuleFit shows that the structure of
tree-based black-box models could be considerably simplified while preserving the same
level of predictivity. More precisely, while a random forest typically runs ten thousands
operations to compute a prediction, RuleFit runs about fifty operations. Thus, RuleFit
was claimed to be an interpretable technique. However, there are two strong limitations
to the interpretability of RuleFit. Firstly, there is a high redundancy in the output list
of rules: some variables and variable interactions are involved in many rules, and some
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Fig. 1.10 Example of RuleFit on the Boston Housing data (Friedman et al., 2001).

rules are very similar or highly correlated—see Figure 1.10. Secondly, the algorithm is
highly unstable to small data perturbations: even running RuleFit on exactly the same
dataset leads to quite different lists of rules. Indeed, ISLE is a randomized procedure
and boosting propagates perturbations in the rule generation. Furthermore, instability is
amplified by the Lasso in this context of high correlation. Therefore, RuleFit violates the
stability principle of interpretability, and may only be efficient for local interpretations:
it is possible to retrieve the small set of rules satisfied by a specific new query point,
and to add their weights to generate the prediction. Many algorithms were derived from
RuleFit, but none of them directly tackle this issue of structure stability. A first type of
improvement is the replacement of Lasso by other regression techniques, for example
the horseshoe prior (Nalenz et al., 2018), well known to give aggressive shrinkage to
noise predictors. It removes rules with a high number of splits or with small support,
increasing the simplicity of the fitted model and the predictive accuracy. Another extension
is proposed by Meinshausen (2010) with Node harvest. He replaced ISLE by a random
forest and applied a constrained quadratic program to the extracted rules to build a sparse
rule model. Node harvest is also unstable, and outperforms the predictivity of RuleFit
only in high dimension or on noisy data. Finally, we also mention the approach of Liu
et al. (2012), which design CRF, an algorithm combining rule extraction and feature
elimination. Rules are extracted from a random forest and selected via a linear program.
Selected features are used to build the following forest and these two steps are repeated
until convergence.

Modern rule learning. Besides tree-based rule learning, traditional greedy heuristics
were also quite recently extended to improve rule algorithm efficiency. Indeed, Dem-
bczyński et al. (2010) developed ENDER, a general statistical learning framework to
build boosted weighted rule lists. MLRules (Dembczyński et al., 2008) is an instance
of ENDER which builds a rule ensemble by greedily minimizing the log likelihood, and
each rule is built adding elementary constraints one by one. ENDER has a significantly
better predictive accuracy than SLIPPER and RuleFit, but the difference with LRI was
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not significant. Overall, LRI, SLIPPER, and RuleFit were not significantly better to any
other. In most rule learning heuristics, elementary constraints are greedily combined to
form each rule. Malioutov and Varshney (2013) proposed a different approach by using
a linear program (LP) to learn each rule of a DNF. The LP objective function aims to
minimize the number of constraints in the rule but not to maximize the rule predictivity. It
includes a tuning parameter which is fixed in practice because the algorithmic complexity
of a LP does not allow a fine tuning. However, predictive accuracy is no better than CART.
Later, Su et al. (2015) refine the LP formulation and the resulting algorithm reaches a
better predictive accuracy. Finally, Letham et al. (2015) developed Bayesian Rule List,
a Bayesian approach of decision lists. The model is generative and the prior encourages
strong sparsity leading to very simple rule models—see the example for the titanic dataset
in Figure 1.9. Also notice that Yang et al. (2017) developed a scalable implementation of
BRL.

1.4 Random Forests

Tree ensembles have demonstrated a very high accuracy on a wide variety of problems
in the past twenty years (Díaz-Uriarte and De Andres, 2006; Cutler et al., 2007; Strobl
et al., 2008; Chen and Guestrin, 2016). Our industrial applications typically fall in this
category of problems, and therefore we focus on tree ensembles. Indeed, neural networks
are the most efficient approach when data exhibits spatial structures, essentially image
recognition (Ciregan et al., 2012) and natural language processing (Sutskever et al., 2014),
but such problems are not of primary interest here. As we discussed in the previous
sections, interpretable methods have several flaws. We mainly mentioned the bias of
post-hoc methods when input variables are dependent, and the instability of interpretable
models. Among the family of tree ensembles, we leverage random forests because of their
structure and stability properties to improve both the accuracy of post-hoc methods as
well as the stability of interpretable models. These improvements based on random forests
are the core of the following chapters of this thesis. Thus, the aim of this section is to
provide an overview of random forests, both on the empirical and theoretical sides. We
first describe the random forest algorithm (Breiman, 2001a) in Subsection 1.4.1. Then, we
provide the main theoretical results about the consistency and the asymptotic normality of
the forest predictions in Subsection 1.4.2, as we will build on these asymptotic properties
throughout the thesis.

1.4.1 Algorithm

Inspired by the previous contributions of Amit and Geman (1997), Ho (1998), and Diet-
terich (2000), random forests (Breiman, 2001a) are an ensemble learning algorithm based
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on the bagging principle (Breiman, 1996): a large number of random trees is aggregated
to perform regression and classification tasks. We first describe the random forest con-
struction in the regression framework, and then provide the adaptation to classification.
In a second step, we provide tuning and implementation details. Finally, we present the
variable importance measures specific to random forests.

1.4.1.1 Random forest construction

Decision trees are the weak learners of random forests. Originally, CART trees are a
supervised learning algorithm developed by Breiman et al. (1984), and are presented above
in Subsection 1.3.2. As we already mentioned, random forests aggregate a large number
of CART trees. The key principle is to introduce randomness in the tree constructions to
reduce the variance of the forest estimate, at the price of a slight increase of each tree bias.
Overall, the accuracy of the forest is considerably improved over a single tree. Two sources
of randomness are introduced in the tree growing. Firstly, data are bootstrapped prior to the
construction of each tree. Secondly, each split is not optimized over all variables, but only
over a subset of mtry variables, drawn randomly. The hyperparameter mtry is set to p/3
by default. Formally, the tree randomness is defined by the random variable Θ , which has
two components: Θ (S) for the initial bootstrap step, and Θ (V ) to uniformly sample mtry
variables at each tree node. Then, we denote by mn(x,Θ) the Θ -random tree estimate at
the query point x ∈ R. Next, a large number M of trees are grown to form the random
forests estimate, constructed using a random vector Θ M = (Θ1, . . . ,ΘM). The components
of Θ M are independent and used to randomize each tree. In the regression case, the final
random forest simply averages the tree predictions, that is

mM,n(x,Θ M) =
1
M

M

∑
ℓ=1

mn(x,Θℓ).

Random forests also natively handle classification problems, when the output Y takes
categorical values. The weak learner is the classification CART, introduced above in
Subsection 1.3.2. The random forests prediction is then a voting system, where each tree
predicts a class, and the forest returns the most frequent predicted class among the M trees.

1.4.1.2 Tuning and implementations

Tuning. Random forests are well known for their excellent predictive accuracy without
parameter tuning, which make them especially easy to use in practice. The main hyperpa-
rameters are the number of trees M, the number of variables drawn for each split optimiza-
tion mtry, and the minimum number of observations in a terminal cell min_node_size,
which are all set to efficient default values. Several analyses of random forest tuning were
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conducted (Díaz-Uriarte and De Andres, 2006; Genuer et al., 2010; Scornet, 2017), but the
theoretical understanding of the efficiency of these default values is limited.

Clearly, the variance of the forest estimate decreases as M increases, which improves its
predictive accuracy. However, the computational complexity also linearly increases with M.
Therefore, M is chosen to perform a good tradeoff between these two properties. Typically,
M is set to 500 by default in most random forest implementations, which very often leads
to an accuracy close to the asymptotic maximum for a fixed sample size n.

Secondly, mtry may be the most influential parameter of the forest, as its tuning
can lead to a substantial performance increase. By default, mtry = ⌊p/3⌋ for regression,
whereas mtry= ⌊√p⌋ in the classification case. Let us say a few words about the influence
of mtry on the forest performance. Smaller values increase the randomization in the
forest growing, and therefore may improve the forest performance in very noisy or high-
dimensional settings. On the other hand, when the signal-to-noise ratio is strong, higher
values of mtry reduce the tree randomization and consequently the tree bias, leading to a
better forest performance.

The third tuning parameter, min_node_size, controls the size of the terminal
leaves. In most forest software, min_node_size = 5 observations for regression, and
min_node_size = 1 in the classification case—see the R packages randomForest and
ranger for examples. A single tree often overfits the data with such small default values
of min_node_size, but the tree aggregation ensures that the forest is very resistant to
overfitting.

Besides, we can mention two additional forest parameters. Firstly, tree_depth sets
the maximum depth of each tree, and is often left as a tuning parameter in available forest
implementations. The parameter tree_depth is quite redundant with min_node_size,
as it stops the tree construction by limiting the depth and not the minimal number of
observations per node. Secondly, the bootstrap step, prior to the construction of each
tree, samples n observations with replacement by default. It is also often possible to set
this parameter to an, where low values tend to increase the forest randomization. This
parameter an is especially useful in specific implementations of random forests, where the
sampling is done without replacement.

Computational complexity. A careful analysis of the computational complexity of ran-
dom forests is conducted by Louppe (2014). Thus, the average computational complexity
to build a random forest is O(Mpn log2(n)), in the standard regression case where mtry is
proportional to p. This complexity analysis can be summarized in the following way. At
each tree node, the CART splitting criterion must be evaluated for all of the mtry selected
variables, and the n−1 possible thresholds between two observations. For a given vari-
able, the most efficient approach is to sort the observations, and then compute the CART
criterion by sequentially moving the splitting threshold to the next observation. In such
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procedure, the sorting step is the most expensive, which costs O(sn log(sn)) in average, if
sn is the number of observations at the considered node. Therefore, finding the best split
at the root node has an average computational complexity of O(pn log(n)) for example.
Going down the tree levels, the number of observations at each node decreases, but the
number of nodes at each level increases. Overall, the average complexity to compute all
node splits in a given tree is O(pn log(n)2)—see Louppe (2014) for the proof. Finally, the
forest growing has an average complexity of O(Mpn log(n)2).

A new query point x is dropped down all trees to compute the forest prediction. For a
single tree, this requires one operation at each tree level to send it to the appropriate child
node. Therefore, a single tree prediction has an average complexity given by the tree depth,
which is O(log(n)) in average. Then, the forest prediction has an average complexity of
O(M log(n)).

Implementations. Originally, random forests were first implemented in Fortran by
Breiman and Cutler along with the initial article Breiman (2001a). Today, this code is
still available through the widely used R package randomForests (Liaw and Wiener,
2002). Several other implementations were developed. In particular, we highlight the
following popular open source packages: scikit-learn, ranger, randomForestSRC,
and partykit. To give an order of magnitude, each of these packages is downloaded
about half a million time a year. scikit-learn is the most widely used python machine
learning library, which provides an efficient implementation of random forests by Louppe
(2014). ranger (Wright and Ziegler, 2017) may be the fastest available forest algorithm
and is written in C++ and R. Notice that all algorithms developed in this thesis are based on
ranger. randomForestSRC (Ishwaran and Kogalur, 2020) is an R package implementing
survival forest in addition to the standard classification and regression versions, and also
provides a wide variety of permutation importance measures. Finally, partykit (Hothorn
and Zeileis, 2015) is an R library for conditional forests.

1.4.1.3 Variable importance

Several global importance measures were specifically developed for random forests, essen-
tially the MDA (Breiman, 2001a) and the MDI (Breiman, 2003), as we already mentioned
in Section 1.2.2. Although these two algorithms are widely used in practice, several
empirical studies have shown that they are biased when input variables are dependent
(Archer and Kimes, 2008; Strobl et al., 2008; Nicodemus and Malley, 2009; Genuer et al.,
2010; Auret and Aldrich, 2011; Toloşi and Lengauer, 2011; Gregorutti et al., 2017; Hooker
and Mentch, 2019). In particular, the MDI is also strongly biased towards categorical
variables with a high number of modalities. To remove this source of bias Li et al. (2019),
Zhou and Hooker (2019), and Loecher (2020) recently suggested to recompute the MDI
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with a testing set, instead of the training data as originally defined. We provide formal
definitions of the MDA and MDI below.

Mean Decrease Accuracy (MDA). The principle of the Mean Decrease Accuracy
(MDA) (Breiman, 2001a) is to permute the values of a specific variable X ( j) and compute
the decrease of accuracy for this perturbed dataset. The difference between this degraded
accuracy and the original one gives the importance of the variable: the higher the decrease
of accuracy, the higher the importance of variable X ( j). To formalize the MDA definition,
we need to define the out-of-bag sample. In the forest construction, the data are boot-
strapped prior to each tree construction, leaving aside a portion of the data Dn not involved
in the tree growing, which is the out-of-bag sample and can be used as a testing set to
evaluate the tree accuracy. The MDA first estimates the quadratic risks of each tree for
both the out-of-bag sample and the permuted out-of-bag sample. The average difference
between these two risks is averaged across all trees to define the Breiman-Cutler MDA
(Breiman, 2001a). More precisely, for each Θℓ-random tree, we randomly permute the j-th
component of the out-of-bag dataset, and denote Xi,π jℓ the i-th permuted sample for the
ℓ-th tree and for i ∈ {1, . . . ,n}\Θ

(S)
ℓ . Then, the Breiman-Cutler MDA is formally given by

M̂DA
(BC)

M,n (X ( j)) =
1
M

M

∑
ℓ=1

1
Nn,ℓ

n

∑
i=1

[
(Yi −mn(Xi,π jℓ,Θℓ))

2 − (Yi −mn(Xi,Θℓ))
2]1

i/∈Θ
(S)
ℓ

,

where Nn,ℓ = ∑
n
i=11i̸=Θ

(S)
ℓ

is the size of the out-of-bag sample of the ℓ-th tree. Notice that
other definitions of the MDA coexist in the main random forest implementations, as we
will see in Chapter 2. In particular, it is possible to use a testing dataset instead of the
out-of-bag trick (the Train-Test MDA), or to compute the forest risk instead of averaging
tree risks (the Ishwaran-Kogalur MDA, see Ishwaran et al. (2008)).

Mean Decrease Impurity (MDI). The Mean Decrease Impurity (MDI) was initially
introduced by Breiman (2003) for both regression and classification forests. The MDI(X ( j))

sums the weighted decrease of impurity over all nodes that split on variable X ( j), averaged
over all trees in the forest. Following notations in Biau and Scornet (2016), the MDI is
defined by

M̂DI(X( j)) =
1
M

M

∑
l=1

∑
t∈Tl
jn,t= j

pn,tLn
(

jn,t ,zn,t
)
,

where M is the number of trees, Tℓ is the ℓ-th tree of the forest, pn,t is the proportion of
observations that fall in node t, Ln is the empirical CART-splitting criterion, and

(
jn,t ,zn,t

)
is the optimal split at node t.
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1.4.2 Theoretical Properties

The empirical efficiency of random forests relies on the adaptive construction of the tree
partitions with respect to the data Dn. Indeed, both the inputs Xi’s and the output Yi’s
are involved in the split optimization at each node. In particular, this enables the forest
to split on influential variables as highlighted in Proposition 1 of Scornet et al. (2015).
More generally, the tree partitions are finer in areas of the input space associated to a high
variability of the output by definition of the splitting criteria. This adaptive feature also
makes the mathematical analysis of random forests notoriously difficult. However, the
consistency and asymptotic normality of Breiman’s forest were recently proved (Scornet
et al., 2015; Mentch and Hooker, 2016; Wager and Athey, 2018).

1.4.2.1 Consistency

First consistency results are obtained by Breiman (2004) and Biau (2012) for non-adaptive
forest, i.e., in the case where tree partitions are built without the data Dn. Recently,
Klusowski (2021) improves the convergence rate of such purely randomized forests.
Several theoretical analyses were conducted to study simplified forests (Lin and Jeon,
2006; Biau et al., 2008; Biau and Devroye, 2010; Genuer, 2012; Denil et al., 2014; Arlot
and Genuer, 2014). For other forest types, Meinshausen (2006) shows the consistency of
quantile forests, Ishwaran and Kogalur (2010) of survival forests, Denil et al. (2013) of
online forests, and Mourtada et al. (2017) and Mourtada et al. (2018) of Mondrian forests.
Regarding the original Breiman’s forests (Breiman, 2001a) widely used in practice, the
consistency is shown by Scornet et al. (2015) for additive models. This additive property
is formalized in the following assumption (A1.1) on the data distribution.

(A1.1) The response Y follows

Y =
p

∑
j=1

m j(X ( j))+ ε,

where X is uniformly distributed over [0,1]p, ε is an independent centered Gaussian noise
of finite variance, and each component m j is continuous.

The only modification of the forest algorithm involved in the following result is to use
subsampling without replacement of an observations prior to the construction of each tree,
instead of bootstrap. We need a few additional notations: tn is the number of terminal leaves
in each tree, and mn(X) is the infinite forest estimate defined as the limit of mM,n(X,Θ)

when the number of trees M grows to infinity. Notice that the consistency of the infinite
forest implies the consistency of the finite forest if M is large enough.

Theorem 1.1 (Scornet et al. (2015)). Assume that Assumption (A1.1) is satisfied. Then,
provided that an → ∞, tn → ∞, and tn log9(an)/an → 0, random forests are consistent, that
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is,

lim
n→∞

E[(mn(X)−m(X))2] = 0.

The proof is based on Györfi et al. (2006) to control both the approximation and the
estimation errors. The latter is quite straightforward to handle by limiting the complexity
of the tree partitions with respect to the sample size n, and using standard arguments from
Györfi et al. (2006). On the other hand, the approximation error is difficult to control.
Scornet et al. (2015) achieve this by proving that the variations of the regression function
within a tree cell vanishes in probability as the sample size increases, when m is additive.
Formally, we define the variation of the regression function m within a cell A ⊂ [0,1]p as

∆(m,A) = sup
x,x′∈A

|m(x)−m(x′)|,

and Proposition 2 of Scornet et al. (2015) establishes that for additive models, we have in
probability

lim
n→∞

∆(m,An(X,Θ)) = 0,

where An(X,Θ) is the cell of the Θ -random tree where the query point X falls. Such a limit
is obtained by first proving that the cuts of the empirical and theoretical forests are close to
each other. We recall that the theoretical forest is not based on the data Dn, but only uses
the unknown distribution of (X,Y ) to grow the trees, with the theoretical CART-splitting
criterion

L⋆(A, j,z) =V[Y |X ∈ A]−P(X ( j) < z|X ∈ A)×V[Y |X ( j) < z,X ∈ A]

−P(X ( j) ≥ z|X ∈ A)×V[Y |X ( j) ≥ z,X ∈ A].

Finally, the proof boils down to show that the theoretical forest is consistent. In the case of
additive regression functions, either the diameter of a cell tends to zero as n increases, either
the regression function is constant over the cell, which concludes the proof. Notice that
this approach cannot be directly extended to the case of non-additive regression function,
since the CART-splitting criterion is greedy and can therefore be null over a cell where m
varies.

Wager and Athey (2018) also show the consistency of random forests using the theory
of Hayek projection. Interestingly, this result is valid for a wider class of regression
functions, which are simply assumed to be Lipschitz-continuous, and the inputs are also
uniformly distributed in the unit cube. However, quite strong modifications of Breiman’s
forests are required. Indeed, the data Dn has to be split in two parts for each tree, one
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part to construct the tree partition, and another part to estimate the terminal leaf outputs.
Such trees are called honest trees. Additionally, the randomization of the split selection
is slightly increased: the splitting variable is randomly selected with a small probability
δ > 0, otherwise the default splitting procedure is used with probability 1− δ . Finally
trees have to be γ-regular, i.e., at least a portion of γ observations of each node are sent
to each of the two children nodes. These last two modifications are initially introduced
by Meinshausen (2006) to prove the consistency of quantile forests, and are quite mild
since δ and γ can be chosen arbitrarily small and we recover Breiman’s forests by setting
δ = γ = 0. On the other hand, honesty is a much stronger modification of Breiman’s forest
where the tree randomization is reduced because all observations are involved in each tree
construction. Although there is no extensive empirical comparisons of honest forests and
Breiman’s forests to our knowledge, it is quite likely that honest forests perform better
only in specific settings, and perform worse in most cases. Anyway, honesty is a critical
property in the proof of Wager and Athey (2018) to apply the Hayek projection theory.

Consistency results for random forests are the cornerstone to study the theoretical
properties of variables importance measures, as we will see in Chapters 2 and 3. However,
the result from Wager and Athey (2018) differs quite strongly from Breiman’s forests used
in practice, while the analysis of Scornet et al. (2015) is not valid when the regression
function has interactions, which is a case raising problems for existing variable importance
measures. Interestingly, it is possible to combine Scornet et al. (2015) and Wager and
Athey (2018) mathematical analyses to prove the consistency of forests which do not
satisfy the honesty property, and holds for general continuous regression function with
interactions. Indeed, Scornet et al. (2015) prove the consistency of Breiman’s forests for
additive models, by establishing that the variations of the regression function in a tree
cell vanishes in probability as the sample size increases. Such behavior holds only for
additive models because the CART-splitting criterion is greedy and considers variables
one by one to evaluate the split quality. However, by only adding the mild modifications of
Breiman’s forests with γ-regularity and the δ -randomization of splits, we clearly obtain
that the diameter of each cell of the trees vanishes as the sample size increases. Therefore,
the consistency of such forests holds for any continuous regression function m by simply
following Scornet et al. (2015), as stated in the theorem below, introduced in Bénard et al.
(2021d) and used in Chapters 2 and 3.

Theorem 1.2. Assume that the regression function m is continuous, the noise ε is sub-
Gaussian, and Breiman’s forest are slightly modified such that splits are γ-regular and
δ -randomized for γ > 0 and δ > 0. Provided that an → ∞, tn → ∞, tn log9(an)/an → 0,
and M ∈ N⋆, then random forests are consistent, that is

lim
n→∞

E[(mM,n(X,Θ M)−m(X))2] = 0.
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1.4.2.2 Asymptotic normality

Wager and Athey (2018) also prove that the forests predictions are asymptotically normal
under the same assumptions than for the consistency result. The asymptotic normality of
random forest predictions is also proved by Mentch and Hooker (2016) using a totally
different approach with U-statistics. Indeed, when the bootstrap step is replaced by
subsampling of an observations without replacement, random forests can be seen as
generalized incomplete U-statistics, where the kernel is the CART estimate man(X,Θ (V ))

built with an observations and randomized with Θ (V ). We provide the result formulation
from Peng et al. (2019), which slightly extends the assumptions of Mentch and Hooker
(2016). To formalize the theorem, we need the following notations:

ζan = Cov(man(X,Θ (V )),m′
an
(X,Θ ′(V )))

σ
2
an
= V[man(X,Θ (V ))],

where Θ ′(V ) is an independent copy of Θ (V ), and m′
an
(X,Θ ′(V )) is the tree estimate fit with

the independent sample D ′
an

which shares a single observation with Dan .

Theorem 1.3. Assume that

E[|man(X,Θ (V ))−E[mn(X)]|2k]

E[|man(X,Θ (V ))−E[mn(X)]|k]
≤C,

for k = 2,3, some constant C, and all an. If an
n

σ2
an

anζan
→ 0 and Mn → ∞, then we have

mM,n(X,Θ M)−E[mn(X)]√
a2

nζan/n+σ2
an
/Mn

d−→ N (0,1).

The asymptotic normality of random forests is a major result since it enables the fast
derivation of confidence intervals for forest estimates to quantify prediction uncertainty.
Mentch and Hooker (2016) introduce variance estimates for random forests, and build on
this normality result to setup hypothesis tests to detect if a variable significantly influences
forest predictions.

1.4.2.3 Variable importance

Mean Decrease Accuracy (MDA). A first theoretical analysis of the MDA is conducted
by Ishwaran (2007), introducing an equivalent formulation of the MDA: the original data
are dropped down noisy trees, which randomly send the observations to the left or right
child node, when a node splitting on the j-th variable is met, with a probability given by
the proportion of training observations falling in each child node. This remarkable analogy
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enables a first theoretical understanding of the MDA. However, Ishwaran (2007) does not
study Breiman’s MDA but a simplified version. Indeed, once an observation has met a split
on the j-th variable, it is systematically randomly sent to one of the two children nodes at
all splits further down the tree. Later, Zhu et al. (2015) derive the convergence of the MDA
with a more explicit limit value, but using strong assumptions: the inputs are independent
and the forest satisfies an exponential concentration inequality known to be proved only
for purely randomized forests. Finally, Gregorutti (2015) draws an interesting connection
between variable importance and sensitivity analysis. Indeed, when input variables are
independent, the theoretical counterpart of the MDA is the unnormalized total Sobol index,
as stated in the following theorem by denoting MDA⋆(X ( j)) = E[(m(X)−m(Xπ j))

2] the
theoretical counterpart of the MDA. We will deepen this analysis in Chapter 2.

Theorem 1.4 (Gregorutti (2015)). If the input variables X (1), . . . ,X (p) are independent,
then for all j ∈ {1, . . . , p},

MDA⋆(X ( j)) = 2V[Y ]×ST ( j).

Mean Decrease Impurity (MDI) A first theoretical analysis of the MDI is conducted
by Li et al. (2019), who derive an upper bound for the sum of the MDI of all non-influential
variables in the finite sample case, assuming that relevant and noisy variables are mutually
independent. This upper bound takes the form of Cdn log(np)/sn where C is a constant, sn

the minimum leaf size, and dn the maximum tree depth. Next, Scornet (2020) demonstrates
that when input variables are independent and the regression function is additive, the MDI
also estimates the non-normalized total Sobol index. However, when input variables are
dependent or have interactions, the MDI is intrinsically ill-defined. Klusowski and Tian
(2021) recently derived a concentration inequality for the MDI when trees are limited to a
depth of one, also known as decision stumps.

Louppe et al. (2013) show that the MDI is a consistent estimate of a linear combination
of conditional mutual information in a specific case of random forests: variables are all
categorical, trees are non-binary, totally randomized, and fully developed, and Shannon
entropy is the node impurity measure. This result is extended in Louppe (2014, page
134) for any splitting criterion. Interestingly, applying this last result with the original
CART-splitting criterion based on variance reduction, leads to a MDI version which is
a consistent estimate of Shapley effects. This is not true in general for original CART
trees since the MDI is ill-defined, but it highlights that the MDI is connected to Shapley
effects in this simplified setting involving dependence and interactions. We will deepen
the connection between random forests and Shapley effects in Chapter 3.

Corollary 1.1 (based on Theorem 6.1 and equation (6.31) in Louppe (2014)). If all input
variables are categorical, the output is discrete and numeric, trees are totally randomized
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and fully developed, nodes are split in as many children nodes as the number of modalities
of the splitting variable, and the number of trees grows to infinity, then we have

M̂DI(X ( j))
p−→ V[Y ]×Sh( j).

Proof of Corollary 1.1. Under the assumptions on the data distribution and the random
forest definition given in Corollary 1.1, Louppe (2014, equation (6.31) page 134) shows
that

M̂DI(X ( j))
p−→

p−1

∑
k=0

(
p
k

)−1 1
p− k ∑

U⊂P
( j)
k

G(Y,X ( j)|U),

where P
( j)
k is the set of subsets of {1, . . . , p} of cardinality k not containing j, and

G(Y,X ( j)|U) = i(Y |U)− i(Y |U,X ( j)) with i the integrated impurity measure. In the case
of the CART-splitting criterion, i(Y |U) = E[V[Y |U ]]. We plug this in the limit above and,
using the law of total variance, we obtain

M̂DI(X ( j))
p−→

p−1

∑
k=0

(
p
k

)−1 1
p− k ∑

U⊂P
( j)
k

V[E[Y |X(U∪ j)]]−V[E[Y |X(U)]].

Finally, notice that (
p
k

)−1 1
p− k

=
1
p

(
p−1

k

)−1

,

and overall, we have

M̂DI(X ( j))
p−→ ∑

U⊂{1,...,p}\ j

1
p

(
p−1
|U |

)−1(
V[E[Y |X(U∪ j)]]−V[E[Y |X(U)]]

)
= V[Y ]×Sh( j).

1.5 Contributions

This thesis is split in five chapters. Chapters 2 and 3 deal with variable importance
for random forests, the main post-hoc approach. Chapters 4 and 5 develop directly
interpretable rule models, based on random forests, and considerably more stable than
existing competitors. Each chapter has an associated software implementation of the



1.5 Contributions 51

designed algorithms, based on the package ranger, written in C++ and R by Wright and
Ziegler (2017). These works have led to four articles:

• Chapter 2 : Bénard et al. (2021d), in major revision at Biometrika, package
sobolMDA.

• Chapter 3 : Bénard et al. (2021b), submitted to AISTATS 2022 conference, package
shaff.

• Chapter 4 : Bénard et al. (2021c), published in Electronic Journal of Statistics,
package sirus.

• Chapter 5 : Bénard et al. (2021a), published in the Proceedings of AISTATS 2021,
package sirus.

1.5.1 Chapter 2: “MDA for random forests: inconsistency, and a
practical solution via the Sobol-MDA”

This chapter establishes the first convergence result of Breiman’s MDA (Breiman, 2001a),
the main importance measure for random forests. Sensitivity analysis, rarely used in
machine learning, highlights that the theoretical quantity estimated by the MDA is not
really relevant to quantify variable importance. We then suggest to modify the MDA by
replacing permutations by projections to recover a meaningful theoretical counterpart.

MDA theoretical analysis. The first part of Chapter 2 focuses on the asymptotic analysis
of the MDA. We obtain the first convergence result of Breiman’s MDA (Breiman, 2001a),
since existing results make strong simplifications of the MDA algorithm (Ishwaran, 2007;
Zhu et al., 2015). The review of existing implementations of random forests shows that
there are multiple MDA definitions. These versions do not converge towards the same
theoretical quantity, and are therefore different importance measures. We demonstrate that
the MDA limits can be broken down as the sum of total Sobol indices and an additional
third term. This last term is not an importance measure, and strongly biases the MDA
when input variables are dependent. Therefore, this theoretical analysis explains the MDA
bias observed empirically.

Sobol-MDA. The second part of Chapter 2 introduces the Sobol-MDA, a new importance
measure for random forests. The general principle is to project the tree partitions along a
given variable to eliminate it from the prediction process, and compute its importance. We
show that this principle enables to define the Sobol-MDA consistently with respect to the
total Sobol index, which gives the proportion of explained output variance lost when the
variable is removed from the model. This importance measure is especially efficient for
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variable selection. An implementation in the package SobolMDA written in C++ and R is
available online.

1.5.2 Chapter 3: “SHAFF: fast and consistent SHApley eFfect esti-
mates via random Forests”

Chapter 3 introduces SHAFF algorithm, an estimate of Shapley effects based on random
forests. Shapley effects equitably allocate the output variance contributions generated
by dependence and interactions across all input variables, and have been widely used
to interpret learning algorithms for the past few years. There are two main problems
involved in the estimate of Shapley effects: on one hand, the computational complexity
is exponential with the dimension p of the input. On the other hand, it requires the
computation of output expectations conditional on any subset of the input variables.
Because of these two obstacles, existing Shapley algorithms are computationally costly,
or biased when inputs are dependent. SHAFF solves these problems using importance
sampling and projected random forests. Firstly, SHAFF uses forests to build an importance
measure of each input variable subset, based on their frequency of occurrence in the tree
paths of the forest. Then, SHAFF samples the variable subsets using these frequencies
as a discrete probability measure, which enables to focus on the most influential variable
subsets. The computational cost improvement is high, especially for sparse data. Secondly,
SHAFF generalizes the principle of the projected forest introduced in the previous chapter:
the partitions of each tree are projected onto the subspace generated by the considered
variable subset. This approach leads to a fast and accurate estimate of the conditional
expectations, and therefore an improved Shapley effect estimate. An implementation in
the package shaff written in R and C++ is available online.

1.5.3 Chapter 4: “SIRUS: Stable and Interpretable RUle Set for
classification”

Chapter 4 introduces SIRUS algorithm, Stable and Interpretable RUle Set, for binary
classification. The general principle is to extract a rule ensemble from a random forest.
Each node of each tree is built as a sequence of splits, and therefore defines a hyperrectangle
in the input space, and then a rule. Despite the perturbations in the tree construction, there
is some redundancy in the tree splits in the forest, and rules occur with a given frequency. A
high frequency means that the rule represents strong and robust patterns in the data. A small
rule ensemble is then extracted from a random forest using a threshold on the occurrence
frequency, i.e., the empirical probability than a given rule occurs in a random tree. This is
the key principle to stabilize the rule extraction with respect to data perturbations, which is
proved both theoretically and empirically. Finally, rules are simply averaged to generate
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the final model predictions. An implementation is available in the R/C++ package sirus
available from CRAN. We illustrate SIRUS with the Titanic data, where the goal is to predict
the probability of passenger survival ps from personal information such as sex, age, cabin
class, ticket fare, of the number of relatives on board. SIRUS outputs the following model:

Average survival rate ps = 39%.

if sex is male then ps = 19% else ps = 74%

if 1st or 2nd class then ps = 56% else ps = 24%

if 1st or 2nd class
& sex is female

then ps = 95% else ps = 25%

if fare < 10.5£ then ps = 20% else ps = 50%

if no parents or
children aboard then ps = 35% else ps = 51%

if 2st or 3nd class
& sex is male

then ps = 14% else ps = 64%

if sex is male
& age ≥ 15

then ps = 16% else ps = 72%

Thus, the model output by SIRUS takes the form of a simple list of six rules that quantifies
the factors explaining the survival to the Titanic sinking: women, children, family, and rich
people were saved in priority.

1.5.4 Chapter 5: “Interpretable random forests via rule extraction”

Chapter 5 introduces an extension of SIRUS to the regression case, also available in the
package sirus. The main obstacle is to combine the rules with weights to handle the finer
estimation of a continuous output, without hurting the simplicity and stability of SIRUS.
Such an extension is possible using a linear aggregation of the rules with a ridge penalty to
stabilize the coefficient estimates. SIRUS stability is preserved in the regression case, as
shown empirically through experiments with real data. Theoretically, it is also possible
to show the asymptotic stability of SIRUS thanks to the convexity of the penalized cost
function involved.





Chapter 2

MDA for random forests: inconsistency,
and a practical solution via the
Sobol-MDA

Abstract
Variable importance measures are the main tools to analyze the black-box mechanism of random
forests. Although the Mean Decrease Accuracy (MDA) is widely accepted as the most efficient
variable importance measure for random forests, little is known about its theoretical properties. In
fact, the exact MDA definition varies across the main random forest software. In this chapter, our
objective is to rigorously analyze the behavior of the main MDA implementations. Consequently,
we mathematically formalize the various implemented MDA algorithms, and then establish their
limits when the sample size increases. In particular, we break down these limits in three components:
the first one is related to Sobol indices, which are well-defined measures of a variable contribution
to the output variance, widely used in the sensitivity analysis field, as opposed to the third term,
whose value increases with dependence within input variables. Thus, we theoretically demonstrate
that the MDA does not target the right quantity when inputs are dependent, a fact that has already
been noticed experimentally. To address this issue, we define a new importance measure for random
forests, the Sobol-MDA, which fixes the flaws of the original MDA. We prove the consistency of
the Sobol-MDA and show its good empirical performance through experiments on both simulated
and real data. An open source implementation in R and C++ is available online.
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The results presented in this chapter are based on Bénard et al. (2021d), currently in
major revision at Biometrika.

2.1 Introduction

Random forests (Breiman, 2001a) are an ensemble learning algorithm, which aggregates a
large number of trees to perform regression and classification tasks, and achieve state-of-
the-art accuracy on a wide range of problems. In particular, random forests exhibit a good
behavior on high-dimensional or noisy data, do not require tuning procedures, and are
also well known for their robustness. All in all, random forests are widely used in practice
thanks to these remarkable features. However, they suffer from a major drawback: a given
prediction is generated through a large number of operations, typically ten thousands,
which makes the interpretation of the prediction mechanism impossible. Because of
this complexity, random forests are often qualified as black-boxes. More generally, the
interpretability of learning algorithms is receiving an increasingly high interest since this
black-box characteristic is a strong practical limitation. For example, applications involving
critical decisions, typically healthcare, require predictions to be justified. The most popular
way to interpret random forests is variable importance analysis: input variables are ranked
by decreasing order of their importance in the algorithm prediction process. Thus, specific
variable importance measures were developed along with random forests (Breiman, 2001a,
2003). However, we will see that they may not target the right variable ranking when input
variables are dependent, and could therefore be improved. First, we review the existing
variable importance measures for random forests.

Variable importance. There are essentially two importance measures for random forests:
the Mean Decrease Accuracy (MDA) (Breiman, 2001a) and the Mean Decrease Impurity
(MDI) (Breiman, 2003). The MDA measures the decrease of accuracy when the values of
a given input variable are permuted, thus breaking its relation to the output and to the other
input variables. On the other hand, the MDI sums the weighted decreases of impurity over
all nodes that split on a given variable, averaged over all trees in the forest. In both cases,
a high value of the metric means that the variable is used in many important operations
of the prediction mechanism of the forest. Unfortunately, there is no precise and rigorous
interpretation since these two definitions are purely empirical. Furthermore, in the last
decade, many empirical analysis have highlighted the flaws of the MDI—see Strobl et al.
(2007) for example. Li et al. (2019) and Zhou and Hooker (2019) recently improved
the MDI to partially remove its bias. However, Scornet (2020) demonstrated that the
MDI is consistent only under a strong and restrictive assumption: the regression function
is additive and the input variables are independent. Otherwise, the MDI is ill-defined.
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Overall, the MDA is widely considered as the most efficient variable importance measure
for random forests (Strobl et al., 2007; Ishwaran, 2007; Genuer et al., 2010; Boulesteix
et al., 2012), and we therefore focus on the MDA. Although it is extensively used in
practice, little is known about its theoretical properties. To our knowledge, only Ishwaran
(2007) and Zhu et al. (2015) provide theoretical analyses of modified versions of the MDA,
but the asymptotic behavior of the original MDA algorithm (Breiman, 2001a) is unknown:
Ishwaran (2007) considers Breiman’s forests but simplifies the MDA procedure, whereas
Zhu et al. (2015) considers the original MDA but assumes the independence of the input
variables and an exponential concentration inequality on the random forest estimate, the
latter being proved only for purely random forests (which do not use the data to build the
tree partitions). On the practical side, many empirical analyses provide evidence that when
input variables are dependent, the MDA may fail to detect some relevant variables (Archer
and Kimes, 2008; Strobl et al., 2008; Nicodemus and Malley, 2009; Genuer et al., 2010;
Auret and Aldrich, 2011; Toloşi and Lengauer, 2011; Gregorutti et al., 2017; Hooker and
Mentch, 2019). It is critical to assess that the properties of a variable importance measure
are in line with the final objective of the conducted analysis. In the following paragraphs,
we review the possible goals of variable importance, and then introduce sensitivity analysis
to deepen the theoretical understanding of the MDA.

Variable importance objectives. The analysis of variable importance is not an end in
itself, the goal is essentially to perform variable selection, with usually two final aims
(Genuer et al., 2010): (i) find a small number of variables with a maximized accuracy, or
(ii) detect and rank all influential variables to focus on for further exploration with domain
experts. Depending on which of these two objectives is of interest, different strategies
should be used as the following example shows: if two influential variables are strongly
correlated, one must be discarded in the first case, while the two must be kept in the second
case. Indeed, if two variables convey the same statistical information, only one should be
selected if the goal is to maximize the predictive accuracy with a small number of variables,
i.e., objective (i). On the other hand, these two variables may be acquired differently and
represent distinct physical quantities. Therefore, they may have different interpretations
for domain experts, and both should be kept for objective (ii).

Sensitivity analysis. Sensitivity analysis is the study of uncertainties in a system. The
main goal is to apportion the uncertainty of a system output to the uncertainty of the differ-
ent inputs. Iooss and Lemaître (2015) and Ghanem et al. (2017) provide detailed reviews of
global sensitivity analysis (GSA). In particular, GSA introduces well-defined importance
measures of input contributions to the output variance: Sobol indices (Sobol, 1993; Saltelli,
2002; Mara et al., 2015) and Shapley effects (Shapley, 1953; Owen, 2014; Iooss and Prieur,
2017). These metrics are widely used to analyze computer code experiments, especially
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for the design of industrial systems. However, the literature about variable importance in
the fields of statistical learning and machine learning rarely mentions sensitivity analysis.
The reason of this hiatus is clear: until quite recently, GSA was focused on independent
inputs, whereas the machine learning community essentially works with dependent inputs.
In the last years, Gregorutti (2015) first established a link between GSA and the MDA: in
the case of independent inputs the theoretical counterpart of the MDA is the unnormalized
total Sobol index, i.e., twice the amount of explained variance lost when a given input
variable is removed from the model, which is the expected quantity for both objectives (i)
and (ii) in this independent setting. Additionally, Mara et al. (2015) extended Sobol indices
to the case of dependence, named “full Sobol indices”, while Owen (2014) reintroduced
Shapley effects. Originally proposed in game theory (Shapley, 1953), Shapley effects
exhibit very interesting properties as they equitably allocate the mutual contribution due to
dependence and interactions to individual inputs. The main limitation of Shapley effects
is the computational complexity which is exponential with the number of input variables.
While full Sobol indices are confined to GSA, Shapley effects are now widely used by
the machine learning community to interpret both tree ensembles and neural networks.
In particular, SHAP values (Lundberg and Lee, 2017) adapt Shapley effects for local
interpretation of model predictions, and Lundberg et al. (2018) provide a fast algorithm for
tree ensembles. Finally, Covert et al. (2020) introduce SAGE, based on Shapley effects
applied to any loss function, as a global importance measure for machine learning models.
A detailed literature review of random forests and sensitivity analysis can be found in
Antoniadis et al. (2020).

Outline. In Section 2.2, we review and clarify the different MDA algorithms imple-
mented in the main random forest software: several definitions coexist, and we first
formalize them mathematically. Then, we conduct an asymptotic analysis to demonstrate
that all MDA versions are indeed inappropriate for the two possible objectives of variable
importance analysis. We first establish the limits of the empirical MDA algorithms—see
the Supplementary Material in Appendix A for the proofs. Next, we analyze these limits
and extend the result of Gregorutti (2015) to the general dependent case: two additional
terms in the theoretical counterpart of the MDA appear because of the permutation trick
in the procedure. The last one is not directly related to a measure of importance. Thus, it
is clear that the MDA is misleading for objectives (i) and (ii) when inputs are dependent,
which is very often the case with real data. To our knowledge, this is the first asymptotic
result on Breiman’s MDA, which sheds light on the empirical limitations observed in
practice. We also clarify the different MDA implementations, highlight that they have
different meanings, and provide guidelines to the most appropriate one depending on the
data distribution. Next, for objective (ii), it is widely accepted that Shapley effects are
relevant importance measures as they equitably handle interactions and dependence. On



2.2 MDA Theoretical Limitations 59

the other hand, when one is using variable importance to select a small number of variables
while maximizing predictive accuracy—objective (i), the total Sobol index is clearly the rel-
evant measure to eliminate the less influential variables. However, no appropriate estimate
of this quantity exists for random forests when inputs are dependent as demonstrated in
Section 2.2. Therefore, we focus on objective (i) throughout the chapter. In Section 2.3, we
propose the Sobol-MDA, an augmented version of the MDA which consistently estimates
the total Sobol index even when input variables are dependent. We show the good empirical
performance of the procedure on both simulated and real data, and prove the consistency
of the Sobol-MDA. An implementation in R and C++ of the Sobol-MDA is available at
https://gitlab.com/drti/sobolmda, and is based on ranger (Wright and Ziegler, 2017), a
fast implementation of random forests. Thus, the Sobol-MDA enjoys good properties that
make it a more efficient importance variable measure than the original MDA in a dependent
setting.

2.2 MDA Theoretical Limitations

2.2.1 MDA Literature Review

The MDA was originally proposed by Breiman in his seminal article (Breiman, 2001a), and
works as follows. The values of a specific variable are permuted to break its relation to the
output. Then, the predictive accuracy is computed for this perturbed dataset. The difference
between this degraded accuracy and the original one gives the importance of the variable:
a high decrease of accuracy means that the considered variable has a strong influence on
the prediction mechanism. However, a review of the literature on random forests and their
software implementations reveals that there is no consensus on the exact mathematical
formulation of the MDA. We focus on the most popular random forest algorithms:

• the R package randomForests (Liaw and Wiener, 2002) based on the original
Fortran code from Breiman and Cutler

• the fast R/C++ implementation ranger (Wright and Ziegler, 2017)

• the most widely used python machine learning library scikit-learn (Pedregosa
et al., 2011) (RandomForestClassifier/RandomForestRegressor)

• the R package randomForestSRC (Ishwaran and Kogalur, 2020) which implements
survival forests in addition to the original algorithm.

To give an order of magnitude, the typical number of users of each of these packages
during the year 2020 is about half a million. A close inspection of their code exhibits that
essentially three distinct definitions of the MDA are widely used—see the Supplementary

https://gitlab.com/drti/sobolmda
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Algorithm Package Error Estimate Data

Train-Test MDA scikit-learn
randomForestSRC Forest Testing dataset

Breiman-Cutler MDA randomForest (normalized)
ranger / randomForestSRC Tree OOB sample

Ishwaran-Kogalur MDA randomForestSRC Forest OOB sample

Table 2.1 Summary of the different MDA characteristics.

Material in Appendix A for references and details about the MDA implementation in the
package codes. The differences between the three MDA versions are twofold: the MDA
can be computed based on the tree error or the whole forest error, and via a test set or
out-of-bag samples—see Table 2.1 for a summary. We first give an overview of these
different definitions, and then formalize them mathematically in the next subsection.

The most simple approach is taken by scikit-learn where the forest is fit with
a training sample and the accuracy decrease is estimated with an independent testing
sample. Throughout the chapter, we call the generalization error of the forest the expected
quadratic risk for a new query point, usually estimated with an independent sample. Thus,
forest predictions are run for both the testing sample and its permuted version, and the
corresponding quadratic risks are subtracted to give the generalization error increase,
denoted the Train-Test MDA. This procedure is also one of the options provided by
randomForestSRC. However in practice, splitting the sample in two parts for training and
testing often hurts the accuracy of the model, and then decreases the accuracy of the MDA
estimate.

Since the data are bootstrapped prior to the construction of each tree, a portion of the
sample is left out, and can be used to measure accuracy: the out-of-bag (OOB) sample.
This principle is originally introduced by Breiman (Breiman, 2001a), and to be precise, let
us quote the original definition:

“Suppose there are M input variables. After each tree is constructed, the values of the
m-th variable in the out-of-bag examples are randomly permuted and the out-of-bag data
are run down the corresponding tree. The classification given for each xn that is out of
bag is saved. This is repeated for m = 1,2, . . . ,M. At the end of the run, the plurality of
out-of-bag class votes for xn with the m-th variable noised up is compared with the true
class label of xn to give a misclassification rate. The output is the percent increase in
misclassification rate as compared to the out-of-bag rate (with all variables intact).”

Despite the lack of mathematical formulation, it seems clear that for each tree, the
generalization error is estimated using its OOB sample and the permuted version. Then, the
two errors are subtracted and this difference is averaged across all trees to give the Breiman-
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Cutler MDA. Among the four main random forest implementations introduced above, only
ranger and randomForestSRC exactly follow this definition. In randomForests, the
final quantity is normalized by the standard deviation of the generalization error differences.
However, this procedure is questionable (Díaz-Uriarte and De Andres, 2006; Strobl and
Zeileis, 2008): a non-influential variable would constantly have a small risk difference
with a standard deviation close to zero, potentially leading to a high normalized MDA.

More importantly, observe that Breiman’s MDA definition is in fact a Monte-Carlo
estimate of a random tree decrease of accuracy when a variable is noised up. Since we
are interested in the variable influence in the entire forest, and not only in a single tree, it
seems natural to extend the OOB procedure to estimate the forest risk (Ishwaran, 2007;
Ishwaran et al., 2008) and implemented in randomForestSRC: for each data point, we
retrieve the set of trees which do not involve the considered point in their construction.
The predictions are run for each tree of this collection and averaged to generate the OOB
forest prediction for the considered point. Repeating this for the full sample enables to
estimate the OOB quadratic risk of the forest. Then, a component of each out-of-bag
sample is independently permuted, and the same procedure gives the inflated OOB forest
risk. Finally, the difference between these two risks forms the Ishwaran-Kogalur MDA.
From an algorithmic point of view, notice that the only difference with Breiman’s definition
is the mechanisms to aggregate tree predictions and compute the errors.

Overall, all these MDA definitions coexist in the main random forest implementations,
and are widely used interchangeably. However, their subtle differences lead to their conver-
gence towards distinct quantities. Consequently, the MDA versions are not equivalent and
each of them is appropriate depending on the data distribution. To deepen the discussion,
we mathematically formalize the three MDA versions.

2.2.2 Mathematical Formalization

We first need to define a standard regression setting with the following Assumption (A2.1),
and introduce random forest notations below.

(A2.1) The response Y ∈R follows

Y = m(X)+ ε

where X = (X (1), . . . ,X (p)) ∈ [0,1]p admits a density over [0,1]p bounded from above and
below by stricly positive constants, m is continuous, and the noise ε is sub-Gaussian,
independent of X, and centered. A sample Dn = {(X1,Y1), . . . ,(Xn,Yn)} of n independent
random variables distributed as (X,Y ) is available.

The random CART estimate mn(x,Θ) is trained with Dn, and the bootstrap sampling
and the split randomization are generated by Θ , and x ∈ [0,1]p is the query point. The
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component of Θ used to resample the data is denoted Θ (S) ⊂ {1, . . . ,n}. The random forest
estimate mM,n(x,Θ M) aggregates M Θ -random CART, each of which is randomized by a
component of Θ M = (Θ1, . . . ,ΘM). In the sequel, we consider a fixed index j ∈ {1, . . . , p}.
Next, we define Xi,π j as the vector Xi where the j-th component is permuted between
observations. Similarly, Xπ j is the vector X where the j-th component is replaced by
an independent copy of X ( j). Finally, we also introduce X(− j), as the random vector X
without the j-th component. Now, we can detail the three MDA definitions, summarized
in Table 2.1.

Train/Test MDA. In this version of the MDA, the forest is trained with the available sam-
ple Dn, and we assume that an independent testing sample D ′

n = {(X′
1,Y

′
1), . . . ,(X

′
n,Y

′
n)}

is also available to estimate the quadratic risk of the forest, and the associated risk when a
variable is noised up. Thus, the Train/Test MDA (TT-MDA) is formally defined by

M̂DA
(T T )
M,n (X ( j)) =

1
n

n

∑
i=1

(
Y ′

i −mM,n(X′
i,π j

,Θ M)
)2 −

(
Y ′

i −mM,n(X′
i,Θ M)

)2
.

This algorithm is the only MDA version implemented in scikit-learn, and is one
possibility in randomForestSRC. Note that the TT-MDA is straightforward to implement
with any random forest package by simply running predictions.

Breiman-Cutler MDA. In the original definition, the quadratic risk of each tree is
estimated for both the out-of-bag sample and the permuted out-of-bag sample. The average
difference between these two risks is averaged across all trees to define the Breiman-Cutler
MDA (Breiman, 2001a). More precisely, for each Θℓ-random tree, we randomly permute
the j-th component of the out-of-bag dataset, and denote Xi,π jℓ the i-th permuted sample

for the ℓ-th tree and for i ∈ {1, . . . ,n}\Θ
(S)
ℓ . Then, the Breiman-Cutler MDA (BC-MDA)

is formally given by

M̂DA
(BC)

M,n (X ( j)) =
1
M

M

∑
ℓ=1

1
Nn,ℓ

n

∑
i=1

[
(Yi −mn(Xi,π jℓ,Θℓ))

2 − (Yi −mn(Xi,Θℓ))
2]1

i/∈Θ
(S)
ℓ

,

where Nn,ℓ = ∑
n
i=11i ̸=Θ

(S)
ℓ

is the size of the out-of-bag sample of the ℓ-th tree. This
algorithm is available in ranger and randomForestSRC. In randomForest, by default,
the BC-MDA is normalized by the standard deviation of the tree risk difference. Note that
ranger also provides the possibility to normalize the BC-MDA.

Ishwaran-Kogalur MDA. Since the training data Dn is resampled prior to a tree con-
struction, a portion of Dn is not involved in the growing of each tree. It is therefore possible
to estimate the random forest error using Dn alone. More precisely, any sample Xi is not
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involved in the training of a random batch of trees, defined by

Λn,i = {ℓ ∈ {1, . . . ,M} : i /∈Θ
(S)
ℓ }.

We can take advantage of such batch of trees to define the out-of-bag random forest estimate
by averaging the tree predictions considering only trees that belong to Λn,i. Formally, for
i ∈ {1, . . . ,n},

m(OOB)
M,n (Xi,Θ M) =

1
|Λn,i| ∑

ℓ∈Λn,i

mn(Xi,Θℓ)1|Λn,i|>0.

Recall that for each Θℓ-random tree, we randomly permute the j-th component of the
out-of-bag dataset to define Xi,π jℓ . We insist that the permutation is independent for each
tree. Then, we define the permuted OOB forest estimate as

m(OOB)
M,n,π j

(Xi,Θ M) =
1

|Λn,i| ∑
ℓ∈Λn,i

mn(Xi,π jℓ,Θℓ)1|Λn,i|>0.

Finally, the Ishwaran-Kogalur MDA (IK-MDA) (Ishwaran, 2007; Ishwaran et al., 2008) is
defined as

M̂DA
(IK)

M,n (X
( j)) =

1
NM,n

n

∑
i=1

(Yi −m(OOB)
M,n,π j

(Xi,Θ M))2 − (Yi −m(OOB)
M,n (Xi,Θ M))2,

where NM,n = ∑
n
i=11|Λn,i|>0 is the number of points which are not used in all tree con-

structions. This algorithm is implemented in randomForestSRC. Besides, this package
also provides the possibility to define the IK-MDA by blocks: the trees of the forest are
divided in a fixed number of blocks. The IK-MDA is estimated for each block and then
averaged. Thus, the BC-MDA can be seen as a specific case where the number of blocks is
the number of trees M.

An asymptotic analysis of these three MDA versions, summarized in Table 2.1, reveals
that they do not share the same theoretical counterpart. Consequently, they have different
meanings and generate different variable rankings, from which divergent conclusions
can be drawn. However, these MDA versions are used interchangeably in practice. The
convergence of the MDA is established in the next subsection, and then the different
theoretical counterparts are analyzed in the following subsection.

2.2.3 MDA Inconsistency

The OOB estimate is involved in both the BC-MDA and IK-MDA, but is also used in
practice to provide a fast estimate of the random forest error. We begin our asymptotic
analysis by a result on the efficiency of the OOB estimate, stated in Proposition 2.1 below,
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which shows that the OOB error consistently estimates the generalization error of the forest.
This result will be later used to establish the convergence of the IK-MDA. First observe
that, by construction of the set of trees Λn,i, the OOB estimate aggregates a smaller number
of trees than in the standard forest: E[|Λn,i|] = (1−an/n)M trees in average. Therefore,
the risks of the OOB and standard forest estimates are different quantities. The following
proposition states that for a fixed sample size n, the OOB risk converges towards the
standard forest risk as the number of trees increases, with a fast rate of 1/M. The only
difference between the implemented algorithms and our theoretical results, is that the
resampling in the forest growing is done without replacement to alleviate the mathematical
analysis. We define an the number of subsampled training observations used to build each
tree.

Proposition 2.1. If Assumption (A2.1) is satisfied, for a fixed sample size n and i ∈
{1, . . . ,n}, we have∣∣∣E[(m(OOB)

M,an,n(Xi,Θ M)−m(Xi)
)2]−E

[(
mM,an,n−1(X,Θ M)−m(X)

)2]∣∣∣= O
( 1

M

)
.

To our knowledge, this is the first result which states the convergence of the OOB
error towards the forest error for any fixed sample size. This suggests that growing a large
number of trees in the forest—which is computationally possible and what is done in
practice—ensures that the OOB estimate provides a good approximation of the forest error.

Next, the convergence of the three versions of the MDA holds under the following
Assumption (A2.2) of the consistency of a theoretical randomized CART. Since we are
interested in the random forest interpretation through the MDA, it seems natural to conduct
our analysis assuming that each tree of the forest is an efficient learner, i.e., consistent.
To formalize such an assumption, we first define the variation of the regression function
within a cell A ⊂ [0,1]p by

∆(m,A) = sup
x,x′∈A

|m(x)−m(x′)|,

and secondly, we introduce A⋆
k(x,Θ) the cell of the theoretical CART of depth k (random-

ized with Θ ) in which the query point x ∈ [0,1]p falls.

(A2.2) The randomized theoretical CART tree built with the distribution of (X,Y ) is con-
sistent, that is, for all x ∈ [0,1]p, almost surely,

lim
k→∞

∆(m,A⋆
k(x,Θ)) = 0.

At first glance, Assumption (A2.2) seems quite obscure since it involves the theoretical
CART. However, Scornet et al. (2015) show that (A2.2) holds if the regression function is
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additive. Because the original CART (Breiman et al., 1984) is a greedy algorithm, (A2.2)
may not always be satisfied when the regression function m has interaction terms. However,
it holds if the CART algorithm is slightly modified to avoid splits to be close to the edges
of cells, and the split randomization is slightly increased to have a positive probability to
split in all directions at all nodes (Meinshausen, 2006; Wager and Athey, 2018). Indeed
in that case, all cells become infinitely small as the tree depth k increases, and therefore
(A2.2) holds by continuity of m. Such modifications of CART have a negligible impact in
practice on the random forest estimate since the cut threshold and the split randomization
increase can be chosen arbitrarily small. Notice that such asymptotic regime is specifically
analyzed in the next section.

As specified above, an is the number of training observations subsampled without
replacement to build each tree, and we define tn as the final number of terminal leaves in
every tree. Notice that we can specify an in mM,an,n(x,Θ M) or man,n(x,Θ) when needed,
but we omit it in general to avoid cumbersome notations. In order to properly define
the MDA procedures, the out-of-bag sample needs to be at least of size 2 to enable
permutations, i.e., an ≤ n− 2. Finally, we need the following Assumption (A2.3) on
the asymptotic regime of the empirical forest as stated in Scornet et al. (2015), which
essentially controls the number of terminal leaves with respect to the sample size n to
enforce the random forest consistency.

(A2.3) The asymptotic regime of an, the size of the subsampling without replacement, and
the number of terminal leaves tn is such that an ≤ n−2, an/n < 1−κ for a fixed κ > 0,
lim
n→∞

an = ∞, lim
n→∞

tn = ∞, and lim
n→∞

tn
(log(an))

9

an
= 0.

In the case of the IK-MDA, the number of trees has to tend to infinity with the sample
size to ensure convergence. To lighten notations, we drop the dependence of Mn to n.

(A2.4) The number of trees grows to infinity with the sample size n: M −→
n→∞

∞.

Now, we can state the convergence of all MDA algorithms. In particular, this asymptotic
analysis reveals that the theoretical MDA counterparts are not identical across the different
MDA definitions. Thus, input variables are ranked according to different criteria when the
BC-MDA or IK-MDA is used. We deepen this discussion in the following subsection.

Theorem 2.1. If Assumptions (A2.1), (A2.2), and (A2.3) are satisfied, then, for all M ∈N⋆

and j ∈ {1, . . . , p} we have

(i) M̂DA
(T T )
M,n (X ( j))

L1
−→ E[(m(X)−m(Xπ j))

2]

(ii) M̂DA
(BC)

M,n (X ( j))
L1
−→ E[(m(X)−m(Xπ j))

2].
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If Assumption (A2.4) is additionally satisfied, then

(iii) M̂DA
(IK)

M,n (X
( j))

L1
−→ E[(m(X)−E[m(Xπ j)|X

(− j)])2].

Sketch of proof of Theorem 2.1. The complete proof is to be found in the Supplementary
Material in Appendix A and is based on the exact derivation of the MDA expressions
defined above. Remarkably, the generalization error of the OOB forest, which appears
in the IK-MDA, is upper bounded by the standard forest error, multiplied by the factor
2/(1−an/n). Thus, the consistency of the original forest implies that the OOB forest error
tends to zero. This bound is derived by controlling the randomness of the observation
selection process in the tree construction.

Besides, the package randomForest uses a modified version of the BC-MDA where it
is normalized by the standard deviation of the risk differences across all trees. Since the risk
difference converges towards the same constant for each tree, the theoretical counterpart
of the standard deviation of the tree risk is null, and therefore the theoretical normalized
BC-MDA is undefined. Note that ranger also provides the possibility to normalize the
BC-MDA, but it is not the default setting. Futhermore, as we have already mentioned,
the package randomForestSRC also provides the possibility to define the IK-MDA by
blocks: the trees of the forest are divided in several blocks, and the IK-MDA is estimated
for each block and then averaged. If the number of blocks is fixed and Assumption (A2.4)
is satisfied, the number of trees in each block grows to infinity, and therefore Theorem
2.1-(iii) still holds.

2.2.4 MDA Analysis

The theoretical counterparts of the MDA established in Theorem 2.1 are hard to interpret
since Xπ j has a different distribution than the original input data X whenever components
of X are dependent. These different MDA versions are widely used in practice to assess
the variable importance of random forests, but the relevance of such analyses completely
relies on the ranking criteria E[(m(X)−m(Xπ j))

2] or E[(m(X)−E[m(Xπ j)|X(− j)])2]. It is
possible to deepen the discussion, observing that X and Xπ j are independent conditionally
on X(− j) by construction. It enables to break down the MDA limit using Sobol indices that
are well-defined quantity to measure the contribution of an input to the output variance.

Definition 2.1 (Total Sobol Index). The total Sobol index of variable X ( j) (Sobol, 1993;
Saltelli, 2002) gives the proportion of explained output variance lost when X ( j) is removed
from the model, that is

ST ( j) =
E[V(m(X)|X(− j))]

V(Y )
.
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Notice that ST ( j) is also called the independent total Sobol index in Kucherenko et al.
(2012), Mara et al. (2015), and Benoumechiara (2019).

We also introduce a new sensitivity index: the total Sobol index computed for the input
vector Xπ j . We call it the marginal total Sobol index, since the distribution of Xπ j is the
product of the marginal distributions of X ( j) and X(− j). It can take high values even when
X ( j) is strongly correlated with other variables, as opposed to the original total Sobol index.
We derive the main properties of this new sensitivity index below, proved in Appendix A.

Definition 2.2 (Marginal Total Sobol Index). The marginal total Sobol index of variable
X ( j) is defined by

ST ( j)
mg =

E[V(m(Xπ j)|X(− j))]

V(Y )
.

Property 2.1 (Marginal Total Sobol Index). If Assumption (A2.1) is satisfied, the marginal
total Sobol index ST ( j)

mg satisfies the following properties.

(a) ST ( j)
mg = 0 ⇐⇒ ST ( j) = 0.

(b) If the components of X are independent, then we have ST ( j)
mg = ST ( j).

(c) If m is additive, i.e. m(X) = ∑k mk(X (k)), then we have ST ( j)
mg = V[m j(X ( j))]/V[Y ],

and ST ( j)
mg ≥ ST ( j).

Notice that the last property states that ST ( j)
mg ≥ ST ( j) for additive regression functions,

which may also hold in the general case with interactions. However, such extension is
out of the scope of this chapter. Figure 2.1 illustrates the total Sobol indices for an input

V[Y ]

V[ε]

DependenceST (X (1)) ST (X (2))

Fig. 2.1 Illustration of total Sobol indices for Y = m(X (1),X (2))+ ε .
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dimension of p = 2. It is now possible to break down the MDA limits using these total
Sobol indices and the following quantity MDA⋆( j)

3 , further discussed below and defined as

MDA⋆( j)
3 = E[(E[m(X)|X(− j)]−E[m(Xπ j)|X

(− j)])2].

Proposition 2.2. If Assumptions (A2.1), (A2.2) and (A2.3) are satisfied, then for all M ∈N⋆

and j ∈ {1, . . . , p} we have

(i) M̂DA
(T T )
M,n (X ( j))

L1
−→ V[Y ]×ST ( j)+V[Y ]×ST ( j)

mg +MDA⋆( j)
3

(ii) M̂DA
(BC)

M,n (X ( j))
L1
−→ V[Y ]×ST ( j)+V[Y ]×ST ( j)

mg +MDA⋆( j)
3 .

If Assumption (A2.4) is additionally satisfied, then

(iii) M̂DA
(IK)

M,n (X
( j))

L1
−→ V[Y ]×ST ( j)+MDA⋆( j)

3 .

The proof is to be found in the Supplementary Material in Appendix A and is based
on Theorem 2.1 and the independence of m(X) and m(Xπ j) conditionally on X(− j). In the
sequel, we denote MDA⋆( j)

1 = V[Y ]×ST ( j) and MDA⋆( j)
2 = V[Y ]×ST ( j)

mg . Each term of
the decompositions of Proposition 2.2 can be interpreted alone.

MDA⋆( j)
1 is the non-normalized total Sobol index that has a straightforward interpreta-

tion: the amount of explained output variance lost when X ( j) is removed from the model.
This quantity is really the information one is looking for when computing the MDA for
objective (i).

MDA⋆( j)
2 is the non-normalized marginal total Sobol index. Its interpretation is more

difficult. Intuitively, in the case of MDA⋆( j)
1 , contributions due to the dependence between

X ( j) and X(− j) are excluded because of the conditioning on X(− j). For MDA⋆( j)
2 , this

dependence is ignored, and therefore such removal does not take place. For example, if
X ( j) has a strong influence on the regression function but is highly correlated with other
variables, then MDA⋆( j)

1 is small, whereas MDA⋆( j)
2 is high. For objective (i), one wants to

keep only one variable of a group of highly influential and correlated inputs, and therefore
ST ( j)

mg can be a misleading component.
MDA⋆( j)

3 is not a known measure of importance, and seems to have no clear interpre-
tation: it measures how the permutation shifts the average of m over the j-th input, and
thus characterizes the structure of m and the dependence of X combined. MDA⋆( j)

3 is null
if variables are independent. The value of MDA⋆( j)

3 increases with dependence, and this
effect can be amplified by interactions between variables.

Overall, all MDA definitions are misleading with respect to both objectives (i) and (ii)
since they include MDA⋆( j)

3 in their theoretical counterparts. From a practical perspective,
it is only possible to conclude in general that the BC-MDA or IK-MDA should be used



2.2 MDA Theoretical Limitations 69

rather than the TT-MDA. Indeed, on the one hand we only have access to one finite sample
Dn in practice, which has to be split in two parts to use the TT-MDA, hurting the forest
accuracy. On the other hand, it is possible to grow many trees at a reasonable linear
computational cost, and Proposition 2.1 ensures that the OOB estimate is efficient in this
case. With additional assumptions on the data distribution, the BC-MDA and the IK-MDA
recover meaningful theoretical counterparts. In particular, when inputs are independent,
the theoretical MDA is the unnormalized total Sobol index, as stated in Gregorutti (2015)
and formalized in the following corollary.

Corollary 2.1. If X has independent components, and if Assumptions (A2.1)-(A2.3) are
satisfied, for all M ∈ N⋆ and j ∈ {1, . . . , p} we have

M̂DA
(T T )
M,n (X ( j))

L1
−→ 2V[Y ]×ST ( j)

M̂DA
(BC)

M,n (X ( j))
L1
−→ 2V[Y ]×ST ( j).

In addition, if Assumption (A2.4) is satisfied,

M̂DA
(IK)

M,n (X
( j))

L1
−→ V[Y ]×ST ( j).

Thus, Corollary 2.1 states that when inputs are independent, all MDA versions estimate
the same quantity (up to a factor 2). However, since the TT-MDA is based on a portion of
the training sample, the BC-MDA on the accuracy of a single tree, and the IK-MDA on the
accuracy of the forest, the IK-MDA appears to be a more efficient estimate than the two
others in this independent setting. Also notice that in the case of independent variables,
the total Sobol index is a relevant measure for both objectives (i) and (ii). Interestingly,
when variables are dependent but without interactions, all MDA versions then estimate the
marginal total Sobol index, as stated in the following Corollary.

Corollary 2.2. If the regression function m is additive, and if Assumptions (A2.1)-(A2.3)
are satisfied, for all M ∈ N⋆ and j ∈ {1, . . . , p} we have

M̂DA
(T T )
M,n (X ( j))

L1
−→ 2V[Y ]×ST ( j)

mg

M̂DA
(BC)

M,n (X ( j))
L1
−→ 2V[Y ]×ST ( j)

mg .

In addition, if Assumption (A2.4) is satisfied,

M̂DA
(IK)

M,n (X
( j))

L1
−→ V[Y ]×ST ( j)

mg .

In this correlated and additive setting, the MDA versions now estimate the marginal
total Sobol index, which takes the simple form stated in Property 2.1-(c), but is difficult to
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Algorithm

Settings

Independent inputs Additivity of m Dependent inputs
& Interactions

TT-MDA Objectives (i) & (ii) Objective (ii) None

BC-MDA Objectives (i) & (ii) Objective (ii) None

IK-MDA Objectives (i) & (ii) Objective (ii) None

Table 2.2 Valid MDA objectives depending on the data characteristics.

estimate with a finite sample because of dependence. The MDA is thus quite relevant for
objective (ii): while contributions due to the dependence between variables are removed in
the total Sobol index, it is not the case here. Also notice that variables with no influence in
the regression function are excluded. If we further assume that the regression function is
linear, the MDA limits can be explicitly written with the linear coefficients and the input
variances as stated in Gregorutti et al. (2015); Hooker and Mentch (2019), and also left as
an exercise in chapter 15 of Friedman et al. (2001).

Proposition 2.2, Corollary 2.1, and Corollary 2.2 are summarized in Table 2.2 with
respect to objectives (i) and (ii). Next, in the following subsection, we provide an analytical
example to show how the MDA can fail to detect relevant variables when the data has both
dependence and interactions.

Remark 2.1 (Distribution Support). Our asymptotic analysis relies on Assumption (A2.1),
which states that the support of the distribution of the input X is a hypercube. Without
such geometrical assumption, the support of Xπ j may differ from the support of X in the
dependent case. It means that the permuted samples may query the random forest in
regions with no training samples, resulting in inconsistent forest and MDA estimates, and
then in a poor empirical performance (Hooker and Mentch, 2019). This is an additional
source of confusion of the MDA when inputs are dependent, induced by the permutation
trick.

2.2.5 Analytical Example

To illustrate the behavior of the MDA, we take a simple example and analytically derive
the MDA limit and its three associated components MDA⋆( j)

1 , MDA⋆( j)
2 , and MDA⋆( j)

3 .
This example shows how the MDA is misleading when input variables are dependent. We
consider the BC-MDA, denoted as MDA to lighten notations. The TT-MDA or IK-MDA
lead to identical conclusions.
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Example description. The input X is a Gaussian vector of dimension p = 5. Its covari-
ance matrix is defined by V[X ( j)] = σ2

j for j ∈ {1, . . . ,5}, and all covariance terms are
null except Cov[X (1),X (2)] = ρ1,2σ1σ2 and Cov[X (4),X (5)] = ρ4,5σ4σ5. The regression
function m is given by

m(X) = αX (1)X (2)1X (3)>0 +βX (4)X (5)1X (3)<0.

Notice that m has a simple form to enable an easy interpretation of the importance measures,
but that interaction terms are required to highlight the different behaviors of the three MDA
components in a correlated setting. Simple calculations give the analytical expression
MDA⋆(1) of the MDA limit for X (1) as

MDA⋆(1) =
1
2
(ασ1σ2)

2(1−ρ
2
1,2)︸ ︷︷ ︸

MDA⋆(1)
1

+
1
2
(ασ1σ2)

2︸ ︷︷ ︸
MDA⋆(1)

2

+
3
2

ρ
2
1,2(ασ1σ2)

2︸ ︷︷ ︸
MDA⋆(1)

3

.

First, observe that MDA⋆(1)
1 decreases with the correlation between X (1) and X (2). Indeed,

MDA⋆(1)
1 is the total Sobol index and when these two variables are strongly dependent,

the additional information provided by X (1) alone is small. In the extreme case, ρ1,2 = 1
implies that MDA⋆(1)

1 = 0, i.e., X (1) can be removed from the model without hurting the
model accuracy since all its information is contained in X (2). On the other hand, MDA⋆(1)

2

does not rely on the dependence between X (1) and X (2). Indeed, this term is the marginal
total Sobol index that considers the contribution of X (1) including its dependence and
interactions with other variables. It is clear that the MDA mixes two terms with opposite
meanings. Finally, the third term MDA⋆(1)

3 measures how the permutation of X (1) shifts
the mean value of the regression function averaged over X (1), which is not a quantity of
interest to rank variables. However, in a high correlation setting

(
ρ1,2 >

√
2

2

)
, we have

MDA⋆(1)
3 > MDA⋆(1)

1 +MDA⋆(1)
2 , which means that the meaningless third term is the main

contribution of the MDA value of variable X (1). Besides, symmetrically for the other input
variables, we have MDA⋆(1) = MDA⋆(2), and the same formula for X (4) and X (5) with the
appropriate parameters. MDA formulas for variables 3,4, and 5 are to be found in the
Supplementary Material in Appendix A.

Inaccurate variable selection. As stated in the introduction, one of the main objective
of variable importance analysis is usually to select a small number of variables while
maximizing the model accuracy. In our example, we show how the MDA fails for this
purpose. Let say we want to remove the less relevant input variable in a setting where
the two vectors X(1,2) and X(4,5) are interchangeable (ασ1σ2 = βσ4σ5), except that their
dependence strengths differ and satisfy ρ1,2 < ρ4,5. Since the correlation between variables
4 and 5 is higher than between variables 1 and 2, we should remove X (4) or X (5) to
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minimize the information loss, as suggested by the total Sobol index ranking

ST (4) = ST (5) < ST (1) = ST (2) < ST (3).

However, in such setting we have

MDA⋆(1) = MDA⋆(2) < MDA⋆(3) < MDA⋆(4) = MDA⋆(5),

that would lead to discard X (1) or X (2), which is suboptimal—see the Supplementary
Material in Appendix A for computation details. On the other hand, using only MDA⋆( j)

1

or MDA⋆( j)
1 +MDA⋆( j)

2 as importance measures gives the accurate variable selection. The
term MDA⋆( j)

3 artificially increases the MDA value because of correlation, and is thus
misleading for both objectives (i) and (ii).

2.3 Sobol-MDA

When input variables are dependent, the MDA fails to estimate the total Sobol index, which
is our true target to solve problem (i), as shown in Section 2.2. Therefore, we introduce an
improved MDA procedure for random forests: the Sobol-MDA, that consistently estimates
the total Sobol index even when input variables are dependent and have interactions. The
Sobol-MDA is able to identify the less relevant variable among the input data, as the total
Sobol index is the proportion of output explained variance lost when a given variable
is removed from the model. Therefore, a recursive feature elimination procedure based
on the Sobol-MDA is highly efficient for our objective (i) of selecting a small number
of variables while maximizing predictive accuracy. Notice that training a random forest
without the variable of interest would also enable to get an estimate of the total Sobol
index. However, the Sobol-MDA only requires to perform forest predictions, which is
computationally faster than the forest growing. It is also possible to estimate total Sobol
indices with existing algorithms which are not specific to random forests. Indeed, this type
of methods only requires a black-box estimate to generate predictions from given values of
the input variables. Initially, Mara et al. (2015) introduce Monte-Carlo algorithms for the
estimation of total Sobol indices in a dependent setting. The first step of the method is to
generate a sample from the conditional distributions of the inputs. However, in our setting
defined in Assumption (A2.1), we do not have access to these conditional distributions,
and their estimation is a difficult problem when only a limited sample Dn is available.
Consequently, the approach of Mara et al. (2015) is not really appropriate for our setting.

In the first subsection, we introduce the Sobol-MDA algorithm. Next, we focus on the
associated properties: the computational complexity and the algorithm consistency. In the
third subsection, we show the good empirical behavior of the proposed algorithm through
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experiments on both simulated and real data, especially when used in a recursive feature
elimination procedure.

2.3.1 Sobol-MDA Algorithm

The key feature of the original MDA procedures is to permute the values of the j-th
component of the data to break its relation to the output, and then compute the degraded
accuracy of the forest. Observe that this is strictly equivalent to drop the original dataset
down each tree of the forest, but when a sample hits a split involving variable j, it is
randomly sent to the left or right side with a probability equal to the proportion of points
in each child node. This fact highlights that the goal of the MDA is simply to perturb the
tree prediction process to cancel out the splits on variable j. Besides, notice that this point
of view on the MDA procedure (using the original dataset and noisy trees) is introduced by
Ishwaran (2007) to conduct a theoretical analysis of a modified version of the MDA. Here,
our Sobol-MDA algorithm builds on the same principle of ignoring splits on variable j,
such that the noisy CART tree predicts E[m(X)|X(− j)] (instead of m(X) for the original
CART). It enables to recover the proper theoretical counterpart: the unnormalized total
Sobol index, i.e., E[V(m(X)|X(− j))]. To achieve this, we leave aside the permutation trick,
and use another approach to cancel out a given variable j in the tree prediction process:
the partition of the input space obtained with the terminal leaves of the original tree is
projected along the j-th direction—see Figure 2.2, and the outputs of the cells of this new
projected partition are recomputed with the training data. From an algorithmic point of
view, this procedure is quite straight-forward as we will see below, and enables to get
rid of variable X ( j) in the tree estimate. Then, it is possible to compute the accuracy of
the associated OOB projected forest estimate, subtract it from the original accuracy, and
normalize the obtained difference by V[Y ] to obtain the Sobol-MDA for variable X ( j).

Interestingly, to compute SHAP values for tree ensembles, Lundberg et al. (2018) also
introduce an algorithm to modify the CART predictions to estimate E[m(X)|X(− j)]. More
precisely, they propose the following recursive algorithm: the query point x is dropped
down the tree, but when a split on variable j is hit, x is sent to both the left and right
children nodes. Then, x falls in multiple terminal cells of the tree. The final prediction is
the weighted average of the cell outputs, where the weight associated to a terminal leaf A is
given by an estimate of P(X ∈ A|X(− j) = x(− j)): the product of the empirical probabilities
to choose the side that leads to A at each split on variable j in the path of the original tree.
At first sight, their approach seems suited to estimate total Sobol indices, but unfortunately,
the weights are properly estimated by such procedure only if the components of X are
independent. Therefore, as highlighted in Aas et al. (2019), this algorithm gives biased
predictions in a correlated setting.
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We improve over Lundberg et al. (2018) with the Projected-CART Algorithm 1: both
training and out-of-bag samples are dropped down the tree and sent on both right and
left children nodes when a split on variable j is met. Again, each data point may belong
to multiple cells at each level of the tree. For each out-of-bag sample, the associated
prediction is the output average over all training samples that belong to the same collection
of terminal leaves. In other words, we compute the intersection of these terminal leaves
to select the training observations belonging to every cell of this collection to estimate
the prediction. This intersection gives the projected cell. This mechanism is equivalent
to projecting the tree partition on the subspace span by X(− j), as illustrated in Figure 2.2
for p = 2 and j = 2. Recall that An(X,Θ) is the cell of the original tree partition where
X falls, whereas the associated cell of the projected partition is denoted A(− j)

n (X(− j),Θ).
Formally, we respectively denote the associated projected tree and projected out-of-bag
forest estimates as m(− j)

n (X(− j),Θ) and m(− j,OOB)
M,n (X(− j)

i ,Θ M), respectively defined by

m(− j)
n (X(− j),Θ) =

∑
an
i=1Yi1Xi∈A(− j)

n (X(− j),Θ)

∑
an
i=11Xi∈A(− j)

n (X(− j),Θ)

,

and for i ∈ {1, . . . ,n},

m(− j,OOB)
M,n (X(− j)

i ,Θ M) =
1

|Λn,i| ∑
ℓ∈Λn,i

m(− j)
n (X(− j)

i ,Θℓ)1|Λn,i|>0.

The Projected-CART algorithm provides two sources of improvements over Lundberg et al.
(2018): first, the training data points are dropped down the modified tree to recompute
the cell outputs, and thus E[m(X)|X(− j) ∈ A] is directly estimated in each cell. Secondly,
the projected partition is finer than in the original tree, which mitigates masking effects
(when an influential variable is not often selected in the tree splits because of other highly
correlated variables).

Finally, the Sobol-MDA estimate is given by the normalized difference of the quadratic
error of the OOB projected forest with the OOB error of the original forest. Formally, we
define the Sobol-MDA as

Ŝ-MDAM,n(X ( j)) =
1

σ̂2
Y

1
n

n

∑
i=1

(
Yi −m(− j,OOB)

M,n (X(− j)
i ,Θ M)

)2 −
(
Yi −m(OOB)

M,n (Xi,Θ M)
)2
,

where σ̂2
Y = 1

n−1 ∑
n
i=1(Yi − Ȳ )2 is the standard variance estimate of the output Y . An

implementation in R and C++ of the Sobol-MDA is available at https://gitlab.com/drti/
sobolmda and is based on ranger (Wright and Ziegler, 2017), a fast implementation of
random forests.

https://gitlab.com/drti/sobolmda
https://gitlab.com/drti/sobolmda
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X (1)

X (2)

An(X,Θ)

X

X (1)

X (2)

X

X(− j)

A(− j)
n (X(− j),Θ)

Fig. 2.2 Example of the partition of [0,1]2 by a random CART tree (left side) projected on
the subspace span by X(−2) = X (1) (right side). Here, p = 2 and j = 2.

Remark 2.2 (Empty Cells). Some cells of the projected partition may contain no training
samples. Consequently, the prediction for a new query point falling in such cells is
undefined. In practice, the Projected-CART algorithm 1 uses the following strategy to
avoid empty cells. Recall that each level of the tree defines a partition of the input space
(if a terminal leaf occurs before the final tree level, it is copied down the tree at each level),
and that a projected partition can thus be associated to each tree level. When a new query
point is dropped down the tree, if it falls in an empty cell of the projected partition at a
given tree level, the prediction is computed using the previous level. Notice that empty
cells cannot occur in the partitions associated to the root and the first level of the tree
by construction. Therefore, this mechanism enforces that the projected tree estimate is
well-defined over the full input space.

2.3.2 Sobol-MDA Properties

Computational complexity. By definition, an estimate of the total Sobol index is given
by the following procedure: retrain the random forest without the j-th variable, and subtract
the associated explained variance to the original accuracy with all variables. However, this
brute force approach is computationally expensive since it requires to fit p forests to get
the total Sobol index of each variable. Louppe (2014) states that the average computational
complexity of the forest growing is O(Mpn log2(n)). Thus, the total complexity of the
brute force approach is O(Mp2n log2(n)), which is quadratic with the dimension p and
therefore intractable in high-dimensional settings.

On the other hand, the original MDA procedure has an average complexity of
O(Mpn log(n)): to run a balanced tree prediction for a given data point, it is dropped
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Algorithm 1 Projected-CART

1: Input: A Θ -random CART built with Dn, and a variable index j ∈ {1, . . . , p}. (Note
that if a terminal leaf occurs before the final tree level, it is copied at each level down
the tree.)

2: Initialize both in-bag and OOB samples at the root node of the tree;
3: for all tree levels:
4: for all level nodes:
5: if the splitting variable is not j:
6: send each data point to the right or left children node according to the node

split;
7: if the splitting variable is j:
8: send the node sample to both the right and left children node ignoring the split;

9: for all data points:
10: retrieve the collection of nodes where the data point falls at the current tree level;

11: for all OOB data points:
12: retrieve the set of in-bag points which fall in the same node collection;
13: if all nodes in the considered node collection are terminal:
14: compute the output average of the in-bag points;
15: set this average as the prediction for the considered OOB observation;
16: if no in-bag points fall in the same node collection:
17: retrieve the corresponding in-bag data points at the previous tree level;
18: set the output average of these in-bag points as the prediction for the considered

OOB observation;
19: return predictions;



2.3 Sobol-MDA 77

down the log(n) levels of the tree, which makes a complexity of O(n log(n)) for the full
OOB sample, repeated for the M trees of the forest and the p variables. In the Sobol-MDA
procedure, the complexity analysis is similar, except that when a point is dropped down the
tree, it can be sent to both the left and right children nodes, generating multiple operations
at a given tree level and then an additional multiplicative factor of log(n). However, it is not
necessary to run the Projected-CART algorithm for each of the p variables. Indeed, when
a given observation is dropped down the tree, it meets at most log(n) different variables
in the original tree path. Therefore, the Projected-CART prediction has to be computed
only for log(n) variables for each observation. Thus, the Sobol-MDA algorithm has a
computational complexity of O(Mn log3(n)), which is in particular independent of the
dimension p, and quasi-linear with the sample size n.

Consistency. The original MDA versions do not converge towards the total Sobol index,
which is the relevant quantity for our objective (i)—see Proposition 2.2. On the other
hand, the Sobol-MDA is consistent as stated below. Before introducing this convergence
result, we need to introduce additional assumptions. Indeed, in Section 2.2, we show the
convergence of the different MDA versions provided that the forest is an efficient estimate,
i.e. consistent. To enforce the consistency of random forests, we used Assumption (A2.2)
which controls the variation of the regression function in each cell of the theoretical tree:
∆(m,A⋆

k(x,Θ))
a.s.−→ 0. Because the components of X may be dependent, Assumption

(A2.2) does not imply the same property for the projected partition. Therefore, we cannot
directly build on the consistency result from Scornet et al. (2015) to prove the consistency
of the Sobol-MDA. Thus, we take another route and define a new Assumption (A2.5)
which brings two modifications to the random forest algorithm.

(A2.5) A node split is constrained to generate child nodes with at least a small fraction
γ > 0 of the parent node observations. Secondly, the split selection is slightly modified: at
each tree node, the number mtry of candidate variables drawn to optimize the split is set
to mtry = 1 with a small probability δ > 0. Otherwise, with probability 1−δ , the default
value of mtry is used.

Importantly, since γ and δ can be chosen arbitrarily small, the modifications of as-
sumption (A2.5) are mild. Besides, notice that this assumption follows Meinshausen
(2006) and Wager and Athey (2018): we slightly modify the random forest algorithm
to enforce empirical cells to become infinitely small as the sample size increases. The
projected forest inherits this property and an asymptotic analysis from Györfi et al. (2006)
gives the consistency of the Sobol-MDA, provided that the complexity of tree partitions is
appropriately controlled. If an original tree has tn terminal leaves, the associated projected
partition may have a higher number of terminal leaves, at most 2tn . Thus, we introduce
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Assumption (A2.6), which slightly modifies (A2.3) with a more restrictive regime for the
number of terminal leaves tn in the original trees.

(A2.6) The asymptotic regime of an, the size of the subsampling without replacement, and
the number of terminal leaves tn is such that an ≤ n−2, an/n < 1−κ for a fixed κ > 0,
lim
n→∞

an = ∞, lim
n→∞

tn = ∞, and lim
n→∞

2tn (log(an))
9

an
= 0.

The Projected-CART algorithm ignores the splits based on the j-th variable, and the
associated OOB projected forest consistently estimates E[m(X)|X(− j)] under Assumptions
(A2.1), (A2.5), and (A2.6), which leads to the consistency of the Sobol-MDA as stated in
the theorem below. The proof is to be found in the Supplementary Material in Appendix A.

Theorem 2.2. If Assumptions (A2.1), (A2.5), and (A2.6) are satisfied, for all M ∈ N⋆ and
j ∈ {1, . . . , p}

Ŝ-MDAM,n(X ( j))
p−→ ST ( j).

Theorem 2.2 shows that the proposed Sobol-MDA algorithm consistently estimates the
total Sobol index, which gives the proportion of output explained variance lost when a given
variable is removed from the model. Therefore, the Sobol-MDA targets the appropriate
quantity for objective (i), of selecting a small number of variables while maximizing
accuracy, as opposed to the original MDA versions—see Proposition 2.2. Besides, we
also insist that the Sobol-MDA estimate is normalized by the output variance, and is thus
easily interpretable since it gives a proportion of output variance allocated to a given input
variable.

2.3.3 Experiments

We conduct three batches of experiments. First, we come back to the analytical example
of the previous section, and show empirically that the Sobol-MDA leads to the accurate
importance variable ranking, while original MDA versions do not. Next, we simulate
a typical setting where several groups of variables are strongly correlated and only few
inputs are involved in the regression function. In such difficult setting, the Sobol-MDA
identifies the relevant variables, as opposed to the original MDA versions. Finally, we
apply the RFE on real data to show the performance improvement of the Sobol-MDA for
variable selection.

Simulated data: example 1. We consider the same example as in Section 2.2, where
the data has both dependence and interactions. In our example, recall that the input is a
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BC-MDA⋆ ̂BC-MDA IK-MDA⋆ ̂IK-MDA ST⋆ Ŝ-MDA ̂S-MDALdg

X(3) 0.47 0.37 0.47 0.43 0.47 0.45 0.43
X(4) 0.21 0.10 0.37 0.14 0.10 0.08 0.13
X(5) 0.21 0.09 0.37 0.13 0.10 0.08 0.13
X(1) 0.64 0.24 1.0 0.29 0.07 0.05 0.22
X(2) 0.64 0.24 1.0 0.28 0.07 0.05 0.23

Table 2.3 Normalized BC-MDA, normalized IK-MDA, and Sobol-MDA estimates for
Example 1.

̂IK-MDA ̂BC-MDA Ŝ-MDA ̂S-MDALdg

X(3) 0.02 0.03 0.03 0.03
X(4) 0.01 0.02 0.01 0.01
X(5) 0.01 0.01 0.01 0.01
X(1) 0.02 0.02 0.01 0.02
X(2) 0.02 0.02 0.01 0.01

Table 2.4 Standard deviations of the normalized BC-MDA, normalized IK-MDA, and
Sobol-MDA estimates over 10 repetitions for Example 1.

Gaussian vector with p = 5, and the regression function is given by

m(X) = αX (1)X (2)1X (3)>0 +βX (4)X (5)1X (3)<0.

Here, we set α = 1.5, β = 1, V[X ( j)] = 1 for all variables j ∈ {1, . . . ,5}, and the correlation
coefficients are set to ρ1,2 = 0.9 and ρ4,5 = 0.6 (other covariance terms are null). Finally,
we define the model output as Y = m(X)+ ε , where ε is an independent centered gaussian
noise whose variance verifies V[ε]/V[Y ] = 10%. Then, we run the following experiment:
first, we generate a sample Dn of size n = 3000 and distributed as the Gaussian vector
X. Next, a random forest of M = 300 trees is fit with Dn and we compute the BC-MDA,
IK-MDA, and Sobol-MDA. To enable comparisons, the BC-MDA is normalized by 2V[Y ],
and the IK-MDA by V[Y ]—see Proposition 2.2. To show the improvement of our Projected-
CART algorithm, we also compute the Sobol-MDA using the algorithm from Lundberg
et al. (2018), denoted ̂S-MDALdg. All results are reported in Table 2.3 and the theoretical
counterparts of the estimates are also provided. Notice that the associated standard
deviations are gathered in Table 2.4, and that the variables are ranked by decreasing values
of the theoretical total Sobol index since it is the value of interest: X(3), then X(4) and X(5),
and finally X(1) and X(2).

Only the Sobol-MDA computed with the Projected-CART algorithm ranks the variables
in the same appropriate order than the total Sobol index. In particular, X(4) and X(5) have a
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higher total Sobol index than variables 1 and 2 because of the stronger correlation between
X(1) and X(2) than between X(4) and X(5). For all the other importance measures, X(1)

and X(2) are more important than X(4) and X(5). For the original MDA, this is due to
the higher coefficient α = 1.5 > β = 1, to the term MDA⋆( j)

2 , and especially to MDA⋆( j)
3

which increases with correlation. Since the explained variance of the random forest is
82% in this experiment, all estimates have a negative bias. The bias of the BC-MDA and
IK-MDA dramatically increases with correlation. Indeed, a strong correlation between
variables leaves some regions of the input space free of training data. However, the OOB
permuted sample queries the forest in these regions where the forest extrapolates. This
phenomenon combined with the MDA⋆( j)

3 component explains the high bias of the BC-
MDA and IK-MDA for correlated inputs. Also observe that since X(3) is independent
of the other variables, the bias is small for both the BC/IK-MDA, and it is smaller for
the IK-MDA than the BC-MDA as the forest estimate is more accurate than a single tree.
Finally, the Sobol-MDA computed with the algorithm of (Lundberg et al., 2018) is biased
as suggested by (Aas et al., 2019), and the bias also seems to increase with correlation.

Simulated data: example 2. We consider the following problem inspired by Archer
and Kimes (2008); Gregorutti et al. (2017) and related to gene expressions. The goal is
to identify relevant variables among several groups of many strongly correlated inputs,
where the output is a linear combination of only one variable per group. In this dependent
and additive setting, the BC-MDA is expected to behave poorly because of the marginal
total Sobol index component—see Corollary 2.2, whereas the IK-MDA has the appropriate
theoretical counterpart. We will see that the Sobol-MDA also outperforms the IK-MDA in
practice. More precisely, we define X, a random vector of dimension p = 200, composed
of 5 independent groups of 40 variables. Each group is a centered gaussian random vector
where two distinct components have a correlation of 0.8 and the variance of each input is
1. The regression function m only involves one variable from each group, and is simply
defined by

m(X) = 2X (1)+X (41)+X (81)+X (121)+X (161).

Finally, we define the model output as Y = m(X)+ ε , where ε is an independent gaussian
noise (V[ε]/V[Y ] = 10%). Next, a sample of size n = 1000 is generated based on the
distribution of X, and a random forest of M = 300 trees is fit.

Table 2.5 shows that the Sobol-MDA identifies the 5 relevant variables, whereas both
the BC-MDA and IK-MDA identify some noisy variables among the top 5. In this additive
and correlated example, Corollary 2.2 states that all MDA algorithms have an appropriate
theoretical counterpart to identify the five relevant variables involved in the regression
function, because these five variables are mutually independent. However, in this finite
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Ŝ-MDA
X(1) 0.035

X(161) 0.005
X(81) 0.004
X(121) 0.004
X(41) 0.002
X(179) 0.002
X(13) 0.001
X(25) 0.001
X(73) 0.001
X(155) 0.001

̂BC-MDA/2V[Y ]
X(1) 0.048
X(25) 0.010
X(31) 0.008
X(14) 0.008
X(40) 0.007
X(3) 0.007
X(17) 0.006
X(26) 0.006
X(41) 0.006
X(121) 0.006

̂IK-MDA/V[Y ]
X(1) 0.056
X(5) 0.009
X(81) 0.007
X(41) 0.005
X(161) 0.005
X(15) 0.005
X(121) 0.005
X(7) 0.005
X(4) 0.004
X(28) 0.004

Table 2.5 Normalized BC-MDA, normalized IK-MDA, and Sobol-MDA estimates (influ-
ential variables in blue) for Example 2.

sample setting, the original MDA versions give a high importance to the variables of the
first group because of their correlation with the most influential variable X (1). Since the
Ishwaran-Kogalur MDA is based on the forest error, it outperforms the Breiman-Cutler
MDA, which relies on the tree error.

Recursive feature elimination. The Recursive Feature Elimination algorithm (RFE) is
originally introduced by Guyon et al. (2002) to perform variable selection with SVM.
Gregorutti et al. (2017) apply RFE to random forests with the MDA as importance measure.
The principle of the RFE algorithm is to discard the less relevant input variables one by
one, and is summarized in Algorithm 2. Thus, the RFE is a relevant strategy for our
objective (i) of building a model with a high accuracy and a small number of variables.
At each step of the RFE, the goal is to detect the less relevant input variable based on the

Algorithm 2 Recursive Feature Elimination
1: for j in 1, . . . , p:
2: train a random forest
3: compute the MDA for all variables
4: remove the variable with the smallest MDA
5: return the ordered list of removed variables

trained model. Since the total Sobol index measures the proportion of explained output
variance lost when a given variable is removed, the optimal strategy is therefore to discard
the variable with the smallest total Sobol index. As the Sobol-MDA directly estimates the
total Sobol index whereas existing MDA all have additional noisy terms—see Section 2.2,
using the Sobol-MDA improves the performance of the RFE, as shown in the following
experiments.
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Fig. 2.3 Random forest error versus the number of variables for the “Ozone” and “Breast
Cancer Wisconsin Diagnostic” datasets at each step of the RFE, using different importance
measures: BC-MDA, IK-MDA, and Sobol-MDA.

The RFE algorithm is illustrated with four real datasets: following (Genuer et al.,
2010) we use the “Ozone” data (Dua and Graff, 2017) for a regression example, as well
as two other datasets from the UCI repository: “Galaxy” and “Prostate”. We also use the
“Breast Cancer Wisconsin Diagnosis” data for a binary classification case as in Song et al.
(2007). The RFE is run three times, respectively using the BC-MDA, IK-MDA, and the
Sobol-MDA as importance measures to iteratively discard the less relevant variable. At
each step of the RFE, the explained variance of the forest is retrieved. Following Gregorutti
et al. (2017), we do not use the OOB error since it gives optimistically bias results, but use
instead a 10-fold cross-validation: the forest and the associated importance measure are
computed with 9 folds, and the error is estimated with the 10-th fold. For each dataset, the
cross-validation is repeated 40 times to get the result uncertainties, displayed as boxplots
in the figures. Figures 2.3 and 2.4 highlight that the Sobol-MDA leads to a more efficient
variable selection than the BC-MDA and the IK-MDA for the “Ozone”, “Breast Cancer
Wisconsin Diagnosis”, and “Galaxy” datasets. Notice that the IK-MDA performs better
than the BC-MDA, as expected from their theoretical counterparts—see Proposition 2.2.
Finally, the “Prostate” dataset in Figure 2.4 is an example where the Sobol-MDA does not
significantly improve over the original MDA.

2.4 Conclusion

Variable importance is the main approach to analyze the black-box mechanism of random
forests, and the MDA is the most widely used importance measure. However, many
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Fig. 2.4 Random forest error versus the number of variables for the “Galaxy” and “Prostate”
datasets at each step of the RFE, using different importance measures: BC-MDA, IK-MDA,
and Sobol-MDA.

empirical studies have shown that when input variables are dependent, the MDA fails
to detect influential variables. We conducted a theoretical analysis to understand this
undesirable behavior. First, a close inspection of the literature and the main random forest
software show that different definitions coexist: the Train-Test MDA, the Breiman-Cutler
MDA, and the Ishwaran-Kogalur MDA. An asymptotic analysis shows that these different
MDA versions do not converge towards the appropriate theoretical quantity when input
variables are dependent, and are thus misleading for both objectives (i) and (ii) of variable
importance. Therefore, we propose an augmented MDA algorithm: the Sobol-MDA, which
consistently estimates the total Sobol index, i.e. the appropriate theoretical counterpart
which tells how much explained variance of the output is lost when a given variable is
removed from the model, at an efficient computational cost. We run many experiments to
show the good empirical performance of the Sobol-MDA, especially to perform variable
selection through the Recursive Feature Elimination algorithm (RFE). An implementation
in R and C++ of the Sobol-MDA is available at https://gitlab.com/drti/sobolmda.

https://gitlab.com/drti/sobolmda




Chapter 3

SHAFF: fast and consistent SHApley
eFfect estimates via random Forests

Abstract
Interpretability of learning algorithms is crucial for applications involving critical decisions, and
variable importance is one of the main interpretation tools. Shapley effects are now widely used
to interpret both tree ensembles and neural networks, as they can efficiently handle dependence
and interactions in the data, as opposed to most other variable importance measures. However,
estimating Shapley effects is a challenging task, because of the computational complexity and the
conditional expectation estimates. Accordingly, existing Shapley algorithms have flaws: a costly
running time, or a bias when input variables are dependent. Therefore, we introduce SHAFF,
SHApley eFfects via random Forests, a fast and accurate Shapley effect estimate, even when
input variables are dependent. We show SHAFF efficiency through both a theoretical analysis
of its consistency, and the practical performance improvements over competitors with extensive
experiments. An implementation of SHAFF in C++ and R is available online.
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3.1 Introduction

State-of-the-art learning algorithms are often qualified as black-boxes because of the
high number of operations required to compute predictions. This complexity prevents to
grasp how inputs are combined to generate the output, which is a strong limitation for
many applications, especially those with critical decisions at stake—healthcare is a typical
example. For this reason, interpretability of machine learning has become a topic of strong
interest in the past few years. One of the main tools to interpret learning algorithms is
variable importance, which enables to identify and rank the influential features of the
problem. Recently, Shapley effects have been widely accepted as a very efficient variable
importance measure since they can equitably handle interactions and dependence within
input variables (Owen, 2014; Štrumbelj and Kononenko, 2014; Iooss and Prieur, 2017;
Lundberg and Lee, 2017). Shapley values were originally defined in economics and game
theory (Shapley, 1953) to solve the problem of attributing the value produced by a joint
team to its individual members. The main idea is to measure the difference of produced
value between a subset of the team and the same subteam with an additional member.
For a given member, this difference is averaged over all possible subteams and gives his
Shapley value. Recently, Owen (2014) adapted Shapley values to the problem of variable
importance in machine learning, where an input variable plays the role of a member
of the team, and the produced value is the explained output variance. In this context,
Shapley values are now called Shapley effects, and are extensively used to interpret both
tree ensembles and neural networks. Next, Lundberg and Lee (2017) also introduced
SHAP values to adapt Shapley effects to local importance measures, which break down
the contribution of each variable for a given prediction. We focus on Shapley effects
throughout the chapter, but our approach can be easily adpated to SHAP values as they
share the same challenges.

The objective of variable importance is essentially to perform variable selection. More
precisely, it is possible to identify two final aims (Genuer et al., 2010): (i) find a small
number of variables with a maximized accuracy, or (ii) detect and rank all influential
variables to focus on for interpretation and further exploration with domain experts. The
following example illustrates that different strategies should be used depending on the
targeted objective: if two influential variables are strongly correlated, one must be discarded
for objective (i), while the two must be kept in the second case. Indeed, if two variables
convey the same statistical information, only one should be selected if the goal is to
maximize the predictive accuracy with a small number of variables, i.e., objective (i). On
the other hand, these two variables may be acquired differently and represent distinct
physical quantities. Therefore, they may have different interpretations for domain experts,
and both should be kept for objective (ii). Shapley effects are a relevant measure of
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variable importance for objective (ii), because they equitably allocate contributions due to
interactions and dependence across all input variables.

The main obstacle to estimate Shapley effects is the computational complexity. The
first step is to use a learning algorithm to generalize the relation between the inputs and
the output. Most existing Shapley algorithms are agnostic to the learning model. Lundberg
et al. (2018) open an interesting route by restricting their algorithm to tree ensembles,
in order to develop fast greedy heuristics, specific to trees. Unfortunately, as mentioned
by Aas et al. (2019), the algorithm is biased when input variables are dependent. In the
present contribution, we focus our Shapley algorithm on random forests, well known for
their good behavior on high-dimensional or noisy data, and their robustness. Using the
specific structure of random forests, we develop SHAFF, a fast and accurate Shapley effect
estimate.

Shapley effects. To formalize Shapley effects, we introduce a standard regression setting
with an input vector X = (X (1), . . . ,X (p)) ∈Rp, and an output Y ∈R. We denote by X(U)

the subvector with only the components in U ⊂ {1, . . . , p}. Formally, the Shapley effect of
the j-th variable is defined by

Sh( j) = ∑
U⊂{1,...,p}\{ j}

1
p

(
p−1
|U |

)−1V[E[Y |X(U∪{ j})]]−V[E[Y |X(U)]]

V[Y ]
.

In other words, the Shapley effect of X ( j) is the additional output explained variance when
j is added to a subset U ⊂ {1, . . . , p}, averaged over all possible subsets. The variance
difference is averaged for a given size of U through the combinatorial weight, and then
the average is taken over all U sizes through the term 1/p. Observe that the sum has
2p−1 terms, and each of them requires to estimate V[E[Y |X(U)]], which is computationally
costly. Overall, two obstacles arise to estimate Shapley effects:

1. the computational complexity is exponential with the dimension p;

2. V[E[Y |X(U)]] requires a fast and accurate estimate for all variable subsets U ⊂
{1, . . . , p}.

In the literature, efficient strategies have been developed to handle these two issues. They
all have drawbacks: they are either fast but with a limited accuracy, or accurate but
computationally costly. We will see how SHAFF considerably improves this trade-off.

Related work. The computational issue of Shapley algorithms—1. above—is solved
using Monte-Carlo methods in general (Song et al., 2016; Lundberg and Lee, 2017; Covert
et al., 2020; Williamson and Feng, 2020; Covert and Lee, 2020). In the case of tree
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Reference Model
Local or
global

Subset
sampling

Conditional
expectations

Song et al. (2016) all global permutation
kown conditional

distributions
Lundberg and Lee (2017) all local Monte-Carlo marginals

Lundberg et al. (2018)
tree

ensembles local greedy heuristic greedy heuristic

Aas et al. (2019) all local Monte-Carlo
kown conditional

distributions
Covert et al. (2020) all global Monte-Carlo marginals
Broto et al. (2020) all global brute force k-nearest neighbors

Williamson and Feng (2020) all global Monte-Carlo retrain model
Covert and Lee (2020) all local Monte-Carlo marginals

Table 3.1 State-of-the-art of Shapley algorithms.

ensembles, specific heuristics based on the tree structure enable to simplify the algorithm
complexity (Lundberg et al., 2018).

For the second issue of conditional expectation estimates—2. above, two main ap-
proaches exist: train one model for each selected subset of variables (accurate but compu-
tationally costly) (Williamson and Feng, 2020), or train a single model once with all input
variables and use greedy heuristics to derive the conditional expectations (fast but limited
accuracy). In the latter case, existing algorithms estimate the conditional expectations with
a quite strong bias when input variables are dependent. More precisely, Lundberg and
Lee (2017, kernelSHAP), Covert et al. (2020, SAGE), and Covert and Lee (2020) simply
replace the conditional expectations by the marginal distributions, Lundberg et al. (2018)
use a greedy heuristic specific to tree ensembles, and Broto et al. (2020) leverage k-nearest
neighbors to approximate sampling from the conditional distributions. Besides, efficient
algorithms exist when it is possible to draw samples from the conditional distributions
of the inputs (Song et al., 2016; Aas et al., 2019; Broto et al., 2020). However, we only
have access to a finite sample in practice, and the input dimension p can be large, which
implies that estimating the conditional distributions of the inputs is a very difficult task.
This last type of methods is therefore not really appropriate in our setting—see Table 3.1
for a summary of the existing Shapley algorithms.

As mentioned above, several of the presented methods provide local importance
measures for specific prediction points, called SHAP values (Lundberg and Lee, 2017;
Lundberg et al., 2018; Covert and Lee, 2020). Their final objective differs from ours, since
we are interested in global estimates. However, SHAP values share the same challenges as
Shapley effects: the computational complexity and the conditional expectation estimates,
and our approach can therefore be adapted to SHAP values. Let us also mention that several
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recent articles discuss Shapley values in the causality framework (Frye et al., 2020; Heskes
et al., 2020; Janzing et al., 2020; Wang et al., 2021). These works have a high potential
since causality is quite often the ultimate goal when one is looking for interpretations.
However, causality methods require strong prior knowledge and assumptions about the
studied system, and can therefore be difficult to apply in some applications. In these cases,
we argue that the best way to go is to use standard Shapley effects to detect and rank
influential variables, as a starting point to deepen the analysis with domain experts.

Outline. We leverage random forests to develop SHAFF, a fast and accurate Shapley
effect estimate. Such remarkable performance is reached by combining two new features.
Firstly, we improve the Monte-Carlo approach by using importance sampling to focus
on the most relevant subsets of variables identified by the forest. Secondly, we develop a
projected random forest algorithm to compute fast and accurate estimates of the conditional
expectations for any variable subset. The algorithm details are provided in Section 3.2.
Next, we prove the consistency of SHAFF in Section 3.3. To our knowledge, SHAFF is
the first Shapley effect estimate, which is both computationally fast and consistent in a
general setting. In Section 3.4, several experiments show the practical improvement of our
method over state-of-the-art algorithms.

3.2 SHAFF Algorithm

Existing approach. SHAFF builds on two Shapley algorithms: Lundberg and Lee
(2017, kernelSHAP) and Williamson and Feng (2020). From these approaches, we can
deduce the following general three-step procedure to estimate Shapley effects. First, a
set Un,K of K variable subsets U ⊂ {1, . . . , p} is randomly drawn. Next, an estimate
v̂n(U) of V[E[Y |X(U)]] is computed for all selected U from an available sample Dn =

{(X1,Y1), . . . ,(Xn,Yn)} of n independent random variables distributed as (X,Y ). Finally,
Shapley effects are defined as the least square solution of a weighted linear regression
problem. If I(U) is the binary vector of dimension p where the j-th component takes the
value 1 if j ∈U and 0 otherwise, Shapley effect estimates are the minimum in β of the
following cost function:

ℓn(β ) =
1
K ∑

U∈Un,K

w(U)(v̂n(U)−β
T I(U))2,

where the weights w(U) are given by

w(U) =
p−1( p

|U |
)
|U |(p−|U |)

,
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and the coefficient vector β is constrained to have its components sum to v̂n({1, . . . , p}).

Algorithm overview. SHAFF introduces two new critical features to estimate Shapley
effects efficiently, using an initial random forest model. Firstly, we apply importance
sampling to select variable subsets U ⊂ {1, . . . , p}, based on the variables frequently
selected in the forest splits. This favors the sampling of subsets U containing influential
and interacting variables. Secondly, for each selected subset U , the variance of the
conditional expectation is estimated with the projected forest algorithm described below,
which is both a fast and consistent approach. We will see that these features considerably
reduce the computational cost and the estimate error. To summarize, once an initial random
forest is fit, SHAFF proceeds in three steps:

1. sample many subsets U , typically a few hundreds, based on their occurrence fre-
quency in the random forest (Subsection 3.2.1);

2. estimate V[E[Y |X(U)]] with the projected forest algorithm for all selected U and
their complementary sets {1, . . . , p}\U (Subsection 3.2.2);

3. solve a weighted linear regression problem to recover Shapley effects (Subsection
3.2.3).

Initial random forest. Prior to SHAFF, a random forest is fit with the training sample
Dn to generalize the relation between the inputs X and the output Y . A large number M of
CART trees are averaged to form the final forest estimate mM,n(x,Θ M), where x is a new
query point, and each tree is randomized by a component of Θ M = (Θ1, . . . ,Θℓ, . . . ,ΘM).
Each Θℓ is used to bootstrap the data prior to the ℓ-th tree growing, and to randomly
select mtry variables to optimize the split at each node. mtry is a parameter of the forest,
and its efficient default value is p/3. In the sequel, we will need the forest parameter
min_node_size, which is the minimum number of observations in a terminal cell of a
tree, as well as the out-of-bag (OOB) sample of the ℓ-th tree: the observations which are
left aside in the bootstrap sampling prior to the construction of tree ℓ. Given this initial
random forest, we can now detail the main three steps of SHAFF.

3.2.1 Importance Sampling

The Shapley effect formula for a given variable X ( j) sums terms over all subsets of
variables U ⊂ {1, . . . , p}\{ j}, which makes 2p−1 terms, an intractable problem in most
cases. SHAFF uses importance sampling to draw a reasonable number of subsets U ,
typically a few hundreds, while preserving a high accuracy of the Shapley estimates. We
take advantage of the initial random forest to define an importance measure for each
variable subset U , used as weights for the importance sampling distribution.
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Variable subset importance. In a tree construction, the best split is selected at each
node among mtry input variables. Therefore, as highlighted by Proposition 1 in Scornet
et al. (2015), the forest naturally splits on influential variables. SHAFF leverages this idea
to define an importance measure for all variable subsets U ⊂ {1, . . . , p} as the probability
that a given U occurs in a path of a tree of the forest. Empirically, this means that we count
the occurrence frequency of U in the paths of the M trees of the forest, and denote it by
p̂M,n(U). Such approach is inspired by Basu et al. (2018) and Bénard et al. (2021c). This
principle is illustrated with the following simple example in dimension p = 10. Let us
consider a tree, where the root node splits on variable X (5), the left child node splits on
variable X (3), and the subsequent left child node at the third tree level, on variable X (2).
Thus, the path that leads to the extreme left node at the fourth level uses the following
index sequence of splitting variables: {5,3,2}. All in all, the following variable subsets
are included in this tree path: U = {5}, U = {3,5}, and U = {2,3,5}. Then, SHAFF runs
through the forest to count the number of times each subset U occurs in the forest paths,
and computes the associated frequency p̂M,n(U). If a subset U does not occur in the forest,
we obviously have p̂M,n(U) = 0. Notice that the computational complexity of this step is
linear: O(Mn).

Paired importance sampling. The occurrence frequencies p̂M,n(U) defined above are
scaled to sum to 1, and then define a discrete distribution for the set of all subsets of vari-
ables U ⊂ {1, . . . , p}, excluding the full and empty sets. By construction, this distribution
is skewed towards the subsets U containing influential variables and interactions, and is
used for the importance sampling. Finally, SHAFF draws a number K of subsets U with
respect to this discrete distribution, where K is a hyperparameter of the algorithm. We
define Un,K the random set of the selected variable subsets U . For all U ∈ Un,K , SHAFF
also includes the complementary set {1, . . . , p} \U in Un,K , as Covert and Lee (2020)
show that this “paired sampling” improves the final Shapley estimate accuracy. Clearly,
the computational complexity and the accuracy of the algorithm increase with K. The next
step of SHAFF is to efficiently estimate V[E[Y |X(U)]] for all drawn U ∈ Un,K .

3.2.2 Projected Random Forests

In order to estimate V[E[Y |X(U)]] for the selected variable subsets U ∈Un,K , most existing
methods use greedy algorithms. However, such estimates are not accurate in moderate
or large dimensions when input variables are dependent (Aas et al., 2019; Sundararajan
and Najmi, 2020). Another approach is to train a new model for each subset U , but this
is computationally costly (Williamson and Feng, 2020). To solve this issue, we design
the projected random forest algorithm (PRF), to obtain a fast and accurate estimate of
V[E[Y |X(U)]]/V[Y ] for any variable subset U ⊂ {1, . . . , p}.
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X (1)

X (2)
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X (2)
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X(U)

Fig. 3.1 Example of the partition of [0,1]2 by a random CART tree (left side) projected on
the subspace spanned by X(U) = X (1) (right side). Here, p = 2 and U = {1}.

PRF principle. PRF takes as inputs the initial forest and a given subset U . The general
principle is to project the partition of each tree of the forest on the subspace spanned by
the variables in U , as illustrated in Figure 3.1. Then the training data are spread across
this new tree partitions, and the cell outputs are recomputed by averaging the output Yi

of the observations falling in each new cell, as in the original forest. The projection
enables to eliminate the variables not contained in U from the tree predictions, and thus to
estimate E[Y |X(U)] instead of E[Y |X]. Finally, the predictions for the out-of-bag samples
are computed with the projected tree estimates, and averaged across all trees. The obtained
predictions are used to estimate the targeted normalized variance V[E[Y |X(U)]]/V[Y ],
denoted by v̂M,n(U). More formally, we let m(U,OOB)

M,n (X(U)
i ,Θ M) be the out-of-bag PRF

estimate for observation i and subset U , and take

v̂M,n(U) = 1− 1
nσ̂Y

n

∑
i=1

(
Yi −m(U,OOB)

M,n (X(U)
i ,Θ M)

)2
,

where σ̂Y is the standard estimate of V[Y ].

PRF algorithm. The critical feature of PRF is the algorithmic trick to compute the
projected partition efficiently, leaving the initial tree structures untouched. Indeed, a
naive computation of the projected partitions from the cell edges is computationally very
costly, as soon as the dimension increases. Instead, we simply drop observations down the
initial trees, ignoring splits which use a variable outside of U . This enables to recover the
projected partitions with an efficient computational complexity. To explain this mechanism
in details, we focus on a given tree of the initial forest. Thus, the training observations
are dropped down the tree, and when a split involving a variable outside of U is met, data
points are sent both to the left and right children nodes. Consequently, each observation
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falls in multiple terminal leaves of the tree. We drop the new query point X(U) down the
tree, following the same procedure, and retrieve the set of terminal leaves where X(U)

falls. Next, we collect the training observations which belong to every terminal leaf of this
collection, in other words, we intersect the collection of leaves where X(U) falls. Finally,
we average the outputs Yi of the selected training points to generate the tree prediction
for X(U). Notice that such set of selected observations can be empty if X(U) belongs to a
large collection of terminal leaves. To avoid this issue, PRF uses the following strategy.
Recall that a partition of the input space is associated to each tree level, and consequently,
a projected tree partition can also be defined at each tree level. Thus, when X(U) is dropped
down the tree, it is stopped before reaching a tree level where it falls in an empty cell of
the associated projected partition. Overall, this mechanism is equivalent to the projection
of the tree partition on the subspace span by X (U), because all splits on variables X ( j) with
j /∈U are ignored, and the resulting overlapping cells are intersected—see Figure 3.1.

PRF computational complexity. An efficient implementation of the PRF algorithm is
detailed in Algorithm 4 in the Supplementary Material in Appendix B. The computational
complexity of PRF for all U ∈ Un,K does not depend on the dimension p, is linear with
M, K, and quasi-linear with n: O(MKn log(n)). PRF is therefore faster than growing K
random forests from scratch, one for each subset U , which has an averaged complexity
of O(MK pn log2(n)) (Louppe, 2014). The computational gain of SHAFF can be consid-
erable in high dimension, since the complexity of all competitors depends on p—see the
Supplementary Material in Appendix B for a detailed computational complexity analysis.
Notice that the PRF algorithm is close in spirit to a component of the Sobol-MDA (Bé-
nard et al., 2021d), used to measure the loss of output explained variance when an input
variable j is removed from a random forest. In particular, a naive adaptation leads to a
quadratic complexity with respect to the sample size n, whereas our PRF algorithm has a
quasi-linear complexity, which makes it operational. Finally, the last step of SHAFF is to
take advantage of the estimated v̂M,n(U) for U ∈ Un,K to recover Shapley effects.

3.2.3 Shapley Effect Estimates

The importance sampling introduces the corrective terms p̂M,n(U) in the final loss function.
Thus, SHAFF estimates ŜhM,n = (ŜhM,n(X (1)), . . . , ŜhM,n(X (p))) as the minimum in β of
the following cost function

ℓM,n(β ) =
1
K ∑

U∈Un,K

w(U)

p̂M,n(U)
(v̂M,n(U)−β

T I(U))2,

where the sum of the components of β is constrained to be the proportion of output
explained variance of the initial forest, fit with all input variables. Finally, this can be
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written in the following compact form:

ŜhM,n = argmin
β∈[0,1]p

ℓM,n(β )

s.t. ||β ||1 = v̂M,n({1, . . . , p}).

3.3 SHAFF Consistency

We prove in this section that SHAFF is consistent, in the sense that the estimated value
can be arbitrarily close to the ground truth theoretical Shapley effect, provided that the
sample size is large enough. To our knowledge, we provide the first Shapley algorithm
which requires to fit only a single initial model and is consistent in the general case. We
insist that our result is valid even when input variables exhibit strong dependences. The
consistency of SHAFF holds under the following mild and standard assumption on the
data distribution:

(A3.1) The response Y ∈R follows

Y = m(X)+ ε,

where X = (X (1), . . . ,X (p)) ∈ [0,1]p admits a density over [0,1]p bounded from above and
below by strictly positive constants, m is continuous, and the noise ε is sub-Gaussian,
independent of X, and centered.

To alleviate the mathematical analysis, we slightly modify the standard Breiman random
forests: the bootstrap sampling is replaced by a subsampling without replacement of an

observations, as it is usually done in the theoretical analysis of random forests (Scornet
et al., 2015; Mentch and Hooker, 2016). Additionally, we follow Wager and Athey (2018)
with an additional small modification of the forest algorithm, which is sufficient to ensure
its consistency. Firstly, a node split is constrained to generate child nodes with at least a
small fraction γ > 0 of the parent node observations. Secondly, the split selection is slightly
randomized: at each tree node, the number mtry of candidate variables drawn to optimize
the split is set to mtry = 1 with a small probability δ > 0. Otherwise, with probability
1−δ , the default value of mtry is used. It is stressed that these last modifications are mild,
since γ and δ can be chosen arbitrarily small.

Finally, we introduce the following two assumptions on the asymptotic regime of the
algorithm parameters. Assumption (A3.2) enforces that the tree partitions are not too
complex with respect to the sample size n. On the other hand, Assumption (A3.3) states
that the number of trees and the number of sampled variable subsets U grow with n. This
ensures that all possible variable subsets have a positive probability to be drawn, which is
required for the convergence of our algorithm based on importance sampling.
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(A3.2) The asymptotic regime of an, the size of the subsampling without replacement, and
the number of terminal leaves tn are such that an ≤ n−2, an/n < 1−κ for a fixed κ > 0,
lim
n→∞

an = ∞, lim
n→∞

tn = ∞, and lim
n→∞

2tn (log(an))
9

an
= 0.

(A3.3) The number of Monte-Carlo sampling Kn and the number of trees Mn grow with n,
such that Mn −→ ∞ and n.Mn/Kn −→ 0.

We also let the theoretical Shapley effect vector be Sh⋆ = (Sh(1), . . . ,Sh(p)) to formalize
our main result.

Theorem 3.1. If Assumptions (A3.1), (A3.2), and (A3.3) are satisfied, then SHAFF is
consistent, that is

ŜhMn,n
p−→ Sh⋆.

Sketch of proof of Theorem 3.1. Firstly, we need three lemmas to prove Theorem 3.1,
gathered in the Supplementary Material in Appendix B. Lemma B.1 states that all variable
subsets U have a positive probability to be drawn asymptotically, which ensures that the
importance sampling approach can converge. Lemma B.2 states the consistency of the
projected forest estimate, and the proof uses arguments from Györfi et al. (2006) to control
both the approximation and estimation errors. Lemma B.3 applies the two previous lemmas
to state the convergence of the loss function of the weigthed regression problem solved to
recover Shapley effect estimates.

Secondly, we apply Theorem 2 from Lundberg and Lee (2017) to show that the
minimum of the theoretical loss function are the theoretical Shapley effects. Finally, using
Lemma B.3 and Theorem 5.7 from Van der Vaart (2000, page 45), we show that the
minimum of the empirical loss function converges towards the minimum of the theoretical
loss function, which gives the consistency of SHAFF.

3.4 Experiments

We run two batches of experiments to show the improvements of SHAFF over the main
competitors Broto et al. (2020), Williamson and Feng (2020), and Covert et al. (2020,
SAGE). Experiment 1 is a simple linear case with a redundant variable, while Experiment
2 is a non-linear example with high-order interactions. In both cases, existing Shapley
algorithms exhibit a bias which significantly modifies the accurate variable ranking, as
opposed to SHAFF. Finally, we combine the new features of SHAFF with existing algo-
rithms to break down the performance improvements due to the importance sampling and
the projected forest.
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Experiment settings. Our implementation of SHAFF is based on ranger, a fast random
forest software written in C++ and R from Wright and Ziegler (2017). We implemented
Williamson and Feng (2020) from scratch, as it only requires to sample variable subsets U ,
fit a random forest for each U , and recover Shapley effects by solving the linear regression
problem defined in Section 3.2. Notice that we limit tree depth to 6 when |U | ≤ 2 to avoid
overfitting. We implemented SAGE following Algorithm 1 from Covert et al. (2020),
and setting m = 30. The original implementation of Broto et al. (2020) in the R package
sensitivity has an exponential complexity with p. Even for p = 10, we could not have
the experiments done within 24 hours when parallelized on 16 cores. Therefore, we do not
display the results for Broto et al. (2020), which seem to have a high bias on toy examples.
In all procedures, the number K of sampled subsets U is set to 500, and we use 500 trees
for the forest growing. Each run is repeated 30 times to estimate the standard deviations.
For both experiments, we analytically derive the theoretical Shapley effects, and display
this ground truth with red crosses in Figures 3.2 and 3.3—see the Supplementary Material
in Appendix B for the formulas.

Experiment 1. In the first experiment, we consider a linear model and a correlated
centered Gaussian input vector of dimension 11. The output Y follows

Y = β
T X+ ε,

where β ∈ [0,1]11, and the noise ε is centered, independent, and such that V[ε] = 0.05×
V[Y ]. Finally, two copies of X (2) are appended to the data as X (12) and X (13), and two
dummy Gaussian variables X (14) and X (15) are also added. We draw a sample Dn of size
n = 3000.

Figure 3.2 shows that SHAFF is more accurate than its competitors. Covert et al.
(2020, SAGE) has a strong bias for several variables, in particular X (4), X (7), X (8), and
X (10). The algorithm from Williamson and Feng (2020) has a lower performance since
its variance is higher than for the other methods. Notice that Williamson and Feng (2020)
recommend to set K = 2n (= 6000 here). Since we use K = 500 to compare all algorithms,
this high variance is quite expected and show the improvement due to the importance
sampling of our method. Besides, the computational complexity of Williamson and Feng
(2020) is O(n2) whereas SHAFF is quasi-linear. Finally, in this experiment, the random
forest has a proportion of explained variance of about 86%, and the noise variance is 5%,
which explains the small negative bias of many estimated values.

Experiment 2. In the second experiment, we consider two independent blocks of 5
interacting variables. The input vector is Gaussian, centered, and of dimension 10.
All variables have unit variance, and all covariances are null, except Cov(X (1),X (2)) =
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Fig. 3.2 Shapley effects for Experiment 1. Red crosses are the theoretical Shapley effects.

Cov(X (6),X (7)) = 0.9, and Cov(X (4),X (5)) = Cov(X (9),X (10)) = 0.5. The output Y fol-
lows

Y = 3
√

3×X (1)X (2)1X (3)>0 +
√

3×X (4)X (5)1X (3)<0

+3×X (6)X (7)1X (8)>0 +X (9)X (10)1X (8)<0 + ε,

where the noise ε is centered, independent, and such that V[ε] = 0.05×V[Y ]. We add 5
dummy Gaussian variables X (11), X (12), X (13), X (14), and X (15), and draw a sample Dn of
size n = 10000.

In this context of strong interactions and correlations, we observe that all competitors
have a strong bias for most variables, as opposed to SHAFF, which is also the only
algorithm providing the accurate variable ranking given by the theoretical Shapley effects.
In particular, SHAFF properly identifies variable X (3) as the most important one, whereas
SAGE considerably overestimates the Shapley effects of variables X (1) and X (2). SHAFF
also clearly ranks variable X (8) as more important than X (6) and X (7), as opposed to its
competitors. Besides, the proportion of explained variance of the forest is about 84% in
this setting, which explains the negative bias observed for several estimates.

SHAFF analysis. Table 3.2 displays the cumulative absolute error of Shapley algorithms,
based on various combinations of variable subset sampling and conditional expectation
estimates, for Experiments 1 and 2. The goal is to break down the improvement of SHAFF
between the new features proposed in Section 3.2. Firstly, we compare two approaches for
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Fig. 3.3 Shapley effects for Experiment 2. Red crosses are the theoretical Shapley effects.

the variable subset sampling: our paired importance sampling procedure (pIS) introduced
in Subsection 3.2.1, and the paired Monte-Carlo sampling (pMC) approach of Covert and
Lee (2020). Secondly, we compare several estimates of the conditional expectations: our
projected random forest introduced in Subsection 3.2.2, the brute force retraining of a
random forest for each subset U (Forest) as in Williamson and Feng (2020), the marginal
sampling (Marginals) used in Covert et al. (2020, SAGE), and the approach from Lundberg
et al. (2018) specific to tree ensembles (TreeSHAP). In all cases, Shapley estimates are
recovered using step 3 defined in Subsection 3.2.3. The comparisons of the first and
last two lines of Table 3.2 clearly show the large improvement due to the importance
sampling of SHAFF, since the cumulative error is divided by two compared to the paired
Monte-Carlo sampling and using identical conditional expectation estimates. We also
observe that the PRF algorithm is competitive with the brute force method of retraining
many random forests, with a much smaller computational cost. Additionally, although
the TreeSHAP algorithm (Lundberg et al., 2018) is fast, it comes at the price of a much
stronger bias than the other approaches. Finally, the marginal sampling is as efficient as
PRF for Experiment 1 where the regression function is linear, but it is not the case for
Experiment 2 where variables have interactions.

3.5 Conclusion

We introduced SHAFF, SHApley eFfects via random Forests, an algorithm to estimate
Shapley effects based on random forests, which has an implementation in C++ and R
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Algorithm Experiment 1 Experiment 2
SHAFF 0.25 0.15

pIS/Forest 0.23 0.23
pIS/Marginals 0.26 0.31
pIS/TreeSHAP 1.18 1.49

pMC/Projected-RF 0.55 0.29
pMC/Forest 0.56 0.50

Table 3.2 Cumulative absolute error of Shapley estimates, based on various strategies for
variable subset sampling and conditional expectation estimates.

available online. The challenges in Shapley estimation are the exponential computational
complexity, and the estimates of conditional expectations. SHAFF addresses the first
point by using importance sampling to favor the subsets of influential variables, which
often occur along the forest paths. For the second point, SHAFF uses the projected forest
algorithm, a fast procedure to eliminate variables from the forest prediction mechanism.
Thanks to this approach, SHAFF only needs to fit a random forests once, as opposed to
other methods which retrain many models and are computationally costly. Importantly, we
prove that SHAFF is consistent. To our knowledge, we propose the first Shapley algorithm
which do not retrain several models and is proved to be consistent under mild assumptions.
Furthermore, we conducted several experiments to show the practical performance im-
provements over state-of-the-art Shapley algorithms. Notice that the adaptation of SHAFF
to SHAP values is straightforward, since the projected random forests provides predictions
of the output conditional on any variable subset. Finally, in specific settings, it is obviously
possible that other learning algorithms outperform random forests. Then, we can use such
efficient model to generate a new large sample of simulated observations, which can then
feeds SHAFF and improves its accuracy.





Chapter 4

SIRUS: Stable and Interpretable RUle
Set for classification

Abstract
State-of-the-art learning algorithms, such as random forests or neural networks, are often qualified
as “black-boxes” because of the high number and complexity of operations involved in their
prediction mechanism. This lack of interpretability is a strong limitation for applications involving
critical decisions, typically the analysis of production processes in the manufacturing industry.
In such critical contexts, models have to be interpretable, i.e., simple, stable, and predictive. To
address this issue, we design SIRUS (Stable and Interpretable RUle Set), a new classification
algorithm based on random forests, which takes the form of a short list of rules. While simple
models are usually unstable with respect to data perturbation, SIRUS achieves a remarkable stability
improvement over cutting-edge methods. Furthermore, SIRUS inherits a predictive accuracy close
to random forests, combined with the simplicity of decision trees. These properties are assessed
both from a theoretical and empirical point of view, through extensive numerical experiments based
on our R/C++ software implementation sirus available from CRAN.
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4.1 Introduction

State-of-the-art learning algorithms, typically tree ensembles or neural networks, are
well-known for their remarkable predictive performance. However, this high accuracy
comes at the price of complex prediction mechanisms: a large number of operations are
computed for a given prediction. Because of this complexity, learning algorithms are often
considered as black-boxes. This lack of interpretability is a serious limitation for many
applications involving critical decisions, such as healthcare, criminal justice, or industrial
process optimization. This latter example is interesting to illustrate how interpretability
can be essential. Indeed, in the manufacturing industry, production processes involve
complex physical and chemical phenomena, whose control and efficiency are of critical
importance. In practice, data is collected along the manufacturing line, describing both
the production environment and its conformity. The retrieved information enables to infer
a link between the manufacturing conditions and the resulting quality at the end of the
line, and then to increase the process efficiency. Since the quality of the produced entities
is often characterized by a pass or fail output, the problem is in fact a classification task,
and state-of-the-art learning algorithms can successfully catch patterns of these complex
and nonlinear physical phenomena. However, any decision impacting the production
process has long-term and heavy consequences, and therefore cannot simply rely on a blind
stochastic modelling. As a matter of fact, a deep physical understanding of the forces in
action is required, and this makes black-box algorithms inappropriate. In a word, models
have to be interpretable, i.e., provide an understanding of the internal mechanisms that build
a relation between inputs and outputs, to provide insights to guide the physical analysis.
This is for example typically the case in the aeronautics industry, where the manufacturing
of engine parts involves sensitive casting and forging processes. Interpretable models
allow us to gain knowledge on the behavior of such production processes, which can
lead, for instance, to identify or fine-tune critical parameters, improve measurement and
control, optimize maintenance, or deepen understanding of physical phenomena. In the
following paragraphs, we deepen the discussion about the definition of interpretability
to highlight the limitations of the most popular interpretable nonlinear models: decision
trees and rule algorithms (Guidotti et al., 2018). Despite their high predictivity and simple
structure, these methods are unstable, which is a strong operational limitation. The goal of
this chapter is to introduce SIRUS (Stable and Interpretable RUle Set), an interpretable
rule classification algorithm which considerably improves stability over state-of-the-art
methods, while preserving their simple structure, accuracy, and computational complexity.

As stated in Rüping (2006), Lipton (2016), Doshi-Velez and Kim (2017), or Murdoch
et al. (2019), to date, there is no agreement in statistics and machine learning communities
about a rigorous definition of interpretability. There are multiple concepts behind it, many
different types of methods, and a strong dependence on the area of application and the
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audience. Here, we focus on models intrinsically interpretable, which directly provide
insights on how inputs and outputs are related, as opposed to the post-processing of black-
box models. In that case, we argue that it is possible to define minimum requirements
for interpretability through the triptych “simplicity, stability, and predictivity”, in line
with the framework recently proposed by Yu and Kumbier (2019). Indeed, in order to
grasp how inputs and outputs are related, the structure of the model has to be simple.
The notion of simplicity is implied whenever interpretability is invoked (e.g., Rüping,
2006; Freitas, 2014; Letham, 2015; Letham et al., 2015; Lipton, 2016; Ribeiro et al., 2016;
Murdoch et al., 2019) and essentially refers to the model size, complexity, or the number of
operations performed in the prediction mechanism. Yu (2013) defines stability as another
fundamental requirement for interpretability: conclusions of a statistical analysis have to
be robust to small data perturbations to be meaningful. Indeed, a specific analysis is likely
to be run multiple times, eventually adding a small new batch of data, and an interpretable
algorithm should be insensitive to such modifications. Otherwise, unstable models provide
us with a partial and arbitrary analysis of the underlying phenomena, and arouses distrust
of the domain experts. Finally, if the predictive accuracy of an interpretable model is
significantly lower than the one of a state-of-the-art black-box algorithm, it clearly misses
strong patterns in the data and will therefore be useless, as explained in Breiman (2001b).
For example, the trivial model that outputs the empirical mean of the observations for any
input is simple, stable, but brings in most cases no useful information. Thus, we add a
good predictivity as an essential requirement for interpretability.

Decision trees are a class of supervised learning algorithms that recursively partition
the input space and make local decisions in the cells of the resulting partition. Trees can
model highly nonlinear patterns while having a simple structure, and are therefore good
candidates when interpretability is required. However, trees are unstable to small data
perturbations (Oates and Jensen, 1997; Guidotti and Ruggieri, 2019). More precisely, as
explained in Breiman (2001b): by randomly removing only 2−3% of the training data,
the tree structure can be quite different, which is a strong limitation to their practical
use. Another class of supervised learning methods that can model nonlinear patterns
while retaining a simple structure are the so-called rule models. As such, a rule is defined
as a conjunction of constraints on input variables, which form a hyperrectangle in the
input space where the estimated output is constant. A collection of rules is combined
to form a model. Here, the term “rule” does not stand for “classification rule” but, as is
traditional in the rule learning literature, to a piecewise constant estimate that simply reads
“if conditions on x, then response, else default response”. Despite their simplicity and
excellent predictive skills, rule algorithms are unstable and, from this point of view, share
the same limitation as decision trees (Letham et al., 2015; Murdoch et al., 2019).

In line with the above, we design SIRUS in the present paper, a new rule classification
algorithm which inherits an accuracy close to random forests and the simplicity of decision
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trees, while having a stable structure. The core aggregation principle of random forests
is kept, but instead of aggregating predictions, SIRUS focuses on the probability that a
given hyperrectangle (i.e., a node) is contained in a randomized tree. The nodes with the
highest probability are robust to data perturbation and represent strong patterns. They
are therefore selected to form a stable rule ensemble model. Here, we provide a first
illustration of SIRUS with a simple and real case: the Titanic dataset (Piech, 2016). The
survival status of 887 passengers are recorded, as well as various personal characteristics:
age, sex, class, number of siblings and parents aboard, and the paid fare. SIRUS outputs
the following simple set of 7 rules, which enables to grasp at a glance the main patterns to
explain passenger survival:

Average survival rate ps = 39%.

if sex is male then ps = 19% else ps = 74%

if 1st or 2nd class then ps = 56% else ps = 24%

if 1st or 2nd class
& sex is female

then ps = 95% else ps = 25%

if fare < 10.5£ then ps = 20% else ps = 50%

if no parents or
children aboard then ps = 35% else ps = 51%

if 2st or 3nd class
& sex is male

then ps = 14% else ps = 64%

if sex is male
& age ≥ 15

then ps = 16% else ps = 72%

To generate the prediction for a new query point x, SIRUS checks for each rule whether the
conditions are satisfied to assign one of the two possible ps output values. Let us say for
example that x(sex) is female, then x satisfies the condition of the first rule, which returns
ps = 74%. Next, the 7 rule outputs are averaged to provide the predicted probability of
survival for x. The model is stable: when a 10-fold cross-validation is run to simulate
data perturbation, 5 to 6 rules are consistent across two folds in average. The model error
(1-AUC) is 0.17, close to the 0.13 of random forests, whereas simplicity is drastically
increased: 7 rules versus about 104 operations for a forest prediction.

First, we review the main rule algorithms and present their mechanism principles in
Section 4.2. Next, Section 4.3 is devoted to the detailed description of SIRUS. One of the
main contributions of this work is the development of a software implementation, via the
R/C++ package sirus (Benard and Wright, 2020) available from CRAN, based on ranger,
a high-performance random forest implementation (Wright and Ziegler, 2017). In Section
4.4, we show that the good empirical behavior of SIRUS is theoretically understood by
proving its asymptotic stability. Then, in Section 4.5, we illustrate the efficiency of our
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algorithm through numerical experiments on real datasets. Finally, Section 4.6 summarizes
the main contributions of the chapter and provides directions for future research.

4.2 Related Work

As stated in the introduction, SIRUS has two types of competitors: decision trees and
rule algorithms. More precisely, the latter can further be split into three different kinds:
classical rule algorithms based on greedy heuristics, those built on top of frequent pattern
mining algorithms, and those extracted from tree ensembles.

Decision trees may be the most popular competitors of SIRUS because of their simple
structure. The main algorithms are CART (Breiman et al., 1984) and C5.0 (Quinlan, 1992).
However, trees are unstable as we have already highlighted. A widespread method to
stabilize decision trees is bagging (Breiman, 1996), in which multiple trees are grown
on perturbed data and aggregated together. Random forests is an algorithm developped
by Breiman (2001a) that improves over bagging by randomizing the tree construction.
Predictions are stable, accuracy is increased, but the final model is unfortunately a black
box. Thus, simplicity of trees is lost, and some post-treatment mechanisms are needed to
understand how random forests make their decisions. Nonetheless, even if they are useful,
such treatments only provide partial information and can be difficult to operationalize for
critical decisions (Rudin, 2018). For example, variable importance (Breiman, 2001a, 2003)
identifies variables that have a strong impact on the output, but not which inputs values
are associated to output values of interest. Similarly, local approximation methods such as
LIME (Ribeiro et al., 2016) or Tolomei et al. (2017) do not provide insights on the global
relation.

Rule learning originates from the influential AQ system of Michalski (1969). Many
algorithms based on greedy heuristics were subsequently developped in the 1980’s and
1990’s, including Decision List (Rivest, 1987), CN2 (Clark and Niblett, 1989), FOIL
(First-Order Inductive Learner, Quinlan, 1990; Quinlan and Cameron-Jones, 1995), IREP
(Incremental Reduced Error Pruning, Fürnkranz and Widmer, 1994), RIPPER (Repeated
Incremental Pruning to Produce Error Reduction, Cohen, 1995), PART (Partial Decision
Trees, Frank and Witten, 1998), SLIPPER (Simple Learner with Iterative Pruning to
Produce Error Reduction, Cohen and Singer, 1999), LRI (Leightweight Rule Induction,
Weiss and Indurkhya, 2000), and ENDER (Ensemble of Decision Rules, Dembczyński
et al., 2010). Since these methods are based on greedy heuristics, they are computationally
fast, but similarly to decision trees, they are unstable and their accuracy is often limited.

At the end of the 1990’s a new type of rule algorithms based on frequent pattern mining
is introduced with CBA (Classification Based on Association Rules, Liu et al., 1998),
then extended with CPAR (Classification based on Predictive Association Rules, Yin and
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Han, 2003). Frequent pattern mining is originally used to identify frequent occurrences
in database mining. Since the output Y ∈ {0,1} is discrete and the input data can be
discretized, we can generate candidate rules for classification by identifying frequent
patterns associated with each output label. This exhaustive search for association rules
is computationally costly (exponential with the input dimension), and efficient heuristics
are used, essentially Apriori (Agrawal et al., 1993) and Eclat (Zaki et al., 1997). The
rule aggregation mechanism is specific to each algorithm. More recently, BRL (Bayesian
Rule List, Letham et al., 2015) uses a more sophisticated Bayesian framework for the
rule aggregation than the simple approach of CBA and CPAR, while IDS (Lakkaraju
et al., 2016, Interpretable Decision Sets) uses a multi-objective optimization to select
interpretable rules. Finally, CORELS (Angelino et al., 2017, Certifiably Optimal RulE
ListS) generates optimal rule lists for categorical data. Interestingly, these methods exhibit
quite good stability properties as we will see, higher than decision trees, but on the other
hand, their predictive accuracy is worse.

The last decade has seen a resurgence of rule models through powerful algorithms
based on rule extraction from tree ensembles, especially RuleFit (Friedman et al., 2008)
and Node harvest (Meinshausen, 2010). Notice that SIRUS is also based on this principle.
More specifically, RuleFit extracts all the rules of a boosted tree ensemble (Friedman
et al., 2003), while Node harvest is based on random forests. Then, the extracted rules
are linearly combined in a sparse linear model, respectively a logistic regression with a
Lasso penalty (Tibshirani, 1996) for RuleFit, and a constraint quadratic linear program for
Node harvest. These two methods have a computational complexity comparable to random
forests and SIRUS, since the main step of all these algorithms is to grow a tree ensemble
with a large number of trees. However, both algorithms are unstable, and both output quite
complex and long lists of rules. Even running RuleFit or Node harvest multiple times on
the same dataset produces quite different rule lists because of the randomness in the tree
ensembles—see Appendix C.1.1. On the other hand, SIRUS is built to have its structure
converged for the given dataset, as explained later in Section 4.3.

To the best of our knowledge, the signed iterative random forest method (s-iRF,
Kumbier et al., 2018) is the only procedure that tackles both rule learning and stabil-
ity. Using random forests, s-IRF manages to extract stable signed interactions, i.e., feature
interactions enriched with a thresholding behavior for each variable, lower or higher, but
without specific thresholding values. Therefore, s-IRF can be difficult to operationalize
since it does not provide any specific input thresholds, and thus no precise information
about the influence of input variables. On the other hand, an explicit rule model identifies
specific regions of interest in the input space.
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4.3 SIRUS Algorithm

Within the general framework of supervised (binary) classification, we assume to be given
an i.i.d. sample Dn = {(Xi,Yi), i = 1, . . . ,n}. Each (Xi,Yi) is distributed as the generic pair
(X,Y ) independent of Dn, where X = (X (1), . . . ,X (p)) is a random vector taking values
in Rp and Y ∈ {0,1} is a binary response. Throughout the document, the distribution
of (X,Y ) is assumed to be unknown and is denoted by PX,Y . For x ∈ Rp, our goal is to
accurately estimate the conditional probability η(x) = P(Y = 1|X = x) with few simple
and stable rules.

To tackle this problem, SIRUS first builds a (slightly modified) random forest. Next,
each hyperrectangle of each tree of the forest is turned into a simple decision rule, and
the collection of these elementary rules is ranked based on their frequency of appearance
in the forest. Finally, the most significant rules are retained and are averaged together to
form an ensemble model. We describe the four steps of SIRUS algorithm in the following
paragraphs: the rule generation, rule selection, rule post-treatment, and the rule aggregation.
This section ends with a discussion of SIRUS stability.

Rule generation. SIRUS uses at its core the random forest method (Breiman, 2001a),
slightly modified for our purpose. As in the original procedure, each single tree in the forest
is grown with a greedy heuristic that recursively partitions the input space using a random
variable Θ . The essential difference between our approach and Breiman’s one is that, prior
to all tree constructions, the empirical q-quantiles of the marginal distributions over the
whole dataset are computed: in each node of each tree, the best split can be selected among
these empirical quantiles only. This constraint is critical to stabilize the forest structure
and keeps almost intact the predictive accuracy, provided q is not too small (typically
of the order of 10—see the experimental Subsection 4.5.4). Apart from this difference,
the tree growing is similar to Breiman’s original procedure. The tree randomization Θ

is independent of the sample and has two independent components, denoted by Θ (S) and
Θ (V ), which are respectively used for the subsampling mechanism and randomization of
the split direction. Throughout the manuscript, we let q̂( j)

n,r be the empirical r-th q-quantile
of {X ( j)

1 , . . . ,X ( j)
n }, with typically q = 10. The construction of the individual trees is

summarized in Algorithm 3 below.
The main step of SIRUS is to extract rules from the modified random forest. The

cornerstone of this extraction mechanism is the notion of path in a decision tree. Indeed, a
path describes the sequence of splits to go from the root of the tree to a specific (inner or
terminal) node. Since a hyperrectangle is associated to each node, a rule can be defined as
a piecewise constant estimate with this hyperrectangle as support. Therefore, to rigorously
define the rule extraction, we introduce the symbolic representation of a path in a tree.
We insist that such definition is valid for both terminal leaves and inner nodes, which are
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Algorithm 3 Tree construction
1: Parameters: Number of quantiles q, number of subsampled observations an, number

of eligible directions for splitting mtry.
2: Compute the empirical q-quantiles for each marginal distribution over the whole

dataset.
3: Subsample with replacement an observations, indexed by Θ (S). Only these observa-

tions are used to build the tree.
4: Initialize the cell H as the root of the tree.
5: Draw uniformly at random a subset Θ (V ) ⊂ {1, . . . , p} of cardinality mtry.
6: For all j ∈Θ (V ), compute the CART-splitting criterion at all empirical q-quantiles of

X ( j) that split the cell H into two non-empty cells.
7: Choose the split that maximizes the CART-splitting criterion.
8: Recursively repeat lines 5−7 for the two resulting children cells HL and HR.

all used by SIRUS. To begin, we follow the example shown in Figure 4.1 with a tree of
depth 2 partitioning the input space R2. For instance, let us consider the node P6 defined
by the sequence of two splits X (2)

i ≥ q̂(2)n,4 and X (1)
i ≥ q̂(1)n,7. The first split is symbolized

by the triplet (2,4,R), whose components respectively stand for the variable index 2, the
quantile index 4, and the right side R of the split. Similarly, for the second split we cut
coordinate 1 at quantile index 7, and pass to the right. Thus, the path to the considered
node is defined by P6 = {(2,4,R),(1,7,R)}. Also notice that the first split already defines
the path P2 = {(2,4,R)}, associated to the right inner node at the first level of the tree.
Of course, this generalizes to each path P of length d under the symbolic compact form

P = {( jk,rk,sk), k = 1, . . . ,d},

where, for k ∈ {1, . . . ,d}, the triplet ( jk,rk,sk) describes how to move from level (k−1)
to level k, with a split using the coordinate jk ∈ {1, . . . , p}, the index rk ∈ {1, . . . ,q−1}
of the corresponding quantile, and a side sk = L if we go the the left and sk = R if we go
to the right. The set of all possible such paths is denoted by Π . It is important to note
that Π is in fact a deterministic (that is, non random) quantity, which only depends upon
the dimension p and the order q of the quantiles. Of course, given a path P ∈ Π one can
recover the hyperrectangle (i.e., the tree node) Ĥn(P) associated with P and the entire
dataset Dn via the correspondence

Ĥn(P) =

x ∈Rp :

x( jk) < q̂( jk)
n,rk if sk = L

x( jk) ≥ q̂( jk)
n,rk if sk = R

, k = 1, . . . ,d

 . (4.3.1)

Finally, an elementary rule ĝn,P can be defined from Ĥn(P) as a piecewise constant
estimate: ĝn,P(x) returns the empirical probability that the output Y is of class 1 conditional
on whether the query point x belongs to Ĥn(P) or not. Thus, the rule ĝn,P associated to
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x(1)

x(2)

q̂(1)n,7q̂(1)n,5

q̂(2)n,4

P5 = {(2,4,R),
(1,7,L)}

P6 = {(2,4,R),
(1,7,R)}

P3 = {(2,4,L),
(1,5,L)}

P4 = {(2,4,L),
(1,5,R)}

X (2)
i < q̂(2)n,4 X (2)

i ≥ q̂(2)n,4

P1 P2

X (1)
i < q̂(1)n,7

X (1)
i ≥ q̂(1)n,7

P5 P6

X (1)
i < q̂(1)n,5

X (1)
i ≥ q̂(1)n,5

P3 P4

Fig. 4.1 Example of a root node R2 partitionned by a randomized tree of depth 2: the tree on the
right side, the associated paths and hyperrectangles of length d = 2 on the left side.

the path P ∈ Π is formally defined by

∀x ∈Rp, ĝn,P(x) =


1

Nn(Ĥn(P))
∑

n
i=1Yi1Xi∈Ĥn(P) if x ∈ Ĥn(P)

1
n−Nn(Ĥn(P))

∑
n
i=1Yi1Xi /∈Ĥn(P) otherwise

,

using the convention 0/0 = 0, and where Nn(Ĥn(P)) is the number of observations in
the node associated with P . This formal definition can be illustrated with the Titanic
dataset presented in the introduction. For the fourth rule, fare is the 6th variable and since
q̂(6)n,4 = 10.5, the corresponding path is P = {(6,4,L)}, and the associated rule is thus

ĝn,P(x) =

0.20 if x(6) < 10.5

0.50 if x(6) ≥ 10.5
.

Finally, a Θ -random tree generates a collection of paths in Π , one for each internal and
terminal nodes. In the sequel, we let T (Θ ,Dn) be the list of such extracted paths, a random
subset of Π .

Rule selection. Using our modified random forest algorithm, we are able to generate a
large number M of trees, randomized by Θ1, . . . ,ΘM, i.i.d. copies of the generic variable
Θ , and then to extract a large collection of rules. Since we are interested in selecting the
most important rules, i.e., those which represent strong patterns between the inputs and
the output, we select rules that are shared by a large portion of trees. Such occurrence
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frequency is formally defined by

p̂M,n(P) =
1
M

M

∑
ℓ=1
1P∈T (Θℓ,Dn),

which is the Monte-Carlo estimate of the probability that a path P belongs to a Θ -random
tree, that is

pn(P) = P(P ∈ T (Θ ,Dn)|Dn).

As a general strategy, once the modified random forest has been built, we draw the list of
all paths that appear in the forest and only retain those that occur with a frequency larger
than the threshold p0 ∈ (0,1), the only influential parameter of SIRUS—see Subsection
4.5.4 for its tuning procedure. We are thus interested in the set of the extracted paths

P̂M,n,p0 = {P ∈ Π : p̂M,n(P)> p0}. (4.3.2)

An important feature of SIRUS algorithm is to stop the growing of the forest with an
appropriate number of trees M. Although the right order of magnitude for M is required,
no fine tuning is necessary. Indeed, the uncertainty of the importance estimate p̂M,n(P)

of each rule decreases with M, whereas the computational cost linearly increases with M.
Thus, to obtain a robust rule extraction, M needs to be high enough to make the uncertainty
of p̂M,n(P) negligible. More precisely, M is set to get the same list of selected rules
P̂M,n,p0 when SIRUS is run multiple times on the same dataset Dn. On the other hand, M
should be small enough to avoid useless computations. Therefore, the growing of the forest
is automatically stopped when 95% of the selected rules would be shared by a new run of
SIRUS on Dn in average, as it is possible to derive a simple stopping criterion based on the
properties of the estimates p̂M,n(P)—all the technical details are provided in Subsection
4.5.4. A random forest is usually built with around 500 trees, as the predictive accuracy
cannot be significantly increased by adding more trees. SIRUS typically grows 10 times
more trees to obtain a robust rule extraction.

Besides, we insist that the quantile discretization is critical for the rule selection. The
expected value of the rule importance is

E[p̂M,n(P)] = P(P ∈ T (Θ ,Dn)),

but without the discretization, the list of extracted paths from a random tree T (Θ ,Dn) takes
values in an uncountable space when at least one component of X is a continuous random
variable, and therefore the above quantity is null, making the path selection procedure
unstable with respect to data perturbation.
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Rule post-treatment. By construction, there is some redundancy in the list of rules
generated by the set of distinct paths P̂M,n,p0 . The hyperrectangles associated with the
paths extracted from a Θ -random tree overlap, and so the corresponding rules are linearly
dependent. Therefore a post-treatment to filter P̂M,n,p0 is needed to remove redundancy
and obtain a compact rule model. The general idea is straightforward: if the rule associated
with the path P ∈ P̂M,n,p0 is a linear combination of rules associated with paths with a
higher frequency in the forest, then P is removed from P̂M,n,p0 .

To illustrate the post-treatment, let the tree of Figure 4.1 be the Θ1-random tree grown in
the forest. Since the paths of the first level of the tree, P1 and P2, always occur in the same
trees, we have p̂M,n(P1) = p̂M,n(P2). If we assume these quantities to be greater than
p0, then P1 and P2 both belong to P̂M,n,p0 . However, by construction, P1 and P2 are
associated with the same rule, and we therefore enforce SIRUS to keep only P1 in P̂M,n,p0 .
Each of the paths of the second level of the tree, P3, P4, P5, and P6, can occur in many
different trees, and their associated p̂M,n are distinct (except in very specific cases). Assume
for example that p̂M,n(P1) > p̂M,n(P4) > p̂M,n(P5) > p̂M,n(P3) > p̂M,n(P6) > p0.
Since ĝn,P3 is a linear combination of ĝn,P4 and ĝn,P1 , P3 is removed. Similarly P6 is
redundant with P1 and P5, and it is therefore removed. Finally, among the six paths of
the tree, only P1, P4, and P5 are kept in the list P̂M,n,p0 .

Rule aggregation. Now, the resulting small set of rules P̂M,n,p0 is combined to form
a simple, compact, and stable rule classification model. We simply average the set of
elementary rules {ĝn,P : P ∈ P̂M,n,p0} that have been selected in the first steps of SIRUS.
The aggregated estimate η̂M,n,p0(x) of η(x) is thus defined by

η̂M,n,p0(x) =
1

|P̂M,n,p0|
∑

P∈P̂M,n,p0

ĝn,P(x). (4.3.3)

Finally, the classification procedure assigns class 1 to an input x if the aggregated estimate
η̂M,n,p0(x) is above a given threshold, and class 0 otherwise. In the introduction, we
presented an example of a list of 7 rules for the Titanic dataset. In this case, for a new
input x, η̂M,n,p0(x) is simply the average of the output probability of survival ps over the 7
selected rules.

In past works on rule ensemble models, such as RuleFit (Friedman et al., 2008) and
Node harvest (Meinshausen, 2010), rules are also extracted from a tree ensemble and then
combined together through a regularized linear model. In our case, it happens that the
parameter p0 alone is enough to control sparsity. Indeed, in our experiments, we observe
that adding such linear model in the aggregation method hardly increases the accuracy and
hardly reduces the size of the final rule set, while it can significantly reduce stability, add a
set of coefficients that makes the model less straightforward to interpret, and requires more
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intensive computations. We refer to the experiments in Appendix C.1.3 for a comparison
between η̂M,n,p0 defined a as simple average (4.3.3) versus a definition with a logistic
regression.

Categorical and numerical discrete variables. For the sake of clarity, the description
of SIRUS algorithm is limited to the case of numerical continuous variables. However,
SIRUS can obviously handle numerical discrete and categorical data, as it is the case
for random forests. On one hand, numerical discrete variables are left untouched since
the number of possible split points is already finite, and the rule definition introduced
for continuous variables also applies. On the other hand, we naturally extend the rule
definition for categorical variables to “if X (1) is category 1 or 2 then response else default
response”—see the Titanic dataset example in the introduction. Originally, categorical
variables are efficiently handled in trees by transformation in ordered variables. Such
ordering of categories is done with respect to the output mean for each category—see
Breiman et al. (1984); Friedman et al. (2001), and we follow ranger implementation.
Notice that trees are likely to often cut on categorical variables with a high number
of categories, as highlighted in Strobl et al. (2006). Consequently, SIRUS is likely to
output irrelevant rules associated to such categorical variables. Thus, it is best to discard
categorical variables with a high number of categories, or transform them by regrouping
categories or using one-hot-encoding before running SIRUS. Finally, note that ordinal
variables (e.g. X (1) ∈ {small, medium, big}) are treated like categorical variables.

Stability. The three main properties to assess the interpretability of SIRUS are simplicity,
stability, and predictivity, as already stated. On one hand, a measure of simplicity is
naturally provided by the number of rules, and predictivity is given by the missclassification
rate or the AUC. On the other hand, stability requires a more thorough discussion. In
the statistical learning theory, stability refers to the stability of predictions (e.g., Vapnik,
1998). In particular, Rogers and Wagner (1978), Devroye and Wagner (1979), Bousquet
and Elisseeff (2002), and Poggio et al. (2004) show that stability and predictive accuracy
are closely connected. In our case, we are more concerned by the stability of the internal
structure of the model, and, to our knowledge, no general definition exists. So, we state
the following tentative definition: a rule learning algorithm is stable if two independent
estimations based on two independent samples result in two similar lists of rules. Thus,
given a new sample D ′

n independent of Dn, we define p̂′M,n(P) and the corresponding
set of paths P̂ ′

M,n,p0
based on a modified random forest drawn with a parameter Θ ′

independent of Θ . Then, we measure the stability of SIRUS by the proportion of rules
shared by the two sets P̂M,n,p0 and P̂ ′

M,n,p0
, selected over these two runs of SIRUS on

independent samples. We take advantage of a dissimilarity measure between two sets,
the so-called Dice-Sorensen index, often used to assess the stability of variable selection
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methods (Chao et al., 2006; Zucknick et al., 2008; Boulesteix and Slawski, 2009; He and
Yu, 2010; Alelyani et al., 2011). This index is defined by

ŜM,n,p0 =
2
∣∣P̂M,n,p0 ∩P̂ ′

M,n,p0

∣∣∣∣P̂M,n,p0

∣∣+ ∣∣P̂ ′
M,n,p0

∣∣ (4.3.4)

with the convention 0/0 = 1. This is a measure of stability taking values between 0 and
1: if the intersection between P̂M,n,p0 and P̂ ′

M,n,p0
is empty, then ŜM,n,p0 = 0, while if

P̂M,n,p0 = P̂ ′
M,n,p0

, then ŜM,n,p0 = 1. Notice that it is possible to use other metrics to
assess the distance between two finite sets (Zucknick et al., 2008): the Jaccard Index
is another popular example. Although the stability values slightly vary with a different
definition, both the asymptotic stability of SIRUS—see Section 4.4—and the empirical
stability comparisons between algorithms—see Section 4.5—are insensitive to the stability
metric choice.

4.4 Theoretical Analysis of Stability

Among the three minimum requirements for interpretability defined in Section 4.1, sim-
plicity and predictivity are quite easily met for rule models (Cohen and Singer, 1999;
Meinshausen, 2010; Letham et al., 2015). On the other hand, as Letham et al. (2015)
recall, building a stable rule ensemble is challenging. Therefore the main goal of this
section is to prove the asymptotic stability of SIRUS, i.e., provided that the sample size is
large enough, SIRUS systematically outputs the same list of rules when run multiple times
with independent samples. On the other hand, we also argue that existing tree-based rule
algorithms are unstable by design.

In order to show the asymptotic stability of SIRUS, we first need to introduce formal
definitions of the mathematical elements involved in the empirical algorithm. We addition-
ally define the theoretical counterpart of SIRUS, an abstract procedure which is not based
on the sample Dn, but only on the unknown distribution PX,Y . Next, we will prove the
stochastic convergence of SIRUS towards its theoretical counterpart. This means that the
list of selected rules does not depend on the training data Dn, but only on PX,Y , provided
that the sample size is large enough. Therefore, the same list of rules is output when SIRUS
is run multiple times on independent samples. This mathematical analysis highlights that
the remarkable stable behavior of SIRUS in practice has theoretical groundings, and that
the discretization of the cut values with the quantiles, as well as using random forests, are
the cornerstones to stabilize rule models extracted from tree ensembles.

Empirical algorithm. First, we define the empirical CART-splitting criterion used to
find the optimal split at each node of each tree of the forest. In our context of binary
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classification where the output Y ∈ {0,1}, maximizing the so-called empirical CART-
splitting criterion is equivalent to maximizing the criterion based on Gini impurity (see,
e.g., Biau and Scornet, 2016). More precisely, at node H and for a cut performed along the
j-th coordinate at the empirical r-th q-quantile q̂( j)

n,r , this criterion reads

Ln(H, q̂( j)
n,r)

def
=

1
Nn(H)

n

∑
i=1

(Yi −Y H)
21Xi∈H

− 1
Nn(H)

n

∑
i=1

(
Yi −Y HL1X ( j)

i <q̂( j)
n,r
−Y HR1X ( j)

i ≥q̂( j)
n,r

)2
1Xi∈H ,

(4.4.1)

where Y H is the average of the Yi’s such that Xi ∈ H, Nn(H) is the number of data points
Xi falling into H,

HL
def
= {x ∈ H : x( j) < q̂( j)

n,r}, HR
def
= {x ∈ H : x( j) ≥ q̂( j)

n,r},

and for r ∈ {1, . . . ,q−1} the empirical r-th q-quantile of {X ( j)
1 , . . . ,X ( j)

n } is defined by

q̂( j)
n,r = inf

{
x ∈R :

1
n

n

∑
i=1
1

X ( j)
i ≤x

≥ r
q

}
. (4.4.2)

Note that, for the ease of reading, (4.4.1) is defined for a tree built with the entire dataset
Dn without resampling. As it is often the case in the theoretical analysis of random forests,
we assume throughout this section that the subsampling of an observations to build each
tree is done without replacement to alleviate the mathematical analysis.

Recall that the rule selection is based on the probability pn(P) that a Θ -random tree
of the forest contains a particular path P ∈ Π , that is,

pn(P) = P(P ∈ T (Θ ,Dn)|Dn),

and that the Monte-Carlo estimate p̂M,n(P) of pn(P) is directly computed using the
random forest, and takes the form

p̂M,n(P) =
1
M

M

∑
ℓ=1
1P∈T (Θℓ,Dn).

Clearly, p̂M,n(P) is a good estimate of pn(P) when M is large since, by the law of large
numbers, conditional on Dn,

lim
M→∞

p̂M,n(P) = pn(P) a.s.

We also see that p̂M,n(P) is unbiased since E[p̂M,n(P)|Dn] = pn(P).
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Theoretical algorithm. Next, we define all theoretical counterparts of the empirical
quantities involved in SIRUS, which do not depend on Dn but only on the unknown
distribution PX,Y of (X,Y ). For a given integer q ≥ 2 and r ∈ {1, . . . ,q−1}, the theoretical
q-quantiles are defined by

q⋆( j)
r = inf

{
x ∈R : P(X ( j) ≤ x)≥ r

q

}
,

i.e., the population version of q̂( j)
n,r defined in (4.4.2). Similarly, for a given hyperrectangle

H ⊆Rp, we let the theoretical CART-splitting criterion be

L⋆(H,q⋆( j)
r ) = V[Y |X ∈ H]

−P(X ( j) < q⋆( j)
r |X ∈ H)×V[Y |X ( j) < q⋆( j)

r ,X ∈ H]

−P(X ( j) ≥ q⋆( j)
r |X ∈ H)×V[Y |X ( j) ≥ q⋆( j)

r ,X ∈ H].

Based on this criterion, we denote by T ⋆(Θ) the list of all paths contained in the theoretical
tree built with randomness Θ , where splits are chosen to maximize the theoretical criterion
L⋆ instead of the empirical one Ln, defined in (4.4.1). We stress again that the list T ⋆(Θ)

does not depend upon Dn but only upon the unknown distribution of (X,Y ). Next, we let
p⋆(P) be the theoretical counterpart of pn(P), that is

p⋆(P) = P(P ∈ T ⋆(Θ)),

and finally define the theoretical set of selected paths P⋆
p0

by {P ∈ Π : p⋆(P) > p0}
(with the same post-treatment as for the empirical procedure—see Section 4.3). Notice
that, in the case where multiple splits have the same value of the theoretical CART-splitting
criterion, one is randomly selected.

Consistency of the path selection. The construction of the rule ensemble model es-
sentially relies on the path selection and on the estimates p̂M,n(P), P ∈ Π . Therefore,
our theoretical analysis first focuses on the asymptotic properties of those estimates in
Theorem 4.1. Our consistency results hold under conditions on the subsampling rate an

and the number of trees Mn, together with some assumptions on the distribution of the
random vector X. They are given below.

(A4.1) The subsampling rate an satisfies lim
n→∞

an = ∞ and lim
n→∞

an
n = 0.

(A4.2) The number of trees Mn satisfies lim
n→∞

Mn = ∞.

(A4.3) X has a strictly positive density f with respect to the Lebesgue measure. Further-
more, for all j ∈ {1, . . . , p}, the marginal density f ( j) of X ( j) is continuous, bounded, and
strictly positive.
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We can now state the consistency of the occurrence frequency of each possible path
P ∈ Π in the modified random forest.

Theorem 4.1. If Assumptions (A4.1), (A4.2), (A4.3) are satisfied, then, for all P ∈ Π , we
have

lim
n→∞

p̂Mn,n(P) = p⋆(P) in probability.

Stability. The only source of randomness in the selection of the rules lies in the estimates
p̂Mn,n(P). Since Theorem 4.1 states the consistency of such an estimation, the path
selection consistency follows, for all threshold values p0 that do not belong to the finite set
U ⋆ = {p⋆(P) : P ∈ Π} of all theoretical probabilities of appearance for each path P .
Indeed, if p0 = p⋆(P) for some P ∈ Π , then P(p̂Mn,n(P) > p0) does not necessarily
converge to 0 and the path selection can be inconsistent. Then, we can deduce that SIRUS
is asymptotically stable in the following Corollary 4.1.

Corollary 4.1. Assume that Assumptions (A4.1)-(A4.3) are satisfied. Then, provided
p0 ∈ [0,1]\U ⋆, we have

lim
n→∞

P(P̂Mn,n,p0 = P⋆
p0
) = 1,

and then
lim
n→∞

ŜMn,n,p0 = 1 in probability.

Competitors. As we will discuss further in the experimental Section 4.5, CART, C5.0,
RuleFit, and Node harvest are top competitors of SIRUS, which are also based on rule
extraction from trees. However, these algorithms do not include a pre-processing step
of discretization, which makes them unstable by design. To see this, we first adapt the
definition of an extracted path without discretization as P = {( jk,zk,sk), k = 1, . . . ,d},
where zk ∈ R is now the cutting value of the k-th split. For any rule algorithm, we also
define ŜM,n as the proportion of rules shared between the output rule lists over two runs
with two independent samples. Note that M = 1 for CART and C5.0, and as already
mentioned, it is possible to define a rule algorithm from CART, by extracting its nodes, as
in C5.0. Thus, we obtain that for any tree-based rule algorithm, ŜM,n = 0 almost surely.
Indeed, since the input X takes continuous values (Assumption (A4.3)) and decision trees
can cut at the middle of two observations in all directions, the probability that a cutting
value from the tree built with Dn and one from the tree built with D ′

n are equal is null.
However, recall that in the experiments, we include a pre-processing discretization step

to stabilize competitors and enable fair comparisons. With this modification, they reach
a value of ŜM,n > 0, but still not in par with SIRUS. This shows that the high stability
improvement of SIRUS does not only come from the discretization, but mainly from the
rule selection procedure, based on the probability of the rule occurrence in a random tree.
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Proofs. The proof of Theorem 4.1 is to be found in Appendix C.3. It is however
interesting to give a sketch of the proof here. Corollary 4.1 is a direct consequence of
Theorem 4.1, the full proof follows.

Sketch of proof of Theorem 4.1. The consistency is obtained by showing that p̂Mn,n(P)

is asymptotically unbiased with a null variance. The result for the variance is quite
straightforward since the variance of p̂Mn,n(P) can be broken into two terms: the variance
generated by the Monte-Carlo randomization, which goes to 0 as the number of trees
increases (Assumption (A4.2)), and the variance of pn(P). Following Mentch and Hooker
(2016), since pn(P) is a bagged estimate it can be seen as an infinite-order U-statistic,
and a classic bound on the variance of U-statistics gives that V[pn(P)] converges to 0
if limn→∞

an
n = 0, which is true by Assumption (A4.1). Next, proving that p̂Mn,n(P) is

asymptotically unbiased requires to dive into the internal mechanisms of the random forest
algorithm. To do this, we have to show that the CART-splitting criterion is consistent
(Lemma 3) and asymptotically normal (Lemma 4) when cuts are limited to empirical
quantiles (estimated on the same dataset) and the number of trees grows with n. When
cuts are performed on the theoretical quantiles, the law of large numbers and the central
limit theorem can be directly applied, so that the proof of Lemmas 3 and 4 boils down to
showing that the difference between the empirical CART-splitting criterion evaluated at
empirical and theoretical quantiles converges to 0 in probability fast enough. This is done
in Lemma 2 thanks to Assumption (A4.3).

Proof of Corollary 4.1. The first result is a consequence of Theorem 4.1 since

P
(
P̂Mn,n,p0 ̸= P⋆

p0

)
≤ ∑

P∈Π

P(p̂Mn,n(P)> p0)1p⋆(P)≤p0 +P(p̂Mn,n(P)≤ p0)1p⋆(P)>p0.

Next, we have

ŜMn,n,p0 =

2 ∑
P∈Π

1 p̂Mn,n(P)>p0∩p̂′Mn,n(P)>p0

∑
P∈Π

1 p̂Mn,n(P)>p0 +1p̂′Mn,n(P)>p0

.

Since p0 /∈ U ⋆, we deduce from Theorem 4.1 and the continuous mapping theorem that,
for all P ∈ Π ,

lim
n→∞

1p̂Mn,n(P)>p0 = 1p⋆(P)>p0 in probability.

Therefore, lim
n→∞

ŜMn,n,p0 = 1 in probability.

4.5 Experiments

We begin this section by providing overall experimental settings. Next, we focus on a
case study to illustrate SIRUS with an industrial process example: the semi-conductor
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manufacturing process SECOM data (Dua and Graff, 2017). In particular, it shows the
excellent performance of SIRUS on real data in a noisy and high-dimensional setting. In
Subsection 4.5.3, we use 19 UCI datasets (Dua and Graff, 2017) to perform extensive
comparisons between SIRUS and its main competitors. We show that SIRUS produces
much more stable rule lists, while preserving a predictive accuracy and computational
complexity comparable to the top competitors. Finally, in Subsection 4.5.4, we detail the
tuning procedure of the single hyperparameter p0, along with a thorough discussion on
the design of SIRUS. In particular, the cut limitations to the quantiles and the number of
constraints in the selected rules are analyzed, and we also provide the stopping criterion
for the number of trees.

4.5.1 Experiment Description

Performance metrics. We first introduce relevant metrics to assess the three inter-
pretability properties in the experiments. By definition, the size (i.e., the simplicity)
of the rule ensemble is the number of selected rules, i.e., |P̂M,n,p0|. To measure the error,
1-AUC is used and estimated by 10-fold cross-validation (repeated 10 times for robustness
and standard deviation estimates). With respect to stability, an independent dataset is
not available for real data to compute ŜM,n,p0 as defined in (4.3.4) in the Section 4.3.
Nonetheless, we can take advantage of the cross-validation process to compute a stability
metric: the proportion of rules shared by two models built during the cross-validation,
averaged over all possible pairs (Guidotti and Ruggieri, 2019).

Datasets. We have conducted experiments on the SECOM data, as well as 19 diverse
public datasets from the UCI repository (Dua and Graff, 2017; data is described in Table
4.1). These experiments aim at illustrating the good behavior of SIRUS over its competitors
in various settings. To compare stability of the different methods, data is discretized using
the 10-empirical quantiles for each continuous variable and the same stability metric is
used for all algorithm comparisons. For simplicity and predictivity metrics, we do not apply
this pre-processing step of discretization, unless the algorithm only handles categorical
data.

Competitors. For decision trees, we run both CART and C5.0, and trees are pruned to
maximize their performance. Notice that, to enable simplicity and stability comparisons
for CART, a list of rules is extracted from its nodes, as it is originally possible for C5.0.
For rule algorithms based on greedy heuristics, we evalute RIPPER, PART, and FOIL.
Next, for rule algorithms based on tree ensembles, we evaluate RuleFit and Node harvest.
Note that categorical features are transformed in multiple binary variables as it is required
by the two software implementations, and RuleFit is limited to rule predictors. For RuleFit,
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Dataset Sample size Total number
of variables

Number of
categorical variables

Authentification 1372 4 0
Breast Wisconsin 699 9 9
Credit Approval 690 15 9
Credit German 1000 20 13

Diabetes 768 8 0
Haberman 306 3 0
Heart C2 303 13 7
Heart H2 294 13 7

Heart Statlog 270 13 3
Hepatitis 155 19 0

Ionosphere 351 33 0
Kr vs Kp 3196 36 36

Liver Disorders 345 6 0
Mushrooms 8124 21 21

SECOM 1567 590 0
Sonar 208 60 0

Spambase 4601 57 0
Titanic 887 6 1
Vote 435 16 16
Wilt 4339 5 0

Table 4.1 Description of UCI datasets
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the lasso penalty is tuned by cross-validation as defined in Friedman et al. (2008). As
advertised in Meinshausen (2010), Node harvest does not require parameter tuning by
default, but it is also possible to add a regularization term to reduce the model size. We use
the same tuning procedure as for SIRUS to maximize accuracy with the smallest possible
model—see Subsection 4.5.4. Finally, for rule algorithms based on frequent pattern mining,
we run the experiments for CBA and BRL. Note that we use default settings for BRL,
since modifying its parameters does not significantly improve accuracy and can hurt
stability. We use available R implementations: rpart (Therneau et al., 2018, CART), C50
(Kuhn and Quinlan, 2020, C5.0), RWeka (Hornik et al., 2009, RIPPER, PART), arulesCBA
(Johnson and Hahsler, 2020, FOIL, CBA), pre (Fokkema, 2017, RuleFit), nodeHarvest
(Meinshausen, 2015, Node harvest), and sbrl (Yang et al., 2017, BRL). We also use our
R/C++ software implementation sirus (Benard and Wright, 2020) (available from CRAN),
adapted from ranger, a fast random forest implementation (Wright and Ziegler, 2017).
Besides, notice that for SIRUS experiments, we use the default settings of random forests
well known for their excellent behavior, in particular mtry = ⌊ p

3⌋. We set q = 10 quantiles
and tune p0 as specified in Subsection 4.5.4.

4.5.2 Case Study: Manufacturing Process Data

SIRUS is run on a real manufacturing process of semi-conductors, the SECOM dataset
(Dua and Graff, 2017). Data are collected from sensors and process measurement points
to monitor the production line, resulting in 590 numeric variables. Each of the 1567 data
points represents a single production entity associated with a pass or fail output (0/1)
for in-house line testing. As it is often the case for a production process, the dataset is
unbalanced and contains 104 fails, i.e., a failure rate p f of 6.6%. We proceed to a simple
pre-processing of the data: missing values (about 5% of the total) are replaced by the
median.

Figure 4.2 shows predictivity versus the number of rules when p0 varies, with the
optimal p0 displayed. Notice that the relation between p0 and the number of rules is
monotone by construction, but also highly nonlinear. Therefore, we use the number of
rules for the x-axis of Figure 4.2 to improve readability. The 1-AUC value is 0.30 for
SIRUS (for the optimal p0 = 0.04), 0.29 for Breiman’s random forests, and 0.48 for a
pruned CART tree. Thus, in that case, CART tree predicts no better than the random
classifier, whereas SIRUS has a similar accuracy to random forests. The final model has
6 rules and a stability of 0.72, i.e., in average 4 to 5 rules are shared by 2 models built in
a 10-fold cross-validation process, simulating data perturbation. By comparison, Node
harvest outputs 36 rules with a value of 0.32 for 1-AUC.

Finally, the output of SIRUS may be displayed in the simple and interpretable form of
Figure 4.3, the output in the R console of the package sirus for the SECOM data. Such a
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Fig. 4.2 For the SECOM dataset, error (1-AUC) versus the number of rules when p0 varies,
estimated via 10-fold cross-validation (averaged over 10 repetitions of the cross-validation). Errors
for CART and random forests are reported for comparisons.

Fig. 4.3 List of rules output by our software sirus in the R console for the SECOM dataset.
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rule model enables to catch immediately how the most relevant variables impact failures.
Among the 590 variables, 5 are enough to build a model as predictive as random forests,
and such a selection is robust. Other rules alone may also be informative, but they do
not add additional information to the model, since predictive accuracy is already minimal
with the 6 selected rules. Then, production engineers should first focus on those 6 rules to
investigate an improved setting of the production process. We insist that the stability of
the output rule list is critical in practice. Indeed, the algorithm may be run multiple times
during the analysis, eventually with an additional small new batch of data. The output
rule list should be quite insensitive to such perturbation: domain experts are skeptical of
unstable results, which are the symptoms of a partial and arbitrary modelling of the true
phenomenon. SIRUS is stable, but it is not the case for decision trees or existing rule
algorithms, as we show in the next subsection and illustrate in Appendix C.1.1.

4.5.3 Improvement over Competitors

Overall, we observe that SIRUS provides a high improvement of stability compared to state-
of-the-art rule algorithms, while preserving the other properties. For the top competitors,
experimental results are gathered in Table 4.2 for model size, Table 4.3 for stability, and
Table 4.4 for predictive accuracy. Experiments for additional competitors are provided in
Appendix C.1.2 in Tables C.1, C.2 and C.3. Standard deviations are made negligible by
averaging metrics over 10 repetitions of the cross-validation and are not displayed in the
tables to increase readability.

Figure 4.4 provides an example for the dataset “Credit German” of the dependence
between predictivity and the number of rules when p0 varies. In that case, the minimum of
1-AUC is about 0.25 for SIRUS, 0.20 for Breiman’s forests, and 0.29 for CART tree. For
the chosen p0, SIRUS returns a compact set of 22 rules and its stability is 0.66. Figure 4.5
provides another example of the good practical performance of SIRUS with the “Heart
Statlog” dataset. Here, the predictivity of random forests is reached with 16 rules, with
a stability of 0.83, i.e., about 13 rules are consistent between two different models built
in a 10-fold cross-validation. Thus, the final models are simple, quite robust to data
perturbation, and have a predictive accuracy close to random forests.

We can draw the following conclusions from the experimental comparisons with
competitors, displayed in Tables 4.2, 4.3, and 4.4. SIRUS produces more stable and
predictive rule lists than decision trees, for a comparable simplicity, but at the price of
a higher computational complexity since many trees are grown. SIRUS produces much
more stable and shorter rule lists than RuleFit and Node harvest, for a comparable accuracy
and computational complexity. Classical rule algorithms exhibit similar properties as
decision trees: a smaller computational complexity, but a high instability and a reduced
predictivity. Finally, algorithms based on frequent pattern mining exhibit quite good
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Fig. 4.4 For the UCI dataset “Credit German”, 1-AUC (on the left) and stability (on the right)
versus the number of rules when p0 varies, estimated via 10-fold cross-validation (results are
averaged over 10 repetitions).

Fig. 4.5 For the UCI dataset “Heart Statlog”, 1-AUC (on the left) and stability (on the right) versus
the number of rules when p0 varies, estimated via 10-fold cross-validation (results are averaged
over 10 repetitions).
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Decision
tree

Classical
rule learning

Frequent
pattern mining Tree ensemble

Dataset CART RIPPER CBA BRL RuleFit Node
harvest SIRUS

Authentification 21 7 7 17 49 30 13
Breast Wisconsin 7 12 24 7 24 32 24
Credit Approval 5 4 55 4 15 27 16
Credit German 18 3 69 4 33 33 20

Diabetes 13 3 17 6 26 31 8
Haberman 2 1 2 2 3 17 5
Heart C2 10 3 34 4 23 36 20
Heart H2 5 2 29 3 12 24 12

Heart Statlog 10 3 27 4 22 35 16
Hepatitis 2 2 14 2 8 14 12

Ionosphere 4 4 38 4 20 35 15
Kr vs Kp 16 15 29 9 18 13 24

Liver Disorders 15 3 2 3 19 33 17
Mushrooms 4 8 25 11 10 22 23

Sonar 6 4 33 2 32 83 19
Spambase 14 16 126 16 68 60 21

Titanic 13 4 4 3 19 23 6
Vote 2 2 25 NA 12 10 7
Wilt 9 5 3 10 31 19 24

Table 4.2 Mean model size over a 10-fold cross-validation for UCI datasets. Results are
averaged over 10 repetitions of the cross-validation.

stability properties, higher than for the other types of competitors. On the other hand,
their predictive accuracy is worse than decision trees. Experiments in Tables 4.2, 4.3, and
4.4 show that SIRUS exhibits a high stability and predictivity improvement over these
methods. Besides, simplicity varies across algorithms: CBA produces much longer rule
lists than SIRUS, whereas BRL generates shorter models.

4.5.4 SIRUS Parameters

SIRUS relies on a single tuning hyperparameter: the selection threshold p0 involved in
the definition of P̂M,n,p0 to filter the most important rules, which therefore controls the
simplicity of the model, and consequently also its accuracy and stability. On the other
hand, SIRUS is not very sensitive to the other parameters: the number of trees, the number
of quantiles, and the tree depth. Therefore, they do not require fine tuning, and we simply
set efficient default values as explained below.
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Decision
tree

Classical
rule learning

Frequent
pattern mining Tree ensemble

Dataset CART RIPPER CBA BRL RuleFit Node
harvest SIRUS

Authentification 0.41 0.36 0.87 0.86 0.48 0.59 0.81
Breast Wisconsin 0.21 0.55 0.80 0.78 0.34 0.71 0.70
Credit Approval 0.52 0.32 0.43 0.52 0.25 0.23 0.75
Credit German 0.46 0.22 0.51 0.41 0.24 0.48 0.66

Diabetes 0.29 0.21 0.46 0.73 0.39 0.45 0.81
Haberman 0.83 0.09 0.79 0.50 0.46 0.52 0.65
Heart C2 0.25 0.35 0.38 0.60 0.39 0.49 0.71
Heart H2 0.46 0.27 0.52 0.73 0.29 0.29 0.65

Heart Statlog 0.30 0.41 0.41 0.75 0.35 0.48 0.83
Hepatitis 0.26 0.16 0.24 0.34 0.26 0.49 0.68

Ionosphere 0.96 0.39 0.13 0.70 0.17 0.33 0.69
Kr vs Kp 0.71 0.74 0.84 0.80 0.19 0.27 0.87

Liver Disorders 0.23 0.10 0.91 0.50 0.24 0.31 0.58
Mushrooms 1 0.84 0.98 0.80 0.69 0.48 0.86

Sonar 0.34 0.04 0.09 0.19 0.09 0.20 0.55
Spambase 0.49 0.10 0.46 0.86 0.28 0.66 0.78

Titanic 0.55 0.42 0.69 0.88 0.37 0.36 0.76
Vote 1 0.52 0.68 NA 0.21 0.30 0.75
Wilt 0.36 0.32 0.72 0.94 0.47 0.64 0.73

Average Rank 4.2 5.9 3.3 2.8 5.6 4.3 1.9
p-values 0.07 0.33 0.33 0.08 0.05 0.98

Final Rank 4 6 2 2 6 4 1

Table 4.3 Mean stability over a 10-fold cross-validation for UCI datasets. Results are
averaged over 10 repetitions of the cross-validation. Values within 10% of the maximum
are displayed in bold. Algorithms are ranked with a Mann-Whitney-Wilcoxon test, the
p-value with the previous performing algorithm determines the final rank (10%-level test).
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Black
box

Decision
tree

Classical
rule

learning

Frequent
pattern mining Tree ensemble

Dataset Random
Forest CART RIPPER CBA BRL RuleFit Node

harvest SIRUS

Authentification 10−4 0.02 0.02 0.14 0.009 9.10−49.10−49.10−4 0.02 0.03
Breast Wisconsin 0.009 0.06 0.07 0.05 0.02 0.01 0.01 0.01
Credit Approval 0.07 0.14 0.15 0.14 0.11 0.08 0.07 0.09
Credit German 0.20 0.29 0.38 0.40 0.33 0.23 0.26 0.25

Diabetes 0.17 0.25 0.29 0.30 0.25 0.18 0.19 0.19
Haberman 0.31 0.48 0.39 0.50 0.43 0.37 0.34 0.35
Heart C2 0.10 0.19 0.23 0.17 0.23 0.12 0.12 0.10
Heart H2 0.11 0.23 0.24 0.24 0.16 0.11 0.11 0.12

Heart Statlog 0.10 0.20 0.21 0.17 0.22 0.12 0.12 0.10
Hepatitis 0.12 0.48 0.39 0.36 0.33 0.20 0.23 0.17

Ionosphere 0.02 0.11 0.12 0.13 0.10 0.04 0.07 0.07
Kr vs Kp 9.10−4 0.02 0.009 0.05 0.01 0.009 0.04 0.04

Liver Disorders 0.23 0.33 0.35 0.48 0.44 0.27 0.30 0.35
Mushrooms 0 0.007 3.10−5 5.10−4 2.10−52.10−52.10−5 5.10−4 0.002 6.10−4

Sonar 0.07 0.27 0.26 0.25 0.44 0.12 0.16 0.2
Spambase 0.01 0.11 0.08 0.12 0.05 0.02 0.04 0.07

Titanic 0.13 0.19 0.21 0.27 0.21 0.14 0.16 0.17
Vote 0.01 0.06 0.04 0.06 NA 0.02 0.02 0.02
Wilt 0.007 0.18 0.13 0.48 0.07 0.02 0.08 0.11

Average Rank 5 4.9 5.8 4.4 1.4 2.4 2.8
p-values 0.22 0.24 0.01 6.10−3 0.01 0.34

Final Rank 4 4 7 4 1 2 2

Table 4.4 Model error (1-AUC) over a 10-fold cross-validation for UCI datasets. Results
are averaged over 10 repetitions of the cross-validation. Values within 10% of the minimum
are displayed in bold, random forest is put aside. Algorithms are ranked with a Mann-
Whitney-Wilcoxon test, the p-value with the previous performing algorithm determines
the final rank (10%-level test).



4.5 Experiments 127

Tuning of SIRUS. This parameter p0 should be set to optimize a tradeoff between
the number of rules, stability, and accuracy. In practice, it is difficult to settle such a
criterion, and we choose to optimize p0 to maximize the predictive accuracy with the
smallest possible set of rules. To achieve this goal, we proceed as follows. The error 1-
AUC is estimated by 10-fold cross-validation for a fine grid of p0 values, defined such that
|P̂M,n,p0 | varies from 1 to 25 rules. (We let 25 be an arbitrary upper bound on the maximum
number of rules, considering that a bigger set is not readable anymore.) The randomization
introduced by the partition of the dataset in the 10 folds of the cross-validation process has
a significant impact on the variability of the size of the final model. Therefore, in order
to get a robust estimation of p0, the cross-validation is repeated multiple times (typically
10) and results are averaged. The standard deviation of the mean of 1-AUC is computed
over these repetitions for each p0 of the grid search. We consider that all models within 2
standard deviations of the minimum of 1-AUC are not significantly less predictive than
the optimal one. Thus, among these models, the one with the smallest number of rules
is selected, i.e., the optimal p0 is shifted towards higher values to reduce the model size
without decreasing predictivity—see Figures 4.4 and 4.5 for examples. This approach is
very similar to the tuning procedure of the Lasso (Tibshirani, 1996).

Number of trees. The accuracy, stability, and computational cost of SIRUS increase
with the number of trees M. Thus, we simply design a stopping criterion to grow the
minimum number of trees which ensures that accuracy and stability are higher than 95%
of their maximum asymptotic values with respect to M and conditionally on Dn. We
empirically observe that the stability requirement is met for a much higher number of
trees than the accuracy requirement (about 10 times). Therefore, the stopping criterion
is only based on stability. More precisely, we require that 95% of the rules are identical
across two runs of SIRUS on a given dataset Dn in average. Formally, the mean stability
E[ŜM,n,p0|Dn] measures the expected proportion of rules shared by two fits of SIRUS on
Dn, for fixed n (sample size), p0 (threshold), and M (number of trees). Thus, the stopping
criterion takes the form 1−E[ŜM,n,p0|Dn]< α , with typically α = 0.05.

There are two obstacles to operationalize this stopping criterion: its estimation and its
dependence to p0. We make two approximations to overcome these limitations and give
empirical and theoretical evidence of their good practical behavior in Appendix C.2. First,
Theorem C.2 in Appendix C.2.2 provides an asymptotic equivalent with respect to M of
1−E[ŜM,n,p0|Dn], that we simply estimate by

εM,n,p0 =
∑P∈Π Φ(Mp0,M, p̂M,n(P))(1−Φ(Mp0,M, p̂M,n(P)))

∑P∈Π (1−Φ(Mp0,M, p̂M,n(P)))
,
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where Φ(Mp0,M, pn(P)) is the cdf of a binomial distribution with parameter pn(P), M
trials, evaluated at Mp0. Secondly, εM,n,p0 depends on p0, whose optimal value is unknown
in the first step of SIRUS, when trees are grown. It turns out however that εM,n,p0 is not
very sensitive to p0, as shown by the experiments in Appendix C.2.1. Consequently, our
strategy is to simply average εM,n,p0 over a set V̂M,n of many possible values of p0 and use
the resulting average as a gauge. These values are chosen to scan all possible path sets
P̂M,n,p0 , of size ranging from 1 to 50 paths. When a set of 50 paths is post-treated, its size
reduces to around 25 paths (as explained in the previous paragraph, 25 is an arbitrarily
threshold on the maximum number of rules above which a rule model is not readable
anymore). In order to generate path sets of such sizes, values of p0 are chosen halfway
between two distinct consecutive p̂M,n(P),P ∈ Π , restricted to the highest 50 values.
Thus, in the experiments, we utilize the following criterion to stop the growing of the
forest, with typically α = 0.05:

argmin
M

{ 1
|V̂M,n|

∑
p0∈V̂M,n

εM,n,p0 < α

}
. (4.5.1)

Quantile discretization. In the modified random forest grown in the first step of SIRUS,
the split at each tree node is limited to the empirical q-quantiles of each component of
X, as described in Section 4.3. Thus, we check that this modification alone of the forest
has little impact on its accuracy. Using the R package ranger, 1-AUC is estimated for
each dataset with 10-fold cross-validation for q ∈ {2,5,10,20}. We leave aside datasets
with a majority of categorical variables, results are averaged over 10 repetitions of the
cross-validation, and displayed in Table 4.5. Clearly, the decrease of accuracy generated
by this discretization is small, and not very sensitive to q, provided that q is not too small.
Thus, q = 10 appears to be a good default choice from the experiments. In fact, the small
impact of the discretization on the forest error is not surprising: with only p = 10 input
variables, the input space is split in a fine grid of 1010 hyperrectangles for q = 10 quantiles,
providing a high flexibility to the modified random forest to identify local patterns.

Tree depth. When SIRUS is fit using fully grown trees, the final set of rules P̂M,n,p0

contains almost exclusively rules made of one or two splits, and rarely of three splits.
Although this may appear surprising at first glance, this phenomenon is in fact expected.
Indeed, rules made of multiple splits are extracted from deeper tree levels and are thus
more sensitive to data perturbation by construction. This results in much smaller values
of p̂M,n(P) for rules with a high number of splits, and then deletion from the final set
of path through the threshold p0: P̂M,n,p0 = {P ∈ Π : p̂M,n(P)> p0}. To illustrate this,
let us consider the following typical example with p = 100 input variables and q = 10
quantiles. There are qp = 100×10 = 103 possible splits at the root node of a tree, and
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Dataset Breiman’s RF q=2 q=5 q=10 q=20
Authentification 0.0002 0.08 0.002 0.0005 0.0004

Diabetes 0.17 0.23 0.18 0.18 0.18
Haberman 0.32 0.35 0.30 0.32 0.30

Heart Statlog 0.10 0.10 0.10 0.10 0.10
Hepatitis 0.13 0.15 0.14 0.14 0.13

Ionosphere 0.02 0.07 0.03 0.02 0.02
Liver Disorders 0.23 0.32 0.27 0.25 0.24

Sonar 0.07 0.09 0.07 0.07 0.07
Spambase 0.01 0.14 0.03 0.02 0.01

Titanic 0.13 0.15 0.14 0.14 0.13
Wilt 0.007 0.15 0.03 0.02 0.02

Table 4.5 Accuracy, measured by 1-AUC on UCI datasets, for two algorithms: Breiman’s random
forests and random forests with splits limited to q-quantiles, for q ∈ {2,5,10,20}.

then 2pq = 2.103 paths of one split. Since the left and right paths of one split at the root
node are associated to the same rule, there are qp = 103 distinct rules of one split, about
(2qp)2 ≈ 106 distinct rules of two splits, and about (2qp)3 ≈ 1010 distinct rules of three
splits. Using only rules of one split is too restrictive since it generates a small model class
(a thousand rules for 100 input variables) and does not handle variable interactions. On
the other hand, rules of two splits are numerous (about one million) and thus provide a
large flexibility to SIRUS. More importantly, since there are 10 billion rules of three splits,
a stable selection of a few of them is clearly a difficult task, and such complex rules are
naturally discarded by SIRUS.

In the software implementation sirus, the tree depth parameter max.depth is a
modifiable input, set to 2 by default to reduce the computational cost while leaving the
output list of rules almost untouched as explained above. We conduct experiments where
SIRUS is run with a tree depth of 1, 2, and 3, and results are displayed in Table 4.6. Over
the nineteen UCI datasets, rules of three splits appear in SIRUS rule list in only four
cases, and a significant accuracy improvement over a tree depth of 2 occurs only once, for
the ‘Mushrooms’ dataset. On the other hand, for all datasets except two, SIRUS outputs
rules of two constraints, and predictivity is improved over a tree depth of 1 for half of the
datasets. The Titanic example shows how the rule list is drastically simplified by limiting
tree depth to 1, lowering the insights provided by SIRUS:

Average survival rate ps = 39%.

if sex is male then ps = 19% else ps = 74%

if 1st or 2nd class then ps = 56% else ps = 24%
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Dataset SIRUS - depth = 1 SIRUS - depth = 2 SIRUS - depth = 3
Authentification 0.07 0.03 0.03
Breast Wisconsin 0.01 0.01 0.01
Credit Approval 0.11 0.09 0.09
Credit German 0.25 0.25 0.26

Diabetes 0.19 0.19 0.19
Haberman 0.35 0.35 0.35
Heart C2 0.11 0.10 0.11
Heart H2 0.12 0.12 0.12

Heart Statlog 0.11 0.10 0.10
Hepatitis 0.15 0.17 0.18

Ionosphere 0.07 0.07 0.07
Kr vs Kp 0.05 0.04 0.06

Liver Disorders 0.38 0.35 0.35
Mushrooms 3.10−3 6.10−4 3.10−43.10−43.10−4

Sonar 0.19 0.2 0.2
Spambase 0.06 0.07 0.07

Titanic 0.19 0.17 0.16
Vote 0.02 0.02 0.02
Wilt 0.19 0.11 0.11

Table 4.6 SIRUS error (1-AUC) over a 10-fold cross-validation (averaged over 10 repetitions)
when tree depth is limited to 1, 2 or 3. Values within 10% of the minimum are displayed in bold,
except for datasets with no significant variations.

This analysis of tree depth is not new. Indeed, both RuleFit (Friedman et al., 2008)
and Node harvest (Meinshausen, 2010) articles discuss the optimal tree depth for the rule
extraction from a tree ensemble in their experiments. They both conclude that the optimal
depth is 2. Hence, the same hard limit of 2 is used in Node harvest. RuleFit is slightly less
restrictive: for each tree, its depth is randomly sampled with an exponential distribution
concentrated on 2, but allowing few trees of depth 1, 3, and 4. We insist that they both
reach such conclusion without considering stability issues, but only focusing on accuracy.
Further considering stability properties consolidates that growing shallow trees is optimal
for rule extraction from tree ensembles.

4.6 Conclusion

Interpretability of learning algorithms is required for applications involving critical de-
cisions, for example the analysis of production processes in the manufacturing industry.
Although interpretability does not have a precise definition, we argued that simplicity,
stability, and predictivity are minimum requirements. In particular, decision trees and rule
algorithms both combine a simple structure and a good accuracy for nonlinear data, and are
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thus considered as state-of-the-art interpretable algorithms. However, these methods are
unstable with respect to data perturbation, which is a strong operational limitation. There-
fore, we proposed a new rule algorithm for classification, SIRUS (Stable and Interpretable
RUle Set), which takes the form of a short list of rules. We proved that SIRUS considerably
improves stability over state-of-the-art algorithms, while preserving simplicity, accuracy,
and computational complexity of top competitors. The principle of SIRUS is to extract
rules from a random forest, based on their probability of occurrence in a random tree, and
to stop the growing of the forest when the rule selection is converged. Thus, SIRUS inherits
the computational complexity of random forests, and has only one tuning parameter. A soft-
ware implementation, the R/C++ package sirus (Benard and Wright, 2020), is available
from CRAN. Besides, we believe that the extension of SIRUS to regression is a promising
future research direction: the main challenge is the construction of an appropriate rule
aggregation framework to accurately estimate continuous outputs without hurting stability.
Furthermore, although SIRUS has the ability to handle high-dimensional data, as illustrated
with the SECOM dataset (590 inputs), specific variable selection strategies could be used
to reduce the number of possible rules and then improve SIRUS performance.





Chapter 5

Interpretable random forests via rule
extraction

Abstract
We introduce SIRUS (Stable and Interpretable RUle Set) for regression, a stable rule learning
algorithm, which takes the form of a short and simple list of rules. State-of-the-art learning
algorithms are often referred to as “black boxes” because of the high number of operations involved
in their prediction process. Despite their powerful predictivity, this lack of interpretability may be
highly restrictive for applications with critical decisions at stake. On the other hand, algorithms
with a simple structure—typically decision trees, rule algorithms, or sparse linear models—are
well known for their instability. This undesirable feature makes the conclusions of the data analysis
unreliable and turns out to be a strong operational limitation. This motivates the design of SIRUS,
based on random forests, which combines a simple structure, a remarkable stable behavior when
data is perturbed, and an accuracy comparable to its competitors. We demonstrate the efficiency
of the method both empirically (through experiments) and theoretically (with the proof of its
asymptotic stability). A R/C++ software implementation sirus is available from CRAN.
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5.1 Introduction

State-of-the-art learning algorithms, such as random forests or neural networks, are often
criticized for their “black-box" nature. This criticism essentially results from the high
number of operations involved in their prediction mechanism, as it prevents to grasp
how inputs are combined to generate predictions. Interpretability of machine learning
algorithms is receiving an increasing amount of attention since the lack of transparency is
a strong limitation for many applications, in particular those involving critical decisions.
The analysis of production processes in the manufacturing industry typically falls into
this category. Indeed, such processes involve complex physical and chemical phenomena
that can often be successfully modeled by black-box learning algorithms. However, any
modification of a production process has deep and long-term consequences, and therefore
cannot simply result from a blind stochastic modelling. In this domain, algorithms have
to be interpretable, i.e., provide a sound understanding of the relation between inputs and
outputs, in order to leverage insights to guide physical analysis and improve efficiency of
the production.

Although there is no agreement in the machine learning litterature about a precise
definition of interpretability (Lipton, 2016; Murdoch et al., 2019), it is yet possible to
define simplicity, stability, and predictivity as minimum requirements for interpretable
models (Bénard et al., 2021c; Yu and Kumbier, 2019). Simplicity of the model structure
can be assessed by the number of operations performed in the prediction mechanism.
In particular, Murdoch et al. (2019) introduce the notion of simulatable models when a
human is able to reproduce the prediction process by hand. Secondly, Yu (2013) argues
that “interpretability needs stability”, as the conclusions of a statistical analysis have to be
robust to small data perturbations to be meaningful. Instability is the symptom of a partial
and arbitrary modelling of the data, also known as the Rashomon effect (Breiman, 2001b).
Finally, as also explained in Breiman (2001b), if the decrease of predictive accuracy is
significant compared to a state-of-the-art black-box algorithm, the interpretable model
misses some patterns in the data and is therefore misleading.

Decision trees (Breiman et al., 1984) can model nonlinear patterns while having a
simple structure. They are therefore often presented as interpretable. However, the structure
of trees is highly sensitive to small data perturbation (Breiman, 2001b), which violates the
stability principle and is thus a strong limitation to their practical use. Rule algorithms
are another type of nonlinear methods with a simple structure, defined as a collection of
elementary rules. An elementary rule is a set of constraints on input variables, which forms
a hyperrectangle in the input space and on which the associated prediction is constant. As
an example, such a rule typically takes the following simple form:
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If

{
X (1) < 1.12

& X (3) ≥ 0.7
then Ŷ = 0.18 else Ŷ = 4.1 .

A large number of rule algorithms have been developed, among which the most influential
Decision List (Rivest, 1987), CN2 (Clark and Niblett, 1989), C4.5 (Quinlan, 1992), IREP
(Incremental Reduced Error Pruning, Fürnkranz and Widmer, 1994), RIPPER (Repeated
Incremental Pruning to Produce Error Reduction, Cohen, 1995), PART (Partial Decision
Trees, Frank and Witten, 1998), SLIPPER (Simple Learner with Iterative Pruning to
Produce Error Reduction, Cohen and Singer, 1999), LRI (Leightweight Rule Induction,
Weiss and Indurkhya, 2000), RuleFit (Friedman et al., 2008), Node harvest (Meinshausen,
2010), ENDER (Ensemble of Decision Rules, Dembczyński et al., 2010), BRL (Bayesian
Rule Lists, Letham et al., 2015), RIPE (Rule Induction Partitioning Estimator, Margot
et al., 2018, 2021), and Wei et al. (2019, Generalized Linear Rule Models). It turns out,
however, that despite their simplicity and high predictivity (close to the accuracy of tree
ensembles), rule learning algorithms share the same limitation as decision trees: instability.
Furthermore, among the hundreds of existing rule algorithms, most of them are designed
for supervised classification and few have the ability to handle regression problems.

The purpose of this chapter is to propose a new stable rule algorithm for regression,
SIRUS (Stable and Interpretable RUle Set), and therefore demonstrate that rule methods
can address regression problems efficiently while producing compact and stable list of
rules. To this aim, we build on Bénard et al. (2021c), who have introduced SIRUS for
classification problems. Our algorithm is based on random forests (Breiman, 2001a), and
its general principle is as follows: since each node of each tree of a random forest can be
turned into an elementary rule, the core idea is to extract rules from a tree ensemble based
on their frequency of appearance. The most frequent rules, which represent robust and
strong patterns in the data, are ultimately linearly combined to form predictions. The main
competitors of SIRUS are RuleFit (Friedman et al., 2008) and Node harvest (Meinshausen,
2010). Both methods also extract large collection of rules from tree ensembles: RuleFit
uses a boosted tree ensemble (ISLE, Friedman et al., 2003) whereas Node harvest is
based on random forests. The rule selection is performed by a sparse linear aggregation,
respectively the Lasso (Tibshirani, 1996) for RuleFit and a constrained quadratic program
for Node harvest. Yet, despite their powerful predictive skills, these two methods tend to
produce long, complex, and unstable lists of rules (typically of the order of 30−50), which
makes their interpretability questionable. Because of the randomness in the tree ensemble,
running these algorithms multiple times on the same dataset outputs different rule lists. As
we will see, SIRUS considerably improves stability and simplicity over its competitors,
while preserving a comparable predictive accuracy and computational complexity—see
Section 2 of the Supplementary Material for the complexity analysis.
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We present SIRUS algorithm in Section 5.2. In Section 5.3, experiments illustrate the
good performance of our algorithm in various settings. Section 5.4 is devoted to studying
the theoretical properties of the method, with, in particular, a proof of its asymptotic
stability. Finally, Section 5.5 summarizes the main results and discusses research directions
for future work. Additional details are gathered in the Supplementary Material.

5.2 SIRUS Algorithm

We consider a standard regression setting where we observe an i.i.d. sample Dn =

{(Xi,Yi), i = 1, . . . ,n}, with each (Xi,Yi) distributed as a generic pair (X,Y ) independent
of Dn. The p-tuple X = (X (1), . . . ,X (p)) is a random vector taking values inRp, and Y ∈R
is the response. Our objective is to estimate the regression function m(x) = E(Y |X = x)
with a small and stable set of rules.

Rule generation The first step of SIRUS is to grow a random forest with a large number
M of trees based on the available sample Dn. The critical feature of our approach to
stabilize the forest structure is to restrict node splits to the q-empirical quantiles of the
marginals X (1), . . . ,X (p), with typically q = 10. This modification to Breiman’s original
algorithm has a small impact on predictive accuracy, but is essential for stability, as it is
extensively discussed in Section 3 of the Supplementary Material. Next, the obtained forest
is broken down in a large collection of rules in the following process. First, observe that
each node of each tree of the resulting ensemble defines a hyperrectangle in the input space
Rp. Such a node can therefore be turned into an elementary regression rule, by defining a
piecewise constant estimate whose value only depends on whether the query point falls in
the hyperrectangle or not. Formally, a (inner or terminal) node of the tree is represented
by a path, say P , which describes the sequence of splits to reach the node from the root
of the tree. In the sequel, we denote by Π the finite list of all possible paths, and insist
that each path P ∈ Π defines a regression rule. Based on this principle, in the first step of
the algorithm, both internal and external nodes are extracted from the trees of the random
forest to generate a large collection of rules, typically 104.

Rule selection The second step of SIRUS is to select the relevant rules from this large
collection. Despite the tree randomization in the forest construction, there are some
redundancy in the extracted rules. Indeed those with a high frequency of appearance
represent strong and robust patterns in the data, and are therefore good candidates to be
included in a compact, stable, and predictive rule ensemble. This occurrence frequency
is denoted by p̂M,n(P) for each possible path P ∈ Π . Then a threshold p0 ∈ (0,1) is
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simply used to select the relevant rules, that is

P̂M,n,p0 = {P ∈ Π : p̂M,n(P)> p0}.

The threshold p0 is a tuning parameter, whose influence and optimal setting are discussed
and illustrated later in the experiments (Figures 5.2 and 5.3). Optimal p0 values essentially
select rules made of one or two splits. Indeed, rules with a higher number of splits are
more sensitive to data perturbation, and thus associated to smaller values of p̂M,n(P).
Therefore, SIRUS grows shallow trees to reduce the computational cost while leaving the
rule selection untouched—see Section 3 of the Supplementary Material. In a word, SIRUS
uses the principle of randomized bagging, but aggregates the forest structure itself instead
of predictions in order to stabilize the rule selection.

Rule set post-treatment The rules associated with the set of distinct paths P̂M,n,p0 are
dependent by definition of the path extraction mechanism. As an example, let us consider
the 6 rules extracted from a random tree of depth 2. Since the tree structure is recursive, 2
rules are made of one split and 4 rules of two splits. Those 6 rules are linearly dependent
because their associated hyperrectangles overlap. Consequently, to properly settle a linear
aggregation of the rules, the third step of SIRUS filters P̂M,n,p0 with the following post-
treatment procedure: if the rule induced by the path P ∈ P̂M,n,p0 is a linear combination
of rules associated with paths with a higher frequency of appearance, then P is simply
removed from P̂M,n,p0 .

Rule aggregation By following the previous steps, we finally obtain a small set of
regression rules. As such, a rule ĝn,P associated with a path P is a piecewise constant
estimate: if a query point x falls into the corresponding hyperrectangle HP ⊂Rp, the rule
returns the average of the Yi’s for the training points Xi’s that belong to HP ; symmetrically,
if x falls outside of HP , the average of the Yi’s for training points outside of HP is returned.
Next, a non-negative weight is assigned to each of the selected rule, in order to combine
them into a single estimate of m(x). These weights are defined as the ridge regression
solution, where each predictor is a rule ĝn,P for P ∈ P̂M,n,p0 and weights are constrained
to be non-negative. Thus, the aggregated estimate m̂M,n,p0(x) of m(x) computed in the
fourth step of SIRUS has the form

m̂M,n,p0(x) = β̂0 + ∑
P∈P̂M,n,p0

β̂n,P ĝn,P(x), (5.2.1)

where β̂0 and β̂n,P are the solutions of the ridge regression problem. More precisely,
denoting by β̂ n,p0

the column vector whose components are the coefficients β̂n,P for
P ∈ P̂M,n,p0 , and letting Y = (Y1, . . . ,Yn)

T and Γ n,p0 the matrix whose rows are the rule



138 Interpretable random forests via rule extraction

values ĝn,P(Xi) for i ∈ {1, . . . ,n}, we have

(β̂ n,p0
, β̂0) = argmin

β≥0,β0

1
n
||Y−β01n −Γ n,p0β ||22
+λ ||β ||22,

where 1n = (1, . . . ,1)T is the n-vector with all components equal to 1, and λ is a positive
parameter tuned by cross-validation that controls the penalization severity. The mininum is
taken over β0 ∈R and all the vectors β = {β1, . . . ,βcn} ∈R

cn
+ where cn = |P̂M,n,p0| is the

number of selected rules. Besides, notice that the rule format with an else clause differs
from the standard format in the rule learning literature. This modification provides good
properties of stability and modularity (investigation of the rules one by one (Murdoch et al.,
2019)) to SIRUS—see Section 4 of the Supplementary Material.

This linear rule aggregation is a critical step and deserves additional comments. Indeed,
in RuleFit, the rules are also extracted from a tree ensemble, but aggregated using the
Lasso. However, the extracted rules are strongly correlated by construction, and the Lasso
selection is known to be highly unstable in such correlated setting. This is the main reason
of the instability of RuleFit, as the experiments will show. On the other hand, the sparsity
of SIRUS is controlled by the parameter p0, and the ridge regression enables a stable
aggregation of the rules. Furthermore, the constraint β ≥ 0 is added to ensure that all
coefficients are non-negative, as in Node harvest (Meinshausen, 2010). Also because of
the rule correlation, an unconstrained regression would lead to negative values for some of
the coefficients β̂n,P , and such behavior drastically undermines the interpretability of the
algorithm.

Interpretability As stated in the introduction, despite the lack of a precise definition
of interpretable models, there are three minimum requirements to be taken into account:
simplicity, stability, and predictivity. These notions need to be formally defined and
quantified to enable comparison between algorithms. Simplicity refers to the model
complexity, in particular the number of operations involved in the prediction mechanism.
In the case of rule algorithms, a measure of simplicity is naturally given by the number
of rules. Intuitively, a rule algorithm is stable when two independent estimations based
on two independent samples return similar lists of rules. Formally, let P̂ ′

M,n,p0
be the list

of rules output by SIRUS fit on an independent sample D ′
n. Then the proportion of rules

shared by P̂M,n,p0 and P̂ ′
M,n,p0

gives a stability measure. Such a metric is known as the
Dice-Sorensen index, and is often used to assess variable selection procedures (Chao et al.,
2006; Zucknick et al., 2008; Boulesteix and Slawski, 2009; He and Yu, 2010; Alelyani
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Average Ozone = 12 Intercept =−7.8

Frequency Rule Weight
0.29 if temp < 65 then Ozone = 7 else Ozone = 19 0.12
0.17 if ibt < 189 then Ozone = 7 else Ozone = 18 0.07

0.063 if
{

temp ≥ 65
& vis < 150

then Ozone = 20 else Ozone = 7 0.31

0.061 if vh < 5840 then Ozone = 10 else Ozone = 20 0.072
0.060 if ibh < 2110 then Ozone = 16 else Ozone = 7 0.14
0.058 if ibh < 2960 then Ozone = 15 else Ozone = 6 0.10

0.051 if
{

temp ≥ 65
& ibh < 2110

then Ozone = 21 else Ozone = 8 0.16

0.048 if vis < 150 then Ozone = 14 else Ozone = 7 0.18

0.043 if
{

temp < 65
& ibt < 120

then Ozone = 5 else Ozone = 15 0.15

0.040 if temp < 70 then Ozone = 8 else Ozone = 20 0.14
0.039 if ibt < 227 then Ozone = 9 else Ozone = 22 0.21

Table 5.1 SIRUS rule list for the “LA Ozone” dataset.

et al., 2011). In our case, the Dice-Sorensen index is then defined as

ŜM,n,p0 =
2
∣∣P̂M,n,p0 ∩P̂ ′

M,n,p0

∣∣∣∣P̂M,n,p0

∣∣+ ∣∣P̂ ′
M,n,p0

∣∣ .
However, in practice one rarely has access to an additional sample D ′

n. Therefore, to
circumvent this problem, we use a 10-fold cross-validation to simulate data perturbation.
The stability metric is thus empirically defined as the average proportion of rules shared
by two models of two distinct folds of the cross-validation. A stability of 1 means that
the exact same list of rules is selected over the 10 folds, whereas a stability of 0 means
that all rules are distinct between any 2 folds. For predictivity in regression problems,
the proportion of unexplained variance is a natural measure of the prediction error. The
estimation is performed by 10-fold cross-validation.

5.3 Experiments

Experiments are run over 8 diverse public datasets to demonstrate the improvement of
SIRUS over state-of-the-art methods. Table 1 in Section 5 of the Supplementary Material
provides dataset details.
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SIRUS rule set Our algorithm is illustrated on the “LA Ozone” dataset from Friedman
et al. (2001), which records the level of atmospheric ozone concentration from eight daily
meteorological measurements made in Los Angeles in 1976: wind speed (“wind”), hu-
midity (“humidity”), temperature (“temp”), inversion base height (“ibh”), daggot pressure
gradient (“dpg”), inversion base temperature (“ibt”), visibility (“vis”), and day of the year
(“doy”). The response “Ozone” is the log of the daily maximum of ozone concentration.
The list of rules output for this dataset is presented in Table 5.1. The column “Frequency”
refers to p̂M,n(P), the occurrence frequency of each rule in the forest, used for rule se-
lection. It enables to grasp how weather conditions impact the ozone concentration. In
particular, a temperature larger than 65°F or a high inversion base temperature result in
high ozone concentrations. The third rule tells us that the interaction of a high temperature
with a visibility lower than 150 miles generates even higher levels of ozone concentration.
Interestingly, according to the ninth rule, especially low ozone concentrations are reached
when a low temperature and and a low inversion base temperature are combined. Recall
that to generate a prediction for a given query point x, for each rule the corresponding
ozone concentration is retrieved depending on whether x satisfies the rule conditions. Then
all rule outputs for x are multiplied by their associated weight and added together. One
can observe that rule importances and weights are not related. For example, the third rule
has a higher weight than the most two important ones. It is clear that rule 3 has multiple
constraints and is therefore more sensitive to data perturbation—hence a smaller frequency
of appearance in the forest. On the other hand, its associated variance decrease in CART
is more important than for the first two rules, leading to a higher weight in the linear
combination. Since rules 5 and 6 are strongly correlated, their weights are diluted.

Tuning SIRUS has only one hyperparameter which requires fine tuning: the threshold
p0 to control the model size by selecting the most frequent rules in the forest. First, the
range of possible values of p0 is set so that the model size varies between 1 and 25 rules.
This arbitrary upper bound is a safeguard to avoid long and complex list of rules that are
difficult to interpret. In practice, this limit of 25 rules is rarely hit, since the following
tuning of p0 naturally leads to compact rule lists. Thus, p0 is tuned within that range by
cross-validation to maximize both stability and predictivity. To find a tradeoff between
these two properties, we follow a standard bi-objective optimization procedure as illustrated
in Figure 5.1, and described in Section 2 of the Supplementary Material: p0 is chosen to
be as close as possible to the ideal case of 0 unexplained variance and 90% stability. This
tuning procedure is computationally fast: the cost of about 10 fits of SIRUS. Besides, the
optimal number of trees M is set automatically by SIRUS: as stability, predictivity, and
computation time increase with the number of trees, no fine tuning is required for M. Thus,
a stopping criterion is designed to grow the minimum number of trees which enforces that
stability and predictivity are greater than 95% of their maximum values (reached when
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Fig. 5.1 Pareto front of stability versus error (unexplained variance) when p0 varies, with
the optimal value in green for the “Ozone” dataset. The optimal point is the closest one to
the ideal point (0,0.1) of 0 unexplained variance and 90% stability.

M → ∞)—see Section 6 of the Supplementary Material for a detailed definition of this
criterion. Finally, we use the other standard settings of random forests (well-known for
their excellent performance), set q = 10 quantiles, and transform categorical variables into
multiple binary variables.

Performance We compare SIRUS with its two main competitors RuleFit (with rule
predictors only) and Node harvest. For predictive accuracy, we ran random forests and
(pruned) CART to provide the baseline. Only to compute stability metrics, data is binned
using 10 quantiles to fit Rulefit and Node harvest. Our R/C++ package sirus (available
from CRAN) is adapted from ranger, a fast random forests implementation (Wright and
Ziegler, 2017). We also use available R implementations pre (Fokkema, 2017, RuleFit)
and nodeharvest (Meinshausen, 2015). While the predictive accuracy of SIRUS is
comparable to Node harvest and slightly below RuleFit, the stability is considerably
improved with much smaller rule lists. Experimental results are gathered in Table 5.2a for
model sizes, Table 5.2b for stability, and Table 5.3 for predictive accuracy. All results are
averaged over 10 repetitions of the cross-validation procedure. Since standard deviations
are negligible, they are not displayed to increase readability. Besides, in the last column of
Table 5.3, p0 is set to increase the number of rules in SIRUS to reach RuleFit and Node
harvest model size (about 50 rules): predictivity is then as good as RuleFit.

To illustrate the typical behavior of our method, we comment the results for two
specific datasets: “Diabetes” (Efron et al., 2004) and “Machine” (Dua and Graff, 2017).
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Fig. 5.2 For the dataset “Diabetes”, unexplained variance (left panel) and stability (right panel)
versus the number of rules when p0 varies, estimated via 10-fold cross-validation (results are
averaged over 10 repetitions).

The “Diabetes” data contains n = 442 diabetic patients and the response of interest Y is
a measure of disease progression over one year. A total of 10 variables are collected for
each patient: age, sex, body mass index, average blood pressure, and six blood serum
measurements s1,s2, . . . ,s6. For this dataset, SIRUS is as predictive as a random forest,
with only 12 rules when the forest performs about 104 operations: the unexplained variance
is 0.56 for SIRUS and 0.55 for random forest. Notice that CART performs considerably
worse with 0.67 unexplained variance. For the second dataset, “Machine”, the output Y of
interest is the CPU performance of computer hardware. For n = 209 machines, 7 variables
are collected about the machine characteristics. For this dataset, SIRUS, RuleFit, and Node
harvest have a similar predictivity, in-between CART and random forests. Our algorithm
achieves such performance with a readable list of only 9 rules stable at 88%, while RuleFit
and Node harvest incorporate respectively 44 and 42 rules with stability levels of 23% and
29%. Stability and predictivity are represented as p0 varies for “Diabetes” and “Machine”
datasets in Figures 5.2 and 5.3, respectively.

5.4 Theoretical Analysis

Among the three minimum requirements for interpretable models, stability is the critical
one. In SIRUS, simplicity is explicitly controlled by the hyperparameter p0. The wide
literature on rule learning provides many experiments to show that rule algorithms have
an accuracy comparable to tree ensembles. On the other hand, designing a stable rule
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Fig. 5.3 For the dataset “Machine”, unexplained variance (left panel) and stability (right panel)
versus the number of rules when p0 varies, estimated via 10-fold cross-validation (results are
averaged over 10 repetitions).

(a) Model Size

Dataset CART RuleFit Node Harvest SIRUS
Ozone 15 21 46 11
Mpg 15 40 43 9

Prostate 11 14 41 23
Housing 15 54 40 6
Diabetes 12 25 42 12
Machine 8 44 42 9
Abalone 20 58 35 6
Bones 17 5 13 1

(b) Stability

Dataset RuleFit Node Harvest SIRUS
Ozone 0.22 0.30 0.62
Mpg 0.25 0.43 0.83

Prostate 0.32 0.23 0.48
Housing 0.19 0.40 0.80
Diabetes 0.18 0.39 0.66
Machine 0.23 0.29 0.88
Abalone 0.31 0.38 0.82
Bones 0.59 0.52 0.89

Table 5.2 Mean model size and stability over a 10-fold cross-validation for various public datasets.
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Dataset Random
Forest CART RuleFit Node

Harvest SIRUS SIRUS
50 Rules

Ozone 0.25 0.36 0.27 0.31 0.32 0.26
Mpg 0.13 0.20 0.15 0.20 0.21 0.15

Prostate 0.48 0.60 0.53 0.52 0.48 0.55
Housing 0.13 0.28 0.16 0.24 0.31 0.21
Diabetes 0.55 0.67 0.55 0.58 0.56 0.54
Machine 0.13 0.39 0.26 0.29 0.29 0.27
Abalone 0.44 0.56 0.46 0.61 0.66 0.64
Bones 0.67 0.67 0.70 0.70 0.74 0.72

Table 5.3 Proportion of unexplained variance estimated over a 10-fold cross-validation for various
public datasets. For rule algorithms only, i.e., RuleFit, Node harvest, and SIRUS, maximum values
are displayed in bold, as well as values within 10% of the maximum for each dataset.

procedure is more challenging (Letham et al., 2015; Murdoch et al., 2019). For this reason,
we therefore focus our theoretical analysis on the asymptotic stability of SIRUS.

To get started, we need a rigorous definition of the rule extraction procedure. To
this aim, we introduce a symbolic representation of a path in a tree, which describes the
sequence of splits to reach a given (inner or terminal) node from the root. We insist that
such path encoding can be used in both the empirical and theoretical algorithms to define
rules. A path P is defined as

P = {( jk,rk,sk), k = 1, . . . ,d},

where d is the tree depth, and for k ∈ {1, . . . ,d}, the triplet ( jk,rk,sk) describes how to
move from level (k−1) to level k, with a split using the coordinate jk ∈ {1, . . . , p}, the
index rk ∈ {1, . . . ,q−1} of the corresponding quantile, and a side sk = L if we go to the
left and sk = R if we go to the right—see Figure 5.4. The set of all possible such paths
is denoted by Π . Each tree of the forest is randomized in two ways: (i) the sample Dn

is bootstrapped prior to the construction of the tree, and (ii) a subset of coordinates is
randomly selected to find the best split at each node. This randomization mechanism is
governed by a random variable that we call Θ . We define T (Θ ,Dn), a random subset of Π ,
as the collection of the extracted paths from the random tree built with Θ and Dn. Now, let
Θ1, . . . ,Θℓ, . . . ,ΘM be the independent randomizations of the M trees of the forest. With
this notation, the empirical frequency of occurrence of a path P ∈ Π in the forest takes
the form

p̂M,n(P) =
1
M

M

∑
ℓ=1
1P∈T (Θℓ,Dn),

which is simply the proportion of trees that contain P . By definition, p̂M,n(P) is the
Monte Carlo estimate of the probability pn(P) that a Θ -random tree contains a particular
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x(1)

x(2)
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Fig. 5.4 Example of a root node R2 partitioned by a randomized tree of depth 2: the tree on the
right, the associated paths and hyperrectangles of length d = 2 on the left.

path P ∈ Π , that is,
pn(P) = P(P ∈ T (Θ ,Dn)|Dn).

Next, we introduce all theoretical counterparts of the empirical quantities involved in
SIRUS, which do not depend on the sample Dn but only on the unknown distribution of
(X,Y ). We let T ⋆(Θ) be the list of all paths contained in the theoretical tree built with
randomness Θ , in which splits are chosen to maximize the theoretical CART-splitting
criterion instead of the empirical one. The probability p⋆(P) that a given path P belongs
to a theoretical randomized tree (the theoretical counterpart of pn(P)) is

p⋆(P) = P(P ∈ T ⋆(Θ)).

We finally define the theoretical set of selected paths P⋆
p0
= {P ∈ Π : p⋆(P)> p0} (with

the same post-treatment as for the data-based procedure—see Section 5.2—to remove
linear dependence between rules, and discarding paths with a null coefficient in the rule
aggregation). As it is often the case in the theoretical analysis of random forests, (Scornet
et al., 2015; Mentch and Hooker, 2016), we assume throughout this section that the
subsampling of an observations prior to each tree construction is done without replacement
to alleviate the mathematical analysis. Our stability result holds under the following mild
assumptions:

(A5.1) The subsampling rate an satisfies lim
n→∞

an = ∞ and lim
n→∞

an
n = 0, and the number of

trees Mn satisfies lim
n→∞

Mn = ∞.

(A5.2) The random variable X has a strictly positive density f with respect to the Lebesgue
measure on Rp. Furthermore, for all j ∈ {1, . . . , p}, the marginal density f ( j) of X ( j) is
continuous, bounded, and strictly positive. Finally, the random variable Y is bounded.

Theorem 5.1. Assume that Assumptions (A5.1) and (A5.2) are satisfied, and let U ⋆ =

{p⋆(P) : P ∈ Π} be the set of all theoretical probabilities of appearance for each path
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P . Then, provided p0 ∈ [0,1]\U ⋆ and λ > 0, we have

lim
n→∞

ŜMn,n,p0 = 1 in probability.

Theorem 5.1 states that SIRUS is stable: provided that the sample size is large enough,
the same list of rules is systematically output across several fit on independent samples.
The analysis conducted in the proof—Section 1 of the Supplementary Material—highlights
that the cut discretization (performed at quantile values only), as well as considering
random forests (instead of boosted tree ensembles as in RuleFit) are the cornerstones to
stabilize rule models extracted from tree ensembles. Furthermore, the experiments in
Section 5.3 show the high empirical stability of SIRUS in finite-sample regimes.

5.5 Conclusion

Interpretability of machine learning algorithms is required whenever the targeted applica-
tions involve critical decisions. Although interpretability does not have a precise definition,
we argued that simplicity, stability, and predictivity are minimum requirements for inter-
pretable models. In this context, rule algorithms are well known for their good predictivity
and simple structures, but also to be often highly unstable. Therefore, we proposed a new
regression rule algorithm called SIRUS, whose general principle is to extract rules from
random forests. Our algorithm exhibits an accuracy comparable to state-of-the-art rule
algorithms, while producing much more stable and shorter list of rules. This remarkably
stable behavior is theoretically understood since the rule selection is consistent. A R/C++
software sirus is available from CRAN.



Conclusion

Interpretability of learning algorithms is an essential property for applications with critical
decisions at stake. The aeronautic industry provides several examples of such cases,
especially the optimization of production lines and the exploration of numerical simulations
for the design of industrial systems. Although there is no consensus on a precise definition
of interpretability in machine learning, we argue that it is possible to define minimum
requirements for interpretable learning algorithms with the triptych: simplicity, stability,
and accuracy. Furthermore, interpretable learning algorithms can be broken down in two
categories: post-hoc methods that post-treat a black-box model, and interpretable models
that directly exhibit the relation between inputs and the output through a simple structure.
The aim of this thesis is to develop improved interpretable learning algorithms, leveraging
the structure and stability of random forests: Sobol-MDA (Chapter 2), SHAFF (Chapter
3), and SIRUS (Chapters 4 and 5). We carefully state the theoretical formulations of our
algorithm objectives, and derive their main theoretical properties to ensure that these new
algorithms lead to meaningful results. Then, we conduct extensive experiments on real
data to show the practical improvements of the introduced methods.

Most interpretable learning algorithms are well-defined theoretically from the data
distribution, with the notable exception of variable importance. Indeed, for prediction tasks
for example, the targeted theoretical quantity is often E[Y |X]. Similarly for sensitivity
analysis, the population quantities of interest are properly identified, for example the
total Sobol index is formalized as E[V[m(X)|X(− j)]]/V[Y ]. It is only in a second step
that empirical algorithms are defined to estimate these theoretical counterparts using data
samples. On the other hand, variable importance measures usually have an empirical
definition, based on a fast heuristic on top of a learning algorithm. Famous examples
of such measures are the MDI and MDA for random forests. Their definition is very
intuitive and sound, and they are computationally efficient, which explains that these
measures have been widely used by the machine learning community for the past two
decades. However, the lack of theoretical counterparts is problematic since we do not
know what is really estimated by these algorithms, and then the criterion used to rank
the variables is unclear. In Chapter 2 of this thesis, we established the convergence of
Breiman’s MDA towards a theoretical quantity, which appears to be strongly biased when
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the data combines dependence and interactions. Additionally, we also observe that several
MDA implementations lead to distinct asymptotic values, and are thus different importance
measures. Previous analyses (Scornet, 2020) also show that the MDI is ill-defined in the
general case. Therefore, we argue that the MDI and MDA should probably not be used
for variable importance analysis. Alternatives have been recently developed by Mentch
and Hooker (2016) and Williamson et al. (2020), where the principle is to retrain the
initial learning algorithm without a given variable to measure the impact on predictions.
Williamson et al. (2020) estimate the total Sobol index, a well-defined theoretical quantity
which gives the proportion of output variance lost when a given variable is removed from
the model, while Mentch and Hooker (2016) introduce statistical tests to detect influential
variables. However, these two approaches are computationally costly since it involves to
retrain a model for each input variable. In Chapter 2, we also introduced the Sobol-MDA
algorithm which consistently estimates the total Sobol index with a fast computational cost,
independent from the input dimension. We show the strong empirical improvements of the
Sobol-MDA over the original MDA versions. In future work, it would be interesting to
empirically compare the Sobol-MDA to the approaches from Mentch and Hooker (2016)
and Williamson et al. (2020). Indeed, all algorithms have the same objective, but the
last two methods use a brute force algorithm, computationally more expensive than the
Sobol-MDA.

Depending on the final objective of variable importance analysis, Shapley effects are
more relevant than Sobol indices when input variables are dependent, as discussed in
Chapter 3. Indeed, while the Sobol-MDA is relevant for variable selection, Shapley effects
are more appropriate to rank all influential variables to focus on for further exploration
with domain experts. One obstacle in Shapley effect estimation is the computational
complexity, which is exponential with the input dimension. To circumvent this issue,
most Shapley algorithms perform strong simplifications, which modify the theoretical
counterpart of Shapley effects, and undermine their interpretation. In Chapter 3, we
introduced SHAFF, SHApley eFfect estimates via random Forests, which consistently
estimate Shapley effects, with an improved performance over existing Shapley algorithms
as shown in the experiments. Overall, although the main issues in learning algorithms are
often the computational efficiency and empirical accuracy, we argue that leaving aside
the theoretical formulation of the problems and objectives can lead to biased algorithms,
as shown in Chapters 2 and 3 with variable importance measures. Besides, although
Shapley effects and total Sobol indices are among the most relevant importance measures,
they provide a single aggregated value for each variable, and are not able to separate
variable interactions from variable dependencies. Efficient algorithms were developed to
identify variable interactions, e.g. Shah and Meinshausen (2014), Basu et al. (2018), and
Kumbier et al. (2018). However, a theoretical analysis of their properties and a theoretical
formulation of variable interactions when inputs are dependent, are still open questions.
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The last part of this thesis is dedicated to rule learning models, a very attractive approach
when interpretability is required because of their high simplicity and excellent predictive
skills when data exhibits nonlinear patterns. However, rule models are also known to
be often strongly unstable, as most interpretable models such as decision trees or GAM.
Although a large number of rule algorithms have been developed since the 1980s, very
few works have focused on this stability issue. Therefore, Chapters 4 and 5 are dedicated
to the design of SIRUS, a stable rule model for classification and regression. Firstly, the
theoretical stability of SIRUS is proved. Secondly, extensive experiments show the high
stability improvement over state-of-the-art algorithms, while preserving simplicity and
accuracy. Clearly, simplicity and accuracy are contradictory properties as a higher number
of rules improves the accuracy of a rule model. On the other hand, the relation between
stability and the other two properties is more complex and interesting. Indeed, compared
to the main competitors RuleFit and Node harvest, the stability mechanism developed
in SIRUS naturally leads to shorter rule lists for a comparable accuracy. Additionally,
when the number of rules varies, a stability peak of SIRUS often coincides with an area
where the accuracy does not vary much, and is quite close to the asymptotic maximum.
These two remarkable behaviors have motivated the tuning procedures of SIRUS, and
it could be interesting to deepen their analysis through further experiments. Besides,
in the conducted experiments, the decrease of accuracy of SIRUS is surprisingly small
with respect to random forests, especially regarding that SIRUS usually outputs about
only ten rules. The following fact may explain this good accuracy: a rule model is a
piecewise constant estimate, and since an input observation can satisfy any rule subset, ten
rules generates an estimate made of 210 = 1024 pieces. Such sharp decomposition of the
input space may explain the high accuracy of SIRUS despite the small number of rules.
Obviously, if the data is complex enough and the sample is large enough, we may observe
a significant gap of accuracy between SIRUS and random forests. It would be interesting
to deepen experiments to better understand in which cases the gap of accuracy between
SIRUS and random forests becomes large. Such analyses may provide insights to improve
the efficiency of rule extraction from tree ensembles.
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Appendix A

Supplementary Material for Chapter 2

A.1 Proof of the MDA Consistency

We recall Assumptions (A2.1), (A2.2), (A2.3), Proposition 2.1, and Theorem 2.1 for the
sake of clarity.

(A2.1). The response Y ∈R follows

Y = m(X)+ ε

where X = (X (1), . . . ,X (p)) ∈ [0,1]p admits a density over [0,1]p bounded from above and
below by stricly positive constants, m is continuous, and the noise ε is sub-Gaussian,
independent of X, and centered. A sample Dn = {(X1,Y1), . . . ,(Xn,Yn)} of n independent
random variables distributed as (X,Y ) is available.

(A2.2). The randomized theoretical CART tree built with the distribution of (X,Y ) is
consistent, that is, for all x ∈ [0,1]p, almost surely,

lim
k→∞

∆(m,A⋆
k(x,Θ)) = 0.

(A2.3). The asymptotic regime of an, the size of the subsampling without replacement, and
the number of terminal leaves tn is such that an ≤ n−2, an/n < 1−κ for a fixed κ > 0,
lim
n→∞

an = ∞, lim
n→∞

tn = ∞, and lim
n→∞

tn
(log(an))

9

an
= 0.

Proposition 2.1. If Assumption (A2.1) is satisfied, for a fixed n and i ∈ {1, . . . ,n}, we have∣∣∣E[(m(OOB)
M,an,n(Xi,Θ M)−m(Xi)

)2]−E
[(

mM,an,n−1(X,Θ M)−m(X)
)2]∣∣∣= O

( 1
M

)
.
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Theorem 2.1. If Assumptions (A2.1), (A2.2), and (A2.3) are satisfied, then, for all M ∈ N⋆

and j ∈ {1, . . . , p} we have

(i) M̂DA
(T T )
M,n (X ( j))

L1
−→ E[(m(X)−m(Xπ j))

2]

(ii) M̂DA
(BC)

M,n (X ( j))
L1
−→ E[(m(X)−m(Xπ j))

2].

If Assumption (A2.4) is additionally satisfied, then

(iii) M̂DA
(IK)

M,n (X
( j))

L1
−→ E[(m(X)−E[m(Xπ j)|X

(− j)])2].

A.1.1 Proof of Theorem 2.1-(i)

Assumptions (A2.1), (A2.2) and (A2.3) are sufficient to slightly extend the L2-consistency
of random forests from Scornet et al. (2015, Theorem 1) to the case where inputs are
dependent, and also when the prediction is performed for the permuted sample (i.e, for
a query point with a different distribution than the training data). Then, the TT-MDA
consistency follows using a standard asymptotic analysis.

Lemma A.1. If Assumptions (A2.1), (A2.2), and (A2.3) are satisfied, for M ∈ N⋆ we have

lim
n→∞

E[(mM,n(X,Θ M)−m(X))2] = 0,

and for all j ∈ {1, . . . , p}

lim
n→∞

E[(mM,n(Xπ j ,Θ M)−m(Xπ j))
2] = 0.

Proof of Theorem 2.1-(i). We assume that (A2.1), (A2.2), and (A2.3) are satisfied, and fix
j ∈ {1, . . . , p} and M ∈ N⋆. According to Lemma A.1, we have

lim
n→∞

E[(mM,n(X,Θ M)−m(X))2] = 0, (A.1.1)

and
lim
n→∞

E[(mM,n(Xπ j ,Θ M)−m(Xπ j))
2] = 0. (A.1.2)

Next, we can break down the TT-MDA as follows:

M̂DA
(T T )
M,n (X ( j)) =

1
n

n

∑
i=1

(
Y ′

i −mM,n(X′
i,π j

,Θ M)
)2 −

(
Y ′

i −mM,n(X′
i,Θ M)

)2

=
1
n

n

∑
i=1

(
m(X′

i)+ ε
′
i −mM,n(X′

i,π j
,Θ M)

)2 −
(
m(X′

i)+ ε
′
i −mM,n(X′

i,Θ M)
)2
,
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M̂DA
(T T )
M,n (X ( j)) =

1
n

n

∑
i=1

(
[m(X′

i)−m(X′
i,π j

)]+ [m(X′
i,π j

)−mM,n(X′
i,π j

,Θ M)]+ ε
′
i
)2

−
(
m(X′

i)−mM,n(X′
i,Θ M)+ ε

′
i
)2

=
1
n

n

∑
i=1

[m(X′
i)−m(X′

i,π j
)]2 +[m(X′

i,π j
)−mM,n(X′

i,π j
,Θ M)]2 + ε

′2
i

+2[m(X′
i)−m(X′

i,π j
)][m(X′

i,π j
)−mM,n(X′

i,π j
,Θ M)]

+2ε
′
i [m(X′

i)−m(X′
i,π j

)]+2ε
′
i [m(X′

i,π j
)−mM,n(X′

i,π j
,Θ M)]

− [m(X′
i)−mM,n(X′

i,Θ M)]2 − ε
′2
i −2ε

′
i [m(X′

i)−mM,n(X′
i,Θ M)].

Using the triangle inequality we obtain

E
[∣∣M̂DA

(T T )
M,n (X ( j))−E[(m(X)−m(Xπ j))

2]
∣∣]

≤ E
[∣∣1

n

n

∑
i=1

[m(X′
i)−m(X′

i,π j
)]2 −E[(m(X)−m(Xπ j))

2]
∣∣] (A.1.3)

+E
[1

n

n

∑
i=1

[m(X′
i,π j

)−mM,n(X′
i,π j

,Θ M)]2
]

(A.1.4)

+E
[∣∣2

n

n

∑
i=1

[m(X′
i)−m(X′

i,π j
)][m(X′

i,π j
)−mM,n(X′

i,π j
,Θ M)]

∣∣]
(A.1.5)

+E
[∣∣2

n

n

∑
i=1

ε
′
i [m(X′

i)−m(X′
i,π j

)]
∣∣] (A.1.6)

+E
[∣∣2

n

n

∑
i=1

ε
′
i [m(X′

i,π j
)−mM,n(X′

i,π j
,Θ M)]

∣∣] (A.1.7)

+E
[1

n

n

∑
i=1

[m(X′
i)−mM,n(X′

i,Θ M)]2
]

(A.1.8)

+E
[∣∣2

n

n

∑
i=1

ε
′
i [m(X′

i)−mM,n(X′
i,Θ M)]

∣∣]. (A.1.9)

Now, let us consider all the terms on the right hand side one by one.
The first and fourth terms (A.1.3) and (A.1.6) do not depend on the forest estimate, but

it is not possible to simply apply the law of large numbers since the permutation introduces
dependence within samples. For both terms, we prove L2-convergence, which implies the
L1-convergence we are looking for. For the first term (A.1.3), we define ∆n,1 as

∆n,1 =
1
n

n

∑
i=1

[m(X′
i)−m(X′

i,π j
)]2 −E[(m(X)−m(Xπ j))

2].
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Clearly, we have E[∆n,1] = 0. Its variance writes

V[∆n,1] =
1
n2E

[ n

∑
i,k=1

([m(Xi)−m(Xi,π j)]
2 −E[(m(X)−m(Xπ j))

2])

× ([m(Xk)−m(Xk,π j)]
2 −E[(m(X)−m(Xπ j))

2])
]
.

Because of the permutation, each element of the sum is dependent on only two other
terms. Therefore, only 3n terms of the double sum are not null, and because m is bounded
(continuous on a compact), we get

V[∆n,1]≤
3
n
×64||m||4∞.

Thus, limn→∞V[∆n,1] = 0, which proves L2-convergence of ∆n,1 towards E[∆n,1] = 0. We
can handle the fourth term (A.1.6) in the same way. For the second term (A.1.4), by
symmetry,

E
[1

n

n

∑
i=1

[m(X′
i,π j

)−mM,n(X′
i,π j

,Θ M)]2
]
= E[(m(Xπ j)−mM,n(Xπ j ,Θ M))2],

which tends to zero according to (A.1.2). The sixth term (A.1.8) is handled similarly using
(A.1.1). Since m is bounded, we can bound the third term (A.1.5)

E
[∣∣2

n

n

∑
i=1

[m(X′
i)−m(X′

i,π j
)][m(X′

i,π j
)−mM,n(X′

i,π j
,Θ M)]

∣∣]
≤ 4∥m∥∞E[|m(Xπ j)−mM,n(Xπ j ,Θ M)|],

and since L2 convergence implies L1 convergence, we use (A.1.2) to obtain the convergence
towards 0 of this third term (A.1.5). For the fifth term (A.1.7) we first apply the triangle
inequality, and by symmetry we get

E
[∣∣2

n

n

∑
i=1

ε
′
i [m(X′

i,π j
)−mM,n(X′

i,π j
,Θ M)]

∣∣]≤ 2E[|ε ′(m(Xπ j)−mM,n(Xπ j ,Θ M))|]

≤ 2E[|ε ′|]E[|m(Xπ j)−mM,n(Xπ j ,Θ M)|],

which tends to zero according to (A.1.2). Similarly, the last term (A.1.9) is handled with
(A.1.1). Gathering all previous convergence results on (A.1.3)-(A.1.9), we have for all M,
for all j ∈ {1, . . . , p},

M̂DA
(T T )
M,n (X ( j))

L1
−→ E[(m(X)−m(Xπ j))

2].
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Proof of Lemma A.1. We assume that (A2.1), (A2.2), and (A2.3) are satisfied, and fix
j ∈ {1, . . . , p} and M ∈ N⋆. We first introduce the infinite forest estimate mn(x) defined as
mn(x) = EΘ [mn(x,Θ)] where mn(x,Θ) is the randomized CART estimate.

Theorem 1 from Scornet et al. (2015) states the L2-consistency of infinite random
forests. It relies on Assumption (A2.3) for the asymptotic regime of an and tn, and on a
modified version of (A2.1), where the regression function is additive and X is uniformly
distributed over [0,1]p. Here, we extend this result to any continuous regression function
and any positive distribution for X with support on the unit cube. First, the extension to the
case where X has any distribution bounded from above and below by positive constants can
be easily obtained by several technical adaptations as already highlighted in Scornet (2020).
Secondly, notice that the additive structure of the regression function is only required in
Scornet et al. (2015) to show the consistency of a theoretical randomized CART. Therefore
we can drop the additivity assumption and replace it by assumption (A2.2). Overall, we
can extend Theorem 1 from Scornet et al. (2015): provided that (A2.1), (A2.2), and (A2.3)
are satisfied, we have

lim
n→∞

E[(mn(X)−m(X))2] = 0. (A.1.10)

Next, this result needs to be extended when the query point X is replaced by Xπ j . From
Assumption (A2.1), X admits a density fX over [0,1]p. By construction, the random vector
Xπ j is the vector X where the j-th component is replaced by an independent copy of X ( j).
Therefore Xπ j admits a density fπ j , which is the product of the densities of X ( j) and X(− j),
i.e., for x ∈ [0,1]p,

fπ j(x) =
∫
[0,1]p−1

fX(x)dx(− j)×
∫
[0,1]

fX(x)dx( j). (A.1.11)

From Assumption (A2.1), fX is bounded from above and below by positive constants.
Thus, it exists c1,c2 > 0 such that for all x ∈ [0,1]p,

c1 ≤ fX(x)≤ c2. (A.1.12)

Combining (A.1.12) and (A.1.11), we obtain that for all x ∈ [0,1]p, c2
1 ≤ fπ j(x)≤ c2

2, and
consequently,

sup
x∈[0,1]p

fπ j(x)
fX(x)

≤
c2

2
c1
.

Now, we write

E[(mn(Xπ j)−m(Xπ j))
2|Dn] =

∫
[0,1]p

(mn(x)−m(x))2 fπ j(x)dx,
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E[(mn(Xπ j)−m(Xπ j))
2|Dn] =

∫
[0,1]p

(mn(x)−m(x))2 fX(x)
fπ j(x)
fX(x)

dx

≤
c2

2
c1

∫
[0,1]p

(mn(x)−m(x))2 fX(x)dx

≤
c2

2
c1
E[(mn(X)−m(X))2|Dn].

Taking expectations on both sides and using (A.1.10), we finally obtain

lim
n→∞

E[(mn(Xπ j)−m(Xπ j))
2] = 0. (A.1.13)

Equations (A.1.10) and (A.1.13) state that infinite forests evaluated at X or Xπ j are L2

consistent. The first of these two results can be extended to get the consistency of a single
randomized CART mn(X,Θ), as shown in Scornet et al. (2015) by an easy adaptation of
the infinite forest case. Formally, we obtain

lim
n→∞

E[(mn(X,Θ)−m(X))2] = 0. (A.1.14)

The exact same reasoning as for the infinite forest above applies to get the extension to
Xπ j , and thus, we have

lim
n→∞

E[(mn(Xπ j ,Θ)−m(Xπ j))
2] = 0. (A.1.15)

Now we expand the final quantity of interest E[(mM,n(X,Θ M)−m(X))2] (and its
counterpart for Xπ j):

E[(mM,n(X,Θ M)−m(X))2]

=E
[( 1

M

M

∑
ℓ=1

mn(X,Θ ℓ)−m(X)
)2]

=E
[
E
[( 1

M

M

∑
ℓ=1

mn(X,Θ ℓ)−m(X)
)2∣∣X,Dn

]]
=

1
M2E

[
E
[ M

∑
ℓ,ℓ′=1

[mn(X,Θ ℓ)−m(X)][mn(X,Θ ℓ′)−m(X)]
∣∣X,Dn

]]
=

1
M2E

[
E
[ M

∑
ℓ=1

(
mn(X,Θ)−m(X)

)2∣∣X,Dn
]]

+
1

M2E
[
E
[
∑
ℓ̸=ℓ′

[mn(X,Θ ℓ)−m(X)][mn(X,Θ ℓ′)−m(X)]
∣∣X,Dn

]]
.

Conditional on (X,Dn), the random variables mn(X,Θ ℓ) for ℓ= 1, . . . ,M are iid, and then,
we can factorize the double sum as follows.
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E[(mM,n(X,Θ M)−m(X))2]

=
1
M
E
[
E
[(

mn(X,Θ)−m(X)
)2∣∣X,Dn

]]
+

1
M2E

[
∑
ℓ̸=ℓ′

(
E[mn(X,Θ ℓ)

∣∣X,Dn]−m(X)
)(
E[mn(X,Θ ℓ′)

∣∣X,Dn
]
−m(X)

)
=

1
M
E
[(

mn(X,Θ)−m(X)
)2]

+
(
1− 1

M

)
E
[(

mn(X)−m(X)
)2]

. (A.1.16)

Using (A.1.10) and (A.1.14), we obtain the final result, which also holds for Xπ j , using
(A.1.13) and (A.1.15):

lim
n→∞

E[(mM,n(X,Θ M)−m(X))2] = 0,

lim
n→∞

E[(mM,n(Xπ j ,Θ M)−m(Xπ j))
2] = 0.

A.1.2 Proof of Theorem 2.1-(ii)

Theorem 2.1-(i) can be quite easily adapted to the BC-MDA (ii).

Proof of Theorem 2.1-(ii). We assume that Assumptions (A2.1)-(A2.3) are satisfied, and
fix j ∈ {1, . . . , p} and M ∈ N⋆. Recall that the Breiman-Cutler MDA is defined by

M̂DA
(BC)

M,n (X ( j)) =
1
M

M

∑
ℓ=1

1
Nn,ℓ

n

∑
i=1

[
(Yi −mn(Xi,π jℓ,Θℓ))

2 − (Yi −mn(Xi,Θℓ))
2]1

i/∈Θ
(S)
ℓ

,

where Nn,ℓ = ∑
n
i=11i/∈Θ

(S)
ℓ

is the size of the out-of-bag sample of the ℓ-th tree.
Since an observations are subsampled without replacement prior to the construction of

each tree, all out-of-bag samples have the same constant size of Nn,ℓ = n−an. Using the
triangle inequality, we have

E
[∣∣M̂DA

(BC)

M,n (X ( j))−E[(m(X)−m(Xπ j))
2]
∣∣]

≤ 1
M

M

∑
ℓ=1

1
n−an

E
[∣∣ n

∑
i=1

[(Yi −mn(Xi,π jℓ,Θℓ))
2 − (Yi −mn(Xi,Θℓ))

2

−E[(m(X)−m(Xπ j))
2]]1

i/∈Θ
(S)
ℓ

∣∣],
≤ 1

n−an
E
[∣∣ n

∑
i=1

[(Yi −mn(Xi,π j1,Θ1))
2 − (Yi −mn(Xi,Θ1))

2

−E[(m(X)−m(Xπ j))
2]]1

i/∈Θ
(S)
1

∣∣],
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where the last simplification holds by symmetry. Next, we expand the sum in the right
hand side and obtain a similar decomposition as the one in the proof of Theorem 2.1-(i),

1
n−an

n

∑
i=1

[(Yi −mn(Xi,π j1,Θ1))
2 − (Yi −mn(Xi,Θ1))

2]1
i/∈Θ

(S)
1

=
1

n−an

n

∑
i=1

[([m(Xi)−m(Xi,π j1)]+ [m(Xi,π j1)−mn(Xi,π j1,Θ1)]+ εi)
2

− ([m(Xi)−mn(Xi,Θ1)]+ εi)
2]1

i/∈Θ
(S)
1

=
1

n−an

n

∑
i=1

[m(Xi)−m(Xi,π j1)]
21

i/∈Θ
(S)
1

+[m(Xi,π j1)−mn(Xi,π j1 ,Θ1)]
21

i/∈Θ
(S)
1

+ ε
2
i 1i/∈Θ

(S)
1

+2[m(Xi)−m(Xi,π j1)][m(Xi,π j1)−mn(Xi,π j1,Θ1)]1i/∈Θ
(S)
1

+2εi[m(Xi)−m(Xi,π j1)]1i/∈Θ
(S)
1

+2εi[m(Xi,π j1)−mn(Xi,π j1,Θ1)]1i/∈Θ
(S)
1

− [m(Xi)−mn(Xi,Θ1)]
21

i/∈Θ
(S)
1

− ε
2
i 1i/∈Θ

(S)
1

−2εi[m(Xi)−mn(Xi,Θ1)]1i/∈Θ
(S)
1
.

Notice that the two terms ε2
i 1i/∈Θ

(S)
1

cancel out. Then, we inject the remaining seven terms
in the above inequality. We obtain the following bound

E
[∣∣M̂DA

(BC)

M,n (X ( j))−E[(m(X)−m(Xπ j))
2]
∣∣]

≤ E
[∣∣ 1

n−an

n

∑
i=1

([m(Xi)−m(Xi,π j1)]
2 −E[(m(X)−m(Xπ j))

2])1
i/∈Θ

(S)
1

∣∣] (A.1.17)

+E
[ 1

n−an

n

∑
i=1

[m(Xi,π j1)−mn(Xi,π j1,Θ1)]
21

i/∈Θ
(S)
1

]
(A.1.18)

+E
[∣∣ 2

n−an

n

∑
i=1

[m(Xi)−m(Xi,π j1)][m(Xi,π j1)−mn(Xi,π j1,Θ1)]1i/∈Θ
(S)
1

∣∣] (A.1.19)

+E
[∣∣ 2

n−an

n

∑
i=1

εi[m(Xi)−m(Xi,π j1)]1i/∈Θ
(S)
1

∣∣] (A.1.20)

+E
[∣∣ 2

n−an

n

∑
i=1

εi[m(Xi,π j1)−mn(Xi,π j1,Θ1)]1i/∈Θ
(S)
1

∣∣] (A.1.21)

+E
[ 1

n−an

n

∑
i=1

[m(Xi)−mn(Xi,Θ1)]
21

i/∈Θ
(S)
1

]
(A.1.22)

+E
[∣∣ 2

n−an

n

∑
i=1

εi[m(Xi)−mn(Xi,Θ1)]1i/∈Θ
(S)
1

∣∣]. (A.1.23)

Now, let us consider all the terms on the right hand side one by one.
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For the first term (A.1.17), we define ∆n,1 as

∆n,1 =
n

∑
i=1

1
n−an

([m(Xi)−m(Xi,π j1)]
2 −E[(m(X)−m(Xπ j))

2])1
i/∈Θ

(S)
1
.

Its expectation is

E[∆n,1] =E[
n

n−an
([m(X1)−m(X1,π j1)]

2 −E[(m(X)−m(Xπ j))
2])1

1/∈Θ
(S)
1
]

=
n

n−an
E[(m(X1)−m(X1,π j1))

2 −E[(m(X)−m(Xπ j))
2]]P(1 /∈Θ

(S)
1 )

= 0.

Next, observe that each term of the sum in ∆n,1 is dependent on two other terms because
of the permutation of the j-th component, then we have V[∆n,1] = O(1/(n− an)). By
Assumption (A2.3), an/n < 1− κ with a fixed κ > 0, thus V[∆n,1] = O(1/n). Since
E[∆n,1] = 0 and limn→∞V[∆n,1] = 0, ∆n,1 converges towards 0 in L2, which implies L1-
convergence. We can handle the fourth term (A.1.20) in the same way. For the second
term (A.1.18),

E
[ 1

n−an

n

∑
i=1

[m(Xi,π j1)−mn(Xi,π j1 ,Θ1)]
21

i/∈Θ
(S)
1

]
=

n

∑
i=1

E
[
[m(Xi,π j1)−mn(Xi,π j1,Θ1)]

2∣∣i /∈Θ
(S)
1
]P(i /∈Θ

(S)
1 )

n−an

=
1
n

n

∑
i=1

E
[
[m(Xi,π j1)−mn(Xi,π j1,Θ1)]

2∣∣i /∈Θ
(S)
1
]

where the last equality results from P(i /∈ Θ
(S)
1 ) = (n− an)/n. The conditioning event

{i /∈Θ
(S)
1 } means that the observation of index i belongs to the out-of-bag sample. Thus,

it is strictly equivalent to consider the tree trained with the sample Dn \ (Xi,Yi) of size
n−1 with a subsampling size an. Furthermore, we can replace the query point Xi,π j1 by
Xπ j because these two random vectors are iid and both independent of the training data of
man,n−1. Then,

E
[ 1

n−an

n

∑
i=1

[m(Xi,π j1)−mn(Xi,π j1,Θ1)]
21

i/∈Θ
(S)
1

]
=

1
n

n

∑
i=1

E
[
[m(Xπ j)−man,n−1(Xπ j ,Θ)]2

]
=E[(m(Xπ j)−man,n−1(Xπ j ,Θ))2],
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which tends to zero according to the second statement in Lemma A.1 for M = 1. The sixth
term (A.1.22) is handled similarly using the first part of Lemma A.1. Since m is bounded,
we can bound the third term (A.1.19)

E
[∣∣ 2

n−an

n

∑
i=1

[m(Xi)−m(Xi,π j1)][m(Xi,π j1)−mn(Xi,π j1,Θ1)]1i/∈Θ
(S)
1

∣∣]
≤4||m||∞

n−an
E
[ n

∑
i=1

∣∣m(Xi,π j1)−mn(Xi,π j1,Θ1)
∣∣×1

i/∈Θ
(S)
1

]
≤4||m||∞

n

n

∑
i=1

E
[∣∣m(Xi,π j1)−man,n−1(Xi,π j1,Θ1)

∣∣]
≤4||m||∞E

[∣∣m(Xπ j)−man,n−1(Xπ j ,Θ)
∣∣],

which tends to zero according to Lemma A.1 (with M = 1). Similarly, for the fifth term
(A.1.21), we have

E
[∣∣ 2

n−an

n

∑
i=1

εi[m(Xi,π j1)−mn(Xi,π j1,Θ1)]1i/∈Θ
(S)
1

∣∣]
≤ 2E[|ε|]E

[∣∣m(Xπ j)−man,n−1(Xπ j ,Θ)
∣∣],

and the convergence towards 0 is again given by Lemma A.1. The last term (A.1.23) is
handled in the same way. Gathering all previous convergence results on (A.1.17)-(A.1.23),
we have for all M, for all j ∈ {1, . . . , p},

M̂DA
(BC)

M,n (X ( j))
L1
−→ E[(m(X)−m(Xπ j))

2].

A.1.3 Proof of Theorems 2.1-(iii) and Proposition 2.1

The obstacle in the asymptotic analysis of the IK-MDA arises from the randomness of
Λn,i, which can even be empty. However, the quadratic risk of the OOB estimate can be
bounded using the risk of the standard forest, as stated in the following Lemma.

Lemma A.2. If Assumption (A2.1) is satisfied, for all M ∈ N⋆ and i ∈ {1, . . . ,n}, we have

E
[(

m(OOB)
M,an,n(Xi,Θ M)−m(Xi)

)2
1|Λn,i|>0

]
≤ 2

1−an/n
E
[(

mM,an,n−1(X,Θ M)−m(X)
)2]

.

We can draw interesting insights from Lemma A.2. First by construction, the OOB
estimate aggregates a smaller number of trees than in the standard forest: E[|Λn,i|] =
(1−an/n)M trees in average. Therefore the risk of the standard forest is inflated by the
coefficient 2/(1−an/n)> 2 to bound the OOB risk. Since the risk of the OOB estimate is
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bounded by the risk of the standard forest, the L2-consistency of random forests can be
extended to the OOB estimate.

Lemma A.3. If Assumptions (A2.1), (A2.2), and (A2.3) are satisfied, for all i ∈ {1, . . . ,n}
and M ∈ N⋆ we have

lim
n→∞

E[(m(OOB)
M,n (Xi,Θ M)−m(Xi))

21|Λn,i|>0] = 0,

and if Assumption (A2.4) is additionally satisfied, for all j ∈ {1, . . . , p}

lim
n→∞

E[(m(OOB)
M,n,π j

(Xi,Θ M)−E[m(Xi,π j)|X
(− j)
i ])21|Λn,i|>0] = 0.

To prove Lemma A.2 and A.3, we need the following Technical Lemma A.1, proved at
the end of the section.

Technical Lemma A.1. If δM,n and γM,n are defined as

δM,n = M2E
[ 1
|Λn,i|2

∣∣1,2 ∈ Λn,i

]
P(1,2 ∈ Λn,i)

γM,n = M2E
[ 1
|Λn,i|2

∣∣1 ∈ Λn,i

]
P(1 ∈ Λn,i),

for all M ∈ N\{0,1}, we have

δM,n ≤ 1

δM,n ≤ γM,n ≤
2

1− an
n
,

and for a fixed sample size n,

1−δM,n = O
( 1

M

)
.

Then, we can deduce the consistency of the IK-MDA.

Proof of Theorem 2.1-(iii). We assume that Assumptions (A2.1)-(A2.4) are satisfied, and
fix j ∈ {1, . . . , p}.

Recall that Ishwaran-Kogalur MDA is defined as

M̂DA
(IK)

M,n (X
( j)) =

1
NM,n

n

∑
i=1

(Yi −m(OOB)
M,n,π j

(Xi,Θ M))2 − (Yi −m(OOB)
M,n (Xi,Θ M))2,
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where NM,n = ∑
n
i=11|Λn,i|>0 is the number of points which do not belong to all trees, and

m(OOB)
M,n (Xi,Θ M) =

1
|Λn,i| ∑

ℓ∈Λn,i

mn(Xi,Θℓ)1|Λn,i|>0,

m(OOB)
M,n,π j

(Xi,Θ M) =
1

|Λn,i| ∑
ℓ∈Λn,i

mn(Xi,π jℓ,Θℓ)1|Λn,i|>0.

To lighten derivations, we define MDA⋆
IK = E[(m(X)−E[m(Xπ j)|X(− j)])2]. We expand

the following expression,

E
[∣∣M̂DA

(IK)

M,n (X
( j))−MDA⋆

IK
∣∣]

=E
[∣∣ 1

NM,n

n

∑
i=1

[
(Yi −m(OOB)

M,n,π j
(Xi,Θ M))2 − (Yi −m(OOB)

M,n (Xi,Θ M))2 −MDA⋆
IK
]
1|Λn,i|>0

∣∣].
Observe that NM,n is bounded between n and n−an, and consequently

E
[∣∣M̂DA

(IK)

M,n (X
( j))−MDA⋆

IK
∣∣]

≤E
[∣∣ 1

n−an

n

∑
i=1

[
(Yi −m(OOB)

M,n,π j
(Xi,Θ M))2 − (Yi −m(OOB)

M,n (Xi,Θ M))2 −MDA⋆
IK
]
1|Λn,i|>0

∣∣].
Then, we follow the proof of Theorem 2.1-(i) and (ii) with a similar decomposition of the
sum of the above expression.
We obtain the following equation

n

∑
i=1

[(Yi−m(OOB)
M,n,π j

(Xi,Θ M))2 − (Yi −m(OOB)
M,n (Xi,Θ M))2 −MDA⋆

IK]1|∆n,i|>0

=
n

∑
i=1

[([m(Xi)−E[m(Xi,π j)|X
(− j)
i ]]+ [E[m(Xi,π j)|X

(− j)
i ]−m(OOB)

M,n,π j
(Xi,Θ M)]+ εi)

2

− ([m(Xi)−m(OOB)
M,n (Xi,Θ M)]+ εi)

2 −MDA⋆
IK]1|∆n,i|>0

=
n

∑
i=1

([m(Xi)−E[m(Xi,π j)|X
(− j)
i ]]2 −MDA⋆

IK)1|∆n,i|>0

+[E[m(Xi,π j)|X
(− j)
i ]−m(OOB)

M,n,π j
(Xi,Θ M)]21|∆n,i|>0 + ε

2
i 1|∆n,i|>0

+2[m(Xi)−E[m(Xi,π j)|X
(− j)
i ]][E[m(Xi,π j)|X

(− j)
i ]−m(OOB)

M,n,π j
(Xi,Θ M)]1|∆n,i|>0

+2εi[m(Xi)−E[m(Xi,π j)|X
(− j)
i ]]1|∆n,i|>0

+2εi[E[m(Xi,π j)|X
(− j)
i ]−m(OOB)

M,n,π j
(Xi,Θ M)]1|∆n,i|>0

− [m(Xi)−m(OOB)
M,n (Xi,Θ M)]21|∆n,i|>0 − ε

2
i 1|∆n,i|>0

−2εi[m(Xi)−m(OOB)
M,n (Xi,Θ M)]1|∆n,i|>0.
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Then, we have the following bound

E
[∣∣M̂DA

(IK)

M,n (X
( j))−MDA⋆

IK
∣∣]

≤ E
[∣∣ 1

n−an

n

∑
i=1

([m(Xi)−E[m(Xi,π j)|X
(− j)
i ]]2 −MDA⋆

IK)1|Λn,i|>0
∣∣] (A.1.24)

+E
[ 1

n−an

n

∑
i=1

[E[m(Xi,π j)|X
(− j)
i ]−m(OOB)

M,n,π j
(Xi,Θ M)]21|Λn,i|>0

]
(A.1.25)

+E
[∣∣ 2

n−an

n

∑
i=1

[m(Xi)−E[m(Xi,π j)|X
(− j)
i ]]

× [E[m(Xi,π j)|X
(− j)
i ]−m(OOB)

M,n,π j
(Xi,Θ M)]1|Λn,i|>0

∣∣] (A.1.26)

+E
[∣∣ 2

n−an

n

∑
i=1

εi[m(Xi)−E[m(Xi,π j)|X
(− j)
i ]]1|Λn,i|>0

∣∣] (A.1.27)

+E
[∣∣ 2

n−an

n

∑
i=1

εi[E[m(Xi,π j)|X
(− j)
i ]−m(OOB)

M,n,π j
(Xi,Θ M)]1|Λn,i|>0

∣∣] (A.1.28)

+E
[ 1

n−an

n

∑
i=1

[m(Xi)−m(OOB)
M,n (Xi,Θ M)]21|Λn,i|>0

]
(A.1.29)

+E
[∣∣ 2

n−an

n

∑
i=1

εi[m(Xi)−m(OOB)
M,n (Xi,Θ M)]1|Λn,i|>0

∣∣]. (A.1.30)

Now, let us consider all the terms on the right hand side one by one. For the first term
(A.1.24), we can rewrite

1
n−an

n

∑
i=1

([m(Xi)−E[m(Xi,π j)|X
(− j)
i ]]2 −MDA⋆

IK)1|Λn,i|>0

=
n

n−an

1
n

n

∑
i=1

([m(Xi)−E[m(Xi,π j)|X
(− j)
i ]]2 −MDA⋆

IK)1|Λn,i|>0,

and the multiplicative term in front n/(n−an) is upper bounded by 1/κ > 0 by Assumption
(A2.3). Next, we can apply the strong law of large numbers to show that the sum converges
almost surely towards

E
[
([m(X1)−E[m(X1,π j)|X

(− j)
1 ]]2 −MDA⋆

IK)1|Λn,1|>0
]

= E
[
([m(X1)−E[m(X1,π j)|X

(− j)
1 ]]2 −MDA⋆

IK)
]
P(|Λn,1|> 0)

= 0.

Since almost sure convergence implies L1-convergence, the first term (A.1.24) converges
towards 0. The fourth term (A.1.27) is handled similarly with the strong law of large
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number since the noise is centered and independent of Dn. The second term

E
[ 1

n−an

n

∑
i=1

[E[m(Xi,π j)|X
(− j)
i ]−m(OOB)

M,n,π j
(Xi,Θ M)]21|Λn,i|>0

]
=

n
n−an

E
[
(E[m(X1,π j)|X

(− j)
1 ]−m(OOB)

M,n,π j
(X1,Θ M))21|Λn,1|>0

]
,

converges towards 0 from the second part of Lemma A.3 and because n/(n−an)< 1/κ .
The sixth term (A.1.29) is handled identically using the first part of Lemma A.3. For the
third term (A.1.26), since m is bounded (continuous on a compact), we have

E
[∣∣ 2

n−an

n

∑
i=1

[m(Xi)−E[m(Xi,π j)|X
(− j)
i ]]

× [E[m(Xi,π j)|X
(− j)
i ]−m(OOB)

M,n,π j
(Xi,Θ M)]1|Λn,i|>0

∣∣]
≤ 4n||m||∞

n−an
E
[∣∣E[m(X1,π j)|X

(− j)
1 ]−m(OOB)

M,n,π j
(X1,Θ M)

∣∣1|Λn,1|>0
]
,

which converges towards 0 by Lemma A.3. Similarly, for the fifth (A.1.28) and seventh
(A.1.30) terms, we have the following bound

E
[∣∣ 2

n−an

n

∑
i=1

εi[E[m(Xi,π j)|X
(− j)
i ]−m(OOB)

M,n,π j
(Xi,Θ M)]1|Λn,i|>0

∣∣]
≤ 2n

n−an
E[|ε|]E

[∣∣E[m(X1,π j)|X
(− j)
1 ]−m(OOB)

M,n,π j
(X1,Θ M)

∣∣1|Λn,1|>0
]
,

and we conclude using Lemma A.3 again. Overall, we have

M̂DA
(IK)

M,n (X
( j))

L1
−→ E[(m(X)−E[m(Xπ j)|X

(− j)])2].

Proof of Lemma A.2. We assume that Assumption (A2.1) is satisfied, and consider i ∈
{1, . . . ,n} and M ∈N⋆. To prove the first part of Lemma A.2, we begin with and expansion
of the OOB estimate

E
[(

m(OOB)
M,n (Xi,Θ M)−m(Xi)

)2∣∣|Λn,i|> 0
]

=E
[( 1

|Λn,i| ∑
ℓ∈Λn,i

mn(Xi,Θℓ)1|Λn,i|>0 −m(Xi)
)2∣∣|Λn,i|> 0

]
=E
[( 1

|Λn,i|

M

∑
ℓ=1

[mn(Xi,Θℓ)−m(Xi)]1ℓ∈Λn,i

)2∣∣|Λn,i|> 0
]
.
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Now, we expand the square with a double sum,

E
[(

m(OOB)
M,n (Xi,Θ M)−m(Xi)

)2∣∣|Λn,i|> 0
]

=
M

∑
ℓ,ℓ′=1

E
[ 1
|Λn,i|2

[mn(Xi,Θℓ)−m(Xi)][mn(Xi,Θℓ′)−m(Xi)]1ℓ,ℓ′∈Λn,i

∣∣|Λn,i|> 0
]

=
M

∑
ℓ,ℓ′=1

E
[ 1
|Λn,i|2

[mn(Xi,Θℓ)−m(Xi)][mn(Xi,Θℓ′)−m(Xi)]
∣∣ℓ,ℓ′ ∈ Λn,i

]
×P

(
ℓ,ℓ′ ∈ Λn,i

∣∣|Λn,i|> 0
)
.

Observe that conditionally on {ℓ,ℓ′ ∈ Λn,i}, Λn,i only depends on {Θk,k ∈ {1, . . . ,M} \
{ℓ,ℓ′}}. This means that Λn,i and [mn(Xi,Θℓ)−m(Xi)][mn(Xi,Θℓ′)−m(Xi)] are indepen-
dent conditionally on {ℓ,ℓ′ ∈ Λn,i}. We can then write

E
[(

m(OOB)
M,n (Xi,Θ M)−m(Xi)

)2∣∣|Λn,i|> 0
]
P(|Λn,i|> 0)

=
M

∑
ℓ,ℓ′=1

E
[ 1
|Λn,i|2

∣∣ℓ,ℓ′ ∈ Λn,i

]
P
(
ℓ,ℓ′ ∈ Λn,i

∣∣|Λn,i|> 0
)
P(|Λn,i|> 0)

×E
[
[mn(Xi,Θℓ)−m(Xi)][mn(Xi,Θℓ′)−m(Xi)]

∣∣ℓ,ℓ′ ∈ Λn,i
]
.

=
M

∑
ℓ,ℓ′=1

E
[ 1
|Λn,i|2

∣∣ℓ,ℓ′ ∈ Λn,i

]
P
(
ℓ,ℓ′ ∈ Λn,i

)
×E

[
[mn(Xi,Θℓ)−m(Xi)][mn(Xi,Θℓ′)−m(Xi)]

∣∣ℓ,ℓ′ ∈ Λn,i
]
.

Since |Λn,i| is a binomial distribution, E
[ 1
|Λn,i|2

∣∣ℓ,ℓ′ ∈ Λn,i
]
P(ℓ,ℓ′ ∈ Λn,i) takes the same

value for each pair of distinct ℓ,ℓ′ and any sample i ∈ {1, . . . ,n}. Similarly for the case
ℓ= ℓ′, E

[ 1
|Λn,i|2

∣∣ℓ ∈ Λn,i
]
P(ℓ ∈ Λn,i) is constant when ℓ varies. Therefore, we introduce

δM,n = M2E
[ 1
|Λn,i|2

∣∣ℓ,ℓ′ ∈ Λn,i

]
P(ℓ,ℓ′ ∈ Λn,i),

γM,n = M2E
[ 1
|Λn,i|2

∣∣ℓ ∈ Λn,i

]
P(ℓ ∈ Λn,i).

Then, we have

E
[(

m(OOB)
M,n (Xi,Θ M)−m(Xi)

)2∣∣|Λn,i|> 0
]
P(|Λn,i|> 0)

=δM,n
1

M2

M

∑
ℓ,ℓ′=1

E
[
[mn(Xi,Θℓ)−m(Xi)][mn(Xi,Θℓ′)−m(Xi)]

∣∣ℓ,ℓ′ ∈ Λn,i
]

+(γM,n −δM,n)
1

M2

M

∑
ℓ=1

E
[
(mn(Xi,Θℓ)−m(Xi))

2∣∣ℓ ∈ Λn,i
]
.
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Recall that mn(Xi,Θℓ) is the randomized CART estimate, built with Dn and Θℓ, where the
component Θ

(S)
ℓ is used to subsample an data points. When conditioned on {ℓ ∈ Λn,i} (i.e.

i /∈Θ
(S)
ℓ ), mn(Xi,Θℓ) can be seen as the CART estimate built with Dn \{(Xi,Yi)} and with

the subsample size an, i.e., man,n−1(Xi,Θℓ). Therefore, we have for all pairs ℓ,ℓ′,

E
[
[mn(Xi,Θℓ)−m(Xi)][mn(Xi,Θℓ′)−m(Xi)]

∣∣ℓ,ℓ′ ∈ Λn,i
]

= E
[
[man,n−1(Xi,Θℓ)−m(Xi)][man,n−1(Xi,Θℓ′)−m(Xi)]

]
= E

[
[man,n−1(X,Θℓ)−m(X)][man,n−1(X,Θℓ′)−m(X)]

]
, (A.1.31)

where the last equality holds because Xi and X are identically distributed and both inde-
pendent of the training data of man,n−1. Then, this last equality is plugged in the previous
result to obtain

E
[(

m(OOB)
M,n (Xi,Θ M)−m(Xi)

)2∣∣|Λn,i|> 0
]
P(|Λn,i|> 0)

=δM,n
1

M2

M

∑
ℓ,ℓ′=1

E
[
[man,n−1(X,Θℓ)−m(X)][man,n−1(X,Θℓ′)−m(X)]

]
+(γM,n −δM,n)

1
M2

M

∑
ℓ=1

E
[
(man,n−1(X,Θℓ)−m(X))2]. (A.1.32)

Next, we factorize the right hand side

E
[(

m(OOB)
M,n (Xi,Θ M)−m(Xi)

)2∣∣|Λn,i|> 0
]
P(|Λn,i|> 0)

=δM,nE
[( 1

M

M

∑
ℓ=1

man,n−1(X,Θℓ)−m(X)
)2]

+(γM,n −δM,n)
1
M
E
[
(man,n−1(X,Θ)−m(X))2]

=δM,nE
[(

mM,an,n−1(X,Θ M)−m(X)
)2]

+(γM,n −δM,n)
1
M
E
[
(man,n−1(X,Θ)−m(X))2], (A.1.33)

where mM,an,n−1(X,Θ M) is the standard random forest estimate, built with a dataset of size
n−1 and the subsample size an. Using the decomposition (A.1.16) of the risk of the finite
forest, we have

1
M
E
[
(man,n−1(X,Θ)−m(X))2]≤ E

[(
mM,an,n−1(X,Θ M)−m(X)

)2]
.

Additionally, from Technical Lemma A.1, γM,n −δM,n > 0.
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We combine the last two inequalities with the previous result and obtain

E
[(

m(OOB)
M,n (Xi,Θ M)−m(Xi)

)2∣∣|Λn,i|> 0
]
P(|Λn,i|> 0)

≤δM,nE
[(

mM,an,n−1(X,Θ M)−m(X)
)2]

+(γM,n −δM,n)E
[(

mM,an,n−1(X,Θ M)−m(X)
)2]

≤γM,nE
[(

mM,an,n−1(X,Θ M)−m(X)
)2]

,

and using again Technical Lemma A.1, we finally get

E
[(

m(OOB)
M,n (Xi,Θ M)−m(Xi)

)2
1|Λn,i|>0

]
≤ 2

1−an/n
E
[(

mM,an,n−1(X,Θ M)−m(X)
)2]

.

Proof of Proposition 2.1. We need to bound the difference between the risks of the OOB
estimate and the standard forest. To do so, we go back to equation (A.1.33)

E
[(

m(OOB)
M,n (Xi,Θ M)−m(Xi)

)2∣∣|Λn,i|> 0
]
P(|Λn,i|> 0)

= δM,nE
[(

mM,an,n−1(X,Θ M)−m(X)
)2]

+(γM,n −δM,n)
1
M
E
[
(man,n−1(X,Θ)−m(X))2],

and rewrite it∣∣∣E[(m(OOB)
M,n (Xi,Θ M)−m(Xi)

)2
1|Λn,i|>0

]
−E

[(
mM,an,n−1(X,Θ M)−m(X)

)2]∣∣∣
≤
∣∣δM,n −1

∣∣E[(mM,an,n−1(X,Θ M)−m(X)
)2]

+(γM,n −δM,n)
1
M
E
[
(man,n−1(X,Θ)−m(X))2].

According to Technical Lemma A.1, δM,n − 1 = O(1/M) and γM,n − δM,n is bounded.
Therefore, for a fixed sample size n, we have∣∣∣E[(m(OOB)

M,n (Xi,Θ M)−m(Xi)
)2
1|Λn,i|>0

]
−E

[(
mM,an,n−1(X,Θ M)−m(X)

)2]∣∣∣= O
( 1

M

)
.

(A.1.34)

Finally, recall that P(|Λn,i|> 0) is the probability that the i-th observation does not belong
to all trees (in this case the OOB forest estimate is properly defined). A simple calculation
gives that P(|Λn,i|> 0) = 1− (an/n)M, which converges towards 1 exponentially fast as
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M grows. Then, we have∣∣∣E[(m(OOB)
M,n (Xi,Θ M)−m(Xi)

)2]−E
[(

m(OOB)
M,n (Xi,Θ M)−m(Xi)

)2
1|Λn,i|>0

]∣∣∣
= E

[(
m(OOB)

M,n (Xi,Θ M)−m(Xi)
)2
1|Λn,i|=0

]
= E

[
m(Xi)

2]P(|Λn,i|= 0)

≤ ||m||2∞(an/n)M. (A.1.35)

From Assumption (A2.3), an/n < 1, and combining the bound (A.1.35) with the previous
result (A.1.34), we conclude that∣∣∣E[(m(OOB)

M,n (Xi,Θ M)−m(Xi)
)2]−E

[(
mM,an,n−1(X,Θ M)−m(X)

)2]∣∣∣= O
( 1

M

)
.

Proof of Lemma A.3. We first assume that Assumptions (A2.1), (A2.2), (A2.3), and (A2.4)
are satisfied, and we consider i ∈ {1, . . . ,n}. Using Lemma A.2, we have

E
[(

m(OOB)
M,n (Xi,Θ M)−m(Xi)

)2
1|Λn,i|>0

]
≤ 2

1−an/n
E
[(

mM,an,n−1(X,Θ M)−m(X)
)2]

.

According to Assumption (A2.3), 1−an/n > κ where κ is fixed positive constant. Thus,
we can directly apply Lemma A.1 to obtain

lim
n→∞

E
[(

mM,an,n−1(X,Θ M)−m(X)
)2]

= 0,

and then

lim
n→∞

E
[(

m(OOB)
M,n (Xi,Θ M)−m(Xi)

)2
1|Λn,i|>0

]
= 0.

Next, we extend this result to the permuted case, i.e., Xi is replaced by Xi,π j . Following
the same proof as in Lemma A.2, we derive the following decomposition, similarly to
equation (A.1.32)

E
[(

m(OOB)
M,n,π j

(Xi,Θ M)−E[m(Xi,π j)|X
(− j)
i ]

)2∣∣|Λn,i|> 0
]
P(|Λn,i|> 0)

= δM,n
1

M2 ∑
ℓ̸=ℓ′

E
[
(man,n−1(Xi,π jℓ,Θℓ)−E[m(Xi,π j)|X

(− j)
i ])

× (man,n−1(Xi,π jℓ′ ,Θℓ′)−E[m(Xi,π j)|X
(− j)
i ])

]
+γM,n

1
M2

M

∑
ℓ=1

E
[
(man,n−1(Xi,π jℓ,Θ)−E[m(Xi,π j)|X

(− j)
i ])2].
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By symmetry, we have

E
[(

m(OOB)
M,n,π j

(Xi,Θ M)−E[m(Xi,π j)|X
(− j)
i ]

)2∣∣|Λn,i|> 0
]
P(|Λn,i|> 0)

= δM,n
M−1

M
E
[
(man,n−1(Xi,π j1,Θ1)−E[m(Xi,π j)|X

(− j)
i ])

× (man,n−1(Xi,π j2,Θ2)−E[m(Xi,π j)|X
(− j)
i ])

]
+γM,n

1
M
E
[
(man,n−1(Xπ j ,Θ)−E[m(Xπ j)|X

(− j)])2].
In the first term of the right hand side, we need to deal with the specific case π j1 = π j2,
which implies that Xi,π j1 = Xi,π j2 since they have the same j-th permuted component:

E
[(

m(OOB)
M,n,π j

(Xi,Θ M)−E[m(Xi,π j)|X
(− j)
i ]

)2∣∣|Λn,i|> 0
]
P(|Λn,i|> 0)

= δM,n
M−1

M
E
[
(man,n−1(Xi,π j1,Θ1)−E[m(Xi,π j)|X

(− j)
i ])

× (man,n−1(Xi,π j2,Θ2)−E[m(Xi,π j)|X
(− j)
i ])|π j1 ̸= π j2

]
P(π j1 ̸= π j2)

+δM,n
M−1

M
E
[
(man,n−1(Xi,π j1 ,Θ1)−E[m(Xi,π j)|X

(− j)
i ])

× (man,n−1(Xi,π j2,Θ2)−E[m(Xi,π j)|X
(− j)
i ])|π j1 = π j2

]
P(π j1 = π j2)

+γM,n
1
M
E
[
(man,n−1(Xπ j ,Θ)−E[m(Xπ j)|X

(− j)])2],
which can be simplified using Cauchy-Schwartz inequality for the second term as

E
[(

m(OOB)
M,n,π j

(Xi,Θ M)−E[m(Xi,π j)|X
(− j)
i ]

)2∣∣|Λn,i|> 0
]
P(|Λn,i|> 0) (A.1.36)

≤ δM,n
M−1

M
E
[
(man,n−1(Xi,π j1,Θ1)−E[m(Xi,π j)|X

(− j)
i ])

× (man,n−1(Xi,π j2,Θ2)−E[m(Xi,π j)|X
(− j)
i ])|π j1 ̸= π j2

]
P(π j1 ̸= π j2)

+
(

γM,n

M
+δM,n

M−1
M

P(π j1 = π j2)
)
E
[
(man,n−1(Xπ j ,Θ)−E[m(Xπ j)|X

(− j)])2].
Now, we focus on the first term of the right hand side. We have

E
[
(man,n−1(Xi,π j1,Θ1)−E[m(Xi,π j)|X

(− j)
i ])

× (man,n−1(Xi,π j2,Θ2)−E[m(Xi,π j)|X
(− j)
i ])|π j1 ̸= π j2

]
= E

[
[man,n−1(Xi,π j1,Θ1)−m(Xi,π j1)− (E[m(Xi,π j)|X

(− j)
i ]−m(Xi,π j1))]

× [man,n−1(Xi,π j2,Θ2)−m(Xi,π j2)− (E[m(Xi,π j)|X
(− j)
i ]−m(Xi,π j2))]|π j1 ̸= π j2

]
= E

[
(man,n−1(Xi,π j1,Θ1)−m(Xi,π j1))(man,n−1(Xi,π j2,Θ2)−m(Xi,π j2))|π j1 ̸= π j2

]
−2E

[
(man,n−1(Xi,π j1,Θ1)−m(Xi,π j1))(E[m(Xi,π j)|X

(− j)
i ]−m(Xi,π j2))|π j1 ̸= π j2

]
+E

[
(E[m(Xi,π j)|X

(− j)
i ]−m(Xi,π j1))(E[m(Xi,π j)|X

(− j)
i ]−m(Xi,π j2))|π j1 ̸= π j2

]
.
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For the second term, the two multiplied terms are independent conditional on X(− j)
i and

π j1 ̸= π j2, then

E
[
(man,n−1(Xi,π j1,Θ1)−m(Xi,π j1))(E[m(Xi,π j)|X

(− j)
i ]−m(Xi,π j2))

∣∣π j1 ̸= π j2
]

= E
[
E
[
(man,n−1(Xi,π j1,Θ1)−m(Xi,π j1))(E[m(Xi,π j)|X

(− j)
i ]−m(Xi,π j2))

∣∣X(− j)
i ,π j1 ̸= π j2

]]
= E

[
E
[
man,n−1(Xi,π j1,Θ1)−m(Xi,π j1)

∣∣X(− j)
i
]
E
[
E[m(Xi,π j)|X

(− j)
i ]−m(Xi,π j2))

∣∣X(− j)
i
]]

= 0.

Similarly, the third term is also null. Finally, we apply Cauchy-Schwartz inequality to the
first term to obtain

δM,n
M−1

M
E
[
(man,n−1(Xi,π j1,Θ1)−E[m(Xi,π j)|X

(− j)
i ])

× (man,n−1(Xi,π j2,Θ2)−E[m(Xi,π j)|X
(− j)
i ])|π j1 ̸= π j2

]
≤ δM,nE

[
(man,n−1(Xi,π j1,Θ1)−m(Xi,π j1))

2]
≤ δM,nE

[
(man,n−1(Xπ j ,Θ)−m(Xπ j))

2],
where the last inequality holds because Xi,π j1 is independent of the sample used to train
man,n−1 and have the same distribution as Xπ j . Overall, using this last inequality with the
decomposition (A.1.36), we obtain the following bound

E
[(

m(OOB)
M,n,π j

(Xi,Θ M)−E[m(Xi,π j)|X
(− j)
i ]

)2∣∣|Λn,i|> 0
]
P(|Λn,i|> 0)

≤δM,nE
[
(man,n−1(Xπ j ,Θ)−m(Xπ j))

2]
+
(

γM,n

M
+δM,n

M−1
M

P(π j1 = π j2)
)
E
[
(man,n−1(Xπ j ,Θ)−E[m(Xπ j)|X

(− j)])2].
Furthermore, using Technical Lemma A.1, the bound can be simplified to get

E
[(

m(OOB)
M,n,π j

(Xi,Θ M)−E[m(Xi,π j)|X
(− j)
i ]

)2∣∣|Λn,i|> 0
]
P(|Λn,i|> 0)

≤E
[
(man,n−1(Xπ j ,Θ)−m(Xπ j))

2]
+
( 2

1−an/n
1
M

+P(π j1 = π j2)
)
E
[
(man,n−1(Xπ j ,Θ)−E[m(Xπ j)|X

(− j)])2].
Next, we break down the expectation of the second term

E
[
(man,n−1(Xπ j ,Θ)−E[m(Xπ j)|X

(− j)])2]
=E
[
(man,n−1(Xπ j ,Θ)−m(Xπ j)+(m(Xπ j)−E[m(Xπ j)|X

(− j)]))2]
=E
[
(man,n−1(Xπ j ,Θ)−m(Xπ j))

2]+E
[
(m(Xπ j)−E[m(Xπ j)|X

(− j)])2]
+2E

[
(man,n−1(Xπ j ,Θ)−m(Xπ j))(m(Xπ j)−E[m(Xπ j)|X

(− j)])
]
.
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Since m is bounded, we get

E
[
(man,n−1(Xπ j ,Θ)−E[m(Xπ j)|X

(− j)])2]≤ E
[
(man,n−1(Xπ j ,Θ)−m(Xπ j))

2]+4||m||2∞
+4||m||∞E

[
|man,n−1(Xπ j ,Θ)−m(Xπ j)|

]
.

Finally we obtain the following bound

E
[(

m(OOB)
M,n,π j

(Xi,Θ M)−E[m(Xi,π j)|X
(− j)
i ]

)2∣∣|Λn,i|> 0
]
P(|Λn,i|> 0)

≤
(

1+
2

1−an/n
1
M

+P(π j1 = π j2)
)
E
[
(man,n−1(Xπ j ,Θℓ)−m(Xπ j))

2]
+
( 2

1−an/n
1
M

+P(π j1 = π j2)
)

4||m||∞E
[
|man,n−1(Xπ j ,Θ)−m(Xπ j)|

]
+4||m||2∞

( 2
1−an/n

1
M

+P(π j1 = π j2)
)
.

The second part of Lemma A.1 for M = 1 gives that

lim
n→∞

E
[
(man,n−1(Xπ j ,Θℓ)−m(Xπ j))

2]= 0,

and since L2-convergence implies L1-convergence, we also have

lim
n→∞

E
[
|man,n−1(Xπ j ,Θℓ)−m(Xπ j)|

]
= 0.

It is clear that P(π j1 = π j2) < 1/(n − an), and then limn→∞P(π j1 = π j2) = 0, since
1−an/n > κ > 0 by Assumption (A2.3). Additionally, according to Assumption (A2.4),
M −→

n→∞
∞, therefore

lim
n→∞

2
1−an/n

1
M

+P(π j1 = π j2) = 0.

Overall, we have

lim
n→∞

E
[(

m(OOB)
M,n,π j

(Xi,Θ M)−E[m(Xi,π j)|X
(− j)
i ]

)2
1|Λn,i|>0

]
= 0.

Proof of Technical Lemma A.1. We consider M ∈ N\{0,1}, i ∈ {1, . . . ,n}, and define

δM,n =M2E
[ 1
|Λn,i|2

∣∣1,2 ∈ Λn,i

]
P(1,2 ∈ Λn,i)

=M2E
[ 1
|Λn,i|2

∣∣M−1,M ∈ Λn,i

]
P(M−1,M ∈ Λn,i).
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Recall that by definition, |Λn,i|= ∑
M
ℓ=11i/∈Θ

(S)
ℓ

. Since Θℓ are iid, |Λn,i| is a binomial random
variable. Then, we have

E
[ 1
|Λn,i|2

∣∣M,M−1 ∈ Λn,i

]
=E
[ 1
(2+∑

M−2
ℓ=1 1i/∈Θ

(S)
ℓ

)2

]

=
M−2

∑
k=0

1
(k+2)2

(
M−2

k

)(
1− an

n

)k(an

n

)M−2−k
.

On the other hand,

P(M−1,M ∈ Λn,i) =
(
1− an

n

)2
.

Combining the previous two equations, we get

δM,n =M2(1− an

n

)2
M−2

∑
k=0

1
(k+2)2

(
M−2

k

)(
1− an

n

)k(an

n

)M−2−k

=M2
M−2

∑
k=0

1
(k+2)2

(M−2)!
k!(M− (k+2))!

(
1− an

n

)k+2(an

n

)M−(k+2)
,

δM,n =M2
M−2

∑
k=0

k+1
(k+2)M(M−1)

M!
(k+2)!(M− (k+2))!

(
1− an

n

)k+2(an

n

)M−(k+2)

=
M

M−1

M−2

∑
k=0

k+1
k+2

(
M

k+2

)(
1− an

n

)k+2(an

n

)M−(k+2)
.

We reindex the sum with k � k+2 and get

δM,n =
M

M−1

M

∑
k=2

k−1
k

(
M
k

)(
1− an

n

)k(an

n

)M−k

=
M

M−1

M

∑
k=1

(
1− 1

k

)(M
k

)(
1− an

n

)k(an

n

)M−k
. (A.1.37)

Next, we bound δM,n,

δM,n ≤
M

M−1

M

∑
k=1

(
1− 1

M

)(M
k

)(
1− an

n

)k(an

n

)M−k

≤
M

∑
k=0

(
M
k

)(
1− an

n

)k(an

n

)M−k −
(an

n

)M

≤1−
(an

n

)M (A.1.38)

≤1.
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Similarly for the second inequality, we define

γM,n =M2E
[ 1
|Λn,i|2

∣∣1 ∈ Λn,i

]
P(1 ∈ Λn,i)

=M2E
[ 1
|Λn,i|2

∣∣M ∈ Λn,i

]
P(M ∈ Λn,i),

and get

γM,n =M2(1− an

n

)M−1

∑
k=0

1
(k+1)2

(
M−1

k

)(
1− an

n

)k(an

n

)M−1−k

=M
M−1

∑
k=0

1
k+1

(
M

k+1

)(
1− an

n

)k+1(an

n

)M−(k+1)

=M
M

∑
k=1

1
k

(
M
k

)(
1− an

n

)k(an

n

)M−k

=ME
[ 1

Z
1Z≥1

]
,

where Z is a binomial random variable with M trials and parameter 1− an
n . Lemma 4.1

from Györfi et al. (2006) states that

E
[ 1

Z
1Z≥1

]
≤ 2

(M+1)(1− an
n )

, (A.1.39)

which implies that

γM,n ≤
2M

(M+1)(1− an
n )

≤ 2
1− an

n
.

On the other hand,

γM,n =M
M

∑
k=1

1
k

(
M
k

)(
1− an

n

)k(an

n

)M−k

≥M
M

∑
k=1

1
M

(
M
k

)(
1− an

n

)k(an

n

)M−k

≥1−
(an

n

)M

≥δM,n,

where the last inequality uses (A.1.38).
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To prove the last statement of Technical Lemma A.1, we go back to equation (A.1.37):

δM,n =
M

M−1

M

∑
k=1

(
1− 1

k

)(M
k

)(
1− an

n

)k(an

n

)M−k

=
M

M−1

[ M

∑
k=1

(
M
k

)(
1− an

n

)k(an

n

)M−k −
M

∑
k=1

1
k

(
M
k

)(
1− an

n

)k(an

n

)M−k
]

=
M

M−1

[
1−
(an

n

)M −E
[ 1

Z
1Z≥1

]]
≥ M

M−1

[
1−
(an

n

)M − 2
(M+1)(1− an

n )

]
,

where we use inequality (A.1.39) for the last statement. Overall, using also inequality
(A.1.38), we have

0 ≥ M(δM,n −1)≥ M
M−1

[
1−M

(an

n

)M − 2M
(M+1)(1− an

n )

]
The right hand side is an increasing function of M and converges towards −1+an/n

1−an/n as
M → ∞. Additionally, the right hand side is always defined since 1− an/n > κ > 0
from Assumption (A2.3). Therefore, for a fixed sample size n, M(δM,n −1) is a bounded
sequence. Finally,

δM,n −1 = O
( 1

M

)
.

A.1.4 Proof of Proposition 2.2

Proposition 2.2. If Assumptions (A2.1), (A2.2), and (A2.3) are satisfied, then for all
M ∈ N⋆ and j ∈ {1, . . . , p} we have

(i) M̂DA
(T T )
M,n (X ( j))

L1
−→ V[Y ]×ST ( j)+V[Y ]×ST ( j)

mg +MDA⋆( j)
3

(ii) M̂DA
(BC)

M,n (X ( j))
L1
−→ V[Y ]×ST ( j)+V[Y ]×ST ( j)

mg +MDA⋆( j)
3 .

If Assumption (A2.4) is additionally satisfied, then

(iii) M̂DA
(IK)

M,n (X
( j))

L1
−→ V[Y ]×ST ( j)+MDA⋆( j)

3 .

Proof of Proposition 2.2. We assume that (A2.1), (A2.2), and (A2.3) are satisfied, and fix
j ∈ {1, . . . , p} and M ∈ N⋆.
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Then, using Theorem 2.1-(i), we have

M̂DA
(T T )
M,n (X ( j))

L1
−→ E[(m(X)−m(Xπ j))

2].

First, we rewrite the MDA limit as

E[(m(X)−m(Xπ j))
2] =E[E[(m(X)−m(Xπ j))

2|X(− j)]]

=E
[
E
[(
(m(X)−E[m(X)|X(− j)])− (m(Xπ j)−E[m(Xπ j)|X

(− j)])

+(E[m(X)|X(− j)]−E[m(Xπ j)|X
(− j)])

)2|X(− j)]].
Now, observing that these three terms are independent conditionally on X(− j), we can
expand the MDA limit as follows

E[(m(X)−m(Xπ j))
2]

=E
[
E
[
(m(X)−E[m(X)|X(− j)])2|X(− j)]+E[(m(Xπ j)−E[m(Xπ j)|X

(− j)])2|X(− j)]
+(E[m(X)|X(− j)]−E[m(Xπ j)|X

(− j)])2|X(− j)]]
=E[V[m(X)|X(− j)]]+E[V[m(Xπ j)|X

(− j)]]

+E[(E[m(X)|X(− j)]−E[m(Xπ j)|X
(− j)])2]

=V[Y ]×ST ( j)+V[Y ]×ST ( j)
mg +E[(E[m(X)|X(− j)]−E[m(Xπ j)|X

(− j)])2].

Theorem 2.1-(ii) gives the same theoretical counterpart for BC-MDA, and thus the
same decomposition applies

M̂DA
(BC)

M,n (X ( j))
L1
−→ V[Y ]×ST ( j)+V[Y ]×ST ( j)

mg +E[(E[m(X)|X(− j)]−E[m(Xπ j)|X
(− j)])2].

Now, we additionally assume that Assumption (A2.4) is satisfied, i.e., the number of
trees grows to infinity with n. Then, using Theorem 2.1-(iii) we have

M̂DA
(IK)

M,n (X
( j))

L1
−→ E[(m(X)−E[m(Xπ j)|X

(− j)])2].

We decompose the theoretical counterpart as in the first case,

E[(m(X)−E[m(Xπ j)|X
(− j)])2]

=E[(m(X)−E[m(X)|X(− j)]− (E[m(Xπ j)|X
(− j)]−E[m(X)|X(− j)]))2]

=E[(m(X)−E[m(X)|X(− j)])2]+E[(E[m(X)|X(− j)]−E[m(Xπ j)|X
(− j)]))2]

=V[Y ]×ST ( j)+E[(E[m(X)|X(− j)]−E[m(Xπ j)|X
(− j)])2].
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A.1.5 Proof of Corollary 2.2

Corollary 2.2. If the regression function m is additive, and if Assumptions (A2.1)-(A2.3)
are satisfied, for all M ∈ N⋆ and j ∈ {1, . . . , p} we have

M̂DA
(T T )
M,n (X ( j))

L1
−→ 2V[Y ]×ST ( j)

mg

M̂DA
(BC)

M,n (X ( j))
L1
−→ 2V[Y ]×ST ( j)

mg .

In addition, if Assumption (A2.4) is satisfied,

M̂DA
(IK)

M,n (X
( j))

L1
−→ V[Y ]×ST ( j)

mg .

Proof of Corollary 2.2. We assume that Assumptions (A2.1)-(A2.3) are satisfied, and fix
j ∈ {1, . . . , p} and M ∈ N⋆. Then, using Theorem 2.1-(i), we have

M̂DA
(T T )
M,n (X ( j))

L1
−→ E[(m(X)−m(Xπ j))

2].

Since the regression function is assumed additive, we can write m as

m(x) =
p

∑
k=1

mk(x(k)).

Then, the MDA limit writes

E[(m(X)−m(Xπ j))
2] = E[{m j(X ( j))−m j(X ′( j))}2]

= E[{(m j(X ( j))−E[m j(X ( j))])− (m j(X ′( j))−E[m j(X ( j))])}2]

= 2V[m j(X ( j))],

where X ′( j) is an independent copy of X ( j) by definition of Xπ j .
On the other hand, we have

V[Y ]×ST ( j)
mg = E[V[m(Xπ j)|X

(− j)]]

= E[{m(Xπ j)−E[m(Xπ j)|X
(− j)]}2]

= E[{m j(X ′( j))+
p

∑
k ̸= j

mk(X (k))−E[m j(X ′( j))+
p

∑
k ̸= j

mk(X (k))|X(− j)]}2]

= E[{m j(X ′( j))−E[m j(X ′( j))]}2]

= V[m j(X ( j))]

= 1/2E[(m(X)−m(Xπ j))
2],
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which gives the result of Corollary 2.2 for the Train-Test MDA.
The proof for the Breiman-Cutler MDA is identical. For the Iswharan-Kogalur MDA,

we assume that Assumption (A4) is additionally satisfied, and Theorem 2.1 gives that

M̂DA
(IK)

M,n (X
( j))

L1
−→ E[{m(X)−E[m(Xπ j)|X

(− j)]}2].

Again, we can simplify the MDA limit in the additive setting, and we get

E[{m(X)−E[m(Xπ j)|X
(− j)]}2] = E[{m j(X ( j))−E[m j(X ′( j))]}2]

= V[m j(X ( j))]

= V[Y ]×ST ( j)
mg ,

which gives the final result.

A.1.6 Proof of Property 2.1

Property 2.1 Marginal Total Sobol Index. If Assumption (A2.1) is satisfied, the marginal
total Sobol index ST ( j)

mg satisfies the following properties.

(a) ST ( j)
mg = 0 ⇐⇒ ST ( j) = 0.

(b) If the components of X are independent, then we have ST ( j)
mg = ST ( j).

(c) If m is additive, i.e. m(X) = ∑k mk(X (k)), then we have ST ( j)
mg = V[m j(X ( j))]/V[Y ],

and ST ( j)
mg ≥ ST ( j).

Proof of Property 2.1. We assume that Assumption (A2.1) is satisfied.
(a) First, we assume that ST ( j) = 0. Using the definition of the total Sobol index, we

get that

E[(m(X)−E[m(X)|X(− j)])2] = 0.

By Assumption (A2.1), the density of X is strictly positive on its support [0,1]p, and since
the square function is positive, the previous equation gives that, almost surely,

(m(X)−E[m(X)|X(− j)])2 = 0,

which gives

m(X) = E[m(X)|X(− j)] a.s.
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Therefore, m(X) does not depend on the j-th component almost surely, and we have

m(Xπ j) = m(X) a.s.,

and consequently ST ( j)
mg = ST ( j) = 0. The reverse case follows the same proof.

(b) By construction, Xπ j and X have the same joint distribution when X has independent
components, and the result follows.

(c) We assume that m is additive and writes

m(X) =
p

∑
k=1

mk(X (k)).

We expand the definition of the marginal total Sobol index using the above expression of
m and obtain

V[Y ]×ST ( j)
mg = E[V[m(Xπ j)|X

(− j)]]

= E[{m(Xπ j)−E[m(Xπ j)|X
(− j)]}2]

= E[{m j(X ′( j))+
p

∑
k ̸= j

mk(X (k))−E[m j(X ′( j))+
p

∑
k ̸= j

mk(X (k))|X(− j)]}2]

= E[{m j(X ′( j))−E[m j(X ′( j))]}2]

= V[m j(X ( j))].

For the second part of the statement, we similarly derive

V[Y ]×ST ( j) = E[{m j(X ( j))−E[m j(X ( j))|X(− j)]}2]

= E[V[m j(X ( j))|X(− j)]],

and the law of total variance gives that ST ( j)
mg ≥ ST ( j).

A.2 Proof of the Sobol-MDA Consistency

For the sake of clarity, we recall Assumptions (A2.5), (A2.6), and Theorem 2.2.

(A2.5). A node split is constrained to generate child nodes with at least a small fraction
γ > 0 of the parent node observations. Secondly, the split selection is slightly modified: at
each tree node, the number mtry of candidate variables drawn to optimize the split is set
to mtry = 1 with a small probability δ > 0. Otherwise, with probability 1−δ , the default
value of mtry is used.
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(A2.6). The asymptotic regime of an, the size of the subsampling without replacement, and
the number of terminal leaves tn is such that an ≤ n−2, an/n < 1−κ for a fixed κ > 0,
lim
n→∞

an = ∞, lim
n→∞

tn = ∞, and lim
n→∞

2tn (log(an))
9

an
= 0.

Theorem 2.2. If Assumptions (A2.1), (A2.5), and (A2.6) are satisfied, for all M ∈ N⋆ and
j ∈ {1, . . . , p}

Ŝ-MDAM,n(X ( j))
p−→ ST ( j).

The consistency of the Sobol-MDA relies on the consistency of the projected random
forest, stated in Lemma A.5, and Lemma A.6 for the corresponding OOB estimate. Lemma
A.4 is an intermediate result on the asymptotic behavior of the original forest. Under the
small modifications of the random forest algorithm defined by Assumption (A2.5), Lemma
A.4 states that the cells of a random tree in the empirical forest become infinitely small as
the sample size increases. For a cell A ∈ [0,1], we define diam(A) the diameter of a cell as

diam(A) = sup
x,x′∈A

||x−x′||2.

Recall that An(X,Θ) is the cell of the original Θ -random CART where X falls.

Lemma A.4. If Assumptions (A2.1), (A2.5), and (A2.6) are satisfied, we have in probability

lim
n→∞

diam(An(X,Θ)) = 0.

The following lemma states that the Projected-CART estimate is consistent. Recall that
A(− j)

n (X(− j),Θ) is the cell of the projected partition where X(− j) falls, m(− j)
n (X(− j),Θ)

is the associated projected tree, and m(− j)
n (X(− j)) = E[m(− j)

n (X(− j),Θ)|Dn,X(− j)] is the
projected infinite forest estimate. We also define m(− j)(z) = E[m(X)|X(− j) = z] for z ∈
[0,1]p−1.

Lemma A.5. If Assumptions (A2.1), (A2.5), and (A2.6) are satisfied, we have for j ∈
{1, . . . , p}

lim
n→∞

E[(m(− j)
n (X(− j))−m(− j)(X(− j)))2] = 0.

Lemma A.6. If Assumptions (A2.1), (A2.5), and (A2.6) are satisfied, for all i ∈ {1, . . . ,n},
j ∈ {1, . . . , p}, and M ∈ N⋆ we have

lim
n→∞

E[(m(− j,OOB)
M,n (X(− j)

i ,Θ M)−m(X(− j)
i ))21|Λn,i|>0] = 0.

Proof of Theorem 2.2. We assume that Assumptions (A2.1), (A2.5), and (A2.6) are satis-
fied and consider j ∈ {1, . . . , p}. We can exactly follow the proof of Theorem 2.1-(iii) by
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only replacing E[m(Xπ j)|X(− j)] by E[m(X)|X(− j)] in the main decomposition, and get the
L1-consistency of the unnormalized Sobol-MDA using Lemmas A.3 and A.6. Finally, the
Sobol-MDA is normalized by the standard variance estimate σ̂Y of the output Y , which is
consistent by the Law of Large Numbers. Next, according to the continuous mapping theo-
rem 1/σ̂Y

p−→ 1/V[Y ]. Overall, the Sobol-MDA is the product of two random quantities
which convergence in probability, and we have

Ŝ-MDAM,n(X ( j))
p−→ ST ( j).

Proof of Lemma A.4. The proof is inspired by Lemma 2 from Meinshausen (2006). We
define sn(X,Θ) as the number of splits to reach the terminal cell An(X,Θ) where X falls.
The asymptotic regime of the tree growing is controlled by Assumption (A2.6) by setting
the number of terminal leaves to tn. Since An(X,Θ) is a terminal leaf, there are two
possible cases: further splitting An(X,Θ) will necessarily lead to cells with a number of
observations smaller than the algorithm parameter minimum node size, that we call Nmin,
and is typically equal to 5 in practice. Formally, it means that

Nn(X,Θ)< 2Nmin, (A.2.1)

where Nn(X,Θ) is the number of observations in An(X,Θ). The other possibility is that
the total number of leaves tn is reached, which implies that

2sn(X,Θ) ≥ tn,

the equality case happening if the tree is balanced. Next, according to Assumption (A2.5),
all children nodes have at least a fraction 0.5 > γ > 0 of the parent node observations. Then
we have anγsn(X,Θ) ≤ Nn(X,Θ). Combining this last inequality with (A.2.1), we obtain
anγsn(X,Θ) < 2Nmin. Overall, at least one of the two following inequalities is satisfied

sn(X,Θ)≥ log2(tn)

sn(X,Θ)>
log2(an/2Nmin)

log2(1/γ)
.

From Assumption (A2.6), an → ∞ and tn → ∞. Therefore, we can conclude that

sn(X,Θ)
p−→ ∞. (A.2.2)

Now, we fix j ∈ {1, . . . , p}, and define s( j)
n (X,Θ) as the number of splits involving the

j-th variable in the path to An(X,Θ). According to Assumption (A2.5), variable j can
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be selected at each node with probability at least δ/p. Combined with result (A.2.2), we
consequently have

s( j)
n (X,Θ)

p−→ ∞. (A.2.3)

Next, we break down the cell An(X,Θ) with a collection of intervals for each of the p
directions:

An(X,Θ) =
p⊗

j=1

A( j)
n (X,Θ),

where each A( j)
n (X,Θ) is an interval and can be written as A( j)

n (X,Θ) =

[l( j)
n (X,Θ),u( j)

n (X,Θ)]. Then, we can bound from above the number N( j)
n (X,Θ) of obser-

vations whose j-th coordinate belongs to A( j)
n (X,Θ) using (A2.2),

N( j)
n (X,Θ)≤ an(1− γ)s( j)

n (X,Θ),

and using (A.2.3), we get that

N( j)
n (X,Θ)/an

p−→ 0.

Next, we introduce F( j)
an the empirical cdf of X ( j), estimated with the Θ (S)-subsample of

Dn. Similarly, F( j) denotes the cdf of X ( j). By definition, we have

N( j)
n (X,Θ)/an = F( j)

an (u( j)
n (X,Θ))−F( j)

an (l( j)
n (X,Θ))

p−→ 0. (A.2.4)

On the other hand, we can write

F( j)(u( j)
n (X,Θ))−F( j)(l( j)

n (X,Θ)) =F( j)
an (u( j)

n (X,Θ))−F( j)
an (l( j)

n (X,Θ))

− [F( j)
an (u( j)

n (X,Θ))−F( j)(u( j)
n (X,Θ))]

+ [F( j)
an (l( j)

n (X,Θ))−F( j)(l( j)
n (X,Θ))],

and we get the following bound

F( j)(u( j)
n (X,Θ))−F( j)(l( j)

n (X,Θ))≤ F( j)
an (u( j)

n (X,Θ))−F( j)
an (l( j)

n (X,Θ))

+2 sup
z∈[0,1]

|F( j)
an (z)−F( j)(z)|.
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The Glivenko-Cantelli Theorem gives that

sup
z∈[0,1]

|F( j)
an (z)−F( j)(z)| p−→ 0,

and combined with (A.2.4), we obtain

F( j)(u( j)
n (X,Θ))−F( j)(l( j)

n (X,Θ))
p−→ 0. (A.2.5)

Finally, using the integral form of the difference above, we have

F( j)(u( j)
n (X,Θ))−F( j)(l( j)

n (X,Θ)) =
∫

A( j)
n (X,Θ)

f ( j)(x)dx,

and since f ( j) is lower bounded by c1 according to Assumption (A2.1),

F( j)(u( j)
n (X,Θ))−F( j)(l( j)

n (X,Θ))≥ c1diam(A( j)
n (X,Θ)).

This last inequality combined with limit (A.2.5) gives

diam(A( j)
n (X,Θ))

p−→ 0,

and since this is true for each direction j = 1, . . . , p, the final result follows. Then, we have
in probability

lim
n→∞

diam(An(X,Θ)) = 0.

The proof of Lemma A.5 is based on Theorem 10.2 from Györfi et al. (2006) and
Theorem 1 from Scornet et al. (2015). First, we introduce several notations following
Scornet et al. (2015). The partition of [0,1]p−1 obtained with the Θ -random tree projected
along the j-th direction is denoted by P

(− j)
n (Dn,Θ). We define the family of all achievable

partitions with Θ as

Π
(− j)
n (Θ) = {P(− j)((x1,y1), . . . ,(xn,yn),Θ) : (xi,yi) ∈ [0,1]p−1 ×R},

and the associated maximal number M(Π
(− j)
n (Θ)) of terminal nodes among all partitions

in Π
(− j)
n (Θ) is

M(Π
(− j)
n (Θ)) = max{|P| : P ∈ Π

(− j)
n (Θ)}.
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Next, we consider z1, . . . ,zn ∈ [0,1]p−1 and denotes Γ (z1, . . . ,zn,Π
(− j)
n (Θ)) the number of

distinct partitions of z1, . . . ,zn induced by the elements of Π
(− j)
n (Θ). Then, the partitioning

number Γ (Π
(− j)
n (Θ)) is defined as

Γ (Π
(− j)
n (Θ)) = max{Γ (z1, . . . ,zn,Π

(− j)
n (Θ)) : z1, . . . ,zn ∈ [0,1]p−1}.

We define the truncated operator TL for L > 0. Thus, the truncated tree estimate
TLm(− j)

n (X(− j),Θ) returns the constant L whenever |m(− j)
n (X(− j),Θ)| > L. Finally, we

define F
(− j)
n (Θ) the set of piecewise constant functions over the partition P

(− j)
n (Dn,Θ).

Then, the projected tree estimate m(− j)
n (X(− j),Θ) is defined as the element of F

(− j)
n (Θ)

which minimizes the quadratic risk.
For the sake of clarity, we recall Theorem 10.2 from Györfi et al. (2006), as presented

in Scornet et al. (2015) in the case of random forests.

Theorem A.1 (Theorem 10.2 in Györfi et al. (2006)). Assume that

(i) lim
n→∞

βn = ∞,

(ii) lim
n→∞

E
[

inf
f∈F

(− j)
n (Θ),|| f ||∞≤βn

E[( f (X(− j))−m(− j)(X(− j)))2]
]
= 0,

(iii) for all L > 0,

lim
n→∞

E
[

sup
f ∈ F

(− j)
n (Θ),

|| f ||∞ ≤ βn

∣∣∣ 1
an

∑
i∈Θ (S)

[ f (X(− j)
i )−Yi,L]

2 −E[( f (X(− j))−YL)
2]
∣∣∣]= 0.

Then, we have

lim
n→∞

E[(Tβnm(− j)
n (X(− j))−m(− j)(X(− j)))2] = 0.

Proof of Lemma A.5. We assume that Assumptions (A2.1), (A2.5), and (A2.6) are satisfied,
and we fix j ∈ {1, . . . , p}. We closely follow the proof of Theorem 1 from Scornet et al.
(2015) to adapt it to the case of projected forest.

(i) We set βn = ||m||∞ +V[ε]
√

2log2(an). By definition, βn → ∞ and (i) is satisfied.

(ii) Approximation Error. Fix ξ > 0. We can show that (see Scornet et al. (2015, page
17) for the details), for n large enough such that βn > ||m||∞,

E
[

inf
f ∈ F

(− j)
n (Θ),

|| f ||∞ ≤ βn

E[( f (X(− j))−m(− j)(X(− j)))2]
]

< ξ
2 +4||m||2∞P(∆(m,A(− j)

n (X(− j),Θ))> ξ ).
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On the other hand, observe that A(− j)
n (X(− j),Θ) is included in the projection of An(X,Θ)

along the j-th direction by construction—see Figure A.1 for an illustration. Furthermore,
when a cell is projected, its diameter is smaller than the original one. Thus, we have

diam(A(− j)
n (X(− j),Θ))≤ diam(An(X,Θ)).

and consequently Lemma A.4 implies that in probability

lim
n→∞

diam(A(− j)
n (X(− j),Θ)) = 0.

Since m is continuous, the control on the cell diameter implies that

∆(m,A(− j)
n (X(− j),Θ))

p−→ 0.

This enables to control the approximation error, i.e., for n large enough

E
[

inf
f ∈ F

(− j)
n (Θ),

|| f ||∞ ≤ βn

E[( f (X(− j))−m(− j)(X(− j)))2]
]
< 2ξ

2,

and therefore (ii) is satisfied.

(iii) Estimation Error. The number of terminal leaves in the original tree is tn. Con-
sequently, the number of leaves in the projected tree is upper bounded by 2tn . Thus, by
definition M(Π

(− j)
n (Θ))≤ 2tn , and simple calculations give Γ (Π

(− j)
n (Θ))≤ [(p−1)an]

2tn .
Since Assumption (A2.6) ensures that lim

n→∞
2tn (log(an))

9

an
= 0, we can show (iii) exactly as in

Scornet et al. (2015, page 17-18).
Since (i), (ii), and (iii) are satisfied, Theorem A.1 gives the consistency of the truncated

projected tree estimate,

lim
n→∞

E[(Tβnm(− j)
n (X(− j))−m(− j)(X(− j)))2] = 0.

Finally, the extension to the untruncated projected tree estimate strictly follows Scornet
et al. (2015, pages 18-19) when the noise is Gaussian, and is still valid for our case of a
sub-Gaussian noise (Assumption (A2.1)). Overall, we have

lim
n→∞

E[(m(− j)
n (X(− j))−m(− j)(X(− j)))2] = 0.
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X (1)

X (2)

An(X,Θ)

X

X (1)

X (2)

X

X(− j)

A(− j)
n (X(− j),Θ)

A1

A2

A3

Fig. A.1 Example of the partition of [0,1]2 by a random CART tree (left side) projected on
the subspace span by X(−2) = X (1) (right side). Here, p = 2 and j = 2.

Proof of Lemma A.6. We assume that Assumptions (A2.1), (A2.5), and (A2.6) are satisfied,
and we fix j ∈ {1, . . . , p}. First, we expand the considered risk

E[(m(− j,OOB)
M,n (Xi,Θ M)−m(X(− j)

i ))21|Λn,i|>0]

=E
[( 1

|Λn,i| ∑
ℓ∈Λn,i

[m(− j)
n (X(− j)

i ,Θℓ)−m(X(− j)
i )]1|Λn,i|>0

)2]
.

Then, identically to the proof of Lemma A.2, we can handle the randomness of the selected
batch of trees Λn,i, and bound the OOB risk with the risk of the standard projected forest,
i.e.,

E
[(

m(− j,OOB)
M,n (X(− j)

i ,Θ M)−m(X(− j)
i )

)2
1|Λn,i|>0

]
≤ 2

1−an/n
E
[(

m(− j)
M,an,n−1(X

(− j),Θ M)−m(X(− j))
)2]

.

Lemma A.5 gives the consistency of the infinite projected forest, which also implies the
consistency of the finite projected forest, that is

E
[(

m(− j)
M,an,n−1(X

(− j),Θ M)−m(X(− j))
)2]−→ 0.

Additionally, from Assumption (A2.6), an/n < 1−κ with κ > 0, and thus

lim
n→∞

E[(m(− j,OOB)
M,n (X(− j)

i ,Θ M)−m(X(− j)
i ))21|Λn,i|>0] = 0.
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A.3 MDA Software Implementations

We provide detailed references of the MDA implementations of the main random forest
packages:

1. scikit-learn 0.24 (https://scikit-learn.org/stable/)

2. randomForest 4.6-14 (https://cran.r-project.org/web/packages/randomForest/
index.html)

3. ranger 0.12.1 (https://cran.r-project.org/web/packages/ranger/index.html)

4. randomForestSRC 2.9.3 (https://cran.r-project.org/web/packages/
randomForestSRC/index.html)

A.3.1 scikit-learn 0.24

In scikit-learn, the MDA is not specific for random forests, but is a generic procedure
taking a trained model and an independent testing sample as inputs. The MDA implemen-
tation is located in the file: “scikit-learn/sklearn/inspection/_permutation_importance.py”.

The method _calculate_permutation_scores(estimator, X, y, sample_weight, col_idx,
random_state, n_repeats, scorer) computes the error of the model estimator when the
column of index col_idx of the testing sample X is permuted, over multiple repetitions
defined by the parameter n_repeats. The model error is defined by scorer, and random_state
defines the random seed. Finally, the permuted and the original errors are subtracted and
the multiple repetitions are aggregated in the method permutation_importance(estimator,
X, y, *, scoring=None, n_repeats=5, n_jobs=None, random_state=None) which thus
implements the Train/Test MDA.

A.3.2 randomForest 4.6-14

The R script “randomForest/R/importance.R” implements the function
importance.randomForest <- function(x, type=NULL, class=NULL, scale=TRUE, ...)
between lines 6 and 44, where x is a fitted forest, which as the attribute x$importance
storing the Breiman-Cutler MDA and the standard deviation of the risk differences across
trees, computed with the script “randomForest/src/regrf.c” for regression forests. The
function importance.randomForest handles exceptions and normalizes the MDA with the
standard deviations, and thus implements the normalized Breiman-Cutler MDA.

For regression forests, the C script “randomForest/src/regrf.c” computes the difference
between the permuted and original errors for each tree between lines 262 and 295. The
associated means and standard deviations across all trees are computed between lines 327

https://scikit-learn.org/stable/
https://cran.r-project.org/web/packages/randomForest/index.html
https://cran.r-project.org/web/packages/randomForest/index.html
https://cran.r-project.org/web/packages/ranger/index.html
https://cran.r-project.org/web/packages/randomForestSRC/index.html
https://cran.r-project.org/web/packages/randomForestSRC/index.html
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and 338. These computations are done right after the forest construction at the end of the
method void regRF.

A.3.3 ranger 0.12.1

In ranger, the MDA is computed during the forest growing by specifying the paramater im-
portance = ’permutation’ in the call to the main function ranger. For each tree of the forest,
the accuracy decrease is computed in the C++ file “ranger/src/Tree.cpp” with the method
void Tree::computePermutationImportance(), located between lines 206 and 255. Next, the
importance measures are averaged over all trees with the method void Forest:: computePer-
mutationImportance() between lines 646 and 763 of the C++ file “ranger/src/Forest.cpp”,
and thus the BC-MDA is computed. If the paramater scale.permutation.importance is set
to True, then the normalized BC-MDA is computed (default value is False).

A.3.4 randomForestSRC 2.9.3

The package randomForestSRC can compute the three types of MDA. The function
vimp.rfsrc (lines 1 to 82 of file “randomForestSRC/R/vimp.rfsrc.R”) computes the MDA,
and takes a fitted forest object as an input. If an independent testing sample is provided
as the input newdata, TT-MDA is computed. Otherwise if importance = ’permute’, the
IK-MDA by blocks is estimated: the trees of the forest are divided in multiple blocks
and the IK-MDA is computed for each block and averaged. The parameter block.size set
the number of trees in each block, 10 by default. If block.size = 1, this procedure is the
BC-MDA.

The function vimp.rfsrc computes the MDA calling a chain of C subroutines, located
in the file “randomForestSRC/src/randomForestSRC.c” between lines 2026 and 2564:
permute, getPermuteMembership, getVimpMembership, updateVimpEnsemble, summa-
rizePerturbedPerformance, and finalizeVimpPerformance.

A.4 Analytical Example Computations

We first recall the analytical example definition, and all computations are provided next.
The input X is a Gaussian vector of dimension p = 5. Its covariance matrix is defined by
V[X ( j)] = σ2

j for j ∈ {1, . . . ,5}, and all covariance terms are null except

Cov[X (1),X (2)] = ρ1,2σ1σ2,

Cov[X (4),X (5)] = ρ4,5σ4σ5.
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The regression function m is given by

m(X) = αX (1)X (2)1X (3)>0 +βX (4)X (5)1X (3)<0.

Total Sobol index ST (1)ST (1)ST (1). By definition, V[Y ]×ST (1) = E[V[m(X)|X(−1)]]. Since X (1)

and X (2) are independent of X (3), X (4), and X (5), we have

E[m(X)|X(−1)] = E[αX (1)X (2)1X (3)>0 +βX (4)X (5)1X (3)<0|X
(−1)]

= E[αX (1)X (2)1X (3)>0|X
(2)]+βX (4)X (5)1X (3)<0

= αX (2)E[X (1)|X (2)]1X (3)>0 +βX (4)X (5)1X (3)<0.

Since (X (1),X (2)) is a bivariate centered Gaussian vector,

E[X (1)|X (2)] = ρ1,2
σ1

σ2
X (2),

and then

E[m(X)|X(−1)] = αρ1,2
σ1

σ2
X (2)21X (3)>0 +βX (4)X (5)1X (3)<0.

Next, we compute

E[V[m(X)|X(−1)]] = E[(m(X)−E[m(X)|X(−1)])2]

= E[(αX (1)X (2)1X (3)>0 −αρ1,2
σ1

σ2
X (2)21X (3)>0)

2]

=
α2

2
E[(X (1)X (2)−ρ1,2

σ1

σ2
X (2)2)2]

=
α2

2
(
E[(X (1)X (2))2]+ (ρ1,2

σ1

σ2
)2E[X (2)4]−2ρ1,2

σ1

σ2
E[X (1)X (2)3]

)
.

Standard formulas give

E[(X (1)X (2))2] = (1+2ρ
2
1,2)σ

2
1 σ

2
2 ,

E[X (2)4] = 3σ
4
2 ,

and

E[X (1)X (2)3] = E[X (2)3E[X (1)|X (2)]] = ρ1,2
σ1

σ2
E[X (2)4].
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Using these last three formulas in the previous result, we get

E[V[m(X)|X(−1)]] =
α2

2
[
(1+2ρ

2
1,2)σ

2
1 σ

2
2 +(ρ1,2

σ1

σ2
)23σ

4
2 −2(ρ1,2

σ1

σ2
)23σ

4
2
]

=
α2

2
[
(1+2ρ

2
1,2)σ

2
1 σ

2
2 +3(ρ1,2σ1σ2)

2 −6(ρ1,2σ1σ2)
2]

=
1
2
(ασ1σ2)

2(1−ρ
2
1,2)

1
2
(ασ1σ2)

2(1−ρ
2
1,2)

1
2
(ασ1σ2)

2(1−ρ
2
1,2).

Marginal total Sobol index ST (1)
mgST (1)
mgST (1)
mg . By definition, V[Y ]×ST (1)

mg = E[V[m(Xπ1)|X(−1)]].

E[V[m(Xπ1)|X
(−1)]] = E[(m(Xπ1)−E[m(Xπ1)|X

(−1)])2]

= E[(αX ′(1)X (2)1X (3)>0 −αE[X ′(1)|X(−1)]X (2)1X (3)>0)
2],

where X ′(1) is an iid copy of X (1). Therefore X ′(1) is independent of X and E[X ′(1)|X(−1)] =

0, and we get

E[V[m(Xπ1)|X
(−1)]] =

α2

2
E[(X ′(1)X (2))2] =

α2

2
E[(X ′(1)]E[X (2))2]

=
1
2
(ασ1σ2)

21
2
(ασ1σ2)

21
2
(ασ1σ2)

2.

Third MDA component MDA(1)
3MDA(1)
3MDA(1)
3 . By definition,

MDA(1)
3 = E[(E[m(X)|X(−1)]−E[m(Xπ1)|X

(−1)])2]

As computed above for the marginal total Sobol index, E[m(Xπ1)|X(−1)] =

βX (4)X (5)1X (3)>0, thus

MDA(1)
3 = E[(αX (1)E[X (2)|X(−1)]1X (3)>0)

2]

=
1
2

α
2E[(X (1)E[X (2)|X (1)])2]

=
1
2

α
2(ρ1,2

σ1

σ2
)2E[X (2)4]

=
3
2

ρ
2
1,2(ασ1σ2)

23
2

ρ
2
1,2(ασ1σ2)

23
2

ρ
2
1,2(ασ1σ2)

2.

Final MDA limits Overall, using Proposition 2.2, we obtain

MDA⋆(1) =
1
2
(ασ1σ2)

2(1−ρ
2
1,2)︸ ︷︷ ︸

MDA⋆(1)
1

+
1
2
(ασ1σ2)

2︸ ︷︷ ︸
MDA⋆(1)

2

+
3
2

ρ
2
1,2(ασ1σ2)

2︸ ︷︷ ︸
MDA⋆(1)

3

MDA⋆(1) =(ασ1σ2)
2(1+ρ

2
1,2)(ασ1σ2)

2(1+ρ
2
1,2)(ασ1σ2)

2(1+ρ
2
1,2).
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By symmetry, MDA⋆(2) = MDA⋆(1) = (ασ1σ2)
2(1+ρ2

1,2)(ασ1σ2)
2(1+ρ2

1,2)(ασ1σ2)
2(1+ρ2

1,2), and

MDA⋆(4) = MDA⋆(5) = (βσ4σ5)
2(1+ρ

2
4,5)(βσ4σ5)

2(1+ρ
2
4,5)(βσ4σ5)

2(1+ρ
2
4,5).

Finally, since X (3) is independent of the other variables, Corollary 1 gives

MDA⋆(3) = 2MDA⋆(3)
1 = 2E[V[m(X)|X(−3]].

Next,

E[m(X)|X(−3)] = E[αX (1)X (2)1X (3)>0 +βX (4)X (5)1X (3)<0|X
(−3)]

=
1
2

αX (1)X (2)+
1
2

βX (4)X (5),

and

V[E[m(X)|X(−3)]] =
1
4

α
2V[X (1)X (2)]+

1
4

β
2V[X (4)X (5)].

Since

V[X (1)X (2)] =E[(X (1)X (2))2]−E[X (1)X (2)]2

=(1+2ρ
2
1,2)σ

2
1 σ

2
2 − (ρ1,2σ1σ2)

2

=(1+ρ
2
1,2)σ

2
1 σ

2
2 ,

we obtain

V[E[m(X)|X(−3)]] =
1
4

α
2(1+ρ

2
1,2)σ

2
1 σ

2
2 +

1
4

β
2(1+ρ

2
4,5)σ

2
4 σ

2
5 .

On the other hand,

V[m(X)] =α
2V[X (1)X (2)1X (3)>0]+β

2V[X (4)X (5)1X (3)<0]

+2Cov[αX (1)X (2)1X (3)>0,βX (4)X (5)1X (3)<0]

=
α2

2
(1+2ρ

2
1,2)σ

2
1 σ

2
2 −

α2

4
(ρ1,2σ1σ2)

2 +
β 2

2
(1+2ρ

2
4,5)σ

2
4 σ

2
5 −

β 2

4
(ρ4,5σ4σ5)

2

−2αβ
1
4
E[X (1)X (2)]E[X (4)X (5)]

=
α2

2
(1+

3
2

ρ
2
1,2)σ

2
1 σ

2
2 +

β 2

2
(1+

3
2

ρ
2
4,5)σ

2
4 σ

2
5 −2αβ

1
4

ρ1,2σ1σ2ρ4,5σ4σ5.

Finally,

MDA⋆(3) = 2E[V[m(X)|X(−3]] = 2(V[m(X)]−V[E[m(X)|X(−3)]]),



A.4 Analytical Example Computations 205

MDA⋆(3) = 2(
α2

4
(1+2ρ

2
1,2)σ

2
1 σ

2
2 +

β 2

4
(1+2ρ

2
4,5)σ

2
4 σ

2
5 −2αβ

1
4

ρ1,2σ1σ2ρ4,5σ4σ5)

=
1
2
(ασ1σ2)

2(1+ρ
2
1,2)+

1
2
(βσ4σ5)

2(1+ρ
2
4,5)+

1
2
(αρ1,2σ1σ2 −βρ4,5σ4σ5)

21
2
(ασ1σ2)

2(1+ρ
2
1,2)+

1
2
(βσ4σ5)

2(1+ρ
2
4,5)+

1
2
(αρ1,2σ1σ2 −βρ4,5σ4σ5)

21
2
(ασ1σ2)

2(1+ρ
2
1,2)+

1
2
(βσ4σ5)

2(1+ρ
2
4,5)+

1
2
(αρ1,2σ1σ2 −βρ4,5σ4σ5)

2.

High correlation setting. In a high correlation setting, the third term becomes the main
MDA contribution for variables X(1), X(2), X(4), and X(5). Since computations are similar,
we only consider X(1):

MDA⋆(1)
3 > MDA⋆(1)

1 +MDA⋆(1)
2

3
2

ρ
2
1,2(ασ1σ2)

2 >
1
2
(ασ1σ2)

2(1−ρ
2
1,2)+

1
2
(ασ1σ2)

2

3ρ
2
1,2(ασ1σ2)

2 > 2(ασ1σ2)
2 − (ασ1σ2)

2
ρ

2
1,2,

and finally we obtain

4ρ
2
1,2(ασ1σ2)

2 > 2(ασ1σ2)
2

ρ
2
1,2 >

1
2

ρ1,2ρ1,2ρ1,2 >

√
2

2

√
2

2

√
2

2
.





Appendix B

Supplementary Material for Chapter 3

B.1 Computational Complexity

We provide the average computational complexity of SHAFF, as well as its competitors
Broto et al. (2020), Williamson and Feng (2020), and Covert et al. (2020, SAGE). For
these last two algorithms, random forests are used as the required black-box model. Only
SHAFF is quasi-linear with the sample size n and independent of the dimension p.

B.1.1 SHAFF

We derive the computational complexity of each step of SHAFF. Overall, the computa-
tional complexity is O(MKn log(n)).

Importance sampling. In order to compute the variable subset importance, SHAFF
counts the occurence of variable subsets U in the tree paths of the forest, which has a
complexity of O(Mn), since each tree has about O(n) nodes. The sampling of K subsets U
has a complexity of O(K).

Projected random forests. An efficient implementation of the PRF algorithm is detailed
in Algorithm 4. For the sake of clarity, we provide a version of PRF for a single variable
subset U and one query point X(U). Let us consider a given tree. The new observation
X(U) is dropped down the tree, eventually applying multiple splits at each level, because
data points are sent on both sides of splits involving a variable outside of U . At the same
time, the PRF computes which training observations fall in the same projected cell as
X(U), and stops going down the tree just before the size of this projected cell becomes
lower than the parameter min_node_size. Such procedure has a complexity of O(n) since
we sequentially apply splits to reduce the number of training observations from about
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n to min_node_size to reach the terminal projected cell. Therefore, the computational
complexity to compute the PRF prediction for a given U and X(U) is O(Mn).

In SHAFF, the PRF is run for all subsets U ∈ Un,K and the full OOB sample for each
tree. In practice, we do not naively run Algorithm 4 for all U and OOB observations, i.e.,
O(Kn) times, since it would lead to a quadratic complexity with n. Instead, for a given
tree, all OOB and training observations are dropped down the tree simultaneously. Even if
multiple splits are applied at each tree level, we are still partitioning two samples of size
O(n) by sequentially applying splits: splitting one time all cells of a given partition takes
O(n) operations, and this has to be repeated O(log(n)) times so that each cell reaches a
size of min_node_size. Therefore, the global complexity of running PRF for the full
OOB samples and the K subsets U is O(MKn log(n)).

Shapley effect estimates. The complexity to solve a least square problem with p
columns and K rows is O(p3K). However in practice, K is always fixed to default value,
and when p > K, only at most O(K) input variables are selected in the subsets U . For the
non-selected inputs, the Shapley effect is null, and they can be removed from the least
square problem, leading to a complexity of O(K4).

B.1.2 Competitors

Broto et al. (2020). The conditional expectations are estimated for all U ∈ {1, . . . , p},
which makes 2p estimates. Efficient k-nearest neighbor algorithms have a complexity of
O(pn log(n)). Overall the complexity is O(n log(n)p2p), which is exponential with respect
to the dimension p.

Williamson and Feng (2020). Growing K random forests from scratch, one for each
subset U , has an averaged complexity of O(MK pn log2(n)) (Louppe, 2014). Williamson
and Feng (2020) recommend to use K = O(n), which makes a global complexity of
O(Mpn2 log2(n)), and is quadratic with respect to the sample size n and depends on the
dimension p.

Covert et al. (2020, SAGE). Running a prediction for random forests takes O(M log(n))
operations. Since SAGE computes np predictions, the global complexity is O(Mpn log(n))
and depends on the dimension p.

B.2 Proof of Theorem 3.1

We need the following three lemmas to prove Theorem 3.1. Lemma B.1 gives the con-
vergence of the importance sampling, because all variable subsets U have a positive
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Algorithm 4 Projected Random Forest

1: Inputs: A random forest fit with Dn, a variable subset U ⊂ {1, . . . , p}, and a query
point X(U).

2: for all trees in the forest:

3: # Step 1: initialize variables
4: initialize nodes_level as a list of nodes containing only the root node;
5: initialize nodes_child as an empty list of child nodes;
6: initialize samples as the list of observation indices of the full training data of the

tree;

7: for all levels in the tree:

8: # Step 2: drop X(U) to the next tree level with the relevant training observations
9: for all nodes in nodes_level:

10: if the node splits on a variable in U :
11: compute whether X(U) falls in the left or right child node;
12: append the child node to nodes_child;
13: set samples_child as the observations in samples which satisfy the split
14: else:
15: append both the left and right children nodes to nodes_child;
16: set samples_child = samples;
17: if the size of samples_child is lower then min_node_size:
18: break the loop through the tree levels;
19: else:
20: set samples = samples_child;
21: set nodes_level = nodes_child;

22: # Step 3: compute prediction
23: compute the tree prediction as the average of Yi for all i in samples;

24: average predictions of all trees;

25: return final prediction;
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probability to be drawn asymptotically. Lemma B.2 states the consistency of the projected
forest estimate, and the proof follows arguments from Scornet et al. (2015). Lemma B.3
uses the two previous lemmas to state the convergence of the loss function of the weighted
regression problem solved to recover Shapley effect estimates.

Lemma B.1. If Assumptions (A3.2) and (A3.3) are satisfied, we have

P
(

p̂Mn,n(U)> 0
)
−→ 1.

Lemma B.2. If Assumptions (A3.1) and (A3.2) are satisfied, the PRF is consistent, that is,
for all M ∈ N⋆ and U ⊂ {1, . . . , p},

v̂M,n(U)
p−→ V[E[Y |X(U)]]/V[Y ] def

= v⋆(U).

We let Z be a discrete random variable taking values in the set of all subsets of
{1, . . . , p}, excluding the full and empty sets. The discrete distribution of Z is given by the
weights w(U) (the weights are scaled to sum to 1).

Lemma B.3. If Assumptions (A3.1), (A3.2), and (A3.3) are satisfied, we have

ℓM,n(β )
p−→ E[(v⋆(Z)−β

T I(Z))2]
def
= ℓ⋆(β ).

Proof of Theorem 3.1. We assume that Assumptions (A3.1), (A3.2), and (A3.3) are satis-
fied. Since ℓ⋆ is convex and β belongs to the compact set [0,1]p, the pointwise convergence
of Lemma B.3 gives the uniform convergence

sup
β∈[0,1]p

|ℓM,n(β )− ℓ⋆(β )| p−→ 0.

Additionally, since ℓ⋆ is a quadratic convex function and the constraint domain [0,1]p

is convex, ℓ⋆ has a unique minimum. According to Theorem 2 from Lundberg and Lee
(2017), this unique minimum is Sh⋆. Finally, since the minimum of ℓ⋆ is unique and ℓM,n

uniformly converges to ℓ⋆, we apply Theorem 5.7 from Van der Vaart (2000, page 45) to
conclude that

ŜhM,n
p−→ Sh⋆.

We prove Lemmas B.1, B.2, and B.3 involved in the proof of Theorem 3.1.

Proof of Lemma B.1. We assume that Assumptions (A3.2) and (A3.3) are satisfied, and
denote by Tn,ℓ the random set of all variable subsets of {1, . . . , p} belonging to a path of
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the ℓ-th tree. To prove the result, we derive an upper bound for P(p̂M,n(U) = 0). First, we
write

P(p̂M,n(U) = 0|Dn) = P
( Mn⋂
ℓ=1

U /∈ Tn,ℓ|Dn
)
,

and since the trees are independent conditional on Dn

P(p̂M,n(U) = 0|Dn) = P(U /∈ Tn,1|Dn)
Mn .

For n large enough, there is at least one path in each tree that has at least p splits. Indeed,
two cases are possible to get a tree of minimum depth p: n > s2p−1, where s is the
minimum number of observations in a terminal leaf, or, if the maximal number of terminal
leaves is reached, tn > 2p. Both are satisfied for n large enough since tn is not bounded by
Assumption (A2). Additionally, recall that the random forest algorithm is slightly modified
such that mtry is randomly set to 1 with a small probability δ . Thus, if we define the
random event An as mtry is set to 1 and a new variable of U is selected at each node of a
path of length at least |U |, then An is included in {U ∈ Tn,1}. This event An is of probability
lower bounded by (δ/p)p, and thus for n large enough, we have

P(U ∈ Tn,1|Dn)≥ P(An)≥ (δ/p)p,

and then

P(p̂M,n(U) = 0|Dn)≤ (1− (δ/p)p)Mn.

Finally, Assumption (A3.3) gives that the number of trees increases with n, and we obtain

P
(

p̂M,n(U) = 0
)
−→ 0,

which is the desired result.

Proof of Lemma B.2. We assume that Assumptions (A3.1) and (A3.2) are satisfied and
consider M ∈ N⋆ and U ⊂ {1, . . . , p}. Recall that

v̂M,n(U) = 1− 1
nσ̂Y

n

∑
i=1

(
Yi −m(U,OOB)

M,n (X(U)
i ,Θ M)

)2
.
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The right hand side is expanded as follows:

v̂M,n(U) = 1− 1
nσ̂Y

n

∑
i=1

(
m(Xi)+ εi −m(U,OOB)

M,n (X(U)
i ,Θ M)

)2

= 1− 1
nσ̂Y

n

∑
i=1

(
m(Xi)−E[m(Xi)|X(U)

i ]+ εi

− [m(U,OOB)
M,n (X(U)

i ,Θ M)−E[m(Xi)|X(U)
i ]]

)2
.

Therefore,

v̂M,n(U) = 1− 1
nσ̂Y

n

∑
i=1

(m(Xi)−E[m(Xi)|X(U)
i ])2

+ ε
2
i +2εi × (m(Xi)−E[m(Xi)|X(U)

i ])

−2εi ×
(
m(U,OOB)

M,n (X(U)
i ,Θ M)−E[m(Xi)|X(U)

i ]
)

−2(m(Xi)−E[m(Xi)|X(U)
i ])×

(
m(U,OOB)

M,n (X(U)
i ,Θ M)−E[m(Xi)|X(U)

i ]
)

+
(
m(U,OOB)

M,n (X(U)
i ,Θ M)−E[m(Xi)|X(U)

i ]
)2
. (B.2.1)

Now, using the law of large numbers, we obtain

1
n

n

∑
i=1

(m(Xi)−E[m(Xi)|X(U)
i ])2 + ε

2
i

+2εi × (m(Xi)−E[m(Xi)|X(U)
i ])

p−→ E[V[m(X)|X(U)]]+V[ε],

and also σ̂Y
p−→ V[Y ]. Combining these two limits, we have

1− 1
nσ̂Y

n

∑
i=1

(m(Xi)−E[m(Xi)|X(U)
i ])2 + ε

2
i

+2εi × (m(Xi)−E[m(Xi)|X(U)
i ])

p−→ 1− (E[V[m(X)|X(U)]]+V[ε])/V[Y ].

Rewriting this limit using the law of total variance, we are led to

1− (E[V[m(X)|X(U)]]+V[ε])/V[Y ]

= (V[Y ]−E[V[m(X)|X(U)]]+V[ε])/V[Y ]

= (V[m(X)]+V[ε]−E[V[m(X)|X(U)]]−V[ε])/V[Y ]

= V[E[m(X)|X(U)]]/V[Y ]

= V[E[Y |X(U)]]/V[Y ]

= v⋆(U).

Overall, the result of the lemma holds if the last three terms of the decomposition
(B.2.1) converge towards 0 in probability. This is clearly true if the OOB PRF estimate is
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L2-consistent, that is for i ∈ {1, . . . ,n},

E
[(

m(U,OOB)
M,n (X(U)

i ,Θ M)−E[m(Xi)|X(U)
i ]
)2]−→ 0.

According to Lemma 2 from Bénard et al. (2021d), the L2-convergence of the OOB
forest estimate follows from the convergence of the standard forest estimate. Therefore, we
only need to show the L2-convergence of the PRF estimate to get the final result. To do so,
we adapt the proof of Theorem 1 from Scornet et al. (2015), which shows the convergence
of Breiman’s forests for additive models.

The proof only differs for the approximation error. Indeed, we need to show that
the variation of the regression function vanishes in a cell of the empirical PRF. Scornet
et al. (2015) show that this is always true in the original forest for additive models. Here,
the result is valid for all regression functions, using the fact that the random forest is
slightly modified: splits cannot be too close from the edges of cells (at least a fraction of γ

observations in children nodes), and mtry is set to 1 at each node with a small probability
δ . Under these small modifications, Lemma 2 from Meinshausen (2006) gives that the
diameter of each cell of the original forest vanishes, i.e,

lim
n→∞

diam(An(X,Θ)) = 0,

where An(X,Θ) is the cell of the forest where the new query point X falls, and the diameter
of a cell A is the length of the longest line fitting in A, formally

diam(A) = sup
x,x′∈A

||x−x′||2.

By definition of the PRF algorithm, the projected cell where X(U) falls is included in
An(X,Θ), and therefore the diameter of the projected cell also vanishes as n increases.
Additionally, the regression function m is continuous by Assumption (A3.1), and conse-
quently the approximation error converges to 0. Finally, the PRF estimate is L2-consistent,
and we deduce the final result,

v̂M,n(U)
p−→ v⋆(U).

Proof of Lemma B.3. The loss function ℓM,n contains three sources of randomness: the
data Dn, the forest randomization Θ , and the importance sampling of the subsets U . The
discrete distribution used to sample the subsets U is built using the occurrence frequency
in the forest p̂M,n(U), which depends on Dn and Θ . This subtle relation between the data,
the forest, and the importance sampling prevent a straightforward proof for this lemma.
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We reshape the loss function and use the law of total variance to handle separately the
multiple sources of randomness. We assume that Assumptions (A3.1), (A3.2), and (A3.3)
are satisfied.

First, we have

ℓM,n(β ) =
1

Kn
∑

U∈Un,K

w(U)

p̂M,n(U)
(v̂M,n(U)−β

T I(U))2

= ∑
U⊂{1,...,p}

w(U)Nn(U)

Kn p̂M,n(U)
1p̂M,n(U)>0(v̂M,n(U)−β

T I(U))2,

where Nn(U) is the number of times where U is drawn in Un,K (with the convention
0/0 = 0). Since the sum is finite, it is enough to study the convergence of the terms one by
one. Let us consider a given variable subset U . First, we define

∆n,Kn =
Nn(U)1p̂M,n(U)>0

Kn p̂M,n(U)
.

Next, we derive the limit of V[∆n,Kn] using the law of total variance. We have

V[∆n,Kn] = E[V[∆n,Kn|Dn,Θ ]]+V[E[∆n,Kn|Dn,Θ ]].

On one hand, since Kn is a constant and p̂M,n(U) only depends on Dn and Θ , we have

V[∆n,Kn|Dn,Θ ] = V
[Nn(U)1p̂M,n(U)>0

Kn p̂M,n(U)
|Dn,Θ

]
=
( 1p̂M,n(U)>0

Kn p̂M,n(U)

)2
V
[
Nn(U)|Dn,Θ

]
.

By definition, Nn(U) = ∑
Kn
k=11Uk=U , where U1, . . . ,UKn are the variable subsets drawn at

each iteration of the importance sampling. Since U1, . . . ,UKn are independent conditional
on Dn and Θ , and U is drawn with probability p̂M,n(U),

V
[
Nn(U)|Dn,Θ

]
= KnV[1U1=U |Dn,Θ ] = Kn p̂M,n(U)[1− p̂M,n(U)],

and finally

E[V[∆n,Kn|Dn,Θ ]] =
1

Kn
E
[1− p̂M,n(U)

p̂M,n(U)
1p̂M,n(U)>0

]
.

Therefore,

E[V[∆n,Kn |Dn,Θ ]]≤ 1
Kn

E
[1p̂M,n(U)>0

p̂M,n(U)

]
.



B.2 Proof of Theorem 3.1 215

The number of paths in the forest is upper bounded by n×Mn, and therefore if p̂M,n(U) is
not null, it is lower bounded by 1/(n.Mn). Thus

E[V[∆n,Kn|Dn,Θ ]]≤ n.Mn

Kn
,

which converges to 0 by Assumption (A3.3).
On the other hand,

E[∆n,Kn|Dn,Θ ] =
1 p̂M,n(U)>0

Kn p̂M,n(U)
E[Nn(U)|Dn,Θ ] = 1p̂M,n(U)>0,

and then

V[E[∆n,Kn |Dn,Θ ]] =P(p̂M,n(U)> 0)[1−P(p̂M,n(U)> 0)]

=P(p̂M,n(U)> 0)P(p̂M,n(U) = 0).

Lemma B.1 gives that P
(

p̂M,n(U) = 0
)
−→ 0, which implies the convergence of

V[E[∆n,Kn|Dn,Θ ]] towards 0.
Overall, the law of total variance gives that

V[∆n,Kn]−→ 0.

Since E[∆n,Kn] = P
(

p̂M,n(U) > 0
)
−→ 1 and L2-convergence implies convergence in

probability, we have

∆n,Kn

p−→ 1.

Next, using Lemma B.2, we obtain

w(U)Nn(U)

Kn p̂M,n(U)
1p̂M,n(U)>0(v̂M,n(U)−β

T I(U))2 p−→ w(U)(v⋆(U)−β
T I(U))2.

If Z is a discrete random variable taking values in the set of all subsets of {1, . . . , p},
excluding the full and empty sets, and distributed with the scaled weights w(U), we finally
have

ℓM,n(β )
p−→ E[(v⋆(Z)−β

T I(Z))2].
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B.3 Formulas of Theoretical Shapley Effects for Experi-
ments

Experiment 1. For a linear model with a Gaussian input vector of dimension p, the
theoretical Shapley effects are given by Theorem 2 in (Owen and Prieur, 2017) as

Sh( j) =
1
p ∑

U⊂{1,...,p}\ j

(
p−1
|U |

)−1 Cov[X ( j),X(−U)T
β (−U)|X(U)]2

V[X ( j)|X(U)]

(
1− σ2

ε

V[Y ]

)
,

where the conditional covariances and variances can be easily computed using standard
formulas for Gaussian vectors, and σ2

ε is the noise variance.
In Experiment 1, several copies of a given input X (k) are added to the data. We denote

by r the number of redundant variables. We easily deduce the updated value Sh′( j) from
the original Shapley effects Sh( j) for all variables. Then, we have

Sh′(k) =
1

p+ r ∑
U⊂{1,...,p}\k

(
p+ r−1

|U |

)−1 Cov[X (k),X(−U)T
β (−U)|X(U)]2

V[X (k)|X(U)]

(
1− σ2

ε

V[Y ]

)
.

If j ∈ {1, . . . , p}\ k, we have

Sh′( j) =
1

p+ r ∑
U ⊂ {1, . . . , p}\ j

s.t. k /∈U

(
p+ r−1

|U |

)−1 Cov[X ( j),X(−U)T
β (−U)|X(U)]2

V[X ( j)|X(U)]

(
1− σ2

ε

V[Y ]

)

+
1

p+ r ∑
U ⊂ {1, . . . , p}\ j

s.t. k ∈U

[ r

∑
ℓ=0

(
r
ℓ

)(
p+ r−1
|U |+ ℓ

)−1

+
r

∑
ℓ=1

(
r
ℓ

)(
p+ r−1
|U |+ ℓ−1

)−1]

× Cov[X ( j),X(−U)T
β (−U)|X(U)]2

V[X ( j)|X(U)]

(
1− σ2

ε

V[Y ]

)
.

Finally, for j ∈ {p+1, . . . , p+ r}, clearly

Sh′( j) = Sh′(k),

and dummy variables have a null Shapley effect.

Experiment 2. Recall that in the second experiment, we consider two independent
blocks of 5 interacting variables. The input vector is Gaussian, centered, and of di-
mension 10. All variables have unit variance, and all covariances are null, except
Cov(X (1),X (2)) = Cov(X (6),X (7)) = ρ1, and Cov(X (4),X (5)) = Cov(X (9),X (10)) = ρ2.
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The output Y is defined as a specific case of

Y = a
√

α ×X (1)X (2)1X (3)>0 +b
√

α ×X (4)X (5)1X (3)<0

+ c
√

β ×X (6)X (7)1X (8)>0 +d
√

βX (9)X (10)1X (8)<0 + ε.

The Shapley effects of the input variables are given by

Sh(1) = Sh(2) =
α

αV1 +βV2 +σ2
ε

((aρ1)
2

8
+

5
24

a2
)
,

Sh(4) = Sh(5) =
α

αV1 +βV2 +σ2
ε

((bρ2)
2

8
+

5
24

b2
)
,

Sh(3) =
α

αV1 +βV2 +σ2
ε

((aρ1 −bρ2)
2

4
+

(aρ1)
2

4
+

(bρ2)
2

4
+

a2

12
+

b2

12

)
,

where

V1 =
((aρ1 −bρ2)

2

4
+

(aρ1)
2

2
+

(bρ2)
2

2
+

a2

2
+

b2

2

)
,

and

V2 =
((cρ1 −dρ2)

2

4
+

(cρ1)
2

2
+

(dρ2)
2

2
+

c2

2
+

d2

2

)
.

Symmetrically, we have

Sh(6) = Sh(7) =
β

αV1 +βV2 +σ2
ε

((cρ1)
2

8
+

5
24

c2
)
,

Sh(9) = Sh(10) =
β

αV1 +βV2 +σ2
ε

((dρ2)
2

8
+

5
24

d2
)
,

Sh(8) =
β

αV1 +βV2 +σ2
ε

((cρ1 −dρ2)
2

4
+

(cρ1)
2

4
+

(dρ2)
2

4
+

c2

12
+

d2

12

)
.

Clearly, Sh(11) = Sh(12) = Sh(13) = Sh(14) = Sh(15) = 0.
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C.1 Additional Experiments

C.1.1 Robustness Illustration

For the SECOM dataset used in the experimental Section 5 of the chapter, only three rule
algorithms achieve the same predictivity as random forests: RuleFit, Node harvest, and
SIRUS (1-AUC of 0.30, whereas CART and BRL are no better than the random classifier
with an error of 1-AUC = 0.5). SIRUS produces a short and stable list of 6 rules, while
RuleFit and Node harvest generate complex, long, and unstable rule lists. Rule algorithms
based on tree ensembles are stochastic since they rely on the tree randomness Θ1, . . . ,ΘM.
Consequently, RuleFit and Node harvest output different rule lists when run multiple times
on the same dataset. Such behavior is a strong limitation in practice, as domain experts
become skeptical of the algorithm conclusions. On the other hand, SIRUS is built to have
a robust rule extraction mechanism, and the same list of rules is output over multiple
repetitions with the same data, as proved in Theorem C.2 in the next Section.

To illustrate this, we run each algorithm twice on the SECOM dataset, and display the
output models in Figure C.1 for SIRUS, Figure C.2 for Node harvest, and Figure C.3 for
RuleFit. We set the regularization parameter of Node harvest and SIRUS as explained in
Subsection 5.3 of the chapter, to maximize accuracy with the smallest possible model: for
Node harvest λ = 4, and for SIRUS p0 = 0.04. RuleFit is tuned as defined in Friedman
et al. (2008). Figures C.2 and C.3 show that the rule lists output by RuleFit and Node
harvest are quite different across multiple runs with the exact same data, while SIRUS has
the same output.

We also observe that for the same accuracy, RuleFit and Node harvest models are
longer and more complex than SIRUS. In addition, rules are aggregated using weights to
generate predictions. This is not the case for SIRUS, which simply averages the 6 output
rules. Finally, we can also mention that manually increasing the regularization of Node
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Fig. C.1 The two lists of rules output by two runs of SIRUS for the SECOM dataset.

harvest, to reduce the model size to 6 rules as in SIRUS, strongly hurts accuracy, which
drops to 0.39.

C.1.2 Additional Competitors

Additional experiments are provided to compare SIRUS to other competitors: C5.0 (Quin-
lan, 1992) (decision tree), PART (Frank and Witten, 1998), and FOIL (Quinlan and
Cameron-Jones, 1995) (classical rule learning algorithms). Model size results are provided
in Table C.1, stability in Table C.2, and error in Table C.3. The stability and accuracy
improvement of SIRUS is clear.

C.1.3 Rule Aggregation

In Section 3 of the chapter, η̂M,n,p0(x) (3.3) is a simple average of the set of rules, defined
as

η̂M,n,p0(x) =
1

|P̂M,n,p0|
∑

P∈P̂M,n,p0

ĝn,P(x). (C.1.1)

To tackle our binary classification problem, a natural approach would be to use a logistic
regression and define

ln
(

η̂M,n,p0(x)
1− η̂M,n,p0(x)

)
= ∑

P∈P̂M,n,p0

βP ĝn,P(x), (C.1.2)

where the coefficients βP have to be estimated. To illustrate the performance of the logistic
regression (C.1.2), we consider again the UCI dataset, “Credit German”. We augment the
previous results from Figure 4 (in Section 5 of the chapter) with the logistic regression
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Fig. C.2 The two lists of rules output by two runs of Node harvest for the SECOM dataset.
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Fig. C.3 The two lists of rules output by two runs of RuleFit for the SECOM dataset.
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Dataset C5.0 PART FOIL SIRUS
Authentification 11 8 20 13
Breast Wisconsin 5 10 41 24
Credit Approval 9 32 40 16
Credit German 22 68 101 22

Diabetes 12 7 36 8
Haberman 2 2 4 5
Heart C2 10 20 31 20
Heart H2 4 15 29 12

Heart Statlog 10 18 28 15
Hepatitis 7 8 14 12

Ionosphere 9 6 28 15
Kr vs Kp 11 21 24 24

Liver Disorders 14 7 2 17
Mushrooms 7 9 14 23

Sonar 10 6 20 19
Spambase 29 46 73 21

Titanic 7 15 17 6
Vote 5 7 19 7
Wilt 10 8 10 24

Table C.1 Mean model size over a 10-fold cross-validation for UCI datasets (averaged over
10 repetitions).

error in Figure C.4. One can observe that the predictive accuracy is slightly improved but
it comes at the price of an additional set of coefficients that can be hard to interpret (some
can be negative), and an increased computational cost. Notice that categorical variables
are one-hot-encoded in this example.

C.2 Stopping Criterion for the Number of Trees M

We recall that the definition of the stopping criterion (5.1) of the forest growing is provided
in Section 5 of the chapter. First, we provide three groups of experiments to show its good
empirical efficiency. In the second subsection, we provide theoretical properties of the
stopping criterion.

C.2.1 Experiments

The following experiments on the UCI datasets show the good empirical performance of the
stopping criterion (5.1). Recall that the goal of this criterion is to determine the minimum
number of trees M ensuring that two independent fits of SIRUS on the same dataset result
in two lists of rules with an overlap of 95% in average. This is checked with a first batch of
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Dataset C5.0 PART FOIL SIRUS
Authentification 0.44 0.43 0.81 0.81
Breast Wisconsin 0.17 0.49 0.36 0.70
Credit Approval 0.18 0.31 0.17 0.75
Credit German 0.03 0.16 0.11 0.65

Diabetes 0.07 0.15 0.18 0.81
Haberman 0.28 0.25 0.64 0.65
Heart C2 0.09 0.15 0.16 0.71
Heart H2 0.32 0.31 0.39 0.65

Heart Statlog 0.11 0.15 0.15 0.82
Hepatitis 0.10 0.15 0.05 0.68

Ionosphere 0.24 0.13 0.07 0.69
Kr vs Kp 0.65 0.51 0.85 0.87

Liver Disorders 0.05 0.07 0.69 0.58
Mushrooms 0.79 0.78 0.93 0.86

Sonar 0.06 0.06 0.04 0.55
Spambase 0.08 0.08 0.11 0.78

Titanic 0.49 0.27 0.77 0.76
Vote 0.67 0.40 0.39 0.75
Wilt 0.34 0.37 0.48 0.73

Table C.2 Mean stability over a 10-fold cross-validation for UCI datasets (averaged over
10 repetitions). Values within 10% of the maximum are displayed in bold.

Fig. C.4 For the UCI dataset “Credit German”, 1-AUC versus the number of rules when p0
varies, estimated via 10-fold cross-validation (repeated 30 times) for two different methods of rule
aggregation: the rule average (C.1.1) in red and a logistic regression (C.1.2) in blue.
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Dataset C5.0 PART FOIL SIRUS
Authentification 0.02 0.01 0.08 0.03
Breast Wisconsin 0.06 0.07 0.08 0.01
Credit Approval 0.15 0.17 0.15 0.09
Credit German 0.37 0.36 0.41 0.25

Diabetes 0.28 0.30 0.28 0.19
Haberman 0.46 0.42 0.50 0.35
Heart C2 0.20 0.23 0.19 0.10
Heart H2 0.23 0.23 0.23 0.12

Heart Statlog 0.21 0.24 0.20 0.10
Hepatitis 0.34 0.34 0.39 0.17

Ionosphere 0.10 0.10 0.13 0.07
Kr vs Kp 0.006 0.008 0.02 0.04

Liver Disorders 0.34 0.38 0.50 0.35
Mushrooms 0.001 0 6.10−56.10−56.10−5 6.10−4

Sonar 0.26 0.26 0.26 0.2
Spambase 0.07 0.07 0.12 0.07

Titanic 0.20 0.20 0.25 0.17
Vote 0.04 0.05 0.05 0.02
Wilt 0.15 0.17 0.46 0.11

Table C.3 Model error (1-AUC) over a 10-fold cross-validation for UCI datasets (averaged
over 10 repetitions). Values within 10% of the minimum are displayed in bold.

experiments—see next paragraph. Secondly, the stopping criterion (5.1) does not consider
the optimal p0, unknown when trees are grown in the first step of SIRUS. Then, another
batch of experiments is run to show that the stability approximation 1− εM,n,p0 is quite
insensitive to p0. Finally, a last batch of experiments provides examples of the number of
trees grown when SIRUS is fit. Notice that for these experiments, categorical variables are
one-hot-encoded.

Experiments 1. For each dataset, the following procedure is applied. SIRUS is run a
first time using criterion (5.1) to stop the number of trees. This initial run provides the
optimal number of trees M as well as the set V̂M,n of possible p0. Then, SIRUS is fit twice
independently using the precomputed number of trees M. For each p0 ∈ V̂M,n, the stability
metric ŜM,n,p0 (with D ′

n = Dn) is computed over the two resulting lists of rules. Finally
ŜM,n,p0 is averaged across all p0 values in V̂M,n. This procedure is repeated 10 times: results
are averaged and presented in Table C.4, with standard deviations in parentheses. Across
the considered datasets, resulting values range from 0.941 to 0.955, and are thus close to
0.95 as expected by construction of criterion (5.1).
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Dataset Mean stability
Haberman 0.950 (0.01)
Diabetes 0.950 (0.007)

Heart Statlog 0.954 (0.007)
Liver Disorders 0.951 (0.006)

Heart C2 0.955 (0.009)
Heart H2 0.952 (0.009)

Credit German 0.950 (0.008)
Credit Approval 0.941 (0.02)

Ionosphere 0.950 (0.009)

Table C.4 Values of ŜM,n,p0 averaged over p0 ∈ V̂M,n when the stopping criterion (5.1) is used to set
M, for UCI datasets. Results are averaged over 10 repetitions and standard deviations are displayed
in parentheses.

Dataset Nb of trees (sd)
Haberman 10 920 (877)
Diabetes 18 830 (1538)

Heart Statlog 7840 (994)
Liver Disorders 14 650 (1242)

Heart C2 6840 (1270)
Heart H2 4220 (529)

Credit German 7940 (672)
Credit Approval 20 650 (8460)

Ionosphere 7320 (487)

Table C.5 Number of trees M determined by the stopping criterion (5.1) for UCI datasets. Results
are averaged over 10 repetitions and standard deviations are displayed in parentheses.

Experiments 2. The second type of experiments illustrates that εM,n,p0 is quite insensitive
to p0 when M is set with criterion (5.1). For the “Credit German” dataset, we fit SIRUS
and then compute 1− εM,n,p0 for each p0 ∈ V̂M,n. Results are displayed in Figure C.5. 1−
εM,n,p0 ranges from 0.90 to 1, where the extreme values are reached for p0 corresponding
to very small number of rules, which are not of interest when p0 is selected to maximize
predictive accuracy. Thus, 1− εM,n,p0 is quite concentrated around 0.95 when p0 varies.

Experiments 3. Finally, we display in Table C.5 the optimal number of trees when the
growing of SIRUS is stopped using criterion (5.1). It ranges from 4220 to 20650 trees. In
Breiman’s forests, the number of trees above which the accuracy cannot be significantly
improved is typically 10 times lower. However SIRUS grows shallow trees, and is thus not
computationally more demanding than random forests overall.
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Fig. C.5 For the UCI dataset “Credit German”, 1−εM,n,p0 for a sequence of p0 ∈ V̂M,p0 correspond-
ing to final models ranging from 1 to about 25 rules.

C.2.2 Theoretical Properties

We emphasize that growing more trees does not improve predictive accuracy or stability
with respect to data perturbation for a fixed sample size n. Indeed, the instability of the
rule selection is generated by the variance of the estimates p̂M,n(P),P ∈ Π . Upon noting
that we have two sources of randomness—Θ and Dn—, the law of total variance shows
that V[p̂M,n(P)] can be broken down into two terms: the variance generated by the Monte
Carlo randomness Θ on the one hand, and the sampling variance on the other hand. In fact,
equation (C.3.3) in the proof of Theorem 4.1 below reveals that

V[p̂M,n(P)] =
1
M
E[pn(P)](1−E[pn(P)])+(1− 1

M
)V[pn(P)].

The stopping criterion (5.1) ensures that the first term becomes negligible as M → ∞, so
that V[p̂M,n(P)] reduces to the sampling variance V[pn(P)], which is independent of
M. Therefore, stability with respect to data perturbation cannot be further improved by
increasing the number of trees. Additionally, the trees are only involved in the selection
of the paths. For a given set of paths P̂M,n,p0 , the construction of the final aggregated
estimate η̂M,n,p0 (see Section 3 of the chapter) is independent of the forest. Thus, if further
increasing the number of trees does not impact the path selection, neither it improves the
predictive accuracy.

Next, Theorem C.2 states that conditionally on Dn and with D ′
n = Dn, ŜM,n,p0 should

be close to 1, and also provides an asymptotic approximation of E[ŜM,n,p0|Dn] for large
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values of the number of trees M, which quantifies the influence of M on the mean stability,
conditional on Dn. We let Un

def
= {pn(P) : P ∈ Π} be the empirical counterpart of U ⋆.

Theorem C.2. If p0 ∈ [0,1]\Un and D ′
n = Dn, then, conditional on Dn, we have

lim
M→∞

ŜM,n,p0 = 1 in probability.

In addition, for all p0 < max Un,

1−E[ŜM,n,p0|Dn]

∼
M→∞

∑
P∈Π

Φ(Mp0,M, pn(P))(1−Φ
(
Mp0,M, pn(P)))

1
2 ∑P ′∈Π 1pn(P ′)>p0 +1pn(P ′)>p0−ρn(P,P ′)σn(P′)

σn(P)
(p0−pn(P))

,

where Φ(Mp0,M, pn(P)) is the cdf of a binomial distribution with parameter pn(P), M
trials, evaluated at Mp0, and, for all P,P ′ ∈ Π ,

σn(P) =
√

pn(P)(1− pn(P)),

and

ρn(P,P ′) =
Cov(1P∈T (Θ ,Dn),1P ′∈T (Θ ,Dn)|Dn)

σn(P)σn(P ′)
.

The proof of Theorem C.2 is to be found in Section C.4. The equivalent provided in
Theorem C.2 is defined when the sets of rules P̂M,n,p0 and P̂ ′

M,n,p0
are not post-treated.

It considerably simplifies the analysis of the asymptotic behavior of E[ŜM,n,p0|Dn]. Since
the post-treatment is deterministic, this operation is not an additional source of instability.
Then, if the estimation of the rule set without post-treatment is stable, it is also the case
when the post-treatment is added. Finally, despite its apparent complexity, the asymptotic
approximation of 1−E[ŜM,n,p0|Dn] can be easily estimated, and an efficient stopping
criterion for the number of trees is therefore derived in (5.1).

C.3 Proof of Theorem 4.1

We recall Assumptions (A4.1)-(A4.3) and Theorem 4.1 for the sake of clarity.

(A4.1) The subsampling rate an satisfies lim
n→∞

an = ∞ and lim
n→∞

an
n = 0.

(A4.2) The number of trees Mn satisfies lim
n→∞

Mn = ∞.

(A4.3) X has a strictly positive density f with respect to the Lebesgue measure. Furthermore,
for all j ∈ {1, . . . , p}, the marginal density f ( j) of X ( j) is continuous, bounded, and
strictly positive.
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Theorem 4.1. If Assumptions (A4.1)-(A4.3) are satisfied, then, for all P ∈ Π , we have

lim
n→∞

p̂Mn,n(P) = p⋆(P) in probability.

First, we prove Theorem 4.1 for a path of one split. The proof is extended for a path
of two splits in the next subsection and follows the same steps. Finally, the proof can be
easily extended to a path of any depth d ∈ N⋆ by recursion.

C.3.1 Proof of Theorem 4.1 for a path of one split

We consider P1 = {( j1,r1,s1)} a path of one split, where j1 ∈ {1, . . . , p}, r1 ∈ {1, . . . ,q−
1}, and s1 ∈ {L,R}. We assume throughout that Assumptions (A4.1)-(A4.3) are satisfied.

Before proving Theorem 4.1, we state five lemmas (Lemma C.1 to Lemma C.5). Their
proof can be found in the Subsection C.3.3. Lemma C.1 is a preliminary technical result
used to state both Lemmas C.2 and C.4 - case (b).

Lemma C.1. Let X be a random variable distributed on Rp such that Assumptions (A4.1)
and (A4.3) are satisfied. Then, for all j ∈ {1, . . . , p} and all r ∈ {1, . . . ,q−1}, we have

lim
n→∞

√
an P

(
q⋆( j)

r ≤ X ( j) < q̂( j)
n,r
)
= 0

and
lim
n→∞

√
an P

(
q̂( j)

n,r ≤ X ( j) < q⋆( j)
r
)
= 0.

Lemma C.2 is used to prove both consistency (Lemma C.3) and convergence rate
(Lemma C.4) of the CART-splitting criterion when the root node of the tree is cut at an
empirical quantile. Lemma C.5 is an intermediate result to prove Theorem 4.1.

Lemma C.2. If Assumptions (A4.1) and (A4.3) are satisfied, then for all j ∈ {1, . . . , p},
all r ∈ {1, . . . ,q− 1}, and all H ⊆ Rp such that P(X ∈ H,X ( j) < q⋆( j)

r ) > 0 and P(X ∈
H,X ( j) ≥ q⋆( j)

r )> 0, we have

lim
n→∞

√
an
(
Lan

(
H, q̂( j)

n,r
)
−Lan

(
H,q⋆( j)

r
))

= 0 in probability.

Lemma C.3. If Assumptions (A4.1) and (A4.3) are satisfied, then for all j ∈ {1, . . . , p},
all r ∈ {1, . . . ,q− 1}, and all H ⊆ Rp such that P(X ∈ H,X ( j) < q⋆( j)

r ) > 0 and P(X ∈
H,X ( j) ≥ q⋆( j)

r )> 0, we have

lim
n→∞

Lan

(
H, q̂( j)

n,r
)
= L⋆

(
H,q⋆( j)

r
)

in probability.

When splitting a node, if the theoretical CART-splitting criterion has multiple maxima,
one is randomly selected. This random selection follows a discrete probability law, which
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is not necessarily uniform and is based on PX,Y as specified in Definition C.1. In order
to derive the limit of the probability that a given split occurs in a Θ -random tree in the
empirical algorithm, one needs to assess the convergence rate of the empirical CART-
splitting criterion when it has multiple maxima.

Lemma C.4. Consider that Assumptions (A4.1) and (A4.3) are satisfied. Let C1 ⊂
{1, . . . , p} × {1, . . . ,q − 1} be a set of splits of cardinality c1 ≥ 2, such that, for all
( j,r) ∈ C1, L⋆(Rp,q⋆( j)

r )
def
= L⋆

C1
, i.e., the theoretical CART-splitting criterion is constant

for all splits in C1. Let ( j1,r1) ∈ C1 and let L(C1)
n,P1

be a random vector where each com-
ponent is the difference between the empirical CART-splitting criterion for the splits
( j,r) ∈ C1 \ ( j1,r1) and ( j1,r1), that is

L(C1)
n,P1

=
(

Lan

(
Rp, q̂( j)

n,r
)
−Lan

(
Rp, q̂( j1)

n,r1

))
( j,r)∈C1\( j1,r1)

.

(a) If L⋆
C1

> 0, then we have

√
an L(C1)

n,P1

D−→
n→∞

N (0,Σ),

where, for all ( j,r),( j′,r′) ∈ C1 \ ( j1,r1), each element of the covariance matrix Σ is
defined by Σ( j,r),( j′,r′) = Cov[Z j,r,Z j′,r′], with

Z j,r =
(
Y−E[Y |X ( j1) < q⋆( j1)

r1 ]1
X ( j1)<q⋆( j1)

r1

−E[Y |X ( j1) ≥ q⋆( j1)
r1 ]1

X ( j1)≥q⋆( j1)
r1

)2

−
(
Y −E[Y |X ( j) < q⋆( j)

r ]1
X ( j)<q⋆( j)

r
−E[Y |X ( j) ≥ q⋆( j)

r ]1
X ( j)≥q⋆( j)

r

)2
.

Besides, for all ( j,r) ∈ C1, V[Z j,r]> 0.

(b) If L⋆
C1

= 0, then we have

anL(C1)
n,P1

D−→
n→∞

hP1(V),

where V is a Gaussian vector of covariance matrix Cov[Z]. If C1 is explicitly written
C1 = {( jk,rk)}k=1,...,c1 , Z is defined, for k ∈ {1, . . . ,c1}, by

Z2k−1 =
1

√pL,k
(Y −E[Y ])1

X ( jk)<q
⋆( jk)
rk

Z2k =
1

√pR,k
(Y −E[Y ])1

X ( jk)≥q
⋆( jk)
rk

,
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where pL,k = P(X ( jk) < q⋆( jk)
rk ), pR,k = P(X ( jk) ≥ q⋆( jk)

rk ), and hP1 is a multivariate
quadratic form defined as

hP1 :

 x1
...

x2c1

→



x2
3 + x2

4 − x2
1 − x2

2
...

x2
2k−1 + x2

2k − x2
1 − x2

2
...

x2
2c1−1 + x2

2c1
− x2

1 − x2
2


.

Besides, the variance of each component of hP1(V) is strictly positive.

Definition C.1 (Theoretical splitting procedure). Let θ
(V )
1 be the set of eligible variables

to split the root node of a theoretical random tree. The set of best theoretical cuts at the
root node is defined as

C ⋆
1
(
θ
(V )
1
)
= argmax

( j,r)∈θ
(V )
1 ×{1,...,q−1}

L⋆
(
Rp,q⋆( j)

r
)
.

If C ⋆
1 (θ

(V )
1 ) has multiple elements, then ( j1,r1) is randomly drawn with probability

P
(
P1 ∈ T ⋆(Θ)|Θ (V ) = θ

(V )
)
= Φ

θ
(V )
1 ,( j1,r1)

(0), (C.3.1)

where Φ
θ
(V )
1 ,( j1,r1)

is the cdf of the limit law defined in Lemma C.4 for C1 = C ⋆
1 (θ

(V )
1 ). This

definition is extended for the second split in Definition C.2.

Recall that the randomness in a tree can be decomposed as Θ = (Θ (S),Θ (V )), where
Θ (S) corresponds to the subsampling and Θ (V ) is related to the variable selection. Θ (V )

takes values in the finite set Ω (V ) = {1, . . . , p}3×mtry.

Lemma C.5. If Assumptions (A4.1)-(A4.3) are satisfied, then for all θ (V ) ∈ Ω (V ), we have

lim
n→∞

P
(
P1 ∈ T (Θ ,Dn)|Θ (V ) = θ

(V )
)
= P

(
P1 ∈ T ⋆(Θ)|Θ (V ) = θ

(V )
)
.

We are now equipped to prove Theorem 4.1 in the case of one single split. Recall that

E[p̂Mn,n(P1)] = P(P1 ∈ T (Θ ,Dn)). (C.3.2)

Since Θ (V ) takes values in the finite set Ω (V ), according to Lemma C.5, we have

lim
n→∞

P(P1 ∈ T (Θ ,Dn))

= lim
n→∞

∑
θ (V )∈Ω (V )

P
(
P1 ∈ T (Θ ,Dn)|Θ (V ) = θ

(V )
)
P

Θ (V )

(
Θ

(V ) = θ
(V )
)
,
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lim
n→∞

P(P1 ∈ T (Θ ,Dn))

= ∑
θ (V )∈Ω (V )

P
(
P1 ∈ T ⋆(Θ)|Θ (V ) = θ

(V )
)
P

Θ (V )

(
Θ

(V ) = θ
(V )
)

= P(P1 ∈ T ⋆(Θ)).

Therefore,
lim
n→∞

E[p̂Mn,n(P1)] = p⋆(P1).

To finish the proof, we just have to show that lim
n→∞

V[p̂Mn,n(P1)] = 0.
The law of total variance gives

V[p̂Mn,n(P1)] = E
[
V[p̂Mn,n(P1)|Dn]

]
+V

[
E[p̂Mn,n(P1)|Dn]

]
= E

[
V
[ 1

Mn

Mn

∑
ℓ=1
1P1∈T (Θℓ,Dn)|Dn

]]
+V[pn(P1)]

=
1

Mn
E
[
V[1P1∈T (Θ1,Dn)|Dn]

]
+V[pn(P1)]

=
1

Mn
E
[
pn(P1)− pn(P1)

2]+V[pn(P1)],

=
1

Mn
E[pn(P1)](1−E[pn(P1)])+

(
1− 1

Mn

)
V[pn(P1)]. (C.3.3)

Following the approach of Mentch and Hooker (2016), pn(P1) is a complete infinite order
U-statistic with the kernel E[1P1∈T (Θ ,Dn)|Θ

(S),Dn]. From Hoeffding (1948),

V[pn(P1)]≤
an

n
ξan,an,

where ξan,an = V[E[1P1∈T (Θ ,Dn)|Θ
(S),Dn]|Θ (S)]. Since ξan,an is bounded and lim

n→∞

an
n = 0,

lim
n→∞

V[pn(P1)] = 0.

Using equality (C.3.3), since pn(P1) is bounded and lim
n→∞

Mn = ∞,

lim
n→∞

V[pMn,n(P1)] = 0.

Finally,

lim
n→∞

E
[
(p̂Mn,n(P1)− p⋆(P1))

2]
= lim

n→∞
V[p̂Mn,n(P1)]+

(
E[p̂Mn,n(P1)]− p⋆(P1)

)2
= 0,

which concludes the proof.
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C.3.2 Proof of Theorem 4.1 for a path of two split

The proof of Theorem 4.1 is extended for a path of two splits. We consider P1 =

{( j1,r1,s1)} a path of one split and P2 = {( jk,rk,sk),k = 1,2} a path of two splits,
where j1, j2 ∈ {1, ..., p}, r1,r2 ∈ {1, ...,q−1} and s1,s2 ∈ {L,R}. We assume assumptions
(A4.1)-(A4.3) are satisfied.

The path P2 = {( j1,r1,s1),( j2,r2,s2)} can occur in trees where the split at the root
node is ( j1,r1) and the split of one of the child node is ( j2,r2), and in trees where the splits
are made in the reversed order, ( j2,r2) at the root node and ( j1,r1) at one of the child node.
Since these two events are disjoint, P

(
P2 ∈ T (Θ ,Dn)

)
is the sum of the probability of

these two events. Without loss of generality, we will consider in the entire proof that the
split at the root node is ( j1,r1). Lemmas C.6 - C.9 below extend Lemmas C.2 - C.5 to the
case where the tree path contains two splits.

We need to introduce additional notations, first, the theoretical hyperrectangle based
on a path P by

H⋆(P) =

x ∈Rp :

x( jk) < q⋆( jk)
rk if sk = L

x( jk) ≥ q⋆( jk)
rk if sk = R

,k ∈ 1, . . . ,d

 ,

with d ∈ {1,2}, the empirical counterpart of Ĥn(P) defined in (2.3). Furthermore, since
from assumption (A4.3), X has a strictly positive density, then for j ∈ {1, ..., p}\ j1, and
r ∈ {1, ...,q−1}, P

(
X∈H⋆(P1),X ( j) < q⋆( j)

r
)
> 0 and P

(
X∈H⋆(P1),X ( j) ≥ q⋆( j)

r
)
> 0.

When j = j1, the second cut is performed along the same direction as the first one. In that
case, depending on the side s1 of the first cut and the cut positions r1 and r, one of the two
child node can be empty with probability one. For example, the hyperrectangle associated
to the path {(1,2,L),(1,3,R)} is empty. In SIRUS, such splits are not considered to find
the best cut for a node at the second level of the tree. Thus we define CP1 the set of
possible splits for the second cut

CP1 = {( j,r), j ∈ {1, ..., p}\ j1,r ∈ {1, ...,q−1}}
∪{( j1,r), s.t. r < r1 if s1 = L, and r > r1 if s1 = R},

and CP1

(
θ
(V )
2
)
=
{
( j,r) ∈ CP1 s.t. j ∈ θ

(V )
2
}

when the split directions are restricted to
θ
(V )
2 ⊂ {1, ..., p}.

Lemma C.6. If Assumptions (A4.1) and (A4.3) are satisfied, then for all ( j,r) ∈ CP1 , we
have

lim
n→∞

√
an
(
Lan

(
Ĥn(P1), q̂

( j)
n,r
)
−Lan

(
H⋆(P1),q

⋆( j)
r
))

= 0 in probability.
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Lemma C.7. If Assumptions (A4.1) and (A4.3) are satisfied, then for all ( j,r) ∈ CP1 , we
have

lim
n→∞

Lan

(
Ĥn(P1), q̂

( j)
n,r
)
= L⋆

(
H⋆(P1),q

⋆( j)
r
)

in probability.

Lemma C.8. Consider that Assumptions (A4.1) and (A4.3) are satisfied. Let C1 ⊂
{1, ..., p}×{1, ...,q− 1} and C2 ⊂ CP1 be two sets of splits of cardinality c1 ≥ 1 and
c2 ≥ 2, such that the theoretical CART-splitting criterion is constant for all splits in C1 on
one hand, and in C2 on the other hand, i.e.,

∀l ∈ {1,2}, ∀( j,r) ∈ Cl, L⋆
(
Hl,q

⋆( j)
r
) def
= L⋆

Cl
,

where H1 = Rp and H2 = H⋆(P1). Let ( j1,r1) ∈ C1, ( j2,r2) ∈ C2, and let L(C1,C2)
n,P2

a the random vector where each component is the difference between the empirical
CART-splitting criterion for the splits ( j,r) ∈ C1 \ ( j1,r1) and ( j1,r1) for the first c1 −1
components, and for the splits ( j,r) ∈ C2 \ ( j2,r2) and ( j2,r2) for the remaining c2 −1
components, that is

L(C1,C2)
n,P2

=

 [
Lan

(
Rp, q̂( j)

n,r
)
−Lan

(
Rp, q̂( j1)

n,r1

)]
( j,r)∈C1\( j1,r1)[

Lan

(
Ĥn(P1), q̂

( j)
n,r
)
−Lan

(
Ĥn(P1), q̂

( j2)
n,r2

)]
( j,r)∈C2\( j2,r2)

 .

(a) If L⋆
C1

> 0 and L⋆
C2

> 0, then we have

√
anL(C1,C2)

n,P2

D−→
n→∞

N (0,Σ)

where for l, l′ ∈ {1,2}, for all ( j,r) ∈ Cl \ ( jl,rl), ( j′,r′) ∈ Cl′ \ ( jl′,rl′), each element of
the covariance matrix Σ is defined by Σ( j,r,l),( j′,r′,l′) = Cov[Z j,r,l,Z j′,r′,l′], with

Z j,r,l =
1

P(X ∈ Hl)

(
Y −µ

( jl)
L,rl
1

X ( jl )<q
⋆( jl )
rl

−µ
( jl)
R,rl
1

X ( jl )≥q
⋆( jl )
rl

)2
1X∈Hl

− 1
P(X ∈ Hl)

(
Y −µ

( j)
L,r1X ( j)<q⋆( j)

r
−µ

( j)
R,r1X ( j)≥q⋆( j)

r

)2
1X∈Hl ,

µ
( j)
L,r = E

[
Y |X ( j) < q⋆( j)

r ,X ∈ Hl
]
, µ

( j)
R,r = E

[
Y |X ( j) ≥ q⋆( j)

r ,X ∈ Hl
]
. Besides, for all l ∈

{1,2} and for all ( j,r) ∈Cl , V[Z j,r,l]> 0.

(b) If L⋆
C1

= L⋆
C2

= 0, then we have

anL(C1,C2)
n,P2

D−→
n→∞

hP2(V),
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where V is a gaussian vector of covariance matrix Cov[Z]. If C1 and C2 are explicitly
written C1 = {( jk,rk)}k∈J1 , and C2 = {( jk,rk)}k∈J2 , with J1 = {1, ...,c1 +1}\2 and J2 =

{2}∪{c1 +2, ...,c1 + c2}, Z is defined, for l ∈ {1,2} and k ∈ Jl , by

Z2k−1 =
1√

pL,kP(X ∈ Hl)
(Y −E[Y |X ∈ Hl])1X ( jk)<q

⋆( jk)
rk

1X∈Hl

Z2k =
1√

pR,kP(X ∈ Hl)
(Y −E[Y |X ∈ Hl])1X ( jk)≥q

⋆( jk)
rk

1X∈Hl ,

where pL,k = P
(
X ( jk) < q⋆( jk)

rk ,X ∈ Hl
)
, pR,k = P

(
X ( jk) ≥ q⋆( jk)

rk ,X ∈ Hl
)
, and hP2 is a

multivariate quadratic form defined as

hP2 :

 x1
...

x2(c1+c2)

→



x2
5 + x2

6 − x2
1 − x2

2
...

x2
2c1+1 + x2

2c1+2 − x2
1 − x2

2

x2
2c1+3 + x2

2c1+4 − x2
3 − x2

4
...

x2
2(c1+c2)−1 + x2

2(c1+c2)
− x2

3 − x2
4


.

Besides, the variance of each component of hP2(V) is strictly positive.

(c) If L⋆
C1

> 0 and L⋆
C2

= 0, then we have

anL(C1,C2)
n,P2

D−→
n→∞

h′P2
(V),

where V is a gaussian vector of covariance matrix Cov[Z], and Z is defined as, for k ∈ J1,

Z2k−1 =
(
Y −E

[
Y |X ( jk) < q⋆( jk)

rk

])2
1

X ( jk)<q
⋆( jk)
rk

Z2k =
(
Y −E

[
Y |X ( jk) ≥ q⋆( jk)

rk

])2
1

X ( jk)≥q
⋆( jk)
rk

,

for k ∈ J2,

Z2k−1 =
Y −E[Y |X ∈ H⋆(P1)]√

pL,kP(X ∈ H⋆(P1))
1

X ( jk)<q
⋆( jk)
rk ,X∈H⋆(P1)

Z2k =
Y −E[Y |X ∈ H⋆(P1)]√

pR,kP(X ∈ H⋆(P1))
1

X ( jk)≥q
⋆( jk)
rk ,X∈H⋆(P1)

,
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and h′P2
is a multivariate quadratic form defined as

h′P2
:

 x1
...

x2(c1+c2)

→



x1 + x2 − x5 − x6
...

x1 + x2 − x2c1+1 − x2c1+2

x2
2c1+3 + x2

2c1+4 − x2
3 − x2

4
...

x2
2(c1+c2)−1 + x2

2(c1+c2)
− x2

3 − x2
4


.

Besides, the variance of each component of h′P2
(V) is strictly positive.

(d) L⋆
C1

= 0 and L⋆
C2

> 0. Symmetric to case (c).

Definition C.2 (Theoretical splitting procedure at children nodes). Let θ (V ) =

(θ
(V )
1 ,θ

(V )
2 , ·) ∈ Ω (V ) be the sets of eligible variables to split the nodes of a theoretical

random tree. The set of best theoretical cuts at the left children node along the variables in
θ
(V )
2 is defined as

C ⋆
2
(
θ
(V )
2
)
= argmax

( j,r)∈CP1

(
θ
(V )
2

)L⋆
(
H⋆(P1),q

⋆( j)
r
)
.

If C ⋆
2
(
θ
(V )
2
)

has multiple elements, then ( j2,r2) is randomly drawn with probability

P
(
P2 ∈ T ⋆(Θ)|Θ (V ) = θ

(V )
)
=

ΦP1,θ (V ),( j2,r2)
(0)

P
(
P1 ∈ T ⋆(Θ)|Θ (V ) = θ (V )

) , (C.3.4)

where P
(
P1 ∈ T ⋆(Θ)|Θ (V ) = θ (V )

)
is defined from Definition C.1, and ΦP1,θ (V ),( j2,r2)

is

the cdf of the limit law defined in Lemma C.8 for C1 = C ⋆
1
(
θ
(V )
1
)

and C2 = C ⋆
2
(
θ
(V )
2
)
.

Lemma C.9. If Assumptions (A4.1)-(A4.3) are satisfied, then for all θ (V ) ∈ Ω (V ), we have

lim
n→∞

P
(
P2 ∈ T (Θ ,Dn)|Θ (V ) = θ

(V )
)
= P

(
P2 ∈ T ⋆(Θ)|Θ (V ) = θ

(V )
)

Finally, the proof of Theorem 4.1 in the two-splits scenario is the same as in the
single-split scenario.

C.3.3 Proofs of intermediate lemmas

Proof of Lemma C.1. Set j ∈ {1, ..., p}, and r ∈ {1, ...,q− 1}. We define the marginal
cumulative distribution function F( j) of X ( j), F( j)(x) =P

(
X ( j) < x

)
, and F( j)

n the empirical
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c.d.f.

F( j)
n (x) =

1
n

n

∑
i=1
1

X ( j)
i ≤x

.

We adapt an inequality from Serfling (2009) (section 2.3.2 page 75) to bound the following
conditional probability for all ε > 0

P
(
q⋆( j)

r ≤ X ( j)
1 < q̂( j)

n,r |X ( j)
1 = q⋆( j)

r + ε
)

= P
(
q⋆( j)

r + ε < q̂( j)
n,r |X ( j)

1 = q⋆( j)
r + ε

)
≤ P

(
F( j)

n
(
q⋆( j)

r + ε
)
≤ F( j)

n
(
q̂( j)

n,r
)
|X ( j)

1 = q⋆( j)
r + ε

)
≤ P

(
1+

n

∑
i=2
1

X ( j)
i ≤q⋆( j)

r +ε
≤
⌈

n.r
q

⌉)
≤ P

( n

∑
i=2
1

X ( j)
i ≤q⋆( j)

r +ε
− (n−1)F( j)(q⋆( j)

r + ε
)

(C.3.5)

≤
⌈

n.r
q

⌉
−1− (n−1)F( j)(q⋆( j)

r + ε
))

(C.3.6)

Since f is continuous and strictly positive, there exists three constants c1,c2,η > 0
such that for all x ∈ [q⋆( j)

r ,q⋆( j)
r +η ], c1 ≤ f ( j)(x)≤ c2. Thus, for all ε < η , we have

F( j)(q⋆( j)
r + ε

)
−F( j)(q⋆( j)

r
)
=
∫ q⋆( j)

r +ε

q⋆( j)
r

f ( j)(x)dx,

which leads to

c1ε ≤ F( j)(q⋆( j)
r + ε

)
−F( j)(q⋆( j)

r
)
≤ c2ε.

Consequently, ⌈
n.r
q

⌉
−1−(n−1)F( j)(q⋆( j)

r + ε
)

≤
⌈

n.r
q

⌉
−1− (n−1)

(
c1ε +F( j)(q⋆( j)

r
))

≤
⌈

n.r
q

⌉
−1− (n−1)c1ε − (n−1).r

q

≤ 1− (n−1)c1ε.

For n > 1+ 1
c1ε

, we can apply Hoeffding inequality to C.3.6.
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We obtain

P
(
q⋆( j)

r ≤ X ( j)
1 < q̂( j)

n,r |X ( j)
1 = q⋆( j)

r + ε
)

≤ P
( n

∑
i=2
1

X ( j)
i ≤q⋆( j)

r +ε
− (n−1)F( j)(q⋆( j)

r + ε
)
≤ 1− (n−1)c1ε

)
≤ e−

2
n

(
1−(n−1)c1ε

)2

≤Ce−2nc2
1ε2

, (C.3.7)

where C = e2c1η(1+2c1η). By definition, we have

P
(
q⋆( j)

r ≤ X ( j)
1 < q̂( j)

n,r) =
∫
]0,∞[

P
(
q⋆( j)

r ≤ X ( j)
1 < q̂( j)

n,r |X ( j)
1 = q⋆( j)

r + ε
)

× f ( j)(q⋆( j)
r + ε

)
dε.

To bound the previous integral, we break it down in three parts. Since f ( j) is bounded by
c2 on [q⋆( j)

r ,q⋆( j)
r +η ], for n > 1+ 1

c1η
we use inequality C.3.7 to get

P
(
q⋆( j)

r ≤ X ( j)
1 < q̂( j)

n,r
)
≤
∫
]0, 1

(n−1)c1
]
c2dε

+
∫
] 1
(n−1)c1

,η [
c2Ce−2nc2

1ε2
dε

+
∫
[η ,∞[

Ce−2nc2
1η2

f ( j)(q⋆( j)
r + ε

)
dε.

In the second integral, we introduce the following change of variable u =
√

2nc1ε∫
] 1
(n−1)c1

,η [
c2Ce−2nc2

1ε2
dε =

c2C
c1
√

2n

∫
]
√

2n
(n−1) ,

√
2nc1η [

e−u2
du

≤ c2C
c1
√

2n

∫
]0,∞[

e−u2
du ≤

√
πc2C

2c1
√

2n
,

and therefore we can write

√
anP

(
q⋆( j)

r ≤ X ( j)
1 < q̂( j)

n,r
)
≤

c2
√

an

(n−1)c1
+

√
πanc2C

2c1
√

2n
+C

√
ane−2nc2

1η2

From Assumption (A4.1), lim
n→∞

an
n = 0, and then

lim
n→∞

√
an P

(
q⋆( j)

r ≤ X ( j)
1 < q̂( j)

n,r
)
= 0.
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The case lim
n→∞

√
anP
(
q̂( j)

n,r ≤ X ( j)
1 < q⋆( j)

r
)
= 0 is similar.

C.3.3.1 Case 1: P1

Proof of Lemma C.2. Let j ∈ {1, ..., p}, r ∈ {1, ...,q−1}, and H ⊆ Rp such that P
(
X ∈

H,X ( j) < q⋆( j)
r
)
> 0 and P

(
X ∈ H,X ( j) ≥ q⋆( j)

r
)
> 0. Let

∆
( j)
n,r =

√
an
(
Lan

(
H, q̂( j)

n,r
)
−Lan

(
H,q⋆( j)

r
))

that is

∆
( j)
n,r =−

√
an

Nn(H)

[ an

∑
i=1

(
Yi −Y HL1X ( j)

i <q̂( j)
n,r
−Y HR1X ( j)

i ≥q̂( j)
n,r

)2
1Xi∈H

−
an

∑
i=1

(
Yi −Y H⋆

L
1

X ( j)
i <q⋆( j)

r
−Y H⋆

R
1

X ( j)
i ≥q⋆( j)

r

)2
1Xi∈H

]
where, for a generic hyperrectangle H, we define Nn(H) = ∑

an
i=11Xi∈H , and

HL =
{

x ∈ H : x( j) < q̂( j)
n,r
}

and Y HL =
1

Nn(HL)

an

∑
i=1

Yi1X ( j)
i <q̂( j)

n,r
1Xi∈H ,

with the convention Y HL = 0 if HL is empty. The theoretical quantities H⋆
L and Y H⋆

L
are

defined similarly by replacing the empirical quantile by its population version. We define
symmetrically HR, H⋆

R, Y HR , Y H⋆
R
.

Simple calculations show that

∆
( j)
n,r =

√
an

Nn(H)

(
Y 2

HL
Nn(HL)−Y 2

H⋆
L
Nn(H⋆

L)
)

+

√
an

Nn(H)

(
Y 2

HR
Nn(HR)−Y 2

H⋆
R
Nn(H⋆

R)
)

(C.3.8)

The first term in equation (C.3.8) can be rewritten as

√
an

Nn(H
)(Y 2

HL
Nn(HL)−Y 2

H⋆
L
Nn(H⋆

L)
)

=

√
an

Nn(H)Nn(HL)Nn(H⋆
L)

an

∑
i,k,l=1

YiYk1Xi∈H,Xk∈H

×
(
1

X ( j)
l <q⋆( j)

r
1

X ( j)
i <q̂( j)

n,r
1

X ( j)
k <q̂( j)

n,r
−1

X ( j)
l <q̂( j)

n,r
1

X ( j)
i <q⋆( j)

r
1

X ( j)
k <q⋆( j)

r

)
.

Since Yi ∈ {0,1}, we have the following bound
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√
an

Nn(H)

∣∣Y 2
HL

Nn(HL)−Y 2
H⋆

L
Nn(H⋆

L)
∣∣

≤
√

an

Nn(H)Nn(HL)Nn(H⋆
L)

an

∑
i,k,l=1

∣∣1
X ( j)

l <q⋆( j)
r
1

X ( j)
i <q̂( j)

n,r
1

X ( j)
k <q̂( j)

n,r

−1
X ( j)

l <q̂( j)
n,r
1

X ( j)
i <q⋆( j)

r
1

X ( j)
k <q⋆( j)

r

∣∣,
and finally

√
an

Nn(H)

∣∣Y 2
HL

Nn(HL)−Y 2
H⋆

L
Nn(H⋆

L)
∣∣≤ a3

n
Nn(H)Nn(HL)Nn(H⋆

L)
W ( j)

n,r , (C.3.9)

where

W ( j)
n,r =

√
an

a3
n

an

∑
i,k,l=1

∣∣1
X ( j)

l <q⋆( j)
r
1

X ( j)
i <q̂( j)

n,r
1

X ( j)
k <q̂( j)

n,r
(C.3.10)

−1
X ( j)

l <q̂( j)
n,r
1

X ( j)
i <q⋆( j)

r
1

X ( j)
k <q⋆( j)

r

∣∣.
A close inspection of the terms inside the sum of (C.3.10) reveals that

E
[
W ( j)

n,r
]
≤

√
an

a3
n

an

∑
i,k,l=1

P
(
q̂( j)

n,r ≤ X ( j)
i < q⋆( j)

r
)
+P
(
q̂( j)

n,r ≤ X ( j)
k < q⋆( j)

r
)

+P
(
q⋆( j)

r ≤ X ( j)
l < q̂( j)

n,r
)
+P
(
q⋆( j)

r ≤ X ( j)
i < q̂( j)

n,r
)

+P
(
q⋆( j)

r ≤ X ( j)
k < q̂( j)

n,r
)
+P
(
q̂( j)

n,r ≤ X ( j)
l < q⋆( j)

r
)

≤ 3
√

an P
(
q̂( j)

n,r ≤ X ( j)
1 < q⋆( j)

r
)
+3

√
an P

(
q⋆( j)

r ≤ X ( j)
1 < q̂( j)

n,r
)
,

which tends to zero, according to Lemma C.1. Thus, in probability,

lim
n→∞

W ( j)
n,r = 0. (C.3.11)

Regarding the remaining terms in inequality (C.3.9), by the law of large numbers, in
probability,

lim
n→∞

Nn(H)

an
= P

(
X ∈ H

)
, lim

n→∞

Nn(H⋆
L)

an
= P

(
X ∈ H⋆

L
)
. (C.3.12)

Additionally,

E
[∣∣Nn(HL)

an
− Nn(H⋆

L)

an

∣∣]≤ E
[ 1

an

an

∑
i=1
1

X ( j)
i ∈H

∣∣1
X ( j)

i ≤q̂( j)
n,r
−1

X ( j)
i ≤q⋆( j)

r

∣∣],
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E
[∣∣Nn(HL)

an
− Nn(H⋆

L)

an

∣∣]≤ P
(
q̂( j)

n,r ≤ X ( j)
1 < q⋆( j)

r
)
+P
(
q⋆( j)

r ≤ X ( j)
1 < q̂( j)

n,r
)
,

which tends to zero, according to Lemma C.1. Therefore, in probability,

lim
n→∞

Nn(HL)

an
− Nn(H⋆

L)

an
= 0. (C.3.13)

Since P(X ∈ H)> 0 and P(X ∈ H⋆
L)> 0 by assumption, we can combine (C.3.11)-(C.3.13)

to obtain, in probability,

lim
n→∞

a3
n

Nn(H)Nn(HL)Nn(H⋆
L)

=
1

P(X ∈ H)P(X ∈ H⋆
L)

2 . (C.3.14)

Using (C.3.11) and (C.3.14) and inequality (C.3.9), we obtain, in probability,

lim
n→∞

√
an

Nn(H)

∣∣Y 2
HL

Nn(HL)−Y 2
H⋆

L
Nn(H⋆

L)
∣∣= 0.

Similar results can be derived for the other term in equation (C.3.8), which allows us to
conclude that, in probability,

lim
n→∞

√
an
(
Lan

(
H, q̂( j)

n,r
)
−Lan

(
H,q⋆( j)

r
))

= 0.

Proof of Lemma C.3. Let j ∈ {1, ..., p}, r ∈ {1, ...,q− 1} and H ⊆ Rp such that P
(
X ∈

H,X ( j) < q⋆( j)
r
)
> 0 and P

(
X ∈ H,X ( j) ≥ q⋆( j)

r
)
> 0.

Lan

(
H, q̂( j)

n,r
)
= Lan

(
H,q⋆( j)

r
)
+
(
Lan

(
H, q̂( j)

n,r
)
−Lan

(
H,q⋆( j)

r
))

From the law of large number, in probability,

lim
n→∞

Lan

(
H,q⋆( j)

r
)
= L⋆

(
H,q⋆( j)

r
)
.

Thus, according to Lemma C.2, in probability,

lim
n→∞

Lan

(
H, q̂( j)

n,r
)
= L⋆

(
H,q⋆( j)

r
)
.
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Proof of Lemma C.4. We consider C1, a set of splits of cardinality c1 ≥ 2 satisfying, for
all ( j,r) ∈ C1, L⋆

(
Rp,q⋆( j)

r
) def
= L⋆

C1
. Fix ( j1,r1) ∈ C1, we recall that

L(C1)
n,P1

=
(

Lan

(
Rp, q̂( j)

n,r
)
−Lan

(
Rp, q̂( j1)

n,r1

) )
( j,r)∈C1\( j1,r1)

.

Case (a): L⋆
C1

> 0 We first consider the following decomposition for ( j,r) ∈ C1,

Lan

(
Rp, q̂( j)

n,r
)
= Lan

(
Rp,q⋆( j)

r
)
+
(
Lan

(
Rp, q̂( j)

n,r
)
−Lan

(
Rp,q⋆( j)

r
))

=
1
an

an

∑
i=1

(Yi −Y )2 − 1
an

an

∑
i=1

(
Yi −Y ⋆

L1X ( j)
i <q⋆( j)

r
−Y ⋆

R1X ( j)
i ≥q⋆( j)

r

)2

+Lan

(
Rp, q̂( j)

n,r
)
−Lan

(
Rp,q⋆( j)

r
)
,

where

N⋆
n,L =

an

∑
i=1
1

X ( j)
i <q⋆( j)

r
and Y ⋆

L =
1

N⋆
n,L

an

∑
i=1

Yi1X ( j)
i <q⋆( j)

r

(Y ⋆
R, N⋆

n,R are defined symmetrically). Letting µ
( j)
L,r = E

[
Y |X ( j) < q⋆( j)

r
]

(and µ
( j)
R,r symmet-

rically), the first two terms of the last decomposition are standard variance estimates and
we can write

Lan

(
Rp, q̂( j)

n,r
)
=

1
an

an

∑
i=1

(Yi −Y )2 (C.3.15)

− 1
an

an

∑
i=1

(
Yi −µ

( j)
L,r1X ( j)

i <q⋆( j)
r

−µ
( j)
R,r1X ( j)

i ≥q⋆( j)
r

)2
+R( j)

n,r , (C.3.16)

where

R( j)
n,L =

N⋆
n,L

an

(
Y ⋆

L −µ
( j)
L,r
)2

+
N⋆

n,R

an

(
Y ⋆

R −µ
( j)
L,r
)2 (C.3.17)

+Lan

(
Rp, q̂( j)

n,r
)
−Lan

(
Rp,q⋆( j)

r
)
.

Using the Central limit theorem, in probability,

lim
n→∞

√
an

N⋆
L,r

an

(
Y ⋆

L,r −µ
( j)
L,r
)2

= 0. (C.3.18)

The same result holds for the second term of (C.3.17), and using Lemma C.2 for the third
term of (C.3.17), we get that, in probability,

lim
n→∞

√
an
(
Lan

(
Rp, q̂( j)

n,r
)
−Lan

(
Rp,q⋆( j)

r
))

= 0.
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Finally,

lim
n→∞

√
anR( j)

n,r = 0, in probability.

Using Equation (C.3.16), each component of L(C1)
n,P1

writes, with ( j,r) ∈ C1 \ ( j1,r1),

Lan

(
Rp, q̂( j)

n,r
)
−Lan

(
Rp, q̂( j1)

n,r1

)
=

1
an

an

∑
i=1

(
Yi −µ

( j1)
L,r1
1

X ( j1)
i <q⋆( j1)

r1
−µ

( j1)
R,r1
1

X ( j1)
i ≥q⋆( j1)

r1

)2

−
(
Yi −µ

( j)
L,r1X ( j)

i <q⋆( j)
r

−µ
( j)
R,r1X ( j)

i ≥q⋆( j)
r

)2

+R( j)
n,r −R( j1)

n,r1

We can apply the multivariate Central limit theorem and Slutsky’s theorem to obtain,

√
an L(C1)

n,P1

D−→
n→∞

N
(
0,Σ

)
where for all ( j,r),( j′,r′) ∈ C1 \ ( j1,r1), each element of the covariance matrix Σ is
defined by Σ( j,r),( j′,r′) = Cov[Z j,r,Z j′,r′], with

Z j,r =
(
Y −µ

( j1)
L,r1
1

X ( j1)<q⋆( j1)
r1

−µ
( j1)
R,r1
1

X ( j1)≥q⋆( j1)
r1

)2

−
(
Y −µ

( j)
L,r1X ( j)<q⋆( j)

r
−µ

( j)
R,r1X ( j)≥q⋆( j)

r

)2
.

Since L⋆
C1

> 0, we have for all ( j,r) ∈ C1, µ
( j)
L,r ̸= µ

( j)
R,r . Besides, according to assumption

(A4.3), X has a strictly positive density. Consequently, the variance of Z j,r is strictly
positive. This concludes the first case.

Case (b): L⋆
C1

= 0 Fix ( j,r) ∈ C1. Since L⋆
(
Rp,q⋆( j)

r
)
= 0, we have

E[Y ] = E
[
Y |X ( j) < q⋆( j)

r
]
= E

[
Y |X ( j) ≥ q⋆( j)

r
] def
= µ.

Then, simple calculations show that Lan

(
Rp, q̂( j)

n,r
)

writes

Lan

(
Rp, q̂( j)

n,r
)
=−(Y −µ)2 +

Nn,L

an
(Y L −µ)2︸ ︷︷ ︸

δL

+
Nn,R

an
(Y R −µ)2︸ ︷︷ ︸

δR

,
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where

Nn,L =
an

∑
i=1
1

X ( j)
i <q̂( j)

n,r
and Y L =

1
Nn,L

an

∑
i=1

Yi1X ( j)
i <q̂( j)

n,r

(Nn,R, Y R are defined similarly for the other cell). Letting p( j)
L,r = P

(
X ( j) < q⋆( j)

r
)

and

p( j)
R,r = P

(
X ( j) ≥ q⋆( j)

r
)

with p( j)
L,r, p( j)

R,r > 0, we have

δL =
Nn,L

an
(Y L −µ)2

=
Nn,L

an
(Y ⋆

L −µ)2 −2
Nn,L

an
(Y ⋆

L −Y L)(Y
⋆
L −µ)+

Nn,L

an
(Y ⋆

L −Y L)
2

=
1

p( j)
L,r

( 1
an

an

∑
i=1

(Yi −µ)1
X ( j)

i <q⋆( j)
r

)2
+R( j)

L,r,

where

R( j)
L,r =

(anNn,L

N⋆2
n,L

− 1
pn,L

)( 1
an

an

∑
i=1

(Yi −µ)1
X ( j)

i <q⋆( j)
r

)2

−2
Nn,L

an
(Y ⋆

L −Y L)(Y
⋆
L −µ)+

Nn,L

an
(Y ⋆

L −Y L)
2

By the law of large numbers, lim
n→∞

N⋆
n,L
an

= p( j)
L,r in probability. Using Equation (C.3.13) in

the proof of Lemma C.2, it comes that, in probability, lim
n→∞

Nn,L
an

= p( j)
L,r, and consequently

lim
n→∞

anNn,L

N⋆2
n,L

= 1
p( j)

L,r

. Since
√

an
1
an

∑
an
i=1(Yi−µ)1

X ( j)
i <q⋆( j)

r
converges in distribution to a normal

distribution by the Central limit theorem,

lim
n→∞

an
(anNn,L

N⋆2
n,L

− 1

p( j)
L,r

)( 1
an

an

∑
i=1

(Yi −µ)1
X ( j)

i <q⋆( j)
r

)2
= 0, in probability.

Furthermore, as for Equation (C.3.10) in the proof of Lemma C.2,

√
an|Y

⋆
L −Y L|

≤ a2
n

Nn,LN⋆
n,L

√
an

a2
n

an

∑
i=1,l=1

Yi
∣∣1

X ( j)
i <q⋆( j)

r
1

X ( j)
l <q̂( j)

r
−1

X ( j)
i <q̂( j)

r
1

X ( j)
l <q⋆( j)

r

∣∣
︸ ︷︷ ︸

εL

,

and

E[εL]≤ 2
√

anP
(
q̂( j)

r ≤ X ( j) < q⋆( j)
r
)
+2

√
anP

(
q⋆( j)

r ≤ X ( j) < q̂( j)
r
)
.
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According to Lemma C.1, the right hand side term converges to 0. Then, in probability,
lim
n→∞

εL = 0. Additionally, lim
n→∞

a2
n

Nn,LN⋆
n,L

= 1
p( j)2

L,r

, and then, in probability,

lim
n→∞

√
an(Y

⋆
L −Y L) = 0. (C.3.19)

The second term of anR( j)
L,r writes

−an ×2
Nn,L

an
(Y ⋆

L −Y L)(Y
⋆
L −µ)

=−2
Nn,L

an
×
√

an(Y
⋆
L −Y L)×

√
an(Y

⋆
L −µ),

where in probability, lim
n→∞

2Nn,L
an

= p( j)
L,r, lim

n→∞

√
an(Y

⋆
L −Y L) = 0 according to equation

C.3.19, and
√

an(Y
⋆
L −µ) converges to a normal random variable from the central limit

theorem. By Slutsky theorem, in probability, lim
n→∞

−an × 2Nn,L
an

(Y ⋆
L −Y L)(Y

⋆
L − µ) = 0.

Finally for the third term of anR( j)
L,r we also use equation C.3.19 to conclude that in

probability

lim
n→∞

an ×
Nn,L

an
(Y ⋆

L −Y L)
2 = lim

n→∞

Nn,L

an
[
√

an(Y
⋆
L −Y L)]

2 = 0

Consequently,

lim
n→∞

anR( j)
L,r = 0.

Symmetrically, we also have

δR =
1
pR

( 1
an

an

∑
i=1

(Yi −µ)1
X ( j)

i ≥q⋆( j)
r

)2
+R( j)

R,r,

with lim
n→∞

anR( j)
R,r = 0, in probability.

Each component of L(C1)
n,P1

writes, with ( j,r) ∈ C1 \ ( j1,r1),

Lan

(
Rp, q̂( j)

n,r
)
−Lan

(
Rp, q̂( j1)

n,r1

)
=

1

p( j)
L,r

( 1
an

an

∑
i=1

(Yi −µ)1
X ( j)

i <q⋆( j)
r

)2

+
1

p( j)
R,r

( 1
an

an

∑
i=1

(Yi −µ)1
X ( j)

i ≥q⋆( j)
r

)2 − 1

p( j1)
L,r1

( 1
an

an

∑
i=1

(Yi −µ)1
X ( j1)

i <q⋆( j1)
r1

)2

− 1

p( j1)
R,r1

( 1
an

an

∑
i=1

(Yi −µ)1
X ( j1)

i ≥q⋆( j1)
r1

)2
+R( j)

L,r +R( j)
R,r −R( j1)

L,r1
−R( j1)

R,r1
.
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We explicitly write C1 = {( jk,rk)}k=1,...,c1 . Then L(C1)
n,P1

can be decomposed as

anL(C1)
n,P1

= hP1(Vn)+Rn,P1,

where for k ∈ {1, ...,c1},

Vn,2k−1 =

√
an

p( jk)
L,rk

1
an

an

∑
i=1

(Yi −µ)1
X
( jk)
i <q

⋆( jk)
rk

,

Vn,2k =

√
an

p( jk)
R,rk

1
an

an

∑
i=1

(Yi −µ)1
X
( jk)
i ≥q

⋆( jk)
rk

.

hP1 is a multivariate quadratic form defined as

hP1 :

 x1
...

x2c1

→



x2
3 + x2

4 − x2
1 − x2

2
...

x2
2k−1 + x2

2k − x2
1 − x2

2
...

x2
2c1−1 + x2

2c1
− x2

1 − x2
2


.

and Rn,P1,k = R( jk)
L,rk

+R( jk)
R,rk

−R( j1)
L,r1

−R( j1)
R,r1

.

From the multivariate central limit theorem, Vn
D−→

n→∞
V, where V is a gaussian vector

of covariance matrix Cov[Z], and Z is defined as, for k ∈ {1, ...,c1},

Z2k−1 =
1

√pL,k
(Y −E[Y ])1

X ( jk)<q
⋆( jk)
rk

,Z2k =
1

√pR,k
(Y −E[Y ])1

X ( jk)≥q
⋆( jk)
rk

,

with the simplified notations pL,k = p( jk)
L,rk

and pR,k = p( jk)
R,rk

.
Finally, since lim

n→∞
Rn,P1 = 0 in probability, from Slutsky’s theorem and the continuous

mapping theorem, anL(C1)
n,P1

D−→
n→∞

hP1(V). Note that, since X has a strictly positive density,

each component of hP1(V) has a strictly positive variance.

Proof of Lemma C.5. Consider a path P = ( j1,r1, ·). Set θ (V ) = (θ
(V )
1 , ·, ·) ∈ Ω (V ), a

realization of the randomization of the split direction. Recalling that the best split in a
random tree is the one maximizing the CART-splitting criterion, condition on Θ (V ) = θ (V ),

{P1 ∈ T (Θ ,Dn)}=
⋂

( j,r)∈θ
(V )
1 ×{1,...,q−1}

\( j1,r1)

{
Lan

(
Rp, q̂( j1)

n,r1

)
> Lan

(
Rp, q̂( j)

n,r
)}

. (C.3.20)
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We recall that, given θ (V ), we define the set of best theoretical cuts along the variables in
θ
(V )
1 as

C ⋆
1
(
θ
(V )
1
)
= argmax

( j,r)∈θ
(V )
1 ×{1,...,q−1}

L⋆
(
Rp,q⋆( j)

r
)
.

Obviously if ( j1,r1) /∈ θ
(V )
1 ×{1, ...,q−1}, the probability to select P1 in the empirical

and theoretical tree is null. In the sequel, we assume that ( j1,r1)∈ θ
(V )
1 ×{1, ...,q−1} and

distinguish between four cases: ( j1,r1) is not among the best theoretical cuts C ⋆
1
(
θ
(V )
1
)
,

is the only element in C ⋆
1
(
θ
(V )
1
)
, is one element of C ⋆

1
(
θ
(V )
1
)

with a positive value of the
theoretical CART-splitting criterion, or finally, is one element of C ⋆

1
(
θ
(V )
1
)

that all have a
null value of the theoretical CART-splitting criterion.

Case 1 We assume that ( j1,r1) /∈ C ⋆
1
(
θ
(V )
1
)
. By definition of the theoretical random

forest,

P
(
P1 ∈ T ⋆(Θ)|Θ (V ) = θ

(V )
)
= 0 (C.3.21)

Let
(

j⋆,r⋆
)
∈ C ⋆

1
(
θ
(V )
1
)
, thus

ε = L⋆
(
Rp,q⋆( j⋆)

r⋆
)
−L⋆

(
Rp,q⋆( j1)

r1

)
> 0.

Using equation (C.3.20), we have:

P
(
P1 ∈ T

(
Θ ,Dn

)
|Θ (V ) = θ

(V )
)

≤ P
(
Lan

(
Rp, q̂( j1)

n,r1

)
> Lan

(
Rp, q̂( j⋆)

n,r⋆
))

≤ P
(
Lan

(
Rp, q̂( j1)

n,r1

)
−L⋆

(
Rp,q⋆( j1)

r1

)
− ε > Lan

(
Rp, q̂( j⋆)

n,r⋆
)
−L⋆

(
Rp,q⋆( j⋆)

r⋆
))

≤ P
(
Lan

(
Rp, q̂( j1)

n,r1

)
−L⋆

(
Rp,q⋆( j1)

r1

)
−
(
Lan

(
Rp, q̂( j⋆)

n,r⋆
)
−L⋆

(
Rp,q⋆( j⋆)

r⋆
))

> ε
)

Therefore, according to Lemma C.3,

lim
n→∞

P
(
P1 ∈ T (Θ ,Dn)|Θ (V ) = θ

(V )
)
= 0 = P

(
P1 ∈ T ⋆(Θ)|Θ (V ) = θ

(V )
)

Case 2 We assume that C ⋆
1
(
θ
(V )
1
)
=
{
( j1,r1)

}
. By definition of the theoretical random

forest,

P
(
P1 ∈ T ⋆(Θ)|Θ (V ) = θ

(V )
)
= 1. (C.3.22)
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Conditional on Θ (V ) = θ (V ),

{P1 ∈ T (Θ ,Dn)}c =
⋃

( j,r)∈θ
(V )
1 ×{1,...,q−1}

\( j1,r1)

{
Lan

(
Rp, q̂( j1)

n,r1

)
≤ Lan

(
Rp, q̂( j)

n,r
)}

,

which leads to

1−P
(
P1 ∈ T (Θ ,Dn)|Θ (V ) = θ

(V )
)

≤ ∑
( j,r)∈θ

(V )
1 ×{1,...,q−1}\( j1,r1)

P
(
Lan

(
Rp, q̂( j1)

n,r1

)
≤ Lan

(
Rp, q̂( j)

n,r
))
. (C.3.23)

From Lemma C.3, for all j ∈ θ
(V )
0 , r ∈ {1, ...,q−1} such that ( j,r) ̸= ( j1,r1), in probabil-

ity,

lim
n→∞

Lan

(
Rp, q̂( j1)

n,r1

)
−Lan

(
Rp, q̂( j)

n,r
)
= L⋆

(
Rp,q⋆( j1)

r1

)
−L⋆

(
Rp,q⋆( j)

r
)
> 0. (C.3.24)

Using inequality (C.3.23) and equation (C.3.24), we finally obtain,

lim
n→∞

P
(
P1 ∈ T (Θ ,Dn)|Θ (V ) = θ

(V )
)
= 1 = P

(
P1 ∈ T ⋆(Θ)|Θ (V ) = θ

(V )
)
.

Case 3 We assume that ( j1,r1) ∈ C ⋆
1
(
θ
(V )
1
)
,
∣∣C ⋆

1
(
θ
(V )
1
)∣∣ > 1, and L⋆

(
Rp,q⋆( j1)

r1

)
> 0.

On one hand, conditional on Θ (V ) = θ (V ),

{P1 ∈ T (Θ ,Dn)} ⊂
⋂

( j,r)∈C ⋆
1 (θ

(V )
1 )\( j1,r1)

{
Lan

(
Rp, q̂( j1)

n,r1

)
> Lan

(
Rp, q̂( j)

n,r
)}

.

On the other hand, conditional on Θ (V ) = θ (V ),

{P1 ∈ T (Θ ,Dn)}c =
⋃

( j,r)∈C ⋆
1 (θ

(V )
1 )\( j1,r1)

{
Lan

(
Rp, q̂( j1)

n,r1

)
≤ Lan

(
Rp, q̂( j)

n,r
)}

⋃
( j,r)∈θ

(V )
1 ×{1,...,q−1}\C ⋆

1 (θ
(V )
1 )

{
Lan

(
Rp, q̂( j1)

n,r1

)
≤ Lan

(
Rp, q̂( j)

n,r
)}

.

Combining the two previous inclusions,

0 ≤ P
( ⋂
( j,r)∈C ⋆

1 (θ
(V )
1 )\( j1,r1)

{
Lan

(
Rp, q̂( j1)

n,r1

)
> Lan

(
Rp, q̂( j)

n,r
)})

−P
(
P1 ∈ T (Θ ,Dn)|Θ (V ) = θ

(V )
)

≤ ∑
( j,r)∈θ

(V )
1 ×{1,...,q−1}\C ⋆

1 (θ
(V )
1 )

P
(
Lan

(
Rp, q̂( j1)

n,r1

)
≤ Lan

(
Rp, q̂( j)

n,r
))
.
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Using the same reasoning as in Case 2, we get

lim
n→∞

P
( ⋂
( j,r)∈C ⋆

1 (θ
(V )
1 )\( j1,r1)

{
Lan

(
Rp, q̂( j1)

n,r1

)
> Lan

(
Rp, q̂( j)

n,r
)})

−P
(
P1 ∈ T (Θ ,Dn)|Θ (V ) = θ

(V )
)
= 0.

We define the random vector L(C ⋆
1 )

n,P1
where each component is the difference between the

empirical CART-splitting criterion for the splits ( j,r) ∈ C ⋆
1 \ ( j1,r1) and ( j1,r1),

L(C ⋆
1 )

n,P1
=
(

Lan

(
Rp, q̂( j)

n,r
)
−Lan

(
Rp, q̂( j1)

n,r1

) )
( j,r)∈C ⋆

1 \( j1,r1)
,

then

P
( ⋂
( j,r)∈C ⋆

1 (θ
(V )
1 )\( j1,r1)

{
Lan

(
Rp, q̂( j1)

n,r1

)
> Lan

(
Rp, q̂( j)

n,r
)})

= P
(
L(C ⋆

1 )
n,P1

< 0
)
.

From Lemma C.4 (case (a)),

√
anL(C ⋆

1 )
n,P1

D−→
n→∞

N
(
0,Σ

)
.

where for all ( j,r),( j′,r′) ∈ C ⋆
1 \ ( j1,r1), each element of the covariance matrix Σ is

defined by

Σ( j,r),( j′,r′) = Cov[Z j,r,Z j′,r′],

with

Z j,r =
(
Y −µ

( j1)
L,r1
1

X ( j1)<q⋆( j1)
r1

−µ
( j1)
R,r1
1

X ( j1)≥q⋆( j1)
r1

)2

−
(
Y −µ

( j)
L,r1X ( j)<q⋆( j)

r
−µ

( j)
R,r1X ( j)≥q⋆( j)

r

)2
,

µ
( j)
L,r = E

[
Y |X ( j) < q⋆( j)

r
]
, µ

( j)
R,r = E

[
Y |X ( j) ≥ q⋆( j)

r
]
, and the variance of Z j,r is strictly

positive. If Φ
θ
(V )
1 ,( j1,r1)

is the c.d.f. of the multivariate normal distribution of covariance
matrix Σ , we can conclude

lim
n→∞

P
(
P1 ∈ T (Θ ,Dn)|Θ (V ) = θ

(V )
)
= lim

n→∞
P
(√

anL(C ⋆
1 )

n,P1
< 0
)

= Φ
θ
(V )
1 ,( j1,r1)

(0),
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where

∑
( j,r)∈C ⋆

1 (θ
(V )
1 )

Φ
θ
(V )
1 ,( j,r)

(0) = 1.

According to Definition C.1, in the theoretical random forest, if C ⋆
1
(
θ
(V )
1
)

has multiple
elements, ( j1,r1) is randomly drawn with probability

P
(
P1 ∈ T ⋆(Θ)|Θ (V ) = θ

(V )
)
= Φ

θ
(V )
1 ,( j1,r1)

(0),

that is

lim
n→∞

P
(
P1 ∈ T (Θ ,Dn)|Θ (V ) = θ

(V )
)
= P

(
P1 ∈ T ⋆(Θ)|Θ (V ) = θ

(V )
)

= Φ
θ
(V )
1 ,( j1,r1)

(0).

We can notice that, in the specific case where C ⋆
1
(
θ
(V )
1
)

has two elements, they are both
selected with equal probability 1

2 . For more than two elements, the weights are not
necessary equal, it depends on the covariance matrix Σ .

Case 4 We assume that all candidate splits have a null value for the theoretical CART-
splitting criterion, i.e. for ( j,r) ∈ θ

(V )
1 ×{1, ...,q−1}, L⋆

(
Rp,q⋆( j)

r
)
= 0. Consequently

C ⋆
1 (θ

(V )
1 ) = θ

(V )
1 ×{1, ...,q−1}. By definition

P
(
P1 ∈ T (Θ ,Dn)|Θ (V ) = θ

(V )
)
= P

(
L(C ⋆

1 )
n,P1

< 0
)
.

According to Lemma C.4 (case (b)),

anL(C1)
n,P1

D−→
n→∞

hP1(V),

where V is a gaussian vector of covariance matrix Cov[Z]. If C ⋆
1
(
θ
(V )
1
)

is explicitly written
C ⋆

1
(
θ
(V )
1
)
= {( jk,rk)}k=1,...,c1 , Z is defined as, for k ∈ {1, ...,c1},

Z2k−1 =
1

√pL,k
(Y −E[Y ])1

X ( jk)<q
⋆( jk)
rk

Z2k =
1

√pR,k
(Y −E[Y ])1

X ( jk)≥q
⋆( jk)
rk

,

pL,k = P
(
X ( jk) < q⋆( jk)

rk

)
, pR,k = P

(
X ( jk) ≥ q⋆( jk)

rk

)
, and hP1 is a multivariate quadratic

form.
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More precisely, hP1 is defined as

hP1 :

 x1
...

x2c1

→



x2
3 + x2

4 − x2
1 − x2

2
...

x2
2k−1 + x2

2k − x2
1 − x2

2
...

x2
2c1−1 + x2

2c1
− x2

1 − x2
2


.

and the variance of each component of hP1(V) is strictly positive. If Φ
θ
(V )
1 ,( j1,r1)

is the cdf

of hP1(V), then as in Case 3,

lim
n→∞

P
(
P1 ∈ T (Θ ,Dn)|Θ (V ) = θ

(V )
)
= Φ

θ
(V )
1 ,( j1,r1)

(0)

= P
(
P1 ∈ T ⋆(Θ)|Θ (V ) = θ

(V )
)
.

C.3.3.2 Case 2: P2

Proof of Lemma C.6. Let ( j,r) ∈ CP1 .

√
an
(
Lan

(
Ĥn(P1),q̂

( j)
n,r
)
−Lan

(
H⋆(P1),q

⋆( j)
r
))

=
√

an
[
Lan

(
H⋆(P1), q̂

( j)
n,r
)
−

Lan

(
H⋆(P1),q

⋆( j)
r
)]

+
√

an
[
Lan

(
Ĥn(P1), q̂

( j)
n,r
)
−Lan

(
H⋆(P1), q̂

( j)
n,r
)]
.

Since ( j,r)∈CP1 , P
(
X ∈ H⋆(P1)|X ( j) < q⋆( j)

r
)
> 0 and P

(
X ∈ H⋆(P1)|X ( j) ≥ q⋆( j)

r
)
>

0. Then, we can directly apply Lemma C.2 to the first term of this decomposition, which
shows that, in probability

lim
n→∞

√
an
(
Lan

(
H⋆(P1), q̂

( j)
n,r
)
−Lan

(
H⋆(P1),q

⋆( j)
r
))

= 0.

We expand the second term

√
an
(
Lan

(
Ĥn(P1), q̂

( j)
n,r
)
−Lan

(
H⋆(P1), q̂

( j)
n,r
))

=

√
an

Nn(Ĥn(P1))

an

∑
i=1

(
Yi −Y Ĥn(P1)

)2
1Xi∈Ĥn(P1)

−
√

an

Nn(H⋆(P1))

an

∑
i=1

(
Yi −Y H⋆(P1)

)2
1Xi∈H⋆(P1)

−
√

an

Nn(Ĥn(P1))

an

∑
i=1

(
Yi −Y ĤL

1
X ( j)

i <q̂( j)
n,r
−Y ĤR

1
X ( j)

i ≥q̂( j)
n,r

)2
1Xi∈Ĥn(P1)

+

√
an

Nn(H⋆(P1))

an

∑
i=1

(
Yi −Y H⋆

L
1

X ( j)
i <q̂( j)

n,r
−Y H⋆

R
1

X ( j)
i ≥q̂( j)

n,r

)2
1Xi∈H⋆(P1),
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with ĤL =
{

x ∈ Ĥn(P1) : x( j) < q̂( j)
n,r
}

, H⋆
L =

{
x ∈ H⋆(P1) : x( j) < q̂( j)

n,r
}

, and for all
H ⊆Rp

Nn(H) =
1
an

an

∑
i=1
1Xi∈H , Y H =

1
Nn(H)

an

∑
i=1

Yi1Xi∈H .

We define symmetrically ĤR and H⋆
R. We obtain

√
an
(
Lan

(
Ĥn(P1), q̂

( j)
n,r
)
−Lan

(
H⋆(P1), q̂

( j)
n,r
))

= ∆n,1 +∆n,2 +∆n,3,

where

∆n,1 =
√

an
(
Y 2

H⋆(P1)
−Y 2

Ĥn(P1)

)
,

∆n,2 =
√

an
Y 2

ĤL
Nn(ĤL)Nn(H⋆(P1))−Y 2

H⋆
L
Nn(H⋆

L)Nn(Ĥn(P1))

Nn(Ĥn(P1))Nn(H⋆(P1))
,

and

∆n,3 =
√

an
Y 2

ĤR
Nn(ĤR)Nn(H⋆(P1))−Y 2

H⋆
R
Nn(H⋆

R)Nn(Ĥn(P1))

Nn(Ĥn(P1))Nn(H⋆(P1))
.

We first consider ∆n,1. Simple calculations show that

∆n,1 =

√
an

Nn(H⋆(P1))2Nn(Ĥn(P1))2

× ∑
i,k,l,m

YiYk
[
1Xi∈H⋆(P1),Xk∈H⋆(P1),Xl∈Ĥn(P1),Xm∈Ĥn(P1)

−1Xi∈Ĥn(P1),Xk∈Ĥn(P1),Xl∈H⋆(P1),Xm∈H⋆(P1)

]
We consider the case s1 = L, (s1 = R is similar). Since Yi ∈

{
0,1
}

,

|∆n,1| ≤
√

an

Nn(H⋆(P1))2Nn(Ĥn(P1))2

× ∑
i,k,l,m

∣∣1
X ( j1)

i <q⋆( j1)
r1 ,X ( j1)

k <q⋆( j1)
r1 ,X ( j1)

l <q̂( j1)
n,r1 ,X

( j1)
m <q̂( j1)

n,r1

−1
X ( j1)

i <q̂( j1)
n,r1 ,X

( j1)
k <q̂( j1)

n,r1 ,X
( j1)
l <q⋆( j1)

r1 ,X ( j1)
m <q⋆( j1)

r1

∣∣
As in the proof of Lemma C.2, according to Lemma C.1, lim

n→∞
∆n,1 = 0, in probability.

Since ∆n,2 and ∆n,3 are the same quantities computed on each of the two daughter nodes,
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we study ∆n,2 only.

∆n,2 =

√
an(Nn(ĤL)Nn(H⋆

L))
−1

Nn(Ĥn(P1))Nn(H⋆(P1))

× ∑
i,k,l,m

YiYk
[
1Xi∈ĤL,Xk∈ĤL,Xl∈H⋆

L ,Xm∈H⋆(P1)

−1Xi∈H⋆
L ,Xk∈H⋆

L ,Xl∈ĤL,Xm∈Ĥn(P1)

]
=

√
an(Nn(ĤL)Nn(H⋆

L))
−1

Nn(Ĥn(P1))Nn(H⋆(P1))
∑

i,k,l,m
YiYk1X ( j)

i <q̂( j)
n,r ,X

( j)
k <q̂( j)

n,r ,X
( j)
l <q̂( j)

n,r

×
[
1

X ( j1)
i <q̂( j1)

n,r1 ,X
( j1)
k <q̂( j1)

n,r1 ,X
( j1)
l <q⋆( j1)

r1 ,X ( j1)
m <q⋆( j1)

r1

−1
X ( j1)

i <q⋆( j1)
r1 ,X ( j1)

k <q⋆( j1)
r1 ,X ( j1)

l <q̂( j1)
n,r1 ,X

( j1)
m <q̂( j1)

n,r1

]
.

Therefore

|∆n,2| ≤
√

an(Nn(ĤL)Nn(H⋆
L))

−1

Nn(Ĥn(P1))Nn(H⋆(P1))

× ∑
i,k,l,m

∣∣1
X ( j1)

i <q̂( j1)
n,r1 ,X

( j1)
k <q̂( j1)

n,r1 ,X
( j1)
l <q⋆( j1)

r1 ,X ( j1)
m <q⋆( j1)

r1

−1
X ( j1)

i <q⋆( j1)
r1 ,X ( j1)

k <q⋆( j1)
r1 ,X ( j1)

l <q̂( j1)
n,r1 ,X

( j1)
m <q̂( j1)

n,r1

∣∣.
As in the proof of Lemma C.2, according to Lemma C.1, lim

n→∞
∆n,2 = 0, in probability,

which concludes the proof, since ∆n,3 can be studied in the same manner.

Proof of Lemma C.7. Let ( j,r) ∈ CP1 .

Lan

(
Ĥn(P1), q̂

( j)
n,r
)
=Lan

(
H⋆(P1),q

⋆( j)
r
)

+
[
Lan

(
Ĥn(P1), q̂

( j)
n,r
)
−Lan

(
H⋆(P1),q

⋆( j)
r
)]

(C.3.25)

According to Lemma C.6, the second term in equation (C.3.25) converges to 0 in probability.
From the law of large numbers, in probability,

lim
n→∞

Lan

(
H⋆(P1),q

⋆( j)
r
)
= L⋆

(
H⋆(P1),q

⋆( j)
r
)
,

which concludes the proof.

Proof of Lemma C.8. Similar to the case with P1 (Lemma C.3), where Lemma C.6 is
used instead of Lemma C.2.

Proof of Lemma C.9. Consider a path P2 = {( j1,r1,L),( j2,r2, ·)}. Set θ (V ) =(
θ
(V )
1 ,θ

(V )
2
)
, a realization of the randomization of the split directions at the root node and

its left child node. Then, θ
(V )
1 and θ

(V )
2 denote the set of eligible variables for respectively
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the first and second split. We also consider CP1

(
θ
(V )
2
)
⊂ CP1 the set of eligible second

splits.
Recalling that the best split in a random tree is the one maximizing the CART-splitting

criterion, conditional on Θ (V ) = θ (V ),

{P2 ∈ T (Θ ,Dn)}=
⋂

( j,r)∈θ
(V )
1 ×{1,...,q−1}

\( j1,r1)

{
Lan

(
Rp, q̂( j1)

n,r1

)
> Lan

(
Rp, q̂( j)

n,r
)}

⋂
( j,r)∈CP1(θ

(V )
2 )\( j2,r2)

{
Lan

(
Ĥn(P1), q̂

( j2)
n,r2

)
> Lan

(
Ĥn(P1), q̂

( j)
n,r
)}

Recall that C ⋆
1
(
θ
(V )
1
)
= argmax

( j,r)∈θ
(V )
1 ×{1,...,q−1}

L⋆
(
Rp,q⋆( j)

r
)
, and similarly

C ⋆
2
(
θ
(V )
2
)
= argmax

( j,r)∈CP1(θ
(V )
2 )

L⋆
(
H⋆(P1),q

⋆( j)
r
)
.

Obviously if ( j1,r1) /∈ θ
(V )
1 ×{1, ...,q− 1} or ( j2,r2) /∈ CP1(θ

(V )
2 ), the probability

to select P2 in the empirical and theoretical tree is null. In the sequel, we assume that
( j1,r1) ∈ θ

(V )
0 ×{1, ...,q− 1} and ( j2,r2) ∈ CP1

(
θ
(V )
2
)

and distinguish between cases,
depending on whether ( j1,r1) ∈ C ⋆

1
(
θ
(V )
1
)

or not and ( j2,r2) ∈ C ⋆
2
(
θ
(V )
2
)

or not, as well
as the cardinality of C ⋆

1
(
θ
(V )
1
)

and C ⋆
2
(
θ
(V )
2
)
, and whether the maximum of the theoretical

CART-splitting criterion is null or not.

Case 1 We assume that ( j1,r1) /∈ C ⋆
1
(
θ
(V )
1
)
. Hence, the theoretical decision tree satisfies

P
(
P2 ∈ T ⋆(Θ)|Θ (V ) = θ

(V )
)
= P

(
P1 ∈ T ⋆(Θ)|Θ (V ) = θ

(V )
)
= 0.

According to Lemma C.5, we have

lim
n→∞

P
(
P2 ∈ T (Θ ,Dn)|Θ (V ) = θ

(V )
)

≤ lim
n→∞

P
(
P1 ∈ T (Θ ,Dn)|Θ (V ) = θ

(V )
)

= 0

= P
(
P2 ∈ T ⋆(Θ)|Θ (V ) = θ

(V )
)
.

Case 2 We assume that
(

j2,r2
)
/∈ C ⋆

2
(
θ
(V )
2
)
. Again, for the theoretical decision tree,

P
(
P2 ∈ T ⋆(Θ)|Θ (V ) = θ

(V )
)
= 0.



C.3 Proof of Theorem 4.1 255

Letting
(

j⋆,r⋆
)
∈ C ⋆

2
(
θ
(V )
2
)
,

ε = L⋆
(
H⋆(P1),q

⋆( j⋆)
r⋆

)
−L⋆

(
H⋆(P1),q

⋆( j2)
r2

)
.

Therefore,

P
(
P2 ∈ T (Θ ,Dn)|Θ (V ) = θ

(V )
)

≤ P
(
Lan

(
Ĥn(P1), q̂

( j2)
n,r2

)
> Lan

(
H⋆(P1), q̂

( j⋆)
n,r⋆
))

≤ P
(
Lan

(
Ĥn(P1), q̂

( j2)
n,r2

)
−L⋆

(
H⋆(P1),q

⋆( j2)
r2

)
− ε

> Lan

(
Ĥn(P1), q̂

( j⋆)
n,r⋆
)
−L⋆

(
H⋆(P1),q

⋆( j⋆)
r⋆

))
≤ P

(
Lan

(
Ĥn(P1), q̂

( j2)
n,r2

)
−L⋆

(
H⋆(P1),q

⋆( j2)
r2

)
−
(
Lan

(
Ĥn(P1), q̂

( j⋆)
n,r⋆
)
−L⋆

(
H⋆(P1),q

⋆( j⋆)
r⋆

))
> ε
)
.

Consequently, according to Lemma C.7,

lim
n→∞

P
(
P2 ∈ T (Θ ,Dn)|Θ (V ) = θ

(V )
)
= 0 = P

(
P2 ∈ T ⋆(Θ)|Θ (V ) = θ

(V )
)
.

Case 3 We assume that ( j1,r1) ∈ C ⋆
1
(
θ
(V )
1
)

and C ⋆
2
(
θ
(V )
2
)
= {( j2,r2)}, i.e. ( j2,r2) is

the unique maximum of the theoretical CART-splitting criterion for the cell H⋆(P1). By
definition of the theoretical decision tree,

P
(
P2 ∈ T ⋆(Θ)|Θ (V ) = θ

(V )
)
= P

(
P1 ∈ T ⋆(Θ)|Θ (V ) = θ

(V )
)

Conditional on {Θ (V ) = θ (V )},

{P2 ∈ T (Θ ,Dn)}=
{
P1 ∈ T (Θ ,Dn)

}
⋂

( j,r)∈CP1(θ
(V )
2 )\( j2,r2)

{
Lan

(
Ĥn(P1), q̂

( j2)
n,r2

)
> Lan

(
Ĥn(P1), q̂

( j)
n,r
)}

. (C.3.26)

Consequently,

P
(
P2 ∈ T (Θ ,Dn)|Θ (V ) = θ

(V )
)

≥ P
(
P1 ∈ T (Θ ,Dn)

∣∣Θ (V ) = θ
(V )
)

− ∑
( j,r)∈CP1(θ

(V )
2 )\( j2,r2)

P
(
Lan

(
Ĥn(P1), q̂

( j2)
n,r2

)
≤ Lan

(
Ĥn(P1), q̂

( j)
n,r
))
. (C.3.27)
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For ( j,r) ∈ CP1

(
θ
(V )
2
)
\ ( j2,r2),

L⋆
(
H⋆(P1),q

⋆( j2)
r2

)
−L⋆

(
H⋆(P1),q

⋆( j)
r
)
> 0. (C.3.28)

Thus, using inequalities (C.3.27) and (C.3.28), and according to Lemma C.7,

lim
n→∞

P
(
Lan

(
Ĥn(P1), q̂

( j2)
n,r2

)
≤ Lan

(
Ĥn(P1), q̂

( j)
n,r
))

= 0,

and thus, using (C.3.26) and (C.3.27),

lim
n→∞

P
(
P2 ∈ T (Θ ,Dn)|Θ (V ) = θ

(V )
)

= lim
n→∞

P
(
P1 ∈ T (Θ ,Dn)|Θ (V ) = θ

(V )
)
= P

(
P1 ∈ T ⋆(Θ)|Θ (V ) = θ

(V )
)

= P
(
P2 ∈ T ⋆(Θ)|Θ (V ) = θ

(V )
)
,

where the second inequality is a direct consequence of Lemma C.5.

Case 4 For the first split, we assume ( j1,r1)∈C ⋆
1
(
θ
(V )
1
)

with L⋆
(
Rp,q⋆( j1)

r1

)
> 0, and for

the second split,
(

j2,r2
)
∈ C ⋆

2
(
θ
(V )
2
)

with |C ⋆
2
(
θ
(V )
2
)∣∣> 1 and L⋆

(
H⋆(P1),q

⋆( j2)
r2

)
> 0.

On one hand, conditional on the event {Θ (V ) = θ (V )},

{P2 ∈ T (Θ ,Dn)}=
⋂

( j,r)∈θ
(V )
1 ×{1,...,q−1}

\( j1,r1)

{
Lan

(
Rp, q̂( j1)

n,r1

)
> Lan

(
Rp, q̂( j)

n,r
)}

⋂
( j,r)∈CP1(θ

(V )
2 )\( j2,r2)

{
Lan

(
Ĥn(P1), q̂

( j2)
n,r2

)
> Lan

(
Ĥn(P1), q̂

( j)
n,r
)}

. (C.3.29)

Using equation (C.3.29) to find a subset and a superset of {P2 ∈ T (Θ ,Dn)}, we obtain

0 ≥ P
(
P2 ∈ T (Θ ,Dn)|Θ (V ) = θ

(V )
)

−P

( ⋂
( j,r)∈C ⋆

1 (θ
(V )
1 )\( j1,r1)

{
Lan

(
Rp, q̂( j1)

n,r1

)
> Lan

(
Rp, q̂( j)

n,r
)}

⋂
( j,r)∈C ⋆

2 (θ
(V )
2 )\( j2,r2)

{
Lan

(
Ĥn(P1), q̂

( j2)
n,r2

)
> Lan

(
Ĥn(P1), q̂

( j)
n,r
)})

≥ ∑
( j,r)∈θ

(V )
1 ×{1,...,q−1}\C ⋆

1 (θ
(V )
1 )

P
(
Lan

(
Rp, q̂( j1)

n,r1

)
≤ Lan

(
Rp, q̂( j)

n,r
))

+ ∑
( j,r)∈θ

(V )
2 ×{1,...,q−1}\C ⋆

2 (θ
(V )
2 )

P
(
Lan

(
Ĥn(P1), q̂

( j2)
n,r2

)
≤ Lan

(
Ĥn(P1), q̂

( j)
n,r
))
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We proved in Case 3 that the limit of the last two terms of the previous inequality is zero,
in probability. Therefore,

lim
n→∞

P
(
P2 ∈ T (Θ ,Dn)|Θ (V ) = θ

(V )
)

= lim
n→∞

P

( ⋂
( j,r)∈C ⋆

1 (θ
(V )
1 )\( j1,r1)

{
Lan

(
Rp, q̂( j1)

n,r1

)
> Lan

(
Rp, q̂( j)

n,r
)}

⋂
( j,r)∈C ⋆

2 (θ
(V )
2 )\( j2,r2)

{
Lan

(
Ĥn(P1), q̂

( j2)
n,r2

)
> Lan

(
Ĥn(P1), q̂

( j)
n,r
)})

. (C.3.30)

We define the random vector L(C ⋆
1 ,C

⋆
2 )

n,P2
(we drop θ (V ) to lighten notations) where

each component is the difference between the empirical CART-splitting criterion for the
splits ( j,r) ∈ C ⋆

1 \ ( j1,r1) and ( j1,r1) for the first |C ⋆
1 |−1 components, and for the splits

( j,r) ∈ C ⋆
2 \ ( j2,r2) and ( j2,r2) for the remaining |C ⋆

2 |−1 components, i.e.,

L(C ⋆
1 ,C

⋆
2 )

n,P2
=

 [
Lan

(
Rp, q̂( j)

n,r
)
−Lan

(
Rp, q̂( j1)

n,r1

)]
( j,r)∈C ⋆

1 \( j1,r1)[
Lan

(
Ĥn(P1), q̂

( j)
n,r
)
−Lan

(
Ĥn(P1), q̂

( j2)
n,r2

)]
( j,r)∈C ⋆

2 \( j2,r2)

 .

Then, we can write

P

( ⋂
( j,r)∈C ⋆

1 (θ
(V )
1 )\( j1,r1)

{
Lan

(
Rp, q̂( j1)

n,r1

)
> Lan

(
Rp, q̂( j)

n,r
)}

⋂
( j,r)∈C ⋆

2 (θ
(V )
2 )\( j2,r2)

{
Lan

(
Ĥn(P1), q̂

( j2)
n,r2

)
> Lan

(
Ĥn(P1), q̂

( j)
n,r
)})

= P
(
L(C ⋆

1 ,C
⋆
2 )

n,2 < 0
)

(C.3.31)

According to Lemma C.8,

√
anL(C ⋆

1 ,C
⋆
2 )

n,P2

D−→
n→∞

N (0,Σ)

where for l, l′ ∈ {1,2}, for all ( j,r) ∈ C ⋆
l \ ( jl,rl), ( j′,r′) ∈ C ⋆

l′ \ ( jl′,rl′), each element of
the covariance matrix Σ is defined by Σ( j,r,l),( j′,r′,l′) = Cov[Z j,r,l,Z j′,r′,l′], with

Z j,r,l =
1

P(X ∈ Hl)

(
Y −µ

( jl)
L,rl
1

X ( jl )<q
⋆( jl )
rl

−µ
( jl)
R,rl
1

X ( jl )≥q
⋆( jl )
rl

)2
1X∈Hl

− 1
P(X ∈ Hl)

(
Y −µ

( j)
L,r1X ( j)<q⋆( j)

r
−µ

( j)
R,r1X ( j)≥q⋆( j)

r

)2
1X∈Hl ,
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µ
( j)
L,r = E

[
Y |X ( j) < q⋆( j)

r ,X ∈ Hl
]
, µ

( j)
R,r = E

[
Y |X ( j) ≥ q⋆( j)

r ,X ∈ Hl
]
, and the variance of

Z j,r,l is strictly positive.
Letting ΦP1,θ (V ),( j2,r2)

be the c.d.f. of the multivariate normal distribution with covari-
ance matrix Σ , and using equalities (C.3.30) and (C.3.31),

lim
n→∞

P
(
P2 ∈ T (Θ ,Dn)|Θ (V ) = θ

(V )
)
= ΦP1,θ (V ),( j2,r2)

(0).

We can check that

∑
( j,r)∈C ⋆

2 (θ
(V ))

ΦP1,θ (V ),( j,r)(0) = P
(
P1 ∈ T ⋆(Θ)|Θ (V ) = θ

(V )
)
.

In the theoretical random forest, the first cut ( j1,r1) is randomly selected with probability
P
(
P1 ∈ T ⋆(Θ)|Θ (V ) = θ (V )

)
(see the proof of Lemma C.5). For the second cut, according

to Definition C.2, if C ⋆
2
(
θ
(V )
2
)

has multiple elements, ( j2,r2) is randomly drawn with
probability

ΦP1,θ (V ),( j2,r2)
(0)

P
(
P1 ∈ T ⋆(Θ)|Θ (V ) = θ (V )

)
Since the random selection at the root node of the tree and its children nodes are indepen-
dent in the theoretical algorithm, P2 is selected with probability

P
(
P1 ∈ T ⋆(Θ)|Θ (V ) = θ

(V )
)
×

ΦP1,θ (V ),( j2,r2)
(0)

P
(
P1 ∈ T ⋆(Θ)|Θ (V ) = θ (V )

)
= ΦP1,θ (V ),( j2,r2)

(0).

Ultimately,

lim
n→∞

P
(
P2 ∈ T (Θ ,Dn)|Θ (V ) = θ

(V )
)
= P

(
P2 ∈ T ⋆(Θ)|Θ (V ) = θ

(V )
)

= ΦP1,θ (V ),( j2,r2)

(
0
)
.

Case 5 We assume that ( j1,r1) ∈ C ⋆
1
(
θ
(V )
1
)

and ( j2,r2) ∈ C ⋆
2
(
θ
(V )
2
)
, and that the

theoretical CART-splitting criterion is null for both splits: L⋆
(
Rp,q⋆( j1)

r1

)
= 0 and

L⋆
(
H⋆(P1),q

⋆( j2)
r2

)
= 0.

Consequently C ⋆
1
(
θ
(V )
1
)
= θ

(V )
1 ×{1, ...,q−1}, and C ⋆

2
(
θ
(V )
2
)
= CP1

(
θ
(V )
2
)
. Using

the same notations defined in Case 4, we have by definition

P
(
P1 ∈ T (Θ ,Dn)|Θ (V ) = θ

(V )
)
= P

(
L(C ⋆

1 ,C
⋆
2 )

n,P2
< 0
)
.
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According to Lemma C.8 (case (b)),

anL(C ⋆
1 ,C

⋆
2 )

n,P2

D−→
n→∞

hP2(V),

where V is a gaussian vector of covariance matrix Cov[Z]. If C ⋆
1 and C ⋆

2 are explicitly
written C ⋆

1 = {( jk,rk)}k∈J1 , and C ⋆
2 = {( jk,rk)}k∈J2 , with J1 = {1, ...,c1 + 1} \ 2 and

J2 = {2}∪{c1 +2, ...,c1 + c2}, Z is defined as, for l ∈ {1,2} and k ∈ Jl ,

Z2k−1 =
1√

pL,kP(X ∈ Hl)
(Y −E[Y |X ∈ Hl])1X ( jk)<q

⋆( jk)
rk

1X∈Hl ,

Z2k =
1√

pR,kP(X ∈ Hl)
(Y −E[Y |X ∈ Hl])1X ( jk)≥q

⋆( jk)
rk

1X∈Hl ,

pL,k = P
(
X ( jk) < q⋆( jk)

rk ,X ∈ Hl
)
, pR,k = P

(
X ( jk) ≥ q⋆( jk)

rk ,X ∈ Hl
)
. hP2 is a multivariate

quadratic form defined as

hP2 :

 x1
...

x2(c1+c2)

→



x2
5 + x2

6 − x2
1 − x2

2
...

x2
2c1+1 + x2

2c1+2 − x2
1 − x2

2

x2
2c1+3 + x2

2c1+4 − x2
3 − x2

4
...

x2
2(c1+c2)−1 + x2

2(c1+c2)
− x2

3 − x2
4


,

and the variance of each component of hP2(V) is strictly positive.
ΦP1,θ (V ),( j2,r2)

is now defined as the cdf of hP2(V), and the end of the proof is identical
to Case 4. We conclude

lim
n→∞

P
(
P2 ∈ T (Θ ,Dn)|Θ (V ) = θ

(V )
)
= P

(
P2 ∈ T ⋆(Θ)|Θ (V ) = θ

(V )
)

= ΦP1,θ (V ),( j2,r2)
(0).

Case 6 We assume ( j1,r1) ∈ C ⋆
1
(
θ
(V )
1
)
, ( j2,r2) ∈ C ⋆

2
(
θ
(V )
2
)

and
∣∣C ⋆

2
(
θ
(V )
2
)∣∣> 1 as in

Case 4, but either L⋆
(
Rp,q⋆( j1)

r1

)
= 0 and L⋆

(
H⋆(P1),q

⋆( j2)
r2

)
> 0, or L⋆

(
Rp,q⋆( j1)

r1

)
> 0

and L⋆
(
H⋆(P1),q

⋆( j2)
r2

)
= 0.

The same reasoning than for Cases 4 and 5 applies where the limit law of L(C ⋆
1 ,C

⋆
2 )

n,P2
has

both gaussian and χ-square components and is given by case (c) or case (d) of Lemma C.8.
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C.4 Proof of Theorem C.2

We recall Theorem C.2 for the sake of clarity.

Theorem C.2. If p0 ∈ [0,1]\Un and D ′
n = Dn, then, conditional on Dn, we have

lim
M→∞

ŜM,n,p0 = 1 in probability. (C.4.1)

In addition for p0 < maxUn,

1−E[ŜM,n,p0|Dn]

∼
M→∞

∑
P∈Π

Φ(Mp0,M, pn(P))(1−Φ
(
Mp0,M, pn(P)))

1
2 ∑P ′∈Π 1pn(P ′)>p0 +1pn(P ′)>p0−ρn(P,P ′)σn(P′)

σn(P)
(p0−pn(P))

,

where Φ(Mp0,M, pn(P)) is the cdf of a binomial distribution with parameter pn(P), M
trials, evaluated at Mp0, and, for all P,P ′ ∈ Π ,

σn(P) =
√

pn(P)(1− pn(P)),

and

ρn(P,P ′) =
Cov(1P∈T (Θ ,Dn),1P ′∈T (Θ ,Dn)|Dn)

σn(P)σn(P ′)
.

Let p0 ∈ [0,max Un)\Un and D ′
n = Dn. Before proving Theorem C.2, we need the

following two lemmas.

Lemma C.10. Let F be the hypergeometric function. Then, for (a,c) ∈ Z2 and P ∈ Π

such that pn(P)> p0, we have

lim
M→∞

F(M+a,1,M(1− p0)+ c,1− pn(P))

F(M+1,1,M(1− p0)+1,1− pn(P))
= 1.

Lemma C.11. Let P ′ ∈ Π . For all P ∈ Π such that pn(P)> p0, we have

lim
M→∞

P
(

p̂M,n(P
′)> p0

∣∣p̂M,n(P)> p0,Dn
)
= 1pn(P ′)>p0,

lim
M→∞

P
(

p̂M,n(P
′)> p0

∣∣p̂M,n(P)≤ p0,Dn
)
= 1

pn(P ′)>p0−ρn(P,P ′)σn(P′)
σn(P)

×(p0−pn(P))

.

Symmetrically, for all P ∈ Π such that pn(P)≤ p0, we have

lim
M→∞

P
(

p̂M,n(P
′)> p0

∣∣p̂M,n(P)≤ p0,Dn
)
= 1pn(P ′)>p0,



C.4 Proof of Theorem C.2 261

lim
M→∞

P
(

p̂M,n(P
′)> p0

∣∣p̂M,n(P)> p0,Dn
)
= 1

pn(P ′)>p0−ρn(P,P ′)σn(P′)
σn(P)

×(p0−pn(P))

.

We are now in a position to prove Theorem C.2.

Proof of Theorem C.2. The first statement, identity (C.4.1), is proved similarly to Corollary
2, using the law of large numbers instead of Theorem 4.1. For the second statement, we
first recall that, by definition,

ŜMn,n,p0 =

2 ∑
P∈Π

1 p̂Mn,n(P)>p0∩p̂′Mn,n(P)>p0

∑
P∈Π

1p̂Mn,n(P)>p0 +1p̂′Mn,n(P)>p0

= 1−
∑

P∈Π

1p̂M,n(P)>p0∩p̂′M,n(P)≤p0
+1p̂M,n(P)≤p0∩p̂′M,n(P)>p0

∑
P∈Π

1p̂M,n(P)>p0 +1p̂′M,n(P)>p0

.

Taking the expectation conditional on Dn gives

E
[
ŜM,n,p0

∣∣Dn
]
= 1−2 E

[
∑

P∈Π

1p̂M,n(P)>p0∩p̂′M,n(P)≤p0

∑
P∈Π

1p̂M,n(P)>p0 +1p̂′M,n(P)>p0

∣∣∣∣∣Dn

]

= 1−2 E
[ UM

VM +V ′
M

∣∣Dn

]
,

where UM = ∑
P∈Π

1p̂M,n(P)>p0∩p̂′M,n(P)≤p0
, VM = ∑

P∈Π

1p̂M,n(P)>p0 , and V ′
M =

∑
P∈Π

1p̂′M,n(P)>p0
. Note that

E[VM|Dn] = ∑
P∈Π

P(p̂M,n(P)> p0|Dn) −→
M→∞

∑
P∈Π

1pn(P)>p0,

E[UM|Dn] = ∑
P∈Π

P(p̂M,n(P)> p0|Dn)P(p̂M,n(P)≤ p0|Dn) −→
M→∞

0.

Also,

E
[ UM

VM +V ′
M

∣∣Dn

]
= ∑

m,m′

1
m+m′E[UM|VM = m,V ′

M = m′,Dn]

×P(VM = m|Dn)P(V ′
M = m′|Dn)

= ∑
m,m′

1
m+m′E

[
∑

P∈Π

1 p̂M,n(P)>p0∩p̂′M,n(P)≤p0

∣∣VM = m,V ′
M = m′,Dn

]
×P(VM = m|Dn)P(V ′

M = m′|Dn),
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E
[ UM

VM +V ′
M

∣∣Dn

]
= ∑

m,m′

1
m+m′ ∑

P∈Π

P(p̂M,n(P)> p0|VM = m,Dn)

×P(p̂′M,n(P)≤ p0|V ′
M = m′,Dn)P(VM = m|Dn)P(V ′

M = m′|Dn),

E
[ UM

VM +V ′
M

∣∣Dn

]
= ∑

m,m′

1
m+m′ ∑

P∈Π

P(p̂M,n(P)> p0,VM = m|Dn)

×P(p̂M,n(P)≤ p0,V ′
M = m′|Dn)

= ∑
P∈Π

P(p̂M,n(P)> p0|Dn)P(p̂M,n(P)≤ p0|Dn)

×
[

∑
m,m′

1
m+m′P(VM = m|p̂M,n(P)> p0,Dn)

×P(V ′
M = m′|p̂M,n(P)≤ p0,Dn)

]
.

For all P ∈ Π ,

P(p̂M,n(P)> p0|Dn)P(p̂M,n(P)≤ p0|Dn
)

= Φ(Mp0,M, pn(P))(1−Φ(Mp0,M, pn(P))),

where Φ is the cdf of the binomial distribution. As a direct consequence of Lemma C.11,

lim
M→∞

∑
m,m′

1
m+m′P(VM = m|p̂M,n(P)> p0,Dn)

×P(VM = m′|p̂M,n(P)≤ p0,Dn)

=
1

∑
P ′∈Π

1pn(P ′)>p0 +1pn(P ′)+ρn(P,P ′)σn(P′)
σn(P)

(p0−pn(P))>p0

,

which yields

1−E[ŜM,n,p0|Dn]

∼
M→∞

∑
P∈Π

2Φ(Mp0,M, pn(P))(1−Φ(Mp0,M, pn(P)))

∑
P ′∈Π

1p̂n(P ′)>p0 +1pn(P ′)+ρn(P,P ′)σn(P′)
σn(P)

(p0−pn(P))>p0

.

This is the desired result.

C.4.1 Proof of intermediate lemmas

Proof of lemma C.10. Cvitković et al. (2017) provides an asymptotic expansion of the
hypergeometric function F in the case where the first and third parameters goes to infinity
with a constant ratio. For a,c,z,ε ∈R, b /∈ Z\N, such that ε > 1, and zε < 1, Cvitković
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et al. (2017) gives in the section 2.2.2 (end of page 10)

F(a+ ελ ,b,c+λ ,z) ∼
|λ |→∞

1
(1− εz)b . (C.4.2)

We can then derive the limit of the following ratio

lim
|λ |→∞

F(a+ ελ ,b,c+λ ,z)
F(1+ ελ ,b,1+λ ,z)

= 1 (C.4.3)

We use C.4.3 in the specific case where b = 1, a,c ∈ Z, ε = 1
1−p0

> 1, z = 1− pn(P) for
P ∈ Π such that pn(P)> p0 (and then zε < 1), and λ = M(1− p0), if follows that

lim
M→∞

F(M+a,1,M(1− p0)+ c,1− pn(P))

F(M+1,1,M(1− p0)+1,1− pn(P))
= 1 (C.4.4)

Proof of lemma C.11. Fix Dn. Let P ′,P ∈ Π . In what follows, when there is no ambi-
guity, we will replace T (Θ ,Dn) by Tn(Θ) to lighten notations.

Case 1: pn(P)> p0

E
[
p̂M,n

(
P

′)
|p̂M,n(P)≤ p0,Dn

]
=E
[ 1

M

M

∑
l=1
1P ′∈Tn(Θl)

∣∣ p̂M,n(P)≤ p0,Dn
]

=P
(
P

′
∈ Tn(Θ1)|P ∈ Tn(Θ1), p̂M,n(P)≤ p0,Dn

)
×P

(
P ∈ Tn(Θ1)|p̂M,n(P)≤ p0,Dn

)
+P

(
P

′
∈ Tn(Θ1)|P /∈ Tn(Θ1), p̂M,n(P)≤ p0,Dn

)
×
(
1−P

(
P ∈ Tn(Θ1)|p̂M,n(P)≤ p0,Dn

))
=P
(
P

′
∈ Tn(Θ1)|P ∈ Tn(Θ1),Dn

)
P
(
P ∈ Tn(Θ1)|p̂M,n(P)≤ p0,Dn

)
+P

(
P

′
∈ Tn(Θ1)|P /∈ Tn(Θ1),Dn

)
×
(
1−P

(
P ∈ Tn(Θ1)|p̂M,n(P)≤ p0,Dn

))
. (C.4.5)

since

P
(
P

′
∈ Tn(Θ1)|P ∈ Tn(Θ1), p̂M,n(P)≤ p0,Dn

)
= P

(
P

′
∈ Tn(Θ1)|P ∈ Tn(Θ1),Dn

)
. (C.4.6)
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because, conditional on Dn, the events P
′ ∈ Tn(Θ1), . . . ,P

′ ∈ Tn(ΘM) are independent.
We can rewrite,

P
(
P

′
∈ Tn(Θ1)|P /∈ Tn(Θ1),Dn

)
=
P
(
P

′ ∈ Tn(Θ1),P /∈ Tn(Θ1)|Dn
)

1− pn(P)

=

(
1−P

(
P ∈ Tn(Θ1)|P

′ ∈ Tn(Θ1),Dn
))

pn
(
P

′)
1− pn(P)

=
pn
(
P

′)
1− pn(P)

− pn(P)

1− pn(P)
P
(
P

′
∈ Tn(Θ1)|P ∈ Tn(Θ1),Dn

)
, (C.4.7)

yielding, using equation (C.4.5),

E
[
p̂M,n

(
P

′)
|p̂M,n(P)≤ p0,Dn

]
(C.4.8)

=P
(
P

′
∈ Tn(Θ1)|P ∈ Tn(Θ1),Dn

)(P(P ∈ Tn(Θ1)|p̂M,n(P)≤ p0,Dn
)

1− pn(P)

− pn(P)

1− pn(P)

)
+

pn
(
P

′)
1− pn(P)

(
1−P

(
P ∈ Tn(Θ1)|p̂M,n(P)≤ p0,Dn

))
.

Besides, by definition of the correlation

ρn
(
P,P

′)
=

Cov
(
1P∈Tn(Θ),1P ′∈Tn(Θ)|Dn

)
σn(P)σn

(
P ′) ,

simple calculations show that

P
(
P

′
∈ Tn(Θ1)|P ∈ Tn(Θ1),Dn

)
= pn

(
P

′)
+ρn

(
P,P

′)√ pn
(
P ′)

pn(P)

(
1− pn(P)

)(
1− pn

(
P ′))

, (C.4.9)

which, together with equation (C.4.8) leads to,

E
[
p̂M,n

(
P

′)
|p̂M,n(P)≤ p0,Dn

]
(C.4.10)

= pn(P
′
)+ρn

(
P,P

′)σn
(
P

′)
σn(P)

(
P
(
P ∈ Tn(Θ1)|p̂M,n(P)≤ p0,Dn

)
− pn(P)

)
.

Regarding the probability in the right-hand side of equation (C.4.10), we have

P
(
P ∈ Tn(Θ1)|p̂M,n(P)≤ p0,Dn

)
= pn

(
P
)P(p̂M,n(P)≤ p0|P ∈ Tn(Θ1),Dn

)
P
(

p̂M,n(P)≤ p0|Dn
) ,
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P
(
P ∈ Tn(Θ1)|p̂M,n(P)≤ p0,Dn

)
= pn

(
P
)P(p̂M,n(P)≤ p0|P ∈ Tn(Θ1),Dn

)
P
(

p̂M,n(P)≤ p0|Dn
)

= pn
(
P
)P((M−1)p̂M−1,n(P)≤ Mp0 −1|Dn

)
P
(
Mp̂M,n(P)≤ Mp0|Dn

)
= pn(P)

Φ
(
Mp0 −1,M−1, pn(P)

)
Φ
(
Mp0,M, pn(P)

) .

Using standard formulas, Φ can be expressed with the incomplete beta function,

Φ(k,M, p) = I1−p(M− k,k+1) =
B1−p(M− k,k+1)

B(M− k,k+1)
,

and the regularized beta function is related to the hypergeometric function F , for a > 0,
b > 0, and p ∈ [0,1] (Olver et al., 2010),

B1−p(a,b) =
(1− p)a pb

a
F(a+b,1,a+1,1− p).

Then, we can express the cdf of the binomial distribution using the hypergeometric function,
and it follows

P
(
P ∈ Tn(Θ1)|p̂M,n(P)≤ p0,Dn

)
= p0

F(M,1,M(1− p0)+1,1− p̂n
(
P
)
)

F(M+1,1,M(1− p0)+1,1− p̂n
(
P
)
)
.

(C.4.11)

According to Lemma C.10,

lim
M→∞

F(M,1,M(1− p0)+1,1− pn(P))

F(M+1,1,M(1− p0)+1,1− pn(P))
= 1.

Consequently,

lim
M→∞

P
(
P ∈ T (Θ1,Dn)|p̂M,n(P)≤ p0,Dn

)
= p0, (C.4.12)

and using this limiting result with equation (C.4.10) yields,

lim
M→∞

E
[
p̂M,n

(
P

′)
|p̂M,n(P)≤ p0,Dn

]
= pn(P

′
)+ρn

(
P,P

′)σn
(
P

′)
σn(P)

×
(

p0 − pn(P)
)
.

(C.4.13)

Regarding the conditional variance,

V
[
p̂M,n

(
P

′)
|p̂M,n(P)≤ p0,Dn

]
= V

[ 1
M

M

∑
l=1
1P ′∈Tn(Θl)

∣∣p̂M,n(P)≤ p0,Dn
]
,
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V
[
p̂M,n

(
P

′)
|p̂M,n(P)≤ p0,Dn

]
=

1
M
V
[
1P ′∈T (Θ1,Dn)

|p̂M,n(P)≤ p0,Dn
]

+(1− 1
M
)Cov(1P ′∈Tn(Θ1)

,1P ′∈Tn(Θ2)
|p̂M,n(P)≤ p0,Dn)

≤ 1
M

+CM

where

CM = Cov(1P ′∈Tn(Θ1)
,1P ′∈Tn(Θ2)

|p̂M,n(P)≤ p0,Dn)

= P(P
′
∈ Tn(Θ1),P

′
∈ Tn(Θ2)|p̂M,n(P)≤ p0,Dn)

−P(P
′
∈ Tn(Θ1)|p̂M,n(P)≤ p0,Dn)P(P

′
∈ Tn(Θ2)|p̂M,n(P)≤ p0,Dn).

Then, we follow the same reasoning that leads to equation (C.4.12). We can fully
expand CM using Bayes formula, depending whether P ∈ Tn(Θ1) or P ∈ Tn(Θ2). Note
that, since all the trees are independent conditional on Dn, we can reduce the conditioning
event

{
P ∈ Tn(Θ1),P ∈ Tn(Θ2), p̂M,n(P)≤ p0,Dn

}
to
{
P ∈ Tn(Θ1),P ∈ Tn(Θ2),Dn

}
,

then

CM = P(P
′
∈ Tn(Θ1),P

′
∈ Tn(Θ2)|P ∈ Tn(Θ1),P ∈ Tn(Θ2),Dn)

×P(P ∈ Tn(Θ1),P ∈ Tn(Θ2)|p̂M,n(P)≤ p0,Dn)

− (P(P
′
∈ Tn(Θ1)|P ∈ Tn(Θ1),Dn)

×P(P ∈ Tn(Θ1)|p̂M,n(P)≤ p0,Dn))
2

+2[P(P
′
∈ Tn(Θ1),P

′
∈ Tn(Θ2)|P ∈ Tn(Θ1),P /∈ Tn(Θ2),Dn)

×P(P ∈ Tn(Θ1),P /∈ Tn(Θ2)|p̂M,n(P)≤ p0,Dn)

−P(P
′
∈ Tn(Θ1)|P ∈ Tn(Θ1),Dn)

×P(P ∈ Tn(Θ1)|p̂M,n(P)≤ p0,Dn)

×P(P
′
∈ Tn(Θ1)|P /∈ Tn(Θ1),Dn)

×P(P /∈ Tn(Θ1)|p̂M,n(P)≤ p0,Dn)]

+P(P
′
∈ Tn(Θ1),P

′
∈ Tn(Θ2)|P /∈ Tn(Θ1),P /∈ Tn(Θ2),Dn)

×P(P /∈ Tn(Θ1),P /∈ Tn(Θ2)|p̂M,n(P)≤ p0,Dn)

− (P(P
′
∈ Tn(Θ1)|P /∈ Tn(Θ1),Dn)

×P(P /∈ Tn(Θ1)|p̂M,n(P)≤ p0,Dn))
2.
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Conditional on Dn, Tn(Θ1) and Tn(Θ2) are independent, then

P(P
′
∈ Tn(Θ1),P

′
∈ Tn(Θ2)|P ∈ Tn(Θ1),P ∈ Tn(Θ2),Dn)

=
P(P

′ ∈ Tn(Θ1),P
′ ∈ Tn(Θ2),P ∈ Tn(Θ1),P ∈ Tn(Θ2)|Dn)

P(P ∈ Tn(Θ1),P ∈ Tn(Θ2)|Dn)

=
P(P

′ ∈ Tn(Θ1),P ∈ Tn(Θ1)|Dn)P(P
′ ∈ Tn(Θ2),P ∈ Tn(Θ2)|Dn)

P(P ∈ Tn(Θ1)|Dn)P(P ∈ Tn(Θ2)|Dn)

= P(P
′
∈ Tn(Θ1)|P ∈ Tn(Θ1),Dn)P(P

′
∈ Tn(Θ2)|P ∈ Tn(Θ2),Dn)

= P(P
′
∈ Tn(Θ1)|P ∈ Tn(Θ1),Dn)

2

we can rewrite CM

CM = P(P
′
∈ Tn(Θ1)|P ∈ Tn(Θ1),Dn)

2 ×∆M,1

+2P(P
′
∈ Tn(Θ1)|P ∈ Tn(Θ1),Dn)

×P(P
′
∈ Tn(Θ1)|P /∈ Tn(Θ1),Dn)×∆M,2

+P(P
′
∈ Tn(Θ1)|P /∈ Tn(Θ1),Dn)

2 ×∆M,3,

where

∆M,1 = P(P ∈ Tn(Θ1),P ∈ Tn(Θ2)|p̂M,n(P)≤ p0,Dn)

−P(P ∈ Tn(Θ1)|p̂M,n(P)≤ p0,Dn)
2,

∆M,2 = P(P ∈ Tn(Θ1),P /∈ Tn(Θ2)|p̂M,n(P)≤ p0,Dn)

−P(P ∈ Tn(Θ1)|p̂M,n(P)≤ p0,Dn)

(1−P(P ∈ Tn(Θ1)|p̂M,n(P)≤ p0,Dn)),

∆M,3 = P(P /∈ Tn(Θ1),P /∈ Tn(Θ2)|p̂M,n(P)≤ p0,Dn)

−P(P /∈ Tn(Θ1)|p̂M,n(P)≤ p0,Dn)
2.

We first consider the term

∆M,1 = P(P ∈ Tn(Θ1),P ∈ Tn(Θ2)|p̂M,n(P)≤ p0,Dn)

−P(P ∈ Tn(Θ1)|p̂M,n(P)≤ p0,Dn)
2

Equation (C.4.12) directly gives,

lim
M→∞

P(P ∈ Tn(Θ1)|p̂M,n(P)≤ p0,Dn)
2 = p2

0. (C.4.14)
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On the other hand

P(P ∈ Tn(Θ1),P ∈ Tn(Θ2)|p̂M,n(P)≤ p0,Dn)

= pn(P)2P(p̂M,n(P)≤ p0|P ∈ Tn(Θ1),P ∈ Tn(Θ2),Dn)

P(p̂M,n(P)≤ p0|Dn)

= pn(P)2 Φ
(
Mp0 −2,M−2, pn(P)

)
Φ
(
Mp0,M, pn(P)

) .

Again, as for equation (C.4.11), we can express the cdf of the binomial distribution using
the hypergeometric function F

P(P ∈ Tn(Θ1),P ∈ Tn(Θ2)|p̂M,n(P)≤ p0,Dn)

= p2
0

(
1+

p0 −1
p0(M−1)

)F(M−1,1,M(1− p0)+1,1− pn(P))

F(M+1,1,M(1− p0)+1,1− pn(P))
, (C.4.15)

and from Lemma C.10,

lim
M→∞

F(M−1,1,M(1− p0)+1,1− pn(P))

F(M+1,1,M(1− p0)+1,1− pn(P))
= 1,

that is

lim
M→∞

P(P ∈ Tn(Θ1),P ∈ Tn(Θ2)|p̂M,n(P)≤ p0,Dn) = p2
0. (C.4.16)

Using equations (C.4.14) and (C.4.16), we conclude

lim
M→∞

∆M,1 = 0.

We follow the same reasoning for ∆M,3, equation (C.4.12) gives

lim
M→∞

P(P /∈ Tn(Θ1)|p̂M,n(P)≤ p0,Dn)
2 = (1− p0)

2. (C.4.17)

On the other hand,

P(P /∈ Tn(Θ1),P /∈ Tn(Θ2)|p̂M,n(P)≤ p0,Dn)

= (1− p0)
2
(

1− p0

M−1

)F(M−1,1,M(1− p0)−11,1− pn(P))

F(M+1,1,M(1− p0)+1,1− pn(P))

From Lemma C.10,

lim
M→∞

P(P /∈ Tn(Θ1),P /∈ Tn(Θ2)|p̂M,n(P)≤ p0,Dn) = (1− p0)
2 (C.4.18)
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And finally lim
M→∞

∆M,3 = 0. The term ∆M,2 can be treated in a similar way, since equation
(C.4.12) gives

lim
M→∞

P(P ∈ Tn(Θ1)|p̂M,n(P)≤ p0,Dn)P(P /∈ Tn(Θ1)|p̂M,n(P)≤ p0,Dn)

= p0(1− p0).

Simple identity shows

P(P ∈ Tn(Θ1),P /∈ Tn(Θ2)|p̂M,n(P)≤ p0,Dn)

=
1
2

(
1−P(P /∈ Tn(Θ1),P /∈ Tn(Θ2)|p̂M,n(P)≤ p0,Dn)

−P(P ∈ Tn(Θ1),P ∈ Tn(Θ2)|p̂M,n(P)≤ p0,Dn)
)
.

Taking the limit of the previous equation and using equations (C.4.16) and (C.4.18), we get

lim
M→∞

P(P ∈ Tn(Θ1),P /∈ Tn(Θ2)|p̂M,n(P)≤ p0,Dn)

= p0(1− p0). (C.4.19)

Using (C.4.12) and (C.4.19), lim
M→∞

∆M,2 = 0. Since ∆M,1,∆M,2,∆M,3 → 0, we obtain
lim

M→∞
CM = 0, that is,

lim
M→∞

V
[
p̂M,n

(
P

′)
|p̂M,n(P)≤ p0,Dn

]
= 0. (C.4.20)

Finally combining equations (C.4.13) and (C.4.20),

lim
M→∞

P
(

p̂M,n
(
P

′)
> p0|p̂M,n(P)≤ p0,Dn

)
= 1

pn(P
′
)+ρn(P,P ′

)
σn(P

′
)

σn(P)
(p0−pn(P))>p0

Case 2: pn(P)≤ p0 By the law of large numbers, lim
M→∞

p̂M,n
(
P
)
= pn(P) in proba-

bility, and consequently lim
M→∞

P
(

p̂M,n
(
P
)
≤ p0

)
= 1. Additionally, we can simply write

P
(

p̂M,n
(
P

′)
> p0|p̂M,n(P)≤ p0,Dn

)
=
P
(

p̂M,n
(
P

′)
> p0, p̂M,n(P)≤ p0|Dn

)
P
(

p̂M,n(P)≤ p0,Dn
)

Again, by the law of large numbers, lim
M→∞

p̂M,n
(
P ′) = pn(P ′) in probability. Then,

if pn(P ′) > p0, lim
M→∞

P
(

p̂M,n
(
P ′) > p0

)
= 1, and it follows that lim

M→∞
P
(

p̂M,n(P ′) >
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p0, p̂M,n(P) ≤ p0|Dn
)
= 1. If pn(P ′) ≤ p0, lim

M→∞
P
(

p̂M,n
(
P ′) > p0

)
= 0, and conse-

quently lim
M→∞

P
(

p̂M,n
(
P

′)
> p0, p̂M,n(P) ≤ p0|Dn

)
= 0. This can be compacted under

the form

lim
M→∞

P
(

p̂M,n
(
P

′)
> p0|p̂M,n(P)≤ p0,Dn

)
= 1pn(P ′)>p0.

The proof for the case P
[
p̂M,n

(
P

′)
> p0|p̂M,n(P)> p0,Dn

]
is similar.
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D.1 Proof of Theorem 5.1: Asymptotic Stability

Proof of Theorem 5.1. We recall that stability is assessed by the Dice-Sorensen index as

ŜM,n,p0 =
2
∣∣P̂M,n,p0 ∩P̂ ′

M,n,p0

∣∣∣∣P̂M,n,p0

∣∣+ ∣∣P̂ ′
M,n,p0

∣∣ ,
where P̂ ′

M,n,p0
stands for the list of rules output by SIRUS fit with an independent sample

D ′
n and where the random forest is parameterized by independent copies Θ ′

1, . . . ,Θ
′
M.

We consider p0 ∈ [0,1] \U ⋆ and λ > 0. There are two sources of randomness in
the estimation of the final set of selected paths: (i) the path extraction from the random
forest based on p̂M,n(P) for P ∈ Π , and (ii) the final sparse linear aggregation of the
rules through the estimate β̂ n,p0

. To show that the stability converges to 1, these estimates
have to converge towards theoretical quantities that are independent of Dn. Note that,
throughout the paper, the final set of selected paths is denoted P̂Mn,n,p0 . Here, for the sake
of clarity, P̂Mn,n,p0 is now the post-treated set of paths extracted from the random forest,
and P̂Mn,n,p0,λ the final set of selected paths in the ridge regression.

(i) Path extraction The first step of the proof is to show that the post-treated path
extraction from the forest is consistent, i.e., in probability

lim
n→∞

P(P̂Mn,n,p0 = P⋆
p0
) = 1. (D.1.1)

Using the continuous mapping theorem, it is easy to see that this result is a consequence of
the consistency of p̂M,n(P), i.e.,

lim
n→∞

p̂Mn,n(P) = p⋆(P) in probability.
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Since the output Y is bounded (by Assumption (A5.2)), the consistency of p̂M,n(P) can
be easily adapted from Theorem 1 of Bénard et al. (2021c) using Assumptions (A5.1) and
(A5.2). Finally, the result still holds for the post-treated rule set because the post-treatment
is a deterministic procedure.

(ii) Sparse linear aggregation Recall that the estimate (β̂ n,p0
, β̂0) is defined as

(β̂ n,p0
, β̂0) = argmin

β≥0,β0

ℓn(β ,β0), (D.1.2)

where ℓn(β ,β0) =
1
n ||Y−β01n −Γ n,p0β ||22 +λ ||β ||22. The dimension of β is stochastic

since it is equal to the number of extracted rules. To get rid of this technical issue in the
following of the proof, we rewrite ℓn(β ,β0) to have β a parameter of fixed dimension |Π |,
the total number of possible rules:

ℓn(β ,β0) =
1
n

n

∑
i=1

(
Yi −β0 − ∑

P∈Π

βPgn,P(Xi)1P∈P̂Mn,n,p0

)2
+λ ||β ||22.

By the law of large numbers and the previous result (D.1.1), we have in probability

lim
n→∞

ℓn(β ,β0) =E
[(

Y −β0 − ∑
P∈P⋆

p0

βPg⋆P(X)
)2]

+λ ||β ||22
def
= ℓ⋆(β ,β0),

where g⋆P is the theoretical rule based on the path P and the theoretical quantiles. Since
Y is bounded, it is easy to see that each component of β̂ n,p0

is bounded from the following
inequalities:

λ ||β̂ n,p0
||22 ≤ ℓn(β̂ n,p0

, β̂0)≤ ℓn(0,0)≤
||Y ||22

n
≤ max

i
Y 2

i .

Consequently, the optimization problem (D.1.2) can be equivalently written with (β ,β0)

constrained to belong to a compact and convex set K. Since ℓn is convex and converges
pointwise to ℓ⋆ according to (D.1.3), the uniform convergence over the compact set K also
holds, i.e., in probability

lim
n→∞

sup
(β ,β0)∈K

|ℓn(β ,β0)− ℓ⋆(β ,β0)|= 0. (D.1.3)

Additionnally, since ℓ⋆ is a quadratic convex function and the constraint domain K is
convex, ℓ⋆ has a unique minimum that we denote β

⋆
p0,λ

. Finally, since the maximum of
ℓ⋆ is unique and ℓn uniformly converges to ℓ⋆, we can apply theorem 5.7 from Van der
Vaart (2000, page 45) to deduce that (β̂ n,p0

, β̂0) is a consistent estimate of β
⋆
p0,λ

. We can
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conclude that, in probability,

lim
n→∞

P
(
P̂Mn,n,p0,λ = {P ∈ P⋆

p0
: β

⋆
P,p0,λ

> 0}
)
= 1,

and the final stability result follows from the continuous mapping theorem.

D.2 Computational Complexity

The computational cost to fit SIRUS is similar to standard random forests, and its com-
petitors: RuleFit, and Node harvest. The full tuning procedure costs about 10 SIRUS
fits.

SIRUS SIRUS algorithm has several steps in its construction phase. We derive the
computational complexity of each of them. Recall that M is the number of trees, p the
number of input variables, and n the sample size.

1. Forest growing: O(Mpnlog(n))

The forest growing is the most expensive step of SIRUS. The average computational
complexity of a standard forest fit is O(Mpnlog(n)2) (Louppe, 2014). Since the
depth of trees is fixed in SIRUS—see Section 3, it reduces to O(Mpnlog(n)).

A standard forest is grown so that its accuracy cannot be significantly improved
with additional trees, which typically results in about 500 trees. In SIRUS, the
stopping criterion of the number of trees enforces that 95% of the rules are identical
over multiple runs with the same dataset (see Section D.6). This is critical to have
the forest structure converged and stabilize the final rule list. This leads to forests
with a large number of trees, typically 10 times the number for standard forests.
On the other hand, shallow trees are grown and the computational complexity is
proportional to the tree depth, which is about log(n) for fully grown forests.

Overall, the modified forest used in SIRUS is about the same computational cost as
a standard forest, and has a slightly better computational complexity thanks to the
fixed tree depth.

2. Rule extraction: O(M)

Extracting the rules in a tree requires a number of operations proportional to the
number of nodes, i.e. O(1) since tree depth is fixed. With the appropriate data
structure (a map), updating the forest count of the number of occurrences of the rules
of a tree is also O(1). Overall, the rule extraction is proportional to the number of
trees in the forest, i.e., O(M).
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3. Rule post-treatment: O(1)

The post-treatment algorithm is only based on the rules and not on the sample. Since
the number of extracted rules is bounded by a fixed limit of 25, this step has a
computational complexity of O(1).

4. Rule aggregation: O(n)

Efficient algorithms (Friedman et al., 2010) enable to fit a ridge regression and find
the optimal penalization λ with a linear complexity in the sample size n. In SIRUS,
the predictors are the rules, whose number is upper bounded by 25, and then the
complexity of the rule aggregation is independent of p. Therefore the computational
complexity of this step is O(n).

Overall, the computational complexity of SIRUS is O(Mpnlog(n)), which is slightly
better than standard random forests thanks to the use of shallow trees. Because of the
large number of trees and the final ridge regression, the computational cost of SIRUS is
comparable to standard forests in practice.

RuleFit/Node harvest Comparison In both RuleFit and Node harvest, the first two steps
of the procedure are also to grow a tree ensemble with limited tree depth and extract all
possible rules. The complexity of this first phase is then similar to SIRUS: O(Mpnlog(n)).
However, in the last step of the linear rule aggregation, all rules are combined in a sparse
linear model, which is of linear complexity with n, but grows at faster rate than linear with
the number of rules, i.e., the number of trees M (Friedman et al., 2010).

As the tree ensemble growing is the computational costly step, SIRUS, RuleFit and
Node harvest have a very comparable complexity. On one hand, SIRUS requires to grow
more trees than its competitors. On the other hand, the final linear rule aggregation is done
with few predictors in SIRUS, while it includes thousands of rules in RuleFit and Node
harvest, which has a complexity faster than linear with M.

Tuning Procedure The only parameter of SIRUS which requires fine tuning is p0, which
controls model sparsity. The optimal value is estimated by 10-fold cross validation using a
standard bi-objective optimization procedure to maximize both stability and predictivity.
For a fine grid of p0 values, the unexplained variance and stability metric are computed
for the associated SIRUS model through a cross-validation. Recall that the bounds of the
p0 grid are set to get the model size between 1 and 25 rules. Next, we obtain a Pareto
front, as illustrated in Figure D.1, where each point corresponds to a p0 value of the tuning
grid. To find the optimal p0, we compute the euclidean distance between each point and
the ideal point of 0 unexplained variance and 90% stability. Notice that this ideal point
is chosen for its empirical efficiency: the unexplained variance can be arbitrary close
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Fig. D.1 Pareto front of stability versus error (unexplained variance) when p0 varies, with
the optimal value in green for the “Ozone” dataset. The optimal point is the closest one to
the ideal point (0,0.1) of 0 unexplained variance and 90% stability.

to 0 depending on the data, whereas we never observed a stability (with respect to data
perturbation) higher than 90% accross many datasets. Finally, the optimal p0 is the one
minimizing the euclidean distance distance to the ideal point. Thus, the two objectives,
stability and predictivity, are equally weighted.

Tuning Complexity The optimal p0 value is estimated by a 10-fold cross validation.
The costly computational step of SIRUS is the forest growing. However, this step has to be
done only once per fold. Then, p0 can vary along a fine grid to extract more or less rules
from each forest, and thus, get the accuracy associated to each p0 at a total cost of about
10 SIRUS fits.

D.3 Random Forest Modifications

As explained in Section 1 of the chapter, SIRUS uses random forests at its core. In order
to stabilize the forest structure, we slightly modify the original algorithm from Breiman
(Breiman, 2001a): cut values at each tree node are limited to the 10-empirical quantiles.
In the first paragraph, we show how this restriction have a small impact on predictive
accuracy, but is critical to stabilize the rule extraction. On the other hand, the rule selection
mechanism naturally only keeps rules with one or two splits. Therefore, tree depth is fixed
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Dataset Breiman Random
Forest

Random Forest
10-Quantile Cuts

Ozone 0.25 (0.007) 0.25 (0.006)
Mpg 0.13 (0.003) 0.13 (0.003)

Prostate 0.46 (0.01) 0.47 (0.02)
Housing 0.13 (0.006) 0.16 (0.004)
Diabetes 0.55 (0.006) 0.55 (0.007)
Machine 0.13 (0.03) 0.24 (0.02)
Abalone 0.44 (0.002) 0.49 (0.003)
Bones 0.67 (0.01) 0.68 (0.01)

Table D.1 Proportion of unexplained variance (estimated over a 10-fold cross-validation)
for various public datasets to compare two algorithms: Breiman’s random forest and the
forest where split values are limited to the 10-empirical quantiles. Standard deviations are
computed over multiple repetitions of the cross-validation and displayed in brackets.

to 2 to optimize the computational efficiency. In the second paragraph, this phenomenon is
thoroughly explained.

Quantile discretization In a typical setting where the number of predictors is p =

100, limiting cut values to the 10-quantiles splits the input space in a fine grid of 10100

hyperrectangles. Therefore, restricting cuts to quantiles still leaves a high flexibility to
the forest and enables to identify local patterns (it is still true in small dimension). To
illustrate this, we run the following experiment: for each of the 8 datasets, we compute
the unexplained variance of respectively the standard forest and the forest where cuts are
limited to the 10-quantiles. Results are presented in Table D.1, and we see that there is
almost no decrease of accuracy except for one dataset. Besides, notice that setting q = n is
equivalent as using original forests.

On the other hand, such discretization is critical for the stability of the rule selection.
Recall that the importance of each rule p̂M,n(P) is defined as the proportion of trees which
contain its associated path P , and that the rule selection is based on p̂M,n(P)> p0. In
the forest growing, data is bootstrapped prior to the construction of each tree. Without
the quantile discretization, this data perturbation results in small variation between the cut
values across different nodes, and then the dilution of p̂M,n(P) between highly similar
rules. Thus, the rule selection procedure becomes inefficient. More formally, p̂M,n(P) is
defined by

p̂M,n(P) =
1
M

M

∑
ℓ=1
1P∈T (Θℓ,Dn),
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where T (Θℓ,Dn) is the list of paths extracted from the ℓ-th tree of the forest. The expected
value of the importance of a given rule is

E[p̂M,n(P)] =
1
M

M

∑
ℓ=1

E[1P∈T (Θℓ,Dn)] = P(P ∈ T (Θ ,Dn)).

Without the discretization, T (Θ ,Dn) is a random set that takes value in an uncountable
space, and consequently

E[p̂M,n(P)] = P(P ∈ T (Θℓ,Dn)) = 0,

and all rules are equally not important in average. In practice, since Dn is of finite size and
the random forest cuts at mid distance between two points, it is still possible to compute
p̂M,n(P) and select rules for a given dataset. However, such procedure is highly unstable
with respect to data perturbation since we have E[p̂M,n(P)] = 0 for all possible paths.

Tree depth When SIRUS is fit using fully grown trees, the final set of rules P̂M,n,p0

contains almost exclusively rules made of one or two splits, and very rarely of three splits.
Although this may appear surprising at first glance, this phenomenon is in fact expected.
Indeed, rules made of multiple splits are extracted from deeper tree levels and are thus
more sensitive to data perturbation by construction. This results in much smaller values of
p̂M,n(P) for rules with a high number of splits, and then deletion from the final set of path
through the threshold p0: P̂M,n,p0 = {P ∈ Π : p̂M,n(P)> p0}. To illustrate this, let us
consider the following typical example with p = 100 input variables and q = 10 quantiles.
There are 2qp = 2× 100× 10 = 2× 103 distinct rules of one split, about (2qp)2 ≈ 106

distinct rules of two splits, and about (2qp)3 ≈ 1010 distinct rules of three splits. Using
only rules of one split is too restrictive since it generates a small model class (a thousand
rules for 100 input variables) and does not handle variable interactions. On the other hand,
rules of two splits are numerous (a million) and thus provide a large flexibility to SIRUS.
More importantly, since there are 10 billion rules of three splits, a stable selection of a few
of them is clearly an impossible task, and such complex rules are naturally discarded by
SIRUS.

In SIRUS, tree depth is set to 2 to reduce the computational cost while leaving the
output list of rules untouched as previously explained. We augment the experiments of
Section 3 of the chapter with an additional column in Table 3: “SIRUS 50 Rules & d= 3”.
Recall that, in the column “SIRUS 50 Rules”, p0 is set manually to extract 100 rules from
the forest leading to final lists of about 50 rules (similar size as RuleFit and Node harvest
models), an improved accuracy (reaching RuleFit performance), while stability drops to
around 50% (70−80% when p0 is tuned). In the last column, tree depth is set to 3 with
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Dataset Random
Forest CART RuleFit Node

Harvest SIRUS SIRUS
50 Rules

SIRUS
50 Rules & d=3

Ozone 0.25 0.36 0.27 0.31 0.32 0.26 0.28
Mpg 0.13 0.20 0.15 0.20 0.21 0.15 0.14

Prostate 0.46 0.60 0.53 0.52 0.48 0.55 0.59
Housing 0.13 0.28 0.16 0.24 0.31 0.21 0.20
Diabetes 0.55 0.67 0.55 0.58 0.56 0.54 0.55
Machine 0.13 0.39 0.26 0.29 0.29 0.27 0.26
Abalone 0.44 0.56 0.46 0.61 0.66 0.64 0.63
Bones 0.67 0.67 0.70 0.70 0.74 0.72 0.71

Table 3 Proportion of unexplained variance estimated over a 10-fold cross-validation for
various public datasets. For rule algorithms only, i.e., RuleFit, Node harvest, and SIRUS,
maximum values are displayed in bold, as well as values within 10% of the maximum for
each dataset.

the same augmented model size. We observe no accuracy improvement over a tree depth
of 2.

This analysis of tree depth is not new. Indeed, both RuleFit (Friedman et al., 2008)
and Node harvest (Meinshausen, 2010) articles discuss the optimal tree depth for the rule
extraction from a tree ensemble in their experiments. They both conclude that the optimal
depth is 2. Hence, the same hard limit of 2 is used in Node harvest. RuleFit is slightly less
restrictive: for each tree, its depth is randomly sampled with an exponential distribution
concentrated on 2, but allowing few trees of depth 1, 3 and 4. We insist that they both
reach such conclusion without considering stability issues, but only focusing on accuracy.

D.4 Rule Format

The format of the rules with an else clause for the uncovered data points differs from the
standard format in the rule learning literature. Indeed, in classical algorithms, a prediction
is generated for a given query point by aggregating the outputs of the rules satisfied by
the point. A default rule usually provides predictions for all query points which satisfy no
rule. First, observe that the intercept in the final linear aggregation of rules in SIRUS can
play the role of a default rule. Secondly, removing the else clause of the rules selected
by SIRUS results in an equivalent formulation of the linear regression problem up to the
intercept. More importantly, the format with an else clause is required for the stability and
modularity (Murdoch et al., 2019) properties of SIRUS.
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Equivalent Formulation Rules are originally defined in SIRUS as

ĝn,P(x) =

Ȳ (1)
P if x ∈ P

Ȳ (0)
P otherwise,

where if x ∈ P indicates whether the query point x satisfies the rule associated with path
P or not, Ȳ (1)

P is the output average of the training points which satisfy the rule, and
symmetrically Ȳ (0)

P is the output average of the training point not covered by the rule. The
original linear aggregation of the rules is

m̂M,n,p0(x) = β̂0 + ∑
P∈P̂M,n,p0

β̂n,P ĝn,P(x).

Now we define the rules without the else clause by ĥn,P(x) = (Ȳ (1)
P − Ȳ (0)

P )1x∈P , and we
can rewrite SIRUS estimate as

m̂M,n,p0(x) =
(
β̂0 + ∑

P∈P̂M,n,p0

β̂n,PȲ (0)
P

)
+ ∑

P∈P̂M,n,p0

β̂n,P ĥn,P(x)

=β̃0 + ∑
P∈P̂M,n,p0

β̂n,P ĥn,P(x).

Therefore the two models with or without the else clause are equivalent up to the intercept.

Stability The problem of defining rules without the else clause lies in the rule selection.
Indeed, rules associated with left (L) and right (R) nodes at the first level of a tree are
identical:

ĝn,L(x) = ĝn,R(x) = ȲL1x∈L + ȲR1x∈R.

Without the else clause, these two rules become different estimates:

ĥn,L(x) = (ȲL − ȲR)1x∈L,

ĥn,R(x) = (ȲR − ȲL)1x∈R.

However, ĥn,L and ĥn,R are linearly dependent, since ĥn,L(x)− ĥn,R(x) = ȲL − ȲR, which
does not depend on the query point x. This linear dependence between predictors makes
the linear aggregation of the rules ill-defined. One of two rule could be removed randomly,
but this would strongly hurt stability.
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Modularity Murdoch et al. (2019) specify different properties to assess model simplicity:
sparsity, simulatability, and modularity. A model is sparse when it uses only a small fraction
of the input variables, e.g. the lasso. A model is simulatable if it is possible for humans to
perform predictions by hands, e.g. shallow decision trees. A model is modular when it is
possible to analyze a meaningful portion of it alone. Typically, rule models are modular
since one can analyze the rules one by one. In that case, the average of the output values
for instances not covered by the rule is an interesting insight.

D.5 Dataset Descriptions

Dataset Sample Size
Total Number
of Variables

Number of
Categorical
Variables

Ozone 203 12 0
Mpg 392 7 0

Prostate 97 8 0
Housing 506 13 0
Diabetes 442 10 0
Machine 209 7 1
Abalone 4177 8 1
Bones 485 3 2

Table D.3 Description of datasets

D.6 Number of Trees

The stability, predictivity, and computation time of SIRUS increase with the number of
trees. Thus a stopping criterion is designed to grow the minimum number of trees that
ensures stability and predictivity to be close to their maximum. It happens in practice that
stabilizing the rule list is computationally more demanding in the number of trees than
reaching a high predictivity. Therefore the stopping criterion is only based on stability, and
defined as the minimum number of trees such that when SIRUS is fit twice on the same
given dataset, 95% of the rules are shared by the two models in average.

To this aim, we introduce 1− εM,n,p0 , an estimate of the mean stability E[ŜMn,n,p0 |Dn]

when SIRUS is fit twice on the same dataset Dn. εM,n,p0 is defined by

εM,n,p0 =
∑P∈Π zM,n,p0(P)(1− zM,n,p0(P))

∑P∈Π (1− zM,n,p0(P))
,
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where zM,n,p0(P) = Φ(Mp0,M, pn(P)), the cdf of a binomial distribution with parameter
pn(P) = E[p̂Mn,n(P)|Dn], M trials, evaluated at Mp0. It happens that εM,n,p0 is quite
insensitive to p0. Consequently it is simply averaged over a grid V̂M,n of many possible
values of p0. Therefore, the number of trees is set, for α = 0.05, by

argmin
M

{ 1
|V̂M,n|

∑
p0∈V̂M,n

εM,n,p0 < α

}
,

to ensure that 95% of the rules are shared by the two models in average. See Section 4
from Bénard et al. (2021c) for a thorough explanation of this stopping criterion.
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