CL Continual Learning CF Catastrophic Forgetting IL Incremental Learning AL Active Learning DL Deep Learning SL Supervised Learning FT Fine Tuning FR Fixed Representation NEM Nearest Exemplars Mean iCaRL ‡ incremental Classifier and Representation Learning BiC ‡

Learning a Unified Classifier Incrementally via Rebalancing (LU-CIR), a method that gains much traction. LU CIR is based on three main components: (1) cosine normalization, (2) inter-class separation, and (3) less-forget constraint. The first two contribu-

LIST OF SYMBOLS

In our complex world, many technological fields evolve at a tremendous speed that requires keeping pace with their development. This development was accompanied by a significant increase in the amount of data, especially with the advent of the era of big data [START_REF]25+ Impressive Big Data Statistics for[END_REF]. For example, billions of images and content are added every day to social media such as Facebook, Instagram, and Twitter. Big companies (such as Google, Amazon, and Facebook) use this data to improve user's experience. Behind such services, intelligent systems are trained with huge data collected from different users on different platforms. Other examples include smart digital assistants such as Alexa, Siri and Google Assistant that rely on artificial intelligence to recognize the human voice and carry out what is requested of them. Simply put, artificial intelligence has become pervasive, and its integration in applications and services is likely to become even more prevalent in the future [START_REF] Lucci | Artificial intelligence in the 21st century[END_REF].

Neural Networks and Deep Learning

The most popular and efficient artificial intelligence systems today are based on artificial neural networks (ANNs), or simply neural networks (NNs). Their development is based on multidisciplinary work which includes contributions from computer science, mathematics, cognitive science, statistics, psychology, and neuroscience.

Neural networks simulate the working mechanism of biological neurons in two aspects:

-The structurea neural network consists of a certain number of nodes (called neurons) connected together through artificial connections.

-The behaviorartificial neurons imitate biological neurons in how they generate and transmit signals between them.

Neural networks learn from examples, and the more relevant examples they encounter, the better is their experience, and thus their performance. The theoretical progress in AI, the development of computation power [START_REF] Et Barron | A micro controlled peripheral processor[END_REF][START_REF] Levine | Core standard graphic package for the VGI 3400[END_REF], and the availability of large amounts of data lead to the emergence of Deep Learning. The latter refers to neural networks with a large number of layers. Deep neural networks require thus up to thousands or millions of data examples to learn efficiently. Many ANNs have been proposed after the formal neuron. The most popular architectures nowadays include: Convolutional Neural Networks (CNNs) [START_REF] Lecun | Object recognition with gradient-based learning[END_REF], Recurrent Neural Networks (RNNs) [START_REF] David E Rumelhart | Learning internal representations by error propagation[END_REF][START_REF] Jordan | Serial order: a parallel distributed processing approach[END_REF], and Transformer Neural Networks [START_REF] Vaswani | Attention is all you need[END_REF]. In this thesis, we are interested in image classification with deep convolutional neural networks.

Image classification with Convolutional Neural Networks

We focus on Supervised Learning (SL) and provide a simple illustration of it in Figure 1.1. Simply put, we focus on an automatic system that can classify a set of images into a specific number of classes that belong or not to the same visual field, for example, house, giraffe, car, lasagna, and phone. To do this, a set of images and their labels are showed several times to the AI system. The goal is to guide the system by indicating the number of errors it makes in order to improve the quality of its learning and correct its mistakes. This stage is called the learning stage. When it finishes, the system is provided with a set of images that it did not see in the learning phase. The goal of the system is to classify them according to the classes that it recognized during the learning stage. Here, the simplest way to evaluate the system is to count the number of correctly classified images. This stage is called the evaluation, testing, or inference stage. Note that we do not address in this thesis other types of learning (unsupervised and semi-supervised) [START_REF] Sebe | Machine Learning in Computer Vision[END_REF].

Convolutional Neural Networks (CNNs) were introduced by LeCun et al. [START_REF] Lecun | Handwritten digit recognition with a back-propagation network[END_REF] in 1989 to solve the problems of the full connectivity of multi-layer perceptrons [START_REF] Sankar | Multilayer perceptron, fuzzy sets, classifiaction[END_REF]. CNNs are based on convolutions, and the associated filters are equivalent to the values of the weights in MLPs.

Here, the difference with MLPs is that a neuron operates on a group of input neurons (called receptive-field), where the convolution is computed. This sparsity in the weights helps to considerably reduce the number of learnable parameters, making CNNs more efficient to learn without overfitting the training set.

Two pioneering works which contributed to the current prevalence of CNNs in image classification are Ciresan's multi-column architecture [START_REF] Ciresan | Multi-column deep neural networks for image classification[END_REF], and Krizhevsky's AlexNet [START_REF] Krizhevsky | ImageNet Classification with Deep Convolutional Neural Networks[END_REF]. The latter won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF][START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF] in 2012. These works and the increasing attention given to the ILSVRC challenge led to further progress Figure 1.1 -Supervised Learning in image classification in image classification. Among the latter important contributions, we cite the following CNN architectures: VGGNet [START_REF] Simonyan | Very Deep Convolutional Networks for Large-Scale Image Recognition[END_REF], GoogleNet [START_REF] Szegedy | Going deeper with convolutions[END_REF], ResNet [START_REF] He | Deep Residual Learning for Image Recognition[END_REF], Wide ResNet [START_REF] Zagoruyko | Wide Residual Networks[END_REF], DenseNet [START_REF] Huang | Densely Connected Convolutional Networks[END_REF], PolyNet [START_REF] Zhang | PolyNet: A Pursuit of Structural Diversity in Very Deep Networks[END_REF], ResNext [START_REF] Xie | Aggregated Residual Transformations for Deep Neural Networks[END_REF], Xception [START_REF] Chollet | Xception: Deep Learning with Depthwise Separable Convolutions[END_REF], DarkNet [START_REF] Redmon | YOLO9000: Better, Faster, Stronger[END_REF], etc. In this thesis we use a ResNet-18 architecture [START_REF] He | Deep Residual Learning for Image Recognition[END_REF] containing 18 convolutional layers.

Class-Incremental Learning as a Continual Learning paradigm

While strong progress was achieved in artificial intelligence-related tasks, such as image classification, standard artificial agents are designed to be trained in a static manner. In contrast, real-world data is often dynamic [START_REF] Luca | Sensing Trending Topics in Twitter[END_REF] and artificial agents should be able to ingest new information without full retraining. In other words, it is not enough for AI systems to learn, but it is important that they learn continuously. This way of learning is called Continual Learning (CL) or LifeLong Learning (LFL). It is interesting insofar as it avoids training from scratch when new data is ingested, thus reducing the computational requirements and memory footprint. The memory limitation is often encountered in robotics [START_REF] Lesort | Continual Learning for Robotics[END_REF], embedding systems (such as mobile devices), and when regulation limits data storage and distribution (as is the case for health-related data). Some environment-friendly applications also use CL to reduce the carbon footprint [START_REF] Strubell | Energy and Policy Considerations for Modern Deep Learning Research[END_REF][START_REF] Sharir | The Cost of Training NLP Models: A Concise Overview[END_REF]. Figure 1.2 shows a simplified supervised continual learning process. Depending on the application domain, one CL cycle is called task [START_REF] Masana | Class-incremental learning: survey and performance evaluation on image classification[END_REF][START_REF] Aljundi | Expert Gate: Lifelong Learning with a Network of Experts[END_REF][START_REF] Aljundi | Memory Aware Synapses: Learning What (not) to Forget[END_REF], state [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF][START_REF] Wu | Large Scale Incremental Learning[END_REF][START_REF] Francisco | End-to-End Incremental Learning[END_REF], or experience [START_REF] Lesort | Continual Learning for Robotics[END_REF]. The cycle starts by feeding the AI system with new data. The AI system uses it to update its knowledge in a supervised manner. After learning the new data, the system is evaluated on a separate testing set before being fed again with new data and starting a new life cycle. It is noteworthy that while the AI system receives tasks sequentially, it can access data from a single task while being evaluated on all tasks seen so far. In some cases [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF][START_REF] Wu | Large Scale Incremental Learning[END_REF], a bounded memory of past data is allowed. A detailed discussion of the memory is provided in Chapter 2.

There are three main scenarios of continual learning [START_REF] Gido | Three scenarios for continual learning[END_REF]. Namely: Task-incremental learning [START_REF] Masana | Ternary Feature Masks: continual learning without any forgetting[END_REF][START_REF] Aljundi | Memory Aware Synapses: Learning What (not) to Forget[END_REF], Domain-incremental Learning [START_REF] Aljundi | Task-Free Continual Learning[END_REF][START_REF] Hayes | Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis[END_REF][START_REF] Tyler | REMIND Your Neural Network to Prevent Catastrophic Forgetting[END_REF] , and Class-incremental Learning [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF][START_REF] Zhao | Maintaining Discrimination and Fairness in Class Incremental Learning[END_REF][START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF]. The three areas are related but we briefly highlight the differences between them hereafter:

-Task-Incremental Learning -the task boundaries (number of new classes) are known, and the task-id is provided at inference time. Here, the system does not discriminate classes from different tasks but only those belonging to the same task. Equally important, tasks are semantically coherent since the system learns each time classes belonging to a different domain, such as letters, then planes, cars, and birds.

-Class-Incremental Learning -a CL scenario that is task-agnostic (the task-id is not known at inference time), but the task boundaries are known in the sense that past classes are not repeated in future states. The system should discriminate between all classes seen so far, and not only new classes. Task-incremental learning can be seen as a more relaxed version of class-incremental learning, where task-id helps restraining the search space during inference. Equally important, class-incremental learning is more complicated than task-IL because states include classes that are mixed from a semantic point of view. Note that the task is called state in IL systems of this group, and this is how we call it in the rest of the thesis.

-Domain-Incremental Learning -this is the most challenging scenario, where the task boundaries are not known. Here, new data appears in a stream and should be ingested online. New streamed data can belong or not to past classes. Methods in this group usually visit each data example once during all the training process.

We are interested in class-incremental learning. This scenario is more challenging than taskincremental learning, but contrarily to domain-incremental learning, it assumes that data arrives in groups of classes with known boundaries. Figure 1.3 illustrates the difference between the three main areas of continual learning.

Open challenges in Continual Learning

As already explained, continual learning consists of updating system capacities through a long-life cycle, where knowledge continuously appears over time. This task is easy if full retraining is allowed but becomes very challenging otherwise. The authors of [START_REF] Mccloskey | Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem[END_REF] noticed what they called the catastrophic interference or catastrophic forgetting, a phenomenon from which suffer systems that are trained with back-propagation. Catastrophic forgetting (CF) is the tendency of neural networks to underfit (forget) past knowledge when trying to accommodate a new one. Later, CF was experimentally proved by [START_REF] Ratcliff | Connectionist models of recognition memory: constraints imposed by learning and forgetting functions[END_REF] who studied the behavior of many back-propagation-based systems. One early work which brought attention to CF in the context of deep learning is [START_REF] Goodfellow | An Empirical Investigation of Catastrophic Forgeting in Gradient-Based Neural Networks[END_REF]. The study consisted of an experimental investigation of the effects and the reasons behind CF in gradient-based systems.

Catastrophic forgetting remains the main problem that continual learning systems tackle. We exemplify its occurrence in image classification below. When new classes are ingested, the network weights are updated to minimize a loss on images of these classes. The consequence of this update is called weight drift because weights that were important for past classes in previous states have been changed [START_REF] Masana | Class-incremental learning: survey and performance evaluation on image classification[END_REF]. The change in weights leads to a change in activations (output) of the network (activations drift). In class-incremental learning, the activation drift is called recency bias, and it refers to the tendency of IL systems to favor newly learned classes in each incremental state. This is because new classes are learned each time with all their data, while past ones have, in the best case, a limited number of exemplars to be replayed for them from the memory. Effects of recency bias were observed at the level of prediction scores [START_REF] Wu | Large Scale Incremental Learning[END_REF] or weights matrix [START_REF] Zhao | Maintaining Discrimination and Fairness in Class Incremental Learning[END_REF] of the classification layer. The effect of recency bias is a drastic drop in performance on past classes. A more detailed analysis of the effects of catastrophic forgetting is proposed in Chapters 3 and 4.

Along with catastrophic forgetting, many challenges make class-incremental learning difficult to tackle. In 2017, the authors of iCaRL [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF], an early and influential class-incremental learning system based on a deep learning backbone, rightfully note that there exists no satisfactory algorithm that can qualify as class-incremental. They frame three necessary properties of it: (1) be trainable from new stream data that occurs arbitrarily; (2) provide competitive performance for past classes when new ones are integrated, and (3) computational requirements and memory footprint should remain bounded. With the advances in class-incremental learning algorithms in the last five years, we revisit the properties proposed in [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] (marked with * below) and define six desirable properties that an ideal continual learning algorithm should fulfill:

-Complexity* -capacity to integrate new information with a minimal change in terms of the model structure. For a deep neural network, only the size of the classification layer should grow. Otherwise, the total number of model parameters is likely to increase strongly, especially at a large scale. Dynamic networks [START_REF] Rusu | Progressive Neural Networks[END_REF][START_REF] Wang | Growing a Brain: Fine-Tuning by Increasing Model Capacity[END_REF][START_REF] Aljundi | Expert Gate: Lifelong Learning with a Network of Experts[END_REF] fail to satisfy this challenge since the first two works expand the models capacity by increasing its architecture throughout the incremental process. The third work [START_REF] Aljundi | Expert Gate: Lifelong Learning with a Network of Experts[END_REF] adds one model per task, which is heavy at a large scale.

-Memory* -ability to work with or without a fixed-size memory of past classes. Naturally, algorithms that do not require past data are preferable, but this condition is hard to satisfy. Distillation-based approaches [START_REF] Li | Learning Without Forgetting[END_REF] require saving the previous (teacher) model to compute the loss. Bias-removal approaches [START_REF] Wu | Large Scale Incremental Learning[END_REF][START_REF] Zhao | Maintaining Discrimination and Fairness in Class Incremental Learning[END_REF] require saving at least some floating values to make use of past knowledge. The performance of methods that do not use an exemplar memory is lower, especially if complexity growth is minimized.

-Accuracy* -performance for past and new classes should approach that of a non-incremental learning process that has access to all data at all times. This goal is not achieved by any continual learning approach because of the CF [START_REF] Mccloskey | Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem[END_REF] problem. All continual learning algorithms struggle to reduce their gap with a non-incremental learning.

-Timeliness -delay needed between the occurrence of new data and its integration in the incremental models. Most works [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF][START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF][START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Mallya | PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning[END_REF][START_REF] Mallya | Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights[END_REF][START_REF] Wu | Incremental Classifier Learning with Generative Adversarial Networks[END_REF][START_REF] Shin | Continual Learning with Deep Generative Replay[END_REF] do not consider the additional training time needed to incorporate the components that reduce the catastrophic forgetting. For instance, the NEM classifier in [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF], the balancing FT step in [START_REF] Francisco | End-to-End Incremental Learning[END_REF], the time needed to free unimportant parameters in [START_REF] Mallya | Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights[END_REF][START_REF] Mallya | PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning[END_REF], and the time needed to compute the sophisticated objective in [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF]. On the contrary, fixed-representation-based approaches [START_REF] Hayes | Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis[END_REF][START_REF] Kemker | FearNet: Brain-Inspired Model for Incremental Learning[END_REF][START_REF] Tyler | REMIND Your Neural Network to Prevent Catastrophic Forgetting[END_REF] are faster since no deep retraining is done incrementally.

-Plasticity-Stability -capacity not only to deal with new classes that are significantly different from the ones learned in the past but also to keep as much knowledge as possible from the past. This challenge is not evident because, on the one hand, several updates of the model worsen the catastrophic forgetting and increase its bias [START_REF] Ntoutsi | Bias in data-driven artificial intelligence systems -An introductory survey[END_REF] towards new classes. On the other hand, not updating the model would lead to a problem of intransigence (the resistance to learning new classes [START_REF] Chaudhry | Riemannian Walk for Incremental Learning: Understanding Forgetting and Intransigence[END_REF]) that makes it not efficient to recognize future classes that belong to other visual domains. This problem is known under the plasticity-stability dilemma [START_REF] Mermillod | The stability-plasticity dilemma: investigating the continuum from catastrophic forgetting to age-limited learning effects[END_REF]. Task-incremental learning methods [START_REF] Aljundi | Expert Gate: Lifelong Learning with a Network of Experts[END_REF] are more robust against domain shift between incremental states.

-Scalability -the aptitude for learning a large number of classes, typically up to tens of thousands, and ensure usability in complex real-world applications. Fixed Networks [START_REF] Mallya | Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights[END_REF][START_REF] Mallya | PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning[END_REF] are not scalable because they continuously free unimportant weights and allocate them to learn new classes until the network cannot be compressed anymore. Similarly, methods that are highly dependent on exemplars memory suffer from catastrophic forgetting when the number of classes exceeds the memory size since more and more classes will not have any more representatives to be replayed for them.

In fact, the difficulty comes mainly from satisfying all properties jointly. It would be good to illustrate this with some examples. For instance, if complexity is stable, it is hard to maintain accuracy. If timeliness is very important and resources are scarce, plasticity will suffer because it is difficult to retrain.

Other challenges are related to the experimental protocol to assess the quality of incremental learning algorithms. We list below some of these challenges:

-Data imbalance -class-IL becomes more challenging if there is an important variation of the number of images per class [START_REF] Aggarwal | A comparative study of calibration methods for imbalanced class incremental learning[END_REF]. Catastrophic forgetting is mainly due to the absence of images for past classes. When a memory of the past is allowed, class-IL is akin to an imbalanced learning since new classes are learned with all their data, while past classes are learned with the exemplars in the memory only. Adding more imbalance among new classes makes the training of the model more difficult.

-Data annotation -Most existing works assume that new data is entirely labeled [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF][START_REF] Douillard | PODNet: Pooled Outputs Distillation for Small-Tasks Incremental Learning[END_REF][START_REF] Aljundi | Expert Gate: Lifelong Learning with a Network of Experts[END_REF][START_REF] Wu | Large Scale Incremental Learning[END_REF][START_REF] Masana | Class-incremental learning: survey and performance evaluation on image classification[END_REF]. This is not the case in real-life situations. For instance, only a small part of the images on the web are annotated. Data annotation is time and money expensive and for this reason active learning [START_REF] Csató | Active Learning with Clustering[END_REF][START_REF] Settles | Active learning literature survey[END_REF][START_REF] Sener | Active Learning for Convolutional Neural Networks: A Core-Set Approach[END_REF] and semi-supervised learning [START_REF] Li | Incremental semi-supervised learning on streaming data[END_REF][START_REF] Hui | Online data stream classification with incremental semi-supervised learning[END_REF][START_REF] Lechat | Semi-Supervised Class Incremental Learning[END_REF][START_REF] Carneiro | Incremental on-line semi-supervised learning for segmenting the left ventricle of the heart from ultrasound data[END_REF][START_REF] Scheck | A CNN-based Feature Space for Semi-supervised Incremental Learning in Assisted Living Applications[END_REF][START_REF] Wang | ORDisCo: Effective and Efficient Usage of Incremental Unlabeled Data for Semi-supervised Continual Learning[END_REF] approaches saw the light. The former selects the most representative set of images to annotate by an expert while discarding the unlabeled images. The latter annotates the set of unlabeled images automatically. Active learning is still not widely used in class-incremental learning, while semi-supervised learning is now in fashion in class-IL. Note that the three domains can be combined for more efficiency. Assuming that new data is labeled relaxes the difficulty of class-incremental learning approaches but should be considered if we aim for real-life applications.

-Size of class batches -One challenge could be the number of classes added at each incremental state. Adding one class per state would add more rehearsals to fine-tuningbased approaches [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF][START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF][START_REF] Francisco | End-to-End Incremental Learning[END_REF] and causing faster forgetting. This, however, does not have a negative effect on fixed-representations [START_REF] Hayes | Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis[END_REF][START_REF] Kemker | FearNet: Brain-Inspired Model for Incremental Learning[END_REF][START_REF] Tyler | REMIND Your Neural Network to Prevent Catastrophic Forgetting[END_REF]. We vary this parameter in our experiments.

-Selection of exemplars -When a memory of the past is allowed, other challenges are encountered in class-IL regarding the criterion on which the exemplars are selected, and the number of exemplars to keep in the memory for each class. This challenge was largely debated in literature [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF][START_REF] Javed | Revisiting Distillation and Incremental Classifier Learning[END_REF][START_REF] Liu | Mnemonics Training: Multi-Class Incremental Learning without Forgetting[END_REF], and we provide our own discussion about it in Chapter 3.

In this thesis, we focus on approaches which: [START_REF]25+ Impressive Big Data Statistics for[END_REF] keep the complexity of the model fixed, (2) work with and without a bounded memory of the past, [START_REF] Aggarwal | Active Learning for Imbalanced Datasets[END_REF] propose one method which favors stability, and four methods that balance stability and plasticity, (4) learn (but are not limited to) 1000 classes, [START_REF] Ahn | A Simple Class Decision Balancing for Incremental Learning[END_REF] tackle data imbalance and non-availability of annotated data, and (6) vary the number of classes per incremental state. While focusing on one or several of these points, the ultimate goal of the proposed contributions is to increase the accuracy of our IL systems and reduce their gap with a standard learning from scratch.

Contributions overview

The focus of this work is on: Large-scale (systems that are able to learn at least 1000 classes) Deep (we use deep convolutional neural network) class-incremental learning (AI system where new data appears continuously in groups of classes). Naturally, class-incremental learning methods that we visit in this thesis can be deployed for any kind of classification, such as that of text [START_REF] Huang | Continual Learning for Text Classification with Information Disentanglement Based Regularization[END_REF] or sentiments [START_REF] Ke | Adapting BERT for Continual Learning of a Sequence of Aspect Sentiment Classification Tasks[END_REF].

In Chapter 2, we analyze relevant continual learning systems and focus on those that are usable in a class-incremental learning scenario. The next two chapters (3 and 4) are dedicated to our contributions to class IL with and without memory, respectively. We briefly describe these approaches hereafter.

Class-incremental learning with memory (Chapter 3):

1 -Deep-Shallow Incremental Learning (DeeSIL) (Section 3.2) -is a fixed-representationbased approach, which applies a standard transfer-learning scheme [START_REF] Alexandru | Large-scale Image Mining with Flickr Groups[END_REF][START_REF] Sharif | CNN Features Off-the-Shelf: An Astounding Baseline for Recognition[END_REF] to an incremental learning scenario. A deep representation is learned using the training set of the first incremental state and then exploited as a feature extractor for the other classes learned incrementally. A convolutional neural network is used for features extraction, and a battery of Support Vector Machines (SVMs) [START_REF] Boser | A Training Algorithm for Optimal Margin Classifiers[END_REF] is used to learn new classes. When a memory of the past is allowed, it stores the SVMs negatives from past states. When no memory of the past is allowed, this method is still usable by replacing the negatives of the memory with negatives from classes belonging to the same state as the class that the system is currently learning. This work was published in the TaskCV workshop of the European Conference on Computer Vision 2018 [START_REF] Belouadah | DeeSIL: Deep-Shallow Incremental Learning[END_REF].

2 -Incremental Learning with Dual Memory (IL2M) (Section 3.3) -uses a secondary memory to store statistics of new classes in each state. In future states (when these classes become past classes), the stored statistics of past classes are used to rectify their predictions in order to make them more comparable to those of new classes. This work was published in the International Conference on Computer Vision 2019 [START_REF] Belouadah | Il2m: Class incremental learning with dual memory[END_REF].

3 -Classifier Weights Scaling for Class-Incremental Learning (ScaIL) (Section 3.4) -Since past classes are better learned in initial states in which they were encountered for the first time, we perform initial weights replay for them, and normalize updated weights matrix using statistics computed over new class weights of each state. This work was published in the IEEE Winter Conference on Applications of Computer Vision 2020 [START_REF] Belouadah | ScaIL: Classifier Weights Scaling for Class Incremental Learning[END_REF].

4 -Active class-incremental learning for imbalanced datasets (Section 3.6) -We assume that the new data is not entirely labeled and dataset is strongly imbalanced. This is a more challenging scenario of class-IL with memory. The main contributions of this section are: [START_REF]25+ Impressive Big Data Statistics for[END_REF] the proposal of two acquisition functions that help us choosing the subset of training images to label by an expert (the rest of unlabeled images is discarded), and (2) the adaptation of the thresholding method from [START_REF] Buda | A systematic study of the class imbalance problem in convolutional neural networks[END_REF] to class-IL. The latter is efficient in tackling the bias of the network caused by data imbalance. This work was published in the IPCV workshop of the European Conference on Computer Vision 2020 [START_REF] Belouadah | Active Class Incremental Learning for Imbalanced Datasets[END_REF].

-A Comprehensive Study of Class Incremental

Learning Algorithms for Visual Tasks (Sections 3.5 and 4.4) -We conduct extensive experiments to assess the merits and limitations of popular class-incremental methods and variants of them. We notably study the effect of distillation loss [START_REF] Hinton | Distilling the Knowledge in a Neural Network[END_REF], the herding mechanism to select past-class exemplars (in case a bounded memory is allowed), and the effect of not having a memory of the past. The study is divided in two parts, the one with memory is presented in Section 3.5 of Chapter 3, and the one without memory is in Section 4.4 of Chapter 4. The main conclusion is that none of the existing IL algorithms is always best in all configurations. This work was published in the Elsevier's Neural Networks journal [START_REF] Belouadah | A comprehensive study of class incremental learning algorithms for visual tasks[END_REF].

Class-incremental learning without memory (Chapter 4):

This scenario is more challenging than the preceding one, but it is more interesting and useful in practice, especially when access to past data is impossible. We propose two methods that can be implemented on top of many IL algorithms to improve their performance.

1 -Standardization of Initial Weights for Class-Incremental without memory (SIW) (Section 4.2) -Sharing the same spirit as ScaIL, this approach also performs initial weights replay for past classes. At the same time, the normalization is done by standardizing weights vectors of all classes. This work was published in the British Machine Vision Conference 2020 [START_REF] Belouadah | Initial Classifier Weights Replay for Memoryless Class Incremental Learning[END_REF].

-Dataset Knowledge Transfer for Class-Incremental Learning without Memory (TransIL)

(Section 4.3) -We propose to transfer calibration parameters from reference to target datasets to make bias correction methods such as BiC [START_REF] Wu | Large Scale Incremental Learning[END_REF] usable in a memoryless IL setting. Besides, we propose AdBiC, a refinement of BiC, which rectifies past class scores based on their initial IL state (in which they were encountered for the first time). This work was published in the IEEE Winter Conference on Applications of Computer Vision 2022 [START_REF] Habib | Dataset Knowledge Transfer for Class-Incremental Learning Without Memory[END_REF].

We conclude this work in Chapter 5. We present a brief discussion of the memory footprint required by our proposed approach. In addition, we present a diagram of IL methods before and after our proposed methods to help understand which type of IL scenarios our methods are more useful. We finally present some open directions for future research.

The full list of publications related to this thesis can be found in Appendix A. Datasets and implementation details are in Appendix B. All our codes and datasets details are publicly available to facilitate reproducibility 1CHAPTER 2

STATE OF THE ART OF CLASS-INCREMENTAL LEARNING

Introduction

Artificial agents that evolve in dynamic environments should be able to update their capabilities in order to integrate new data. Depending on the work hypotheses made, names such as continual learning [START_REF] Seff | Continual learning in generative adversarial nets[END_REF][START_REF] Shin | Continual Learning with Deep Generative Replay[END_REF], lifelong learning [START_REF] Aljundi | Expert Gate: Lifelong Learning with a Network of Experts[END_REF][START_REF] German | Continual Lifelong Learning with Neural Networks: A Review[END_REF] or incremental learning (IL) [START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] He | Deep Residual Learning for Image Recognition[END_REF][START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] are used to describe associated works. The challenge faced in all cases is catastrophic forgetting [START_REF] Mccloskey | Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem[END_REF], i.e., the tendency of a neural network to underfit past data when new ones are ingested. The effect of catastrophic forgetting can be alleviated by [START_REF]25+ Impressive Big Data Statistics for[END_REF] increasing the model capacity to accommodate new knowledge, (2) storing exemplars of past classes in a bounded memory and replaying them in each new state, (3) using knowledge distillation to encourage the network to keep the same outputs for past classes in future states, or by [START_REF] Aggarwal | A comparative study of calibration methods for imbalanced class incremental learning[END_REF] combining two or all of these components. Continual and lifelong learning algorithms usually increase model capacity and are tested in a setting in which a new task is added in each new state of the system. Most of the recent comparative studies [START_REF] De | Continual learning: A comparative study on how to defy forgetting in classification tasks[END_REF][START_REF] German | Continual Lifelong Learning with Neural Networks: A Review[END_REF] provide good coverage of these two types of approaches, but few of them [START_REF] Masana | Class-incremental learning: survey and performance evaluation on image classification[END_REF] give room to class incremental learning algorithms. Consequently, we focus on representative recent works from literature which tackle class IL [START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Tyler | REMIND Your Neural Network to Prevent Catastrophic Forgetting[END_REF][START_REF] Hayes | Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis[END_REF][START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF][START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF][START_REF] Wu | Large Scale Incremental Learning[END_REF]. Their study is interesting because one early example of such work [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] is shown to outperform continual learning approaches when tested in a common experimental setting [START_REF] De | Continual learning: A comparative study on how to defy forgetting in classification tasks[END_REF], while more recent works [START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF][START_REF] Wu | Large Scale Incremental Learning[END_REF] have provided strong improvements compared to [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF]. We propose in Section 2.2 a unified formulation of the class-incremental learning problem and use it to analyze different algorithms. The same formulation is subsequently used to present our methods in Chapters 3 and 4. In Sections 2.3.1, 2.3.2, and 2.3.3, focus is put on the components which differentiate algorithms one from another in order to facilitate the understanding of their advantages and limitations. Finally, we conclude the chapter by providing a global assessment of the characteristics of each group of IL methods.

Problem Formulation

We propose a unified formulation of class-incremental learning which builds on those introduced in [START_REF] Li | Learning Without Forgetting[END_REF][START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] and [START_REF] Francisco | End-to-End Incremental Learning[END_REF]. We note T the total number of states. The first one is called the initial state, and the T -1 remaining states are incremental. A set of P t new classes is learned in the t th state. States do not overlap in classes, i.e., a class is initially learned with all its data only once during all the training process. A model M 1 is initially trained on a dataset

X 1 = {X 1 1 , X 2 1 , ..., X j 1 , ..., X P 1 1 }
, where P 1 is the number of classes learned in the first state.

X j t = {x 1 j , x 2 j , ..., x n j j } is the set of n j
training examples for the j th class, p j t is its corresponding classification probability in the state S t . We note N t the set of all classes seen until the t th state included. Thus, N 1 = P 1 initially, and N t = N t-1 + P t = P 1 + P 2 + ... + P t-1 + P t for subsequent states. M t is updated with an IL algorithm A using X

t = {(X j t , Y j t) : j ∈ [N t-1 , N t]} if no
memory of the past is allowed and using X t ∪K if a past memory K is allowed. At each state, M t is evaluated on all classes seen so far (j ∈ [1, N t]). We mark in bold vectors and matrices.

Following [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF][START_REF] Francisco | End-to-End Incremental Learning[END_REF], we use in this thesis P 1 = P 2 = ... = P T . Some recent works [START_REF] Liu | Adaptive Aggregation Networks for Class-Incremental Learning[END_REF][START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF][START_REF] Douillard | PODNet: Pooled Outputs Distillation for Small-Tasks Incremental Learning[END_REF][START_REF] Liu | Mnemonics Training: Multi-Class Incremental Learning without Forgetting[END_REF] train the first model M 1 on half of the available classes, and divide the remaining classes evenly in the subsequent T -1 states. The first group of methods tackle more challenging scenario of IL since the initial representation is learned with few classes.

Recent class-incremental learning algorithms are implemented using deep convolutional networks (DNNs) as backbone [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF][START_REF] Francisco | End-to-End Incremental Learning[END_REF]. While DNNs are end-to-end classification approaches, a part of the IL algorithms uses a separate classifier layer. In such cases, the model M t includes two main components: a feature extractor F t and a classification component C t . We note θ t = {φ t , ψ t } the set of all network parameters in state S t .

The feature extractor F t is parameterized by weights φ t and is defined as:

F t : X t → R D x → F t (φ t ; x) = f (x) (2.1)
where f (x) is a D-dimensional compact vectorial representation of the image x, called feature vector. Its size depends on the deep architecture. For example, for a ResNet-18 [START_REF] He | Deep Residual Learning for Image Recognition[END_REF], D = 512. We note F j t the set of feature vectors of all images of a class j extracted with M t . The classifier C t is parameterized with weights ψ t , and is usually defined as:

C t : R D → R Nt f (x) → C t (ψ t ; f (x)) = f (x) × W t + B t = o t (2.2)
where:

-

o t = (o 1 t , o 2 t , ..., o Nt t)
is the vector of raw scores of size N t providing the individual prediction scores for each class j = 1, 2, ..., N t . We omit the x for simplicity.

ψ t = {W t , B t } -W t and B t are the weights matrix and bias vector of the last fully connected layer of size (D, N t) and N t respectively.

W t is defined as:

W t = {W 1 t , .., W N 0 t , W N 0 +1 t , .., W N 1 t , ..., W N t-2 +1 t , .., W N t-1 t , W N t-1 +1 t , .., W N t t } (2.3)
C t can also be implemented using an external classifier. For instance, iCaRL [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] and a variant of LU CIR [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF] use a Nearest-Class-Mean (NCM) as a classifier to compute class predictions based on the similarity of each test image to the average class feature computed from the available images in each state. Yet another choice [START_REF] Belouadah | DeeSIL: Deep-Shallow Incremental Learning[END_REF] is to exploit a fixed deep representation to extract features for all incremental states and a set of linear SVMs to implement the classifier C t .

In a DNN [START_REF] He | Deep Residual Learning for Image Recognition[END_REF], a softmax function σ is applied to transform raw scores o t = (o

p j t = σ(o j t) = e o j t (x) Nt l=1 e o l t (x) (2.4)
The different types of final layers mentioned above will be compared in a common setting (Chapters 3 and 4) to assess their merits and limitations.

Past-class exemplars memory

The memory K, which stores a partial view of past classes, is a central component of a majority of existing IL algorithms. The imbalance between past and new classes makes the model biased toward new classes and leads to an underfitting of past classes, a well-known effect of catastrophic forgetting [START_REF] Mccloskey | Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem[END_REF]. Two types of memories are used by the community:

-Growing memory - [START_REF] Liu | Mnemonics Training: Multi-Class Incremental Learning without Forgetting[END_REF][START_REF] Hu | Distilling Causal Effect of Data in Class-Incremental Learning[END_REF][START_REF] Tao | Topology-Preserving Class-Incremental Learning[END_REF][START_REF] Douillard | PODNet: Pooled Outputs Distillation for Small-Tasks Incremental Learning[END_REF][START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF] here, the imbalance in the number of images between past and new classes is stable through the incremental process. At the end of each state S t , the same number of images is kept for each class in the memory. The advantage of this method is to keep the representation of past classes balanced, but it increases memory footprint linearly.

-Bounded memory - [START_REF] Liu | Mnemonics Training: Multi-Class Incremental Learning without Forgetting[END_REF][START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF][START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Wu | Large Scale Incremental Learning[END_REF][START_REF] Zhao | Maintaining Discrimination and Fairness in Class Incremental Learning[END_REF] here, the memory capacity is limited. At the end of each state S t , the number of images for each past class is reduced to accommodate images from new classes. Thus, the same number of images |K j t | = |K|/N t is kept for each class. The representation of past classes is thus degraded and the imbalance in favor of new classes grows throughout incremental states since the bounded memory K needs to be allocated to a larger number of past classes each time.

On the one hand, having a growing memory is challenging at the beginning of the incremental process where early classes cannot benefit from the full memory size. The scalability of this approach depends on the available memory resources. On the other hand, having a bounded memory helps early classes benefit from the full memory size, but this is problematic at a large scale where more and more classes do not have representatives for them in the memory. The scalability of this approach depends on the robustness of the class-incremental learning method used.

To make the class IL more realistic and challenging, we focus on scenarios where the memory of the past is bounded. There are many ways to select images to fill the memory, but few of them were studied more attentively:

-Random selectionconsists in shuffling and selecting random images for each class.

This method is intuitive and fast but remains a strong baseline.

-Selection by herdingit consists in selecting the most representative set of images for each class heuristically. Here, the order of exemplars in the memory matters because the less important exemplars are removed when space is needed in the memory. Herding is computationally expensive compared to a random selection.

-Optimizable exemplarsthis method is explored in M nemonics [START_REF] Liu | Mnemonics Training: Multi-Class Incremental Learning without Forgetting[END_REF]. Here the exemplars are parameterized and thus optimized in an end-to-end manner. At each new state, new exemplars are learned for new classes, and those of past classes are adjusted to fit the current data distribution. This method provides flexible and adaptable exemplars set but is computationally very expensive compared to the above methods.

The role of exemplar selection techniques is debated in literature [START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Liu | Mnemonics Training: Multi-Class Incremental Learning without Forgetting[END_REF][START_REF] Sylvestre-Alvise Rebuffi | Learning multiple visual domains with residual adapters[END_REF][START_REF] Wu | Large Scale Incremental Learning[END_REF]. Notably, the authors of [START_REF] Francisco | End-to-End Incremental Learning[END_REF] and [START_REF] Liu | Mnemonics Training: Multi-Class Incremental Learning without Forgetting[END_REF] report similar results with herding-based and random selection of exemplars. However, both of these works select exemplars statically using their similarity to the mean feature vector of the class. The original definition from [START_REF] Welling | Herding dynamical weights to learn[END_REF] (also exploited in [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF]) selects each exemplar based on a dynamic mean computed at each step of the exemplars which were already selected. The advantage of the original definition is that it provides a better approximation of the actual class center compared to a static selection.

We run extensive experiments in Chapter 3 with both random and herding methods and show that herding is beneficial to improve incremental learning. The authors of [START_REF] Masana | Class-incremental learning: survey and performance evaluation on image classification[END_REF] reach the same conclusion for long sequence tasks. Note that we also implemented the version of herding proposed in [START_REF] Francisco | End-to-End Incremental Learning[END_REF] and initial tests showed that its performance is indeed comparable to that of random sampling. We also tried other sampling strategies inspired from active learning approaches such as: entropy [START_REF] Shannon | A mathematical theory of communication[END_REF] and min margin [START_REF] Settles | Active learning literature survey[END_REF] (also explored in RWALK [START_REF] Chaudhry | Riemannian Walk for Incremental Learning: Understanding Forgetting and Intransigence[END_REF]), coreset [START_REF] Sener | Active Learning for Convolutional Neural Networks: A Core-Set Approach[END_REF], and k-means [START_REF] Csató | Active Learning with Clustering[END_REF]. Initial experiments showed that none of these techniques provide better performance than herding.

Knowledge distillation

Knowledge distillation (KD) [START_REF] Hinton | Distilling the Knowledge in a Neural Network[END_REF] was originally designed to help a student model learn from output activations of a teacher model. It was later adopted in class-incremental learning by [START_REF] Li | Learning Without Forgetting[END_REF] to prevent the drift in the representation learned by the network while updating the model with data from new classes. The authors introduced a distillation term in the loss function with Equation 2.5

L = λ × L c + (1 -λ) × L d (2.5)
where L c and L d are classical cross-entropy and distillation terms, respectively. λ ∈ [0, 1] is a hyper-parameter that provides the weight of each loss term.

Cross-Entropy Loss

In state S t , the cross-entropy (or classification) loss is computed for all past and new classes and is given by :

L c t (x, y; θ t) = (x,y) ∈ Dt∪K Nt j=1 -δ y=j log[p j t (x)] (2.6)
where δ is the Kronecker delta.

Distillation Loss

In state S t , distillation loss is computed for past classes only and is given by:

L d t (x) = (x,y) ∈ Dt∪K N t-1 j=1 -σ j t-1 (x) log[σ j t (x)] (2.7)
where σ is the softened softmax applied on the raw scores predicted by the network. The softened score of the j th class in state S t is:

σj t (x) = e o j t (x)/T Nt l=1 e o l t (x)/T (2.8)
Compared to the softmax definition provided in Equation 2.4, a temperature value T is used for temperature scaling [START_REF] Hinton | Distilling the Knowledge in a Neural Network[END_REF], that prevents occurrence of very high probabilities. Note that σ is equivalent to σ when T = 1.

L d was originally introduced to improve performance when no memory of past classes is available [START_REF] Li | Learning Without Forgetting[END_REF]. The authors of [START_REF] Sylvestre-Alvise Rebuffi | Learning multiple visual domains with residual adapters[END_REF] adapted it for the case when a bounded memory K is allowed. Different flavors of distillation were later proposed in [START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF][START_REF] Javed | Revisiting Distillation and Incremental Classifier Learning[END_REF][START_REF] Wu | Large Scale Incremental Learning[END_REF] in order to further improve the compromise between model stability and plasticity in class IL. We ran experiments with different formulations of distillation and report the main findings in the next chapters.

Class-incremental learning methods

After defining some fundamental concepts in class-incremental learning, we present the most popular methods from the state of the art in the following sections. Inspired by [START_REF] De | Continual learning: A comparative study on how to defy forgetting in classification tasks[END_REF], we categorize these approaches in three main groups as shown in Figure 2.1, and we discuss approaches from each category hereafter.

Note that the categorization proposed in Figure 2.1 is not strict in the sense that an IL approach can belong to one or many categories. For instance, [START_REF] Wu | Large Scale Incremental Learning[END_REF] belongs to both bias removal and regularization-based approaches. Alternatively, [START_REF] Kemker | FearNet: Brain-Inspired Model for Incremental Learning[END_REF] belongs to both fixed-representation and pseudo-replay-based approaches.

Fine-tuning based approaches

They constitute the most popular type of approaches. Fine tuning consists of initializing the weights of the model with those of the previous one to benefit from previously learned knowledge and quickly start the learning process on new data. Fine-tuning-based approaches are the most popular in class-incremental learning. We distinguish between three main categories:

(1) replay-free approaches that do not use a memory of the past, (2) replay-based approaches that use a bounded memory of the past, and (3) pseudo-replay-based approaches that generate past images instead of storing them in the memory.

Replay-free methods

This group of approaches can operate without the use of past exemplars memory. They are often based on regularization losses. We can distinguish between two categories of this group (that we do not show in Figure 2.1 for simplicity): [START_REF]25+ Impressive Big Data Statistics for[END_REF] methods that aim to prevent weight drift of weights that are important to previous classes (known as weight regularization methods), and (2) methods that prevent activation drift that is more remarkable in the classification layer (known as data regularization methods).

Weight regularization methods

They compute the importance of each parameter in the network after each state. When learning the new set of classes, the more a weight is important, the more the network is penalized for its changes. Such works add an additional loss term (Equation 2.9).

L r t (x, y; θ t) = 1 2 |θ t-1 | w=1 Ω w (θ w t-1 -θ w t) 2 (2.9)
where |θ t-1 | is the number of parameters of the model M t-1 , and Ω w is the importance of the weight w.

Class IL methods in this category differ in how they compute the importance of the weights Ω. Elastic Weights Consolidation (EWC) [START_REF] Kirkpatrick | Overcoming catastrophic forgetting in neural networks[END_REF] computes Ω as a diagonal approximation of the Fisher Information Matrix (FIM) , while in [START_REF] Liu | Rotate your Networks: Better Weight Consolidation and Less Catastrophic Forgetting[END_REF] authors rotate the parameter space in order provide a better approximation of the F IM . Alternatively, [START_REF] Lee | Continual Learning With Extended Kronecker-Factored Approximate Curvature[END_REF] build on continual learning approaches that use batch normalization layers and propose a quadratic penalty method with a Hessian approximation. Contrarily to [START_REF] Kirkpatrick | Overcoming catastrophic forgetting in neural networks[END_REF][START_REF] Liu | Rotate your Networks: Better Weight Consolidation and Less Catastrophic Forgetting[END_REF], authors approximate the F IM using a Krenocker factorization.

P athInt [START_REF] Zenke | Continual Learning Through Synaptic Intelligence[END_REF] is another variant that maintains an online estimate of weights through the incremental process while consolidating those having high values when learning new tasks. This approach underestimates weights importance when fine tuning from a pre-trained model, while it overestimates them when learning the first model from scratch.

Memory Aware Synapses (MAS) [START_REF] Aljundi | Memory Aware Synapses: Learning What (not) to Forget[END_REF] deploys a mechanism that identifies the most important weights in the model by looking at the sensitivity of the output function instead of the loss. When a new task arrives, changes to important weights are penalized. This method was initially designed to work in a task-incremental scenario but was later adapted for usage in domainincremental learning [START_REF] Aljundi | Task-Free Continual Learning[END_REF].

Data regularization methods

They often use a distillation [START_REF] Hinton | Distilling the Knowledge in a Neural Network[END_REF] term to reduce catastrophic forgetting [START_REF] Mccloskey | Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem[END_REF]. The use of knowledge distillation in an IL context is similar to self-distillation [START_REF] Furlanello | Born-Again Neural Networks[END_REF][START_REF] Yim | A Gift from Knowledge Distillation: Fast Optimization, Network Minimization and Transfer Learning[END_REF] in that it operates with the same network architecture for the teacher and the student. However, a notable difference arises from the fact that new data are incorporated progressively.

Learning without Forgetting (LwF) [START_REF] Li | Learning Without Forgetting[END_REF] is a pioneering work that does not require memory of past classes. It leverages knowledge distillation [START_REF] Hinton | Distilling the Knowledge in a Neural Network[END_REF] to minimize the discrepancy between representations of past classes from the previous and current IL states. LwF first performs a warm-up step that freezes the past parameters and trains only the new ones and then jointly trains all network parameters until convergence (Equation 2.7).

Learning without Memorizing (LwM) [START_REF] Dhar | Learning without Memorizing[END_REF] is a distillation-based approach that does not need a memory of past classes. Instead, the authors propose an information preserving penalty using attention distillation loss that captures the changes in the classifier attention maps in order to preserve past knowledge. The loss function in LwM is defined in Equation 2.10.

L LwM = L c + βL d + γL a (2.10)
where β and γ are weighting parameters, L c is the classification loss, L d is the distillation loss, and L a is the attention loss. The latter is defined in Equation 2.11:

L a (x; θ t) = Q t-1 (x) Q t-1 (x) 2 - Q t (x) Q t (x) 2 1 (2.11)
where Q(x) is the attention map of image x generated with Grad-CAM algorithm [START_REF] Ramprasaath | Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization[END_REF]. Grad-CAM helps to localize the parts of the image that contribute to the prediction. [START_REF] Zhang | Class-incremental Learning via Deep Model Consolidation[END_REF] propose Deep Model Consolidation (DMC), another distillation based system. It trains two separate networks, one for new classes and one for past classes, and then combines them via a double distillation loss L dd . The latter helps to resolve the asymmetry in predictions between past and new classes. Here, an exemplars memory is not needed, but it is replaced by an unlabeled auxiliary data X u to perform deep memory consolidation (Equation 2.12).

L dd t (x u ; θ t) = 1 N t Nt j=1 (o j t (x u) -ôj t (x u)) 2 (2.12)
where x u is an unlabeled example and ô is the normalized version of o (Equation 2.13):

ôj t (x u) =    o j t-1 (x u) -1 N t-1 N t-1 l o l t-1 (x u) if j ∈ [1, N t-1] o j t (x u) -1 Nt Nt l=1 o l t (x u), if j ∈]N t-1 , N t] (2.13)
Semantic Drift Compensation (SDC) [START_REF] Singh | Calibrating CNNs for Lifelong Learning[END_REF] was proposed to estimate the semantic drift of past knowledge while learning new knowledge to compensate for it, to further improve performance. The drift is computed at the class-mean-embedding level. This approach is based on an NCM classifier that does not need exemplars storage since the past class-mean embeddings are estimated using new data only.

In [START_REF] Singh | Calibrating CNNs for Lifelong Learning[END_REF], authors propose an approach that calibrates activation maps of the CNN in order to accommodate new knowledge. Calibration is done using spatial and channel-wise calibration modules, and only the calibration parameters are trained at each new incremental state. This method does not require a past-class memory. However, the calibration parameters grow instead.

Recently, [START_REF] Masana | Class-incremental learning: survey and performance evaluation on image classification[END_REF] proposed a simple yet efficient cross-entropy loss for vanilla fine tuning without memory. Instead of computing the loss on all classes (Equation 2.6), it is computed on scores of new classes only, using Equation 2.14

Lc t (x, y; θ t) = (x,y) ∈ Dt∪K Nt j=N t-1 +1 -δ y=j log[p j t (x)] (2.14)
This loss helps back-propagating the error using weights of new classes only. These weights improve the encoding of the representation of the model in the current state where the model is updated with data from new classes.

Very recently, the authors of [START_REF] Hu | Distilling Causal Effect of Data in Class-Incremental Learning[END_REF] proposed a novel framework where they compute and distill the colliding effect between past and new data. In addition, they propose to capture the Incremental Momentum Effect and remove what causes the forgetting of past classes. The proposed method is functional with and without a memory of exemplars. It can be applied on top of unified classifiers such as LU CIR [START_REF] Lucci | Artificial intelligence in the 21st century[END_REF] and P ODN et [START_REF] Douillard | PODNet: Pooled Outputs Distillation for Small-Tasks Incremental Learning[END_REF]. Obtained results are promising, especially without memory. However, it is not clear how calibration parameters were optimized in this scenario.

Replay-based methods

Here, we discuss methods that rely on the loss function to regularize the weights update (known as regularization-based methods), and methods that address recency bias by removing the bias between past and new classes' scores (also known as bias-removal-based methods).

Regularization-based methods

Incremental Classifier and Representation Learning (iCaRL) [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] is a popular IL method that combines the use of distillation and a memory for past class exemplars. Classification is performed with a nearest-mean-of-exemplars method instead of the raw scores predicted by the network. This external classifier is deployed to reduce the prediction bias in favor of new classes, which occurs due to data imbalance between past and new classes. An iCaRL analysis [START_REF] Javed | Revisiting Distillation and Incremental Classifier Learning[END_REF] concludes that its most important components are the fixed-size memory and the distillation loss. The authors of [START_REF] Javed | Revisiting Distillation and Incremental Classifier Learning[END_REF] claim that the nearest-mean-of-exemplars classification seems to matter less, and they replace it with a dynamic threshold moving rule to remove bias generated with distillation loss among past classes. It is important to highlight the fact that the comparison of tions help reducing recency bias and are thus presented in the related section. The less-forget constraint from LU CIR is defined in Equation 2.15:

L lf t (x; θ t) = 1 - o t-1 (x), o t (x) o t-1 (x) 2 o t (x) 2 (2.15)
where ., . is the inner product (cosine similarity) function. The other two components of LU CIR are described later in this chapter.

Further improvements of IL with distillation were obtained by adapting recent theoretical and empirical advances such as those described in [START_REF] Park | Relational Knowledge Distillation[END_REF] and [START_REF] Phuong | Towards Understanding Knowledge Distillation[END_REF]. For instance, P ODN et [START_REF] Douillard | PODNet: Pooled Outputs Distillation for Small-Tasks Incremental Learning[END_REF] relies on a spatial-based distillation loss that constrains the evolution of the representation of the model and multiple proxy vectors to flexibly represent learned classes. This approach is more suitable for long runs of small incremental tasks.

The behavior of knowledge distillation was studied in [START_REF] Chaudhry | Efficient Lifelong Learning with A-GEM[END_REF]. The authors observed that KD works better when the domain shift is low, as is the case for class-incremental scenarios. However, it hurts performance when the domain shift is high, as is the case for task-incremental learning approaches, where each task often contains classes from a different domain.

Similarly to DM C [START_REF] Zhang | Class-incremental Learning via Deep Model Consolidation[END_REF], Global distillation (GD) [START_REF] Lee | Incremental Learning with Unlabeled Data in the Wild[END_REF] takes advantage of an external dataset to tackle catastrophic forgetting using triple distillation. This method has three main stages. First, a teacher model is trained on new data, then calibrated using the exemplars memory and the external dataset. Second, a triple distillation is applied using the teacher model, the previous model, and the ensemble model (used with external data only). Finally, a fine tuning is performed to tackle the recency bias problem. Alternatively, [START_REF] Hou | Lifelong Learning via Progressive Distillation and Retrospection[END_REF] propose an approach that trains a teacher model separately with new data while distilling knowledge using exemplars memory to preserve accuracy on past classes. The main difference with Global Distillation [START_REF] Lee | Incremental Learning with Unlabeled Data in the Wild[END_REF] is the absence of the external dataset.

Less-forgetting Learning (LFL) [START_REF] Jung | Less-Forgetful Learning for Domain Expansion in Deep Neural Networks[END_REF] freezes the last layer while penalizing the changes in activations of previous layers. This approach is problematic when the domain shift is large.

Riemanian Walk (RWALK) [START_REF] Chaudhry | Riemannian Walk for Incremental Learning: Understanding Forgetting and Intransigence[END_REF] is a regularization-based approach that does not use distillation. Instead, it combines P athInt [START_REF] Zenke | Continual Learning Through Synaptic Intelligence[END_REF] and EW C [START_REF] Aljundi | Memory Aware Synapses: Learning What (not) to Forget[END_REF] with an exemplar memory. Based on a KL-divergence, this method aims to make a compromise between forgetting and intransigence of the network. [START_REF] Liu | Mnemonics Training: Multi-Class Incremental Learning without Forgetting[END_REF] is built on top of herding-based approaches such as iCaRL and LU CIR to modify the herding procedure by parameterizing exemplars and making them optimizable. The network is then optimized in two manners: model-level and exemplar-level. The memory is thus adjusted incrementally to match the data distribution effectively, leading mnemonic exemplars to yield separation between classes.

Mnemonics Training

Recently, feature transformation using a dedicated MLP is introduced in [START_REF] Iscen | Memory-efficient incremental learning through feature adaptation[END_REF]. This approach only stores features instead of images to reduce the memory footprint of exemplars. Similar to LU CIR, this method applied features distillation combined with cosine normalization.

The authors of Greedy Sampler and Dumb Learner (GDumb) [START_REF] Prabhu | GDumb: A simple approach that questions our progress in continual learning[END_REF] question the generality of continual learning approaches. Authors claim that current CL approaches use simplifying assumptions that make CL unrealistic. They propose a simple algorithm that greedily samples balanced stored exemplars and trains the neural network from scratch using the exemplars only. GDumb surprisingly outperforms most recent works from the state of the art when tested on a wide variety of CL scenarios. This work questions the real advances in continual learning regarding the proposed methods, evaluation metrics and protocols.

Bias-removal-based methods

These methods tackle the recency bias problem that refers to the bias of the network towards classes of newer states [START_REF] Masana | Class-incremental learning: survey and performance evaluation on image classification[END_REF]. Recent works [START_REF] Zhao | Maintaining Discrimination and Fairness in Class Incremental Learning[END_REF][START_REF] Wu | Large Scale Incremental Learning[END_REF] hypothesize that due to the limited memory of the past, IL is akin to imbalanced learning where the network is trained with enough images for the new classes but only a few ones for past classes.

These works tackle catastrophic forgetting as an imbalance problem. Bias Correction (BiC) [START_REF] Wu | Large Scale Incremental Learning[END_REF] is a recent approach that uses a classical knowledge distillation term and adds a linear layer after the prediction layer of the deep model to reduce the bias in favor of new classes. The new classes' outputs are rectified with Equation 2.16

BiC(o k t) = α t o k t + β t • 1 (2.16)
where o k t are the raw scores of new classes, α t and β t are the bias correction parameters, and 1 is a vector of ones.

The method needs a validation set to learn parameters and is effective as long as the size of the validation set is sufficient. We study this method in more detail and propose an improved version of it in Section 4.3 of Chapter 4.

Maintaining Discrimination and Fairness (MDF) [START_REF] Zhao | Maintaining Discrimination and Fairness in Class Incremental Learning[END_REF] uses distillation loss to maintain discrimination between past classes. In addition, the rectification of class scores is done by aligning new class weights to those of past classes by multiplying each new class weight by the mean norm of past class weights and dividing it by the mean norm of new class weights, before to finally compute the prediction scores. [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF] propose, in addition to the less-forget constraint defined above, two techniques to tackle recency bias: (1) cosine normalization to balance the magnitudes of past and new class probabilities, and (2) inter-class separation to encourage the network to separate past and new class embeddings and actually implements a theoretical finding from [START_REF] Phuong | Towards Understanding Knowledge Distillation[END_REF].

The authors of LU CIR

The cosine layer replaces the last fully connected layer and is defined in Equation 2.17:

L cos t (x, θ t) = Nt j=1 y j log exp(η f (x) f (x) 2 , W j t W j t 2) Nt l=1 exp(η f (x) f (x) 2 , W l t W l t 2)
(2.17)

where f (x) is the feature vector of image x, •, • is the cosine similarity, W j t is the classifi-cation weight vector for the j th class (called class embedding in this thesis), and η is a learnable parameter that controls the peakiness of the softmax distribution. The inter-class separation is implemented through a margin ranking loss that separates the current feature vector with the feature vectors of the J most similar classes using Equation 2.18:

L mr t (x) = J j=1 max Ç m - f (x) f (x) 2 , W y W y 2 + f (x) f (x) 2 , W j t W j t 2 , 0 å (2.18)
where m is the margin, W y is the ground truth class embedding of x, and W j t is the embedding of the closest class j. Note that LU CIR belongs to both data-regularization-based (for the less-forget constraint) and bias-removal-based approaches (for the cosine layer).

Bias-removal-based approaches provide the best results in the literature, especially when combined with a bounded memory of the past [START_REF] Masana | Class-incremental learning: survey and performance evaluation on image classification[END_REF].

Pseudo-replay-based methods

These approaches do not store exemplars for past classes in the memory. Instead, they generate synthetic data to represent past classes in the current incremental state.

Using Generative Adversarial Networks (GANs) to generate past data holds promise since it reduces the memory footprint of algorithms. However, despite recent progress [START_REF] Ghosh | Multi-Agent Diverse Generative Adversarial Networks[END_REF], generated images are still sub-optimal for IL. Since additional GAN models need to be created, the complexity in the number of parameters is fair but not optimal. The authors of [START_REF] Wu | Incremental Classifier Learning with Generative Adversarial Networks[END_REF] use a GAN to create artificial images for past classes. Generated and real examples are mixed to obtain slightly better performance than that of iCaRL [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF]. However, the accuracy drops significantly when relying exclusively on artificially generated images. Alternatively, GAN Memory with No Forgetting [START_REF] Cong | GAN Memory with No Forgetting[END_REF] is based on sequential style modulations to represent the past memory by forming a sequential targeted generative model. Here, the memory itself is designed as a form of lifelong learning.

In [START_REF] Ostapenko | Learning to Remember: A Synaptic Plasticity Driven Framework for Continual Learning[END_REF], authors propose Dynamic Generative Memory (DGM), a continual learning framework that relies on an adversarial generative network with learnable plasticity between connections. Plasticity is represented by a parameter-level attention mechanism. Instead of storing images of past classes, DGM uses previous distributions to incrementally learn a single generator of past classes images.

Alternatively, [START_REF] Xiang | Incremental Learning Using Conditional Adversarial Networks[END_REF] propose to use conditional generative adversarial networks (CGANs) to tackle class IL. The generator is conditioned on embeddings of past classes. Besides, it generates pseudo exemplars in the form of perceptual convolutional features. The discriminator contains two heads and produces normalized embeddings that are discriminative for multi-category classification and indiscriminative for true and false example identification. The generator and the discriminator are trained alternatively for continuous incremental learning.

Recently, [START_REF] Solinas | Beneficial Effect of Combined Replay for Continual Learning[END_REF] proposed a hybrid approach that combines replay and pseudo-replay methods to tackle catastrophic forgetting. Authors store a small number of exemplars from the past and generate variations of them to be replayed in addition to new classes data. The main conclusion derived by the authors is that combined replay is efficient, especially for tiny memory buffers.

Fixed-representation based approaches

Fixed-Representation (FR) based methods do not update the deep representation for each incremental state and are less numerous in literature. They can be seen as a basic variant of fine-tuning-based methods. A fixed-representation method is briefly described in [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] and the results reported with it are poor. The experiments from the next chapters show that the finding from [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] is due to suboptimal usage of the method. In particular, the classification layer for past classes is needlessly relearned in each incremental state using only the exemplars of past classes. Since the representation is fixed, the stronger classifier weights learned initially with all past class data are reusable.

FearNet [START_REF] Kemker | FearNet: Brain-Inspired Model for Incremental Learning[END_REF] is a biologically inspired fixed-representation method. Separate networks are used for long-and short-term memories to represent past and new classes. A decision mechanism is implemented to decide which network should be used for each test example. F earN et is interesting, but its memory increases significantly with time since the algorithm stores detailed statistics for each class learned.

Deep Streaming Linear Discriminant Analysis (Deep-SLDA) [START_REF] Hayes | Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis[END_REF] is an online approach based on SLDA [START_REF] Pang | Incremental linear discriminant analysis for classification of data streams[END_REF] algorithm. The Network is trained on the first batch of classes and is frozen afterward. During training, a class-specific running mean vector and a shared covariance matrix are updated. The prediction is done by assigning the label to the closest Gaussian in the feature space defined by the class-mean vectors and covariance matrix. REplay using Memory INDexing (REMIND) [START_REF] Tyler | REMIND Your Neural Network to Prevent Catastrophic Forgetting[END_REF] is brain-inspired by the hippocampal indexing theory. The method is also based on an initial representation which is only partially updated afterward. The approach uses a vector quantization technique to store compressed intermediate representations of images, which are more compact than images themselves. The stored vectors are reconstructed and replayed for memory consolidation. REM IN D is designed for online learning, where each training example is seen once during all the training process. We evaluate it in this thesis following a class-incremental protocol. Note that vector quantization is widely used in unsupervised incremental learning [START_REF] Lughofer | Extensions of vector quantization for incremental clustering[END_REF]. Here, the authors combine the Adaptive Resonance Theory (ART) with a variant of vector quantization to make a trade-off between plasticity and stability [START_REF] Mermillod | The stability-plasticity dilemma: investigating the continuum from catastrophic forgetting to age-limited learning effects[END_REF] during incremental online learning. This approach was designed to handle two-and high-dimensional data within the image classification framework. We tackle in this thesis supervised learning, and this type of approaches is not compatible with our experimental protocol.

Parameter-isolation based approaches

We distinguish between two types of approaches: (1) those where the architecture of the model grows to accommodate new knowledge (dynamic networks), and (2) those where the complexity of the model is constant (fixed networks).

Dynamic networks

Dynamic networks increase the size of deep models to include new knowledge. Wang et al. [START_REF] Wang | Growing a Brain: Fine-Tuning by Increasing Model Capacity[END_REF] introduced Growing a Brain, a method based on increasing representational capacity by widening or deepening the network. Progressive Neural Networks (PNN) [START_REF] Rusu | Progressive Neural Networks[END_REF] is an alternative approach that exploits several models during training to preserve knowledge from past tasks. Lateral connections between all models are learned to leverage prior knowledge of past features and thus reduce the effect of catastrophic forgetting. Recently, [START_REF] Roy | Tree-CNN: A hierarchical Deep Convolutional Neural Network for incremental learning[END_REF] propose an adaptive network that enables self-growth in a tree-like manner. It is based on features hierarchy reorganization whenever new tasks arrive.

Aljundi et al. [START_REF] Aljundi | Expert Gate: Lifelong Learning with a Network of Experts[END_REF] present a lifelong learning architecture based on a network of experts. A gating mechanism exploits training samples for each task to decide which expert to trigger at inference time. Deep Adaptation Networks (DAN) [START_REF] Rosenfeld | Incremental Learning Through Deep Adaptation[END_REF] is another model-growth based approach which adds additional parameters for each new task. The architecture is importantly augmented if a large number of new tasks arrives. The approach presented in [START_REF] Sylvestre-Alvise Rebuffi | Efficient Parametrization of Multi-Domain Deep Neural Networks[END_REF] is based on several neural networks that share the majority of parameters and add modular adapters to connect the networks and specialize each one of them for a specific task.

Dynamically Expandable Networks (DEN) [START_REF] Yoon | Lifelong Learning with Dynamically Expandable Networks[END_REF] automatically split and duplicate neurons as more tasks are encountered. Depending on the similarity between past and current tasks, the network might be expanded or not. The advantage of this approach is its applicability to whatever generic neural network, including CNNs.

Self-Organizing Maps (SOMs) are online unsupervised learning algorithms that rely on approximate stochastic gradient techniques and can be adapted to class-incremental learning. Neural Gas (NG) networks [START_REF] Martinetz | Neural-gas' network for vector quantization and its application to time-series prediction[END_REF] and its growing NG variant [START_REF] Fritzke | A Growing Neural Gas Network Learns Topologies[END_REF] are related to SOMs which are often exploited for incremental learning. PROjection-PREdiction (PROPRE) [START_REF] Gepperth | Incremental learning with self-organizing maps[END_REF] is an incremental learner based on NG and SOMs. It implements an extra supervised read-out layer implemented as linear regression and a concept drift detection mechanism to make the SOM usable in an IL context.

NG and SOM are growing networks that were widely used for incremental semi-supervised clustering [START_REF] Fritzke | A Growing Neural Gas Network Learns Topologies[END_REF], multi-class online classification problems [START_REF] Belfort | Online incremental supervised growing neural gas[END_REF], and online semi-supervised vector quantization learning [START_REF] Shen | Online semi-supervised learning with learning vector quantization[END_REF]. They thus need an adaptation to be used in class-incremental learning. TOpology-Preserving knowledge InCrementer (TOPIC) [START_REF] Tao | Few-Shot Class-Incremental Learning[END_REF] is a recent work that exploits NG for class-incremental learning for visual datasets with a focus on few-shot learning. First, T OP IC introduces an NG network to learn feature space topologies for knowledge representation. The network grows to learn new classes while also dealing with changes in the feature space due to deep model updates. This is achieved using a min-max loss that pushes new classes which share the same label to a new NG node while pulling the new nodes of different labels away from each other. Second, T OP IC preserves past knowledge by stabilizing the topology of the NG network using an anchor loss term. Since T OP IC focuses on the feature space, which encodes more semantic information than the raw classification scores, it is less affected by the bias induced by high new classes' raw scores. A topology-preserving network named T P CIL is introduced in [START_REF] Tao | Topology-Preserving Class-Incremental Learning[END_REF] to handle catastrophic forgetting. The network models the feature space using an Elastic Hebbian Graph, and the topology is maintained using a topology-preserving loss that constrains the neighborhood relationships in the graph when learning new classes. This approach augments the Hebbian graph by inserting vertices for each new class. The addition of nodes in T OP IC and T P CIL gradually increases the complexity of the architecture.

Fixed networks

Contrarily to dynamic networks, these methods do not modify the overall architecture of the model. P ackN et [START_REF] Mallya | PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning[END_REF] is based on a pruning technique that identifies redundant parameters and uses them to train the network on new tasks. The approach cannot learn a large number of tasks since the network can not be strongly compressed without significant performance loss. P iggyback [START_REF] Mallya | Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights[END_REF] is a modified version of P ackN et that exploits network quantization to propose masks for individual weights. It thus learns a large number of tasks with a single base network. The approach increases the model complexity because extra parameters are added each time to include new tasks.

Recently, [START_REF] Masana | Ternary Feature Masks: continual learning without any forgetting[END_REF] proposed Ternary Feature Masks (TFM). This task-incremental method applies ternary masks to features of each layer in order to allow features to be used or not during the forward and backward pass. The authors also use a task-specific feature normalization to adjust previously learned features to better learn future tasks. T F M has a negligible memory overhead (3 bits per feature per task) but allows training only a fixed number of tasks since the neuron masks are disjoint between tasks.

Alternatively, Adaptive Aggregation Networks (AAN) [START_REF] Liu | Adaptive Aggregation Networks for Class-Incremental Learning[END_REF] handle catastrophic forgetting at the network level. Stable and plastic blocks are built on top of residual blocks of a ResNet architecture [START_REF] He | Deep Residual Learning for Image Recognition[END_REF] to preserve past knowledge and integrate new data. This approach makes use of exemplars memory, making it part of replay-based methods also.

In the same scope, [START_REF] Vinay | Efficient Feature Transformations for Discriminative and Generative Continual Learning[END_REF] recently proposed a feature map transformation strategy with negligible additional network parameters to improve class separability. Model parameters are shared between global and task-specific parameters, and only the latters are updated at each IL state to improve training times.

Class-incremental learning evaluation 2.4.1 Datasets

Many datasets have been used by the community for class-IL, among them:

-MNIST [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF] is designed for hand-written digit recognition. It contains 10 classes with 60000 training images and 10000 testing images.

-CIFAR-10 [74] is designed for object recognition and includes 10 classes. Each class has 6000 training images and 1000 testing images.

-CIFAR-100 [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF] is the same than CIFAR-10, but it contains 100 classes regrouped in 20 categories. Each class has 500 training images and 100 testing images.

-ILSVRC [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF] is a subset of 1000 leave classes from ImageNet [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF] database. ILSVRC contains around 1.2 million images and is used in ImageNet challenges. The latter database follows WordNet hierarchy, thus, leave classes represent specific visual concepts.

-Mini-ImageNet is a randomly selected subset of 100 classes from ILSVRC [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF].

-VGGFACE2 [START_REF] Cao | VGGFace2: A Dataset for Recognising Faces across Pose and Age[END_REF] is a face recognition dataset including over 9000 identities in its full version.

-Google Landmarks [START_REF] Noh | Large-Scale Image Retrieval with Attentive Deep Local Features[END_REF] (LANDMARKS below) is a landmark recognition dataset which includes over 2 million images for over 30000 landmarks across the world.

-FOOD-101 [START_REF] Bossard | Food-101 -Mining Discriminative Components with Random Forests[END_REF] is a dataset for fine-grained food recognition with 101 classes.

-Caltech-UCSD Birds [START_REF] Welinder | [END_REF] (also known as CUBS) contains 200 fine-grained bird classes with a total of 5994 images.

-Oxford Flowers [START_REF] Nilsback | Automated flower classification over a large number of classes[END_REF] contains 102 flower species with 2040 training images and more than 6000 testing images.

-MIT Scenes [START_REF] Quattoni | Recognizing indoor scenes[END_REF] is a dataset for indoor scene classification. It contains 67 classes having each 80 training images and 20 testing images.

-FGVC-Aircraft [START_REF] Maji | Fine-grained visual classification of aircraft[END_REF] contains around 100 classes with a total of 10200 images.

-Stanford Cars [START_REF] Krause | 3d object representations for fine-grained categorization[END_REF] contains 196 classes of cars with a total of 16185 images, where the first half are used for training, and the second half is used for testing.

-VOC Actions [START_REF] Everingham | The pascal visual object classes challenge 2012 (voc2012) results[END_REF] is used in VOC challenge for human action classification. It contains 10 classes of specific actions and one class for other types of actions. It contains more than 6000 multi-labeled images.

-Street View House Numbers (SVHN) [START_REF] Netzer | Reading digits in natural images with unsupervised feature learning[END_REF] is designed for digit recognition. It contains more than 600000 images obtained with Google Street View.

-iNaturalist [START_REF]FGVC5 workshop at CVPR 2018[END_REF] contains 8000 fine-grained categories with highly imbalanced classes. This dataset contains about 450000 images and is useful to test the robustness of IL algorithms in real-world settings.

-Places-365 [START_REF] Zhou | Places: A 10 million image database for scene recognition[END_REF] is a dataset for scene classification. It contains 365 classes with over 1.8 millions of images.

-WikiArt [START_REF] Saleh | Large-scale classification of fine-art paintings: Learning the right metric on the right feature[END_REF] artists classification dataset that contains a wide genre of painting styles. It contains more than 80000 images from 1119 artists. This dataset and also Sketch dataset [START_REF] Eitz | How do humans sketch objects?[END_REF] were used in [START_REF] Mallya | Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights[END_REF] but is more suitable for domain-adaptation applications.

MNIST [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF] and CIFAR-10 [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF] are very small and easy datasets. Thus, we do not include them in our experiments because the focus here is on realistic and challenging datasets with a minimum of 100 classes. Note that Birds [START_REF] Welinder | [END_REF], Flowers [START_REF] Nilsback | Automated flower classification over a large number of classes[END_REF], Scenes [START_REF] Quattoni | Recognizing indoor scenes[END_REF], Aircraft [START_REF] Maji | Fine-grained visual classification of aircraft[END_REF], Cars [START_REF] Krause | 3d object representations for fine-grained categorization[END_REF], Actions [START_REF] Everingham | The pascal visual object classes challenge 2012 (voc2012) results[END_REF], and SVHN [START_REF] Netzer | Reading digits in natural images with unsupervised feature learning[END_REF] are more popular in task-incremental learning, where the new classes have different visual features each time [START_REF] Aljundi | Memory Aware Synapses: Learning What (not) to Forget[END_REF][START_REF] Aljundi | Expert Gate: Lifelong Learning with a Network of Experts[END_REF]. Among the mentioned datasets, the most used ones in the class IL are ILSVRC [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF], Mini-ImageNet [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF], and CIFAR-100 [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF]. We are the first to use VGGFACE2 [START_REF] Cao | VGGFace2: A Dataset for Recognising Faces across Pose and Age[END_REF] and LANDMARKS [START_REF] Noh | Large-Scale Image Retrieval with Attentive Deep Local Features[END_REF] as large scale datasets, in addition to ILSVRC. The other datasets that we used include many subsets of 100 classes from ImageNet (different from ILSVRC), Places-365 [START_REF] Zhou | Places: A 10 million image database for scene recognition[END_REF] and FOOD-101 [START_REF] Bossard | Food-101 -Mining Discriminative Components with Random Forests[END_REF].

There exist other datasets that were proposed recently but are used in other continual learning scenarios, such as: Omniglot [START_REF] Schwarz | Progress & compress: A scalable framework for continual learning[END_REF], CORe50 [START_REF] Lomonaco | Core50: a new dataset and benchmark for continuous object recognition[END_REF], OpenLORIS [START_REF] She | OpenLORIS-Object: A robotic vision dataset and benchmark for lifelong deep learning[END_REF], and Stream-51 [START_REF] Roady | Stream-51: Streaming classification and novelty detection from videos[END_REF].

Metrics

Various evaluation metrics have been used in the state of the art. The most important and popular one is accuracy.

-Accuracy (A)two variants of this measure are used: the top-1 accuracy and the top-5 accuracy. The former simply measures the percentage of correctly classified images among all the test set. Practically, the top-1 accuracy means that the target class corresponds exactly to the class predicted with the highest probability. Top-5 is a relaxed version of the former but shares with it the same spirit. The difference is that, in top-5 accuracy, an image is considered as correctly classified if the target class belongs to the five classes predicted with the highest probabilities. The top-5 accuracy was popularized during the Imagenet LSVRC 2012 challenges [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF], because the dataset is challenging and the goal was to relax the objective. Since the model is learned incrementally, the accuracy averaged over incremental states (excluding the first non-incremental one) was proposed by [START_REF] Francisco | End-to-End Incremental Learning[END_REF] (Equation 2.19).

A = 1 T -1 T t=2 A t (2.19)
where T is the total number of states, and A t is the test accuracy of the model in state S t . Intuitively, the higher the value of A, the better. Note that some works [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF][START_REF] Wu | Large Scale Incremental Learning[END_REF] average the accuracy over all states, including the first.

With the advances in continual learning approaches, other evaluation metrics saw the light but are less used than the accuracy. Among them, we mention:

-Normalized Accuracy Metric (Ω)was initially proposed in [START_REF] Kemker | Measuring Catastrophic Forgetting in Neural Networks[END_REF] and used by other works afterwards [START_REF] Hayes | Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis[END_REF][START_REF] Smith | Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning[END_REF][START_REF] Tyler | Memory Efficient Experience Replay for Streaming Learning[END_REF].

Ω = 1 T T t=1 A t A Joint,t (2.20)
where A Joint,t is the accuracy of a training from scratch with all data seen until state S t included. The normalized accuracy helps to compare different IL methods across datasets. Note that Ω ∈ [0, 1].

-Forgetting (F) -As proposed by [START_REF] Liu | Mnemonics Training: Multi-Class Incremental Learning without Forgetting[END_REF], Forgetting corresponds simply to the difference in accuracy (%) between the last incremental state and the initial state on the test set of the initial state. The lower forgetting rate is better (Equation 2.21)

F = A 1 T -A 1 1 (2.21)
where A 1 T is the accuracy of the model in the last state (S T) on classes initially encountered in the initial state, A 1 1 is the accuracy of the model in the initial state on classes learned in this state.

The formula presented in Equation 2.21 involves the first and the last states only. Another formula was proposed in [START_REF] Chaudhry | Riemannian Walk for Incremental Learning: Understanding Forgetting and Intransigence[END_REF], and it takes the average of forgetting over all states. Here, forgetting is defined as the difference between the maximum knowledge acquired when learning a set of classes (or task) in previous states, and the learned knowledge about the same task in the current state (Equation 2.22)

F t = 1 T -1 max k∈[1,T -1] (A t k -A t T) (2.22)
where t refers to the set of classes (task) we want to compute forgetting for, and A t k is the accuracy of the system on classes of state S t in the state S k .

-Backward Transfer (BWT)measures the influence of training the model in the current state S t , on the learning of classes seen in previous states (S k<t) [START_REF] Lopez | Gradient Episodic Memory for Continual Learning[END_REF]. A negative forgetting F t < 0 implies a positive influence on previous classes (also known as Positive Backward Transfer (PBWT)), and vise versa (Negative Backward Transfer (NBWT)).

-Forward Transfer (FWT)measures the influence of learning the current set of classes on training the model on future classes [START_REF] Lopez | Gradient Episodic Memory for Continual Learning[END_REF]. Ideally, continual learning systems apply both forward and backward transfer. The former aims at using past knowledge to easily learn new classes, and the latter aims at using new knowledge to reinforce previously learned one [START_REF] Lopez | Gradient Episodic Memory for Continual Learning[END_REF].

In this thesis, we use top-1, and top-5 accuracy averaged on incremental states, as proposed by [START_REF] Francisco | End-to-End Incremental Learning[END_REF]. We later propose in Chapter 3, an aggregation accuracy-based method (called G IL) that gives a global idea on the performance of IL algorithms when tested under diversified configurations, which vary in terms of test dataset, number of incremental states, and memory size (when allowed).

Conclusion

We map each IL group to the six IL properties from Section 1.2 in Table 2.1. We discuss the advantages and/or challenges related to each group-property pair to facilitate their comparison. We also provide a global assessment focusing on the application contexts in which each type of approach could be deployed.

As shown in this chapter and the one before (Chapter 1), the scope of incremental learning in the literature is large. We limit it in this thesis by proposing methods that:

-are designed for class-incremental learning (also called task-agnostic) -we discard methods that require task-id at the inference time (task-incremental learning). The goal is to tackle more challenging IL scenarios that are useful in real-life situations.

-add several classes at once -we discard methods that add one to few images per class (domain-incremental learning). These methods constitute a more challenging scenario, and we do not handle them in this thesis.

-keep a constant complexity of deep models -we discard all dynamic networks that increase the architecture of the model upon time -do not need a large pre-trained model -we suppose that all methods start with the same initial model trained from scratch on the classes of the first state. Comparison between them is thus made on the incremental part only.

Consequently, experiments are conducted with approaches that are fit to work under these conditions, namely those based on fine tuning and fixed representations.

We further investigate the effect of allowing past exemplars memory or not. The majority of works from the state of the art use a memory because it helps to alleviate the effects of catastrophic forgetting considerably. In practice, when the AI system is allowed to store a limited number of past images, the memory can be of great benefit to update its capacities with new data.

Parameter-isolation based

Fixed-Representation based Fine-Tuning based

Complexity

In dynamic networks, the model evolves by adding parameters and weights to interconnect them [START_REF] Sylvestre-Alvise Rebuffi | Efficient Parametrization of Multi-Domain Deep Neural Networks[END_REF][START_REF] Rusu | Progressive Neural Networks[END_REF][START_REF] Wang | Growing a Brain: Fine-Tuning by Increasing Model Capacity[END_REF] or small networks [START_REF] Aljundi | Expert Gate: Lifelong Learning with a Network of Experts[END_REF] to include new knowledge. This is not the case for fixed networks [START_REF] Mallya | Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights[END_REF][START_REF] Mallya | PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning[END_REF] that do not augment the architecture of the model. The challenge of dynamic networks is to optimize the effect of model growth on performance [START_REF] De | Continual learning: A comparative study on how to defy forgetting in classification tasks[END_REF][START_REF] Sylvestre-Alvise Rebuffi | Efficient Parametrization of Multi-Domain Deep Neural Networks[END_REF].

The model is fixed after the first nonincremental state. In a basic setting [START_REF] Sylvestre-Alvise Rebuffi | Learning multiple visual domains with residual adapters[END_REF], the only parameters added are those needed for new classes weights. In a more advanced setting [START_REF] Kemker | FearNet: Brain-Inspired Model for Incremental Learning[END_REF], additional parameters are needed to improve past classes' performance.

This group of IL methods is designed to work with a fixed structure of the backbone model. The number of parameters is only marginally affected by the modifications of the classification layer designed to reduce the imbalance between past and new classes [START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF][START_REF] Wu | Large Scale Incremental Learning[END_REF].

Memory

Fixed networks do not require extra memory storage, while growth allows dynamic networks to deploy these methods without using an exemplar memory. Memory is allocated to additional model parameters and weights, which is a more parsimonious way to store information about past classes [START_REF] Aljundi | Memory Aware Synapses: Learning What (not) to Forget[END_REF][START_REF] Aljundi | Expert Gate: Lifelong Learning with a Network of Experts[END_REF][START_REF] Roy | Tree-CNN: A hierarchical Deep Convolutional Neural Network for incremental learning[END_REF].

Fixed-representations do not update the model during the incremental learning process and thus have a very low dependency on the memory of past classes [START_REF] Hayes | Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis[END_REF]. Class weights are learned when they are first encountered and can be used throughout all subsequent incremental states.

Performance of these methods is heavily dependent on the size of the past memory. However, storing a large number of past exemplars is contradictory to the IL global philosophy. Memory needs are reduced by exploiting knowledge distillation [START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF][START_REF] Javed | Revisiting Distillation and Incremental Classifier Learning[END_REF][START_REF] Wu | Large Scale Incremental Learning[END_REF] or by exploiting statistical properties of past states [START_REF] Zhao | Maintaining Discrimination and Fairness in Class Incremental Learning[END_REF].

Accuracy

Performance is correlated with the amount of model growth allowed. If growth is limited, dynamic networks have lower performance compared to that of FT-based ones [START_REF] De | Continual learning: A comparative study on how to defy forgetting in classification tasks[END_REF]. If significant growth is allowed [START_REF] Roy | Tree-CNN: A hierarchical Deep Convolutional Neural Network for incremental learning[END_REF], performance comes close to that of classical learning, but this is somewhat contradictory to the requirement to keep models' complexity close to constant.

Accuracy is lower compared to FTbased methods because the model is not updated incrementally. High performance can be obtained with fixed representations if the initial model is learned with a large dataset [START_REF] Hayes | Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis[END_REF]. However, the existence of such a dataset is a strong assumption in incremental scénarios.

Recent approaches report strong performance gain compared to previous work such as [START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Javed | Revisiting Distillation and Incremental Classifier Learning[END_REF][START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] either through more sophisticated definitions of knowledge distillation [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF] or through the casting of IL as an imbalanced learning problem [START_REF] Buda | A systematic study of the class imbalance problem in convolutional neural networks[END_REF], or a combination of both [START_REF] Wu | Large Scale Incremental Learning[END_REF]. The gap with classical learning is narrowed if enough memory of past classes is allowed [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF][START_REF] Wu | Large Scale Incremental Learning[END_REF].

Parameter-isolation based Fixed-Representation based Fine-Tuning based

Timeliness

The complexity is generally similar to that of FT-based methods since retraining is needed for each incremental update [START_REF] De | Continual learning: A comparative study on how to defy forgetting in classification tasks[END_REF]. For fixed networks, extra time is needed to determine important weights

Only the classifier weights layer needs to be trained, and new knowledge is integrated promptly [START_REF] Hayes | Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis[END_REF].

New classes are not recognizable until retraining is finished to include them in the model. If applications are time-sensitive, an acceleration of the training process can be envisioned at the expense of result suboptimality.

Plasticity-Stability

Parameter-isolation-based methods are specifically designed to cope with different visual tasks [START_REF] Aljundi | Memory Aware Synapses: Learning What (not) to Forget[END_REF][START_REF] Mallya | Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights[END_REF]. The challenge is to minimize the number of additional parameters needed to accommodate each new task [START_REF] De | Continual learning: A comparative study on how to defy forgetting in classification tasks[END_REF].

Plasticity is limited since the representation is learned in the first state and then fixed. Performance drops significantly if the incremental tasks change a lot and the initial representation is not transferable anymore [START_REF] Sharif | CNN Features Off-the-Shelf: An Astounding Baseline for Recognition[END_REF].

The model updates enable adaptation to new data as they are streamed into the system. If no memory is allowed, plasticity is too important, and this shift is controlled through knowledge distillation or imbalance handling.

Scalability

Fixed networks are not scalable. Dynamic networks scale well to new classes or tasks as long as the systems in which they are deployed have sufficient resources to support the underlying model growth for training and inference phases, as well as for its storage.

The dependence on the bounded memory is limited, and FR-based methods can include a huge number of classes. This is possible because class weights are learned in their initial state and reused later.

The size of the bounded memory determines the number of past classes for which exemplars can be stored and which are still recognizable when new ones are integrated. If the system constraints allow for this, the memory can be increased to keep the number of exemplars per class constant [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF].

Parameter-isolation based

Fixed-Representation based Fine-Tuning based

Global assessment

Approaches in this group cope well with new data, are not or weakly dependent on a memory of the past, but are scalable only if dynamic. However, the complexity of the latter is a disadvantage since the model has to grow in order to integrate new knowledge. They also require retraining when new classes are added and timeliness is not optimal. Dynamic networks are usable when: model complexity can grow during the incremental process, streamed data vary a lot between incremental states, no storage is available for past data, and immediate use of updated models is not essential.

Fixed-representation methods inherit the advantages and disadvantages of transfer learning schemes. Model complexity is constant, and they can be updated promptly since only the classification layer is retrained. They have a low dependency on past memory and can scale up to a large number of classes. However, these algorithms depend heavily on the quality of the initial representation and have low plasticity. They are usable when: model complexity should stay constant, data variability is low, no storage is available for past memory, and updates are needed promptly.

Fine-tuning-based methods are adequate when we try to optimize the architecture complexity, and the plasticity [START_REF] Tamaazousti | Learning More Universal Representations for Transfer-Learning[END_REF] of representations. However, since they require network retraining when new classes are added, their timeliness is not optimal. Equally important, the bounded memory constraint makes them hard to scale because the memory will eventually become too small to represent past classes adequately. They are usable when: model complexity should stay constant, streamed data vary a lot between incremental states, storage is available for past data, and immediate use of updated models is not essential. Table 2.1 -Analysis of the main groups of class-incremental learning algorithms with respect to their desirable properties. A global assessment with recommended use cases is also provided.

CHAPTER 3

CLASS-INCREMENTAL LEARNING WITH MEMORY

General Introduction

Class-incremental learning gained lots of attraction in the last decade [START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Tyler | REMIND Your Neural Network to Prevent Catastrophic Forgetting[END_REF][START_REF] Masana | Class-incremental learning: survey and performance evaluation on image classification[END_REF][START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF]. Most state-of-the-art approaches use a fixed-size memory of the past to alleviate the effects of catastrophic forgetting. The memory helps "refreshing" the representation of the model by replaying some examples from previous classes. In this chapter, we focus on a protocol where a bounded memory of the past is allowed. In Figure 3.1, we show a toy example with one initial state S 1 and two incremental states (S 2 and S 3). In the initial state, a simple training from scratch is performed to learn the initial set of two classes. At each incremental state, another two new classes arrive with all their available data. These classes should be learned by the model M t without forgetting past classes (learned in previous states). An incremental learning algorithm A is used to update the model M t-1 (t > 0) with data of new classes. In this example, the past exemplars memory K contains 4 images. Note that the more incremental states are added, the worse the imbalance between past and new classes' data. This imbalance makes class-incremental learning akin to an imbalanced learning that worsens upon incremental states.

The main findings of this chapter are: (1) the bounded memory can be a good alternative to the widely used knowledge distillation on large scale datasets, and (2) the use of a bounded memory alone is not sufficient since the bias of the neural network is important towards new classes, especially at level of the classification scores. Further techniques should be deployed to remove this bias and will be discussed in detail in this chapter.

We propose three approaches called: (1) DeeSIL (Deep-Shallow Incremental Learning), (2) IL2M (Incremental Learning with Dual Memory) and (3) ScaIL (Classifier Weights Scaling for class Incremental Learning).

DeeSIL is based on a fixed representation and applies a transfer learning scheme to classincremental learning. The model M 1 is trained from scratch on classes of the first state and is frozen afterward. It is used in incremental states to extract features of new classes images where a set of Support Vector Machines (SVMs) [START_REF] Boser | A Training Algorithm for Optimal Margin Classifiers[END_REF] are used to incrementally learn new classes. It is important to mention that DeeSIL is usable with and without memory of the past. IL2M and ScaIL are based on a fine-tuning backbone. Both methods aim to make classification scores of past and new classes comparable. The main difference arises in the part of the network in which each method interferes. IL2M interferes at the end of the network to directly rectify past classes' scores, while ScaIL interferes at the level of the last fully connected layer weights. We notably propose many simple yet efficient approaches to reduce the bias of the network toward new classes. These approaches are presented in the experiments subsections. Furthermore, we conduct extensive experiments and study the merits and limitations of our methods as well as a range of class-incremental approaches that use an exemplars memory. We notably vary the number of states and the memory size, the two most important parameters in class-IL. Experiments show that no method is always the best in all configurations.

Finally, we propose in this chapter a combination between class-incremental learning, imbalanced learning, and active learning. Here, the contribution is not directly related to classincremental learning. We propose new acquisition functions and a simple thresholding IL backbone that better handle data imbalance, and we apply them in an incremental learning protocol.

DeeSIL: Deep-Shallow Incremental Learning

Introduction

Typical deep learning pipelines are well adapted to solve tasks when all training data is available at all times, and there are loose constraints regarding time available for training. Under these conditions, augmenting the classification ability can simply be done by learning a new representation, either from scratch or via fine-tuning. However, when one or both of the above conditions are violated, adding new classes becomes non-trivial.

We introduce DeeSIL, an adaptation of a known transfer learning scheme [START_REF] Alexandru | Large-scale Image Mining with Flickr Groups[END_REF][START_REF] Kornblith | Do Better ImageNet Models Transfer Better?[END_REF][START_REF] Sharif | CNN Features Off-the-Shelf: An Astounding Baseline for Recognition[END_REF] to incremental learning. In order to qualify as class-incremental and maximize flexibility, DeeSIL includes two weakly correlated steps. First, a deep model M 1 is trained in order to provide a fixed representation which is then used to learn independent shallow classifiers (SVMs) during the incremental phase. Instead of using the system memory K to keep positive examples, a set of negative features that are necessary to train classifiers incrementally is stored. This choice makes it possible to use all positive examples for training without violating the memory constraint.

Our hypothesis is that independent shallow learning over all positives compensates for the drawback related to the use of a fixed deep representation. Since no deep retraining is needed to increase system capacity, the approach is considerably less complex than its purely deep learning counterparts. The addition of a new class is done by training a shallow classifier, an operation that takes less than a minute on a single CPU. DeeSIL is tested against three IL algorithms, including iCaRL [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF], the best such algorithm known to us in 2017. The ILSVRC 2012 dataset [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF] (a subset from Imagenet [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF]) is used for evaluation and results show significant improvement for the proposed method.

Proposed approach

We propose an adaptation for incremental learning of a well-known transfer learning scheme [START_REF] Kornblith | Do Better ImageNet Models Transfer Better?[END_REF]. An overview of DeeSIL is provided in Figure 3.2 with one initial state S 1 and two incremental states S 2 and S 3 . In the initial non-incremental state S 1 , we train the model M 1 from scratch on the set of initial classes. Once the model is trained, we remove the last fully connected layer and use the trained feature extractor F * 1 as a Deep Feature Extractor (DFE) to extract features for new classes images in all subsequent states. Given an incremental state S t>1 and a set of images X j t for a class j to be learned, features F j 1 are extracted using the fixed deep representation provided by F * 1 . Then a shallow binary classifier SVM is trained using F j 1 as Figure 3.2 -Overview of DeeSIL. A toy example with one initial state and two incremental states is presented. Two classes are added at each incremental state. In the first step, the model M 1 is trained from scratch on N 1 = 2 classes. Afterward, in the second step, the trained fixed representation F * 1 is used as a Deep Features Extractor (DF E) to extract features of all classes images as soon as they are available. X j , F j are sets of images and features for the j th class. F N is a set of negative features obtained using a negative selector (N S) and common to all shallow classifiers that are added in a given state. SV M j is a shallow classifier learned for the j th class, and the output o j is the associated prediction. positives and F N as negatives in order to predict the activations o j t of the class for test images. F N replaces the memory K of the system, and it contains a constant number |K| of features, regardless of the state of the system (i.e. number of recognizable classes). F N is generated by the negative selector (N S) component, which is the main adaptation introduced in DeeSIL to make a classical transfer learning pipeline [START_REF] Kornblith | Do Better ImageNet Models Transfer Better?[END_REF] suitable for incremental learning. Given the initial state S 1 (with N 1 recognizable classes), the following steps are needed to move to state S t (with N t-1 + P t classes): (1) extract features for the P t new classes, (2) update the pool of negatives F N using N S component, and (3) train P t shallow classifiers. Note that we use linear SVMs following common practice in transfer learning [START_REF] Alexandru | Large-scale Image Mining with Flickr Groups[END_REF][START_REF] Kornblith | Do Better ImageNet Models Transfer Better?[END_REF][START_REF] Sharif | CNN Features Off-the-Shelf: An Astounding Baseline for Recognition[END_REF]. We further discuss steps (1) and (2) hereafter.

Deep features extractor (DFE)

In [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF], each new state of the class-incremental algorithm depends on the representation learned in the preceding state. Here, deep features extraction and shallow classifier learning are separated. DeeSIL thus implements a form of transfer learning which uses a fixed deep representation. To evaluate the effect of the amount of training data and its visual proximity with the test data, we train three variants of DFE:

-IMAGENET-100 (IN100 below) -train only with the ILSVRC data of the initial state S 1 , a setting that is directly comparable with [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF];

-IMAGENET-1000 (IN1000 below) -train with a larger dataset that has similar characteristics with the test set (ILSVRC) but has no common classes with it. One thousand classes are selected to form a diversified subset of ImageNet and thus increase universality (i.e. optimize their transferability toward new tasks) [START_REF] Tamaazousti | Learning More Universal Representations for Transfer-Learning[END_REF].

-FLICKR-1000 (FL1000 below) -train with a more challenging dataset which is obtained from weakly annotated Flickr group data and is visually more distant from the test set.

Within each group, a semi-supervised reranking [START_REF] Chen | Webly Supervised Learning of Convolutional Networks[END_REF] is initially performed to remove a part of noisy images.

A greedy algorithm [START_REF] Deselaers | Jointly optimising relevance and diversity in image retrieval[END_REF] which operates with classes' mean representations is used for dataset diversification in the last two variants. It picks at each iteration the class which is, on average, least similar to those already selected. Visual representations from IMAGENET-100 are used as a basis for the diversification process.

Negatives selection

In standard transfer learning [START_REF] Kornblith | Do Better ImageNet Models Transfer Better?[END_REF], shallow classifiers are learned in a one-VS-rest fashion since all data is available at all times. Here, a selection is necessary to fit F N features in the memory budget |K| for any state of the algorithm. We test three negative selection strategies:

ind -(independent) following [START_REF] Alexandru | Large-scale Image Mining with Flickr Groups[END_REF], F N is composed of |K| image features taken from YFCC dataset [START_REF] Thomee | YFCC100M: The New Data in Multimedia Research[END_REF]. The images are selected so as to represent frequent but diversified tags.

rand -a random and balanced sampling of image features from all past and current classes.

div -diversified samples from all recognizable classes. The greedy algorithm implemented for dataset diversification is reused here at the image level.

For rand and div, if DeeSIL recognizes N t classes in a given state S t , each class will have

Experiments

DeeSIL is tested using the ILSVRC 2012 dataset [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF]. The evaluation protocol (order of classes, size of system states) is nearly identical to the one used for iCaRL [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF]. ILSVRC 2012 includes a total of 1000 classes, further split into 10 batches of 100 classes, which means that 10 distinct states of the class-incremental algorithms are tested. The test set is the same but, since we need to optimize the SVMs, we keep out 20 images for validation and train on remaining images. We use the best three systems from [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] as baselines: (1) iCaRL -their contribution and the most influential IL algorithm known to us in 2017; (2) LwF -adaptation of Learning without Forgetting [START_REF] Li | Learning Without Forgetting[END_REF] to IL scenario and (3) Fixed Representation (F R) -training over a frozen initial network, except for the classification layer. We use a ResNet-18 as a backbone [START_REF] He | Deep Residual Learning for Image Recognition[END_REF]. The feature vectors extracted with the DFE are L2-normalized before being fed into the SVMs. The memory size, which stores negatives, is |K| = 20000, the same as in [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF].

Results and discussion

Effect of negatives selection

The results in Figure 3.3 show that all variants of DeeSIL, trained with rand, div and ind negatives selection outperform state-of-the-art systems. At scale, i.e. 1000 classes learned incrementally, performance increases from 45% for iCaRL to 68% when rand and div negatives are exploited. This gain is consistent over all the states of the class-incremental evaluation, with a larger difference for large batches. DeeSIL can be seen as a variant of Fixed Representation learning but differs from it by using all positives in the incremental phase. This leads to an even higher performance gain than in the case of iCaRL.

The three N S variants have rather performance and this finding shows that our method is robust w.r.t. the choice of negatives. Selecting negatives from the dataset (rand and div) gives marginally better results (0.5 points gain) compared to the use of an independent negative set (ind) for 1000 classes. rand being simpler to compute than div, DeeSIL rand will be used in further experiments.

Effect of the deep fixed representation

In Figure 3.4, we test the effect of using more data to obtain strong fixed representations. 1000 ImageNet classes and Flickr groups are used, respectively. Richer data compensates for the fact that features are transferred from classes that are different from the tested ILSVRC classes. This is especially the case for DeeSIL IN 1000 rand , which exploits a subset of ImageNet distinct from ILSVRC. Performance improvements of 10 and 33 points are obtained over DeeSIL IN 100 rand , the best configuration trained with the 100 initial ILSVRC classes and over iCaRL respectively. DeeSIL F L1000 rand , the version trained on non-curated Flickr data has lower performance than DeeSIL IN 1000 rand , but is close to DeeSIL IN 100 rand and still well above the state of the art algorithms. The last result confirms the finding in [START_REF] Chen | Webly Supervised Learning of Convolutional Networks[END_REF] that it is possible to learn reasonable representations even with little or no manual data.

Memory and computational complexity

Beyond performance, it is also important to compare the complexity of DeeSIL to that of iCaRL, the main baseline. ResNet-18, the basic deep architecture, is the same for both methods.

Recognition capacity incrementation is done with linear SVMs. This entails the computation of a dot product per class, which is equivalent to adding a class in the final layer of a CNN.

Training is simpler in DeeSIL since a single deep network training is needed at the beginning. In the incremental step, we only train shallow classifiers. Adding a single class typically takes less than 1 minute, distributed among deep features extraction and SVM training on an INTEL-Xeon-E5-2650-v2@2.60GHz CPU. For comparison, adding a batch of 100 new classifiers in iCaRL takes approximately 32 hours on an NVIDIA Titan X GPU. Incremental learning is typically needed in low-resource contexts and, assuming that an initial deep representation is available, DeeSIL can be deployed even in the absence of a GPU. Equally important, due to the independent learning of shallow classifiers, DeeSIL can seamlessly integrate batches of new classes of arbitrary size. In contrast, purely deep-learning-based algorithms need retraining, and this step is particularly long if one class is added at a time.

Usability of DeeSIL in IL without memory

Compared to iCaRL, the focus in DeeSIL is shifted from positive to negative selection to fill in the memory of the system. As shown in the experiments, our algorithm is affected by catastrophic forgetting to a much lesser extent. The choice to select negatives is beneficial for scalability in terms of the number of learnable classes. Also, while the same number of items is stored in iCaRL and DeeSIL, memory needs are lower in our case since we store D = 512 dimensional features instead of images of past classes. We remind that D depends on the deep architecture used.

Given a memory budget |K|, iCaRL can learn at most |K| classes since in the state S |K|+1 , not all known classes will be represented anymore. However, DeeSIL can be easily deployed without a memory of the past, by replacing the negatives pool F N with negatives from other classes belonging to the same state. In this case, DeeSIL can learn an infinite number of classes with the condition that at least two classes are added in each new incremental state. Even if only one class appears at each incremental state, DeeSIL can be deployed by using as negatives features of images coming from an independent dataset (like the YFCC dataset [START_REF] Thomee | YFCC100M: The New Data in Multimedia Research[END_REF] above).

Comparison with an upper bound

It is interesting to evaluate the decrease in performance compared to a situation in which all training data is available at all times. ResNet-18 [START_REF] He | Deep Residual Learning for Image Recognition[END_REF] top-5 accuracy on 1000 ILSVRC classes trained with all data is approximately 89%. iCaRL halves this score while our best configurations with DFE based on 100 and 1000 classes lose only 22 and 12 points respectively. The gap could be further reduced if the feature extractors were more universal [START_REF] Tamaazousti | Learning More Universal Representations for Transfer-Learning[END_REF]. This could be achieved if DeeSIL's initial training would be done with an even larger number of classes.

Conclusion

We revisit a known transfer learning scheme [START_REF] Alexandru | Large-scale Image Mining with Flickr Groups[END_REF] for class-incremental learning. The proposed method achieves significantly better performance than existing algorithms [START_REF] Li | Learning Without Forgetting[END_REF][START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] while also being much faster to train and more scalable in terms of the number of learnable classes.

Introduction

Previously, we proposed DeeSIL, an algorithm that applies transfer learning to tackle classincremental learning. The main limitation of DeeSIL is that its performance is heavily dependent on the quality of the fixed representation. If the latter is trained with few data, or with classes that are visually different from that of classes learned incrementally, DeeSIL fails to continuously transfer knowledge to subsequent states. A solution for this is to fine-tune the model at each incremental state in order to update its representation with the new data. However, as shown in Section 3.1, the imbalance between past and new classes worsens upon time, a phenomenon that necessitates techniques to remove the bias of the network towards new classes.

In this section, we introduce Incremental Learning with Dual Memory (IL2M) that aims to partially reconcile the fine tuning and fixed representation based approaches. IL2M uses vanilla fine tuning as a backbone to update deep models for each incremental state, as proposed in fine tuning approaches (Subsection 2.3.1). Similar to fixed representation methods (Subsection 2.3.2), IL2M exploits class-related knowledge from the initial state in which they were learned across incremental states. Due to deep parameter updating when fine-tuning the model, initial class models cannot be fully reused in later states. Instead, IL2M exploits past class statistics from their initial state to rectify their prediction scores in the current incremental state. This rectification is supported by two related hypotheses: (1) classes are best modeled when all their data are available, and (2) class prediction scores are higher on average when more training data are available. We illustrate the validity of these hypotheses in Figure 3.5. It plots the averaged predictions of past and new classes for the ILSVRC [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF], VGGFACE2 [START_REF] Cao | VGGFace2: A Dataset for Recognising Faces across Pose and Age[END_REF] and LAND-MARKS [START_REF] Noh | Large-Scale Image Retrieval with Attentive Deep Local Features[END_REF] datasets with T = 10 states and memory sizes |K| = {20000, 10000, 5000}.

The scores in Figure 3.5 confirm that vanilla fine tuning generates a prediction bias in favor of new classes. This bias is mainly due to the imbalance in favor of new classes, which appears in class IL. As a result, a large part of images from past classes is predicted as belonging to new classes (see Subsection 3.3.4 for a detailed analysis of error types). The comparison of the three subfigures of each dataset shows that the score gap between past and new classes is higher when the memory capacity is lower. For instance, the average difference over all incremental states for the ILSVRC dataset is 2.42, 4.02 and 6.45 for |K| = {20000, 10000, 5000} respectively. This is intuitive since the imbalance between past and new classes is higher for lower memories. The gap also tends to grow from left to right in each subfigure due to the increasing number of classes to fit in the bounded memory. For instance, the difference is 2.26, 4.16 and 4.67 for The differences between predicted scores of past and new classes are much smaller than those of ILSVRC for VGGFACE2 and negligible for LANDMARKS when |K| = 20000. This difference between scores is due to the fact that ILSVRC is a hard task, and it explains the very small contribution of IL2M score rectification in this configuration (Subsection 3.3.4).

Proposed approach

Our method, called Incremental Learning with Dual Memory (IL2M) is summarized in Figure 3.6. with an example that includes an initial and two incremental states. IL2M uses a fixed DNN architecture and a bounded memory of the past. Our main contribution is to propose a secondary memory that stores initial class statistics in a very compact format. The introduction of this memory is based on the intuition that classes are best modeled when first learned, with all data available. Initial class statistics are reused in each subsequent incremental state to rectify the prediction scores of past classes. Rectification is necessary because class IL models are trained with imbalanced datasets in which past classes have fewer examples. Consequently, their prediction scores are generally lower than those of new classes. To compensate for the bias toward new classes, we rectify predictions of past classes (j = 1, . . . , N t-1) using Equation 3.1 (check Section 2.2 for the used formal notations):

o j t = IL2M (o j t) =    o j t × µ j i µ j t × µ(Mt) µ(M i) , if pred = new o j t , otherwise (3.1)
with:

i -the initial state in which the j th class was learned -t -the current incremental state o j t -the raw prediction the j th class in the current state t µ j i and µ j t -the mean classification scores of the j th class in states i and t obtained from all training data and the current exemplar set, respectively µ(M t) and µ(M i) -the model confidences in states t and i given by the averaged top1 prediction scores of all new training data.

In Equation 3.1, rectification is applied to past class predictions only if an image is initially predicted as belonging to a new class. This situation is the riskiest in terms of imbalance-driven errors in favor of new classes. Otherwise, we consider rectification unnecessary since a past class is directly predicted, and there is no prediction bias toward new classes. The effect of the rectification restriction to past images initially associated with a new class is studied in the ablation study from Subsection 3.3.4.

Since classes are initially learned in different incremental states, the following conditions need to be met for the proposed rectification to be useful in class IL:

1. the scores o j t for past classes in range j = {1, N t-1 } and o j t from {N t-1 + 1, N t } should be comparable; 2. the statistics stored in the memory I should be very compact in order to increase memory needs only marginally;

3. model level normalization should be introduced to limit the influence of combining the outputs of models learned in different incremental states.

The first condition is handled via the use of class-related statistics in the first term, which modifies o j t in Equation 3.1. More specifically, we use the means of the j th class in its initial and current states i and t. The intuition here, supported by Figure 3.5, is that since the class is first learned with all training images in the state i when it was new, its mean prediction score µ j i is likely to be higher than µ j t . Consequently, this term of the equation generally increases o j t compared to o j t . The second condition listed above is related to the introduction of the secondary memory I, which makes the IL2M rectification possible. I includes a float value per class to store µ j i , and the induced memory requirement is negligible. As for the model-level knowledge, only one float per incremental state is needed to store µ(M).

The third condition is necessary since the averaged scores for new classes are not equivalent in the different incremental states which are combined. This is clear in Figure 3.5 where in ILSVRC, for instance, the new class mean scores for state 8 are higher than those of state 7

for |K| = 10000. The last term of Equation 3.1 provides a global harmonization of the score rectification across the different states that are combined in IL2M .

The complexity of the supplementary arithmetic operations from Equation 3.1 is very low compared to the overall complexity of deep neural network architecture. For each class score rectification, a division and a multiplication are needed to introduce the second term. The division in the third term can be computed only once the training of the current incremental state is ready. This term is thus integrated through a simple multiplication. For 1000 past classes, IL2M adds 1000 divisions and 2000 multiplications. This is to be compared to the tens to hundreds of millions of multiplications done in typical DNN architectures.

The rectification introduced here is an alternative to the NEM classification from iCaRL [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] and to the balanced fine tuning step of end-to-end learning (E2EIL) from [START_REF] Francisco | End-to-End Incremental Learning[END_REF]. The three methods are compared in the following section.

Experiments

-Datasets (Appendix B) -ILSVRC [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF], LANDMARKS [START_REF] Noh | Large-Scale Image Retrieval with Attentive Deep Local Features[END_REF], and VGGFACE2 [START_REF] Cao | VGGFace2: A Dataset for Recognising Faces across Pose and Age[END_REF].

-Memory sizes -We fix the number of states T = 10 and vary the memory size to include |K| = {20000, 10000, 5000} exemplars.

-Incremental states -We fix the memory to |K| = 5000 and test with T = {5, 20} in addition to T = 10. The lowest memory size was selected since it is the most interesting configuration when memory budget is smallest.

-Exemplar selection -According to [START_REF] Francisco | End-to-End Incremental Learning[END_REF], herding has marginal effect. For sake of simplicity, we perform a random selection of exemplars. We will show in Sections 3.4 and 3.5 that herding is beneficial for IL2M and other IL methods.

-Evaluation measures -Top-1 and Top-5 accuracy [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF].

-Baselines (Chapter 2) -iCaRL [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF], DeeSIL (Section 3.2), F T (vanilla fine tuning).

In addition, we propose the following baselines: F T BAL -a version of F T in which a balanced fine tuning is performed for classification after the initial imbalanced vanilla F T following [START_REF] Francisco | End-to-End Incremental Learning[END_REF]. F T BAL is a modified version of E2EIL [START_REF] Francisco | End-to-End Incremental Learning[END_REF] in which we again ablate L d . Note that original E2EIL Table 3.1 -Top-1 average accuracy (%) for the different methods tested. NA stands for "Not Applicable". Joint is the non-incremental upper-bound performance obtained with all data available for all classes. The available memory |K| (in thousand exemplars) and the number of states T are varied to the left and the right of the table. Each time, the other parameter is fixed. Following [START_REF] Francisco | End-to-End Incremental Learning[END_REF], accuracy is averaged only for incremental states (i.e. excluding the initial, non-incremental state). Best results are in bold.

F T N EM -a
ILSVRC VGGFACE2 LANDMARKS T =5 T =20 T =5 T =20 T =5 T =20 32
[24] is not fully evaluated because the only available implementation uses non-free MathConvNet based on Matlab. However, a top-5 accuracy comparison of E2EIL and F T BAL for ILSVRC is clearly favorable to the latter method (69.4 vs. 77.52).

Results and discussion

Top-1 accuracy results

The comparison of the methods tested in Table 3.1 shows that IL2M has the best performance in a wide majority of configurations with memory (|K| > 0). Our method outperforms iCaRL [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF], DeeSIL, as well as F T (the vanilla fine tuning baseline) and its variants F T N EM and F T BAL , which use the classification components from [START_REF] Francisco | End-to-End Incremental Learning[END_REF] and [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF].

Among tested baselines, F T consequently outperforms iCaRL for T = 10 and |K| = {20000, 10000}. For |K| = 5000, it is better for T = {5, 20} states and slightly falls behind for ILSVRC with T = 10 states. Naturally, iCaRL is better when no memory is allowed and distillation reduces catastrophic forgetting. The comparison of F T to DeeSIL is also favorable for all settings where |K| > 0, except for T = 5 and ILSVRC with T = 10 and |K| = {5000, 10000}.

The detailed results for the three datasets with |K| = 10000 and T = 10 from Figure 3.7 confirm the above findings. IL2M has the best performance for a wide majority of IL states. It is also interesting to see that our method provides good results for later incremental states. This is clear for ILSVRC, where IL2M has similar performance with that of F T N EM and DeeSIL for states 7 to 9 and is better than them in earlier states. The gap between iCaRL performance and all F T methods introduced here is large overall and clearly increases in later states for VGGFACE2 and LANDMARKS. This finding indicates that vanilla F T is a much better base for IL when the number of classes is large.

While our focus is on class IL with memory, we also present results without memory (|K| = 0). Here distillation clearly has a positive effect and outperforms fine tuning, thus confirming the results from [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF]. All methods derived from F T have the same performance because all score rectification methods rely on exemplars. DeeSIL is the best method when |K| = 0 because it has low dependence on memory. Except for T = 20, its performance is better than that of iCaRL by a consequent margin. This result is at odds with the conclusion of [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF], where the authors found their fixed representation to be less effective than iCaRL. The difference is explained by the fact that fixed representations of past classes in [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] were learned only with exemplars from the current state. This restriction is unnecessary since the representation is fixed and each class can be learned the first time it is seen without violating memory requirements and then reused across IL states.

When compared to Joint, the upper-bound non-incremental learning, the results obtained by all incremental methods are lower in all configurations. This is particularly the case for ILSVRC, the hardest task among the three tested, where the gap reaches 16.6 top-1 accuracy points for T = 10 states and |K| = 20000. Naturally, this gap grows for all datasets when the memory is reduced. This finding confirms the conclusions of [START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] that class IL remains a hard problem if it operates under computational and memory constraints.

Top-5 accuracy results

In addition to the top-1 results, we provide top-5 results obtained by all methods to facilitate comparability with earlier works [START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Javed | Revisiting Distillation and Incremental Classifier Learning[END_REF][START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF]. Overall, the results follow the same trend as top-1. It is noteworthy that the differences between the F T baseline and the methods built on top of it are globally lower than those with top-1 results. This is particularly true for the VGGFACE2 and LANDMARKS, the easiest datasets tested here, where the imbalance inherent to incremental learning matters less than in the case of ILSVRC. The smaller performance differences are explained by the fact that top-5 accuracy has a smoothing effect on results. IL2M is still the best method in a majority of tested configurations. A first notable difference is that F T N EM gives slightly better results for three configurations instead of one for top-1. A second difference is that DeeSIL has best performance for all datasets with |K| = 5000 and T = 5. This is due to the fact that the initial representation is stronger when it includes a higher Compared to Joint, the non-incremental training, the best class IL algorithms with T = 10 and memory |K| = 20000 loses 12.9, 2 and 1.5 top-5 points for ILSVRC, VGGFACE2, and LANDMARKS, respectively. This gap is rather small for VGGFACE2 and LANDMARKS, but more work is still needed for difficult tasks like ILSVRC. Naturally, the gap increases when the memory is reduced and the number of states increases. As expected, it becomes very important without memory. In this last case, which is not in focus here, the DeeSIL baseline performs best for all three datasets. Effect of score rectification IL2M , F T N EM and F T BAL all use vanilla F T with memory as IL backbone. The three methods differ in the way final classification scores are obtained. F T N EM uses the N EM method from [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] as external classifier. F T BAL classifier adds a balanced fine tuning step for classification following [START_REF] Francisco | End-to-End Incremental Learning[END_REF]. IL2M notably exploits the content of a second memory to rectify scores. The results from Table 3.1 show that our method yields better performance than F T N EM and F T BAL for almost all configurations tested.

ILSVRC VGGFACE2 LANDMARKS T =5 T =20 T =5 T =20 T =5 T =20
Equally important, IL2M is useful for all memory sizes while this is not the case for N EM in F T N EM , which actually hurts F T performance for LANDMARKS in three tested configurations. The balanced fine tuning in F T BAL also improves performance for all memory sizes but to a lesser extent than IL2M . With lower memory, F T BAL is more prone to catastrophic forgetting than IL2M and F T N EM because a larger extent of data needs to be dropped during balancing. It is noticeable that the usefulness of score rectification grows when exemplar memory is lower and the imbalance between past and new classes is consequently higher. For instance, IL2M gains 5.3 and 11.9 top-1 accuracy points for ILSVRC with |K| = 20000 and |K| = 5000 exemplars respectively when T = 10.

Effect of distillation

The results from Table 3 Table 3.3 -Top-1 analysis of hybrid1 the F T with distillation used as backbone for iCaRL [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] and for vanilla F T using T = 10 and |K| = 10000. c(•) e(•, •) stand for correct and erroneous predictions and p and n stand for past and new classes. For instance, e(p, p) designates the number of past samples wrongly predicted as other past classes.

to obtain F T N EM is beneficial for all datasets and memory sizes |K| = {20000, 10000, 5000} and T = 10. The results presented here are at odds with the conclusion of [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] about the low performance of vanilla fine tuning in class IL with memory. That conclusion was based on a biased comparison of iCaRL and F T since the first method used an exemplar memory and the second did not. Naturally, distillation is useful when no memory is allowed, the setting for which it was initially designed [START_REF] Li | Learning Without Forgetting[END_REF] and which is not in focus here. While we do not have a complete set of results for E2EIL [START_REF] Francisco | End-to-End Incremental Learning[END_REF], we note that distillation is also harmful to this method on the ILSVRC dataset with |K| = 20000. The original top-5 result reported in [START_REF] Francisco | End-to-End Incremental Learning[END_REF] is 69.4 while the modified F T BAL version introduced here reaches 77.52.

In Table 3.3, we analyze the behavior of hybrid1, the version of F T with distillation which serves as a backbone for iCaRL [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] and of vanilla F T for ILSVRC with |K| = 10000 images and T = 10 states. The bias toward new classes (e(p, n)) is comparable for the two methods, although slightly higher when distillation is used. Consequently, data imbalance is not the main factor that explains the difference between the two methods. This difference comes mostly from the distribution of wrong classifications between past classes (e(p, p)). While distillation is assumed to preserve accuracy for past classes, the obtained results indicate that hybrid1 makes between two and three times more mistakes than vanilla fine tuning. A possible explanation for this situation is that distillation is usually assumed to be initialized with a strong model learned on a large and balanced dataset [START_REF] He | Deep Residual Learning for Image Recognition[END_REF]. This condition is not met in IL since the models from the previous state are trained on an imbalanced dataset.

The analysis from the previous two sections shows that data imbalance inherent to class IL with memory produces a classification bias toward new classes. In Table 3.4, we enrich the analysis by providing an analysis of error types before (F T) and after (IL2M) score rectification for all datasets with memory |K| = 10000 and T = 10 states.

Before rectification, the largest number of errors is of type e(p, n), that is, test images of past classes mistaken for images of new classes. We will look closely at the incremental state S 10 of ILSVRC, which includes 45000 and 5000 test images for past and new classes, respectively. 30740/45000 (68.31%) of test images of past classes were predicted as new, and only 8746/45000 (19.43%) images were correctly predicted. 4267/5000 (85.34%) of test images of new classes are predicted correctly, and only 66/5000 (1.32%) of them are assigned to past classes. These statistics further confirm the bias in favor of new classes and the need for score rectification.

After rectification with IL2M , the distributions of correct predictions and of errors changes quite significantly. For ILSVRC, there are significantly more correct predictions for past classes, accompanied by a lower performance for new classes. In state S 10 of ILSVRC, correct predictions of past test images increase from 19.43% with F T to 32.86% with IL2M . The corresponding performance for new classes drops from 85.34% to 70.2%. IL2M ensures a better performance balance between past and new classes. The errors of type e(p, p), where images of a past class are mistaken for images of another past class, are increasingly frequent toward later incremental states. This covers a majority of cases for states from S 6 to S 10 . The number of images of past classes predicted as new decreases significantly, and these errors cover only 21.32% of test images for past classes in the state S 10 of ILSVRC.

Ablation study

We analyze the contribution of the IL2M components in an ablation study with the ILSVRC dataset for T = 10 states and memory |K| = {20000, 10000, 5000}. We test the following changes on top of the F T baseline: IL2M 1 -activation of the first component of the rectification which works with class level means; IL2M 2 -activation of the second component which works with model level means; IL2M 1+2 -both mean based components are activated; IL2M -full version in which we also add the restriction of rectifying past class scores only if an image is initially predicted as belonging to a new class (given by Equation 3.1).

The results from

Conclusion

We introduce IL2M , a method designed for IL with memory. Extensive experiments show that IL2M outperforms competitive algorithms which are either based on adapted fine tuning [START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] or fixed representations (DeeSIL). IL2M gets better results than existing adapted fine-tuning-based methods for almost all configurations with memory and falls behind the fixed representation in a single case. The IL2M ablation study from Subsection 3.3.4 shows that the obtained gain is mainly due to the use of the secondary memory I introduced here. The method has a negligible supplementary cost, both in terms of memory and computation. It is thus fitted for deployment in computationally constrained environments. Interestingly, the largest gains compared to F T , F T N EM and F T BAL are obtained for lower memory sizes. This makes IL2M very interesting in real life since it reduces the memory requirements. We also find that, surprisingly, vanilla FT is a very effective baseline for class IL with memory. F T compares favorably with DeeSIL and other existing algorithms [START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF]. The ablation of the distillation component from iCaRL and E2EIL in F T N EM and F T BAL improves the performance of original methods. We test the proposed method and the baselines with three large-scale datasets and with different memory sizes. The reported results reduce the performance gap between incremental and non-incremental learning. However, this gap is still large, especially for the harder visual datasets like ILSVRC. We further investigate the reason behind the bias of the classification layer. We found that the classification weights matrix is the main reason behind the large scores gap between past and new classes. We deal with this problem in the next section. Incremental learning algorithms strive to approach the performance of full learning, in which the entire training set is available for all classes at all times. In the previous section, we experimentally showed that when a bounded set of past exemplars is stored, a prediction bias toward new classes appears due to the data imbalance in their favor. This bias is illustrated in Figure 3.8(a) with the difference between mean raw predictions for past and new classes after incrementally fine tuning the ILSV RC dataset [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF] with |K| = 5000 past exemplars. The average score difference in favor of new classes over all the incremental states is 6.45 points. In IL2M , we directly rectify scores of past classes to make them more comparable to those of new classes. However, it would be interesting to dig deeper and understand what is happening. We further investigate the effect of catastrophic forgetting and discover that the bias is highly present in the weights matrix of the last fully connected layer. The prediction gap is due to the stronger activations of classifier weights for new classes compared to past classes, as illustrated by the blue and red curves from Figure 3.8(b). It is thus tempting to try to reshape the classification layers of past and new classes in order to make them more comparable.

We introduce ScaIL, a simple yet efficient method that reduces the bias in favor of new classes by exploiting the past classes embeddings as learned in their initial state with all class data available. Since past class classifiers are learned in different previous IL states, they are reshaped to be usable in the current state. Their scaling uses aggregate statistics from the current and initial states. In addition to the bounded exemplar memory K, ScaIL requires the use of a compact memory I which stores the classifier embeddings from the initial states of past classes. Similarly to IL2M (Section 3.3), we simplify the deep model update across incremental states. The widely used distillation loss term [START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] He | Exemplar-Supported Generative Reproduction for Class Incremental Learning[END_REF][START_REF] Javed | Revisiting Distillation and Incremental Classifier Learning[END_REF][START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF][START_REF] Zhou | M2KD: Multi-model and Multi-level Knowledge Distillation for Incremental Learning[END_REF] is again ablated here and model updates are done with vanilla fine tuning.

Evaluation is done with four public datasets and three values for the number of incremental states T and the exemplar memory K, the two key components of class IL algorithms. ScaIL is compared to strong baselines from literature and to new ones proposed in this chapter, and the obtained results indicate that it has the best overall performance.

Proposed Method

Initial weights replay

ScaIL attempts to approximate full learning by exploiting past classifiers as learned in their initial state, with all images available. Since the deep models evolve during the incremental process, a transformation of the initial classifiers is needed for them to be usable in the current incremental state. ScaIL is illustrated in Figure 3.9 with a toy example that includes an initial and two incremental states.

The main differences with existing IL algorithms which exploit a bounded memory are: (1) the introduction of a second memory I to store initial past class classifiers and (2) the ablation of the distillation loss. Note that the size of I is orders of magnitude smaller than that of K since it only stores hundreds of floating-point values per class instead of exemplar images. The immediate advantage of the method is that initial classifiers of past data are learned with all data. Initial classifiers learned with all images are stronger than the past classifiers learned only with exemplars in the current state. This is clearly visible in Figure 3.8(b) from the comparison of past classifiers weights as learned in the current third state (red) and the weights of the same classifiers learned in states S 1 and S 2 (black and green). We also note the activations of new classes become weaker as the incremental learning process advances. The new classes from S 1 (black) are the strongest, followed by new classes from S 2 (green) and those from S 3 (blue).

The main challenge associated with ScaIL is to combine classifiers originating from deep Figure 3.9 -Illustration of ScaIL. X j t is the data of the j th class in state S t , M t is the deep model of the state S t . W j i is the classifier of the j th class in the initial state S i in which the class was learned with all data, and W j t is the classifier of the j th class in the state t after scaling it with ScaIL. We represent three states which recognize 2, 4 and 6 classes respectively models learned in different IL states. The reuse of initial classifiers in later incremental states is made possible by a fine tuning process with a memory of the past. This process results in partial preservation of the feature space even if the deep model evolves. In Subsection 3.4.5, we show that classifier reuse across states is impossible without memory during IL model updates.

Weights statistics computing

Once initial weights replay is performed, ScaIL reshapes initial weights from I in order to make them comparable to those of newly learned classes in the feature space defined by the deep model of the current state. The scaling is based on weights statistics computed for new classes in each incremental state. We compute one mean vector per state and use it later for normalization. In Equation 3.2, we sort each new class embedding W j t based on the absolute values of its elements.

" W j t = sort(|w 1 j |, |w 2 j |, ..., |w d j |,, |w D j |) ; j ∈ [N t-1 , N t] , d ∈ [1, D] (3.2)
where " W j t is the sorted version of the initial embedding of new class j in state S t . The use of absolute values is necessary since classifier weights activations can be positive or negative. Note that the matrix "

W t = { " W N t-1 t , " W N t-1 +1 t , ..., " W N t t } is of dimensions (P t , D)
, where P t = N t -N t-1 is the number of new classes in S t and D is the size of the feature vector.

Once the new classes embeddings are sorted descendingly based on their absolute values, we use Equation 3.3 to compute one mean vector per state that we use for normalization.

µ d t = 1 P t × Nt j=N t-1 w d j d ∈ [1, D] (3.3)
where µ t (of dimension D) is the mean vector of the ranked new classes' embeddings in the state S t , and d is a dimension in the feature vector. Figure 3.8(b) shows that classifiers of each past state have different statistical distributions. To make class predictions from different states comparable, it is necessary to compute µ t separately for each state. Note that each mean is computed using weights situated at the same rank for each classifier. For instance, µ 1 t and µ D t will aggregate respectively the maximum and minimum weights of newly learned classes in S t .

Initial weights normalization

In state S t , ScaIL transforms the past classifier weights as learned in their initial state using Equation 3.4.

w d j = µ R(d) t µ R(d) i × w d j (3.4)
w d j is the scaled version of w d j , the d th dimension of the initial classifier W j i of the j th past class. These weights are scaled using the ratio between the mean activation of new classes and that of past classes in their initial state. Each weight w d j is scaled using the mean activations of its corresponding rank, returned by function R(•), in the current and initial states S t and S i . For instance, if the first weight (d = 1) of the embedding W j i is ranked 9 th , it will be scaled using the mean activations to the 9 th dimension of the mean ranked activations µ 9 t and µ 9 i respectively. This is done in order to preserve the relative importance of each classifier weight. Figure 3.8(b) shows that µ r i > µ r t for a given rank r. Consequently, ScaIL scaling reduces the weights of the j th class learned in its initial state to make it more comparable to classifiers of new classes from the current state. The scaled classifier for each past class j of the current state S t is written as W j t = {w 1 j , w

Experiments

-Datasets (Appendix B) -ILSVRC [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF], LANDMARKS [START_REF] Noh | Large-Scale Image Retrieval with Attentive Deep Local Features[END_REF], VGGFACE2 [START_REF] Cao | VGGFace2: A Dataset for Recognising Faces across Pose and Age[END_REF], and CIFAR-100 [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF].

-Memory sizes -We fix the number of states T = 10 and run experiments with a memory which amounts to approximately 2%, 1%, 0.5% of the full training sets. Memory sizes are thus |K| = {20000, 10000, 5000} for ILSVRC, |K| = {10000, 5000, 2500} for VG-GFACE2, |K| = {8000, 4000, 2000} for LANDMARKS and |K| = {1000, 500, 250} for CIFAR-100. Whenever a new incremental state is added, memory is updated using herd-ing by inserting exemplars of new classes and reducing exemplars of past classes in order to fit the maximum size.

-Incremental states -We fix the memory to |K| = 0.5% and test with T = {20, 50} in addition to T = 10. The lowest memory size was selected since it is the most interesting configuration when memory budget is smallest.

-Exemplar selection -A herding mechanism [START_REF] Welling | Herding dynamical weights to learn[END_REF], called Nearest-Exemplars-Mean (NEM) was introduced in iCaRL for exemplar selection [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF]. BiC uses the same herding mechanism. For this, we provide results for ScaIL with and without herding. ScaIL herd is directly comparable with iCaRL and BiC.

-Evaluation measures -Top-5 accuracy [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF] and G IL measure (Subsection 3.4.4).

-Baselines (Chapter 2) -iCaRL [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF], BiC [START_REF] Wu | Large Scale Incremental Learning[END_REF], DeeSIL (Section 3.2), F T (vanilla fine tuning), F T N EM and F T BAL from Subsection 3.3.3. In addition, we propose the following baselines:

F T L2 -adds an L2-normalization layer to the raw classifier weights W t given by model M t to reduce bias in favor of new classes in current state S t .

F T init -the initial classifiers W j i of each past class replace the classifiers learned only with the past classes exemplars in S t . No transformation is applied to W j i . This is an ablation of the mean-related statistics from ScaIL.

F T init

L2 -version of F T init in which all classifiers are L2-normalized to make them more comparable.

G IL evaluation measure

Since each algorithm is tested in a large number of configurations, we find it important to propose a summarized performance score. Inspired by works such as [START_REF] Sylvestre-Alvise Rebuffi | Learning multiple visual domains with residual adapters[END_REF][START_REF] Tamaazousti | Learning More Universal Representations for Transfer-Learning[END_REF], we propose a global score computed with Equation 3.5. G IL measures the performance gap between each algorithm and an upper bound method. This upper bound is represented by Joint, a nonincremental learning with all data available.

G IL = 1 C × C c=1 A(c) -A(Joint) A max -A(Joint) (3.5)
where: C -number of tested configurations; A(c) -top-5 score for each configuration (individual values of each row in Table 3.6); A(Joint) -the upper-bound accuracy of the dataset (Joint in Table 3.6); A max -the maximum theoretical value obtainable for the measure (A max = 100 here).

G IL estimates the average behavior of each algorithm with respect to the upper bound. The denominator is introduced to avoid a disproportionate influence of individual datasets in the aggregate score. G IL is necessarily a negative number and the closer its value to zero, the better the method is. An ideal method, which reaches the upper bound value in all configurations, gives G IL = 0. The proposal of aggregated measures is important for tasks that are evaluated in a large number of configurations [START_REF] Sylvestre-Alvise Rebuffi | Learning multiple visual domains with residual adapters[END_REF][START_REF] Tamaazousti | Learning More Universal Representations for Transfer-Learning[END_REF]. Building on previous work regarding such measures, the authors of [START_REF] Tamaazousti | Learning More Universal Representations for Transfer-Learning[END_REF] list eight criteria that should be met by global evaluation metrics when evaluating universal visual representations: (1) coherent aggregation, (2) significance, (3) merit bonus, (4) penalty malus, (5) penalty for damage, (6) independence to outliers, [START_REF] Aljundi | Expert Gate: Lifelong Learning with a Network of Experts[END_REF] independence to reference and (8) time consistency. They note that none of the global evaluation measures can fulfill all criteria simultaneously. However, their formulation, which inspired us to propose G IL fulfills the maximum number of criteria.

While the IL context is different from that of universal representations, a majority of criteria from [START_REF] Tamaazousti | Learning More Universal Representations for Transfer-Learning[END_REF] are relevant here. The aggregation is easier in our work since the use of Joint as a reference score is a natural upper bound for incremental learning algorithms. The aggregation of scores is natural in G IL since all scores are compared to a single reference. The significance criterion, put forward in [START_REF] Sylvestre-Alvise Rebuffi | Learning multiple visual domains with residual adapters[END_REF] is only implicitly modeled because configurations that give the largest gain contribute more to the global score. The merit bonus refers to the proportionality of the reward with respect to the reference method and is modeled through the denominator of Equation 3.5. The penalty for damage and the penalty malus are not applicable since all methods penalize the performance compared to the upper bound. The independence to outlier methods has a low effect in our case since it refers to the contributions of individual configurations. Since G IL averages the contributions of a relatively large number of contributions, the risk related to outliers is rather reduced. Naturally, the more datasets and configurations are tested, the more robust the score will be. However, the computational resources needed for training in IL are large, and we consider that the use of four datasets with three memory sizes and three incremental learning splits gives a fair idea about the behavior of each algorithm. Time consistency is respected since methods are not compared to each other but only to a stable reference if the same deep model and data are used across time. The question remains whether datasets of different sizes should be given the same weights in the score, but weighting would further complicate the evaluation measure.

T =20 T =50 T =20 T =50 T =20 T =50 T =20 T =50

Results and discussion

Confirming the conclusions of [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF], iCaRL has the best overall performance for CIFAR-100 in Table 3.6. For the three larger datasets, the F T consistently outperforms iCaRL. Overall, F T more than halves the gap with Joint compared to iCaRL (G IL = -6.40 vs. G IL = -16.75). The comparison to E2EIL [START_REF] Francisco | End-to-End Incremental Learning[END_REF], which achieves 69.4% top-5 accuracy for ILSVRC with |K| = 2% is equally favorable to F T1 . Since one important difference between F T and existing IL methods is the use of distillation, we analyze its role separately later in this subsection.

The F T -based methods all have a positive contribution. F T N EM and F T BAL which are inspired by iCaRL [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] and E2EIL [START_REF] Francisco | End-to-End Incremental Learning[END_REF] improve over F T by less than 0.5 G IL points. F T L2 , the L2-normalized version of the classifiers from the current IL state, provides a gain of 1.23 G IL points compared to F T . Somewhat surprisingly, the direct concatenation of initial classifier weights from different states in F T init also improves performance over F T by over 1 point. However, its performance for individual configurations is much more contrasted than that of F T L2 . F T init has low results for the two object recognition datasets, which are on average more difficult than face and landmark recognition tasks. F T init L2 adds L2-normalization to F T init classifiers and ranks fourth among all methods tested, with 1.73 G IL improvement over F T . The best overall result is obtained with ScaIL herd , which improves F T performance by 2.69 points.

The difference between ScaIL and F T init

L2 in terms of G IL is not large but still interesting. ScaIL has the most stable behavior among all those tested. In fact, its performance on the three large datasets is most interesting for the smallest K values. This is the most challenging case and also the most interesting in practice since it requires a reduced memory for past data. The increase of the number of incremental state results in a drop of performance for all methods. With equal memory K, the worst results are obtained for T = 50 states, followed by T = 20 and T = 10. This finding confirms the results reported in [START_REF] Francisco | End-to-End Incremental Learning[END_REF] and [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF]. It is probably an effect of a larger number of incremental rehearsal steps, which are applied for larger T . Again, ScaIL is the method that is the least affected by the change of the number of incremental states.

Contrarily to the conclusion of [START_REF] Francisco | End-to-End Incremental Learning[END_REF], the herding mechanism in ScaIL herd has positive effect compared to random selection of exemplars in ScaIL. Results show that, while BiC [START_REF] Wu | Large Scale Incremental Learning[END_REF] is better for a lower number of incremental states (T = 10), ScaIL has better behavior for a larger number of states. Equally important, ScaIL performance is less affected by the reduction of the memory size, and its performance is globally better for |K| = 0.5%, this leads to a better G IL score for ScaIL. Finally, the need of BiC for a validation set to parametrize the bias correction layer makes it nonfunctional if no memory of the past is available.

The performance gap between Joint learning and IL is naturally higher for more complex tasks, such as object recognition, compared to face and landmark recognition. For the last two tasks, classes have a more coherent visual representation and fewer examples are needed for a comprehensive representation of them. In the simplest configurations reported here (T = 10, |K| = 2%), the best IL algorithms are less than three points behind Joint for faces and landmarks. For such specialized tasks, incremental learning seems thus applicable in practice without a very significant performance loss. The situation is different for more complex tasks, such as object recognition, where significant progress is needed before IL algorithms approach the performance of classical learning.

An additional result concerns DeeSIL, the fixed representation method. Here, it is globally better than iCaRL, a finding which is at odds with the results originally reported in [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF]. The difference is explained by the use of all data for each class, while past class training was unnecessarily restricted to K exemplars in [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF]. F T outperforms DeeSIL by less than 1 G IL point. For T = 10, DeeSIL has very low dependence on the bounded memory size and could also be used in the absence of past exemplars memory. Naturally, its performance drops for larger T values because the initial model is learned with fewer classes but remains interesting.

Effect of distillation

The use of knowledge distillation in incremental learning with bounded memory was pioneered in iCaRL [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF], which extends the work on IL without memory from [START_REF] He | Deep Residual Learning for Image Recognition[END_REF]. Distillation was largely adopted afterwards [START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] He | Exemplar-Supported Generative Reproduction for Class Incremental Learning[END_REF][START_REF] Javed | Revisiting Distillation and Incremental Classifier Learning[END_REF][START_REF] Kim | Incremental Learning with Maximum Entropy Regularization: Rethinking Forgetting and Intransigence[END_REF][START_REF] German | Continual Lifelong Learning with Neural Networks: A Review[END_REF][START_REF] Zhou | M2KD: Multi-model and Multi-level Knowledge Distillation for Incremental Learning[END_REF] as a way to reduce the effect of catastrophic forgetting. This adoption was based on one experiment presented in [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] which compared the performance of iCaRL and fine tuning only on the CIFAR-100 dataset and with single memory size. In Table 3.6, we report a similar finding for this dataset. For CIFAR-100, F T is probably less effective because it uses hard targets for loss minimization. These targets encode very sparse information for the small dataset available. In contrast, distillation exploits soft targets which encode more information [START_REF] Hinton | Distilling the Knowledge in a Neural Network[END_REF] and is thus more fitted to work with small datasets. The results for T = 10 states with different values of |K| support the above observation since the difference in favor of iCaRL grows as |K| is reduced.

However, distillation hurts performance for all configurations tested for the three larger datasets, where F T has consequently better performance than iCaRL. The use of network outputs as soft targets for distillation was noted to produce a classification bias for past classes both in the original knowledge distillation paper [START_REF] Hinton | Distilling the Knowledge in a Neural Network[END_REF] and in an incremental context [START_REF] Javed | Revisiting Distillation and Incremental Classifier Learning[END_REF]. A common assumption of distillation-based IL algorithms, first made in [START_REF] He | Deep Residual Learning for Image Recognition[END_REF], is that the process starts with a powerful pretrained model which is trained on a large and balanced dataset. Under this condition, the soft targets used by the distillation loss are efficient to transfer knowledge to the next incremental state. Our hypothesis is that distillation tends to reinforce the errors due to data imbalance in the previous incremental state. In practice, if the distillation component is fed with soft targets whose predictions are wrong, it will push the classifier toward the wrong classes. To verify this hypothesis, we present an analysis of correct and erroneous predictions for past and new classes in Table 3.7 for vanilla fine tuning (F T) and fine tuning with distillation used as backbone in iCaRL (F T distill). We use T = 10 states and |K| = 0.5% exemplars for all datasets. For ILSVRC, the bias toward new classes (expressed by e(p, n) errors) is similar with and without distillation. The correct predictions for new classes are also in a comparable range, although lower for F T distill . This indicates that the data imbalance toward new classes has rather a comparable effect regardless of the use of distillation. The performance difference between the two methods is due mainly to confusion between past classes expressed by e(p, p). They are roughly three times more frequent for F T distill compared to F T in Table 3 Table 3.7 -Top-1 correct and wrong classifications for vanilla fine tuning (F T) and fine tuning with distillation (F T distill) for the four datasets with T = 10 and |K| = 0.5%. In Figure 3.11, we provide detailed top-5 accuracy per incremental state for F T , F T distill and iCaRL for |K| = 0.5% and T = 50 states. The largest value of T was chosen in order to observe the behavior with and without distillation for a small number of classes per incremental state. For the large datasets, the difference between F T and F T distill is small for initial incremental states, increases a lot afterward, and tends to decrease toward the end of the process but remains very large. This behavior is explained by the fact that, since past memory is tiny, the number of exemplars per class becomes very small toward the end. For instance, K includes 5000 images for ILSVRC and there will be only 5 exemplars per class in the last states. It is noticeable that rehearsal in F T still works with such a small number of exemplars. This finding provides further support to the results reported regarding the negative role of distillation at a large scale for imbalanced datasets when a memory of the past is available. Confirming the results from [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF], distillation is indeed useful for CIFAR-100, where its performance is slightly better than that of F T . Also, the introduction of an external classifier in iCaRL is clearly useful. In Figure 3.12, we present the distribution of e(p, p) errors among individual past states for F T distill . Since test data is balanced among states, the distribution of errors should also be approximately so. The e(p, p) errors related to the last incremental state are overrepresented for all four datasets compared. However, the errors toward the first incremental state are also better represented for VGGFACE2 and even become dominant for LANDMARKS and CIFAR-100. This behavior is probably due to the fact that the initial state is stronger for easier tasks. In these cases, the model evolves to a lesser extent compared to ILSVRC, a more complex visual task. Figure 3.12 shows that a majority of past test data for state S t are predicted as belonging to classes that were new when first learned in S t-1 . This result confirms that class imbalance has an important role for the distillation component of the loss, similarly to its influence on the classification component. We also notice that, except for S 6 , the number of errors grows for more recent past states. Along with imbalance, the number of rehearsals after the initial learning of the class also plays an important role in terms of distillation-related errors. Our findings indicate that vanilla FT is preferable to distillation-based FT as a backbone for largescale IL with memory. Table 3.8 -Top-5 accuracy without memory (|K| = 0) with T = 10 states. We also present LwF [START_REF] Li | Learning Without Forgetting[END_REF], which is equivalent to iCaRL [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] without memory. Best results are in bold.

Results without memory

States

Table 3.8 provides results obtained with fine tuning without memory for past classes (|K| = 0) and with T = 10 states. The accuracy drops significantly for F T since the network cannot rehearse knowledge related to past classes. Catastrophic forgetting is more severe and past classes become unrecognizable in the current state. The accuracy of F T without memory is mostly due to the recognition rate of new classes. When T = 10, they represent between a half and a tenth of the total number of classes for states S 2 and S 10 , the first and the last incremental state, respectively. The accuracy for past classes is close to random. Since ScaIL depends heavily on the weights of past classes in the current state, its performance drops significantly. LwF [START_REF] Li | Learning Without Forgetting[END_REF] includes a distillation component that is clearly useful in the absence of memory. It outperforms F T and ScaIL for all datasets by a very large margin. This finding reinforces the conclusions of [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] regarding the positive role of distillation in IL without memory.

Conclusion

We introduced ScaIL, a simple but effective IL algorithm that combines classifiers learned in different IL states to reduce catastrophic forgetting. It keeps the number of parameters of the network constant across IL states and requires a second memory whose size is negligible. ScaIL provides an improvement over other methods and is also better than the new baselines.

A consequent part of the performance improvement is due to the ablation of the distillation in IL algorithms. While widely used, we find that distillation is only useful for small-scale datasets. Our analysis indicates that a performance drop appears for large-scale datasets with memory when distillation is used. The drop is notably due to the inherently imbalanced character of datasets available in IL. In the next section, we will provide a comprehensive study of classincremental learning methods with memory, including DeeSIL, IL2M , and ScaIL. The ability of artificial agents to increment their capabilities when confronted with new data is an open challenge in artificial intelligence. The main challenge faced in such cases is catastrophic forgetting, i.e., the tendency of neural networks to underfit past data when new ones are ingested. The first group of approaches tackles forgetting by increasing deep model capacity to accommodate new knowledge. The second type of approaches fixes the deep model size and introduces a mechanism whose objective is to ensure a good compromise between stability and plasticity of the model. While the first type of algorithms was compared thoroughly, this is not the case for methods that exploit a fixed size model. Here, we focus on the latter, place them in a common conceptual and experimental framework and propose the following contributions:

-propose a common evaluation framework which is more thorough than existing ones in terms of number of datasets, size of datasets, size of bounded memory, and number of incremental states -examine the role of herding-based exemplar selection for past classes. Introduced in [START_REF] Welling | Herding dynamical weights to learn[END_REF] and first used in an IL context by [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF], its usefulness was questioned in [START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Javed | Revisiting Distillation and Incremental Classifier Learning[END_REF][START_REF] Liu | Mnemonics Training: Multi-Class Incremental Learning without Forgetting[END_REF] where it was reported to provide only marginal improvement compared to random selection. We run extensive experiments with the two selection algorithms and conclude that herding is useful for all methods tested.

-provide experimental evidence that it is possible to obtain interesting performance without the widely used knowledge distillation component [START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF][START_REF] Javed | Revisiting Distillation and Incremental Classifier Learning[END_REF][START_REF] Liu | Mnemonics Training: Multi-Class Incremental Learning without Forgetting[END_REF][START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF][START_REF] Wu | Large Scale Incremental Learning[END_REF]. Instead, we use vanilla fine-tuning as a backbone for class IL with memory and model the problem as a case of imbalanced learning. The well-known thresholding method [START_REF] Buda | A systematic study of the class imbalance problem in convolutional neural networks[END_REF] is used to reduce the classification bias between past and new classes.

In this section, the focus is put on the components that differentiate algorithms one from another to facilitate the understanding of the advantages and limitations of each one of them. Moreover, we introduce promising combinations of components from different algorithms and assess their merits experimentally. In addition, we propose a thorough evaluation framework. Four public datasets designed for different visual tasks are used to test performance variability. Three splits in terms of the number of incremental states and three sizes for past memory are tested to assess performance robustness for these IL parameters, which were previously identified as being the most important [START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF]. We complement in Section 4.4 with experiments when no past memory is allowed because this setting has a strong influence on algorithm performance.

The main experimental finding here is that none of the existing class IL algorithms is better than the others in all experimental configurations. We find that both memory and incremental state sizes influence the relative performance of algorithms. Important differences arise notably if a bounded memory of past classes is allowed or not. We report such results in Chapter 4. These findings indicate that class-incremental learning remains an open research problem, and further research efforts should be dedicated to it.

Tested approaches

We compare recent class incremental algorithms and also adaptations of them, which combine components from different algorithms.

Fine-Tuning based IL algorithms

-iCaRL [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] exploits fine-tuning with distillation loss L d to prevent catastrophic forgetting and a variant of Nearest-Class-Mean [START_REF] Mensink | Distance-Based Image Classification: Generalizing to New Classes at Near-Zero Cost[END_REF] to counter imbalance between past and new classes. The main difference with LwF is the introduction of a bounded memory to enable efficient replay.

-LUCIR [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF] is based on fine-tuning with an integrated objective function. Authors propose the following contributions: (1) cosine normalization to balance magnitudes of past and new classifiers (2) less forget constraint to preserve the geometry of past classes, and

(3) inter-class separation to maximize the distances between past and new classes. The combination of these contributions constitutes a more sophisticated take at countering catastrophic forgetting compared to the use of knowledge distillation from [START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Javed | Revisiting Distillation and Incremental Classifier Learning[END_REF][START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF].

We experiment with two versions of this approach:

LU CIR N CM -the original definition proposed by the authors where a Nearest-Class-Mean classifier is used.

LU CIR CN N -the network outputs are used for classification.

-FT is the plain use of vanilla fine-tuning. The model M t is initialized with the weights of the previous model M t-1 and only the cross-entropy loss L c is used. F T constitutes the simplest way to update models in incremental learning. It is heavily affected by catastrophic forgetting if a bounded memory is not available [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] but becomes an interesting baseline if memory is available (Section 3.3).

-FT N EM (Sections 3.3 and 3.4) is a version of F T which replaces the classifier C t by a NEM classifier from [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF]. F T N EM is a modified version of iCaRL in which the distillation loss L d is ablated.

-FT BAL (Sections 3.3 and 3.4) is inspired by [START_REF] Francisco | End-to-End Incremental Learning[END_REF]. A vanilla F T is first performed, followed by a balanced F T . This second step aims to reduce bias between past and new classes by training on a version of D t , which stores the same number of images for past and new classes to obtain similar magnitudes for them. FT BAL is also tributary to the fixed memory K because past exemplars are needed for the balancing step.

-BiC [START_REF] Wu | Large Scale Incremental Learning[END_REF] adds a linear layer for bias removal, which is trained on a validation set separately from the rest of the model learned with cross-entropy and distillation losses. The objective of the supplementary layer is to reduce the magnitudes of predictions for new classes to make them more comparable to those of past classes. We note that K needs to be large enough to obtain reliable parameter estimations.

-ScaIL (Section 3.4) hypothesizes that the classification weights matrix W t learned when classes were first streamed and learned with all data can be reused later. The main challenge is that deep models M t are updated between incremental states. Normalization of the initial W t is proposed to mitigate the effect of model updates and make past and new classes' predictions comparable.

-IL2M (Section 3.3) uses past classes' statistics to reduce the prediction bias in favor of new classes. Past classes' scores are modified using the ratio between their mean classification score when learned initially in the state S i and in the current state S t . Furthermore, the ratio between the mean classification score over all classes in S t and S i is also used.

-FT init , FT init L2 , and FT init L2+mc (Sections 3.4 and 4.2) are methods built on top of F T in order to reduce the bias of the network towards new classes, where: init -replaces the embeddings of past classes in the current state with their initial embeddings learned in the initial state with all available data. L2 -normalization that makes classifier weights more comparable across states. mc -state mean calibration defined as:

p j t = p j t × µ(M t) µ(M j i) (3.6)
µ(M t) and µ(M j i) -means of top-1 predictions of models learned in the current state and the initial state of the j th class computed over their training sets.

The four components can be combined together, where first init is applied, followed by L2 normalization, and finally, the state mean calibration mc. These methods are mostly interesting for IL without memory because they do not require the use of a past exemplars memory.

In addition we propose :

-FT th , inspired by imbalanced learning [START_REF] Buda | A systematic study of the class imbalance problem in convolutional neural networks[END_REF], it implements fine tuning followed by threshold calibration (also known as threshold moving or post scaling). Thresholding adjusts the decision threshold of the model by adding a calibration layer at the end of the model during inference to compensate the prediction bias in favor of new classes:

p j t = p j t × |X t ∪ K| |X j t | (3.7)
where

Fixed-Representation based IL algorithms

Fixed-Representation (FR) [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] exploits the initial model M 1 trained on the classes of S 1 and freezes all its layers except the classification one in later incremental states. The frozen model is a limitation but also an advantage in that it allows the reuse of initial classifier layers, learned with all images throughout the entire incremental process. Unfortunately, the reuse of initial layers is not done in [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] and results are suboptimal. The method does not need a bounded memory for the update.

DeeSIL (Section 3.2) is a variant of F R in which the classification layer of DNNs is replaced by linear SVMs. DeeSIL is a straightforward application of a transfer learning [START_REF] Kornblith | Do Better ImageNet Models Transfer Better?[END_REF][START_REF] Sharif | CNN Features Off-the-Shelf: An Astounding Baseline for Recognition[END_REF] scheme in an incremental context. The use of external classifiers is proposed because they are faster to optimize than an end-to-end F R. REMIND [START_REF] Tyler | REMIND Your Neural Network to Prevent Catastrophic Forgetting[END_REF] (1) vectors for fast learning. The compact vectors are then reconstructed and replayed for memory consolidation. Note that compact vectors allow us to save much more past data than with raw images (for instance, all ILSVRC can fit in the memory when |K| = 20000).

× × × (2) × × × × × × × × × × (3) × × × × (4) NC C NC NC C C C C C C NC NC NC NC
An overview of the tested algorithms and of their characteristics is presented in Table 3.9. The model update for each incremental state is widely used in existing approaches. Distillation is also used by a majority of algorithms from literature to counter the effect of catastrophic forgetting. Bias removal aims at balancing predictions for past and new classes. It is deployed either as a complement to distillation [START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF][START_REF] Wu | Large Scale Incremental Learning[END_REF] or to replace it (Sections 3.3 and 3.4). Memory usage is compulsory for methods that rely heavily on exemplars of past classes. The dominant approach is based on model updating via fine-tuning to integrate new knowledge [START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF][START_REF] Wu | Large Scale Incremental Learning[END_REF]. The performance of these algorithms depends heavily on the existence of a bounded memory of the past.

Experiments

-Datasets (Appendix B) -ILSVRC [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF], LANDMARKS [START_REF] Noh | Large-Scale Image Retrieval with Attentive Deep Local Features[END_REF], VGGFACE2 [START_REF] Cao | VGGFace2: A Dataset for Recognising Faces across Pose and Age[END_REF], and CIFAR-100 [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF].

-Memory sizes -We fix the number of states T = 10 and run experiments with a memory which amounts to approximately 2%, 1%, 0.5% of the full training sets. Memory sizes are thus |K| = {20000, 10000, 5000} for ILSVRC, |K| = {10000, 5000, 2500} for VG-GFACE2, |K| = {8000, 4000, 2000} for LANDMARKS and |K| = {1000, 500, 250} for CIFAR-100.

-Incremental states -We fix the memory to |K| = 0.5% and test with T = {20, 50} in addition to T = 10.

-Exemplar selectionwith and without herding (Subsection 3.4.3).

-Evaluation measures -Top-5 accuracy [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF] and G IL measure (Subsection 3.4.4). Table 3.10 presents the performance of all algorithms tested in all experimental configurations when using herding for exemplar selection. Both the number of incremental states T and the bounded memory size |K| have a strong influence on results. The easiest configurations for all visual tasks are those including a large memory (|K| = 2%) and a small number of states (T = 10). Inversely, the most difficult configuration combines a low memory (|K| = 0.5%) and a large number of states (T = 50). This finding is intuitive insofar more exemplars for past classes enhance the quality of the replay for them, and a larger number of states makes IL more prone to catastrophic forgetting. However, the performance drop is more marked for the object recognition tasks (ILSVRC and CIFAR-100) compared to faces and landmarks recognition (VGGFACE2 and LANDMARKS). For instance, with T = 10, the accuracy on ILSVRC drop for BiC is of 5.8 points when moving from |K| = 2% to |K| = 0.5% while the corresponding drop for VGGFACE2 is only of 1.6 points and the one for LANDMARKS is only of 1.3 points. The latter two tasks are simpler, and a smaller amount of exemplars can thus represent past classes.

Results and discussion

States

The increase of T , the total number of states, also has a detrimental effect on performance. For fine-tuning-based methods, the performance drop is explained by the fact that a larger number of retraining steps causes more information loss, and the effect of catastrophic forgetting is increased. Also important, for methods like BiC, which need a validation set, the size of the latter becomes insufficient when T increases. This insufficiency is clearly illustrated by BiC results for |K| = 0.5% and T = 50. In this configuration, BiC performance drops more significantly than that of competing methods. The loss is most striking for CIFAR-100, the smallest of all datasets tested, where a performance of only 19.6% is obtained compared to 50.5% for |K| = 0.5% and T = 20. For fixed-representation methods, larger values of T decrease performance because the size of the first non-incremental state becomes smaller. Consequently, the fixed representation obtained from this state has lower generalization power and is less transferable to later states.

None of the methods is best in all configurations tested. On aggregate, the best results are obtained with F T th , with a G IL = -3.62 points loss compared to Joint, the classical learning upper-bound. The other methods with strong performance were all proposed recently: ScaIL (Section 3.4) (G IL = -3.7), BiC [START_REF] Wu | Large Scale Incremental Learning[END_REF] (G IL = -4.03) and LU CIR CN N [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF] (G IL = -4.13). The analysis of individual configurations shows that BiC has good performance in many of them. This method is best or second-best for the largest memory tested (|K| = 2%) and the smallest number of incremental states (T = 10). However, its performance drops faster for the other values of |K| and T . This is explained by its dependency on a validation set whose size becomes insufficient when |K| is low, and T is high.

The two LU CIR variants have similar overall performance, with LU CIR CN N being globally better than LU CIR N EM . This result confirms the original findings reported in [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF]. The iCaRL implementation from the same paper [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF] has significantly lower performance than the two versions of LU CIR. The positive influence of inter-class separation and cosine normalization introduced in addition to standard knowledge distillation is thus confirmed.

Vanilla F T has lower performance than more recent methods but still much better than iCaRL, contrary to the comparison presented in [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF]. However, the original comparison in that paper was biased since iCaRL used memory while their version of F T was implemented without memory. All bias reduction methods applied to F T are beneficial, with F T th being the best one followed closely by ScaIL. F T N EM , which exploits the external classifier from [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] also has interesting performance and outperforms F T BAL and IL2M . The lower performance of the last two methods is an effect of the fact that they are the most sensitive to memory reduction (|K| = 0.5%) and the growth of the number of states (T = 50).

F R and DeeSIL, the fixed-representation based methods, behave worse than most F Tbased approaches, with the only exception being that DeeSIL is globally better than iCaRL. However, it is interesting to note that F R and DeeSIL have a low dependency on memory size, and their performance becomes competitive for |K| = 0.5%. In this latter setting, fine-tuningbased methods suffer more from catastrophic forgetting since memory becomes insufficient for an efficient replay of past classes. Globally, DeeSIL has a better behavior than F R, especially for large-scale datasets. This confirms that the optimization of an external classifier is easier than that of the classification layer of a deep model. REM IN D performs better than F R and DeeSIL for large datasets and has a better global score (G IL = -6.02 VS. G IL = -7.62 and G IL = -6.92 respectively). However, its performance drops significantly compared to DeeSIL when the number of states is increased from T = 10 to T = 20 and T = 50.

For As we mentioned, there is an ongoing debate concerning the effectiveness of herding-based versus random exemplar selection in IL [START_REF] Masana | Class-incremental learning: survey and performance evaluation on image classification[END_REF][START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Liu | Mnemonics Training: Multi-Class Incremental Learning without Forgetting[END_REF]. We compare the two selection methods by providing results with random selection for the main algorithms evaluated here in Table 3.11. The obtained results indicate that herding has a positive effect on performance for most of the algorithms, albeit with a variable difference with respect to random selection. The best results in Table 3.11 are obtained with LU CIR CN N , ScaIL and BiC which have very close G IL performance. Among fine-tuning-based methods, LU CIR CN N and BiC are the methods that are least affected by the switch from herding to random exemplar selection. Both of these methods implement an end-to-end IL approach. iCaRL has a more significant performance drop because it makes use of a N EM external classifier. This is a consequence of the fact that the classifiers are computed directly on the randomly selected exemplars.

Vanilla F T is more affected by the use of random selection than LU CIR CN N and BiC. The use of distillation for past data partly compensates for a poorer class representation with random exemplars. Since vanilla F T has lower performance, algorithms that build on it are also negatively affected. Among them, ScaIL is the least affected because it exploits the initial classifiers of past classes. F T th performance falls behind that of LU CIR CN N , ScaIL, and BiC with random exemplar selection because exemplars have a more prominent role for learning past classes' representations. Thresholding with prior class probabilities is less efficient on poorer past class models.

The use of random selection has a small effect on F R and DeeSIL because the exemplars are only used as negatives when new classifiers are trained. Their presence has a positive effect in that it allows slightly better separation between new and past classes across IL states. According to the authors of REM IN D, many herding strategies were deployed based on distance from current example, number of times a sample has been replayed, and the time since it was last replayed, but all of the tested methods performed nearly the same as random selection, with higher computational time.

Role of knowledge distillation

In [START_REF] He | Exemplar-Supported Generative Reproduction for Class Incremental Learning[END_REF], authors hypothesize that distillation is useful when the teacher model is trained with a large and balanced dataset. This is not the case in IL due to the fact that the dataset progressively includes knowledge about more classes and that there is an imbalance between past and new classes. In spite of this observation, knowledge distillation is commonly used to tackle catastrophic forgetting [START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] He | Exemplar-Supported Generative Reproduction for Class Incremental Learning[END_REF][START_REF] Javed | Revisiting Distillation and Incremental Classifier Learning[END_REF][START_REF] Kim | Incremental Learning with Maximum Entropy Regularization: Rethinking Forgetting and Intransigence[END_REF][START_REF] German | Continual Lifelong Learning with Neural Networks: A Review[END_REF][START_REF] Sylvestre-Alvise Rebuffi | Learning multiple visual domains with residual adapters[END_REF][START_REF] Zhou | M2KD: Multi-model and Multi-level Knowledge Distillation for Incremental Learning[END_REF]. Its use in IL with memory was encouraged by the experimental results presented in the influential iCaRL paper [START_REF] Sylvestre-Alvise Rebuffi | Learning multiple visual domains with residual adapters[END_REF]. There, the original comparison between F T and iCaRL was not fair since the first method is implemented without memory, while the second exploits a memory of the past. The results reported in Table 3.10 for vanilla F T and methods built on top of it challenge the assumption that distillation loss L d is necessary in IL with memory. These experiments show that F T is globally better since the G IL score is over 2 points smaller than that of iCaRL. iCaRL is more effective for ILSVRC and VGGFACE2 datasets only for a small number of incremental states (T = 10) and the smallest memory (|K| = {1%, 0.5%}). F T N EM is a version of iCaRL without distillation. The results from Table 3.10 show that the use of the NEM classification layer further improves performance compared to vanilla fine-tuning. A detailed study of results without memory is presented in Section 4.4 of the next Chapter. We present a supplementary experiment that compares the performance of a very recent Neural Gas (NG) based approach to that of other methods. TOpology-Preserving knowledge InCrementer [START_REF] Tao | Few-Shot Class-Incremental Learning[END_REF] relies on the NG network to preserve the feature space topology using a Hebbian learning [START_REF] Martinetz | Competitive Hebbian learning rule forms perfectly topology preserving maps[END_REF]. Two variants of T OP IC are tested: (1) TOPIC-AL -uses an Anchor Loss to stabilize the NG network in order to preserve past knowledge and (2) TOPIC-AL-MML -uses an Anchor Loss and also a Min-Max Loss to control the network growth while adapting it to new knowledge. They are compared to F T , F T th , iCaRL, BiC, LU CIR CN N , and LU CIR N CM . Note that we use a single dataset because the authors of [START_REF] Tao | Few-Shot Class-Incremental Learning[END_REF] did not provide their complete code and, while we tried to reproduce their results independently, that was not possible. Following [START_REF] Tao | Few-Shot Class-Incremental Learning[END_REF], we use IMAGENET-100 [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF], a subset of 100 classes extracted from the ILSVRC dataset, where each class contains 500 training images and 100 test images. To start with a good data representation, the first model M 1 is trained on P 1 = 60 initial classes. The remaining 40 classes are divided in 8 incremental states containing each P t = 5 new classes. The past classes' memory is set to |K t>1 | = 400 + 4 × (N t -P 1), where 400 images are divided equally between the first state classes, and 4 images per class are used for the classes that do not belong to the first state. Table 3.12 provides top-1 accuracy of classical class IL approaches F T , F T th , iCaRL, LU CIR and BiC, and also results of T OP IC, the NG-based incremental learner, for IMAGENET-100. Results indicate that LU CIR N CM is the best approach, followed by LU CIR CN N , BiC, iCaRL, T OP IC, F T th and F T . The two variants of T OP IC provide very similar performances with T OP IC -AL being marginally better. These results are different from those reported in [START_REF] Tao | Few-Shot Class-Incremental Learning[END_REF], where T OP IC was found to have better performance. This difference is probably partly explained by method parametrization choices and partly because herding was not exploited for LU CIR, BiC and iCaRL. We used the original parameters for the methods compared to T OP IC in Table 3.12. The use of herding is beneficial for all methods compared to T OP IC, with important impact for F T th , iCaRL and BiC and lower impact for LU CIR variants. T OP IC is not affected by the use of herding since this selection is made by the NG component. Globally, the results show that, while interesting, the recent adaptation of neural gas approaches to class IL lags well behind the best methods tested in this chapter.

Additional experiment

IL Method F T F T th iCaRL BiC LU CIR CN N LU CIR

Conclusion

We conducted extensive experiments on recently proposed algorithms. The evaluation confirms that no algorithm is best in all configurations. When a memory is allowed, the best global result is obtained when IL is cast as a kind of imbalanced learning. This type of approach implements a vanilla F T backbone followed by a bias rectification layer. It is especially useful in the most challenging conditions (low memory and many IL states). If enough memory is available and the number of IL states is low, distillation-based approaches become competitive. The choice of the method will thus depend on the computation and storage capacities but also on the expected characteristics of the data stream, which needs to be processed. For fairness, we evaluated fixed-representation-based and fine-tuning-based methods with the same initial representation. If a larger pool of classes is available at the beginning of the process, the performance of fixed representations will be boosted because the initial representation generalizes better. However, fixed-representations work well only if the task does not change over time, as it is the case in the evaluated scenarios presented in [START_REF] Aljundi | Memory Aware Synapses: Learning What (not) to Forget[END_REF]. The evaluation is done with four different datasets dedicated to distinct visual tasks. This setting can be reused and enriched to ensure robust testing of class IL algorithms. The comparison presented here shows that recently proposed approaches reduce the performance gap between non-incremental and incremental learning processes. However, it highlights a series of open problems which could be investigated in the future. First, handling class IL as an imbalanced learning problem provides very interesting results with [START_REF] Wu | Large Scale Incremental Learning[END_REF] or without [START_REF] Belouadah | Il2m: Class incremental learning with dual memory[END_REF][START_REF] Schwarz | Progress & compress: A scalable framework for continual learning[END_REF] the use of a distillation component. Here, we introduced a competitive method where classification bias in favor of new classes is reduced by using prior class probabilities [START_REF] Buda | A systematic study of the class imbalance problem in convolutional neural networks[END_REF]. It would be interesting to investigate more sophisticated bias reduction schemes. Second, a more in-depth investigation of why distillation fails to work for large-scale datasets is needed. Finally, the results obtained with the herding-based selection of exemplars are better than a random selection for all tested methods.

Introduction

Most existing IL algorithms assume that new data are readily labeled at the start of each incremental step. This assumption is strong since data labeling is a time-consuming process, even with the availability of crowdsourcing platforms. Two notable exceptions are presented in [START_REF] Aljundi | Task-Free Continual Learning[END_REF] and [START_REF] Pernici | Memory Based Online Learning of Deep Representations From Video Streams[END_REF] where the authors introduce algorithms for self-supervised face recognition. While interesting, these works are applicable only to a specific task, and both exploit pretrained models to start the process. Also, minimal supervision is needed to associate a semantic meaning (i.e., person names) to the discovered identities. A second hypothesis made in incremental learning is that datasets are balanced or nearly so. In practice, imbalance occurs in a wide majority of reallife datasets but also in research datasets constructed in controlled conditions. Public datasets such as ImageNet [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF], Open Images [START_REF] Krasin | OpenImages: A public dataset for large-scale multi-label and multiclass image classification[END_REF] or VGGFace2 [START_REF] Cao | VGGFace2: A Dataset for Recognising Faces across Pose and Age[END_REF] are all imbalanced. However, most research works related to ImageNet report results with the ILSVRC subset [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF] which is nearly balanced. These two hypotheses limit the practical usability of existing IL algorithms. We replace them with two weaker assumptions to make the incremental learning scenario more realistic. First, full supervision of newly streamed data is replaced by the possibility to annotate only a small subset of these data. Second, no prior assumption is made regarding the balanced distribution of new data in classes. We combine active and imbalanced learning methods to tackle the challenges related to the resulting IL scenario.

The main contribution of this work is to adapt the sample acquisition process, which is the core component of active learning (AL) methods, to incremental learning over potentially imbalanced datasets. A two phases procedure is devised to replace the classical acquisition process, which uses a single acquisition function. A standard function is first applied to a subset of the active learning budget in order to learn an updated model that includes a suboptimal representation of new data. In the second phase, a balancing-driven acquisition function is used to favor samples that might be associated with minority classes (i.e., those having a low number of associated samples). The data distribution in classes is updated after each sample labeling to keep it up-to-date. Two balancing-driven acquisition functions which exploit the data distribution in the embedding space of the IL model are introduced here. The first consists of a modification of the core-set algorithm [START_REF] Sener | Active Learning for Convolutional Neural Networks: A Core-Set Approach[END_REF] to restrain the search for new samples to data points that are closer to minority classes than to majority ones. The second function prioritizes samples that are close to the poorest minority classes (i.e., those represented by the minimum number of samples) and far from any of the majority classes. The balancing-driven acquisition phase is repeated several times, and new samples are successively added to the training set in order to enable an iterative active learning process [START_REF] Settles | Active learning literature survey[END_REF].

A secondary contribution is the introduction of F T th (previously defined in Subsection 3.5.2). It is a backbone training procedure that considers incremental learning with memory as an instance of imbalanced learning. The widely used training with knowledge distillation [START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF][START_REF] Javed | Revisiting Distillation and Incremental Classifier Learning[END_REF][START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF][START_REF] Zhou | M2KD: Multi-model and Multi-level Knowledge Distillation for Incremental Learning[END_REF] is consequently replaced by a simpler procedure which aims to reduce the prediction bias towards majority classes during inference [START_REF] Buda | A systematic study of the class imbalance problem in convolutional neural networks[END_REF]. Following the conclusions of this last work, initial predictions are rectified by using the prior class probabilities from the training set.

The proposed balancing-driven sample acquisition process is compared with a standard acquisition process, and results indicate that it has a positive effect for imbalanced datasets.

Related work

While we already discussed existing works from class-incremental learning in Chapter 2, we discuss here imbalanced and active learning areas and focus on those which are most closely related to our contribution.

Classical active learning is thoroughly reviewed in [START_REF] Settles | Active learning literature survey[END_REF]. The first group of approaches exploits informativeness to select items for uncertain regions in the classification space. Uncertainty is often estimated with measures such as entropy [START_REF] Shannon | A mathematical theory of communication[END_REF], least confidence first [START_REF] Culotta | Reducing Labeling Effort for Structured Prediction Tasks[END_REF] or min margin among top predictions [START_REF] Scheffer | Mining the Web with Active Hidden Markov Models[END_REF]. Another group of approaches leverages sample representativeness computed in the geometric space defined by a feature extractor. Information density [START_REF] Settles | Active learning literature survey[END_REF] was an early implementation of such an approach. Core-set, which rely on the classical K-centers algorithm to discover an optimal subset of the unlabeled dataset, was introduced in [START_REF] Sener | Active Learning for Convolutional Neural Networks: A Core-Set Approach[END_REF].

Recent active learning works build on the use of deep learning. The labeling effort is examined in [START_REF] Hu | Active Learning with Partial Feedback[END_REF] to progressively prune labels as labeling advances. An algorithm that learns a loss function specifically for AL was proposed in [START_REF] Yoo | Learning Loss for Active Learning[END_REF]. While very interesting, such an approach is difficult to exploit in incremental learning since the main challenge here is to counter data imbalance between new and past classes or among new classes. Another line of works proposes to exploit multiple network states to improve the AL process. Monte Carlo Dropout [START_REF] Gal | Deep Bayesian Active Learning with Image Data[END_REF] uses softmax prediction from a model with random dropout masks. In [START_REF] William | The Power of Ensembles for Active Learning in Image Classification[END_REF], an ensemble approach that combines multiple snapshots of the same training process is introduced. These methods are not usable in our scenario because they increase the number of parameters due to the use of multiple models. We retain the use of the same deep model through incremental states to pro-vide feature vectors and propose a stronger role for them during the sample acquisition process. Recently, [START_REF] Aggarwal | Active Learning for Imbalanced Datasets[END_REF] proposed a method which focuses on single-stage AL for imbalanced datasets. They exploit a pretrained feature extractor and annotate the unlabeled samples so as to favor minority classes.

Ideally, incremental updates should be done in a fully unsupervised manner [START_REF] Yang | Joint Unsupervised Learning of Deep Representations and Image Clusters[END_REF] in order to remove the need for manual labeling. However, unsupervised algorithms are not mature enough to capture dataset semantics with the same degree of refinement and performance as their supervised or semi-supervised counterparts. Closest to our work are the self-supervision approaches designed for incremental face recognition [START_REF] Aljundi | Task-Free Continual Learning[END_REF][START_REF] Pernici | Memory Based Online Learning of Deep Representations From Video Streams[END_REF]. They are tightly related to unsupervised learning since no manual labeling is needed, except for naming the person. Compared to selfsupervision, our approach requires manual labeling for a part of new data and has a higher cost. However, it can be applied to any class IL problem and not only to specific tasks such as face recognition as it is the case for [START_REF] Aljundi | Task-Free Continual Learning[END_REF][START_REF] Pernici | Memory Based Online Learning of Deep Representations From Video Streams[END_REF].

A comprehensive review [START_REF] Oksuz | Imbalance Problems in Object Detection: A Review[END_REF] groups imbalanced object-detection problems in a taxonomy depending on their class imbalance, scale imbalance, spatial imbalance, or objective imbalance.

The study shows the increasing interest of the computer vision community in the imbalanced problems for their usefulness in real-life situations.

Proposed approach

The proposed active learning adaptation to an incremental scenario (Figure 3.13) is motivated by the following observations:

-Existing acquisition functions (AFs) were designed and tested successfully for active learning (AL) over balanced datasets. However, a wide majority of real-life datasets are actually imbalanced. Here, no prior assumption is made regarding the imbalanced or balanced character of the unlabeled data which is streamed in IL states. Unlike existing sample acquisition approaches which exploit a single AF, we propose to split the process into two phases. The first phase uses a classical AF to-kick off the process. The second one implements an AF which is explicitly designed to target a balanced representation of labeled samples among classes.

-In IL, a single deep model can be stored throughout the process. This makes the application of recent ensemble methods [START_REF] William | The Power of Ensembles for Active Learning in Image Classification[END_REF] inapplicable. Following the usual AL pipeline, an iterative fine tuning of the model is implemented to incorporate labeled samples from the latest AL iteration. The initial deep model M 1 is trained from scratch on a fully-labeled dataset X l 1 using Joint (a non-incremental learning). M 1 and X l 1 are used to prepare the past class memory K for the next state using herding (a mechanism that selects the best representative past class images). State S 2 starts with a sample acquisition function AF that takes the unlabeled set X u 2 and the model M 1 as inputs. AF provides a part of the budget B annotated as X l z 2 . The model M 1 is then updated with data from X l z 2 ∪ K using F T th (a fine tuning followed by a threshold calibration). The updated model M z 2 is again fed into the acquisition function AF with the rest of unlabeled examples from X u 2 to further annotate a part of the budget B and the model is updated afterward. This process is repeated Z times until B is exhausted. The model M 2 is then returned with the annotated dataset X l 2 and the memory K is updated by inserting exemplars of new classes from X l 2 and reducing exemplars of past classes in order to fit its size. Note that the two blue arrows are applicable only in the first AL iteration (when z = 1). Best viewed in color.

-A memory K of past class samples is allowed and, following [START_REF] Wu | Large Scale Incremental Learning[END_REF][START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF], we model IL as an instance of imbalanced learning. The distillation component, which is central to most existing class IL algorithms [START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Javed | Revisiting Distillation and Incremental Classifier Learning[END_REF][START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF][START_REF] Wu | Large Scale Incremental Learning[END_REF], is removed. Instead, we deal with imbalance by using a simple but efficient post-processing step that modifies class predictions based on their prior probabilities in the training set. The choice of this method is motivated by its superiority in deep imbalanced learning over a large array of other methods [START_REF] Buda | A systematic study of the class imbalance problem in convolutional neural networks[END_REF].

Problem Formulation

We build on the formulation we proposed in Section 2.2, and define some notations related to active learning:

-B -the labeling budget available for active learning -AF -an acquisition function designed to optimize sample selection in active learning -Z -the number of iterations done during active learning -X u t -the unlabeled dataset associated to S t -X l t -a manually labeled subset of X u t ,

We assume that all the samples are labeled in the first state. Active learning is deployed using AF(X u t) to obtain X l t , a labeled subset from X u t . X l t data of the P t new classes are available but only a bounded exemplar memory K for the N t-1 past classes is allowed. M t , the model associated to the state S t is trained over the X l t ∪ K training dataset. An iterative AL process is implemented to recognize the set of classes j ∈ [1, N t]

Active Learning in an Incremental Setting

We discuss the two phases of the adapted active learning process below. Classical sampling is followed by a phase that exploits the proposed balancing-driven acquisition functions.

Classical Sample Acquisition Phase. At the start of each IL state S t , an unlabeled dataset

X u
t is streamed into the system and classical AL acquisition functions are deployed to label X l t , a part of X u t , for inclusion in the training set. Due to IL constraints, the only model available at the beginning of S t is M t-1 , learned for past classes in the previous incremental step. It is used to extract the embeddings needed to implement acquisition functions. A number of acquisition functions were proposed to optimize the active learning process [START_REF] Settles | Active learning literature survey[END_REF], with adaptations for deep learning in [START_REF] William | The Power of Ensembles for Active Learning in Image Classification[END_REF][START_REF] Gal | Deep Bayesian Active Learning with Image Data[END_REF][START_REF] Sener | Active Learning for Convolutional Neural Networks: A Core-Set Approach[END_REF][START_REF] Zhou | Fine-Tuning Convolutional Neural Networks for Biomedical Image Analysis: Actively and Incrementally[END_REF]. Based on their strong experimental performance [START_REF] William | The Power of Ensembles for Active Learning in Image Classification[END_REF][START_REF] Scheffer | Mining the Web with Active Hidden Markov Models[END_REF][START_REF] Sener | Active Learning for Convolutional Neural Networks: A Core-Set Approach[END_REF][START_REF] Settles | Active learning literature survey[END_REF], four AFs are selected for the initial phase:

core-set sampling [START_REF] Sener | Active Learning for Convolutional Neural Networks: A Core-Set Approach[END_REF] (core hereafter): whose objective is to extract a representative subset of the unlabeled dataset from the vectorial space defined by the deep embeddings.

The method selects samples with:

x next = argmax xu∈X u t { min 1≤k≤n ∆(f (x u), f (x k))} (3.8)
where: x next is the next sample to label, x u is an unlabeled sample left, x k is one of the n samples which were already labeled, f () is the feature vector extracted using M t-1 and ∆ is the Euclidean distance between two embeddings.

random sampling (rand hereafter) : a random selection of images for labeling. While basic, random selection remains a competitive baseline in active learning.

entropy sampling [START_REF] Settles | Active learning literature survey[END_REF] (ent hereafter): whose objective is to favor most uncertain samples as defined by the set of probabilities given by the model.

x next = argmax xu∈X u t {- J j=1 (p j t * log(p j t))} (3.9)
where p j t is the prediction score of x u for the class j and J is the number of detected classes so far by AL.

margin sampling [START_REF] Scheffer | Mining the Web with Active Hidden Markov Models[END_REF] (marg hereafter): selects the most uncertain samples based on their top-2 predictions of the model.

x next = argmax xu∈X u t {max(p 1 t , .., p j t , .., p J t) -max 2 (p 1 t , .., p j t , .., p J t)} (3.10)
where max(•) and max 2 (•) provide the top-2 predicted probabilities for the sample x u . This AF favors samples that maximize the difference between their top two predictions.

This acquisition phase is launched once at the beginning of each incremental state to get an initial labeled subset of the new data. This step is necessary to include the samples for the new classes in the trained model and initiate the iterative AL process.

Balancing-driven Sample Acquisition Phase. The second acquisition phase tries to label samples so as to tend toward a balanced distribution among new classes. The distribution of the number of samples per class is computed after each sample labeling to be kept up-to-date. The average number of samples per class is used to divide classes into minority and majority ones. These two sets of classes are noted C mnr t and C maj t for incremental state S t . Two functions are proposed to implement the balancing-driven acquisition:

balanced core-set sampling (b -core hereafter) is a modified version of core presented in Equation 3.8. b -core acts as a filter that keeps candidate samples for labeling only if they are closer to a minority class than to any majority class. We write the relative distance of an unlabeled image w.r.t. its closest minority and majority classes as: The next sample to label is chosen by using the core-set definition from Equation 3.8 but after filtering remaining unlabeled samples with Equation 3.11:

∆ mnr maj (x u) = min
x next = argmax xu∈X u t and ∆ mnr maj (xu)<0 { min 1≤k≤n ∆(f (x u), f (x k))} (3.12)
poorest class first sampling (poor) is an acquisition function that gives priority to the class represented by the minimum number of labeled samples associated to it at a given moment during active learning. If there are several such classes, one of them is selected randomly. The method translates the hypothesis that samples which are close to a poor class and far from any majority class should be favored in order to achieve a more balanced distribution. The next candidate for labeling is selected with:

x next = argmin xu∈X u t {∆(f (x u), µ(c poor t)) -min ∀c maj t ∈C maj t ∆(f (x u), µ(c maj t))} (3.13)
where c poor t is a minority class from C mnr t which has the lowest number of samples in the current labeled subset.

poor is similar in spirit to b -core but has a stronger drive towards balancing because an individual class with the poorest representation is targeted instead of samples that are close to any minority class.

In an iterative active learning scenario, the balancing-driven acquisition can be repeated several time until the AL budget B is exhausted.

Imbalance-driven Incremental Learning

The model update within each incremental state is inspired by a usual iterative AL approach [START_REF] Settles | Active learning literature survey[END_REF] which includes a classical acquisition phase at the beginning and several balancing-driven iterations. For a total of Z active learning iterations in each state S t , intermediate models M 1 t , ..., M z t , ..., M Z-1 t are created while annotating X l 1 t , ..., X l z t , ..., X l Z-1 t during the first Z -1 iterations before obtaining the final M t . The number of iterations Z and the size of each iteration can take different values. The choice of a particular setting is made empirically so as to: (1) have enough new samples in the initial iteration in order for the new classes to be trainable in M 1 t , i.e., the model M t in the first iteration, (2) have enough candidates left for the balancing-driven iterations and (3) do not repeat the fine tuning process too many times to keep the incremental update timely. M t-1 is used to extract embeddings if core is used in the initial AL iteration. Note that while iterative training increases the level of forgetting in IL, it is needed in AL to update model representation while annotating the images [START_REF] Settles | Active learning literature survey[END_REF].

As we mentioned, we depart from the usual modeling of the IL problem [START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF][START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF][START_REF] Wu | Large Scale Incremental Learning[END_REF] which exploits knowledge distillation to counter catastrophic forgetting. Following the recent observation that a simpler fine tuning based approach gives interesting results (Section 3.3), we use an IL backbone inspired by imbalance learning results presented in [START_REF] Buda | A systematic study of the class imbalance problem in convolutional neural networks[END_REF]. This backbone is called fine tuning with thresholding (F T th below), also known as threshold moving or post scaling [START_REF] Buda | A systematic study of the class imbalance problem in convolutional neural networks[END_REF]. Thresholding adjusts the decision threshold of the model. It consists of the addition of a calibration layer at the end of the model during inference to compensate for the prediction bias in favor of majority classes. This layer rectifies the class prediction p j t of the j th class in the state S t as already explained in Subsection 3.5.2 (Equation 3.7).

F T th boosts the scores of classes with a lower number of associated samples. The method has the interesting property of dealing with the imbalance in IL in a uniform manner. It does not matter whether imbalance comes from the distribution of newly streamed data or from the fact that only a bounded memory of past classes is available. This stands in contrast with knowledge distillation which handles imbalance for past classes but not among new ones. F T th is competitive against state-of-the-art algorithms. In a classical (i.e. fully supervised) IL setting, it has 59.59 top-1 accuracy for CIFAR-100, compared to iCaRL [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] (57.35) and LU CIR [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF] (55.36). More results are provided in Subsection 3.5.4 (top-5) and also in the next section (top-1).

Experiments Datasets

Experiments are run with four public datasets, out of which three are imbalanced and one is balanced. We provide the coefficient of variation cv = σ µ , with σ the standard deviation and µ the mean of the distribution of samples per class. cv provides information about the degree of imbalance associated with each dataset. The larger this value is, the more imbalanced the dataset will be.

The used datasets are: IMAGENET-100 (cv = 0.7523), FOOD-100 (cv = 0.7940), FACES-100 (cv = 0.7216), and CIFAR-100 (cv = 0). More details are in Appendix B.

Incremental Learning Setting

We run the experiments with T = 10 states for each dataset. This setting is classically used in class incremental learning [START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] for FOOD-100. At the end of each incremental state, memory is updated by inserting exemplars of new classes and reducing exemplars of past classes in order to fit its maximum size. Note that since K is bounded and the number of past classes grows, the imbalance in favor of new classes grows for later incremental states and the problem becomes more challenging. The exemplars are chosen using the herding mechanism introduced in [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF]. The herding procedure consists in choosing the set of images that best approximates the real mean of the class.

Active Learning Process

Three active learning budgets are tested covering B = {20%, 10%, 5%} of the unlabeled dataset X u t streamed in state S t . These different values are used to get a comprehensive view of the behavior of each configuration. Active learning is implemented with a usual iterative approach [START_REF] Sener | Active Learning for Convolutional Neural Networks: A Core-Set Approach[END_REF][START_REF] Settles | Active learning literature survey[END_REF] including Z = 4 iterations, 40% of B are used for classical acquisition and three times 20% of B for balancing-driven acquisition (values were experimentally chosen). Classical and balancing-driven acquisition phases are independent of one another and we test all their combinations. For completeness, we include results with a baseline in which both phases are implemented with random sampling. Note that the proposed acquisition functions are nondeterministic and experiments are run five times for each configuration in order to have a robust estimation of its performance. To improve comparability of configurations which use the same initial AF, the same initial models are used for all subsequent balancing-driven AFs.

Upper Bound Methods

In addition to the active learning configurations, we present results with:

-sIL -usual supervised incremental learning in which all samples are labeled (equivalent to B = 100%).

-Joint -classical non-incremental learning in which all samples are provided at once.

For comparability, sIL and Joint are both trained using threshold calibration. sIL is an incremental upper bound for active learning configurations since it is fully supervised. Joint is an upper bound for sIL since all the data are labeled and available at once. These upper bounds are useful insofar they provide information about the performance gap due to partial labeling of streamed data.

Results and discussion

FT th in supervised mode -Instead of handling catastrophic forgetting [START_REF] Mccloskey | Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem[END_REF] as previous works did [START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF][START_REF] Sylvestre-Alvise Rebuffi | Learning multiple visual domains with residual adapters[END_REF][START_REF] Wu | Large Scale Incremental Learning[END_REF], we address IL with bounded past memory as an imbalanced learning problem. We use threshold calibration [START_REF] Buda | A systematic study of the class imbalance problem in convolutional neural networks[END_REF] to rectify scores in order to give more chances to minority classes to be selected during inference. The comparison to recent IL methods in supervised mode from Table 3.13 indicates that F T th is competitive. It clearly outperforms iCaRL [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] and IL2M (Section 3.3) and is better than LUCIR [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF] for three datasets out of four. We also provide the results of vanilla fine tuning before threshold calibration to underline the usefulness of thresholding. It has a positive effect for all four datasets, a finding which validates its usefulness in our scenario.

Dataset

F T F T th [START_REF] Buda | A systematic study of the class imbalance problem in convolutional neural networks[END_REF] LU CIR [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF] iCaRL [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] IL2M (Section 3. Active Learning -The experimental results obtained with F T th for the proposed active incremental learning scenario are presented in Table 3.14. The comparison of classical AFs (rand -rand and core-core in Table 3.14) indicates that random sampling outperforms the core-set sampling in a majority of cases. This result is at odds with the one reported in [START_REF] Sener | Active Learning for Convolutional Neural Networks: A Core-Set Approach[END_REF] but is in line with the findings of [START_REF] William | The Power of Ensembles for Active Learning in Image Classification[END_REF][START_REF] Gal | Deep Bayesian Active Learning with Image Data[END_REF] that random sampling in AL is a strong baseline and is actually better than the recent core-set method from [START_REF] Rusu | Progressive Neural Networks[END_REF]. The authors of this last paper also report that random sampling has better performance for lower active learning budgets, which are studied Table 3.14 -Top-1 average accuracy (%). Following [START_REF] Francisco | End-to-End Incremental Learning[END_REF], accuracy is averaged only for incremental states (i.e. excluding the initial, non-incremental state). Results are averaged over 5 runs for all AL configurations. sIL is the result obtained in a fully supervised IL scenario. Joint is the non-incremental upper-bound performance obtained with all data available. Best results for each active learning configuration (row) are in bold.

here. Consequently, improving over random sampling for imbalanced datasets is an interesting result.

The results from Table 3.14 indicate that the balancing-driven acquisition phase is useful for all three imbalanced datasets and active learning budgets tested. The gains for IMAGENET-100 and FACES-100 are usually between 1 and 2 points compared to the classical acquisition processes implemented here (rand -rand or corecore). The gains are low for FOOD-100, the third imbalanced dataset tested. This is probably due to the fact that FOOD-100 is a more difficult task, as shown by sIL. More labeled samples per class would probably be needed for efficient training.

poor strategy is better than b -core for IMAGENET-100, while more mixed results are obtained for FACES-100 and FOOD-100 datasets. Interestingly, the best results are always obtained on top of a rand initial sampling, even when core-core baseline is better than a randrand one, as it is the case for FACES-100 with B = 20% and B = 5%.

When applied without balancing, ent and marg have poorer performance compared to that of rand and core. Balancing significantly improves results for both of uncertainty-based methods, but their overall performance still lags behind that of random followed by balancing. This reinforces the finding that a random selection is a competitive acquisition function in our active incremental learning over imbalanced datasets scenario.

The performance drop between active learning configurations and fully supervised IL naturally grows as B is reduced. The drop between sIL and the best AL configuration is of 3, 6 and 5 points for B = 20% for IMAGENET-100, FACES-100, and FOOD-100 respectively. When the AL budget is reduced to only 5% of new data, the corresponding performance losses go to 12.5, 23 and 14 points. Even when as little as 5% of the new data is annotated, suboptimal models are trainable and usable if the IL system needs to be operational quickly.

While the focus is on imbalanced datasets, we also report results with CIFAR-100, a perfectly balanced dataset for completeness. In this case, the balancing-driven sampling has a slightly negative effect when applied over rand and a slightly positive effect over core. It is, however, notable that core lags consistently behind rand for CIFAR-100. The best strategy for all B sizes is rand-rand, with randpoor being a close second best configuration.

The gap between active IL and supervised IL is still notable, especially for smaller AL budgets. In practice, active IL is useful when the system needs to be operational quickly after new data are streamed but at the expense of suboptimal performance. If a longer delay is permitted, it is naturally preferable to annotate all new data before updating the incremental model. The gap is even higher between incremental and classical learning, even though F T th has competitive performance compared to existing IL algorithms. Globally, our results provide further confirmation that the use of incremental learning vs. classical learning should be weighted depending on the time, memory and/or computation constraints associated to the AI system.

Conclusion

We proposed a more realistic incremental learning scenario that does not assume that streamed data are readily annotated and that they are evenly distributed among classes. An adaptation of the active learning sampling process is proposed in order to obtain a more balanced labeled subset. This adaptation has a positive effect for imbalanced datasets and a slightly negative effect for the balanced dataset evaluated here. Both proposed acquisition functions improve results compared to a classical acquisition process. Also interesting, experiments show that the random baseline outperforms the core -set function. The strong performance of random sampling indicates that this method should be consistently used as a baseline for future works in active incremental learning. As a secondary contribution, we introduce F T th , an IL backbone that provides competitive results when compared to state-of-the-art methods.

The proposed approach brings the IL scenario closer to practical needs. It reduces the time needed for an IL system to become operational upon receiving new data. The obtained results are encouraging but further investigation is needed to reduce the gap between active and supervised IL. For instance: (1) use semi-supervised learning methods to automatically expand the labeled dataset and improve overall performance. While appealing, not all semi-supervised methods prove efficient in practice [START_REF] Oliver | Realistic Evaluation of Deep Semi-Supervised Learning Algorithms[END_REF] and their usefulness for imbalanced datasets needs to be studied. (2) complement the proposed balancing-driven acquisition functions with a component that pushes the sampling process towards a better coverage of the manifold of each modeled class. This could be done, for instance, by taking inspiration from the herding mechanism [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] already used to select past exemplars. (3) render the IL scenario even more realistic by testing incremental steps of variable size to account for the fact that data might arrive at a variable pace and considering that newly streamed data might belong both to unseen and past classes.

General Conclusion

Due to the bounded memory of the past, a prediction bias in favor of new classes is observed in the classification layer. This bias leads the network to predict testing images as belonging to new classes, even if it is not necessarily the case. In this chapter, we proposed two methods to tackle catastrophic [START_REF] Mccloskey | Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem[END_REF] forgetting while memory of the past is allowed. Il2M (Section 3.3) operates at the end of the CNN, by directly rectifying prediction scores of past classes in order to increase them and make them more comparable to those of new classes. Bias rectification is based on class statistics that we save in a secondary memory and use later for calibration. ScaIL (Section 3.4) takes one step backward and handles bias in the weights matrix of the last fully connected layer. ScaIL performs initial embeddings replay for past classes, in order to take advantage of their weights in their initial states. A further normalization based on new class statistics is done to make past and new class weight magnitudes more comparable. Both ScaIL and Il2M ablate the widely used knowledge distillation [START_REF] Hinton | Distilling the Knowledge in a Neural Network[END_REF], and results show that if at least a few exemplars per past class are allowed, distillation loss hurts performance at large scale, and simpler methods that handle IL as an imbalanced learning are favorable.

We conducted an extensive study on a range of popular IL approaches from the state of the art: (1) those based on fine tuning with distillation loss and/or bias removal layers [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF][START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Wu | Large Scale Incremental Learning[END_REF][START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF][START_REF] Zhao | Maintaining Discrimination and Fairness in Class Incremental Learning[END_REF], [START_REF] Abadi | TensorFlow: A system for large-scale machine learning[END_REF] and those based on fixed representations [START_REF] Tyler | REMIND Your Neural Network to Prevent Catastrophic Forgetting[END_REF]. Experiments show that no approach is always better than the others. Depending on the application domain, each method can be adopted to handle one or many challenges (Section 1.2) related to class IL.

Unfortunately, most existing algorithms make two strong hypotheses that reduce the realism of the incremental scenario: (1) new data are assumed to be readily annotated when streamed and (2) tests are run with balanced datasets while most real-life datasets are imbalanced. In section 3.6, we discard these hypotheses and the resulting challenges are tackled with a combination of active and imbalanced learning. We introduce sample acquisition functions that tackle imbalance and are compatible with IL constraints. We also consider IL as an imbalanced learning problem and propose F T th . This approach increases prediction scores of minority classes to give them more chances to be selected during inference. Results indicate that the proposed contributions positively reduce the gap between active and standard IL performance.

In the next chapter, we take a step further and tackle a more difficult scenario of classincremental learning, when no memory of the past is allowed. CHAPTER 4

CLASS-INCREMENTAL LEARNING WITHOUT MEMORY

General Introduction

Artificial agents are often deployed in applications that need to work under strong computational constraints and receive data sequentially. Incremental Learning (IL) algorithms are deployed to deal with such situations. Examples include (1) exploring robots that receive data in streams and that have a limited access to a memory or no memory, (2) disease classification systems that are not allowed to access past data for privacy issues and, (3) tweets analysis where new data arrives at a fast pace and should be handled in a timely manner.

The most important three characteristics that qualify an IL system to be effective and efficient are the low dependency on memory, the high accuracy on both past and new data, and the time needed to update the model to incorporate new data. Memoryless class IL is understudied in literature but important in practice when past data are impossible to store (due to confidentiality issues, for example). In this chapter, we focus on class IL where no memory of the past is allowed. Figure 4.1, we show a toy example with one initial state S 1 and two incremental states (S 2 and S 3). In the initial state, a simple training from scratch is performed to learn the initial set of two classes. At each incremental state, another two new classes arrive with all their available data. These classes should be learned by the model M t without forgetting past classes (learned in previous states). An incremental learning algorithm A is used to update the model M t-1 (t > 0) with data of new classes only. Note that contrarily to the Figure 3.1, there is no memory K to store images from past classes.

The main findings of this chapter are: (1) knowledge distillation is effective when no memory of the past is allowed (this is not the case at large scale when a bounded memory is allowed), (2) the use of past class embeddings from their initial states is beneficial to tackle catastrophic forgetting. Accuracy of current class IL systems without memory is still low as the gap with a full training (with all class data) is large. More efforts are needed to improve current systems in real-life scenarios as the one studied in this chapter.

We propose two approaches designed for class IL without memory. The first method is called SIW (Standardization of Initial Weights). It performs initial weights replay for past classes, followed by standardizing all class weights and a state-level calibration. The second method is based on transferring calibration parameters between datasets. The main contributions of this method are first to enable the use of Bias Correction (BiC) [START_REF] Wu | Large Scale Incremental Learning[END_REF] in a scenario without memory by transferring calibration parameters from reference datasets trained offline to target datasets. Second, we propose a fine-grained version of BiC that rectifies past classes scores based on states in which they were encountered with all their data for the first time. We call this method Adaptive Bias Correction (AdBiC).

Similarly to Chapter 3, we conduct a comprehensive study and highlight the merits and limitations of a range of class-incremental approaches that do not use a memory of the past. Experiments show that distillation is beneficial, while fixed representations are the best choice if the initial model is trained on a sufficiently rich dataset.

SIW: Standardization of Initial Weights for Class-Incremental

Introduction

Based on experiments conduction in Chapter 3, our main hypothesis is that catastrophic forgetting mainly affects the classification layer of deep models during vanilla fine tuning. With this in mind, we tackle memoryless class IL and provide an overview of the introduced method in Figure 4.4. Inspired by ScaIL (Section 3.4), we propose to exploit initial classifier weights learned with all data of past classes. Initial weights provide a good representation of past classes but need normalization for use in later IL states because their magnitude varies significantly across IL states. Preliminary analysis indicates that the magnitude of classifiers tends to decrease for classes that are learned in later states. We exploit classifier standardization as a way to normalize initial classifiers. Normalization helps, but the prediction scores also change due to the variable performance of IL models. Consequently, we use the same state-level calibration of class predictions as in IL2M (Section 3.3). We evaluate results with four public datasets and three values for the number of incremental states. Results show that our approach performs consequently better than competitive baselines for large-scale datasets.

We build on ScaIL and [START_REF] Zhou | M2KD: Multi-model and Multi-level Knowledge Distillation for Incremental Learning[END_REF] to: exploit information from the initial state of classifiers; ensure fairness for the predictions associated to past and new classes [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF][START_REF] Wu | Large Scale Incremental Learning[END_REF]; use vanilla F T as a backbone to train deep models [START_REF] Ahn | A Simple Class Decision Balancing for Incremental Learning[END_REF] . However, our approach differs through the method used for the normalization of initial classifier weights and the focus is on a large-scale memoryless IL. Note that many existing methods cannot operate in the absence of memory and become unusable in our setting. The following ones are usable in memoryless IL and will be used in the evaluation: LwF [START_REF] Li | Learning Without Forgetting[END_REF], the end-to-end version of LU CIR [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF], baseline methods that exploit initial classifiers without bounded memory from Section 3.4. We hypothesize that it is possible to exploit initial classifier weights, learned when data is first streamed for each class to mitigate catastrophic forgetting in memoryless IL. CNN prediction scores are obtained from the combination of features provided by the penultimate layer of the model with classifier weights from the final layer. We analyze these two layers in an IL context to motivate our approach. The ILSVRC dataset with an initial and nine incremental states is used for both analyses.

In sions are aggregated to compute mean magnitudes for new and past classes, respectively. Past classes have much lower magnitudes because there are no exemplars to be replayed for them in memoryless IL. Since magnitudes are much higher for new classes, test examples will always be attributed to one of these classes, even if they belong to the past classes. This observation provides further support for the previous conclusion that vanilla F T is not directly usable in IL [START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF].

The magnitudes of new classes in Figure 4.2(a) vary across incremental states, with a global tendency toward reduction in later states. A normalization of initial classifiers is thus needed to ensure fairness if they are replayed across incremental states as proposed here. New classifiers from previous states of Figure 4.2(a) are aggregated to represent past classes in each current state of Figure 4.2(b). Normalization makes statistical populations more comparable and it is obtained by applying standardization [START_REF] Freedman | Statistics: Fourth International Student Edition[END_REF], a method which is discussed in detail in Subsection 4.2.2. The standardized classifiers, illustrated in Figure 4.2(b), have comparable magnitudes and become usable in memoryless IL.

A second important assumption of our approach is that features extracted from the penultimate layer of the current IL model are compatible with initial classifiers from previous states. This assumption holds if the current features keep a trace of what was learned before. We de-sign a simple experiment that assesses the degree of similarity between features of the same images extracted in different incremental states. Features are extracted for test images of the initial non-incremental state using models learned in each incremental state. Features of test images extracted in the 9 th and last incremental states are used as a reference to illustrate the use of initial classifiers from previous states with its features. Cosine similarity between them and the features of the same images from each previous state is computed. The mean feature similarities between the last state and previous ones are presented in Figure 4.3.

To better situate similarities for memoryless IL (Figure 4.3(a)), we also present statistics for IL with bounded memory, including 1% and 2% of the dataset (Figure 4.3(b) and (c) respectively). We also provide similarities for independent training of incremental states where no fine tuning is used in Figure 4. 3(d). Naturally, this last setting is not a valid IL approach and is shown only to illustrate a lower bound of feature similarity.

with bounded memory of 1% of the dataset, (c) with bounded memory of 2%. Subfigure (d) plots lower-bound similarities for the case when individual states are learned independently, without fine tuning. The upper bound for similarity is 1 and would be obtained for the model, which is frozen after the initial state. However, such an approach has no plasticity and cannot incorporate knowledge related to data streamed during IL. The final incremental state (S 10) is used as a reference to compute similarities with other states. The more distant two states are, the lower the similarity is likely to be.

The results from Figure 4.3 indicate that mean similarities obtained with fine tuning without and with memory are significantly higher than those obtained with independent training. This finding validates the fact that current features learned with vanilla F T keep a trace of what was learned in previous states. Mean similarities decrease with the distance between the current state and the initial one because forgetting is higher when more trainings are involved. The use of a bounded memory in Figure 4.3(b) and (c) provides better similarities compared to memoryless IL in Figure 4.3(a). The effect is particularly visible for states such as S 9 or S 8 which are close to the reference one and becomes less important for more distant states such as S 3 or S 2 . Note that features from the current IL state were used successfully with initial classifiers in ScaIL (Section 3.4) if a bounded memory of the past was allowed. The comparison of feature similarities indicates that their use with adapted initial classifiers is more challenging without memory than with a bounded memory but still doable. A deep model M t is trained for each state S t . Each model includes a feature extractor F t and a classification layer W t . In memoryless IL, models have access only to data for new classes and to the previous model for fine tuning (F T). Note that F T can be implemented in different ways: with a classical distillation component to counter catastrophic forgetting [START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Javed | Revisiting Distillation and Incremental Classifier Learning[END_REF][START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF], with a more sophisticated tackling of forgetting [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF] or using vanilla F T (Sections3.3 and 3.4). Existing end-to-end methods [START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF] (in blue) perform recognition using the weights from W t , the classification layer of the current model which updates past classifiers. Our approach (in green) is different because it freezes classifiers learned initially (init) for each class and applies standardization (siw) to make them more comparable.

Proposed approach

We propose to replay the initial classifiers of each class in order to mitigate catastrophic forgetting. Following the notations from Equation 2.3 given in Section 2.2, we write the classification layer made of initial classifier weights as:

W init t = {W 1 1 , .., W N 1 1 , W N 1 +1 2 , .., W N 2 2 , ..., W N t-2 +1 t-1 , .., W N t-1 t-1 , W N t-1 +1 t , .., W N t t } (4.1)
The analysis from Subsection 4.2.1 shows that the weights from Equation 4.1 need normalization to become comparable across states. We apply a standardization of initial weights (siw) to obtain a normalized version of the weights matrix:

W t = {W 1 1 , .., W N 1 1 , W N 1 +1 2 , .., W N 2 2 , ..., W N t-2 +1 t-1 , .., W N t-1 t-1 , W N t-1 +1 t , .., W N t t } (4.2)
Each dimension w d of a standardized classifier W from Equation 4.2 is calculated using:

w d = w d -µ(W) σ(W) (4.3)
with: w d -the d th dimension of W , w d -the d th dimension of an initial classifier W from Equation 4.1, µ(W) and σ(W) are the mean and standard deviation of W .

Standardization is useful if it is applied to the statistical populations which follow a normal distribution [START_REF] Freedman | Statistics: Fourth International Student Edition[END_REF], which is the case for classifier weights from Equation 4.1. Figure 4.5 provides weights distribution of a random subset of classifier weights from the weights matrix W t defined in Equation 2. [START_REF] Aggarwal | Active Learning for Imbalanced Datasets[END_REF]. These examples illustrate the fact that the classifier weights follow a normal distribution. The use of standardization to normalize them is thus appropriate.

Assuming that the incremental process is in the t th state, the final prediction score of a test image x for the j th class learned initially in the i th state (with i ≤ t), is given by:

o j t (x) = (f t (x) • W j t + b i j) × µ(M t) µ(M i) (4.4)
with: f t (x) -features of image x given by the extractor of the current model M t ; W j t -standardized classifier weights of the j th class initially learned in the i th state as given by Equation 4.2; b i j -the class bias value; µ(M t) and µ(M i) -means of top-1 predictions of models learned in the t th and i th states computed over their training sets.

The first term of Equation 4.4 is a version of the usual CNN prediction process in which the basic weights W j t from Equation 2.3 are replaced by the standardized initial weights W j t from Equation 4.2. This term is referred to as siw in Section 4.2.4. The second term is the same that we use in IL2M (Section 3.3), where we observed that a model level calibration is useful when combining information from different models. µ(M t) and µ(M t) are calculated by passing all training images available in each of the two states through the respective model. This term is referred to as mc in Section 4.2.4.

Experiments

-Datasets (Appendix B) -ILSVRC [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF], LANDMARKS [START_REF] Noh | Large-Scale Image Retrieval with Attentive Deep Local Features[END_REF], VGGFACE2 [START_REF] Cao | VGGFace2: A Dataset for Recognising Faces across Pose and Age[END_REF], and CIFAR-100 [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF].

-Incremental states -We use T = {10, 20, 50}.

-Evaluation measures -Top-5 accuracy [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF] and G IL measure (Subsection 3.4.4).

-Baselines -LwF [START_REF] Li | Learning Without Forgetting[END_REF], LU CIR [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF], F T init , and F T init L2 (the last two baselines are the one we proposed in Subsection 3.4.3). We also try two supplementary normalization techniques defined below. min-max normalization -each dimension of the classifier is calculated using:

w d = w d -min(W) max(W) -min(W) (4.5)
mean normalization -each dimension of the classifier is calculated using

w d = w d -µ(W) max(W) -min(W) (4.6)
Note that our methods are based on F T init : F T init siw exploits only the siw term from Equation 4.4, while F T init siw+mc exploits both the siw and the mc terms from Equation 4.4.

Results and discussion

Dataset ILSVRC VGGFACE2 LANDMARKS CIFAR-100 G IL States T =10 T =20 T =50 T =10 T =20 T =50 T =10 T =20 T =50 T =10 T =20 T =50
LwF while mc is beneficial for F T init but degrades results for LwF and LU CIR. Standardization of LwF init weights has a positive effect for all datasets compared to LwF , especially for T = {20, 50} states. Moreover, even when mc works, its contribution is less important than that of siw.

The worst results by far are obtained with F T , both globally and for individual configurations. F T trains well for new classes but provides nearly random results for past classes that have no exemplars available for replay in memoryless IL. This confirms previous findings [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF][START_REF] Francisco | End-to-End Incremental Learning[END_REF] regarding the strong effect of catastrophic forgetting on vanilla fine tuning in memoryless IL.

The comparison of performance for different datasets indicates that distillation is useful at small scale but has lower utility or becomes even detrimental for large datasets. The usefulness of distillation for small datasets but not for large ones is an open problem. In [START_REF] Javed | Revisiting Distillation and Incremental Classifier Learning[END_REF], authors note that distillation induces confusions among past classes [START_REF] Hinton | Distilling the Knowledge in a Neural Network[END_REF]. To better understand this phenomenon, we provide an analysis of the typology of errors in Table 4.3. Note that while F T runs do not perform well, normalization does help for them.

The LwF init siw version of LwF is the best method for CIFAR-100, with a large margin compared to all methods which are not based on LwF . The use of initial weights in LwF init brings a G IL improvement of nearly 3 points, and the addition of standardization in LwF init siw brings another 4 G IL points gain. LU CIR has lower performance but rather comparable to that of F T init based methods for CIFAR-100. The results for the three large datasets show that LwF has the second-lowest performance, after vanilla F T . The improvements over classical LwF brought by standardization are much more important for the three large datasets. LU CIR's more sophisticated scheme for countering catastrophic forgetting is clearly useful compared to classical distillation from LwF . The removal of the distillation component and the use of initial classifier weights in F T init gives globally better results than LU CIR and LwF for the three large datasets. This behavior in a large-scale setting is mainly explained by the observation made in [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF] regarding the high number of confusions among past classes when distillation is used. The use of siw and mc to F T init is also beneficial, especially when T is big for large datasets.

The number of incremental states has an important effect on IL performance [START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF]. The larger the number of states is, the more challenging the process will be. This is confirmed by the results with T = {10, 20, 50} states in Table 4.1 for all tested methods. Actually, as more incremental states are added, IL models are more prone to forgetting due to the increasing number of intermediate model updates, which causes information loss. Our approach does significantly better than existing methods for the three large datasets with T = 50. Its performance reaches 41.4 for ILSVRC compared to only 27.1 and 21.9 for LwF and LU CIR. Table 4.1 allows an ablation analysis of our approach. Such an analysis is important to understand the contribution of individual components to the final results. Vanilla F T is the backbone upon which we build. The use of initial raw weights for past classes in F T init has a strong positive effect as it reduces the performance gap measured by G IL by nearly a half (-28.99 vs. -54.91 for vanilla F T). The sole use of calibration in F T init mc has a negative effect since performance drops to -32.75. The introduction of standardization in F T init siw has a important positive effect since it brings an 8 points G IL improvement over F T init . Finally, the use of both terms from Equation 4.4 in F T init siw+mc has a light positive effect with a 1.6 points improvement over F T init siw . We note that F T init siw improves over F T init for all individual configurations. The largest performance gains between the two methods are obtained for the three large datasets with the T = 50, the highest number of incremental states tested. This is the most challenging setting since the effects of catastrophic forgetting are stronger for a larger number of IL states. The addition of state mean calibration has a positive, albeit smaller, effect in all individual configurations but two. It does not improve results for LANDMARKS with T = 50 states and degrades them for CIFAR-100 with the same number of states. This is probably because there are only two classes per state in the latter configuration and the obtained statistics are not stable enough.

Results with other calibration methods

Table 4.2 provides results with mean and min-max normalization of weights in addition to L2 and siw. Standardization provides the best performance for all tested configurations. Mean calibration is second best and has a better performance compared to the L2-normalization already used in 3.4. Calibration with min-max is not effective and did not provide any good results.

Dataset ILSVRC VGGFACE2 LANDMARKS CIFAR-100 G IL States T =10 T =20 T =50 T =10 T =20 T =50 T =10 T =20 T =50 T =10 T =20 T =50 F T init min-max 3.

123

Error analysis

Similarly to Scail (Section 3.4), we provide in Table 4.3 top-1 correct and wrong classifications for: (1) F T -the simplest method tested, (2) LU CIR -the best existing method (3) F T init siw+mc -the proposed method. The analysis is done for the large dataset ILSVRC, with T = 20 states. c(p) and c(n) are the correct classification for past/new classes. e(p, p) and e(p, n) are erroneous classifications for test samples of past classes mistaken for other past classes and new classes respectively. e(n, p) and e(n, n) are erroneous classifications for test samples of new classes mistaken for past classes and other new classes respectively. Note that the percentages on the first three and last three lines of each table sum up to 100%. Since the number of test images varies across IL states, percentages are calculated separately for test images of past and new classes in each S t to get a quick view of the relative importance of each type of errors. c(p), e(p, p), and e(p, n) sum to 100% on each column, as do c(n), e(n, n), and e(n, p).

The analysis shows that vanilla F T suffers from a total forgetting of the past classes since all their test images are wrongly classified. The effect of catastrophic forgetting is obvious in the way that 100% of past classes are mistakenly classified as belonging to new classes. Equally important, standardization of the initial weights not only reduces forgetting, but also considerably reduces the confusions among new classes.

The comparison of LU CIR and F T init

siw+mc shows that the first method is better at classifying test samples of new classes but has worse behavior for test samples of past classes. LU CIR c(p) scores are better for the first three iterations but fall behind those of F T init siw+mc afterward. Note that both methods are strongly affected by catastrophic forgetting toward the end of the incremental process, with top-1 accuracy at 6% and 11.8% for LU CIR and F T init siw+mc respectively. This finding indicates that, while both distillation in LU CIR and classifier weights replay F T init siw+mc have a slight positive effect, memoryless IL remains a very challenging task. It is also interesting that the distribution of errors is different. LU CIR fails to ensure fairness between past and new classes since e(p, n) are much more frequent than e(p, p). F T init siw+mc is less biased toward new classes but produces a large number of confusions between past classes (e(p, p)).

Conclusion

We proposed the reuse of normalized initial classifier weights to mitigate the effect of catastrophic forgetting in memoryless IL. A preliminary analysis showed that initial classifiers could be reused in later incremental states, but a normalization step is needed to make them comparable. We introduced a normalization component based on standardization which ensure fairness between classes learned in different IL states which are used together. Our method compares favorably to standard handling of catastrophic forgetting in [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF][START_REF] Li | Learning Without Forgetting[END_REF][START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF]. Interestingly, our results indicate that distillation is only useful for small datasets and has a negative effect on larger datasets. In this latter case, the use of simpler vanilla fine tuning backbone is more appropriate. Note that the proposed method also improves the results obtained with classical distillation [START_REF] Li | Learning Without Forgetting[END_REF][START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF]. However, the gap between classical learning remains important, and further efforts are needed towards reducing it.

In the next section, we present a novel method that tackles catastrophic forgetting in a memoryless setting. To the best of our knowledge, we are the first to provide a method that enables the use of the bias correction layer from [START_REF] Wu | Large Scale Incremental Learning[END_REF] without having access to past data.

Introduction

Class-incremental learning without memory is challenging and generic since no storage of past samples is allowed. In the absence of memory, existing methods become variants of Learning without Forgetting [START_REF] Li | Learning Without Forgetting[END_REF] with different formulations of the distillation term. Importantly, bias correction methods become inapplicable without access to past classes samples.

Our main contribution is to enable the use of the bias correction methods, such as the BiC layer from [START_REF] Wu | Large Scale Incremental Learning[END_REF], in class IL without memory. We focus on this approach because it is both simple and effective in IL with memory [START_REF] Belouadah | A comprehensive study of class incremental learning algorithms for visual tasks[END_REF][START_REF] Masana | Class-incremental learning: survey and performance evaluation on image classification[END_REF]. Authors of BiC [START_REF] Wu | Large Scale Incremental Learning[END_REF] use a validation set that stores samples of past classes to optimize parameters. Instead, we learn correction parameters offline on a set of reference datasets and then transfer them to target datasets. The method is thus abbreviated TransIL. The intuition is that, while datasets are different, optimal bias correction parameters are stable enough to be transferable between them. We illustrate the approach in Figure 4.7, with the upper showing the IL process with a reference dataset. A memory for the validation samples needed to optimize the bias correction layer is allowed since the training is done offline. The lower part of the figure presents the incremental training of a target dataset. The main difference with the standard memoryless IL training comes from the use of a bias correction layer optimized on the reference dataset. Its introduction leads to an improved comparability of prediction scores for past and new classes. Note that the proposed method is applicable to any class IL method since it only requires the availability of raw predictions provided by deep models M.

The second contribution is to refine the definition of the bias correction layer introduced in [START_REF] Wu | Large Scale Incremental Learning[END_REF]. The original formulation considers all past classes equally in the correction process. With [START_REF] Masana | Class-incremental learning: survey and performance evaluation on image classification[END_REF], we hypothesize that the degree of forgetting associated with past classes depends on the initial state in which they were learned. Consequently, we propose Adaptive BiC (AdBiC), an optimization procedure that learns a pair of parameters per IL state instead of a single pair of parameters as proposed in [START_REF] Wu | Large Scale Incremental Learning[END_REF]. We provide a comprehensive evaluation of the proposed method by applying it on top of four backbone class IL methods. Five target visual datasets with different numbers of IL states are used. An improvement of top-1 accuracy is obtained for almost all tested configurations. Importantly, the additional memory needs are negligible since only a compact set of correction parameters is stored.

Proposed approach

(a) LwF [START_REF] Li | Learning Without Forgetting[END_REF] (b) LUCIR [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF] Figure The unavailability of past class exemplars when updating the incremental models leads to a classification bias toward new classes [START_REF] Wu | Large Scale Incremental Learning[END_REF][START_REF] Zhao | Maintaining Discrimination and Fairness in Class Incremental Learning[END_REF]. We illustrate this in Figure 4.6 by plotting mean prediction scores per state for the CIFAR-100 dataset with T = 10 states using LU CIR and LwF , the two distillation based approaches tested here. Figure 4.6 confirms that recently learned classes are favored, despite the use of knowledge distillation to counter the effects of catastrophic forgetting. New classes, learned in the last state, are particularly favored. The predictions profiles for LU CIR and LwF are different. LU CIR mean predictions per state increase from earlier to latest states, while the tendency is less clear for LwF . Predictions of the latter also have a stronger deviation in each state. These observations make LU CIR a better candidate for bias correction compared to LwF .

Adaptive Bias Correction layer

Among the methods proposed to correct bias, the linear layer introduced in [START_REF] Wu | Large Scale Incremental Learning[END_REF] is interesting for its simplicity and effectiveness. This layer is defined in the t th state as:

BiC(o k t) = o k t if k ∈ [1, t -1] α t o k t + β t • 1 if k = t (4.7)
where o k t are the raw scores of classes first seen in the k th state, obtained with M t ; (α t , β t) are the bias correction parameters in the t th state, and 1 is a vector of ones. The class IL process is first launched offline on the reference dataset where AdBiC, our proposed bias correction layer, is trained using a validation memory (in light grey) which stores samples for past and new classes. Class IL is then applied to the target dataset but without class samples shared across states since a memory is not allowed in this scenario. The set of optimal parameters of AdBiC obtained for the reference dataset (light pink memory I) is transferred to the target dataset. This is the only information shared between the two processes and it has a negligible memory footprint. The transfer of parameters enables the use of bias correction for the target dataset. The final predictions obtained in the state S 3 are improved compared to the direct use of M 3 predictions since the bias in favor of new classes is reduced. Best viewed in color.

Equation 4.7 rectifies the raw predictions of new classes learned in the t th state to make them more comparable to those of past classes. The deep model is first updated using X t containing new classes for this state. The model is then frozen and calibration parameters (α t and β t) are optimized using a validation set that includes samples of new and past classes. We remind that Equation 4.7 is not applicable in class IL without memory, the scenario explored here, because no samples of past classes are allowed. Figure 4.6 shows that mean scores of classes learned in different incremental states are variable, which confirms that the amount of forgetting is uneven across past states. It is thus important to correct biases differently for classes that were learned in different IL states. To address this challenge, we define an adaptive version of BiC which rectifies predictions in the t th state with:

adBiC(o k t) = α k t o k t + β k t • 1 ; k ∈ [1, t] (4.8)
where α k t , β k t are the parameters applied in state S t to classes first learned in state S k . Differently from Equation 4.7, Equation 4.8 adjusts prediction scores depending on the state in which classes were first encountered in the IL process. Note that each α k t , β k t pair is shared between all classes first learned in the same state. These parameters are optimized on a validation set using the cross-entropy loss, defined for one data point (x, y) as:

L(q t , y) = - t k=1 |P k | j=1 δ y= y log q k t,j (4.9)
where y is the ground-truth label, y is the predicted label, δ is the Kronecker delta, and q t is the corrected softmax output of the sample via Equation 4.8, defined as:

q t = σ α 1 t o 1 t + β 1 t • 1 ; . . . ; α t t o t t + β t t • 1 (4.10)
where σ is the softmax function.

All α k t , β k t pairs are optimized using validation samples from classes in N t . We compare AdBiC over BiC for our class IL setting in the evaluation section and show that the adaptation proposed here has a positive effect.

Transferring knowledge between datasets

The optimization of α and β parameters is impossible in class IL without memory, since exemplars of past classes are unavailable. To circumvent this problem, we hypothesize that optimal values of these parameters can be transferred between reference and target datasets, noted X r and X respectively. The intuition is that these values are sufficiently stable despite dataset content variability. We create a set of reference datasets and perform a modified class IL training for them using the procedure described in Algorithm 1. The modification consists Algorithm 1: Optimization of calibration parameters inputs : A, X r t for t ∈ [1, T] reference dataset

randomly initialize M 1 ; M * 1 ← train(A; M 1 , X r 1) ; for t = 2. . .T do M * t ← update(A; M * t-1 , X r t) ; α k t ← 1, β k t ← 0 for each k ∈ [1, t] ; foreach (x, y) ∈ X r t validation set do o t ← M * t (x) ; for k = 1. . .t do o k t ← adBiC(o k t) = α k t o k t + β k t • 1 ; end q t ← σ(o t) ; loss ← L(q t , y) ; (α 1 t , β 1 t , . . ., α t t , β t t)
← optimize(loss) ; end end in exploiting a validation set that includes exemplars of classes from all incremental states. Validation set storage is necessary in order to optimize the parameters from Equation 4.8 and is possible since reference dataset training is done offline. Note that backbone incremental models for X r are trained without memory in order to simulate the IL setting of target datasets X . We then store bias correction parameters optimized for reference datasets in order to perform transfer toward target datasets without using a memory. For each incremental state, we compute the average of α and β values over all the reference datasets. The obtained averages are used for score rectification on target datasets. This transfer uses the procedure described in Algorithm 2. The memory needed to store transferred parameters is negligible since we need 2 × (2 + 3 + ... + T) = (T + 2) × (T -1) floats for each dataset and T value. For T = {5, 10, 20} states, we thus only store 28, 108 and 418 floating-point values respectively.

In Figure 4.8, we illustrate optimal parameters obtained across R = 10 reference datasets which are further described in Section 4.3.3. We plot α k and β k values learned after T = 10 IL states, using LwF [START_REF] Li | Learning Without Forgetting[END_REF] and LU CIR [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF] methods. Mean and standard deviations are presented for past and current incremental states in the final state of the IL process. The parameter ranges from Figure 4.8 confirm that, while optimal values do vary across datasets, this variation is rather low and calibration profiles remain similar. This opens up the possibility of parameter transfer. When R > 1, a transfer function is needed to apply the parameters learned on a set of reference datasets to a target dataset. We transfer parameters using the averaged α k t and β k t values, obtained for the set of X r . In Subsection 4.3.4, we evaluate this transfer against an upper-bound oracle which selects the best X r in each state.

The proposed approach adds a simple but effective linear layer to calibrate the predictions of backbone class-incremental methods. Consequently, it is applicable to any incremental learning method which works without memory. We test the genericity of the approach by applying it on top of four existing methods.

Experiments

-Datasets (Appendix B) -CIFAR-100 [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF], IMN-100 [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF], BIRDS-100 [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF], FOOD-100 [START_REF] Bossard | Food-101 -Mining Discriminative Components with Random Forests[END_REF], and PLACES-100 [START_REF] Zhou | Places: A 10 million image database for scene recognition[END_REF].

-Incremental states -We use T = {5, 10, 20}.

-Evaluation measures -Top-1 accuracy.

-Baselines -LwF [START_REF] Li | Learning Without Forgetting[END_REF], LU CIR [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF], F T + [START_REF] Masana | Class-incremental learning: survey and performance evaluation on image classification[END_REF], and SIW (corresponding to F T init siw+mc in Section 4.2).

We compare AdBiC to BiC, the original linear layer from [START_REF] Wu | Large Scale Incremental Learning[END_REF]. We also provide results with an optimal version of AdBiC, which is obtained via an oracle-based selection of the bestperforming reference dataset for each IL state. This oracle is important as it indicates the potential supplementary gain obtainable with a parameter selection method more refined than the proposed one.

Results and discussion

Overall results Table 4.4 provides results obtained with CIFAR-100, FOOD-100, IMN-100, and BIRDS-100. Results show that our method improves the performance of baseline methods for all but two of the configurations evaluated. The best overall performance before bias correction is obtained with LwF . This result confirms the conclusions of [START_REF] Masana | Class-incremental learning: survey and performance evaluation on image classification[END_REF] regarding the strong performance of LwF in class IL without memory for medium-scale datasets. With AdBiC, LU CIR performs generally better than LwF for T = 5 and T = 10, while LwF remains stronger with T = 20 states. Results are particularly interesting for LU CIR, a method for which AdBiC brings consistent gains (up to 16 accuracy points) in most configurations. Table 4.4 shows that AdBiC also improves the results of LwF in all configurations, albeit to a lesser extent compared to LU CIR. Interestingly, improvements for LwF are larger for T = 20 states. This is the most challenging configuration since the model undergoes more rehearsal steps that cause more forgetting. F T + [START_REF] Masana | Class-incremental learning: survey and performance evaluation on image classification[END_REF] and SIW remove the distillation component for the class IL training process and exploit the weights of past classes learned in their initial state. AdBiC improves results for these two methods in all but one configuration. However, their global performance is significantly lower than that of LwF and LU CIR, the two methods which make use of distillation. This result confirms the finding from Section 4.2 regarding the usefulness of the distillation term exploited by LwF and LU CIR to stabilize IL training for medium scale datasets.

Results from Table 4.4 highlight the effectiveness of AdBiC compared to BiC. AdBiC has better accuracy in all tested configurations, with the most important gain over BiC obtained for LU CIR. It is also worth noting that AdBiC improves results for SIW and F T + in most configurations, while the corresponding results of BiC are mixed. The comparison of AdBiC and BiC validates our hypothesis that finer-grained modeling of forgetting for past states is better than their uniform processing. It would be interesting to test the usefulness of AdBiC in the class IL with memory setting originally tested in [START_REF] Wu | Large Scale Incremental Learning[END_REF].

We also compare AdBiC, which uses averaged α and β parameters, with the oracle selection of reference parameters (+ O). The performance of AdBiC is close to this upper bound for all tested methods, with a difference of less than one point in a majority of cases. This indicates that averaging bias correction parameters is an effective way to aggregate parameters learned from reference datasets. However, it would be interesting to investigate more refined ways to transfer parameters from reference to target datasets to further improve performance. The comparison of target datasets shows that the gain brought by AdBiC is largest for IMN-100, followed by BIRDS-100, CIFAR-100 and FOOD-100. This is intuitive as IMN-100 has the closest distribution to that of reference datasets. BIRDS-100 is extracted from ImageNet Except for LwF , AdBiC gains are generally larger for T = 5 and T = 10 compared to T = 20. This result is consistent with past findings reported for bias correction methods [START_REF] Masana | Class-incremental learning: survey and performance evaluation on image classification[END_REF][START_REF] Wu | Large Scale Incremental Learning[END_REF]. It is mainly explained by the fact that the size of validation sets needed to optimize AdBiC parameters is smaller and thus less representative for larger values of T . A larger number of states leads to a higher degree of forgetting. This makes the IL training process more challenging and negatively affects the usefulness of the bias correction layer. 4.4. It illustrates the predictions scores for LwF and LU CIR after the application of bias correction with AdBiC. The correction is effective since the predictions associated to IL states are more balanced in Figure 4.11, compared to the raw predictions from Figure 4.6. The effect of calibration is particularly interesting for LU CIR, where mean prediction scores are balanced for states 3 to 10. We note that bias correction should ideally provide fully balanced mean prediction scores to give equal chances to classes learned in different states. Practical results show that some variation remains and is notably due to variable forgetting for past states and to the variable difficulty of learning different visual classes.

Effect of Adaptive Bias Correction

In Figure 4.12, we illustrate the effects of AdBiC on state-wise accuracies, for all backbone IL methods evaluated in this work. Before adaptive correction (top), all methods provide strong performance on the last group of classes learned (represented by the diagonals). Their performance is generally poorer for past classes (under the diagonals). After correction (bottom), all methods perform better on past class groups (with a trade-off in accuracy on the last class group), resulting in higher overall performance.

Robustness of dataset knowledge transfer

We complement the results presented in Table 4. [START_REF] Aggarwal | A comparative study of calibration methods for imbalanced class incremental learning[END_REF] with two experiments that further evaluate the robustness of AdBiC. First, we test the effect of a different number of training images per datasets, despite the domain shift from ImageNet. This finding also confirms the robustness of T ransIL against domain variation. Second, we assess the robustness of the method with respect to R, the number of available reference datasets. We vary R from 1 to 9 and perform transfer with ten random samplings for each R value. Results obtained on CIFAR-100 are reported in Table 4.8. Accuracy levels are remarkably stable for different values of R and significant gains are obtained even when using a single reference dataset. These results confirm that parameter transfer is effective even with few reference datasets, which is interesting considering that the computational cost of offline training is also reduced. Note that results on other datasets follow the same trend. We

Conclusion

We introduced a method that enables the use of bias correction methods for class IL without memory. This IL scenario is challenging because catastrophic forgetting is very strong in the absence of memory. The proposed method transfers bias correction parameters learned offline for reference datasets toward target datasets. Since reference dataset training is done offline, a validation memory that includes exemplars from all IL states can be exploited to optimize the bias correction layer. The evaluation provides comprehensive empirical support for the transferability of bias correction parameters. Performance is improved for all but two of the configurations tested, with gains of up to 16 top-1 accuracy points. Robustness evaluation shows that parameter transfer is efficient when only a few reference datasets are used for transfer. It is also usable when the number of training images per class in target datasets is different from that of available reference datasets. These last two findings are important in practice since the same reference datasets can be exploited in different incremental configurations. A second contribution relates to the modeling of the degree of forgetting associated with past states. While recency bias was already acknowledged [START_REF] Masana | Class-incremental learning: survey and performance evaluation on image classification[END_REF], no difference was made between past classes learned in different IL states [START_REF] Wu | Large Scale Incremental Learning[END_REF]. This is in part due to validation memory constraints which appear when the bias correction layer is optimized during the incremental process. Such constraints are reduced here since reference datasets training is done offline and a refined definition of the bias correction layer with specific parameters for each past state becomes possible. The comparison of the standard and of the proposed definition of the bias correction layer is favorable to the latter. In many real-life applications, no memory of past classes is available. For instance, in medical data processing [START_REF] Venkatesan | A Strategy for an Uncompromising Incremental Learner[END_REF], this is often due to privacy issues. We complement the study conducted in Section 3.5 with a study of the behavior of the main algorithms which can be deployed in the absence of memory. Note that the following algorithms cannot be deployed: (1) all variants which exploit an external N EM classifier since exemplars are not available to build the classifiers for past classes; (2) BiC because it requires a validation set; (3) ScaIL because it requires past exemplars for normalization; (4) IL2M because the mean scores of past classes cannot be computed in the current state.

Tested approaches

Similarly to the study we conducted with memory in Section 3.5, we run experiments with the following works that are functional with or without memory: LUCIR CNN , FT, FR, DeeSIL, REMIND. In addition, we run experiments with:

-LwF [START_REF] Li | Learning Without Forgetting[END_REF] that uses distillation loss to encourage the model M t to predict the same scores for past classes in the current state S t than in the previous one. LwF constitutes the inspiration for all class IL algorithms [START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF][START_REF] Javed | Revisiting Distillation and Incremental Classifier Learning[END_REF][START_REF] Wu | Large Scale Incremental Learning[END_REF] and is equivalent to a version of iCaRL without memory.

-Deep-SLDA [START_REF] Hayes | Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis[END_REF] shares the same definition of M t as REM IN D, where G(•) is the first fifteen convolutional and three downsampling layers, and F (•) is the remaining two convolutional and one fully connected layers of a ResNet-18 [START_REF] He | Deep Residual Learning for Image Recognition[END_REF]. At each incremental state, Deep-SLDA updates a class-specific running mean vector and a running shared covariance matrix among classes. During inference, it assigns an image to the closest Gaussian in feature space defined by the mean class embeddings and the covariance matrix. Deep-SLDA does not need to store past class data, and it is thus functional in the absence of memory.

On top of F T and LwF , we also apply init, followed either by L2 or SIW (Standardization of Initial Weights) normalization (Section 4.2), and finally by mc calibration. The other algorithms are not functional in a memoryless setting for the following reasons:

-LU CIR N CM [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF] and F T N EM (Section 3.3) -they need exemplars to compute past class-mean to deploy the NEM classifier.

-FT BAL (Sections 3.3 and 3.4) -it needs past class exemplars to run the balancing phase. In the absence of memory, this approach becomes equivalent to F T and is heavily affected by catastrophic forgetting.

-BiC [START_REF] Wu | Large Scale Incremental Learning[END_REF] since a validation set is needed to optimize the bias removal layer, this approach can only function if a memory is available.

-ScaIL and IL2M (Sections 3.3 and 3.4) need a bounded memory to keep trace of past classes' statistics.

-FT th -it needs a memory of the past to rectify past classes' scores.

Aligned with the analysis of different algorithm characteristics from Table 3.9, LwF performs model update and makes use of distillation loss to tackle catastrophic forgetting. This is not the case for Deep-SLDA that is based on a fixed representation. Note that both methods do not apply any extra bias removal layer, and they do not require a memory from the past.

Experiments

-Datasets (Appendix B) -ILSVRC [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF], LANDMARKS [START_REF] Noh | Large-Scale Image Retrieval with Attentive Deep Local Features[END_REF], VGGFACE2 [START_REF] Cao | VGGFace2: A Dataset for Recognising Faces across Pose and Age[END_REF], and CIFAR-100 [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF].

-Incremental states -We test with T = {10, 20, 50}.

-Evaluation measures -Top-5 accuracy [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF] and G IL measure (Subsection 3.4.4).

Results and Discussion

Role of knowledge distillation

When no memory is allowed for past classes, the experiments reported in Table 4.9 confirm those presented in [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF]. There, LwF is clearly better than vanilla F T , and the usefulness of distillation is confirmed. Even without memory, the reuse of the embeddings of past classes from their initial states in F T init is better than the sole use of knowledge distillation in LwF [START_REF] Li | Learning Without Forgetting[END_REF]. Only a more sophisticated scheme which combines distillation and an inter-class separation component in LU CIR CN N [53] outperforms F T init , but stays way below F T init siw+mc that does not need distillation. Instead, it makes use of initial weights combined with standardization of all weights and mean state calibration. In Table 4.10, we present the distribution of correct and erroneous predictions across incremental states to have a better understanding of the behavior of distillation in IL. Results are given for LwF [START_REF] Li | Learning Without Forgetting[END_REF], LU CIR CN N [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF] and F T init L2 which implement classical distillation, features-based distillation plus inter-class separation and the reuse of L2-normalized initial classifier weights, respectively. The authors of [START_REF] Javed | Revisiting Distillation and Incremental Classifier Learning[END_REF] noted that distillation induces a bias among past classes, which leads to confusion between their predictions. This finding is confirmed by the large number of past-past class confusions e(p, p) associated to LwF in Table 4.10. When advancing in incremental states, the number of past classes increases. If an error is made while training the model M 1 using the activations of M 1 as soft targets, it will be passed on to all the subsequent incremental states. Consequently, the percentage of e(p, p) errors in Table 4.10 increases in later incremental states. However, the percentage of e(p, p) errors is smaller for LwF and LU CIR CN N compared to F T init L2 indicating that distillation has a positive effect of past classes. The addition of the interclass separation in LU CIR CN N removes a part of e(p, p), and the overall increases significantly c(p), the number of correct predictions for past classes. We note that, since distillation operates on past class scores, the bias in favor of new classes is not handled by LwF and LU CIR CN N . Consequently, e(p, n) is the main type of error for the distillation-based methods. This is explained in Sections 3.3 and 3.4 by the fact that the model is biased towards new classes, leading to predict past images as belonging to new classes. This bias is caused by the fact that new classes are well learned with all their data. We note that c(p) is higher and e(p, p) is lower for CIFAR-100 compared to ILSVRC, indicating that distillation is much more efficient at a smaller scale. We conclude that distillation is not always useful in IL. The performance of distilled networks depends on the size of the dataset, the number of incremental states, and the presence or not of the bounded memory of the past. It should be used only when the incremental task is known to be characterized by a favorable combination of these parameters.

Without memory, iCaRL becomes LwF , the method which inspired more recent works using distillation in IL. Overall, the best results are obtained with the fixed-representation methods because their dependence on past exemplars is much lower compared to fine-tuning-based methods. In order, the best global score is obtained by DeeSIL, Deep-SLDA, F R and REM IN D. As we mentioned, DeeSIL is easier to optimize compared to F R and has a comparable accuracy variation with Deep-SLDA for most tested configurations. However, DeeSIL provides the best perfor-mance when no memory is allowed. The performance of fixed-representation methods drops when the number of incremental states increases because the initial state includes a lower number of classes. This is notably the case for CIFAR-100, the smallest dataset tested, where the fixed-representations have lower performance compared to all variants of LwF for all tested T values. However, F R, REM IN D, Deep-SLDA and DeeSIL have consequently better performance for ILSVRC, VGGFACE2, and LANDMARKS where their initial representations are trained with at least 20 classes.

The analysis of individual datasets shows that LwF variants have a strong performance for CIFAR-100, the smallest one among the four tested. LwF scales worse than LU CIR CN N , which is better for the three larger datasets. The performance inversion is probably explained by the handling of inter-class separation in LU CIR. This indicates that knowledge distillation alone does not scale well because when the number of past classes increases, the confusions between them hamper the performance of the method.

Conclusion

When no memory is allowed, fixed-representation methods are globally much more competitive than fine-tuning ones while also being simpler and faster to deploy. They are particularly advantageous for large datasets, where distillation-based methods fail to scale-up. This finding is surprising insofar fixed-representation methods exploit a classical transfer learning scheme. They do not update models across incremental states and were considered less apt for usage in IL without memory [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF]. We note that these methods work better than distillation-based IL algorithms even when initial representations are learned with a few dozens of classes.

General Conclusion

In this chapter, we showed that class IL becomes a more challenging task without a memory of the past because no images are replayed for past classes, leading to a stronger forgetting. We proposed SIW and T ransIL, two IL methods that can be applied on top of many other methods. The former necessitates a backbone method where the classification layer is fully connected, and the latter necessitates a backbone method designed for bias correction. Obtained results are promising and more efforts are needed from the community to further improve IL without memory. This scenario is more interesting in real-life problems where the memory is likely to be unavailable. CHAPTER 5

CONCLUSION

General discussion

In this thesis, we are interested in tackling the catastrophic forgetting problem for classincremental learning. We defined in Chapter 1 six desirable properties that qualify an AI system to be class-incremental. Mainly its ability to: (1) correctly classify both past and new images, (2) be scalable, (3) integrate new classes promptly, (4) make a compromise between plasticity and stability, (5) keep the model complexity constant through the time and (6) work with or without a bounded memory of the past. These properties are hard to satisfy at the same time. Depending on the application domain, one or many properties can be discarded in order for the system to work. For instance, in health applications, it is often the case that data cannot be passed between incremental states for regulatory reasons. In this case, it is crucial to update the model's capacity without having access to data from the past. Alternatively, in embedding systems, both memory and computational requirements should be minimized. The scalability in such systems might not be as crucial as the timeliness to integrate new knowledge while keeping the resources bounded. When there is no significant domain shift between classes learned offline and classes learned incrementally, fixed representations are a good option because they keep the model stable across time. This can, for instance, be the case of face recognition models integrated into media applications. Here, the update needs to be very fast to follow the pace of news, and an initial model can ensure an efficient transfer of deep face representations. They are particularly interesting when learned on sufficiently large and diversified initial datasets [START_REF] Tamaazousti | MuCaLe-Net: Multi Categorical-Level Networks to Generate More Discriminating Features[END_REF][START_REF] Tamaazousti | Learning More Universal Representations for Transfer-Learning[END_REF]. However, when the classes learned incrementally are visually different from the initial ones, the performance of fixed representations drops drastically, and the knowledge transfer fails. Ultimately, the choice between different types of incremental learning methods is driven by the concrete constraints of the envisioned application.

Contributions overview

In this thesis, we propose one fixed-representation-based method which works with and without memory of the past, and four fine-tuning-based methods, out of which two require a memory of the past, and the other two do not. While simple, our methods achieve competitive results compared to methods from the state of the art.

DeeSIL [START_REF] Belouadah | DeeSIL: Deep-Shallow Incremental Learning[END_REF] consists of (1) a deep feature extractor (DFE) trained on the classes of the first non-incremental state, and (2) a set of SVMs [START_REF] Boser | A Training Algorithm for Optimal Margin Classifiers[END_REF], where the number is equal to the number of classes learned in the incremental states. the DFE is used to extract features of images of all classes seen during all the incremental process, and the SVMs are trained using the extracted feature vectors. Each SVM is used to learn one class, where the positives are the feature vectors of the class, and the negatives are selected depending if we use a memory of the past or not:

-When a memory of the past is allowed, the negatives are selected among the feature vectors of past classes. This is interesting insofar as the features are much more compact then the images themselves.

-When no memory of the past is allowed, the negatives are selected among the feature vectors of classes learned in the same incremental state as the class that is currently being learned DeeSIL is useful in class-incremental learning when the data is shuffled to be i.i.d. However, it fails in task-incremental scenarios, where the incremental tasks are likely to be visually different from the first task. The other proposed FT-based approaches are presented briefly in the next two subsections.

When a memory is allowed, we found that the widely used distillation loss [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF][START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF][START_REF] Hinton | Distilling the Knowledge in a Neural Network[END_REF][START_REF] Javed | Revisiting Distillation and Incremental Classifier Learning[END_REF] is not necessary for large-scale IL systems. The conducted experiments showed that this distillation is useful for the medium-scale CIFAR-100 dataset. However, when tested on large datasets such as ILSVRC [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF], Google Landmarks [START_REF] Noh | Large-Scale Image Retrieval with Attentive Deep Local Features[END_REF] and VGGFace2 [START_REF] Cao | VGGFace2: A Dataset for Recognising Faces across Pose and Age[END_REF] that contain 1000 classes, distillation leads to confusions among past classes. Practically, this means that the number of past testing images predicted as belonging to wrong past classes is large compared to the other type of errors. These results are at odds with the ones usually reported in class IL literature which originate from a biased comparison from [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF]. There, the authors claimed that iCaRL is more competitive than a vanilla fine tuning on ILSVRC. Their comparison was not fair as vanilla fine tuning was implemented without a memory of the past, while iCaRL used such a memory. Our findings were later confirmed by [START_REF] Masana | Class-incremental learning: survey and performance evaluation on image classification[END_REF] that did extensive experiments on a range of class IL systems with and without memory.

The use of a bounded memory of the past leads to an imbalanced learning that worsens as more incremental states are encountered. This is mainly because new classes are always learned with all their data, while fewer exemplars are replayed for past classes at each incremental state. This imbalance in data leads to recency bias, the tendency of neural networks to be biased in favor of the most recent task (or group of classes). In practice, recency bias refers to the imbalance in favor of new classes compared to past ones during inference. The experiments conducted in Chapter 3 show that the gap between the mean prediction scores of past and new classes is large and needs to be addressed. We thus propose:

-Il2M [13] -aims to reduce the prediction bias by rectifying past classes' scores and make them more comparable to those of new classes. The scores rectification is done using scores statistics saved in a secondary memory.

-ScaIL [START_REF] Belouadah | ScaIL: Classifier Weights Scaling for Class Incremental Learning[END_REF] -operates at the level of the weights matrix of the last fully connected layer of a CNN. We show that using past classes embeddings from the initial states in which they were learned for the first time is beneficial. We further add weights normalization based on classes statistics to make past and new classes embeddings comparable.

Both IL2M and ScaIL showed good performance, with the latter performing better in most cases. This is not surprising because ScaIL handles catastrophic forgetting at a deeper level instead of directly rectifying prediction scores.

Without a memory of the past, our experiments confirmed that that distillation is beneficial for medium-scale and large-scale datasets. LwF [START_REF] Li | Learning Without Forgetting[END_REF] and LU CIR [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF] clearly outperform vanilla fine tuning based approaches. DeeSIL is the best memoryless IL system that we proposed. It outperforms methods that use distillation (such as LwF [START_REF] Li | Learning Without Forgetting[END_REF]) or even more sophisticated objectives (LU CIR [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF]). It also outperforms online learning methods that are based on a fixed-representation (Deep-SLDA [START_REF] Hayes | Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis[END_REF] and REM IN D [START_REF] Tyler | REMIND Your Neural Network to Prevent Catastrophic Forgetting[END_REF]). The latter two methods are interesting when the task boundaries are unknown, and the system can only see each training example once during all the training process. When evaluated online [START_REF] Hayes | Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis[END_REF], these methods are competitive against the state of the art.

When using fine tuning as a backbone for class-IL, we propose two methods that can be implemented on top of memoryless IL methods to further improve their performance:

-SIW [START_REF] Belouadah | Initial Classifier Weights Replay for Memoryless Class Incremental Learning[END_REF] -this approach is inspired by ScaIL. It makes use of past classes embeddings from their initial states. The main difference with ScaIL is the normalization of the modified weights matrix. In SIW , we use a simple standardization of all classes embeddings since they follow a normal distribution. This approach largely improves results of a vanilla fine tuning, LwF [START_REF] Li | Learning Without Forgetting[END_REF], and a memoryless version of LU CIR [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF].

-T ransIL [START_REF] Habib | Dataset Knowledge Transfer for Class-Incremental Learning Without Memory[END_REF] -adapts BiC [START_REF] Wu | Large Scale Incremental Learning[END_REF] for usage in a memoryless IL setting. BiC shows very competitive performance against the most recent state-of-the-art methods. However, the dependency of this method on a validation set makes it unusable in incremental learning without memory since no exemplars of past classes are available. Instead, we propose to train BiC offline on reference datasets using a validation set and later transfer the calibration parameters in an online fashion to target datasets trained incrementally. The method achieves consequent gain compared to backbone methods, especially LU CIR [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF] and LwF [START_REF] Li | Learning Without Forgetting[END_REF].

The proposed methods are very useful when we cannot keep past images for memory issues or confidential restrictions. While the FT-based methods behave well compared to others from this category, they still lag behind fixed representations, such as DeeSIL. This finding is somewhat frustrating but also a recall that simple methods should be tried first.

Memory footprint of proposed methods

In Table 5.1, we present an overview of the additional storage (AS) of all our proposed methods when learning a total of N T = 1000 classes. This storage mainly concerns the secondary memory that we use to save statistics, embeddings, or calibration parameters. DeeSIL does not use a secondary memory. Therefore, it has no additional storage. In IL2M , we store one float for each class (its mean classification score) and one float by state (the model's confidence). The additional footprint is thus negligible. For instance, if T = 100, only 4.4 KB is needed for the secondary memory. In ScaIL, we save class embeddings in their initial states, where the memory needed does not depend on the number of incremental states. To learn 1000 classes, only 2 MB is needed as additional storage. SIW shares the same spirit as ScaIL insofar as we save the class embeddings. In addition, we save one float by state (the model's confidence) to perform state calibration, which is negligible.

Finally, T ransIL stores calibration parameters whose memory footprint depends on (1) the bias correction method used (BiC or AdBiC), (2) the number of incremental states, and (3) if all α and β parameters are saved, or only their respective means. The worst case would be to use AdBiC as a bias correction method and saving all calibration parameters. To learn 1000 classes while varying the number of states between 5 and 100 requires a small memory size (from 1.12 KB to 404 KB). Alternatively, the best case would be to use BiC [START_REF] Wu | Large Scale Incremental Learning[END_REF] as a bias correction method and saving only the average values of calibration parameters. In this case, the memory footprint varies between 32 Bytes and 792 Bytes. In both best and worst cases, the memory used by T ransIL is negligible.

Knowledge-distillation based approaches [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF][START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF][START_REF] Wu | Large Scale Incremental Learning[END_REF][START_REF] Zhao | Maintaining Discrimination and Fairness in Class Incremental Learning[END_REF] require saving both previous (teacher) and current (student) models. However, all our methods require saving the current model only (86 Megabytes for a ResNet [START_REF] He | Deep Residual Learning for Image Recognition[END_REF] architecture), thus halving the storage needed to run other methods. For DeeSIL, we store one SVM per class in addition to the feature extractor. The size of one SVM is 8 Kilobytes and is equivalent to the increase in the CNN architecture when we add one neuron per class in the classification layer. Thus, DeeSIL also keeps the memory of the model bounded.

Contrarily to SIW and T ransIL, both IL2M and ScaIL need a memory of the past. The latter occupies 2.29 GB when having K = 20000 exemplars for the ILSVRC [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF] dataset. Note that this size corresponds to the size of the real image in the disk and can be reduced by compressing the images files. The memory is optional in DeeSIL. When no memory is allowed, no additional storage is needed for the past. When a memory is allowed, feature vectors are stored instead of images. The advantage of feature vectors is their limited size compared to images, as they contain, in the case of a ResNet-18 [START_REF] He | Deep Residual Learning for Image Recognition[END_REF], 512 floating points. In such a case, the memory occupies 40 MB only. This size is negligible compared to the images memory used by other approaches, making DeeSIL a good choice for applications where memory restrictions are imposed.

State-of-the-art schema after our proposed approaches

As we showed above, our proposed methods have a varying storage size for the model, exemplars memory, and secondary memory. This gives a wide choice to the user to select the method that is more suitable for the application domain. We bring the Figure 2.1 from Chapter 2 and enrich it with our proposed methods. To the best of our knowledge, DeeSIL is one of the first methods that apply transfer learning on class-incremental learning. Other methods were released later and are based on a combination of transfer learning and bio-inspiration: F earN et [START_REF] Kemker | FearNet: Brain-Inspired Model for Incremental Learning[END_REF], REM IN D [START_REF] Tyler | REMIND Your Neural Network to Prevent Catastrophic Forgetting[END_REF], and Deep-SLDA [START_REF] Hayes | Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis[END_REF]. The first method combines TL with auto-encoders to generate past class data, while the two others use memory consolidation to learn online. IL2M and ScaIL are from the few works that handle class-incremental learning as an imbalanced learning, and combine the exemplars memory with bias-removal techniques to tackle catastrophic forgetting. SIW and T ransIL tackle the recency bias without having access to exemplars memory. Globally, our work is focused on proposing methods that ally simplicity and strong performance in class IL with and without memory. Their empirical comparison with many competing methods shows that this global objective is achieved since state-of-the-art performance, at the time of publication, is achieved in most cases while reducing the global memory footprint.

-aggregating works from class-incremental learning and new class discovery [START_REF] Zhong | Neighborhood Contrastive Learning for Novel Class Discovery[END_REF][START_REF] Zhong | OpenMix: Reviving Known Knowledge for Discovering Novel Visual Categories in an Open World[END_REF] to make the whole process more realistic. Here, we would have systems that learn dynamically in a much more autonomous way. This is one step further beyond combining class-incremental learning with active learning

The above-mentioned items are interesting and should be addressed for seamless usage of IL in practice as in [START_REF] Mi | Generalized Class Incremental Learning[END_REF].

dataset is available for download from http://www.robots.ox.ac.uk/~vgg/ data/vgg_face2/.

-Google Landmarks [START_REF] Noh | Large-Scale Image Retrieval with Attentive Deep Local Features[END_REF] (also called LANDMARKS) is a dataset built for tourist landmark recognition. It includes over 2 million images for over 30000 landmarks across the world. Again, we selected the 1000 landmarks which have the largest number of associated images for the evaluation. The selected train subset is more imbalanced than ILSVRC and VGGFACE2, with a mean number of 374. Class-incremental methods study (Section 3.5)

We use the same datasets used to evaluate IL2M and ScaIL described above.

Active class-incremental learning (Section 3.6)

-IMAGENET-100 -dataset for fine grained object recognition consisting of a subset of 100 randomly selected leaf classes from ImageNet [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF] which have at least 50 training images and are not present in the ILSVRC subset [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF].

-FACES-100 -face recognition dataset consisting of a subset of randomly selected 100 identities from VGG-Face2 [START_REF] Cao | VGGFace2: A Dataset for Recognising Faces across Pose and Age[END_REF] with at least 30 training images.

-FOOD-100 -dataset built using 100 classes from Food-101 [START_REF] Bossard | Food-101 -Mining Discriminative Components with Random Forests[END_REF] for fine-grained food recognition [START_REF] Bossard | Food-101 -Mining Discriminative Components with Random Forests[END_REF]. Since the initial dataset is perfectly balanced, an imbalance induction procedure was applied by removing a variable number of training samples keeping at least 25 images per class.

-CIFAR-100 -dataset for object recognition used in its original version [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF] which is perfectly balanced.

The main statistics of experimental datasets are in Table B.3. We provide the coefficient of variation cv = σ µ , with σ the standard deviation and µ the mean of the distribution of samples per class. cv provides information about the degree of imbalance associated to each dataset. The larger this value is, the more imbalanced the dataset will be.

Dataset

Classes We use the same datasets used to evaluate IL2M and ScaIL described above.

TransIL (Section 4.3) Reference datasets. We use 10 reference datasets, each including 100 randomly chosen leaf classes from ImageNet [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF], with a 500/200 train/val split per class. There is no intersection between these datasets, as each class appears only in one of them.

Target datasets. We test T ransIL with four target datasets. They were selected to include different types of visual content and thus test the robustness of the parameter transfer. The class samples from the target datasets are split into 500/100 train/test subsets respectively. There is no intersection between the classes from the reference datasets and the two target datasets, which are sampled from ImageNet. We describe target datasets hereafter:

-CIFAR-100 [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF] -object recognition dataset. It focuses on commonsense classes and is relevant for basic level classification in the sense of [START_REF] Rosch | Principles of categorization[END_REF].

-IMN-100 -subset of ImageNet [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF] which includes 100 randomly selected leaf classes. It is built with the same procedure used for reference datasets and is thus most similar to them. IMN-100 is relevant for fine-grained classification with a diversity of classes.

-BIRDS-100 -dataset built using 100 bird classes from ImageNet [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF]. It is thus relevant for domain-specific fine-grained classification.

-FOOD-100 -dataset built using 100 food classes from Food-101 [START_REF] Bossard | Food-101 -Mining Discriminative Components with Random Forests[END_REF]. It is also a finegrained and domain-specific dataset. It is interesting insofar as it is independent from ImageNet.

-PLACES-100 -Scene recognition dataset that contains 100 randomly chosen classes from the original Places-365 dataset [START_REF] Zhou | Places: A 10 million image database for scene recognition[END_REF].

We provide in Table B.4 the lists of classes contained in each of the target datasets we used for evaluation. Overall, IMN-100, the randomly sampled set of 100 leaf classes from Imagenet [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF], is more diversified than CIFAR-100, which mostly contains animal classes. IMN-100 is visually varied between different types of objects, foods, animals, vehicles, clothes and events. CIFAR-100 contains, in addition to animals, some types of objects and vehicles. Note that even if IMN-100 and CIFAR-100 are both specialized in object recognition, they do not share the same data distribution. The BIRDS-100 dataset (extracted from ImageNet [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF]) is finer-grained and more specialized than IMN-100 and CIFAR-100. PLACES-100 and FOOD-100 are target datasets which have a larger domain shift with ImageNet classes, and are thus useful to test the robustness of our method against domain variation.

Similarly to IMN-100, reference datasets are random subsets of ImageNet leaves. They contain various object types and are useful for knowledge transfer. be able to run the score calibration on a CPU. The same implementation process goes for all methods that are implemented on top of fine tuning, such as F T th , F T init ..., etc.

-TransIL (Section 4.3) -The correction of raw output scores is done in the same way for all methods. After the extraction of raw scores and corresponding labels for models learned in each incremental state, batches are fed into a PyTorch [START_REF] Paszke | Automatic differentiation in PyTorch[END_REF] module which performs the optimization of adBiC parameters, or the transfer of previously learned parameters depending on the setting. Following [START_REF] Masana | Class-incremental learning: survey and performance evaluation on image classification[END_REF], adBiC layers are implemented as pairs of parameters and optimized simply through backpropagation. Parameters α k s , β k s corresponding to each incremental state s are optimized for 300 epochs, with the Adam [START_REF] Diederik | Adam: A Method for Stochastic Optimization[END_REF] optimizer and a starting learning rate of 10 -3 . An L2-penalty is added to the loss given in Equation 4.9, with a lambda of 5 • 10 -3 for α parameters and 5 • 10 -2 for β parameters.

To facilitate reproducibility, dataset details and the code of all tested approaches and their adaptations are publicly available at: https://github.com/EdenBelouadah/class-\ incremental-learning/ D'autres défis liés à l'apprentissage incrémental concernent:

-La complexité -Seulement la couche de classification doit augmenter pour pouvoir classifier les nouvelles classes.

-La mémoire -Le système doit être capable de fonctionner sans mémoire du passé, ou avec une mémoire limitée.

-La précision -Le système doit être performant non seulement sur les nouvelles classes, mais aussi sur les anciennes.

-La rapidité -Le temps nécessaire pour inclure les nouvelles classes doit être limité.

-Le compromis entre la plasticité et la stablité -Le système doit s'adapter à la distribution des nouvelles données et au même temps garder autant d'information que possible du passé.

-Le passage à l'échelle -Le système doit être capable d'apprendre un nombre illimité de classes.

Finalement, il existe d'autres défis tels que: la non-annotation des données nouvelles, le déséquilibre des données au sein des nouvelles classes, la taille des batches de classes..., etc.

Dans cette thèse, nous nous concentrons sur les approches qui gardent la complexité du modèle fixe et qui fonctionnent avec et sans mémoire limitée du passé. Nous proposons une méthode qui favorise la stabilité, et quatre méthodes qui équilibrent la stabilité et la plasticité du réseau. L'objectif de nos contributions est de réduire l'écart en performance par rapport à un apprentissage standard où toutes les données de toutes les classes sont disponibles.

C.2 Formalisation du problème

Nous proposons une formalisation unifiée de l'apprentissage incrémental qui s'appuie sur celles introduites dans [START_REF] Li | Learning Without Forgetting[END_REF][START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF][START_REF] Francisco | End-to-End Incremental Learning[END_REF]. On note T le nombre total d'états. Le premier est appelé état initial, et les T -1 états restants sont incrémentaux. Un ensemble de P t nouvelles classes est appris dans l'état S t . Les états ne se chevauchent pas dans les classes, c'est-àdire qu'une classe n'est apprise initialement avec toutes ses données qu'une seule fois pendant tout le processus d'apprentissage. Un modèle M 1 est initialement appris sur un ensemble d'apprentissage X 1 = {X 1 1 , X 2 1 , ..., X j 1 , ..., X P 1 1 }, où P 1 est le nombre de classes apprises dans le premier état. X j t = {x 1 j , x 2 j , ..., x n j j } est l'ensemble des n j exemples d'apprentissage de la classe j, p j t est sa probabilité de classification dans l'état S t . On note N t l'ensemble de toutes les classes rencontrées jusqu'à l'état S t inclus. Ainsi, N 1 = P 1 initialement, et N t = N t-1 + P t = variabilité des données est faible, aucun stockage n'est possible pour les classes passées et les mises à jour sont rapides.

-Méthodes basées sur le fine tuning [START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF][START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF][START_REF] Wu | Large Scale Incremental Learning[END_REF] [START_REF] Alexandru | Large-scale Image Mining with Flickr Groups[END_REF][START_REF] Kornblith | Do Better ImageNet Models Transfer Better?[END_REF][START_REF] Sharif | CNN Features Off-the-Shelf: An Astounding Baseline for Recognition[END_REF] à l'apprentissage incrémental. DeeSIL (illustrée dans la Figure 3.2) comporte deux étapes faiblement corrélées. Tout d'abord, un modèle profond M 1 est entraîné afin de fournir une représentation fixe qui est ensuite utilisée pour entraîner des classificateurs linéaires de type SVM (Machines à Vecteur Support [START_REF] Boser | A Training Algorithm for Optimal Margin Classifiers[END_REF]) pendant la phase incrémentale. Au lieu d'utiliser la mémoire du système K pour conserver les exemples positifs, un ensemble de caractéristiques négatives nécessaires à l'apprentissage incrémental des classificateurs est stocké. Ce choix permet d'utiliser tous les exemples positifs pour l'entraînement sans violer la contrainte de mémoire.

Notre hypothèse est que l'apprentissage des SVMs sur tous les positifs compense l'inconvénient lié à l'utilisation d'une représentation profonde fixe. Puisqu'aucun réentraînement n'est nécessaire pour augmenter la capacité du système, l'approche est considérablement moins complexe que ses homologues à apprentissage profond pur. L'ajout d'une nouvelle classe se fait par l'entraînement d'un classificateur linéaire, une opération qui prend moins d'une minute sur un seul CPU.

IL2M : Incremental Learning with Dual Memory

L'inconvénient principal de DeeSIL est que ses performances dépendent fortement de la qualité de la représentation fixe. Si cette dernière est entraînée avec peu de données, ou avec des classes visuellement différentes de celles des classes apprises en incrémental, DeeSIL ne parvient pas à transférer continuellement les connaissances aux états suivants. Une solution à ce problème consiste à affiner le modèle à chaque état incrémental afin de mettre à jour sa représentation avec les nouvelles données. Cependant, le déséquilibre entre les anciennes et les nouvelles classes s'aggrave avec le temps, un phénomène qui nécessite des techniques pour supprimer le biais du réseau vers les nouvelles classes.

Dans cette section, nous présentons une méthode qui vise à concilier partiellement les approches basées sur le fine tuning et la représentation fixe. IL2M (illustrée dans la Figure 3.6) utilise le fine tuning pour mettre à jour les modèles profonds à chaque état incrémental. Cependant, à cause de la mise à jour profonde des paramètres lors du fine tuning, les modèles initiaux ne peuvent pas être entièrement réutilisés dans les états ultérieurs. Au lieu de cela, IL2M exploite les statistiques des classes passées de leur état initial pour rectifier leurs scores de prédiction dans l'état incrémental actuel. Cette rectification est soutenue par deux hypothèses connexes : (1) les classes sont mieux modélisées lorsque toutes leurs données sont disponibles, et (2) les scores de prédiction des classes sont en moyenne plus élevés lorsque davantage des données d'entraînement sont disponibles. Nous illustrons la validité de ces hypothèses dans la Figure 3.5. Elle représente les prédictions moyennes des classes passées et nouvelles pour trois datasets de grande échelle avec T = 10 et |K| = {20000, 10000, 5000}.

Les scores de la Figure 3.5 confirment que le fine tuning génère un biais de prédiction en faveur des nouvelles classes. Ce biais est principalement dû au déséquilibre en faveur des nouvelles classes, qui apparaît dans l'apprentissage incrémental. Par conséquent, une grande partie des images des anciennes classes est prédite comme appartenant aux nouvelles classes.

Notre contribution principale est de proposer une mémoire secondaire qui stocke les statistiques des classes initiales dans un format très compact. Les statistiques initiales des classes sont réutilisées dans chaque état incrémental ultérieur pour rectifier les scores de prédiction des classes passées. La rectification est nécessaire car les modèles d'apprentissage incrémental sont formés avec des ensembles de données déséquilibrés dans lesquels les classes passées ont moins d'exemples. Par conséquent, leurs scores de prédiction sont généralement plus faibles que ceux des nouvelles classes.

Pour compenser le biais vers les nouvelles classes, nous rectifions les prédictions des classes passées en utilisant l'Équation 3.1 du Chapitre 3.

ScaIL: Classifier Weights Scaling for Class-Incremental Learning

Nous étudions plus profondément l'effet de l'oubli catastrophique et découvrons que le biais est fortement présent dans la matrice des poids de la dernière couche dense. Nous présentons ScaIL, une méthode simple et efficace (illustrée dans la Figure 3.9) qui réduit le biais en faveur des nouvelles classes en exploitant les vecteurs de poids des classes passées tels qu'ils ont été appris dans leur état initial avec toutes les données des classes disponibles. Puisque les poids des classes passées sont appris dans différents états, ils sont normalisés pour être utilisables dans l'état actuel.

La réutilisation des poids initiaux dans les états incrémentaux ultérieurs est rendue possible par un processus de fine tuning avec une mémoire du passé. Ce processus aboutit à une préservation partielle de l'espace des caractéristiques même si le modèle profond évolue. ScaIL réctifie les poids initiaux stockés dans I afin de les rendre comparables à ceux des classes nouvelles dans l'espace des caractéristiques défini par le modèle actuel. La rectification est basée sur les statistiques de poids calculées pour les nouvelles classes dans chaque état. Nous calculons un vecteur moyen par état et l'utilisons ultérieurement pour la normalisation. Dans l'Équation 3.2, nous trions le vecteur de poids de chaque nouvelle classe en fonction des valeurs absolues de ses éléments.

L'utilisation de valeurs absolues est nécessaire puisque les activations des poids de classification peuvent être positives ou négatives. Une fois que les poids des nouvelles classes sont triés, nous utilisons l'Équation 3.3 pour calculer un vecteur moyen par état que nous utilisons pour la normalisation.

Pour rendre comparables les prédictions des classes de différents états, il est nécessaire de calculer µ t séparément pour chaque état. Notez que chaque moyenne est calculée en utilisant des poids situés au même rang pour chaque vecteur.

Dans l'état S t , ScaIL transforme les poids des classes passées tels qu'ils ont été appris dans leur état initial en utilisant l'Équation 3.4.

Chaque poids w d j est modifié en utilisant les activations moyennes de son rang, renvoyées par la fonction R(•), dans les états actuel et initial S t et S i . Ceci est fait afin de préserver l'importance relative de chaque poids. Le poids réctifié pour chaque classe passée j de l'état actuel S t s'écrit comme W j t = {w 1 j , w 2 j , ..., w d j , ..., w D j }. Notez que la couche de classification ScaIL pour S t combine des poids rectifiés pour les classes passées et des poids originaux pour les nouvelles classes.

C.5 Apprentissage Incrémental sans mémoire SIW: Standardization of Initial Weights for Incremental Learning

Nous nous appuyons sur ScaIL et [START_REF] Zhou | M2KD: Multi-model and Multi-level Knowledge Distillation for Incremental Learning[END_REF] pour proposer SIW , une méthode (illustrée dans la Figure 4.4) qui: exploite les informations des états initiaux des classes; assure l'équité des prédictions associées aux classes passées et nouvelles [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF][START_REF] Wu | Large Scale Incremental Learning[END_REF]; utilise le F T pour entraîner des modèles profonds [START_REF] Ahn | A Simple Class Decision Balancing for Incremental Learning[END_REF] . Cependant, notre approche diffère par la méthode utilisée pour la normalisation des poids, et met l'accent sur un apprentissage incrémental sans mémoire à grande échelle. Nous supposons qu'il est possible d'exploiter les poids initiaux des classes, afin d'atténuer l'effet de l'oubli catastrophique dans un apprentissage incrémental sans mémoire. L'effet de l'oubli catastrophique peut être observé au niveau des magnitudes moyennes des poids des anciennes et nouvelles classes comme dans la Figure 4.2. La Figure 4.2 montre que les classes passées ont des magnitudes beaucoup plus faibles car aucune mémoire n'est tolérée. Comme les magnitudes sont beaucoup plus élevées pour les nouvelles classes, les exemples de test seront toujours attribués à l'une de ces classes, même s'ils appartiennent aux classes antérieures. La figure montre aussi que l'ampleur des nouvelles classes varie selon les états incrémentaux, avec une tendance globale à la réduction dans les états ultérieurs. Une normalisation des poids initiaux est donc nécessaire pour assurer l'équité s'ils sont réutilisés à travers les états incrémentaux comme proposé ici. La Figure 4.2 montre que la normalisation des poids initiaux rend les populations statistiques plus comparables. Une deuxième hypothèse importante de notre approche est que les caractéristiques extraites de l'avant-dernière couche du modèle actuel sont compatibles avec les poids initiaux des états précédents. Cette hypothèse est valable si les caractéristiques actuelles gardent une trace de ce qui a été appris auparavant.

Nous réutilisons les poids initiaux des classes afin d'atténuer l'oubli catastrophique en appliquant l'Equation 4.1. Ensuite, nous normalisons les poids initiaux en utilisant l'Equation 4.2. La normalisation est utile si elle est appliquée aux populations statistiques qui suivent une distribution normale [START_REF] Freedman | Statistics: Fourth International Student Edition[END_REF], ce qui est le cas pour les poids de l'Équation 4.1.

TransIL: Dataset Knowledge Transfer for Class-Incremental Learning

Notre principale contribution est de permettre l'utilisation des méthodes de correction de biais, comme la couche BiC de [START_REF] Wu | Large Scale Incremental Learning[END_REF], dans un protocol sans mémoire. Nous nous concentrons sur cette approche car elle est à la fois simple et efficace [START_REF] Belouadah | A comprehensive study of class incremental learning algorithms for visual tasks[END_REF][START_REF] Masana | Class-incremental learning: survey and performance evaluation on image classification[END_REF]. Les auteurs de BiC [START_REF] Wu | Large Scale Incremental Learning[END_REF] utilisent un ensemble de validation qui stocke des échantillons de classes passées pour optimiser les paramètres. Au lieu de cela, nous apprenons les paramètres de correction hors ligne sur un ensemble de datasets de référence, puis nous les transférons aux datasets cibles. L'intuition est que, si les ensembles de données sont différents, les paramètres de correction de biais optimaux sont suffisamment stables pour être transférables entre eux. Nous illustrons l'approche dans la Figure 4.7, la partie supérieure montre le processus d'apprentissage incrémental avec un dataset de référence. Une mémoire pour les données de validation nécessaires à l'optimisation de la couche de correction de biais est prévue puisque l'apprentissage se fait hors ligne. La partie inférieure de la figure présente l'apprentissage incrémental d'un dataset cible. La principale différence avec l'apprentissage incrémental sans mémoire standard provient de l'utilisation d'une couche de correction de biais optimisée sur le dataset de référence. Son introduction conduit à une meilleure comparabilité des scores de prédiction pour les classes passées et nouvelles. Notez que la méthode proposée est applicable à n'importe quelle méthode d'apprentissage incrémental puisqu'elle ne nécessite que la disponibilité des prédictions brutes fournies par les modèles profonds M.

La deuxième contribution consiste à affiner la définition de la couche de correction de biais introduite dans [START_REF] Wu | Large Scale Incremental Learning[END_REF]. La formulation originale traite toutes les classes passées de manière égale dans le processus de correction. Comme [START_REF] Masana | Class-incremental learning: survey and performance evaluation on image classification[END_REF], nous faisons l'hypothèse que le degré d'oubli associé aux classes passées dépend de l'état initial dans lequel elles ont été apprises. Par conséquent, nous proposons Adaptive BiC (AdBiC), une procédure d'optimisation qui apprend une paire de paramètres par état au lieu d'une seule paire de paramètres comme proposé dans [START_REF] Wu | Large Scale Incremental Learning[END_REF].

Contrairement à BiC [START_REF] Wu | Large Scale Incremental Learning[END_REF], l'Équation 4.8 ajuste les scores de prédiction en fonction de l'état dans lequel les classes ont été rencontrées pour la première fois. Notez que chaque paire α k t , β k t est partagée entre toutes les classes apprises pour la première fois dans le même état. Ces paramètres sont optimisés sur un ensemble de validation en utilisant l'erreur d'entropie croisée.

L'optimisation des paramètres α et β est impossible dans un protocol sans mémoire, puisque les exemplaires des classes passées ne sont pas disponibles. Pour contourner ce problème, nous faisons l'hypothèse que les valeurs optimales de ces paramètres peuvent être transférées entre les datasets de référence et cibles, notés X r et X respectivement. L'intuition est que ces valeurs sont suffisamment stables malgré la variabilité du contenu des ensembles de données. Le stockage de l'ensemble de validation est nécessaire afin d'optimiser les paramètres de l'Équation 4.8 et est possible puisque l'entraînement des datasets de référence est effectué hors ligne. Notez que les modèles incrémentaux de X r sont entraînés sans mémoire afin de simuler l'apprentissage des datasets cibles X . Nous stockons ensuite les paramètres de correction de biais optimisés pour les datasets de référence afin d'effectuer le transfert vers les datasets cibles sans utiliser de mémoire. Pour chaque état incrémental, nous calculons la moyenne des valeurs α et β sur tous les datasets de référence. Les moyennes obtenues sont utilisées pour la rectification du score sur les datasets cibles. La mémoire nécessaire au stockage des paramètres transférés est négligeable puisque nous avons besoin de 2×(2+3+..

C.6 Conclusions

-Apprentissage incrémental avec mémoire -Les principales conclusions sont les suivantes : (1) la mémoire bornée peut être une bonne alternative à l'erreur de distillation largement utilisée sur des datasets à grande échelle, et (2) l'utilisation d'une mémoire bornée seule n'est pas suffisante car le biais du réseau neuronal est important vers les nouvelles classes, notamment au niveau des scores de classification. D'autres techniques doivent être déployées pour supprimer ce biais.

-Apprentissage incrémental sans mémoire -Les principales conclusions sont les suivantes : (1) l'erreur de distillation est efficace lorsqu'aucune mémoire du passé n'est autorisée (ce n'est pas le cas à grande échelle lorsqu'une mémoire est autorisée), (2) l'utilisation des poids initiaux des classes passées à partir de leurs états initiaux est bénéfique pour lutter contre l'oubli catastrophique. La précision des systèmes actuels d'apprentissage incrémental sans mémoire est encore faible, car l'écart avec un apprentissage à partir de zéro (avec toutes les données disponibles) est important. Des efforts supplémentaires sont nécessaires pour améliorer les systèmes actuels dans des scénarios réels.

C.7 Perspectives

Les performances des méthodes d'apprentissage incrémental se rapprochent de celles de l'apprentissage standard, où l'on suppose que toutes les données de toutes les classes sont disponibles à tout moment. Cependant, le problème de l'oubli catastrophique est loin d'être résolu, surtout à grande échelle. La plupart des systèmes existants [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF][START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF][START_REF] Hinton | Distilling the Knowledge in a Neural Network[END_REF][START_REF] Javed | Revisiting Distillation and Incremental Classifier Learning[END_REF] utilisent une mémoire du passé. Notez que, dans les scénarios de la vie réelle, une mémoire n'est pas toujours autorisée. En outre, les algorithmes dépendant de la mémoire ont tendance à ne pas bien évoluer lorsque de plus en plus de classes n'auront pas de représentants pour elles lorsque la taille maximale de la mémoire est atteinte.

L'apprentissage incrémental sans mémoire est peu étudié dans la littérature et nous pensons que davantage d'efforts devraient y être consacrés. A notre connaissance, les seules méthodes de ce type disponibles sont celles que nous avons proposées en complément de: Learning without Memorizing [START_REF] Dhar | Learning without Memorizing[END_REF], Learning without Forgetting (LwF) [START_REF] Li | Learning Without Forgetting[END_REF], Deep-SLDA [START_REF] Hayes | Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis[END_REF], Semantic Drift Compensation (SDC) [START_REF] Yu | Semantic Drift Compensation for Class-Incremental Learning[END_REF], et Always Be Dreaming (AbD) [START_REF] Smith | Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning[END_REF]. Nous pourrions adapter d'autres méthodes à un cadre sans mémoire (REM IN D [START_REF] Tyler | REMIND Your Neural Network to Prevent Catastrophic Forgetting[END_REF] et LU CIR [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF]), mais ce nombre de systèmes est négligeable par rapport à ceux qui reposent sur une mémoire du passé.

Traiter l'apprentissage incrémental comme un problème d'apprentissage déséquilibré donne des résultats très intéressants avec ou sans l'utilisation d'un composant de distillation. Il serait intéressant d'étudier des schémas de réduction de biais plus sophistiqués pour améliorer encore les performances. De même, une étude plus approfondie des raisons pour lesquelles la distillation ne fonctionne pas pour les ensembles de données à grande échelle est nécessaire. Les résultats empiriques rapportés dans cette thèse devraient être complétés par une analyse plus théorique pour améliorer la compréhension de ce phénomène.

Enfin, il convient de rendre le scénario d'évaluation plus réaliste en:

-abandonnant l'hypothèse que toutes les nouvelles données sont annotées -utilisant un nombre variable de classes dans chaque état incrémental. Ce cas est plus réaliste car les données peuvent arriver de manière aléatoire.

-travaillant avec des jeux de données déséquilibrés qui sont plus susceptibles de se produire dans des applications réelles.

-manipulant des images individuelles au lieu de classes, où les images de passé peuvent être retrouvée dans les états futurs [START_REF] He | Incremental Learning in Online Scenario[END_REF].

Les points mentionnés ci-dessus sont intéressants et devraient être abordés pour une utilisation transparente de l'apprentissage incrémental dans la vie pratique comme dans [START_REF] Mi | Generalized Class Incremental Learning[END_REF]. Abstract: Incremental learning (IL) enables the adaptation of artificial agents to dynamic environments in which data is presented in streams. This type of learning is needed when access to past data is limited or impossible but is affected by catastrophic forgetting. This phenomenon consists of a drastic performance drop for previously learned information when ingesting new data. One way to tackle this problem is to use a limited memory of the past to refresh previously learned knowledge. Currently, memory-based approaches achieve the best state-of-the-art results. In this thesis, we present many methods with and without memory of the past. Our methods deal with catastrophic forgetting either by (1) calibrating past and new classes scores at the end of the network, or (2) performing initial class weights replay, or (3) transferring knowledge between reference and target datasets. We notably investigate the usefulness of the widely used knowledge distillation and the effect of enabling or not a memory of the past. Extensive experiments against a range of state-ofthe-art approaches were conducted in order to validate the efficiency of our methods.

Figure 1 . 2 -

 12 Figure 1.2 -Continual Learning life cycle.

Figure 1 . 3 -

 13 Figure 1.3 -Three main scenarios of continual learning.

Figure 2 . 1 -

 21 Figure 2.1 -State-of-the-art approaches divided into three main categories: (1) Fixedrepresentation based approaches where the model does not evolve through incremental states, (2) fine-tuning based approaches where the model is updated with new classes data and possibly with a pool of exemplars from past classes, and (3) parameter-isolation based approaches that either compress the network or expand its size in order to accommodate new classes. Best viewed in color.

Figure 3 . 1 -

 31 Figure 3.1 -A toy example of class-IL with memory where T = 3 and |K| = 4. M t are models, S t are states, X t are sets of images, o t are raw scores vectors, A is a class-IL algorithm. Best viewed in color.

|K|

 Nt representatives in F N . Naturally, a class' own representatives are discarded from F N when training its shallow classifier.

Figure 3 . 3 -

 33 Figure 3.3 -Top-5 accuracy on ILSVRC for DeeSIL variants obtained with three negative selection strategies.

Figure 3 . 4 -

 34 Figure 3.4 -Top-5 accuracy on ILSVRC for fixed deep representations obtained with larger datasets.

Figure 3 . 5 -

 35 Figure 3.5 -Prediction scores for the ILSVRC, VGGFACE2, and LANDMARKS datasets with T = 10 states and memory |K| = {20000, 10000, 5000} exemplars. We select the scores of the true class for train images and then average them for past and new classes. Only incremental states (from S 2 to S 10) are represented. The initial one does not include past classes and is not represented. Best viewed in color.

Figure 3 . 6 -

 36 Figure 3.6 -Illustration of the proposed IL2M training process. The deep models associated to the three states recognize 2, 4 and 6 classes respectively. The bounded memory includes |K| = 4 image exemplars of past classes and is represented on light blue background. The number of class exemplars class stored in memory decreases when adding new classes to keep memory requirements constant. The IL training process is more and more prone to catastrophic forgetting because the dataset is increasingly imbalanced. The second memory I, represented in light pink, stores statistics that are obtained when classes are initially learned. IL2M makes these class statistics usable across different incremental states to rectify the raw prediction scores of past classes in order to make them more comparable to those of new classes. Best viewed in color.

 version of F T which uses the nearest-exemplars-mean classifier from[START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] instead of the classification layer of the deep network. F T N EM is a modified version of iCaRL in which the distillation loss L d is ablated.

Figure 3 . 7 -

 37 Figure 3.7 -Top-1 accuracy for object, face and landmark recognition with memory |K| = 10000 and T = 10 states. To be aligned with the results from Table 3.1, only the incremental states are represented. Best viewed in color.

3. 4

 4 ScaIL: Classifier Weights Scaling for Class-Incremental Learning 3.4.1 Introduction

Figure 3 .

 3 Figure 3.8 -(a) -Raw prediction scores of vanilla fine tuning for the ILSVRC dataset with |K| = 5000 past exemplars and a total of T = 10 states. Incremental states from 2 to 10 are represented. The initial state S 1 is non-incremental and is not shown. (b) -Ranked mean weight activations of new and past classes in state S 3 (blue and red) and mean weight activations of S 3 past classes as initially learned in S 1 (black) and S 2 (green). Best viewed in color.

 Figure 3.9 -Illustration of ScaIL. X j t is the data of the j th class in state S t , M t is the deep model of the state S t . W j i is the classifier of the j th class in the initial state S i in which the class was learned with all data, and W j t is the classifier of the j th class in the state t after scaling it with ScaIL. We represent three states which recognize 2, 4 and 6 classes respectively. The bounded memory (light blue) is fixed at |K| = 4 past classes exemplars. As the training advances, the data imbalance between past and new classes grows due to the bounded memory K and the prediction bias in favor of new classes becomes more prominent. ScaIL reduces this bias by making classifier weights of past and new classes more comparable by using a small memory I which stores initial classifiers W j i . In each IL state, ScaIL replaces the raw classifiers of past classes provided by the model M t by W j t , a scaled version of W j i , the initial classifier. Since ScaIL combines classifiers learned in different IL states, initial classifiers are reshaped using aggregate statistics from the current and the initial states. The classifiers for newly learned classes are left as learned by the current model M t . Best viewed in color.

 The features learned in S t are fed into this scaled classification layer instead of the original one provided by M t . Note that only scores of the top-10 past classes are scaled as they code more information; the scores of the remaining past classes are set to zero. The choice of this value is experimental.We illustrate the effect of ScaIL on the prediction scores in Figure3.10. Past classes have a slightly larger mean classification score in the first states and a lower one in subsequent states. While not completely aligned, the predictions of past and new classes in ScaIL are much more balanced compared to those of raw fine tuning results from Figure 3.8(a).

Figure 3 .

 3 Figure 3.10 -Prediction scores before (left) and after (right) scaling for the ILSVRC dataset [135] with |K| = 5000 exemplars and T = 10 states. Best viewed in color.

Figure 3 . 11 -

 311 Figure 3.11 -Detailed Top-5 Test accuracy with T = 50 and memory |K| = 0.5%. A comparison is done between F T , F T distill and iCaRL to analyze the role of distillation.

Figure 3 . 12 -

 312 Figure 3.12 -Detail of past-past errors e(p, p) for individual states of F T distill with T = 10 and |K| = 0.5%. In each state, errors due to the latest past state are over-represented as a result of learning its associated state with an imbalanced training set. Best viewed in color.

3. 5 A

 5 Comprehensive study of Class-Incremental learning with memory 3.5.1 Introduction

Figure 3 . 13 -

 313 Figure 3.13 -Illustration of the proposed training process with one initial state S 1 , and one incremental state S 2 . The initial deep model M 1 is trained from scratch on a fully-labeled dataset X l1 using Joint (a non-incremental learning). M 1 and X l 1 are used to prepare the past class memory K for the next state using herding (a mechanism that selects the best representative past class images). State S 2 starts with a sample acquisition function AF that takes the unlabeled set X u 2 and the model M 1 as inputs. AF provides a part of the budget B annotated as X l z 2 . The model M 1 is then updated with data from X l z 2 ∪ K using F T th (a fine tuning followed by a threshold calibration). The updated model M z 2 is again fed into the acquisition function AF with the rest of unlabeled examples from X u 2 to further annotate a part of the budget B and the model is updated afterward. This process is repeated Z times until B is exhausted. The model M 2 is then returned with the annotated dataset X l 2 and the memory K is updated by inserting exemplars of new classes from X l 2 and reducing exemplars of past classes in order to fit its size. Note that the two blue arrows are applicable only in the first AL iteration (when z = 1). Best viewed in color.

 (x u), µ(c mnr t)) -min c maj t ∈C maj t ∆(f (x u), µ(c maj t)) (3.11) where: x u is an unlabeled sample, c mnr t and c maj t are classes from the minority and majority sets C mnr t and C maj t respectively, f (x u) is the feature vector of x u extracted from the latest deep model available, µ(c mnr t) and µ(c maj t) are the centroids of minority and majority classes c mnr t and c maj t computed over the embeddings of their labeled samples.

 . A total of |K| images of past classes are kept at any time during incremental learning. K approximates 2% of the full training sets. Memory sizes are thus |K| = 1000 for IMAGENET-100 and CIFAR-100, |K| = 465 for FACES-100 and |K| = 450

Figure 4 . 1 -

 41 Figure 4.1 -A toy example of class IL without memory where T = 3. M t are models, S t are states, X t are sets of images, o t are raw scores vectors, A is a memoryless class IL algorithm. Best viewed in color.

Figure 4 . 2 -

 42 Figure 4.2 -Mean magnitudes of classifier weights for new and past classes in memoryless incremental learning: (a) left -with vanilla fine tuning affected by catastrophic forgetting and (b) right -after standardization of initial classifiers. Mean magnitudes are computed only for incremental states and the first non-incremental state is excluded. Note that the reference state is the rightmost one in each figure.

Figure 4 . 3 -

 43 Figure 4.3 -Mean feature similarities between incremental states for test images of the first state.Cosine similarities are computed for vanilla fine tuning as follows: (a) without memory, (b) with bounded memory of 1% of the dataset, (c) with bounded memory of 2%. Subfigure (d) plots lower-bound similarities for the case when individual states are learned independently, without fine tuning. The upper bound for similarity is 1 and would be obtained for the model, which is frozen after the initial state. However, such an approach has no plasticity and cannot incorporate knowledge related to data streamed during IL. The final incremental state (S 10) is used as a reference to compute similarities with other states. The more distant two states are, the lower the similarity is likely to be.

Figure 4 . 4 -

 44 Figure 4.4 -Overview of the proposed method with an initial and two incremental states, and two classes per state. A deep model M t is trained for each state S t . Each model includes a feature extractor F t and a classification layer W t . In memoryless IL, models have access only to data for new classes and to the previous model for fine tuning (F T). Note that F T can be implemented in different ways: with a classical distillation component to counter catastrophic forgetting[START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Javed | Revisiting Distillation and Incremental Classifier Learning[END_REF][START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF], with a more sophisticated tackling of forgetting[START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF] or using vanilla F T (Sections3.3 and 3.4). Existing end-to-end methods[START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF] (in blue) perform recognition using the weights from W t , the classification layer of the current model which updates past classifiers. Our approach (in green) is different because it freezes classifiers learned initially (init) for each class and applies standardization (siw) to make them more comparable.

Figure 4 . 5 -

 45 Figure 4.5 -Weights distribution of a random subset of classifier weights from the weights matrix W t defined in Equation 2.3 (Section 2.2).

 .0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 c

4. 3

 3 TransIL: Dataset Knowledge Transfer for Class-Incremental Learning 4.3.

Figure 4 . 7 -

 47 Figure 4.7 -Illustration of TransIL, our proposed method, depicting states from 1 to 3 for a reference (top) and a target (bottom) dataset. The model M is updated in each state with data from new classes.The class IL process is first launched offline on the reference dataset where AdBiC, our proposed bias correction layer, is trained using a validation memory (in light grey) which stores samples for past and new classes. Class IL is then applied to the target dataset but without class samples shared across states since a memory is not allowed in this scenario. The set of optimal parameters of AdBiC obtained for the reference dataset (light pink memory I) is transferred to the target dataset. This is the only information shared between the two processes and it has a negligible memory footprint. The transfer of parameters enables the use of bias correction for the target dataset. The final predictions obtained in the state S 3 are improved compared to the direct use of M 3 predictions since the bias in favor of new classes is reduced. Best viewed in color.

Figure 4 . 8 -

 48 Figure 4.8 -Averaged α k (left) and β k (right) values computed for R = 10 reference datasets using LwF and LU CIR, at the end of an incremental process with T = 10 states.

Figure 4 . 9 -

 49 Figure 4.9 -Average accuracies in each state on CIFAR-100 (lef t) and IMN-100 (right) datasets with all backbone methods after AdBiC correction, for T = 5 (top), T = 10 (middle) and T = 20 (bottom) states. The accuracies without correction of the corresponding methods are provided in dotted lines (same colors). Best viewed in color.

Figure 4 . 10 -

 410 Figure 4.10 -Average accuracies in each state on BIRDS-100 (lef t) and FOOD-100 (right) datasets with all backbone methods after AdBiC correction, for T = 5 (top), T = 10 (middle) and T = 20 (bottom) states. The accuracies without correction of the corresponding methods are provided in dotted lines (same colors). Best viewed in color.

 (a) LwF[START_REF] Li | Learning Without Forgetting[END_REF] (b) LUCIR[START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF]

Figure 4 . 11 -

 411 Figure 4.11 -Mean prediction scores for CIFAR-100 classes grouped by state at the end of the IL process for LwF and LU CIR methods with T = 10 states. Applying calibration parameters learned on reference datasets clearly reduces the imbalance of mean prediction scores and the bias toward recent classes, compared to raw scores from Figure 4.6.

Figure 4 .

 4 Figure 4.11 provides a qualitative view of the effect of AdBiC which complements numerical results from Table4.4. It illustrates the predictions scores for LwF and LU CIR after the application of bias correction with AdBiC. The correction is effective since the predictions associated to IL states are more balanced in Figure4.11, compared to the raw predictions from Figure4.6. The effect of calibration is particularly interesting for LU CIR, where mean prediction scores are balanced for states 3 to 10. We note that bias correction should ideally provide fully balanced mean prediction scores to give equal chances to classes learned in different states. Practical results show that some variation remains and is notably due to variable forgetting for past states and to the variable difficulty of learning different visual classes.

139

 139

4. 4 A

 4 Comprehensive study of Class-Incremental learning with-

Figure 5 . 1 -

 51 Figure 5.1 -State-of-the-art approaches after adding our proposed approaches (in red). To be compared to Figure 2.1. Best viewed in color.

 .+T) = (T +2)×(T -1) valeurs flottantes pour chaque dataset et chaque valeur de T . Pour les états T = {5, 10, 20}, nous ne stockons donc respectivement que 28, 108 et 418 valeurs flottantes.

Titre:

 Apprentissage Incrémental Profond à Large Échelle Mot clés : Apprentissage Incrémental, oubli catastrophique, classification d'image, réseaux de neurones convolutifs Résumé : L'apprentissage incrémental (IL) permet l'adaptation d'agents artificiels à des environnements dynamiques dans lesquels les données sont présentées séquentillement. Ce type d'apprentissage est nécessaire lorsque l'accès aux données passées est limité ou impossible, mais il est affecté par l'oubli catastrophique. Ce phénomène consiste en une chute drastique des performances des informations précédemment apprises lors de l'ingestion de nouvelles données. Une façon de résoudre ce problème est d'utiliser une mémoire limitée du passé pour rafraîchir les connaissances apprises précédemment. Actuellement, les approches basées sur la mé-moire obtiennent les meilleurs résultats de l'état de l'art. Dans cette thèse, nous présentons plusieurs méthodes avec et sans mémoire du passé. Nos méthodes traitent l'oubli catastrophique soit (1) en calibrant les scores des classes passées et nouvelles à la fin du réseau, soit (2) en réutilisant les poids initiaux des classes passées, soit (3) en transférant les connaissances entre des datasets de référence et cibles. Nous étudions notamment l'utilité de la distillation largement utilisée et l'effet d'utiliser ou non une mémoire du passé. Des expériences approfondies contre des méthodes de l'état de l'art ont été menées afin de valider l'efficacité de nos méthodes. Title: Large-Scale Deep Class-Incremental Learning Keywords: Incremental learning, catastrophic forgetting, image classification, convolutional neural networks

 Model in state S t F t feature extractor in state S t C t classification component in state S t W t last layer weights matrix in state S t W j t embedding of class j (a row from W t) B t last layer bias vector in state S t X r reference dataset X t new classes data (target dataset) in state S t X j t set of images of class j in state S t (a subset from X t) F j set of feature vectors of all images of class j o t raw output scores vector in state S t rectified score of class j in state S t p t output probabilities vector in state S t N t total number of classes recognized until state S t included P t number of new classes learned in state S t L

		z	index for AL iteration
		j, l indices for classes
		φ	parameters of the feature extractor
		ψ	parameters of the classification layer
		θ	all network parameters (θ t = {φ t , ψ t })
	T	total number of states | • | number of elements (in the memory K for example)
	K exemplars memory A accuracy
	I	secondary memory A Class-IL algorithm
	B	active learning (AL) budget y ground-truth label
	Z	number of AL annotation iterations ŷ predicted label
	R S t state number t number of reference datasets t raw output score of class j in state S t G IL aggregation measure for evaluation α, β calibration parameters M t o j δ Kronecker delta
	o j t	
	c classification loss
	L d distillation loss
	σ	softmax function
	T	Temperature
	σ	softened softmax function (σ with T = 2)
	t, k indices for states
	i	index for initial states

TABLE OF CONTENTS

 OF Experiments . 3.2.4 Results and discussion . 3.2.5 Conclusion . 3.3 IL2M: Class-Incremental Learning with Dual Memory 3.3.1 Introduction . 3.3.2 Proposed approach . 3.3.3 Experiments . 3.3.4 Results and discussion . 3.3.5 Conclusion .6.6 Conclusion . 3.7 General Conclusion .

	3.2.3 INTRODUCTION
	1 Introduction
	1.1 Context and background
	Artificial Intelligence

3.4 ScaIL: Classifier Weights Scaling for Class-Incremental Learning 3.4.1 Introduction . 3.4.2 Proposed Method . 3.4.3 Experiments . 3.4.4 G IL evaluation measure . 3.4.5 Results and discussion . 3.4.6 Conclusion . 3.5 A Comprehensive study of Class-Incremental learning with memory 3.5.1 Introduction . 3.5.2 Tested approaches . 3.5.3 Experiments . 3.5.4 Results and discussion . 3.5.5 Conclusion . 3.6 Active Class Incremental Learning for Imbalanced Datasets 3.6.1 Introduction . 3.6.2 Related work . 3.6.3 Proposed approach . 3.6.4 Experiments . 3.6.5 Results and discussion . 34 Class-Incremental Learning without memory 4.1 General Introduction . 4.2 SIW: Standardization of Initial Weights for Class-Incremental Learning

 DeeSIL 47.3 47.2 47.0 46.5 81.5 81.3 80.9 80.0 82.8 82.6 82.4 81.2 N EM 54.9 49.1 42.8 NA 91.1 87.6 84.2 NA 91.1 88.5 84.7 NA F T BAL 52.1 47.0 37.2 NA 91.5 88.6 82.1 NA 93.2 90.2 85.7 NA IL2M 56.4 50.8 44.1 NA 92.0 89.7 86.5 NA 93.4 90.8 86.9 NA

	States				T = 10				|K| = 5000
	Dataset	ILSVRC		VGGFACE2		LANDMARKS	
	|K|	20k 10k	5k	0k	20k 10k	5k	0k	20k 10k	5k	0k
	iCaRL 35.1 33.6 32.9 20.8 66.8 65.3 64.4 26.1 68.9 66.9 65.6 27.0
	F T	51.1 42.3 32.2 18.3 91.1 87.6 82.0 20.8 93.2 90.1 84.7 21.0
	F T Joint	73.0			97.0			97.1		

Table 3 .

 3 2 -Top-5 average accuracy (%) for the different methods tested. NA stands for "Not Applicable". Joint is the non-incremental upper-bound performance obtained with all data available for all classes. Accuracy is averaged only for incremental states (excluding the initial, non-incremental state). The available memory |K| and the number of states T are varied to test their effect on the performance of the tested methods. Best results are in bold.

	61.0 56.3 89.4 71.6 89.0	71.2
	79.2 69.0 96.4 87.2 96.4	90.3
	61.9 64.5 95.6 94.4 94.6	93.8
	71.2 71.4 95.4 94.6 93.2	93.6
	70.1 67.8 96.1 94.5 95.4	94.0
	75.6 66.1 96.4 94.5 95.3	93.6
	92.3	99.2	99.1

 .1 and Figure 3.7 show that the use of distillation loss is detrimental in class IL if at least a few exemplars per past class are allowed. The ablation of L d in iCaRL

						Incremental states		
			S 2	S 3	S 4	S 5	S 6	S 7	S 8	S 9	S 10
		c(p)	1075 1217 1442 1446 1435 1535 1483 1505 1591
		e(p, p) 600 2053 3756 5091 7406 9074 10580 11794 14156
	hybrid1	e(p, n) 3325 6730 9802 13463 16159 19391 22937 26701 29253 c(n) 3562 3739 3558 3603 3673 3750 3584 3762 3641 e(n, n) 1020 839 965 910 793 791 903 792 810
		e(n, p) 418 422 477	487	534	459	513	446	549
		c(p)	2621 4327 5730 6702 7600 7980 8576 9169 8746
		e(p, p) 194 690 1360 2203 3035 4016 4462 6100 5514
		e(p, n) 2185 4983 7910 11095 14365 18004 21962 24731 30740
	F T	c(n)	4139 4314 4145 4155 4251 4319 4236 4376 4267
		e(n, n) 779 608 771	762	692	619	694	560	667
		e(n, p)	82	78	84	83	57	62	70	64	66

Table 3 .

 3 5 indicate that each component has a positive effect compared to

	Incremental states

Table 3 .

 3 4 -Analysis of top-1 errors for (F T) and (IL2M) methods with memory |K| = 10000 and T = 10 states. p and n stand for past and new classes; c and e stand for correct and erroneous predictions. For instance e(p, n) designates the number of wrong predictions of past classes as new ones.

				T = 10
	|K|	F T	IL2M 1 IL2M 2 IL2M 1+2 IL2M
	20000 51.13 53.45	51.94	55.15	56.37
	10000 42.29 47.64	43.63	49.57	50.82
	5000 32.23 42.20	31.74	42.51	44.05

Table 3 .

 3 5 -Top-1 average ILSVRC accuracy for different versions of IL2M evaluated in the ablation study with T = 10 states and memory |K| = {20000, 10000, 5000}.F T . The largest single contribution is the use of class means from the secondary memory I in IL2M1 . The gain is particularly interesting for the lower memory sizes, where the effect of catastrophic forgetting on F T is higher. The model level means have a small positive contribution for |K| = {20000, 10000} and a slight negative effect for |K| = 5000. The final restriction of rectification has a moderate positive effect in all settings.

 2 j , ..., w d j , ..., w D j }. The ScaIL classification layer for S t combines scaled classifiers for past classes and original classifiers for new classes. It can be written as W t = {W t

	1 , ..., W t	N t-1 +1 t N t-1 , W

, ..., W N t t }.

 ScaIL 81.0 78.2 75.1 96.4 95.6 94.5 96.9 95.3 92.7 84.6 81.1 74.9

	States			T = 10			|K| = 0.5%	
	Dataset	ILSVRC	VGGFACE2	LANDMARKS	CIFAR-100	ILSVRC	VGGFACE2 LANDMARKS	CIFAR-100
	|K|	2% 1% 0.5% 2% 1% 0.5% 2% 1% 0.5% 2% 1% 0.5%			
	iCaRL herd 62.5 61.4 60.9 83.9 81.4 78.2 82.5 80.5 76.2 85.1 83.7 83.2			
	BiC herd	85.5 82.8 79.7 97.3 96.6 95.7 97.9 97.3 96.6 88.8 87.6 83.5			
	DeeSIL	74.5 74.3 74.2 92.6 92.5 92.2 93.9 93.6 92.9 66.5 65.2 63.7			
	F T	77.0 70.1 60.0 96.0 94.1 90.7 95.8 93.2 89.1 80.0 73.7 63.3			
	F T N EM	79.4 74.5 69.6 95.7 94.1 91.0 95.2 92.7 88.8 82.4 77.4 68.4			
	F T BAL	81.3 78.0 72.3 96.4 95.0 92.2 96.3 94.3 90.0 73.0 65.0 56.1			
	F TL2	81.4 77.6 72.1 96.5 95.1 92.4 96.2 94.4 91.4 81.8 77.2 69.1			
	F T init	68.9 66.5 61.2 95.9 95.3 94.5 96.5 95.0 92.7 79.3 77.3 73.7			
	F T init L2	78.4 75.7 73.3 95.9 95.3 94.5 96.5 95.0 92.7 83.0 79.2 72.7			
	ScaIL herd 82.0 79.8 76.6 96.5 95.8 95.2 97.3 96.0 94.0 85.6 83.2 79.1			
	Joint	92.3	99.2	99.1	91.2			

Table 3 .

 3 6 -Top-5 average accuracy (%). Following[START_REF] Francisco | End-to-End Incremental Learning[END_REF], accuracy is averaged only for incremental states. The sizes of past memory K and number of states T are varied to evaluate the robustness of algorithms. Joint is the non-incremental upper-bound performance obtained with all data available. The methods whose names include herd exploit herding while the others are based on random exemplar selection. Best results are in bold.

									GIL
	56.2	42.9	72.7	52.3	72.4	54.2	73.2	55.7	-16.75
	74.6	63.9	92.3	85.3	94.7	90.5	50.5	19.6	-4.03
	69.0	58.0	87.2	78.9	90.6	84.8	63.4	42.5	-7.10
	64.5	59.2	90.8	86.5	87.8	85.5	59.9	49.4	-6.40
	72.7	63.4	91.8	87.8	88.1	86.0	64.5	51.0	-6.01
	70.5	61.1	91.7	86.5	87.8	85.3	57.1	50.0	-5.98
	73.4	66.7	92.8	88.8	89.8	87.1	63.2	49.9	-5.17
	53.4	39.0	95.1	90.3	90.6	87.5	60.7	40.1	-5.23
	72.0	66.0	95.1	90.2	90.7	87.6	64.3	42.5	-4.67
	73.9	68.3	94.5	90.5	90.7	88.2	67.9	47.7	-4.41
	76.6	70.9	95.0	92.4	92.6	90.4	69.8	51.0	-3.71
	92.3	99.2		99.1	91.2	-

 .7. Equally important, while distillation is supposed to preserve accuracy for past classes, it clearly does not since the amount of correctly recognized past examples grows very steadily in F T distill .

						Incremental states		
			S 2	S 3	S 4	S 5	S 6	S 7	S 8	S 9	S 10
						ILSVRC			
		c(p)	2117 2995 3415 3875 3653 4451 4558 5003	3119
		e(p, p) 156 450	807	1363 1842 2710 2626 3932	2388
	F T	e(p, n) 2727 6555 10778 14762 19505 22839 27816 31065 39493 c(n) 4151 4322 4103 4141 4267 4304 4247 4378 4248
		e(n, n) 809 638	875	828	716	674	743	595	741
		e(n, p)	40	40	22	31	17	22	10	27	11
		c(p)	850 1008 1355 1355 1195 1344	1419	1543	1562
	F T distill	e(p, p) 472 1746 3700 4999 6904 8246 10771 13400 14556 e(p, n) 3678 7246 9945 13646 16901 20410 22810 25057 28882 c(n) 3645 3834 3597 3607 3744 3754 3605 3766 3662 e(n, n) 1043 793 928 905 785 776 828 692 751
		e(n, p) 312 373	475	488	471	470	567	542	587
						VGGFACE2			
		c(p)	4168 7718 11062 14293 15953 19614 21075 24690 24196
		e(p, p)	89	282	611	947	1354 2170 3203 3827	4929
	F T	e(p, n) 743 2000 3327 c(n) 4825 4834 4866 4865 4881 4879 4887 4874 4760 7693 8216 10722 11483 15875 4883
		e(n, n) 155 143	118	119	108	102	101	108	108
		e(n, p)	20	23	16	16	11	19	12	18	9
		c(p)	1729 2109 1886 1787 1520 1657	1412	1199	1131
	F T distill	e(p, p) 242 1455 2553 3360 4056 5766 e(p, n) 3029 6436 10561 14853 19424 22577 27340 32295 36031 6248 6506 7838 c(n) 4620 4637 4694 4740 4747 4714 4693 4685 4728 e(n, n) 299 239 236 203 212 224 218 248 216
		e(n, p)	81	124	70	57	41	62	89	67	56
						LANDMARKS			
		c(p)	1670 3072 4476 5550 6564 7626 8081 9303 10309
		e(p, p)	38	131	318	616	879	1005 1340 1961	2237
	F T	e(p, n) 292 797 1206 c(n) 1945 1970 1959 1956 1973 1966 1975 1973 1834 2557 3369 4579 4736	5454 1971
		e(n, n)	51	27	35	37	24	27	25	23	27
		e(n, p)	4	3	6	7	3	7	0	4	2
		c(p)	901 1011 859	815	788	769	622	533	419
	F T distill	e(p, p) 159 831 1770 2617 3194 3880 e(p, n) 940 2158 3371 4568 6018 7351 c(n) 1893 1893 1902 1910 1937 1913 e(n, n) 66 53 58 61 37 53	4708 8670 1949 36	5889 9578 10837 6744 1926 1936 52 38
		e(n, p)	41	54	40	29	26	34	15	22	26
						CIFAR-100			
		c(p)	366 614	675	605	686	950	779	692	467
		e(p, p)	10	181	312	288	641	974	835	732	601
	F T	e(p, n) 624 1205 2013 c(n) 791 873 886	3107 3673 4076 5386 6576 866 848 859 834 888	7932 915
		e(n, n) 196 114	103	131	146	127	159	104	80
		e(n, p)	13	13	11	3	6	14	7	8	5
		c(p)	719 1160 1507 1706 1988 2195	2349	2404	2251
	F T distill	e(p, p) e(p, n) 190 383 91 457 c(n) 694 742 e(n, n) 78 62	847 646 735 40	1210 1800 2551 2929 3499 1084 1212 1254 1722 2097 752 723 767 708 786 53 48 35 57 38	3743 3006 814 28
		e(n, p) 228 196	225	195	229	198	235	176	158

 K is the bounded past classes' memory, |X j t | is the number of training examples for the j th class in the state S t , and |X l t ∪ K| is the total number of training examples in state S t . The memory K is needed to rectify past classes' scores.

Table 3 .

 3 9 -Main characteristics of tested approaches: (1) model update -indicates if the model is trained for each incremental state; (2) distillation -if this part of the loss is exploited to control catastrophic forgetting; (3) bias removal -is a separate component which is specifically dedicated to balancing scores between past and new classes, and (4) memory usage -if this component is compulsory (C) or not (NC). * refers to all methods built on top of init.

Table 3 .

 3

				T = 10					|K| = 0.5%	
	Dataset	ILSVRC	VGGFACE2	LANDMARKS	CIFAR-100	ILSVRC	VGGFACE2 LANDMARKS	CIFAR-100	GIL
	|K|	2% 1% 0.5% 2% 1% 0.5% 2% 1% 0.5% 2% 1% 0.5% T =20 T =50 T =20 T =50 T =20 T =50 T =20 T =50
	iCaRL	79.3 76.5 71.0 96.0 95.3 93.9 95.1 94.0 91.8 66.5 56.1 47.9	55.9	45.0	88.5	78.2	86.8	82.4	35.5	35.4	-7.36
	LU CIR CN N	79.9 76.4 72.6 97.2 96.9 96.5 97.2 96.6 96.1 79.8 75.4 69.9	63.9	55.3	93.5	88.3	93.7	90.5	53.5	47.9	-4.13
	LU CIR N EM 80.5 80.0 79.4 96.2 96.0 95.7 95.4 94.9 94.4 82.6 80.8 78.8	73.6	66.3	92.7	87.9	91.9	89.8	69.0	63.0	-4.33
	F T	79.4 74.4 65.9 96.4 94.5 91.3 96.6 94.7 91.4 82.4 77.9 70.7	69.4	64.3	91.6	89.2	90.9	89.0	64.3	54.8	-5.19
	F T N EM	81.4 79.0 75.0 96.4 95.4 94.0 96.1 94.6 92.6 85.1 81.7 76.0	76.5	69.0	94.0	91.1	91.9	89.9	68.8	55.9	-4.28
	F T BAL	84.0 80.9 76.5 97.0 95.7 92.4 96.9 95.3 92.2 80.0 74.0 69.0	75.9	67.1	92.3	89.5	91.2	88.9	62.9	54.2	-4.70
	BiC	85.5 82.8 79.7 97.3 96.6 95.7 97.9 97.3 96.6 88.8 87.6 83.5	74.6	63.9	92.3	85.3	94.7	90.5	50.5	19.6	-4.03
	ScaIL	82.0 79.8 76.6 96.5 95.8 95.2 97.3 96.0 94.0 85.6 83.2 79.1	76.6	70.9	95.0	92.4	92.6	90.4	69.8	51.0	-3.70
	IL2M	80.9 78.1 73.9 96.7 95.4 93.4 96.5 94.7 92.5 81.8 77.0 71.2	70.9	60.6	92.5	88.4	90.8	88.1	61.5	51.0	-4.95
	F T th	84.3 82.1 78.3 97.2 96.3 94.8 97.2 95.8 94.0 86.4 83.9 79.1	78.6	71.2	94.3	91.6	92.9	90.7	71.4	57.9	-3.62
	F T init L2	79.2 76.5 73.0 95.9 95.2 94.6 97.0 95.5 92.7 83.4 80.5 75.2	73.6	67.3	94.6	91.4	91.2	88.5	63.6	44.1	-4.43
	F R	76.7 76.6 76.4 91.7 91.5 89.7 93.8 93.5 93.5 79.5 79.4 78.7	69.2	58.2	85.8	75.2	89.3	82.8	62.3	33.5	-7.62
	DeeSIL	75.5 75.1 74.3 92.7 92.5 92.2 94.0 93.7 93.2 66.9 65.8 64.2	73.0	58.1	87.2	80.0	90.5	85.1	63.9	44.0	-6.92
	REM IN D	80.9 80.7 78.2 94.7 93.2 93.0 96.3 95.8 94.7 60.7 60.7 60.7	73.9	65.0	87.4	80.1	92.8	88.6	52.8	46.4	-6.02
	Joint	92.3	99.2	99.1	91.2	92.3	99.2		99.1	91.2	-

10 -Top-5 average incremental accuracy (%) for IL methods with herding using different values of K and T . Best results are in bold.

Table 3 .

 3 ILSVRC, REM IN D clearly outperforms many FT-based approaches such as iCaRL, LU CIR, IL2M and F T variants except F T th and F T BAL . Streaming-based approaches like REM IN D have the advantage to run much faster than class-incremental-based approaches since they revisit each training example only once. However, the computational cost of DeeSIL is still comparable to that of REM IN D since the SVMs training is fast. Equally important, REM IN D allows immediate evaluation since it learns the dataset images one by one. It is still usable in class incremental context since we can evaluate the model at the end of all training samples of each incremental state. 11 -Top-5 average incremental accuracy (%) for the main methods with random selection of exemplars for different values of K and T . Best results are in bold.

	Role of exemplar selection								
	States			T = 10					|K| = 0.5%	
	Dataset	ILSVRC	VGGFACE2	LANDMARKS	CIFAR-100	ILSVRC	VGGFACE2 LANDMARKS	CIFAR-100	GIL
	|K|	2% 1% 0.5% 2% 1% 0.5% 2% 1% 0.5% 2% 1% 0.5% T =20 T =50 T =20 T =50 T =20 T =50 T =20 T =50
	iCaRL	77.9 73.0 65.3 95.3 93.8 91.1 93.9 91.4 87.4 64.5 53.4 43.9	51.3	40.9	84.3	73.2	81.9	76.4	32.6	33.4	-9.51
	LU CIR CN N 79.8 75.9 72.2 97.3 97.0 96.6 97.1 96.4 96.0 78.6 73.9 67.5	62.4	52.9	93.5	87.8	93.2	89.2	50.4	44.3	-4.36
	F T	77.0 70.1 60.0 96.0 94.1 90.7 95.8 93.2 89.1 80.0 73.7 63.3	64.5	59.2	90.8	86.5	87.8	85.5	59.9	49.4	-6.40
	BiC	85.0 82.4 78.6 97.3 96.8 96.1 97.8 97.2 96.4 88.2 86.5 82.6	72.1	59.9	92.0	82.9	93.8	88.1	54.2	18.1	-4.42
	ScaIL	81.0 78.2 75.1 96.4 95.6 94.5 96.9 95.3 92.7 84.6 81.1 74.9	73.9	68.3	94.5	90.5	90.7	88.2	67.9	47.7	-4.41
	IL2M	78.3 75.2 71.2 96.2 94.9 92.2 95.8 93.6 90.1 79.0 73.9 64.7	66.1	55.6	91.1	85.3	87.6	84.3	58.1	46.3	-6.22
	F T th	82.0 78.6 74.1 96.7 95.6 93.4 96.6 94.7 91.9 84.2 79.9 72.7	73.8	66.4	92.9	88.8	90.0	87.3	67.1	52.7	-4.85
	F R	74.4 74.3 74.3 83.3 83.3 83.2 93.1 93.1 92.6 78.6 78.6 78.0	66.9	54.4	76.2	49.5	84.4	71.8	58.8	28.8	-12.41
	DeeSIL	74.5 74.3 74.2 92.6 92.5 92.2 93.9 93.6 92.9 66.5 65.2 63.7	69.0	58.0	87.2	78.9	90.6	84.8	63.4	42.5	-7.09
	Joint	92.3	99.2	99.1	91.2	92.3	99.2		99.1	91.2	-

Table 3 .

 3 N CM TOPIC-AL TOPIC-AL-MML

	Random Herding	23.0 32.1 27.7 38.5	48.6 51.6	49.5 52.5	55.2 55.6	61.5 62.6	49.6	49.5

12 -Top-1 average incremental accuracy for IL methods for IMAGENET-100 with 60 initial classes and 8 incremental states containing each 5 classes (T = 9, P 1 = 60, P t∈

[START_REF] Abadi | TensorFlow: A system for large-scale machine learning[END_REF][START_REF] Aljundi | Memory Aware Synapses: Learning What (not) to Forget[END_REF]

= 5). The best result is in bold.

Table 3 .

 3

	3)

13 -Top-1 average supervised IL accuracy (%). Best results are in bold.

Table 4 .

 4 2 -Top-5 average IL accuracy (%) for the min-max and mean normalization, with T = {10, 20, 50} incremental states. Best results are in bold.

		3	10.0	7.1	4.7	20.1	18.5	17.2	12.2	6.3	19.9	18.3	20.7	-55.52
	F T init mean	54.1	49.4	38.0	69.7	78.4	58.6	72.8	61.1	41.3	52.9	38.1	21.0	-23.76
	F T init L2	51.6	43.3	34.5	76.8	66.8	55.1	61.4	52.5	39.2	47.5	39.3	22.5	-26.80
	F T init siw	61.6	51.9	39.9	84.0	80.6	61.9	75.1	62.6	43.2	56.0	41.8	22.5	-20.97
	Joint		92.3			99.2			99.1			91.2		-

Table 4 .

 4 3 -Top-1 correct and wrong classification for F T , F T init siw+mc and LU CIR for ILSVRC with T = 20.

		(n)	87.8 87.28 90.48 91.4 90.44 87.92 89.64 88.12 87.24 89.68 89.72 90.16 90.6 89.8 87.84 92.4 89.56 89.28 87.52
		e(n, n)	12.2 12.72 9.52 8.6 9.56 12.08 10.36 11.88 12.76 10.32 10.28 9.84 9.4 10.2 12.16 7.6 10.44 10.72 12.48
		e(n, p)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
		c(p)	38.4 27.0 33.2 31.3 29.0 22.0 20.1 15.0 17.9 14.7 17.7 16.5 15.3 13.1 13.2 14.0 14.1 12.5 11.8
	siw+mc F T init	e(p, p) e(p, n) c(n) e(n, n)	22.7 15.0 41.4 41.9 60.7 48.5 51.8 31.9 60.2 40.7 68.1 62.6 66.8 48.2 47.2 66.9 64.9 52.7 50.0 38.9 58.0 25.4 26.8 10.3 29.5 28.1 53.0 21.9 44.6 14.1 20.9 17.9 38.7 39.6 19.1 21.0 34.8 38.2 75.8 82.7 75.7 75.8 67.2 75.1 77.4 83.8 69.8 83.2 68.6 76.1 70.5 82.0 78.4 76.2 72.6 80.4 80.3 8.5 11.5 4.2 3.1 1.8 6.8 4.6 9.8 4.5 7.9 3.2 3.5 3.1 6.5 8.3 2.7 3.8 5.4 7.7
		e(n, p)	15.7 5.8 20.0 21.1 31.0 18.0 18.0 6.4 25.7 8.9 28.2 20.4 26.4 11.5 13.3 21.1 23.6 14.1 12.0
		c(p)	66.1 46.9 33.5 26.7 23.2 19.0 15.1 13.3 11.8 9.9	9.1	8.3	7.9	8.0	7.5	6.7	6.5	6.0	6.0
		e(p, p)	4.2 10.1 14.7 20.4 26.6 25.8 24.1 27.5 27.9 28.1 28.3 28.8 29.8 31.5 29.3 30.8 29.6 29.6 30.6
	LU CIR	e(p, n) c(n)	29.8 42.9 51.8 52.9 50.2 55.3 60.8 59.2 60.3 62.0 62.6 63.0 62.3 60.5 63.2 62.5 63.9 64.4 63.4 78.3 79.7 82.2 82.2 82.4 78.2 82.6 81.5 79.0 84.5 82.7 83.4 84.1 82.9 81.2 86.2 82.8 83.3 81.2
		e(n, n)	16.0 15.5 13.5 11.4 12.2 15.2 12.3 13.0 14.5 11.4 11.9 11.9 11.2 11.5 14.2 9.0 11.7 12.1 13.8
		e(n, p)	5.6	4.8	4.4	6.4	5.3	6.6	5.2	5.5	6.5	4.1	5.4	4.8	4.6	5.6	4.6	4.8	5.5	4.6	5.0

 4.6 -Mean prediction scores and associated standard deviations for CIFAR-100 classes grouped by state at the end of the IL process, with T = 10 states, for LwF and LU CIR methods. Results indicate that the degree of forgetting depends on the initial state in which classes were first learned. Bias correction with parameters optimized per state is thus needed to make class IL fairer.

Algorithm 2 :

 2 AdBiC inference inputs : A, (α k s , β k s) averaged on reference datasets for each s ∈ 1, S , k ∈ 1, s inputs : X t for s ∈ [1, T]

		target dataset
	randomly initialize M 1 ; M * 1 ← train(A; M 1 , X 1) ;	
	for s = 2. . .S do	
	M * t ← update(A; M * t-1 , X t) ;	
	foreach (x, y) ∈ X t	test set
	do	
	o t ← M * t (x) ;	
	for k = 1. . .t do	
	o k t ← adBiC(o k t) = α k t o k t + β k t • 1 ;	
	end	
	q t ← σ(o t) ;	
	ŷ ← argmax	
	y∈[1,Nt]	

Table 4 .

 4 AdBiC + O 55.5 + 5.4 43.6 + 9.9 31.2 + 11.7 59.4 + 11.1 46.6 + 16.5 29.7 + 12.0 59.0 + 8.2 46.0 + 14.6 28.8 + 10.9 52.6 + 8.4 38.2 + 11.8 21.0 + 5.5 + 2.4 25.2 + 2.0 15.3 + 0.4 30.9 + 1.5 21.3 -0.3 14.5 + 0.4 w/ AdBiC + O 32.8 + 2.9 25.0 + 2.3 16.5 + 1.7 36.4 + 3.8 25.7 + 2.4 16.1 + 1.0 34.4 + 3.8 26.2 + 3.0 16.3 + 1.4 31.5 + 2.1 22.6 + 1.0 15.1 + 1.0 AdBiC 31.9 + 3.0 23.6 + 1.0 15.0 + 0.5 34.9 + 3.2 23.7 + 0.5 15.7 + 1.1 34.0 + 4.3 25.0 + 1.7 14.2 + 0.7 30.8 + 2.1 22.2 + 1.1 14.2 + 0.9 w/ AdBiC + O 32.5 + 3.6 24.6 + 2.0 15.9 + 1.4 35.7 + 4.0 24.9 + 1.7 16.2 + 1.6 34.5 + 4.8 25.7 + 2.4 15.4 + 1.9 31.3 + 2.6 22.7 + 1.6 14.5 + 1.2 4 -Average top-1 incremental accuracy using T = {5, 10, 20} states. Results are presented for each method without parameter transfer and with BiC and AdBiC transfer. The gain (green) and loss (red) in accuracy obtained with parameter transfer are provided for each configuration. Joint is an upper bound obtained using a standard training with all data available. O denotes a choice of the reference dataset by oracle, in which the best reference dataset for each state is selected for transfer. Best results for each setting (excluding the oracle) are in bold. A graphical view of this table is provided in Figures 4.9 and 4.10. Best viewed in color.

				1	53.8	41.1	29.2	53.7	41.8	30.1	42.9	31.8	22.2
	w/ BiC	54.0 + 1.0 45.5 + 1.5 30.8 + 1.7	54.7 + 0.9 42.5 + 1.4 31.1 + 1.9	54.6 + 0.9 43.1 + 1.3 31.8 + 1.7	43.4 + 0.5 32.6 + 0.8 23.8 + 1.6
	w/ AdBiC	54.3 + 1.3 46.4 + 2.4 32.3 + 3.2	55.1 + 1.3 43.4 + 2.3 32.3 + 3.1	55.0 + 1.3 44.0 + 2.2 32.8 + 2.7	43.5 + 0.6 33.3 + 1.5 24.7 + 2.5
	w/ AdBiC + O 54.9 + 1.9 47.3 + 3.3 32.6 + 3.5	55.9 + 2.1 44.2 + 3.1 33.1 + 3.9	55.8 + 2.1 44.8 + 3.0 33.3 + 3.2	44.0 + 1.1 34.2 + 2.4 25.3 + 3.1
	LUCIR [53]	50.1	33.7	19.5	48.3	30.1	17.7	50.8	31.4	17.9	44.2	26.4	15.5
	w/ BiC	52.5 + 2.4 37.1 + 3.4 22.4 + 2.9	54.9 + 6.6 36.8 + 6.7 21.8 + 4.1	56.0 + 5.2 37.7 + 6.3 20.6 + 2.7	49.9 + 5.7 31.5 + 5.1 17.2 + 1.7
	w/ AdBiC	54.8 + 4.7 42.2 + 8.5 28.4 + 8.9	59.0 + 10.7 46.1 + 16.0 27.3 + 9.6	58.5 + 7.7 45.4 + 14.0 27.3 + 9.4	52.0 + 7.8 37.1 + 10.7 17.7 + 2.2
	w/ SIW (Sec. 4.2)	29.9	22.7	14.8	32.6	23.3	15.1	30.6	23.2	14.9	29.4	21.6	14.1
	w/ BiC	31.4 + 1.5 22.8 + 0.1 14.7 -0.1	33.9 + 1.3	22.6 -0.7	13.9 -1.2	32.8 + 2.2 22.7 -0.5	12.8 -2.1	29.1 -0.3 20.3 -1.3 12.1 -2.0
	w/ AdBiC 33.0 FT+ 31.7 + 1.8 24.1 + 1.4 15.8 + 1.0 35.1 + 2.5 24.5 + 1.2 15.0 -0.1 28.9 22.6 14.5 31.7 23.2 14.6 29.7	23.3	13.5	28.7	21.1	13.3
	w/ BiC	30.7 + 1.8 22.5 -0.1 14.8 + 0.3	33.0 + 1.3	21.9 -1.3	13.8 -0.8	32.3 + 2.6 22.5 -0.8	12.4 -1.1	28.6 -0.1 20.6 -0.5 11.8 -1.5
	w/ Joint		72.7			75.5			80.9			71.03	

Table 4 .

 4 + 0.8 34.8 + 1.5 25.0 + 1.7 46.7 + 1.1 35.3 + 1.8 25.6 + 1.8 45.5 + 0.9 35.4 + 1.4 25.2 + 2.0 29.9 + 0.4 24.3 + 1.0 18.7 + 1.4 + 4.8 38.5 + 10.7 25.3 + 8.7 54.1 + 11.2 42.4 + 14.8 23.2 + 6.2 52.8 + 7.6 40.9 + 13.1 25.6 + 9.6 45.7 + 7.8 32.6 + 9.9 19.8 + 5.9 5 -Average top-1 IL accuracy with 50% of training images for target datasets. Gains are in green, losses are in red. AdBiC + O 44.6 + 1.3 37.5 + 2.4 29.3 + 3.4 36.5 + 1.1 29.2 + 1.5 24.3 + 2.8

	LwF [86]	41.3	33.3	23.3	45.6	33.5	23.8	44.6	34.0	23.2	29.5	23.3	17.3
	w/ adBiC 42.1 LUCIR [53] 43.5	27.8	16.6	42.9	27.6	17.0	45.2	27.8	16.0	37.9	22.7	13.9
	w/ adBiC 48.3 SIW [16] 31.7	21.6	13.7	32.1	22.7	14.4	29.7	22.8	14.1	28.4	18.7	13.5
	w/ adBiC	33.7 + 2.0 22.5 + 0.9 14.0 + 0.3	35.0 + 2.9	22.6 -0.1 12.2 -2.2	32.1 + 2.4 23.7 + 0.9 13.5 -0.6	29.9 + 1.5 16.9 -1.8 13.3 -0.2
	FT+	30.4	21.5	12.9	31.2	22.2	12.0	29.2	22.8	12.2	27.4	18.2	11.6
	w/ adBiC	32.0 + 1.6 21.4 -0.1 13.4 + 0.5	34.8 + 3.6	21.2 -1.0 13.7 + 1.7	31.9 + 2.7 23.0 + 0.2 13.6 + 1.4	28.8 + 1.4 16.2 -2.0 12.2 + 0.6
		Method			PLACES-100			PLACES-100 (halved)		
				T = 5	T = 10	T = 20		T = 5	T = 10	T = 20	
		LwF [86]	43.3		35.1	25.9		35.4	27.7	21.5		
		w/ BiC		43.9 + 0.6 36.1 + 1.0 27.6 + 1.7	35.8 + 0.4 28.5 + 0.8 22.6 + 1.1	
		w/ AdBiC	44.2 + 0.9 36.6 + 1.5 28.6 + 2.7	35.9 + 0.5 28.5 + 0.8 23.6 + 2.1	
		w/ LUCIR [53]	40.5		26.0	16.0		35.5	23.2	14.7		
		w/ BiC		42.6 + 2.1 29.9 + 3.9 18.0 + 2.0	38.3 + 2.8 26.9 + 3.7 16.5 + 1.8	
		w/ AdBiC	42.8 + 2.3 35.4 + 9.4 23.3 + 7.3	40.5 + 5.0 33.6 + 10.4 22.3 + 7.6	
		w/ AdBiC + O 43.7 + 3.2 36.5 + 10.5 24.9 + 8.9	40.9 + 5.4 34.0 + 10.8 23.1 + 8.4	

Table 4 .

 4 6 -Average top-1 incremental accuracy using T = {5, 10, 20} states, for the PLACES-100 dataset with all and half of the training data. Gains obtained over the backbone method are given in green, and the best results for each setting in bold. Best viewed in color.

Table 4 .

 4 9 -Top-5 average incremental accuracy (%) for IL methods without memory for past classes and different numbers of IL states. Best results are in bold.

	Deep-SLDA 70.3	64.5	56.0	90.2	85.4	78.2	89.3	86.4	81.3	68.9	64.4	54.5	-15.40
	Joint	92.3			99.2			99.1			91.2		-

Table 4 .

 4 10 -Top-1 correct and wrong classification for LU CIR CN N , F T init L2 and LwF for ILSVRC and CIFAR-100 with T = 10 and |K| = 0.

	Incremental states S 2	S 3	S 4	S 5	S 6	S 7	S 8	S 9 S 10
					ILSVRC		
	LU CIR CN N	c(p) e(p, p) e(p, n) c(n) e(n, n) e(n, p)	62.4 46.2 36.7 29.1 23.1 18.8 15.8 14.2 13.1 3.8 9.6 16.2 21.3 23.6 25.2 26.0 30.2 27.9 33.7 44.3 47.1 49.6 53.3 56.0 58.2 55.7 59.0 77.9 79.2 75.2 75.2 77.9 79.4 76.9 80.5 77.7 17.6 15.7 19.1 17.7 16.5 15.2 16.7 13.9 15.5 4.5 5.1 5.6 7.0 5.5 5.4 6.4 5.6 6.8
		c(p)	5.4 17.1 15.6 16.6 15.3 16.6 13.7 13.1 14.9
		e(p, p)	0.6 12.8 10.5 28.2 20.8 47.0 27.6 28.5 55.0
	L2 F T init	e(p, n) c(n)	94.0 70.1 73.9 55.2 63.8 36.4 58.8 58.4 30.1 83.7 85.5 81.2 79.9 82.4 78.5 80.9 82.3 74.4
		e(n, n)	16.1 11.1 16.5 12.0 13.6 7.2 11.9 10.9 5.9
		e(n, p)	0.2 3.4 2.3 8.1 4.0 14.4 7.2 6.7 19.7
		c(p)	13.7 11.7 10.6 8.6 6.3 5.6 5.0 4.6 4.4
		e(p, p)	6.8 17.8 25.4 25.2 27.1 28.1 32.1 33.9 33.8
	LwF	e(p, n) c(n)	79.6 70.5 64.0 66.1 66.6 66.4 62.9 61.5 61.7 70.7 73.4 68.9 70.0 72.7 74.1 70.4 73.7 71.2
		e(n, n)	23.2 17.5 19.6 18.0 15.5 15.4 17.1 13.7 14.4
		e(n, p)	6.1 9.0 11.4 12.1 11.7 10.5 12.5 12.6 14.4
					CIFAR-100		
	LU CIR CN N	c(p) e(p, p) e(p, n) c(n) e(n, n) e(n, p)	56.7 39.4 25.7 16.8 14.4 14.5 9.4 9.8 6.7 2.1 10.9 12.8 9.7 20.4 24.5 17.1 23.0 20.0 41.2 49.6 61.4 73.5 65.1 61.0 73.6 67.2 73.4 78.9 84.4 86.9 86.3 86.5 85.3 85.0 85.2 88.2 13.0 11.2 11.4 11.8 11.4 9.5 11.0 10.3 8.7 8.1 4.4 1.7 1.9 2.1 5.2 4.0 4.5 3.1
		c(p)	0.8 6.7 9.9 8.5 8.1 5.4 7.8 7.5 5.8
		e(p, p)	0.0 4.8 9.4 10.6 25.6 12.3 23.2 38.5 19.2
	L2 F T init	e(p, n) c(n)	99.2 88.5 80.7 80.9 66.3 82.3 69.0 54.0 75.0 86.7 89.2 87.8 88.2 85.2 88.1 84.0 85.3 90.7
		e(n, n)	13.2 9.5 9.2 9.1 8.9 10.2 8.9 6.1 4.6
		e(n, p)	0.1 1.3 3.0 2.7 5.9 1.7 7.1 8.6 4.7
		c(p)	57.3 47.5 40.3 31.1 28.7 26.6 23.8 22.0 17.7
		e(p, p)	8.0 22.6 26.2 32.1 39.8 45.5 46.5 48.5 46.0
	LwF	e(p, n) c(n)	34.7 29.9 33.5 36.8 31.6 27.9 29.7 29.5 36.2 72.7 76.4 74.4 74.9 72.6 75.4 70.6 74.6 82.3
		e(n, n)	9.9 5.1 3.9 6.9 5.0 4.0 5.6 3.2 2.4
		e(n, p)	17.4 18.5 21.7 18.2 22.4 20.6 23.8 22.2 15.3
	In							

Table 4 .

 4 9, the comparison of LwF , LU CIR CN N and F T init L2 for T = 10 shows that LwF has the lowest and highest performance for ILSVRC and CIFAR-100 respectively. The detailed view in Table 4.10 gives further insights into the structure of results. In this table, c(p) and c(n) are the correct classification for past/new classes. e(p, p) and e(p, n) are erroneous classifications for test samples of past classes mistaken for other past classes and new classes respectively. e(n, p) and e(n, n) are erroneous classifications for test samples of new classes mistaken for past classes and other new classes respectively. Since the number of test images varies across IL states, percentages are calculated separately for test images of past and new classes in each S t to get a quick view of the relative importance of each type of errors. c(p), e(p, p), and e(p, n) sum to 100% on each column, as do c(n), e(n, n), and e(n, p).

 LwF init , LwF init L2 , and LwF init siw test if the basic hypothesis of ScaIL regarding the reuse of initial classifier weights applies to a method that integrates distillation. This use of initial weight leads to a 3 points G IL gain compared to classical LwF . Further L2 normalization in LwF init L2 is not efficient. However, standardization of weights in LwF init siw improves the results of LwF init with 3.9 points. LU CIR CN N implements a more sophisticated scheme to counter catastrophic forgetting by adding cosine normalization and inter-class separation on top of knowledge distillation. The two additional components have a significant decisive role since they provide a 10 points gain compared to LwF . Vanilla F T has no component to counter catastrophic forgetting and it has the worst overall performance. The use of initial classifiers of past classes in F T init provides a very consequent gain over simple F T . The application of init is much more efficient for F T compared to LwF and even gives nearly the same results as LwF init siw , the best variant of LwF . The use of L2 normalization in F T init L2 improves the results of F T init with 2 G IL points, while adding the mean state calibration mc in F T init L2+mc further gains another 1 G IL points over F T init L2 . The best fine tuning based approach without memory is F T init siw+mc from Section 4.2. This approach outperforms the other methods with a large margin.

Table 5 .

 5 1 -Additional Storage (AS) in floats of our proposed IL approaches with and without a bounded memory K of the past. In our experiments conducted in Chapters 3 and 4, we use a ResNet-18 architecture where D = 512 is the size of the feature vector at the penultimate layer. For T ransIL, we use R = 10 reference datasets. If we save the mean values of calibration parameters, we divide the memory footprint of T ranSIL by R. Note that one floating-point occupies 4 Bytes in the disk.

Table B .

 B [START_REF] Aggarwal | A comparative study of calibration methods for imbalanced class incremental learning[END_REF] images per class and 103.8 standard deviation. The dataset is available for download from https://www.kaggle.com/ google/google-landmarks-dataset 1 -Summary of the datasets used in IL2M evaluation. µ is the mean number of train images per class and σ is the standard deviation of the number of train images per class

	Dataset	#Train	#Test #Classes µ(train) σ(train)
	ILSVRC [135]	1,231,167 50,000	1,000	1231.2	70.2
	VGGFACE2 [22]	491,746 50,000	1,000	491.7	49.4
	LANDMARKS [108] 374,367 20,000	1,000	374.4	103.8
	ScaIL (Section 3.4)				
	We use the same datasets used to evaluate IL2M , and we add CIFAR-100 (Table B.2):
	-CIFAR-100 [74]: object recognition dataset including 100 classes, with 500 training and
	100 test images each.				
	Dataset	#Train #Test #Classes µ(train) σ(train)
	CIFAR-100 [74] 50,000 10,000	100	500.00	0.00

Table B .

 B 2 -Main statistics for the CIFAR-100 evaluation dataset. Other datasets were described previously in TableB.1. µ is the mean number of train images per class and σ is the standard deviation of the number of train images per class

 Table B.3 -Dataset statistics. cv is the coefficient of variation defined as cv = σ µ . µ is the mean number of train images per class and σ is the standard deviation of the number of train images per class SIW (Section 4.2)

			Train Test µ(train) σ(train)	cv
	IMAGENET-100	100	50000 5K	500.0	376.17 0.7523
	FACES-100	100	23237 5K 232.37 167.68 0.7216
	FOOD-100	100	22374 10K 223.74 177.66 0.7940
	CIFAR-100	100	50000 10K 500.0	0.0	0.0

 -Ces méthodes sont adéquates lorsque nous essayons d'optimiser la complexité de l'architecture, et la plasticité[START_REF] Tamaazousti | Learning More Universal Representations for Transfer-Learning[END_REF] des représentations. Cependant, comme elles nécessitent un réentraînement du réseau lorsque de nouvelles classes sont ajoutées, leur vitesse d'exécution n'est pas optimale. Tout aussi important, la contrainte de mémoire limitée les rend difficilement évolutives, car la mémoire finira par devenir trop petite pour représenter adéquatement les classes passées. Elles sont utilisables lorsque: la complexité du modèle est constante, les données varient beaucoup entre les états incrémentaux, le stockage des données passées est possible et l'utilisation immédiate des modèles mis à jour n'est pas essentielle.-Méthodes basées sur l'isolement des paramètres[START_REF] Aljundi | Expert Gate: Lifelong Learning with a Network of Experts[END_REF][START_REF] Masana | Ternary Feature Masks: continual learning without any forgetting[END_REF][START_REF] Aljundi | Memory Aware Synapses: Learning What (not) to Forget[END_REF] -Les approches de ce groupe s'accommodent bien des nouvelles données, ne dépendent pas ou peu de la mémoire du passé, mais ne sont évolutives que si elles sont dynamiques. Cependant, la complexité de ces dernières est un inconvénient puisque le modèle doit croître afin d'intégrer de nouvelles connaissances. Elles nécessitent également un réentraînement lorsque de nouvelles classes sont ajoutées et la vitesse d'exécution n'est pas optimale. Les réseaux dynamiques sont utilisables lorsque: la complexité du modèle peut croître au cours du processus incrémental, les données transmises varient beaucoup entre les états incrémentaux, aucun stockage n'est disponible pour les données passées et l'utilisation immédiate des modèles mis à jour n'est pas essentielle. C.4 Apprentissage Incrémental avec mémoire DeeSIL: Deep-Shallow Incremental Learning Cette méthode est une adaptation d'un schéma d'apprentissage par transfert connu

https://github.com/EdenBelouadah/class-incremental-learning

Note that a complete set of results is not presented for E2EIL[START_REF] Francisco | End-to-End Incremental Learning[END_REF]. This method was not fully tested because we were not able to reproduce the results presented by the authors since the original implementation is based on Matlab, a non-free environment to which we do not have access.

iCaRL with a vanilla fine tuning was not fair in [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] insofar as iCaRL was implemented with a bounded memory of the past. In contrast, fine tuning did not use such a memory. We show in Chapter 3 that when a memory of the past is allowed, a vanilla fine tuning outperforms iCaRL on large-scale datasets.

The authors of [START_REF] Francisco | End-to-End Incremental Learning[END_REF] present End-to-End incremental learning (E2EIL), an IL algorithm that differs from iCaRL mainly through the way prediction bias is reduced. The external classifier is replaced by a balanced fine-tuning step, where data from new classes is reduced to have equally distributed batches between past and new classes. This component has an important impact on performance and leads to a strong improvement compared to iCaRL. It was later adopted in [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF] for its efficiency to tackle task imbalance during training. Sophisticated data augmentation was also used by the authors and has a small positive influence on results.

Many recent IL approaches focus on a more sophisticated tackling of catastrophic forgetting. The authors of Multi-model and Multi-level Knowledge Distillation (M2KD) [START_REF] Zhou | M2KD: Multi-model and Multi-level Knowledge Distillation for Incremental Learning[END_REF] propose a loss that distills knowledge not only from the previous model but from all the past models where the classes have been learned for the first time. They also propose an additional distillation term that operates on the intermediate layers of the CNN in addition to the last fully connected one. The drawback of this method is that it requires saving all previous models, a strategy that is heavy at a large scale.

In [START_REF] Xiang | Efficient Incremental Learning Using Dynamic Correction Vector[END_REF], knowledge distillation is also combined with a bounded memory of the past. The authors deploy an algorithm to set a dynamic vector that corrects the bias induced by distillation loss among past classes and improves the representativeness of past image features. The results from Table 4.1 show that F T init siw+mc provides a G IL improvement of over 5 points compared to LU CIR [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF], the best baseline. The gain is even higher compared to F T init L2+mc , the second-best baseline which extends F T init L2 . This difference in favor of F T init siw+mc underlines the fact that classifier weights standardization is more appropriate than L2 normalization for memoryless IL. A favorable comparison to two other normalization methods is provided in class for reference and target datasets. We remove 50% of training images for target datasets to test the transferability in this setting. The obtained results, presented in

44.19 51.9 ± 0.4 52.0 ± 0.2 52.1 ± 0.2 52.0 ± 0.1 52.1 ± 0.1 52.0 ± 0.1 52.0 ± 0.1 52.0 ± 0.1 52.0 ± 0.1 52.0

22.7 23.8 ± 0.4 23.8 ± 0.2 23.9 ± 0.2 24.0 ± 0.2 23.9 ± 0.1 24.0 ± 0.1 24.1 ± 0.1 24.0 ± 0.1 24.1 ± 0.1 24.1

28.9 31.9 ± 0.2 32.0 ± 0.1 32.0 ± 0.1 32.0 ± 0.1 32.0 ± 0.1 32.0 ± 0.1 31.9 ± 0.1 32.0 ± 0.1 32.0 ± 0.1 31.9 Table 4.8 -Average top-1 incremental accuracy of adBiC-corrected models trained incrementally on CIFAR-100 with LwF , LU CIR, SIW and F T +, for T = {5, 10, 20} states, while varying the number R of reference datasets. For R ≤ 9, results are averaged across 10 random samplings of the reference datasets. Raw is the accuracy of each method without bias correction.

Directions for future research

The performance of incremental learning methods is getting closer to that of standard learning, where all data from all classes is assumed to be available at all times. However, the catastrophic forgetting problem is far from being solved, especially at a large scale. Most of the existing systems [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF][START_REF] Francisco | End-to-End Incremental Learning[END_REF][START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF][START_REF] Hinton | Distilling the Knowledge in a Neural Network[END_REF][START_REF] Javed | Revisiting Distillation and Incremental Classifier Learning[END_REF] use a memory of the past. Note that, in real-life scenarios, a memory is not always allowed. In addition, memory-dependent algorithms tend to do not scale well when more and more classes won't have representatives to be replayed for them when the maximum size of the memory is reached.

Class-incremental learning without memory is understudied in literature and we believe that more effort should be allocated to it. To the best of knowledge the only available such methods are those we proposed in addition to: Learning without Memorizing [START_REF] Dhar | Learning without Memorizing[END_REF], Learning without Forgetting (LwF) [START_REF] Li | Learning Without Forgetting[END_REF], Deep-SLDA [START_REF] Hayes | Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis[END_REF], Semantic Drift Compensation (SDC) [START_REF] Yu | Semantic Drift Compensation for Class-Incremental Learning[END_REF], and Always Be Dreaming (AbD) [START_REF] Smith | Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning[END_REF]. We could adapt other methods to a memoryless setting (REM IN D [START_REF] Tyler | REMIND Your Neural Network to Prevent Catastrophic Forgetting[END_REF] and LU CIR [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF]), but this number of IL systems is negligible compared to those that rely on a memory of the past.

Handling class IL as an imbalanced learning problem provides very interesting results with or without the use of a distillation component (IL2M (Section 3.3) ScaIL (Section 3.4), BiC [START_REF] Wu | Large Scale Incremental Learning[END_REF] and AdBiC (Section 4.3)). It would be interesting to investigate more sophisticated bias reduction schemes to improve performance further. Also, a more in-depth investigation of why distillation fails to work for large-scale datasets is needed. The empirical findings reported in this thesis should be complemented with more theoretical analysis to improve the understanding of this phenomenon.

Last but not least, the results obtained with a herding-based selection of exemplars are better than a random selection for all methods tested. Further work in this direction could follow up on [START_REF] Liu | Mnemonics Training: Multi-Class Incremental Learning without Forgetting[END_REF] and investigate in more depth which exemplar distribution is optimal for replay.

Finally, the evaluation scenario should be made more realistic by:

-dropping the strong hypothesis that new data are readily annotated when they are streamed -using a variable number of classes in each incremental state. This case is more realistic as the data can be streamed in a random way -working with imbalanced datasets which are more likely to occur in real-life applications than the controlled datasets tested until now by the community -handling individual samples instead of classes, where samples of past and new classes are mixed (domain-incremental learning [START_REF] He | Incremental Learning in Online Scenario[END_REF])

LIST OF PUBLICATIONS

Research that led to this thesis has appeared previously in the following publications. † refers to equal contributions.

A.1 Journal Papers

DATASETS AND IMPLEMENTATION DETAILS B.1 Datasets

To facilitate reproducibility, we chose to perform the evaluation with public datasets.

DeeSIL (Section 3.2)

We use ILSVRC [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF] dataset for our experiments. This dataset is described in details with datasets used to evaluate IL2M below.

IL2M (Section 3.3)

The datasets used in the evaluation are designed for three visual classification tasks: object, face and tourist landmark recognition. The main statistics of these datasets are provided in Table B.1.

-ILSVRC [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF] is the well known subset of ImageNet used in the ILSVRC competitions and is reused here. The statistics from Table B.1 show that the training set is well balanced, with an average of 1231.2 images per class and a 70.2 standard deviation. The dataset is available for download from http://image-net.org/download.

-VGGFACE2 [START_REF] Cao | VGGFace2: A Dataset for Recognising Faces across Pose and Age[END_REF] is a recent dataset focused on face recognition. It includes over 9000 unique identities. We selected the 1000 identities which have the largest number of associated images for the evaluation in order to have a dataset similar in size to ILSVRC. VGGFACE2 is well balanced and includes a mean of 491.7 images per class, with 49.4 standard deviation. The dataset includes loosely cropped face images and, following the usual face recognition pipeline, we extracted tighter crops before training and testing. Face detection was done using the publicly available MTCNN [START_REF] Zhang | Joint Face Detection and Alignment Using Multitask Cascaded Convolutional Networks[END_REF] framework. The

B.2 Implementation details

All our method are implemented in Pytorch [START_REF] Paszke | Automatic differentiation in PyTorch[END_REF] using a ResNet-18 architecture [START_REF] He | Deep Residual Learning for Image Recognition[END_REF] with an SGD optimizer. Training images are processed using randomly resized 224 × 224 crops, horizontal flipping, and are normalized afterward. Given the difference in scale and the number of images between CIFAR100 and the other datasets, we found that a different parametrization was needed for this dataset. Note that the parameters' values presented below are largely inspired by the original ones given in [START_REF] He | Deep Residual Learning for Image Recognition[END_REF].

-Joint: Used to train the model on the first batch of classes, and also on the whole datasets to establish the upper bound. For ILSVRC, VGGFACE2 and LANDMARKS, Joint is run for 120 epochs with batch size = 256, momentum = 0.9 and weight decay = 0.0001.

The lr is set to 0.1 and is divided by 10 when the error plateaus for 10 consecutive epochs. For CIFAR100, Joint is run for 300 epochs with batch size = 128, momentum = 0.9 and weight decay = 0.0005. The lr is set to 0.1 and is divided by 10 when the error plateaus for 60 consecutive epochs.

-FT: fine-tuning backbone (without distillation) used in IL2M , ScaIL, SIW . For ILSVRC, VGGFACE2 and LANDMARKS, IL models are trained for 35 epochs with batch size = 256, momentum = 0.9 and weight decay = 0.0001. The learning rate is set to lr = 0.1/t at the beginning of each incremental state S t and is divided by 10 when the error plateaus for 5 consecutive epochs. For CIFAR-100, IL models are trained for 70 epochs with batch size = 128, momentum = 0.9 and weight decay = 0.0005. The learning rate is set to lr = 0.1/t at the beginning of each incremental state S t and is divided by 10 when the error plateaus for 15 consecutive epochs.

-FR: fixed representation. The model of the first is trained using Joint above, and incrementally, it is trained exactly as F T .

-REMIND [START_REF] Tyler | REMIND Your Neural Network to Prevent Catastrophic Forgetting[END_REF], Deep-SLDA [START_REF] Hayes | Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis[END_REF], BiC [START_REF] Wu | Large Scale Incremental Learning[END_REF] and LUCIR [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF] are run using the optimal parameters of the public implementations provided in the original papers.

-iCaRL [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] -is run using the code from [START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF] since it provides better performance than the original implementation. LwF [START_REF] Li | Learning Without Forgetting[END_REF] is run using the code from [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF] (the only baseline implemented in TensorFlow [START_REF] Abadi | TensorFlow: A system for large-scale machine learning[END_REF]).

-DeeSIL (Section 3.2) -The deep feature extractor is trained in the same manner as Joint described above. The SVMs in DeeSIL are implemented using LinearSVC solver from Scikit-Learn toolbox [START_REF] Pedregosa | Scikit-learn: Machine Learning in Python[END_REF]. The SVMs were optimized with 20 images per class for validation. We vary values of the regularization parameter between 0.0001 and 1000 and the optimal parameter was then used in each variant of the system.

-IL2M (Section 3.3), ScaIL (Section 3.4), and SIW (Section 4.2) -these methods are based on a fine-tuning without distillation backbone (F T), described above. Since the three methods are applied during inference only, we perform an end-to-end training of the deep neural network. Later, we extract testing features and store them on the disk to

RÉSUMÉ EN FRANÇAIS

C.1 Introduction

Dans notre monde complexe, de nombreux domaines technologiques évoluent à une vitesse fulgurante qui nécessite de suivre leur rythme de développement. Ce dernier s'est accompagné d'une augmentation significative de la quantité de données, notamment avec l'avènement du big data [START_REF]25+ Impressive Big Data Statistics for[END_REF]. En termes simples, l'intelligence artificielle (IA) est devenue omniprésente, et son intégration dans les applications de la vie quotidienne va devenir encore plus prévalente à l'avenir [START_REF] Lucci | Artificial intelligence in the 21st century[END_REF].

Les réseaux de neurones sont les systèmes les plus populaires en intelligence artificielle. Leur développement est basé sur plusieurs spécialités multidisciplinaire comme l'informatique, les mathématiques, la science cognitive, les statistiques, la psychologie et les neurosciences. Les réseaux neuronaux apprennent à partir d'exemples, et plus ils rencontrent d'exemples pertinents, meilleure est leur expérience, et donc leur performance. Dans cette thèse, nous nous intéressons à la classification d'images avec des réseaux de neurones convolutifs profonds [START_REF] Lecun | Object recognition with gradient-based learning[END_REF].

Les agents artificiels standards sont conçus pour être entraînés de manière statique. En revanche, les données du monde réel sont souvent dynamiques [START_REF] Luca | Sensing Trending Topics in Twitter[END_REF] et les agents artificiels devraient être capables d'ingérer de nouvelles informations sans avoir à être entraînés à partir du zéro. En d'autres termes, il ne suffit pas que les systèmes d'IA apprennent, mais il est important qu'ils apprennent en permanence. Cette façon d'apprendre est appelée apprentissage incrémental (IL). Ce dernier est intéressant car il réduit les besoins en calcul et l'empreinte mémoire. La limitation de la mémoire est souvent rencontrée en robotique [START_REF] Lesort | Continual Learning for Robotics[END_REF], dans les systèmes embarqués et dans le domaine médical pour des contraintes de confidentialité. L'apprentissage incrémental serait facile si le réapprentissage à partir du zéro est autorisé, mais devient très difficile dans le cas contraire. Les auteurs de [START_REF] Mccloskey | Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem[END_REF] ont remarqué ce qu'ils appellent l'oubli catastrophique, un phénomène dont souffrent les systèmes enraînés par rétropropagation. L'oubli catastrophique (CF) est la tendance des réseaux neuronaux à oublier les connaissances antérieures lorsqu'ils tentent d'en intégrer de nouvelles. P 1 + P 2 + + P t-1 + P t pour les états suivants. Le modèle M t est mis à jour avec un algorithme d'apprentissage incrémental A en utilisant X t = {(X j t , Y j t) : j ∈ [N t-1 , N t]} si aucune mémoire du passé n'est autorisée et en utilisant X t ∪ K si une mémoire du passé K est autorisée. À chaque état, M t est évalué sur toutes les classes vues jusqu'ici (j ∈ [1, N t]). Nous marquons en gras les vecteurs et les matrices.

Suivant [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF][START_REF] Francisco | End-to-End Incremental Learning[END_REF], nous utilisons dans cette thèse P 1 = P 2 = ... = P T . Certains travaux récents [START_REF] Liu | Adaptive Aggregation Networks for Class-Incremental Learning[END_REF][START_REF] Hou | Learning a Unified Classifier Incrementally via Rebalancing[END_REF][START_REF] Douillard | PODNet: Pooled Outputs Distillation for Small-Tasks Incremental Learning[END_REF][START_REF] Liu | Mnemonics Training: Multi-Class Incremental Learning without Forgetting[END_REF] entraînent le premier modèle M 1 sur la moitié des classes disponibles, et divisent les classes restantes de manière égale entre les états T -1 suivants. Ce dernier est un cas plus facile de l'apprentissage incrémental.

Les algorithmes récents d'apprentissage incrémental sont mis en oeuvre en utilisant des réseaux de neurones profonds (DNNs) [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF][START_REF] Francisco | End-to-End Incremental Learning[END_REF]. Alors que les DNNs sont des approches de classification de bout en bout, une partie des algorithmes d'apprentissage incrémental utilise une couche de classification séparée. Dans ce cas, le modèle M t comprend deux composants principaux: un extracteur de caractéristiques F t et un classificateur C t . On note θ t = {φ t , ψ t } l'ensemble de tous les paramètres du réseau dans l'état S t .

F t est paramétré par des poids φ t et est défini par l'Equation 2.1. Le classificateur C t est paramétré par des poids ψ t , et est généralement défini par l'Equation 2.2. Il peut également être implémenté en utilisant un classificateur externe comme dans [START_REF] Belouadah | DeeSIL: Deep-Shallow Incremental Learning[END_REF] et [START_REF] Rebuffi | iCaRL: Incremental Classifier and Representation Learning[END_REF].

C.3 État de l'art

Les approches de l'état de l'art se divisent en trois catégories principales : (1) les approches basées sur une représentation fixe, dans lesquelles le modèle n'évolue pas dans les états incrémentaux, (2) les approches basées sur le fine tuning, dans lesquelles le modèle est mis à jour à l'aide des données des nouvelles classes et éventuellement d'une mémoire des classes précédentes, et (3) les approches basées sur l'isolation des paramètres, qui compressent le réseau ou augmentent son architecture afin d'accueillir de nouvelles classes.

-Méthodes basées sur une représentation fixe [START_REF] Tyler | REMIND Your Neural Network to Prevent Catastrophic Forgetting[END_REF][START_REF] Kemker | FearNet: Brain-Inspired Model for Incremental Learning[END_REF][START_REF] Hayes | Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis[END_REF] -Les méthodes de représentation fixe héritent des avantages et des inconvénients des schémas d'apprentissage par transfert. La complexité des modèles est constante, et elles peuvent être mis à jour rapidement puisque seule la couche de classification est réentraînée. Elles sont peu dépendantes de la mémoire du passé et peuvent s'adapter à un grand nombre de classes. Cependant, ces algorithmes dépendent fortement de la qualité de la représentation initiale et ont une faible plasticité. Ils sont utilisables lorsque: la complexité du modèle est constante, la