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CHAPTER 1

INTRODUCTION

1.1 Context and background

Artificial Intelligence

In our complex world, many technological fields evolve at a tremendous speed that requires
keeping pace with their development. This development was accompanied by a significant in-
crease in the amount of data, especially with the advent of the era of big data [1]. For example,
billions of images and content are added every day to social media such as Facebook, Insta-
gram, and Twitter. Big companies (such as Google, Amazon, and Facebook) use this data to
improve user’s experience. Behind such services, intelligent systems are trained with huge data
collected from different users on different platforms. Other examples include smart digital as-
sistants such as Alexa, Siri and Google Assistant that rely on artificial intelligence to recognize
the human voice and carry out what is requested of them. Simply put, artificial intelligence has
become pervasive, and its integration in applications and services is likely to become even more
prevalent in the future [93].

Neural Networks and Deep Learning

The most popular and efficient artificial intelligence systems today are based on artificial
neural networks (ANNs), or simply neural networks (NNs). Their development is based on
multidisciplinary work which includes contributions from computer science, mathematics, cog-
nitive science, statistics, psychology, and neuroscience.

Neural networks simulate the working mechanism of biological neurons in two aspects:

— The structure - a neural network consists of a certain number of nodes (called neurons)
connected together through artificial connections.

— The behavior - artificial neurons imitate biological neurons in how they generate and
transmit signals between them.

15



Partie , Chapter 1 – Introduction

Neural networks learn from examples, and the more relevant examples they encounter, the
better is their experience, and thus their performance. The theoretical progress in AI, the de-
velopment of computation power [10, 84], and the availability of large amounts of data lead
to the emergence of Deep Learning. The latter refers to neural networks with a large number
of layers. Deep neural networks require thus up to thousands or millions of data examples to
learn efficiently. Many ANNs have been proposed after the formal neuron. The most popular
architectures nowadays include: Convolutional Neural Networks (CNNs) [80], Recurrent Neu-
ral Networks (RNNs) [134, 63], and Transformer Neural Networks [165]. In this thesis, we are
interested in image classification with deep convolutional neural networks.

Image classification with Convolutional Neural Networks

We focus on Supervised Learning (SL) and provide a simple illustration of it in Figure 1.1.
Simply put, we focus on an automatic system that can classify a set of images into a specific
number of classes that belong or not to the same visual field, for example, house, giraffe, car,
lasagna, and phone. To do this, a set of images and their labels are showed several times to
the AI system. The goal is to guide the system by indicating the number of errors it makes in
order to improve the quality of its learning and correct its mistakes. This stage is called the
learning stage. When it finishes, the system is provided with a set of images that it did not
see in the learning phase. The goal of the system is to classify them according to the classes
that it recognized during the learning stage. Here, the simplest way to evaluate the system is to
count the number of correctly classified images. This stage is called the evaluation, testing, or
inference stage. Note that we do not address in this thesis other types of learning (unsupervised
and semi-supervised) [141].

Convolutional Neural Networks (CNNs) were introduced by LeCun et al. [79] in 1989 to
solve the problems of the full connectivity of multi-layer perceptrons [113]. CNNs are based
on convolutions, and the associated filters are equivalent to the values of the weights in MLPs.
Here, the difference with MLPs is that a neuron operates on a group of input neurons (called
receptive-field), where the convolution is computed. This sparsity in the weights helps to con-
siderably reduce the number of learnable parameters, making CNNs more efficient to learn
without overfitting the training set.

Two pioneering works which contributed to the current prevalence of CNNs in image clas-
sification are Ciresan’s multi-column architecture [29], and Krizhevsky’s AlexNet [75]. The lat-
ter won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [32, 135] in 2012.
These works and the increasing attention given to the ILSVRC challenge led to further progress
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Figure 1.1 – Supervised Learning in image classification

in image classification. Among the latter important contributions, we cite the following CNN
architectures: VGGNet [153], GoogleNet [159], ResNet [51], Wide ResNet [183], DenseNet
[57], PolyNet [188], ResNext [177], Xception [28], DarkNet [129], etc. In this thesis we use a
ResNet-18 architecture [51] containing 18 convolutional layers.

Class-Incremental Learning as a Continual Learning paradigm

While strong progress was achieved in artificial intelligence-related tasks, such as image
classification, standard artificial agents are designed to be trained in a static manner. In contrast,
real-world data is often dynamic [6] and artificial agents should be able to ingest new infor-
mation without full retraining. In other words, it is not enough for AI systems to learn, but it
is important that they learn continuously. This way of learning is called Continual Learning

(CL) or LifeLong Learning (LFL). It is interesting insofar as it avoids training from scratch
when new data is ingested, thus reducing the computational requirements and memory foot-
print. The memory limitation is often encountered in robotics [83], embedding systems (such
as mobile devices), and when regulation limits data storage and distribution (as is the case for
health-related data). Some environment-friendly applications also use CL to reduce the carbon
footprint [158, 149].

Figure 1.2 shows a simplified supervised continual learning process. Depending on the ap-
plication domain, one CL cycle is called task [101, 7, 9], state [128, 174, 24], or experience [83].
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Figure 1.2 – Continual Learning life cycle.

The cycle starts by feeding the AI system with new data. The AI system uses it to update its
knowledge in a supervised manner. After learning the new data, the system is evaluated on a
separate testing set before being fed again with new data and starting a new life cycle. It is
noteworthy that while the AI system receives tasks sequentially, it can access data from a single
task while being evaluated on all tasks seen so far. In some cases [128, 174], a bounded memory
of past data is allowed. A detailed discussion of the memory is provided in Chapter 2.

There are three main scenarios of continual learning [166]. Namely: Task-incremental learn-

ing [100, 9], Domain-incremental Learning [8, 47, 48] , and Class-incremental Learning [128,
189, 53]. The three areas are related but we briefly highlight the differences between them
hereafter:

— Task-Incremental Learning - the task boundaries (number of new classes) are known,
and the task-id is provided at inference time. Here, the system does not discriminate
classes from different tasks but only those belonging to the same task. Equally important,
tasks are semantically coherent since the system learns each time classes belonging to a
different domain, such as letters, then planes, cars, and birds.

— Class-Incremental Learning - a CL scenario that is task-agnostic (the task-id is not
known at inference time), but the task boundaries are known in the sense that past classes
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are not repeated in future states. The system should discriminate between all classes seen
so far, and not only new classes. Task-incremental learning can be seen as a more relaxed
version of class-incremental learning, where task-id helps restraining the search space
during inference. Equally important, class-incremental learning is more complicated than
task-IL because states include classes that are mixed from a semantic point of view. Note
that the task is called state in IL systems of this group, and this is how we call it in the
rest of the thesis.

— Domain-Incremental Learning - this is the most challenging scenario, where the task
boundaries are not known. Here, new data appears in a stream and should be ingested
online. New streamed data can belong or not to past classes. Methods in this group usually
visit each data example once during all the training process.

We are interested in class-incremental learning. This scenario is more challenging than task-
incremental learning, but contrarily to domain-incremental learning, it assumes that data arrives
in groups of classes with known boundaries. Figure 1.3 illustrates the difference between the
three main areas of continual learning.

Figure 1.3 – Three main scenarios of continual learning.
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1.2 Open challenges in Continual Learning

As already explained, continual learning consists of updating system capacities through
a long-life cycle, where knowledge continuously appears over time. This task is easy if full
retraining is allowed but becomes very challenging otherwise. The authors of [102] noticed
what they called the catastrophic interference or catastrophic forgetting, a phenomenon from
which suffer systems that are trained with back-propagation. Catastrophic forgetting (CF) is the
tendency of neural networks to underfit (forget) past knowledge when trying to accommodate
a new one. Later, CF was experimentally proved by [124] who studied the behavior of many
back-propagation-based systems. One early work which brought attention to CF in the context
of deep learning is [45]. The study consisted of an experimental investigation of the effects and
the reasons behind CF in gradient-based systems.

Catastrophic forgetting remains the main problem that continual learning systems tackle.
We exemplify its occurrence in image classification below. When new classes are ingested, the
network weights are updated to minimize a loss on images of these classes. The consequence
of this update is called weight drift because weights that were important for past classes in
previous states have been changed [101]. The change in weights leads to a change in activations
(output) of the network (activations drift). In class-incremental learning, the activation drift is
called recency bias, and it refers to the tendency of IL systems to favor newly learned classes
in each incremental state. This is because new classes are learned each time with all their data,
while past ones have, in the best case, a limited number of exemplars to be replayed for them
from the memory. Effects of recency bias were observed at the level of prediction scores [174]
or weights matrix [189] of the classification layer. The effect of recency bias is a drastic drop in
performance on past classes. A more detailed analysis of the effects of catastrophic forgetting
is proposed in Chapters 3 and 4.

Along with catastrophic forgetting, many challenges make class-incremental learning diffi-
cult to tackle. In 2017, the authors of iCaRL [128], an early and influential class-incremental
learning system based on a deep learning backbone, rightfully note that there exists no satisfac-
tory algorithm that can qualify as class-incremental. They frame three necessary properties of
it: (1) be trainable from new stream data that occurs arbitrarily; (2) provide competitive perfor-
mance for past classes when new ones are integrated, and (3) computational requirements and
memory footprint should remain bounded. With the advances in class-incremental learning al-
gorithms in the last five years, we revisit the properties proposed in [128] (marked with * below)
and define six desirable properties that an ideal continual learning algorithm should fulfill:
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— Complexity* - capacity to integrate new information with a minimal change in terms
of the model structure. For a deep neural network, only the size of the classification
layer should grow. Otherwise, the total number of model parameters is likely to increase
strongly, especially at a large scale. Dynamic networks [136, 170, 7] fail to satisfy this
challenge since the first two works expand the models capacity by increasing its archi-
tecture throughout the incremental process. The third work [7] adds one model per task,
which is heavy at a large scale.

— Memory* - ability to work with or without a fixed-size memory of past classes. Natu-
rally, algorithms that do not require past data are preferable, but this condition is hard to
satisfy. Distillation-based approaches [86] require saving the previous (teacher) model to
compute the loss. Bias-removal approaches [174, 189] require saving at least some float-
ing values to make use of past knowledge. The performance of methods that do not use
an exemplar memory is lower, especially if complexity growth is minimized.

— Accuracy* - performance for past and new classes should approach that of a non-incremental
learning process that has access to all data at all times. This goal is not achieved by any
continual learning approach because of the CF [102] problem. All continual learning al-
gorithms struggle to reduce their gap with a non-incremental learning.

— Timeliness - delay needed between the occurrence of new data and its integration in the
incremental models. Most works [128, 53, 24, 97, 96, 173, 152] do not consider the addi-
tional training time needed to incorporate the components that reduce the catastrophic for-
getting. For instance, the NEM classifier in [128], the balancing FT step in [24], the time
needed to free unimportant parameters in [96, 97], and the time needed to compute the
sophisticated objective in [53]. On the contrary, fixed-representation-based approaches
[47, 66, 48] are faster since no deep retraining is done incrementally.

— Plasticity-Stability - capacity not only to deal with new classes that are significantly dif-
ferent from the ones learned in the past but also to keep as much knowledge as possible
from the past. This challenge is not evident because, on the one hand, several updates
of the model worsen the catastrophic forgetting and increase its bias [109] towards new
classes. On the other hand, not updating the model would lead to a problem of intran-

sigence (the resistance to learning new classes [26]) that makes it not efficient to recog-
nize future classes that belong to other visual domains. This problem is known under the
plasticity-stability dilemma [104]. Task-incremental learning methods [7] are more robust
against domain shift between incremental states.

— Scalability - the aptitude for learning a large number of classes, typically up to tens of
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thousands, and ensure usability in complex real-world applications. Fixed Networks [96,
97] are not scalable because they continuously free unimportant weights and allocate them
to learn new classes until the network cannot be compressed anymore. Similarly, methods
that are highly dependent on exemplars memory suffer from catastrophic forgetting when
the number of classes exceeds the memory size since more and more classes will not have
any more representatives to be replayed for them.

In fact, the difficulty comes mainly from satisfying all properties jointly. It would be good
to illustrate this with some examples. For instance, if complexity is stable, it is hard to maintain
accuracy. If timeliness is very important and resources are scarce, plasticity will suffer because
it is difficult to retrain.

Other challenges are related to the experimental protocol to assess the quality of incremental
learning algorithms. We list below some of these challenges:

— Data imbalance - class-IL becomes more challenging if there is an important variation of
the number of images per class [4]. Catastrophic forgetting is mainly due to the absence
of images for past classes. When a memory of the past is allowed, class-IL is akin to an
imbalanced learning since new classes are learned with all their data, while past classes
are learned with the exemplars in the memory only. Adding more imbalance among new
classes makes the training of the model more difficult.

— Data annotation - Most existing works assume that new data is entirely labeled [128,
35, 7, 174, 101]. This is not the case in real-life situations. For instance, only a small part
of the images on the web are annotated. Data annotation is time and money expensive
and for this reason active learning [184, 146, 144] and semi-supervised learning [85, 91,
77, 23, 138, 169] approaches saw the light. The former selects the most representative
set of images to annotate by an expert while discarding the unlabeled images. The latter
annotates the set of unlabeled images automatically. Active learning is still not widely
used in class-incremental learning, while semi-supervised learning is now in fashion in
class-IL. Note that the three domains can be combined for more efficiency. Assuming
that new data is labeled relaxes the difficulty of class-incremental learning approaches
but should be considered if we aim for real-life applications.

— Size of class batches - One challenge could be the number of classes added at each
incremental state. Adding one class per state would add more rehearsals to fine-tuning-
based approaches [128, 53, 24] and causing faster forgetting. This, however, does not
have a negative effect on fixed-representations [47, 66, 48]. We vary this parameter in our
experiments.
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— Selection of exemplars - When a memory of the past is allowed, other challenges are
encountered in class-IL regarding the criterion on which the exemplars are selected, and
the number of exemplars to keep in the memory for each class. This challenge was largely
debated in literature [128, 61, 89], and we provide our own discussion about it in Chapter
3.

In this thesis, we focus on approaches which: (1) keep the complexity of the model fixed,
(2) work with and without a bounded memory of the past, (3) propose one method which favors
stability, and four methods that balance stability and plasticity, (4) learn (but are not limited to)
1000 classes, (5) tackle data imbalance and non-availability of annotated data, and (6) vary the
number of classes per incremental state. While focusing on one or several of these points, the
ultimate goal of the proposed contributions is to increase the accuracy of our IL systems and
reduce their gap with a standard learning from scratch.

1.3 Contributions overview

The focus of this work is on: Large-scale (systems that are able to learn at least 1000
classes) Deep (we use deep convolutional neural network) class-incremental learning (AI sys-
tem where new data appears continuously in groups of classes). Naturally, class-incremental
learning methods that we visit in this thesis can be deployed for any kind of classification, such
as that of text [58] or sentiments [65].

In Chapter 2, we analyze relevant continual learning systems and focus on those that are
usable in a class-incremental learning scenario. The next two chapters (3 and 4) are dedicated
to our contributions to class IL with and without memory, respectively. We briefly describe these
approaches hereafter.

Class-incremental learning with memory (Chapter 3):

1 – Deep-Shallow Incremental Learning (DeeSIL) (Section 3.2) - is a fixed-representation-
based approach, which applies a standard transfer-learning scheme [44, 125] to an incremental
learning scenario. A deep representation is learned using the training set of the first incremen-
tal state and then exploited as a feature extractor for the other classes learned incrementally. A
convolutional neural network is used for features extraction, and a battery of Support Vector
Machines (SVMs) [19] is used to learn new classes. When a memory of the past is allowed, it
stores the SVMs negatives from past states. When no memory of the past is allowed, this method
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is still usable by replacing the negatives of the memory with negatives from classes belonging
to the same state as the class that the system is currently learning. This work was published in
the TaskCV workshop of the European Conference on Computer Vision 2018 [12].

2 – Incremental Learning with Dual Memory (IL2M) (Section 3.3) - uses a secondary memory
to store statistics of new classes in each state. In future states (when these classes become past
classes), the stored statistics of past classes are used to rectify their predictions in order to make
them more comparable to those of new classes. This work was published in the International

Conference on Computer Vision 2019 [13].

3 – Classifier Weights Scaling for Class-Incremental Learning (ScaIL) (Section 3.4) - Since
past classes are better learned in initial states in which they were encountered for the first time,
we perform initial weights replay for them, and normalize updated weights matrix using statis-
tics computed over new class weights of each state. This work was published in the IEEE Winter

Conference on Applications of Computer Vision 2020 [14].

4 – Active class-incremental learning for imbalanced datasets (Section 3.6) - We assume that
the new data is not entirely labeled and dataset is strongly imbalanced. This is a more chal-
lenging scenario of class-IL with memory. The main contributions of this section are: (1) the
proposal of two acquisition functions that help us choosing the subset of training images to label
by an expert (the rest of unlabeled images is discarded), and (2) the adaptation of the thresh-
olding method from [21] to class-IL. The latter is efficient in tackling the bias of the network
caused by data imbalance. This work was published in the IPCV workshop of the European

Conference on Computer Vision 2020 [17].

5 – A Comprehensive Study of Class Incremental Learning Algorithms for Visual Tasks (Sec-
tions 3.5 and 4.4) - We conduct extensive experiments to assess the merits and limitations of
popular class-incremental methods and variants of them. We notably study the effect of distilla-
tion loss [52], the herding mechanism to select past-class exemplars (in case a bounded memory
is allowed), and the effect of not having a memory of the past. The study is divided in two parts,
the one with memory is presented in Section 3.5 of Chapter 3, and the one without memory is
in Section 4.4 of Chapter 4. The main conclusion is that none of the existing IL algorithms is
always best in all configurations. This work was published in the Elsevier’s Neural Networks

journal [15].
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Class-incremental learning without memory (Chapter 4):

This scenario is more challenging than the preceding one, but it is more interesting and use-
ful in practice, especially when access to past data is impossible. We propose two methods that
can be implemented on top of many IL algorithms to improve their performance.

1 – Standardization of Initial Weights for Class-Incremental without memory (SIW) (Sec-
tion 4.2) - Sharing the same spirit as ScaIL, this approach also performs initial weights replay
for past classes. At the same time, the normalization is done by standardizing weights vectors
of all classes. This work was published in the British Machine Vision Conference 2020 [16].

2 – Dataset Knowledge Transfer for Class-Incremental Learning without Memory (TransIL)
(Section 4.3) - We propose to transfer calibration parameters from reference to target datasets
to make bias correction methods such as BiC [174] usable in a memoryless IL setting. Besides,
we propose AdBiC, a refinement of BiC, which rectifies past class scores based on their initial
IL state (in which they were encountered for the first time). This work was published in the
IEEE Winter Conference on Applications of Computer Vision 2022 [155].

We conclude this work in Chapter 5. We present a brief discussion of the memory footprint
required by our proposed approach. In addition, we present a diagram of IL methods before
and after our proposed methods to help understand which type of IL scenarios our methods are
more useful. We finally present some open directions for future research.

The full list of publications related to this thesis can be found in Appendix A. Datasets
and implementation details are in Appendix B. All our codes and datasets details are publicly
available to facilitate reproducibility 1

1. https://github.com/EdenBelouadah/class-incremental-learning
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CHAPTER 2

STATE OF THE ART OF

CLASS-INCREMENTAL LEARNING

2.1 Introduction

Artificial agents that evolve in dynamic environments should be able to update their capa-
bilities in order to integrate new data. Depending on the work hypotheses made, names such
as continual learning [142, 152], lifelong learning [7, 116] or incremental learning (IL) [24,
51, 128] are used to describe associated works. The challenge faced in all cases is catastrophic
forgetting [102], i.e., the tendency of a neural network to underfit past data when new ones
are ingested. The effect of catastrophic forgetting can be alleviated by (1) increasing the model
capacity to accommodate new knowledge, (2) storing exemplars of past classes in a bounded
memory and replaying them in each new state, (3) using knowledge distillation to encourage
the network to keep the same outputs for past classes in future states, or by (4) combining two
or all of these components. Continual and lifelong learning algorithms usually increase model
capacity and are tested in a setting in which a new task is added in each new state of the system.
Most of the recent comparative studies [76, 116] provide good coverage of these two types of
approaches, but few of them [101] give room to class incremental learning algorithms. Conse-
quently, we focus on representative recent works from literature which tackle class IL [24, 48,
47, 53, 128, 174]. Their study is interesting because one early example of such work [128] is
shown to outperform continual learning approaches when tested in a common experimental set-
ting [76], while more recent works [24, 53, 174] have provided strong improvements compared
to [128]. We propose in Section 2.2 a unified formulation of the class-incremental learning
problem and use it to analyze different algorithms. The same formulation is subsequently used
to present our methods in Chapters 3 and 4. In Sections 2.3.1, 2.3.2, and 2.3.3, focus is put on
the components which differentiate algorithms one from another in order to facilitate the un-
derstanding of their advantages and limitations. Finally, we conclude the chapter by providing
a global assessment of the characteristics of each group of IL methods.
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2.2 Problem Formulation

We propose a unified formulation of class-incremental learning which builds on those in-
troduced in [86, 128] and [24]. We note T the total number of states. The first one is called
the initial state, and the T − 1 remaining states are incremental. A set of Pt new classes is
learned in the tth state. States do not overlap in classes, i.e., a class is initially learned with all
its data only once during all the training process. A modelM1 is initially trained on a dataset
X1 = {X1

1 , X
2
1 , ..., X

j
1 , ..., X

P1
1 }, where P1 is the number of classes learned in the first state.

Xj
t = {x1

j , x
2
j , ..., x

nj

j } is the set of nj training examples for the jth class, pjt is its corresponding
classification probability in the state St. We note Nt the set of all classes seen until the tth state
included. Thus, N1 = P1 initially, and Nt = Nt−1 + Pt = P1 + P2 + ...+ Pt−1 + Pt for subse-
quent states.Mt is updated with an IL algorithm A using Xt = {(Xj

t , Y
j
t ) : j ∈ [Nt−1, Nt]} if

no memory of the past is allowed and using Xt∪K if a past memoryK is allowed. At each state,
Mt is evaluated on all classes seen so far (j ∈ [1, Nt]). We mark in bold vectors and matrices.

Following [128, 24], we use in this thesis P1 = P2 = ... = PT . Some recent works [88,
53, 35, 89] train the first modelM1 on half of the available classes, and divide the remaining
classes evenly in the subsequent T −1 states. The first group of methods tackle more challenging
scenario of IL since the initial representation is learned with few classes.

Recent class-incremental learning algorithms are implemented using deep convolutional
networks (DNNs) as backbone [128, 24]. While DNNs are end-to-end classification approaches,
a part of the IL algorithms uses a separate classifier layer. In such cases, the modelMt includes
two main components: a feature extractor Ft and a classification component Ct. We note θt =
{φt, ψt} the set of all network parameters in state St.

The feature extractor Ft is parameterized by weights φt and is defined as:

Ft : Xt → RD

x 7→ Ft(φt;x) = f(x)
(2.1)

where f(x) is a D-dimensional compact vectorial representation of the image x, called
feature vector. Its size depends on the deep architecture. For example, for a ResNet-18 [51],
D = 512. We note F j

t the set of feature vectors of all images of a class j extracted withMt.

The classifier Ct is parameterized with weights ψt, and is usually defined as:

Ct : RD → RNt

f(x) 7→ Ct(ψt;f(x)) = f(x)×W t +Bt = ot
(2.2)
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where:

— ot = (o1
t , o

2
t , ..., o

Nt
t ) is the vector of raw scores of size Nt providing the individual pre-

diction scores for each class j = 1, 2, ..., Nt. We omit the x for simplicity.

— ψt = {W t,Bt}

— W t and Bt are the weights matrix and bias vector of the last fully connected layer of size
(D,Nt) and Nt respectively.

W t is defined as:

W t = {W 1
t , ..,W

N0
t ,WN0+1

t , ..,WN1
t , ...,W

Nt−2+1
t , ..,W

Nt−1
t ,W

Nt−1+1
t , ..,WNt

t }
(2.3)

Ct can also be implemented using an external classifier. For instance, iCaRL [128] and a
variant of LUCIR [53] use a Nearest-Class-Mean (NCM) as a classifier to compute class pre-
dictions based on the similarity of each test image to the average class feature computed from
the available images in each state. Yet another choice [12] is to exploit a fixed deep represen-
tation to extract features for all incremental states and a set of linear SVMs to implement the
classifier Ct.

In a DNN [51], a softmax function σ is applied to transform raw scores ot = (o1
t , o

2
t , ..., o

Nt
t )

to probabilities pt = (p1
t , p

2
t , ..., p

Nt
t ) using Equation 2.4.

pjt = σ(ojt) = eo
j
t (x)∑Nt

l=1 e
ol

t(x) (2.4)

The different types of final layers mentioned above will be compared in a common setting
(Chapters 3 and 4) to assess their merits and limitations.

2.2.1 Past-class exemplars memory

The memory K, which stores a partial view of past classes, is a central component of a
majority of existing IL algorithms. The imbalance between past and new classes makes the
model biased toward new classes and leads to an underfitting of past classes, a well-known
effect of catastrophic forgetting [102]. Two types of memories are used by the community:

— Growing memory - [89, 56, 163, 35, 53] here, the imbalance in the number of images
between past and new classes is stable through the incremental process. At the end of each
state St, the same number of images is kept for each class in the memory. The advantage
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of this method is to keep the representation of past classes balanced, but it increases
memory footprint linearly.

— Bounded memory - [89, 128, 24, 174, 189] here, the memory capacity is limited. At the
end of each state St, the number of images for each past class is reduced to accommodate
images from new classes. Thus, the same number of images |Kjt | = |K|/Nt is kept for
each class. The representation of past classes is thus degraded and the imbalance in favor
of new classes grows throughout incremental states since the bounded memory K needs
to be allocated to a larger number of past classes each time.

On the one hand, having a growing memory is challenging at the beginning of the incre-
mental process where early classes cannot benefit from the full memory size. The scalability of
this approach depends on the available memory resources. On the other hand, having a bounded
memory helps early classes benefit from the full memory size, but this is problematic at a large
scale where more and more classes do not have representatives for them in the memory. The
scalability of this approach depends on the robustness of the class-incremental learning method
used.

To make the class IL more realistic and challenging, we focus on scenarios where the mem-
ory of the past is bounded. There are many ways to select images to fill the memory, but few of
them were studied more attentively:

— Random selection - consists in shuffling and selecting random images for each class.
This method is intuitive and fast but remains a strong baseline.

— Selection by herding - it consists in selecting the most representative set of images for
each class heuristically. Here, the order of exemplars in the memory matters because the
less important exemplars are removed when space is needed in the memory. Herding is
computationally expensive compared to a random selection.

— Optimizable exemplars - this method is explored in Mnemonics [89]. Here the exem-
plars are parameterized and thus optimized in an end-to-end manner. At each new state,
new exemplars are learned for new classes, and those of past classes are adjusted to fit the
current data distribution. This method provides flexible and adaptable exemplars set but
is computationally very expensive compared to the above methods.

The role of exemplar selection techniques is debated in literature [24, 89, 127, 174]. Notably,
the authors of [24] and [89] report similar results with herding-based and random selection
of exemplars. However, both of these works select exemplars statically using their similarity
to the mean feature vector of the class. The original definition from [172] (also exploited in
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[128]) selects each exemplar based on a dynamic mean computed at each step of the exemplars
which were already selected. The advantage of the original definition is that it provides a better
approximation of the actual class center compared to a static selection.

We run extensive experiments in Chapter 3 with both random and herding methods and
show that herding is beneficial to improve incremental learning. The authors of [101] reach
the same conclusion for long sequence tasks. Note that we also implemented the version of
herding proposed in [24] and initial tests showed that its performance is indeed comparable to
that of random sampling. We also tried other sampling strategies inspired from active learning
approaches such as: entropy [148] and min margin [146] (also explored in RWALK [26]), core-
set [144], and k-means [184]. Initial experiments showed that none of these techniques provide
better performance than herding.

2.2.2 Knowledge distillation

Knowledge distillation (KD) [52] was originally designed to help a student model learn
from output activations of a teacher model. It was later adopted in class-incremental learning
by [86] to prevent the drift in the representation learned by the network while updating the model
with data from new classes. The authors introduced a distillation term in the loss function with
Equation 2.5

L = λ × Lc + (1− λ) × Ld (2.5)

where Lc and Ld are classical cross-entropy and distillation terms, respectively. λ ∈ [0, 1] is
a hyper-parameter that provides the weight of each loss term.

Cross-Entropy Loss

In state St, the cross-entropy (or classification) loss is computed for all past and new classes
and is given by :

Lct(x, y; θt) =
∑

(x,y) ∈ Dt∪K

Nt∑
j=1
−δy=j log[pjt(x)] (2.6)

where δ is the Kronecker delta.
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Distillation Loss

In state St, distillation loss is computed for past classes only and is given by:

Ldt (x) =
∑

(x,y) ∈ Dt∪K

Nt−1∑
j=1
−σ̂jt−1(x) log[σ̂jt (x)] (2.7)

where σ̂ is the softened softmax applied on the raw scores predicted by the network. The
softened score of the jth class in state St is:

σ̂jt (x) = eo
j
t (x)/T∑Nt

l=1 e
ol

t(x)/T (2.8)

Compared to the softmax definition provided in Equation 2.4, a temperature value T is used
for temperature scaling [52], that prevents occurrence of very high probabilities. Note that σ is
equivalent to σ̂ when T = 1.

Ld was originally introduced to improve performance when no memory of past classes is
available [86]. The authors of [127] adapted it for the case when a bounded memory K is
allowed. Different flavors of distillation were later proposed in [24, 53, 61, 174] in order to
further improve the compromise between model stability and plasticity in class IL. We ran
experiments with different formulations of distillation and report the main findings in the next
chapters.

2.3 Class-incremental learning methods

After defining some fundamental concepts in class-incremental learning, we present the
most popular methods from the state of the art in the following sections. Inspired by [76],
we categorize these approaches in three main groups as shown in Figure 2.1, and we discuss
approaches from each category hereafter.

Note that the categorization proposed in Figure 2.1 is not strict in the sense that an IL
approach can belong to one or many categories. For instance, [174] belongs to both bias removal
and regularization-based approaches. Alternatively, [66] belongs to both fixed-representation
and pseudo-replay-based approaches.
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Figure 2.1 – State-of-the-art approaches divided into three main categories: (1) Fixed-
representation based approaches where the model does not evolve through incremental states,
(2) fine-tuning based approaches where the model is updated with new classes data and possi-
bly with a pool of exemplars from past classes, and (3) parameter-isolation based approaches
that either compress the network or expand its size in order to accommodate new classes. Best
viewed in color.

2.3.1 Fine-tuning based approaches

They constitute the most popular type of approaches. Fine tuning consists of initializing
the weights of the model with those of the previous one to benefit from previously learned
knowledge and quickly start the learning process on new data. Fine-tuning-based approaches are
the most popular in class-incremental learning. We distinguish between three main categories:
(1) replay-free approaches that do not use a memory of the past, (2) replay-based approaches
that use a bounded memory of the past, and (3) pseudo-replay-based approaches that generate
past images instead of storing them in the memory.

2.3.1.1 Replay-free methods

This group of approaches can operate without the use of past exemplars memory. They are
often based on regularization losses. We can distinguish between two categories of this group
(that we do not show in Figure 2.1 for simplicity): (1) methods that aim to prevent weight drift

of weights that are important to previous classes (known as weight regularization methods),
and (2) methods that prevent activation drift that is more remarkable in the classification layer
(known as data regularization methods).
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Weight regularization methods
They compute the importance of each parameter in the network after each state. When learn-

ing the new set of classes, the more a weight is important, the more the network is penalized for
its changes. Such works add an additional loss term (Equation 2.9).

Lrt (x, y; θt) = 1
2

|θt−1|∑
w=1

Ωw(θwt−1 − θwt )2 (2.9)

where |θt−1| is the number of parameters of the modelMt−1, and Ωw is the importance of
the weight w.

Class IL methods in this category differ in how they compute the importance of the weights
Ω. Elastic Weights Consolidation (EWC) [70] computes Ω as a diagonal approximation of the
Fisher Information Matrix (FIM) , while in [87] authors rotate the parameter space in order
provide a better approximation of the FIM . Alternatively, [81] build on continual learning
approaches that use batch normalization layers and propose a quadratic penalty method with a
Hessian approximation. Contrarily to [70, 87], authors approximate the FIM using a Krenocker
factorization.

PathInt [185] is another variant that maintains an online estimate of weights through the
incremental process while consolidating those having high values when learning new tasks.
This approach underestimates weights importance when fine tuning from a pre-trained model,
while it overestimates them when learning the first model from scratch.

Memory Aware Synapses (MAS) [9] deploys a mechanism that identifies the most important
weights in the model by looking at the sensitivity of the output function instead of the loss.
When a new task arrives, changes to important weights are penalized. This method was initially
designed to work in a task-incremental scenario but was later adapted for usage in domain-
incremental learning [8].

Data regularization methods
They often use a distillation [52] term to reduce catastrophic forgetting [102]. The use of

knowledge distillation in an IL context is similar to self-distillation [40, 179] in that it oper-
ates with the same network architecture for the teacher and the student. However, a notable
difference arises from the fact that new data are incorporated progressively.

Learning without Forgetting (LwF) [86] is a pioneering work that does not require memory
of past classes. It leverages knowledge distillation [52] to minimize the discrepancy between
representations of past classes from the previous and current IL states. LwF first performs a
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warm-up step that freezes the past parameters and trains only the new ones and then jointly
trains all network parameters until convergence (Equation 2.7).

Learning without Memorizing (LwM) [34] is a distillation-based approach that does not need
a memory of past classes. Instead, the authors propose an information preserving penalty using
attention distillation loss that captures the changes in the classifier attention maps in order to
preserve past knowledge. The loss function in LwM is defined in Equation 2.10.

LLwM = Lc + βLd + γLa (2.10)

where β and γ are weighting parameters, Lc is the classification loss, Ld is the distillation
loss, and La is the attention loss. The latter is defined in Equation 2.11:

La(x; θt) =
∥∥∥∥∥ Qt−1(x)
‖Qt−1(x)‖2

− Qt(x)
‖Qt(x)‖2

∥∥∥∥∥
1

(2.11)

where Q(x) is the attention map of image x generated with Grad-CAM algorithm [143].
Grad-CAM helps to localize the parts of the image that contribute to the prediction.

[186] propose Deep Model Consolidation (DMC), another distillation based system. It trains
two separate networks, one for new classes and one for past classes, and then combines them
via a double distillation loss Ldd. The latter helps to resolve the asymmetry in predictions be-
tween past and new classes. Here, an exemplars memory is not needed, but it is replaced by an
unlabeled auxiliary data X u to perform deep memory consolidation (Equation 2.12).

Lddt (xu; θt) = 1
Nt

Nt∑
j=1

(ojt(xu)− ôjt(xu))2 (2.12)

where xu is an unlabeled example and ô is the normalized version of o (Equation 2.13):

ôjt(xu) =

o
j
t−1(xu)− 1

Nt−1

∑Nt−1
l olt−1(xu) if j ∈ [1, Nt−1]

ojt(xu)− 1
Nt

∑Nt
l=1 o

l
t(xu), if j ∈ ]Nt−1, Nt]

(2.13)

Semantic Drift Compensation (SDC) [154] was proposed to estimate the semantic drift of
past knowledge while learning new knowledge to compensate for it, to further improve perfor-
mance. The drift is computed at the class-mean-embedding level. This approach is based on an
NCM classifier that does not need exemplars storage since the past class-mean embeddings are
estimated using new data only.

In [154], authors propose an approach that calibrates activation maps of the CNN in order
to accommodate new knowledge. Calibration is done using spatial and channel-wise calibration
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modules, and only the calibration parameters are trained at each new incremental state. This
method does not require a past-class memory. However, the calibration parameters grow instead.

Recently, [101] proposed a simple yet efficient cross-entropy loss for vanilla fine tuning
without memory. Instead of computing the loss on all classes (Equation 2.6), it is computed on
scores of new classes only, using Equation 2.14

L̂ct(x, y; θt) =
∑

(x,y) ∈ Dt∪K

Nt∑
j=Nt−1+1

−δy=j log[pjt(x)] (2.14)

This loss helps back-propagating the error using weights of new classes only. These weights
improve the encoding of the representation of the model in the current state where the model is
updated with data from new classes.

Very recently, the authors of [56] proposed a novel framework where they compute and
distill the colliding effect between past and new data. In addition, they propose to capture the
Incremental Momentum Effect and remove what causes the forgetting of past classes. The pro-
posed method is functional with and without a memory of exemplars. It can be applied on top
of unified classifiers such as LUCIR [93] and PODNet [35]. Obtained results are promising,
especially without memory. However, it is not clear how calibration parameters were optimized
in this scenario.

2.3.1.2 Replay-based methods

Here, we discuss methods that rely on the loss function to regularize the weights update
(known as regularization-based methods), and methods that address recency bias by removing
the bias between past and new classes’ scores (also known as bias-removal-based methods).

Regularization-based methods
Incremental Classifier and Representation Learning (iCaRL) [128] is a popular IL method

that combines the use of distillation and a memory for past class exemplars. Classification is
performed with a nearest-mean-of-exemplars method instead of the raw scores predicted by
the network. This external classifier is deployed to reduce the prediction bias in favor of new
classes, which occurs due to data imbalance between past and new classes. An iCaRL analysis
[61] concludes that its most important components are the fixed-size memory and the distillation
loss. The authors of [61] claim that the nearest-mean-of-exemplars classification seems to matter
less, and they replace it with a dynamic threshold moving rule to remove bias generated with
distillation loss among past classes. It is important to highlight the fact that the comparison of
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iCaRL with a vanilla fine tuning was not fair in [128] insofar as iCaRL was implemented with
a bounded memory of the past. In contrast, fine tuning did not use such a memory. We show in
Chapter 3 that when a memory of the past is allowed, a vanilla fine tuning outperforms iCaRL
on large-scale datasets.

The authors of [24] present End-to-End incremental learning (E2EIL), an IL algorithm that
differs from iCaRL mainly through the way prediction bias is reduced. The external classifier
is replaced by a balanced fine-tuning step, where data from new classes is reduced to have
equally distributed batches between past and new classes. This component has an important
impact on performance and leads to a strong improvement compared to iCaRL. It was later
adopted in [53] for its efficiency to tackle task imbalance during training. Sophisticated data
augmentation was also used by the authors and has a small positive influence on results.

Many recent IL approaches focus on a more sophisticated tackling of catastrophic forgetting.
The authors of Multi-model and Multi-level Knowledge Distillation (M2KD) [193] propose a
loss that distills knowledge not only from the previous model but from all the past models where
the classes have been learned for the first time. They also propose an additional distillation term
that operates on the intermediate layers of the CNN in addition to the last fully connected one.
The drawback of this method is that it requires saving all previous models, a strategy that is
heavy at a large scale.

In [176], knowledge distillation is also combined with a bounded memory of the past. The
authors deploy an algorithm to set a dynamic vector that corrects the bias induced by distillation
loss among past classes and improves the representativeness of past image features.

Hou et al. [53] present Learning a Unified Classifier Incrementally via Rebalancing (LU-

CIR), a method that gains much traction.LUCIR is based on three main components: (1) cosine

normalization, (2) inter-class separation, and (3) less-forget constraint. The first two contribu-
tions help reducing recency bias and are thus presented in the related section. The less-forget

constraint from LUCIR is defined in Equation 2.15:

Llft (x; θt) = 1− 〈ot−1(x),ot(x)〉
‖ot−1(x)‖2 ‖ot(x)‖2

(2.15)

where 〈., .〉 is the inner product (cosine similarity) function. The other two components of
LUCIR are described later in this chapter.

Further improvements of IL with distillation were obtained by adapting recent theoretical
and empirical advances such as those described in [117] and [121]. For instance, PODNet [35]
relies on a spatial-based distillation loss that constrains the evolution of the representation of the
model and multiple proxy vectors to flexibly represent learned classes. This approach is more
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suitable for long runs of small incremental tasks.

The behavior of knowledge distillation was studied in [25]. The authors observed that KD
works better when the domain shift is low, as is the case for class-incremental scenarios. How-
ever, it hurts performance when the domain shift is high, as is the case for task-incremental
learning approaches, where each task often contains classes from a different domain.

Similarly to DMC [186], Global distillation (GD) [82] takes advantage of an external
dataset to tackle catastrophic forgetting using triple distillation. This method has three main
stages. First, a teacher model is trained on new data, then calibrated using the exemplars mem-
ory and the external dataset. Second, a triple distillation is applied using the teacher model, the
previous model, and the ensemble model (used with external data only). Finally, a fine tuning
is performed to tackle the recency bias problem. Alternatively, [54] propose an approach that
trains a teacher model separately with new data while distilling knowledge using exemplars
memory to preserve accuracy on past classes. The main difference with Global Distillation [82]
is the absence of the external dataset.

Less-forgetting Learning (LFL) [64] freezes the last layer while penalizing the changes in
activations of previous layers. This approach is problematic when the domain shift is large.

Riemanian Walk (RWALK) [26] is a regularization-based approach that does not use distilla-
tion. Instead, it combines PathInt [185] and EWC [9] with an exemplar memory. Based on a
KL-divergence, this method aims to make a compromise between forgetting and intransigence

of the network.

Mnemonics Training [89] is built on top of herding-based approaches such as iCaRL and
LUCIR to modify the herding procedure by parameterizing exemplars and making them op-
timizable. The network is then optimized in two manners: model-level and exemplar-level.
The memory is thus adjusted incrementally to match the data distribution effectively, leading
mnemonic exemplars to yield separation between classes.

Recently, feature transformation using a dedicated MLP is introduced in [60]. This approach
only stores features instead of images to reduce the memory footprint of exemplars. Similar to
LUCIR, this method applied features distillation combined with cosine normalization.

The authors of Greedy Sampler and Dumb Learner (GDumb) [122] question the generality
of continual learning approaches. Authors claim that current CL approaches use simplifying
assumptions that make CL unrealistic. They propose a simple algorithm that greedily samples
balanced stored exemplars and trains the neural network from scratch using the exemplars only.
GDumb surprisingly outperforms most recent works from the state of the art when tested on
a wide variety of CL scenarios. This work questions the real advances in continual learning
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regarding the proposed methods, evaluation metrics and protocols.

Bias-removal-based methods
These methods tackle the recency bias problem that refers to the bias of the network towards

classes of newer states [101]. Recent works [189, 174] hypothesize that due to the limited
memory of the past, IL is akin to imbalanced learning where the network is trained with enough
images for the new classes but only a few ones for past classes.

These works tackle catastrophic forgetting as an imbalance problem. Bias Correction (BiC)

[174] is a recent approach that uses a classical knowledge distillation term and adds a linear
layer after the prediction layer of the deep model to reduce the bias in favor of new classes. The
new classes’ outputs are rectified with Equation 2.16

BiC(okt ) = αto
k
t + βt · 1 (2.16)

where okt are the raw scores of new classes, αt and βt are the bias correction parameters,
and 1 is a vector of ones.

The method needs a validation set to learn parameters and is effective as long as the size of
the validation set is sufficient. We study this method in more detail and propose an improved
version of it in Section 4.3 of Chapter 4.

Maintaining Discrimination and Fairness (MDF) [189] uses distillation loss to maintain
discrimination between past classes. In addition, the rectification of class scores is done by
aligning new class weights to those of past classes by multiplying each new class weight by the
mean norm of past class weights and dividing it by the mean norm of new class weights, before
to finally compute the prediction scores.

The authors of LUCIR [53] propose, in addition to the less-forget constraint defined above,
two techniques to tackle recency bias: (1) cosine normalization to balance the magnitudes of
past and new class probabilities, and (2) inter-class separation to encourage the network to
separate past and new class embeddings and actually implements a theoretical finding from
[121].

The cosine layer replaces the last fully connected layer and is defined in Equation 2.17:

Lcost (x, θt) =
Nt∑
j=1

yj log
exp(η〈 f(x)

‖f(x)‖2
,

W j
t

‖W j
t ‖2
〉)∑Nt

l=1 exp(η〈
f(x)
‖f(x)‖2

,
W l

t

‖W l
t‖2
〉)

(2.17)

where f(x) is the feature vector of image x, 〈·, ·〉 is the cosine similarity,W j
t is the classifi-
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cation weight vector for the jth class (called class embedding in this thesis), and η is a learnable
parameter that controls the peakiness of the softmax distribution.

The inter-class separation is implemented through a margin ranking loss that separates the
current feature vector with the feature vectors of the J most similar classes using Equation 2.18:

Lmrt (x) =
J∑
j=1

max

Ç
m− 〈 f(x)

‖f(x)‖2
,
W y

‖W y‖2
〉+ 〈 f(x)

‖f(x)‖2
,
W j

t

‖W j
t ‖2

, 0
å

(2.18)

wherem is the margin,W y is the ground truth class embedding of x, andW j
t is the embed-

ding of the closest class j. Note that LUCIR belongs to both data-regularization-based (for
the less-forget constraint) and bias-removal-based approaches (for the cosine layer).

Bias-removal-based approaches provide the best results in the literature, especially when
combined with a bounded memory of the past [101].

2.3.1.3 Pseudo-replay-based methods

These approaches do not store exemplars for past classes in the memory. Instead, they gen-
erate synthetic data to represent past classes in the current incremental state.

Using Generative Adversarial Networks (GANs) to generate past data holds promise since it
reduces the memory footprint of algorithms. However, despite recent progress [43], generated
images are still sub-optimal for IL. Since additional GAN models need to be created, the com-
plexity in the number of parameters is fair but not optimal. The authors of [173] use a GAN to
create artificial images for past classes. Generated and real examples are mixed to obtain slightly
better performance than that of iCaRL [128]. However, the accuracy drops significantly when
relying exclusively on artificially generated images. Alternatively, GAN Memory with No For-

getting [30] is based on sequential style modulations to represent the past memory by forming a
sequential targeted generative model. Here, the memory itself is designed as a form of lifelong
learning.

In [112], authors propose Dynamic Generative Memory (DGM), a continual learning frame-
work that relies on an adversarial generative network with learnable plasticity between con-
nections. Plasticity is represented by a parameter-level attention mechanism. Instead of storing
images of past classes, DGM uses previous distributions to incrementally learn a single gener-
ator of past classes images.

Alternatively, [175] propose to use conditional generative adversarial networks (CGANs) to
tackle class IL. The generator is conditioned on embeddings of past classes. Besides, it generates
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pseudo exemplars in the form of perceptual convolutional features. The discriminator contains
two heads and produces normalized embeddings that are discriminative for multi-category clas-
sification and indiscriminative for true and false example identification. The generator and the
discriminator are trained alternatively for continuous incremental learning.

Recently, [157] proposed a hybrid approach that combines replay and pseudo-replay meth-
ods to tackle catastrophic forgetting. Authors store a small number of exemplars from the past
and generate variations of them to be replayed in addition to new classes data. The main con-
clusion derived by the authors is that combined replay is efficient, especially for tiny memory
buffers.

2.3.2 Fixed-representation based approaches

Fixed-Representation (FR) based methods do not update the deep representation for each
incremental state and are less numerous in literature. They can be seen as a basic variant of
fine-tuning-based methods. A fixed-representation method is briefly described in [128] and the
results reported with it are poor. The experiments from the next chapters show that the finding
from[128] is due to suboptimal usage of the method. In particular, the classification layer for
past classes is needlessly relearned in each incremental state using only the exemplars of past
classes. Since the representation is fixed, the stronger classifier weights learned initially with all
past class data are reusable.

FearNet [66] is a biologically inspired fixed-representation method. Separate networks are
used for long- and short-term memories to represent past and new classes. A decision mecha-
nism is implemented to decide which network should be used for each test example. FearNet is
interesting, but its memory increases significantly with time since the algorithm stores detailed
statistics for each class learned.

Deep Streaming Linear Discriminant Analysis (Deep-SLDA) [47] is an online approach
based on SLDA [114] algorithm. The Network is trained on the first batch of classes and is
frozen afterward. During training, a class-specific running mean vector and a shared covariance
matrix are updated. The prediction is done by assigning the label to the closest Gaussian in the
feature space defined by the class-mean vectors and covariance matrix.

REplay using Memory INDexing (REMIND) [48] is brain-inspired by the hippocampal in-
dexing theory. The method is also based on an initial representation which is only partially
updated afterward. The approach uses a vector quantization technique to store compressed inter-
mediate representations of images, which are more compact than images themselves. The stored
vectors are reconstructed and replayed for memory consolidation. REMIND is designed for
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online learning, where each training example is seen once during all the training process. We
evaluate it in this thesis following a class-incremental protocol. Note that vector quantization
is widely used in unsupervised incremental learning [94]. Here, the authors combine the Adap-

tive Resonance Theory (ART) with a variant of vector quantization to make a trade-off between
plasticity and stability [104] during incremental online learning. This approach was designed to
handle two- and high-dimensional data within the image classification framework. We tackle in
this thesis supervised learning, and this type of approaches is not compatible with our experi-
mental protocol.

2.3.3 Parameter-isolation based approaches

We distinguish between two types of approaches: (1) those where the architecture of the
model grows to accommodate new knowledge (dynamic networks), and (2) those where the
complexity of the model is constant (fixed networks).

2.3.3.1 Dynamic networks

Dynamic networks increase the size of deep models to include new knowledge. Wang et
al. [170] introduced Growing a Brain, a method based on increasing representational capacity
by widening or deepening the network. Progressive Neural Networks (PNN) [136] is an alter-
native approach that exploits several models during training to preserve knowledge from past
tasks. Lateral connections between all models are learned to leverage prior knowledge of past
features and thus reduce the effect of catastrophic forgetting. Recently, [133] propose an adap-
tive network that enables self-growth in a tree-like manner. It is based on features hierarchy
reorganization whenever new tasks arrive.

Aljundi et al. [7] present a lifelong learning architecture based on a network of experts. A
gating mechanism exploits training samples for each task to decide which expert to trigger at in-
ference time. Deep Adaptation Networks (DAN) [132] is another model-growth based approach
which adds additional parameters for each new task. The architecture is importantly augmented
if a large number of new tasks arrives. The approach presented in [126] is based on several
neural networks that share the majority of parameters and add modular adapters to connect the
networks and specialize each one of them for a specific task.

Dynamically Expandable Networks (DEN) [181] automatically split and duplicate neurons
as more tasks are encountered. Depending on the similarity between past and current tasks,
the network might be expanded or not. The advantage of this approach is its applicability to
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whatever generic neural network, including CNNs.

Self-Organizing Maps (SOMs) are online unsupervised learning algorithms that rely on ap-
proximate stochastic gradient techniques and can be adapted to class-incremental learning. Neu-

ral Gas (NG) networks [99] and its growing NG variant [39] are related to SOMs which are often
exploited for incremental learning. PROjection-PREdiction (PROPRE) [42] is an incremental
learner based on NG and SOMs. It implements an extra supervised read-out layer implemented
as linear regression and a concept drift detection mechanism to make the SOM usable in an IL
context.

NG and SOM are growing networks that were widely used for incremental semi-supervised
clustering [39], multi-class online classification problems [11], and online semi-supervised vec-
tor quantization learning [151]. They thus need an adaptation to be used in class-incremental
learning. TOpology-Preserving knowledge InCrementer (TOPIC) [162] is a recent work that
exploits NG for class-incremental learning for visual datasets with a focus on few-shot learn-
ing. First, TOPIC introduces an NG network to learn feature space topologies for knowledge
representation. The network grows to learn new classes while also dealing with changes in the
feature space due to deep model updates. This is achieved using a min-max loss that pushes
new classes which share the same label to a new NG node while pulling the new nodes of
different labels away from each other. Second, TOPIC preserves past knowledge by stabiliz-
ing the topology of the NG network using an anchor loss term. Since TOPIC focuses on the
feature space, which encodes more semantic information than the raw classification scores, it
is less affected by the bias induced by high new classes’ raw scores. A topology-preserving
network named TPCIL is introduced in [163] to handle catastrophic forgetting. The network
models the feature space using an Elastic Hebbian Graph, and the topology is maintained using
a topology-preserving loss that constrains the neighborhood relationships in the graph when
learning new classes. This approach augments the Hebbian graph by inserting vertices for each
new class. The addition of nodes in TOPIC and TPCIL gradually increases the complexity
of the architecture.

2.3.3.2 Fixed networks

Contrarily to dynamic networks, these methods do not modify the overall architecture of
the model. PackNet [97] is based on a pruning technique that identifies redundant parameters
and uses them to train the network on new tasks. The approach cannot learn a large number of
tasks since the network can not be strongly compressed without significant performance loss.
Piggyback [96] is a modified version of PackNet that exploits network quantization to propose
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masks for individual weights. It thus learns a large number of tasks with a single base network.
The approach increases the model complexity because extra parameters are added each time to
include new tasks.

Recently, [100] proposed Ternary Feature Masks (TFM). This task-incremental method ap-
plies ternary masks to features of each layer in order to allow features to be used or not during
the forward and backward pass. The authors also use a task-specific feature normalization to
adjust previously learned features to better learn future tasks. TFM has a negligible memory
overhead (3 bits per feature per task) but allows training only a fixed number of tasks since the
neuron masks are disjoint between tasks.

Alternatively, Adaptive Aggregation Networks (AAN) [88] handle catastrophic forgetting at
the network level. Stable and plastic blocks are built on top of residual blocks of a ResNet
architecture [51] to preserve past knowledge and integrate new data. This approach makes use
of exemplars memory, making it part of replay-based methods also.

In the same scope, [168] recently proposed a feature map transformation strategy with negli-
gible additional network parameters to improve class separability. Model parameters are shared
between global and task-specific parameters, and only the latters are updated at each IL state to
improve training times.

2.4 Class-incremental learning evaluation

2.4.1 Datasets

Many datasets have been used by the community for class-IL, among them:

— MNIST [78] is designed for hand-written digit recognition. It contains 10 classes with
60000 training images and 10000 testing images.

— CIFAR-10 [74] is designed for object recognition and includes 10 classes. Each class has
6000 training images and 1000 testing images.

— CIFAR-100 [74] is the same than CIFAR-10, but it contains 100 classes regrouped in 20
categories. Each class has 500 training images and 100 testing images.

— ILSVRC [135] is a subset of 1000 leave classes from ImageNet [32] database. ILSVRC
contains around 1.2 million images and is used in ImageNet challenges. The latter database
follows WordNet hierarchy, thus, leave classes represent specific visual concepts.

— Mini-ImageNet is a randomly selected subset of 100 classes from ILSVRC [135].
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— VGGFACE2 [22] is a face recognition dataset including over 9000 identities in its full
version.

— Google Landmarks [108] (LANDMARKS below) is a landmark recognition dataset
which includes over 2 million images for over 30000 landmarks across the world.

— FOOD-101 [20] is a dataset for fine-grained food recognition with 101 classes.

— Caltech-UCSD Birds [171] (also known as CUBS) contains 200 fine-grained bird classes
with a total of 5994 images.

— Oxford Flowers [107] contains 102 flower species with 2040 training images and more
than 6000 testing images.

— MIT Scenes [123] is a dataset for indoor scene classification. It contains 67 classes having
each 80 training images and 20 testing images.

— FGVC-Aircraft [95] contains around 100 classes with a total of 10200 images.

— Stanford Cars [73] contains 196 classes of cars with a total of 16185 images, where the
first half are used for training, and the second half is used for testing.

— VOC Actions [37] is used in VOC challenge for human action classification. It contains
10 classes of specific actions and one class for other types of actions. It contains more
than 6000 multi-labeled images.

— Street View House Numbers (SVHN) [106] is designed for digit recognition. It contains
more than 600000 images obtained with Google Street View.

— iNaturalist [59] contains 8000 fine-grained categories with highly imbalanced classes.
This dataset contains about 450000 images and is useful to test the robustness of IL algo-
rithms in real-world settings.

— Places-365 [192] is a dataset for scene classification. It contains 365 classes with over 1.8
millions of images.

— WikiArt [137] artists classification dataset that contains a wide genre of painting styles. It
contains more than 80000 images from 1119 artists. This dataset and also Sketch dataset
[36] were used in [96] but is more suitable for domain-adaptation applications.

MNIST[78] and CIFAR-10 [74] are very small and easy datasets. Thus, we do not include
them in our experiments because the focus here is on realistic and challenging datasets with
a minimum of 100 classes. Note that Birds [171], Flowers [107], Scenes [123], Aircraft [95],
Cars [73], Actions [37], and SVHN [106] are more popular in task-incremental learning, where
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the new classes have different visual features each time [9, 7]. Among the mentioned datasets,
the most used ones in the class IL are ILSVRC [135], Mini-ImageNet [135], and CIFAR-100
[74]. We are the first to use VGGFACE2 [22] and LANDMARKS [108] as large scale datasets,
in addition to ILSVRC. The other datasets that we used include many subsets of 100 classes
from ImageNet (different from ILSVRC), Places-365 [192] and FOOD-101 [20].

There exist other datasets that were proposed recently but are used in other continual learn-
ing scenarios, such as: Omniglot [140], CORe50 [90], OpenLORIS [150], and Stream-51 [130].

2.4.2 Metrics

Various evaluation metrics have been used in the state of the art. The most important and
popular one is accuracy.

— Accuracy (A) - two variants of this measure are used: the top-1 accuracy and the top-5 ac-
curacy. The former simply measures the percentage of correctly classified images among
all the test set. Practically, the top-1 accuracy means that the target class corresponds
exactly to the class predicted with the highest probability. Top-5 is a relaxed version of
the former but shares with it the same spirit. The difference is that, in top-5 accuracy, an
image is considered as correctly classified if the target class belongs to the five classes
predicted with the highest probabilities. The top-5 accuracy was popularized during the
Imagenet LSVRC 2012 challenges [135], because the dataset is challenging and the goal
was to relax the objective. Since the model is learned incrementally, the accuracy aver-
aged over incremental states (excluding the first non-incremental one) was proposed by
[24] (Equation 2.19).

A = 1
T − 1

T∑
t=2

At (2.19)

where T is the total number of states, and At is the test accuracy of the model in state St.
Intuitively, the higher the value of A, the better. Note that some works [128, 174] average
the accuracy over all states, including the first.

With the advances in continual learning approaches, other evaluation metrics saw the light
but are less used than the accuracy. Among them, we mention:

— Normalized Accuracy Metric (Ω) - was initially proposed in [67] and used by other
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works afterwards [47, 156, 46].

Ω = 1
T

T∑
t=1

At
AJoint,t

(2.20)

where AJoint,t is the accuracy of a training from scratch with all data seen until state St
included. The normalized accuracy helps to compare different IL methods across datasets.
Note that Ω ∈ [0, 1].

— Forgetting (F) - As proposed by [89], Forgetting corresponds simply to the difference in
accuracy (%) between the last incremental state and the initial state on the test set of the
initial state. The lower forgetting rate is better (Equation 2.21)

F = A1
T − A1

1 (2.21)

where A1
T is the accuracy of the model in the last state (ST ) on classes initially encoun-

tered in the initial state, A1
1 is the accuracy of the model in the initial state on classes

learned in this state.

The formula presented in Equation 2.21 involves the first and the last states only. Another
formula was proposed in [26], and it takes the average of forgetting over all states. Here,
forgetting is defined as the difference between the maximum knowledge acquired when
learning a set of classes (or task) in previous states, and the learned knowledge about the
same task in the current state (Equation 2.22)

Ft = 1
T − 1 max

k∈[1,T −1]
(Atk − AtT ) (2.22)

where t refers to the set of classes (task) we want to compute forgetting for, and Atk is the
accuracy of the system on classes of state St in the state Sk.

— Backward Transfer (BWT) - measures the influence of training the model in the cur-
rent state St, on the learning of classes seen in previous states (Sk<t) [92]. A negative
forgetting Ft < 0 implies a positive influence on previous classes (also known as Positive
Backward Transfer (PBWT)), and vise versa (Negative Backward Transfer (NBWT)).

— Forward Transfer (FWT) - measures the influence of learning the current set of classes
on training the model on future classes [92]. Ideally, continual learning systems apply
both forward and backward transfer. The former aims at using past knowledge to easily
learn new classes, and the latter aims at using new knowledge to reinforce previously
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learned one [92].

In this thesis, we use top-1, and top-5 accuracy averaged on incremental states, as proposed
by [24]. We later propose in Chapter 3, an aggregation accuracy-based method (called GIL)
that gives a global idea on the performance of IL algorithms when tested under diversified
configurations, which vary in terms of test dataset, number of incremental states, and memory
size (when allowed).

2.5 Conclusion

We map each IL group to the six IL properties from Section 1.2 in Table 2.1. We discuss the
advantages and/or challenges related to each group-property pair to facilitate their comparison.
We also provide a global assessment focusing on the application contexts in which each type of
approach could be deployed.

As shown in this chapter and the one before (Chapter 1), the scope of incremental learning
in the literature is large. We limit it in this thesis by proposing methods that:

— are designed for class-incremental learning (also called task-agnostic) - we discard meth-
ods that require task-id at the inference time (task-incremental learning). The goal is to
tackle more challenging IL scenarios that are useful in real-life situations.

— add several classes at once - we discard methods that add one to few images per class
(domain-incremental learning). These methods constitute a more challenging scenario,
and we do not handle them in this thesis.

— keep a constant complexity of deep models - we discard all dynamic networks that in-
crease the architecture of the model upon time

— do not need a large pre-trained model - we suppose that all methods start with the same
initial model trained from scratch on the classes of the first state. Comparison between
them is thus made on the incremental part only.

Consequently, experiments are conducted with approaches that are fit to work under these
conditions, namely those based on fine tuning and fixed representations.

We further investigate the effect of allowing past exemplars memory or not. The majority of
works from the state of the art use a memory because it helps to alleviate the effects of catas-
trophic forgetting considerably. In practice, when the AI system is allowed to store a limited
number of past images, the memory can be of great benefit to update its capacities with new
data.
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Parameter-isolation based Fixed-Representation based Fine-Tuning based

C
om

pl
ex

ity

In dynamic networks, the model
evolves by adding parameters and
weights to interconnect them [126,
136, 170] or small networks [7] to
include new knowledge. This is not
the case for fixed networks [96, 97]
that do not augment the architecture
of the model. The challenge of dy-
namic networks is to optimize the
effect of model growth on perfor-
mance [76, 126].

The model is fixed after the first non-
incremental state. In a basic setting
[127], the only parameters added
are those needed for new classes
weights. In a more advanced set-
ting [66], additional parameters are
needed to improve past classes’ per-
formance.

This group of IL methods is de-
signed to work with a fixed structure
of the backbone model. The num-
ber of parameters is only marginally
affected by the modifications of the
classification layer designed to re-
duce the imbalance between past and
new classes [24, 53, 174].

M
em

or
y

Fixed networks do not require ex-
tra memory storage, while growth
allows dynamic networks to deploy
these methods without using an ex-
emplar memory. Memory is allo-
cated to additional model parameters
and weights, which is a more par-
simonious way to store information
about past classes [9, 7, 133].

Fixed-representations do not up-
date the model during the incre-
mental learning process and thus
have a very low dependency on the
memory of past classes [47]. Class
weights are learned when they are
first encountered and can be used
throughout all subsequent incremen-
tal states.

Performance of these methods is
heavily dependent on the size of
the past memory. However, storing
a large number of past exemplars is
contradictory to the IL global phi-
losophy. Memory needs are reduced
by exploiting knowledge distillation
[24, 53, 61, 174] or by exploiting
statistical properties of past states
[189].

A
cc

ur
ac

y

Performance is correlated with the
amount of model growth allowed. If
growth is limited, dynamic networks
have lower performance compared
to that of FT-based ones [76]. If
significant growth is allowed [133],
performance comes close to that of
classical learning, but this is some-
what contradictory to the require-
ment to keep models’ complexity
close to constant.

Accuracy is lower compared to FT-
based methods because the model is
not updated incrementally. High per-
formance can be obtained with fixed
representations if the initial model
is learned with a large dataset [47].
However, the existence of such a
dataset is a strong assumption in in-
cremental scénarios.

Recent approaches report strong per-
formance gain compared to previous
work such as [24, 61, 128] either
through more sophisticated defini-
tions of knowledge distillation [53]
or through the casting of IL as an im-
balanced learning problem [21], or a
combination of both [174]. The gap
with classical learning is narrowed if
enough memory of past classes is al-
lowed [53, 174].
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Parameter-isolation based Fixed-Representation based Fine-Tuning based

Ti
m

el
in

es
s The complexity is generally similar

to that of FT-based methods since
retraining is needed for each incre-
mental update [76]. For fixed net-
works, extra time is needed to deter-
mine important weights

Only the classifier weights layer
needs to be trained, and new knowl-
edge is integrated promptly [47].

New classes are not recognizable un-
til retraining is finished to include
them in the model. If applications
are time-sensitive, an acceleration of
the training process can be envi-
sioned at the expense of result sub-
optimality.

Pl
as

tic
ity

-S
ta

bi
lit

y

Parameter-isolation-based methods
are specifically designed to cope
with different visual tasks [9, 96].
The challenge is to minimize the
number of additional parameters
needed to accommodate each new
task [76].

Plasticity is limited since the repre-
sentation is learned in the first state
and then fixed. Performance drops
significantly if the incremental tasks
change a lot and the initial repre-
sentation is not transferable anymore
[125].

The model updates enable adapta-
tion to new data as they are streamed
into the system. If no memory is
allowed, plasticity is too important,
and this shift is controlled through
knowledge distillation or imbalance
handling.

Sc
al

ab
ili

ty

Fixed networks are not scalable. Dy-
namic networks scale well to new
classes or tasks as long as the sys-
tems in which they are deployed
have sufficient resources to support
the underlying model growth for
training and inference phases, as
well as for its storage.

The dependence on the bounded
memory is limited, and FR-based
methods can include a huge number
of classes. This is possible because
class weights are learned in their ini-
tial state and reused later.

The size of the bounded memory de-
termines the number of past classes
for which exemplars can be stored
and which are still recognizable
when new ones are integrated. If the
system constraints allow for this, the
memory can be increased to keep the
number of exemplars per class con-
stant [53].
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Approaches in this group cope well
with new data, are not or weakly de-
pendent on a memory of the past, but
are scalable only if dynamic. How-
ever, the complexity of the latter is
a disadvantage since the model has
to grow in order to integrate new
knowledge. They also require re-
training when new classes are added
and timeliness is not optimal. Dy-
namic networks are usable when:
model complexity can grow during
the incremental process, streamed
data vary a lot between incremental
states, no storage is available for past
data, and immediate use of updated
models is not essential.

Fixed-representation methods
inherit the advantages and disadvan-
tages of transfer learning schemes.
Model complexity is constant,
and they can be updated promptly
since only the classification layer is
retrained. They have a low depen-
dency on past memory and can scale
up to a large number of classes.
However, these algorithms depend
heavily on the quality of the initial
representation and have low plas-
ticity. They are usable when: model
complexity should stay constant,
data variability is low, no storage
is available for past memory, and
updates are needed promptly.

Fine-tuning-based methods are ad-
equate when we try to optimize
the architecture complexity, and the
plasticity [161] of representations.
However, since they require network
retraining when new classes are
added, their timeliness is not opti-
mal. Equally important, the bounded
memory constraint makes them hard
to scale because the memory will
eventually become too small to rep-
resent past classes adequately. They
are usable when: model complex-
ity should stay constant, streamed
data vary a lot between incremental
states, storage is available for past
data, and immediate use of updated
models is not essential.

Table 2.1 – Analysis of the main groups of class-incremental learning algorithms with respect
to their desirable properties. A global assessment with recommended use cases is also provided.
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CHAPTER 3

CLASS-INCREMENTAL LEARNING WITH

MEMORY

3.1 General Introduction

Class-incremental learning gained lots of attraction in the last decade [24, 48, 101, 128].
Most state-of-the-art approaches use a fixed-size memory of the past to alleviate the effects
of catastrophic forgetting. The memory helps "refreshing" the representation of the model by
replaying some examples from previous classes.

Figure 3.1 – A toy example of class-IL with memory where T = 3 and |K| = 4.Mt are models,
St are states, Xt are sets of images, ot are raw scores vectors, A is a class-IL algorithm. Best
viewed in color.

In this chapter, we focus on a protocol where a bounded memory of the past is allowed. In
Figure 3.1, we show a toy example with one initial state S1 and two incremental states (S2 and
S3). In the initial state, a simple training from scratch is performed to learn the initial set of
two classes. At each incremental state, another two new classes arrive with all their available
data. These classes should be learned by the modelMt without forgetting past classes (learned
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in previous states). An incremental learning algorithm A is used to update the model Mt−1

(t > 0) with data of new classes. In this example, the past exemplars memory K contains 4
images. Note that the more incremental states are added, the worse the imbalance between past
and new classes’ data. This imbalance makes class-incremental learning akin to an imbalanced
learning that worsens upon incremental states.

The main findings of this chapter are: (1) the bounded memory can be a good alternative
to the widely used knowledge distillation on large scale datasets, and (2) the use of a bounded
memory alone is not sufficient since the bias of the neural network is important towards new
classes, especially at level of the classification scores. Further techniques should be deployed to
remove this bias and will be discussed in detail in this chapter.

We propose three approaches called: (1) DeeSIL (Deep-Shallow Incremental Learning),
(2) IL2M (Incremental Learning with Dual Memory) and (3) ScaIL (Classifier Weights Scal-

ing for class Incremental Learning).
DeeSIL is based on a fixed representation and applies a transfer learning scheme to class-

incremental learning. The modelM1 is trained from scratch on classes of the first state and is
frozen afterward. It is used in incremental states to extract features of new classes images where
a set of Support Vector Machines (SVMs) [19] are used to incrementally learn new classes. It is
important to mention that DeeSIL is usable with and without memory of the past. IL2M and
ScaIL are based on a fine-tuning backbone. Both methods aim to make classification scores
of past and new classes comparable. The main difference arises in the part of the network in
which each method interferes. IL2M interferes at the end of the network to directly rectify past
classes’ scores, while ScaIL interferes at the level of the last fully connected layer weights. We
notably propose many simple yet efficient approaches to reduce the bias of the network toward
new classes. These approaches are presented in the experiments subsections.

Furthermore, we conduct extensive experiments and study the merits and limitations of our
methods as well as a range of class-incremental approaches that use an exemplars memory. We
notably vary the number of states and the memory size, the two most important parameters in
class-IL. Experiments show that no method is always the best in all configurations.

Finally, we propose in this chapter a combination between class-incremental learning, im-
balanced learning, and active learning. Here, the contribution is not directly related to class-
incremental learning. We propose new acquisition functions and a simple thresholding IL back-
bone that better handle data imbalance, and we apply them in an incremental learning protocol.
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3.2 DeeSIL: Deep-Shallow Incremental Learning

3.2.1 Introduction

Typical deep learning pipelines are well adapted to solve tasks when all training data is
available at all times, and there are loose constraints regarding time available for training. Under
these conditions, augmenting the classification ability can simply be done by learning a new
representation, either from scratch or via fine-tuning. However, when one or both of the above
conditions are violated, adding new classes becomes non-trivial.

We introduce DeeSIL, an adaptation of a known transfer learning scheme [44, 71, 125] to
incremental learning. In order to qualify as class-incremental and maximize flexibility,DeeSIL
includes two weakly correlated steps. First, a deep modelM1 is trained in order to provide a
fixed representation which is then used to learn independent shallow classifiers (SVMs) during
the incremental phase. Instead of using the system memoryK to keep positive examples, a set of
negative features that are necessary to train classifiers incrementally is stored. This choice makes
it possible to use all positive examples for training without violating the memory constraint.

Our hypothesis is that independent shallow learning over all positives compensates for the
drawback related to the use of a fixed deep representation. Since no deep retraining is needed
to increase system capacity, the approach is considerably less complex than its purely deep
learning counterparts. The addition of a new class is done by training a shallow classifier, an
operation that takes less than a minute on a single CPU. DeeSIL is tested against three IL al-
gorithms, including iCaRL [128], the best such algorithm known to us in 2017. The ILSVRC
2012 dataset [135] (a subset from Imagenet [32]) is used for evaluation and results show signif-
icant improvement for the proposed method.

3.2.2 Proposed approach

We propose an adaptation for incremental learning of a well-known transfer learning scheme
[71]. An overview of DeeSIL is provided in Figure 3.2 with one initial state S1 and two incre-
mental states S2 and S3. In the initial non-incremental state S1, we train the model M1 from
scratch on the set of initial classes. Once the model is trained, we remove the last fully con-
nected layer and use the trained feature extractor F∗1 as a Deep Feature Extractor (DFE) to
extract features for new classes images in all subsequent states. Given an incremental state St>1

and a set of images Xj
t for a class j to be learned, features F j

1 are extracted using the fixed deep
representation provided by F∗1 . Then a shallow binary classifier SVM is trained using F j

1 as
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Figure 3.2 – Overview of DeeSIL. A toy example with one initial state and two incremental
states is presented. Two classes are added at each incremental state. In the first step, the model
M1 is trained from scratch on N1 = 2 classes. Afterward, in the second step, the trained fixed
representation F∗1 is used as a Deep Features Extractor (DFE) to extract features of all classes
images as soon as they are available. Xj , F j are sets of images and features for the jth class.
FN is a set of negative features obtained using a negative selector (NS) and common to all
shallow classifiers that are added in a given state. SVM j is a shallow classifier learned for the
jth class, and the output oj is the associated prediction.

positives and FN as negatives in order to predict the activations ojt of the class for test images.
FN replaces the memory K of the system, and it contains a constant number |K| of features,
regardless of the state of the system (i.e. number of recognizable classes). FN is generated by
the negative selector (NS) component, which is the main adaptation introduced in DeeSIL
to make a classical transfer learning pipeline [71] suitable for incremental learning. Given the
initial state S1 (with N1 recognizable classes), the following steps are needed to move to state
St (with Nt−1 + Pt classes): (1) extract features for the Pt new classes, (2) update the pool of
negatives FN usingNS component, and (3) train Pt shallow classifiers. Note that we use linear
SVMs following common practice in transfer learning [44, 71, 125]. We further discuss steps
(1) and (2) hereafter.

Deep features extractor (DFE)

In [128], each new state of the class-incremental algorithm depends on the representation
learned in the preceding state. Here, deep features extraction and shallow classifier learning
are separated. DeeSIL thus implements a form of transfer learning which uses a fixed deep
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representation. To evaluate the effect of the amount of training data and its visual proximity
with the test data, we train three variants of DFE:

— IMAGENET-100 (IN100 below) - train only with the ILSVRC data of the initial state S1,
a setting that is directly comparable with [128];

— IMAGENET-1000 (IN1000 below) - train with a larger dataset that has similar character-
istics with the test set (ILSVRC) but has no common classes with it. One thousand classes
are selected to form a diversified subset of ImageNet and thus increase universality (i.e.

optimize their transferability toward new tasks) [161].

— FLICKR-1000 (FL1000 below) - train with a more challenging dataset which is obtained
from weakly annotated Flickr group data and is visually more distant from the test set.
Within each group, a semi-supervised reranking [27] is initially performed to remove a
part of noisy images.

A greedy algorithm [33] which operates with classes’ mean representations is used for dataset
diversification in the last two variants. It picks at each iteration the class which is, on average,
least similar to those already selected. Visual representations from IMAGENET-100 are used
as a basis for the diversification process.

Negatives selection

In standard transfer learning [71], shallow classifiers are learned in a one-VS-rest fashion
since all data is available at all times. Here, a selection is necessary to fit FN features in the
memory budget |K| for any state of the algorithm. We test three negative selection strategies:

— ind - (independent) following [44], FN is composed of |K| image features taken from
YFCC dataset [164]. The images are selected so as to represent frequent but diversified
tags.

— rand - a random and balanced sampling of image features from all past and current
classes.

— div - diversified samples from all recognizable classes. The greedy algorithm imple-
mented for dataset diversification is reused here at the image level.

For rand and div, if DeeSIL recognizes Nt classes in a given state St, each class will have
|K|
Nt

representatives in FN . Naturally, a class’ own representatives are discarded from FN when
training its shallow classifier.
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3.2.3 Experiments

DeeSIL is tested using the ILSVRC 2012 dataset [135]. The evaluation protocol (order of
classes, size of system states) is nearly identical to the one used for iCaRL [128]. ILSVRC 2012
includes a total of 1000 classes, further split into 10 batches of 100 classes, which means that 10
distinct states of the class-incremental algorithms are tested. The test set is the same but, since
we need to optimize the SVMs, we keep out 20 images for validation and train on remaining
images. We use the best three systems from [128] as baselines: (1) iCaRL - their contribution
and the most influential IL algorithm known to us in 2017; (2) LwF - adaptation of Learning

without Forgetting [86] to IL scenario and (3) Fixed Representation (FR) - training over a
frozen initial network, except for the classification layer. We use a ResNet-18 as a backbone
[51]. The feature vectors extracted with the DFE are L2-normalized before being fed into the
SVMs. The memory size, which stores negatives, is |K| = 20000, the same as in [128].

3.2.4 Results and discussion

Figure 3.3 – Top-5 accuracy on ILSVRC
for DeeSIL variants obtained with three
negative selection strategies.

Figure 3.4 – Top-5 accuracy on ILSVRC
for fixed deep representations obtained
with larger datasets.

Effect of negatives selection

The results in Figure 3.3 show that all variants of DeeSIL, trained with rand, div and ind
negatives selection outperform state-of-the-art systems. At scale, i.e. 1000 classes learned in-
crementally, performance increases from 45% for iCaRL to 68% when rand and div negatives
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are exploited. This gain is consistent over all the states of the class-incremental evaluation, with
a larger difference for large batches. DeeSIL can be seen as a variant of Fixed Representation
learning but differs from it by using all positives in the incremental phase. This leads to an even
higher performance gain than in the case of iCaRL.

The three NS variants have rather performance and this finding shows that our method is
robust w.r.t. the choice of negatives. Selecting negatives from the dataset (rand and div) gives
marginally better results (0.5 points gain) compared to the use of an independent negative set
(ind) for 1000 classes. rand being simpler to compute than div, DeeSILrand will be used in
further experiments.

Effect of the deep fixed representation

In Figure 3.4, we test the effect of using more data to obtain strong fixed representations.
1000 ImageNet classes and Flickr groups are used, respectively. Richer data compensates for the
fact that features are transferred from classes that are different from the tested ILSVRC classes.
This is especially the case forDeeSILIN1000

rand , which exploits a subset of ImageNet distinct from
ILSVRC. Performance improvements of 10 and 33 points are obtained over DeeSILIN100

rand ,
the best configuration trained with the 100 initial ILSVRC classes and over iCaRL respec-
tively. DeeSILFL1000

rand , the version trained on non-curated Flickr data has lower performance
than DeeSILIN1000

rand , but is close to DeeSILIN100
rand and still well above the state of the art al-

gorithms. The last result confirms the finding in [27] that it is possible to learn reasonable
representations even with little or no manual data.

Memory and computational complexity

Beyond performance, it is also important to compare the complexity of DeeSIL to that of
iCaRL, the main baseline. ResNet-18, the basic deep architecture, is the same for both methods.
Recognition capacity incrementation is done with linear SVMs. This entails the computation of
a dot product per class, which is equivalent to adding a class in the final layer of a CNN.

Training is simpler in DeeSIL since a single deep network training is needed at the begin-
ning. In the incremental step, we only train shallow classifiers. Adding a single class typically
takes less than 1 minute, distributed among deep features extraction and SVM training on an
INTEL-Xeon-E5-2650-v2@2.60GHz CPU. For comparison, adding a batch of 100 new classi-
fiers in iCaRL takes approximately 32 hours on an NVIDIA Titan X GPU. Incremental learning
is typically needed in low-resource contexts and, assuming that an initial deep representation is
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available,DeeSIL can be deployed even in the absence of a GPU. Equally important, due to the
independent learning of shallow classifiers, DeeSIL can seamlessly integrate batches of new
classes of arbitrary size. In contrast, purely deep-learning-based algorithms need retraining, and
this step is particularly long if one class is added at a time.

Usability of DeeSIL in IL without memory

Compared to iCaRL, the focus in DeeSIL is shifted from positive to negative selection
to fill in the memory of the system. As shown in the experiments, our algorithm is affected by
catastrophic forgetting to a much lesser extent. The choice to select negatives is beneficial for
scalability in terms of the number of learnable classes. Also, while the same number of items
is stored in iCaRL and DeeSIL, memory needs are lower in our case since we store D = 512
dimensional features instead of images of past classes. We remind that D depends on the deep
architecture used.

Given a memory budget |K|, iCaRL can learn at most |K| classes since in the state S|K|+1,
not all known classes will be represented anymore. However, DeeSIL can be easily deployed
without a memory of the past, by replacing the negatives pool FN with negatives from other
classes belonging to the same state. In this case,DeeSIL can learn an infinite number of classes
with the condition that at least two classes are added in each new incremental state. Even if only
one class appears at each incremental state, DeeSIL can be deployed by using as negatives
features of images coming from an independent dataset (like the YFCC dataset [164] above).

Comparison with an upper bound

It is interesting to evaluate the decrease in performance compared to a situation in which all
training data is available at all times. ResNet-18 [51] top-5 accuracy on 1000 ILSVRC classes
trained with all data is approximately 89%. iCaRL halves this score while our best configu-
rations with DFE based on 100 and 1000 classes lose only 22 and 12 points respectively. The
gap could be further reduced if the feature extractors were more universal [161]. This could be
achieved if DeeSIL’s initial training would be done with an even larger number of classes.

3.2.5 Conclusion

We revisit a known transfer learning scheme [44] for class-incremental learning. The pro-
posed method achieves significantly better performance than existing algorithms [86, 128] while
also being much faster to train and more scalable in terms of the number of learnable classes.
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3.3 IL2M: Class-Incremental Learning with Dual Memory

3.3.1 Introduction

Previously, we proposedDeeSIL, an algorithm that applies transfer learning to tackle class-
incremental learning. The main limitation of DeeSIL is that its performance is heavily depen-
dent on the quality of the fixed representation. If the latter is trained with few data, or with
classes that are visually different from that of classes learned incrementally, DeeSIL fails to
continuously transfer knowledge to subsequent states. A solution for this is to fine-tune the
model at each incremental state in order to update its representation with the new data. How-
ever, as shown in Section 3.1, the imbalance between past and new classes worsens upon time, a
phenomenon that necessitates techniques to remove the bias of the network towards new classes.

In this section, we introduce Incremental Learning with Dual Memory (IL2M ) that aims
to partially reconcile the fine tuning and fixed representation based approaches. IL2M uses
vanilla fine tuning as a backbone to update deep models for each incremental state, as proposed
in fine tuning approaches (Subsection 2.3.1). Similar to fixed representation methods (Subsec-
tion 2.3.2), IL2M exploits class-related knowledge from the initial state in which they were
learned across incremental states. Due to deep parameter updating when fine-tuning the model,
initial class models cannot be fully reused in later states. Instead, IL2M exploits past class
statistics from their initial state to rectify their prediction scores in the current incremental state.
This rectification is supported by two related hypotheses: (1) classes are best modeled when all
their data are available, and (2) class prediction scores are higher on average when more training
data are available. We illustrate the validity of these hypotheses in Figure 3.5. It plots the aver-
aged predictions of past and new classes for the ILSVRC [135], VGGFACE2 [22] and LAND-
MARKS [108] datasets with T = 10 states and memory sizes |K| = {20000, 10000, 5000}.

The scores in Figure 3.5 confirm that vanilla fine tuning generates a prediction bias in favor
of new classes. This bias is mainly due to the imbalance in favor of new classes, which appears
in class IL. As a result, a large part of images from past classes is predicted as belonging to new
classes (see Subsection 3.3.4 for a detailed analysis of error types). The comparison of the three
subfigures of each dataset shows that the score gap between past and new classes is higher when
the memory capacity is lower. For instance, the average difference over all incremental states for
the ILSVRC dataset is 2.42, 4.02 and 6.45 for |K| = {20000, 10000, 5000} respectively. This
is intuitive since the imbalance between past and new classes is higher for lower memories.
The gap also tends to grow from left to right in each subfigure due to the increasing number
of classes to fit in the bounded memory. For instance, the difference is 2.26, 4.16 and 4.67 for
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Figure 3.5 – Prediction scores for the ILSVRC, VGGFACE2, and LANDMARKS datasets with
T = 10 states and memory |K| = {20000, 10000, 5000} exemplars. We select the scores of the
true class for train images and then average them for past and new classes. Only incremental
states (from S2 to S10) are represented. The initial one does not include past classes and is not
represented. Best viewed in color.

states S2, S6 and S10 with |K| = 10000 exemplars.

The differences between predicted scores of past and new classes are much smaller than
those of ILSVRC for VGGFACE2 and negligible for LANDMARKS when |K| = 20000. This
difference between scores is due to the fact that ILSVRC is a hard task, and it explains the very
small contribution of IL2M score rectification in this configuration (Subsection 3.3.4).

3.3.2 Proposed approach

Our method, called Incremental Learning with Dual Memory (IL2M ) is summarized in
Figure 3.6. with an example that includes an initial and two incremental states. IL2M uses a
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fixed DNN architecture and a bounded memory of the past. Our main contribution is to propose
a secondary memory that stores initial class statistics in a very compact format. The introduction
of this memory is based on the intuition that classes are best modeled when first learned, with all
data available. Initial class statistics are reused in each subsequent incremental state to rectify
the prediction scores of past classes. Rectification is necessary because class IL models are
trained with imbalanced datasets in which past classes have fewer examples. Consequently,
their prediction scores are generally lower than those of new classes.

Figure 3.6 – Illustration of the proposed IL2M training process. The deep models associated to
the three states recognize 2, 4 and 6 classes respectively. The bounded memory includes |K| = 4
image exemplars of past classes and is represented on light blue background. The number of
class exemplars class stored in memory decreases when adding new classes to keep memory
requirements constant. The IL training process is more and more prone to catastrophic forgetting
because the dataset is increasingly imbalanced. The second memory I, represented in light pink,
stores statistics that are obtained when classes are initially learned. IL2M makes these class
statistics usable across different incremental states to rectify the raw prediction scores of past
classes in order to make them more comparable to those of new classes. Best viewed in color.

To compensate for the bias toward new classes, we rectify predictions of past classes (j =
1, . . . , Nt−1) using Equation 3.1 (check Section 2.2 for the used formal notations):

ojt
′ = IL2M(ojt) =

o
j
t ×

µj
i

µj
t

× µ(Mt)
µ(Mi) , if pred = new

ojt , otherwise
(3.1)

with:

— i - the initial state in which the jth class was learned
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— t - the current incremental state

— ojt - the raw prediction the jth class in the current state t

— µji and µjt - the mean classification scores of the jth class in states i and t obtained from
all training data and the current exemplar set, respectively

— µ(Mt) and µ(Mi) - the model confidences in states t and i given by the averaged top1
prediction scores of all new training data.

In Equation 3.1, rectification is applied to past class predictions only if an image is initially
predicted as belonging to a new class. This situation is the riskiest in terms of imbalance-driven
errors in favor of new classes. Otherwise, we consider rectification unnecessary since a past
class is directly predicted, and there is no prediction bias toward new classes. The effect of
the rectification restriction to past images initially associated with a new class is studied in the
ablation study from Subsection 3.3.4.

Since classes are initially learned in different incremental states, the following conditions
need to be met for the proposed rectification to be useful in class IL:

1. the scores ojt
′
for past classes in range j = {1, Nt−1} and ojt from {Nt−1 + 1, Nt} should

be comparable;

2. the statistics stored in the memory I should be very compact in order to increase memory
needs only marginally;

3. model level normalization should be introduced to limit the influence of combining the
outputs of models learned in different incremental states.

The first condition is handled via the use of class-related statistics in the first term, which
modifies ojt in Equation 3.1. More specifically, we use the means of the jth class in its initial
and current states i and t. The intuition here, supported by Figure 3.5, is that since the class is
first learned with all training images in the state i when it was new, its mean prediction score
µji is likely to be higher than µjt . Consequently, this term of the equation generally increases ojt

′

compared to ojt . The second condition listed above is related to the introduction of the secondary
memory I, which makes the IL2M rectification possible. I includes a float value per class to
store µji , and the induced memory requirement is negligible. As for the model-level knowledge,
only one float per incremental state is needed to store µ(M).

The third condition is necessary since the averaged scores for new classes are not equivalent
in the different incremental states which are combined. This is clear in Figure 3.5 where in
ILSVRC, for instance, the new class mean scores for state 8 are higher than those of state 7
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for |K| = 10000. The last term of Equation 3.1 provides a global harmonization of the score
rectification across the different states that are combined in IL2M .

The complexity of the supplementary arithmetic operations from Equation 3.1 is very low
compared to the overall complexity of deep neural network architecture. For each class score
rectification, a division and a multiplication are needed to introduce the second term. The divi-
sion in the third term can be computed only once the training of the current incremental state is
ready. This term is thus integrated through a simple multiplication. For 1000 past classes, IL2M
adds 1000 divisions and 2000 multiplications. This is to be compared to the tens to hundreds of
millions of multiplications done in typical DNN architectures.

The rectification introduced here is an alternative to the NEM classification from iCaRL

[128] and to the balanced fine tuning step of end-to-end learning (E2EIL) from [24]. The three
methods are compared in the following section.

3.3.3 Experiments

— Datasets (Appendix B) - ILSVRC [135], LANDMARKS [108], and VGGFACE2 [22].

— Memory sizes - We fix the number of states T = 10 and vary the memory size to include
|K| = {20000, 10000, 5000} exemplars.

— Incremental states - We fix the memory to |K| = 5000 and test with T = {5, 20} in
addition to T = 10. The lowest memory size was selected since it is the most interesting
configuration when memory budget is smallest.

— Exemplar selection - According to [24], herding has marginal effect. For sake of sim-
plicity, we perform a random selection of exemplars. We will show in Sections 3.4 and
3.5 that herding is beneficial for IL2M and other IL methods.

— Evaluation measures - Top-1 and Top-5 accuracy [135].

— Baselines (Chapter 2) - iCaRL [128], DeeSIL (Section 3.2), FT (vanilla fine tuning).
In addition, we propose the following baselines:

Ô FTNEM - a version of FT which uses the nearest-exemplars-mean classifier from
[128] instead of the classification layer of the deep network. FTNEM is a modified
version of iCaRL in which the distillation loss Ld is ablated.

Ô FTBAL - a version of FT in which a balanced fine tuning is performed for classifi-
cation after the initial imbalanced vanilla FT following [24]. FTBAL is a modified
version of E2EIL [24] in which we again ablate Ld. Note that original E2EIL
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States T = 10
Dataset ILSVRC VGGFACE2 LANDMARKS

|K| 20k 10k 5k 0k 20k 10k 5k 0k 20k 10k 5k 0k
iCaRL 35.1 33.6 32.9 20.8 66.8 65.3 64.4 26.1 68.9 66.9 65.6 27.0
DeeSIL 47.3 47.2 47.0 46.5 81.5 81.3 80.9 80.0 82.8 82.6 82.4 81.2
FT 51.1 42.3 32.2 18.3 91.1 87.6 82.0 20.8 93.2 90.1 84.7 21.0

FTNEM 54.9 49.1 42.8 NA 91.1 87.6 84.2 NA 91.1 88.5 84.7 NA

FTBAL 52.1 47.0 37.2 NA 91.5 88.6 82.1 NA 93.2 90.2 85.7 NA

IL2M 56.4 50.8 44.1 NA 92.0 89.7 86.5 NA 93.4 90.8 86.9 NA

Joint 73.0 97.0 97.1

|K| = 5000
ILSVRC VGGFACE2 LANDMARKS

T =5 T =20 T =5 T =20 T =5 T =20

32.7 29.6 74.1 49.5 73.8 52.6
50.9 28.4 89.3 69.3 88.3 74.9
35.4 36.8 85.7 83.3 85.4 84.1
44.1 46.2 87.4 85.7 83.4 84.4
44.7 41.6 87.7 83.9 88.2 84.8
44.9 42.0 90.1 85.7 88.5 85.0

73.0 97.0 97.1

Table 3.1 – Top-1 average accuracy (%) for the different methods tested. NA stands for "Not
Applicable". Joint is the non-incremental upper-bound performance obtained with all data
available for all classes. The available memory |K| (in thousand exemplars) and the number
of states T are varied to the left and the right of the table. Each time, the other parameter is
fixed. Following [24], accuracy is averaged only for incremental states (i.e. excluding the ini-
tial, non-incremental state). Best results are in bold.

[24] is not fully evaluated because the only available implementation uses non-free
MathConvNet based on Matlab. However, a top-5 accuracy comparison of E2EIL
and FTBAL for ILSVRC is clearly favorable to the latter method (69.4 vs. 77.52).

3.3.4 Results and discussion

Top-1 accuracy results

The comparison of the methods tested in Table 3.1 shows that IL2M has the best perfor-
mance in a wide majority of configurations with memory (|K| > 0). Our method outperforms
iCaRL [128],DeeSIL, as well as FT (the vanilla fine tuning baseline) and its variants FTNEM

and FTBAL, which use the classification components from [24] and [128].

Among tested baselines, FT consequently outperforms iCaRL for T = 10 and |K| =
{20000, 10000}. For |K| = 5000, it is better for T = {5, 20} states and slightly falls behind
for ILSVRC with T = 10 states. Naturally, iCaRL is better when no memory is allowed and
distillation reduces catastrophic forgetting. The comparison of FT to DeeSIL is also favorable
for all settings where |K| > 0, except for T = 5 and ILSVRC with T = 10 and |K| =
{5000, 10000}.

The detailed results for the three datasets with |K| = 10000 and T = 10 from Figure 3.7
confirm the above findings. IL2M has the best performance for a wide majority of IL states. It
is also interesting to see that our method provides good results for later incremental states. This
is clear for ILSVRC, where IL2M has similar performance with that of FTNEM and DeeSIL
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for states 7 to 9 and is better than them in earlier states. The gap between iCaRL performance
and all FT methods introduced here is large overall and clearly increases in later states for
VGGFACE2 and LANDMARKS. This finding indicates that vanilla FT is a much better base
for IL when the number of classes is large.

While our focus is on class IL with memory, we also present results without memory (|K| =
0). Here distillation clearly has a positive effect and outperforms fine tuning, thus confirming the
results from [128]. All methods derived from FT have the same performance because all score
rectification methods rely on exemplars. DeeSIL is the best method when |K| = 0 because
it has low dependence on memory. Except for T = 20, its performance is better than that of
iCaRL by a consequent margin. This result is at odds with the conclusion of [128], where
the authors found their fixed representation to be less effective than iCaRL. The difference is
explained by the fact that fixed representations of past classes in [128] were learned only with
exemplars from the current state. This restriction is unnecessary since the representation is fixed
and each class can be learned the first time it is seen without violating memory requirements
and then reused across IL states.

When compared to Joint, the upper-bound non-incremental learning, the results obtained
by all incremental methods are lower in all configurations. This is particularly the case for
ILSVRC, the hardest task among the three tested, where the gap reaches 16.6 top-1 accuracy
points for T = 10 states and |K| = 20000. Naturally, this gap grows for all datasets when the
memory is reduced. This finding confirms the conclusions of [24, 128] that class IL remains a
hard problem if it operates under computational and memory constraints.

Top-5 accuracy results

In addition to the top-1 results, we provide top-5 results obtained by all methods to facilitate
comparability with earlier works [24, 61, 128]. Overall, the results follow the same trend as
top-1. It is noteworthy that the differences between the FT baseline and the methods built
on top of it are globally lower than those with top-1 results. This is particularly true for the
VGGFACE2 and LANDMARKS, the easiest datasets tested here, where the imbalance inherent
to incremental learning matters less than in the case of ILSVRC. The smaller performance
differences are explained by the fact that top-5 accuracy has a smoothing effect on results.
IL2M is still the best method in a majority of tested configurations. A first notable difference
is that FTNEM gives slightly better results for three configurations instead of one for top-1. A
second difference is that DeeSIL has best performance for all datasets with |K| = 5000 and
T = 5. This is due to the fact that the initial representation is stronger when it includes a higher
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Figure 3.7 – Top-1 accuracy for object, face and landmark recognition with memory |K| =
10000 and T = 10 states. To be aligned with the results from Table 3.1, only the incremental
states are represented. Best viewed in color.

number of classes. DeeSIL has the best top-5 performance for ILSVRC with |K| = 5000 and
IL2M comes second in this case.

Compared to Joint, the non-incremental training, the best class IL algorithms with T = 10
and memory |K| = 20000 loses 12.9, 2 and 1.5 top-5 points for ILSVRC, VGGFACE2, and
LANDMARKS, respectively. This gap is rather small for VGGFACE2 and LANDMARKS, but
more work is still needed for difficult tasks like ILSVRC. Naturally, the gap increases when the
memory is reduced and the number of states increases. As expected, it becomes very important
without memory. In this last case, which is not in focus here, the DeeSIL baseline performs
best for all three datasets.
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States T = 10
Dataset ILSVRC VGGFACE2 LANDMARKS

|K| 20k 10k 5k 0k 20k 10k 5k 0k 20k 10k 5k 0k
iCaRL 62.5 61.4 60.9 43.8 84.5 83.9 83.6 48.3 84.4 83.6 83.0 46.3
DeeSIL 74.5 74.3 74.2 73.9 92.6 92.6 92.5 92.3 94.2 94.1 94.0 93.6
FT 77.0 70.1 60.0 20.5 97.1 96.0 94.1 21.3 97.6 96.5 94.4 21.3

FTNEM 79.4 74.5 69.6 NA 96.7 95.7 94.1 NA 96.8 95.8 93.9 NA

FTBAL 77.5 73.4 65.0 NA 97.2 96.2 94.3 NA 97.5 96.5 94.6 NA

IL2M 78.3 75.2 71.2 NA 97.2 96.2 94.9 NA 97.6 96.6 94.7 NA

Joint 92.3 99.2 99.1

|K| = 5000
ILSVRC VGGFACE2 LANDMARKS

T =5 T =20 T =5 T =20 T =5 T =20

61.0 56.3 89.4 71.6 89.0 71.2
79.2 69.0 96.4 87.2 96.4 90.3
61.9 64.5 95.6 94.4 94.6 93.8
71.2 71.4 95.4 94.6 93.2 93.6
70.1 67.8 96.1 94.5 95.4 94.0
75.6 66.1 96.4 94.5 95.3 93.6

92.3 99.2 99.1

Table 3.2 – Top-5 average accuracy (%) for the different methods tested. NA stands for "Not
Applicable". Joint is the non-incremental upper-bound performance obtained with all data
available for all classes. Accuracy is averaged only for incremental states (excluding the ini-
tial, non-incremental state). The available memory |K| and the number of states T are varied to
test their effect on the performance of the tested methods. Best results are in bold.

Effect of score rectification

IL2M , FTNEM and FTBAL all use vanilla FT with memory as IL backbone. The three
methods differ in the way final classification scores are obtained. FTNEM uses the NEM
method from [128] as external classifier. FTBAL classifier adds a balanced fine tuning step for
classification following [24]. IL2M notably exploits the content of a second memory to rectify
scores. The results from Table 3.1 show that our method yields better performance than FTNEM

and FTBAL for almost all configurations tested.

Equally important, IL2M is useful for all memory sizes while this is not the case forNEM
in FTNEM , which actually hurts FT performance for LANDMARKS in three tested configu-
rations. The balanced fine tuning in FTBAL also improves performance for all memory sizes
but to a lesser extent than IL2M . With lower memory, FTBAL is more prone to catastrophic
forgetting than IL2M and FTNEM because a larger extent of data needs to be dropped dur-
ing balancing. It is noticeable that the usefulness of score rectification grows when exemplar
memory is lower and the imbalance between past and new classes is consequently higher. For
instance, IL2M gains 5.3 and 11.9 top-1 accuracy points for ILSVRC with |K| = 20000 and
|K| = 5000 exemplars respectively when T = 10.

Effect of distillation

The results from Table 3.1 and Figure 3.7 show that the use of distillation loss is detrimental
in class IL if at least a few exemplars per past class are allowed. The ablation of Ld in iCaRL
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Incremental states

S2 S3 S4 S5 S6 S7 S8 S9 S10

h
y
br
id

1

c(p) 1075 1217 1442 1446 1435 1535 1483 1505 1591
e(p, p) 600 2053 3756 5091 7406 9074 10580 11794 14156
e(p, n) 3325 6730 9802 13463 16159 19391 22937 26701 29253
c(n) 3562 3739 3558 3603 3673 3750 3584 3762 3641
e(n, n) 1020 839 965 910 793 791 903 792 810
e(n, p) 418 422 477 487 534 459 513 446 549

F
T

c(p) 2621 4327 5730 6702 7600 7980 8576 9169 8746
e(p, p) 194 690 1360 2203 3035 4016 4462 6100 5514
e(p, n) 2185 4983 7910 11095 14365 18004 21962 24731 30740
c(n) 4139 4314 4145 4155 4251 4319 4236 4376 4267
e(n, n) 779 608 771 762 692 619 694 560 667
e(n, p) 82 78 84 83 57 62 70 64 66

Table 3.3 – Top-1 analysis of hybrid1 the FT with distillation used as backbone for iCaRL
[128] and for vanilla FT using T = 10 and |K| = 10000. c(·) e(·, ·) stand for correct and
erroneous predictions and p and n stand for past and new classes. For instance, e(p, p) designates
the number of past samples wrongly predicted as other past classes.

to obtain FTNEM is beneficial for all datasets and memory sizes |K| = {20000, 10000, 5000}
and T = 10. The results presented here are at odds with the conclusion of [128] about the low
performance of vanilla fine tuning in class IL with memory. That conclusion was based on a
biased comparison of iCaRL and FT since the first method used an exemplar memory and
the second did not. Naturally, distillation is useful when no memory is allowed, the setting for
which it was initially designed [86] and which is not in focus here. While we do not have a
complete set of results for E2EIL [24], we note that distillation is also harmful to this method
on the ILSVRC dataset with |K| = 20000. The original top-5 result reported in [24] is 69.4
while the modified FTBAL version introduced here reaches 77.52.

In Table 3.3, we analyze the behavior of hybrid1, the version of FT with distillation which
serves as a backbone for iCaRL [128] and of vanilla FT for ILSVRC with |K| = 10000 images
and T = 10 states. The bias toward new classes (e(p, n)) is comparable for the two methods,
although slightly higher when distillation is used. Consequently, data imbalance is not the main
factor that explains the difference between the two methods. This difference comes mostly
from the distribution of wrong classifications between past classes (e(p, p)). While distillation is
assumed to preserve accuracy for past classes, the obtained results indicate that hybrid1 makes
between two and three times more mistakes than vanilla fine tuning. A possible explanation for
this situation is that distillation is usually assumed to be initialized with a strong model learned
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on a large and balanced dataset [51]. This condition is not met in IL since the models from the
previous state are trained on an imbalanced dataset.

The analysis from the previous two sections shows that data imbalance inherent to class IL
with memory produces a classification bias toward new classes. In Table 3.4, we enrich the anal-
ysis by providing an analysis of error types before (FT ) and after (IL2M ) score rectification
for all datasets with memory |K| = 10000 and T = 10 states.

Before rectification, the largest number of errors is of type e(p, n), that is, test images of
past classes mistaken for images of new classes. We will look closely at the incremental state
S10 of ILSVRC, which includes 45000 and 5000 test images for past and new classes, respec-
tively. 30740/45000 (68.31%) of test images of past classes were predicted as new, and only
8746/45000 (19.43%) images were correctly predicted. 4267/5000 (85.34%) of test images of
new classes are predicted correctly, and only 66/5000 (1.32%) of them are assigned to past
classes. These statistics further confirm the bias in favor of new classes and the need for score
rectification.

After rectification with IL2M , the distributions of correct predictions and of errors changes
quite significantly. For ILSVRC, there are significantly more correct predictions for past classes,
accompanied by a lower performance for new classes. In state S10 of ILSVRC, correct predic-
tions of past test images increase from 19.43% with FT to 32.86% with IL2M . The corre-
sponding performance for new classes drops from 85.34% to 70.2%. IL2M ensures a better
performance balance between past and new classes. The errors of type e(p, p), where images
of a past class are mistaken for images of another past class, are increasingly frequent toward
later incremental states. This covers a majority of cases for states from S6 to S10. The number
of images of past classes predicted as new decreases significantly, and these errors cover only
21.32% of test images for past classes in the state S10 of ILSVRC.

Ablation study

We analyze the contribution of the IL2M components in an ablation study with the ILSVRC
dataset for T = 10 states and memory |K| = {20000, 10000, 5000}. We test the following
changes on top of the FT baseline: IL2M1 - activation of the first component of the rectification
which works with class level means; IL2M2 - activation of the second component which works
with model level means; IL2M1+2 - both mean based components are activated; IL2M - full
version in which we also add the restriction of rectifying past class scores only if an image is
initially predicted as belonging to a new class (given by Equation 3.1).

The results from Table 3.5 indicate that each component has a positive effect compared to
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Incremental states

Dataset S2 S3 S4 S5 S6 S7 S8 S9 S10

ILSV RC FT c(p) 2621 4327 5730 6702 7600 7980 8576 9169 8746
e(p, p) 194 690 1360 2203 3035 4016 4462 6100 5514
e(p, n) 2185 4983 7910 11095 14365 18004 21962 24731 30740
c(n) 4139 4314 4145 4155 4251 4319 4236 4376 4267
e(n, n) 779 608 771 762 692 619 694 560 667
e(n, p) 82 78 84 83 57 62 70 64 66

IL2M c(p) 3223 5913 7744 9279 11233 11899 13115 13563 14791
e(p, p) 433 2010 3374 5324 9177 11239 13984 16780 20614
e(p, n) 1344 2077 3882 5397 4590 6862 7901 9657 9595
c(n) 3940 3791 3815 3816 3484 3774 3552 3900 3510
e(n, n) 666 409 582 553 352 361 398 347 341
e(n, p) 394 800 603 631 1164 865 1050 753 1149

V GGFACE2 FT c(p) 4619 8887 13114 17234 21279 25163 29084 32617 36893
e(p, p) 62 275 580 898 1270 1638 2051 2649 3145
e(p, n) 319 838 1306 1868 2451 3199 3865 4734 4962
c(n) 4789 4814 4847 4868 4873 4879 4878 4868 4884
e(n, n) 167 129 115 87 90 88 86 92 88
e(n, p) 44 57 38 45 37 33 36 40 28

IL2M c(p) 4657 9122 13436 17780 22031 26232 30353 34024 38506
e(p, p) 78 378 813 1382 1885 2601 3287 4039 4781
e(p, n) 265 500 751 838 1084 1167 1360 1937 1713
c(n) 4776 4762 4814 4810 4806 4802 4798 4802 4784
e(n, n) 161 112 94 63 70 55 56 72 57
e(n, p) 63 126 92 127 124 143 146 126 159

LANDMARKS FT c(p) 1894 3649 5423 7170 8847 10414 12070 13570 15093
e(p, p) 31 85 174 329 516 643 858 1128 1437
e(p, n) 75 266 403 501 637 943 1072 1302 1470
c(n) 1937 1952 1957 1954 1969 1960 1963 1965 1960
e(n, n) 49 32 32 37 18 22 27 24 29
e(n, p) 14 16 11 9 13 18 10 11 11

IL2M c(p) 1907 3718 5493 7230 8951 10599 12245 13826 15358
e(p, p) 45 107 218 384 587 834 1067 1462 1711
e(p, n) 48 175 289 386 462 567 688 712 931
c(n) 1934 1896 1935 1949 1944 1947 1955 1940 1922
e(n, n) 42 30 29 33 16 19 21 18 28
e(n, p) 24 74 36 18 40 34 24 42 50

Table 3.4 – Analysis of top-1 errors for (FT ) and (IL2M ) methods with memory |K| = 10000
and T = 10 states. p and n stand for past and new classes; c and e stand for correct and
erroneous predictions. For instance e(p, n) designates the number of wrong predictions of past
classes as new ones.
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T = 10
|K| FT IL2M1 IL2M2 IL2M1+2 IL2M

20000 51.13 53.45 51.94 55.15 56.37
10000 42.29 47.64 43.63 49.57 50.82
5000 32.23 42.20 31.74 42.51 44.05

Table 3.5 – Top-1 average ILSVRC accuracy for different versions of IL2M evaluated in the
ablation study with T = 10 states and memory |K| = {20000, 10000, 5000}.

FT . The largest single contribution is the use of class means from the secondary memory I
in IL2M1. The gain is particularly interesting for the lower memory sizes, where the effect of
catastrophic forgetting on FT is higher. The model level means have a small positive contribu-
tion for |K| = {20000, 10000} and a slight negative effect for |K| = 5000. The final restriction
of rectification has a moderate positive effect in all settings.

3.3.5 Conclusion

We introduce IL2M , a method designed for IL with memory. Extensive experiments show
that IL2M outperforms competitive algorithms which are either based on adapted fine tuning
[24, 128] or fixed representations (DeeSIL). IL2M gets better results than existing adapted
fine-tuning-based methods for almost all configurations with memory and falls behind the fixed
representation in a single case. The IL2M ablation study from Subsection 3.3.4 shows that
the obtained gain is mainly due to the use of the secondary memory I introduced here. The
method has a negligible supplementary cost, both in terms of memory and computation. It
is thus fitted for deployment in computationally constrained environments. Interestingly, the
largest gains compared to FT , FTNEM and FTBAL are obtained for lower memory sizes. This
makes IL2M very interesting in real life since it reduces the memory requirements. We also find
that, surprisingly, vanilla FT is a very effective baseline for class IL with memory. FT compares
favorably with DeeSIL and other existing algorithms [24, 128]. The ablation of the distillation
component from iCaRL and E2EIL in FTNEM and FTBAL improves the performance of
original methods. We test the proposed method and the baselines with three large-scale datasets
and with different memory sizes. The reported results reduce the performance gap between
incremental and non-incremental learning. However, this gap is still large, especially for the
harder visual datasets like ILSVRC. We further investigate the reason behind the bias of the
classification layer. We found that the classification weights matrix is the main reason behind
the large scores gap between past and new classes. We deal with this problem in the next section.
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3.4 ScaIL: Classifier Weights Scaling for Class-Incremental
Learning

3.4.1 Introduction

Incremental learning algorithms strive to approach the performance of full learning, in
which the entire training set is available for all classes at all times. In the previous section,
we experimentally showed that when a bounded set of past exemplars is stored, a prediction
bias toward new classes appears due to the data imbalance in their favor. This bias is illustrated
in Figure 3.8(a) with the difference between mean raw predictions for past and new classes af-
ter incrementally fine tuning the ILSV RC dataset [135] with |K| = 5000 past exemplars. The
average score difference in favor of new classes over all the incremental states is 6.45 points.

Figure 3.8 – (a) - Raw prediction scores of vanilla fine tuning for the ILSVRC dataset with
|K| = 5000 past exemplars and a total of T = 10 states. Incremental states from 2 to 10 are
represented. The initial state S1 is non-incremental and is not shown. (b) - Ranked mean weight
activations of new and past classes in state S3 (blue and red) and mean weight activations of S3
past classes as initially learned in S1 (black) and S2 (green). Best viewed in color.

In IL2M , we directly rectify scores of past classes to make them more comparable to those
of new classes. However, it would be interesting to dig deeper and understand what is hap-
pening. We further investigate the effect of catastrophic forgetting and discover that the bias
is highly present in the weights matrix of the last fully connected layer. The prediction gap is
due to the stronger activations of classifier weights for new classes compared to past classes, as
illustrated by the blue and red curves from Figure 3.8(b). It is thus tempting to try to reshape
the classification layers of past and new classes in order to make them more comparable.
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We introduce ScaIL, a simple yet efficient method that reduces the bias in favor of new
classes by exploiting the past classes embeddings as learned in their initial state with all class
data available. Since past class classifiers are learned in different previous IL states, they are
reshaped to be usable in the current state. Their scaling uses aggregate statistics from the current
and initial states. In addition to the bounded exemplar memory K, ScaIL requires the use of a
compact memory I which stores the classifier embeddings from the initial states of past classes.
Similarly to IL2M (Section 3.3), we simplify the deep model update across incremental states.
The widely used distillation loss term [24, 49, 61, 128, 193] is again ablated here and model
updates are done with vanilla fine tuning.

Evaluation is done with four public datasets and three values for the number of incremental
states T and the exemplar memory K, the two key components of class IL algorithms. ScaIL
is compared to strong baselines from literature and to new ones proposed in this chapter, and
the obtained results indicate that it has the best overall performance.

3.4.2 Proposed Method

Initial weights replay

ScaIL attempts to approximate full learning by exploiting past classifiers as learned in their
initial state, with all images available. Since the deep models evolve during the incremental
process, a transformation of the initial classifiers is needed for them to be usable in the current
incremental state. ScaIL is illustrated in Figure 3.9 with a toy example that includes an initial
and two incremental states.

The main differences with existing IL algorithms which exploit a bounded memory are: (1)
the introduction of a second memory I to store initial past class classifiers and (2) the ablation
of the distillation loss. Note that the size of I is orders of magnitude smaller than that of K
since it only stores hundreds of floating-point values per class instead of exemplar images. The
immediate advantage of the method is that initial classifiers of past data are learned with all
data. Initial classifiers learned with all images are stronger than the past classifiers learned only
with exemplars in the current state. This is clearly visible in Figure 3.8(b) from the comparison
of past classifiers weights as learned in the current third state (red) and the weights of the same
classifiers learned in states S1 and S2 (black and green). We also note the activations of new
classes become weaker as the incremental learning process advances. The new classes from S1

(black) are the strongest, followed by new classes from S2 (green) and those from S3 (blue).

The main challenge associated with ScaIL is to combine classifiers originating from deep
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Figure 3.9 – Illustration of ScaIL. Xj
t is the data of the jth class in state St, Mt is the deep

model of the state St. W j
i is the classifier of the jth class in the initial state Si in which the

class was learned with all data, and W j′
t is the classifier of the jth class in the state t after

scaling it with ScaIL. We represent three states which recognize 2, 4 and 6 classes respectively.
The bounded memory (light blue) is fixed at |K| = 4 past classes exemplars. As the training
advances, the data imbalance between past and new classes grows due to the bounded memory
K and the prediction bias in favor of new classes becomes more prominent. ScaIL reduces
this bias by making classifier weights of past and new classes more comparable by using a
small memory I which stores initial classifiers W j

i . In each IL state, ScaIL replaces the raw
classifiers of past classes provided by the modelMt by W j′

t , a scaled version of W j
i , the initial

classifier. Since ScaIL combines classifiers learned in different IL states, initial classifiers are
reshaped using aggregate statistics from the current and the initial states. The classifiers for
newly learned classes are left as learned by the current modelMt. Best viewed in color.

models learned in different IL states. The reuse of initial classifiers in later incremental states is
made possible by a fine tuning process with a memory of the past. This process results in partial
preservation of the feature space even if the deep model evolves. In Subsection 3.4.5, we show
that classifier reuse across states is impossible without memory during IL model updates.

Weights statistics computing

Once initial weights replay is performed, ScaIL reshapes initial weights from I in order
to make them comparable to those of newly learned classes in the feature space defined by the
deep model of the current state. The scaling is based on weights statistics computed for new
classes in each incremental state. We compute one mean vector per state and use it later for
normalization. In Equation 3.2, we sort each new class embedding W j

t based on the absolute
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values of its elements.”W j
t = sort(|w1

j |, |w2
j |, ..., |wdj |, ...., |wDj |) ; j ∈ [Nt−1, Nt] , d ∈ [1, D] (3.2)

where”W j
t is the sorted version of the initial embedding of new class j in state St. The use

of absolute values is necessary since classifier weights activations can be positive or negative.
Note that the matrix ”W t = {”WNt−1

t ,”WNt−1+1
t , ...,”WNt

t } is of dimensions (Pt, D), where
Pt = Nt −Nt−1 is the number of new classes in St and D is the size of the feature vector.

Once the new classes embeddings are sorted descendingly based on their absolute values,
we use Equation 3.3 to compute one mean vector per state that we use for normalization.

µdt = 1
Pt
×

Nt∑
j=Nt−1

ŵdj d ∈ [1, D] (3.3)

where µt (of dimension D) is the mean vector of the ranked new classes’ embeddings in
the state St, and d is a dimension in the feature vector. Figure 3.8(b) shows that classifiers of
each past state have different statistical distributions. To make class predictions from different
states comparable, it is necessary to compute µt separately for each state. Note that each mean
is computed using weights situated at the same rank for each classifier. For instance, µ1

t and µDt
will aggregate respectively the maximum and minimum weights of newly learned classes in St.

Initial weights normalization

In state St, ScaIL transforms the past classifier weights as learned in their initial state using
Equation 3.4.

wdj
′ = µ

R(d)
t

µ
R(d)
i

× wdj (3.4)

wdj
′ is the scaled version of wdj , the dth dimension of the initial classifier W j

i of the jth past
class. These weights are scaled using the ratio between the mean activation of new classes and
that of past classes in their initial state. Each weight wdj is scaled using the mean activations of
its corresponding rank, returned by function R(·), in the current and initial states St and Si. For
instance, if the first weight (d = 1) of the embedding W j

i is ranked 9th, it will be scaled using
the mean activations to the 9th dimension of the mean ranked activations µ9

t and µ9
i respectively.

This is done in order to preserve the relative importance of each classifier weight.

Figure 3.8(b) shows that µri > µrt for a given rank r. Consequently, ScaIL scaling reduces
the weights of the jth class learned in its initial state to make it more comparable to classifiers
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of new classes from the current state. The scaled classifier for each past class j of the current
state St is written as W j′

t = {w1
j
′
, w2

j
′
, ..., wdj

′
, ..., wDj

′}. The ScaIL classification layer for St
combines scaled classifiers for past classes and original classifiers for new classes. It can be
written asW ′

t = {W ′
t

1, ...,W ′
t
Nt−1 ,W

Nt−1+1
t , ...,WNt

t }.
The features learned in St are fed into this scaled classification layer instead of the original

one provided byMt. Note that only scores of the top-10 past classes are scaled as they code
more information; the scores of the remaining past classes are set to zero. The choice of this
value is experimental.

We illustrate the effect of ScaIL on the prediction scores in Figure 3.10. Past classes have a
slightly larger mean classification score in the first states and a lower one in subsequent states.
While not completely aligned, the predictions of past and new classes in ScaIL are much more
balanced compared to those of raw fine tuning results from Figure 3.8(a).

Figure 3.10 – Prediction scores before (left) and after (right) scaling for the ILSVRC dataset
[135] with |K| = 5000 exemplars and T = 10 states. Best viewed in color.

3.4.3 Experiments

— Datasets (Appendix B) - ILSVRC [135], LANDMARKS [108], VGGFACE2 [22], and
CIFAR-100 [74].

— Memory sizes - We fix the number of states T = 10 and run experiments with a memory
which amounts to approximately 2%, 1%, 0.5% of the full training sets. Memory sizes
are thus |K| = {20000, 10000, 5000} for ILSVRC, |K| = {10000, 5000, 2500} for VG-
GFACE2, |K| = {8000, 4000, 2000} for LANDMARKS and |K| = {1000, 500, 250} for
CIFAR-100. Whenever a new incremental state is added, memory is updated using herd-
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ing by inserting exemplars of new classes and reducing exemplars of past classes in order
to fit the maximum size.

— Incremental states - We fix the memory to |K| = 0.5% and test with T = {20, 50} in
addition to T = 10. The lowest memory size was selected since it is the most interesting
configuration when memory budget is smallest.

— Exemplar selection - A herding mechanism [172], called Nearest-Exemplars-Mean (NEM)
was introduced in iCaRL for exemplar selection [128].BiC uses the same herding mech-
anism. For this, we provide results for ScaIL with and without herding. ScaILherd is
directly comparable with iCaRL and BiC.

— Evaluation measures - Top-5 accuracy [135] and GIL measure (Subsection 3.4.4).

— Baselines (Chapter 2) - iCaRL [128], BiC [174], DeeSIL (Section 3.2), FT (vanilla
fine tuning), FTNEM and FTBAL from Subsection 3.3.3. In addition, we propose the
following baselines:

Ô FTL2 - adds an L2-normalization layer to the raw classifier weights Wt given by
modelMt to reduce bias in favor of new classes in current state St.

Ô FT init - the initial classifiers W j
i of each past class replace the classifiers learned

only with the past classes exemplars in St. No transformation is applied to W j
i . This

is an ablation of the mean-related statistics from ScaIL.

Ô FT initL2 - version of FT init in which all classifiers are L2-normalized to make them
more comparable.

3.4.4 GIL evaluation measure

Since each algorithm is tested in a large number of configurations, we find it important
to propose a summarized performance score. Inspired by works such as [127, 161], we pro-
pose a global score computed with Equation 3.5. GIL measures the performance gap between
each algorithm and an upper bound method. This upper bound is represented by Joint, a non-
incremental learning with all data available.

GIL = 1
C
×

C∑
c=1

A(c)− A(Joint)
Amax − A(Joint) (3.5)

where: C - number of tested configurations; A(c) - top-5 score for each configuration
(individual values of each row in Table 3.6); A(Joint) - the upper-bound accuracy of the
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dataset (Joint in Table 3.6); Amax - the maximum theoretical value obtainable for the mea-
sure (Amax = 100 here).

GIL estimates the average behavior of each algorithm with respect to the upper bound. The
denominator is introduced to avoid a disproportionate influence of individual datasets in the
aggregate score. GIL is necessarily a negative number and the closer its value to zero, the better
the method is. An ideal method, which reaches the upper bound value in all configurations, gives
GIL = 0. The proposal of aggregated measures is important for tasks that are evaluated in a
large number of configurations [127, 161]. Building on previous work regarding such measures,
the authors of [161] list eight criteria that should be met by global evaluation metrics when
evaluating universal visual representations: (1) coherent aggregation, (2) significance, (3) merit
bonus, (4) penalty malus, (5) penalty for damage, (6) independence to outliers, (7) independence
to reference and (8) time consistency. They note that none of the global evaluation measures can
fulfill all criteria simultaneously. However, their formulation, which inspired us to propose GIL

fulfills the maximum number of criteria.

While the IL context is different from that of universal representations, a majority of criteria
from [161] are relevant here. The aggregation is easier in our work since the use of Joint as a
reference score is a natural upper bound for incremental learning algorithms. The aggregation
of scores is natural in GIL since all scores are compared to a single reference. The significance
criterion, put forward in [127] is only implicitly modeled because configurations that give the
largest gain contribute more to the global score. The merit bonus refers to the proportionality
of the reward with respect to the reference method and is modeled through the denominator of
Equation 3.5. The penalty for damage and the penalty malus are not applicable since all methods
penalize the performance compared to the upper bound. The independence to outlier methods
has a low effect in our case since it refers to the contributions of individual configurations.
Since GIL averages the contributions of a relatively large number of contributions, the risk
related to outliers is rather reduced. Naturally, the more datasets and configurations are tested,
the more robust the score will be. However, the computational resources needed for training
in IL are large, and we consider that the use of four datasets with three memory sizes and
three incremental learning splits gives a fair idea about the behavior of each algorithm. Time
consistency is respected since methods are not compared to each other but only to a stable
reference if the same deep model and data are used across time. The question remains whether
datasets of different sizes should be given the same weights in the score, but weighting would
further complicate the evaluation measure.
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States T = 10
Dataset ILSVRC VGGFACE2 LANDMARKS CIFAR-100

|K| 2% 1% 0.5% 2% 1% 0.5% 2% 1% 0.5% 2% 1% 0.5%
iCaRLherd 62.5 61.4 60.9 83.9 81.4 78.2 82.5 80.5 76.2 85.1 83.7 83.2
BiCherd 85.5 82.8 79.7 97.3 96.6 95.7 97.9 97.3 96.6 88.8 87.6 83.5
DeeSIL 74.5 74.3 74.2 92.6 92.5 92.2 93.9 93.6 92.9 66.5 65.2 63.7
FT 77.0 70.1 60.0 96.0 94.1 90.7 95.8 93.2 89.1 80.0 73.7 63.3

FTNEM 79.4 74.5 69.6 95.7 94.1 91.0 95.2 92.7 88.8 82.4 77.4 68.4
FTBAL 81.3 78.0 72.3 96.4 95.0 92.2 96.3 94.3 90.0 73.0 65.0 56.1
FTL2 81.4 77.6 72.1 96.5 95.1 92.4 96.2 94.4 91.4 81.8 77.2 69.1
FT init 68.9 66.5 61.2 95.9 95.3 94.5 96.5 95.0 92.7 79.3 77.3 73.7
FT initL2 78.4 75.7 73.3 95.9 95.3 94.5 96.5 95.0 92.7 83.0 79.2 72.7
ScaIL 81.0 78.2 75.1 96.4 95.6 94.5 96.9 95.3 92.7 84.6 81.1 74.9

ScaILherd 82.0 79.8 76.6 96.5 95.8 95.2 97.3 96.0 94.0 85.6 83.2 79.1

Joint 92.3 99.2 99.1 91.2

|K| = 0.5%
ILSVRC VGGFACE2 LANDMARKS CIFAR-100

T =20 T =50 T =20 T =50 T =20 T =50 T =20 T =50

56.2 42.9 72.7 52.3 72.4 54.2 73.2 55.7
74.6 63.9 92.3 85.3 94.7 90.5 50.5 19.6
69.0 58.0 87.2 78.9 90.6 84.8 63.4 42.5
64.5 59.2 90.8 86.5 87.8 85.5 59.9 49.4
72.7 63.4 91.8 87.8 88.1 86.0 64.5 51.0
70.5 61.1 91.7 86.5 87.8 85.3 57.1 50.0
73.4 66.7 92.8 88.8 89.8 87.1 63.2 49.9
53.4 39.0 95.1 90.3 90.6 87.5 60.7 40.1
72.0 66.0 95.1 90.2 90.7 87.6 64.3 42.5
73.9 68.3 94.5 90.5 90.7 88.2 67.9 47.7
76.6 70.9 95.0 92.4 92.6 90.4 69.8 51.0

92.3 99.2 99.1 91.2

GIL

-16.75
-4.03
-7.10
-6.40
-6.01
-5.98
-5.17
-5.23
-4.67
-4.41
-3.71

-

Table 3.6 – Top-5 average accuracy (%). Following [24], accuracy is averaged only for incre-
mental states. The sizes of past memory K and number of states T are varied to evaluate the
robustness of algorithms. Joint is the non-incremental upper-bound performance obtained with
all data available. The methods whose names include herd exploit herding while the others are
based on random exemplar selection. Best results are in bold.

3.4.5 Results and discussion

Confirming the conclusions of [128], iCaRL has the best overall performance for CIFAR-
100 in Table 3.6. For the three larger datasets, the FT consistently outperforms iCaRL. Over-
all, FT more than halves the gap with Joint compared to iCaRL (GIL = −6.40 vs. GIL =
−16.75). The comparison to E2EIL [24], which achieves 69.4% top-5 accuracy for ILSVRC
with |K| = 2% is equally favorable to FT 1. Since one important difference between FT and
existing IL methods is the use of distillation, we analyze its role separately later in this subsec-
tion.

The FT -based methods all have a positive contribution. FTNEM and FTBAL which are
inspired by iCaRL [128] and E2EIL [24] improve over FT by less than 0.5 GIL points.
FTL2, the L2-normalized version of the classifiers from the current IL state, provides a gain
of 1.23 GIL points compared to FT . Somewhat surprisingly, the direct concatenation of initial
classifier weights from different states in FT init also improves performance over FT by over 1
point. However, its performance for individual configurations is much more contrasted than that
of FTL2. FT init has low results for the two object recognition datasets, which are on average
more difficult than face and landmark recognition tasks. FT initL2 addsL2-normalization to FT init

classifiers and ranks fourth among all methods tested, with 1.73GIL improvement over FT . The
best overall result is obtained with ScaILherd, which improves FT performance by 2.69 points.

1. Note that a complete set of results is not presented for E2EIL [24]. This method was not fully tested
because we were not able to reproduce the results presented by the authors since the original implementation is
based on Matlab, a non-free environment to which we do not have access.
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The difference between ScaIL and FT initL2 in terms of GIL is not large but still interesting.
ScaIL has the most stable behavior among all those tested. In fact, its performance on the three
large datasets is most interesting for the smallest K values. This is the most challenging case
and also the most interesting in practice since it requires a reduced memory for past data. The
increase of the number of incremental state results in a drop of performance for all methods.
With equal memory K, the worst results are obtained for T = 50 states, followed by T = 20
and T = 10. This finding confirms the results reported in [24] and [128]. It is probably an effect
of a larger number of incremental rehearsal steps, which are applied for larger T . Again, ScaIL
is the method that is the least affected by the change of the number of incremental states.

Contrarily to the conclusion of [24], the herding mechanism in ScaILherd has positive effect
compared to random selection of exemplars in ScaIL. Results show that, while BiC [174] is
better for a lower number of incremental states (T = 10), ScaIL has better behavior for a larger
number of states. Equally important, ScaIL performance is less affected by the reduction of the
memory size, and its performance is globally better for |K| = 0.5%, this leads to a better GIL

score for ScaIL. Finally, the need of BiC for a validation set to parametrize the bias correction
layer makes it nonfunctional if no memory of the past is available.

The performance gap between Joint learning and IL is naturally higher for more complex
tasks, such as object recognition, compared to face and landmark recognition. For the last two
tasks, classes have a more coherent visual representation and fewer examples are needed for
a comprehensive representation of them. In the simplest configurations reported here (T =
10, |K| = 2%), the best IL algorithms are less than three points behind Joint for faces and
landmarks. For such specialized tasks, incremental learning seems thus applicable in practice
without a very significant performance loss. The situation is different for more complex tasks,
such as object recognition, where significant progress is needed before IL algorithms approach
the performance of classical learning.

An additional result concerns DeeSIL, the fixed representation method. Here, it is globally
better than iCaRL, a finding which is at odds with the results originally reported in [128].
The difference is explained by the use of all data for each class, while past class training was
unnecessarily restricted to K exemplars in [128]. FT outperforms DeeSIL by less than 1 GIL

point. For T = 10, DeeSIL has very low dependence on the bounded memory size and could
also be used in the absence of past exemplars memory. Naturally, its performance drops for
larger T values because the initial model is learned with fewer classes but remains interesting.
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Effect of distillation

The use of knowledge distillation in incremental learning with bounded memory was pio-
neered in iCaRL [128], which extends the work on IL without memory from [51]. Distillation
was largely adopted afterwards [24, 49, 61, 68, 115, 193] as a way to reduce the effect of catas-
trophic forgetting. This adoption was based on one experiment presented in [128] which com-
pared the performance of iCaRL and fine tuning only on the CIFAR-100 dataset and with single
memory size. In Table 3.6, we report a similar finding for this dataset. For CIFAR-100, FT is
probably less effective because it uses hard targets for loss minimization. These targets encode
very sparse information for the small dataset available. In contrast, distillation exploits soft tar-
gets which encode more information [52] and is thus more fitted to work with small datasets.
The results for T = 10 states with different values of |K| support the above observation since
the difference in favor of iCaRL grows as |K| is reduced.

However, distillation hurts performance for all configurations tested for the three larger
datasets, where FT has consequently better performance than iCaRL. The use of network
outputs as soft targets for distillation was noted to produce a classification bias for past classes
both in the original knowledge distillation paper [52] and in an incremental context [61]. A
common assumption of distillation-based IL algorithms, first made in [51], is that the process
starts with a powerful pretrained model which is trained on a large and balanced dataset. Under
this condition, the soft targets used by the distillation loss are efficient to transfer knowledge to
the next incremental state. Our hypothesis is that distillation tends to reinforce the errors due
to data imbalance in the previous incremental state. In practice, if the distillation component is
fed with soft targets whose predictions are wrong, it will push the classifier toward the wrong
classes. To verify this hypothesis, we present an analysis of correct and erroneous predictions
for past and new classes in Table 3.7 for vanilla fine tuning (FT ) and fine tuning with distillation
used as backbone in iCaRL (FT distill). We use T = 10 states and |K| = 0.5% exemplars for
all datasets. For ILSVRC, the bias toward new classes (expressed by e(p, n) errors) is similar
with and without distillation. The correct predictions for new classes are also in a comparable
range, although lower for FT distill. This indicates that the data imbalance toward new classes
has rather a comparable effect regardless of the use of distillation. The performance difference
between the two methods is due mainly to confusion between past classes expressed by e(p, p).
They are roughly three times more frequent for FT distill compared to FT in Table 3.7. Equally
important, while distillation is supposed to preserve accuracy for past classes, it clearly does
not since the amount of correctly recognized past examples grows very steadily in FT distill.
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Incremental states
S2 S3 S4 S5 S6 S7 S8 S9 S10

ILSVRC

F
T

c(p) 2117 2995 3415 3875 3653 4451 4558 5003 3119
e(p, p) 156 450 807 1363 1842 2710 2626 3932 2388
e(p, n) 2727 6555 10778 14762 19505 22839 27816 31065 39493
c(n) 4151 4322 4103 4141 4267 4304 4247 4378 4248
e(n, n) 809 638 875 828 716 674 743 595 741
e(n, p) 40 40 22 31 17 22 10 27 11

F
T
d
is
ti
ll

c(p) 850 1008 1355 1355 1195 1344 1419 1543 1562
e(p, p) 472 1746 3700 4999 6904 8246 10771 13400 14556
e(p, n) 3678 7246 9945 13646 16901 20410 22810 25057 28882
c(n) 3645 3834 3597 3607 3744 3754 3605 3766 3662
e(n, n) 1043 793 928 905 785 776 828 692 751
e(n, p) 312 373 475 488 471 470 567 542 587

VGGFACE2

F
T

c(p) 4168 7718 11062 14293 15953 19614 21075 24690 24196
e(p, p) 89 282 611 947 1354 2170 3203 3827 4929
e(p, n) 743 2000 3327 4760 7693 8216 10722 11483 15875
c(n) 4825 4834 4866 4865 4881 4879 4887 4874 4883
e(n, n) 155 143 118 119 108 102 101 108 108
e(n, p) 20 23 16 16 11 19 12 18 9

F
T
d
is
ti
ll

c(p) 1729 2109 1886 1787 1520 1657 1412 1199 1131
e(p, p) 242 1455 2553 3360 4056 5766 6248 6506 7838
e(p, n) 3029 6436 10561 14853 19424 22577 27340 32295 36031
c(n) 4620 4637 4694 4740 4747 4714 4693 4685 4728
e(n, n) 299 239 236 203 212 224 218 248 216
e(n, p) 81 124 70 57 41 62 89 67 56

LANDMARKS

F
T

c(p) 1670 3072 4476 5550 6564 7626 8081 9303 10309
e(p, p) 38 131 318 616 879 1005 1340 1961 2237
e(p, n) 292 797 1206 1834 2557 3369 4579 4736 5454
c(n) 1945 1970 1959 1956 1973 1966 1975 1973 1971
e(n, n) 51 27 35 37 24 27 25 23 27
e(n, p) 4 3 6 7 3 7 0 4 2

F
T
d
is
ti
ll

c(p) 901 1011 859 815 788 769 622 533 419
e(p, p) 159 831 1770 2617 3194 3880 4708 5889 6744
e(p, n) 940 2158 3371 4568 6018 7351 8670 9578 10837
c(n) 1893 1893 1902 1910 1937 1913 1949 1926 1936
e(n, n) 66 53 58 61 37 53 36 52 38
e(n, p) 41 54 40 29 26 34 15 22 26

CIFAR-100

F
T

c(p) 366 614 675 605 686 950 779 692 467
e(p, p) 10 181 312 288 641 974 835 732 601
e(p, n) 624 1205 2013 3107 3673 4076 5386 6576 7932
c(n) 791 873 886 866 848 859 834 888 915
e(n, n) 196 114 103 131 146 127 159 104 80
e(n, p) 13 13 11 3 6 14 7 8 5

F
T
d
is
ti
ll

c(p) 719 1160 1507 1706 1988 2195 2349 2404 2251
e(p, p) 91 457 847 1210 1800 2551 2929 3499 3743
e(p, n) 190 383 646 1084 1212 1254 1722 2097 3006
c(n) 694 742 735 752 723 767 708 786 814
e(n, n) 78 62 40 53 48 35 57 38 28
e(n, p) 228 196 225 195 229 198 235 176 158

Table 3.7 – Top-1 correct and wrong classifications for vanilla fine tuning (FT ) and fine tuning
with distillation (FT distill) for the four datasets with T = 10 and |K| = 0.5%.
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Figure 3.11 – Detailed Top-5 Test accuracy with T = 50 and memory |K| = 0.5%. A compari-
son is done between FT , FT distill and iCaRL to analyze the role of distillation.

In Figure 3.11, we provide detailed top-5 accuracy per incremental state for FT , FT distill

and iCaRL for |K| = 0.5% and T = 50 states. The largest value of T was chosen in order to
observe the behavior with and without distillation for a small number of classes per incremental
state. For the large datasets, the difference between FT and FT distill is small for initial incre-
mental states, increases a lot afterward, and tends to decrease toward the end of the process but
remains very large. This behavior is explained by the fact that, since past memory is tiny, the
number of exemplars per class becomes very small toward the end. For instance, K includes
5000 images for ILSVRC and there will be only 5 exemplars per class in the last states. It is
noticeable that rehearsal in FT still works with such a small number of exemplars. This finding
provides further support to the results reported regarding the negative role of distillation at a
large scale for imbalanced datasets when a memory of the past is available. Confirming the re-
sults from [128], distillation is indeed useful for CIFAR-100, where its performance is slightly
better than that of FT . Also, the introduction of an external classifier in iCaRL is clearly useful.
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ILSVRC

  

VGGFACE2

  

LANDMARKS

  

CIFAR-100

  

Figure 3.12 – Detail of past-past errors e(p, p) for individual states of FT distill with T = 10
and |K| = 0.5%. In each state, errors due to the latest past state are over-represented as a result
of learning its associated state with an imbalanced training set. Best viewed in color.

In Figure 3.12, we present the distribution of e(p, p) errors among individual past states
for FT distill. Since test data is balanced among states, the distribution of errors should also be
approximately so. The e(p, p) errors related to the last incremental state are overrepresented for
all four datasets compared. However, the errors toward the first incremental state are also better
represented for VGGFACE2 and even become dominant for LANDMARKS and CIFAR-100.
This behavior is probably due to the fact that the initial state is stronger for easier tasks. In these
cases, the model evolves to a lesser extent compared to ILSVRC, a more complex visual task.

Figure 3.12 shows that a majority of past test data for state St are predicted as belonging
to classes that were new when first learned in St−1. This result confirms that class imbalance
has an important role for the distillation component of the loss, similarly to its influence on
the classification component. We also notice that, except for S6, the number of errors grows
for more recent past states. Along with imbalance, the number of rehearsals after the initial
learning of the class also plays an important role in terms of distillation-related errors. Our
findings indicate that vanilla FT is preferable to distillation-based FT as a backbone for large-
scale IL with memory.
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Results without memory

States T = 10
Dataset ILSVRC VGGFACE2 LANDMARKS CIFAR-100

LwF 43.80 48.30 46.34 79.49
FT 20.64 21.28 21.29 21.27
FTL2 20.64 21.27 21.27 21.27
FT init 60.95 90.90 68.77 55.05
FT initL2 51.57 76.84 61.42 47.48
ScaIL 21.96 23.06 22.31 33.49

Table 3.8 – Top-5 accuracy without memory (|K| = 0) with T = 10 states. We also present
LwF [86], which is equivalent to iCaRL [128] without memory. Best results are in bold.

Table 3.8 provides results obtained with fine tuning without memory for past classes (|K| =
0) and with T = 10 states. The accuracy drops significantly for FT since the network can-
not rehearse knowledge related to past classes. Catastrophic forgetting is more severe and past
classes become unrecognizable in the current state. The accuracy of FT without memory is
mostly due to the recognition rate of new classes. When T = 10, they represent between a half
and a tenth of the total number of classes for states S2 and S10, the first and the last incremen-
tal state, respectively. The accuracy for past classes is close to random. Since ScaIL depends
heavily on the weights of past classes in the current state, its performance drops significantly.
LwF [86] includes a distillation component that is clearly useful in the absence of memory. It
outperforms FT and ScaIL for all datasets by a very large margin. This finding reinforces the
conclusions of [128] regarding the positive role of distillation in IL without memory.

3.4.6 Conclusion

We introduced ScaIL, a simple but effective IL algorithm that combines classifiers learned
in different IL states to reduce catastrophic forgetting. It keeps the number of parameters of
the network constant across IL states and requires a second memory whose size is negligible.
ScaIL provides an improvement over other methods and is also better than the new baselines.
A consequent part of the performance improvement is due to the ablation of the distillation in IL
algorithms. While widely used, we find that distillation is only useful for small-scale datasets.
Our analysis indicates that a performance drop appears for large-scale datasets with memory
when distillation is used. The drop is notably due to the inherently imbalanced character of
datasets available in IL. In the next section, we will provide a comprehensive study of class-
incremental learning methods with memory, including DeeSIL, IL2M , and ScaIL.
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3.5 A Comprehensive study of Class-Incremental learning with
memory

3.5.1 Introduction

The ability of artificial agents to increment their capabilities when confronted with new
data is an open challenge in artificial intelligence. The main challenge faced in such cases is
catastrophic forgetting, i.e., the tendency of neural networks to underfit past data when new ones
are ingested. The first group of approaches tackles forgetting by increasing deep model capacity
to accommodate new knowledge. The second type of approaches fixes the deep model size and
introduces a mechanism whose objective is to ensure a good compromise between stability and
plasticity of the model. While the first type of algorithms was compared thoroughly, this is not
the case for methods that exploit a fixed size model. Here, we focus on the latter, place them in
a common conceptual and experimental framework and propose the following contributions:

— propose a common evaluation framework which is more thorough than existing ones in
terms of number of datasets, size of datasets, size of bounded memory, and number of
incremental states

— examine the role of herding-based exemplar selection for past classes. Introduced in [172]
and first used in an IL context by [128], its usefulness was questioned in [24, 61, 89] where
it was reported to provide only marginal improvement compared to random selection. We
run extensive experiments with the two selection algorithms and conclude that herding is
useful for all methods tested.

— provide experimental evidence that it is possible to obtain interesting performance without
the widely used knowledge distillation component [24, 53, 61, 89, 128, 174]. Instead, we
use vanilla fine-tuning as a backbone for class IL with memory and model the problem
as a case of imbalanced learning. The well-known thresholding method [21] is used to
reduce the classification bias between past and new classes.

In this section, the focus is put on the components that differentiate algorithms one from
another to facilitate the understanding of the advantages and limitations of each one of them.
Moreover, we introduce promising combinations of components from different algorithms and
assess their merits experimentally. In addition, we propose a thorough evaluation framework.
Four public datasets designed for different visual tasks are used to test performance variability.
Three splits in terms of the number of incremental states and three sizes for past memory are
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tested to assess performance robustness for these IL parameters, which were previously iden-
tified as being the most important [24, 128]. We complement in Section 4.4 with experiments
when no past memory is allowed because this setting has a strong influence on algorithm per-
formance.

The main experimental finding here is that none of the existing class IL algorithms is better
than the others in all experimental configurations. We find that both memory and incremental
state sizes influence the relative performance of algorithms. Important differences arise notably
if a bounded memory of past classes is allowed or not. We report such results in Chapter 4.
These findings indicate that class-incremental learning remains an open research problem, and
further research efforts should be dedicated to it.

3.5.2 Tested approaches

We compare recent class incremental algorithms and also adaptations of them, which com-
bine components from different algorithms.

Fine-Tuning based IL algorithms

— iCaRL [128] exploits fine-tuning with distillation loss Ld to prevent catastrophic forget-
ting and a variant of Nearest-Class-Mean [103] to counter imbalance between past and
new classes. The main difference with LwF is the introduction of a bounded memory to
enable efficient replay.

— LUCIR [53] is based on fine-tuning with an integrated objective function. Authors pro-
pose the following contributions: (1) cosine normalization to balance magnitudes of past
and new classifiers (2) less forget constraint to preserve the geometry of past classes, and
(3) inter-class separation to maximize the distances between past and new classes. The
combination of these contributions constitutes a more sophisticated take at countering
catastrophic forgetting compared to the use of knowledge distillation from [24, 61, 128].
We experiment with two versions of this approach:

Ô LUCIRNCM - the original definition proposed by the authors where a Nearest-
Class-Mean classifier is used.

Ô LUCIRCNN - the network outputs are used for classification.

— FT is the plain use of vanilla fine-tuning. The modelMt is initialized with the weights
of the previous modelMt−1 and only the cross-entropy loss Lc is used. FT constitutes
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the simplest way to update models in incremental learning. It is heavily affected by catas-
trophic forgetting if a bounded memory is not available [128] but becomes an interesting
baseline if memory is available (Section 3.3).

— FTNEM (Sections 3.3 and 3.4) is a version of FT which replaces the classifier Ct by
a NEM classifier from [128]. FTNEM is a modified version of iCaRL in which the
distillation loss Ld is ablated.

— FTBAL (Sections 3.3 and 3.4) is inspired by [24]. A vanilla FT is first performed, fol-
lowed by a balanced FT . This second step aims to reduce bias between past and new
classes by training on a version of Dt, which stores the same number of images for past
and new classes to obtain similar magnitudes for them. FTBAL is also tributary to the
fixed memory K because past exemplars are needed for the balancing step.

— BiC [174] adds a linear layer for bias removal, which is trained on a validation set sep-
arately from the rest of the model learned with cross-entropy and distillation losses. The
objective of the supplementary layer is to reduce the magnitudes of predictions for new
classes to make them more comparable to those of past classes. We note that K needs to
be large enough to obtain reliable parameter estimations.

— ScaIL (Section 3.4) hypothesizes that the classification weights matrixWt learned when
classes were first streamed and learned with all data can be reused later. The main chal-
lenge is that deep modelsMt are updated between incremental states. Normalization of
the initialWt is proposed to mitigate the effect of model updates and make past and new
classes’ predictions comparable.

— IL2M (Section 3.3) uses past classes’ statistics to reduce the prediction bias in favor of
new classes. Past classes’ scores are modified using the ratio between their mean classifi-
cation score when learned initially in the state Si and in the current state St. Furthermore,
the ratio between the mean classification score over all classes in St and Si is also used.

— FTinit, FTinitL2 , and FTinitL2+mc (Sections 3.4 and 4.2) are methods built on top of FT in
order to reduce the bias of the network towards new classes, where:

Ô init - replaces the embeddings of past classes in the current state with their initial
embeddings learned in the initial state with all available data.

Ô L2 - normalization that makes classifier weights more comparable across states.

Ô mc - state mean calibration defined as:

pjt
′ = pjt ×

µ(Mt)
µ(Mj

i )
(3.6)
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µ(Mt) and µ(Mj
i ) - means of top-1 predictions of models learned in the current

state and the initial state of the jth class computed over their training sets.

The four components can be combined together, where first init is applied, followed by L2
normalization, and finally, the state mean calibration mc. These methods are mostly interesting
for IL without memory because they do not require the use of a past exemplars memory.

In addition we propose :

— FTth, inspired by imbalanced learning [21], it implements fine tuning followed by thresh-
old calibration (also known as threshold moving or post scaling). Thresholding adjusts
the decision threshold of the model by adding a calibration layer at the end of the model
during inference to compensate the prediction bias in favor of new classes:

pjt
′ = pjt ×

|Xt ∪ K|
|Xj

t |
(3.7)

where K is the bounded past classes’ memory, |Xj
t | is the number of training examples

for the jth class in the state St, and |X l
t ∪ K| is the total number of training examples in

state St. The memory K is needed to rectify past classes’ scores.

Fixed-Representation based IL algorithms

Fixed-Representation (FR) [128] exploits the initial model M1 trained on the classes of
S1 and freezes all its layers except the classification one in later incremental states. The frozen
model is a limitation but also an advantage in that it allows the reuse of initial classifier layers,
learned with all images throughout the entire incremental process. Unfortunately, the reuse
of initial layers is not done in [128] and results are suboptimal. The method does not need a
bounded memory for the update.

DeeSIL (Section 3.2) is a variant of FR in which the classification layer of DNNs is replaced
by linear SVMs. DeeSIL is a straightforward application of a transfer learning [71, 125] scheme
in an incremental context. The use of external classifiers is proposed because they are faster to
optimize than an end-to-end FR.

REMIND [48] defines the model as Mt ≡ F (G(·)) where G is the fixed upper part of
the network (the first 15 convolutional and 3 downsampling layers) and F (·) is the remaining
layers (2 convolutional and 1 fully connected). Only F (·) is trained across incremental states
in a streaming manner, while G(·) serves as a feature extractor. REMIND relies on a Product
Quantizer (PQ) [62] algorithm to store intermediate representations of images as compressed
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LwF init
∗

(Sec.4.2)
iCaRL

[128]
LUCIR

[53]
FT

(Sec.3.3)
FTNEM

(Sec.3.3-3.4)
FTBAL

(Sec.3.4)
BiC

[174]
ScaIL

(Sec.3.4)
IL2M

(Sec.3.3)
FT th

[21]
FT init∗

(Sec.4.2)
FR

[128]
DeeSIL

(Sec.3.2)
REMIND

[48]

(1) X X X X X X X X X X X × × ×
(2) X X X × × × X × × × × × × ×
(3) X X X × X X X X X X X × × ×
(4) NC C NC NC C C C C C C NC NC NC NC

Table 3.9 – Main characteristics of tested approaches: (1) model update - indicates if the model
is trained for each incremental state; (2) distillation - if this part of the loss is exploited to
control catastrophic forgetting; (3) bias removal - is a separate component which is specifically
dedicated to balancing scores between past and new classes, and (4) memory usage - if this
component is compulsory (C) or not (NC). * refers to all methods built on top of init.

vectors for fast learning. The compact vectors are then reconstructed and replayed for memory
consolidation. Note that compact vectors allow us to save much more past data than with raw
images (for instance, all ILSVRC can fit in the memory when |K| = 20000).

An overview of the tested algorithms and of their characteristics is presented in Table 3.9.
The model update for each incremental state is widely used in existing approaches. Distillation
is also used by a majority of algorithms from literature to counter the effect of catastrophic
forgetting. Bias removal aims at balancing predictions for past and new classes. It is deployed
either as a complement to distillation [24, 128, 174] or to replace it (Sections 3.3 and 3.4).
Memory usage is compulsory for methods that rely heavily on exemplars of past classes. The
dominant approach is based on model updating via fine-tuning to integrate new knowledge [24,
53, 174]. The performance of these algorithms depends heavily on the existence of a bounded
memory of the past.

3.5.3 Experiments

— Datasets (Appendix B) - ILSVRC [135], LANDMARKS [108], VGGFACE2 [22], and
CIFAR-100 [74].

— Memory sizes - We fix the number of states T = 10 and run experiments with a memory
which amounts to approximately 2%, 1%, 0.5% of the full training sets. Memory sizes
are thus |K| = {20000, 10000, 5000} for ILSVRC, |K| = {10000, 5000, 2500} for VG-
GFACE2, |K| = {8000, 4000, 2000} for LANDMARKS and |K| = {1000, 500, 250} for
CIFAR-100.

— Incremental states - We fix the memory to |K| = 0.5% and test with T = {20, 50} in
addition to T = 10.
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— Exemplar selection - with and without herding (Subsection 3.4.3).

— Evaluation measures - Top-5 accuracy [135] and GIL measure (Subsection 3.4.4).

3.5.4 Results and discussion

States T = 10 |K| = 0.5%
GILDataset ILSVRC VGGFACE2 LANDMARKS CIFAR-100 ILSVRC VGGFACE2 LANDMARKS CIFAR-100

|K| 2% 1% 0.5% 2% 1% 0.5% 2% 1% 0.5% 2% 1% 0.5% T =20 T =50 T =20 T =50 T =20 T =50 T =20 T =50

iCaRL 79.3 76.5 71.0 96.0 95.3 93.9 95.1 94.0 91.8 66.5 56.1 47.9 55.9 45.0 88.5 78.2 86.8 82.4 35.5 35.4 -7.36
LUCIRCNN 79.9 76.4 72.6 97.2 96.9 96.5 97.2 96.6 96.1 79.8 75.4 69.9 63.9 55.3 93.5 88.3 93.7 90.5 53.5 47.9 -4.13
LUCIRNEM 80.5 80.0 79.4 96.2 96.0 95.7 95.4 94.9 94.4 82.6 80.8 78.8 73.6 66.3 92.7 87.9 91.9 89.8 69.0 63.0 -4.33

FT 79.4 74.4 65.9 96.4 94.5 91.3 96.6 94.7 91.4 82.4 77.9 70.7 69.4 64.3 91.6 89.2 90.9 89.0 64.3 54.8 -5.19
FTNEM 81.4 79.0 75.0 96.4 95.4 94.0 96.1 94.6 92.6 85.1 81.7 76.0 76.5 69.0 94.0 91.1 91.9 89.9 68.8 55.9 -4.28
FTBAL 84.0 80.9 76.5 97.0 95.7 92.4 96.9 95.3 92.2 80.0 74.0 69.0 75.9 67.1 92.3 89.5 91.2 88.9 62.9 54.2 -4.70
BiC 85.5 82.8 79.7 97.3 96.6 95.7 97.9 97.3 96.6 88.8 87.6 83.5 74.6 63.9 92.3 85.3 94.7 90.5 50.5 19.6 -4.03
ScaIL 82.0 79.8 76.6 96.5 95.8 95.2 97.3 96.0 94.0 85.6 83.2 79.1 76.6 70.9 95.0 92.4 92.6 90.4 69.8 51.0 -3.70
IL2M 80.9 78.1 73.9 96.7 95.4 93.4 96.5 94.7 92.5 81.8 77.0 71.2 70.9 60.6 92.5 88.4 90.8 88.1 61.5 51.0 -4.95
FT th 84.3 82.1 78.3 97.2 96.3 94.8 97.2 95.8 94.0 86.4 83.9 79.1 78.6 71.2 94.3 91.6 92.9 90.7 71.4 57.9 -3.62
FT initL2 79.2 76.5 73.0 95.9 95.2 94.6 97.0 95.5 92.7 83.4 80.5 75.2 73.6 67.3 94.6 91.4 91.2 88.5 63.6 44.1 -4.43
FR 76.7 76.6 76.4 91.7 91.5 89.7 93.8 93.5 93.5 79.5 79.4 78.7 69.2 58.2 85.8 75.2 89.3 82.8 62.3 33.5 -7.62

DeeSIL 75.5 75.1 74.3 92.7 92.5 92.2 94.0 93.7 93.2 66.9 65.8 64.2 73.0 58.1 87.2 80.0 90.5 85.1 63.9 44.0 -6.92
REMIND 80.9 80.7 78.2 94.7 93.2 93.0 96.3 95.8 94.7 60.7 60.7 60.7 73.9 65.0 87.4 80.1 92.8 88.6 52.8 46.4 -6.02

Joint 92.3 99.2 99.1 91.2 92.3 99.2 99.1 91.2 -

Table 3.10 – Top-5 average incremental accuracy (%) for IL methods with herding using differ-
ent values of K and T . Best results are in bold.

Table 3.10 presents the performance of all algorithms tested in all experimental configura-
tions when using herding for exemplar selection. Both the number of incremental states T and
the bounded memory size |K| have a strong influence on results. The easiest configurations for
all visual tasks are those including a large memory (|K| = 2%) and a small number of states
(T = 10). Inversely, the most difficult configuration combines a low memory (|K| = 0.5%)
and a large number of states (T = 50). This finding is intuitive insofar more exemplars for past
classes enhance the quality of the replay for them, and a larger number of states makes IL more
prone to catastrophic forgetting. However, the performance drop is more marked for the ob-
ject recognition tasks (ILSVRC and CIFAR-100) compared to faces and landmarks recognition
(VGGFACE2 and LANDMARKS). For instance, with T = 10, the accuracy on ILSVRC drop
for BiC is of 5.8 points when moving from |K| = 2% to |K| = 0.5% while the corresponding
drop for VGGFACE2 is only of 1.6 points and the one for LANDMARKS is only of 1.3 points.
The latter two tasks are simpler, and a smaller amount of exemplars can thus represent past
classes.

The increase of T , the total number of states, also has a detrimental effect on performance.
For fine-tuning-based methods, the performance drop is explained by the fact that a larger num-
ber of retraining steps causes more information loss, and the effect of catastrophic forgetting is
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increased. Also important, for methods like BiC, which need a validation set, the size of the
latter becomes insufficient when T increases. This insufficiency is clearly illustrated by BiC
results for |K| = 0.5% and T = 50. In this configuration, BiC performance drops more signif-
icantly than that of competing methods. The loss is most striking for CIFAR-100, the smallest
of all datasets tested, where a performance of only 19.6% is obtained compared to 50.5% for
|K| = 0.5% and T = 20. For fixed-representation methods, larger values of T decrease perfor-
mance because the size of the first non-incremental state becomes smaller. Consequently, the
fixed representation obtained from this state has lower generalization power and is less trans-
ferable to later states.

None of the methods is best in all configurations tested. On aggregate, the best results are
obtained with FT th, with a GIL = −3.62 points loss compared to Joint, the classical learning
upper-bound. The other methods with strong performance were all proposed recently: ScaIL
(Section 3.4) (GIL = −3.7), BiC [174] (GIL = −4.03) and LUCIRCNN [53] (GIL = −4.13).
The analysis of individual configurations shows that BiC has good performance in many of
them. This method is best or second-best for the largest memory tested (|K| = 2%) and the
smallest number of incremental states (T = 10). However, its performance drops faster for the
other values of |K| and T . This is explained by its dependency on a validation set whose size
becomes insufficient when |K| is low, and T is high.

The two LUCIR variants have similar overall performance, with LUCIRCNN being glob-
ally better than LUCIRNEM . This result confirms the original findings reported in [53]. The
iCaRL implementation from the same paper [53] has significantly lower performance than the
two versions of LUCIR. The positive influence of inter-class separation and cosine normaliza-
tion introduced in addition to standard knowledge distillation is thus confirmed.

Vanilla FT has lower performance than more recent methods but still much better than
iCaRL, contrary to the comparison presented in [128]. However, the original comparison in
that paper was biased since iCaRL used memory while their version of FT was implemented
without memory. All bias reduction methods applied to FT are beneficial, with FT th being the
best one followed closely by ScaIL. FTNEM , which exploits the external classifier from [128]
also has interesting performance and outperforms FTBAL and IL2M . The lower performance
of the last two methods is an effect of the fact that they are the most sensitive to memory
reduction (|K| = 0.5%) and the growth of the number of states (T = 50).

FR and DeeSIL, the fixed-representation based methods, behave worse than most FT -
based approaches, with the only exception being that DeeSIL is globally better than iCaRL.
However, it is interesting to note that FR andDeeSIL have a low dependency on memory size,
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and their performance becomes competitive for |K| = 0.5%. In this latter setting, fine-tuning-
based methods suffer more from catastrophic forgetting since memory becomes insufficient for
an efficient replay of past classes. Globally, DeeSIL has a better behavior than FR, especially
for large-scale datasets. This confirms that the optimization of an external classifier is easier
than that of the classification layer of a deep model. REMIND performs better than FR and
DeeSIL for large datasets and has a better global score (GIL = −6.02 VS. GIL = −7.62 and
GIL = −6.92 respectively). However, its performance drops significantly compared toDeeSIL
when the number of states is increased from T = 10 to T = 20 and T = 50.

For ILSVRC, REMIND clearly outperforms many FT-based approaches such as iCaRL,
LUCIR, IL2M and FT variants except FT th and FTBAL. Streaming-based approaches like
REMIND have the advantage to run much faster than class-incremental-based approaches
since they revisit each training example only once. However, the computational cost ofDeeSIL
is still comparable to that of REMIND since the SVMs training is fast. Equally important,
REMIND allows immediate evaluation since it learns the dataset images one by one. It is still
usable in class incremental context since we can evaluate the model at the end of all training
samples of each incremental state.

Role of exemplar selection

States T = 10 |K| = 0.5%
GILDataset ILSVRC VGGFACE2 LANDMARKS CIFAR-100 ILSVRC VGGFACE2 LANDMARKS CIFAR-100

|K| 2% 1% 0.5% 2% 1% 0.5% 2% 1% 0.5% 2% 1% 0.5% T =20 T =50 T =20 T =50 T =20 T =50 T =20 T =50

iCaRL 77.9 73.0 65.3 95.3 93.8 91.1 93.9 91.4 87.4 64.5 53.4 43.9 51.3 40.9 84.3 73.2 81.9 76.4 32.6 33.4 -9.51
LUCIRCNN 79.8 75.9 72.2 97.3 97.0 96.6 97.1 96.4 96.0 78.6 73.9 67.5 62.4 52.9 93.5 87.8 93.2 89.2 50.4 44.3 -4.36

FT 77.0 70.1 60.0 96.0 94.1 90.7 95.8 93.2 89.1 80.0 73.7 63.3 64.5 59.2 90.8 86.5 87.8 85.5 59.9 49.4 -6.40
BiC 85.0 82.4 78.6 97.3 96.8 96.1 97.8 97.2 96.4 88.2 86.5 82.6 72.1 59.9 92.0 82.9 93.8 88.1 54.2 18.1 -4.42
ScaIL 81.0 78.2 75.1 96.4 95.6 94.5 96.9 95.3 92.7 84.6 81.1 74.9 73.9 68.3 94.5 90.5 90.7 88.2 67.9 47.7 -4.41
IL2M 78.3 75.2 71.2 96.2 94.9 92.2 95.8 93.6 90.1 79.0 73.9 64.7 66.1 55.6 91.1 85.3 87.6 84.3 58.1 46.3 -6.22
FT th 82.0 78.6 74.1 96.7 95.6 93.4 96.6 94.7 91.9 84.2 79.9 72.7 73.8 66.4 92.9 88.8 90.0 87.3 67.1 52.7 -4.85
FR 74.4 74.3 74.3 83.3 83.3 83.2 93.1 93.1 92.6 78.6 78.6 78.0 66.9 54.4 76.2 49.5 84.4 71.8 58.8 28.8 -12.41

DeeSIL 74.5 74.3 74.2 92.6 92.5 92.2 93.9 93.6 92.9 66.5 65.2 63.7 69.0 58.0 87.2 78.9 90.6 84.8 63.4 42.5 -7.09

Joint 92.3 99.2 99.1 91.2 92.3 99.2 99.1 91.2 -

Table 3.11 – Top-5 average incremental accuracy (%) for the main methods with random selec-
tion of exemplars for different values of K and T . Best results are in bold.

As we mentioned, there is an ongoing debate concerning the effectiveness of herding-based
versus random exemplar selection in IL [101, 24, 89]. We compare the two selection methods by
providing results with random selection for the main algorithms evaluated here in Table 3.11.
The obtained results indicate that herding has a positive effect on performance for most of
the algorithms, albeit with a variable difference with respect to random selection. The best
results in Table 3.11 are obtained with LUCIRCNN , ScaIL and BiC which have very close
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GIL performance. Among fine-tuning-based methods, LUCIRCNN and BiC are the methods
that are least affected by the switch from herding to random exemplar selection. Both of these
methods implement an end-to-end IL approach. iCaRL has a more significant performance
drop because it makes use of a NEM external classifier. This is a consequence of the fact that
the classifiers are computed directly on the randomly selected exemplars.

Vanilla FT is more affected by the use of random selection than LUCIRCNN and BiC.
The use of distillation for past data partly compensates for a poorer class representation with
random exemplars. Since vanilla FT has lower performance, algorithms that build on it are
also negatively affected. Among them, ScaIL is the least affected because it exploits the initial
classifiers of past classes. FT th performance falls behind that ofLUCIRCNN , ScaIL, andBiC
with random exemplar selection because exemplars have a more prominent role for learning past
classes’ representations. Thresholding with prior class probabilities is less efficient on poorer
past class models.

The use of random selection has a small effect on FR and DeeSIL because the exemplars
are only used as negatives when new classifiers are trained. Their presence has a positive ef-
fect in that it allows slightly better separation between new and past classes across IL states.
According to the authors of REMIND, many herding strategies were deployed based on dis-
tance from current example, number of times a sample has been replayed, and the time since it
was last replayed, but all of the tested methods performed nearly the same as random selection,
with higher computational time.

Role of knowledge distillation

In [49], authors hypothesize that distillation is useful when the teacher model is trained
with a large and balanced dataset. This is not the case in IL due to the fact that the dataset
progressively includes knowledge about more classes and that there is an imbalance between
past and new classes. In spite of this observation, knowledge distillation is commonly used
to tackle catastrophic forgetting [24, 49, 61, 68, 116, 127, 193]. Its use in IL with memory
was encouraged by the experimental results presented in the influential iCaRL paper [127].
There, the original comparison between FT and iCaRL was not fair since the first method
is implemented without memory, while the second exploits a memory of the past. The results
reported in Table 3.10 for vanilla FT and methods built on top of it challenge the assumption
that distillation loss Ld is necessary in IL with memory. These experiments show that FT is
globally better since the GIL score is over 2 points smaller than that of iCaRL. iCaRL is
more effective for ILSVRC and VGGFACE2 datasets only for a small number of incremental
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states (T = 10) and the smallest memory (|K| = {1%, 0.5%}). FTNEM is a version of iCaRL
without distillation. The results from Table 3.10 show that the use of the NEM classification
layer further improves performance compared to vanilla fine-tuning. A detailed study of results
without memory is presented in Section 4.4 of the next Chapter.

Additional experiment

IL Method FT FT th iCaRL BiC LUCIRCNN LUCIRNCM TOPIC-AL TOPIC-AL-MML

Random 23.0 32.1 48.6 49.5 55.2 61.5
49.6 49.5

Herding 27.7 38.5 51.6 52.5 55.6 62.6

Table 3.12 – Top-1 average incremental accuracy for IL methods for IMAGENET-100 with 60
initial classes and 8 incremental states containing each 5 classes (T = 9, P1 = 60, Pt∈[2,9] = 5).
The best result is in bold.

We present a supplementary experiment that compares the performance of a very recent
Neural Gas (NG) based approach to that of other methods. TOpology-Preserving knowledge

InCrementer [162] relies on the NG network to preserve the feature space topology using a
Hebbian learning [98]. Two variants of TOPIC are tested: (1) TOPIC-AL - uses an Anchor

Loss to stabilize the NG network in order to preserve past knowledge and (2) TOPIC-AL-MML

- uses an Anchor Loss and also a Min-Max Loss to control the network growth while adapt-
ing it to new knowledge. They are compared to FT , FT th, iCaRL, BiC, LUCIRCNN , and
LUCIRNCM . Note that we use a single dataset because the authors of [162] did not provide
their complete code and, while we tried to reproduce their results independently, that was not
possible. Following [162], we use IMAGENET-100 [32], a subset of 100 classes extracted from
the ILSVRC dataset, where each class contains 500 training images and 100 test images. To start
with a good data representation, the first modelM1 is trained on P1 = 60 initial classes. The
remaining 40 classes are divided in 8 incremental states containing each Pt = 5 new classes.
The past classes’ memory is set to |Kt>1| = 400 + 4× (Nt−P1), where 400 images are divided
equally between the first state classes, and 4 images per class are used for the classes that do
not belong to the first state.

Table 3.12 provides top-1 accuracy of classical class IL approaches FT , FT th, iCaRL,
LUCIR andBiC, and also results of TOPIC, the NG-based incremental learner, for IMAGENET-
100. Results indicate that LUCIRNCM is the best approach, followed by LUCIRCNN , BiC,
iCaRL, TOPIC, FT th and FT . The two variants of TOPIC provide very similar perfor-
mances with TOPIC − AL being marginally better. These results are different from those
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reported in [162], where TOPIC was found to have better performance. This difference is
probably partly explained by method parametrization choices and partly because herding was
not exploited for LUCIR, BiC and iCaRL. We used the original parameters for the methods
compared to TOPIC in Table 3.12. The use of herding is beneficial for all methods compared
to TOPIC, with important impact for FT th, iCaRL and BiC and lower impact for LUCIR
variants. TOPIC is not affected by the use of herding since this selection is made by the NG
component. Globally, the results show that, while interesting, the recent adaptation of neural
gas approaches to class IL lags well behind the best methods tested in this chapter.

3.5.5 Conclusion

We conducted extensive experiments on recently proposed algorithms. The evaluation con-
firms that no algorithm is best in all configurations. When a memory is allowed, the best global
result is obtained when IL is cast as a kind of imbalanced learning. This type of approach im-
plements a vanilla FT backbone followed by a bias rectification layer. It is especially useful
in the most challenging conditions (low memory and many IL states). If enough memory is
available and the number of IL states is low, distillation-based approaches become competitive.
The choice of the method will thus depend on the computation and storage capacities but also
on the expected characteristics of the data stream, which needs to be processed. For fairness,
we evaluated fixed-representation-based and fine-tuning-based methods with the same initial
representation. If a larger pool of classes is available at the beginning of the process, the per-
formance of fixed representations will be boosted because the initial representation generalizes
better. However, fixed-representations work well only if the task does not change over time,
as it is the case in the evaluated scenarios presented in [9]. The evaluation is done with four
different datasets dedicated to distinct visual tasks. This setting can be reused and enriched to
ensure robust testing of class IL algorithms. The comparison presented here shows that recently
proposed approaches reduce the performance gap between non-incremental and incremental
learning processes. However, it highlights a series of open problems which could be investi-
gated in the future. First, handling class IL as an imbalanced learning problem provides very
interesting results with [174] or without [13, 140] the use of a distillation component. Here, we
introduced a competitive method where classification bias in favor of new classes is reduced
by using prior class probabilities [21]. It would be interesting to investigate more sophisticated
bias reduction schemes. Second, a more in-depth investigation of why distillation fails to work
for large-scale datasets is needed. Finally, the results obtained with the herding-based selection
of exemplars are better than a random selection for all tested methods.
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3.6 Active Class Incremental Learning for Imbalanced Datasets

3.6.1 Introduction

Most existing IL algorithms assume that new data are readily labeled at the start of each
incremental step. This assumption is strong since data labeling is a time-consuming process,
even with the availability of crowdsourcing platforms. Two notable exceptions are presented in
[8] and [120] where the authors introduce algorithms for self-supervised face recognition. While
interesting, these works are applicable only to a specific task, and both exploit pretrained models
to start the process. Also, minimal supervision is needed to associate a semantic meaning (i.e.,
person names) to the discovered identities. A second hypothesis made in incremental learning is
that datasets are balanced or nearly so. In practice, imbalance occurs in a wide majority of real-
life datasets but also in research datasets constructed in controlled conditions. Public datasets
such as ImageNet [32], Open Images [72] or VGGFace2 [22] are all imbalanced. However,
most research works related to ImageNet report results with the ILSVRC subset [135] which is
nearly balanced.

These two hypotheses limit the practical usability of existing IL algorithms. We replace
them with two weaker assumptions to make the incremental learning scenario more realistic.
First, full supervision of newly streamed data is replaced by the possibility to annotate only a
small subset of these data. Second, no prior assumption is made regarding the balanced distri-
bution of new data in classes. We combine active and imbalanced learning methods to tackle
the challenges related to the resulting IL scenario.

The main contribution of this work is to adapt the sample acquisition process, which is the
core component of active learning (AL) methods, to incremental learning over potentially im-
balanced datasets. A two phases procedure is devised to replace the classical acquisition process,
which uses a single acquisition function. A standard function is first applied to a subset of the
active learning budget in order to learn an updated model that includes a suboptimal represen-
tation of new data. In the second phase, a balancing-driven acquisition function is used to favor
samples that might be associated with minority classes (i.e., those having a low number of as-
sociated samples). The data distribution in classes is updated after each sample labeling to keep
it up-to-date. Two balancing-driven acquisition functions which exploit the data distribution in
the embedding space of the IL model are introduced here. The first consists of a modification of
the core-set algorithm [145] to restrain the search for new samples to data points that are closer
to minority classes than to majority ones. The second function prioritizes samples that are close
to the poorest minority classes (i.e., those represented by the minimum number of samples) and

99



Partie , Chapter 3 – Class-Incremental Learning with memory

far from any of the majority classes. The balancing-driven acquisition phase is repeated several
times, and new samples are successively added to the training set in order to enable an iterative
active learning process [147].

A secondary contribution is the introduction ofFT th (previously defined in Subsection 3.5.2).
It is a backbone training procedure that considers incremental learning with memory as an in-
stance of imbalanced learning. The widely used training with knowledge distillation [24, 53, 61,
128, 193] is consequently replaced by a simpler procedure which aims to reduce the prediction
bias towards majority classes during inference [21]. Following the conclusions of this last work,
initial predictions are rectified by using the prior class probabilities from the training set.

The proposed balancing-driven sample acquisition process is compared with a standard ac-
quisition process, and results indicate that it has a positive effect for imbalanced datasets.

3.6.2 Related work

While we already discussed existing works from class-incremental learning in Chapter 2, we
discuss here imbalanced and active learning areas and focus on those which are most closely
related to our contribution.

Classical active learning is thoroughly reviewed in [147]. The first group of approaches
exploits informativeness to select items for uncertain regions in the classification space. Uncer-
tainty is often estimated with measures such as entropy [148], least confidence first [31] or min
margin among top predictions [139]. Another group of approaches leverages sample represen-
tativeness computed in the geometric space defined by a feature extractor. Information density
[147] was an early implementation of such an approach. Core-set, which rely on the classical
K-centers algorithm to discover an optimal subset of the unlabeled dataset, was introduced in
[145].

Recent active learning works build on the use of deep learning. The labeling effort is exam-
ined in [55] to progressively prune labels as labeling advances. An algorithm that learns a loss
function specifically for AL was proposed in [180]. While very interesting, such an approach
is difficult to exploit in incremental learning since the main challenge here is to counter data
imbalance between new and past classes or among new classes. Another line of works proposes
to exploit multiple network states to improve the AL process. Monte Carlo Dropout [41] uses
softmax prediction from a model with random dropout masks. In [18], an ensemble approach
that combines multiple snapshots of the same training process is introduced. These methods are
not usable in our scenario because they increase the number of parameters due to the use of
multiple models. We retain the use of the same deep model through incremental states to pro-
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vide feature vectors and propose a stronger role for them during the sample acquisition process.
Recently, [3] proposed a method which focuses on single-stage AL for imbalanced datasets.
They exploit a pretrained feature extractor and annotate the unlabeled samples so as to favor
minority classes.

Ideally, incremental updates should be done in a fully unsupervised manner [178] in order to
remove the need for manual labeling. However, unsupervised algorithms are not mature enough
to capture dataset semantics with the same degree of refinement and performance as their super-
vised or semi-supervised counterparts. Closest to our work are the self-supervision approaches
designed for incremental face recognition [8, 120]. They are tightly related to unsupervised
learning since no manual labeling is needed, except for naming the person. Compared to self-
supervision, our approach requires manual labeling for a part of new data and has a higher cost.
However, it can be applied to any class IL problem and not only to specific tasks such as face
recognition as it is the case for [8, 120].

A comprehensive review [110] groups imbalanced object-detection problems in a taxonomy
depending on their class imbalance, scale imbalance, spatial imbalance, or objective imbalance.
The study shows the increasing interest of the computer vision community in the imbalanced
problems for their usefulness in real-life situations.

3.6.3 Proposed approach

The proposed active learning adaptation to an incremental scenario (Figure 3.13) is moti-
vated by the following observations:

— Existing acquisition functions (AFs) were designed and tested successfully for active
learning (AL) over balanced datasets. However, a wide majority of real-life datasets are
actually imbalanced. Here, no prior assumption is made regarding the imbalanced or bal-
anced character of the unlabeled data which is streamed in IL states. Unlike existing sam-
ple acquisition approaches which exploit a single AF , we propose to split the process
into two phases. The first phase uses a classical AF to-kick off the process. The second
one implements an AF which is explicitly designed to target a balanced representation
of labeled samples among classes.

— In IL, a single deep model can be stored throughout the process. This makes the applica-
tion of recent ensemble methods [18] inapplicable. Following the usual AL pipeline, an
iterative fine tuning of the model is implemented to incorporate labeled samples from the
latest AL iteration.
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Figure 3.13 – Illustration of the proposed training process with one initial state S1, and one in-
cremental state S2. The initial deep modelM1 is trained from scratch on a fully-labeled dataset
X l

1 using Joint (a non-incremental learning). M1 and X l
1 are used to prepare the past class

memory K for the next state using herding (a mechanism that selects the best representative
past class images). State S2 starts with a sample acquisition function AF that takes the unla-
beled set X u

2 and the modelM1 as inputs.AF provides a part of the budget B annotated as X lz

2 .
The modelM1 is then updated with data from X lz

2 ∪ K using FT th (a fine tuning followed by
a threshold calibration). The updated modelMz

2 is again fed into the acquisition function AF
with the rest of unlabeled examples from X u

2 to further annotate a part of the budget B and the
model is updated afterward. This process is repeated Z times until B is exhausted. The model
M2 is then returned with the annotated dataset X l

2 and the memory K is updated by inserting
exemplars of new classes from X l

2 and reducing exemplars of past classes in order to fit its size.
Note that the two blue arrows are applicable only in the first AL iteration (when z = 1). Best
viewed in color.

— A memoryK of past class samples is allowed and, following [174, 53], we model IL as an
instance of imbalanced learning. The distillation component, which is central to most ex-
isting class IL algorithms [24, 61, 128, 174], is removed. Instead, we deal with imbalance
by using a simple but efficient post-processing step that modifies class predictions based
on their prior probabilities in the training set. The choice of this method is motivated by
its superiority in deep imbalanced learning over a large array of other methods [21].

Problem Formulation

We build on the formulation we proposed in Section 2.2, and define some notations related
to active learning:
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— B - the labeling budget available for active learning

— AF - an acquisition function designed to optimize sample selection in active learning

— Z - the number of iterations done during active learning

— X u
t - the unlabeled dataset associated to St

— X l
t - a manually labeled subset of X u

t ,

We assume that all the samples are labeled in the first state. Active learning is deployed using
AF(X u

t ) to obtain X l
t , a labeled subset from X u

t . X l
t data of the Pt new classes are available

but only a bounded exemplar memory K for the Nt−1 past classes is allowed.Mt, the model
associated to the state St is trained over the X l

t ∪ K training dataset. An iterative AL process is
implemented to recognize the set of classes j ∈ [1, Nt]

Active Learning in an Incremental Setting

We discuss the two phases of the adapted active learning process below. Classical sampling
is followed by a phase that exploits the proposed balancing-driven acquisition functions.

Classical Sample Acquisition Phase. At the start of each IL state St, an unlabeled dataset
X u
t is streamed into the system and classical AL acquisition functions are deployed to label X l

t ,
a part of X u

t , for inclusion in the training set. Due to IL constraints, the only model available at
the beginning of St isMt−1, learned for past classes in the previous incremental step. It is used
to extract the embeddings needed to implement acquisition functions. A number of acquisition
functions were proposed to optimize the active learning process [147], with adaptations for deep
learning in [18, 41, 145, 194]. Based on their strong experimental performance [18, 139, 145,
147], four AFs are selected for the initial phase:

— core-set sampling [145] (core hereafter): whose objective is to extract a representative
subset of the unlabeled dataset from the vectorial space defined by the deep embeddings.
The method selects samples with:

xnext = argmax
xu∈Xu

t

{ min
1≤k≤n

∆(f(xu),f(xk))} (3.8)

where: xnext is the next sample to label, xu is an unlabeled sample left, xk is one of the n
samples which were already labeled, f() is the feature vector extracted usingMt−1 and
∆ is the Euclidean distance between two embeddings.
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— random sampling (rand hereafter) : a random selection of images for labeling. While
basic, random selection remains a competitive baseline in active learning.

— entropy sampling [147] (ent hereafter): whose objective is to favor most uncertain sam-
ples as defined by the set of probabilities given by the model.

xnext = argmax
xu∈Xu

t

{−
J∑
j=1

(pjt ∗ log(pjt))} (3.9)

where pjt is the prediction score of xu for the class j and J is the number of detected
classes so far by AL.

— margin sampling [139] (marg hereafter): selects the most uncertain samples based on
their top-2 predictions of the model.

xnext = argmax
xu∈Xu

t

{max(p1
t , .., p

j
t , .., p

J
t )−max2(p1

t , .., p
j
t , .., p

J
t )} (3.10)

where max(·) and max2(·) provide the top-2 predicted probabilities for the sample xu.
This AF favors samples that maximize the difference between their top two predictions.

This acquisition phase is launched once at the beginning of each incremental state to get an
initial labeled subset of the new data. This step is necessary to include the samples for the new
classes in the trained model and initiate the iterative AL process.

Balancing-driven Sample Acquisition Phase. The second acquisition phase tries to label
samples so as to tend toward a balanced distribution among new classes. The distribution of the
number of samples per class is computed after each sample labeling to be kept up-to-date. The
average number of samples per class is used to divide classes into minority and majority ones.
These two sets of classes are noted Cmnrt and Cmajt for incremental state St. Two functions are
proposed to implement the balancing-driven acquisition:

— balanced core-set sampling (b− core hereafter) is a modified version of core presented
in Equation 3.8. b − core acts as a filter that keeps candidate samples for labeling only
if they are closer to a minority class than to any majority class. We write the relative
distance of an unlabeled image w.r.t. its closest minority and majority classes as:

∆ mnr
maj

(xu) = min
cmnr

t ∈Cmnr
t

∆(f(xu),µ(cmnrt ))− min
cmaj

t ∈Cmaj
t

∆(f(xu),µ(cmajt )) (3.11)
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where: xu is an unlabeled sample, cmnrt and cmajt are classes from the minority and ma-
jority sets Cmnrt and Cmajt respectively, f(xu) is the feature vector of xu extracted from
the latest deep model available, µ(cmnrt ) and µ(cmajt ) are the centroids of minority and
majority classes cmnrt and cmajt computed over the embeddings of their labeled samples.

The next sample to label is chosen by using the core-set definition from Equation 3.8 but
after filtering remaining unlabeled samples with Equation 3.11:

xnext = argmax
xu∈Xu

t and ∆ mnr
maj

(xu)<0
{ min

1≤k≤n
∆(f(xu),f(xk))} (3.12)

— poorest class first sampling (poor) is an acquisition function that gives priority to the
class represented by the minimum number of labeled samples associated to it at a given
moment during active learning. If there are several such classes, one of them is selected
randomly. The method translates the hypothesis that samples which are close to a poor
class and far from any majority class should be favored in order to achieve a more bal-
anced distribution. The next candidate for labeling is selected with:

xnext = argmin
xu∈Xu

t

{∆(f(xu),µ(cpoort ))− min
∀cmaj

t ∈Cmaj
t

∆(f(xu),µ(cmajt ))} (3.13)

where cpoort is a minority class from Cmnrt which has the lowest number of samples in the
current labeled subset.

poor is similar in spirit to b − core but has a stronger drive towards balancing because
an individual class with the poorest representation is targeted instead of samples that are
close to any minority class.

In an iterative active learning scenario, the balancing-driven acquisition can be repeated
several time until the AL budget B is exhausted.

Imbalance-driven Incremental Learning

The model update within each incremental state is inspired by a usual iterative AL approach
[147] which includes a classical acquisition phase at the beginning and several balancing-driven
iterations. For a total of Z active learning iterations in each state St, intermediate modelsM1

t ,
..., Mz

t , ..., MZ−1
t are created while annotating X l1

t , ..., X lz

t , ..., X lZ−1
t during the first Z −

1 iterations before obtaining the final Mt. The number of iterations Z and the size of each
iteration can take different values. The choice of a particular setting is made empirically so
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as to: (1) have enough new samples in the initial iteration in order for the new classes to be
trainable in M1

t , i.e., the model Mt in the first iteration, (2) have enough candidates left for
the balancing-driven iterations and (3) do not repeat the fine tuning process too many times to
keep the incremental update timely.Mt−1 is used to extract embeddings if core is used in the
initial AL iteration. Note that while iterative training increases the level of forgetting in IL, it is
needed in AL to update model representation while annotating the images [147].

As we mentioned, we depart from the usual modeling of the IL problem [24, 53, 128, 174]
which exploits knowledge distillation to counter catastrophic forgetting. Following the recent
observation that a simpler fine tuning based approach gives interesting results (Section 3.3), we
use an IL backbone inspired by imbalance learning results presented in [21]. This backbone
is called fine tuning with thresholding (FT th below), also known as threshold moving or post
scaling [21]. Thresholding adjusts the decision threshold of the model. It consists of the addition
of a calibration layer at the end of the model during inference to compensate for the prediction
bias in favor of majority classes. This layer rectifies the class prediction pjt of the jth class in
the state St as already explained in Subsection 3.5.2 (Equation 3.7).

FT th boosts the scores of classes with a lower number of associated samples. The method
has the interesting property of dealing with the imbalance in IL in a uniform manner. It does
not matter whether imbalance comes from the distribution of newly streamed data or from
the fact that only a bounded memory of past classes is available. This stands in contrast with
knowledge distillation which handles imbalance for past classes but not among new ones. FT th

is competitive against state-of-the-art algorithms. In a classical (i.e. fully supervised) IL setting,
it has 59.59 top-1 accuracy for CIFAR-100, compared to iCaRL [128] (57.35) and LUCIR
[53] (55.36). More results are provided in Subsection 3.5.4 (top-5) and also in the next section
(top-1).

3.6.4 Experiments

Datasets

Experiments are run with four public datasets, out of which three are imbalanced and one
is balanced. We provide the coefficient of variation cv = σ

µ
, with σ the standard deviation and

µ the mean of the distribution of samples per class. cv provides information about the degree
of imbalance associated with each dataset. The larger this value is, the more imbalanced the
dataset will be.

The used datasets are: IMAGENET-100 (cv = 0.7523), FOOD-100 (cv = 0.7940), FACES-
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100 (cv = 0.7216), and CIFAR-100 (cv = 0). More details are in Appendix B.

Incremental Learning Setting

We run the experiments with T = 10 states for each dataset. This setting is classically used
in class incremental learning [24, 128]. A total of |K| images of past classes are kept at any time
during incremental learning.K approximates 2% of the full training sets. Memory sizes are thus
|K| = 1000 for IMAGENET-100 and CIFAR-100, |K| = 465 for FACES-100 and |K| = 450
for FOOD-100. At the end of each incremental state, memory is updated by inserting exemplars
of new classes and reducing exemplars of past classes in order to fit its maximum size. Note that
since K is bounded and the number of past classes grows, the imbalance in favor of new classes
grows for later incremental states and the problem becomes more challenging. The exemplars
are chosen using the herding mechanism introduced in [128]. The herding procedure consists
in choosing the set of images that best approximates the real mean of the class.

Active Learning Process

Three active learning budgets are tested covering B = {20%, 10%, 5%} of the unlabeled
dataset X u

t streamed in state St. These different values are used to get a comprehensive view
of the behavior of each configuration. Active learning is implemented with a usual iterative
approach [145, 147] including Z = 4 iterations, 40% of B are used for classical acquisition
and three times 20% of B for balancing-driven acquisition (values were experimentally chosen).
Classical and balancing-driven acquisition phases are independent of one another and we test all
their combinations. For completeness, we include results with a baseline in which both phases
are implemented with random sampling. Note that the proposed acquisition functions are non-
deterministic and experiments are run five times for each configuration in order to have a robust
estimation of its performance. To improve comparability of configurations which use the same
initial AF , the same initial models are used for all subsequent balancing-driven AFs.

Upper Bound Methods

In addition to the active learning configurations, we present results with:

— sIL - usual supervised incremental learning in which all samples are labeled (equivalent
to B = 100%).

— Joint - classical non-incremental learning in which all samples are provided at once.
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For comparability, sIL and Joint are both trained using threshold calibration. sIL is an incre-
mental upper bound for active learning configurations since it is fully supervised. Joint is an
upper bound for sIL since all the data are labeled and available at once. These upper bounds
are useful insofar they provide information about the performance gap due to partial labeling of
streamed data.

3.6.5 Results and discussion

FTth in supervised mode - Instead of handling catastrophic forgetting [102] as previous
works did [24, 53, 127, 174], we address IL with bounded past memory as an imbalanced learn-
ing problem. We use threshold calibration [21] to rectify scores in order to give more chances to
minority classes to be selected during inference. The comparison to recent IL methods in super-
vised mode from Table 3.13 indicates that FT th is competitive. It clearly outperforms iCaRL
[128] and IL2M (Section 3.3) and is better than LUCIR [53] for three datasets out of four.
We also provide the results of vanilla fine tuning before threshold calibration to underline the
usefulness of thresholding. It has a positive effect for all four datasets, a finding which validates
its usefulness in our scenario.

Dataset FT FT th [21] LUCIR [53] iCaRL [128] IL2M (Section 3.3)

IMAGENET-100 54.80 61.42 60.77 52.40 57.68

FACES-100 69.11 73.26 78.44 60.48 70.33

FOOD-100 30.21 34.79 25.70 21.99 32.20

CIFAR-100 50.98 59.59 55.36 57.35 54.24

Table 3.13 – Top-1 average supervised IL accuracy (%). Best results are in bold.

Active Learning - The experimental results obtained with FT th for the proposed active incre-
mental learning scenario are presented in Table 3.14. The comparison of classical AFs (rand
-rand and core−core in Table 3.14) indicates that random sampling outperforms the core−set
sampling in a majority of cases. This result is at odds with the one reported in [145] but is in
line with the findings of [18, 41] that random sampling in AL is a strong baseline and is actually
better than the recent core-set method from [136]. The authors of this last paper also report that
random sampling has better performance for lower active learning budgets, which are studied
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3.6. Active Class Incremental Learning for Imbalanced Datasets

Dataset B
rand core ent marg
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±0.26

52.09
±0.41

53.55
±1.21

52.22
±1.13

42.15
±0.43

51.91
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±0.56

46.01
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±0.85

46.45
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45.64
±1.56
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00 20%
28.67
±0.42
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27.56
±0.24
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10%
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24.17
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±0.63

23.46
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±0.64
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±0.81
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±0.68
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±0.46
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±0.58
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18.66
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±0.82

CIF
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00 20%
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±0.33

48.46
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Table 3.14 – Top-1 average accuracy (%). Following [24], accuracy is averaged only for incre-
mental states (i.e. excluding the initial, non-incremental state). Results are averaged over 5 runs
for all AL configurations. sIL is the result obtained in a fully supervised IL scenario. Joint is
the non-incremental upper-bound performance obtained with all data available. Best results for
each active learning configuration (row) are in bold.

here. Consequently, improving over random sampling for imbalanced datasets is an interesting
result.

The results from Table 3.14 indicate that the balancing-driven acquisition phase is useful
for all three imbalanced datasets and active learning budgets tested. The gains for IMAGENET-
100 and FACES-100 are usually between 1 and 2 points compared to the classical acquisition
processes implemented here (rand - rand or core - core). The gains are low for FOOD-100,
the third imbalanced dataset tested. This is probably due to the fact that FOOD-100 is a more
difficult task, as shown by sIL. More labeled samples per class would probably be needed for
efficient training.

poor strategy is better than b − core for IMAGENET-100, while more mixed results are
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obtained for FACES-100 and FOOD-100 datasets. Interestingly, the best results are always ob-
tained on top of a rand initial sampling, even when core-core baseline is better than a rand-
rand one, as it is the case for FACES-100 with B = 20% and B = 5%.

When applied without balancing, ent and marg have poorer performance compared to that
of rand and core. Balancing significantly improves results for both of uncertainty-based meth-
ods, but their overall performance still lags behind that of random followed by balancing. This
reinforces the finding that a random selection is a competitive acquisition function in our active
incremental learning over imbalanced datasets scenario.

The performance drop between active learning configurations and fully supervised IL natu-
rally grows as B is reduced. The drop between sIL and the best AL configuration is of 3, 6 and
5 points for B = 20% for IMAGENET-100, FACES-100, and FOOD-100 respectively. When
the AL budget is reduced to only 5% of new data, the corresponding performance losses go
to 12.5, 23 and 14 points. Even when as little as 5% of the new data is annotated, suboptimal
models are trainable and usable if the IL system needs to be operational quickly.

While the focus is on imbalanced datasets, we also report results with CIFAR-100, a per-
fectly balanced dataset for completeness. In this case, the balancing-driven sampling has a
slightly negative effect when applied over rand and a slightly positive effect over core. It is,
however, notable that core lags consistently behind rand for CIFAR-100. The best strategy for
all B sizes is rand-rand, with rand - poor being a close second best configuration.

The gap between active IL and supervised IL is still notable, especially for smaller AL bud-
gets. In practice, active IL is useful when the system needs to be operational quickly after new
data are streamed but at the expense of suboptimal performance. If a longer delay is permitted, it
is naturally preferable to annotate all new data before updating the incremental model. The gap
is even higher between incremental and classical learning, even though FT th has competitive
performance compared to existing IL algorithms. Globally, our results provide further confir-
mation that the use of incremental learning vs. classical learning should be weighted depending
on the time, memory and/or computation constraints associated to the AI system.

3.6.6 Conclusion

We proposed a more realistic incremental learning scenario that does not assume that streamed
data are readily annotated and that they are evenly distributed among classes. An adaptation of
the active learning sampling process is proposed in order to obtain a more balanced labeled sub-
set. This adaptation has a positive effect for imbalanced datasets and a slightly negative effect
for the balanced dataset evaluated here. Both proposed acquisition functions improve results
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3.7. General Conclusion

compared to a classical acquisition process. Also interesting, experiments show that the ran-
dom baseline outperforms the core−set function. The strong performance of random sampling
indicates that this method should be consistently used as a baseline for future works in active
incremental learning. As a secondary contribution, we introduce FT th, an IL backbone that
provides competitive results when compared to state-of-the-art methods.

The proposed approach brings the IL scenario closer to practical needs. It reduces the time
needed for an IL system to become operational upon receiving new data. The obtained results
are encouraging but further investigation is needed to reduce the gap between active and su-
pervised IL. For instance: (1) use semi-supervised learning methods to automatically expand
the labeled dataset and improve overall performance. While appealing, not all semi-supervised
methods prove efficient in practice [111] and their usefulness for imbalanced datasets needs to
be studied. (2) complement the proposed balancing-driven acquisition functions with a compo-
nent that pushes the sampling process towards a better coverage of the manifold of each modeled
class. This could be done, for instance, by taking inspiration from the herding mechanism [128]
already used to select past exemplars. (3) render the IL scenario even more realistic by testing
incremental steps of variable size to account for the fact that data might arrive at a variable pace
and considering that newly streamed data might belong both to unseen and past classes.

3.7 General Conclusion

Due to the bounded memory of the past, a prediction bias in favor of new classes is observed
in the classification layer. This bias leads the network to predict testing images as belonging to
new classes, even if it is not necessarily the case. In this chapter, we proposed two methods to
tackle catastrophic [102] forgetting while memory of the past is allowed. Il2M (Section 3.3)
operates at the end of the CNN, by directly rectifying prediction scores of past classes in order
to increase them and make them more comparable to those of new classes. Bias rectification
is based on class statistics that we save in a secondary memory and use later for calibration.
ScaIL (Section 3.4) takes one step backward and handles bias in the weights matrix of the
last fully connected layer. ScaIL performs initial embeddings replay for past classes, in order
to take advantage of their weights in their initial states. A further normalization based on new
class statistics is done to make past and new class weight magnitudes more comparable. Both
ScaIL and Il2M ablate the widely used knowledge distillation [52], and results show that if
at least a few exemplars per past class are allowed, distillation loss hurts performance at large
scale, and simpler methods that handle IL as an imbalanced learning are favorable.
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We conducted an extensive study on a range of popular IL approaches from the state of the
art: (1) those based on fine tuning with distillation loss and/or bias removal layers [128, 24, 174,
53, 189], (2) and those based on fixed representations [48]. Experiments show that no approach
is always better than the others. Depending on the application domain, each method can be
adopted to handle one or many challenges (Section 1.2) related to class IL.

Unfortunately, most existing algorithms make two strong hypotheses that reduce the realism
of the incremental scenario: (1) new data are assumed to be readily annotated when streamed
and (2) tests are run with balanced datasets while most real-life datasets are imbalanced. In
section 3.6, we discard these hypotheses and the resulting challenges are tackled with a combi-
nation of active and imbalanced learning. We introduce sample acquisition functions that tackle
imbalance and are compatible with IL constraints. We also consider IL as an imbalanced learn-
ing problem and propose FT th. This approach increases prediction scores of minority classes
to give them more chances to be selected during inference. Results indicate that the proposed
contributions positively reduce the gap between active and standard IL performance.

In the next chapter, we take a step further and tackle a more difficult scenario of class-
incremental learning, when no memory of the past is allowed.
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CHAPTER 4

CLASS-INCREMENTAL LEARNING

WITHOUT MEMORY

4.1 General Introduction

Artificial agents are often deployed in applications that need to work under strong com-
putational constraints and receive data sequentially. Incremental Learning (IL) algorithms are
deployed to deal with such situations. Examples include (1) exploring robots that receive data
in streams and that have a limited access to a memory or no memory, (2) disease classification
systems that are not allowed to access past data for privacy issues and, (3) tweets analysis where
new data arrives at a fast pace and should be handled in a timely manner.

The most important three characteristics that qualify an IL system to be effective and effi-
cient are the low dependency on memory, the high accuracy on both past and new data, and the
time needed to update the model to incorporate new data.

Figure 4.1 – A toy example of class IL without memory where T = 3.Mt are models, St are
states, Xt are sets of images, ot are raw scores vectors, A is a memoryless class IL algorithm.
Best viewed in color.
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Memoryless class IL is understudied in literature but important in practice when past data
are impossible to store (due to confidentiality issues, for example). In this chapter, we focus on
class IL where no memory of the past is allowed. Figure 4.1, we show a toy example with one
initial state S1 and two incremental states (S2 and S3). In the initial state, a simple training from
scratch is performed to learn the initial set of two classes. At each incremental state, another
two new classes arrive with all their available data. These classes should be learned by the
modelMt without forgetting past classes (learned in previous states). An incremental learning
algorithm A is used to update the modelMt−1 (t > 0) with data of new classes only. Note that
contrarily to the Figure 3.1, there is no memory K to store images from past classes.

The main findings of this chapter are: (1) knowledge distillation is effective when no mem-
ory of the past is allowed (this is not the case at large scale when a bounded memory is allowed),
(2) the use of past class embeddings from their initial states is beneficial to tackle catastrophic
forgetting. Accuracy of current class IL systems without memory is still low as the gap with a
full training (with all class data) is large. More efforts are needed to improve current systems in
real-life scenarios as the one studied in this chapter.

We propose two approaches designed for class IL without memory. The first method is
called SIW (Standardization of Initial Weights). It performs initial weights replay for past
classes, followed by standardizing all class weights and a state-level calibration. The second
method is based on transferring calibration parameters between datasets. The main contributions
of this method are first to enable the use of Bias Correction (BiC) [174] in a scenario without
memory by transferring calibration parameters from reference datasets trained offline to target
datasets. Second, we propose a fine-grained version of BiC that rectifies past classes scores
based on states in which they were encountered with all their data for the first time. We call this
method Adaptive Bias Correction (AdBiC).

Similarly to Chapter 3, we conduct a comprehensive study and highlight the merits and
limitations of a range of class-incremental approaches that do not use a memory of the past.
Experiments show that distillation is beneficial, while fixed representations are the best choice
if the initial model is trained on a sufficiently rich dataset.
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4.2 SIW: Standardization of Initial Weights for Class-Incremental
Learning

4.2.1 Introduction

Based on experiments conduction in Chapter 3, our main hypothesis is that catastrophic
forgetting mainly affects the classification layer of deep models during vanilla fine tuning. With
this in mind, we tackle memoryless class IL and provide an overview of the introduced method
in Figure 4.4. Inspired by ScaIL (Section 3.4), we propose to exploit initial classifier weights
learned with all data of past classes. Initial weights provide a good representation of past classes
but need normalization for use in later IL states because their magnitude varies significantly
across IL states. Preliminary analysis indicates that the magnitude of classifiers tends to decrease
for classes that are learned in later states. We exploit classifier standardization as a way to
normalize initial classifiers. Normalization helps, but the prediction scores also change due to
the variable performance of IL models. Consequently, we use the same state-level calibration
of class predictions as in IL2M (Section 3.3). We evaluate results with four public datasets
and three values for the number of incremental states. Results show that our approach performs
consequently better than competitive baselines for large-scale datasets.

We build on ScaIL and [193] to: exploit information from the initial state of classifiers;
ensure fairness for the predictions associated to past and new classes [53, 174]; use vanilla FT
as a backbone to train deep models [5] . However, our approach differs through the method used
for the normalization of initial classifier weights and the focus is on a large-scale memoryless
IL. Note that many existing methods cannot operate in the absence of memory and become
unusable in our setting. The following ones are usable in memoryless IL and will be used in the
evaluation: LwF [86], the end-to-end version of LUCIR [53], baseline methods that exploit
initial classifiers without bounded memory from Section 3.4.

We hypothesize that it is possible to exploit initial classifier weights, learned when data is
first streamed for each class to mitigate catastrophic forgetting in memoryless IL. CNN predic-
tion scores are obtained from the combination of features provided by the penultimate layer of
the model with classifier weights from the final layer. We analyze these two layers in an IL con-
text to motivate our approach. The ILSVRC dataset with an initial and nine incremental states
is used for both analyses.

In Figure 4.2(a), we present a summarized view of the magnitudes of classifiers for an IL
baseline that exploits vanilla fine tuning. The absolute values of individual classifier dimen-
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(a) (b)

Figure 4.2 – Mean magnitudes of classifier weights for new and past classes in memoryless
incremental learning: (a) left - with vanilla fine tuning affected by catastrophic forgetting and
(b) right - after standardization of initial classifiers. Mean magnitudes are computed only for
incremental states and the first non-incremental state is excluded. Note that the reference state
is the rightmost one in each figure.

sions are aggregated to compute mean magnitudes for new and past classes, respectively. Past
classes have much lower magnitudes because there are no exemplars to be replayed for them in
memoryless IL. Since magnitudes are much higher for new classes, test examples will always
be attributed to one of these classes, even if they belong to the past classes. This observation
provides further support for the previous conclusion that vanilla FT is not directly usable in IL
[24, 128].

The magnitudes of new classes in Figure 4.2(a) vary across incremental states, with a global
tendency toward reduction in later states. A normalization of initial classifiers is thus needed
to ensure fairness if they are replayed across incremental states as proposed here. New clas-
sifiers from previous states of Figure 4.2(a) are aggregated to represent past classes in each
current state of Figure 4.2(b). Normalization makes statistical populations more comparable
and it is obtained by applying standardization [38], a method which is discussed in detail in
Subsection 4.2.2. The standardized classifiers, illustrated in Figure 4.2(b), have comparable
magnitudes and become usable in memoryless IL.

A second important assumption of our approach is that features extracted from the penulti-
mate layer of the current IL model are compatible with initial classifiers from previous states.
This assumption holds if the current features keep a trace of what was learned before. We de-
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sign a simple experiment that assesses the degree of similarity between features of the same
images extracted in different incremental states. Features are extracted for test images of the
initial non-incremental state using models learned in each incremental state. Features of test
images extracted in the 9th and last incremental states are used as a reference to illustrate the
use of initial classifiers from previous states with its features. Cosine similarity between them
and the features of the same images from each previous state is computed. The mean feature
similarities between the last state and previous ones are presented in Figure 4.3.

To better situate similarities for memoryless IL (Figure 4.3(a)), we also present statistics
for IL with bounded memory, including 1% and 2% of the dataset (Figure 4.3(b) and (c) re-
spectively). We also provide similarities for independent training of incremental states where
no fine tuning is used in Figure 4.3(d). Naturally, this last setting is not a valid IL approach and
is shown only to illustrate a lower bound of feature similarity.

0 1 2 3 4 5 6 7 8 9
Incremental states

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n 
fe

at
ur

e 
sim

ila
rit

y

FT, ILSVRC, T = 10, No memory

(a)

0 1 2 3 4 5 6 7 8 9
Incremental states

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n 
fe

at
ur

e 
sim

ila
rit

y

FT, ILSVRC, T = 10, memory=1%

(b)

0 1 2 3 4 5 6 7 8 9
Incremental states

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n 
fe

at
ur

e 
sim

ila
rit

y

FT, ILSVRC, T = 10, memory=2%

(c)

0 1 2 3 4 5 6 7 8 9
Incremental states

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n 
fe

at
ur

e 
sim

ila
rit

y

Independent, ILSVRC, T = 10

(d)

Figure 4.3 – Mean feature similarities between incremental states for test images of the first
state. Cosine similarities are computed for vanilla fine tuning as follows: (a) without memory,
(b) with bounded memory of 1% of the dataset, (c) with bounded memory of 2%. Subfigure
(d) plots lower-bound similarities for the case when individual states are learned independently,
without fine tuning. The upper bound for similarity is 1 and would be obtained for the model,
which is frozen after the initial state. However, such an approach has no plasticity and cannot
incorporate knowledge related to data streamed during IL. The final incremental state (S10) is
used as a reference to compute similarities with other states. The more distant two states are,
the lower the similarity is likely to be.

The results from Figure 4.3 indicate that mean similarities obtained with fine tuning without
and with memory are significantly higher than those obtained with independent training. This
finding validates the fact that current features learned with vanilla FT keep a trace of what was
learned in previous states. Mean similarities decrease with the distance between the current state
and the initial one because forgetting is higher when more trainings are involved. The use of a
bounded memory in Figure 4.3(b) and (c) provides better similarities compared to memoryless
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IL in Figure 4.3(a). The effect is particularly visible for states such as S9 or S8 which are
close to the reference one and becomes less important for more distant states such as S3 or
S2. Note that features from the current IL state were used successfully with initial classifiers in
ScaIL (Section 3.4) if a bounded memory of the past was allowed. The comparison of feature
similarities indicates that their use with adapted initial classifiers is more challenging without
memory than with a bounded memory but still doable.

4.2.2 Proposed approach

Figure 4.4 – Overview of the proposed method with an initial and two incremental states, and
two classes per state. A deep model Mt is trained for each state St. Each model includes a
feature extractor Ft and a classification layerWt. In memoryless IL, models have access only
to data for new classes and to the previous model for fine tuning (FT ). Note that FT can be
implemented in different ways: with a classical distillation component to counter catastrophic
forgetting [24, 61, 128], with a more sophisticated tackling of forgetting [53] or using vanilla
FT (Sections3.3 and 3.4). Existing end-to-end methods [24, 53] (in blue) perform recognition
using the weights from Wt, the classification layer of the current model which updates past
classifiers. Our approach (in green) is different because it freezes classifiers learned initially
(init) for each class and applies standardization (siw) to make them more comparable.

We propose to replay the initial classifiers of each class in order to mitigate catastrophic
forgetting. Following the notations from Equation 2.3 given in Section 2.2, we write the classi-
fication layer made of initial classifier weights as:

W init
t = {W 1

1 , ..,W
N1
1 ,WN1+1

2 , ..,WN2
2 , ...,W

Nt−2+1
t−1 , ..,W

Nt−1
t−1 ,W

Nt−1+1
t , ..,WNt

t }
(4.1)

118



4.2. SIW: Standardization of Initial Weights for Class-Incremental Learning

The analysis from Subsection 4.2.1 shows that the weights from Equation 4.1 need normal-
ization to become comparable across states. We apply a standardization of initial weights (siw)
to obtain a normalized version of the weights matrix:

W ′
t = {W 1
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′
, ..,WN1

1
′
,WN1+1

2
′
, ..,WN2

2
′
, ...,W

Nt−2+1
t−1

′
, ..,W

Nt−1
t−1

′
,W

Nt−1+1
t

′
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(4.2)

Each dimension w′d of a standardized classifierW ′ from Equation 4.2 is calculated using:

w′d = wd − µ(W )
σ(W ) (4.3)

with: w′d - the dth dimension of W ′, wd - the dth dimension of an initial classifier W from
Equation 4.1, µ(W ) and σ(W ) are the mean and standard deviation ofW .

Standardization is useful if it is applied to the statistical populations which follow a normal
distribution [38], which is the case for classifier weights from Equation 4.1. Figure 4.5 pro-
vides weights distribution of a random subset of classifier weights from the weights matrixW t

defined in Equation 2.3. These examples illustrate the fact that the classifier weights follow a
normal distribution. The use of standardization to normalize them is thus appropriate.

Assuming that the incremental process is in the tth state, the final prediction score of a test
image x for the jth class learned initially in the ith state (with i ≤ t), is given by:

ojt(x) = (ft(x) ·W j
t

′ + bij)×
µ(Mt)
µ(Mi)

(4.4)

with: ft(x) - features of image x given by the extractor of the current model Mt; W
j
t

′

- standardized classifier weights of the jth class initially learned in the ith state as given by
Equation 4.2; bij - the class bias value; µ(Mt) and µ(Mi) - means of top-1 predictions of
models learned in the tth and ith states computed over their training sets.

The first term of Equation 4.4 is a version of the usual CNN prediction process in which the
basic weightsW j

t from Equation 2.3 are replaced by the standardized initial weightsW j
t

′
from

Equation 4.2. This term is referred to as siw in Section 4.2.4. The second term is the same that
we use in IL2M (Section 3.3), where we observed that a model level calibration is useful when
combining information from different models. µ(Mt) and µ(Mt) are calculated by passing all
training images available in each of the two states through the respective model. This term is
referred to as mc in Section 4.2.4.
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Figure 4.5 – Weights distribution of a random subset of classifier weights from the weights
matrixWt defined in Equation 2.3 (Section 2.2).

4.2.3 Experiments

— Datasets (Appendix B) - ILSVRC [135], LANDMARKS [108], VGGFACE2 [22], and
CIFAR-100 [74].

— Incremental states - We use T = {10, 20, 50}.

— Evaluation measures - Top-5 accuracy [135] and GIL measure (Subsection 3.4.4).

— Baselines - LwF [86], LUCIR [53], FT init, and FT initL2 (the last two baselines are the
one we proposed in Subsection 3.4.3). We also try two supplementary normalization tech-
niques defined below.

Ô min-max normalization - each dimension of the classifier is calculated using:

w′d = wd −min(W )
max(W )−min(W ) (4.5)
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Ô mean normalization - each dimension of the classifier is calculated using

w′d = wd − µ(W )
max(W )−min(W ) (4.6)

Note that our methods are based on FT init: FT initsiw exploits only the siw term from Equa-
tion 4.4, while FT initsiw+mc exploits both the siw and the mc terms from Equation 4.4.

4.2.4 Results and discussion

Dataset ILSVRC VGGFACE2 LANDMARKS CIFAR-100
GIL

States T =10 T =20 T =50 T =10 T =20 T =50 T =10 T =20 T =50 T =10 T =20 T =50

LwF 45.3 37.6 27.1 53.3 42.6 30.8 58.8 49.2 35.2 79.5 65.3 39.0 -34.72

LwF init 47.1 39.9 32.2 58.1 50.8 40.5 55.7 50.2 39.8 79.4 67.9 42.8 -31.97

LwF initsiw 54.0 45.8 35.1 70.4 59.3 45.2 61.0 53.8 42.2 80.0 68.8 44.6 -28.06

LwF initsiw+mc 40.2 44.7 33.8 67.5 56.5 42.0 54.6 48.0 37.2 78.6 67.5 43.8 -30.79

LUCIR 57.6 39.4 21.9 91.4 68.2 32.2 87.8 63.7 32.3 57.5 35.3 21.0 -24.75

LUCIRmc 53.7 30.5 12.7 82.6 51.0 21.0 84.1 44.0 21.6 45.8 26.8 23.7 -32.18

FT 20.6 13.4 7.1 21.3 13.6 7.1 21.3 13.6 7.1 21.3 13.7 17.4 -54.91

FT init 61.0 44.9 23.8 90.9 64.4 33.1 68.8 49.4 22.2 55.1 40.8 19.9 -28.99

FT initL2 51.6 43.3 34.5 76.8 66.8 55.1 61.4 52.5 39.2 47.5 39.3 22.5 -26.80

FT initmc 62.0 39.6 19.2 78.5 52.3 27.5 73.3 44.2 17.7 57.9 34.2 18.2 -32.75

FT initL2+mc 53.6 42.7 35.6 86.9 71.4 53.6 66.2 52.6 37.9 52.6 43.1 18.2 -25.02

FT initsiw 61.6 51.9 39.9 84.0 80.6 61.9 75.1 62.6 43.2 56.0 41.8 22.5 -20.97

FT initsiw+mc 64.4 54.3 41.4 88.6 84.1 62.6 79.5 64.5 43.2 59.7 44.3 18.4 -19.38

Joint 92.3 99.2 99.1 91.2 -

Table 4.1 – Top-5 average IL accuracy (%) for the different methods with T = {10, 20, 50}
states. Joint is a classical learning, with all data available. Best results are in bold.

The results from Table 4.1 show that FT initsiw+mc provides aGIL improvement of over 5 points
compared to LUCIR [53], the best baseline. The gain is even higher compared to FT initL2+mc,
the second-best baseline which extends FT initL2 . This difference in favor of FT initsiw+mc underlines
the fact that classifier weights standardization is more appropriate than L2 normalization for
memoryless IL. A favorable comparison to two other normalization methods is provided in
Table 4.2. Results show that the siw term from Equation 4.4 is useful both for FT init and LwF
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while mc is beneficial for FT init but degrades results for LwF and LUCIR. Standardization
of LwF init weights has a positive effect for all datasets compared to LwF , especially for T =
{20, 50} states. Moreover, even when mc works, its contribution is less important than that of
siw.

The worst results by far are obtained with FT , both globally and for individual configura-
tions. FT trains well for new classes but provides nearly random results for past classes that
have no exemplars available for replay in memoryless IL. This confirms previous findings [128,
24] regarding the strong effect of catastrophic forgetting on vanilla fine tuning in memoryless
IL.

The comparison of performance for different datasets indicates that distillation is useful at
small scale but has lower utility or becomes even detrimental for large datasets. The useful-
ness of distillation for small datasets but not for large ones is an open problem. In [61], authors
note that distillation induces confusions among past classes [52]. To better understand this phe-
nomenon, we provide an analysis of the typology of errors in Table 4.3. Note that while FT
runs do not perform well, normalization does help for them.

The LwF init
siw version of LwF is the best method for CIFAR-100, with a large margin com-

pared to all methods which are not based on LwF . The use of initial weights in LwF init brings
aGIL improvement of nearly 3 points, and the addition of standardization in LwF init

siw brings an-
other 4GIL points gain. LUCIR has lower performance but rather comparable to that of FT init

based methods for CIFAR-100. The results for the three large datasets show that LwF has the
second-lowest performance, after vanilla FT . The improvements over classical LwF brought
by standardization are much more important for the three large datasets. LUCIR’s more so-
phisticated scheme for countering catastrophic forgetting is clearly useful compared to classical
distillation from LwF . The removal of the distillation component and the use of initial classi-
fier weights in FT init gives globally better results than LUCIR and LwF for the three large
datasets. This behavior in a large-scale setting is mainly explained by the observation made in
[53] regarding the high number of confusions among past classes when distillation is used. The
use of siw and mc to FT init is also beneficial, especially when T is big for large datasets.

The number of incremental states has an important effect on IL performance [24, 128]. The
larger the number of states is, the more challenging the process will be. This is confirmed by the
results with T = {10, 20, 50} states in Table 4.1 for all tested methods. Actually, as more incre-
mental states are added, IL models are more prone to forgetting due to the increasing number
of intermediate model updates, which causes information loss. Our approach does significantly
better than existing methods for the three large datasets with T = 50. Its performance reaches
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41.4 for ILSVRC compared to only 27.1 and 21.9 for LwF and LUCIR.

Table 4.1 allows an ablation analysis of our approach. Such an analysis is important to under-
stand the contribution of individual components to the final results. Vanilla FT is the backbone
upon which we build. The use of initial raw weights for past classes in FT init has a strong
positive effect as it reduces the performance gap measured by GIL by nearly a half (−28.99 vs.
−54.91 for vanilla FT ). The sole use of calibration in FT initmc has a negative effect since perfor-
mance drops to −32.75. The introduction of standardization in FT initsiw has a important positive
effect since it brings an 8 points GIL improvement over FT init. Finally, the use of both terms
from Equation 4.4 in FT initsiw+mc has a light positive effect with a 1.6 points improvement over
FT initsiw . We note that FT initsiw improves over FT init for all individual configurations. The largest
performance gains between the two methods are obtained for the three large datasets with the
T = 50, the highest number of incremental states tested. This is the most challenging setting
since the effects of catastrophic forgetting are stronger for a larger number of IL states. The
addition of state mean calibration has a positive, albeit smaller, effect in all individual configu-
rations but two. It does not improve results for LANDMARKS with T = 50 states and degrades
them for CIFAR-100 with the same number of states. This is probably because there are only
two classes per state in the latter configuration and the obtained statistics are not stable enough.

Results with other calibration methods

Table 4.2 provides results with mean and min-max normalization of weights in addition
to L2 and siw. Standardization provides the best performance for all tested configurations.
Mean calibration is second best and has a better performance compared to the L2-normalization
already used in 3.4. Calibration with min-max is not effective and did not provide any good
results.

Dataset ILSVRC VGGFACE2 LANDMARKS CIFAR-100
GIL

States T =10 T =20 T =50 T =10 T =20 T =50 T =10 T =20 T =50 T =10 T =20 T =50

FT initmin−max 3.3 10.0 7.1 4.7 20.1 18.5 17.2 12.2 6.3 19.9 18.3 20.7 -55.52

FT initmean 54.1 49.4 38.0 69.7 78.4 58.6 72.8 61.1 41.3 52.9 38.1 21.0 -23.76

FT initL2 51.6 43.3 34.5 76.8 66.8 55.1 61.4 52.5 39.2 47.5 39.3 22.5 -26.80

FT initsiw 61.6 51.9 39.9 84.0 80.6 61.9 75.1 62.6 43.2 56.0 41.8 22.5 -20.97

Joint 92.3 99.2 99.1 91.2 -

Table 4.2 – Top-5 average IL accuracy (%) for the min-max and mean normalization, with
T = {10, 20, 50} incremental states. Best results are in bold.
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Error analysis

Similarly to Scail (Section 3.4), we provide in Table 4.3 top-1 correct and wrong classi-
fications for: (1) FT - the simplest method tested, (2) LUCIR - the best existing method (3)
FT initsiw+mc - the proposed method. The analysis is done for the large dataset ILSVRC, with
T = 20 states. c(p) and c(n) are the correct classification for past/new classes. e(p, p) and
e(p, n) are erroneous classifications for test samples of past classes mistaken for other past
classes and new classes respectively. e(n, p) and e(n, n) are erroneous classifications for test
samples of new classes mistaken for past classes and other new classes respectively. Note that
the percentages on the first three and last three lines of each table sum up to 100%. Since the
number of test images varies across IL states, percentages are calculated separately for test im-
ages of past and new classes in each St to get a quick view of the relative importance of each
type of errors. c(p), e(p, p), and e(p, n) sum to 100% on each column, as do c(n), e(n, n), and
e(n, p).

The analysis shows that vanilla FT suffers from a total forgetting of the past classes since
all their test images are wrongly classified. The effect of catastrophic forgetting is obvious
in the way that 100% of past classes are mistakenly classified as belonging to new classes.
Equally important, standardization of the initial weights not only reduces forgetting, but also
considerably reduces the confusions among new classes.

The comparison of LUCIR and FT initsiw+mc shows that the first method is better at clas-
sifying test samples of new classes but has worse behavior for test samples of past classes.
LUCIR c(p) scores are better for the first three iterations but fall behind those of FT initsiw+mc af-
terward. Note that both methods are strongly affected by catastrophic forgetting toward the end
of the incremental process, with top-1 accuracy at 6% and 11.8% for LUCIR and FT initsiw+mc re-
spectively. This finding indicates that, while both distillation in LUCIR and classifier weights
replay FT initsiw+mc have a slight positive effect, memoryless IL remains a very challenging task.
It is also interesting that the distribution of errors is different. LUCIR fails to ensure fairness
between past and new classes since e(p, n) are much more frequent than e(p, p). FT initsiw+mc is
less biased toward new classes but produces a large number of confusions between past classes
(e(p, p)).
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Incremental states S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19

F
T

c(p) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
e(p, p) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
e(p, n) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
c(n) 87.8 87.28 90.48 91.4 90.44 87.92 89.64 88.12 87.24 89.68 89.72 90.16 90.6 89.8 87.84 92.4 89.56 89.28 87.52
e(n, n) 12.2 12.72 9.52 8.6 9.56 12.08 10.36 11.88 12.76 10.32 10.28 9.84 9.4 10.2 12.16 7.6 10.44 10.72 12.48
e(n, p) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

F
T
in
it

si
w

+
m
c

c(p) 38.4 27.0 33.2 31.3 29.0 22.0 20.1 15.0 17.9 14.7 17.7 16.5 15.3 13.1 13.2 14.0 14.1 12.5 11.8
e(p, p) 22.7 15.0 41.4 41.9 60.7 48.5 51.8 31.9 60.2 40.7 68.1 62.6 66.8 48.2 47.2 66.9 64.9 52.7 50.0
e(p, n) 38.9 58.0 25.4 26.8 10.3 29.5 28.1 53.0 21.9 44.6 14.1 20.9 17.9 38.7 39.6 19.1 21.0 34.8 38.2
c(n) 75.8 82.7 75.7 75.8 67.2 75.1 77.4 83.8 69.8 83.2 68.6 76.1 70.5 82.0 78.4 76.2 72.6 80.4 80.3
e(n, n) 8.5 11.5 4.2 3.1 1.8 6.8 4.6 9.8 4.5 7.9 3.2 3.5 3.1 6.5 8.3 2.7 3.8 5.4 7.7
e(n, p) 15.7 5.8 20.0 21.1 31.0 18.0 18.0 6.4 25.7 8.9 28.2 20.4 26.4 11.5 13.3 21.1 23.6 14.1 12.0

L
U
C
I
R

c(p) 66.1 46.9 33.5 26.7 23.2 19.0 15.1 13.3 11.8 9.9 9.1 8.3 7.9 8.0 7.5 6.7 6.5 6.0 6.0
e(p, p) 4.2 10.1 14.7 20.4 26.6 25.8 24.1 27.5 27.9 28.1 28.3 28.8 29.8 31.5 29.3 30.8 29.6 29.6 30.6
e(p, n) 29.8 42.9 51.8 52.9 50.2 55.3 60.8 59.2 60.3 62.0 62.6 63.0 62.3 60.5 63.2 62.5 63.9 64.4 63.4
c(n) 78.3 79.7 82.2 82.2 82.4 78.2 82.6 81.5 79.0 84.5 82.7 83.4 84.1 82.9 81.2 86.2 82.8 83.3 81.2
e(n, n) 16.0 15.5 13.5 11.4 12.2 15.2 12.3 13.0 14.5 11.4 11.9 11.9 11.2 11.5 14.2 9.0 11.7 12.1 13.8
e(n, p) 5.6 4.8 4.4 6.4 5.3 6.6 5.2 5.5 6.5 4.1 5.4 4.8 4.6 5.6 4.6 4.8 5.5 4.6 5.0

Table 4.3 – Top-1 correct and wrong classification for FT , FT initsiw+mc and LUCIR for ILSVRC
with T = 20.

4.2.5 Conclusion

We proposed the reuse of normalized initial classifier weights to mitigate the effect of catas-
trophic forgetting in memoryless IL. A preliminary analysis showed that initial classifiers could
be reused in later incremental states, but a normalization step is needed to make them compara-
ble. We introduced a normalization component based on standardization which ensure fairness
between classes learned in different IL states which are used together. Our method compares
favorably to standard handling of catastrophic forgetting in [53, 86, 128]. Interestingly, our re-
sults indicate that distillation is only useful for small datasets and has a negative effect on larger
datasets. In this latter case, the use of simpler vanilla fine tuning backbone is more appropriate.
Note that the proposed method also improves the results obtained with classical distillation [86,
128]. However, the gap between classical learning remains important, and further efforts are
needed towards reducing it.

In the next section, we present a novel method that tackles catastrophic forgetting in a mem-
oryless setting. To the best of our knowledge, we are the first to provide a method that enables
the use of the bias correction layer from [174] without having access to past data.
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4.3 TransIL: Dataset Knowledge Transfer for Class-Incremental
Learning

4.3.1 Introduction

Class-incremental learning without memory is challenging and generic since no storage of
past samples is allowed. In the absence of memory, existing methods become variants of Learn-
ing without Forgetting [86] with different formulations of the distillation term. Importantly, bias
correction methods become inapplicable without access to past classes samples.

Our main contribution is to enable the use of the bias correction methods, such as the BiC
layer from [174], in class IL without memory. We focus on this approach because it is both sim-
ple and effective in IL with memory [15, 101]. Authors of BiC [174] use a validation set that
stores samples of past classes to optimize parameters. Instead, we learn correction parameters
offline on a set of reference datasets and then transfer them to target datasets. The method is
thus abbreviated TransIL. The intuition is that, while datasets are different, optimal bias correc-
tion parameters are stable enough to be transferable between them. We illustrate the approach
in Figure 4.7, with the upper showing the IL process with a reference dataset. A memory for
the validation samples needed to optimize the bias correction layer is allowed since the train-
ing is done offline. The lower part of the figure presents the incremental training of a target
dataset. The main difference with the standard memoryless IL training comes from the use of a
bias correction layer optimized on the reference dataset. Its introduction leads to an improved
comparability of prediction scores for past and new classes. Note that the proposed method
is applicable to any class IL method since it only requires the availability of raw predictions
provided by deep modelsM.

The second contribution is to refine the definition of the bias correction layer introduced
in [174]. The original formulation considers all past classes equally in the correction process.
With [101], we hypothesize that the degree of forgetting associated with past classes depends on
the initial state in which they were learned. Consequently, we propose Adaptive BiC (AdBiC),
an optimization procedure that learns a pair of parameters per IL state instead of a single pair
of parameters as proposed in [174]. We provide a comprehensive evaluation of the proposed
method by applying it on top of four backbone class IL methods. Five target visual datasets
with different numbers of IL states are used. An improvement of top-1 accuracy is obtained for
almost all tested configurations. Importantly, the additional memory needs are negligible since
only a compact set of correction parameters is stored.
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4.3.2 Proposed approach

(a) LwF [86] (b) LUCIR [53]

Figure 4.6 – Mean prediction scores and associated standard deviations for CIFAR-100 classes
grouped by state at the end of the IL process, with T = 10 states, for LwF and LUCIR
methods. Results indicate that the degree of forgetting depends on the initial state in which
classes were first learned. Bias correction with parameters optimized per state is thus needed to
make class IL fairer.

The unavailability of past class exemplars when updating the incremental models leads to
a classification bias toward new classes [174, 189]. We illustrate this in Figure 4.6 by plotting
mean prediction scores per state for the CIFAR-100 dataset with T = 10 states using LUCIR
and LwF , the two distillation based approaches tested here. Figure 4.6 confirms that recently
learned classes are favored, despite the use of knowledge distillation to counter the effects of
catastrophic forgetting. New classes, learned in the last state, are particularly favored. The pre-
dictions profiles for LUCIR and LwF are different. LUCIR mean predictions per state in-
crease from earlier to latest states, while the tendency is less clear for LwF . Predictions of the
latter also have a stronger deviation in each state. These observations make LUCIR a better
candidate for bias correction compared to LwF .

Adaptive Bias Correction layer

Among the methods proposed to correct bias, the linear layer introduced in [174] is inter-
esting for its simplicity and effectiveness. This layer is defined in the tth state as:

BiC(okt ) =
{
okt if k ∈ [1, t− 1]
αto

k
t + βt · 1 if k = t

(4.7)

where okt are the raw scores of classes first seen in the kth state, obtained withMt; (αt, βt)
are the bias correction parameters in the tth state, and 1 is a vector of ones.
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Figure 4.7 – Illustration of TransIL, our proposed method, depicting states from 1 to 3 for a
reference (top) and a target (bottom) dataset. The modelM is updated in each state with data
from new classes. The class IL process is first launched offline on the reference dataset where
AdBiC, our proposed bias correction layer, is trained using a validation memory (in light grey)
which stores samples for past and new classes. Class IL is then applied to the target dataset but
without class samples shared across states since a memory is not allowed in this scenario. The
set of optimal parameters of AdBiC obtained for the reference dataset (light pink memory I) is
transferred to the target dataset. This is the only information shared between the two processes
and it has a negligible memory footprint. The transfer of parameters enables the use of bias
correction for the target dataset. The final predictions obtained in the state S3 are improved
compared to the direct use ofM3 predictions since the bias in favor of new classes is reduced.
Best viewed in color.

Equation 4.7 rectifies the raw predictions of new classes learned in the tth state to make them
more comparable to those of past classes. The deep model is first updated using Xt containing
new classes for this state. The model is then frozen and calibration parameters (αt and βt) are
optimized using a validation set that includes samples of new and past classes. We remind that
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Equation 4.7 is not applicable in class IL without memory, the scenario explored here, because
no samples of past classes are allowed.

Figure 4.6 shows that mean scores of classes learned in different incremental states are
variable, which confirms that the amount of forgetting is uneven across past states. It is thus
important to correct biases differently for classes that were learned in different IL states. To
address this challenge, we define an adaptive version of BiC which rectifies predictions in the
tth state with:

adBiC(okt ) = αkt o
k
t + βkt · 1 ; k ∈ [1, t] (4.8)

where αkt , βkt are the parameters applied in state St to classes first learned in state Sk.

Differently from Equation 4.7, Equation 4.8 adjusts prediction scores depending on the state
in which classes were first encountered in the IL process. Note that each αkt , βkt pair is shared be-
tween all classes first learned in the same state. These parameters are optimized on a validation
set using the cross-entropy loss, defined for one data point (x, y) as:

L(qt, y) = −
t∑

k=1

|Pk|∑
j=1

δy=ŷ log
(
qkt,j
)

(4.9)

where y is the ground-truth label, ŷ is the predicted label, δ is the Kronecker delta, and qt is
the corrected softmax output of the sample via Equation 4.8, defined as:

qt = σ
([
α1
to

1
t + β1

t · 1 ; . . . ;αttott + βtt · 1
])

(4.10)

where σ is the softmax function.

All αkt , β
k
t pairs are optimized using validation samples from classes in Nt. We compare

AdBiC over BiC for our class IL setting in the evaluation section and show that the adaptation
proposed here has a positive effect.

Transferring knowledge between datasets

The optimization of α and β parameters is impossible in class IL without memory, since
exemplars of past classes are unavailable. To circumvent this problem, we hypothesize that
optimal values of these parameters can be transferred between reference and target datasets,
noted X r and X respectively. The intuition is that these values are sufficiently stable despite
dataset content variability. We create a set of reference datasets and perform a modified class
IL training for them using the procedure described in Algorithm 1. The modification consists
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Algorithm 1: Optimization of calibration parameters
inputs : A,X rt for t ∈ [1, T ] . reference dataset

randomly initializeM1 ;M∗1 ← train(A;M1,X r1 ) ;

for t = 2. . .T do
M∗t ← update(A;M∗t−1,X rt ) ;

αkt ← 1, βkt ← 0 for each k ∈ [1, t] ;

foreach (x, y) ∈ X rt . validation set

do
ot ←M∗t (x) ;

for k = 1. . .t do
ok

t ← adBiC(okt ) = αkt o
k
t + βkt · 1 ;

end
qt ← σ(ot) ;

loss← L(qt, y) ;

(α1
t , β

1
t , . . ., α

t
t, β

t
t)← optimize(loss) ;

end

end

in exploiting a validation set that includes exemplars of classes from all incremental states.
Validation set storage is necessary in order to optimize the parameters from Equation 4.8 and is
possible since reference dataset training is done offline. Note that backbone incremental models
for X r are trained without memory in order to simulate the IL setting of target datasets X .
We then store bias correction parameters optimized for reference datasets in order to perform
transfer toward target datasets without using a memory. For each incremental state, we compute
the average of α and β values over all the reference datasets. The obtained averages are used for
score rectification on target datasets. This transfer uses the procedure described in Algorithm 2.
The memory needed to store transferred parameters is negligible since we need 2 × (2 + 3 +
... + T ) = (T + 2)× (T − 1) floats for each dataset and T value. For T = {5, 10, 20} states,
we thus only store 28, 108 and 418 floating-point values respectively.

In Figure 4.8, we illustrate optimal parameters obtained across R = 10 reference datasets
which are further described in Section 4.3.3. We plot αk and βk values learned after T = 10 IL
states, using LwF [86] and LUCIR [53] methods. Mean and standard deviations are presented
for past and current incremental states in the final state of the IL process. The parameter ranges
from Figure 4.8 confirm that, while optimal values do vary across datasets, this variation is
rather low and calibration profiles remain similar. This opens up the possibility of parameter
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Algorithm 2: AdBiC inference
inputs : A, (αks , βks ) averaged on reference datasets for each s ∈ J1, SK, k ∈ J1, sK
inputs : Xt for s ∈ [1, T ] . target dataset

randomly initializeM1;M∗1 ← train(A;M1,X1) ;

for s = 2. . .S do
M∗t ← update(A;M∗t−1,Xt) ;

foreach (x, y) ∈ Xt . test set

do
ot ←M∗t (x) ;

for k = 1. . .t do
ok

t ← adBiC(okt ) = αkt o
k
t + βkt · 1 ;

end
qt ← σ(ot) ;

ŷ ← argmax
y∈[1,Nt]

(qt) ; . inference

end

end

(a) LwF [86]

(b) LUCIR [53]

Figure 4.8 – Averaged αk (left) and βk (right) values computed for R = 10 reference datasets
using LwF and LUCIR, at the end of an incremental process with T = 10 states.
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transfer. When R > 1, a transfer function is needed to apply the parameters learned on a set
of reference datasets to a target dataset. We transfer parameters using the averaged αkt and βkt
values, obtained for the set of X r. In Subsection 4.3.4, we evaluate this transfer against an
upper-bound oracle which selects the best X r in each state.

The proposed approach adds a simple but effective linear layer to calibrate the predictions of
backbone class-incremental methods. Consequently, it is applicable to any incremental learning
method which works without memory. We test the genericity of the approach by applying it on
top of four existing methods.

4.3.3 Experiments

— Datasets (Appendix B) - CIFAR-100 [74], IMN-100 [32], BIRDS-100 [32], FOOD-100
[20], and PLACES-100 [192].

— Incremental states - We use T = {5, 10, 20}.

— Evaluation measures - Top-1 accuracy.

— Baselines - LwF [86], LUCIR [53], FT+ [101], and SIW (corresponding to FT initsiw+mc

in Section 4.2).

We compare AdBiC to BiC, the original linear layer from [174]. We also provide results
with an optimal version of AdBiC, which is obtained via an oracle-based selection of the best-
performing reference dataset for each IL state. This oracle is important as it indicates the po-
tential supplementary gain obtainable with a parameter selection method more refined than the
proposed one.

4.3.4 Results and discussion

Overall results

Table 4.4 provides results obtained with CIFAR-100, FOOD-100, IMN-100, and BIRDS-
100. Results show that our method improves the performance of baseline methods for all but two
of the configurations evaluated. The best overall performance before bias correction is obtained
with LwF . This result confirms the conclusions of [101] regarding the strong performance of
LwF in class IL without memory for medium-scale datasets. With AdBiC, LUCIR performs
generally better than LwF for T = 5 and T = 10, while LwF remains stronger with T = 20
states. Results are particularly interesting for LUCIR, a method for which AdBiC brings con-
sistent gains (up to 16 accuracy points) in most configurations. Table 4.4 shows thatAdBiC also
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Method
CIFAR-100 IMN-100 BIRDS-100 FOOD-100

T = 5 T = 10 T = 20 T = 5 T = 10 T = 20 T = 5 T = 10 T = 20 T = 5 T = 10 T = 20

LwF [86] 53.0 44.0 29.1 53.8 41.1 29.2 53.7 41.8 30.1 42.9 31.8 22.2
w/ BiC 54.0 + 1.0 45.5 + 1.5 30.8 + 1.7 54.7 + 0.9 42.5 + 1.4 31.1 + 1.9 54.6 + 0.9 43.1 + 1.3 31.8 + 1.7 43.4 + 0.5 32.6 + 0.8 23.8 + 1.6

w/ AdBiC 54.3 + 1.3 46.4 + 2.4 32.3 + 3.2 55.1 + 1.3 43.4 + 2.3 32.3 + 3.1 55.0 + 1.3 44.0 + 2.2 32.8 + 2.7 43.5 + 0.6 33.3 + 1.5 24.7 + 2.5

w/ AdBiC + O 54.9 + 1.9 47.3 + 3.3 32.6 + 3.5 55.9 + 2.1 44.2 + 3.1 33.1 + 3.9 55.8 + 2.1 44.8 + 3.0 33.3 + 3.2 44.0 + 1.1 34.2 + 2.4 25.3 + 3.1

LUCIR [53] 50.1 33.7 19.5 48.3 30.1 17.7 50.8 31.4 17.9 44.2 26.4 15.5
w/ BiC 52.5 + 2.4 37.1 + 3.4 22.4 + 2.9 54.9 + 6.6 36.8 + 6.7 21.8 + 4.1 56.0 + 5.2 37.7 + 6.3 20.6 + 2.7 49.9 + 5.7 31.5 + 5.1 17.2 + 1.7

w/ AdBiC 54.8 + 4.7 42.2 + 8.5 28.4 + 8.9 59.0 + 10.7 46.1 + 16.0 27.3 + 9.6 58.5 + 7.7 45.4 + 14.0 27.3 + 9.4 52.0 + 7.8 37.1 + 10.7 17.7 + 2.2

w/ AdBiC + O 55.5 + 5.4 43.6 + 9.9 31.2 + 11.7 59.4 + 11.1 46.6 + 16.5 29.7 + 12.0 59.0 + 8.2 46.0 + 14.6 28.8 + 10.9 52.6 + 8.4 38.2 + 11.8 21.0 + 5.5

SIW (Sec. 4.2) 29.9 22.7 14.8 32.6 23.3 15.1 30.6 23.2 14.9 29.4 21.6 14.1
w/ BiC 31.4 + 1.5 22.8 + 0.1 14.7 - 0.1 33.9 + 1.3 22.6 - 0.7 13.9 - 1.2 32.8 + 2.2 22.7 - 0.5 12.8 - 2.1 29.1 - 0.3 20.3 - 1.3 12.1 - 2.0

w/ AdBiC 31.7 + 1.8 24.1 + 1.4 15.8 + 1.0 35.1 + 2.5 24.5 + 1.2 15.0 - 0.1 33.0 + 2.4 25.2 + 2.0 15.3 + 0.4 30.9 + 1.5 21.3 - 0.3 14.5 + 0.4

w/ AdBiC + O 32.8 + 2.9 25.0 + 2.3 16.5 + 1.7 36.4 + 3.8 25.7 + 2.4 16.1 + 1.0 34.4 + 3.8 26.2 + 3.0 16.3 + 1.4 31.5 + 2.1 22.6 + 1.0 15.1 + 1.0

FT+ 28.9 22.6 14.5 31.7 23.2 14.6 29.7 23.3 13.5 28.7 21.1 13.3
w/ BiC 30.7 + 1.8 22.5 - 0.1 14.8 + 0.3 33.0 + 1.3 21.9 - 1.3 13.8 - 0.8 32.3 + 2.6 22.5 - 0.8 12.4 - 1.1 28.6 - 0.1 20.6 - 0.5 11.8 - 1.5

w/ AdBiC 31.9 + 3.0 23.6 + 1.0 15.0 + 0.5 34.9 + 3.2 23.7 + 0.5 15.7 + 1.1 34.0 + 4.3 25.0 + 1.7 14.2 + 0.7 30.8 + 2.1 22.2 + 1.1 14.2 + 0.9

w/ AdBiC + O 32.5 + 3.6 24.6 + 2.0 15.9 + 1.4 35.7 + 4.0 24.9 + 1.7 16.2 + 1.6 34.5 + 4.8 25.7 + 2.4 15.4 + 1.9 31.3 + 2.6 22.7 + 1.6 14.5 + 1.2

Joint 72.7 75.5 80.9 71.03

Table 4.4 – Average top-1 incremental accuracy using T = {5, 10, 20} states. Results are pre-
sented for each method without parameter transfer and withBiC andAdBiC transfer. The gain
(green) and loss (red) in accuracy obtained with parameter transfer are provided for each con-
figuration. Joint is an upper bound obtained using a standard training with all data available. O
denotes a choice of the reference dataset by oracle, in which the best reference dataset for each
state is selected for transfer. Best results for each setting (excluding the oracle) are in bold. A
graphical view of this table is provided in Figures 4.9 and 4.10. Best viewed in color.

improves the results of LwF in all configurations, albeit to a lesser extent compared to LUCIR.
Interestingly, improvements for LwF are larger for T = 20 states. This is the most challenging
configuration since the model undergoes more rehearsal steps that cause more forgetting. FT+
[101] and SIW remove the distillation component for the class IL training process and exploit
the weights of past classes learned in their initial state. AdBiC improves results for these two
methods in all but one configuration. However, their global performance is significantly lower
than that of LwF and LUCIR, the two methods which make use of distillation. This result
confirms the finding from Section 4.2 regarding the usefulness of the distillation term exploited
by LwF and LUCIR to stabilize IL training for medium scale datasets.

Results from Table 4.4 highlight the effectiveness ofAdBiC compared toBiC.AdBiC has
better accuracy in all tested configurations, with the most important gain over BiC obtained for
LUCIR. It is also worth noting that AdBiC improves results for SIW and FT+ in most
configurations, while the corresponding results of BiC are mixed. The comparison of AdBiC
and BiC validates our hypothesis that finer-grained modeling of forgetting for past states is
better than their uniform processing. It would be interesting to test the usefulness of AdBiC in
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the class IL with memory setting originally tested in [174].
We also compare AdBiC, which uses averaged α and β parameters, with the oracle selec-

tion of reference parameters (+ O). The performance of AdBiC is close to this upper bound for
all tested methods, with a difference of less than one point in a majority of cases. This indicates
that averaging bias correction parameters is an effective way to aggregate parameters learned
from reference datasets. However, it would be interesting to investigate more refined ways to
transfer parameters from reference to target datasets to further improve performance.

Figure 4.9 – Average accuracies in each state on CIFAR-100 (left) and IMN-100 (right)
datasets with all backbone methods after AdBiC correction, for T = 5 (top), T = 10 (middle)
and T = 20 (bottom) states. The accuracies without correction of the corresponding methods
are provided in dotted lines (same colors). Best viewed in color.

The comparison of target datasets shows that the gain brought by AdBiC is largest for
IMN-100, followed by BIRDS-100, CIFAR-100 and FOOD-100. This is intuitive as IMN-100
has the closest distribution to that of reference datasets. BIRDS-100 is extracted from ImageNet
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Figure 4.10 – Average accuracies in each state on BIRDS-100 (left) and FOOD-100 (right)
datasets with all backbone methods after AdBiC correction, for T = 5 (top), T = 10 (middle)
and T = 20 (bottom) states. The accuracies without correction of the corresponding methods
are provided in dotted lines (same colors). Best viewed in color.

and, while topically different from reference datasets, was created using similar guidelines. The
consistent improvements obtained with CIFAR-100 and FOOD-100, two datasets independent
from ImageNet, show that the proposed transfer method is robust to data distribution changes.
The performance gaps between IL results and Joint are still wide, particularly for larger values
of T . This indicates that class IL without memory remains an open challenge.

Except for LwF , AdBiC gains are generally larger for T = 5 and T = 10 compared to
T = 20. This result is consistent with past findings reported for bias correction methods [101,
174]. It is mainly explained by the fact that the size of validation sets needed to optimizeAdBiC
parameters is smaller and thus less representative for larger values of T . A larger number of
states leads to a higher degree of forgetting. This makes the IL training process more challenging
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and negatively affects the usefulness of the bias correction layer.

Effect of Adaptive Bias Correction

(a) LwF [86] (b) LUCIR [53]

Figure 4.11 – Mean prediction scores for CIFAR-100 classes grouped by state at the end of the
IL process for LwF and LUCIR methods with T = 10 states. Applying calibration parameters
learned on reference datasets clearly reduces the imbalance of mean prediction scores and the
bias toward recent classes, compared to raw scores from Figure 4.6.

Figure 4.11 provides a qualitative view of the effect of AdBiC which complements numer-
ical results from Table 4.4. It illustrates the predictions scores for LwF and LUCIR after the
application of bias correction with AdBiC. The correction is effective since the predictions as-
sociated to IL states are more balanced in Figure 4.11, compared to the raw predictions from
Figure 4.6. The effect of calibration is particularly interesting for LUCIR, where mean predic-
tion scores are balanced for states 3 to 10. We note that bias correction should ideally provide
fully balanced mean prediction scores to give equal chances to classes learned in different states.
Practical results show that some variation remains and is notably due to variable forgetting for
past states and to the variable difficulty of learning different visual classes.

In Figure 4.12, we illustrate the effects of AdBiC on state-wise accuracies, for all back-
bone IL methods evaluated in this work. Before adaptive correction (top), all methods provide
strong performance on the last group of classes learned (represented by the diagonals). Their
performance is generally poorer for past classes (under the diagonals). After correction (bot-

tom), all methods perform better on past class groups (with a trade-off in accuracy on the last
class group), resulting in higher overall performance.

Robustness of dataset knowledge transfer

We complement the results presented in Table 4.4 with two experiments that further evaluate
the robustness of AdBiC. First, we test the effect of a different number of training images per
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(a) LwF [86] (b) LUCIR [53] (c) SIW (Sec.4.2) (d) FT+ [101]

Figure 4.12 – Accuracies per incremental state for each class group, for models trained with
LwF , LUCIR, SIW and FT+ on CIFAR-100 for T = 10 states, before (top) and after
(bottom) AdBiC correction. Each row represents an incremental state and each square the
accuracy on a group of classes first learned in a specific state. In the first state, represented by
the first rows of the matrices, models are only evaluated on the first-class group. In the second
state, represented by the second rows, models are evaluated on the first two class groups, etc.

class for reference and target datasets. We remove 50% of training images for target datasets to
test the transferability in this setting. The obtained results, presented in Table 4.8, indicate that
performance gains are systematic for LwF and LUCIR, albeit lower compared to results in
Table 4.4. Results are more mixed for SIW and FT+, but AdBiC still has a positive effect in
the majority of tested configurations. This experiment shows that the proposed dataset knowl-
edge transfer approach is usable for reference and target datasets that have a different number of
training samples per class. However, maintaining a low difference in dataset sizes is preferable
in order to keep the transfer effective.

We provide, in Table 4.6, additional experiments with all and half of the training data on
PLACES-100 dataset. Obtained results follow the same trend that those obtained on the other
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datasets, despite the domain shift from ImageNet. This finding also confirms the robustness of
TransIL against domain variation.

Second, we assess the robustness of the method with respect to R, the number of available
reference datasets. We vary R from 1 to 9 and perform transfer with ten random samplings
for each R value. Results obtained on CIFAR-100 are reported in Table 4.8. Accuracy levels
are remarkably stable for different values of R and significant gains are obtained even when
using a single reference dataset. These results confirm that parameter transfer is effective even
with few reference datasets, which is interesting considering that the computational cost of
offline training is also reduced. Note that results on other datasets follow the same trend. We

Method
CIFAR-100 IMN-100 BIRDS-100 FOOD-100

S = 5 S = 10 S = 20 S = 5 S = 10 S = 20 S = 5 S = 10 S = 20 S = 5 S = 10 S = 20

LwF [86] 41.3 33.3 23.3 45.6 33.5 23.8 44.6 34.0 23.2 29.5 23.3 17.3
w/ adBiC 42.1 + 0.8 34.8 + 1.5 25.0 + 1.7 46.7 + 1.1 35.3 + 1.8 25.6 + 1.8 45.5 + 0.9 35.4 + 1.4 25.2 + 2.0 29.9 + 0.4 24.3 + 1.0 18.7 + 1.4

LUCIR [53] 43.5 27.8 16.6 42.9 27.6 17.0 45.2 27.8 16.0 37.9 22.7 13.9
w/ adBiC 48.3 + 4.8 38.5 + 10.7 25.3 + 8.7 54.1 + 11.2 42.4 + 14.8 23.2 + 6.2 52.8 + 7.6 40.9 + 13.1 25.6 + 9.6 45.7 + 7.8 32.6 + 9.9 19.8 + 5.9

SIW [16] 31.7 21.6 13.7 32.1 22.7 14.4 29.7 22.8 14.1 28.4 18.7 13.5
w/ adBiC 33.7 + 2.0 22.5 + 0.9 14.0 + 0.3 35.0 + 2.9 22.6 - 0.1 12.2 - 2.2 32.1 + 2.4 23.7 + 0.9 13.5 - 0.6 29.9 + 1.5 16.9 - 1.8 13.3 - 0.2

FT+ 30.4 21.5 12.9 31.2 22.2 12.0 29.2 22.8 12.2 27.4 18.2 11.6
w/ adBiC 32.0 + 1.6 21.4 - 0.1 13.4 + 0.5 34.8 + 3.6 21.2 - 1.0 13.7 + 1.7 31.9 + 2.7 23.0 + 0.2 13.6 + 1.4 28.8 + 1.4 16.2 - 2.0 12.2 + 0.6

Table 4.5 – Average top-1 IL accuracy with 50% of training images for target datasets. Gains
are in green, losses are in red.

Method
PLACES-100 PLACES-100 (halved)

T = 5 T = 10 T = 20 T = 5 T = 10 T = 20

LwF [86] 43.3 35.1 25.9 35.4 27.7 21.5
w/ BiC 43.9 + 0.6 36.1 + 1.0 27.6 + 1.7 35.8 + 0.4 28.5 + 0.8 22.6 + 1.1

w/ AdBiC 44.2 + 0.9 36.6 + 1.5 28.6 + 2.7 35.9 + 0.5 28.5 + 0.8 23.6 + 2.1

w/ AdBiC + O 44.6 + 1.3 37.5 + 2.4 29.3 + 3.4 36.5 + 1.1 29.2 + 1.5 24.3 + 2.8

LUCIR [53] 40.5 26.0 16.0 35.5 23.2 14.7
w/ BiC 42.6 + 2.1 29.9 + 3.9 18.0 + 2.0 38.3 + 2.8 26.9 + 3.7 16.5 + 1.8

w/ AdBiC 42.8 + 2.3 35.4 + 9.4 23.3 + 7.3 40.5 + 5.0 33.6 + 10.4 22.3 + 7.6

w/ AdBiC + O 43.7 + 3.2 36.5 + 10.5 24.9 + 8.9 40.9 + 5.4 34.0 + 10.8 23.1 + 8.4

Table 4.6 – Average top-1 incremental accuracy using T = {5, 10, 20} states, for the PLACES-
100 dataset with all and half of the training data. Gains obtained over the backbone method are
given in green, and the best results for each setting in bold. Best viewed in color.
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provide those of LUCIR on FOOD-100 dataset in Table 4.7. Even though FOOD-100 dataset
contains the largest domain shift with respect to reference datasets, TranSIL shows stable
results confirming its robustness.

T = 5
Raw R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10

44.19 51.9 ± 0.4 52.0 ± 0.2 52.1 ± 0.2 52.0 ± 0.1 52.1 ± 0.1 52.0 ± 0.1 52.0 ± 0.1 52.0 ± 0.1 52.0 ± 0.1 52.0

T = 10
Raw R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10

26.44 36.7 ± 0.7 36.9 ± 0.4 37.2 ± 0.4 37.2 ± 0.3 37.1 ± 0.2 37.0 ± 0.2 37.0 ± 0.1 37.1 ± 0.0 37.1 ± 0.1 37.1

T = 20
Raw R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10

15.47 17.6 ± 1.2 17.5 ± 0.7 17.6 ± 0.7 17.8 ± 0.4 17.5 ± 0.3 17.7 ± 0.4 17.8 ± 0.3 17.6 ± 0.2 17.7 ± 0.1 17.7

Table 4.7 – Average top-1 incremental accuracy of AdBiC-corrected models trained incremen-
tally on FOOD-100 with LUCIR, for T = {5, 10, 20} states, while varying the number R of
reference datasets. ForR ≤ 9, results are averaged across 10 random samplings of the reference
datasets (hence the std values). Raw is the accuracy of LUCIR without bias correction.

4.3.5 Conclusion

We introduced a method that enables the use of bias correction methods for class IL without
memory. This IL scenario is challenging because catastrophic forgetting is very strong in the ab-
sence of memory. The proposed method transfers bias correction parameters learned offline for
reference datasets toward target datasets. Since reference dataset training is done offline, a val-
idation memory that includes exemplars from all IL states can be exploited to optimize the bias
correction layer. The evaluation provides comprehensive empirical support for the transferabil-
ity of bias correction parameters. Performance is improved for all but two of the configurations
tested, with gains of up to 16 top-1 accuracy points. Robustness evaluation shows that parame-
ter transfer is efficient when only a few reference datasets are used for transfer. It is also usable
when the number of training images per class in target datasets is different from that of available
reference datasets. These last two findings are important in practice since the same reference
datasets can be exploited in different incremental configurations. A second contribution relates
to the modeling of the degree of forgetting associated with past states. While recency bias was
already acknowledged [101], no difference was made between past classes learned in different
IL states [174]. This is in part due to validation memory constraints which appear when the
bias correction layer is optimized during the incremental process. Such constraints are reduced
here since reference datasets training is done offline and a refined definition of the bias correc-
tion layer with specific parameters for each past state becomes possible. The comparison of the
standard and of the proposed definition of the bias correction layer is favorable to the latter.
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T = 5
Raw R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10

53.0 54.3 ± 0.2 54.3 ± 0.2 54.3 ± 0.1 54.4 ± 0.1 54.3 ± 0.1 54.3 ± 0.1 54.3 ± 0.1 54.3 ± 0.1 54.3 ± 0.1 54.3

T = 10
Raw R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10

44.0 46.2 ± 0.3 46.4 ± 0.2 46.4 ± 0.2 46.4 ± 0.2 46.4 ± 0.1 46.4 ± 0.1 46.5 ± 0.1 46.4 ± 0.1 46.4 ± 0.1 46.4

T = 20
Raw R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10

29.1 31.8 ± 0.3 32.1 ± 0.1 32.1 ± 0.2 32.1 ± 0.1 32.2 ± 0.1 32.2 ± 0.1 32.3 ± 0.1 32.3 ± 0.1 32.3 ± 0.1 32.3

(a) LwF [86]

T = 5
Raw R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10

50.1 54.7 ± 0.4 54.8 ± 0.3 54.8 ± 0.1 54.8 ± 0.1 54.8 ± 0.1 54.8 ± 0.1 54.8 ± 0.1 54.8 ± 0.1 54.8 ± 0.1 54.8

T = 10
Raw R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10

33.7 42.0 ± 0.7 42.1 ± 0.3 42.2 ± 0.4 42.3 ± 0.3 42.2 ± 0.2 42.2 ± 0.2 42.2 ± 0.1 42.2 ± 0.1 42.2 ± 0.1 42.2

T = 20
Raw R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10

19.5 27.5 ± 1.4 27.8 ± 0.7 27.8 ± 0.9 28.3 ± 0.4 28.5 ± 0.5 28.6 ± 0.6 28.5 ± 0.4 28.4 ± 0.3 28.4 ± 0.2 28.4

(b) LUCIR [53]

T = 5
Raw R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10

29.9 31.6 ± 0.2 31.6 ± 0.2 31.6 ± 0.1 31.7 ± 0.2 31.7 ± 0.1 31.7 ± 0.1 31.7 ± 0.1 31.7 ± 0.1 31.7 ± 0.1 31.7

T = 10
Raw R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10

22.7 23.8 ± 0.4 23.8 ± 0.2 23.9 ± 0.2 24.0 ± 0.2 23.9 ± 0.1 24.0 ± 0.1 24.1 ± 0.1 24.0 ± 0.1 24.1 ± 0.1 24.1

T = 20
Raw R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10

14.8 15.7 ± 0.3 15.7 ± 0.2 15.7 ± 0.2 15.8 ± 0.1 15.8 ± 0.2 15.8 ± 0.1 15.8 ± 0.1 15.8 ± 0.1 15.8 ± 0.1 15.8

(c) SIW (Section 4.2)

T = 5
Raw R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10

28.9 31.9 ± 0.2 32.0 ± 0.1 32.0 ± 0.1 32.0 ± 0.1 32.0 ± 0.1 32.0 ± 0.1 31.9 ± 0.1 32.0 ± 0.1 32.0 ± 0.1 31.9

T = 10
Raw R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10

22.6 23.2 ± 0.4 23.5 ± 0.2 23.5 ± 0.2 23.6 ± 0.1 23.5 ± 0.2 23.6 ± 0.1 23.6 ± 0.1 23.6 ± 0.1 23.6 ± 0.1 23.6

T = 20
Raw R = 1 R = 2 R = 3 R = 4 R = 5 R = 6 R = 7 R = 8 R = 9 R = 10

14.5 14.8 ± 0.2 15.0 ± 0.1 15.0 ± 0.2 15.1 ± 0.1 15.0 ± 0.1 15.1 ± 0.1 15.1 ± 0.1 15.0 ± 0.1 15.0 ± 0.1 15.0

(d) FT+ [101]

Table 4.8 – Average top-1 incremental accuracy of adBiC-corrected models trained incremen-
tally on CIFAR-100 with LwF , LUCIR, SIW and FT+, for T = {5, 10, 20} states, while
varying the number R of reference datasets. For R ≤ 9, results are averaged across 10 random
samplings of the reference datasets. Raw is the accuracy of each method without bias correction.
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4.4 A Comprehensive study of Class-Incremental learning with-
out memory

4.4.1 Introduction

In many real-life applications, no memory of past classes is available. For instance, in med-
ical data processing [167], this is often due to privacy issues. We complement the study con-
ducted in Section 3.5 with a study of the behavior of the main algorithms which can be deployed
in the absence of memory. Note that the following algorithms cannot be deployed: (1) all vari-
ants which exploit an external NEM classifier since exemplars are not available to build the
classifiers for past classes; (2) BiC because it requires a validation set; (3) ScaIL because it
requires past exemplars for normalization; (4) IL2M because the mean scores of past classes
cannot be computed in the current state.

4.4.2 Tested approaches

Similarly to the study we conducted with memory in Section 3.5, we run experiments with
the following works that are functional with or without memory: LUCIRCNN, FT, FR, DeeSIL,
REMIND. In addition, we run experiments with:

— LwF [86] that uses distillation loss to encourage the modelMt to predict the same scores
for past classes in the current state St than in the previous one. LwF constitutes the
inspiration for all class IL algorithms [24, 53, 61, 174] and is equivalent to a version of
iCaRL without memory.

— Deep-SLDA [47] shares the same definition ofMt as REMIND, where G(·) is the first
fifteen convolutional and three downsampling layers, and F (·) is the remaining two con-
volutional and one fully connected layers of a ResNet-18 [51]. At each incremental state,
Deep-SLDA updates a class-specific running mean vector and a running shared covari-
ance matrix among classes. During inference, it assigns an image to the closest Gaussian
in feature space defined by the mean class embeddings and the covariance matrix. Deep-
SLDA does not need to store past class data, and it is thus functional in the absence of
memory.

On top of FT and LwF , we also apply init, followed either by L2 or SIW (Standardiza-
tion of Initial Weights) normalization (Section 4.2), and finally by mc calibration. The other
algorithms are not functional in a memoryless setting for the following reasons:
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— LUCIRNCM [53] and FTNEM (Section 3.3) - they need exemplars to compute past
class-mean to deploy the NEM classifier.

— FTBAL (Sections 3.3 and 3.4) - it needs past class exemplars to run the balancing phase. In
the absence of memory, this approach becomes equivalent to FT and is heavily affected
by catastrophic forgetting.

— BiC [174] since a validation set is needed to optimize the bias removal layer, this approach
can only function if a memory is available.

— ScaIL and IL2M (Sections 3.3 and 3.4) need a bounded memory to keep trace of past
classes’ statistics.

— FTth - it needs a memory of the past to rectify past classes’ scores.

Aligned with the analysis of different algorithm characteristics from Table 3.9, LwF per-
forms model update and makes use of distillation loss to tackle catastrophic forgetting. This is
not the case for Deep-SLDA that is based on a fixed representation. Note that both methods do
not apply any extra bias removal layer, and they do not require a memory from the past.

4.4.3 Experiments

— Datasets (Appendix B) - ILSVRC [135], LANDMARKS [108], VGGFACE2 [22], and
CIFAR-100 [74].

— Incremental states - We test with T = {10, 20, 50}.

— Evaluation measures - Top-5 accuracy [135] and GIL measure (Subsection 3.4.4).

4.4.4 Results and Discussion

Role of knowledge distillation

When no memory is allowed for past classes, the experiments reported in Table 4.9 confirm
those presented in [128]. There, LwF is clearly better than vanilla FT , and the usefulness of
distillation is confirmed. Even without memory, the reuse of the embeddings of past classes from
their initial states in FT init is better than the sole use of knowledge distillation in LwF [86].
Only a more sophisticated scheme which combines distillation and an inter-class separation
component in LUCIRCNN [53] outperforms FT init, but stays way below FT initsiw+mc that does
not need distillation. Instead, it makes use of initial weights combined with standardization of
all weights and mean state calibration.
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Dataset ILSVRC VGGFACE2 LANDMARKS CIFAR-100
GILStates T =10 T =20 T =50 T =10 T =20 T =50 T =10 T =20 T =50 T =10 T =20 T =50

LwF 45.3 37.6 27.1 53.3 42.6 30.8 58.8 49.2 35.2 79.5 65.3 39.0 -34.72
LwF init 47.1 39.9 32.2 58.1 50.8 40.5 55.7 50.2 39.8 79.4 67.9 42.8 -31.97
LwF initL2 24.5 39.7 32.0 57.1 50.7 40.5 52.1 50.5 40.0 79.5 68.1 43.3 -32.60
LwF initsiw 54.0 45.8 35.1 70.4 59.3 45.2 61.0 53.8 42.2 80.0 68.8 44.6 -28.06

LUCIRCNN 57.6 39.4 21.9 91.4 68.2 32.2 87.8 63.7 32.3 57.5 35.3 21.0 -24.75
FT 20.6 13.4 7.1 21.3 13.6 7.1 21.3 13.6 7.1 21.3 13.7 17.4 -54.91

FT init 61.0 44.9 23.8 90.9 64.4 33.1 68.8 49.4 22.2 55.1 40.8 19.9 -28.99
FT initL2 51.6 43.3 34.5 76.8 66.8 55.1 61.4 52.5 39.2 47.5 39.3 22.5 -26.80
FT initL2+mc 53.6 42.7 35.6 86.9 71.4 53.6 66.2 52.6 37.9 52.6 43.1 18.2 -25.02
FT initsiw+mc 64.4 54.3 41.4 88.6 84.1 62.6 79.5 64.5 43.2 59.7 44.3 18.4 -19.38

FR 74.0 66.9 49.2 88.7 83.0 54.4 93.6 88.1 71.2 73.1 54.8 27.4 -16.30
DeeSIL 73.9 67.5 53.9 92.3 87.5 75.1 93.6 91.1 82.1 65.2 63.4 32.3 -9.22
REMIND 62.2 56.3 44.4 86.8 81.4 69.2 84.5 79.6 69.0 52.7 40.5 25.7 -22.00
Deep-SLDA 70.3 64.5 56.0 90.2 85.4 78.2 89.3 86.4 81.3 68.9 64.4 54.5 -15.40

Joint 92.3 99.2 99.1 91.2 -

Table 4.9 – Top-5 average incremental accuracy (%) for IL methods without memory for past
classes and different numbers of IL states. Best results are in bold.

In Table 4.10, we present the distribution of correct and erroneous predictions across in-
cremental states to have a better understanding of the behavior of distillation in IL. Results
are given for LwF [86], LUCIRCNN [53] and FT initL2 which implement classical distillation,
features-based distillation plus inter-class separation and the reuse of L2-normalized initial clas-
sifier weights, respectively. The authors of [61] noted that distillation induces a bias among past
classes, which leads to confusion between their predictions. This finding is confirmed by the
large number of past-past class confusions e(p, p) associated to LwF in Table 4.10. When ad-
vancing in incremental states, the number of past classes increases. If an error is made while
training the model M1 using the activations of M1 as soft targets, it will be passed on to all
the subsequent incremental states. Consequently, the percentage of e(p, p) errors in Table 4.10
increases in later incremental states. However, the percentage of e(p, p) errors is smaller for
LwF and LUCIRCNN compared to FT initL2 indicating that distillation has a positive effect of
past classes. The addition of the interclass separation in LUCIRCNN removes a part of e(p, p),
and the overall increases significantly c(p), the number of correct predictions for past classes.
We note that, since distillation operates on past class scores, the bias in favor of new classes is
not handled by LwF and LUCIRCNN . Consequently, e(p, n) is the main type of error for the
distillation-based methods. This is explained in Sections 3.3 and 3.4 by the fact that the model
is biased towards new classes, leading to predict past images as belonging to new classes. This
bias is caused by the fact that new classes are well learned with all their data.
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Incremental states S2 S3 S4 S5 S6 S7 S8 S9 S10

ILSVRC
L
U
C
I
R
C
N
N

c(p) 62.4 46.2 36.7 29.1 23.1 18.8 15.8 14.2 13.1
e(p, p) 3.8 9.6 16.2 21.3 23.6 25.2 26.0 30.2 27.9
e(p, n) 33.7 44.3 47.1 49.6 53.3 56.0 58.2 55.7 59.0
c(n) 77.9 79.2 75.2 75.2 77.9 79.4 76.9 80.5 77.7
e(n, n) 17.6 15.7 19.1 17.7 16.5 15.2 16.7 13.9 15.5
e(n, p) 4.5 5.1 5.6 7.0 5.5 5.4 6.4 5.6 6.8

F
T
in
it

L
2

c(p) 5.4 17.1 15.6 16.6 15.3 16.6 13.7 13.1 14.9
e(p, p) 0.6 12.8 10.5 28.2 20.8 47.0 27.6 28.5 55.0
e(p, n) 94.0 70.1 73.9 55.2 63.8 36.4 58.8 58.4 30.1
c(n) 83.7 85.5 81.2 79.9 82.4 78.5 80.9 82.3 74.4
e(n, n) 16.1 11.1 16.5 12.0 13.6 7.2 11.9 10.9 5.9
e(n, p) 0.2 3.4 2.3 8.1 4.0 14.4 7.2 6.7 19.7

L
w
F

c(p) 13.7 11.7 10.6 8.6 6.3 5.6 5.0 4.6 4.4
e(p, p) 6.8 17.8 25.4 25.2 27.1 28.1 32.1 33.9 33.8
e(p, n) 79.6 70.5 64.0 66.1 66.6 66.4 62.9 61.5 61.7
c(n) 70.7 73.4 68.9 70.0 72.7 74.1 70.4 73.7 71.2
e(n, n) 23.2 17.5 19.6 18.0 15.5 15.4 17.1 13.7 14.4
e(n, p) 6.1 9.0 11.4 12.1 11.7 10.5 12.5 12.6 14.4

CIFAR-100

L
U
C
I
R
C
N
N

c(p) 56.7 39.4 25.7 16.8 14.4 14.5 9.4 9.8 6.7
e(p, p) 2.1 10.9 12.8 9.7 20.4 24.5 17.1 23.0 20.0
e(p, n) 41.2 49.6 61.4 73.5 65.1 61.0 73.6 67.2 73.4
c(n) 78.9 84.4 86.9 86.3 86.5 85.3 85.0 85.2 88.2
e(n, n) 13.0 11.2 11.4 11.8 11.4 9.5 11.0 10.3 8.7
e(n, p) 8.1 4.4 1.7 1.9 2.1 5.2 4.0 4.5 3.1

F
T
in
it

L
2

c(p) 0.8 6.7 9.9 8.5 8.1 5.4 7.8 7.5 5.8
e(p, p) 0.0 4.8 9.4 10.6 25.6 12.3 23.2 38.5 19.2
e(p, n) 99.2 88.5 80.7 80.9 66.3 82.3 69.0 54.0 75.0
c(n) 86.7 89.2 87.8 88.2 85.2 88.1 84.0 85.3 90.7
e(n, n) 13.2 9.5 9.2 9.1 8.9 10.2 8.9 6.1 4.6
e(n, p) 0.1 1.3 3.0 2.7 5.9 1.7 7.1 8.6 4.7

L
w
F

c(p) 57.3 47.5 40.3 31.1 28.7 26.6 23.8 22.0 17.7
e(p, p) 8.0 22.6 26.2 32.1 39.8 45.5 46.5 48.5 46.0
e(p, n) 34.7 29.9 33.5 36.8 31.6 27.9 29.7 29.5 36.2
c(n) 72.7 76.4 74.4 74.9 72.6 75.4 70.6 74.6 82.3
e(n, n) 9.9 5.1 3.9 6.9 5.0 4.0 5.6 3.2 2.4
e(n, p) 17.4 18.5 21.7 18.2 22.4 20.6 23.8 22.2 15.3

Table 4.10 – Top-1 correct and wrong classification for LUCIRCNN , FT initL2 and LwF for ILSVRC
and CIFAR-100 with T = 10 and |K| = 0.

In Table 4.9, the comparison of LwF , LUCIRCNN and FT initL2 for T = 10 shows that
LwF has the lowest and highest performance for ILSVRC and CIFAR-100 respectively. The
detailed view in Table 4.10 gives further insights into the structure of results. In this table, c(p)
and c(n) are the correct classification for past/new classes. e(p, p) and e(p, n) are erroneous
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classifications for test samples of past classes mistaken for other past classes and new classes
respectively. e(n, p) and e(n, n) are erroneous classifications for test samples of new classes
mistaken for past classes and other new classes respectively. Since the number of test images
varies across IL states, percentages are calculated separately for test images of past and new
classes in each St to get a quick view of the relative importance of each type of errors. c(p),
e(p, p), and e(p, n) sum to 100% on each column, as do c(n), e(n, n), and e(n, p).

We note that c(p) is higher and e(p, p) is lower for CIFAR-100 compared to ILSVRC, in-
dicating that distillation is much more efficient at a smaller scale. We conclude that distillation
is not always useful in IL. The performance of distilled networks depends on the size of the
dataset, the number of incremental states, and the presence or not of the bounded memory of
the past. It should be used only when the incremental task is known to be characterized by a
favorable combination of these parameters.

Without memory, iCaRL becomes LwF , the method which inspired more recent works
using distillation in IL. LwF init, LwF init

L2 , and LwF init
siw test if the basic hypothesis of ScaIL

regarding the reuse of initial classifier weights applies to a method that integrates distillation.
This use of initial weight leads to a 3 points GIL gain compared to classical LwF . Further
L2 normalization in LwF init

L2 is not efficient. However, standardization of weights in LwF init
siw

improves the results of LwF init with 3.9 points. LUCIRCNN implements a more sophisti-
cated scheme to counter catastrophic forgetting by adding cosine normalization and inter-class
separation on top of knowledge distillation. The two additional components have a significant
decisive role since they provide a 10 points gain compared to LwF . Vanilla FT has no com-
ponent to counter catastrophic forgetting and it has the worst overall performance. The use of
initial classifiers of past classes in FT init provides a very consequent gain over simple FT .
The application of init is much more efficient for FT compared to LwF and even gives nearly
the same results as LwF init

siw , the best variant of LwF . The use of L2 normalization in FT initL2

improves the results of FT init with 2 GIL points, while adding the mean state calibration mc in
FT initL2+mc further gains another 1 GIL points over FT initL2 . The best fine tuning based approach
without memory is FT initsiw+mc from Section 4.2. This approach outperforms the other methods
with a large margin.

Overall, the best results are obtained with the fixed-representation methods because their
dependence on past exemplars is much lower compared to fine-tuning-based methods. In order,
the best global score is obtained by DeeSIL, Deep-SLDA, FR and REMIND. As we men-
tioned, DeeSIL is easier to optimize compared to FR and has a comparable accuracy variation
with Deep-SLDA for most tested configurations. However, DeeSIL provides the best perfor-
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mance when no memory is allowed. The performance of fixed-representation methods drops
when the number of incremental states increases because the initial state includes a lower num-
ber of classes. This is notably the case for CIFAR-100, the smallest dataset tested, where the
fixed-representations have lower performance compared to all variants of LwF for all tested T
values. However, FR, REMIND, Deep-SLDA and DeeSIL have consequently better per-
formance for ILSVRC, VGGFACE2, and LANDMARKS where their initial representations are
trained with at least 20 classes.

The analysis of individual datasets shows that LwF variants have a strong performance
for CIFAR-100, the smallest one among the four tested. LwF scales worse than LUCIRCNN ,
which is better for the three larger datasets. The performance inversion is probably explained
by the handling of inter-class separation in LUCIR. This indicates that knowledge distillation
alone does not scale well because when the number of past classes increases, the confusions
between them hamper the performance of the method.

4.4.5 Conclusion

When no memory is allowed, fixed-representation methods are globally much more compet-
itive than fine-tuning ones while also being simpler and faster to deploy. They are particularly
advantageous for large datasets, where distillation-based methods fail to scale-up. This finding
is surprising insofar fixed-representation methods exploit a classical transfer learning scheme.
They do not update models across incremental states and were considered less apt for usage in
IL without memory [128]. We note that these methods work better than distillation-based IL
algorithms even when initial representations are learned with a few dozens of classes.

4.5 General Conclusion

In this chapter, we showed that class IL becomes a more challenging task without a memory
of the past because no images are replayed for past classes, leading to a stronger forgetting.
We proposed SIW and TransIL, two IL methods that can be applied on top of many other
methods. The former necessitates a backbone method where the classification layer is fully
connected, and the latter necessitates a backbone method designed for bias correction. Obtained
results are promising and more efforts are needed from the community to further improve IL
without memory. This scenario is more interesting in real-life problems where the memory is
likely to be unavailable.
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CHAPTER 5

CONCLUSION

5.1 General discussion

In this thesis, we are interested in tackling the catastrophic forgetting problem for class-
incremental learning. We defined in Chapter 1 six desirable properties that qualify an AI system
to be class-incremental. Mainly its ability to: (1) correctly classify both past and new images,
(2) be scalable, (3) integrate new classes promptly, (4) make a compromise between plasticity
and stability, (5) keep the model complexity constant through the time and (6) work with or
without a bounded memory of the past. These properties are hard to satisfy at the same time.
Depending on the application domain, one or many properties can be discarded in order for
the system to work. For instance, in health applications, it is often the case that data cannot be
passed between incremental states for regulatory reasons. In this case, it is crucial to update
the model’s capacity without having access to data from the past. Alternatively, in embedding
systems, both memory and computational requirements should be minimized. The scalability in
such systems might not be as crucial as the timeliness to integrate new knowledge while keeping
the resources bounded. When there is no significant domain shift between classes learned offline
and classes learned incrementally, fixed representations are a good option because they keep
the model stable across time. This can, for instance, be the case of face recognition models
integrated into media applications. Here, the update needs to be very fast to follow the pace of
news, and an initial model can ensure an efficient transfer of deep face representations. They are
particularly interesting when learned on sufficiently large and diversified initial datasets [160,
161]. However, when the classes learned incrementally are visually different from the initial
ones, the performance of fixed representations drops drastically, and the knowledge transfer
fails. Ultimately, the choice between different types of incremental learning methods is driven
by the concrete constraints of the envisioned application.
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Contributions overview

In this thesis, we propose one fixed-representation-based method which works with and
without memory of the past, and four fine-tuning-based methods, out of which two require a
memory of the past, and the other two do not. While simple, our methods achieve competitive
results compared to methods from the state of the art.

DeeSIL [12] consists of (1) a deep feature extractor (DFE) trained on the classes of the first
non-incremental state, and (2) a set of SVMs [19], where the number is equal to the number of
classes learned in the incremental states. the DFE is used to extract features of images of all
classes seen during all the incremental process, and the SVMs are trained using the extracted
feature vectors. Each SVM is used to learn one class, where the positives are the feature vectors
of the class, and the negatives are selected depending if we use a memory of the past or not:

— When a memory of the past is allowed, the negatives are selected among the feature vec-
tors of past classes. This is interesting insofar as the features are much more compact then
the images themselves.

— When no memory of the past is allowed, the negatives are selected among the feature
vectors of classes learned in the same incremental state as the class that is currently being
learned

DeeSIL is useful in class-incremental learning when the data is shuffled to be i.i.d. How-
ever, it fails in task-incremental scenarios, where the incremental tasks are likely to be visually
different from the first task. The other proposed FT-based approaches are presented briefly in
the next two subsections.

When a memory is allowed, we found that the widely used distillation loss [128, 24, 53,
52, 61] is not necessary for large-scale IL systems. The conducted experiments showed that this
distillation is useful for the medium-scale CIFAR-100 dataset. However, when tested on large
datasets such as ILSVRC [135], Google Landmarks [108] and VGGFace2 [22] that contain
1000 classes, distillation leads to confusions among past classes. Practically, this means that the
number of past testing images predicted as belonging to wrong past classes is large compared
to the other type of errors. These results are at odds with the ones usually reported in class IL
literature which originate from a biased comparison from [128]. There, the authors claimed that
iCaRL is more competitive than a vanilla fine tuning on ILSVRC. Their comparison was not
fair as vanilla fine tuning was implemented without a memory of the past, while iCaRL used
such a memory. Our findings were later confirmed by [101] that did extensive experiments on a
range of class IL systems with and without memory.
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The use of a bounded memory of the past leads to an imbalanced learning that worsens as
more incremental states are encountered. This is mainly because new classes are always learned
with all their data, while fewer exemplars are replayed for past classes at each incremental state.
This imbalance in data leads to recency bias, the tendency of neural networks to be biased
in favor of the most recent task (or group of classes). In practice, recency bias refers to the
imbalance in favor of new classes compared to past ones during inference. The experiments
conducted in Chapter 3 show that the gap between the mean prediction scores of past and new
classes is large and needs to be addressed. We thus propose:

— Il2M [13] - aims to reduce the prediction bias by rectifying past classes’ scores and
make them more comparable to those of new classes. The scores rectification is done
using scores statistics saved in a secondary memory.

— ScaIL [14] - operates at the level of the weights matrix of the last fully connected layer
of a CNN. We show that using past classes embeddings from the initial states in which
they were learned for the first time is beneficial. We further add weights normalization
based on classes statistics to make past and new classes embeddings comparable.

Both IL2M and ScaIL showed good performance, with the latter performing better in
most cases. This is not surprising because ScaIL handles catastrophic forgetting at a deeper
level instead of directly rectifying prediction scores.

Without a memory of the past, our experiments confirmed that that distillation is benefi-
cial for medium-scale and large-scale datasets. LwF [86] and LUCIR [53] clearly outperform
vanilla fine tuning based approaches. DeeSIL is the best memoryless IL system that we pro-
posed. It outperforms methods that use distillation (such as LwF [86]) or even more sophisti-
cated objectives (LUCIR [53]). It also outperforms online learning methods that are based on
a fixed-representation (Deep-SLDA [47] and REMIND [48]). The latter two methods are
interesting when the task boundaries are unknown, and the system can only see each training
example once during all the training process. When evaluated online [47], these methods are
competitive against the state of the art.

When using fine tuning as a backbone for class-IL, we propose two methods that can be
implemented on top of memoryless IL methods to further improve their performance:

— SIW [16] - this approach is inspired by ScaIL. It makes use of past classes embed-
dings from their initial states. The main difference with ScaIL is the normalization of the
modified weights matrix. In SIW , we use a simple standardization of all classes embed-
dings since they follow a normal distribution. This approach largely improves results of a
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vanilla fine tuning, LwF [86], and a memoryless version of LUCIR [53].

— TransIL [155] - adaptsBiC [174] for usage in a memoryless IL setting.BiC shows very
competitive performance against the most recent state-of-the-art methods. However, the
dependency of this method on a validation set makes it unusable in incremental learning
without memory since no exemplars of past classes are available. Instead, we propose to
trainBiC offline on reference datasets using a validation set and later transfer the calibra-
tion parameters in an online fashion to target datasets trained incrementally. The method
achieves consequent gain compared to backbone methods, especially LUCIR [53] and
LwF [86].

The proposed methods are very useful when we cannot keep past images for memory is-
sues or confidential restrictions. While the FT-based methods behave well compared to others
from this category, they still lag behind fixed representations, such as DeeSIL. This finding is
somewhat frustrating but also a recall that simple methods should be tried first.

Memory footprint of proposed methods

In Table 5.1, we present an overview of the additional storage (AS) of all our proposed meth-
ods when learning a total of NT = 1000 classes. This storage mainly concerns the secondary
memory that we use to save statistics, embeddings, or calibration parameters.

Method
Additional Storage (AS)

in float
AS for NT = 1000

T = 5 T = 10 T = 20 T = 50 T = 100
DeeSIL 0 0 0 0 0 0

IL2M T +NT 4.02 KB 4.04 KB 4.08 KB 4.2 KB 4.4 KB
ScaIL NT ×D 2.05 MB 2.05 MB 2.05 MB 2.05 MB 2.05 MB

SIW T +NT ×D 2.05 MB 2.05 MB 2.05 MB 2.05 MB 2.05 MB
TransIL (AdBiC) R× (T + 2)× (T − 1) 1.12 KB 4.32 KB 16.72 KB 101.92 KB 403.92 KB
TransIL (BiC) 2×R× (T − 1) 320 B 720 B 1.52 KB 3.92 KB 7.92 KB

Table 5.1 – Additional Storage (AS) in floats of our proposed IL approaches with and without
a bounded memory K of the past. In our experiments conducted in Chapters 3 and 4, we use a
ResNet-18 architecture where D = 512 is the size of the feature vector at the penultimate layer.
For TransIL, we use R = 10 reference datasets. If we save the mean values of calibration
parameters, we divide the memory footprint of TranSIL by R. Note that one floating-point
occupies 4 Bytes in the disk.

DeeSIL does not use a secondary memory. Therefore, it has no additional storage. In
IL2M , we store one float for each class (its mean classification score) and one float by state

150



(the model’s confidence). The additional footprint is thus negligible. For instance, if T = 100,
only 4.4 KB is needed for the secondary memory. In ScaIL, we save class embeddings in their
initial states, where the memory needed does not depend on the number of incremental states.
To learn 1000 classes, only 2 MB is needed as additional storage. SIW shares the same spirit
as ScaIL insofar as we save the class embeddings. In addition, we save one float by state (the
model’s confidence) to perform state calibration, which is negligible.

Finally, TransIL stores calibration parameters whose memory footprint depends on (1) the
bias correction method used (BiC or AdBiC), (2) the number of incremental states, and (3) if
all α and β parameters are saved, or only their respective means. The worst case would be to
use AdBiC as a bias correction method and saving all calibration parameters. To learn 1000
classes while varying the number of states between 5 and 100 requires a small memory size
(from 1.12 KB to 404 KB). Alternatively, the best case would be to use BiC [174] as a bias
correction method and saving only the average values of calibration parameters. In this case,
the memory footprint varies between 32 Bytes and 792 Bytes. In both best and worst cases, the
memory used by TransIL is negligible.

Knowledge-distillation based approaches [128, 24, 53, 174, 189] require saving both previ-
ous (teacher) and current (student) models. However, all our methods require saving the current
model only (86 Megabytes for a ResNet [51] architecture), thus halving the storage needed to
run other methods. ForDeeSIL, we store one SVM per class in addition to the feature extractor.
The size of one SVM is 8 Kilobytes and is equivalent to the increase in the CNN architecture
when we add one neuron per class in the classification layer. Thus, DeeSIL also keeps the
memory of the model bounded.

Contrarily to SIW and TransIL, both IL2M and ScaIL need a memory of the past. The
latter occupies 2.29 GB when having K = 20000 exemplars for the ILSVRC [135] dataset.
Note that this size corresponds to the size of the real image in the disk and can be reduced
by compressing the images files. The memory is optional in DeeSIL. When no memory is
allowed, no additional storage is needed for the past. When a memory is allowed, feature vectors
are stored instead of images. The advantage of feature vectors is their limited size compared to
images, as they contain, in the case of a ResNet-18 [51], 512 floating points. In such a case, the
memory occupies 40 MB only. This size is negligible compared to the images memory used by
other approaches, making DeeSIL a good choice for applications where memory restrictions
are imposed.
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State-of-the-art schema after our proposed approaches

As we showed above, our proposed methods have a varying storage size for the model,
exemplars memory, and secondary memory. This gives a wide choice to the user to select the
method that is more suitable for the application domain. We bring the Figure 2.1 from Chapter 2
and enrich it with our proposed methods.

Figure 5.1 – State-of-the-art approaches after adding our proposed approaches (in red). To be
compared to Figure 2.1. Best viewed in color.

To the best of our knowledge, DeeSIL is one of the first methods that apply transfer learn-
ing on class-incremental learning. Other methods were released later and are based on a com-
bination of transfer learning and bio-inspiration: FearNet [66], REMIND [48], and Deep-
SLDA [47]. The first method combines TL with auto-encoders to generate past class data,
while the two others use memory consolidation to learn online. IL2M and ScaIL are from the
few works that handle class-incremental learning as an imbalanced learning, and combine the
exemplars memory with bias-removal techniques to tackle catastrophic forgetting. SIW and
TransIL tackle the recency bias without having access to exemplars memory. Globally, our
work is focused on proposing methods that ally simplicity and strong performance in class IL
with and without memory. Their empirical comparison with many competing methods shows
that this global objective is achieved since state-of-the-art performance, at the time of publica-
tion, is achieved in most cases while reducing the global memory footprint.
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5.2 Directions for future research

The performance of incremental learning methods is getting closer to that of standard learn-
ing, where all data from all classes is assumed to be available at all times. However, the catas-
trophic forgetting problem is far from being solved, especially at a large scale. Most of the
existing systems [128, 24, 53, 52, 61] use a memory of the past. Note that, in real-life scenarios,
a memory is not always allowed. In addition, memory-dependent algorithms tend to do not scale
well when more and more classes won’t have representatives to be replayed for them when the
maximum size of the memory is reached.

Class-incremental learning without memory is understudied in literature and we believe that
more effort should be allocated to it. To the best of knowledge the only available such methods
are those we proposed in addition to: Learning without Memorizing [34], Learning without

Forgetting (LwF ) [86], Deep-SLDA [47], Semantic Drift Compensation (SDC) [182], and
Always Be Dreaming (AbD) [156]. We could adapt other methods to a memoryless setting
(REMIND [48] and LUCIR [53]), but this number of IL systems is negligible compared to
those that rely on a memory of the past.

Handling class IL as an imbalanced learning problem provides very interesting results with
or without the use of a distillation component (IL2M (Section 3.3) ScaIL (Section 3.4), BiC
[174] and AdBiC (Section 4.3)). It would be interesting to investigate more sophisticated bias
reduction schemes to improve performance further. Also, a more in-depth investigation of why
distillation fails to work for large-scale datasets is needed. The empirical findings reported in
this thesis should be complemented with more theoretical analysis to improve the understanding
of this phenomenon.

Last but not least, the results obtained with a herding-based selection of exemplars are better
than a random selection for all methods tested. Further work in this direction could follow up
on [89] and investigate in more depth which exemplar distribution is optimal for replay.

Finally, the evaluation scenario should be made more realistic by:

— dropping the strong hypothesis that new data are readily annotated when they are streamed

— using a variable number of classes in each incremental state. This case is more realistic
as the data can be streamed in a random way

— working with imbalanced datasets which are more likely to occur in real-life applications
than the controlled datasets tested until now by the community

— handling individual samples instead of classes, where samples of past and new classes are
mixed (domain-incremental learning [50])
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— aggregating works from class-incremental learning and new class discovery [190, 191]
to make the whole process more realistic. Here, we would have systems that learn dy-
namically in a much more autonomous way. This is one step further beyond combining
class-incremental learning with active learning

The above-mentioned items are interesting and should be addressed for seamless usage of
IL in practice as in [105].
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APPENDIX B

DATASETS AND IMPLEMENTATION

DETAILS

B.1 Datasets

To facilitate reproducibility, we chose to perform the evaluation with public datasets.

DeeSIL (Section 3.2)

We use ILSVRC [135] dataset for our experiments. This dataset is described in details with
datasets used to evaluate IL2M below.

IL2M (Section 3.3)

The datasets used in the evaluation are designed for three visual classification tasks: object,
face and tourist landmark recognition. The main statistics of these datasets are provided in
Table B.1.

— ILSVRC [135] is the well known subset of ImageNet used in the ILSVRC competitions
and is reused here. The statistics from Table B.1 show that the training set is well bal-
anced, with an average of 1231.2 images per class and a 70.2 standard deviation. The
dataset is available for download from http://image-net.org/download.

— VGGFACE2 [22] is a recent dataset focused on face recognition. It includes over 9000
unique identities. We selected the 1000 identities which have the largest number of as-
sociated images for the evaluation in order to have a dataset similar in size to ILSVRC.
VGGFACE2 is well balanced and includes a mean of 491.7 images per class, with 49.4
standard deviation. The dataset includes loosely cropped face images and, following the
usual face recognition pipeline, we extracted tighter crops before training and testing.
Face detection was done using the publicly available MTCNN [187] framework. The
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dataset is available for download from http://www.robots.ox.ac.uk/~vgg/

data/vgg_face2/.

— Google Landmarks [108] (also called LANDMARKS) is a dataset built for tourist land-
mark recognition. It includes over 2 million images for over 30000 landmarks across the
world. Again, we selected the 1000 landmarks which have the largest number of associ-
ated images for the evaluation. The selected train subset is more imbalanced than ILSVRC
and VGGFACE2, with a mean number of 374.4 images per class and 103.8 standard de-
viation. The dataset is available for download from https://www.kaggle.com/

google/google-landmarks-dataset

Dataset #Train #Test #Classes µ(train) σ(train)

ILSVRC [135] 1,231,167 50,000 1,000 1231.2 70.2

VGGFACE2 [22] 491,746 50,000 1,000 491.7 49.4

LANDMARKS [108] 374,367 20,000 1,000 374.4 103.8

Table B.1 – Summary of the datasets used in IL2M evaluation. µ is the mean number of train
images per class and σ is the standard deviation of the number of train images per class

ScaIL (Section 3.4)

We use the same datasets used to evaluate IL2M , and we add CIFAR-100 (Table B.2):

— CIFAR-100 [74]: object recognition dataset including 100 classes, with 500 training and
100 test images each.

Dataset #Train #Test #Classes µ(train) σ(train)

CIFAR-100 [74] 50,000 10,000 100 500.00 0.00

Table B.2 – Main statistics for the CIFAR-100 evaluation dataset. Other datasets were described
previously in Table B.1. µ is the mean number of train images per class and σ is the standard
deviation of the number of train images per class

Class-incremental methods study (Section 3.5)

We use the same datasets used to evaluate IL2M and ScaIL described above.
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Active class-incremental learning (Section 3.6)

— IMAGENET-100 - dataset for fine grained object recognition consisting of a subset of
100 randomly selected leaf classes from ImageNet [32] which have at least 50 training
images and are not present in the ILSVRC subset [135].

— FACES-100 - face recognition dataset consisting of a subset of randomly selected 100
identities from VGG-Face2 [22] with at least 30 training images.

— FOOD-100 - dataset built using 100 classes from Food-101 [20] for fine-grained food
recognition [20]. Since the initial dataset is perfectly balanced, an imbalance induction
procedure was applied by removing a variable number of training samples keeping at
least 25 images per class.

— CIFAR-100 - dataset for object recognition used in its original version [74] which is
perfectly balanced.

The main statistics of experimental datasets are in Table B.3. We provide the coefficient of
variation cv = σ

µ
, with σ the standard deviation and µ the mean of the distribution of samples

per class. cv provides information about the degree of imbalance associated to each dataset. The
larger this value is, the more imbalanced the dataset will be.

Dataset Classes Train Test µ(train) σ(train) cv

IMAGENET-100 100 50000 5K 500.0 376.17 0.7523

FACES-100 100 23237 5K 232.37 167.68 0.7216

FOOD-100 100 22374 10K 223.74 177.66 0.7940

CIFAR-100 100 50000 10K 500.0 0.0 0.0

Table B.3 – Dataset statistics. cv is the coefficient of variation defined as cv = σ
µ

. µ is the mean
number of train images per class and σ is the standard deviation of the number of train images
per class

SIW (Section 4.2)

We use the same datasets used to evaluate IL2M and ScaIL described above.
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TransIL (Section 4.3)

Reference datasets. We use 10 reference datasets, each including 100 randomly chosen leaf
classes from ImageNet [32], with a 500/200 train/val split per class. There is no intersection
between these datasets, as each class appears only in one of them.

Target datasets. We test TransIL with four target datasets. They were selected to include
different types of visual content and thus test the robustness of the parameter transfer. The class
samples from the target datasets are split into 500/100 train/test subsets respectively. There is no
intersection between the classes from the reference datasets and the two target datasets, which
are sampled from ImageNet. We describe target datasets hereafter:

— CIFAR-100 [74] - object recognition dataset. It focuses on commonsense classes and is
relevant for basic level classification in the sense of [131].

— IMN-100 - subset of ImageNet [32] which includes 100 randomly selected leaf classes.
It is built with the same procedure used for reference datasets and is thus most similar to
them. IMN-100 is relevant for fine-grained classification with a diversity of classes.

— BIRDS-100 - dataset built using 100 bird classes from ImageNet [32]. It is thus relevant
for domain-specific fine-grained classification.

— FOOD-100 - dataset built using 100 food classes from Food-101 [20]. It is also a fine-
grained and domain-specific dataset. It is interesting insofar as it is independent from
ImageNet.

— PLACES-100 - Scene recognition dataset that contains 100 randomly chosen classes
from the original Places-365 dataset [192].

We provide in Table B.4 the lists of classes contained in each of the target datasets we
used for evaluation. Overall, IMN-100, the randomly sampled set of 100 leaf classes from Im-
agenet [32], is more diversified than CIFAR-100, which mostly contains animal classes. IMN-
100 is visually varied between different types of objects, foods, animals, vehicles, clothes and
events. CIFAR-100 contains, in addition to animals, some types of objects and vehicles. Note
that even if IMN-100 and CIFAR-100 are both specialized in object recognition, they do not
share the same data distribution. The BIRDS-100 dataset (extracted from ImageNet [32]) is
finer-grained and more specialized than IMN-100 and CIFAR-100. PLACES-100 and FOOD-
100 are target datasets which have a larger domain shift with ImageNet classes, and are thus
useful to test the robustness of our method against domain variation.

Similarly to IMN-100, reference datasets are random subsets of ImageNet leaves. They
contain various object types and are useful for knowledge transfer.

160



Classes names
CIFAR-100 Apple, Aquarium fish, Baby, Bear, Beaver, Bed, Bee, Beetle, Bicycle, Bottle, Bowl, Boy, Bridge,

Bus, Butterfly, Camel, Can, Castle, Caterpillar, Cattle, Chair, Chimpanzee, Clock, Cloud, Cock-
roach, Couch, Crab, Crocodile, Cup, Dinosaur, Dolphin, Elephant, Flatfish, Forest, Fox, Girl,
Hamster, House, Kangaroo, Keyboard, Lamp, Lawn mower, Leopard, Lion, Lizard, Lobster, Man,
Maple tree, Motorcycle, Mountain, Mouse, Mushroom, Oak tree, Orange, Orchid, Otter, Palm
tree, Pear, Pickup truck, Pine tree, Plain, Plate, Poppy, Porcupine, Possum, Rabbit, Raccoon, Ray,
Road, Rocket, Rose, Sea, Seal, Shark, Shrew, Skunk, Skyscraper, Snail, Snake, Spider, Squir-
rel, Streetcar, Sunflower, Sweet pepper, Table, Tank, Telephone, Television, Tiger, Tractor, Train,
Trout, Tulip, Turtle, Wardrobe, Whale, Willow tree, Wolf, Woman, Worm

IMN-100 Bletilla striata, Christmas stocking, Cognac, European sandpiper, European turkey oak, Friesian,
Japanese deer, Luger, Sitka spruce, Tennessee walker, Torrey pine, Baguet, Bald eagle, Barn
owl, Bass guitar, Bathrobe, Batting helmet, Bee eater, Blue gum, Blue whale, Bones, Borage,
Brass, Caftan, Candytuft, Carthorse, Cattle egret, Cayenne, Chairlift, Chicory, Cliff dwelling,
Cocktail dress, Commuter, Concert grand, Crazy quilt, Delivery truck, Detached house, Dispen-
sary, Drawing room, Dress hat, Drone, Frigate bird, Frozen custard, Gemsbok, Giant kangaroo,
Guava, Hamburger bun, Hawfinch, Hill myna, Howler monkey, Huisache, Jennet, Jodhpurs, Lad-
der truck, Loaner, Micrometer, Mink, Moorhen, Moorhen, Moped, Mortarboard, Mosquito net,
Mountain zebra, Muffler, Musk ox, Obelisk, Opera, Ostrich, Ox, Oximeter, Playpen, Post oak,
Purple-fringed orchid, Purple willow, Quaking aspen, Ragged robin, Raven, Redpoll, Repository,
Roll-on, Scatter rug, Shopping cart, Shower curtain, Slip-on, Spider orchid, Sports car, Steam
iron, Stole, Stuffed mushroom, Subcompact, Sundial, Tabby, Tabi, Tank car, Tramway, Unicycle,
Wagtail, Walker, Window frame, Wood anemone

BIRDS-100 American bittern, American coot, Atlantic puffin, Baltimore oriole, Barrow’s goldeneye, Be-
wick’s swan, Bullock’s oriole, California quail, Eurasian kingfisher, European gallinule, Eu-
ropean sandpiper, Orpington, Amazon, Barn owl, Black-crowned night heron, Black-necked
stilt, Black-winged stilt, Black swan, Black vulture, Black vulture, Blue peafowl, Brambling,
Bufflehead, Buzzard, Cassowary, Cockerel, Common spoonbill, Crossbill, Duckling, Eastern
kingbird, Emperor penguin, Fairy bluebird, Fishing eagle, Fulmar, Gamecock, Golden pheas-
ant, Goosander, Goshawk, Great crested grebe, Great horned owl, Great white heron, Greater
yellowlegs, Greenshank, Gyrfalcon, Hawfinch, Hedge sparrow, Hen, Honey buzzard, Hornbill,
Kestrel, Kookaburra, Lapwing, Least sandpiper, Little blue heron, Little egret, Macaw, Mandarin
duck, Marsh hawk, Moorhen, Mourning dove, Muscovy duck, Mute swan, Ostrich, Owlet, Oyster-
catcher, Pochard, Raven, Red-legged partridge, Red-winged blackbird, Robin, Robin, Rock hop-
per, Roseate spoonbill, Ruby-crowned kinglet, Ruffed grouse, Sanderling, Screech owl, Screech
owl, Sedge warbler, Shoveler, Siskin, Snow goose, Snowy egret, Song thrush, Spotted flycatcher,
Spotted owl, Sulphur-crested cockatoo, Thrush nightingale, Tropic bird, Tufted puffin, Turkey
cock, Weka, Whistling swan, White-breasted nuthatch, White-crowned sparrow, White-throated
sparrow, White stork, Whole snipe, Wood ibis, Wood pigeon.
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FOOD-100 Apple pie, Baby back ribs, Baklava, Beef carpaccio, Beef tartare, Beet salad, Beignets, Bibimbap,
Bread pudding, Breakfast burrito, Bruschetta, Caesar salad, Cannoli, Caprese salad, Carrot cake,
Ceviche, Cheese plate, Cheesecake, Chicken curry, Chicken quesadilla, Chicken wings, Choco-
late cake, Chocolate mousse, Churros, Clam chowder, Club sandwich, Crab cakes, Creme brulee,
Croque madame, Cup cakes, Deviled eggs, Donuts, Dumplings, Edamame, Eggs benedict, Escar-
gots, Falafel, Filet mignon, Fish and chips, Foie gras, French fries, French onion soup, French
toast, Fried calamari, Fried rice, Frozen yogurt, Garlic bread, Gnocchi, Greek salad, Grilled
cheese sandwich, Grilled salmon, Guacamole, Gyoza, Hamburger, Hot and sour soup, Hot dog,
Huevos rancheros, Hummus, Ice cream, Lasagna, Lobster bisque, Lobster roll sandwich, Mac-
aroni and cheese, Macarons, Miso soup, Mussels, Nachos, Omelette, Onion rings, Oysters, Pad
thai, Paella, Pancakes, Panna cotta, Peking duck, Pho, Pizza, Pork chop, Poutine, Prime rib, Pulled
pork sandwich, Ramen, Ravioli, Red velvet cake, Risotto, Samosa, Sashimi, Scallops, Seaweed
salad, Shrimp and grits, Spaghetti bolognese, Spaghetti carbonara, Spring rolls, Steak, Strawberry
shortcake, Sushi, Tacos, Takoyaki, Tiramisu, Tuna tartare

PLACES-100 Airplane cabin, Amphitheater, Amusement arcade, Aqueduct, Arcade, Archaelogical excavation,
Archive, Arena performance, Attic, Bamboo forest, Bar, Barn, Baseball field, Bazaar outdoor,
Beach, Beach house, Beauty salon, Bedroom, Bookstore, Bus interior, Cafeteria, Castle, Chem-
istry lab, Church outdoor, Cliff, Corridor, Courthouse, Crevasse, Department store, Desert sand,
Desert vegetation, Dining room, Dorm room, Drugstore, Elevator lobby, Elevator shaft, Entrance
hall, Escalator indoor, Farm, Field cultivated, Field wild, Florist shop indoor, Food court, Foun-
tain, Garage indoor, Gazebo exterior, Golf course, Hangar outdoor, Harbor, Hardware store,
Hayfield, Heliport, Highway, Home theater, Hospital room, Hot spring, Hotel outdoor, Hunt-
ing lodge outdoor, Ice skating rink indoor, Junkyard, Kasbah, Kitchen, Lagoon, Lake natural,
Marsh, Mosque outdoor, Oast house, Office cubicles, Pagoda, Park, Pavilion, Physics laboratory,
Pier, Porch, Racecourse, Residential neighborhood, Restaurant, Rice paddy, Rock arch, Ruin,
Sauna, Server room, Shed, Shopfront, Storage room, Sushi bar, Television room, Television stu-
dio, Throne room, Topiary garden, Tower, Tree house, Trench, Underwater ocean deep, Waiting
room, Water park, Waterfall, Wet bar, Windmill, Zen garden

Table B.4 – Classes names of target datasets listed by alphabetical order

B.2 Implementation details

All our method are implemented in Pytorch [118] using a ResNet-18 architecture [51] with
an SGD optimizer. Training images are processed using randomly resized 224 × 224 crops,
horizontal flipping, and are normalized afterward. Given the difference in scale and the number
of images between CIFAR100 and the other datasets, we found that a different parametriza-
tion was needed for this dataset. Note that the parameters’ values presented below are largely
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inspired by the original ones given in [51].

— Joint: Used to train the model on the first batch of classes, and also on the whole datasets
to establish the upper bound. For ILSVRC, VGGFACE2 and LANDMARKS, Joint is run
for 120 epochs with batch size = 256, momentum = 0.9 and weight decay = 0.0001.
The lr is set to 0.1 and is divided by 10 when the error plateaus for 10 consecutive epochs.
For CIFAR100, Joint is run for 300 epochs with batch size = 128, momentum = 0.9
and weight decay = 0.0005. The lr is set to 0.1 and is divided by 10 when the error
plateaus for 60 consecutive epochs.

— FT: fine-tuning backbone (without distillation) used in IL2M , ScaIL, SIW . For ILSVRC,
VGGFACE2 and LANDMARKS, IL models are trained for 35 epochs with batch size =
256, momentum = 0.9 and weight decay = 0.0001. The learning rate is set to lr =
0.1/t at the beginning of each incremental state St and is divided by 10 when the error
plateaus for 5 consecutive epochs. For CIFAR-100, IL models are trained for 70 epochs
with batch size = 128, momentum = 0.9 and weight decay = 0.0005. The learning
rate is set to lr = 0.1/t at the beginning of each incremental state St and is divided by 10
when the error plateaus for 15 consecutive epochs.

— FR: fixed representation. The model of the first is trained using Joint above, and incre-
mentally, it is trained exactly as FT .

— REMIND [48], Deep-SLDA [47], BiC [174] and LUCIR [53] are run using the optimal
parameters of the public implementations provided in the original papers.

— iCaRL [128] - is run using the code from [53] since it provides better performance than
the original implementation. LwF [86] is run using the code from [128] (the only baseline
implemented in TensorFlow [2]).

— DeeSIL (Section 3.2) - The deep feature extractor is trained in the same manner as Joint
described above. The SVMs in DeeSIL are implemented using LinearSVC solver from
Scikit-Learn toolbox [119]. The SVMs were optimized with 20 images per class for vali-
dation. We vary values of the regularization parameter between 0.0001 and 1000 and the
optimal parameter was then used in each variant of the system.

— IL2M (Section 3.3), ScaIL (Section 3.4), and SIW (Section 4.2) - these methods are
based on a fine-tuning without distillation backbone (FT ), described above. Since the
three methods are applied during inference only, we perform an end-to-end training of
the deep neural network. Later, we extract testing features and store them on the disk to
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be able to run the score calibration on a CPU. The same implementation process goes for
all methods that are implemented on top of fine tuning, such as FT th, FT init..., etc.

— TransIL (Section 4.3) - The correction of raw output scores is done in the same way
for all methods. After the extraction of raw scores and corresponding labels for models
learned in each incremental state, batches are fed into a PyTorch [118] module which
performs the optimization of adBiC parameters, or the transfer of previously learned pa-
rameters depending on the setting. Following [101], adBiC layers are implemented as
pairs of parameters and optimized simply through backpropagation. Parameters αks , β

k
s

corresponding to each incremental state s are optimized for 300 epochs, with the Adam
[69] optimizer and a starting learning rate of 10−3. An L2-penalty is added to the loss
given in Equation 4.9, with a lambda of 5 · 10−3 for α parameters and 5 · 10−2 for β
parameters.

To facilitate reproducibility, dataset details and the code of all tested approaches and their
adaptations are publicly available at: https://github.com/EdenBelouadah/class-\
incremental-learning/
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APPENDIX C

RÉSUMÉ EN FRANÇAIS

C.1 Introduction

Dans notre monde complexe, de nombreux domaines technologiques évoluent à une vitesse
fulgurante qui nécessite de suivre leur rythme de développement. Ce dernier s’est accompagné
d’une augmentation significative de la quantité de données, notamment avec l’avènement du
big data [1]. En termes simples, l’intelligence artificielle (IA) est devenue omniprésente, et
son intégration dans les applications de la vie quotidienne va devenir encore plus prévalente à
l’avenir [93].

Les réseaux de neurones sont les systèmes les plus populaires en intelligence artificielle.
Leur développement est basé sur plusieurs spécialités multidisciplinaire comme l’informatique,
les mathématiques, la science cognitive, les statistiques, la psychologie et les neurosciences. Les
réseaux neuronaux apprennent à partir d’exemples, et plus ils rencontrent d’exemples pertinents,
meilleure est leur expérience, et donc leur performance. Dans cette thèse, nous nous intéressons
à la classification d’images avec des réseaux de neurones convolutifs profonds [80].

Les agents artificiels standards sont conçus pour être entraînés de manière statique. En re-
vanche, les données du monde réel sont souvent dynamiques [6] et les agents artificiels devraient
être capables d’ingérer de nouvelles informations sans avoir à être entraînés à partir du zéro. En
d’autres termes, il ne suffit pas que les systèmes d’IA apprennent, mais il est important qu’ils
apprennent en permanence. Cette façon d’apprendre est appelée apprentissage incrémental (IL).
Ce dernier est intéressant car il réduit les besoins en calcul et l’empreinte mémoire. La limita-
tion de la mémoire est souvent rencontrée en robotique [83], dans les systèmes embarqués et
dans le domaine médical pour des contraintes de confidentialité.

L’apprentissage incrémental serait facile si le réapprentissage à partir du zéro est autorisé,
mais devient très difficile dans le cas contraire. Les auteurs de [102] ont remarqué ce qu’ils
appellent l’oubli catastrophique, un phénomène dont souffrent les systèmes enraînés par rétro-
propagation. L’oubli catastrophique (CF) est la tendance des réseaux neuronaux à oublier les
connaissances antérieures lorsqu’ils tentent d’en intégrer de nouvelles.
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D’autres défis liés à l’apprentissage incrémental concernent:

— La complexité - Seulement la couche de classification doit augmenter pour pouvoir clas-
sifier les nouvelles classes.

— La mémoire - Le système doit être capable de fonctionner sans mémoire du passé, ou
avec une mémoire limitée.

— La précision - Le système doit être performant non seulement sur les nouvelles classes,
mais aussi sur les anciennes.

— La rapidité - Le temps nécessaire pour inclure les nouvelles classes doit être limité.

— Le compromis entre la plasticité et la stablité - Le système doit s’adapter à la distribu-
tion des nouvelles données et au même temps garder autant d’information que possible
du passé.

— Le passage à l’échelle - Le système doit être capable d’apprendre un nombre illimité de
classes.

Finalement, il existe d’autres défis tels que: la non-annotation des données nouvelles, le
déséquilibre des données au sein des nouvelles classes, la taille des batches de classes..., etc.

Dans cette thèse, nous nous concentrons sur les approches qui gardent la complexité du
modèle fixe et qui fonctionnent avec et sans mémoire limitée du passé. Nous proposons une
méthode qui favorise la stabilité, et quatre méthodes qui équilibrent la stabilité et la plasticité
du réseau. L’objectif de nos contributions est de réduire l’écart en performance par rapport à un
apprentissage standard où toutes les données de toutes les classes sont disponibles.

C.2 Formalisation du problème

Nous proposons une formalisation unifiée de l’apprentissage incrémental qui s’appuie sur
celles introduites dans [86, 128, 24]. On note T le nombre total d’états. Le premier est ap-
pelé état initial, et les T − 1 états restants sont incrémentaux. Un ensemble de Pt nouvelles
classes est appris dans l’état St. Les états ne se chevauchent pas dans les classes, c’est-à-
dire qu’une classe n’est apprise initialement avec toutes ses données qu’une seule fois pen-
dant tout le processus d’apprentissage. Un modèleM1 est initialement appris sur un ensemble
d’apprentissage X1 = {X1

1 , X
2
1 , ..., X

j
1 , ..., X

P1
1 }, où P1 est le nombre de classes apprises dans

le premier état. Xj
t = {x1

j , x
2
j , ..., x

nj

j } est l’ensemble des nj exemples d’apprentissage de la
classe j, pjt est sa probabilité de classification dans l’état St. On noteNt l’ensemble de toutes les
classes rencontrées jusqu’à l’état St inclus. Ainsi, N1 = P1 initialement, et Nt = Nt−1 + Pt =
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P1 + P2 + .... + Pt−1 + Pt pour les états suivants. Le modèleMt est mis à jour avec un algo-
rithme d’apprentissage incrémental A en utilisant Xt = {(Xj

t , Y
j
t ) : j ∈ [Nt−1, Nt]} si aucune

mémoire du passé n’est autorisée et en utilisant Xt∪K si une mémoire du passéK est autorisée.
À chaque état,Mt est évalué sur toutes les classes vues jusqu’ici (j ∈ [1, Nt]). Nous marquons
en gras les vecteurs et les matrices.

Suivant [128, 24], nous utilisons dans cette thèse P1 = P2 = ... = PT . Certains travaux
récents [88, 53, 35, 89] entraînent le premier modèleM1 sur la moitié des classes disponibles,
et divisent les classes restantes de manière égale entre les états T − 1 suivants. Ce dernier est
un cas plus facile de l’apprentissage incrémental.

Les algorithmes récents d’apprentissage incrémental sont mis en œuvre en utilisant des
réseaux de neurones profonds (DNNs) [128, 24]. Alors que les DNNs sont des approches de
classification de bout en bout, une partie des algorithmes d’apprentissage incrémental utilise
une couche de classification séparée. Dans ce cas, le modèleMt comprend deux composants
principaux: un extracteur de caractéristiques Ft et un classificateur Ct. On note θt = {φt, ψt}
l’ensemble de tous les paramètres du réseau dans l’état St.
Ft est paramétré par des poids φt et est défini par l’Equation 2.1. Le classificateur Ct est

paramétré par des poids ψt, et est généralement défini par l’Equation 2.2. Il peut également être
implémenté en utilisant un classificateur externe comme dans [12] et [128].

C.3 État de l’art

Les approches de l’état de l’art se divisent en trois catégories principales : (1) les approches
basées sur une représentation fixe, dans lesquelles le modèle n’évolue pas dans les états incré-
mentaux, (2) les approches basées sur le fine tuning, dans lesquelles le modèle est mis à jour
à l’aide des données des nouvelles classes et éventuellement d’une mémoire des classes précé-
dentes, et (3) les approches basées sur l’isolation des paramètres, qui compressent le réseau ou
augmentent son architecture afin d’accueillir de nouvelles classes.

— Méthodes basées sur une représentation fixe [48, 66, 47] - Les méthodes de représen-
tation fixe héritent des avantages et des inconvénients des schémas d’apprentissage par
transfert. La complexité des modèles est constante, et elles peuvent être mis à jour rapide-
ment puisque seule la couche de classification est réentraînée. Elles sont peu dépendantes
de la mémoire du passé et peuvent s’adapter à un grand nombre de classes. Cependant,
ces algorithmes dépendent fortement de la qualité de la représentation initiale et ont une
faible plasticité. Ils sont utilisables lorsque: la complexité du modèle est constante, la
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variabilité des données est faible, aucun stockage n’est possible pour les classes passées
et les mises à jour sont rapides.

— Méthodes basées sur le fine tuning [24, 128, 53, 174] - Ces méthodes sont adéquates
lorsque nous essayons d’optimiser la complexité de l’architecture, et la plasticité [161]
des représentations. Cependant, comme elles nécessitent un réentraînement du réseau
lorsque de nouvelles classes sont ajoutées, leur vitesse d’exécution n’est pas optimale.
Tout aussi important, la contrainte de mémoire limitée les rend difficilement évolutives,
car la mémoire finira par devenir trop petite pour représenter adéquatement les classes
passées. Elles sont utilisables lorsque: la complexité du modèle est constante, les don-
nées varient beaucoup entre les états incrémentaux, le stockage des données passées est
possible et l’utilisation immédiate des modèles mis à jour n’est pas essentielle.

— Méthodes basées sur l’isolement des paramètres [7, 100, 9] - Les approches de ce
groupe s’accommodent bien des nouvelles données, ne dépendent pas ou peu de la mé-
moire du passé, mais ne sont évolutives que si elles sont dynamiques. Cependant, la com-
plexité de ces dernières est un inconvénient puisque le modèle doit croître afin d’intégrer
de nouvelles connaissances. Elles nécessitent également un réentraînement lorsque de
nouvelles classes sont ajoutées et la vitesse d’exécution n’est pas optimale. Les réseaux
dynamiques sont utilisables lorsque: la complexité du modèle peut croître au cours du
processus incrémental, les données transmises varient beaucoup entre les états incrémen-
taux, aucun stockage n’est disponible pour les données passées et l’utilisation immédiate
des modèles mis à jour n’est pas essentielle.

C.4 Apprentissage Incrémental avec mémoire

DeeSIL: Deep-Shallow Incremental Learning

Cette méthode est une adaptation d’un schéma d’apprentissage par transfert connu [44, 71,
125] à l’apprentissage incrémental.DeeSIL (illustrée dans la Figure 3.2) comporte deux étapes
faiblement corrélées. Tout d’abord, un modèle profond M1 est entraîné afin de fournir une
représentation fixe qui est ensuite utilisée pour entraîner des classificateurs linéaires de type
SVM (Machines à Vecteur Support [19]) pendant la phase incrémentale. Au lieu d’utiliser la mé-
moire du systèmeK pour conserver les exemples positifs, un ensemble de caractéristiques néga-
tives nécessaires à l’apprentissage incrémental des classificateurs est stocké. Ce choix permet
d’utiliser tous les exemples positifs pour l’entraînement sans violer la contrainte de mémoire.
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Notre hypothèse est que l’apprentissage des SVMs sur tous les positifs compense l’inconvénient
lié à l’utilisation d’une représentation profonde fixe. Puisqu’aucun réentraînement n’est néces-
saire pour augmenter la capacité du système, l’approche est considérablement moins complexe
que ses homologues à apprentissage profond pur. L’ajout d’une nouvelle classe se fait par
l’entraînement d’un classificateur linéaire, une opération qui prend moins d’une minute sur
un seul CPU.

IL2M : Incremental Learning with Dual Memory

L’inconvénient principal de DeeSIL est que ses performances dépendent fortement de la
qualité de la représentation fixe. Si cette dernière est entraînée avec peu de données, ou avec
des classes visuellement différentes de celles des classes apprises en incrémental, DeeSIL ne
parvient pas à transférer continuellement les connaissances aux états suivants. Une solution à
ce problème consiste à affiner le modèle à chaque état incrémental afin de mettre à jour sa
représentation avec les nouvelles données. Cependant, le déséquilibre entre les anciennes et les
nouvelles classes s’aggrave avec le temps, un phénomène qui nécessite des techniques pour
supprimer le biais du réseau vers les nouvelles classes.

Dans cette section, nous présentons une méthode qui vise à concilier partiellement les ap-
proches basées sur le fine tuning et la représentation fixe. IL2M (illustrée dans la Figure 3.6)
utilise le fine tuning pour mettre à jour les modèles profonds à chaque état incrémental. Cepen-
dant, à cause de la mise à jour profonde des paramètres lors du fine tuning, les modèles initi-
aux ne peuvent pas être entièrement réutilisés dans les états ultérieurs. Au lieu de cela, IL2M
exploite les statistiques des classes passées de leur état initial pour rectifier leurs scores de
prédiction dans l’état incrémental actuel. Cette rectification est soutenue par deux hypothèses
connexes : (1) les classes sont mieux modélisées lorsque toutes leurs données sont disponibles,
et (2) les scores de prédiction des classes sont en moyenne plus élevés lorsque davantage des
données d’entraînement sont disponibles. Nous illustrons la validité de ces hypothèses dans la
Figure 3.5. Elle représente les prédictions moyennes des classes passées et nouvelles pour trois
datasets de grande échelle avec T = 10 et |K| = {20000, 10000, 5000}.

Les scores de la Figure 3.5 confirment que le fine tuning génère un biais de prédiction
en faveur des nouvelles classes. Ce biais est principalement dû au déséquilibre en faveur des
nouvelles classes, qui apparaît dans l’apprentissage incrémental. Par conséquent, une grande
partie des images des anciennes classes est prédite comme appartenant aux nouvelles classes.

Notre contribution principale est de proposer une mémoire secondaire qui stocke les statis-
tiques des classes initiales dans un format très compact. Les statistiques initiales des classes
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sont réutilisées dans chaque état incrémental ultérieur pour rectifier les scores de prédiction des
classes passées. La rectification est nécessaire car les modèles d’apprentissage incrémental sont
formés avec des ensembles de données déséquilibrés dans lesquels les classes passées ont moins
d’exemples. Par conséquent, leurs scores de prédiction sont généralement plus faibles que ceux
des nouvelles classes.

Pour compenser le biais vers les nouvelles classes, nous rectifions les prédictions des classes
passées en utilisant l’Équation 3.1 du Chapitre 3.

ScaIL: Classifier Weights Scaling for Class-Incremental Learning

Nous étudions plus profondément l’effet de l’oubli catastrophique et découvrons que le biais
est fortement présent dans la matrice des poids de la dernière couche dense. Nous présentons
ScaIL, une méthode simple et efficace (illustrée dans la Figure 3.9) qui réduit le biais en faveur
des nouvelles classes en exploitant les vecteurs de poids des classes passées tels qu’ils ont été
appris dans leur état initial avec toutes les données des classes disponibles. Puisque les poids
des classes passées sont appris dans différents états, ils sont normalisés pour être utilisables
dans l’état actuel.

La réutilisation des poids initiaux dans les états incrémentaux ultérieurs est rendue possible
par un processus de fine tuning avec une mémoire du passé. Ce processus aboutit à une préserva-
tion partielle de l’espace des caractéristiques même si le modèle profond évolue. ScaIL réctifie
les poids initiaux stockés dans I afin de les rendre comparables à ceux des classes nouvelles
dans l’espace des caractéristiques défini par le modèle actuel. La rectification est basée sur les
statistiques de poids calculées pour les nouvelles classes dans chaque état. Nous calculons un
vecteur moyen par état et l’utilisons ultérieurement pour la normalisation. Dans l’Équation 3.2,
nous trions le vecteur de poids de chaque nouvelle classe en fonction des valeurs absolues de
ses éléments.

L’utilisation de valeurs absolues est nécessaire puisque les activations des poids de classi-
fication peuvent être positives ou négatives. Une fois que les poids des nouvelles classes sont
triés, nous utilisons l’Équation 3.3 pour calculer un vecteur moyen par état que nous utilisons
pour la normalisation.

Pour rendre comparables les prédictions des classes de différents états, il est nécessaire de
calculer µt séparément pour chaque état. Notez que chaque moyenne est calculée en utilisant
des poids situés au même rang pour chaque vecteur.

Dans l’état St, ScaIL transforme les poids des classes passées tels qu’ils ont été appris dans
leur état initial en utilisant l’Équation 3.4.
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Chaque poids wdj est modifié en utilisant les activations moyennes de son rang, renvoyées
par la fonction R(·), dans les états actuel et initial St et Si. Ceci est fait afin de préserver
l’importance relative de chaque poids. Le poids réctifié pour chaque classe passée j de l’état
actuel St s’écrit comme W j′

t = {w1
j
′
, w2

j
′
, ..., wdj

′
, ..., wDj

′}. Notez que la couche de classifica-
tion ScaIL pour St combine des poids rectifiés pour les classes passées et des poids originaux
pour les nouvelles classes.

C.5 Apprentissage Incrémental sans mémoire

SIW: Standardization of Initial Weights for Incremental Learning

Nous nous appuyons sur ScaIL et [193] pour proposer SIW , une méthode (illustrée dans
la Figure 4.4) qui: exploite les informations des états initiaux des classes; assure l’équité des
prédictions associées aux classes passées et nouvelles [53, 174]; utilise le FT pour entraîner
des modèles profonds [5] . Cependant, notre approche diffère par la méthode utilisée pour
la normalisation des poids, et met l’accent sur un apprentissage incrémental sans mémoire à
grande échelle. Nous supposons qu’il est possible d’exploiter les poids initiaux des classes, afin
d’atténuer l’effet de l’oubli catastrophique dans un apprentissage incrémental sans mémoire.
L’effet de l’oubli catastrophique peut être observé au niveau des magnitudes moyennes des
poids des anciennes et nouvelles classes comme dans la Figure 4.2.

La Figure 4.2 montre que les classes passées ont des magnitudes beaucoup plus faibles
car aucune mémoire n’est tolérée. Comme les magnitudes sont beaucoup plus élevées pour les
nouvelles classes, les exemples de test seront toujours attribués à l’une de ces classes, même
s’ils appartiennent aux classes antérieures. La figure montre aussi que l’ampleur des nouvelles
classes varie selon les états incrémentaux, avec une tendance globale à la réduction dans les
états ultérieurs. Une normalisation des poids initiaux est donc nécessaire pour assurer l’équité
s’ils sont réutilisés à travers les états incrémentaux comme proposé ici. La Figure 4.2 mon-
tre que la normalisation des poids initiaux rend les populations statistiques plus comparables.
Une deuxième hypothèse importante de notre approche est que les caractéristiques extraites
de l’avant-dernière couche du modèle actuel sont compatibles avec les poids initiaux des états
précédents. Cette hypothèse est valable si les caractéristiques actuelles gardent une trace de ce
qui a été appris auparavant.

Nous réutilisons les poids initiaux des classes afin d’atténuer l’oubli catastrophique en ap-
pliquant l’Equation 4.1. Ensuite, nous normalisons les poids initiaux en utilisant l’Equation
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4.2. La normalisation est utile si elle est appliquée aux populations statistiques qui suivent une
distribution normale [38], ce qui est le cas pour les poids de l’Équation 4.1.

TransIL: Dataset Knowledge Transfer for Class-Incremental Learning

Notre principale contribution est de permettre l’utilisation des méthodes de correction de
biais, comme la couche BiC de [174], dans un protocol sans mémoire. Nous nous concentrons
sur cette approche car elle est à la fois simple et efficace [15, 101]. Les auteurs de BiC [174]
utilisent un ensemble de validation qui stocke des échantillons de classes passées pour optimiser
les paramètres. Au lieu de cela, nous apprenons les paramètres de correction hors ligne sur un
ensemble de datasets de référence, puis nous les transférons aux datasets cibles. L’intuition est
que, si les ensembles de données sont différents, les paramètres de correction de biais optimaux
sont suffisamment stables pour être transférables entre eux. Nous illustrons l’approche dans la
Figure 4.7, la partie supérieure montre le processus d’apprentissage incrémental avec un dataset
de référence. Une mémoire pour les données de validation nécessaires à l’optimisation de la
couche de correction de biais est prévue puisque l’apprentissage se fait hors ligne. La partie
inférieure de la figure présente l’apprentissage incrémental d’un dataset cible. La principale dif-
férence avec l’apprentissage incrémental sans mémoire standard provient de l’utilisation d’une
couche de correction de biais optimisée sur le dataset de référence. Son introduction conduit
à une meilleure comparabilité des scores de prédiction pour les classes passées et nouvelles.
Notez que la méthode proposée est applicable à n’importe quelle méthode d’apprentissage in-
crémental puisqu’elle ne nécessite que la disponibilité des prédictions brutes fournies par les
modèles profondsM.

La deuxième contribution consiste à affiner la définition de la couche de correction de biais
introduite dans [174]. La formulation originale traite toutes les classes passées de manière égale
dans le processus de correction. Comme [101], nous faisons l’hypothèse que le degré d’oubli
associé aux classes passées dépend de l’état initial dans lequel elles ont été apprises. Par con-
séquent, nous proposons Adaptive BiC (AdBiC), une procédure d’optimisation qui apprend une
paire de paramètres par état au lieu d’une seule paire de paramètres comme proposé dans [174].

Contrairement à BiC [174], l’Équation 4.8 ajuste les scores de prédiction en fonction de
l’état dans lequel les classes ont été rencontrées pour la première fois. Notez que chaque paire
αkt , βkt est partagée entre toutes les classes apprises pour la première fois dans le même état. Ces
paramètres sont optimisés sur un ensemble de validation en utilisant l’erreur d’entropie croisée.

L’optimisation des paramètres α et β est impossible dans un protocol sans mémoire, puisque
les exemplaires des classes passées ne sont pas disponibles. Pour contourner ce problème,
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nous faisons l’hypothèse que les valeurs optimales de ces paramètres peuvent être transférées
entre les datasets de référence et cibles, notés X r et X respectivement. L’intuition est que
ces valeurs sont suffisamment stables malgré la variabilité du contenu des ensembles de don-
nées. Le stockage de l’ensemble de validation est nécessaire afin d’optimiser les paramètres
de l’Équation 4.8 et est possible puisque l’entraînement des datasets de référence est effectué
hors ligne. Notez que les modèles incrémentaux de X r sont entraînés sans mémoire afin de
simuler l’apprentissage des datasets cibles X . Nous stockons ensuite les paramètres de correc-
tion de biais optimisés pour les datasets de référence afin d’effectuer le transfert vers les datasets
cibles sans utiliser de mémoire. Pour chaque état incrémental, nous calculons la moyenne des
valeurs α et β sur tous les datasets de référence. Les moyennes obtenues sont utilisées pour la
rectification du score sur les datasets cibles. La mémoire nécessaire au stockage des paramètres
transférés est négligeable puisque nous avons besoin de 2×(2+3+...+T ) = (T +2)×(T −1)
valeurs flottantes pour chaque dataset et chaque valeur de T . Pour les états T = {5, 10, 20},
nous ne stockons donc respectivement que 28, 108 et 418 valeurs flottantes.

C.6 Conclusions

— Apprentissage incrémental avec mémoire - Les principales conclusions sont les suiv-
antes : (1) la mémoire bornée peut être une bonne alternative à l’erreur de distillation
largement utilisée sur des datasets à grande échelle, et (2) l’utilisation d’une mémoire
bornée seule n’est pas suffisante car le biais du réseau neuronal est important vers les
nouvelles classes, notamment au niveau des scores de classification. D’autres techniques
doivent être déployées pour supprimer ce biais.

— Apprentissage incrémental sans mémoire - Les principales conclusions sont les suiv-
antes : (1) l’erreur de distillation est efficace lorsqu’aucune mémoire du passé n’est
autorisée (ce n’est pas le cas à grande échelle lorsqu’une mémoire est autorisée), (2)
l’utilisation des poids initiaux des classes passées à partir de leurs états initiaux est béné-
fique pour lutter contre l’oubli catastrophique. La précision des systèmes actuels d’apprentissage
incrémental sans mémoire est encore faible, car l’écart avec un apprentissage à partir de
zéro (avec toutes les données disponibles) est important. Des efforts supplémentaires sont
nécessaires pour améliorer les systèmes actuels dans des scénarios réels.
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C.7 Perspectives

Les performances des méthodes d’apprentissage incrémental se rapprochent de celles de
l’apprentissage standard, où l’on suppose que toutes les données de toutes les classes sont
disponibles à tout moment. Cependant, le problème de l’oubli catastrophique est loin d’être
résolu, surtout à grande échelle. La plupart des systèmes existants [128, 24, 53, 52, 61] utilisent
une mémoire du passé. Notez que, dans les scénarios de la vie réelle, une mémoire n’est pas
toujours autorisée. En outre, les algorithmes dépendant de la mémoire ont tendance à ne pas
bien évoluer lorsque de plus en plus de classes n’auront pas de représentants pour elles lorsque
la taille maximale de la mémoire est atteinte.

L’apprentissage incrémental sans mémoire est peu étudié dans la littérature et nous pensons
que davantage d’efforts devraient y être consacrés. A notre connaissance, les seules méthodes de
ce type disponibles sont celles que nous avons proposées en complément de: Learning without

Memorizing [34], Learning without Forgetting (LwF ) [86], Deep-SLDA [47], Semantic Drift

Compensation (SDC) [182], et Always Be Dreaming (AbD) [156]. Nous pourrions adapter
d’autres méthodes à un cadre sans mémoire (REMIND [48] et LUCIR [53]), mais ce nombre
de systèmes est négligeable par rapport à ceux qui reposent sur une mémoire du passé.

Traiter l’apprentissage incrémental comme un problème d’apprentissage déséquilibré donne
des résultats très intéressants avec ou sans l’utilisation d’un composant de distillation. Il serait
intéressant d’étudier des schémas de réduction de biais plus sophistiqués pour améliorer encore
les performances. De même, une étude plus approfondie des raisons pour lesquelles la distil-
lation ne fonctionne pas pour les ensembles de données à grande échelle est nécessaire. Les
résultats empiriques rapportés dans cette thèse devraient être complétés par une analyse plus
théorique pour améliorer la compréhension de ce phénomène.

Enfin, il convient de rendre le scénario d’évaluation plus réaliste en:

— abandonnant l’hypothèse que toutes les nouvelles données sont annotées

— utilisant un nombre variable de classes dans chaque état incrémental. Ce cas est plus
réaliste car les données peuvent arriver de manière aléatoire.

— travaillant avec des jeux de données déséquilibrés qui sont plus susceptibles de se produire
dans des applications réelles.

— manipulant des images individuelles au lieu de classes, où les images de passé peuvent
être retrouvée dans les états futurs [50].

Les points mentionnés ci-dessus sont intéressants et devraient être abordés pour une utilisa-
tion transparente de l’apprentissage incrémental dans la vie pratique comme dans [105].
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Titre : Apprentissage Incrémental Profond à Large Échelle

Mot clés : Apprentissage Incrémental, oubli catastrophique, classification d’image, réseaux de

neurones convolutifs

Résumé : L’apprentissage incrémental (IL)
permet l’adaptation d’agents artificiels à des
environnements dynamiques dans lesquels
les données sont présentées séquentille-
ment. Ce type d’apprentissage est nécessaire
lorsque l’accès aux données passées est li-
mité ou impossible, mais il est affecté par l’ou-
bli catastrophique. Ce phénomène consiste en
une chute drastique des performances des
informations précédemment apprises lors de
l’ingestion de nouvelles données. Une façon
de résoudre ce problème est d’utiliser une
mémoire limitée du passé pour rafraîchir les
connaissances apprises précédemment. Ac-
tuellement, les approches basées sur la mé-

moire obtiennent les meilleurs résultats de
l’état de l’art. Dans cette thèse, nous présen-
tons plusieurs méthodes avec et sans mé-
moire du passé. Nos méthodes traitent l’oubli
catastrophique soit (1) en calibrant les scores
des classes passées et nouvelles à la fin du
réseau, soit (2) en réutilisant les poids initiaux
des classes passées, soit (3) en transférant
les connaissances entre des datasets de ré-
férence et cibles. Nous étudions notamment
l’utilité de la distillation largement utilisée et
l’effet d’utiliser ou non une mémoire du passé.
Des expériences approfondies contre des mé-
thodes de l’état de l’art ont été menées afin de
valider l’efficacité de nos méthodes.

Title: Large-Scale Deep Class-Incremental Learning

Keywords: Incremental learning, catastrophic forgetting, image classification, convolutional

neural networks

Abstract: Incremental learning (IL) enables
the adaptation of artificial agents to dynamic
environments in which data is presented in
streams. This type of learning is needed when
access to past data is limited or impossi-
ble but is affected by catastrophic forgetting.
This phenomenon consists of a drastic perfor-
mance drop for previously learned information
when ingesting new data. One way to tackle
this problem is to use a limited memory of the
past to refresh previously learned knowledge.
Currently, memory-based approaches achieve
the best state-of-the-art results. In this thesis,

we present many methods with and without
memory of the past. Our methods deal with
catastrophic forgetting either by (1) calibrating
past and new classes scores at the end of the
network, or (2) performing initial class weights
replay, or (3) transferring knowledge between
reference and target datasets. We notably in-
vestigate the usefulness of the widely used
knowledge distillation and the effect of en-
abling or not a memory of the past. Exten-
sive experiments against a range of state-of-
the-art approaches were conducted in order
to validate the efficiency of our methods.
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