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Résumé en Français

La matière active regroupe l’étude des systèmes comprenant un grand nombre d’agents
capables d’exercer des forces d’autopropulsion sur leur environement. La motivation
première de la matière active est de fournir un cadre théorique simplifié décrivant des en-
sembles d’entités vivantes en interaction. Cette approche spécifique est déjà à l’origine de
plusieurs percées dans la compréhension des systèmes vivants, dans l’étude du mouvement
bactérien et dans celle des nuées d’oiseaux par exemple. Les succès de la matière active
se sont récemment étendus au delà du vivant. Le domaine a notamment inspiré toute une
panoplie d’expériences basées sur des matériaux artificiels : des rollers de Quincke aux
colloïdes de Janus en passant par les grains vibrés. Dans ces montages, les entités actives
sont synthétiques et leur moyen de propulsion repose sur un mécanisme physique plutôt
que biologique. Ces nouvelles expériences permettent notamment de sonder la matière
active dans un environement bien mieux contrôlé que ce qui était auparavant possible
en biologie. Par ailleurs, elles ouvrent de nouvelles possibilités pour répondre à un défi
majeur du domaine : parvenir à contrôler les propriétés et les transitions de phases des
milieux actifs. La réussite de ce dernier objectif serait un premier pas vers la conception
d’une nouvelle classe de matériaux, les matériaux actifs.

Ce manuscrit de thèse contribue au développement de la matière active suivant 4 axes
: l’étude exacte d’un modèle de dynamique active, la caractérisation de l’ordre dans la
transition vers le mouvement collectif, l’étude de l’émergence d’embouteillages au sein
d’un liquide polaire et l’apparition de corrélations longue portée dues à l’anisotropie.

Malgré ses succès, la matière active souffre des limitations inhérentes à la complexité
de son objet d’étude. Parce qu’elle cherche à modéliser des entités du vivant, même le
système actif le plus simple sera soumis à des fluctuations non Gaussiennes, éventuelle-
ment corrélées, qui sont responsables de son maintien hors d’équilibre. D’un point de
vue théorique, l’utilisation de ces fluctuations inhabituelles a le désavantage technique de
rendre les calculs analytiques beaucoup plus difficiles. Quantifier le caractère hors équili-
bre des particules actives est un champ de recherche entier en soi, mais les résultats exact
dans ce domaine restent rares et limités à certains modèles spécifiques. En présentant
une analyse perturbative exacte d’une particule active d’Ornstein-Uhlenbeck (AOUP), le
chapitre 2 du présent manuscrit apporte une contribution aux résultats analytiques en
matière active. Dans le modèle AOUP, on considère une dynamique colloïdale dont le
bruit Brownian diffusif est remplacé par un processus d’Ornstein-Uhlenbeck de temps de
persistence τ . Ce processus d’Ornstein-Uhlenbeck modélise une autopropulsion colorée et
sa persistence τ contrôle le niveau d’activité dans la dynamique : à τ = 0, l’autopropulsion
devient Brownienne alors qu’à τ = ∞ elle devient constante. En utilisant ce "levier" de
contrôle, nous calculons dans un premier temps la distribution stationnaire d’une AOUP
au voisinage de l’équilibre sous la forme d’une série en puissance de τ . Nous utilisons
ensuite ce résultat pour quantifier analytiquement trois signatures de l’irréversibilité tem-
porelle générée par l’activité : la déviation au poids de Boltzmann, le courant "de cliquet"
et la production d’entropie. Dans un potentiel confinant, la distribution spatiale d’une
AOUP montre une accumulation en dehors du minimum local, en fort contraste avec
le poids de Boltzmann de l’équilibre. Dans un potentiel périodique, une AOUP peut
acquérir une vitesse moyenne non nulle dans l’état stationnaire et ainsi présenter un
courant "de cliquet". La conception d’un "cliquet" de Feynmann menant à un mouvement
perpétuel, prohibé dans la physique d’équilibre, devient possible grâce à la dynamique
active. Finalement, et de nouveau en opposition à la physique d’équilibre, nous calculons
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une production d’entropie non nulle pour la dynamique AOUP. Nous vérifions nos résul-
tats analytiques à l’aide de simulations numériques : l’accord est quantitatif sans aucun
paramètre d’ajustement.

En matière active, la plupart des travaux sont menés dans des régimes d’activité forte
tels que les fluctuations thermiques des colloïdes actifs peuvent être négligées. Malgré son
importance pour de multiples expériences, l’interaction entre bruit actif et bruit passif a
rarement été étudiée et son influence sur l’irréversibilité de la dynamique n’a pas été dis-
cutée. C’est pourquoi, dans un second temps, nous étudions l’effet de l’ajout d’un bruit
Brownien à la dynamique AOUP. En généralisant notre analyse perturbative, nous re-
traçons les rôles respectifs des bruits actif et passif dans la distribution stationnaire de ce
modèle spécifique. A l’aide de ce résultat, nous calculons les signatures de l’irréversibilité
et nous montrons qu’elles peuvent avoir un comportement surprenant lorsque la tempéra-
ture varie. Selon la nature du potentiel dans lequel la particule évolue, le courant "de
cliquet" et la production d’entropie peuvent être des fonctions non monotones de T . Cette
dernière peut même diverger pour des potentiels suffisamment abruptes. Ainsi, selon le
contexte, la présence de bruit thermique peut rapprocher ou éloigner la particule active
de l’équilibre. Une fois de plus, nous vérifions nos prédictions analytiques à l’aide de
simulations numériques : le courant de "cliquet" tout comme la distribution stationnaire
sont en accord quantitatifs avec nos résultats.

La transition vers le mouvement collectif est l’un des phénomènes les plus étudiés
en matière active. Elle modélise l’émergence de nuées depuis un ensemble désordonné
de particules autopropulsées soumises à un mécanisme d’alignement. Les spécificités
de cette transition, et particulièrement son ordre, ont été longuement discutées dans la
littérature. Une classification basée sur le type d’interactions microscopiques en jeu a
émergé : l’émergence du mouvement collectif serait discontinue dans les modèles dits
"métriques" et continue dans les modèles dits "topologiques". Dans le chapitre 3, nous
montrons que cette classification fondée sur des approches de champ moyen ne survit
pas à la prise en compte des fluctuations. Dans un premier temps, nous introduisons
le mouvement collectif à l’aide d’une dynamique paradigmatique : le modèle de Vicsek.
En s’appuyant sur son analyse théorique, nous montrons que l’émergence discontinue des
nuées dans ce modèle est due à la dépendence en densité de sa température critique. Nous
confirmons ensuite cette analyse pour tous les systèmes de particules autopropulsées en
étudiant les équations de champs génériques de Toner-Tu : la dépendence en densité de
la température critique entraîne génériquement une transition du premier ordre.

Dans un second temps, nous introduisons le modèle d’Ising actif (AIM) et décrivons la
disparité entre les équations de champ moyen et les résultats des simulations numériques.
Alors que le champ moyen prédit une transition continue, les simulations montrent au
contraire que l’émergence du mouvement collectif est discontinue et mène à la formation
de nuées ordonnées de particules. Afin de déterminer le mécanisme à l’origine de cette
disparité, nous étudions la stabilité des équations de champ moyen par rapport au bruit
microscopique à l’aide de la renormalisation quasi-linéaire. Il s’avère que les fluctuations
de la dynamique des spins renormalisent directement la température critique du modèle
en induisant une dépendance en la densité. In fine, les fluctuations sont donc à l’origine
de la transition du premier ordre observée dans les simulations.

Dans un troisième temps, nous évaluons si ce phénomène, appelé transition de pre-
mier ordre induite par les fluctuations (FIFOT), est générique et s’applique également
aux modèles dits "topologiques". Dans ces derniers, l’alignement entre les particules ne
dépend pas de leur distance relative mais de règles topologiques construites par la tessella-
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tion de Voronoi ou les plus proches voisins. Dans la littérature, ces modèles "topologiques"
jouent un rôle important lorsque les indices visuels dominent les indices métriques; c’est
le cas pour les études de groupes d’animaux ou de piétons par exemple. Si l’on prends
l’exemple d’un alignement entre plus proches voisins, doubler la distance entre les partic-
ules est équivalent à diviser la densité par 2d sans changer les voisins dans la dynamique
d’alignement. Ainsi, on pourrait penser que les fluctuations locales de la densité n’ont
pas d’impact sur la magnétisation et que donc la température critique ne dépends pas
de la densité. Nous montrons cependant que ce n’est pas le cas; à l’instar du modèle
d’Ising actif, la transition continue prédite par le champ moyen est également remplacé
par une séparation de phase dans le cas "topologique" : le mécanisme de transition de
premier ordre induite par les fluctuations s’applique également dans ce cas particulier.
Afin de vérifier notre analyse, nous effectuons des simulations numériques du modèle de
Vicsek et d’Ising actif avec alignement sur les trois plus proches voisins. Dans les deux
cas, nous confirmons la présence d’un domaine de coexistence dans le diagramme des
phases. A l’intérieur de ce domaine, nous observons des nuées ordonnées de particules
qui coexistent avec un gaz désordonné et pouvons donc conclure que la transition vers le
mouvement collectif est discontinue dans ces deux modèles. Après avoir démontré que
les modèles de Vicsek et d’Ising actif topologiques étaient, eux aussi, instables aux fluc-
tuations mésoscopiques, nous nous demandons si ce mécanisme se généralise à d’autre
modèles topologiques.

Pour répondre à cette question, nous considérons un champ d’alignement générique
que nous supposons être une fonctionnelle de la densité et de la magnétisation locale. A
l’aide d’une analyse dimensionnelle et d’arguments de scalings, nous montrons qu’il n’est
pas possible d’exclure une dépendance en la densité de la température critique. Nous
nous attendons donc à ce que le mécanisme de transition de premier ordre induite par les
fluctuations affecte la plupart des modèles dits "topologiques". Dans une vaste majorité
de modèles, l’émergence du mouvement collectif prendra donc la forme d’une transition
de phase où des nuées ordonnées se propagent au milieu d’un gaz désordonné.

Enfin, nous terminons ce chapitre en présentant un test numérique pour évaluer l’ordre
de la transition dans les modèles de mouvement collectif. Nous proposons de mesurer la
dépendence de la température critique par rapport à la densité : si elle n’en dépend pas,
c’est que la transition est continue, sinon c’est qu’elle est discontinue. Afin de vérifier
la pertinence de ce test, nous l’appliquons sur deux modèles de mouvement collectif en
champ moyen ainsi qu’au modèle d’Ising actif topologique. Dans les deux premiers cas,
la température critique reste inchangée quelque soit la densité tandis que dans le dernier
cas nous mesurons qu’elle augmente avec la densité.

Aux côtés du mouvement collectif, il existe une autre transition de phase paradig-
matique en matière active : la séparation de phase induite par la motilité (MIPS). Elle
apparaît dans les systèmes de particules actives où l’autopropulsion décroît suffisamment
rapidement lorsque la densité augmente. Ce comportement déclenche une boucle de
rétroaction menant à la formation d’amas denses inertes qui coexistent avec une phase
gazeuse. Si la transition vers le mouvement collectif et MIPS ont été largement étudiées
séparément, leur interaction dans les systèmes actifs avec alignement et autopropulsion
dépendant de la densité reste mal comprise. En particulier, la possible formation de
MIPS dans un état plutôt que dans un gaz désordonné reste une question ouverte. Dans
le chapitre 4, nous répondons à cette question en étudiant l’interaction de MIPS et du
mouvement collectif. Dans ce but, nous rapportons qu’une nouvelle transition de phase a
lieu dans les assemblées de rollers de Quincke à haute densité. A la transition, que nous
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avons nommée solidification active, nous observons de denses embouteillages désordonnés
qui remontent le flux collectif ordonné des rollers. Nous caractérisons expérimentalement
la solidification active comme transition de premier ordre grâce à trois signatures : le
respect de la règle du levier à la coexistence, la présence d’une dynamique lente de crois-
sance de domaine, et l’existence de boucles d’hysteresis. Par ailleurs, les expériences
montrent que les embouteillages constituent un solide amorphe, dans lequel les rollers
sont arrêtés. La mesure de l’autopropulsion moyenne d’un roller de Quincke en fonction
de la densité locale fournit un indice sur le mécanisme à l’origine de la solidification active
: elle montre que l’autopropulsion décroît abruptement au delà d’une densité critique.
En partant d’une description hydrodynamique générique des rollers autopropulsés, nous
construisons une théorie phénoménologique prenant en compte ces résultat expérimen-
taux : nous imposons que la vitesse et l’alignement des rollers décroissent tous deux à
haute densité. L’addition de ces deux ingrédients que l’on retrouve communément chez
MIPS permet de reproduire la physique de la solidification active avec nos équations
d’évolution. A haute densité, nous observons bien la formation de denses embouteillages
désordonnés qui remontent le flux d’un liquide polaire ordonné. De plus, les équations
de champ reproduisent qualitativement la même transition de premier ordre avec rè-
gle du levier, présence d’une dynamique lente de croissance de domaine et existence de
boucles d’hysteresis. Ces similitudes avec l’expérience justifient l’utilisation de cette hy-
drodynamique généralisée pour éclairer le mécanisme à l’origine de la solidification active.
Une analyse de stabilité linéaire montre directement que le critère de formation des em-
bouteillages est mathématiquement similaire à celui de l’émergence de MIPS : ainsi, la
solidification active peut être bien décrite comme une séparation de phase induite par
la motilité entre un liquide polaire et un embouteillage. Jusqu’à présent, notre étude
théorique se borne à une approche phénoménologique de la solidification active qui ne
peut être directement reliée aux constantes physiques microscopiques : l’origine de la
chute de l’autopropulsion à haute densité reste en effet à déterminer (répulsion stérique,
lubrification ?). Pour clore ce chapitre, afin de mieux comprendre les ingrédients mi-
croscopiques nécessaires à la solidification active, nous étudions un modèle de gaz actif
sur réseau. Dans un tel cadre théorique, nous savons calculer l’hydrodynamique macro-
scopique à partir de la dynamique microscopique de manière exacte à l’aide de techniques
d’intégrales de chemin. Cette correspondance nous permet de mettre en lumière 2 mé-
canismes clés nécessaires à la solidification active : une autopropulsion et un alignement
non nuls à basse densité qui chutent à haute densité. Par ailleurs, en faisant varier les
paramètres de notre modèle, nous sommes en mesure de prédire l’existence d’une phase
de coexistence triple où des nuées de taille finie cohabitent avec un gaz avant de s’échouer
sur des embouteillages. Nos résultats théoriques sont tous confirmés par les simulations
: l’accord avec l’hydrodynamique exacte est très bon.

En physique statistique, la fonction à deux points 〈φ(x)φ(0)〉 d’un champ scalaire
φ(x) est dite "à longue portée", ou "invariante d’échelle", lorsque 〈φ(x)φ(0)〉 ∼

|x|→∞
|x|−α

avec α un coefficient positif mesurant le déclin algébrique. Ce type de corrélations reste
peu étudié en matière active en dehors de la phase ordonnée du modèle de Vicsek. C’est
pourquoi, dans le chapitre 5, nous présentons un modèle dont le comportement macro-
scopique est invariant d’échelle. Dans le système considéré, les particules sont soumises
à des fluctuations anisotropiques à courte portée. Leurs dynamiques sont couplées par
le biais d’interactions spatiales : les particules situées dans un même rayon de taille σ
sont soumises à un bruit corrélé. Nous montrons que, à cause de l’anisotropie, des cor-
rélations à longue portée émergent dans les fluctuations de la densité. Nous cherchons
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ensuite les signatures induites par cette invariance d’échelle sur les observables physiques
du système. A l’inverse des systèmes d’équilibres, la pression moyenne exercée par notre
système sur des murs confinants ne présente pas de comportement de type Casimir : elle
suit simplement la loi du gaz parfait. En revanche, nous montrons que les corrélations de
la pression exercée sur deux murs opposés et séparés par une distance L déclinent en L−2.
Tous nos résultats théoriques sont en accord quantitatifs avec les simulations numériques
de notre modèle.

Finalement, dans le dernier chapitre, nous concluons ce manuscrit en résumant les
contributions développées dans les 4 chapitres précedents. Pour chacun de ces travaux,
nous proposons une possible direction de recherche future.



8



Contents

Contents 9

1 Introduction 13

2 Active Ornstein Uhlenbeck Particle: departure from equilibrium 17
2.1 Exact perturbative results: non-interacting AOUPs in 1D . . . . . . . . . 18

2.1.1 The stationary measure . . . . . . . . . . . . . . . . . . . . . . . 19
2.1.2 Deviation from the Boltzmann distribution in a confining potential 21
2.1.3 Perturbative series: regularization process . . . . . . . . . . . . . 22
2.1.4 The ratchet current . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.5 The entropy production rate . . . . . . . . . . . . . . . . . . . . . 25

2.2 non-interacting AOUPs in 1D in the presence of a thermal noise . . . . . 26
2.2.1 The stationary measure . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Deviation from the Boltzmann distribution in a confining potential 28
2.2.3 The ratchet current . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.4 The entropy production rate . . . . . . . . . . . . . . . . . . . . . 31

2.3 Interacting AOUPs in arbitrary dimension . . . . . . . . . . . . . . . . . 34
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Fluctuation-induced first-order transition to collective motion 35
3.1 A brief introduction to collective motion . . . . . . . . . . . . . . . . . . 35

3.1.1 The Vicsek Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.2 Bottom-up approach for the Vicsek Model . . . . . . . . . . . . . 37
3.1.3 Phenomelogical description for models of collective motion . . . . 39

3.2 Topological alignment: a particular case in models of collective motion . 42
3.3 A specific example: the 2D Active Ising Model . . . . . . . . . . . . . . . 43

3.3.1 Mean-field hydrodynamics predicts a continuous transition . . . . 44
3.3.2 Microscopic simulations show a discontinuous transition . . . . . . 46

3.4 Fluctuation-induced first-order transition in the Active Ising Model . . . 48
3.5 Fluctuation-induced first-order transition for k-nearest neighbours alignment 51

3.5.1 Renormalization of the critical temperature . . . . . . . . . . . . 52
3.5.2 Microscopic simulations of topological models . . . . . . . . . . . 53

3.6 Generalization to a broad class of aligning interactions . . . . . . . . . . 55
3.7 Generalization to a mean-field description of the Vicsek model with Voronoi-

based aligning interactions . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.8 Testing the order of the transition through the density-dependence of the

critical temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Motility-Induced Phase Separation and flocks: an interplay at high den-
sity 61
4.1 Assemblies of colloidal rollers . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Introduction to Motility-Induced Phase Separation (MIPS) . . . . . . . . 63
4.3 Solidification of flocks in assemblies of Quincke rollers . . . . . . . . . . . 66

4.3.1 Characterization of active solids . . . . . . . . . . . . . . . . . . . 67
9



10 Contents

4.3.2 Characterization of the transition . . . . . . . . . . . . . . . . . . 68
4.4 A phenomelogical approach to active solidification . . . . . . . . . . . . . 71

4.4.1 Nonlinear hydrodynamic theory . . . . . . . . . . . . . . . . . . . 71
4.4.2 Spinodal instability of polar liquids and domain wall propagation 74

4.5 A microscopic approach to active solidification . . . . . . . . . . . . . . . 76
4.5.1 Exact coarse-grained evolution . . . . . . . . . . . . . . . . . . . . 77
4.5.2 Phase diagram and triple coexistence state . . . . . . . . . . . . . 78
4.5.3 Microscopic simulations: triple coexistence is confirmed . . . . . . 80
4.5.4 Off-lattice generalization: triple coexistence remains robust . . . 81

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Scale-free correlations in anisotropic systems 85
5.1 The ideal gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2 How anisotropic noise induces long-ranged correlations: the GLS model . 87
5.3 An anisotropic particle-based model . . . . . . . . . . . . . . . . . . . . . 89

5.3.1 Generic form of density correlations in infinite systems . . . . . . 90
5.3.2 Numerical simulations in finite-size systems . . . . . . . . . . . . 93

5.4 Casimir forces: a generic feature of long-ranged density fluctuations ? . . 95
5.4.1 Variance of the pressure on a wall . . . . . . . . . . . . . . . . . . 97
5.4.2 Correlation of the pressure between two facing patches . . . . . . 99

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Conclusion 103

A Nonequilibrium signatures of Active Ornstein Uhlenbeck Particles 105
A.1 A single particle in 1D in the presence of a thermal noise . . . . . . . . . 105

A.1.1 Recursion for the An’s . . . . . . . . . . . . . . . . . . . . . . . . 105
A.1.2 Full steady-state distribution . . . . . . . . . . . . . . . . . . . . 107
A.1.3 Derivation of the entropy production rate . . . . . . . . . . . . . . 108

A.2 Steady-state distribution of N interacting active particles . . . . . . . . . 112
A.3 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

B Fluctuation-induced first-order transition to collective motion 115
B.1 The Boltzmann approach to the Vicsek model . . . . . . . . . . . . . . . 115
B.2 The Active Ising Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

B.2.1 Derivation of the correlators in the high temperature phase . . . . 117
B.2.2 Renormalization in the low temperature phase . . . . . . . . . . . 118

B.3 The Topological Active Ising Model . . . . . . . . . . . . . . . . . . . . . 121
B.3.1 Linear stability analysis of the homogeneous solutions . . . . . . . 121
B.3.2 Renormalization of the hydrodynamics . . . . . . . . . . . . . . . 123

B.4 Extension to generic alignment . . . . . . . . . . . . . . . . . . . . . . . 128
B.5 Renormalization for fully connected alignment . . . . . . . . . . . . . . . 131
B.6 Renormalization of mean-field hydrodynamics of Voronoi-based Vicsek model132

C Lattice gas model for active solidification 137
C.1 Derivation of the hydrodynamic equations . . . . . . . . . . . . . . . . . 137
C.2 Numerical methods for lattice gas . . . . . . . . . . . . . . . . . . . . . . 144



Contents 11

D Scale-free correlations in anisotropic systems 145
D.1 Derivation of the density correlations under confinement . . . . . . . . . 145
D.2 Derivation of the sum involved in the local pressure . . . . . . . . . . . . 148

Bibliography 151



12 Contents



1. Introduction

Statistical Physics aims at describing the emerging properties of macroscopic assemblies
composed of microscopic entities. Historically, the framework of equilibrium statistical
physics has been developed to link the state functions of thermodynamics, such as entropy
or free energy, to the microscopic dynamics of atoms and molecules. The entropy, the free
energy acquire a physical meaning thanks to the idea of partitioning the accessible states
of the system. In particular, they can be formally expressed as weighted sums where
the environment only enters through a few set of parameters. From these expressions,
it is possible to deduce all the static macroscopic physical quantities measurable by an
experimentalist: pressure, work, chemical potential... However, the existence of these
state functions relies on the knowledge of the statistical weights one has to attribute to
each state of the system. The determination of these weights is miraculously possible
at the expanse of restrictive hypotheses: the underlying dynamics must be ergodic and
it must lead to a time-reversible steady state where the principle of detailed balance is
verified.

On the contrary, the study of generic systems dealing with assemblies of time-irreversible
entities falls into the realm of nonequilibrium statistical physics. And this realm is far
more extended than the equilibrium one. The overwhelming majority of daily phenom-
ena around us can be studied through the lenses of out-of-equilibrium statistical physics.
At the nanometric scale, molecular motors are consuming ATP to transport ions along
actin filaments [1–4] (see Fig. 1.1b). At the micrometric scale, living cells exhibit rich
nonequilibrium behaviours when they crawl on a substrate [5–7]. At the metric scale,
flocks of birds coherently fly in a given direction, breaking rotational symmetry [8,9] and
leading to long-lived currents (see Fig. 1.1b). At the scale of society, financial trends
can be modeled by considering agents who stochastically and imperfectly try to optimize
their gains [10, 11]. Nonequilibrium systems have such a diverse field of application that

a. b.

Figure 1.1 – a. Typical example of starling aerial display used for 3D reconstruction of
the birds’ dynamics in [9]. Figure adapted from [9]. b. Swirling pattern of actin filaments
displaced by molecular motors. Figure adapted from [4].

it seems quite unfeasible to state general theorems about them. Surprisingly, generic
results out of equilibrium have nonetheless been obtained, as exemplified by the Fluctu-
ation Theorem [12, 13] or the Jarzynski’s inequalities [14] among other results [15–18].
However, when a quantitative description of nonequilibrium systems is needed, it is often
necessary to proceed to a case-by-case analysis. It is then difficult to extend the conclu-
sions drawn on one specific model to other systems. In particular, the generic approach
offered by equilibrium statistical mechanics collapses out of equilibrium.

13



14 Chapter 1. Introduction

During the last twenty years, some level of generality has been revealed in systems
where the Brownian motion of colloids has been replaced by a persistent self-propulsion.
Their study has been regrouped in a domain called active matter whose main motivation
was first to provide a simple framework describing ensemble of living entities [19–21]. To
this aim, active matter studies usually proceed in two key steps. The first one is the con-
ception of simplified building blocks mimicking the behaviour of living automatons. The
second step is the introduction of biologically-inspired interactions between these elemen-
tary building blocks. Such an approach has already fruitfully accounted for important
features of bird flocks [8, 9], or bacterial dynamics [22, 23] among other works [5, 24–27].
But the successes of active matter extend beyond living systems. Recently, it has inspired
a wealth of experiments dealing with artificial materials: Quincke rollers [28, 29], Janus
colloids [30–33] (see Fig. 1.2b), shaken grains [34,35] (see Fig. 1.2a), hexbugs robots [36]...
In most of these setups, the active entities are synthetic units whose self-propulsion relies
on a physical rather than biological mechanism: electrohydrodynamic instability [37],
Marangoni stress [38], built-in frictional asymmetry [39,40], light-induced phoretic gradi-
ents [41]... These new experiments allow to probe active matter in a much more controlled
environment than what was previously possible in biology.

a. b.

Figure 1.2 – a. Emergence of flocks in assemblies of vibrated asymmetric grains. The
arrows indicate their orientation while the color account for local ordering: red indicates
an almost perfect cohesion. Figure adapted from [34]. b. Collective motion in ensemble
of Janus colloids. The color surrounding a particle indicate the absolute deviation of its
orientation from the average direction |θ − 〈θ〉|. Figure adapted from [31]

Furthermore, they open up new opportunities to face one of the main challenge of
active matter: bringing under control the properties and transitions of active media [42].
Achieving this last objective would be the first step on the path toward the engineering
of active materials [43,44]. In this manuscript, I contribute to the active matter roadmap
along four axes: the exact study of a workhorse model of active dynamics, the character-
ization of the order in the flocking transition, the study of the interplay between flocks
and jams, and the presentation of anisotropy-induced long-ranged correlations.

Despite its great sucesses, active matter suffers from limitations inherent to the com-
plexity of its object of study [45]. As it aims at modelling living entities, even the
simplest active system will feature non-Gaussian, possibly correlated fluctuations which
are responsible for its nonequilibrium nature [46, 47]. From a theoretical standpoint, re-
sorting to these unusual fluctuations has the technical disadvantage of making algebraic
computations very challenging. Quantifying the departure of active particles from equi-
librium physics is a whole research field per se [47–55] but exact results remain scarce
and limited to specific models. Chapter 2 aims at filling this gap by presenting an exact
perturbative analysis of Active Ornstein Uhlenbeck Particles (AOUPs). These results,
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which generalize a previous work from the group [56], are summarized in our contri-
butions [57, 58]. In section 2.1, I derive analytically the steady-state distribution of an
AOUP and quantify its departure from equilibrium through the characterization of three
signatures: the deviation from Boltzmann distribution, the ratchet current, and the en-
tropy production rate. In section 2.2, I generalize my analytical results to the case of a
particle experiencing both active and passive noise. The interplay between the two types
of fluctuations is shown to lead to a rich phenomenology for the ratchet current and the
entropy production rate when the temperature is varied: decline or non-monotonicity,
divergence or decay at high T . Finally, in section 2.3, I discuss the extension of my
derivations to the case of interacting active particles in arbitrary dimension.

The transition to collective motion [8, 9] is one of the most studied phenomena in
active matter. It describes the emergence of flocks from a disordered assembly of aligning
self-propelled units [59]. Its specificities, and particularly its order, have been discussed
extensively in the literature [60–62]. A classification based on the type of microscopic
interactions at play has emerged: the onset of flocking should be discontinuous in so-called
metric models and continuous in so-called topological models. [63–65]. In Chapter 3, I
show that such a classification does not survive the incorporation of microscopic noise.
To this aim, I present a detailed account of our contribution [66]. In sections 3.1 and 3.2,
I introduce the transition to collective motion and motivate my study. From sections 3.3
to 3.7, I present the notion of fluctuation-induced first-order transition and apply it to
flocking models. Our work shows that the current classification of transition to collective
motion must be revisited: there are strong evidences of a discontinuous scenario with
phase-separation, no matter the type of microscopic alignment at play, as long as the
orientational dynamics is not decoupled from the position of the agents.

Beside flocking, there is a second paradigmatic phase transition in active matter:
Motility-Induced Phase Separation (MIPS) [67] (see Fig. 1.3). It occurs in systems of
active particles where self-propulsion decreases sufficiently rapidly as the local density
increases [68]. This dependency on the density triggers an unstable feedback loop leading
to the formation of dense arrested clusters coexisting with a gas phase [67]. While the
transition to collective motion and MIPS have been extensively studied on their own
[69–74], there has been few studies about their interplay in active systems exhibiting both
alignment and a density-dependent self-propulsion [75–78]. In particular, the possible
occurrence of MIPS in an ordered state instead of in a disordered gas remains an open
question. In Chapter 4, we tackle this problem by studying the interplay between the
flocking transition and MIPS in dense assemblies of Quincke rollers. To this aim, I follow
the presentation of our contribution [79], which I complement with unpublished results.
This chapter corresponds to a joint work with Delphine Geyer and Denis Bartolo (ENS
Lyon) who were in charge of all the experimental side of the collaboration. In sections 4.1
to 4.3, I unveil a new phase transition taking place in dense assemblies of colloidal rollers,
which we dubbed active solidification. At the transition, disordered jams that propagate
upstream a homogeneous flock of rollers are observed. In section 4.4, I show that active
solidification is due to an extended MIPS scenario occurring between a polar liquid and
an active solid. Finally, in section 4.5, I vary the parameters of our theoretical model to
explore the rich phenomenology yielded by the interplay of MIPS and collective motion.
By doing so, I predict the presence of an interesting phase where flocking bands coexist
with active jams.

Chapter 5 lies slightly aside from the rest of this manuscript as it was started at the
end of this PhD. It contains solely unpublished results obtained in collaboration with
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Figure 1.3 – Left. Snapshot of self-phoretic colloids spontaneously forming dense clusters
of particles. Their self-propulsion mechanism is controlled by a homogeneous light shed on
the system. Figure adapted from [80]. Right. Simulations of Active Brownian Particles
with quorum sensing interaction: their self-propulsion decreases with the local density.
They spontaneously form dense clusters of particles. Figure adapted from [67].

Yariv Kafri and Mehran Kardar. In statistical physics, whenever the two-point function
of a quantity φ decays algebraically with the distance |x| as 〈φ(x)φ(0)〉 ∝ |x|−α, it is said
that correlations are long-ranged, or scale-free. Historically, there has been a large interest
in long-ranged correlations, be it at the critical point in equilibrium systems [81–85] or
in the steady state of out-of-equilibrium systems [86–94]. However, rather surprisingly,
long-ranged correlations have rarely been discussed in active matter outside from the
ordered phase of the Vicsek model [95–98]. As a first step in this direction, I present
in Chapter 5 a particle-based model with emergent scale-free behaviour inspired by a
field theoretical work of Lee, Grinstein and Sachdev [99]. Starting from a microscopic
dynamics with anisotropic short-range interactions, I show the existence of macroscopic
long-ranged density correlations in sections 5.3 to 5.3.2. In section 5.4, I assess the effect
of this scale-free decay on the pressure exerted by the system in order to probe for a
possible Casimir-like behaviour.

Finally, in chapter 6, I conclude this thesis by summarizing the contributions devel-
oped in the four chapters. For each one of my work, I propose a possible future research
direction.



2. Active Ornstein Uhlenbeck Parti-
cle: departure from equilibrium

The present chapter details and contextualizes our contributions [57]- [58] on the AOUP
model. Let us start with a paradigmatic equilibrium dynamics: we consider a particle
evolving in a confining potential φ and submitted to a Gaussian white noise. Its position
x obeys the following over-damped Langevin equation:

ẋ = −µ ∂xφ+
√

2Tη , (2.1)

where µ is the mobility and η is a Gaussian thermal noise such that 〈η(t)η(t′)〉 = δ(t− t′).
In the remainder of this chapter, for clarity, we set the mobility coefficient µ to 1 in (2.1).
The probability P (x, t) to observe the particle at position x at time t evolves according
to the Fokker-Planck equation

∂tP (x, t) = ∂x [T∂xP (x, t) + ∂xφP (x, t)] , (2.2)

where ∂x is a short-hand notation for ∂/∂x. Thermal equilibrium imposes strong con-
staints on the steady state of dynamics (2.1):

CI. It enforces the Boltzmann weight, linking the stationary probability P (x) to the
local potential energy φ(x) as P (x) ∝ exp(−φ(x)/T ).

CII. It prohibits the emergence of currents.

CIII. It prevents the existence of an arrow of time.

The first point stems from the Fokker-Planck equation (2.2), whose flux-free steady
state satisfies T∂xP + ∂xφP = 0 so that P (x) ∝ exp(−φ/T ).

The second point is a consequence of the Boltzmann weight as the current J is the
steady-state averaged velocity, ie J = 〈ẋ〉. Using expression (2.1) for ẋ, and noting that
〈η〉 = 0, we obtain

J = 〈−∂xφ〉 = −
∫ +∞

−∞
∂xφP (x)dx = −

∫ +∞

−∞
∂xφ

e−φ/T

Z
dx = 0 , (2.3)

where we have used that a confining potential satisfies φ(±∞) =∞. Let us now demon-
strate the last point by introducing the entropy production rate σ. It is defined as the
long-time limit of the Kullback-Leibler divergence between the probability of a trajectory
and its time-reversed counterpart (to which we refer as "forward" and "backward" trajec-
tories) divided by the duration of the trajectory [100, 101]. In our case, a trajectory is
defined by a set of positions x(t) for t ∈ [0, tf ] and its backward counterpart is given by
the set of positions Rx(t) = x(tf − t). Mathematically, the entropy production rate reads

σ = lim
tf→∞

1
tf

∫
D[{x(t)}]P [{x(t)}] ln

(
P [{x(t)}]
P [{Rx(t)}]

)
, (2.4)

where P [·] is the probability to observe a given trajectory. If we define 〈·〉P as the ensemble
average over all trajectories, we thus obtain σ as

σ = lim
tf→∞

〈
1
tf

ln
(
P [{x(t)}]
P [{Rx(t)}]

)〉
P
. (2.5)

17
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In this chapter, we will assume that the dynamics of x(t) is ergodic and has a steady-state
density function P (x). Under these two assumptions, the quantity t−1

f

[
ln(P [{x(t)}]) −

ln(P [{Rx(t)}])
]
becomes trajectory-independent in the limit tf → ∞ and σ simplifies

into

σ = lim
tf→∞

1
tf

ln
(
P [{x(t)}]
P [{Rx(t)}]

)
. (2.6)

Using a path integral approach, we now compute P [{x(t)}] for (2.1) in Stratonovitch
formalism as

P [{x(t)}] ∝ exp
[∫ tf

0

∂xxφ

2 dx

]
exp

[∫ tf

0

(ẋ+ ∂xφ)2

4T dt

]
. (2.7)

The first factor on the right hand side of (2.7) is specific to the Stratonovitch convention:
it stems from the determinant of the change of variable η(t)→ x(t). Note that this factor
will not contribute to the entropy production rate as it is not affected by the reversal
operator R. On the contrary, the second factor on the right hand side of (2.7) will change
for a reversed trajectory through the transformation ẋ → −ẋ. Note that the integral in
this factor has to be understood in the Stratonovitch sense. Plugging (2.7) into (2.6), we
thus obtain

σ = lim
t→tf

1
tf

∫ tf

0

ẋ∂xφ

T
dt = lim

t→tf

1
tf

∫ tf

0

1
T

dφ

dt
dt = lim

t→tf

1
tf

[
φ [x(tf )]− φ [x(0)]

T

]
= 0 , (2.8)

which shows that an observer cannot statistically distinguish between the forward and
backward trajectories of the position x(t). In layman’s terms, movies recording the sys-
tem’s evolution played backward or forward cannot be distinguished: there is no arrow
of time. I now study how a tiny addition of activity in dynamics (2.1) can circumvent
the constraints CI-CII-CIII of thermal equilibrium, enabling the emergence of the three
phenomena: deviation from Boltzmann, generation of currents and nonzero entropy pro-
duction rate.

2.1 Exact perturbative results: non-interacting AOUPs
in 1D

Let us consider one of the simplest model of active particles: the one-dimensional Active
Ornstein Uhlenbeck Particle (AOUP). Its position x and self-propulsion speed v evolves
according to the following over-damped langevin equations

ẋ = − ∂xφ+ v (2.9)

v̇ = − v

τ
+
√

2D
τ

η , (2.10)

where τ is the persistence length, D is a constant, and η is a Gaussian white noise of
unit variance. The system (2.9)-(2.10) differs from the Brownian case (2.1) because the
Ornstein-Uhlenbeck noise v acting on the particle is colored: 〈v(t)v(t′)〉 = D exp(−|t −
t′|/τ)/τ . As the dissipation is memoryless in (2.9) (µ = 1), the Stokes-Einstein relation
between noise and friction is violated and the particle is driven out of thermal equilibrium.
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Note that, for τ = 0, the Gaussian noise v falls back onto a Wiener process of amplitude
D since limτ→0〈v(t)v(t′)〉 = Dδ(t− t′). In this particular case, the dynamics (2.9)-(2.10)
is an equilibrium one with temperature D. Thus, intuitively, τ provides a continuous
"handle" to set the level of activity in the dynamics. Despite the presence of this "handle",
characterizing the departure from thermal equilibrium of (2.9)-(2.10) remains a challenge.
Indeed, others active models such as RTPs and ABPs do have similar parameters ε
controlling the intensity of activity but so far there are no analytic characterization of
their behaviour when ε is small. In this section, I extend the approach of [56] and develop
an exact perturbative expansion for the AOUP model (2.9)-(2.10). My main result is an
analytical prediction of the steady-state distribution Ps(x, v) as a series in τ 1/2 (see section
2.1.1). Building on it, I then make quantitative predictions about the three signatures of
nonequilibrium CI-CII-CIII: I compute the marginal in space of the probability density in
2.1.2, the current in an asymmetric periodic ratchet in 2.1.4, and the entropy production
rate in 2.1.5.

2.1.1 The stationary measure
In this section, I perform the derivation of the steady-state distribution Ps(x, v) as a
series in powers of τ 1/2. Historically, the density Ps was first derived to order τ in [56] for
a confining potential. Herafter, I use a slightly different method and, most importantly,
explain how to extend the expansion to arbitrary order.

The derivation proceeds in several steps. First, we conveniently rescale the Fokker-
Planck operator. Then, we look for its stationary solution by expanding Ps on the basis of
Hermite polynomials and we show how the Fokker-Planck equation imposes a recurrence
relation between the coefficients of this expansion. Finally, we solve the recurrence by
expanding these coefficients as power series in τ 1/2. We now detail the derivation starting
from the Fokker-Planck operator L corresponding to (2.9)-(2.10), which reads

L = ∂x(∂xΦ)− v∂x + ∂v

(
v

τ

)
+ D

τ 2∂vv . (2.11)

Because the steady-state distribution of (2.10) is proportional to exp(− τv2

2D ), we rescale
v as ṽ =

√
τv in order to expand Ps in series of τ 1/2 around the equilibrium measure.

Expressed in terms of the rescaled variable, Ps(x, ṽ) satisfies

L̃Ps(x, ṽ) = 0 (2.12)

with the operator L̃ defined as :

L̃ = ∂x(∂xΦ)− ṽ√
τ
∂x + ∂ṽ

(
ṽ

τ

)
+ D

τ
∂ṽṽ . (2.13)

In the remainder of this section, the tilde notation for v and L will be omitted for clarity.
We first note that the Fokker-Planck operator (2.13) can be written as:

L = 1
τ
L1 + 1√

τ
L2 + L3 . (2.14)

Where L1, L2 and L3 are given by

L1 = D
∂2

∂2v
+ ∂

∂v
v L2 = − ∂

∂x
v L3 = ∂

∂x

∂φ

∂x
. (2.15)
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L1 is the Fokker-Planck generator of the Ornstein-Uhlenbeck process, and its nth eigen-
function Pn is related to the nth physicists’ Hermite polynomial Hn(v) = (−1)nev2

∂nv e
−v2

according to

Pn(v) =
e−

v2
2DHn

(
v√
2D

)
√

2nn!2πD
. (2.16)

The family {Pn} are eigenfunctions of the operator L1 satisfying

L1Pn = −nPn (2.17)

and they form a family orthogonal to the set {Hn}:

δk,n =
∫ +∞

−∞

Hk

(
v√
2D

)
√

2kk!
Pn(v)dv . (2.18)

We use the Pn’s to look for the solution of the stationnary distribution Ps under the form
of:

Ps(x, v) =
∑
n≥ 0

Pn(v)An(x) . (2.19)

Using the orthogonality property (2.18), the An’s can be obtained as

An(x) =
∫
Ps(x, v)

Hn

(
v√
2D

)
√

2nn!
dv . (2.20)

We further show in Appendix A.1.1 that they can be expanded in power of τ 1/2 as

A0 = A0
0(x) + τA2

0(x) + τ 2A4
0(x) + ... (2.21)

A1 = τ 1/2A1
1(x) + τ 3/2A3

1(x) + τ 5/2A5
1(x) + ...

A2 = τA2
2(x) + τ 2A4

2(x) + τ 3A6
2(x) + ...

...

Note that A2k contains only integer powers of τ and that its first nonzero contribution is
of order τ k. Likewise, A2k+1 contains only half-integer powers of τ and its first nonzero
contribution is of order τ k+1/2. Thus, by definition, Aki is the term of order τ k/2 in Ai
if k ≥ i, and it vanishes otherwise. As explained in Appendix A.1.1, the Aki ’s can then
be computed recursively and we report hereafter the expressions of A0

0 and A2
0 as an

example:

A0
0 = c0 e

− φ
D , (2.22)

A2
0 = c0 e

− φ
D

(
∂xxφ−

(∂xφ)2

2D

)
+ c2 e

− φ
D − b3√

D
e−

φ
D

∫ x

0
e
φ
D dx . (2.23)

As expected, A0
0 corresponds to the equilibrium measure when τ = 0 and c0 is thus fixed

by normalization, requiring
∫
dxA0

0 = 1, which leads to

c0 =
(∫ +∞

−∞
e−

φ
D dx

)−1
. (2.24)

Equation (2.23) involves two additional integration constants: c2 and b3. While c2 is found
by normalization, requiring

∫+∞
−∞ A2

0(x)dx = 0, b3 is fixed by the boundary conditions on
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A2
0 as we shall see in the next sections. As such, its value will differ when the system

is infinite and confined by a diverging potential or is endowed with periodic boundary
conditions. The recursion described in Appendix A.1.1 can be iterated up to an arbitrary
order in τ to find all the Aki ’s for i ≥ 0. In addition to the previous constants c2j and
b2j+1 for j < k, which were determined at order τ j/2, A2k

0 generically depends on two
new integration constants: c2k and b2k+1. The former, c2k, is found by requiring the
normalization of A2k

0 ,
∫
A2k

0 (x)dx = 0, while b2k+1 is fixed by the boundary conditions for
A2k

0 .
For example, A4

0 not only depends on c2 and b3, which were previously determined
upon computing A2

0, but also on two new integration constants : c4 and b5. The constant
c4 is found by requiring normalization

∫+∞
−∞ A4

0(x)dx = 0 and b5 is fixed by enforcing the
correct boundary conditions for A4

0.
While the explicit expressions of the A2k

0 rapidly become cumbersome, their systematic
derivation can be implemented with a software such as Mathematica [102]. For illustration
purposes, we report the complete expression of Ps(x, v), with its integration constants,
up to the order τ 2 in Appendix A.1.2.

2.1.2 Deviation from the Boltzmann distribution in a confining
potential

The marginal in space of Ps(x, v) can be used to quantify how the steady-state distribution
departs from the Boltzmann weight as τ increases. Integrating Ps(x, v) over v selects the
term A0 in the ansatz (2.19) through the use of the orthoganality relation (2.18):

Ps(x) =
∫ +∞

−∞
Ps(x, v)dv = A0 =

∑
k

A2k
0 τ

k . (2.25)

Here we consider the special case of a confining potential φ, and we require that, for all
k ≥ 1,

lim
x→±∞

A2k
0 (x) = 0 (2.26)∫ +∞

−∞
A2k

0 (x) = 0 . (2.27)

We remark that equation (2.26) imposes b2k+1 = 0 for all k ≥ 1 while (2.27) fixes c2k for
all k ≥ 1. The function A2k

0 is then uniquely determined. For example, using (2.23), A2
0

reads
A2

0 = c0 e
− φ
D

(
∂xxφ−

(∂xφ)2

2D

)
− 3 c2

0
2 e−

φ
D

∫ +∞

−∞
∂xxφ e

− φ
D dx , (2.28)

where c0 is given by (2.24). In expression (2.28), we can readily extract the first correction
to the Gibbs-Boltzmann measure as

Ps(x)− A0
0

A0
0

= τ

∂xxφ− (∂xφ)2

2D −
3
∫+∞
−∞ ∂xxφ e

− φ
D dx

2
∫+∞
−∞ e−

φ
D dx

+O(τ 2) . (2.29)

Casting it into an effective potential φeff , we obtain

Ps(x) ∝ exp
(
−φeff

D

)
with φeff = φ+ τ

(
(∂xφ)2

2 −D∂xxφ
)

+O(τ 2) . (2.30)
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The cumbersome expression of the full marginal in space Ps(x) up to order τ 2 is reported
in Appendix A.1.2.

Note that our ansatz (2.21) rests on the hypothesis that Ps(x) is an analytic function in
τ 1/2, which need not necessarily hold for an arbitrary potential. To check this hypothesis,
we have to verify whether the series admits a finite radius of convergence.

2.1.3 Perturbative series: regularization process
In this section, I show that the convergence of our expansion (2.19) is only ensured for
small values of τ . To formally extend our results beyond this regime, we have to resort
to a regularization process described afterwards. We start by assessing numerically of
convergence of our expansion for a potential φ(x) = x4/4, at fixed D, and for two different
values of τ . For τ = 0.01, we show in Fig. 2.1 truncations of (2.25) up to order τ 8.
They are well-behaved and quantitatively agree with the stationary distribution obtained
numerically. However, for τ = 0.2, Fig. 2.1 shows the successive orders of the truncation
to be typical of asymptotic series: adding one order in τ increases the series by a larger
amount than the sum of the previous terms, leading to wild oscillations. While such a
result seems disappointing, it does not mean that the full series fails in capturing the
steady state. Mathematically speaking, it only entails that the finite truncation yields a
poor approximation of the full series and that more work should be carried out to extract
physical behaviours.

To regularize our diverging truncated sequence, we resort to a Padé-Borel summation
method. We first introduce the Borel transform BN associated to (2.25):

BN(τ) =
N∑
k=0

A2k
0
k! τ

k . (2.31)

The finite-N truncation of the series (2.25) is exactly recovered from its N th-Borel trans-
form BN by applying a Laplace inversion :

N∑
k=0

A2k
0 τ

k =
∫ ∞

0
BN(ωτ)e−ωdω . (2.32)

The Laplace inversion of expression (2.31) for BN indeed leads back to the divergent
finite truncation that we wanted to regularize. To avoid such a fate, one may use a
nonpolynomial approximation of BN(τ) whose Taylor expansion coincides with the known
terms in (2.31). In the Padé-Borel method, it is achieved by approximating BN with a
rational fraction FN = QN/RN , where QN and RN are polynomials in τ of order N/2
chosen such that BN(τ) = QN(τ)/RN(τ) + O(τN+1). The Borel resummation to order
N of (2.25), Br

N , is defined by replacing BN in (2.32) by its Padé approximant FN :

Br
N =

∫ ∞
0

QN(ωτ)
RN(ωτ)e

−ωdω . (2.33)

Finally, the series (2.25) is formally obtained from the limit of Br
N when N →∞. Here-

after, we estimate (2.25) while keeping N finite and we will not evaluate Br
N beyond

N = 8. Interestingly, for τ = 0.2, while the truncated sequence of (2.25) is divergent,
its Borel resummation Br

8 agrees quantitatively with numerical estimates of the steady-
state distribution, as shown in the bottom right corner of Fig. 2.1. In Fig. 2.1, we plot
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the Borel resummation Br
8 and the corresponding numerics for two different values of τ .

When τ increases, the dynamics (2.9)-(2.10) departs more strongly from equilibrium and
the probability density differs significantly from the Boltzmann weight with the presence
of two humps. We have thus characterized how, when τ increases, AOUPs violate the
equilibrium constraint CI described in introduction: their steady-state density Ps(x) is
not enslaved to the local energy φ(x) through Ps(x) ∝ exp(−φ(x)/D), and they can
accumulate outside a local minima of φ.
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Figure 2.1 – Steady-state distribution of (2.9)-(2.10) in a confining potential φ(x) = x4/4
Top: (a) For τ = 0.01, the finite truncation of (2.25) converges and agrees with the
numerics. (b) Its corresponding Borel resummation Br

8 also coincides with simulation
data. Bottom: (c) For τ = 0.2, the finite truncation of (2.25) is rapidly diverging. (d)
However, the Borel resummation Br

8 accurately follows the data. Parameters : D = 1,
dt = 10−4, time = 108. Figure adapted from [57].

2.1.4 The ratchet current
The second nonequilibrium signature CII described in the introduction is the ratchet
mechanism by which asymmetric periodic potentials may lead to steady-state currents
outside equilibrium [103–106]. In this section, we consider such a potential φ of period
L and we use our perturbative expansion to compute the steady-state current J = 〈ẋ〉.
Using ẋ = −∂xφ+ v/

√
τ , J reads

J = −
∫ L

0

∫ ∞
−∞

∂xφPs(x, v)dxdv +
∫ L

0

∫ ∞
−∞

v√
τ
Ps(x, v)dxdv . (2.34)

We remark that the integral over v in (2.34) will select only specific terms in the ansatz
(2.19) through the use of the orthogonality relation (2.18). For the first term on the right
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hand side of (2.34), integrating v selects A0(x) while for the second term it selects A1(x).
Using their expansion (2.21) in powers of τ , we thus obtain

J = −
∑
k≥0

τ k
∫ L

0
∂xφA

2k
0 dx+

√
D√
τ

∑
k≥0

τ k+ 1
2

∫ L

0
A2k+1

1 dx (2.35)

Using expression (A.8) for A2k+1
1 given in Appendix A.1.1, we can further simplify J into

J = L
√
D
∑
k>0

b2k+1τ
k . (2.36)

While the {bk} all vanished in the previous section as a result of confinement (see (2.26)),
they do not for a periodic potential. Here, instead, the value of bk is fixed upon requiring
the periodicity of Ak−1

0 . We report the expression of the marginal in space Ps(x) for a
periodic potential up to order τ 2 in (A.19)-(A.18) of Appendix A.1.2. Using it, we find
that Lb5τ

2 is the first non-vanishing contribution to the current:

J = Lτ 2

2

∫ L
0 [φ′(x)]2φ(3)(x)dx∫ L

0 e
φ(x)
D dx

∫ L
0 e−

φ(x)
D dx

+O(τ 3) , (2.37)

where φ(n)(x) is the n-th derivative of the potential. In Fig. 2.2, we compare the above
prediction with the results of numerical simulations of an AOUP experiencing a potential
Φ(r) = sin(πr/2) + sin(πr).
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Figure 2.2 – Left: Plot of the ratchet potential φ(x) = sin(πx/2) + sin(πx) which is
periodic of period 4. Right: Plot of the normalized current J/τ2 induced by φ(x) as a
function of the inverse of the persistence time τ−1. The blue dots correspond to numerical
simulations with error bars given by the standard deviation as described in Appendix A.3.
The red line is the analytical prediction (2.37) in the small τ limit. In the inset, we plot
J as a function of τ . Figure adapted from [57].

We find quantitative agreement at small τ for τ < 0.01, which is consistent with the
previous section for the radius of convergence of our ansatz (2.19). Note that J in (2.36)
could also be regularized using Borel resummation to extend the quantitative range of
agreement between theory and simulations to higher values of τ , but we leave such a
regularization for future works.
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2.1.5 The entropy production rate
In this section, I derive the entropy production rate defined in (2.6) for the AOUP dy-
namics (2.9)-(2.10). As shown in the introduction, σ measures the irreversibility of the
dynamics and vanishes for a Brownian particle. It is thus a signature of nonequilibrium
and we want to quantify its departure from zero when τ increases. The computation of
σ for the AOUP dynamics (2.9)-(2.10) remains a debated topic [56, 107–109] as it has
triggered a controversy about the parity of the self-propulsion v under time-reversal [110].
Following [56, 108], we choose here to focus instead on the non-Markovian process x(t)
obtained after integrating out the active degrees of freedom v(t). In this case, a trajectory
over the time interval [0, tf ] is solely defined as a set of positions x(t) for t ∈ [0, tf ] and its
backward counterpart is unambiguously given by the set of positions Rx(t) = x(tf − t).
To derive σ, we use a path-integral formalism. Since the noise v is Gaussian, we obtain
the probability of its realization as

P [{v(t)}] ∝ exp
(
−1

2

∫ tf

0

∫ tf

0
dt1 dt2 v(t1)Γ−1(t1 − t2)v(t2)

)
, (2.38)

where Γ−1(t) is the functional inverse of the noise time correlation Γ(t) = 〈v(t)v(0)〉 =
De−|t|/τ/τ . Using the relation Γ−1(w)Γ(w) = 1, valid in Fourier space, we obtain

Γ−1(w) = 1
Γ(w) = 1

2D + w2 τ
2

2D . (2.39)

Transforming Γ(w) back in real space gives

Γ−1(t) = − τ 2

2D
d2

dt2
δ(t) + 1

2Dδ(t) . (2.40)

We now make the change of variable v = ẋ + ∂xφ in (2.38) using the Stratonovitch con-
vention. This change of variable will generate an extra factor invariant upon the reversal
of trajectory R stemming from the determinant. As this extra factor will simplifies itself
in the definition of the entropy production (2.6), we do not report it hereafter. We thus
obtain the probability of a trajectory P [{x(t)}] as

P [{x(t)}] ∝ exp
(
−1

2

∫ tf

0

∫ tf

0
dt1 dt2 S[ẋ, x]

)
, (2.41)

with the action

S[ẋ, x] = [ẋ(t1) + φ′(x(t1))] Γ−1(t1 − t2) [ẋ(t2) + φ′(x(t2))] . (2.42)

Inserting (2.41) into (2.6), we obtain the entropy production rate σ over a path x(t) as

σ = lim
tf→∞

1
tf

∫ tf

0

∫ tf

0
dt1 dt2

1
2
(
S
[
Ṙx,Rx

]
− S [ẋ, x]

)
, (2.43)

where Rx = x(tf− t) is the reverse path and Ṙx = −ẋ(tf− t) the corresponding velocity.
Note that, in (2.43), terms even under time reversal cancel, leading to

σ = lim
tf→∞

− 2
tf

∫ tf

0

∫ tf

0
dt1 dt2 Γ−1(t1 − t2)ẋ(t2)φ′(x(t1)) . (2.44)
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Inserting the definition (2.40) of Γ−1 into (2.44), we get

σ = lim
tf→∞

− 2
tf

∫ tf

0
dt ẋ(t)

(
− τ 2

2D
d2

dt2
+ 1

2D

)
φ′(x(t)) (2.45)

σ = lim
tf→∞

− 1
Dtf

∫ tf

0
dt ẋ

(
−τ 2ẍẋφ(2)(x)− τ 2ẋ2φ(3)(x) + φ′(x)

)
, (2.46)

where the integral is to be understood in the Stratonovitch sense. Performing an integra-
tion by part on the above expression, noting that exact derivatives yield no contribution
to σ in the limit tf →∞, we obtain

σ = lim
tf→∞

τ 2

2Dtf

∫ tf

0
dt ẋ3φ(3)(x) (2.47)

Finally, taking into account the ergodicity of the dynamics allows us to replace long-time
averages by ensemble averages:

σ = τ 2

2D 〈ẋ
3φ(3)〉 = τ 2

2D 〈(−φ
′ + v)3φ(3)〉 , (2.48)

where 〈·〉 represents an average with respect to the steady-state measure. The last step
consists in computing the ensemble averages by using the perturbative stationary measure
(A.17) reported in Appendix A.1.2. After a lengthy but straightforward computation, we
obtain σ up to order τ 2 as

σ = Dτ 2

2

∫+∞
−∞ φ(3)2 e−

φ
D dx∫+∞

−∞ e−
φ
D dx

+O(τ 5
2 ) . (2.49)

The derivation of (2.49) only requires the expression of Ps up to order τ 3/2 and was first
performed in [56] using a different approach. Importantly, we remark that σ is nonzero
at order τ 2: activity breaks time-reversal symmetry and the observer can now distinguish
between the forward and backward trajectory of an AOUP. The addition of the time-
correlated self-propulsion v has thus lifted the equilibrium constraint CIII defined in the
introduction. However, it is interesting to note that σ = O(τ 2), which means that,
to order τ , the AOUP dynamics is non-Boltzmann but time-reversible; breaking the
Boltzmann weight does not necessarily entails violating time-irreversibility.

2.2 non-interacting AOUPs in 1D in the presence of
a thermal noise

This section corresponds to the reference [58] and was developed in collaboration with
Thibault Arnoulx De Pirey, who is currently finishing his PhD under the supervision of
Frédéric Van Wijland at MSC. In the previous section, we have quantified how the active
noise v drives an AOUP out of equilibrium through the derivation of three quantities

SI. The deviation of the spatial steady-state probability distribution Ps(x) from the
Boltzmann weight

SII. The ratchet current J in a periodic potential
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SIII. The entropy production rate σ

It would be interesting to ask how this picture survives the addition of a thermal white
noise in the AOUP’s dynamics. Indeed, in Active Matter, most works are carried out in
the regime of large activity, where one can neglect the effect of thermal fluctuations on
the self-propelled particle. Despite its relevance in multiple experiments (passive tracers
in active mediums [5, 25, 111, 112], membrane fluctuations in red blood cells [24, 113]...),
the interplay between active and passive noise sources has rarely been studied and its
influence on the departure from equilibrium remains to be quantified. Would the three
signatures of nonequilibrium SI-SII-SIII be mitigated or enhanced by the competition
between the active and thermal noises ? To address this question, I now study an AOUP
submitted to an additional white noise η1

ẋ(t) =− ∂xφ (x(t)) +
√

2T η1(t) + v(t) (2.50)

v̇(t) =− v(t)
τ

+
√

2D
τ

η2(t) . (2.51)

Once again, we note that, for τ = 0, the dynamics (2.50)-(2.51) falls back to an equilib-
rium one with temperature T +D. Thus, τ remains the parameter controlling the depar-
ture from equilibrium and we show that our perturbative derivation of the steady-state
distribution Ps(x, v) as a series in τ 1/2 presented in 2.1.1 can be generalized to (2.50)-
(2.51). This perturbative series disentangles the respective roles of passive and active
noises on the steady-state of an AOUP, showing that the signatures of non-equilibrium
SI-SII-SIII can display surprising behaviours as the temperature T is varied. Depending
on the potential φ in which the particle evolves, I find that both the current J (see 2.2.3)
and the entropy production rate σ (see 2.2.4) can be non-monotonic functions of T . The
latter can even diverge at high temperature for steep enough confining potentials. Thus,
depending on context, switching on translational diffusion may drive the AOUP closer to
or further away from equilibrium.

2.2.1 The stationary measure

The derivation of the steady-state distribution Ps(x, v) as a series in powers of τ 1/2 follows
the same steps already described in section 2.1.1. Indeed, the Fokker-Planck operator LT
corresponding to (2.50)-(2.51) only differs from (2.11) by an additional term T∂xx

LT = L+ T∂xx . (2.52)

Expressed in terms of the rescaled variable ṽ =
√
τv, the operator L̃T can still be decom-

posed into three terms:
L̃T = 1

τ
L1 + 1√

τ
L2 + LT3 . (2.53)

where LT3 differs from L3 only by the additional term due to thermal diffusion: LT3 =
L3 +T∂xx. Since L1 and L2 are unaltered by the thermal noise, there is no need to change
the basis of eigenfunctions used to expand Ps in section 2.1.1 and we still use the Pn’s
defined in (2.16) to look for the stationnary distribution under the form of

Ps(x, v) =
∑
n≥ 0

Pn(v)An(x) . (2.54)
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Similarly to the athermal case, the An’s can also be expanded in power of τ 1/2 as
A0 = A0

0(x) + τA2
0(x) + τ 2A4

0(x) + ... (2.55)
A1 = τ 1/2A1

1(x) + τ 3/2A3
1(x) + τ 5/2A5

1(x) + ...

A2 = τA2
2(x) + τ 2A4

2(x) + τ 3A6
2(x) + ...

...
As explained in Appendix A.1.1, the Aki ’s can then be computed recursively and we report
hereafter the expressions of A0

0 and A2
0 as an example

A0
0 = c0 e

− φ
T+D , (2.56)

A2
0 = c0 e

− φ
T+D

(
D∂xxφ

T +D
− D (∂xφ)2

2(T +D)2

)
+ c2 e

− φ
T+D − b3

√
D

T +D
e−

φ
T+D

∫ x

0
e

φ
T+D dx , (2.57)

Once again, A0
0 is given by the Boltzmann weight with temperature T + D and c0 is

determined by normalization. Requiring
∫
A0

0(x)dx = 1 leads to

c0 =
(∫ +∞

−∞
e−

φ
T+D dx

)−1
. (2.58)

Equation (2.57) involves two additional integration constants: c2 and b3. While c2 is found
by normalization, requiring

∫+∞
−∞ A2

0(x)dx = 0, b3 is fixed by the boundary conditions on
A2

0. The recursion described in Appendix A.1.1 can be iterated up to arbitrary order
in τ to find the Aki ’s for i ≥ 0. In addition to the previous constants c2j and b2j+1
for j < k, which were determined to order τ j/2, A2k

0 generically depends on two new
integration constants : c2k and b2k+1. The determination of these integration constants
in the thermal case follows the same rules as in the athermal case: c2k, is found by
requiring the normalization of A2k

0 while b2k+1 is fixed by the boundary conditions for
A2k

0 (see section 2.1.1). Similarly to the athermal case, the explicit expressions of the A2k
0

rapidly become cumbersome but their systematic derivation can be implemented with
a software such as Mathematica [102]. For illustration purposes, I report the complete
expression of Ps(x, v), with its integration constants, up to the order τ 2 in Appendix
A.1.2.

2.2.2 Deviation from the Boltzmann distribution in a confining
potential

In this section, I study the marginal in space Ps(x) = ∑
k≥0A

2k
0 τ

k in the case of a
confining potential φ. Similarly to the athermal case, for all k ≥ 1, the confinement
imposes b2k+1 = 0 while c2k is fixed by normalization

∫
A2k

0 (x)dx = 0 (see (2.26)-(2.27)).
Using (2.57), A2

0 then reads

A2
0 = c0 e

− φ
T+D

(
D∂xxφ

T +D
− D (∂xφ)2

2(T +D)2

)
− 3 c2

0 D

2(T +D) e
− φ
T+D

∫ +∞

−∞
∂xxφ e

− φ
T+D dx , (2.59)

where c0 is defined in (2.58). Thanks to (2.59), the first correction to the Gibbs-Boltzmann
measure is readily expressed as

Ps(x)− c0e
− φ
T+D

c0e
− φ
T+D

= τ

 D

T +D
∂xxφ−

D (∂xφ)2

2(T +D)2 −
3D

2(T +D)

∫+∞
−∞ ∂xxφ e

− φ
T+D dx∫+∞

−∞ e−
φ

T+D dx

+O(τ 2) .

(2.60)
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Note that the above expression falls back to the steady state of an athermal AOUP (2.29)
when T = 0 to this order in τ . The cumbersome expression of the full marginal in space
Ps(x) up to order τ 2, for generic D and T , is reported in Appendix A.1.2. Similarly
to its athermal counterpart, the series ∑k≥0A

2k
0 τ

k has a small convergence radius in τ
and we need to resort to a regularization process to extend its range of validity. For
τ = 0.01, we show in Fig. 2.3 that the truncation of ∑k≥0A

2k
0 τ

k to order τ 8 is well-
behaved and quantitatively agrees with the stationary distribution obtained numerically.
For τ = 0.2, however, Fig. 2.3 shows that the same truncation is diverging away from
the result of simulations. Fortunately, as described in section 2.1.3, we can resort to
a Borel resummation and compute Br

N to regularize Ps(x). As shown in the bottom
right corner of Fig. 2.3, the Borel resummation Br

8 accurately fits the numerical steady-
state distribution for τ = 0.2: the domain of validity has been formally extended by the
regularization process.

In Fig. 2.4, we plot the Borel resummations Br
8 and the corresponding numerics for

different values of T . When T � D, the dynamics (2.50)-(2.51) is strongly out-of-
equilibrium and the probability density differs significantly from the Boltzmann weight
with the presence of two humps. When T � D, self-propulsion is washed out by thermal
noise, the dynamics draws closer to equilibrium and the two humps of the distribution
are smoothened out. Note that the Borel resummation Br

8 accurately fits the numerics
without any free parameter.

−2 −1 0 1 2
0.0

0.1

0.2

0.3

0.4

x

Ps(x)

order 3
order 4
order 5
order 6
numerics

(a)

−2 −1 0 1 2
0.0

0.1

0.2

0.3

0.4

x

Ps(x)

order 3
order 4
order 5
order 6
numerics

(b)

−2 −1 0 1 2
0.0

0.1

0.2

0.3

0.4

x

Ps(x)

order 6
order 7
order 8
numerics

(c)

−2 −1 0 1 2
0.0

0.1

0.2

0.3

0.4

x

Ps(x)

order 8
numerics

(d)

Figure 2.3 – Steady-state distribution of (2.50)-(2.51) in a confining potential φ(x) =
x4/4 Top: (a) For τ = 0.01, the finite truncation of (2.25) converges and agrees with
the result of numerical simulations. (b) Its corresponding Borel resummation Br

8 also
coincides with simulation data. Bottom: (c) For τ = 0.2, the finite truncation of (2.25)
is rapidly diverging. (d) However, the Borel resummation Br

8 accurately follows the data.
Parameters : D = T = 1, dt = 10−4, time = 108. Details of the numerical simulation are
given in Appendix A.3. Figure adapted from [58].
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Figure 2.4 – Steady-state distributions of (2.50)-(2.51) in a confining potential φ(x) =
x4/4 for different values of T . Plain curves correspond to Borel resummations Br

8 while
symbols are obtained from numerical simulations of (2.50)-(2.51). In dashed lines, we
plot the Gibbs-Boltzmann distributions for the two limiting cases T = 0.1 and T = 3.0 to
highlight the activity-induced deviation from thermal equilibrium. The Borel resumma-
tion Br

8 always fits the data accurately without any free parameters. Parameters: τ = 0.2,
D = 1, dt = 10−4, time = 108. Figure adapted from [58].

2.2.3 The ratchet current
In this section, I consider an asymmetric potential φ of period L and quantify how the
thermal noise affects the ratchet current J = 〈ẋ〉. Using expression (2.50) for ẋ, J reads

J = 〈−∂xφ+ v√
τ

+
√

2Tη〉 =
∫ L

0

∫ ∞
−∞

(
−∂xφ+ v√

τ

)
Ps(x, v)dxdv (2.61)

From section 2.1.4, we know that the integral over v can be computed to yield

J = −
∑
k≥0

τ k
∫ L

0
A2k

0 (x)∂xφ(x)dx+
√
D√
τ

∑
k≥0

τ k+ 1
2

∫ L

0
A2k+1

1 (x)dx . (2.62)

Using the expression (A.8) for A2k+1
1 , we simplify (2.62) into

J =
∑
k≥0

τ k T
∫ L

0
∂xA

2k
0 (x)dx+ L

√
D
∑
k>0

b2k+1τ
k . (2.63)

Finally, we require the marginal in space Ps(x) to be periodic, which entails that A2k
0 is

periodic for all k ≥ 0. The current J then reduces to

J = L
√
D
∑
k>0

b2k+1τ
k . (2.64)

Similarly to the athermal case described in section 2.1.4, the value of bk is fixed upon
requiring the periodicity of Ak−1

0 . We report the expression of the marginal in space Ps(x)
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for a periodic potential up to order τ 2 in (A.19) within Appendix A.1.2. Using it, we find
that Lb5τ

2 is once again the first non-vanishing contribution to the current :

J = DLτ 2

2(T +D)

∫ L
0 φ(1)2φ(3)dx∫ L

0 e
φ

T+D dx
∫ L

0 e−
φ

T+D dx
+O(τ 3) . (2.65)

The above formula reduces to the expression of J for an athermal AOUP (2.37) when
T = 0. It is interesting to note that, as T → ∞, J vanishes as J ∝ 1/T . Physically,
when the thermal noise is much stronger than the self-propulsion, the active dynamics
becomes irrelevant and J dies out. However, as shown in the left part of Fig. 2.5, this
intuitive picture is misleading at intermediate values of T . In this regime, the interplay
between passive and active noises can, depending on the potential, make the current J
non-monotonic: ramping up the temperature might drive the particle further away from
equilibrium. In the right part of Fig. 2.5, we compare our quantitative prediction (2.65)
with the results of numerical simulations for a potential φ(x) = sin(πx/2) + α sin(πx)
with α a constant. We find a quantitative agreement at small τ , for τ < 0.01, which is
consistent with the results of the previous sections regarding the radius of convergence.
Note that J in (2.64) could also be regularized using Borel resummation to extend the
quantitative range of agreement between theory and simulations to higher values of τ ,
but we leave such a regularization for future works.
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Figure 2.5 – Current J induced by a ratchet potential φ(x) = sin(πx/2) + α sin(πx)
for different values of T and α. Plain curves correspond to prediction (2.65) while dots
are numerical simulations with error bars given by the standard deviation as described
in Appendix A.3. Left: J/τ2 normalized by J0 = J(T = 0) as a function of T for
different values of α. Right: J/τ2 as a function of 1/τ for α = 1. Parameters: D = 1,
dt = 15.10−4, time = 5.108. Figure adapted from [58].

2.2.4 The entropy production rate
In this part, I assess the dependency of the entropy production rate (2.6) on the tempera-
ture T and explore its possible behaviours in different contexts. We start from expression
(2.44) for σ, which is valid for any additive SDE with Gaussian colored noise

σ = lim
tf→∞

− 2
tf

∫ tf

0

∫ tf

0
dt1 dt2 Γ−1(t1 − t2)ẋ(t2)φ′ [x(t1)] , (2.66)
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and where Γ−1(t) is the functional inverse of the noise time correlation Γ(t). Here,
in addition to the Ornstein-Uhlenbeck noise v, the dynamics (2.50) also contains the
thermal noise

√
2Tη1. Thus, the total Gaussian noise acting on the particle is η̃(t) =

v(t) +
√

2Tη2(t) and its correlation Γ(t) = 〈η̃(t)η̃(0)〉 reads

Γ(t) =
〈(
v(t) +

√
2Tη1(t)

) (
v(0) +

√
2Tη1(0)

)〉
= D

τ
exp

(
−|t|
τ

)
+ 2Tδ(t) . (2.67)

Using the relation Γ−1(w)Γ(w) = 1, valid in Fourier space, we obtain

Γ−1(w) = 1
Γ(w) = 1

2T + 2D
1+w2τ2

. (2.68)

Transforming Γ(w) back in real space then gives

Γ−1(t) = 1
2T δ(t)−

G(t)
τ

, (2.69)

where G(t) is given by

G(t) = D

4T 2

√
T

D + T
exp

−
√
D + T

T

|t|
τ

 . (2.70)

Inserting (2.69) into (2.66), we note that the term δ(t)/(2T ) yields an exact derivative
that will not contribute to the entropy production rate. We thus obtain

σ = lim
tf→∞

2
tfτ

∫ tf

0

∫ tf

0
dt1 dt2G(t1 − t2)ẋ(t2)φ′ [x(t1)] (2.71)

Finally, taking into account the ergodicity of the dynamics allows us to replace long-time
averages by dynamical ensemble averages, and we get

σ = 2
τ

∫ +∞

−∞
G(t) 〈ẋ(0)φ′(x(t))〉 dt . (2.72)

So far, the entropy production rate (2.72) involves two-time correlation functions, and
our approach will be to reduce σ to averages taken from the steady-state distribution
computed in Section 2.2.1. To this aim, we use the particle displacement as a small-τ
expansion parameter. Indeed, over times of order τ , for which the kernel G(t) is non-
vanishing, we have x(t)−x(0) ∼

√
τ . The details of this expansion are given in Appendix

A.1.3. In particular, (2.72) leads to the following expansion of σ

σ = 2
τ

+∞∑
n=2

1
n!

∫ +∞

0
dtG(t)

〈
ẋ(0)φ(n+1)(x(0)) [x(−t)− x(0)]n

〉
. (2.73)

where the discretization is of the Stratonovich type and where φ(k) is the k-th derivative
of φ. In agreement with [45], (2.73) allows us to show that additive SDEs with Gaussian
colored noise have vanishing entropy production rates when the potential is harmonic.
Moreover, as shown in Appendix A.1.3, the equation of motion (2.50)-(2.51) can be
integrated recursively in powers of τ to yield a series expansion in τ 1/2 of σ. Our main
result is the first non-vanishing order in τ of this expansion

σ = Dτ 2H
(
T

D

) ∫+∞
−∞ φ(3)2 e−

φ
T+D dx∫+∞

−∞ e−
φ

T+D dx
+O(τ 5

2 ) , (2.74)
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where the function H is given by

H(x) =
4
√

x
x+1 + x

(
4
√

x
x+1 + 2

)
+ 1

8
√
x(x+ 1) + 2x

(
6x+ 6

√
x(x+ 1) + 7

)
+ 2

. (2.75)

When T → 0, the entropy production rate (2.74) brings us back to the athermal case of
(2.49) and [56]. Furthermore, in a system endowed with periodic boundary conditions at
−L and +L, the entropy production rate vanishes as 1/T in the large temperature as

σ ' D2τ 2

4T

∫+L
−L

[
φ(3)(x)

]2
dx

2L . (2.76)

Physically, this supports the idea that thermal noise is washing out activity and nonequi-
librium signatures. However, this intuitive picture is challenged by the rich behaviour
of σ(T ), which strongly depends on the nature of φ, and need not be a monotonically
decreasing function. For an infinte system in a confining potential, the entropy produc-
tion rate might even diverge at high temperature: increasing T might thus drive the
system further away from equilibrium. In order to illustrate this idea, let us assume that
φ(x) = λx2p/2p! with p an integer great than 1. For T � D,

∫+∞
−∞ φ(3)2 e−

φ
T+D dx∫+∞

−∞ e−
φ

T+D dx
∼ λ

(2p)!
(2p− 3)!

∫+∞
−∞ x4p−6 e−λ

x2p
T dx∫+∞

−∞ e−λ
x2p
T dx

∝ T 2−3/p , (2.77)

which shows that the entropy production rate behaves at high T as σ ∝ T 1−3/p. As
T →∞, it thus goes to 0 for p = 2 and diverges for p > 3 as the particle explores steeper
regions of the potential. In Fig. 2.6, we plot σ/τ 2 in the τ → 0 limit, as given by (2.74), as
a function of temperature in the three potentials characterized by p = 2, p = 3 and p = 4,
for D = 1 and λ = 1. Depending on the potential, Fig. 2.6 shows the rich phenomenology
exhibited by σ when T is varied: monotonic decrease or non-monotonicity, divergence
or decay at high temperature... Having detailed how a single AOUP can depart from
equilibrium, I now review briefly the case of N interacting AOUPs and explain how the
perturbative derivation of Ps can be generalized to the many-body dynamics.
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Figure 2.6 – Entropy production rate as given in (2.74) divided by τ2 in the limit τ → 0
for different confining potential φ(x) = λx2p/2p! as a function of temperature at D = 1
and λ = 1. (a) For p = 2, the entropy production rate decreases as a function of T
and converges to 0 at large T . (b) For p = 3, the entropy production rate decreases as
a function of T and converges to a non vanishing constant at large T . (c) For p = 4,
the entropy production rate is a non monotonous function of T and diverges at large T .
Figure adapted from [58].
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2.3 Interacting AOUPs in arbitrary dimension
In this section, I review the general case of N interacting AOUPs in any dimension d.
The position of the i-th particle is given by ri while vi indicates its self-propulsion. These
two vectors evolve according to the following Langevin system

ṙi =−∇iΦ + vi (2.78)

v̇i =− vi
τ

+
√

2D
τ
ηi, (2.79)

where Φ(r1, . . . , rN) is the interaction potential which generically depends on the positions
of all particles. The perturbative expansion developed in section 2.1.1 can be generalized
to the N -body dynamics (2.78)-(2.79) to find the steady-state probability distribution
Ps({ri,vi}) as a series in τ 1/2. We show in Appendix A.2 that there is a general recurrence
leading to an integrability condition for the τn correction to the Boltzmann measure.

We note that there is always an analytical solution whenever this integrability condi-
tion (A.58) depends on only one spatial variable. For example, in the case of 2 AOUPs
interacting via a radial potential Φ (|r1 − r2|) in dimension d, (A.58) can be cast into a
simple ODE on the variable r = |r1 − r2| which can then be integrated to yield the τn
correction.

Unfortunately, in the generic N -body case in dimension d, there is no symmetry
constraining the integrability condition to depend on only one spatial variable and we
could not find its generic analytic solution beyond order τ . However, the order n-th
correction can still be obtained formally as the solution of a backward Fokker-Planck
equation with a source term as shown in (A.58).

2.4 Conclusion
In this first chapter, I studied how Active Ornstein-Uhlenbeck particles depart from
equilibrium. I devised perturbative schemes to derive the steady-state distribution of
AOUPs as a series in the persistence time τ in the following three cases:

• a single AOUP evolving on a line (section 2.1)

• a single AOUP evolving on a line and submitted to an additional thermal noise
(section 2.2)

• N-interacting AOUPs in any dimension d (section 2.3)

In the first two cases, I could derive Ps beyond the order τ 3/2 and solve the integrability
condition (A.58). Building on these analytical formulas for the stationary distribution,
I derived quantitative expressions for three signatures of nonequilibrium: the deviation
from Boltzmann weight SI, the ratchet current SII, and the entropy production rate SIII.



3. Fluctuation-induced first-order tran-
sition to collective motion

In the previous chapter, we have studied how active particles behave in the presence
of an external potential. We now turn to the collective behaviours they exhibit when
interactions are switched on. A self-propelled particles is characterized by two quantities;
its position r and its orientation θ. While forces impact the dynamics of positions, torques
control the fate of orientations.

Aligning torques arise naturally in models of collective motion, where a self-propelled
unit usually aligns with its neighbouring fellows to maintain a common direction. Due
to this aligning dynamics, two different phases are naturally expected.

When alignment is weak or density is low, rotational diffusion dominates and the
assembly of self-propelled particles remains disordered. When alignment is strong and
density is high, rotational noise becomes negligble, and the active units collectively move
in the same direction. Between these two limit regimes, a phase transition must occur at
a given alignment strength; this chapter is devoted to the characterization of the order
of this transition to collective motion.

I will first review the most paradigmatic flocking model, namely the Vicsek Model,
and show that its transition follows a first-order scenario with phase separation at the
onset of order. In section 3.2, I discuss another type of models of collective motion,
dubbed topological, and explain why they are believed to undergo a different, second-
order phase transition. At odds with this statement, I report the existence of steady-state
phase-separated solutions even in topological models close to the onset. In section 3.3
and 3.4, I propose a mechanism to explain this surprising instability and illustrate it on
a simple flocking model: the Active Ising Model (AIM). I then show that this mechanism
generically applies to a broad class of topological models in section 3.5, 3.6 and 3.7.
Finally, in section 3.8, I propose a simple way to assess the order of the flocking transition
through a measurement of the onset of order when the average density is varied.

3.1 A brief introduction to collective motion
In this section, I present my personal views on existing results about the transition to
collective motion [59, 114–117]. The purpose of this section is to introduce established
results that are particularly important for my own work, which is presented later in
sections 3.4 to 3.8. I start by describing the phenomenology of flocking through the
introduction of the Vicsek Model, focusing on the phase separation occurring at the
onset of the transition. Through the use of the Boltzmann approach presented in [114], I
then show that the Vicsek Model exhibits a density-dependent onset of order. Using the
same symmetry argument as in [116], I explain in the last part that models of collective
motion will generically exhibit phase-separated states at the transition whenever the onset
of order is density-dependent.

3.1.1 The Vicsek Model
T. Vicsek and co-workers proposed in a seminal contribution [59] to replace the study
of animals by the study of flying spins, hence attracting the attention of physicists and
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giving birth to the field of active matter. The Vicsek Model successfully pinned down
the minimal ingredients needed for the emergence of collective motion: self-propulsion
and noisy aligning interactions. In the 2D Vicsek Model, point-like flying spins move
in a domain Lx × Ly with periodic boundary conditions at constant speed v along their
unitary spin direction si. These spins further stochastically align their orientation si
with the averaged magnetization of their local neighbours. The position ri(t) of the i-th
particle evolves according to (see [114])

ri(t+ dt) = ri(t) + vdt si (3.1)

At every time step dt, the i-th particle aligns its spin with the averaged direction of its
neighbours according to

arg [si(t+ dt)] =


arg

[∑
j∈Ni sj(t)

]
+ σηi if Ni 6= {i}

arg [si(t)] + σηi , with probability Ddt if Ni = {i}
arg [si(t)] , with probability 1−Ddt if Ni = {i}

(3.2)

where Ni is the set of spins located within a radius r0 around the i-th particle, η is a
uniform noise in [−π, π], σ plays the role of a temperature, and D controls the angular
diffusion.

At low density, the i-th spin has no neighbour; Ni = {i} and it flies alone while
si diffuses in the angular space. In this regime, the system remains in a disordered
gas phase. On the opposite, at high density, Ni becomes a much larger set, the spins
align with each others and the particles fly in a common direction. It has been shown
that, unlike the equilibrium XY model, this phase corresponds to a polar liquid with
true long-ranged order [118]. The existence of these two different regions at both end
of the phase diagram raises the question of the nature of the transition occurring at
intermediate densities. Does the polar liquid emerges continuously from the disordered
gas phase or does it rather follow a discontinuous transition ? Historically, the emergence
of the polar liquid was first believed to be continuous [59]: the homogeneous ordered
liquid was thought to be stable at onset. However, careful numerical simulations of the
Vicsek Model later revealed a landmark feature of first-order transitions: the presence
of a coexistence region separating the gas and liquid phases [61, 62]. In this coexistence
domain, one observes stationary profiles in which bands of polar liquid propagate in a
disordered gaseous phase. As the width of these polar bands was shown to be invariant
upon varying the system’s size, this flocking transition was classified as first-order with
micro-phase separation [61]. We report in Fig. 3.1 the full phase diagram of the Vicsek
Model together with snapshots of the system taken in its three different phases. In the
remainder of this manuscript, I will loosely qualify the flocking transition as first-order
whenever we observe a phase-separation at onset of collective motion and as second order
in the absence of such a scenario. In particular, I will not characterize the underlying
phase-separated profiles and I will not discuss whether the system undergo a complete-
or micro-phase separation.

Having detailed the microscopic dynamics of the Vicsek model as well as its macro-
scopic phenomenology, let us now present a theoretical approach that has been developed
to predict the stochastic evolution of assemblies of flying spins. As our work in section
3.4 to 3.8 mostly implies phenomenological approaches, presenting such a coarse-graining
method will ground our study by linking it to microscopic dynamics.
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σ

Figure 3.1 – Center: Phase diagram of the Vicsek Model in the temperature-density
plane (σ, ρ0). The red and blue lines delimit the coexistence region separating the polar
liquid from the disordered gas. Right, Left, Bottom: Snapshots of the system corre-
sponding to each phases. The magenta arrows indicate the average direction of the spins.
Figure adapted from [119] for the phase diagram and from [61] for the snapshots.

3.1.2 Bottom-up approach for the Vicsek Model
In this subsection, I review the theoretical method developed in [114, 120] to compute
the coarse-grained hydrodynamics of the Vicsek Model from its microscopic update rules
(3.1)-(3.2). This hydrodynamic evolution allows us to draw an analogy between the
flocking transition and ferromagnetism. Within this analogy, I will show that the critical
temperature of the Vicsek Model is density-dependent: this is an established result that
was first derived in [114,120] and I will make use of it in section 3.1.3.

The first step of the Boltzmann approach in [120] is to write the evolution equation
for f(r, θ, t), the probability that a particle is at point r at time t with a velocity along
the direction e(θ). The Boltzmann equation relies on the assumption that the system
is diluted, namely that the typical distance between particles is large compared to the
interaction radius r0. It gives the time-evolution of f(r, θ, t) as

∂f

∂t
(r, θ, t) + v e(θ) · ∇f(r, θ, t) = Idif [f ] + Ial[f ] , (3.3)

where the advective term accounts for ballistic motion between two stochastic events
while Idif and Ial accounts for angular diffusion and alignment respectively. According to
(3.2), at each time-step dt, a particle has a probability Ddt to change direction so that
Idif reads

Idif [f ] =D
∫ π

−π
dθ′

∫ σπ

−σπ

dη

2σπ

∞∑
m=−∞

δ(θ′ + η − θ + 2mπ)f(r, θ′, t)−Df(r, θ, t). (3.4)

The first term on the right hand side of (3.4) represents the incoming probability flux
of a particle at position r with orientation θ′ which ends up with orientation θ after
angular diffusion. The second term on the right hand side (3.4) describes the outgoing
probability flux of a particle changing its orientation from θ to another direction after
angular diffusion. Let us now derive Ial. We consider two interacting particles, referred
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to as particle 1 and particle 2, and suppose that we can restrict our study to binary
collisions. To align with particle 1 at time t + dt, particle 2 must lie in a parallelogram
whose surface is given by 2r0v|e(θ2)− e(θ1)|dt. The alignment term will thus reads

Ial[f ] =− 2r0vf(r, θ, t)
∫ π

−π
dθ′ |e(θ′)− e(θ)|f(r, θ′, t) (3.5)

+ 2r0v
∫ π

−π
dθ1

∫ π

−π
dθ2

∫ σπ

−σπ

dη

2σπ |e(θ2)− e(θ1)|

× f(r, θ1, t)f(r, θ2, t)
∞∑

m=−∞
δ(θ + η − θ + 2mπ),

where θ̄ = arg
[
eiθ1 + eiθ2

]
. The first term on the right hand side of (3.5) corresponds to

an outgoing probability flux due to the collision of a particle of orientation θ with another
particle. The second term on the right hand side of (3.5) corresponds to an incoming
probability flux due to the realignment of two particles along the direction θ during a
collision. The two hydrodynamic modes that are typically considered for this Boltzmann
approach are the density and velocity fields, ρ and W, where

ρ(r, t) =
∫ π

−π
dθ f(r, θ, t) , W(r, t) = v

∫ π

−π
dθ f(r, θ, t) e(θ). (3.6)

The time evolution of these two fields is derived by taking the successive angular moments
of the Boltzmann equation (3.3). For example, a direct integration of (3.3) with respect
to θ yields the evolution equation for ρ as

∂ρ

∂t
+∇ · (W) = 0, (3.7)

which corresponds to the conservation of the number of particles. The evolution equa-
tion for W is obtained similarly by multiplying (3.3) by e(θ), integrating over θ, and
finally enforcing a closure approximation. Note that our derivation slightly differs from
the original one performed in [120] as we considered a uniform noise η in the spins’ dy-
namics (3.2) instead of a Gaussian noise. We detail this computation as well as the
closure approximation in appendix B.1 and only report the resulting time evolution for
W hereafter

∂W
∂t

+ γ(W ·∇)W =− v2

2 ∇ρ+ κ

2∇W2 + (α− ξW2)W + ν∇2W

− κ(∇ ·W)W + 2ν ′∇ρ ·M− ν ′(∇ ·W)∇ρ, (3.8)

where ν ′ = ∂ν/∂ρ, M = 1
2(∇W+∇WT) is the symmetric part of the momentum gradient

tensor and the different coefficients are given by

ν =v
2

4

[
D (1− sinc(2σπ)) + 16

3πr0vρ
(7

5 + sinc(2σπ)
)]−1

, (3.9)

γ =16νr0

πv

(16
15 + 2 sinc(2σπ)− sinc(σπ)

)
, (3.10)

κ =16νr0

πv

( 4
15 + 2 sinc(2σπ) + sinc(σπ)

)
, (3.11)

α = 8
π
r0vρ

(
sinc(σπ)− 2

3

)
−D (1− sinc(σπ)) , (3.12)

ξ =256νr2
0

π2v2

(
sinc(σπ)− 2

5

)(1
3 + sinc(2σπ)

)
. (3.13)
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Note that in (3.8), higher order moments have been neglected to obtain a closed set of
equations for W and ρ. Let us now sketch an analogy between (3.8) and the φ4 theory
for ferromagnetism. In the φ4 field theory, the time evolution of the magnetization φ
reads ∂tφ = ∇2φ + (α − ξφ2)φ, where (α − ξφ2)φ is the functional derivative of the
Landau energy. α depends on T and changes sign at the critical temperature Tc while ξ
is assumed to be a positive constant. In the high temperature phase T > Tc, α < 0, and
the only homogenous solution is φ = 0. In the low temperature phase T < Tc, α > 0,
and a nonzero homogenous magnetization φ0 = ±

√
α/ξ becomes a steady-state solution.

Comparing ∂tφ = ∇2φ + (α − ξφ2)φ with (3.8), we remark that the time-evolution
of W also contains a Landau-like term in the form of (α − ξW2)W. Similarly to the
φ4 theory, this term can allow the development of a nonzero velocity W0 depending on
the sign of α. We note that α in (3.8) depends on the noise strength σ and changes sign
at a given σc. In the remainder of this chapter, we thus loosely adopt the language of
magnetic phase transitions by analogy and speak about "temperature" to refer to noise
strength and "critical temperature" to refer to the onset of order for the q = 0 mode.

As a final remark, we note that σc depends on the density ρ as it is defined by
the implicit equation sinc(σcπ)(24r0vρ + 3πD) = 16r0vρ − 2πD. This last point will be
important for the next section where we will assess the linear stability of the homogeneous
phases in models of collective motion.

3.1.3 Phenomelogical description for models of collective mo-
tion

In this section, I review a generic description of flocking models: the Toner-Tu equations
first established in [115–118]. Building on it, I study the linear stability of the homoge-
neous ordered phase and show that it is always unstable at onset whenever the critical
temperature depends on the density.

The Toner-Tu equations aim at capturing the physics of collective motion in a contin-
uous field description reproducing the large-scale and long-time properties of the flock.
The motivation roots in the concept of universality class from renormalization group: mi-
croscopic models sharing similar symmetries and conservation laws should have the same
large-scale behaviors. Instead of painfully coarse-graining models from their microscopic
dynamics, and provided that there is no unexpected symmetries or conservation, one
can write generic PDEs containing all the terms allowed by the constraints (symmetries,
conservation) of the system.

Let us now apply this approach to a broad class of flocking models dealing with
assemblies of flying spins, like in the Vicsek Model. The only symmetry is rotational
invariance: the flying spins are not biased, all spatial directions are equivalent. This
implies that the continuum field-description cannot have a privileged built-in direction:
all terms must be invariant by rotation. We also remark that flying spins do not have
Galilean invariance: adding a constant boost vb to the velocities of the particles does not
leave the system invariant. This exotic property is a landmark feature of flocking physics
and is due to the surrounding resistive medium in which the organisms are evolving: air
for birds, ground for sheeps, water for fish, etc. This resistive medium acts as a source of
momentum which is used by the organisms to self-propel (sheeps push on the ground to
move), ultimately breaking conservation of momentum and leading to the loss of Galilean
invariance.

Having identified the symmetries, we now define the two hydrodynamic variables
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relevant at the macroscopic level to characterize the flocks. The number of particles
being conserved by the dynamics, we will retain the density field ρ(r, t) as the first
relevant macroscopic variable. As the velocity field W(r, t) will spontaneously break the
rotational symmetry in the flocking phase, we retain it as the second relevant variable.
While the density is given by the averaged number of particles in a mesoscopic volume
centered around r, the field W(r, t) is defined as the averaged self-propulsion of the
particles located in the same volume. Mathematically, these two fields reads

ρ(r, t) = V −1 ∑
i∈Nr

1 , W(r, t) = V −1 ∑
i∈Nr

v si , (3.14)

where Nr is the set of particles located in the mesoscopic volume centered around r and
V its volume. We are now ready to write the most general continuum evolution for
W(r, t) and ρ(r, t) consistent with the symmetries and conservation laws of flocks. As
we are interested only in the large-scale properties of these fields, we perform a gradient
expansion and only keep terms up to order 2 in gradients: this last constraint further
simplifies the hydrodynamics and, following [115], we write

∂tW =− λ1(W ·∇)W− λ2(∇ ·W)W− λ3∇(|W|2) + αW− a4|W|2W−∇P1

−W (W ·∇P2) +DB∇(∇ ·W) +DT∇2W +D2(W ·∇)2W (3.15)
∂tρ =−∇ · (W) . (3.16)

where the coefficients λi, α, a4, DB , DT , D2, as well as the scalar functions P1 and P2,
can depend, in general, on the local density ρ(r) and norm |W(r)| of the velocity field.
In the above continuum evolution (3.15)-(3.16), the microscopic details of the flocking
model are buried away in a few set of phenomenological parameters. Note that there is
no diffusion acting on the density field in (3.16) as we did not introduce a translational
noise in the dynamics of the flying spins. However, such a diffusive term might well be
generated on its own during a renormalization group analysis of (3.15)-(3.16).

Let us now compare the coarse-grained time evolution (3.15) with its counterpart (3.8)
derived for the Vicsek Model in the previous subsection. We note that (3.8) contains two
additional terms not present in (3.15): 2ν ′∇ρ·M and ν ′(∇·W)∇ρ. They are respectively
of the form ζ1∇P3 ·∇W and ζ2∇P4(∇ ·W), with ζ1, ζ2, P3 and P4 being scalar functions
that generically depend on ρ and |W|. While these two additional terms do transform as
vectors, thus respecting the rotational symmetry ofW, they do not appear in the original
Toner-Tu evolution [115]. However, we remark that these two gradient terms vanish at
linear order around an homogeneous solution ρ = ρ0, W = W0: they will have no effect
on the linear stability analysis of the homogeneous ordered profile that we now set up to
perform.

Since we are interested in the propagation along the main direction of motion in the
ordered phase, we will focus on a simplified one-dimensional version of (3.15)-(3.16) for
this linear stability analysis. In 1D, W becomes a scalar and we note that some of the
terms in (3.15) become redundants as (W·∇)W ∝ (∇·W)W ∝∇(|W|2) ∝ W∂xW and
∇(∇ ·W) ∝ ∇2W ∝ ∂xxW . It thus implies that all the λi terms collapse in one term
λW∂xW while the DB and DT terms collapse in a unique diffusive operator D∂xxW .
Finally, we remark that D2(W ·∇)2W ∝ W 2∂xxW + W (∂xW )2, so this term can be
partially absorbed into D as well. Taking into account all these simplifications in (3.15),
we obtain the Toner-Tu equations in 1D as

∂tW + λW∂xW =αW − a4W
3 − ∂xP1 −W 2∂xP2 +D∂xxW +D2W (∂xW )2 (3.17)

∂tρ+ ∂xW = 0 , (3.18)
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where all the parameters, as well as the scalar functions P1 and P2 in (3.17), can depend,
on general ground, on the density ρ(x) and on |W (x)|. We now show that (3.17)-(3.18)
are always unstable at onset of order whenever the linear Landau term α is density-
dependent. In order to perform a linear stability analysis, we introduce a characteristic
velocity scale v0 such that W = v0Ŵ In this new variable, the time-evolution reads

∂tŴ + λ̂Ŵ ∂xŴ =αŴ − â4Ŵ
3 − ∂xP̂1 − Ŵ 2∂xP̂2 +D∂xxŴ + D̂2Ŵ (∂xŴ )2 (3.19)

∂tρ+ v0∂xŴ = 0 , (3.20)

where λ̂ = v0λ, â4 = v2
0a4, P̂1 = v−1

0 P1, P̂2 = v0P2 and D̂2 = v2
0D2. For clarity, we now

drop the hat notation and consider the dynamics

∂tW + λW∂xW =αW − a4W
3 − ∂xP1 −W 2∂xP2 +D∂xxW +D2W (∂xW )2 (3.21)

∂tρ+ v0∂xW = 0 , (3.22)

where ρ andW now have the same dimension. We can therefore study the linear stability
of perturbations δρ and δW around the homogeneous solution ρ0, W0 =

√
α/a4. The

linearized dynamics of δρ and δW in Fourier space reads

∂t

(
δρq
δWq

)
=
(

0 −iv0q
ξ1 − iqξ2 ξ3 − iqξ4 − ξ5q

2

)(
δρq
δWq

)
, (3.23)

where the ξi’s are all functions of ρ0 and W0. Their exact expressions can be directly
deduced from a Taylor expansion around ρ0 andW0 of the parameters and scalar functions
appearing in (3.21). Here, we are only interested in their scaling with W0 near the
transition when W0 ∼ 0, where we can write

ξ1 =W0α
′ +O(W 2

0 ) , ξ2 =O(W0) , ξ3 =− γW 2
0 +O(W 3

0 ) , ξ4 =O(W0) , ξ5 =O(W0) .
(3.24)

with α′ and γ given by

α′ = ∂α

∂ρ

∣∣∣∣∣
ρ=ρ0, |W |=0

, γ = 2a4(ρ = ρ0, |W | = 0) . (3.25)

Note that, at this stage, the development (3.24) may seem inconsistent as the order
retained in W0 differs from ξ1 to ξ5. However, it will be sufficient to obtain the first
nonzero order of (3.29) in later purposes. The growth rates of the perturbations are
given by the two eigenvalues

λ± = − (ξ5q
2 + iξ4q − ξ3)±

√
∆

2 , (3.26)

where ∆ reads
∆ =

(
ξ5q

2 + iξ4q − ξ3
)2
− 4v0

(
iqξ1 + ξ2q

2
)
. (3.27)

The stability of the homogeneous solution is determined by the sign of the real part of
the eigenvalues λ±. An unstable mode exists as soon as |<(ξ5q

2 + iξ4q− ξ3)| < |<(
√

∆)|.
We first note that

2<(
√

∆)2 − 2<
(
ξ5q

2 + iξ4q − ξ3
)2

= −a(q) +
√
a2(q) + b(q) , (3.28)
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where a(q) and b(q) are real numbers given by

a(q) =ξ4q
2 + (ξ5q

2 − ξ3)2 + 4v0ξ2q
2

b(q) =16q2v0
(
ξ2

1v0 + ξ3ξ4ξ1 − ξ2ξ
2
3

)
+ 16q4v0ξ5 (2ξ2 ξ3 − ξ1 ξ4)− 16q6

(
ξ2 ξ

2
5 v0

)
.

Because a(q) is always positive, the condition (3.28) shows that a homogeneous solution
is unstable as soon as b(q) > 0. At low q, the stability is thus controlled by the quadratic
term of b(q). Close to the transition |W0| � 1, and using (3.24) this quadratic term can
be simplified as

16q2v0
(
ξ2

1v0 + ξ3ξ4ξ1 − ξ2ξ
2
3

)
= 16v0q

2
[
(W0α

′)2 +O(W 3
0 )
]
. (3.29)

Thus, in the limitW0 ∼ 0, (3.29) is always positive, whatever the sign of α′: there exists a
critical W c

0 below which the homogeneous ordered solution undergoes a low-q instability.
Consequently, whenever α depends on the density, the emergence of collective motion
has to be discontinuous as none of the homogeneous solutions are stable at onset. This
result holds for the particular case of the Vicsek Model for which we have shown that the
linear Landau term α is density-dependent in subsection 3.1.2.

Thus, the Toner-Tu equation shed light on the mechanism behind the emergence of
propagating bands in the Vicsek Model: as established in [114, 120–122], their existence
stems from a density-dependent critical temperature. The coexistence region in the phase
diagram of the Vicsek Model (see Fig. 3.1) then corresponds to the region where the
homogeneous solution W0 ∈ [0,W c

0 ] is unstable.
Finally, (3.29) establishes a binary classification of the flocking transition in models

of collective motion: a discontinuous emergence of order is characterized by a density-
dependent α while a continuous onset must feature a density-independent α. Models of
collective motion with ’metric-free’ interactions are believed to fall in the latter category
with a second-order scenario and we now present them in greater detail.

3.2 Topological alignment: a particular case in mod-
els of collective motion

In section 3.1, I reviewed the literature on the Vicsek Model and concluded that the
emergence of collective motion follows a phase-separation scenario whenever the linear
Landau term α in the hydrodynamics is density-dependent. Interestingly, when align-
ment between particles is not decided based on their relative distance [9, 123–127] , α is
believed to be density-independent [63, 64, 128, 129]. In this specific case, often referred
to as topological or metric-free [125], the transition to collective motion is believed to be
continuous and travelling bands have not been reported so far.

Topological models play an important role thanks to their relevance to studies of
groups of animals [9,123,124,126] or pedestrians [130], where visual cues dominate metric
ones. They are also the natural choice to model confluent tissues where topological
neighbourhoods determine interactions [127,131–134]. Existing numerical results on their
transition are scarce and limited to particles aligning with their Voronoi neighbours [63]
or their k-nearest neighbours [64,65].

So far in this chapter, I have reviewed the work of others on the transition to collective
motion. As a teaser to motivate the next sections, which present our contribution [66],
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I now report our first important result: the existence of travelling waves at the onset of
collective motion in a topological Vicsek model. We consider flying spins evolving in a
domain Lx×Ly with periodic boundary conditions. As in section 3.1.1, the time-evolution
of their position ri reads

ri(t+ dt) = ri(t) + vdt si , (3.30)
with v being the self-propulsion speed. In addition, at every time step, the spins align
with the average direction of their k-nearest neighbours:

arg
[
si
]
→ arg

[1
k

∑
j∈Ni

sj
]

+ ση , (3.31)

where η is uniformly drawn in [−π, π] and Ni is the set of k-nearest neighbours of the
i-th particle. Upon simulating microscopic dynamics (3.30)-(3.31) with parameters tuned
at the onset of collective motion, we observed the propagating bands shown in Fig. 3.2,
which correspond to a phase-separated profile. The remainder of this chapter is devoted
to the description of the mechanism that can turn a deceptive continuous transition at the
mean-field hydrodynamic level into the first-order scenario observed in the simulations.

θ

Figure 3.2 – Simulations of the topological Vicsek model (3.30)-(3.31) in 2D. At small
noise, the system is disordered at low enough densities. Increasing the density then leads
to an onset of order accompanied by propagating bands. Particles align with their k = 3
nearest neighbours. Parameters : Lx = 2000, Ly = 400, σ = 0.08, k = 3, v = 0.2, ∆t = 1,
ρ0 = 0.25 (top) and ρ0 = 0.4 (bottom). Figure adapted from [66].

3.3 A specific example: the 2D Active Ising Model
In this section, we present a minimalist lattice gas model for collective motion that was
first introduced in [135, 136]: the Active Ising Model (AIM). We then show in sections
3.3.1 and 3.3.2 that the AIM suffers from the same defect already encountered in topo-
logical models: its mean-field hydrodynamics predicts a continuous onset of collective
motion whereas its microscopic simulations instead exhibit a phase-separation scenario
with travelling bands.

In the Active Ising Model, one consider N self-propelled particles carrying ± spins,
moving on a 2D lattice Lx×Ly, with lattice spacing a and periodic boundary conditions.
We call n±i the number of ± spins at site i = (ix, iy) and we define the local density and
magnetization as ρi = n+

i + n−i and mi = n+
i − n−i respectively. Each spin undergoes a
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biased diffusion according to its sign: + spins preferentially hop to the site on their right
while − spins preferentially hop to the site on their left. Furthermore, spins align locally
with flipping rates depending on the local density and magnetization. The microscopic
update rules for a spin s at site i are the following (see also Fig. 3.3)

• it hops to site j = (ix + s, iy) with rate v/a
• it diffuses isotropically with rate D/a2

• it flips into −s with rate γ exp(−βsmi/ρi)
(3.32)

We note that the minimal ingredients needed for a flocking transition are present: spins
are endowed with a self-propulsion whose direction is coupled to a local aligning dynamics.
The main difference with the Vicsek model described in section 3.1.1 lies in the direction
of the self-propulsion, which is constrained to be ±~ex: the AIM has a discrete symmetry
and it is biased solely along the x direction.

1 2 3 4 5 .. L

v/a
v/a

a

Biased hoppingSpin-flip

i

γe
−βmiρiγe

β
mi
ρi

Figure 3.3 – Schematic representation of the dynamics (3.32). Spins align locally and
hop asymetrically to their neighbouring sites in the x direction. In addition to the biased
hops, the spins also diffuse freely in the x and y direction with rate D/a2.

3.3.1 Mean-field hydrodynamics predicts a continuous transi-
tion

Following the approach established in [136], I now coarse-grain analytically the Active
Ising Model to capture its phase diagram and assess the order of its transition to collective
motion. The simplest way to derive a mean-field hydrodynamics for a non-equilibrium
lattice gas is to perform a mean-field analysis. For clarity, we will first carry out the
computation in 1D and then extend it to the 2D case. Starting from the master equation,
we first derive the evolution of the mean number of ± spins at site i

〈ṅ±i 〉 =D

a2 〈n
±
i−1〉+ D

a2 〈n
±
i+1〉 − 2D

a2 〈n
±
i 〉 ±

v

a
〈n±i−1〉 ∓

v

a
〈n±i+1〉

±
〈
n−i exp

(
β
mi

ρi

)〉
∓
〈
n+
i exp

(
−βmi

ρi

)〉
. (3.33)

Casting the above expressions into the local density ρi and magnetization mi, we get

〈ρ̇i〉 =D

a2 (〈ρi+1〉+ 〈ρi−1〉 − 2〈ρi〉)−
v

a
(〈mi+1〉 − 〈mi−1〉) (3.34)

〈ṁi〉 =D

a2 (〈mi+1〉+ 〈mi−1〉 − 2〈mi〉)−
v

a
(〈ρi+1〉 − 〈ρi−1〉)

+ 2
〈
ρi sinh

(
β
mi

ρi

)〉
− 2

〈
mi cosh

(
β
mi

ρi

)〉
. (3.35)
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The next step is to take the continuum limit by Taylor expanding the fields around i as
ρi±1 = ρ(x)+a∂xρ(x)+a2/2 ∂xxρ(x)+O(a3) andmi±1 = m(x)+a∂xm(x)+a2/2 ∂xxm(x)+
O(a3). We thus obtain the hydrodynamics for the continuum fields ρ(x) and m(x) as

∂t〈ρ〉 = D∂xx〈ρ〉 − v∂x〈m〉 (3.36)

∂t〈m〉 = D∂xx〈m〉 − v∂x〈ρ〉+
〈

2ρ sinh βm
ρ
− 2m cosh βm

ρ

〉
. (3.37)

In higher dimensions, diffusion occurs in every direction instead of being restricted to the
x-axis and generalizing (3.36)-(3.37) thus amounts to replacing D∂xx by D∇2. So far,
equations (3.36)-(3.37) are exact and couple the first moments 〈ρ〉 and 〈m〉 to higher ones
through the hyperbolic cosine and sine functions. The mean-field approximation consists
in neglecting this coupling between moments by replacing 〈f(ρ,m)〉 by f(〈ρ〉, 〈m〉). Per-
forming this treatment into (3.36)-(3.37) and dropping the 〈..〉 notation, we obtain

∂tρ = D∂xxρ− v∂xm (3.38)

∂tm = D∂xxm− v∂xρ+ 2ρ sinh
(
βm

ρ

)
− 2m cosh

(
βm

ρ

)
. (3.39)

Because we are only interested in the onset of flocking, for which m/ρ � 1, we do not
need the full dependency of the hyperbolic alignment term and we expand it up to order
m3/ρ3 to get

∂tρ = D∂xxρ− v∂xm (3.40)
∂tm = D∂xxm− v∂xρ− αm− γm3/ρ2 , (3.41)

with α = 2(1 − β) and γ = β2(1 − β/3). Note that α has the opposite sign convention
with respect to the Vicsek model: α < 0 promotes order whereas α > 0 corresponds to
the disordered phase. We are now in position to assess the order of the transition to col-
lective motion through a linear stability analysis of (3.40)-(3.41) around the homogeneous
ordered profile ρ = ρ0 and m = m0. To illustrate the effect of a putative dependency of α
on the density, we will assume α = α(ρ) throughout this stability analysis and eventually
take α′ = 0 at the end of the derivation since α = 2(1−β) does not depend on the density
at mean-field level.

We start by rescaling time and position in (3.40)-(3.41) as x = x̃D/v and t = t̃D/v2,
which leads to

∂t̃ρ = ∂x̃x̃ρ− ∂x̃m (3.42)

∂t̃m = ∂x̃x̃m− ∂x̃ρ− α̃(ρ)m− γ̃m
3

ρ2 , (3.43)

where α̃(ρ) = Dα(ρ)/v2 and γ̃ = Dγ/v2. To lighten the notations, we now drop the tilde
for the remainder of this section.

The linearized dynamics of the perturbations δm and δρ around the homogeneous
solutions m0 and ρ0, are given, in Fourier space, by

∂t

(
δρq
δmq

)
=
 −q2 −iq
−iq −

√
|α|
γ

(
α′0ρ0 + 2α

)
−q2 + 2α

( δρq
δmq

)
, (3.44)
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where we used the relation m0 = ρ0

√
|α|
γ

and defined α′0 = α′(ρ0). The growth rates of
the perturbations are given by the two eigenvalues

λ± = − (2q2 − 2α)±
√

∆
2 , (3.45)

where ∆ reads

∆ =
(
2q2 − 2α

)2
+ 4iq

iq +
√
|α|
γ

(
α′0ρ0 + 2α

)− q2
(
q2 − 2α

)
. (3.46)

The stability of the homogeneous solution is determined by the sign of the real part of
the eigenvalues λ±. An unstable mode exists as soon as |2q2 − 2α| < |<(

√
∆)|. We first

note that
2<(
√

∆)2 − 2<
(
2q2 − 2α

)2
= −a(q) +

√
a2(q) + b(q) , (3.47)

where a(q) and b(q) are real numbers given by

a(q) =4(q2 + α)2 + 4v2q2 + 4q2(q2 + 2α) (3.48)

b(q) =− 16αq2

γ

[
ρ0α

′ (4α + ρ0α
′)− 4α

(
α(2γ − 1)− γ

)]
− 64α(5α− 2)q4 − 64(−4α + 1)q6

− 64q8 . (3.49)

Because a(q) is always positive, the instability condition (3.47) amounts to b(q) > 0.
Close to the transition |α| � 1 and b(q) can be simplified as

b(q) = −16αq2

γ

[
ρ2

0 (α′0)2 + 4γα +O(α2)
]

+ 128
[
α +O(α2)

]
q4 − 64 [1 +O(α)] q6 − 64q8 .

(3.50)

At the onset of flocking, α ' 0− and only the first term on the right hand side of (3.50)
can be positive and trigger an instability at low q

b(q) ∼
q→0


16|α|q2ρ2

0
γ

(α′0)2 if α′0 6= 0

−64α2q2 if α′0 = 0
(3.51)

The sign of (3.51) finally gives the order of the transition. The homogeneous ordered
solution remains stable close to the critical temperature when α′(ρ0) = 0, but it becomes
unstable as soon α′(ρ0) 6= 0, regardless of the sign of α′(ρ0). This implies that the AIM,
for which we have a density-independent α at mean-field level, should exhibit a continuous
emergence of collective motion. Let us now verify this statement in direct microscopic
simulations.

3.3.2 Microscopic simulations show a discontinuous transition
The microscopic simulations performed in [136] stands at odd with a continuous transition
and indicate instead a first order onset of flocking: they show the presence of a coexistence
domain where ordered bands propagate in a disordered gas phase. We report in Fig. 3.4



3.3. A specific example: the 2D Active Ising Model 47

the numerical phase diagram of the Active Ising Model in the temperature-density plane
(T, ρ0), with T being defined as T = β−1.

At low densities (or high temperatures), the system exhibits a disordered gas phase
while at high densities (or low temperatures) it forms a polar liquid. Between these two
homogeneous phases, there is a coexistence region where steady-state phase-separated
profiles are observed (see Fig. 3.4). In this domain, where one observes dense waves of
spins propagating in a disordered gas phase, none of the homogeneous solutions are stable.
Note also that the "critical" temperature of the onset of order depends on the density
ρ. The presence of a coexistence region shows that the stability analysis developed in
3.3.1 is erroneous and, a fortiori, that the mean-field hydrodynamics (3.40)-(3.41) yields
a poor description of the active spins.

Let us try to understand what mechanism lies at the origin of such a discrepancy
between the mean-field limit and the numerical simulation. First, we know that mean-
field approaches have a tendency to wipe out the fluctuations of the fields at play. Second,
statistical field theory tells us that taking into account these fluctuations will generically
renormalize all parameters entering (3.40)-(3.41). Especially, fluctuations will modify the
linear Landau term α in (3.41). From our linear stability analysis, we know that the onset
of flocking is very sensitive to modifications of α: as soon as α becomes density-dependent,
the transition turns into a first-order scenario. We just digged out a possible mechanism
explaining the discontinuous emergence of collective motion in the AIM: fluctuations
may renormalize α by making it density-dependent, which in turn would destabilize the
homogeneous phases at the critical temperature. Let us now show analytically that it is
indeed the case.

(a) (b)

(c)

Figure 3.4 – Center: Phase diagram of the AIM in the Temperature-Density plane
(T, ρ0), with T = β−1. Between the gaseous and liquid phases, indicated by G and L
respectively, the red and blue lines delimit the coexistence domain in which propagating
bands are reported. Right, Left, Bottom: examples of density profiles (green upper
line) and magnetization profiles (blue lower line) averaged along the y direction for the
three phases. (a) Disordered gas T = 0.71, ρ0 = 2. (b) Polar liquid T = 0.5, ρ0 = 7. (c)
Liquid-gas coexistence T = 0.62, ρ0 = 5. Figure adapted from [136].
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3.4 Fluctuation-induced first-order transition in the
Active Ising Model

In this section, we show that the hydrodynamic description of the AIM, derived in the
mean-field limit in section 3.3.1, is unstable with respect to the addition of fluctuations.
To this aim, we complement PDEs (3.40)-(3.41) with a noise term to obtain

∂tρ = D∂xxρ− v∂xm (3.52)
∂tm = D∂xxm− v∂xρ−F(ρ,m) +

√
2σρ η , (3.53)

where η(x, t) is a zero-mean delta-correlated Gaussian white noise field and F(ρ,m) =
αm + γm3/ρ2. Note that, hereafter, ρ(x, t) and m(x, t) represent fluctuating fields. The
order parameter m(x, t) is the sum of the orientations of particles located around position
x. The noise acting on m(x, t) will thus be multiplicative; it describes the fluctuations of
a sum over ∝ ρ particles and we take it proportional to √ρ.

We now construct the hydrodynamics of the average fields ρ̃(x, t) = 〈ρ(x, t)〉 and
m̃(x, t) = 〈m(x, t)〉 to leading order in the noise strength σ. In principle, we could also
complement (3.52) with a conserved noise. The latter is expected to be subdominant
at large scales and we ignore it here, although our approach can be extended to this
case, as shown later in section 3.7. Calling ρ0(x, t) and m0(x, t) the solution of (3.52)-
(3.53) without noise (ie when σ = 0), we introduce the deviations ∆ρ and ∆m from this
mean-field solution as series in σ1/2

∆ρ = ρ− ρ0 = σ
1
2 δρ1 + σδρ2 + . . . , ∆m = m−m0 = σ

1
2 δm1 + σδm2 + . . . (3.54)

Note that the δρk and δmk are stochastic fields while ρ0 and m0 remain deterministic
fields. Inserting the expansions (3.54) in (3.52)-(3.53) and equating terms of order σk/2
yields the evolution equation for δρk and δmk. For k = 1, it gives

∂tδρ1 = D∂xxδρ1 − v∂xδm1 (3.55)

∂tδm1 = D∂xxδm1 − v∂xδρ1 −
∂F
∂ρ

δρ1 −
∂F
∂m

δm1 +
√

2ρ0 η , (3.56)

while for k = 2 we obtain

∂tδρ2 =D∂xxδρ2 − v∂xδm2 (3.57)

∂tδm2 =D∂xxδm2 − v∂xδρ2 −
∂F
∂ρ

δρ2 −
∂F
∂m

δm2 −
∂2F
∂m2

δm2
1

2

− ∂2F
∂ρ2

δρ2
1

2 −
∂2F
∂m∂ρ

δm1δρ1 + δρ1√
2ρ0

η , (3.58)

Averaging (3.55)-(3.56) over the noise with Itō prescription then gives

∂t〈δρ1〉 = D∂xxδ〈ρ1〉 − v∂x〈δm1〉 (3.59)

∂tδ〈m1〉 = D∂xxδ〈m1〉 − v∂x〈δρ1〉 −
∂F
∂ρ
〈δρ1〉 −

∂F
∂m
〈δm1〉 , (3.60)
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while averaging equation (3.57)-(3.58) yields

∂t〈δρ2〉 =D∂xx〈δρ2〉 − v∂x〈δm2〉 (3.61)

∂t〈δm2〉 =D∂xx〈δm2〉 − v∂x〈δρ2〉 −
∂F
∂ρ
〈δρ2〉 −

∂F
∂m
〈δm2〉 −

∂2F
∂m2

〈δm2
1〉

2

− ∂2F
∂ρ2
〈δρ2

1〉
2 − ∂2F

∂m∂ρ
〈δm1δρ1〉 . (3.62)

Summing together (3.40), (3.59) multiplied by σ 1
2 and (3.61) multiplied by σ gives the

evolution of ρ̃ up to order σ as

∂tρ̃ =D∂xxρ̃− v∂xm̃ , (3.63)

while summing together (3.41), (3.60) multiplied by σ 1
2 and (3.62) multiplied by σ yields

the evolution of m̃ up to order σ

∂tm̃ =D∂xxm̃− v∂xρ̃−F(ρ0,m0)− σ 1
2
∂F
∂ρ
〈δρ1〉 − σ

1
2
∂F
∂m
〈δm1〉 − σ

∂F
∂ρ
〈δρ2〉 − σ

∂F
∂m
〈δm2〉

− σ∂
2F
∂m2

〈δm2
1〉

2 − σ∂
2F
∂ρ2
〈δρ2

1〉
2 − σ ∂2F

∂m∂ρ
〈δm1δρ1〉 . (3.64)

To order σ, the Landau term F(ρ̃, m̃) taken at the averaged density and magnetization
reads

F(ρ̃, m̃) =F(ρ0,m0) + σ
1
2
∂F
∂ρ
〈δρ1〉+ σ

1
2
∂F
∂m
〈δm1〉+ σ

∂F
∂ρ
〈δρ2〉+ σ

∂F
∂m
〈δm2〉

+ σ

2
∂2F
∂2ρ
〈δρ1〉2 + σ

2
∂2F
∂2m
〈δm1〉2 + σ

∂2F
∂ρ∂m

〈δρ1〉〈δm1〉+O(σ 3
2 ) . (3.65)

Using expression (3.65) into (3.64) simplifies the time-evolution of m̃ as

∂tm̃ =D∂xxm̃− v∂xρ̃−F(ρ̃, m̃)− σ∂
2F
∂m2

(
〈δm2

1〉 − 〈δm1〉2

2

)

− σ∂
2F
∂ρ2

(
〈δρ2

1〉 − 〈δρ1〉2

2

)
− σ ∂2F

∂m∂ρ
(〈δm1δρ1〉 − 〈δm1〉〈δρ1〉) . (3.66)

To close the above renormalized hydrodynamics (3.63)-(3.66), we only have to compute
the correlators involving δρ1 and δm1 by using their stochastic evolution given in (3.55)-
(3.56). However, to perform such a derivation, we first need two crucial assumptions:

AI. We assume that δρ1 and δm1 are fast modes varying on lengthscales and timescales
much smaller than the ones relevant for ρ0 and m0. Under this assumption, ρ0(x, t)
and m0(x, t) entering in the linearized evolution (3.55)-(3.56) can be considered
as constants in both time and space. This adiabatic approximation allows us to
compute the correlators in terms of ρ0 and m0 as parameters and to re-establish
their dependency on x and t a posteriori.

AII. We assume that the fields δρ1 and δm1 have a non-zero mass, which is equivalent
to suppose that the real part of the eigenvalues of the system (3.55)-(3.56) are
negative.
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Note that the two asumptions AI-AII are related because a stochastic field with a high
mass has a small correlation length and thus varies on smaller lengthscales. Using Fourier
transform, we detail in Appendix B.2.1 the derivation of the correlators appearing in
(3.66) under these approximations. Because we are only interested in the onset of collec-
tive motion where m0 ∼ 0, we hereafter report the result up to order m2

0

〈δm2
1〉 =ρ0

v2
√

2α
D

+ α
√
v2 + αD

4αv2 + 2α2D
− ρ0

3γD
(

αD√
v2+αD +

√
2v2(2v2+3αD)

(αD)3/2

)
4 (αD + 2v2)2

m2
0

ρ2
0

+O(m3
0)

(3.67)

〈δρ2
1〉 =ρ0

v2
(√

2α
D
− α√

v2+αD

)
2α (αD + 2v2) +O(m2

0) , 〈δρ1δm1〉 = 0 +O(m2
0) (3.68)

Plugging (3.67)-(3.68) into (3.66), discarding terms beyond order m̃3, we obtain a closed
hydrodynamics for m̃ which is valid up to order σ and reads

∂tm̃ =D∂xxm̃− v∂xρ̃− α̂(ρ̃)m̃− γ̂(ρ̃)m̃
3

ρ̃2 , (3.69)

with the renormalized Landau coefficients α̂(ρ̃) and γ̂(ρ̃) given by

γ̂(ρ̃) =γ + 3σγ
2vρ̃

√
2v2

Dα
− 1√

1+αD
v2

αD
v2 + 2

− 9σγ2D

4v3ρ̃

 αD

v2
√

1+αD
v2

+
√

2(2+3αD
v2 )

(αD
v2 )3/2


(
αD
v2 + 2

)2 (3.70)

α̂(ρ̃) =α + 3σγ
2ρ̃v f

(
αD

v2

)
with f(u) =

√
2/u+

√
1 + u

2 + u
, (3.71)

Fluctuations have thus, to order σ, dressed α and γ into α̂ and γ̂. Especially, we remark
that the linear Landau term now depends explicitly on the density in (3.71). Note that,
due to assumption AII, the renormalized hydrodynamics (3.69) is only valid in the high
temperature phase, where α > 0. We detail in Appendix B.2.2 how the renormalization
process must be carried out in the low temperature phase when α < 0 and we find that,
even in this regime, fluctuations make α̂ density-dependent.

The mechanism by which α̂ becomes density dependent is thus robust and present in
both the ordered and disordered phases. Note that higher orders in σ have no reason to
cancel the dependence of α̂ on the density and we thus expect our conclusions to hold
non-perturbatively in σ. According to the stability analysis performed in section 3.3.1,
a density-dependent α should turn the continuous transition predicted by the mean-field
evolution (3.40)-(3.41) into the standard liquid-gas separation.

To confirm our predictions, we carried out simulations of the scalar 2D generalization
of the stochastic PDEs (3.52)-(3.53) where we substitute ∂xx by the Laplacian operator:

∂tρ = D∇2ρ− v∂xm (3.72)
∂tm = D∇2m− v∂xρ−F(ρ,m) +

√
2σρ η . (3.73)

The continuous transition predicted in the case σ = 0 is indeed replaced by the standard
liquid-gas framework [135,136], as shown in Fig. 3.5 by the emergence of travelling-band
solutions. Consistently with our result (3.71), the top-left panel of Fig. 3.5 also shows that
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fluctuations have shifted the onset of order to a lower critical temperature compared to its
mean-field value. Finally, as detailed in Appendix B.2.2, our renormalization procedure
correctly forecast a noise-induced lowering of the magnetization compared to mean-field
in the ordered phase (see the top-left panel of Fig. 3.5).
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Figure 3.5 – Numerical simulations of (3.72)-(3.73). Top left: Average magnetization as
α is varied. The transition occurs at αc < 0, shifted from the mean-field prediction (green
line). At the onset of order, inhomogeneous profiles (black squares) separate homogeneous
ordered and disordered phases (blue dots). Parameters: D = v = γ = σ = 1, dx = 0.5,
dt = 0.01, Lx = 400, Ly = 40, ρ0 ≡ N/(LxLy) = 1.1. Bottom: A snapshot close to the
transition shows an ordered travelling band in a disordered background. Top right: The
corresponding density and magnetization fields averaged along y. Parameters: same as
before up to Ly = 100, dx = 0.1, α = −0.9. Figure adapted from [66].

3.5 Fluctuation-induced first-order transition for k-
nearest neighbours alignment

The study of the dynamics (3.52)-(3.53) in the previous section showed that fluctua-
tions can turn a continuous transition at mean-field level into a discontinuous one. In
this section, I assess whether the same mechanism applies to topological models. The
common belief is that topological interactions protect the emergence of collective mo-
tion from density fluctuations. Indeed, if we take the example of k-nearest neighbours,
doubling distances between all particles is equivalent to dividing the density by 2d, but
does not change the neighbours in the aligning dynamics. Thus, it can be argued that
the local density should have no impact on the magnetization, and that the critical tem-
perature should be density-independent. I hereafter refute this statement by studying
a hydrodynamic description that preserves the topological nature of the interactions at
the coarse-grained level. I show that the mean-field continuous transition is, once again,
turned into a phase-separation scenario by a Gaussian noise.
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3.5.1 Renormalization of the critical temperature
We introduce a generalization of the AIM’s hydrodynamics (3.40)-(3.41) in which particles
align with their k nearest neighbours. We first define the coarse-grained field y(x), which
measures the interaction range of a particle located at x, through the implicit equation:∫ x+y(x)

x−y(x)
ρ(z)dz = k . (3.74)

Particles at position x then align with a "topological" field m̄(x, t) computed over "their
k nearest neighbours" through

m̄(x) = 1
k

∫ x+y(x)

x−y(x)
m(z)dz . (3.75)

Doubling the distance between particles does not alter the values of m̄(x), consistently
with microscopic topological models [9,63]. We now construct the topological counterpart
to the Landau term F(ρ,m) = αm+γm3/ρ2 appearing in the hydrodynamics of the AIM
(3.40)-(3.41). We have seen in section 3.3.1 that F is obtained as the small-magnetization
expansion of a more complex function Fferro = 2m cosh(βp)−2ρ sinh(βp), where p = m/ρ
is the local magnetization per particle and β the inverse temperature. The fields ρ and
m enter Fferro through counting statistics, (ρ ± m)/2, representing the local densities
of particles with plus or minus spins. The field p, on the other hand, enters via the
aligning rate at which a spins s flips, e.g. W (s → −s) = Γ exp(−βsp). When particles
align stochastically with a topological field m̄, the Landau term thus simply becomes
Fferro = 2m cosh(βm̄)− 2ρ sinh(βm̄). Expanding to third order in the fields then yields:

Ftopo (m̄,m, ρ) = Γ
(
2m− 2ρβm̄− ρβ3

3 m̄3 + β2mm̄2
)

(3.76)

in which, for simplicity, we retain β as the sole control parameter. At mean-field level,
our topological field theory is thus given by

∂tρ = D∂xxρ− v∂xm, and ∂tm = D∂xxm− v∂xρ−Ftopo(m̄,m, ρ) . (3.77)

Homogeneous solutions ρ0,m0 correspond to y(x) = y0 = k/(2ρ0) and m̄ = m0/ρ0. The
linear term in Ftopo then reduces to 2Γ(1−β)m0, leading to a density-independent critical
temperature at βm = 1. As described in Appendix B.3.1, linear stability analysis of the
homogeneous solutions then shows that disordered and ordered solutions are linearly
stable for β < βm and β > βm, respectively. The topological field theory (3.77) thus
predicts a continuous transition at the mean-field level.

Following section 3.4, we now assess the effect of dressing the topological hydrody-
namics (3.77) with noise

∂tρ = D∂xxρ− v∂xm (3.78)
∂tm = D∂xxm− v∂xρ−Ftopo(ρ,m, m̄) +

√
2σρ η . (3.79)

Here again, the noise is multiplicative and proportional to
√
ρ(x, t) sincem(x, t) is still the

sum of the orientations of particles located around position x. To construct the dynamics
of the averaged fields ρ̃ = 〈ρ(x, t)〉 and m̃ = 〈m(x, t)〉 to order σ, we first stress that (3.74)
directly enslaves the field y(x) to ρ(x). There are thus, once again, only two independent
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hydrodynamic fields, ρ(x, t) and m(x, t), so that our renormalization process presented in
section 3.4 is still valid, up to F → Ftopo. The expression of Ftopo being, however, more
complicated than in the case of the AIM, the algebra is correspondingly more involved.
Especially, beside assumptions AI-AII, we will need the additional approximation that

AIII. δρ1 and δm1 are varying on lengthscales much smaller than the lengthscales over
which m̄(x) and y(x) vary.

I detail in Appendix B.3.2 the renormalization of the linear part of Ftopo, which controls
the nature of the transition. To first order in the noise strength σ, we find

∂tρ̃ = D∇2ρ̃− v∇m̃ (3.80)
∂tm̃ = D∇2m̃− v∇δρ̃−FRtopo(m̃, ρ̃, ˜̄m) , (3.81)

where ρ̃ = 〈ρ〉, m̃ = 〈m〉, ˜̄m = m̄(ρ̃, m̃) and where the renormalized FRtopo is given by

FRtopo

(
m̃, ρ̃, ˜̄m

)
= Ftopo

(
m̃, ρ̃, ˜̄m

)
+ m̃

2σ
k
g

(
β,

Γk
vρ̃
,
ΓD
v2

)
+O(m̃2σ) +O(σ 3

2 ) (3.82)

with g a positive function whose expression is provided as an integral in (B.135).
Importantly, the linear term in the aligning dynamics has again become density-

dependent, hence inducing a phase-separation at the onset of order. This is confirmed by
numerical simulations of (3.78) and (3.79), which again reveal the existence of inhomoge-
neous propagating bands in Fig. 3.6. Our results thus also predict a fluctuation-induced
first-order transition to collective motion for k-nearest neighbours alignment.

Figure 3.6 – Snapshot of a numerical integration of (3.78) and (3.79). The magnetization
(red) and the density (blue) fields show a dense polar band propagating in a disordered
gas. Parameters: D = Γ = v = 1, k = 5, ρ0 = 5, L = 100, β = 1.1, dx = 0.01, dt = 0.01,
σ = 0.4. Figure adapted from [66].

3.5.2 Microscopic simulations of topological models
We have shown in section 3.5.1 that an AIM endowed with k-nearest neighbours aligning
interactions should also exhibit a first-order transition to collective motion. In this sec-
tion, we test this prediction against microscopic simulations of this topological flocking
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model. We consider an off-lattice topological Active Ising Model in which N particles
move in an Lx × Ly domain with periodic boundary conditions. Each particle carries a
spin si = ±1 and evolves according to the Langevin dynamics

ṙi = si v ex +
√

2Dηi , (3.83)

where v0 sets the self-propulsion speed, ex is the unitary vector along the x direction,
and D sets the strength of the unit-variance Gaussian white noise ηi. Spins flip from si
to −si with rates W (si) given by

W (si) = Γe−βsim̄i , with m̄i = 1
k

∑
j∈Ni

sj , (3.84)

where Ni is the set of the k-nearest neighbours of particle i and m̄i is their average mag-
netization. Note that, by construction, a mean-field treatment of the aligning dynamics
(3.84) indeed leads to (3.76) and would predict a continuous transition. On the con-
trary, in agreement with our predictions, this model exhibits a first order transition to
collective motion, akin to a liquid-gas phase separation: the onset of order at β & βc(ρ0)
occurs through the emergence of an ordered propagating band (see Fig. 3.7). Unlike the
mean-field critical temperature, the boundaries of the coexistence region show a clear
dependence on the mean density ρ0.
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Figure 3.7 – Top Left: Phase diagram of the microscopic topological model defined in
Eqs. (3.83) and (3.84). The homogeneous ordered (blue) and disordered (green) regions
are separated by a coexistence phase (red). The mean-field critical temperature is β = 1
(dashed-lined). The red lines are guide to the eyes which show how the transitions shift
as the mean density varies. Bottom: Snapshot of a propagating band corresponding to
the black triangle in the phase diagram. Blue and red particles correspond to positive and
negative spin respectively. The corresponding density and magnetization fields, averaged
over y and time, are shown in the top-right panel. Parameters: D = 8, Ly = 400,
Lx = 2000, k = 3, Γ = 0.5, v = 0.9. Figure adapted from [66].
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3.6 Generalization to a broad class of aligning inter-
actions

In flocking models, particles generically align with a local field m̄(x) which can be con-
structed in different ways. For instance, it can follow metric rules, be built on the
k-nearest neighbours, or derived from a Voronoi tessellation.

While we provided a topological field theory consistent with the k-nearest-neighbours
alignment rule in section 3.5.1, the question as to whether our results extend to other
type of topological models remains open. In this section, we consider a more general case
where m̄ is an intensive field taking the form of an unspecified functional of ρ and m
given by

m̄(x) = G(x, [ρ,m]) . (3.85)

Using scalings and dimensional arguments, we show that, without having to specify G,
our methodology developed in 3.4 and 3.5 suggests a density-dependent renormalization
of the linear Landau term. This result hints at a discontinuous emergence of collective
motion for very generic functional G.

As an example, G defined in (3.85) may encompass the case of k-nearest neighbours
interactions described in (3.75). In this case:

G(x, [ρ,m]) =
∫ x+y(x)

x−y(x)

m(z)
k

dz; with k =
∫ x+y(x)

x−y(x)
ρ(z)dz . (3.86)

The starting point of our analysis is the stochastic evolution for ρ and m given in (3.78)-
(3.79) that we recall here

∂tρ = D∂xxρ− v∂xm, ∂tm = D∂xxm− v∂xρ−Ftopo(m, ρ, m̄) +
√

2σρ η , (3.87)

where Ftopo(m, ρ, m̄) = Γ(2m − 2ρβm̄ − ρβ3

3 m̄3 + β2mm̄2), m̄ = G(x, [ρ,m]) and η is
a Gaussian white noise such that 〈η(x, t)η(x′, t′)〉 = δ(t − t′)δ(x − x′). As described in
section 3.4, the mean-field approximation for the dynamics of ρ̃ = 〈ρ〉 and m̃ = 〈m〉 must
be corrected by an additional term ∆Ftopo due to the noise:

∂tρ̃ = D∂xxρ̃− v∂xm̃ , ∂tm̃ = D∂xxm̃− v∂xρ̃−Ftopo(m̃, ρ̃, ˜̄m)− σ∆Ftopo . (3.88)

As shown in appendix B.4, we can use scaling arguments and dimensional analysis in
the renormalization procedure to determine the generic dependency of ∆Ftopo on the
parameters of the model. To leading order in σ, we obtain

∆Ftopo = m̃ F̄
(

ΓD
v2 ,

Γ
vρ̃
, β

)
+O(m̃2) , (3.89)

where F̄ is a dimensionless function depending on the specifities of the aliging func-
tional G. For generic models, (3.89) shows that fluctuations lead to a correction of the
linear Landau term that depends on the local density ρ̃: we cannot rule out such a de-
pendency. This result suggests that the vast majority of flocking models will exhibit a
phase-separation at the onset of flocking. Especially, a broad class of topological models
should exhibit a fluctuation-induced first-order transition.
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It is interesting to ask whether one can find a case, within this formalism, in which the
dependency of F̄ on the density cancels out. This can indeed happen when considering
a fully-connected version of the topological AIM in which

m̄ =
∫ L

0 m(z)dz
N

; where N =
∫ L

0
ρ(z)dz . (3.90)

In this case, we show in appendix B.5 that, to leading order in σ, ∆Ftopo reads

∆Ftopo = m̃

N

(
β2

2 + β2

1− β

)
+O(m̃2) . (3.91)

Comparing (3.91) with (3.89), we remark that F̄ does not depend on ΓD/v2 nor on
Γ/(vρ̃) for the fully connected AIM. For this specific kind of alignment, fluctuations leads
to a density-independent correction of the linear Landau term and, consistently with the
results of [137], renormalization points toward a continuous onset of collective motion.

3.7 Generalization to a mean-field description of the
Vicsek model with Voronoi-based aligning inter-
actions

In this section, we demonstrate that the scenario of a fluctuation-induced first-order
transition applies to a broad class of dynamics and especially to Toner-Tu-like equations
for flying spins. To this aim, we consider the evolution of the density and velocity
fields derived in [128] for a Vicsek model with Voronoi alignment and show that it is
unstable with respect to the addition of fluctuations. We now report the topological
hydrodynamics used in [128]

∂tρ+∇ ·w = 0 (3.92)

∂tw + λ

ρ
(w · ∇)w = −1

2∇ρ+ κ

2ρ∇w
2 +

(
α− γ

ρ2w
2
)
w +D∇2w− κ

ρ
(∇ ·w)w .

(3.93)
To keep the derivation tractable, we focus on a simplified one-dimensional version of
(3.92)-(3.93) where W becomes a scalar. In this case, (W · ∇)W ∝ (∇ ·W)W ∝
∇W2 ∝ W∂xW and we obtain

∂tρ+ ∂xW = 0 (3.94)

∂tW + λ

ρ
W∂xW = −v

2

2 ∂xρ+D∂xxW + αW − γ

ρ2W
3 , (3.95)

where D, α, λ, γ as well as v are assumed to be density-independent. Note that, in (3.95),
we have kept a self-propulsion speed v whereas in (3.93) the authors of [128] had set it to
unity by using a proper rescaling of time and space. In order to perform a renormalization
analysis of (3.94)-(3.95), we use this velocity v to define the field Ŵ = v−1W . In this
new variable, the dynamics reads

∂tρ+ v∂xŴ = 0 (3.96)

∂tŴ + λ̂

ρ
Ŵ∂xŴ = −v2∂xρ+D∂xxŴ + αŴ − γ̂

ρ2 Ŵ
3 , (3.97)
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where λ̂ = vλ and γ̂ = v2γ. For clarity, we now drop the hat notation and consider the
time-evolution

∂tρ+ v∂xW = 0 (3.98)

∂tW + λ

ρ
W∂xW = −v2∂xρ+D∂xxW + αW − γ

ρ2W
3 , (3.99)

where ρ and W now have the same dimension. Consistently with the scheme developed
in section 3.4, we endow the dynamics (3.98)-(3.99) with fluctuations. To stay as general
as possible, we further add a conservative Gaussian white noise to the evolution of the
density

∂tρ+ v∂xW = ∂x
(√

2σερ η1
)

(3.100)

∂tW + λ

ρ
W∂xW = −v2∇ρ+D∂xxW + αW − γ

ρ2W
3 +
√

2σρ η2 , (3.101)

Following the derivation performed in section 3.4, and using assumptions similar to AI-
AII, we show in Appendix B.6 that the averaged fields ρ̃ = 〈ρ〉 and W̃ = 〈W 〉 are
solutions, up to order σ, of the renormalized hydrodynamics

∂tρ̃+ v∂xW̃ = 0 (3.102)

∂tW̃ + λ̂

ρ̃
W̃ ∂xW̃ = −v2∇ρ̃+D∂xxW̃ + α̂W̃ − γ̂

ρ̃2 W̃
3 , (3.103)

where α̂, γ̂ and λ̂ are the renormalized coefficients up to order σ. Focusing on α̂, we show
in Appendix B.6 that

α̂ = α− σ3γ
ρ̃

2D − αε
4D

√
D|α|

(3.104)

Interestingly, fluctuations have, once again, made α density-dependent through the renor-
malization process. From the linear stability analysis of section 3.1.3, we conclude that
(3.102)-(3.103) are exhibiting a first-order emergence of collective motion. Similarly to
the AIM’s, the mean-field hydrodynamics (3.94)-(3.95) for the Vicsek Model with Voronoi
alignment should thus undergoes a fluctuation-induced first-order transition.

3.8 Testing the order of the transition through the
density-dependence of the critical temperature

Since the introduction of the Vicsek model, determining numerically the nature of the
transition to collective motion has proven itself a difficult task [62]. Its weakly first-order
nature indeed challenges standard methods: in finite systems, the variations of the order
parameter as a function of control parameters (noise, density, etc.) often misleadlingly
suggests a second order scenario [63,64].

Our results suggest an easier alternative: measuring the dependency of the onset of
order on the average density. We illustrate this method by contrasting our topological
model (3.83)-(3.84) with simpler ones in which the aligning dynamics is disconnected
from spatial positions, hence trivially ensuring that the transition remains continuous.
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We once again consider N scalar spins moving in a Lx × Ly domain with periodic
boundary conditions according to the Langevin equation (3.83), which we recall here

ṙi = si v ex +
√

2D ηi . (3.105)

We focus on two different aligning dynamics for the spins. In the Random Alignment
Model (RAM), the flipping rate W (si) of the i-th spin is given by

W (si) = Γe−βsim̄i , where m̄i = 1
k

∑
j∈Ni

sj , (3.106)

with Ni a set of k spins chosen at random at every time step.
In the Loyal Alignment Model (LAM), on the contrary, alignment occurs with the

same set Ni of k neighbours throughout the simulations, irrespectively of the particles’
positions. In our simulations, we chose k = 4 and assigned to each particle its nearest
neighbours on an initial square lattice. As expected, simulations of both systems lead
to continuous transitions, without the emergence of phase-separated profiles. Fig. 3.8
shows that the behaviours of the global magnetization as the temperature is varied are
hard to distinguish between LAM, RAM and our model (3.83)-(3.84). Repeating these
measurements at different densities however reveals a density-dependence of the onset
of order in the latter case, but not in LAM & RAM. Measuring βc as ρ0 varies thus
constitutes a simple and robust test to assess the nature of the transition.
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Figure 3.8 – Magnetization vs inverse temperature β for the RAM (left), the LAM
(center), and the topological model (3.83)-(3.84) (right). Only the latter exhibits traveling
bands (black squares). Blue crosses and red dots correspond to mean densities ρ0 = 0.25
and ρ0 = 0.5, respectively. Parameters: Lx = 2000, Ly = 400, D = 8, v = 0.9, Γ = 0.5,
k = 3. For LAM, k = 4. Figure adapted from [66]

3.9 Conclusion
In this second chapter, I explained how fluctuations can turn a deceptive continuous
transition at mean-field level into a phase-coexistence scenario in flocking models. I first
reviewed why models of collective motion are sensitive to modifications of their linear
Landau term α: as soon as α depends on the density, homogeneous solutions become
unstable at onset of order. I then showed how noise generically dress α to make it
density-dependent through a quasi-linear renormalization analysis.
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In turn, this triggers the linear instability of the homogeneous ordered profile at the
onset of collective motion. I have shown that such a mechanism applies independently of
the specific underlying alignment, be it "metric" or "topological", and further generalizes
to different mean-field hydrodynamics.

I illustrated our results with the microscopic simulations of an off-lattice topological
Active Ising Model in which particles align with their k-nearest neighbours. For this
specific model, I measured a clear dependency of the critical temperature on the density
and located a coexistence region with phase-separated profiles in the phase diagram.

Finally, I compared the onset of flocking between models with different kind of align-
ment and showed that a measurement of the critical temperature as a function of the
density could provide a robust evaluation of the order of the transition.

Having now reviewed the emergence of collective motion in detail, we turn to study
how flocking physics can interplay with another active phase transition, namely Motility-
Induced Phase Separation, to produce a novel phenomenology in dense assemblies of
colloidal rollers.
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4. Motility-Induced Phase Separation
and flocks: an interplay at high den-
sity

Most flocking models focus on the two minimal ingredients needed to observe collective
motion : self-propulsion and alignment between the agents. However, most physical
systems are also submitted to other kind of interactions such as pairwise forces or external
potentials.

For experimental assemblies of self-propelled particles, an important feature, which
is not accounted for in the Vicsek model, might affect the dynamics: steric hindrance.
Indeed, upon increasing the packing fraction, one expects the finite-size active particles
to experience short range repulsive forces. In this chapter, I present recent results, ob-
tained with the group of D. Bartolo, which show that such a repulsion leads to a novel
phase transition between a polar flock and a dense arrested active solid in experimental
assemblies of Quincke rollers: we dubbed this phenomena active solidification.

I start by briefly describing the experimental setup and previous results [28, 29] of
the Bartolo group which explain why Quincke rollers are an experimental realization
of the flying spins presented in section 3.1.1. As Motility-Induced Phase Separation
(MIPS) will be frequently alluded to in this chapter, I dedicate a brief introductive
section to this paradigmatic phenomenon in section 4.2. In section 4.3, I describe the
experimental evidences of active solidification in dense assemblies of Quincke rollers and
characterize the structure of the active solids as well as the order of the transition. In
section 4.4, I show that active solidification can be phenomenologically described as a
first-order scenario driven by Motility-Induced Phase Separation. Finally, in section
4.5, I introduce a microscopic model whose hydrodynamic equations can be constructed
exactly, and which encompasses both the flocking transition and the active solidification.
This approach confirms the ingredients sufficient for the emergence of active solidification
and allows for probing a novel state yet to be observed in the experiments: the coexistence
between travelling bands and an arrested solid.

4.1 Assemblies of colloidal rollers
This section is devoted to the experimental setup built in the Bartolo group that we have
studied for elucidating active solidification in [79]. Note that all the experimental work
was carried out by Delphine Geyer; this section does not aim at establishing a rigorous
description of the setup but rather at giving a rough picture of the physics at play. The
interested reader might refer to [28,37,79,138] for a more exhaustive treatment.

In the experimental setup, colloidal beads of radius a ∼ 2.4µm are confined in a
racetrack of width W ∼ 1mm, height H ∼ 220µm and curvilinear length L ∼ 10cm.
The colloids are self-propelled thanks to an electrohydrodynamic phenomenon called the
Quincke rotation [37, 138]. When an electric field E0 is applied to an insulated sphere
immersed in a conducting fluid, charges accumulate at the liquid-sphere interface leading
to a polarisation p which is anti parallel to E0 (see Fig. 4.1a). This configuration is
mechanically unstable and the colloid tends to rotate to align p with E0. The ohmic
current however tends to restore a dipole pointing downwards. Above a certain threshold,
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these two effects balance to select an electric dipole that makes a constant angle with
E0 and is accompanied by a rotation of the colloid at constant angular speed Ω (see
Fig. 4.1a). If the sphere sediments on the bottom electrod, this angular velocity will
turn into a self-propulsion v thanks to the friction with the substrate. It is precisely this
mechanism which is used by an isolated bead in the racetrack to roll along a random
direction. The velocity v0 acquired by the rollers through this Quincke mechanism scales
as
√
E2

0/E
2
Q − 1. It can thus be tuned by varying the amplitude of the applied electric

field E0 as shown in Fig. 4.1.
Alignment between the rollers’ direction of motion is provided through both electro-

static and hydrodynamic interactions [28]. As colloids develop a surface charge through
the Quincke phenomenon, they acquire a dipolar moment p whose projection p‖ on the
bottom electrod is colinear to the direction of their self-propulsion v. A pair of rollers
thus feel a dipole-dipole interaction U ∝ −p · p′ which promotes the alignment of their
dipoles, and hence of their respective velocities.

b
a

Figure 4.1 – a. Quincke rotation and self-propulsion mechanism of a colloid. Superposi-
tion of ten successive snapshots of self-propelled rollers. Time interval 5.6 ms. b. Roller
velocity v0 plotted against the field amplitude E0. Inset, v2

0 versus E2
0 . Figure adapted

from [28].

Now that we have detailed the similarities between the Quincke rollers and the flying
spins of the Vicsek Model, let us describe the experimental phenomenology observed
in the racetrack. At low packing fraction φ0, the rollers exhibit a disordered gaseous
phase: they move independently in random directions. On the contrary, at high packing
fraction, when φ0 > φc, the colloidal assembly self-organize into a polar liquid state where
all the rollers coherently cruise in the same direction. The order parameter Π0 = v−1

0 〈v〉
quantifying this transition is close to one in the flocking phase while it vanishes in the
isotropic gaseous phase (see Fig. 4.2). For packing fractions φ0 ∼ φc, the system phase-
separates to form a single macroscopic band propagating at constant velocity through a
disordered gaseous phase. Close-ups of the racetrack in the three differents phases are
displayed on Fig. 4.2.

The onset of flocking observed in assemblies of Quincke rollers thus shares the same
phase-separation scenario as the Vicsek Model near the critical temperature. Though we
only detailed one experimental setup in this introduction, there exists other experiments
closely related to the Vicsek Model such as shaken asymmetric grains [34] or Janus
rollers [31,139]. Consistently with Vicsek phenomenology, they all confirm a discontinuous
flocking transition with phase-separation. Having detailed the experimental setup that
we will study in section 4.3 at high packing fraction, we now briefly introduce Motility-
Induced Phase Separation for a futur use in section 4.4.
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Figure 4.2 – a Snapshot of Quincke rollers spontaneously forming a macroscopic band
revolving around the racetrack. E0/EQ = 1.39, φ0 = 10−2, scale bar = 5mm. b-d Close-
up. The arrows correspond to the roller displacement between two time-frame separated
by 5.10−3 sec. b Isotropic gas, φ0 = 6.10−4. c Propagating bands, φ0 = 10−2. d
Homogeneous polar liquid, φ0 = 18.10−2. Scale bar = 500µm. e Norm of the order
parameter Π0 as a function of the packing fraction φ0. Collective motion occurs as soon
φ0 exceeds φc = 3.10−3. Figure adapted from [28].

4.2 Introduction to Motility-Induced Phase Separa-
tion (MIPS)

In this section, we present the physics of Motility-Induced Phase Separation (MIPS).
MIPS is a common transition occurring in assemblies of interacting self-propelled parti-
cles, be it Active Brownian Particles (ABPs) [67], Run and Tumble Particles (RTPs) [140]
or AOUPs [57]. It leads to the formation of macroscopic, arrested clusters of particles
which coexist with a dilute gas phase. MIPS resembles closely an equilibrium phase
separation with interesting differences such as bubbly phase separation [141] or entropy
production at the interfaces [57, 142]. These particularities will not be discussed in this
manuscript. The mechanism behind MIPS stems from the interplay between two ingre-
dients

MI The accumulation of active particles where the self-propulsion is small, as ρ ∼
1/v(r), with v(r) being the position-dependent speed of the active particles [68,140].
Particles spend more time where their motility is small, and so it is more likely to
find them in such places [143].

MII A self-propulsion v decreasing with the local density ρ(r), i.e. v′(ρ(r)) < 0. This
slowing down of motility may arise from a variety of interactions between the par-
ticles, from crowding and repulsive forces [144,145], to quorum-sensing [22].

When MI-MII are verified, particles slow down in denser regions (MII), which in turns
triggers an accumulation making these regions even denser (MI). This feedback loop
generates a linear instability leading to the formation of dense and arrested clusters as
shown in Fig. 4.3. The steady-state attained at non-linear level has been the topic of
many articles, and the interested reader might refer to [69] for recent accounts.

Let us now show the first point MI for an ABP with spatially varying self-propulsion
in 2D. The position r of the particle and the orientational angle θ of its speed follow the



64 Chapter 4. Motility-Induced Phase Separation and flocks: an interplay at high . . .

a)

ρ

2

0

b) c)

Figure 4.3 – Simulations of N AOUPs evolving with dynamics (2.78)-(2.79) and inter-
acting via a pairwise radial potential Φ(r) = ε

[
(r0/r)12 − (r0/r)6] + ε/4 in a 400x400

domain with periodic boundary conditions. Parameters: D = 10, ε = r0 = 1. a) snapshot
taken after a time t = 10 000 shows the occurence of motility-induced phase separation for
τ = 90. The average densities are ρ0 = 0.5 and ρ0 = 0.9, respectively. Varying the overall
density alters the size of the dense and dilute phases, but leaves their respective density
unchanged. This can be seen from panel b), which presents histograms of the local density
measured in boxes of size 10x10. The three curves correspond to ρ0 = 0.50, 0.70, 0.90.
Finally, the phase diagram shown in panel c) is obtained by measuring the densities of the
dilute and dense phases in simulations with an average density 0.9 and different values of
τ . The densities are estimated from the maxima of histograms obtained as in b). Figure
adapted from [57].

Langevin dynamics

ṙ(t) =v(r(t))u(θ(t)), θ̇(t) =
√

2Dθ η(t) , (4.1)

where η is a Gaussian white noise, Dθ is the angular diffusion and u(θ) is the unitary
vector with orientation θ. The corresponding Fokker-Planck equation for the probability
distribution P (r, θ) reads

∂tP (r, θ) = −u(θ) ·∇ [v(r)P (r, θ)] +Dθ∂θθP (r, θ) . (4.2)

While we could directly conclude here as P (r, θ) ∝ 1/v(r) is a stationary solution of
(4.2), we choose an alternative route, more easily generalized to the interacting case. We
define the density ρ(r, t) and magnetization w(r, t) as the first and second moment of the
probability distribution: ρ(r, t) =

∫
P (r, θ)dθ and w(r, t) =

∫
u(θ)P (r, θ)dθ. Integrating

(4.2) over θ then gives the conservation equation

∂tρ(r, t) + ∇ · [v(r)w(r, t)] = 0 , (4.3)

while multiplying (4.2) by u(θ) and integrating over θ yields

∂tw(r, t) = −Dθw(r, t)− 1
2∇ [v(r)ρ(r, t)] + B . (4.4)

Note that, in B, we hide terms of higher moments in θ depending on
∫

cos(2θ)P (r, θ)dθ
and

∫
sin(2θ)P (r, θ)dθ. Indeed, we will neglect these terms as we truncate the hierarchy

of equations here, keeping only ρ and w as the hydrodynamic fields. We thus obtain

∂tw(r, t) = −Dθw(r, t)− 1
2∇ [v(r)ρ(r, t)] (4.5)
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Noting that the polarization w relaxes on a time scale τw = D−1
θ much smaller than the

relaxation time of the density τρ ∝ q−1 at low wave-vector q, we can enslave w as

w(r, t) = − 1
2Dθ

∇ [v(r)ρ(r, t)] . (4.6)

Injecting the above equation into the mass conservation finally yields a closed equation
for the density ρ(r, t)

∂tρ(r, t) = 1
2Dθ

∇ ·
[
v(r)∇ (v(r)ρ(r, t))

]
(4.7)

We note that ρ(r) = 1/v(r) is a solution of (4.7), which demonstrate the accumulation
of ABPs in slower regions.

Let us now show how MII may emerge from purely repulsive forces for ABPs in 2D.
For clarity, we consider a pairwise repulsive potential U(r) with a finite interaction range
σ. The dynamics (4.2) is thus modified according to

ṙi(t) =v0u(θi(t))−
∑
j∈Ni

∇U(rj(t)− ri(t)), θ̇i(t) =
√

2Dθ ηi(t) , (4.8)

where Ni is the set of particles in the disk Di of radius σ centered at ri. The velocity ṙi
of (4.8) can be decomposed into parallel and orthogonal components with respect to u(θ)

ṙi = vu(θi)−
∑
j∈Ni

(
u(θi) ·∇U(rj − ri)

)
u(θi)−

∑
j∈Ni

(
u(θi + π

2 ) ·∇U(rj − ri)
)
u(θi + π

2 ) .

(4.9)

We now average (4.9) over all the remaining degrees of freedom rj with j 6= i. Because
the dynamics of the θi’s is decoupled, the line defined by the unitary vector u(θi) is an
axis of symmetry which cuts in two halves the disk Di. As the distribution of particles is
similar in these two half-disks, the component of the velocity orthogonal to u(θ) vanishes
and the third term on the right hand side of (4.9) is zero on average. Once averaged
(4.9), we thus obtain the mean-field formula

〈ṙi〉 = veff(ρ)u(θi) , (4.10)

where the effective velocity veff(ρ) reads

veff(ρ) = v −
∑
j∈Ni
〈u(θi) ·∇U(rj − ri)〉 . (4.11)

Note that, on the opposite, no symmetry arguments grants that the densities in the two
half-disks obtained when cutting Di along the axis u(θ+ π

2 ) are similar. In fact, as shown
in [146], it is more probable to find a neighbouring particle in the direction u(θ) than in
the opposite direction −u(θ). This is why 〈u(θi) ·∇U(rj−ri)〉 is positive and contributes
to a density-dependent decrease of the self-propulsion. However, determining its precise
analytical form as a function of ρ from the dynamics (4.8) is a difficult task which has
been carried out only in specific conditions [147,148].

We now mix the two ingredients MI and MII together to shed light on the instability
behind MIPS. To this aim, in addition to the crude mean-field approximation leading



66 Chapter 4. Motility-Induced Phase Separation and flocks: an interplay at high . . .

from (4.8) to (4.10), we make an adiabatic approximation and replace v(r) in (4.7) by
v(ρ(r, t)):

∂tρ(r, t) = 1
2Dθ

∇ ·
[
v(ρ(r, t))∇ (v(ρ(r, t))ρ(r, t))

]
. (4.12)

While it is possible to derive (4.12) from the dynamics (4.10), such a computation lies
beyond the scope of this manuscript and can already be found in the literature [47,68,149].

We now analyze the linear stability of (4.12) around a homogeneous solution ρ0 and
introduce the perturbation δρ(r, t) = ρ(r, t) − ρ0. To first order in δρ, we obtain the
linearized dynamics

∂tδρ(r, t) = v(ρ0)
2Dθ

[v(ρ0) + v′(ρ0)ρ0] ∇2δρ(r, t) . (4.13)

As v(ρ0) and Dθ are positive, this dynamics is unstable as soon as

v(ρ0) + v′(ρ0)ρ0 < 0, (4.14)

which is nothing else than the linear instability criterion for the onset of MIPS [67]. Hav-
ing introduced Motility-Induced Phase Separation, we now turn back to the experimental
assemblies of Quincke rollers described in section 4.1 and study their behaviour at high
density, where repulsion comes into play.

4.3 Solidification of flocks in assemblies of Quincke
rollers

It is possible to ramp up the packing fraction φ0 of colloids within the racetrack of the
experiment presented in section 4.1. By doing so, we aim at probing a regime where
short-range repulsion between the rollers comes into play.

When φ0 exceeds φS ' 0.55, D. Geyer and D. Bartolo observed that collective motion
is locally suppressed, which leads to a dynamical arrest that cannot be explained using
standard flocking models like the Vicsek model. In this high density regime, rollers stop
their collective motion and jam as illustrated in Fig. 4.4. The traffic jams are active
solids that continuously melt at one end while growing at the other end. This lively
dynamics hence preserves the shape and length LS of the solid which propagates at
constant speed upstream the polar-liquid flow, as shown in the kymograph of Fig. 4.5a.
Further increasing φ0, the solid region grows and eventually spans the entire system. The
phase diagram of Quincke rollers assemblies presented in Fig. 4.2 must thus be updated
according to Fig. 4.4 to include this new jamming phase transition occuring at high
packing fraction. We now characterize the structure of these traffic jams as well as the
order of the transition leading to active solidfication.
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Figure 4.4 – The dynamical phases of Quincke rollers. a. Picture of a microfluidic
racetrack where ∼ 3×106 Quincke rollers interact. An active solid (dark grey) propagates
though a polar liquid (light grey). Scale bar: 2 mm. b–f. Top panel: close-up pictures
of Quincke rollers in the racetrack. Scale bars: 250µm. Bottom panel: longitudinal
component of the particle current W and density plotted as a function of a normalized
time. BothW and φ are averaged over an observation window of size 56µm×1120µm. T0
is arbitrarily chosen to be the time taken by an active solid to circle around the racetrack.
b. Gas phase (φ0 = 0.002). c. Coexistence between a disordered gas and a denser polar
band (φ0 = 0.033). d. Polar-liquid phase (φ0 = 0.096). e. Coexistence between a polar
liquid and an amorphous active solid (φ0 = 0.49). f. Homogeneous active solid phase
(φ0 = 0.70). Figure adapted from [79].

4.3.1 Characterization of active solids

Active solids form an amorphous phase. The pair correlation function shown in Fig. 4.5b
and 4.5c indicates that they are more spatially ordered than the polar liquid they co-
exist with, but do not display any sign of long-range translational order. We note that
the location of the first peak of g(r) drops from a value that is larger than a colloid
diameter in the liquid to one particle diameter in the solid phase. The large value of
the typical interparticle distance in the polar liquid phase reflects the repulsive dipolar
interactions acting on neighbouring Quincke rollers [28, 150–152]. But the most striking
difference between the two phases is dynamical. While the rollers continuously move at
constant speed in the polar liquid, they spend most of their time at rest in the solid
phase, thereby suppressing any form of long-range orientational order of their velocity as
shown in Fig. 4.5d and 4.5e.

We stress that the onset of active solidification corresponds to an area fraction φS '
0.55 which is much smaller than the random close packing limit (φ0 = 0.84) and than
the crystalization point of self-propelled hard disks (φ0 ∼ 0.71) reported in [153]. This
marked difference hints towards different physics which we characterize and elucidate in
the sections below.

As a last experimental result, we show in Fig. 4.9a how the roller speed ν0(φ) varies
with the local density φ(r, t) evaluated in square regions of size 12a ∼ 29µm. These
measurements correspond to an experiment where a solid jam coexists with a homo-
geneous polar liquid. ν0(φ) hardly varies at the smallest densities and sharply drops
towards ν0(φ) = 0 when the local fraction φ(r, t) exceeds ∼ 0.35. Although the precise
microscopic origin of this abrupt slowing down is difficult to identify, we expect near-field
hydrodynamic interactions to frustrate self-propulsion.
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Figure 4.5 – Structure and dynamics of active jams. a. Kymograph of an active
solid (dark region) propagating backward at constant speed in a homogeneous polar liquid
(light region). b and c. Pair-correlation functions measured in the polar liquid (gL) and
in the coexisting active-solid phase (gS) as a function of r⊥, the direction transverse to
the mean polar-liquid flow. The dashed lines indicate the distance corresponding to one
particle diameter. d. Probability density functions of the roller velocities in the polar
liquid region. The distribution is peaked around ν0x̂‖, where x̂‖ is the vector tangent to
the racetrack. e. Probability density functions of the roller velocities in the active jam
region. b, c, d, and e: average area fraction φ0 = 0.58. Figure adapted from [79].

4.3.2 Characterization of the transition

We now establish that the formation of active solids occurs according to a first order
phase-separation scenario. Firstly, Fig. 4.6a and b indicate that, upon increasing φ0, the
extent of the solid phase has a lower bound: starting from a homogeneous polar liquid,
the solid length LS discontinuously jumps to a finite value before increasing linearly with
φ0−φb

L, where φb
L = 0.55, see Fig. 4.6b. The smallest solid observed in a stationary state

is as large as LS ∼ 1.4 cm. Smaller transient solid jams do form at local heterogeneities,
but they merely propagate over a finite distance before rapidly melting. This observation
suggests the existence of a critical nucleation radius for the solid phase.

Secondly, while the packing fraction of a polar liquid obviously increases with φ0, its
value saturates as it coexists with an active solid as shown in Fig. 4.6c. At coexistence,
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the local packing fractions in the bulk of the liquid and solid phases are independent of the
average fraction φ0: φb

S = 0.75 and φb
L = 0.55, which again supports a phase-separation

scenario. Note that φb
L is hardly distinguishable from the packing fraction at the onset

of solidification φS in the experiments, because the system size is much larger than the
size of the nucleated active solids. Increasing φ0 leaves the inner structure of both phases
unchanged and solely increases the fraction of solid LS/L0 in the racetrack. We find that,
as in equilibrium phase separation, the length of the solid region is accurately predicted
using a lever rule constructed from the stationary bulk densities φb

S and φb
L as exemplified

in Fig. 4.6b.
Thirdly, we stress that when multiple jams nucleate in the device, they propagate

nearly at the same speed. Therefore, they cannot catch up and coalesce. The system
in fact reaches a stationary state thanks to a slow coarsening dynamics illustrated in
Fig. 4.6d where we show the temporal evolution of the length of two macroscopic active
solids (red symbols) and of the overall solid fraction (dark line). This experiment cor-
responds to a situation where the smallest solid jam grows at the expense of the larger.
The converse situation is also possible and in both cases coarsening operates leaving the
overall fraction of solid constant. All experiments end with complete phase separation: a
single macroscopic active solid coexists with a single active liquid phase. The final state
of the system is therefore uniquely determined by two macroscopic control parameters:
the average packing fraction φ0 and the magnitude E0 of the electric field used to power
the rollers.

Finally, the most compelling argument in favour of a genuine first-order phase separa-
tion is the bistability of the two phases. Fig. 4.6b shows that, at the onset of solidification,
depending on the (uncontrolled) initial conditions, the system is either observed in a ho-
mogeneous polar liquid or at liquid-solid coexistence. The bistability of the active material
is even better evidenced when cycling the magnitude E0 of the electric field that powers
the rollers’ motion (cycling the average density is not experimentally feasible). Fig. 4.6e
shows the temporal variations of the active-solid fraction upon triangular modulation of
E0. When E0 increases an active-solid nucleates and quickly grows. When E0 decreases,
the solid continuously shrinks and eventually vanishes at a field value smaller than the
nucleation point. Note that varying E0 changes the speed of the particles as well as their
interactions. These microscopic changes explain the variations of the packing fractions of
the two coexisting phases which in turn account for the variation of the domain sizes at
fixed average density. The asymmetric dynamics of LS/L0 demonstrates the existence of
a metastable region in the phase diagram. As shown in Fig. 4.6f, the metastability of the
active solid results in the hysteretic response of LS, the hallmark of a first-order phase
transition. We also observed that the continuous interfacial melting observed when E0
smoothly decreases contrasts with the response to a rapid field quench. Starting with a
stationary active solid, a rapid quench deep in the coexistence region results in a desta-
bilization of the solid bulk akin to a spinodal decomposition dynamics. Finally, when
repeating the same experiments in isotropic 6 mm-wide circular chambers, we observe
the same macroscopic phase separation into active solids and polar liquids (see Fig. 4.7).
This observation confirms that solidification is a bulk phenomenon which does not rely
on specific geometrical parameters.

Altogether, these measurements and observations establish that the emergence of
active solids results from a first-order phase transition which is embodied by

PI Constant binodals at coexistence and lever-rule (Fig. 4.6b-c)
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PII The existence of a slow coarsening dynamics (Fig. 4.6d)

PIII The presence of hysteresis loops (Fig. 4.6e-f)

In the next section, we theoretically elucidate active solidification as an extended MIPS
scenario.

Figure 4.6 – a. Solid jams in a racetrack at φ0 = 0.38, 0.58, 0.65. b. Solid fraction
plotted versus the average packing fraction φ0. c. Density of the polar-liquid phase (blue
circles) and of the active-solid phase (red circles) plotted versus φ0. In b. and c. the
shaded regions indicate the coexistence between the polar liquid and active solid phases.
d. Fraction of two solid jams undergoing coarsening as a function of time. The total
fraction of solid phase in the racetrack is represented by the black line. e. Solid fraction
(blue line) and magnitude of the electric field (red line) plotted versus time. f. Variation
of the solid fraction upon cycling the electric field amplitude. Figure adapted from [79].

Figure 4.7 – Successive snapshots of Quincke rollers undergoing active solidification in a
circular chamber. Time increases from left to right: the spiral rotates clockwise. Figure
adapted from [79].
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4.4 A phenomelogical approach to active solidifica-
tion

Having established and characterized active solidification, we now build up a correspond-
ing minimalist phenomenological theory. The aim is to pin down the minimal ingredients
required to account for all the experimental findings. First, the theory must contain
Vicsek physics to describe the formation of flocks at low density: an ordered phase must
arise from a disordered gas due to aligning interactions. Second, it must take into account
the drop of both velocity and local order when the density is increased that results from
short-range interactions.

Elaborating a microscopic theory working at all density scale for colloidal rollers seems
very challenging. Indeed, while the dependency of the self-propulsion ν0 and local order
W on the density is experimentally accessible (see Fig. 4.9a), the physical mechanism
lying at its origin remains to be precisely determined (lubrication, steric hindrance ?). In
this section, we instead adopt a generic hydrodynamic description of roller flocks which
can be tuned phenomenologically to take into account high-density experimental features.

4.4.1 Nonlinear hydrodynamic theory

We start with the minimal version of the Toner-Tu equations introduced in section 3.1.3,
which proved to correctly capture the coexistence of active gas and polar-liquid bands at
the onset of collective motion [116,121,122]. For clarity, we ignore fluctuations transverse
to the mean-flow direction and write the hydrodynamic equations for the one-dimensional
longitudinal current W (x, t) and number-density field ρ(x, t):

∂tρ+ ∂xW = Dρ∂xxρ, (4.15)
∂tW + λW∂xW = DW∂xxW − ∂x [p(ρ)] + a2(ρ)W − a4W

3 , (4.16)

where Dρ, λ, DW , a4 are constant hydrodynamic coefficients. We can draw a paral-
lel between (4.15)-(4.16) and the hydrodynamic equations (3.7)-(3.8) obtained using a
bottom-up approach for the Vicsek model in section 3.1.2. On the one hand, we note
that, for the Vicsek model, a2(ρ) is a function of ρ which changes sign and becomes posi-
tive as ρ exceeds a critical value ρc. It thus allows for a flocking transition upon increasing
the particle density [114, 121, 122]. On the other hand, we note that the pressure term
p(ρ) in (3.8) is proportional to the density times the square of the particle’s speed for the
Vicsek Model. These two behaviours for a2(ρ) and p(ρ) as a function of the density are
summarized in Fig. 4.8a-b. Interestingly, the slowing down of the rollers at high density
can be accounted for through a specific fine-tuning of a2(ρ) and p(ρ), which we detail
below.

Firstly, coarse-graining microscopic flocking models typically leads to a pressure term
depending on the particle speed [19, 68, 76, 120]. We therefore expect p(ρ) to follow the
dependence of the self-propulsion ν0 on the density and thus to sharply drop above a
critical density ρ̄ (see Fig. 4.9a). Second, given the loss of the orientational order in the
solid phase, a2(ρ) is also expected to decay and change sign around ρ̄.
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Figure 4.8 – a. Alignment term a2(ρ) = α(ρ− ρc) for the Vicsek model with α = 1 and
ρc = 0.5. b. Pressure term p(ρ) = σρ for the Vicsek model with σ = 1 (corresponding to
a self-propulsion v =

√
2). c. Phenomelogical alignment term a2(ρ) = α(ρε(ρ) − ρc) for

the Quincke rollers with α = 1, ρc = 0.5, ρ̄ = 2 and ξ = 0.1. d. Phenomelogical pressure
term p(ρ) = σρε(ρ) for the Quincke rollers with σ = 1, ρ̄ = 2 and ξ = 0.1.

As the slowing down of rollers and the suppression of orientational order happen
concomitantly, in all that follows, we choose

a2(ρ) = α(ρε(ρ)− ρc) and p(ρ) = σρε(ρ) , (4.17)

where the function ε(ρ) decreases from 1 in the low-density phases to a vanishing value
deep in the solid phase, and where α and σ are two positive constants. In practice, the
functional form of ε(ρ) is postulated on phenomenological grounds and we take

ε(ρ) = 1− tanh [(ρ− ρ̄)/ξ]
2 . (4.18)

The behaviours of a2(ρ) and p(ρ) are displayed in Fig. 4.8c-d. Compared to their Vicsek’s
counterparts, they both present a sharp drop down at high densities around ρ̄, which
reflects the abrupt slowing down of the rollers. Note that, at densities larger than ρ̄, we
expect the repulsion and contact interactions between the particles to result in a pressure
increase with the particle density [28, 154]. Our description (4.17)-(4.18) disregards this
second regime which is not essential to the nucleation and propagation of active solids.
We now turn to the discussion of numerical results obtained by solving (4.15) and (4.16)
with spectral methods and semi-implicit time-stepping. As shown in Fig. 4.9, numerical

Figure 4.9 – a. Average velocity ν0(r, t) of the colloids (red) and local magnitude of
the longitudinal current W (r, t) (blue) plotted as a function of the local packing fraction
φ(r, t). b-e. Successive phases observed in the numerical resolution of (4.15) and (4.16) at
increasing average densities ρ0 = (0.10, 0.18, 1.7, 1.96, 6.5). The position x is normalized
by the system size L. Simulation parameters: Dρ = 0.2, DW = 1, λ = 1, a4 = 0.45,
σ = 0.2, ρ̄ = 2, ξ = 0.01, α = 1, ρc = 0.5, L = 200, dx = 0.05, dt = 0.005. Figure adapted
from [79].

resolutions of (4.15) and (4.16) at increasing densities faithfully account for the five
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successive phases observed in the experiments. At low densities, we first observe the
standard Vicsek transition: a disordered gas phase is separated from a homogeneous polar
liquid phase by a coexistence region where ordered bands propagate through a disordered
background [62]. This phase transition occurs at very low densities (ρ0 ∼ ρc � ρ̄), in a
regime where the colloidal rollers experience no form of kinetic hindrance as they interact,
therefore where ε(ρ) ' 1. In agreement with the experiments, a second transition leads
to the coexistence between a polar liquid of constant density ρb

L and an apolar dense
phase of constant density ρb

S. This jammed phase propagates backwards with respect
to the flow of the polar liquid as reported experimentally for the active solids in section
4.3. This second transition shares all the experimental signatures of the first-order phase
separation reported in Fig. 4.6 for assemblies of Quincke rollers: constant binodals PI,
slow coarsening PII and hysteresis PIII.

PI The bulk density in the active solid ρb
S and in the polar liquid ρb

L remains constant
during the transition (see Fig. 4.10a). Consequently, the jammed phase obeys a
lever rule: its width increases linearly with ρ0 − ρb

L as shown in Fig. 4.10b.

PII Fig. 4.10c indicates the existence of a coarsening dynamics leading to complete
phase separation: small active solids tend to melt into bigger ones. During the
process, the total fraction of solid jams remains constant.

PIII Upon ramping up and down the average density, the fraction of solid jam goes
through an hysteresis loop as shown in Fig. 4.10d. Note that the active solid melt
at a density lower than the one needed for its onset.

1.8 2.0 2.2
ρ

0.3

0.5

0.7

L
S
/
L

lever-rule

simulations

0 20 40

t/t0

0.1

0.2

0.3

0.4

L
S
/
L

1.6 1.8 2.0
ρ

0.0

0.2

0.4

0.6

L
S
/
L

a. b.
c. d.

Figure 4.10 – Numerical resolution of (4.15) and (4.16). a. The density and
magnetization profiles are computed for different values of ρ : from 1.85 (light colors) to
2.25 (dark colors). b. Fraction of the solid jam LS/L plotted versus ρ (symbols) and
lever rule (solid line). Same parameters as in a. c. Fraction of two solid jams undergoing
coarsening as a function of a normalized time t/t0. The total fraction of active solids is
represented by the black dashed line. t0 is arbitrarily chosen to be the time taken by an
active solid to circle around the system. d. Variation of the fraction of solid jam upon
cycling the density. Parameters: Dρ = 5, DW = 10, λ = 1, a4 = 1, σ = 1, ρ̄ = 2,
ξ = 0.1, α = 1, ρc = 0.5, L = 200, dx = 0.01, dt = 0.001. Figure partially adapted
from [79].
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4.4.2 Spinodal instability of polar liquids and domain wall prop-
agation

Having established the qualitative agreement between our hydrodynamic model and the
experiments, we now use the former to gain physical insight into the origin of active solid-
ification. In this section, we show how the succession of instabilities of the homogeneous
solutions of Eqs. (4.15) and (4.16) correctly predict the full phase behaviour observed
in the experiments and numerical simulations. We focus on the experimentally relevant
situation where the slowing down of the particle occurs at packing fractions much larger
than that of the onset of collective motion, namely ρ̄� ρc.

Stability of the disordered phases

We start by considering a homogeneous disordered phase where ρ = ρ0, W = 0. The
linearized dynamics of a small perturbation δX ≡ (δρ, δW ) is given, in Fourier space, by
δẊk = MkδXk, where the dynamical matrix Mk reads

Mk =
(

−Dρk
2 −ik

−(ε+ ε′ρ0)ikσ a2(ρ0)−DWk
2

)
. (4.19)

The eigenvalues λ± of Mk determines the stability of the disordered phases. We find

2λ± =±
√[

(Dρ +DW )k2 − a2(ρ0)
]2
− 4k2σ(ε+ ρ0ε′)− 4

[
DWk2 − a2(ρ0)

]
Dρk2

−
[
(Dρ +DW )k2 − a2(ρ0)

]
. (4.20)

The disordered phases are unstable whenever there exists a λ± with a positive real part,
ie <(λ±) > 0, which is realized when either one of the following conditions is satisfied

a2(ρ0) > 0⇔ ρ0ε(ρ0)− ρc > 0 (4.21)
σ [ε(ρ0) + ρ0ε

′(ρ0)] < −(DWk
2 − a2(ρ0))Dρ . (4.22)

For the case at hand, the second condition is never met in the low density regime ρ0 . ρc
as ρc � ρ̄. In this low density regime, Fig. 4.8c shows that the criterion (4.21) is first
met at ρ?0 ' ρc: we recover the standard spinodal instability leading to the emergence
of flocking motion [122]. As density increases, the system thus undergoes a first linear
instability at ρ0 ' ρc, which corresponds to the transition reported in Fig. 4.9, panels b
to c.

At the other end of the density spectrum, deep in the active solid phase where ρ0 � ρ̄,
the criterion (4.21) cannot be realized since a2(ρ) = −αρc < 0. The condition given in
(4.22) is not realized either because ε′ ' 0. As the density decreases, both (4.21) and
(4.22) could lead to a linear instability of the active solid. Looking at Fig. 4.8c, condition
(4.21) is realized at a second density ρ?1 > ρ?0 such that ρ?1ε(ρ?1) = ρc and a′2(ρ?1) < 0. As
a′2(ρ) = (ρε(ρ))′, it implies that ρε(ρ) is a decreasing function at ρ?1. Since, for k = 0,
(4.22) reduces to (ρ0ε(ρ0))′ < −Dρα(ρc − ρ0ε(ρ0))/σ, the criterion of (4.22) is already
realized at ρ?1: the linear instability of the active solid is always given by (4.22). We
recognize in (4.22) the standard form of a MIPS spinodal instability derived in (4.14)
ε + ρε′ � −K1Dρ, with K1 a positive constant [67]. The linear instability of the active
solid leading to the transition illustrated by the panels e and f of Fig. 4.9 is thus consistent
with a MIPS scenario.
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Stability of the ordered phase

Let us now consider a polar liquid where ρ = ρ0, and W = W0, with a4W
2
0 = a2(ρ0).

Following the same procedure as above, the linearized dynamics of a small perturbation
δX = (δρ, δW ) is given by ˙δX = MδX where the dynamical matrix M reads

Mk =
(
Mρρ MρW

MWρ MWW

)
, (4.23)

with the coefficients given by

Mρρ(k) = −Dρk
2, MρW (k) = −ik, (4.24)

MWρ(k) = −(ε+ ε′ρ0)(ikσ −W0α), MWW (k) = −DWk
2 − λikW0 − 2a4W

2
0 . (4.25)

The linear stability of the polar liquid is determined by the sign of the real parts of the
eigenvalues of Mk, < (λ±(k)). To be consistent with our modified Toner-Tu equations
(4.15) and (4.16) that are truncated at the second order in gradients, we only consider
λ±(k) up to order k2. Only < (λ−(k)) can become positive and lead to an instability. At
order k2, it reads

<
(
λ−(k)

)
= − k2

8a3
4W

4
0

[
(ε+ ρε′)2a4W

2
0 (2a4σ + αλ)− α2(ε+ ρε′)2 + 8a3

4DρW
4
0

]
+ o(k2) .

This is a second order polynomial in ε + ρε′ and the polar liquid is linearly unstable
whenever one of the two following conditions is satisfied

ε+ ρε′ <
a4W

2
0

α2 (αλ+ 2a4σ)
1−

√√√√1 + 8a4Dρα2

(αλ+ 2a4σ)2

 (4.26)

ε+ ρε′ >
a4W

2
0

α2 (αλ+ 2a4σ)
1 +

√√√√1 + 8a4Dρα2

(αλ+ 2a4σ)2

 . (4.27)

The first inequality (4.26) can only be satisfied at high densities, when ρ ∼ ρ̄. It is
again of a standard MIPS form similar to (4.14), i.e. ε+ρε′ < −W 2

0K2 with K2 > 0, and
corresponds to the solidification transition from panel d to panel e on figure Fig. 4.9. Both
the melting of the active solid and the solidification of the polar liquid thus correspond to
standard MIPS instability criteria. It is interesting to note that the local order of the polar
liquid merely alters the MIPS instability scenario although orientational order makes it
harder to phase separate through the factor W 2

0 in (4.26). This result is consistent with
recent results on the large deviations of active-matter systems that show collective motion
to be an optimal strategy to avoid MIPS [155].

On the contrary, the second inequality (4.27) is realized at much lower densities, close
to ρ0 = ρc, when W 2

0 is small enough. It corresponds to the standard linear instability of
the polar liquid leading to the formation of Vicsek bands, as shown on panels c and d in
Fig. 4.9. Using W 2

0 = α(ρ0 − ρc)/a4 and that ε = 1 when ρ0 � ρ̄, (4.27) becomes

α

αλ+ 2a4σ

1 +

√√√√1 + 8a4Dρα2

(αλ+ 2a4σ)2

−1

+ ρc < ρ0 (4.28)
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In the limit of small Dρ relevant for our experiments [29], we recover the usual instability
criterion of a homogeneous polar liquid discussed in [121] :

ρc + α

2λα + 4a4σ
< ρ0 . (4.29)

All in all, we have determined all the spinodal lines governing the two phase transitions
found numerically.

• Flocking transitions between a disordered gas and a polar liquid. The transition
from:

◦ panel b to c in Fig. 4.9 corresponds to (4.21)
◦ panel d to c in Fig. 4.9 corresponds to (4.27)

• MIPS-like transitions between a polar liquid and an active solid. The transition
from

◦ panels d to e in Fig. 4.9 corresponds to (4.26)
◦ panels f to e in Fig. 4.9 corresponds to (4.22)

At low densities, when ρ0 � ρ̄, the hydrodynamics (4.15)-(4.16) corresponds to that
thoroughly studied in [121, 122, 156]. It correctly predicts a first order transition from
an isotropic gas to a polar-liquid phase with a spinodal decomposition into Vicsek bands
whenever (4.28) is verified. However, at high density, the stability of the polar liquid
is limited by the formation of active-solid jams, a phenomenon that is not captured by
classical flocking models. We learn from the stability analysis that this active solidification
ultimately relies on the decrease of the effective pressure with density in (4.16) as a
result of the slowing down of the colloids in dense environments. Criterion (4.26) is
exactly analogous to the spinodal decomposition condition in MIPS physics (see (4.14)
in section 4.2): the formation of active-solid jams results from a Motility-Induced Phase
Separation.

4.5 A microscopic approach to active solidification
Because we could not coarse-grain explicitly the rollers’ microscopic dynamics in the
previous part, we had to resort to phenomenological modifications directly at the hydro-
dynamic level in (4.15)-(4.16). Especially, we postulated that the macroscopic slowing
down and the loss of order should happen concomitantly at ρ̄ with a specific dependency
given by ε(ρ) in (4.18). Here, instead, I want to explore more generally the minimal
microscopic ingredients sufficient to produce both collective motion and active jams at
the coarse-grained scale. To this aim, I use a controlled framework in which the coarse-
grained evolution of the fields ρ and W can be obtained from the underlying microscopic
dynamics. Such a framework has been developped for active lattice gases, where one can
specify the microscopic update rule of the spins and determine exactly the associated
macroscopic hydrodynamics [148, 157]. This section contains recent results that go be-
yond the physics reported in [79] and will be published in a separate contribution. The
experimental observations of section 4.3 points toward four key mechanisms necessary for
the physics of active solidification
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• non-zero self-propulsion speed at low density.

• alignment at low density.

• Loss of orientational order at high density.

• Drop of self-propulsion at high density.

For simplicity, we work in one space dimension and consider a lattice with periodic
boundary conditions and lattice spacing a. Particles carry plus and minus spins and
evolve on the lattice. The density ρj and the magnetization mj at site j are given by

ρj = η+
j + η−j mj = η+

j − η−j , (4.30)

where η+
j and η−j are the number of plus and minus spins at site j respectively. Echoing

the four mechanisms cited above, the dynamics is as follows:

RI Particles diffuse isotropically with rate Da−2

RII Spin ± at site j hop to site j ± 1 with rate va−1 exp(−λρj)

RIII Spin ± at site j flips into a ∓ spin with rate γW± with

W± =
exp(∓βmj) if ρj ≤ 3

1 if ρj ≥ 4
(4.31)

Using the Heaviside function Θ(u), which is equal to 1 if u ≥ 0 and zero otherwise,
we obtain a more compact formulation for the W±

W± = Θ(3− ρj) exp(∓βmj) + Θ(ρj − 4) . (4.32)

In the above microscopic rules, we note that alignment is switched off at site j when
ρj ≥ 4: spins flips to + or − with equal probability at high density. Furthermore, self-
propulsion drops down with the local density as exp(−λρj): spins are arrested in the high
density regime. We now derive the coarse-grained hydrodynamics corresponding to the
microscopic rules RI, RII and RIII.

4.5.1 Exact coarse-grained evolution
We consider a lattice with L different sites and a discretized time tj with j ∈ {1, .., N}.
In a time dt = tj+1− tj, a unique spin makes one of the three moves described in RI, RII
and RIII. A trajectory of the spins is completely determined by the set {η} containing
all the η±i (tj)’s

{η} =
{
η±i (tj) for i ∈ {1, .., L}, j ∈ {1, .., N}

}
. (4.33)

Using path integral technics, we derive in appendix C.1 the probability P ({η}) to observe
a given trajectory of the spins. Building on it, we change variables from the η±i to
the averaged density 〈ρi〉 and magnetization 〈mi〉. Finally, as shown in appendix C.1,
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taking the saddle point of the action in the limit of small lattice size a → 0 yields the
hydrodynamic evolution as

∂tρ = D∇2ρ−∇ [veff(ρ) m] (4.34)
∂tm = D∇2m−∇ [veff(ρ) ρ] + a2(ρ)m− a4(ρ) m3 , (4.35)

where veff(ρ), a2(ρ) and a4(ρ) are given by

veff(ρ) = ρ e−ρ(1−e−λ)−λ , a4(ρ) = γ m3 e
−3β

8
(
e2β − 1

)2
(4.36)

a2(ρ) = −γe−ρ
[ (
e−β − 1

)
+
(
e−2β − 1

)
ρ+

(
3e−3β + 2e−β − eβ − 4

) ρ2

8

]
− γ (4.37)

We can compare the evolution of the magnetization (4.35) with the phenomelogical Toner-
Tu (4.16) in section 4.4.1 which was derived for the assemblies of Quincke rollers. Through
coarse-graining, we obtained exact expressions for a2(ρ) in (4.37) as well as for p(ρ) which
reads

p(ρ) =ρ veff(ρ) . (4.38)

Let us now compare these exact formulas with the phenomelogical ones previously pos-
tulated in (4.17). Consistently with its counterpart plotted in Fig. 4.8d, we note that
p(ρ) in (4.38) first increases linearly at low density before decaying to zero. However, as
shown in Fig. 4.11b, it does not sharply drop around a critical value ρ̄ but constantly
decays exponentially from its maximum value at low density. Interestingly, the exact
a2(ρ) in (4.37) shares all the characteristic features of its phenomelogical counterpart
postulated in section 4.4.1 and plotted in Fig. 4.8c. First, it is negative at both low
and high densities, so that the system remains disordered in these two regimes. Second,
for sufficiently large β, it becomes positive at intermediate densities to foster an ordered
phase (see Fig. 4.11a). Given these similarities between (4.35) and (4.16), we expect our
microscopic model to produce a rich macroscopic physics similar to the one discussed in
section 4.4.1. Let us now verify this statement by looking for active solidification and
collective motion in the numerical simulations.
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Figure 4.11 – a. Alignment term a2(ρ) given by (4.37). b. Pressure term p(ρ) as in
(4.38). Parameters: β = 1.6, v = 4, λ = 1.5, γ = 1.

4.5.2 Phase diagram and triple coexistence state
We first perform numerical simulations of the hydrodynamic equations (4.34)-(4.35) using
a spectral method with semi-implicit Euler scheme. We find a phase diagram similar to
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the one encountered for our phenomelogical Toner-Tu (4.15)-(4.16) in Fig. 4.9. Upon
increasing the density, the system successively goes from a disordered gas phase to a
phase-separated state with travelling bands. It then displays a flocking phase with non-
zero homogeneous magnetization before once again exhibiting a coexistence state between
a polar liquid and a jammed solid. Finally, at very high density, this jammed solid ends
up spanning the entire length of the system. The whole phase diagram as a function of
density is summarized in Fig. 4.12.
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Figure 4.12 – Successive phases observed in the numerical resolution of (4.34)-(4.35) at
increasing average densities ρ0 = (0.6, 0.8, 1.2, 1.5, 1, 9) from left to right. The position
x is normalized by the system size. a. Gas phase. b. Coexistence of gas and flock. c.
Flocking phase. d. Coexistence of jam and flock. e. Solid phase. Parameters: D = 0.5,
β = 1.6, v = 4, λ = 1.5, γ = 1, L = 80.

So far, here and in section 4.3, we always observed systems where the two transitions,
namely active solidification and the emergence of collective motion, were occurring at
very distinct regimes of densities without affecting each others. It would be interesting
to study how both transitions would interplay if their respective spinodals were brought
within the same density range. While it is practically difficult to control the onset of the
different phases in the experiments, here we can easily vary the parameters in (4.34)-(4.35)
to bring the onset of collective motion close to the emergence of jams.
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Figure 4.13 – Successive snapshots of the steady-state presenting a triple coexistence
between gaseous (G), flocking (F) and solid (S) phases at increasing simulation time
t = (194, 344, 408) from left to right. The position x is normalized by the system size. a.
Travelling band crashing into a jam. b. Nucleation of a new jam while the older one melts.
c. Formation of two bands travelling in opposite directions after melting. Parameters:
D = 1, β = 1.8, v = 8, λ = 1.25, γ = 1, L = 400, ρ0 = 0.95.

By doing so, we can find an exotic steady-state where the flocking, gaseous and
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jammed phases coexists together in a rather chaotic dynamics. The latter takes the form
of travelling flocks propagating in a gaseous medium which eventually collide on the active
solid (see Fig. 4.13a.). The active solid moves upstream the travelling bands by increments
occurring after each collision with a flock. In Fig. 4.13, we present a few snapshots of
the system in this triple coexistence regime. The phenomenology observed is in fact even
richer than a mere steady-state between flocks and jammed phase. At triple coexistence,
active solids can also completely melt into two flocks, one going rightward and the other
going leftward (see Fig. 4.13b. and c.). These two travelling flocks then propagates in
the system until they meet one another due to the periodic boundary conditions; their
collision then nucleates a new jam at the location of their encounter. Consequently,
the stationary state at triple coexistence can exhibit a complicated phenomenology with
traffic jams appearing and melting chaotically.

Having exploited (4.34)-(4.35) to unveil the phase diagram in Fig. 4.12 as well as
this new exotic steady-state with triple coexistence, we now confront our predictions to
microscopic simulations of active spins.

4.5.3 Microscopic simulations: triple coexistence is confirmed
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Figure 4.14 – a-c. Successive snapshots confronting the hydrodynamics (4.34)-(4.35)
(dashed lines) with microscopic lattice gas dynamics RI-RII-RIII (plain lines) at increasing
simulation time t = (1, 200, 400) from left to right. The position x is normalized by the
system size. Gaseous, flocking, and solid phases are indicated by G, F, and S respectively.
Parameters: D = 1, β = 1.8, v = 8, λ = 1.25, γ = 1, L = 400 and ρ0 = 0.95. For the
on-lattice dynamics, a = 0.0025 and dt = 3.125× 10−6.

In this section, we perform microscopic simulations of active spins obeying dynamics
RI-RII-RIII in order to check the consistency of our coarse-grained hydrodynamics (4.34)-
(4.35). As the limit of small lattice size a → 0 is computationally costly, we will only
confront (4.34)-(4.35) with its corresponding spin-based dynamics for a specific set of
parameters for which the hydrodynamics exhibits a triple coexistence between gaseous,
flocking and jammed phases.

Starting from the same initial conditions, and without any fitting parameters, the
coarse-grained PDE accurately predicts the microscopic evolution up to a time of order
t ∼ 1000 for a lattice size of order a ∼ 0.0025 as shown in Fig. 4.14. Note that the
simulation of the lattice gas is very costly due to the high number of lattice sites N ∼
2×105 as well as to the very small time-step increment dt ∼ 10−6 which is needed to keep
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the stochastic rate RI of order 1. We report in appendix C.2 the details of the algorithm
used and the difficulties that we encountered.

Having demonstrated the relevance of our hydrodynamic equations (4.34)-(4.35) to
describe active lattice gases evolving according to RI-RII-RIII, we can affirm that the
triple coexistence between gaseous, flocking and jammed phases is not an artifact of our
coarse-grained procedure performed in section 4.5.1. However, we have only reported this
triple coexistence state for on-lattice dynamics so far, and we now assess whether this
exotic phase could also be present in continuous models.

4.5.4 Off-lattice generalization: triple coexistence remains ro-
bust

In this section, I show that the triple coexistence region is not an artifact of lattice-based
models but a generic feature observed in systems endowed with alignment and slowing
down at high density. To this aim, we study N active particles moving in a rectangular
domain Lx × Ly endowed with periodic boundary conditions. Each particles carries a
spin si = ± and evolves according to the stochastic dynamics

ṙi = siv ex +
√

2D ηi , (4.39)

where v is the self-propulsion speed, D is the diffusion coefficient, ηi is a Gaussian white
noise, and ex is the unitary vector in the x direction. Spins flip from si to −si at rate
W (si) given by

W (si) = γ exp(−βsi m̃i) , with m̃i = 1
Ni

∑
`∈Ni

s` (4.40)

where β is the alignment strength, Ni is the set of neighbors in the disk Di of radius r0
centered at ri and Ni = card(Ni).

We now need to include the two keys features that were necessary to produce solid jams
in the previous sections: slowing down and loss of orientational order at high densities.
To this aim, we introduce two threeshold Ns and Na such that when the number of
neighbors Ni exceeds Ns (Na), the speed v (the field m̃i) drop to zero respectively. We
thus have

m̃i =


1
Ni

∑
`∈Ni

s` if Ni < Na

0 if Ni ≥ Na

, v =
v0 if Ni < Ns

0 if Ni ≥ Ns

. (4.41)

The consequence of these threesholds on the dynamics is twofold

• Particles do not align at high density when Ni > Na

• Particles do not self-propel at high density Ni > Ns

Having included the ingredients sufficient for active solidification, we can now perform
numerical simulation of (4.39)-(4.40) with (4.41). In Fig. 4.15, we report the presence of
a triple coexistence steady-state where flocks, jams and disordered gas cohabit together.
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Figure 4.15 – Top. Successive snapshots of lattice gas dynamics (4.39)-(4.40) with (4.41)
at increasing simulation time t = (1300, 2330, 4340) from left to right. Spins + (−) are
indicated by red (blue) dots respectively. Bottom. Corresponding profiles of ρ and m
averaged over the y direction. Gaseous phase, flocking, and solid phases are indicated by
G, F, and S respectively. Parameters: Lx = 400, Ly = 10, ρ0 = 1.9, D = 0.04, v0 = 0.5,
Ns = Na = 10, γ = 0.5, β = 3, dt = 0.05.
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Figure 4.16 – Snapshot resulting from simulations of lattice gas dynamics (4.39)-(4.40)
with (4.41) at time t = 1260. Left. Colormap of the density. Right. Colormap of the
magnetization. Parameters: Same as in Fig. 4.15 but with Ly = 200.

However, note that the real aspect ratio of the snapshots in Fig. 4.15 is of order 0.025;
this is because for larger values of Ly/Lx the tavelling bands are not necessarily well
defined. They can be replaced by polarized moving clusters of + and − spins. In Fig. 4.16,
we report a snapshot of our lattice gas in a domain with aspect ratio Ly/Lx = 0.5 where
we can observe these polarized clusters colliding into a band of solid jam.
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4.6 Conclusion
In this chapter, we unveiled a new phase transition occuring at high densities in assemblies
of Quincke roller, which we dubbed active solidification. After characterizing it experi-
mentally as a first order transition, we showed that it is well described by an extended
MIPS scenario between a polar liquid and a solid jam. We then proved that our phe-
nomelogical analysis is grounded in microscopic models whose coarse-grained properties
can be derived exactly.

Our results show that active solidification is a generic feature observed in ensemble
of motile particles which both slow down and cease to align at high densities. Finally,
our analysis reveals that the flocking transition and the active solidification can interplay
together when their spinodals are brought within the same density range. Such an in-
terplay can produce a new exotic steady state with triple coexistence between a gaseous
phase, polar bands, and jammed phases which has not been observed experimentally so
far. It would be interesting to try and look for it in the setup of section 4.1 by varying
the different controlled parameters: the electric field, the diameter of the colloidal beads,
the width of the racetrack, etc.
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5. Scale-free correlations in anisotropic
systems

This chapter stands alone in this manuscript as it tackles both questions and systems
differing from the active-matter physics considered so far. More precisely, it is devoted
to the study of a minimal nonequilibrium model which exhibits long-ranged correlations.
The work presented here is rather recent, yet unpublished, and was performed in collab-
oration with Mehran Kardar and Yariv Kafri.

In statistical physics, the two-point function 〈φ(x)φ(0)〉 of a spatially-dependent field
φ(x) is said to be long-ranged, or scale-free, whenever 〈φ(x)φ(0)〉 ∼

|x|→∞
|x|−α, with α a

positive coefficient measuring the algebraic decay. Historically, long-ranged correlations
were first discovered in equilibrium systems near the critical point where the correlation
length diverges [81–85]. More recently, there has been a large interest in the long-ranged
correlations observed in the steady state of nonequilibrium systems [86–94]. In active
matter, scale-free correlations were first spotted numerically and analytically within the
polar liquid phase of the Vicsek model [158] and of the Toner-Tu equations [115], re-
spectively. Since this first surge of interest, however, there has been few discussions on
their role in active-matter systems [95, 97, 98]. This is surprising as long-ranged correla-
tions are expected to be quite generic out of equilibrium. For instance, in the nineties,
Grinstein, Lee and Sachdev (GLS) [99] predicted that anisotropic nonequilibrium fluc-
tuations should be sufficient to induce scale-free correlations. Their approach, however,
is based on a phenomenological field theory for which, to the best of our knowledge, no
corresponding microscopic model has been reported so far. This last chapter is devoted
to the presentation of such a microscopic dynamics, which indeed exhibits the scale-free
correlations predicted by GLS, but differs from standard active-matter models.

In section 5.1, I start by presenting the seemingly boring case of free diffusion, which
allows me to fix notations and tackle, in the simplest of cases, the question of finite-size
effects. In section 5.2, I review the established results of Grinstein, Lee and Sachdev [99].
In particular, I highlight an exotic feature which has not been described so far: the GLS
model breaks the Stokes-Einstein relation but remains time-reversible. In section 5.3,
I present our microscopic model as well as its numerical implementation. Interestingly,
while individual particles only experience short-ranged interactions, I show that long-
ranged correlations of the density field emerge at the macroscopic level. Finally, in
section 5.4, I look for physical signatures induced by the scale-free decay of the two-
point function. I show that, upon confining our particles, the correlation of the pressures
exerted on two opposite facing plates separated by a distance L exhibits an algebraic,
Casimir-like decay as L−2. I verify this last result by performing numerical simulations.

Throughout this chapter, we will take the following convention for continuous Fourier
transforms

fw,k =
∫
eiwt−ik·xf(x, t)dxdt f(x, t) =

∫ dwdk
(2π)1+d e

−iwt+ik·xfw,k , (5.1)

as well as the following convention for Fourier series of L-periodic functions

fqn = 1
L

∫ L

0
e−iqnxf(x, t)dx , f(x) =

∑
n

fqne
iqnx , (5.2)

where qn = 2πn/L and n ∈ Z.
85
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5.1 The ideal gas
In this section, for simplicity, we consider N particles evolving in a one-dimensional
domain of size L endowed with periodic boundary conditions. At the end of our com-
putation, we generalize our results to a domain of volume V in any dimension d. The
position xi of the particles evolve according to the Langevin equation ẋi =

√
2Dηi, where

ηi is a Gaussian white noise of unit variance, and D is the diffusion coefficient. Therefore,
the stochastic evolution of the density ρ = ∑N

i=1 δ(x − xi) is given by the paradigmatic
field equation [159]

∂tρ = D∂xxρ+ ∂x

[√
2Dρ η(x, t)

]
, (5.3)

where η(x, t) is a Gaussian white noise of variance 〈η(x, t)η(x′, t′)〉 = δ(t − t′)δ(x − x′).
The fluctuation of the density field is defined as δρ = ρ − ρ0, where ρ0 = N/L is the
homogeneous bulk density. Linearizing (5.3) to first order in δρ then gives

∂tδρ = D∂xxδρ+ ∂x

[√
2Dρ0 η(x, t)

]
. (5.4)

Using convention (5.2) for periodic functions, the above evolution becomes linear for the
Fourier modes δρqn as

∂tδρqn = −Dq2
nδρqn + iqn

√
2Dρ0 ηqn(t) . (5.5)

Solving (5.5) yields δρqn as

δρqn(t) = δρqn(0)e−Dq2
nt + iqn

∫ t

0
e−Dq

2
n(t−s)

√
2Dρ0 ηqn(s)ds . (5.6)

The first term on the right-hand side of (5.6) can be neglected in the limit t → ∞ for
qn 6= 0. For qn = 0, mass conservation imposes δρ0(0) = 0 and thus, for every qn, we
obtain the long-time limit of δρqn as

δρqn(t) = iqn

∫ t

0
e−Dq

2
n(t−s)

√
2Dρ0 ηqn(s)ds . (5.7)

We now express the correlations of the density field in terms of the Fourier modes δρqn :

〈δρ(x, t)δρ(0, t)〉 =
∑
n,n′

eiqnx〈δρqn(t)δρqn′ (t)〉 . (5.8)

Inserting (5.7) into (5.8), we obtain

〈δρ(x, t)δρ(0, t)〉 = −2Dρ0
∑
n,n′

qnqn′e
iqnx

∫ t

0
ds
∫ t

0
ds′e−Dq

2
n(t−s)e−Dq

2
n′ (t−s

′)〈ηqn(s)ηqn′ (s
′)〉 .

(5.9)

Equation (5.9) shows that, in order to compute the density fluctuations, we need to derive
〈ηqn(s)ηqn′ (s

′)〉. Using our convention (5.2), it is given by

〈ηqn(s)ηqn′ (s
′)〉 = 1

L2

∫ L

0
dx
∫ L

0
dx′e−iqnx−iqn′x

′〈η(x, s)η(x′, s′)〉 (5.10)

〈ηqn(s)ηqn′ (s
′)〉 = 1

L
δqn+qn′ ,0 δ(s− s

′) , (5.11)
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where, to go from (5.10) to (5.11), we have used that 〈η(x, s)η(x′, s′)〉 = δ(s−s′)δ(x−x′).
Injecting (5.11) into (5.9), after a few lines of algebra, we obtain

〈δρ(x, t)δρ(0, t)〉 = 2Dρ0

L

∑
n,n′

q2
n e

iqnxδqn+qn′ ,0 e
−2tDq2

n

∫ t

0
e2sDq2

nds . (5.12)

Performing the integral over s then yields

〈δρ(x, t)δρ(0, t)〉 = ρ0

L

∑
n

eiqnx
(
1− e−2tDq2

n

)
(1− δqn,0) . (5.13)

In steady state, we can neglect the term decaying exponentially in the above expression.
We thus obtain the final form of the density fluctuations as

〈δρ(x, t)δρ(0, t)〉 = ρ0

L

(∑
n

eiqnx − 1
)

= ρ0δ(x)− ρ0

L
. (5.14)

We can readily extend our result (5.14) to a domain of volume V in arbitrary dimension
d:

〈δρ(x, t)δρ(0, t)〉 = ρ0δ(x)− ρ0

V
. (5.15)

Note that, for an infinite domain, (5.15) reduces to the usual two-point function for
the ideal gas, ie 〈δρ(x, t)δρ(0, t)〉 = ρ0δ(x). However, for a finite-size system, (5.15)
shows that there is a volume-dependent correction of the density correlations due to
mass conservation. It turns out that such a correction is generic and also appears in
the anisotropic model that we present hereafter in sections 5.3 to 5.4. Since we will be
interested in the algebraic decay of the density fluctuations, 〈δρ(x)δρ(0)〉 ∝ |x|−α, we
will need to subtract this correction from the results of our numerical simulations before
comparing them to the theoretical predictions obtained in infinite domain.

5.2 How anisotropic noise induces long-ranged cor-
relations: the GLS model

In their contribution [99], Grinstein, Lee, and Sachdev described how an anisotropy in
the stochastic evolution of a scalar field φ(x, t) could generate long-ranged correlations.
This section is a brief review of their results and the interested reader might refer to [99]
for a detailed analysis. The dynamics considered by Grinstein, Lee, and Sachdev is given
by

∂tφ(x, t) = D∇2φ(x, t) + η(x, t) , (5.16)

with D the diffusion coefficient and η(x, t) a Gaussian white noise with variance such
that

〈η(x, t)η(x′, t′)〉 = 2
(
D⊥∇2

⊥ +D‖∇2
‖

)
δ(x− x′)δ(t− t′) . (5.17)

Eq (5.17) allows the presence of anisotropy by having two different constants, D⊥ and
D‖, which describe the magnitudes of the noise in two orthogonal sub-spaces denoted ⊥
and ‖, respectively. For clarity, we assume that each of these subspaces is of dimension 1,
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which amounts to looking at a system of dimension 2. The general case in an arbitrary
dimension is treated in section 5.3.1 but leaves the physics unchanged. Note that if
D⊥ = D‖, dynamics (5.16) falls back to the one of the ideal gas (5.3) presented in section
5.1. On the contrary, whenever D⊥ 6= D‖, dynamics (5.16) violates the Stokes-Einstein
relation. Using our convention (5.1), we obtain φw,k by performing a Fourier transform
of the time evolution (5.16):

φw,k = ηw,k
Dk2 − iw

, (5.18)

where ηw,k is the fourier transform of the Gaussian white noise. Its variance is given by

〈ηw,kηw′,k′〉 = −2
(
D⊥k

2
⊥ +D‖k

2
‖

)
δ(k + k′)δ(w + w′)(2π)3 . (5.19)

Using the inverse Fourier transform (5.1), the density fluctuations can be expressed as

〈φ(x, t)φ(0, t)〉 =
∫ dkdk′

(2π)4
dwdw′

(2π)2 e
−i(w+w′)t+ik·x〈φw,kφw′,k′〉 . (5.20)

Inserting (5.18) into (5.20) yields

〈φ(x, t)φ(0, t)〉 =
∫ dkdk′

(2π)4
dwdw′

(2π)2
e−i(w+w′)t+ik·x(

Dk2 − iw
) (
Dk′2 − iw′

)〈ηw,kηw′,k′〉 . (5.21)

Finally, injecting (5.19) in (5.21), and performing the integrals over the frequencies gives

〈φ(x, t)φ(0, t)〉 =
∫ dk

(2π)2

(D⊥k2
⊥ +D‖k

2
‖)

Dk2 eik·x . (5.22)

Grinstein and co-authors remarked from (5.22) that the two-point function 〈φ(x, t)φ(0, t)〉
is then given by

〈φ(x, t)φ(0, t)〉 =


D‖ −D⊥

2π
x2
⊥ − x2

‖

x4 if D⊥ 6= D‖

D⊥
D

δ(x) if D⊥ = D‖

, (5.23)

where x⊥ and x‖ are the coordinates in the ⊥ and ‖ directions, respectively. In particular,
from (5.23), we note that, whenever D⊥ 6= D‖, 〈φ(x, t)φ(0, t)〉 ∝ |x|−2 in the limit
|x| → ∞ : anisotropy induces long-ranged correlations out of equilibrium.

The GLS model thus possesses two landmark features of nonequilibrium: the emer-
gence of scale-free fluctuations and the violation of the Stokes-Einstein relation. However,
is the anisotropic dynamics (5.16) truly out-of-equilibrium ? To answer this question, let
us now assess time-reversal symmetry for the field φ(x, t). The probability P({φk}) to
observe a given trajectory of the Fourier modes φk(t), for t ∈ [0, tf ], reads

P({φk}) ∝ exp
∫ tf

0
dt
∫
dk
|φ̇k + k2φk|2

D⊥k2
⊥ +D‖k

2
‖

 . (5.24)

The field-theoretic entropy production rate is defined as

σ = lim
tf→∞

1
tf

ln
(
P({φk})
P({φRk})

)
, (5.25)
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where {φRk} is the reversed trajectory of the Fourier modes, ie φRk (t) = φRk (tf − t) for
arbitrary k. Inserting (5.24) into (5.25), we obtain the entropy production rate as

σ = lim
tf→∞

1
tf

∫ dk
k2|φk|2

D⊥k2
⊥ +D‖k2

‖

tf
0

= 0 . (5.26)

Interestingly, Eq (5.26) shows that the GLS dynamics (5.16)-(5.17) is time-reversal sym-
metric. It is thus an exotic system reminescent of the ABC model [87], for which long-
ranged correlations are observed, but detailed balance is recovered for special choices
of the parameters. Note, however, that if φ represents a density field, the microscopic
dynamics corresponding to the GLS time evolution (5.16)-(5.17) does not contain any in-
teractions between the particles. As non-interacting systems of particles have a factorized
stationary distribution, they cannot exhibit long-ranged density correlations. Therefore,
the GLS model (5.16)-(5.17) cannot physically describe the evolution of a density field as
it stands. The remainder of this chapter is devoted to the construction of a microscopic
system composed of particles interacting anisotropically for which density correlations
are scale-free.

5.3 An anisotropic particle-based model
We consider N particles that are submitted to anisotropic Gaussian white noises and
evolve according to

ṙi(t) = ηi(t) , with
〈ηαi (t)ηβi (t′)〉 = Dδαβδ(t− t′)
〈ηαi (t)ηβj (t′)〉 = hαβ(ri − rj)δ(t− t′) for i 6= j .

(5.27)

We now derive the equation of motion for the density field defined as

ρ(r, t) =
∑
i

δ(r− ri(t)) . (5.28)

Using Itō calculus [160], and following the procedure introduced in [159], we obtain

∂tρ(r, t) =
∑
i

[∇riδ(r− ri(t))] · ṙi + D

2
∑
i,α

∂αi ∂
α
i

∑
j

δ(r− rj(t))

+ 1
2
∑
i,j 6=i

∑
α,β

hαβ(ri − rj)∂αi ∂
β
j

∑
k

δ(r− rk(t)) . (5.29)

The last term on the right-hand side of (5.29) vanishes and, using the equation of motion
for ri, we get

∂tρ(r, t) = −∇r ·
[∑

i

ηiδ(r− ri(t))
]

+ D

2 ∇2 [ρ(r, t)] . (5.30)

We rewrite this equation as

∂tρ(r, t) = −∇ · [Λ] + D

2 ∇2 [ρ(r, t)] , (5.31)

where Λ(r, t) is given by
Λ(r, t) =

∑
i

ηiδ(r− ri(t)) . (5.32)
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As the noise Λ(r, t) is a sum of Gaussian white noises, it is itself a Gaussian white noise
and we compute its correlations as

〈Λα(r, t)Λβ(r′, t′)〉 = 〈
∑
i,j

ηαi η
β
j δ(r− ri(t))δ(r′ − rj(t′))〉 . (5.33)

Splitting the contributions from i = j and i 6= j, we obtain

〈Λα(r, t)Λβ(r′, t′)〉 =
∑
i,j 6=i

hαβ(ri − rj)δ(r− ri(t))δ(r′ − rj(t′))δ(t− t′)

+
∑
i

Dδαβδ(r− ri(t))δ(r′ − ri(t′))δ(t− t′) . (5.34)

Further setting hαβ(0) = 0 [159], which only affects the zero-measure event ri = rj, we
transform the restricted sum over i 6= j in the above equation into a complete sum over
i and j to get

〈Λα(r, t)Λβ(r′, t′)〉 =
[
Dδαβρ(r, t)δ(r− r′) + hαβ(r− r′)ρ(r, t)ρ(r′, t)

]
δ(t− t′) . (5.35)

5.3.1 Generic form of density correlations in infinite systems
We now study the behaviour of the density fluctuations emerging from the dynamics
(5.31) together with (5.35). Looking for a solution of the form ρ = ρ0 + δρ, we linearize
the Dean-Kawasaki equation (5.31) to obtain the dynamics of δρ as

∂tδρ = −∇ ·Λ + D

2 ∇2 [δρ] , (5.36)

where the correlation of the noise Λ(r, t) has also been linearized and satisifies

〈Λα(r, t)Λβ(r′, t′)〉 =
[
Dρ0δαβδ(r− r′) + hαβ(r− r′)ρ2

0

]
δ(t− t′) . (5.37)

Taking the Fourier transform of (5.36) using convention (5.1), we obtain the density
fluctuations in Fourier space as

δρw,k = ikαΛα
k

iw − D
2 k

2 . (5.38)

Further assuming hαβ(r) to be even, which amounts to hk = h−k in Fourier space, we
compute that

〈Λα
w,kΛβ

w′,k′〉 =
(
Dρ0δαβ + ρ2

0h
αβ(k)

)
δ(k + k′)δ(w + w′)(2π)d+1 . (5.39)

Using our Fourier convention (5.1), we derive the two-point correlation function of the
density fluctuations as

〈δρ(x, t)δρ(x′, t′)〉 =
∫
dwdkdw′dk′〈δρw,kδρw′,k′〉

eik·x+ik′·x′−itw−it′w′

(2π)2d+2 . (5.40)

Inserting (5.38) in (5.40), we obtain

〈δρ(x, t)δρ(x′, t′)〉 =
∫
dwdkdw′dk′

ikαik
′
β〈Λα

kΛβ
k′〉(

iw − D
2 k

2
) (
iw′ − D

2 k
′ 2
) eik·x+ik′·x′−itw−it′w′

(2π)2d+2 . (5.41)
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Injecting (5.39) in (5.41) and performing the integrations over k′ and w′ then yields

〈δρ(x, t)δρ(x′, t′)〉 =
∫
dkdw

kαkβ
(
Dρ0δαβ + ρ2

0h
αβ(k)

)
(
iw − D

2 k
2
) (
−iw − D

2 k
2
) eik(x−x′)−iw(t−t′)

(2π)d+1 . (5.42)

As D is a diffusion coefficient, it must be positive, and we can integrate (5.42) over w
using the residue theorem for t = t′. We obtain

〈δρ(x, t)δρ(0, t)〉 =
∫ dk

(2π)d e
ik·x

[
ρ0 + ρ2

0kαkβ h
αβ(k)

Dk2

]
. (5.43)

The term proportional to ρ0 on the right-hand side of the above equation corresponds to
a Dirac distribution in real space and we get

〈δρ(x, t)δρ(0, t)〉 = ρ0δ(x) + ρ2
0

∫ dk
(2π)d

kαkβh
αβ(k)

Dk2 eik·x . (5.44)

We now assume that hαβ is diagonal but has one anisotropic direction h‖ and d−1 others
equivalent directions h⊥

hαβ(x) =


h‖(x) 0 . . . 0

0 h⊥(x) . . . ...
... . . . . . . 0
0 . . . 0 h⊥(x)

 . (5.45)

We have yet to specify the functions h⊥(x) and h‖(x). They must be even functions and
the integral in (5.44) has to be well-behaved. We thus propose h⊥(k) = h⊥h0(k) and
h‖(k) = h‖h0(k) with h0(k) = σ2+de−σ

2k2/2. In real space, we obtain

h⊥(x) = h⊥h0(x) , h‖(x) = h‖h0(x) , with h0(x) = σ2

(
√

2π)d
e−

x2
2σ2 . (5.46)

Using these expressions for h⊥(x) and h‖(x), we compute the integral term in the density
correlations (5.44). We first express it in terms of the derivatives of an isotropic function

ρ2
0

∫ dk
(2π)2

kαkβh
αβ(k)

Dk2 eik·x = ρ2
0
D

(
h⊥∇2

⊥ + h‖∂
2
‖

)
H(x) , (5.47)

with H(x) given by

H(x) =
∫ dk

(2π)d
h0(k)
k2 eik·x . (5.48)

By definition, we remark that H(x) is in fact solution of the Poisson equation

∇2H(x) = h0(x) . (5.49)

Because H and h0 are isotropic, this Poisson equation is only radial and reads

1
rd−1

d

dr

(
rd−1dH

dr

)
= σ2

(2π)d
2
e−

r2
2σ2 . (5.50)
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It can be integrated to yield dH/dr as a function of the radius r

dH

dr
= − σd+2

2π d
2 rd−1

Ψ
(
d
2 ,

r2

2σ2

)
+ b

rd−1 , (5.51)

where Ψ is the incomplete Gamma function Ψ(u, v) =
∫∞
v su−1e−sds and b is an integration

constant that we now set up to determine. To this aim, let us integrate ∇2H over a
hypersphere of radius R containing the origin. Using the Poisson equation (5.49), we
have that ∫

VR
∇2H =

∫ R
0 rd−1h0(r)dr∫ R

0 rd−1dr
VR , (5.52)

where VR is the volume of the hypersphere. On the other hand, Green-Ostrogradski
theorem tells us that ∫

VR
∇2H =

∮
SR

~∇H. ~dS = SR
dH

dr

∣∣∣∣∣
R

, (5.53)

where SR is the area of the hypersphere of radius R. Equating both quantities gives

dH

dr

∣∣∣∣∣
R

=
∫ R

0 rd−1h0(r)dr∫ R
0 rd−1dr

VR
SR

. (5.54)

Using the expression of h0(r) and the tabulated value of the ratio VR/SR = RΓ(d/2)/Γ(d/2+
1)/2 with Γ(u) the Gamma function, we obtain

dH

dr

∣∣∣∣∣
R

=
Γ(d2 )

Γ(d2 + 1)
d
2

σd+2

2π d
2Rd−1

[
Γ
(
d
2

)
−Ψ

(
d
2 ,

R2

2σ2

)]
. (5.55)

Using the property Γ(x)x = Γ(x+ 1) of the Gamma function, we get

dH

dr

∣∣∣∣∣
R

= σd+2

2π d
2Rd−1

[
Γ
(
d
2

)
−Ψ

(
d
2 ,

R2

2σ2

)]
. (5.56)

Finally replacing dH/dr by its expression in (5.51) gives the value of b as

b = σd+2

2π d
2

Γ
(
d
2

)
. (5.57)

We thus obtain dH/dr as

dH

dr
= σd+2

2π d
2 rd−1

[
Γ
(
d
2

)
−Ψ

(
d
2 ,

r2

2σ2

)]
. (5.58)

We now have to derive H twice, once with respect to the ‖ directon, and once with respect
to one of the ⊥ directions. We decompose the vector x according to x = x‖e‖ + x⊥ with
x⊥ = x1

⊥e1
⊥ + · · · + xd−1

⊥ ed−1
⊥ . Let us start by deriving H with respect to one of the ⊥

direction xα⊥
∂2H

∂2xα⊥
= σ2(xα⊥)2

(
√

2π)dr2
e−

r2
2σ2 + σ2+d

2π d
2 r2+d

[
r2 − d(xα⊥)2

] [
Γ
(
d
2

)
−Ψ

(
d
2 ,

r2

2σ2

)]
(5.59)

Making the change xα⊥ ↔ x‖, we deduce by symmetry that

∂2H

∂2x‖
=

σ2x2
‖

(
√

2π)dr2
e−

r2
2σ2 + σ2+d

2π d
2 r2+d

[
r2 − dx2

‖

] [
Γ
(
d
2

)
−Ψ

(
d
2 ,

r2

2σ2

)]
. (5.60)
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Using (5.59) and (5.60), we can compute the anisotropic Laplacian of (5.47) as(
h⊥∇2

⊥ + h‖∂
2
‖

)
H(x) =σ

2+d(h‖ − h⊥)
2π d

2 r2+d

[
r2 − dx2

‖

] [
Γ
(
d
2

)
−Ψ

(
d
2 ,

r2

2σ2

)]

+
σ2
(
h⊥x2

⊥ + h‖x
2
‖

)
(
√

2π)dr2
e−

r2
2σ2 . (5.61)

Wrapping everything together, we obtain
ρ2

0
D

∫ dk
(2π)2

kαkβh
αβ(k)

k2 eik·x = ρ2
0σ

2

π
d
2Dr2

(
σd(h‖ − h⊥)

2rd
[
r2 − dx2

‖

] [
Γ
(
d
2

)
−Ψ

(
d
2 ,

r2

2σ2

)]

+
h⊥x2

⊥ + h‖x
2
‖

2d
2

e−
r2

2σ2

)
. (5.62)

Inserting the above expression into (5.44), we derive the correlation of the density fluc-
tuations in real space as

〈δρ(x, t)δρ(0, t)〉 = ρ2
0σ

2

π
d
2D

(
σd(h‖ − h⊥)

2rd

[
1−

dx2
‖

r2

] [
Γ
(
d
2

)
−Ψ

(
d
2 ,

r2

2σ2

)]

+
h⊥x2

⊥ + h‖x
2
‖

2d
2 r2

e−
r2

2σ2

)
+ ρ0δ(x) . (5.63)

When |x| = r → ∞, Ψ
(
d
2 ,

r2

2σ2

)
∝ e−

r2
2σ2 , and the two-point function exhibits a long-

ranged, algebraic decay ∝ r−d

〈δρ(x, t)δρ(0, t)〉 = ρ2
0σ

2+d

2π d
2Drd

(
1− d

x2
‖

r2

)(
h‖ − h⊥

)
Γ(d2 ) +O

(
r−d

)
(5.64)

Having detailed how the specific dynamics (5.27) leads to the algebraically decaying
density fluctuations of (5.63), we now verify our predictions by performing numerical
simulations.

5.3.2 Numerical simulations in finite-size systems
In this section, we describe how to simulate a system of N particles evolving according
to (5.27) with isotropic auto-correlation σαβ = Dδαβ and anisotropic pair-correlation
hαβ(r) = hα(r)δαβ. To this aim, we consider the noise ηαi acting on the α coordinate of
the i-th particle to be a sum of N Gaussian white noises, each of them corresponding to
a pairing of particles

ηαi =
√
hα(ri − r1)ηαi,1 +

√
hα(ri − r2)ηαi,2 + ...+

√
γα ηαi,i + ...+

√
hα(ri − rN)ηαi,N .

(5.65)

We further enforce pairing symmetry hα(ri − rj) = hα(rj − ri) and ηαi,j = ηαj,i such that
〈ηαi,jη

β
k,l〉 = δαβ(δikδjl+ δilδjk)δ(t− t′). We now compute the noise correlation between two

different particles i 6= j as

〈ηαi η
β
j 〉 =

∑
k,l

〈ηαi,kη
β
j,l〉
√
hα(ri − rk)

√
hβ(rj − rl) (5.66)

=
∑
k,l

δαβ (δijδkl + δilδjk) δ(t− t′)
√
hα(ri − rk)

√
hβ(rj − rl) . (5.67)
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Since i 6= j, we find

〈ηαi η
β
j 〉 = hα(ri − rj)δαβδ(t− t′) . (5.68)

Furthermore, the noise auto-correlation on particle i reads

〈ηαi η
β
i 〉 = δαβ

∑
j 6=i

hα(ri − rj) + γα

 . (5.69)

Thus, if we impose γα = D −∑j 6=i h
α(ri − rj) we recover

〈ηαi η
β
i 〉 = Dδαβ . (5.70)

By introducing dN(N + 1)/2 Gaussian white noises, we are thus able to simulate the
noise in dynamics (5.27). However, D is not independent of the other parameters since
it must be sufficiently large such that D − ∑j h

α(ri − rj) remains positive. Otherwise
the noise ηαi would have a negative variance in our dynamics: this would be unphysical.
In practice, to chose D in the simulations, we compute the average number of particles
within a circle of radius 5σ and we multiply it by the maximum between h‖(x = 0) and
h⊥(x = 0). This sets an upper bound for the sum ∑

j h
α(ri − rj). Equating D with this

upper bound then yields

D ∼ 9ρ0(5σ)2max(h⊥, h‖)
σ2

2π (5.71)

In practice, (5.71) proved itself to be a sufficient choice in the simulations.
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Figure 5.1 – Correlation of the density fluctuations in the ‖ and ⊥ direction for different
values of ρ0 = N/(L⊥L‖) and diffusion D. The blue line is the prediction of (5.72) for
d = 2 and V = L‖×L⊥. Note that we have subtracted the finite-size correction ρ0/V . The
orange dots are obtained via numerical simulations of the Langevin system described by
(5.27) as explained in section 5.3.2. The error bars correspond to the standard deviation.
Parameters: L‖ = 20, L⊥ = 20, dt = 0.01, σ = 0.15.

Note that, in simulations, we have only access to finite-size systems of volume V . In
this case, as shown in (5.15) of section 5.1, a finite-size correction c∞ = −ρ0/V must be
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subtracted from the density fluctuations of Eq (5.63) to enforce mass conservation. The
two-point function measured in finite-size simulations thus satisfies

〈δρ(x, t)δρ(0, t)〉 − c∞ = ρ2
0σ

2

π
d
2D

(
σd(h‖ − h⊥)

2rd

[
1−

dx2
‖

r2

] [
Γ
(
d
2

)
−Ψ

(
d
2 ,

r2

2σ2

)]

+
h⊥x2

⊥ + h‖x
2
‖

2d
2 r2

e−
r2

2σ2

)
+ ρ0δ(x) . (5.72)

In Fig. 5.1, we compare our expression (5.72) for the correlator 〈δρ(x, t)δρ(0, t)〉 with
the results of numerical simulations performed in a 2D periodic system of size L⊥ × L‖.
Without any fitting parameters, the theory accurately follows the data over one decade
and a half, confirming the emergence of algebraic decay at the macroscopic level. We
conclude that an anisotropic noise can efficiently induce long-ranged correlations through
a GLS mechanism. As our microscopic dynamics (5.27) effectively corresponds to a sys-
tem of N particles evolving in a Gaussian field ψ(x, t) of variance 〈ψα(x, t)ψβ(x′, t′)〉 =
hαβ(x − x′)δ(t − t′), it would be interesting to find a corresponding experimental real-
ization. For example, one could use a laser with an elliptic beam, whose principal and
secondary axis corresponds to the ‖ and ⊥ directions, respectively. Heating self-phoretic
particles with such an anisotropic light source could then yield dynamics (5.27).

Having established the existence of long-ranged density fluctuations in anisotropic
systems, we now study the physical implications of such an atypical behaviour. Indeed,
previous works [86,88–90,95,161] have exhibited a clear relationship between algebraically
decaying density correlations and the existence of Casimir forces for a system confined
between two plates separated by a distance L.

5.4 Casimir forces: a generic feature of long-ranged
density fluctuations ?

In this section, we study how the dynamics (5.27) behaves under confinement and de-
termine the corresponding pressure induced by the particles on the walls. To simplify
our study, we consider the case of a 2-dimensional system of size L‖ × L⊥ with periodic
boundary conditions in the ‖ direction. Confinement takes place in the ⊥ direction: we
assume that two walls are located at positions x⊥ = 0 and x⊥ = L⊥. We model them by
a smooth potential such that ∇φ = ∂⊥φ(x⊥)e⊥, where φ(0 < x⊥ < L⊥) = 0 in the bulk,
whereas φ sharply increases for x⊥ < 0 and x⊥ > L⊥. In Fig. 5.2, we represent φ(x⊥) as
a function of x⊥ in the case of quadratic walls of stiffness κ.

We first show that the global pressure measured by an observer on the walls does
not exhibit the Casimir-like dependence that we could have expected based on previous
observations made for specific nonequilibrium systems [89]. However, as we then show,
the equal time fluctuations of the local pressure 〈p(0, x‖)p(L⊥, x‖)〉−〈p(0, x‖)〉〈p(L⊥, x‖)〉
exerted on the two facing sides of the plates does show a Casimir behaviour with an
algebraic decay ∝ L−2

⊥ .
The confinement modifies the dynamics (5.27) of the particles according to

ṙi(t) = −∇φ+ ηi(t) , with
〈ηαi (t)ηβi (t′)〉 = Dδαβδ(t− t′)
〈ηαi (t)ηβj (t′)〉 = hαβ(ri − rj)δ(t− t′) for i 6= j .

(5.73)
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The time-evolution of the density field ρ(x, t) is thus modified accordingly into

∂tρ(r, t) = ∇ · [ρ(r, t)∇φ−Λ] + D

2 ∇2 [ρ(r, t)] , (5.74)

where the correlations of the Gaussian noise Λ(r, t) are still given by (5.35). Averaging
(5.74) over the noise’s realizations, the mean steady-state density profile is simply given
by the Boltzmann weight:

〈ρ(r)〉 = ρb exp
(
−2φ(x⊥)

D

)
, (5.75)

where ρb is the density in the bulk for 0 < x⊥ < L. The pressure P` exerted on the
wall located at x⊥ = 0 is obtained as the total force exerted by the particles on this wall
divided by its length L‖. Introducing the rectangle V` = [0, L‖] × [−∞, xb⊥], where the
coordinate xb⊥ must lie inside the bulk, ie 0 < xb⊥ < L⊥, we express P` as

P`(t) = − 1
L‖

∫
V`

drρ(r, t)∂⊥φ(r) . (5.76)

Note that the pressure defined in (5.76) is a stochastic quantity because ρ is itself a
stochastic field. Its first moment in the steady state satisifies

〈P`〉 =− 1
L‖

∫
V`

dr〈ρ(r)〉∂⊥φ(r) = −
∫ xb⊥

−∞
dx⊥ exp

(
−2φ(x⊥)

D

)
∂⊥φ(x⊥) = D

2 ρb . (5.77)

Equation (5.77) is similar to the case of an ideal gas: the confined system does not exhibit
a Casimir-like pressure and, in fact, displays a behaviour similar to a non-interacting
equilibrium system. In Fig. 5.2, we test our prediction (5.77) against simulations: the
agreement is very good. As 〈P`〉 only depends on the one point average 〈ρ(r)〉, the
algebraic decay of the two-point function 〈ρ(r)ρ(0)〉 cannot affect it; the first moment of
the pressure does not exhibit a Casimir-like behaviour. However, we note that the second
moment of P` will feature the two-point density correlations as

〈P 2
` (t)〉 = 1

L2
‖

∫
V`

dr
∫
V`

dr′〈ρ(r, t)ρ(r′, t)〉∂⊥φ(r)∂⊥φ(r′) . (5.78)

Intuitively, the measurement of 〈P 2
` (t)〉 might thus provide a quantitative assessment of

the long-ranged nature of the correlations.
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Figure 5.2 – Left: Potential φ modelling quadratic walls of stiffness κ = 2 starting
at x⊥ = 0 and x⊥ = L⊥. Right: Averaged pressure on the left wall measured in the
simulations (red points) and theoretical prediction given by (5.77) (blue line). Parameters:
L‖ = 20, L⊥ = 20, h‖ = 0.01,h⊥ = 1, σ = 0.15, κ = 2, D = 0.9064, dt = 0.01.
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5.4.1 Variance of the pressure on a wall

In this part, we compute the variance of the pressure 〈P 2
` 〉 − 〈P`〉2 in the case of hard

walls and show that its dominant contribution is an equilibrium one, already present
in the ideal gas. Thus the second moment of the pressure will not bear the footprint
of long-ranged correlations and cannot reveal a nonequilibrium Casimir-like decay. Let
us define the density fluctuation δρ as the variation around the steady-state profile 〈ρ〉,
ie δρ(r, t) = ρ(r, t) − 〈ρ(r)〉. Linearizing (5.74) around 〈ρ〉 defined in (5.75), the time-
evolution of δρ is different in the bulk and within the walls. In the bulk, the potential is
zero and 〈ρ〉 = ρb, so the dynamics of δρ simply reads

∂tδρ = ∇ · [Λ] + D

2 ∇2δρ , (5.79)

where Λ is a Gaussian white noise with correlations

〈Λα(r, t)Λβ(r′, t′)〉 =
[
Dδαβρbδ(r− r′) + hαh0(r− r′)δαβρ2

b

]
δ(t− t′) . (5.80)

Within the wall, the potential is sharp, ∇φ 6= 0, and 〈ρ〉 = exp(−2φ/D). After lineariza-
tion, we obtain the following dynamics for the density fluctuation

∂tδρ = ∇ · [Λ + δρ(r, t)∇φ] + D

2 ∇2δρ , (5.81)

where the correlation of the Gaussian white noise Λ now reads

〈Λα(r, t)Λβ(r′, t′)〉 =
[
Dδαβρbe

− 2φ(r)
D δ(r− r′) + hαh0(r− r′)δαβρ2

be
− 2φ(r)

D
− 2φ(r′)

D

]
δ(t− t′) .

(5.82)

In the limit of hard wall, the noise Λ defined in (5.82) vanishes, and, because ∇φ becomes
very large, δρ in the wall relaxes on faster time-scale than δρ in the bulk. Taking into
account these two simplifications, the density fluctuation inside the wall becomes directly
enslaved to the density fluctuations at x⊥ = 0

δρ(x, t) = δρ(0, x‖, t)e−
2φ(x⊥)
D . (5.83)

Note that (5.83) is valid for the wall on the left, namely for x⊥ < 0. The corresponding
expression for δρ in the wall on the right is given by

δρ(x, t) = δρ(L⊥, x‖, t)e−
2φ(x⊥)
D . (5.84)

Note that the variation δρ(x, t) inside both walls (5.83)-(5.84) are stochastic quantities
through their dependencies on the field δρ(0, x‖, t) and δρ(L⊥, x‖, t), respectively. We
now express the variance of P` in terms of δρ as

〈P 2
` 〉 − 〈P`〉2 = 1

L2
‖

[∫
V`

dr
∫
V`

dr′〈ρ(r, t)ρ(r′, t)〉∂⊥φ(r)∂⊥φ(r′)−
(∫

V`

dr〈ρ(r, t)〉∂⊥φ(r)
)2
]

= 1
L2
‖

∫
V`

dr
∫
V`

dr′〈δρ(r, t)δρ(r′, t)〉∂⊥φ(r)∂⊥φ(r′) . (5.85)
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Using (5.83), we remark that performing the above integrals in the ⊥ direction amounts
to integrating e−

2φ(x⊥)
D ∂⊥φ and we obtain

〈P 2
` 〉 − 〈P`〉2 = D2

4L2
‖

∫ L‖

0
dx‖

∫ L‖

0
dx′‖〈δρ(0, x‖, t)δρ(0, x′‖, t)〉 . (5.86)

Finally making use of the periodicity in the ‖ direction, we get

〈P 2
` 〉 − 〈P`〉2 = D2

4L‖

∫ L‖

0
dx‖〈δρ(0, x‖, t)δρ(0, 0, t)〉 . (5.87)

The last step to derive the second moment of P` is to evaluate the two-point function
〈δρ(0, x‖, t)δρ(0, 0, t)〉. In appendix D.1, we do it by using the time-evolution of δρ in
the bulk (5.79)-(5.80) with no-flux boundary conditions. Note that this no-flux boundary
condition is necessary to model the hard wall limit considered here. We obtain

〈δρ(0, x‖, t)δρ(0, 0, t)〉 =
∫ dk

2π
eikx‖

L⊥

∞∑
n=0
Nn

[
ρb + ρ2

b

D

(h‖k2 + h⊥q
2
n)h0(k, qn)

k2 + q2
n

]
− ρb

2L⊥L‖
,

(5.88)

where qn = nπ/L⊥, N = 1− δn,0/2 and h0(k, q) = σ4e−
(k2+q2)σ2

2 . Integrating (5.88) with
respect to x‖ selects the k = 0 mode and gives the variance of P` using (5.87):

〈P 2
` 〉 − 〈P`〉2 = D2

4L‖L⊥

[ ∞∑
n=1

ρb +
∞∑
n=0
Nn

ρ2
bh⊥
D

h0(0, qn)− ρb
2

]
. (5.89)

Following [162], the first term on the right-hand side of (5.89) can be regularized through
zeta function regularization, which states that ∑∞n=1 1 =∞−1/2. Neglecting the infinite
contribution, we replace ∑∞n=1 ρb by −ρb/2 in the right-hand side of (5.89). We obtain

〈P 2
` 〉 − 〈P`〉2 = D2

4L‖L⊥

[ ∞∑
n=0
Nn

ρ2
bh⊥
D

h0(0, qn)− ρb
]
. (5.90)

The first term on the right-hand side of (5.90) can be simplified as
∞∑
n=0
Nn

ρ2
bh⊥
D

h0(0, qn) = ρ2
bh⊥σ

4

D
Θ3(0, e−

σ2π2
2L⊥ ) , (5.91)

where Θ3(u, v) = 1 + 2∑n>1 v
n2 cos(2nu) is the third elliptic theta function. Inserting

(5.91) into (5.90) gives

〈P 2
` 〉 − 〈P`〉2 = D2

4L‖L⊥

[
ρ2
bh⊥σ

4

D
Θ3(0, e−

σ2π2
2L⊥ )− ρb

]
. (5.92)

The second moment of P` is thus inversely proportional to the volume of the system.
In particular, it vanishes in the limit L‖ → ∞: as such it cannot exhibit a Casimir-like
behavior. Interestingly, we note that even in the case of an ideal gas, when h⊥ = h‖ = 0,
〈P 2

` 〉 − 〈P`〉2 is nonzero and features a finite-size correction ∝ −D2ρb/(4L⊥L‖). We
conclude that the variance of the pressure exerted on a single wall cannot provide a
quantitative assessment of the scale-free decay of density correlations: it only exhibits
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finite-size corrections. Unraveling our derivation of 〈P 2
` 〉 − 〈P`〉2, we can identify the key

step that killed long-ranged correlations: the integral over x‖ in expression (5.87). By
performing this integration, we select the mode k = 0 of the correlator 〈δρ(x, t)δρ(0, t)〉.
This selection simplifies the anisotropic term (h‖k2 + h⊥q

2
n)/(k2 + q2

n) into h⊥, killing the
algebraic decay. Having understood this mechanism, we propose to measure a different
physical quantity: the correlation of the pressure exerted at a given point on the two
facing walls.

5.4.2 Correlation of the pressure between two facing patches
In this part, we compute the correlations between the pressure exerted on the right wall
and the pressure on the left wall at a given coordinate x‖. Let us define the local pressure
on the left wall p`(x‖) as

p`(x‖) =
∫ 0

−∞
dx⊥ρ(x‖, x⊥)∂⊥φ(x⊥) . (5.93)

Using that ρ(r) = 〈ρ(r)〉+ δρ(r) = ρb exp(−2φ(r)/D) + δρ(r), we cast p` into

p`(x‖) = D

2 ρb +
∫ 0

−∞
dx⊥δρ(x‖, x⊥)∂⊥φ(x⊥) . (5.94)

Further inserting expression (5.83) for δρ(x‖, x⊥) within the wall, we get

p`(x‖) = D

2 ρb + D

2 δρ(x‖, 0, t) . (5.95)

Note that δρ(x‖, 0, t) in the above equality is, in fact, a stochastic quantity. It is obtained
as the boundary value at x⊥ = 0 of the stochastic field δρ(x) in the bulk. Similarly, for
the right wall, we obtain pr(x‖) as

pr(x‖) = D

2 ρb + D

2 δρ(x‖, L⊥, t) , (5.96)

where δρ(x‖, L⊥, t) is the boundary value at x⊥ = L⊥ of the stochastic field δρ(x) in the
bulk. We then deduce the correlation between p` and pr as

〈p`(x‖)pr(x‖)〉 − 〈p`(x‖)〉〈pr(x‖)〉 = D2

4 〈δρ(x‖, 0, t)δρ(x‖, L⊥, t)〉 . (5.97)

To close the above formula and compute the correlation of the pressure between the two
walls, we use the expression of 〈δρ(x, t)δρ(0, t)〉 computed in (D.21) within appendix 5.4
in the hard wall limit:

〈δρ(x‖, 0, t)δρ(x‖, L⊥, t)〉 =
∫ dk

2π
ρ2
b

DL⊥

∞∑
n=0
Nn(−1)n

[
(h‖k2 + h⊥q

2
n)h0(k, qn)

k2 + q2
n

]
− ρb

2L⊥L‖
,

(5.98)

where qn = nπ/L, N = 1 − δn,0 and h0(k, q) = σ4e−
(k2+q2)σ2

2 . The first term on the
right-hand side of (5.98) is computed in (D.31) of appendix D.2 by using the Poisson
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summation formula. We report the result here as

∫ dk

2π

∞∑
n=0

Nn
L⊥

(−1)n
[

(h‖k2 + h⊥q
2
n)h0(k, qn)

k2 + q2
n

]
= σ2h⊥

π

[
Θ3(0, e−

L2
⊥

2σ2 )−Θ3(0, e−2
L2
⊥
σ2 )

]

+ (h‖ − h⊥)σ4

4πL2
⊥

∞∑
n=1

e−2 n2 L
2
⊥
σ2 − 4e−n2 L

2
⊥

2σ2

n2

+ σ4π(h‖ − h⊥)
8L2
⊥

. (5.99)

In the limit L⊥ � σ, the above expression simplifies as

∫ dk

2π

∞∑
n=0

Nn
L⊥

(−1)n
[

(h‖k2 + h⊥q
2
n)h0(k, qn)

k2 + q2
n

]
= σ4π(h‖ − h⊥)

8L2
⊥

+O(L−3
⊥ ) . (5.100)

Inserting (5.100) into (5.98), we obtain

〈δρ(x‖, 0, t)δρ(x‖, L⊥, t)〉 = ρ2
bσ

4π(h‖ − h⊥)
8DL2

⊥
− ρb

2L⊥L‖
+O(L−3

⊥ ) . (5.101)

Injecting the above expression into (5.97) yields

〈p`(x‖)pr(x‖)〉 − 〈p`(x‖)〉〈pr(x‖)〉 = ρ2
bDσ

4π(h‖ − h⊥)
32 L2

⊥
− ρbD

2

8L⊥L‖
+O(L−3

⊥ ) . (5.102)

The variance of the local pressure 〈p`pr〉 − 〈p`〉〈pr〉 in (5.102) exihibits a Casimir-like
decay ∝ 1/L2

⊥. In particular, we note that this algebraic decay is not due to finite-size
corrections as it survives in the regime L‖ →∞. Introducing cp∞ = −ρbD2/(8L⊥L‖), we
have

〈p`(x‖)pr(x‖)〉 − 〈p`(x‖)〉〈pr(x‖)〉 − cp∞ = ρ2
bDσ

4π(h‖ − h⊥)
32 L2

⊥
+O(L−3

⊥ ) . (5.103)

Thus, 〈p`pr〉−〈p`〉〈pr〉−cp∞ is a good observable to measure in order to probe anisotropy-
induced scale-free correlations in the system. In Fig. 5.3, we compare our prediction
(5.103) with numerical simulations performed for quadratic walls of stiffness κ. It seems
that there is a good agreement between theory and numerics for L⊥ > 15σ. However, we
still have to probe for values of L⊥ larger than 30σ to confirm this trend. The difficulty
lies in the simulations performed in Fig. 5.3, which are computationally heavier compared
to the ones carried out in Fig. 5.1 as we can only collect data at the walls and not in the
bulk. For example, producing enough data to overcome noise at L⊥ ∼ 30σ takes roughly
a month on 80 cores. Note that, despite the amount of hypothesis assumed to obtain
expression (5.103) (hard wall limit, regularization, linearization of density fluctuations...),
our theory seems to sucessfully predict the good exponent of the decay and the right order
of magnitude for its prefactor.
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Figure 5.3 – 〈p`pr〉−〈p`〉〈pr〉−cp∞ in the simulations (red dots) and theoretical prediction
given by (5.103) (blue line). The errorbars are given by the standard deviation observed
in the simulations. Parameters: L‖ = 1200, dt = 0.01, σ = 0.15, ρb = 30, h‖ = 0.01,
h⊥ = 1, κ = 2, D = 0.5439.

5.5 Conclusion
In this chapter, we studied a system of N particles submitted to anisotropic fluctuations.
Their dynamics (5.27) is coupled through spatial interactions: particles within a radius
σ feel a similar, correlated noise. In section 5.3.1, we showed that, due to anisotropy,
long-ranged density correlations emerged in this system at the macroscopic level. We
confirmed our predictions by performing particle-based simulations: we measured a very
good agreement with our theory. In section 5.4, we looked for a simple measurable
quantity bearing the footprint of the underlying scale-free decay of density correlations.
We showed that, contrary to other nonequilibrium systems, the averaged pressure exerted
by our system on a confining wall does not exhibit a Casimir-like behavior: it is instead
similar to an ideal gas. However, we find that the correlation of the pressure between two
facing patches separated by a distance L features an algebraic decay ∝ L−2.
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6. Conclusion

I conclude this manuscript by a quick overview of our contributions. In the same time, I
highlight future directions of research that could be undertaken following our works.

In chapter 2, I developed a recursive scheme to determine the exact steady-state dis-
tribution of AOUPs in the limit of small persistence time. Building on it, I derived
exact formulas for signatures of nonequilibrium such as the ratchet current and the en-
tropy production rate. I note that our perturbative approach can be generalized to more
complex dynamics than the Brownian case. Let us illustrate this point by considering
a stochastic dynamics S whose corresponding Fokker-Planck operator is LS . Adding an
Ornstein-Uhlenbeck noise of amplitude D to S amounts to adding the operators L1 +L2
defined in (2.15) to LS . The starting point for our perturbative expansion, A0

0, is defined
by the equation (LS+D∂xx)A0

0 = 0. As long as A0
0 defined this way is known analytically,

the recursion can be carried out and the effect of the Ornstein-Uhlenbeck noise can be
taken into account perturbatively in τ . For example, using our method, we could try to
assess the effect of a colored noise on an underdamped Langevin dynamics and compare
the result with the overdamped scenario.

In chapter 3, I revisited the classification of the transition in models of collective mo-
tion by highlighting the mechanism of fluctuation-induced first-order transition. I showed
that the microscopic noise generically renormalizes the mean-field critical temperature to
make it density dependent. This dependency on the density turns a deceptive continuous
emergence of flocking at mean-field level into a first order scenario. At odds with the
existing literature, I showed that topological alignment gives no protection against the
microscopic noise. The same mechanism applies and the emergence of collective mo-
tion is also discontinuous in "metric-free" models. Interestingly, the dynamics that we
introduced in (3.83)-(3.84) could be extended into a minimalist version of anisotropic
flocking model in future directions of research. The idea would be to introduce a bias
modelling the visual cones of birds. As birds only see their closest relatives in front of
them in the flocks, we would like aligning interactions taking into account the direction
of motion of the flying spins. To this aim, we could introduce the two sets N+

i and
N−i corresponding respectively to the k-nearest neighbours located at the right or at the
left of the i-th particle. Alignment would then occur according to the direction of the
i-th particle: a right-moving plus spin aligns with the set N+

i while a left-moving minus
spin aligns with N+

i . It would be interesting to study the emergence of flocking in this
anisotropic, physically-relevant model. More generically, we note that we did not obtain
necessary and sufficient conditions on the aligning field m̄ to observe phase separation at
the onset of order. In futur works, it would be interesting to look for such conditions in
order to understand the minimal ingredients needed for a fluctuation-induced first-order
transition.

In chapter 4, we unveiled a new phase transition occurring at high density in roller
flocks: we dubbed it active solidification. We showed that it is well described by an
extended MIPS phase transition between a polar flock and an active solid. Thus, we
expect active solidification to be a general feature caused by speed reduction in dense
flocks of active polar units. The agreement between our phenomenological hydrodynamics
and the experiments goes beyond the mere phase diagram: both predict a first order
transition, the presence of hysteresis loops and the existence of a coarsening dynamics.
In section 4.5.3, we predicted the existence of a phase transition between flocking bands
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and an active solid: it would be interesting to confirm this coexistence domain in the
experiments. As a future direction of research, we could relax the hypothesis of a loss
of order at high density and assume that particles conserve their orientation even in the
jammed phase. While there has been some previous works in this direction [75, 76], a
complete picture of the different phases that can emerge is still lacking.

Finally, in chapter 5, we described how long-range density correlations may emerge
from an anisotropic microscopic dynamics. In 5.4, we discussed the impact of the scale-
free decay of the two-point function on the pressure exerted by the system, showing that
the forces applied on the confining walls can exhibit a Casimir-like behaviour. Interest-
ingly, our model could be used to assess the effect of long-range fluctuations on different
physical quantities not discussed in this manuscript. For example, one could add a tracer
on top of the dynamics of the bath (5.27) and derive the effect of the anisotropic noise
on its diffusion constant following the method developed in [163,164].



A. Nonequilibrium signatures of Ac-
tive Ornstein Uhlenbeck Particles

A.1 A single particle in 1D in the presence of a
thermal noise

A.1.1 Recursion for the An’s
In this appendix, we show how the An’s entering the ansatz (2.19) for Ps(x, v) can be
obtained recursively as a series in τ 1/2. For conciseness, we perform this derivation for
an AOUP experiencing an additional thermal noise as in (2.50)-(2.51). The results are
readily extended to the athermal case (2.9)-(2.10) of section 2.1 by taking T = 0 in all
the formulas.

Inserting Ps(x, v) = ∑
n Pn(v)An(x) into the stationary Fokker-Planck L̃TPs(x, v) = 0

with L̃T defined in (2.53), further using (2.17), we find that An is a solution of
∑
n

Pn(v)∂x (∂xφAn) +
∑
n

Pn(v)T∂xxAn −
∑
n

nPn(v)
τ

An −
∑
n

vPn(v)√
τ

∂xAn = 0 . (A.1)

Using the recurrence property of Hermite polynomials, Hn+1(v) = 2vHn(v)− 2nHn−1(v),
we decompose vPn into a sum of Pn+1 and Pn−1

vPn =
√

(n+ 1)DPn+1 +
√
nDPn−1 . (A.2)

Plugging (A.2) into (A.1), we are now in position to project (A.1) onto Hk and to use
the orthogonality relation (2.18). This leads us to the following recursion relation for the
An’s

0 = −nAn−
√
τ
√

(n+ 1)D∂xAn+1−
√
τ
√
nD ∂xAn−1 + τ∂x (∂xφAn) + τT∂xxAn . (A.3)

We now look for the An’s as series in powers of τ 1/2. Because L̃T is formally invariant upon
the reversal {ṽ,

√
τ} → −{ṽ,

√
τ}, so is the stationary distribution Ps. Consequently, A2k

contains only integer powers of τ while A2k+1 contains only half-integer powers of τ . We
shall further assume that the first nonzero contribution to Ak is of order τ k/2. This
hierarchical ansatz is necessary to disentangle and solve, starting from A0 and order by
order in powers of τ 1/2, the recurrence equation (A.3). Its validity is a posteriori confirmed
by inserting our final result for Ps into the Fokker-Planck equation and checking that
L̃TPs vanishes order by order in τ . Our scaling ansatz is thus

A0 = A0
0(x) + τA2

0(x) + τ 2A4
0(x) + ... (A.4)

A1 = τ 1/2A1
1(x) + τ 3/2A3

1(x) + τ 5/2A5
1(x) + ... (A.5)

A2 = τA2
2(x) + τ 2A4

2(x) + τ 3A6
2(x) + ... (A.6)

...

Let us now show that the Aji can be computed recursively. Looking at (A.3) for n = 0,
we get

∂xA1 =
√
τ

D
[∂x (∂xφA0) + T∂xxA0] . (A.7)
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Expanding A0 and A1 according to (A.4) and (A.5), equating coefficients of order τ k/2
on both sides of (A.7), and integrating over x leads to

Ak1 = 1√
D

[
∂xφA

k−1
0 + T∂xA

k−1
0

]
+ bk , (A.8)

where bk is an integration constant. Expanding An, An+1 and An−1 according to our
scaling ansatz (A.6) in (A.3), equating coefficients of order τ k/2 on both sides, we obtain:

Akn = −

√
(n+ 1)D
n

∂xA
k−1
n+1 −

√
D

n
∂xA

k−1
n−1 +

∂x
(
∂xφA

k−2
n

)
n

+ T

n
∂xxA

k−2
n . (A.9)

Taking k = n in (A.9) and using that Ajn = 0 for j ≤ n yields the expression of Ann as a
function of A0

0:

Ann = −
√
D

n
∂xA

n−1
n−1 = (−1)nD

n/2
√
n!
∂nxA

0
0 . (A.10)

Using expression (A.8) for k = 1 and expression (A.10) for n = 1, we obtain a closed
equation on A0

0:
∂xφ A

0
0 + (T +D)∂xA0

0 = −b1
√
D . (A.11)

Since A0
0(x) corresponds to the Boltzmann weight when τ = 0 we must have

∫ +∞

−∞
Ps(x, v)|τ=0 dv = A0

0 = c0 e
− φ
T+D , (A.12)

with c0 fixed by normalization according to (2.58). The constant b1 is self-consistently
fixed to zero such that (A.12) is a solution of (A.11). We now set out to compute the
next order correction A2

0. Applying (A.9) for n = 1 and k = 3 gives:

A3
1 = −

√
2D∂xA2

2 −
√
D∂xA

2
0 + ∂x

(
∂xφA

1
1

)
+ T∂xxA

1
1 . (A.13)

In (A.13), we can use (A.10) to express A1
1 and A2

2 as a function of A0
0 and (A.8) to

express A3
1 as a function of A2

0. We thus obtain a differential equation for A2
0:

∂xφ

T +D
A2

0 + ∂xA
2
0 = −D

2∂3
xA

0
0

T +D
+ D∂x (∂xφ∂xA0

0)
T +D

+ TD∂3
xA

0
0

T +D
− b3

√
D

T +D
. (A.14)

Using (A.12), we can integrate (A.14) and finally determine the expression (2.57) of A2
0

in main text

A2
0 = c0 e

− φ
T+D

(
D∂xxφ

T +D
− D (∂xφ)2

2(T +D)2

)
+ c2 e

− φ
T+D − b3

√
D

T +D
e−

φ
T+D

∫ x

0
e

φ
T+D dx . (A.15)

The Aki for i ≥ 0 and k ≥ i can be systematically derived from (A.9) to yield Ps(x, v)
to arbitrary order in τ . However, their expression does not seem to lead to a simple
recognizable pattern and their computation is more easily solved in a formal calculation
software such as Mathematica [102].
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A.1.2 Full steady-state distribution

In this appendix, we report the steady-state probability density Ps(x, v) to order τ 2

obtained via our recurrence scheme described in Appendix A.1.1. For conciseness, we
report Ps(x, v) for an AOUP experiencing an additional thermal noise as in (2.50)-(2.51),
but our results readily extend to the athermal case (2.9)-(2.10) of section 2.1 by taking
T = 0.

e
φ

T+DPs(x, v) = c0 +
√
τP1(v)c0

√
Dφ(1)(x)
T +D

+ τP0(v)
[
− c0Dφ

(1)2

2(T +D)2 + c2 + Dc0φ
(2)

T +D

−
√
Db3

T +D

∫ x

0
e
φ(z)
T+D dz

]
+ τ

3
2

[
P3(v)c0D

3
2

√
6

(
φ(1)3

(T +D)3 −
3φ(1)φ(2)

(T +D)2 + φ(3)

T +D

)

+ P1(v)
(
b3De

φ
T+D

T +D
− φ(1)b3D

(T +D)2

∫ x

0
e
φ(z)
T+D dz +

√
Dc2φ

(1)

T +D
− c0D

3
2φ(1)3

2(T +D)3

+ c0
√
D(D2 − T 2)φ(1)φ(2)

(T +D)3 + c0
√
DTφ(3)

T +D

)]
+ τ 2P0(v)

[
c2Dφ

(2)

T +D
− c2Dφ

(1)2

2(T +D)2

− D
3
2 b3

(T +D)2

∫ x

0
e
φ(z)
T+Dφ(2)(z)dz + c0D

2

8(T +D)4φ
(1)4 − c0D(D − T )φ(1)2φ(2)

2(T +D)3

+ b3D
3
2

(T +D)3

∫ x

0

(∫ s

0
e
φ(z)
T+D dz

) (
φ(1)(s)φ(2)(s)− (T +D)φ(3)(s)

)
ds+ c4

+ Dc0

2(T +D)

∫ x

0
φ(1)2(z)φ(3)(z)dz − Dc0(D + 2T )

(T +D)2 φ(3)φ(1) −
√
Db5

T +D

∫ x

0
e
φ(z)
T+D dz

+ Dc0(D − 2T )φ(2)2

4(T +D)2 + Dc0(D + 2T )φ(4)

2(T +D)

]
. (A.16)

In (A.16), c0 is given by (2.58) while c2, c4, b3 and b5 are integration constants whose
expressions must be adapted to the boundary conditions. For a confining potential,
Ps(x, v) must vanish for x → ±∞ which leads to b3 = b5 = 0. All in all, one finds the
following spatial distribution to order τ 2:

e
φ

T+DPs(x) = c0 + τ

[
− c0Dφ

(1)2

2(T +D)2 + c2 + Dc0φ
(2)

T +D

]
+ τ 2

[
c2Dφ

(2)

T +D
− c2Dφ

(1)2

2(T +D)2 + c4

+ c0D
2

8(T +D)4φ
(1)4 − c0D(D − T )φ(1)2φ(2)

2(T +D)3 + Dc0

2(T +D)

∫ x

0
φ(1)2(z)φ(3)(z)dz

− Dc0(D + 2T )
(T +D)2 φ(3)φ(1) + Dc0(D − 2T )φ(2)2

4(T +D)2 + Dc0(D + 2T )φ(4)

2(T +D)

]
. (A.17)

The integration constants c2 and c4 are finally found by normalization, ie by requiring∫+∞
−∞ Ps(x)dx = 1 at every order in τ .

For a periodic potential of period L, the spatial distribution must respect Ps(x+L) =
Ps(x). This condition implies b3 = 0, but leads to a nonzero b5 which is given by

b5 = D

2(T +D)

∫ L
0 φ(1)2φ(3)dx∫ L

0 e
φ

T+D dx
∫ L

0 e−
φ

T+D dx
. (A.18)
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All in all, Ps in the case of a periodic potential reads:

e
φ

T+DPs(x) = c0 + τ

[
− c0Dφ

(1)2

2(T +D)2 + c2 + Dc0φ
(2)

T +D

]
+ τ 2

[
c2Dφ

(2)

T +D
− c2Dφ

(1)2

2(T +D)2 + c4

+ c0D
2

8(T +D)4φ
(1)4 − c0D(D − T )φ(1)2φ(2)

2(T +D)3 + Dc0

2(T +D)

∫ x

0
φ(1)2(z)φ(3)(z)dz

− Dc0(D + 2T )
(T +D)2 φ(3)φ(1) + Dc0(D − 2T )φ(2)2

4(T +D)2 + Dc0(D + 2T )φ(4)

2(T +D)

−
√
Db5

T +D

∫ x

0
e
φ(z)
T+D dz

]
, (A.19)

Once again, c2 and c4 are then found by normalization. Note that in expression (A.16),
v corresponds to the rescaled variable ṽ. To get the exact steady-state distribution, one
thus has to make the change of variable v →

√
τv.

A.1.3 Derivation of the entropy production rate
This appendix is devoted to the perturbative derivation of the entropy production as a
series in τ 1/2 for an AOUP experiencing an additional thermal noise. As shown in (2.72),
the entropy production rate of dynamics (2.50)-(2.51) can be expressed as

σ = 2
τ

〈∫ +∞

−∞
dtG(t) ẋ(0)φ′(x(t))

〉
. (A.20)

The series in τ 1/2 of (A.20) is obtained by expanding φ′(x(t)) in powers of the particle
displacement. In order to make such an expansion more explicit, we rescale time as
s = t/τ and the self-propulsion v as ṽ = v

√
τ . The entropy production rate then reads

σ = 2
τ

〈∫ +∞

−∞
ds G̃(s) dx

ds
(0)φ′(x(s))

〉
, (A.21)

where G̃(s) is given by

G̃(s) = D

4T 2

√
T

D + T
exp

−
√
D + T

T
|s|

 , (A.22)

and the ensemble measure 〈·〉 now corresponds to the stochastic process

dx

ds
=− τφ′(x(s)) +

√
τ
(
ṽ(s) +

√
2T η̃1(s)

)
(A.23)

dṽ

ds
=− ṽ +

√
2D η̃2(s) , (A.24)

with η̃1(s) and η̃2(s) being two independent Gaussian white noises. To lighten the no-
tations, we omit the tilde in the remainder of this appendix. We introduce the particle
displacement during time s as

∆(s) = x(s)− x(0) . (A.25)
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Hence, we have

σ = 2
τ

∫ ∞
−∞

dsG(s)
+∞∑
n=0

1
n!
〈
ẋ(0)φ(n+1)(x(0))∆(s)n

〉
. (A.26)

The first term of the series (A.26) involves the Stratonovich average 〈ẋ(0)φ′(x(0))〉 =
limt→∞

∫ t
0 dφ/dtdt and vanishes. We now focus on the second one that we denote by σ1.

We have

σ1 = 2
τ

∫ +∞

−∞
dsG(s)

〈
ẋ(0)φ(2)(x(0))∆(s)

〉
= 2
τ

∫ +∞

0
dsG(s)

〈
ẋ(0)φ(2)(x(0)) (∆(s) + ∆(−s))

〉
Replacing ∆(s) by its integral form ∆(s) =

∫ s
0 ẋ(s′)ds′, we get

σ1 = 2
τ

∫ +∞

0
dsG(s)

∫ s

0
ds′

〈
ẋ(0)φ(2)(x(0)) (ẋ(s′)− ẋ(−s′))

〉
. (A.27)

Using time-translation invariance in the steady state, we replace
∫ s
0 〈ẋ(0)φ(2)(x(0))ẋ(−s′)〉ds′

by
∫ s
0 〈ẋ(0)φ(2)(x(s′))ẋ(s′)〉ds′ and we obtain

σ1 = 2
τ

∫ +∞

0
dsG(s)

∫ s

0
ds′

〈
ẋ(0)ẋ(s′)

(
φ(2)(x(0))− φ(2)(x(s′))

)〉
. (A.28)

We now expand again (A.28) in powers of the displacement, which gives

σ1 = −2
τ

∫ +∞

0
dsG(s)

∫ s

0
ds′

+∞∑
n=1

1
n!
〈
ẋ(0)φ(n+2)(x(0))ẋ(s′)∆(s′)n

〉
. (A.29)

In the Stratonovitch convention, we recognize a total derivative as ẋ(s′)∆(s′)n = (n +
1)−1d∆(s′)n+1/ds′. We can thus perform the integral over s′ in (A.29) and replace∫ s

0 ẋ(s′)∆(s′)nds′ by (n+ 1)−1∆(s)n+1:

σ1 = −2
τ

∫ +∞

0
dsG(s)

+∞∑
n=1

1
(n+ 1)!

〈
ẋ(0)φ(n+2)(x(0))∆(s)n+1

〉
. (A.30)

Plugging back this final expression for σ1 in (A.26), we remark that it cancels the integral
between 0 and ∞ of all the terms of the series. Making the change of variable s → −s
for the remaining integral between −∞ and 0, we obtain

σ = 2
τ

+∞∑
n=2

1
n!

∫ +∞

0
dsG(s)

〈
ẋ(0)φ(n+1)(x(0))∆(−s)n

〉
. (A.31)

This first result shows that any additive Gaussian process in a harmonic potential has a
vanishing entropy production rate. We can replace ẋ(0) by its expression −τφ′(x(0)) +√
τv(0) +

√
2Tτη1(0) in (A.31) to obtain

σ = 2
τ

+∞∑
n=2

1
n!

∫ +∞

0
dsG(s)

〈(
−τφ′(x(0)) +

√
τv(0) +

√
2Tτη1(0)

)
φ(n+1)(x(0))∆(−s)n

〉
.

(A.32)
We are now in position to integrate out the thermal noise η1(0) in the above expression.
To this aim, we use the Stratonovitch average 〈

√
2Tτη1(0)f(x(0))〉 = Tτf ′(x(0)), which is
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valid for any arbitrary funtion f depending on x(0). Applying this formula for f(x(0)) =
φ(n+1)(x(0))∆(−s)n yields〈√

2Tτ η(0)φ(n+1)(x(0))∆(−s)n
〉

= Tτ
〈
φ(n+2)(x(0))∆(−s)n − nφ(n+1)(x(0))∆(−s)n−1

〉
,

(A.33)
where the second term on the right hand side stems from the dependence of ∆(−s) on
x(0) through the relation ∆(−s) = x(−s)−x(0). Inserting expression (A.33) into (A.32),
we obtain σ in terms of the position x and self-propulsion v:

σ = 2
τ

+∞∑
n=2

1
n!

∫ +∞

0
dsG(s)Tτ

〈
φ(n+2)(x(0))∆(−s)n − nφ(n+1)(x(0))∆(−s)n−1

〉

+ 2
τ

+∞∑
n=2

1
n!

∫ +∞

0
dsG(s)

〈(
−τφ′(x(0)) +

√
τv(0)

)
φ(n+1)(x(0))∆(−s)n

〉
. (A.34)

The first term on the right hand side of (A.34) is a telescopic sum as
+∞∑
n=2

1
n!
〈
φ(n+2)(x(0))∆(−s)n − nφ(n+1)(x(0))∆(−s)n−1

〉
= −〈φ(3)(x(0))∆(−s)〉 , (A.35)

and we can thus simplify σ as

σ = 2
τ

+∞∑
n=2

1
n!

∫ +∞

0
dsG(s)

〈(
−τφ′(x(0)) +

√
τv(0)

)
φ(n+1)(x(0))∆(−s)n

〉
− 2T

∫ ∞
0

dsG(s)〈φ(3)(x(0))∆(−s)〉 . (A.36)

Using time translation invariance and the definition ∆(−s) = x(−s)− x(0), we have

〈f [x(0), v(0)] ∆(−s)n〉 = 〈f [x(0), v(0)] (x(−s)− x(0))n〉
= 〈f [x(s), v(s)] (x(0)− x(s))n〉
=(−1)n 〈f [x(s), v(s)] ∆(s)n〉 , (A.37)

where f is an arbitrary function depending on x(0) and v(0). Applying (A.37) for f =
(−τφ′(x(0)) +

√
τv(0))φ(n+1)(x(0)) and f = φ(3)(x(0)) in (A.36), we obtain the entropy

production rate as

σ =2
τ

〈∫ +∞

0
dsG(s)

[+∞∑
n=2

(−1)n
n!

(
−τφ′(x(s)) +

√
τv(s)

)
φ(n+1)(x(s))∆(s)n

]〉

+ 2
τ

〈∫ +∞

0
dsG(s)Tτφ(3)(x(s))∆(s)

〉
. (A.38)

Since ∆(s) = x(s) − x(0), the above exact expression still involves two-time averages.
In order to reduce the result to the evaluation of stationary-state averages, we will have
to expand again (A.38) in powers of ∆(s). As readily observed in (A.38), the entropy
production rate is the sum of two contributions

σ = σb + σa , (A.39)

with the first one given by

σa = 2T
∫ +∞

0
dsG(s)

〈
φ(3)(x(s))∆(s)

〉
= 2T

+∞∑
n=0

∫ +∞

0
dsG(s)τ

n+1
2

n!

〈
φ(n+3)(x(0))

(
∆(s)√
τ

)n+1〉
, (A.40)
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and the second one by

σb =
∫ +∞

0
dsG(s)

+∞∑
n=2

2(−1)n
τn!

〈(
−τφ′(x(s)) +

√
τv(s)

)
φ(n+1)(x(s))∆(s)n

〉
. (A.41)

Taylor expanding (A.41) around x(0), we further express σb as

σb =
+∞∑
n=2

+∞∑
p=0

2(−1)n
p!n! τ

n+p
2

∫ +∞

0
dsG(s)

〈
∂px
[
−φ′(x)φ(n+1)(x)

]∣∣∣
x(0)

(
∆(s)√
τ

)n+p〉

+
+∞∑
n=2

+∞∑
p=0

2(−1)n
p!n! τ

n+p−1
2

∫ +∞

0
dsG(s)

〈[
v(s)φ(n+1+p)

]∣∣∣
x(0)

(
∆(s)√
τ

)n+p〉
. (A.42)

Note that in (A.42), the velocity is still evaluated at time s. However, this raises no
difficulty since the equation of motion on v can be integrated exactly as

v(s) = v(0)e−s +
√

2De−s
∫ s

0
ds′ es

′
η2(s′) . (A.43)

Finally, in order use only stationary-state averages when computing the entropy produc-
tion rate, one needs to express ∆(s) as a function of x(0). This is done by integrating
the equation of motion recursively in powers of τ ,

∆(s)√
τ

= −
√
τ
∫ s

0
ds′ φ′(x(s′)) +

∫ s

0
ds′

(
v(s′) +

√
2Tη1(s′)

)
. (A.44)

Applying (A.44) recursively in powers of τ allows us to compute ∆(s) up to order τ 3
2

∆(s)√
τ

=−
√
τsφ′(x(0))− τ

∫ s

0
ds′

φ′(x(s′))− φ′(x(0))√
τ

+
∫ s

0
ds′

(
v(s′) +

√
2Tη1(s′)

)
=
∫ s

0
ds′

(
v(s′) +

√
2Tη1(s′)

)
−
√
τsφ′(x(0))− τφ(2)(x(0))

∫ s

0
ds′

∫ s′

0
ds′′v(s′′)

− τφ(2)(x(0))
∫ s

0
ds′

∫ s′

0
ds′′
√

2Tη1(s′′) +O(τ 3/2) (A.45)

where the above order in the expansion is enough to collect all terms of order τ 2 in the
entropy production rate. Equation (A.45) can then be plugged into (A.40) and (A.42).
After averaging over the white noises η1(s) and η2(s), this allows us to obtain the entropy
production rate, to order τ 2, solely expressed in terms of stationary-state averages over
both x and v. Using (A.16), we directly obtain (2.74) of the main text:

σ = Dτ 2H
(
T

D

) ∫+∞
−∞ φ(3)2 e−

φ
T+D dx∫+∞

−∞ e−
φ

T+D dx
+O(τ 5

2 ) , (A.46)

where the function H is given by

H(x) =
4
√

x
x+1 + x

(
4
√

x
x+1 + 2

)
+ 1

8
√
x(x+ 1) + 2x

(
6x+ 6

√
x(x+ 1) + 7

)
+ 2

. (A.47)
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A.2 Steady-state distribution of N interacting active
particles

This appendix is devoted to the analytical characterization of the stationary distribution
of N -interacting AOUPs following the dynamics (2.78)-(2.79) in the limit of small τ . Let
us start by introducing the particle velocities pi = ṙi to recast the dynamics (2.78)-(2.79)
into:

τ ṗi = −pi − (1 + τpj ·∇j)∇iΦ + (2D)1/2ηi . (A.48)
Note that, by setting τ = 0 in both sides of Eq. (A.48), we indeed recover the standard
overdamped equilibrium dynamics:

pi = −∇iΦ + (2D)1/2ηi. (A.49)

We now discuss how a small τ expansion of (A.48) can be systematically derived. In the
spirit of [56, 165, 166], we first introduce the scaled variables t̄ ≡ τ−1/2t and p̄i ≡ piτ 1/2.
As a result, the stationary distribution satisfies LPs({ri, p̄i}) = 0, where the operator L
reads

L =− p̄i ·∇i + τ−1/2 ∂

∂p̄iα

(
p̄iα + τ p̄jβ

∂2Φ
∂riαrjβ

)
+ ∂

∂p̄iα

∂Φ
∂riα

+Dτ−1/2 ∂2

∂p̄2
iα

. (A.50)

Here, and throughout this appendix, summations over repeated indices are implicit in-
cluding for terms like p̄2

i or ∂2

∂p̄2
iα
. To compute the stationary distribution, we propose the

following ansatz:

Ps(r, p̄) ∼ e−
Φ
D
−

p̄2
i

2D

(
1 +

∞∑
n=2

τ
n
2An (r, p̄)

)
(A.51)

where, for convenience, we define A0 ≡ 1 and A1 ≡ 0, and we introduce the notation
r = {ri}, p̄ = {p̄i}, which lightens the notations in the many-particle case. Note that,
for normalization purposes,

∫
e−

Φ
D
−

p̄2
i

2DAn has to vanish. Inserting (A.51) into (A.50), we
obtain a set of recursive equations for the An by equating every order in τ 1/2(

p̄iα
∂

∂p̄iα
−D ∂2

∂p̄2
iα

)
An = fn (r, p̄) (A.52)

where

fn (r, p̄) =− p̄iα
∂An−1

∂riα
+ ∂Φ
∂riα

∂An−1

∂p̄iα
+ ∂2Φ
∂r2

iα

An−2 −
p̄iαp̄jβ
D

∂Φ
∂riα∂rjβ

An−2

+ p̄iα
∂2Φ

∂riα∂rjβ

∂An−2

∂p̄jβ
. (A.53)

Inspection of (A.52)-(A.53) suggests an ansatz for the An in the form of degree-n polyno-
mials in the momenta. Indeed, if Ak with k ≤ n are assumed to be polynomials of degree-
k, then An+1 is also a polynomial of degree n+ 1. We can further show that A2n contains
only even terms in the momenta p̄ while A2n+1 only contains odd ones. This results from
the symmetry of the equation LPs = 0 under the transformation

{
τ 1/2, p̄

}
→ −

{
τ 1/2, p̄

}
.

We will use the following tensorial notation for the An’s

An = p̄i1,α1 ...p̄in,αn
a

(n,n)
i1,...,in,α1,...,αn

n! + p̄i1,α1 ...p̄in−2,αn−2

a
(n,n−2)
i1,...,in−2,α1,...,αn−2

(n− 2)! + ... (A.54)
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where the a(m,n)’s depend on the particles’ positions. Note thatAn contains a p̄-independent
term a(n,0) only if n is even. Note also that (A.54) is a local function of the momenta,
which could be restrictive, but still allow for non-local dependence on the particle posi-
tions.

Plugging the expression (A.54) for An in (A.52), and equating order by order in p̄,
yields the explicit expressions of all tensors a(n,m) for 0 < m ≤ n. For even n, this
leaves a(n,0) unconstrained (whereas a(2k+1,0) = 0 by definition) but constrains a(n−2,0).
For instance, we get for n = 2, 3, 4:

A2 =− (p̄i ·∇i)2Φ
2D + a(2,0)(r) (A.55)

A3 =(p̄i ·∇i)3Φ
6D + (p̄i ·∇i)∇2

jΦ−
1

2D (p̄i ·∇i)(∇jΦ)2 − (p̄i ·∇i)a(2,0) (A.56)

A4 = 1
8D2

[
(p̄i ·∇i)2Φ

] [
(p̄j ·∇j)2Φ

]
− (p̄i ·∇i)4Φ

24D +
(p̄i ·∇i)2

[
a(2,0) −∇2

jΦ
]

2

+ 3
4D

∂Φ
∂rj,α

∂

∂rj,α
(p̄i ·∇i)2Φ + 1

2D
∂
[
(p̄j ·∇j)Φ

]
∂ri,α

∂ [(p̄k ·∇k)Φ]
∂ri,α

+ a(4,0)(r) (A.57)

Projected on the lowest order in p̄, equation (A.52) for An of the form (A.54) further
yields the integrability condition for a(n−2,0)(

D
∂2

∂r2
iα

− ∂Φ
∂riα

∂

∂riα

)
a(n−2,0) = gn(r) (A.58)

where gn(r) are functions of the particle positions only that can be computed explicitly.
We note that the left hand side of the solvability equation (A.58) is nothing else than the
backward Fokker-Planck operator for the equilibrium dynamics (A.49) applied to a(n−2,0),
while its right hand side is a source term gn. Finding a solution to (A.58) would thus
provide a closed expression for the perturbative expansion of Ps(r, p̄) up to order n− 2.

From the Fredholm alternative theorem, the condition under which such a solution ex-
ists, and the expansion can be carried out, is that gn should be orthogonal to e−Φ/D [167].
This is always possible in the small D limit, following [168], but the existence of a solution
to arbitrary order remains, in the general case, an open problem. Here we show that it
can be carried out explicitly up to order τ 3/2. g4 indeed reads

g4 = 1
D

∂2Φ
∂riα∂rjβ

∂Φ
∂riα

∂Φ
∂rjβ

− 5
2

∂3Φ
∂2riα∂rjβ

∂Φ
∂rjβ

− ∂2Φ
∂riα∂rjβ

∂2Φ
∂riα∂rjβ

+ 3D
2

∂4Φ
∂2riα∂2rjβ

.

(A.59)

and the integrability condition (A.58) is solved, for n = 2, by

a(2,0)(r) = − 1
2D (∇iΦ)2 + 3

2∇2
iΦ , (A.60)

where the sum over the index i is implicit. This yields the following expression for the
stationary measure of N interacting AOUPs, valid up to order τ 3/2,

Ps(r, p̄) ∼ e−
Φ+p̄2

i
/2

D

{
1− τ

2D
[
(∇iΦ)2 + (p̄i ·∇i)2 Φ− 3D∇2

iΦ
]

+ τ 3/2

6D (p̄i ·∇i)
[
(p̄j ·∇j)2 − 3D∇2

j

]
Φ +O

(
τ 2
)}

. (A.61)



114 Appendix A. Nonequilibrium signatures of Active Ornstein Uhlenbeck Particles

Integrating over momentums p̄ , we obtain the many-body marginal distribution, in
position space, Ps(r):

Ps(r) ∼ exp
[
−Φ
D
− τ

2D (∇iΦ)2 + τ∇2
iΦ +O

(
τ 2
)]
. (A.62)

It is interesting to note that similar functional forms to (A.61) and (A.62) are encountered
in many contexts, from the semi-classical expansion of the Boltzmann distribution in
powers of ~ [169] to the Hermitian form of the Fokker-Planck operator [170]. It would be
interesting to know whether this is just a coincidence or reflects the presence of a deeper
connection.

A.3 Numerical methods
To simulate dynamics (2.50), we used a discretized Heun scheme while dynamics (2.51)
was integrated exactly using Gillespie’s method [171]. The obtained algorithm iterates
as follows:

1 µ = exp(−dt/τ) ;
2 σx =

√
D(1− µ2)/τ ;

3 Y1 =
√

2Dτ (dt/τ − 2(1− µ) + 0.5(1− µ2))− τD(1− µ)4/(1− µ2) ;
4 Y2 =

√
τD(1− µ)2/

√
1− µ2 ;

5 T1 =
√

2Tdt ;
6 Y = x = 0 ;
7 v =

√
D/τ ∗ normal_di s t r ibut ion (0 , 1 ) ;

8
9 while ( t < to ta l t ime ) {
10 η1 = normal_di s t r ibut ion (0 , 1 ) ;
11 η2 = normal_di s t r ibut ion (0 , 1 ) ;
12 η3 = normal_di s t r ibut ion (0 , 1 ) ;
13 Y = τ ∗v∗(1−µ) + Y1∗η2 + Y2∗η1 ;
14 v = v∗µ + σx∗η1 ;
15 x1 = x − dt∗∂xφ(x) + Y + T1∗η3 ;
16 x += Y + T1∗η3 −0.5∗dt ∗( ∂xφ(x) + ∂xφ(x1) ) ;
17 t += dt ; }

At step (17), x(t) is stored in the variable x. The steady-state marginal in space of the
distribution Ps(x) was then obtained by recording the particle’s position recurrently into
an histogram. The current J was computed using the distance travelled by the particle
divided by the duration of the simulation: the error bar on J corresponds to the standard
deviation of this quantity. Such a definition for the current was heuristically found to
converge faster than computing J = 〈−∂xφ+ v/

√
τ〉 with recurrent recordings.



B. Fluctuation-induced first-order tran-
sition to collective motion

B.1 The Boltzmann approach to the Vicsek model
This appendix is devoted to the derivation of the evolution equation for W following
the method established in [114, 120]. Using the periodicity of f with respect to θ, we
introduce the Fourier series of W as

f̂k(r, t) =
∫ π

−π
dθ f(r, θ, t) eikθ. (B.1)

The one-particle probability distribution f can then be retrieved from its Fourier modes
through the relation

f(r, θ, t) = 1
2π

∑
k∈Z

f̂k(r, t) e−ikθ. (B.2)

The hydrodynamic fields (3.6) can be related to the zero-th and first Fourier modes
defined in (B.1). Indeed, we note that ρ(r, t) = f̂0(r, t) while the vector associated to
W(r, t) in the complex plane is vf̂1:

Wx(r, t) = v<(f̂1(r, t)) , and Wy(r, t) = v=(f̂1(r, t)) . (B.3)

We will make use of this correspondence with the complex plane by first deriving the
time-evolution of f̂1 before casting it into an evolution equation for W. Let us now
construct the evolution equation for f̂k by multiplying (3.3) by eikθ and integrating over
θ. We obtain

∂

∂t
f̂k + ∇ ·

[
v
∫ π

−π
dθ eikθe(θ)f(r, θ, t)

]
=
∫ π

−π
dθ eikθ (Idif [f ] + Icol[f, f ]) . (B.4)

The gradient term on the left hand side of (B.4) is the k-th Fourier mode of the velocity
field Ŵ

(k)(r, t)

Ŵ
(k)(r, t) = v

∫ π

−π
dθ eikθe(θ)f(r, θ, t) (B.5)

which can be related to f̂k(r, t) through

Ŵ (k)
x (r, t) =v2[f̂k+1(r, t) + f̂k−1(r, t)] , Ŵ (k)

y (r, t) = v

2i [f̂k+1(r, t)− f̂k−1(r, t)]. (B.6)

Injecting (B.6) into (B.4), we get
∂

∂t
f̂k + v

2
∂

∂x

[
f̂k+1 + f̂k−1

]
+ v

2i
∂

∂y

[
f̂k+1 − f̂k−1

]
=
∫ π

−π
dθ eikθ (Idif [f ] + Icol[f, f ]) . (B.7)

The right-hand side of (B.7) can be evaluated by inserting (B.2) in (3.5):∫ π

−π
eikθIdif [f ]dθ =−D [1− sinc (σπk)] f̂k (B.8)∫ π

−π
eikθIcol[f ]dθ =− 2r0v

π

∑
q∈Z

[
Iq − sinc (σπk) Iq−k/2

]
f̂qf̂k−q , (B.9)
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where Iq is given by the integral

Iq =
∫ π

−π
dθ

∣∣∣∣∣sin θ2
∣∣∣∣∣ cos qθ. (B.10)

For an integer q we thus obtain

Iq = 4
1− 4q2 , (B.11)

while for a half integer q = m+ 1
2 we have

I 1
2

=I− 1
2

= 2, (B.12)

Im+ 1
2

= 1
m(m+ 1) [(−1)m(2m+ 1)− 1] , m 6= −1, 0. (B.13)

Inserting (B.8)-(B.9) into (B.7), we obtain the final form of the time-evolution of f̂k as

∂

∂t
f̂k =− v

2
∂

∂x

[
f̂k+1 + f̂k−1

]
− v

2i
∂

∂y

[
f̂k+1 − f̂k−1

]
−D [1− sinc (σπk)] f̂k

− 2r0v

π

∑
q∈Z

[
Iq − sinc (σπk) Iq−k/2

]
f̂qf̂k−q . (B.14)

To get the evolution of f̂1, we need to close (B.14) for k = 1 in terms of the modes f̂0
and f̂1. To perform such a closure, we assume that f is weakly anisotropic and consider
that we can neglect fk for |k| > 2. Within this approximation, (B.14) reads for k = 1

∂f̂1

∂t
+ v

2
∂

∂x1
(f̂2 + f̂0) + v

2i
∂

∂x2
(f̂2 − f̂0) = − 8

π
r0v

(
sinc(σπ)− 2

5

)
f̂ ∗1 f̂2

−
[
D (1− sinc(σπ)) + 8

π
d0v0

(2
3 − sinc(σπ)

)
f̂0

]
f̂1 , (B.15)

while (B.14), taken at k = 2, yields

∂f̂2

∂t
=− v

2
∂f̂1

∂x
+ v

2i
∂f̂1

∂y
−
[
D (1− sinc(2σπ)) + 16

3πr0v
(7

5 + sinc(2σπ)
)
f̂0

]
f̂2

+ 8
π
r0v

(1
3 + sinc(2σπ)

)
f̂ 2

1 . (B.16)

Note that to obtain (B.15) and (B.16), we made use of the values of Iq computed in
(B.11) to (B.13). Because f̂2 is not an hydrodynamic field, it has to be a fast mode such
that ∂f̂2/∂t = 0. From (B.16), we thus deduce that it is enslaved to f̂0 and f̂1 through

f̂2 =
−v

2
∂f̂1
∂x

+ v
2i
∂f̂1
∂y

+ 8
π
r0v

(
1
3 + sinc(2σπ)

)
f̂ 2

1

D (1− sinc(2σπ)) + 16
3πr0v

(
7
5 + sinc(2σπ)

)
f̂0
. (B.17)

Plugging (B.17) into (B.15), mapping back f̂1 and f̂0 to W/v and ρ respectively, we
obtain the hydrodynamic equation (3.8) of the main text

∂W
∂t

+ γ(W · ∇)W =− v2

2 ∇ρ+ κ

2∇W2 + (α− ξW2)W + ν∇2W

− κ(∇ ·W)W + 2ν ′∇ρ ·M− ν ′(∇ ·W)∇ρ, (B.18)
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where ν ′ = ∂ν/∂ρ, M = 1
2(∇W+∇WT) is the symmetric part of the momentum gradient

tensor and the different coefficients are given by

ν =v
2

4

[
D (1− sinc(2σπ)) + 16

3πr0vρ
(7

5 + sinc(2σπ)
)]−1

, (B.19)

γ =16νr0

πv

(16
15 + 2 sinc(2σπ)− sinc(σπ)

)
, (B.20)

κ =16νr0

πv

( 4
15 + 2 sinc(2σπ) + sinc(σπ)

)
, (B.21)

α = 8
π
r0vρ

(
sinc(σπ)− 2

3

)
−D (1− sinc(σπ)) , (B.22)

ξ =256νr2
0

π2v2

(
sinc(σπ)− 2

5

)(1
3 + sinc(2σπ)

)
. (B.23)

B.2 The Active Ising Model

Throughout this appendix, we use Fourier series for L-periodic functions f with the
convention

f q = 1
L

∫ L

0
f(x)e−iqx , f(x) =

∑
n∈Z

f qeiqx , (B.24)

where q = 2πn/L. We note that for an arbitrary stochastic function f(x) verifying
〈f qf q′〉 ∝ 〈f qf−q〉L−1δq+q′,0, 〈f 2(x)〉 is given in the large-system-size limit L→∞ as

lim
L→∞
〈f 2(x)〉 = lim

L→∞

∑
q,q′
〈f qf q′〉eiqx+iq′x = lim

L→∞

∑
q

1
L
〈f qf−q〉 =

∫ +∞

−∞

dq

2π 〈f
qf−q〉 . (B.25)

B.2.1 Derivation of the correlators in the high temperature
phase

This appendix is devoted to the computation of the correlators 〈δρ2
1〉, 〈δm2

1〉 and 〈δm1δρ1〉
which are needed to close the renormalized hydrodynamics (3.66) of the AIM. Using
assumption AI, we start by casting the stochastic evolution (3.55)-(3.56) of δρ1 and δm1
into Fourier space with the Fourier convention defined in (B.24). We obtain

∂t

(
δρq1
δmq

1

)
=
(
M q

11 M q
12

M q
21 M q

22

)(
δρq1
δmq

1

)
+
(

0√
2ρ0 η

q

)
, (B.26)

where ηq is the q-th Fourier mode of the Gaussian white noise with correlations 〈ηq(t)ηq′(t′)〉 =
L−1δq+q′,0δ(t− t′) and the matrix coefficients M q

11, M q
12, M q

21, M q
22 are given by

M q
11 =−Dq2 , M q

12 =− ivq , M q
21 =− iqv + 2γm

3
0

ρ3
0
, M q

22 =−Dq2 − α− 3γm
2
0

ρ2
0
.

(B.27)
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To compute the equal-time two-point correlation functions in the steady-state, we use Itō
calculus on the stochastic system (B.26) to get the following closed system of equations

d

dt
〈δρq1δρ

q′

1 〉 =(M q
11 +M q′

11)〈δρq1δρq
′

1 〉+M q
12〈δm

q
1δρ

q′

1 〉+M q′

12〈δρ
q
1δm

q′

1 〉 (B.28)
d

dt
〈δmq

1δρ
q′

1 〉 =(M q
22 +M q′

11)〈δmq
1δρ

q′

1 〉+M q
21〈δρ

q
1δρ

q′

1 〉+M q′

12〈δm
q
1δm

q′

1 〉 (B.29)
d

dt
〈δmq

1δm
q′

1 〉 =(M q
22 +M q′

22)〈δmq
1δm

q′

1 〉+M q
21〈δρ

q
1δm

q′

1 〉+M q′

21〈δm
q
1δρ

q′

1 〉+ 2ρ0

L
δq+q′,0 ,

(B.30)

In the steady state, this leads to the system

0 =(M q
11 +M q′

11)〈δρq1δρq
′

1 〉+M q
12〈δm

q
1δρ

q′

1 〉+M q′

12〈δρ
q
1δm

q′

1 〉 (B.31)
0 =(M q

22 +M q′

11)〈δmq
1δρ

q′

1 〉+M q
21〈δρ

q
1δρ

q′

1 〉+M q′

12〈δm
q
1δm

q′

1 〉 (B.32)

−2ρ0

L
δq+q′,0 =(M q

22 +M q′

22)〈δmq
1δm

q′

1 〉+M q
21〈δρ

q
1δm

q′

1 〉+M q′

21〈δm
q
1δρ

q′

1 〉 , (B.33)

Solving this linear system yields

〈δmq
1δm

q′

1 〉 =ρ0

[
− 3γ (2D2q2 + αD + vDq + v2) (2D2q2 +D(α− qv) + v2)

(α + 2Dq2)2 (D2q2 + αD + v2)2
m2

0
ρ2

0

+ 2D2q2 + αD + v2

(2Dq2 + α) (D2q2 + αD + v2)

]
δq+q′,0
L

+O
(
m3

0

)
(B.34)

〈δρq1δρ
q′

1 〉 = ρ0v
2

(2Dq2 + α) (D2q2 + αD + v2)
δq+q′,0
L

+O
(
m2

0

)
(B.35)

〈δmq
1δρ

q′

1 〉 = iρ0vDq

(2Dq2 + α) (D2q2 + αD + v2)
δq+q′,0
L

+O
(
m2

0

)
. (B.36)

Applying formula (B.25) for 〈δm2
1〉, 〈δρ2

1〉 and 〈δρ1δm1〉, we note that assumption AII
ensures the convergence of the integral over q. Performing this integration analytically
then gives (3.67)-(3.68) of the main text

〈δm2
1〉 =ρ0

v2
√

2α
D

+ α
√
v2 + αD

4αv2 + 2α2D
− ρ0

3γD
(

αD√
v2+αD +

√
2v2(2v2+3αD)

(αD)3/2

)
4 (αD + 2v2)2

m2
0

ρ2
0

+O(m3
0)

(B.37)

〈δρ2
1〉 =ρ0

v2
(√

2α
D
− α√

v2+αD

)
2α (αD + 2v2) +O(m2

0) , 〈δρ1δm1〉 = 0 +O(m2
0) . (B.38)

B.2.2 Renormalization in the low temperature phase
In this appendix, we detail the quasi-linear renormalization approach in the low temper-
ature phase, where α < 0. As seen in assumption AII, the main obstacle in this regime
is the absence of mass for the fluctuations δm1 and δρ1. To circumvent this issue, we
change variables for the field w defined as

w = m−
√
|α|
γ
ρ (B.39)
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In term of this new field, the time-evolution (3.40)-(3.41) reads

∂tρ = D∂xxρ− v∂xw − v
√
|α|
γ
∂xρ (B.40)

∂tw = D∂xxw + v

√
|α|
γ
∂xw − v

(
1− |α|

γ

)
∂xρ− 2|α|w − 3

√
γ|α|w

2

ρ
− γw3/ρ2 . (B.41)

Note that now there is a clear mass −2|α|w in (B.41). Introducing v1 = v
√
|α|/γ,

v2 = v(1 − |α|/γ), a1 = 2|α|, a2 = 3
√
γ|α| and F`(w, ρ) = a1w + a2w

2/ρ + γw3/ρ2, we
cast the above evolution into

∂tρ = D∂xxρ− v∂xw − v1∂xρ (B.42)
∂tw = D∂xxw + v1∂xw − v2∂xρ−F`(w, ρ) . (B.43)

We now switch on the fluctuations to assess how they renormalize (B.42)-(B.43). The
change of variable (B.39) being linear, the noise acting on w is the same as the noise
acting on m in (3.53) and we obtain the following fluctuating hydrodynamics

∂tρ = D∂xxρ− v∂xw − v1∂xρ (B.44)
∂tw = D∂xxw + v1∂xw − v2∂xρ−F`(w, ρ) +

√
2σρ η , (B.45)

where η is a Gaussian white noise with correlations 〈η(x, t)η(x′, t′)〉 = δ(t− t′)δ(x− x′).
Using the expansions ρ = ρ0 +

√
σδρ1 + .. and w = w0 +

√
σδw1 + .., we repeat the

computations detailed in section 3.4 to obtain the renormalized hydrodynamic for ρ̃ = 〈ρ〉
and w̃ = 〈w〉 to order σ as

∂tρ̃ =D∂xxρ̃− v∂xw̃ − v1∂xρ̃ (B.46)

∂tw̃ =D∂xxw̃ + v1∂xw̃ − v2∂xρ̃−Fl(ρ̃, w̃)− σ∂
2F`
∂w2

(
〈δw2

1〉 − 〈δw1〉2

2

)

− σ∂
2F`
∂ρ2

(
〈δρ2

1〉 − 〈δρ1〉2

2

)
− σ ∂

2F`
∂w∂ρ

(〈δw1δρ1〉 − 〈δw1〉〈δρ1〉) . (B.47)

To close the above time evolution, we have to compute the correlators involving δw1 and
δρ1 by using their linearized stochastic evolution which reads

∂tδρ1 = D∂xxδρ1 − v∂xδw1 − v1∂xδρ (B.48)

∂tδw1 = D∂xxδw1 + v1∂xδw1 − v2∂xδρ1 −
∂F`
∂ρ

δρ1 −
∂F`
∂w

δw1 +
√

2ρ0 η . (B.49)

In Fourier space, using the Fourier convention (B.24), we obtain

∂t

(
δρq1
δwq1

)
=
(
Bq

11 Bq
12

Bq
21 Bq

22

)(
δρq1
δwq1

)
+
(

0√
2ρ0 η

q

)
, (B.50)

where ηq is the q-th Fourier mode of the Gaussian white noise with correlations 〈ηq(t)ηq′(t′)〉 =
L−1δq+q′,0δ(t− t′) and the matrix coefficients Bq

11, Bq
12, Bq

21, Bq
22 are given by

Bq
11 =−Dq2 − iv1q , Bq

12 =− ivq , (B.51)

Bq
21 =− iqv2 + a2

w2
0
ρ2

0
+ 2γw

3
0
ρ3

0
, Bq

22 =−Dq2 + v1iq − a1 − 2a2
w0

ρ0
− 3γw

2
0
ρ2

0
. (B.52)
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Using Itō calculus on (B.50), we obtain the same closed system of equations as in (B.31)
to (B.33) but with the matrix M q replaced by the matrix Bq and δm1 replaced by δw1.
Solving this system yields the correlators in Fourier space as

〈δwq1δw
q′

1 〉 =〈δwq1δw−q1 〉
δq+q′,0
L

+O (w0) , 〈δρq1δρ
q′

1 〉 = 〈δρq1δρ−q1 〉
δq+q′,0
L

+O (w0)

〈δwq1δρ
q′

1 〉 =〈δwq1δρ−q1 〉
δq+q′,0
L

+O (w0) , (B.53)

where 〈δwq1δw−q1 〉, 〈δρq1δρ−q1 〉 and 〈δwq1δρ−q1 〉 are given by

〈δwq1δw
q′

1 〉 = ρ0v
2 (a1 + 2Dq2)

vv2 (a1 + 2Dq2)2 +D (a1 +Dq2)
(
(a1 + 2Dq2)2 + 4q2v2

1

) (B.54)

〈δρq1δρ
q′

1 〉 =
ρ0
(
vv2 (a1 + 2Dq2) +D

(
(a1 + 2Dq2)2 + 4q2v2

1

))
vv2 (a1 + 2Dq2)2 +D (a1 +Dq2)

(
(a1 + 2Dq2)2 + 4q2v2

1

) (B.55)

〈δwq1δρ
q′

1 〉 = iDqρ0v (a1 + 2q(Dq + iv1))
vv2 (a1 + 2Dq2)2 +D (a1 +Dq2)

(
(a1 + 2Dq2)2 + 4q2v2

1

) . (B.56)

Because v, v1, v2, a1, a2 and γ are positive, the denominators in the above expressions
remains positive as well. This allows us to integrate over q, and, using (B.25), we obtain
the correlators in real space as

〈δw2
1〉 = ρ0v

v2a1
fw

(
v√
Da1

,
v1√
Da1

,
v2√
Da1

)
+O(w0) , (B.57)

〈δρ2
1〉 =ρ0

a1
fρ

(
v√
Da1

,
v1√
Da1

,
v2√
Da1

)
+O(w0) , 〈δρ1δw1〉 = 0 +O(w0) , (B.58)

where fw(s, u, z) and fρ(s, u, z) are given by

fw(s, u, z) =
∫ +∞

−∞

dq̃

2π
sz (1 + 2q̃2s2)

sz (1 + 2q̃2s2)2 + (1 + q̃2s2)
(
(1 + 2q̃2s2)2 + 4q̃2s2u2

) (B.59)

fρ(s, u, z) =
∫ +∞

−∞

dq̃

2π
sz (1 + 2q̃2s2) + (1 + 2q̃2s2)2 + 4q̃2s2u2

sz (1 + 2q̃2s2)2 + (1 + q̃2s2)
(
(1 + 2q̃2s2)2 + 4q̃2s2u2

) . (B.60)

Inserting (B.57)-(B.58) into (B.47), truncating terms beyond order σ, w̃ and σw̃, we
obtain

∂tw̃ =D∂xxw̃ + v1∂xw̃ − v2∂xρ̃− a1w̃ −
a2v

v2a1
σfw +O(σ 3

2 ) +O(σw̃) (B.61)

We note that w̃ = −σa2vfw/(v2a
2
1) and ρ̃ = ρ0 are homogeneous solutions of the above

renormalized evolution (B.61)-(B.46). Such a solution, which is only valid up to order σ,
is consistent with the terms discarded in (B.61) which are all of order σ2 at least. Note
also that, due to mass conservation, fluctuations cannot generate any correction to an
homogeneous solution for ρ̃. Looking back at the definition of w (B.39), we have shown
that, to first order in σ, fluctuations lower the homogeneous magnetization in the ordered
phase according to

m̃ =
√
|α|
γ
ρ0 − σ

a2v

v2a2
1
fw

(
v√
Da1

,
v1√
Da1

,
v2√
Da1

)
. (B.62)



B.3. The Topological Active Ising Model 121

Finally inserting the expression of v1, v2, a2 and a1 in terms of |α| and γ, we get

m̃ =
√
|α|
γ
ρ0 − σ

3γ
√
γ|α|

4(γ − |α|)α2fw

 v√
2D|α|

,
v√

2Dγ ,
v(γ − |α|)
γ
√

2D|α|

 . (B.63)

This lowering of the magnetization in the ordered phase can be absorbed in a renormal-
ization of the coefficient |α| according to m̃ =

√
|α̂|/γ ρ0, with |α̂| defined as

|α̂| = |α| − σ

ρ0

3γ2|α|
2(γ − |α|)α2fw

 v√
2D|α|

,
v√

2Dγ ,
v(γ − |α|)
γ
√

2D|α|

 . (B.64)

Note that, consistently with our result (3.71) obtained in the high temperature phase,
the fluctuation-induced correction of α also scales as ρ−1

0 in the low temperature phase.

B.3 The Topological Active Ising Model
We recall below the definition of the topological hydrodynamics studied in section 3.5.1
of the main text

∂tρ = D∇2ρ− v∇m (B.65)

∂tm = D∇2m− v∇ρ+ 2Γρβm̄
(

1 + β2m̄2

6

)
− 2Γm

(
1 + β2

2 m̄
2
)

(B.66)

where m̄ = 1
k

∫ x+y(x)
x−y(x) m(x)dx and y(x) is defined implicitly through k =

∫ x+y(x)
x−y(x) ρ(x)dx.

Throughout this appendix, we will use Fourier series for L-periodic functions f with the
same Fourier convention as defined in (B.24). Ultimately, we will take the limit L→∞
to recover the usual Fourier tranform.

B.3.1 Linear stability analysis of the homogeneous solutions
In this Appendix, we study the linear stability of homogeneous solutions ρ = ρ0, m = m0,
y = y0 and m̄ = m̄0 of Eqs. (B.65) and (B.66). Because y(x) and m̄(x) are enslaved to ρ(x)
and m(x) through (3.74)-(3.75), δρ and δm are the only two independent perturbations
in the system and we further have that y0 = k/(2ρ0) and that m̄0 = m0/ρ0. We first
relate δm̄ to δρ and δm. To first order,

δm̄ =
∫ x+y0+δy
x−y0−δy (m0 + δm(z))dz

k
− m0

ρ0

=
∫ x+y0

x−y0

δm(z)dz
k

+ 2δym0

k
+O(δm2) +O(δy2) . (B.67)

We then express δy as a function of δρ using the implicit equation k =
∫ x+y(x)
x−y(x) ρ(x)dx :

δy =− 1
2ρ0

∫ x+y0

x−y0
δρ(z)dz +O(δρ2) . (B.68)

Interestingly, the fluctuations of ρ impact m̄ through δy, despite the topological nature of
the alignment. To study the linear stability of (B.65)-(B.66) in Fourier space, we express
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δyq and δm̄q in terms of δρq and δmq. To this aim, we compute the Fourier transform of
(B.67) and (B.68). We start by determining δyq as

δyq =− y0

ρ0
sinc(qy0)δρq . (B.69)

We then get δmq as

δm̄q =y0

k
2 sinc(qy0)δmq + 2m0

k
δyq . (B.70)

Reinserting (B.69) in (B.70) and further using k = 2y0ρ0 we obtain

δm̄q = 1
ρ0

sinc(qy0)δmq − m0

ρ2
0

sinc(qy0)δρq . (B.71)

Linearizing (B.65)-(B.66) to first order in δm, δρ, δm̄, multiplying both sides by e−iqx,
and integrating over q yields the dynamics for the q-th Fourier modes δmq, δρq and δm̄q.
Further using (B.71), we obtain the following dynamics for δmq and δρq

∂t

(
δρq

δmq

)
=
(
M q

11 M q
12

M q
21 M q

22

)(
δρq

δmq

)
, (B.72)

where the matrix coefficients M q
11, M q

12, M q
21 and M q

22 are given by:

M q
11 =−Dq2 , M q

12 = −ivq (B.73)

M q
21 =Γ

3

(
βm0

ρ0

)3

+ 2Γβm0

ρ0
− iqv + Γ sinc(qy0)m0

ρ0

(βm0

ρ0

)2

(−β + 2)− 2β
 (B.74)

M q
22 =− 2Γ− Γ

(
βm0

ρ0

)2

+ Γ sinc(qy0)
(βm0

ρ0

)2

(β − 2) + 2β
−Dq2 . (B.75)

We are interested in the onset of the transition where m0 is small and β = 1 + O(m0).
To leading order in m0, the matrix coefficients simplify into

M q
11 =−Dq2 +O(m0) M q

12 =− iqv +O(m0) (B.76)
M q

21 =− iqv +O(m0) M q
22 =2Γ (sinc(qy0)− 1)−Dq2 +O(m0) . (B.77)

Within this regime, the eigenvalues of the linearized dynamic (B.72) are given by

λ± = − (2Dq2 + 2Γ (1− sinc(qy0)))±
√

∆
2 , (B.78)

with the discriminant ∆ reading

∆ =
(
2Dq2 + 2Γ (1− sinc(qy0))

)2
− 4v2q2 − 4Dq2

(
Dq2 + 2Γ (1− sinc(qy0))

)
. (B.79)

An instability emerges when at least one of the eigenvalues λ± has a positive real part,
which translates into

2<(
√

∆)2 − 2<
(
2Dq2 + 2Γ (1− sinc(qy0))

)2
> 0 . (B.80)
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This condition can be simplified by noticing that

2<(
√

∆)2 − 2<
(
2Dq2 + 2Γ (1− sinc(qy0))

)2
= −a+

√
a2 + b(q) > 0 , (B.81)

where a and b reads:

a(q) =
[
2Dq2 + 2Γ(1− sinc(qy0))

]2
+ 4v2q2 + 4Dq2

[
Dq2 + 2Γ(1− sinc(qy0))

]
(B.82)

b(q)
64q2 =− Γ2 (sinc(qy0)− 1)2

[
v2 + 2DΓ (1− sinc(qy0))

]
−D2q4

[
4DΓ (1− sinc(qy0)) + v2

]
− q2DΓ (1− sinc(qy0))

[
5DΓ (1− sinc(qy0)) + 2v2

]
−D4q6 (B.83)

We remark that a(q) is a positive term and thus that the stability is determined by the
sign of b(q). All the terms in its expression (B.83) are negative; the homogeneous ordered
solution is thus always stable at onset. Our topological field theory (B.65)-(B.66) thus
predicts a continuous transition to collective motion without phase separation.

B.3.2 Renormalization of the hydrodynamics
In this appendix, we compute how Ftopo given in (3.76) is renormalized due to the addition
of the noise term in (3.78)-(3.79). To remain as general as possible, we first compute this
renormalization for a generic unconstrained m̄, which we take to be a functional of ρ
and m: m̄ = G(x, {ρ,m}). At the end of this appendix, we apply our results for the
specific case of m̄ defined by (3.75)-(3.74) and obtain expression (3.82) of main text. The
crucial assumptions that we will need are summed up in AI-AII-AIII. We first recall the
stochastic evolution of the fields

∂tρ = D∇2ρ− v∇m , ∂tm = D∇2m− v∇ρ−Ftopo(m̄,m, ρ) +
√

2σρ η . (B.84)

Following section 3.4, we perform a perturbative expansion of the fields m and ρ as

ρ =ρ0 +
√
σδρ1 + σδρ2 + ..+ , m = m0 +

√
σδm1 + σδm2 + ..+ (B.85)

where ρ0 and m0 are solutions of (B.84) with σ = 0

∂tρ0 = D∇2ρ0 − v∇m0 , (B.86)
∂tm0 =D∇2m0 − v∇ρ0 −Ftopo(m̄0,m0, ρ0) . (B.87)

Noting that m̄ is enslaved to ρ and m through m̄ = G(x, {ρ,m}), it can be expanded in
powers of σ1/2 as

m̄ =m̄0 +
√
σ

[∫ δm̄(x)
δm(z)δm1(z)dz +

∫ δm̄(x)
δρ(z) δρ1(z)dz

]
(B.88)

+ σ

[ ∫ (
1
2

δ2m̄(x)
δm(s)δm(z)δm1(s)δm1(z) + 1

2
δ2m̄(x)

δρ(s)δρ(z)δρ1(s)δρ1(z)
)
dsdz

+
∫ δ2m̄(x)
δρ(s)δm(z)δρ1(s)δm1(z)dsdz +

∫ δm̄(x)
δm(z)δm2(z)dz +

∫ δm̄(x)
δρ(z) δρ2(z)dz

]
+ ..+ .
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Inserting (B.85) and (B.88) into (B.84) and projecting on σn/2 gives the evolution equation
for δρn and δmn. For n = 1, it yields

∂tδρ1 = D∇2δρ1 − v∇δm1 (B.89)

∂tδm1 = D∇2δm1 − v∇δρ1 −
∂Ftopo

∂m
δm1 −

∂Ftopo

∂ρ
δρ1 (B.90)

− ∂Ftopo

∂m̄

[∫ δm̄(x)
δm(z)δm1(z)dz +

∫ δm̄(x)
δρ(z) δρ1(z)dz

]
+
√

2ρ0 η .

Noting that ∂ρρFtopo = ∂mmFtopo = ∂mρFtopo = 0, we obtain for n = 2

∂tδρ2 = D∇2δρ2 − v∇δm2 (B.91)

∂tδm2 = D∇2δm2 − v∇δρ2 −
∂Ftopo

∂m
δm2 −

∂Ftopo

∂ρ
δρ2 −

∂Ftopo

∂m̄
δm̄2

− 1
2
∂2Ftopo

∂2m̄

[∫ δm̄(x)
δm(z)δm1(z)dz +

∫ δm̄(x)
δρ(z) δρ1(z)dz

]2

− ∂2Ftopo

∂m̄∂m
δm1

[∫ δm̄(x)
δm(z)δm1(z)dz +

∫ δm̄(x)
δρ(z) δρ1(z)dz

]

− ∂2Ftopo

∂m̄∂ρ
δρ1

[∫ δm̄(x)
δm(z)δm1(z)dz +

∫ δm̄(x)
δρ(z) δρ1(z)dz

]

− ∂Ftopo

∂m̄

[∫ δm̄(x)
δm(z)δm2(z)dz +

∫ δm̄(x)
δρ(z) δρ2(z)dz

]

− ∂Ftopo

∂m̄

∫ (
1
2

δ2m̄(x)
δm(s)δm(z)δm1(s)δm1(z) + 1

2
δ2m̄(x)

δρ(s)δρ(z)δρ1(s)δρ1(z)
)
dsdz

− ∂Ftopo

∂m̄

∫ δ2m̄(x)
δρ(s)δm(z)δρ1(s)δm1(z)dsdz + δρ1√

2ρ0
η . (B.92)

Summing together (B.86), (B.89) multiplied by
√
σ, and (B.91) multiplied by σ gives the

stochastic evolution of ρ up to order σ. Averaging the result over the noise using Itō
prescription, we obtain the time evolution of ρ̃ = 〈ρ〉 to order σ as

∂tρ̃ = D∇2ρ̃− v∇m̃ . (B.93)

Likewise, summing (B.87), (B.90) multiplied by
√
σ, and (B.92) multiplied by σ gives

the stochastic evolution of m to order σ. Averaging the result over the noise using Itō
prescription, we obtain the time evolution of m̃ = 〈m〉 to order σ as

∂tm̃ = D∇2m̃− v∇δρ̃−Ftopo(m̃, ρ̃, ˜̄m)− σ∆Ftopo . (B.94)

In (B.94), ˜̄m is the topological field constructed with ρ̃ and m̃, ie ˜̄m = G(x, {m̃, ρ̃}), and
∆Ftopo is given by

∆Ftopo = 1
2
∂2Ftopo

∂2m̄2 C1 + ∂2Ftopo

∂m̄∂m
C2 + ∂2Ftopo

∂m̄∂ρ
C3 + ∂Ftopo

∂m̄
C4 , (B.95)
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where the Ci’s are correlators given by

C1 =
∫ δm̄(x)
δm(s)

δm̄(x)
δm(z)

[
〈δm1(s)δm1(z)〉 − 〈δm1(s)〉〈δm1(z)〉

]
dsdz

+
∫ δm̄(x)

δρ(s)
δm̄(x)
δρ(z)

[
〈δρ1(s)δρ1(z)〉 − 〈δρ1(s)〉〈δρ1(z)〉

]
dsdz

+ 2
∫ δm̄(x)

δρ(s)
δm̄(x)
δm(z)

[
〈δρ1(s)δm1(z)〉 − 〈δρ1(s)〉〈δm1(z)〉

]
dsdz (B.96)

C2 =
∫ δm̄(x)
δm(z)

[
〈δm1(z)δm1(x)〉 − 〈δm1(z)〉〈δm1(x)〉

]
dz

+
∫ δm̄(x)

δρ(z)
[
〈δρ1(z)δm1(x)〉 − 〈δρ1(z)〉〈δm1(x)〉

]
dz (B.97)

C3 =
∫ δm̄(x)
δm(z)

[
〈δm1(z)δρ1(x)〉 − 〈δm1(z)〉〈δm1(x)〉

]
dz

+
∫ δm̄(x)

δρ(z)
[
〈δρ1(z)δρ1(x)〉 − 〈δρ1(z)〉〈δρ1(x)〉

]
dz (B.98)

C4 =
∫ 1

2
δ2m̄(x)

δm(s)δm(z)
[
〈δm1(s)δm1(z)〉 − 〈δm1(s)〉〈δm1(z)〉

]
dsdz

+
∫ 1

2
δ2m̄(x)

δρ(s)δρ(z)
[
〈δρ1(s)δρ1(z)〉 − 〈δρ1(s)〉〈δρ1(z)〉

]
dsdz

+
∫ δ2m̄(x)
δρ(s)δm(z)

[
〈δρ1(s)δm1(z)〉 − 〈δρ1(s)〉〈δm1(z)〉

]
dsdz (B.99)

To simplify (B.96) to (B.99), we need to derive the correlators involving δρ1 and δm1 by
using their stochastic evolution (B.89)-(B.90). We readily find that 〈δm1〉 = 〈δρ1〉 = 0.
We now use the assumption that ρ0, m0 and m̄0 = G(x, {ρ0,m0}) can be considered
homogeneous in the dynamics of δρ1 and δm1 (see AI, AIII). Under such an assumption,
(B.89)-(B.90) becomes a linear system and its dynamic in Fourier space reads

∂t

(
δρq1
δmq

1

)
=
(
Aq11 Aq12
Aq21 Aq22

)(
δρq1
δmq

1

)
+
(

0√
2ρ0 η

q

)
, (B.100)

where ηq is the q-th Fourier mode of the Gaussian white noise, with correlations 〈ηq(t)ηq′(t′)〉 =
L−1δq+q′,0δ(t − t′). To pursue our derivation, we won’t need the exact expression of the
Aqij’s, so we just remark that they generically depend on the homogeneous fields ρ0, m0,
m̄0 as well as on the Fourier transform of the functional derivatives δm̄(x)/δρ(y) and
δm̄(x)/δm(y). The steady-state correlators of (B.100) are obtained by using Itō calculus.
They satisfy

0 =(Aq11 + Aq
′

11)〈δρq1δρq
′

1 〉+ Aq12〈δm
q
1δρ

q′

1 〉+ Aq
′

12〈δρ
q
1δm

q′

1 〉 (B.101)
0 =(Aq22 + Aq

′

11)〈δmq
1δρ

q′

1 〉+ Aq21〈δρ
q
1δρ

q′

1 〉+ Aq
′

12〈δm
q
1δm

q′

1 〉 (B.102)

0 =(Aq22 + Aq
′

22)〈δmq
1δm

q′

1 〉+ Aq21〈δρ
q
1δm

q′

1 〉+ Aq
′

21〈δm
q
1δρ

q′

1 〉+ 2ρ0

L
δq+q′,0 , (B.103)
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which can be solved as

〈δmq
1δm

q′

1 〉 =〈δmq
1δm

−q
1 〉

δq+q′,0
L

(B.104)

〈δρq1δρ
q′

1 〉 =〈δρq1δρ−q1 〉
δq+q′,0
L

(B.105)

〈δmq
1δρ

q′

1 〉 =〈δmq
1δρ
−q
1 〉

δq+q′,0
L

, (B.106)

where 〈δmq
1δm

−q
1 〉, 〈δρq1δρ−q1 〉 and 〈δmq

1δρ
−q
1 〉 are functions depending on the Aqij whose

explicit expression will not be needed. Using our convention (B.24), the Fourier develop-
ment of δm1 and δρ1 reads

δm1 =
∑
q

δmq
1e
iqx δρ1 =

∑
q

δρq1e
iqx . (B.107)

Injecting this development (B.107) into (B.96) to (B.99), and using the scalings (B.104)
to (B.106) allow us to compute the expression of the Ci’s. For C1, we obtain

C1 = 1
L

∑
q

m̄q
mm̄

−q
m 〈δm

q
1δm

−q
1 〉+ m̄q

ρm̄
−q
ρ 〈δρ

q
1δρ
−q
1 〉+ m̄q

mm̄
−q
ρ 〈δm

q
1δρ
−q
1 〉 , (B.108)

where m̄q
ρ and m̄q

m are the Fourier transforms of the functional derivatives of m̄ with
respect to ρ and m respectively

m̄q
ρ =

∫ L

0
e−iqz

δm̄

δρ
(z) dz, m̄q

m =
∫ L

0
e−iqz

δm̄

δm
(z) dz . (B.109)

For C2 and C3, we get

C2 = 1
L

∑
q

m̄q
m〈δm

q
1δm

−q
1 〉+ m̄−qρ 〈δm

q
1δρ
−q
1 〉 (B.110)

C3 = 1
L

∑
q

m̄q
ρ〈δρ

q
1δρ
−q
1 〉+ m̄q

m〈δm
q
1δρ
−q
1 〉 . (B.111)

Finally, C4 reads

C4 = 1
2L

∑
q

m̄ q,−q
m,m 〈δm

q
1δm

−q
1 〉+ m̄ q,−q

ρ,ρ 〈δρ
q
1δρ
−q
1 〉+ 2m̄ q,−q

m,ρ 〈δm
q
1δρ
−q
1 〉 , (B.112)

where m̄ q,q′
m,m, m̄ q,q′

ρ,ρ and m̄ q,q′
m,ρ are the Fourier transform of the second functional derivatives

of m̄ with respect to ρ and m

m̄ q,q′

m,m =
∫ L

0

∫ L

0
e−iqs−iq

′z δ2m̄

δmδm
(s, z) dsdz , m̄ q,q′

ρ,ρ =
∫ L

0

∫ L

0
e−iqs−iq

′z δ
2m̄

δρδρ
(s, z) dsdz

m̄ q,q′

m,ρ =
∫ L

0

∫ L

0
e−iqs−iq

′z δ
2m̄

δmδρ
(s, z) dsdz . (B.113)

The last step is to take the large system size limit L → ∞ in (B.108)-(B.110)-(B.111)-
(B.112) to obtain the Ci’s as integrals over Fourier modes q

C1 =
∫ dq

2π |m̄
q
m|2〈δm

q
1δm

−q
1 〉+ |m̄q

ρ|2〈δρ
q
1δρ
−q
1 〉+ m̄q

mm̄
−q
ρ 〈δm

q
1δρ
−q
1 〉 (B.114)

C2 =
∫ dq

2πm̄
q
m〈δm

q
1δm

−q
1 〉+ m̄−qρ 〈δm

q
1δρ
−q
1 〉 (B.115)

C3 =
∫ dq

2πm̄
q
ρ〈δρ

q
1δρ
−q
1 〉+ m̄q

m〈δm
q
1δρ
−q
1 〉 (B.116)

C4 =
∫ dq

4πm̄
q,−q
m,m 〈δm

q
1δm

−q
1 〉+ m̄ q,−q

ρ,ρ 〈δρ
q
1δρ
−q
1 〉+ 2m̄ q,−q

m,ρ 〈δm
q
1δρ
−q
1 〉 . (B.117)
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So far, the correction ∆Ftopo in (B.95) together with the expression of the Ci’s in (B.114)
to (B.117) is valid for any topological field m̄ = G(x, {ρ,m}) where G is a functional.
We now apply this result for the specific case of the topological field m̄ given by (3.75)
and (3.74) in main text. For homogeneous ρ0 and m0, we can compute the functional
derivatives of m̄ =

∫ x+y
x−y m(z)dz/k as

δm̄(x)
δm(z) =Θ(x+ y0 − z)Θ(z − x+ y0)

2y0ρ0
,

δ2m̄(x)
δm(z)δm(s) = 0 , (B.118)

δm̄(x)
δρ(z) =− m0Θ(x+ y0 − z)Θ(z − x+ y0)

2y0ρ2
0

,
δ2m̄(x)

δρ(z)δρ(s) = 0 , (B.119)

δ2m̄(x)
δρ(z)δm(s) =− Θ(x+ y0 − z)Θ(z − x+ y0)

4y0ρ2
0

[
δ(s− x− y0) + δ(s− x+ y0)

]
, (B.120)

where Θ(u) is the Heaviside function which is equal to 0 if u < 0 or equal to 1 if u > 0.
Going into Fourier space, we obtain

m̄q
m = −sinc(qy0)

ρ0
, m̄q

ρ = m0

ρ0
sinc(qy0) , (B.121)

m̄ q,q′

ρ,ρ = m̄ q,q′

m,m = 0 , m̄ q,q′

ρ,m = sinc(qy0)
ρ0

cos(q′y0) . (B.122)

To compute the Ci’s for the topological field m̄ studied in section 3.5.1, we still need the
expression of the correlators of the fields δρ1 and δm1. For the specific definition of m̄ at
hand, the matrix coefficients Aqij of the linearized dynamics (B.100) are equal to the M q

ij

defined in (B.73) to (B.75) and we get

∂t

(
δρq1
δmq

1

)
=
(
M q

11 M q
12

M q
21 M q

22

)(
δρq1
δmq

1

)
+
(

0√
2ρ0 η

q

)
. (B.123)

Using the system (B.101) to (B.103) with Aqij = M q
ij, we obtain the expressions of the

steady-state correlators in Fourier space to first order in m0

〈δmq
1δm

−q
1 〉 =ρ0

2DΓ− 2DΓβ sinc(qy0) + 2D2q2 + v2

2(Γ− Γβ sinc(qy0) +Dq2) (2DΓ− 2DΓβ sinc(qy0) +D2q2 + v2) +O
(
m2

0

)
(B.124)

〈δρq1δρ
−q
1 〉 = ρ0v

2

2(Γ− Γβ sinc(qy0) +Dq2) (2DΓ− 2DΓβ sinc(qy0) +D2q2 + v2) +O
(
m2

0

)
(B.125)

〈δmq
1δρ
−q
1 〉 = iqDvρ0

2(Γ− Γβ sinc(qy0) +Dq2) (2DΓ− 2DΓβ sinc(qy0) +D2q2 + v2)

+ βv2Γ (1− sinc (qy0))m0

2 (Γ− Γβ sinc (qy0) +Dq2) 2 (2DΓ− 2DΓβ sinc (qy0) +D2q2 + v2) +O
(
m2

0

)
.

(B.126)

We now have all the ingredients needed to compute ∆Ftopo in (B.95). First, we have to
inject the correlators (B.124) to (B.126) and the functional derivatives (B.121) to (B.122)
into the expressions of the Ci’s in (B.114) to (B.117). Once we have the Ci’s, we just
plug them back into the expression (B.95) for ∆Ftopo. A lengthy but straightforward
computation then gives

∆Ftopo = m0

y0ρ0

[
2β(c1 − c4) + β2(1− β)c2 + 2β2c3

]
+O(m2

0) . (B.127)
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Where c1, c2, c3, and c4 are given by

c1 =
∫ dq̃

2π
v2 sinc(q̃)

2
(
1− β sinc(q̃) + D

Γy2
0
q̃2
) (

2DΓ− 2DΓβ sinc(q̃) +D2 q̃2

y2
0

+ v2
) (B.128)

c2 =
∫ dq̃

2π
sinc2(q̃)

[
2DΓ− 2DΓβ sinc(q̃) + 2D2 q̃2

y2
0

+ v2
]

2
(
1− β sinc(q̃) + D

Γy2
0
q̃2
) (

2DΓ− 2DΓβ sinc(q̃) +D2 q̃2

y2
0

+ v2
) (B.129)

c3 =
∫ dq̃

2π
sinc(q̃)

[
2DΓ− 2DΓβ sinc(q̃) + 2D2 q̃2

y2
0

+ v2
]

2
(
1− β sinc(q̃) + D

Γy2
0
q̃2
) (

2DΓ− 2DΓβ sinc(q̃) +D2 q̃2

y2
0

+ v2
) (B.130)

c4 =
∫ dq̃

2π
βv2 (Γ− Γ sinc (q̃)) sinc(q̃) (1− cos(q̃))

2
(
1− β sinc (q̃) + D

Γy2
0
q̃2
)2 (

2DΓ− 2DΓβ sinc (q̃) +D2 q̃2

y2
0

+ v2
) . (B.131)

Note that all the ci’s are dimensionless and only depends on three independent parame-
ters: β, ΓD/v2, and Γk/(vρ0). Consequently, they all assume the scaling form

ci = c̄i
(
β, Γk

vρ0
, ΓD
v2

)
. (B.132)

For example, we deduce from (B.128) the expression for c̄1

c̄1(µ, ν, ω) =
∫ du

2π
sinc(u)(

1− µ sinc(u) + 4u2 ω2

ν2

) (
1 + 2ω − 2ωµ sinc(u) + 4u2 ω2

ν2

) . (B.133)

Using the scaling forms of (B.132) in (B.127), ∆Ftopo can be cast into

∆Ftopo = 2m0

k
g

(
β,

Γk
vρ0

,
ΓD
v2

)
+O(m2

0) . (B.134)

where g, which appears in expression (3.82) of the main text, is given by

g

(
β,

Γk
vρ0

,
ΓD
v2

)
= 2β(c̄1 − c̄4) + β2(1− β)c̄2 + 2β2c̄3 . (B.135)

Note that the convergence of the integrals c1, c2, c3 and c4 is ensured by assumption AII
which is verified in the high temperature phase when β < 1.

Importantly, the dependence of g on ρ0 cannot be eliminated, so that the renormal-
ization of the critical-temperature indeed leads to a density-dependent onset of order.
Using the fact that β < 1, c1 > c4, and that c1, c2, c3 are positive, we deduce that g is
a density-dependent positive function in the high temperature phase. Consequently, the
incorporation of microscopic noise should lower the critical temperature.

B.4 Extension to generic alignment
This appendix is devoted to the computation of ∆Ftopo in (3.88) for a generic functional
alignment m̄ as in (3.85). It is not self-contained and as such we advise a previous reading
of appendix B.3.2.

As shown in (B.95) of appendix B.3.2, ∆Ftopo crucially depends on the functional
derivatives of m̄ with respect to ρ and m through the Ci’s whose expressions are given
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in (B.96) to (B.99). Given δm̄/δρ and δm̄/δm, we can derive the matrix coefficients Aqij
of (B.100), which in turn yields the correlators 〈δρq1δρ−q1 〉, 〈δρq1δm−q1 〉 and 〈δmq

1δm
−q
1 〉 in

(B.104) to (B.106). These correlators, together with the second functional derivatives
of m̄, allow us to compute the Ci’s through the use of (B.114) to (B.117). Thus, if the
functional derivatives of m̄ are constrained to assume some scaling law, such a scaling
will also be reflected in ∆Ftopo.

The first and second functional derivatives of m̄ at ρ0, m0 are defined as

m̄(x) =G(x, {ρ0,m0}) +
∫ L

0

[
δm̄(x)
δρ(z) δρ(z) + δm̄(x)

δm(z)δm(z)
]
dz

+
∫ L

0

∫ L

0

1
2

[
δ2m̄(x)

δρ(s)δρ(z)δρ(s)δρ(z) + δ2m̄(x)
δm(s)δm(z)δm(s)δm(z)

]
dsdz

+
∫ L

0

∫ L

0

δ2m̄(x)
δρ(s)δm(z)δρ(s)δm(z)dsdz + o(δρ2, δm2, δρδm) . (B.136)

Because m̄ is dimensionless, we read on the above equation that all its functional deriva-
tives are dimensionless as well. It entails that, in Fourier space, the first order functional
derivatives of m̄ scale as lengths [L] while the second order ones scale as lengths squared
[L2]:

m̄q
ρ =

∫ L

0
e−iqz

δm̄

δρ
(z) dz ∝ [L], m̄q

m =
∫ L

0
e−iqz

δm̄

δm
(z) dz ∝ [L] (B.137)

m̄ q,q′

m,m =
∫ L

0

∫ L

0
e−iqs−iq

′z δ2m̄

δmδm
(s, z) dsdz ∝ [L]2 (B.138)

m̄ q,q′

ρ,ρ =
∫ L

0

∫ L

0
e−iqs−iq

′z δ
2m̄

δρδρ
(s, z) dsdz ∝ [L]2 (B.139)

m̄ q,q′

m,ρ =
∫ L

0

∫ L

0
e−iqs−iq

′z δ
2m̄

δmδρ
(s, z) dsdz ∝ [L]2 . (B.140)

We expect m̄q
ρ, m̄q

m, m̄ q,−q
ρ,ρ , m̄ q,−q

m,m , m̄ q,−q
m,ρ to depend on ρ0, m0 and on the wavevector q.

Using assumptions AI and AIII, we suppose that ρ0, m0, and m̄0 = G(x, {m0, ρ0}) remain
homogeneous in space throughout the derivation. As m̄ is dimensionless, m̄0 will depend
on the ratio m0/ρ0 by dimensional analysis. Taking into account all these dependences,
m̄q
ρ, m̄q

m, m̄ q,−q
ρ,ρ , m̄ q,−q

m,m , m̄ q,−q
m,ρ , and m̄0 will have the following scaling forms

m̄q
ρ = 1

ρ0
f̄ρ

(
m0

ρ0
,
q

ρ0
, . . .

)
m̄q
m = 1

ρ0
f̄m

(
m0

ρ0
,
q

ρ0
, . . .

)

m̄ q,−q
ρ,ρ = 1

ρ2
0
f̄ρρ

(
m0

ρ0
,
q

ρ0
, . . .

)
m̄ q,−q
m,m = 1

ρ2
0
f̄mm

(
m0

ρ0
,
q

ρ0
, . . .

)

m̄ q,−q
m,ρ = 1

ρ2
0
f̄mρ

(
m0

ρ0
,
q

ρ0
, . . .

)
m̄0 =f̄

(
m0

ρ0
, . . .

)
, (B.141)

where the dots refer to other dimensionless parameters entering in the definition of m̄
(e.g., the number k of nearest neighbours) and are omitted for clarity from now on. Using
(B.141), the Aqij involved in the linearized hydrodynamics (B.100) for δρ1 and δm1 are
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generically given by

Aq11 =−Dq2 , Aq12 = −ivq (B.142)

Aq21 =− iqv + 2Γβf̄
(
m0
ρ0

) [
1 + β2

6 f̄
(
m0
ρ0

)2
]

+ 2Γ
[
β

(
1 + β2

2 f̄
(
m0
ρ0

))
− m0

ρ0
β2f̄

(
m0
ρ0

)]
f̄ρ
(
m0
ρ0
, q
ρ0

)
(B.143)

Aq22 =− 2Γ
(

1 + β2

2 f̄
(
m0
ρ0

)2
)
−Dq2

+ 2Γ
[
β

(
1 + β2

2 f̄
(
m0
ρ0

))
− m0

ρ0
β2f̄

(
m0
ρ0

)]
f̄m
(
m0
ρ0
, q
ρ0

)
. (B.144)

From (B.142) to (B.144), we observe that the Aqij’s all follow the generic scaling form

Aqij = Γ ḡij

(
ΓD
v2 ,

Γ
vρ0

,
q

ρ0
,
m0

ρ0
, β

)
(B.145)

Because the system (B.101) to (B.103) only involves the Aqij’s and ρ0 as coefficients, its
solution will assume a scaling form similar to (B.145): a prefactor depending on ρ0 and Γ
multiplied by a function depending on the dimensionless variables entering in ḡij. Noting
that 〈δmq

1δm
−q
1 〉, 〈δρq1δρ−q1 〉 and 〈δmq

1δρ
−q
1 〉 in (B.104) to (B.106) scale as [T ]/[L], this

prefactor must be ρ0/Γ and we finally obtain

〈δρq1δρ
−q
1 〉 =ρ0

Γ ḡ1

(
ΓD
v2 ,

Γ
vρ0

,
q

ρ0
,
m0

ρ0
, β

)
, 〈δmq

1δm
−q
1 〉 =ρ0

Γ ḡ2

(
ΓD
v2 ,

Γ
vρ0

,
q

ρ0
,
m0

ρ0
, β

)
(B.146)

〈δmq
1δρ
−q
1 〉 =ρ0

Γ ḡ3

(
ΓD
v2 ,

Γ
vρ0

,
q

ρ0
,
m0

ρ0
, β

)
. (B.147)

Injecting (B.146)-(B.147) together with (B.141) into (B.114)-(B.117) yields the Ci’s as

C1 =
∫ dq

2π
1
ρ0Γ h̄1

(
ΓD
v2 ,

Γ
vρ0

,
q

ρ0
,
m0

ρ0
, β

)
C2 =

∫ dq

2π
1
Γ h̄2

(
ΓD
v2 ,

Γ
vρ0

,
q

ρ0
,
m0

ρ0
, β

)
(B.148)

C3 =
∫ dq

2π
1
Γ h̄3

(
ΓD
v2 ,

Γ
vρ0

,
q

ρ0
,
m0

ρ0
, β

)
C4 =

∫ dq

2π
1
ρ0Γ h̄4

(
ΓD
v2 ,

Γ
vρ0

,
q

ρ0
,
m0

ρ0
, β

)
,

(B.149)

where the h̄i’s are given by

h̄1 =|f̄m|2 ḡ2 + |f̄ρ|2 ḡ1 + f̄mf̄
?
ρ ḡ3 , h̄2 =f̄m ḡ2 + f̄ ?ρ ḡ3 , (B.150)

h̄3 =f̄ρ ḡ1 + f̄m ḡ3 , h̄4 =f̄mm ḡ2 + f̄ρρ ḡ1 + f̄mρ ḡ3 . (B.151)

Making the integrals dimensionless in (B.148)-(B.149) by changing variable to q̃ = q/ρ0,
we obtain the final scaling form of the Ci’s as

C1 = 1
ΓH̄1

(
ΓD
v2 ,

Γ
vρ0

,
m0

ρ0
, β

)
, C2 =ρ0

Γ H̄2

(
ΓD
v2 ,

Γ
vρ0

,
m0

ρ0
, β

)
, (B.152)

C3 =ρ0

Γ H̄3

(
ΓD
v2 ,

Γ
vρ0

,
m0

ρ0
, β

)
, C4 = 1

ΓH̄4

(
ΓD
v2 ,

Γ
vρ0

,
m0

ρ0
, β

)
. (B.153)



B.5. Renormalization for fully connected alignment 131

Finally plugging the above scalings into the expression of ∆Ftopo (B.95), we obtain

∆Ftopo =
(
β2m0 − β3ρ0m̄0

)
H̄1 + 2β2m̄0ρ0H̄2 −

(
2β + β3m̄2

0

)
ρ0H̄3

+
(
2β2m̄0m0 − β3m̄2

0ρ0 − 2βρ0
)
H̄4 , (B.154)

which can be cast into the following scaling form

∆Ftopo = ρ0F̄1

(
ΓD
v2 ,

Γ
vρ0

,
m0

ρ0
, β

)
+m0F̄2

(
ΓD
v2 ,

Γ
vρ0

,
m0

ρ0
, β

)
. (B.155)

As we are interested in the renormalization of the linear Landau term, we can taylor
expand ∆Ftopo up to order m0

∆Ftopo =ρ0F̄1

(
ΓD
v2 ,

Γ
vρ0

, 0, β
)

+m0 F̄ (0,0,1,0)
1

(
ΓD
v2 ,

Γ
vρ0

, 0, β
)

+m0 F̄2

(
ΓD
v2 ,

Γ
vρ0

, 0, β
)

+O(m2
0) (B.156)

The first term on the right hand side of (B.156) is unphysical as it breaks the parity
m0 → −m0 in the Landau potential. Its presence inconsistently implies that a nonzero
magnetization would subsist even in the very high temperature regime: we thus set this
term to zero and obtain the final scaling form of ∆Ftopo as

∆Ftopo = m0 F̄
(

ΓD
v2 ,

Γ
vρ0

, β

)
+O(m2

0) , (B.157)

where F̄(u, v, w) = F̄ (0,0,1,0)
1 (u, v, 0, w) + F̄2(u, v, 0, w). Without changing the zero-th

order in the noise strength σ, we can replace m0 and ρ0 by m̃ = 〈m〉 and ρ̃ = 〈ρ〉 in
(B.157). This substitution gives back (3.89) of main text:

∆Ftopo = m̃ F̄
(

ΓD
v2 ,

Γ
vρ̃
, β

)
+O(m̃2) , (B.158)

B.5 Renormalization for fully connected alignment
This appendix is devoted to the computation of ∆Ftopo in (3.88) for a fully connected
AIM. It is not self-contained and as such we advise a previous reading of appendix B.3.2
and B.4. We first recall the definition (3.90) of the alignment m̄ for the fully connected
AIM

m̄ =
∫ L

0 m(z)dz
N

; where N =
∫ L

0
ρ(z)dz . (B.159)

For this specific choice of m̄, the following simplifications occur in the Fourier transforms
of the functional derivatives defined in (B.137) to (B.140)

m̄0 =m0

ρ0
, m̄q

m = 1
ρ0
δq,0 , m̄q

ρ = m̄ q,q′

ρ,ρ = m̄ q,q′

m,m = m̄ q,q′

m,m = 0 . (B.160)

Using the discrete expressions for the Ci’s in (B.108), (B.110), (B.111) and (B.112) to-
gether with (B.160), we obtain for the fully-connected version

C1 = 1
Nρ0
〈δm0

1δm
−0
1 〉, C2 = 1

N
〈δm0

1δm
−0
1 〉, C3 = 1

N
〈δm0

1δρ
−0
1 〉, C4 = 0 . (B.161)
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Note that to obtain (B.161), we have used that N = Lρ0. As mass is conserved in
the system, we have that δρ0

1 ∝
∫ L

0 δρ1(z)dz = 0. Using (B.106), it first entails that
〈δm0

1δρ
−0
1 〉 = 0 and we thus further simplify the Ci’s as

C1 = 1
Nρ0
〈δm0

1δm
−0
1 〉, C2 = 1

N
〈δm0

1δm
−0
1 〉, C3 = C4 = 0 . (B.162)

Mass conservation also entails, using (B.100), that δm0
1 evolves according to the following

Langevin equation
˙δm0

1 = A0
22δm

0
1 +
√

2ρ0 η
0 , (B.163)

where η0 is a Gaussian white noise such that 〈η0(t)η0(t′)〉 = L−1δ(t− t′) and A0
22 is given

by (B.144) as

A0
22 =− 2Γ

(
1 + β2

2
m2

0
ρ2

0

)
+ 2Γ

[
β

(
1 + β2

2
m0

ρ0

)
− β2m

2
0

ρ2
0

]
. (B.164)

Using Itō calculus on (B.163), and taking care of the factor L−1 in (B.104), we obtain

〈δm0
1δm

−0
1 〉 = ρ0

2Γ
[
1 + β2

2
m2

0
ρ2

0
− β

(
1 + β2

2
m0
ρ0

)
+ β2m

3
0

ρ3
0

] . (B.165)

Expanding 〈δm0
1δm

−0
1 〉 to first order in m0, we obtain

〈δm0
1δm

−0
1 〉 = ρ0

2Γ(1− β)

(
1 + β2

2(1− β)
m0

ρ0
+O(m2

0)
)

(B.166)

Inserting the above expansion into (B.162), and then injecting the resulting Ci’s into
(B.95) yields ∆Ftopo for the fully connected model

∆Ftopo = m0

N

(
β2

2 + β2

1− β

)
+O(m2

0) . (B.167)

Without changing the leading order in the noise strength σ of ∆Ftopo, we can replace m0
and ρ0 by m̃ = 〈m〉 and ρ̃ = 〈ρ〉 in (B.167). This substitution gives back (3.91) of main
text

∆Ftopo = m̃

N

(
β2

2 + β2

1− β

)
+O(m̃2) . (B.168)

B.6 Renormalization of mean-field hydrodynamics of
Voronoi-based Vicsek model

This appendix is devoted to the derivation of the renormalized hydrodynamics (3.102)-
(3.103) of the main text. Following the scheme developed in section 3.4, we call ρ0 andW0
the mean-field solutions of (3.100)-(3.101) without noise (ie with σ = 0) and introduce
the perturbative series

ρ = ρ0 +
√
σ δρ1 + σδρ2 + .. , W = W0 +

√
σ δW1 + σδW2 + .. . (B.169)
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Injecting (B.169) into (3.100)-(3.101) and equating terms of order σk/2 yields the evolution
equation for δρk and δWk. Further using the definition Ftt = αW − γW 3/ρ2, we obtain,
for k = 1

∂tδρ1 =− v∂xδW1 + ∂x
(√

2ερ0η1
)

(B.170)

∂tδW1 =D∂xxδW1 −
v

2∂xδρ1 −
λ

ρ0
W0∂xW1 −

λ

ρ0
W1∂xW0 + λ

ρ2
0
δρ1W0∂xW0

+ ∂Ftt
∂ρ

δρ1 + ∂Ftt
∂W

δW1 +
√

2ρ0 η2 . (B.171)

while for k = 2 we get

∂tδρ2 =− v∂xδW2 + ∂x

(√
εδρ1√
2ρ0

η1

)
(B.172)

∂tδW2 =D∂xxδW2 −
v

2∂xδρ2 + ∂Ftt
∂ρ

δρ2 + ∂Ftt
∂W

δW2 + ∂2Ftt
∂W 2

δW 2
1

2 + ∂2Ftt
∂ρ2

δρ2
1

2 + ∂2Ftt
∂W∂ρ

δW1δρ1

− λ

ρ0
δW1∂xδW1 −

λ

ρ3
0
W0∂xW0δρ

2
1 −

λ

ρ0
δW2∂xW0 −

λ

ρ0
W0∂xδW2 + λ

ρ2
0
δρ1δW1∂xW0

+ λ

ρ2
0
W0δρ1∂xδW1 + λ

ρ2
0
δρ2W0∂xW0 + δρ1√

2ρ0
η2 , (B.173)

Averaging (B.170)-(B.171) over the noise with Itō prescription gives

∂t〈δρ1〉 =− v∂x〈δW1〉 (B.174)

∂t〈δW1〉 =D∂xx〈δW1〉 −
v

2∂x〈δρ1〉 −
λ

ρ0
W0∂x〈W1〉 −

λ

ρ0
〈W1〉∂xW0 + λ

ρ2
0
〈δρ1〉W0∂xW0

+ ∂Ftt
∂ρ
〈δρ1〉+ ∂Ftt

∂W
〈δW1〉 . (B.175)

Doing likewise for (B.172)-(B.173) yields

∂t〈δρ2〉 =− v∂x〈δW2〉 (B.176)

∂t〈δW2〉 =D∂xx〈δW2〉 −
v

2∂x〈δρ2〉+ ∂Ftt
∂ρ
〈δρ2〉+ ∂Ftt

∂W
〈δW2〉+ ∂2Ftt

∂W 2
〈δW 2

1 〉
2 + ∂2Ftt

∂ρ2
〈δρ2

1〉
2

+ ∂2Ftt
∂W∂ρ

〈δW1δρ1〉 −
λ

ρ0
〈δW1∂xδW1〉 −

λ

ρ3
0
W0∂xW0〈δρ2

1〉 −
λ

ρ0
〈δW2〉∂xW0

− λ

ρ0
W0∂x〈δW2〉+ λ

ρ2
0
〈δρ1δW1〉∂xW0 + λ

ρ2
0
W0〈δρ1∂xδW1〉+ λ

ρ2
0
〈δρ2〉W0∂xW0 ,

(B.177)

Summing together (3.98),
√
σ times (B.174), and σ times (B.176) gives the evolution of

ρ̃ up to order σ

∂tρ̃ = −v∂xW̃ , (B.178)
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while adding (3.99),
√
σ times (B.175), and σ times (B.177) yields the evolution of m̃ up

to order σ

∂tW̃ =D∂xxW̃ −
λ

ρ̃
W̃∂xW̃ −

v

2∂xρ̃+ αW̃ − γ

ρ̃2 W̃
3 + Ftt(ρ̃, W̃ ) + σ

[
∂2Ftt
∂W 2

(
〈δW 2

1 〉 − 〈δW1〉2

2

)

+ ∂2Ftt
∂ρ2

(
〈δρ2

1〉 − 〈δρ1〉2

2

)
+ ∂2Ftt
∂W∂ρ

(〈δm1δρ1〉 − 〈δW1〉〈δρ1〉)

− λ

ρ0
(〈δW1∂xδW1〉 − 〈δW1〉∂x〈δW1〉)−

λ

ρ3
0
W0∂xW0

(
〈δρ2

1〉 − 〈δρ1〉2
)

(B.179)

+ λ

ρ2
0
∂xW0 (〈δρ1δW1〉 − 〈δρ1〉〈δW1〉) + λ

ρ2
0
W0 (〈δρ1∂xδW1〉 − 〈δρ1〉∂x〈W1〉)

]
.

The terms proportional to ∂xW0 in (B.179) can only renormalize λ, not Ftt so that we
set them to zero and focus on computing

∆Ftt =∂
2Ftt
∂W 2

(
〈δW 2

1 〉 − 〈δW1〉2

2

)
+ ∂2Ftt

∂ρ2

(
〈δρ2

1〉 − 〈δρ1〉2

2

)

+ ∂2Ftt
∂W∂ρ

(〈δm1δρ1〉 − 〈δW1〉〈δρ1〉)−
λ

ρ0
(〈δW1∂xδW1〉 − 〈δW1〉∂x〈δW1〉)

+ λ

ρ2
0
W0 (〈δρ1∂xδW1〉 − 〈δρ1〉∂x〈W1〉) . (B.180)

As we are solely interested in the renormalization of α, we only have to derive the corre-
lators involving δρ1 and δW1 in ∆Ftt to order W0. To perform this derivation, similarly
to AI, we have to assume that δρ1 and δW1 are fast mode varying on lengthscales much
smaller than those of ρ0 andW0. Under this assumption, ρ0(x, t),W0(x, t) and ∂xW0(x, t)
entering in the linearized evolution (B.170)-(B.171) for δρ1 and δW1 can be considered as
constants. This adiabatic approximation allows us to compute the correlators in terms
of ρ0, W0 and ∂xW0 as constants and to re-establish their dependency on x and t a pos-
teriori. Note that any dependency of the correlators on ∂xW0 will renormalize λ, not
α. Thus, to simplify the derivation of α̂ and get rid of any dependency on ∂xW0 in the
correlators, we set ∂xW0 = 0 in the linearized evolution (B.170)-(B.171)

∂tδρ1 =− v∂xδW1 + ∂x
(√

2ερ0η1
)

(B.181)

∂tδW1 =D∂xxδW1 −
v

2∂xδρ1 −
λ

ρ0
W0∂xW1 + ∂Ftt

∂ρ
δρ1 + ∂Ftt

∂W
δW1 +

√
2ρ0 η2 . (B.182)

Multiplying (B.181) and (B.182) by eiqx/L and integrating over x yields the time-evolution
of the q-th Fourier modes

∂t

(
δρq1
δW q

1

)
=
(
T q11 T q12
T q21 T q22

)(
δρq1
δW q

1

)
+
(√

2ερ0 iq η
q
1√

2ρ0 η
q
2

)
, (B.183)

where the convention for δρq1 and δW q
1 is given in (B.24). Note that ηq1 and ηq2 are the q-th

Fourier modes of the two uncorrelated Gaussian white noises η1 and η2. Their correlations
reads 〈ηqkη

q′

l 〉 = L−1δk,lδ(t− t′)δq+q′,0. Finally, the matrix coefficients T qkl are given by

T q11 = 0 , T q12 =− ivq , T q21 =− iq v2 + 2γW
3
0

ρ3
0
, T q22 =− λiqW0

ρ0
−Dq2 + α− 3γW

2
0

ρ2
0
.

(B.184)
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To compute the correlators involved in ∆Ftt, we use Itō calculus on the stochastic system
(B.183) to get the following closed system of equations

d

dt
〈δρq1δρ

q′

1 〉 =(T q11 + T q
′

11)〈δρq1δρq
′

1 〉+ T q12〈δW
q
1 δρ

q′

1 〉+ T q
′

12〈δρ
q
1δW

q′

1 〉 −
2ερ0q

2

L
δq+q′,0 = 0

(B.185)
d

dt
〈δW q

1 δρ
q′

1 〉 =(T q22 + T q
′

11)〈δW q
1 δρ

q′

1 〉+ T q21〈δρ
q
1δρ

q′

1 〉+ T q
′

12〈δW
q
1 δW

q′

1 〉 = 0 (B.186)
d

dt
〈δW q

1 δW
q′

1 〉 =(T q22 + T q
′

22)〈δW q
1 δW

q′

1 〉+ T q21〈δρ
q
1δW

q′

1 〉+ T q
′

21〈δW
q
1 δρ

q′

1 〉+ 2ρ0

L
δq+q′,0 = 0 ,

(B.187)
where the last equality once again stems from working in the steady state. Inverting this
system yields

〈δW q
1 δW

q′

1 〉 =gww(q)δq+q
′,0

L
, 〈δρq1δρ

q′

1 〉 =gρρ(q)
δq+q′,0
L

, 〈δW q
1 δρ

q′

1 〉 =gwρ(q)
δq+q′,0
L

,

(B.188)
where, to first order in W0, the functions gww(q), gρρ(q) and gwρ(q) are given by

gww(q) = ρ0

2D

[
−ε+ 2D − εα

Dq2 − α

]
+O

(
W 2

0

)
(B.189)

gρρ(q) =ρ0

D

[
−2D

2q2ε

v2 + 2Dεα
v2 − ε+ 2D − αε

Dq2 − α

]
+O

(
W 2

0

)
(B.190)

gwρ(q) = ε

Dv

[
iqDρ0 +W0λ+W0

λα

Dq2 − α

]
+O

(
W 2

0

)
. (B.191)

At this point we note that gww(q), gρρ(q) and gwρ(q) contains a polynomial part and a
rational part in the wave-vector q. Upon Fourier transforming back in real space using
(B.25), these polynomial parts will yield terms proportional to δ(x− y) in the two-point
functions 〈δρ1(x)δρ1(y)〉, 〈δW1(x)δW1(y)〉 and 〈δW1(x)δρ1(y)〉. These delta peaks are
unphysical and to regularize the correlators taken at x = y we hereafter neglect the
polynomial parts to consider only that

gww(q) = ρ0

2D
2D − εα
Dq2 − α

, gρρ(q) =ρ0

D

2D − αε
Dq2 − α

, gwρ(q) =εW0

Dv

λα

Dq2 − α
. (B.192)

We note that we can integrate gww(q), gρρ(q) and gwρ(q) over q only if α < 0, which means
that we have to restrict our study to the high temperature phase where such a condition
is respected (this is equivalent to assumption AII). We finally obtain

〈δρ2
1〉 =

∫ dq

2πgρρ(q) = ρ0(2D − αε)
2D

√
D|α|

, 〈δW 2
1 〉 =

∫ dq

2πgww(q) = ρ0(2D − αε)
4D

√
D|α|

〈δW1δρ1〉 =
∫ dq

2πgwρ(q) = W0
ελα

2Dv
√
D|α|

, 〈δW1∂xδW1〉 =
∫ dq

2π iqgww(q) = 0 .

(B.193)
Injecting the above expression of the correlators in (B.180) yields the final expression for
∆Ftt as

∆Ftt = 1
2
∂2Ftt
∂W 2 〈δW

2
1 〉+O(W 2

0 ) = −3γ
ρ0

2D − αε
4D

√
D|α|

W0 +O(W 2
0 ) . (B.194)
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We readily deduce from the above expression the formula (3.104) of main text

α̂ = α− σ3γ
ρ̃

2D − αε
4D

√
D|α|

(B.195)



C. Lattice gas model for active solid-
ification

C.1 Derivation of the hydrodynamic equations
In this appendix, we derive the hydrodynamic equations (4.34) and (4.35) of the main
text. To this aim, we follow and adapt [148, 172–174]. We consider a lattice with L
different sites and a discretized time tj with j ∈ {1, .., N}. In a time dt = tj+1 − tj, a
unique spin makes one of the three moves described in RI, RII and RIII. A trajectory of
the spins is completely determined by the set {η} containing all the η±i (tj)’s

{η} =
{
η±i (tj) for i ∈ {1, .., L}, j ∈ {1, .., N}

}
. (C.1)

More particularly, at time tj, a configuration of the spins is entirely described by the set
{ηj} defined as

{ηj} =
{
η±i (tj) for i ∈ {1, .., L}

}
. (C.2)

Let us define J±i (tj) as the variation of the number of ± spins at site i between time tj
and tj+1. For a fixed trajectory of the spins, we have J±i (tj) = η±i (tj+1) − η±i (tj). Note
that because a unique spin moves during dt, each J±i (tj) takes values in {−1, 0, 1} and
only two of them are nonzero at the same time tj.

For example, when a spin + at site i hops to the right at time tj, we have J+
i (tj) = −1

and J+
i+1(tj) = 1 while all other J±k (tj) are zero. Let us finally introduce the set {J}

containing all the J±i (tj)’s

{J} =
{
J±i (tj) for i ∈ {1, .., L}, j ∈ {1, .., N}

}
, (C.3)

and the set {J j} containing the J±i (tj)’s at a given time

{J j} =
{
J±i (tj) for i ∈ {1, .., L}

}
. (C.4)

We start by establishing a path integral formulation for the probability P [{η}] to observe
a given trajectory {η} of the spins. Using a standard path integral formalism for on-lattice
particle models [172,173], we obtain

P [{η}] =
〈 L∏
i=1

N∏
j=1

δ
(
η+
i (tj+1)− η+

i (tj)− J+
i (tj)

)
δ
(
η−i (tj+1)− η−i (tj)− J−i (tj)

) 〉
{J}

,

(C.5)
where 〈·〉{J} indicates averaging over all the configurations in {J}. Note that in (C.5),
the η+

i (tj)’s and η−i (tj)’s correspond to the fixed trajectory {η} while the J±i (tj)’s are
stochastic variables over which we average. Using the integral expression of the Dirac
function δ(s) =

∫
exp(isŝ)dŝ/(2π) into (C.5), we introduce the fields η̂+

i (tj) and η̂−i (tj)
which are conjugated to η+

i (tj) and η−i (tj), respectively. We obtain

P [{η}] =
∫ N∏

j=1

[
L∏
i=1

[
dη̂+

i (tj)dη̂−i (tj)eη̂
+
i (tj)[η+

i (tj+1)−η+
i (tj)]eη̂

−
i (tj)[η−i (tj+1)−η−i (tj)]

]
〈 L∏
i=1

[
e−η̂

+
i (tj)J+

i (tj)−η̂−i (tj)J−i (tj)
] 〉
{Jj}

]
, (C.6)
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where 〈·〉{Jj} is the average over all configurations C in {J j}.
Denoting f(C) = ∏L

i=1 e
−η̂+

i (tj)J+
i (tj)−η̂−i (tj)J−i (tj), we thus have

〈
L∏
i=1

[
e−η̂

+
i (tj)J+

i (tj)−η̂−i (tj)J−i (tj)
]
〉{Jj} =

∑
C∈{Jj}

f(C)P
(
C|{ηj}

)
, (C.7)

with P (C|{ηj}) the probability to observe the set of configuration C given the positions
of the spins {ηj} at the previous time tj. We now separate the possible configurations C
in {J j} according to the microscopic move they relate to. We define the subset N j

d , N
j
h ,

and N j
s of {J j} as

N j
d =

{
J±i (tj) for i ∈ {1, .., L} generated by a diffusive move

}
(C.8)

N j
h =

{
J±i (tj) for i ∈ {1, .., L} generated by a hopping move

}
(C.9)

N j
s =

{
J±i (tj) for i ∈ {1, .., L} generated by a flipping move

}
. (C.10)

We further define C0 as the configuration where all the J±i (tj) for i ∈ {1, .., L} vanish: it
corresponds to the case when no move is performed at time tj. We can now dispatch the
sum over the configurations in (C.7) on the subsets N j

d , N
j
h , N j

s and obtain

〈f〉{Jj} =f(C0)P
(
C0|{ηj}

)
+

∑
C∈N j

d

f(C)P
(
C|{ηj}

)
+

∑
C∈N j

h

f(C)P
(
C|{ηj}

)
+

∑
C∈N js

f(C)P
(
C|{ηj}

)
. (C.11)

Because C0 is the zero move configuration, we have f(C0) = 1 and

P
(
C0|{ηj}

)
= 1−

∑
C∈N j

d

P
(
C|{ηj}

)
−

∑
C∈N j

h

P
(
C|{ηj}

)
−

∑
C∈N js

P
(
C|{ηj}

)
. (C.12)

Injecting (C.12) into (C.11), we get

〈f〉{Jj} = 1 + Td + Th + Ts , (C.13)

with Td, Th and Ts given by

Td =
∑
C∈N j

d

(f(C)− 1)P
(
C|{ηj}

)
, Th =

∑
C∈N j

h

(f(C)− 1)P
(
C|{ηj}

)
(C.14)

Ts =
∑
C∈N js

(f(C)− 1)P
(
C|{ηj}

)
. (C.15)

We note that Td, Th and Ts are proportional to dt through the probability P (C|{ηj})
that a move occurred. To order dt, we can thus reexponentiate (C.13) and obtain

〈f〉{Jj} = exp(Td + Th + Ts) +O(dt2) . (C.16)

Hereafter, terms of order O(dt2) will be omitted for clarity. We now determine the terms
Td, Th and Ts through a detailed analysis of the subsets N j

d , N
j
h and N j

s respectively.
Let us start with N j

d : it contains four typical configurations
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• C i, 1d , when a + spin diffuses from site i to site i + 1. In this case, J+
i (tj) = −1

and J+
i+1(tj) = 1 while the remaining J±k (tj) are zero. We thus obtain f(C i, 1d ) =

eη̂
+
i (tj)−η̂+

i+1(tj). The microscopic rules further gives P
(
C i, 1d |{ηj}

)
= Da−2η+

i (tj)dt.

• C i, 2d , when a + spin diffuses from site i + 1 to site i. In this case, J+
i (tj) = 1

and J+
i+1(tj) = −1 while the remaining J±k (tj) are zero. We thus obtain f(C i, 2d ) =

e−η̂
+
i (tj)+η̂+

i+1(tj). The microscopic rules further gives P
(
C i, 2d |{ηj}

)
= Da−2η+

i+1(tj)dt.

• C i, 3d , when a − spin diffuses from site i to site i + 1. In this case, J−i (tj) = −1
and J−i+1(tj) = 1 while the remaining J±k (tj) are zero. We thus obtain f(C i, 3d ) =
eη̂
−
i (tj)−η̂−i+1(tj). The microscopic rules further gives P

(
C i, 3d |{ηj}

)
= Da−2η−i (tj)dt.

• C i, 4d , when a − spin diffuses from site i + 1 to site i. In this case, J−i (tj) = 1
and J−i+1(tj) = −1 while the remaining J±k (tj) are zero. We thus obtain f(C i, 4d ) =
e−η̂

−
i (tj)+η̂−i+1(tj). The microscopic rules further gives P

(
C i, 4d |{ηj}

)
= Da−2η−i+1(tj)dt.

Using translational invariance, Td in (C.14) can be expressed in terms of these typical
configurations C i, kd for k ∈ {1, 2, 3, 4} as

Td =
∑
i

4∑
k=1

(
f(C i, kd )− 1

)
P
(
C i, kd |{ηj}

)
(C.17)

In a similar way, we now describe the two typical configurations in N i
h

• C i, 1h , when a + spin at site i hops to site i + 1. In this case, J+
i (tj) = −1 and

J+
i+1(tj) = 1 while the remaining J±k (tj) are zero. We thus obtain f(C i, 1h ) =
eη̂

+
i (tj)−η̂+

i+1(tj). The microscopic rules gives P
(
C i, 1h |{ηj}

)
= η+

i (tj)e−λ[η
+
i (tj)+η−i (tj)]v a−1 dt.

• C i, 2h , when a − spin at site i+1 hops to site i. In this case, J−i (tj) = 1 and J−i+1(tj) =
−1 while the remaining J±k (tj) are zero. We thus obtain f(C i, 2h ) = e−η̂

−
i (tj)+η̂−i+1(tj).

The microscopic rules gives P
(
C i, 2h |{ηj}

)
= η−i+1(tj)e−λ[η

+
i+1(tj)+η−i+1(tj)]v a−1 dt.

Using translational invariance, Th in (C.14) can be expressed in terms of these typical
configurations C i, 1h and C i, 2h as

Th =
∑
i

2∑
k=1

(
f(C i, kh )− 1

)
P
(
C i, kh |{ηj}

)
(C.18)

Finally, there are two typical configurations in N i
s

• C i, 1s , when a + spin at site i flips into a − spin. In this case, J+
i (tj) = −1

and J−i (tj) = 1 while the remaining J±k (tj) are zero. We thus obtain f(C i, 1h ) =
eη̂

+
i (tj)−η̂−i (tj). The microscopic rules further gives

P
(
C i, 1s |{ηj}

)
=η+

i (tj)γ dt
[
Θ
(
3− η+

i (tj)− η−i (tj)
)
e−β[η

+
i (tj)−η−i (tj)]

+ Θ
(
η+
i (tj) + η−i (tj)− 4

) ]
. (C.19)



140 Appendix C. Lattice gas model for active solidification

• C i, 2s , when a − spin at site i flips into a + spin. In this case, J+
i (tj) = 1 and J−i (tj) =

−1 while the remaining J±k (tj) are zero. We thus obtain f(C i, 2h ) = e−η̂
+
i (tj)+η̂−i (tj).

The microscopic rules further gives

P
(
C i, 2s |{ηj}

)
=η−i (tj)γ dt

[
Θ
(
3− η+

i (tj)− η−i (tj)
)
eβ[η

+
i (tj)−η−i (tj)]

+ Θ
(
η+
i (tj) + η−i (tj)− 4

) ]
. (C.20)

Using translational invariance, Ts in (C.15) can be expressed in terms of these typical
configurations C i, 1s and C i, 2s as

Ts =
∑
i

2∑
k=1

(
f(C i, ks )− 1

)
P
(
C i, ks |{ηj}

)
. (C.21)

Injecting (C.17),(C.18),(C.21) into the expression (C.16) to get 〈f〉{Jj}, we can then
evaluate P [{η}] in (C.6) as

P [{η}] =
∫ L∏

i=1

N∏
j=1

dη̂+
i (tj)dη̂−i (tj) eS , (C.22)

where the action S reads

S =
∑
i,j

[
η̂+
i (tj)

(
η+
i (tj+1)− η+

i (tj)
)

+ η̂−i (tj)
(
η−i (tj+1)− η−i (tj)

)
+ Ddt

a2

[
η+
i (tj)(eη̂

+
i (tj)−η̂+

i+1(tj) − 1) + η+
i+1(tj)(e−η̂

+
i (tj)+η̂+

i+1(tj) − 1)

+ η−i (tj)(eη̂
−
i (tj)−η̂−i+1(tj) − 1) + η−i+1(tj)(e−η̂

−
i (tj)+η̂−i+1(tj) − 1)

]
+ vdt

a

[
f+
h (eη̂

+
i (tj)−η̂+

i+1(tj) − 1) + f−h (e−η̂
−
i (tj)+η̂−i+1(tj) − 1)

]
+ γdt

[
f+
s (eη̂

+
i (tj)−η̂−i (tj) − 1) + γf−s (e−η̂

+
i (tj)+η̂−i (tj) − 1)

]]
, (C.23)

with f+
h and f−h given by

f+
h =e−λη

+
i (tj)−λη−i (tj)η+

i (tj) f−h =e−λη
+
i+1(tj)−λη−i+1(tj)η−i+1(tj) , (C.24)

while f+
s and f−s reads

f+
s =η+

i (tj)
[
Θ
(
3− η+

i (tj)− η−i (tj)
)
e−β(η+

i (tj)−η−i (tj)) + Θ
(
η+
i (tj) + η−i (tj)− 4

)]
(C.25)

f−s =f+
s

(
η+
i (tj)→ η−i (tj), η−i (tj)→ η+

i (tj)
)
. (C.26)

At this point, while we would like to perform a Taylor expansion of the action at order
o(a) and o(dt), we can not do it because η±i (tj) is an integer and therefore the expressions
η±i+1 = η±i + ∂xη

±
i a or η±i (tj+1) = η±i (tj) + ∂tη

±
i dt makes no sense. We have to find a

way to go to smooth real variables, and to this aim we introduce the Poisson parameters
ρ+
i (tj) and ρ−i (tj) for (i, j) ∈ {1, .., L} × {1, .., N}. In the limit a → 0, we know that

the diffusion dominates microscopically, and in this regime the stochastic variables η+
i (tj)

and η−i (tj) thus follow a Poisson law whose average we parametrize by ρ+
i (tj) and ρ−i (tj).
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We now take the mean value of S with respect to this factorized Poissonian law on the
ηi(tj)’s

〈S〉 =
∑
i,j

[
η̂+
i (tj)

(
〈η+
i (tj+1)− η+

i (tj)〉
)

+ η̂−i (tj)
(
〈η−i (tj+1)− η−i (tj)〉

)
+ Ddt

a2

[
〈η+
i (tj)〉(eη̂

+
i (tj)−η̂+

i+1(tj) − 1) + 〈η+
i+1(tj)〉(e−η̂

+
i (tj)+η̂+

i+1(tj) − 1)

+ 〈η−i (tj)〉(eη̂
−
i (tj)−η̂−i+1(tj) − 1) + 〈η−i+1(tj)〉(e−η̂

−
i (tj)+η̂−i+1(tj) − 1)

]
+ vdt

a

[
〈f+
h 〉(eη̂

+
i (tj)−η̂+

i+1(tj) − 1) + 〈f−h 〉(e−η̂
−
i (tj)+η̂−i+1(tj) − 1)

]
+ γdt

[
〈f+
s 〉(eη̂

+
i (tj)−η̂−i (tj) − 1) + 〈f−s 〉(e−η̂

+
i (tj)+η̂−i (tj) − 1)

]]
. (C.27)

Let us now evaluate the averages appearing in (C.27). For terms linear in η, the average
is given by the corresponding Poissonian parameter and we obtain

〈η±i (tj)〉 = ρ±i (tj) , 〈η±i (tj+1)〉 = ρ±i (tj+1) , 〈η±i+1(tj)〉 = ρ±i+1(tj) . (C.28)

For 〈f+
h 〉, we get

〈f+
h 〉 =〈η+

i (tj)e−λ(η−i (tj)+η+
i (tj))〉 (C.29)

〈f+
h 〉 =

∞∑
n,k=0

n
[
ρ+
i (tj)

]n [
ρ−i (tj)

]k
n!k! e−ρ

+
i (tj)−ρ−i (tj)−λ(n+k) (C.30)

〈f+
h 〉 =ρ+

i (tj)e−(ρ+
i (tj)+ρ−i (tj))(1−e−λ)−λ = V(ρ+

i (tj), ρ−i (tj)) , (C.31)

where we have defined the function V(x, y) = xe−(x+y)(1−e−λ)−λ. Performing a similar
computation for 〈f−h 〉, we deduce

〈f−h 〉 =V(ρ−i+1(tj), ρ+
i+1(tj)) . (C.32)

Finally, for 〈f+
s 〉 we compute that

〈f+
s 〉 =

〈
η+
i (τ)

[
Θ
[
3− η+

i (τ)− η−i (τ)
]
e−β(η+

i (τ)−η−i (τ)) + Θ
[
η+
i (τ) + η−i (τ)− 4

]] 〉

=
n+k≤3∑
n,k=0

n
[
ρ+
i (τ)

]n [
ρ−i (τ)

]k
n!k! e−ρ

+
i (τ)−ρ−i (τ)−β(n−k) +

∞∑
n+k>3

n
[
ρ+
i (τ)

]n [
ρ−i (τ)

]k
k!n! e−ρ

+
i (τ)−ρ−i (τ)

=U(ρ+
i (tj), ρ−i (tj)) , (C.33)

where the function U(x, y) is defined by

U(x, y) =e−x−y
(

(e−β − 1)x+ (e−2β − 1)x2 + e−3β − 1
2 x3 + (e−β − 1)x2y + eβ − 1

2 xy2
)

+ x .

The symmetry +↔ − then yields 〈f−s 〉 as

〈f−s 〉 =U(ρ−i (tj), ρ+
i (tj)) (C.34)
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Plugging the averages computed in (C.28) (C.31) (C.32) (C.33) (C.34) into expression
(C.27) for 〈S〉, we get an action depending on the smooth, real variables ρ±i (tj)

〈S〉 =
∑
i,j

[
η̂+
i (tj)

(
ρ+
i (tj+1)− ρ+

i (tj)
)

+ η̂−i (tj)
(
ρ−i (tj+1)− ρ−i (tj)

)
+ Ddt

a2

[
ρ+
i (tj)(eη̂

+
i (tj)−η̂+

i+1(tj) − 1) + ρ+
i+1(tj)(e−η̂

+
i (tj)+η̂+

i+1(tj) − 1)

+ ρ−i (tj)(eη̂
−
i (tj)−η̂−i+1(tj) − 1) + ρ−i+1(tj)(e−η̂

−
i (tj)+η̂−i+1(tj) − 1)

]
+ vdt

a

[
V
(
ρ+
i (tj), ρ−i (tj)

)
(eη̂

+
i (tj)−η̂+

i+1(tj) − 1) + V
(
ρ−i+1(tj), ρ+

i+1(tj)
)

(e−η̂
−
i (tj)+η̂−i+1(tj) − 1)

]
+ γdt

[
U
(
ρ+
i (tj), ρ−i (tj)

)
(eη̂

+
i (tj)−η̂−i (tj) − 1) + U

(
ρ−i (tj), ρ+

i (tj)
)

(e−η̂
+
i (tj)+η̂−i (tj) − 1)

]]
.

(C.35)

We can now take the limit of continuous time using ρ±i (tj+1) − ρ±i (tj) = ρ̇±i (t)dt in
the above expression. Dropping the time dependence for now on, we assume that the
quantities ρ±i , η̂±i are taken at time t

〈S〉 =
∫
dt
∑
i

[
η̂+
i ρ̇

+
i + η̂−i ρ̇

−
i + D

a2

[
ρ+
i (eη̂

+
i −η̂

+
i+1 − 1) + ρ+

i+1(e−η̂
+
i +η̂+

i+1 − 1)

+ ρ−i (eη̂
−
i −η̂

−
i+1 − 1) + ρ−i+1(e−η̂

−
i +η̂−i+1 − 1)

]
+ v

a

[
V
(
ρ+
i , ρ

−
i

)
(eη̂

+
i −η̂

+
i+1 − 1) + V

(
ρ−i+1, ρ

+
i+1

)
(e−η̂

−
i +η̂−i+1 − 1)

]
+ γ

[
U
(
ρ+
i , ρ

−
i

)
(eη̂

+
i −η̂

−
i − 1) + U

(
ρ−i , ρ

+
i

)
(e−η̂

+
i +η̂−i − 1)

]]
. (C.36)

We can now make the following change of variables

ρi =ρ+
i + ρ−i mi =ρ+

i − ρ−i ρ̂i = η̂
+
i + η̂−i

2 m̂i = η̂
+
i − η̂−i

2 . (C.37)

In these new set of variables the actions S reads

〈S〉 =
∫ T

0
dt
∑
i

[
ρ̂iρ̇i + m̂iṁi + D

a2ρi+1(e−ρ̂i−m̂i+ρ̂i+1+m̂i+1 + e−ρ̂i+m̂i+ρ̂i+1−m̂i+1 − 2)

+ D

a2ρi(e
ρ̂i+m̂i−ρ̂i+1−m̂i+1 + eρ̂i−m̂i−ρ̂i+1+m̂i+1 − 2) + D

a2mi(eρ̂i+m̂i−ρ̂i+1−m̂i+1 − eρ̂i−m̂i−ρ̂i+1+m̂i+1)

+ D

a2mi+1(e−ρ̂i−m̂i+ρ̂i+1+m̂i+1 − e−ρ̂i+m̂i+ρ̂i+1−m̂i+1) + v

a
V
(
ρi +mi

2 ,
ρi −mi

2

)
(eρ̂i+m̂i−ρ̂i+1−m̂i+1 − 1)

+ v

a
V
(
ρi+1 −mi+1

2 ,
ρi+1 +mi+1

2

)
(eρ̂i+1−m̂i+1−ρ̂i+m̂i − 1)

+ γ U
(
ρi +mi

2 ,
ρi −mi

2

)
(em̂i − 1) + γ U

(
ρi −mi

2 ,
ρi +mi

2

)
(e−m̂i − 1) . (C.38)

Before taking the limit of continuous space in the action 〈S〉, we need to perform a Taylor
expansion of the fields using

ρi+i =ρi + a∂xρi + a2

2 ∂xxρi + o(a2) mi+i =mi + a∂xmi + a2

2 ∂xxmi + o(a2)

ρ̂i+i =ρ̂i + a∂xρ̂i + a2

2 ∂xxρ̂i + o(a2) m̂i+i =m̂i + a∂xm̂i + a2

2 ∂xxm̂i + o(a2) .
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Plugging the above expansions into (C.38), we are now ready to take the limit a → 0.
We obtain

〈S〉 = 1
a

∫ L

0

∫ T

0
S[ρ,m, ρ̂, m̂]dtdx+ o(a−1) , (C.39)

where S[ρ,m, ρ̂, m̂] is given by

S = ρ̂ρ̇+ m̂ṁ+D∇ρ̂∇ρ+D∇m̂∇m+ D

2 ρ
[
(∇ρ̂+∇m̂)2 + (∇ρ̂−∇m̂)2

]
+ D

2 m
[
(∇ρ̂+∇m̂))2 − (∇ρ̂−∇m̂)2

]
+ γ U

(
ρ+m

2 ,
ρ−m

2

)
(em̂ − 1)

− v∇m̂
[
V
(
ρ+m

2 ,
ρ−m

2

)
+ V

(
ρ−m

2 ,
ρ+m

2

)]
+ γ U

(
ρ−m

2 ,
ρ+m

2

)
(e−m̂ − 1)

− v∇ρ̂
[
V
(
ρ+m

2 ,
ρ−m

2

)
− V

(
ρ−m

2 ,
ρ+m

2

)]
. (C.40)

We can further simplify the integrand S by using the expression of V

S = ρ̂ρ̇+ m̂ṁ+D∇ρ̂∇ρ+D∇m̂∇m+ D

2 ρ
[
(∇ρ̂+∇m̂)2 + (∇ρ̂−∇m̂)2

]
+ D

2 m
[
(∇ρ̂+∇m̂))2 − (∇ρ̂−∇m̂)2

]
− vρ e−ρ(1−e−λ)−λ∇m̂− vm e−ρ(1−e−λ)−λ∇ρ̂

+ γ U
(
ρ+m

2 ,
ρ−m

2

)
(em̂ − 1) + γ U

(
ρ−m

2 ,
ρ+m

2

)
(e−m̂ − 1) . (C.41)

We are now ready to deduce the hydrodynamics of our microscopic model. Because we
took the regime a→ 0, we just have to do a saddle-point of the above integrand S to get
the evolution equations for ρ and m. The hydrodynamics is obtained from minimizing
(C.41) with respect to m̂ and ρ̂

δS

δρ̂
= 0 δS

δm̂
= 0 δS

δρ
= 0 δS

δm
= 0 . (C.42)

Conditions δS/δρ = δS/δm = 0 are met for constant homogeneous fields ρ̂ = m̂ = 0
while, for such fields, δS/δρ̂ = 0 and δS/δm̂ = 0 yields the sought after hydrodynamics
for ρ and m

∂tρ = D∇2ρ−∇(vm e−ρ(1−e−λ)−λ) (C.43)

∂tm = D∇2m−∇(vρ e−ρ(1−e−λ)−λ)− γm e−ρ
[ (
e−β − 1

)
+
(
e−2β − 1

)
ρ

+
(
3e−3β + 2e−β − eβ − 4

) ρ2

8

]
− γ m3e−ρ

e−3β

8
(
e2β − 1

)2
− γm , (C.44)

which correspond to (4.34) and (4.35) of main text. Note that the coarse-graining method
employed in this section is very generic and can be applied to a very broad class of lattice
models. The key assumption is the existence of a stochastic process which dominates
the dynamics as a → 0: in our case, the diffusion dominate. As long as the measure
associated to this dominant stochastic process is factorized and parametrized by on-
site real variables, the coarse-graining can be performed. In our case, this measure is
the poisson law parametrized by ρ±i the averaged number of particles at site i. For
example, we could apply this coarse-graining procedure to exclusion processes, in which
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exchanging neighboring particles replaces diffusion as the dominant stochastic dynamics
in the limit a → 0. In this case, the associated dominant measure is a product of
Bernoulli distributions indexed by real parameters representing the averaged number of
particles at site i. Using the procedure presented in this section, we could then rederive
the results of [148] for the exclusion process. Note also that, from (C.38), we could derive
the microscopic Gaussian fluctuations of the field ρ and m by developing 〈S〉 to the next
order in a.

C.2 Numerical methods for lattice gas
In this appendix, we detail the simulations of the active lattice gas dynamics RI-RII-
RIII which were used to obtain Fig. 4.14. We used a random sequential update with
discretized time and N ∼ 2× 105 particles. At each time step dt, we repeat N times the
following chain of instructions

LI Draw a particle uniformly

LII Draw a float uniformly between 0 and 1

LIII Update the position and spin of the particle according to the stochastic dynamic
RI-RII-RIII

Note that, in Fig. 4.14, the lattice size is of order a ∼ 0.0025 while the total length is
L = 400: there is thus a high number of sites Nsites ∼ 2 × 105. Furthermore, we had
to impose very small time step dt ∼ 10−6 in order to keep the probabilty Da−2dt of a
diffusive move RI of order 1. As the diffusion rateDa−2 ∼ 1.6×105 dominates the flipping
rate γ ∼ 1 by five orders of magnitude, we are close to the limit where the random float
drawn in LII never triggers a spin flip in LIII due to lack of numerical precision. The issue
is the following: the generator of random numbers cannot accurately restitute a binary
distribution of probability p1 and 1 − p1 when p1/(1 − p1) . 10−10. Therefore, drawing
two random numbers, one for selecting a particle LI and one for choosing its move LII is
crucial in this algorithm. If instead we draw a unique random float, and extract its first
N ∼ 2× 105 decimals for selecting a particle before using its remaining part to choose a
move in LIII, the algorithm is inconsistently producing a dynamics without spin flips.



D. Scale-free correlations in anisotropic
systems

D.1 Derivation of the density correlations under con-
finement

This appendix is devoted to the computation of the density correlation 〈δρ(x, t)δρ(0, t)〉
induced by the dynamics

∂tδρ = ∇ · [Λ] + D

2 ∇2δρ , (D.1)

with no-flux boundary conditions in the ⊥ direction and periodic boundary conditions in
the ‖ direction. We recall that the Gaussian noise Λ in (D.1) satisifies

〈Λα(r, t)Λβ(r′, t′)〉 =
[
Dδαβρbδ(r− r′) + hαh0(r− r′)δαβρ2

b

]
δ(t− t′) . (D.2)

We consider a domain of size L⊥ × L‖ with L‖ � L⊥ and decompose δρ(x, t) on its
discrete and continuous Fourier modes in the ⊥ direction and ‖ directions, respectively.
The boundary conditions on the field ρ are δρ(x⊥, 0, t) = δρ(x⊥, L‖, t) and ∂⊥δρ(0, x‖, t) =
∂⊥δρ(L⊥, x‖, t) = 0. Since δρ need not be a periodic function of x⊥, we formally extend its
definition by parity as δρ(−x⊥, x‖, t) = δρ(x⊥, x‖, t). δρ then becomes a periodic function
on the domain [−L⊥, L⊥]× [0, L‖] and we decompose it as

δρ(x, t) =
∫ eikx‖dk

2π

∫ e−iwtdw

2π

∞∑
n=0
Nn Aqn,k,w cos(qnx⊥) , (D.3)

where qn = nπ/L⊥, Nn = 1− δn,0/2 and Aqn,k,w is given by

Aqn,k,w =
∫
e−ikx‖dx‖

∫
eiwtdt

1
L⊥

∫ L⊥

−L⊥
cos(qnx⊥)δρ(x⊥, x‖, t)dx⊥ . (D.4)

Note that only the cosine modes enter (D.3) to ensure the no-flux boundary conditions
∂⊥δρ(0, x‖, t) = ∂⊥δρ(L⊥, x‖, t) = 0. Outside (D.3), we will consider the restriction of δρ
to the domain [0, L⊥]: our results will be unaffected by this formal extension.

Similarly, we project ∇ ·Λ on its Fourier modes as

∇ ·Λ(x, t) =
∫ eikx‖dk

2π

∫ e−iwtdw

2π

∞∑
n=0
Nn Λqn,k,w cos(qnx⊥) , (D.5)

where Λqn,k,w is given by

Λqn,k,w =
∫
e−ikx‖dx‖

∫
eiwtdt

1
L⊥

∫ L⊥

−L⊥
cos(qnx⊥)∇ ·Λ(x⊥, x‖, t)dx⊥ . (D.6)

As for Aqn,k,w in (D.4), note that the integral over x⊥ in (D.6) runs from −L⊥ to L⊥: we
have formally extended ∇ · Λ to the domain [−L⊥, 0] by parity taking Λ(x‖,−x⊥, t) =

145
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Λ(x‖, x⊥, t). Inserting (D.3) and (D.5) into the time-evolution for δρ (D.1), we obtain
the Aqn,k,w as a function of the Λqn,k,w

Aqn,k,w = Λqn,k,w

−iw + D
2 (k2 + q2

n)
. (D.7)

Using (D.7) into (D.3), we express the correlator 〈δρ(x, t)δρ(0, t)〉 as

〈δρ(x, t)δρ(0, t)〉 =
∫
eikx‖

dkdk′

(2π)2

∫
e−iwt−iw

′tdwdw
′

(2π)2

∞∑
n,n′=0

NnNn′ cos(qnx⊥)
〈Λqn,k,wΛqn′ ,k

′,w′〉(
−iw + D

2 (k2 + q2
n)
) (
−iw′ + D

2 (k′2 + q2
n′)
) .

(D.8)

To close the above expression, we need to compute 〈Λqn,k,wΛqn′ ,k
′,w′〉. As a starting point,

we perform an integration by parts in (D.6) to obtain

Λqn,k,w =
∫
dx‖dt

eiwt−ikx‖

L⊥

∫ L⊥

−L⊥

[
ik cos(qnx⊥)Λ‖(x⊥, x‖, t) + qn sin(qnx⊥)Λ⊥(x⊥, x‖, t)

]
dx⊥ .

(D.9)

We now multiply Λqn,k,w by Λqn′ ,k
′,w′ , use (D.9), and take the average by inserting (D.2).

This tedious but straightforward computation leads to

〈Λqn,k,wΛqn′ ,k
′,w′〉 = (2π)2δ(k + k′)δ(w + w′)δn,n′Nn[

ρbD

L⊥
(k2 + q2

n) + ρ2
bσ

3cn(h‖k2 + h⊥q
2
n)e− k

2σ2
2

]
,

(D.10)

where cn is the n-th Fourier coefficient of the function h0(x⊥):

cn = 1
L⊥

∫ L⊥

−L⊥
cos(qnx⊥) 1√

2π
e−

x2
⊥

2σ2 dx⊥ . (D.11)

In the limit L⊥ � σ, the bound in the above integral can be extended to ±∞ and we
obtain cn ' σ exp(−q2

nσ
2/2)/L⊥. Injecting this approximation in (D.10), we obtain

〈Λqn,k,wΛqn′ ,k
′,w′〉 = (2π)2δ(k + k′)δ(w + w′)δn,n

′Nn
L⊥[

ρbD(k2 + q2
n) + ρ2

b(h‖k2 + h⊥q
2
n)h0(k, qn)

]
, (D.12)

where we have used the definition of the function h0(k), ie h0(k, q) = σ4e−
(k2+q2)σ2

2 .
Inserting expression (D.12) into (D.8) gives the correlator as

〈δρ(x, t)δρ(0, t)〉 =
∫ dk

2π

∫ dw

2π
eikx‖

L⊥

∞∑
n=0

Nn cos(qnx⊥)ρbD(k2 + q2
n) + ρ2

b(h‖k2 + h⊥q
2
n)h0(k, qn)[

w − iD2 (k2 + q2
n)
] [
w + iD2 (k2 + q2

n)
] .
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Performing the integral over w using Cauchy residu theorem yields

〈δρ(x, t)δρ(0, t)〉 =
∫ dk

2π
eikx‖

L⊥

∞∑
n=0
Nn cos(qnx⊥)

[
ρb + ρ2

b

D

(h‖k2 + h⊥q
2
n)h0(k, qn)

k2 + q2
n

]
.

(D.13)
As described in section 5.1, we must take into account a volume-dependent correction for
finite-size systems. In this appendix, we follow a path different from the one in section
5.1 and determine this correction by enforcing mass conservation. To this aim, we will
check mass conservation in (D.13) by integrating 〈δρ(x, t)δρ(0, t)〉. As we have extended
δρ to the domain [−L⊥, 0] by parity, we can perform this integration in the whole domain
[−L⊥, L⊥]× [0, L‖]. Mass conservation thus reads∫ L⊥

−L⊥

∫ L‖

0
〈δρ(x, t)δρ(0, t)〉dx⊥dx‖ = 0 . (D.14)

The second term on the right-hand side of (D.13) can be written as a full derivative∫ dk

2π
eikx‖

L⊥

∞∑
n=0
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2
b

D

h‖k
2 + h⊥q

2
n

k2 + q2
n

h0(k, qn) = −(h‖∂2
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2
⊥)f(x‖, x⊥) ,

where f(x‖, x⊥) is given by

f(x‖, x⊥) =
∫ dk

2π
eikx‖

L⊥

∞∑
n=0
Nn cos(qnx⊥)ρ
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As the function f is periodic on the domain [−L⊥, L⊥]× [0, L‖], its integral will vanish.
The integral of 〈δρ(x)δρ(0)〉 is thus given by∫ L⊥

−L⊥

∫ L‖

0
〈δρ(x, t)δρ(0, t)〉dx⊥dx‖ =

∫ L⊥

−L⊥

∫ L‖

0

∫ dk

2π
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Nn cos(qnx⊥)ρb (D.16)

= ρb . (D.17)

Comparing (D.17) to (D.14), we note that we have to subtract ρb/(2L‖L⊥) from 〈δρ(x)δρ(0)〉
as expressed in (D.13) to ensure mass conservation. We thus deduce the expression of
the density correlator as

〈δρ(x, t)δρ(0, t)〉 =
∫ dk

2π
eikx‖
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(D.18)
Finally, we note that the Fourier transform cn,k of a Dirac distribution is given by

cn,k =
∫
dx‖e

−ikx‖
∫ L⊥

−L⊥

Nn
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so that

δ(x‖)δ(x⊥) =
∫ dk

2π
eikx‖

L⊥

∞∑
n=0
Nn cos(qnx⊥) . (D.20)

Inserting (D.20) in (D.18), we obtain the final form of the two-point function as

〈δρ(x, t)δρ(0, t)〉 =
∫ dk
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D.2 Derivation of the sum involved in the local pres-
sure

In this appendix, we derive (5.99) of main text. To this aim, we will use the Poisson
summation formula which state that∑

n∈Z
f(na) = 1

a

∑
n∈Z

∫ ∞
−∞

dxf(x)e−i 2πn
a
x , (D.22)

for any function f and scalar a. We want to compute ∑n≥1 2Nn(−1)nbn where the
sequence bn is given by

bn =
∫ dk

2π
1

2L⊥

[
(h‖k2 + h⊥q

2
n)h0(k, qn)

k2 + q2
n

]
, (D.23)

with qn = nπ/L⊥ and h0(k, q) = σ4e−
(k2+q2)σ2

2 . We first note that bn is a sequence of
positive terms such that bn = b−n. Using the definition Nn = 1 − δn,0/2, we can recast
the sum over n ≥ 1 into a sum over n ∈ Z:

∞∑
n≥1

2Nn(−1)nbn =
∑
n∈Z

(−1)nbn . (D.24)

We can further express the alternating series in terms of series of constant sign as∑
n∈Z

(−1)nbn =
∑

n∈even
bn −

∑
n∈odd

bn = 2
∑
n∈Z

b2n −
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bn . (D.25)

Inserting (D.25) into (D.24), we obtain∑
n≥1

2Nn(−1)nbn = 2
∑
n∈Z

b2n −
∑
n∈Z

bn . (D.26)

Let us now apply the Poisson summation formula (D.22) with a = π/L⊥ to the second
term on the right-hand side of (D.26). We obtain

∑
n∈Z
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∑
n∈Z
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We note that we have already computed the integral on the right-hand side of (D.27) in
expression (5.62) of main text. Using this result, we get

∑
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Similar arguments allow us to compute the first term on the right-hand side of (D.26) as
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Inserting (D.28) and (D.29) in (D.26), we obtain
∑
n≥1

2Nn(−1)nbn =
∑
n∈Z

σ4

2π

[
h‖ − h⊥
4L2
⊥n

2

(
3− 4e−

L2
⊥n

2

2σ2 − e−
2L2
⊥n

2

σ2

)
+ h⊥
σ2

(
e−

L2
⊥n

2

2σ2 − e−
2L2
⊥n

2

σ2

)]
.

(D.30)
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In the above expression, the only divergent term in the series on the right-hand side is
the term n = 0. To regularize (D.30), we neglect this term and recast the sum in the
positive integers:

∑
n≥1
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n=1

σ4

π

[
h‖ − h⊥
4L2
⊥n

2

(
3− 4e−

L2
⊥n

2

2σ2 + e−
2L2
⊥n

2

σ2

)
+ h⊥
σ2

(
e−

L2
⊥n

2

2σ2 − e−
2L2
⊥n

2

σ2

)]
.

Using that ∑∞n=1 1/n2 = π2/6, we finally obtain (5.99) of main text:

∑
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where Θ3(u, v) = 1 + 2∑n≥1 v
n2 cos(2nu) is the third elliptic function.
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Résumé
La matière active regroupe l’étude des systèmes comprenant un grand nombre d’agents

capables d’exercer des forces d’auto-propulsion sur leur environement. La motivation
première de la matière active est de fournir un cadre théorique simplifié décrivant des
ensembles d’entités vivantes en interaction. Cette approche spécifique est déjà à l’origine
de plusieurs percées dans la compréhension des systèmes vivants, dans l’étude du mouve-
ment bactérien et dans celle des nuées d’oiseaux par exemple. Par ailleurs, les succès de
la matière active se sont récemment étendus au delà du vivant. Le domaine a notamment
inspiré toute une panoplie d’expériences basées sur des matériaux artificiels : des rollers
de Quincke aux colloïdes de Janus en passant par les grains vibrés. Dans ces montages,
les entités actives sont synthétiques et leur moyen de propulsion repose sur un mécanisme
physique plutôt que biologique.

Ce manuscrit de thèse contribue au développement de la matière active suivant 4 axes
: l’étude exacte d’un modèle de dynamique active, la caractérisation de l’ordre dans la
transition vers le mouvement collectif, l’étude de l’émergence d’embouteillages au sein
d’un liquide polaire et l’apparition de corrélations longue portée dues à l’anisotropie.

Pour commencer, dans le chapitre 2, je présente une analyse perturbative exacte du
modèle hors équilibre Active Ornstein Uhlenbeck Particles (AOUPs). J’y calcule analy-
tiquement la distribution stationnaire d’une AOUP et quantifie son irréversibilité tem-
porelle grâce à 3 signatures : la déviation au poids de Boltzmann, le courant "de cliquet"
et la production d’entropie. Je généralise ensuite ces résultats au cas d’une particule
soumise à un bruit thermique supplémentaire en sus du bruit actif. L’interaction entre
les deux types de fluctuations mène à une riche phénoménologie lorsque la température
varie : le courant "de cliquet" peut décroître ou être non monotone alors que la production
d’entropie peut décliner ou diverger à haute T . Finalement, je discute de l’extension de
ces résultats au cas de N particules actives en dimension d.

Dans le chapitre 3, je revisite la transition vers le mouvement collectif selon le type
d’alignement microscopique en jeu. Qu’il s’agisse d’interactions dites "métriques" ou
"topologiques", je montre que l’émergence de l’ordre reste généralement discontinue. Pour
y parvenir, je présente la notion de transition de premier ordre induite par les fluctuations
(FIFOT) et l’applique aux modèles de mouvement collectif.

Dans le chapitre 4, j’étudie l’apparition de séparation de phase induite par la motilité
(MIPS) dans les modèles de mouvement collectif. Dans ce but, je reporte l’existence
d’embouteillages au sein de denses asssemblées de rollers de Quincke. Lors de cette tran-
sition, que nous avons nommée solidification active, les embouteillages se propagent dans
la direction opposée à celle du flux de rollers. J’établis ensuite un modèle théorique de la
solidification active permettant d’explorer la riche phénoménologie de l’interaction entre
MIPS et le mouvement collectif. En faisant varier les paramètres de ce modèle, je prédis
l’existence d’une phase où des nuées de taille finie coexistent avec des embouteillages.

Dans le chapitre 5, j’étudie les fluctuations invariantes d’échelles d’un système ac-
tif. Partant d’une dynamique microscopique dotée d’interactions anisotropiques à courte
portée, je montre l’existence de corrélations de densité macroscopiques à longue portée.
J’évalue ensuite l’effet de ces corrélations sur la pression exercée par le système dans le
but de dénicher un comportement similaire à la pression de Casimir.

Finalement, dans le dernier chapitre, je conclus ce manuscrit en résumant les con-
tributions développées dans les 4 chapitres précedents. Pour chacun de ces travaux, je
propose une possible direction de recherche future.
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Mots-clés : physique statistique, matière active, physique hors de l’équilibre, transitions
de phase, mouvement collectif, corrélations longue portée, séparation de phase induite
par la motilité (MIPS).

Summary

Active Matter deals with the study of colloidal systems for which Brownian motion
is replaced by a persistent self-propulsion. The main motivation of Active Matter is to
provide a theoretical framework describing ensembles of interacting living entities. Such
an approach has already led to breakthroughs in our understanding of living systems, be it
in bacterial dynamics or for the analysis of bird flocks. But the successes of active matter
now extend beyond living matter. The field has inspired a wealth of experiments dealing
with artificial materials: Quincke rollers, Janus colloids, or shaken grains among other
examples. In these setups, the active entities are synthetic units whose self-propulsion
relies on a physical rather than biological mechanism.

This manuscript contributes to the active matter roadmap along four axes: the exact
study of a workhorse model of active dynamics, the characterization of the order in
the flocking transition, the study of the interplay between flocks and jams, and the
presentation of anisotropy-induced long-ranged correlations.

As a starting point, I present in chapter 2 an exact perturbative analysis of the
nonequilibrium model called Active Ornstein Uhlenbeck Particles (AOUPs). Using it, I
derive analytically the steady-state distribution of an AOUP and quantify its departure
from equilibrium through the characterization of three signatures: the deviation from
Boltzmann distribution, the ratchet current, and the entropy production rate. I then
generalize these results to the case of a particle experiencing both active and passive
noises. The interplay between the two types of fluctuations leads to a rich phenomenol-
ogy for the ratchet current and the entropy production rate when the temperature is
varied: decline or non-monotonicity, divergence or decay at high T . Finally, I discuss the
extension of these results to the case of N active particles in dimension d.

In the third chapter, I revisit the transition to collective motion according to the type
of microscopic alignment at play. Be it so-called metric or topological interactions, I show
that the emergence of flocking generically remains discontinuous. To achieve this result,
I present the notion of Fluctuation-Induced First Order Phase Transition (FIFOT) and
apply it to models of collective motion.

In the fourth chapter, I study the outbreak of Motility-Induced Phase Separation
(MIPS) in flocking models. To this aim, I report the appearance of jams in dense as-
semblies of Quincke rollers. At the transition, which we dubbed active solidification, the
jams propagate upstream the homogeneous flock of rollers. I then establish a theoret-
ical model for active solidification which allows me to explore the rich phenomenology
emerging from the interplay between MIPS and collective motion. By varying relevant
parameters, I predict the existence of a phase where flocking bands coexist with active
jams.

In the fifth chapter, I study long-ranged fluctuations in an active system. Starting
from a microscopic dynamics only endowed with short-ranged anisotropic interactions, I
show the emergence of macroscopic long-ranged density correlations. I then assess the
effect of these correlations on the pressure exerted by the system in order to probe for a
possible Casimir-like behaviour.
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Finally, in the last chapter, I conclude this manuscript by summarizing the contri-
butions developed in the four previous chapters. For each of these works, I propose a
possible future research direction.

Keywords : statistical physics, active matter, nonequilibrium physics, phase transitions,
collective motion, long-ranged correlations, Motility-Induced Phase Separation (MIPS).


